process.c (Fdelete_process): Do not call remove_process.
[bpt/emacs.git] / src / regex.c
CommitLineData
e318085a 1/* Extended regular expression matching and search library, version
0b32bf0e 2 0.12. (Implements POSIX draft P1003.2/D11.2, except for some of the
bc78d348
KB
3 internationalization features.)
4
669fa600 5 Copyright (C) 1993,94,95,96,97,98,99,2000,04 Free Software Foundation, Inc.
bc78d348 6
fa9a63c5
RM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
25fe55af 14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
fa9a63c5
RM
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
ba4a8e51 19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307,
25fe55af 20 USA. */
fa9a63c5 21
6df42991 22/* TODO:
505bde11 23 - structure the opcode space into opcode+flag.
dc1e502d 24 - merge with glibc's regex.[ch].
01618498 25 - replace (succeed_n + jump_n + set_number_at) with something that doesn't
6dcf2d0e
SM
26 need to modify the compiled regexp so that re_match can be reentrant.
27 - get rid of on_failure_jump_smart by doing the optimization in re_comp
28 rather than at run-time, so that re_match can be reentrant.
01618498 29*/
505bde11 30
fa9a63c5 31/* AIX requires this to be the first thing in the file. */
0b32bf0e 32#if defined _AIX && !defined REGEX_MALLOC
fa9a63c5
RM
33 #pragma alloca
34#endif
35
fa9a63c5 36#ifdef HAVE_CONFIG_H
0b32bf0e 37# include <config.h>
fa9a63c5
RM
38#endif
39
4bb91c68
SM
40#if defined STDC_HEADERS && !defined emacs
41# include <stddef.h>
42#else
43/* We need this for `regex.h', and perhaps for the Emacs include files. */
44# include <sys/types.h>
45#endif
fa9a63c5 46
14473664
SM
47/* Whether to use ISO C Amendment 1 wide char functions.
48 Those should not be used for Emacs since it uses its own. */
5e5388f6
GM
49#if defined _LIBC
50#define WIDE_CHAR_SUPPORT 1
51#else
14473664 52#define WIDE_CHAR_SUPPORT \
5e5388f6
GM
53 (HAVE_WCTYPE_H && HAVE_WCHAR_H && HAVE_BTOWC && !emacs)
54#endif
14473664
SM
55
56/* For platform which support the ISO C amendement 1 functionality we
57 support user defined character classes. */
a0ad02f7 58#if WIDE_CHAR_SUPPORT
14473664
SM
59/* Solaris 2.5 has a bug: <wchar.h> must be included before <wctype.h>. */
60# include <wchar.h>
61# include <wctype.h>
62#endif
63
c0f9ea08
SM
64#ifdef _LIBC
65/* We have to keep the namespace clean. */
66# define regfree(preg) __regfree (preg)
67# define regexec(pr, st, nm, pm, ef) __regexec (pr, st, nm, pm, ef)
68# define regcomp(preg, pattern, cflags) __regcomp (preg, pattern, cflags)
69# define regerror(errcode, preg, errbuf, errbuf_size) \
70 __regerror(errcode, preg, errbuf, errbuf_size)
71# define re_set_registers(bu, re, nu, st, en) \
72 __re_set_registers (bu, re, nu, st, en)
73# define re_match_2(bufp, string1, size1, string2, size2, pos, regs, stop) \
74 __re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
75# define re_match(bufp, string, size, pos, regs) \
76 __re_match (bufp, string, size, pos, regs)
77# define re_search(bufp, string, size, startpos, range, regs) \
78 __re_search (bufp, string, size, startpos, range, regs)
79# define re_compile_pattern(pattern, length, bufp) \
80 __re_compile_pattern (pattern, length, bufp)
81# define re_set_syntax(syntax) __re_set_syntax (syntax)
82# define re_search_2(bufp, st1, s1, st2, s2, startpos, range, regs, stop) \
83 __re_search_2 (bufp, st1, s1, st2, s2, startpos, range, regs, stop)
84# define re_compile_fastmap(bufp) __re_compile_fastmap (bufp)
85
14473664
SM
86/* Make sure we call libc's function even if the user overrides them. */
87# define btowc __btowc
88# define iswctype __iswctype
89# define wctype __wctype
90
c0f9ea08
SM
91# define WEAK_ALIAS(a,b) weak_alias (a, b)
92
93/* We are also using some library internals. */
94# include <locale/localeinfo.h>
95# include <locale/elem-hash.h>
96# include <langinfo.h>
97#else
98# define WEAK_ALIAS(a,b)
99#endif
100
4bb91c68 101/* This is for other GNU distributions with internationalized messages. */
0b32bf0e 102#if HAVE_LIBINTL_H || defined _LIBC
fa9a63c5
RM
103# include <libintl.h>
104#else
105# define gettext(msgid) (msgid)
106#endif
107
5e69f11e
RM
108#ifndef gettext_noop
109/* This define is so xgettext can find the internationalizable
110 strings. */
0b32bf0e 111# define gettext_noop(String) String
5e69f11e
RM
112#endif
113
fa9a63c5
RM
114/* The `emacs' switch turns on certain matching commands
115 that make sense only in Emacs. */
116#ifdef emacs
117
0b32bf0e
SM
118# include "lisp.h"
119# include "buffer.h"
b18215fc
RS
120
121/* Make syntax table lookup grant data in gl_state. */
0b32bf0e 122# define SYNTAX_ENTRY_VIA_PROPERTY
b18215fc 123
0b32bf0e
SM
124# include "syntax.h"
125# include "charset.h"
126# include "category.h"
fa9a63c5 127
7689ef0b
EZ
128# ifdef malloc
129# undef malloc
130# endif
0b32bf0e 131# define malloc xmalloc
7689ef0b
EZ
132# ifdef realloc
133# undef realloc
134# endif
0b32bf0e 135# define realloc xrealloc
7689ef0b
EZ
136# ifdef free
137# undef free
138# endif
0b32bf0e 139# define free xfree
9abbd165 140
0b32bf0e
SM
141/* Converts the pointer to the char to BEG-based offset from the start. */
142# define PTR_TO_OFFSET(d) POS_AS_IN_BUFFER (POINTER_TO_OFFSET (d))
143# define POS_AS_IN_BUFFER(p) ((p) + (NILP (re_match_object) || BUFFERP (re_match_object)))
144
145# define RE_MULTIBYTE_P(bufp) ((bufp)->multibyte)
146# define RE_STRING_CHAR(p, s) \
4e8a9132 147 (multibyte ? (STRING_CHAR (p, s)) : (*(p)))
0b32bf0e 148# define RE_STRING_CHAR_AND_LENGTH(p, s, len) \
2d1675e4
SM
149 (multibyte ? (STRING_CHAR_AND_LENGTH (p, s, len)) : ((len) = 1, *(p)))
150
151/* Set C a (possibly multibyte) character before P. P points into a
152 string which is the virtual concatenation of STR1 (which ends at
153 END1) or STR2 (which ends at END2). */
0b32bf0e 154# define GET_CHAR_BEFORE_2(c, p, str1, end1, str2, end2) \
2d1675e4
SM
155 do { \
156 if (multibyte) \
157 { \
0b32bf0e
SM
158 re_char *dtemp = (p) == (str2) ? (end1) : (p); \
159 re_char *dlimit = ((p) > (str2) && (p) <= (end2)) ? (str2) : (str1); \
70806df6
KH
160 re_char *d0 = dtemp; \
161 PREV_CHAR_BOUNDARY (d0, dlimit); \
162 c = STRING_CHAR (d0, dtemp - d0); \
2d1675e4
SM
163 } \
164 else \
165 (c = ((p) == (str2) ? (end1) : (p))[-1]); \
166 } while (0)
167
4e8a9132 168
fa9a63c5
RM
169#else /* not emacs */
170
171/* If we are not linking with Emacs proper,
172 we can't use the relocating allocator
173 even if config.h says that we can. */
0b32bf0e 174# undef REL_ALLOC
fa9a63c5 175
0b32bf0e
SM
176# if defined STDC_HEADERS || defined _LIBC
177# include <stdlib.h>
178# else
fa9a63c5
RM
179char *malloc ();
180char *realloc ();
0b32bf0e 181# endif
fa9a63c5 182
9e4ecb26 183/* When used in Emacs's lib-src, we need to get bzero and bcopy somehow.
4bb91c68 184 If nothing else has been done, use the method below. */
0b32bf0e
SM
185# ifdef INHIBIT_STRING_HEADER
186# if !(defined HAVE_BZERO && defined HAVE_BCOPY)
187# if !defined bzero && !defined bcopy
188# undef INHIBIT_STRING_HEADER
189# endif
190# endif
191# endif
9e4ecb26 192
4bb91c68 193/* This is the normal way of making sure we have memcpy, memcmp and bzero.
9e4ecb26
KH
194 This is used in most programs--a few other programs avoid this
195 by defining INHIBIT_STRING_HEADER. */
0b32bf0e
SM
196# ifndef INHIBIT_STRING_HEADER
197# if defined HAVE_STRING_H || defined STDC_HEADERS || defined _LIBC
198# include <string.h>
0b32bf0e 199# ifndef bzero
4bb91c68
SM
200# ifndef _LIBC
201# define bzero(s, n) (memset (s, '\0', n), (s))
202# else
203# define bzero(s, n) __bzero (s, n)
204# endif
0b32bf0e
SM
205# endif
206# else
207# include <strings.h>
4bb91c68
SM
208# ifndef memcmp
209# define memcmp(s1, s2, n) bcmp (s1, s2, n)
210# endif
211# ifndef memcpy
212# define memcpy(d, s, n) (bcopy (s, d, n), (d))
213# endif
0b32bf0e
SM
214# endif
215# endif
fa9a63c5
RM
216
217/* Define the syntax stuff for \<, \>, etc. */
218
990b2375 219/* Sword must be nonzero for the wordchar pattern commands in re_match_2. */
669fa600 220enum syntaxcode { Swhitespace = 0, Sword = 1, Ssymbol = 2 };
fa9a63c5 221
0b32bf0e
SM
222# ifdef SWITCH_ENUM_BUG
223# define SWITCH_ENUM_CAST(x) ((int)(x))
224# else
225# define SWITCH_ENUM_CAST(x) (x)
226# endif
fa9a63c5 227
e934739e 228/* Dummy macros for non-Emacs environments. */
0b32bf0e
SM
229# define BASE_LEADING_CODE_P(c) (0)
230# define CHAR_CHARSET(c) 0
231# define CHARSET_LEADING_CODE_BASE(c) 0
232# define MAX_MULTIBYTE_LENGTH 1
233# define RE_MULTIBYTE_P(x) 0
234# define WORD_BOUNDARY_P(c1, c2) (0)
235# define CHAR_HEAD_P(p) (1)
236# define SINGLE_BYTE_CHAR_P(c) (1)
237# define SAME_CHARSET_P(c1, c2) (1)
238# define MULTIBYTE_FORM_LENGTH(p, s) (1)
70806df6 239# define PREV_CHAR_BOUNDARY(p, limit) ((p)--)
0b32bf0e
SM
240# define STRING_CHAR(p, s) (*(p))
241# define RE_STRING_CHAR STRING_CHAR
242# define CHAR_STRING(c, s) (*(s) = (c), 1)
243# define STRING_CHAR_AND_LENGTH(p, s, actual_len) ((actual_len) = 1, *(p))
244# define RE_STRING_CHAR_AND_LENGTH STRING_CHAR_AND_LENGTH
245# define GET_CHAR_BEFORE_2(c, p, str1, end1, str2, end2) \
b18215fc 246 (c = ((p) == (str2) ? *((end1) - 1) : *((p) - 1)))
0b32bf0e 247# define MAKE_CHAR(charset, c1, c2) (c1)
fa9a63c5 248#endif /* not emacs */
4e8a9132
SM
249
250#ifndef RE_TRANSLATE
0b32bf0e
SM
251# define RE_TRANSLATE(TBL, C) ((unsigned char)(TBL)[C])
252# define RE_TRANSLATE_P(TBL) (TBL)
4e8a9132 253#endif
fa9a63c5
RM
254\f
255/* Get the interface, including the syntax bits. */
256#include "regex.h"
257
f71b19b6
DL
258/* isalpha etc. are used for the character classes. */
259#include <ctype.h>
fa9a63c5 260
f71b19b6 261#ifdef emacs
fa9a63c5 262
f71b19b6 263/* 1 if C is an ASCII character. */
0b32bf0e 264# define IS_REAL_ASCII(c) ((c) < 0200)
fa9a63c5 265
f71b19b6 266/* 1 if C is a unibyte character. */
0b32bf0e 267# define ISUNIBYTE(c) (SINGLE_BYTE_CHAR_P ((c)))
96cc36cc 268
f71b19b6 269/* The Emacs definitions should not be directly affected by locales. */
96cc36cc 270
f71b19b6 271/* In Emacs, these are only used for single-byte characters. */
0b32bf0e
SM
272# define ISDIGIT(c) ((c) >= '0' && (c) <= '9')
273# define ISCNTRL(c) ((c) < ' ')
274# define ISXDIGIT(c) (((c) >= '0' && (c) <= '9') \
f71b19b6
DL
275 || ((c) >= 'a' && (c) <= 'f') \
276 || ((c) >= 'A' && (c) <= 'F'))
96cc36cc
RS
277
278/* This is only used for single-byte characters. */
0b32bf0e 279# define ISBLANK(c) ((c) == ' ' || (c) == '\t')
96cc36cc
RS
280
281/* The rest must handle multibyte characters. */
282
0b32bf0e 283# define ISGRAPH(c) (SINGLE_BYTE_CHAR_P (c) \
f71b19b6 284 ? (c) > ' ' && !((c) >= 0177 && (c) <= 0237) \
96cc36cc
RS
285 : 1)
286
14473664 287# define ISPRINT(c) (SINGLE_BYTE_CHAR_P (c) \
f71b19b6 288 ? (c) >= ' ' && !((c) >= 0177 && (c) <= 0237) \
96cc36cc
RS
289 : 1)
290
0b32bf0e 291# define ISALNUM(c) (IS_REAL_ASCII (c) \
f71b19b6
DL
292 ? (((c) >= 'a' && (c) <= 'z') \
293 || ((c) >= 'A' && (c) <= 'Z') \
294 || ((c) >= '0' && (c) <= '9')) \
96cc36cc
RS
295 : SYNTAX (c) == Sword)
296
0b32bf0e 297# define ISALPHA(c) (IS_REAL_ASCII (c) \
f71b19b6
DL
298 ? (((c) >= 'a' && (c) <= 'z') \
299 || ((c) >= 'A' && (c) <= 'Z')) \
96cc36cc
RS
300 : SYNTAX (c) == Sword)
301
0b32bf0e 302# define ISLOWER(c) (LOWERCASEP (c))
96cc36cc 303
0b32bf0e 304# define ISPUNCT(c) (IS_REAL_ASCII (c) \
f71b19b6
DL
305 ? ((c) > ' ' && (c) < 0177 \
306 && !(((c) >= 'a' && (c) <= 'z') \
4bb91c68
SM
307 || ((c) >= 'A' && (c) <= 'Z') \
308 || ((c) >= '0' && (c) <= '9'))) \
96cc36cc
RS
309 : SYNTAX (c) != Sword)
310
0b32bf0e 311# define ISSPACE(c) (SYNTAX (c) == Swhitespace)
96cc36cc 312
0b32bf0e 313# define ISUPPER(c) (UPPERCASEP (c))
96cc36cc 314
0b32bf0e 315# define ISWORD(c) (SYNTAX (c) == Sword)
96cc36cc
RS
316
317#else /* not emacs */
318
f71b19b6
DL
319/* Jim Meyering writes:
320
321 "... Some ctype macros are valid only for character codes that
322 isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when
323 using /bin/cc or gcc but without giving an ansi option). So, all
4bb91c68 324 ctype uses should be through macros like ISPRINT... If
f71b19b6
DL
325 STDC_HEADERS is defined, then autoconf has verified that the ctype
326 macros don't need to be guarded with references to isascii. ...
327 Defining isascii to 1 should let any compiler worth its salt
4bb91c68
SM
328 eliminate the && through constant folding."
329 Solaris defines some of these symbols so we must undefine them first. */
f71b19b6 330
4bb91c68 331# undef ISASCII
0b32bf0e
SM
332# if defined STDC_HEADERS || (!defined isascii && !defined HAVE_ISASCII)
333# define ISASCII(c) 1
334# else
335# define ISASCII(c) isascii(c)
336# endif
f71b19b6
DL
337
338/* 1 if C is an ASCII character. */
0b32bf0e 339# define IS_REAL_ASCII(c) ((c) < 0200)
f71b19b6
DL
340
341/* This distinction is not meaningful, except in Emacs. */
0b32bf0e
SM
342# define ISUNIBYTE(c) 1
343
344# ifdef isblank
345# define ISBLANK(c) (ISASCII (c) && isblank (c))
346# else
347# define ISBLANK(c) ((c) == ' ' || (c) == '\t')
348# endif
349# ifdef isgraph
350# define ISGRAPH(c) (ISASCII (c) && isgraph (c))
351# else
352# define ISGRAPH(c) (ISASCII (c) && isprint (c) && !isspace (c))
353# endif
354
4bb91c68 355# undef ISPRINT
0b32bf0e
SM
356# define ISPRINT(c) (ISASCII (c) && isprint (c))
357# define ISDIGIT(c) (ISASCII (c) && isdigit (c))
358# define ISALNUM(c) (ISASCII (c) && isalnum (c))
359# define ISALPHA(c) (ISASCII (c) && isalpha (c))
360# define ISCNTRL(c) (ISASCII (c) && iscntrl (c))
361# define ISLOWER(c) (ISASCII (c) && islower (c))
362# define ISPUNCT(c) (ISASCII (c) && ispunct (c))
363# define ISSPACE(c) (ISASCII (c) && isspace (c))
364# define ISUPPER(c) (ISASCII (c) && isupper (c))
365# define ISXDIGIT(c) (ISASCII (c) && isxdigit (c))
366
367# define ISWORD(c) ISALPHA(c)
368
4bb91c68
SM
369# ifdef _tolower
370# define TOLOWER(c) _tolower(c)
371# else
372# define TOLOWER(c) tolower(c)
373# endif
374
375/* How many characters in the character set. */
376# define CHAR_SET_SIZE 256
377
0b32bf0e 378# ifdef SYNTAX_TABLE
f71b19b6 379
0b32bf0e 380extern char *re_syntax_table;
f71b19b6 381
0b32bf0e
SM
382# else /* not SYNTAX_TABLE */
383
0b32bf0e
SM
384static char re_syntax_table[CHAR_SET_SIZE];
385
386static void
387init_syntax_once ()
388{
389 register int c;
390 static int done = 0;
391
392 if (done)
393 return;
394
395 bzero (re_syntax_table, sizeof re_syntax_table);
396
4bb91c68
SM
397 for (c = 0; c < CHAR_SET_SIZE; ++c)
398 if (ISALNUM (c))
399 re_syntax_table[c] = Sword;
fa9a63c5 400
669fa600 401 re_syntax_table['_'] = Ssymbol;
fa9a63c5 402
0b32bf0e
SM
403 done = 1;
404}
405
406# endif /* not SYNTAX_TABLE */
96cc36cc 407
4bb91c68
SM
408# define SYNTAX(c) re_syntax_table[(c)]
409
96cc36cc
RS
410#endif /* not emacs */
411\f
fa9a63c5 412#ifndef NULL
0b32bf0e 413# define NULL (void *)0
fa9a63c5
RM
414#endif
415
416/* We remove any previous definition of `SIGN_EXTEND_CHAR',
417 since ours (we hope) works properly with all combinations of
418 machines, compilers, `char' and `unsigned char' argument types.
4bb91c68 419 (Per Bothner suggested the basic approach.) */
fa9a63c5
RM
420#undef SIGN_EXTEND_CHAR
421#if __STDC__
0b32bf0e 422# define SIGN_EXTEND_CHAR(c) ((signed char) (c))
fa9a63c5
RM
423#else /* not __STDC__ */
424/* As in Harbison and Steele. */
0b32bf0e 425# define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
fa9a63c5
RM
426#endif
427\f
428/* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we
429 use `alloca' instead of `malloc'. This is because using malloc in
430 re_search* or re_match* could cause memory leaks when C-g is used in
431 Emacs; also, malloc is slower and causes storage fragmentation. On
5e69f11e
RM
432 the other hand, malloc is more portable, and easier to debug.
433
fa9a63c5
RM
434 Because we sometimes use alloca, some routines have to be macros,
435 not functions -- `alloca'-allocated space disappears at the end of the
436 function it is called in. */
437
438#ifdef REGEX_MALLOC
439
0b32bf0e
SM
440# define REGEX_ALLOCATE malloc
441# define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
442# define REGEX_FREE free
fa9a63c5
RM
443
444#else /* not REGEX_MALLOC */
445
446/* Emacs already defines alloca, sometimes. */
0b32bf0e 447# ifndef alloca
fa9a63c5
RM
448
449/* Make alloca work the best possible way. */
0b32bf0e
SM
450# ifdef __GNUC__
451# define alloca __builtin_alloca
452# else /* not __GNUC__ */
453# if HAVE_ALLOCA_H
454# include <alloca.h>
455# endif /* HAVE_ALLOCA_H */
456# endif /* not __GNUC__ */
fa9a63c5 457
0b32bf0e 458# endif /* not alloca */
fa9a63c5 459
0b32bf0e 460# define REGEX_ALLOCATE alloca
fa9a63c5
RM
461
462/* Assumes a `char *destination' variable. */
0b32bf0e 463# define REGEX_REALLOCATE(source, osize, nsize) \
fa9a63c5 464 (destination = (char *) alloca (nsize), \
4bb91c68 465 memcpy (destination, source, osize))
fa9a63c5
RM
466
467/* No need to do anything to free, after alloca. */
0b32bf0e 468# define REGEX_FREE(arg) ((void)0) /* Do nothing! But inhibit gcc warning. */
fa9a63c5
RM
469
470#endif /* not REGEX_MALLOC */
471
472/* Define how to allocate the failure stack. */
473
0b32bf0e 474#if defined REL_ALLOC && defined REGEX_MALLOC
4297555e 475
0b32bf0e 476# define REGEX_ALLOCATE_STACK(size) \
fa9a63c5 477 r_alloc (&failure_stack_ptr, (size))
0b32bf0e 478# define REGEX_REALLOCATE_STACK(source, osize, nsize) \
fa9a63c5 479 r_re_alloc (&failure_stack_ptr, (nsize))
0b32bf0e 480# define REGEX_FREE_STACK(ptr) \
fa9a63c5
RM
481 r_alloc_free (&failure_stack_ptr)
482
4297555e 483#else /* not using relocating allocator */
fa9a63c5 484
0b32bf0e 485# ifdef REGEX_MALLOC
fa9a63c5 486
0b32bf0e
SM
487# define REGEX_ALLOCATE_STACK malloc
488# define REGEX_REALLOCATE_STACK(source, osize, nsize) realloc (source, nsize)
489# define REGEX_FREE_STACK free
fa9a63c5 490
0b32bf0e 491# else /* not REGEX_MALLOC */
fa9a63c5 492
0b32bf0e 493# define REGEX_ALLOCATE_STACK alloca
fa9a63c5 494
0b32bf0e 495# define REGEX_REALLOCATE_STACK(source, osize, nsize) \
fa9a63c5 496 REGEX_REALLOCATE (source, osize, nsize)
25fe55af 497/* No need to explicitly free anything. */
0b32bf0e 498# define REGEX_FREE_STACK(arg) ((void)0)
fa9a63c5 499
0b32bf0e 500# endif /* not REGEX_MALLOC */
4297555e 501#endif /* not using relocating allocator */
fa9a63c5
RM
502
503
504/* True if `size1' is non-NULL and PTR is pointing anywhere inside
505 `string1' or just past its end. This works if PTR is NULL, which is
506 a good thing. */
25fe55af 507#define FIRST_STRING_P(ptr) \
fa9a63c5
RM
508 (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
509
510/* (Re)Allocate N items of type T using malloc, or fail. */
511#define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
512#define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
513#define RETALLOC_IF(addr, n, t) \
514 if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t)
515#define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
516
4bb91c68 517#define BYTEWIDTH 8 /* In bits. */
fa9a63c5
RM
518
519#define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
520
521#undef MAX
522#undef MIN
523#define MAX(a, b) ((a) > (b) ? (a) : (b))
524#define MIN(a, b) ((a) < (b) ? (a) : (b))
525
66f0296e
SM
526/* Type of source-pattern and string chars. */
527typedef const unsigned char re_char;
528
fa9a63c5
RM
529typedef char boolean;
530#define false 0
531#define true 1
532
4bb91c68
SM
533static int re_match_2_internal _RE_ARGS ((struct re_pattern_buffer *bufp,
534 re_char *string1, int size1,
535 re_char *string2, int size2,
536 int pos,
537 struct re_registers *regs,
538 int stop));
fa9a63c5
RM
539\f
540/* These are the command codes that appear in compiled regular
4bb91c68 541 expressions. Some opcodes are followed by argument bytes. A
fa9a63c5
RM
542 command code can specify any interpretation whatsoever for its
543 arguments. Zero bytes may appear in the compiled regular expression. */
544
545typedef enum
546{
547 no_op = 0,
548
4bb91c68 549 /* Succeed right away--no more backtracking. */
fa9a63c5
RM
550 succeed,
551
25fe55af 552 /* Followed by one byte giving n, then by n literal bytes. */
fa9a63c5
RM
553 exactn,
554
25fe55af 555 /* Matches any (more or less) character. */
fa9a63c5
RM
556 anychar,
557
25fe55af
RS
558 /* Matches any one char belonging to specified set. First
559 following byte is number of bitmap bytes. Then come bytes
560 for a bitmap saying which chars are in. Bits in each byte
561 are ordered low-bit-first. A character is in the set if its
562 bit is 1. A character too large to have a bit in the map is
96cc36cc
RS
563 automatically not in the set.
564
565 If the length byte has the 0x80 bit set, then that stuff
566 is followed by a range table:
567 2 bytes of flags for character sets (low 8 bits, high 8 bits)
0b32bf0e 568 See RANGE_TABLE_WORK_BITS below.
01618498 569 2 bytes, the number of pairs that follow (upto 32767)
96cc36cc 570 pairs, each 2 multibyte characters,
0b32bf0e 571 each multibyte character represented as 3 bytes. */
fa9a63c5
RM
572 charset,
573
25fe55af 574 /* Same parameters as charset, but match any character that is
4bb91c68 575 not one of those specified. */
fa9a63c5
RM
576 charset_not,
577
25fe55af
RS
578 /* Start remembering the text that is matched, for storing in a
579 register. Followed by one byte with the register number, in
580 the range 0 to one less than the pattern buffer's re_nsub
505bde11 581 field. */
fa9a63c5
RM
582 start_memory,
583
25fe55af
RS
584 /* Stop remembering the text that is matched and store it in a
585 memory register. Followed by one byte with the register
586 number, in the range 0 to one less than `re_nsub' in the
505bde11 587 pattern buffer. */
fa9a63c5
RM
588 stop_memory,
589
25fe55af 590 /* Match a duplicate of something remembered. Followed by one
4bb91c68 591 byte containing the register number. */
fa9a63c5
RM
592 duplicate,
593
25fe55af 594 /* Fail unless at beginning of line. */
fa9a63c5
RM
595 begline,
596
4bb91c68 597 /* Fail unless at end of line. */
fa9a63c5
RM
598 endline,
599
25fe55af
RS
600 /* Succeeds if at beginning of buffer (if emacs) or at beginning
601 of string to be matched (if not). */
fa9a63c5
RM
602 begbuf,
603
25fe55af 604 /* Analogously, for end of buffer/string. */
fa9a63c5 605 endbuf,
5e69f11e 606
25fe55af 607 /* Followed by two byte relative address to which to jump. */
5e69f11e 608 jump,
fa9a63c5 609
25fe55af
RS
610 /* Followed by two-byte relative address of place to resume at
611 in case of failure. */
fa9a63c5 612 on_failure_jump,
5e69f11e 613
25fe55af
RS
614 /* Like on_failure_jump, but pushes a placeholder instead of the
615 current string position when executed. */
fa9a63c5 616 on_failure_keep_string_jump,
5e69f11e 617
505bde11
SM
618 /* Just like `on_failure_jump', except that it checks that we
619 don't get stuck in an infinite loop (matching an empty string
620 indefinitely). */
621 on_failure_jump_loop,
622
0683b6fa
SM
623 /* Just like `on_failure_jump_loop', except that it checks for
624 a different kind of loop (the kind that shows up with non-greedy
625 operators). This operation has to be immediately preceded
626 by a `no_op'. */
627 on_failure_jump_nastyloop,
628
0b32bf0e 629 /* A smart `on_failure_jump' used for greedy * and + operators.
505bde11
SM
630 It analyses the loop before which it is put and if the
631 loop does not require backtracking, it changes itself to
4e8a9132
SM
632 `on_failure_keep_string_jump' and short-circuits the loop,
633 else it just defaults to changing itself into `on_failure_jump'.
634 It assumes that it is pointing to just past a `jump'. */
505bde11 635 on_failure_jump_smart,
fa9a63c5 636
25fe55af 637 /* Followed by two-byte relative address and two-byte number n.
ed0767d8
SM
638 After matching N times, jump to the address upon failure.
639 Does not work if N starts at 0: use on_failure_jump_loop
640 instead. */
fa9a63c5
RM
641 succeed_n,
642
25fe55af
RS
643 /* Followed by two-byte relative address, and two-byte number n.
644 Jump to the address N times, then fail. */
fa9a63c5
RM
645 jump_n,
646
25fe55af
RS
647 /* Set the following two-byte relative address to the
648 subsequent two-byte number. The address *includes* the two
649 bytes of number. */
fa9a63c5
RM
650 set_number_at,
651
fa9a63c5
RM
652 wordbeg, /* Succeeds if at word beginning. */
653 wordend, /* Succeeds if at word end. */
654
655 wordbound, /* Succeeds if at a word boundary. */
1fb352e0 656 notwordbound, /* Succeeds if not at a word boundary. */
fa9a63c5 657
669fa600
SM
658 symbeg, /* Succeeds if at symbol beginning. */
659 symend, /* Succeeds if at symbol end. */
660
fa9a63c5 661 /* Matches any character whose syntax is specified. Followed by
25fe55af 662 a byte which contains a syntax code, e.g., Sword. */
fa9a63c5
RM
663 syntaxspec,
664
665 /* Matches any character whose syntax is not that specified. */
1fb352e0
SM
666 notsyntaxspec
667
668#ifdef emacs
669 ,before_dot, /* Succeeds if before point. */
670 at_dot, /* Succeeds if at point. */
671 after_dot, /* Succeeds if after point. */
b18215fc
RS
672
673 /* Matches any character whose category-set contains the specified
25fe55af
RS
674 category. The operator is followed by a byte which contains a
675 category code (mnemonic ASCII character). */
b18215fc
RS
676 categoryspec,
677
678 /* Matches any character whose category-set does not contain the
679 specified category. The operator is followed by a byte which
680 contains the category code (mnemonic ASCII character). */
681 notcategoryspec
fa9a63c5
RM
682#endif /* emacs */
683} re_opcode_t;
684\f
685/* Common operations on the compiled pattern. */
686
687/* Store NUMBER in two contiguous bytes starting at DESTINATION. */
688
689#define STORE_NUMBER(destination, number) \
690 do { \
691 (destination)[0] = (number) & 0377; \
692 (destination)[1] = (number) >> 8; \
693 } while (0)
694
695/* Same as STORE_NUMBER, except increment DESTINATION to
696 the byte after where the number is stored. Therefore, DESTINATION
697 must be an lvalue. */
698
699#define STORE_NUMBER_AND_INCR(destination, number) \
700 do { \
701 STORE_NUMBER (destination, number); \
702 (destination) += 2; \
703 } while (0)
704
705/* Put into DESTINATION a number stored in two contiguous bytes starting
706 at SOURCE. */
707
708#define EXTRACT_NUMBER(destination, source) \
709 do { \
710 (destination) = *(source) & 0377; \
711 (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8; \
712 } while (0)
713
714#ifdef DEBUG
4bb91c68 715static void extract_number _RE_ARGS ((int *dest, re_char *source));
fa9a63c5
RM
716static void
717extract_number (dest, source)
718 int *dest;
01618498 719 re_char *source;
fa9a63c5 720{
5e69f11e 721 int temp = SIGN_EXTEND_CHAR (*(source + 1));
fa9a63c5
RM
722 *dest = *source & 0377;
723 *dest += temp << 8;
724}
725
4bb91c68 726# ifndef EXTRACT_MACROS /* To debug the macros. */
0b32bf0e
SM
727# undef EXTRACT_NUMBER
728# define EXTRACT_NUMBER(dest, src) extract_number (&dest, src)
729# endif /* not EXTRACT_MACROS */
fa9a63c5
RM
730
731#endif /* DEBUG */
732
733/* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
734 SOURCE must be an lvalue. */
735
736#define EXTRACT_NUMBER_AND_INCR(destination, source) \
737 do { \
738 EXTRACT_NUMBER (destination, source); \
25fe55af 739 (source) += 2; \
fa9a63c5
RM
740 } while (0)
741
742#ifdef DEBUG
4bb91c68
SM
743static void extract_number_and_incr _RE_ARGS ((int *destination,
744 re_char **source));
fa9a63c5
RM
745static void
746extract_number_and_incr (destination, source)
747 int *destination;
01618498 748 re_char **source;
5e69f11e 749{
fa9a63c5
RM
750 extract_number (destination, *source);
751 *source += 2;
752}
753
0b32bf0e
SM
754# ifndef EXTRACT_MACROS
755# undef EXTRACT_NUMBER_AND_INCR
756# define EXTRACT_NUMBER_AND_INCR(dest, src) \
fa9a63c5 757 extract_number_and_incr (&dest, &src)
0b32bf0e 758# endif /* not EXTRACT_MACROS */
fa9a63c5
RM
759
760#endif /* DEBUG */
761\f
b18215fc
RS
762/* Store a multibyte character in three contiguous bytes starting
763 DESTINATION, and increment DESTINATION to the byte after where the
25fe55af 764 character is stored. Therefore, DESTINATION must be an lvalue. */
b18215fc
RS
765
766#define STORE_CHARACTER_AND_INCR(destination, character) \
767 do { \
768 (destination)[0] = (character) & 0377; \
769 (destination)[1] = ((character) >> 8) & 0377; \
770 (destination)[2] = (character) >> 16; \
771 (destination) += 3; \
772 } while (0)
773
774/* Put into DESTINATION a character stored in three contiguous bytes
25fe55af 775 starting at SOURCE. */
b18215fc
RS
776
777#define EXTRACT_CHARACTER(destination, source) \
778 do { \
779 (destination) = ((source)[0] \
780 | ((source)[1] << 8) \
781 | ((source)[2] << 16)); \
782 } while (0)
783
784
785/* Macros for charset. */
786
787/* Size of bitmap of charset P in bytes. P is a start of charset,
788 i.e. *P is (re_opcode_t) charset or (re_opcode_t) charset_not. */
789#define CHARSET_BITMAP_SIZE(p) ((p)[1] & 0x7F)
790
791/* Nonzero if charset P has range table. */
25fe55af 792#define CHARSET_RANGE_TABLE_EXISTS_P(p) ((p)[1] & 0x80)
b18215fc
RS
793
794/* Return the address of range table of charset P. But not the start
795 of table itself, but the before where the number of ranges is
96cc36cc
RS
796 stored. `2 +' means to skip re_opcode_t and size of bitmap,
797 and the 2 bytes of flags at the start of the range table. */
798#define CHARSET_RANGE_TABLE(p) (&(p)[4 + CHARSET_BITMAP_SIZE (p)])
799
800/* Extract the bit flags that start a range table. */
801#define CHARSET_RANGE_TABLE_BITS(p) \
802 ((p)[2 + CHARSET_BITMAP_SIZE (p)] \
803 + (p)[3 + CHARSET_BITMAP_SIZE (p)] * 0x100)
b18215fc
RS
804
805/* Test if C is listed in the bitmap of charset P. */
806#define CHARSET_LOOKUP_BITMAP(p, c) \
807 ((c) < CHARSET_BITMAP_SIZE (p) * BYTEWIDTH \
808 && (p)[2 + (c) / BYTEWIDTH] & (1 << ((c) % BYTEWIDTH)))
809
810/* Return the address of end of RANGE_TABLE. COUNT is number of
25fe55af
RS
811 ranges (which is a pair of (start, end)) in the RANGE_TABLE. `* 2'
812 is start of range and end of range. `* 3' is size of each start
b18215fc
RS
813 and end. */
814#define CHARSET_RANGE_TABLE_END(range_table, count) \
815 ((range_table) + (count) * 2 * 3)
816
25fe55af 817/* Test if C is in RANGE_TABLE. A flag NOT is negated if C is in.
b18215fc
RS
818 COUNT is number of ranges in RANGE_TABLE. */
819#define CHARSET_LOOKUP_RANGE_TABLE_RAW(not, c, range_table, count) \
820 do \
821 { \
01618498
SM
822 re_wchar_t range_start, range_end; \
823 re_char *p; \
824 re_char *range_table_end \
b18215fc
RS
825 = CHARSET_RANGE_TABLE_END ((range_table), (count)); \
826 \
827 for (p = (range_table); p < range_table_end; p += 2 * 3) \
828 { \
829 EXTRACT_CHARACTER (range_start, p); \
830 EXTRACT_CHARACTER (range_end, p + 3); \
831 \
832 if (range_start <= (c) && (c) <= range_end) \
833 { \
834 (not) = !(not); \
835 break; \
836 } \
837 } \
838 } \
839 while (0)
840
841/* Test if C is in range table of CHARSET. The flag NOT is negated if
842 C is listed in it. */
843#define CHARSET_LOOKUP_RANGE_TABLE(not, c, charset) \
844 do \
845 { \
846 /* Number of ranges in range table. */ \
847 int count; \
01618498
SM
848 re_char *range_table = CHARSET_RANGE_TABLE (charset); \
849 \
b18215fc
RS
850 EXTRACT_NUMBER_AND_INCR (count, range_table); \
851 CHARSET_LOOKUP_RANGE_TABLE_RAW ((not), (c), range_table, count); \
852 } \
853 while (0)
854\f
fa9a63c5
RM
855/* If DEBUG is defined, Regex prints many voluminous messages about what
856 it is doing (if the variable `debug' is nonzero). If linked with the
857 main program in `iregex.c', you can enter patterns and strings
858 interactively. And if linked with the main program in `main.c' and
4bb91c68 859 the other test files, you can run the already-written tests. */
fa9a63c5
RM
860
861#ifdef DEBUG
862
863/* We use standard I/O for debugging. */
0b32bf0e 864# include <stdio.h>
fa9a63c5
RM
865
866/* It is useful to test things that ``must'' be true when debugging. */
0b32bf0e 867# include <assert.h>
fa9a63c5 868
99633e97 869static int debug = -100000;
fa9a63c5 870
0b32bf0e
SM
871# define DEBUG_STATEMENT(e) e
872# define DEBUG_PRINT1(x) if (debug > 0) printf (x)
873# define DEBUG_PRINT2(x1, x2) if (debug > 0) printf (x1, x2)
874# define DEBUG_PRINT3(x1, x2, x3) if (debug > 0) printf (x1, x2, x3)
875# define DEBUG_PRINT4(x1, x2, x3, x4) if (debug > 0) printf (x1, x2, x3, x4)
876# define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \
99633e97 877 if (debug > 0) print_partial_compiled_pattern (s, e)
0b32bf0e 878# define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \
99633e97 879 if (debug > 0) print_double_string (w, s1, sz1, s2, sz2)
fa9a63c5
RM
880
881
882/* Print the fastmap in human-readable form. */
883
884void
885print_fastmap (fastmap)
886 char *fastmap;
887{
888 unsigned was_a_range = 0;
5e69f11e
RM
889 unsigned i = 0;
890
fa9a63c5
RM
891 while (i < (1 << BYTEWIDTH))
892 {
893 if (fastmap[i++])
894 {
895 was_a_range = 0;
25fe55af
RS
896 putchar (i - 1);
897 while (i < (1 << BYTEWIDTH) && fastmap[i])
898 {
899 was_a_range = 1;
900 i++;
901 }
fa9a63c5 902 if (was_a_range)
25fe55af
RS
903 {
904 printf ("-");
905 putchar (i - 1);
906 }
907 }
fa9a63c5 908 }
5e69f11e 909 putchar ('\n');
fa9a63c5
RM
910}
911
912
913/* Print a compiled pattern string in human-readable form, starting at
914 the START pointer into it and ending just before the pointer END. */
915
916void
917print_partial_compiled_pattern (start, end)
01618498
SM
918 re_char *start;
919 re_char *end;
fa9a63c5
RM
920{
921 int mcnt, mcnt2;
01618498
SM
922 re_char *p = start;
923 re_char *pend = end;
fa9a63c5
RM
924
925 if (start == NULL)
926 {
a1a052df 927 fprintf (stderr, "(null)\n");
fa9a63c5
RM
928 return;
929 }
5e69f11e 930
fa9a63c5
RM
931 /* Loop over pattern commands. */
932 while (p < pend)
933 {
a1a052df 934 fprintf (stderr, "%d:\t", p - start);
fa9a63c5
RM
935
936 switch ((re_opcode_t) *p++)
937 {
25fe55af 938 case no_op:
a1a052df 939 fprintf (stderr, "/no_op");
25fe55af 940 break;
fa9a63c5 941
99633e97 942 case succeed:
a1a052df 943 fprintf (stderr, "/succeed");
99633e97
SM
944 break;
945
fa9a63c5
RM
946 case exactn:
947 mcnt = *p++;
a1a052df 948 fprintf (stderr, "/exactn/%d", mcnt);
25fe55af 949 do
fa9a63c5 950 {
a1a052df 951 fprintf (stderr, "/%c", *p++);
25fe55af
RS
952 }
953 while (--mcnt);
954 break;
fa9a63c5
RM
955
956 case start_memory:
a1a052df 957 fprintf (stderr, "/start_memory/%d", *p++);
25fe55af 958 break;
fa9a63c5
RM
959
960 case stop_memory:
a1a052df 961 fprintf (stderr, "/stop_memory/%d", *p++);
25fe55af 962 break;
fa9a63c5
RM
963
964 case duplicate:
a1a052df 965 fprintf (stderr, "/duplicate/%d", *p++);
fa9a63c5
RM
966 break;
967
968 case anychar:
a1a052df 969 fprintf (stderr, "/anychar");
fa9a63c5
RM
970 break;
971
972 case charset:
25fe55af
RS
973 case charset_not:
974 {
975 register int c, last = -100;
fa9a63c5 976 register int in_range = 0;
99633e97
SM
977 int length = CHARSET_BITMAP_SIZE (p - 1);
978 int has_range_table = CHARSET_RANGE_TABLE_EXISTS_P (p - 1);
fa9a63c5 979
a1a052df 980 fprintf (stderr, "/charset [%s",
275a3409 981 (re_opcode_t) *(p - 1) == charset_not ? "^" : "");
5e69f11e 982
275a3409
RS
983 if (p + *p >= pend)
984 fprintf (stderr, " !extends past end of pattern! ");
fa9a63c5 985
25fe55af 986 for (c = 0; c < 256; c++)
96cc36cc 987 if (c / 8 < length
fa9a63c5
RM
988 && (p[1 + (c/8)] & (1 << (c % 8))))
989 {
990 /* Are we starting a range? */
991 if (last + 1 == c && ! in_range)
992 {
a1a052df 993 fprintf (stderr, "-");
fa9a63c5
RM
994 in_range = 1;
995 }
996 /* Have we broken a range? */
997 else if (last + 1 != c && in_range)
96cc36cc 998 {
a1a052df 999 fprintf (stderr, "%c", last);
fa9a63c5
RM
1000 in_range = 0;
1001 }
5e69f11e 1002
fa9a63c5 1003 if (! in_range)
a1a052df 1004 fprintf (stderr, "%c", c);
fa9a63c5
RM
1005
1006 last = c;
25fe55af 1007 }
fa9a63c5
RM
1008
1009 if (in_range)
a1a052df 1010 fprintf (stderr, "%c", last);
fa9a63c5 1011
a1a052df 1012 fprintf (stderr, "]");
fa9a63c5 1013
99633e97 1014 p += 1 + length;
96cc36cc 1015
96cc36cc 1016 if (has_range_table)
99633e97
SM
1017 {
1018 int count;
a1a052df 1019 fprintf (stderr, "has-range-table");
99633e97
SM
1020
1021 /* ??? Should print the range table; for now, just skip it. */
1022 p += 2; /* skip range table bits */
1023 EXTRACT_NUMBER_AND_INCR (count, p);
1024 p = CHARSET_RANGE_TABLE_END (p, count);
1025 }
fa9a63c5
RM
1026 }
1027 break;
1028
1029 case begline:
a1a052df 1030 fprintf (stderr, "/begline");
25fe55af 1031 break;
fa9a63c5
RM
1032
1033 case endline:
a1a052df 1034 fprintf (stderr, "/endline");
25fe55af 1035 break;
fa9a63c5
RM
1036
1037 case on_failure_jump:
25fe55af 1038 extract_number_and_incr (&mcnt, &p);
a1a052df 1039 fprintf (stderr, "/on_failure_jump to %d", p + mcnt - start);
25fe55af 1040 break;
fa9a63c5
RM
1041
1042 case on_failure_keep_string_jump:
25fe55af 1043 extract_number_and_incr (&mcnt, &p);
a1a052df 1044 fprintf (stderr, "/on_failure_keep_string_jump to %d", p + mcnt - start);
25fe55af 1045 break;
fa9a63c5 1046
0683b6fa
SM
1047 case on_failure_jump_nastyloop:
1048 extract_number_and_incr (&mcnt, &p);
a1a052df 1049 fprintf (stderr, "/on_failure_jump_nastyloop to %d", p + mcnt - start);
0683b6fa
SM
1050 break;
1051
505bde11 1052 case on_failure_jump_loop:
fa9a63c5 1053 extract_number_and_incr (&mcnt, &p);
a1a052df 1054 fprintf (stderr, "/on_failure_jump_loop to %d", p + mcnt - start);
5e69f11e
RM
1055 break;
1056
505bde11 1057 case on_failure_jump_smart:
fa9a63c5 1058 extract_number_and_incr (&mcnt, &p);
a1a052df 1059 fprintf (stderr, "/on_failure_jump_smart to %d", p + mcnt - start);
5e69f11e
RM
1060 break;
1061
25fe55af 1062 case jump:
fa9a63c5 1063 extract_number_and_incr (&mcnt, &p);
a1a052df 1064 fprintf (stderr, "/jump to %d", p + mcnt - start);
fa9a63c5
RM
1065 break;
1066
25fe55af
RS
1067 case succeed_n:
1068 extract_number_and_incr (&mcnt, &p);
1069 extract_number_and_incr (&mcnt2, &p);
a1a052df 1070 fprintf (stderr, "/succeed_n to %d, %d times", p - 2 + mcnt - start, mcnt2);
25fe55af 1071 break;
5e69f11e 1072
25fe55af
RS
1073 case jump_n:
1074 extract_number_and_incr (&mcnt, &p);
1075 extract_number_and_incr (&mcnt2, &p);
a1a052df 1076 fprintf (stderr, "/jump_n to %d, %d times", p - 2 + mcnt - start, mcnt2);
25fe55af 1077 break;
5e69f11e 1078
25fe55af
RS
1079 case set_number_at:
1080 extract_number_and_incr (&mcnt, &p);
1081 extract_number_and_incr (&mcnt2, &p);
a1a052df 1082 fprintf (stderr, "/set_number_at location %d to %d", p - 2 + mcnt - start, mcnt2);
25fe55af 1083 break;
5e69f11e 1084
25fe55af 1085 case wordbound:
a1a052df 1086 fprintf (stderr, "/wordbound");
fa9a63c5
RM
1087 break;
1088
1089 case notwordbound:
a1a052df 1090 fprintf (stderr, "/notwordbound");
25fe55af 1091 break;
fa9a63c5
RM
1092
1093 case wordbeg:
a1a052df 1094 fprintf (stderr, "/wordbeg");
fa9a63c5 1095 break;
5e69f11e 1096
fa9a63c5 1097 case wordend:
a1a052df 1098 fprintf (stderr, "/wordend");
5e69f11e 1099
669fa600
SM
1100 case symbeg:
1101 printf ("/symbeg");
1102 break;
1103
1104 case symend:
1105 printf ("/symend");
1106 break;
1107
1fb352e0 1108 case syntaxspec:
a1a052df 1109 fprintf (stderr, "/syntaxspec");
1fb352e0 1110 mcnt = *p++;
a1a052df 1111 fprintf (stderr, "/%d", mcnt);
1fb352e0
SM
1112 break;
1113
1114 case notsyntaxspec:
a1a052df 1115 fprintf (stderr, "/notsyntaxspec");
1fb352e0 1116 mcnt = *p++;
a1a052df 1117 fprintf (stderr, "/%d", mcnt);
1fb352e0
SM
1118 break;
1119
0b32bf0e 1120# ifdef emacs
fa9a63c5 1121 case before_dot:
a1a052df 1122 fprintf (stderr, "/before_dot");
25fe55af 1123 break;
fa9a63c5
RM
1124
1125 case at_dot:
a1a052df 1126 fprintf (stderr, "/at_dot");
25fe55af 1127 break;
fa9a63c5
RM
1128
1129 case after_dot:
a1a052df 1130 fprintf (stderr, "/after_dot");
25fe55af 1131 break;
fa9a63c5 1132
1fb352e0 1133 case categoryspec:
a1a052df 1134 fprintf (stderr, "/categoryspec");
fa9a63c5 1135 mcnt = *p++;
a1a052df 1136 fprintf (stderr, "/%d", mcnt);
25fe55af 1137 break;
5e69f11e 1138
1fb352e0 1139 case notcategoryspec:
a1a052df 1140 fprintf (stderr, "/notcategoryspec");
fa9a63c5 1141 mcnt = *p++;
a1a052df 1142 fprintf (stderr, "/%d", mcnt);
fa9a63c5 1143 break;
0b32bf0e 1144# endif /* emacs */
fa9a63c5 1145
fa9a63c5 1146 case begbuf:
a1a052df 1147 fprintf (stderr, "/begbuf");
25fe55af 1148 break;
fa9a63c5
RM
1149
1150 case endbuf:
a1a052df 1151 fprintf (stderr, "/endbuf");
25fe55af 1152 break;
fa9a63c5 1153
25fe55af 1154 default:
a1a052df 1155 fprintf (stderr, "?%d", *(p-1));
fa9a63c5
RM
1156 }
1157
a1a052df 1158 fprintf (stderr, "\n");
fa9a63c5
RM
1159 }
1160
a1a052df 1161 fprintf (stderr, "%d:\tend of pattern.\n", p - start);
fa9a63c5
RM
1162}
1163
1164
1165void
1166print_compiled_pattern (bufp)
1167 struct re_pattern_buffer *bufp;
1168{
01618498 1169 re_char *buffer = bufp->buffer;
fa9a63c5
RM
1170
1171 print_partial_compiled_pattern (buffer, buffer + bufp->used);
4bb91c68
SM
1172 printf ("%ld bytes used/%ld bytes allocated.\n",
1173 bufp->used, bufp->allocated);
fa9a63c5
RM
1174
1175 if (bufp->fastmap_accurate && bufp->fastmap)
1176 {
1177 printf ("fastmap: ");
1178 print_fastmap (bufp->fastmap);
1179 }
1180
1181 printf ("re_nsub: %d\t", bufp->re_nsub);
1182 printf ("regs_alloc: %d\t", bufp->regs_allocated);
1183 printf ("can_be_null: %d\t", bufp->can_be_null);
fa9a63c5
RM
1184 printf ("no_sub: %d\t", bufp->no_sub);
1185 printf ("not_bol: %d\t", bufp->not_bol);
1186 printf ("not_eol: %d\t", bufp->not_eol);
4bb91c68 1187 printf ("syntax: %lx\n", bufp->syntax);
505bde11 1188 fflush (stdout);
fa9a63c5
RM
1189 /* Perhaps we should print the translate table? */
1190}
1191
1192
1193void
1194print_double_string (where, string1, size1, string2, size2)
66f0296e
SM
1195 re_char *where;
1196 re_char *string1;
1197 re_char *string2;
fa9a63c5
RM
1198 int size1;
1199 int size2;
1200{
4bb91c68 1201 int this_char;
5e69f11e 1202
fa9a63c5
RM
1203 if (where == NULL)
1204 printf ("(null)");
1205 else
1206 {
1207 if (FIRST_STRING_P (where))
25fe55af
RS
1208 {
1209 for (this_char = where - string1; this_char < size1; this_char++)
1210 putchar (string1[this_char]);
fa9a63c5 1211
25fe55af
RS
1212 where = string2;
1213 }
fa9a63c5
RM
1214
1215 for (this_char = where - string2; this_char < size2; this_char++)
25fe55af 1216 putchar (string2[this_char]);
fa9a63c5
RM
1217 }
1218}
1219
1220#else /* not DEBUG */
1221
0b32bf0e
SM
1222# undef assert
1223# define assert(e)
fa9a63c5 1224
0b32bf0e
SM
1225# define DEBUG_STATEMENT(e)
1226# define DEBUG_PRINT1(x)
1227# define DEBUG_PRINT2(x1, x2)
1228# define DEBUG_PRINT3(x1, x2, x3)
1229# define DEBUG_PRINT4(x1, x2, x3, x4)
1230# define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
1231# define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
fa9a63c5
RM
1232
1233#endif /* not DEBUG */
1234\f
1235/* Set by `re_set_syntax' to the current regexp syntax to recognize. Can
1236 also be assigned to arbitrarily: each pattern buffer stores its own
1237 syntax, so it can be changed between regex compilations. */
1238/* This has no initializer because initialized variables in Emacs
1239 become read-only after dumping. */
1240reg_syntax_t re_syntax_options;
1241
1242
1243/* Specify the precise syntax of regexps for compilation. This provides
1244 for compatibility for various utilities which historically have
1245 different, incompatible syntaxes.
1246
1247 The argument SYNTAX is a bit mask comprised of the various bits
4bb91c68 1248 defined in regex.h. We return the old syntax. */
fa9a63c5
RM
1249
1250reg_syntax_t
1251re_set_syntax (syntax)
1252 reg_syntax_t syntax;
1253{
1254 reg_syntax_t ret = re_syntax_options;
5e69f11e 1255
fa9a63c5
RM
1256 re_syntax_options = syntax;
1257 return ret;
1258}
c0f9ea08 1259WEAK_ALIAS (__re_set_syntax, re_set_syntax)
fa9a63c5
RM
1260\f
1261/* This table gives an error message for each of the error codes listed
4bb91c68 1262 in regex.h. Obviously the order here has to be same as there.
fa9a63c5 1263 POSIX doesn't require that we do anything for REG_NOERROR,
4bb91c68 1264 but why not be nice? */
fa9a63c5
RM
1265
1266static const char *re_error_msgid[] =
5e69f11e
RM
1267 {
1268 gettext_noop ("Success"), /* REG_NOERROR */
1269 gettext_noop ("No match"), /* REG_NOMATCH */
1270 gettext_noop ("Invalid regular expression"), /* REG_BADPAT */
1271 gettext_noop ("Invalid collation character"), /* REG_ECOLLATE */
1272 gettext_noop ("Invalid character class name"), /* REG_ECTYPE */
1273 gettext_noop ("Trailing backslash"), /* REG_EESCAPE */
1274 gettext_noop ("Invalid back reference"), /* REG_ESUBREG */
1275 gettext_noop ("Unmatched [ or [^"), /* REG_EBRACK */
1276 gettext_noop ("Unmatched ( or \\("), /* REG_EPAREN */
1277 gettext_noop ("Unmatched \\{"), /* REG_EBRACE */
1278 gettext_noop ("Invalid content of \\{\\}"), /* REG_BADBR */
1279 gettext_noop ("Invalid range end"), /* REG_ERANGE */
1280 gettext_noop ("Memory exhausted"), /* REG_ESPACE */
1281 gettext_noop ("Invalid preceding regular expression"), /* REG_BADRPT */
1282 gettext_noop ("Premature end of regular expression"), /* REG_EEND */
1283 gettext_noop ("Regular expression too big"), /* REG_ESIZE */
1284 gettext_noop ("Unmatched ) or \\)"), /* REG_ERPAREN */
fa9a63c5
RM
1285 };
1286\f
4bb91c68 1287/* Avoiding alloca during matching, to placate r_alloc. */
fa9a63c5
RM
1288
1289/* Define MATCH_MAY_ALLOCATE unless we need to make sure that the
1290 searching and matching functions should not call alloca. On some
1291 systems, alloca is implemented in terms of malloc, and if we're
1292 using the relocating allocator routines, then malloc could cause a
1293 relocation, which might (if the strings being searched are in the
1294 ralloc heap) shift the data out from underneath the regexp
1295 routines.
1296
5e69f11e 1297 Here's another reason to avoid allocation: Emacs
fa9a63c5
RM
1298 processes input from X in a signal handler; processing X input may
1299 call malloc; if input arrives while a matching routine is calling
1300 malloc, then we're scrod. But Emacs can't just block input while
1301 calling matching routines; then we don't notice interrupts when
1302 they come in. So, Emacs blocks input around all regexp calls
1303 except the matching calls, which it leaves unprotected, in the
1304 faith that they will not malloc. */
1305
1306/* Normally, this is fine. */
1307#define MATCH_MAY_ALLOCATE
1308
1309/* When using GNU C, we are not REALLY using the C alloca, no matter
1310 what config.h may say. So don't take precautions for it. */
1311#ifdef __GNUC__
0b32bf0e 1312# undef C_ALLOCA
fa9a63c5
RM
1313#endif
1314
1315/* The match routines may not allocate if (1) they would do it with malloc
1316 and (2) it's not safe for them to use malloc.
1317 Note that if REL_ALLOC is defined, matching would not use malloc for the
1318 failure stack, but we would still use it for the register vectors;
4bb91c68 1319 so REL_ALLOC should not affect this. */
0b32bf0e
SM
1320#if (defined C_ALLOCA || defined REGEX_MALLOC) && defined emacs
1321# undef MATCH_MAY_ALLOCATE
fa9a63c5
RM
1322#endif
1323
1324\f
1325/* Failure stack declarations and macros; both re_compile_fastmap and
1326 re_match_2 use a failure stack. These have to be macros because of
1327 REGEX_ALLOCATE_STACK. */
5e69f11e 1328
fa9a63c5 1329
320a2a73 1330/* Approximate number of failure points for which to initially allocate space
fa9a63c5
RM
1331 when matching. If this number is exceeded, we allocate more
1332 space, so it is not a hard limit. */
1333#ifndef INIT_FAILURE_ALLOC
0b32bf0e 1334# define INIT_FAILURE_ALLOC 20
fa9a63c5
RM
1335#endif
1336
1337/* Roughly the maximum number of failure points on the stack. Would be
320a2a73 1338 exactly that if always used TYPICAL_FAILURE_SIZE items each time we failed.
fa9a63c5 1339 This is a variable only so users of regex can assign to it; we never
ada30c0e
SM
1340 change it ourselves. We always multiply it by TYPICAL_FAILURE_SIZE
1341 before using it, so it should probably be a byte-count instead. */
c0f9ea08
SM
1342# if defined MATCH_MAY_ALLOCATE
1343/* Note that 4400 was enough to cause a crash on Alpha OSF/1,
320a2a73
KH
1344 whose default stack limit is 2mb. In order for a larger
1345 value to work reliably, you have to try to make it accord
1346 with the process stack limit. */
c0f9ea08
SM
1347size_t re_max_failures = 40000;
1348# else
1349size_t re_max_failures = 4000;
1350# endif
fa9a63c5
RM
1351
1352union fail_stack_elt
1353{
01618498 1354 re_char *pointer;
c0f9ea08
SM
1355 /* This should be the biggest `int' that's no bigger than a pointer. */
1356 long integer;
fa9a63c5
RM
1357};
1358
1359typedef union fail_stack_elt fail_stack_elt_t;
1360
1361typedef struct
1362{
1363 fail_stack_elt_t *stack;
c0f9ea08
SM
1364 size_t size;
1365 size_t avail; /* Offset of next open position. */
1366 size_t frame; /* Offset of the cur constructed frame. */
fa9a63c5
RM
1367} fail_stack_type;
1368
505bde11 1369#define FAIL_STACK_EMPTY() (fail_stack.frame == 0)
fa9a63c5
RM
1370#define FAIL_STACK_FULL() (fail_stack.avail == fail_stack.size)
1371
1372
1373/* Define macros to initialize and free the failure stack.
1374 Do `return -2' if the alloc fails. */
1375
1376#ifdef MATCH_MAY_ALLOCATE
0b32bf0e 1377# define INIT_FAIL_STACK() \
fa9a63c5
RM
1378 do { \
1379 fail_stack.stack = (fail_stack_elt_t *) \
320a2a73
KH
1380 REGEX_ALLOCATE_STACK (INIT_FAILURE_ALLOC * TYPICAL_FAILURE_SIZE \
1381 * sizeof (fail_stack_elt_t)); \
fa9a63c5
RM
1382 \
1383 if (fail_stack.stack == NULL) \
1384 return -2; \
1385 \
1386 fail_stack.size = INIT_FAILURE_ALLOC; \
1387 fail_stack.avail = 0; \
505bde11 1388 fail_stack.frame = 0; \
fa9a63c5
RM
1389 } while (0)
1390
0b32bf0e 1391# define RESET_FAIL_STACK() REGEX_FREE_STACK (fail_stack.stack)
fa9a63c5 1392#else
0b32bf0e 1393# define INIT_FAIL_STACK() \
fa9a63c5
RM
1394 do { \
1395 fail_stack.avail = 0; \
505bde11 1396 fail_stack.frame = 0; \
fa9a63c5
RM
1397 } while (0)
1398
0b32bf0e 1399# define RESET_FAIL_STACK() ((void)0)
fa9a63c5
RM
1400#endif
1401
1402
320a2a73
KH
1403/* Double the size of FAIL_STACK, up to a limit
1404 which allows approximately `re_max_failures' items.
fa9a63c5
RM
1405
1406 Return 1 if succeeds, and 0 if either ran out of memory
5e69f11e
RM
1407 allocating space for it or it was already too large.
1408
4bb91c68 1409 REGEX_REALLOCATE_STACK requires `destination' be declared. */
fa9a63c5 1410
320a2a73
KH
1411/* Factor to increase the failure stack size by
1412 when we increase it.
1413 This used to be 2, but 2 was too wasteful
1414 because the old discarded stacks added up to as much space
1415 were as ultimate, maximum-size stack. */
1416#define FAIL_STACK_GROWTH_FACTOR 4
1417
1418#define GROW_FAIL_STACK(fail_stack) \
eead07d6
KH
1419 (((fail_stack).size * sizeof (fail_stack_elt_t) \
1420 >= re_max_failures * TYPICAL_FAILURE_SIZE) \
fa9a63c5 1421 ? 0 \
320a2a73
KH
1422 : ((fail_stack).stack \
1423 = (fail_stack_elt_t *) \
25fe55af
RS
1424 REGEX_REALLOCATE_STACK ((fail_stack).stack, \
1425 (fail_stack).size * sizeof (fail_stack_elt_t), \
320a2a73
KH
1426 MIN (re_max_failures * TYPICAL_FAILURE_SIZE, \
1427 ((fail_stack).size * sizeof (fail_stack_elt_t) \
1428 * FAIL_STACK_GROWTH_FACTOR))), \
fa9a63c5
RM
1429 \
1430 (fail_stack).stack == NULL \
1431 ? 0 \
6453db45
KH
1432 : ((fail_stack).size \
1433 = (MIN (re_max_failures * TYPICAL_FAILURE_SIZE, \
1434 ((fail_stack).size * sizeof (fail_stack_elt_t) \
1435 * FAIL_STACK_GROWTH_FACTOR)) \
1436 / sizeof (fail_stack_elt_t)), \
25fe55af 1437 1)))
fa9a63c5
RM
1438
1439
fa9a63c5
RM
1440/* Push a pointer value onto the failure stack.
1441 Assumes the variable `fail_stack'. Probably should only
4bb91c68 1442 be called from within `PUSH_FAILURE_POINT'. */
fa9a63c5 1443#define PUSH_FAILURE_POINTER(item) \
01618498 1444 fail_stack.stack[fail_stack.avail++].pointer = (item)
fa9a63c5
RM
1445
1446/* This pushes an integer-valued item onto the failure stack.
1447 Assumes the variable `fail_stack'. Probably should only
4bb91c68 1448 be called from within `PUSH_FAILURE_POINT'. */
fa9a63c5
RM
1449#define PUSH_FAILURE_INT(item) \
1450 fail_stack.stack[fail_stack.avail++].integer = (item)
1451
1452/* Push a fail_stack_elt_t value onto the failure stack.
1453 Assumes the variable `fail_stack'. Probably should only
4bb91c68 1454 be called from within `PUSH_FAILURE_POINT'. */
fa9a63c5
RM
1455#define PUSH_FAILURE_ELT(item) \
1456 fail_stack.stack[fail_stack.avail++] = (item)
1457
1458/* These three POP... operations complement the three PUSH... operations.
1459 All assume that `fail_stack' is nonempty. */
1460#define POP_FAILURE_POINTER() fail_stack.stack[--fail_stack.avail].pointer
1461#define POP_FAILURE_INT() fail_stack.stack[--fail_stack.avail].integer
1462#define POP_FAILURE_ELT() fail_stack.stack[--fail_stack.avail]
1463
505bde11
SM
1464/* Individual items aside from the registers. */
1465#define NUM_NONREG_ITEMS 3
1466
1467/* Used to examine the stack (to detect infinite loops). */
1468#define FAILURE_PAT(h) fail_stack.stack[(h) - 1].pointer
66f0296e 1469#define FAILURE_STR(h) (fail_stack.stack[(h) - 2].pointer)
505bde11
SM
1470#define NEXT_FAILURE_HANDLE(h) fail_stack.stack[(h) - 3].integer
1471#define TOP_FAILURE_HANDLE() fail_stack.frame
fa9a63c5
RM
1472
1473
505bde11
SM
1474#define ENSURE_FAIL_STACK(space) \
1475while (REMAINING_AVAIL_SLOTS <= space) { \
1476 if (!GROW_FAIL_STACK (fail_stack)) \
1477 return -2; \
1478 DEBUG_PRINT2 ("\n Doubled stack; size now: %d\n", (fail_stack).size);\
1479 DEBUG_PRINT2 (" slots available: %d\n", REMAINING_AVAIL_SLOTS);\
1480}
1481
1482/* Push register NUM onto the stack. */
1483#define PUSH_FAILURE_REG(num) \
1484do { \
1485 char *destination; \
1486 ENSURE_FAIL_STACK(3); \
1487 DEBUG_PRINT4 (" Push reg %d (spanning %p -> %p)\n", \
1488 num, regstart[num], regend[num]); \
1489 PUSH_FAILURE_POINTER (regstart[num]); \
1490 PUSH_FAILURE_POINTER (regend[num]); \
1491 PUSH_FAILURE_INT (num); \
1492} while (0)
1493
01618498
SM
1494/* Change the counter's value to VAL, but make sure that it will
1495 be reset when backtracking. */
1496#define PUSH_NUMBER(ptr,val) \
dc1e502d
SM
1497do { \
1498 char *destination; \
1499 int c; \
1500 ENSURE_FAIL_STACK(3); \
1501 EXTRACT_NUMBER (c, ptr); \
01618498 1502 DEBUG_PRINT4 (" Push number %p = %d -> %d\n", ptr, c, val); \
dc1e502d
SM
1503 PUSH_FAILURE_INT (c); \
1504 PUSH_FAILURE_POINTER (ptr); \
1505 PUSH_FAILURE_INT (-1); \
01618498 1506 STORE_NUMBER (ptr, val); \
dc1e502d
SM
1507} while (0)
1508
505bde11 1509/* Pop a saved register off the stack. */
dc1e502d 1510#define POP_FAILURE_REG_OR_COUNT() \
505bde11
SM
1511do { \
1512 int reg = POP_FAILURE_INT (); \
dc1e502d
SM
1513 if (reg == -1) \
1514 { \
1515 /* It's a counter. */ \
6dcf2d0e
SM
1516 /* Here, we discard `const', making re_match non-reentrant. */ \
1517 unsigned char *ptr = (unsigned char*) POP_FAILURE_POINTER (); \
dc1e502d
SM
1518 reg = POP_FAILURE_INT (); \
1519 STORE_NUMBER (ptr, reg); \
1520 DEBUG_PRINT3 (" Pop counter %p = %d\n", ptr, reg); \
1521 } \
1522 else \
1523 { \
1524 regend[reg] = POP_FAILURE_POINTER (); \
1525 regstart[reg] = POP_FAILURE_POINTER (); \
1526 DEBUG_PRINT4 (" Pop reg %d (spanning %p -> %p)\n", \
1527 reg, regstart[reg], regend[reg]); \
1528 } \
505bde11
SM
1529} while (0)
1530
1531/* Check that we are not stuck in an infinite loop. */
1532#define CHECK_INFINITE_LOOP(pat_cur, string_place) \
1533do { \
f6df485f 1534 int failure = TOP_FAILURE_HANDLE (); \
505bde11 1535 /* Check for infinite matching loops */ \
f6df485f
RS
1536 while (failure > 0 \
1537 && (FAILURE_STR (failure) == string_place \
1538 || FAILURE_STR (failure) == NULL)) \
505bde11
SM
1539 { \
1540 assert (FAILURE_PAT (failure) >= bufp->buffer \
66f0296e 1541 && FAILURE_PAT (failure) <= bufp->buffer + bufp->used); \
505bde11 1542 if (FAILURE_PAT (failure) == pat_cur) \
f6df485f 1543 { \
6df42991
SM
1544 cycle = 1; \
1545 break; \
f6df485f 1546 } \
66f0296e 1547 DEBUG_PRINT2 (" Other pattern: %p\n", FAILURE_PAT (failure)); \
505bde11
SM
1548 failure = NEXT_FAILURE_HANDLE(failure); \
1549 } \
1550 DEBUG_PRINT2 (" Other string: %p\n", FAILURE_STR (failure)); \
1551} while (0)
6df42991 1552
fa9a63c5 1553/* Push the information about the state we will need
5e69f11e
RM
1554 if we ever fail back to it.
1555
505bde11 1556 Requires variables fail_stack, regstart, regend and
320a2a73 1557 num_regs be declared. GROW_FAIL_STACK requires `destination' be
fa9a63c5 1558 declared.
5e69f11e 1559
fa9a63c5
RM
1560 Does `return FAILURE_CODE' if runs out of memory. */
1561
505bde11
SM
1562#define PUSH_FAILURE_POINT(pattern, string_place) \
1563do { \
1564 char *destination; \
1565 /* Must be int, so when we don't save any registers, the arithmetic \
1566 of 0 + -1 isn't done as unsigned. */ \
1567 \
505bde11 1568 DEBUG_STATEMENT (nfailure_points_pushed++); \
4bb91c68 1569 DEBUG_PRINT1 ("\nPUSH_FAILURE_POINT:\n"); \
505bde11
SM
1570 DEBUG_PRINT2 (" Before push, next avail: %d\n", (fail_stack).avail); \
1571 DEBUG_PRINT2 (" size: %d\n", (fail_stack).size);\
1572 \
1573 ENSURE_FAIL_STACK (NUM_NONREG_ITEMS); \
1574 \
1575 DEBUG_PRINT1 ("\n"); \
1576 \
1577 DEBUG_PRINT2 (" Push frame index: %d\n", fail_stack.frame); \
1578 PUSH_FAILURE_INT (fail_stack.frame); \
1579 \
1580 DEBUG_PRINT2 (" Push string %p: `", string_place); \
1581 DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, size2);\
1582 DEBUG_PRINT1 ("'\n"); \
1583 PUSH_FAILURE_POINTER (string_place); \
1584 \
1585 DEBUG_PRINT2 (" Push pattern %p: ", pattern); \
1586 DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern, pend); \
1587 PUSH_FAILURE_POINTER (pattern); \
1588 \
1589 /* Close the frame by moving the frame pointer past it. */ \
1590 fail_stack.frame = fail_stack.avail; \
1591} while (0)
fa9a63c5 1592
320a2a73
KH
1593/* Estimate the size of data pushed by a typical failure stack entry.
1594 An estimate is all we need, because all we use this for
1595 is to choose a limit for how big to make the failure stack. */
ada30c0e 1596/* BEWARE, the value `20' is hard-coded in emacs.c:main(). */
320a2a73 1597#define TYPICAL_FAILURE_SIZE 20
fa9a63c5 1598
fa9a63c5
RM
1599/* How many items can still be added to the stack without overflowing it. */
1600#define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
1601
1602
1603/* Pops what PUSH_FAIL_STACK pushes.
1604
1605 We restore into the parameters, all of which should be lvalues:
1606 STR -- the saved data position.
1607 PAT -- the saved pattern position.
fa9a63c5 1608 REGSTART, REGEND -- arrays of string positions.
5e69f11e 1609
fa9a63c5 1610 Also assumes the variables `fail_stack' and (if debugging), `bufp',
25fe55af 1611 `pend', `string1', `size1', `string2', and `size2'. */
fa9a63c5 1612
505bde11
SM
1613#define POP_FAILURE_POINT(str, pat) \
1614do { \
fa9a63c5
RM
1615 assert (!FAIL_STACK_EMPTY ()); \
1616 \
1617 /* Remove failure points and point to how many regs pushed. */ \
1618 DEBUG_PRINT1 ("POP_FAILURE_POINT:\n"); \
1619 DEBUG_PRINT2 (" Before pop, next avail: %d\n", fail_stack.avail); \
25fe55af 1620 DEBUG_PRINT2 (" size: %d\n", fail_stack.size); \
fa9a63c5 1621 \
505bde11
SM
1622 /* Pop the saved registers. */ \
1623 while (fail_stack.frame < fail_stack.avail) \
dc1e502d 1624 POP_FAILURE_REG_OR_COUNT (); \
fa9a63c5 1625 \
01618498 1626 pat = POP_FAILURE_POINTER (); \
505bde11
SM
1627 DEBUG_PRINT2 (" Popping pattern %p: ", pat); \
1628 DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend); \
fa9a63c5
RM
1629 \
1630 /* If the saved string location is NULL, it came from an \
1631 on_failure_keep_string_jump opcode, and we want to throw away the \
1632 saved NULL, thus retaining our current position in the string. */ \
01618498 1633 str = POP_FAILURE_POINTER (); \
505bde11 1634 DEBUG_PRINT2 (" Popping string %p: `", str); \
fa9a63c5
RM
1635 DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2); \
1636 DEBUG_PRINT1 ("'\n"); \
1637 \
505bde11
SM
1638 fail_stack.frame = POP_FAILURE_INT (); \
1639 DEBUG_PRINT2 (" Popping frame index: %d\n", fail_stack.frame); \
fa9a63c5 1640 \
505bde11
SM
1641 assert (fail_stack.avail >= 0); \
1642 assert (fail_stack.frame <= fail_stack.avail); \
fa9a63c5 1643 \
fa9a63c5 1644 DEBUG_STATEMENT (nfailure_points_popped++); \
505bde11 1645} while (0) /* POP_FAILURE_POINT */
fa9a63c5
RM
1646
1647
1648\f
fa9a63c5 1649/* Registers are set to a sentinel when they haven't yet matched. */
4bb91c68 1650#define REG_UNSET(e) ((e) == NULL)
fa9a63c5
RM
1651\f
1652/* Subroutine declarations and macros for regex_compile. */
1653
4bb91c68
SM
1654static reg_errcode_t regex_compile _RE_ARGS ((re_char *pattern, size_t size,
1655 reg_syntax_t syntax,
1656 struct re_pattern_buffer *bufp));
1657static void store_op1 _RE_ARGS ((re_opcode_t op, unsigned char *loc, int arg));
1658static void store_op2 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
1659 int arg1, int arg2));
1660static void insert_op1 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
1661 int arg, unsigned char *end));
1662static void insert_op2 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
1663 int arg1, int arg2, unsigned char *end));
01618498
SM
1664static boolean at_begline_loc_p _RE_ARGS ((re_char *pattern,
1665 re_char *p,
4bb91c68 1666 reg_syntax_t syntax));
01618498
SM
1667static boolean at_endline_loc_p _RE_ARGS ((re_char *p,
1668 re_char *pend,
4bb91c68 1669 reg_syntax_t syntax));
01618498
SM
1670static re_char *skip_one_char _RE_ARGS ((re_char *p));
1671static int analyse_first _RE_ARGS ((re_char *p, re_char *pend,
4bb91c68 1672 char *fastmap, const int multibyte));
fa9a63c5 1673
fa9a63c5 1674/* Fetch the next character in the uncompiled pattern, with no
4bb91c68 1675 translation. */
36595814 1676#define PATFETCH(c) \
2d1675e4
SM
1677 do { \
1678 int len; \
1679 if (p == pend) return REG_EEND; \
1680 c = RE_STRING_CHAR_AND_LENGTH (p, pend - p, len); \
1681 p += len; \
fa9a63c5
RM
1682 } while (0)
1683
fa9a63c5
RM
1684
1685/* If `translate' is non-null, return translate[D], else just D. We
1686 cast the subscript to translate because some data is declared as
1687 `char *', to avoid warnings when a string constant is passed. But
1688 when we use a character as a subscript we must make it unsigned. */
6676cb1c 1689#ifndef TRANSLATE
0b32bf0e 1690# define TRANSLATE(d) \
66f0296e 1691 (RE_TRANSLATE_P (translate) ? RE_TRANSLATE (translate, (d)) : (d))
6676cb1c 1692#endif
fa9a63c5
RM
1693
1694
1695/* Macros for outputting the compiled pattern into `buffer'. */
1696
1697/* If the buffer isn't allocated when it comes in, use this. */
1698#define INIT_BUF_SIZE 32
1699
4bb91c68 1700/* Make sure we have at least N more bytes of space in buffer. */
fa9a63c5 1701#define GET_BUFFER_SPACE(n) \
01618498 1702 while ((size_t) (b - bufp->buffer + (n)) > bufp->allocated) \
fa9a63c5
RM
1703 EXTEND_BUFFER ()
1704
1705/* Make sure we have one more byte of buffer space and then add C to it. */
1706#define BUF_PUSH(c) \
1707 do { \
1708 GET_BUFFER_SPACE (1); \
1709 *b++ = (unsigned char) (c); \
1710 } while (0)
1711
1712
1713/* Ensure we have two more bytes of buffer space and then append C1 and C2. */
1714#define BUF_PUSH_2(c1, c2) \
1715 do { \
1716 GET_BUFFER_SPACE (2); \
1717 *b++ = (unsigned char) (c1); \
1718 *b++ = (unsigned char) (c2); \
1719 } while (0)
1720
1721
4bb91c68 1722/* As with BUF_PUSH_2, except for three bytes. */
fa9a63c5
RM
1723#define BUF_PUSH_3(c1, c2, c3) \
1724 do { \
1725 GET_BUFFER_SPACE (3); \
1726 *b++ = (unsigned char) (c1); \
1727 *b++ = (unsigned char) (c2); \
1728 *b++ = (unsigned char) (c3); \
1729 } while (0)
1730
1731
1732/* Store a jump with opcode OP at LOC to location TO. We store a
4bb91c68 1733 relative address offset by the three bytes the jump itself occupies. */
fa9a63c5
RM
1734#define STORE_JUMP(op, loc, to) \
1735 store_op1 (op, loc, (to) - (loc) - 3)
1736
1737/* Likewise, for a two-argument jump. */
1738#define STORE_JUMP2(op, loc, to, arg) \
1739 store_op2 (op, loc, (to) - (loc) - 3, arg)
1740
4bb91c68 1741/* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */
fa9a63c5
RM
1742#define INSERT_JUMP(op, loc, to) \
1743 insert_op1 (op, loc, (to) - (loc) - 3, b)
1744
1745/* Like `STORE_JUMP2', but for inserting. Assume `b' is the buffer end. */
1746#define INSERT_JUMP2(op, loc, to, arg) \
1747 insert_op2 (op, loc, (to) - (loc) - 3, arg, b)
1748
1749
1750/* This is not an arbitrary limit: the arguments which represent offsets
275a3409 1751 into the pattern are two bytes long. So if 2^15 bytes turns out to
fa9a63c5 1752 be too small, many things would have to change. */
275a3409
RS
1753# define MAX_BUF_SIZE (1L << 15)
1754
1755#if 0 /* This is when we thought it could be 2^16 bytes. */
4bb91c68
SM
1756/* Any other compiler which, like MSC, has allocation limit below 2^16
1757 bytes will have to use approach similar to what was done below for
1758 MSC and drop MAX_BUF_SIZE a bit. Otherwise you may end up
1759 reallocating to 0 bytes. Such thing is not going to work too well.
1760 You have been warned!! */
1761#if defined _MSC_VER && !defined WIN32
1762/* Microsoft C 16-bit versions limit malloc to approx 65512 bytes. */
1763# define MAX_BUF_SIZE 65500L
1764#else
1765# define MAX_BUF_SIZE (1L << 16)
1766#endif
275a3409 1767#endif /* 0 */
fa9a63c5
RM
1768
1769/* Extend the buffer by twice its current size via realloc and
1770 reset the pointers that pointed into the old block to point to the
1771 correct places in the new one. If extending the buffer results in it
4bb91c68
SM
1772 being larger than MAX_BUF_SIZE, then flag memory exhausted. */
1773#if __BOUNDED_POINTERS__
1774# define SET_HIGH_BOUND(P) (__ptrhigh (P) = __ptrlow (P) + bufp->allocated)
1775# define MOVE_BUFFER_POINTER(P) \
1776 (__ptrlow (P) += incr, SET_HIGH_BOUND (P), __ptrvalue (P) += incr)
1777# define ELSE_EXTEND_BUFFER_HIGH_BOUND \
1778 else \
1779 { \
1780 SET_HIGH_BOUND (b); \
1781 SET_HIGH_BOUND (begalt); \
1782 if (fixup_alt_jump) \
1783 SET_HIGH_BOUND (fixup_alt_jump); \
1784 if (laststart) \
1785 SET_HIGH_BOUND (laststart); \
1786 if (pending_exact) \
1787 SET_HIGH_BOUND (pending_exact); \
1788 }
1789#else
1790# define MOVE_BUFFER_POINTER(P) (P) += incr
1791# define ELSE_EXTEND_BUFFER_HIGH_BOUND
1792#endif
fa9a63c5 1793#define EXTEND_BUFFER() \
25fe55af 1794 do { \
01618498 1795 re_char *old_buffer = bufp->buffer; \
25fe55af 1796 if (bufp->allocated == MAX_BUF_SIZE) \
fa9a63c5
RM
1797 return REG_ESIZE; \
1798 bufp->allocated <<= 1; \
1799 if (bufp->allocated > MAX_BUF_SIZE) \
25fe55af 1800 bufp->allocated = MAX_BUF_SIZE; \
01618498 1801 RETALLOC (bufp->buffer, bufp->allocated, unsigned char); \
fa9a63c5
RM
1802 if (bufp->buffer == NULL) \
1803 return REG_ESPACE; \
1804 /* If the buffer moved, move all the pointers into it. */ \
1805 if (old_buffer != bufp->buffer) \
1806 { \
4bb91c68
SM
1807 int incr = bufp->buffer - old_buffer; \
1808 MOVE_BUFFER_POINTER (b); \
1809 MOVE_BUFFER_POINTER (begalt); \
25fe55af 1810 if (fixup_alt_jump) \
4bb91c68 1811 MOVE_BUFFER_POINTER (fixup_alt_jump); \
25fe55af 1812 if (laststart) \
4bb91c68 1813 MOVE_BUFFER_POINTER (laststart); \
25fe55af 1814 if (pending_exact) \
4bb91c68 1815 MOVE_BUFFER_POINTER (pending_exact); \
fa9a63c5 1816 } \
4bb91c68 1817 ELSE_EXTEND_BUFFER_HIGH_BOUND \
fa9a63c5
RM
1818 } while (0)
1819
1820
1821/* Since we have one byte reserved for the register number argument to
1822 {start,stop}_memory, the maximum number of groups we can report
1823 things about is what fits in that byte. */
1824#define MAX_REGNUM 255
1825
1826/* But patterns can have more than `MAX_REGNUM' registers. We just
1827 ignore the excess. */
098d42af 1828typedef int regnum_t;
fa9a63c5
RM
1829
1830
1831/* Macros for the compile stack. */
1832
1833/* Since offsets can go either forwards or backwards, this type needs to
4bb91c68
SM
1834 be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */
1835/* int may be not enough when sizeof(int) == 2. */
1836typedef long pattern_offset_t;
fa9a63c5
RM
1837
1838typedef struct
1839{
1840 pattern_offset_t begalt_offset;
1841 pattern_offset_t fixup_alt_jump;
5e69f11e 1842 pattern_offset_t laststart_offset;
fa9a63c5
RM
1843 regnum_t regnum;
1844} compile_stack_elt_t;
1845
1846
1847typedef struct
1848{
1849 compile_stack_elt_t *stack;
1850 unsigned size;
1851 unsigned avail; /* Offset of next open position. */
1852} compile_stack_type;
1853
1854
1855#define INIT_COMPILE_STACK_SIZE 32
1856
1857#define COMPILE_STACK_EMPTY (compile_stack.avail == 0)
1858#define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size)
1859
4bb91c68 1860/* The next available element. */
fa9a63c5
RM
1861#define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
1862
77d11aec
RS
1863/* Explicit quit checking is only used on NTemacs. */
1864#if defined WINDOWSNT && defined emacs && defined QUIT
1865extern int immediate_quit;
1866# define IMMEDIATE_QUIT_CHECK \
1867 do { \
1868 if (immediate_quit) QUIT; \
1869 } while (0)
1870#else
1871# define IMMEDIATE_QUIT_CHECK ((void)0)
1872#endif
1873\f
b18215fc
RS
1874/* Structure to manage work area for range table. */
1875struct range_table_work_area
1876{
1877 int *table; /* actual work area. */
1878 int allocated; /* allocated size for work area in bytes. */
25fe55af 1879 int used; /* actually used size in words. */
96cc36cc 1880 int bits; /* flag to record character classes */
b18215fc
RS
1881};
1882
77d11aec
RS
1883/* Make sure that WORK_AREA can hold more N multibyte characters.
1884 This is used only in set_image_of_range and set_image_of_range_1.
1885 It expects WORK_AREA to be a pointer.
1886 If it can't get the space, it returns from the surrounding function. */
1887
1888#define EXTEND_RANGE_TABLE(work_area, n) \
1889 do { \
1890 if (((work_area)->used + (n)) * sizeof (int) > (work_area)->allocated) \
1891 { \
1892 extend_range_table_work_area (work_area); \
1893 if ((work_area)->table == 0) \
1894 return (REG_ESPACE); \
1895 } \
b18215fc
RS
1896 } while (0)
1897
96cc36cc
RS
1898#define SET_RANGE_TABLE_WORK_AREA_BIT(work_area, bit) \
1899 (work_area).bits |= (bit)
1900
14473664
SM
1901/* Bits used to implement the multibyte-part of the various character classes
1902 such as [:alnum:] in a charset's range table. */
1903#define BIT_WORD 0x1
1904#define BIT_LOWER 0x2
1905#define BIT_PUNCT 0x4
1906#define BIT_SPACE 0x8
1907#define BIT_UPPER 0x10
1908#define BIT_MULTIBYTE 0x20
96cc36cc 1909
36595814
SM
1910/* Set a range START..END to WORK_AREA.
1911 The range is passed through TRANSLATE, so START and END
1912 should be untranslated. */
77d11aec
RS
1913#define SET_RANGE_TABLE_WORK_AREA(work_area, start, end) \
1914 do { \
1915 int tem; \
1916 tem = set_image_of_range (&work_area, start, end, translate); \
1917 if (tem > 0) \
1918 FREE_STACK_RETURN (tem); \
b18215fc
RS
1919 } while (0)
1920
25fe55af 1921/* Free allocated memory for WORK_AREA. */
b18215fc
RS
1922#define FREE_RANGE_TABLE_WORK_AREA(work_area) \
1923 do { \
1924 if ((work_area).table) \
1925 free ((work_area).table); \
1926 } while (0)
1927
96cc36cc 1928#define CLEAR_RANGE_TABLE_WORK_USED(work_area) ((work_area).used = 0, (work_area).bits = 0)
b18215fc 1929#define RANGE_TABLE_WORK_USED(work_area) ((work_area).used)
96cc36cc 1930#define RANGE_TABLE_WORK_BITS(work_area) ((work_area).bits)
b18215fc 1931#define RANGE_TABLE_WORK_ELT(work_area, i) ((work_area).table[i])
77d11aec 1932\f
b18215fc 1933
fa9a63c5 1934/* Set the bit for character C in a list. */
01618498 1935#define SET_LIST_BIT(c) (b[((c)) / BYTEWIDTH] |= 1 << ((c) % BYTEWIDTH))
fa9a63c5
RM
1936
1937
1938/* Get the next unsigned number in the uncompiled pattern. */
25fe55af 1939#define GET_UNSIGNED_NUMBER(num) \
99633e97 1940 do { if (p != pend) \
fa9a63c5 1941 { \
25fe55af 1942 PATFETCH (c); \
060cc8ff
RS
1943 if (c == ' ') \
1944 FREE_STACK_RETURN (REG_BADBR); \
4bb91c68 1945 while ('0' <= c && c <= '9') \
25fe55af 1946 { \
f6df485f 1947 int prev; \
25fe55af 1948 if (num < 0) \
f6df485f
RS
1949 num = 0; \
1950 prev = num; \
25fe55af 1951 num = num * 10 + c - '0'; \
f6df485f
RS
1952 if (num / 10 != prev) \
1953 FREE_STACK_RETURN (REG_BADBR); \
25fe55af 1954 if (p == pend) \
f6df485f 1955 break; \
25fe55af
RS
1956 PATFETCH (c); \
1957 } \
060cc8ff
RS
1958 if (c == ' ') \
1959 FREE_STACK_RETURN (REG_BADBR); \
25fe55af 1960 } \
99633e97 1961 } while (0)
77d11aec 1962\f
a0ad02f7 1963#if WIDE_CHAR_SUPPORT
14473664
SM
1964/* The GNU C library provides support for user-defined character classes
1965 and the functions from ISO C amendement 1. */
1966# ifdef CHARCLASS_NAME_MAX
1967# define CHAR_CLASS_MAX_LENGTH CHARCLASS_NAME_MAX
1968# else
1969/* This shouldn't happen but some implementation might still have this
1970 problem. Use a reasonable default value. */
1971# define CHAR_CLASS_MAX_LENGTH 256
1972# endif
1973typedef wctype_t re_wctype_t;
01618498 1974typedef wchar_t re_wchar_t;
14473664
SM
1975# define re_wctype wctype
1976# define re_iswctype iswctype
1977# define re_wctype_to_bit(cc) 0
1978#else
1979# define CHAR_CLASS_MAX_LENGTH 9 /* Namely, `multibyte'. */
1980# define btowc(c) c
1981
01618498 1982/* Character classes. */
14473664
SM
1983typedef enum { RECC_ERROR = 0,
1984 RECC_ALNUM, RECC_ALPHA, RECC_WORD,
1985 RECC_GRAPH, RECC_PRINT,
1986 RECC_LOWER, RECC_UPPER,
1987 RECC_PUNCT, RECC_CNTRL,
1988 RECC_DIGIT, RECC_XDIGIT,
1989 RECC_BLANK, RECC_SPACE,
1990 RECC_MULTIBYTE, RECC_NONASCII,
1991 RECC_ASCII, RECC_UNIBYTE
1992} re_wctype_t;
1993
01618498
SM
1994typedef int re_wchar_t;
1995
14473664
SM
1996/* Map a string to the char class it names (if any). */
1997static re_wctype_t
ada30c0e
SM
1998re_wctype (str)
1999 re_char *str;
14473664 2000{
ada30c0e 2001 const char *string = str;
14473664
SM
2002 if (STREQ (string, "alnum")) return RECC_ALNUM;
2003 else if (STREQ (string, "alpha")) return RECC_ALPHA;
2004 else if (STREQ (string, "word")) return RECC_WORD;
2005 else if (STREQ (string, "ascii")) return RECC_ASCII;
2006 else if (STREQ (string, "nonascii")) return RECC_NONASCII;
2007 else if (STREQ (string, "graph")) return RECC_GRAPH;
2008 else if (STREQ (string, "lower")) return RECC_LOWER;
2009 else if (STREQ (string, "print")) return RECC_PRINT;
2010 else if (STREQ (string, "punct")) return RECC_PUNCT;
2011 else if (STREQ (string, "space")) return RECC_SPACE;
2012 else if (STREQ (string, "upper")) return RECC_UPPER;
2013 else if (STREQ (string, "unibyte")) return RECC_UNIBYTE;
2014 else if (STREQ (string, "multibyte")) return RECC_MULTIBYTE;
2015 else if (STREQ (string, "digit")) return RECC_DIGIT;
2016 else if (STREQ (string, "xdigit")) return RECC_XDIGIT;
2017 else if (STREQ (string, "cntrl")) return RECC_CNTRL;
2018 else if (STREQ (string, "blank")) return RECC_BLANK;
2019 else return 0;
2020}
2021
2022/* True iff CH is in the char class CC. */
2023static boolean
2024re_iswctype (ch, cc)
2025 int ch;
2026 re_wctype_t cc;
2027{
2028 switch (cc)
2029 {
0cdd06f8
SM
2030 case RECC_ALNUM: return ISALNUM (ch);
2031 case RECC_ALPHA: return ISALPHA (ch);
2032 case RECC_BLANK: return ISBLANK (ch);
2033 case RECC_CNTRL: return ISCNTRL (ch);
2034 case RECC_DIGIT: return ISDIGIT (ch);
2035 case RECC_GRAPH: return ISGRAPH (ch);
2036 case RECC_LOWER: return ISLOWER (ch);
2037 case RECC_PRINT: return ISPRINT (ch);
2038 case RECC_PUNCT: return ISPUNCT (ch);
2039 case RECC_SPACE: return ISSPACE (ch);
2040 case RECC_UPPER: return ISUPPER (ch);
2041 case RECC_XDIGIT: return ISXDIGIT (ch);
2042 case RECC_ASCII: return IS_REAL_ASCII (ch);
2043 case RECC_NONASCII: return !IS_REAL_ASCII (ch);
2044 case RECC_UNIBYTE: return ISUNIBYTE (ch);
2045 case RECC_MULTIBYTE: return !ISUNIBYTE (ch);
2046 case RECC_WORD: return ISWORD (ch);
2047 case RECC_ERROR: return false;
2048 default:
2049 abort();
14473664
SM
2050 }
2051}
fa9a63c5 2052
14473664
SM
2053/* Return a bit-pattern to use in the range-table bits to match multibyte
2054 chars of class CC. */
2055static int
2056re_wctype_to_bit (cc)
2057 re_wctype_t cc;
2058{
2059 switch (cc)
2060 {
2061 case RECC_NONASCII: case RECC_PRINT: case RECC_GRAPH:
0cdd06f8
SM
2062 case RECC_MULTIBYTE: return BIT_MULTIBYTE;
2063 case RECC_ALPHA: case RECC_ALNUM: case RECC_WORD: return BIT_WORD;
2064 case RECC_LOWER: return BIT_LOWER;
2065 case RECC_UPPER: return BIT_UPPER;
2066 case RECC_PUNCT: return BIT_PUNCT;
2067 case RECC_SPACE: return BIT_SPACE;
14473664 2068 case RECC_ASCII: case RECC_DIGIT: case RECC_XDIGIT: case RECC_CNTRL:
0cdd06f8
SM
2069 case RECC_BLANK: case RECC_UNIBYTE: case RECC_ERROR: return 0;
2070 default:
2071 abort();
14473664
SM
2072 }
2073}
2074#endif
77d11aec
RS
2075\f
2076/* Filling in the work area of a range. */
2077
2078/* Actually extend the space in WORK_AREA. */
2079
2080static void
2081extend_range_table_work_area (work_area)
2082 struct range_table_work_area *work_area;
177c0ea7 2083{
77d11aec
RS
2084 work_area->allocated += 16 * sizeof (int);
2085 if (work_area->table)
2086 work_area->table
2087 = (int *) realloc (work_area->table, work_area->allocated);
2088 else
2089 work_area->table
2090 = (int *) malloc (work_area->allocated);
2091}
2092
2093#ifdef emacs
2094
2095/* Carefully find the ranges of codes that are equivalent
2096 under case conversion to the range start..end when passed through
2097 TRANSLATE. Handle the case where non-letters can come in between
2098 two upper-case letters (which happens in Latin-1).
2099 Also handle the case of groups of more than 2 case-equivalent chars.
2100
2101 The basic method is to look at consecutive characters and see
2102 if they can form a run that can be handled as one.
2103
2104 Returns -1 if successful, REG_ESPACE if ran out of space. */
2105
2106static int
2107set_image_of_range_1 (work_area, start, end, translate)
2108 RE_TRANSLATE_TYPE translate;
2109 struct range_table_work_area *work_area;
2110 re_wchar_t start, end;
2111{
2112 /* `one_case' indicates a character, or a run of characters,
2113 each of which is an isolate (no case-equivalents).
2114 This includes all ASCII non-letters.
2115
2116 `two_case' indicates a character, or a run of characters,
2117 each of which has two case-equivalent forms.
2118 This includes all ASCII letters.
2119
2120 `strange' indicates a character that has more than one
2121 case-equivalent. */
177c0ea7 2122
77d11aec
RS
2123 enum case_type {one_case, two_case, strange};
2124
2125 /* Describe the run that is in progress,
2126 which the next character can try to extend.
2127 If run_type is strange, that means there really is no run.
2128 If run_type is one_case, then run_start...run_end is the run.
2129 If run_type is two_case, then the run is run_start...run_end,
2130 and the case-equivalents end at run_eqv_end. */
2131
2132 enum case_type run_type = strange;
2133 int run_start, run_end, run_eqv_end;
2134
2135 Lisp_Object eqv_table;
2136
2137 if (!RE_TRANSLATE_P (translate))
2138 {
b7c12565 2139 EXTEND_RANGE_TABLE (work_area, 2);
77d11aec
RS
2140 work_area->table[work_area->used++] = (start);
2141 work_area->table[work_area->used++] = (end);
b7c12565 2142 return -1;
77d11aec
RS
2143 }
2144
2145 eqv_table = XCHAR_TABLE (translate)->extras[2];
99633e97 2146
77d11aec
RS
2147 for (; start <= end; start++)
2148 {
2149 enum case_type this_type;
2150 int eqv = RE_TRANSLATE (eqv_table, start);
2151 int minchar, maxchar;
2152
2153 /* Classify this character */
2154 if (eqv == start)
2155 this_type = one_case;
2156 else if (RE_TRANSLATE (eqv_table, eqv) == start)
2157 this_type = two_case;
2158 else
2159 this_type = strange;
2160
2161 if (start < eqv)
2162 minchar = start, maxchar = eqv;
2163 else
2164 minchar = eqv, maxchar = start;
2165
2166 /* Can this character extend the run in progress? */
2167 if (this_type == strange || this_type != run_type
2168 || !(minchar == run_end + 1
2169 && (run_type == two_case
2170 ? maxchar == run_eqv_end + 1 : 1)))
2171 {
2172 /* No, end the run.
2173 Record each of its equivalent ranges. */
2174 if (run_type == one_case)
2175 {
2176 EXTEND_RANGE_TABLE (work_area, 2);
2177 work_area->table[work_area->used++] = run_start;
2178 work_area->table[work_area->used++] = run_end;
2179 }
2180 else if (run_type == two_case)
2181 {
2182 EXTEND_RANGE_TABLE (work_area, 4);
2183 work_area->table[work_area->used++] = run_start;
2184 work_area->table[work_area->used++] = run_end;
2185 work_area->table[work_area->used++]
2186 = RE_TRANSLATE (eqv_table, run_start);
2187 work_area->table[work_area->used++]
2188 = RE_TRANSLATE (eqv_table, run_end);
2189 }
2190 run_type = strange;
2191 }
177c0ea7 2192
77d11aec
RS
2193 if (this_type == strange)
2194 {
2195 /* For a strange character, add each of its equivalents, one
2196 by one. Don't start a range. */
2197 do
2198 {
2199 EXTEND_RANGE_TABLE (work_area, 2);
2200 work_area->table[work_area->used++] = eqv;
2201 work_area->table[work_area->used++] = eqv;
2202 eqv = RE_TRANSLATE (eqv_table, eqv);
2203 }
2204 while (eqv != start);
2205 }
2206
2207 /* Add this char to the run, or start a new run. */
2208 else if (run_type == strange)
2209 {
2210 /* Initialize a new range. */
2211 run_type = this_type;
2212 run_start = start;
2213 run_end = start;
2214 run_eqv_end = RE_TRANSLATE (eqv_table, run_end);
2215 }
2216 else
2217 {
2218 /* Extend a running range. */
2219 run_end = minchar;
2220 run_eqv_end = RE_TRANSLATE (eqv_table, run_end);
2221 }
2222 }
2223
2224 /* If a run is still in progress at the end, finish it now
2225 by recording its equivalent ranges. */
2226 if (run_type == one_case)
2227 {
2228 EXTEND_RANGE_TABLE (work_area, 2);
2229 work_area->table[work_area->used++] = run_start;
2230 work_area->table[work_area->used++] = run_end;
2231 }
2232 else if (run_type == two_case)
2233 {
2234 EXTEND_RANGE_TABLE (work_area, 4);
2235 work_area->table[work_area->used++] = run_start;
2236 work_area->table[work_area->used++] = run_end;
2237 work_area->table[work_area->used++]
2238 = RE_TRANSLATE (eqv_table, run_start);
2239 work_area->table[work_area->used++]
2240 = RE_TRANSLATE (eqv_table, run_end);
2241 }
2242
2243 return -1;
2244}
36595814 2245
77d11aec 2246#endif /* emacs */
36595814 2247
b7c12565 2248/* Record the the image of the range start..end when passed through
36595814
SM
2249 TRANSLATE. This is not necessarily TRANSLATE(start)..TRANSLATE(end)
2250 and is not even necessarily contiguous.
b7c12565
RS
2251 Normally we approximate it with the smallest contiguous range that contains
2252 all the chars we need. However, for Latin-1 we go to extra effort
2253 to do a better job.
2254
2255 This function is not called for ASCII ranges.
77d11aec
RS
2256
2257 Returns -1 if successful, REG_ESPACE if ran out of space. */
2258
2259static int
36595814
SM
2260set_image_of_range (work_area, start, end, translate)
2261 RE_TRANSLATE_TYPE translate;
2262 struct range_table_work_area *work_area;
2263 re_wchar_t start, end;
2264{
77d11aec
RS
2265 re_wchar_t cmin, cmax;
2266
2267#ifdef emacs
2268 /* For Latin-1 ranges, use set_image_of_range_1
2269 to get proper handling of ranges that include letters and nonletters.
b7c12565 2270 For a range that includes the whole of Latin-1, this is not necessary.
77d11aec 2271 For other character sets, we don't bother to get this right. */
b7c12565
RS
2272 if (RE_TRANSLATE_P (translate) && start < 04400
2273 && !(start < 04200 && end >= 04377))
77d11aec 2274 {
b7c12565 2275 int newend;
77d11aec 2276 int tem;
b7c12565
RS
2277 newend = end;
2278 if (newend > 04377)
2279 newend = 04377;
2280 tem = set_image_of_range_1 (work_area, start, newend, translate);
77d11aec
RS
2281 if (tem > 0)
2282 return tem;
2283
2284 start = 04400;
2285 if (end < 04400)
2286 return -1;
2287 }
2288#endif
2289
b7c12565
RS
2290 EXTEND_RANGE_TABLE (work_area, 2);
2291 work_area->table[work_area->used++] = (start);
2292 work_area->table[work_area->used++] = (end);
2293
2294 cmin = -1, cmax = -1;
77d11aec 2295
36595814 2296 if (RE_TRANSLATE_P (translate))
b7c12565
RS
2297 {
2298 int ch;
77d11aec 2299
b7c12565
RS
2300 for (ch = start; ch <= end; ch++)
2301 {
2302 re_wchar_t c = TRANSLATE (ch);
2303 if (! (start <= c && c <= end))
2304 {
2305 if (cmin == -1)
2306 cmin = c, cmax = c;
2307 else
2308 {
2309 cmin = MIN (cmin, c);
2310 cmax = MAX (cmax, c);
2311 }
2312 }
2313 }
2314
2315 if (cmin != -1)
2316 {
2317 EXTEND_RANGE_TABLE (work_area, 2);
2318 work_area->table[work_area->used++] = (cmin);
2319 work_area->table[work_area->used++] = (cmax);
2320 }
2321 }
36595814 2322
77d11aec
RS
2323 return -1;
2324}
fa9a63c5
RM
2325\f
2326#ifndef MATCH_MAY_ALLOCATE
2327
2328/* If we cannot allocate large objects within re_match_2_internal,
2329 we make the fail stack and register vectors global.
2330 The fail stack, we grow to the maximum size when a regexp
2331 is compiled.
2332 The register vectors, we adjust in size each time we
2333 compile a regexp, according to the number of registers it needs. */
2334
2335static fail_stack_type fail_stack;
2336
2337/* Size with which the following vectors are currently allocated.
2338 That is so we can make them bigger as needed,
4bb91c68 2339 but never make them smaller. */
fa9a63c5
RM
2340static int regs_allocated_size;
2341
66f0296e
SM
2342static re_char ** regstart, ** regend;
2343static re_char **best_regstart, **best_regend;
fa9a63c5
RM
2344
2345/* Make the register vectors big enough for NUM_REGS registers,
4bb91c68 2346 but don't make them smaller. */
fa9a63c5
RM
2347
2348static
2349regex_grow_registers (num_regs)
2350 int num_regs;
2351{
2352 if (num_regs > regs_allocated_size)
2353 {
66f0296e
SM
2354 RETALLOC_IF (regstart, num_regs, re_char *);
2355 RETALLOC_IF (regend, num_regs, re_char *);
2356 RETALLOC_IF (best_regstart, num_regs, re_char *);
2357 RETALLOC_IF (best_regend, num_regs, re_char *);
fa9a63c5
RM
2358
2359 regs_allocated_size = num_regs;
2360 }
2361}
2362
2363#endif /* not MATCH_MAY_ALLOCATE */
2364\f
99633e97
SM
2365static boolean group_in_compile_stack _RE_ARGS ((compile_stack_type
2366 compile_stack,
2367 regnum_t regnum));
2368
fa9a63c5
RM
2369/* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
2370 Returns one of error codes defined in `regex.h', or zero for success.
2371
2372 Assumes the `allocated' (and perhaps `buffer') and `translate'
2373 fields are set in BUFP on entry.
2374
2375 If it succeeds, results are put in BUFP (if it returns an error, the
2376 contents of BUFP are undefined):
2377 `buffer' is the compiled pattern;
2378 `syntax' is set to SYNTAX;
2379 `used' is set to the length of the compiled pattern;
2380 `fastmap_accurate' is zero;
2381 `re_nsub' is the number of subexpressions in PATTERN;
2382 `not_bol' and `not_eol' are zero;
5e69f11e 2383
c0f9ea08 2384 The `fastmap' field is neither examined nor set. */
fa9a63c5 2385
505bde11
SM
2386/* Insert the `jump' from the end of last alternative to "here".
2387 The space for the jump has already been allocated. */
2388#define FIXUP_ALT_JUMP() \
2389do { \
2390 if (fixup_alt_jump) \
2391 STORE_JUMP (jump, fixup_alt_jump, b); \
2392} while (0)
2393
2394
fa9a63c5
RM
2395/* Return, freeing storage we allocated. */
2396#define FREE_STACK_RETURN(value) \
b18215fc
RS
2397 do { \
2398 FREE_RANGE_TABLE_WORK_AREA (range_table_work); \
2399 free (compile_stack.stack); \
2400 return value; \
2401 } while (0)
fa9a63c5
RM
2402
2403static reg_errcode_t
2404regex_compile (pattern, size, syntax, bufp)
66f0296e 2405 re_char *pattern;
4bb91c68 2406 size_t size;
fa9a63c5
RM
2407 reg_syntax_t syntax;
2408 struct re_pattern_buffer *bufp;
2409{
01618498
SM
2410 /* We fetch characters from PATTERN here. */
2411 register re_wchar_t c, c1;
5e69f11e 2412
fa9a63c5 2413 /* A random temporary spot in PATTERN. */
66f0296e 2414 re_char *p1;
fa9a63c5
RM
2415
2416 /* Points to the end of the buffer, where we should append. */
2417 register unsigned char *b;
5e69f11e 2418
fa9a63c5
RM
2419 /* Keeps track of unclosed groups. */
2420 compile_stack_type compile_stack;
2421
2422 /* Points to the current (ending) position in the pattern. */
22336245
RS
2423#ifdef AIX
2424 /* `const' makes AIX compiler fail. */
66f0296e 2425 unsigned char *p = pattern;
22336245 2426#else
66f0296e 2427 re_char *p = pattern;
22336245 2428#endif
66f0296e 2429 re_char *pend = pattern + size;
5e69f11e 2430
fa9a63c5 2431 /* How to translate the characters in the pattern. */
6676cb1c 2432 RE_TRANSLATE_TYPE translate = bufp->translate;
fa9a63c5
RM
2433
2434 /* Address of the count-byte of the most recently inserted `exactn'
2435 command. This makes it possible to tell if a new exact-match
2436 character can be added to that command or if the character requires
2437 a new `exactn' command. */
2438 unsigned char *pending_exact = 0;
2439
2440 /* Address of start of the most recently finished expression.
2441 This tells, e.g., postfix * where to find the start of its
2442 operand. Reset at the beginning of groups and alternatives. */
2443 unsigned char *laststart = 0;
2444
2445 /* Address of beginning of regexp, or inside of last group. */
2446 unsigned char *begalt;
2447
2448 /* Place in the uncompiled pattern (i.e., the {) to
2449 which to go back if the interval is invalid. */
66f0296e 2450 re_char *beg_interval;
5e69f11e 2451
fa9a63c5 2452 /* Address of the place where a forward jump should go to the end of
25fe55af 2453 the containing expression. Each alternative of an `or' -- except the
fa9a63c5
RM
2454 last -- ends with a forward jump of this sort. */
2455 unsigned char *fixup_alt_jump = 0;
2456
2457 /* Counts open-groups as they are encountered. Remembered for the
2458 matching close-group on the compile stack, so the same register
2459 number is put in the stop_memory as the start_memory. */
2460 regnum_t regnum = 0;
2461
b18215fc
RS
2462 /* Work area for range table of charset. */
2463 struct range_table_work_area range_table_work;
2464
2d1675e4
SM
2465 /* If the object matched can contain multibyte characters. */
2466 const boolean multibyte = RE_MULTIBYTE_P (bufp);
2467
fa9a63c5 2468#ifdef DEBUG
99633e97 2469 debug++;
fa9a63c5 2470 DEBUG_PRINT1 ("\nCompiling pattern: ");
99633e97 2471 if (debug > 0)
fa9a63c5
RM
2472 {
2473 unsigned debug_count;
5e69f11e 2474
fa9a63c5 2475 for (debug_count = 0; debug_count < size; debug_count++)
25fe55af 2476 putchar (pattern[debug_count]);
fa9a63c5
RM
2477 putchar ('\n');
2478 }
2479#endif /* DEBUG */
2480
2481 /* Initialize the compile stack. */
2482 compile_stack.stack = TALLOC (INIT_COMPILE_STACK_SIZE, compile_stack_elt_t);
2483 if (compile_stack.stack == NULL)
2484 return REG_ESPACE;
2485
2486 compile_stack.size = INIT_COMPILE_STACK_SIZE;
2487 compile_stack.avail = 0;
2488
b18215fc
RS
2489 range_table_work.table = 0;
2490 range_table_work.allocated = 0;
2491
fa9a63c5
RM
2492 /* Initialize the pattern buffer. */
2493 bufp->syntax = syntax;
2494 bufp->fastmap_accurate = 0;
2495 bufp->not_bol = bufp->not_eol = 0;
2496
2497 /* Set `used' to zero, so that if we return an error, the pattern
2498 printer (for debugging) will think there's no pattern. We reset it
2499 at the end. */
2500 bufp->used = 0;
5e69f11e 2501
fa9a63c5 2502 /* Always count groups, whether or not bufp->no_sub is set. */
5e69f11e 2503 bufp->re_nsub = 0;
fa9a63c5 2504
0b32bf0e 2505#if !defined emacs && !defined SYNTAX_TABLE
fa9a63c5
RM
2506 /* Initialize the syntax table. */
2507 init_syntax_once ();
2508#endif
2509
2510 if (bufp->allocated == 0)
2511 {
2512 if (bufp->buffer)
2513 { /* If zero allocated, but buffer is non-null, try to realloc
25fe55af
RS
2514 enough space. This loses if buffer's address is bogus, but
2515 that is the user's responsibility. */
2516 RETALLOC (bufp->buffer, INIT_BUF_SIZE, unsigned char);
2517 }
fa9a63c5 2518 else
25fe55af
RS
2519 { /* Caller did not allocate a buffer. Do it for them. */
2520 bufp->buffer = TALLOC (INIT_BUF_SIZE, unsigned char);
2521 }
fa9a63c5
RM
2522 if (!bufp->buffer) FREE_STACK_RETURN (REG_ESPACE);
2523
2524 bufp->allocated = INIT_BUF_SIZE;
2525 }
2526
2527 begalt = b = bufp->buffer;
2528
2529 /* Loop through the uncompiled pattern until we're at the end. */
2530 while (p != pend)
2531 {
2532 PATFETCH (c);
2533
2534 switch (c)
25fe55af
RS
2535 {
2536 case '^':
2537 {
2538 if ( /* If at start of pattern, it's an operator. */
2539 p == pattern + 1
2540 /* If context independent, it's an operator. */
2541 || syntax & RE_CONTEXT_INDEP_ANCHORS
2542 /* Otherwise, depends on what's come before. */
2543 || at_begline_loc_p (pattern, p, syntax))
c0f9ea08 2544 BUF_PUSH ((syntax & RE_NO_NEWLINE_ANCHOR) ? begbuf : begline);
25fe55af
RS
2545 else
2546 goto normal_char;
2547 }
2548 break;
2549
2550
2551 case '$':
2552 {
2553 if ( /* If at end of pattern, it's an operator. */
2554 p == pend
2555 /* If context independent, it's an operator. */
2556 || syntax & RE_CONTEXT_INDEP_ANCHORS
2557 /* Otherwise, depends on what's next. */
2558 || at_endline_loc_p (p, pend, syntax))
c0f9ea08 2559 BUF_PUSH ((syntax & RE_NO_NEWLINE_ANCHOR) ? endbuf : endline);
25fe55af
RS
2560 else
2561 goto normal_char;
2562 }
2563 break;
fa9a63c5
RM
2564
2565
2566 case '+':
25fe55af
RS
2567 case '?':
2568 if ((syntax & RE_BK_PLUS_QM)
2569 || (syntax & RE_LIMITED_OPS))
2570 goto normal_char;
2571 handle_plus:
2572 case '*':
2573 /* If there is no previous pattern... */
2574 if (!laststart)
2575 {
2576 if (syntax & RE_CONTEXT_INVALID_OPS)
2577 FREE_STACK_RETURN (REG_BADRPT);
2578 else if (!(syntax & RE_CONTEXT_INDEP_OPS))
2579 goto normal_char;
2580 }
2581
2582 {
25fe55af 2583 /* 1 means zero (many) matches is allowed. */
66f0296e
SM
2584 boolean zero_times_ok = 0, many_times_ok = 0;
2585 boolean greedy = 1;
25fe55af
RS
2586
2587 /* If there is a sequence of repetition chars, collapse it
2588 down to just one (the right one). We can't combine
2589 interval operators with these because of, e.g., `a{2}*',
2590 which should only match an even number of `a's. */
2591
2592 for (;;)
2593 {
0b32bf0e 2594 if ((syntax & RE_FRUGAL)
1c8c6d39
DL
2595 && c == '?' && (zero_times_ok || many_times_ok))
2596 greedy = 0;
2597 else
2598 {
2599 zero_times_ok |= c != '+';
2600 many_times_ok |= c != '?';
2601 }
25fe55af
RS
2602
2603 if (p == pend)
2604 break;
ed0767d8
SM
2605 else if (*p == '*'
2606 || (!(syntax & RE_BK_PLUS_QM)
2607 && (*p == '+' || *p == '?')))
25fe55af 2608 ;
ed0767d8 2609 else if (syntax & RE_BK_PLUS_QM && *p == '\\')
25fe55af 2610 {
ed0767d8
SM
2611 if (p+1 == pend)
2612 FREE_STACK_RETURN (REG_EESCAPE);
2613 if (p[1] == '+' || p[1] == '?')
2614 PATFETCH (c); /* Gobble up the backslash. */
2615 else
2616 break;
25fe55af
RS
2617 }
2618 else
ed0767d8 2619 break;
25fe55af 2620 /* If we get here, we found another repeat character. */
ed0767d8
SM
2621 PATFETCH (c);
2622 }
25fe55af
RS
2623
2624 /* Star, etc. applied to an empty pattern is equivalent
2625 to an empty pattern. */
4e8a9132 2626 if (!laststart || laststart == b)
25fe55af
RS
2627 break;
2628
2629 /* Now we know whether or not zero matches is allowed
2630 and also whether or not two or more matches is allowed. */
1c8c6d39
DL
2631 if (greedy)
2632 {
99633e97 2633 if (many_times_ok)
4e8a9132
SM
2634 {
2635 boolean simple = skip_one_char (laststart) == b;
2636 unsigned int startoffset = 0;
f6a3f532 2637 re_opcode_t ofj =
01618498 2638 /* Check if the loop can match the empty string. */
6df42991
SM
2639 (simple || !analyse_first (laststart, b, NULL, 0))
2640 ? on_failure_jump : on_failure_jump_loop;
4e8a9132 2641 assert (skip_one_char (laststart) <= b);
177c0ea7 2642
4e8a9132
SM
2643 if (!zero_times_ok && simple)
2644 { /* Since simple * loops can be made faster by using
2645 on_failure_keep_string_jump, we turn simple P+
2646 into PP* if P is simple. */
2647 unsigned char *p1, *p2;
2648 startoffset = b - laststart;
2649 GET_BUFFER_SPACE (startoffset);
2650 p1 = b; p2 = laststart;
2651 while (p2 < p1)
2652 *b++ = *p2++;
2653 zero_times_ok = 1;
99633e97 2654 }
4e8a9132
SM
2655
2656 GET_BUFFER_SPACE (6);
2657 if (!zero_times_ok)
2658 /* A + loop. */
f6a3f532 2659 STORE_JUMP (ofj, b, b + 6);
99633e97 2660 else
4e8a9132
SM
2661 /* Simple * loops can use on_failure_keep_string_jump
2662 depending on what follows. But since we don't know
2663 that yet, we leave the decision up to
2664 on_failure_jump_smart. */
f6a3f532 2665 INSERT_JUMP (simple ? on_failure_jump_smart : ofj,
4e8a9132 2666 laststart + startoffset, b + 6);
99633e97 2667 b += 3;
4e8a9132 2668 STORE_JUMP (jump, b, laststart + startoffset);
99633e97
SM
2669 b += 3;
2670 }
2671 else
2672 {
4e8a9132
SM
2673 /* A simple ? pattern. */
2674 assert (zero_times_ok);
2675 GET_BUFFER_SPACE (3);
2676 INSERT_JUMP (on_failure_jump, laststart, b + 3);
99633e97
SM
2677 b += 3;
2678 }
1c8c6d39
DL
2679 }
2680 else /* not greedy */
2681 { /* I wish the greedy and non-greedy cases could be merged. */
2682
0683b6fa 2683 GET_BUFFER_SPACE (7); /* We might use less. */
1c8c6d39
DL
2684 if (many_times_ok)
2685 {
f6a3f532
SM
2686 boolean emptyp = analyse_first (laststart, b, NULL, 0);
2687
6df42991
SM
2688 /* The non-greedy multiple match looks like
2689 a repeat..until: we only need a conditional jump
2690 at the end of the loop. */
f6a3f532
SM
2691 if (emptyp) BUF_PUSH (no_op);
2692 STORE_JUMP (emptyp ? on_failure_jump_nastyloop
2693 : on_failure_jump, b, laststart);
1c8c6d39
DL
2694 b += 3;
2695 if (zero_times_ok)
2696 {
2697 /* The repeat...until naturally matches one or more.
2698 To also match zero times, we need to first jump to
6df42991 2699 the end of the loop (its conditional jump). */
1c8c6d39
DL
2700 INSERT_JUMP (jump, laststart, b);
2701 b += 3;
2702 }
2703 }
2704 else
2705 {
2706 /* non-greedy a?? */
1c8c6d39
DL
2707 INSERT_JUMP (jump, laststart, b + 3);
2708 b += 3;
2709 INSERT_JUMP (on_failure_jump, laststart, laststart + 6);
2710 b += 3;
2711 }
2712 }
2713 }
4e8a9132 2714 pending_exact = 0;
fa9a63c5
RM
2715 break;
2716
2717
2718 case '.':
25fe55af
RS
2719 laststart = b;
2720 BUF_PUSH (anychar);
2721 break;
fa9a63c5
RM
2722
2723
25fe55af
RS
2724 case '[':
2725 {
b18215fc 2726 CLEAR_RANGE_TABLE_WORK_USED (range_table_work);
fa9a63c5 2727
25fe55af 2728 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
fa9a63c5 2729
25fe55af
RS
2730 /* Ensure that we have enough space to push a charset: the
2731 opcode, the length count, and the bitset; 34 bytes in all. */
fa9a63c5
RM
2732 GET_BUFFER_SPACE (34);
2733
25fe55af 2734 laststart = b;
e318085a 2735
25fe55af
RS
2736 /* We test `*p == '^' twice, instead of using an if
2737 statement, so we only need one BUF_PUSH. */
2738 BUF_PUSH (*p == '^' ? charset_not : charset);
2739 if (*p == '^')
2740 p++;
e318085a 2741
25fe55af
RS
2742 /* Remember the first position in the bracket expression. */
2743 p1 = p;
e318085a 2744
25fe55af
RS
2745 /* Push the number of bytes in the bitmap. */
2746 BUF_PUSH ((1 << BYTEWIDTH) / BYTEWIDTH);
e318085a 2747
25fe55af
RS
2748 /* Clear the whole map. */
2749 bzero (b, (1 << BYTEWIDTH) / BYTEWIDTH);
e318085a 2750
25fe55af
RS
2751 /* charset_not matches newline according to a syntax bit. */
2752 if ((re_opcode_t) b[-2] == charset_not
2753 && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
2754 SET_LIST_BIT ('\n');
fa9a63c5 2755
25fe55af
RS
2756 /* Read in characters and ranges, setting map bits. */
2757 for (;;)
2758 {
b18215fc 2759 boolean escaped_char = false;
2d1675e4 2760 const unsigned char *p2 = p;
e318085a 2761
25fe55af 2762 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
e318085a 2763
36595814
SM
2764 /* Don't translate yet. The range TRANSLATE(X..Y) cannot
2765 always be determined from TRANSLATE(X) and TRANSLATE(Y)
2766 So the translation is done later in a loop. Example:
2767 (let ((case-fold-search t)) (string-match "[A-_]" "A")) */
25fe55af 2768 PATFETCH (c);
e318085a 2769
25fe55af
RS
2770 /* \ might escape characters inside [...] and [^...]. */
2771 if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
2772 {
2773 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
e318085a
RS
2774
2775 PATFETCH (c);
b18215fc 2776 escaped_char = true;
25fe55af 2777 }
b18215fc
RS
2778 else
2779 {
657fcfbd
RS
2780 /* Could be the end of the bracket expression. If it's
2781 not (i.e., when the bracket expression is `[]' so
2782 far), the ']' character bit gets set way below. */
2d1675e4 2783 if (c == ']' && p2 != p1)
657fcfbd 2784 break;
25fe55af 2785 }
b18215fc 2786
b18215fc
RS
2787 /* What should we do for the character which is
2788 greater than 0x7F, but not BASE_LEADING_CODE_P?
2789 XXX */
2790
25fe55af
RS
2791 /* See if we're at the beginning of a possible character
2792 class. */
b18215fc 2793
2d1675e4
SM
2794 if (!escaped_char &&
2795 syntax & RE_CHAR_CLASSES && c == '[' && *p == ':')
657fcfbd
RS
2796 {
2797 /* Leave room for the null. */
14473664 2798 unsigned char str[CHAR_CLASS_MAX_LENGTH + 1];
ed0767d8 2799 const unsigned char *class_beg;
b18215fc 2800
25fe55af
RS
2801 PATFETCH (c);
2802 c1 = 0;
ed0767d8 2803 class_beg = p;
b18215fc 2804
25fe55af
RS
2805 /* If pattern is `[[:'. */
2806 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
b18215fc 2807
25fe55af
RS
2808 for (;;)
2809 {
14473664
SM
2810 PATFETCH (c);
2811 if ((c == ':' && *p == ']') || p == pend)
2812 break;
2813 if (c1 < CHAR_CLASS_MAX_LENGTH)
2814 str[c1++] = c;
2815 else
2816 /* This is in any case an invalid class name. */
2817 str[0] = '\0';
25fe55af
RS
2818 }
2819 str[c1] = '\0';
b18215fc
RS
2820
2821 /* If isn't a word bracketed by `[:' and `:]':
2822 undo the ending character, the letters, and
2823 leave the leading `:' and `[' (but set bits for
2824 them). */
25fe55af
RS
2825 if (c == ':' && *p == ']')
2826 {
36595814 2827 re_wchar_t ch;
14473664
SM
2828 re_wctype_t cc;
2829
2830 cc = re_wctype (str);
2831
2832 if (cc == 0)
fa9a63c5
RM
2833 FREE_STACK_RETURN (REG_ECTYPE);
2834
14473664
SM
2835 /* Throw away the ] at the end of the character
2836 class. */
2837 PATFETCH (c);
fa9a63c5 2838
14473664 2839 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
fa9a63c5 2840
96cc36cc
RS
2841 /* Most character classes in a multibyte match
2842 just set a flag. Exceptions are is_blank,
2843 is_digit, is_cntrl, and is_xdigit, since
2844 they can only match ASCII characters. We
14473664
SM
2845 don't need to handle them for multibyte.
2846 They are distinguished by a negative wctype. */
96cc36cc 2847
2d1675e4 2848 if (multibyte)
14473664
SM
2849 SET_RANGE_TABLE_WORK_AREA_BIT (range_table_work,
2850 re_wctype_to_bit (cc));
96cc36cc 2851
14473664 2852 for (ch = 0; ch < 1 << BYTEWIDTH; ++ch)
25fe55af 2853 {
7ae68633 2854 int translated = TRANSLATE (ch);
14473664 2855 if (re_iswctype (btowc (ch), cc))
96cc36cc 2856 SET_LIST_BIT (translated);
25fe55af 2857 }
b18215fc
RS
2858
2859 /* Repeat the loop. */
2860 continue;
25fe55af
RS
2861 }
2862 else
2863 {
ed0767d8
SM
2864 /* Go back to right after the "[:". */
2865 p = class_beg;
25fe55af 2866 SET_LIST_BIT ('[');
b18215fc
RS
2867
2868 /* Because the `:' may starts the range, we
2869 can't simply set bit and repeat the loop.
25fe55af 2870 Instead, just set it to C and handle below. */
b18215fc 2871 c = ':';
25fe55af
RS
2872 }
2873 }
b18215fc
RS
2874
2875 if (p < pend && p[0] == '-' && p[1] != ']')
2876 {
2877
2878 /* Discard the `-'. */
2879 PATFETCH (c1);
2880
2881 /* Fetch the character which ends the range. */
2882 PATFETCH (c1);
b18215fc 2883
b54f61ed 2884 if (SINGLE_BYTE_CHAR_P (c))
e934739e 2885 {
b54f61ed
KH
2886 if (! SINGLE_BYTE_CHAR_P (c1))
2887 {
3ff2446d
KH
2888 /* Handle a range starting with a
2889 character of less than 256, and ending
2890 with a character of not less than 256.
2891 Split that into two ranges, the low one
2892 ending at 0377, and the high one
2893 starting at the smallest character in
2894 the charset of C1 and ending at C1. */
b54f61ed 2895 int charset = CHAR_CHARSET (c1);
36595814
SM
2896 re_wchar_t c2 = MAKE_CHAR (charset, 0, 0);
2897
b54f61ed
KH
2898 SET_RANGE_TABLE_WORK_AREA (range_table_work,
2899 c2, c1);
333526e0 2900 c1 = 0377;
b54f61ed 2901 }
e934739e
RS
2902 }
2903 else if (!SAME_CHARSET_P (c, c1))
b18215fc 2904 FREE_STACK_RETURN (REG_ERANGE);
e318085a 2905 }
25fe55af 2906 else
b18215fc
RS
2907 /* Range from C to C. */
2908 c1 = c;
2909
2910 /* Set the range ... */
2911 if (SINGLE_BYTE_CHAR_P (c))
2912 /* ... into bitmap. */
25fe55af 2913 {
01618498 2914 re_wchar_t this_char;
36595814 2915 re_wchar_t range_start = c, range_end = c1;
b18215fc
RS
2916
2917 /* If the start is after the end, the range is empty. */
2918 if (range_start > range_end)
2919 {
2920 if (syntax & RE_NO_EMPTY_RANGES)
2921 FREE_STACK_RETURN (REG_ERANGE);
2922 /* Else, repeat the loop. */
2923 }
2924 else
2925 {
2926 for (this_char = range_start; this_char <= range_end;
2927 this_char++)
2928 SET_LIST_BIT (TRANSLATE (this_char));
e934739e 2929 }
25fe55af 2930 }
e318085a 2931 else
b18215fc
RS
2932 /* ... into range table. */
2933 SET_RANGE_TABLE_WORK_AREA (range_table_work, c, c1);
e318085a
RS
2934 }
2935
25fe55af
RS
2936 /* Discard any (non)matching list bytes that are all 0 at the
2937 end of the map. Decrease the map-length byte too. */
2938 while ((int) b[-1] > 0 && b[b[-1] - 1] == 0)
2939 b[-1]--;
2940 b += b[-1];
fa9a63c5 2941
96cc36cc
RS
2942 /* Build real range table from work area. */
2943 if (RANGE_TABLE_WORK_USED (range_table_work)
2944 || RANGE_TABLE_WORK_BITS (range_table_work))
b18215fc
RS
2945 {
2946 int i;
2947 int used = RANGE_TABLE_WORK_USED (range_table_work);
fa9a63c5 2948
b18215fc 2949 /* Allocate space for COUNT + RANGE_TABLE. Needs two
96cc36cc
RS
2950 bytes for flags, two for COUNT, and three bytes for
2951 each character. */
2952 GET_BUFFER_SPACE (4 + used * 3);
fa9a63c5 2953
b18215fc
RS
2954 /* Indicate the existence of range table. */
2955 laststart[1] |= 0x80;
fa9a63c5 2956
96cc36cc
RS
2957 /* Store the character class flag bits into the range table.
2958 If not in emacs, these flag bits are always 0. */
2959 *b++ = RANGE_TABLE_WORK_BITS (range_table_work) & 0xff;
2960 *b++ = RANGE_TABLE_WORK_BITS (range_table_work) >> 8;
2961
b18215fc
RS
2962 STORE_NUMBER_AND_INCR (b, used / 2);
2963 for (i = 0; i < used; i++)
2964 STORE_CHARACTER_AND_INCR
2965 (b, RANGE_TABLE_WORK_ELT (range_table_work, i));
2966 }
25fe55af
RS
2967 }
2968 break;
fa9a63c5
RM
2969
2970
b18215fc 2971 case '(':
25fe55af
RS
2972 if (syntax & RE_NO_BK_PARENS)
2973 goto handle_open;
2974 else
2975 goto normal_char;
fa9a63c5
RM
2976
2977
25fe55af
RS
2978 case ')':
2979 if (syntax & RE_NO_BK_PARENS)
2980 goto handle_close;
2981 else
2982 goto normal_char;
e318085a
RS
2983
2984
25fe55af
RS
2985 case '\n':
2986 if (syntax & RE_NEWLINE_ALT)
2987 goto handle_alt;
2988 else
2989 goto normal_char;
e318085a
RS
2990
2991
b18215fc 2992 case '|':
25fe55af
RS
2993 if (syntax & RE_NO_BK_VBAR)
2994 goto handle_alt;
2995 else
2996 goto normal_char;
2997
2998
2999 case '{':
3000 if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES)
3001 goto handle_interval;
3002 else
3003 goto normal_char;
3004
3005
3006 case '\\':
3007 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
3008
3009 /* Do not translate the character after the \, so that we can
3010 distinguish, e.g., \B from \b, even if we normally would
3011 translate, e.g., B to b. */
36595814 3012 PATFETCH (c);
25fe55af
RS
3013
3014 switch (c)
3015 {
3016 case '(':
3017 if (syntax & RE_NO_BK_PARENS)
3018 goto normal_backslash;
3019
3020 handle_open:
505bde11
SM
3021 {
3022 int shy = 0;
3023 if (p+1 < pend)
3024 {
3025 /* Look for a special (?...) construct */
ed0767d8 3026 if ((syntax & RE_SHY_GROUPS) && *p == '?')
505bde11 3027 {
ed0767d8 3028 PATFETCH (c); /* Gobble up the '?'. */
505bde11
SM
3029 PATFETCH (c);
3030 switch (c)
3031 {
3032 case ':': shy = 1; break;
3033 default:
3034 /* Only (?:...) is supported right now. */
3035 FREE_STACK_RETURN (REG_BADPAT);
3036 }
3037 }
505bde11
SM
3038 }
3039
3040 if (!shy)
3041 {
3042 bufp->re_nsub++;
3043 regnum++;
3044 }
25fe55af 3045
99633e97
SM
3046 if (COMPILE_STACK_FULL)
3047 {
3048 RETALLOC (compile_stack.stack, compile_stack.size << 1,
3049 compile_stack_elt_t);
3050 if (compile_stack.stack == NULL) return REG_ESPACE;
25fe55af 3051
99633e97
SM
3052 compile_stack.size <<= 1;
3053 }
25fe55af 3054
99633e97
SM
3055 /* These are the values to restore when we hit end of this
3056 group. They are all relative offsets, so that if the
3057 whole pattern moves because of realloc, they will still
3058 be valid. */
3059 COMPILE_STACK_TOP.begalt_offset = begalt - bufp->buffer;
3060 COMPILE_STACK_TOP.fixup_alt_jump
3061 = fixup_alt_jump ? fixup_alt_jump - bufp->buffer + 1 : 0;
3062 COMPILE_STACK_TOP.laststart_offset = b - bufp->buffer;
3063 COMPILE_STACK_TOP.regnum = shy ? -regnum : regnum;
3064
3065 /* Do not push a
3066 start_memory for groups beyond the last one we can
3067 represent in the compiled pattern. */
3068 if (regnum <= MAX_REGNUM && !shy)
3069 BUF_PUSH_2 (start_memory, regnum);
3070
3071 compile_stack.avail++;
3072
3073 fixup_alt_jump = 0;
3074 laststart = 0;
3075 begalt = b;
3076 /* If we've reached MAX_REGNUM groups, then this open
3077 won't actually generate any code, so we'll have to
3078 clear pending_exact explicitly. */
3079 pending_exact = 0;
3080 break;
505bde11 3081 }
25fe55af
RS
3082
3083 case ')':
3084 if (syntax & RE_NO_BK_PARENS) goto normal_backslash;
3085
3086 if (COMPILE_STACK_EMPTY)
505bde11
SM
3087 {
3088 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
3089 goto normal_backslash;
3090 else
3091 FREE_STACK_RETURN (REG_ERPAREN);
3092 }
25fe55af
RS
3093
3094 handle_close:
505bde11 3095 FIXUP_ALT_JUMP ();
25fe55af
RS
3096
3097 /* See similar code for backslashed left paren above. */
3098 if (COMPILE_STACK_EMPTY)
505bde11
SM
3099 {
3100 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
3101 goto normal_char;
3102 else
3103 FREE_STACK_RETURN (REG_ERPAREN);
3104 }
25fe55af
RS
3105
3106 /* Since we just checked for an empty stack above, this
3107 ``can't happen''. */
3108 assert (compile_stack.avail != 0);
3109 {
3110 /* We don't just want to restore into `regnum', because
3111 later groups should continue to be numbered higher,
3112 as in `(ab)c(de)' -- the second group is #2. */
3113 regnum_t this_group_regnum;
3114
3115 compile_stack.avail--;
3116 begalt = bufp->buffer + COMPILE_STACK_TOP.begalt_offset;
3117 fixup_alt_jump
3118 = COMPILE_STACK_TOP.fixup_alt_jump
3119 ? bufp->buffer + COMPILE_STACK_TOP.fixup_alt_jump - 1
3120 : 0;
3121 laststart = bufp->buffer + COMPILE_STACK_TOP.laststart_offset;
3122 this_group_regnum = COMPILE_STACK_TOP.regnum;
b18215fc
RS
3123 /* If we've reached MAX_REGNUM groups, then this open
3124 won't actually generate any code, so we'll have to
3125 clear pending_exact explicitly. */
3126 pending_exact = 0;
e318085a 3127
25fe55af
RS
3128 /* We're at the end of the group, so now we know how many
3129 groups were inside this one. */
505bde11
SM
3130 if (this_group_regnum <= MAX_REGNUM && this_group_regnum > 0)
3131 BUF_PUSH_2 (stop_memory, this_group_regnum);
25fe55af
RS
3132 }
3133 break;
3134
3135
3136 case '|': /* `\|'. */
3137 if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR)
3138 goto normal_backslash;
3139 handle_alt:
3140 if (syntax & RE_LIMITED_OPS)
3141 goto normal_char;
3142
3143 /* Insert before the previous alternative a jump which
3144 jumps to this alternative if the former fails. */
3145 GET_BUFFER_SPACE (3);
3146 INSERT_JUMP (on_failure_jump, begalt, b + 6);
3147 pending_exact = 0;
3148 b += 3;
3149
3150 /* The alternative before this one has a jump after it
3151 which gets executed if it gets matched. Adjust that
3152 jump so it will jump to this alternative's analogous
3153 jump (put in below, which in turn will jump to the next
3154 (if any) alternative's such jump, etc.). The last such
3155 jump jumps to the correct final destination. A picture:
3156 _____ _____
3157 | | | |
3158 | v | v
3159 a | b | c
3160
3161 If we are at `b', then fixup_alt_jump right now points to a
3162 three-byte space after `a'. We'll put in the jump, set
3163 fixup_alt_jump to right after `b', and leave behind three
3164 bytes which we'll fill in when we get to after `c'. */
3165
505bde11 3166 FIXUP_ALT_JUMP ();
25fe55af
RS
3167
3168 /* Mark and leave space for a jump after this alternative,
3169 to be filled in later either by next alternative or
3170 when know we're at the end of a series of alternatives. */
3171 fixup_alt_jump = b;
3172 GET_BUFFER_SPACE (3);
3173 b += 3;
3174
3175 laststart = 0;
3176 begalt = b;
3177 break;
3178
3179
3180 case '{':
3181 /* If \{ is a literal. */
3182 if (!(syntax & RE_INTERVALS)
3183 /* If we're at `\{' and it's not the open-interval
3184 operator. */
4bb91c68 3185 || (syntax & RE_NO_BK_BRACES))
25fe55af
RS
3186 goto normal_backslash;
3187
3188 handle_interval:
3189 {
3190 /* If got here, then the syntax allows intervals. */
3191
3192 /* At least (most) this many matches must be made. */
99633e97 3193 int lower_bound = 0, upper_bound = -1;
25fe55af 3194
ed0767d8 3195 beg_interval = p;
25fe55af
RS
3196
3197 if (p == pend)
4bb91c68 3198 FREE_STACK_RETURN (REG_EBRACE);
25fe55af
RS
3199
3200 GET_UNSIGNED_NUMBER (lower_bound);
3201
3202 if (c == ',')
ed0767d8 3203 GET_UNSIGNED_NUMBER (upper_bound);
25fe55af
RS
3204 else
3205 /* Interval such as `{1}' => match exactly once. */
3206 upper_bound = lower_bound;
3207
3208 if (lower_bound < 0 || upper_bound > RE_DUP_MAX
ed0767d8 3209 || (upper_bound >= 0 && lower_bound > upper_bound))
4bb91c68 3210 FREE_STACK_RETURN (REG_BADBR);
25fe55af
RS
3211
3212 if (!(syntax & RE_NO_BK_BRACES))
3213 {
4bb91c68
SM
3214 if (c != '\\')
3215 FREE_STACK_RETURN (REG_BADBR);
25fe55af
RS
3216
3217 PATFETCH (c);
3218 }
3219
3220 if (c != '}')
4bb91c68 3221 FREE_STACK_RETURN (REG_BADBR);
25fe55af
RS
3222
3223 /* We just parsed a valid interval. */
3224
3225 /* If it's invalid to have no preceding re. */
3226 if (!laststart)
3227 {
3228 if (syntax & RE_CONTEXT_INVALID_OPS)
3229 FREE_STACK_RETURN (REG_BADRPT);
3230 else if (syntax & RE_CONTEXT_INDEP_OPS)
3231 laststart = b;
3232 else
3233 goto unfetch_interval;
3234 }
3235
6df42991
SM
3236 if (upper_bound == 0)
3237 /* If the upper bound is zero, just drop the sub pattern
3238 altogether. */
3239 b = laststart;
3240 else if (lower_bound == 1 && upper_bound == 1)
3241 /* Just match it once: nothing to do here. */
3242 ;
3243
3244 /* Otherwise, we have a nontrivial interval. When
3245 we're all done, the pattern will look like:
3246 set_number_at <jump count> <upper bound>
3247 set_number_at <succeed_n count> <lower bound>
3248 succeed_n <after jump addr> <succeed_n count>
3249 <body of loop>
3250 jump_n <succeed_n addr> <jump count>
3251 (The upper bound and `jump_n' are omitted if
3252 `upper_bound' is 1, though.) */
3253 else
3254 { /* If the upper bound is > 1, we need to insert
3255 more at the end of the loop. */
3256 unsigned int nbytes = (upper_bound < 0 ? 3
3257 : upper_bound > 1 ? 5 : 0);
3258 unsigned int startoffset = 0;
3259
3260 GET_BUFFER_SPACE (20); /* We might use less. */
3261
3262 if (lower_bound == 0)
3263 {
3264 /* A succeed_n that starts with 0 is really a
3265 a simple on_failure_jump_loop. */
3266 INSERT_JUMP (on_failure_jump_loop, laststart,
3267 b + 3 + nbytes);
3268 b += 3;
3269 }
3270 else
3271 {
3272 /* Initialize lower bound of the `succeed_n', even
3273 though it will be set during matching by its
3274 attendant `set_number_at' (inserted next),
3275 because `re_compile_fastmap' needs to know.
3276 Jump to the `jump_n' we might insert below. */
3277 INSERT_JUMP2 (succeed_n, laststart,
3278 b + 5 + nbytes,
3279 lower_bound);
3280 b += 5;
3281
3282 /* Code to initialize the lower bound. Insert
3283 before the `succeed_n'. The `5' is the last two
3284 bytes of this `set_number_at', plus 3 bytes of
3285 the following `succeed_n'. */
3286 insert_op2 (set_number_at, laststart, 5, lower_bound, b);
3287 b += 5;
3288 startoffset += 5;
3289 }
3290
3291 if (upper_bound < 0)
3292 {
3293 /* A negative upper bound stands for infinity,
3294 in which case it degenerates to a plain jump. */
3295 STORE_JUMP (jump, b, laststart + startoffset);
3296 b += 3;
3297 }
3298 else if (upper_bound > 1)
3299 { /* More than one repetition is allowed, so
3300 append a backward jump to the `succeed_n'
3301 that starts this interval.
3302
3303 When we've reached this during matching,
3304 we'll have matched the interval once, so
3305 jump back only `upper_bound - 1' times. */
3306 STORE_JUMP2 (jump_n, b, laststart + startoffset,
3307 upper_bound - 1);
3308 b += 5;
3309
3310 /* The location we want to set is the second
3311 parameter of the `jump_n'; that is `b-2' as
3312 an absolute address. `laststart' will be
3313 the `set_number_at' we're about to insert;
3314 `laststart+3' the number to set, the source
3315 for the relative address. But we are
3316 inserting into the middle of the pattern --
3317 so everything is getting moved up by 5.
3318 Conclusion: (b - 2) - (laststart + 3) + 5,
3319 i.e., b - laststart.
3320
3321 We insert this at the beginning of the loop
3322 so that if we fail during matching, we'll
3323 reinitialize the bounds. */
3324 insert_op2 (set_number_at, laststart, b - laststart,
3325 upper_bound - 1, b);
3326 b += 5;
3327 }
3328 }
25fe55af
RS
3329 pending_exact = 0;
3330 beg_interval = NULL;
3331 }
3332 break;
3333
3334 unfetch_interval:
3335 /* If an invalid interval, match the characters as literals. */
3336 assert (beg_interval);
3337 p = beg_interval;
3338 beg_interval = NULL;
3339
3340 /* normal_char and normal_backslash need `c'. */
ed0767d8 3341 c = '{';
25fe55af
RS
3342
3343 if (!(syntax & RE_NO_BK_BRACES))
3344 {
ed0767d8
SM
3345 assert (p > pattern && p[-1] == '\\');
3346 goto normal_backslash;
25fe55af 3347 }
ed0767d8
SM
3348 else
3349 goto normal_char;
e318085a 3350
b18215fc 3351#ifdef emacs
25fe55af
RS
3352 /* There is no way to specify the before_dot and after_dot
3353 operators. rms says this is ok. --karl */
3354 case '=':
3355 BUF_PUSH (at_dot);
3356 break;
3357
3358 case 's':
3359 laststart = b;
3360 PATFETCH (c);
3361 BUF_PUSH_2 (syntaxspec, syntax_spec_code[c]);
3362 break;
3363
3364 case 'S':
3365 laststart = b;
3366 PATFETCH (c);
3367 BUF_PUSH_2 (notsyntaxspec, syntax_spec_code[c]);
3368 break;
b18215fc
RS
3369
3370 case 'c':
3371 laststart = b;
36595814 3372 PATFETCH (c);
b18215fc
RS
3373 BUF_PUSH_2 (categoryspec, c);
3374 break;
e318085a 3375
b18215fc
RS
3376 case 'C':
3377 laststart = b;
36595814 3378 PATFETCH (c);
b18215fc
RS
3379 BUF_PUSH_2 (notcategoryspec, c);
3380 break;
3381#endif /* emacs */
e318085a 3382
e318085a 3383
25fe55af 3384 case 'w':
4bb91c68
SM
3385 if (syntax & RE_NO_GNU_OPS)
3386 goto normal_char;
25fe55af 3387 laststart = b;
1fb352e0 3388 BUF_PUSH_2 (syntaxspec, Sword);
25fe55af 3389 break;
e318085a 3390
e318085a 3391
25fe55af 3392 case 'W':
4bb91c68
SM
3393 if (syntax & RE_NO_GNU_OPS)
3394 goto normal_char;
25fe55af 3395 laststart = b;
1fb352e0 3396 BUF_PUSH_2 (notsyntaxspec, Sword);
25fe55af 3397 break;
e318085a
RS
3398
3399
25fe55af 3400 case '<':
4bb91c68
SM
3401 if (syntax & RE_NO_GNU_OPS)
3402 goto normal_char;
25fe55af
RS
3403 BUF_PUSH (wordbeg);
3404 break;
e318085a 3405
25fe55af 3406 case '>':
4bb91c68
SM
3407 if (syntax & RE_NO_GNU_OPS)
3408 goto normal_char;
25fe55af
RS
3409 BUF_PUSH (wordend);
3410 break;
e318085a 3411
669fa600
SM
3412 case '_':
3413 if (syntax & RE_NO_GNU_OPS)
3414 goto normal_char;
3415 laststart = b;
3416 PATFETCH (c);
3417 if (c == '<')
3418 BUF_PUSH (symbeg);
3419 else if (c == '>')
3420 BUF_PUSH (symend);
3421 else
3422 FREE_STACK_RETURN (REG_BADPAT);
3423 break;
3424
25fe55af 3425 case 'b':
4bb91c68
SM
3426 if (syntax & RE_NO_GNU_OPS)
3427 goto normal_char;
25fe55af
RS
3428 BUF_PUSH (wordbound);
3429 break;
e318085a 3430
25fe55af 3431 case 'B':
4bb91c68
SM
3432 if (syntax & RE_NO_GNU_OPS)
3433 goto normal_char;
25fe55af
RS
3434 BUF_PUSH (notwordbound);
3435 break;
fa9a63c5 3436
25fe55af 3437 case '`':
4bb91c68
SM
3438 if (syntax & RE_NO_GNU_OPS)
3439 goto normal_char;
25fe55af
RS
3440 BUF_PUSH (begbuf);
3441 break;
e318085a 3442
25fe55af 3443 case '\'':
4bb91c68
SM
3444 if (syntax & RE_NO_GNU_OPS)
3445 goto normal_char;
25fe55af
RS
3446 BUF_PUSH (endbuf);
3447 break;
e318085a 3448
25fe55af
RS
3449 case '1': case '2': case '3': case '4': case '5':
3450 case '6': case '7': case '8': case '9':
0cdd06f8
SM
3451 {
3452 regnum_t reg;
e318085a 3453
0cdd06f8
SM
3454 if (syntax & RE_NO_BK_REFS)
3455 goto normal_backslash;
e318085a 3456
0cdd06f8 3457 reg = c - '0';
e318085a 3458
0cdd06f8
SM
3459 /* Can't back reference to a subexpression before its end. */
3460 if (reg > regnum || group_in_compile_stack (compile_stack, reg))
3461 FREE_STACK_RETURN (REG_ESUBREG);
e318085a 3462
0cdd06f8
SM
3463 laststart = b;
3464 BUF_PUSH_2 (duplicate, reg);
3465 }
25fe55af 3466 break;
e318085a 3467
e318085a 3468
25fe55af
RS
3469 case '+':
3470 case '?':
3471 if (syntax & RE_BK_PLUS_QM)
3472 goto handle_plus;
3473 else
3474 goto normal_backslash;
3475
3476 default:
3477 normal_backslash:
3478 /* You might think it would be useful for \ to mean
3479 not to translate; but if we don't translate it
4bb91c68 3480 it will never match anything. */
25fe55af
RS
3481 goto normal_char;
3482 }
3483 break;
fa9a63c5
RM
3484
3485
3486 default:
25fe55af 3487 /* Expects the character in `c'. */
fa9a63c5 3488 normal_char:
36595814 3489 /* If no exactn currently being built. */
25fe55af 3490 if (!pending_exact
fa9a63c5 3491
25fe55af
RS
3492 /* If last exactn not at current position. */
3493 || pending_exact + *pending_exact + 1 != b
5e69f11e 3494
25fe55af 3495 /* We have only one byte following the exactn for the count. */
2d1675e4 3496 || *pending_exact >= (1 << BYTEWIDTH) - MAX_MULTIBYTE_LENGTH
fa9a63c5 3497
25fe55af 3498 /* If followed by a repetition operator. */
9d99031f 3499 || (p != pend && (*p == '*' || *p == '^'))
fa9a63c5 3500 || ((syntax & RE_BK_PLUS_QM)
9d99031f
RS
3501 ? p + 1 < pend && *p == '\\' && (p[1] == '+' || p[1] == '?')
3502 : p != pend && (*p == '+' || *p == '?'))
fa9a63c5 3503 || ((syntax & RE_INTERVALS)
25fe55af 3504 && ((syntax & RE_NO_BK_BRACES)
9d99031f
RS
3505 ? p != pend && *p == '{'
3506 : p + 1 < pend && p[0] == '\\' && p[1] == '{')))
fa9a63c5
RM
3507 {
3508 /* Start building a new exactn. */
5e69f11e 3509
25fe55af 3510 laststart = b;
fa9a63c5
RM
3511
3512 BUF_PUSH_2 (exactn, 0);
3513 pending_exact = b - 1;
25fe55af 3514 }
5e69f11e 3515
2d1675e4
SM
3516 GET_BUFFER_SPACE (MAX_MULTIBYTE_LENGTH);
3517 {
e0277a47
KH
3518 int len;
3519
36595814 3520 c = TRANSLATE (c);
e0277a47
KH
3521 if (multibyte)
3522 len = CHAR_STRING (c, b);
3523 else
3524 *b = c, len = 1;
2d1675e4
SM
3525 b += len;
3526 (*pending_exact) += len;
3527 }
3528
fa9a63c5 3529 break;
25fe55af 3530 } /* switch (c) */
fa9a63c5
RM
3531 } /* while p != pend */
3532
5e69f11e 3533
fa9a63c5 3534 /* Through the pattern now. */
5e69f11e 3535
505bde11 3536 FIXUP_ALT_JUMP ();
fa9a63c5 3537
5e69f11e 3538 if (!COMPILE_STACK_EMPTY)
fa9a63c5
RM
3539 FREE_STACK_RETURN (REG_EPAREN);
3540
3541 /* If we don't want backtracking, force success
3542 the first time we reach the end of the compiled pattern. */
3543 if (syntax & RE_NO_POSIX_BACKTRACKING)
3544 BUF_PUSH (succeed);
3545
fa9a63c5
RM
3546 /* We have succeeded; set the length of the buffer. */
3547 bufp->used = b - bufp->buffer;
3548
3549#ifdef DEBUG
99633e97 3550 if (debug > 0)
fa9a63c5 3551 {
505bde11 3552 re_compile_fastmap (bufp);
fa9a63c5
RM
3553 DEBUG_PRINT1 ("\nCompiled pattern: \n");
3554 print_compiled_pattern (bufp);
3555 }
99633e97 3556 debug--;
fa9a63c5
RM
3557#endif /* DEBUG */
3558
3559#ifndef MATCH_MAY_ALLOCATE
3560 /* Initialize the failure stack to the largest possible stack. This
3561 isn't necessary unless we're trying to avoid calling alloca in
3562 the search and match routines. */
3563 {
3564 int num_regs = bufp->re_nsub + 1;
3565
320a2a73 3566 if (fail_stack.size < re_max_failures * TYPICAL_FAILURE_SIZE)
fa9a63c5 3567 {
a26f4ccd 3568 fail_stack.size = re_max_failures * TYPICAL_FAILURE_SIZE;
fa9a63c5 3569
fa9a63c5
RM
3570 if (! fail_stack.stack)
3571 fail_stack.stack
5e69f11e 3572 = (fail_stack_elt_t *) malloc (fail_stack.size
fa9a63c5
RM
3573 * sizeof (fail_stack_elt_t));
3574 else
3575 fail_stack.stack
3576 = (fail_stack_elt_t *) realloc (fail_stack.stack,
3577 (fail_stack.size
3578 * sizeof (fail_stack_elt_t)));
fa9a63c5
RM
3579 }
3580
3581 regex_grow_registers (num_regs);
3582 }
3583#endif /* not MATCH_MAY_ALLOCATE */
3584
7c67c9f6 3585 FREE_STACK_RETURN (REG_NOERROR);
fa9a63c5
RM
3586} /* regex_compile */
3587\f
3588/* Subroutines for `regex_compile'. */
3589
25fe55af 3590/* Store OP at LOC followed by two-byte integer parameter ARG. */
fa9a63c5
RM
3591
3592static void
3593store_op1 (op, loc, arg)
3594 re_opcode_t op;
3595 unsigned char *loc;
3596 int arg;
3597{
3598 *loc = (unsigned char) op;
3599 STORE_NUMBER (loc + 1, arg);
3600}
3601
3602
3603/* Like `store_op1', but for two two-byte parameters ARG1 and ARG2. */
3604
3605static void
3606store_op2 (op, loc, arg1, arg2)
3607 re_opcode_t op;
3608 unsigned char *loc;
3609 int arg1, arg2;
3610{
3611 *loc = (unsigned char) op;
3612 STORE_NUMBER (loc + 1, arg1);
3613 STORE_NUMBER (loc + 3, arg2);
3614}
3615
3616
3617/* Copy the bytes from LOC to END to open up three bytes of space at LOC
3618 for OP followed by two-byte integer parameter ARG. */
3619
3620static void
3621insert_op1 (op, loc, arg, end)
3622 re_opcode_t op;
3623 unsigned char *loc;
3624 int arg;
5e69f11e 3625 unsigned char *end;
fa9a63c5
RM
3626{
3627 register unsigned char *pfrom = end;
3628 register unsigned char *pto = end + 3;
3629
3630 while (pfrom != loc)
3631 *--pto = *--pfrom;
5e69f11e 3632
fa9a63c5
RM
3633 store_op1 (op, loc, arg);
3634}
3635
3636
3637/* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2. */
3638
3639static void
3640insert_op2 (op, loc, arg1, arg2, end)
3641 re_opcode_t op;
3642 unsigned char *loc;
3643 int arg1, arg2;
5e69f11e 3644 unsigned char *end;
fa9a63c5
RM
3645{
3646 register unsigned char *pfrom = end;
3647 register unsigned char *pto = end + 5;
3648
3649 while (pfrom != loc)
3650 *--pto = *--pfrom;
5e69f11e 3651
fa9a63c5
RM
3652 store_op2 (op, loc, arg1, arg2);
3653}
3654
3655
3656/* P points to just after a ^ in PATTERN. Return true if that ^ comes
3657 after an alternative or a begin-subexpression. We assume there is at
3658 least one character before the ^. */
3659
3660static boolean
3661at_begline_loc_p (pattern, p, syntax)
01618498 3662 re_char *pattern, *p;
fa9a63c5
RM
3663 reg_syntax_t syntax;
3664{
01618498 3665 re_char *prev = p - 2;
fa9a63c5 3666 boolean prev_prev_backslash = prev > pattern && prev[-1] == '\\';
5e69f11e 3667
fa9a63c5
RM
3668 return
3669 /* After a subexpression? */
3670 (*prev == '(' && (syntax & RE_NO_BK_PARENS || prev_prev_backslash))
25fe55af 3671 /* After an alternative? */
d2af47df
SM
3672 || (*prev == '|' && (syntax & RE_NO_BK_VBAR || prev_prev_backslash))
3673 /* After a shy subexpression? */
3674 || ((syntax & RE_SHY_GROUPS) && prev - 2 >= pattern
3675 && prev[-1] == '?' && prev[-2] == '('
3676 && (syntax & RE_NO_BK_PARENS
3677 || (prev - 3 >= pattern && prev[-3] == '\\')));
fa9a63c5
RM
3678}
3679
3680
3681/* The dual of at_begline_loc_p. This one is for $. We assume there is
3682 at least one character after the $, i.e., `P < PEND'. */
3683
3684static boolean
3685at_endline_loc_p (p, pend, syntax)
01618498 3686 re_char *p, *pend;
99633e97 3687 reg_syntax_t syntax;
fa9a63c5 3688{
01618498 3689 re_char *next = p;
fa9a63c5 3690 boolean next_backslash = *next == '\\';
01618498 3691 re_char *next_next = p + 1 < pend ? p + 1 : 0;
5e69f11e 3692
fa9a63c5
RM
3693 return
3694 /* Before a subexpression? */
3695 (syntax & RE_NO_BK_PARENS ? *next == ')'
25fe55af 3696 : next_backslash && next_next && *next_next == ')')
fa9a63c5
RM
3697 /* Before an alternative? */
3698 || (syntax & RE_NO_BK_VBAR ? *next == '|'
25fe55af 3699 : next_backslash && next_next && *next_next == '|');
fa9a63c5
RM
3700}
3701
3702
5e69f11e 3703/* Returns true if REGNUM is in one of COMPILE_STACK's elements and
fa9a63c5
RM
3704 false if it's not. */
3705
3706static boolean
3707group_in_compile_stack (compile_stack, regnum)
3708 compile_stack_type compile_stack;
3709 regnum_t regnum;
3710{
3711 int this_element;
3712
5e69f11e
RM
3713 for (this_element = compile_stack.avail - 1;
3714 this_element >= 0;
fa9a63c5
RM
3715 this_element--)
3716 if (compile_stack.stack[this_element].regnum == regnum)
3717 return true;
3718
3719 return false;
3720}
fa9a63c5 3721\f
f6a3f532
SM
3722/* analyse_first.
3723 If fastmap is non-NULL, go through the pattern and fill fastmap
3724 with all the possible leading chars. If fastmap is NULL, don't
3725 bother filling it up (obviously) and only return whether the
3726 pattern could potentially match the empty string.
3727
3728 Return 1 if p..pend might match the empty string.
3729 Return 0 if p..pend matches at least one char.
01618498 3730 Return -1 if fastmap was not updated accurately. */
f6a3f532
SM
3731
3732static int
3733analyse_first (p, pend, fastmap, multibyte)
01618498 3734 re_char *p, *pend;
f6a3f532
SM
3735 char *fastmap;
3736 const int multibyte;
fa9a63c5 3737{
505bde11 3738 int j, k;
1fb352e0 3739 boolean not;
fa9a63c5 3740
b18215fc 3741 /* If all elements for base leading-codes in fastmap is set, this
25fe55af 3742 flag is set true. */
b18215fc
RS
3743 boolean match_any_multibyte_characters = false;
3744
f6a3f532 3745 assert (p);
5e69f11e 3746
505bde11
SM
3747 /* The loop below works as follows:
3748 - It has a working-list kept in the PATTERN_STACK and which basically
3749 starts by only containing a pointer to the first operation.
3750 - If the opcode we're looking at is a match against some set of
3751 chars, then we add those chars to the fastmap and go on to the
3752 next work element from the worklist (done via `break').
3753 - If the opcode is a control operator on the other hand, we either
3754 ignore it (if it's meaningless at this point, such as `start_memory')
3755 or execute it (if it's a jump). If the jump has several destinations
3756 (i.e. `on_failure_jump'), then we push the other destination onto the
3757 worklist.
3758 We guarantee termination by ignoring backward jumps (more or less),
3759 so that `p' is monotonically increasing. More to the point, we
3760 never set `p' (or push) anything `<= p1'. */
3761
01618498 3762 while (p < pend)
fa9a63c5 3763 {
505bde11
SM
3764 /* `p1' is used as a marker of how far back a `on_failure_jump'
3765 can go without being ignored. It is normally equal to `p'
3766 (which prevents any backward `on_failure_jump') except right
3767 after a plain `jump', to allow patterns such as:
3768 0: jump 10
3769 3..9: <body>
3770 10: on_failure_jump 3
3771 as used for the *? operator. */
01618498 3772 re_char *p1 = p;
5e69f11e 3773
fa9a63c5
RM
3774 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
3775 {
f6a3f532 3776 case succeed:
01618498 3777 return 1;
f6a3f532 3778 continue;
fa9a63c5 3779
fa9a63c5 3780 case duplicate:
505bde11
SM
3781 /* If the first character has to match a backreference, that means
3782 that the group was empty (since it already matched). Since this
3783 is the only case that interests us here, we can assume that the
3784 backreference must match the empty string. */
3785 p++;
3786 continue;
fa9a63c5
RM
3787
3788
3789 /* Following are the cases which match a character. These end
25fe55af 3790 with `break'. */
fa9a63c5
RM
3791
3792 case exactn:
e0277a47
KH
3793 if (fastmap)
3794 {
3795 int c = RE_STRING_CHAR (p + 1, pend - p);
3796
3797 if (SINGLE_BYTE_CHAR_P (c))
3798 fastmap[c] = 1;
3799 else
3800 fastmap[p[1]] = 1;
3801 }
fa9a63c5
RM
3802 break;
3803
3804
1fb352e0
SM
3805 case anychar:
3806 /* We could put all the chars except for \n (and maybe \0)
3807 but we don't bother since it is generally not worth it. */
f6a3f532 3808 if (!fastmap) break;
01618498 3809 return -1;
fa9a63c5
RM
3810
3811
b18215fc 3812 case charset_not:
ba5c004d
RS
3813 /* Chars beyond end of bitmap are possible matches.
3814 All the single-byte codes can occur in multibyte buffers.
3815 So any that are not listed in the charset
3816 are possible matches, even in multibyte buffers. */
1fb352e0 3817 if (!fastmap) break;
b18215fc 3818 for (j = CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH;
1fb352e0 3819 j < (1 << BYTEWIDTH); j++)
b18215fc 3820 fastmap[j] = 1;
1fb352e0
SM
3821 /* Fallthrough */
3822 case charset:
3823 if (!fastmap) break;
3824 not = (re_opcode_t) *(p - 1) == charset_not;
b18215fc
RS
3825 for (j = CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH - 1, p++;
3826 j >= 0; j--)
1fb352e0 3827 if (!!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))) ^ not)
b18215fc
RS
3828 fastmap[j] = 1;
3829
1fb352e0
SM
3830 if ((not && multibyte)
3831 /* Any character set can possibly contain a character
3832 which doesn't match the specified set of characters. */
3833 || (CHARSET_RANGE_TABLE_EXISTS_P (&p[-2])
3834 && CHARSET_RANGE_TABLE_BITS (&p[-2]) != 0))
3835 /* If we can match a character class, we can match
3836 any character set. */
b18215fc
RS
3837 {
3838 set_fastmap_for_multibyte_characters:
3839 if (match_any_multibyte_characters == false)
3840 {
3841 for (j = 0x80; j < 0xA0; j++) /* XXX */
3842 if (BASE_LEADING_CODE_P (j))
3843 fastmap[j] = 1;
3844 match_any_multibyte_characters = true;
3845 }
3846 }
b18215fc 3847
1fb352e0
SM
3848 else if (!not && CHARSET_RANGE_TABLE_EXISTS_P (&p[-2])
3849 && match_any_multibyte_characters == false)
3850 {
3851 /* Set fastmap[I] 1 where I is a base leading code of each
3852 multibyte character in the range table. */
3853 int c, count;
b18215fc 3854
1fb352e0 3855 /* Make P points the range table. `+ 2' is to skip flag
0b32bf0e 3856 bits for a character class. */
1fb352e0 3857 p += CHARSET_BITMAP_SIZE (&p[-2]) + 2;
b18215fc 3858
1fb352e0
SM
3859 /* Extract the number of ranges in range table into COUNT. */
3860 EXTRACT_NUMBER_AND_INCR (count, p);
3861 for (; count > 0; count--, p += 2 * 3) /* XXX */
3862 {
3863 /* Extract the start of each range. */
3864 EXTRACT_CHARACTER (c, p);
3865 j = CHAR_CHARSET (c);
3866 fastmap[CHARSET_LEADING_CODE_BASE (j)] = 1;
3867 }
3868 }
b18215fc
RS
3869 break;
3870
1fb352e0
SM
3871 case syntaxspec:
3872 case notsyntaxspec:
3873 if (!fastmap) break;
3874#ifndef emacs
3875 not = (re_opcode_t)p[-1] == notsyntaxspec;
3876 k = *p++;
3877 for (j = 0; j < (1 << BYTEWIDTH); j++)
990b2375 3878 if ((SYNTAX (j) == (enum syntaxcode) k) ^ not)
b18215fc 3879 fastmap[j] = 1;
b18215fc 3880 break;
1fb352e0 3881#else /* emacs */
b18215fc
RS
3882 /* This match depends on text properties. These end with
3883 aborting optimizations. */
01618498 3884 return -1;
b18215fc
RS
3885
3886 case categoryspec:
b18215fc 3887 case notcategoryspec:
1fb352e0
SM
3888 if (!fastmap) break;
3889 not = (re_opcode_t)p[-1] == notcategoryspec;
b18215fc 3890 k = *p++;
1fb352e0
SM
3891 for (j = 0; j < (1 << BYTEWIDTH); j++)
3892 if ((CHAR_HAS_CATEGORY (j, k)) ^ not)
b18215fc
RS
3893 fastmap[j] = 1;
3894
1fb352e0 3895 if (multibyte)
b18215fc 3896 /* Any character set can possibly contain a character
1fb352e0 3897 whose category is K (or not). */
b18215fc
RS
3898 goto set_fastmap_for_multibyte_characters;
3899 break;
3900
fa9a63c5 3901 /* All cases after this match the empty string. These end with
25fe55af 3902 `continue'. */
fa9a63c5 3903
fa9a63c5
RM
3904 case before_dot:
3905 case at_dot:
3906 case after_dot:
1fb352e0 3907#endif /* !emacs */
25fe55af
RS
3908 case no_op:
3909 case begline:
3910 case endline:
fa9a63c5
RM
3911 case begbuf:
3912 case endbuf:
3913 case wordbound:
3914 case notwordbound:
3915 case wordbeg:
3916 case wordend:
669fa600
SM
3917 case symbeg:
3918 case symend:
25fe55af 3919 continue;
fa9a63c5
RM
3920
3921
fa9a63c5 3922 case jump:
25fe55af 3923 EXTRACT_NUMBER_AND_INCR (j, p);
505bde11
SM
3924 if (j < 0)
3925 /* Backward jumps can only go back to code that we've already
3926 visited. `re_compile' should make sure this is true. */
3927 break;
25fe55af 3928 p += j;
505bde11
SM
3929 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p))
3930 {
3931 case on_failure_jump:
3932 case on_failure_keep_string_jump:
505bde11 3933 case on_failure_jump_loop:
0683b6fa 3934 case on_failure_jump_nastyloop:
505bde11
SM
3935 case on_failure_jump_smart:
3936 p++;
3937 break;
3938 default:
3939 continue;
3940 };
3941 /* Keep `p1' to allow the `on_failure_jump' we are jumping to
3942 to jump back to "just after here". */
3943 /* Fallthrough */
fa9a63c5 3944
25fe55af
RS
3945 case on_failure_jump:
3946 case on_failure_keep_string_jump:
0683b6fa 3947 case on_failure_jump_nastyloop:
505bde11
SM
3948 case on_failure_jump_loop:
3949 case on_failure_jump_smart:
25fe55af 3950 EXTRACT_NUMBER_AND_INCR (j, p);
505bde11 3951 if (p + j <= p1)
ed0767d8 3952 ; /* Backward jump to be ignored. */
01618498
SM
3953 else
3954 { /* We have to look down both arms.
3955 We first go down the "straight" path so as to minimize
3956 stack usage when going through alternatives. */
3957 int r = analyse_first (p, pend, fastmap, multibyte);
3958 if (r) return r;
3959 p += j;
3960 }
25fe55af 3961 continue;
fa9a63c5
RM
3962
3963
ed0767d8
SM
3964 case jump_n:
3965 /* This code simply does not properly handle forward jump_n. */
3966 DEBUG_STATEMENT (EXTRACT_NUMBER (j, p); assert (j < 0));
3967 p += 4;
3968 /* jump_n can either jump or fall through. The (backward) jump
3969 case has already been handled, so we only need to look at the
3970 fallthrough case. */
3971 continue;
177c0ea7 3972
fa9a63c5 3973 case succeed_n:
ed0767d8
SM
3974 /* If N == 0, it should be an on_failure_jump_loop instead. */
3975 DEBUG_STATEMENT (EXTRACT_NUMBER (j, p + 2); assert (j > 0));
3976 p += 4;
3977 /* We only care about one iteration of the loop, so we don't
3978 need to consider the case where this behaves like an
3979 on_failure_jump. */
25fe55af 3980 continue;
fa9a63c5
RM
3981
3982
3983 case set_number_at:
25fe55af
RS
3984 p += 4;
3985 continue;
fa9a63c5
RM
3986
3987
3988 case start_memory:
25fe55af 3989 case stop_memory:
505bde11 3990 p += 1;
fa9a63c5
RM
3991 continue;
3992
3993
3994 default:
25fe55af
RS
3995 abort (); /* We have listed all the cases. */
3996 } /* switch *p++ */
fa9a63c5
RM
3997
3998 /* Getting here means we have found the possible starting
25fe55af 3999 characters for one path of the pattern -- and that the empty
01618498
SM
4000 string does not match. We need not follow this path further. */
4001 return 0;
fa9a63c5
RM
4002 } /* while p */
4003
01618498
SM
4004 /* We reached the end without matching anything. */
4005 return 1;
4006
f6a3f532
SM
4007} /* analyse_first */
4008\f
4009/* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
4010 BUFP. A fastmap records which of the (1 << BYTEWIDTH) possible
4011 characters can start a string that matches the pattern. This fastmap
4012 is used by re_search to skip quickly over impossible starting points.
4013
4014 Character codes above (1 << BYTEWIDTH) are not represented in the
4015 fastmap, but the leading codes are represented. Thus, the fastmap
4016 indicates which character sets could start a match.
4017
4018 The caller must supply the address of a (1 << BYTEWIDTH)-byte data
4019 area as BUFP->fastmap.
4020
4021 We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
4022 the pattern buffer.
4023
4024 Returns 0 if we succeed, -2 if an internal error. */
4025
4026int
4027re_compile_fastmap (bufp)
4028 struct re_pattern_buffer *bufp;
4029{
4030 char *fastmap = bufp->fastmap;
4031 int analysis;
4032
4033 assert (fastmap && bufp->buffer);
4034
4035 bzero (fastmap, 1 << BYTEWIDTH); /* Assume nothing's valid. */
4036 bufp->fastmap_accurate = 1; /* It will be when we're done. */
4037
4038 analysis = analyse_first (bufp->buffer, bufp->buffer + bufp->used,
2d1675e4 4039 fastmap, RE_MULTIBYTE_P (bufp));
c0f9ea08 4040 bufp->can_be_null = (analysis != 0);
fa9a63c5
RM
4041 return 0;
4042} /* re_compile_fastmap */
4043\f
4044/* Set REGS to hold NUM_REGS registers, storing them in STARTS and
4045 ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use
4046 this memory for recording register information. STARTS and ENDS
4047 must be allocated using the malloc library routine, and must each
4048 be at least NUM_REGS * sizeof (regoff_t) bytes long.
4049
4050 If NUM_REGS == 0, then subsequent matches should allocate their own
4051 register data.
4052
4053 Unless this function is called, the first search or match using
4054 PATTERN_BUFFER will allocate its own register data, without
4055 freeing the old data. */
4056
4057void
4058re_set_registers (bufp, regs, num_regs, starts, ends)
4059 struct re_pattern_buffer *bufp;
4060 struct re_registers *regs;
4061 unsigned num_regs;
4062 regoff_t *starts, *ends;
4063{
4064 if (num_regs)
4065 {
4066 bufp->regs_allocated = REGS_REALLOCATE;
4067 regs->num_regs = num_regs;
4068 regs->start = starts;
4069 regs->end = ends;
4070 }
4071 else
4072 {
4073 bufp->regs_allocated = REGS_UNALLOCATED;
4074 regs->num_regs = 0;
4075 regs->start = regs->end = (regoff_t *) 0;
4076 }
4077}
c0f9ea08 4078WEAK_ALIAS (__re_set_registers, re_set_registers)
fa9a63c5 4079\f
25fe55af 4080/* Searching routines. */
fa9a63c5
RM
4081
4082/* Like re_search_2, below, but only one string is specified, and
4083 doesn't let you say where to stop matching. */
4084
4085int
4086re_search (bufp, string, size, startpos, range, regs)
4087 struct re_pattern_buffer *bufp;
4088 const char *string;
4089 int size, startpos, range;
4090 struct re_registers *regs;
4091{
5e69f11e 4092 return re_search_2 (bufp, NULL, 0, string, size, startpos, range,
fa9a63c5
RM
4093 regs, size);
4094}
c0f9ea08 4095WEAK_ALIAS (__re_search, re_search)
fa9a63c5 4096
70806df6
KH
4097/* Head address of virtual concatenation of string. */
4098#define HEAD_ADDR_VSTRING(P) \
4099 (((P) >= size1 ? string2 : string1))
4100
b18215fc
RS
4101/* End address of virtual concatenation of string. */
4102#define STOP_ADDR_VSTRING(P) \
4103 (((P) >= size1 ? string2 + size2 : string1 + size1))
4104
4105/* Address of POS in the concatenation of virtual string. */
4106#define POS_ADDR_VSTRING(POS) \
4107 (((POS) >= size1 ? string2 - size1 : string1) + (POS))
fa9a63c5
RM
4108
4109/* Using the compiled pattern in BUFP->buffer, first tries to match the
4110 virtual concatenation of STRING1 and STRING2, starting first at index
4111 STARTPOS, then at STARTPOS + 1, and so on.
5e69f11e 4112
fa9a63c5 4113 STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
5e69f11e 4114
fa9a63c5
RM
4115 RANGE is how far to scan while trying to match. RANGE = 0 means try
4116 only at STARTPOS; in general, the last start tried is STARTPOS +
4117 RANGE.
5e69f11e 4118
fa9a63c5
RM
4119 In REGS, return the indices of the virtual concatenation of STRING1
4120 and STRING2 that matched the entire BUFP->buffer and its contained
4121 subexpressions.
5e69f11e 4122
fa9a63c5
RM
4123 Do not consider matching one past the index STOP in the virtual
4124 concatenation of STRING1 and STRING2.
4125
4126 We return either the position in the strings at which the match was
4127 found, -1 if no match, or -2 if error (such as failure
4128 stack overflow). */
4129
4130int
66f0296e 4131re_search_2 (bufp, str1, size1, str2, size2, startpos, range, regs, stop)
fa9a63c5 4132 struct re_pattern_buffer *bufp;
66f0296e 4133 const char *str1, *str2;
fa9a63c5
RM
4134 int size1, size2;
4135 int startpos;
4136 int range;
4137 struct re_registers *regs;
4138 int stop;
4139{
4140 int val;
66f0296e
SM
4141 re_char *string1 = (re_char*) str1;
4142 re_char *string2 = (re_char*) str2;
fa9a63c5 4143 register char *fastmap = bufp->fastmap;
6676cb1c 4144 register RE_TRANSLATE_TYPE translate = bufp->translate;
fa9a63c5
RM
4145 int total_size = size1 + size2;
4146 int endpos = startpos + range;
c0f9ea08 4147 boolean anchored_start;
fa9a63c5 4148
25fe55af 4149 /* Nonzero if we have to concern multibyte character. */
2d1675e4 4150 const boolean multibyte = RE_MULTIBYTE_P (bufp);
b18215fc 4151
fa9a63c5
RM
4152 /* Check for out-of-range STARTPOS. */
4153 if (startpos < 0 || startpos > total_size)
4154 return -1;
5e69f11e 4155
fa9a63c5 4156 /* Fix up RANGE if it might eventually take us outside
34597fa9 4157 the virtual concatenation of STRING1 and STRING2.
5e69f11e 4158 Make sure we won't move STARTPOS below 0 or above TOTAL_SIZE. */
34597fa9
RS
4159 if (endpos < 0)
4160 range = 0 - startpos;
fa9a63c5
RM
4161 else if (endpos > total_size)
4162 range = total_size - startpos;
4163
4164 /* If the search isn't to be a backwards one, don't waste time in a
7b140fd7 4165 search for a pattern anchored at beginning of buffer. */
fa9a63c5
RM
4166 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == begbuf && range > 0)
4167 {
4168 if (startpos > 0)
4169 return -1;
4170 else
7b140fd7 4171 range = 0;
fa9a63c5
RM
4172 }
4173
ae4788a8
RS
4174#ifdef emacs
4175 /* In a forward search for something that starts with \=.
4176 don't keep searching past point. */
4177 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == at_dot && range > 0)
4178 {
7b140fd7
RS
4179 range = PT_BYTE - BEGV_BYTE - startpos;
4180 if (range < 0)
ae4788a8
RS
4181 return -1;
4182 }
4183#endif /* emacs */
4184
fa9a63c5
RM
4185 /* Update the fastmap now if not correct already. */
4186 if (fastmap && !bufp->fastmap_accurate)
01618498 4187 re_compile_fastmap (bufp);
5e69f11e 4188
c8499ba5 4189 /* See whether the pattern is anchored. */
c0f9ea08 4190 anchored_start = (bufp->buffer[0] == begline);
c8499ba5 4191
b18215fc 4192#ifdef emacs
cc9b4df2
KH
4193 gl_state.object = re_match_object;
4194 {
99633e97 4195 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (POS_AS_IN_BUFFER (startpos));
cc9b4df2
KH
4196
4197 SETUP_SYNTAX_TABLE_FOR_OBJECT (re_match_object, charpos, 1);
4198 }
b18215fc
RS
4199#endif
4200
fa9a63c5
RM
4201 /* Loop through the string, looking for a place to start matching. */
4202 for (;;)
5e69f11e 4203 {
c8499ba5
RS
4204 /* If the pattern is anchored,
4205 skip quickly past places we cannot match.
4206 We don't bother to treat startpos == 0 specially
4207 because that case doesn't repeat. */
4208 if (anchored_start && startpos > 0)
4209 {
c0f9ea08
SM
4210 if (! ((startpos <= size1 ? string1[startpos - 1]
4211 : string2[startpos - size1 - 1])
4212 == '\n'))
c8499ba5
RS
4213 goto advance;
4214 }
4215
fa9a63c5 4216 /* If a fastmap is supplied, skip quickly over characters that
25fe55af
RS
4217 cannot be the start of a match. If the pattern can match the
4218 null string, however, we don't need to skip characters; we want
4219 the first null string. */
fa9a63c5
RM
4220 if (fastmap && startpos < total_size && !bufp->can_be_null)
4221 {
66f0296e 4222 register re_char *d;
01618498 4223 register re_wchar_t buf_ch;
e934739e
RS
4224
4225 d = POS_ADDR_VSTRING (startpos);
4226
25fe55af 4227 if (range > 0) /* Searching forwards. */
fa9a63c5 4228 {
fa9a63c5
RM
4229 register int lim = 0;
4230 int irange = range;
4231
25fe55af
RS
4232 if (startpos < size1 && startpos + range >= size1)
4233 lim = range - (size1 - startpos);
fa9a63c5 4234
25fe55af
RS
4235 /* Written out as an if-else to avoid testing `translate'
4236 inside the loop. */
28ae27ae
AS
4237 if (RE_TRANSLATE_P (translate))
4238 {
e934739e
RS
4239 if (multibyte)
4240 while (range > lim)
4241 {
4242 int buf_charlen;
4243
4244 buf_ch = STRING_CHAR_AND_LENGTH (d, range - lim,
4245 buf_charlen);
4246
4247 buf_ch = RE_TRANSLATE (translate, buf_ch);
4248 if (buf_ch >= 0400
4249 || fastmap[buf_ch])
4250 break;
4251
4252 range -= buf_charlen;
4253 d += buf_charlen;
4254 }
4255 else
4256 while (range > lim
66f0296e 4257 && !fastmap[RE_TRANSLATE (translate, *d)])
33c46939
RS
4258 {
4259 d++;
4260 range--;
4261 }
e934739e 4262 }
fa9a63c5 4263 else
66f0296e 4264 while (range > lim && !fastmap[*d])
33c46939
RS
4265 {
4266 d++;
4267 range--;
4268 }
fa9a63c5
RM
4269
4270 startpos += irange - range;
4271 }
25fe55af 4272 else /* Searching backwards. */
fa9a63c5 4273 {
2d1675e4
SM
4274 int room = (startpos >= size1
4275 ? size2 + size1 - startpos
4276 : size1 - startpos);
4277 buf_ch = RE_STRING_CHAR (d, room);
4278 buf_ch = TRANSLATE (buf_ch);
fa9a63c5 4279
e934739e
RS
4280 if (! (buf_ch >= 0400
4281 || fastmap[buf_ch]))
fa9a63c5
RM
4282 goto advance;
4283 }
4284 }
4285
4286 /* If can't match the null string, and that's all we have left, fail. */
4287 if (range >= 0 && startpos == total_size && fastmap
25fe55af 4288 && !bufp->can_be_null)
fa9a63c5
RM
4289 return -1;
4290
4291 val = re_match_2_internal (bufp, string1, size1, string2, size2,
4292 startpos, regs, stop);
4293#ifndef REGEX_MALLOC
0b32bf0e 4294# ifdef C_ALLOCA
fa9a63c5 4295 alloca (0);
0b32bf0e 4296# endif
fa9a63c5
RM
4297#endif
4298
4299 if (val >= 0)
4300 return startpos;
5e69f11e 4301
fa9a63c5
RM
4302 if (val == -2)
4303 return -2;
4304
4305 advance:
5e69f11e 4306 if (!range)
25fe55af 4307 break;
5e69f11e 4308 else if (range > 0)
25fe55af 4309 {
b18215fc
RS
4310 /* Update STARTPOS to the next character boundary. */
4311 if (multibyte)
4312 {
66f0296e
SM
4313 re_char *p = POS_ADDR_VSTRING (startpos);
4314 re_char *pend = STOP_ADDR_VSTRING (startpos);
b18215fc
RS
4315 int len = MULTIBYTE_FORM_LENGTH (p, pend - p);
4316
4317 range -= len;
4318 if (range < 0)
4319 break;
4320 startpos += len;
4321 }
4322 else
4323 {
b560c397
RS
4324 range--;
4325 startpos++;
4326 }
e318085a 4327 }
fa9a63c5 4328 else
25fe55af
RS
4329 {
4330 range++;
4331 startpos--;
b18215fc
RS
4332
4333 /* Update STARTPOS to the previous character boundary. */
4334 if (multibyte)
4335 {
70806df6
KH
4336 re_char *p = POS_ADDR_VSTRING (startpos) + 1;
4337 re_char *p0 = p;
4338 re_char *phead = HEAD_ADDR_VSTRING (startpos);
b18215fc
RS
4339
4340 /* Find the head of multibyte form. */
70806df6
KH
4341 PREV_CHAR_BOUNDARY (p, phead);
4342 range += p0 - 1 - p;
4343 if (range > 0)
4344 break;
b18215fc 4345
70806df6 4346 startpos -= p0 - 1 - p;
b18215fc 4347 }
25fe55af 4348 }
fa9a63c5
RM
4349 }
4350 return -1;
4351} /* re_search_2 */
c0f9ea08 4352WEAK_ALIAS (__re_search_2, re_search_2)
fa9a63c5
RM
4353\f
4354/* Declarations and macros for re_match_2. */
4355
2d1675e4
SM
4356static int bcmp_translate _RE_ARGS((re_char *s1, re_char *s2,
4357 register int len,
4358 RE_TRANSLATE_TYPE translate,
4359 const int multibyte));
fa9a63c5
RM
4360
4361/* This converts PTR, a pointer into one of the search strings `string1'
4362 and `string2' into an offset from the beginning of that string. */
4363#define POINTER_TO_OFFSET(ptr) \
4364 (FIRST_STRING_P (ptr) \
4365 ? ((regoff_t) ((ptr) - string1)) \
4366 : ((regoff_t) ((ptr) - string2 + size1)))
4367
fa9a63c5 4368/* Call before fetching a character with *d. This switches over to
419d1c74
SM
4369 string2 if necessary.
4370 Check re_match_2_internal for a discussion of why end_match_2 might
4371 not be within string2 (but be equal to end_match_1 instead). */
fa9a63c5 4372#define PREFETCH() \
25fe55af 4373 while (d == dend) \
fa9a63c5
RM
4374 { \
4375 /* End of string2 => fail. */ \
25fe55af
RS
4376 if (dend == end_match_2) \
4377 goto fail; \
4bb91c68 4378 /* End of string1 => advance to string2. */ \
25fe55af 4379 d = string2; \
fa9a63c5
RM
4380 dend = end_match_2; \
4381 }
4382
f1ad044f
SM
4383/* Call before fetching a char with *d if you already checked other limits.
4384 This is meant for use in lookahead operations like wordend, etc..
4385 where we might need to look at parts of the string that might be
4386 outside of the LIMITs (i.e past `stop'). */
4387#define PREFETCH_NOLIMIT() \
4388 if (d == end1) \
4389 { \
4390 d = string2; \
4391 dend = end_match_2; \
4392 } \
fa9a63c5
RM
4393
4394/* Test if at very beginning or at very end of the virtual concatenation
25fe55af 4395 of `string1' and `string2'. If only one string, it's `string2'. */
fa9a63c5 4396#define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
5e69f11e 4397#define AT_STRINGS_END(d) ((d) == end2)
fa9a63c5
RM
4398
4399
4400/* Test if D points to a character which is word-constituent. We have
4401 two special cases to check for: if past the end of string1, look at
4402 the first character in string2; and if before the beginning of
4403 string2, look at the last character in string1. */
4404#define WORDCHAR_P(d) \
4405 (SYNTAX ((d) == end1 ? *string2 \
25fe55af 4406 : (d) == string2 - 1 ? *(end1 - 1) : *(d)) \
fa9a63c5
RM
4407 == Sword)
4408
9121ca40 4409/* Disabled due to a compiler bug -- see comment at case wordbound */
b18215fc
RS
4410
4411/* The comment at case wordbound is following one, but we don't use
4412 AT_WORD_BOUNDARY anymore to support multibyte form.
4413
4414 The DEC Alpha C compiler 3.x generates incorrect code for the
25fe55af
RS
4415 test WORDCHAR_P (d - 1) != WORDCHAR_P (d) in the expansion of
4416 AT_WORD_BOUNDARY, so this code is disabled. Expanding the
b18215fc
RS
4417 macro and introducing temporary variables works around the bug. */
4418
9121ca40 4419#if 0
fa9a63c5
RM
4420/* Test if the character before D and the one at D differ with respect
4421 to being word-constituent. */
4422#define AT_WORD_BOUNDARY(d) \
4423 (AT_STRINGS_BEG (d) || AT_STRINGS_END (d) \
4424 || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
9121ca40 4425#endif
fa9a63c5
RM
4426
4427/* Free everything we malloc. */
4428#ifdef MATCH_MAY_ALLOCATE
0b32bf0e
SM
4429# define FREE_VAR(var) if (var) { REGEX_FREE (var); var = NULL; } else
4430# define FREE_VARIABLES() \
fa9a63c5
RM
4431 do { \
4432 REGEX_FREE_STACK (fail_stack.stack); \
4433 FREE_VAR (regstart); \
4434 FREE_VAR (regend); \
fa9a63c5
RM
4435 FREE_VAR (best_regstart); \
4436 FREE_VAR (best_regend); \
fa9a63c5
RM
4437 } while (0)
4438#else
0b32bf0e 4439# define FREE_VARIABLES() ((void)0) /* Do nothing! But inhibit gcc warning. */
fa9a63c5
RM
4440#endif /* not MATCH_MAY_ALLOCATE */
4441
505bde11
SM
4442\f
4443/* Optimization routines. */
4444
4e8a9132
SM
4445/* If the operation is a match against one or more chars,
4446 return a pointer to the next operation, else return NULL. */
01618498 4447static re_char *
4e8a9132 4448skip_one_char (p)
01618498 4449 re_char *p;
4e8a9132
SM
4450{
4451 switch (SWITCH_ENUM_CAST (*p++))
4452 {
4453 case anychar:
4454 break;
177c0ea7 4455
4e8a9132
SM
4456 case exactn:
4457 p += *p + 1;
4458 break;
4459
4460 case charset_not:
4461 case charset:
4462 if (CHARSET_RANGE_TABLE_EXISTS_P (p - 1))
4463 {
4464 int mcnt;
4465 p = CHARSET_RANGE_TABLE (p - 1);
4466 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4467 p = CHARSET_RANGE_TABLE_END (p, mcnt);
4468 }
4469 else
4470 p += 1 + CHARSET_BITMAP_SIZE (p - 1);
4471 break;
177c0ea7 4472
4e8a9132
SM
4473 case syntaxspec:
4474 case notsyntaxspec:
1fb352e0 4475#ifdef emacs
4e8a9132
SM
4476 case categoryspec:
4477 case notcategoryspec:
4478#endif /* emacs */
4479 p++;
4480 break;
4481
4482 default:
4483 p = NULL;
4484 }
4485 return p;
4486}
4487
4488
505bde11 4489/* Jump over non-matching operations. */
275a3409 4490static re_char *
4e8a9132 4491skip_noops (p, pend)
275a3409 4492 re_char *p, *pend;
505bde11
SM
4493{
4494 int mcnt;
4495 while (p < pend)
4496 {
4497 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p))
4498 {
4499 case start_memory:
505bde11
SM
4500 case stop_memory:
4501 p += 2; break;
4502 case no_op:
4503 p += 1; break;
4504 case jump:
4505 p += 1;
4506 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4507 p += mcnt;
4508 break;
4509 default:
4510 return p;
4511 }
4512 }
4513 assert (p == pend);
4514 return p;
4515}
4516
4517/* Non-zero if "p1 matches something" implies "p2 fails". */
4518static int
4519mutually_exclusive_p (bufp, p1, p2)
4520 struct re_pattern_buffer *bufp;
275a3409 4521 re_char *p1, *p2;
505bde11 4522{
4e8a9132 4523 re_opcode_t op2;
2d1675e4 4524 const boolean multibyte = RE_MULTIBYTE_P (bufp);
505bde11
SM
4525 unsigned char *pend = bufp->buffer + bufp->used;
4526
4e8a9132 4527 assert (p1 >= bufp->buffer && p1 < pend
505bde11
SM
4528 && p2 >= bufp->buffer && p2 <= pend);
4529
4530 /* Skip over open/close-group commands.
4531 If what follows this loop is a ...+ construct,
4532 look at what begins its body, since we will have to
4533 match at least one of that. */
4e8a9132
SM
4534 p2 = skip_noops (p2, pend);
4535 /* The same skip can be done for p1, except that this function
4536 is only used in the case where p1 is a simple match operator. */
4537 /* p1 = skip_noops (p1, pend); */
4538
4539 assert (p1 >= bufp->buffer && p1 < pend
4540 && p2 >= bufp->buffer && p2 <= pend);
4541
4542 op2 = p2 == pend ? succeed : *p2;
4543
4544 switch (SWITCH_ENUM_CAST (op2))
505bde11 4545 {
4e8a9132
SM
4546 case succeed:
4547 case endbuf:
4548 /* If we're at the end of the pattern, we can change. */
4549 if (skip_one_char (p1))
505bde11 4550 {
505bde11
SM
4551 DEBUG_PRINT1 (" End of pattern: fast loop.\n");
4552 return 1;
505bde11 4553 }
4e8a9132 4554 break;
177c0ea7 4555
4e8a9132 4556 case endline:
4e8a9132
SM
4557 case exactn:
4558 {
01618498 4559 register re_wchar_t c
4e8a9132 4560 = (re_opcode_t) *p2 == endline ? '\n'
411e4203 4561 : RE_STRING_CHAR (p2 + 2, pend - p2 - 2);
505bde11 4562
4e8a9132
SM
4563 if ((re_opcode_t) *p1 == exactn)
4564 {
4565 if (c != RE_STRING_CHAR (p1 + 2, pend - p1 - 2))
4566 {
4567 DEBUG_PRINT3 (" '%c' != '%c' => fast loop.\n", c, p1[2]);
4568 return 1;
4569 }
4570 }
505bde11 4571
4e8a9132
SM
4572 else if ((re_opcode_t) *p1 == charset
4573 || (re_opcode_t) *p1 == charset_not)
4574 {
4575 int not = (re_opcode_t) *p1 == charset_not;
505bde11 4576
4e8a9132
SM
4577 /* Test if C is listed in charset (or charset_not)
4578 at `p1'. */
4579 if (SINGLE_BYTE_CHAR_P (c))
4580 {
4581 if (c < CHARSET_BITMAP_SIZE (p1) * BYTEWIDTH
4582 && p1[2 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
4583 not = !not;
4584 }
4585 else if (CHARSET_RANGE_TABLE_EXISTS_P (p1))
4586 CHARSET_LOOKUP_RANGE_TABLE (not, c, p1);
505bde11 4587
4e8a9132
SM
4588 /* `not' is equal to 1 if c would match, which means
4589 that we can't change to pop_failure_jump. */
4590 if (!not)
4591 {
4592 DEBUG_PRINT1 (" No match => fast loop.\n");
4593 return 1;
4594 }
4595 }
4596 else if ((re_opcode_t) *p1 == anychar
4597 && c == '\n')
4598 {
4599 DEBUG_PRINT1 (" . != \\n => fast loop.\n");
4600 return 1;
4601 }
4602 }
4603 break;
505bde11 4604
4e8a9132 4605 case charset:
4e8a9132
SM
4606 {
4607 if ((re_opcode_t) *p1 == exactn)
4608 /* Reuse the code above. */
4609 return mutually_exclusive_p (bufp, p2, p1);
505bde11 4610
505bde11
SM
4611 /* It is hard to list up all the character in charset
4612 P2 if it includes multibyte character. Give up in
4613 such case. */
4614 else if (!multibyte || !CHARSET_RANGE_TABLE_EXISTS_P (p2))
4615 {
4616 /* Now, we are sure that P2 has no range table.
4617 So, for the size of bitmap in P2, `p2[1]' is
4618 enough. But P1 may have range table, so the
4619 size of bitmap table of P1 is extracted by
4620 using macro `CHARSET_BITMAP_SIZE'.
4621
4622 Since we know that all the character listed in
4623 P2 is ASCII, it is enough to test only bitmap
4624 table of P1. */
4625
411e4203 4626 if ((re_opcode_t) *p1 == charset)
505bde11
SM
4627 {
4628 int idx;
4629 /* We win if the charset inside the loop
4630 has no overlap with the one after the loop. */
4631 for (idx = 0;
4632 (idx < (int) p2[1]
4633 && idx < CHARSET_BITMAP_SIZE (p1));
4634 idx++)
4635 if ((p2[2 + idx] & p1[2 + idx]) != 0)
4636 break;
4637
4638 if (idx == p2[1]
4639 || idx == CHARSET_BITMAP_SIZE (p1))
4640 {
4641 DEBUG_PRINT1 (" No match => fast loop.\n");
4642 return 1;
4643 }
4644 }
411e4203 4645 else if ((re_opcode_t) *p1 == charset_not)
505bde11
SM
4646 {
4647 int idx;
4648 /* We win if the charset_not inside the loop lists
4649 every character listed in the charset after. */
4650 for (idx = 0; idx < (int) p2[1]; idx++)
4651 if (! (p2[2 + idx] == 0
4652 || (idx < CHARSET_BITMAP_SIZE (p1)
4653 && ((p2[2 + idx] & ~ p1[2 + idx]) == 0))))
4654 break;
4655
4e8a9132
SM
4656 if (idx == p2[1])
4657 {
4658 DEBUG_PRINT1 (" No match => fast loop.\n");
4659 return 1;
4660 }
4661 }
4662 }
4663 }
609b757a 4664 break;
177c0ea7 4665
411e4203
SM
4666 case charset_not:
4667 switch (SWITCH_ENUM_CAST (*p1))
4668 {
4669 case exactn:
4670 case charset:
4671 /* Reuse the code above. */
4672 return mutually_exclusive_p (bufp, p2, p1);
4673 case charset_not:
4674 /* When we have two charset_not, it's very unlikely that
4675 they don't overlap. The union of the two sets of excluded
4676 chars should cover all possible chars, which, as a matter of
4677 fact, is virtually impossible in multibyte buffers. */
36595814 4678 break;
411e4203
SM
4679 }
4680 break;
4681
4e8a9132 4682 case wordend:
669fa600
SM
4683 return ((re_opcode_t) *p1 == syntaxspec && p1[1] == Sword);
4684 case symend:
4e8a9132 4685 return ((re_opcode_t) *p1 == syntaxspec
669fa600
SM
4686 && (p1[1] == Ssymbol || p1[1] == Sword));
4687 case notsyntaxspec:
4688 return ((re_opcode_t) *p1 == syntaxspec && p1[1] == p2[1]);
4e8a9132
SM
4689
4690 case wordbeg:
669fa600
SM
4691 return ((re_opcode_t) *p1 == notsyntaxspec && p1[1] == Sword);
4692 case symbeg:
4e8a9132 4693 return ((re_opcode_t) *p1 == notsyntaxspec
669fa600
SM
4694 && (p1[1] == Ssymbol || p1[1] == Sword));
4695 case syntaxspec:
4696 return ((re_opcode_t) *p1 == notsyntaxspec && p1[1] == p2[1]);
4e8a9132
SM
4697
4698 case wordbound:
4699 return (((re_opcode_t) *p1 == notsyntaxspec
4700 || (re_opcode_t) *p1 == syntaxspec)
4701 && p1[1] == Sword);
4702
1fb352e0 4703#ifdef emacs
4e8a9132
SM
4704 case categoryspec:
4705 return ((re_opcode_t) *p1 == notcategoryspec && p1[1] == p2[1]);
4706 case notcategoryspec:
4707 return ((re_opcode_t) *p1 == categoryspec && p1[1] == p2[1]);
4708#endif /* emacs */
4709
4710 default:
4711 ;
505bde11
SM
4712 }
4713
4714 /* Safe default. */
4715 return 0;
4716}
4717
fa9a63c5
RM
4718\f
4719/* Matching routines. */
4720
25fe55af 4721#ifndef emacs /* Emacs never uses this. */
fa9a63c5
RM
4722/* re_match is like re_match_2 except it takes only a single string. */
4723
4724int
4725re_match (bufp, string, size, pos, regs)
4726 struct re_pattern_buffer *bufp;
4727 const char *string;
4728 int size, pos;
4729 struct re_registers *regs;
4730{
4bb91c68 4731 int result = re_match_2_internal (bufp, NULL, 0, (re_char*) string, size,
fa9a63c5 4732 pos, regs, size);
0b32bf0e 4733# if defined C_ALLOCA && !defined REGEX_MALLOC
fa9a63c5 4734 alloca (0);
0b32bf0e 4735# endif
fa9a63c5
RM
4736 return result;
4737}
c0f9ea08 4738WEAK_ALIAS (__re_match, re_match)
fa9a63c5
RM
4739#endif /* not emacs */
4740
b18215fc
RS
4741#ifdef emacs
4742/* In Emacs, this is the string or buffer in which we
25fe55af 4743 are matching. It is used for looking up syntax properties. */
b18215fc
RS
4744Lisp_Object re_match_object;
4745#endif
fa9a63c5
RM
4746
4747/* re_match_2 matches the compiled pattern in BUFP against the
4748 the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
4749 and SIZE2, respectively). We start matching at POS, and stop
4750 matching at STOP.
5e69f11e 4751
fa9a63c5 4752 If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
25fe55af 4753 store offsets for the substring each group matched in REGS. See the
fa9a63c5
RM
4754 documentation for exactly how many groups we fill.
4755
4756 We return -1 if no match, -2 if an internal error (such as the
25fe55af 4757 failure stack overflowing). Otherwise, we return the length of the
fa9a63c5
RM
4758 matched substring. */
4759
4760int
4761re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
4762 struct re_pattern_buffer *bufp;
4763 const char *string1, *string2;
4764 int size1, size2;
4765 int pos;
4766 struct re_registers *regs;
4767 int stop;
4768{
b18215fc 4769 int result;
25fe55af 4770
b18215fc 4771#ifdef emacs
cc9b4df2
KH
4772 int charpos;
4773 gl_state.object = re_match_object;
99633e97 4774 charpos = SYNTAX_TABLE_BYTE_TO_CHAR (POS_AS_IN_BUFFER (pos));
cc9b4df2 4775 SETUP_SYNTAX_TABLE_FOR_OBJECT (re_match_object, charpos, 1);
b18215fc
RS
4776#endif
4777
4bb91c68
SM
4778 result = re_match_2_internal (bufp, (re_char*) string1, size1,
4779 (re_char*) string2, size2,
cc9b4df2 4780 pos, regs, stop);
0b32bf0e 4781#if defined C_ALLOCA && !defined REGEX_MALLOC
fa9a63c5 4782 alloca (0);
a60198e5 4783#endif
fa9a63c5
RM
4784 return result;
4785}
c0f9ea08 4786WEAK_ALIAS (__re_match_2, re_match_2)
fa9a63c5
RM
4787
4788/* This is a separate function so that we can force an alloca cleanup
25fe55af 4789 afterwards. */
fa9a63c5
RM
4790static int
4791re_match_2_internal (bufp, string1, size1, string2, size2, pos, regs, stop)
4792 struct re_pattern_buffer *bufp;
66f0296e 4793 re_char *string1, *string2;
fa9a63c5
RM
4794 int size1, size2;
4795 int pos;
4796 struct re_registers *regs;
4797 int stop;
4798{
4799 /* General temporaries. */
4800 int mcnt;
01618498 4801 size_t reg;
66f0296e 4802 boolean not;
fa9a63c5
RM
4803
4804 /* Just past the end of the corresponding string. */
66f0296e 4805 re_char *end1, *end2;
fa9a63c5
RM
4806
4807 /* Pointers into string1 and string2, just past the last characters in
25fe55af 4808 each to consider matching. */
66f0296e 4809 re_char *end_match_1, *end_match_2;
fa9a63c5
RM
4810
4811 /* Where we are in the data, and the end of the current string. */
66f0296e 4812 re_char *d, *dend;
5e69f11e 4813
99633e97
SM
4814 /* Used sometimes to remember where we were before starting matching
4815 an operator so that we can go back in case of failure. This "atomic"
4816 behavior of matching opcodes is indispensable to the correctness
4817 of the on_failure_keep_string_jump optimization. */
4818 re_char *dfail;
4819
fa9a63c5 4820 /* Where we are in the pattern, and the end of the pattern. */
01618498
SM
4821 re_char *p = bufp->buffer;
4822 re_char *pend = p + bufp->used;
fa9a63c5 4823
25fe55af 4824 /* We use this to map every character in the string. */
6676cb1c 4825 RE_TRANSLATE_TYPE translate = bufp->translate;
fa9a63c5 4826
25fe55af 4827 /* Nonzero if we have to concern multibyte character. */
2d1675e4 4828 const boolean multibyte = RE_MULTIBYTE_P (bufp);
b18215fc 4829
fa9a63c5
RM
4830 /* Failure point stack. Each place that can handle a failure further
4831 down the line pushes a failure point on this stack. It consists of
505bde11 4832 regstart, and regend for all registers corresponding to
fa9a63c5
RM
4833 the subexpressions we're currently inside, plus the number of such
4834 registers, and, finally, two char *'s. The first char * is where
4835 to resume scanning the pattern; the second one is where to resume
505bde11 4836 scanning the strings. */
25fe55af 4837#ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
fa9a63c5
RM
4838 fail_stack_type fail_stack;
4839#endif
4840#ifdef DEBUG
fa9a63c5
RM
4841 unsigned nfailure_points_pushed = 0, nfailure_points_popped = 0;
4842#endif
4843
0b32bf0e 4844#if defined REL_ALLOC && defined REGEX_MALLOC
fa9a63c5
RM
4845 /* This holds the pointer to the failure stack, when
4846 it is allocated relocatably. */
4847 fail_stack_elt_t *failure_stack_ptr;
99633e97 4848#endif
fa9a63c5
RM
4849
4850 /* We fill all the registers internally, independent of what we
25fe55af 4851 return, for use in backreferences. The number here includes
fa9a63c5 4852 an element for register zero. */
4bb91c68 4853 size_t num_regs = bufp->re_nsub + 1;
5e69f11e 4854
fa9a63c5
RM
4855 /* Information on the contents of registers. These are pointers into
4856 the input strings; they record just what was matched (on this
4857 attempt) by a subexpression part of the pattern, that is, the
4858 regnum-th regstart pointer points to where in the pattern we began
4859 matching and the regnum-th regend points to right after where we
4860 stopped matching the regnum-th subexpression. (The zeroth register
4861 keeps track of what the whole pattern matches.) */
4862#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
66f0296e 4863 re_char **regstart, **regend;
fa9a63c5
RM
4864#endif
4865
fa9a63c5 4866 /* The following record the register info as found in the above
5e69f11e 4867 variables when we find a match better than any we've seen before.
fa9a63c5
RM
4868 This happens as we backtrack through the failure points, which in
4869 turn happens only if we have not yet matched the entire string. */
4870 unsigned best_regs_set = false;
4871#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
66f0296e 4872 re_char **best_regstart, **best_regend;
fa9a63c5 4873#endif
5e69f11e 4874
fa9a63c5
RM
4875 /* Logically, this is `best_regend[0]'. But we don't want to have to
4876 allocate space for that if we're not allocating space for anything
25fe55af 4877 else (see below). Also, we never need info about register 0 for
fa9a63c5
RM
4878 any of the other register vectors, and it seems rather a kludge to
4879 treat `best_regend' differently than the rest. So we keep track of
4880 the end of the best match so far in a separate variable. We
4881 initialize this to NULL so that when we backtrack the first time
4882 and need to test it, it's not garbage. */
66f0296e 4883 re_char *match_end = NULL;
fa9a63c5 4884
fa9a63c5
RM
4885#ifdef DEBUG
4886 /* Counts the total number of registers pushed. */
5e69f11e 4887 unsigned num_regs_pushed = 0;
fa9a63c5
RM
4888#endif
4889
4890 DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
5e69f11e 4891
fa9a63c5 4892 INIT_FAIL_STACK ();
5e69f11e 4893
fa9a63c5
RM
4894#ifdef MATCH_MAY_ALLOCATE
4895 /* Do not bother to initialize all the register variables if there are
4896 no groups in the pattern, as it takes a fair amount of time. If
4897 there are groups, we include space for register 0 (the whole
4898 pattern), even though we never use it, since it simplifies the
4899 array indexing. We should fix this. */
4900 if (bufp->re_nsub)
4901 {
66f0296e
SM
4902 regstart = REGEX_TALLOC (num_regs, re_char *);
4903 regend = REGEX_TALLOC (num_regs, re_char *);
4904 best_regstart = REGEX_TALLOC (num_regs, re_char *);
4905 best_regend = REGEX_TALLOC (num_regs, re_char *);
fa9a63c5 4906
505bde11 4907 if (!(regstart && regend && best_regstart && best_regend))
25fe55af
RS
4908 {
4909 FREE_VARIABLES ();
4910 return -2;
4911 }
fa9a63c5
RM
4912 }
4913 else
4914 {
4915 /* We must initialize all our variables to NULL, so that
25fe55af 4916 `FREE_VARIABLES' doesn't try to free them. */
505bde11 4917 regstart = regend = best_regstart = best_regend = NULL;
fa9a63c5
RM
4918 }
4919#endif /* MATCH_MAY_ALLOCATE */
4920
4921 /* The starting position is bogus. */
4922 if (pos < 0 || pos > size1 + size2)
4923 {
4924 FREE_VARIABLES ();
4925 return -1;
4926 }
5e69f11e 4927
fa9a63c5
RM
4928 /* Initialize subexpression text positions to -1 to mark ones that no
4929 start_memory/stop_memory has been seen for. Also initialize the
4930 register information struct. */
01618498
SM
4931 for (reg = 1; reg < num_regs; reg++)
4932 regstart[reg] = regend[reg] = NULL;
99633e97 4933
fa9a63c5 4934 /* We move `string1' into `string2' if the latter's empty -- but not if
25fe55af 4935 `string1' is null. */
fa9a63c5
RM
4936 if (size2 == 0 && string1 != NULL)
4937 {
4938 string2 = string1;
4939 size2 = size1;
4940 string1 = 0;
4941 size1 = 0;
4942 }
4943 end1 = string1 + size1;
4944 end2 = string2 + size2;
4945
5e69f11e 4946 /* `p' scans through the pattern as `d' scans through the data.
fa9a63c5
RM
4947 `dend' is the end of the input string that `d' points within. `d'
4948 is advanced into the following input string whenever necessary, but
4949 this happens before fetching; therefore, at the beginning of the
4950 loop, `d' can be pointing at the end of a string, but it cannot
4951 equal `string2'. */
419d1c74 4952 if (pos >= size1)
fa9a63c5 4953 {
419d1c74
SM
4954 /* Only match within string2. */
4955 d = string2 + pos - size1;
4956 dend = end_match_2 = string2 + stop - size1;
4957 end_match_1 = end1; /* Just to give it a value. */
fa9a63c5
RM
4958 }
4959 else
4960 {
f1ad044f 4961 if (stop < size1)
419d1c74
SM
4962 {
4963 /* Only match within string1. */
4964 end_match_1 = string1 + stop;
4965 /* BEWARE!
4966 When we reach end_match_1, PREFETCH normally switches to string2.
4967 But in the present case, this means that just doing a PREFETCH
4968 makes us jump from `stop' to `gap' within the string.
4969 What we really want here is for the search to stop as
4970 soon as we hit end_match_1. That's why we set end_match_2
4971 to end_match_1 (since PREFETCH fails as soon as we hit
4972 end_match_2). */
4973 end_match_2 = end_match_1;
4974 }
4975 else
f1ad044f
SM
4976 { /* It's important to use this code when stop == size so that
4977 moving `d' from end1 to string2 will not prevent the d == dend
4978 check from catching the end of string. */
419d1c74
SM
4979 end_match_1 = end1;
4980 end_match_2 = string2 + stop - size1;
4981 }
4982 d = string1 + pos;
4983 dend = end_match_1;
fa9a63c5
RM
4984 }
4985
4986 DEBUG_PRINT1 ("The compiled pattern is: ");
4987 DEBUG_PRINT_COMPILED_PATTERN (bufp, p, pend);
4988 DEBUG_PRINT1 ("The string to match is: `");
4989 DEBUG_PRINT_DOUBLE_STRING (d, string1, size1, string2, size2);
4990 DEBUG_PRINT1 ("'\n");
5e69f11e 4991
25fe55af 4992 /* This loops over pattern commands. It exits by returning from the
fa9a63c5
RM
4993 function if the match is complete, or it drops through if the match
4994 fails at this starting point in the input data. */
4995 for (;;)
4996 {
505bde11 4997 DEBUG_PRINT2 ("\n%p: ", p);
fa9a63c5
RM
4998
4999 if (p == pend)
5000 { /* End of pattern means we might have succeeded. */
25fe55af 5001 DEBUG_PRINT1 ("end of pattern ... ");
5e69f11e 5002
fa9a63c5 5003 /* If we haven't matched the entire string, and we want the
25fe55af
RS
5004 longest match, try backtracking. */
5005 if (d != end_match_2)
fa9a63c5
RM
5006 {
5007 /* 1 if this match ends in the same string (string1 or string2)
5008 as the best previous match. */
5e69f11e 5009 boolean same_str_p = (FIRST_STRING_P (match_end)
99633e97 5010 == FIRST_STRING_P (d));
fa9a63c5
RM
5011 /* 1 if this match is the best seen so far. */
5012 boolean best_match_p;
5013
5014 /* AIX compiler got confused when this was combined
25fe55af 5015 with the previous declaration. */
fa9a63c5
RM
5016 if (same_str_p)
5017 best_match_p = d > match_end;
5018 else
99633e97 5019 best_match_p = !FIRST_STRING_P (d);
fa9a63c5 5020
25fe55af
RS
5021 DEBUG_PRINT1 ("backtracking.\n");
5022
5023 if (!FAIL_STACK_EMPTY ())
5024 { /* More failure points to try. */
5025
5026 /* If exceeds best match so far, save it. */
5027 if (!best_regs_set || best_match_p)
5028 {
5029 best_regs_set = true;
5030 match_end = d;
5031
5032 DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
5033
01618498 5034 for (reg = 1; reg < num_regs; reg++)
25fe55af 5035 {
01618498
SM
5036 best_regstart[reg] = regstart[reg];
5037 best_regend[reg] = regend[reg];
25fe55af
RS
5038 }
5039 }
5040 goto fail;
5041 }
5042
5043 /* If no failure points, don't restore garbage. And if
5044 last match is real best match, don't restore second
5045 best one. */
5046 else if (best_regs_set && !best_match_p)
5047 {
5048 restore_best_regs:
5049 /* Restore best match. It may happen that `dend ==
5050 end_match_1' while the restored d is in string2.
5051 For example, the pattern `x.*y.*z' against the
5052 strings `x-' and `y-z-', if the two strings are
5053 not consecutive in memory. */
5054 DEBUG_PRINT1 ("Restoring best registers.\n");
5055
5056 d = match_end;
5057 dend = ((d >= string1 && d <= end1)
5058 ? end_match_1 : end_match_2);
fa9a63c5 5059
01618498 5060 for (reg = 1; reg < num_regs; reg++)
fa9a63c5 5061 {
01618498
SM
5062 regstart[reg] = best_regstart[reg];
5063 regend[reg] = best_regend[reg];
fa9a63c5 5064 }
25fe55af
RS
5065 }
5066 } /* d != end_match_2 */
fa9a63c5
RM
5067
5068 succeed_label:
25fe55af 5069 DEBUG_PRINT1 ("Accepting match.\n");
fa9a63c5 5070
25fe55af
RS
5071 /* If caller wants register contents data back, do it. */
5072 if (regs && !bufp->no_sub)
fa9a63c5 5073 {
25fe55af
RS
5074 /* Have the register data arrays been allocated? */
5075 if (bufp->regs_allocated == REGS_UNALLOCATED)
5076 { /* No. So allocate them with malloc. We need one
5077 extra element beyond `num_regs' for the `-1' marker
5078 GNU code uses. */
5079 regs->num_regs = MAX (RE_NREGS, num_regs + 1);
5080 regs->start = TALLOC (regs->num_regs, regoff_t);
5081 regs->end = TALLOC (regs->num_regs, regoff_t);
5082 if (regs->start == NULL || regs->end == NULL)
fa9a63c5
RM
5083 {
5084 FREE_VARIABLES ();
5085 return -2;
5086 }
25fe55af
RS
5087 bufp->regs_allocated = REGS_REALLOCATE;
5088 }
5089 else if (bufp->regs_allocated == REGS_REALLOCATE)
5090 { /* Yes. If we need more elements than were already
5091 allocated, reallocate them. If we need fewer, just
5092 leave it alone. */
5093 if (regs->num_regs < num_regs + 1)
5094 {
5095 regs->num_regs = num_regs + 1;
5096 RETALLOC (regs->start, regs->num_regs, regoff_t);
5097 RETALLOC (regs->end, regs->num_regs, regoff_t);
5098 if (regs->start == NULL || regs->end == NULL)
fa9a63c5
RM
5099 {
5100 FREE_VARIABLES ();
5101 return -2;
5102 }
25fe55af
RS
5103 }
5104 }
5105 else
fa9a63c5
RM
5106 {
5107 /* These braces fend off a "empty body in an else-statement"
25fe55af 5108 warning under GCC when assert expands to nothing. */
fa9a63c5
RM
5109 assert (bufp->regs_allocated == REGS_FIXED);
5110 }
5111
25fe55af
RS
5112 /* Convert the pointer data in `regstart' and `regend' to
5113 indices. Register zero has to be set differently,
5114 since we haven't kept track of any info for it. */
5115 if (regs->num_regs > 0)
5116 {
5117 regs->start[0] = pos;
99633e97 5118 regs->end[0] = POINTER_TO_OFFSET (d);
25fe55af 5119 }
5e69f11e 5120
25fe55af
RS
5121 /* Go through the first `min (num_regs, regs->num_regs)'
5122 registers, since that is all we initialized. */
01618498 5123 for (reg = 1; reg < MIN (num_regs, regs->num_regs); reg++)
fa9a63c5 5124 {
01618498
SM
5125 if (REG_UNSET (regstart[reg]) || REG_UNSET (regend[reg]))
5126 regs->start[reg] = regs->end[reg] = -1;
25fe55af
RS
5127 else
5128 {
01618498
SM
5129 regs->start[reg]
5130 = (regoff_t) POINTER_TO_OFFSET (regstart[reg]);
5131 regs->end[reg]
5132 = (regoff_t) POINTER_TO_OFFSET (regend[reg]);
25fe55af 5133 }
fa9a63c5 5134 }
5e69f11e 5135
25fe55af
RS
5136 /* If the regs structure we return has more elements than
5137 were in the pattern, set the extra elements to -1. If
5138 we (re)allocated the registers, this is the case,
5139 because we always allocate enough to have at least one
5140 -1 at the end. */
01618498
SM
5141 for (reg = num_regs; reg < regs->num_regs; reg++)
5142 regs->start[reg] = regs->end[reg] = -1;
fa9a63c5
RM
5143 } /* regs && !bufp->no_sub */
5144
25fe55af
RS
5145 DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
5146 nfailure_points_pushed, nfailure_points_popped,
5147 nfailure_points_pushed - nfailure_points_popped);
5148 DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed);
fa9a63c5 5149
99633e97 5150 mcnt = POINTER_TO_OFFSET (d) - pos;
fa9a63c5 5151
25fe55af 5152 DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt);
fa9a63c5 5153
25fe55af
RS
5154 FREE_VARIABLES ();
5155 return mcnt;
5156 }
fa9a63c5 5157
25fe55af 5158 /* Otherwise match next pattern command. */
fa9a63c5
RM
5159 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
5160 {
25fe55af
RS
5161 /* Ignore these. Used to ignore the n of succeed_n's which
5162 currently have n == 0. */
5163 case no_op:
5164 DEBUG_PRINT1 ("EXECUTING no_op.\n");
5165 break;
fa9a63c5
RM
5166
5167 case succeed:
25fe55af 5168 DEBUG_PRINT1 ("EXECUTING succeed.\n");
fa9a63c5
RM
5169 goto succeed_label;
5170
25fe55af
RS
5171 /* Match the next n pattern characters exactly. The following
5172 byte in the pattern defines n, and the n bytes after that
5173 are the characters to match. */
fa9a63c5
RM
5174 case exactn:
5175 mcnt = *p++;
25fe55af 5176 DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt);
fa9a63c5 5177
99633e97
SM
5178 /* Remember the start point to rollback upon failure. */
5179 dfail = d;
5180
25fe55af
RS
5181 /* This is written out as an if-else so we don't waste time
5182 testing `translate' inside the loop. */
28703c16 5183 if (RE_TRANSLATE_P (translate))
fa9a63c5 5184 {
e934739e
RS
5185 if (multibyte)
5186 do
5187 {
5188 int pat_charlen, buf_charlen;
e71b1971 5189 unsigned int pat_ch, buf_ch;
e934739e
RS
5190
5191 PREFETCH ();
5192 pat_ch = STRING_CHAR_AND_LENGTH (p, pend - p, pat_charlen);
5193 buf_ch = STRING_CHAR_AND_LENGTH (d, dend - d, buf_charlen);
5194
5195 if (RE_TRANSLATE (translate, buf_ch)
5196 != pat_ch)
99633e97
SM
5197 {
5198 d = dfail;
5199 goto fail;
5200 }
e934739e
RS
5201
5202 p += pat_charlen;
5203 d += buf_charlen;
5204 mcnt -= pat_charlen;
5205 }
5206 while (mcnt > 0);
5207 else
e934739e
RS
5208 do
5209 {
5210 PREFETCH ();
66f0296e 5211 if (RE_TRANSLATE (translate, *d) != *p++)
99633e97
SM
5212 {
5213 d = dfail;
5214 goto fail;
5215 }
33c46939 5216 d++;
e934739e
RS
5217 }
5218 while (--mcnt);
fa9a63c5
RM
5219 }
5220 else
5221 {
5222 do
5223 {
5224 PREFETCH ();
99633e97
SM
5225 if (*d++ != *p++)
5226 {
5227 d = dfail;
5228 goto fail;
5229 }
fa9a63c5
RM
5230 }
5231 while (--mcnt);
5232 }
25fe55af 5233 break;
fa9a63c5
RM
5234
5235
25fe55af 5236 /* Match any character except possibly a newline or a null. */
fa9a63c5 5237 case anychar:
e934739e
RS
5238 {
5239 int buf_charlen;
01618498 5240 re_wchar_t buf_ch;
fa9a63c5 5241
e934739e 5242 DEBUG_PRINT1 ("EXECUTING anychar.\n");
fa9a63c5 5243
e934739e 5244 PREFETCH ();
2d1675e4 5245 buf_ch = RE_STRING_CHAR_AND_LENGTH (d, dend - d, buf_charlen);
e934739e
RS
5246 buf_ch = TRANSLATE (buf_ch);
5247
5248 if ((!(bufp->syntax & RE_DOT_NEWLINE)
5249 && buf_ch == '\n')
5250 || ((bufp->syntax & RE_DOT_NOT_NULL)
5251 && buf_ch == '\000'))
5252 goto fail;
5253
e934739e
RS
5254 DEBUG_PRINT2 (" Matched `%d'.\n", *d);
5255 d += buf_charlen;
5256 }
fa9a63c5
RM
5257 break;
5258
5259
5260 case charset:
5261 case charset_not:
5262 {
b18215fc 5263 register unsigned int c;
fa9a63c5 5264 boolean not = (re_opcode_t) *(p - 1) == charset_not;
b18215fc
RS
5265 int len;
5266
5267 /* Start of actual range_table, or end of bitmap if there is no
5268 range table. */
01618498 5269 re_char *range_table;
b18215fc 5270
96cc36cc 5271 /* Nonzero if there is a range table. */
b18215fc
RS
5272 int range_table_exists;
5273
96cc36cc
RS
5274 /* Number of ranges of range table. This is not included
5275 in the initial byte-length of the command. */
5276 int count = 0;
fa9a63c5 5277
25fe55af 5278 DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : "");
fa9a63c5 5279
b18215fc 5280 range_table_exists = CHARSET_RANGE_TABLE_EXISTS_P (&p[-1]);
96cc36cc 5281
b18215fc 5282 if (range_table_exists)
96cc36cc
RS
5283 {
5284 range_table = CHARSET_RANGE_TABLE (&p[-1]); /* Past the bitmap. */
5285 EXTRACT_NUMBER_AND_INCR (count, range_table);
5286 }
b18215fc 5287
2d1675e4
SM
5288 PREFETCH ();
5289 c = RE_STRING_CHAR_AND_LENGTH (d, dend - d, len);
5290 c = TRANSLATE (c); /* The character to match. */
b18215fc
RS
5291
5292 if (SINGLE_BYTE_CHAR_P (c))
5293 { /* Lookup bitmap. */
b18215fc
RS
5294 /* Cast to `unsigned' instead of `unsigned char' in
5295 case the bit list is a full 32 bytes long. */
5296 if (c < (unsigned) (CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH)
96cc36cc
RS
5297 && p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
5298 not = !not;
b18215fc 5299 }
96cc36cc 5300#ifdef emacs
b18215fc 5301 else if (range_table_exists)
96cc36cc
RS
5302 {
5303 int class_bits = CHARSET_RANGE_TABLE_BITS (&p[-1]);
5304
14473664
SM
5305 if ( (class_bits & BIT_LOWER && ISLOWER (c))
5306 | (class_bits & BIT_MULTIBYTE)
96cc36cc
RS
5307 | (class_bits & BIT_PUNCT && ISPUNCT (c))
5308 | (class_bits & BIT_SPACE && ISSPACE (c))
5309 | (class_bits & BIT_UPPER && ISUPPER (c))
5310 | (class_bits & BIT_WORD && ISWORD (c)))
5311 not = !not;
5312 else
5313 CHARSET_LOOKUP_RANGE_TABLE_RAW (not, c, range_table, count);
5314 }
5315#endif /* emacs */
fa9a63c5 5316
96cc36cc
RS
5317 if (range_table_exists)
5318 p = CHARSET_RANGE_TABLE_END (range_table, count);
5319 else
5320 p += CHARSET_BITMAP_SIZE (&p[-1]) + 1;
fa9a63c5
RM
5321
5322 if (!not) goto fail;
5e69f11e 5323
b18215fc 5324 d += len;
fa9a63c5
RM
5325 break;
5326 }
5327
5328
25fe55af 5329 /* The beginning of a group is represented by start_memory.
505bde11 5330 The argument is the register number. The text
25fe55af
RS
5331 matched within the group is recorded (in the internal
5332 registers data structure) under the register number. */
5333 case start_memory:
505bde11
SM
5334 DEBUG_PRINT2 ("EXECUTING start_memory %d:\n", *p);
5335
5336 /* In case we need to undo this operation (via backtracking). */
5337 PUSH_FAILURE_REG ((unsigned int)*p);
fa9a63c5 5338
25fe55af 5339 regstart[*p] = d;
4bb91c68 5340 regend[*p] = NULL; /* probably unnecessary. -sm */
fa9a63c5
RM
5341 DEBUG_PRINT2 (" regstart: %d\n", POINTER_TO_OFFSET (regstart[*p]));
5342
25fe55af 5343 /* Move past the register number and inner group count. */
505bde11 5344 p += 1;
25fe55af 5345 break;
fa9a63c5
RM
5346
5347
25fe55af 5348 /* The stop_memory opcode represents the end of a group. Its
505bde11 5349 argument is the same as start_memory's: the register number. */
fa9a63c5 5350 case stop_memory:
505bde11
SM
5351 DEBUG_PRINT2 ("EXECUTING stop_memory %d:\n", *p);
5352
5353 assert (!REG_UNSET (regstart[*p]));
5354 /* Strictly speaking, there should be code such as:
177c0ea7 5355
0b32bf0e 5356 assert (REG_UNSET (regend[*p]));
505bde11
SM
5357 PUSH_FAILURE_REGSTOP ((unsigned int)*p);
5358
5359 But the only info to be pushed is regend[*p] and it is known to
5360 be UNSET, so there really isn't anything to push.
5361 Not pushing anything, on the other hand deprives us from the
5362 guarantee that regend[*p] is UNSET since undoing this operation
5363 will not reset its value properly. This is not important since
5364 the value will only be read on the next start_memory or at
5365 the very end and both events can only happen if this stop_memory
5366 is *not* undone. */
fa9a63c5 5367
25fe55af 5368 regend[*p] = d;
fa9a63c5
RM
5369 DEBUG_PRINT2 (" regend: %d\n", POINTER_TO_OFFSET (regend[*p]));
5370
25fe55af 5371 /* Move past the register number and the inner group count. */
505bde11 5372 p += 1;
25fe55af 5373 break;
fa9a63c5
RM
5374
5375
5376 /* \<digit> has been turned into a `duplicate' command which is
25fe55af
RS
5377 followed by the numeric value of <digit> as the register number. */
5378 case duplicate:
fa9a63c5 5379 {
66f0296e 5380 register re_char *d2, *dend2;
25fe55af 5381 int regno = *p++; /* Get which register to match against. */
fa9a63c5
RM
5382 DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno);
5383
25fe55af
RS
5384 /* Can't back reference a group which we've never matched. */
5385 if (REG_UNSET (regstart[regno]) || REG_UNSET (regend[regno]))
5386 goto fail;
5e69f11e 5387
25fe55af
RS
5388 /* Where in input to try to start matching. */
5389 d2 = regstart[regno];
5e69f11e 5390
99633e97
SM
5391 /* Remember the start point to rollback upon failure. */
5392 dfail = d;
5393
25fe55af
RS
5394 /* Where to stop matching; if both the place to start and
5395 the place to stop matching are in the same string, then
5396 set to the place to stop, otherwise, for now have to use
5397 the end of the first string. */
fa9a63c5 5398
25fe55af 5399 dend2 = ((FIRST_STRING_P (regstart[regno])
fa9a63c5
RM
5400 == FIRST_STRING_P (regend[regno]))
5401 ? regend[regno] : end_match_1);
5402 for (;;)
5403 {
5404 /* If necessary, advance to next segment in register
25fe55af 5405 contents. */
fa9a63c5
RM
5406 while (d2 == dend2)
5407 {
5408 if (dend2 == end_match_2) break;
5409 if (dend2 == regend[regno]) break;
5410
25fe55af
RS
5411 /* End of string1 => advance to string2. */
5412 d2 = string2;
5413 dend2 = regend[regno];
fa9a63c5
RM
5414 }
5415 /* At end of register contents => success */
5416 if (d2 == dend2) break;
5417
5418 /* If necessary, advance to next segment in data. */
5419 PREFETCH ();
5420
5421 /* How many characters left in this segment to match. */
5422 mcnt = dend - d;
5e69f11e 5423
fa9a63c5 5424 /* Want how many consecutive characters we can match in
25fe55af
RS
5425 one shot, so, if necessary, adjust the count. */
5426 if (mcnt > dend2 - d2)
fa9a63c5 5427 mcnt = dend2 - d2;
5e69f11e 5428
fa9a63c5 5429 /* Compare that many; failure if mismatch, else move
25fe55af 5430 past them. */
28703c16 5431 if (RE_TRANSLATE_P (translate)
2d1675e4 5432 ? bcmp_translate (d, d2, mcnt, translate, multibyte)
4bb91c68 5433 : memcmp (d, d2, mcnt))
99633e97
SM
5434 {
5435 d = dfail;
5436 goto fail;
5437 }
fa9a63c5 5438 d += mcnt, d2 += mcnt;
fa9a63c5
RM
5439 }
5440 }
5441 break;
5442
5443
25fe55af 5444 /* begline matches the empty string at the beginning of the string
c0f9ea08 5445 (unless `not_bol' is set in `bufp'), and after newlines. */
fa9a63c5 5446 case begline:
25fe55af 5447 DEBUG_PRINT1 ("EXECUTING begline.\n");
5e69f11e 5448
25fe55af
RS
5449 if (AT_STRINGS_BEG (d))
5450 {
5451 if (!bufp->not_bol) break;
5452 }
419d1c74 5453 else
25fe55af 5454 {
419d1c74
SM
5455 unsigned char c;
5456 GET_CHAR_BEFORE_2 (c, d, string1, end1, string2, end2);
c0f9ea08 5457 if (c == '\n')
419d1c74 5458 break;
25fe55af
RS
5459 }
5460 /* In all other cases, we fail. */
5461 goto fail;
fa9a63c5
RM
5462
5463
25fe55af 5464 /* endline is the dual of begline. */
fa9a63c5 5465 case endline:
25fe55af 5466 DEBUG_PRINT1 ("EXECUTING endline.\n");
fa9a63c5 5467
25fe55af
RS
5468 if (AT_STRINGS_END (d))
5469 {
5470 if (!bufp->not_eol) break;
5471 }
f1ad044f 5472 else
25fe55af 5473 {
f1ad044f 5474 PREFETCH_NOLIMIT ();
c0f9ea08 5475 if (*d == '\n')
f1ad044f 5476 break;
25fe55af
RS
5477 }
5478 goto fail;
fa9a63c5
RM
5479
5480
5481 /* Match at the very beginning of the data. */
25fe55af
RS
5482 case begbuf:
5483 DEBUG_PRINT1 ("EXECUTING begbuf.\n");
5484 if (AT_STRINGS_BEG (d))
5485 break;
5486 goto fail;
fa9a63c5
RM
5487
5488
5489 /* Match at the very end of the data. */
25fe55af
RS
5490 case endbuf:
5491 DEBUG_PRINT1 ("EXECUTING endbuf.\n");
fa9a63c5
RM
5492 if (AT_STRINGS_END (d))
5493 break;
25fe55af 5494 goto fail;
5e69f11e 5495
5e69f11e 5496
25fe55af
RS
5497 /* on_failure_keep_string_jump is used to optimize `.*\n'. It
5498 pushes NULL as the value for the string on the stack. Then
505bde11 5499 `POP_FAILURE_POINT' will keep the current value for the
25fe55af
RS
5500 string, instead of restoring it. To see why, consider
5501 matching `foo\nbar' against `.*\n'. The .* matches the foo;
5502 then the . fails against the \n. But the next thing we want
5503 to do is match the \n against the \n; if we restored the
5504 string value, we would be back at the foo.
5505
5506 Because this is used only in specific cases, we don't need to
5507 check all the things that `on_failure_jump' does, to make
5508 sure the right things get saved on the stack. Hence we don't
5509 share its code. The only reason to push anything on the
5510 stack at all is that otherwise we would have to change
5511 `anychar's code to do something besides goto fail in this
5512 case; that seems worse than this. */
5513 case on_failure_keep_string_jump:
505bde11
SM
5514 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5515 DEBUG_PRINT3 ("EXECUTING on_failure_keep_string_jump %d (to %p):\n",
5516 mcnt, p + mcnt);
fa9a63c5 5517
505bde11
SM
5518 PUSH_FAILURE_POINT (p - 3, NULL);
5519 break;
5520
0683b6fa
SM
5521 /* A nasty loop is introduced by the non-greedy *? and +?.
5522 With such loops, the stack only ever contains one failure point
5523 at a time, so that a plain on_failure_jump_loop kind of
5524 cycle detection cannot work. Worse yet, such a detection
5525 can not only fail to detect a cycle, but it can also wrongly
5526 detect a cycle (between different instantiations of the same
6df42991 5527 loop).
0683b6fa
SM
5528 So the method used for those nasty loops is a little different:
5529 We use a special cycle-detection-stack-frame which is pushed
5530 when the on_failure_jump_nastyloop failure-point is *popped*.
5531 This special frame thus marks the beginning of one iteration
5532 through the loop and we can hence easily check right here
5533 whether something matched between the beginning and the end of
5534 the loop. */
5535 case on_failure_jump_nastyloop:
5536 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5537 DEBUG_PRINT3 ("EXECUTING on_failure_jump_nastyloop %d (to %p):\n",
5538 mcnt, p + mcnt);
5539
5540 assert ((re_opcode_t)p[-4] == no_op);
6df42991
SM
5541 {
5542 int cycle = 0;
5543 CHECK_INFINITE_LOOP (p - 4, d);
5544 if (!cycle)
5545 /* If there's a cycle, just continue without pushing
5546 this failure point. The failure point is the "try again"
5547 option, which shouldn't be tried.
5548 We want (x?)*?y\1z to match both xxyz and xxyxz. */
5549 PUSH_FAILURE_POINT (p - 3, d);
5550 }
0683b6fa
SM
5551 break;
5552
4e8a9132
SM
5553 /* Simple loop detecting on_failure_jump: just check on the
5554 failure stack if the same spot was already hit earlier. */
505bde11
SM
5555 case on_failure_jump_loop:
5556 on_failure:
5557 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5558 DEBUG_PRINT3 ("EXECUTING on_failure_jump_loop %d (to %p):\n",
5559 mcnt, p + mcnt);
6df42991
SM
5560 {
5561 int cycle = 0;
5562 CHECK_INFINITE_LOOP (p - 3, d);
5563 if (cycle)
5564 /* If there's a cycle, get out of the loop, as if the matching
5565 had failed. We used to just `goto fail' here, but that was
5566 aborting the search a bit too early: we want to keep the
5567 empty-loop-match and keep matching after the loop.
5568 We want (x?)*y\1z to match both xxyz and xxyxz. */
5569 p += mcnt;
5570 else
5571 PUSH_FAILURE_POINT (p - 3, d);
5572 }
25fe55af 5573 break;
fa9a63c5
RM
5574
5575
5576 /* Uses of on_failure_jump:
5e69f11e 5577
25fe55af
RS
5578 Each alternative starts with an on_failure_jump that points
5579 to the beginning of the next alternative. Each alternative
5580 except the last ends with a jump that in effect jumps past
5581 the rest of the alternatives. (They really jump to the
5582 ending jump of the following alternative, because tensioning
5583 these jumps is a hassle.)
fa9a63c5 5584
25fe55af
RS
5585 Repeats start with an on_failure_jump that points past both
5586 the repetition text and either the following jump or
5587 pop_failure_jump back to this on_failure_jump. */
fa9a63c5 5588 case on_failure_jump:
5b370c2b 5589 IMMEDIATE_QUIT_CHECK;
25fe55af 5590 EXTRACT_NUMBER_AND_INCR (mcnt, p);
505bde11
SM
5591 DEBUG_PRINT3 ("EXECUTING on_failure_jump %d (to %p):\n",
5592 mcnt, p + mcnt);
25fe55af 5593
505bde11 5594 PUSH_FAILURE_POINT (p -3, d);
25fe55af
RS
5595 break;
5596
4e8a9132 5597 /* This operation is used for greedy *.
505bde11
SM
5598 Compare the beginning of the repeat with what in the
5599 pattern follows its end. If we can establish that there
5600 is nothing that they would both match, i.e., that we
5601 would have to backtrack because of (as in, e.g., `a*a')
5602 then we can use a non-backtracking loop based on
4e8a9132 5603 on_failure_keep_string_jump instead of on_failure_jump. */
505bde11 5604 case on_failure_jump_smart:
5b370c2b 5605 IMMEDIATE_QUIT_CHECK;
25fe55af 5606 EXTRACT_NUMBER_AND_INCR (mcnt, p);
505bde11
SM
5607 DEBUG_PRINT3 ("EXECUTING on_failure_jump_smart %d (to %p).\n",
5608 mcnt, p + mcnt);
25fe55af 5609 {
01618498 5610 re_char *p1 = p; /* Next operation. */
6dcf2d0e
SM
5611 /* Here, we discard `const', making re_match non-reentrant. */
5612 unsigned char *p2 = (unsigned char*) p + mcnt; /* Jump dest. */
5613 unsigned char *p3 = (unsigned char*) p - 3; /* opcode location. */
fa9a63c5 5614
505bde11
SM
5615 p -= 3; /* Reset so that we will re-execute the
5616 instruction once it's been changed. */
fa9a63c5 5617
4e8a9132
SM
5618 EXTRACT_NUMBER (mcnt, p2 - 2);
5619
5620 /* Ensure this is a indeed the trivial kind of loop
5621 we are expecting. */
5622 assert (skip_one_char (p1) == p2 - 3);
5623 assert ((re_opcode_t) p2[-3] == jump && p2 + mcnt == p);
99633e97 5624 DEBUG_STATEMENT (debug += 2);
505bde11 5625 if (mutually_exclusive_p (bufp, p1, p2))
fa9a63c5 5626 {
505bde11 5627 /* Use a fast `on_failure_keep_string_jump' loop. */
4e8a9132 5628 DEBUG_PRINT1 (" smart exclusive => fast loop.\n");
01618498 5629 *p3 = (unsigned char) on_failure_keep_string_jump;
4e8a9132 5630 STORE_NUMBER (p2 - 2, mcnt + 3);
25fe55af 5631 }
505bde11 5632 else
fa9a63c5 5633 {
505bde11
SM
5634 /* Default to a safe `on_failure_jump' loop. */
5635 DEBUG_PRINT1 (" smart default => slow loop.\n");
01618498 5636 *p3 = (unsigned char) on_failure_jump;
fa9a63c5 5637 }
99633e97 5638 DEBUG_STATEMENT (debug -= 2);
25fe55af 5639 }
505bde11 5640 break;
25fe55af
RS
5641
5642 /* Unconditionally jump (without popping any failure points). */
5643 case jump:
fa9a63c5 5644 unconditional_jump:
5b370c2b 5645 IMMEDIATE_QUIT_CHECK;
fa9a63c5 5646 EXTRACT_NUMBER_AND_INCR (mcnt, p); /* Get the amount to jump. */
25fe55af
RS
5647 DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt);
5648 p += mcnt; /* Do the jump. */
505bde11 5649 DEBUG_PRINT2 ("(to %p).\n", p);
25fe55af
RS
5650 break;
5651
5652
25fe55af
RS
5653 /* Have to succeed matching what follows at least n times.
5654 After that, handle like `on_failure_jump'. */
5655 case succeed_n:
01618498 5656 /* Signedness doesn't matter since we only compare MCNT to 0. */
25fe55af
RS
5657 EXTRACT_NUMBER (mcnt, p + 2);
5658 DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt);
5e69f11e 5659
dc1e502d
SM
5660 /* Originally, mcnt is how many times we HAVE to succeed. */
5661 if (mcnt != 0)
25fe55af 5662 {
6dcf2d0e
SM
5663 /* Here, we discard `const', making re_match non-reentrant. */
5664 unsigned char *p2 = (unsigned char*) p + 2; /* counter loc. */
dc1e502d 5665 mcnt--;
01618498
SM
5666 p += 4;
5667 PUSH_NUMBER (p2, mcnt);
25fe55af 5668 }
dc1e502d
SM
5669 else
5670 /* The two bytes encoding mcnt == 0 are two no_op opcodes. */
5671 goto on_failure;
25fe55af
RS
5672 break;
5673
5674 case jump_n:
01618498 5675 /* Signedness doesn't matter since we only compare MCNT to 0. */
25fe55af
RS
5676 EXTRACT_NUMBER (mcnt, p + 2);
5677 DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt);
5678
5679 /* Originally, this is how many times we CAN jump. */
dc1e502d 5680 if (mcnt != 0)
25fe55af 5681 {
6dcf2d0e
SM
5682 /* Here, we discard `const', making re_match non-reentrant. */
5683 unsigned char *p2 = (unsigned char*) p + 2; /* counter loc. */
dc1e502d 5684 mcnt--;
01618498 5685 PUSH_NUMBER (p2, mcnt);
dc1e502d 5686 goto unconditional_jump;
25fe55af
RS
5687 }
5688 /* If don't have to jump any more, skip over the rest of command. */
5e69f11e
RM
5689 else
5690 p += 4;
25fe55af 5691 break;
5e69f11e 5692
fa9a63c5
RM
5693 case set_number_at:
5694 {
01618498 5695 unsigned char *p2; /* Location of the counter. */
25fe55af 5696 DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
fa9a63c5 5697
25fe55af 5698 EXTRACT_NUMBER_AND_INCR (mcnt, p);
6dcf2d0e
SM
5699 /* Here, we discard `const', making re_match non-reentrant. */
5700 p2 = (unsigned char*) p + mcnt;
01618498 5701 /* Signedness doesn't matter since we only copy MCNT's bits . */
25fe55af 5702 EXTRACT_NUMBER_AND_INCR (mcnt, p);
01618498
SM
5703 DEBUG_PRINT3 (" Setting %p to %d.\n", p2, mcnt);
5704 PUSH_NUMBER (p2, mcnt);
25fe55af
RS
5705 break;
5706 }
9121ca40
KH
5707
5708 case wordbound:
66f0296e
SM
5709 case notwordbound:
5710 not = (re_opcode_t) *(p - 1) == notwordbound;
5711 DEBUG_PRINT2 ("EXECUTING %swordbound.\n", not?"not":"");
fa9a63c5 5712
99633e97 5713 /* We SUCCEED (or FAIL) in one of the following cases: */
9121ca40 5714
b18215fc 5715 /* Case 1: D is at the beginning or the end of string. */
9121ca40 5716 if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
66f0296e 5717 not = !not;
b18215fc
RS
5718 else
5719 {
5720 /* C1 is the character before D, S1 is the syntax of C1, C2
5721 is the character at D, and S2 is the syntax of C2. */
01618498
SM
5722 re_wchar_t c1, c2;
5723 int s1, s2;
b18215fc 5724#ifdef emacs
2d1675e4
SM
5725 int offset = PTR_TO_OFFSET (d - 1);
5726 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
5d967c7a 5727 UPDATE_SYNTAX_TABLE (charpos);
25fe55af 5728#endif
66f0296e 5729 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
b18215fc
RS
5730 s1 = SYNTAX (c1);
5731#ifdef emacs
5d967c7a 5732 UPDATE_SYNTAX_TABLE_FORWARD (charpos + 1);
25fe55af 5733#endif
f1ad044f 5734 PREFETCH_NOLIMIT ();
2d1675e4 5735 c2 = RE_STRING_CHAR (d, dend - d);
b18215fc
RS
5736 s2 = SYNTAX (c2);
5737
5738 if (/* Case 2: Only one of S1 and S2 is Sword. */
5739 ((s1 == Sword) != (s2 == Sword))
5740 /* Case 3: Both of S1 and S2 are Sword, and macro
25fe55af 5741 WORD_BOUNDARY_P (C1, C2) returns nonzero. */
b18215fc 5742 || ((s1 == Sword) && WORD_BOUNDARY_P (c1, c2)))
66f0296e
SM
5743 not = !not;
5744 }
5745 if (not)
9121ca40 5746 break;
b18215fc 5747 else
9121ca40 5748 goto fail;
fa9a63c5
RM
5749
5750 case wordbeg:
25fe55af 5751 DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
fa9a63c5 5752
b18215fc
RS
5753 /* We FAIL in one of the following cases: */
5754
25fe55af 5755 /* Case 1: D is at the end of string. */
b18215fc 5756 if (AT_STRINGS_END (d))
99633e97 5757 goto fail;
b18215fc
RS
5758 else
5759 {
5760 /* C1 is the character before D, S1 is the syntax of C1, C2
5761 is the character at D, and S2 is the syntax of C2. */
01618498
SM
5762 re_wchar_t c1, c2;
5763 int s1, s2;
fa9a63c5 5764#ifdef emacs
2d1675e4
SM
5765 int offset = PTR_TO_OFFSET (d);
5766 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
92432794 5767 UPDATE_SYNTAX_TABLE (charpos);
25fe55af 5768#endif
99633e97 5769 PREFETCH ();
2d1675e4 5770 c2 = RE_STRING_CHAR (d, dend - d);
b18215fc 5771 s2 = SYNTAX (c2);
177c0ea7 5772
b18215fc
RS
5773 /* Case 2: S2 is not Sword. */
5774 if (s2 != Sword)
5775 goto fail;
5776
5777 /* Case 3: D is not at the beginning of string ... */
5778 if (!AT_STRINGS_BEG (d))
5779 {
5780 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
5781#ifdef emacs
5d967c7a 5782 UPDATE_SYNTAX_TABLE_BACKWARD (charpos - 1);
25fe55af 5783#endif
b18215fc
RS
5784 s1 = SYNTAX (c1);
5785
5786 /* ... and S1 is Sword, and WORD_BOUNDARY_P (C1, C2)
25fe55af 5787 returns 0. */
b18215fc
RS
5788 if ((s1 == Sword) && !WORD_BOUNDARY_P (c1, c2))
5789 goto fail;
5790 }
5791 }
e318085a
RS
5792 break;
5793
b18215fc 5794 case wordend:
25fe55af 5795 DEBUG_PRINT1 ("EXECUTING wordend.\n");
b18215fc
RS
5796
5797 /* We FAIL in one of the following cases: */
5798
5799 /* Case 1: D is at the beginning of string. */
5800 if (AT_STRINGS_BEG (d))
e318085a 5801 goto fail;
b18215fc
RS
5802 else
5803 {
5804 /* C1 is the character before D, S1 is the syntax of C1, C2
5805 is the character at D, and S2 is the syntax of C2. */
01618498
SM
5806 re_wchar_t c1, c2;
5807 int s1, s2;
5d967c7a 5808#ifdef emacs
2d1675e4
SM
5809 int offset = PTR_TO_OFFSET (d) - 1;
5810 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
92432794 5811 UPDATE_SYNTAX_TABLE (charpos);
5d967c7a 5812#endif
99633e97 5813 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
b18215fc
RS
5814 s1 = SYNTAX (c1);
5815
5816 /* Case 2: S1 is not Sword. */
5817 if (s1 != Sword)
5818 goto fail;
5819
5820 /* Case 3: D is not at the end of string ... */
5821 if (!AT_STRINGS_END (d))
5822 {
f1ad044f 5823 PREFETCH_NOLIMIT ();
2d1675e4 5824 c2 = RE_STRING_CHAR (d, dend - d);
5d967c7a
RS
5825#ifdef emacs
5826 UPDATE_SYNTAX_TABLE_FORWARD (charpos);
5827#endif
b18215fc
RS
5828 s2 = SYNTAX (c2);
5829
5830 /* ... and S2 is Sword, and WORD_BOUNDARY_P (C1, C2)
25fe55af 5831 returns 0. */
b18215fc 5832 if ((s2 == Sword) && !WORD_BOUNDARY_P (c1, c2))
25fe55af 5833 goto fail;
b18215fc
RS
5834 }
5835 }
e318085a
RS
5836 break;
5837
669fa600
SM
5838 case symbeg:
5839 DEBUG_PRINT1 ("EXECUTING symbeg.\n");
5840
5841 /* We FAIL in one of the following cases: */
5842
5843 /* Case 1: D is at the end of string. */
5844 if (AT_STRINGS_END (d))
5845 goto fail;
5846 else
5847 {
5848 /* C1 is the character before D, S1 is the syntax of C1, C2
5849 is the character at D, and S2 is the syntax of C2. */
5850 re_wchar_t c1, c2;
5851 int s1, s2;
5852#ifdef emacs
5853 int offset = PTR_TO_OFFSET (d);
5854 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
5855 UPDATE_SYNTAX_TABLE (charpos);
5856#endif
5857 PREFETCH ();
5858 c2 = RE_STRING_CHAR (d, dend - d);
5859 s2 = SYNTAX (c2);
5860
5861 /* Case 2: S2 is neither Sword nor Ssymbol. */
5862 if (s2 != Sword && s2 != Ssymbol)
5863 goto fail;
5864
5865 /* Case 3: D is not at the beginning of string ... */
5866 if (!AT_STRINGS_BEG (d))
5867 {
5868 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
5869#ifdef emacs
5870 UPDATE_SYNTAX_TABLE_BACKWARD (charpos - 1);
5871#endif
5872 s1 = SYNTAX (c1);
5873
5874 /* ... and S1 is Sword or Ssymbol. */
5875 if (s1 == Sword || s1 == Ssymbol)
5876 goto fail;
5877 }
5878 }
5879 break;
5880
5881 case symend:
5882 DEBUG_PRINT1 ("EXECUTING symend.\n");
5883
5884 /* We FAIL in one of the following cases: */
5885
5886 /* Case 1: D is at the beginning of string. */
5887 if (AT_STRINGS_BEG (d))
5888 goto fail;
5889 else
5890 {
5891 /* C1 is the character before D, S1 is the syntax of C1, C2
5892 is the character at D, and S2 is the syntax of C2. */
5893 re_wchar_t c1, c2;
5894 int s1, s2;
5895#ifdef emacs
5896 int offset = PTR_TO_OFFSET (d) - 1;
5897 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
5898 UPDATE_SYNTAX_TABLE (charpos);
5899#endif
5900 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
5901 s1 = SYNTAX (c1);
5902
5903 /* Case 2: S1 is neither Ssymbol nor Sword. */
5904 if (s1 != Sword && s1 != Ssymbol)
5905 goto fail;
5906
5907 /* Case 3: D is not at the end of string ... */
5908 if (!AT_STRINGS_END (d))
5909 {
5910 PREFETCH_NOLIMIT ();
5911 c2 = RE_STRING_CHAR (d, dend - d);
5912#ifdef emacs
5913 UPDATE_SYNTAX_TABLE_FORWARD (charpos);
5914#endif
5915 s2 = SYNTAX (c2);
5916
5917 /* ... and S2 is Sword or Ssymbol. */
5918 if (s2 == Sword || s2 == Ssymbol)
5919 goto fail;
5920 }
5921 }
5922 break;
5923
fa9a63c5 5924 case syntaxspec:
1fb352e0
SM
5925 case notsyntaxspec:
5926 not = (re_opcode_t) *(p - 1) == notsyntaxspec;
fa9a63c5 5927 mcnt = *p++;
1fb352e0 5928 DEBUG_PRINT3 ("EXECUTING %ssyntaxspec %d.\n", not?"not":"", mcnt);
fa9a63c5 5929 PREFETCH ();
b18215fc
RS
5930#ifdef emacs
5931 {
2d1675e4
SM
5932 int offset = PTR_TO_OFFSET (d);
5933 int pos1 = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
b18215fc
RS
5934 UPDATE_SYNTAX_TABLE (pos1);
5935 }
25fe55af 5936#endif
b18215fc 5937 {
01618498
SM
5938 int len;
5939 re_wchar_t c;
b18215fc 5940
2d1675e4 5941 c = RE_STRING_CHAR_AND_LENGTH (d, dend - d, len);
b18215fc 5942
990b2375 5943 if ((SYNTAX (c) != (enum syntaxcode) mcnt) ^ not)
1fb352e0 5944 goto fail;
b18215fc
RS
5945 d += len;
5946 }
fa9a63c5
RM
5947 break;
5948
b18215fc 5949#ifdef emacs
1fb352e0
SM
5950 case before_dot:
5951 DEBUG_PRINT1 ("EXECUTING before_dot.\n");
5952 if (PTR_BYTE_POS (d) >= PT_BYTE)
fa9a63c5 5953 goto fail;
b18215fc
RS
5954 break;
5955
1fb352e0
SM
5956 case at_dot:
5957 DEBUG_PRINT1 ("EXECUTING at_dot.\n");
5958 if (PTR_BYTE_POS (d) != PT_BYTE)
5959 goto fail;
5960 break;
b18215fc 5961
1fb352e0
SM
5962 case after_dot:
5963 DEBUG_PRINT1 ("EXECUTING after_dot.\n");
5964 if (PTR_BYTE_POS (d) <= PT_BYTE)
5965 goto fail;
e318085a 5966 break;
fa9a63c5 5967
1fb352e0 5968 case categoryspec:
b18215fc 5969 case notcategoryspec:
1fb352e0 5970 not = (re_opcode_t) *(p - 1) == notcategoryspec;
b18215fc 5971 mcnt = *p++;
1fb352e0 5972 DEBUG_PRINT3 ("EXECUTING %scategoryspec %d.\n", not?"not":"", mcnt);
b18215fc
RS
5973 PREFETCH ();
5974 {
01618498
SM
5975 int len;
5976 re_wchar_t c;
5977
2d1675e4 5978 c = RE_STRING_CHAR_AND_LENGTH (d, dend - d, len);
b18215fc 5979
1fb352e0 5980 if ((!CHAR_HAS_CATEGORY (c, mcnt)) ^ not)
b18215fc
RS
5981 goto fail;
5982 d += len;
5983 }
fa9a63c5 5984 break;
5e69f11e 5985
1fb352e0 5986#endif /* emacs */
5e69f11e 5987
0b32bf0e
SM
5988 default:
5989 abort ();
fa9a63c5 5990 }
b18215fc 5991 continue; /* Successfully executed one pattern command; keep going. */
fa9a63c5
RM
5992
5993
5994 /* We goto here if a matching operation fails. */
5995 fail:
5b370c2b 5996 IMMEDIATE_QUIT_CHECK;
fa9a63c5 5997 if (!FAIL_STACK_EMPTY ())
505bde11 5998 {
01618498 5999 re_char *str, *pat;
505bde11 6000 /* A restart point is known. Restore to that state. */
0b32bf0e
SM
6001 DEBUG_PRINT1 ("\nFAIL:\n");
6002 POP_FAILURE_POINT (str, pat);
505bde11
SM
6003 switch (SWITCH_ENUM_CAST ((re_opcode_t) *pat++))
6004 {
6005 case on_failure_keep_string_jump:
6006 assert (str == NULL);
6007 goto continue_failure_jump;
6008
0683b6fa
SM
6009 case on_failure_jump_nastyloop:
6010 assert ((re_opcode_t)pat[-2] == no_op);
6011 PUSH_FAILURE_POINT (pat - 2, str);
6012 /* Fallthrough */
6013
505bde11
SM
6014 case on_failure_jump_loop:
6015 case on_failure_jump:
6016 case succeed_n:
6017 d = str;
6018 continue_failure_jump:
6019 EXTRACT_NUMBER_AND_INCR (mcnt, pat);
6020 p = pat + mcnt;
6021 break;
b18215fc 6022
0683b6fa
SM
6023 case no_op:
6024 /* A special frame used for nastyloops. */
6025 goto fail;
6026
505bde11
SM
6027 default:
6028 abort();
6029 }
fa9a63c5 6030
505bde11 6031 assert (p >= bufp->buffer && p <= pend);
b18215fc 6032
0b32bf0e 6033 if (d >= string1 && d <= end1)
fa9a63c5 6034 dend = end_match_1;
0b32bf0e 6035 }
fa9a63c5 6036 else
0b32bf0e 6037 break; /* Matching at this starting point really fails. */
fa9a63c5
RM
6038 } /* for (;;) */
6039
6040 if (best_regs_set)
6041 goto restore_best_regs;
6042
6043 FREE_VARIABLES ();
6044
b18215fc 6045 return -1; /* Failure to match. */
fa9a63c5
RM
6046} /* re_match_2 */
6047\f
6048/* Subroutine definitions for re_match_2. */
6049
fa9a63c5
RM
6050/* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
6051 bytes; nonzero otherwise. */
5e69f11e 6052
fa9a63c5 6053static int
2d1675e4
SM
6054bcmp_translate (s1, s2, len, translate, multibyte)
6055 re_char *s1, *s2;
fa9a63c5 6056 register int len;
6676cb1c 6057 RE_TRANSLATE_TYPE translate;
2d1675e4 6058 const int multibyte;
fa9a63c5 6059{
2d1675e4
SM
6060 register re_char *p1 = s1, *p2 = s2;
6061 re_char *p1_end = s1 + len;
6062 re_char *p2_end = s2 + len;
e934739e 6063
4bb91c68
SM
6064 /* FIXME: Checking both p1 and p2 presumes that the two strings might have
6065 different lengths, but relying on a single `len' would break this. -sm */
6066 while (p1 < p1_end && p2 < p2_end)
fa9a63c5 6067 {
e934739e 6068 int p1_charlen, p2_charlen;
01618498 6069 re_wchar_t p1_ch, p2_ch;
e934739e 6070
2d1675e4
SM
6071 p1_ch = RE_STRING_CHAR_AND_LENGTH (p1, p1_end - p1, p1_charlen);
6072 p2_ch = RE_STRING_CHAR_AND_LENGTH (p2, p2_end - p2, p2_charlen);
e934739e
RS
6073
6074 if (RE_TRANSLATE (translate, p1_ch)
6075 != RE_TRANSLATE (translate, p2_ch))
bc192b5b 6076 return 1;
e934739e
RS
6077
6078 p1 += p1_charlen, p2 += p2_charlen;
fa9a63c5 6079 }
e934739e
RS
6080
6081 if (p1 != p1_end || p2 != p2_end)
6082 return 1;
6083
fa9a63c5
RM
6084 return 0;
6085}
6086\f
6087/* Entry points for GNU code. */
6088
6089/* re_compile_pattern is the GNU regular expression compiler: it
6090 compiles PATTERN (of length SIZE) and puts the result in BUFP.
6091 Returns 0 if the pattern was valid, otherwise an error string.
5e69f11e 6092
fa9a63c5
RM
6093 Assumes the `allocated' (and perhaps `buffer') and `translate' fields
6094 are set in BUFP on entry.
5e69f11e 6095
b18215fc 6096 We call regex_compile to do the actual compilation. */
fa9a63c5
RM
6097
6098const char *
6099re_compile_pattern (pattern, length, bufp)
6100 const char *pattern;
0b32bf0e 6101 size_t length;
fa9a63c5
RM
6102 struct re_pattern_buffer *bufp;
6103{
6104 reg_errcode_t ret;
5e69f11e 6105
fa9a63c5
RM
6106 /* GNU code is written to assume at least RE_NREGS registers will be set
6107 (and at least one extra will be -1). */
6108 bufp->regs_allocated = REGS_UNALLOCATED;
5e69f11e 6109
fa9a63c5
RM
6110 /* And GNU code determines whether or not to get register information
6111 by passing null for the REGS argument to re_match, etc., not by
6112 setting no_sub. */
6113 bufp->no_sub = 0;
5e69f11e 6114
4bb91c68 6115 ret = regex_compile ((re_char*) pattern, length, re_syntax_options, bufp);
fa9a63c5
RM
6116
6117 if (!ret)
6118 return NULL;
6119 return gettext (re_error_msgid[(int) ret]);
5e69f11e 6120}
c0f9ea08 6121WEAK_ALIAS (__re_compile_pattern, re_compile_pattern)
fa9a63c5 6122\f
b18215fc
RS
6123/* Entry points compatible with 4.2 BSD regex library. We don't define
6124 them unless specifically requested. */
fa9a63c5 6125
0b32bf0e 6126#if defined _REGEX_RE_COMP || defined _LIBC
fa9a63c5
RM
6127
6128/* BSD has one and only one pattern buffer. */
6129static struct re_pattern_buffer re_comp_buf;
6130
6131char *
0b32bf0e 6132# ifdef _LIBC
48afdd44
RM
6133/* Make these definitions weak in libc, so POSIX programs can redefine
6134 these names if they don't use our functions, and still use
6135 regcomp/regexec below without link errors. */
6136weak_function
0b32bf0e 6137# endif
fa9a63c5
RM
6138re_comp (s)
6139 const char *s;
6140{
6141 reg_errcode_t ret;
5e69f11e 6142
fa9a63c5
RM
6143 if (!s)
6144 {
6145 if (!re_comp_buf.buffer)
0b32bf0e 6146 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
a60198e5 6147 return (char *) gettext ("No previous regular expression");
fa9a63c5
RM
6148 return 0;
6149 }
6150
6151 if (!re_comp_buf.buffer)
6152 {
6153 re_comp_buf.buffer = (unsigned char *) malloc (200);
6154 if (re_comp_buf.buffer == NULL)
0b32bf0e
SM
6155 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
6156 return (char *) gettext (re_error_msgid[(int) REG_ESPACE]);
fa9a63c5
RM
6157 re_comp_buf.allocated = 200;
6158
6159 re_comp_buf.fastmap = (char *) malloc (1 << BYTEWIDTH);
6160 if (re_comp_buf.fastmap == NULL)
a60198e5
SM
6161 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
6162 return (char *) gettext (re_error_msgid[(int) REG_ESPACE]);
fa9a63c5
RM
6163 }
6164
6165 /* Since `re_exec' always passes NULL for the `regs' argument, we
6166 don't need to initialize the pattern buffer fields which affect it. */
6167
fa9a63c5 6168 ret = regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf);
5e69f11e 6169
fa9a63c5
RM
6170 if (!ret)
6171 return NULL;
6172
6173 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
6174 return (char *) gettext (re_error_msgid[(int) ret]);
6175}
6176
6177
6178int
0b32bf0e 6179# ifdef _LIBC
48afdd44 6180weak_function
0b32bf0e 6181# endif
fa9a63c5
RM
6182re_exec (s)
6183 const char *s;
6184{
6185 const int len = strlen (s);
6186 return
6187 0 <= re_search (&re_comp_buf, s, len, 0, len, (struct re_registers *) 0);
6188}
6189#endif /* _REGEX_RE_COMP */
6190\f
6191/* POSIX.2 functions. Don't define these for Emacs. */
6192
6193#ifndef emacs
6194
6195/* regcomp takes a regular expression as a string and compiles it.
6196
b18215fc 6197 PREG is a regex_t *. We do not expect any fields to be initialized,
fa9a63c5
RM
6198 since POSIX says we shouldn't. Thus, we set
6199
6200 `buffer' to the compiled pattern;
6201 `used' to the length of the compiled pattern;
6202 `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
6203 REG_EXTENDED bit in CFLAGS is set; otherwise, to
6204 RE_SYNTAX_POSIX_BASIC;
c0f9ea08
SM
6205 `fastmap' to an allocated space for the fastmap;
6206 `fastmap_accurate' to zero;
fa9a63c5
RM
6207 `re_nsub' to the number of subexpressions in PATTERN.
6208
6209 PATTERN is the address of the pattern string.
6210
6211 CFLAGS is a series of bits which affect compilation.
6212
6213 If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
6214 use POSIX basic syntax.
6215
6216 If REG_NEWLINE is set, then . and [^...] don't match newline.
6217 Also, regexec will try a match beginning after every newline.
6218
6219 If REG_ICASE is set, then we considers upper- and lowercase
6220 versions of letters to be equivalent when matching.
6221
6222 If REG_NOSUB is set, then when PREG is passed to regexec, that
6223 routine will report only success or failure, and nothing about the
6224 registers.
6225
b18215fc 6226 It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for
fa9a63c5
RM
6227 the return codes and their meanings.) */
6228
6229int
6230regcomp (preg, pattern, cflags)
ada30c0e
SM
6231 regex_t *__restrict preg;
6232 const char *__restrict pattern;
fa9a63c5
RM
6233 int cflags;
6234{
6235 reg_errcode_t ret;
4bb91c68 6236 reg_syntax_t syntax
fa9a63c5
RM
6237 = (cflags & REG_EXTENDED) ?
6238 RE_SYNTAX_POSIX_EXTENDED : RE_SYNTAX_POSIX_BASIC;
6239
6240 /* regex_compile will allocate the space for the compiled pattern. */
6241 preg->buffer = 0;
6242 preg->allocated = 0;
6243 preg->used = 0;
5e69f11e 6244
c0f9ea08
SM
6245 /* Try to allocate space for the fastmap. */
6246 preg->fastmap = (char *) malloc (1 << BYTEWIDTH);
5e69f11e 6247
fa9a63c5
RM
6248 if (cflags & REG_ICASE)
6249 {
6250 unsigned i;
5e69f11e 6251
6676cb1c
RS
6252 preg->translate
6253 = (RE_TRANSLATE_TYPE) malloc (CHAR_SET_SIZE
6254 * sizeof (*(RE_TRANSLATE_TYPE)0));
fa9a63c5 6255 if (preg->translate == NULL)
0b32bf0e 6256 return (int) REG_ESPACE;
fa9a63c5
RM
6257
6258 /* Map uppercase characters to corresponding lowercase ones. */
6259 for (i = 0; i < CHAR_SET_SIZE; i++)
4bb91c68 6260 preg->translate[i] = ISUPPER (i) ? TOLOWER (i) : i;
fa9a63c5
RM
6261 }
6262 else
6263 preg->translate = NULL;
6264
6265 /* If REG_NEWLINE is set, newlines are treated differently. */
6266 if (cflags & REG_NEWLINE)
6267 { /* REG_NEWLINE implies neither . nor [^...] match newline. */
6268 syntax &= ~RE_DOT_NEWLINE;
6269 syntax |= RE_HAT_LISTS_NOT_NEWLINE;
fa9a63c5
RM
6270 }
6271 else
c0f9ea08 6272 syntax |= RE_NO_NEWLINE_ANCHOR;
fa9a63c5
RM
6273
6274 preg->no_sub = !!(cflags & REG_NOSUB);
6275
5e69f11e 6276 /* POSIX says a null character in the pattern terminates it, so we
fa9a63c5 6277 can use strlen here in compiling the pattern. */
4bb91c68 6278 ret = regex_compile ((re_char*) pattern, strlen (pattern), syntax, preg);
5e69f11e 6279
fa9a63c5
RM
6280 /* POSIX doesn't distinguish between an unmatched open-group and an
6281 unmatched close-group: both are REG_EPAREN. */
c0f9ea08
SM
6282 if (ret == REG_ERPAREN)
6283 ret = REG_EPAREN;
6284
6285 if (ret == REG_NOERROR && preg->fastmap)
6286 { /* Compute the fastmap now, since regexec cannot modify the pattern
6287 buffer. */
6288 re_compile_fastmap (preg);
6289 if (preg->can_be_null)
6290 { /* The fastmap can't be used anyway. */
6291 free (preg->fastmap);
6292 preg->fastmap = NULL;
6293 }
6294 }
fa9a63c5
RM
6295 return (int) ret;
6296}
c0f9ea08 6297WEAK_ALIAS (__regcomp, regcomp)
fa9a63c5
RM
6298
6299
6300/* regexec searches for a given pattern, specified by PREG, in the
6301 string STRING.
5e69f11e 6302
fa9a63c5 6303 If NMATCH is zero or REG_NOSUB was set in the cflags argument to
b18215fc 6304 `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at
fa9a63c5
RM
6305 least NMATCH elements, and we set them to the offsets of the
6306 corresponding matched substrings.
5e69f11e 6307
fa9a63c5
RM
6308 EFLAGS specifies `execution flags' which affect matching: if
6309 REG_NOTBOL is set, then ^ does not match at the beginning of the
6310 string; if REG_NOTEOL is set, then $ does not match at the end.
5e69f11e 6311
fa9a63c5
RM
6312 We return 0 if we find a match and REG_NOMATCH if not. */
6313
6314int
6315regexec (preg, string, nmatch, pmatch, eflags)
ada30c0e
SM
6316 const regex_t *__restrict preg;
6317 const char *__restrict string;
5e69f11e 6318 size_t nmatch;
9f2dbe01 6319 regmatch_t pmatch[__restrict_arr];
fa9a63c5
RM
6320 int eflags;
6321{
6322 int ret;
6323 struct re_registers regs;
6324 regex_t private_preg;
6325 int len = strlen (string);
c0f9ea08 6326 boolean want_reg_info = !preg->no_sub && nmatch > 0 && pmatch;
fa9a63c5
RM
6327
6328 private_preg = *preg;
5e69f11e 6329
fa9a63c5
RM
6330 private_preg.not_bol = !!(eflags & REG_NOTBOL);
6331 private_preg.not_eol = !!(eflags & REG_NOTEOL);
5e69f11e 6332
fa9a63c5
RM
6333 /* The user has told us exactly how many registers to return
6334 information about, via `nmatch'. We have to pass that on to the
b18215fc 6335 matching routines. */
fa9a63c5 6336 private_preg.regs_allocated = REGS_FIXED;
5e69f11e 6337
fa9a63c5
RM
6338 if (want_reg_info)
6339 {
6340 regs.num_regs = nmatch;
4bb91c68
SM
6341 regs.start = TALLOC (nmatch * 2, regoff_t);
6342 if (regs.start == NULL)
0b32bf0e 6343 return (int) REG_NOMATCH;
4bb91c68 6344 regs.end = regs.start + nmatch;
fa9a63c5
RM
6345 }
6346
c0f9ea08
SM
6347 /* Instead of using not_eol to implement REG_NOTEOL, we could simply
6348 pass (&private_preg, string, len + 1, 0, len, ...) pretending the string
6349 was a little bit longer but still only matching the real part.
6350 This works because the `endline' will check for a '\n' and will find a
6351 '\0', correctly deciding that this is not the end of a line.
6352 But it doesn't work out so nicely for REG_NOTBOL, since we don't have
6353 a convenient '\0' there. For all we know, the string could be preceded
6354 by '\n' which would throw things off. */
6355
fa9a63c5
RM
6356 /* Perform the searching operation. */
6357 ret = re_search (&private_preg, string, len,
0b32bf0e
SM
6358 /* start: */ 0, /* range: */ len,
6359 want_reg_info ? &regs : (struct re_registers *) 0);
5e69f11e 6360
fa9a63c5
RM
6361 /* Copy the register information to the POSIX structure. */
6362 if (want_reg_info)
6363 {
6364 if (ret >= 0)
0b32bf0e
SM
6365 {
6366 unsigned r;
fa9a63c5 6367
0b32bf0e
SM
6368 for (r = 0; r < nmatch; r++)
6369 {
6370 pmatch[r].rm_so = regs.start[r];
6371 pmatch[r].rm_eo = regs.end[r];
6372 }
6373 }
fa9a63c5 6374
b18215fc 6375 /* If we needed the temporary register info, free the space now. */
fa9a63c5 6376 free (regs.start);
fa9a63c5
RM
6377 }
6378
6379 /* We want zero return to mean success, unlike `re_search'. */
6380 return ret >= 0 ? (int) REG_NOERROR : (int) REG_NOMATCH;
6381}
c0f9ea08 6382WEAK_ALIAS (__regexec, regexec)
fa9a63c5
RM
6383
6384
6385/* Returns a message corresponding to an error code, ERRCODE, returned
6386 from either regcomp or regexec. We don't use PREG here. */
6387
6388size_t
6389regerror (errcode, preg, errbuf, errbuf_size)
6390 int errcode;
6391 const regex_t *preg;
6392 char *errbuf;
6393 size_t errbuf_size;
6394{
6395 const char *msg;
6396 size_t msg_size;
6397
6398 if (errcode < 0
6399 || errcode >= (sizeof (re_error_msgid) / sizeof (re_error_msgid[0])))
5e69f11e 6400 /* Only error codes returned by the rest of the code should be passed
b18215fc 6401 to this routine. If we are given anything else, or if other regex
fa9a63c5
RM
6402 code generates an invalid error code, then the program has a bug.
6403 Dump core so we can fix it. */
6404 abort ();
6405
6406 msg = gettext (re_error_msgid[errcode]);
6407
6408 msg_size = strlen (msg) + 1; /* Includes the null. */
5e69f11e 6409
fa9a63c5
RM
6410 if (errbuf_size != 0)
6411 {
6412 if (msg_size > errbuf_size)
0b32bf0e
SM
6413 {
6414 strncpy (errbuf, msg, errbuf_size - 1);
6415 errbuf[errbuf_size - 1] = 0;
6416 }
fa9a63c5 6417 else
0b32bf0e 6418 strcpy (errbuf, msg);
fa9a63c5
RM
6419 }
6420
6421 return msg_size;
6422}
c0f9ea08 6423WEAK_ALIAS (__regerror, regerror)
fa9a63c5
RM
6424
6425
6426/* Free dynamically allocated space used by PREG. */
6427
6428void
6429regfree (preg)
6430 regex_t *preg;
6431{
6432 if (preg->buffer != NULL)
6433 free (preg->buffer);
6434 preg->buffer = NULL;
5e69f11e 6435
fa9a63c5
RM
6436 preg->allocated = 0;
6437 preg->used = 0;
6438
6439 if (preg->fastmap != NULL)
6440 free (preg->fastmap);
6441 preg->fastmap = NULL;
6442 preg->fastmap_accurate = 0;
6443
6444 if (preg->translate != NULL)
6445 free (preg->translate);
6446 preg->translate = NULL;
6447}
c0f9ea08 6448WEAK_ALIAS (__regfree, regfree)
fa9a63c5
RM
6449
6450#endif /* not emacs */
ab5796a9
MB
6451
6452/* arch-tag: 4ffd68ba-2a9e-435b-a21a-018990f9eeb2
6453 (do not change this comment) */