* progmodes/gdb-ui.el (gdb-assembler-font-lock-keywords): Handle
[bpt/emacs.git] / src / regex.c
CommitLineData
e318085a 1/* Extended regular expression matching and search library, version
0b32bf0e 2 0.12. (Implements POSIX draft P1003.2/D11.2, except for some of the
bc78d348
KB
3 internationalization features.)
4
669fa600 5 Copyright (C) 1993,94,95,96,97,98,99,2000,04 Free Software Foundation, Inc.
bc78d348 6
fa9a63c5
RM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
25fe55af 14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
fa9a63c5
RM
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
ba4a8e51 19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307,
25fe55af 20 USA. */
fa9a63c5 21
6df42991 22/* TODO:
505bde11 23 - structure the opcode space into opcode+flag.
dc1e502d 24 - merge with glibc's regex.[ch].
01618498 25 - replace (succeed_n + jump_n + set_number_at) with something that doesn't
6dcf2d0e
SM
26 need to modify the compiled regexp so that re_match can be reentrant.
27 - get rid of on_failure_jump_smart by doing the optimization in re_comp
28 rather than at run-time, so that re_match can be reentrant.
01618498 29*/
505bde11 30
fa9a63c5 31/* AIX requires this to be the first thing in the file. */
0b32bf0e 32#if defined _AIX && !defined REGEX_MALLOC
fa9a63c5
RM
33 #pragma alloca
34#endif
35
fa9a63c5 36#ifdef HAVE_CONFIG_H
0b32bf0e 37# include <config.h>
fa9a63c5
RM
38#endif
39
4bb91c68
SM
40#if defined STDC_HEADERS && !defined emacs
41# include <stddef.h>
42#else
43/* We need this for `regex.h', and perhaps for the Emacs include files. */
44# include <sys/types.h>
45#endif
fa9a63c5 46
14473664
SM
47/* Whether to use ISO C Amendment 1 wide char functions.
48 Those should not be used for Emacs since it uses its own. */
5e5388f6
GM
49#if defined _LIBC
50#define WIDE_CHAR_SUPPORT 1
51#else
14473664 52#define WIDE_CHAR_SUPPORT \
5e5388f6
GM
53 (HAVE_WCTYPE_H && HAVE_WCHAR_H && HAVE_BTOWC && !emacs)
54#endif
14473664
SM
55
56/* For platform which support the ISO C amendement 1 functionality we
57 support user defined character classes. */
a0ad02f7 58#if WIDE_CHAR_SUPPORT
14473664
SM
59/* Solaris 2.5 has a bug: <wchar.h> must be included before <wctype.h>. */
60# include <wchar.h>
61# include <wctype.h>
62#endif
63
c0f9ea08
SM
64#ifdef _LIBC
65/* We have to keep the namespace clean. */
66# define regfree(preg) __regfree (preg)
67# define regexec(pr, st, nm, pm, ef) __regexec (pr, st, nm, pm, ef)
68# define regcomp(preg, pattern, cflags) __regcomp (preg, pattern, cflags)
69# define regerror(errcode, preg, errbuf, errbuf_size) \
70 __regerror(errcode, preg, errbuf, errbuf_size)
71# define re_set_registers(bu, re, nu, st, en) \
72 __re_set_registers (bu, re, nu, st, en)
73# define re_match_2(bufp, string1, size1, string2, size2, pos, regs, stop) \
74 __re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
75# define re_match(bufp, string, size, pos, regs) \
76 __re_match (bufp, string, size, pos, regs)
77# define re_search(bufp, string, size, startpos, range, regs) \
78 __re_search (bufp, string, size, startpos, range, regs)
79# define re_compile_pattern(pattern, length, bufp) \
80 __re_compile_pattern (pattern, length, bufp)
81# define re_set_syntax(syntax) __re_set_syntax (syntax)
82# define re_search_2(bufp, st1, s1, st2, s2, startpos, range, regs, stop) \
83 __re_search_2 (bufp, st1, s1, st2, s2, startpos, range, regs, stop)
84# define re_compile_fastmap(bufp) __re_compile_fastmap (bufp)
85
14473664
SM
86/* Make sure we call libc's function even if the user overrides them. */
87# define btowc __btowc
88# define iswctype __iswctype
89# define wctype __wctype
90
c0f9ea08
SM
91# define WEAK_ALIAS(a,b) weak_alias (a, b)
92
93/* We are also using some library internals. */
94# include <locale/localeinfo.h>
95# include <locale/elem-hash.h>
96# include <langinfo.h>
97#else
98# define WEAK_ALIAS(a,b)
99#endif
100
4bb91c68 101/* This is for other GNU distributions with internationalized messages. */
0b32bf0e 102#if HAVE_LIBINTL_H || defined _LIBC
fa9a63c5
RM
103# include <libintl.h>
104#else
105# define gettext(msgid) (msgid)
106#endif
107
5e69f11e
RM
108#ifndef gettext_noop
109/* This define is so xgettext can find the internationalizable
110 strings. */
0b32bf0e 111# define gettext_noop(String) String
5e69f11e
RM
112#endif
113
fa9a63c5
RM
114/* The `emacs' switch turns on certain matching commands
115 that make sense only in Emacs. */
116#ifdef emacs
117
0b32bf0e
SM
118# include "lisp.h"
119# include "buffer.h"
b18215fc
RS
120
121/* Make syntax table lookup grant data in gl_state. */
0b32bf0e 122# define SYNTAX_ENTRY_VIA_PROPERTY
b18215fc 123
0b32bf0e
SM
124# include "syntax.h"
125# include "charset.h"
126# include "category.h"
fa9a63c5 127
7689ef0b
EZ
128# ifdef malloc
129# undef malloc
130# endif
0b32bf0e 131# define malloc xmalloc
7689ef0b
EZ
132# ifdef realloc
133# undef realloc
134# endif
0b32bf0e 135# define realloc xrealloc
7689ef0b
EZ
136# ifdef free
137# undef free
138# endif
0b32bf0e 139# define free xfree
9abbd165 140
0b32bf0e
SM
141/* Converts the pointer to the char to BEG-based offset from the start. */
142# define PTR_TO_OFFSET(d) POS_AS_IN_BUFFER (POINTER_TO_OFFSET (d))
143# define POS_AS_IN_BUFFER(p) ((p) + (NILP (re_match_object) || BUFFERP (re_match_object)))
144
145# define RE_MULTIBYTE_P(bufp) ((bufp)->multibyte)
146# define RE_STRING_CHAR(p, s) \
4e8a9132 147 (multibyte ? (STRING_CHAR (p, s)) : (*(p)))
0b32bf0e 148# define RE_STRING_CHAR_AND_LENGTH(p, s, len) \
2d1675e4
SM
149 (multibyte ? (STRING_CHAR_AND_LENGTH (p, s, len)) : ((len) = 1, *(p)))
150
151/* Set C a (possibly multibyte) character before P. P points into a
152 string which is the virtual concatenation of STR1 (which ends at
153 END1) or STR2 (which ends at END2). */
0b32bf0e 154# define GET_CHAR_BEFORE_2(c, p, str1, end1, str2, end2) \
2d1675e4
SM
155 do { \
156 if (multibyte) \
157 { \
0b32bf0e
SM
158 re_char *dtemp = (p) == (str2) ? (end1) : (p); \
159 re_char *dlimit = ((p) > (str2) && (p) <= (end2)) ? (str2) : (str1); \
70806df6
KH
160 re_char *d0 = dtemp; \
161 PREV_CHAR_BOUNDARY (d0, dlimit); \
162 c = STRING_CHAR (d0, dtemp - d0); \
2d1675e4
SM
163 } \
164 else \
165 (c = ((p) == (str2) ? (end1) : (p))[-1]); \
166 } while (0)
167
4e8a9132 168
fa9a63c5
RM
169#else /* not emacs */
170
171/* If we are not linking with Emacs proper,
172 we can't use the relocating allocator
173 even if config.h says that we can. */
0b32bf0e 174# undef REL_ALLOC
fa9a63c5 175
0b32bf0e
SM
176# if defined STDC_HEADERS || defined _LIBC
177# include <stdlib.h>
178# else
fa9a63c5
RM
179char *malloc ();
180char *realloc ();
0b32bf0e 181# endif
fa9a63c5 182
9e4ecb26 183/* When used in Emacs's lib-src, we need to get bzero and bcopy somehow.
4bb91c68 184 If nothing else has been done, use the method below. */
0b32bf0e
SM
185# ifdef INHIBIT_STRING_HEADER
186# if !(defined HAVE_BZERO && defined HAVE_BCOPY)
187# if !defined bzero && !defined bcopy
188# undef INHIBIT_STRING_HEADER
189# endif
190# endif
191# endif
9e4ecb26 192
4bb91c68 193/* This is the normal way of making sure we have memcpy, memcmp and bzero.
9e4ecb26
KH
194 This is used in most programs--a few other programs avoid this
195 by defining INHIBIT_STRING_HEADER. */
0b32bf0e
SM
196# ifndef INHIBIT_STRING_HEADER
197# if defined HAVE_STRING_H || defined STDC_HEADERS || defined _LIBC
198# include <string.h>
0b32bf0e 199# ifndef bzero
4bb91c68
SM
200# ifndef _LIBC
201# define bzero(s, n) (memset (s, '\0', n), (s))
202# else
203# define bzero(s, n) __bzero (s, n)
204# endif
0b32bf0e
SM
205# endif
206# else
207# include <strings.h>
4bb91c68
SM
208# ifndef memcmp
209# define memcmp(s1, s2, n) bcmp (s1, s2, n)
210# endif
211# ifndef memcpy
212# define memcpy(d, s, n) (bcopy (s, d, n), (d))
213# endif
0b32bf0e
SM
214# endif
215# endif
fa9a63c5
RM
216
217/* Define the syntax stuff for \<, \>, etc. */
218
990b2375 219/* Sword must be nonzero for the wordchar pattern commands in re_match_2. */
669fa600 220enum syntaxcode { Swhitespace = 0, Sword = 1, Ssymbol = 2 };
fa9a63c5 221
0b32bf0e
SM
222# ifdef SWITCH_ENUM_BUG
223# define SWITCH_ENUM_CAST(x) ((int)(x))
224# else
225# define SWITCH_ENUM_CAST(x) (x)
226# endif
fa9a63c5 227
e934739e 228/* Dummy macros for non-Emacs environments. */
0b32bf0e
SM
229# define BASE_LEADING_CODE_P(c) (0)
230# define CHAR_CHARSET(c) 0
231# define CHARSET_LEADING_CODE_BASE(c) 0
232# define MAX_MULTIBYTE_LENGTH 1
233# define RE_MULTIBYTE_P(x) 0
234# define WORD_BOUNDARY_P(c1, c2) (0)
235# define CHAR_HEAD_P(p) (1)
236# define SINGLE_BYTE_CHAR_P(c) (1)
237# define SAME_CHARSET_P(c1, c2) (1)
238# define MULTIBYTE_FORM_LENGTH(p, s) (1)
70806df6 239# define PREV_CHAR_BOUNDARY(p, limit) ((p)--)
0b32bf0e
SM
240# define STRING_CHAR(p, s) (*(p))
241# define RE_STRING_CHAR STRING_CHAR
242# define CHAR_STRING(c, s) (*(s) = (c), 1)
243# define STRING_CHAR_AND_LENGTH(p, s, actual_len) ((actual_len) = 1, *(p))
244# define RE_STRING_CHAR_AND_LENGTH STRING_CHAR_AND_LENGTH
245# define GET_CHAR_BEFORE_2(c, p, str1, end1, str2, end2) \
b18215fc 246 (c = ((p) == (str2) ? *((end1) - 1) : *((p) - 1)))
0b32bf0e 247# define MAKE_CHAR(charset, c1, c2) (c1)
fa9a63c5 248#endif /* not emacs */
4e8a9132
SM
249
250#ifndef RE_TRANSLATE
0b32bf0e
SM
251# define RE_TRANSLATE(TBL, C) ((unsigned char)(TBL)[C])
252# define RE_TRANSLATE_P(TBL) (TBL)
4e8a9132 253#endif
fa9a63c5
RM
254\f
255/* Get the interface, including the syntax bits. */
256#include "regex.h"
257
f71b19b6
DL
258/* isalpha etc. are used for the character classes. */
259#include <ctype.h>
fa9a63c5 260
f71b19b6 261#ifdef emacs
fa9a63c5 262
f71b19b6 263/* 1 if C is an ASCII character. */
0b32bf0e 264# define IS_REAL_ASCII(c) ((c) < 0200)
fa9a63c5 265
f71b19b6 266/* 1 if C is a unibyte character. */
0b32bf0e 267# define ISUNIBYTE(c) (SINGLE_BYTE_CHAR_P ((c)))
96cc36cc 268
f71b19b6 269/* The Emacs definitions should not be directly affected by locales. */
96cc36cc 270
f71b19b6 271/* In Emacs, these are only used for single-byte characters. */
0b32bf0e
SM
272# define ISDIGIT(c) ((c) >= '0' && (c) <= '9')
273# define ISCNTRL(c) ((c) < ' ')
274# define ISXDIGIT(c) (((c) >= '0' && (c) <= '9') \
f71b19b6
DL
275 || ((c) >= 'a' && (c) <= 'f') \
276 || ((c) >= 'A' && (c) <= 'F'))
96cc36cc
RS
277
278/* This is only used for single-byte characters. */
0b32bf0e 279# define ISBLANK(c) ((c) == ' ' || (c) == '\t')
96cc36cc
RS
280
281/* The rest must handle multibyte characters. */
282
0b32bf0e 283# define ISGRAPH(c) (SINGLE_BYTE_CHAR_P (c) \
f71b19b6 284 ? (c) > ' ' && !((c) >= 0177 && (c) <= 0237) \
96cc36cc
RS
285 : 1)
286
14473664 287# define ISPRINT(c) (SINGLE_BYTE_CHAR_P (c) \
f71b19b6 288 ? (c) >= ' ' && !((c) >= 0177 && (c) <= 0237) \
96cc36cc
RS
289 : 1)
290
0b32bf0e 291# define ISALNUM(c) (IS_REAL_ASCII (c) \
f71b19b6
DL
292 ? (((c) >= 'a' && (c) <= 'z') \
293 || ((c) >= 'A' && (c) <= 'Z') \
294 || ((c) >= '0' && (c) <= '9')) \
96cc36cc
RS
295 : SYNTAX (c) == Sword)
296
0b32bf0e 297# define ISALPHA(c) (IS_REAL_ASCII (c) \
f71b19b6
DL
298 ? (((c) >= 'a' && (c) <= 'z') \
299 || ((c) >= 'A' && (c) <= 'Z')) \
96cc36cc
RS
300 : SYNTAX (c) == Sword)
301
0b32bf0e 302# define ISLOWER(c) (LOWERCASEP (c))
96cc36cc 303
0b32bf0e 304# define ISPUNCT(c) (IS_REAL_ASCII (c) \
f71b19b6
DL
305 ? ((c) > ' ' && (c) < 0177 \
306 && !(((c) >= 'a' && (c) <= 'z') \
4bb91c68
SM
307 || ((c) >= 'A' && (c) <= 'Z') \
308 || ((c) >= '0' && (c) <= '9'))) \
96cc36cc
RS
309 : SYNTAX (c) != Sword)
310
0b32bf0e 311# define ISSPACE(c) (SYNTAX (c) == Swhitespace)
96cc36cc 312
0b32bf0e 313# define ISUPPER(c) (UPPERCASEP (c))
96cc36cc 314
0b32bf0e 315# define ISWORD(c) (SYNTAX (c) == Sword)
96cc36cc
RS
316
317#else /* not emacs */
318
f71b19b6
DL
319/* Jim Meyering writes:
320
321 "... Some ctype macros are valid only for character codes that
322 isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when
323 using /bin/cc or gcc but without giving an ansi option). So, all
4bb91c68 324 ctype uses should be through macros like ISPRINT... If
f71b19b6
DL
325 STDC_HEADERS is defined, then autoconf has verified that the ctype
326 macros don't need to be guarded with references to isascii. ...
327 Defining isascii to 1 should let any compiler worth its salt
4bb91c68
SM
328 eliminate the && through constant folding."
329 Solaris defines some of these symbols so we must undefine them first. */
f71b19b6 330
4bb91c68 331# undef ISASCII
0b32bf0e
SM
332# if defined STDC_HEADERS || (!defined isascii && !defined HAVE_ISASCII)
333# define ISASCII(c) 1
334# else
335# define ISASCII(c) isascii(c)
336# endif
f71b19b6
DL
337
338/* 1 if C is an ASCII character. */
0b32bf0e 339# define IS_REAL_ASCII(c) ((c) < 0200)
f71b19b6
DL
340
341/* This distinction is not meaningful, except in Emacs. */
0b32bf0e
SM
342# define ISUNIBYTE(c) 1
343
344# ifdef isblank
345# define ISBLANK(c) (ISASCII (c) && isblank (c))
346# else
347# define ISBLANK(c) ((c) == ' ' || (c) == '\t')
348# endif
349# ifdef isgraph
350# define ISGRAPH(c) (ISASCII (c) && isgraph (c))
351# else
352# define ISGRAPH(c) (ISASCII (c) && isprint (c) && !isspace (c))
353# endif
354
4bb91c68 355# undef ISPRINT
0b32bf0e
SM
356# define ISPRINT(c) (ISASCII (c) && isprint (c))
357# define ISDIGIT(c) (ISASCII (c) && isdigit (c))
358# define ISALNUM(c) (ISASCII (c) && isalnum (c))
359# define ISALPHA(c) (ISASCII (c) && isalpha (c))
360# define ISCNTRL(c) (ISASCII (c) && iscntrl (c))
361# define ISLOWER(c) (ISASCII (c) && islower (c))
362# define ISPUNCT(c) (ISASCII (c) && ispunct (c))
363# define ISSPACE(c) (ISASCII (c) && isspace (c))
364# define ISUPPER(c) (ISASCII (c) && isupper (c))
365# define ISXDIGIT(c) (ISASCII (c) && isxdigit (c))
366
367# define ISWORD(c) ISALPHA(c)
368
4bb91c68
SM
369# ifdef _tolower
370# define TOLOWER(c) _tolower(c)
371# else
372# define TOLOWER(c) tolower(c)
373# endif
374
375/* How many characters in the character set. */
376# define CHAR_SET_SIZE 256
377
0b32bf0e 378# ifdef SYNTAX_TABLE
f71b19b6 379
0b32bf0e 380extern char *re_syntax_table;
f71b19b6 381
0b32bf0e
SM
382# else /* not SYNTAX_TABLE */
383
0b32bf0e
SM
384static char re_syntax_table[CHAR_SET_SIZE];
385
386static void
387init_syntax_once ()
388{
389 register int c;
390 static int done = 0;
391
392 if (done)
393 return;
394
395 bzero (re_syntax_table, sizeof re_syntax_table);
396
4bb91c68
SM
397 for (c = 0; c < CHAR_SET_SIZE; ++c)
398 if (ISALNUM (c))
399 re_syntax_table[c] = Sword;
fa9a63c5 400
669fa600 401 re_syntax_table['_'] = Ssymbol;
fa9a63c5 402
0b32bf0e
SM
403 done = 1;
404}
405
406# endif /* not SYNTAX_TABLE */
96cc36cc 407
4bb91c68
SM
408# define SYNTAX(c) re_syntax_table[(c)]
409
96cc36cc
RS
410#endif /* not emacs */
411\f
fa9a63c5 412#ifndef NULL
0b32bf0e 413# define NULL (void *)0
fa9a63c5
RM
414#endif
415
416/* We remove any previous definition of `SIGN_EXTEND_CHAR',
417 since ours (we hope) works properly with all combinations of
418 machines, compilers, `char' and `unsigned char' argument types.
4bb91c68 419 (Per Bothner suggested the basic approach.) */
fa9a63c5
RM
420#undef SIGN_EXTEND_CHAR
421#if __STDC__
0b32bf0e 422# define SIGN_EXTEND_CHAR(c) ((signed char) (c))
fa9a63c5
RM
423#else /* not __STDC__ */
424/* As in Harbison and Steele. */
0b32bf0e 425# define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
fa9a63c5
RM
426#endif
427\f
428/* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we
429 use `alloca' instead of `malloc'. This is because using malloc in
430 re_search* or re_match* could cause memory leaks when C-g is used in
431 Emacs; also, malloc is slower and causes storage fragmentation. On
5e69f11e
RM
432 the other hand, malloc is more portable, and easier to debug.
433
fa9a63c5
RM
434 Because we sometimes use alloca, some routines have to be macros,
435 not functions -- `alloca'-allocated space disappears at the end of the
436 function it is called in. */
437
438#ifdef REGEX_MALLOC
439
0b32bf0e
SM
440# define REGEX_ALLOCATE malloc
441# define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
442# define REGEX_FREE free
fa9a63c5
RM
443
444#else /* not REGEX_MALLOC */
445
446/* Emacs already defines alloca, sometimes. */
0b32bf0e 447# ifndef alloca
fa9a63c5
RM
448
449/* Make alloca work the best possible way. */
0b32bf0e
SM
450# ifdef __GNUC__
451# define alloca __builtin_alloca
452# else /* not __GNUC__ */
453# if HAVE_ALLOCA_H
454# include <alloca.h>
455# endif /* HAVE_ALLOCA_H */
456# endif /* not __GNUC__ */
fa9a63c5 457
0b32bf0e 458# endif /* not alloca */
fa9a63c5 459
0b32bf0e 460# define REGEX_ALLOCATE alloca
fa9a63c5
RM
461
462/* Assumes a `char *destination' variable. */
0b32bf0e 463# define REGEX_REALLOCATE(source, osize, nsize) \
fa9a63c5 464 (destination = (char *) alloca (nsize), \
4bb91c68 465 memcpy (destination, source, osize))
fa9a63c5
RM
466
467/* No need to do anything to free, after alloca. */
0b32bf0e 468# define REGEX_FREE(arg) ((void)0) /* Do nothing! But inhibit gcc warning. */
fa9a63c5
RM
469
470#endif /* not REGEX_MALLOC */
471
472/* Define how to allocate the failure stack. */
473
0b32bf0e 474#if defined REL_ALLOC && defined REGEX_MALLOC
4297555e 475
0b32bf0e 476# define REGEX_ALLOCATE_STACK(size) \
fa9a63c5 477 r_alloc (&failure_stack_ptr, (size))
0b32bf0e 478# define REGEX_REALLOCATE_STACK(source, osize, nsize) \
fa9a63c5 479 r_re_alloc (&failure_stack_ptr, (nsize))
0b32bf0e 480# define REGEX_FREE_STACK(ptr) \
fa9a63c5
RM
481 r_alloc_free (&failure_stack_ptr)
482
4297555e 483#else /* not using relocating allocator */
fa9a63c5 484
0b32bf0e 485# ifdef REGEX_MALLOC
fa9a63c5 486
0b32bf0e
SM
487# define REGEX_ALLOCATE_STACK malloc
488# define REGEX_REALLOCATE_STACK(source, osize, nsize) realloc (source, nsize)
489# define REGEX_FREE_STACK free
fa9a63c5 490
0b32bf0e 491# else /* not REGEX_MALLOC */
fa9a63c5 492
0b32bf0e 493# define REGEX_ALLOCATE_STACK alloca
fa9a63c5 494
0b32bf0e 495# define REGEX_REALLOCATE_STACK(source, osize, nsize) \
fa9a63c5 496 REGEX_REALLOCATE (source, osize, nsize)
25fe55af 497/* No need to explicitly free anything. */
0b32bf0e 498# define REGEX_FREE_STACK(arg) ((void)0)
fa9a63c5 499
0b32bf0e 500# endif /* not REGEX_MALLOC */
4297555e 501#endif /* not using relocating allocator */
fa9a63c5
RM
502
503
504/* True if `size1' is non-NULL and PTR is pointing anywhere inside
505 `string1' or just past its end. This works if PTR is NULL, which is
506 a good thing. */
25fe55af 507#define FIRST_STRING_P(ptr) \
fa9a63c5
RM
508 (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
509
510/* (Re)Allocate N items of type T using malloc, or fail. */
511#define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
512#define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
513#define RETALLOC_IF(addr, n, t) \
514 if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t)
515#define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
516
4bb91c68 517#define BYTEWIDTH 8 /* In bits. */
fa9a63c5
RM
518
519#define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
520
521#undef MAX
522#undef MIN
523#define MAX(a, b) ((a) > (b) ? (a) : (b))
524#define MIN(a, b) ((a) < (b) ? (a) : (b))
525
66f0296e
SM
526/* Type of source-pattern and string chars. */
527typedef const unsigned char re_char;
528
fa9a63c5
RM
529typedef char boolean;
530#define false 0
531#define true 1
532
4bb91c68
SM
533static int re_match_2_internal _RE_ARGS ((struct re_pattern_buffer *bufp,
534 re_char *string1, int size1,
535 re_char *string2, int size2,
536 int pos,
537 struct re_registers *regs,
538 int stop));
fa9a63c5
RM
539\f
540/* These are the command codes that appear in compiled regular
4bb91c68 541 expressions. Some opcodes are followed by argument bytes. A
fa9a63c5
RM
542 command code can specify any interpretation whatsoever for its
543 arguments. Zero bytes may appear in the compiled regular expression. */
544
545typedef enum
546{
547 no_op = 0,
548
4bb91c68 549 /* Succeed right away--no more backtracking. */
fa9a63c5
RM
550 succeed,
551
25fe55af 552 /* Followed by one byte giving n, then by n literal bytes. */
fa9a63c5
RM
553 exactn,
554
25fe55af 555 /* Matches any (more or less) character. */
fa9a63c5
RM
556 anychar,
557
25fe55af
RS
558 /* Matches any one char belonging to specified set. First
559 following byte is number of bitmap bytes. Then come bytes
560 for a bitmap saying which chars are in. Bits in each byte
561 are ordered low-bit-first. A character is in the set if its
562 bit is 1. A character too large to have a bit in the map is
96cc36cc
RS
563 automatically not in the set.
564
565 If the length byte has the 0x80 bit set, then that stuff
566 is followed by a range table:
567 2 bytes of flags for character sets (low 8 bits, high 8 bits)
0b32bf0e 568 See RANGE_TABLE_WORK_BITS below.
01618498 569 2 bytes, the number of pairs that follow (upto 32767)
96cc36cc 570 pairs, each 2 multibyte characters,
0b32bf0e 571 each multibyte character represented as 3 bytes. */
fa9a63c5
RM
572 charset,
573
25fe55af 574 /* Same parameters as charset, but match any character that is
4bb91c68 575 not one of those specified. */
fa9a63c5
RM
576 charset_not,
577
25fe55af
RS
578 /* Start remembering the text that is matched, for storing in a
579 register. Followed by one byte with the register number, in
580 the range 0 to one less than the pattern buffer's re_nsub
505bde11 581 field. */
fa9a63c5
RM
582 start_memory,
583
25fe55af
RS
584 /* Stop remembering the text that is matched and store it in a
585 memory register. Followed by one byte with the register
586 number, in the range 0 to one less than `re_nsub' in the
505bde11 587 pattern buffer. */
fa9a63c5
RM
588 stop_memory,
589
25fe55af 590 /* Match a duplicate of something remembered. Followed by one
4bb91c68 591 byte containing the register number. */
fa9a63c5
RM
592 duplicate,
593
25fe55af 594 /* Fail unless at beginning of line. */
fa9a63c5
RM
595 begline,
596
4bb91c68 597 /* Fail unless at end of line. */
fa9a63c5
RM
598 endline,
599
25fe55af
RS
600 /* Succeeds if at beginning of buffer (if emacs) or at beginning
601 of string to be matched (if not). */
fa9a63c5
RM
602 begbuf,
603
25fe55af 604 /* Analogously, for end of buffer/string. */
fa9a63c5 605 endbuf,
5e69f11e 606
25fe55af 607 /* Followed by two byte relative address to which to jump. */
5e69f11e 608 jump,
fa9a63c5 609
25fe55af
RS
610 /* Followed by two-byte relative address of place to resume at
611 in case of failure. */
fa9a63c5 612 on_failure_jump,
5e69f11e 613
25fe55af
RS
614 /* Like on_failure_jump, but pushes a placeholder instead of the
615 current string position when executed. */
fa9a63c5 616 on_failure_keep_string_jump,
5e69f11e 617
505bde11
SM
618 /* Just like `on_failure_jump', except that it checks that we
619 don't get stuck in an infinite loop (matching an empty string
620 indefinitely). */
621 on_failure_jump_loop,
622
0683b6fa
SM
623 /* Just like `on_failure_jump_loop', except that it checks for
624 a different kind of loop (the kind that shows up with non-greedy
625 operators). This operation has to be immediately preceded
626 by a `no_op'. */
627 on_failure_jump_nastyloop,
628
0b32bf0e 629 /* A smart `on_failure_jump' used for greedy * and + operators.
505bde11
SM
630 It analyses the loop before which it is put and if the
631 loop does not require backtracking, it changes itself to
4e8a9132
SM
632 `on_failure_keep_string_jump' and short-circuits the loop,
633 else it just defaults to changing itself into `on_failure_jump'.
634 It assumes that it is pointing to just past a `jump'. */
505bde11 635 on_failure_jump_smart,
fa9a63c5 636
25fe55af 637 /* Followed by two-byte relative address and two-byte number n.
ed0767d8
SM
638 After matching N times, jump to the address upon failure.
639 Does not work if N starts at 0: use on_failure_jump_loop
640 instead. */
fa9a63c5
RM
641 succeed_n,
642
25fe55af
RS
643 /* Followed by two-byte relative address, and two-byte number n.
644 Jump to the address N times, then fail. */
fa9a63c5
RM
645 jump_n,
646
25fe55af
RS
647 /* Set the following two-byte relative address to the
648 subsequent two-byte number. The address *includes* the two
649 bytes of number. */
fa9a63c5
RM
650 set_number_at,
651
fa9a63c5
RM
652 wordbeg, /* Succeeds if at word beginning. */
653 wordend, /* Succeeds if at word end. */
654
655 wordbound, /* Succeeds if at a word boundary. */
1fb352e0 656 notwordbound, /* Succeeds if not at a word boundary. */
fa9a63c5 657
669fa600
SM
658 symbeg, /* Succeeds if at symbol beginning. */
659 symend, /* Succeeds if at symbol end. */
660
fa9a63c5 661 /* Matches any character whose syntax is specified. Followed by
25fe55af 662 a byte which contains a syntax code, e.g., Sword. */
fa9a63c5
RM
663 syntaxspec,
664
665 /* Matches any character whose syntax is not that specified. */
1fb352e0
SM
666 notsyntaxspec
667
668#ifdef emacs
669 ,before_dot, /* Succeeds if before point. */
670 at_dot, /* Succeeds if at point. */
671 after_dot, /* Succeeds if after point. */
b18215fc
RS
672
673 /* Matches any character whose category-set contains the specified
25fe55af
RS
674 category. The operator is followed by a byte which contains a
675 category code (mnemonic ASCII character). */
b18215fc
RS
676 categoryspec,
677
678 /* Matches any character whose category-set does not contain the
679 specified category. The operator is followed by a byte which
680 contains the category code (mnemonic ASCII character). */
681 notcategoryspec
fa9a63c5
RM
682#endif /* emacs */
683} re_opcode_t;
684\f
685/* Common operations on the compiled pattern. */
686
687/* Store NUMBER in two contiguous bytes starting at DESTINATION. */
688
689#define STORE_NUMBER(destination, number) \
690 do { \
691 (destination)[0] = (number) & 0377; \
692 (destination)[1] = (number) >> 8; \
693 } while (0)
694
695/* Same as STORE_NUMBER, except increment DESTINATION to
696 the byte after where the number is stored. Therefore, DESTINATION
697 must be an lvalue. */
698
699#define STORE_NUMBER_AND_INCR(destination, number) \
700 do { \
701 STORE_NUMBER (destination, number); \
702 (destination) += 2; \
703 } while (0)
704
705/* Put into DESTINATION a number stored in two contiguous bytes starting
706 at SOURCE. */
707
708#define EXTRACT_NUMBER(destination, source) \
709 do { \
710 (destination) = *(source) & 0377; \
711 (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8; \
712 } while (0)
713
714#ifdef DEBUG
4bb91c68 715static void extract_number _RE_ARGS ((int *dest, re_char *source));
fa9a63c5
RM
716static void
717extract_number (dest, source)
718 int *dest;
01618498 719 re_char *source;
fa9a63c5 720{
5e69f11e 721 int temp = SIGN_EXTEND_CHAR (*(source + 1));
fa9a63c5
RM
722 *dest = *source & 0377;
723 *dest += temp << 8;
724}
725
4bb91c68 726# ifndef EXTRACT_MACROS /* To debug the macros. */
0b32bf0e
SM
727# undef EXTRACT_NUMBER
728# define EXTRACT_NUMBER(dest, src) extract_number (&dest, src)
729# endif /* not EXTRACT_MACROS */
fa9a63c5
RM
730
731#endif /* DEBUG */
732
733/* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
734 SOURCE must be an lvalue. */
735
736#define EXTRACT_NUMBER_AND_INCR(destination, source) \
737 do { \
738 EXTRACT_NUMBER (destination, source); \
25fe55af 739 (source) += 2; \
fa9a63c5
RM
740 } while (0)
741
742#ifdef DEBUG
4bb91c68
SM
743static void extract_number_and_incr _RE_ARGS ((int *destination,
744 re_char **source));
fa9a63c5
RM
745static void
746extract_number_and_incr (destination, source)
747 int *destination;
01618498 748 re_char **source;
5e69f11e 749{
fa9a63c5
RM
750 extract_number (destination, *source);
751 *source += 2;
752}
753
0b32bf0e
SM
754# ifndef EXTRACT_MACROS
755# undef EXTRACT_NUMBER_AND_INCR
756# define EXTRACT_NUMBER_AND_INCR(dest, src) \
fa9a63c5 757 extract_number_and_incr (&dest, &src)
0b32bf0e 758# endif /* not EXTRACT_MACROS */
fa9a63c5
RM
759
760#endif /* DEBUG */
761\f
b18215fc
RS
762/* Store a multibyte character in three contiguous bytes starting
763 DESTINATION, and increment DESTINATION to the byte after where the
25fe55af 764 character is stored. Therefore, DESTINATION must be an lvalue. */
b18215fc
RS
765
766#define STORE_CHARACTER_AND_INCR(destination, character) \
767 do { \
768 (destination)[0] = (character) & 0377; \
769 (destination)[1] = ((character) >> 8) & 0377; \
770 (destination)[2] = (character) >> 16; \
771 (destination) += 3; \
772 } while (0)
773
774/* Put into DESTINATION a character stored in three contiguous bytes
25fe55af 775 starting at SOURCE. */
b18215fc
RS
776
777#define EXTRACT_CHARACTER(destination, source) \
778 do { \
779 (destination) = ((source)[0] \
780 | ((source)[1] << 8) \
781 | ((source)[2] << 16)); \
782 } while (0)
783
784
785/* Macros for charset. */
786
787/* Size of bitmap of charset P in bytes. P is a start of charset,
788 i.e. *P is (re_opcode_t) charset or (re_opcode_t) charset_not. */
789#define CHARSET_BITMAP_SIZE(p) ((p)[1] & 0x7F)
790
791/* Nonzero if charset P has range table. */
25fe55af 792#define CHARSET_RANGE_TABLE_EXISTS_P(p) ((p)[1] & 0x80)
b18215fc
RS
793
794/* Return the address of range table of charset P. But not the start
795 of table itself, but the before where the number of ranges is
96cc36cc
RS
796 stored. `2 +' means to skip re_opcode_t and size of bitmap,
797 and the 2 bytes of flags at the start of the range table. */
798#define CHARSET_RANGE_TABLE(p) (&(p)[4 + CHARSET_BITMAP_SIZE (p)])
799
800/* Extract the bit flags that start a range table. */
801#define CHARSET_RANGE_TABLE_BITS(p) \
802 ((p)[2 + CHARSET_BITMAP_SIZE (p)] \
803 + (p)[3 + CHARSET_BITMAP_SIZE (p)] * 0x100)
b18215fc
RS
804
805/* Test if C is listed in the bitmap of charset P. */
806#define CHARSET_LOOKUP_BITMAP(p, c) \
807 ((c) < CHARSET_BITMAP_SIZE (p) * BYTEWIDTH \
808 && (p)[2 + (c) / BYTEWIDTH] & (1 << ((c) % BYTEWIDTH)))
809
810/* Return the address of end of RANGE_TABLE. COUNT is number of
25fe55af
RS
811 ranges (which is a pair of (start, end)) in the RANGE_TABLE. `* 2'
812 is start of range and end of range. `* 3' is size of each start
b18215fc
RS
813 and end. */
814#define CHARSET_RANGE_TABLE_END(range_table, count) \
815 ((range_table) + (count) * 2 * 3)
816
25fe55af 817/* Test if C is in RANGE_TABLE. A flag NOT is negated if C is in.
b18215fc
RS
818 COUNT is number of ranges in RANGE_TABLE. */
819#define CHARSET_LOOKUP_RANGE_TABLE_RAW(not, c, range_table, count) \
820 do \
821 { \
01618498
SM
822 re_wchar_t range_start, range_end; \
823 re_char *p; \
824 re_char *range_table_end \
b18215fc
RS
825 = CHARSET_RANGE_TABLE_END ((range_table), (count)); \
826 \
827 for (p = (range_table); p < range_table_end; p += 2 * 3) \
828 { \
829 EXTRACT_CHARACTER (range_start, p); \
830 EXTRACT_CHARACTER (range_end, p + 3); \
831 \
832 if (range_start <= (c) && (c) <= range_end) \
833 { \
834 (not) = !(not); \
835 break; \
836 } \
837 } \
838 } \
839 while (0)
840
841/* Test if C is in range table of CHARSET. The flag NOT is negated if
842 C is listed in it. */
843#define CHARSET_LOOKUP_RANGE_TABLE(not, c, charset) \
844 do \
845 { \
846 /* Number of ranges in range table. */ \
847 int count; \
01618498
SM
848 re_char *range_table = CHARSET_RANGE_TABLE (charset); \
849 \
b18215fc
RS
850 EXTRACT_NUMBER_AND_INCR (count, range_table); \
851 CHARSET_LOOKUP_RANGE_TABLE_RAW ((not), (c), range_table, count); \
852 } \
853 while (0)
854\f
fa9a63c5
RM
855/* If DEBUG is defined, Regex prints many voluminous messages about what
856 it is doing (if the variable `debug' is nonzero). If linked with the
857 main program in `iregex.c', you can enter patterns and strings
858 interactively. And if linked with the main program in `main.c' and
4bb91c68 859 the other test files, you can run the already-written tests. */
fa9a63c5
RM
860
861#ifdef DEBUG
862
863/* We use standard I/O for debugging. */
0b32bf0e 864# include <stdio.h>
fa9a63c5
RM
865
866/* It is useful to test things that ``must'' be true when debugging. */
0b32bf0e 867# include <assert.h>
fa9a63c5 868
99633e97 869static int debug = -100000;
fa9a63c5 870
0b32bf0e
SM
871# define DEBUG_STATEMENT(e) e
872# define DEBUG_PRINT1(x) if (debug > 0) printf (x)
873# define DEBUG_PRINT2(x1, x2) if (debug > 0) printf (x1, x2)
874# define DEBUG_PRINT3(x1, x2, x3) if (debug > 0) printf (x1, x2, x3)
875# define DEBUG_PRINT4(x1, x2, x3, x4) if (debug > 0) printf (x1, x2, x3, x4)
876# define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \
99633e97 877 if (debug > 0) print_partial_compiled_pattern (s, e)
0b32bf0e 878# define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \
99633e97 879 if (debug > 0) print_double_string (w, s1, sz1, s2, sz2)
fa9a63c5
RM
880
881
882/* Print the fastmap in human-readable form. */
883
884void
885print_fastmap (fastmap)
886 char *fastmap;
887{
888 unsigned was_a_range = 0;
5e69f11e
RM
889 unsigned i = 0;
890
fa9a63c5
RM
891 while (i < (1 << BYTEWIDTH))
892 {
893 if (fastmap[i++])
894 {
895 was_a_range = 0;
25fe55af
RS
896 putchar (i - 1);
897 while (i < (1 << BYTEWIDTH) && fastmap[i])
898 {
899 was_a_range = 1;
900 i++;
901 }
fa9a63c5 902 if (was_a_range)
25fe55af
RS
903 {
904 printf ("-");
905 putchar (i - 1);
906 }
907 }
fa9a63c5 908 }
5e69f11e 909 putchar ('\n');
fa9a63c5
RM
910}
911
912
913/* Print a compiled pattern string in human-readable form, starting at
914 the START pointer into it and ending just before the pointer END. */
915
916void
917print_partial_compiled_pattern (start, end)
01618498
SM
918 re_char *start;
919 re_char *end;
fa9a63c5
RM
920{
921 int mcnt, mcnt2;
01618498
SM
922 re_char *p = start;
923 re_char *pend = end;
fa9a63c5
RM
924
925 if (start == NULL)
926 {
a1a052df 927 fprintf (stderr, "(null)\n");
fa9a63c5
RM
928 return;
929 }
5e69f11e 930
fa9a63c5
RM
931 /* Loop over pattern commands. */
932 while (p < pend)
933 {
a1a052df 934 fprintf (stderr, "%d:\t", p - start);
fa9a63c5
RM
935
936 switch ((re_opcode_t) *p++)
937 {
25fe55af 938 case no_op:
a1a052df 939 fprintf (stderr, "/no_op");
25fe55af 940 break;
fa9a63c5 941
99633e97 942 case succeed:
a1a052df 943 fprintf (stderr, "/succeed");
99633e97
SM
944 break;
945
fa9a63c5
RM
946 case exactn:
947 mcnt = *p++;
a1a052df 948 fprintf (stderr, "/exactn/%d", mcnt);
25fe55af 949 do
fa9a63c5 950 {
a1a052df 951 fprintf (stderr, "/%c", *p++);
25fe55af
RS
952 }
953 while (--mcnt);
954 break;
fa9a63c5
RM
955
956 case start_memory:
a1a052df 957 fprintf (stderr, "/start_memory/%d", *p++);
25fe55af 958 break;
fa9a63c5
RM
959
960 case stop_memory:
a1a052df 961 fprintf (stderr, "/stop_memory/%d", *p++);
25fe55af 962 break;
fa9a63c5
RM
963
964 case duplicate:
a1a052df 965 fprintf (stderr, "/duplicate/%d", *p++);
fa9a63c5
RM
966 break;
967
968 case anychar:
a1a052df 969 fprintf (stderr, "/anychar");
fa9a63c5
RM
970 break;
971
972 case charset:
25fe55af
RS
973 case charset_not:
974 {
975 register int c, last = -100;
fa9a63c5 976 register int in_range = 0;
99633e97
SM
977 int length = CHARSET_BITMAP_SIZE (p - 1);
978 int has_range_table = CHARSET_RANGE_TABLE_EXISTS_P (p - 1);
fa9a63c5 979
a1a052df 980 fprintf (stderr, "/charset [%s",
275a3409 981 (re_opcode_t) *(p - 1) == charset_not ? "^" : "");
5e69f11e 982
275a3409
RS
983 if (p + *p >= pend)
984 fprintf (stderr, " !extends past end of pattern! ");
fa9a63c5 985
25fe55af 986 for (c = 0; c < 256; c++)
96cc36cc 987 if (c / 8 < length
fa9a63c5
RM
988 && (p[1 + (c/8)] & (1 << (c % 8))))
989 {
990 /* Are we starting a range? */
991 if (last + 1 == c && ! in_range)
992 {
a1a052df 993 fprintf (stderr, "-");
fa9a63c5
RM
994 in_range = 1;
995 }
996 /* Have we broken a range? */
997 else if (last + 1 != c && in_range)
96cc36cc 998 {
a1a052df 999 fprintf (stderr, "%c", last);
fa9a63c5
RM
1000 in_range = 0;
1001 }
5e69f11e 1002
fa9a63c5 1003 if (! in_range)
a1a052df 1004 fprintf (stderr, "%c", c);
fa9a63c5
RM
1005
1006 last = c;
25fe55af 1007 }
fa9a63c5
RM
1008
1009 if (in_range)
a1a052df 1010 fprintf (stderr, "%c", last);
fa9a63c5 1011
a1a052df 1012 fprintf (stderr, "]");
fa9a63c5 1013
99633e97 1014 p += 1 + length;
96cc36cc 1015
96cc36cc 1016 if (has_range_table)
99633e97
SM
1017 {
1018 int count;
a1a052df 1019 fprintf (stderr, "has-range-table");
99633e97
SM
1020
1021 /* ??? Should print the range table; for now, just skip it. */
1022 p += 2; /* skip range table bits */
1023 EXTRACT_NUMBER_AND_INCR (count, p);
1024 p = CHARSET_RANGE_TABLE_END (p, count);
1025 }
fa9a63c5
RM
1026 }
1027 break;
1028
1029 case begline:
a1a052df 1030 fprintf (stderr, "/begline");
25fe55af 1031 break;
fa9a63c5
RM
1032
1033 case endline:
a1a052df 1034 fprintf (stderr, "/endline");
25fe55af 1035 break;
fa9a63c5
RM
1036
1037 case on_failure_jump:
25fe55af 1038 extract_number_and_incr (&mcnt, &p);
a1a052df 1039 fprintf (stderr, "/on_failure_jump to %d", p + mcnt - start);
25fe55af 1040 break;
fa9a63c5
RM
1041
1042 case on_failure_keep_string_jump:
25fe55af 1043 extract_number_and_incr (&mcnt, &p);
a1a052df 1044 fprintf (stderr, "/on_failure_keep_string_jump to %d", p + mcnt - start);
25fe55af 1045 break;
fa9a63c5 1046
0683b6fa
SM
1047 case on_failure_jump_nastyloop:
1048 extract_number_and_incr (&mcnt, &p);
a1a052df 1049 fprintf (stderr, "/on_failure_jump_nastyloop to %d", p + mcnt - start);
0683b6fa
SM
1050 break;
1051
505bde11 1052 case on_failure_jump_loop:
fa9a63c5 1053 extract_number_and_incr (&mcnt, &p);
a1a052df 1054 fprintf (stderr, "/on_failure_jump_loop to %d", p + mcnt - start);
5e69f11e
RM
1055 break;
1056
505bde11 1057 case on_failure_jump_smart:
fa9a63c5 1058 extract_number_and_incr (&mcnt, &p);
a1a052df 1059 fprintf (stderr, "/on_failure_jump_smart to %d", p + mcnt - start);
5e69f11e
RM
1060 break;
1061
25fe55af 1062 case jump:
fa9a63c5 1063 extract_number_and_incr (&mcnt, &p);
a1a052df 1064 fprintf (stderr, "/jump to %d", p + mcnt - start);
fa9a63c5
RM
1065 break;
1066
25fe55af
RS
1067 case succeed_n:
1068 extract_number_and_incr (&mcnt, &p);
1069 extract_number_and_incr (&mcnt2, &p);
a1a052df 1070 fprintf (stderr, "/succeed_n to %d, %d times", p - 2 + mcnt - start, mcnt2);
25fe55af 1071 break;
5e69f11e 1072
25fe55af
RS
1073 case jump_n:
1074 extract_number_and_incr (&mcnt, &p);
1075 extract_number_and_incr (&mcnt2, &p);
a1a052df 1076 fprintf (stderr, "/jump_n to %d, %d times", p - 2 + mcnt - start, mcnt2);
25fe55af 1077 break;
5e69f11e 1078
25fe55af
RS
1079 case set_number_at:
1080 extract_number_and_incr (&mcnt, &p);
1081 extract_number_and_incr (&mcnt2, &p);
a1a052df 1082 fprintf (stderr, "/set_number_at location %d to %d", p - 2 + mcnt - start, mcnt2);
25fe55af 1083 break;
5e69f11e 1084
25fe55af 1085 case wordbound:
a1a052df 1086 fprintf (stderr, "/wordbound");
fa9a63c5
RM
1087 break;
1088
1089 case notwordbound:
a1a052df 1090 fprintf (stderr, "/notwordbound");
25fe55af 1091 break;
fa9a63c5
RM
1092
1093 case wordbeg:
a1a052df 1094 fprintf (stderr, "/wordbeg");
fa9a63c5 1095 break;
5e69f11e 1096
fa9a63c5 1097 case wordend:
a1a052df 1098 fprintf (stderr, "/wordend");
e2543b02 1099 break;
5e69f11e 1100
669fa600 1101 case symbeg:
e2543b02 1102 fprintf (stderr, "/symbeg");
669fa600
SM
1103 break;
1104
1105 case symend:
e2543b02 1106 fprintf (stderr, "/symend");
669fa600
SM
1107 break;
1108
1fb352e0 1109 case syntaxspec:
a1a052df 1110 fprintf (stderr, "/syntaxspec");
1fb352e0 1111 mcnt = *p++;
a1a052df 1112 fprintf (stderr, "/%d", mcnt);
1fb352e0
SM
1113 break;
1114
1115 case notsyntaxspec:
a1a052df 1116 fprintf (stderr, "/notsyntaxspec");
1fb352e0 1117 mcnt = *p++;
a1a052df 1118 fprintf (stderr, "/%d", mcnt);
1fb352e0
SM
1119 break;
1120
0b32bf0e 1121# ifdef emacs
fa9a63c5 1122 case before_dot:
a1a052df 1123 fprintf (stderr, "/before_dot");
25fe55af 1124 break;
fa9a63c5
RM
1125
1126 case at_dot:
a1a052df 1127 fprintf (stderr, "/at_dot");
25fe55af 1128 break;
fa9a63c5
RM
1129
1130 case after_dot:
a1a052df 1131 fprintf (stderr, "/after_dot");
25fe55af 1132 break;
fa9a63c5 1133
1fb352e0 1134 case categoryspec:
a1a052df 1135 fprintf (stderr, "/categoryspec");
fa9a63c5 1136 mcnt = *p++;
a1a052df 1137 fprintf (stderr, "/%d", mcnt);
25fe55af 1138 break;
5e69f11e 1139
1fb352e0 1140 case notcategoryspec:
a1a052df 1141 fprintf (stderr, "/notcategoryspec");
fa9a63c5 1142 mcnt = *p++;
a1a052df 1143 fprintf (stderr, "/%d", mcnt);
fa9a63c5 1144 break;
0b32bf0e 1145# endif /* emacs */
fa9a63c5 1146
fa9a63c5 1147 case begbuf:
a1a052df 1148 fprintf (stderr, "/begbuf");
25fe55af 1149 break;
fa9a63c5
RM
1150
1151 case endbuf:
a1a052df 1152 fprintf (stderr, "/endbuf");
25fe55af 1153 break;
fa9a63c5 1154
25fe55af 1155 default:
a1a052df 1156 fprintf (stderr, "?%d", *(p-1));
fa9a63c5
RM
1157 }
1158
a1a052df 1159 fprintf (stderr, "\n");
fa9a63c5
RM
1160 }
1161
a1a052df 1162 fprintf (stderr, "%d:\tend of pattern.\n", p - start);
fa9a63c5
RM
1163}
1164
1165
1166void
1167print_compiled_pattern (bufp)
1168 struct re_pattern_buffer *bufp;
1169{
01618498 1170 re_char *buffer = bufp->buffer;
fa9a63c5
RM
1171
1172 print_partial_compiled_pattern (buffer, buffer + bufp->used);
4bb91c68
SM
1173 printf ("%ld bytes used/%ld bytes allocated.\n",
1174 bufp->used, bufp->allocated);
fa9a63c5
RM
1175
1176 if (bufp->fastmap_accurate && bufp->fastmap)
1177 {
1178 printf ("fastmap: ");
1179 print_fastmap (bufp->fastmap);
1180 }
1181
1182 printf ("re_nsub: %d\t", bufp->re_nsub);
1183 printf ("regs_alloc: %d\t", bufp->regs_allocated);
1184 printf ("can_be_null: %d\t", bufp->can_be_null);
fa9a63c5
RM
1185 printf ("no_sub: %d\t", bufp->no_sub);
1186 printf ("not_bol: %d\t", bufp->not_bol);
1187 printf ("not_eol: %d\t", bufp->not_eol);
4bb91c68 1188 printf ("syntax: %lx\n", bufp->syntax);
505bde11 1189 fflush (stdout);
fa9a63c5
RM
1190 /* Perhaps we should print the translate table? */
1191}
1192
1193
1194void
1195print_double_string (where, string1, size1, string2, size2)
66f0296e
SM
1196 re_char *where;
1197 re_char *string1;
1198 re_char *string2;
fa9a63c5
RM
1199 int size1;
1200 int size2;
1201{
4bb91c68 1202 int this_char;
5e69f11e 1203
fa9a63c5
RM
1204 if (where == NULL)
1205 printf ("(null)");
1206 else
1207 {
1208 if (FIRST_STRING_P (where))
25fe55af
RS
1209 {
1210 for (this_char = where - string1; this_char < size1; this_char++)
1211 putchar (string1[this_char]);
fa9a63c5 1212
25fe55af
RS
1213 where = string2;
1214 }
fa9a63c5
RM
1215
1216 for (this_char = where - string2; this_char < size2; this_char++)
25fe55af 1217 putchar (string2[this_char]);
fa9a63c5
RM
1218 }
1219}
1220
1221#else /* not DEBUG */
1222
0b32bf0e
SM
1223# undef assert
1224# define assert(e)
fa9a63c5 1225
0b32bf0e
SM
1226# define DEBUG_STATEMENT(e)
1227# define DEBUG_PRINT1(x)
1228# define DEBUG_PRINT2(x1, x2)
1229# define DEBUG_PRINT3(x1, x2, x3)
1230# define DEBUG_PRINT4(x1, x2, x3, x4)
1231# define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
1232# define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
fa9a63c5
RM
1233
1234#endif /* not DEBUG */
1235\f
1236/* Set by `re_set_syntax' to the current regexp syntax to recognize. Can
1237 also be assigned to arbitrarily: each pattern buffer stores its own
1238 syntax, so it can be changed between regex compilations. */
1239/* This has no initializer because initialized variables in Emacs
1240 become read-only after dumping. */
1241reg_syntax_t re_syntax_options;
1242
1243
1244/* Specify the precise syntax of regexps for compilation. This provides
1245 for compatibility for various utilities which historically have
1246 different, incompatible syntaxes.
1247
1248 The argument SYNTAX is a bit mask comprised of the various bits
4bb91c68 1249 defined in regex.h. We return the old syntax. */
fa9a63c5
RM
1250
1251reg_syntax_t
1252re_set_syntax (syntax)
1253 reg_syntax_t syntax;
1254{
1255 reg_syntax_t ret = re_syntax_options;
5e69f11e 1256
fa9a63c5
RM
1257 re_syntax_options = syntax;
1258 return ret;
1259}
c0f9ea08 1260WEAK_ALIAS (__re_set_syntax, re_set_syntax)
fa9a63c5
RM
1261\f
1262/* This table gives an error message for each of the error codes listed
4bb91c68 1263 in regex.h. Obviously the order here has to be same as there.
fa9a63c5 1264 POSIX doesn't require that we do anything for REG_NOERROR,
4bb91c68 1265 but why not be nice? */
fa9a63c5
RM
1266
1267static const char *re_error_msgid[] =
5e69f11e
RM
1268 {
1269 gettext_noop ("Success"), /* REG_NOERROR */
1270 gettext_noop ("No match"), /* REG_NOMATCH */
1271 gettext_noop ("Invalid regular expression"), /* REG_BADPAT */
1272 gettext_noop ("Invalid collation character"), /* REG_ECOLLATE */
1273 gettext_noop ("Invalid character class name"), /* REG_ECTYPE */
1274 gettext_noop ("Trailing backslash"), /* REG_EESCAPE */
1275 gettext_noop ("Invalid back reference"), /* REG_ESUBREG */
1276 gettext_noop ("Unmatched [ or [^"), /* REG_EBRACK */
1277 gettext_noop ("Unmatched ( or \\("), /* REG_EPAREN */
1278 gettext_noop ("Unmatched \\{"), /* REG_EBRACE */
1279 gettext_noop ("Invalid content of \\{\\}"), /* REG_BADBR */
1280 gettext_noop ("Invalid range end"), /* REG_ERANGE */
1281 gettext_noop ("Memory exhausted"), /* REG_ESPACE */
1282 gettext_noop ("Invalid preceding regular expression"), /* REG_BADRPT */
1283 gettext_noop ("Premature end of regular expression"), /* REG_EEND */
1284 gettext_noop ("Regular expression too big"), /* REG_ESIZE */
1285 gettext_noop ("Unmatched ) or \\)"), /* REG_ERPAREN */
fa9a63c5
RM
1286 };
1287\f
4bb91c68 1288/* Avoiding alloca during matching, to placate r_alloc. */
fa9a63c5
RM
1289
1290/* Define MATCH_MAY_ALLOCATE unless we need to make sure that the
1291 searching and matching functions should not call alloca. On some
1292 systems, alloca is implemented in terms of malloc, and if we're
1293 using the relocating allocator routines, then malloc could cause a
1294 relocation, which might (if the strings being searched are in the
1295 ralloc heap) shift the data out from underneath the regexp
1296 routines.
1297
5e69f11e 1298 Here's another reason to avoid allocation: Emacs
fa9a63c5
RM
1299 processes input from X in a signal handler; processing X input may
1300 call malloc; if input arrives while a matching routine is calling
1301 malloc, then we're scrod. But Emacs can't just block input while
1302 calling matching routines; then we don't notice interrupts when
1303 they come in. So, Emacs blocks input around all regexp calls
1304 except the matching calls, which it leaves unprotected, in the
1305 faith that they will not malloc. */
1306
1307/* Normally, this is fine. */
1308#define MATCH_MAY_ALLOCATE
1309
1310/* When using GNU C, we are not REALLY using the C alloca, no matter
1311 what config.h may say. So don't take precautions for it. */
1312#ifdef __GNUC__
0b32bf0e 1313# undef C_ALLOCA
fa9a63c5
RM
1314#endif
1315
1316/* The match routines may not allocate if (1) they would do it with malloc
1317 and (2) it's not safe for them to use malloc.
1318 Note that if REL_ALLOC is defined, matching would not use malloc for the
1319 failure stack, but we would still use it for the register vectors;
4bb91c68 1320 so REL_ALLOC should not affect this. */
0b32bf0e
SM
1321#if (defined C_ALLOCA || defined REGEX_MALLOC) && defined emacs
1322# undef MATCH_MAY_ALLOCATE
fa9a63c5
RM
1323#endif
1324
1325\f
1326/* Failure stack declarations and macros; both re_compile_fastmap and
1327 re_match_2 use a failure stack. These have to be macros because of
1328 REGEX_ALLOCATE_STACK. */
5e69f11e 1329
fa9a63c5 1330
320a2a73 1331/* Approximate number of failure points for which to initially allocate space
fa9a63c5
RM
1332 when matching. If this number is exceeded, we allocate more
1333 space, so it is not a hard limit. */
1334#ifndef INIT_FAILURE_ALLOC
0b32bf0e 1335# define INIT_FAILURE_ALLOC 20
fa9a63c5
RM
1336#endif
1337
1338/* Roughly the maximum number of failure points on the stack. Would be
320a2a73 1339 exactly that if always used TYPICAL_FAILURE_SIZE items each time we failed.
fa9a63c5 1340 This is a variable only so users of regex can assign to it; we never
ada30c0e
SM
1341 change it ourselves. We always multiply it by TYPICAL_FAILURE_SIZE
1342 before using it, so it should probably be a byte-count instead. */
c0f9ea08
SM
1343# if defined MATCH_MAY_ALLOCATE
1344/* Note that 4400 was enough to cause a crash on Alpha OSF/1,
320a2a73
KH
1345 whose default stack limit is 2mb. In order for a larger
1346 value to work reliably, you have to try to make it accord
1347 with the process stack limit. */
c0f9ea08
SM
1348size_t re_max_failures = 40000;
1349# else
1350size_t re_max_failures = 4000;
1351# endif
fa9a63c5
RM
1352
1353union fail_stack_elt
1354{
01618498 1355 re_char *pointer;
c0f9ea08
SM
1356 /* This should be the biggest `int' that's no bigger than a pointer. */
1357 long integer;
fa9a63c5
RM
1358};
1359
1360typedef union fail_stack_elt fail_stack_elt_t;
1361
1362typedef struct
1363{
1364 fail_stack_elt_t *stack;
c0f9ea08
SM
1365 size_t size;
1366 size_t avail; /* Offset of next open position. */
1367 size_t frame; /* Offset of the cur constructed frame. */
fa9a63c5
RM
1368} fail_stack_type;
1369
505bde11 1370#define FAIL_STACK_EMPTY() (fail_stack.frame == 0)
fa9a63c5
RM
1371#define FAIL_STACK_FULL() (fail_stack.avail == fail_stack.size)
1372
1373
1374/* Define macros to initialize and free the failure stack.
1375 Do `return -2' if the alloc fails. */
1376
1377#ifdef MATCH_MAY_ALLOCATE
0b32bf0e 1378# define INIT_FAIL_STACK() \
fa9a63c5
RM
1379 do { \
1380 fail_stack.stack = (fail_stack_elt_t *) \
320a2a73
KH
1381 REGEX_ALLOCATE_STACK (INIT_FAILURE_ALLOC * TYPICAL_FAILURE_SIZE \
1382 * sizeof (fail_stack_elt_t)); \
fa9a63c5
RM
1383 \
1384 if (fail_stack.stack == NULL) \
1385 return -2; \
1386 \
1387 fail_stack.size = INIT_FAILURE_ALLOC; \
1388 fail_stack.avail = 0; \
505bde11 1389 fail_stack.frame = 0; \
fa9a63c5
RM
1390 } while (0)
1391
0b32bf0e 1392# define RESET_FAIL_STACK() REGEX_FREE_STACK (fail_stack.stack)
fa9a63c5 1393#else
0b32bf0e 1394# define INIT_FAIL_STACK() \
fa9a63c5
RM
1395 do { \
1396 fail_stack.avail = 0; \
505bde11 1397 fail_stack.frame = 0; \
fa9a63c5
RM
1398 } while (0)
1399
0b32bf0e 1400# define RESET_FAIL_STACK() ((void)0)
fa9a63c5
RM
1401#endif
1402
1403
320a2a73
KH
1404/* Double the size of FAIL_STACK, up to a limit
1405 which allows approximately `re_max_failures' items.
fa9a63c5
RM
1406
1407 Return 1 if succeeds, and 0 if either ran out of memory
5e69f11e
RM
1408 allocating space for it or it was already too large.
1409
4bb91c68 1410 REGEX_REALLOCATE_STACK requires `destination' be declared. */
fa9a63c5 1411
320a2a73
KH
1412/* Factor to increase the failure stack size by
1413 when we increase it.
1414 This used to be 2, but 2 was too wasteful
1415 because the old discarded stacks added up to as much space
1416 were as ultimate, maximum-size stack. */
1417#define FAIL_STACK_GROWTH_FACTOR 4
1418
1419#define GROW_FAIL_STACK(fail_stack) \
eead07d6
KH
1420 (((fail_stack).size * sizeof (fail_stack_elt_t) \
1421 >= re_max_failures * TYPICAL_FAILURE_SIZE) \
fa9a63c5 1422 ? 0 \
320a2a73
KH
1423 : ((fail_stack).stack \
1424 = (fail_stack_elt_t *) \
25fe55af
RS
1425 REGEX_REALLOCATE_STACK ((fail_stack).stack, \
1426 (fail_stack).size * sizeof (fail_stack_elt_t), \
320a2a73
KH
1427 MIN (re_max_failures * TYPICAL_FAILURE_SIZE, \
1428 ((fail_stack).size * sizeof (fail_stack_elt_t) \
1429 * FAIL_STACK_GROWTH_FACTOR))), \
fa9a63c5
RM
1430 \
1431 (fail_stack).stack == NULL \
1432 ? 0 \
6453db45
KH
1433 : ((fail_stack).size \
1434 = (MIN (re_max_failures * TYPICAL_FAILURE_SIZE, \
1435 ((fail_stack).size * sizeof (fail_stack_elt_t) \
1436 * FAIL_STACK_GROWTH_FACTOR)) \
1437 / sizeof (fail_stack_elt_t)), \
25fe55af 1438 1)))
fa9a63c5
RM
1439
1440
fa9a63c5
RM
1441/* Push a pointer value onto the failure stack.
1442 Assumes the variable `fail_stack'. Probably should only
4bb91c68 1443 be called from within `PUSH_FAILURE_POINT'. */
fa9a63c5 1444#define PUSH_FAILURE_POINTER(item) \
01618498 1445 fail_stack.stack[fail_stack.avail++].pointer = (item)
fa9a63c5
RM
1446
1447/* This pushes an integer-valued item onto the failure stack.
1448 Assumes the variable `fail_stack'. Probably should only
4bb91c68 1449 be called from within `PUSH_FAILURE_POINT'. */
fa9a63c5
RM
1450#define PUSH_FAILURE_INT(item) \
1451 fail_stack.stack[fail_stack.avail++].integer = (item)
1452
1453/* Push a fail_stack_elt_t value onto the failure stack.
1454 Assumes the variable `fail_stack'. Probably should only
4bb91c68 1455 be called from within `PUSH_FAILURE_POINT'. */
fa9a63c5
RM
1456#define PUSH_FAILURE_ELT(item) \
1457 fail_stack.stack[fail_stack.avail++] = (item)
1458
1459/* These three POP... operations complement the three PUSH... operations.
1460 All assume that `fail_stack' is nonempty. */
1461#define POP_FAILURE_POINTER() fail_stack.stack[--fail_stack.avail].pointer
1462#define POP_FAILURE_INT() fail_stack.stack[--fail_stack.avail].integer
1463#define POP_FAILURE_ELT() fail_stack.stack[--fail_stack.avail]
1464
505bde11
SM
1465/* Individual items aside from the registers. */
1466#define NUM_NONREG_ITEMS 3
1467
1468/* Used to examine the stack (to detect infinite loops). */
1469#define FAILURE_PAT(h) fail_stack.stack[(h) - 1].pointer
66f0296e 1470#define FAILURE_STR(h) (fail_stack.stack[(h) - 2].pointer)
505bde11
SM
1471#define NEXT_FAILURE_HANDLE(h) fail_stack.stack[(h) - 3].integer
1472#define TOP_FAILURE_HANDLE() fail_stack.frame
fa9a63c5
RM
1473
1474
505bde11
SM
1475#define ENSURE_FAIL_STACK(space) \
1476while (REMAINING_AVAIL_SLOTS <= space) { \
1477 if (!GROW_FAIL_STACK (fail_stack)) \
1478 return -2; \
1479 DEBUG_PRINT2 ("\n Doubled stack; size now: %d\n", (fail_stack).size);\
1480 DEBUG_PRINT2 (" slots available: %d\n", REMAINING_AVAIL_SLOTS);\
1481}
1482
1483/* Push register NUM onto the stack. */
1484#define PUSH_FAILURE_REG(num) \
1485do { \
1486 char *destination; \
1487 ENSURE_FAIL_STACK(3); \
1488 DEBUG_PRINT4 (" Push reg %d (spanning %p -> %p)\n", \
1489 num, regstart[num], regend[num]); \
1490 PUSH_FAILURE_POINTER (regstart[num]); \
1491 PUSH_FAILURE_POINTER (regend[num]); \
1492 PUSH_FAILURE_INT (num); \
1493} while (0)
1494
01618498
SM
1495/* Change the counter's value to VAL, but make sure that it will
1496 be reset when backtracking. */
1497#define PUSH_NUMBER(ptr,val) \
dc1e502d
SM
1498do { \
1499 char *destination; \
1500 int c; \
1501 ENSURE_FAIL_STACK(3); \
1502 EXTRACT_NUMBER (c, ptr); \
01618498 1503 DEBUG_PRINT4 (" Push number %p = %d -> %d\n", ptr, c, val); \
dc1e502d
SM
1504 PUSH_FAILURE_INT (c); \
1505 PUSH_FAILURE_POINTER (ptr); \
1506 PUSH_FAILURE_INT (-1); \
01618498 1507 STORE_NUMBER (ptr, val); \
dc1e502d
SM
1508} while (0)
1509
505bde11 1510/* Pop a saved register off the stack. */
dc1e502d 1511#define POP_FAILURE_REG_OR_COUNT() \
505bde11
SM
1512do { \
1513 int reg = POP_FAILURE_INT (); \
dc1e502d
SM
1514 if (reg == -1) \
1515 { \
1516 /* It's a counter. */ \
6dcf2d0e
SM
1517 /* Here, we discard `const', making re_match non-reentrant. */ \
1518 unsigned char *ptr = (unsigned char*) POP_FAILURE_POINTER (); \
dc1e502d
SM
1519 reg = POP_FAILURE_INT (); \
1520 STORE_NUMBER (ptr, reg); \
1521 DEBUG_PRINT3 (" Pop counter %p = %d\n", ptr, reg); \
1522 } \
1523 else \
1524 { \
1525 regend[reg] = POP_FAILURE_POINTER (); \
1526 regstart[reg] = POP_FAILURE_POINTER (); \
1527 DEBUG_PRINT4 (" Pop reg %d (spanning %p -> %p)\n", \
1528 reg, regstart[reg], regend[reg]); \
1529 } \
505bde11
SM
1530} while (0)
1531
1532/* Check that we are not stuck in an infinite loop. */
1533#define CHECK_INFINITE_LOOP(pat_cur, string_place) \
1534do { \
f6df485f 1535 int failure = TOP_FAILURE_HANDLE (); \
505bde11 1536 /* Check for infinite matching loops */ \
f6df485f
RS
1537 while (failure > 0 \
1538 && (FAILURE_STR (failure) == string_place \
1539 || FAILURE_STR (failure) == NULL)) \
505bde11
SM
1540 { \
1541 assert (FAILURE_PAT (failure) >= bufp->buffer \
66f0296e 1542 && FAILURE_PAT (failure) <= bufp->buffer + bufp->used); \
505bde11 1543 if (FAILURE_PAT (failure) == pat_cur) \
f6df485f 1544 { \
6df42991
SM
1545 cycle = 1; \
1546 break; \
f6df485f 1547 } \
66f0296e 1548 DEBUG_PRINT2 (" Other pattern: %p\n", FAILURE_PAT (failure)); \
505bde11
SM
1549 failure = NEXT_FAILURE_HANDLE(failure); \
1550 } \
1551 DEBUG_PRINT2 (" Other string: %p\n", FAILURE_STR (failure)); \
1552} while (0)
6df42991 1553
fa9a63c5 1554/* Push the information about the state we will need
5e69f11e
RM
1555 if we ever fail back to it.
1556
505bde11 1557 Requires variables fail_stack, regstart, regend and
320a2a73 1558 num_regs be declared. GROW_FAIL_STACK requires `destination' be
fa9a63c5 1559 declared.
5e69f11e 1560
fa9a63c5
RM
1561 Does `return FAILURE_CODE' if runs out of memory. */
1562
505bde11
SM
1563#define PUSH_FAILURE_POINT(pattern, string_place) \
1564do { \
1565 char *destination; \
1566 /* Must be int, so when we don't save any registers, the arithmetic \
1567 of 0 + -1 isn't done as unsigned. */ \
1568 \
505bde11 1569 DEBUG_STATEMENT (nfailure_points_pushed++); \
4bb91c68 1570 DEBUG_PRINT1 ("\nPUSH_FAILURE_POINT:\n"); \
505bde11
SM
1571 DEBUG_PRINT2 (" Before push, next avail: %d\n", (fail_stack).avail); \
1572 DEBUG_PRINT2 (" size: %d\n", (fail_stack).size);\
1573 \
1574 ENSURE_FAIL_STACK (NUM_NONREG_ITEMS); \
1575 \
1576 DEBUG_PRINT1 ("\n"); \
1577 \
1578 DEBUG_PRINT2 (" Push frame index: %d\n", fail_stack.frame); \
1579 PUSH_FAILURE_INT (fail_stack.frame); \
1580 \
1581 DEBUG_PRINT2 (" Push string %p: `", string_place); \
1582 DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, size2);\
1583 DEBUG_PRINT1 ("'\n"); \
1584 PUSH_FAILURE_POINTER (string_place); \
1585 \
1586 DEBUG_PRINT2 (" Push pattern %p: ", pattern); \
1587 DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern, pend); \
1588 PUSH_FAILURE_POINTER (pattern); \
1589 \
1590 /* Close the frame by moving the frame pointer past it. */ \
1591 fail_stack.frame = fail_stack.avail; \
1592} while (0)
fa9a63c5 1593
320a2a73
KH
1594/* Estimate the size of data pushed by a typical failure stack entry.
1595 An estimate is all we need, because all we use this for
1596 is to choose a limit for how big to make the failure stack. */
ada30c0e 1597/* BEWARE, the value `20' is hard-coded in emacs.c:main(). */
320a2a73 1598#define TYPICAL_FAILURE_SIZE 20
fa9a63c5 1599
fa9a63c5
RM
1600/* How many items can still be added to the stack without overflowing it. */
1601#define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
1602
1603
1604/* Pops what PUSH_FAIL_STACK pushes.
1605
1606 We restore into the parameters, all of which should be lvalues:
1607 STR -- the saved data position.
1608 PAT -- the saved pattern position.
fa9a63c5 1609 REGSTART, REGEND -- arrays of string positions.
5e69f11e 1610
fa9a63c5 1611 Also assumes the variables `fail_stack' and (if debugging), `bufp',
25fe55af 1612 `pend', `string1', `size1', `string2', and `size2'. */
fa9a63c5 1613
505bde11
SM
1614#define POP_FAILURE_POINT(str, pat) \
1615do { \
fa9a63c5
RM
1616 assert (!FAIL_STACK_EMPTY ()); \
1617 \
1618 /* Remove failure points and point to how many regs pushed. */ \
1619 DEBUG_PRINT1 ("POP_FAILURE_POINT:\n"); \
1620 DEBUG_PRINT2 (" Before pop, next avail: %d\n", fail_stack.avail); \
25fe55af 1621 DEBUG_PRINT2 (" size: %d\n", fail_stack.size); \
fa9a63c5 1622 \
505bde11
SM
1623 /* Pop the saved registers. */ \
1624 while (fail_stack.frame < fail_stack.avail) \
dc1e502d 1625 POP_FAILURE_REG_OR_COUNT (); \
fa9a63c5 1626 \
01618498 1627 pat = POP_FAILURE_POINTER (); \
505bde11
SM
1628 DEBUG_PRINT2 (" Popping pattern %p: ", pat); \
1629 DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend); \
fa9a63c5
RM
1630 \
1631 /* If the saved string location is NULL, it came from an \
1632 on_failure_keep_string_jump opcode, and we want to throw away the \
1633 saved NULL, thus retaining our current position in the string. */ \
01618498 1634 str = POP_FAILURE_POINTER (); \
505bde11 1635 DEBUG_PRINT2 (" Popping string %p: `", str); \
fa9a63c5
RM
1636 DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2); \
1637 DEBUG_PRINT1 ("'\n"); \
1638 \
505bde11
SM
1639 fail_stack.frame = POP_FAILURE_INT (); \
1640 DEBUG_PRINT2 (" Popping frame index: %d\n", fail_stack.frame); \
fa9a63c5 1641 \
505bde11
SM
1642 assert (fail_stack.avail >= 0); \
1643 assert (fail_stack.frame <= fail_stack.avail); \
fa9a63c5 1644 \
fa9a63c5 1645 DEBUG_STATEMENT (nfailure_points_popped++); \
505bde11 1646} while (0) /* POP_FAILURE_POINT */
fa9a63c5
RM
1647
1648
1649\f
fa9a63c5 1650/* Registers are set to a sentinel when they haven't yet matched. */
4bb91c68 1651#define REG_UNSET(e) ((e) == NULL)
fa9a63c5
RM
1652\f
1653/* Subroutine declarations and macros for regex_compile. */
1654
4bb91c68
SM
1655static reg_errcode_t regex_compile _RE_ARGS ((re_char *pattern, size_t size,
1656 reg_syntax_t syntax,
1657 struct re_pattern_buffer *bufp));
1658static void store_op1 _RE_ARGS ((re_opcode_t op, unsigned char *loc, int arg));
1659static void store_op2 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
1660 int arg1, int arg2));
1661static void insert_op1 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
1662 int arg, unsigned char *end));
1663static void insert_op2 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
1664 int arg1, int arg2, unsigned char *end));
01618498
SM
1665static boolean at_begline_loc_p _RE_ARGS ((re_char *pattern,
1666 re_char *p,
4bb91c68 1667 reg_syntax_t syntax));
01618498
SM
1668static boolean at_endline_loc_p _RE_ARGS ((re_char *p,
1669 re_char *pend,
4bb91c68 1670 reg_syntax_t syntax));
01618498
SM
1671static re_char *skip_one_char _RE_ARGS ((re_char *p));
1672static int analyse_first _RE_ARGS ((re_char *p, re_char *pend,
4bb91c68 1673 char *fastmap, const int multibyte));
fa9a63c5 1674
fa9a63c5 1675/* Fetch the next character in the uncompiled pattern, with no
4bb91c68 1676 translation. */
36595814 1677#define PATFETCH(c) \
2d1675e4
SM
1678 do { \
1679 int len; \
1680 if (p == pend) return REG_EEND; \
1681 c = RE_STRING_CHAR_AND_LENGTH (p, pend - p, len); \
1682 p += len; \
fa9a63c5
RM
1683 } while (0)
1684
fa9a63c5
RM
1685
1686/* If `translate' is non-null, return translate[D], else just D. We
1687 cast the subscript to translate because some data is declared as
1688 `char *', to avoid warnings when a string constant is passed. But
1689 when we use a character as a subscript we must make it unsigned. */
6676cb1c 1690#ifndef TRANSLATE
0b32bf0e 1691# define TRANSLATE(d) \
66f0296e 1692 (RE_TRANSLATE_P (translate) ? RE_TRANSLATE (translate, (d)) : (d))
6676cb1c 1693#endif
fa9a63c5
RM
1694
1695
1696/* Macros for outputting the compiled pattern into `buffer'. */
1697
1698/* If the buffer isn't allocated when it comes in, use this. */
1699#define INIT_BUF_SIZE 32
1700
4bb91c68 1701/* Make sure we have at least N more bytes of space in buffer. */
fa9a63c5 1702#define GET_BUFFER_SPACE(n) \
01618498 1703 while ((size_t) (b - bufp->buffer + (n)) > bufp->allocated) \
fa9a63c5
RM
1704 EXTEND_BUFFER ()
1705
1706/* Make sure we have one more byte of buffer space and then add C to it. */
1707#define BUF_PUSH(c) \
1708 do { \
1709 GET_BUFFER_SPACE (1); \
1710 *b++ = (unsigned char) (c); \
1711 } while (0)
1712
1713
1714/* Ensure we have two more bytes of buffer space and then append C1 and C2. */
1715#define BUF_PUSH_2(c1, c2) \
1716 do { \
1717 GET_BUFFER_SPACE (2); \
1718 *b++ = (unsigned char) (c1); \
1719 *b++ = (unsigned char) (c2); \
1720 } while (0)
1721
1722
4bb91c68 1723/* As with BUF_PUSH_2, except for three bytes. */
fa9a63c5
RM
1724#define BUF_PUSH_3(c1, c2, c3) \
1725 do { \
1726 GET_BUFFER_SPACE (3); \
1727 *b++ = (unsigned char) (c1); \
1728 *b++ = (unsigned char) (c2); \
1729 *b++ = (unsigned char) (c3); \
1730 } while (0)
1731
1732
1733/* Store a jump with opcode OP at LOC to location TO. We store a
4bb91c68 1734 relative address offset by the three bytes the jump itself occupies. */
fa9a63c5
RM
1735#define STORE_JUMP(op, loc, to) \
1736 store_op1 (op, loc, (to) - (loc) - 3)
1737
1738/* Likewise, for a two-argument jump. */
1739#define STORE_JUMP2(op, loc, to, arg) \
1740 store_op2 (op, loc, (to) - (loc) - 3, arg)
1741
4bb91c68 1742/* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */
fa9a63c5
RM
1743#define INSERT_JUMP(op, loc, to) \
1744 insert_op1 (op, loc, (to) - (loc) - 3, b)
1745
1746/* Like `STORE_JUMP2', but for inserting. Assume `b' is the buffer end. */
1747#define INSERT_JUMP2(op, loc, to, arg) \
1748 insert_op2 (op, loc, (to) - (loc) - 3, arg, b)
1749
1750
1751/* This is not an arbitrary limit: the arguments which represent offsets
275a3409 1752 into the pattern are two bytes long. So if 2^15 bytes turns out to
fa9a63c5 1753 be too small, many things would have to change. */
275a3409
RS
1754# define MAX_BUF_SIZE (1L << 15)
1755
1756#if 0 /* This is when we thought it could be 2^16 bytes. */
4bb91c68
SM
1757/* Any other compiler which, like MSC, has allocation limit below 2^16
1758 bytes will have to use approach similar to what was done below for
1759 MSC and drop MAX_BUF_SIZE a bit. Otherwise you may end up
1760 reallocating to 0 bytes. Such thing is not going to work too well.
1761 You have been warned!! */
1762#if defined _MSC_VER && !defined WIN32
1763/* Microsoft C 16-bit versions limit malloc to approx 65512 bytes. */
1764# define MAX_BUF_SIZE 65500L
1765#else
1766# define MAX_BUF_SIZE (1L << 16)
1767#endif
275a3409 1768#endif /* 0 */
fa9a63c5
RM
1769
1770/* Extend the buffer by twice its current size via realloc and
1771 reset the pointers that pointed into the old block to point to the
1772 correct places in the new one. If extending the buffer results in it
4bb91c68
SM
1773 being larger than MAX_BUF_SIZE, then flag memory exhausted. */
1774#if __BOUNDED_POINTERS__
1775# define SET_HIGH_BOUND(P) (__ptrhigh (P) = __ptrlow (P) + bufp->allocated)
1776# define MOVE_BUFFER_POINTER(P) \
1777 (__ptrlow (P) += incr, SET_HIGH_BOUND (P), __ptrvalue (P) += incr)
1778# define ELSE_EXTEND_BUFFER_HIGH_BOUND \
1779 else \
1780 { \
1781 SET_HIGH_BOUND (b); \
1782 SET_HIGH_BOUND (begalt); \
1783 if (fixup_alt_jump) \
1784 SET_HIGH_BOUND (fixup_alt_jump); \
1785 if (laststart) \
1786 SET_HIGH_BOUND (laststart); \
1787 if (pending_exact) \
1788 SET_HIGH_BOUND (pending_exact); \
1789 }
1790#else
1791# define MOVE_BUFFER_POINTER(P) (P) += incr
1792# define ELSE_EXTEND_BUFFER_HIGH_BOUND
1793#endif
fa9a63c5 1794#define EXTEND_BUFFER() \
25fe55af 1795 do { \
01618498 1796 re_char *old_buffer = bufp->buffer; \
25fe55af 1797 if (bufp->allocated == MAX_BUF_SIZE) \
fa9a63c5
RM
1798 return REG_ESIZE; \
1799 bufp->allocated <<= 1; \
1800 if (bufp->allocated > MAX_BUF_SIZE) \
25fe55af 1801 bufp->allocated = MAX_BUF_SIZE; \
01618498 1802 RETALLOC (bufp->buffer, bufp->allocated, unsigned char); \
fa9a63c5
RM
1803 if (bufp->buffer == NULL) \
1804 return REG_ESPACE; \
1805 /* If the buffer moved, move all the pointers into it. */ \
1806 if (old_buffer != bufp->buffer) \
1807 { \
4bb91c68
SM
1808 int incr = bufp->buffer - old_buffer; \
1809 MOVE_BUFFER_POINTER (b); \
1810 MOVE_BUFFER_POINTER (begalt); \
25fe55af 1811 if (fixup_alt_jump) \
4bb91c68 1812 MOVE_BUFFER_POINTER (fixup_alt_jump); \
25fe55af 1813 if (laststart) \
4bb91c68 1814 MOVE_BUFFER_POINTER (laststart); \
25fe55af 1815 if (pending_exact) \
4bb91c68 1816 MOVE_BUFFER_POINTER (pending_exact); \
fa9a63c5 1817 } \
4bb91c68 1818 ELSE_EXTEND_BUFFER_HIGH_BOUND \
fa9a63c5
RM
1819 } while (0)
1820
1821
1822/* Since we have one byte reserved for the register number argument to
1823 {start,stop}_memory, the maximum number of groups we can report
1824 things about is what fits in that byte. */
1825#define MAX_REGNUM 255
1826
1827/* But patterns can have more than `MAX_REGNUM' registers. We just
1828 ignore the excess. */
098d42af 1829typedef int regnum_t;
fa9a63c5
RM
1830
1831
1832/* Macros for the compile stack. */
1833
1834/* Since offsets can go either forwards or backwards, this type needs to
4bb91c68
SM
1835 be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */
1836/* int may be not enough when sizeof(int) == 2. */
1837typedef long pattern_offset_t;
fa9a63c5
RM
1838
1839typedef struct
1840{
1841 pattern_offset_t begalt_offset;
1842 pattern_offset_t fixup_alt_jump;
5e69f11e 1843 pattern_offset_t laststart_offset;
fa9a63c5
RM
1844 regnum_t regnum;
1845} compile_stack_elt_t;
1846
1847
1848typedef struct
1849{
1850 compile_stack_elt_t *stack;
1851 unsigned size;
1852 unsigned avail; /* Offset of next open position. */
1853} compile_stack_type;
1854
1855
1856#define INIT_COMPILE_STACK_SIZE 32
1857
1858#define COMPILE_STACK_EMPTY (compile_stack.avail == 0)
1859#define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size)
1860
4bb91c68 1861/* The next available element. */
fa9a63c5
RM
1862#define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
1863
77d11aec
RS
1864/* Explicit quit checking is only used on NTemacs. */
1865#if defined WINDOWSNT && defined emacs && defined QUIT
1866extern int immediate_quit;
1867# define IMMEDIATE_QUIT_CHECK \
1868 do { \
1869 if (immediate_quit) QUIT; \
1870 } while (0)
1871#else
1872# define IMMEDIATE_QUIT_CHECK ((void)0)
1873#endif
1874\f
b18215fc
RS
1875/* Structure to manage work area for range table. */
1876struct range_table_work_area
1877{
1878 int *table; /* actual work area. */
1879 int allocated; /* allocated size for work area in bytes. */
25fe55af 1880 int used; /* actually used size in words. */
96cc36cc 1881 int bits; /* flag to record character classes */
b18215fc
RS
1882};
1883
77d11aec
RS
1884/* Make sure that WORK_AREA can hold more N multibyte characters.
1885 This is used only in set_image_of_range and set_image_of_range_1.
1886 It expects WORK_AREA to be a pointer.
1887 If it can't get the space, it returns from the surrounding function. */
1888
1889#define EXTEND_RANGE_TABLE(work_area, n) \
1890 do { \
1891 if (((work_area)->used + (n)) * sizeof (int) > (work_area)->allocated) \
1892 { \
1893 extend_range_table_work_area (work_area); \
1894 if ((work_area)->table == 0) \
1895 return (REG_ESPACE); \
1896 } \
b18215fc
RS
1897 } while (0)
1898
96cc36cc
RS
1899#define SET_RANGE_TABLE_WORK_AREA_BIT(work_area, bit) \
1900 (work_area).bits |= (bit)
1901
14473664
SM
1902/* Bits used to implement the multibyte-part of the various character classes
1903 such as [:alnum:] in a charset's range table. */
1904#define BIT_WORD 0x1
1905#define BIT_LOWER 0x2
1906#define BIT_PUNCT 0x4
1907#define BIT_SPACE 0x8
1908#define BIT_UPPER 0x10
1909#define BIT_MULTIBYTE 0x20
96cc36cc 1910
36595814
SM
1911/* Set a range START..END to WORK_AREA.
1912 The range is passed through TRANSLATE, so START and END
1913 should be untranslated. */
77d11aec
RS
1914#define SET_RANGE_TABLE_WORK_AREA(work_area, start, end) \
1915 do { \
1916 int tem; \
1917 tem = set_image_of_range (&work_area, start, end, translate); \
1918 if (tem > 0) \
1919 FREE_STACK_RETURN (tem); \
b18215fc
RS
1920 } while (0)
1921
25fe55af 1922/* Free allocated memory for WORK_AREA. */
b18215fc
RS
1923#define FREE_RANGE_TABLE_WORK_AREA(work_area) \
1924 do { \
1925 if ((work_area).table) \
1926 free ((work_area).table); \
1927 } while (0)
1928
96cc36cc 1929#define CLEAR_RANGE_TABLE_WORK_USED(work_area) ((work_area).used = 0, (work_area).bits = 0)
b18215fc 1930#define RANGE_TABLE_WORK_USED(work_area) ((work_area).used)
96cc36cc 1931#define RANGE_TABLE_WORK_BITS(work_area) ((work_area).bits)
b18215fc 1932#define RANGE_TABLE_WORK_ELT(work_area, i) ((work_area).table[i])
77d11aec 1933\f
b18215fc 1934
fa9a63c5 1935/* Set the bit for character C in a list. */
01618498 1936#define SET_LIST_BIT(c) (b[((c)) / BYTEWIDTH] |= 1 << ((c) % BYTEWIDTH))
fa9a63c5
RM
1937
1938
1939/* Get the next unsigned number in the uncompiled pattern. */
25fe55af 1940#define GET_UNSIGNED_NUMBER(num) \
99633e97 1941 do { if (p != pend) \
fa9a63c5 1942 { \
25fe55af 1943 PATFETCH (c); \
060cc8ff
RS
1944 if (c == ' ') \
1945 FREE_STACK_RETURN (REG_BADBR); \
4bb91c68 1946 while ('0' <= c && c <= '9') \
25fe55af 1947 { \
f6df485f 1948 int prev; \
25fe55af 1949 if (num < 0) \
f6df485f
RS
1950 num = 0; \
1951 prev = num; \
25fe55af 1952 num = num * 10 + c - '0'; \
f6df485f
RS
1953 if (num / 10 != prev) \
1954 FREE_STACK_RETURN (REG_BADBR); \
25fe55af 1955 if (p == pend) \
f6df485f 1956 break; \
25fe55af
RS
1957 PATFETCH (c); \
1958 } \
060cc8ff
RS
1959 if (c == ' ') \
1960 FREE_STACK_RETURN (REG_BADBR); \
25fe55af 1961 } \
99633e97 1962 } while (0)
77d11aec 1963\f
1fdab503 1964#if ! WIDE_CHAR_SUPPORT
01618498 1965
14473664 1966/* Map a string to the char class it names (if any). */
1fdab503 1967re_wctype_t
ada30c0e
SM
1968re_wctype (str)
1969 re_char *str;
14473664 1970{
ada30c0e 1971 const char *string = str;
14473664
SM
1972 if (STREQ (string, "alnum")) return RECC_ALNUM;
1973 else if (STREQ (string, "alpha")) return RECC_ALPHA;
1974 else if (STREQ (string, "word")) return RECC_WORD;
1975 else if (STREQ (string, "ascii")) return RECC_ASCII;
1976 else if (STREQ (string, "nonascii")) return RECC_NONASCII;
1977 else if (STREQ (string, "graph")) return RECC_GRAPH;
1978 else if (STREQ (string, "lower")) return RECC_LOWER;
1979 else if (STREQ (string, "print")) return RECC_PRINT;
1980 else if (STREQ (string, "punct")) return RECC_PUNCT;
1981 else if (STREQ (string, "space")) return RECC_SPACE;
1982 else if (STREQ (string, "upper")) return RECC_UPPER;
1983 else if (STREQ (string, "unibyte")) return RECC_UNIBYTE;
1984 else if (STREQ (string, "multibyte")) return RECC_MULTIBYTE;
1985 else if (STREQ (string, "digit")) return RECC_DIGIT;
1986 else if (STREQ (string, "xdigit")) return RECC_XDIGIT;
1987 else if (STREQ (string, "cntrl")) return RECC_CNTRL;
1988 else if (STREQ (string, "blank")) return RECC_BLANK;
1989 else return 0;
1990}
1991
1992/* True iff CH is in the char class CC. */
1fdab503 1993boolean
14473664
SM
1994re_iswctype (ch, cc)
1995 int ch;
1996 re_wctype_t cc;
1997{
1998 switch (cc)
1999 {
0cdd06f8
SM
2000 case RECC_ALNUM: return ISALNUM (ch);
2001 case RECC_ALPHA: return ISALPHA (ch);
2002 case RECC_BLANK: return ISBLANK (ch);
2003 case RECC_CNTRL: return ISCNTRL (ch);
2004 case RECC_DIGIT: return ISDIGIT (ch);
2005 case RECC_GRAPH: return ISGRAPH (ch);
2006 case RECC_LOWER: return ISLOWER (ch);
2007 case RECC_PRINT: return ISPRINT (ch);
2008 case RECC_PUNCT: return ISPUNCT (ch);
2009 case RECC_SPACE: return ISSPACE (ch);
2010 case RECC_UPPER: return ISUPPER (ch);
2011 case RECC_XDIGIT: return ISXDIGIT (ch);
2012 case RECC_ASCII: return IS_REAL_ASCII (ch);
2013 case RECC_NONASCII: return !IS_REAL_ASCII (ch);
2014 case RECC_UNIBYTE: return ISUNIBYTE (ch);
2015 case RECC_MULTIBYTE: return !ISUNIBYTE (ch);
2016 case RECC_WORD: return ISWORD (ch);
2017 case RECC_ERROR: return false;
2018 default:
2019 abort();
14473664
SM
2020 }
2021}
fa9a63c5 2022
14473664
SM
2023/* Return a bit-pattern to use in the range-table bits to match multibyte
2024 chars of class CC. */
2025static int
2026re_wctype_to_bit (cc)
2027 re_wctype_t cc;
2028{
2029 switch (cc)
2030 {
2031 case RECC_NONASCII: case RECC_PRINT: case RECC_GRAPH:
0cdd06f8
SM
2032 case RECC_MULTIBYTE: return BIT_MULTIBYTE;
2033 case RECC_ALPHA: case RECC_ALNUM: case RECC_WORD: return BIT_WORD;
2034 case RECC_LOWER: return BIT_LOWER;
2035 case RECC_UPPER: return BIT_UPPER;
2036 case RECC_PUNCT: return BIT_PUNCT;
2037 case RECC_SPACE: return BIT_SPACE;
14473664 2038 case RECC_ASCII: case RECC_DIGIT: case RECC_XDIGIT: case RECC_CNTRL:
0cdd06f8
SM
2039 case RECC_BLANK: case RECC_UNIBYTE: case RECC_ERROR: return 0;
2040 default:
2041 abort();
14473664
SM
2042 }
2043}
2044#endif
77d11aec
RS
2045\f
2046/* Filling in the work area of a range. */
2047
2048/* Actually extend the space in WORK_AREA. */
2049
2050static void
2051extend_range_table_work_area (work_area)
2052 struct range_table_work_area *work_area;
177c0ea7 2053{
77d11aec
RS
2054 work_area->allocated += 16 * sizeof (int);
2055 if (work_area->table)
2056 work_area->table
2057 = (int *) realloc (work_area->table, work_area->allocated);
2058 else
2059 work_area->table
2060 = (int *) malloc (work_area->allocated);
2061}
2062
2063#ifdef emacs
2064
2065/* Carefully find the ranges of codes that are equivalent
2066 under case conversion to the range start..end when passed through
2067 TRANSLATE. Handle the case where non-letters can come in between
2068 two upper-case letters (which happens in Latin-1).
2069 Also handle the case of groups of more than 2 case-equivalent chars.
2070
2071 The basic method is to look at consecutive characters and see
2072 if they can form a run that can be handled as one.
2073
2074 Returns -1 if successful, REG_ESPACE if ran out of space. */
2075
2076static int
2077set_image_of_range_1 (work_area, start, end, translate)
2078 RE_TRANSLATE_TYPE translate;
2079 struct range_table_work_area *work_area;
2080 re_wchar_t start, end;
2081{
2082 /* `one_case' indicates a character, or a run of characters,
2083 each of which is an isolate (no case-equivalents).
2084 This includes all ASCII non-letters.
2085
2086 `two_case' indicates a character, or a run of characters,
2087 each of which has two case-equivalent forms.
2088 This includes all ASCII letters.
2089
2090 `strange' indicates a character that has more than one
2091 case-equivalent. */
177c0ea7 2092
77d11aec
RS
2093 enum case_type {one_case, two_case, strange};
2094
2095 /* Describe the run that is in progress,
2096 which the next character can try to extend.
2097 If run_type is strange, that means there really is no run.
2098 If run_type is one_case, then run_start...run_end is the run.
2099 If run_type is two_case, then the run is run_start...run_end,
2100 and the case-equivalents end at run_eqv_end. */
2101
2102 enum case_type run_type = strange;
2103 int run_start, run_end, run_eqv_end;
2104
2105 Lisp_Object eqv_table;
2106
2107 if (!RE_TRANSLATE_P (translate))
2108 {
b7c12565 2109 EXTEND_RANGE_TABLE (work_area, 2);
77d11aec
RS
2110 work_area->table[work_area->used++] = (start);
2111 work_area->table[work_area->used++] = (end);
b7c12565 2112 return -1;
77d11aec
RS
2113 }
2114
2115 eqv_table = XCHAR_TABLE (translate)->extras[2];
99633e97 2116
77d11aec
RS
2117 for (; start <= end; start++)
2118 {
2119 enum case_type this_type;
2120 int eqv = RE_TRANSLATE (eqv_table, start);
2121 int minchar, maxchar;
2122
2123 /* Classify this character */
2124 if (eqv == start)
2125 this_type = one_case;
2126 else if (RE_TRANSLATE (eqv_table, eqv) == start)
2127 this_type = two_case;
2128 else
2129 this_type = strange;
2130
2131 if (start < eqv)
2132 minchar = start, maxchar = eqv;
2133 else
2134 minchar = eqv, maxchar = start;
2135
2136 /* Can this character extend the run in progress? */
2137 if (this_type == strange || this_type != run_type
2138 || !(minchar == run_end + 1
2139 && (run_type == two_case
2140 ? maxchar == run_eqv_end + 1 : 1)))
2141 {
2142 /* No, end the run.
2143 Record each of its equivalent ranges. */
2144 if (run_type == one_case)
2145 {
2146 EXTEND_RANGE_TABLE (work_area, 2);
2147 work_area->table[work_area->used++] = run_start;
2148 work_area->table[work_area->used++] = run_end;
2149 }
2150 else if (run_type == two_case)
2151 {
2152 EXTEND_RANGE_TABLE (work_area, 4);
2153 work_area->table[work_area->used++] = run_start;
2154 work_area->table[work_area->used++] = run_end;
2155 work_area->table[work_area->used++]
2156 = RE_TRANSLATE (eqv_table, run_start);
2157 work_area->table[work_area->used++]
2158 = RE_TRANSLATE (eqv_table, run_end);
2159 }
2160 run_type = strange;
2161 }
177c0ea7 2162
77d11aec
RS
2163 if (this_type == strange)
2164 {
2165 /* For a strange character, add each of its equivalents, one
2166 by one. Don't start a range. */
2167 do
2168 {
2169 EXTEND_RANGE_TABLE (work_area, 2);
2170 work_area->table[work_area->used++] = eqv;
2171 work_area->table[work_area->used++] = eqv;
2172 eqv = RE_TRANSLATE (eqv_table, eqv);
2173 }
2174 while (eqv != start);
2175 }
2176
2177 /* Add this char to the run, or start a new run. */
2178 else if (run_type == strange)
2179 {
2180 /* Initialize a new range. */
2181 run_type = this_type;
2182 run_start = start;
2183 run_end = start;
2184 run_eqv_end = RE_TRANSLATE (eqv_table, run_end);
2185 }
2186 else
2187 {
2188 /* Extend a running range. */
2189 run_end = minchar;
2190 run_eqv_end = RE_TRANSLATE (eqv_table, run_end);
2191 }
2192 }
2193
2194 /* If a run is still in progress at the end, finish it now
2195 by recording its equivalent ranges. */
2196 if (run_type == one_case)
2197 {
2198 EXTEND_RANGE_TABLE (work_area, 2);
2199 work_area->table[work_area->used++] = run_start;
2200 work_area->table[work_area->used++] = run_end;
2201 }
2202 else if (run_type == two_case)
2203 {
2204 EXTEND_RANGE_TABLE (work_area, 4);
2205 work_area->table[work_area->used++] = run_start;
2206 work_area->table[work_area->used++] = run_end;
2207 work_area->table[work_area->used++]
2208 = RE_TRANSLATE (eqv_table, run_start);
2209 work_area->table[work_area->used++]
2210 = RE_TRANSLATE (eqv_table, run_end);
2211 }
2212
2213 return -1;
2214}
36595814 2215
77d11aec 2216#endif /* emacs */
36595814 2217
b7c12565 2218/* Record the the image of the range start..end when passed through
36595814
SM
2219 TRANSLATE. This is not necessarily TRANSLATE(start)..TRANSLATE(end)
2220 and is not even necessarily contiguous.
b7c12565
RS
2221 Normally we approximate it with the smallest contiguous range that contains
2222 all the chars we need. However, for Latin-1 we go to extra effort
2223 to do a better job.
2224
2225 This function is not called for ASCII ranges.
77d11aec
RS
2226
2227 Returns -1 if successful, REG_ESPACE if ran out of space. */
2228
2229static int
36595814
SM
2230set_image_of_range (work_area, start, end, translate)
2231 RE_TRANSLATE_TYPE translate;
2232 struct range_table_work_area *work_area;
2233 re_wchar_t start, end;
2234{
77d11aec
RS
2235 re_wchar_t cmin, cmax;
2236
2237#ifdef emacs
2238 /* For Latin-1 ranges, use set_image_of_range_1
2239 to get proper handling of ranges that include letters and nonletters.
b7c12565 2240 For a range that includes the whole of Latin-1, this is not necessary.
77d11aec 2241 For other character sets, we don't bother to get this right. */
b7c12565
RS
2242 if (RE_TRANSLATE_P (translate) && start < 04400
2243 && !(start < 04200 && end >= 04377))
77d11aec 2244 {
b7c12565 2245 int newend;
77d11aec 2246 int tem;
b7c12565
RS
2247 newend = end;
2248 if (newend > 04377)
2249 newend = 04377;
2250 tem = set_image_of_range_1 (work_area, start, newend, translate);
77d11aec
RS
2251 if (tem > 0)
2252 return tem;
2253
2254 start = 04400;
2255 if (end < 04400)
2256 return -1;
2257 }
2258#endif
2259
b7c12565
RS
2260 EXTEND_RANGE_TABLE (work_area, 2);
2261 work_area->table[work_area->used++] = (start);
2262 work_area->table[work_area->used++] = (end);
2263
2264 cmin = -1, cmax = -1;
77d11aec 2265
36595814 2266 if (RE_TRANSLATE_P (translate))
b7c12565
RS
2267 {
2268 int ch;
77d11aec 2269
b7c12565
RS
2270 for (ch = start; ch <= end; ch++)
2271 {
2272 re_wchar_t c = TRANSLATE (ch);
2273 if (! (start <= c && c <= end))
2274 {
2275 if (cmin == -1)
2276 cmin = c, cmax = c;
2277 else
2278 {
2279 cmin = MIN (cmin, c);
2280 cmax = MAX (cmax, c);
2281 }
2282 }
2283 }
2284
2285 if (cmin != -1)
2286 {
2287 EXTEND_RANGE_TABLE (work_area, 2);
2288 work_area->table[work_area->used++] = (cmin);
2289 work_area->table[work_area->used++] = (cmax);
2290 }
2291 }
36595814 2292
77d11aec
RS
2293 return -1;
2294}
fa9a63c5
RM
2295\f
2296#ifndef MATCH_MAY_ALLOCATE
2297
2298/* If we cannot allocate large objects within re_match_2_internal,
2299 we make the fail stack and register vectors global.
2300 The fail stack, we grow to the maximum size when a regexp
2301 is compiled.
2302 The register vectors, we adjust in size each time we
2303 compile a regexp, according to the number of registers it needs. */
2304
2305static fail_stack_type fail_stack;
2306
2307/* Size with which the following vectors are currently allocated.
2308 That is so we can make them bigger as needed,
4bb91c68 2309 but never make them smaller. */
fa9a63c5
RM
2310static int regs_allocated_size;
2311
66f0296e
SM
2312static re_char ** regstart, ** regend;
2313static re_char **best_regstart, **best_regend;
fa9a63c5
RM
2314
2315/* Make the register vectors big enough for NUM_REGS registers,
4bb91c68 2316 but don't make them smaller. */
fa9a63c5
RM
2317
2318static
2319regex_grow_registers (num_regs)
2320 int num_regs;
2321{
2322 if (num_regs > regs_allocated_size)
2323 {
66f0296e
SM
2324 RETALLOC_IF (regstart, num_regs, re_char *);
2325 RETALLOC_IF (regend, num_regs, re_char *);
2326 RETALLOC_IF (best_regstart, num_regs, re_char *);
2327 RETALLOC_IF (best_regend, num_regs, re_char *);
fa9a63c5
RM
2328
2329 regs_allocated_size = num_regs;
2330 }
2331}
2332
2333#endif /* not MATCH_MAY_ALLOCATE */
2334\f
99633e97
SM
2335static boolean group_in_compile_stack _RE_ARGS ((compile_stack_type
2336 compile_stack,
2337 regnum_t regnum));
2338
fa9a63c5
RM
2339/* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
2340 Returns one of error codes defined in `regex.h', or zero for success.
2341
2342 Assumes the `allocated' (and perhaps `buffer') and `translate'
2343 fields are set in BUFP on entry.
2344
2345 If it succeeds, results are put in BUFP (if it returns an error, the
2346 contents of BUFP are undefined):
2347 `buffer' is the compiled pattern;
2348 `syntax' is set to SYNTAX;
2349 `used' is set to the length of the compiled pattern;
2350 `fastmap_accurate' is zero;
2351 `re_nsub' is the number of subexpressions in PATTERN;
2352 `not_bol' and `not_eol' are zero;
5e69f11e 2353
c0f9ea08 2354 The `fastmap' field is neither examined nor set. */
fa9a63c5 2355
505bde11
SM
2356/* Insert the `jump' from the end of last alternative to "here".
2357 The space for the jump has already been allocated. */
2358#define FIXUP_ALT_JUMP() \
2359do { \
2360 if (fixup_alt_jump) \
2361 STORE_JUMP (jump, fixup_alt_jump, b); \
2362} while (0)
2363
2364
fa9a63c5
RM
2365/* Return, freeing storage we allocated. */
2366#define FREE_STACK_RETURN(value) \
b18215fc
RS
2367 do { \
2368 FREE_RANGE_TABLE_WORK_AREA (range_table_work); \
2369 free (compile_stack.stack); \
2370 return value; \
2371 } while (0)
fa9a63c5
RM
2372
2373static reg_errcode_t
2374regex_compile (pattern, size, syntax, bufp)
66f0296e 2375 re_char *pattern;
4bb91c68 2376 size_t size;
fa9a63c5
RM
2377 reg_syntax_t syntax;
2378 struct re_pattern_buffer *bufp;
2379{
01618498
SM
2380 /* We fetch characters from PATTERN here. */
2381 register re_wchar_t c, c1;
5e69f11e 2382
fa9a63c5 2383 /* A random temporary spot in PATTERN. */
66f0296e 2384 re_char *p1;
fa9a63c5
RM
2385
2386 /* Points to the end of the buffer, where we should append. */
2387 register unsigned char *b;
5e69f11e 2388
fa9a63c5
RM
2389 /* Keeps track of unclosed groups. */
2390 compile_stack_type compile_stack;
2391
2392 /* Points to the current (ending) position in the pattern. */
22336245
RS
2393#ifdef AIX
2394 /* `const' makes AIX compiler fail. */
66f0296e 2395 unsigned char *p = pattern;
22336245 2396#else
66f0296e 2397 re_char *p = pattern;
22336245 2398#endif
66f0296e 2399 re_char *pend = pattern + size;
5e69f11e 2400
fa9a63c5 2401 /* How to translate the characters in the pattern. */
6676cb1c 2402 RE_TRANSLATE_TYPE translate = bufp->translate;
fa9a63c5
RM
2403
2404 /* Address of the count-byte of the most recently inserted `exactn'
2405 command. This makes it possible to tell if a new exact-match
2406 character can be added to that command or if the character requires
2407 a new `exactn' command. */
2408 unsigned char *pending_exact = 0;
2409
2410 /* Address of start of the most recently finished expression.
2411 This tells, e.g., postfix * where to find the start of its
2412 operand. Reset at the beginning of groups and alternatives. */
2413 unsigned char *laststart = 0;
2414
2415 /* Address of beginning of regexp, or inside of last group. */
2416 unsigned char *begalt;
2417
2418 /* Place in the uncompiled pattern (i.e., the {) to
2419 which to go back if the interval is invalid. */
66f0296e 2420 re_char *beg_interval;
5e69f11e 2421
fa9a63c5 2422 /* Address of the place where a forward jump should go to the end of
25fe55af 2423 the containing expression. Each alternative of an `or' -- except the
fa9a63c5
RM
2424 last -- ends with a forward jump of this sort. */
2425 unsigned char *fixup_alt_jump = 0;
2426
2427 /* Counts open-groups as they are encountered. Remembered for the
2428 matching close-group on the compile stack, so the same register
2429 number is put in the stop_memory as the start_memory. */
2430 regnum_t regnum = 0;
2431
b18215fc
RS
2432 /* Work area for range table of charset. */
2433 struct range_table_work_area range_table_work;
2434
2d1675e4
SM
2435 /* If the object matched can contain multibyte characters. */
2436 const boolean multibyte = RE_MULTIBYTE_P (bufp);
2437
fa9a63c5 2438#ifdef DEBUG
99633e97 2439 debug++;
fa9a63c5 2440 DEBUG_PRINT1 ("\nCompiling pattern: ");
99633e97 2441 if (debug > 0)
fa9a63c5
RM
2442 {
2443 unsigned debug_count;
5e69f11e 2444
fa9a63c5 2445 for (debug_count = 0; debug_count < size; debug_count++)
25fe55af 2446 putchar (pattern[debug_count]);
fa9a63c5
RM
2447 putchar ('\n');
2448 }
2449#endif /* DEBUG */
2450
2451 /* Initialize the compile stack. */
2452 compile_stack.stack = TALLOC (INIT_COMPILE_STACK_SIZE, compile_stack_elt_t);
2453 if (compile_stack.stack == NULL)
2454 return REG_ESPACE;
2455
2456 compile_stack.size = INIT_COMPILE_STACK_SIZE;
2457 compile_stack.avail = 0;
2458
b18215fc
RS
2459 range_table_work.table = 0;
2460 range_table_work.allocated = 0;
2461
fa9a63c5
RM
2462 /* Initialize the pattern buffer. */
2463 bufp->syntax = syntax;
2464 bufp->fastmap_accurate = 0;
2465 bufp->not_bol = bufp->not_eol = 0;
2466
2467 /* Set `used' to zero, so that if we return an error, the pattern
2468 printer (for debugging) will think there's no pattern. We reset it
2469 at the end. */
2470 bufp->used = 0;
5e69f11e 2471
fa9a63c5 2472 /* Always count groups, whether or not bufp->no_sub is set. */
5e69f11e 2473 bufp->re_nsub = 0;
fa9a63c5 2474
0b32bf0e 2475#if !defined emacs && !defined SYNTAX_TABLE
fa9a63c5
RM
2476 /* Initialize the syntax table. */
2477 init_syntax_once ();
2478#endif
2479
2480 if (bufp->allocated == 0)
2481 {
2482 if (bufp->buffer)
2483 { /* If zero allocated, but buffer is non-null, try to realloc
25fe55af
RS
2484 enough space. This loses if buffer's address is bogus, but
2485 that is the user's responsibility. */
2486 RETALLOC (bufp->buffer, INIT_BUF_SIZE, unsigned char);
2487 }
fa9a63c5 2488 else
25fe55af
RS
2489 { /* Caller did not allocate a buffer. Do it for them. */
2490 bufp->buffer = TALLOC (INIT_BUF_SIZE, unsigned char);
2491 }
fa9a63c5
RM
2492 if (!bufp->buffer) FREE_STACK_RETURN (REG_ESPACE);
2493
2494 bufp->allocated = INIT_BUF_SIZE;
2495 }
2496
2497 begalt = b = bufp->buffer;
2498
2499 /* Loop through the uncompiled pattern until we're at the end. */
2500 while (p != pend)
2501 {
2502 PATFETCH (c);
2503
2504 switch (c)
25fe55af
RS
2505 {
2506 case '^':
2507 {
2508 if ( /* If at start of pattern, it's an operator. */
2509 p == pattern + 1
2510 /* If context independent, it's an operator. */
2511 || syntax & RE_CONTEXT_INDEP_ANCHORS
2512 /* Otherwise, depends on what's come before. */
2513 || at_begline_loc_p (pattern, p, syntax))
c0f9ea08 2514 BUF_PUSH ((syntax & RE_NO_NEWLINE_ANCHOR) ? begbuf : begline);
25fe55af
RS
2515 else
2516 goto normal_char;
2517 }
2518 break;
2519
2520
2521 case '$':
2522 {
2523 if ( /* If at end of pattern, it's an operator. */
2524 p == pend
2525 /* If context independent, it's an operator. */
2526 || syntax & RE_CONTEXT_INDEP_ANCHORS
2527 /* Otherwise, depends on what's next. */
2528 || at_endline_loc_p (p, pend, syntax))
c0f9ea08 2529 BUF_PUSH ((syntax & RE_NO_NEWLINE_ANCHOR) ? endbuf : endline);
25fe55af
RS
2530 else
2531 goto normal_char;
2532 }
2533 break;
fa9a63c5
RM
2534
2535
2536 case '+':
25fe55af
RS
2537 case '?':
2538 if ((syntax & RE_BK_PLUS_QM)
2539 || (syntax & RE_LIMITED_OPS))
2540 goto normal_char;
2541 handle_plus:
2542 case '*':
2543 /* If there is no previous pattern... */
2544 if (!laststart)
2545 {
2546 if (syntax & RE_CONTEXT_INVALID_OPS)
2547 FREE_STACK_RETURN (REG_BADRPT);
2548 else if (!(syntax & RE_CONTEXT_INDEP_OPS))
2549 goto normal_char;
2550 }
2551
2552 {
25fe55af 2553 /* 1 means zero (many) matches is allowed. */
66f0296e
SM
2554 boolean zero_times_ok = 0, many_times_ok = 0;
2555 boolean greedy = 1;
25fe55af
RS
2556
2557 /* If there is a sequence of repetition chars, collapse it
2558 down to just one (the right one). We can't combine
2559 interval operators with these because of, e.g., `a{2}*',
2560 which should only match an even number of `a's. */
2561
2562 for (;;)
2563 {
0b32bf0e 2564 if ((syntax & RE_FRUGAL)
1c8c6d39
DL
2565 && c == '?' && (zero_times_ok || many_times_ok))
2566 greedy = 0;
2567 else
2568 {
2569 zero_times_ok |= c != '+';
2570 many_times_ok |= c != '?';
2571 }
25fe55af
RS
2572
2573 if (p == pend)
2574 break;
ed0767d8
SM
2575 else if (*p == '*'
2576 || (!(syntax & RE_BK_PLUS_QM)
2577 && (*p == '+' || *p == '?')))
25fe55af 2578 ;
ed0767d8 2579 else if (syntax & RE_BK_PLUS_QM && *p == '\\')
25fe55af 2580 {
ed0767d8
SM
2581 if (p+1 == pend)
2582 FREE_STACK_RETURN (REG_EESCAPE);
2583 if (p[1] == '+' || p[1] == '?')
2584 PATFETCH (c); /* Gobble up the backslash. */
2585 else
2586 break;
25fe55af
RS
2587 }
2588 else
ed0767d8 2589 break;
25fe55af 2590 /* If we get here, we found another repeat character. */
ed0767d8
SM
2591 PATFETCH (c);
2592 }
25fe55af
RS
2593
2594 /* Star, etc. applied to an empty pattern is equivalent
2595 to an empty pattern. */
4e8a9132 2596 if (!laststart || laststart == b)
25fe55af
RS
2597 break;
2598
2599 /* Now we know whether or not zero matches is allowed
2600 and also whether or not two or more matches is allowed. */
1c8c6d39
DL
2601 if (greedy)
2602 {
99633e97 2603 if (many_times_ok)
4e8a9132
SM
2604 {
2605 boolean simple = skip_one_char (laststart) == b;
2606 unsigned int startoffset = 0;
f6a3f532 2607 re_opcode_t ofj =
01618498 2608 /* Check if the loop can match the empty string. */
6df42991
SM
2609 (simple || !analyse_first (laststart, b, NULL, 0))
2610 ? on_failure_jump : on_failure_jump_loop;
4e8a9132 2611 assert (skip_one_char (laststart) <= b);
177c0ea7 2612
4e8a9132
SM
2613 if (!zero_times_ok && simple)
2614 { /* Since simple * loops can be made faster by using
2615 on_failure_keep_string_jump, we turn simple P+
2616 into PP* if P is simple. */
2617 unsigned char *p1, *p2;
2618 startoffset = b - laststart;
2619 GET_BUFFER_SPACE (startoffset);
2620 p1 = b; p2 = laststart;
2621 while (p2 < p1)
2622 *b++ = *p2++;
2623 zero_times_ok = 1;
99633e97 2624 }
4e8a9132
SM
2625
2626 GET_BUFFER_SPACE (6);
2627 if (!zero_times_ok)
2628 /* A + loop. */
f6a3f532 2629 STORE_JUMP (ofj, b, b + 6);
99633e97 2630 else
4e8a9132
SM
2631 /* Simple * loops can use on_failure_keep_string_jump
2632 depending on what follows. But since we don't know
2633 that yet, we leave the decision up to
2634 on_failure_jump_smart. */
f6a3f532 2635 INSERT_JUMP (simple ? on_failure_jump_smart : ofj,
4e8a9132 2636 laststart + startoffset, b + 6);
99633e97 2637 b += 3;
4e8a9132 2638 STORE_JUMP (jump, b, laststart + startoffset);
99633e97
SM
2639 b += 3;
2640 }
2641 else
2642 {
4e8a9132
SM
2643 /* A simple ? pattern. */
2644 assert (zero_times_ok);
2645 GET_BUFFER_SPACE (3);
2646 INSERT_JUMP (on_failure_jump, laststart, b + 3);
99633e97
SM
2647 b += 3;
2648 }
1c8c6d39
DL
2649 }
2650 else /* not greedy */
2651 { /* I wish the greedy and non-greedy cases could be merged. */
2652
0683b6fa 2653 GET_BUFFER_SPACE (7); /* We might use less. */
1c8c6d39
DL
2654 if (many_times_ok)
2655 {
f6a3f532
SM
2656 boolean emptyp = analyse_first (laststart, b, NULL, 0);
2657
6df42991
SM
2658 /* The non-greedy multiple match looks like
2659 a repeat..until: we only need a conditional jump
2660 at the end of the loop. */
f6a3f532
SM
2661 if (emptyp) BUF_PUSH (no_op);
2662 STORE_JUMP (emptyp ? on_failure_jump_nastyloop
2663 : on_failure_jump, b, laststart);
1c8c6d39
DL
2664 b += 3;
2665 if (zero_times_ok)
2666 {
2667 /* The repeat...until naturally matches one or more.
2668 To also match zero times, we need to first jump to
6df42991 2669 the end of the loop (its conditional jump). */
1c8c6d39
DL
2670 INSERT_JUMP (jump, laststart, b);
2671 b += 3;
2672 }
2673 }
2674 else
2675 {
2676 /* non-greedy a?? */
1c8c6d39
DL
2677 INSERT_JUMP (jump, laststart, b + 3);
2678 b += 3;
2679 INSERT_JUMP (on_failure_jump, laststart, laststart + 6);
2680 b += 3;
2681 }
2682 }
2683 }
4e8a9132 2684 pending_exact = 0;
fa9a63c5
RM
2685 break;
2686
2687
2688 case '.':
25fe55af
RS
2689 laststart = b;
2690 BUF_PUSH (anychar);
2691 break;
fa9a63c5
RM
2692
2693
25fe55af
RS
2694 case '[':
2695 {
b18215fc 2696 CLEAR_RANGE_TABLE_WORK_USED (range_table_work);
fa9a63c5 2697
25fe55af 2698 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
fa9a63c5 2699
25fe55af
RS
2700 /* Ensure that we have enough space to push a charset: the
2701 opcode, the length count, and the bitset; 34 bytes in all. */
fa9a63c5
RM
2702 GET_BUFFER_SPACE (34);
2703
25fe55af 2704 laststart = b;
e318085a 2705
25fe55af
RS
2706 /* We test `*p == '^' twice, instead of using an if
2707 statement, so we only need one BUF_PUSH. */
2708 BUF_PUSH (*p == '^' ? charset_not : charset);
2709 if (*p == '^')
2710 p++;
e318085a 2711
25fe55af
RS
2712 /* Remember the first position in the bracket expression. */
2713 p1 = p;
e318085a 2714
25fe55af
RS
2715 /* Push the number of bytes in the bitmap. */
2716 BUF_PUSH ((1 << BYTEWIDTH) / BYTEWIDTH);
e318085a 2717
25fe55af
RS
2718 /* Clear the whole map. */
2719 bzero (b, (1 << BYTEWIDTH) / BYTEWIDTH);
e318085a 2720
25fe55af
RS
2721 /* charset_not matches newline according to a syntax bit. */
2722 if ((re_opcode_t) b[-2] == charset_not
2723 && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
2724 SET_LIST_BIT ('\n');
fa9a63c5 2725
25fe55af
RS
2726 /* Read in characters and ranges, setting map bits. */
2727 for (;;)
2728 {
b18215fc 2729 boolean escaped_char = false;
2d1675e4 2730 const unsigned char *p2 = p;
e318085a 2731
25fe55af 2732 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
e318085a 2733
36595814
SM
2734 /* Don't translate yet. The range TRANSLATE(X..Y) cannot
2735 always be determined from TRANSLATE(X) and TRANSLATE(Y)
2736 So the translation is done later in a loop. Example:
2737 (let ((case-fold-search t)) (string-match "[A-_]" "A")) */
25fe55af 2738 PATFETCH (c);
e318085a 2739
25fe55af
RS
2740 /* \ might escape characters inside [...] and [^...]. */
2741 if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
2742 {
2743 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
e318085a
RS
2744
2745 PATFETCH (c);
b18215fc 2746 escaped_char = true;
25fe55af 2747 }
b18215fc
RS
2748 else
2749 {
657fcfbd
RS
2750 /* Could be the end of the bracket expression. If it's
2751 not (i.e., when the bracket expression is `[]' so
2752 far), the ']' character bit gets set way below. */
2d1675e4 2753 if (c == ']' && p2 != p1)
657fcfbd 2754 break;
25fe55af 2755 }
b18215fc 2756
b18215fc
RS
2757 /* What should we do for the character which is
2758 greater than 0x7F, but not BASE_LEADING_CODE_P?
2759 XXX */
2760
25fe55af
RS
2761 /* See if we're at the beginning of a possible character
2762 class. */
b18215fc 2763
2d1675e4
SM
2764 if (!escaped_char &&
2765 syntax & RE_CHAR_CLASSES && c == '[' && *p == ':')
657fcfbd
RS
2766 {
2767 /* Leave room for the null. */
14473664 2768 unsigned char str[CHAR_CLASS_MAX_LENGTH + 1];
ed0767d8 2769 const unsigned char *class_beg;
b18215fc 2770
25fe55af
RS
2771 PATFETCH (c);
2772 c1 = 0;
ed0767d8 2773 class_beg = p;
b18215fc 2774
25fe55af
RS
2775 /* If pattern is `[[:'. */
2776 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
b18215fc 2777
25fe55af
RS
2778 for (;;)
2779 {
14473664
SM
2780 PATFETCH (c);
2781 if ((c == ':' && *p == ']') || p == pend)
2782 break;
2783 if (c1 < CHAR_CLASS_MAX_LENGTH)
2784 str[c1++] = c;
2785 else
2786 /* This is in any case an invalid class name. */
2787 str[0] = '\0';
25fe55af
RS
2788 }
2789 str[c1] = '\0';
b18215fc
RS
2790
2791 /* If isn't a word bracketed by `[:' and `:]':
2792 undo the ending character, the letters, and
2793 leave the leading `:' and `[' (but set bits for
2794 them). */
25fe55af
RS
2795 if (c == ':' && *p == ']')
2796 {
36595814 2797 re_wchar_t ch;
14473664
SM
2798 re_wctype_t cc;
2799
2800 cc = re_wctype (str);
2801
2802 if (cc == 0)
fa9a63c5
RM
2803 FREE_STACK_RETURN (REG_ECTYPE);
2804
14473664
SM
2805 /* Throw away the ] at the end of the character
2806 class. */
2807 PATFETCH (c);
fa9a63c5 2808
14473664 2809 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
fa9a63c5 2810
96cc36cc
RS
2811 /* Most character classes in a multibyte match
2812 just set a flag. Exceptions are is_blank,
2813 is_digit, is_cntrl, and is_xdigit, since
2814 they can only match ASCII characters. We
14473664
SM
2815 don't need to handle them for multibyte.
2816 They are distinguished by a negative wctype. */
96cc36cc 2817
2d1675e4 2818 if (multibyte)
14473664
SM
2819 SET_RANGE_TABLE_WORK_AREA_BIT (range_table_work,
2820 re_wctype_to_bit (cc));
96cc36cc 2821
14473664 2822 for (ch = 0; ch < 1 << BYTEWIDTH; ++ch)
25fe55af 2823 {
7ae68633 2824 int translated = TRANSLATE (ch);
14473664 2825 if (re_iswctype (btowc (ch), cc))
96cc36cc 2826 SET_LIST_BIT (translated);
25fe55af 2827 }
b18215fc
RS
2828
2829 /* Repeat the loop. */
2830 continue;
25fe55af
RS
2831 }
2832 else
2833 {
ed0767d8
SM
2834 /* Go back to right after the "[:". */
2835 p = class_beg;
25fe55af 2836 SET_LIST_BIT ('[');
b18215fc
RS
2837
2838 /* Because the `:' may starts the range, we
2839 can't simply set bit and repeat the loop.
25fe55af 2840 Instead, just set it to C and handle below. */
b18215fc 2841 c = ':';
25fe55af
RS
2842 }
2843 }
b18215fc
RS
2844
2845 if (p < pend && p[0] == '-' && p[1] != ']')
2846 {
2847
2848 /* Discard the `-'. */
2849 PATFETCH (c1);
2850
2851 /* Fetch the character which ends the range. */
2852 PATFETCH (c1);
b18215fc 2853
b54f61ed 2854 if (SINGLE_BYTE_CHAR_P (c))
e934739e 2855 {
b54f61ed
KH
2856 if (! SINGLE_BYTE_CHAR_P (c1))
2857 {
3ff2446d
KH
2858 /* Handle a range starting with a
2859 character of less than 256, and ending
2860 with a character of not less than 256.
2861 Split that into two ranges, the low one
2862 ending at 0377, and the high one
2863 starting at the smallest character in
2864 the charset of C1 and ending at C1. */
b54f61ed 2865 int charset = CHAR_CHARSET (c1);
36595814
SM
2866 re_wchar_t c2 = MAKE_CHAR (charset, 0, 0);
2867
b54f61ed
KH
2868 SET_RANGE_TABLE_WORK_AREA (range_table_work,
2869 c2, c1);
333526e0 2870 c1 = 0377;
b54f61ed 2871 }
e934739e
RS
2872 }
2873 else if (!SAME_CHARSET_P (c, c1))
b18215fc 2874 FREE_STACK_RETURN (REG_ERANGE);
e318085a 2875 }
25fe55af 2876 else
b18215fc
RS
2877 /* Range from C to C. */
2878 c1 = c;
2879
2880 /* Set the range ... */
2881 if (SINGLE_BYTE_CHAR_P (c))
2882 /* ... into bitmap. */
25fe55af 2883 {
01618498 2884 re_wchar_t this_char;
36595814 2885 re_wchar_t range_start = c, range_end = c1;
b18215fc
RS
2886
2887 /* If the start is after the end, the range is empty. */
2888 if (range_start > range_end)
2889 {
2890 if (syntax & RE_NO_EMPTY_RANGES)
2891 FREE_STACK_RETURN (REG_ERANGE);
2892 /* Else, repeat the loop. */
2893 }
2894 else
2895 {
2896 for (this_char = range_start; this_char <= range_end;
2897 this_char++)
2898 SET_LIST_BIT (TRANSLATE (this_char));
e934739e 2899 }
25fe55af 2900 }
e318085a 2901 else
b18215fc
RS
2902 /* ... into range table. */
2903 SET_RANGE_TABLE_WORK_AREA (range_table_work, c, c1);
e318085a
RS
2904 }
2905
25fe55af
RS
2906 /* Discard any (non)matching list bytes that are all 0 at the
2907 end of the map. Decrease the map-length byte too. */
2908 while ((int) b[-1] > 0 && b[b[-1] - 1] == 0)
2909 b[-1]--;
2910 b += b[-1];
fa9a63c5 2911
96cc36cc
RS
2912 /* Build real range table from work area. */
2913 if (RANGE_TABLE_WORK_USED (range_table_work)
2914 || RANGE_TABLE_WORK_BITS (range_table_work))
b18215fc
RS
2915 {
2916 int i;
2917 int used = RANGE_TABLE_WORK_USED (range_table_work);
fa9a63c5 2918
b18215fc 2919 /* Allocate space for COUNT + RANGE_TABLE. Needs two
96cc36cc
RS
2920 bytes for flags, two for COUNT, and three bytes for
2921 each character. */
2922 GET_BUFFER_SPACE (4 + used * 3);
fa9a63c5 2923
b18215fc
RS
2924 /* Indicate the existence of range table. */
2925 laststart[1] |= 0x80;
fa9a63c5 2926
96cc36cc
RS
2927 /* Store the character class flag bits into the range table.
2928 If not in emacs, these flag bits are always 0. */
2929 *b++ = RANGE_TABLE_WORK_BITS (range_table_work) & 0xff;
2930 *b++ = RANGE_TABLE_WORK_BITS (range_table_work) >> 8;
2931
b18215fc
RS
2932 STORE_NUMBER_AND_INCR (b, used / 2);
2933 for (i = 0; i < used; i++)
2934 STORE_CHARACTER_AND_INCR
2935 (b, RANGE_TABLE_WORK_ELT (range_table_work, i));
2936 }
25fe55af
RS
2937 }
2938 break;
fa9a63c5
RM
2939
2940
b18215fc 2941 case '(':
25fe55af
RS
2942 if (syntax & RE_NO_BK_PARENS)
2943 goto handle_open;
2944 else
2945 goto normal_char;
fa9a63c5
RM
2946
2947
25fe55af
RS
2948 case ')':
2949 if (syntax & RE_NO_BK_PARENS)
2950 goto handle_close;
2951 else
2952 goto normal_char;
e318085a
RS
2953
2954
25fe55af
RS
2955 case '\n':
2956 if (syntax & RE_NEWLINE_ALT)
2957 goto handle_alt;
2958 else
2959 goto normal_char;
e318085a
RS
2960
2961
b18215fc 2962 case '|':
25fe55af
RS
2963 if (syntax & RE_NO_BK_VBAR)
2964 goto handle_alt;
2965 else
2966 goto normal_char;
2967
2968
2969 case '{':
2970 if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES)
2971 goto handle_interval;
2972 else
2973 goto normal_char;
2974
2975
2976 case '\\':
2977 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2978
2979 /* Do not translate the character after the \, so that we can
2980 distinguish, e.g., \B from \b, even if we normally would
2981 translate, e.g., B to b. */
36595814 2982 PATFETCH (c);
25fe55af
RS
2983
2984 switch (c)
2985 {
2986 case '(':
2987 if (syntax & RE_NO_BK_PARENS)
2988 goto normal_backslash;
2989
2990 handle_open:
505bde11
SM
2991 {
2992 int shy = 0;
2993 if (p+1 < pend)
2994 {
2995 /* Look for a special (?...) construct */
ed0767d8 2996 if ((syntax & RE_SHY_GROUPS) && *p == '?')
505bde11 2997 {
ed0767d8 2998 PATFETCH (c); /* Gobble up the '?'. */
505bde11
SM
2999 PATFETCH (c);
3000 switch (c)
3001 {
3002 case ':': shy = 1; break;
3003 default:
3004 /* Only (?:...) is supported right now. */
3005 FREE_STACK_RETURN (REG_BADPAT);
3006 }
3007 }
505bde11
SM
3008 }
3009
3010 if (!shy)
3011 {
3012 bufp->re_nsub++;
3013 regnum++;
3014 }
25fe55af 3015
99633e97
SM
3016 if (COMPILE_STACK_FULL)
3017 {
3018 RETALLOC (compile_stack.stack, compile_stack.size << 1,
3019 compile_stack_elt_t);
3020 if (compile_stack.stack == NULL) return REG_ESPACE;
25fe55af 3021
99633e97
SM
3022 compile_stack.size <<= 1;
3023 }
25fe55af 3024
99633e97
SM
3025 /* These are the values to restore when we hit end of this
3026 group. They are all relative offsets, so that if the
3027 whole pattern moves because of realloc, they will still
3028 be valid. */
3029 COMPILE_STACK_TOP.begalt_offset = begalt - bufp->buffer;
3030 COMPILE_STACK_TOP.fixup_alt_jump
3031 = fixup_alt_jump ? fixup_alt_jump - bufp->buffer + 1 : 0;
3032 COMPILE_STACK_TOP.laststart_offset = b - bufp->buffer;
3033 COMPILE_STACK_TOP.regnum = shy ? -regnum : regnum;
3034
3035 /* Do not push a
3036 start_memory for groups beyond the last one we can
3037 represent in the compiled pattern. */
3038 if (regnum <= MAX_REGNUM && !shy)
3039 BUF_PUSH_2 (start_memory, regnum);
3040
3041 compile_stack.avail++;
3042
3043 fixup_alt_jump = 0;
3044 laststart = 0;
3045 begalt = b;
3046 /* If we've reached MAX_REGNUM groups, then this open
3047 won't actually generate any code, so we'll have to
3048 clear pending_exact explicitly. */
3049 pending_exact = 0;
3050 break;
505bde11 3051 }
25fe55af
RS
3052
3053 case ')':
3054 if (syntax & RE_NO_BK_PARENS) goto normal_backslash;
3055
3056 if (COMPILE_STACK_EMPTY)
505bde11
SM
3057 {
3058 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
3059 goto normal_backslash;
3060 else
3061 FREE_STACK_RETURN (REG_ERPAREN);
3062 }
25fe55af
RS
3063
3064 handle_close:
505bde11 3065 FIXUP_ALT_JUMP ();
25fe55af
RS
3066
3067 /* See similar code for backslashed left paren above. */
3068 if (COMPILE_STACK_EMPTY)
505bde11
SM
3069 {
3070 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
3071 goto normal_char;
3072 else
3073 FREE_STACK_RETURN (REG_ERPAREN);
3074 }
25fe55af
RS
3075
3076 /* Since we just checked for an empty stack above, this
3077 ``can't happen''. */
3078 assert (compile_stack.avail != 0);
3079 {
3080 /* We don't just want to restore into `regnum', because
3081 later groups should continue to be numbered higher,
3082 as in `(ab)c(de)' -- the second group is #2. */
3083 regnum_t this_group_regnum;
3084
3085 compile_stack.avail--;
3086 begalt = bufp->buffer + COMPILE_STACK_TOP.begalt_offset;
3087 fixup_alt_jump
3088 = COMPILE_STACK_TOP.fixup_alt_jump
3089 ? bufp->buffer + COMPILE_STACK_TOP.fixup_alt_jump - 1
3090 : 0;
3091 laststart = bufp->buffer + COMPILE_STACK_TOP.laststart_offset;
3092 this_group_regnum = COMPILE_STACK_TOP.regnum;
b18215fc
RS
3093 /* If we've reached MAX_REGNUM groups, then this open
3094 won't actually generate any code, so we'll have to
3095 clear pending_exact explicitly. */
3096 pending_exact = 0;
e318085a 3097
25fe55af
RS
3098 /* We're at the end of the group, so now we know how many
3099 groups were inside this one. */
505bde11
SM
3100 if (this_group_regnum <= MAX_REGNUM && this_group_regnum > 0)
3101 BUF_PUSH_2 (stop_memory, this_group_regnum);
25fe55af
RS
3102 }
3103 break;
3104
3105
3106 case '|': /* `\|'. */
3107 if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR)
3108 goto normal_backslash;
3109 handle_alt:
3110 if (syntax & RE_LIMITED_OPS)
3111 goto normal_char;
3112
3113 /* Insert before the previous alternative a jump which
3114 jumps to this alternative if the former fails. */
3115 GET_BUFFER_SPACE (3);
3116 INSERT_JUMP (on_failure_jump, begalt, b + 6);
3117 pending_exact = 0;
3118 b += 3;
3119
3120 /* The alternative before this one has a jump after it
3121 which gets executed if it gets matched. Adjust that
3122 jump so it will jump to this alternative's analogous
3123 jump (put in below, which in turn will jump to the next
3124 (if any) alternative's such jump, etc.). The last such
3125 jump jumps to the correct final destination. A picture:
3126 _____ _____
3127 | | | |
3128 | v | v
3129 a | b | c
3130
3131 If we are at `b', then fixup_alt_jump right now points to a
3132 three-byte space after `a'. We'll put in the jump, set
3133 fixup_alt_jump to right after `b', and leave behind three
3134 bytes which we'll fill in when we get to after `c'. */
3135
505bde11 3136 FIXUP_ALT_JUMP ();
25fe55af
RS
3137
3138 /* Mark and leave space for a jump after this alternative,
3139 to be filled in later either by next alternative or
3140 when know we're at the end of a series of alternatives. */
3141 fixup_alt_jump = b;
3142 GET_BUFFER_SPACE (3);
3143 b += 3;
3144
3145 laststart = 0;
3146 begalt = b;
3147 break;
3148
3149
3150 case '{':
3151 /* If \{ is a literal. */
3152 if (!(syntax & RE_INTERVALS)
3153 /* If we're at `\{' and it's not the open-interval
3154 operator. */
4bb91c68 3155 || (syntax & RE_NO_BK_BRACES))
25fe55af
RS
3156 goto normal_backslash;
3157
3158 handle_interval:
3159 {
3160 /* If got here, then the syntax allows intervals. */
3161
3162 /* At least (most) this many matches must be made. */
99633e97 3163 int lower_bound = 0, upper_bound = -1;
25fe55af 3164
ed0767d8 3165 beg_interval = p;
25fe55af
RS
3166
3167 if (p == pend)
4bb91c68 3168 FREE_STACK_RETURN (REG_EBRACE);
25fe55af
RS
3169
3170 GET_UNSIGNED_NUMBER (lower_bound);
3171
3172 if (c == ',')
ed0767d8 3173 GET_UNSIGNED_NUMBER (upper_bound);
25fe55af
RS
3174 else
3175 /* Interval such as `{1}' => match exactly once. */
3176 upper_bound = lower_bound;
3177
3178 if (lower_bound < 0 || upper_bound > RE_DUP_MAX
ed0767d8 3179 || (upper_bound >= 0 && lower_bound > upper_bound))
4bb91c68 3180 FREE_STACK_RETURN (REG_BADBR);
25fe55af
RS
3181
3182 if (!(syntax & RE_NO_BK_BRACES))
3183 {
4bb91c68
SM
3184 if (c != '\\')
3185 FREE_STACK_RETURN (REG_BADBR);
25fe55af
RS
3186
3187 PATFETCH (c);
3188 }
3189
3190 if (c != '}')
4bb91c68 3191 FREE_STACK_RETURN (REG_BADBR);
25fe55af
RS
3192
3193 /* We just parsed a valid interval. */
3194
3195 /* If it's invalid to have no preceding re. */
3196 if (!laststart)
3197 {
3198 if (syntax & RE_CONTEXT_INVALID_OPS)
3199 FREE_STACK_RETURN (REG_BADRPT);
3200 else if (syntax & RE_CONTEXT_INDEP_OPS)
3201 laststart = b;
3202 else
3203 goto unfetch_interval;
3204 }
3205
6df42991
SM
3206 if (upper_bound == 0)
3207 /* If the upper bound is zero, just drop the sub pattern
3208 altogether. */
3209 b = laststart;
3210 else if (lower_bound == 1 && upper_bound == 1)
3211 /* Just match it once: nothing to do here. */
3212 ;
3213
3214 /* Otherwise, we have a nontrivial interval. When
3215 we're all done, the pattern will look like:
3216 set_number_at <jump count> <upper bound>
3217 set_number_at <succeed_n count> <lower bound>
3218 succeed_n <after jump addr> <succeed_n count>
3219 <body of loop>
3220 jump_n <succeed_n addr> <jump count>
3221 (The upper bound and `jump_n' are omitted if
3222 `upper_bound' is 1, though.) */
3223 else
3224 { /* If the upper bound is > 1, we need to insert
3225 more at the end of the loop. */
3226 unsigned int nbytes = (upper_bound < 0 ? 3
3227 : upper_bound > 1 ? 5 : 0);
3228 unsigned int startoffset = 0;
3229
3230 GET_BUFFER_SPACE (20); /* We might use less. */
3231
3232 if (lower_bound == 0)
3233 {
3234 /* A succeed_n that starts with 0 is really a
3235 a simple on_failure_jump_loop. */
3236 INSERT_JUMP (on_failure_jump_loop, laststart,
3237 b + 3 + nbytes);
3238 b += 3;
3239 }
3240 else
3241 {
3242 /* Initialize lower bound of the `succeed_n', even
3243 though it will be set during matching by its
3244 attendant `set_number_at' (inserted next),
3245 because `re_compile_fastmap' needs to know.
3246 Jump to the `jump_n' we might insert below. */
3247 INSERT_JUMP2 (succeed_n, laststart,
3248 b + 5 + nbytes,
3249 lower_bound);
3250 b += 5;
3251
3252 /* Code to initialize the lower bound. Insert
3253 before the `succeed_n'. The `5' is the last two
3254 bytes of this `set_number_at', plus 3 bytes of
3255 the following `succeed_n'. */
3256 insert_op2 (set_number_at, laststart, 5, lower_bound, b);
3257 b += 5;
3258 startoffset += 5;
3259 }
3260
3261 if (upper_bound < 0)
3262 {
3263 /* A negative upper bound stands for infinity,
3264 in which case it degenerates to a plain jump. */
3265 STORE_JUMP (jump, b, laststart + startoffset);
3266 b += 3;
3267 }
3268 else if (upper_bound > 1)
3269 { /* More than one repetition is allowed, so
3270 append a backward jump to the `succeed_n'
3271 that starts this interval.
3272
3273 When we've reached this during matching,
3274 we'll have matched the interval once, so
3275 jump back only `upper_bound - 1' times. */
3276 STORE_JUMP2 (jump_n, b, laststart + startoffset,
3277 upper_bound - 1);
3278 b += 5;
3279
3280 /* The location we want to set is the second
3281 parameter of the `jump_n'; that is `b-2' as
3282 an absolute address. `laststart' will be
3283 the `set_number_at' we're about to insert;
3284 `laststart+3' the number to set, the source
3285 for the relative address. But we are
3286 inserting into the middle of the pattern --
3287 so everything is getting moved up by 5.
3288 Conclusion: (b - 2) - (laststart + 3) + 5,
3289 i.e., b - laststart.
3290
3291 We insert this at the beginning of the loop
3292 so that if we fail during matching, we'll
3293 reinitialize the bounds. */
3294 insert_op2 (set_number_at, laststart, b - laststart,
3295 upper_bound - 1, b);
3296 b += 5;
3297 }
3298 }
25fe55af
RS
3299 pending_exact = 0;
3300 beg_interval = NULL;
3301 }
3302 break;
3303
3304 unfetch_interval:
3305 /* If an invalid interval, match the characters as literals. */
3306 assert (beg_interval);
3307 p = beg_interval;
3308 beg_interval = NULL;
3309
3310 /* normal_char and normal_backslash need `c'. */
ed0767d8 3311 c = '{';
25fe55af
RS
3312
3313 if (!(syntax & RE_NO_BK_BRACES))
3314 {
ed0767d8
SM
3315 assert (p > pattern && p[-1] == '\\');
3316 goto normal_backslash;
25fe55af 3317 }
ed0767d8
SM
3318 else
3319 goto normal_char;
e318085a 3320
b18215fc 3321#ifdef emacs
25fe55af
RS
3322 /* There is no way to specify the before_dot and after_dot
3323 operators. rms says this is ok. --karl */
3324 case '=':
3325 BUF_PUSH (at_dot);
3326 break;
3327
3328 case 's':
3329 laststart = b;
3330 PATFETCH (c);
3331 BUF_PUSH_2 (syntaxspec, syntax_spec_code[c]);
3332 break;
3333
3334 case 'S':
3335 laststart = b;
3336 PATFETCH (c);
3337 BUF_PUSH_2 (notsyntaxspec, syntax_spec_code[c]);
3338 break;
b18215fc
RS
3339
3340 case 'c':
3341 laststart = b;
36595814 3342 PATFETCH (c);
b18215fc
RS
3343 BUF_PUSH_2 (categoryspec, c);
3344 break;
e318085a 3345
b18215fc
RS
3346 case 'C':
3347 laststart = b;
36595814 3348 PATFETCH (c);
b18215fc
RS
3349 BUF_PUSH_2 (notcategoryspec, c);
3350 break;
3351#endif /* emacs */
e318085a 3352
e318085a 3353
25fe55af 3354 case 'w':
4bb91c68
SM
3355 if (syntax & RE_NO_GNU_OPS)
3356 goto normal_char;
25fe55af 3357 laststart = b;
1fb352e0 3358 BUF_PUSH_2 (syntaxspec, Sword);
25fe55af 3359 break;
e318085a 3360
e318085a 3361
25fe55af 3362 case 'W':
4bb91c68
SM
3363 if (syntax & RE_NO_GNU_OPS)
3364 goto normal_char;
25fe55af 3365 laststart = b;
1fb352e0 3366 BUF_PUSH_2 (notsyntaxspec, Sword);
25fe55af 3367 break;
e318085a
RS
3368
3369
25fe55af 3370 case '<':
4bb91c68
SM
3371 if (syntax & RE_NO_GNU_OPS)
3372 goto normal_char;
25fe55af
RS
3373 BUF_PUSH (wordbeg);
3374 break;
e318085a 3375
25fe55af 3376 case '>':
4bb91c68
SM
3377 if (syntax & RE_NO_GNU_OPS)
3378 goto normal_char;
25fe55af
RS
3379 BUF_PUSH (wordend);
3380 break;
e318085a 3381
669fa600
SM
3382 case '_':
3383 if (syntax & RE_NO_GNU_OPS)
3384 goto normal_char;
3385 laststart = b;
3386 PATFETCH (c);
3387 if (c == '<')
3388 BUF_PUSH (symbeg);
3389 else if (c == '>')
3390 BUF_PUSH (symend);
3391 else
3392 FREE_STACK_RETURN (REG_BADPAT);
3393 break;
3394
25fe55af 3395 case 'b':
4bb91c68
SM
3396 if (syntax & RE_NO_GNU_OPS)
3397 goto normal_char;
25fe55af
RS
3398 BUF_PUSH (wordbound);
3399 break;
e318085a 3400
25fe55af 3401 case 'B':
4bb91c68
SM
3402 if (syntax & RE_NO_GNU_OPS)
3403 goto normal_char;
25fe55af
RS
3404 BUF_PUSH (notwordbound);
3405 break;
fa9a63c5 3406
25fe55af 3407 case '`':
4bb91c68
SM
3408 if (syntax & RE_NO_GNU_OPS)
3409 goto normal_char;
25fe55af
RS
3410 BUF_PUSH (begbuf);
3411 break;
e318085a 3412
25fe55af 3413 case '\'':
4bb91c68
SM
3414 if (syntax & RE_NO_GNU_OPS)
3415 goto normal_char;
25fe55af
RS
3416 BUF_PUSH (endbuf);
3417 break;
e318085a 3418
25fe55af
RS
3419 case '1': case '2': case '3': case '4': case '5':
3420 case '6': case '7': case '8': case '9':
0cdd06f8
SM
3421 {
3422 regnum_t reg;
e318085a 3423
0cdd06f8
SM
3424 if (syntax & RE_NO_BK_REFS)
3425 goto normal_backslash;
e318085a 3426
0cdd06f8 3427 reg = c - '0';
e318085a 3428
0cdd06f8
SM
3429 /* Can't back reference to a subexpression before its end. */
3430 if (reg > regnum || group_in_compile_stack (compile_stack, reg))
3431 FREE_STACK_RETURN (REG_ESUBREG);
e318085a 3432
0cdd06f8
SM
3433 laststart = b;
3434 BUF_PUSH_2 (duplicate, reg);
3435 }
25fe55af 3436 break;
e318085a 3437
e318085a 3438
25fe55af
RS
3439 case '+':
3440 case '?':
3441 if (syntax & RE_BK_PLUS_QM)
3442 goto handle_plus;
3443 else
3444 goto normal_backslash;
3445
3446 default:
3447 normal_backslash:
3448 /* You might think it would be useful for \ to mean
3449 not to translate; but if we don't translate it
4bb91c68 3450 it will never match anything. */
25fe55af
RS
3451 goto normal_char;
3452 }
3453 break;
fa9a63c5
RM
3454
3455
3456 default:
25fe55af 3457 /* Expects the character in `c'. */
fa9a63c5 3458 normal_char:
36595814 3459 /* If no exactn currently being built. */
25fe55af 3460 if (!pending_exact
fa9a63c5 3461
25fe55af
RS
3462 /* If last exactn not at current position. */
3463 || pending_exact + *pending_exact + 1 != b
5e69f11e 3464
25fe55af 3465 /* We have only one byte following the exactn for the count. */
2d1675e4 3466 || *pending_exact >= (1 << BYTEWIDTH) - MAX_MULTIBYTE_LENGTH
fa9a63c5 3467
25fe55af 3468 /* If followed by a repetition operator. */
9d99031f 3469 || (p != pend && (*p == '*' || *p == '^'))
fa9a63c5 3470 || ((syntax & RE_BK_PLUS_QM)
9d99031f
RS
3471 ? p + 1 < pend && *p == '\\' && (p[1] == '+' || p[1] == '?')
3472 : p != pend && (*p == '+' || *p == '?'))
fa9a63c5 3473 || ((syntax & RE_INTERVALS)
25fe55af 3474 && ((syntax & RE_NO_BK_BRACES)
9d99031f
RS
3475 ? p != pend && *p == '{'
3476 : p + 1 < pend && p[0] == '\\' && p[1] == '{')))
fa9a63c5
RM
3477 {
3478 /* Start building a new exactn. */
5e69f11e 3479
25fe55af 3480 laststart = b;
fa9a63c5
RM
3481
3482 BUF_PUSH_2 (exactn, 0);
3483 pending_exact = b - 1;
25fe55af 3484 }
5e69f11e 3485
2d1675e4
SM
3486 GET_BUFFER_SPACE (MAX_MULTIBYTE_LENGTH);
3487 {
e0277a47
KH
3488 int len;
3489
36595814 3490 c = TRANSLATE (c);
e0277a47
KH
3491 if (multibyte)
3492 len = CHAR_STRING (c, b);
3493 else
3494 *b = c, len = 1;
2d1675e4
SM
3495 b += len;
3496 (*pending_exact) += len;
3497 }
3498
fa9a63c5 3499 break;
25fe55af 3500 } /* switch (c) */
fa9a63c5
RM
3501 } /* while p != pend */
3502
5e69f11e 3503
fa9a63c5 3504 /* Through the pattern now. */
5e69f11e 3505
505bde11 3506 FIXUP_ALT_JUMP ();
fa9a63c5 3507
5e69f11e 3508 if (!COMPILE_STACK_EMPTY)
fa9a63c5
RM
3509 FREE_STACK_RETURN (REG_EPAREN);
3510
3511 /* If we don't want backtracking, force success
3512 the first time we reach the end of the compiled pattern. */
3513 if (syntax & RE_NO_POSIX_BACKTRACKING)
3514 BUF_PUSH (succeed);
3515
fa9a63c5
RM
3516 /* We have succeeded; set the length of the buffer. */
3517 bufp->used = b - bufp->buffer;
3518
3519#ifdef DEBUG
99633e97 3520 if (debug > 0)
fa9a63c5 3521 {
505bde11 3522 re_compile_fastmap (bufp);
fa9a63c5
RM
3523 DEBUG_PRINT1 ("\nCompiled pattern: \n");
3524 print_compiled_pattern (bufp);
3525 }
99633e97 3526 debug--;
fa9a63c5
RM
3527#endif /* DEBUG */
3528
3529#ifndef MATCH_MAY_ALLOCATE
3530 /* Initialize the failure stack to the largest possible stack. This
3531 isn't necessary unless we're trying to avoid calling alloca in
3532 the search and match routines. */
3533 {
3534 int num_regs = bufp->re_nsub + 1;
3535
320a2a73 3536 if (fail_stack.size < re_max_failures * TYPICAL_FAILURE_SIZE)
fa9a63c5 3537 {
a26f4ccd 3538 fail_stack.size = re_max_failures * TYPICAL_FAILURE_SIZE;
fa9a63c5 3539
fa9a63c5
RM
3540 if (! fail_stack.stack)
3541 fail_stack.stack
5e69f11e 3542 = (fail_stack_elt_t *) malloc (fail_stack.size
fa9a63c5
RM
3543 * sizeof (fail_stack_elt_t));
3544 else
3545 fail_stack.stack
3546 = (fail_stack_elt_t *) realloc (fail_stack.stack,
3547 (fail_stack.size
3548 * sizeof (fail_stack_elt_t)));
fa9a63c5
RM
3549 }
3550
3551 regex_grow_registers (num_regs);
3552 }
3553#endif /* not MATCH_MAY_ALLOCATE */
3554
7c67c9f6 3555 FREE_STACK_RETURN (REG_NOERROR);
fa9a63c5
RM
3556} /* regex_compile */
3557\f
3558/* Subroutines for `regex_compile'. */
3559
25fe55af 3560/* Store OP at LOC followed by two-byte integer parameter ARG. */
fa9a63c5
RM
3561
3562static void
3563store_op1 (op, loc, arg)
3564 re_opcode_t op;
3565 unsigned char *loc;
3566 int arg;
3567{
3568 *loc = (unsigned char) op;
3569 STORE_NUMBER (loc + 1, arg);
3570}
3571
3572
3573/* Like `store_op1', but for two two-byte parameters ARG1 and ARG2. */
3574
3575static void
3576store_op2 (op, loc, arg1, arg2)
3577 re_opcode_t op;
3578 unsigned char *loc;
3579 int arg1, arg2;
3580{
3581 *loc = (unsigned char) op;
3582 STORE_NUMBER (loc + 1, arg1);
3583 STORE_NUMBER (loc + 3, arg2);
3584}
3585
3586
3587/* Copy the bytes from LOC to END to open up three bytes of space at LOC
3588 for OP followed by two-byte integer parameter ARG. */
3589
3590static void
3591insert_op1 (op, loc, arg, end)
3592 re_opcode_t op;
3593 unsigned char *loc;
3594 int arg;
5e69f11e 3595 unsigned char *end;
fa9a63c5
RM
3596{
3597 register unsigned char *pfrom = end;
3598 register unsigned char *pto = end + 3;
3599
3600 while (pfrom != loc)
3601 *--pto = *--pfrom;
5e69f11e 3602
fa9a63c5
RM
3603 store_op1 (op, loc, arg);
3604}
3605
3606
3607/* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2. */
3608
3609static void
3610insert_op2 (op, loc, arg1, arg2, end)
3611 re_opcode_t op;
3612 unsigned char *loc;
3613 int arg1, arg2;
5e69f11e 3614 unsigned char *end;
fa9a63c5
RM
3615{
3616 register unsigned char *pfrom = end;
3617 register unsigned char *pto = end + 5;
3618
3619 while (pfrom != loc)
3620 *--pto = *--pfrom;
5e69f11e 3621
fa9a63c5
RM
3622 store_op2 (op, loc, arg1, arg2);
3623}
3624
3625
3626/* P points to just after a ^ in PATTERN. Return true if that ^ comes
3627 after an alternative or a begin-subexpression. We assume there is at
3628 least one character before the ^. */
3629
3630static boolean
3631at_begline_loc_p (pattern, p, syntax)
01618498 3632 re_char *pattern, *p;
fa9a63c5
RM
3633 reg_syntax_t syntax;
3634{
01618498 3635 re_char *prev = p - 2;
fa9a63c5 3636 boolean prev_prev_backslash = prev > pattern && prev[-1] == '\\';
5e69f11e 3637
fa9a63c5
RM
3638 return
3639 /* After a subexpression? */
3640 (*prev == '(' && (syntax & RE_NO_BK_PARENS || prev_prev_backslash))
25fe55af 3641 /* After an alternative? */
d2af47df
SM
3642 || (*prev == '|' && (syntax & RE_NO_BK_VBAR || prev_prev_backslash))
3643 /* After a shy subexpression? */
3644 || ((syntax & RE_SHY_GROUPS) && prev - 2 >= pattern
3645 && prev[-1] == '?' && prev[-2] == '('
3646 && (syntax & RE_NO_BK_PARENS
3647 || (prev - 3 >= pattern && prev[-3] == '\\')));
fa9a63c5
RM
3648}
3649
3650
3651/* The dual of at_begline_loc_p. This one is for $. We assume there is
3652 at least one character after the $, i.e., `P < PEND'. */
3653
3654static boolean
3655at_endline_loc_p (p, pend, syntax)
01618498 3656 re_char *p, *pend;
99633e97 3657 reg_syntax_t syntax;
fa9a63c5 3658{
01618498 3659 re_char *next = p;
fa9a63c5 3660 boolean next_backslash = *next == '\\';
01618498 3661 re_char *next_next = p + 1 < pend ? p + 1 : 0;
5e69f11e 3662
fa9a63c5
RM
3663 return
3664 /* Before a subexpression? */
3665 (syntax & RE_NO_BK_PARENS ? *next == ')'
25fe55af 3666 : next_backslash && next_next && *next_next == ')')
fa9a63c5
RM
3667 /* Before an alternative? */
3668 || (syntax & RE_NO_BK_VBAR ? *next == '|'
25fe55af 3669 : next_backslash && next_next && *next_next == '|');
fa9a63c5
RM
3670}
3671
3672
5e69f11e 3673/* Returns true if REGNUM is in one of COMPILE_STACK's elements and
fa9a63c5
RM
3674 false if it's not. */
3675
3676static boolean
3677group_in_compile_stack (compile_stack, regnum)
3678 compile_stack_type compile_stack;
3679 regnum_t regnum;
3680{
3681 int this_element;
3682
5e69f11e
RM
3683 for (this_element = compile_stack.avail - 1;
3684 this_element >= 0;
fa9a63c5
RM
3685 this_element--)
3686 if (compile_stack.stack[this_element].regnum == regnum)
3687 return true;
3688
3689 return false;
3690}
fa9a63c5 3691\f
f6a3f532
SM
3692/* analyse_first.
3693 If fastmap is non-NULL, go through the pattern and fill fastmap
3694 with all the possible leading chars. If fastmap is NULL, don't
3695 bother filling it up (obviously) and only return whether the
3696 pattern could potentially match the empty string.
3697
3698 Return 1 if p..pend might match the empty string.
3699 Return 0 if p..pend matches at least one char.
01618498 3700 Return -1 if fastmap was not updated accurately. */
f6a3f532
SM
3701
3702static int
3703analyse_first (p, pend, fastmap, multibyte)
01618498 3704 re_char *p, *pend;
f6a3f532
SM
3705 char *fastmap;
3706 const int multibyte;
fa9a63c5 3707{
505bde11 3708 int j, k;
1fb352e0 3709 boolean not;
fa9a63c5 3710
b18215fc 3711 /* If all elements for base leading-codes in fastmap is set, this
25fe55af 3712 flag is set true. */
b18215fc
RS
3713 boolean match_any_multibyte_characters = false;
3714
f6a3f532 3715 assert (p);
5e69f11e 3716
505bde11
SM
3717 /* The loop below works as follows:
3718 - It has a working-list kept in the PATTERN_STACK and which basically
3719 starts by only containing a pointer to the first operation.
3720 - If the opcode we're looking at is a match against some set of
3721 chars, then we add those chars to the fastmap and go on to the
3722 next work element from the worklist (done via `break').
3723 - If the opcode is a control operator on the other hand, we either
3724 ignore it (if it's meaningless at this point, such as `start_memory')
3725 or execute it (if it's a jump). If the jump has several destinations
3726 (i.e. `on_failure_jump'), then we push the other destination onto the
3727 worklist.
3728 We guarantee termination by ignoring backward jumps (more or less),
3729 so that `p' is monotonically increasing. More to the point, we
3730 never set `p' (or push) anything `<= p1'. */
3731
01618498 3732 while (p < pend)
fa9a63c5 3733 {
505bde11
SM
3734 /* `p1' is used as a marker of how far back a `on_failure_jump'
3735 can go without being ignored. It is normally equal to `p'
3736 (which prevents any backward `on_failure_jump') except right
3737 after a plain `jump', to allow patterns such as:
3738 0: jump 10
3739 3..9: <body>
3740 10: on_failure_jump 3
3741 as used for the *? operator. */
01618498 3742 re_char *p1 = p;
5e69f11e 3743
fa9a63c5
RM
3744 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
3745 {
f6a3f532 3746 case succeed:
01618498 3747 return 1;
f6a3f532 3748 continue;
fa9a63c5 3749
fa9a63c5 3750 case duplicate:
505bde11
SM
3751 /* If the first character has to match a backreference, that means
3752 that the group was empty (since it already matched). Since this
3753 is the only case that interests us here, we can assume that the
3754 backreference must match the empty string. */
3755 p++;
3756 continue;
fa9a63c5
RM
3757
3758
3759 /* Following are the cases which match a character. These end
25fe55af 3760 with `break'. */
fa9a63c5
RM
3761
3762 case exactn:
e0277a47
KH
3763 if (fastmap)
3764 {
3765 int c = RE_STRING_CHAR (p + 1, pend - p);
3766
3767 if (SINGLE_BYTE_CHAR_P (c))
3768 fastmap[c] = 1;
3769 else
3770 fastmap[p[1]] = 1;
3771 }
fa9a63c5
RM
3772 break;
3773
3774
1fb352e0
SM
3775 case anychar:
3776 /* We could put all the chars except for \n (and maybe \0)
3777 but we don't bother since it is generally not worth it. */
f6a3f532 3778 if (!fastmap) break;
01618498 3779 return -1;
fa9a63c5
RM
3780
3781
b18215fc 3782 case charset_not:
ba5c004d
RS
3783 /* Chars beyond end of bitmap are possible matches.
3784 All the single-byte codes can occur in multibyte buffers.
3785 So any that are not listed in the charset
3786 are possible matches, even in multibyte buffers. */
1fb352e0 3787 if (!fastmap) break;
b18215fc 3788 for (j = CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH;
1fb352e0 3789 j < (1 << BYTEWIDTH); j++)
b18215fc 3790 fastmap[j] = 1;
1fb352e0
SM
3791 /* Fallthrough */
3792 case charset:
3793 if (!fastmap) break;
3794 not = (re_opcode_t) *(p - 1) == charset_not;
b18215fc
RS
3795 for (j = CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH - 1, p++;
3796 j >= 0; j--)
1fb352e0 3797 if (!!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))) ^ not)
b18215fc
RS
3798 fastmap[j] = 1;
3799
1fb352e0
SM
3800 if ((not && multibyte)
3801 /* Any character set can possibly contain a character
3802 which doesn't match the specified set of characters. */
3803 || (CHARSET_RANGE_TABLE_EXISTS_P (&p[-2])
3804 && CHARSET_RANGE_TABLE_BITS (&p[-2]) != 0))
3805 /* If we can match a character class, we can match
3806 any character set. */
b18215fc
RS
3807 {
3808 set_fastmap_for_multibyte_characters:
3809 if (match_any_multibyte_characters == false)
3810 {
3811 for (j = 0x80; j < 0xA0; j++) /* XXX */
3812 if (BASE_LEADING_CODE_P (j))
3813 fastmap[j] = 1;
3814 match_any_multibyte_characters = true;
3815 }
3816 }
b18215fc 3817
1fb352e0
SM
3818 else if (!not && CHARSET_RANGE_TABLE_EXISTS_P (&p[-2])
3819 && match_any_multibyte_characters == false)
3820 {
3821 /* Set fastmap[I] 1 where I is a base leading code of each
3822 multibyte character in the range table. */
3823 int c, count;
b18215fc 3824
1fb352e0 3825 /* Make P points the range table. `+ 2' is to skip flag
0b32bf0e 3826 bits for a character class. */
1fb352e0 3827 p += CHARSET_BITMAP_SIZE (&p[-2]) + 2;
b18215fc 3828
1fb352e0
SM
3829 /* Extract the number of ranges in range table into COUNT. */
3830 EXTRACT_NUMBER_AND_INCR (count, p);
3831 for (; count > 0; count--, p += 2 * 3) /* XXX */
3832 {
3833 /* Extract the start of each range. */
3834 EXTRACT_CHARACTER (c, p);
3835 j = CHAR_CHARSET (c);
3836 fastmap[CHARSET_LEADING_CODE_BASE (j)] = 1;
3837 }
3838 }
b18215fc
RS
3839 break;
3840
1fb352e0
SM
3841 case syntaxspec:
3842 case notsyntaxspec:
3843 if (!fastmap) break;
3844#ifndef emacs
3845 not = (re_opcode_t)p[-1] == notsyntaxspec;
3846 k = *p++;
3847 for (j = 0; j < (1 << BYTEWIDTH); j++)
990b2375 3848 if ((SYNTAX (j) == (enum syntaxcode) k) ^ not)
b18215fc 3849 fastmap[j] = 1;
b18215fc 3850 break;
1fb352e0 3851#else /* emacs */
b18215fc
RS
3852 /* This match depends on text properties. These end with
3853 aborting optimizations. */
01618498 3854 return -1;
b18215fc
RS
3855
3856 case categoryspec:
b18215fc 3857 case notcategoryspec:
1fb352e0
SM
3858 if (!fastmap) break;
3859 not = (re_opcode_t)p[-1] == notcategoryspec;
b18215fc 3860 k = *p++;
1fb352e0
SM
3861 for (j = 0; j < (1 << BYTEWIDTH); j++)
3862 if ((CHAR_HAS_CATEGORY (j, k)) ^ not)
b18215fc
RS
3863 fastmap[j] = 1;
3864
1fb352e0 3865 if (multibyte)
b18215fc 3866 /* Any character set can possibly contain a character
1fb352e0 3867 whose category is K (or not). */
b18215fc
RS
3868 goto set_fastmap_for_multibyte_characters;
3869 break;
3870
fa9a63c5 3871 /* All cases after this match the empty string. These end with
25fe55af 3872 `continue'. */
fa9a63c5 3873
fa9a63c5
RM
3874 case before_dot:
3875 case at_dot:
3876 case after_dot:
1fb352e0 3877#endif /* !emacs */
25fe55af
RS
3878 case no_op:
3879 case begline:
3880 case endline:
fa9a63c5
RM
3881 case begbuf:
3882 case endbuf:
3883 case wordbound:
3884 case notwordbound:
3885 case wordbeg:
3886 case wordend:
669fa600
SM
3887 case symbeg:
3888 case symend:
25fe55af 3889 continue;
fa9a63c5
RM
3890
3891
fa9a63c5 3892 case jump:
25fe55af 3893 EXTRACT_NUMBER_AND_INCR (j, p);
505bde11
SM
3894 if (j < 0)
3895 /* Backward jumps can only go back to code that we've already
3896 visited. `re_compile' should make sure this is true. */
3897 break;
25fe55af 3898 p += j;
505bde11
SM
3899 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p))
3900 {
3901 case on_failure_jump:
3902 case on_failure_keep_string_jump:
505bde11 3903 case on_failure_jump_loop:
0683b6fa 3904 case on_failure_jump_nastyloop:
505bde11
SM
3905 case on_failure_jump_smart:
3906 p++;
3907 break;
3908 default:
3909 continue;
3910 };
3911 /* Keep `p1' to allow the `on_failure_jump' we are jumping to
3912 to jump back to "just after here". */
3913 /* Fallthrough */
fa9a63c5 3914
25fe55af
RS
3915 case on_failure_jump:
3916 case on_failure_keep_string_jump:
0683b6fa 3917 case on_failure_jump_nastyloop:
505bde11
SM
3918 case on_failure_jump_loop:
3919 case on_failure_jump_smart:
25fe55af 3920 EXTRACT_NUMBER_AND_INCR (j, p);
505bde11 3921 if (p + j <= p1)
ed0767d8 3922 ; /* Backward jump to be ignored. */
01618498
SM
3923 else
3924 { /* We have to look down both arms.
3925 We first go down the "straight" path so as to minimize
3926 stack usage when going through alternatives. */
3927 int r = analyse_first (p, pend, fastmap, multibyte);
3928 if (r) return r;
3929 p += j;
3930 }
25fe55af 3931 continue;
fa9a63c5
RM
3932
3933
ed0767d8
SM
3934 case jump_n:
3935 /* This code simply does not properly handle forward jump_n. */
3936 DEBUG_STATEMENT (EXTRACT_NUMBER (j, p); assert (j < 0));
3937 p += 4;
3938 /* jump_n can either jump or fall through. The (backward) jump
3939 case has already been handled, so we only need to look at the
3940 fallthrough case. */
3941 continue;
177c0ea7 3942
fa9a63c5 3943 case succeed_n:
ed0767d8
SM
3944 /* If N == 0, it should be an on_failure_jump_loop instead. */
3945 DEBUG_STATEMENT (EXTRACT_NUMBER (j, p + 2); assert (j > 0));
3946 p += 4;
3947 /* We only care about one iteration of the loop, so we don't
3948 need to consider the case where this behaves like an
3949 on_failure_jump. */
25fe55af 3950 continue;
fa9a63c5
RM
3951
3952
3953 case set_number_at:
25fe55af
RS
3954 p += 4;
3955 continue;
fa9a63c5
RM
3956
3957
3958 case start_memory:
25fe55af 3959 case stop_memory:
505bde11 3960 p += 1;
fa9a63c5
RM
3961 continue;
3962
3963
3964 default:
25fe55af
RS
3965 abort (); /* We have listed all the cases. */
3966 } /* switch *p++ */
fa9a63c5
RM
3967
3968 /* Getting here means we have found the possible starting
25fe55af 3969 characters for one path of the pattern -- and that the empty
01618498
SM
3970 string does not match. We need not follow this path further. */
3971 return 0;
fa9a63c5
RM
3972 } /* while p */
3973
01618498
SM
3974 /* We reached the end without matching anything. */
3975 return 1;
3976
f6a3f532
SM
3977} /* analyse_first */
3978\f
3979/* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
3980 BUFP. A fastmap records which of the (1 << BYTEWIDTH) possible
3981 characters can start a string that matches the pattern. This fastmap
3982 is used by re_search to skip quickly over impossible starting points.
3983
3984 Character codes above (1 << BYTEWIDTH) are not represented in the
3985 fastmap, but the leading codes are represented. Thus, the fastmap
3986 indicates which character sets could start a match.
3987
3988 The caller must supply the address of a (1 << BYTEWIDTH)-byte data
3989 area as BUFP->fastmap.
3990
3991 We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
3992 the pattern buffer.
3993
3994 Returns 0 if we succeed, -2 if an internal error. */
3995
3996int
3997re_compile_fastmap (bufp)
3998 struct re_pattern_buffer *bufp;
3999{
4000 char *fastmap = bufp->fastmap;
4001 int analysis;
4002
4003 assert (fastmap && bufp->buffer);
4004
4005 bzero (fastmap, 1 << BYTEWIDTH); /* Assume nothing's valid. */
4006 bufp->fastmap_accurate = 1; /* It will be when we're done. */
4007
4008 analysis = analyse_first (bufp->buffer, bufp->buffer + bufp->used,
2d1675e4 4009 fastmap, RE_MULTIBYTE_P (bufp));
c0f9ea08 4010 bufp->can_be_null = (analysis != 0);
fa9a63c5
RM
4011 return 0;
4012} /* re_compile_fastmap */
4013\f
4014/* Set REGS to hold NUM_REGS registers, storing them in STARTS and
4015 ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use
4016 this memory for recording register information. STARTS and ENDS
4017 must be allocated using the malloc library routine, and must each
4018 be at least NUM_REGS * sizeof (regoff_t) bytes long.
4019
4020 If NUM_REGS == 0, then subsequent matches should allocate their own
4021 register data.
4022
4023 Unless this function is called, the first search or match using
4024 PATTERN_BUFFER will allocate its own register data, without
4025 freeing the old data. */
4026
4027void
4028re_set_registers (bufp, regs, num_regs, starts, ends)
4029 struct re_pattern_buffer *bufp;
4030 struct re_registers *regs;
4031 unsigned num_regs;
4032 regoff_t *starts, *ends;
4033{
4034 if (num_regs)
4035 {
4036 bufp->regs_allocated = REGS_REALLOCATE;
4037 regs->num_regs = num_regs;
4038 regs->start = starts;
4039 regs->end = ends;
4040 }
4041 else
4042 {
4043 bufp->regs_allocated = REGS_UNALLOCATED;
4044 regs->num_regs = 0;
4045 regs->start = regs->end = (regoff_t *) 0;
4046 }
4047}
c0f9ea08 4048WEAK_ALIAS (__re_set_registers, re_set_registers)
fa9a63c5 4049\f
25fe55af 4050/* Searching routines. */
fa9a63c5
RM
4051
4052/* Like re_search_2, below, but only one string is specified, and
4053 doesn't let you say where to stop matching. */
4054
4055int
4056re_search (bufp, string, size, startpos, range, regs)
4057 struct re_pattern_buffer *bufp;
4058 const char *string;
4059 int size, startpos, range;
4060 struct re_registers *regs;
4061{
5e69f11e 4062 return re_search_2 (bufp, NULL, 0, string, size, startpos, range,
fa9a63c5
RM
4063 regs, size);
4064}
c0f9ea08 4065WEAK_ALIAS (__re_search, re_search)
fa9a63c5 4066
70806df6
KH
4067/* Head address of virtual concatenation of string. */
4068#define HEAD_ADDR_VSTRING(P) \
4069 (((P) >= size1 ? string2 : string1))
4070
b18215fc
RS
4071/* End address of virtual concatenation of string. */
4072#define STOP_ADDR_VSTRING(P) \
4073 (((P) >= size1 ? string2 + size2 : string1 + size1))
4074
4075/* Address of POS in the concatenation of virtual string. */
4076#define POS_ADDR_VSTRING(POS) \
4077 (((POS) >= size1 ? string2 - size1 : string1) + (POS))
fa9a63c5
RM
4078
4079/* Using the compiled pattern in BUFP->buffer, first tries to match the
4080 virtual concatenation of STRING1 and STRING2, starting first at index
4081 STARTPOS, then at STARTPOS + 1, and so on.
5e69f11e 4082
fa9a63c5 4083 STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
5e69f11e 4084
fa9a63c5
RM
4085 RANGE is how far to scan while trying to match. RANGE = 0 means try
4086 only at STARTPOS; in general, the last start tried is STARTPOS +
4087 RANGE.
5e69f11e 4088
fa9a63c5
RM
4089 In REGS, return the indices of the virtual concatenation of STRING1
4090 and STRING2 that matched the entire BUFP->buffer and its contained
4091 subexpressions.
5e69f11e 4092
fa9a63c5
RM
4093 Do not consider matching one past the index STOP in the virtual
4094 concatenation of STRING1 and STRING2.
4095
4096 We return either the position in the strings at which the match was
4097 found, -1 if no match, or -2 if error (such as failure
4098 stack overflow). */
4099
4100int
66f0296e 4101re_search_2 (bufp, str1, size1, str2, size2, startpos, range, regs, stop)
fa9a63c5 4102 struct re_pattern_buffer *bufp;
66f0296e 4103 const char *str1, *str2;
fa9a63c5
RM
4104 int size1, size2;
4105 int startpos;
4106 int range;
4107 struct re_registers *regs;
4108 int stop;
4109{
4110 int val;
66f0296e
SM
4111 re_char *string1 = (re_char*) str1;
4112 re_char *string2 = (re_char*) str2;
fa9a63c5 4113 register char *fastmap = bufp->fastmap;
6676cb1c 4114 register RE_TRANSLATE_TYPE translate = bufp->translate;
fa9a63c5
RM
4115 int total_size = size1 + size2;
4116 int endpos = startpos + range;
c0f9ea08 4117 boolean anchored_start;
fa9a63c5 4118
25fe55af 4119 /* Nonzero if we have to concern multibyte character. */
2d1675e4 4120 const boolean multibyte = RE_MULTIBYTE_P (bufp);
b18215fc 4121
fa9a63c5
RM
4122 /* Check for out-of-range STARTPOS. */
4123 if (startpos < 0 || startpos > total_size)
4124 return -1;
5e69f11e 4125
fa9a63c5 4126 /* Fix up RANGE if it might eventually take us outside
34597fa9 4127 the virtual concatenation of STRING1 and STRING2.
5e69f11e 4128 Make sure we won't move STARTPOS below 0 or above TOTAL_SIZE. */
34597fa9
RS
4129 if (endpos < 0)
4130 range = 0 - startpos;
fa9a63c5
RM
4131 else if (endpos > total_size)
4132 range = total_size - startpos;
4133
4134 /* If the search isn't to be a backwards one, don't waste time in a
7b140fd7 4135 search for a pattern anchored at beginning of buffer. */
fa9a63c5
RM
4136 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == begbuf && range > 0)
4137 {
4138 if (startpos > 0)
4139 return -1;
4140 else
7b140fd7 4141 range = 0;
fa9a63c5
RM
4142 }
4143
ae4788a8
RS
4144#ifdef emacs
4145 /* In a forward search for something that starts with \=.
4146 don't keep searching past point. */
4147 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == at_dot && range > 0)
4148 {
7b140fd7
RS
4149 range = PT_BYTE - BEGV_BYTE - startpos;
4150 if (range < 0)
ae4788a8
RS
4151 return -1;
4152 }
4153#endif /* emacs */
4154
fa9a63c5
RM
4155 /* Update the fastmap now if not correct already. */
4156 if (fastmap && !bufp->fastmap_accurate)
01618498 4157 re_compile_fastmap (bufp);
5e69f11e 4158
c8499ba5 4159 /* See whether the pattern is anchored. */
c0f9ea08 4160 anchored_start = (bufp->buffer[0] == begline);
c8499ba5 4161
b18215fc 4162#ifdef emacs
cc9b4df2
KH
4163 gl_state.object = re_match_object;
4164 {
99633e97 4165 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (POS_AS_IN_BUFFER (startpos));
cc9b4df2
KH
4166
4167 SETUP_SYNTAX_TABLE_FOR_OBJECT (re_match_object, charpos, 1);
4168 }
b18215fc
RS
4169#endif
4170
fa9a63c5
RM
4171 /* Loop through the string, looking for a place to start matching. */
4172 for (;;)
5e69f11e 4173 {
c8499ba5
RS
4174 /* If the pattern is anchored,
4175 skip quickly past places we cannot match.
4176 We don't bother to treat startpos == 0 specially
4177 because that case doesn't repeat. */
4178 if (anchored_start && startpos > 0)
4179 {
c0f9ea08
SM
4180 if (! ((startpos <= size1 ? string1[startpos - 1]
4181 : string2[startpos - size1 - 1])
4182 == '\n'))
c8499ba5
RS
4183 goto advance;
4184 }
4185
fa9a63c5 4186 /* If a fastmap is supplied, skip quickly over characters that
25fe55af
RS
4187 cannot be the start of a match. If the pattern can match the
4188 null string, however, we don't need to skip characters; we want
4189 the first null string. */
fa9a63c5
RM
4190 if (fastmap && startpos < total_size && !bufp->can_be_null)
4191 {
66f0296e 4192 register re_char *d;
01618498 4193 register re_wchar_t buf_ch;
e934739e
RS
4194
4195 d = POS_ADDR_VSTRING (startpos);
4196
25fe55af 4197 if (range > 0) /* Searching forwards. */
fa9a63c5 4198 {
fa9a63c5
RM
4199 register int lim = 0;
4200 int irange = range;
4201
25fe55af
RS
4202 if (startpos < size1 && startpos + range >= size1)
4203 lim = range - (size1 - startpos);
fa9a63c5 4204
25fe55af
RS
4205 /* Written out as an if-else to avoid testing `translate'
4206 inside the loop. */
28ae27ae
AS
4207 if (RE_TRANSLATE_P (translate))
4208 {
e934739e
RS
4209 if (multibyte)
4210 while (range > lim)
4211 {
4212 int buf_charlen;
4213
4214 buf_ch = STRING_CHAR_AND_LENGTH (d, range - lim,
4215 buf_charlen);
4216
4217 buf_ch = RE_TRANSLATE (translate, buf_ch);
4218 if (buf_ch >= 0400
4219 || fastmap[buf_ch])
4220 break;
4221
4222 range -= buf_charlen;
4223 d += buf_charlen;
4224 }
4225 else
4226 while (range > lim
66f0296e 4227 && !fastmap[RE_TRANSLATE (translate, *d)])
33c46939
RS
4228 {
4229 d++;
4230 range--;
4231 }
e934739e 4232 }
fa9a63c5 4233 else
66f0296e 4234 while (range > lim && !fastmap[*d])
33c46939
RS
4235 {
4236 d++;
4237 range--;
4238 }
fa9a63c5
RM
4239
4240 startpos += irange - range;
4241 }
25fe55af 4242 else /* Searching backwards. */
fa9a63c5 4243 {
2d1675e4
SM
4244 int room = (startpos >= size1
4245 ? size2 + size1 - startpos
4246 : size1 - startpos);
4247 buf_ch = RE_STRING_CHAR (d, room);
4248 buf_ch = TRANSLATE (buf_ch);
fa9a63c5 4249
e934739e
RS
4250 if (! (buf_ch >= 0400
4251 || fastmap[buf_ch]))
fa9a63c5
RM
4252 goto advance;
4253 }
4254 }
4255
4256 /* If can't match the null string, and that's all we have left, fail. */
4257 if (range >= 0 && startpos == total_size && fastmap
25fe55af 4258 && !bufp->can_be_null)
fa9a63c5
RM
4259 return -1;
4260
4261 val = re_match_2_internal (bufp, string1, size1, string2, size2,
4262 startpos, regs, stop);
4263#ifndef REGEX_MALLOC
0b32bf0e 4264# ifdef C_ALLOCA
fa9a63c5 4265 alloca (0);
0b32bf0e 4266# endif
fa9a63c5
RM
4267#endif
4268
4269 if (val >= 0)
4270 return startpos;
5e69f11e 4271
fa9a63c5
RM
4272 if (val == -2)
4273 return -2;
4274
4275 advance:
5e69f11e 4276 if (!range)
25fe55af 4277 break;
5e69f11e 4278 else if (range > 0)
25fe55af 4279 {
b18215fc
RS
4280 /* Update STARTPOS to the next character boundary. */
4281 if (multibyte)
4282 {
66f0296e
SM
4283 re_char *p = POS_ADDR_VSTRING (startpos);
4284 re_char *pend = STOP_ADDR_VSTRING (startpos);
b18215fc
RS
4285 int len = MULTIBYTE_FORM_LENGTH (p, pend - p);
4286
4287 range -= len;
4288 if (range < 0)
4289 break;
4290 startpos += len;
4291 }
4292 else
4293 {
b560c397
RS
4294 range--;
4295 startpos++;
4296 }
e318085a 4297 }
fa9a63c5 4298 else
25fe55af
RS
4299 {
4300 range++;
4301 startpos--;
b18215fc
RS
4302
4303 /* Update STARTPOS to the previous character boundary. */
4304 if (multibyte)
4305 {
70806df6
KH
4306 re_char *p = POS_ADDR_VSTRING (startpos) + 1;
4307 re_char *p0 = p;
4308 re_char *phead = HEAD_ADDR_VSTRING (startpos);
b18215fc
RS
4309
4310 /* Find the head of multibyte form. */
70806df6
KH
4311 PREV_CHAR_BOUNDARY (p, phead);
4312 range += p0 - 1 - p;
4313 if (range > 0)
4314 break;
b18215fc 4315
70806df6 4316 startpos -= p0 - 1 - p;
b18215fc 4317 }
25fe55af 4318 }
fa9a63c5
RM
4319 }
4320 return -1;
4321} /* re_search_2 */
c0f9ea08 4322WEAK_ALIAS (__re_search_2, re_search_2)
fa9a63c5
RM
4323\f
4324/* Declarations and macros for re_match_2. */
4325
2d1675e4
SM
4326static int bcmp_translate _RE_ARGS((re_char *s1, re_char *s2,
4327 register int len,
4328 RE_TRANSLATE_TYPE translate,
4329 const int multibyte));
fa9a63c5
RM
4330
4331/* This converts PTR, a pointer into one of the search strings `string1'
4332 and `string2' into an offset from the beginning of that string. */
4333#define POINTER_TO_OFFSET(ptr) \
4334 (FIRST_STRING_P (ptr) \
4335 ? ((regoff_t) ((ptr) - string1)) \
4336 : ((regoff_t) ((ptr) - string2 + size1)))
4337
fa9a63c5 4338/* Call before fetching a character with *d. This switches over to
419d1c74
SM
4339 string2 if necessary.
4340 Check re_match_2_internal for a discussion of why end_match_2 might
4341 not be within string2 (but be equal to end_match_1 instead). */
fa9a63c5 4342#define PREFETCH() \
25fe55af 4343 while (d == dend) \
fa9a63c5
RM
4344 { \
4345 /* End of string2 => fail. */ \
25fe55af
RS
4346 if (dend == end_match_2) \
4347 goto fail; \
4bb91c68 4348 /* End of string1 => advance to string2. */ \
25fe55af 4349 d = string2; \
fa9a63c5
RM
4350 dend = end_match_2; \
4351 }
4352
f1ad044f
SM
4353/* Call before fetching a char with *d if you already checked other limits.
4354 This is meant for use in lookahead operations like wordend, etc..
4355 where we might need to look at parts of the string that might be
4356 outside of the LIMITs (i.e past `stop'). */
4357#define PREFETCH_NOLIMIT() \
4358 if (d == end1) \
4359 { \
4360 d = string2; \
4361 dend = end_match_2; \
4362 } \
fa9a63c5
RM
4363
4364/* Test if at very beginning or at very end of the virtual concatenation
25fe55af 4365 of `string1' and `string2'. If only one string, it's `string2'. */
fa9a63c5 4366#define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
5e69f11e 4367#define AT_STRINGS_END(d) ((d) == end2)
fa9a63c5
RM
4368
4369
4370/* Test if D points to a character which is word-constituent. We have
4371 two special cases to check for: if past the end of string1, look at
4372 the first character in string2; and if before the beginning of
4373 string2, look at the last character in string1. */
4374#define WORDCHAR_P(d) \
4375 (SYNTAX ((d) == end1 ? *string2 \
25fe55af 4376 : (d) == string2 - 1 ? *(end1 - 1) : *(d)) \
fa9a63c5
RM
4377 == Sword)
4378
9121ca40 4379/* Disabled due to a compiler bug -- see comment at case wordbound */
b18215fc
RS
4380
4381/* The comment at case wordbound is following one, but we don't use
4382 AT_WORD_BOUNDARY anymore to support multibyte form.
4383
4384 The DEC Alpha C compiler 3.x generates incorrect code for the
25fe55af
RS
4385 test WORDCHAR_P (d - 1) != WORDCHAR_P (d) in the expansion of
4386 AT_WORD_BOUNDARY, so this code is disabled. Expanding the
b18215fc
RS
4387 macro and introducing temporary variables works around the bug. */
4388
9121ca40 4389#if 0
fa9a63c5
RM
4390/* Test if the character before D and the one at D differ with respect
4391 to being word-constituent. */
4392#define AT_WORD_BOUNDARY(d) \
4393 (AT_STRINGS_BEG (d) || AT_STRINGS_END (d) \
4394 || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
9121ca40 4395#endif
fa9a63c5
RM
4396
4397/* Free everything we malloc. */
4398#ifdef MATCH_MAY_ALLOCATE
0b32bf0e
SM
4399# define FREE_VAR(var) if (var) { REGEX_FREE (var); var = NULL; } else
4400# define FREE_VARIABLES() \
fa9a63c5
RM
4401 do { \
4402 REGEX_FREE_STACK (fail_stack.stack); \
4403 FREE_VAR (regstart); \
4404 FREE_VAR (regend); \
fa9a63c5
RM
4405 FREE_VAR (best_regstart); \
4406 FREE_VAR (best_regend); \
fa9a63c5
RM
4407 } while (0)
4408#else
0b32bf0e 4409# define FREE_VARIABLES() ((void)0) /* Do nothing! But inhibit gcc warning. */
fa9a63c5
RM
4410#endif /* not MATCH_MAY_ALLOCATE */
4411
505bde11
SM
4412\f
4413/* Optimization routines. */
4414
4e8a9132
SM
4415/* If the operation is a match against one or more chars,
4416 return a pointer to the next operation, else return NULL. */
01618498 4417static re_char *
4e8a9132 4418skip_one_char (p)
01618498 4419 re_char *p;
4e8a9132
SM
4420{
4421 switch (SWITCH_ENUM_CAST (*p++))
4422 {
4423 case anychar:
4424 break;
177c0ea7 4425
4e8a9132
SM
4426 case exactn:
4427 p += *p + 1;
4428 break;
4429
4430 case charset_not:
4431 case charset:
4432 if (CHARSET_RANGE_TABLE_EXISTS_P (p - 1))
4433 {
4434 int mcnt;
4435 p = CHARSET_RANGE_TABLE (p - 1);
4436 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4437 p = CHARSET_RANGE_TABLE_END (p, mcnt);
4438 }
4439 else
4440 p += 1 + CHARSET_BITMAP_SIZE (p - 1);
4441 break;
177c0ea7 4442
4e8a9132
SM
4443 case syntaxspec:
4444 case notsyntaxspec:
1fb352e0 4445#ifdef emacs
4e8a9132
SM
4446 case categoryspec:
4447 case notcategoryspec:
4448#endif /* emacs */
4449 p++;
4450 break;
4451
4452 default:
4453 p = NULL;
4454 }
4455 return p;
4456}
4457
4458
505bde11 4459/* Jump over non-matching operations. */
275a3409 4460static re_char *
4e8a9132 4461skip_noops (p, pend)
275a3409 4462 re_char *p, *pend;
505bde11
SM
4463{
4464 int mcnt;
4465 while (p < pend)
4466 {
4467 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p))
4468 {
4469 case start_memory:
505bde11
SM
4470 case stop_memory:
4471 p += 2; break;
4472 case no_op:
4473 p += 1; break;
4474 case jump:
4475 p += 1;
4476 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4477 p += mcnt;
4478 break;
4479 default:
4480 return p;
4481 }
4482 }
4483 assert (p == pend);
4484 return p;
4485}
4486
4487/* Non-zero if "p1 matches something" implies "p2 fails". */
4488static int
4489mutually_exclusive_p (bufp, p1, p2)
4490 struct re_pattern_buffer *bufp;
275a3409 4491 re_char *p1, *p2;
505bde11 4492{
4e8a9132 4493 re_opcode_t op2;
2d1675e4 4494 const boolean multibyte = RE_MULTIBYTE_P (bufp);
505bde11
SM
4495 unsigned char *pend = bufp->buffer + bufp->used;
4496
4e8a9132 4497 assert (p1 >= bufp->buffer && p1 < pend
505bde11
SM
4498 && p2 >= bufp->buffer && p2 <= pend);
4499
4500 /* Skip over open/close-group commands.
4501 If what follows this loop is a ...+ construct,
4502 look at what begins its body, since we will have to
4503 match at least one of that. */
4e8a9132
SM
4504 p2 = skip_noops (p2, pend);
4505 /* The same skip can be done for p1, except that this function
4506 is only used in the case where p1 is a simple match operator. */
4507 /* p1 = skip_noops (p1, pend); */
4508
4509 assert (p1 >= bufp->buffer && p1 < pend
4510 && p2 >= bufp->buffer && p2 <= pend);
4511
4512 op2 = p2 == pend ? succeed : *p2;
4513
4514 switch (SWITCH_ENUM_CAST (op2))
505bde11 4515 {
4e8a9132
SM
4516 case succeed:
4517 case endbuf:
4518 /* If we're at the end of the pattern, we can change. */
4519 if (skip_one_char (p1))
505bde11 4520 {
505bde11
SM
4521 DEBUG_PRINT1 (" End of pattern: fast loop.\n");
4522 return 1;
505bde11 4523 }
4e8a9132 4524 break;
177c0ea7 4525
4e8a9132 4526 case endline:
4e8a9132
SM
4527 case exactn:
4528 {
01618498 4529 register re_wchar_t c
4e8a9132 4530 = (re_opcode_t) *p2 == endline ? '\n'
411e4203 4531 : RE_STRING_CHAR (p2 + 2, pend - p2 - 2);
505bde11 4532
4e8a9132
SM
4533 if ((re_opcode_t) *p1 == exactn)
4534 {
4535 if (c != RE_STRING_CHAR (p1 + 2, pend - p1 - 2))
4536 {
4537 DEBUG_PRINT3 (" '%c' != '%c' => fast loop.\n", c, p1[2]);
4538 return 1;
4539 }
4540 }
505bde11 4541
4e8a9132
SM
4542 else if ((re_opcode_t) *p1 == charset
4543 || (re_opcode_t) *p1 == charset_not)
4544 {
4545 int not = (re_opcode_t) *p1 == charset_not;
505bde11 4546
4e8a9132
SM
4547 /* Test if C is listed in charset (or charset_not)
4548 at `p1'. */
4549 if (SINGLE_BYTE_CHAR_P (c))
4550 {
4551 if (c < CHARSET_BITMAP_SIZE (p1) * BYTEWIDTH
4552 && p1[2 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
4553 not = !not;
4554 }
4555 else if (CHARSET_RANGE_TABLE_EXISTS_P (p1))
4556 CHARSET_LOOKUP_RANGE_TABLE (not, c, p1);
505bde11 4557
4e8a9132
SM
4558 /* `not' is equal to 1 if c would match, which means
4559 that we can't change to pop_failure_jump. */
4560 if (!not)
4561 {
4562 DEBUG_PRINT1 (" No match => fast loop.\n");
4563 return 1;
4564 }
4565 }
4566 else if ((re_opcode_t) *p1 == anychar
4567 && c == '\n')
4568 {
4569 DEBUG_PRINT1 (" . != \\n => fast loop.\n");
4570 return 1;
4571 }
4572 }
4573 break;
505bde11 4574
4e8a9132 4575 case charset:
4e8a9132
SM
4576 {
4577 if ((re_opcode_t) *p1 == exactn)
4578 /* Reuse the code above. */
4579 return mutually_exclusive_p (bufp, p2, p1);
505bde11 4580
505bde11
SM
4581 /* It is hard to list up all the character in charset
4582 P2 if it includes multibyte character. Give up in
4583 such case. */
4584 else if (!multibyte || !CHARSET_RANGE_TABLE_EXISTS_P (p2))
4585 {
4586 /* Now, we are sure that P2 has no range table.
4587 So, for the size of bitmap in P2, `p2[1]' is
4588 enough. But P1 may have range table, so the
4589 size of bitmap table of P1 is extracted by
4590 using macro `CHARSET_BITMAP_SIZE'.
4591
4592 Since we know that all the character listed in
4593 P2 is ASCII, it is enough to test only bitmap
4594 table of P1. */
4595
411e4203 4596 if ((re_opcode_t) *p1 == charset)
505bde11
SM
4597 {
4598 int idx;
4599 /* We win if the charset inside the loop
4600 has no overlap with the one after the loop. */
4601 for (idx = 0;
4602 (idx < (int) p2[1]
4603 && idx < CHARSET_BITMAP_SIZE (p1));
4604 idx++)
4605 if ((p2[2 + idx] & p1[2 + idx]) != 0)
4606 break;
4607
4608 if (idx == p2[1]
4609 || idx == CHARSET_BITMAP_SIZE (p1))
4610 {
4611 DEBUG_PRINT1 (" No match => fast loop.\n");
4612 return 1;
4613 }
4614 }
411e4203 4615 else if ((re_opcode_t) *p1 == charset_not)
505bde11
SM
4616 {
4617 int idx;
4618 /* We win if the charset_not inside the loop lists
4619 every character listed in the charset after. */
4620 for (idx = 0; idx < (int) p2[1]; idx++)
4621 if (! (p2[2 + idx] == 0
4622 || (idx < CHARSET_BITMAP_SIZE (p1)
4623 && ((p2[2 + idx] & ~ p1[2 + idx]) == 0))))
4624 break;
4625
4e8a9132
SM
4626 if (idx == p2[1])
4627 {
4628 DEBUG_PRINT1 (" No match => fast loop.\n");
4629 return 1;
4630 }
4631 }
4632 }
4633 }
609b757a 4634 break;
177c0ea7 4635
411e4203
SM
4636 case charset_not:
4637 switch (SWITCH_ENUM_CAST (*p1))
4638 {
4639 case exactn:
4640 case charset:
4641 /* Reuse the code above. */
4642 return mutually_exclusive_p (bufp, p2, p1);
4643 case charset_not:
4644 /* When we have two charset_not, it's very unlikely that
4645 they don't overlap. The union of the two sets of excluded
4646 chars should cover all possible chars, which, as a matter of
4647 fact, is virtually impossible in multibyte buffers. */
36595814 4648 break;
411e4203
SM
4649 }
4650 break;
4651
4e8a9132 4652 case wordend:
669fa600
SM
4653 return ((re_opcode_t) *p1 == syntaxspec && p1[1] == Sword);
4654 case symend:
4e8a9132 4655 return ((re_opcode_t) *p1 == syntaxspec
669fa600
SM
4656 && (p1[1] == Ssymbol || p1[1] == Sword));
4657 case notsyntaxspec:
4658 return ((re_opcode_t) *p1 == syntaxspec && p1[1] == p2[1]);
4e8a9132
SM
4659
4660 case wordbeg:
669fa600
SM
4661 return ((re_opcode_t) *p1 == notsyntaxspec && p1[1] == Sword);
4662 case symbeg:
4e8a9132 4663 return ((re_opcode_t) *p1 == notsyntaxspec
669fa600
SM
4664 && (p1[1] == Ssymbol || p1[1] == Sword));
4665 case syntaxspec:
4666 return ((re_opcode_t) *p1 == notsyntaxspec && p1[1] == p2[1]);
4e8a9132
SM
4667
4668 case wordbound:
4669 return (((re_opcode_t) *p1 == notsyntaxspec
4670 || (re_opcode_t) *p1 == syntaxspec)
4671 && p1[1] == Sword);
4672
1fb352e0 4673#ifdef emacs
4e8a9132
SM
4674 case categoryspec:
4675 return ((re_opcode_t) *p1 == notcategoryspec && p1[1] == p2[1]);
4676 case notcategoryspec:
4677 return ((re_opcode_t) *p1 == categoryspec && p1[1] == p2[1]);
4678#endif /* emacs */
4679
4680 default:
4681 ;
505bde11
SM
4682 }
4683
4684 /* Safe default. */
4685 return 0;
4686}
4687
fa9a63c5
RM
4688\f
4689/* Matching routines. */
4690
25fe55af 4691#ifndef emacs /* Emacs never uses this. */
fa9a63c5
RM
4692/* re_match is like re_match_2 except it takes only a single string. */
4693
4694int
4695re_match (bufp, string, size, pos, regs)
4696 struct re_pattern_buffer *bufp;
4697 const char *string;
4698 int size, pos;
4699 struct re_registers *regs;
4700{
4bb91c68 4701 int result = re_match_2_internal (bufp, NULL, 0, (re_char*) string, size,
fa9a63c5 4702 pos, regs, size);
0b32bf0e 4703# if defined C_ALLOCA && !defined REGEX_MALLOC
fa9a63c5 4704 alloca (0);
0b32bf0e 4705# endif
fa9a63c5
RM
4706 return result;
4707}
c0f9ea08 4708WEAK_ALIAS (__re_match, re_match)
fa9a63c5
RM
4709#endif /* not emacs */
4710
b18215fc
RS
4711#ifdef emacs
4712/* In Emacs, this is the string or buffer in which we
25fe55af 4713 are matching. It is used for looking up syntax properties. */
b18215fc
RS
4714Lisp_Object re_match_object;
4715#endif
fa9a63c5
RM
4716
4717/* re_match_2 matches the compiled pattern in BUFP against the
4718 the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
4719 and SIZE2, respectively). We start matching at POS, and stop
4720 matching at STOP.
5e69f11e 4721
fa9a63c5 4722 If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
25fe55af 4723 store offsets for the substring each group matched in REGS. See the
fa9a63c5
RM
4724 documentation for exactly how many groups we fill.
4725
4726 We return -1 if no match, -2 if an internal error (such as the
25fe55af 4727 failure stack overflowing). Otherwise, we return the length of the
fa9a63c5
RM
4728 matched substring. */
4729
4730int
4731re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
4732 struct re_pattern_buffer *bufp;
4733 const char *string1, *string2;
4734 int size1, size2;
4735 int pos;
4736 struct re_registers *regs;
4737 int stop;
4738{
b18215fc 4739 int result;
25fe55af 4740
b18215fc 4741#ifdef emacs
cc9b4df2
KH
4742 int charpos;
4743 gl_state.object = re_match_object;
99633e97 4744 charpos = SYNTAX_TABLE_BYTE_TO_CHAR (POS_AS_IN_BUFFER (pos));
cc9b4df2 4745 SETUP_SYNTAX_TABLE_FOR_OBJECT (re_match_object, charpos, 1);
b18215fc
RS
4746#endif
4747
4bb91c68
SM
4748 result = re_match_2_internal (bufp, (re_char*) string1, size1,
4749 (re_char*) string2, size2,
cc9b4df2 4750 pos, regs, stop);
0b32bf0e 4751#if defined C_ALLOCA && !defined REGEX_MALLOC
fa9a63c5 4752 alloca (0);
a60198e5 4753#endif
fa9a63c5
RM
4754 return result;
4755}
c0f9ea08 4756WEAK_ALIAS (__re_match_2, re_match_2)
fa9a63c5
RM
4757
4758/* This is a separate function so that we can force an alloca cleanup
25fe55af 4759 afterwards. */
fa9a63c5
RM
4760static int
4761re_match_2_internal (bufp, string1, size1, string2, size2, pos, regs, stop)
4762 struct re_pattern_buffer *bufp;
66f0296e 4763 re_char *string1, *string2;
fa9a63c5
RM
4764 int size1, size2;
4765 int pos;
4766 struct re_registers *regs;
4767 int stop;
4768{
4769 /* General temporaries. */
4770 int mcnt;
01618498 4771 size_t reg;
66f0296e 4772 boolean not;
fa9a63c5
RM
4773
4774 /* Just past the end of the corresponding string. */
66f0296e 4775 re_char *end1, *end2;
fa9a63c5
RM
4776
4777 /* Pointers into string1 and string2, just past the last characters in
25fe55af 4778 each to consider matching. */
66f0296e 4779 re_char *end_match_1, *end_match_2;
fa9a63c5
RM
4780
4781 /* Where we are in the data, and the end of the current string. */
66f0296e 4782 re_char *d, *dend;
5e69f11e 4783
99633e97
SM
4784 /* Used sometimes to remember where we were before starting matching
4785 an operator so that we can go back in case of failure. This "atomic"
4786 behavior of matching opcodes is indispensable to the correctness
4787 of the on_failure_keep_string_jump optimization. */
4788 re_char *dfail;
4789
fa9a63c5 4790 /* Where we are in the pattern, and the end of the pattern. */
01618498
SM
4791 re_char *p = bufp->buffer;
4792 re_char *pend = p + bufp->used;
fa9a63c5 4793
25fe55af 4794 /* We use this to map every character in the string. */
6676cb1c 4795 RE_TRANSLATE_TYPE translate = bufp->translate;
fa9a63c5 4796
25fe55af 4797 /* Nonzero if we have to concern multibyte character. */
2d1675e4 4798 const boolean multibyte = RE_MULTIBYTE_P (bufp);
b18215fc 4799
fa9a63c5
RM
4800 /* Failure point stack. Each place that can handle a failure further
4801 down the line pushes a failure point on this stack. It consists of
505bde11 4802 regstart, and regend for all registers corresponding to
fa9a63c5
RM
4803 the subexpressions we're currently inside, plus the number of such
4804 registers, and, finally, two char *'s. The first char * is where
4805 to resume scanning the pattern; the second one is where to resume
505bde11 4806 scanning the strings. */
25fe55af 4807#ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
fa9a63c5
RM
4808 fail_stack_type fail_stack;
4809#endif
4810#ifdef DEBUG
fa9a63c5
RM
4811 unsigned nfailure_points_pushed = 0, nfailure_points_popped = 0;
4812#endif
4813
0b32bf0e 4814#if defined REL_ALLOC && defined REGEX_MALLOC
fa9a63c5
RM
4815 /* This holds the pointer to the failure stack, when
4816 it is allocated relocatably. */
4817 fail_stack_elt_t *failure_stack_ptr;
99633e97 4818#endif
fa9a63c5
RM
4819
4820 /* We fill all the registers internally, independent of what we
25fe55af 4821 return, for use in backreferences. The number here includes
fa9a63c5 4822 an element for register zero. */
4bb91c68 4823 size_t num_regs = bufp->re_nsub + 1;
5e69f11e 4824
fa9a63c5
RM
4825 /* Information on the contents of registers. These are pointers into
4826 the input strings; they record just what was matched (on this
4827 attempt) by a subexpression part of the pattern, that is, the
4828 regnum-th regstart pointer points to where in the pattern we began
4829 matching and the regnum-th regend points to right after where we
4830 stopped matching the regnum-th subexpression. (The zeroth register
4831 keeps track of what the whole pattern matches.) */
4832#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
66f0296e 4833 re_char **regstart, **regend;
fa9a63c5
RM
4834#endif
4835
fa9a63c5 4836 /* The following record the register info as found in the above
5e69f11e 4837 variables when we find a match better than any we've seen before.
fa9a63c5
RM
4838 This happens as we backtrack through the failure points, which in
4839 turn happens only if we have not yet matched the entire string. */
4840 unsigned best_regs_set = false;
4841#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
66f0296e 4842 re_char **best_regstart, **best_regend;
fa9a63c5 4843#endif
5e69f11e 4844
fa9a63c5
RM
4845 /* Logically, this is `best_regend[0]'. But we don't want to have to
4846 allocate space for that if we're not allocating space for anything
25fe55af 4847 else (see below). Also, we never need info about register 0 for
fa9a63c5
RM
4848 any of the other register vectors, and it seems rather a kludge to
4849 treat `best_regend' differently than the rest. So we keep track of
4850 the end of the best match so far in a separate variable. We
4851 initialize this to NULL so that when we backtrack the first time
4852 and need to test it, it's not garbage. */
66f0296e 4853 re_char *match_end = NULL;
fa9a63c5 4854
fa9a63c5
RM
4855#ifdef DEBUG
4856 /* Counts the total number of registers pushed. */
5e69f11e 4857 unsigned num_regs_pushed = 0;
fa9a63c5
RM
4858#endif
4859
4860 DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
5e69f11e 4861
fa9a63c5 4862 INIT_FAIL_STACK ();
5e69f11e 4863
fa9a63c5
RM
4864#ifdef MATCH_MAY_ALLOCATE
4865 /* Do not bother to initialize all the register variables if there are
4866 no groups in the pattern, as it takes a fair amount of time. If
4867 there are groups, we include space for register 0 (the whole
4868 pattern), even though we never use it, since it simplifies the
4869 array indexing. We should fix this. */
4870 if (bufp->re_nsub)
4871 {
66f0296e
SM
4872 regstart = REGEX_TALLOC (num_regs, re_char *);
4873 regend = REGEX_TALLOC (num_regs, re_char *);
4874 best_regstart = REGEX_TALLOC (num_regs, re_char *);
4875 best_regend = REGEX_TALLOC (num_regs, re_char *);
fa9a63c5 4876
505bde11 4877 if (!(regstart && regend && best_regstart && best_regend))
25fe55af
RS
4878 {
4879 FREE_VARIABLES ();
4880 return -2;
4881 }
fa9a63c5
RM
4882 }
4883 else
4884 {
4885 /* We must initialize all our variables to NULL, so that
25fe55af 4886 `FREE_VARIABLES' doesn't try to free them. */
505bde11 4887 regstart = regend = best_regstart = best_regend = NULL;
fa9a63c5
RM
4888 }
4889#endif /* MATCH_MAY_ALLOCATE */
4890
4891 /* The starting position is bogus. */
4892 if (pos < 0 || pos > size1 + size2)
4893 {
4894 FREE_VARIABLES ();
4895 return -1;
4896 }
5e69f11e 4897
fa9a63c5
RM
4898 /* Initialize subexpression text positions to -1 to mark ones that no
4899 start_memory/stop_memory has been seen for. Also initialize the
4900 register information struct. */
01618498
SM
4901 for (reg = 1; reg < num_regs; reg++)
4902 regstart[reg] = regend[reg] = NULL;
99633e97 4903
fa9a63c5 4904 /* We move `string1' into `string2' if the latter's empty -- but not if
25fe55af 4905 `string1' is null. */
fa9a63c5
RM
4906 if (size2 == 0 && string1 != NULL)
4907 {
4908 string2 = string1;
4909 size2 = size1;
4910 string1 = 0;
4911 size1 = 0;
4912 }
4913 end1 = string1 + size1;
4914 end2 = string2 + size2;
4915
5e69f11e 4916 /* `p' scans through the pattern as `d' scans through the data.
fa9a63c5
RM
4917 `dend' is the end of the input string that `d' points within. `d'
4918 is advanced into the following input string whenever necessary, but
4919 this happens before fetching; therefore, at the beginning of the
4920 loop, `d' can be pointing at the end of a string, but it cannot
4921 equal `string2'. */
419d1c74 4922 if (pos >= size1)
fa9a63c5 4923 {
419d1c74
SM
4924 /* Only match within string2. */
4925 d = string2 + pos - size1;
4926 dend = end_match_2 = string2 + stop - size1;
4927 end_match_1 = end1; /* Just to give it a value. */
fa9a63c5
RM
4928 }
4929 else
4930 {
f1ad044f 4931 if (stop < size1)
419d1c74
SM
4932 {
4933 /* Only match within string1. */
4934 end_match_1 = string1 + stop;
4935 /* BEWARE!
4936 When we reach end_match_1, PREFETCH normally switches to string2.
4937 But in the present case, this means that just doing a PREFETCH
4938 makes us jump from `stop' to `gap' within the string.
4939 What we really want here is for the search to stop as
4940 soon as we hit end_match_1. That's why we set end_match_2
4941 to end_match_1 (since PREFETCH fails as soon as we hit
4942 end_match_2). */
4943 end_match_2 = end_match_1;
4944 }
4945 else
f1ad044f
SM
4946 { /* It's important to use this code when stop == size so that
4947 moving `d' from end1 to string2 will not prevent the d == dend
4948 check from catching the end of string. */
419d1c74
SM
4949 end_match_1 = end1;
4950 end_match_2 = string2 + stop - size1;
4951 }
4952 d = string1 + pos;
4953 dend = end_match_1;
fa9a63c5
RM
4954 }
4955
4956 DEBUG_PRINT1 ("The compiled pattern is: ");
4957 DEBUG_PRINT_COMPILED_PATTERN (bufp, p, pend);
4958 DEBUG_PRINT1 ("The string to match is: `");
4959 DEBUG_PRINT_DOUBLE_STRING (d, string1, size1, string2, size2);
4960 DEBUG_PRINT1 ("'\n");
5e69f11e 4961
25fe55af 4962 /* This loops over pattern commands. It exits by returning from the
fa9a63c5
RM
4963 function if the match is complete, or it drops through if the match
4964 fails at this starting point in the input data. */
4965 for (;;)
4966 {
505bde11 4967 DEBUG_PRINT2 ("\n%p: ", p);
fa9a63c5
RM
4968
4969 if (p == pend)
4970 { /* End of pattern means we might have succeeded. */
25fe55af 4971 DEBUG_PRINT1 ("end of pattern ... ");
5e69f11e 4972
fa9a63c5 4973 /* If we haven't matched the entire string, and we want the
25fe55af
RS
4974 longest match, try backtracking. */
4975 if (d != end_match_2)
fa9a63c5
RM
4976 {
4977 /* 1 if this match ends in the same string (string1 or string2)
4978 as the best previous match. */
5e69f11e 4979 boolean same_str_p = (FIRST_STRING_P (match_end)
99633e97 4980 == FIRST_STRING_P (d));
fa9a63c5
RM
4981 /* 1 if this match is the best seen so far. */
4982 boolean best_match_p;
4983
4984 /* AIX compiler got confused when this was combined
25fe55af 4985 with the previous declaration. */
fa9a63c5
RM
4986 if (same_str_p)
4987 best_match_p = d > match_end;
4988 else
99633e97 4989 best_match_p = !FIRST_STRING_P (d);
fa9a63c5 4990
25fe55af
RS
4991 DEBUG_PRINT1 ("backtracking.\n");
4992
4993 if (!FAIL_STACK_EMPTY ())
4994 { /* More failure points to try. */
4995
4996 /* If exceeds best match so far, save it. */
4997 if (!best_regs_set || best_match_p)
4998 {
4999 best_regs_set = true;
5000 match_end = d;
5001
5002 DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
5003
01618498 5004 for (reg = 1; reg < num_regs; reg++)
25fe55af 5005 {
01618498
SM
5006 best_regstart[reg] = regstart[reg];
5007 best_regend[reg] = regend[reg];
25fe55af
RS
5008 }
5009 }
5010 goto fail;
5011 }
5012
5013 /* If no failure points, don't restore garbage. And if
5014 last match is real best match, don't restore second
5015 best one. */
5016 else if (best_regs_set && !best_match_p)
5017 {
5018 restore_best_regs:
5019 /* Restore best match. It may happen that `dend ==
5020 end_match_1' while the restored d is in string2.
5021 For example, the pattern `x.*y.*z' against the
5022 strings `x-' and `y-z-', if the two strings are
5023 not consecutive in memory. */
5024 DEBUG_PRINT1 ("Restoring best registers.\n");
5025
5026 d = match_end;
5027 dend = ((d >= string1 && d <= end1)
5028 ? end_match_1 : end_match_2);
fa9a63c5 5029
01618498 5030 for (reg = 1; reg < num_regs; reg++)
fa9a63c5 5031 {
01618498
SM
5032 regstart[reg] = best_regstart[reg];
5033 regend[reg] = best_regend[reg];
fa9a63c5 5034 }
25fe55af
RS
5035 }
5036 } /* d != end_match_2 */
fa9a63c5
RM
5037
5038 succeed_label:
25fe55af 5039 DEBUG_PRINT1 ("Accepting match.\n");
fa9a63c5 5040
25fe55af
RS
5041 /* If caller wants register contents data back, do it. */
5042 if (regs && !bufp->no_sub)
fa9a63c5 5043 {
25fe55af
RS
5044 /* Have the register data arrays been allocated? */
5045 if (bufp->regs_allocated == REGS_UNALLOCATED)
5046 { /* No. So allocate them with malloc. We need one
5047 extra element beyond `num_regs' for the `-1' marker
5048 GNU code uses. */
5049 regs->num_regs = MAX (RE_NREGS, num_regs + 1);
5050 regs->start = TALLOC (regs->num_regs, regoff_t);
5051 regs->end = TALLOC (regs->num_regs, regoff_t);
5052 if (regs->start == NULL || regs->end == NULL)
fa9a63c5
RM
5053 {
5054 FREE_VARIABLES ();
5055 return -2;
5056 }
25fe55af
RS
5057 bufp->regs_allocated = REGS_REALLOCATE;
5058 }
5059 else if (bufp->regs_allocated == REGS_REALLOCATE)
5060 { /* Yes. If we need more elements than were already
5061 allocated, reallocate them. If we need fewer, just
5062 leave it alone. */
5063 if (regs->num_regs < num_regs + 1)
5064 {
5065 regs->num_regs = num_regs + 1;
5066 RETALLOC (regs->start, regs->num_regs, regoff_t);
5067 RETALLOC (regs->end, regs->num_regs, regoff_t);
5068 if (regs->start == NULL || regs->end == NULL)
fa9a63c5
RM
5069 {
5070 FREE_VARIABLES ();
5071 return -2;
5072 }
25fe55af
RS
5073 }
5074 }
5075 else
fa9a63c5
RM
5076 {
5077 /* These braces fend off a "empty body in an else-statement"
25fe55af 5078 warning under GCC when assert expands to nothing. */
fa9a63c5
RM
5079 assert (bufp->regs_allocated == REGS_FIXED);
5080 }
5081
25fe55af
RS
5082 /* Convert the pointer data in `regstart' and `regend' to
5083 indices. Register zero has to be set differently,
5084 since we haven't kept track of any info for it. */
5085 if (regs->num_regs > 0)
5086 {
5087 regs->start[0] = pos;
99633e97 5088 regs->end[0] = POINTER_TO_OFFSET (d);
25fe55af 5089 }
5e69f11e 5090
25fe55af
RS
5091 /* Go through the first `min (num_regs, regs->num_regs)'
5092 registers, since that is all we initialized. */
01618498 5093 for (reg = 1; reg < MIN (num_regs, regs->num_regs); reg++)
fa9a63c5 5094 {
01618498
SM
5095 if (REG_UNSET (regstart[reg]) || REG_UNSET (regend[reg]))
5096 regs->start[reg] = regs->end[reg] = -1;
25fe55af
RS
5097 else
5098 {
01618498
SM
5099 regs->start[reg]
5100 = (regoff_t) POINTER_TO_OFFSET (regstart[reg]);
5101 regs->end[reg]
5102 = (regoff_t) POINTER_TO_OFFSET (regend[reg]);
25fe55af 5103 }
fa9a63c5 5104 }
5e69f11e 5105
25fe55af
RS
5106 /* If the regs structure we return has more elements than
5107 were in the pattern, set the extra elements to -1. If
5108 we (re)allocated the registers, this is the case,
5109 because we always allocate enough to have at least one
5110 -1 at the end. */
01618498
SM
5111 for (reg = num_regs; reg < regs->num_regs; reg++)
5112 regs->start[reg] = regs->end[reg] = -1;
fa9a63c5
RM
5113 } /* regs && !bufp->no_sub */
5114
25fe55af
RS
5115 DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
5116 nfailure_points_pushed, nfailure_points_popped,
5117 nfailure_points_pushed - nfailure_points_popped);
5118 DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed);
fa9a63c5 5119
99633e97 5120 mcnt = POINTER_TO_OFFSET (d) - pos;
fa9a63c5 5121
25fe55af 5122 DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt);
fa9a63c5 5123
25fe55af
RS
5124 FREE_VARIABLES ();
5125 return mcnt;
5126 }
fa9a63c5 5127
25fe55af 5128 /* Otherwise match next pattern command. */
fa9a63c5
RM
5129 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
5130 {
25fe55af
RS
5131 /* Ignore these. Used to ignore the n of succeed_n's which
5132 currently have n == 0. */
5133 case no_op:
5134 DEBUG_PRINT1 ("EXECUTING no_op.\n");
5135 break;
fa9a63c5
RM
5136
5137 case succeed:
25fe55af 5138 DEBUG_PRINT1 ("EXECUTING succeed.\n");
fa9a63c5
RM
5139 goto succeed_label;
5140
25fe55af
RS
5141 /* Match the next n pattern characters exactly. The following
5142 byte in the pattern defines n, and the n bytes after that
5143 are the characters to match. */
fa9a63c5
RM
5144 case exactn:
5145 mcnt = *p++;
25fe55af 5146 DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt);
fa9a63c5 5147
99633e97
SM
5148 /* Remember the start point to rollback upon failure. */
5149 dfail = d;
5150
25fe55af
RS
5151 /* This is written out as an if-else so we don't waste time
5152 testing `translate' inside the loop. */
28703c16 5153 if (RE_TRANSLATE_P (translate))
fa9a63c5 5154 {
e934739e
RS
5155 if (multibyte)
5156 do
5157 {
5158 int pat_charlen, buf_charlen;
e71b1971 5159 unsigned int pat_ch, buf_ch;
e934739e
RS
5160
5161 PREFETCH ();
5162 pat_ch = STRING_CHAR_AND_LENGTH (p, pend - p, pat_charlen);
5163 buf_ch = STRING_CHAR_AND_LENGTH (d, dend - d, buf_charlen);
5164
5165 if (RE_TRANSLATE (translate, buf_ch)
5166 != pat_ch)
99633e97
SM
5167 {
5168 d = dfail;
5169 goto fail;
5170 }
e934739e
RS
5171
5172 p += pat_charlen;
5173 d += buf_charlen;
5174 mcnt -= pat_charlen;
5175 }
5176 while (mcnt > 0);
5177 else
e934739e
RS
5178 do
5179 {
5180 PREFETCH ();
66f0296e 5181 if (RE_TRANSLATE (translate, *d) != *p++)
99633e97
SM
5182 {
5183 d = dfail;
5184 goto fail;
5185 }
33c46939 5186 d++;
e934739e
RS
5187 }
5188 while (--mcnt);
fa9a63c5
RM
5189 }
5190 else
5191 {
5192 do
5193 {
5194 PREFETCH ();
99633e97
SM
5195 if (*d++ != *p++)
5196 {
5197 d = dfail;
5198 goto fail;
5199 }
fa9a63c5
RM
5200 }
5201 while (--mcnt);
5202 }
25fe55af 5203 break;
fa9a63c5
RM
5204
5205
25fe55af 5206 /* Match any character except possibly a newline or a null. */
fa9a63c5 5207 case anychar:
e934739e
RS
5208 {
5209 int buf_charlen;
01618498 5210 re_wchar_t buf_ch;
fa9a63c5 5211
e934739e 5212 DEBUG_PRINT1 ("EXECUTING anychar.\n");
fa9a63c5 5213
e934739e 5214 PREFETCH ();
2d1675e4 5215 buf_ch = RE_STRING_CHAR_AND_LENGTH (d, dend - d, buf_charlen);
e934739e
RS
5216 buf_ch = TRANSLATE (buf_ch);
5217
5218 if ((!(bufp->syntax & RE_DOT_NEWLINE)
5219 && buf_ch == '\n')
5220 || ((bufp->syntax & RE_DOT_NOT_NULL)
5221 && buf_ch == '\000'))
5222 goto fail;
5223
e934739e
RS
5224 DEBUG_PRINT2 (" Matched `%d'.\n", *d);
5225 d += buf_charlen;
5226 }
fa9a63c5
RM
5227 break;
5228
5229
5230 case charset:
5231 case charset_not:
5232 {
b18215fc 5233 register unsigned int c;
fa9a63c5 5234 boolean not = (re_opcode_t) *(p - 1) == charset_not;
b18215fc
RS
5235 int len;
5236
5237 /* Start of actual range_table, or end of bitmap if there is no
5238 range table. */
01618498 5239 re_char *range_table;
b18215fc 5240
96cc36cc 5241 /* Nonzero if there is a range table. */
b18215fc
RS
5242 int range_table_exists;
5243
96cc36cc
RS
5244 /* Number of ranges of range table. This is not included
5245 in the initial byte-length of the command. */
5246 int count = 0;
fa9a63c5 5247
25fe55af 5248 DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : "");
fa9a63c5 5249
b18215fc 5250 range_table_exists = CHARSET_RANGE_TABLE_EXISTS_P (&p[-1]);
96cc36cc 5251
b18215fc 5252 if (range_table_exists)
96cc36cc
RS
5253 {
5254 range_table = CHARSET_RANGE_TABLE (&p[-1]); /* Past the bitmap. */
5255 EXTRACT_NUMBER_AND_INCR (count, range_table);
5256 }
b18215fc 5257
2d1675e4
SM
5258 PREFETCH ();
5259 c = RE_STRING_CHAR_AND_LENGTH (d, dend - d, len);
5260 c = TRANSLATE (c); /* The character to match. */
b18215fc
RS
5261
5262 if (SINGLE_BYTE_CHAR_P (c))
5263 { /* Lookup bitmap. */
b18215fc
RS
5264 /* Cast to `unsigned' instead of `unsigned char' in
5265 case the bit list is a full 32 bytes long. */
5266 if (c < (unsigned) (CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH)
96cc36cc
RS
5267 && p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
5268 not = !not;
b18215fc 5269 }
96cc36cc 5270#ifdef emacs
b18215fc 5271 else if (range_table_exists)
96cc36cc
RS
5272 {
5273 int class_bits = CHARSET_RANGE_TABLE_BITS (&p[-1]);
5274
14473664
SM
5275 if ( (class_bits & BIT_LOWER && ISLOWER (c))
5276 | (class_bits & BIT_MULTIBYTE)
96cc36cc
RS
5277 | (class_bits & BIT_PUNCT && ISPUNCT (c))
5278 | (class_bits & BIT_SPACE && ISSPACE (c))
5279 | (class_bits & BIT_UPPER && ISUPPER (c))
5280 | (class_bits & BIT_WORD && ISWORD (c)))
5281 not = !not;
5282 else
5283 CHARSET_LOOKUP_RANGE_TABLE_RAW (not, c, range_table, count);
5284 }
5285#endif /* emacs */
fa9a63c5 5286
96cc36cc
RS
5287 if (range_table_exists)
5288 p = CHARSET_RANGE_TABLE_END (range_table, count);
5289 else
5290 p += CHARSET_BITMAP_SIZE (&p[-1]) + 1;
fa9a63c5
RM
5291
5292 if (!not) goto fail;
5e69f11e 5293
b18215fc 5294 d += len;
fa9a63c5
RM
5295 break;
5296 }
5297
5298
25fe55af 5299 /* The beginning of a group is represented by start_memory.
505bde11 5300 The argument is the register number. The text
25fe55af
RS
5301 matched within the group is recorded (in the internal
5302 registers data structure) under the register number. */
5303 case start_memory:
505bde11
SM
5304 DEBUG_PRINT2 ("EXECUTING start_memory %d:\n", *p);
5305
5306 /* In case we need to undo this operation (via backtracking). */
5307 PUSH_FAILURE_REG ((unsigned int)*p);
fa9a63c5 5308
25fe55af 5309 regstart[*p] = d;
4bb91c68 5310 regend[*p] = NULL; /* probably unnecessary. -sm */
fa9a63c5
RM
5311 DEBUG_PRINT2 (" regstart: %d\n", POINTER_TO_OFFSET (regstart[*p]));
5312
25fe55af 5313 /* Move past the register number and inner group count. */
505bde11 5314 p += 1;
25fe55af 5315 break;
fa9a63c5
RM
5316
5317
25fe55af 5318 /* The stop_memory opcode represents the end of a group. Its
505bde11 5319 argument is the same as start_memory's: the register number. */
fa9a63c5 5320 case stop_memory:
505bde11
SM
5321 DEBUG_PRINT2 ("EXECUTING stop_memory %d:\n", *p);
5322
5323 assert (!REG_UNSET (regstart[*p]));
5324 /* Strictly speaking, there should be code such as:
177c0ea7 5325
0b32bf0e 5326 assert (REG_UNSET (regend[*p]));
505bde11
SM
5327 PUSH_FAILURE_REGSTOP ((unsigned int)*p);
5328
5329 But the only info to be pushed is regend[*p] and it is known to
5330 be UNSET, so there really isn't anything to push.
5331 Not pushing anything, on the other hand deprives us from the
5332 guarantee that regend[*p] is UNSET since undoing this operation
5333 will not reset its value properly. This is not important since
5334 the value will only be read on the next start_memory or at
5335 the very end and both events can only happen if this stop_memory
5336 is *not* undone. */
fa9a63c5 5337
25fe55af 5338 regend[*p] = d;
fa9a63c5
RM
5339 DEBUG_PRINT2 (" regend: %d\n", POINTER_TO_OFFSET (regend[*p]));
5340
25fe55af 5341 /* Move past the register number and the inner group count. */
505bde11 5342 p += 1;
25fe55af 5343 break;
fa9a63c5
RM
5344
5345
5346 /* \<digit> has been turned into a `duplicate' command which is
25fe55af
RS
5347 followed by the numeric value of <digit> as the register number. */
5348 case duplicate:
fa9a63c5 5349 {
66f0296e 5350 register re_char *d2, *dend2;
25fe55af 5351 int regno = *p++; /* Get which register to match against. */
fa9a63c5
RM
5352 DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno);
5353
25fe55af
RS
5354 /* Can't back reference a group which we've never matched. */
5355 if (REG_UNSET (regstart[regno]) || REG_UNSET (regend[regno]))
5356 goto fail;
5e69f11e 5357
25fe55af
RS
5358 /* Where in input to try to start matching. */
5359 d2 = regstart[regno];
5e69f11e 5360
99633e97
SM
5361 /* Remember the start point to rollback upon failure. */
5362 dfail = d;
5363
25fe55af
RS
5364 /* Where to stop matching; if both the place to start and
5365 the place to stop matching are in the same string, then
5366 set to the place to stop, otherwise, for now have to use
5367 the end of the first string. */
fa9a63c5 5368
25fe55af 5369 dend2 = ((FIRST_STRING_P (regstart[regno])
fa9a63c5
RM
5370 == FIRST_STRING_P (regend[regno]))
5371 ? regend[regno] : end_match_1);
5372 for (;;)
5373 {
5374 /* If necessary, advance to next segment in register
25fe55af 5375 contents. */
fa9a63c5
RM
5376 while (d2 == dend2)
5377 {
5378 if (dend2 == end_match_2) break;
5379 if (dend2 == regend[regno]) break;
5380
25fe55af
RS
5381 /* End of string1 => advance to string2. */
5382 d2 = string2;
5383 dend2 = regend[regno];
fa9a63c5
RM
5384 }
5385 /* At end of register contents => success */
5386 if (d2 == dend2) break;
5387
5388 /* If necessary, advance to next segment in data. */
5389 PREFETCH ();
5390
5391 /* How many characters left in this segment to match. */
5392 mcnt = dend - d;
5e69f11e 5393
fa9a63c5 5394 /* Want how many consecutive characters we can match in
25fe55af
RS
5395 one shot, so, if necessary, adjust the count. */
5396 if (mcnt > dend2 - d2)
fa9a63c5 5397 mcnt = dend2 - d2;
5e69f11e 5398
fa9a63c5 5399 /* Compare that many; failure if mismatch, else move
25fe55af 5400 past them. */
28703c16 5401 if (RE_TRANSLATE_P (translate)
2d1675e4 5402 ? bcmp_translate (d, d2, mcnt, translate, multibyte)
4bb91c68 5403 : memcmp (d, d2, mcnt))
99633e97
SM
5404 {
5405 d = dfail;
5406 goto fail;
5407 }
fa9a63c5 5408 d += mcnt, d2 += mcnt;
fa9a63c5
RM
5409 }
5410 }
5411 break;
5412
5413
25fe55af 5414 /* begline matches the empty string at the beginning of the string
c0f9ea08 5415 (unless `not_bol' is set in `bufp'), and after newlines. */
fa9a63c5 5416 case begline:
25fe55af 5417 DEBUG_PRINT1 ("EXECUTING begline.\n");
5e69f11e 5418
25fe55af
RS
5419 if (AT_STRINGS_BEG (d))
5420 {
5421 if (!bufp->not_bol) break;
5422 }
419d1c74 5423 else
25fe55af 5424 {
419d1c74
SM
5425 unsigned char c;
5426 GET_CHAR_BEFORE_2 (c, d, string1, end1, string2, end2);
c0f9ea08 5427 if (c == '\n')
419d1c74 5428 break;
25fe55af
RS
5429 }
5430 /* In all other cases, we fail. */
5431 goto fail;
fa9a63c5
RM
5432
5433
25fe55af 5434 /* endline is the dual of begline. */
fa9a63c5 5435 case endline:
25fe55af 5436 DEBUG_PRINT1 ("EXECUTING endline.\n");
fa9a63c5 5437
25fe55af
RS
5438 if (AT_STRINGS_END (d))
5439 {
5440 if (!bufp->not_eol) break;
5441 }
f1ad044f 5442 else
25fe55af 5443 {
f1ad044f 5444 PREFETCH_NOLIMIT ();
c0f9ea08 5445 if (*d == '\n')
f1ad044f 5446 break;
25fe55af
RS
5447 }
5448 goto fail;
fa9a63c5
RM
5449
5450
5451 /* Match at the very beginning of the data. */
25fe55af
RS
5452 case begbuf:
5453 DEBUG_PRINT1 ("EXECUTING begbuf.\n");
5454 if (AT_STRINGS_BEG (d))
5455 break;
5456 goto fail;
fa9a63c5
RM
5457
5458
5459 /* Match at the very end of the data. */
25fe55af
RS
5460 case endbuf:
5461 DEBUG_PRINT1 ("EXECUTING endbuf.\n");
fa9a63c5
RM
5462 if (AT_STRINGS_END (d))
5463 break;
25fe55af 5464 goto fail;
5e69f11e 5465
5e69f11e 5466
25fe55af
RS
5467 /* on_failure_keep_string_jump is used to optimize `.*\n'. It
5468 pushes NULL as the value for the string on the stack. Then
505bde11 5469 `POP_FAILURE_POINT' will keep the current value for the
25fe55af
RS
5470 string, instead of restoring it. To see why, consider
5471 matching `foo\nbar' against `.*\n'. The .* matches the foo;
5472 then the . fails against the \n. But the next thing we want
5473 to do is match the \n against the \n; if we restored the
5474 string value, we would be back at the foo.
5475
5476 Because this is used only in specific cases, we don't need to
5477 check all the things that `on_failure_jump' does, to make
5478 sure the right things get saved on the stack. Hence we don't
5479 share its code. The only reason to push anything on the
5480 stack at all is that otherwise we would have to change
5481 `anychar's code to do something besides goto fail in this
5482 case; that seems worse than this. */
5483 case on_failure_keep_string_jump:
505bde11
SM
5484 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5485 DEBUG_PRINT3 ("EXECUTING on_failure_keep_string_jump %d (to %p):\n",
5486 mcnt, p + mcnt);
fa9a63c5 5487
505bde11
SM
5488 PUSH_FAILURE_POINT (p - 3, NULL);
5489 break;
5490
0683b6fa
SM
5491 /* A nasty loop is introduced by the non-greedy *? and +?.
5492 With such loops, the stack only ever contains one failure point
5493 at a time, so that a plain on_failure_jump_loop kind of
5494 cycle detection cannot work. Worse yet, such a detection
5495 can not only fail to detect a cycle, but it can also wrongly
5496 detect a cycle (between different instantiations of the same
6df42991 5497 loop).
0683b6fa
SM
5498 So the method used for those nasty loops is a little different:
5499 We use a special cycle-detection-stack-frame which is pushed
5500 when the on_failure_jump_nastyloop failure-point is *popped*.
5501 This special frame thus marks the beginning of one iteration
5502 through the loop and we can hence easily check right here
5503 whether something matched between the beginning and the end of
5504 the loop. */
5505 case on_failure_jump_nastyloop:
5506 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5507 DEBUG_PRINT3 ("EXECUTING on_failure_jump_nastyloop %d (to %p):\n",
5508 mcnt, p + mcnt);
5509
5510 assert ((re_opcode_t)p[-4] == no_op);
6df42991
SM
5511 {
5512 int cycle = 0;
5513 CHECK_INFINITE_LOOP (p - 4, d);
5514 if (!cycle)
5515 /* If there's a cycle, just continue without pushing
5516 this failure point. The failure point is the "try again"
5517 option, which shouldn't be tried.
5518 We want (x?)*?y\1z to match both xxyz and xxyxz. */
5519 PUSH_FAILURE_POINT (p - 3, d);
5520 }
0683b6fa
SM
5521 break;
5522
4e8a9132
SM
5523 /* Simple loop detecting on_failure_jump: just check on the
5524 failure stack if the same spot was already hit earlier. */
505bde11
SM
5525 case on_failure_jump_loop:
5526 on_failure:
5527 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5528 DEBUG_PRINT3 ("EXECUTING on_failure_jump_loop %d (to %p):\n",
5529 mcnt, p + mcnt);
6df42991
SM
5530 {
5531 int cycle = 0;
5532 CHECK_INFINITE_LOOP (p - 3, d);
5533 if (cycle)
5534 /* If there's a cycle, get out of the loop, as if the matching
5535 had failed. We used to just `goto fail' here, but that was
5536 aborting the search a bit too early: we want to keep the
5537 empty-loop-match and keep matching after the loop.
5538 We want (x?)*y\1z to match both xxyz and xxyxz. */
5539 p += mcnt;
5540 else
5541 PUSH_FAILURE_POINT (p - 3, d);
5542 }
25fe55af 5543 break;
fa9a63c5
RM
5544
5545
5546 /* Uses of on_failure_jump:
5e69f11e 5547
25fe55af
RS
5548 Each alternative starts with an on_failure_jump that points
5549 to the beginning of the next alternative. Each alternative
5550 except the last ends with a jump that in effect jumps past
5551 the rest of the alternatives. (They really jump to the
5552 ending jump of the following alternative, because tensioning
5553 these jumps is a hassle.)
fa9a63c5 5554
25fe55af
RS
5555 Repeats start with an on_failure_jump that points past both
5556 the repetition text and either the following jump or
5557 pop_failure_jump back to this on_failure_jump. */
fa9a63c5 5558 case on_failure_jump:
5b370c2b 5559 IMMEDIATE_QUIT_CHECK;
25fe55af 5560 EXTRACT_NUMBER_AND_INCR (mcnt, p);
505bde11
SM
5561 DEBUG_PRINT3 ("EXECUTING on_failure_jump %d (to %p):\n",
5562 mcnt, p + mcnt);
25fe55af 5563
505bde11 5564 PUSH_FAILURE_POINT (p -3, d);
25fe55af
RS
5565 break;
5566
4e8a9132 5567 /* This operation is used for greedy *.
505bde11
SM
5568 Compare the beginning of the repeat with what in the
5569 pattern follows its end. If we can establish that there
5570 is nothing that they would both match, i.e., that we
5571 would have to backtrack because of (as in, e.g., `a*a')
5572 then we can use a non-backtracking loop based on
4e8a9132 5573 on_failure_keep_string_jump instead of on_failure_jump. */
505bde11 5574 case on_failure_jump_smart:
5b370c2b 5575 IMMEDIATE_QUIT_CHECK;
25fe55af 5576 EXTRACT_NUMBER_AND_INCR (mcnt, p);
505bde11
SM
5577 DEBUG_PRINT3 ("EXECUTING on_failure_jump_smart %d (to %p).\n",
5578 mcnt, p + mcnt);
25fe55af 5579 {
01618498 5580 re_char *p1 = p; /* Next operation. */
6dcf2d0e
SM
5581 /* Here, we discard `const', making re_match non-reentrant. */
5582 unsigned char *p2 = (unsigned char*) p + mcnt; /* Jump dest. */
5583 unsigned char *p3 = (unsigned char*) p - 3; /* opcode location. */
fa9a63c5 5584
505bde11
SM
5585 p -= 3; /* Reset so that we will re-execute the
5586 instruction once it's been changed. */
fa9a63c5 5587
4e8a9132
SM
5588 EXTRACT_NUMBER (mcnt, p2 - 2);
5589
5590 /* Ensure this is a indeed the trivial kind of loop
5591 we are expecting. */
5592 assert (skip_one_char (p1) == p2 - 3);
5593 assert ((re_opcode_t) p2[-3] == jump && p2 + mcnt == p);
99633e97 5594 DEBUG_STATEMENT (debug += 2);
505bde11 5595 if (mutually_exclusive_p (bufp, p1, p2))
fa9a63c5 5596 {
505bde11 5597 /* Use a fast `on_failure_keep_string_jump' loop. */
4e8a9132 5598 DEBUG_PRINT1 (" smart exclusive => fast loop.\n");
01618498 5599 *p3 = (unsigned char) on_failure_keep_string_jump;
4e8a9132 5600 STORE_NUMBER (p2 - 2, mcnt + 3);
25fe55af 5601 }
505bde11 5602 else
fa9a63c5 5603 {
505bde11
SM
5604 /* Default to a safe `on_failure_jump' loop. */
5605 DEBUG_PRINT1 (" smart default => slow loop.\n");
01618498 5606 *p3 = (unsigned char) on_failure_jump;
fa9a63c5 5607 }
99633e97 5608 DEBUG_STATEMENT (debug -= 2);
25fe55af 5609 }
505bde11 5610 break;
25fe55af
RS
5611
5612 /* Unconditionally jump (without popping any failure points). */
5613 case jump:
fa9a63c5 5614 unconditional_jump:
5b370c2b 5615 IMMEDIATE_QUIT_CHECK;
fa9a63c5 5616 EXTRACT_NUMBER_AND_INCR (mcnt, p); /* Get the amount to jump. */
25fe55af
RS
5617 DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt);
5618 p += mcnt; /* Do the jump. */
505bde11 5619 DEBUG_PRINT2 ("(to %p).\n", p);
25fe55af
RS
5620 break;
5621
5622
25fe55af
RS
5623 /* Have to succeed matching what follows at least n times.
5624 After that, handle like `on_failure_jump'. */
5625 case succeed_n:
01618498 5626 /* Signedness doesn't matter since we only compare MCNT to 0. */
25fe55af
RS
5627 EXTRACT_NUMBER (mcnt, p + 2);
5628 DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt);
5e69f11e 5629
dc1e502d
SM
5630 /* Originally, mcnt is how many times we HAVE to succeed. */
5631 if (mcnt != 0)
25fe55af 5632 {
6dcf2d0e
SM
5633 /* Here, we discard `const', making re_match non-reentrant. */
5634 unsigned char *p2 = (unsigned char*) p + 2; /* counter loc. */
dc1e502d 5635 mcnt--;
01618498
SM
5636 p += 4;
5637 PUSH_NUMBER (p2, mcnt);
25fe55af 5638 }
dc1e502d
SM
5639 else
5640 /* The two bytes encoding mcnt == 0 are two no_op opcodes. */
5641 goto on_failure;
25fe55af
RS
5642 break;
5643
5644 case jump_n:
01618498 5645 /* Signedness doesn't matter since we only compare MCNT to 0. */
25fe55af
RS
5646 EXTRACT_NUMBER (mcnt, p + 2);
5647 DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt);
5648
5649 /* Originally, this is how many times we CAN jump. */
dc1e502d 5650 if (mcnt != 0)
25fe55af 5651 {
6dcf2d0e
SM
5652 /* Here, we discard `const', making re_match non-reentrant. */
5653 unsigned char *p2 = (unsigned char*) p + 2; /* counter loc. */
dc1e502d 5654 mcnt--;
01618498 5655 PUSH_NUMBER (p2, mcnt);
dc1e502d 5656 goto unconditional_jump;
25fe55af
RS
5657 }
5658 /* If don't have to jump any more, skip over the rest of command. */
5e69f11e
RM
5659 else
5660 p += 4;
25fe55af 5661 break;
5e69f11e 5662
fa9a63c5
RM
5663 case set_number_at:
5664 {
01618498 5665 unsigned char *p2; /* Location of the counter. */
25fe55af 5666 DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
fa9a63c5 5667
25fe55af 5668 EXTRACT_NUMBER_AND_INCR (mcnt, p);
6dcf2d0e
SM
5669 /* Here, we discard `const', making re_match non-reentrant. */
5670 p2 = (unsigned char*) p + mcnt;
01618498 5671 /* Signedness doesn't matter since we only copy MCNT's bits . */
25fe55af 5672 EXTRACT_NUMBER_AND_INCR (mcnt, p);
01618498
SM
5673 DEBUG_PRINT3 (" Setting %p to %d.\n", p2, mcnt);
5674 PUSH_NUMBER (p2, mcnt);
25fe55af
RS
5675 break;
5676 }
9121ca40
KH
5677
5678 case wordbound:
66f0296e
SM
5679 case notwordbound:
5680 not = (re_opcode_t) *(p - 1) == notwordbound;
5681 DEBUG_PRINT2 ("EXECUTING %swordbound.\n", not?"not":"");
fa9a63c5 5682
99633e97 5683 /* We SUCCEED (or FAIL) in one of the following cases: */
9121ca40 5684
b18215fc 5685 /* Case 1: D is at the beginning or the end of string. */
9121ca40 5686 if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
66f0296e 5687 not = !not;
b18215fc
RS
5688 else
5689 {
5690 /* C1 is the character before D, S1 is the syntax of C1, C2
5691 is the character at D, and S2 is the syntax of C2. */
01618498
SM
5692 re_wchar_t c1, c2;
5693 int s1, s2;
b18215fc 5694#ifdef emacs
2d1675e4
SM
5695 int offset = PTR_TO_OFFSET (d - 1);
5696 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
5d967c7a 5697 UPDATE_SYNTAX_TABLE (charpos);
25fe55af 5698#endif
66f0296e 5699 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
b18215fc
RS
5700 s1 = SYNTAX (c1);
5701#ifdef emacs
5d967c7a 5702 UPDATE_SYNTAX_TABLE_FORWARD (charpos + 1);
25fe55af 5703#endif
f1ad044f 5704 PREFETCH_NOLIMIT ();
2d1675e4 5705 c2 = RE_STRING_CHAR (d, dend - d);
b18215fc
RS
5706 s2 = SYNTAX (c2);
5707
5708 if (/* Case 2: Only one of S1 and S2 is Sword. */
5709 ((s1 == Sword) != (s2 == Sword))
5710 /* Case 3: Both of S1 and S2 are Sword, and macro
25fe55af 5711 WORD_BOUNDARY_P (C1, C2) returns nonzero. */
b18215fc 5712 || ((s1 == Sword) && WORD_BOUNDARY_P (c1, c2)))
66f0296e
SM
5713 not = !not;
5714 }
5715 if (not)
9121ca40 5716 break;
b18215fc 5717 else
9121ca40 5718 goto fail;
fa9a63c5
RM
5719
5720 case wordbeg:
25fe55af 5721 DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
fa9a63c5 5722
b18215fc
RS
5723 /* We FAIL in one of the following cases: */
5724
25fe55af 5725 /* Case 1: D is at the end of string. */
b18215fc 5726 if (AT_STRINGS_END (d))
99633e97 5727 goto fail;
b18215fc
RS
5728 else
5729 {
5730 /* C1 is the character before D, S1 is the syntax of C1, C2
5731 is the character at D, and S2 is the syntax of C2. */
01618498
SM
5732 re_wchar_t c1, c2;
5733 int s1, s2;
fa9a63c5 5734#ifdef emacs
2d1675e4
SM
5735 int offset = PTR_TO_OFFSET (d);
5736 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
92432794 5737 UPDATE_SYNTAX_TABLE (charpos);
25fe55af 5738#endif
99633e97 5739 PREFETCH ();
2d1675e4 5740 c2 = RE_STRING_CHAR (d, dend - d);
b18215fc 5741 s2 = SYNTAX (c2);
177c0ea7 5742
b18215fc
RS
5743 /* Case 2: S2 is not Sword. */
5744 if (s2 != Sword)
5745 goto fail;
5746
5747 /* Case 3: D is not at the beginning of string ... */
5748 if (!AT_STRINGS_BEG (d))
5749 {
5750 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
5751#ifdef emacs
5d967c7a 5752 UPDATE_SYNTAX_TABLE_BACKWARD (charpos - 1);
25fe55af 5753#endif
b18215fc
RS
5754 s1 = SYNTAX (c1);
5755
5756 /* ... and S1 is Sword, and WORD_BOUNDARY_P (C1, C2)
25fe55af 5757 returns 0. */
b18215fc
RS
5758 if ((s1 == Sword) && !WORD_BOUNDARY_P (c1, c2))
5759 goto fail;
5760 }
5761 }
e318085a
RS
5762 break;
5763
b18215fc 5764 case wordend:
25fe55af 5765 DEBUG_PRINT1 ("EXECUTING wordend.\n");
b18215fc
RS
5766
5767 /* We FAIL in one of the following cases: */
5768
5769 /* Case 1: D is at the beginning of string. */
5770 if (AT_STRINGS_BEG (d))
e318085a 5771 goto fail;
b18215fc
RS
5772 else
5773 {
5774 /* C1 is the character before D, S1 is the syntax of C1, C2
5775 is the character at D, and S2 is the syntax of C2. */
01618498
SM
5776 re_wchar_t c1, c2;
5777 int s1, s2;
5d967c7a 5778#ifdef emacs
2d1675e4
SM
5779 int offset = PTR_TO_OFFSET (d) - 1;
5780 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
92432794 5781 UPDATE_SYNTAX_TABLE (charpos);
5d967c7a 5782#endif
99633e97 5783 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
b18215fc
RS
5784 s1 = SYNTAX (c1);
5785
5786 /* Case 2: S1 is not Sword. */
5787 if (s1 != Sword)
5788 goto fail;
5789
5790 /* Case 3: D is not at the end of string ... */
5791 if (!AT_STRINGS_END (d))
5792 {
f1ad044f 5793 PREFETCH_NOLIMIT ();
2d1675e4 5794 c2 = RE_STRING_CHAR (d, dend - d);
5d967c7a
RS
5795#ifdef emacs
5796 UPDATE_SYNTAX_TABLE_FORWARD (charpos);
5797#endif
b18215fc
RS
5798 s2 = SYNTAX (c2);
5799
5800 /* ... and S2 is Sword, and WORD_BOUNDARY_P (C1, C2)
25fe55af 5801 returns 0. */
b18215fc 5802 if ((s2 == Sword) && !WORD_BOUNDARY_P (c1, c2))
25fe55af 5803 goto fail;
b18215fc
RS
5804 }
5805 }
e318085a
RS
5806 break;
5807
669fa600
SM
5808 case symbeg:
5809 DEBUG_PRINT1 ("EXECUTING symbeg.\n");
5810
5811 /* We FAIL in one of the following cases: */
5812
5813 /* Case 1: D is at the end of string. */
5814 if (AT_STRINGS_END (d))
5815 goto fail;
5816 else
5817 {
5818 /* C1 is the character before D, S1 is the syntax of C1, C2
5819 is the character at D, and S2 is the syntax of C2. */
5820 re_wchar_t c1, c2;
5821 int s1, s2;
5822#ifdef emacs
5823 int offset = PTR_TO_OFFSET (d);
5824 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
5825 UPDATE_SYNTAX_TABLE (charpos);
5826#endif
5827 PREFETCH ();
5828 c2 = RE_STRING_CHAR (d, dend - d);
5829 s2 = SYNTAX (c2);
5830
5831 /* Case 2: S2 is neither Sword nor Ssymbol. */
5832 if (s2 != Sword && s2 != Ssymbol)
5833 goto fail;
5834
5835 /* Case 3: D is not at the beginning of string ... */
5836 if (!AT_STRINGS_BEG (d))
5837 {
5838 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
5839#ifdef emacs
5840 UPDATE_SYNTAX_TABLE_BACKWARD (charpos - 1);
5841#endif
5842 s1 = SYNTAX (c1);
5843
5844 /* ... and S1 is Sword or Ssymbol. */
5845 if (s1 == Sword || s1 == Ssymbol)
5846 goto fail;
5847 }
5848 }
5849 break;
5850
5851 case symend:
5852 DEBUG_PRINT1 ("EXECUTING symend.\n");
5853
5854 /* We FAIL in one of the following cases: */
5855
5856 /* Case 1: D is at the beginning of string. */
5857 if (AT_STRINGS_BEG (d))
5858 goto fail;
5859 else
5860 {
5861 /* C1 is the character before D, S1 is the syntax of C1, C2
5862 is the character at D, and S2 is the syntax of C2. */
5863 re_wchar_t c1, c2;
5864 int s1, s2;
5865#ifdef emacs
5866 int offset = PTR_TO_OFFSET (d) - 1;
5867 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
5868 UPDATE_SYNTAX_TABLE (charpos);
5869#endif
5870 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
5871 s1 = SYNTAX (c1);
5872
5873 /* Case 2: S1 is neither Ssymbol nor Sword. */
5874 if (s1 != Sword && s1 != Ssymbol)
5875 goto fail;
5876
5877 /* Case 3: D is not at the end of string ... */
5878 if (!AT_STRINGS_END (d))
5879 {
5880 PREFETCH_NOLIMIT ();
5881 c2 = RE_STRING_CHAR (d, dend - d);
5882#ifdef emacs
5883 UPDATE_SYNTAX_TABLE_FORWARD (charpos);
5884#endif
5885 s2 = SYNTAX (c2);
5886
5887 /* ... and S2 is Sword or Ssymbol. */
5888 if (s2 == Sword || s2 == Ssymbol)
5889 goto fail;
5890 }
5891 }
5892 break;
5893
fa9a63c5 5894 case syntaxspec:
1fb352e0
SM
5895 case notsyntaxspec:
5896 not = (re_opcode_t) *(p - 1) == notsyntaxspec;
fa9a63c5 5897 mcnt = *p++;
1fb352e0 5898 DEBUG_PRINT3 ("EXECUTING %ssyntaxspec %d.\n", not?"not":"", mcnt);
fa9a63c5 5899 PREFETCH ();
b18215fc
RS
5900#ifdef emacs
5901 {
2d1675e4
SM
5902 int offset = PTR_TO_OFFSET (d);
5903 int pos1 = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
b18215fc
RS
5904 UPDATE_SYNTAX_TABLE (pos1);
5905 }
25fe55af 5906#endif
b18215fc 5907 {
01618498
SM
5908 int len;
5909 re_wchar_t c;
b18215fc 5910
2d1675e4 5911 c = RE_STRING_CHAR_AND_LENGTH (d, dend - d, len);
b18215fc 5912
990b2375 5913 if ((SYNTAX (c) != (enum syntaxcode) mcnt) ^ not)
1fb352e0 5914 goto fail;
b18215fc
RS
5915 d += len;
5916 }
fa9a63c5
RM
5917 break;
5918
b18215fc 5919#ifdef emacs
1fb352e0
SM
5920 case before_dot:
5921 DEBUG_PRINT1 ("EXECUTING before_dot.\n");
5922 if (PTR_BYTE_POS (d) >= PT_BYTE)
fa9a63c5 5923 goto fail;
b18215fc
RS
5924 break;
5925
1fb352e0
SM
5926 case at_dot:
5927 DEBUG_PRINT1 ("EXECUTING at_dot.\n");
5928 if (PTR_BYTE_POS (d) != PT_BYTE)
5929 goto fail;
5930 break;
b18215fc 5931
1fb352e0
SM
5932 case after_dot:
5933 DEBUG_PRINT1 ("EXECUTING after_dot.\n");
5934 if (PTR_BYTE_POS (d) <= PT_BYTE)
5935 goto fail;
e318085a 5936 break;
fa9a63c5 5937
1fb352e0 5938 case categoryspec:
b18215fc 5939 case notcategoryspec:
1fb352e0 5940 not = (re_opcode_t) *(p - 1) == notcategoryspec;
b18215fc 5941 mcnt = *p++;
1fb352e0 5942 DEBUG_PRINT3 ("EXECUTING %scategoryspec %d.\n", not?"not":"", mcnt);
b18215fc
RS
5943 PREFETCH ();
5944 {
01618498
SM
5945 int len;
5946 re_wchar_t c;
5947
2d1675e4 5948 c = RE_STRING_CHAR_AND_LENGTH (d, dend - d, len);
b18215fc 5949
1fb352e0 5950 if ((!CHAR_HAS_CATEGORY (c, mcnt)) ^ not)
b18215fc
RS
5951 goto fail;
5952 d += len;
5953 }
fa9a63c5 5954 break;
5e69f11e 5955
1fb352e0 5956#endif /* emacs */
5e69f11e 5957
0b32bf0e
SM
5958 default:
5959 abort ();
fa9a63c5 5960 }
b18215fc 5961 continue; /* Successfully executed one pattern command; keep going. */
fa9a63c5
RM
5962
5963
5964 /* We goto here if a matching operation fails. */
5965 fail:
5b370c2b 5966 IMMEDIATE_QUIT_CHECK;
fa9a63c5 5967 if (!FAIL_STACK_EMPTY ())
505bde11 5968 {
01618498 5969 re_char *str, *pat;
505bde11 5970 /* A restart point is known. Restore to that state. */
0b32bf0e
SM
5971 DEBUG_PRINT1 ("\nFAIL:\n");
5972 POP_FAILURE_POINT (str, pat);
505bde11
SM
5973 switch (SWITCH_ENUM_CAST ((re_opcode_t) *pat++))
5974 {
5975 case on_failure_keep_string_jump:
5976 assert (str == NULL);
5977 goto continue_failure_jump;
5978
0683b6fa
SM
5979 case on_failure_jump_nastyloop:
5980 assert ((re_opcode_t)pat[-2] == no_op);
5981 PUSH_FAILURE_POINT (pat - 2, str);
5982 /* Fallthrough */
5983
505bde11
SM
5984 case on_failure_jump_loop:
5985 case on_failure_jump:
5986 case succeed_n:
5987 d = str;
5988 continue_failure_jump:
5989 EXTRACT_NUMBER_AND_INCR (mcnt, pat);
5990 p = pat + mcnt;
5991 break;
b18215fc 5992
0683b6fa
SM
5993 case no_op:
5994 /* A special frame used for nastyloops. */
5995 goto fail;
5996
505bde11
SM
5997 default:
5998 abort();
5999 }
fa9a63c5 6000
505bde11 6001 assert (p >= bufp->buffer && p <= pend);
b18215fc 6002
0b32bf0e 6003 if (d >= string1 && d <= end1)
fa9a63c5 6004 dend = end_match_1;
0b32bf0e 6005 }
fa9a63c5 6006 else
0b32bf0e 6007 break; /* Matching at this starting point really fails. */
fa9a63c5
RM
6008 } /* for (;;) */
6009
6010 if (best_regs_set)
6011 goto restore_best_regs;
6012
6013 FREE_VARIABLES ();
6014
b18215fc 6015 return -1; /* Failure to match. */
fa9a63c5
RM
6016} /* re_match_2 */
6017\f
6018/* Subroutine definitions for re_match_2. */
6019
fa9a63c5
RM
6020/* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
6021 bytes; nonzero otherwise. */
5e69f11e 6022
fa9a63c5 6023static int
2d1675e4
SM
6024bcmp_translate (s1, s2, len, translate, multibyte)
6025 re_char *s1, *s2;
fa9a63c5 6026 register int len;
6676cb1c 6027 RE_TRANSLATE_TYPE translate;
2d1675e4 6028 const int multibyte;
fa9a63c5 6029{
2d1675e4
SM
6030 register re_char *p1 = s1, *p2 = s2;
6031 re_char *p1_end = s1 + len;
6032 re_char *p2_end = s2 + len;
e934739e 6033
4bb91c68
SM
6034 /* FIXME: Checking both p1 and p2 presumes that the two strings might have
6035 different lengths, but relying on a single `len' would break this. -sm */
6036 while (p1 < p1_end && p2 < p2_end)
fa9a63c5 6037 {
e934739e 6038 int p1_charlen, p2_charlen;
01618498 6039 re_wchar_t p1_ch, p2_ch;
e934739e 6040
2d1675e4
SM
6041 p1_ch = RE_STRING_CHAR_AND_LENGTH (p1, p1_end - p1, p1_charlen);
6042 p2_ch = RE_STRING_CHAR_AND_LENGTH (p2, p2_end - p2, p2_charlen);
e934739e
RS
6043
6044 if (RE_TRANSLATE (translate, p1_ch)
6045 != RE_TRANSLATE (translate, p2_ch))
bc192b5b 6046 return 1;
e934739e
RS
6047
6048 p1 += p1_charlen, p2 += p2_charlen;
fa9a63c5 6049 }
e934739e
RS
6050
6051 if (p1 != p1_end || p2 != p2_end)
6052 return 1;
6053
fa9a63c5
RM
6054 return 0;
6055}
6056\f
6057/* Entry points for GNU code. */
6058
6059/* re_compile_pattern is the GNU regular expression compiler: it
6060 compiles PATTERN (of length SIZE) and puts the result in BUFP.
6061 Returns 0 if the pattern was valid, otherwise an error string.
5e69f11e 6062
fa9a63c5
RM
6063 Assumes the `allocated' (and perhaps `buffer') and `translate' fields
6064 are set in BUFP on entry.
5e69f11e 6065
b18215fc 6066 We call regex_compile to do the actual compilation. */
fa9a63c5
RM
6067
6068const char *
6069re_compile_pattern (pattern, length, bufp)
6070 const char *pattern;
0b32bf0e 6071 size_t length;
fa9a63c5
RM
6072 struct re_pattern_buffer *bufp;
6073{
6074 reg_errcode_t ret;
5e69f11e 6075
fa9a63c5
RM
6076 /* GNU code is written to assume at least RE_NREGS registers will be set
6077 (and at least one extra will be -1). */
6078 bufp->regs_allocated = REGS_UNALLOCATED;
5e69f11e 6079
fa9a63c5
RM
6080 /* And GNU code determines whether or not to get register information
6081 by passing null for the REGS argument to re_match, etc., not by
6082 setting no_sub. */
6083 bufp->no_sub = 0;
5e69f11e 6084
4bb91c68 6085 ret = regex_compile ((re_char*) pattern, length, re_syntax_options, bufp);
fa9a63c5
RM
6086
6087 if (!ret)
6088 return NULL;
6089 return gettext (re_error_msgid[(int) ret]);
5e69f11e 6090}
c0f9ea08 6091WEAK_ALIAS (__re_compile_pattern, re_compile_pattern)
fa9a63c5 6092\f
b18215fc
RS
6093/* Entry points compatible with 4.2 BSD regex library. We don't define
6094 them unless specifically requested. */
fa9a63c5 6095
0b32bf0e 6096#if defined _REGEX_RE_COMP || defined _LIBC
fa9a63c5
RM
6097
6098/* BSD has one and only one pattern buffer. */
6099static struct re_pattern_buffer re_comp_buf;
6100
6101char *
0b32bf0e 6102# ifdef _LIBC
48afdd44
RM
6103/* Make these definitions weak in libc, so POSIX programs can redefine
6104 these names if they don't use our functions, and still use
6105 regcomp/regexec below without link errors. */
6106weak_function
0b32bf0e 6107# endif
fa9a63c5
RM
6108re_comp (s)
6109 const char *s;
6110{
6111 reg_errcode_t ret;
5e69f11e 6112
fa9a63c5
RM
6113 if (!s)
6114 {
6115 if (!re_comp_buf.buffer)
0b32bf0e 6116 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
a60198e5 6117 return (char *) gettext ("No previous regular expression");
fa9a63c5
RM
6118 return 0;
6119 }
6120
6121 if (!re_comp_buf.buffer)
6122 {
6123 re_comp_buf.buffer = (unsigned char *) malloc (200);
6124 if (re_comp_buf.buffer == NULL)
0b32bf0e
SM
6125 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
6126 return (char *) gettext (re_error_msgid[(int) REG_ESPACE]);
fa9a63c5
RM
6127 re_comp_buf.allocated = 200;
6128
6129 re_comp_buf.fastmap = (char *) malloc (1 << BYTEWIDTH);
6130 if (re_comp_buf.fastmap == NULL)
a60198e5
SM
6131 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
6132 return (char *) gettext (re_error_msgid[(int) REG_ESPACE]);
fa9a63c5
RM
6133 }
6134
6135 /* Since `re_exec' always passes NULL for the `regs' argument, we
6136 don't need to initialize the pattern buffer fields which affect it. */
6137
fa9a63c5 6138 ret = regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf);
5e69f11e 6139
fa9a63c5
RM
6140 if (!ret)
6141 return NULL;
6142
6143 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
6144 return (char *) gettext (re_error_msgid[(int) ret]);
6145}
6146
6147
6148int
0b32bf0e 6149# ifdef _LIBC
48afdd44 6150weak_function
0b32bf0e 6151# endif
fa9a63c5
RM
6152re_exec (s)
6153 const char *s;
6154{
6155 const int len = strlen (s);
6156 return
6157 0 <= re_search (&re_comp_buf, s, len, 0, len, (struct re_registers *) 0);
6158}
6159#endif /* _REGEX_RE_COMP */
6160\f
6161/* POSIX.2 functions. Don't define these for Emacs. */
6162
6163#ifndef emacs
6164
6165/* regcomp takes a regular expression as a string and compiles it.
6166
b18215fc 6167 PREG is a regex_t *. We do not expect any fields to be initialized,
fa9a63c5
RM
6168 since POSIX says we shouldn't. Thus, we set
6169
6170 `buffer' to the compiled pattern;
6171 `used' to the length of the compiled pattern;
6172 `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
6173 REG_EXTENDED bit in CFLAGS is set; otherwise, to
6174 RE_SYNTAX_POSIX_BASIC;
c0f9ea08
SM
6175 `fastmap' to an allocated space for the fastmap;
6176 `fastmap_accurate' to zero;
fa9a63c5
RM
6177 `re_nsub' to the number of subexpressions in PATTERN.
6178
6179 PATTERN is the address of the pattern string.
6180
6181 CFLAGS is a series of bits which affect compilation.
6182
6183 If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
6184 use POSIX basic syntax.
6185
6186 If REG_NEWLINE is set, then . and [^...] don't match newline.
6187 Also, regexec will try a match beginning after every newline.
6188
6189 If REG_ICASE is set, then we considers upper- and lowercase
6190 versions of letters to be equivalent when matching.
6191
6192 If REG_NOSUB is set, then when PREG is passed to regexec, that
6193 routine will report only success or failure, and nothing about the
6194 registers.
6195
b18215fc 6196 It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for
fa9a63c5
RM
6197 the return codes and their meanings.) */
6198
6199int
6200regcomp (preg, pattern, cflags)
ada30c0e
SM
6201 regex_t *__restrict preg;
6202 const char *__restrict pattern;
fa9a63c5
RM
6203 int cflags;
6204{
6205 reg_errcode_t ret;
4bb91c68 6206 reg_syntax_t syntax
fa9a63c5
RM
6207 = (cflags & REG_EXTENDED) ?
6208 RE_SYNTAX_POSIX_EXTENDED : RE_SYNTAX_POSIX_BASIC;
6209
6210 /* regex_compile will allocate the space for the compiled pattern. */
6211 preg->buffer = 0;
6212 preg->allocated = 0;
6213 preg->used = 0;
5e69f11e 6214
c0f9ea08
SM
6215 /* Try to allocate space for the fastmap. */
6216 preg->fastmap = (char *) malloc (1 << BYTEWIDTH);
5e69f11e 6217
fa9a63c5
RM
6218 if (cflags & REG_ICASE)
6219 {
6220 unsigned i;
5e69f11e 6221
6676cb1c
RS
6222 preg->translate
6223 = (RE_TRANSLATE_TYPE) malloc (CHAR_SET_SIZE
6224 * sizeof (*(RE_TRANSLATE_TYPE)0));
fa9a63c5 6225 if (preg->translate == NULL)
0b32bf0e 6226 return (int) REG_ESPACE;
fa9a63c5
RM
6227
6228 /* Map uppercase characters to corresponding lowercase ones. */
6229 for (i = 0; i < CHAR_SET_SIZE; i++)
4bb91c68 6230 preg->translate[i] = ISUPPER (i) ? TOLOWER (i) : i;
fa9a63c5
RM
6231 }
6232 else
6233 preg->translate = NULL;
6234
6235 /* If REG_NEWLINE is set, newlines are treated differently. */
6236 if (cflags & REG_NEWLINE)
6237 { /* REG_NEWLINE implies neither . nor [^...] match newline. */
6238 syntax &= ~RE_DOT_NEWLINE;
6239 syntax |= RE_HAT_LISTS_NOT_NEWLINE;
fa9a63c5
RM
6240 }
6241 else
c0f9ea08 6242 syntax |= RE_NO_NEWLINE_ANCHOR;
fa9a63c5
RM
6243
6244 preg->no_sub = !!(cflags & REG_NOSUB);
6245
5e69f11e 6246 /* POSIX says a null character in the pattern terminates it, so we
fa9a63c5 6247 can use strlen here in compiling the pattern. */
4bb91c68 6248 ret = regex_compile ((re_char*) pattern, strlen (pattern), syntax, preg);
5e69f11e 6249
fa9a63c5
RM
6250 /* POSIX doesn't distinguish between an unmatched open-group and an
6251 unmatched close-group: both are REG_EPAREN. */
c0f9ea08
SM
6252 if (ret == REG_ERPAREN)
6253 ret = REG_EPAREN;
6254
6255 if (ret == REG_NOERROR && preg->fastmap)
6256 { /* Compute the fastmap now, since regexec cannot modify the pattern
6257 buffer. */
6258 re_compile_fastmap (preg);
6259 if (preg->can_be_null)
6260 { /* The fastmap can't be used anyway. */
6261 free (preg->fastmap);
6262 preg->fastmap = NULL;
6263 }
6264 }
fa9a63c5
RM
6265 return (int) ret;
6266}
c0f9ea08 6267WEAK_ALIAS (__regcomp, regcomp)
fa9a63c5
RM
6268
6269
6270/* regexec searches for a given pattern, specified by PREG, in the
6271 string STRING.
5e69f11e 6272
fa9a63c5 6273 If NMATCH is zero or REG_NOSUB was set in the cflags argument to
b18215fc 6274 `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at
fa9a63c5
RM
6275 least NMATCH elements, and we set them to the offsets of the
6276 corresponding matched substrings.
5e69f11e 6277
fa9a63c5
RM
6278 EFLAGS specifies `execution flags' which affect matching: if
6279 REG_NOTBOL is set, then ^ does not match at the beginning of the
6280 string; if REG_NOTEOL is set, then $ does not match at the end.
5e69f11e 6281
fa9a63c5
RM
6282 We return 0 if we find a match and REG_NOMATCH if not. */
6283
6284int
6285regexec (preg, string, nmatch, pmatch, eflags)
ada30c0e
SM
6286 const regex_t *__restrict preg;
6287 const char *__restrict string;
5e69f11e 6288 size_t nmatch;
9f2dbe01 6289 regmatch_t pmatch[__restrict_arr];
fa9a63c5
RM
6290 int eflags;
6291{
6292 int ret;
6293 struct re_registers regs;
6294 regex_t private_preg;
6295 int len = strlen (string);
c0f9ea08 6296 boolean want_reg_info = !preg->no_sub && nmatch > 0 && pmatch;
fa9a63c5
RM
6297
6298 private_preg = *preg;
5e69f11e 6299
fa9a63c5
RM
6300 private_preg.not_bol = !!(eflags & REG_NOTBOL);
6301 private_preg.not_eol = !!(eflags & REG_NOTEOL);
5e69f11e 6302
fa9a63c5
RM
6303 /* The user has told us exactly how many registers to return
6304 information about, via `nmatch'. We have to pass that on to the
b18215fc 6305 matching routines. */
fa9a63c5 6306 private_preg.regs_allocated = REGS_FIXED;
5e69f11e 6307
fa9a63c5
RM
6308 if (want_reg_info)
6309 {
6310 regs.num_regs = nmatch;
4bb91c68
SM
6311 regs.start = TALLOC (nmatch * 2, regoff_t);
6312 if (regs.start == NULL)
0b32bf0e 6313 return (int) REG_NOMATCH;
4bb91c68 6314 regs.end = regs.start + nmatch;
fa9a63c5
RM
6315 }
6316
c0f9ea08
SM
6317 /* Instead of using not_eol to implement REG_NOTEOL, we could simply
6318 pass (&private_preg, string, len + 1, 0, len, ...) pretending the string
6319 was a little bit longer but still only matching the real part.
6320 This works because the `endline' will check for a '\n' and will find a
6321 '\0', correctly deciding that this is not the end of a line.
6322 But it doesn't work out so nicely for REG_NOTBOL, since we don't have
6323 a convenient '\0' there. For all we know, the string could be preceded
6324 by '\n' which would throw things off. */
6325
fa9a63c5
RM
6326 /* Perform the searching operation. */
6327 ret = re_search (&private_preg, string, len,
0b32bf0e
SM
6328 /* start: */ 0, /* range: */ len,
6329 want_reg_info ? &regs : (struct re_registers *) 0);
5e69f11e 6330
fa9a63c5
RM
6331 /* Copy the register information to the POSIX structure. */
6332 if (want_reg_info)
6333 {
6334 if (ret >= 0)
0b32bf0e
SM
6335 {
6336 unsigned r;
fa9a63c5 6337
0b32bf0e
SM
6338 for (r = 0; r < nmatch; r++)
6339 {
6340 pmatch[r].rm_so = regs.start[r];
6341 pmatch[r].rm_eo = regs.end[r];
6342 }
6343 }
fa9a63c5 6344
b18215fc 6345 /* If we needed the temporary register info, free the space now. */
fa9a63c5 6346 free (regs.start);
fa9a63c5
RM
6347 }
6348
6349 /* We want zero return to mean success, unlike `re_search'. */
6350 return ret >= 0 ? (int) REG_NOERROR : (int) REG_NOMATCH;
6351}
c0f9ea08 6352WEAK_ALIAS (__regexec, regexec)
fa9a63c5
RM
6353
6354
6355/* Returns a message corresponding to an error code, ERRCODE, returned
6356 from either regcomp or regexec. We don't use PREG here. */
6357
6358size_t
6359regerror (errcode, preg, errbuf, errbuf_size)
6360 int errcode;
6361 const regex_t *preg;
6362 char *errbuf;
6363 size_t errbuf_size;
6364{
6365 const char *msg;
6366 size_t msg_size;
6367
6368 if (errcode < 0
6369 || errcode >= (sizeof (re_error_msgid) / sizeof (re_error_msgid[0])))
5e69f11e 6370 /* Only error codes returned by the rest of the code should be passed
b18215fc 6371 to this routine. If we are given anything else, or if other regex
fa9a63c5
RM
6372 code generates an invalid error code, then the program has a bug.
6373 Dump core so we can fix it. */
6374 abort ();
6375
6376 msg = gettext (re_error_msgid[errcode]);
6377
6378 msg_size = strlen (msg) + 1; /* Includes the null. */
5e69f11e 6379
fa9a63c5
RM
6380 if (errbuf_size != 0)
6381 {
6382 if (msg_size > errbuf_size)
0b32bf0e
SM
6383 {
6384 strncpy (errbuf, msg, errbuf_size - 1);
6385 errbuf[errbuf_size - 1] = 0;
6386 }
fa9a63c5 6387 else
0b32bf0e 6388 strcpy (errbuf, msg);
fa9a63c5
RM
6389 }
6390
6391 return msg_size;
6392}
c0f9ea08 6393WEAK_ALIAS (__regerror, regerror)
fa9a63c5
RM
6394
6395
6396/* Free dynamically allocated space used by PREG. */
6397
6398void
6399regfree (preg)
6400 regex_t *preg;
6401{
6402 if (preg->buffer != NULL)
6403 free (preg->buffer);
6404 preg->buffer = NULL;
5e69f11e 6405
fa9a63c5
RM
6406 preg->allocated = 0;
6407 preg->used = 0;
6408
6409 if (preg->fastmap != NULL)
6410 free (preg->fastmap);
6411 preg->fastmap = NULL;
6412 preg->fastmap_accurate = 0;
6413
6414 if (preg->translate != NULL)
6415 free (preg->translate);
6416 preg->translate = NULL;
6417}
c0f9ea08 6418WEAK_ALIAS (__regfree, regfree)
fa9a63c5
RM
6419
6420#endif /* not emacs */
ab5796a9
MB
6421
6422/* arch-tag: 4ffd68ba-2a9e-435b-a21a-018990f9eeb2
6423 (do not change this comment) */