quick-install-emacs: Use more portable shell syntax
[bpt/emacs.git] / src / regex.c
CommitLineData
e318085a 1/* Extended regular expression matching and search library, version
0b32bf0e 2 0.12. (Implements POSIX draft P1003.2/D11.2, except for some of the
bc78d348
KB
3 internationalization features.)
4
0b5538bd 5 Copyright (C) 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
114f9c96 6 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
e468b87f 7 Free Software Foundation, Inc.
bc78d348 8
fa9a63c5
RM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
e468b87f 11 the Free Software Foundation; either version 3, or (at your option)
fa9a63c5
RM
12 any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
7814e705 16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
fa9a63c5
RM
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
4fc5845f 21 Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
7814e705 22 USA. */
fa9a63c5 23
6df42991 24/* TODO:
505bde11 25 - structure the opcode space into opcode+flag.
dc1e502d 26 - merge with glibc's regex.[ch].
01618498 27 - replace (succeed_n + jump_n + set_number_at) with something that doesn't
6dcf2d0e
SM
28 need to modify the compiled regexp so that re_match can be reentrant.
29 - get rid of on_failure_jump_smart by doing the optimization in re_comp
30 rather than at run-time, so that re_match can be reentrant.
01618498 31*/
505bde11 32
fa9a63c5 33/* AIX requires this to be the first thing in the file. */
0b32bf0e 34#if defined _AIX && !defined REGEX_MALLOC
fa9a63c5
RM
35 #pragma alloca
36#endif
37
fa9a63c5 38#ifdef HAVE_CONFIG_H
0b32bf0e 39# include <config.h>
fa9a63c5
RM
40#endif
41
4bb91c68
SM
42#if defined STDC_HEADERS && !defined emacs
43# include <stddef.h>
44#else
45/* We need this for `regex.h', and perhaps for the Emacs include files. */
46# include <sys/types.h>
47#endif
fa9a63c5 48
14473664
SM
49/* Whether to use ISO C Amendment 1 wide char functions.
50 Those should not be used for Emacs since it uses its own. */
5e5388f6
GM
51#if defined _LIBC
52#define WIDE_CHAR_SUPPORT 1
53#else
14473664 54#define WIDE_CHAR_SUPPORT \
5e5388f6
GM
55 (HAVE_WCTYPE_H && HAVE_WCHAR_H && HAVE_BTOWC && !emacs)
56#endif
14473664
SM
57
58/* For platform which support the ISO C amendement 1 functionality we
59 support user defined character classes. */
a0ad02f7 60#if WIDE_CHAR_SUPPORT
14473664
SM
61/* Solaris 2.5 has a bug: <wchar.h> must be included before <wctype.h>. */
62# include <wchar.h>
63# include <wctype.h>
64#endif
65
c0f9ea08
SM
66#ifdef _LIBC
67/* We have to keep the namespace clean. */
68# define regfree(preg) __regfree (preg)
69# define regexec(pr, st, nm, pm, ef) __regexec (pr, st, nm, pm, ef)
70# define regcomp(preg, pattern, cflags) __regcomp (preg, pattern, cflags)
ec869672
JR
71# define regerror(err_code, preg, errbuf, errbuf_size) \
72 __regerror(err_code, preg, errbuf, errbuf_size)
c0f9ea08
SM
73# define re_set_registers(bu, re, nu, st, en) \
74 __re_set_registers (bu, re, nu, st, en)
75# define re_match_2(bufp, string1, size1, string2, size2, pos, regs, stop) \
76 __re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
77# define re_match(bufp, string, size, pos, regs) \
78 __re_match (bufp, string, size, pos, regs)
79# define re_search(bufp, string, size, startpos, range, regs) \
80 __re_search (bufp, string, size, startpos, range, regs)
81# define re_compile_pattern(pattern, length, bufp) \
82 __re_compile_pattern (pattern, length, bufp)
83# define re_set_syntax(syntax) __re_set_syntax (syntax)
84# define re_search_2(bufp, st1, s1, st2, s2, startpos, range, regs, stop) \
85 __re_search_2 (bufp, st1, s1, st2, s2, startpos, range, regs, stop)
86# define re_compile_fastmap(bufp) __re_compile_fastmap (bufp)
87
14473664
SM
88/* Make sure we call libc's function even if the user overrides them. */
89# define btowc __btowc
90# define iswctype __iswctype
91# define wctype __wctype
92
c0f9ea08
SM
93# define WEAK_ALIAS(a,b) weak_alias (a, b)
94
95/* We are also using some library internals. */
96# include <locale/localeinfo.h>
97# include <locale/elem-hash.h>
98# include <langinfo.h>
99#else
100# define WEAK_ALIAS(a,b)
101#endif
102
4bb91c68 103/* This is for other GNU distributions with internationalized messages. */
0b32bf0e 104#if HAVE_LIBINTL_H || defined _LIBC
fa9a63c5
RM
105# include <libintl.h>
106#else
107# define gettext(msgid) (msgid)
108#endif
109
5e69f11e
RM
110#ifndef gettext_noop
111/* This define is so xgettext can find the internationalizable
112 strings. */
0b32bf0e 113# define gettext_noop(String) String
5e69f11e
RM
114#endif
115
fa9a63c5
RM
116/* The `emacs' switch turns on certain matching commands
117 that make sense only in Emacs. */
118#ifdef emacs
119
d7306fe6 120# include <setjmp.h>
0b32bf0e
SM
121# include "lisp.h"
122# include "buffer.h"
b18215fc
RS
123
124/* Make syntax table lookup grant data in gl_state. */
0b32bf0e 125# define SYNTAX_ENTRY_VIA_PROPERTY
b18215fc 126
0b32bf0e 127# include "syntax.h"
9117d724 128# include "character.h"
0b32bf0e 129# include "category.h"
fa9a63c5 130
7689ef0b
EZ
131# ifdef malloc
132# undef malloc
133# endif
0b32bf0e 134# define malloc xmalloc
7689ef0b
EZ
135# ifdef realloc
136# undef realloc
137# endif
0b32bf0e 138# define realloc xrealloc
7689ef0b
EZ
139# ifdef free
140# undef free
141# endif
0b32bf0e 142# define free xfree
9abbd165 143
7814e705 144/* Converts the pointer to the char to BEG-based offset from the start. */
0b32bf0e
SM
145# define PTR_TO_OFFSET(d) POS_AS_IN_BUFFER (POINTER_TO_OFFSET (d))
146# define POS_AS_IN_BUFFER(p) ((p) + (NILP (re_match_object) || BUFFERP (re_match_object)))
147
148# define RE_MULTIBYTE_P(bufp) ((bufp)->multibyte)
bf216479 149# define RE_TARGET_MULTIBYTE_P(bufp) ((bufp)->target_multibyte)
62a6e103
AS
150# define RE_STRING_CHAR(p, multibyte) \
151 (multibyte ? (STRING_CHAR (p)) : (*(p)))
152# define RE_STRING_CHAR_AND_LENGTH(p, len, multibyte) \
153 (multibyte ? (STRING_CHAR_AND_LENGTH (p, len)) : ((len) = 1, *(p)))
2d1675e4 154
4c0354d7 155# define RE_CHAR_TO_MULTIBYTE(c) UNIBYTE_TO_CHAR (c)
cf9c99bc 156
2afc21f5 157# define RE_CHAR_TO_UNIBYTE(c) CHAR_TO_BYTE_SAFE (c)
cf9c99bc 158
6fdd04b0
KH
159/* Set C a (possibly converted to multibyte) character before P. P
160 points into a string which is the virtual concatenation of STR1
161 (which ends at END1) or STR2 (which ends at END2). */
bf216479
KH
162# define GET_CHAR_BEFORE_2(c, p, str1, end1, str2, end2) \
163 do { \
02cb78b5 164 if (target_multibyte) \
bf216479
KH
165 { \
166 re_char *dtemp = (p) == (str2) ? (end1) : (p); \
167 re_char *dlimit = ((p) > (str2) && (p) <= (end2)) ? (str2) : (str1); \
168 while (dtemp-- > dlimit && !CHAR_HEAD_P (*dtemp)); \
62a6e103 169 c = STRING_CHAR (dtemp); \
bf216479
KH
170 } \
171 else \
172 { \
173 (c = ((p) == (str2) ? (end1) : (p))[-1]); \
cf9c99bc 174 (c) = RE_CHAR_TO_MULTIBYTE (c); \
bf216479 175 } \
2d1675e4
SM
176 } while (0)
177
6fdd04b0
KH
178/* Set C a (possibly converted to multibyte) character at P, and set
179 LEN to the byte length of that character. */
180# define GET_CHAR_AFTER(c, p, len) \
181 do { \
02cb78b5 182 if (target_multibyte) \
62a6e103 183 (c) = STRING_CHAR_AND_LENGTH (p, len); \
6fdd04b0
KH
184 else \
185 { \
cf9c99bc 186 (c) = *p; \
6fdd04b0 187 len = 1; \
cf9c99bc 188 (c) = RE_CHAR_TO_MULTIBYTE (c); \
6fdd04b0 189 } \
8f924df7 190 } while (0)
4e8a9132 191
fa9a63c5
RM
192#else /* not emacs */
193
194/* If we are not linking with Emacs proper,
195 we can't use the relocating allocator
196 even if config.h says that we can. */
0b32bf0e 197# undef REL_ALLOC
fa9a63c5 198
0b32bf0e
SM
199# if defined STDC_HEADERS || defined _LIBC
200# include <stdlib.h>
201# else
fa9a63c5
RM
202char *malloc ();
203char *realloc ();
0b32bf0e 204# endif
fa9a63c5 205
a77f947b
CY
206/* When used in Emacs's lib-src, we need xmalloc and xrealloc. */
207
208void *
209xmalloc (size)
210 size_t size;
211{
212 register void *val;
213 val = (void *) malloc (size);
214 if (!val && size)
215 {
216 write (2, "virtual memory exhausted\n", 25);
217 exit (1);
218 }
219 return val;
220}
221
222void *
223xrealloc (block, size)
224 void *block;
225 size_t size;
226{
227 register void *val;
228 /* We must call malloc explicitly when BLOCK is 0, since some
229 reallocs don't do this. */
230 if (! block)
231 val = (void *) malloc (size);
232 else
233 val = (void *) realloc (block, size);
234 if (!val && size)
235 {
236 write (2, "virtual memory exhausted\n", 25);
237 exit (1);
238 }
239 return val;
240}
241
a073faa6
CY
242# ifdef malloc
243# undef malloc
244# endif
245# define malloc xmalloc
246# ifdef realloc
247# undef realloc
248# endif
249# define realloc xrealloc
250
9e4ecb26 251/* When used in Emacs's lib-src, we need to get bzero and bcopy somehow.
4bb91c68 252 If nothing else has been done, use the method below. */
0b32bf0e
SM
253# ifdef INHIBIT_STRING_HEADER
254# if !(defined HAVE_BZERO && defined HAVE_BCOPY)
255# if !defined bzero && !defined bcopy
256# undef INHIBIT_STRING_HEADER
257# endif
258# endif
259# endif
9e4ecb26 260
4bb91c68 261/* This is the normal way of making sure we have memcpy, memcmp and bzero.
9e4ecb26
KH
262 This is used in most programs--a few other programs avoid this
263 by defining INHIBIT_STRING_HEADER. */
0b32bf0e
SM
264# ifndef INHIBIT_STRING_HEADER
265# if defined HAVE_STRING_H || defined STDC_HEADERS || defined _LIBC
266# include <string.h>
0b32bf0e 267# ifndef bzero
4bb91c68
SM
268# ifndef _LIBC
269# define bzero(s, n) (memset (s, '\0', n), (s))
270# else
271# define bzero(s, n) __bzero (s, n)
272# endif
0b32bf0e
SM
273# endif
274# else
275# include <strings.h>
4bb91c68
SM
276# ifndef memcmp
277# define memcmp(s1, s2, n) bcmp (s1, s2, n)
278# endif
279# ifndef memcpy
280# define memcpy(d, s, n) (bcopy (s, d, n), (d))
281# endif
0b32bf0e
SM
282# endif
283# endif
fa9a63c5
RM
284
285/* Define the syntax stuff for \<, \>, etc. */
286
990b2375 287/* Sword must be nonzero for the wordchar pattern commands in re_match_2. */
669fa600 288enum syntaxcode { Swhitespace = 0, Sword = 1, Ssymbol = 2 };
fa9a63c5 289
0b32bf0e 290# define SWITCH_ENUM_CAST(x) (x)
fa9a63c5 291
e934739e 292/* Dummy macros for non-Emacs environments. */
0b32bf0e
SM
293# define BASE_LEADING_CODE_P(c) (0)
294# define CHAR_CHARSET(c) 0
295# define CHARSET_LEADING_CODE_BASE(c) 0
296# define MAX_MULTIBYTE_LENGTH 1
297# define RE_MULTIBYTE_P(x) 0
bf216479 298# define RE_TARGET_MULTIBYTE_P(x) 0
0b32bf0e
SM
299# define WORD_BOUNDARY_P(c1, c2) (0)
300# define CHAR_HEAD_P(p) (1)
301# define SINGLE_BYTE_CHAR_P(c) (1)
302# define SAME_CHARSET_P(c1, c2) (1)
303# define MULTIBYTE_FORM_LENGTH(p, s) (1)
70806df6 304# define PREV_CHAR_BOUNDARY(p, limit) ((p)--)
62a6e103
AS
305# define STRING_CHAR(p) (*(p))
306# define RE_STRING_CHAR(p, multibyte) STRING_CHAR (p)
0b32bf0e 307# define CHAR_STRING(c, s) (*(s) = (c), 1)
62a6e103
AS
308# define STRING_CHAR_AND_LENGTH(p, actual_len) ((actual_len) = 1, *(p))
309# define RE_STRING_CHAR_AND_LENGTH(p, len, multibyte) STRING_CHAR_AND_LENGTH (p, len)
cf9c99bc
KH
310# define RE_CHAR_TO_MULTIBYTE(c) (c)
311# define RE_CHAR_TO_UNIBYTE(c) (c)
0b32bf0e 312# define GET_CHAR_BEFORE_2(c, p, str1, end1, str2, end2) \
b18215fc 313 (c = ((p) == (str2) ? *((end1) - 1) : *((p) - 1)))
6fdd04b0
KH
314# define GET_CHAR_AFTER(c, p, len) \
315 (c = *p, len = 1)
0b32bf0e 316# define MAKE_CHAR(charset, c1, c2) (c1)
9117d724
KH
317# define BYTE8_TO_CHAR(c) (c)
318# define CHAR_BYTE8_P(c) (0)
bf216479 319# define CHAR_LEADING_CODE(c) (c)
8f924df7 320
fa9a63c5 321#endif /* not emacs */
4e8a9132
SM
322
323#ifndef RE_TRANSLATE
0b32bf0e
SM
324# define RE_TRANSLATE(TBL, C) ((unsigned char)(TBL)[C])
325# define RE_TRANSLATE_P(TBL) (TBL)
4e8a9132 326#endif
fa9a63c5
RM
327\f
328/* Get the interface, including the syntax bits. */
329#include "regex.h"
330
f71b19b6
DL
331/* isalpha etc. are used for the character classes. */
332#include <ctype.h>
fa9a63c5 333
f71b19b6 334#ifdef emacs
fa9a63c5 335
f71b19b6 336/* 1 if C is an ASCII character. */
0b32bf0e 337# define IS_REAL_ASCII(c) ((c) < 0200)
fa9a63c5 338
f71b19b6 339/* 1 if C is a unibyte character. */
0b32bf0e 340# define ISUNIBYTE(c) (SINGLE_BYTE_CHAR_P ((c)))
96cc36cc 341
f71b19b6 342/* The Emacs definitions should not be directly affected by locales. */
96cc36cc 343
f71b19b6 344/* In Emacs, these are only used for single-byte characters. */
0b32bf0e
SM
345# define ISDIGIT(c) ((c) >= '0' && (c) <= '9')
346# define ISCNTRL(c) ((c) < ' ')
347# define ISXDIGIT(c) (((c) >= '0' && (c) <= '9') \
f71b19b6
DL
348 || ((c) >= 'a' && (c) <= 'f') \
349 || ((c) >= 'A' && (c) <= 'F'))
96cc36cc
RS
350
351/* This is only used for single-byte characters. */
0b32bf0e 352# define ISBLANK(c) ((c) == ' ' || (c) == '\t')
96cc36cc
RS
353
354/* The rest must handle multibyte characters. */
355
0b32bf0e 356# define ISGRAPH(c) (SINGLE_BYTE_CHAR_P (c) \
f71b19b6 357 ? (c) > ' ' && !((c) >= 0177 && (c) <= 0237) \
96cc36cc
RS
358 : 1)
359
14473664 360# define ISPRINT(c) (SINGLE_BYTE_CHAR_P (c) \
f71b19b6 361 ? (c) >= ' ' && !((c) >= 0177 && (c) <= 0237) \
96cc36cc
RS
362 : 1)
363
0b32bf0e 364# define ISALNUM(c) (IS_REAL_ASCII (c) \
f71b19b6
DL
365 ? (((c) >= 'a' && (c) <= 'z') \
366 || ((c) >= 'A' && (c) <= 'Z') \
367 || ((c) >= '0' && (c) <= '9')) \
96cc36cc
RS
368 : SYNTAX (c) == Sword)
369
0b32bf0e 370# define ISALPHA(c) (IS_REAL_ASCII (c) \
f71b19b6
DL
371 ? (((c) >= 'a' && (c) <= 'z') \
372 || ((c) >= 'A' && (c) <= 'Z')) \
96cc36cc
RS
373 : SYNTAX (c) == Sword)
374
0b32bf0e 375# define ISLOWER(c) (LOWERCASEP (c))
96cc36cc 376
0b32bf0e 377# define ISPUNCT(c) (IS_REAL_ASCII (c) \
f71b19b6
DL
378 ? ((c) > ' ' && (c) < 0177 \
379 && !(((c) >= 'a' && (c) <= 'z') \
4bb91c68
SM
380 || ((c) >= 'A' && (c) <= 'Z') \
381 || ((c) >= '0' && (c) <= '9'))) \
96cc36cc
RS
382 : SYNTAX (c) != Sword)
383
0b32bf0e 384# define ISSPACE(c) (SYNTAX (c) == Swhitespace)
96cc36cc 385
0b32bf0e 386# define ISUPPER(c) (UPPERCASEP (c))
96cc36cc 387
0b32bf0e 388# define ISWORD(c) (SYNTAX (c) == Sword)
96cc36cc
RS
389
390#else /* not emacs */
391
f71b19b6
DL
392/* Jim Meyering writes:
393
394 "... Some ctype macros are valid only for character codes that
395 isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when
396 using /bin/cc or gcc but without giving an ansi option). So, all
4bb91c68 397 ctype uses should be through macros like ISPRINT... If
f71b19b6
DL
398 STDC_HEADERS is defined, then autoconf has verified that the ctype
399 macros don't need to be guarded with references to isascii. ...
400 Defining isascii to 1 should let any compiler worth its salt
4bb91c68
SM
401 eliminate the && through constant folding."
402 Solaris defines some of these symbols so we must undefine them first. */
f71b19b6 403
4bb91c68 404# undef ISASCII
0b32bf0e
SM
405# if defined STDC_HEADERS || (!defined isascii && !defined HAVE_ISASCII)
406# define ISASCII(c) 1
407# else
408# define ISASCII(c) isascii(c)
409# endif
f71b19b6
DL
410
411/* 1 if C is an ASCII character. */
0b32bf0e 412# define IS_REAL_ASCII(c) ((c) < 0200)
f71b19b6
DL
413
414/* This distinction is not meaningful, except in Emacs. */
0b32bf0e
SM
415# define ISUNIBYTE(c) 1
416
417# ifdef isblank
418# define ISBLANK(c) (ISASCII (c) && isblank (c))
419# else
420# define ISBLANK(c) ((c) == ' ' || (c) == '\t')
421# endif
422# ifdef isgraph
423# define ISGRAPH(c) (ISASCII (c) && isgraph (c))
424# else
425# define ISGRAPH(c) (ISASCII (c) && isprint (c) && !isspace (c))
426# endif
427
4bb91c68 428# undef ISPRINT
0b32bf0e
SM
429# define ISPRINT(c) (ISASCII (c) && isprint (c))
430# define ISDIGIT(c) (ISASCII (c) && isdigit (c))
431# define ISALNUM(c) (ISASCII (c) && isalnum (c))
432# define ISALPHA(c) (ISASCII (c) && isalpha (c))
433# define ISCNTRL(c) (ISASCII (c) && iscntrl (c))
434# define ISLOWER(c) (ISASCII (c) && islower (c))
435# define ISPUNCT(c) (ISASCII (c) && ispunct (c))
436# define ISSPACE(c) (ISASCII (c) && isspace (c))
437# define ISUPPER(c) (ISASCII (c) && isupper (c))
438# define ISXDIGIT(c) (ISASCII (c) && isxdigit (c))
439
440# define ISWORD(c) ISALPHA(c)
441
4bb91c68
SM
442# ifdef _tolower
443# define TOLOWER(c) _tolower(c)
444# else
445# define TOLOWER(c) tolower(c)
446# endif
447
448/* How many characters in the character set. */
449# define CHAR_SET_SIZE 256
450
0b32bf0e 451# ifdef SYNTAX_TABLE
f71b19b6 452
0b32bf0e 453extern char *re_syntax_table;
f71b19b6 454
0b32bf0e
SM
455# else /* not SYNTAX_TABLE */
456
0b32bf0e
SM
457static char re_syntax_table[CHAR_SET_SIZE];
458
459static void
460init_syntax_once ()
461{
462 register int c;
463 static int done = 0;
464
465 if (done)
466 return;
467
468 bzero (re_syntax_table, sizeof re_syntax_table);
469
4bb91c68
SM
470 for (c = 0; c < CHAR_SET_SIZE; ++c)
471 if (ISALNUM (c))
472 re_syntax_table[c] = Sword;
fa9a63c5 473
669fa600 474 re_syntax_table['_'] = Ssymbol;
fa9a63c5 475
0b32bf0e
SM
476 done = 1;
477}
478
479# endif /* not SYNTAX_TABLE */
96cc36cc 480
4bb91c68
SM
481# define SYNTAX(c) re_syntax_table[(c)]
482
96cc36cc
RS
483#endif /* not emacs */
484\f
fa9a63c5 485#ifndef NULL
0b32bf0e 486# define NULL (void *)0
fa9a63c5
RM
487#endif
488
489/* We remove any previous definition of `SIGN_EXTEND_CHAR',
490 since ours (we hope) works properly with all combinations of
491 machines, compilers, `char' and `unsigned char' argument types.
4bb91c68 492 (Per Bothner suggested the basic approach.) */
fa9a63c5
RM
493#undef SIGN_EXTEND_CHAR
494#if __STDC__
0b32bf0e 495# define SIGN_EXTEND_CHAR(c) ((signed char) (c))
fa9a63c5
RM
496#else /* not __STDC__ */
497/* As in Harbison and Steele. */
0b32bf0e 498# define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
fa9a63c5
RM
499#endif
500\f
501/* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we
502 use `alloca' instead of `malloc'. This is because using malloc in
503 re_search* or re_match* could cause memory leaks when C-g is used in
504 Emacs; also, malloc is slower and causes storage fragmentation. On
5e69f11e
RM
505 the other hand, malloc is more portable, and easier to debug.
506
fa9a63c5
RM
507 Because we sometimes use alloca, some routines have to be macros,
508 not functions -- `alloca'-allocated space disappears at the end of the
509 function it is called in. */
510
511#ifdef REGEX_MALLOC
512
0b32bf0e
SM
513# define REGEX_ALLOCATE malloc
514# define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
515# define REGEX_FREE free
fa9a63c5
RM
516
517#else /* not REGEX_MALLOC */
518
519/* Emacs already defines alloca, sometimes. */
0b32bf0e 520# ifndef alloca
fa9a63c5
RM
521
522/* Make alloca work the best possible way. */
0b32bf0e
SM
523# ifdef __GNUC__
524# define alloca __builtin_alloca
525# else /* not __GNUC__ */
7f585e7a 526# ifdef HAVE_ALLOCA_H
0b32bf0e
SM
527# include <alloca.h>
528# endif /* HAVE_ALLOCA_H */
529# endif /* not __GNUC__ */
fa9a63c5 530
0b32bf0e 531# endif /* not alloca */
fa9a63c5 532
0b32bf0e 533# define REGEX_ALLOCATE alloca
fa9a63c5
RM
534
535/* Assumes a `char *destination' variable. */
0b32bf0e 536# define REGEX_REALLOCATE(source, osize, nsize) \
fa9a63c5 537 (destination = (char *) alloca (nsize), \
4bb91c68 538 memcpy (destination, source, osize))
fa9a63c5
RM
539
540/* No need to do anything to free, after alloca. */
0b32bf0e 541# define REGEX_FREE(arg) ((void)0) /* Do nothing! But inhibit gcc warning. */
fa9a63c5
RM
542
543#endif /* not REGEX_MALLOC */
544
545/* Define how to allocate the failure stack. */
546
0b32bf0e 547#if defined REL_ALLOC && defined REGEX_MALLOC
4297555e 548
0b32bf0e 549# define REGEX_ALLOCATE_STACK(size) \
fa9a63c5 550 r_alloc (&failure_stack_ptr, (size))
0b32bf0e 551# define REGEX_REALLOCATE_STACK(source, osize, nsize) \
fa9a63c5 552 r_re_alloc (&failure_stack_ptr, (nsize))
0b32bf0e 553# define REGEX_FREE_STACK(ptr) \
fa9a63c5
RM
554 r_alloc_free (&failure_stack_ptr)
555
4297555e 556#else /* not using relocating allocator */
fa9a63c5 557
0b32bf0e 558# ifdef REGEX_MALLOC
fa9a63c5 559
0b32bf0e
SM
560# define REGEX_ALLOCATE_STACK malloc
561# define REGEX_REALLOCATE_STACK(source, osize, nsize) realloc (source, nsize)
562# define REGEX_FREE_STACK free
fa9a63c5 563
0b32bf0e 564# else /* not REGEX_MALLOC */
fa9a63c5 565
0b32bf0e 566# define REGEX_ALLOCATE_STACK alloca
fa9a63c5 567
0b32bf0e 568# define REGEX_REALLOCATE_STACK(source, osize, nsize) \
fa9a63c5 569 REGEX_REALLOCATE (source, osize, nsize)
7814e705 570/* No need to explicitly free anything. */
0b32bf0e 571# define REGEX_FREE_STACK(arg) ((void)0)
fa9a63c5 572
0b32bf0e 573# endif /* not REGEX_MALLOC */
4297555e 574#endif /* not using relocating allocator */
fa9a63c5
RM
575
576
577/* True if `size1' is non-NULL and PTR is pointing anywhere inside
578 `string1' or just past its end. This works if PTR is NULL, which is
579 a good thing. */
25fe55af 580#define FIRST_STRING_P(ptr) \
fa9a63c5
RM
581 (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
582
583/* (Re)Allocate N items of type T using malloc, or fail. */
584#define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
585#define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
586#define RETALLOC_IF(addr, n, t) \
587 if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t)
588#define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
589
4bb91c68 590#define BYTEWIDTH 8 /* In bits. */
fa9a63c5
RM
591
592#define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
593
594#undef MAX
595#undef MIN
596#define MAX(a, b) ((a) > (b) ? (a) : (b))
597#define MIN(a, b) ((a) < (b) ? (a) : (b))
598
66f0296e
SM
599/* Type of source-pattern and string chars. */
600typedef const unsigned char re_char;
601
fa9a63c5
RM
602typedef char boolean;
603#define false 0
604#define true 1
605
4bb91c68
SM
606static int re_match_2_internal _RE_ARGS ((struct re_pattern_buffer *bufp,
607 re_char *string1, int size1,
608 re_char *string2, int size2,
609 int pos,
610 struct re_registers *regs,
611 int stop));
fa9a63c5
RM
612\f
613/* These are the command codes that appear in compiled regular
4bb91c68 614 expressions. Some opcodes are followed by argument bytes. A
fa9a63c5
RM
615 command code can specify any interpretation whatsoever for its
616 arguments. Zero bytes may appear in the compiled regular expression. */
617
618typedef enum
619{
620 no_op = 0,
621
4bb91c68 622 /* Succeed right away--no more backtracking. */
fa9a63c5
RM
623 succeed,
624
25fe55af 625 /* Followed by one byte giving n, then by n literal bytes. */
fa9a63c5
RM
626 exactn,
627
25fe55af 628 /* Matches any (more or less) character. */
fa9a63c5
RM
629 anychar,
630
25fe55af
RS
631 /* Matches any one char belonging to specified set. First
632 following byte is number of bitmap bytes. Then come bytes
633 for a bitmap saying which chars are in. Bits in each byte
634 are ordered low-bit-first. A character is in the set if its
635 bit is 1. A character too large to have a bit in the map is
96cc36cc
RS
636 automatically not in the set.
637
638 If the length byte has the 0x80 bit set, then that stuff
639 is followed by a range table:
640 2 bytes of flags for character sets (low 8 bits, high 8 bits)
0b32bf0e 641 See RANGE_TABLE_WORK_BITS below.
01618498 642 2 bytes, the number of pairs that follow (upto 32767)
96cc36cc 643 pairs, each 2 multibyte characters,
0b32bf0e 644 each multibyte character represented as 3 bytes. */
fa9a63c5
RM
645 charset,
646
25fe55af 647 /* Same parameters as charset, but match any character that is
4bb91c68 648 not one of those specified. */
fa9a63c5
RM
649 charset_not,
650
25fe55af
RS
651 /* Start remembering the text that is matched, for storing in a
652 register. Followed by one byte with the register number, in
653 the range 0 to one less than the pattern buffer's re_nsub
505bde11 654 field. */
fa9a63c5
RM
655 start_memory,
656
25fe55af
RS
657 /* Stop remembering the text that is matched and store it in a
658 memory register. Followed by one byte with the register
659 number, in the range 0 to one less than `re_nsub' in the
505bde11 660 pattern buffer. */
fa9a63c5
RM
661 stop_memory,
662
25fe55af 663 /* Match a duplicate of something remembered. Followed by one
4bb91c68 664 byte containing the register number. */
fa9a63c5
RM
665 duplicate,
666
25fe55af 667 /* Fail unless at beginning of line. */
fa9a63c5
RM
668 begline,
669
4bb91c68 670 /* Fail unless at end of line. */
fa9a63c5
RM
671 endline,
672
25fe55af
RS
673 /* Succeeds if at beginning of buffer (if emacs) or at beginning
674 of string to be matched (if not). */
fa9a63c5
RM
675 begbuf,
676
25fe55af 677 /* Analogously, for end of buffer/string. */
fa9a63c5 678 endbuf,
5e69f11e 679
25fe55af 680 /* Followed by two byte relative address to which to jump. */
5e69f11e 681 jump,
fa9a63c5 682
25fe55af 683 /* Followed by two-byte relative address of place to resume at
7814e705 684 in case of failure. */
fa9a63c5 685 on_failure_jump,
5e69f11e 686
25fe55af
RS
687 /* Like on_failure_jump, but pushes a placeholder instead of the
688 current string position when executed. */
fa9a63c5 689 on_failure_keep_string_jump,
5e69f11e 690
505bde11
SM
691 /* Just like `on_failure_jump', except that it checks that we
692 don't get stuck in an infinite loop (matching an empty string
693 indefinitely). */
694 on_failure_jump_loop,
695
0683b6fa
SM
696 /* Just like `on_failure_jump_loop', except that it checks for
697 a different kind of loop (the kind that shows up with non-greedy
698 operators). This operation has to be immediately preceded
699 by a `no_op'. */
700 on_failure_jump_nastyloop,
701
0b32bf0e 702 /* A smart `on_failure_jump' used for greedy * and + operators.
505bde11
SM
703 It analyses the loop before which it is put and if the
704 loop does not require backtracking, it changes itself to
4e8a9132
SM
705 `on_failure_keep_string_jump' and short-circuits the loop,
706 else it just defaults to changing itself into `on_failure_jump'.
707 It assumes that it is pointing to just past a `jump'. */
505bde11 708 on_failure_jump_smart,
fa9a63c5 709
25fe55af 710 /* Followed by two-byte relative address and two-byte number n.
ed0767d8
SM
711 After matching N times, jump to the address upon failure.
712 Does not work if N starts at 0: use on_failure_jump_loop
713 instead. */
fa9a63c5
RM
714 succeed_n,
715
25fe55af
RS
716 /* Followed by two-byte relative address, and two-byte number n.
717 Jump to the address N times, then fail. */
fa9a63c5
RM
718 jump_n,
719
25fe55af 720 /* Set the following two-byte relative address to the
7814e705 721 subsequent two-byte number. The address *includes* the two
25fe55af 722 bytes of number. */
fa9a63c5
RM
723 set_number_at,
724
fa9a63c5
RM
725 wordbeg, /* Succeeds if at word beginning. */
726 wordend, /* Succeeds if at word end. */
727
728 wordbound, /* Succeeds if at a word boundary. */
7814e705 729 notwordbound, /* Succeeds if not at a word boundary. */
fa9a63c5 730
669fa600
SM
731 symbeg, /* Succeeds if at symbol beginning. */
732 symend, /* Succeeds if at symbol end. */
733
fa9a63c5 734 /* Matches any character whose syntax is specified. Followed by
25fe55af 735 a byte which contains a syntax code, e.g., Sword. */
fa9a63c5
RM
736 syntaxspec,
737
738 /* Matches any character whose syntax is not that specified. */
1fb352e0
SM
739 notsyntaxspec
740
741#ifdef emacs
742 ,before_dot, /* Succeeds if before point. */
743 at_dot, /* Succeeds if at point. */
744 after_dot, /* Succeeds if after point. */
b18215fc
RS
745
746 /* Matches any character whose category-set contains the specified
7814e705
JB
747 category. The operator is followed by a byte which contains a
748 category code (mnemonic ASCII character). */
b18215fc
RS
749 categoryspec,
750
751 /* Matches any character whose category-set does not contain the
752 specified category. The operator is followed by a byte which
753 contains the category code (mnemonic ASCII character). */
754 notcategoryspec
fa9a63c5
RM
755#endif /* emacs */
756} re_opcode_t;
757\f
758/* Common operations on the compiled pattern. */
759
760/* Store NUMBER in two contiguous bytes starting at DESTINATION. */
761
762#define STORE_NUMBER(destination, number) \
763 do { \
764 (destination)[0] = (number) & 0377; \
765 (destination)[1] = (number) >> 8; \
766 } while (0)
767
768/* Same as STORE_NUMBER, except increment DESTINATION to
769 the byte after where the number is stored. Therefore, DESTINATION
770 must be an lvalue. */
771
772#define STORE_NUMBER_AND_INCR(destination, number) \
773 do { \
774 STORE_NUMBER (destination, number); \
775 (destination) += 2; \
776 } while (0)
777
778/* Put into DESTINATION a number stored in two contiguous bytes starting
779 at SOURCE. */
780
781#define EXTRACT_NUMBER(destination, source) \
782 do { \
783 (destination) = *(source) & 0377; \
784 (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8; \
785 } while (0)
786
787#ifdef DEBUG
4bb91c68 788static void extract_number _RE_ARGS ((int *dest, re_char *source));
fa9a63c5
RM
789static void
790extract_number (dest, source)
791 int *dest;
01618498 792 re_char *source;
fa9a63c5 793{
5e69f11e 794 int temp = SIGN_EXTEND_CHAR (*(source + 1));
fa9a63c5
RM
795 *dest = *source & 0377;
796 *dest += temp << 8;
797}
798
4bb91c68 799# ifndef EXTRACT_MACROS /* To debug the macros. */
0b32bf0e
SM
800# undef EXTRACT_NUMBER
801# define EXTRACT_NUMBER(dest, src) extract_number (&dest, src)
802# endif /* not EXTRACT_MACROS */
fa9a63c5
RM
803
804#endif /* DEBUG */
805
806/* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
807 SOURCE must be an lvalue. */
808
809#define EXTRACT_NUMBER_AND_INCR(destination, source) \
810 do { \
811 EXTRACT_NUMBER (destination, source); \
25fe55af 812 (source) += 2; \
fa9a63c5
RM
813 } while (0)
814
815#ifdef DEBUG
4bb91c68
SM
816static void extract_number_and_incr _RE_ARGS ((int *destination,
817 re_char **source));
fa9a63c5
RM
818static void
819extract_number_and_incr (destination, source)
820 int *destination;
01618498 821 re_char **source;
5e69f11e 822{
fa9a63c5
RM
823 extract_number (destination, *source);
824 *source += 2;
825}
826
0b32bf0e
SM
827# ifndef EXTRACT_MACROS
828# undef EXTRACT_NUMBER_AND_INCR
829# define EXTRACT_NUMBER_AND_INCR(dest, src) \
fa9a63c5 830 extract_number_and_incr (&dest, &src)
0b32bf0e 831# endif /* not EXTRACT_MACROS */
fa9a63c5
RM
832
833#endif /* DEBUG */
834\f
b18215fc
RS
835/* Store a multibyte character in three contiguous bytes starting
836 DESTINATION, and increment DESTINATION to the byte after where the
7814e705 837 character is stored. Therefore, DESTINATION must be an lvalue. */
b18215fc
RS
838
839#define STORE_CHARACTER_AND_INCR(destination, character) \
840 do { \
841 (destination)[0] = (character) & 0377; \
842 (destination)[1] = ((character) >> 8) & 0377; \
843 (destination)[2] = (character) >> 16; \
844 (destination) += 3; \
845 } while (0)
846
847/* Put into DESTINATION a character stored in three contiguous bytes
7814e705 848 starting at SOURCE. */
b18215fc
RS
849
850#define EXTRACT_CHARACTER(destination, source) \
851 do { \
852 (destination) = ((source)[0] \
853 | ((source)[1] << 8) \
854 | ((source)[2] << 16)); \
855 } while (0)
856
857
858/* Macros for charset. */
859
860/* Size of bitmap of charset P in bytes. P is a start of charset,
861 i.e. *P is (re_opcode_t) charset or (re_opcode_t) charset_not. */
862#define CHARSET_BITMAP_SIZE(p) ((p)[1] & 0x7F)
863
864/* Nonzero if charset P has range table. */
25fe55af 865#define CHARSET_RANGE_TABLE_EXISTS_P(p) ((p)[1] & 0x80)
b18215fc
RS
866
867/* Return the address of range table of charset P. But not the start
868 of table itself, but the before where the number of ranges is
96cc36cc
RS
869 stored. `2 +' means to skip re_opcode_t and size of bitmap,
870 and the 2 bytes of flags at the start of the range table. */
871#define CHARSET_RANGE_TABLE(p) (&(p)[4 + CHARSET_BITMAP_SIZE (p)])
872
873/* Extract the bit flags that start a range table. */
874#define CHARSET_RANGE_TABLE_BITS(p) \
875 ((p)[2 + CHARSET_BITMAP_SIZE (p)] \
876 + (p)[3 + CHARSET_BITMAP_SIZE (p)] * 0x100)
b18215fc
RS
877
878/* Test if C is listed in the bitmap of charset P. */
879#define CHARSET_LOOKUP_BITMAP(p, c) \
880 ((c) < CHARSET_BITMAP_SIZE (p) * BYTEWIDTH \
881 && (p)[2 + (c) / BYTEWIDTH] & (1 << ((c) % BYTEWIDTH)))
882
883/* Return the address of end of RANGE_TABLE. COUNT is number of
7814e705
JB
884 ranges (which is a pair of (start, end)) in the RANGE_TABLE. `* 2'
885 is start of range and end of range. `* 3' is size of each start
b18215fc
RS
886 and end. */
887#define CHARSET_RANGE_TABLE_END(range_table, count) \
888 ((range_table) + (count) * 2 * 3)
889
7814e705 890/* Test if C is in RANGE_TABLE. A flag NOT is negated if C is in.
b18215fc
RS
891 COUNT is number of ranges in RANGE_TABLE. */
892#define CHARSET_LOOKUP_RANGE_TABLE_RAW(not, c, range_table, count) \
893 do \
894 { \
01618498
SM
895 re_wchar_t range_start, range_end; \
896 re_char *p; \
897 re_char *range_table_end \
b18215fc
RS
898 = CHARSET_RANGE_TABLE_END ((range_table), (count)); \
899 \
900 for (p = (range_table); p < range_table_end; p += 2 * 3) \
901 { \
902 EXTRACT_CHARACTER (range_start, p); \
903 EXTRACT_CHARACTER (range_end, p + 3); \
904 \
905 if (range_start <= (c) && (c) <= range_end) \
906 { \
907 (not) = !(not); \
908 break; \
909 } \
910 } \
911 } \
912 while (0)
913
914/* Test if C is in range table of CHARSET. The flag NOT is negated if
915 C is listed in it. */
916#define CHARSET_LOOKUP_RANGE_TABLE(not, c, charset) \
917 do \
918 { \
919 /* Number of ranges in range table. */ \
920 int count; \
01618498
SM
921 re_char *range_table = CHARSET_RANGE_TABLE (charset); \
922 \
b18215fc
RS
923 EXTRACT_NUMBER_AND_INCR (count, range_table); \
924 CHARSET_LOOKUP_RANGE_TABLE_RAW ((not), (c), range_table, count); \
925 } \
926 while (0)
927\f
fa9a63c5
RM
928/* If DEBUG is defined, Regex prints many voluminous messages about what
929 it is doing (if the variable `debug' is nonzero). If linked with the
930 main program in `iregex.c', you can enter patterns and strings
931 interactively. And if linked with the main program in `main.c' and
4bb91c68 932 the other test files, you can run the already-written tests. */
fa9a63c5
RM
933
934#ifdef DEBUG
935
936/* We use standard I/O for debugging. */
0b32bf0e 937# include <stdio.h>
fa9a63c5
RM
938
939/* It is useful to test things that ``must'' be true when debugging. */
0b32bf0e 940# include <assert.h>
fa9a63c5 941
99633e97 942static int debug = -100000;
fa9a63c5 943
0b32bf0e
SM
944# define DEBUG_STATEMENT(e) e
945# define DEBUG_PRINT1(x) if (debug > 0) printf (x)
946# define DEBUG_PRINT2(x1, x2) if (debug > 0) printf (x1, x2)
947# define DEBUG_PRINT3(x1, x2, x3) if (debug > 0) printf (x1, x2, x3)
948# define DEBUG_PRINT4(x1, x2, x3, x4) if (debug > 0) printf (x1, x2, x3, x4)
949# define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \
99633e97 950 if (debug > 0) print_partial_compiled_pattern (s, e)
0b32bf0e 951# define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \
99633e97 952 if (debug > 0) print_double_string (w, s1, sz1, s2, sz2)
fa9a63c5
RM
953
954
955/* Print the fastmap in human-readable form. */
956
957void
958print_fastmap (fastmap)
959 char *fastmap;
960{
961 unsigned was_a_range = 0;
5e69f11e
RM
962 unsigned i = 0;
963
fa9a63c5
RM
964 while (i < (1 << BYTEWIDTH))
965 {
966 if (fastmap[i++])
967 {
968 was_a_range = 0;
25fe55af
RS
969 putchar (i - 1);
970 while (i < (1 << BYTEWIDTH) && fastmap[i])
971 {
972 was_a_range = 1;
973 i++;
974 }
fa9a63c5 975 if (was_a_range)
25fe55af
RS
976 {
977 printf ("-");
978 putchar (i - 1);
979 }
980 }
fa9a63c5 981 }
5e69f11e 982 putchar ('\n');
fa9a63c5
RM
983}
984
985
986/* Print a compiled pattern string in human-readable form, starting at
987 the START pointer into it and ending just before the pointer END. */
988
989void
990print_partial_compiled_pattern (start, end)
01618498
SM
991 re_char *start;
992 re_char *end;
fa9a63c5
RM
993{
994 int mcnt, mcnt2;
01618498
SM
995 re_char *p = start;
996 re_char *pend = end;
fa9a63c5
RM
997
998 if (start == NULL)
999 {
a1a052df 1000 fprintf (stderr, "(null)\n");
fa9a63c5
RM
1001 return;
1002 }
5e69f11e 1003
fa9a63c5
RM
1004 /* Loop over pattern commands. */
1005 while (p < pend)
1006 {
a1a052df 1007 fprintf (stderr, "%d:\t", p - start);
fa9a63c5
RM
1008
1009 switch ((re_opcode_t) *p++)
1010 {
25fe55af 1011 case no_op:
a1a052df 1012 fprintf (stderr, "/no_op");
25fe55af 1013 break;
fa9a63c5 1014
99633e97 1015 case succeed:
a1a052df 1016 fprintf (stderr, "/succeed");
99633e97
SM
1017 break;
1018
fa9a63c5
RM
1019 case exactn:
1020 mcnt = *p++;
a1a052df 1021 fprintf (stderr, "/exactn/%d", mcnt);
25fe55af 1022 do
fa9a63c5 1023 {
a1a052df 1024 fprintf (stderr, "/%c", *p++);
25fe55af
RS
1025 }
1026 while (--mcnt);
1027 break;
fa9a63c5
RM
1028
1029 case start_memory:
a1a052df 1030 fprintf (stderr, "/start_memory/%d", *p++);
25fe55af 1031 break;
fa9a63c5
RM
1032
1033 case stop_memory:
a1a052df 1034 fprintf (stderr, "/stop_memory/%d", *p++);
25fe55af 1035 break;
fa9a63c5
RM
1036
1037 case duplicate:
a1a052df 1038 fprintf (stderr, "/duplicate/%d", *p++);
fa9a63c5
RM
1039 break;
1040
1041 case anychar:
a1a052df 1042 fprintf (stderr, "/anychar");
fa9a63c5
RM
1043 break;
1044
1045 case charset:
25fe55af
RS
1046 case charset_not:
1047 {
1048 register int c, last = -100;
fa9a63c5 1049 register int in_range = 0;
99633e97
SM
1050 int length = CHARSET_BITMAP_SIZE (p - 1);
1051 int has_range_table = CHARSET_RANGE_TABLE_EXISTS_P (p - 1);
fa9a63c5 1052
a1a052df 1053 fprintf (stderr, "/charset [%s",
839966f3 1054 (re_opcode_t) *(p - 1) == charset_not ? "^" : "");
5e69f11e 1055
839966f3
KH
1056 if (p + *p >= pend)
1057 fprintf (stderr, " !extends past end of pattern! ");
fa9a63c5 1058
25fe55af 1059 for (c = 0; c < 256; c++)
96cc36cc 1060 if (c / 8 < length
fa9a63c5
RM
1061 && (p[1 + (c/8)] & (1 << (c % 8))))
1062 {
1063 /* Are we starting a range? */
1064 if (last + 1 == c && ! in_range)
1065 {
a1a052df 1066 fprintf (stderr, "-");
fa9a63c5
RM
1067 in_range = 1;
1068 }
1069 /* Have we broken a range? */
1070 else if (last + 1 != c && in_range)
96cc36cc 1071 {
a1a052df 1072 fprintf (stderr, "%c", last);
fa9a63c5
RM
1073 in_range = 0;
1074 }
5e69f11e 1075
fa9a63c5 1076 if (! in_range)
a1a052df 1077 fprintf (stderr, "%c", c);
fa9a63c5
RM
1078
1079 last = c;
25fe55af 1080 }
fa9a63c5
RM
1081
1082 if (in_range)
a1a052df 1083 fprintf (stderr, "%c", last);
fa9a63c5 1084
a1a052df 1085 fprintf (stderr, "]");
fa9a63c5 1086
99633e97 1087 p += 1 + length;
96cc36cc 1088
96cc36cc 1089 if (has_range_table)
99633e97
SM
1090 {
1091 int count;
a1a052df 1092 fprintf (stderr, "has-range-table");
99633e97
SM
1093
1094 /* ??? Should print the range table; for now, just skip it. */
1095 p += 2; /* skip range table bits */
1096 EXTRACT_NUMBER_AND_INCR (count, p);
1097 p = CHARSET_RANGE_TABLE_END (p, count);
1098 }
fa9a63c5
RM
1099 }
1100 break;
1101
1102 case begline:
a1a052df 1103 fprintf (stderr, "/begline");
25fe55af 1104 break;
fa9a63c5
RM
1105
1106 case endline:
a1a052df 1107 fprintf (stderr, "/endline");
25fe55af 1108 break;
fa9a63c5
RM
1109
1110 case on_failure_jump:
25fe55af 1111 extract_number_and_incr (&mcnt, &p);
a1a052df 1112 fprintf (stderr, "/on_failure_jump to %d", p + mcnt - start);
25fe55af 1113 break;
fa9a63c5
RM
1114
1115 case on_failure_keep_string_jump:
25fe55af 1116 extract_number_and_incr (&mcnt, &p);
a1a052df 1117 fprintf (stderr, "/on_failure_keep_string_jump to %d", p + mcnt - start);
25fe55af 1118 break;
fa9a63c5 1119
0683b6fa
SM
1120 case on_failure_jump_nastyloop:
1121 extract_number_and_incr (&mcnt, &p);
a1a052df 1122 fprintf (stderr, "/on_failure_jump_nastyloop to %d", p + mcnt - start);
0683b6fa
SM
1123 break;
1124
505bde11 1125 case on_failure_jump_loop:
fa9a63c5 1126 extract_number_and_incr (&mcnt, &p);
a1a052df 1127 fprintf (stderr, "/on_failure_jump_loop to %d", p + mcnt - start);
5e69f11e
RM
1128 break;
1129
505bde11 1130 case on_failure_jump_smart:
fa9a63c5 1131 extract_number_and_incr (&mcnt, &p);
a1a052df 1132 fprintf (stderr, "/on_failure_jump_smart to %d", p + mcnt - start);
5e69f11e
RM
1133 break;
1134
25fe55af 1135 case jump:
fa9a63c5 1136 extract_number_and_incr (&mcnt, &p);
a1a052df 1137 fprintf (stderr, "/jump to %d", p + mcnt - start);
fa9a63c5
RM
1138 break;
1139
25fe55af
RS
1140 case succeed_n:
1141 extract_number_and_incr (&mcnt, &p);
1142 extract_number_and_incr (&mcnt2, &p);
a1a052df 1143 fprintf (stderr, "/succeed_n to %d, %d times", p - 2 + mcnt - start, mcnt2);
25fe55af 1144 break;
5e69f11e 1145
25fe55af
RS
1146 case jump_n:
1147 extract_number_and_incr (&mcnt, &p);
1148 extract_number_and_incr (&mcnt2, &p);
a1a052df 1149 fprintf (stderr, "/jump_n to %d, %d times", p - 2 + mcnt - start, mcnt2);
25fe55af 1150 break;
5e69f11e 1151
25fe55af
RS
1152 case set_number_at:
1153 extract_number_and_incr (&mcnt, &p);
1154 extract_number_and_incr (&mcnt2, &p);
a1a052df 1155 fprintf (stderr, "/set_number_at location %d to %d", p - 2 + mcnt - start, mcnt2);
25fe55af 1156 break;
5e69f11e 1157
25fe55af 1158 case wordbound:
a1a052df 1159 fprintf (stderr, "/wordbound");
fa9a63c5
RM
1160 break;
1161
1162 case notwordbound:
a1a052df 1163 fprintf (stderr, "/notwordbound");
25fe55af 1164 break;
fa9a63c5
RM
1165
1166 case wordbeg:
a1a052df 1167 fprintf (stderr, "/wordbeg");
fa9a63c5 1168 break;
5e69f11e 1169
fa9a63c5 1170 case wordend:
a1a052df 1171 fprintf (stderr, "/wordend");
e2543b02 1172 break;
5e69f11e 1173
669fa600 1174 case symbeg:
e2543b02 1175 fprintf (stderr, "/symbeg");
669fa600
SM
1176 break;
1177
1178 case symend:
e2543b02 1179 fprintf (stderr, "/symend");
669fa600 1180 break;
5e69f11e 1181
1fb352e0 1182 case syntaxspec:
a1a052df 1183 fprintf (stderr, "/syntaxspec");
1fb352e0 1184 mcnt = *p++;
a1a052df 1185 fprintf (stderr, "/%d", mcnt);
1fb352e0
SM
1186 break;
1187
1188 case notsyntaxspec:
a1a052df 1189 fprintf (stderr, "/notsyntaxspec");
1fb352e0 1190 mcnt = *p++;
a1a052df 1191 fprintf (stderr, "/%d", mcnt);
1fb352e0
SM
1192 break;
1193
0b32bf0e 1194# ifdef emacs
fa9a63c5 1195 case before_dot:
a1a052df 1196 fprintf (stderr, "/before_dot");
25fe55af 1197 break;
fa9a63c5
RM
1198
1199 case at_dot:
a1a052df 1200 fprintf (stderr, "/at_dot");
25fe55af 1201 break;
fa9a63c5
RM
1202
1203 case after_dot:
a1a052df 1204 fprintf (stderr, "/after_dot");
25fe55af 1205 break;
fa9a63c5 1206
1fb352e0 1207 case categoryspec:
a1a052df 1208 fprintf (stderr, "/categoryspec");
fa9a63c5 1209 mcnt = *p++;
a1a052df 1210 fprintf (stderr, "/%d", mcnt);
25fe55af 1211 break;
5e69f11e 1212
1fb352e0 1213 case notcategoryspec:
a1a052df 1214 fprintf (stderr, "/notcategoryspec");
fa9a63c5 1215 mcnt = *p++;
a1a052df 1216 fprintf (stderr, "/%d", mcnt);
fa9a63c5 1217 break;
0b32bf0e 1218# endif /* emacs */
fa9a63c5 1219
fa9a63c5 1220 case begbuf:
a1a052df 1221 fprintf (stderr, "/begbuf");
25fe55af 1222 break;
fa9a63c5
RM
1223
1224 case endbuf:
a1a052df 1225 fprintf (stderr, "/endbuf");
25fe55af 1226 break;
fa9a63c5 1227
25fe55af 1228 default:
a1a052df 1229 fprintf (stderr, "?%d", *(p-1));
fa9a63c5
RM
1230 }
1231
a1a052df 1232 fprintf (stderr, "\n");
fa9a63c5
RM
1233 }
1234
a1a052df 1235 fprintf (stderr, "%d:\tend of pattern.\n", p - start);
fa9a63c5
RM
1236}
1237
1238
1239void
1240print_compiled_pattern (bufp)
1241 struct re_pattern_buffer *bufp;
1242{
01618498 1243 re_char *buffer = bufp->buffer;
fa9a63c5
RM
1244
1245 print_partial_compiled_pattern (buffer, buffer + bufp->used);
4bb91c68
SM
1246 printf ("%ld bytes used/%ld bytes allocated.\n",
1247 bufp->used, bufp->allocated);
fa9a63c5
RM
1248
1249 if (bufp->fastmap_accurate && bufp->fastmap)
1250 {
1251 printf ("fastmap: ");
1252 print_fastmap (bufp->fastmap);
1253 }
1254
1255 printf ("re_nsub: %d\t", bufp->re_nsub);
1256 printf ("regs_alloc: %d\t", bufp->regs_allocated);
1257 printf ("can_be_null: %d\t", bufp->can_be_null);
fa9a63c5
RM
1258 printf ("no_sub: %d\t", bufp->no_sub);
1259 printf ("not_bol: %d\t", bufp->not_bol);
1260 printf ("not_eol: %d\t", bufp->not_eol);
4bb91c68 1261 printf ("syntax: %lx\n", bufp->syntax);
505bde11 1262 fflush (stdout);
fa9a63c5
RM
1263 /* Perhaps we should print the translate table? */
1264}
1265
1266
1267void
1268print_double_string (where, string1, size1, string2, size2)
66f0296e
SM
1269 re_char *where;
1270 re_char *string1;
1271 re_char *string2;
fa9a63c5
RM
1272 int size1;
1273 int size2;
1274{
4bb91c68 1275 int this_char;
5e69f11e 1276
fa9a63c5
RM
1277 if (where == NULL)
1278 printf ("(null)");
1279 else
1280 {
1281 if (FIRST_STRING_P (where))
25fe55af
RS
1282 {
1283 for (this_char = where - string1; this_char < size1; this_char++)
1284 putchar (string1[this_char]);
fa9a63c5 1285
25fe55af
RS
1286 where = string2;
1287 }
fa9a63c5
RM
1288
1289 for (this_char = where - string2; this_char < size2; this_char++)
25fe55af 1290 putchar (string2[this_char]);
fa9a63c5
RM
1291 }
1292}
1293
1294#else /* not DEBUG */
1295
0b32bf0e
SM
1296# undef assert
1297# define assert(e)
fa9a63c5 1298
0b32bf0e
SM
1299# define DEBUG_STATEMENT(e)
1300# define DEBUG_PRINT1(x)
1301# define DEBUG_PRINT2(x1, x2)
1302# define DEBUG_PRINT3(x1, x2, x3)
1303# define DEBUG_PRINT4(x1, x2, x3, x4)
1304# define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
1305# define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
fa9a63c5
RM
1306
1307#endif /* not DEBUG */
1308\f
1309/* Set by `re_set_syntax' to the current regexp syntax to recognize. Can
1310 also be assigned to arbitrarily: each pattern buffer stores its own
1311 syntax, so it can be changed between regex compilations. */
1312/* This has no initializer because initialized variables in Emacs
1313 become read-only after dumping. */
1314reg_syntax_t re_syntax_options;
1315
1316
1317/* Specify the precise syntax of regexps for compilation. This provides
1318 for compatibility for various utilities which historically have
1319 different, incompatible syntaxes.
1320
1321 The argument SYNTAX is a bit mask comprised of the various bits
4bb91c68 1322 defined in regex.h. We return the old syntax. */
fa9a63c5
RM
1323
1324reg_syntax_t
1325re_set_syntax (syntax)
f9b0fd99 1326 reg_syntax_t syntax;
fa9a63c5
RM
1327{
1328 reg_syntax_t ret = re_syntax_options;
5e69f11e 1329
fa9a63c5
RM
1330 re_syntax_options = syntax;
1331 return ret;
1332}
c0f9ea08 1333WEAK_ALIAS (__re_set_syntax, re_set_syntax)
f9b0fd99
RS
1334
1335/* Regexp to use to replace spaces, or NULL meaning don't. */
1336static re_char *whitespace_regexp;
1337
1338void
1339re_set_whitespace_regexp (regexp)
6470ea05 1340 const char *regexp;
f9b0fd99 1341{
6470ea05 1342 whitespace_regexp = (re_char *) regexp;
f9b0fd99
RS
1343}
1344WEAK_ALIAS (__re_set_syntax, re_set_syntax)
fa9a63c5
RM
1345\f
1346/* This table gives an error message for each of the error codes listed
4bb91c68 1347 in regex.h. Obviously the order here has to be same as there.
fa9a63c5 1348 POSIX doesn't require that we do anything for REG_NOERROR,
4bb91c68 1349 but why not be nice? */
fa9a63c5
RM
1350
1351static const char *re_error_msgid[] =
5e69f11e
RM
1352 {
1353 gettext_noop ("Success"), /* REG_NOERROR */
1354 gettext_noop ("No match"), /* REG_NOMATCH */
1355 gettext_noop ("Invalid regular expression"), /* REG_BADPAT */
1356 gettext_noop ("Invalid collation character"), /* REG_ECOLLATE */
1357 gettext_noop ("Invalid character class name"), /* REG_ECTYPE */
1358 gettext_noop ("Trailing backslash"), /* REG_EESCAPE */
1359 gettext_noop ("Invalid back reference"), /* REG_ESUBREG */
1360 gettext_noop ("Unmatched [ or [^"), /* REG_EBRACK */
1361 gettext_noop ("Unmatched ( or \\("), /* REG_EPAREN */
1362 gettext_noop ("Unmatched \\{"), /* REG_EBRACE */
1363 gettext_noop ("Invalid content of \\{\\}"), /* REG_BADBR */
1364 gettext_noop ("Invalid range end"), /* REG_ERANGE */
1365 gettext_noop ("Memory exhausted"), /* REG_ESPACE */
1366 gettext_noop ("Invalid preceding regular expression"), /* REG_BADRPT */
1367 gettext_noop ("Premature end of regular expression"), /* REG_EEND */
1368 gettext_noop ("Regular expression too big"), /* REG_ESIZE */
1369 gettext_noop ("Unmatched ) or \\)"), /* REG_ERPAREN */
b3e4c897 1370 gettext_noop ("Range striding over charsets") /* REG_ERANGEX */
fa9a63c5
RM
1371 };
1372\f
4bb91c68 1373/* Avoiding alloca during matching, to placate r_alloc. */
fa9a63c5
RM
1374
1375/* Define MATCH_MAY_ALLOCATE unless we need to make sure that the
1376 searching and matching functions should not call alloca. On some
1377 systems, alloca is implemented in terms of malloc, and if we're
1378 using the relocating allocator routines, then malloc could cause a
1379 relocation, which might (if the strings being searched are in the
1380 ralloc heap) shift the data out from underneath the regexp
1381 routines.
1382
5e69f11e 1383 Here's another reason to avoid allocation: Emacs
fa9a63c5
RM
1384 processes input from X in a signal handler; processing X input may
1385 call malloc; if input arrives while a matching routine is calling
1386 malloc, then we're scrod. But Emacs can't just block input while
1387 calling matching routines; then we don't notice interrupts when
1388 they come in. So, Emacs blocks input around all regexp calls
1389 except the matching calls, which it leaves unprotected, in the
1390 faith that they will not malloc. */
1391
1392/* Normally, this is fine. */
1393#define MATCH_MAY_ALLOCATE
1394
fa9a63c5
RM
1395/* The match routines may not allocate if (1) they would do it with malloc
1396 and (2) it's not safe for them to use malloc.
1397 Note that if REL_ALLOC is defined, matching would not use malloc for the
1398 failure stack, but we would still use it for the register vectors;
4bb91c68 1399 so REL_ALLOC should not affect this. */
b588157e 1400#if defined REGEX_MALLOC && defined emacs
0b32bf0e 1401# undef MATCH_MAY_ALLOCATE
fa9a63c5
RM
1402#endif
1403
1404\f
1405/* Failure stack declarations and macros; both re_compile_fastmap and
1406 re_match_2 use a failure stack. These have to be macros because of
1407 REGEX_ALLOCATE_STACK. */
5e69f11e 1408
fa9a63c5 1409
320a2a73 1410/* Approximate number of failure points for which to initially allocate space
fa9a63c5
RM
1411 when matching. If this number is exceeded, we allocate more
1412 space, so it is not a hard limit. */
1413#ifndef INIT_FAILURE_ALLOC
0b32bf0e 1414# define INIT_FAILURE_ALLOC 20
fa9a63c5
RM
1415#endif
1416
1417/* Roughly the maximum number of failure points on the stack. Would be
320a2a73 1418 exactly that if always used TYPICAL_FAILURE_SIZE items each time we failed.
fa9a63c5 1419 This is a variable only so users of regex can assign to it; we never
ada30c0e
SM
1420 change it ourselves. We always multiply it by TYPICAL_FAILURE_SIZE
1421 before using it, so it should probably be a byte-count instead. */
c0f9ea08
SM
1422# if defined MATCH_MAY_ALLOCATE
1423/* Note that 4400 was enough to cause a crash on Alpha OSF/1,
320a2a73
KH
1424 whose default stack limit is 2mb. In order for a larger
1425 value to work reliably, you have to try to make it accord
1426 with the process stack limit. */
c0f9ea08
SM
1427size_t re_max_failures = 40000;
1428# else
1429size_t re_max_failures = 4000;
1430# endif
fa9a63c5
RM
1431
1432union fail_stack_elt
1433{
01618498 1434 re_char *pointer;
c0f9ea08
SM
1435 /* This should be the biggest `int' that's no bigger than a pointer. */
1436 long integer;
fa9a63c5
RM
1437};
1438
1439typedef union fail_stack_elt fail_stack_elt_t;
1440
1441typedef struct
1442{
1443 fail_stack_elt_t *stack;
c0f9ea08
SM
1444 size_t size;
1445 size_t avail; /* Offset of next open position. */
1446 size_t frame; /* Offset of the cur constructed frame. */
fa9a63c5
RM
1447} fail_stack_type;
1448
505bde11 1449#define FAIL_STACK_EMPTY() (fail_stack.frame == 0)
fa9a63c5
RM
1450#define FAIL_STACK_FULL() (fail_stack.avail == fail_stack.size)
1451
1452
1453/* Define macros to initialize and free the failure stack.
1454 Do `return -2' if the alloc fails. */
1455
1456#ifdef MATCH_MAY_ALLOCATE
0b32bf0e 1457# define INIT_FAIL_STACK() \
fa9a63c5
RM
1458 do { \
1459 fail_stack.stack = (fail_stack_elt_t *) \
320a2a73
KH
1460 REGEX_ALLOCATE_STACK (INIT_FAILURE_ALLOC * TYPICAL_FAILURE_SIZE \
1461 * sizeof (fail_stack_elt_t)); \
fa9a63c5
RM
1462 \
1463 if (fail_stack.stack == NULL) \
1464 return -2; \
1465 \
1466 fail_stack.size = INIT_FAILURE_ALLOC; \
1467 fail_stack.avail = 0; \
505bde11 1468 fail_stack.frame = 0; \
fa9a63c5
RM
1469 } while (0)
1470
0b32bf0e 1471# define RESET_FAIL_STACK() REGEX_FREE_STACK (fail_stack.stack)
fa9a63c5 1472#else
0b32bf0e 1473# define INIT_FAIL_STACK() \
fa9a63c5
RM
1474 do { \
1475 fail_stack.avail = 0; \
505bde11 1476 fail_stack.frame = 0; \
fa9a63c5
RM
1477 } while (0)
1478
0b32bf0e 1479# define RESET_FAIL_STACK() ((void)0)
fa9a63c5
RM
1480#endif
1481
1482
320a2a73
KH
1483/* Double the size of FAIL_STACK, up to a limit
1484 which allows approximately `re_max_failures' items.
fa9a63c5
RM
1485
1486 Return 1 if succeeds, and 0 if either ran out of memory
5e69f11e
RM
1487 allocating space for it or it was already too large.
1488
4bb91c68 1489 REGEX_REALLOCATE_STACK requires `destination' be declared. */
fa9a63c5 1490
320a2a73
KH
1491/* Factor to increase the failure stack size by
1492 when we increase it.
1493 This used to be 2, but 2 was too wasteful
1494 because the old discarded stacks added up to as much space
1495 were as ultimate, maximum-size stack. */
1496#define FAIL_STACK_GROWTH_FACTOR 4
1497
1498#define GROW_FAIL_STACK(fail_stack) \
eead07d6
KH
1499 (((fail_stack).size * sizeof (fail_stack_elt_t) \
1500 >= re_max_failures * TYPICAL_FAILURE_SIZE) \
fa9a63c5 1501 ? 0 \
320a2a73
KH
1502 : ((fail_stack).stack \
1503 = (fail_stack_elt_t *) \
25fe55af
RS
1504 REGEX_REALLOCATE_STACK ((fail_stack).stack, \
1505 (fail_stack).size * sizeof (fail_stack_elt_t), \
320a2a73
KH
1506 MIN (re_max_failures * TYPICAL_FAILURE_SIZE, \
1507 ((fail_stack).size * sizeof (fail_stack_elt_t) \
1508 * FAIL_STACK_GROWTH_FACTOR))), \
fa9a63c5
RM
1509 \
1510 (fail_stack).stack == NULL \
1511 ? 0 \
6453db45
KH
1512 : ((fail_stack).size \
1513 = (MIN (re_max_failures * TYPICAL_FAILURE_SIZE, \
1514 ((fail_stack).size * sizeof (fail_stack_elt_t) \
1515 * FAIL_STACK_GROWTH_FACTOR)) \
1516 / sizeof (fail_stack_elt_t)), \
25fe55af 1517 1)))
fa9a63c5
RM
1518
1519
fa9a63c5
RM
1520/* Push a pointer value onto the failure stack.
1521 Assumes the variable `fail_stack'. Probably should only
4bb91c68 1522 be called from within `PUSH_FAILURE_POINT'. */
fa9a63c5 1523#define PUSH_FAILURE_POINTER(item) \
01618498 1524 fail_stack.stack[fail_stack.avail++].pointer = (item)
fa9a63c5
RM
1525
1526/* This pushes an integer-valued item onto the failure stack.
1527 Assumes the variable `fail_stack'. Probably should only
4bb91c68 1528 be called from within `PUSH_FAILURE_POINT'. */
fa9a63c5
RM
1529#define PUSH_FAILURE_INT(item) \
1530 fail_stack.stack[fail_stack.avail++].integer = (item)
1531
1532/* Push a fail_stack_elt_t value onto the failure stack.
1533 Assumes the variable `fail_stack'. Probably should only
4bb91c68 1534 be called from within `PUSH_FAILURE_POINT'. */
fa9a63c5
RM
1535#define PUSH_FAILURE_ELT(item) \
1536 fail_stack.stack[fail_stack.avail++] = (item)
1537
1538/* These three POP... operations complement the three PUSH... operations.
1539 All assume that `fail_stack' is nonempty. */
1540#define POP_FAILURE_POINTER() fail_stack.stack[--fail_stack.avail].pointer
1541#define POP_FAILURE_INT() fail_stack.stack[--fail_stack.avail].integer
1542#define POP_FAILURE_ELT() fail_stack.stack[--fail_stack.avail]
1543
505bde11
SM
1544/* Individual items aside from the registers. */
1545#define NUM_NONREG_ITEMS 3
1546
1547/* Used to examine the stack (to detect infinite loops). */
1548#define FAILURE_PAT(h) fail_stack.stack[(h) - 1].pointer
66f0296e 1549#define FAILURE_STR(h) (fail_stack.stack[(h) - 2].pointer)
505bde11
SM
1550#define NEXT_FAILURE_HANDLE(h) fail_stack.stack[(h) - 3].integer
1551#define TOP_FAILURE_HANDLE() fail_stack.frame
fa9a63c5
RM
1552
1553
505bde11
SM
1554#define ENSURE_FAIL_STACK(space) \
1555while (REMAINING_AVAIL_SLOTS <= space) { \
1556 if (!GROW_FAIL_STACK (fail_stack)) \
1557 return -2; \
1558 DEBUG_PRINT2 ("\n Doubled stack; size now: %d\n", (fail_stack).size);\
1559 DEBUG_PRINT2 (" slots available: %d\n", REMAINING_AVAIL_SLOTS);\
1560}
1561
1562/* Push register NUM onto the stack. */
1563#define PUSH_FAILURE_REG(num) \
1564do { \
1565 char *destination; \
1566 ENSURE_FAIL_STACK(3); \
1567 DEBUG_PRINT4 (" Push reg %d (spanning %p -> %p)\n", \
1568 num, regstart[num], regend[num]); \
1569 PUSH_FAILURE_POINTER (regstart[num]); \
1570 PUSH_FAILURE_POINTER (regend[num]); \
1571 PUSH_FAILURE_INT (num); \
1572} while (0)
1573
01618498
SM
1574/* Change the counter's value to VAL, but make sure that it will
1575 be reset when backtracking. */
1576#define PUSH_NUMBER(ptr,val) \
dc1e502d
SM
1577do { \
1578 char *destination; \
1579 int c; \
1580 ENSURE_FAIL_STACK(3); \
1581 EXTRACT_NUMBER (c, ptr); \
01618498 1582 DEBUG_PRINT4 (" Push number %p = %d -> %d\n", ptr, c, val); \
dc1e502d
SM
1583 PUSH_FAILURE_INT (c); \
1584 PUSH_FAILURE_POINTER (ptr); \
1585 PUSH_FAILURE_INT (-1); \
01618498 1586 STORE_NUMBER (ptr, val); \
dc1e502d
SM
1587} while (0)
1588
505bde11 1589/* Pop a saved register off the stack. */
dc1e502d 1590#define POP_FAILURE_REG_OR_COUNT() \
505bde11
SM
1591do { \
1592 int reg = POP_FAILURE_INT (); \
dc1e502d
SM
1593 if (reg == -1) \
1594 { \
1595 /* It's a counter. */ \
6dcf2d0e
SM
1596 /* Here, we discard `const', making re_match non-reentrant. */ \
1597 unsigned char *ptr = (unsigned char*) POP_FAILURE_POINTER (); \
dc1e502d
SM
1598 reg = POP_FAILURE_INT (); \
1599 STORE_NUMBER (ptr, reg); \
1600 DEBUG_PRINT3 (" Pop counter %p = %d\n", ptr, reg); \
1601 } \
1602 else \
1603 { \
1604 regend[reg] = POP_FAILURE_POINTER (); \
1605 regstart[reg] = POP_FAILURE_POINTER (); \
1606 DEBUG_PRINT4 (" Pop reg %d (spanning %p -> %p)\n", \
1607 reg, regstart[reg], regend[reg]); \
1608 } \
505bde11
SM
1609} while (0)
1610
1611/* Check that we are not stuck in an infinite loop. */
1612#define CHECK_INFINITE_LOOP(pat_cur, string_place) \
1613do { \
f6df485f 1614 int failure = TOP_FAILURE_HANDLE (); \
505bde11 1615 /* Check for infinite matching loops */ \
f6df485f
RS
1616 while (failure > 0 \
1617 && (FAILURE_STR (failure) == string_place \
1618 || FAILURE_STR (failure) == NULL)) \
505bde11
SM
1619 { \
1620 assert (FAILURE_PAT (failure) >= bufp->buffer \
66f0296e 1621 && FAILURE_PAT (failure) <= bufp->buffer + bufp->used); \
505bde11 1622 if (FAILURE_PAT (failure) == pat_cur) \
f6df485f 1623 { \
6df42991
SM
1624 cycle = 1; \
1625 break; \
f6df485f 1626 } \
66f0296e 1627 DEBUG_PRINT2 (" Other pattern: %p\n", FAILURE_PAT (failure)); \
505bde11
SM
1628 failure = NEXT_FAILURE_HANDLE(failure); \
1629 } \
1630 DEBUG_PRINT2 (" Other string: %p\n", FAILURE_STR (failure)); \
1631} while (0)
6df42991 1632
fa9a63c5 1633/* Push the information about the state we will need
5e69f11e
RM
1634 if we ever fail back to it.
1635
505bde11 1636 Requires variables fail_stack, regstart, regend and
320a2a73 1637 num_regs be declared. GROW_FAIL_STACK requires `destination' be
fa9a63c5 1638 declared.
5e69f11e 1639
fa9a63c5
RM
1640 Does `return FAILURE_CODE' if runs out of memory. */
1641
505bde11
SM
1642#define PUSH_FAILURE_POINT(pattern, string_place) \
1643do { \
1644 char *destination; \
1645 /* Must be int, so when we don't save any registers, the arithmetic \
1646 of 0 + -1 isn't done as unsigned. */ \
1647 \
505bde11 1648 DEBUG_STATEMENT (nfailure_points_pushed++); \
4bb91c68 1649 DEBUG_PRINT1 ("\nPUSH_FAILURE_POINT:\n"); \
505bde11
SM
1650 DEBUG_PRINT2 (" Before push, next avail: %d\n", (fail_stack).avail); \
1651 DEBUG_PRINT2 (" size: %d\n", (fail_stack).size);\
1652 \
1653 ENSURE_FAIL_STACK (NUM_NONREG_ITEMS); \
1654 \
1655 DEBUG_PRINT1 ("\n"); \
1656 \
1657 DEBUG_PRINT2 (" Push frame index: %d\n", fail_stack.frame); \
1658 PUSH_FAILURE_INT (fail_stack.frame); \
1659 \
1660 DEBUG_PRINT2 (" Push string %p: `", string_place); \
1661 DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, size2);\
1662 DEBUG_PRINT1 ("'\n"); \
1663 PUSH_FAILURE_POINTER (string_place); \
1664 \
1665 DEBUG_PRINT2 (" Push pattern %p: ", pattern); \
1666 DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern, pend); \
1667 PUSH_FAILURE_POINTER (pattern); \
1668 \
1669 /* Close the frame by moving the frame pointer past it. */ \
1670 fail_stack.frame = fail_stack.avail; \
1671} while (0)
fa9a63c5 1672
320a2a73
KH
1673/* Estimate the size of data pushed by a typical failure stack entry.
1674 An estimate is all we need, because all we use this for
1675 is to choose a limit for how big to make the failure stack. */
ada30c0e 1676/* BEWARE, the value `20' is hard-coded in emacs.c:main(). */
320a2a73 1677#define TYPICAL_FAILURE_SIZE 20
fa9a63c5 1678
fa9a63c5
RM
1679/* How many items can still be added to the stack without overflowing it. */
1680#define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
1681
1682
1683/* Pops what PUSH_FAIL_STACK pushes.
1684
1685 We restore into the parameters, all of which should be lvalues:
1686 STR -- the saved data position.
1687 PAT -- the saved pattern position.
fa9a63c5 1688 REGSTART, REGEND -- arrays of string positions.
5e69f11e 1689
fa9a63c5 1690 Also assumes the variables `fail_stack' and (if debugging), `bufp',
7814e705 1691 `pend', `string1', `size1', `string2', and `size2'. */
fa9a63c5 1692
505bde11
SM
1693#define POP_FAILURE_POINT(str, pat) \
1694do { \
fa9a63c5
RM
1695 assert (!FAIL_STACK_EMPTY ()); \
1696 \
1697 /* Remove failure points and point to how many regs pushed. */ \
1698 DEBUG_PRINT1 ("POP_FAILURE_POINT:\n"); \
1699 DEBUG_PRINT2 (" Before pop, next avail: %d\n", fail_stack.avail); \
25fe55af 1700 DEBUG_PRINT2 (" size: %d\n", fail_stack.size); \
fa9a63c5 1701 \
505bde11
SM
1702 /* Pop the saved registers. */ \
1703 while (fail_stack.frame < fail_stack.avail) \
dc1e502d 1704 POP_FAILURE_REG_OR_COUNT (); \
fa9a63c5 1705 \
01618498 1706 pat = POP_FAILURE_POINTER (); \
505bde11
SM
1707 DEBUG_PRINT2 (" Popping pattern %p: ", pat); \
1708 DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend); \
fa9a63c5
RM
1709 \
1710 /* If the saved string location is NULL, it came from an \
1711 on_failure_keep_string_jump opcode, and we want to throw away the \
1712 saved NULL, thus retaining our current position in the string. */ \
01618498 1713 str = POP_FAILURE_POINTER (); \
505bde11 1714 DEBUG_PRINT2 (" Popping string %p: `", str); \
fa9a63c5
RM
1715 DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2); \
1716 DEBUG_PRINT1 ("'\n"); \
1717 \
505bde11
SM
1718 fail_stack.frame = POP_FAILURE_INT (); \
1719 DEBUG_PRINT2 (" Popping frame index: %d\n", fail_stack.frame); \
fa9a63c5 1720 \
505bde11
SM
1721 assert (fail_stack.avail >= 0); \
1722 assert (fail_stack.frame <= fail_stack.avail); \
fa9a63c5 1723 \
fa9a63c5 1724 DEBUG_STATEMENT (nfailure_points_popped++); \
505bde11 1725} while (0) /* POP_FAILURE_POINT */
fa9a63c5
RM
1726
1727
1728\f
fa9a63c5 1729/* Registers are set to a sentinel when they haven't yet matched. */
4bb91c68 1730#define REG_UNSET(e) ((e) == NULL)
fa9a63c5
RM
1731\f
1732/* Subroutine declarations and macros for regex_compile. */
1733
4bb91c68
SM
1734static reg_errcode_t regex_compile _RE_ARGS ((re_char *pattern, size_t size,
1735 reg_syntax_t syntax,
1736 struct re_pattern_buffer *bufp));
1737static void store_op1 _RE_ARGS ((re_opcode_t op, unsigned char *loc, int arg));
1738static void store_op2 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
1739 int arg1, int arg2));
1740static void insert_op1 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
1741 int arg, unsigned char *end));
1742static void insert_op2 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
1743 int arg1, int arg2, unsigned char *end));
01618498
SM
1744static boolean at_begline_loc_p _RE_ARGS ((re_char *pattern,
1745 re_char *p,
4bb91c68 1746 reg_syntax_t syntax));
01618498
SM
1747static boolean at_endline_loc_p _RE_ARGS ((re_char *p,
1748 re_char *pend,
4bb91c68 1749 reg_syntax_t syntax));
01618498
SM
1750static re_char *skip_one_char _RE_ARGS ((re_char *p));
1751static int analyse_first _RE_ARGS ((re_char *p, re_char *pend,
4bb91c68 1752 char *fastmap, const int multibyte));
fa9a63c5 1753
fa9a63c5 1754/* Fetch the next character in the uncompiled pattern, with no
4bb91c68 1755 translation. */
36595814 1756#define PATFETCH(c) \
2d1675e4
SM
1757 do { \
1758 int len; \
1759 if (p == pend) return REG_EEND; \
62a6e103 1760 c = RE_STRING_CHAR_AND_LENGTH (p, len, multibyte); \
2d1675e4 1761 p += len; \
fa9a63c5
RM
1762 } while (0)
1763
fa9a63c5
RM
1764
1765/* If `translate' is non-null, return translate[D], else just D. We
1766 cast the subscript to translate because some data is declared as
1767 `char *', to avoid warnings when a string constant is passed. But
1768 when we use a character as a subscript we must make it unsigned. */
6676cb1c 1769#ifndef TRANSLATE
0b32bf0e 1770# define TRANSLATE(d) \
66f0296e 1771 (RE_TRANSLATE_P (translate) ? RE_TRANSLATE (translate, (d)) : (d))
6676cb1c 1772#endif
fa9a63c5
RM
1773
1774
1775/* Macros for outputting the compiled pattern into `buffer'. */
1776
1777/* If the buffer isn't allocated when it comes in, use this. */
1778#define INIT_BUF_SIZE 32
1779
4bb91c68 1780/* Make sure we have at least N more bytes of space in buffer. */
fa9a63c5 1781#define GET_BUFFER_SPACE(n) \
01618498 1782 while ((size_t) (b - bufp->buffer + (n)) > bufp->allocated) \
fa9a63c5
RM
1783 EXTEND_BUFFER ()
1784
1785/* Make sure we have one more byte of buffer space and then add C to it. */
1786#define BUF_PUSH(c) \
1787 do { \
1788 GET_BUFFER_SPACE (1); \
1789 *b++ = (unsigned char) (c); \
1790 } while (0)
1791
1792
1793/* Ensure we have two more bytes of buffer space and then append C1 and C2. */
1794#define BUF_PUSH_2(c1, c2) \
1795 do { \
1796 GET_BUFFER_SPACE (2); \
1797 *b++ = (unsigned char) (c1); \
1798 *b++ = (unsigned char) (c2); \
1799 } while (0)
1800
1801
4bb91c68 1802/* As with BUF_PUSH_2, except for three bytes. */
fa9a63c5
RM
1803#define BUF_PUSH_3(c1, c2, c3) \
1804 do { \
1805 GET_BUFFER_SPACE (3); \
1806 *b++ = (unsigned char) (c1); \
1807 *b++ = (unsigned char) (c2); \
1808 *b++ = (unsigned char) (c3); \
1809 } while (0)
1810
1811
1812/* Store a jump with opcode OP at LOC to location TO. We store a
4bb91c68 1813 relative address offset by the three bytes the jump itself occupies. */
fa9a63c5
RM
1814#define STORE_JUMP(op, loc, to) \
1815 store_op1 (op, loc, (to) - (loc) - 3)
1816
1817/* Likewise, for a two-argument jump. */
1818#define STORE_JUMP2(op, loc, to, arg) \
1819 store_op2 (op, loc, (to) - (loc) - 3, arg)
1820
4bb91c68 1821/* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */
fa9a63c5
RM
1822#define INSERT_JUMP(op, loc, to) \
1823 insert_op1 (op, loc, (to) - (loc) - 3, b)
1824
1825/* Like `STORE_JUMP2', but for inserting. Assume `b' is the buffer end. */
1826#define INSERT_JUMP2(op, loc, to, arg) \
1827 insert_op2 (op, loc, (to) - (loc) - 3, arg, b)
1828
1829
1830/* This is not an arbitrary limit: the arguments which represent offsets
839966f3 1831 into the pattern are two bytes long. So if 2^15 bytes turns out to
fa9a63c5 1832 be too small, many things would have to change. */
839966f3
KH
1833# define MAX_BUF_SIZE (1L << 15)
1834
1835#if 0 /* This is when we thought it could be 2^16 bytes. */
4bb91c68
SM
1836/* Any other compiler which, like MSC, has allocation limit below 2^16
1837 bytes will have to use approach similar to what was done below for
1838 MSC and drop MAX_BUF_SIZE a bit. Otherwise you may end up
1839 reallocating to 0 bytes. Such thing is not going to work too well.
1840 You have been warned!! */
1841#if defined _MSC_VER && !defined WIN32
1842/* Microsoft C 16-bit versions limit malloc to approx 65512 bytes. */
1843# define MAX_BUF_SIZE 65500L
1844#else
1845# define MAX_BUF_SIZE (1L << 16)
1846#endif
839966f3 1847#endif /* 0 */
fa9a63c5
RM
1848
1849/* Extend the buffer by twice its current size via realloc and
1850 reset the pointers that pointed into the old block to point to the
1851 correct places in the new one. If extending the buffer results in it
4bb91c68
SM
1852 being larger than MAX_BUF_SIZE, then flag memory exhausted. */
1853#if __BOUNDED_POINTERS__
1854# define SET_HIGH_BOUND(P) (__ptrhigh (P) = __ptrlow (P) + bufp->allocated)
381880b0
CY
1855# define MOVE_BUFFER_POINTER(P) \
1856 (__ptrlow (P) = new_buffer + (__ptrlow (P) - old_buffer), \
1857 SET_HIGH_BOUND (P), \
1858 __ptrvalue (P) = new_buffer + (__ptrvalue (P) - old_buffer))
4bb91c68
SM
1859# define ELSE_EXTEND_BUFFER_HIGH_BOUND \
1860 else \
1861 { \
1862 SET_HIGH_BOUND (b); \
1863 SET_HIGH_BOUND (begalt); \
1864 if (fixup_alt_jump) \
1865 SET_HIGH_BOUND (fixup_alt_jump); \
1866 if (laststart) \
1867 SET_HIGH_BOUND (laststart); \
1868 if (pending_exact) \
1869 SET_HIGH_BOUND (pending_exact); \
1870 }
1871#else
381880b0 1872# define MOVE_BUFFER_POINTER(P) ((P) = new_buffer + ((P) - old_buffer))
4bb91c68
SM
1873# define ELSE_EXTEND_BUFFER_HIGH_BOUND
1874#endif
fa9a63c5 1875#define EXTEND_BUFFER() \
25fe55af 1876 do { \
381880b0 1877 unsigned char *old_buffer = bufp->buffer; \
25fe55af 1878 if (bufp->allocated == MAX_BUF_SIZE) \
fa9a63c5
RM
1879 return REG_ESIZE; \
1880 bufp->allocated <<= 1; \
1881 if (bufp->allocated > MAX_BUF_SIZE) \
25fe55af 1882 bufp->allocated = MAX_BUF_SIZE; \
01618498 1883 RETALLOC (bufp->buffer, bufp->allocated, unsigned char); \
fa9a63c5
RM
1884 if (bufp->buffer == NULL) \
1885 return REG_ESPACE; \
1886 /* If the buffer moved, move all the pointers into it. */ \
1887 if (old_buffer != bufp->buffer) \
1888 { \
381880b0 1889 unsigned char *new_buffer = bufp->buffer; \
4bb91c68
SM
1890 MOVE_BUFFER_POINTER (b); \
1891 MOVE_BUFFER_POINTER (begalt); \
25fe55af 1892 if (fixup_alt_jump) \
4bb91c68 1893 MOVE_BUFFER_POINTER (fixup_alt_jump); \
25fe55af 1894 if (laststart) \
4bb91c68 1895 MOVE_BUFFER_POINTER (laststart); \
25fe55af 1896 if (pending_exact) \
4bb91c68 1897 MOVE_BUFFER_POINTER (pending_exact); \
fa9a63c5 1898 } \
4bb91c68 1899 ELSE_EXTEND_BUFFER_HIGH_BOUND \
fa9a63c5
RM
1900 } while (0)
1901
1902
1903/* Since we have one byte reserved for the register number argument to
1904 {start,stop}_memory, the maximum number of groups we can report
1905 things about is what fits in that byte. */
1906#define MAX_REGNUM 255
1907
1908/* But patterns can have more than `MAX_REGNUM' registers. We just
1909 ignore the excess. */
098d42af 1910typedef int regnum_t;
fa9a63c5
RM
1911
1912
1913/* Macros for the compile stack. */
1914
1915/* Since offsets can go either forwards or backwards, this type needs to
4bb91c68
SM
1916 be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */
1917/* int may be not enough when sizeof(int) == 2. */
1918typedef long pattern_offset_t;
fa9a63c5
RM
1919
1920typedef struct
1921{
1922 pattern_offset_t begalt_offset;
1923 pattern_offset_t fixup_alt_jump;
5e69f11e 1924 pattern_offset_t laststart_offset;
fa9a63c5
RM
1925 regnum_t regnum;
1926} compile_stack_elt_t;
1927
1928
1929typedef struct
1930{
1931 compile_stack_elt_t *stack;
1932 unsigned size;
1933 unsigned avail; /* Offset of next open position. */
1934} compile_stack_type;
1935
1936
1937#define INIT_COMPILE_STACK_SIZE 32
1938
1939#define COMPILE_STACK_EMPTY (compile_stack.avail == 0)
1940#define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size)
1941
4bb91c68 1942/* The next available element. */
fa9a63c5
RM
1943#define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
1944
1cee1e27
SM
1945/* Explicit quit checking is only used on NTemacs and whenever we
1946 use polling to process input events. */
1947#if defined emacs && (defined WINDOWSNT || defined SYNC_INPUT) && defined QUIT
77d11aec
RS
1948extern int immediate_quit;
1949# define IMMEDIATE_QUIT_CHECK \
1950 do { \
1951 if (immediate_quit) QUIT; \
1952 } while (0)
1953#else
1954# define IMMEDIATE_QUIT_CHECK ((void)0)
1955#endif
1956\f
b18215fc
RS
1957/* Structure to manage work area for range table. */
1958struct range_table_work_area
1959{
1960 int *table; /* actual work area. */
1961 int allocated; /* allocated size for work area in bytes. */
7814e705 1962 int used; /* actually used size in words. */
96cc36cc 1963 int bits; /* flag to record character classes */
b18215fc
RS
1964};
1965
77d11aec
RS
1966/* Make sure that WORK_AREA can hold more N multibyte characters.
1967 This is used only in set_image_of_range and set_image_of_range_1.
1968 It expects WORK_AREA to be a pointer.
1969 If it can't get the space, it returns from the surrounding function. */
1970
1971#define EXTEND_RANGE_TABLE(work_area, n) \
1972 do { \
8f924df7 1973 if (((work_area).used + (n)) * sizeof (int) > (work_area).allocated) \
77d11aec 1974 { \
8f924df7
KH
1975 extend_range_table_work_area (&work_area); \
1976 if ((work_area).table == 0) \
77d11aec
RS
1977 return (REG_ESPACE); \
1978 } \
b18215fc
RS
1979 } while (0)
1980
96cc36cc
RS
1981#define SET_RANGE_TABLE_WORK_AREA_BIT(work_area, bit) \
1982 (work_area).bits |= (bit)
1983
14473664
SM
1984/* Bits used to implement the multibyte-part of the various character classes
1985 such as [:alnum:] in a charset's range table. */
1986#define BIT_WORD 0x1
1987#define BIT_LOWER 0x2
1988#define BIT_PUNCT 0x4
1989#define BIT_SPACE 0x8
1990#define BIT_UPPER 0x10
1991#define BIT_MULTIBYTE 0x20
96cc36cc 1992
b18215fc
RS
1993/* Set a range (RANGE_START, RANGE_END) to WORK_AREA. */
1994#define SET_RANGE_TABLE_WORK_AREA(work_area, range_start, range_end) \
77d11aec 1995 do { \
8f924df7 1996 EXTEND_RANGE_TABLE ((work_area), 2); \
b18215fc
RS
1997 (work_area).table[(work_area).used++] = (range_start); \
1998 (work_area).table[(work_area).used++] = (range_end); \
1999 } while (0)
2000
7814e705 2001/* Free allocated memory for WORK_AREA. */
b18215fc
RS
2002#define FREE_RANGE_TABLE_WORK_AREA(work_area) \
2003 do { \
2004 if ((work_area).table) \
2005 free ((work_area).table); \
2006 } while (0)
2007
96cc36cc 2008#define CLEAR_RANGE_TABLE_WORK_USED(work_area) ((work_area).used = 0, (work_area).bits = 0)
b18215fc 2009#define RANGE_TABLE_WORK_USED(work_area) ((work_area).used)
96cc36cc 2010#define RANGE_TABLE_WORK_BITS(work_area) ((work_area).bits)
b18215fc 2011#define RANGE_TABLE_WORK_ELT(work_area, i) ((work_area).table[i])
77d11aec 2012\f
b18215fc 2013
fa9a63c5 2014/* Set the bit for character C in a list. */
01618498 2015#define SET_LIST_BIT(c) (b[((c)) / BYTEWIDTH] |= 1 << ((c) % BYTEWIDTH))
fa9a63c5
RM
2016
2017
bf216479
KH
2018#ifdef emacs
2019
cf9c99bc
KH
2020/* Store characters in the range FROM to TO in the bitmap at B (for
2021 ASCII and unibyte characters) and WORK_AREA (for multibyte
2022 characters) while translating them and paying attention to the
2023 continuity of translated characters.
8f924df7 2024
cf9c99bc
KH
2025 Implementation note: It is better to implement these fairly big
2026 macros by a function, but it's not that easy because macros called
8f924df7 2027 in this macro assume various local variables already declared. */
bf216479 2028
cf9c99bc
KH
2029/* Both FROM and TO are ASCII characters. */
2030
2031#define SETUP_ASCII_RANGE(work_area, FROM, TO) \
2032 do { \
2033 int C0, C1; \
2034 \
2035 for (C0 = (FROM); C0 <= (TO); C0++) \
2036 { \
2037 C1 = TRANSLATE (C0); \
2038 if (! ASCII_CHAR_P (C1)) \
2039 { \
2040 SET_RANGE_TABLE_WORK_AREA ((work_area), C1, C1); \
2041 if ((C1 = RE_CHAR_TO_UNIBYTE (C1)) < 0) \
2042 C1 = C0; \
2043 } \
2044 SET_LIST_BIT (C1); \
2045 } \
2046 } while (0)
2047
2048
2049/* Both FROM and TO are unibyte characters (0x80..0xFF). */
2050
2051#define SETUP_UNIBYTE_RANGE(work_area, FROM, TO) \
2052 do { \
2053 int C0, C1, C2, I; \
2054 int USED = RANGE_TABLE_WORK_USED (work_area); \
2055 \
2056 for (C0 = (FROM); C0 <= (TO); C0++) \
2057 { \
2058 C1 = RE_CHAR_TO_MULTIBYTE (C0); \
2059 if (CHAR_BYTE8_P (C1)) \
2060 SET_LIST_BIT (C0); \
2061 else \
2062 { \
2063 C2 = TRANSLATE (C1); \
2064 if (C2 == C1 \
2065 || (C1 = RE_CHAR_TO_UNIBYTE (C2)) < 0) \
2066 C1 = C0; \
2067 SET_LIST_BIT (C1); \
2068 for (I = RANGE_TABLE_WORK_USED (work_area) - 2; I >= USED; I -= 2) \
2069 { \
2070 int from = RANGE_TABLE_WORK_ELT (work_area, I); \
2071 int to = RANGE_TABLE_WORK_ELT (work_area, I + 1); \
2072 \
2073 if (C2 >= from - 1 && C2 <= to + 1) \
2074 { \
2075 if (C2 == from - 1) \
2076 RANGE_TABLE_WORK_ELT (work_area, I)--; \
2077 else if (C2 == to + 1) \
2078 RANGE_TABLE_WORK_ELT (work_area, I + 1)++; \
2079 break; \
2080 } \
2081 } \
2082 if (I < USED) \
2083 SET_RANGE_TABLE_WORK_AREA ((work_area), C2, C2); \
2084 } \
2085 } \
2086 } while (0)
2087
2088
2089/* Both FROM and TO are mulitbyte characters. */
2090
2091#define SETUP_MULTIBYTE_RANGE(work_area, FROM, TO) \
2092 do { \
2093 int C0, C1, C2, I, USED = RANGE_TABLE_WORK_USED (work_area); \
2094 \
2095 SET_RANGE_TABLE_WORK_AREA ((work_area), (FROM), (TO)); \
2096 for (C0 = (FROM); C0 <= (TO); C0++) \
2097 { \
2098 C1 = TRANSLATE (C0); \
2099 if ((C2 = RE_CHAR_TO_UNIBYTE (C1)) >= 0 \
2100 || (C1 != C0 && (C2 = RE_CHAR_TO_UNIBYTE (C0)) >= 0)) \
2101 SET_LIST_BIT (C2); \
2102 if (C1 >= (FROM) && C1 <= (TO)) \
2103 continue; \
2104 for (I = RANGE_TABLE_WORK_USED (work_area) - 2; I >= USED; I -= 2) \
2105 { \
2106 int from = RANGE_TABLE_WORK_ELT (work_area, I); \
2107 int to = RANGE_TABLE_WORK_ELT (work_area, I + 1); \
2108 \
2109 if (C1 >= from - 1 && C1 <= to + 1) \
2110 { \
2111 if (C1 == from - 1) \
2112 RANGE_TABLE_WORK_ELT (work_area, I)--; \
2113 else if (C1 == to + 1) \
2114 RANGE_TABLE_WORK_ELT (work_area, I + 1)++; \
2115 break; \
2116 } \
2117 } \
2118 if (I < USED) \
2119 SET_RANGE_TABLE_WORK_AREA ((work_area), C1, C1); \
2120 } \
bf216479
KH
2121 } while (0)
2122
2123#endif /* emacs */
2124
fa9a63c5 2125/* Get the next unsigned number in the uncompiled pattern. */
25fe55af 2126#define GET_UNSIGNED_NUMBER(num) \
c72b0edd
SM
2127 do { \
2128 if (p == pend) \
2129 FREE_STACK_RETURN (REG_EBRACE); \
2130 else \
2131 { \
2132 PATFETCH (c); \
2133 while ('0' <= c && c <= '9') \
2134 { \
2135 int prev; \
2136 if (num < 0) \
2137 num = 0; \
2138 prev = num; \
2139 num = num * 10 + c - '0'; \
2140 if (num / 10 != prev) \
2141 FREE_STACK_RETURN (REG_BADBR); \
2142 if (p == pend) \
2143 FREE_STACK_RETURN (REG_EBRACE); \
2144 PATFETCH (c); \
2145 } \
2146 } \
2147 } while (0)
77d11aec 2148\f
1fdab503 2149#if ! WIDE_CHAR_SUPPORT
01618498 2150
14473664 2151/* Map a string to the char class it names (if any). */
1fdab503 2152re_wctype_t
ada30c0e
SM
2153re_wctype (str)
2154 re_char *str;
14473664 2155{
ada30c0e 2156 const char *string = str;
14473664
SM
2157 if (STREQ (string, "alnum")) return RECC_ALNUM;
2158 else if (STREQ (string, "alpha")) return RECC_ALPHA;
2159 else if (STREQ (string, "word")) return RECC_WORD;
2160 else if (STREQ (string, "ascii")) return RECC_ASCII;
2161 else if (STREQ (string, "nonascii")) return RECC_NONASCII;
2162 else if (STREQ (string, "graph")) return RECC_GRAPH;
2163 else if (STREQ (string, "lower")) return RECC_LOWER;
2164 else if (STREQ (string, "print")) return RECC_PRINT;
2165 else if (STREQ (string, "punct")) return RECC_PUNCT;
2166 else if (STREQ (string, "space")) return RECC_SPACE;
2167 else if (STREQ (string, "upper")) return RECC_UPPER;
2168 else if (STREQ (string, "unibyte")) return RECC_UNIBYTE;
2169 else if (STREQ (string, "multibyte")) return RECC_MULTIBYTE;
2170 else if (STREQ (string, "digit")) return RECC_DIGIT;
2171 else if (STREQ (string, "xdigit")) return RECC_XDIGIT;
2172 else if (STREQ (string, "cntrl")) return RECC_CNTRL;
2173 else if (STREQ (string, "blank")) return RECC_BLANK;
2174 else return 0;
2175}
2176
e0f24100 2177/* True if CH is in the char class CC. */
1fdab503 2178boolean
14473664
SM
2179re_iswctype (ch, cc)
2180 int ch;
2181 re_wctype_t cc;
2182{
2183 switch (cc)
2184 {
0cdd06f8
SM
2185 case RECC_ALNUM: return ISALNUM (ch);
2186 case RECC_ALPHA: return ISALPHA (ch);
2187 case RECC_BLANK: return ISBLANK (ch);
2188 case RECC_CNTRL: return ISCNTRL (ch);
2189 case RECC_DIGIT: return ISDIGIT (ch);
2190 case RECC_GRAPH: return ISGRAPH (ch);
2191 case RECC_LOWER: return ISLOWER (ch);
2192 case RECC_PRINT: return ISPRINT (ch);
2193 case RECC_PUNCT: return ISPUNCT (ch);
2194 case RECC_SPACE: return ISSPACE (ch);
2195 case RECC_UPPER: return ISUPPER (ch);
2196 case RECC_XDIGIT: return ISXDIGIT (ch);
2197 case RECC_ASCII: return IS_REAL_ASCII (ch);
2198 case RECC_NONASCII: return !IS_REAL_ASCII (ch);
2199 case RECC_UNIBYTE: return ISUNIBYTE (ch);
2200 case RECC_MULTIBYTE: return !ISUNIBYTE (ch);
2201 case RECC_WORD: return ISWORD (ch);
2202 case RECC_ERROR: return false;
2203 default:
2204 abort();
14473664
SM
2205 }
2206}
fa9a63c5 2207
14473664
SM
2208/* Return a bit-pattern to use in the range-table bits to match multibyte
2209 chars of class CC. */
2210static int
2211re_wctype_to_bit (cc)
2212 re_wctype_t cc;
2213{
2214 switch (cc)
2215 {
2216 case RECC_NONASCII: case RECC_PRINT: case RECC_GRAPH:
0cdd06f8
SM
2217 case RECC_MULTIBYTE: return BIT_MULTIBYTE;
2218 case RECC_ALPHA: case RECC_ALNUM: case RECC_WORD: return BIT_WORD;
2219 case RECC_LOWER: return BIT_LOWER;
2220 case RECC_UPPER: return BIT_UPPER;
2221 case RECC_PUNCT: return BIT_PUNCT;
2222 case RECC_SPACE: return BIT_SPACE;
14473664 2223 case RECC_ASCII: case RECC_DIGIT: case RECC_XDIGIT: case RECC_CNTRL:
0cdd06f8
SM
2224 case RECC_BLANK: case RECC_UNIBYTE: case RECC_ERROR: return 0;
2225 default:
2226 abort();
14473664
SM
2227 }
2228}
2229#endif
77d11aec
RS
2230\f
2231/* Filling in the work area of a range. */
2232
2233/* Actually extend the space in WORK_AREA. */
2234
2235static void
2236extend_range_table_work_area (work_area)
2237 struct range_table_work_area *work_area;
177c0ea7 2238{
77d11aec
RS
2239 work_area->allocated += 16 * sizeof (int);
2240 if (work_area->table)
2241 work_area->table
2242 = (int *) realloc (work_area->table, work_area->allocated);
2243 else
2244 work_area->table
2245 = (int *) malloc (work_area->allocated);
2246}
2247
8f924df7 2248#if 0
77d11aec
RS
2249#ifdef emacs
2250
2251/* Carefully find the ranges of codes that are equivalent
2252 under case conversion to the range start..end when passed through
2253 TRANSLATE. Handle the case where non-letters can come in between
2254 two upper-case letters (which happens in Latin-1).
2255 Also handle the case of groups of more than 2 case-equivalent chars.
2256
2257 The basic method is to look at consecutive characters and see
2258 if they can form a run that can be handled as one.
2259
2260 Returns -1 if successful, REG_ESPACE if ran out of space. */
2261
2262static int
2263set_image_of_range_1 (work_area, start, end, translate)
2264 RE_TRANSLATE_TYPE translate;
2265 struct range_table_work_area *work_area;
2266 re_wchar_t start, end;
2267{
2268 /* `one_case' indicates a character, or a run of characters,
2269 each of which is an isolate (no case-equivalents).
2270 This includes all ASCII non-letters.
2271
2272 `two_case' indicates a character, or a run of characters,
2273 each of which has two case-equivalent forms.
2274 This includes all ASCII letters.
2275
2276 `strange' indicates a character that has more than one
2277 case-equivalent. */
177c0ea7 2278
77d11aec
RS
2279 enum case_type {one_case, two_case, strange};
2280
2281 /* Describe the run that is in progress,
2282 which the next character can try to extend.
2283 If run_type is strange, that means there really is no run.
2284 If run_type is one_case, then run_start...run_end is the run.
2285 If run_type is two_case, then the run is run_start...run_end,
2286 and the case-equivalents end at run_eqv_end. */
2287
2288 enum case_type run_type = strange;
2289 int run_start, run_end, run_eqv_end;
2290
2291 Lisp_Object eqv_table;
2292
2293 if (!RE_TRANSLATE_P (translate))
2294 {
b7c12565 2295 EXTEND_RANGE_TABLE (work_area, 2);
77d11aec
RS
2296 work_area->table[work_area->used++] = (start);
2297 work_area->table[work_area->used++] = (end);
b7c12565 2298 return -1;
77d11aec
RS
2299 }
2300
2301 eqv_table = XCHAR_TABLE (translate)->extras[2];
99633e97 2302
77d11aec
RS
2303 for (; start <= end; start++)
2304 {
2305 enum case_type this_type;
2306 int eqv = RE_TRANSLATE (eqv_table, start);
2307 int minchar, maxchar;
2308
2309 /* Classify this character */
2310 if (eqv == start)
2311 this_type = one_case;
2312 else if (RE_TRANSLATE (eqv_table, eqv) == start)
2313 this_type = two_case;
2314 else
2315 this_type = strange;
2316
2317 if (start < eqv)
2318 minchar = start, maxchar = eqv;
2319 else
2320 minchar = eqv, maxchar = start;
2321
2322 /* Can this character extend the run in progress? */
2323 if (this_type == strange || this_type != run_type
2324 || !(minchar == run_end + 1
2325 && (run_type == two_case
2326 ? maxchar == run_eqv_end + 1 : 1)))
2327 {
2328 /* No, end the run.
2329 Record each of its equivalent ranges. */
2330 if (run_type == one_case)
2331 {
2332 EXTEND_RANGE_TABLE (work_area, 2);
2333 work_area->table[work_area->used++] = run_start;
2334 work_area->table[work_area->used++] = run_end;
2335 }
2336 else if (run_type == two_case)
2337 {
2338 EXTEND_RANGE_TABLE (work_area, 4);
2339 work_area->table[work_area->used++] = run_start;
2340 work_area->table[work_area->used++] = run_end;
2341 work_area->table[work_area->used++]
2342 = RE_TRANSLATE (eqv_table, run_start);
2343 work_area->table[work_area->used++]
2344 = RE_TRANSLATE (eqv_table, run_end);
2345 }
2346 run_type = strange;
2347 }
177c0ea7 2348
77d11aec
RS
2349 if (this_type == strange)
2350 {
2351 /* For a strange character, add each of its equivalents, one
2352 by one. Don't start a range. */
2353 do
2354 {
2355 EXTEND_RANGE_TABLE (work_area, 2);
2356 work_area->table[work_area->used++] = eqv;
2357 work_area->table[work_area->used++] = eqv;
2358 eqv = RE_TRANSLATE (eqv_table, eqv);
2359 }
2360 while (eqv != start);
2361 }
2362
2363 /* Add this char to the run, or start a new run. */
2364 else if (run_type == strange)
2365 {
2366 /* Initialize a new range. */
2367 run_type = this_type;
2368 run_start = start;
2369 run_end = start;
2370 run_eqv_end = RE_TRANSLATE (eqv_table, run_end);
2371 }
2372 else
2373 {
2374 /* Extend a running range. */
2375 run_end = minchar;
2376 run_eqv_end = RE_TRANSLATE (eqv_table, run_end);
2377 }
2378 }
2379
2380 /* If a run is still in progress at the end, finish it now
2381 by recording its equivalent ranges. */
2382 if (run_type == one_case)
2383 {
2384 EXTEND_RANGE_TABLE (work_area, 2);
2385 work_area->table[work_area->used++] = run_start;
2386 work_area->table[work_area->used++] = run_end;
2387 }
2388 else if (run_type == two_case)
2389 {
2390 EXTEND_RANGE_TABLE (work_area, 4);
2391 work_area->table[work_area->used++] = run_start;
2392 work_area->table[work_area->used++] = run_end;
2393 work_area->table[work_area->used++]
2394 = RE_TRANSLATE (eqv_table, run_start);
2395 work_area->table[work_area->used++]
2396 = RE_TRANSLATE (eqv_table, run_end);
2397 }
2398
2399 return -1;
2400}
36595814 2401
77d11aec 2402#endif /* emacs */
36595814 2403
2b34df4e 2404/* Record the image of the range start..end when passed through
36595814
SM
2405 TRANSLATE. This is not necessarily TRANSLATE(start)..TRANSLATE(end)
2406 and is not even necessarily contiguous.
b7c12565
RS
2407 Normally we approximate it with the smallest contiguous range that contains
2408 all the chars we need. However, for Latin-1 we go to extra effort
2409 to do a better job.
2410
2411 This function is not called for ASCII ranges.
77d11aec
RS
2412
2413 Returns -1 if successful, REG_ESPACE if ran out of space. */
2414
2415static int
36595814
SM
2416set_image_of_range (work_area, start, end, translate)
2417 RE_TRANSLATE_TYPE translate;
2418 struct range_table_work_area *work_area;
2419 re_wchar_t start, end;
2420{
77d11aec
RS
2421 re_wchar_t cmin, cmax;
2422
2423#ifdef emacs
2424 /* For Latin-1 ranges, use set_image_of_range_1
2425 to get proper handling of ranges that include letters and nonletters.
b7c12565 2426 For a range that includes the whole of Latin-1, this is not necessary.
77d11aec 2427 For other character sets, we don't bother to get this right. */
b7c12565
RS
2428 if (RE_TRANSLATE_P (translate) && start < 04400
2429 && !(start < 04200 && end >= 04377))
77d11aec 2430 {
b7c12565 2431 int newend;
77d11aec 2432 int tem;
b7c12565
RS
2433 newend = end;
2434 if (newend > 04377)
2435 newend = 04377;
2436 tem = set_image_of_range_1 (work_area, start, newend, translate);
77d11aec
RS
2437 if (tem > 0)
2438 return tem;
2439
2440 start = 04400;
2441 if (end < 04400)
2442 return -1;
2443 }
2444#endif
2445
b7c12565
RS
2446 EXTEND_RANGE_TABLE (work_area, 2);
2447 work_area->table[work_area->used++] = (start);
2448 work_area->table[work_area->used++] = (end);
2449
2450 cmin = -1, cmax = -1;
77d11aec 2451
36595814 2452 if (RE_TRANSLATE_P (translate))
b7c12565
RS
2453 {
2454 int ch;
77d11aec 2455
b7c12565
RS
2456 for (ch = start; ch <= end; ch++)
2457 {
2458 re_wchar_t c = TRANSLATE (ch);
2459 if (! (start <= c && c <= end))
2460 {
2461 if (cmin == -1)
2462 cmin = c, cmax = c;
2463 else
2464 {
2465 cmin = MIN (cmin, c);
2466 cmax = MAX (cmax, c);
2467 }
2468 }
2469 }
2470
2471 if (cmin != -1)
2472 {
2473 EXTEND_RANGE_TABLE (work_area, 2);
2474 work_area->table[work_area->used++] = (cmin);
2475 work_area->table[work_area->used++] = (cmax);
2476 }
2477 }
36595814 2478
77d11aec
RS
2479 return -1;
2480}
8f924df7 2481#endif /* 0 */
fa9a63c5
RM
2482\f
2483#ifndef MATCH_MAY_ALLOCATE
2484
2485/* If we cannot allocate large objects within re_match_2_internal,
2486 we make the fail stack and register vectors global.
2487 The fail stack, we grow to the maximum size when a regexp
2488 is compiled.
2489 The register vectors, we adjust in size each time we
2490 compile a regexp, according to the number of registers it needs. */
2491
2492static fail_stack_type fail_stack;
2493
2494/* Size with which the following vectors are currently allocated.
2495 That is so we can make them bigger as needed,
4bb91c68 2496 but never make them smaller. */
fa9a63c5
RM
2497static int regs_allocated_size;
2498
66f0296e
SM
2499static re_char ** regstart, ** regend;
2500static re_char **best_regstart, **best_regend;
fa9a63c5
RM
2501
2502/* Make the register vectors big enough for NUM_REGS registers,
4bb91c68 2503 but don't make them smaller. */
fa9a63c5
RM
2504
2505static
2506regex_grow_registers (num_regs)
2507 int num_regs;
2508{
2509 if (num_regs > regs_allocated_size)
2510 {
66f0296e
SM
2511 RETALLOC_IF (regstart, num_regs, re_char *);
2512 RETALLOC_IF (regend, num_regs, re_char *);
2513 RETALLOC_IF (best_regstart, num_regs, re_char *);
2514 RETALLOC_IF (best_regend, num_regs, re_char *);
fa9a63c5
RM
2515
2516 regs_allocated_size = num_regs;
2517 }
2518}
2519
2520#endif /* not MATCH_MAY_ALLOCATE */
2521\f
99633e97
SM
2522static boolean group_in_compile_stack _RE_ARGS ((compile_stack_type
2523 compile_stack,
2524 regnum_t regnum));
2525
fa9a63c5
RM
2526/* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
2527 Returns one of error codes defined in `regex.h', or zero for success.
2528
2529 Assumes the `allocated' (and perhaps `buffer') and `translate'
2530 fields are set in BUFP on entry.
2531
2532 If it succeeds, results are put in BUFP (if it returns an error, the
2533 contents of BUFP are undefined):
2534 `buffer' is the compiled pattern;
2535 `syntax' is set to SYNTAX;
2536 `used' is set to the length of the compiled pattern;
2537 `fastmap_accurate' is zero;
2538 `re_nsub' is the number of subexpressions in PATTERN;
2539 `not_bol' and `not_eol' are zero;
5e69f11e 2540
c0f9ea08 2541 The `fastmap' field is neither examined nor set. */
fa9a63c5 2542
505bde11
SM
2543/* Insert the `jump' from the end of last alternative to "here".
2544 The space for the jump has already been allocated. */
2545#define FIXUP_ALT_JUMP() \
2546do { \
2547 if (fixup_alt_jump) \
2548 STORE_JUMP (jump, fixup_alt_jump, b); \
2549} while (0)
2550
2551
fa9a63c5
RM
2552/* Return, freeing storage we allocated. */
2553#define FREE_STACK_RETURN(value) \
b18215fc
RS
2554 do { \
2555 FREE_RANGE_TABLE_WORK_AREA (range_table_work); \
2556 free (compile_stack.stack); \
2557 return value; \
2558 } while (0)
fa9a63c5
RM
2559
2560static reg_errcode_t
2561regex_compile (pattern, size, syntax, bufp)
66f0296e 2562 re_char *pattern;
4bb91c68 2563 size_t size;
fa9a63c5
RM
2564 reg_syntax_t syntax;
2565 struct re_pattern_buffer *bufp;
2566{
01618498
SM
2567 /* We fetch characters from PATTERN here. */
2568 register re_wchar_t c, c1;
5e69f11e 2569
fa9a63c5 2570 /* A random temporary spot in PATTERN. */
66f0296e 2571 re_char *p1;
fa9a63c5
RM
2572
2573 /* Points to the end of the buffer, where we should append. */
2574 register unsigned char *b;
5e69f11e 2575
fa9a63c5
RM
2576 /* Keeps track of unclosed groups. */
2577 compile_stack_type compile_stack;
2578
2579 /* Points to the current (ending) position in the pattern. */
22336245
RS
2580#ifdef AIX
2581 /* `const' makes AIX compiler fail. */
66f0296e 2582 unsigned char *p = pattern;
22336245 2583#else
66f0296e 2584 re_char *p = pattern;
22336245 2585#endif
66f0296e 2586 re_char *pend = pattern + size;
5e69f11e 2587
fa9a63c5 2588 /* How to translate the characters in the pattern. */
6676cb1c 2589 RE_TRANSLATE_TYPE translate = bufp->translate;
fa9a63c5
RM
2590
2591 /* Address of the count-byte of the most recently inserted `exactn'
2592 command. This makes it possible to tell if a new exact-match
2593 character can be added to that command or if the character requires
2594 a new `exactn' command. */
2595 unsigned char *pending_exact = 0;
2596
2597 /* Address of start of the most recently finished expression.
2598 This tells, e.g., postfix * where to find the start of its
2599 operand. Reset at the beginning of groups and alternatives. */
2600 unsigned char *laststart = 0;
2601
2602 /* Address of beginning of regexp, or inside of last group. */
2603 unsigned char *begalt;
2604
2605 /* Place in the uncompiled pattern (i.e., the {) to
2606 which to go back if the interval is invalid. */
66f0296e 2607 re_char *beg_interval;
5e69f11e 2608
fa9a63c5 2609 /* Address of the place where a forward jump should go to the end of
7814e705 2610 the containing expression. Each alternative of an `or' -- except the
fa9a63c5
RM
2611 last -- ends with a forward jump of this sort. */
2612 unsigned char *fixup_alt_jump = 0;
2613
b18215fc
RS
2614 /* Work area for range table of charset. */
2615 struct range_table_work_area range_table_work;
2616
2d1675e4
SM
2617 /* If the object matched can contain multibyte characters. */
2618 const boolean multibyte = RE_MULTIBYTE_P (bufp);
2619
8f924df7 2620 /* If a target of matching can contain multibyte characters. */
6fdd04b0
KH
2621 const boolean target_multibyte = RE_TARGET_MULTIBYTE_P (bufp);
2622
f9b0fd99
RS
2623 /* Nonzero if we have pushed down into a subpattern. */
2624 int in_subpattern = 0;
2625
2626 /* These hold the values of p, pattern, and pend from the main
2627 pattern when we have pushed into a subpattern. */
2628 re_char *main_p;
2629 re_char *main_pattern;
2630 re_char *main_pend;
2631
fa9a63c5 2632#ifdef DEBUG
99633e97 2633 debug++;
fa9a63c5 2634 DEBUG_PRINT1 ("\nCompiling pattern: ");
99633e97 2635 if (debug > 0)
fa9a63c5
RM
2636 {
2637 unsigned debug_count;
5e69f11e 2638
fa9a63c5 2639 for (debug_count = 0; debug_count < size; debug_count++)
25fe55af 2640 putchar (pattern[debug_count]);
fa9a63c5
RM
2641 putchar ('\n');
2642 }
2643#endif /* DEBUG */
2644
2645 /* Initialize the compile stack. */
2646 compile_stack.stack = TALLOC (INIT_COMPILE_STACK_SIZE, compile_stack_elt_t);
2647 if (compile_stack.stack == NULL)
2648 return REG_ESPACE;
2649
2650 compile_stack.size = INIT_COMPILE_STACK_SIZE;
2651 compile_stack.avail = 0;
2652
b18215fc
RS
2653 range_table_work.table = 0;
2654 range_table_work.allocated = 0;
2655
fa9a63c5
RM
2656 /* Initialize the pattern buffer. */
2657 bufp->syntax = syntax;
2658 bufp->fastmap_accurate = 0;
2659 bufp->not_bol = bufp->not_eol = 0;
6224b623 2660 bufp->used_syntax = 0;
fa9a63c5
RM
2661
2662 /* Set `used' to zero, so that if we return an error, the pattern
2663 printer (for debugging) will think there's no pattern. We reset it
2664 at the end. */
2665 bufp->used = 0;
5e69f11e 2666
fa9a63c5 2667 /* Always count groups, whether or not bufp->no_sub is set. */
5e69f11e 2668 bufp->re_nsub = 0;
fa9a63c5 2669
0b32bf0e 2670#if !defined emacs && !defined SYNTAX_TABLE
fa9a63c5
RM
2671 /* Initialize the syntax table. */
2672 init_syntax_once ();
2673#endif
2674
2675 if (bufp->allocated == 0)
2676 {
2677 if (bufp->buffer)
2678 { /* If zero allocated, but buffer is non-null, try to realloc
25fe55af 2679 enough space. This loses if buffer's address is bogus, but
7814e705 2680 that is the user's responsibility. */
25fe55af
RS
2681 RETALLOC (bufp->buffer, INIT_BUF_SIZE, unsigned char);
2682 }
fa9a63c5 2683 else
7814e705 2684 { /* Caller did not allocate a buffer. Do it for them. */
25fe55af
RS
2685 bufp->buffer = TALLOC (INIT_BUF_SIZE, unsigned char);
2686 }
fa9a63c5
RM
2687 if (!bufp->buffer) FREE_STACK_RETURN (REG_ESPACE);
2688
2689 bufp->allocated = INIT_BUF_SIZE;
2690 }
2691
2692 begalt = b = bufp->buffer;
2693
2694 /* Loop through the uncompiled pattern until we're at the end. */
f9b0fd99 2695 while (1)
fa9a63c5 2696 {
f9b0fd99
RS
2697 if (p == pend)
2698 {
2699 /* If this is the end of an included regexp,
2700 pop back to the main regexp and try again. */
2701 if (in_subpattern)
2702 {
2703 in_subpattern = 0;
2704 pattern = main_pattern;
2705 p = main_p;
2706 pend = main_pend;
2707 continue;
2708 }
2709 /* If this is the end of the main regexp, we are done. */
2710 break;
2711 }
2712
fa9a63c5
RM
2713 PATFETCH (c);
2714
2715 switch (c)
25fe55af 2716 {
f9b0fd99
RS
2717 case ' ':
2718 {
2719 re_char *p1 = p;
2720
2721 /* If there's no special whitespace regexp, treat
4fb680cd
RS
2722 spaces normally. And don't try to do this recursively. */
2723 if (!whitespace_regexp || in_subpattern)
f9b0fd99
RS
2724 goto normal_char;
2725
2726 /* Peek past following spaces. */
2727 while (p1 != pend)
2728 {
2729 if (*p1 != ' ')
2730 break;
2731 p1++;
2732 }
2733 /* If the spaces are followed by a repetition op,
2734 treat them normally. */
c721eee5
RS
2735 if (p1 != pend
2736 && (*p1 == '*' || *p1 == '+' || *p1 == '?'
f9b0fd99
RS
2737 || (*p1 == '\\' && p1 + 1 != pend && p1[1] == '{')))
2738 goto normal_char;
2739
2740 /* Replace the spaces with the whitespace regexp. */
2741 in_subpattern = 1;
2742 main_p = p1;
2743 main_pend = pend;
2744 main_pattern = pattern;
2745 p = pattern = whitespace_regexp;
2746 pend = p + strlen (p);
2747 break;
7814e705 2748 }
f9b0fd99 2749
25fe55af
RS
2750 case '^':
2751 {
7814e705 2752 if ( /* If at start of pattern, it's an operator. */
25fe55af 2753 p == pattern + 1
7814e705 2754 /* If context independent, it's an operator. */
25fe55af 2755 || syntax & RE_CONTEXT_INDEP_ANCHORS
7814e705 2756 /* Otherwise, depends on what's come before. */
25fe55af 2757 || at_begline_loc_p (pattern, p, syntax))
c0f9ea08 2758 BUF_PUSH ((syntax & RE_NO_NEWLINE_ANCHOR) ? begbuf : begline);
25fe55af
RS
2759 else
2760 goto normal_char;
2761 }
2762 break;
2763
2764
2765 case '$':
2766 {
2767 if ( /* If at end of pattern, it's an operator. */
2768 p == pend
7814e705 2769 /* If context independent, it's an operator. */
25fe55af
RS
2770 || syntax & RE_CONTEXT_INDEP_ANCHORS
2771 /* Otherwise, depends on what's next. */
2772 || at_endline_loc_p (p, pend, syntax))
c0f9ea08 2773 BUF_PUSH ((syntax & RE_NO_NEWLINE_ANCHOR) ? endbuf : endline);
25fe55af
RS
2774 else
2775 goto normal_char;
2776 }
2777 break;
fa9a63c5
RM
2778
2779
2780 case '+':
25fe55af
RS
2781 case '?':
2782 if ((syntax & RE_BK_PLUS_QM)
2783 || (syntax & RE_LIMITED_OPS))
2784 goto normal_char;
2785 handle_plus:
2786 case '*':
2787 /* If there is no previous pattern... */
2788 if (!laststart)
2789 {
2790 if (syntax & RE_CONTEXT_INVALID_OPS)
2791 FREE_STACK_RETURN (REG_BADRPT);
2792 else if (!(syntax & RE_CONTEXT_INDEP_OPS))
2793 goto normal_char;
2794 }
2795
2796 {
7814e705 2797 /* 1 means zero (many) matches is allowed. */
66f0296e
SM
2798 boolean zero_times_ok = 0, many_times_ok = 0;
2799 boolean greedy = 1;
25fe55af
RS
2800
2801 /* If there is a sequence of repetition chars, collapse it
2802 down to just one (the right one). We can't combine
2803 interval operators with these because of, e.g., `a{2}*',
7814e705 2804 which should only match an even number of `a's. */
25fe55af
RS
2805
2806 for (;;)
2807 {
0b32bf0e 2808 if ((syntax & RE_FRUGAL)
1c8c6d39
DL
2809 && c == '?' && (zero_times_ok || many_times_ok))
2810 greedy = 0;
2811 else
2812 {
2813 zero_times_ok |= c != '+';
2814 many_times_ok |= c != '?';
2815 }
25fe55af
RS
2816
2817 if (p == pend)
2818 break;
ed0767d8
SM
2819 else if (*p == '*'
2820 || (!(syntax & RE_BK_PLUS_QM)
2821 && (*p == '+' || *p == '?')))
25fe55af 2822 ;
ed0767d8 2823 else if (syntax & RE_BK_PLUS_QM && *p == '\\')
25fe55af 2824 {
ed0767d8
SM
2825 if (p+1 == pend)
2826 FREE_STACK_RETURN (REG_EESCAPE);
2827 if (p[1] == '+' || p[1] == '?')
2828 PATFETCH (c); /* Gobble up the backslash. */
2829 else
2830 break;
25fe55af
RS
2831 }
2832 else
ed0767d8 2833 break;
25fe55af 2834 /* If we get here, we found another repeat character. */
ed0767d8
SM
2835 PATFETCH (c);
2836 }
25fe55af
RS
2837
2838 /* Star, etc. applied to an empty pattern is equivalent
2839 to an empty pattern. */
4e8a9132 2840 if (!laststart || laststart == b)
25fe55af
RS
2841 break;
2842
2843 /* Now we know whether or not zero matches is allowed
7814e705 2844 and also whether or not two or more matches is allowed. */
1c8c6d39
DL
2845 if (greedy)
2846 {
99633e97 2847 if (many_times_ok)
4e8a9132
SM
2848 {
2849 boolean simple = skip_one_char (laststart) == b;
2850 unsigned int startoffset = 0;
f6a3f532 2851 re_opcode_t ofj =
01618498 2852 /* Check if the loop can match the empty string. */
6df42991
SM
2853 (simple || !analyse_first (laststart, b, NULL, 0))
2854 ? on_failure_jump : on_failure_jump_loop;
4e8a9132 2855 assert (skip_one_char (laststart) <= b);
177c0ea7 2856
4e8a9132
SM
2857 if (!zero_times_ok && simple)
2858 { /* Since simple * loops can be made faster by using
2859 on_failure_keep_string_jump, we turn simple P+
2860 into PP* if P is simple. */
2861 unsigned char *p1, *p2;
2862 startoffset = b - laststart;
2863 GET_BUFFER_SPACE (startoffset);
2864 p1 = b; p2 = laststart;
2865 while (p2 < p1)
2866 *b++ = *p2++;
2867 zero_times_ok = 1;
99633e97 2868 }
4e8a9132
SM
2869
2870 GET_BUFFER_SPACE (6);
2871 if (!zero_times_ok)
2872 /* A + loop. */
f6a3f532 2873 STORE_JUMP (ofj, b, b + 6);
99633e97 2874 else
4e8a9132
SM
2875 /* Simple * loops can use on_failure_keep_string_jump
2876 depending on what follows. But since we don't know
2877 that yet, we leave the decision up to
2878 on_failure_jump_smart. */
f6a3f532 2879 INSERT_JUMP (simple ? on_failure_jump_smart : ofj,
4e8a9132 2880 laststart + startoffset, b + 6);
99633e97 2881 b += 3;
4e8a9132 2882 STORE_JUMP (jump, b, laststart + startoffset);
99633e97
SM
2883 b += 3;
2884 }
2885 else
2886 {
4e8a9132
SM
2887 /* A simple ? pattern. */
2888 assert (zero_times_ok);
2889 GET_BUFFER_SPACE (3);
2890 INSERT_JUMP (on_failure_jump, laststart, b + 3);
99633e97
SM
2891 b += 3;
2892 }
1c8c6d39
DL
2893 }
2894 else /* not greedy */
2895 { /* I wish the greedy and non-greedy cases could be merged. */
2896
0683b6fa 2897 GET_BUFFER_SPACE (7); /* We might use less. */
1c8c6d39
DL
2898 if (many_times_ok)
2899 {
f6a3f532
SM
2900 boolean emptyp = analyse_first (laststart, b, NULL, 0);
2901
6df42991
SM
2902 /* The non-greedy multiple match looks like
2903 a repeat..until: we only need a conditional jump
2904 at the end of the loop. */
f6a3f532
SM
2905 if (emptyp) BUF_PUSH (no_op);
2906 STORE_JUMP (emptyp ? on_failure_jump_nastyloop
2907 : on_failure_jump, b, laststart);
1c8c6d39
DL
2908 b += 3;
2909 if (zero_times_ok)
2910 {
2911 /* The repeat...until naturally matches one or more.
2912 To also match zero times, we need to first jump to
6df42991 2913 the end of the loop (its conditional jump). */
1c8c6d39
DL
2914 INSERT_JUMP (jump, laststart, b);
2915 b += 3;
2916 }
2917 }
2918 else
2919 {
2920 /* non-greedy a?? */
1c8c6d39
DL
2921 INSERT_JUMP (jump, laststart, b + 3);
2922 b += 3;
2923 INSERT_JUMP (on_failure_jump, laststart, laststart + 6);
2924 b += 3;
2925 }
2926 }
2927 }
4e8a9132 2928 pending_exact = 0;
fa9a63c5
RM
2929 break;
2930
2931
2932 case '.':
25fe55af
RS
2933 laststart = b;
2934 BUF_PUSH (anychar);
2935 break;
fa9a63c5
RM
2936
2937
25fe55af
RS
2938 case '[':
2939 {
b18215fc 2940 CLEAR_RANGE_TABLE_WORK_USED (range_table_work);
fa9a63c5 2941
25fe55af 2942 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
fa9a63c5 2943
25fe55af
RS
2944 /* Ensure that we have enough space to push a charset: the
2945 opcode, the length count, and the bitset; 34 bytes in all. */
fa9a63c5
RM
2946 GET_BUFFER_SPACE (34);
2947
25fe55af 2948 laststart = b;
e318085a 2949
25fe55af 2950 /* We test `*p == '^' twice, instead of using an if
7814e705 2951 statement, so we only need one BUF_PUSH. */
25fe55af
RS
2952 BUF_PUSH (*p == '^' ? charset_not : charset);
2953 if (*p == '^')
2954 p++;
e318085a 2955
25fe55af
RS
2956 /* Remember the first position in the bracket expression. */
2957 p1 = p;
e318085a 2958
7814e705 2959 /* Push the number of bytes in the bitmap. */
25fe55af 2960 BUF_PUSH ((1 << BYTEWIDTH) / BYTEWIDTH);
e318085a 2961
25fe55af
RS
2962 /* Clear the whole map. */
2963 bzero (b, (1 << BYTEWIDTH) / BYTEWIDTH);
e318085a 2964
25fe55af
RS
2965 /* charset_not matches newline according to a syntax bit. */
2966 if ((re_opcode_t) b[-2] == charset_not
2967 && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
2968 SET_LIST_BIT ('\n');
fa9a63c5 2969
7814e705 2970 /* Read in characters and ranges, setting map bits. */
25fe55af
RS
2971 for (;;)
2972 {
b18215fc 2973 boolean escaped_char = false;
2d1675e4 2974 const unsigned char *p2 = p;
cf9c99bc 2975 re_wchar_t ch, c2;
e318085a 2976
25fe55af 2977 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
e318085a 2978
36595814
SM
2979 /* Don't translate yet. The range TRANSLATE(X..Y) cannot
2980 always be determined from TRANSLATE(X) and TRANSLATE(Y)
2981 So the translation is done later in a loop. Example:
2982 (let ((case-fold-search t)) (string-match "[A-_]" "A")) */
25fe55af 2983 PATFETCH (c);
e318085a 2984
25fe55af
RS
2985 /* \ might escape characters inside [...] and [^...]. */
2986 if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
2987 {
2988 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
e318085a
RS
2989
2990 PATFETCH (c);
b18215fc 2991 escaped_char = true;
25fe55af 2992 }
b18215fc
RS
2993 else
2994 {
7814e705 2995 /* Could be the end of the bracket expression. If it's
657fcfbd
RS
2996 not (i.e., when the bracket expression is `[]' so
2997 far), the ']' character bit gets set way below. */
2d1675e4 2998 if (c == ']' && p2 != p1)
657fcfbd 2999 break;
25fe55af 3000 }
b18215fc 3001
25fe55af
RS
3002 /* See if we're at the beginning of a possible character
3003 class. */
b18215fc 3004
2d1675e4
SM
3005 if (!escaped_char &&
3006 syntax & RE_CHAR_CLASSES && c == '[' && *p == ':')
657fcfbd 3007 {
7814e705 3008 /* Leave room for the null. */
14473664 3009 unsigned char str[CHAR_CLASS_MAX_LENGTH + 1];
ed0767d8 3010 const unsigned char *class_beg;
b18215fc 3011
25fe55af
RS
3012 PATFETCH (c);
3013 c1 = 0;
ed0767d8 3014 class_beg = p;
b18215fc 3015
25fe55af
RS
3016 /* If pattern is `[[:'. */
3017 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
b18215fc 3018
25fe55af
RS
3019 for (;;)
3020 {
14473664
SM
3021 PATFETCH (c);
3022 if ((c == ':' && *p == ']') || p == pend)
3023 break;
3024 if (c1 < CHAR_CLASS_MAX_LENGTH)
3025 str[c1++] = c;
3026 else
3027 /* This is in any case an invalid class name. */
3028 str[0] = '\0';
25fe55af
RS
3029 }
3030 str[c1] = '\0';
b18215fc
RS
3031
3032 /* If isn't a word bracketed by `[:' and `:]':
3033 undo the ending character, the letters, and
3034 leave the leading `:' and `[' (but set bits for
3035 them). */
25fe55af
RS
3036 if (c == ':' && *p == ']')
3037 {
14473664 3038 re_wctype_t cc;
8f924df7 3039 int limit;
14473664
SM
3040
3041 cc = re_wctype (str);
3042
3043 if (cc == 0)
fa9a63c5
RM
3044 FREE_STACK_RETURN (REG_ECTYPE);
3045
14473664
SM
3046 /* Throw away the ] at the end of the character
3047 class. */
3048 PATFETCH (c);
fa9a63c5 3049
14473664 3050 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
fa9a63c5 3051
cf9c99bc
KH
3052#ifndef emacs
3053 for (ch = 0; ch < (1 << BYTEWIDTH); ++ch)
8f924df7
KH
3054 if (re_iswctype (btowc (ch), cc))
3055 {
3056 c = TRANSLATE (ch);
ed00c2ac
KH
3057 if (c < (1 << BYTEWIDTH))
3058 SET_LIST_BIT (c);
8f924df7 3059 }
cf9c99bc
KH
3060#else /* emacs */
3061 /* Most character classes in a multibyte match
3062 just set a flag. Exceptions are is_blank,
3063 is_digit, is_cntrl, and is_xdigit, since
3064 they can only match ASCII characters. We
3065 don't need to handle them for multibyte.
3066 They are distinguished by a negative wctype. */
96cc36cc 3067
254c06a8
SM
3068 /* Setup the gl_state object to its buffer-defined
3069 value. This hardcodes the buffer-global
3070 syntax-table for ASCII chars, while the other chars
3071 will obey syntax-table properties. It's not ideal,
3072 but it's the way it's been done until now. */
3073 SETUP_SYNTAX_TABLE (BEGV, 0);
3074
cf9c99bc 3075 for (ch = 0; ch < 256; ++ch)
25fe55af 3076 {
cf9c99bc
KH
3077 c = RE_CHAR_TO_MULTIBYTE (ch);
3078 if (! CHAR_BYTE8_P (c)
3079 && re_iswctype (c, cc))
8f924df7 3080 {
cf9c99bc
KH
3081 SET_LIST_BIT (ch);
3082 c1 = TRANSLATE (c);
3083 if (c1 == c)
3084 continue;
3085 if (ASCII_CHAR_P (c1))
3086 SET_LIST_BIT (c1);
3087 else if ((c1 = RE_CHAR_TO_UNIBYTE (c1)) >= 0)
3088 SET_LIST_BIT (c1);
8f924df7 3089 }
25fe55af 3090 }
cf9c99bc
KH
3091 SET_RANGE_TABLE_WORK_AREA_BIT
3092 (range_table_work, re_wctype_to_bit (cc));
3093#endif /* emacs */
6224b623
SM
3094 /* In most cases the matching rule for char classes
3095 only uses the syntax table for multibyte chars,
3096 so that the content of the syntax-table it is not
3097 hardcoded in the range_table. SPACE and WORD are
3098 the two exceptions. */
3099 if ((1 << cc) & ((1 << RECC_SPACE) | (1 << RECC_WORD)))
3100 bufp->used_syntax = 1;
3101
b18215fc
RS
3102 /* Repeat the loop. */
3103 continue;
25fe55af
RS
3104 }
3105 else
3106 {
ed0767d8
SM
3107 /* Go back to right after the "[:". */
3108 p = class_beg;
25fe55af 3109 SET_LIST_BIT ('[');
b18215fc
RS
3110
3111 /* Because the `:' may starts the range, we
3112 can't simply set bit and repeat the loop.
7814e705 3113 Instead, just set it to C and handle below. */
b18215fc 3114 c = ':';
25fe55af
RS
3115 }
3116 }
b18215fc
RS
3117
3118 if (p < pend && p[0] == '-' && p[1] != ']')
3119 {
3120
3121 /* Discard the `-'. */
3122 PATFETCH (c1);
3123
3124 /* Fetch the character which ends the range. */
3125 PATFETCH (c1);
cf9c99bc
KH
3126#ifdef emacs
3127 if (CHAR_BYTE8_P (c1)
3128 && ! ASCII_CHAR_P (c) && ! CHAR_BYTE8_P (c))
3129 /* Treat the range from a multibyte character to
3130 raw-byte character as empty. */
3131 c = c1 + 1;
3132#endif /* emacs */
e318085a 3133 }
25fe55af 3134 else
b18215fc
RS
3135 /* Range from C to C. */
3136 c1 = c;
3137
cf9c99bc 3138 if (c > c1)
25fe55af 3139 {
cf9c99bc
KH
3140 if (syntax & RE_NO_EMPTY_RANGES)
3141 FREE_STACK_RETURN (REG_ERANGEX);
3142 /* Else, repeat the loop. */
bf216479 3143 }
6fdd04b0 3144 else
25fe55af 3145 {
cf9c99bc
KH
3146#ifndef emacs
3147 /* Set the range into bitmap */
8f924df7 3148 for (; c <= c1; c++)
b18215fc 3149 {
cf9c99bc
KH
3150 ch = TRANSLATE (c);
3151 if (ch < (1 << BYTEWIDTH))
3152 SET_LIST_BIT (ch);
3153 }
3154#else /* emacs */
3155 if (c < 128)
3156 {
3157 ch = MIN (127, c1);
3158 SETUP_ASCII_RANGE (range_table_work, c, ch);
3159 c = ch + 1;
3160 if (CHAR_BYTE8_P (c1))
3161 c = BYTE8_TO_CHAR (128);
3162 }
3163 if (c <= c1)
3164 {
3165 if (CHAR_BYTE8_P (c))
3166 {
3167 c = CHAR_TO_BYTE8 (c);
3168 c1 = CHAR_TO_BYTE8 (c1);
3169 for (; c <= c1; c++)
3170 SET_LIST_BIT (c);
3171 }
3172 else if (multibyte)
3173 {
3174 SETUP_MULTIBYTE_RANGE (range_table_work, c, c1);
3175 }
3176 else
3177 {
3178 SETUP_UNIBYTE_RANGE (range_table_work, c, c1);
3179 }
e934739e 3180 }
cf9c99bc 3181#endif /* emacs */
25fe55af 3182 }
e318085a
RS
3183 }
3184
25fe55af 3185 /* Discard any (non)matching list bytes that are all 0 at the
7814e705 3186 end of the map. Decrease the map-length byte too. */
25fe55af
RS
3187 while ((int) b[-1] > 0 && b[b[-1] - 1] == 0)
3188 b[-1]--;
3189 b += b[-1];
fa9a63c5 3190
96cc36cc
RS
3191 /* Build real range table from work area. */
3192 if (RANGE_TABLE_WORK_USED (range_table_work)
3193 || RANGE_TABLE_WORK_BITS (range_table_work))
b18215fc
RS
3194 {
3195 int i;
3196 int used = RANGE_TABLE_WORK_USED (range_table_work);
fa9a63c5 3197
b18215fc 3198 /* Allocate space for COUNT + RANGE_TABLE. Needs two
96cc36cc
RS
3199 bytes for flags, two for COUNT, and three bytes for
3200 each character. */
3201 GET_BUFFER_SPACE (4 + used * 3);
fa9a63c5 3202
b18215fc
RS
3203 /* Indicate the existence of range table. */
3204 laststart[1] |= 0x80;
fa9a63c5 3205
96cc36cc
RS
3206 /* Store the character class flag bits into the range table.
3207 If not in emacs, these flag bits are always 0. */
3208 *b++ = RANGE_TABLE_WORK_BITS (range_table_work) & 0xff;
3209 *b++ = RANGE_TABLE_WORK_BITS (range_table_work) >> 8;
3210
b18215fc
RS
3211 STORE_NUMBER_AND_INCR (b, used / 2);
3212 for (i = 0; i < used; i++)
3213 STORE_CHARACTER_AND_INCR
3214 (b, RANGE_TABLE_WORK_ELT (range_table_work, i));
3215 }
25fe55af
RS
3216 }
3217 break;
fa9a63c5
RM
3218
3219
b18215fc 3220 case '(':
25fe55af
RS
3221 if (syntax & RE_NO_BK_PARENS)
3222 goto handle_open;
3223 else
3224 goto normal_char;
fa9a63c5
RM
3225
3226
25fe55af
RS
3227 case ')':
3228 if (syntax & RE_NO_BK_PARENS)
3229 goto handle_close;
3230 else
3231 goto normal_char;
e318085a
RS
3232
3233
25fe55af
RS
3234 case '\n':
3235 if (syntax & RE_NEWLINE_ALT)
3236 goto handle_alt;
3237 else
3238 goto normal_char;
e318085a
RS
3239
3240
b18215fc 3241 case '|':
25fe55af
RS
3242 if (syntax & RE_NO_BK_VBAR)
3243 goto handle_alt;
3244 else
3245 goto normal_char;
3246
3247
3248 case '{':
3249 if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES)
3250 goto handle_interval;
3251 else
3252 goto normal_char;
3253
3254
3255 case '\\':
3256 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
3257
3258 /* Do not translate the character after the \, so that we can
3259 distinguish, e.g., \B from \b, even if we normally would
3260 translate, e.g., B to b. */
36595814 3261 PATFETCH (c);
25fe55af
RS
3262
3263 switch (c)
3264 {
3265 case '(':
3266 if (syntax & RE_NO_BK_PARENS)
3267 goto normal_backslash;
3268
3269 handle_open:
505bde11
SM
3270 {
3271 int shy = 0;
c69b0314 3272 regnum_t regnum = 0;
505bde11
SM
3273 if (p+1 < pend)
3274 {
3275 /* Look for a special (?...) construct */
ed0767d8 3276 if ((syntax & RE_SHY_GROUPS) && *p == '?')
505bde11 3277 {
ed0767d8 3278 PATFETCH (c); /* Gobble up the '?'. */
c69b0314 3279 while (!shy)
505bde11 3280 {
c69b0314
SM
3281 PATFETCH (c);
3282 switch (c)
3283 {
3284 case ':': shy = 1; break;
3285 case '0':
3286 /* An explicitly specified regnum must start
3287 with non-0. */
3288 if (regnum == 0)
3289 FREE_STACK_RETURN (REG_BADPAT);
3290 case '1': case '2': case '3': case '4':
3291 case '5': case '6': case '7': case '8': case '9':
3292 regnum = 10*regnum + (c - '0'); break;
3293 default:
3294 /* Only (?:...) is supported right now. */
3295 FREE_STACK_RETURN (REG_BADPAT);
3296 }
505bde11
SM
3297 }
3298 }
505bde11
SM
3299 }
3300
3301 if (!shy)
c69b0314
SM
3302 regnum = ++bufp->re_nsub;
3303 else if (regnum)
3304 { /* It's actually not shy, but explicitly numbered. */
3305 shy = 0;
3306 if (regnum > bufp->re_nsub)
3307 bufp->re_nsub = regnum;
3308 else if (regnum > bufp->re_nsub
3309 /* Ideally, we'd want to check that the specified
3310 group can't have matched (i.e. all subgroups
3311 using the same regnum are in other branches of
3312 OR patterns), but we don't currently keep track
3313 of enough info to do that easily. */
3314 || group_in_compile_stack (compile_stack, regnum))
3315 FREE_STACK_RETURN (REG_BADPAT);
505bde11 3316 }
c69b0314
SM
3317 else
3318 /* It's really shy. */
3319 regnum = - bufp->re_nsub;
25fe55af 3320
99633e97
SM
3321 if (COMPILE_STACK_FULL)
3322 {
3323 RETALLOC (compile_stack.stack, compile_stack.size << 1,
3324 compile_stack_elt_t);
3325 if (compile_stack.stack == NULL) return REG_ESPACE;
25fe55af 3326
99633e97
SM
3327 compile_stack.size <<= 1;
3328 }
25fe55af 3329
99633e97 3330 /* These are the values to restore when we hit end of this
7814e705 3331 group. They are all relative offsets, so that if the
99633e97
SM
3332 whole pattern moves because of realloc, they will still
3333 be valid. */
3334 COMPILE_STACK_TOP.begalt_offset = begalt - bufp->buffer;
3335 COMPILE_STACK_TOP.fixup_alt_jump
3336 = fixup_alt_jump ? fixup_alt_jump - bufp->buffer + 1 : 0;
3337 COMPILE_STACK_TOP.laststart_offset = b - bufp->buffer;
c69b0314 3338 COMPILE_STACK_TOP.regnum = regnum;
99633e97 3339
c69b0314
SM
3340 /* Do not push a start_memory for groups beyond the last one
3341 we can represent in the compiled pattern. */
3342 if (regnum <= MAX_REGNUM && regnum > 0)
99633e97
SM
3343 BUF_PUSH_2 (start_memory, regnum);
3344
3345 compile_stack.avail++;
3346
3347 fixup_alt_jump = 0;
3348 laststart = 0;
3349 begalt = b;
3350 /* If we've reached MAX_REGNUM groups, then this open
3351 won't actually generate any code, so we'll have to
3352 clear pending_exact explicitly. */
3353 pending_exact = 0;
3354 break;
505bde11 3355 }
25fe55af
RS
3356
3357 case ')':
3358 if (syntax & RE_NO_BK_PARENS) goto normal_backslash;
3359
3360 if (COMPILE_STACK_EMPTY)
505bde11
SM
3361 {
3362 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
3363 goto normal_backslash;
3364 else
3365 FREE_STACK_RETURN (REG_ERPAREN);
3366 }
25fe55af
RS
3367
3368 handle_close:
505bde11 3369 FIXUP_ALT_JUMP ();
25fe55af
RS
3370
3371 /* See similar code for backslashed left paren above. */
3372 if (COMPILE_STACK_EMPTY)
505bde11
SM
3373 {
3374 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
3375 goto normal_char;
3376 else
3377 FREE_STACK_RETURN (REG_ERPAREN);
3378 }
25fe55af
RS
3379
3380 /* Since we just checked for an empty stack above, this
3381 ``can't happen''. */
3382 assert (compile_stack.avail != 0);
3383 {
3384 /* We don't just want to restore into `regnum', because
3385 later groups should continue to be numbered higher,
7814e705 3386 as in `(ab)c(de)' -- the second group is #2. */
c69b0314 3387 regnum_t regnum;
25fe55af
RS
3388
3389 compile_stack.avail--;
3390 begalt = bufp->buffer + COMPILE_STACK_TOP.begalt_offset;
3391 fixup_alt_jump
3392 = COMPILE_STACK_TOP.fixup_alt_jump
3393 ? bufp->buffer + COMPILE_STACK_TOP.fixup_alt_jump - 1
3394 : 0;
3395 laststart = bufp->buffer + COMPILE_STACK_TOP.laststart_offset;
c69b0314 3396 regnum = COMPILE_STACK_TOP.regnum;
b18215fc
RS
3397 /* If we've reached MAX_REGNUM groups, then this open
3398 won't actually generate any code, so we'll have to
3399 clear pending_exact explicitly. */
3400 pending_exact = 0;
e318085a 3401
25fe55af 3402 /* We're at the end of the group, so now we know how many
7814e705 3403 groups were inside this one. */
c69b0314
SM
3404 if (regnum <= MAX_REGNUM && regnum > 0)
3405 BUF_PUSH_2 (stop_memory, regnum);
25fe55af
RS
3406 }
3407 break;
3408
3409
3410 case '|': /* `\|'. */
3411 if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR)
3412 goto normal_backslash;
3413 handle_alt:
3414 if (syntax & RE_LIMITED_OPS)
3415 goto normal_char;
3416
3417 /* Insert before the previous alternative a jump which
7814e705 3418 jumps to this alternative if the former fails. */
25fe55af
RS
3419 GET_BUFFER_SPACE (3);
3420 INSERT_JUMP (on_failure_jump, begalt, b + 6);
3421 pending_exact = 0;
3422 b += 3;
3423
3424 /* The alternative before this one has a jump after it
3425 which gets executed if it gets matched. Adjust that
3426 jump so it will jump to this alternative's analogous
3427 jump (put in below, which in turn will jump to the next
3428 (if any) alternative's such jump, etc.). The last such
3429 jump jumps to the correct final destination. A picture:
3430 _____ _____
3431 | | | |
3432 | v | v
3433 a | b | c
3434
3435 If we are at `b', then fixup_alt_jump right now points to a
3436 three-byte space after `a'. We'll put in the jump, set
3437 fixup_alt_jump to right after `b', and leave behind three
3438 bytes which we'll fill in when we get to after `c'. */
3439
505bde11 3440 FIXUP_ALT_JUMP ();
25fe55af
RS
3441
3442 /* Mark and leave space for a jump after this alternative,
3443 to be filled in later either by next alternative or
3444 when know we're at the end of a series of alternatives. */
3445 fixup_alt_jump = b;
3446 GET_BUFFER_SPACE (3);
3447 b += 3;
3448
3449 laststart = 0;
3450 begalt = b;
3451 break;
3452
3453
3454 case '{':
3455 /* If \{ is a literal. */
3456 if (!(syntax & RE_INTERVALS)
3457 /* If we're at `\{' and it's not the open-interval
3458 operator. */
4bb91c68 3459 || (syntax & RE_NO_BK_BRACES))
25fe55af
RS
3460 goto normal_backslash;
3461
3462 handle_interval:
3463 {
3464 /* If got here, then the syntax allows intervals. */
3465
3466 /* At least (most) this many matches must be made. */
99633e97 3467 int lower_bound = 0, upper_bound = -1;
25fe55af 3468
ed0767d8 3469 beg_interval = p;
25fe55af 3470
25fe55af
RS
3471 GET_UNSIGNED_NUMBER (lower_bound);
3472
3473 if (c == ',')
ed0767d8 3474 GET_UNSIGNED_NUMBER (upper_bound);
25fe55af
RS
3475 else
3476 /* Interval such as `{1}' => match exactly once. */
3477 upper_bound = lower_bound;
3478
3479 if (lower_bound < 0 || upper_bound > RE_DUP_MAX
ed0767d8 3480 || (upper_bound >= 0 && lower_bound > upper_bound))
4bb91c68 3481 FREE_STACK_RETURN (REG_BADBR);
25fe55af
RS
3482
3483 if (!(syntax & RE_NO_BK_BRACES))
3484 {
4bb91c68
SM
3485 if (c != '\\')
3486 FREE_STACK_RETURN (REG_BADBR);
c72b0edd
SM
3487 if (p == pend)
3488 FREE_STACK_RETURN (REG_EESCAPE);
25fe55af
RS
3489 PATFETCH (c);
3490 }
3491
3492 if (c != '}')
4bb91c68 3493 FREE_STACK_RETURN (REG_BADBR);
25fe55af
RS
3494
3495 /* We just parsed a valid interval. */
3496
3497 /* If it's invalid to have no preceding re. */
3498 if (!laststart)
3499 {
3500 if (syntax & RE_CONTEXT_INVALID_OPS)
3501 FREE_STACK_RETURN (REG_BADRPT);
3502 else if (syntax & RE_CONTEXT_INDEP_OPS)
3503 laststart = b;
3504 else
3505 goto unfetch_interval;
3506 }
3507
6df42991
SM
3508 if (upper_bound == 0)
3509 /* If the upper bound is zero, just drop the sub pattern
3510 altogether. */
3511 b = laststart;
3512 else if (lower_bound == 1 && upper_bound == 1)
3513 /* Just match it once: nothing to do here. */
3514 ;
3515
3516 /* Otherwise, we have a nontrivial interval. When
3517 we're all done, the pattern will look like:
3518 set_number_at <jump count> <upper bound>
3519 set_number_at <succeed_n count> <lower bound>
3520 succeed_n <after jump addr> <succeed_n count>
3521 <body of loop>
3522 jump_n <succeed_n addr> <jump count>
3523 (The upper bound and `jump_n' are omitted if
3524 `upper_bound' is 1, though.) */
3525 else
3526 { /* If the upper bound is > 1, we need to insert
3527 more at the end of the loop. */
3528 unsigned int nbytes = (upper_bound < 0 ? 3
3529 : upper_bound > 1 ? 5 : 0);
3530 unsigned int startoffset = 0;
3531
3532 GET_BUFFER_SPACE (20); /* We might use less. */
3533
3534 if (lower_bound == 0)
3535 {
3536 /* A succeed_n that starts with 0 is really a
3537 a simple on_failure_jump_loop. */
3538 INSERT_JUMP (on_failure_jump_loop, laststart,
3539 b + 3 + nbytes);
3540 b += 3;
3541 }
3542 else
3543 {
3544 /* Initialize lower bound of the `succeed_n', even
3545 though it will be set during matching by its
3546 attendant `set_number_at' (inserted next),
3547 because `re_compile_fastmap' needs to know.
3548 Jump to the `jump_n' we might insert below. */
3549 INSERT_JUMP2 (succeed_n, laststart,
3550 b + 5 + nbytes,
3551 lower_bound);
3552 b += 5;
3553
3554 /* Code to initialize the lower bound. Insert
7814e705 3555 before the `succeed_n'. The `5' is the last two
6df42991
SM
3556 bytes of this `set_number_at', plus 3 bytes of
3557 the following `succeed_n'. */
3558 insert_op2 (set_number_at, laststart, 5, lower_bound, b);
3559 b += 5;
3560 startoffset += 5;
3561 }
3562
3563 if (upper_bound < 0)
3564 {
3565 /* A negative upper bound stands for infinity,
3566 in which case it degenerates to a plain jump. */
3567 STORE_JUMP (jump, b, laststart + startoffset);
3568 b += 3;
3569 }
3570 else if (upper_bound > 1)
3571 { /* More than one repetition is allowed, so
3572 append a backward jump to the `succeed_n'
3573 that starts this interval.
3574
3575 When we've reached this during matching,
3576 we'll have matched the interval once, so
3577 jump back only `upper_bound - 1' times. */
3578 STORE_JUMP2 (jump_n, b, laststart + startoffset,
3579 upper_bound - 1);
3580 b += 5;
3581
3582 /* The location we want to set is the second
3583 parameter of the `jump_n'; that is `b-2' as
3584 an absolute address. `laststart' will be
3585 the `set_number_at' we're about to insert;
3586 `laststart+3' the number to set, the source
3587 for the relative address. But we are
3588 inserting into the middle of the pattern --
3589 so everything is getting moved up by 5.
3590 Conclusion: (b - 2) - (laststart + 3) + 5,
3591 i.e., b - laststart.
3592
3593 We insert this at the beginning of the loop
3594 so that if we fail during matching, we'll
3595 reinitialize the bounds. */
3596 insert_op2 (set_number_at, laststart, b - laststart,
3597 upper_bound - 1, b);
3598 b += 5;
3599 }
3600 }
25fe55af
RS
3601 pending_exact = 0;
3602 beg_interval = NULL;
3603 }
3604 break;
3605
3606 unfetch_interval:
3607 /* If an invalid interval, match the characters as literals. */
3608 assert (beg_interval);
3609 p = beg_interval;
3610 beg_interval = NULL;
3611
3612 /* normal_char and normal_backslash need `c'. */
ed0767d8 3613 c = '{';
25fe55af
RS
3614
3615 if (!(syntax & RE_NO_BK_BRACES))
3616 {
ed0767d8
SM
3617 assert (p > pattern && p[-1] == '\\');
3618 goto normal_backslash;
25fe55af 3619 }
ed0767d8
SM
3620 else
3621 goto normal_char;
e318085a 3622
b18215fc 3623#ifdef emacs
25fe55af 3624 /* There is no way to specify the before_dot and after_dot
7814e705 3625 operators. rms says this is ok. --karl */
25fe55af
RS
3626 case '=':
3627 BUF_PUSH (at_dot);
3628 break;
3629
3630 case 's':
3631 laststart = b;
3632 PATFETCH (c);
3633 BUF_PUSH_2 (syntaxspec, syntax_spec_code[c]);
3634 break;
3635
3636 case 'S':
3637 laststart = b;
3638 PATFETCH (c);
3639 BUF_PUSH_2 (notsyntaxspec, syntax_spec_code[c]);
3640 break;
b18215fc
RS
3641
3642 case 'c':
3643 laststart = b;
36595814 3644 PATFETCH (c);
b18215fc
RS
3645 BUF_PUSH_2 (categoryspec, c);
3646 break;
e318085a 3647
b18215fc
RS
3648 case 'C':
3649 laststart = b;
36595814 3650 PATFETCH (c);
b18215fc
RS
3651 BUF_PUSH_2 (notcategoryspec, c);
3652 break;
3653#endif /* emacs */
e318085a 3654
e318085a 3655
25fe55af 3656 case 'w':
4bb91c68
SM
3657 if (syntax & RE_NO_GNU_OPS)
3658 goto normal_char;
25fe55af 3659 laststart = b;
1fb352e0 3660 BUF_PUSH_2 (syntaxspec, Sword);
25fe55af 3661 break;
e318085a 3662
e318085a 3663
25fe55af 3664 case 'W':
4bb91c68
SM
3665 if (syntax & RE_NO_GNU_OPS)
3666 goto normal_char;
25fe55af 3667 laststart = b;
1fb352e0 3668 BUF_PUSH_2 (notsyntaxspec, Sword);
25fe55af 3669 break;
e318085a
RS
3670
3671
25fe55af 3672 case '<':
4bb91c68
SM
3673 if (syntax & RE_NO_GNU_OPS)
3674 goto normal_char;
25fe55af
RS
3675 BUF_PUSH (wordbeg);
3676 break;
e318085a 3677
25fe55af 3678 case '>':
4bb91c68
SM
3679 if (syntax & RE_NO_GNU_OPS)
3680 goto normal_char;
25fe55af
RS
3681 BUF_PUSH (wordend);
3682 break;
e318085a 3683
669fa600
SM
3684 case '_':
3685 if (syntax & RE_NO_GNU_OPS)
3686 goto normal_char;
3687 laststart = b;
3688 PATFETCH (c);
3689 if (c == '<')
3690 BUF_PUSH (symbeg);
3691 else if (c == '>')
3692 BUF_PUSH (symend);
3693 else
3694 FREE_STACK_RETURN (REG_BADPAT);
3695 break;
3696
25fe55af 3697 case 'b':
4bb91c68
SM
3698 if (syntax & RE_NO_GNU_OPS)
3699 goto normal_char;
25fe55af
RS
3700 BUF_PUSH (wordbound);
3701 break;
e318085a 3702
25fe55af 3703 case 'B':
4bb91c68
SM
3704 if (syntax & RE_NO_GNU_OPS)
3705 goto normal_char;
25fe55af
RS
3706 BUF_PUSH (notwordbound);
3707 break;
fa9a63c5 3708
25fe55af 3709 case '`':
4bb91c68
SM
3710 if (syntax & RE_NO_GNU_OPS)
3711 goto normal_char;
25fe55af
RS
3712 BUF_PUSH (begbuf);
3713 break;
e318085a 3714
25fe55af 3715 case '\'':
4bb91c68
SM
3716 if (syntax & RE_NO_GNU_OPS)
3717 goto normal_char;
25fe55af
RS
3718 BUF_PUSH (endbuf);
3719 break;
e318085a 3720
25fe55af
RS
3721 case '1': case '2': case '3': case '4': case '5':
3722 case '6': case '7': case '8': case '9':
0cdd06f8
SM
3723 {
3724 regnum_t reg;
e318085a 3725
0cdd06f8
SM
3726 if (syntax & RE_NO_BK_REFS)
3727 goto normal_backslash;
e318085a 3728
0cdd06f8 3729 reg = c - '0';
e318085a 3730
c69b0314
SM
3731 if (reg > bufp->re_nsub || reg < 1
3732 /* Can't back reference to a subexp before its end. */
3733 || group_in_compile_stack (compile_stack, reg))
0cdd06f8 3734 FREE_STACK_RETURN (REG_ESUBREG);
e318085a 3735
0cdd06f8
SM
3736 laststart = b;
3737 BUF_PUSH_2 (duplicate, reg);
3738 }
25fe55af 3739 break;
e318085a 3740
e318085a 3741
25fe55af
RS
3742 case '+':
3743 case '?':
3744 if (syntax & RE_BK_PLUS_QM)
3745 goto handle_plus;
3746 else
3747 goto normal_backslash;
3748
3749 default:
3750 normal_backslash:
3751 /* You might think it would be useful for \ to mean
3752 not to translate; but if we don't translate it
4bb91c68 3753 it will never match anything. */
25fe55af
RS
3754 goto normal_char;
3755 }
3756 break;
fa9a63c5
RM
3757
3758
3759 default:
25fe55af 3760 /* Expects the character in `c'. */
fa9a63c5 3761 normal_char:
36595814 3762 /* If no exactn currently being built. */
25fe55af 3763 if (!pending_exact
fa9a63c5 3764
25fe55af
RS
3765 /* If last exactn not at current position. */
3766 || pending_exact + *pending_exact + 1 != b
5e69f11e 3767
25fe55af 3768 /* We have only one byte following the exactn for the count. */
2d1675e4 3769 || *pending_exact >= (1 << BYTEWIDTH) - MAX_MULTIBYTE_LENGTH
fa9a63c5 3770
7814e705 3771 /* If followed by a repetition operator. */
9d99031f 3772 || (p != pend && (*p == '*' || *p == '^'))
fa9a63c5 3773 || ((syntax & RE_BK_PLUS_QM)
9d99031f
RS
3774 ? p + 1 < pend && *p == '\\' && (p[1] == '+' || p[1] == '?')
3775 : p != pend && (*p == '+' || *p == '?'))
fa9a63c5 3776 || ((syntax & RE_INTERVALS)
25fe55af 3777 && ((syntax & RE_NO_BK_BRACES)
9d99031f
RS
3778 ? p != pend && *p == '{'
3779 : p + 1 < pend && p[0] == '\\' && p[1] == '{')))
fa9a63c5
RM
3780 {
3781 /* Start building a new exactn. */
5e69f11e 3782
25fe55af 3783 laststart = b;
fa9a63c5
RM
3784
3785 BUF_PUSH_2 (exactn, 0);
3786 pending_exact = b - 1;
25fe55af 3787 }
5e69f11e 3788
2d1675e4
SM
3789 GET_BUFFER_SPACE (MAX_MULTIBYTE_LENGTH);
3790 {
e0277a47
KH
3791 int len;
3792
cf9c99bc 3793 if (multibyte)
6fdd04b0 3794 {
cf9c99bc 3795 c = TRANSLATE (c);
6fdd04b0
KH
3796 len = CHAR_STRING (c, b);
3797 b += len;
3798 }
e0277a47 3799 else
6fdd04b0 3800 {
cf9c99bc
KH
3801 c1 = RE_CHAR_TO_MULTIBYTE (c);
3802 if (! CHAR_BYTE8_P (c1))
3803 {
3804 re_wchar_t c2 = TRANSLATE (c1);
3805
3806 if (c1 != c2 && (c1 = RE_CHAR_TO_UNIBYTE (c2)) >= 0)
3807 c = c1;
3808 }
6fdd04b0
KH
3809 *b++ = c;
3810 len = 1;
3811 }
2d1675e4
SM
3812 (*pending_exact) += len;
3813 }
3814
fa9a63c5 3815 break;
25fe55af 3816 } /* switch (c) */
fa9a63c5
RM
3817 } /* while p != pend */
3818
5e69f11e 3819
fa9a63c5 3820 /* Through the pattern now. */
5e69f11e 3821
505bde11 3822 FIXUP_ALT_JUMP ();
fa9a63c5 3823
5e69f11e 3824 if (!COMPILE_STACK_EMPTY)
fa9a63c5
RM
3825 FREE_STACK_RETURN (REG_EPAREN);
3826
3827 /* If we don't want backtracking, force success
3828 the first time we reach the end of the compiled pattern. */
3829 if (syntax & RE_NO_POSIX_BACKTRACKING)
3830 BUF_PUSH (succeed);
3831
fa9a63c5
RM
3832 /* We have succeeded; set the length of the buffer. */
3833 bufp->used = b - bufp->buffer;
3834
3835#ifdef DEBUG
99633e97 3836 if (debug > 0)
fa9a63c5 3837 {
505bde11 3838 re_compile_fastmap (bufp);
fa9a63c5
RM
3839 DEBUG_PRINT1 ("\nCompiled pattern: \n");
3840 print_compiled_pattern (bufp);
3841 }
99633e97 3842 debug--;
fa9a63c5
RM
3843#endif /* DEBUG */
3844
3845#ifndef MATCH_MAY_ALLOCATE
3846 /* Initialize the failure stack to the largest possible stack. This
3847 isn't necessary unless we're trying to avoid calling alloca in
3848 the search and match routines. */
3849 {
3850 int num_regs = bufp->re_nsub + 1;
3851
320a2a73 3852 if (fail_stack.size < re_max_failures * TYPICAL_FAILURE_SIZE)
fa9a63c5 3853 {
a26f4ccd 3854 fail_stack.size = re_max_failures * TYPICAL_FAILURE_SIZE;
fa9a63c5 3855
fa9a63c5
RM
3856 if (! fail_stack.stack)
3857 fail_stack.stack
5e69f11e 3858 = (fail_stack_elt_t *) malloc (fail_stack.size
fa9a63c5
RM
3859 * sizeof (fail_stack_elt_t));
3860 else
3861 fail_stack.stack
3862 = (fail_stack_elt_t *) realloc (fail_stack.stack,
3863 (fail_stack.size
3864 * sizeof (fail_stack_elt_t)));
fa9a63c5
RM
3865 }
3866
3867 regex_grow_registers (num_regs);
3868 }
3869#endif /* not MATCH_MAY_ALLOCATE */
3870
839966f3 3871 FREE_STACK_RETURN (REG_NOERROR);
fa9a63c5
RM
3872} /* regex_compile */
3873\f
3874/* Subroutines for `regex_compile'. */
3875
7814e705 3876/* Store OP at LOC followed by two-byte integer parameter ARG. */
fa9a63c5
RM
3877
3878static void
3879store_op1 (op, loc, arg)
3880 re_opcode_t op;
3881 unsigned char *loc;
3882 int arg;
3883{
3884 *loc = (unsigned char) op;
3885 STORE_NUMBER (loc + 1, arg);
3886}
3887
3888
3889/* Like `store_op1', but for two two-byte parameters ARG1 and ARG2. */
3890
3891static void
3892store_op2 (op, loc, arg1, arg2)
3893 re_opcode_t op;
3894 unsigned char *loc;
3895 int arg1, arg2;
3896{
3897 *loc = (unsigned char) op;
3898 STORE_NUMBER (loc + 1, arg1);
3899 STORE_NUMBER (loc + 3, arg2);
3900}
3901
3902
3903/* Copy the bytes from LOC to END to open up three bytes of space at LOC
3904 for OP followed by two-byte integer parameter ARG. */
3905
3906static void
3907insert_op1 (op, loc, arg, end)
3908 re_opcode_t op;
3909 unsigned char *loc;
3910 int arg;
5e69f11e 3911 unsigned char *end;
fa9a63c5
RM
3912{
3913 register unsigned char *pfrom = end;
3914 register unsigned char *pto = end + 3;
3915
3916 while (pfrom != loc)
3917 *--pto = *--pfrom;
5e69f11e 3918
fa9a63c5
RM
3919 store_op1 (op, loc, arg);
3920}
3921
3922
3923/* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2. */
3924
3925static void
3926insert_op2 (op, loc, arg1, arg2, end)
3927 re_opcode_t op;
3928 unsigned char *loc;
3929 int arg1, arg2;
5e69f11e 3930 unsigned char *end;
fa9a63c5
RM
3931{
3932 register unsigned char *pfrom = end;
3933 register unsigned char *pto = end + 5;
3934
3935 while (pfrom != loc)
3936 *--pto = *--pfrom;
5e69f11e 3937
fa9a63c5
RM
3938 store_op2 (op, loc, arg1, arg2);
3939}
3940
3941
3942/* P points to just after a ^ in PATTERN. Return true if that ^ comes
3943 after an alternative or a begin-subexpression. We assume there is at
3944 least one character before the ^. */
3945
3946static boolean
3947at_begline_loc_p (pattern, p, syntax)
01618498 3948 re_char *pattern, *p;
fa9a63c5
RM
3949 reg_syntax_t syntax;
3950{
01618498 3951 re_char *prev = p - 2;
fa9a63c5 3952 boolean prev_prev_backslash = prev > pattern && prev[-1] == '\\';
5e69f11e 3953
fa9a63c5
RM
3954 return
3955 /* After a subexpression? */
3956 (*prev == '(' && (syntax & RE_NO_BK_PARENS || prev_prev_backslash))
25fe55af 3957 /* After an alternative? */
d2af47df
SM
3958 || (*prev == '|' && (syntax & RE_NO_BK_VBAR || prev_prev_backslash))
3959 /* After a shy subexpression? */
3960 || ((syntax & RE_SHY_GROUPS) && prev - 2 >= pattern
3961 && prev[-1] == '?' && prev[-2] == '('
3962 && (syntax & RE_NO_BK_PARENS
3963 || (prev - 3 >= pattern && prev[-3] == '\\')));
fa9a63c5
RM
3964}
3965
3966
3967/* The dual of at_begline_loc_p. This one is for $. We assume there is
3968 at least one character after the $, i.e., `P < PEND'. */
3969
3970static boolean
3971at_endline_loc_p (p, pend, syntax)
01618498 3972 re_char *p, *pend;
99633e97 3973 reg_syntax_t syntax;
fa9a63c5 3974{
01618498 3975 re_char *next = p;
fa9a63c5 3976 boolean next_backslash = *next == '\\';
01618498 3977 re_char *next_next = p + 1 < pend ? p + 1 : 0;
5e69f11e 3978
fa9a63c5
RM
3979 return
3980 /* Before a subexpression? */
3981 (syntax & RE_NO_BK_PARENS ? *next == ')'
25fe55af 3982 : next_backslash && next_next && *next_next == ')')
fa9a63c5
RM
3983 /* Before an alternative? */
3984 || (syntax & RE_NO_BK_VBAR ? *next == '|'
25fe55af 3985 : next_backslash && next_next && *next_next == '|');
fa9a63c5
RM
3986}
3987
3988
5e69f11e 3989/* Returns true if REGNUM is in one of COMPILE_STACK's elements and
fa9a63c5
RM
3990 false if it's not. */
3991
3992static boolean
3993group_in_compile_stack (compile_stack, regnum)
3994 compile_stack_type compile_stack;
3995 regnum_t regnum;
3996{
3997 int this_element;
3998
5e69f11e
RM
3999 for (this_element = compile_stack.avail - 1;
4000 this_element >= 0;
fa9a63c5
RM
4001 this_element--)
4002 if (compile_stack.stack[this_element].regnum == regnum)
4003 return true;
4004
4005 return false;
4006}
fa9a63c5 4007\f
f6a3f532
SM
4008/* analyse_first.
4009 If fastmap is non-NULL, go through the pattern and fill fastmap
4010 with all the possible leading chars. If fastmap is NULL, don't
4011 bother filling it up (obviously) and only return whether the
4012 pattern could potentially match the empty string.
4013
4014 Return 1 if p..pend might match the empty string.
4015 Return 0 if p..pend matches at least one char.
01618498 4016 Return -1 if fastmap was not updated accurately. */
f6a3f532
SM
4017
4018static int
4019analyse_first (p, pend, fastmap, multibyte)
01618498 4020 re_char *p, *pend;
f6a3f532
SM
4021 char *fastmap;
4022 const int multibyte;
fa9a63c5 4023{
505bde11 4024 int j, k;
1fb352e0 4025 boolean not;
fa9a63c5 4026
b18215fc 4027 /* If all elements for base leading-codes in fastmap is set, this
7814e705 4028 flag is set true. */
b18215fc
RS
4029 boolean match_any_multibyte_characters = false;
4030
f6a3f532 4031 assert (p);
5e69f11e 4032
505bde11
SM
4033 /* The loop below works as follows:
4034 - It has a working-list kept in the PATTERN_STACK and which basically
4035 starts by only containing a pointer to the first operation.
4036 - If the opcode we're looking at is a match against some set of
4037 chars, then we add those chars to the fastmap and go on to the
4038 next work element from the worklist (done via `break').
4039 - If the opcode is a control operator on the other hand, we either
4040 ignore it (if it's meaningless at this point, such as `start_memory')
4041 or execute it (if it's a jump). If the jump has several destinations
4042 (i.e. `on_failure_jump'), then we push the other destination onto the
4043 worklist.
4044 We guarantee termination by ignoring backward jumps (more or less),
4045 so that `p' is monotonically increasing. More to the point, we
4046 never set `p' (or push) anything `<= p1'. */
4047
01618498 4048 while (p < pend)
fa9a63c5 4049 {
505bde11
SM
4050 /* `p1' is used as a marker of how far back a `on_failure_jump'
4051 can go without being ignored. It is normally equal to `p'
4052 (which prevents any backward `on_failure_jump') except right
4053 after a plain `jump', to allow patterns such as:
4054 0: jump 10
4055 3..9: <body>
4056 10: on_failure_jump 3
4057 as used for the *? operator. */
01618498 4058 re_char *p1 = p;
5e69f11e 4059
fa9a63c5
RM
4060 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
4061 {
f6a3f532 4062 case succeed:
01618498 4063 return 1;
f6a3f532 4064 continue;
fa9a63c5 4065
fa9a63c5 4066 case duplicate:
505bde11
SM
4067 /* If the first character has to match a backreference, that means
4068 that the group was empty (since it already matched). Since this
4069 is the only case that interests us here, we can assume that the
4070 backreference must match the empty string. */
4071 p++;
4072 continue;
fa9a63c5
RM
4073
4074
4075 /* Following are the cases which match a character. These end
7814e705 4076 with `break'. */
fa9a63c5
RM
4077
4078 case exactn:
e0277a47 4079 if (fastmap)
cf9c99bc
KH
4080 {
4081 /* If multibyte is nonzero, the first byte of each
4082 character is an ASCII or a leading code. Otherwise,
4083 each byte is a character. Thus, this works in both
4084 cases. */
4085 fastmap[p[1]] = 1;
4086 if (! multibyte)
4087 {
4088 /* For the case of matching this unibyte regex
4089 against multibyte, we must set a leading code of
4090 the corresponding multibyte character. */
4091 int c = RE_CHAR_TO_MULTIBYTE (p[1]);
4092
86e893e3 4093 fastmap[CHAR_LEADING_CODE (c)] = 1;
cf9c99bc
KH
4094 }
4095 }
fa9a63c5
RM
4096 break;
4097
4098
1fb352e0
SM
4099 case anychar:
4100 /* We could put all the chars except for \n (and maybe \0)
4101 but we don't bother since it is generally not worth it. */
f6a3f532 4102 if (!fastmap) break;
01618498 4103 return -1;
fa9a63c5
RM
4104
4105
b18215fc 4106 case charset_not:
1fb352e0 4107 if (!fastmap) break;
bf216479
KH
4108 {
4109 /* Chars beyond end of bitmap are possible matches. */
bf216479 4110 for (j = CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH;
cf9c99bc 4111 j < (1 << BYTEWIDTH); j++)
bf216479
KH
4112 fastmap[j] = 1;
4113 }
4114
1fb352e0
SM
4115 /* Fallthrough */
4116 case charset:
4117 if (!fastmap) break;
4118 not = (re_opcode_t) *(p - 1) == charset_not;
b18215fc
RS
4119 for (j = CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH - 1, p++;
4120 j >= 0; j--)
1fb352e0 4121 if (!!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))) ^ not)
49da453b 4122 fastmap[j] = 1;
b18215fc 4123
6482db2e
KH
4124#ifdef emacs
4125 if (/* Any leading code can possibly start a character
1fb352e0 4126 which doesn't match the specified set of characters. */
6482db2e
KH
4127 not
4128 ||
4129 /* If we can match a character class, we can match any
4130 multibyte characters. */
4131 (CHARSET_RANGE_TABLE_EXISTS_P (&p[-2])
4132 && CHARSET_RANGE_TABLE_BITS (&p[-2]) != 0))
4133
b18215fc 4134 {
b18215fc
RS
4135 if (match_any_multibyte_characters == false)
4136 {
6482db2e
KH
4137 for (j = MIN_MULTIBYTE_LEADING_CODE;
4138 j <= MAX_MULTIBYTE_LEADING_CODE; j++)
6fdd04b0 4139 fastmap[j] = 1;
b18215fc
RS
4140 match_any_multibyte_characters = true;
4141 }
4142 }
b18215fc 4143
1fb352e0
SM
4144 else if (!not && CHARSET_RANGE_TABLE_EXISTS_P (&p[-2])
4145 && match_any_multibyte_characters == false)
4146 {
bf216479 4147 /* Set fastmap[I] to 1 where I is a leading code of each
9117d724 4148 multibyte characer in the range table. */
1fb352e0 4149 int c, count;
bf216479 4150 unsigned char lc1, lc2;
b18215fc 4151
1fb352e0 4152 /* Make P points the range table. `+ 2' is to skip flag
0b32bf0e 4153 bits for a character class. */
1fb352e0 4154 p += CHARSET_BITMAP_SIZE (&p[-2]) + 2;
b18215fc 4155
1fb352e0
SM
4156 /* Extract the number of ranges in range table into COUNT. */
4157 EXTRACT_NUMBER_AND_INCR (count, p);
cf9c99bc 4158 for (; count > 0; count--, p += 3)
1fb352e0 4159 {
9117d724
KH
4160 /* Extract the start and end of each range. */
4161 EXTRACT_CHARACTER (c, p);
bf216479 4162 lc1 = CHAR_LEADING_CODE (c);
9117d724 4163 p += 3;
1fb352e0 4164 EXTRACT_CHARACTER (c, p);
bf216479
KH
4165 lc2 = CHAR_LEADING_CODE (c);
4166 for (j = lc1; j <= lc2; j++)
9117d724 4167 fastmap[j] = 1;
1fb352e0
SM
4168 }
4169 }
6482db2e 4170#endif
b18215fc
RS
4171 break;
4172
1fb352e0
SM
4173 case syntaxspec:
4174 case notsyntaxspec:
4175 if (!fastmap) break;
4176#ifndef emacs
4177 not = (re_opcode_t)p[-1] == notsyntaxspec;
4178 k = *p++;
4179 for (j = 0; j < (1 << BYTEWIDTH); j++)
990b2375 4180 if ((SYNTAX (j) == (enum syntaxcode) k) ^ not)
b18215fc 4181 fastmap[j] = 1;
b18215fc 4182 break;
1fb352e0 4183#else /* emacs */
b18215fc
RS
4184 /* This match depends on text properties. These end with
4185 aborting optimizations. */
01618498 4186 return -1;
b18215fc
RS
4187
4188 case categoryspec:
b18215fc 4189 case notcategoryspec:
1fb352e0
SM
4190 if (!fastmap) break;
4191 not = (re_opcode_t)p[-1] == notcategoryspec;
b18215fc 4192 k = *p++;
6482db2e 4193 for (j = (1 << BYTEWIDTH); j >= 0; j--)
1fb352e0 4194 if ((CHAR_HAS_CATEGORY (j, k)) ^ not)
b18215fc
RS
4195 fastmap[j] = 1;
4196
6482db2e
KH
4197 /* Any leading code can possibly start a character which
4198 has or doesn't has the specified category. */
4199 if (match_any_multibyte_characters == false)
6fdd04b0 4200 {
6482db2e
KH
4201 for (j = MIN_MULTIBYTE_LEADING_CODE;
4202 j <= MAX_MULTIBYTE_LEADING_CODE; j++)
4203 fastmap[j] = 1;
4204 match_any_multibyte_characters = true;
6fdd04b0 4205 }
b18215fc
RS
4206 break;
4207
fa9a63c5 4208 /* All cases after this match the empty string. These end with
25fe55af 4209 `continue'. */
fa9a63c5 4210
fa9a63c5
RM
4211 case before_dot:
4212 case at_dot:
4213 case after_dot:
1fb352e0 4214#endif /* !emacs */
25fe55af
RS
4215 case no_op:
4216 case begline:
4217 case endline:
fa9a63c5
RM
4218 case begbuf:
4219 case endbuf:
4220 case wordbound:
4221 case notwordbound:
4222 case wordbeg:
4223 case wordend:
669fa600
SM
4224 case symbeg:
4225 case symend:
25fe55af 4226 continue;
fa9a63c5
RM
4227
4228
fa9a63c5 4229 case jump:
25fe55af 4230 EXTRACT_NUMBER_AND_INCR (j, p);
505bde11
SM
4231 if (j < 0)
4232 /* Backward jumps can only go back to code that we've already
4233 visited. `re_compile' should make sure this is true. */
4234 break;
25fe55af 4235 p += j;
505bde11
SM
4236 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p))
4237 {
4238 case on_failure_jump:
4239 case on_failure_keep_string_jump:
505bde11 4240 case on_failure_jump_loop:
0683b6fa 4241 case on_failure_jump_nastyloop:
505bde11
SM
4242 case on_failure_jump_smart:
4243 p++;
4244 break;
4245 default:
4246 continue;
4247 };
4248 /* Keep `p1' to allow the `on_failure_jump' we are jumping to
4249 to jump back to "just after here". */
4250 /* Fallthrough */
fa9a63c5 4251
25fe55af
RS
4252 case on_failure_jump:
4253 case on_failure_keep_string_jump:
0683b6fa 4254 case on_failure_jump_nastyloop:
505bde11
SM
4255 case on_failure_jump_loop:
4256 case on_failure_jump_smart:
25fe55af 4257 EXTRACT_NUMBER_AND_INCR (j, p);
505bde11 4258 if (p + j <= p1)
ed0767d8 4259 ; /* Backward jump to be ignored. */
01618498
SM
4260 else
4261 { /* We have to look down both arms.
4262 We first go down the "straight" path so as to minimize
4263 stack usage when going through alternatives. */
4264 int r = analyse_first (p, pend, fastmap, multibyte);
4265 if (r) return r;
4266 p += j;
4267 }
25fe55af 4268 continue;
fa9a63c5
RM
4269
4270
ed0767d8
SM
4271 case jump_n:
4272 /* This code simply does not properly handle forward jump_n. */
4273 DEBUG_STATEMENT (EXTRACT_NUMBER (j, p); assert (j < 0));
4274 p += 4;
4275 /* jump_n can either jump or fall through. The (backward) jump
4276 case has already been handled, so we only need to look at the
4277 fallthrough case. */
4278 continue;
177c0ea7 4279
fa9a63c5 4280 case succeed_n:
ed0767d8
SM
4281 /* If N == 0, it should be an on_failure_jump_loop instead. */
4282 DEBUG_STATEMENT (EXTRACT_NUMBER (j, p + 2); assert (j > 0));
4283 p += 4;
4284 /* We only care about one iteration of the loop, so we don't
4285 need to consider the case where this behaves like an
4286 on_failure_jump. */
25fe55af 4287 continue;
fa9a63c5
RM
4288
4289
4290 case set_number_at:
25fe55af
RS
4291 p += 4;
4292 continue;
fa9a63c5
RM
4293
4294
4295 case start_memory:
25fe55af 4296 case stop_memory:
505bde11 4297 p += 1;
fa9a63c5
RM
4298 continue;
4299
4300
4301 default:
25fe55af
RS
4302 abort (); /* We have listed all the cases. */
4303 } /* switch *p++ */
fa9a63c5
RM
4304
4305 /* Getting here means we have found the possible starting
25fe55af 4306 characters for one path of the pattern -- and that the empty
7814e705 4307 string does not match. We need not follow this path further. */
01618498 4308 return 0;
fa9a63c5
RM
4309 } /* while p */
4310
01618498
SM
4311 /* We reached the end without matching anything. */
4312 return 1;
4313
f6a3f532
SM
4314} /* analyse_first */
4315\f
4316/* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
4317 BUFP. A fastmap records which of the (1 << BYTEWIDTH) possible
4318 characters can start a string that matches the pattern. This fastmap
4319 is used by re_search to skip quickly over impossible starting points.
4320
4321 Character codes above (1 << BYTEWIDTH) are not represented in the
4322 fastmap, but the leading codes are represented. Thus, the fastmap
4323 indicates which character sets could start a match.
4324
4325 The caller must supply the address of a (1 << BYTEWIDTH)-byte data
4326 area as BUFP->fastmap.
4327
4328 We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
4329 the pattern buffer.
4330
4331 Returns 0 if we succeed, -2 if an internal error. */
4332
4333int
4334re_compile_fastmap (bufp)
4335 struct re_pattern_buffer *bufp;
4336{
4337 char *fastmap = bufp->fastmap;
4338 int analysis;
4339
4340 assert (fastmap && bufp->buffer);
4341
7814e705 4342 bzero (fastmap, 1 << BYTEWIDTH); /* Assume nothing's valid. */
f6a3f532
SM
4343 bufp->fastmap_accurate = 1; /* It will be when we're done. */
4344
4345 analysis = analyse_first (bufp->buffer, bufp->buffer + bufp->used,
2d1675e4 4346 fastmap, RE_MULTIBYTE_P (bufp));
c0f9ea08 4347 bufp->can_be_null = (analysis != 0);
fa9a63c5
RM
4348 return 0;
4349} /* re_compile_fastmap */
4350\f
4351/* Set REGS to hold NUM_REGS registers, storing them in STARTS and
4352 ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use
4353 this memory for recording register information. STARTS and ENDS
4354 must be allocated using the malloc library routine, and must each
4355 be at least NUM_REGS * sizeof (regoff_t) bytes long.
4356
4357 If NUM_REGS == 0, then subsequent matches should allocate their own
4358 register data.
4359
4360 Unless this function is called, the first search or match using
4361 PATTERN_BUFFER will allocate its own register data, without
4362 freeing the old data. */
4363
4364void
4365re_set_registers (bufp, regs, num_regs, starts, ends)
4366 struct re_pattern_buffer *bufp;
4367 struct re_registers *regs;
4368 unsigned num_regs;
4369 regoff_t *starts, *ends;
4370{
4371 if (num_regs)
4372 {
4373 bufp->regs_allocated = REGS_REALLOCATE;
4374 regs->num_regs = num_regs;
4375 regs->start = starts;
4376 regs->end = ends;
4377 }
4378 else
4379 {
4380 bufp->regs_allocated = REGS_UNALLOCATED;
4381 regs->num_regs = 0;
4382 regs->start = regs->end = (regoff_t *) 0;
4383 }
4384}
c0f9ea08 4385WEAK_ALIAS (__re_set_registers, re_set_registers)
fa9a63c5 4386\f
7814e705 4387/* Searching routines. */
fa9a63c5
RM
4388
4389/* Like re_search_2, below, but only one string is specified, and
4390 doesn't let you say where to stop matching. */
4391
4392int
4393re_search (bufp, string, size, startpos, range, regs)
4394 struct re_pattern_buffer *bufp;
4395 const char *string;
4396 int size, startpos, range;
4397 struct re_registers *regs;
4398{
5e69f11e 4399 return re_search_2 (bufp, NULL, 0, string, size, startpos, range,
fa9a63c5
RM
4400 regs, size);
4401}
c0f9ea08 4402WEAK_ALIAS (__re_search, re_search)
fa9a63c5 4403
70806df6
KH
4404/* Head address of virtual concatenation of string. */
4405#define HEAD_ADDR_VSTRING(P) \
4406 (((P) >= size1 ? string2 : string1))
4407
b18215fc
RS
4408/* End address of virtual concatenation of string. */
4409#define STOP_ADDR_VSTRING(P) \
4410 (((P) >= size1 ? string2 + size2 : string1 + size1))
4411
4412/* Address of POS in the concatenation of virtual string. */
4413#define POS_ADDR_VSTRING(POS) \
4414 (((POS) >= size1 ? string2 - size1 : string1) + (POS))
fa9a63c5
RM
4415
4416/* Using the compiled pattern in BUFP->buffer, first tries to match the
4417 virtual concatenation of STRING1 and STRING2, starting first at index
4418 STARTPOS, then at STARTPOS + 1, and so on.
5e69f11e 4419
fa9a63c5 4420 STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
5e69f11e 4421
fa9a63c5
RM
4422 RANGE is how far to scan while trying to match. RANGE = 0 means try
4423 only at STARTPOS; in general, the last start tried is STARTPOS +
4424 RANGE.
5e69f11e 4425
fa9a63c5
RM
4426 In REGS, return the indices of the virtual concatenation of STRING1
4427 and STRING2 that matched the entire BUFP->buffer and its contained
4428 subexpressions.
5e69f11e 4429
fa9a63c5
RM
4430 Do not consider matching one past the index STOP in the virtual
4431 concatenation of STRING1 and STRING2.
4432
4433 We return either the position in the strings at which the match was
4434 found, -1 if no match, or -2 if error (such as failure
4435 stack overflow). */
4436
4437int
66f0296e 4438re_search_2 (bufp, str1, size1, str2, size2, startpos, range, regs, stop)
fa9a63c5 4439 struct re_pattern_buffer *bufp;
66f0296e 4440 const char *str1, *str2;
fa9a63c5
RM
4441 int size1, size2;
4442 int startpos;
4443 int range;
4444 struct re_registers *regs;
4445 int stop;
4446{
4447 int val;
66f0296e
SM
4448 re_char *string1 = (re_char*) str1;
4449 re_char *string2 = (re_char*) str2;
fa9a63c5 4450 register char *fastmap = bufp->fastmap;
6676cb1c 4451 register RE_TRANSLATE_TYPE translate = bufp->translate;
fa9a63c5
RM
4452 int total_size = size1 + size2;
4453 int endpos = startpos + range;
c0f9ea08 4454 boolean anchored_start;
cf9c99bc
KH
4455 /* Nonzero if we are searching multibyte string. */
4456 const boolean multibyte = RE_TARGET_MULTIBYTE_P (bufp);
b18215fc 4457
fa9a63c5
RM
4458 /* Check for out-of-range STARTPOS. */
4459 if (startpos < 0 || startpos > total_size)
4460 return -1;
5e69f11e 4461
fa9a63c5 4462 /* Fix up RANGE if it might eventually take us outside
34597fa9 4463 the virtual concatenation of STRING1 and STRING2.
5e69f11e 4464 Make sure we won't move STARTPOS below 0 or above TOTAL_SIZE. */
34597fa9
RS
4465 if (endpos < 0)
4466 range = 0 - startpos;
fa9a63c5
RM
4467 else if (endpos > total_size)
4468 range = total_size - startpos;
4469
4470 /* If the search isn't to be a backwards one, don't waste time in a
7b140fd7 4471 search for a pattern anchored at beginning of buffer. */
fa9a63c5
RM
4472 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == begbuf && range > 0)
4473 {
4474 if (startpos > 0)
4475 return -1;
4476 else
7b140fd7 4477 range = 0;
fa9a63c5
RM
4478 }
4479
ae4788a8
RS
4480#ifdef emacs
4481 /* In a forward search for something that starts with \=.
4482 don't keep searching past point. */
4483 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == at_dot && range > 0)
4484 {
7b140fd7
RS
4485 range = PT_BYTE - BEGV_BYTE - startpos;
4486 if (range < 0)
ae4788a8
RS
4487 return -1;
4488 }
4489#endif /* emacs */
4490
fa9a63c5
RM
4491 /* Update the fastmap now if not correct already. */
4492 if (fastmap && !bufp->fastmap_accurate)
01618498 4493 re_compile_fastmap (bufp);
5e69f11e 4494
c8499ba5 4495 /* See whether the pattern is anchored. */
c0f9ea08 4496 anchored_start = (bufp->buffer[0] == begline);
c8499ba5 4497
b18215fc 4498#ifdef emacs
cc9b4df2
KH
4499 gl_state.object = re_match_object;
4500 {
99633e97 4501 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (POS_AS_IN_BUFFER (startpos));
cc9b4df2
KH
4502
4503 SETUP_SYNTAX_TABLE_FOR_OBJECT (re_match_object, charpos, 1);
4504 }
b18215fc
RS
4505#endif
4506
fa9a63c5
RM
4507 /* Loop through the string, looking for a place to start matching. */
4508 for (;;)
5e69f11e 4509 {
c8499ba5
RS
4510 /* If the pattern is anchored,
4511 skip quickly past places we cannot match.
4512 We don't bother to treat startpos == 0 specially
4513 because that case doesn't repeat. */
4514 if (anchored_start && startpos > 0)
4515 {
c0f9ea08
SM
4516 if (! ((startpos <= size1 ? string1[startpos - 1]
4517 : string2[startpos - size1 - 1])
4518 == '\n'))
c8499ba5
RS
4519 goto advance;
4520 }
4521
fa9a63c5 4522 /* If a fastmap is supplied, skip quickly over characters that
25fe55af
RS
4523 cannot be the start of a match. If the pattern can match the
4524 null string, however, we don't need to skip characters; we want
7814e705 4525 the first null string. */
fa9a63c5
RM
4526 if (fastmap && startpos < total_size && !bufp->can_be_null)
4527 {
66f0296e 4528 register re_char *d;
01618498 4529 register re_wchar_t buf_ch;
e934739e
RS
4530
4531 d = POS_ADDR_VSTRING (startpos);
4532
7814e705 4533 if (range > 0) /* Searching forwards. */
fa9a63c5 4534 {
fa9a63c5
RM
4535 register int lim = 0;
4536 int irange = range;
4537
25fe55af
RS
4538 if (startpos < size1 && startpos + range >= size1)
4539 lim = range - (size1 - startpos);
fa9a63c5 4540
25fe55af
RS
4541 /* Written out as an if-else to avoid testing `translate'
4542 inside the loop. */
28ae27ae
AS
4543 if (RE_TRANSLATE_P (translate))
4544 {
e934739e
RS
4545 if (multibyte)
4546 while (range > lim)
4547 {
4548 int buf_charlen;
4549
62a6e103 4550 buf_ch = STRING_CHAR_AND_LENGTH (d, buf_charlen);
e934739e 4551 buf_ch = RE_TRANSLATE (translate, buf_ch);
bf216479 4552 if (fastmap[CHAR_LEADING_CODE (buf_ch)])
e934739e
RS
4553 break;
4554
4555 range -= buf_charlen;
4556 d += buf_charlen;
4557 }
4558 else
bf216479 4559 while (range > lim)
33c46939 4560 {
cf9c99bc
KH
4561 register re_wchar_t ch, translated;
4562
bf216479 4563 buf_ch = *d;
cf9c99bc
KH
4564 ch = RE_CHAR_TO_MULTIBYTE (buf_ch);
4565 translated = RE_TRANSLATE (translate, ch);
4566 if (translated != ch
4567 && (ch = RE_CHAR_TO_UNIBYTE (translated)) >= 0)
4568 buf_ch = ch;
6fdd04b0 4569 if (fastmap[buf_ch])
bf216479 4570 break;
33c46939
RS
4571 d++;
4572 range--;
4573 }
e934739e 4574 }
fa9a63c5 4575 else
6fdd04b0
KH
4576 {
4577 if (multibyte)
4578 while (range > lim)
4579 {
4580 int buf_charlen;
fa9a63c5 4581
62a6e103 4582 buf_ch = STRING_CHAR_AND_LENGTH (d, buf_charlen);
6fdd04b0
KH
4583 if (fastmap[CHAR_LEADING_CODE (buf_ch)])
4584 break;
4585 range -= buf_charlen;
4586 d += buf_charlen;
4587 }
e934739e 4588 else
6fdd04b0 4589 while (range > lim && !fastmap[*d])
33c46939
RS
4590 {
4591 d++;
4592 range--;
4593 }
e934739e 4594 }
fa9a63c5
RM
4595 startpos += irange - range;
4596 }
7814e705 4597 else /* Searching backwards. */
fa9a63c5 4598 {
ba5e343c
KH
4599 if (multibyte)
4600 {
62a6e103 4601 buf_ch = STRING_CHAR (d);
ba5e343c
KH
4602 buf_ch = TRANSLATE (buf_ch);
4603 if (! fastmap[CHAR_LEADING_CODE (buf_ch)])
4604 goto advance;
4605 }
4606 else
4607 {
cf9c99bc
KH
4608 register re_wchar_t ch, translated;
4609
4610 buf_ch = *d;
4611 ch = RE_CHAR_TO_MULTIBYTE (buf_ch);
4612 translated = TRANSLATE (ch);
4613 if (translated != ch
4614 && (ch = RE_CHAR_TO_UNIBYTE (translated)) >= 0)
4615 buf_ch = ch;
4616 if (! fastmap[TRANSLATE (buf_ch)])
ba5e343c
KH
4617 goto advance;
4618 }
fa9a63c5
RM
4619 }
4620 }
4621
4622 /* If can't match the null string, and that's all we have left, fail. */
4623 if (range >= 0 && startpos == total_size && fastmap
25fe55af 4624 && !bufp->can_be_null)
fa9a63c5
RM
4625 return -1;
4626
4627 val = re_match_2_internal (bufp, string1, size1, string2, size2,
4628 startpos, regs, stop);
fa9a63c5
RM
4629
4630 if (val >= 0)
4631 return startpos;
5e69f11e 4632
fa9a63c5
RM
4633 if (val == -2)
4634 return -2;
4635
4636 advance:
5e69f11e 4637 if (!range)
25fe55af 4638 break;
5e69f11e 4639 else if (range > 0)
25fe55af 4640 {
b18215fc
RS
4641 /* Update STARTPOS to the next character boundary. */
4642 if (multibyte)
4643 {
66f0296e
SM
4644 re_char *p = POS_ADDR_VSTRING (startpos);
4645 re_char *pend = STOP_ADDR_VSTRING (startpos);
b18215fc
RS
4646 int len = MULTIBYTE_FORM_LENGTH (p, pend - p);
4647
4648 range -= len;
4649 if (range < 0)
4650 break;
4651 startpos += len;
4652 }
4653 else
4654 {
b560c397
RS
4655 range--;
4656 startpos++;
4657 }
e318085a 4658 }
fa9a63c5 4659 else
25fe55af
RS
4660 {
4661 range++;
4662 startpos--;
b18215fc
RS
4663
4664 /* Update STARTPOS to the previous character boundary. */
4665 if (multibyte)
4666 {
70806df6
KH
4667 re_char *p = POS_ADDR_VSTRING (startpos) + 1;
4668 re_char *p0 = p;
4669 re_char *phead = HEAD_ADDR_VSTRING (startpos);
b18215fc
RS
4670
4671 /* Find the head of multibyte form. */
70806df6
KH
4672 PREV_CHAR_BOUNDARY (p, phead);
4673 range += p0 - 1 - p;
4674 if (range > 0)
4675 break;
b18215fc 4676
70806df6 4677 startpos -= p0 - 1 - p;
b18215fc 4678 }
25fe55af 4679 }
fa9a63c5
RM
4680 }
4681 return -1;
4682} /* re_search_2 */
c0f9ea08 4683WEAK_ALIAS (__re_search_2, re_search_2)
fa9a63c5
RM
4684\f
4685/* Declarations and macros for re_match_2. */
4686
2d1675e4
SM
4687static int bcmp_translate _RE_ARGS((re_char *s1, re_char *s2,
4688 register int len,
4689 RE_TRANSLATE_TYPE translate,
4690 const int multibyte));
fa9a63c5
RM
4691
4692/* This converts PTR, a pointer into one of the search strings `string1'
4693 and `string2' into an offset from the beginning of that string. */
4694#define POINTER_TO_OFFSET(ptr) \
4695 (FIRST_STRING_P (ptr) \
4696 ? ((regoff_t) ((ptr) - string1)) \
4697 : ((regoff_t) ((ptr) - string2 + size1)))
4698
fa9a63c5 4699/* Call before fetching a character with *d. This switches over to
419d1c74
SM
4700 string2 if necessary.
4701 Check re_match_2_internal for a discussion of why end_match_2 might
4702 not be within string2 (but be equal to end_match_1 instead). */
fa9a63c5 4703#define PREFETCH() \
25fe55af 4704 while (d == dend) \
fa9a63c5
RM
4705 { \
4706 /* End of string2 => fail. */ \
25fe55af
RS
4707 if (dend == end_match_2) \
4708 goto fail; \
4bb91c68 4709 /* End of string1 => advance to string2. */ \
25fe55af 4710 d = string2; \
fa9a63c5
RM
4711 dend = end_match_2; \
4712 }
4713
f1ad044f
SM
4714/* Call before fetching a char with *d if you already checked other limits.
4715 This is meant for use in lookahead operations like wordend, etc..
4716 where we might need to look at parts of the string that might be
4717 outside of the LIMITs (i.e past `stop'). */
4718#define PREFETCH_NOLIMIT() \
4719 if (d == end1) \
4720 { \
4721 d = string2; \
4722 dend = end_match_2; \
4723 } \
fa9a63c5
RM
4724
4725/* Test if at very beginning or at very end of the virtual concatenation
7814e705 4726 of `string1' and `string2'. If only one string, it's `string2'. */
fa9a63c5 4727#define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
5e69f11e 4728#define AT_STRINGS_END(d) ((d) == end2)
fa9a63c5
RM
4729
4730
4731/* Test if D points to a character which is word-constituent. We have
4732 two special cases to check for: if past the end of string1, look at
4733 the first character in string2; and if before the beginning of
4734 string2, look at the last character in string1. */
4735#define WORDCHAR_P(d) \
4736 (SYNTAX ((d) == end1 ? *string2 \
25fe55af 4737 : (d) == string2 - 1 ? *(end1 - 1) : *(d)) \
fa9a63c5
RM
4738 == Sword)
4739
9121ca40 4740/* Disabled due to a compiler bug -- see comment at case wordbound */
b18215fc
RS
4741
4742/* The comment at case wordbound is following one, but we don't use
4743 AT_WORD_BOUNDARY anymore to support multibyte form.
4744
4745 The DEC Alpha C compiler 3.x generates incorrect code for the
25fe55af 4746 test WORDCHAR_P (d - 1) != WORDCHAR_P (d) in the expansion of
7814e705 4747 AT_WORD_BOUNDARY, so this code is disabled. Expanding the
b18215fc
RS
4748 macro and introducing temporary variables works around the bug. */
4749
9121ca40 4750#if 0
fa9a63c5
RM
4751/* Test if the character before D and the one at D differ with respect
4752 to being word-constituent. */
4753#define AT_WORD_BOUNDARY(d) \
4754 (AT_STRINGS_BEG (d) || AT_STRINGS_END (d) \
4755 || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
9121ca40 4756#endif
fa9a63c5
RM
4757
4758/* Free everything we malloc. */
4759#ifdef MATCH_MAY_ALLOCATE
0b32bf0e
SM
4760# define FREE_VAR(var) if (var) { REGEX_FREE (var); var = NULL; } else
4761# define FREE_VARIABLES() \
fa9a63c5
RM
4762 do { \
4763 REGEX_FREE_STACK (fail_stack.stack); \
4764 FREE_VAR (regstart); \
4765 FREE_VAR (regend); \
fa9a63c5
RM
4766 FREE_VAR (best_regstart); \
4767 FREE_VAR (best_regend); \
fa9a63c5
RM
4768 } while (0)
4769#else
0b32bf0e 4770# define FREE_VARIABLES() ((void)0) /* Do nothing! But inhibit gcc warning. */
fa9a63c5
RM
4771#endif /* not MATCH_MAY_ALLOCATE */
4772
505bde11
SM
4773\f
4774/* Optimization routines. */
4775
4e8a9132
SM
4776/* If the operation is a match against one or more chars,
4777 return a pointer to the next operation, else return NULL. */
01618498 4778static re_char *
4e8a9132 4779skip_one_char (p)
01618498 4780 re_char *p;
4e8a9132
SM
4781{
4782 switch (SWITCH_ENUM_CAST (*p++))
4783 {
4784 case anychar:
4785 break;
177c0ea7 4786
4e8a9132
SM
4787 case exactn:
4788 p += *p + 1;
4789 break;
4790
4791 case charset_not:
4792 case charset:
4793 if (CHARSET_RANGE_TABLE_EXISTS_P (p - 1))
4794 {
4795 int mcnt;
4796 p = CHARSET_RANGE_TABLE (p - 1);
4797 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4798 p = CHARSET_RANGE_TABLE_END (p, mcnt);
4799 }
4800 else
4801 p += 1 + CHARSET_BITMAP_SIZE (p - 1);
4802 break;
177c0ea7 4803
4e8a9132
SM
4804 case syntaxspec:
4805 case notsyntaxspec:
1fb352e0 4806#ifdef emacs
4e8a9132
SM
4807 case categoryspec:
4808 case notcategoryspec:
4809#endif /* emacs */
4810 p++;
4811 break;
4812
4813 default:
4814 p = NULL;
4815 }
4816 return p;
4817}
4818
4819
505bde11 4820/* Jump over non-matching operations. */
839966f3 4821static re_char *
4e8a9132 4822skip_noops (p, pend)
839966f3 4823 re_char *p, *pend;
505bde11
SM
4824{
4825 int mcnt;
4826 while (p < pend)
4827 {
4828 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p))
4829 {
4830 case start_memory:
505bde11
SM
4831 case stop_memory:
4832 p += 2; break;
4833 case no_op:
4834 p += 1; break;
4835 case jump:
4836 p += 1;
4837 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4838 p += mcnt;
4839 break;
4840 default:
4841 return p;
4842 }
4843 }
4844 assert (p == pend);
4845 return p;
4846}
4847
4848/* Non-zero if "p1 matches something" implies "p2 fails". */
4849static int
4850mutually_exclusive_p (bufp, p1, p2)
4851 struct re_pattern_buffer *bufp;
839966f3 4852 re_char *p1, *p2;
505bde11 4853{
4e8a9132 4854 re_opcode_t op2;
2d1675e4 4855 const boolean multibyte = RE_MULTIBYTE_P (bufp);
505bde11
SM
4856 unsigned char *pend = bufp->buffer + bufp->used;
4857
4e8a9132 4858 assert (p1 >= bufp->buffer && p1 < pend
505bde11
SM
4859 && p2 >= bufp->buffer && p2 <= pend);
4860
4861 /* Skip over open/close-group commands.
4862 If what follows this loop is a ...+ construct,
4863 look at what begins its body, since we will have to
4864 match at least one of that. */
4e8a9132
SM
4865 p2 = skip_noops (p2, pend);
4866 /* The same skip can be done for p1, except that this function
4867 is only used in the case where p1 is a simple match operator. */
4868 /* p1 = skip_noops (p1, pend); */
4869
4870 assert (p1 >= bufp->buffer && p1 < pend
4871 && p2 >= bufp->buffer && p2 <= pend);
4872
4873 op2 = p2 == pend ? succeed : *p2;
4874
4875 switch (SWITCH_ENUM_CAST (op2))
505bde11 4876 {
4e8a9132
SM
4877 case succeed:
4878 case endbuf:
4879 /* If we're at the end of the pattern, we can change. */
4880 if (skip_one_char (p1))
505bde11 4881 {
505bde11
SM
4882 DEBUG_PRINT1 (" End of pattern: fast loop.\n");
4883 return 1;
505bde11 4884 }
4e8a9132 4885 break;
177c0ea7 4886
4e8a9132 4887 case endline:
4e8a9132
SM
4888 case exactn:
4889 {
01618498 4890 register re_wchar_t c
4e8a9132 4891 = (re_opcode_t) *p2 == endline ? '\n'
62a6e103 4892 : RE_STRING_CHAR (p2 + 2, multibyte);
505bde11 4893
4e8a9132
SM
4894 if ((re_opcode_t) *p1 == exactn)
4895 {
62a6e103 4896 if (c != RE_STRING_CHAR (p1 + 2, multibyte))
4e8a9132
SM
4897 {
4898 DEBUG_PRINT3 (" '%c' != '%c' => fast loop.\n", c, p1[2]);
4899 return 1;
4900 }
4901 }
505bde11 4902
4e8a9132
SM
4903 else if ((re_opcode_t) *p1 == charset
4904 || (re_opcode_t) *p1 == charset_not)
4905 {
4906 int not = (re_opcode_t) *p1 == charset_not;
505bde11 4907
4e8a9132
SM
4908 /* Test if C is listed in charset (or charset_not)
4909 at `p1'. */
6fdd04b0 4910 if (! multibyte || IS_REAL_ASCII (c))
4e8a9132
SM
4911 {
4912 if (c < CHARSET_BITMAP_SIZE (p1) * BYTEWIDTH
4913 && p1[2 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
4914 not = !not;
4915 }
4916 else if (CHARSET_RANGE_TABLE_EXISTS_P (p1))
4917 CHARSET_LOOKUP_RANGE_TABLE (not, c, p1);
505bde11 4918
4e8a9132
SM
4919 /* `not' is equal to 1 if c would match, which means
4920 that we can't change to pop_failure_jump. */
4921 if (!not)
4922 {
4923 DEBUG_PRINT1 (" No match => fast loop.\n");
4924 return 1;
4925 }
4926 }
4927 else if ((re_opcode_t) *p1 == anychar
4928 && c == '\n')
4929 {
4930 DEBUG_PRINT1 (" . != \\n => fast loop.\n");
4931 return 1;
4932 }
4933 }
4934 break;
505bde11 4935
4e8a9132 4936 case charset:
4e8a9132
SM
4937 {
4938 if ((re_opcode_t) *p1 == exactn)
4939 /* Reuse the code above. */
4940 return mutually_exclusive_p (bufp, p2, p1);
505bde11 4941
505bde11
SM
4942 /* It is hard to list up all the character in charset
4943 P2 if it includes multibyte character. Give up in
4944 such case. */
4945 else if (!multibyte || !CHARSET_RANGE_TABLE_EXISTS_P (p2))
4946 {
4947 /* Now, we are sure that P2 has no range table.
4948 So, for the size of bitmap in P2, `p2[1]' is
7814e705 4949 enough. But P1 may have range table, so the
505bde11
SM
4950 size of bitmap table of P1 is extracted by
4951 using macro `CHARSET_BITMAP_SIZE'.
4952
6fdd04b0
KH
4953 In a multibyte case, we know that all the character
4954 listed in P2 is ASCII. In a unibyte case, P1 has only a
4955 bitmap table. So, in both cases, it is enough to test
4956 only the bitmap table of P1. */
505bde11 4957
411e4203 4958 if ((re_opcode_t) *p1 == charset)
505bde11
SM
4959 {
4960 int idx;
4961 /* We win if the charset inside the loop
4962 has no overlap with the one after the loop. */
4963 for (idx = 0;
4964 (idx < (int) p2[1]
4965 && idx < CHARSET_BITMAP_SIZE (p1));
4966 idx++)
4967 if ((p2[2 + idx] & p1[2 + idx]) != 0)
4968 break;
4969
4970 if (idx == p2[1]
4971 || idx == CHARSET_BITMAP_SIZE (p1))
4972 {
4973 DEBUG_PRINT1 (" No match => fast loop.\n");
4974 return 1;
4975 }
4976 }
411e4203 4977 else if ((re_opcode_t) *p1 == charset_not)
505bde11
SM
4978 {
4979 int idx;
4980 /* We win if the charset_not inside the loop lists
7814e705 4981 every character listed in the charset after. */
505bde11
SM
4982 for (idx = 0; idx < (int) p2[1]; idx++)
4983 if (! (p2[2 + idx] == 0
4984 || (idx < CHARSET_BITMAP_SIZE (p1)
4985 && ((p2[2 + idx] & ~ p1[2 + idx]) == 0))))
4986 break;
4987
4e8a9132
SM
4988 if (idx == p2[1])
4989 {
4990 DEBUG_PRINT1 (" No match => fast loop.\n");
4991 return 1;
4992 }
4993 }
4994 }
4995 }
609b757a 4996 break;
177c0ea7 4997
411e4203
SM
4998 case charset_not:
4999 switch (SWITCH_ENUM_CAST (*p1))
5000 {
5001 case exactn:
5002 case charset:
5003 /* Reuse the code above. */
5004 return mutually_exclusive_p (bufp, p2, p1);
5005 case charset_not:
5006 /* When we have two charset_not, it's very unlikely that
5007 they don't overlap. The union of the two sets of excluded
5008 chars should cover all possible chars, which, as a matter of
5009 fact, is virtually impossible in multibyte buffers. */
36595814 5010 break;
411e4203
SM
5011 }
5012 break;
5013
4e8a9132 5014 case wordend:
669fa600
SM
5015 return ((re_opcode_t) *p1 == syntaxspec && p1[1] == Sword);
5016 case symend:
4e8a9132 5017 return ((re_opcode_t) *p1 == syntaxspec
669fa600
SM
5018 && (p1[1] == Ssymbol || p1[1] == Sword));
5019 case notsyntaxspec:
5020 return ((re_opcode_t) *p1 == syntaxspec && p1[1] == p2[1]);
4e8a9132
SM
5021
5022 case wordbeg:
669fa600
SM
5023 return ((re_opcode_t) *p1 == notsyntaxspec && p1[1] == Sword);
5024 case symbeg:
4e8a9132 5025 return ((re_opcode_t) *p1 == notsyntaxspec
669fa600
SM
5026 && (p1[1] == Ssymbol || p1[1] == Sword));
5027 case syntaxspec:
5028 return ((re_opcode_t) *p1 == notsyntaxspec && p1[1] == p2[1]);
4e8a9132
SM
5029
5030 case wordbound:
5031 return (((re_opcode_t) *p1 == notsyntaxspec
5032 || (re_opcode_t) *p1 == syntaxspec)
5033 && p1[1] == Sword);
5034
1fb352e0 5035#ifdef emacs
4e8a9132
SM
5036 case categoryspec:
5037 return ((re_opcode_t) *p1 == notcategoryspec && p1[1] == p2[1]);
5038 case notcategoryspec:
5039 return ((re_opcode_t) *p1 == categoryspec && p1[1] == p2[1]);
5040#endif /* emacs */
5041
5042 default:
5043 ;
505bde11
SM
5044 }
5045
5046 /* Safe default. */
5047 return 0;
5048}
5049
fa9a63c5
RM
5050\f
5051/* Matching routines. */
5052
25fe55af 5053#ifndef emacs /* Emacs never uses this. */
fa9a63c5
RM
5054/* re_match is like re_match_2 except it takes only a single string. */
5055
5056int
5057re_match (bufp, string, size, pos, regs)
5058 struct re_pattern_buffer *bufp;
5059 const char *string;
5060 int size, pos;
5061 struct re_registers *regs;
5062{
4bb91c68 5063 int result = re_match_2_internal (bufp, NULL, 0, (re_char*) string, size,
fa9a63c5 5064 pos, regs, size);
fa9a63c5
RM
5065 return result;
5066}
c0f9ea08 5067WEAK_ALIAS (__re_match, re_match)
fa9a63c5
RM
5068#endif /* not emacs */
5069
b18215fc
RS
5070#ifdef emacs
5071/* In Emacs, this is the string or buffer in which we
7814e705 5072 are matching. It is used for looking up syntax properties. */
b18215fc
RS
5073Lisp_Object re_match_object;
5074#endif
fa9a63c5
RM
5075
5076/* re_match_2 matches the compiled pattern in BUFP against the
5077 the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
5078 and SIZE2, respectively). We start matching at POS, and stop
5079 matching at STOP.
5e69f11e 5080
fa9a63c5 5081 If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
7814e705 5082 store offsets for the substring each group matched in REGS. See the
fa9a63c5
RM
5083 documentation for exactly how many groups we fill.
5084
5085 We return -1 if no match, -2 if an internal error (such as the
7814e705 5086 failure stack overflowing). Otherwise, we return the length of the
fa9a63c5
RM
5087 matched substring. */
5088
5089int
5090re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
5091 struct re_pattern_buffer *bufp;
5092 const char *string1, *string2;
5093 int size1, size2;
5094 int pos;
5095 struct re_registers *regs;
5096 int stop;
5097{
b18215fc 5098 int result;
25fe55af 5099
b18215fc 5100#ifdef emacs
cc9b4df2
KH
5101 int charpos;
5102 gl_state.object = re_match_object;
99633e97 5103 charpos = SYNTAX_TABLE_BYTE_TO_CHAR (POS_AS_IN_BUFFER (pos));
cc9b4df2 5104 SETUP_SYNTAX_TABLE_FOR_OBJECT (re_match_object, charpos, 1);
b18215fc
RS
5105#endif
5106
4bb91c68
SM
5107 result = re_match_2_internal (bufp, (re_char*) string1, size1,
5108 (re_char*) string2, size2,
cc9b4df2 5109 pos, regs, stop);
fa9a63c5
RM
5110 return result;
5111}
c0f9ea08 5112WEAK_ALIAS (__re_match_2, re_match_2)
fa9a63c5 5113
bf216479 5114
fa9a63c5 5115/* This is a separate function so that we can force an alloca cleanup
7814e705 5116 afterwards. */
fa9a63c5
RM
5117static int
5118re_match_2_internal (bufp, string1, size1, string2, size2, pos, regs, stop)
5119 struct re_pattern_buffer *bufp;
66f0296e 5120 re_char *string1, *string2;
fa9a63c5
RM
5121 int size1, size2;
5122 int pos;
5123 struct re_registers *regs;
5124 int stop;
5125{
5126 /* General temporaries. */
5127 int mcnt;
01618498 5128 size_t reg;
66f0296e 5129 boolean not;
fa9a63c5
RM
5130
5131 /* Just past the end of the corresponding string. */
66f0296e 5132 re_char *end1, *end2;
fa9a63c5
RM
5133
5134 /* Pointers into string1 and string2, just past the last characters in
7814e705 5135 each to consider matching. */
66f0296e 5136 re_char *end_match_1, *end_match_2;
fa9a63c5
RM
5137
5138 /* Where we are in the data, and the end of the current string. */
66f0296e 5139 re_char *d, *dend;
5e69f11e 5140
99633e97
SM
5141 /* Used sometimes to remember where we were before starting matching
5142 an operator so that we can go back in case of failure. This "atomic"
5143 behavior of matching opcodes is indispensable to the correctness
5144 of the on_failure_keep_string_jump optimization. */
5145 re_char *dfail;
5146
fa9a63c5 5147 /* Where we are in the pattern, and the end of the pattern. */
01618498
SM
5148 re_char *p = bufp->buffer;
5149 re_char *pend = p + bufp->used;
fa9a63c5 5150
25fe55af 5151 /* We use this to map every character in the string. */
6676cb1c 5152 RE_TRANSLATE_TYPE translate = bufp->translate;
fa9a63c5 5153
cf9c99bc 5154 /* Nonzero if BUFP is setup from a multibyte regex. */
2d1675e4 5155 const boolean multibyte = RE_MULTIBYTE_P (bufp);
b18215fc 5156
cf9c99bc
KH
5157 /* Nonzero if STRING1/STRING2 are multibyte. */
5158 const boolean target_multibyte = RE_TARGET_MULTIBYTE_P (bufp);
5159
fa9a63c5
RM
5160 /* Failure point stack. Each place that can handle a failure further
5161 down the line pushes a failure point on this stack. It consists of
505bde11 5162 regstart, and regend for all registers corresponding to
fa9a63c5
RM
5163 the subexpressions we're currently inside, plus the number of such
5164 registers, and, finally, two char *'s. The first char * is where
5165 to resume scanning the pattern; the second one is where to resume
7814e705
JB
5166 scanning the strings. */
5167#ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
fa9a63c5
RM
5168 fail_stack_type fail_stack;
5169#endif
5170#ifdef DEBUG
fa9a63c5
RM
5171 unsigned nfailure_points_pushed = 0, nfailure_points_popped = 0;
5172#endif
5173
0b32bf0e 5174#if defined REL_ALLOC && defined REGEX_MALLOC
fa9a63c5
RM
5175 /* This holds the pointer to the failure stack, when
5176 it is allocated relocatably. */
5177 fail_stack_elt_t *failure_stack_ptr;
99633e97 5178#endif
fa9a63c5
RM
5179
5180 /* We fill all the registers internally, independent of what we
7814e705 5181 return, for use in backreferences. The number here includes
fa9a63c5 5182 an element for register zero. */
4bb91c68 5183 size_t num_regs = bufp->re_nsub + 1;
5e69f11e 5184
fa9a63c5
RM
5185 /* Information on the contents of registers. These are pointers into
5186 the input strings; they record just what was matched (on this
5187 attempt) by a subexpression part of the pattern, that is, the
5188 regnum-th regstart pointer points to where in the pattern we began
5189 matching and the regnum-th regend points to right after where we
5190 stopped matching the regnum-th subexpression. (The zeroth register
5191 keeps track of what the whole pattern matches.) */
5192#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
66f0296e 5193 re_char **regstart, **regend;
fa9a63c5
RM
5194#endif
5195
fa9a63c5 5196 /* The following record the register info as found in the above
5e69f11e 5197 variables when we find a match better than any we've seen before.
fa9a63c5
RM
5198 This happens as we backtrack through the failure points, which in
5199 turn happens only if we have not yet matched the entire string. */
5200 unsigned best_regs_set = false;
5201#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
66f0296e 5202 re_char **best_regstart, **best_regend;
fa9a63c5 5203#endif
5e69f11e 5204
fa9a63c5
RM
5205 /* Logically, this is `best_regend[0]'. But we don't want to have to
5206 allocate space for that if we're not allocating space for anything
7814e705 5207 else (see below). Also, we never need info about register 0 for
fa9a63c5
RM
5208 any of the other register vectors, and it seems rather a kludge to
5209 treat `best_regend' differently than the rest. So we keep track of
5210 the end of the best match so far in a separate variable. We
5211 initialize this to NULL so that when we backtrack the first time
5212 and need to test it, it's not garbage. */
66f0296e 5213 re_char *match_end = NULL;
fa9a63c5 5214
fa9a63c5
RM
5215#ifdef DEBUG
5216 /* Counts the total number of registers pushed. */
5e69f11e 5217 unsigned num_regs_pushed = 0;
fa9a63c5
RM
5218#endif
5219
5220 DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
5e69f11e 5221
fa9a63c5 5222 INIT_FAIL_STACK ();
5e69f11e 5223
fa9a63c5
RM
5224#ifdef MATCH_MAY_ALLOCATE
5225 /* Do not bother to initialize all the register variables if there are
5226 no groups in the pattern, as it takes a fair amount of time. If
5227 there are groups, we include space for register 0 (the whole
5228 pattern), even though we never use it, since it simplifies the
5229 array indexing. We should fix this. */
5230 if (bufp->re_nsub)
5231 {
66f0296e
SM
5232 regstart = REGEX_TALLOC (num_regs, re_char *);
5233 regend = REGEX_TALLOC (num_regs, re_char *);
5234 best_regstart = REGEX_TALLOC (num_regs, re_char *);
5235 best_regend = REGEX_TALLOC (num_regs, re_char *);
fa9a63c5 5236
505bde11 5237 if (!(regstart && regend && best_regstart && best_regend))
25fe55af
RS
5238 {
5239 FREE_VARIABLES ();
5240 return -2;
5241 }
fa9a63c5
RM
5242 }
5243 else
5244 {
5245 /* We must initialize all our variables to NULL, so that
25fe55af 5246 `FREE_VARIABLES' doesn't try to free them. */
505bde11 5247 regstart = regend = best_regstart = best_regend = NULL;
fa9a63c5
RM
5248 }
5249#endif /* MATCH_MAY_ALLOCATE */
5250
5251 /* The starting position is bogus. */
5252 if (pos < 0 || pos > size1 + size2)
5253 {
5254 FREE_VARIABLES ();
5255 return -1;
5256 }
5e69f11e 5257
fa9a63c5
RM
5258 /* Initialize subexpression text positions to -1 to mark ones that no
5259 start_memory/stop_memory has been seen for. Also initialize the
5260 register information struct. */
01618498
SM
5261 for (reg = 1; reg < num_regs; reg++)
5262 regstart[reg] = regend[reg] = NULL;
99633e97 5263
fa9a63c5 5264 /* We move `string1' into `string2' if the latter's empty -- but not if
7814e705 5265 `string1' is null. */
fa9a63c5
RM
5266 if (size2 == 0 && string1 != NULL)
5267 {
5268 string2 = string1;
5269 size2 = size1;
5270 string1 = 0;
5271 size1 = 0;
5272 }
5273 end1 = string1 + size1;
5274 end2 = string2 + size2;
5275
5e69f11e 5276 /* `p' scans through the pattern as `d' scans through the data.
fa9a63c5
RM
5277 `dend' is the end of the input string that `d' points within. `d'
5278 is advanced into the following input string whenever necessary, but
5279 this happens before fetching; therefore, at the beginning of the
5280 loop, `d' can be pointing at the end of a string, but it cannot
5281 equal `string2'. */
419d1c74 5282 if (pos >= size1)
fa9a63c5 5283 {
419d1c74
SM
5284 /* Only match within string2. */
5285 d = string2 + pos - size1;
5286 dend = end_match_2 = string2 + stop - size1;
5287 end_match_1 = end1; /* Just to give it a value. */
fa9a63c5
RM
5288 }
5289 else
5290 {
f1ad044f 5291 if (stop < size1)
419d1c74
SM
5292 {
5293 /* Only match within string1. */
5294 end_match_1 = string1 + stop;
5295 /* BEWARE!
5296 When we reach end_match_1, PREFETCH normally switches to string2.
5297 But in the present case, this means that just doing a PREFETCH
5298 makes us jump from `stop' to `gap' within the string.
5299 What we really want here is for the search to stop as
5300 soon as we hit end_match_1. That's why we set end_match_2
5301 to end_match_1 (since PREFETCH fails as soon as we hit
5302 end_match_2). */
5303 end_match_2 = end_match_1;
5304 }
5305 else
f1ad044f
SM
5306 { /* It's important to use this code when stop == size so that
5307 moving `d' from end1 to string2 will not prevent the d == dend
5308 check from catching the end of string. */
419d1c74
SM
5309 end_match_1 = end1;
5310 end_match_2 = string2 + stop - size1;
5311 }
5312 d = string1 + pos;
5313 dend = end_match_1;
fa9a63c5
RM
5314 }
5315
5316 DEBUG_PRINT1 ("The compiled pattern is: ");
5317 DEBUG_PRINT_COMPILED_PATTERN (bufp, p, pend);
5318 DEBUG_PRINT1 ("The string to match is: `");
5319 DEBUG_PRINT_DOUBLE_STRING (d, string1, size1, string2, size2);
5320 DEBUG_PRINT1 ("'\n");
5e69f11e 5321
7814e705 5322 /* This loops over pattern commands. It exits by returning from the
fa9a63c5
RM
5323 function if the match is complete, or it drops through if the match
5324 fails at this starting point in the input data. */
5325 for (;;)
5326 {
505bde11 5327 DEBUG_PRINT2 ("\n%p: ", p);
fa9a63c5
RM
5328
5329 if (p == pend)
5330 { /* End of pattern means we might have succeeded. */
25fe55af 5331 DEBUG_PRINT1 ("end of pattern ... ");
5e69f11e 5332
fa9a63c5 5333 /* If we haven't matched the entire string, and we want the
25fe55af
RS
5334 longest match, try backtracking. */
5335 if (d != end_match_2)
fa9a63c5
RM
5336 {
5337 /* 1 if this match ends in the same string (string1 or string2)
5338 as the best previous match. */
5e69f11e 5339 boolean same_str_p = (FIRST_STRING_P (match_end)
99633e97 5340 == FIRST_STRING_P (d));
fa9a63c5
RM
5341 /* 1 if this match is the best seen so far. */
5342 boolean best_match_p;
5343
5344 /* AIX compiler got confused when this was combined
7814e705 5345 with the previous declaration. */
fa9a63c5
RM
5346 if (same_str_p)
5347 best_match_p = d > match_end;
5348 else
99633e97 5349 best_match_p = !FIRST_STRING_P (d);
fa9a63c5 5350
25fe55af
RS
5351 DEBUG_PRINT1 ("backtracking.\n");
5352
5353 if (!FAIL_STACK_EMPTY ())
5354 { /* More failure points to try. */
5355
5356 /* If exceeds best match so far, save it. */
5357 if (!best_regs_set || best_match_p)
5358 {
5359 best_regs_set = true;
5360 match_end = d;
5361
5362 DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
5363
01618498 5364 for (reg = 1; reg < num_regs; reg++)
25fe55af 5365 {
01618498
SM
5366 best_regstart[reg] = regstart[reg];
5367 best_regend[reg] = regend[reg];
25fe55af
RS
5368 }
5369 }
5370 goto fail;
5371 }
5372
5373 /* If no failure points, don't restore garbage. And if
5374 last match is real best match, don't restore second
5375 best one. */
5376 else if (best_regs_set && !best_match_p)
5377 {
5378 restore_best_regs:
5379 /* Restore best match. It may happen that `dend ==
5380 end_match_1' while the restored d is in string2.
5381 For example, the pattern `x.*y.*z' against the
5382 strings `x-' and `y-z-', if the two strings are
7814e705 5383 not consecutive in memory. */
25fe55af
RS
5384 DEBUG_PRINT1 ("Restoring best registers.\n");
5385
5386 d = match_end;
5387 dend = ((d >= string1 && d <= end1)
5388 ? end_match_1 : end_match_2);
fa9a63c5 5389
01618498 5390 for (reg = 1; reg < num_regs; reg++)
fa9a63c5 5391 {
01618498
SM
5392 regstart[reg] = best_regstart[reg];
5393 regend[reg] = best_regend[reg];
fa9a63c5 5394 }
25fe55af
RS
5395 }
5396 } /* d != end_match_2 */
fa9a63c5
RM
5397
5398 succeed_label:
25fe55af 5399 DEBUG_PRINT1 ("Accepting match.\n");
fa9a63c5 5400
25fe55af
RS
5401 /* If caller wants register contents data back, do it. */
5402 if (regs && !bufp->no_sub)
fa9a63c5 5403 {
25fe55af
RS
5404 /* Have the register data arrays been allocated? */
5405 if (bufp->regs_allocated == REGS_UNALLOCATED)
7814e705 5406 { /* No. So allocate them with malloc. We need one
25fe55af
RS
5407 extra element beyond `num_regs' for the `-1' marker
5408 GNU code uses. */
5409 regs->num_regs = MAX (RE_NREGS, num_regs + 1);
5410 regs->start = TALLOC (regs->num_regs, regoff_t);
5411 regs->end = TALLOC (regs->num_regs, regoff_t);
5412 if (regs->start == NULL || regs->end == NULL)
fa9a63c5
RM
5413 {
5414 FREE_VARIABLES ();
5415 return -2;
5416 }
25fe55af
RS
5417 bufp->regs_allocated = REGS_REALLOCATE;
5418 }
5419 else if (bufp->regs_allocated == REGS_REALLOCATE)
5420 { /* Yes. If we need more elements than were already
5421 allocated, reallocate them. If we need fewer, just
5422 leave it alone. */
5423 if (regs->num_regs < num_regs + 1)
5424 {
5425 regs->num_regs = num_regs + 1;
5426 RETALLOC (regs->start, regs->num_regs, regoff_t);
5427 RETALLOC (regs->end, regs->num_regs, regoff_t);
5428 if (regs->start == NULL || regs->end == NULL)
fa9a63c5
RM
5429 {
5430 FREE_VARIABLES ();
5431 return -2;
5432 }
25fe55af
RS
5433 }
5434 }
5435 else
fa9a63c5
RM
5436 {
5437 /* These braces fend off a "empty body in an else-statement"
7814e705 5438 warning under GCC when assert expands to nothing. */
fa9a63c5
RM
5439 assert (bufp->regs_allocated == REGS_FIXED);
5440 }
5441
25fe55af
RS
5442 /* Convert the pointer data in `regstart' and `regend' to
5443 indices. Register zero has to be set differently,
5444 since we haven't kept track of any info for it. */
5445 if (regs->num_regs > 0)
5446 {
5447 regs->start[0] = pos;
99633e97 5448 regs->end[0] = POINTER_TO_OFFSET (d);
25fe55af 5449 }
5e69f11e 5450
25fe55af
RS
5451 /* Go through the first `min (num_regs, regs->num_regs)'
5452 registers, since that is all we initialized. */
01618498 5453 for (reg = 1; reg < MIN (num_regs, regs->num_regs); reg++)
fa9a63c5 5454 {
01618498
SM
5455 if (REG_UNSET (regstart[reg]) || REG_UNSET (regend[reg]))
5456 regs->start[reg] = regs->end[reg] = -1;
25fe55af
RS
5457 else
5458 {
01618498
SM
5459 regs->start[reg]
5460 = (regoff_t) POINTER_TO_OFFSET (regstart[reg]);
5461 regs->end[reg]
5462 = (regoff_t) POINTER_TO_OFFSET (regend[reg]);
25fe55af 5463 }
fa9a63c5 5464 }
5e69f11e 5465
25fe55af
RS
5466 /* If the regs structure we return has more elements than
5467 were in the pattern, set the extra elements to -1. If
5468 we (re)allocated the registers, this is the case,
5469 because we always allocate enough to have at least one
7814e705 5470 -1 at the end. */
01618498
SM
5471 for (reg = num_regs; reg < regs->num_regs; reg++)
5472 regs->start[reg] = regs->end[reg] = -1;
fa9a63c5
RM
5473 } /* regs && !bufp->no_sub */
5474
25fe55af
RS
5475 DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
5476 nfailure_points_pushed, nfailure_points_popped,
5477 nfailure_points_pushed - nfailure_points_popped);
5478 DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed);
fa9a63c5 5479
99633e97 5480 mcnt = POINTER_TO_OFFSET (d) - pos;
fa9a63c5 5481
25fe55af 5482 DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt);
fa9a63c5 5483
25fe55af
RS
5484 FREE_VARIABLES ();
5485 return mcnt;
5486 }
fa9a63c5 5487
7814e705 5488 /* Otherwise match next pattern command. */
fa9a63c5
RM
5489 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
5490 {
25fe55af
RS
5491 /* Ignore these. Used to ignore the n of succeed_n's which
5492 currently have n == 0. */
5493 case no_op:
5494 DEBUG_PRINT1 ("EXECUTING no_op.\n");
5495 break;
fa9a63c5
RM
5496
5497 case succeed:
25fe55af 5498 DEBUG_PRINT1 ("EXECUTING succeed.\n");
fa9a63c5
RM
5499 goto succeed_label;
5500
7814e705 5501 /* Match the next n pattern characters exactly. The following
25fe55af 5502 byte in the pattern defines n, and the n bytes after that
7814e705 5503 are the characters to match. */
fa9a63c5
RM
5504 case exactn:
5505 mcnt = *p++;
25fe55af 5506 DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt);
fa9a63c5 5507
99633e97
SM
5508 /* Remember the start point to rollback upon failure. */
5509 dfail = d;
5510
6fdd04b0 5511#ifndef emacs
25fe55af
RS
5512 /* This is written out as an if-else so we don't waste time
5513 testing `translate' inside the loop. */
28703c16 5514 if (RE_TRANSLATE_P (translate))
6fdd04b0
KH
5515 do
5516 {
5517 PREFETCH ();
5518 if (RE_TRANSLATE (translate, *d) != *p++)
e934739e 5519 {
6fdd04b0
KH
5520 d = dfail;
5521 goto fail;
e934739e 5522 }
6fdd04b0
KH
5523 d++;
5524 }
5525 while (--mcnt);
fa9a63c5 5526 else
6fdd04b0
KH
5527 do
5528 {
5529 PREFETCH ();
5530 if (*d++ != *p++)
bf216479 5531 {
6fdd04b0
KH
5532 d = dfail;
5533 goto fail;
bf216479 5534 }
6fdd04b0
KH
5535 }
5536 while (--mcnt);
5537#else /* emacs */
5538 /* The cost of testing `translate' is comparatively small. */
cf9c99bc 5539 if (target_multibyte)
6fdd04b0
KH
5540 do
5541 {
5542 int pat_charlen, buf_charlen;
cf9c99bc 5543 int pat_ch, buf_ch;
e934739e 5544
6fdd04b0 5545 PREFETCH ();
cf9c99bc 5546 if (multibyte)
62a6e103 5547 pat_ch = STRING_CHAR_AND_LENGTH (p, pat_charlen);
cf9c99bc
KH
5548 else
5549 {
5550 pat_ch = RE_CHAR_TO_MULTIBYTE (*p);
5551 pat_charlen = 1;
5552 }
62a6e103 5553 buf_ch = STRING_CHAR_AND_LENGTH (d, buf_charlen);
e934739e 5554
6fdd04b0 5555 if (TRANSLATE (buf_ch) != pat_ch)
e934739e 5556 {
6fdd04b0
KH
5557 d = dfail;
5558 goto fail;
e934739e 5559 }
bf216479 5560
6fdd04b0
KH
5561 p += pat_charlen;
5562 d += buf_charlen;
5563 mcnt -= pat_charlen;
5564 }
5565 while (mcnt > 0);
fa9a63c5 5566 else
6fdd04b0
KH
5567 do
5568 {
cf9c99bc
KH
5569 int pat_charlen, buf_charlen;
5570 int pat_ch, buf_ch;
bf216479 5571
6fdd04b0 5572 PREFETCH ();
cf9c99bc
KH
5573 if (multibyte)
5574 {
62a6e103 5575 pat_ch = STRING_CHAR_AND_LENGTH (p, pat_charlen);
2afc21f5 5576 pat_ch = RE_CHAR_TO_UNIBYTE (pat_ch);
cf9c99bc
KH
5577 }
5578 else
5579 {
5580 pat_ch = *p;
5581 pat_charlen = 1;
5582 }
5583 buf_ch = RE_CHAR_TO_MULTIBYTE (*d);
5584 if (! CHAR_BYTE8_P (buf_ch))
5585 {
5586 buf_ch = TRANSLATE (buf_ch);
5587 buf_ch = RE_CHAR_TO_UNIBYTE (buf_ch);
5588 if (buf_ch < 0)
5589 buf_ch = *d;
5590 }
0e2501ed
AS
5591 else
5592 buf_ch = *d;
cf9c99bc 5593 if (buf_ch != pat_ch)
6fdd04b0
KH
5594 {
5595 d = dfail;
5596 goto fail;
bf216479 5597 }
cf9c99bc
KH
5598 p += pat_charlen;
5599 d++;
6fdd04b0
KH
5600 }
5601 while (--mcnt);
5602#endif
25fe55af 5603 break;
fa9a63c5
RM
5604
5605
25fe55af 5606 /* Match any character except possibly a newline or a null. */
fa9a63c5 5607 case anychar:
e934739e
RS
5608 {
5609 int buf_charlen;
01618498 5610 re_wchar_t buf_ch;
fa9a63c5 5611
e934739e 5612 DEBUG_PRINT1 ("EXECUTING anychar.\n");
fa9a63c5 5613
e934739e 5614 PREFETCH ();
62a6e103 5615 buf_ch = RE_STRING_CHAR_AND_LENGTH (d, buf_charlen,
cf9c99bc 5616 target_multibyte);
e934739e
RS
5617 buf_ch = TRANSLATE (buf_ch);
5618
5619 if ((!(bufp->syntax & RE_DOT_NEWLINE)
5620 && buf_ch == '\n')
5621 || ((bufp->syntax & RE_DOT_NOT_NULL)
5622 && buf_ch == '\000'))
5623 goto fail;
5624
e934739e
RS
5625 DEBUG_PRINT2 (" Matched `%d'.\n", *d);
5626 d += buf_charlen;
5627 }
fa9a63c5
RM
5628 break;
5629
5630
5631 case charset:
5632 case charset_not:
5633 {
b18215fc 5634 register unsigned int c;
fa9a63c5 5635 boolean not = (re_opcode_t) *(p - 1) == charset_not;
b18215fc
RS
5636 int len;
5637
5638 /* Start of actual range_table, or end of bitmap if there is no
5639 range table. */
01618498 5640 re_char *range_table;
b18215fc 5641
96cc36cc 5642 /* Nonzero if there is a range table. */
b18215fc
RS
5643 int range_table_exists;
5644
96cc36cc
RS
5645 /* Number of ranges of range table. This is not included
5646 in the initial byte-length of the command. */
5647 int count = 0;
fa9a63c5 5648
f5020181
AS
5649 /* Whether matching against a unibyte character. */
5650 boolean unibyte_char = false;
5651
25fe55af 5652 DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : "");
fa9a63c5 5653
b18215fc 5654 range_table_exists = CHARSET_RANGE_TABLE_EXISTS_P (&p[-1]);
96cc36cc 5655
b18215fc 5656 if (range_table_exists)
96cc36cc
RS
5657 {
5658 range_table = CHARSET_RANGE_TABLE (&p[-1]); /* Past the bitmap. */
5659 EXTRACT_NUMBER_AND_INCR (count, range_table);
5660 }
b18215fc 5661
2d1675e4 5662 PREFETCH ();
62a6e103 5663 c = RE_STRING_CHAR_AND_LENGTH (d, len, target_multibyte);
cf9c99bc
KH
5664 if (target_multibyte)
5665 {
5666 int c1;
b18215fc 5667
cf9c99bc
KH
5668 c = TRANSLATE (c);
5669 c1 = RE_CHAR_TO_UNIBYTE (c);
5670 if (c1 >= 0)
f5020181
AS
5671 {
5672 unibyte_char = true;
5673 c = c1;
5674 }
cf9c99bc
KH
5675 }
5676 else
5677 {
5678 int c1 = RE_CHAR_TO_MULTIBYTE (c);
5679
5680 if (! CHAR_BYTE8_P (c1))
5681 {
5682 c1 = TRANSLATE (c1);
5683 c1 = RE_CHAR_TO_UNIBYTE (c1);
5684 if (c1 >= 0)
f5020181
AS
5685 {
5686 unibyte_char = true;
5687 c = c1;
5688 }
cf9c99bc 5689 }
0b8be006
AS
5690 else
5691 unibyte_char = true;
cf9c99bc
KH
5692 }
5693
f5020181 5694 if (unibyte_char && c < (1 << BYTEWIDTH))
b18215fc 5695 { /* Lookup bitmap. */
b18215fc
RS
5696 /* Cast to `unsigned' instead of `unsigned char' in
5697 case the bit list is a full 32 bytes long. */
5698 if (c < (unsigned) (CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH)
96cc36cc
RS
5699 && p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
5700 not = !not;
b18215fc 5701 }
96cc36cc 5702#ifdef emacs
b18215fc 5703 else if (range_table_exists)
96cc36cc
RS
5704 {
5705 int class_bits = CHARSET_RANGE_TABLE_BITS (&p[-1]);
5706
14473664
SM
5707 if ( (class_bits & BIT_LOWER && ISLOWER (c))
5708 | (class_bits & BIT_MULTIBYTE)
96cc36cc
RS
5709 | (class_bits & BIT_PUNCT && ISPUNCT (c))
5710 | (class_bits & BIT_SPACE && ISSPACE (c))
5711 | (class_bits & BIT_UPPER && ISUPPER (c))
5712 | (class_bits & BIT_WORD && ISWORD (c)))
5713 not = !not;
5714 else
5715 CHARSET_LOOKUP_RANGE_TABLE_RAW (not, c, range_table, count);
5716 }
5717#endif /* emacs */
fa9a63c5 5718
96cc36cc
RS
5719 if (range_table_exists)
5720 p = CHARSET_RANGE_TABLE_END (range_table, count);
5721 else
5722 p += CHARSET_BITMAP_SIZE (&p[-1]) + 1;
fa9a63c5
RM
5723
5724 if (!not) goto fail;
5e69f11e 5725
b18215fc 5726 d += len;
fa9a63c5
RM
5727 break;
5728 }
5729
5730
25fe55af 5731 /* The beginning of a group is represented by start_memory.
505bde11 5732 The argument is the register number. The text
25fe55af 5733 matched within the group is recorded (in the internal
7814e705 5734 registers data structure) under the register number. */
25fe55af 5735 case start_memory:
505bde11
SM
5736 DEBUG_PRINT2 ("EXECUTING start_memory %d:\n", *p);
5737
5738 /* In case we need to undo this operation (via backtracking). */
5739 PUSH_FAILURE_REG ((unsigned int)*p);
fa9a63c5 5740
25fe55af 5741 regstart[*p] = d;
4bb91c68 5742 regend[*p] = NULL; /* probably unnecessary. -sm */
fa9a63c5
RM
5743 DEBUG_PRINT2 (" regstart: %d\n", POINTER_TO_OFFSET (regstart[*p]));
5744
25fe55af 5745 /* Move past the register number and inner group count. */
505bde11 5746 p += 1;
25fe55af 5747 break;
fa9a63c5
RM
5748
5749
25fe55af 5750 /* The stop_memory opcode represents the end of a group. Its
505bde11 5751 argument is the same as start_memory's: the register number. */
fa9a63c5 5752 case stop_memory:
505bde11
SM
5753 DEBUG_PRINT2 ("EXECUTING stop_memory %d:\n", *p);
5754
5755 assert (!REG_UNSET (regstart[*p]));
5756 /* Strictly speaking, there should be code such as:
177c0ea7 5757
0b32bf0e 5758 assert (REG_UNSET (regend[*p]));
505bde11
SM
5759 PUSH_FAILURE_REGSTOP ((unsigned int)*p);
5760
5761 But the only info to be pushed is regend[*p] and it is known to
5762 be UNSET, so there really isn't anything to push.
5763 Not pushing anything, on the other hand deprives us from the
5764 guarantee that regend[*p] is UNSET since undoing this operation
5765 will not reset its value properly. This is not important since
5766 the value will only be read on the next start_memory or at
5767 the very end and both events can only happen if this stop_memory
5768 is *not* undone. */
fa9a63c5 5769
25fe55af 5770 regend[*p] = d;
fa9a63c5
RM
5771 DEBUG_PRINT2 (" regend: %d\n", POINTER_TO_OFFSET (regend[*p]));
5772
25fe55af 5773 /* Move past the register number and the inner group count. */
505bde11 5774 p += 1;
25fe55af 5775 break;
fa9a63c5
RM
5776
5777
5778 /* \<digit> has been turned into a `duplicate' command which is
25fe55af
RS
5779 followed by the numeric value of <digit> as the register number. */
5780 case duplicate:
fa9a63c5 5781 {
66f0296e 5782 register re_char *d2, *dend2;
7814e705 5783 int regno = *p++; /* Get which register to match against. */
fa9a63c5
RM
5784 DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno);
5785
7814e705 5786 /* Can't back reference a group which we've never matched. */
25fe55af
RS
5787 if (REG_UNSET (regstart[regno]) || REG_UNSET (regend[regno]))
5788 goto fail;
5e69f11e 5789
7814e705 5790 /* Where in input to try to start matching. */
25fe55af 5791 d2 = regstart[regno];
5e69f11e 5792
99633e97
SM
5793 /* Remember the start point to rollback upon failure. */
5794 dfail = d;
5795
25fe55af
RS
5796 /* Where to stop matching; if both the place to start and
5797 the place to stop matching are in the same string, then
5798 set to the place to stop, otherwise, for now have to use
5799 the end of the first string. */
fa9a63c5 5800
25fe55af 5801 dend2 = ((FIRST_STRING_P (regstart[regno])
fa9a63c5
RM
5802 == FIRST_STRING_P (regend[regno]))
5803 ? regend[regno] : end_match_1);
5804 for (;;)
5805 {
5806 /* If necessary, advance to next segment in register
25fe55af 5807 contents. */
fa9a63c5
RM
5808 while (d2 == dend2)
5809 {
5810 if (dend2 == end_match_2) break;
5811 if (dend2 == regend[regno]) break;
5812
25fe55af
RS
5813 /* End of string1 => advance to string2. */
5814 d2 = string2;
5815 dend2 = regend[regno];
fa9a63c5
RM
5816 }
5817 /* At end of register contents => success */
5818 if (d2 == dend2) break;
5819
5820 /* If necessary, advance to next segment in data. */
5821 PREFETCH ();
5822
5823 /* How many characters left in this segment to match. */
5824 mcnt = dend - d;
5e69f11e 5825
fa9a63c5 5826 /* Want how many consecutive characters we can match in
25fe55af
RS
5827 one shot, so, if necessary, adjust the count. */
5828 if (mcnt > dend2 - d2)
fa9a63c5 5829 mcnt = dend2 - d2;
5e69f11e 5830
fa9a63c5 5831 /* Compare that many; failure if mismatch, else move
25fe55af 5832 past them. */
28703c16 5833 if (RE_TRANSLATE_P (translate)
02cb78b5 5834 ? bcmp_translate (d, d2, mcnt, translate, target_multibyte)
4bb91c68 5835 : memcmp (d, d2, mcnt))
99633e97
SM
5836 {
5837 d = dfail;
5838 goto fail;
5839 }
fa9a63c5 5840 d += mcnt, d2 += mcnt;
fa9a63c5
RM
5841 }
5842 }
5843 break;
5844
5845
25fe55af 5846 /* begline matches the empty string at the beginning of the string
c0f9ea08 5847 (unless `not_bol' is set in `bufp'), and after newlines. */
fa9a63c5 5848 case begline:
25fe55af 5849 DEBUG_PRINT1 ("EXECUTING begline.\n");
5e69f11e 5850
25fe55af
RS
5851 if (AT_STRINGS_BEG (d))
5852 {
5853 if (!bufp->not_bol) break;
5854 }
419d1c74 5855 else
25fe55af 5856 {
bf216479 5857 unsigned c;
419d1c74 5858 GET_CHAR_BEFORE_2 (c, d, string1, end1, string2, end2);
c0f9ea08 5859 if (c == '\n')
419d1c74 5860 break;
25fe55af
RS
5861 }
5862 /* In all other cases, we fail. */
5863 goto fail;
fa9a63c5
RM
5864
5865
25fe55af 5866 /* endline is the dual of begline. */
fa9a63c5 5867 case endline:
25fe55af 5868 DEBUG_PRINT1 ("EXECUTING endline.\n");
fa9a63c5 5869
25fe55af
RS
5870 if (AT_STRINGS_END (d))
5871 {
5872 if (!bufp->not_eol) break;
5873 }
f1ad044f 5874 else
25fe55af 5875 {
f1ad044f 5876 PREFETCH_NOLIMIT ();
c0f9ea08 5877 if (*d == '\n')
f1ad044f 5878 break;
25fe55af
RS
5879 }
5880 goto fail;
fa9a63c5
RM
5881
5882
5883 /* Match at the very beginning of the data. */
25fe55af
RS
5884 case begbuf:
5885 DEBUG_PRINT1 ("EXECUTING begbuf.\n");
5886 if (AT_STRINGS_BEG (d))
5887 break;
5888 goto fail;
fa9a63c5
RM
5889
5890
5891 /* Match at the very end of the data. */
25fe55af
RS
5892 case endbuf:
5893 DEBUG_PRINT1 ("EXECUTING endbuf.\n");
fa9a63c5
RM
5894 if (AT_STRINGS_END (d))
5895 break;
25fe55af 5896 goto fail;
5e69f11e 5897
5e69f11e 5898
25fe55af
RS
5899 /* on_failure_keep_string_jump is used to optimize `.*\n'. It
5900 pushes NULL as the value for the string on the stack. Then
505bde11 5901 `POP_FAILURE_POINT' will keep the current value for the
25fe55af 5902 string, instead of restoring it. To see why, consider
7814e705 5903 matching `foo\nbar' against `.*\n'. The .* matches the foo;
25fe55af
RS
5904 then the . fails against the \n. But the next thing we want
5905 to do is match the \n against the \n; if we restored the
5906 string value, we would be back at the foo.
5907
5908 Because this is used only in specific cases, we don't need to
5909 check all the things that `on_failure_jump' does, to make
5910 sure the right things get saved on the stack. Hence we don't
5911 share its code. The only reason to push anything on the
5912 stack at all is that otherwise we would have to change
5913 `anychar's code to do something besides goto fail in this
5914 case; that seems worse than this. */
5915 case on_failure_keep_string_jump:
505bde11
SM
5916 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5917 DEBUG_PRINT3 ("EXECUTING on_failure_keep_string_jump %d (to %p):\n",
5918 mcnt, p + mcnt);
fa9a63c5 5919
505bde11
SM
5920 PUSH_FAILURE_POINT (p - 3, NULL);
5921 break;
5922
0683b6fa
SM
5923 /* A nasty loop is introduced by the non-greedy *? and +?.
5924 With such loops, the stack only ever contains one failure point
5925 at a time, so that a plain on_failure_jump_loop kind of
5926 cycle detection cannot work. Worse yet, such a detection
5927 can not only fail to detect a cycle, but it can also wrongly
5928 detect a cycle (between different instantiations of the same
6df42991 5929 loop).
0683b6fa
SM
5930 So the method used for those nasty loops is a little different:
5931 We use a special cycle-detection-stack-frame which is pushed
5932 when the on_failure_jump_nastyloop failure-point is *popped*.
5933 This special frame thus marks the beginning of one iteration
5934 through the loop and we can hence easily check right here
5935 whether something matched between the beginning and the end of
5936 the loop. */
5937 case on_failure_jump_nastyloop:
5938 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5939 DEBUG_PRINT3 ("EXECUTING on_failure_jump_nastyloop %d (to %p):\n",
5940 mcnt, p + mcnt);
5941
5942 assert ((re_opcode_t)p[-4] == no_op);
6df42991
SM
5943 {
5944 int cycle = 0;
5945 CHECK_INFINITE_LOOP (p - 4, d);
5946 if (!cycle)
5947 /* If there's a cycle, just continue without pushing
5948 this failure point. The failure point is the "try again"
5949 option, which shouldn't be tried.
5950 We want (x?)*?y\1z to match both xxyz and xxyxz. */
5951 PUSH_FAILURE_POINT (p - 3, d);
5952 }
0683b6fa
SM
5953 break;
5954
4e8a9132
SM
5955 /* Simple loop detecting on_failure_jump: just check on the
5956 failure stack if the same spot was already hit earlier. */
505bde11
SM
5957 case on_failure_jump_loop:
5958 on_failure:
5959 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5960 DEBUG_PRINT3 ("EXECUTING on_failure_jump_loop %d (to %p):\n",
5961 mcnt, p + mcnt);
6df42991
SM
5962 {
5963 int cycle = 0;
5964 CHECK_INFINITE_LOOP (p - 3, d);
5965 if (cycle)
5966 /* If there's a cycle, get out of the loop, as if the matching
5967 had failed. We used to just `goto fail' here, but that was
5968 aborting the search a bit too early: we want to keep the
5969 empty-loop-match and keep matching after the loop.
5970 We want (x?)*y\1z to match both xxyz and xxyxz. */
5971 p += mcnt;
5972 else
5973 PUSH_FAILURE_POINT (p - 3, d);
5974 }
25fe55af 5975 break;
fa9a63c5
RM
5976
5977
5978 /* Uses of on_failure_jump:
5e69f11e 5979
25fe55af
RS
5980 Each alternative starts with an on_failure_jump that points
5981 to the beginning of the next alternative. Each alternative
5982 except the last ends with a jump that in effect jumps past
5983 the rest of the alternatives. (They really jump to the
5984 ending jump of the following alternative, because tensioning
5985 these jumps is a hassle.)
fa9a63c5 5986
25fe55af
RS
5987 Repeats start with an on_failure_jump that points past both
5988 the repetition text and either the following jump or
5989 pop_failure_jump back to this on_failure_jump. */
fa9a63c5 5990 case on_failure_jump:
25fe55af 5991 EXTRACT_NUMBER_AND_INCR (mcnt, p);
505bde11
SM
5992 DEBUG_PRINT3 ("EXECUTING on_failure_jump %d (to %p):\n",
5993 mcnt, p + mcnt);
25fe55af 5994
505bde11 5995 PUSH_FAILURE_POINT (p -3, d);
25fe55af
RS
5996 break;
5997
4e8a9132 5998 /* This operation is used for greedy *.
505bde11
SM
5999 Compare the beginning of the repeat with what in the
6000 pattern follows its end. If we can establish that there
6001 is nothing that they would both match, i.e., that we
6002 would have to backtrack because of (as in, e.g., `a*a')
6003 then we can use a non-backtracking loop based on
4e8a9132 6004 on_failure_keep_string_jump instead of on_failure_jump. */
505bde11 6005 case on_failure_jump_smart:
25fe55af 6006 EXTRACT_NUMBER_AND_INCR (mcnt, p);
505bde11
SM
6007 DEBUG_PRINT3 ("EXECUTING on_failure_jump_smart %d (to %p).\n",
6008 mcnt, p + mcnt);
25fe55af 6009 {
01618498 6010 re_char *p1 = p; /* Next operation. */
6dcf2d0e
SM
6011 /* Here, we discard `const', making re_match non-reentrant. */
6012 unsigned char *p2 = (unsigned char*) p + mcnt; /* Jump dest. */
6013 unsigned char *p3 = (unsigned char*) p - 3; /* opcode location. */
fa9a63c5 6014
505bde11
SM
6015 p -= 3; /* Reset so that we will re-execute the
6016 instruction once it's been changed. */
fa9a63c5 6017
4e8a9132
SM
6018 EXTRACT_NUMBER (mcnt, p2 - 2);
6019
6020 /* Ensure this is a indeed the trivial kind of loop
6021 we are expecting. */
6022 assert (skip_one_char (p1) == p2 - 3);
6023 assert ((re_opcode_t) p2[-3] == jump && p2 + mcnt == p);
99633e97 6024 DEBUG_STATEMENT (debug += 2);
505bde11 6025 if (mutually_exclusive_p (bufp, p1, p2))
fa9a63c5 6026 {
505bde11 6027 /* Use a fast `on_failure_keep_string_jump' loop. */
4e8a9132 6028 DEBUG_PRINT1 (" smart exclusive => fast loop.\n");
01618498 6029 *p3 = (unsigned char) on_failure_keep_string_jump;
4e8a9132 6030 STORE_NUMBER (p2 - 2, mcnt + 3);
25fe55af 6031 }
505bde11 6032 else
fa9a63c5 6033 {
505bde11
SM
6034 /* Default to a safe `on_failure_jump' loop. */
6035 DEBUG_PRINT1 (" smart default => slow loop.\n");
01618498 6036 *p3 = (unsigned char) on_failure_jump;
fa9a63c5 6037 }
99633e97 6038 DEBUG_STATEMENT (debug -= 2);
25fe55af 6039 }
505bde11 6040 break;
25fe55af
RS
6041
6042 /* Unconditionally jump (without popping any failure points). */
6043 case jump:
fa9a63c5 6044 unconditional_jump:
5b370c2b 6045 IMMEDIATE_QUIT_CHECK;
fa9a63c5 6046 EXTRACT_NUMBER_AND_INCR (mcnt, p); /* Get the amount to jump. */
25fe55af 6047 DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt);
7814e705 6048 p += mcnt; /* Do the jump. */
505bde11 6049 DEBUG_PRINT2 ("(to %p).\n", p);
25fe55af
RS
6050 break;
6051
6052
25fe55af
RS
6053 /* Have to succeed matching what follows at least n times.
6054 After that, handle like `on_failure_jump'. */
6055 case succeed_n:
01618498 6056 /* Signedness doesn't matter since we only compare MCNT to 0. */
25fe55af
RS
6057 EXTRACT_NUMBER (mcnt, p + 2);
6058 DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt);
5e69f11e 6059
dc1e502d
SM
6060 /* Originally, mcnt is how many times we HAVE to succeed. */
6061 if (mcnt != 0)
25fe55af 6062 {
6dcf2d0e
SM
6063 /* Here, we discard `const', making re_match non-reentrant. */
6064 unsigned char *p2 = (unsigned char*) p + 2; /* counter loc. */
dc1e502d 6065 mcnt--;
01618498
SM
6066 p += 4;
6067 PUSH_NUMBER (p2, mcnt);
25fe55af 6068 }
dc1e502d
SM
6069 else
6070 /* The two bytes encoding mcnt == 0 are two no_op opcodes. */
6071 goto on_failure;
25fe55af
RS
6072 break;
6073
6074 case jump_n:
01618498 6075 /* Signedness doesn't matter since we only compare MCNT to 0. */
25fe55af
RS
6076 EXTRACT_NUMBER (mcnt, p + 2);
6077 DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt);
6078
6079 /* Originally, this is how many times we CAN jump. */
dc1e502d 6080 if (mcnt != 0)
25fe55af 6081 {
6dcf2d0e
SM
6082 /* Here, we discard `const', making re_match non-reentrant. */
6083 unsigned char *p2 = (unsigned char*) p + 2; /* counter loc. */
dc1e502d 6084 mcnt--;
01618498 6085 PUSH_NUMBER (p2, mcnt);
dc1e502d 6086 goto unconditional_jump;
25fe55af
RS
6087 }
6088 /* If don't have to jump any more, skip over the rest of command. */
5e69f11e
RM
6089 else
6090 p += 4;
25fe55af 6091 break;
5e69f11e 6092
fa9a63c5
RM
6093 case set_number_at:
6094 {
01618498 6095 unsigned char *p2; /* Location of the counter. */
25fe55af 6096 DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
fa9a63c5 6097
25fe55af 6098 EXTRACT_NUMBER_AND_INCR (mcnt, p);
6dcf2d0e
SM
6099 /* Here, we discard `const', making re_match non-reentrant. */
6100 p2 = (unsigned char*) p + mcnt;
01618498 6101 /* Signedness doesn't matter since we only copy MCNT's bits . */
25fe55af 6102 EXTRACT_NUMBER_AND_INCR (mcnt, p);
01618498
SM
6103 DEBUG_PRINT3 (" Setting %p to %d.\n", p2, mcnt);
6104 PUSH_NUMBER (p2, mcnt);
25fe55af
RS
6105 break;
6106 }
9121ca40
KH
6107
6108 case wordbound:
66f0296e
SM
6109 case notwordbound:
6110 not = (re_opcode_t) *(p - 1) == notwordbound;
6111 DEBUG_PRINT2 ("EXECUTING %swordbound.\n", not?"not":"");
fa9a63c5 6112
99633e97 6113 /* We SUCCEED (or FAIL) in one of the following cases: */
9121ca40 6114
b18215fc 6115 /* Case 1: D is at the beginning or the end of string. */
9121ca40 6116 if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
66f0296e 6117 not = !not;
b18215fc
RS
6118 else
6119 {
6120 /* C1 is the character before D, S1 is the syntax of C1, C2
6121 is the character at D, and S2 is the syntax of C2. */
01618498
SM
6122 re_wchar_t c1, c2;
6123 int s1, s2;
bf216479 6124 int dummy;
b18215fc 6125#ifdef emacs
2d1675e4
SM
6126 int offset = PTR_TO_OFFSET (d - 1);
6127 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
5d967c7a 6128 UPDATE_SYNTAX_TABLE (charpos);
25fe55af 6129#endif
66f0296e 6130 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
b18215fc
RS
6131 s1 = SYNTAX (c1);
6132#ifdef emacs
5d967c7a 6133 UPDATE_SYNTAX_TABLE_FORWARD (charpos + 1);
25fe55af 6134#endif
f1ad044f 6135 PREFETCH_NOLIMIT ();
6fdd04b0 6136 GET_CHAR_AFTER (c2, d, dummy);
b18215fc
RS
6137 s2 = SYNTAX (c2);
6138
6139 if (/* Case 2: Only one of S1 and S2 is Sword. */
6140 ((s1 == Sword) != (s2 == Sword))
6141 /* Case 3: Both of S1 and S2 are Sword, and macro
7814e705 6142 WORD_BOUNDARY_P (C1, C2) returns nonzero. */
b18215fc 6143 || ((s1 == Sword) && WORD_BOUNDARY_P (c1, c2)))
66f0296e
SM
6144 not = !not;
6145 }
6146 if (not)
9121ca40 6147 break;
b18215fc 6148 else
9121ca40 6149 goto fail;
fa9a63c5
RM
6150
6151 case wordbeg:
25fe55af 6152 DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
fa9a63c5 6153
b18215fc
RS
6154 /* We FAIL in one of the following cases: */
6155
7814e705 6156 /* Case 1: D is at the end of string. */
b18215fc 6157 if (AT_STRINGS_END (d))
99633e97 6158 goto fail;
b18215fc
RS
6159 else
6160 {
6161 /* C1 is the character before D, S1 is the syntax of C1, C2
6162 is the character at D, and S2 is the syntax of C2. */
01618498
SM
6163 re_wchar_t c1, c2;
6164 int s1, s2;
bf216479 6165 int dummy;
fa9a63c5 6166#ifdef emacs
2d1675e4
SM
6167 int offset = PTR_TO_OFFSET (d);
6168 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
92432794 6169 UPDATE_SYNTAX_TABLE (charpos);
25fe55af 6170#endif
99633e97 6171 PREFETCH ();
6fdd04b0 6172 GET_CHAR_AFTER (c2, d, dummy);
b18215fc 6173 s2 = SYNTAX (c2);
177c0ea7 6174
b18215fc
RS
6175 /* Case 2: S2 is not Sword. */
6176 if (s2 != Sword)
6177 goto fail;
6178
6179 /* Case 3: D is not at the beginning of string ... */
6180 if (!AT_STRINGS_BEG (d))
6181 {
6182 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
6183#ifdef emacs
5d967c7a 6184 UPDATE_SYNTAX_TABLE_BACKWARD (charpos - 1);
25fe55af 6185#endif
b18215fc
RS
6186 s1 = SYNTAX (c1);
6187
6188 /* ... and S1 is Sword, and WORD_BOUNDARY_P (C1, C2)
7814e705 6189 returns 0. */
b18215fc
RS
6190 if ((s1 == Sword) && !WORD_BOUNDARY_P (c1, c2))
6191 goto fail;
6192 }
6193 }
e318085a
RS
6194 break;
6195
b18215fc 6196 case wordend:
25fe55af 6197 DEBUG_PRINT1 ("EXECUTING wordend.\n");
b18215fc
RS
6198
6199 /* We FAIL in one of the following cases: */
6200
6201 /* Case 1: D is at the beginning of string. */
6202 if (AT_STRINGS_BEG (d))
e318085a 6203 goto fail;
b18215fc
RS
6204 else
6205 {
6206 /* C1 is the character before D, S1 is the syntax of C1, C2
6207 is the character at D, and S2 is the syntax of C2. */
01618498
SM
6208 re_wchar_t c1, c2;
6209 int s1, s2;
bf216479 6210 int dummy;
5d967c7a 6211#ifdef emacs
2d1675e4
SM
6212 int offset = PTR_TO_OFFSET (d) - 1;
6213 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
92432794 6214 UPDATE_SYNTAX_TABLE (charpos);
5d967c7a 6215#endif
99633e97 6216 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
b18215fc
RS
6217 s1 = SYNTAX (c1);
6218
6219 /* Case 2: S1 is not Sword. */
6220 if (s1 != Sword)
6221 goto fail;
6222
6223 /* Case 3: D is not at the end of string ... */
6224 if (!AT_STRINGS_END (d))
6225 {
f1ad044f 6226 PREFETCH_NOLIMIT ();
6fdd04b0 6227 GET_CHAR_AFTER (c2, d, dummy);
5d967c7a
RS
6228#ifdef emacs
6229 UPDATE_SYNTAX_TABLE_FORWARD (charpos);
6230#endif
b18215fc
RS
6231 s2 = SYNTAX (c2);
6232
6233 /* ... and S2 is Sword, and WORD_BOUNDARY_P (C1, C2)
7814e705 6234 returns 0. */
b18215fc 6235 if ((s2 == Sword) && !WORD_BOUNDARY_P (c1, c2))
25fe55af 6236 goto fail;
b18215fc
RS
6237 }
6238 }
e318085a
RS
6239 break;
6240
669fa600
SM
6241 case symbeg:
6242 DEBUG_PRINT1 ("EXECUTING symbeg.\n");
6243
6244 /* We FAIL in one of the following cases: */
6245
7814e705 6246 /* Case 1: D is at the end of string. */
669fa600
SM
6247 if (AT_STRINGS_END (d))
6248 goto fail;
6249 else
6250 {
6251 /* C1 is the character before D, S1 is the syntax of C1, C2
6252 is the character at D, and S2 is the syntax of C2. */
6253 re_wchar_t c1, c2;
6254 int s1, s2;
6255#ifdef emacs
6256 int offset = PTR_TO_OFFSET (d);
6257 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
6258 UPDATE_SYNTAX_TABLE (charpos);
6259#endif
6260 PREFETCH ();
62a6e103 6261 c2 = RE_STRING_CHAR (d, target_multibyte);
669fa600 6262 s2 = SYNTAX (c2);
7814e705 6263
669fa600
SM
6264 /* Case 2: S2 is neither Sword nor Ssymbol. */
6265 if (s2 != Sword && s2 != Ssymbol)
6266 goto fail;
6267
6268 /* Case 3: D is not at the beginning of string ... */
6269 if (!AT_STRINGS_BEG (d))
6270 {
6271 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
6272#ifdef emacs
6273 UPDATE_SYNTAX_TABLE_BACKWARD (charpos - 1);
6274#endif
6275 s1 = SYNTAX (c1);
6276
6277 /* ... and S1 is Sword or Ssymbol. */
6278 if (s1 == Sword || s1 == Ssymbol)
6279 goto fail;
6280 }
6281 }
6282 break;
6283
6284 case symend:
6285 DEBUG_PRINT1 ("EXECUTING symend.\n");
6286
6287 /* We FAIL in one of the following cases: */
6288
6289 /* Case 1: D is at the beginning of string. */
6290 if (AT_STRINGS_BEG (d))
6291 goto fail;
6292 else
6293 {
6294 /* C1 is the character before D, S1 is the syntax of C1, C2
6295 is the character at D, and S2 is the syntax of C2. */
6296 re_wchar_t c1, c2;
6297 int s1, s2;
6298#ifdef emacs
6299 int offset = PTR_TO_OFFSET (d) - 1;
6300 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
6301 UPDATE_SYNTAX_TABLE (charpos);
6302#endif
6303 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
6304 s1 = SYNTAX (c1);
6305
6306 /* Case 2: S1 is neither Ssymbol nor Sword. */
6307 if (s1 != Sword && s1 != Ssymbol)
6308 goto fail;
6309
6310 /* Case 3: D is not at the end of string ... */
6311 if (!AT_STRINGS_END (d))
6312 {
6313 PREFETCH_NOLIMIT ();
62a6e103 6314 c2 = RE_STRING_CHAR (d, target_multibyte);
669fa600 6315#ifdef emacs
134579f2 6316 UPDATE_SYNTAX_TABLE_FORWARD (charpos + 1);
669fa600
SM
6317#endif
6318 s2 = SYNTAX (c2);
6319
6320 /* ... and S2 is Sword or Ssymbol. */
6321 if (s2 == Sword || s2 == Ssymbol)
6322 goto fail;
b18215fc
RS
6323 }
6324 }
e318085a
RS
6325 break;
6326
fa9a63c5 6327 case syntaxspec:
1fb352e0
SM
6328 case notsyntaxspec:
6329 not = (re_opcode_t) *(p - 1) == notsyntaxspec;
fa9a63c5 6330 mcnt = *p++;
1fb352e0 6331 DEBUG_PRINT3 ("EXECUTING %ssyntaxspec %d.\n", not?"not":"", mcnt);
fa9a63c5 6332 PREFETCH ();
b18215fc
RS
6333#ifdef emacs
6334 {
2d1675e4
SM
6335 int offset = PTR_TO_OFFSET (d);
6336 int pos1 = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
b18215fc
RS
6337 UPDATE_SYNTAX_TABLE (pos1);
6338 }
25fe55af 6339#endif
b18215fc 6340 {
01618498
SM
6341 int len;
6342 re_wchar_t c;
b18215fc 6343
6fdd04b0 6344 GET_CHAR_AFTER (c, d, len);
990b2375 6345 if ((SYNTAX (c) != (enum syntaxcode) mcnt) ^ not)
1fb352e0 6346 goto fail;
b18215fc
RS
6347 d += len;
6348 }
fa9a63c5
RM
6349 break;
6350
b18215fc 6351#ifdef emacs
1fb352e0
SM
6352 case before_dot:
6353 DEBUG_PRINT1 ("EXECUTING before_dot.\n");
6354 if (PTR_BYTE_POS (d) >= PT_BYTE)
fa9a63c5 6355 goto fail;
b18215fc
RS
6356 break;
6357
1fb352e0
SM
6358 case at_dot:
6359 DEBUG_PRINT1 ("EXECUTING at_dot.\n");
6360 if (PTR_BYTE_POS (d) != PT_BYTE)
6361 goto fail;
6362 break;
b18215fc 6363
1fb352e0
SM
6364 case after_dot:
6365 DEBUG_PRINT1 ("EXECUTING after_dot.\n");
6366 if (PTR_BYTE_POS (d) <= PT_BYTE)
6367 goto fail;
e318085a 6368 break;
fa9a63c5 6369
1fb352e0 6370 case categoryspec:
b18215fc 6371 case notcategoryspec:
1fb352e0 6372 not = (re_opcode_t) *(p - 1) == notcategoryspec;
b18215fc 6373 mcnt = *p++;
1fb352e0 6374 DEBUG_PRINT3 ("EXECUTING %scategoryspec %d.\n", not?"not":"", mcnt);
b18215fc
RS
6375 PREFETCH ();
6376 {
01618498
SM
6377 int len;
6378 re_wchar_t c;
6379
6fdd04b0 6380 GET_CHAR_AFTER (c, d, len);
1fb352e0 6381 if ((!CHAR_HAS_CATEGORY (c, mcnt)) ^ not)
b18215fc
RS
6382 goto fail;
6383 d += len;
6384 }
fa9a63c5 6385 break;
5e69f11e 6386
1fb352e0 6387#endif /* emacs */
5e69f11e 6388
0b32bf0e
SM
6389 default:
6390 abort ();
fa9a63c5 6391 }
b18215fc 6392 continue; /* Successfully executed one pattern command; keep going. */
fa9a63c5
RM
6393
6394
6395 /* We goto here if a matching operation fails. */
6396 fail:
5b370c2b 6397 IMMEDIATE_QUIT_CHECK;
fa9a63c5 6398 if (!FAIL_STACK_EMPTY ())
505bde11 6399 {
01618498 6400 re_char *str, *pat;
505bde11 6401 /* A restart point is known. Restore to that state. */
0b32bf0e
SM
6402 DEBUG_PRINT1 ("\nFAIL:\n");
6403 POP_FAILURE_POINT (str, pat);
505bde11
SM
6404 switch (SWITCH_ENUM_CAST ((re_opcode_t) *pat++))
6405 {
6406 case on_failure_keep_string_jump:
6407 assert (str == NULL);
6408 goto continue_failure_jump;
6409
0683b6fa
SM
6410 case on_failure_jump_nastyloop:
6411 assert ((re_opcode_t)pat[-2] == no_op);
6412 PUSH_FAILURE_POINT (pat - 2, str);
6413 /* Fallthrough */
6414
505bde11
SM
6415 case on_failure_jump_loop:
6416 case on_failure_jump:
6417 case succeed_n:
6418 d = str;
6419 continue_failure_jump:
6420 EXTRACT_NUMBER_AND_INCR (mcnt, pat);
6421 p = pat + mcnt;
6422 break;
b18215fc 6423
0683b6fa
SM
6424 case no_op:
6425 /* A special frame used for nastyloops. */
6426 goto fail;
6427
505bde11
SM
6428 default:
6429 abort();
6430 }
fa9a63c5 6431
505bde11 6432 assert (p >= bufp->buffer && p <= pend);
b18215fc 6433
0b32bf0e 6434 if (d >= string1 && d <= end1)
fa9a63c5 6435 dend = end_match_1;
0b32bf0e 6436 }
fa9a63c5 6437 else
0b32bf0e 6438 break; /* Matching at this starting point really fails. */
fa9a63c5
RM
6439 } /* for (;;) */
6440
6441 if (best_regs_set)
6442 goto restore_best_regs;
6443
6444 FREE_VARIABLES ();
6445
b18215fc 6446 return -1; /* Failure to match. */
fa9a63c5
RM
6447} /* re_match_2 */
6448\f
6449/* Subroutine definitions for re_match_2. */
6450
fa9a63c5
RM
6451/* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
6452 bytes; nonzero otherwise. */
5e69f11e 6453
fa9a63c5 6454static int
02cb78b5 6455bcmp_translate (s1, s2, len, translate, target_multibyte)
2d1675e4 6456 re_char *s1, *s2;
fa9a63c5 6457 register int len;
6676cb1c 6458 RE_TRANSLATE_TYPE translate;
02cb78b5 6459 const int target_multibyte;
fa9a63c5 6460{
2d1675e4
SM
6461 register re_char *p1 = s1, *p2 = s2;
6462 re_char *p1_end = s1 + len;
6463 re_char *p2_end = s2 + len;
e934739e 6464
4bb91c68
SM
6465 /* FIXME: Checking both p1 and p2 presumes that the two strings might have
6466 different lengths, but relying on a single `len' would break this. -sm */
6467 while (p1 < p1_end && p2 < p2_end)
fa9a63c5 6468 {
e934739e 6469 int p1_charlen, p2_charlen;
01618498 6470 re_wchar_t p1_ch, p2_ch;
e934739e 6471
6fdd04b0
KH
6472 GET_CHAR_AFTER (p1_ch, p1, p1_charlen);
6473 GET_CHAR_AFTER (p2_ch, p2, p2_charlen);
e934739e
RS
6474
6475 if (RE_TRANSLATE (translate, p1_ch)
6476 != RE_TRANSLATE (translate, p2_ch))
bc192b5b 6477 return 1;
e934739e
RS
6478
6479 p1 += p1_charlen, p2 += p2_charlen;
fa9a63c5 6480 }
e934739e
RS
6481
6482 if (p1 != p1_end || p2 != p2_end)
6483 return 1;
6484
fa9a63c5
RM
6485 return 0;
6486}
6487\f
6488/* Entry points for GNU code. */
6489
6490/* re_compile_pattern is the GNU regular expression compiler: it
6491 compiles PATTERN (of length SIZE) and puts the result in BUFP.
6492 Returns 0 if the pattern was valid, otherwise an error string.
5e69f11e 6493
fa9a63c5
RM
6494 Assumes the `allocated' (and perhaps `buffer') and `translate' fields
6495 are set in BUFP on entry.
5e69f11e 6496
b18215fc 6497 We call regex_compile to do the actual compilation. */
fa9a63c5
RM
6498
6499const char *
6500re_compile_pattern (pattern, length, bufp)
6501 const char *pattern;
0b32bf0e 6502 size_t length;
fa9a63c5
RM
6503 struct re_pattern_buffer *bufp;
6504{
6505 reg_errcode_t ret;
5e69f11e 6506
1208f11a
RS
6507#ifdef emacs
6508 gl_state.current_syntax_table = current_buffer->syntax_table;
6509#endif
6510
fa9a63c5
RM
6511 /* GNU code is written to assume at least RE_NREGS registers will be set
6512 (and at least one extra will be -1). */
6513 bufp->regs_allocated = REGS_UNALLOCATED;
5e69f11e 6514
fa9a63c5
RM
6515 /* And GNU code determines whether or not to get register information
6516 by passing null for the REGS argument to re_match, etc., not by
6517 setting no_sub. */
6518 bufp->no_sub = 0;
5e69f11e 6519
4bb91c68 6520 ret = regex_compile ((re_char*) pattern, length, re_syntax_options, bufp);
fa9a63c5
RM
6521
6522 if (!ret)
6523 return NULL;
6524 return gettext (re_error_msgid[(int) ret]);
5e69f11e 6525}
c0f9ea08 6526WEAK_ALIAS (__re_compile_pattern, re_compile_pattern)
fa9a63c5 6527\f
b18215fc
RS
6528/* Entry points compatible with 4.2 BSD regex library. We don't define
6529 them unless specifically requested. */
fa9a63c5 6530
0b32bf0e 6531#if defined _REGEX_RE_COMP || defined _LIBC
fa9a63c5
RM
6532
6533/* BSD has one and only one pattern buffer. */
6534static struct re_pattern_buffer re_comp_buf;
6535
6536char *
0b32bf0e 6537# ifdef _LIBC
48afdd44
RM
6538/* Make these definitions weak in libc, so POSIX programs can redefine
6539 these names if they don't use our functions, and still use
6540 regcomp/regexec below without link errors. */
6541weak_function
0b32bf0e 6542# endif
fa9a63c5
RM
6543re_comp (s)
6544 const char *s;
6545{
6546 reg_errcode_t ret;
5e69f11e 6547
fa9a63c5
RM
6548 if (!s)
6549 {
6550 if (!re_comp_buf.buffer)
0b32bf0e 6551 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
a60198e5 6552 return (char *) gettext ("No previous regular expression");
fa9a63c5
RM
6553 return 0;
6554 }
6555
6556 if (!re_comp_buf.buffer)
6557 {
6558 re_comp_buf.buffer = (unsigned char *) malloc (200);
6559 if (re_comp_buf.buffer == NULL)
0b32bf0e
SM
6560 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
6561 return (char *) gettext (re_error_msgid[(int) REG_ESPACE]);
fa9a63c5
RM
6562 re_comp_buf.allocated = 200;
6563
6564 re_comp_buf.fastmap = (char *) malloc (1 << BYTEWIDTH);
6565 if (re_comp_buf.fastmap == NULL)
a60198e5
SM
6566 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
6567 return (char *) gettext (re_error_msgid[(int) REG_ESPACE]);
fa9a63c5
RM
6568 }
6569
6570 /* Since `re_exec' always passes NULL for the `regs' argument, we
6571 don't need to initialize the pattern buffer fields which affect it. */
6572
fa9a63c5 6573 ret = regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf);
5e69f11e 6574
fa9a63c5
RM
6575 if (!ret)
6576 return NULL;
6577
6578 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
6579 return (char *) gettext (re_error_msgid[(int) ret]);
6580}
6581
6582
6583int
0b32bf0e 6584# ifdef _LIBC
48afdd44 6585weak_function
0b32bf0e 6586# endif
fa9a63c5
RM
6587re_exec (s)
6588 const char *s;
6589{
6590 const int len = strlen (s);
6591 return
6592 0 <= re_search (&re_comp_buf, s, len, 0, len, (struct re_registers *) 0);
6593}
6594#endif /* _REGEX_RE_COMP */
6595\f
6596/* POSIX.2 functions. Don't define these for Emacs. */
6597
6598#ifndef emacs
6599
6600/* regcomp takes a regular expression as a string and compiles it.
6601
b18215fc 6602 PREG is a regex_t *. We do not expect any fields to be initialized,
fa9a63c5
RM
6603 since POSIX says we shouldn't. Thus, we set
6604
6605 `buffer' to the compiled pattern;
6606 `used' to the length of the compiled pattern;
6607 `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
6608 REG_EXTENDED bit in CFLAGS is set; otherwise, to
6609 RE_SYNTAX_POSIX_BASIC;
c0f9ea08
SM
6610 `fastmap' to an allocated space for the fastmap;
6611 `fastmap_accurate' to zero;
fa9a63c5
RM
6612 `re_nsub' to the number of subexpressions in PATTERN.
6613
6614 PATTERN is the address of the pattern string.
6615
6616 CFLAGS is a series of bits which affect compilation.
6617
6618 If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
6619 use POSIX basic syntax.
6620
6621 If REG_NEWLINE is set, then . and [^...] don't match newline.
6622 Also, regexec will try a match beginning after every newline.
6623
6624 If REG_ICASE is set, then we considers upper- and lowercase
6625 versions of letters to be equivalent when matching.
6626
6627 If REG_NOSUB is set, then when PREG is passed to regexec, that
6628 routine will report only success or failure, and nothing about the
6629 registers.
6630
b18215fc 6631 It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for
fa9a63c5
RM
6632 the return codes and their meanings.) */
6633
6634int
6635regcomp (preg, pattern, cflags)
ada30c0e
SM
6636 regex_t *__restrict preg;
6637 const char *__restrict pattern;
fa9a63c5
RM
6638 int cflags;
6639{
6640 reg_errcode_t ret;
4bb91c68 6641 reg_syntax_t syntax
fa9a63c5
RM
6642 = (cflags & REG_EXTENDED) ?
6643 RE_SYNTAX_POSIX_EXTENDED : RE_SYNTAX_POSIX_BASIC;
6644
6645 /* regex_compile will allocate the space for the compiled pattern. */
6646 preg->buffer = 0;
6647 preg->allocated = 0;
6648 preg->used = 0;
5e69f11e 6649
c0f9ea08
SM
6650 /* Try to allocate space for the fastmap. */
6651 preg->fastmap = (char *) malloc (1 << BYTEWIDTH);
5e69f11e 6652
fa9a63c5
RM
6653 if (cflags & REG_ICASE)
6654 {
6655 unsigned i;
5e69f11e 6656
6676cb1c
RS
6657 preg->translate
6658 = (RE_TRANSLATE_TYPE) malloc (CHAR_SET_SIZE
6659 * sizeof (*(RE_TRANSLATE_TYPE)0));
fa9a63c5 6660 if (preg->translate == NULL)
0b32bf0e 6661 return (int) REG_ESPACE;
fa9a63c5
RM
6662
6663 /* Map uppercase characters to corresponding lowercase ones. */
6664 for (i = 0; i < CHAR_SET_SIZE; i++)
4bb91c68 6665 preg->translate[i] = ISUPPER (i) ? TOLOWER (i) : i;
fa9a63c5
RM
6666 }
6667 else
6668 preg->translate = NULL;
6669
6670 /* If REG_NEWLINE is set, newlines are treated differently. */
6671 if (cflags & REG_NEWLINE)
6672 { /* REG_NEWLINE implies neither . nor [^...] match newline. */
6673 syntax &= ~RE_DOT_NEWLINE;
6674 syntax |= RE_HAT_LISTS_NOT_NEWLINE;
fa9a63c5
RM
6675 }
6676 else
c0f9ea08 6677 syntax |= RE_NO_NEWLINE_ANCHOR;
fa9a63c5
RM
6678
6679 preg->no_sub = !!(cflags & REG_NOSUB);
6680
5e69f11e 6681 /* POSIX says a null character in the pattern terminates it, so we
fa9a63c5 6682 can use strlen here in compiling the pattern. */
4bb91c68 6683 ret = regex_compile ((re_char*) pattern, strlen (pattern), syntax, preg);
5e69f11e 6684
fa9a63c5
RM
6685 /* POSIX doesn't distinguish between an unmatched open-group and an
6686 unmatched close-group: both are REG_EPAREN. */
c0f9ea08
SM
6687 if (ret == REG_ERPAREN)
6688 ret = REG_EPAREN;
6689
6690 if (ret == REG_NOERROR && preg->fastmap)
6691 { /* Compute the fastmap now, since regexec cannot modify the pattern
6692 buffer. */
6693 re_compile_fastmap (preg);
6694 if (preg->can_be_null)
6695 { /* The fastmap can't be used anyway. */
6696 free (preg->fastmap);
6697 preg->fastmap = NULL;
6698 }
6699 }
fa9a63c5
RM
6700 return (int) ret;
6701}
c0f9ea08 6702WEAK_ALIAS (__regcomp, regcomp)
fa9a63c5
RM
6703
6704
6705/* regexec searches for a given pattern, specified by PREG, in the
6706 string STRING.
5e69f11e 6707
fa9a63c5 6708 If NMATCH is zero or REG_NOSUB was set in the cflags argument to
b18215fc 6709 `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at
fa9a63c5
RM
6710 least NMATCH elements, and we set them to the offsets of the
6711 corresponding matched substrings.
5e69f11e 6712
fa9a63c5
RM
6713 EFLAGS specifies `execution flags' which affect matching: if
6714 REG_NOTBOL is set, then ^ does not match at the beginning of the
6715 string; if REG_NOTEOL is set, then $ does not match at the end.
5e69f11e 6716
fa9a63c5
RM
6717 We return 0 if we find a match and REG_NOMATCH if not. */
6718
6719int
6720regexec (preg, string, nmatch, pmatch, eflags)
ada30c0e
SM
6721 const regex_t *__restrict preg;
6722 const char *__restrict string;
5e69f11e 6723 size_t nmatch;
9f2dbe01 6724 regmatch_t pmatch[__restrict_arr];
fa9a63c5
RM
6725 int eflags;
6726{
6727 int ret;
6728 struct re_registers regs;
6729 regex_t private_preg;
6730 int len = strlen (string);
c0f9ea08 6731 boolean want_reg_info = !preg->no_sub && nmatch > 0 && pmatch;
fa9a63c5
RM
6732
6733 private_preg = *preg;
5e69f11e 6734
fa9a63c5
RM
6735 private_preg.not_bol = !!(eflags & REG_NOTBOL);
6736 private_preg.not_eol = !!(eflags & REG_NOTEOL);
5e69f11e 6737
fa9a63c5
RM
6738 /* The user has told us exactly how many registers to return
6739 information about, via `nmatch'. We have to pass that on to the
b18215fc 6740 matching routines. */
fa9a63c5 6741 private_preg.regs_allocated = REGS_FIXED;
5e69f11e 6742
fa9a63c5
RM
6743 if (want_reg_info)
6744 {
6745 regs.num_regs = nmatch;
4bb91c68
SM
6746 regs.start = TALLOC (nmatch * 2, regoff_t);
6747 if (regs.start == NULL)
0b32bf0e 6748 return (int) REG_NOMATCH;
4bb91c68 6749 regs.end = regs.start + nmatch;
fa9a63c5
RM
6750 }
6751
c0f9ea08
SM
6752 /* Instead of using not_eol to implement REG_NOTEOL, we could simply
6753 pass (&private_preg, string, len + 1, 0, len, ...) pretending the string
6754 was a little bit longer but still only matching the real part.
6755 This works because the `endline' will check for a '\n' and will find a
6756 '\0', correctly deciding that this is not the end of a line.
6757 But it doesn't work out so nicely for REG_NOTBOL, since we don't have
6758 a convenient '\0' there. For all we know, the string could be preceded
6759 by '\n' which would throw things off. */
6760
fa9a63c5
RM
6761 /* Perform the searching operation. */
6762 ret = re_search (&private_preg, string, len,
0b32bf0e
SM
6763 /* start: */ 0, /* range: */ len,
6764 want_reg_info ? &regs : (struct re_registers *) 0);
5e69f11e 6765
fa9a63c5
RM
6766 /* Copy the register information to the POSIX structure. */
6767 if (want_reg_info)
6768 {
6769 if (ret >= 0)
0b32bf0e
SM
6770 {
6771 unsigned r;
fa9a63c5 6772
0b32bf0e
SM
6773 for (r = 0; r < nmatch; r++)
6774 {
6775 pmatch[r].rm_so = regs.start[r];
6776 pmatch[r].rm_eo = regs.end[r];
6777 }
6778 }
fa9a63c5 6779
b18215fc 6780 /* If we needed the temporary register info, free the space now. */
fa9a63c5 6781 free (regs.start);
fa9a63c5
RM
6782 }
6783
6784 /* We want zero return to mean success, unlike `re_search'. */
6785 return ret >= 0 ? (int) REG_NOERROR : (int) REG_NOMATCH;
6786}
c0f9ea08 6787WEAK_ALIAS (__regexec, regexec)
fa9a63c5
RM
6788
6789
ec869672
JR
6790/* Returns a message corresponding to an error code, ERR_CODE, returned
6791 from either regcomp or regexec. We don't use PREG here.
6792
6793 ERR_CODE was previously called ERRCODE, but that name causes an
6794 error with msvc8 compiler. */
fa9a63c5
RM
6795
6796size_t
ec869672
JR
6797regerror (err_code, preg, errbuf, errbuf_size)
6798 int err_code;
fa9a63c5
RM
6799 const regex_t *preg;
6800 char *errbuf;
6801 size_t errbuf_size;
6802{
6803 const char *msg;
6804 size_t msg_size;
6805
ec869672
JR
6806 if (err_code < 0
6807 || err_code >= (sizeof (re_error_msgid) / sizeof (re_error_msgid[0])))
5e69f11e 6808 /* Only error codes returned by the rest of the code should be passed
b18215fc 6809 to this routine. If we are given anything else, or if other regex
fa9a63c5
RM
6810 code generates an invalid error code, then the program has a bug.
6811 Dump core so we can fix it. */
6812 abort ();
6813
ec869672 6814 msg = gettext (re_error_msgid[err_code]);
fa9a63c5
RM
6815
6816 msg_size = strlen (msg) + 1; /* Includes the null. */
5e69f11e 6817
fa9a63c5
RM
6818 if (errbuf_size != 0)
6819 {
6820 if (msg_size > errbuf_size)
0b32bf0e
SM
6821 {
6822 strncpy (errbuf, msg, errbuf_size - 1);
6823 errbuf[errbuf_size - 1] = 0;
6824 }
fa9a63c5 6825 else
0b32bf0e 6826 strcpy (errbuf, msg);
fa9a63c5
RM
6827 }
6828
6829 return msg_size;
6830}
c0f9ea08 6831WEAK_ALIAS (__regerror, regerror)
fa9a63c5
RM
6832
6833
6834/* Free dynamically allocated space used by PREG. */
6835
6836void
6837regfree (preg)
6838 regex_t *preg;
6839{
c2cd06e6 6840 free (preg->buffer);
fa9a63c5 6841 preg->buffer = NULL;
5e69f11e 6842
fa9a63c5
RM
6843 preg->allocated = 0;
6844 preg->used = 0;
6845
c2cd06e6 6846 free (preg->fastmap);
fa9a63c5
RM
6847 preg->fastmap = NULL;
6848 preg->fastmap_accurate = 0;
6849
c2cd06e6 6850 free (preg->translate);
fa9a63c5
RM
6851 preg->translate = NULL;
6852}
c0f9ea08 6853WEAK_ALIAS (__regfree, regfree)
fa9a63c5
RM
6854
6855#endif /* not emacs */
839966f3
KH
6856
6857/* arch-tag: 4ffd68ba-2a9e-435b-a21a-018990f9eeb2
6858 (do not change this comment) */