Don't use the abbreviation "win" to refer to Windows (Bug#10421).
[bpt/emacs.git] / src / regex.c
CommitLineData
e318085a 1/* Extended regular expression matching and search library, version
0b32bf0e 2 0.12. (Implements POSIX draft P1003.2/D11.2, except for some of the
bc78d348
KB
3 internationalization features.)
4
acaf905b 5 Copyright (C) 1993-2012 Free Software Foundation, Inc.
bc78d348 6
fa9a63c5
RM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
e468b87f 9 the Free Software Foundation; either version 3, or (at your option)
fa9a63c5
RM
10 any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
7814e705 14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
fa9a63c5
RM
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
4fc5845f 19 Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
7814e705 20 USA. */
fa9a63c5 21
6df42991 22/* TODO:
505bde11 23 - structure the opcode space into opcode+flag.
dc1e502d 24 - merge with glibc's regex.[ch].
01618498 25 - replace (succeed_n + jump_n + set_number_at) with something that doesn't
6dcf2d0e
SM
26 need to modify the compiled regexp so that re_match can be reentrant.
27 - get rid of on_failure_jump_smart by doing the optimization in re_comp
28 rather than at run-time, so that re_match can be reentrant.
01618498 29*/
505bde11 30
fa9a63c5 31/* AIX requires this to be the first thing in the file. */
0b32bf0e 32#if defined _AIX && !defined REGEX_MALLOC
fa9a63c5
RM
33 #pragma alloca
34#endif
35
b8df54ff
PE
36/* Ignore some GCC warnings for now. This section should go away
37 once the Emacs and Gnulib regex code is merged. */
63807d47 38#if (__GNUC__ == 4 && 5 <= __GNUC_MINOR__) || 4 < __GNUC__
b8df54ff
PE
39# pragma GCC diagnostic ignored "-Wstrict-overflow"
40# ifndef emacs
41# pragma GCC diagnostic ignored "-Wunused-but-set-variable"
42# pragma GCC diagnostic ignored "-Wunused-function"
43# pragma GCC diagnostic ignored "-Wunused-macros"
44# pragma GCC diagnostic ignored "-Wunused-result"
45# pragma GCC diagnostic ignored "-Wunused-variable"
46# endif
47#endif
48
cf38a720 49#include <config.h>
fa9a63c5 50
0e926e56
PE
51#include <stddef.h>
52
53#ifdef emacs
4bb91c68
SM
54/* We need this for `regex.h', and perhaps for the Emacs include files. */
55# include <sys/types.h>
56#endif
fa9a63c5 57
14473664
SM
58/* Whether to use ISO C Amendment 1 wide char functions.
59 Those should not be used for Emacs since it uses its own. */
5e5388f6
GM
60#if defined _LIBC
61#define WIDE_CHAR_SUPPORT 1
62#else
14473664 63#define WIDE_CHAR_SUPPORT \
5e5388f6
GM
64 (HAVE_WCTYPE_H && HAVE_WCHAR_H && HAVE_BTOWC && !emacs)
65#endif
14473664 66
fa463103 67/* For platform which support the ISO C amendment 1 functionality we
14473664 68 support user defined character classes. */
a0ad02f7 69#if WIDE_CHAR_SUPPORT
14473664
SM
70/* Solaris 2.5 has a bug: <wchar.h> must be included before <wctype.h>. */
71# include <wchar.h>
72# include <wctype.h>
73#endif
74
c0f9ea08
SM
75#ifdef _LIBC
76/* We have to keep the namespace clean. */
77# define regfree(preg) __regfree (preg)
78# define regexec(pr, st, nm, pm, ef) __regexec (pr, st, nm, pm, ef)
79# define regcomp(preg, pattern, cflags) __regcomp (preg, pattern, cflags)
ec869672 80# define regerror(err_code, preg, errbuf, errbuf_size) \
5e617bc2 81 __regerror (err_code, preg, errbuf, errbuf_size)
c0f9ea08
SM
82# define re_set_registers(bu, re, nu, st, en) \
83 __re_set_registers (bu, re, nu, st, en)
84# define re_match_2(bufp, string1, size1, string2, size2, pos, regs, stop) \
85 __re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
86# define re_match(bufp, string, size, pos, regs) \
87 __re_match (bufp, string, size, pos, regs)
88# define re_search(bufp, string, size, startpos, range, regs) \
89 __re_search (bufp, string, size, startpos, range, regs)
90# define re_compile_pattern(pattern, length, bufp) \
91 __re_compile_pattern (pattern, length, bufp)
92# define re_set_syntax(syntax) __re_set_syntax (syntax)
93# define re_search_2(bufp, st1, s1, st2, s2, startpos, range, regs, stop) \
94 __re_search_2 (bufp, st1, s1, st2, s2, startpos, range, regs, stop)
95# define re_compile_fastmap(bufp) __re_compile_fastmap (bufp)
96
14473664
SM
97/* Make sure we call libc's function even if the user overrides them. */
98# define btowc __btowc
99# define iswctype __iswctype
100# define wctype __wctype
101
c0f9ea08
SM
102# define WEAK_ALIAS(a,b) weak_alias (a, b)
103
104/* We are also using some library internals. */
105# include <locale/localeinfo.h>
106# include <locale/elem-hash.h>
107# include <langinfo.h>
108#else
109# define WEAK_ALIAS(a,b)
110#endif
111
4bb91c68 112/* This is for other GNU distributions with internationalized messages. */
0b32bf0e 113#if HAVE_LIBINTL_H || defined _LIBC
fa9a63c5
RM
114# include <libintl.h>
115#else
116# define gettext(msgid) (msgid)
117#endif
118
5e69f11e
RM
119#ifndef gettext_noop
120/* This define is so xgettext can find the internationalizable
121 strings. */
0b32bf0e 122# define gettext_noop(String) String
5e69f11e
RM
123#endif
124
fa9a63c5
RM
125/* The `emacs' switch turns on certain matching commands
126 that make sense only in Emacs. */
127#ifdef emacs
128
d7306fe6 129# include <setjmp.h>
0b32bf0e 130# include "lisp.h"
e5560ff7 131# include "character.h"
0b32bf0e 132# include "buffer.h"
b18215fc
RS
133
134/* Make syntax table lookup grant data in gl_state. */
0b32bf0e 135# define SYNTAX_ENTRY_VIA_PROPERTY
b18215fc 136
0b32bf0e 137# include "syntax.h"
0b32bf0e 138# include "category.h"
fa9a63c5 139
7689ef0b
EZ
140# ifdef malloc
141# undef malloc
142# endif
0b32bf0e 143# define malloc xmalloc
7689ef0b
EZ
144# ifdef realloc
145# undef realloc
146# endif
0b32bf0e 147# define realloc xrealloc
7689ef0b
EZ
148# ifdef free
149# undef free
150# endif
0b32bf0e 151# define free xfree
9abbd165 152
7814e705 153/* Converts the pointer to the char to BEG-based offset from the start. */
0b32bf0e
SM
154# define PTR_TO_OFFSET(d) POS_AS_IN_BUFFER (POINTER_TO_OFFSET (d))
155# define POS_AS_IN_BUFFER(p) ((p) + (NILP (re_match_object) || BUFFERP (re_match_object)))
156
157# define RE_MULTIBYTE_P(bufp) ((bufp)->multibyte)
bf216479 158# define RE_TARGET_MULTIBYTE_P(bufp) ((bufp)->target_multibyte)
62a6e103
AS
159# define RE_STRING_CHAR(p, multibyte) \
160 (multibyte ? (STRING_CHAR (p)) : (*(p)))
161# define RE_STRING_CHAR_AND_LENGTH(p, len, multibyte) \
162 (multibyte ? (STRING_CHAR_AND_LENGTH (p, len)) : ((len) = 1, *(p)))
2d1675e4 163
4c0354d7 164# define RE_CHAR_TO_MULTIBYTE(c) UNIBYTE_TO_CHAR (c)
cf9c99bc 165
2afc21f5 166# define RE_CHAR_TO_UNIBYTE(c) CHAR_TO_BYTE_SAFE (c)
cf9c99bc 167
6fdd04b0
KH
168/* Set C a (possibly converted to multibyte) character before P. P
169 points into a string which is the virtual concatenation of STR1
170 (which ends at END1) or STR2 (which ends at END2). */
bf216479
KH
171# define GET_CHAR_BEFORE_2(c, p, str1, end1, str2, end2) \
172 do { \
02cb78b5 173 if (target_multibyte) \
bf216479
KH
174 { \
175 re_char *dtemp = (p) == (str2) ? (end1) : (p); \
176 re_char *dlimit = ((p) > (str2) && (p) <= (end2)) ? (str2) : (str1); \
177 while (dtemp-- > dlimit && !CHAR_HEAD_P (*dtemp)); \
62a6e103 178 c = STRING_CHAR (dtemp); \
bf216479
KH
179 } \
180 else \
181 { \
182 (c = ((p) == (str2) ? (end1) : (p))[-1]); \
cf9c99bc 183 (c) = RE_CHAR_TO_MULTIBYTE (c); \
bf216479 184 } \
2d1675e4
SM
185 } while (0)
186
6fdd04b0
KH
187/* Set C a (possibly converted to multibyte) character at P, and set
188 LEN to the byte length of that character. */
189# define GET_CHAR_AFTER(c, p, len) \
190 do { \
02cb78b5 191 if (target_multibyte) \
62a6e103 192 (c) = STRING_CHAR_AND_LENGTH (p, len); \
6fdd04b0
KH
193 else \
194 { \
cf9c99bc 195 (c) = *p; \
6fdd04b0 196 len = 1; \
cf9c99bc 197 (c) = RE_CHAR_TO_MULTIBYTE (c); \
6fdd04b0 198 } \
8f924df7 199 } while (0)
4e8a9132 200
fa9a63c5
RM
201#else /* not emacs */
202
203/* If we are not linking with Emacs proper,
204 we can't use the relocating allocator
205 even if config.h says that we can. */
0b32bf0e 206# undef REL_ALLOC
fa9a63c5 207
4004364e 208# include <unistd.h>
fa9a63c5 209
a77f947b
CY
210/* When used in Emacs's lib-src, we need xmalloc and xrealloc. */
211
b8df54ff 212static void *
d2762c86 213xmalloc (size_t size)
a77f947b 214{
38182d90 215 void *val = malloc (size);
a77f947b
CY
216 if (!val && size)
217 {
218 write (2, "virtual memory exhausted\n", 25);
219 exit (1);
220 }
221 return val;
222}
223
b8df54ff 224static void *
d2762c86 225xrealloc (void *block, size_t size)
a77f947b 226{
38182d90 227 void *val;
a77f947b
CY
228 /* We must call malloc explicitly when BLOCK is 0, since some
229 reallocs don't do this. */
230 if (! block)
38182d90 231 val = malloc (size);
a77f947b 232 else
38182d90 233 val = realloc (block, size);
a77f947b
CY
234 if (!val && size)
235 {
236 write (2, "virtual memory exhausted\n", 25);
237 exit (1);
238 }
239 return val;
240}
241
a073faa6
CY
242# ifdef malloc
243# undef malloc
244# endif
245# define malloc xmalloc
246# ifdef realloc
247# undef realloc
248# endif
249# define realloc xrealloc
250
9cfdb3ec 251# include <string.h>
fa9a63c5
RM
252
253/* Define the syntax stuff for \<, \>, etc. */
254
990b2375 255/* Sword must be nonzero for the wordchar pattern commands in re_match_2. */
669fa600 256enum syntaxcode { Swhitespace = 0, Sword = 1, Ssymbol = 2 };
fa9a63c5 257
0b32bf0e 258# define SWITCH_ENUM_CAST(x) (x)
fa9a63c5 259
e934739e 260/* Dummy macros for non-Emacs environments. */
0b32bf0e
SM
261# define CHAR_CHARSET(c) 0
262# define CHARSET_LEADING_CODE_BASE(c) 0
263# define MAX_MULTIBYTE_LENGTH 1
264# define RE_MULTIBYTE_P(x) 0
bf216479 265# define RE_TARGET_MULTIBYTE_P(x) 0
0b32bf0e
SM
266# define WORD_BOUNDARY_P(c1, c2) (0)
267# define CHAR_HEAD_P(p) (1)
268# define SINGLE_BYTE_CHAR_P(c) (1)
269# define SAME_CHARSET_P(c1, c2) (1)
aa3830c4 270# define BYTES_BY_CHAR_HEAD(p) (1)
70806df6 271# define PREV_CHAR_BOUNDARY(p, limit) ((p)--)
62a6e103
AS
272# define STRING_CHAR(p) (*(p))
273# define RE_STRING_CHAR(p, multibyte) STRING_CHAR (p)
0b32bf0e 274# define CHAR_STRING(c, s) (*(s) = (c), 1)
62a6e103
AS
275# define STRING_CHAR_AND_LENGTH(p, actual_len) ((actual_len) = 1, *(p))
276# define RE_STRING_CHAR_AND_LENGTH(p, len, multibyte) STRING_CHAR_AND_LENGTH (p, len)
cf9c99bc
KH
277# define RE_CHAR_TO_MULTIBYTE(c) (c)
278# define RE_CHAR_TO_UNIBYTE(c) (c)
0b32bf0e 279# define GET_CHAR_BEFORE_2(c, p, str1, end1, str2, end2) \
b18215fc 280 (c = ((p) == (str2) ? *((end1) - 1) : *((p) - 1)))
6fdd04b0
KH
281# define GET_CHAR_AFTER(c, p, len) \
282 (c = *p, len = 1)
0b32bf0e 283# define MAKE_CHAR(charset, c1, c2) (c1)
9117d724
KH
284# define BYTE8_TO_CHAR(c) (c)
285# define CHAR_BYTE8_P(c) (0)
bf216479 286# define CHAR_LEADING_CODE(c) (c)
8f924df7 287
fa9a63c5 288#endif /* not emacs */
4e8a9132
SM
289
290#ifndef RE_TRANSLATE
0b32bf0e
SM
291# define RE_TRANSLATE(TBL, C) ((unsigned char)(TBL)[C])
292# define RE_TRANSLATE_P(TBL) (TBL)
4e8a9132 293#endif
fa9a63c5
RM
294\f
295/* Get the interface, including the syntax bits. */
296#include "regex.h"
297
f71b19b6
DL
298/* isalpha etc. are used for the character classes. */
299#include <ctype.h>
fa9a63c5 300
f71b19b6 301#ifdef emacs
fa9a63c5 302
f71b19b6 303/* 1 if C is an ASCII character. */
0b32bf0e 304# define IS_REAL_ASCII(c) ((c) < 0200)
fa9a63c5 305
f71b19b6 306/* 1 if C is a unibyte character. */
0b32bf0e 307# define ISUNIBYTE(c) (SINGLE_BYTE_CHAR_P ((c)))
96cc36cc 308
f71b19b6 309/* The Emacs definitions should not be directly affected by locales. */
96cc36cc 310
f71b19b6 311/* In Emacs, these are only used for single-byte characters. */
0b32bf0e
SM
312# define ISDIGIT(c) ((c) >= '0' && (c) <= '9')
313# define ISCNTRL(c) ((c) < ' ')
314# define ISXDIGIT(c) (((c) >= '0' && (c) <= '9') \
f71b19b6
DL
315 || ((c) >= 'a' && (c) <= 'f') \
316 || ((c) >= 'A' && (c) <= 'F'))
96cc36cc
RS
317
318/* This is only used for single-byte characters. */
0b32bf0e 319# define ISBLANK(c) ((c) == ' ' || (c) == '\t')
96cc36cc
RS
320
321/* The rest must handle multibyte characters. */
322
0b32bf0e 323# define ISGRAPH(c) (SINGLE_BYTE_CHAR_P (c) \
f71b19b6 324 ? (c) > ' ' && !((c) >= 0177 && (c) <= 0237) \
96cc36cc
RS
325 : 1)
326
14473664 327# define ISPRINT(c) (SINGLE_BYTE_CHAR_P (c) \
f71b19b6 328 ? (c) >= ' ' && !((c) >= 0177 && (c) <= 0237) \
96cc36cc
RS
329 : 1)
330
0b32bf0e 331# define ISALNUM(c) (IS_REAL_ASCII (c) \
f71b19b6
DL
332 ? (((c) >= 'a' && (c) <= 'z') \
333 || ((c) >= 'A' && (c) <= 'Z') \
334 || ((c) >= '0' && (c) <= '9')) \
96cc36cc
RS
335 : SYNTAX (c) == Sword)
336
0b32bf0e 337# define ISALPHA(c) (IS_REAL_ASCII (c) \
f71b19b6
DL
338 ? (((c) >= 'a' && (c) <= 'z') \
339 || ((c) >= 'A' && (c) <= 'Z')) \
96cc36cc
RS
340 : SYNTAX (c) == Sword)
341
5da9919f 342# define ISLOWER(c) lowercasep (c)
96cc36cc 343
0b32bf0e 344# define ISPUNCT(c) (IS_REAL_ASCII (c) \
f71b19b6
DL
345 ? ((c) > ' ' && (c) < 0177 \
346 && !(((c) >= 'a' && (c) <= 'z') \
4bb91c68
SM
347 || ((c) >= 'A' && (c) <= 'Z') \
348 || ((c) >= '0' && (c) <= '9'))) \
96cc36cc
RS
349 : SYNTAX (c) != Sword)
350
0b32bf0e 351# define ISSPACE(c) (SYNTAX (c) == Swhitespace)
96cc36cc 352
5da9919f 353# define ISUPPER(c) uppercasep (c)
96cc36cc 354
0b32bf0e 355# define ISWORD(c) (SYNTAX (c) == Sword)
96cc36cc
RS
356
357#else /* not emacs */
358
f71b19b6 359/* 1 if C is an ASCII character. */
0b32bf0e 360# define IS_REAL_ASCII(c) ((c) < 0200)
f71b19b6
DL
361
362/* This distinction is not meaningful, except in Emacs. */
0b32bf0e
SM
363# define ISUNIBYTE(c) 1
364
365# ifdef isblank
0e926e56 366# define ISBLANK(c) isblank (c)
0b32bf0e
SM
367# else
368# define ISBLANK(c) ((c) == ' ' || (c) == '\t')
369# endif
370# ifdef isgraph
0e926e56 371# define ISGRAPH(c) isgraph (c)
0b32bf0e 372# else
0e926e56 373# define ISGRAPH(c) (isprint (c) && !isspace (c))
0b32bf0e
SM
374# endif
375
0e926e56 376/* Solaris defines ISPRINT so we must undefine it first. */
4bb91c68 377# undef ISPRINT
0e926e56
PE
378# define ISPRINT(c) isprint (c)
379# define ISDIGIT(c) isdigit (c)
380# define ISALNUM(c) isalnum (c)
381# define ISALPHA(c) isalpha (c)
382# define ISCNTRL(c) iscntrl (c)
383# define ISLOWER(c) islower (c)
384# define ISPUNCT(c) ispunct (c)
385# define ISSPACE(c) isspace (c)
386# define ISUPPER(c) isupper (c)
387# define ISXDIGIT(c) isxdigit (c)
0b32bf0e 388
5e617bc2 389# define ISWORD(c) ISALPHA (c)
0b32bf0e 390
4bb91c68 391# ifdef _tolower
5e617bc2 392# define TOLOWER(c) _tolower (c)
4bb91c68 393# else
5e617bc2 394# define TOLOWER(c) tolower (c)
4bb91c68
SM
395# endif
396
397/* How many characters in the character set. */
398# define CHAR_SET_SIZE 256
399
0b32bf0e 400# ifdef SYNTAX_TABLE
f71b19b6 401
0b32bf0e 402extern char *re_syntax_table;
f71b19b6 403
0b32bf0e
SM
404# else /* not SYNTAX_TABLE */
405
0b32bf0e
SM
406static char re_syntax_table[CHAR_SET_SIZE];
407
408static void
d2762c86 409init_syntax_once (void)
0b32bf0e
SM
410{
411 register int c;
412 static int done = 0;
413
414 if (done)
415 return;
416
72af86bd 417 memset (re_syntax_table, 0, sizeof re_syntax_table);
0b32bf0e 418
4bb91c68
SM
419 for (c = 0; c < CHAR_SET_SIZE; ++c)
420 if (ISALNUM (c))
421 re_syntax_table[c] = Sword;
fa9a63c5 422
669fa600 423 re_syntax_table['_'] = Ssymbol;
fa9a63c5 424
0b32bf0e
SM
425 done = 1;
426}
427
428# endif /* not SYNTAX_TABLE */
96cc36cc 429
4bb91c68
SM
430# define SYNTAX(c) re_syntax_table[(c)]
431
96cc36cc
RS
432#endif /* not emacs */
433\f
261cb4bb 434#define SIGN_EXTEND_CHAR(c) ((signed char) (c))
fa9a63c5
RM
435\f
436/* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we
437 use `alloca' instead of `malloc'. This is because using malloc in
438 re_search* or re_match* could cause memory leaks when C-g is used in
439 Emacs; also, malloc is slower and causes storage fragmentation. On
5e69f11e
RM
440 the other hand, malloc is more portable, and easier to debug.
441
fa9a63c5
RM
442 Because we sometimes use alloca, some routines have to be macros,
443 not functions -- `alloca'-allocated space disappears at the end of the
444 function it is called in. */
445
446#ifdef REGEX_MALLOC
447
0b32bf0e
SM
448# define REGEX_ALLOCATE malloc
449# define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
450# define REGEX_FREE free
fa9a63c5
RM
451
452#else /* not REGEX_MALLOC */
453
454/* Emacs already defines alloca, sometimes. */
0b32bf0e 455# ifndef alloca
fa9a63c5
RM
456
457/* Make alloca work the best possible way. */
0b32bf0e
SM
458# ifdef __GNUC__
459# define alloca __builtin_alloca
460# else /* not __GNUC__ */
7f585e7a 461# ifdef HAVE_ALLOCA_H
0b32bf0e
SM
462# include <alloca.h>
463# endif /* HAVE_ALLOCA_H */
464# endif /* not __GNUC__ */
fa9a63c5 465
0b32bf0e 466# endif /* not alloca */
fa9a63c5 467
0b32bf0e 468# define REGEX_ALLOCATE alloca
fa9a63c5
RM
469
470/* Assumes a `char *destination' variable. */
0b32bf0e 471# define REGEX_REALLOCATE(source, osize, nsize) \
fa9a63c5 472 (destination = (char *) alloca (nsize), \
4bb91c68 473 memcpy (destination, source, osize))
fa9a63c5
RM
474
475/* No need to do anything to free, after alloca. */
0b32bf0e 476# define REGEX_FREE(arg) ((void)0) /* Do nothing! But inhibit gcc warning. */
fa9a63c5
RM
477
478#endif /* not REGEX_MALLOC */
479
480/* Define how to allocate the failure stack. */
481
0b32bf0e 482#if defined REL_ALLOC && defined REGEX_MALLOC
4297555e 483
0b32bf0e 484# define REGEX_ALLOCATE_STACK(size) \
fa9a63c5 485 r_alloc (&failure_stack_ptr, (size))
0b32bf0e 486# define REGEX_REALLOCATE_STACK(source, osize, nsize) \
fa9a63c5 487 r_re_alloc (&failure_stack_ptr, (nsize))
0b32bf0e 488# define REGEX_FREE_STACK(ptr) \
fa9a63c5
RM
489 r_alloc_free (&failure_stack_ptr)
490
4297555e 491#else /* not using relocating allocator */
fa9a63c5 492
0b32bf0e 493# ifdef REGEX_MALLOC
fa9a63c5 494
0b32bf0e
SM
495# define REGEX_ALLOCATE_STACK malloc
496# define REGEX_REALLOCATE_STACK(source, osize, nsize) realloc (source, nsize)
497# define REGEX_FREE_STACK free
fa9a63c5 498
0b32bf0e 499# else /* not REGEX_MALLOC */
fa9a63c5 500
0b32bf0e 501# define REGEX_ALLOCATE_STACK alloca
fa9a63c5 502
0b32bf0e 503# define REGEX_REALLOCATE_STACK(source, osize, nsize) \
fa9a63c5 504 REGEX_REALLOCATE (source, osize, nsize)
7814e705 505/* No need to explicitly free anything. */
0b32bf0e 506# define REGEX_FREE_STACK(arg) ((void)0)
fa9a63c5 507
0b32bf0e 508# endif /* not REGEX_MALLOC */
4297555e 509#endif /* not using relocating allocator */
fa9a63c5
RM
510
511
512/* True if `size1' is non-NULL and PTR is pointing anywhere inside
513 `string1' or just past its end. This works if PTR is NULL, which is
514 a good thing. */
25fe55af 515#define FIRST_STRING_P(ptr) \
fa9a63c5
RM
516 (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
517
518/* (Re)Allocate N items of type T using malloc, or fail. */
519#define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
520#define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
fa9a63c5
RM
521#define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
522
4bb91c68 523#define BYTEWIDTH 8 /* In bits. */
fa9a63c5
RM
524
525#define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
526
527#undef MAX
528#undef MIN
529#define MAX(a, b) ((a) > (b) ? (a) : (b))
530#define MIN(a, b) ((a) < (b) ? (a) : (b))
531
66f0296e 532/* Type of source-pattern and string chars. */
a6fc3b5c
EZ
533#ifdef _MSC_VER
534typedef unsigned char re_char;
535#else
66f0296e 536typedef const unsigned char re_char;
a6fc3b5c 537#endif
66f0296e 538
fa9a63c5
RM
539typedef char boolean;
540#define false 0
541#define true 1
542
261cb4bb
PE
543static regoff_t re_match_2_internal (struct re_pattern_buffer *bufp,
544 re_char *string1, size_t size1,
545 re_char *string2, size_t size2,
546 ssize_t pos,
547 struct re_registers *regs,
548 ssize_t stop);
fa9a63c5
RM
549\f
550/* These are the command codes that appear in compiled regular
4bb91c68 551 expressions. Some opcodes are followed by argument bytes. A
fa9a63c5
RM
552 command code can specify any interpretation whatsoever for its
553 arguments. Zero bytes may appear in the compiled regular expression. */
554
555typedef enum
556{
557 no_op = 0,
558
4bb91c68 559 /* Succeed right away--no more backtracking. */
fa9a63c5
RM
560 succeed,
561
25fe55af 562 /* Followed by one byte giving n, then by n literal bytes. */
fa9a63c5
RM
563 exactn,
564
25fe55af 565 /* Matches any (more or less) character. */
fa9a63c5
RM
566 anychar,
567
25fe55af
RS
568 /* Matches any one char belonging to specified set. First
569 following byte is number of bitmap bytes. Then come bytes
570 for a bitmap saying which chars are in. Bits in each byte
571 are ordered low-bit-first. A character is in the set if its
572 bit is 1. A character too large to have a bit in the map is
96cc36cc
RS
573 automatically not in the set.
574
575 If the length byte has the 0x80 bit set, then that stuff
576 is followed by a range table:
577 2 bytes of flags for character sets (low 8 bits, high 8 bits)
0b32bf0e 578 See RANGE_TABLE_WORK_BITS below.
01618498 579 2 bytes, the number of pairs that follow (upto 32767)
96cc36cc 580 pairs, each 2 multibyte characters,
0b32bf0e 581 each multibyte character represented as 3 bytes. */
fa9a63c5
RM
582 charset,
583
25fe55af 584 /* Same parameters as charset, but match any character that is
4bb91c68 585 not one of those specified. */
fa9a63c5
RM
586 charset_not,
587
25fe55af
RS
588 /* Start remembering the text that is matched, for storing in a
589 register. Followed by one byte with the register number, in
590 the range 0 to one less than the pattern buffer's re_nsub
505bde11 591 field. */
fa9a63c5
RM
592 start_memory,
593
25fe55af
RS
594 /* Stop remembering the text that is matched and store it in a
595 memory register. Followed by one byte with the register
596 number, in the range 0 to one less than `re_nsub' in the
505bde11 597 pattern buffer. */
fa9a63c5
RM
598 stop_memory,
599
25fe55af 600 /* Match a duplicate of something remembered. Followed by one
4bb91c68 601 byte containing the register number. */
fa9a63c5
RM
602 duplicate,
603
25fe55af 604 /* Fail unless at beginning of line. */
fa9a63c5
RM
605 begline,
606
4bb91c68 607 /* Fail unless at end of line. */
fa9a63c5
RM
608 endline,
609
25fe55af
RS
610 /* Succeeds if at beginning of buffer (if emacs) or at beginning
611 of string to be matched (if not). */
fa9a63c5
RM
612 begbuf,
613
25fe55af 614 /* Analogously, for end of buffer/string. */
fa9a63c5 615 endbuf,
5e69f11e 616
25fe55af 617 /* Followed by two byte relative address to which to jump. */
5e69f11e 618 jump,
fa9a63c5 619
25fe55af 620 /* Followed by two-byte relative address of place to resume at
7814e705 621 in case of failure. */
fa9a63c5 622 on_failure_jump,
5e69f11e 623
25fe55af
RS
624 /* Like on_failure_jump, but pushes a placeholder instead of the
625 current string position when executed. */
fa9a63c5 626 on_failure_keep_string_jump,
5e69f11e 627
505bde11
SM
628 /* Just like `on_failure_jump', except that it checks that we
629 don't get stuck in an infinite loop (matching an empty string
630 indefinitely). */
631 on_failure_jump_loop,
632
0683b6fa
SM
633 /* Just like `on_failure_jump_loop', except that it checks for
634 a different kind of loop (the kind that shows up with non-greedy
635 operators). This operation has to be immediately preceded
636 by a `no_op'. */
637 on_failure_jump_nastyloop,
638
0b32bf0e 639 /* A smart `on_failure_jump' used for greedy * and + operators.
c7015153 640 It analyzes the loop before which it is put and if the
505bde11 641 loop does not require backtracking, it changes itself to
4e8a9132
SM
642 `on_failure_keep_string_jump' and short-circuits the loop,
643 else it just defaults to changing itself into `on_failure_jump'.
644 It assumes that it is pointing to just past a `jump'. */
505bde11 645 on_failure_jump_smart,
fa9a63c5 646
25fe55af 647 /* Followed by two-byte relative address and two-byte number n.
ed0767d8
SM
648 After matching N times, jump to the address upon failure.
649 Does not work if N starts at 0: use on_failure_jump_loop
650 instead. */
fa9a63c5
RM
651 succeed_n,
652
25fe55af
RS
653 /* Followed by two-byte relative address, and two-byte number n.
654 Jump to the address N times, then fail. */
fa9a63c5
RM
655 jump_n,
656
25fe55af 657 /* Set the following two-byte relative address to the
7814e705 658 subsequent two-byte number. The address *includes* the two
25fe55af 659 bytes of number. */
fa9a63c5
RM
660 set_number_at,
661
fa9a63c5
RM
662 wordbeg, /* Succeeds if at word beginning. */
663 wordend, /* Succeeds if at word end. */
664
665 wordbound, /* Succeeds if at a word boundary. */
7814e705 666 notwordbound, /* Succeeds if not at a word boundary. */
fa9a63c5 667
669fa600
SM
668 symbeg, /* Succeeds if at symbol beginning. */
669 symend, /* Succeeds if at symbol end. */
670
fa9a63c5 671 /* Matches any character whose syntax is specified. Followed by
25fe55af 672 a byte which contains a syntax code, e.g., Sword. */
fa9a63c5
RM
673 syntaxspec,
674
675 /* Matches any character whose syntax is not that specified. */
1fb352e0
SM
676 notsyntaxspec
677
678#ifdef emacs
679 ,before_dot, /* Succeeds if before point. */
680 at_dot, /* Succeeds if at point. */
681 after_dot, /* Succeeds if after point. */
b18215fc
RS
682
683 /* Matches any character whose category-set contains the specified
7814e705
JB
684 category. The operator is followed by a byte which contains a
685 category code (mnemonic ASCII character). */
b18215fc
RS
686 categoryspec,
687
688 /* Matches any character whose category-set does not contain the
689 specified category. The operator is followed by a byte which
690 contains the category code (mnemonic ASCII character). */
691 notcategoryspec
fa9a63c5
RM
692#endif /* emacs */
693} re_opcode_t;
694\f
695/* Common operations on the compiled pattern. */
696
697/* Store NUMBER in two contiguous bytes starting at DESTINATION. */
698
699#define STORE_NUMBER(destination, number) \
700 do { \
701 (destination)[0] = (number) & 0377; \
702 (destination)[1] = (number) >> 8; \
703 } while (0)
704
705/* Same as STORE_NUMBER, except increment DESTINATION to
706 the byte after where the number is stored. Therefore, DESTINATION
707 must be an lvalue. */
708
709#define STORE_NUMBER_AND_INCR(destination, number) \
710 do { \
711 STORE_NUMBER (destination, number); \
712 (destination) += 2; \
713 } while (0)
714
715/* Put into DESTINATION a number stored in two contiguous bytes starting
716 at SOURCE. */
717
718#define EXTRACT_NUMBER(destination, source) \
719 do { \
720 (destination) = *(source) & 0377; \
721 (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8; \
722 } while (0)
723
724#ifdef DEBUG
725static void
261cb4bb 726extract_number (int *dest, re_char *source)
fa9a63c5 727{
5e69f11e 728 int temp = SIGN_EXTEND_CHAR (*(source + 1));
fa9a63c5
RM
729 *dest = *source & 0377;
730 *dest += temp << 8;
731}
732
4bb91c68 733# ifndef EXTRACT_MACROS /* To debug the macros. */
0b32bf0e
SM
734# undef EXTRACT_NUMBER
735# define EXTRACT_NUMBER(dest, src) extract_number (&dest, src)
736# endif /* not EXTRACT_MACROS */
fa9a63c5
RM
737
738#endif /* DEBUG */
739
740/* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
741 SOURCE must be an lvalue. */
742
743#define EXTRACT_NUMBER_AND_INCR(destination, source) \
744 do { \
745 EXTRACT_NUMBER (destination, source); \
25fe55af 746 (source) += 2; \
fa9a63c5
RM
747 } while (0)
748
749#ifdef DEBUG
750static void
261cb4bb 751extract_number_and_incr (int *destination, re_char **source)
5e69f11e 752{
fa9a63c5
RM
753 extract_number (destination, *source);
754 *source += 2;
755}
756
0b32bf0e
SM
757# ifndef EXTRACT_MACROS
758# undef EXTRACT_NUMBER_AND_INCR
759# define EXTRACT_NUMBER_AND_INCR(dest, src) \
fa9a63c5 760 extract_number_and_incr (&dest, &src)
0b32bf0e 761# endif /* not EXTRACT_MACROS */
fa9a63c5
RM
762
763#endif /* DEBUG */
764\f
b18215fc
RS
765/* Store a multibyte character in three contiguous bytes starting
766 DESTINATION, and increment DESTINATION to the byte after where the
7814e705 767 character is stored. Therefore, DESTINATION must be an lvalue. */
b18215fc
RS
768
769#define STORE_CHARACTER_AND_INCR(destination, character) \
770 do { \
771 (destination)[0] = (character) & 0377; \
772 (destination)[1] = ((character) >> 8) & 0377; \
773 (destination)[2] = (character) >> 16; \
774 (destination) += 3; \
775 } while (0)
776
777/* Put into DESTINATION a character stored in three contiguous bytes
7814e705 778 starting at SOURCE. */
b18215fc
RS
779
780#define EXTRACT_CHARACTER(destination, source) \
781 do { \
782 (destination) = ((source)[0] \
783 | ((source)[1] << 8) \
784 | ((source)[2] << 16)); \
785 } while (0)
786
787
788/* Macros for charset. */
789
790/* Size of bitmap of charset P in bytes. P is a start of charset,
791 i.e. *P is (re_opcode_t) charset or (re_opcode_t) charset_not. */
792#define CHARSET_BITMAP_SIZE(p) ((p)[1] & 0x7F)
793
794/* Nonzero if charset P has range table. */
25fe55af 795#define CHARSET_RANGE_TABLE_EXISTS_P(p) ((p)[1] & 0x80)
b18215fc
RS
796
797/* Return the address of range table of charset P. But not the start
798 of table itself, but the before where the number of ranges is
96cc36cc
RS
799 stored. `2 +' means to skip re_opcode_t and size of bitmap,
800 and the 2 bytes of flags at the start of the range table. */
801#define CHARSET_RANGE_TABLE(p) (&(p)[4 + CHARSET_BITMAP_SIZE (p)])
802
803/* Extract the bit flags that start a range table. */
804#define CHARSET_RANGE_TABLE_BITS(p) \
805 ((p)[2 + CHARSET_BITMAP_SIZE (p)] \
806 + (p)[3 + CHARSET_BITMAP_SIZE (p)] * 0x100)
b18215fc 807
b18215fc 808/* Return the address of end of RANGE_TABLE. COUNT is number of
7814e705
JB
809 ranges (which is a pair of (start, end)) in the RANGE_TABLE. `* 2'
810 is start of range and end of range. `* 3' is size of each start
b18215fc
RS
811 and end. */
812#define CHARSET_RANGE_TABLE_END(range_table, count) \
813 ((range_table) + (count) * 2 * 3)
814
7814e705 815/* Test if C is in RANGE_TABLE. A flag NOT is negated if C is in.
b18215fc
RS
816 COUNT is number of ranges in RANGE_TABLE. */
817#define CHARSET_LOOKUP_RANGE_TABLE_RAW(not, c, range_table, count) \
818 do \
819 { \
01618498 820 re_wchar_t range_start, range_end; \
19ed5445 821 re_char *rtp; \
01618498 822 re_char *range_table_end \
b18215fc
RS
823 = CHARSET_RANGE_TABLE_END ((range_table), (count)); \
824 \
19ed5445 825 for (rtp = (range_table); rtp < range_table_end; rtp += 2 * 3) \
b18215fc 826 { \
19ed5445
PE
827 EXTRACT_CHARACTER (range_start, rtp); \
828 EXTRACT_CHARACTER (range_end, rtp + 3); \
b18215fc
RS
829 \
830 if (range_start <= (c) && (c) <= range_end) \
831 { \
832 (not) = !(not); \
833 break; \
834 } \
835 } \
836 } \
837 while (0)
838
839/* Test if C is in range table of CHARSET. The flag NOT is negated if
840 C is listed in it. */
841#define CHARSET_LOOKUP_RANGE_TABLE(not, c, charset) \
842 do \
843 { \
844 /* Number of ranges in range table. */ \
845 int count; \
01618498
SM
846 re_char *range_table = CHARSET_RANGE_TABLE (charset); \
847 \
b18215fc
RS
848 EXTRACT_NUMBER_AND_INCR (count, range_table); \
849 CHARSET_LOOKUP_RANGE_TABLE_RAW ((not), (c), range_table, count); \
850 } \
851 while (0)
852\f
fa9a63c5
RM
853/* If DEBUG is defined, Regex prints many voluminous messages about what
854 it is doing (if the variable `debug' is nonzero). If linked with the
855 main program in `iregex.c', you can enter patterns and strings
856 interactively. And if linked with the main program in `main.c' and
4bb91c68 857 the other test files, you can run the already-written tests. */
fa9a63c5
RM
858
859#ifdef DEBUG
860
861/* We use standard I/O for debugging. */
0b32bf0e 862# include <stdio.h>
fa9a63c5
RM
863
864/* It is useful to test things that ``must'' be true when debugging. */
0b32bf0e 865# include <assert.h>
fa9a63c5 866
99633e97 867static int debug = -100000;
fa9a63c5 868
0b32bf0e
SM
869# define DEBUG_STATEMENT(e) e
870# define DEBUG_PRINT1(x) if (debug > 0) printf (x)
871# define DEBUG_PRINT2(x1, x2) if (debug > 0) printf (x1, x2)
872# define DEBUG_PRINT3(x1, x2, x3) if (debug > 0) printf (x1, x2, x3)
873# define DEBUG_PRINT4(x1, x2, x3, x4) if (debug > 0) printf (x1, x2, x3, x4)
874# define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \
99633e97 875 if (debug > 0) print_partial_compiled_pattern (s, e)
0b32bf0e 876# define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \
99633e97 877 if (debug > 0) print_double_string (w, s1, sz1, s2, sz2)
fa9a63c5
RM
878
879
880/* Print the fastmap in human-readable form. */
881
882void
883print_fastmap (fastmap)
884 char *fastmap;
885{
886 unsigned was_a_range = 0;
5e69f11e
RM
887 unsigned i = 0;
888
fa9a63c5
RM
889 while (i < (1 << BYTEWIDTH))
890 {
891 if (fastmap[i++])
892 {
893 was_a_range = 0;
25fe55af
RS
894 putchar (i - 1);
895 while (i < (1 << BYTEWIDTH) && fastmap[i])
896 {
897 was_a_range = 1;
898 i++;
899 }
fa9a63c5 900 if (was_a_range)
25fe55af
RS
901 {
902 printf ("-");
903 putchar (i - 1);
904 }
905 }
fa9a63c5 906 }
5e69f11e 907 putchar ('\n');
fa9a63c5
RM
908}
909
910
911/* Print a compiled pattern string in human-readable form, starting at
912 the START pointer into it and ending just before the pointer END. */
913
914void
915print_partial_compiled_pattern (start, end)
01618498
SM
916 re_char *start;
917 re_char *end;
fa9a63c5
RM
918{
919 int mcnt, mcnt2;
01618498
SM
920 re_char *p = start;
921 re_char *pend = end;
fa9a63c5
RM
922
923 if (start == NULL)
924 {
a1a052df 925 fprintf (stderr, "(null)\n");
fa9a63c5
RM
926 return;
927 }
5e69f11e 928
fa9a63c5
RM
929 /* Loop over pattern commands. */
930 while (p < pend)
931 {
a1a052df 932 fprintf (stderr, "%d:\t", p - start);
fa9a63c5
RM
933
934 switch ((re_opcode_t) *p++)
935 {
25fe55af 936 case no_op:
a1a052df 937 fprintf (stderr, "/no_op");
25fe55af 938 break;
fa9a63c5 939
99633e97 940 case succeed:
a1a052df 941 fprintf (stderr, "/succeed");
99633e97
SM
942 break;
943
fa9a63c5
RM
944 case exactn:
945 mcnt = *p++;
a1a052df 946 fprintf (stderr, "/exactn/%d", mcnt);
25fe55af 947 do
fa9a63c5 948 {
a1a052df 949 fprintf (stderr, "/%c", *p++);
25fe55af
RS
950 }
951 while (--mcnt);
952 break;
fa9a63c5
RM
953
954 case start_memory:
a1a052df 955 fprintf (stderr, "/start_memory/%d", *p++);
25fe55af 956 break;
fa9a63c5
RM
957
958 case stop_memory:
a1a052df 959 fprintf (stderr, "/stop_memory/%d", *p++);
25fe55af 960 break;
fa9a63c5
RM
961
962 case duplicate:
a1a052df 963 fprintf (stderr, "/duplicate/%d", *p++);
fa9a63c5
RM
964 break;
965
966 case anychar:
a1a052df 967 fprintf (stderr, "/anychar");
fa9a63c5
RM
968 break;
969
970 case charset:
25fe55af
RS
971 case charset_not:
972 {
973 register int c, last = -100;
fa9a63c5 974 register int in_range = 0;
99633e97
SM
975 int length = CHARSET_BITMAP_SIZE (p - 1);
976 int has_range_table = CHARSET_RANGE_TABLE_EXISTS_P (p - 1);
fa9a63c5 977
a1a052df 978 fprintf (stderr, "/charset [%s",
839966f3 979 (re_opcode_t) *(p - 1) == charset_not ? "^" : "");
5e69f11e 980
839966f3
KH
981 if (p + *p >= pend)
982 fprintf (stderr, " !extends past end of pattern! ");
fa9a63c5 983
25fe55af 984 for (c = 0; c < 256; c++)
96cc36cc 985 if (c / 8 < length
fa9a63c5
RM
986 && (p[1 + (c/8)] & (1 << (c % 8))))
987 {
988 /* Are we starting a range? */
989 if (last + 1 == c && ! in_range)
990 {
a1a052df 991 fprintf (stderr, "-");
fa9a63c5
RM
992 in_range = 1;
993 }
994 /* Have we broken a range? */
995 else if (last + 1 != c && in_range)
96cc36cc 996 {
a1a052df 997 fprintf (stderr, "%c", last);
fa9a63c5
RM
998 in_range = 0;
999 }
5e69f11e 1000
fa9a63c5 1001 if (! in_range)
a1a052df 1002 fprintf (stderr, "%c", c);
fa9a63c5
RM
1003
1004 last = c;
25fe55af 1005 }
fa9a63c5
RM
1006
1007 if (in_range)
a1a052df 1008 fprintf (stderr, "%c", last);
fa9a63c5 1009
a1a052df 1010 fprintf (stderr, "]");
fa9a63c5 1011
99633e97 1012 p += 1 + length;
96cc36cc 1013
96cc36cc 1014 if (has_range_table)
99633e97
SM
1015 {
1016 int count;
a1a052df 1017 fprintf (stderr, "has-range-table");
99633e97
SM
1018
1019 /* ??? Should print the range table; for now, just skip it. */
1020 p += 2; /* skip range table bits */
1021 EXTRACT_NUMBER_AND_INCR (count, p);
1022 p = CHARSET_RANGE_TABLE_END (p, count);
1023 }
fa9a63c5
RM
1024 }
1025 break;
1026
1027 case begline:
a1a052df 1028 fprintf (stderr, "/begline");
25fe55af 1029 break;
fa9a63c5
RM
1030
1031 case endline:
a1a052df 1032 fprintf (stderr, "/endline");
25fe55af 1033 break;
fa9a63c5
RM
1034
1035 case on_failure_jump:
25fe55af 1036 extract_number_and_incr (&mcnt, &p);
a1a052df 1037 fprintf (stderr, "/on_failure_jump to %d", p + mcnt - start);
25fe55af 1038 break;
fa9a63c5
RM
1039
1040 case on_failure_keep_string_jump:
25fe55af 1041 extract_number_and_incr (&mcnt, &p);
a1a052df 1042 fprintf (stderr, "/on_failure_keep_string_jump to %d", p + mcnt - start);
25fe55af 1043 break;
fa9a63c5 1044
0683b6fa
SM
1045 case on_failure_jump_nastyloop:
1046 extract_number_and_incr (&mcnt, &p);
a1a052df 1047 fprintf (stderr, "/on_failure_jump_nastyloop to %d", p + mcnt - start);
0683b6fa
SM
1048 break;
1049
505bde11 1050 case on_failure_jump_loop:
fa9a63c5 1051 extract_number_and_incr (&mcnt, &p);
a1a052df 1052 fprintf (stderr, "/on_failure_jump_loop to %d", p + mcnt - start);
5e69f11e
RM
1053 break;
1054
505bde11 1055 case on_failure_jump_smart:
fa9a63c5 1056 extract_number_and_incr (&mcnt, &p);
a1a052df 1057 fprintf (stderr, "/on_failure_jump_smart to %d", p + mcnt - start);
5e69f11e
RM
1058 break;
1059
25fe55af 1060 case jump:
fa9a63c5 1061 extract_number_and_incr (&mcnt, &p);
a1a052df 1062 fprintf (stderr, "/jump to %d", p + mcnt - start);
fa9a63c5
RM
1063 break;
1064
25fe55af
RS
1065 case succeed_n:
1066 extract_number_and_incr (&mcnt, &p);
1067 extract_number_and_incr (&mcnt2, &p);
a1a052df 1068 fprintf (stderr, "/succeed_n to %d, %d times", p - 2 + mcnt - start, mcnt2);
25fe55af 1069 break;
5e69f11e 1070
25fe55af
RS
1071 case jump_n:
1072 extract_number_and_incr (&mcnt, &p);
1073 extract_number_and_incr (&mcnt2, &p);
a1a052df 1074 fprintf (stderr, "/jump_n to %d, %d times", p - 2 + mcnt - start, mcnt2);
25fe55af 1075 break;
5e69f11e 1076
25fe55af
RS
1077 case set_number_at:
1078 extract_number_and_incr (&mcnt, &p);
1079 extract_number_and_incr (&mcnt2, &p);
a1a052df 1080 fprintf (stderr, "/set_number_at location %d to %d", p - 2 + mcnt - start, mcnt2);
25fe55af 1081 break;
5e69f11e 1082
25fe55af 1083 case wordbound:
a1a052df 1084 fprintf (stderr, "/wordbound");
fa9a63c5
RM
1085 break;
1086
1087 case notwordbound:
a1a052df 1088 fprintf (stderr, "/notwordbound");
25fe55af 1089 break;
fa9a63c5
RM
1090
1091 case wordbeg:
a1a052df 1092 fprintf (stderr, "/wordbeg");
fa9a63c5 1093 break;
5e69f11e 1094
fa9a63c5 1095 case wordend:
a1a052df 1096 fprintf (stderr, "/wordend");
e2543b02 1097 break;
5e69f11e 1098
669fa600 1099 case symbeg:
e2543b02 1100 fprintf (stderr, "/symbeg");
669fa600
SM
1101 break;
1102
1103 case symend:
e2543b02 1104 fprintf (stderr, "/symend");
669fa600 1105 break;
5e69f11e 1106
1fb352e0 1107 case syntaxspec:
a1a052df 1108 fprintf (stderr, "/syntaxspec");
1fb352e0 1109 mcnt = *p++;
a1a052df 1110 fprintf (stderr, "/%d", mcnt);
1fb352e0
SM
1111 break;
1112
1113 case notsyntaxspec:
a1a052df 1114 fprintf (stderr, "/notsyntaxspec");
1fb352e0 1115 mcnt = *p++;
a1a052df 1116 fprintf (stderr, "/%d", mcnt);
1fb352e0
SM
1117 break;
1118
0b32bf0e 1119# ifdef emacs
fa9a63c5 1120 case before_dot:
a1a052df 1121 fprintf (stderr, "/before_dot");
25fe55af 1122 break;
fa9a63c5
RM
1123
1124 case at_dot:
a1a052df 1125 fprintf (stderr, "/at_dot");
25fe55af 1126 break;
fa9a63c5
RM
1127
1128 case after_dot:
a1a052df 1129 fprintf (stderr, "/after_dot");
25fe55af 1130 break;
fa9a63c5 1131
1fb352e0 1132 case categoryspec:
a1a052df 1133 fprintf (stderr, "/categoryspec");
fa9a63c5 1134 mcnt = *p++;
a1a052df 1135 fprintf (stderr, "/%d", mcnt);
25fe55af 1136 break;
5e69f11e 1137
1fb352e0 1138 case notcategoryspec:
a1a052df 1139 fprintf (stderr, "/notcategoryspec");
fa9a63c5 1140 mcnt = *p++;
a1a052df 1141 fprintf (stderr, "/%d", mcnt);
fa9a63c5 1142 break;
0b32bf0e 1143# endif /* emacs */
fa9a63c5 1144
fa9a63c5 1145 case begbuf:
a1a052df 1146 fprintf (stderr, "/begbuf");
25fe55af 1147 break;
fa9a63c5
RM
1148
1149 case endbuf:
a1a052df 1150 fprintf (stderr, "/endbuf");
25fe55af 1151 break;
fa9a63c5 1152
25fe55af 1153 default:
a1a052df 1154 fprintf (stderr, "?%d", *(p-1));
fa9a63c5
RM
1155 }
1156
a1a052df 1157 fprintf (stderr, "\n");
fa9a63c5
RM
1158 }
1159
a1a052df 1160 fprintf (stderr, "%d:\tend of pattern.\n", p - start);
fa9a63c5
RM
1161}
1162
1163
1164void
1165print_compiled_pattern (bufp)
1166 struct re_pattern_buffer *bufp;
1167{
01618498 1168 re_char *buffer = bufp->buffer;
fa9a63c5
RM
1169
1170 print_partial_compiled_pattern (buffer, buffer + bufp->used);
4bb91c68
SM
1171 printf ("%ld bytes used/%ld bytes allocated.\n",
1172 bufp->used, bufp->allocated);
fa9a63c5
RM
1173
1174 if (bufp->fastmap_accurate && bufp->fastmap)
1175 {
1176 printf ("fastmap: ");
1177 print_fastmap (bufp->fastmap);
1178 }
1179
1180 printf ("re_nsub: %d\t", bufp->re_nsub);
1181 printf ("regs_alloc: %d\t", bufp->regs_allocated);
1182 printf ("can_be_null: %d\t", bufp->can_be_null);
fa9a63c5
RM
1183 printf ("no_sub: %d\t", bufp->no_sub);
1184 printf ("not_bol: %d\t", bufp->not_bol);
1185 printf ("not_eol: %d\t", bufp->not_eol);
4bb91c68 1186 printf ("syntax: %lx\n", bufp->syntax);
505bde11 1187 fflush (stdout);
fa9a63c5
RM
1188 /* Perhaps we should print the translate table? */
1189}
1190
1191
1192void
1193print_double_string (where, string1, size1, string2, size2)
66f0296e
SM
1194 re_char *where;
1195 re_char *string1;
1196 re_char *string2;
d1dfb56c
EZ
1197 ssize_t size1;
1198 ssize_t size2;
fa9a63c5 1199{
d1dfb56c 1200 ssize_t this_char;
5e69f11e 1201
fa9a63c5
RM
1202 if (where == NULL)
1203 printf ("(null)");
1204 else
1205 {
1206 if (FIRST_STRING_P (where))
25fe55af
RS
1207 {
1208 for (this_char = where - string1; this_char < size1; this_char++)
1209 putchar (string1[this_char]);
fa9a63c5 1210
25fe55af
RS
1211 where = string2;
1212 }
fa9a63c5
RM
1213
1214 for (this_char = where - string2; this_char < size2; this_char++)
25fe55af 1215 putchar (string2[this_char]);
fa9a63c5
RM
1216 }
1217}
1218
1219#else /* not DEBUG */
1220
0b32bf0e
SM
1221# undef assert
1222# define assert(e)
fa9a63c5 1223
0b32bf0e
SM
1224# define DEBUG_STATEMENT(e)
1225# define DEBUG_PRINT1(x)
1226# define DEBUG_PRINT2(x1, x2)
1227# define DEBUG_PRINT3(x1, x2, x3)
1228# define DEBUG_PRINT4(x1, x2, x3, x4)
1229# define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
1230# define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
fa9a63c5
RM
1231
1232#endif /* not DEBUG */
1233\f
4da60324
PE
1234/* Use this to suppress gcc's `...may be used before initialized' warnings. */
1235#ifdef lint
1236# define IF_LINT(Code) Code
1237#else
1238# define IF_LINT(Code) /* empty */
1239#endif
1240\f
fa9a63c5
RM
1241/* Set by `re_set_syntax' to the current regexp syntax to recognize. Can
1242 also be assigned to arbitrarily: each pattern buffer stores its own
1243 syntax, so it can be changed between regex compilations. */
1244/* This has no initializer because initialized variables in Emacs
1245 become read-only after dumping. */
1246reg_syntax_t re_syntax_options;
1247
1248
1249/* Specify the precise syntax of regexps for compilation. This provides
1250 for compatibility for various utilities which historically have
1251 different, incompatible syntaxes.
1252
1253 The argument SYNTAX is a bit mask comprised of the various bits
4bb91c68 1254 defined in regex.h. We return the old syntax. */
fa9a63c5
RM
1255
1256reg_syntax_t
971de7fb 1257re_set_syntax (reg_syntax_t syntax)
fa9a63c5
RM
1258{
1259 reg_syntax_t ret = re_syntax_options;
5e69f11e 1260
fa9a63c5
RM
1261 re_syntax_options = syntax;
1262 return ret;
1263}
c0f9ea08 1264WEAK_ALIAS (__re_set_syntax, re_set_syntax)
f9b0fd99
RS
1265
1266/* Regexp to use to replace spaces, or NULL meaning don't. */
1267static re_char *whitespace_regexp;
1268
1269void
971de7fb 1270re_set_whitespace_regexp (const char *regexp)
f9b0fd99 1271{
6470ea05 1272 whitespace_regexp = (re_char *) regexp;
f9b0fd99
RS
1273}
1274WEAK_ALIAS (__re_set_syntax, re_set_syntax)
fa9a63c5
RM
1275\f
1276/* This table gives an error message for each of the error codes listed
4bb91c68 1277 in regex.h. Obviously the order here has to be same as there.
fa9a63c5 1278 POSIX doesn't require that we do anything for REG_NOERROR,
4bb91c68 1279 but why not be nice? */
fa9a63c5
RM
1280
1281static const char *re_error_msgid[] =
5e69f11e
RM
1282 {
1283 gettext_noop ("Success"), /* REG_NOERROR */
1284 gettext_noop ("No match"), /* REG_NOMATCH */
1285 gettext_noop ("Invalid regular expression"), /* REG_BADPAT */
1286 gettext_noop ("Invalid collation character"), /* REG_ECOLLATE */
1287 gettext_noop ("Invalid character class name"), /* REG_ECTYPE */
1288 gettext_noop ("Trailing backslash"), /* REG_EESCAPE */
1289 gettext_noop ("Invalid back reference"), /* REG_ESUBREG */
1290 gettext_noop ("Unmatched [ or [^"), /* REG_EBRACK */
1291 gettext_noop ("Unmatched ( or \\("), /* REG_EPAREN */
1292 gettext_noop ("Unmatched \\{"), /* REG_EBRACE */
1293 gettext_noop ("Invalid content of \\{\\}"), /* REG_BADBR */
1294 gettext_noop ("Invalid range end"), /* REG_ERANGE */
1295 gettext_noop ("Memory exhausted"), /* REG_ESPACE */
1296 gettext_noop ("Invalid preceding regular expression"), /* REG_BADRPT */
1297 gettext_noop ("Premature end of regular expression"), /* REG_EEND */
1298 gettext_noop ("Regular expression too big"), /* REG_ESIZE */
1299 gettext_noop ("Unmatched ) or \\)"), /* REG_ERPAREN */
b3e4c897 1300 gettext_noop ("Range striding over charsets") /* REG_ERANGEX */
fa9a63c5
RM
1301 };
1302\f
4bb91c68 1303/* Avoiding alloca during matching, to placate r_alloc. */
fa9a63c5
RM
1304
1305/* Define MATCH_MAY_ALLOCATE unless we need to make sure that the
1306 searching and matching functions should not call alloca. On some
1307 systems, alloca is implemented in terms of malloc, and if we're
1308 using the relocating allocator routines, then malloc could cause a
1309 relocation, which might (if the strings being searched are in the
1310 ralloc heap) shift the data out from underneath the regexp
1311 routines.
1312
5e69f11e 1313 Here's another reason to avoid allocation: Emacs
fa9a63c5
RM
1314 processes input from X in a signal handler; processing X input may
1315 call malloc; if input arrives while a matching routine is calling
1316 malloc, then we're scrod. But Emacs can't just block input while
1317 calling matching routines; then we don't notice interrupts when
1318 they come in. So, Emacs blocks input around all regexp calls
1319 except the matching calls, which it leaves unprotected, in the
1320 faith that they will not malloc. */
1321
1322/* Normally, this is fine. */
1323#define MATCH_MAY_ALLOCATE
1324
fa9a63c5
RM
1325/* The match routines may not allocate if (1) they would do it with malloc
1326 and (2) it's not safe for them to use malloc.
1327 Note that if REL_ALLOC is defined, matching would not use malloc for the
1328 failure stack, but we would still use it for the register vectors;
4bb91c68 1329 so REL_ALLOC should not affect this. */
b588157e 1330#if defined REGEX_MALLOC && defined emacs
0b32bf0e 1331# undef MATCH_MAY_ALLOCATE
fa9a63c5
RM
1332#endif
1333
1334\f
1335/* Failure stack declarations and macros; both re_compile_fastmap and
1336 re_match_2 use a failure stack. These have to be macros because of
1337 REGEX_ALLOCATE_STACK. */
5e69f11e 1338
fa9a63c5 1339
320a2a73 1340/* Approximate number of failure points for which to initially allocate space
fa9a63c5
RM
1341 when matching. If this number is exceeded, we allocate more
1342 space, so it is not a hard limit. */
1343#ifndef INIT_FAILURE_ALLOC
0b32bf0e 1344# define INIT_FAILURE_ALLOC 20
fa9a63c5
RM
1345#endif
1346
1347/* Roughly the maximum number of failure points on the stack. Would be
320a2a73 1348 exactly that if always used TYPICAL_FAILURE_SIZE items each time we failed.
fa9a63c5 1349 This is a variable only so users of regex can assign to it; we never
ada30c0e
SM
1350 change it ourselves. We always multiply it by TYPICAL_FAILURE_SIZE
1351 before using it, so it should probably be a byte-count instead. */
c0f9ea08
SM
1352# if defined MATCH_MAY_ALLOCATE
1353/* Note that 4400 was enough to cause a crash on Alpha OSF/1,
320a2a73
KH
1354 whose default stack limit is 2mb. In order for a larger
1355 value to work reliably, you have to try to make it accord
1356 with the process stack limit. */
c0f9ea08
SM
1357size_t re_max_failures = 40000;
1358# else
1359size_t re_max_failures = 4000;
1360# endif
fa9a63c5
RM
1361
1362union fail_stack_elt
1363{
01618498 1364 re_char *pointer;
c0f9ea08
SM
1365 /* This should be the biggest `int' that's no bigger than a pointer. */
1366 long integer;
fa9a63c5
RM
1367};
1368
1369typedef union fail_stack_elt fail_stack_elt_t;
1370
1371typedef struct
1372{
1373 fail_stack_elt_t *stack;
c0f9ea08
SM
1374 size_t size;
1375 size_t avail; /* Offset of next open position. */
1376 size_t frame; /* Offset of the cur constructed frame. */
fa9a63c5
RM
1377} fail_stack_type;
1378
505bde11 1379#define FAIL_STACK_EMPTY() (fail_stack.frame == 0)
fa9a63c5
RM
1380
1381
1382/* Define macros to initialize and free the failure stack.
1383 Do `return -2' if the alloc fails. */
1384
1385#ifdef MATCH_MAY_ALLOCATE
0b32bf0e 1386# define INIT_FAIL_STACK() \
fa9a63c5 1387 do { \
38182d90 1388 fail_stack.stack = \
320a2a73
KH
1389 REGEX_ALLOCATE_STACK (INIT_FAILURE_ALLOC * TYPICAL_FAILURE_SIZE \
1390 * sizeof (fail_stack_elt_t)); \
fa9a63c5
RM
1391 \
1392 if (fail_stack.stack == NULL) \
1393 return -2; \
1394 \
1395 fail_stack.size = INIT_FAILURE_ALLOC; \
1396 fail_stack.avail = 0; \
505bde11 1397 fail_stack.frame = 0; \
fa9a63c5 1398 } while (0)
fa9a63c5 1399#else
0b32bf0e 1400# define INIT_FAIL_STACK() \
fa9a63c5
RM
1401 do { \
1402 fail_stack.avail = 0; \
505bde11 1403 fail_stack.frame = 0; \
fa9a63c5
RM
1404 } while (0)
1405
b313f9d8
PE
1406# define RETALLOC_IF(addr, n, t) \
1407 if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t)
fa9a63c5
RM
1408#endif
1409
1410
320a2a73
KH
1411/* Double the size of FAIL_STACK, up to a limit
1412 which allows approximately `re_max_failures' items.
fa9a63c5
RM
1413
1414 Return 1 if succeeds, and 0 if either ran out of memory
5e69f11e
RM
1415 allocating space for it or it was already too large.
1416
4bb91c68 1417 REGEX_REALLOCATE_STACK requires `destination' be declared. */
fa9a63c5 1418
320a2a73
KH
1419/* Factor to increase the failure stack size by
1420 when we increase it.
1421 This used to be 2, but 2 was too wasteful
1422 because the old discarded stacks added up to as much space
1423 were as ultimate, maximum-size stack. */
1424#define FAIL_STACK_GROWTH_FACTOR 4
1425
1426#define GROW_FAIL_STACK(fail_stack) \
eead07d6
KH
1427 (((fail_stack).size * sizeof (fail_stack_elt_t) \
1428 >= re_max_failures * TYPICAL_FAILURE_SIZE) \
fa9a63c5 1429 ? 0 \
320a2a73 1430 : ((fail_stack).stack \
38182d90 1431 = REGEX_REALLOCATE_STACK ((fail_stack).stack, \
25fe55af 1432 (fail_stack).size * sizeof (fail_stack_elt_t), \
320a2a73
KH
1433 MIN (re_max_failures * TYPICAL_FAILURE_SIZE, \
1434 ((fail_stack).size * sizeof (fail_stack_elt_t) \
1435 * FAIL_STACK_GROWTH_FACTOR))), \
fa9a63c5
RM
1436 \
1437 (fail_stack).stack == NULL \
1438 ? 0 \
6453db45
KH
1439 : ((fail_stack).size \
1440 = (MIN (re_max_failures * TYPICAL_FAILURE_SIZE, \
1441 ((fail_stack).size * sizeof (fail_stack_elt_t) \
1442 * FAIL_STACK_GROWTH_FACTOR)) \
1443 / sizeof (fail_stack_elt_t)), \
25fe55af 1444 1)))
fa9a63c5
RM
1445
1446
fa9a63c5
RM
1447/* Push a pointer value onto the failure stack.
1448 Assumes the variable `fail_stack'. Probably should only
4bb91c68 1449 be called from within `PUSH_FAILURE_POINT'. */
fa9a63c5 1450#define PUSH_FAILURE_POINTER(item) \
01618498 1451 fail_stack.stack[fail_stack.avail++].pointer = (item)
fa9a63c5
RM
1452
1453/* This pushes an integer-valued item onto the failure stack.
1454 Assumes the variable `fail_stack'. Probably should only
4bb91c68 1455 be called from within `PUSH_FAILURE_POINT'. */
fa9a63c5
RM
1456#define PUSH_FAILURE_INT(item) \
1457 fail_stack.stack[fail_stack.avail++].integer = (item)
1458
b313f9d8 1459/* These POP... operations complement the PUSH... operations.
fa9a63c5
RM
1460 All assume that `fail_stack' is nonempty. */
1461#define POP_FAILURE_POINTER() fail_stack.stack[--fail_stack.avail].pointer
1462#define POP_FAILURE_INT() fail_stack.stack[--fail_stack.avail].integer
fa9a63c5 1463
505bde11
SM
1464/* Individual items aside from the registers. */
1465#define NUM_NONREG_ITEMS 3
1466
1467/* Used to examine the stack (to detect infinite loops). */
1468#define FAILURE_PAT(h) fail_stack.stack[(h) - 1].pointer
66f0296e 1469#define FAILURE_STR(h) (fail_stack.stack[(h) - 2].pointer)
505bde11
SM
1470#define NEXT_FAILURE_HANDLE(h) fail_stack.stack[(h) - 3].integer
1471#define TOP_FAILURE_HANDLE() fail_stack.frame
fa9a63c5
RM
1472
1473
505bde11
SM
1474#define ENSURE_FAIL_STACK(space) \
1475while (REMAINING_AVAIL_SLOTS <= space) { \
1476 if (!GROW_FAIL_STACK (fail_stack)) \
1477 return -2; \
1478 DEBUG_PRINT2 ("\n Doubled stack; size now: %d\n", (fail_stack).size);\
1479 DEBUG_PRINT2 (" slots available: %d\n", REMAINING_AVAIL_SLOTS);\
1480}
1481
1482/* Push register NUM onto the stack. */
1483#define PUSH_FAILURE_REG(num) \
1484do { \
1485 char *destination; \
1486 ENSURE_FAIL_STACK(3); \
1487 DEBUG_PRINT4 (" Push reg %d (spanning %p -> %p)\n", \
1488 num, regstart[num], regend[num]); \
1489 PUSH_FAILURE_POINTER (regstart[num]); \
1490 PUSH_FAILURE_POINTER (regend[num]); \
1491 PUSH_FAILURE_INT (num); \
1492} while (0)
1493
01618498
SM
1494/* Change the counter's value to VAL, but make sure that it will
1495 be reset when backtracking. */
1496#define PUSH_NUMBER(ptr,val) \
dc1e502d
SM
1497do { \
1498 char *destination; \
1499 int c; \
1500 ENSURE_FAIL_STACK(3); \
1501 EXTRACT_NUMBER (c, ptr); \
01618498 1502 DEBUG_PRINT4 (" Push number %p = %d -> %d\n", ptr, c, val); \
dc1e502d
SM
1503 PUSH_FAILURE_INT (c); \
1504 PUSH_FAILURE_POINTER (ptr); \
1505 PUSH_FAILURE_INT (-1); \
01618498 1506 STORE_NUMBER (ptr, val); \
dc1e502d
SM
1507} while (0)
1508
505bde11 1509/* Pop a saved register off the stack. */
dc1e502d 1510#define POP_FAILURE_REG_OR_COUNT() \
505bde11 1511do { \
d1dfb56c 1512 long pfreg = POP_FAILURE_INT (); \
19ed5445 1513 if (pfreg == -1) \
dc1e502d
SM
1514 { \
1515 /* It's a counter. */ \
6dcf2d0e
SM
1516 /* Here, we discard `const', making re_match non-reentrant. */ \
1517 unsigned char *ptr = (unsigned char*) POP_FAILURE_POINTER (); \
19ed5445
PE
1518 pfreg = POP_FAILURE_INT (); \
1519 STORE_NUMBER (ptr, pfreg); \
1520 DEBUG_PRINT3 (" Pop counter %p = %d\n", ptr, pfreg); \
dc1e502d
SM
1521 } \
1522 else \
1523 { \
19ed5445
PE
1524 regend[pfreg] = POP_FAILURE_POINTER (); \
1525 regstart[pfreg] = POP_FAILURE_POINTER (); \
dc1e502d 1526 DEBUG_PRINT4 (" Pop reg %d (spanning %p -> %p)\n", \
19ed5445 1527 pfreg, regstart[pfreg], regend[pfreg]); \
dc1e502d 1528 } \
505bde11
SM
1529} while (0)
1530
1531/* Check that we are not stuck in an infinite loop. */
1532#define CHECK_INFINITE_LOOP(pat_cur, string_place) \
1533do { \
d1dfb56c 1534 ssize_t failure = TOP_FAILURE_HANDLE (); \
505bde11 1535 /* Check for infinite matching loops */ \
f6df485f
RS
1536 while (failure > 0 \
1537 && (FAILURE_STR (failure) == string_place \
1538 || FAILURE_STR (failure) == NULL)) \
505bde11
SM
1539 { \
1540 assert (FAILURE_PAT (failure) >= bufp->buffer \
66f0296e 1541 && FAILURE_PAT (failure) <= bufp->buffer + bufp->used); \
505bde11 1542 if (FAILURE_PAT (failure) == pat_cur) \
f6df485f 1543 { \
6df42991
SM
1544 cycle = 1; \
1545 break; \
f6df485f 1546 } \
66f0296e 1547 DEBUG_PRINT2 (" Other pattern: %p\n", FAILURE_PAT (failure)); \
505bde11
SM
1548 failure = NEXT_FAILURE_HANDLE(failure); \
1549 } \
1550 DEBUG_PRINT2 (" Other string: %p\n", FAILURE_STR (failure)); \
1551} while (0)
6df42991 1552
fa9a63c5 1553/* Push the information about the state we will need
5e69f11e
RM
1554 if we ever fail back to it.
1555
505bde11 1556 Requires variables fail_stack, regstart, regend and
320a2a73 1557 num_regs be declared. GROW_FAIL_STACK requires `destination' be
fa9a63c5 1558 declared.
5e69f11e 1559
fa9a63c5
RM
1560 Does `return FAILURE_CODE' if runs out of memory. */
1561
505bde11
SM
1562#define PUSH_FAILURE_POINT(pattern, string_place) \
1563do { \
1564 char *destination; \
1565 /* Must be int, so when we don't save any registers, the arithmetic \
1566 of 0 + -1 isn't done as unsigned. */ \
1567 \
505bde11 1568 DEBUG_STATEMENT (nfailure_points_pushed++); \
4bb91c68 1569 DEBUG_PRINT1 ("\nPUSH_FAILURE_POINT:\n"); \
505bde11
SM
1570 DEBUG_PRINT2 (" Before push, next avail: %d\n", (fail_stack).avail); \
1571 DEBUG_PRINT2 (" size: %d\n", (fail_stack).size);\
1572 \
1573 ENSURE_FAIL_STACK (NUM_NONREG_ITEMS); \
1574 \
1575 DEBUG_PRINT1 ("\n"); \
1576 \
1577 DEBUG_PRINT2 (" Push frame index: %d\n", fail_stack.frame); \
1578 PUSH_FAILURE_INT (fail_stack.frame); \
1579 \
1580 DEBUG_PRINT2 (" Push string %p: `", string_place); \
1581 DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, size2);\
1582 DEBUG_PRINT1 ("'\n"); \
1583 PUSH_FAILURE_POINTER (string_place); \
1584 \
1585 DEBUG_PRINT2 (" Push pattern %p: ", pattern); \
1586 DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern, pend); \
1587 PUSH_FAILURE_POINTER (pattern); \
1588 \
1589 /* Close the frame by moving the frame pointer past it. */ \
1590 fail_stack.frame = fail_stack.avail; \
1591} while (0)
fa9a63c5 1592
320a2a73
KH
1593/* Estimate the size of data pushed by a typical failure stack entry.
1594 An estimate is all we need, because all we use this for
1595 is to choose a limit for how big to make the failure stack. */
ada30c0e 1596/* BEWARE, the value `20' is hard-coded in emacs.c:main(). */
320a2a73 1597#define TYPICAL_FAILURE_SIZE 20
fa9a63c5 1598
fa9a63c5
RM
1599/* How many items can still be added to the stack without overflowing it. */
1600#define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
1601
1602
1603/* Pops what PUSH_FAIL_STACK pushes.
1604
1605 We restore into the parameters, all of which should be lvalues:
1606 STR -- the saved data position.
1607 PAT -- the saved pattern position.
fa9a63c5 1608 REGSTART, REGEND -- arrays of string positions.
5e69f11e 1609
fa9a63c5 1610 Also assumes the variables `fail_stack' and (if debugging), `bufp',
7814e705 1611 `pend', `string1', `size1', `string2', and `size2'. */
fa9a63c5 1612
505bde11
SM
1613#define POP_FAILURE_POINT(str, pat) \
1614do { \
fa9a63c5
RM
1615 assert (!FAIL_STACK_EMPTY ()); \
1616 \
1617 /* Remove failure points and point to how many regs pushed. */ \
1618 DEBUG_PRINT1 ("POP_FAILURE_POINT:\n"); \
1619 DEBUG_PRINT2 (" Before pop, next avail: %d\n", fail_stack.avail); \
25fe55af 1620 DEBUG_PRINT2 (" size: %d\n", fail_stack.size); \
fa9a63c5 1621 \
505bde11
SM
1622 /* Pop the saved registers. */ \
1623 while (fail_stack.frame < fail_stack.avail) \
dc1e502d 1624 POP_FAILURE_REG_OR_COUNT (); \
fa9a63c5 1625 \
01618498 1626 pat = POP_FAILURE_POINTER (); \
505bde11
SM
1627 DEBUG_PRINT2 (" Popping pattern %p: ", pat); \
1628 DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend); \
fa9a63c5
RM
1629 \
1630 /* If the saved string location is NULL, it came from an \
1631 on_failure_keep_string_jump opcode, and we want to throw away the \
1632 saved NULL, thus retaining our current position in the string. */ \
01618498 1633 str = POP_FAILURE_POINTER (); \
505bde11 1634 DEBUG_PRINT2 (" Popping string %p: `", str); \
fa9a63c5
RM
1635 DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2); \
1636 DEBUG_PRINT1 ("'\n"); \
1637 \
505bde11
SM
1638 fail_stack.frame = POP_FAILURE_INT (); \
1639 DEBUG_PRINT2 (" Popping frame index: %d\n", fail_stack.frame); \
fa9a63c5 1640 \
505bde11
SM
1641 assert (fail_stack.avail >= 0); \
1642 assert (fail_stack.frame <= fail_stack.avail); \
fa9a63c5 1643 \
fa9a63c5 1644 DEBUG_STATEMENT (nfailure_points_popped++); \
505bde11 1645} while (0) /* POP_FAILURE_POINT */
fa9a63c5
RM
1646
1647
1648\f
fa9a63c5 1649/* Registers are set to a sentinel when they haven't yet matched. */
4bb91c68 1650#define REG_UNSET(e) ((e) == NULL)
fa9a63c5
RM
1651\f
1652/* Subroutine declarations and macros for regex_compile. */
1653
261cb4bb
PE
1654static reg_errcode_t regex_compile (re_char *pattern, size_t size,
1655 reg_syntax_t syntax,
1656 struct re_pattern_buffer *bufp);
1657static void store_op1 (re_opcode_t op, unsigned char *loc, int arg);
1658static void store_op2 (re_opcode_t op, unsigned char *loc, int arg1, int arg2);
1659static void insert_op1 (re_opcode_t op, unsigned char *loc,
1660 int arg, unsigned char *end);
1661static void insert_op2 (re_opcode_t op, unsigned char *loc,
1662 int arg1, int arg2, unsigned char *end);
1663static boolean at_begline_loc_p (re_char *pattern, re_char *p,
1664 reg_syntax_t syntax);
1665static boolean at_endline_loc_p (re_char *p, re_char *pend,
1666 reg_syntax_t syntax);
1667static re_char *skip_one_char (re_char *p);
1668static int analyse_first (re_char *p, re_char *pend,
1669 char *fastmap, const int multibyte);
fa9a63c5 1670
fa9a63c5 1671/* Fetch the next character in the uncompiled pattern, with no
4bb91c68 1672 translation. */
36595814 1673#define PATFETCH(c) \
2d1675e4
SM
1674 do { \
1675 int len; \
1676 if (p == pend) return REG_EEND; \
62a6e103 1677 c = RE_STRING_CHAR_AND_LENGTH (p, len, multibyte); \
2d1675e4 1678 p += len; \
fa9a63c5
RM
1679 } while (0)
1680
fa9a63c5
RM
1681
1682/* If `translate' is non-null, return translate[D], else just D. We
1683 cast the subscript to translate because some data is declared as
1684 `char *', to avoid warnings when a string constant is passed. But
1685 when we use a character as a subscript we must make it unsigned. */
6676cb1c 1686#ifndef TRANSLATE
0b32bf0e 1687# define TRANSLATE(d) \
66f0296e 1688 (RE_TRANSLATE_P (translate) ? RE_TRANSLATE (translate, (d)) : (d))
6676cb1c 1689#endif
fa9a63c5
RM
1690
1691
1692/* Macros for outputting the compiled pattern into `buffer'. */
1693
1694/* If the buffer isn't allocated when it comes in, use this. */
1695#define INIT_BUF_SIZE 32
1696
4bb91c68 1697/* Make sure we have at least N more bytes of space in buffer. */
fa9a63c5 1698#define GET_BUFFER_SPACE(n) \
01618498 1699 while ((size_t) (b - bufp->buffer + (n)) > bufp->allocated) \
fa9a63c5
RM
1700 EXTEND_BUFFER ()
1701
1702/* Make sure we have one more byte of buffer space and then add C to it. */
1703#define BUF_PUSH(c) \
1704 do { \
1705 GET_BUFFER_SPACE (1); \
1706 *b++ = (unsigned char) (c); \
1707 } while (0)
1708
1709
1710/* Ensure we have two more bytes of buffer space and then append C1 and C2. */
1711#define BUF_PUSH_2(c1, c2) \
1712 do { \
1713 GET_BUFFER_SPACE (2); \
1714 *b++ = (unsigned char) (c1); \
1715 *b++ = (unsigned char) (c2); \
1716 } while (0)
1717
1718
fa9a63c5 1719/* Store a jump with opcode OP at LOC to location TO. We store a
4bb91c68 1720 relative address offset by the three bytes the jump itself occupies. */
fa9a63c5
RM
1721#define STORE_JUMP(op, loc, to) \
1722 store_op1 (op, loc, (to) - (loc) - 3)
1723
1724/* Likewise, for a two-argument jump. */
1725#define STORE_JUMP2(op, loc, to, arg) \
1726 store_op2 (op, loc, (to) - (loc) - 3, arg)
1727
4bb91c68 1728/* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */
fa9a63c5
RM
1729#define INSERT_JUMP(op, loc, to) \
1730 insert_op1 (op, loc, (to) - (loc) - 3, b)
1731
1732/* Like `STORE_JUMP2', but for inserting. Assume `b' is the buffer end. */
1733#define INSERT_JUMP2(op, loc, to, arg) \
1734 insert_op2 (op, loc, (to) - (loc) - 3, arg, b)
1735
1736
1737/* This is not an arbitrary limit: the arguments which represent offsets
839966f3 1738 into the pattern are two bytes long. So if 2^15 bytes turns out to
fa9a63c5 1739 be too small, many things would have to change. */
839966f3
KH
1740# define MAX_BUF_SIZE (1L << 15)
1741
fa9a63c5
RM
1742/* Extend the buffer by twice its current size via realloc and
1743 reset the pointers that pointed into the old block to point to the
1744 correct places in the new one. If extending the buffer results in it
4bb91c68
SM
1745 being larger than MAX_BUF_SIZE, then flag memory exhausted. */
1746#if __BOUNDED_POINTERS__
1747# define SET_HIGH_BOUND(P) (__ptrhigh (P) = __ptrlow (P) + bufp->allocated)
381880b0
CY
1748# define MOVE_BUFFER_POINTER(P) \
1749 (__ptrlow (P) = new_buffer + (__ptrlow (P) - old_buffer), \
1750 SET_HIGH_BOUND (P), \
1751 __ptrvalue (P) = new_buffer + (__ptrvalue (P) - old_buffer))
4bb91c68
SM
1752# define ELSE_EXTEND_BUFFER_HIGH_BOUND \
1753 else \
1754 { \
1755 SET_HIGH_BOUND (b); \
1756 SET_HIGH_BOUND (begalt); \
1757 if (fixup_alt_jump) \
1758 SET_HIGH_BOUND (fixup_alt_jump); \
1759 if (laststart) \
1760 SET_HIGH_BOUND (laststart); \
1761 if (pending_exact) \
1762 SET_HIGH_BOUND (pending_exact); \
1763 }
1764#else
381880b0 1765# define MOVE_BUFFER_POINTER(P) ((P) = new_buffer + ((P) - old_buffer))
4bb91c68
SM
1766# define ELSE_EXTEND_BUFFER_HIGH_BOUND
1767#endif
fa9a63c5 1768#define EXTEND_BUFFER() \
25fe55af 1769 do { \
381880b0 1770 unsigned char *old_buffer = bufp->buffer; \
25fe55af 1771 if (bufp->allocated == MAX_BUF_SIZE) \
fa9a63c5
RM
1772 return REG_ESIZE; \
1773 bufp->allocated <<= 1; \
1774 if (bufp->allocated > MAX_BUF_SIZE) \
25fe55af 1775 bufp->allocated = MAX_BUF_SIZE; \
01618498 1776 RETALLOC (bufp->buffer, bufp->allocated, unsigned char); \
fa9a63c5
RM
1777 if (bufp->buffer == NULL) \
1778 return REG_ESPACE; \
1779 /* If the buffer moved, move all the pointers into it. */ \
1780 if (old_buffer != bufp->buffer) \
1781 { \
381880b0 1782 unsigned char *new_buffer = bufp->buffer; \
4bb91c68
SM
1783 MOVE_BUFFER_POINTER (b); \
1784 MOVE_BUFFER_POINTER (begalt); \
25fe55af 1785 if (fixup_alt_jump) \
4bb91c68 1786 MOVE_BUFFER_POINTER (fixup_alt_jump); \
25fe55af 1787 if (laststart) \
4bb91c68 1788 MOVE_BUFFER_POINTER (laststart); \
25fe55af 1789 if (pending_exact) \
4bb91c68 1790 MOVE_BUFFER_POINTER (pending_exact); \
fa9a63c5 1791 } \
4bb91c68 1792 ELSE_EXTEND_BUFFER_HIGH_BOUND \
fa9a63c5
RM
1793 } while (0)
1794
1795
1796/* Since we have one byte reserved for the register number argument to
1797 {start,stop}_memory, the maximum number of groups we can report
1798 things about is what fits in that byte. */
1799#define MAX_REGNUM 255
1800
1801/* But patterns can have more than `MAX_REGNUM' registers. We just
1802 ignore the excess. */
098d42af 1803typedef int regnum_t;
fa9a63c5
RM
1804
1805
1806/* Macros for the compile stack. */
1807
1808/* Since offsets can go either forwards or backwards, this type needs to
4bb91c68
SM
1809 be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */
1810/* int may be not enough when sizeof(int) == 2. */
1811typedef long pattern_offset_t;
fa9a63c5
RM
1812
1813typedef struct
1814{
1815 pattern_offset_t begalt_offset;
1816 pattern_offset_t fixup_alt_jump;
5e69f11e 1817 pattern_offset_t laststart_offset;
fa9a63c5
RM
1818 regnum_t regnum;
1819} compile_stack_elt_t;
1820
1821
1822typedef struct
1823{
1824 compile_stack_elt_t *stack;
d1dfb56c
EZ
1825 size_t size;
1826 size_t avail; /* Offset of next open position. */
fa9a63c5
RM
1827} compile_stack_type;
1828
1829
1830#define INIT_COMPILE_STACK_SIZE 32
1831
1832#define COMPILE_STACK_EMPTY (compile_stack.avail == 0)
1833#define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size)
1834
4bb91c68 1835/* The next available element. */
fa9a63c5
RM
1836#define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
1837
1cee1e27
SM
1838/* Explicit quit checking is only used on NTemacs and whenever we
1839 use polling to process input events. */
1840#if defined emacs && (defined WINDOWSNT || defined SYNC_INPUT) && defined QUIT
77d11aec
RS
1841extern int immediate_quit;
1842# define IMMEDIATE_QUIT_CHECK \
1843 do { \
1844 if (immediate_quit) QUIT; \
1845 } while (0)
1846#else
1847# define IMMEDIATE_QUIT_CHECK ((void)0)
1848#endif
1849\f
b18215fc
RS
1850/* Structure to manage work area for range table. */
1851struct range_table_work_area
1852{
1853 int *table; /* actual work area. */
1854 int allocated; /* allocated size for work area in bytes. */
7814e705 1855 int used; /* actually used size in words. */
96cc36cc 1856 int bits; /* flag to record character classes */
b18215fc
RS
1857};
1858
77d11aec
RS
1859/* Make sure that WORK_AREA can hold more N multibyte characters.
1860 This is used only in set_image_of_range and set_image_of_range_1.
1861 It expects WORK_AREA to be a pointer.
1862 If it can't get the space, it returns from the surrounding function. */
1863
1864#define EXTEND_RANGE_TABLE(work_area, n) \
1865 do { \
8f924df7 1866 if (((work_area).used + (n)) * sizeof (int) > (work_area).allocated) \
77d11aec 1867 { \
8f924df7
KH
1868 extend_range_table_work_area (&work_area); \
1869 if ((work_area).table == 0) \
77d11aec
RS
1870 return (REG_ESPACE); \
1871 } \
b18215fc
RS
1872 } while (0)
1873
96cc36cc
RS
1874#define SET_RANGE_TABLE_WORK_AREA_BIT(work_area, bit) \
1875 (work_area).bits |= (bit)
1876
14473664
SM
1877/* Bits used to implement the multibyte-part of the various character classes
1878 such as [:alnum:] in a charset's range table. */
1879#define BIT_WORD 0x1
1880#define BIT_LOWER 0x2
1881#define BIT_PUNCT 0x4
1882#define BIT_SPACE 0x8
1883#define BIT_UPPER 0x10
1884#define BIT_MULTIBYTE 0x20
96cc36cc 1885
b18215fc
RS
1886/* Set a range (RANGE_START, RANGE_END) to WORK_AREA. */
1887#define SET_RANGE_TABLE_WORK_AREA(work_area, range_start, range_end) \
77d11aec 1888 do { \
8f924df7 1889 EXTEND_RANGE_TABLE ((work_area), 2); \
b18215fc
RS
1890 (work_area).table[(work_area).used++] = (range_start); \
1891 (work_area).table[(work_area).used++] = (range_end); \
1892 } while (0)
1893
7814e705 1894/* Free allocated memory for WORK_AREA. */
b18215fc
RS
1895#define FREE_RANGE_TABLE_WORK_AREA(work_area) \
1896 do { \
1897 if ((work_area).table) \
1898 free ((work_area).table); \
1899 } while (0)
1900
96cc36cc 1901#define CLEAR_RANGE_TABLE_WORK_USED(work_area) ((work_area).used = 0, (work_area).bits = 0)
b18215fc 1902#define RANGE_TABLE_WORK_USED(work_area) ((work_area).used)
96cc36cc 1903#define RANGE_TABLE_WORK_BITS(work_area) ((work_area).bits)
b18215fc 1904#define RANGE_TABLE_WORK_ELT(work_area, i) ((work_area).table[i])
77d11aec 1905\f
b18215fc 1906
fa9a63c5 1907/* Set the bit for character C in a list. */
01618498 1908#define SET_LIST_BIT(c) (b[((c)) / BYTEWIDTH] |= 1 << ((c) % BYTEWIDTH))
fa9a63c5
RM
1909
1910
bf216479
KH
1911#ifdef emacs
1912
cf9c99bc
KH
1913/* Store characters in the range FROM to TO in the bitmap at B (for
1914 ASCII and unibyte characters) and WORK_AREA (for multibyte
1915 characters) while translating them and paying attention to the
1916 continuity of translated characters.
8f924df7 1917
cf9c99bc
KH
1918 Implementation note: It is better to implement these fairly big
1919 macros by a function, but it's not that easy because macros called
8f924df7 1920 in this macro assume various local variables already declared. */
bf216479 1921
cf9c99bc
KH
1922/* Both FROM and TO are ASCII characters. */
1923
1924#define SETUP_ASCII_RANGE(work_area, FROM, TO) \
1925 do { \
1926 int C0, C1; \
1927 \
1928 for (C0 = (FROM); C0 <= (TO); C0++) \
1929 { \
1930 C1 = TRANSLATE (C0); \
1931 if (! ASCII_CHAR_P (C1)) \
1932 { \
1933 SET_RANGE_TABLE_WORK_AREA ((work_area), C1, C1); \
1934 if ((C1 = RE_CHAR_TO_UNIBYTE (C1)) < 0) \
1935 C1 = C0; \
1936 } \
1937 SET_LIST_BIT (C1); \
1938 } \
1939 } while (0)
1940
1941
1942/* Both FROM and TO are unibyte characters (0x80..0xFF). */
1943
1944#define SETUP_UNIBYTE_RANGE(work_area, FROM, TO) \
1945 do { \
1946 int C0, C1, C2, I; \
1947 int USED = RANGE_TABLE_WORK_USED (work_area); \
1948 \
1949 for (C0 = (FROM); C0 <= (TO); C0++) \
1950 { \
1951 C1 = RE_CHAR_TO_MULTIBYTE (C0); \
1952 if (CHAR_BYTE8_P (C1)) \
1953 SET_LIST_BIT (C0); \
1954 else \
1955 { \
1956 C2 = TRANSLATE (C1); \
1957 if (C2 == C1 \
1958 || (C1 = RE_CHAR_TO_UNIBYTE (C2)) < 0) \
1959 C1 = C0; \
1960 SET_LIST_BIT (C1); \
1961 for (I = RANGE_TABLE_WORK_USED (work_area) - 2; I >= USED; I -= 2) \
1962 { \
1963 int from = RANGE_TABLE_WORK_ELT (work_area, I); \
1964 int to = RANGE_TABLE_WORK_ELT (work_area, I + 1); \
1965 \
1966 if (C2 >= from - 1 && C2 <= to + 1) \
1967 { \
1968 if (C2 == from - 1) \
1969 RANGE_TABLE_WORK_ELT (work_area, I)--; \
1970 else if (C2 == to + 1) \
1971 RANGE_TABLE_WORK_ELT (work_area, I + 1)++; \
1972 break; \
1973 } \
1974 } \
1975 if (I < USED) \
1976 SET_RANGE_TABLE_WORK_AREA ((work_area), C2, C2); \
1977 } \
1978 } \
1979 } while (0)
1980
1981
78edd3b7 1982/* Both FROM and TO are multibyte characters. */
cf9c99bc
KH
1983
1984#define SETUP_MULTIBYTE_RANGE(work_area, FROM, TO) \
1985 do { \
1986 int C0, C1, C2, I, USED = RANGE_TABLE_WORK_USED (work_area); \
1987 \
1988 SET_RANGE_TABLE_WORK_AREA ((work_area), (FROM), (TO)); \
1989 for (C0 = (FROM); C0 <= (TO); C0++) \
1990 { \
1991 C1 = TRANSLATE (C0); \
1992 if ((C2 = RE_CHAR_TO_UNIBYTE (C1)) >= 0 \
1993 || (C1 != C0 && (C2 = RE_CHAR_TO_UNIBYTE (C0)) >= 0)) \
1994 SET_LIST_BIT (C2); \
1995 if (C1 >= (FROM) && C1 <= (TO)) \
1996 continue; \
1997 for (I = RANGE_TABLE_WORK_USED (work_area) - 2; I >= USED; I -= 2) \
1998 { \
1999 int from = RANGE_TABLE_WORK_ELT (work_area, I); \
2000 int to = RANGE_TABLE_WORK_ELT (work_area, I + 1); \
2001 \
2002 if (C1 >= from - 1 && C1 <= to + 1) \
2003 { \
2004 if (C1 == from - 1) \
2005 RANGE_TABLE_WORK_ELT (work_area, I)--; \
2006 else if (C1 == to + 1) \
2007 RANGE_TABLE_WORK_ELT (work_area, I + 1)++; \
2008 break; \
2009 } \
2010 } \
2011 if (I < USED) \
2012 SET_RANGE_TABLE_WORK_AREA ((work_area), C1, C1); \
2013 } \
bf216479
KH
2014 } while (0)
2015
2016#endif /* emacs */
2017
fa9a63c5 2018/* Get the next unsigned number in the uncompiled pattern. */
25fe55af 2019#define GET_UNSIGNED_NUMBER(num) \
c72b0edd
SM
2020 do { \
2021 if (p == pend) \
2022 FREE_STACK_RETURN (REG_EBRACE); \
2023 else \
2024 { \
2025 PATFETCH (c); \
2026 while ('0' <= c && c <= '9') \
2027 { \
2028 int prev; \
2029 if (num < 0) \
2030 num = 0; \
2031 prev = num; \
2032 num = num * 10 + c - '0'; \
2033 if (num / 10 != prev) \
2034 FREE_STACK_RETURN (REG_BADBR); \
2035 if (p == pend) \
2036 FREE_STACK_RETURN (REG_EBRACE); \
2037 PATFETCH (c); \
2038 } \
2039 } \
2040 } while (0)
77d11aec 2041\f
1fdab503 2042#if ! WIDE_CHAR_SUPPORT
01618498 2043
14473664 2044/* Map a string to the char class it names (if any). */
1fdab503 2045re_wctype_t
971de7fb 2046re_wctype (const re_char *str)
14473664 2047{
5b0534c8 2048 const char *string = (const char *) str;
14473664
SM
2049 if (STREQ (string, "alnum")) return RECC_ALNUM;
2050 else if (STREQ (string, "alpha")) return RECC_ALPHA;
2051 else if (STREQ (string, "word")) return RECC_WORD;
2052 else if (STREQ (string, "ascii")) return RECC_ASCII;
2053 else if (STREQ (string, "nonascii")) return RECC_NONASCII;
2054 else if (STREQ (string, "graph")) return RECC_GRAPH;
2055 else if (STREQ (string, "lower")) return RECC_LOWER;
2056 else if (STREQ (string, "print")) return RECC_PRINT;
2057 else if (STREQ (string, "punct")) return RECC_PUNCT;
2058 else if (STREQ (string, "space")) return RECC_SPACE;
2059 else if (STREQ (string, "upper")) return RECC_UPPER;
2060 else if (STREQ (string, "unibyte")) return RECC_UNIBYTE;
2061 else if (STREQ (string, "multibyte")) return RECC_MULTIBYTE;
2062 else if (STREQ (string, "digit")) return RECC_DIGIT;
2063 else if (STREQ (string, "xdigit")) return RECC_XDIGIT;
2064 else if (STREQ (string, "cntrl")) return RECC_CNTRL;
2065 else if (STREQ (string, "blank")) return RECC_BLANK;
2066 else return 0;
2067}
2068
e0f24100 2069/* True if CH is in the char class CC. */
1fdab503 2070boolean
971de7fb 2071re_iswctype (int ch, re_wctype_t cc)
14473664
SM
2072{
2073 switch (cc)
2074 {
f3fcc40d
AS
2075 case RECC_ALNUM: return ISALNUM (ch) != 0;
2076 case RECC_ALPHA: return ISALPHA (ch) != 0;
2077 case RECC_BLANK: return ISBLANK (ch) != 0;
2078 case RECC_CNTRL: return ISCNTRL (ch) != 0;
2079 case RECC_DIGIT: return ISDIGIT (ch) != 0;
2080 case RECC_GRAPH: return ISGRAPH (ch) != 0;
2081 case RECC_LOWER: return ISLOWER (ch) != 0;
2082 case RECC_PRINT: return ISPRINT (ch) != 0;
2083 case RECC_PUNCT: return ISPUNCT (ch) != 0;
2084 case RECC_SPACE: return ISSPACE (ch) != 0;
2085 case RECC_UPPER: return ISUPPER (ch) != 0;
2086 case RECC_XDIGIT: return ISXDIGIT (ch) != 0;
2087 case RECC_ASCII: return IS_REAL_ASCII (ch) != 0;
213bd7f2 2088 case RECC_NONASCII: return !IS_REAL_ASCII (ch);
f3fcc40d 2089 case RECC_UNIBYTE: return ISUNIBYTE (ch) != 0;
213bd7f2 2090 case RECC_MULTIBYTE: return !ISUNIBYTE (ch);
f3fcc40d 2091 case RECC_WORD: return ISWORD (ch) != 0;
0cdd06f8
SM
2092 case RECC_ERROR: return false;
2093 default:
5e617bc2 2094 abort ();
14473664
SM
2095 }
2096}
fa9a63c5 2097
14473664
SM
2098/* Return a bit-pattern to use in the range-table bits to match multibyte
2099 chars of class CC. */
2100static int
971de7fb 2101re_wctype_to_bit (re_wctype_t cc)
14473664
SM
2102{
2103 switch (cc)
2104 {
2105 case RECC_NONASCII: case RECC_PRINT: case RECC_GRAPH:
0cdd06f8
SM
2106 case RECC_MULTIBYTE: return BIT_MULTIBYTE;
2107 case RECC_ALPHA: case RECC_ALNUM: case RECC_WORD: return BIT_WORD;
2108 case RECC_LOWER: return BIT_LOWER;
2109 case RECC_UPPER: return BIT_UPPER;
2110 case RECC_PUNCT: return BIT_PUNCT;
2111 case RECC_SPACE: return BIT_SPACE;
14473664 2112 case RECC_ASCII: case RECC_DIGIT: case RECC_XDIGIT: case RECC_CNTRL:
0cdd06f8
SM
2113 case RECC_BLANK: case RECC_UNIBYTE: case RECC_ERROR: return 0;
2114 default:
5e617bc2 2115 abort ();
14473664
SM
2116 }
2117}
2118#endif
77d11aec
RS
2119\f
2120/* Filling in the work area of a range. */
2121
2122/* Actually extend the space in WORK_AREA. */
2123
2124static void
971de7fb 2125extend_range_table_work_area (struct range_table_work_area *work_area)
177c0ea7 2126{
77d11aec 2127 work_area->allocated += 16 * sizeof (int);
38182d90 2128 work_area->table = realloc (work_area->table, work_area->allocated);
77d11aec
RS
2129}
2130
8f924df7 2131#if 0
77d11aec
RS
2132#ifdef emacs
2133
2134/* Carefully find the ranges of codes that are equivalent
2135 under case conversion to the range start..end when passed through
2136 TRANSLATE. Handle the case where non-letters can come in between
2137 two upper-case letters (which happens in Latin-1).
2138 Also handle the case of groups of more than 2 case-equivalent chars.
2139
2140 The basic method is to look at consecutive characters and see
2141 if they can form a run that can be handled as one.
2142
2143 Returns -1 if successful, REG_ESPACE if ran out of space. */
2144
2145static int
1dae0f0a
AS
2146set_image_of_range_1 (struct range_table_work_area *work_area,
2147 re_wchar_t start, re_wchar_t end,
2148 RE_TRANSLATE_TYPE translate)
77d11aec
RS
2149{
2150 /* `one_case' indicates a character, or a run of characters,
2151 each of which is an isolate (no case-equivalents).
2152 This includes all ASCII non-letters.
2153
2154 `two_case' indicates a character, or a run of characters,
2155 each of which has two case-equivalent forms.
2156 This includes all ASCII letters.
2157
2158 `strange' indicates a character that has more than one
2159 case-equivalent. */
177c0ea7 2160
77d11aec
RS
2161 enum case_type {one_case, two_case, strange};
2162
2163 /* Describe the run that is in progress,
2164 which the next character can try to extend.
2165 If run_type is strange, that means there really is no run.
2166 If run_type is one_case, then run_start...run_end is the run.
2167 If run_type is two_case, then the run is run_start...run_end,
2168 and the case-equivalents end at run_eqv_end. */
2169
2170 enum case_type run_type = strange;
2171 int run_start, run_end, run_eqv_end;
2172
2173 Lisp_Object eqv_table;
2174
2175 if (!RE_TRANSLATE_P (translate))
2176 {
b7c12565 2177 EXTEND_RANGE_TABLE (work_area, 2);
77d11aec
RS
2178 work_area->table[work_area->used++] = (start);
2179 work_area->table[work_area->used++] = (end);
b7c12565 2180 return -1;
77d11aec
RS
2181 }
2182
2183 eqv_table = XCHAR_TABLE (translate)->extras[2];
99633e97 2184
77d11aec
RS
2185 for (; start <= end; start++)
2186 {
2187 enum case_type this_type;
2188 int eqv = RE_TRANSLATE (eqv_table, start);
2189 int minchar, maxchar;
2190
2191 /* Classify this character */
2192 if (eqv == start)
2193 this_type = one_case;
2194 else if (RE_TRANSLATE (eqv_table, eqv) == start)
2195 this_type = two_case;
2196 else
2197 this_type = strange;
2198
2199 if (start < eqv)
2200 minchar = start, maxchar = eqv;
2201 else
2202 minchar = eqv, maxchar = start;
2203
2204 /* Can this character extend the run in progress? */
2205 if (this_type == strange || this_type != run_type
2206 || !(minchar == run_end + 1
2207 && (run_type == two_case
2208 ? maxchar == run_eqv_end + 1 : 1)))
2209 {
2210 /* No, end the run.
2211 Record each of its equivalent ranges. */
2212 if (run_type == one_case)
2213 {
2214 EXTEND_RANGE_TABLE (work_area, 2);
2215 work_area->table[work_area->used++] = run_start;
2216 work_area->table[work_area->used++] = run_end;
2217 }
2218 else if (run_type == two_case)
2219 {
2220 EXTEND_RANGE_TABLE (work_area, 4);
2221 work_area->table[work_area->used++] = run_start;
2222 work_area->table[work_area->used++] = run_end;
2223 work_area->table[work_area->used++]
2224 = RE_TRANSLATE (eqv_table, run_start);
2225 work_area->table[work_area->used++]
2226 = RE_TRANSLATE (eqv_table, run_end);
2227 }
2228 run_type = strange;
2229 }
177c0ea7 2230
77d11aec
RS
2231 if (this_type == strange)
2232 {
2233 /* For a strange character, add each of its equivalents, one
2234 by one. Don't start a range. */
2235 do
2236 {
2237 EXTEND_RANGE_TABLE (work_area, 2);
2238 work_area->table[work_area->used++] = eqv;
2239 work_area->table[work_area->used++] = eqv;
2240 eqv = RE_TRANSLATE (eqv_table, eqv);
2241 }
2242 while (eqv != start);
2243 }
2244
2245 /* Add this char to the run, or start a new run. */
2246 else if (run_type == strange)
2247 {
2248 /* Initialize a new range. */
2249 run_type = this_type;
2250 run_start = start;
2251 run_end = start;
2252 run_eqv_end = RE_TRANSLATE (eqv_table, run_end);
2253 }
2254 else
2255 {
2256 /* Extend a running range. */
2257 run_end = minchar;
2258 run_eqv_end = RE_TRANSLATE (eqv_table, run_end);
2259 }
2260 }
2261
2262 /* If a run is still in progress at the end, finish it now
2263 by recording its equivalent ranges. */
2264 if (run_type == one_case)
2265 {
2266 EXTEND_RANGE_TABLE (work_area, 2);
2267 work_area->table[work_area->used++] = run_start;
2268 work_area->table[work_area->used++] = run_end;
2269 }
2270 else if (run_type == two_case)
2271 {
2272 EXTEND_RANGE_TABLE (work_area, 4);
2273 work_area->table[work_area->used++] = run_start;
2274 work_area->table[work_area->used++] = run_end;
2275 work_area->table[work_area->used++]
2276 = RE_TRANSLATE (eqv_table, run_start);
2277 work_area->table[work_area->used++]
2278 = RE_TRANSLATE (eqv_table, run_end);
2279 }
2280
2281 return -1;
2282}
36595814 2283
77d11aec 2284#endif /* emacs */
36595814 2285
2b34df4e 2286/* Record the image of the range start..end when passed through
36595814
SM
2287 TRANSLATE. This is not necessarily TRANSLATE(start)..TRANSLATE(end)
2288 and is not even necessarily contiguous.
b7c12565
RS
2289 Normally we approximate it with the smallest contiguous range that contains
2290 all the chars we need. However, for Latin-1 we go to extra effort
2291 to do a better job.
2292
2293 This function is not called for ASCII ranges.
77d11aec
RS
2294
2295 Returns -1 if successful, REG_ESPACE if ran out of space. */
2296
2297static int
1dae0f0a
AS
2298set_image_of_range (struct range_table_work_area *work_area,
2299 re_wchar_t start, re_wchar_t end,
2300 RE_TRANSLATE_TYPE translate)
36595814 2301{
77d11aec
RS
2302 re_wchar_t cmin, cmax;
2303
2304#ifdef emacs
2305 /* For Latin-1 ranges, use set_image_of_range_1
2306 to get proper handling of ranges that include letters and nonletters.
b7c12565 2307 For a range that includes the whole of Latin-1, this is not necessary.
77d11aec 2308 For other character sets, we don't bother to get this right. */
b7c12565
RS
2309 if (RE_TRANSLATE_P (translate) && start < 04400
2310 && !(start < 04200 && end >= 04377))
77d11aec 2311 {
b7c12565 2312 int newend;
77d11aec 2313 int tem;
b7c12565
RS
2314 newend = end;
2315 if (newend > 04377)
2316 newend = 04377;
2317 tem = set_image_of_range_1 (work_area, start, newend, translate);
77d11aec
RS
2318 if (tem > 0)
2319 return tem;
2320
2321 start = 04400;
2322 if (end < 04400)
2323 return -1;
2324 }
2325#endif
2326
b7c12565
RS
2327 EXTEND_RANGE_TABLE (work_area, 2);
2328 work_area->table[work_area->used++] = (start);
2329 work_area->table[work_area->used++] = (end);
2330
2331 cmin = -1, cmax = -1;
77d11aec 2332
36595814 2333 if (RE_TRANSLATE_P (translate))
b7c12565
RS
2334 {
2335 int ch;
77d11aec 2336
b7c12565
RS
2337 for (ch = start; ch <= end; ch++)
2338 {
2339 re_wchar_t c = TRANSLATE (ch);
2340 if (! (start <= c && c <= end))
2341 {
2342 if (cmin == -1)
2343 cmin = c, cmax = c;
2344 else
2345 {
2346 cmin = MIN (cmin, c);
2347 cmax = MAX (cmax, c);
2348 }
2349 }
2350 }
2351
2352 if (cmin != -1)
2353 {
2354 EXTEND_RANGE_TABLE (work_area, 2);
2355 work_area->table[work_area->used++] = (cmin);
2356 work_area->table[work_area->used++] = (cmax);
2357 }
2358 }
36595814 2359
77d11aec
RS
2360 return -1;
2361}
8f924df7 2362#endif /* 0 */
fa9a63c5
RM
2363\f
2364#ifndef MATCH_MAY_ALLOCATE
2365
2366/* If we cannot allocate large objects within re_match_2_internal,
2367 we make the fail stack and register vectors global.
2368 The fail stack, we grow to the maximum size when a regexp
2369 is compiled.
2370 The register vectors, we adjust in size each time we
2371 compile a regexp, according to the number of registers it needs. */
2372
2373static fail_stack_type fail_stack;
2374
2375/* Size with which the following vectors are currently allocated.
2376 That is so we can make them bigger as needed,
4bb91c68 2377 but never make them smaller. */
fa9a63c5
RM
2378static int regs_allocated_size;
2379
66f0296e
SM
2380static re_char ** regstart, ** regend;
2381static re_char **best_regstart, **best_regend;
fa9a63c5
RM
2382
2383/* Make the register vectors big enough for NUM_REGS registers,
4bb91c68 2384 but don't make them smaller. */
fa9a63c5
RM
2385
2386static
1dae0f0a 2387regex_grow_registers (int num_regs)
fa9a63c5
RM
2388{
2389 if (num_regs > regs_allocated_size)
2390 {
66f0296e
SM
2391 RETALLOC_IF (regstart, num_regs, re_char *);
2392 RETALLOC_IF (regend, num_regs, re_char *);
2393 RETALLOC_IF (best_regstart, num_regs, re_char *);
2394 RETALLOC_IF (best_regend, num_regs, re_char *);
fa9a63c5
RM
2395
2396 regs_allocated_size = num_regs;
2397 }
2398}
2399
2400#endif /* not MATCH_MAY_ALLOCATE */
2401\f
261cb4bb
PE
2402static boolean group_in_compile_stack (compile_stack_type compile_stack,
2403 regnum_t regnum);
99633e97 2404
fa9a63c5
RM
2405/* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
2406 Returns one of error codes defined in `regex.h', or zero for success.
2407
2408 Assumes the `allocated' (and perhaps `buffer') and `translate'
2409 fields are set in BUFP on entry.
2410
2411 If it succeeds, results are put in BUFP (if it returns an error, the
2412 contents of BUFP are undefined):
2413 `buffer' is the compiled pattern;
2414 `syntax' is set to SYNTAX;
2415 `used' is set to the length of the compiled pattern;
2416 `fastmap_accurate' is zero;
2417 `re_nsub' is the number of subexpressions in PATTERN;
2418 `not_bol' and `not_eol' are zero;
5e69f11e 2419
c0f9ea08 2420 The `fastmap' field is neither examined nor set. */
fa9a63c5 2421
505bde11
SM
2422/* Insert the `jump' from the end of last alternative to "here".
2423 The space for the jump has already been allocated. */
2424#define FIXUP_ALT_JUMP() \
2425do { \
2426 if (fixup_alt_jump) \
2427 STORE_JUMP (jump, fixup_alt_jump, b); \
2428} while (0)
2429
2430
fa9a63c5
RM
2431/* Return, freeing storage we allocated. */
2432#define FREE_STACK_RETURN(value) \
b18215fc
RS
2433 do { \
2434 FREE_RANGE_TABLE_WORK_AREA (range_table_work); \
2435 free (compile_stack.stack); \
2436 return value; \
2437 } while (0)
fa9a63c5
RM
2438
2439static reg_errcode_t
971de7fb 2440regex_compile (const re_char *pattern, size_t size, reg_syntax_t syntax, struct re_pattern_buffer *bufp)
fa9a63c5 2441{
01618498
SM
2442 /* We fetch characters from PATTERN here. */
2443 register re_wchar_t c, c1;
5e69f11e 2444
fa9a63c5
RM
2445 /* Points to the end of the buffer, where we should append. */
2446 register unsigned char *b;
5e69f11e 2447
fa9a63c5
RM
2448 /* Keeps track of unclosed groups. */
2449 compile_stack_type compile_stack;
2450
2451 /* Points to the current (ending) position in the pattern. */
22336245
RS
2452#ifdef AIX
2453 /* `const' makes AIX compiler fail. */
66f0296e 2454 unsigned char *p = pattern;
22336245 2455#else
66f0296e 2456 re_char *p = pattern;
22336245 2457#endif
66f0296e 2458 re_char *pend = pattern + size;
5e69f11e 2459
fa9a63c5 2460 /* How to translate the characters in the pattern. */
6676cb1c 2461 RE_TRANSLATE_TYPE translate = bufp->translate;
fa9a63c5
RM
2462
2463 /* Address of the count-byte of the most recently inserted `exactn'
2464 command. This makes it possible to tell if a new exact-match
2465 character can be added to that command or if the character requires
2466 a new `exactn' command. */
2467 unsigned char *pending_exact = 0;
2468
2469 /* Address of start of the most recently finished expression.
2470 This tells, e.g., postfix * where to find the start of its
2471 operand. Reset at the beginning of groups and alternatives. */
2472 unsigned char *laststart = 0;
2473
2474 /* Address of beginning of regexp, or inside of last group. */
2475 unsigned char *begalt;
2476
2477 /* Place in the uncompiled pattern (i.e., the {) to
2478 which to go back if the interval is invalid. */
66f0296e 2479 re_char *beg_interval;
5e69f11e 2480
fa9a63c5 2481 /* Address of the place where a forward jump should go to the end of
7814e705 2482 the containing expression. Each alternative of an `or' -- except the
fa9a63c5
RM
2483 last -- ends with a forward jump of this sort. */
2484 unsigned char *fixup_alt_jump = 0;
2485
b18215fc
RS
2486 /* Work area for range table of charset. */
2487 struct range_table_work_area range_table_work;
2488
2d1675e4
SM
2489 /* If the object matched can contain multibyte characters. */
2490 const boolean multibyte = RE_MULTIBYTE_P (bufp);
2491
f9b0fd99
RS
2492 /* Nonzero if we have pushed down into a subpattern. */
2493 int in_subpattern = 0;
2494
2495 /* These hold the values of p, pattern, and pend from the main
2496 pattern when we have pushed into a subpattern. */
da053e48
PE
2497 re_char *main_p IF_LINT (= NULL);
2498 re_char *main_pattern IF_LINT (= NULL);
2499 re_char *main_pend IF_LINT (= NULL);
f9b0fd99 2500
fa9a63c5 2501#ifdef DEBUG
99633e97 2502 debug++;
fa9a63c5 2503 DEBUG_PRINT1 ("\nCompiling pattern: ");
99633e97 2504 if (debug > 0)
fa9a63c5
RM
2505 {
2506 unsigned debug_count;
5e69f11e 2507
fa9a63c5 2508 for (debug_count = 0; debug_count < size; debug_count++)
25fe55af 2509 putchar (pattern[debug_count]);
fa9a63c5
RM
2510 putchar ('\n');
2511 }
2512#endif /* DEBUG */
2513
2514 /* Initialize the compile stack. */
2515 compile_stack.stack = TALLOC (INIT_COMPILE_STACK_SIZE, compile_stack_elt_t);
2516 if (compile_stack.stack == NULL)
2517 return REG_ESPACE;
2518
2519 compile_stack.size = INIT_COMPILE_STACK_SIZE;
2520 compile_stack.avail = 0;
2521
b18215fc
RS
2522 range_table_work.table = 0;
2523 range_table_work.allocated = 0;
2524
fa9a63c5
RM
2525 /* Initialize the pattern buffer. */
2526 bufp->syntax = syntax;
2527 bufp->fastmap_accurate = 0;
2528 bufp->not_bol = bufp->not_eol = 0;
6224b623 2529 bufp->used_syntax = 0;
fa9a63c5
RM
2530
2531 /* Set `used' to zero, so that if we return an error, the pattern
2532 printer (for debugging) will think there's no pattern. We reset it
2533 at the end. */
2534 bufp->used = 0;
5e69f11e 2535
fa9a63c5 2536 /* Always count groups, whether or not bufp->no_sub is set. */
5e69f11e 2537 bufp->re_nsub = 0;
fa9a63c5 2538
0b32bf0e 2539#if !defined emacs && !defined SYNTAX_TABLE
fa9a63c5
RM
2540 /* Initialize the syntax table. */
2541 init_syntax_once ();
2542#endif
2543
2544 if (bufp->allocated == 0)
2545 {
2546 if (bufp->buffer)
2547 { /* If zero allocated, but buffer is non-null, try to realloc
25fe55af 2548 enough space. This loses if buffer's address is bogus, but
7814e705 2549 that is the user's responsibility. */
25fe55af
RS
2550 RETALLOC (bufp->buffer, INIT_BUF_SIZE, unsigned char);
2551 }
fa9a63c5 2552 else
7814e705 2553 { /* Caller did not allocate a buffer. Do it for them. */
25fe55af
RS
2554 bufp->buffer = TALLOC (INIT_BUF_SIZE, unsigned char);
2555 }
fa9a63c5
RM
2556 if (!bufp->buffer) FREE_STACK_RETURN (REG_ESPACE);
2557
2558 bufp->allocated = INIT_BUF_SIZE;
2559 }
2560
2561 begalt = b = bufp->buffer;
2562
2563 /* Loop through the uncompiled pattern until we're at the end. */
f9b0fd99 2564 while (1)
fa9a63c5 2565 {
f9b0fd99
RS
2566 if (p == pend)
2567 {
2568 /* If this is the end of an included regexp,
2569 pop back to the main regexp and try again. */
2570 if (in_subpattern)
2571 {
2572 in_subpattern = 0;
2573 pattern = main_pattern;
2574 p = main_p;
2575 pend = main_pend;
2576 continue;
2577 }
2578 /* If this is the end of the main regexp, we are done. */
2579 break;
2580 }
2581
fa9a63c5
RM
2582 PATFETCH (c);
2583
2584 switch (c)
25fe55af 2585 {
f9b0fd99
RS
2586 case ' ':
2587 {
2588 re_char *p1 = p;
2589
2590 /* If there's no special whitespace regexp, treat
4fb680cd
RS
2591 spaces normally. And don't try to do this recursively. */
2592 if (!whitespace_regexp || in_subpattern)
f9b0fd99
RS
2593 goto normal_char;
2594
2595 /* Peek past following spaces. */
2596 while (p1 != pend)
2597 {
2598 if (*p1 != ' ')
2599 break;
2600 p1++;
2601 }
2602 /* If the spaces are followed by a repetition op,
2603 treat them normally. */
c721eee5
RS
2604 if (p1 != pend
2605 && (*p1 == '*' || *p1 == '+' || *p1 == '?'
f9b0fd99
RS
2606 || (*p1 == '\\' && p1 + 1 != pend && p1[1] == '{')))
2607 goto normal_char;
2608
2609 /* Replace the spaces with the whitespace regexp. */
2610 in_subpattern = 1;
2611 main_p = p1;
2612 main_pend = pend;
2613 main_pattern = pattern;
2614 p = pattern = whitespace_regexp;
5b0534c8 2615 pend = p + strlen ((const char *) p);
f9b0fd99 2616 break;
7814e705 2617 }
f9b0fd99 2618
25fe55af
RS
2619 case '^':
2620 {
7814e705 2621 if ( /* If at start of pattern, it's an operator. */
25fe55af 2622 p == pattern + 1
7814e705 2623 /* If context independent, it's an operator. */
25fe55af 2624 || syntax & RE_CONTEXT_INDEP_ANCHORS
7814e705 2625 /* Otherwise, depends on what's come before. */
25fe55af 2626 || at_begline_loc_p (pattern, p, syntax))
c0f9ea08 2627 BUF_PUSH ((syntax & RE_NO_NEWLINE_ANCHOR) ? begbuf : begline);
25fe55af
RS
2628 else
2629 goto normal_char;
2630 }
2631 break;
2632
2633
2634 case '$':
2635 {
2636 if ( /* If at end of pattern, it's an operator. */
2637 p == pend
7814e705 2638 /* If context independent, it's an operator. */
25fe55af
RS
2639 || syntax & RE_CONTEXT_INDEP_ANCHORS
2640 /* Otherwise, depends on what's next. */
2641 || at_endline_loc_p (p, pend, syntax))
c0f9ea08 2642 BUF_PUSH ((syntax & RE_NO_NEWLINE_ANCHOR) ? endbuf : endline);
25fe55af
RS
2643 else
2644 goto normal_char;
2645 }
2646 break;
fa9a63c5
RM
2647
2648
2649 case '+':
25fe55af
RS
2650 case '?':
2651 if ((syntax & RE_BK_PLUS_QM)
2652 || (syntax & RE_LIMITED_OPS))
2653 goto normal_char;
2654 handle_plus:
2655 case '*':
2656 /* If there is no previous pattern... */
2657 if (!laststart)
2658 {
2659 if (syntax & RE_CONTEXT_INVALID_OPS)
2660 FREE_STACK_RETURN (REG_BADRPT);
2661 else if (!(syntax & RE_CONTEXT_INDEP_OPS))
2662 goto normal_char;
2663 }
2664
2665 {
7814e705 2666 /* 1 means zero (many) matches is allowed. */
66f0296e
SM
2667 boolean zero_times_ok = 0, many_times_ok = 0;
2668 boolean greedy = 1;
25fe55af
RS
2669
2670 /* If there is a sequence of repetition chars, collapse it
2671 down to just one (the right one). We can't combine
2672 interval operators with these because of, e.g., `a{2}*',
7814e705 2673 which should only match an even number of `a's. */
25fe55af
RS
2674
2675 for (;;)
2676 {
0b32bf0e 2677 if ((syntax & RE_FRUGAL)
1c8c6d39
DL
2678 && c == '?' && (zero_times_ok || many_times_ok))
2679 greedy = 0;
2680 else
2681 {
2682 zero_times_ok |= c != '+';
2683 many_times_ok |= c != '?';
2684 }
25fe55af
RS
2685
2686 if (p == pend)
2687 break;
ed0767d8
SM
2688 else if (*p == '*'
2689 || (!(syntax & RE_BK_PLUS_QM)
2690 && (*p == '+' || *p == '?')))
25fe55af 2691 ;
ed0767d8 2692 else if (syntax & RE_BK_PLUS_QM && *p == '\\')
25fe55af 2693 {
ed0767d8
SM
2694 if (p+1 == pend)
2695 FREE_STACK_RETURN (REG_EESCAPE);
2696 if (p[1] == '+' || p[1] == '?')
2697 PATFETCH (c); /* Gobble up the backslash. */
2698 else
2699 break;
25fe55af
RS
2700 }
2701 else
ed0767d8 2702 break;
25fe55af 2703 /* If we get here, we found another repeat character. */
ed0767d8
SM
2704 PATFETCH (c);
2705 }
25fe55af
RS
2706
2707 /* Star, etc. applied to an empty pattern is equivalent
2708 to an empty pattern. */
4e8a9132 2709 if (!laststart || laststart == b)
25fe55af
RS
2710 break;
2711
2712 /* Now we know whether or not zero matches is allowed
7814e705 2713 and also whether or not two or more matches is allowed. */
1c8c6d39
DL
2714 if (greedy)
2715 {
99633e97 2716 if (many_times_ok)
4e8a9132
SM
2717 {
2718 boolean simple = skip_one_char (laststart) == b;
d1dfb56c 2719 size_t startoffset = 0;
f6a3f532 2720 re_opcode_t ofj =
01618498 2721 /* Check if the loop can match the empty string. */
6df42991
SM
2722 (simple || !analyse_first (laststart, b, NULL, 0))
2723 ? on_failure_jump : on_failure_jump_loop;
4e8a9132 2724 assert (skip_one_char (laststart) <= b);
177c0ea7 2725
4e8a9132
SM
2726 if (!zero_times_ok && simple)
2727 { /* Since simple * loops can be made faster by using
2728 on_failure_keep_string_jump, we turn simple P+
2729 into PP* if P is simple. */
2730 unsigned char *p1, *p2;
2731 startoffset = b - laststart;
2732 GET_BUFFER_SPACE (startoffset);
2733 p1 = b; p2 = laststart;
2734 while (p2 < p1)
2735 *b++ = *p2++;
2736 zero_times_ok = 1;
99633e97 2737 }
4e8a9132
SM
2738
2739 GET_BUFFER_SPACE (6);
2740 if (!zero_times_ok)
2741 /* A + loop. */
f6a3f532 2742 STORE_JUMP (ofj, b, b + 6);
99633e97 2743 else
4e8a9132
SM
2744 /* Simple * loops can use on_failure_keep_string_jump
2745 depending on what follows. But since we don't know
2746 that yet, we leave the decision up to
2747 on_failure_jump_smart. */
f6a3f532 2748 INSERT_JUMP (simple ? on_failure_jump_smart : ofj,
4e8a9132 2749 laststart + startoffset, b + 6);
99633e97 2750 b += 3;
4e8a9132 2751 STORE_JUMP (jump, b, laststart + startoffset);
99633e97
SM
2752 b += 3;
2753 }
2754 else
2755 {
4e8a9132
SM
2756 /* A simple ? pattern. */
2757 assert (zero_times_ok);
2758 GET_BUFFER_SPACE (3);
2759 INSERT_JUMP (on_failure_jump, laststart, b + 3);
99633e97
SM
2760 b += 3;
2761 }
1c8c6d39
DL
2762 }
2763 else /* not greedy */
2764 { /* I wish the greedy and non-greedy cases could be merged. */
2765
0683b6fa 2766 GET_BUFFER_SPACE (7); /* We might use less. */
1c8c6d39
DL
2767 if (many_times_ok)
2768 {
f6a3f532
SM
2769 boolean emptyp = analyse_first (laststart, b, NULL, 0);
2770
6df42991
SM
2771 /* The non-greedy multiple match looks like
2772 a repeat..until: we only need a conditional jump
2773 at the end of the loop. */
f6a3f532
SM
2774 if (emptyp) BUF_PUSH (no_op);
2775 STORE_JUMP (emptyp ? on_failure_jump_nastyloop
2776 : on_failure_jump, b, laststart);
1c8c6d39
DL
2777 b += 3;
2778 if (zero_times_ok)
2779 {
2780 /* The repeat...until naturally matches one or more.
2781 To also match zero times, we need to first jump to
6df42991 2782 the end of the loop (its conditional jump). */
1c8c6d39
DL
2783 INSERT_JUMP (jump, laststart, b);
2784 b += 3;
2785 }
2786 }
2787 else
2788 {
2789 /* non-greedy a?? */
1c8c6d39
DL
2790 INSERT_JUMP (jump, laststart, b + 3);
2791 b += 3;
2792 INSERT_JUMP (on_failure_jump, laststart, laststart + 6);
2793 b += 3;
2794 }
2795 }
2796 }
4e8a9132 2797 pending_exact = 0;
fa9a63c5
RM
2798 break;
2799
2800
2801 case '.':
25fe55af
RS
2802 laststart = b;
2803 BUF_PUSH (anychar);
2804 break;
fa9a63c5
RM
2805
2806
25fe55af
RS
2807 case '[':
2808 {
19ed5445
PE
2809 re_char *p1;
2810
b18215fc 2811 CLEAR_RANGE_TABLE_WORK_USED (range_table_work);
fa9a63c5 2812
25fe55af 2813 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
fa9a63c5 2814
25fe55af
RS
2815 /* Ensure that we have enough space to push a charset: the
2816 opcode, the length count, and the bitset; 34 bytes in all. */
fa9a63c5
RM
2817 GET_BUFFER_SPACE (34);
2818
25fe55af 2819 laststart = b;
e318085a 2820
25fe55af 2821 /* We test `*p == '^' twice, instead of using an if
7814e705 2822 statement, so we only need one BUF_PUSH. */
25fe55af
RS
2823 BUF_PUSH (*p == '^' ? charset_not : charset);
2824 if (*p == '^')
2825 p++;
e318085a 2826
25fe55af
RS
2827 /* Remember the first position in the bracket expression. */
2828 p1 = p;
e318085a 2829
7814e705 2830 /* Push the number of bytes in the bitmap. */
25fe55af 2831 BUF_PUSH ((1 << BYTEWIDTH) / BYTEWIDTH);
e318085a 2832
25fe55af 2833 /* Clear the whole map. */
72af86bd 2834 memset (b, 0, (1 << BYTEWIDTH) / BYTEWIDTH);
e318085a 2835
25fe55af
RS
2836 /* charset_not matches newline according to a syntax bit. */
2837 if ((re_opcode_t) b[-2] == charset_not
2838 && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
2839 SET_LIST_BIT ('\n');
fa9a63c5 2840
7814e705 2841 /* Read in characters and ranges, setting map bits. */
25fe55af
RS
2842 for (;;)
2843 {
b18215fc 2844 boolean escaped_char = false;
2d1675e4 2845 const unsigned char *p2 = p;
abbd1bcf 2846 re_wchar_t ch;
e318085a 2847
25fe55af 2848 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
e318085a 2849
36595814
SM
2850 /* Don't translate yet. The range TRANSLATE(X..Y) cannot
2851 always be determined from TRANSLATE(X) and TRANSLATE(Y)
2852 So the translation is done later in a loop. Example:
2853 (let ((case-fold-search t)) (string-match "[A-_]" "A")) */
25fe55af 2854 PATFETCH (c);
e318085a 2855
25fe55af
RS
2856 /* \ might escape characters inside [...] and [^...]. */
2857 if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
2858 {
2859 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
e318085a
RS
2860
2861 PATFETCH (c);
b18215fc 2862 escaped_char = true;
25fe55af 2863 }
b18215fc
RS
2864 else
2865 {
7814e705 2866 /* Could be the end of the bracket expression. If it's
657fcfbd
RS
2867 not (i.e., when the bracket expression is `[]' so
2868 far), the ']' character bit gets set way below. */
2d1675e4 2869 if (c == ']' && p2 != p1)
657fcfbd 2870 break;
25fe55af 2871 }
b18215fc 2872
25fe55af
RS
2873 /* See if we're at the beginning of a possible character
2874 class. */
b18215fc 2875
2d1675e4
SM
2876 if (!escaped_char &&
2877 syntax & RE_CHAR_CLASSES && c == '[' && *p == ':')
657fcfbd 2878 {
7814e705 2879 /* Leave room for the null. */
14473664 2880 unsigned char str[CHAR_CLASS_MAX_LENGTH + 1];
ed0767d8 2881 const unsigned char *class_beg;
b18215fc 2882
25fe55af
RS
2883 PATFETCH (c);
2884 c1 = 0;
ed0767d8 2885 class_beg = p;
b18215fc 2886
25fe55af
RS
2887 /* If pattern is `[[:'. */
2888 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
b18215fc 2889
25fe55af
RS
2890 for (;;)
2891 {
14473664
SM
2892 PATFETCH (c);
2893 if ((c == ':' && *p == ']') || p == pend)
2894 break;
2895 if (c1 < CHAR_CLASS_MAX_LENGTH)
2896 str[c1++] = c;
2897 else
2898 /* This is in any case an invalid class name. */
2899 str[0] = '\0';
25fe55af
RS
2900 }
2901 str[c1] = '\0';
b18215fc
RS
2902
2903 /* If isn't a word bracketed by `[:' and `:]':
2904 undo the ending character, the letters, and
2905 leave the leading `:' and `[' (but set bits for
2906 them). */
25fe55af
RS
2907 if (c == ':' && *p == ']')
2908 {
abbd1bcf 2909 re_wctype_t cc = re_wctype (str);
14473664
SM
2910
2911 if (cc == 0)
fa9a63c5
RM
2912 FREE_STACK_RETURN (REG_ECTYPE);
2913
14473664
SM
2914 /* Throw away the ] at the end of the character
2915 class. */
2916 PATFETCH (c);
fa9a63c5 2917
14473664 2918 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
fa9a63c5 2919
cf9c99bc
KH
2920#ifndef emacs
2921 for (ch = 0; ch < (1 << BYTEWIDTH); ++ch)
8f924df7
KH
2922 if (re_iswctype (btowc (ch), cc))
2923 {
2924 c = TRANSLATE (ch);
ed00c2ac
KH
2925 if (c < (1 << BYTEWIDTH))
2926 SET_LIST_BIT (c);
8f924df7 2927 }
cf9c99bc
KH
2928#else /* emacs */
2929 /* Most character classes in a multibyte match
2930 just set a flag. Exceptions are is_blank,
2931 is_digit, is_cntrl, and is_xdigit, since
2932 they can only match ASCII characters. We
2933 don't need to handle them for multibyte.
2934 They are distinguished by a negative wctype. */
96cc36cc 2935
254c06a8
SM
2936 /* Setup the gl_state object to its buffer-defined
2937 value. This hardcodes the buffer-global
2938 syntax-table for ASCII chars, while the other chars
2939 will obey syntax-table properties. It's not ideal,
2940 but it's the way it's been done until now. */
d48cd3f4 2941 SETUP_BUFFER_SYNTAX_TABLE ();
254c06a8 2942
cf9c99bc 2943 for (ch = 0; ch < 256; ++ch)
25fe55af 2944 {
cf9c99bc
KH
2945 c = RE_CHAR_TO_MULTIBYTE (ch);
2946 if (! CHAR_BYTE8_P (c)
2947 && re_iswctype (c, cc))
8f924df7 2948 {
cf9c99bc
KH
2949 SET_LIST_BIT (ch);
2950 c1 = TRANSLATE (c);
2951 if (c1 == c)
2952 continue;
2953 if (ASCII_CHAR_P (c1))
2954 SET_LIST_BIT (c1);
2955 else if ((c1 = RE_CHAR_TO_UNIBYTE (c1)) >= 0)
2956 SET_LIST_BIT (c1);
8f924df7 2957 }
25fe55af 2958 }
cf9c99bc
KH
2959 SET_RANGE_TABLE_WORK_AREA_BIT
2960 (range_table_work, re_wctype_to_bit (cc));
2961#endif /* emacs */
6224b623
SM
2962 /* In most cases the matching rule for char classes
2963 only uses the syntax table for multibyte chars,
2964 so that the content of the syntax-table it is not
2965 hardcoded in the range_table. SPACE and WORD are
2966 the two exceptions. */
2967 if ((1 << cc) & ((1 << RECC_SPACE) | (1 << RECC_WORD)))
2968 bufp->used_syntax = 1;
2969
b18215fc
RS
2970 /* Repeat the loop. */
2971 continue;
25fe55af
RS
2972 }
2973 else
2974 {
ed0767d8
SM
2975 /* Go back to right after the "[:". */
2976 p = class_beg;
25fe55af 2977 SET_LIST_BIT ('[');
b18215fc
RS
2978
2979 /* Because the `:' may starts the range, we
2980 can't simply set bit and repeat the loop.
7814e705 2981 Instead, just set it to C and handle below. */
b18215fc 2982 c = ':';
25fe55af
RS
2983 }
2984 }
b18215fc
RS
2985
2986 if (p < pend && p[0] == '-' && p[1] != ']')
2987 {
2988
2989 /* Discard the `-'. */
2990 PATFETCH (c1);
2991
2992 /* Fetch the character which ends the range. */
2993 PATFETCH (c1);
cf9c99bc
KH
2994#ifdef emacs
2995 if (CHAR_BYTE8_P (c1)
2996 && ! ASCII_CHAR_P (c) && ! CHAR_BYTE8_P (c))
2997 /* Treat the range from a multibyte character to
2998 raw-byte character as empty. */
2999 c = c1 + 1;
3000#endif /* emacs */
e318085a 3001 }
25fe55af 3002 else
b18215fc
RS
3003 /* Range from C to C. */
3004 c1 = c;
3005
cf9c99bc 3006 if (c > c1)
25fe55af 3007 {
cf9c99bc
KH
3008 if (syntax & RE_NO_EMPTY_RANGES)
3009 FREE_STACK_RETURN (REG_ERANGEX);
3010 /* Else, repeat the loop. */
bf216479 3011 }
6fdd04b0 3012 else
25fe55af 3013 {
cf9c99bc
KH
3014#ifndef emacs
3015 /* Set the range into bitmap */
8f924df7 3016 for (; c <= c1; c++)
b18215fc 3017 {
cf9c99bc
KH
3018 ch = TRANSLATE (c);
3019 if (ch < (1 << BYTEWIDTH))
3020 SET_LIST_BIT (ch);
3021 }
3022#else /* emacs */
3023 if (c < 128)
3024 {
3025 ch = MIN (127, c1);
3026 SETUP_ASCII_RANGE (range_table_work, c, ch);
3027 c = ch + 1;
3028 if (CHAR_BYTE8_P (c1))
3029 c = BYTE8_TO_CHAR (128);
3030 }
3031 if (c <= c1)
3032 {
3033 if (CHAR_BYTE8_P (c))
3034 {
3035 c = CHAR_TO_BYTE8 (c);
3036 c1 = CHAR_TO_BYTE8 (c1);
3037 for (; c <= c1; c++)
3038 SET_LIST_BIT (c);
3039 }
3040 else if (multibyte)
3041 {
3042 SETUP_MULTIBYTE_RANGE (range_table_work, c, c1);
3043 }
3044 else
3045 {
3046 SETUP_UNIBYTE_RANGE (range_table_work, c, c1);
3047 }
e934739e 3048 }
cf9c99bc 3049#endif /* emacs */
25fe55af 3050 }
e318085a
RS
3051 }
3052
25fe55af 3053 /* Discard any (non)matching list bytes that are all 0 at the
7814e705 3054 end of the map. Decrease the map-length byte too. */
25fe55af
RS
3055 while ((int) b[-1] > 0 && b[b[-1] - 1] == 0)
3056 b[-1]--;
3057 b += b[-1];
fa9a63c5 3058
96cc36cc
RS
3059 /* Build real range table from work area. */
3060 if (RANGE_TABLE_WORK_USED (range_table_work)
3061 || RANGE_TABLE_WORK_BITS (range_table_work))
b18215fc
RS
3062 {
3063 int i;
3064 int used = RANGE_TABLE_WORK_USED (range_table_work);
fa9a63c5 3065
b18215fc 3066 /* Allocate space for COUNT + RANGE_TABLE. Needs two
96cc36cc
RS
3067 bytes for flags, two for COUNT, and three bytes for
3068 each character. */
3069 GET_BUFFER_SPACE (4 + used * 3);
fa9a63c5 3070
b18215fc
RS
3071 /* Indicate the existence of range table. */
3072 laststart[1] |= 0x80;
fa9a63c5 3073
96cc36cc
RS
3074 /* Store the character class flag bits into the range table.
3075 If not in emacs, these flag bits are always 0. */
3076 *b++ = RANGE_TABLE_WORK_BITS (range_table_work) & 0xff;
3077 *b++ = RANGE_TABLE_WORK_BITS (range_table_work) >> 8;
3078
b18215fc
RS
3079 STORE_NUMBER_AND_INCR (b, used / 2);
3080 for (i = 0; i < used; i++)
3081 STORE_CHARACTER_AND_INCR
3082 (b, RANGE_TABLE_WORK_ELT (range_table_work, i));
3083 }
25fe55af
RS
3084 }
3085 break;
fa9a63c5
RM
3086
3087
b18215fc 3088 case '(':
25fe55af
RS
3089 if (syntax & RE_NO_BK_PARENS)
3090 goto handle_open;
3091 else
3092 goto normal_char;
fa9a63c5
RM
3093
3094
25fe55af
RS
3095 case ')':
3096 if (syntax & RE_NO_BK_PARENS)
3097 goto handle_close;
3098 else
3099 goto normal_char;
e318085a
RS
3100
3101
25fe55af
RS
3102 case '\n':
3103 if (syntax & RE_NEWLINE_ALT)
3104 goto handle_alt;
3105 else
3106 goto normal_char;
e318085a
RS
3107
3108
b18215fc 3109 case '|':
25fe55af
RS
3110 if (syntax & RE_NO_BK_VBAR)
3111 goto handle_alt;
3112 else
3113 goto normal_char;
3114
3115
3116 case '{':
3117 if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES)
3118 goto handle_interval;
3119 else
3120 goto normal_char;
3121
3122
3123 case '\\':
3124 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
3125
3126 /* Do not translate the character after the \, so that we can
3127 distinguish, e.g., \B from \b, even if we normally would
3128 translate, e.g., B to b. */
36595814 3129 PATFETCH (c);
25fe55af
RS
3130
3131 switch (c)
3132 {
3133 case '(':
3134 if (syntax & RE_NO_BK_PARENS)
3135 goto normal_backslash;
3136
3137 handle_open:
505bde11
SM
3138 {
3139 int shy = 0;
c69b0314 3140 regnum_t regnum = 0;
505bde11
SM
3141 if (p+1 < pend)
3142 {
3143 /* Look for a special (?...) construct */
ed0767d8 3144 if ((syntax & RE_SHY_GROUPS) && *p == '?')
505bde11 3145 {
ed0767d8 3146 PATFETCH (c); /* Gobble up the '?'. */
c69b0314 3147 while (!shy)
505bde11 3148 {
c69b0314
SM
3149 PATFETCH (c);
3150 switch (c)
3151 {
3152 case ':': shy = 1; break;
3153 case '0':
3154 /* An explicitly specified regnum must start
3155 with non-0. */
3156 if (regnum == 0)
3157 FREE_STACK_RETURN (REG_BADPAT);
3158 case '1': case '2': case '3': case '4':
3159 case '5': case '6': case '7': case '8': case '9':
3160 regnum = 10*regnum + (c - '0'); break;
3161 default:
3162 /* Only (?:...) is supported right now. */
3163 FREE_STACK_RETURN (REG_BADPAT);
3164 }
505bde11
SM
3165 }
3166 }
505bde11
SM
3167 }
3168
3169 if (!shy)
c69b0314
SM
3170 regnum = ++bufp->re_nsub;
3171 else if (regnum)
3172 { /* It's actually not shy, but explicitly numbered. */
3173 shy = 0;
3174 if (regnum > bufp->re_nsub)
3175 bufp->re_nsub = regnum;
3176 else if (regnum > bufp->re_nsub
3177 /* Ideally, we'd want to check that the specified
3178 group can't have matched (i.e. all subgroups
3179 using the same regnum are in other branches of
3180 OR patterns), but we don't currently keep track
3181 of enough info to do that easily. */
3182 || group_in_compile_stack (compile_stack, regnum))
3183 FREE_STACK_RETURN (REG_BADPAT);
505bde11 3184 }
c69b0314
SM
3185 else
3186 /* It's really shy. */
3187 regnum = - bufp->re_nsub;
25fe55af 3188
99633e97
SM
3189 if (COMPILE_STACK_FULL)
3190 {
3191 RETALLOC (compile_stack.stack, compile_stack.size << 1,
3192 compile_stack_elt_t);
3193 if (compile_stack.stack == NULL) return REG_ESPACE;
25fe55af 3194
99633e97
SM
3195 compile_stack.size <<= 1;
3196 }
25fe55af 3197
99633e97 3198 /* These are the values to restore when we hit end of this
7814e705 3199 group. They are all relative offsets, so that if the
99633e97
SM
3200 whole pattern moves because of realloc, they will still
3201 be valid. */
3202 COMPILE_STACK_TOP.begalt_offset = begalt - bufp->buffer;
3203 COMPILE_STACK_TOP.fixup_alt_jump
3204 = fixup_alt_jump ? fixup_alt_jump - bufp->buffer + 1 : 0;
3205 COMPILE_STACK_TOP.laststart_offset = b - bufp->buffer;
c69b0314 3206 COMPILE_STACK_TOP.regnum = regnum;
99633e97 3207
c69b0314
SM
3208 /* Do not push a start_memory for groups beyond the last one
3209 we can represent in the compiled pattern. */
3210 if (regnum <= MAX_REGNUM && regnum > 0)
99633e97
SM
3211 BUF_PUSH_2 (start_memory, regnum);
3212
3213 compile_stack.avail++;
3214
3215 fixup_alt_jump = 0;
3216 laststart = 0;
3217 begalt = b;
3218 /* If we've reached MAX_REGNUM groups, then this open
3219 won't actually generate any code, so we'll have to
3220 clear pending_exact explicitly. */
3221 pending_exact = 0;
3222 break;
505bde11 3223 }
25fe55af
RS
3224
3225 case ')':
3226 if (syntax & RE_NO_BK_PARENS) goto normal_backslash;
3227
3228 if (COMPILE_STACK_EMPTY)
505bde11
SM
3229 {
3230 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
3231 goto normal_backslash;
3232 else
3233 FREE_STACK_RETURN (REG_ERPAREN);
3234 }
25fe55af
RS
3235
3236 handle_close:
505bde11 3237 FIXUP_ALT_JUMP ();
25fe55af
RS
3238
3239 /* See similar code for backslashed left paren above. */
3240 if (COMPILE_STACK_EMPTY)
505bde11
SM
3241 {
3242 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
3243 goto normal_char;
3244 else
3245 FREE_STACK_RETURN (REG_ERPAREN);
3246 }
25fe55af
RS
3247
3248 /* Since we just checked for an empty stack above, this
3249 ``can't happen''. */
3250 assert (compile_stack.avail != 0);
3251 {
3252 /* We don't just want to restore into `regnum', because
3253 later groups should continue to be numbered higher,
7814e705 3254 as in `(ab)c(de)' -- the second group is #2. */
c69b0314 3255 regnum_t regnum;
25fe55af
RS
3256
3257 compile_stack.avail--;
3258 begalt = bufp->buffer + COMPILE_STACK_TOP.begalt_offset;
3259 fixup_alt_jump
3260 = COMPILE_STACK_TOP.fixup_alt_jump
3261 ? bufp->buffer + COMPILE_STACK_TOP.fixup_alt_jump - 1
3262 : 0;
3263 laststart = bufp->buffer + COMPILE_STACK_TOP.laststart_offset;
c69b0314 3264 regnum = COMPILE_STACK_TOP.regnum;
b18215fc
RS
3265 /* If we've reached MAX_REGNUM groups, then this open
3266 won't actually generate any code, so we'll have to
3267 clear pending_exact explicitly. */
3268 pending_exact = 0;
e318085a 3269
25fe55af 3270 /* We're at the end of the group, so now we know how many
7814e705 3271 groups were inside this one. */
c69b0314
SM
3272 if (regnum <= MAX_REGNUM && regnum > 0)
3273 BUF_PUSH_2 (stop_memory, regnum);
25fe55af
RS
3274 }
3275 break;
3276
3277
3278 case '|': /* `\|'. */
3279 if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR)
3280 goto normal_backslash;
3281 handle_alt:
3282 if (syntax & RE_LIMITED_OPS)
3283 goto normal_char;
3284
3285 /* Insert before the previous alternative a jump which
7814e705 3286 jumps to this alternative if the former fails. */
25fe55af
RS
3287 GET_BUFFER_SPACE (3);
3288 INSERT_JUMP (on_failure_jump, begalt, b + 6);
3289 pending_exact = 0;
3290 b += 3;
3291
3292 /* The alternative before this one has a jump after it
3293 which gets executed if it gets matched. Adjust that
3294 jump so it will jump to this alternative's analogous
3295 jump (put in below, which in turn will jump to the next
3296 (if any) alternative's such jump, etc.). The last such
3297 jump jumps to the correct final destination. A picture:
3298 _____ _____
3299 | | | |
3300 | v | v
d1dfb56c 3301 a | b | c
25fe55af
RS
3302
3303 If we are at `b', then fixup_alt_jump right now points to a
3304 three-byte space after `a'. We'll put in the jump, set
3305 fixup_alt_jump to right after `b', and leave behind three
3306 bytes which we'll fill in when we get to after `c'. */
3307
505bde11 3308 FIXUP_ALT_JUMP ();
25fe55af
RS
3309
3310 /* Mark and leave space for a jump after this alternative,
3311 to be filled in later either by next alternative or
3312 when know we're at the end of a series of alternatives. */
3313 fixup_alt_jump = b;
3314 GET_BUFFER_SPACE (3);
3315 b += 3;
3316
3317 laststart = 0;
3318 begalt = b;
3319 break;
3320
3321
3322 case '{':
3323 /* If \{ is a literal. */
3324 if (!(syntax & RE_INTERVALS)
3325 /* If we're at `\{' and it's not the open-interval
3326 operator. */
4bb91c68 3327 || (syntax & RE_NO_BK_BRACES))
25fe55af
RS
3328 goto normal_backslash;
3329
3330 handle_interval:
3331 {
3332 /* If got here, then the syntax allows intervals. */
3333
3334 /* At least (most) this many matches must be made. */
99633e97 3335 int lower_bound = 0, upper_bound = -1;
25fe55af 3336
ed0767d8 3337 beg_interval = p;
25fe55af 3338
25fe55af
RS
3339 GET_UNSIGNED_NUMBER (lower_bound);
3340
3341 if (c == ',')
ed0767d8 3342 GET_UNSIGNED_NUMBER (upper_bound);
25fe55af
RS
3343 else
3344 /* Interval such as `{1}' => match exactly once. */
3345 upper_bound = lower_bound;
3346
3347 if (lower_bound < 0 || upper_bound > RE_DUP_MAX
ed0767d8 3348 || (upper_bound >= 0 && lower_bound > upper_bound))
4bb91c68 3349 FREE_STACK_RETURN (REG_BADBR);
25fe55af
RS
3350
3351 if (!(syntax & RE_NO_BK_BRACES))
3352 {
4bb91c68
SM
3353 if (c != '\\')
3354 FREE_STACK_RETURN (REG_BADBR);
c72b0edd
SM
3355 if (p == pend)
3356 FREE_STACK_RETURN (REG_EESCAPE);
25fe55af
RS
3357 PATFETCH (c);
3358 }
3359
3360 if (c != '}')
4bb91c68 3361 FREE_STACK_RETURN (REG_BADBR);
25fe55af
RS
3362
3363 /* We just parsed a valid interval. */
3364
3365 /* If it's invalid to have no preceding re. */
3366 if (!laststart)
3367 {
3368 if (syntax & RE_CONTEXT_INVALID_OPS)
3369 FREE_STACK_RETURN (REG_BADRPT);
3370 else if (syntax & RE_CONTEXT_INDEP_OPS)
3371 laststart = b;
3372 else
3373 goto unfetch_interval;
3374 }
3375
6df42991
SM
3376 if (upper_bound == 0)
3377 /* If the upper bound is zero, just drop the sub pattern
3378 altogether. */
3379 b = laststart;
3380 else if (lower_bound == 1 && upper_bound == 1)
3381 /* Just match it once: nothing to do here. */
3382 ;
3383
3384 /* Otherwise, we have a nontrivial interval. When
3385 we're all done, the pattern will look like:
3386 set_number_at <jump count> <upper bound>
3387 set_number_at <succeed_n count> <lower bound>
3388 succeed_n <after jump addr> <succeed_n count>
3389 <body of loop>
3390 jump_n <succeed_n addr> <jump count>
3391 (The upper bound and `jump_n' are omitted if
3392 `upper_bound' is 1, though.) */
3393 else
3394 { /* If the upper bound is > 1, we need to insert
3395 more at the end of the loop. */
3396 unsigned int nbytes = (upper_bound < 0 ? 3
3397 : upper_bound > 1 ? 5 : 0);
3398 unsigned int startoffset = 0;
3399
3400 GET_BUFFER_SPACE (20); /* We might use less. */
3401
3402 if (lower_bound == 0)
3403 {
3404 /* A succeed_n that starts with 0 is really a
3405 a simple on_failure_jump_loop. */
3406 INSERT_JUMP (on_failure_jump_loop, laststart,
3407 b + 3 + nbytes);
3408 b += 3;
3409 }
3410 else
3411 {
3412 /* Initialize lower bound of the `succeed_n', even
3413 though it will be set during matching by its
3414 attendant `set_number_at' (inserted next),
3415 because `re_compile_fastmap' needs to know.
3416 Jump to the `jump_n' we might insert below. */
3417 INSERT_JUMP2 (succeed_n, laststart,
3418 b + 5 + nbytes,
3419 lower_bound);
3420 b += 5;
3421
3422 /* Code to initialize the lower bound. Insert
7814e705 3423 before the `succeed_n'. The `5' is the last two
6df42991
SM
3424 bytes of this `set_number_at', plus 3 bytes of
3425 the following `succeed_n'. */
3426 insert_op2 (set_number_at, laststart, 5, lower_bound, b);
3427 b += 5;
3428 startoffset += 5;
3429 }
3430
3431 if (upper_bound < 0)
3432 {
3433 /* A negative upper bound stands for infinity,
3434 in which case it degenerates to a plain jump. */
3435 STORE_JUMP (jump, b, laststart + startoffset);
3436 b += 3;
3437 }
3438 else if (upper_bound > 1)
3439 { /* More than one repetition is allowed, so
3440 append a backward jump to the `succeed_n'
3441 that starts this interval.
3442
3443 When we've reached this during matching,
3444 we'll have matched the interval once, so
3445 jump back only `upper_bound - 1' times. */
3446 STORE_JUMP2 (jump_n, b, laststart + startoffset,
3447 upper_bound - 1);
3448 b += 5;
3449
3450 /* The location we want to set is the second
3451 parameter of the `jump_n'; that is `b-2' as
3452 an absolute address. `laststart' will be
3453 the `set_number_at' we're about to insert;
3454 `laststart+3' the number to set, the source
3455 for the relative address. But we are
3456 inserting into the middle of the pattern --
3457 so everything is getting moved up by 5.
3458 Conclusion: (b - 2) - (laststart + 3) + 5,
3459 i.e., b - laststart.
3460
3461 We insert this at the beginning of the loop
3462 so that if we fail during matching, we'll
3463 reinitialize the bounds. */
3464 insert_op2 (set_number_at, laststart, b - laststart,
3465 upper_bound - 1, b);
3466 b += 5;
3467 }
3468 }
25fe55af
RS
3469 pending_exact = 0;
3470 beg_interval = NULL;
3471 }
3472 break;
3473
3474 unfetch_interval:
3475 /* If an invalid interval, match the characters as literals. */
3476 assert (beg_interval);
3477 p = beg_interval;
3478 beg_interval = NULL;
3479
3480 /* normal_char and normal_backslash need `c'. */
ed0767d8 3481 c = '{';
25fe55af
RS
3482
3483 if (!(syntax & RE_NO_BK_BRACES))
3484 {
ed0767d8
SM
3485 assert (p > pattern && p[-1] == '\\');
3486 goto normal_backslash;
25fe55af 3487 }
ed0767d8
SM
3488 else
3489 goto normal_char;
e318085a 3490
b18215fc 3491#ifdef emacs
25fe55af 3492 /* There is no way to specify the before_dot and after_dot
7814e705 3493 operators. rms says this is ok. --karl */
25fe55af
RS
3494 case '=':
3495 BUF_PUSH (at_dot);
3496 break;
3497
3498 case 's':
3499 laststart = b;
3500 PATFETCH (c);
3501 BUF_PUSH_2 (syntaxspec, syntax_spec_code[c]);
3502 break;
3503
3504 case 'S':
3505 laststart = b;
3506 PATFETCH (c);
3507 BUF_PUSH_2 (notsyntaxspec, syntax_spec_code[c]);
3508 break;
b18215fc
RS
3509
3510 case 'c':
3511 laststart = b;
36595814 3512 PATFETCH (c);
b18215fc
RS
3513 BUF_PUSH_2 (categoryspec, c);
3514 break;
e318085a 3515
b18215fc
RS
3516 case 'C':
3517 laststart = b;
36595814 3518 PATFETCH (c);
b18215fc
RS
3519 BUF_PUSH_2 (notcategoryspec, c);
3520 break;
3521#endif /* emacs */
e318085a 3522
e318085a 3523
25fe55af 3524 case 'w':
4bb91c68
SM
3525 if (syntax & RE_NO_GNU_OPS)
3526 goto normal_char;
25fe55af 3527 laststart = b;
1fb352e0 3528 BUF_PUSH_2 (syntaxspec, Sword);
25fe55af 3529 break;
e318085a 3530
e318085a 3531
25fe55af 3532 case 'W':
4bb91c68
SM
3533 if (syntax & RE_NO_GNU_OPS)
3534 goto normal_char;
25fe55af 3535 laststart = b;
1fb352e0 3536 BUF_PUSH_2 (notsyntaxspec, Sword);
25fe55af 3537 break;
e318085a
RS
3538
3539
25fe55af 3540 case '<':
4bb91c68
SM
3541 if (syntax & RE_NO_GNU_OPS)
3542 goto normal_char;
25fe55af
RS
3543 BUF_PUSH (wordbeg);
3544 break;
e318085a 3545
25fe55af 3546 case '>':
4bb91c68
SM
3547 if (syntax & RE_NO_GNU_OPS)
3548 goto normal_char;
25fe55af
RS
3549 BUF_PUSH (wordend);
3550 break;
e318085a 3551
669fa600
SM
3552 case '_':
3553 if (syntax & RE_NO_GNU_OPS)
3554 goto normal_char;
3555 laststart = b;
3556 PATFETCH (c);
3557 if (c == '<')
3558 BUF_PUSH (symbeg);
3559 else if (c == '>')
3560 BUF_PUSH (symend);
3561 else
3562 FREE_STACK_RETURN (REG_BADPAT);
3563 break;
3564
25fe55af 3565 case 'b':
4bb91c68
SM
3566 if (syntax & RE_NO_GNU_OPS)
3567 goto normal_char;
25fe55af
RS
3568 BUF_PUSH (wordbound);
3569 break;
e318085a 3570
25fe55af 3571 case 'B':
4bb91c68
SM
3572 if (syntax & RE_NO_GNU_OPS)
3573 goto normal_char;
25fe55af
RS
3574 BUF_PUSH (notwordbound);
3575 break;
fa9a63c5 3576
25fe55af 3577 case '`':
4bb91c68
SM
3578 if (syntax & RE_NO_GNU_OPS)
3579 goto normal_char;
25fe55af
RS
3580 BUF_PUSH (begbuf);
3581 break;
e318085a 3582
25fe55af 3583 case '\'':
4bb91c68
SM
3584 if (syntax & RE_NO_GNU_OPS)
3585 goto normal_char;
25fe55af
RS
3586 BUF_PUSH (endbuf);
3587 break;
e318085a 3588
25fe55af
RS
3589 case '1': case '2': case '3': case '4': case '5':
3590 case '6': case '7': case '8': case '9':
0cdd06f8
SM
3591 {
3592 regnum_t reg;
e318085a 3593
0cdd06f8
SM
3594 if (syntax & RE_NO_BK_REFS)
3595 goto normal_backslash;
e318085a 3596
0cdd06f8 3597 reg = c - '0';
e318085a 3598
c69b0314
SM
3599 if (reg > bufp->re_nsub || reg < 1
3600 /* Can't back reference to a subexp before its end. */
3601 || group_in_compile_stack (compile_stack, reg))
0cdd06f8 3602 FREE_STACK_RETURN (REG_ESUBREG);
e318085a 3603
0cdd06f8
SM
3604 laststart = b;
3605 BUF_PUSH_2 (duplicate, reg);
3606 }
25fe55af 3607 break;
e318085a 3608
e318085a 3609
25fe55af
RS
3610 case '+':
3611 case '?':
3612 if (syntax & RE_BK_PLUS_QM)
3613 goto handle_plus;
3614 else
3615 goto normal_backslash;
3616
3617 default:
3618 normal_backslash:
3619 /* You might think it would be useful for \ to mean
3620 not to translate; but if we don't translate it
4bb91c68 3621 it will never match anything. */
25fe55af
RS
3622 goto normal_char;
3623 }
3624 break;
fa9a63c5
RM
3625
3626
3627 default:
25fe55af 3628 /* Expects the character in `c'. */
fa9a63c5 3629 normal_char:
36595814 3630 /* If no exactn currently being built. */
25fe55af 3631 if (!pending_exact
fa9a63c5 3632
25fe55af
RS
3633 /* If last exactn not at current position. */
3634 || pending_exact + *pending_exact + 1 != b
5e69f11e 3635
25fe55af 3636 /* We have only one byte following the exactn for the count. */
2d1675e4 3637 || *pending_exact >= (1 << BYTEWIDTH) - MAX_MULTIBYTE_LENGTH
fa9a63c5 3638
7814e705 3639 /* If followed by a repetition operator. */
9d99031f 3640 || (p != pend && (*p == '*' || *p == '^'))
fa9a63c5 3641 || ((syntax & RE_BK_PLUS_QM)
9d99031f
RS
3642 ? p + 1 < pend && *p == '\\' && (p[1] == '+' || p[1] == '?')
3643 : p != pend && (*p == '+' || *p == '?'))
fa9a63c5 3644 || ((syntax & RE_INTERVALS)
25fe55af 3645 && ((syntax & RE_NO_BK_BRACES)
9d99031f
RS
3646 ? p != pend && *p == '{'
3647 : p + 1 < pend && p[0] == '\\' && p[1] == '{')))
fa9a63c5
RM
3648 {
3649 /* Start building a new exactn. */
5e69f11e 3650
25fe55af 3651 laststart = b;
fa9a63c5
RM
3652
3653 BUF_PUSH_2 (exactn, 0);
3654 pending_exact = b - 1;
25fe55af 3655 }
5e69f11e 3656
2d1675e4
SM
3657 GET_BUFFER_SPACE (MAX_MULTIBYTE_LENGTH);
3658 {
e0277a47
KH
3659 int len;
3660
cf9c99bc 3661 if (multibyte)
6fdd04b0 3662 {
cf9c99bc 3663 c = TRANSLATE (c);
6fdd04b0
KH
3664 len = CHAR_STRING (c, b);
3665 b += len;
3666 }
e0277a47 3667 else
6fdd04b0 3668 {
cf9c99bc
KH
3669 c1 = RE_CHAR_TO_MULTIBYTE (c);
3670 if (! CHAR_BYTE8_P (c1))
3671 {
3672 re_wchar_t c2 = TRANSLATE (c1);
3673
3674 if (c1 != c2 && (c1 = RE_CHAR_TO_UNIBYTE (c2)) >= 0)
3675 c = c1;
409f2919 3676 }
6fdd04b0
KH
3677 *b++ = c;
3678 len = 1;
3679 }
2d1675e4
SM
3680 (*pending_exact) += len;
3681 }
3682
fa9a63c5 3683 break;
25fe55af 3684 } /* switch (c) */
fa9a63c5
RM
3685 } /* while p != pend */
3686
5e69f11e 3687
fa9a63c5 3688 /* Through the pattern now. */
5e69f11e 3689
505bde11 3690 FIXUP_ALT_JUMP ();
fa9a63c5 3691
5e69f11e 3692 if (!COMPILE_STACK_EMPTY)
fa9a63c5
RM
3693 FREE_STACK_RETURN (REG_EPAREN);
3694
3695 /* If we don't want backtracking, force success
3696 the first time we reach the end of the compiled pattern. */
3697 if (syntax & RE_NO_POSIX_BACKTRACKING)
3698 BUF_PUSH (succeed);
3699
fa9a63c5
RM
3700 /* We have succeeded; set the length of the buffer. */
3701 bufp->used = b - bufp->buffer;
3702
3703#ifdef DEBUG
99633e97 3704 if (debug > 0)
fa9a63c5 3705 {
505bde11 3706 re_compile_fastmap (bufp);
fa9a63c5
RM
3707 DEBUG_PRINT1 ("\nCompiled pattern: \n");
3708 print_compiled_pattern (bufp);
3709 }
99633e97 3710 debug--;
fa9a63c5
RM
3711#endif /* DEBUG */
3712
3713#ifndef MATCH_MAY_ALLOCATE
3714 /* Initialize the failure stack to the largest possible stack. This
3715 isn't necessary unless we're trying to avoid calling alloca in
3716 the search and match routines. */
3717 {
3718 int num_regs = bufp->re_nsub + 1;
3719
320a2a73 3720 if (fail_stack.size < re_max_failures * TYPICAL_FAILURE_SIZE)
fa9a63c5 3721 {
a26f4ccd 3722 fail_stack.size = re_max_failures * TYPICAL_FAILURE_SIZE;
38182d90
PE
3723 falk_stack.stack = realloc (fail_stack.stack,
3724 fail_stack.size * sizeof *falk_stack.stack);
fa9a63c5
RM
3725 }
3726
3727 regex_grow_registers (num_regs);
3728 }
3729#endif /* not MATCH_MAY_ALLOCATE */
3730
839966f3 3731 FREE_STACK_RETURN (REG_NOERROR);
fa9a63c5
RM
3732} /* regex_compile */
3733\f
3734/* Subroutines for `regex_compile'. */
3735
7814e705 3736/* Store OP at LOC followed by two-byte integer parameter ARG. */
fa9a63c5
RM
3737
3738static void
971de7fb 3739store_op1 (re_opcode_t op, unsigned char *loc, int arg)
fa9a63c5
RM
3740{
3741 *loc = (unsigned char) op;
3742 STORE_NUMBER (loc + 1, arg);
3743}
3744
3745
3746/* Like `store_op1', but for two two-byte parameters ARG1 and ARG2. */
3747
3748static void
971de7fb 3749store_op2 (re_opcode_t op, unsigned char *loc, int arg1, int arg2)
fa9a63c5
RM
3750{
3751 *loc = (unsigned char) op;
3752 STORE_NUMBER (loc + 1, arg1);
3753 STORE_NUMBER (loc + 3, arg2);
3754}
3755
3756
3757/* Copy the bytes from LOC to END to open up three bytes of space at LOC
3758 for OP followed by two-byte integer parameter ARG. */
3759
3760static void
971de7fb 3761insert_op1 (re_opcode_t op, unsigned char *loc, int arg, unsigned char *end)
fa9a63c5
RM
3762{
3763 register unsigned char *pfrom = end;
3764 register unsigned char *pto = end + 3;
3765
3766 while (pfrom != loc)
3767 *--pto = *--pfrom;
5e69f11e 3768
fa9a63c5
RM
3769 store_op1 (op, loc, arg);
3770}
3771
3772
3773/* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2. */
3774
3775static void
971de7fb 3776insert_op2 (re_opcode_t op, unsigned char *loc, int arg1, int arg2, unsigned char *end)
fa9a63c5
RM
3777{
3778 register unsigned char *pfrom = end;
3779 register unsigned char *pto = end + 5;
3780
3781 while (pfrom != loc)
3782 *--pto = *--pfrom;
5e69f11e 3783
fa9a63c5
RM
3784 store_op2 (op, loc, arg1, arg2);
3785}
3786
3787
3788/* P points to just after a ^ in PATTERN. Return true if that ^ comes
3789 after an alternative or a begin-subexpression. We assume there is at
3790 least one character before the ^. */
3791
3792static boolean
971de7fb 3793at_begline_loc_p (const re_char *pattern, const re_char *p, reg_syntax_t syntax)
fa9a63c5 3794{
01618498 3795 re_char *prev = p - 2;
95988fcf 3796 boolean odd_backslashes;
5e69f11e 3797
95988fcf
AS
3798 /* After a subexpression? */
3799 if (*prev == '(')
3800 odd_backslashes = (syntax & RE_NO_BK_PARENS) == 0;
3801
3802 /* After an alternative? */
3803 else if (*prev == '|')
3804 odd_backslashes = (syntax & RE_NO_BK_VBAR) == 0;
3805
3806 /* After a shy subexpression? */
3807 else if (*prev == ':' && (syntax & RE_SHY_GROUPS))
3808 {
3809 /* Skip over optional regnum. */
3810 while (prev - 1 >= pattern && prev[-1] >= '0' && prev[-1] <= '9')
3811 --prev;
3812
3813 if (!(prev - 2 >= pattern
3814 && prev[-1] == '?' && prev[-2] == '('))
3815 return false;
3816 prev -= 2;
3817 odd_backslashes = (syntax & RE_NO_BK_PARENS) == 0;
3818 }
3819 else
3820 return false;
3821
3822 /* Count the number of preceding backslashes. */
3823 p = prev;
3824 while (prev - 1 >= pattern && prev[-1] == '\\')
3825 --prev;
3826 return (p - prev) & odd_backslashes;
fa9a63c5
RM
3827}
3828
3829
3830/* The dual of at_begline_loc_p. This one is for $. We assume there is
3831 at least one character after the $, i.e., `P < PEND'. */
3832
3833static boolean
971de7fb 3834at_endline_loc_p (const re_char *p, const re_char *pend, reg_syntax_t syntax)
fa9a63c5 3835{
01618498 3836 re_char *next = p;
fa9a63c5 3837 boolean next_backslash = *next == '\\';
01618498 3838 re_char *next_next = p + 1 < pend ? p + 1 : 0;
5e69f11e 3839
fa9a63c5
RM
3840 return
3841 /* Before a subexpression? */
3842 (syntax & RE_NO_BK_PARENS ? *next == ')'
25fe55af 3843 : next_backslash && next_next && *next_next == ')')
fa9a63c5
RM
3844 /* Before an alternative? */
3845 || (syntax & RE_NO_BK_VBAR ? *next == '|'
25fe55af 3846 : next_backslash && next_next && *next_next == '|');
fa9a63c5
RM
3847}
3848
3849
5e69f11e 3850/* Returns true if REGNUM is in one of COMPILE_STACK's elements and
fa9a63c5
RM
3851 false if it's not. */
3852
3853static boolean
971de7fb 3854group_in_compile_stack (compile_stack_type compile_stack, regnum_t regnum)
fa9a63c5 3855{
d1dfb56c 3856 ssize_t this_element;
fa9a63c5 3857
5e69f11e
RM
3858 for (this_element = compile_stack.avail - 1;
3859 this_element >= 0;
fa9a63c5
RM
3860 this_element--)
3861 if (compile_stack.stack[this_element].regnum == regnum)
3862 return true;
3863
3864 return false;
3865}
fa9a63c5 3866\f
f6a3f532
SM
3867/* analyse_first.
3868 If fastmap is non-NULL, go through the pattern and fill fastmap
3869 with all the possible leading chars. If fastmap is NULL, don't
3870 bother filling it up (obviously) and only return whether the
3871 pattern could potentially match the empty string.
3872
3873 Return 1 if p..pend might match the empty string.
3874 Return 0 if p..pend matches at least one char.
01618498 3875 Return -1 if fastmap was not updated accurately. */
f6a3f532
SM
3876
3877static int
438105ed 3878analyse_first (const re_char *p, const re_char *pend, char *fastmap, const int multibyte)
fa9a63c5 3879{
505bde11 3880 int j, k;
1fb352e0 3881 boolean not;
fa9a63c5 3882
b18215fc 3883 /* If all elements for base leading-codes in fastmap is set, this
7814e705 3884 flag is set true. */
b18215fc
RS
3885 boolean match_any_multibyte_characters = false;
3886
f6a3f532 3887 assert (p);
5e69f11e 3888
505bde11
SM
3889 /* The loop below works as follows:
3890 - It has a working-list kept in the PATTERN_STACK and which basically
3891 starts by only containing a pointer to the first operation.
3892 - If the opcode we're looking at is a match against some set of
3893 chars, then we add those chars to the fastmap and go on to the
3894 next work element from the worklist (done via `break').
3895 - If the opcode is a control operator on the other hand, we either
3896 ignore it (if it's meaningless at this point, such as `start_memory')
3897 or execute it (if it's a jump). If the jump has several destinations
3898 (i.e. `on_failure_jump'), then we push the other destination onto the
3899 worklist.
3900 We guarantee termination by ignoring backward jumps (more or less),
3901 so that `p' is monotonically increasing. More to the point, we
3902 never set `p' (or push) anything `<= p1'. */
3903
01618498 3904 while (p < pend)
fa9a63c5 3905 {
505bde11
SM
3906 /* `p1' is used as a marker of how far back a `on_failure_jump'
3907 can go without being ignored. It is normally equal to `p'
3908 (which prevents any backward `on_failure_jump') except right
3909 after a plain `jump', to allow patterns such as:
3910 0: jump 10
3911 3..9: <body>
3912 10: on_failure_jump 3
3913 as used for the *? operator. */
01618498 3914 re_char *p1 = p;
5e69f11e 3915
fa9a63c5
RM
3916 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
3917 {
f6a3f532 3918 case succeed:
01618498 3919 return 1;
fa9a63c5 3920
fa9a63c5 3921 case duplicate:
505bde11
SM
3922 /* If the first character has to match a backreference, that means
3923 that the group was empty (since it already matched). Since this
3924 is the only case that interests us here, we can assume that the
3925 backreference must match the empty string. */
3926 p++;
3927 continue;
fa9a63c5
RM
3928
3929
3930 /* Following are the cases which match a character. These end
7814e705 3931 with `break'. */
fa9a63c5
RM
3932
3933 case exactn:
e0277a47 3934 if (fastmap)
cf9c99bc
KH
3935 {
3936 /* If multibyte is nonzero, the first byte of each
3937 character is an ASCII or a leading code. Otherwise,
3938 each byte is a character. Thus, this works in both
3939 cases. */
3940 fastmap[p[1]] = 1;
3941 if (! multibyte)
3942 {
3943 /* For the case of matching this unibyte regex
3944 against multibyte, we must set a leading code of
3945 the corresponding multibyte character. */
3946 int c = RE_CHAR_TO_MULTIBYTE (p[1]);
3947
86e893e3 3948 fastmap[CHAR_LEADING_CODE (c)] = 1;
cf9c99bc
KH
3949 }
3950 }
fa9a63c5
RM
3951 break;
3952
3953
1fb352e0
SM
3954 case anychar:
3955 /* We could put all the chars except for \n (and maybe \0)
3956 but we don't bother since it is generally not worth it. */
f6a3f532 3957 if (!fastmap) break;
01618498 3958 return -1;
fa9a63c5
RM
3959
3960
b18215fc 3961 case charset_not:
1fb352e0 3962 if (!fastmap) break;
bf216479
KH
3963 {
3964 /* Chars beyond end of bitmap are possible matches. */
bf216479 3965 for (j = CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH;
cf9c99bc 3966 j < (1 << BYTEWIDTH); j++)
bf216479
KH
3967 fastmap[j] = 1;
3968 }
3969
1fb352e0
SM
3970 /* Fallthrough */
3971 case charset:
3972 if (!fastmap) break;
3973 not = (re_opcode_t) *(p - 1) == charset_not;
b18215fc
RS
3974 for (j = CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH - 1, p++;
3975 j >= 0; j--)
1fb352e0 3976 if (!!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))) ^ not)
49da453b 3977 fastmap[j] = 1;
b18215fc 3978
6482db2e
KH
3979#ifdef emacs
3980 if (/* Any leading code can possibly start a character
1fb352e0 3981 which doesn't match the specified set of characters. */
6482db2e 3982 not
409f2919 3983 ||
6482db2e
KH
3984 /* If we can match a character class, we can match any
3985 multibyte characters. */
3986 (CHARSET_RANGE_TABLE_EXISTS_P (&p[-2])
3987 && CHARSET_RANGE_TABLE_BITS (&p[-2]) != 0))
3988
b18215fc 3989 {
b18215fc
RS
3990 if (match_any_multibyte_characters == false)
3991 {
6482db2e
KH
3992 for (j = MIN_MULTIBYTE_LEADING_CODE;
3993 j <= MAX_MULTIBYTE_LEADING_CODE; j++)
6fdd04b0 3994 fastmap[j] = 1;
b18215fc
RS
3995 match_any_multibyte_characters = true;
3996 }
3997 }
b18215fc 3998
1fb352e0
SM
3999 else if (!not && CHARSET_RANGE_TABLE_EXISTS_P (&p[-2])
4000 && match_any_multibyte_characters == false)
4001 {
bf216479 4002 /* Set fastmap[I] to 1 where I is a leading code of each
51e4f4a8 4003 multibyte character in the range table. */
1fb352e0 4004 int c, count;
bf216479 4005 unsigned char lc1, lc2;
b18215fc 4006
1fb352e0 4007 /* Make P points the range table. `+ 2' is to skip flag
0b32bf0e 4008 bits for a character class. */
1fb352e0 4009 p += CHARSET_BITMAP_SIZE (&p[-2]) + 2;
b18215fc 4010
1fb352e0
SM
4011 /* Extract the number of ranges in range table into COUNT. */
4012 EXTRACT_NUMBER_AND_INCR (count, p);
cf9c99bc 4013 for (; count > 0; count--, p += 3)
1fb352e0 4014 {
9117d724
KH
4015 /* Extract the start and end of each range. */
4016 EXTRACT_CHARACTER (c, p);
bf216479 4017 lc1 = CHAR_LEADING_CODE (c);
9117d724 4018 p += 3;
1fb352e0 4019 EXTRACT_CHARACTER (c, p);
bf216479
KH
4020 lc2 = CHAR_LEADING_CODE (c);
4021 for (j = lc1; j <= lc2; j++)
9117d724 4022 fastmap[j] = 1;
1fb352e0
SM
4023 }
4024 }
6482db2e 4025#endif
b18215fc
RS
4026 break;
4027
1fb352e0
SM
4028 case syntaxspec:
4029 case notsyntaxspec:
4030 if (!fastmap) break;
4031#ifndef emacs
4032 not = (re_opcode_t)p[-1] == notsyntaxspec;
4033 k = *p++;
4034 for (j = 0; j < (1 << BYTEWIDTH); j++)
990b2375 4035 if ((SYNTAX (j) == (enum syntaxcode) k) ^ not)
b18215fc 4036 fastmap[j] = 1;
b18215fc 4037 break;
1fb352e0 4038#else /* emacs */
b18215fc
RS
4039 /* This match depends on text properties. These end with
4040 aborting optimizations. */
01618498 4041 return -1;
b18215fc
RS
4042
4043 case categoryspec:
b18215fc 4044 case notcategoryspec:
1fb352e0
SM
4045 if (!fastmap) break;
4046 not = (re_opcode_t)p[-1] == notcategoryspec;
b18215fc 4047 k = *p++;
6482db2e 4048 for (j = (1 << BYTEWIDTH); j >= 0; j--)
1fb352e0 4049 if ((CHAR_HAS_CATEGORY (j, k)) ^ not)
b18215fc
RS
4050 fastmap[j] = 1;
4051
6482db2e
KH
4052 /* Any leading code can possibly start a character which
4053 has or doesn't has the specified category. */
4054 if (match_any_multibyte_characters == false)
6fdd04b0 4055 {
6482db2e
KH
4056 for (j = MIN_MULTIBYTE_LEADING_CODE;
4057 j <= MAX_MULTIBYTE_LEADING_CODE; j++)
4058 fastmap[j] = 1;
4059 match_any_multibyte_characters = true;
6fdd04b0 4060 }
b18215fc
RS
4061 break;
4062
fa9a63c5 4063 /* All cases after this match the empty string. These end with
25fe55af 4064 `continue'. */
fa9a63c5 4065
fa9a63c5
RM
4066 case before_dot:
4067 case at_dot:
4068 case after_dot:
1fb352e0 4069#endif /* !emacs */
25fe55af
RS
4070 case no_op:
4071 case begline:
4072 case endline:
fa9a63c5
RM
4073 case begbuf:
4074 case endbuf:
4075 case wordbound:
4076 case notwordbound:
4077 case wordbeg:
4078 case wordend:
669fa600
SM
4079 case symbeg:
4080 case symend:
25fe55af 4081 continue;
fa9a63c5
RM
4082
4083
fa9a63c5 4084 case jump:
25fe55af 4085 EXTRACT_NUMBER_AND_INCR (j, p);
505bde11
SM
4086 if (j < 0)
4087 /* Backward jumps can only go back to code that we've already
4088 visited. `re_compile' should make sure this is true. */
4089 break;
25fe55af 4090 p += j;
505bde11
SM
4091 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p))
4092 {
4093 case on_failure_jump:
4094 case on_failure_keep_string_jump:
505bde11 4095 case on_failure_jump_loop:
0683b6fa 4096 case on_failure_jump_nastyloop:
505bde11
SM
4097 case on_failure_jump_smart:
4098 p++;
4099 break;
4100 default:
4101 continue;
4102 };
4103 /* Keep `p1' to allow the `on_failure_jump' we are jumping to
4104 to jump back to "just after here". */
4105 /* Fallthrough */
fa9a63c5 4106
25fe55af
RS
4107 case on_failure_jump:
4108 case on_failure_keep_string_jump:
0683b6fa 4109 case on_failure_jump_nastyloop:
505bde11
SM
4110 case on_failure_jump_loop:
4111 case on_failure_jump_smart:
25fe55af 4112 EXTRACT_NUMBER_AND_INCR (j, p);
505bde11 4113 if (p + j <= p1)
ed0767d8 4114 ; /* Backward jump to be ignored. */
01618498
SM
4115 else
4116 { /* We have to look down both arms.
4117 We first go down the "straight" path so as to minimize
4118 stack usage when going through alternatives. */
4119 int r = analyse_first (p, pend, fastmap, multibyte);
4120 if (r) return r;
4121 p += j;
4122 }
25fe55af 4123 continue;
fa9a63c5
RM
4124
4125
ed0767d8
SM
4126 case jump_n:
4127 /* This code simply does not properly handle forward jump_n. */
4128 DEBUG_STATEMENT (EXTRACT_NUMBER (j, p); assert (j < 0));
4129 p += 4;
4130 /* jump_n can either jump or fall through. The (backward) jump
4131 case has already been handled, so we only need to look at the
4132 fallthrough case. */
4133 continue;
177c0ea7 4134
fa9a63c5 4135 case succeed_n:
ed0767d8
SM
4136 /* If N == 0, it should be an on_failure_jump_loop instead. */
4137 DEBUG_STATEMENT (EXTRACT_NUMBER (j, p + 2); assert (j > 0));
4138 p += 4;
4139 /* We only care about one iteration of the loop, so we don't
4140 need to consider the case where this behaves like an
4141 on_failure_jump. */
25fe55af 4142 continue;
fa9a63c5
RM
4143
4144
4145 case set_number_at:
25fe55af
RS
4146 p += 4;
4147 continue;
fa9a63c5
RM
4148
4149
4150 case start_memory:
25fe55af 4151 case stop_memory:
505bde11 4152 p += 1;
fa9a63c5
RM
4153 continue;
4154
4155
4156 default:
25fe55af
RS
4157 abort (); /* We have listed all the cases. */
4158 } /* switch *p++ */
fa9a63c5
RM
4159
4160 /* Getting here means we have found the possible starting
25fe55af 4161 characters for one path of the pattern -- and that the empty
7814e705 4162 string does not match. We need not follow this path further. */
01618498 4163 return 0;
fa9a63c5
RM
4164 } /* while p */
4165
01618498
SM
4166 /* We reached the end without matching anything. */
4167 return 1;
4168
f6a3f532
SM
4169} /* analyse_first */
4170\f
4171/* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
4172 BUFP. A fastmap records which of the (1 << BYTEWIDTH) possible
4173 characters can start a string that matches the pattern. This fastmap
4174 is used by re_search to skip quickly over impossible starting points.
4175
4176 Character codes above (1 << BYTEWIDTH) are not represented in the
4177 fastmap, but the leading codes are represented. Thus, the fastmap
4178 indicates which character sets could start a match.
4179
4180 The caller must supply the address of a (1 << BYTEWIDTH)-byte data
4181 area as BUFP->fastmap.
4182
4183 We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
4184 the pattern buffer.
4185
4186 Returns 0 if we succeed, -2 if an internal error. */
4187
4188int
971de7fb 4189re_compile_fastmap (struct re_pattern_buffer *bufp)
f6a3f532
SM
4190{
4191 char *fastmap = bufp->fastmap;
4192 int analysis;
4193
4194 assert (fastmap && bufp->buffer);
4195
72af86bd 4196 memset (fastmap, 0, 1 << BYTEWIDTH); /* Assume nothing's valid. */
f6a3f532
SM
4197 bufp->fastmap_accurate = 1; /* It will be when we're done. */
4198
4199 analysis = analyse_first (bufp->buffer, bufp->buffer + bufp->used,
2d1675e4 4200 fastmap, RE_MULTIBYTE_P (bufp));
c0f9ea08 4201 bufp->can_be_null = (analysis != 0);
fa9a63c5
RM
4202 return 0;
4203} /* re_compile_fastmap */
4204\f
4205/* Set REGS to hold NUM_REGS registers, storing them in STARTS and
4206 ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use
4207 this memory for recording register information. STARTS and ENDS
4208 must be allocated using the malloc library routine, and must each
4209 be at least NUM_REGS * sizeof (regoff_t) bytes long.
4210
4211 If NUM_REGS == 0, then subsequent matches should allocate their own
4212 register data.
4213
4214 Unless this function is called, the first search or match using
4215 PATTERN_BUFFER will allocate its own register data, without
4216 freeing the old data. */
4217
4218void
971de7fb 4219re_set_registers (struct re_pattern_buffer *bufp, struct re_registers *regs, unsigned int num_regs, regoff_t *starts, regoff_t *ends)
fa9a63c5
RM
4220{
4221 if (num_regs)
4222 {
4223 bufp->regs_allocated = REGS_REALLOCATE;
4224 regs->num_regs = num_regs;
4225 regs->start = starts;
4226 regs->end = ends;
4227 }
4228 else
4229 {
4230 bufp->regs_allocated = REGS_UNALLOCATED;
4231 regs->num_regs = 0;
4232 regs->start = regs->end = (regoff_t *) 0;
4233 }
4234}
c0f9ea08 4235WEAK_ALIAS (__re_set_registers, re_set_registers)
fa9a63c5 4236\f
7814e705 4237/* Searching routines. */
fa9a63c5
RM
4238
4239/* Like re_search_2, below, but only one string is specified, and
4240 doesn't let you say where to stop matching. */
4241
d1dfb56c
EZ
4242regoff_t
4243re_search (struct re_pattern_buffer *bufp, const char *string, size_t size,
4244 ssize_t startpos, ssize_t range, struct re_registers *regs)
fa9a63c5 4245{
5e69f11e 4246 return re_search_2 (bufp, NULL, 0, string, size, startpos, range,
fa9a63c5
RM
4247 regs, size);
4248}
c0f9ea08 4249WEAK_ALIAS (__re_search, re_search)
fa9a63c5 4250
70806df6
KH
4251/* Head address of virtual concatenation of string. */
4252#define HEAD_ADDR_VSTRING(P) \
4253 (((P) >= size1 ? string2 : string1))
4254
b18215fc
RS
4255/* Address of POS in the concatenation of virtual string. */
4256#define POS_ADDR_VSTRING(POS) \
4257 (((POS) >= size1 ? string2 - size1 : string1) + (POS))
fa9a63c5
RM
4258
4259/* Using the compiled pattern in BUFP->buffer, first tries to match the
4260 virtual concatenation of STRING1 and STRING2, starting first at index
4261 STARTPOS, then at STARTPOS + 1, and so on.
5e69f11e 4262
fa9a63c5 4263 STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
5e69f11e 4264
fa9a63c5
RM
4265 RANGE is how far to scan while trying to match. RANGE = 0 means try
4266 only at STARTPOS; in general, the last start tried is STARTPOS +
4267 RANGE.
5e69f11e 4268
fa9a63c5
RM
4269 In REGS, return the indices of the virtual concatenation of STRING1
4270 and STRING2 that matched the entire BUFP->buffer and its contained
4271 subexpressions.
5e69f11e 4272
fa9a63c5
RM
4273 Do not consider matching one past the index STOP in the virtual
4274 concatenation of STRING1 and STRING2.
4275
4276 We return either the position in the strings at which the match was
4277 found, -1 if no match, or -2 if error (such as failure
4278 stack overflow). */
4279
d1dfb56c
EZ
4280regoff_t
4281re_search_2 (struct re_pattern_buffer *bufp, const char *str1, size_t size1,
4282 const char *str2, size_t size2, ssize_t startpos, ssize_t range,
4283 struct re_registers *regs, ssize_t stop)
fa9a63c5 4284{
d1dfb56c 4285 regoff_t val;
66f0296e
SM
4286 re_char *string1 = (re_char*) str1;
4287 re_char *string2 = (re_char*) str2;
fa9a63c5 4288 register char *fastmap = bufp->fastmap;
6676cb1c 4289 register RE_TRANSLATE_TYPE translate = bufp->translate;
d1dfb56c
EZ
4290 size_t total_size = size1 + size2;
4291 ssize_t endpos = startpos + range;
c0f9ea08 4292 boolean anchored_start;
cf9c99bc
KH
4293 /* Nonzero if we are searching multibyte string. */
4294 const boolean multibyte = RE_TARGET_MULTIBYTE_P (bufp);
b18215fc 4295
fa9a63c5
RM
4296 /* Check for out-of-range STARTPOS. */
4297 if (startpos < 0 || startpos > total_size)
4298 return -1;
5e69f11e 4299
fa9a63c5 4300 /* Fix up RANGE if it might eventually take us outside
34597fa9 4301 the virtual concatenation of STRING1 and STRING2.
5e69f11e 4302 Make sure we won't move STARTPOS below 0 or above TOTAL_SIZE. */
34597fa9
RS
4303 if (endpos < 0)
4304 range = 0 - startpos;
fa9a63c5
RM
4305 else if (endpos > total_size)
4306 range = total_size - startpos;
4307
4308 /* If the search isn't to be a backwards one, don't waste time in a
7b140fd7 4309 search for a pattern anchored at beginning of buffer. */
fa9a63c5
RM
4310 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == begbuf && range > 0)
4311 {
4312 if (startpos > 0)
4313 return -1;
4314 else
7b140fd7 4315 range = 0;
fa9a63c5
RM
4316 }
4317
ae4788a8
RS
4318#ifdef emacs
4319 /* In a forward search for something that starts with \=.
4320 don't keep searching past point. */
4321 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == at_dot && range > 0)
4322 {
7b140fd7
RS
4323 range = PT_BYTE - BEGV_BYTE - startpos;
4324 if (range < 0)
ae4788a8
RS
4325 return -1;
4326 }
4327#endif /* emacs */
4328
fa9a63c5
RM
4329 /* Update the fastmap now if not correct already. */
4330 if (fastmap && !bufp->fastmap_accurate)
01618498 4331 re_compile_fastmap (bufp);
5e69f11e 4332
c8499ba5 4333 /* See whether the pattern is anchored. */
c0f9ea08 4334 anchored_start = (bufp->buffer[0] == begline);
c8499ba5 4335
b18215fc 4336#ifdef emacs
d48cd3f4 4337 gl_state.object = re_match_object; /* Used by SYNTAX_TABLE_BYTE_TO_CHAR. */
cc9b4df2 4338 {
d1dfb56c 4339 ssize_t charpos = SYNTAX_TABLE_BYTE_TO_CHAR (POS_AS_IN_BUFFER (startpos));
cc9b4df2
KH
4340
4341 SETUP_SYNTAX_TABLE_FOR_OBJECT (re_match_object, charpos, 1);
4342 }
b18215fc
RS
4343#endif
4344
fa9a63c5
RM
4345 /* Loop through the string, looking for a place to start matching. */
4346 for (;;)
5e69f11e 4347 {
c8499ba5
RS
4348 /* If the pattern is anchored,
4349 skip quickly past places we cannot match.
4350 We don't bother to treat startpos == 0 specially
4351 because that case doesn't repeat. */
4352 if (anchored_start && startpos > 0)
4353 {
c0f9ea08
SM
4354 if (! ((startpos <= size1 ? string1[startpos - 1]
4355 : string2[startpos - size1 - 1])
4356 == '\n'))
c8499ba5
RS
4357 goto advance;
4358 }
4359
fa9a63c5 4360 /* If a fastmap is supplied, skip quickly over characters that
25fe55af
RS
4361 cannot be the start of a match. If the pattern can match the
4362 null string, however, we don't need to skip characters; we want
7814e705 4363 the first null string. */
fa9a63c5
RM
4364 if (fastmap && startpos < total_size && !bufp->can_be_null)
4365 {
66f0296e 4366 register re_char *d;
01618498 4367 register re_wchar_t buf_ch;
e934739e
RS
4368
4369 d = POS_ADDR_VSTRING (startpos);
4370
7814e705 4371 if (range > 0) /* Searching forwards. */
fa9a63c5 4372 {
fa9a63c5 4373 register int lim = 0;
d1dfb56c 4374 ssize_t irange = range;
fa9a63c5 4375
25fe55af
RS
4376 if (startpos < size1 && startpos + range >= size1)
4377 lim = range - (size1 - startpos);
fa9a63c5 4378
25fe55af
RS
4379 /* Written out as an if-else to avoid testing `translate'
4380 inside the loop. */
28ae27ae
AS
4381 if (RE_TRANSLATE_P (translate))
4382 {
e934739e
RS
4383 if (multibyte)
4384 while (range > lim)
4385 {
4386 int buf_charlen;
4387
62a6e103 4388 buf_ch = STRING_CHAR_AND_LENGTH (d, buf_charlen);
e934739e 4389 buf_ch = RE_TRANSLATE (translate, buf_ch);
bf216479 4390 if (fastmap[CHAR_LEADING_CODE (buf_ch)])
e934739e
RS
4391 break;
4392
4393 range -= buf_charlen;
4394 d += buf_charlen;
4395 }
4396 else
bf216479 4397 while (range > lim)
33c46939 4398 {
cf9c99bc
KH
4399 register re_wchar_t ch, translated;
4400
bf216479 4401 buf_ch = *d;
cf9c99bc
KH
4402 ch = RE_CHAR_TO_MULTIBYTE (buf_ch);
4403 translated = RE_TRANSLATE (translate, ch);
4404 if (translated != ch
4405 && (ch = RE_CHAR_TO_UNIBYTE (translated)) >= 0)
4406 buf_ch = ch;
6fdd04b0 4407 if (fastmap[buf_ch])
bf216479 4408 break;
33c46939
RS
4409 d++;
4410 range--;
4411 }
e934739e 4412 }
fa9a63c5 4413 else
6fdd04b0
KH
4414 {
4415 if (multibyte)
4416 while (range > lim)
4417 {
4418 int buf_charlen;
fa9a63c5 4419
62a6e103 4420 buf_ch = STRING_CHAR_AND_LENGTH (d, buf_charlen);
6fdd04b0
KH
4421 if (fastmap[CHAR_LEADING_CODE (buf_ch)])
4422 break;
4423 range -= buf_charlen;
4424 d += buf_charlen;
4425 }
e934739e 4426 else
6fdd04b0 4427 while (range > lim && !fastmap[*d])
33c46939
RS
4428 {
4429 d++;
4430 range--;
4431 }
e934739e 4432 }
fa9a63c5
RM
4433 startpos += irange - range;
4434 }
7814e705 4435 else /* Searching backwards. */
fa9a63c5 4436 {
ba5e343c
KH
4437 if (multibyte)
4438 {
62a6e103 4439 buf_ch = STRING_CHAR (d);
ba5e343c
KH
4440 buf_ch = TRANSLATE (buf_ch);
4441 if (! fastmap[CHAR_LEADING_CODE (buf_ch)])
4442 goto advance;
4443 }
4444 else
4445 {
cf9c99bc
KH
4446 register re_wchar_t ch, translated;
4447
4448 buf_ch = *d;
4449 ch = RE_CHAR_TO_MULTIBYTE (buf_ch);
4450 translated = TRANSLATE (ch);
4451 if (translated != ch
4452 && (ch = RE_CHAR_TO_UNIBYTE (translated)) >= 0)
4453 buf_ch = ch;
4454 if (! fastmap[TRANSLATE (buf_ch)])
ba5e343c
KH
4455 goto advance;
4456 }
fa9a63c5
RM
4457 }
4458 }
4459
4460 /* If can't match the null string, and that's all we have left, fail. */
4461 if (range >= 0 && startpos == total_size && fastmap
25fe55af 4462 && !bufp->can_be_null)
fa9a63c5
RM
4463 return -1;
4464
4465 val = re_match_2_internal (bufp, string1, size1, string2, size2,
4466 startpos, regs, stop);
fa9a63c5
RM
4467
4468 if (val >= 0)
4469 return startpos;
5e69f11e 4470
fa9a63c5
RM
4471 if (val == -2)
4472 return -2;
4473
4474 advance:
5e69f11e 4475 if (!range)
25fe55af 4476 break;
5e69f11e 4477 else if (range > 0)
25fe55af 4478 {
b18215fc
RS
4479 /* Update STARTPOS to the next character boundary. */
4480 if (multibyte)
4481 {
66f0296e 4482 re_char *p = POS_ADDR_VSTRING (startpos);
aa3830c4 4483 int len = BYTES_BY_CHAR_HEAD (*p);
b18215fc
RS
4484
4485 range -= len;
4486 if (range < 0)
4487 break;
4488 startpos += len;
4489 }
4490 else
4491 {
b560c397
RS
4492 range--;
4493 startpos++;
4494 }
e318085a 4495 }
fa9a63c5 4496 else
25fe55af
RS
4497 {
4498 range++;
4499 startpos--;
b18215fc
RS
4500
4501 /* Update STARTPOS to the previous character boundary. */
4502 if (multibyte)
4503 {
70806df6
KH
4504 re_char *p = POS_ADDR_VSTRING (startpos) + 1;
4505 re_char *p0 = p;
4506 re_char *phead = HEAD_ADDR_VSTRING (startpos);
b18215fc
RS
4507
4508 /* Find the head of multibyte form. */
70806df6
KH
4509 PREV_CHAR_BOUNDARY (p, phead);
4510 range += p0 - 1 - p;
4511 if (range > 0)
4512 break;
b18215fc 4513
70806df6 4514 startpos -= p0 - 1 - p;
b18215fc 4515 }
25fe55af 4516 }
fa9a63c5
RM
4517 }
4518 return -1;
4519} /* re_search_2 */
c0f9ea08 4520WEAK_ALIAS (__re_search_2, re_search_2)
fa9a63c5
RM
4521\f
4522/* Declarations and macros for re_match_2. */
4523
261cb4bb
PE
4524static int bcmp_translate (re_char *s1, re_char *s2,
4525 register ssize_t len,
4526 RE_TRANSLATE_TYPE translate,
4527 const int multibyte);
fa9a63c5
RM
4528
4529/* This converts PTR, a pointer into one of the search strings `string1'
4530 and `string2' into an offset from the beginning of that string. */
4531#define POINTER_TO_OFFSET(ptr) \
4532 (FIRST_STRING_P (ptr) \
4533 ? ((regoff_t) ((ptr) - string1)) \
4534 : ((regoff_t) ((ptr) - string2 + size1)))
4535
fa9a63c5 4536/* Call before fetching a character with *d. This switches over to
419d1c74
SM
4537 string2 if necessary.
4538 Check re_match_2_internal for a discussion of why end_match_2 might
4539 not be within string2 (but be equal to end_match_1 instead). */
fa9a63c5 4540#define PREFETCH() \
25fe55af 4541 while (d == dend) \
fa9a63c5
RM
4542 { \
4543 /* End of string2 => fail. */ \
25fe55af
RS
4544 if (dend == end_match_2) \
4545 goto fail; \
4bb91c68 4546 /* End of string1 => advance to string2. */ \
25fe55af 4547 d = string2; \
fa9a63c5
RM
4548 dend = end_match_2; \
4549 }
4550
f1ad044f
SM
4551/* Call before fetching a char with *d if you already checked other limits.
4552 This is meant for use in lookahead operations like wordend, etc..
4553 where we might need to look at parts of the string that might be
4554 outside of the LIMITs (i.e past `stop'). */
4555#define PREFETCH_NOLIMIT() \
4556 if (d == end1) \
4557 { \
4558 d = string2; \
4559 dend = end_match_2; \
4560 } \
fa9a63c5
RM
4561
4562/* Test if at very beginning or at very end of the virtual concatenation
7814e705 4563 of `string1' and `string2'. If only one string, it's `string2'. */
fa9a63c5 4564#define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
5e69f11e 4565#define AT_STRINGS_END(d) ((d) == end2)
fa9a63c5 4566
9121ca40 4567/* Disabled due to a compiler bug -- see comment at case wordbound */
b18215fc
RS
4568
4569/* The comment at case wordbound is following one, but we don't use
4570 AT_WORD_BOUNDARY anymore to support multibyte form.
4571
4572 The DEC Alpha C compiler 3.x generates incorrect code for the
25fe55af 4573 test WORDCHAR_P (d - 1) != WORDCHAR_P (d) in the expansion of
7814e705 4574 AT_WORD_BOUNDARY, so this code is disabled. Expanding the
b18215fc
RS
4575 macro and introducing temporary variables works around the bug. */
4576
9121ca40 4577#if 0
b313f9d8
PE
4578/* Test if D points to a character which is word-constituent. We have
4579 two special cases to check for: if past the end of string1, look at
4580 the first character in string2; and if before the beginning of
4581 string2, look at the last character in string1. */
4582#define WORDCHAR_P(d) \
4583 (SYNTAX ((d) == end1 ? *string2 \
4584 : (d) == string2 - 1 ? *(end1 - 1) : *(d)) \
4585 == Sword)
4586
fa9a63c5
RM
4587/* Test if the character before D and the one at D differ with respect
4588 to being word-constituent. */
4589#define AT_WORD_BOUNDARY(d) \
4590 (AT_STRINGS_BEG (d) || AT_STRINGS_END (d) \
4591 || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
9121ca40 4592#endif
fa9a63c5
RM
4593
4594/* Free everything we malloc. */
4595#ifdef MATCH_MAY_ALLOCATE
952db0d7
PE
4596# define FREE_VAR(var) \
4597 do { \
4598 if (var) \
4599 { \
4600 REGEX_FREE (var); \
4601 var = NULL; \
4602 } \
4603 } while (0)
0b32bf0e 4604# define FREE_VARIABLES() \
fa9a63c5
RM
4605 do { \
4606 REGEX_FREE_STACK (fail_stack.stack); \
4607 FREE_VAR (regstart); \
4608 FREE_VAR (regend); \
fa9a63c5
RM
4609 FREE_VAR (best_regstart); \
4610 FREE_VAR (best_regend); \
fa9a63c5
RM
4611 } while (0)
4612#else
0b32bf0e 4613# define FREE_VARIABLES() ((void)0) /* Do nothing! But inhibit gcc warning. */
fa9a63c5
RM
4614#endif /* not MATCH_MAY_ALLOCATE */
4615
505bde11
SM
4616\f
4617/* Optimization routines. */
4618
4e8a9132
SM
4619/* If the operation is a match against one or more chars,
4620 return a pointer to the next operation, else return NULL. */
01618498 4621static re_char *
971de7fb 4622skip_one_char (const re_char *p)
4e8a9132
SM
4623{
4624 switch (SWITCH_ENUM_CAST (*p++))
4625 {
4626 case anychar:
4627 break;
177c0ea7 4628
4e8a9132
SM
4629 case exactn:
4630 p += *p + 1;
4631 break;
4632
4633 case charset_not:
4634 case charset:
4635 if (CHARSET_RANGE_TABLE_EXISTS_P (p - 1))
4636 {
4637 int mcnt;
4638 p = CHARSET_RANGE_TABLE (p - 1);
4639 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4640 p = CHARSET_RANGE_TABLE_END (p, mcnt);
4641 }
4642 else
4643 p += 1 + CHARSET_BITMAP_SIZE (p - 1);
4644 break;
177c0ea7 4645
4e8a9132
SM
4646 case syntaxspec:
4647 case notsyntaxspec:
1fb352e0 4648#ifdef emacs
4e8a9132
SM
4649 case categoryspec:
4650 case notcategoryspec:
4651#endif /* emacs */
4652 p++;
4653 break;
4654
4655 default:
4656 p = NULL;
4657 }
4658 return p;
4659}
4660
4661
505bde11 4662/* Jump over non-matching operations. */
839966f3 4663static re_char *
971de7fb 4664skip_noops (const re_char *p, const re_char *pend)
505bde11
SM
4665{
4666 int mcnt;
4667 while (p < pend)
4668 {
4669 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p))
4670 {
4671 case start_memory:
505bde11
SM
4672 case stop_memory:
4673 p += 2; break;
4674 case no_op:
4675 p += 1; break;
4676 case jump:
4677 p += 1;
4678 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4679 p += mcnt;
4680 break;
4681 default:
4682 return p;
4683 }
4684 }
4685 assert (p == pend);
4686 return p;
4687}
4688
4689/* Non-zero if "p1 matches something" implies "p2 fails". */
4690static int
971de7fb 4691mutually_exclusive_p (struct re_pattern_buffer *bufp, const re_char *p1, const re_char *p2)
505bde11 4692{
4e8a9132 4693 re_opcode_t op2;
2d1675e4 4694 const boolean multibyte = RE_MULTIBYTE_P (bufp);
505bde11
SM
4695 unsigned char *pend = bufp->buffer + bufp->used;
4696
4e8a9132 4697 assert (p1 >= bufp->buffer && p1 < pend
505bde11
SM
4698 && p2 >= bufp->buffer && p2 <= pend);
4699
4700 /* Skip over open/close-group commands.
4701 If what follows this loop is a ...+ construct,
4702 look at what begins its body, since we will have to
4703 match at least one of that. */
4e8a9132
SM
4704 p2 = skip_noops (p2, pend);
4705 /* The same skip can be done for p1, except that this function
4706 is only used in the case where p1 is a simple match operator. */
4707 /* p1 = skip_noops (p1, pend); */
4708
4709 assert (p1 >= bufp->buffer && p1 < pend
4710 && p2 >= bufp->buffer && p2 <= pend);
4711
4712 op2 = p2 == pend ? succeed : *p2;
4713
4714 switch (SWITCH_ENUM_CAST (op2))
505bde11 4715 {
4e8a9132
SM
4716 case succeed:
4717 case endbuf:
4718 /* If we're at the end of the pattern, we can change. */
4719 if (skip_one_char (p1))
505bde11 4720 {
505bde11
SM
4721 DEBUG_PRINT1 (" End of pattern: fast loop.\n");
4722 return 1;
505bde11 4723 }
4e8a9132 4724 break;
177c0ea7 4725
4e8a9132 4726 case endline:
4e8a9132
SM
4727 case exactn:
4728 {
01618498 4729 register re_wchar_t c
4e8a9132 4730 = (re_opcode_t) *p2 == endline ? '\n'
62a6e103 4731 : RE_STRING_CHAR (p2 + 2, multibyte);
505bde11 4732
4e8a9132
SM
4733 if ((re_opcode_t) *p1 == exactn)
4734 {
62a6e103 4735 if (c != RE_STRING_CHAR (p1 + 2, multibyte))
4e8a9132
SM
4736 {
4737 DEBUG_PRINT3 (" '%c' != '%c' => fast loop.\n", c, p1[2]);
4738 return 1;
4739 }
4740 }
505bde11 4741
4e8a9132
SM
4742 else if ((re_opcode_t) *p1 == charset
4743 || (re_opcode_t) *p1 == charset_not)
4744 {
4745 int not = (re_opcode_t) *p1 == charset_not;
505bde11 4746
4e8a9132
SM
4747 /* Test if C is listed in charset (or charset_not)
4748 at `p1'. */
6fdd04b0 4749 if (! multibyte || IS_REAL_ASCII (c))
4e8a9132
SM
4750 {
4751 if (c < CHARSET_BITMAP_SIZE (p1) * BYTEWIDTH
4752 && p1[2 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
4753 not = !not;
4754 }
4755 else if (CHARSET_RANGE_TABLE_EXISTS_P (p1))
4756 CHARSET_LOOKUP_RANGE_TABLE (not, c, p1);
505bde11 4757
4e8a9132
SM
4758 /* `not' is equal to 1 if c would match, which means
4759 that we can't change to pop_failure_jump. */
4760 if (!not)
4761 {
4762 DEBUG_PRINT1 (" No match => fast loop.\n");
4763 return 1;
4764 }
4765 }
4766 else if ((re_opcode_t) *p1 == anychar
4767 && c == '\n')
4768 {
4769 DEBUG_PRINT1 (" . != \\n => fast loop.\n");
4770 return 1;
4771 }
4772 }
4773 break;
505bde11 4774
4e8a9132 4775 case charset:
4e8a9132
SM
4776 {
4777 if ((re_opcode_t) *p1 == exactn)
4778 /* Reuse the code above. */
4779 return mutually_exclusive_p (bufp, p2, p1);
505bde11 4780
505bde11
SM
4781 /* It is hard to list up all the character in charset
4782 P2 if it includes multibyte character. Give up in
4783 such case. */
4784 else if (!multibyte || !CHARSET_RANGE_TABLE_EXISTS_P (p2))
4785 {
4786 /* Now, we are sure that P2 has no range table.
4787 So, for the size of bitmap in P2, `p2[1]' is
7814e705 4788 enough. But P1 may have range table, so the
505bde11
SM
4789 size of bitmap table of P1 is extracted by
4790 using macro `CHARSET_BITMAP_SIZE'.
4791
6fdd04b0
KH
4792 In a multibyte case, we know that all the character
4793 listed in P2 is ASCII. In a unibyte case, P1 has only a
4794 bitmap table. So, in both cases, it is enough to test
4795 only the bitmap table of P1. */
505bde11 4796
411e4203 4797 if ((re_opcode_t) *p1 == charset)
505bde11
SM
4798 {
4799 int idx;
4800 /* We win if the charset inside the loop
4801 has no overlap with the one after the loop. */
4802 for (idx = 0;
4803 (idx < (int) p2[1]
4804 && idx < CHARSET_BITMAP_SIZE (p1));
4805 idx++)
4806 if ((p2[2 + idx] & p1[2 + idx]) != 0)
4807 break;
4808
4809 if (idx == p2[1]
4810 || idx == CHARSET_BITMAP_SIZE (p1))
4811 {
4812 DEBUG_PRINT1 (" No match => fast loop.\n");
4813 return 1;
4814 }
4815 }
411e4203 4816 else if ((re_opcode_t) *p1 == charset_not)
505bde11
SM
4817 {
4818 int idx;
4819 /* We win if the charset_not inside the loop lists
7814e705 4820 every character listed in the charset after. */
505bde11
SM
4821 for (idx = 0; idx < (int) p2[1]; idx++)
4822 if (! (p2[2 + idx] == 0
4823 || (idx < CHARSET_BITMAP_SIZE (p1)
4824 && ((p2[2 + idx] & ~ p1[2 + idx]) == 0))))
4825 break;
4826
d1dfb56c
EZ
4827 if (idx == p2[1])
4828 {
4829 DEBUG_PRINT1 (" No match => fast loop.\n");
4830 return 1;
4831 }
4e8a9132
SM
4832 }
4833 }
4834 }
609b757a 4835 break;
177c0ea7 4836
411e4203
SM
4837 case charset_not:
4838 switch (SWITCH_ENUM_CAST (*p1))
4839 {
4840 case exactn:
4841 case charset:
4842 /* Reuse the code above. */
4843 return mutually_exclusive_p (bufp, p2, p1);
4844 case charset_not:
4845 /* When we have two charset_not, it's very unlikely that
4846 they don't overlap. The union of the two sets of excluded
4847 chars should cover all possible chars, which, as a matter of
4848 fact, is virtually impossible in multibyte buffers. */
36595814 4849 break;
411e4203
SM
4850 }
4851 break;
4852
4e8a9132 4853 case wordend:
669fa600
SM
4854 return ((re_opcode_t) *p1 == syntaxspec && p1[1] == Sword);
4855 case symend:
4e8a9132 4856 return ((re_opcode_t) *p1 == syntaxspec
669fa600
SM
4857 && (p1[1] == Ssymbol || p1[1] == Sword));
4858 case notsyntaxspec:
4859 return ((re_opcode_t) *p1 == syntaxspec && p1[1] == p2[1]);
4e8a9132
SM
4860
4861 case wordbeg:
669fa600
SM
4862 return ((re_opcode_t) *p1 == notsyntaxspec && p1[1] == Sword);
4863 case symbeg:
4e8a9132 4864 return ((re_opcode_t) *p1 == notsyntaxspec
669fa600
SM
4865 && (p1[1] == Ssymbol || p1[1] == Sword));
4866 case syntaxspec:
4867 return ((re_opcode_t) *p1 == notsyntaxspec && p1[1] == p2[1]);
4e8a9132
SM
4868
4869 case wordbound:
4870 return (((re_opcode_t) *p1 == notsyntaxspec
4871 || (re_opcode_t) *p1 == syntaxspec)
4872 && p1[1] == Sword);
4873
1fb352e0 4874#ifdef emacs
4e8a9132
SM
4875 case categoryspec:
4876 return ((re_opcode_t) *p1 == notcategoryspec && p1[1] == p2[1]);
4877 case notcategoryspec:
4878 return ((re_opcode_t) *p1 == categoryspec && p1[1] == p2[1]);
4879#endif /* emacs */
4880
4881 default:
4882 ;
505bde11
SM
4883 }
4884
4885 /* Safe default. */
4886 return 0;
4887}
4888
fa9a63c5
RM
4889\f
4890/* Matching routines. */
4891
25fe55af 4892#ifndef emacs /* Emacs never uses this. */
fa9a63c5
RM
4893/* re_match is like re_match_2 except it takes only a single string. */
4894
d1dfb56c 4895regoff_t
d2762c86 4896re_match (struct re_pattern_buffer *bufp, const char *string,
d1dfb56c 4897 size_t size, ssize_t pos, struct re_registers *regs)
fa9a63c5 4898{
d1dfb56c
EZ
4899 regoff_t result = re_match_2_internal (bufp, NULL, 0, (re_char*) string,
4900 size, pos, regs, size);
fa9a63c5
RM
4901 return result;
4902}
c0f9ea08 4903WEAK_ALIAS (__re_match, re_match)
fa9a63c5
RM
4904#endif /* not emacs */
4905
b18215fc
RS
4906#ifdef emacs
4907/* In Emacs, this is the string or buffer in which we
7814e705 4908 are matching. It is used for looking up syntax properties. */
b18215fc
RS
4909Lisp_Object re_match_object;
4910#endif
fa9a63c5
RM
4911
4912/* re_match_2 matches the compiled pattern in BUFP against the
4913 the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
4914 and SIZE2, respectively). We start matching at POS, and stop
4915 matching at STOP.
5e69f11e 4916
fa9a63c5 4917 If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
7814e705 4918 store offsets for the substring each group matched in REGS. See the
fa9a63c5
RM
4919 documentation for exactly how many groups we fill.
4920
4921 We return -1 if no match, -2 if an internal error (such as the
7814e705 4922 failure stack overflowing). Otherwise, we return the length of the
fa9a63c5
RM
4923 matched substring. */
4924
d1dfb56c
EZ
4925regoff_t
4926re_match_2 (struct re_pattern_buffer *bufp, const char *string1,
4927 size_t size1, const char *string2, size_t size2, ssize_t pos,
4928 struct re_registers *regs, ssize_t stop)
fa9a63c5 4929{
d1dfb56c 4930 regoff_t result;
25fe55af 4931
b18215fc 4932#ifdef emacs
d1dfb56c 4933 ssize_t charpos;
d48cd3f4 4934 gl_state.object = re_match_object; /* Used by SYNTAX_TABLE_BYTE_TO_CHAR. */
99633e97 4935 charpos = SYNTAX_TABLE_BYTE_TO_CHAR (POS_AS_IN_BUFFER (pos));
cc9b4df2 4936 SETUP_SYNTAX_TABLE_FOR_OBJECT (re_match_object, charpos, 1);
b18215fc
RS
4937#endif
4938
4bb91c68
SM
4939 result = re_match_2_internal (bufp, (re_char*) string1, size1,
4940 (re_char*) string2, size2,
cc9b4df2 4941 pos, regs, stop);
fa9a63c5
RM
4942 return result;
4943}
c0f9ea08 4944WEAK_ALIAS (__re_match_2, re_match_2)
fa9a63c5 4945
bf216479 4946
fa9a63c5 4947/* This is a separate function so that we can force an alloca cleanup
7814e705 4948 afterwards. */
d1dfb56c
EZ
4949static regoff_t
4950re_match_2_internal (struct re_pattern_buffer *bufp, const re_char *string1,
4951 size_t size1, const re_char *string2, size_t size2,
4952 ssize_t pos, struct re_registers *regs, ssize_t stop)
fa9a63c5
RM
4953{
4954 /* General temporaries. */
d1dfb56c 4955 ssize_t mcnt;
01618498 4956 size_t reg;
fa9a63c5
RM
4957
4958 /* Just past the end of the corresponding string. */
66f0296e 4959 re_char *end1, *end2;
fa9a63c5
RM
4960
4961 /* Pointers into string1 and string2, just past the last characters in
7814e705 4962 each to consider matching. */
66f0296e 4963 re_char *end_match_1, *end_match_2;
fa9a63c5
RM
4964
4965 /* Where we are in the data, and the end of the current string. */
66f0296e 4966 re_char *d, *dend;
5e69f11e 4967
99633e97
SM
4968 /* Used sometimes to remember where we were before starting matching
4969 an operator so that we can go back in case of failure. This "atomic"
4970 behavior of matching opcodes is indispensable to the correctness
4971 of the on_failure_keep_string_jump optimization. */
4972 re_char *dfail;
4973
fa9a63c5 4974 /* Where we are in the pattern, and the end of the pattern. */
01618498
SM
4975 re_char *p = bufp->buffer;
4976 re_char *pend = p + bufp->used;
fa9a63c5 4977
25fe55af 4978 /* We use this to map every character in the string. */
6676cb1c 4979 RE_TRANSLATE_TYPE translate = bufp->translate;
fa9a63c5 4980
cf9c99bc 4981 /* Nonzero if BUFP is setup from a multibyte regex. */
2d1675e4 4982 const boolean multibyte = RE_MULTIBYTE_P (bufp);
b18215fc 4983
cf9c99bc
KH
4984 /* Nonzero if STRING1/STRING2 are multibyte. */
4985 const boolean target_multibyte = RE_TARGET_MULTIBYTE_P (bufp);
4986
fa9a63c5
RM
4987 /* Failure point stack. Each place that can handle a failure further
4988 down the line pushes a failure point on this stack. It consists of
505bde11 4989 regstart, and regend for all registers corresponding to
fa9a63c5
RM
4990 the subexpressions we're currently inside, plus the number of such
4991 registers, and, finally, two char *'s. The first char * is where
4992 to resume scanning the pattern; the second one is where to resume
7814e705
JB
4993 scanning the strings. */
4994#ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
fa9a63c5
RM
4995 fail_stack_type fail_stack;
4996#endif
4997#ifdef DEBUG
fa9a63c5
RM
4998 unsigned nfailure_points_pushed = 0, nfailure_points_popped = 0;
4999#endif
5000
0b32bf0e 5001#if defined REL_ALLOC && defined REGEX_MALLOC
fa9a63c5
RM
5002 /* This holds the pointer to the failure stack, when
5003 it is allocated relocatably. */
5004 fail_stack_elt_t *failure_stack_ptr;
99633e97 5005#endif
fa9a63c5
RM
5006
5007 /* We fill all the registers internally, independent of what we
7814e705 5008 return, for use in backreferences. The number here includes
fa9a63c5 5009 an element for register zero. */
4bb91c68 5010 size_t num_regs = bufp->re_nsub + 1;
5e69f11e 5011
fa9a63c5
RM
5012 /* Information on the contents of registers. These are pointers into
5013 the input strings; they record just what was matched (on this
5014 attempt) by a subexpression part of the pattern, that is, the
5015 regnum-th regstart pointer points to where in the pattern we began
5016 matching and the regnum-th regend points to right after where we
5017 stopped matching the regnum-th subexpression. (The zeroth register
5018 keeps track of what the whole pattern matches.) */
5019#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
66f0296e 5020 re_char **regstart, **regend;
fa9a63c5
RM
5021#endif
5022
fa9a63c5 5023 /* The following record the register info as found in the above
5e69f11e 5024 variables when we find a match better than any we've seen before.
fa9a63c5
RM
5025 This happens as we backtrack through the failure points, which in
5026 turn happens only if we have not yet matched the entire string. */
5027 unsigned best_regs_set = false;
5028#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
66f0296e 5029 re_char **best_regstart, **best_regend;
fa9a63c5 5030#endif
5e69f11e 5031
fa9a63c5
RM
5032 /* Logically, this is `best_regend[0]'. But we don't want to have to
5033 allocate space for that if we're not allocating space for anything
7814e705 5034 else (see below). Also, we never need info about register 0 for
fa9a63c5
RM
5035 any of the other register vectors, and it seems rather a kludge to
5036 treat `best_regend' differently than the rest. So we keep track of
5037 the end of the best match so far in a separate variable. We
5038 initialize this to NULL so that when we backtrack the first time
5039 and need to test it, it's not garbage. */
66f0296e 5040 re_char *match_end = NULL;
fa9a63c5 5041
fa9a63c5
RM
5042#ifdef DEBUG
5043 /* Counts the total number of registers pushed. */
5e69f11e 5044 unsigned num_regs_pushed = 0;
fa9a63c5
RM
5045#endif
5046
5047 DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
5e69f11e 5048
fa9a63c5 5049 INIT_FAIL_STACK ();
5e69f11e 5050
fa9a63c5
RM
5051#ifdef MATCH_MAY_ALLOCATE
5052 /* Do not bother to initialize all the register variables if there are
5053 no groups in the pattern, as it takes a fair amount of time. If
5054 there are groups, we include space for register 0 (the whole
5055 pattern), even though we never use it, since it simplifies the
5056 array indexing. We should fix this. */
5057 if (bufp->re_nsub)
5058 {
66f0296e
SM
5059 regstart = REGEX_TALLOC (num_regs, re_char *);
5060 regend = REGEX_TALLOC (num_regs, re_char *);
5061 best_regstart = REGEX_TALLOC (num_regs, re_char *);
5062 best_regend = REGEX_TALLOC (num_regs, re_char *);
fa9a63c5 5063
505bde11 5064 if (!(regstart && regend && best_regstart && best_regend))
25fe55af
RS
5065 {
5066 FREE_VARIABLES ();
5067 return -2;
5068 }
fa9a63c5
RM
5069 }
5070 else
5071 {
5072 /* We must initialize all our variables to NULL, so that
25fe55af 5073 `FREE_VARIABLES' doesn't try to free them. */
505bde11 5074 regstart = regend = best_regstart = best_regend = NULL;
fa9a63c5
RM
5075 }
5076#endif /* MATCH_MAY_ALLOCATE */
5077
5078 /* The starting position is bogus. */
5079 if (pos < 0 || pos > size1 + size2)
5080 {
5081 FREE_VARIABLES ();
5082 return -1;
5083 }
5e69f11e 5084
fa9a63c5
RM
5085 /* Initialize subexpression text positions to -1 to mark ones that no
5086 start_memory/stop_memory has been seen for. Also initialize the
5087 register information struct. */
01618498
SM
5088 for (reg = 1; reg < num_regs; reg++)
5089 regstart[reg] = regend[reg] = NULL;
99633e97 5090
fa9a63c5 5091 /* We move `string1' into `string2' if the latter's empty -- but not if
7814e705 5092 `string1' is null. */
fa9a63c5
RM
5093 if (size2 == 0 && string1 != NULL)
5094 {
5095 string2 = string1;
5096 size2 = size1;
5097 string1 = 0;
5098 size1 = 0;
5099 }
5100 end1 = string1 + size1;
5101 end2 = string2 + size2;
5102
5e69f11e 5103 /* `p' scans through the pattern as `d' scans through the data.
fa9a63c5
RM
5104 `dend' is the end of the input string that `d' points within. `d'
5105 is advanced into the following input string whenever necessary, but
5106 this happens before fetching; therefore, at the beginning of the
5107 loop, `d' can be pointing at the end of a string, but it cannot
5108 equal `string2'. */
419d1c74 5109 if (pos >= size1)
fa9a63c5 5110 {
419d1c74
SM
5111 /* Only match within string2. */
5112 d = string2 + pos - size1;
5113 dend = end_match_2 = string2 + stop - size1;
5114 end_match_1 = end1; /* Just to give it a value. */
fa9a63c5
RM
5115 }
5116 else
5117 {
f1ad044f 5118 if (stop < size1)
419d1c74
SM
5119 {
5120 /* Only match within string1. */
5121 end_match_1 = string1 + stop;
5122 /* BEWARE!
5123 When we reach end_match_1, PREFETCH normally switches to string2.
5124 But in the present case, this means that just doing a PREFETCH
5125 makes us jump from `stop' to `gap' within the string.
5126 What we really want here is for the search to stop as
5127 soon as we hit end_match_1. That's why we set end_match_2
5128 to end_match_1 (since PREFETCH fails as soon as we hit
5129 end_match_2). */
5130 end_match_2 = end_match_1;
5131 }
5132 else
f1ad044f
SM
5133 { /* It's important to use this code when stop == size so that
5134 moving `d' from end1 to string2 will not prevent the d == dend
5135 check from catching the end of string. */
419d1c74
SM
5136 end_match_1 = end1;
5137 end_match_2 = string2 + stop - size1;
5138 }
5139 d = string1 + pos;
5140 dend = end_match_1;
fa9a63c5
RM
5141 }
5142
5143 DEBUG_PRINT1 ("The compiled pattern is: ");
5144 DEBUG_PRINT_COMPILED_PATTERN (bufp, p, pend);
5145 DEBUG_PRINT1 ("The string to match is: `");
5146 DEBUG_PRINT_DOUBLE_STRING (d, string1, size1, string2, size2);
5147 DEBUG_PRINT1 ("'\n");
5e69f11e 5148
7814e705 5149 /* This loops over pattern commands. It exits by returning from the
fa9a63c5
RM
5150 function if the match is complete, or it drops through if the match
5151 fails at this starting point in the input data. */
5152 for (;;)
5153 {
505bde11 5154 DEBUG_PRINT2 ("\n%p: ", p);
fa9a63c5
RM
5155
5156 if (p == pend)
5157 { /* End of pattern means we might have succeeded. */
25fe55af 5158 DEBUG_PRINT1 ("end of pattern ... ");
5e69f11e 5159
fa9a63c5 5160 /* If we haven't matched the entire string, and we want the
25fe55af
RS
5161 longest match, try backtracking. */
5162 if (d != end_match_2)
fa9a63c5
RM
5163 {
5164 /* 1 if this match ends in the same string (string1 or string2)
5165 as the best previous match. */
5e69f11e 5166 boolean same_str_p = (FIRST_STRING_P (match_end)
99633e97 5167 == FIRST_STRING_P (d));
fa9a63c5
RM
5168 /* 1 if this match is the best seen so far. */
5169 boolean best_match_p;
5170
5171 /* AIX compiler got confused when this was combined
7814e705 5172 with the previous declaration. */
fa9a63c5
RM
5173 if (same_str_p)
5174 best_match_p = d > match_end;
5175 else
99633e97 5176 best_match_p = !FIRST_STRING_P (d);
fa9a63c5 5177
25fe55af
RS
5178 DEBUG_PRINT1 ("backtracking.\n");
5179
5180 if (!FAIL_STACK_EMPTY ())
5181 { /* More failure points to try. */
5182
5183 /* If exceeds best match so far, save it. */
5184 if (!best_regs_set || best_match_p)
5185 {
5186 best_regs_set = true;
5187 match_end = d;
5188
5189 DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
5190
01618498 5191 for (reg = 1; reg < num_regs; reg++)
25fe55af 5192 {
01618498
SM
5193 best_regstart[reg] = regstart[reg];
5194 best_regend[reg] = regend[reg];
25fe55af
RS
5195 }
5196 }
5197 goto fail;
5198 }
5199
5200 /* If no failure points, don't restore garbage. And if
5201 last match is real best match, don't restore second
5202 best one. */
5203 else if (best_regs_set && !best_match_p)
5204 {
5205 restore_best_regs:
5206 /* Restore best match. It may happen that `dend ==
5207 end_match_1' while the restored d is in string2.
5208 For example, the pattern `x.*y.*z' against the
5209 strings `x-' and `y-z-', if the two strings are
7814e705 5210 not consecutive in memory. */
25fe55af
RS
5211 DEBUG_PRINT1 ("Restoring best registers.\n");
5212
5213 d = match_end;
5214 dend = ((d >= string1 && d <= end1)
5215 ? end_match_1 : end_match_2);
fa9a63c5 5216
01618498 5217 for (reg = 1; reg < num_regs; reg++)
fa9a63c5 5218 {
01618498
SM
5219 regstart[reg] = best_regstart[reg];
5220 regend[reg] = best_regend[reg];
fa9a63c5 5221 }
25fe55af
RS
5222 }
5223 } /* d != end_match_2 */
fa9a63c5
RM
5224
5225 succeed_label:
25fe55af 5226 DEBUG_PRINT1 ("Accepting match.\n");
fa9a63c5 5227
25fe55af
RS
5228 /* If caller wants register contents data back, do it. */
5229 if (regs && !bufp->no_sub)
fa9a63c5 5230 {
25fe55af
RS
5231 /* Have the register data arrays been allocated? */
5232 if (bufp->regs_allocated == REGS_UNALLOCATED)
7814e705 5233 { /* No. So allocate them with malloc. We need one
25fe55af
RS
5234 extra element beyond `num_regs' for the `-1' marker
5235 GNU code uses. */
5236 regs->num_regs = MAX (RE_NREGS, num_regs + 1);
5237 regs->start = TALLOC (regs->num_regs, regoff_t);
5238 regs->end = TALLOC (regs->num_regs, regoff_t);
5239 if (regs->start == NULL || regs->end == NULL)
fa9a63c5
RM
5240 {
5241 FREE_VARIABLES ();
5242 return -2;
5243 }
25fe55af
RS
5244 bufp->regs_allocated = REGS_REALLOCATE;
5245 }
5246 else if (bufp->regs_allocated == REGS_REALLOCATE)
5247 { /* Yes. If we need more elements than were already
5248 allocated, reallocate them. If we need fewer, just
5249 leave it alone. */
5250 if (regs->num_regs < num_regs + 1)
5251 {
5252 regs->num_regs = num_regs + 1;
5253 RETALLOC (regs->start, regs->num_regs, regoff_t);
5254 RETALLOC (regs->end, regs->num_regs, regoff_t);
5255 if (regs->start == NULL || regs->end == NULL)
fa9a63c5
RM
5256 {
5257 FREE_VARIABLES ();
5258 return -2;
5259 }
25fe55af
RS
5260 }
5261 }
5262 else
fa9a63c5
RM
5263 {
5264 /* These braces fend off a "empty body in an else-statement"
7814e705 5265 warning under GCC when assert expands to nothing. */
fa9a63c5
RM
5266 assert (bufp->regs_allocated == REGS_FIXED);
5267 }
5268
25fe55af
RS
5269 /* Convert the pointer data in `regstart' and `regend' to
5270 indices. Register zero has to be set differently,
5271 since we haven't kept track of any info for it. */
5272 if (regs->num_regs > 0)
5273 {
5274 regs->start[0] = pos;
99633e97 5275 regs->end[0] = POINTER_TO_OFFSET (d);
25fe55af 5276 }
5e69f11e 5277
25fe55af
RS
5278 /* Go through the first `min (num_regs, regs->num_regs)'
5279 registers, since that is all we initialized. */
01618498 5280 for (reg = 1; reg < MIN (num_regs, regs->num_regs); reg++)
fa9a63c5 5281 {
01618498
SM
5282 if (REG_UNSET (regstart[reg]) || REG_UNSET (regend[reg]))
5283 regs->start[reg] = regs->end[reg] = -1;
25fe55af
RS
5284 else
5285 {
01618498
SM
5286 regs->start[reg]
5287 = (regoff_t) POINTER_TO_OFFSET (regstart[reg]);
5288 regs->end[reg]
5289 = (regoff_t) POINTER_TO_OFFSET (regend[reg]);
25fe55af 5290 }
fa9a63c5 5291 }
5e69f11e 5292
25fe55af
RS
5293 /* If the regs structure we return has more elements than
5294 were in the pattern, set the extra elements to -1. If
5295 we (re)allocated the registers, this is the case,
5296 because we always allocate enough to have at least one
7814e705 5297 -1 at the end. */
01618498
SM
5298 for (reg = num_regs; reg < regs->num_regs; reg++)
5299 regs->start[reg] = regs->end[reg] = -1;
fa9a63c5
RM
5300 } /* regs && !bufp->no_sub */
5301
25fe55af
RS
5302 DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
5303 nfailure_points_pushed, nfailure_points_popped,
5304 nfailure_points_pushed - nfailure_points_popped);
5305 DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed);
fa9a63c5 5306
99633e97 5307 mcnt = POINTER_TO_OFFSET (d) - pos;
fa9a63c5 5308
25fe55af 5309 DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt);
fa9a63c5 5310
25fe55af
RS
5311 FREE_VARIABLES ();
5312 return mcnt;
5313 }
fa9a63c5 5314
7814e705 5315 /* Otherwise match next pattern command. */
fa9a63c5
RM
5316 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
5317 {
25fe55af
RS
5318 /* Ignore these. Used to ignore the n of succeed_n's which
5319 currently have n == 0. */
5320 case no_op:
5321 DEBUG_PRINT1 ("EXECUTING no_op.\n");
5322 break;
fa9a63c5
RM
5323
5324 case succeed:
25fe55af 5325 DEBUG_PRINT1 ("EXECUTING succeed.\n");
fa9a63c5
RM
5326 goto succeed_label;
5327
7814e705 5328 /* Match the next n pattern characters exactly. The following
25fe55af 5329 byte in the pattern defines n, and the n bytes after that
7814e705 5330 are the characters to match. */
fa9a63c5
RM
5331 case exactn:
5332 mcnt = *p++;
25fe55af 5333 DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt);
fa9a63c5 5334
99633e97
SM
5335 /* Remember the start point to rollback upon failure. */
5336 dfail = d;
5337
6fdd04b0 5338#ifndef emacs
25fe55af
RS
5339 /* This is written out as an if-else so we don't waste time
5340 testing `translate' inside the loop. */
28703c16 5341 if (RE_TRANSLATE_P (translate))
6fdd04b0
KH
5342 do
5343 {
5344 PREFETCH ();
5345 if (RE_TRANSLATE (translate, *d) != *p++)
e934739e 5346 {
6fdd04b0
KH
5347 d = dfail;
5348 goto fail;
e934739e 5349 }
6fdd04b0
KH
5350 d++;
5351 }
5352 while (--mcnt);
fa9a63c5 5353 else
6fdd04b0
KH
5354 do
5355 {
5356 PREFETCH ();
5357 if (*d++ != *p++)
bf216479 5358 {
6fdd04b0
KH
5359 d = dfail;
5360 goto fail;
bf216479 5361 }
6fdd04b0
KH
5362 }
5363 while (--mcnt);
5364#else /* emacs */
5365 /* The cost of testing `translate' is comparatively small. */
cf9c99bc 5366 if (target_multibyte)
6fdd04b0
KH
5367 do
5368 {
5369 int pat_charlen, buf_charlen;
cf9c99bc 5370 int pat_ch, buf_ch;
e934739e 5371
6fdd04b0 5372 PREFETCH ();
cf9c99bc 5373 if (multibyte)
62a6e103 5374 pat_ch = STRING_CHAR_AND_LENGTH (p, pat_charlen);
cf9c99bc
KH
5375 else
5376 {
5377 pat_ch = RE_CHAR_TO_MULTIBYTE (*p);
5378 pat_charlen = 1;
5379 }
62a6e103 5380 buf_ch = STRING_CHAR_AND_LENGTH (d, buf_charlen);
e934739e 5381
6fdd04b0 5382 if (TRANSLATE (buf_ch) != pat_ch)
e934739e 5383 {
6fdd04b0
KH
5384 d = dfail;
5385 goto fail;
e934739e 5386 }
bf216479 5387
6fdd04b0
KH
5388 p += pat_charlen;
5389 d += buf_charlen;
5390 mcnt -= pat_charlen;
5391 }
5392 while (mcnt > 0);
fa9a63c5 5393 else
6fdd04b0
KH
5394 do
5395 {
abbd1bcf 5396 int pat_charlen;
cf9c99bc 5397 int pat_ch, buf_ch;
bf216479 5398
6fdd04b0 5399 PREFETCH ();
cf9c99bc
KH
5400 if (multibyte)
5401 {
62a6e103 5402 pat_ch = STRING_CHAR_AND_LENGTH (p, pat_charlen);
2afc21f5 5403 pat_ch = RE_CHAR_TO_UNIBYTE (pat_ch);
cf9c99bc
KH
5404 }
5405 else
5406 {
5407 pat_ch = *p;
5408 pat_charlen = 1;
5409 }
5410 buf_ch = RE_CHAR_TO_MULTIBYTE (*d);
5411 if (! CHAR_BYTE8_P (buf_ch))
5412 {
5413 buf_ch = TRANSLATE (buf_ch);
5414 buf_ch = RE_CHAR_TO_UNIBYTE (buf_ch);
5415 if (buf_ch < 0)
5416 buf_ch = *d;
5417 }
0e2501ed
AS
5418 else
5419 buf_ch = *d;
cf9c99bc 5420 if (buf_ch != pat_ch)
6fdd04b0
KH
5421 {
5422 d = dfail;
5423 goto fail;
bf216479 5424 }
cf9c99bc
KH
5425 p += pat_charlen;
5426 d++;
6fdd04b0
KH
5427 }
5428 while (--mcnt);
5429#endif
25fe55af 5430 break;
fa9a63c5
RM
5431
5432
25fe55af 5433 /* Match any character except possibly a newline or a null. */
fa9a63c5 5434 case anychar:
e934739e
RS
5435 {
5436 int buf_charlen;
01618498 5437 re_wchar_t buf_ch;
fa9a63c5 5438
e934739e 5439 DEBUG_PRINT1 ("EXECUTING anychar.\n");
fa9a63c5 5440
e934739e 5441 PREFETCH ();
62a6e103 5442 buf_ch = RE_STRING_CHAR_AND_LENGTH (d, buf_charlen,
cf9c99bc 5443 target_multibyte);
e934739e
RS
5444 buf_ch = TRANSLATE (buf_ch);
5445
5446 if ((!(bufp->syntax & RE_DOT_NEWLINE)
5447 && buf_ch == '\n')
5448 || ((bufp->syntax & RE_DOT_NOT_NULL)
5449 && buf_ch == '\000'))
5450 goto fail;
5451
e934739e
RS
5452 DEBUG_PRINT2 (" Matched `%d'.\n", *d);
5453 d += buf_charlen;
5454 }
fa9a63c5
RM
5455 break;
5456
5457
5458 case charset:
5459 case charset_not:
5460 {
b18215fc 5461 register unsigned int c;
fa9a63c5 5462 boolean not = (re_opcode_t) *(p - 1) == charset_not;
b18215fc
RS
5463 int len;
5464
5465 /* Start of actual range_table, or end of bitmap if there is no
5466 range table. */
da053e48 5467 re_char *range_table IF_LINT (= NULL);
b18215fc 5468
96cc36cc 5469 /* Nonzero if there is a range table. */
b18215fc
RS
5470 int range_table_exists;
5471
96cc36cc
RS
5472 /* Number of ranges of range table. This is not included
5473 in the initial byte-length of the command. */
5474 int count = 0;
fa9a63c5 5475
f5020181
AS
5476 /* Whether matching against a unibyte character. */
5477 boolean unibyte_char = false;
5478
25fe55af 5479 DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : "");
fa9a63c5 5480
b18215fc 5481 range_table_exists = CHARSET_RANGE_TABLE_EXISTS_P (&p[-1]);
96cc36cc 5482
b18215fc 5483 if (range_table_exists)
96cc36cc
RS
5484 {
5485 range_table = CHARSET_RANGE_TABLE (&p[-1]); /* Past the bitmap. */
5486 EXTRACT_NUMBER_AND_INCR (count, range_table);
5487 }
b18215fc 5488
2d1675e4 5489 PREFETCH ();
62a6e103 5490 c = RE_STRING_CHAR_AND_LENGTH (d, len, target_multibyte);
cf9c99bc
KH
5491 if (target_multibyte)
5492 {
5493 int c1;
b18215fc 5494
cf9c99bc
KH
5495 c = TRANSLATE (c);
5496 c1 = RE_CHAR_TO_UNIBYTE (c);
5497 if (c1 >= 0)
f5020181
AS
5498 {
5499 unibyte_char = true;
5500 c = c1;
5501 }
cf9c99bc
KH
5502 }
5503 else
5504 {
5505 int c1 = RE_CHAR_TO_MULTIBYTE (c);
5506
5507 if (! CHAR_BYTE8_P (c1))
5508 {
5509 c1 = TRANSLATE (c1);
5510 c1 = RE_CHAR_TO_UNIBYTE (c1);
5511 if (c1 >= 0)
f5020181
AS
5512 {
5513 unibyte_char = true;
5514 c = c1;
5515 }
cf9c99bc 5516 }
0b8be006
AS
5517 else
5518 unibyte_char = true;
cf9c99bc
KH
5519 }
5520
f5020181 5521 if (unibyte_char && c < (1 << BYTEWIDTH))
b18215fc 5522 { /* Lookup bitmap. */
b18215fc
RS
5523 /* Cast to `unsigned' instead of `unsigned char' in
5524 case the bit list is a full 32 bytes long. */
5525 if (c < (unsigned) (CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH)
96cc36cc
RS
5526 && p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
5527 not = !not;
b18215fc 5528 }
96cc36cc 5529#ifdef emacs
b18215fc 5530 else if (range_table_exists)
96cc36cc
RS
5531 {
5532 int class_bits = CHARSET_RANGE_TABLE_BITS (&p[-1]);
5533
14473664
SM
5534 if ( (class_bits & BIT_LOWER && ISLOWER (c))
5535 | (class_bits & BIT_MULTIBYTE)
96cc36cc
RS
5536 | (class_bits & BIT_PUNCT && ISPUNCT (c))
5537 | (class_bits & BIT_SPACE && ISSPACE (c))
5538 | (class_bits & BIT_UPPER && ISUPPER (c))
5539 | (class_bits & BIT_WORD && ISWORD (c)))
5540 not = !not;
5541 else
5542 CHARSET_LOOKUP_RANGE_TABLE_RAW (not, c, range_table, count);
5543 }
5544#endif /* emacs */
fa9a63c5 5545
96cc36cc
RS
5546 if (range_table_exists)
5547 p = CHARSET_RANGE_TABLE_END (range_table, count);
5548 else
5549 p += CHARSET_BITMAP_SIZE (&p[-1]) + 1;
fa9a63c5
RM
5550
5551 if (!not) goto fail;
5e69f11e 5552
b18215fc 5553 d += len;
fa9a63c5 5554 }
8fb31792 5555 break;
fa9a63c5
RM
5556
5557
25fe55af 5558 /* The beginning of a group is represented by start_memory.
505bde11 5559 The argument is the register number. The text
25fe55af 5560 matched within the group is recorded (in the internal
7814e705 5561 registers data structure) under the register number. */
25fe55af 5562 case start_memory:
505bde11
SM
5563 DEBUG_PRINT2 ("EXECUTING start_memory %d:\n", *p);
5564
5565 /* In case we need to undo this operation (via backtracking). */
5566 PUSH_FAILURE_REG ((unsigned int)*p);
fa9a63c5 5567
25fe55af 5568 regstart[*p] = d;
4bb91c68 5569 regend[*p] = NULL; /* probably unnecessary. -sm */
fa9a63c5
RM
5570 DEBUG_PRINT2 (" regstart: %d\n", POINTER_TO_OFFSET (regstart[*p]));
5571
25fe55af 5572 /* Move past the register number and inner group count. */
505bde11 5573 p += 1;
25fe55af 5574 break;
fa9a63c5
RM
5575
5576
25fe55af 5577 /* The stop_memory opcode represents the end of a group. Its
505bde11 5578 argument is the same as start_memory's: the register number. */
fa9a63c5 5579 case stop_memory:
505bde11
SM
5580 DEBUG_PRINT2 ("EXECUTING stop_memory %d:\n", *p);
5581
5582 assert (!REG_UNSET (regstart[*p]));
5583 /* Strictly speaking, there should be code such as:
177c0ea7 5584
0b32bf0e 5585 assert (REG_UNSET (regend[*p]));
505bde11
SM
5586 PUSH_FAILURE_REGSTOP ((unsigned int)*p);
5587
5588 But the only info to be pushed is regend[*p] and it is known to
5589 be UNSET, so there really isn't anything to push.
5590 Not pushing anything, on the other hand deprives us from the
5591 guarantee that regend[*p] is UNSET since undoing this operation
5592 will not reset its value properly. This is not important since
5593 the value will only be read on the next start_memory or at
5594 the very end and both events can only happen if this stop_memory
5595 is *not* undone. */
fa9a63c5 5596
25fe55af 5597 regend[*p] = d;
fa9a63c5
RM
5598 DEBUG_PRINT2 (" regend: %d\n", POINTER_TO_OFFSET (regend[*p]));
5599
25fe55af 5600 /* Move past the register number and the inner group count. */
505bde11 5601 p += 1;
25fe55af 5602 break;
fa9a63c5
RM
5603
5604
5605 /* \<digit> has been turned into a `duplicate' command which is
25fe55af
RS
5606 followed by the numeric value of <digit> as the register number. */
5607 case duplicate:
fa9a63c5 5608 {
66f0296e 5609 register re_char *d2, *dend2;
7814e705 5610 int regno = *p++; /* Get which register to match against. */
fa9a63c5
RM
5611 DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno);
5612
7814e705 5613 /* Can't back reference a group which we've never matched. */
25fe55af
RS
5614 if (REG_UNSET (regstart[regno]) || REG_UNSET (regend[regno]))
5615 goto fail;
5e69f11e 5616
7814e705 5617 /* Where in input to try to start matching. */
25fe55af 5618 d2 = regstart[regno];
5e69f11e 5619
99633e97
SM
5620 /* Remember the start point to rollback upon failure. */
5621 dfail = d;
5622
25fe55af
RS
5623 /* Where to stop matching; if both the place to start and
5624 the place to stop matching are in the same string, then
5625 set to the place to stop, otherwise, for now have to use
5626 the end of the first string. */
fa9a63c5 5627
25fe55af 5628 dend2 = ((FIRST_STRING_P (regstart[regno])
fa9a63c5
RM
5629 == FIRST_STRING_P (regend[regno]))
5630 ? regend[regno] : end_match_1);
5631 for (;;)
5632 {
5633 /* If necessary, advance to next segment in register
25fe55af 5634 contents. */
fa9a63c5
RM
5635 while (d2 == dend2)
5636 {
5637 if (dend2 == end_match_2) break;
5638 if (dend2 == regend[regno]) break;
5639
25fe55af
RS
5640 /* End of string1 => advance to string2. */
5641 d2 = string2;
5642 dend2 = regend[regno];
fa9a63c5
RM
5643 }
5644 /* At end of register contents => success */
5645 if (d2 == dend2) break;
5646
5647 /* If necessary, advance to next segment in data. */
5648 PREFETCH ();
5649
5650 /* How many characters left in this segment to match. */
5651 mcnt = dend - d;
5e69f11e 5652
fa9a63c5 5653 /* Want how many consecutive characters we can match in
25fe55af
RS
5654 one shot, so, if necessary, adjust the count. */
5655 if (mcnt > dend2 - d2)
fa9a63c5 5656 mcnt = dend2 - d2;
5e69f11e 5657
fa9a63c5 5658 /* Compare that many; failure if mismatch, else move
25fe55af 5659 past them. */
28703c16 5660 if (RE_TRANSLATE_P (translate)
02cb78b5 5661 ? bcmp_translate (d, d2, mcnt, translate, target_multibyte)
4bb91c68 5662 : memcmp (d, d2, mcnt))
99633e97
SM
5663 {
5664 d = dfail;
5665 goto fail;
5666 }
fa9a63c5 5667 d += mcnt, d2 += mcnt;
fa9a63c5
RM
5668 }
5669 }
5670 break;
5671
5672
25fe55af 5673 /* begline matches the empty string at the beginning of the string
c0f9ea08 5674 (unless `not_bol' is set in `bufp'), and after newlines. */
fa9a63c5 5675 case begline:
25fe55af 5676 DEBUG_PRINT1 ("EXECUTING begline.\n");
5e69f11e 5677
25fe55af
RS
5678 if (AT_STRINGS_BEG (d))
5679 {
5680 if (!bufp->not_bol) break;
5681 }
419d1c74 5682 else
25fe55af 5683 {
bf216479 5684 unsigned c;
419d1c74 5685 GET_CHAR_BEFORE_2 (c, d, string1, end1, string2, end2);
c0f9ea08 5686 if (c == '\n')
419d1c74 5687 break;
25fe55af
RS
5688 }
5689 /* In all other cases, we fail. */
5690 goto fail;
fa9a63c5
RM
5691
5692
25fe55af 5693 /* endline is the dual of begline. */
fa9a63c5 5694 case endline:
25fe55af 5695 DEBUG_PRINT1 ("EXECUTING endline.\n");
fa9a63c5 5696
25fe55af
RS
5697 if (AT_STRINGS_END (d))
5698 {
5699 if (!bufp->not_eol) break;
5700 }
f1ad044f 5701 else
25fe55af 5702 {
f1ad044f 5703 PREFETCH_NOLIMIT ();
c0f9ea08 5704 if (*d == '\n')
f1ad044f 5705 break;
25fe55af
RS
5706 }
5707 goto fail;
fa9a63c5
RM
5708
5709
5710 /* Match at the very beginning of the data. */
25fe55af
RS
5711 case begbuf:
5712 DEBUG_PRINT1 ("EXECUTING begbuf.\n");
5713 if (AT_STRINGS_BEG (d))
5714 break;
5715 goto fail;
fa9a63c5
RM
5716
5717
5718 /* Match at the very end of the data. */
25fe55af
RS
5719 case endbuf:
5720 DEBUG_PRINT1 ("EXECUTING endbuf.\n");
fa9a63c5
RM
5721 if (AT_STRINGS_END (d))
5722 break;
25fe55af 5723 goto fail;
5e69f11e 5724
5e69f11e 5725
25fe55af
RS
5726 /* on_failure_keep_string_jump is used to optimize `.*\n'. It
5727 pushes NULL as the value for the string on the stack. Then
505bde11 5728 `POP_FAILURE_POINT' will keep the current value for the
25fe55af 5729 string, instead of restoring it. To see why, consider
7814e705 5730 matching `foo\nbar' against `.*\n'. The .* matches the foo;
25fe55af
RS
5731 then the . fails against the \n. But the next thing we want
5732 to do is match the \n against the \n; if we restored the
5733 string value, we would be back at the foo.
5734
5735 Because this is used only in specific cases, we don't need to
5736 check all the things that `on_failure_jump' does, to make
5737 sure the right things get saved on the stack. Hence we don't
5738 share its code. The only reason to push anything on the
5739 stack at all is that otherwise we would have to change
5740 `anychar's code to do something besides goto fail in this
5741 case; that seems worse than this. */
5742 case on_failure_keep_string_jump:
505bde11
SM
5743 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5744 DEBUG_PRINT3 ("EXECUTING on_failure_keep_string_jump %d (to %p):\n",
5745 mcnt, p + mcnt);
fa9a63c5 5746
505bde11
SM
5747 PUSH_FAILURE_POINT (p - 3, NULL);
5748 break;
5749
0683b6fa
SM
5750 /* A nasty loop is introduced by the non-greedy *? and +?.
5751 With such loops, the stack only ever contains one failure point
5752 at a time, so that a plain on_failure_jump_loop kind of
5753 cycle detection cannot work. Worse yet, such a detection
5754 can not only fail to detect a cycle, but it can also wrongly
5755 detect a cycle (between different instantiations of the same
6df42991 5756 loop).
0683b6fa
SM
5757 So the method used for those nasty loops is a little different:
5758 We use a special cycle-detection-stack-frame which is pushed
5759 when the on_failure_jump_nastyloop failure-point is *popped*.
5760 This special frame thus marks the beginning of one iteration
5761 through the loop and we can hence easily check right here
5762 whether something matched between the beginning and the end of
5763 the loop. */
5764 case on_failure_jump_nastyloop:
5765 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5766 DEBUG_PRINT3 ("EXECUTING on_failure_jump_nastyloop %d (to %p):\n",
5767 mcnt, p + mcnt);
5768
5769 assert ((re_opcode_t)p[-4] == no_op);
6df42991
SM
5770 {
5771 int cycle = 0;
5772 CHECK_INFINITE_LOOP (p - 4, d);
5773 if (!cycle)
5774 /* If there's a cycle, just continue without pushing
5775 this failure point. The failure point is the "try again"
5776 option, which shouldn't be tried.
5777 We want (x?)*?y\1z to match both xxyz and xxyxz. */
5778 PUSH_FAILURE_POINT (p - 3, d);
5779 }
0683b6fa
SM
5780 break;
5781
4e8a9132
SM
5782 /* Simple loop detecting on_failure_jump: just check on the
5783 failure stack if the same spot was already hit earlier. */
505bde11
SM
5784 case on_failure_jump_loop:
5785 on_failure:
5786 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5787 DEBUG_PRINT3 ("EXECUTING on_failure_jump_loop %d (to %p):\n",
5788 mcnt, p + mcnt);
6df42991
SM
5789 {
5790 int cycle = 0;
5791 CHECK_INFINITE_LOOP (p - 3, d);
5792 if (cycle)
5793 /* If there's a cycle, get out of the loop, as if the matching
5794 had failed. We used to just `goto fail' here, but that was
5795 aborting the search a bit too early: we want to keep the
5796 empty-loop-match and keep matching after the loop.
5797 We want (x?)*y\1z to match both xxyz and xxyxz. */
5798 p += mcnt;
5799 else
5800 PUSH_FAILURE_POINT (p - 3, d);
5801 }
25fe55af 5802 break;
fa9a63c5
RM
5803
5804
5805 /* Uses of on_failure_jump:
5e69f11e 5806
25fe55af
RS
5807 Each alternative starts with an on_failure_jump that points
5808 to the beginning of the next alternative. Each alternative
5809 except the last ends with a jump that in effect jumps past
5810 the rest of the alternatives. (They really jump to the
5811 ending jump of the following alternative, because tensioning
5812 these jumps is a hassle.)
fa9a63c5 5813
25fe55af
RS
5814 Repeats start with an on_failure_jump that points past both
5815 the repetition text and either the following jump or
5816 pop_failure_jump back to this on_failure_jump. */
fa9a63c5 5817 case on_failure_jump:
25fe55af 5818 EXTRACT_NUMBER_AND_INCR (mcnt, p);
505bde11
SM
5819 DEBUG_PRINT3 ("EXECUTING on_failure_jump %d (to %p):\n",
5820 mcnt, p + mcnt);
25fe55af 5821
505bde11 5822 PUSH_FAILURE_POINT (p -3, d);
25fe55af
RS
5823 break;
5824
4e8a9132 5825 /* This operation is used for greedy *.
505bde11
SM
5826 Compare the beginning of the repeat with what in the
5827 pattern follows its end. If we can establish that there
5828 is nothing that they would both match, i.e., that we
5829 would have to backtrack because of (as in, e.g., `a*a')
5830 then we can use a non-backtracking loop based on
4e8a9132 5831 on_failure_keep_string_jump instead of on_failure_jump. */
505bde11 5832 case on_failure_jump_smart:
25fe55af 5833 EXTRACT_NUMBER_AND_INCR (mcnt, p);
505bde11
SM
5834 DEBUG_PRINT3 ("EXECUTING on_failure_jump_smart %d (to %p).\n",
5835 mcnt, p + mcnt);
25fe55af 5836 {
01618498 5837 re_char *p1 = p; /* Next operation. */
6dcf2d0e
SM
5838 /* Here, we discard `const', making re_match non-reentrant. */
5839 unsigned char *p2 = (unsigned char*) p + mcnt; /* Jump dest. */
5840 unsigned char *p3 = (unsigned char*) p - 3; /* opcode location. */
fa9a63c5 5841
505bde11
SM
5842 p -= 3; /* Reset so that we will re-execute the
5843 instruction once it's been changed. */
fa9a63c5 5844
4e8a9132
SM
5845 EXTRACT_NUMBER (mcnt, p2 - 2);
5846
5847 /* Ensure this is a indeed the trivial kind of loop
5848 we are expecting. */
5849 assert (skip_one_char (p1) == p2 - 3);
5850 assert ((re_opcode_t) p2[-3] == jump && p2 + mcnt == p);
99633e97 5851 DEBUG_STATEMENT (debug += 2);
505bde11 5852 if (mutually_exclusive_p (bufp, p1, p2))
fa9a63c5 5853 {
505bde11 5854 /* Use a fast `on_failure_keep_string_jump' loop. */
4e8a9132 5855 DEBUG_PRINT1 (" smart exclusive => fast loop.\n");
01618498 5856 *p3 = (unsigned char) on_failure_keep_string_jump;
4e8a9132 5857 STORE_NUMBER (p2 - 2, mcnt + 3);
25fe55af 5858 }
505bde11 5859 else
fa9a63c5 5860 {
505bde11
SM
5861 /* Default to a safe `on_failure_jump' loop. */
5862 DEBUG_PRINT1 (" smart default => slow loop.\n");
01618498 5863 *p3 = (unsigned char) on_failure_jump;
fa9a63c5 5864 }
99633e97 5865 DEBUG_STATEMENT (debug -= 2);
25fe55af 5866 }
505bde11 5867 break;
25fe55af
RS
5868
5869 /* Unconditionally jump (without popping any failure points). */
5870 case jump:
fa9a63c5 5871 unconditional_jump:
5b370c2b 5872 IMMEDIATE_QUIT_CHECK;
fa9a63c5 5873 EXTRACT_NUMBER_AND_INCR (mcnt, p); /* Get the amount to jump. */
25fe55af 5874 DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt);
7814e705 5875 p += mcnt; /* Do the jump. */
505bde11 5876 DEBUG_PRINT2 ("(to %p).\n", p);
25fe55af
RS
5877 break;
5878
5879
25fe55af
RS
5880 /* Have to succeed matching what follows at least n times.
5881 After that, handle like `on_failure_jump'. */
5882 case succeed_n:
01618498 5883 /* Signedness doesn't matter since we only compare MCNT to 0. */
25fe55af
RS
5884 EXTRACT_NUMBER (mcnt, p + 2);
5885 DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt);
5e69f11e 5886
dc1e502d
SM
5887 /* Originally, mcnt is how many times we HAVE to succeed. */
5888 if (mcnt != 0)
25fe55af 5889 {
6dcf2d0e
SM
5890 /* Here, we discard `const', making re_match non-reentrant. */
5891 unsigned char *p2 = (unsigned char*) p + 2; /* counter loc. */
dc1e502d 5892 mcnt--;
01618498
SM
5893 p += 4;
5894 PUSH_NUMBER (p2, mcnt);
25fe55af 5895 }
dc1e502d
SM
5896 else
5897 /* The two bytes encoding mcnt == 0 are two no_op opcodes. */
5898 goto on_failure;
25fe55af
RS
5899 break;
5900
5901 case jump_n:
01618498 5902 /* Signedness doesn't matter since we only compare MCNT to 0. */
25fe55af
RS
5903 EXTRACT_NUMBER (mcnt, p + 2);
5904 DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt);
5905
5906 /* Originally, this is how many times we CAN jump. */
dc1e502d 5907 if (mcnt != 0)
25fe55af 5908 {
6dcf2d0e
SM
5909 /* Here, we discard `const', making re_match non-reentrant. */
5910 unsigned char *p2 = (unsigned char*) p + 2; /* counter loc. */
dc1e502d 5911 mcnt--;
01618498 5912 PUSH_NUMBER (p2, mcnt);
dc1e502d 5913 goto unconditional_jump;
25fe55af
RS
5914 }
5915 /* If don't have to jump any more, skip over the rest of command. */
5e69f11e
RM
5916 else
5917 p += 4;
25fe55af 5918 break;
5e69f11e 5919
fa9a63c5
RM
5920 case set_number_at:
5921 {
01618498 5922 unsigned char *p2; /* Location of the counter. */
25fe55af 5923 DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
fa9a63c5 5924
25fe55af 5925 EXTRACT_NUMBER_AND_INCR (mcnt, p);
6dcf2d0e
SM
5926 /* Here, we discard `const', making re_match non-reentrant. */
5927 p2 = (unsigned char*) p + mcnt;
01618498 5928 /* Signedness doesn't matter since we only copy MCNT's bits . */
25fe55af 5929 EXTRACT_NUMBER_AND_INCR (mcnt, p);
01618498
SM
5930 DEBUG_PRINT3 (" Setting %p to %d.\n", p2, mcnt);
5931 PUSH_NUMBER (p2, mcnt);
25fe55af
RS
5932 break;
5933 }
9121ca40
KH
5934
5935 case wordbound:
66f0296e 5936 case notwordbound:
19ed5445
PE
5937 {
5938 boolean not = (re_opcode_t) *(p - 1) == notwordbound;
5939 DEBUG_PRINT2 ("EXECUTING %swordbound.\n", not?"not":"");
fa9a63c5 5940
19ed5445 5941 /* We SUCCEED (or FAIL) in one of the following cases: */
9121ca40 5942
19ed5445
PE
5943 /* Case 1: D is at the beginning or the end of string. */
5944 if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
5945 not = !not;
5946 else
5947 {
5948 /* C1 is the character before D, S1 is the syntax of C1, C2
5949 is the character at D, and S2 is the syntax of C2. */
5950 re_wchar_t c1, c2;
5951 int s1, s2;
5952 int dummy;
b18215fc 5953#ifdef emacs
d1dfb56c
EZ
5954 ssize_t offset = PTR_TO_OFFSET (d - 1);
5955 ssize_t charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
19ed5445 5956 UPDATE_SYNTAX_TABLE (charpos);
25fe55af 5957#endif
19ed5445
PE
5958 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
5959 s1 = SYNTAX (c1);
b18215fc 5960#ifdef emacs
19ed5445 5961 UPDATE_SYNTAX_TABLE_FORWARD (charpos + 1);
25fe55af 5962#endif
19ed5445
PE
5963 PREFETCH_NOLIMIT ();
5964 GET_CHAR_AFTER (c2, d, dummy);
5965 s2 = SYNTAX (c2);
5966
5967 if (/* Case 2: Only one of S1 and S2 is Sword. */
5968 ((s1 == Sword) != (s2 == Sword))
5969 /* Case 3: Both of S1 and S2 are Sword, and macro
5970 WORD_BOUNDARY_P (C1, C2) returns nonzero. */
5971 || ((s1 == Sword) && WORD_BOUNDARY_P (c1, c2)))
5972 not = !not;
5973 }
5974 if (not)
5975 break;
5976 else
5977 goto fail;
5978 }
fa9a63c5
RM
5979
5980 case wordbeg:
25fe55af 5981 DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
fa9a63c5 5982
b18215fc
RS
5983 /* We FAIL in one of the following cases: */
5984
7814e705 5985 /* Case 1: D is at the end of string. */
b18215fc 5986 if (AT_STRINGS_END (d))
99633e97 5987 goto fail;
b18215fc
RS
5988 else
5989 {
5990 /* C1 is the character before D, S1 is the syntax of C1, C2
5991 is the character at D, and S2 is the syntax of C2. */
01618498
SM
5992 re_wchar_t c1, c2;
5993 int s1, s2;
bf216479 5994 int dummy;
fa9a63c5 5995#ifdef emacs
d1dfb56c
EZ
5996 ssize_t offset = PTR_TO_OFFSET (d);
5997 ssize_t charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
92432794 5998 UPDATE_SYNTAX_TABLE (charpos);
25fe55af 5999#endif
99633e97 6000 PREFETCH ();
6fdd04b0 6001 GET_CHAR_AFTER (c2, d, dummy);
b18215fc 6002 s2 = SYNTAX (c2);
177c0ea7 6003
b18215fc
RS
6004 /* Case 2: S2 is not Sword. */
6005 if (s2 != Sword)
6006 goto fail;
6007
6008 /* Case 3: D is not at the beginning of string ... */
6009 if (!AT_STRINGS_BEG (d))
6010 {
6011 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
6012#ifdef emacs
5d967c7a 6013 UPDATE_SYNTAX_TABLE_BACKWARD (charpos - 1);
25fe55af 6014#endif
b18215fc
RS
6015 s1 = SYNTAX (c1);
6016
6017 /* ... and S1 is Sword, and WORD_BOUNDARY_P (C1, C2)
7814e705 6018 returns 0. */
b18215fc
RS
6019 if ((s1 == Sword) && !WORD_BOUNDARY_P (c1, c2))
6020 goto fail;
6021 }
6022 }
e318085a
RS
6023 break;
6024
b18215fc 6025 case wordend:
25fe55af 6026 DEBUG_PRINT1 ("EXECUTING wordend.\n");
b18215fc
RS
6027
6028 /* We FAIL in one of the following cases: */
6029
6030 /* Case 1: D is at the beginning of string. */
6031 if (AT_STRINGS_BEG (d))
e318085a 6032 goto fail;
b18215fc
RS
6033 else
6034 {
6035 /* C1 is the character before D, S1 is the syntax of C1, C2
6036 is the character at D, and S2 is the syntax of C2. */
01618498
SM
6037 re_wchar_t c1, c2;
6038 int s1, s2;
bf216479 6039 int dummy;
5d967c7a 6040#ifdef emacs
d1dfb56c
EZ
6041 ssize_t offset = PTR_TO_OFFSET (d) - 1;
6042 ssize_t charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
92432794 6043 UPDATE_SYNTAX_TABLE (charpos);
5d967c7a 6044#endif
99633e97 6045 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
b18215fc
RS
6046 s1 = SYNTAX (c1);
6047
6048 /* Case 2: S1 is not Sword. */
6049 if (s1 != Sword)
6050 goto fail;
6051
6052 /* Case 3: D is not at the end of string ... */
6053 if (!AT_STRINGS_END (d))
6054 {
f1ad044f 6055 PREFETCH_NOLIMIT ();
6fdd04b0 6056 GET_CHAR_AFTER (c2, d, dummy);
5d967c7a
RS
6057#ifdef emacs
6058 UPDATE_SYNTAX_TABLE_FORWARD (charpos);
6059#endif
b18215fc
RS
6060 s2 = SYNTAX (c2);
6061
6062 /* ... and S2 is Sword, and WORD_BOUNDARY_P (C1, C2)
7814e705 6063 returns 0. */
b18215fc 6064 if ((s2 == Sword) && !WORD_BOUNDARY_P (c1, c2))
25fe55af 6065 goto fail;
b18215fc
RS
6066 }
6067 }
e318085a
RS
6068 break;
6069
669fa600
SM
6070 case symbeg:
6071 DEBUG_PRINT1 ("EXECUTING symbeg.\n");
6072
6073 /* We FAIL in one of the following cases: */
6074
7814e705 6075 /* Case 1: D is at the end of string. */
669fa600
SM
6076 if (AT_STRINGS_END (d))
6077 goto fail;
6078 else
6079 {
6080 /* C1 is the character before D, S1 is the syntax of C1, C2
6081 is the character at D, and S2 is the syntax of C2. */
6082 re_wchar_t c1, c2;
6083 int s1, s2;
6084#ifdef emacs
d1dfb56c
EZ
6085 ssize_t offset = PTR_TO_OFFSET (d);
6086 ssize_t charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
669fa600
SM
6087 UPDATE_SYNTAX_TABLE (charpos);
6088#endif
6089 PREFETCH ();
62a6e103 6090 c2 = RE_STRING_CHAR (d, target_multibyte);
669fa600 6091 s2 = SYNTAX (c2);
7814e705 6092
669fa600
SM
6093 /* Case 2: S2 is neither Sword nor Ssymbol. */
6094 if (s2 != Sword && s2 != Ssymbol)
6095 goto fail;
6096
6097 /* Case 3: D is not at the beginning of string ... */
6098 if (!AT_STRINGS_BEG (d))
6099 {
6100 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
6101#ifdef emacs
6102 UPDATE_SYNTAX_TABLE_BACKWARD (charpos - 1);
6103#endif
6104 s1 = SYNTAX (c1);
6105
6106 /* ... and S1 is Sword or Ssymbol. */
6107 if (s1 == Sword || s1 == Ssymbol)
6108 goto fail;
6109 }
6110 }
6111 break;
6112
6113 case symend:
6114 DEBUG_PRINT1 ("EXECUTING symend.\n");
6115
6116 /* We FAIL in one of the following cases: */
6117
6118 /* Case 1: D is at the beginning of string. */
6119 if (AT_STRINGS_BEG (d))
6120 goto fail;
6121 else
6122 {
6123 /* C1 is the character before D, S1 is the syntax of C1, C2
6124 is the character at D, and S2 is the syntax of C2. */
6125 re_wchar_t c1, c2;
6126 int s1, s2;
6127#ifdef emacs
d1dfb56c
EZ
6128 ssize_t offset = PTR_TO_OFFSET (d) - 1;
6129 ssize_t charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
669fa600
SM
6130 UPDATE_SYNTAX_TABLE (charpos);
6131#endif
6132 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
6133 s1 = SYNTAX (c1);
6134
6135 /* Case 2: S1 is neither Ssymbol nor Sword. */
6136 if (s1 != Sword && s1 != Ssymbol)
6137 goto fail;
6138
6139 /* Case 3: D is not at the end of string ... */
6140 if (!AT_STRINGS_END (d))
6141 {
6142 PREFETCH_NOLIMIT ();
62a6e103 6143 c2 = RE_STRING_CHAR (d, target_multibyte);
669fa600 6144#ifdef emacs
134579f2 6145 UPDATE_SYNTAX_TABLE_FORWARD (charpos + 1);
669fa600
SM
6146#endif
6147 s2 = SYNTAX (c2);
6148
6149 /* ... and S2 is Sword or Ssymbol. */
6150 if (s2 == Sword || s2 == Ssymbol)
6151 goto fail;
b18215fc
RS
6152 }
6153 }
e318085a
RS
6154 break;
6155
fa9a63c5 6156 case syntaxspec:
1fb352e0 6157 case notsyntaxspec:
b18215fc 6158 {
19ed5445
PE
6159 boolean not = (re_opcode_t) *(p - 1) == notsyntaxspec;
6160 mcnt = *p++;
6161 DEBUG_PRINT3 ("EXECUTING %ssyntaxspec %d.\n", not?"not":"", mcnt);
6162 PREFETCH ();
6163#ifdef emacs
6164 {
d1dfb56c
EZ
6165 ssize_t offset = PTR_TO_OFFSET (d);
6166 ssize_t pos1 = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
19ed5445
PE
6167 UPDATE_SYNTAX_TABLE (pos1);
6168 }
25fe55af 6169#endif
19ed5445
PE
6170 {
6171 int len;
6172 re_wchar_t c;
b18215fc 6173
19ed5445
PE
6174 GET_CHAR_AFTER (c, d, len);
6175 if ((SYNTAX (c) != (enum syntaxcode) mcnt) ^ not)
6176 goto fail;
6177 d += len;
6178 }
b18215fc 6179 }
8fb31792 6180 break;
fa9a63c5 6181
b18215fc 6182#ifdef emacs
1fb352e0
SM
6183 case before_dot:
6184 DEBUG_PRINT1 ("EXECUTING before_dot.\n");
6185 if (PTR_BYTE_POS (d) >= PT_BYTE)
fa9a63c5 6186 goto fail;
b18215fc
RS
6187 break;
6188
1fb352e0
SM
6189 case at_dot:
6190 DEBUG_PRINT1 ("EXECUTING at_dot.\n");
6191 if (PTR_BYTE_POS (d) != PT_BYTE)
6192 goto fail;
6193 break;
b18215fc 6194
1fb352e0
SM
6195 case after_dot:
6196 DEBUG_PRINT1 ("EXECUTING after_dot.\n");
6197 if (PTR_BYTE_POS (d) <= PT_BYTE)
6198 goto fail;
e318085a 6199 break;
fa9a63c5 6200
1fb352e0 6201 case categoryspec:
b18215fc 6202 case notcategoryspec:
b18215fc 6203 {
8fb31792
PE
6204 boolean not = (re_opcode_t) *(p - 1) == notcategoryspec;
6205 mcnt = *p++;
6206 DEBUG_PRINT3 ("EXECUTING %scategoryspec %d.\n",
6207 not?"not":"", mcnt);
6208 PREFETCH ();
01618498 6209
8fb31792
PE
6210 {
6211 int len;
6212 re_wchar_t c;
6213 GET_CHAR_AFTER (c, d, len);
6214 if ((!CHAR_HAS_CATEGORY (c, mcnt)) ^ not)
6215 goto fail;
6216 d += len;
6217 }
b18215fc 6218 }
fa9a63c5 6219 break;
5e69f11e 6220
1fb352e0 6221#endif /* emacs */
5e69f11e 6222
0b32bf0e
SM
6223 default:
6224 abort ();
fa9a63c5 6225 }
b18215fc 6226 continue; /* Successfully executed one pattern command; keep going. */
fa9a63c5
RM
6227
6228
6229 /* We goto here if a matching operation fails. */
6230 fail:
5b370c2b 6231 IMMEDIATE_QUIT_CHECK;
fa9a63c5 6232 if (!FAIL_STACK_EMPTY ())
505bde11 6233 {
01618498 6234 re_char *str, *pat;
505bde11 6235 /* A restart point is known. Restore to that state. */
0b32bf0e
SM
6236 DEBUG_PRINT1 ("\nFAIL:\n");
6237 POP_FAILURE_POINT (str, pat);
505bde11
SM
6238 switch (SWITCH_ENUM_CAST ((re_opcode_t) *pat++))
6239 {
6240 case on_failure_keep_string_jump:
6241 assert (str == NULL);
6242 goto continue_failure_jump;
6243
0683b6fa
SM
6244 case on_failure_jump_nastyloop:
6245 assert ((re_opcode_t)pat[-2] == no_op);
6246 PUSH_FAILURE_POINT (pat - 2, str);
6247 /* Fallthrough */
6248
505bde11
SM
6249 case on_failure_jump_loop:
6250 case on_failure_jump:
6251 case succeed_n:
6252 d = str;
6253 continue_failure_jump:
6254 EXTRACT_NUMBER_AND_INCR (mcnt, pat);
6255 p = pat + mcnt;
6256 break;
b18215fc 6257
0683b6fa
SM
6258 case no_op:
6259 /* A special frame used for nastyloops. */
6260 goto fail;
6261
505bde11 6262 default:
5e617bc2 6263 abort ();
505bde11 6264 }
fa9a63c5 6265
505bde11 6266 assert (p >= bufp->buffer && p <= pend);
b18215fc 6267
0b32bf0e 6268 if (d >= string1 && d <= end1)
fa9a63c5 6269 dend = end_match_1;
0b32bf0e 6270 }
fa9a63c5 6271 else
0b32bf0e 6272 break; /* Matching at this starting point really fails. */
fa9a63c5
RM
6273 } /* for (;;) */
6274
6275 if (best_regs_set)
6276 goto restore_best_regs;
6277
6278 FREE_VARIABLES ();
6279
b18215fc 6280 return -1; /* Failure to match. */
fa9a63c5
RM
6281} /* re_match_2 */
6282\f
6283/* Subroutine definitions for re_match_2. */
6284
fa9a63c5
RM
6285/* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
6286 bytes; nonzero otherwise. */
5e69f11e 6287
fa9a63c5 6288static int
d1dfb56c 6289bcmp_translate (const re_char *s1, const re_char *s2, register ssize_t len,
438105ed 6290 RE_TRANSLATE_TYPE translate, const int target_multibyte)
fa9a63c5 6291{
2d1675e4
SM
6292 register re_char *p1 = s1, *p2 = s2;
6293 re_char *p1_end = s1 + len;
6294 re_char *p2_end = s2 + len;
e934739e 6295
4bb91c68
SM
6296 /* FIXME: Checking both p1 and p2 presumes that the two strings might have
6297 different lengths, but relying on a single `len' would break this. -sm */
6298 while (p1 < p1_end && p2 < p2_end)
fa9a63c5 6299 {
e934739e 6300 int p1_charlen, p2_charlen;
01618498 6301 re_wchar_t p1_ch, p2_ch;
e934739e 6302
6fdd04b0
KH
6303 GET_CHAR_AFTER (p1_ch, p1, p1_charlen);
6304 GET_CHAR_AFTER (p2_ch, p2, p2_charlen);
e934739e
RS
6305
6306 if (RE_TRANSLATE (translate, p1_ch)
6307 != RE_TRANSLATE (translate, p2_ch))
bc192b5b 6308 return 1;
e934739e
RS
6309
6310 p1 += p1_charlen, p2 += p2_charlen;
fa9a63c5 6311 }
e934739e
RS
6312
6313 if (p1 != p1_end || p2 != p2_end)
6314 return 1;
6315
fa9a63c5
RM
6316 return 0;
6317}
6318\f
6319/* Entry points for GNU code. */
6320
6321/* re_compile_pattern is the GNU regular expression compiler: it
6322 compiles PATTERN (of length SIZE) and puts the result in BUFP.
6323 Returns 0 if the pattern was valid, otherwise an error string.
5e69f11e 6324
fa9a63c5
RM
6325 Assumes the `allocated' (and perhaps `buffer') and `translate' fields
6326 are set in BUFP on entry.
5e69f11e 6327
b18215fc 6328 We call regex_compile to do the actual compilation. */
fa9a63c5
RM
6329
6330const char *
d1dfb56c
EZ
6331re_compile_pattern (const char *pattern, size_t length,
6332 struct re_pattern_buffer *bufp)
fa9a63c5
RM
6333{
6334 reg_errcode_t ret;
5e69f11e 6335
fa9a63c5
RM
6336 /* GNU code is written to assume at least RE_NREGS registers will be set
6337 (and at least one extra will be -1). */
6338 bufp->regs_allocated = REGS_UNALLOCATED;
5e69f11e 6339
fa9a63c5
RM
6340 /* And GNU code determines whether or not to get register information
6341 by passing null for the REGS argument to re_match, etc., not by
6342 setting no_sub. */
6343 bufp->no_sub = 0;
5e69f11e 6344
4bb91c68 6345 ret = regex_compile ((re_char*) pattern, length, re_syntax_options, bufp);
fa9a63c5
RM
6346
6347 if (!ret)
6348 return NULL;
6349 return gettext (re_error_msgid[(int) ret]);
5e69f11e 6350}
c0f9ea08 6351WEAK_ALIAS (__re_compile_pattern, re_compile_pattern)
fa9a63c5 6352\f
b18215fc
RS
6353/* Entry points compatible with 4.2 BSD regex library. We don't define
6354 them unless specifically requested. */
fa9a63c5 6355
0b32bf0e 6356#if defined _REGEX_RE_COMP || defined _LIBC
fa9a63c5
RM
6357
6358/* BSD has one and only one pattern buffer. */
6359static struct re_pattern_buffer re_comp_buf;
6360
6361char *
0b32bf0e 6362# ifdef _LIBC
48afdd44
RM
6363/* Make these definitions weak in libc, so POSIX programs can redefine
6364 these names if they don't use our functions, and still use
6365 regcomp/regexec below without link errors. */
6366weak_function
0b32bf0e 6367# endif
31011111 6368re_comp (const char *s)
fa9a63c5
RM
6369{
6370 reg_errcode_t ret;
5e69f11e 6371
fa9a63c5
RM
6372 if (!s)
6373 {
6374 if (!re_comp_buf.buffer)
0b32bf0e 6375 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
a60198e5 6376 return (char *) gettext ("No previous regular expression");
fa9a63c5
RM
6377 return 0;
6378 }
6379
6380 if (!re_comp_buf.buffer)
6381 {
38182d90 6382 re_comp_buf.buffer = malloc (200);
fa9a63c5 6383 if (re_comp_buf.buffer == NULL)
0b32bf0e
SM
6384 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
6385 return (char *) gettext (re_error_msgid[(int) REG_ESPACE]);
fa9a63c5
RM
6386 re_comp_buf.allocated = 200;
6387
38182d90 6388 re_comp_buf.fastmap = malloc (1 << BYTEWIDTH);
fa9a63c5 6389 if (re_comp_buf.fastmap == NULL)
a60198e5
SM
6390 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
6391 return (char *) gettext (re_error_msgid[(int) REG_ESPACE]);
fa9a63c5
RM
6392 }
6393
6394 /* Since `re_exec' always passes NULL for the `regs' argument, we
6395 don't need to initialize the pattern buffer fields which affect it. */
6396
fa9a63c5 6397 ret = regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf);
5e69f11e 6398
fa9a63c5
RM
6399 if (!ret)
6400 return NULL;
6401
6402 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
6403 return (char *) gettext (re_error_msgid[(int) ret]);
6404}
6405
6406
31011111 6407int
0b32bf0e 6408# ifdef _LIBC
48afdd44 6409weak_function
0b32bf0e 6410# endif
d1dfb56c 6411re_exec (const char *s)
fa9a63c5 6412{
d1dfb56c 6413 const size_t len = strlen (s);
fa9a63c5
RM
6414 return
6415 0 <= re_search (&re_comp_buf, s, len, 0, len, (struct re_registers *) 0);
6416}
6417#endif /* _REGEX_RE_COMP */
6418\f
6419/* POSIX.2 functions. Don't define these for Emacs. */
6420
6421#ifndef emacs
6422
6423/* regcomp takes a regular expression as a string and compiles it.
6424
b18215fc 6425 PREG is a regex_t *. We do not expect any fields to be initialized,
fa9a63c5
RM
6426 since POSIX says we shouldn't. Thus, we set
6427
6428 `buffer' to the compiled pattern;
6429 `used' to the length of the compiled pattern;
6430 `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
6431 REG_EXTENDED bit in CFLAGS is set; otherwise, to
6432 RE_SYNTAX_POSIX_BASIC;
c0f9ea08
SM
6433 `fastmap' to an allocated space for the fastmap;
6434 `fastmap_accurate' to zero;
fa9a63c5
RM
6435 `re_nsub' to the number of subexpressions in PATTERN.
6436
6437 PATTERN is the address of the pattern string.
6438
6439 CFLAGS is a series of bits which affect compilation.
6440
6441 If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
6442 use POSIX basic syntax.
6443
6444 If REG_NEWLINE is set, then . and [^...] don't match newline.
6445 Also, regexec will try a match beginning after every newline.
6446
6447 If REG_ICASE is set, then we considers upper- and lowercase
6448 versions of letters to be equivalent when matching.
6449
6450 If REG_NOSUB is set, then when PREG is passed to regexec, that
6451 routine will report only success or failure, and nothing about the
6452 registers.
6453
b18215fc 6454 It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for
fa9a63c5
RM
6455 the return codes and their meanings.) */
6456
d1dfb56c 6457reg_errcode_t
d2762c86
DN
6458regcomp (regex_t *__restrict preg, const char *__restrict pattern,
6459 int cflags)
fa9a63c5
RM
6460{
6461 reg_errcode_t ret;
4bb91c68 6462 reg_syntax_t syntax
fa9a63c5
RM
6463 = (cflags & REG_EXTENDED) ?
6464 RE_SYNTAX_POSIX_EXTENDED : RE_SYNTAX_POSIX_BASIC;
6465
6466 /* regex_compile will allocate the space for the compiled pattern. */
6467 preg->buffer = 0;
6468 preg->allocated = 0;
6469 preg->used = 0;
5e69f11e 6470
c0f9ea08 6471 /* Try to allocate space for the fastmap. */
38182d90 6472 preg->fastmap = malloc (1 << BYTEWIDTH);
5e69f11e 6473
fa9a63c5
RM
6474 if (cflags & REG_ICASE)
6475 {
6476 unsigned i;
5e69f11e 6477
38182d90 6478 preg->translate = malloc (CHAR_SET_SIZE * sizeof *preg->translate);
fa9a63c5 6479 if (preg->translate == NULL)
0b32bf0e 6480 return (int) REG_ESPACE;
fa9a63c5
RM
6481
6482 /* Map uppercase characters to corresponding lowercase ones. */
6483 for (i = 0; i < CHAR_SET_SIZE; i++)
4bb91c68 6484 preg->translate[i] = ISUPPER (i) ? TOLOWER (i) : i;
fa9a63c5
RM
6485 }
6486 else
6487 preg->translate = NULL;
6488
6489 /* If REG_NEWLINE is set, newlines are treated differently. */
6490 if (cflags & REG_NEWLINE)
6491 { /* REG_NEWLINE implies neither . nor [^...] match newline. */
6492 syntax &= ~RE_DOT_NEWLINE;
6493 syntax |= RE_HAT_LISTS_NOT_NEWLINE;
fa9a63c5
RM
6494 }
6495 else
c0f9ea08 6496 syntax |= RE_NO_NEWLINE_ANCHOR;
fa9a63c5
RM
6497
6498 preg->no_sub = !!(cflags & REG_NOSUB);
6499
5e69f11e 6500 /* POSIX says a null character in the pattern terminates it, so we
fa9a63c5 6501 can use strlen here in compiling the pattern. */
4bb91c68 6502 ret = regex_compile ((re_char*) pattern, strlen (pattern), syntax, preg);
5e69f11e 6503
fa9a63c5
RM
6504 /* POSIX doesn't distinguish between an unmatched open-group and an
6505 unmatched close-group: both are REG_EPAREN. */
c0f9ea08
SM
6506 if (ret == REG_ERPAREN)
6507 ret = REG_EPAREN;
6508
6509 if (ret == REG_NOERROR && preg->fastmap)
6510 { /* Compute the fastmap now, since regexec cannot modify the pattern
6511 buffer. */
6512 re_compile_fastmap (preg);
6513 if (preg->can_be_null)
6514 { /* The fastmap can't be used anyway. */
6515 free (preg->fastmap);
6516 preg->fastmap = NULL;
6517 }
6518 }
d1dfb56c 6519 return ret;
fa9a63c5 6520}
c0f9ea08 6521WEAK_ALIAS (__regcomp, regcomp)
fa9a63c5
RM
6522
6523
6524/* regexec searches for a given pattern, specified by PREG, in the
6525 string STRING.
5e69f11e 6526
fa9a63c5 6527 If NMATCH is zero or REG_NOSUB was set in the cflags argument to
b18215fc 6528 `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at
fa9a63c5
RM
6529 least NMATCH elements, and we set them to the offsets of the
6530 corresponding matched substrings.
5e69f11e 6531
fa9a63c5
RM
6532 EFLAGS specifies `execution flags' which affect matching: if
6533 REG_NOTBOL is set, then ^ does not match at the beginning of the
6534 string; if REG_NOTEOL is set, then $ does not match at the end.
5e69f11e 6535
fa9a63c5
RM
6536 We return 0 if we find a match and REG_NOMATCH if not. */
6537
d1dfb56c 6538reg_errcode_t
d2762c86
DN
6539regexec (const regex_t *__restrict preg, const char *__restrict string,
6540 size_t nmatch, regmatch_t pmatch[__restrict_arr], int eflags)
fa9a63c5 6541{
31011111 6542 regoff_t ret;
fa9a63c5
RM
6543 struct re_registers regs;
6544 regex_t private_preg;
d1dfb56c 6545 size_t len = strlen (string);
c0f9ea08 6546 boolean want_reg_info = !preg->no_sub && nmatch > 0 && pmatch;
fa9a63c5
RM
6547
6548 private_preg = *preg;
5e69f11e 6549
fa9a63c5
RM
6550 private_preg.not_bol = !!(eflags & REG_NOTBOL);
6551 private_preg.not_eol = !!(eflags & REG_NOTEOL);
5e69f11e 6552
fa9a63c5
RM
6553 /* The user has told us exactly how many registers to return
6554 information about, via `nmatch'. We have to pass that on to the
b18215fc 6555 matching routines. */
fa9a63c5 6556 private_preg.regs_allocated = REGS_FIXED;
5e69f11e 6557
fa9a63c5
RM
6558 if (want_reg_info)
6559 {
6560 regs.num_regs = nmatch;
4bb91c68
SM
6561 regs.start = TALLOC (nmatch * 2, regoff_t);
6562 if (regs.start == NULL)
d1dfb56c 6563 return REG_NOMATCH;
4bb91c68 6564 regs.end = regs.start + nmatch;
fa9a63c5
RM
6565 }
6566
c0f9ea08
SM
6567 /* Instead of using not_eol to implement REG_NOTEOL, we could simply
6568 pass (&private_preg, string, len + 1, 0, len, ...) pretending the string
6569 was a little bit longer but still only matching the real part.
6570 This works because the `endline' will check for a '\n' and will find a
6571 '\0', correctly deciding that this is not the end of a line.
6572 But it doesn't work out so nicely for REG_NOTBOL, since we don't have
6573 a convenient '\0' there. For all we know, the string could be preceded
6574 by '\n' which would throw things off. */
6575
fa9a63c5
RM
6576 /* Perform the searching operation. */
6577 ret = re_search (&private_preg, string, len,
0b32bf0e
SM
6578 /* start: */ 0, /* range: */ len,
6579 want_reg_info ? &regs : (struct re_registers *) 0);
5e69f11e 6580
fa9a63c5
RM
6581 /* Copy the register information to the POSIX structure. */
6582 if (want_reg_info)
6583 {
6584 if (ret >= 0)
0b32bf0e
SM
6585 {
6586 unsigned r;
fa9a63c5 6587
0b32bf0e
SM
6588 for (r = 0; r < nmatch; r++)
6589 {
6590 pmatch[r].rm_so = regs.start[r];
6591 pmatch[r].rm_eo = regs.end[r];
6592 }
6593 }
fa9a63c5 6594
b18215fc 6595 /* If we needed the temporary register info, free the space now. */
fa9a63c5 6596 free (regs.start);
fa9a63c5
RM
6597 }
6598
6599 /* We want zero return to mean success, unlike `re_search'. */
d1dfb56c 6600 return ret >= 0 ? REG_NOERROR : REG_NOMATCH;
fa9a63c5 6601}
c0f9ea08 6602WEAK_ALIAS (__regexec, regexec)
fa9a63c5
RM
6603
6604
ec869672
JR
6605/* Returns a message corresponding to an error code, ERR_CODE, returned
6606 from either regcomp or regexec. We don't use PREG here.
6607
6608 ERR_CODE was previously called ERRCODE, but that name causes an
6609 error with msvc8 compiler. */
fa9a63c5
RM
6610
6611size_t
d2762c86 6612regerror (int err_code, const regex_t *preg, char *errbuf, size_t errbuf_size)
fa9a63c5
RM
6613{
6614 const char *msg;
6615 size_t msg_size;
6616
ec869672
JR
6617 if (err_code < 0
6618 || err_code >= (sizeof (re_error_msgid) / sizeof (re_error_msgid[0])))
5e69f11e 6619 /* Only error codes returned by the rest of the code should be passed
b18215fc 6620 to this routine. If we are given anything else, or if other regex
fa9a63c5
RM
6621 code generates an invalid error code, then the program has a bug.
6622 Dump core so we can fix it. */
6623 abort ();
6624
ec869672 6625 msg = gettext (re_error_msgid[err_code]);
fa9a63c5
RM
6626
6627 msg_size = strlen (msg) + 1; /* Includes the null. */
5e69f11e 6628
fa9a63c5
RM
6629 if (errbuf_size != 0)
6630 {
6631 if (msg_size > errbuf_size)
0b32bf0e 6632 {
e99a530f 6633 memcpy (errbuf, msg, errbuf_size - 1);
0b32bf0e
SM
6634 errbuf[errbuf_size - 1] = 0;
6635 }
fa9a63c5 6636 else
0b32bf0e 6637 strcpy (errbuf, msg);
fa9a63c5
RM
6638 }
6639
6640 return msg_size;
6641}
c0f9ea08 6642WEAK_ALIAS (__regerror, regerror)
fa9a63c5
RM
6643
6644
6645/* Free dynamically allocated space used by PREG. */
6646
6647void
d2762c86 6648regfree (regex_t *preg)
fa9a63c5 6649{
c2cd06e6 6650 free (preg->buffer);
fa9a63c5 6651 preg->buffer = NULL;
5e69f11e 6652
fa9a63c5
RM
6653 preg->allocated = 0;
6654 preg->used = 0;
6655
c2cd06e6 6656 free (preg->fastmap);
fa9a63c5
RM
6657 preg->fastmap = NULL;
6658 preg->fastmap_accurate = 0;
6659
c2cd06e6 6660 free (preg->translate);
fa9a63c5
RM
6661 preg->translate = NULL;
6662}
c0f9ea08 6663WEAK_ALIAS (__regfree, regfree)
fa9a63c5
RM
6664
6665#endif /* not emacs */