(SETUP_SYNTAX_TABLE_FOR_OBJECT): FROM counts chars.
[bpt/emacs.git] / src / regex.c
CommitLineData
e318085a
RS
1/* Extended regular expression matching and search library, version
2 0.12. (Implements POSIX draft P10003.2/D11.2, except for
bc78d348
KB
3 internationalization features.)
4
b18215fc 5 Copyright (C) 1993, 1994, 1995, 1996, 1997 Free Software Foundation, Inc.
bc78d348 6
fa9a63c5
RM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
25fe55af 14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
fa9a63c5
RM
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
ba4a8e51 19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307,
25fe55af 20 USA. */
fa9a63c5
RM
21
22/* AIX requires this to be the first thing in the file. */
23#if defined (_AIX) && !defined (REGEX_MALLOC)
24 #pragma alloca
25#endif
26
68d96f02 27#undef _GNU_SOURCE
fa9a63c5
RM
28#define _GNU_SOURCE
29
25fe55af
RS
30/* Converts the pointer to the char to BEG-based offset from the start. */
31#define PTR_TO_OFFSET(d) \
b18215fc
RS
32 POS_AS_IN_BUFFER (MATCHING_IN_FIRST_STRING \
33 ? (d) - string1 : (d) - (string2 - size1))
34#define POS_AS_IN_BUFFER(p) ((p) + 1)
35
fa9a63c5
RM
36#ifdef HAVE_CONFIG_H
37#include <config.h>
38#endif
39
25fe55af 40/* We need this for `regex.h', and perhaps for the Emacs include files. */
fa9a63c5
RM
41#include <sys/types.h>
42
25fe55af 43/* This is for other GNU distributions with internationalized messages. */
fa9a63c5
RM
44#if HAVE_LIBINTL_H || defined (_LIBC)
45# include <libintl.h>
46#else
47# define gettext(msgid) (msgid)
48#endif
49
5e69f11e
RM
50#ifndef gettext_noop
51/* This define is so xgettext can find the internationalizable
52 strings. */
53#define gettext_noop(String) String
54#endif
55
fa9a63c5
RM
56/* The `emacs' switch turns on certain matching commands
57 that make sense only in Emacs. */
58#ifdef emacs
59
60#include "lisp.h"
61#include "buffer.h"
b18215fc
RS
62
63/* Make syntax table lookup grant data in gl_state. */
64#define SYNTAX_ENTRY_VIA_PROPERTY
65
fa9a63c5 66#include "syntax.h"
b18215fc
RS
67#include "charset.h"
68#include "category.h"
fa9a63c5 69
9abbd165
RS
70#define malloc xmalloc
71#define free xfree
72
fa9a63c5
RM
73#else /* not emacs */
74
75/* If we are not linking with Emacs proper,
76 we can't use the relocating allocator
77 even if config.h says that we can. */
78#undef REL_ALLOC
79
80#if defined (STDC_HEADERS) || defined (_LIBC)
81#include <stdlib.h>
82#else
83char *malloc ();
84char *realloc ();
85#endif
86
9e4ecb26 87/* When used in Emacs's lib-src, we need to get bzero and bcopy somehow.
25fe55af 88 If nothing else has been done, use the method below. */
9e4ecb26
KH
89#ifdef INHIBIT_STRING_HEADER
90#if !(defined (HAVE_BZERO) && defined (HAVE_BCOPY))
91#if !defined (bzero) && !defined (bcopy)
92#undef INHIBIT_STRING_HEADER
93#endif
94#endif
95#endif
96
97/* This is the normal way of making sure we have a bcopy and a bzero.
98 This is used in most programs--a few other programs avoid this
99 by defining INHIBIT_STRING_HEADER. */
fa9a63c5 100#ifndef INHIBIT_STRING_HEADER
7f998252 101#if defined (HAVE_STRING_H) || defined (STDC_HEADERS) || defined (_LIBC)
fa9a63c5
RM
102#include <string.h>
103#ifndef bcmp
104#define bcmp(s1, s2, n) memcmp ((s1), (s2), (n))
105#endif
106#ifndef bcopy
107#define bcopy(s, d, n) memcpy ((d), (s), (n))
108#endif
109#ifndef bzero
110#define bzero(s, n) memset ((s), 0, (n))
111#endif
112#else
113#include <strings.h>
114#endif
115#endif
116
117/* Define the syntax stuff for \<, \>, etc. */
118
119/* This must be nonzero for the wordchar and notwordchar pattern
120 commands in re_match_2. */
5e69f11e 121#ifndef Sword
fa9a63c5
RM
122#define Sword 1
123#endif
124
125#ifdef SWITCH_ENUM_BUG
126#define SWITCH_ENUM_CAST(x) ((int)(x))
127#else
128#define SWITCH_ENUM_CAST(x) (x)
129#endif
130
131#ifdef SYNTAX_TABLE
132
133extern char *re_syntax_table;
134
135#else /* not SYNTAX_TABLE */
136
137/* How many characters in the character set. */
138#define CHAR_SET_SIZE 256
139
140static char re_syntax_table[CHAR_SET_SIZE];
141
142static void
143init_syntax_once ()
144{
145 register int c;
146 static int done = 0;
147
148 if (done)
149 return;
150
151 bzero (re_syntax_table, sizeof re_syntax_table);
152
153 for (c = 'a'; c <= 'z'; c++)
154 re_syntax_table[c] = Sword;
155
156 for (c = 'A'; c <= 'Z'; c++)
157 re_syntax_table[c] = Sword;
158
159 for (c = '0'; c <= '9'; c++)
160 re_syntax_table[c] = Sword;
161
162 re_syntax_table['_'] = Sword;
163
164 done = 1;
165}
166
167#endif /* not SYNTAX_TABLE */
168
169#define SYNTAX(c) re_syntax_table[c]
170
e934739e 171/* Dummy macros for non-Emacs environments. */
b18215fc
RS
172#define BASE_LEADING_CODE_P(c) (0)
173#define WORD_BOUNDARY_P(c1, c2) (0)
174#define CHAR_HEAD_P(p) (1)
175#define SINGLE_BYTE_CHAR_P(c) (1)
176#define SAME_CHARSET_P(c1, c2) (1)
177#define MULTIBYTE_FORM_LENGTH(p, s) (1)
178#define STRING_CHAR(p, s) (*(p))
179#define STRING_CHAR_AND_LENGTH(p, s, actual_len) ((actual_len) = 1, *(p))
180#define GET_CHAR_AFTER_2(c, p, str1, end1, str2, end2) \
181 (c = ((p) == (end1) ? *(str2) : *(p)))
182#define GET_CHAR_BEFORE_2(c, p, str1, end1, str2, end2) \
183 (c = ((p) == (str2) ? *((end1) - 1) : *((p) - 1)))
fa9a63c5
RM
184#endif /* not emacs */
185\f
186/* Get the interface, including the syntax bits. */
187#include "regex.h"
188
189/* isalpha etc. are used for the character classes. */
190#include <ctype.h>
191
192/* Jim Meyering writes:
193
194 "... Some ctype macros are valid only for character codes that
195 isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when
196 using /bin/cc or gcc but without giving an ansi option). So, all
25fe55af 197 ctype uses should be through macros like ISPRINT... If
fa9a63c5
RM
198 STDC_HEADERS is defined, then autoconf has verified that the ctype
199 macros don't need to be guarded with references to isascii. ...
200 Defining isascii to 1 should let any compiler worth its salt
25fe55af 201 eliminate the && through constant folding." */
fa9a63c5
RM
202
203#if defined (STDC_HEADERS) || (!defined (isascii) && !defined (HAVE_ISASCII))
204#define ISASCII(c) 1
205#else
206#define ISASCII(c) isascii(c)
207#endif
208
209#ifdef isblank
210#define ISBLANK(c) (ISASCII (c) && isblank (c))
211#else
212#define ISBLANK(c) ((c) == ' ' || (c) == '\t')
213#endif
214#ifdef isgraph
215#define ISGRAPH(c) (ISASCII (c) && isgraph (c))
216#else
217#define ISGRAPH(c) (ISASCII (c) && isprint (c) && !isspace (c))
218#endif
219
220#define ISPRINT(c) (ISASCII (c) && isprint (c))
221#define ISDIGIT(c) (ISASCII (c) && isdigit (c))
222#define ISALNUM(c) (ISASCII (c) && isalnum (c))
223#define ISALPHA(c) (ISASCII (c) && isalpha (c))
224#define ISCNTRL(c) (ISASCII (c) && iscntrl (c))
225#define ISLOWER(c) (ISASCII (c) && islower (c))
226#define ISPUNCT(c) (ISASCII (c) && ispunct (c))
227#define ISSPACE(c) (ISASCII (c) && isspace (c))
228#define ISUPPER(c) (ISASCII (c) && isupper (c))
229#define ISXDIGIT(c) (ISASCII (c) && isxdigit (c))
230
231#ifndef NULL
075f06ec 232#define NULL (void *)0
fa9a63c5
RM
233#endif
234
235/* We remove any previous definition of `SIGN_EXTEND_CHAR',
236 since ours (we hope) works properly with all combinations of
237 machines, compilers, `char' and `unsigned char' argument types.
25fe55af 238 (Per Bothner suggested the basic approach.) */
fa9a63c5
RM
239#undef SIGN_EXTEND_CHAR
240#if __STDC__
241#define SIGN_EXTEND_CHAR(c) ((signed char) (c))
242#else /* not __STDC__ */
243/* As in Harbison and Steele. */
244#define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
245#endif
246\f
247/* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we
248 use `alloca' instead of `malloc'. This is because using malloc in
249 re_search* or re_match* could cause memory leaks when C-g is used in
250 Emacs; also, malloc is slower and causes storage fragmentation. On
5e69f11e
RM
251 the other hand, malloc is more portable, and easier to debug.
252
fa9a63c5
RM
253 Because we sometimes use alloca, some routines have to be macros,
254 not functions -- `alloca'-allocated space disappears at the end of the
255 function it is called in. */
256
257#ifdef REGEX_MALLOC
258
259#define REGEX_ALLOCATE malloc
260#define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
261#define REGEX_FREE free
262
263#else /* not REGEX_MALLOC */
264
265/* Emacs already defines alloca, sometimes. */
266#ifndef alloca
267
268/* Make alloca work the best possible way. */
269#ifdef __GNUC__
270#define alloca __builtin_alloca
271#else /* not __GNUC__ */
272#if HAVE_ALLOCA_H
273#include <alloca.h>
274#else /* not __GNUC__ or HAVE_ALLOCA_H */
f3c4387f 275#if 0 /* It is a bad idea to declare alloca. We always cast the result. */
25fe55af 276#ifndef _AIX /* Already did AIX, up at the top. */
fa9a63c5
RM
277char *alloca ();
278#endif /* not _AIX */
f3c4387f 279#endif
5e69f11e 280#endif /* not HAVE_ALLOCA_H */
fa9a63c5
RM
281#endif /* not __GNUC__ */
282
283#endif /* not alloca */
284
285#define REGEX_ALLOCATE alloca
286
287/* Assumes a `char *destination' variable. */
288#define REGEX_REALLOCATE(source, osize, nsize) \
289 (destination = (char *) alloca (nsize), \
290 bcopy (source, destination, osize), \
291 destination)
292
293/* No need to do anything to free, after alloca. */
c2e1680a 294#define REGEX_FREE(arg) ((void)0) /* Do nothing! But inhibit gcc warning. */
fa9a63c5
RM
295
296#endif /* not REGEX_MALLOC */
297
298/* Define how to allocate the failure stack. */
299
33487cc8 300#if defined (REL_ALLOC) && defined (REGEX_MALLOC)
4297555e 301
fa9a63c5
RM
302#define REGEX_ALLOCATE_STACK(size) \
303 r_alloc (&failure_stack_ptr, (size))
304#define REGEX_REALLOCATE_STACK(source, osize, nsize) \
305 r_re_alloc (&failure_stack_ptr, (nsize))
306#define REGEX_FREE_STACK(ptr) \
307 r_alloc_free (&failure_stack_ptr)
308
4297555e 309#else /* not using relocating allocator */
fa9a63c5
RM
310
311#ifdef REGEX_MALLOC
312
313#define REGEX_ALLOCATE_STACK malloc
314#define REGEX_REALLOCATE_STACK(source, osize, nsize) realloc (source, nsize)
315#define REGEX_FREE_STACK free
316
317#else /* not REGEX_MALLOC */
318
319#define REGEX_ALLOCATE_STACK alloca
320
321#define REGEX_REALLOCATE_STACK(source, osize, nsize) \
322 REGEX_REALLOCATE (source, osize, nsize)
25fe55af 323/* No need to explicitly free anything. */
fa9a63c5
RM
324#define REGEX_FREE_STACK(arg)
325
326#endif /* not REGEX_MALLOC */
4297555e 327#endif /* not using relocating allocator */
fa9a63c5
RM
328
329
330/* True if `size1' is non-NULL and PTR is pointing anywhere inside
331 `string1' or just past its end. This works if PTR is NULL, which is
332 a good thing. */
25fe55af 333#define FIRST_STRING_P(ptr) \
fa9a63c5
RM
334 (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
335
336/* (Re)Allocate N items of type T using malloc, or fail. */
337#define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
338#define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
339#define RETALLOC_IF(addr, n, t) \
340 if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t)
341#define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
342
25fe55af 343#define BYTEWIDTH 8 /* In bits. */
fa9a63c5
RM
344
345#define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
346
347#undef MAX
348#undef MIN
349#define MAX(a, b) ((a) > (b) ? (a) : (b))
350#define MIN(a, b) ((a) < (b) ? (a) : (b))
351
352typedef char boolean;
353#define false 0
354#define true 1
355
356static int re_match_2_internal ();
357\f
358/* These are the command codes that appear in compiled regular
25fe55af 359 expressions. Some opcodes are followed by argument bytes. A
fa9a63c5
RM
360 command code can specify any interpretation whatsoever for its
361 arguments. Zero bytes may appear in the compiled regular expression. */
362
363typedef enum
364{
365 no_op = 0,
366
25fe55af 367 /* Succeed right away--no more backtracking. */
fa9a63c5
RM
368 succeed,
369
25fe55af 370 /* Followed by one byte giving n, then by n literal bytes. */
fa9a63c5
RM
371 exactn,
372
25fe55af 373 /* Matches any (more or less) character. */
fa9a63c5
RM
374 anychar,
375
25fe55af
RS
376 /* Matches any one char belonging to specified set. First
377 following byte is number of bitmap bytes. Then come bytes
378 for a bitmap saying which chars are in. Bits in each byte
379 are ordered low-bit-first. A character is in the set if its
380 bit is 1. A character too large to have a bit in the map is
381 automatically not in the set. */
fa9a63c5
RM
382 charset,
383
25fe55af
RS
384 /* Same parameters as charset, but match any character that is
385 not one of those specified. */
fa9a63c5
RM
386 charset_not,
387
25fe55af
RS
388 /* Start remembering the text that is matched, for storing in a
389 register. Followed by one byte with the register number, in
390 the range 0 to one less than the pattern buffer's re_nsub
391 field. Then followed by one byte with the number of groups
392 inner to this one. (This last has to be part of the
393 start_memory only because we need it in the on_failure_jump
394 of re_match_2.) */
fa9a63c5
RM
395 start_memory,
396
25fe55af
RS
397 /* Stop remembering the text that is matched and store it in a
398 memory register. Followed by one byte with the register
399 number, in the range 0 to one less than `re_nsub' in the
400 pattern buffer, and one byte with the number of inner groups,
401 just like `start_memory'. (We need the number of inner
402 groups here because we don't have any easy way of finding the
403 corresponding start_memory when we're at a stop_memory.) */
fa9a63c5
RM
404 stop_memory,
405
25fe55af
RS
406 /* Match a duplicate of something remembered. Followed by one
407 byte containing the register number. */
fa9a63c5
RM
408 duplicate,
409
25fe55af 410 /* Fail unless at beginning of line. */
fa9a63c5
RM
411 begline,
412
25fe55af 413 /* Fail unless at end of line. */
fa9a63c5
RM
414 endline,
415
25fe55af
RS
416 /* Succeeds if at beginning of buffer (if emacs) or at beginning
417 of string to be matched (if not). */
fa9a63c5
RM
418 begbuf,
419
25fe55af 420 /* Analogously, for end of buffer/string. */
fa9a63c5 421 endbuf,
5e69f11e 422
25fe55af 423 /* Followed by two byte relative address to which to jump. */
5e69f11e 424 jump,
fa9a63c5
RM
425
426 /* Same as jump, but marks the end of an alternative. */
427 jump_past_alt,
428
25fe55af
RS
429 /* Followed by two-byte relative address of place to resume at
430 in case of failure. */
fa9a63c5 431 on_failure_jump,
5e69f11e 432
25fe55af
RS
433 /* Like on_failure_jump, but pushes a placeholder instead of the
434 current string position when executed. */
fa9a63c5 435 on_failure_keep_string_jump,
5e69f11e 436
25fe55af
RS
437 /* Throw away latest failure point and then jump to following
438 two-byte relative address. */
fa9a63c5
RM
439 pop_failure_jump,
440
25fe55af
RS
441 /* Change to pop_failure_jump if know won't have to backtrack to
442 match; otherwise change to jump. This is used to jump
443 back to the beginning of a repeat. If what follows this jump
444 clearly won't match what the repeat does, such that we can be
445 sure that there is no use backtracking out of repetitions
446 already matched, then we change it to a pop_failure_jump.
447 Followed by two-byte address. */
fa9a63c5
RM
448 maybe_pop_jump,
449
25fe55af
RS
450 /* Jump to following two-byte address, and push a dummy failure
451 point. This failure point will be thrown away if an attempt
452 is made to use it for a failure. A `+' construct makes this
453 before the first repeat. Also used as an intermediary kind
454 of jump when compiling an alternative. */
fa9a63c5
RM
455 dummy_failure_jump,
456
457 /* Push a dummy failure point and continue. Used at the end of
458 alternatives. */
459 push_dummy_failure,
460
25fe55af
RS
461 /* Followed by two-byte relative address and two-byte number n.
462 After matching N times, jump to the address upon failure. */
fa9a63c5
RM
463 succeed_n,
464
25fe55af
RS
465 /* Followed by two-byte relative address, and two-byte number n.
466 Jump to the address N times, then fail. */
fa9a63c5
RM
467 jump_n,
468
25fe55af
RS
469 /* Set the following two-byte relative address to the
470 subsequent two-byte number. The address *includes* the two
471 bytes of number. */
fa9a63c5
RM
472 set_number_at,
473
474 wordchar, /* Matches any word-constituent character. */
475 notwordchar, /* Matches any char that is not a word-constituent. */
476
477 wordbeg, /* Succeeds if at word beginning. */
478 wordend, /* Succeeds if at word end. */
479
480 wordbound, /* Succeeds if at a word boundary. */
25fe55af 481 notwordbound /* Succeeds if not at a word boundary. */
fa9a63c5
RM
482
483#ifdef emacs
484 ,before_dot, /* Succeeds if before point. */
485 at_dot, /* Succeeds if at point. */
486 after_dot, /* Succeeds if after point. */
487
488 /* Matches any character whose syntax is specified. Followed by
25fe55af 489 a byte which contains a syntax code, e.g., Sword. */
fa9a63c5
RM
490 syntaxspec,
491
492 /* Matches any character whose syntax is not that specified. */
b18215fc
RS
493 notsyntaxspec,
494
495 /* Matches any character whose category-set contains the specified
25fe55af
RS
496 category. The operator is followed by a byte which contains a
497 category code (mnemonic ASCII character). */
b18215fc
RS
498 categoryspec,
499
500 /* Matches any character whose category-set does not contain the
501 specified category. The operator is followed by a byte which
502 contains the category code (mnemonic ASCII character). */
503 notcategoryspec
fa9a63c5
RM
504#endif /* emacs */
505} re_opcode_t;
506\f
507/* Common operations on the compiled pattern. */
508
509/* Store NUMBER in two contiguous bytes starting at DESTINATION. */
510
511#define STORE_NUMBER(destination, number) \
512 do { \
513 (destination)[0] = (number) & 0377; \
514 (destination)[1] = (number) >> 8; \
515 } while (0)
516
517/* Same as STORE_NUMBER, except increment DESTINATION to
518 the byte after where the number is stored. Therefore, DESTINATION
519 must be an lvalue. */
520
521#define STORE_NUMBER_AND_INCR(destination, number) \
522 do { \
523 STORE_NUMBER (destination, number); \
524 (destination) += 2; \
525 } while (0)
526
527/* Put into DESTINATION a number stored in two contiguous bytes starting
528 at SOURCE. */
529
530#define EXTRACT_NUMBER(destination, source) \
531 do { \
532 (destination) = *(source) & 0377; \
533 (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8; \
534 } while (0)
535
536#ifdef DEBUG
537static void
538extract_number (dest, source)
539 int *dest;
540 unsigned char *source;
541{
5e69f11e 542 int temp = SIGN_EXTEND_CHAR (*(source + 1));
fa9a63c5
RM
543 *dest = *source & 0377;
544 *dest += temp << 8;
545}
546
25fe55af 547#ifndef EXTRACT_MACROS /* To debug the macros. */
fa9a63c5
RM
548#undef EXTRACT_NUMBER
549#define EXTRACT_NUMBER(dest, src) extract_number (&dest, src)
550#endif /* not EXTRACT_MACROS */
551
552#endif /* DEBUG */
553
554/* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
555 SOURCE must be an lvalue. */
556
557#define EXTRACT_NUMBER_AND_INCR(destination, source) \
558 do { \
559 EXTRACT_NUMBER (destination, source); \
25fe55af 560 (source) += 2; \
fa9a63c5
RM
561 } while (0)
562
563#ifdef DEBUG
564static void
565extract_number_and_incr (destination, source)
566 int *destination;
567 unsigned char **source;
5e69f11e 568{
fa9a63c5
RM
569 extract_number (destination, *source);
570 *source += 2;
571}
572
573#ifndef EXTRACT_MACROS
574#undef EXTRACT_NUMBER_AND_INCR
575#define EXTRACT_NUMBER_AND_INCR(dest, src) \
576 extract_number_and_incr (&dest, &src)
577#endif /* not EXTRACT_MACROS */
578
579#endif /* DEBUG */
580\f
b18215fc
RS
581/* Store a multibyte character in three contiguous bytes starting
582 DESTINATION, and increment DESTINATION to the byte after where the
25fe55af 583 character is stored. Therefore, DESTINATION must be an lvalue. */
b18215fc
RS
584
585#define STORE_CHARACTER_AND_INCR(destination, character) \
586 do { \
587 (destination)[0] = (character) & 0377; \
588 (destination)[1] = ((character) >> 8) & 0377; \
589 (destination)[2] = (character) >> 16; \
590 (destination) += 3; \
591 } while (0)
592
593/* Put into DESTINATION a character stored in three contiguous bytes
25fe55af 594 starting at SOURCE. */
b18215fc
RS
595
596#define EXTRACT_CHARACTER(destination, source) \
597 do { \
598 (destination) = ((source)[0] \
599 | ((source)[1] << 8) \
600 | ((source)[2] << 16)); \
601 } while (0)
602
603
604/* Macros for charset. */
605
606/* Size of bitmap of charset P in bytes. P is a start of charset,
607 i.e. *P is (re_opcode_t) charset or (re_opcode_t) charset_not. */
608#define CHARSET_BITMAP_SIZE(p) ((p)[1] & 0x7F)
609
610/* Nonzero if charset P has range table. */
25fe55af 611#define CHARSET_RANGE_TABLE_EXISTS_P(p) ((p)[1] & 0x80)
b18215fc
RS
612
613/* Return the address of range table of charset P. But not the start
614 of table itself, but the before where the number of ranges is
25fe55af 615 stored. `2 +' means to skip re_opcode_t and size of bitmap. */
b18215fc
RS
616#define CHARSET_RANGE_TABLE(p) (&(p)[2 + CHARSET_BITMAP_SIZE (p)])
617
618/* Test if C is listed in the bitmap of charset P. */
619#define CHARSET_LOOKUP_BITMAP(p, c) \
620 ((c) < CHARSET_BITMAP_SIZE (p) * BYTEWIDTH \
621 && (p)[2 + (c) / BYTEWIDTH] & (1 << ((c) % BYTEWIDTH)))
622
623/* Return the address of end of RANGE_TABLE. COUNT is number of
25fe55af
RS
624 ranges (which is a pair of (start, end)) in the RANGE_TABLE. `* 2'
625 is start of range and end of range. `* 3' is size of each start
b18215fc
RS
626 and end. */
627#define CHARSET_RANGE_TABLE_END(range_table, count) \
628 ((range_table) + (count) * 2 * 3)
629
25fe55af 630/* Test if C is in RANGE_TABLE. A flag NOT is negated if C is in.
b18215fc
RS
631 COUNT is number of ranges in RANGE_TABLE. */
632#define CHARSET_LOOKUP_RANGE_TABLE_RAW(not, c, range_table, count) \
633 do \
634 { \
635 int range_start, range_end; \
636 unsigned char *p; \
637 unsigned char *range_table_end \
638 = CHARSET_RANGE_TABLE_END ((range_table), (count)); \
639 \
640 for (p = (range_table); p < range_table_end; p += 2 * 3) \
641 { \
642 EXTRACT_CHARACTER (range_start, p); \
643 EXTRACT_CHARACTER (range_end, p + 3); \
644 \
645 if (range_start <= (c) && (c) <= range_end) \
646 { \
647 (not) = !(not); \
648 break; \
649 } \
650 } \
651 } \
652 while (0)
653
654/* Test if C is in range table of CHARSET. The flag NOT is negated if
655 C is listed in it. */
656#define CHARSET_LOOKUP_RANGE_TABLE(not, c, charset) \
657 do \
658 { \
659 /* Number of ranges in range table. */ \
660 int count; \
661 unsigned char *range_table = CHARSET_RANGE_TABLE (charset); \
662 \
663 EXTRACT_NUMBER_AND_INCR (count, range_table); \
664 CHARSET_LOOKUP_RANGE_TABLE_RAW ((not), (c), range_table, count); \
665 } \
666 while (0)
667\f
fa9a63c5
RM
668/* If DEBUG is defined, Regex prints many voluminous messages about what
669 it is doing (if the variable `debug' is nonzero). If linked with the
670 main program in `iregex.c', you can enter patterns and strings
671 interactively. And if linked with the main program in `main.c' and
25fe55af 672 the other test files, you can run the already-written tests. */
fa9a63c5
RM
673
674#ifdef DEBUG
675
676/* We use standard I/O for debugging. */
677#include <stdio.h>
678
679/* It is useful to test things that ``must'' be true when debugging. */
680#include <assert.h>
681
682static int debug = 0;
683
684#define DEBUG_STATEMENT(e) e
685#define DEBUG_PRINT1(x) if (debug) printf (x)
686#define DEBUG_PRINT2(x1, x2) if (debug) printf (x1, x2)
687#define DEBUG_PRINT3(x1, x2, x3) if (debug) printf (x1, x2, x3)
688#define DEBUG_PRINT4(x1, x2, x3, x4) if (debug) printf (x1, x2, x3, x4)
25fe55af 689#define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \
fa9a63c5
RM
690 if (debug) print_partial_compiled_pattern (s, e)
691#define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \
692 if (debug) print_double_string (w, s1, sz1, s2, sz2)
693
694
695/* Print the fastmap in human-readable form. */
696
697void
698print_fastmap (fastmap)
699 char *fastmap;
700{
701 unsigned was_a_range = 0;
5e69f11e
RM
702 unsigned i = 0;
703
fa9a63c5
RM
704 while (i < (1 << BYTEWIDTH))
705 {
706 if (fastmap[i++])
707 {
708 was_a_range = 0;
25fe55af
RS
709 putchar (i - 1);
710 while (i < (1 << BYTEWIDTH) && fastmap[i])
711 {
712 was_a_range = 1;
713 i++;
714 }
fa9a63c5 715 if (was_a_range)
25fe55af
RS
716 {
717 printf ("-");
718 putchar (i - 1);
719 }
720 }
fa9a63c5 721 }
5e69f11e 722 putchar ('\n');
fa9a63c5
RM
723}
724
725
726/* Print a compiled pattern string in human-readable form, starting at
727 the START pointer into it and ending just before the pointer END. */
728
729void
730print_partial_compiled_pattern (start, end)
731 unsigned char *start;
732 unsigned char *end;
733{
734 int mcnt, mcnt2;
735 unsigned char *p = start;
736 unsigned char *pend = end;
737
738 if (start == NULL)
739 {
740 printf ("(null)\n");
741 return;
742 }
5e69f11e 743
fa9a63c5
RM
744 /* Loop over pattern commands. */
745 while (p < pend)
746 {
747 printf ("%d:\t", p - start);
748
749 switch ((re_opcode_t) *p++)
750 {
25fe55af
RS
751 case no_op:
752 printf ("/no_op");
753 break;
fa9a63c5
RM
754
755 case exactn:
756 mcnt = *p++;
25fe55af
RS
757 printf ("/exactn/%d", mcnt);
758 do
fa9a63c5 759 {
25fe55af 760 putchar ('/');
fa9a63c5 761 putchar (*p++);
25fe55af
RS
762 }
763 while (--mcnt);
764 break;
fa9a63c5
RM
765
766 case start_memory:
25fe55af
RS
767 mcnt = *p++;
768 printf ("/start_memory/%d/%d", mcnt, *p++);
769 break;
fa9a63c5
RM
770
771 case stop_memory:
25fe55af 772 mcnt = *p++;
fa9a63c5 773 printf ("/stop_memory/%d/%d", mcnt, *p++);
25fe55af 774 break;
fa9a63c5
RM
775
776 case duplicate:
777 printf ("/duplicate/%d", *p++);
778 break;
779
780 case anychar:
781 printf ("/anychar");
782 break;
783
784 case charset:
25fe55af
RS
785 case charset_not:
786 {
787 register int c, last = -100;
fa9a63c5
RM
788 register int in_range = 0;
789
790 printf ("/charset [%s",
25fe55af 791 (re_opcode_t) *(p - 1) == charset_not ? "^" : "");
5e69f11e 792
25fe55af 793 assert (p + *p < pend);
fa9a63c5 794
25fe55af 795 for (c = 0; c < 256; c++)
fa9a63c5
RM
796 if (c / 8 < *p
797 && (p[1 + (c/8)] & (1 << (c % 8))))
798 {
799 /* Are we starting a range? */
800 if (last + 1 == c && ! in_range)
801 {
802 putchar ('-');
803 in_range = 1;
804 }
805 /* Have we broken a range? */
806 else if (last + 1 != c && in_range)
25fe55af 807 {
fa9a63c5
RM
808 putchar (last);
809 in_range = 0;
810 }
5e69f11e 811
fa9a63c5
RM
812 if (! in_range)
813 putchar (c);
814
815 last = c;
25fe55af 816 }
fa9a63c5
RM
817
818 if (in_range)
819 putchar (last);
820
821 putchar (']');
822
823 p += 1 + *p;
824 }
825 break;
826
827 case begline:
828 printf ("/begline");
25fe55af 829 break;
fa9a63c5
RM
830
831 case endline:
25fe55af
RS
832 printf ("/endline");
833 break;
fa9a63c5
RM
834
835 case on_failure_jump:
25fe55af
RS
836 extract_number_and_incr (&mcnt, &p);
837 printf ("/on_failure_jump to %d", p + mcnt - start);
838 break;
fa9a63c5
RM
839
840 case on_failure_keep_string_jump:
25fe55af
RS
841 extract_number_and_incr (&mcnt, &p);
842 printf ("/on_failure_keep_string_jump to %d", p + mcnt - start);
843 break;
fa9a63c5
RM
844
845 case dummy_failure_jump:
25fe55af
RS
846 extract_number_and_incr (&mcnt, &p);
847 printf ("/dummy_failure_jump to %d", p + mcnt - start);
848 break;
fa9a63c5
RM
849
850 case push_dummy_failure:
25fe55af
RS
851 printf ("/push_dummy_failure");
852 break;
5e69f11e 853
25fe55af
RS
854 case maybe_pop_jump:
855 extract_number_and_incr (&mcnt, &p);
856 printf ("/maybe_pop_jump to %d", p + mcnt - start);
fa9a63c5
RM
857 break;
858
25fe55af 859 case pop_failure_jump:
fa9a63c5 860 extract_number_and_incr (&mcnt, &p);
25fe55af 861 printf ("/pop_failure_jump to %d", p + mcnt - start);
5e69f11e
RM
862 break;
863
25fe55af 864 case jump_past_alt:
fa9a63c5 865 extract_number_and_incr (&mcnt, &p);
25fe55af 866 printf ("/jump_past_alt to %d", p + mcnt - start);
5e69f11e
RM
867 break;
868
25fe55af 869 case jump:
fa9a63c5 870 extract_number_and_incr (&mcnt, &p);
25fe55af 871 printf ("/jump to %d", p + mcnt - start);
fa9a63c5
RM
872 break;
873
25fe55af
RS
874 case succeed_n:
875 extract_number_and_incr (&mcnt, &p);
876 extract_number_and_incr (&mcnt2, &p);
fa9a63c5 877 printf ("/succeed_n to %d, %d times", p + mcnt - start, mcnt2);
25fe55af 878 break;
5e69f11e 879
25fe55af
RS
880 case jump_n:
881 extract_number_and_incr (&mcnt, &p);
882 extract_number_and_incr (&mcnt2, &p);
fa9a63c5 883 printf ("/jump_n to %d, %d times", p + mcnt - start, mcnt2);
25fe55af 884 break;
5e69f11e 885
25fe55af
RS
886 case set_number_at:
887 extract_number_and_incr (&mcnt, &p);
888 extract_number_and_incr (&mcnt2, &p);
fa9a63c5 889 printf ("/set_number_at location %d to %d", p + mcnt - start, mcnt2);
25fe55af 890 break;
5e69f11e 891
25fe55af 892 case wordbound:
fa9a63c5
RM
893 printf ("/wordbound");
894 break;
895
896 case notwordbound:
897 printf ("/notwordbound");
25fe55af 898 break;
fa9a63c5
RM
899
900 case wordbeg:
901 printf ("/wordbeg");
902 break;
5e69f11e 903
fa9a63c5
RM
904 case wordend:
905 printf ("/wordend");
5e69f11e 906
fa9a63c5
RM
907#ifdef emacs
908 case before_dot:
909 printf ("/before_dot");
25fe55af 910 break;
fa9a63c5
RM
911
912 case at_dot:
913 printf ("/at_dot");
25fe55af 914 break;
fa9a63c5
RM
915
916 case after_dot:
917 printf ("/after_dot");
25fe55af 918 break;
fa9a63c5
RM
919
920 case syntaxspec:
25fe55af 921 printf ("/syntaxspec");
fa9a63c5
RM
922 mcnt = *p++;
923 printf ("/%d", mcnt);
25fe55af 924 break;
5e69f11e 925
fa9a63c5 926 case notsyntaxspec:
25fe55af 927 printf ("/notsyntaxspec");
fa9a63c5
RM
928 mcnt = *p++;
929 printf ("/%d", mcnt);
930 break;
931#endif /* emacs */
932
933 case wordchar:
934 printf ("/wordchar");
25fe55af 935 break;
5e69f11e 936
fa9a63c5
RM
937 case notwordchar:
938 printf ("/notwordchar");
25fe55af 939 break;
fa9a63c5
RM
940
941 case begbuf:
942 printf ("/begbuf");
25fe55af 943 break;
fa9a63c5
RM
944
945 case endbuf:
946 printf ("/endbuf");
25fe55af 947 break;
fa9a63c5 948
25fe55af
RS
949 default:
950 printf ("?%d", *(p-1));
fa9a63c5
RM
951 }
952
953 putchar ('\n');
954 }
955
956 printf ("%d:\tend of pattern.\n", p - start);
957}
958
959
960void
961print_compiled_pattern (bufp)
962 struct re_pattern_buffer *bufp;
963{
964 unsigned char *buffer = bufp->buffer;
965
966 print_partial_compiled_pattern (buffer, buffer + bufp->used);
967 printf ("%d bytes used/%d bytes allocated.\n", bufp->used, bufp->allocated);
968
969 if (bufp->fastmap_accurate && bufp->fastmap)
970 {
971 printf ("fastmap: ");
972 print_fastmap (bufp->fastmap);
973 }
974
975 printf ("re_nsub: %d\t", bufp->re_nsub);
976 printf ("regs_alloc: %d\t", bufp->regs_allocated);
977 printf ("can_be_null: %d\t", bufp->can_be_null);
978 printf ("newline_anchor: %d\n", bufp->newline_anchor);
979 printf ("no_sub: %d\t", bufp->no_sub);
980 printf ("not_bol: %d\t", bufp->not_bol);
981 printf ("not_eol: %d\t", bufp->not_eol);
982 printf ("syntax: %d\n", bufp->syntax);
983 /* Perhaps we should print the translate table? */
984}
985
986
987void
988print_double_string (where, string1, size1, string2, size2)
989 const char *where;
990 const char *string1;
991 const char *string2;
992 int size1;
993 int size2;
994{
995 unsigned this_char;
5e69f11e 996
fa9a63c5
RM
997 if (where == NULL)
998 printf ("(null)");
999 else
1000 {
1001 if (FIRST_STRING_P (where))
25fe55af
RS
1002 {
1003 for (this_char = where - string1; this_char < size1; this_char++)
1004 putchar (string1[this_char]);
fa9a63c5 1005
25fe55af
RS
1006 where = string2;
1007 }
fa9a63c5
RM
1008
1009 for (this_char = where - string2; this_char < size2; this_char++)
25fe55af 1010 putchar (string2[this_char]);
fa9a63c5
RM
1011 }
1012}
1013
1014#else /* not DEBUG */
1015
1016#undef assert
1017#define assert(e)
1018
1019#define DEBUG_STATEMENT(e)
1020#define DEBUG_PRINT1(x)
1021#define DEBUG_PRINT2(x1, x2)
1022#define DEBUG_PRINT3(x1, x2, x3)
1023#define DEBUG_PRINT4(x1, x2, x3, x4)
1024#define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
1025#define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
1026
1027#endif /* not DEBUG */
1028\f
1029/* Set by `re_set_syntax' to the current regexp syntax to recognize. Can
1030 also be assigned to arbitrarily: each pattern buffer stores its own
1031 syntax, so it can be changed between regex compilations. */
1032/* This has no initializer because initialized variables in Emacs
1033 become read-only after dumping. */
1034reg_syntax_t re_syntax_options;
1035
1036
1037/* Specify the precise syntax of regexps for compilation. This provides
1038 for compatibility for various utilities which historically have
1039 different, incompatible syntaxes.
1040
1041 The argument SYNTAX is a bit mask comprised of the various bits
25fe55af 1042 defined in regex.h. We return the old syntax. */
fa9a63c5
RM
1043
1044reg_syntax_t
1045re_set_syntax (syntax)
1046 reg_syntax_t syntax;
1047{
1048 reg_syntax_t ret = re_syntax_options;
5e69f11e 1049
fa9a63c5
RM
1050 re_syntax_options = syntax;
1051 return ret;
1052}
1053\f
1054/* This table gives an error message for each of the error codes listed
25fe55af 1055 in regex.h. Obviously the order here has to be same as there.
fa9a63c5 1056 POSIX doesn't require that we do anything for REG_NOERROR,
25fe55af 1057 but why not be nice? */
fa9a63c5
RM
1058
1059static const char *re_error_msgid[] =
5e69f11e
RM
1060 {
1061 gettext_noop ("Success"), /* REG_NOERROR */
1062 gettext_noop ("No match"), /* REG_NOMATCH */
1063 gettext_noop ("Invalid regular expression"), /* REG_BADPAT */
1064 gettext_noop ("Invalid collation character"), /* REG_ECOLLATE */
1065 gettext_noop ("Invalid character class name"), /* REG_ECTYPE */
1066 gettext_noop ("Trailing backslash"), /* REG_EESCAPE */
1067 gettext_noop ("Invalid back reference"), /* REG_ESUBREG */
1068 gettext_noop ("Unmatched [ or [^"), /* REG_EBRACK */
1069 gettext_noop ("Unmatched ( or \\("), /* REG_EPAREN */
1070 gettext_noop ("Unmatched \\{"), /* REG_EBRACE */
1071 gettext_noop ("Invalid content of \\{\\}"), /* REG_BADBR */
1072 gettext_noop ("Invalid range end"), /* REG_ERANGE */
1073 gettext_noop ("Memory exhausted"), /* REG_ESPACE */
1074 gettext_noop ("Invalid preceding regular expression"), /* REG_BADRPT */
1075 gettext_noop ("Premature end of regular expression"), /* REG_EEND */
1076 gettext_noop ("Regular expression too big"), /* REG_ESIZE */
1077 gettext_noop ("Unmatched ) or \\)"), /* REG_ERPAREN */
fa9a63c5
RM
1078 };
1079\f
25fe55af 1080/* Avoiding alloca during matching, to placate r_alloc. */
fa9a63c5
RM
1081
1082/* Define MATCH_MAY_ALLOCATE unless we need to make sure that the
1083 searching and matching functions should not call alloca. On some
1084 systems, alloca is implemented in terms of malloc, and if we're
1085 using the relocating allocator routines, then malloc could cause a
1086 relocation, which might (if the strings being searched are in the
1087 ralloc heap) shift the data out from underneath the regexp
1088 routines.
1089
5e69f11e 1090 Here's another reason to avoid allocation: Emacs
fa9a63c5
RM
1091 processes input from X in a signal handler; processing X input may
1092 call malloc; if input arrives while a matching routine is calling
1093 malloc, then we're scrod. But Emacs can't just block input while
1094 calling matching routines; then we don't notice interrupts when
1095 they come in. So, Emacs blocks input around all regexp calls
1096 except the matching calls, which it leaves unprotected, in the
1097 faith that they will not malloc. */
1098
1099/* Normally, this is fine. */
1100#define MATCH_MAY_ALLOCATE
1101
1102/* When using GNU C, we are not REALLY using the C alloca, no matter
1103 what config.h may say. So don't take precautions for it. */
1104#ifdef __GNUC__
1105#undef C_ALLOCA
1106#endif
1107
1108/* The match routines may not allocate if (1) they would do it with malloc
1109 and (2) it's not safe for them to use malloc.
1110 Note that if REL_ALLOC is defined, matching would not use malloc for the
1111 failure stack, but we would still use it for the register vectors;
25fe55af 1112 so REL_ALLOC should not affect this. */
fa9a63c5
RM
1113#if (defined (C_ALLOCA) || defined (REGEX_MALLOC)) && defined (emacs)
1114#undef MATCH_MAY_ALLOCATE
1115#endif
1116
1117\f
1118/* Failure stack declarations and macros; both re_compile_fastmap and
1119 re_match_2 use a failure stack. These have to be macros because of
1120 REGEX_ALLOCATE_STACK. */
5e69f11e 1121
fa9a63c5 1122
320a2a73 1123/* Approximate number of failure points for which to initially allocate space
fa9a63c5
RM
1124 when matching. If this number is exceeded, we allocate more
1125 space, so it is not a hard limit. */
1126#ifndef INIT_FAILURE_ALLOC
320a2a73 1127#define INIT_FAILURE_ALLOC 20
fa9a63c5
RM
1128#endif
1129
1130/* Roughly the maximum number of failure points on the stack. Would be
320a2a73 1131 exactly that if always used TYPICAL_FAILURE_SIZE items each time we failed.
fa9a63c5 1132 This is a variable only so users of regex can assign to it; we never
25fe55af 1133 change it ourselves. */
fa9a63c5 1134#if defined (MATCH_MAY_ALLOCATE)
320a2a73
KH
1135/* Note that 4400 is enough to cause a crash on Alpha OSF/1,
1136 whose default stack limit is 2mb. In order for a larger
1137 value to work reliably, you have to try to make it accord
1138 with the process stack limit. */
1139int re_max_failures = 40000;
fa9a63c5 1140#else
320a2a73 1141int re_max_failures = 4000;
fa9a63c5
RM
1142#endif
1143
1144union fail_stack_elt
1145{
1146 unsigned char *pointer;
1147 int integer;
1148};
1149
1150typedef union fail_stack_elt fail_stack_elt_t;
1151
1152typedef struct
1153{
1154 fail_stack_elt_t *stack;
1155 unsigned size;
1156 unsigned avail; /* Offset of next open position. */
1157} fail_stack_type;
1158
1159#define FAIL_STACK_EMPTY() (fail_stack.avail == 0)
1160#define FAIL_STACK_PTR_EMPTY() (fail_stack_ptr->avail == 0)
1161#define FAIL_STACK_FULL() (fail_stack.avail == fail_stack.size)
1162
1163
1164/* Define macros to initialize and free the failure stack.
1165 Do `return -2' if the alloc fails. */
1166
1167#ifdef MATCH_MAY_ALLOCATE
1168#define INIT_FAIL_STACK() \
1169 do { \
1170 fail_stack.stack = (fail_stack_elt_t *) \
320a2a73
KH
1171 REGEX_ALLOCATE_STACK (INIT_FAILURE_ALLOC * TYPICAL_FAILURE_SIZE \
1172 * sizeof (fail_stack_elt_t)); \
fa9a63c5
RM
1173 \
1174 if (fail_stack.stack == NULL) \
1175 return -2; \
1176 \
1177 fail_stack.size = INIT_FAILURE_ALLOC; \
1178 fail_stack.avail = 0; \
1179 } while (0)
1180
1181#define RESET_FAIL_STACK() REGEX_FREE_STACK (fail_stack.stack)
1182#else
1183#define INIT_FAIL_STACK() \
1184 do { \
1185 fail_stack.avail = 0; \
1186 } while (0)
1187
1188#define RESET_FAIL_STACK()
1189#endif
1190
1191
320a2a73
KH
1192/* Double the size of FAIL_STACK, up to a limit
1193 which allows approximately `re_max_failures' items.
fa9a63c5
RM
1194
1195 Return 1 if succeeds, and 0 if either ran out of memory
5e69f11e
RM
1196 allocating space for it or it was already too large.
1197
25fe55af 1198 REGEX_REALLOCATE_STACK requires `destination' be declared. */
fa9a63c5 1199
320a2a73
KH
1200/* Factor to increase the failure stack size by
1201 when we increase it.
1202 This used to be 2, but 2 was too wasteful
1203 because the old discarded stacks added up to as much space
1204 were as ultimate, maximum-size stack. */
1205#define FAIL_STACK_GROWTH_FACTOR 4
1206
1207#define GROW_FAIL_STACK(fail_stack) \
eead07d6
KH
1208 (((fail_stack).size * sizeof (fail_stack_elt_t) \
1209 >= re_max_failures * TYPICAL_FAILURE_SIZE) \
fa9a63c5 1210 ? 0 \
320a2a73
KH
1211 : ((fail_stack).stack \
1212 = (fail_stack_elt_t *) \
25fe55af
RS
1213 REGEX_REALLOCATE_STACK ((fail_stack).stack, \
1214 (fail_stack).size * sizeof (fail_stack_elt_t), \
320a2a73
KH
1215 MIN (re_max_failures * TYPICAL_FAILURE_SIZE, \
1216 ((fail_stack).size * sizeof (fail_stack_elt_t) \
1217 * FAIL_STACK_GROWTH_FACTOR))), \
fa9a63c5
RM
1218 \
1219 (fail_stack).stack == NULL \
1220 ? 0 \
6453db45
KH
1221 : ((fail_stack).size \
1222 = (MIN (re_max_failures * TYPICAL_FAILURE_SIZE, \
1223 ((fail_stack).size * sizeof (fail_stack_elt_t) \
1224 * FAIL_STACK_GROWTH_FACTOR)) \
1225 / sizeof (fail_stack_elt_t)), \
25fe55af 1226 1)))
fa9a63c5
RM
1227
1228
5e69f11e 1229/* Push pointer POINTER on FAIL_STACK.
fa9a63c5
RM
1230 Return 1 if was able to do so and 0 if ran out of memory allocating
1231 space to do so. */
1232#define PUSH_PATTERN_OP(POINTER, FAIL_STACK) \
1233 ((FAIL_STACK_FULL () \
320a2a73 1234 && !GROW_FAIL_STACK (FAIL_STACK)) \
fa9a63c5
RM
1235 ? 0 \
1236 : ((FAIL_STACK).stack[(FAIL_STACK).avail++].pointer = POINTER, \
1237 1))
1238
1239/* Push a pointer value onto the failure stack.
1240 Assumes the variable `fail_stack'. Probably should only
25fe55af 1241 be called from within `PUSH_FAILURE_POINT'. */
fa9a63c5
RM
1242#define PUSH_FAILURE_POINTER(item) \
1243 fail_stack.stack[fail_stack.avail++].pointer = (unsigned char *) (item)
1244
1245/* This pushes an integer-valued item onto the failure stack.
1246 Assumes the variable `fail_stack'. Probably should only
25fe55af 1247 be called from within `PUSH_FAILURE_POINT'. */
fa9a63c5
RM
1248#define PUSH_FAILURE_INT(item) \
1249 fail_stack.stack[fail_stack.avail++].integer = (item)
1250
1251/* Push a fail_stack_elt_t value onto the failure stack.
1252 Assumes the variable `fail_stack'. Probably should only
25fe55af 1253 be called from within `PUSH_FAILURE_POINT'. */
fa9a63c5
RM
1254#define PUSH_FAILURE_ELT(item) \
1255 fail_stack.stack[fail_stack.avail++] = (item)
1256
1257/* These three POP... operations complement the three PUSH... operations.
1258 All assume that `fail_stack' is nonempty. */
1259#define POP_FAILURE_POINTER() fail_stack.stack[--fail_stack.avail].pointer
1260#define POP_FAILURE_INT() fail_stack.stack[--fail_stack.avail].integer
1261#define POP_FAILURE_ELT() fail_stack.stack[--fail_stack.avail]
1262
1263/* Used to omit pushing failure point id's when we're not debugging. */
1264#ifdef DEBUG
1265#define DEBUG_PUSH PUSH_FAILURE_INT
1266#define DEBUG_POP(item_addr) *(item_addr) = POP_FAILURE_INT ()
1267#else
1268#define DEBUG_PUSH(item)
1269#define DEBUG_POP(item_addr)
1270#endif
1271
1272
1273/* Push the information about the state we will need
5e69f11e
RM
1274 if we ever fail back to it.
1275
fa9a63c5 1276 Requires variables fail_stack, regstart, regend, reg_info, and
320a2a73 1277 num_regs be declared. GROW_FAIL_STACK requires `destination' be
fa9a63c5 1278 declared.
5e69f11e 1279
fa9a63c5
RM
1280 Does `return FAILURE_CODE' if runs out of memory. */
1281
1282#define PUSH_FAILURE_POINT(pattern_place, string_place, failure_code) \
1283 do { \
1284 char *destination; \
1285 /* Must be int, so when we don't save any registers, the arithmetic \
1286 of 0 + -1 isn't done as unsigned. */ \
1287 int this_reg; \
25fe55af 1288 \
fa9a63c5
RM
1289 DEBUG_STATEMENT (failure_id++); \
1290 DEBUG_STATEMENT (nfailure_points_pushed++); \
1291 DEBUG_PRINT2 ("\nPUSH_FAILURE_POINT #%u:\n", failure_id); \
1292 DEBUG_PRINT2 (" Before push, next avail: %d\n", (fail_stack).avail);\
25fe55af 1293 DEBUG_PRINT2 (" size: %d\n", (fail_stack).size);\
fa9a63c5
RM
1294 \
1295 DEBUG_PRINT2 (" slots needed: %d\n", NUM_FAILURE_ITEMS); \
25fe55af 1296 DEBUG_PRINT2 (" available: %d\n", REMAINING_AVAIL_SLOTS); \
fa9a63c5
RM
1297 \
1298 /* Ensure we have enough space allocated for what we will push. */ \
1299 while (REMAINING_AVAIL_SLOTS < NUM_FAILURE_ITEMS) \
1300 { \
320a2a73 1301 if (!GROW_FAIL_STACK (fail_stack)) \
25fe55af 1302 return failure_code; \
fa9a63c5 1303 \
25fe55af 1304 DEBUG_PRINT2 ("\n Doubled stack; size now: %d\n", \
fa9a63c5 1305 (fail_stack).size); \
25fe55af 1306 DEBUG_PRINT2 (" slots available: %d\n", REMAINING_AVAIL_SLOTS);\
fa9a63c5
RM
1307 } \
1308 \
1309 /* Push the info, starting with the registers. */ \
1310 DEBUG_PRINT1 ("\n"); \
1311 \
68d96f02 1312 if (1) \
faec11db
RS
1313 for (this_reg = lowest_active_reg; this_reg <= highest_active_reg; \
1314 this_reg++) \
1315 { \
1316 DEBUG_PRINT2 (" Pushing reg: %d\n", this_reg); \
1317 DEBUG_STATEMENT (num_regs_pushed++); \
fa9a63c5 1318 \
faec11db
RS
1319 DEBUG_PRINT2 (" start: 0x%x\n", regstart[this_reg]); \
1320 PUSH_FAILURE_POINTER (regstart[this_reg]); \
fa9a63c5 1321 \
faec11db
RS
1322 DEBUG_PRINT2 (" end: 0x%x\n", regend[this_reg]); \
1323 PUSH_FAILURE_POINTER (regend[this_reg]); \
1324 \
1325 DEBUG_PRINT2 (" info: 0x%x\n ", reg_info[this_reg]); \
1326 DEBUG_PRINT2 (" match_null=%d", \
1327 REG_MATCH_NULL_STRING_P (reg_info[this_reg])); \
1328 DEBUG_PRINT2 (" active=%d", IS_ACTIVE (reg_info[this_reg])); \
1329 DEBUG_PRINT2 (" matched_something=%d", \
1330 MATCHED_SOMETHING (reg_info[this_reg])); \
1331 DEBUG_PRINT2 (" ever_matched=%d", \
1332 EVER_MATCHED_SOMETHING (reg_info[this_reg])); \
1333 DEBUG_PRINT1 ("\n"); \
1334 PUSH_FAILURE_ELT (reg_info[this_reg].word); \
1335 } \
fa9a63c5
RM
1336 \
1337 DEBUG_PRINT2 (" Pushing low active reg: %d\n", lowest_active_reg);\
1338 PUSH_FAILURE_INT (lowest_active_reg); \
1339 \
1340 DEBUG_PRINT2 (" Pushing high active reg: %d\n", highest_active_reg);\
1341 PUSH_FAILURE_INT (highest_active_reg); \
1342 \
1343 DEBUG_PRINT2 (" Pushing pattern 0x%x: ", pattern_place); \
1344 DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern_place, pend); \
1345 PUSH_FAILURE_POINTER (pattern_place); \
1346 \
1347 DEBUG_PRINT2 (" Pushing string 0x%x: `", string_place); \
25fe55af 1348 DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, \
fa9a63c5
RM
1349 size2); \
1350 DEBUG_PRINT1 ("'\n"); \
1351 PUSH_FAILURE_POINTER (string_place); \
1352 \
1353 DEBUG_PRINT2 (" Pushing failure id: %u\n", failure_id); \
1354 DEBUG_PUSH (failure_id); \
1355 } while (0)
1356
1357/* This is the number of items that are pushed and popped on the stack
1358 for each register. */
1359#define NUM_REG_ITEMS 3
1360
1361/* Individual items aside from the registers. */
1362#ifdef DEBUG
1363#define NUM_NONREG_ITEMS 5 /* Includes failure point id. */
1364#else
1365#define NUM_NONREG_ITEMS 4
1366#endif
1367
320a2a73
KH
1368/* Estimate the size of data pushed by a typical failure stack entry.
1369 An estimate is all we need, because all we use this for
1370 is to choose a limit for how big to make the failure stack. */
1371
1372#define TYPICAL_FAILURE_SIZE 20
fa9a63c5 1373
320a2a73
KH
1374/* This is how many items we actually use for a failure point.
1375 It depends on the regexp. */
faec11db 1376#define NUM_FAILURE_ITEMS \
68d96f02 1377 (((0 \
faec11db
RS
1378 ? 0 : highest_active_reg - lowest_active_reg + 1) \
1379 * NUM_REG_ITEMS) \
1380 + NUM_NONREG_ITEMS)
fa9a63c5
RM
1381
1382/* How many items can still be added to the stack without overflowing it. */
1383#define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
1384
1385
1386/* Pops what PUSH_FAIL_STACK pushes.
1387
1388 We restore into the parameters, all of which should be lvalues:
1389 STR -- the saved data position.
1390 PAT -- the saved pattern position.
1391 LOW_REG, HIGH_REG -- the highest and lowest active registers.
1392 REGSTART, REGEND -- arrays of string positions.
1393 REG_INFO -- array of information about each subexpression.
5e69f11e 1394
fa9a63c5 1395 Also assumes the variables `fail_stack' and (if debugging), `bufp',
25fe55af 1396 `pend', `string1', `size1', `string2', and `size2'. */
fa9a63c5
RM
1397
1398#define POP_FAILURE_POINT(str, pat, low_reg, high_reg, regstart, regend, reg_info)\
1399{ \
1400 DEBUG_STATEMENT (fail_stack_elt_t failure_id;) \
1401 int this_reg; \
1402 const unsigned char *string_temp; \
1403 \
1404 assert (!FAIL_STACK_EMPTY ()); \
1405 \
1406 /* Remove failure points and point to how many regs pushed. */ \
1407 DEBUG_PRINT1 ("POP_FAILURE_POINT:\n"); \
1408 DEBUG_PRINT2 (" Before pop, next avail: %d\n", fail_stack.avail); \
25fe55af 1409 DEBUG_PRINT2 (" size: %d\n", fail_stack.size); \
fa9a63c5
RM
1410 \
1411 assert (fail_stack.avail >= NUM_NONREG_ITEMS); \
1412 \
1413 DEBUG_POP (&failure_id); \
1414 DEBUG_PRINT2 (" Popping failure id: %u\n", failure_id); \
1415 \
1416 /* If the saved string location is NULL, it came from an \
1417 on_failure_keep_string_jump opcode, and we want to throw away the \
1418 saved NULL, thus retaining our current position in the string. */ \
1419 string_temp = POP_FAILURE_POINTER (); \
1420 if (string_temp != NULL) \
1421 str = (const char *) string_temp; \
1422 \
1423 DEBUG_PRINT2 (" Popping string 0x%x: `", str); \
1424 DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2); \
1425 DEBUG_PRINT1 ("'\n"); \
1426 \
1427 pat = (unsigned char *) POP_FAILURE_POINTER (); \
1428 DEBUG_PRINT2 (" Popping pattern 0x%x: ", pat); \
1429 DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend); \
1430 \
1431 /* Restore register info. */ \
1432 high_reg = (unsigned) POP_FAILURE_INT (); \
1433 DEBUG_PRINT2 (" Popping high active reg: %d\n", high_reg); \
1434 \
1435 low_reg = (unsigned) POP_FAILURE_INT (); \
1436 DEBUG_PRINT2 (" Popping low active reg: %d\n", low_reg); \
1437 \
68d96f02 1438 if (1) \
faec11db
RS
1439 for (this_reg = high_reg; this_reg >= low_reg; this_reg--) \
1440 { \
25fe55af 1441 DEBUG_PRINT2 (" Popping reg: %d\n", this_reg); \
fa9a63c5 1442 \
faec11db 1443 reg_info[this_reg].word = POP_FAILURE_ELT (); \
25fe55af 1444 DEBUG_PRINT2 (" info: 0x%x\n", reg_info[this_reg]); \
fa9a63c5 1445 \
faec11db 1446 regend[this_reg] = (const char *) POP_FAILURE_POINTER (); \
25fe55af 1447 DEBUG_PRINT2 (" end: 0x%x\n", regend[this_reg]); \
fa9a63c5 1448 \
faec11db 1449 regstart[this_reg] = (const char *) POP_FAILURE_POINTER (); \
25fe55af 1450 DEBUG_PRINT2 (" start: 0x%x\n", regstart[this_reg]); \
faec11db 1451 } \
6676cb1c
RS
1452 else \
1453 { \
1454 for (this_reg = highest_active_reg; this_reg > high_reg; this_reg--) \
1455 { \
4fcecab1 1456 reg_info[this_reg].word.integer = 0; \
6676cb1c
RS
1457 regend[this_reg] = 0; \
1458 regstart[this_reg] = 0; \
1459 } \
1460 highest_active_reg = high_reg; \
1461 } \
fa9a63c5
RM
1462 \
1463 set_regs_matched_done = 0; \
1464 DEBUG_STATEMENT (nfailure_points_popped++); \
1465} /* POP_FAILURE_POINT */
1466
1467
1468\f
1469/* Structure for per-register (a.k.a. per-group) information.
1470 Other register information, such as the
1471 starting and ending positions (which are addresses), and the list of
1472 inner groups (which is a bits list) are maintained in separate
5e69f11e
RM
1473 variables.
1474
fa9a63c5
RM
1475 We are making a (strictly speaking) nonportable assumption here: that
1476 the compiler will pack our bit fields into something that fits into
1477 the type of `word', i.e., is something that fits into one item on the
1478 failure stack. */
1479
1480typedef union
1481{
1482 fail_stack_elt_t word;
1483 struct
1484 {
1485 /* This field is one if this group can match the empty string,
25fe55af 1486 zero if not. If not yet determined, `MATCH_NULL_UNSET_VALUE'. */
fa9a63c5
RM
1487#define MATCH_NULL_UNSET_VALUE 3
1488 unsigned match_null_string_p : 2;
1489 unsigned is_active : 1;
1490 unsigned matched_something : 1;
1491 unsigned ever_matched_something : 1;
1492 } bits;
1493} register_info_type;
1494
1495#define REG_MATCH_NULL_STRING_P(R) ((R).bits.match_null_string_p)
1496#define IS_ACTIVE(R) ((R).bits.is_active)
1497#define MATCHED_SOMETHING(R) ((R).bits.matched_something)
1498#define EVER_MATCHED_SOMETHING(R) ((R).bits.ever_matched_something)
1499
1500
1501/* Call this when have matched a real character; it sets `matched' flags
1502 for the subexpressions which we are currently inside. Also records
1503 that those subexprs have matched. */
1504#define SET_REGS_MATCHED() \
1505 do \
1506 { \
1507 if (!set_regs_matched_done) \
1508 { \
1509 unsigned r; \
1510 set_regs_matched_done = 1; \
1511 for (r = lowest_active_reg; r <= highest_active_reg; r++) \
1512 { \
1513 MATCHED_SOMETHING (reg_info[r]) \
1514 = EVER_MATCHED_SOMETHING (reg_info[r]) \
1515 = 1; \
1516 } \
1517 } \
1518 } \
1519 while (0)
1520
1521/* Registers are set to a sentinel when they haven't yet matched. */
1522static char reg_unset_dummy;
1523#define REG_UNSET_VALUE (&reg_unset_dummy)
1524#define REG_UNSET(e) ((e) == REG_UNSET_VALUE)
1525\f
1526/* Subroutine declarations and macros for regex_compile. */
1527
1528static void store_op1 (), store_op2 ();
1529static void insert_op1 (), insert_op2 ();
1530static boolean at_begline_loc_p (), at_endline_loc_p ();
1531static boolean group_in_compile_stack ();
1532static reg_errcode_t compile_range ();
1533
5e69f11e 1534/* Fetch the next character in the uncompiled pattern---translating it
fa9a63c5
RM
1535 if necessary. Also cast from a signed character in the constant
1536 string passed to us by the user to an unsigned char that we can use
1537 as an array index (in, e.g., `translate'). */
6676cb1c 1538#ifndef PATFETCH
fa9a63c5
RM
1539#define PATFETCH(c) \
1540 do {if (p == pend) return REG_EEND; \
1541 c = (unsigned char) *p++; \
e934739e 1542 if (translate) c = RE_TRANSLATE (translate, c); \
fa9a63c5 1543 } while (0)
6676cb1c 1544#endif
fa9a63c5
RM
1545
1546/* Fetch the next character in the uncompiled pattern, with no
25fe55af 1547 translation. */
fa9a63c5
RM
1548#define PATFETCH_RAW(c) \
1549 do {if (p == pend) return REG_EEND; \
25fe55af 1550 c = (unsigned char) *p++; \
fa9a63c5
RM
1551 } while (0)
1552
1553/* Go backwards one character in the pattern. */
1554#define PATUNFETCH p--
1555
1556
1557/* If `translate' is non-null, return translate[D], else just D. We
1558 cast the subscript to translate because some data is declared as
1559 `char *', to avoid warnings when a string constant is passed. But
1560 when we use a character as a subscript we must make it unsigned. */
6676cb1c
RS
1561#ifndef TRANSLATE
1562#define TRANSLATE(d) \
e934739e 1563 (translate ? (unsigned) RE_TRANSLATE (translate, (unsigned) (d)) : (d))
6676cb1c 1564#endif
fa9a63c5
RM
1565
1566
1567/* Macros for outputting the compiled pattern into `buffer'. */
1568
1569/* If the buffer isn't allocated when it comes in, use this. */
1570#define INIT_BUF_SIZE 32
1571
25fe55af 1572/* Make sure we have at least N more bytes of space in buffer. */
fa9a63c5
RM
1573#define GET_BUFFER_SPACE(n) \
1574 while (b - bufp->buffer + (n) > bufp->allocated) \
1575 EXTEND_BUFFER ()
1576
1577/* Make sure we have one more byte of buffer space and then add C to it. */
1578#define BUF_PUSH(c) \
1579 do { \
1580 GET_BUFFER_SPACE (1); \
1581 *b++ = (unsigned char) (c); \
1582 } while (0)
1583
1584
1585/* Ensure we have two more bytes of buffer space and then append C1 and C2. */
1586#define BUF_PUSH_2(c1, c2) \
1587 do { \
1588 GET_BUFFER_SPACE (2); \
1589 *b++ = (unsigned char) (c1); \
1590 *b++ = (unsigned char) (c2); \
1591 } while (0)
1592
1593
25fe55af 1594/* As with BUF_PUSH_2, except for three bytes. */
fa9a63c5
RM
1595#define BUF_PUSH_3(c1, c2, c3) \
1596 do { \
1597 GET_BUFFER_SPACE (3); \
1598 *b++ = (unsigned char) (c1); \
1599 *b++ = (unsigned char) (c2); \
1600 *b++ = (unsigned char) (c3); \
1601 } while (0)
1602
1603
1604/* Store a jump with opcode OP at LOC to location TO. We store a
25fe55af 1605 relative address offset by the three bytes the jump itself occupies. */
fa9a63c5
RM
1606#define STORE_JUMP(op, loc, to) \
1607 store_op1 (op, loc, (to) - (loc) - 3)
1608
1609/* Likewise, for a two-argument jump. */
1610#define STORE_JUMP2(op, loc, to, arg) \
1611 store_op2 (op, loc, (to) - (loc) - 3, arg)
1612
25fe55af 1613/* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */
fa9a63c5
RM
1614#define INSERT_JUMP(op, loc, to) \
1615 insert_op1 (op, loc, (to) - (loc) - 3, b)
1616
1617/* Like `STORE_JUMP2', but for inserting. Assume `b' is the buffer end. */
1618#define INSERT_JUMP2(op, loc, to, arg) \
1619 insert_op2 (op, loc, (to) - (loc) - 3, arg, b)
1620
1621
1622/* This is not an arbitrary limit: the arguments which represent offsets
25fe55af 1623 into the pattern are two bytes long. So if 2^16 bytes turns out to
fa9a63c5
RM
1624 be too small, many things would have to change. */
1625#define MAX_BUF_SIZE (1L << 16)
1626
1627
1628/* Extend the buffer by twice its current size via realloc and
1629 reset the pointers that pointed into the old block to point to the
1630 correct places in the new one. If extending the buffer results in it
25fe55af 1631 being larger than MAX_BUF_SIZE, then flag memory exhausted. */
fa9a63c5 1632#define EXTEND_BUFFER() \
25fe55af 1633 do { \
fa9a63c5 1634 unsigned char *old_buffer = bufp->buffer; \
25fe55af 1635 if (bufp->allocated == MAX_BUF_SIZE) \
fa9a63c5
RM
1636 return REG_ESIZE; \
1637 bufp->allocated <<= 1; \
1638 if (bufp->allocated > MAX_BUF_SIZE) \
25fe55af 1639 bufp->allocated = MAX_BUF_SIZE; \
fa9a63c5
RM
1640 bufp->buffer = (unsigned char *) realloc (bufp->buffer, bufp->allocated);\
1641 if (bufp->buffer == NULL) \
1642 return REG_ESPACE; \
1643 /* If the buffer moved, move all the pointers into it. */ \
1644 if (old_buffer != bufp->buffer) \
1645 { \
25fe55af
RS
1646 b = (b - old_buffer) + bufp->buffer; \
1647 begalt = (begalt - old_buffer) + bufp->buffer; \
1648 if (fixup_alt_jump) \
1649 fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer;\
1650 if (laststart) \
1651 laststart = (laststart - old_buffer) + bufp->buffer; \
1652 if (pending_exact) \
1653 pending_exact = (pending_exact - old_buffer) + bufp->buffer; \
fa9a63c5
RM
1654 } \
1655 } while (0)
1656
1657
1658/* Since we have one byte reserved for the register number argument to
1659 {start,stop}_memory, the maximum number of groups we can report
1660 things about is what fits in that byte. */
1661#define MAX_REGNUM 255
1662
1663/* But patterns can have more than `MAX_REGNUM' registers. We just
1664 ignore the excess. */
1665typedef unsigned regnum_t;
1666
1667
1668/* Macros for the compile stack. */
1669
1670/* Since offsets can go either forwards or backwards, this type needs to
25fe55af 1671 be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */
fa9a63c5
RM
1672typedef int pattern_offset_t;
1673
1674typedef struct
1675{
1676 pattern_offset_t begalt_offset;
1677 pattern_offset_t fixup_alt_jump;
1678 pattern_offset_t inner_group_offset;
5e69f11e 1679 pattern_offset_t laststart_offset;
fa9a63c5
RM
1680 regnum_t regnum;
1681} compile_stack_elt_t;
1682
1683
1684typedef struct
1685{
1686 compile_stack_elt_t *stack;
1687 unsigned size;
1688 unsigned avail; /* Offset of next open position. */
1689} compile_stack_type;
1690
1691
1692#define INIT_COMPILE_STACK_SIZE 32
1693
1694#define COMPILE_STACK_EMPTY (compile_stack.avail == 0)
1695#define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size)
1696
25fe55af 1697/* The next available element. */
fa9a63c5
RM
1698#define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
1699
1700
b18215fc
RS
1701/* Structure to manage work area for range table. */
1702struct range_table_work_area
1703{
1704 int *table; /* actual work area. */
1705 int allocated; /* allocated size for work area in bytes. */
25fe55af 1706 int used; /* actually used size in words. */
b18215fc
RS
1707};
1708
1709/* Make sure that WORK_AREA can hold more N multibyte characters. */
1710#define EXTEND_RANGE_TABLE_WORK_AREA(work_area, n) \
1711 do { \
1712 if (((work_area).used + (n)) * sizeof (int) > (work_area).allocated) \
1713 { \
1714 (work_area).allocated += 16 * sizeof (int); \
1715 if ((work_area).table) \
1716 (work_area).table \
1717 = (int *) realloc ((work_area).table, (work_area).allocated); \
1718 else \
1719 (work_area).table \
1720 = (int *) malloc ((work_area).allocated); \
1721 if ((work_area).table == 0) \
1722 FREE_STACK_RETURN (REG_ESPACE); \
1723 } \
1724 } while (0)
1725
1726/* Set a range (RANGE_START, RANGE_END) to WORK_AREA. */
1727#define SET_RANGE_TABLE_WORK_AREA(work_area, range_start, range_end) \
1728 do { \
1729 EXTEND_RANGE_TABLE_WORK_AREA ((work_area), 2); \
1730 (work_area).table[(work_area).used++] = (range_start); \
1731 (work_area).table[(work_area).used++] = (range_end); \
1732 } while (0)
1733
25fe55af 1734/* Free allocated memory for WORK_AREA. */
b18215fc
RS
1735#define FREE_RANGE_TABLE_WORK_AREA(work_area) \
1736 do { \
1737 if ((work_area).table) \
1738 free ((work_area).table); \
1739 } while (0)
1740
1741#define CLEAR_RANGE_TABLE_WORK_USED(work_area) ((work_area).used = 0)
1742#define RANGE_TABLE_WORK_USED(work_area) ((work_area).used)
1743#define RANGE_TABLE_WORK_ELT(work_area, i) ((work_area).table[i])
1744
1745
fa9a63c5 1746/* Set the bit for character C in a list. */
25fe55af
RS
1747#define SET_LIST_BIT(c) \
1748 (b[((unsigned char) (c)) / BYTEWIDTH] \
fa9a63c5
RM
1749 |= 1 << (((unsigned char) c) % BYTEWIDTH))
1750
1751
1752/* Get the next unsigned number in the uncompiled pattern. */
25fe55af 1753#define GET_UNSIGNED_NUMBER(num) \
fa9a63c5
RM
1754 { if (p != pend) \
1755 { \
25fe55af
RS
1756 PATFETCH (c); \
1757 while (ISDIGIT (c)) \
1758 { \
1759 if (num < 0) \
1760 num = 0; \
1761 num = num * 10 + c - '0'; \
1762 if (p == pend) \
1763 break; \
1764 PATFETCH (c); \
1765 } \
1766 } \
5e69f11e 1767 }
fa9a63c5
RM
1768
1769#define CHAR_CLASS_MAX_LENGTH 6 /* Namely, `xdigit'. */
1770
1771#define IS_CHAR_CLASS(string) \
1772 (STREQ (string, "alpha") || STREQ (string, "upper") \
1773 || STREQ (string, "lower") || STREQ (string, "digit") \
1774 || STREQ (string, "alnum") || STREQ (string, "xdigit") \
1775 || STREQ (string, "space") || STREQ (string, "print") \
1776 || STREQ (string, "punct") || STREQ (string, "graph") \
1777 || STREQ (string, "cntrl") || STREQ (string, "blank"))
1778\f
1779#ifndef MATCH_MAY_ALLOCATE
1780
1781/* If we cannot allocate large objects within re_match_2_internal,
1782 we make the fail stack and register vectors global.
1783 The fail stack, we grow to the maximum size when a regexp
1784 is compiled.
1785 The register vectors, we adjust in size each time we
1786 compile a regexp, according to the number of registers it needs. */
1787
1788static fail_stack_type fail_stack;
1789
1790/* Size with which the following vectors are currently allocated.
1791 That is so we can make them bigger as needed,
25fe55af 1792 but never make them smaller. */
fa9a63c5
RM
1793static int regs_allocated_size;
1794
25fe55af 1795static const char ** regstart, ** regend;
fa9a63c5
RM
1796static const char ** old_regstart, ** old_regend;
1797static const char **best_regstart, **best_regend;
5e69f11e 1798static register_info_type *reg_info;
fa9a63c5
RM
1799static const char **reg_dummy;
1800static register_info_type *reg_info_dummy;
1801
1802/* Make the register vectors big enough for NUM_REGS registers,
25fe55af 1803 but don't make them smaller. */
fa9a63c5
RM
1804
1805static
1806regex_grow_registers (num_regs)
1807 int num_regs;
1808{
1809 if (num_regs > regs_allocated_size)
1810 {
1811 RETALLOC_IF (regstart, num_regs, const char *);
1812 RETALLOC_IF (regend, num_regs, const char *);
1813 RETALLOC_IF (old_regstart, num_regs, const char *);
1814 RETALLOC_IF (old_regend, num_regs, const char *);
1815 RETALLOC_IF (best_regstart, num_regs, const char *);
1816 RETALLOC_IF (best_regend, num_regs, const char *);
1817 RETALLOC_IF (reg_info, num_regs, register_info_type);
1818 RETALLOC_IF (reg_dummy, num_regs, const char *);
1819 RETALLOC_IF (reg_info_dummy, num_regs, register_info_type);
1820
1821 regs_allocated_size = num_regs;
1822 }
1823}
1824
1825#endif /* not MATCH_MAY_ALLOCATE */
1826\f
1827/* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
1828 Returns one of error codes defined in `regex.h', or zero for success.
1829
1830 Assumes the `allocated' (and perhaps `buffer') and `translate'
1831 fields are set in BUFP on entry.
1832
1833 If it succeeds, results are put in BUFP (if it returns an error, the
1834 contents of BUFP are undefined):
1835 `buffer' is the compiled pattern;
1836 `syntax' is set to SYNTAX;
1837 `used' is set to the length of the compiled pattern;
1838 `fastmap_accurate' is zero;
1839 `re_nsub' is the number of subexpressions in PATTERN;
1840 `not_bol' and `not_eol' are zero;
5e69f11e 1841
fa9a63c5
RM
1842 The `fastmap' and `newline_anchor' fields are neither
1843 examined nor set. */
1844
1845/* Return, freeing storage we allocated. */
1846#define FREE_STACK_RETURN(value) \
b18215fc
RS
1847 do { \
1848 FREE_RANGE_TABLE_WORK_AREA (range_table_work); \
1849 free (compile_stack.stack); \
1850 return value; \
1851 } while (0)
fa9a63c5
RM
1852
1853static reg_errcode_t
1854regex_compile (pattern, size, syntax, bufp)
1855 const char *pattern;
1856 int size;
1857 reg_syntax_t syntax;
1858 struct re_pattern_buffer *bufp;
1859{
1860 /* We fetch characters from PATTERN here. Even though PATTERN is
1861 `char *' (i.e., signed), we declare these variables as unsigned, so
1862 they can be reliably used as array indices. */
b18215fc 1863 register unsigned int c, c1;
5e69f11e 1864
fa9a63c5
RM
1865 /* A random temporary spot in PATTERN. */
1866 const char *p1;
1867
1868 /* Points to the end of the buffer, where we should append. */
1869 register unsigned char *b;
5e69f11e 1870
fa9a63c5
RM
1871 /* Keeps track of unclosed groups. */
1872 compile_stack_type compile_stack;
1873
1874 /* Points to the current (ending) position in the pattern. */
1875 const char *p = pattern;
1876 const char *pend = pattern + size;
5e69f11e 1877
fa9a63c5 1878 /* How to translate the characters in the pattern. */
6676cb1c 1879 RE_TRANSLATE_TYPE translate = bufp->translate;
fa9a63c5
RM
1880
1881 /* Address of the count-byte of the most recently inserted `exactn'
1882 command. This makes it possible to tell if a new exact-match
1883 character can be added to that command or if the character requires
1884 a new `exactn' command. */
1885 unsigned char *pending_exact = 0;
1886
1887 /* Address of start of the most recently finished expression.
1888 This tells, e.g., postfix * where to find the start of its
1889 operand. Reset at the beginning of groups and alternatives. */
1890 unsigned char *laststart = 0;
1891
1892 /* Address of beginning of regexp, or inside of last group. */
1893 unsigned char *begalt;
1894
1895 /* Place in the uncompiled pattern (i.e., the {) to
1896 which to go back if the interval is invalid. */
1897 const char *beg_interval;
5e69f11e 1898
fa9a63c5 1899 /* Address of the place where a forward jump should go to the end of
25fe55af 1900 the containing expression. Each alternative of an `or' -- except the
fa9a63c5
RM
1901 last -- ends with a forward jump of this sort. */
1902 unsigned char *fixup_alt_jump = 0;
1903
1904 /* Counts open-groups as they are encountered. Remembered for the
1905 matching close-group on the compile stack, so the same register
1906 number is put in the stop_memory as the start_memory. */
1907 regnum_t regnum = 0;
1908
b18215fc
RS
1909 /* Work area for range table of charset. */
1910 struct range_table_work_area range_table_work;
1911
fa9a63c5
RM
1912#ifdef DEBUG
1913 DEBUG_PRINT1 ("\nCompiling pattern: ");
1914 if (debug)
1915 {
1916 unsigned debug_count;
5e69f11e 1917
fa9a63c5 1918 for (debug_count = 0; debug_count < size; debug_count++)
25fe55af 1919 putchar (pattern[debug_count]);
fa9a63c5
RM
1920 putchar ('\n');
1921 }
1922#endif /* DEBUG */
1923
1924 /* Initialize the compile stack. */
1925 compile_stack.stack = TALLOC (INIT_COMPILE_STACK_SIZE, compile_stack_elt_t);
1926 if (compile_stack.stack == NULL)
1927 return REG_ESPACE;
1928
1929 compile_stack.size = INIT_COMPILE_STACK_SIZE;
1930 compile_stack.avail = 0;
1931
b18215fc
RS
1932 range_table_work.table = 0;
1933 range_table_work.allocated = 0;
1934
fa9a63c5
RM
1935 /* Initialize the pattern buffer. */
1936 bufp->syntax = syntax;
1937 bufp->fastmap_accurate = 0;
1938 bufp->not_bol = bufp->not_eol = 0;
1939
1940 /* Set `used' to zero, so that if we return an error, the pattern
1941 printer (for debugging) will think there's no pattern. We reset it
1942 at the end. */
1943 bufp->used = 0;
5e69f11e 1944
fa9a63c5 1945 /* Always count groups, whether or not bufp->no_sub is set. */
5e69f11e 1946 bufp->re_nsub = 0;
fa9a63c5 1947
b18215fc
RS
1948#ifdef emacs
1949 /* bufp->multibyte is set before regex_compile is called, so don't alter
1950 it. */
1951#else /* not emacs */
1952 /* Nothing is recognized as a multibyte character. */
1953 bufp->multibyte = 0;
1954#endif
1955
fa9a63c5
RM
1956#if !defined (emacs) && !defined (SYNTAX_TABLE)
1957 /* Initialize the syntax table. */
1958 init_syntax_once ();
1959#endif
1960
1961 if (bufp->allocated == 0)
1962 {
1963 if (bufp->buffer)
1964 { /* If zero allocated, but buffer is non-null, try to realloc
25fe55af
RS
1965 enough space. This loses if buffer's address is bogus, but
1966 that is the user's responsibility. */
1967 RETALLOC (bufp->buffer, INIT_BUF_SIZE, unsigned char);
1968 }
fa9a63c5 1969 else
25fe55af
RS
1970 { /* Caller did not allocate a buffer. Do it for them. */
1971 bufp->buffer = TALLOC (INIT_BUF_SIZE, unsigned char);
1972 }
fa9a63c5
RM
1973 if (!bufp->buffer) FREE_STACK_RETURN (REG_ESPACE);
1974
1975 bufp->allocated = INIT_BUF_SIZE;
1976 }
1977
1978 begalt = b = bufp->buffer;
1979
1980 /* Loop through the uncompiled pattern until we're at the end. */
1981 while (p != pend)
1982 {
1983 PATFETCH (c);
1984
1985 switch (c)
25fe55af
RS
1986 {
1987 case '^':
1988 {
1989 if ( /* If at start of pattern, it's an operator. */
1990 p == pattern + 1
1991 /* If context independent, it's an operator. */
1992 || syntax & RE_CONTEXT_INDEP_ANCHORS
1993 /* Otherwise, depends on what's come before. */
1994 || at_begline_loc_p (pattern, p, syntax))
1995 BUF_PUSH (begline);
1996 else
1997 goto normal_char;
1998 }
1999 break;
2000
2001
2002 case '$':
2003 {
2004 if ( /* If at end of pattern, it's an operator. */
2005 p == pend
2006 /* If context independent, it's an operator. */
2007 || syntax & RE_CONTEXT_INDEP_ANCHORS
2008 /* Otherwise, depends on what's next. */
2009 || at_endline_loc_p (p, pend, syntax))
2010 BUF_PUSH (endline);
2011 else
2012 goto normal_char;
2013 }
2014 break;
fa9a63c5
RM
2015
2016
2017 case '+':
25fe55af
RS
2018 case '?':
2019 if ((syntax & RE_BK_PLUS_QM)
2020 || (syntax & RE_LIMITED_OPS))
2021 goto normal_char;
2022 handle_plus:
2023 case '*':
2024 /* If there is no previous pattern... */
2025 if (!laststart)
2026 {
2027 if (syntax & RE_CONTEXT_INVALID_OPS)
2028 FREE_STACK_RETURN (REG_BADRPT);
2029 else if (!(syntax & RE_CONTEXT_INDEP_OPS))
2030 goto normal_char;
2031 }
2032
2033 {
2034 /* Are we optimizing this jump? */
2035 boolean keep_string_p = false;
2036
2037 /* 1 means zero (many) matches is allowed. */
2038 char zero_times_ok = 0, many_times_ok = 0;
2039
2040 /* If there is a sequence of repetition chars, collapse it
2041 down to just one (the right one). We can't combine
2042 interval operators with these because of, e.g., `a{2}*',
2043 which should only match an even number of `a's. */
2044
2045 for (;;)
2046 {
2047 zero_times_ok |= c != '+';
2048 many_times_ok |= c != '?';
2049
2050 if (p == pend)
2051 break;
2052
2053 PATFETCH (c);
2054
2055 if (c == '*'
2056 || (!(syntax & RE_BK_PLUS_QM) && (c == '+' || c == '?')))
2057 ;
2058
2059 else if (syntax & RE_BK_PLUS_QM && c == '\\')
2060 {
2061 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2062
2063 PATFETCH (c1);
2064 if (!(c1 == '+' || c1 == '?'))
2065 {
2066 PATUNFETCH;
2067 PATUNFETCH;
2068 break;
2069 }
2070
2071 c = c1;
2072 }
2073 else
2074 {
2075 PATUNFETCH;
2076 break;
2077 }
2078
2079 /* If we get here, we found another repeat character. */
2080 }
2081
2082 /* Star, etc. applied to an empty pattern is equivalent
2083 to an empty pattern. */
2084 if (!laststart)
2085 break;
2086
2087 /* Now we know whether or not zero matches is allowed
2088 and also whether or not two or more matches is allowed. */
2089 if (many_times_ok)
2090 { /* More than one repetition is allowed, so put in at the
2091 end a backward relative jump from `b' to before the next
2092 jump we're going to put in below (which jumps from
2093 laststart to after this jump).
2094
2095 But if we are at the `*' in the exact sequence `.*\n',
2096 insert an unconditional jump backwards to the .,
2097 instead of the beginning of the loop. This way we only
2098 push a failure point once, instead of every time
2099 through the loop. */
2100 assert (p - 1 > pattern);
2101
2102 /* Allocate the space for the jump. */
2103 GET_BUFFER_SPACE (3);
2104
2105 /* We know we are not at the first character of the pattern,
2106 because laststart was nonzero. And we've already
2107 incremented `p', by the way, to be the character after
2108 the `*'. Do we have to do something analogous here
2109 for null bytes, because of RE_DOT_NOT_NULL? */
e934739e 2110 if (TRANSLATE ((unsigned char)*(p - 2)) == TRANSLATE ('.')
fa9a63c5 2111 && zero_times_ok
e934739e
RS
2112 && p < pend
2113 && TRANSLATE ((unsigned char)*p) == TRANSLATE ('\n')
25fe55af
RS
2114 && !(syntax & RE_DOT_NEWLINE))
2115 { /* We have .*\n. */
2116 STORE_JUMP (jump, b, laststart);
2117 keep_string_p = true;
2118 }
2119 else
2120 /* Anything else. */
2121 STORE_JUMP (maybe_pop_jump, b, laststart - 3);
2122
2123 /* We've added more stuff to the buffer. */
2124 b += 3;
2125 }
2126
2127 /* On failure, jump from laststart to b + 3, which will be the
2128 end of the buffer after this jump is inserted. */
2129 GET_BUFFER_SPACE (3);
2130 INSERT_JUMP (keep_string_p ? on_failure_keep_string_jump
2131 : on_failure_jump,
2132 laststart, b + 3);
2133 pending_exact = 0;
2134 b += 3;
2135
2136 if (!zero_times_ok)
2137 {
2138 /* At least one repetition is required, so insert a
2139 `dummy_failure_jump' before the initial
2140 `on_failure_jump' instruction of the loop. This
2141 effects a skip over that instruction the first time
2142 we hit that loop. */
2143 GET_BUFFER_SPACE (3);
2144 INSERT_JUMP (dummy_failure_jump, laststart, laststart + 6);
2145 b += 3;
2146 }
2147 }
fa9a63c5
RM
2148 break;
2149
2150
2151 case '.':
25fe55af
RS
2152 laststart = b;
2153 BUF_PUSH (anychar);
2154 break;
fa9a63c5
RM
2155
2156
25fe55af
RS
2157 case '[':
2158 {
b18215fc 2159 CLEAR_RANGE_TABLE_WORK_USED (range_table_work);
fa9a63c5 2160
25fe55af 2161 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
fa9a63c5 2162
25fe55af
RS
2163 /* Ensure that we have enough space to push a charset: the
2164 opcode, the length count, and the bitset; 34 bytes in all. */
fa9a63c5
RM
2165 GET_BUFFER_SPACE (34);
2166
25fe55af 2167 laststart = b;
e318085a 2168
25fe55af
RS
2169 /* We test `*p == '^' twice, instead of using an if
2170 statement, so we only need one BUF_PUSH. */
2171 BUF_PUSH (*p == '^' ? charset_not : charset);
2172 if (*p == '^')
2173 p++;
e318085a 2174
25fe55af
RS
2175 /* Remember the first position in the bracket expression. */
2176 p1 = p;
e318085a 2177
25fe55af
RS
2178 /* Push the number of bytes in the bitmap. */
2179 BUF_PUSH ((1 << BYTEWIDTH) / BYTEWIDTH);
e318085a 2180
25fe55af
RS
2181 /* Clear the whole map. */
2182 bzero (b, (1 << BYTEWIDTH) / BYTEWIDTH);
e318085a 2183
25fe55af
RS
2184 /* charset_not matches newline according to a syntax bit. */
2185 if ((re_opcode_t) b[-2] == charset_not
2186 && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
2187 SET_LIST_BIT ('\n');
fa9a63c5 2188
25fe55af
RS
2189 /* Read in characters and ranges, setting map bits. */
2190 for (;;)
2191 {
b18215fc
RS
2192 int len;
2193 boolean escaped_char = false;
e318085a 2194
25fe55af 2195 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
e318085a 2196
25fe55af 2197 PATFETCH (c);
e318085a 2198
25fe55af
RS
2199 /* \ might escape characters inside [...] and [^...]. */
2200 if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
2201 {
2202 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
e318085a
RS
2203
2204 PATFETCH (c);
b18215fc 2205 escaped_char = true;
25fe55af 2206 }
b18215fc
RS
2207 else
2208 {
657fcfbd
RS
2209 /* Could be the end of the bracket expression. If it's
2210 not (i.e., when the bracket expression is `[]' so
2211 far), the ']' character bit gets set way below. */
2212 if (c == ']' && p != p1 + 1)
2213 break;
25fe55af 2214 }
b18215fc
RS
2215
2216 /* If C indicates start of multibyte char, get the
2217 actual character code in C, and set the pattern
2218 pointer P to the next character boundary. */
2219 if (bufp->multibyte && BASE_LEADING_CODE_P (c))
2220 {
2221 PATUNFETCH;
2222 c = STRING_CHAR_AND_LENGTH (p, pend - p, len);
2223 p += len;
25fe55af 2224 }
b18215fc
RS
2225 /* What should we do for the character which is
2226 greater than 0x7F, but not BASE_LEADING_CODE_P?
2227 XXX */
2228
25fe55af
RS
2229 /* See if we're at the beginning of a possible character
2230 class. */
b18215fc
RS
2231
2232 else if (!escaped_char &&
2233 syntax & RE_CHAR_CLASSES && c == '[' && *p == ':')
657fcfbd
RS
2234 {
2235 /* Leave room for the null. */
25fe55af 2236 char str[CHAR_CLASS_MAX_LENGTH + 1];
b18215fc 2237
25fe55af
RS
2238 PATFETCH (c);
2239 c1 = 0;
b18215fc 2240
25fe55af
RS
2241 /* If pattern is `[[:'. */
2242 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
b18215fc 2243
25fe55af
RS
2244 for (;;)
2245 {
2246 PATFETCH (c);
2247 if (c == ':' || c == ']' || p == pend
2248 || c1 == CHAR_CLASS_MAX_LENGTH)
2249 break;
2250 str[c1++] = c;
2251 }
2252 str[c1] = '\0';
b18215fc
RS
2253
2254 /* If isn't a word bracketed by `[:' and `:]':
2255 undo the ending character, the letters, and
2256 leave the leading `:' and `[' (but set bits for
2257 them). */
25fe55af
RS
2258 if (c == ':' && *p == ']')
2259 {
2260 int ch;
2261 boolean is_alnum = STREQ (str, "alnum");
2262 boolean is_alpha = STREQ (str, "alpha");
2263 boolean is_blank = STREQ (str, "blank");
2264 boolean is_cntrl = STREQ (str, "cntrl");
2265 boolean is_digit = STREQ (str, "digit");
2266 boolean is_graph = STREQ (str, "graph");
2267 boolean is_lower = STREQ (str, "lower");
2268 boolean is_print = STREQ (str, "print");
2269 boolean is_punct = STREQ (str, "punct");
2270 boolean is_space = STREQ (str, "space");
2271 boolean is_upper = STREQ (str, "upper");
2272 boolean is_xdigit = STREQ (str, "xdigit");
2273
2274 if (!IS_CHAR_CLASS (str))
fa9a63c5
RM
2275 FREE_STACK_RETURN (REG_ECTYPE);
2276
25fe55af
RS
2277 /* Throw away the ] at the end of the character
2278 class. */
2279 PATFETCH (c);
fa9a63c5 2280
25fe55af 2281 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
fa9a63c5 2282
25fe55af
RS
2283 for (ch = 0; ch < 1 << BYTEWIDTH; ch++)
2284 {
7ae68633 2285 int translated = TRANSLATE (ch);
fa9a63c5
RM
2286 /* This was split into 3 if's to
2287 avoid an arbitrary limit in some compiler. */
25fe55af
RS
2288 if ( (is_alnum && ISALNUM (ch))
2289 || (is_alpha && ISALPHA (ch))
2290 || (is_blank && ISBLANK (ch))
2291 || (is_cntrl && ISCNTRL (ch)))
7ae68633 2292 SET_LIST_BIT (translated);
fa9a63c5 2293 if ( (is_digit && ISDIGIT (ch))
25fe55af
RS
2294 || (is_graph && ISGRAPH (ch))
2295 || (is_lower && ISLOWER (ch))
2296 || (is_print && ISPRINT (ch)))
7ae68633 2297 SET_LIST_BIT (translated);
fa9a63c5 2298 if ( (is_punct && ISPUNCT (ch))
25fe55af
RS
2299 || (is_space && ISSPACE (ch))
2300 || (is_upper && ISUPPER (ch))
2301 || (is_xdigit && ISXDIGIT (ch)))
7ae68633 2302 SET_LIST_BIT (translated);
25fe55af 2303 }
b18215fc
RS
2304
2305 /* Repeat the loop. */
2306 continue;
25fe55af
RS
2307 }
2308 else
2309 {
2310 c1++;
2311 while (c1--)
2312 PATUNFETCH;
2313 SET_LIST_BIT ('[');
b18215fc
RS
2314
2315 /* Because the `:' may starts the range, we
2316 can't simply set bit and repeat the loop.
25fe55af 2317 Instead, just set it to C and handle below. */
b18215fc 2318 c = ':';
25fe55af
RS
2319 }
2320 }
b18215fc
RS
2321
2322 if (p < pend && p[0] == '-' && p[1] != ']')
2323 {
2324
2325 /* Discard the `-'. */
2326 PATFETCH (c1);
2327
2328 /* Fetch the character which ends the range. */
2329 PATFETCH (c1);
2330 if (bufp->multibyte && BASE_LEADING_CODE_P (c1))
e318085a 2331 {
b18215fc
RS
2332 PATUNFETCH;
2333 c1 = STRING_CHAR_AND_LENGTH (p, pend - p, len);
2334 p += len;
e318085a 2335 }
b18215fc 2336
e934739e
RS
2337 if (SINGLE_BYTE_CHAR_P (c)
2338 && ! SINGLE_BYTE_CHAR_P (c1))
2339 {
2340 /* Handle a range such as \177-\377 in multibyte mode.
2341 Split that into two ranges,,
2342 the low one ending at 0237, and the high one
2343 starting at ...040. */
2344 int c1_base = (c1 & ~0177) | 040;
2345 SET_RANGE_TABLE_WORK_AREA (range_table_work, c, c1);
2346 c1 = 0237;
2347 }
2348 else if (!SAME_CHARSET_P (c, c1))
b18215fc 2349 FREE_STACK_RETURN (REG_ERANGE);
e318085a 2350 }
25fe55af 2351 else
b18215fc
RS
2352 /* Range from C to C. */
2353 c1 = c;
2354
2355 /* Set the range ... */
2356 if (SINGLE_BYTE_CHAR_P (c))
2357 /* ... into bitmap. */
25fe55af 2358 {
b18215fc
RS
2359 unsigned this_char;
2360 int range_start = c, range_end = c1;
2361
2362 /* If the start is after the end, the range is empty. */
2363 if (range_start > range_end)
2364 {
2365 if (syntax & RE_NO_EMPTY_RANGES)
2366 FREE_STACK_RETURN (REG_ERANGE);
2367 /* Else, repeat the loop. */
2368 }
2369 else
2370 {
2371 for (this_char = range_start; this_char <= range_end;
2372 this_char++)
2373 SET_LIST_BIT (TRANSLATE (this_char));
e934739e 2374 }
25fe55af 2375 }
e318085a 2376 else
b18215fc
RS
2377 /* ... into range table. */
2378 SET_RANGE_TABLE_WORK_AREA (range_table_work, c, c1);
e318085a
RS
2379 }
2380
25fe55af
RS
2381 /* Discard any (non)matching list bytes that are all 0 at the
2382 end of the map. Decrease the map-length byte too. */
2383 while ((int) b[-1] > 0 && b[b[-1] - 1] == 0)
2384 b[-1]--;
2385 b += b[-1];
fa9a63c5 2386
b18215fc
RS
2387 /* Build real range table from work area. */
2388 if (RANGE_TABLE_WORK_USED (range_table_work))
2389 {
2390 int i;
2391 int used = RANGE_TABLE_WORK_USED (range_table_work);
fa9a63c5 2392
b18215fc 2393 /* Allocate space for COUNT + RANGE_TABLE. Needs two
25fe55af 2394 bytes for COUNT and three bytes for each character. */
b18215fc 2395 GET_BUFFER_SPACE (2 + used * 3);
fa9a63c5 2396
b18215fc
RS
2397 /* Indicate the existence of range table. */
2398 laststart[1] |= 0x80;
fa9a63c5 2399
b18215fc
RS
2400 STORE_NUMBER_AND_INCR (b, used / 2);
2401 for (i = 0; i < used; i++)
2402 STORE_CHARACTER_AND_INCR
2403 (b, RANGE_TABLE_WORK_ELT (range_table_work, i));
2404 }
25fe55af
RS
2405 }
2406 break;
fa9a63c5
RM
2407
2408
b18215fc 2409 case '(':
25fe55af
RS
2410 if (syntax & RE_NO_BK_PARENS)
2411 goto handle_open;
2412 else
2413 goto normal_char;
fa9a63c5
RM
2414
2415
25fe55af
RS
2416 case ')':
2417 if (syntax & RE_NO_BK_PARENS)
2418 goto handle_close;
2419 else
2420 goto normal_char;
e318085a
RS
2421
2422
25fe55af
RS
2423 case '\n':
2424 if (syntax & RE_NEWLINE_ALT)
2425 goto handle_alt;
2426 else
2427 goto normal_char;
e318085a
RS
2428
2429
b18215fc 2430 case '|':
25fe55af
RS
2431 if (syntax & RE_NO_BK_VBAR)
2432 goto handle_alt;
2433 else
2434 goto normal_char;
2435
2436
2437 case '{':
2438 if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES)
2439 goto handle_interval;
2440 else
2441 goto normal_char;
2442
2443
2444 case '\\':
2445 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2446
2447 /* Do not translate the character after the \, so that we can
2448 distinguish, e.g., \B from \b, even if we normally would
2449 translate, e.g., B to b. */
2450 PATFETCH_RAW (c);
2451
2452 switch (c)
2453 {
2454 case '(':
2455 if (syntax & RE_NO_BK_PARENS)
2456 goto normal_backslash;
2457
2458 handle_open:
2459 bufp->re_nsub++;
2460 regnum++;
2461
2462 if (COMPILE_STACK_FULL)
2463 {
2464 RETALLOC (compile_stack.stack, compile_stack.size << 1,
2465 compile_stack_elt_t);
2466 if (compile_stack.stack == NULL) return REG_ESPACE;
2467
2468 compile_stack.size <<= 1;
2469 }
2470
2471 /* These are the values to restore when we hit end of this
2472 group. They are all relative offsets, so that if the
2473 whole pattern moves because of realloc, they will still
2474 be valid. */
2475 COMPILE_STACK_TOP.begalt_offset = begalt - bufp->buffer;
2476 COMPILE_STACK_TOP.fixup_alt_jump
2477 = fixup_alt_jump ? fixup_alt_jump - bufp->buffer + 1 : 0;
2478 COMPILE_STACK_TOP.laststart_offset = b - bufp->buffer;
2479 COMPILE_STACK_TOP.regnum = regnum;
2480
2481 /* We will eventually replace the 0 with the number of
2482 groups inner to this one. But do not push a
2483 start_memory for groups beyond the last one we can
2484 represent in the compiled pattern. */
2485 if (regnum <= MAX_REGNUM)
2486 {
2487 COMPILE_STACK_TOP.inner_group_offset = b - bufp->buffer + 2;
2488 BUF_PUSH_3 (start_memory, regnum, 0);
2489 }
2490
2491 compile_stack.avail++;
2492
2493 fixup_alt_jump = 0;
2494 laststart = 0;
2495 begalt = b;
b18215fc
RS
2496 /* If we've reached MAX_REGNUM groups, then this open
2497 won't actually generate any code, so we'll have to
2498 clear pending_exact explicitly. */
2499 pending_exact = 0;
25fe55af
RS
2500 break;
2501
2502
2503 case ')':
2504 if (syntax & RE_NO_BK_PARENS) goto normal_backslash;
2505
2506 if (COMPILE_STACK_EMPTY)
2507 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
2508 goto normal_backslash;
2509 else
2510 FREE_STACK_RETURN (REG_ERPAREN);
2511
2512 handle_close:
2513 if (fixup_alt_jump)
2514 { /* Push a dummy failure point at the end of the
2515 alternative for a possible future
2516 `pop_failure_jump' to pop. See comments at
2517 `push_dummy_failure' in `re_match_2'. */
2518 BUF_PUSH (push_dummy_failure);
2519
2520 /* We allocated space for this jump when we assigned
2521 to `fixup_alt_jump', in the `handle_alt' case below. */
2522 STORE_JUMP (jump_past_alt, fixup_alt_jump, b - 1);
2523 }
2524
2525 /* See similar code for backslashed left paren above. */
2526 if (COMPILE_STACK_EMPTY)
2527 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
2528 goto normal_char;
2529 else
2530 FREE_STACK_RETURN (REG_ERPAREN);
2531
2532 /* Since we just checked for an empty stack above, this
2533 ``can't happen''. */
2534 assert (compile_stack.avail != 0);
2535 {
2536 /* We don't just want to restore into `regnum', because
2537 later groups should continue to be numbered higher,
2538 as in `(ab)c(de)' -- the second group is #2. */
2539 regnum_t this_group_regnum;
2540
2541 compile_stack.avail--;
2542 begalt = bufp->buffer + COMPILE_STACK_TOP.begalt_offset;
2543 fixup_alt_jump
2544 = COMPILE_STACK_TOP.fixup_alt_jump
2545 ? bufp->buffer + COMPILE_STACK_TOP.fixup_alt_jump - 1
2546 : 0;
2547 laststart = bufp->buffer + COMPILE_STACK_TOP.laststart_offset;
2548 this_group_regnum = COMPILE_STACK_TOP.regnum;
b18215fc
RS
2549 /* If we've reached MAX_REGNUM groups, then this open
2550 won't actually generate any code, so we'll have to
2551 clear pending_exact explicitly. */
2552 pending_exact = 0;
e318085a 2553
25fe55af
RS
2554 /* We're at the end of the group, so now we know how many
2555 groups were inside this one. */
2556 if (this_group_regnum <= MAX_REGNUM)
2557 {
2558 unsigned char *inner_group_loc
2559 = bufp->buffer + COMPILE_STACK_TOP.inner_group_offset;
2560
2561 *inner_group_loc = regnum - this_group_regnum;
2562 BUF_PUSH_3 (stop_memory, this_group_regnum,
2563 regnum - this_group_regnum);
2564 }
2565 }
2566 break;
2567
2568
2569 case '|': /* `\|'. */
2570 if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR)
2571 goto normal_backslash;
2572 handle_alt:
2573 if (syntax & RE_LIMITED_OPS)
2574 goto normal_char;
2575
2576 /* Insert before the previous alternative a jump which
2577 jumps to this alternative if the former fails. */
2578 GET_BUFFER_SPACE (3);
2579 INSERT_JUMP (on_failure_jump, begalt, b + 6);
2580 pending_exact = 0;
2581 b += 3;
2582
2583 /* The alternative before this one has a jump after it
2584 which gets executed if it gets matched. Adjust that
2585 jump so it will jump to this alternative's analogous
2586 jump (put in below, which in turn will jump to the next
2587 (if any) alternative's such jump, etc.). The last such
2588 jump jumps to the correct final destination. A picture:
2589 _____ _____
2590 | | | |
2591 | v | v
2592 a | b | c
2593
2594 If we are at `b', then fixup_alt_jump right now points to a
2595 three-byte space after `a'. We'll put in the jump, set
2596 fixup_alt_jump to right after `b', and leave behind three
2597 bytes which we'll fill in when we get to after `c'. */
2598
2599 if (fixup_alt_jump)
2600 STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
2601
2602 /* Mark and leave space for a jump after this alternative,
2603 to be filled in later either by next alternative or
2604 when know we're at the end of a series of alternatives. */
2605 fixup_alt_jump = b;
2606 GET_BUFFER_SPACE (3);
2607 b += 3;
2608
2609 laststart = 0;
2610 begalt = b;
2611 break;
2612
2613
2614 case '{':
2615 /* If \{ is a literal. */
2616 if (!(syntax & RE_INTERVALS)
2617 /* If we're at `\{' and it's not the open-interval
2618 operator. */
2619 || ((syntax & RE_INTERVALS) && (syntax & RE_NO_BK_BRACES))
2620 || (p - 2 == pattern && p == pend))
2621 goto normal_backslash;
2622
2623 handle_interval:
2624 {
2625 /* If got here, then the syntax allows intervals. */
2626
2627 /* At least (most) this many matches must be made. */
2628 int lower_bound = -1, upper_bound = -1;
2629
2630 beg_interval = p - 1;
2631
2632 if (p == pend)
2633 {
2634 if (syntax & RE_NO_BK_BRACES)
2635 goto unfetch_interval;
2636 else
2637 FREE_STACK_RETURN (REG_EBRACE);
2638 }
2639
2640 GET_UNSIGNED_NUMBER (lower_bound);
2641
2642 if (c == ',')
2643 {
2644 GET_UNSIGNED_NUMBER (upper_bound);
2645 if (upper_bound < 0) upper_bound = RE_DUP_MAX;
2646 }
2647 else
2648 /* Interval such as `{1}' => match exactly once. */
2649 upper_bound = lower_bound;
2650
2651 if (lower_bound < 0 || upper_bound > RE_DUP_MAX
2652 || lower_bound > upper_bound)
2653 {
2654 if (syntax & RE_NO_BK_BRACES)
2655 goto unfetch_interval;
2656 else
2657 FREE_STACK_RETURN (REG_BADBR);
2658 }
2659
2660 if (!(syntax & RE_NO_BK_BRACES))
2661 {
2662 if (c != '\\') FREE_STACK_RETURN (REG_EBRACE);
2663
2664 PATFETCH (c);
2665 }
2666
2667 if (c != '}')
2668 {
2669 if (syntax & RE_NO_BK_BRACES)
2670 goto unfetch_interval;
2671 else
2672 FREE_STACK_RETURN (REG_BADBR);
2673 }
2674
2675 /* We just parsed a valid interval. */
2676
2677 /* If it's invalid to have no preceding re. */
2678 if (!laststart)
2679 {
2680 if (syntax & RE_CONTEXT_INVALID_OPS)
2681 FREE_STACK_RETURN (REG_BADRPT);
2682 else if (syntax & RE_CONTEXT_INDEP_OPS)
2683 laststart = b;
2684 else
2685 goto unfetch_interval;
2686 }
2687
2688 /* If the upper bound is zero, don't want to succeed at
2689 all; jump from `laststart' to `b + 3', which will be
2690 the end of the buffer after we insert the jump. */
2691 if (upper_bound == 0)
2692 {
2693 GET_BUFFER_SPACE (3);
2694 INSERT_JUMP (jump, laststart, b + 3);
2695 b += 3;
2696 }
2697
2698 /* Otherwise, we have a nontrivial interval. When
2699 we're all done, the pattern will look like:
2700 set_number_at <jump count> <upper bound>
2701 set_number_at <succeed_n count> <lower bound>
2702 succeed_n <after jump addr> <succeed_n count>
2703 <body of loop>
2704 jump_n <succeed_n addr> <jump count>
2705 (The upper bound and `jump_n' are omitted if
2706 `upper_bound' is 1, though.) */
2707 else
2708 { /* If the upper bound is > 1, we need to insert
2709 more at the end of the loop. */
2710 unsigned nbytes = 10 + (upper_bound > 1) * 10;
2711
2712 GET_BUFFER_SPACE (nbytes);
2713
2714 /* Initialize lower bound of the `succeed_n', even
2715 though it will be set during matching by its
2716 attendant `set_number_at' (inserted next),
2717 because `re_compile_fastmap' needs to know.
2718 Jump to the `jump_n' we might insert below. */
2719 INSERT_JUMP2 (succeed_n, laststart,
2720 b + 5 + (upper_bound > 1) * 5,
2721 lower_bound);
2722 b += 5;
2723
2724 /* Code to initialize the lower bound. Insert
2725 before the `succeed_n'. The `5' is the last two
2726 bytes of this `set_number_at', plus 3 bytes of
2727 the following `succeed_n'. */
2728 insert_op2 (set_number_at, laststart, 5, lower_bound, b);
2729 b += 5;
2730
2731 if (upper_bound > 1)
2732 { /* More than one repetition is allowed, so
2733 append a backward jump to the `succeed_n'
2734 that starts this interval.
2735
2736 When we've reached this during matching,
2737 we'll have matched the interval once, so
2738 jump back only `upper_bound - 1' times. */
2739 STORE_JUMP2 (jump_n, b, laststart + 5,
2740 upper_bound - 1);
2741 b += 5;
2742
2743 /* The location we want to set is the second
2744 parameter of the `jump_n'; that is `b-2' as
2745 an absolute address. `laststart' will be
2746 the `set_number_at' we're about to insert;
2747 `laststart+3' the number to set, the source
2748 for the relative address. But we are
2749 inserting into the middle of the pattern --
2750 so everything is getting moved up by 5.
2751 Conclusion: (b - 2) - (laststart + 3) + 5,
2752 i.e., b - laststart.
2753
2754 We insert this at the beginning of the loop
2755 so that if we fail during matching, we'll
2756 reinitialize the bounds. */
2757 insert_op2 (set_number_at, laststart, b - laststart,
2758 upper_bound - 1, b);
2759 b += 5;
2760 }
2761 }
2762 pending_exact = 0;
2763 beg_interval = NULL;
2764 }
2765 break;
2766
2767 unfetch_interval:
2768 /* If an invalid interval, match the characters as literals. */
2769 assert (beg_interval);
2770 p = beg_interval;
2771 beg_interval = NULL;
2772
2773 /* normal_char and normal_backslash need `c'. */
2774 PATFETCH (c);
2775
2776 if (!(syntax & RE_NO_BK_BRACES))
2777 {
2778 if (p > pattern && p[-1] == '\\')
2779 goto normal_backslash;
2780 }
2781 goto normal_char;
e318085a 2782
b18215fc 2783#ifdef emacs
25fe55af
RS
2784 /* There is no way to specify the before_dot and after_dot
2785 operators. rms says this is ok. --karl */
2786 case '=':
2787 BUF_PUSH (at_dot);
2788 break;
2789
2790 case 's':
2791 laststart = b;
2792 PATFETCH (c);
2793 BUF_PUSH_2 (syntaxspec, syntax_spec_code[c]);
2794 break;
2795
2796 case 'S':
2797 laststart = b;
2798 PATFETCH (c);
2799 BUF_PUSH_2 (notsyntaxspec, syntax_spec_code[c]);
2800 break;
b18215fc
RS
2801
2802 case 'c':
2803 laststart = b;
2804 PATFETCH_RAW (c);
2805 BUF_PUSH_2 (categoryspec, c);
2806 break;
e318085a 2807
b18215fc
RS
2808 case 'C':
2809 laststart = b;
2810 PATFETCH_RAW (c);
2811 BUF_PUSH_2 (notcategoryspec, c);
2812 break;
2813#endif /* emacs */
e318085a 2814
e318085a 2815
25fe55af
RS
2816 case 'w':
2817 laststart = b;
2818 BUF_PUSH (wordchar);
2819 break;
e318085a 2820
e318085a 2821
25fe55af
RS
2822 case 'W':
2823 laststart = b;
2824 BUF_PUSH (notwordchar);
2825 break;
e318085a
RS
2826
2827
25fe55af
RS
2828 case '<':
2829 BUF_PUSH (wordbeg);
2830 break;
e318085a 2831
25fe55af
RS
2832 case '>':
2833 BUF_PUSH (wordend);
2834 break;
e318085a 2835
25fe55af
RS
2836 case 'b':
2837 BUF_PUSH (wordbound);
2838 break;
e318085a 2839
25fe55af
RS
2840 case 'B':
2841 BUF_PUSH (notwordbound);
2842 break;
fa9a63c5 2843
25fe55af
RS
2844 case '`':
2845 BUF_PUSH (begbuf);
2846 break;
e318085a 2847
25fe55af
RS
2848 case '\'':
2849 BUF_PUSH (endbuf);
2850 break;
e318085a 2851
25fe55af
RS
2852 case '1': case '2': case '3': case '4': case '5':
2853 case '6': case '7': case '8': case '9':
2854 if (syntax & RE_NO_BK_REFS)
2855 goto normal_char;
e318085a 2856
25fe55af 2857 c1 = c - '0';
e318085a 2858
25fe55af
RS
2859 if (c1 > regnum)
2860 FREE_STACK_RETURN (REG_ESUBREG);
e318085a 2861
25fe55af
RS
2862 /* Can't back reference to a subexpression if inside of it. */
2863 if (group_in_compile_stack (compile_stack, c1))
2864 goto normal_char;
e318085a 2865
25fe55af
RS
2866 laststart = b;
2867 BUF_PUSH_2 (duplicate, c1);
2868 break;
e318085a 2869
e318085a 2870
25fe55af
RS
2871 case '+':
2872 case '?':
2873 if (syntax & RE_BK_PLUS_QM)
2874 goto handle_plus;
2875 else
2876 goto normal_backslash;
2877
2878 default:
2879 normal_backslash:
2880 /* You might think it would be useful for \ to mean
2881 not to translate; but if we don't translate it
2882 it will never match anything. */
2883 c = TRANSLATE (c);
2884 goto normal_char;
2885 }
2886 break;
fa9a63c5
RM
2887
2888
2889 default:
25fe55af 2890 /* Expects the character in `c'. */
fa9a63c5 2891 normal_char:
b18215fc
RS
2892 p1 = p - 1; /* P1 points the head of C. */
2893#ifdef emacs
2894 if (bufp->multibyte)
2895 /* Set P to the next character boundary. */
2896 p += MULTIBYTE_FORM_LENGTH (p1, pend - p1) - 1;
2897#endif
fa9a63c5 2898 /* If no exactn currently being built. */
25fe55af 2899 if (!pending_exact
fa9a63c5 2900
25fe55af
RS
2901 /* If last exactn not at current position. */
2902 || pending_exact + *pending_exact + 1 != b
5e69f11e 2903
25fe55af 2904 /* We have only one byte following the exactn for the count. */
b18215fc 2905 || *pending_exact >= (1 << BYTEWIDTH) - (p - p1)
fa9a63c5 2906
25fe55af
RS
2907 /* If followed by a repetition operator. */
2908 || *p == '*' || *p == '^'
fa9a63c5
RM
2909 || ((syntax & RE_BK_PLUS_QM)
2910 ? *p == '\\' && (p[1] == '+' || p[1] == '?')
2911 : (*p == '+' || *p == '?'))
2912 || ((syntax & RE_INTERVALS)
25fe55af 2913 && ((syntax & RE_NO_BK_BRACES)
fa9a63c5 2914 ? *p == '{'
25fe55af 2915 : (p[0] == '\\' && p[1] == '{'))))
fa9a63c5
RM
2916 {
2917 /* Start building a new exactn. */
5e69f11e 2918
25fe55af 2919 laststart = b;
fa9a63c5
RM
2920
2921 BUF_PUSH_2 (exactn, 0);
2922 pending_exact = b - 1;
25fe55af 2923 }
5e69f11e 2924
b18215fc
RS
2925 /* Here, C may translated, therefore C may not equal to *P1. */
2926 while (1)
2927 {
e934739e
RS
2928 BUF_PUSH (c);
2929 (*pending_exact)++;
b18215fc
RS
2930 if (++p1 == p)
2931 break;
2932
2933 /* Rest of multibyte form should be copied literally. */
2934 c = *(unsigned char *)p1;
2935 }
fa9a63c5 2936 break;
25fe55af 2937 } /* switch (c) */
fa9a63c5
RM
2938 } /* while p != pend */
2939
5e69f11e 2940
fa9a63c5 2941 /* Through the pattern now. */
5e69f11e 2942
fa9a63c5
RM
2943 if (fixup_alt_jump)
2944 STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
2945
5e69f11e 2946 if (!COMPILE_STACK_EMPTY)
fa9a63c5
RM
2947 FREE_STACK_RETURN (REG_EPAREN);
2948
2949 /* If we don't want backtracking, force success
2950 the first time we reach the end of the compiled pattern. */
2951 if (syntax & RE_NO_POSIX_BACKTRACKING)
2952 BUF_PUSH (succeed);
2953
2954 free (compile_stack.stack);
2955
2956 /* We have succeeded; set the length of the buffer. */
2957 bufp->used = b - bufp->buffer;
2958
2959#ifdef DEBUG
2960 if (debug)
2961 {
2962 DEBUG_PRINT1 ("\nCompiled pattern: \n");
2963 print_compiled_pattern (bufp);
2964 }
2965#endif /* DEBUG */
2966
2967#ifndef MATCH_MAY_ALLOCATE
2968 /* Initialize the failure stack to the largest possible stack. This
2969 isn't necessary unless we're trying to avoid calling alloca in
2970 the search and match routines. */
2971 {
2972 int num_regs = bufp->re_nsub + 1;
2973
320a2a73 2974 if (fail_stack.size < re_max_failures * TYPICAL_FAILURE_SIZE)
fa9a63c5 2975 {
a26f4ccd 2976 fail_stack.size = re_max_failures * TYPICAL_FAILURE_SIZE;
fa9a63c5
RM
2977
2978#ifdef emacs
2979 if (! fail_stack.stack)
2980 fail_stack.stack
5e69f11e 2981 = (fail_stack_elt_t *) xmalloc (fail_stack.size
fa9a63c5
RM
2982 * sizeof (fail_stack_elt_t));
2983 else
2984 fail_stack.stack
2985 = (fail_stack_elt_t *) xrealloc (fail_stack.stack,
2986 (fail_stack.size
2987 * sizeof (fail_stack_elt_t)));
2988#else /* not emacs */
2989 if (! fail_stack.stack)
2990 fail_stack.stack
5e69f11e 2991 = (fail_stack_elt_t *) malloc (fail_stack.size
fa9a63c5
RM
2992 * sizeof (fail_stack_elt_t));
2993 else
2994 fail_stack.stack
2995 = (fail_stack_elt_t *) realloc (fail_stack.stack,
2996 (fail_stack.size
2997 * sizeof (fail_stack_elt_t)));
2998#endif /* not emacs */
2999 }
3000
3001 regex_grow_registers (num_regs);
3002 }
3003#endif /* not MATCH_MAY_ALLOCATE */
3004
3005 return REG_NOERROR;
3006} /* regex_compile */
3007\f
3008/* Subroutines for `regex_compile'. */
3009
25fe55af 3010/* Store OP at LOC followed by two-byte integer parameter ARG. */
fa9a63c5
RM
3011
3012static void
3013store_op1 (op, loc, arg)
3014 re_opcode_t op;
3015 unsigned char *loc;
3016 int arg;
3017{
3018 *loc = (unsigned char) op;
3019 STORE_NUMBER (loc + 1, arg);
3020}
3021
3022
3023/* Like `store_op1', but for two two-byte parameters ARG1 and ARG2. */
3024
3025static void
3026store_op2 (op, loc, arg1, arg2)
3027 re_opcode_t op;
3028 unsigned char *loc;
3029 int arg1, arg2;
3030{
3031 *loc = (unsigned char) op;
3032 STORE_NUMBER (loc + 1, arg1);
3033 STORE_NUMBER (loc + 3, arg2);
3034}
3035
3036
3037/* Copy the bytes from LOC to END to open up three bytes of space at LOC
3038 for OP followed by two-byte integer parameter ARG. */
3039
3040static void
3041insert_op1 (op, loc, arg, end)
3042 re_opcode_t op;
3043 unsigned char *loc;
3044 int arg;
5e69f11e 3045 unsigned char *end;
fa9a63c5
RM
3046{
3047 register unsigned char *pfrom = end;
3048 register unsigned char *pto = end + 3;
3049
3050 while (pfrom != loc)
3051 *--pto = *--pfrom;
5e69f11e 3052
fa9a63c5
RM
3053 store_op1 (op, loc, arg);
3054}
3055
3056
3057/* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2. */
3058
3059static void
3060insert_op2 (op, loc, arg1, arg2, end)
3061 re_opcode_t op;
3062 unsigned char *loc;
3063 int arg1, arg2;
5e69f11e 3064 unsigned char *end;
fa9a63c5
RM
3065{
3066 register unsigned char *pfrom = end;
3067 register unsigned char *pto = end + 5;
3068
3069 while (pfrom != loc)
3070 *--pto = *--pfrom;
5e69f11e 3071
fa9a63c5
RM
3072 store_op2 (op, loc, arg1, arg2);
3073}
3074
3075
3076/* P points to just after a ^ in PATTERN. Return true if that ^ comes
3077 after an alternative or a begin-subexpression. We assume there is at
3078 least one character before the ^. */
3079
3080static boolean
3081at_begline_loc_p (pattern, p, syntax)
3082 const char *pattern, *p;
3083 reg_syntax_t syntax;
3084{
3085 const char *prev = p - 2;
3086 boolean prev_prev_backslash = prev > pattern && prev[-1] == '\\';
5e69f11e 3087
fa9a63c5
RM
3088 return
3089 /* After a subexpression? */
3090 (*prev == '(' && (syntax & RE_NO_BK_PARENS || prev_prev_backslash))
25fe55af 3091 /* After an alternative? */
fa9a63c5
RM
3092 || (*prev == '|' && (syntax & RE_NO_BK_VBAR || prev_prev_backslash));
3093}
3094
3095
3096/* The dual of at_begline_loc_p. This one is for $. We assume there is
3097 at least one character after the $, i.e., `P < PEND'. */
3098
3099static boolean
3100at_endline_loc_p (p, pend, syntax)
3101 const char *p, *pend;
3102 int syntax;
3103{
3104 const char *next = p;
3105 boolean next_backslash = *next == '\\';
5bb52971 3106 const char *next_next = p + 1 < pend ? p + 1 : 0;
5e69f11e 3107
fa9a63c5
RM
3108 return
3109 /* Before a subexpression? */
3110 (syntax & RE_NO_BK_PARENS ? *next == ')'
25fe55af 3111 : next_backslash && next_next && *next_next == ')')
fa9a63c5
RM
3112 /* Before an alternative? */
3113 || (syntax & RE_NO_BK_VBAR ? *next == '|'
25fe55af 3114 : next_backslash && next_next && *next_next == '|');
fa9a63c5
RM
3115}
3116
3117
5e69f11e 3118/* Returns true if REGNUM is in one of COMPILE_STACK's elements and
fa9a63c5
RM
3119 false if it's not. */
3120
3121static boolean
3122group_in_compile_stack (compile_stack, regnum)
3123 compile_stack_type compile_stack;
3124 regnum_t regnum;
3125{
3126 int this_element;
3127
5e69f11e
RM
3128 for (this_element = compile_stack.avail - 1;
3129 this_element >= 0;
fa9a63c5
RM
3130 this_element--)
3131 if (compile_stack.stack[this_element].regnum == regnum)
3132 return true;
3133
3134 return false;
3135}
fa9a63c5
RM
3136\f
3137/* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
3138 BUFP. A fastmap records which of the (1 << BYTEWIDTH) possible
3139 characters can start a string that matches the pattern. This fastmap
3140 is used by re_search to skip quickly over impossible starting points.
3141
3142 The caller must supply the address of a (1 << BYTEWIDTH)-byte data
3143 area as BUFP->fastmap.
5e69f11e 3144
fa9a63c5
RM
3145 We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
3146 the pattern buffer.
3147
3148 Returns 0 if we succeed, -2 if an internal error. */
3149
3150int
3151re_compile_fastmap (bufp)
3152 struct re_pattern_buffer *bufp;
3153{
b18215fc 3154 int i, j, k;
fa9a63c5
RM
3155#ifdef MATCH_MAY_ALLOCATE
3156 fail_stack_type fail_stack;
3157#endif
3158#ifndef REGEX_MALLOC
3159 char *destination;
3160#endif
3161 /* We don't push any register information onto the failure stack. */
3162 unsigned num_regs = 0;
5e69f11e 3163
fa9a63c5
RM
3164 register char *fastmap = bufp->fastmap;
3165 unsigned char *pattern = bufp->buffer;
3166 unsigned long size = bufp->used;
3167 unsigned char *p = pattern;
3168 register unsigned char *pend = pattern + size;
3169
3170 /* This holds the pointer to the failure stack, when
3171 it is allocated relocatably. */
3172 fail_stack_elt_t *failure_stack_ptr;
3173
3174 /* Assume that each path through the pattern can be null until
25fe55af 3175 proven otherwise. We set this false at the bottom of switch
fa9a63c5
RM
3176 statement, to which we get only if a particular path doesn't
3177 match the empty string. */
3178 boolean path_can_be_null = true;
3179
3180 /* We aren't doing a `succeed_n' to begin with. */
3181 boolean succeed_n_p = false;
3182
b18215fc 3183 /* If all elements for base leading-codes in fastmap is set, this
25fe55af 3184 flag is set true. */
b18215fc
RS
3185 boolean match_any_multibyte_characters = false;
3186
3187 /* Maximum code of simple (single byte) character. */
3188 int simple_char_max;
3189
fa9a63c5 3190 assert (fastmap != NULL && p != NULL);
5e69f11e 3191
fa9a63c5 3192 INIT_FAIL_STACK ();
25fe55af 3193 bzero (fastmap, 1 << BYTEWIDTH); /* Assume nothing's valid. */
fa9a63c5
RM
3194 bufp->fastmap_accurate = 1; /* It will be when we're done. */
3195 bufp->can_be_null = 0;
5e69f11e 3196
fa9a63c5
RM
3197 while (1)
3198 {
3199 if (p == pend || *p == succeed)
3200 {
3201 /* We have reached the (effective) end of pattern. */
3202 if (!FAIL_STACK_EMPTY ())
3203 {
3204 bufp->can_be_null |= path_can_be_null;
3205
3206 /* Reset for next path. */
3207 path_can_be_null = true;
3208
3209 p = fail_stack.stack[--fail_stack.avail].pointer;
3210
3211 continue;
3212 }
3213 else
3214 break;
3215 }
3216
25fe55af 3217 /* We should never be about to go beyond the end of the pattern. */
fa9a63c5 3218 assert (p < pend);
5e69f11e 3219
fa9a63c5
RM
3220 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
3221 {
3222
25fe55af
RS
3223 /* I guess the idea here is to simply not bother with a fastmap
3224 if a backreference is used, since it's too hard to figure out
3225 the fastmap for the corresponding group. Setting
3226 `can_be_null' stops `re_search_2' from using the fastmap, so
3227 that is all we do. */
fa9a63c5
RM
3228 case duplicate:
3229 bufp->can_be_null = 1;
25fe55af 3230 goto done;
fa9a63c5
RM
3231
3232
3233 /* Following are the cases which match a character. These end
25fe55af 3234 with `break'. */
fa9a63c5
RM
3235
3236 case exactn:
25fe55af 3237 fastmap[p[1]] = 1;
fa9a63c5
RM
3238 break;
3239
3240
b18215fc 3241#ifndef emacs
25fe55af
RS
3242 case charset:
3243 for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
fa9a63c5 3244 if (p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH)))
25fe55af 3245 fastmap[j] = 1;
fa9a63c5
RM
3246 break;
3247
3248
3249 case charset_not:
3250 /* Chars beyond end of map must be allowed. */
3251 for (j = *p * BYTEWIDTH; j < (1 << BYTEWIDTH); j++)
25fe55af 3252 fastmap[j] = 1;
fa9a63c5
RM
3253
3254 for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
3255 if (!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))))
25fe55af
RS
3256 fastmap[j] = 1;
3257 break;
fa9a63c5
RM
3258
3259
3260 case wordchar:
3261 for (j = 0; j < (1 << BYTEWIDTH); j++)
3262 if (SYNTAX (j) == Sword)
3263 fastmap[j] = 1;
3264 break;
3265
3266
3267 case notwordchar:
3268 for (j = 0; j < (1 << BYTEWIDTH); j++)
3269 if (SYNTAX (j) != Sword)
3270 fastmap[j] = 1;
3271 break;
b18215fc
RS
3272#else /* emacs */
3273 case charset:
3274 for (j = CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH - 1, p++;
3275 j >= 0; j--)
3276 if (p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH)))
3277 fastmap[j] = 1;
3278
3279 if (CHARSET_RANGE_TABLE_EXISTS_P (&p[-2])
3280 && match_any_multibyte_characters == false)
3281 {
3282 /* Set fastmap[I] 1 where I is a base leading code of each
3283 multibyte character in the range table. */
3284 int c, count;
3285
3286 /* Make P points the range table. */
3287 p += CHARSET_BITMAP_SIZE (&p[-2]);
3288
3289 /* Extract the number of ranges in range table into
25fe55af 3290 COUNT. */
b18215fc
RS
3291 EXTRACT_NUMBER_AND_INCR (count, p);
3292 for (; count > 0; count--, p += 2 * 3) /* XXX */
3293 {
3294 /* Extract the start of each range. */
3295 EXTRACT_CHARACTER (c, p);
3296 j = CHAR_CHARSET (c);
3297 fastmap[CHARSET_LEADING_CODE_BASE (j)] = 1;
3298 }
3299 }
3300 break;
fa9a63c5
RM
3301
3302
b18215fc
RS
3303 case charset_not:
3304 /* Chars beyond end of map must be allowed. End of map is
3305 `127' if bufp->multibyte is nonzero. */
3306 simple_char_max = bufp->multibyte ? 0x80 : (1 << BYTEWIDTH);
3307 for (j = CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH;
3308 j < simple_char_max; j++)
3309 fastmap[j] = 1;
3310
3311 for (j = CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH - 1, p++;
3312 j >= 0; j--)
3313 if (!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))))
3314 fastmap[j] = 1;
3315
3316 if (bufp->multibyte)
3317 /* Any character set can possibly contain a character
3318 which doesn't match the specified set of characters. */
3319 {
3320 set_fastmap_for_multibyte_characters:
3321 if (match_any_multibyte_characters == false)
3322 {
3323 for (j = 0x80; j < 0xA0; j++) /* XXX */
3324 if (BASE_LEADING_CODE_P (j))
3325 fastmap[j] = 1;
3326 match_any_multibyte_characters = true;
3327 }
3328 }
3329 break;
3330
3331
3332 case wordchar:
3333 simple_char_max = bufp->multibyte ? 0x80 : (1 << BYTEWIDTH);
3334 for (j = 0; j < simple_char_max; j++)
3335 if (SYNTAX (j) == Sword)
3336 fastmap[j] = 1;
3337
3338 if (bufp->multibyte)
3339 /* Any character set can possibly contain a character
25fe55af 3340 whose syntax is `Sword'. */
b18215fc
RS
3341 goto set_fastmap_for_multibyte_characters;
3342 break;
3343
3344
3345 case notwordchar:
3346 simple_char_max = bufp->multibyte ? 0x80 : (1 << BYTEWIDTH);
3347 for (j = 0; j < simple_char_max; j++)
3348 if (SYNTAX (j) != Sword)
3349 fastmap[j] = 1;
3350
3351 if (bufp->multibyte)
3352 /* Any character set can possibly contain a character
3353 whose syntax is not `Sword'. */
3354 goto set_fastmap_for_multibyte_characters;
3355 break;
3356#endif
3357
25fe55af 3358 case anychar:
fa9a63c5
RM
3359 {
3360 int fastmap_newline = fastmap['\n'];
3361
b18215fc
RS
3362 /* `.' matches anything (but if bufp->multibyte is
3363 nonzero, matches `\000' .. `\127' and possible multibyte
3364 character) ... */
3365 if (bufp->multibyte)
3366 {
3367 simple_char_max = 0x80;
3368
3369 for (j = 0x80; j < 0xA0; j++)
3370 if (BASE_LEADING_CODE_P (j))
3371 fastmap[j] = 1;
3372 match_any_multibyte_characters = true;
3373 }
3374 else
3375 simple_char_max = (1 << BYTEWIDTH);
3376
3377 for (j = 0; j < simple_char_max; j++)
fa9a63c5
RM
3378 fastmap[j] = 1;
3379
3380 /* ... except perhaps newline. */
3381 if (!(bufp->syntax & RE_DOT_NEWLINE))
3382 fastmap['\n'] = fastmap_newline;
3383
3384 /* Return if we have already set `can_be_null'; if we have,
25fe55af 3385 then the fastmap is irrelevant. Something's wrong here. */
fa9a63c5
RM
3386 else if (bufp->can_be_null)
3387 goto done;
3388
3389 /* Otherwise, have to check alternative paths. */
3390 break;
3391 }
3392
3393#ifdef emacs
b18215fc
RS
3394 case wordbound:
3395 case notwordbound:
3396 case wordbeg:
3397 case wordend:
3398 case notsyntaxspec:
25fe55af 3399 case syntaxspec:
b18215fc
RS
3400 /* This match depends on text properties. These end with
3401 aborting optimizations. */
3402 bufp->can_be_null = 1;
25fe55af 3403 goto done;
b18215fc 3404#if 0
fa9a63c5 3405 k = *p++;
b18215fc
RS
3406 simple_char_max = bufp->multibyte ? 0x80 : (1 << BYTEWIDTH);
3407 for (j = 0; j < simple_char_max; j++)
fa9a63c5
RM
3408 if (SYNTAX (j) == (enum syntaxcode) k)
3409 fastmap[j] = 1;
fa9a63c5 3410
b18215fc
RS
3411 if (bufp->multibyte)
3412 /* Any character set can possibly contain a character
3413 whose syntax is K. */
3414 goto set_fastmap_for_multibyte_characters;
3415 break;
fa9a63c5
RM
3416
3417 case notsyntaxspec:
3418 k = *p++;
b18215fc
RS
3419 simple_char_max = bufp->multibyte ? 0x80 : (1 << BYTEWIDTH);
3420 for (j = 0; j < simple_char_max; j++)
fa9a63c5
RM
3421 if (SYNTAX (j) != (enum syntaxcode) k)
3422 fastmap[j] = 1;
b18215fc
RS
3423
3424 if (bufp->multibyte)
3425 /* Any character set can possibly contain a character
3426 whose syntax is not K. */
3427 goto set_fastmap_for_multibyte_characters;
3428 break;
3429#endif
3430
3431
3432 case categoryspec:
3433 k = *p++;
3434 simple_char_max = bufp->multibyte ? 0x80 : (1 << BYTEWIDTH);
3435 for (j = 0; j < simple_char_max; j++)
3436 if (CHAR_HAS_CATEGORY (j, k))
3437 fastmap[j] = 1;
3438
3439 if (bufp->multibyte)
3440 /* Any character set can possibly contain a character
3441 whose category is K. */
3442 goto set_fastmap_for_multibyte_characters;
fa9a63c5
RM
3443 break;
3444
3445
b18215fc
RS
3446 case notcategoryspec:
3447 k = *p++;
3448 simple_char_max = bufp->multibyte ? 0x80 : (1 << BYTEWIDTH);
3449 for (j = 0; j < simple_char_max; j++)
3450 if (!CHAR_HAS_CATEGORY (j, k))
3451 fastmap[j] = 1;
3452
3453 if (bufp->multibyte)
3454 /* Any character set can possibly contain a character
25fe55af 3455 whose category is not K. */
b18215fc
RS
3456 goto set_fastmap_for_multibyte_characters;
3457 break;
3458
fa9a63c5 3459 /* All cases after this match the empty string. These end with
25fe55af 3460 `continue'. */
fa9a63c5
RM
3461
3462
3463 case before_dot:
3464 case at_dot:
3465 case after_dot:
25fe55af 3466 continue;
ae4788a8 3467#endif /* emacs */
fa9a63c5
RM
3468
3469
25fe55af
RS
3470 case no_op:
3471 case begline:
3472 case endline:
fa9a63c5
RM
3473 case begbuf:
3474 case endbuf:
b18215fc 3475#ifndef emacs
fa9a63c5
RM
3476 case wordbound:
3477 case notwordbound:
3478 case wordbeg:
3479 case wordend:
25fe55af
RS
3480#endif
3481 case push_dummy_failure:
3482 continue;
fa9a63c5
RM
3483
3484
3485 case jump_n:
25fe55af 3486 case pop_failure_jump:
fa9a63c5
RM
3487 case maybe_pop_jump:
3488 case jump:
25fe55af 3489 case jump_past_alt:
fa9a63c5 3490 case dummy_failure_jump:
25fe55af 3491 EXTRACT_NUMBER_AND_INCR (j, p);
5e69f11e 3492 p += j;
fa9a63c5
RM
3493 if (j > 0)
3494 continue;
5e69f11e 3495
25fe55af
RS
3496 /* Jump backward implies we just went through the body of a
3497 loop and matched nothing. Opcode jumped to should be
3498 `on_failure_jump' or `succeed_n'. Just treat it like an
3499 ordinary jump. For a * loop, it has pushed its failure
3500 point already; if so, discard that as redundant. */
3501 if ((re_opcode_t) *p != on_failure_jump
fa9a63c5
RM
3502 && (re_opcode_t) *p != succeed_n)
3503 continue;
3504
25fe55af
RS
3505 p++;
3506 EXTRACT_NUMBER_AND_INCR (j, p);
3507 p += j;
5e69f11e 3508
25fe55af
RS
3509 /* If what's on the stack is where we are now, pop it. */
3510 if (!FAIL_STACK_EMPTY ()
fa9a63c5 3511 && fail_stack.stack[fail_stack.avail - 1].pointer == p)
25fe55af 3512 fail_stack.avail--;
fa9a63c5 3513
25fe55af 3514 continue;
fa9a63c5
RM
3515
3516
25fe55af
RS
3517 case on_failure_jump:
3518 case on_failure_keep_string_jump:
fa9a63c5 3519 handle_on_failure_jump:
25fe55af
RS
3520 EXTRACT_NUMBER_AND_INCR (j, p);
3521
3522 /* For some patterns, e.g., `(a?)?', `p+j' here points to the
3523 end of the pattern. We don't want to push such a point,
3524 since when we restore it above, entering the switch will
3525 increment `p' past the end of the pattern. We don't need
3526 to push such a point since we obviously won't find any more
3527 fastmap entries beyond `pend'. Such a pattern can match
3528 the null string, though. */
3529 if (p + j < pend)
3530 {
3531 if (!PUSH_PATTERN_OP (p + j, fail_stack))
fa9a63c5
RM
3532 {
3533 RESET_FAIL_STACK ();
3534 return -2;
3535 }
fa9a63c5 3536 }
25fe55af
RS
3537 else
3538 bufp->can_be_null = 1;
fa9a63c5 3539
25fe55af
RS
3540 if (succeed_n_p)
3541 {
3542 EXTRACT_NUMBER_AND_INCR (k, p); /* Skip the n. */
3543 succeed_n_p = false;
3544 }
3545
3546 continue;
fa9a63c5
RM
3547
3548
3549 case succeed_n:
25fe55af
RS
3550 /* Get to the number of times to succeed. */
3551 p += 2;
fa9a63c5 3552
25fe55af
RS
3553 /* Increment p past the n for when k != 0. */
3554 EXTRACT_NUMBER_AND_INCR (k, p);
3555 if (k == 0)
fa9a63c5 3556 {
25fe55af
RS
3557 p -= 4;
3558 succeed_n_p = true; /* Spaghetti code alert. */
3559 goto handle_on_failure_jump;
3560 }
3561 continue;
fa9a63c5
RM
3562
3563
3564 case set_number_at:
25fe55af
RS
3565 p += 4;
3566 continue;
fa9a63c5
RM
3567
3568
3569 case start_memory:
25fe55af 3570 case stop_memory:
fa9a63c5
RM
3571 p += 2;
3572 continue;
3573
3574
3575 default:
25fe55af
RS
3576 abort (); /* We have listed all the cases. */
3577 } /* switch *p++ */
fa9a63c5
RM
3578
3579 /* Getting here means we have found the possible starting
25fe55af
RS
3580 characters for one path of the pattern -- and that the empty
3581 string does not match. We need not follow this path further.
3582 Instead, look at the next alternative (remembered on the
3583 stack), or quit if no more. The test at the top of the loop
3584 does these things. */
fa9a63c5
RM
3585 path_can_be_null = false;
3586 p = pend;
3587 } /* while p */
3588
3589 /* Set `can_be_null' for the last path (also the first path, if the
25fe55af 3590 pattern is empty). */
fa9a63c5
RM
3591 bufp->can_be_null |= path_can_be_null;
3592
3593 done:
3594 RESET_FAIL_STACK ();
3595 return 0;
3596} /* re_compile_fastmap */
3597\f
3598/* Set REGS to hold NUM_REGS registers, storing them in STARTS and
3599 ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use
3600 this memory for recording register information. STARTS and ENDS
3601 must be allocated using the malloc library routine, and must each
3602 be at least NUM_REGS * sizeof (regoff_t) bytes long.
3603
3604 If NUM_REGS == 0, then subsequent matches should allocate their own
3605 register data.
3606
3607 Unless this function is called, the first search or match using
3608 PATTERN_BUFFER will allocate its own register data, without
3609 freeing the old data. */
3610
3611void
3612re_set_registers (bufp, regs, num_regs, starts, ends)
3613 struct re_pattern_buffer *bufp;
3614 struct re_registers *regs;
3615 unsigned num_regs;
3616 regoff_t *starts, *ends;
3617{
3618 if (num_regs)
3619 {
3620 bufp->regs_allocated = REGS_REALLOCATE;
3621 regs->num_regs = num_regs;
3622 regs->start = starts;
3623 regs->end = ends;
3624 }
3625 else
3626 {
3627 bufp->regs_allocated = REGS_UNALLOCATED;
3628 regs->num_regs = 0;
3629 regs->start = regs->end = (regoff_t *) 0;
3630 }
3631}
3632\f
25fe55af 3633/* Searching routines. */
fa9a63c5
RM
3634
3635/* Like re_search_2, below, but only one string is specified, and
3636 doesn't let you say where to stop matching. */
3637
3638int
3639re_search (bufp, string, size, startpos, range, regs)
3640 struct re_pattern_buffer *bufp;
3641 const char *string;
3642 int size, startpos, range;
3643 struct re_registers *regs;
3644{
5e69f11e 3645 return re_search_2 (bufp, NULL, 0, string, size, startpos, range,
fa9a63c5
RM
3646 regs, size);
3647}
3648
b18215fc
RS
3649/* End address of virtual concatenation of string. */
3650#define STOP_ADDR_VSTRING(P) \
3651 (((P) >= size1 ? string2 + size2 : string1 + size1))
3652
3653/* Address of POS in the concatenation of virtual string. */
3654#define POS_ADDR_VSTRING(POS) \
3655 (((POS) >= size1 ? string2 - size1 : string1) + (POS))
fa9a63c5
RM
3656
3657/* Using the compiled pattern in BUFP->buffer, first tries to match the
3658 virtual concatenation of STRING1 and STRING2, starting first at index
3659 STARTPOS, then at STARTPOS + 1, and so on.
5e69f11e 3660
fa9a63c5 3661 STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
5e69f11e 3662
fa9a63c5
RM
3663 RANGE is how far to scan while trying to match. RANGE = 0 means try
3664 only at STARTPOS; in general, the last start tried is STARTPOS +
3665 RANGE.
5e69f11e 3666
fa9a63c5
RM
3667 In REGS, return the indices of the virtual concatenation of STRING1
3668 and STRING2 that matched the entire BUFP->buffer and its contained
3669 subexpressions.
5e69f11e 3670
fa9a63c5
RM
3671 Do not consider matching one past the index STOP in the virtual
3672 concatenation of STRING1 and STRING2.
3673
3674 We return either the position in the strings at which the match was
3675 found, -1 if no match, or -2 if error (such as failure
3676 stack overflow). */
3677
3678int
3679re_search_2 (bufp, string1, size1, string2, size2, startpos, range, regs, stop)
3680 struct re_pattern_buffer *bufp;
3681 const char *string1, *string2;
3682 int size1, size2;
3683 int startpos;
3684 int range;
3685 struct re_registers *regs;
3686 int stop;
3687{
3688 int val;
3689 register char *fastmap = bufp->fastmap;
6676cb1c 3690 register RE_TRANSLATE_TYPE translate = bufp->translate;
fa9a63c5
RM
3691 int total_size = size1 + size2;
3692 int endpos = startpos + range;
c8499ba5 3693 int anchored_start = 0;
fa9a63c5 3694
25fe55af 3695 /* Nonzero if we have to concern multibyte character. */
b18215fc
RS
3696 int multibyte = bufp->multibyte;
3697
fa9a63c5
RM
3698 /* Check for out-of-range STARTPOS. */
3699 if (startpos < 0 || startpos > total_size)
3700 return -1;
5e69f11e 3701
fa9a63c5 3702 /* Fix up RANGE if it might eventually take us outside
34597fa9 3703 the virtual concatenation of STRING1 and STRING2.
5e69f11e 3704 Make sure we won't move STARTPOS below 0 or above TOTAL_SIZE. */
34597fa9
RS
3705 if (endpos < 0)
3706 range = 0 - startpos;
fa9a63c5
RM
3707 else if (endpos > total_size)
3708 range = total_size - startpos;
3709
3710 /* If the search isn't to be a backwards one, don't waste time in a
3711 search for a pattern that must be anchored. */
3712 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == begbuf && range > 0)
3713 {
3714 if (startpos > 0)
3715 return -1;
3716 else
3717 range = 1;
3718 }
3719
ae4788a8
RS
3720#ifdef emacs
3721 /* In a forward search for something that starts with \=.
3722 don't keep searching past point. */
3723 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == at_dot && range > 0)
3724 {
3725 range = PT - startpos;
3726 if (range <= 0)
3727 return -1;
3728 }
3729#endif /* emacs */
3730
fa9a63c5
RM
3731 /* Update the fastmap now if not correct already. */
3732 if (fastmap && !bufp->fastmap_accurate)
3733 if (re_compile_fastmap (bufp) == -2)
3734 return -2;
5e69f11e 3735
c8499ba5
RS
3736 /* See whether the pattern is anchored. */
3737 if (bufp->buffer[0] == begline)
3738 anchored_start = 1;
3739
b18215fc
RS
3740#ifdef emacs
3741 SETUP_SYNTAX_TABLE_FOR_OBJECT (re_match_object,
25fe55af 3742 POS_AS_IN_BUFFER (startpos > 0
b18215fc
RS
3743 ? startpos - 1 : startpos),
3744 1);
3745#endif
3746
fa9a63c5
RM
3747 /* Loop through the string, looking for a place to start matching. */
3748 for (;;)
5e69f11e 3749 {
c8499ba5
RS
3750 /* If the pattern is anchored,
3751 skip quickly past places we cannot match.
3752 We don't bother to treat startpos == 0 specially
3753 because that case doesn't repeat. */
3754 if (anchored_start && startpos > 0)
3755 {
3756 if (! (bufp->newline_anchor
3757 && ((startpos <= size1 ? string1[startpos - 1]
3758 : string2[startpos - size1 - 1])
3759 == '\n')))
3760 goto advance;
3761 }
3762
fa9a63c5 3763 /* If a fastmap is supplied, skip quickly over characters that
25fe55af
RS
3764 cannot be the start of a match. If the pattern can match the
3765 null string, however, we don't need to skip characters; we want
3766 the first null string. */
fa9a63c5
RM
3767 if (fastmap && startpos < total_size && !bufp->can_be_null)
3768 {
e934739e
RS
3769 register const char *d;
3770 register unsigned int buf_ch;
3771
3772 d = POS_ADDR_VSTRING (startpos);
3773
25fe55af 3774 if (range > 0) /* Searching forwards. */
fa9a63c5 3775 {
fa9a63c5
RM
3776 register int lim = 0;
3777 int irange = range;
3778
25fe55af
RS
3779 if (startpos < size1 && startpos + range >= size1)
3780 lim = range - (size1 - startpos);
fa9a63c5 3781
25fe55af
RS
3782 /* Written out as an if-else to avoid testing `translate'
3783 inside the loop. */
fa9a63c5 3784 if (translate)
e934739e
RS
3785 {
3786 if (multibyte)
3787 while (range > lim)
3788 {
3789 int buf_charlen;
3790
3791 buf_ch = STRING_CHAR_AND_LENGTH (d, range - lim,
3792 buf_charlen);
3793
3794 buf_ch = RE_TRANSLATE (translate, buf_ch);
3795 if (buf_ch >= 0400
3796 || fastmap[buf_ch])
3797 break;
3798
3799 range -= buf_charlen;
3800 d += buf_charlen;
3801 }
3802 else
3803 while (range > lim
3804 && !fastmap[(unsigned char)
3805 RE_TRANSLATE (translate, (unsigned char) *d++)])
3806 range--;
3807 }
fa9a63c5 3808 else
25fe55af
RS
3809 while (range > lim && !fastmap[(unsigned char) *d++])
3810 range--;
fa9a63c5
RM
3811
3812 startpos += irange - range;
3813 }
25fe55af 3814 else /* Searching backwards. */
fa9a63c5 3815 {
e934739e
RS
3816 int room = (size1 == 0 || startpos >= size1
3817 ? size2 + size1 - startpos
3818 : size1 - startpos);
3819
3820 buf_ch = STRING_CHAR (d, room);
3821 if (translate)
3822 buf_ch = RE_TRANSLATE (translate, buf_ch);
fa9a63c5 3823
e934739e
RS
3824 if (! (buf_ch >= 0400
3825 || fastmap[buf_ch]))
fa9a63c5
RM
3826 goto advance;
3827 }
3828 }
3829
3830 /* If can't match the null string, and that's all we have left, fail. */
3831 if (range >= 0 && startpos == total_size && fastmap
25fe55af 3832 && !bufp->can_be_null)
fa9a63c5
RM
3833 return -1;
3834
3835 val = re_match_2_internal (bufp, string1, size1, string2, size2,
3836 startpos, regs, stop);
3837#ifndef REGEX_MALLOC
3838#ifdef C_ALLOCA
3839 alloca (0);
3840#endif
3841#endif
3842
3843 if (val >= 0)
3844 return startpos;
5e69f11e 3845
fa9a63c5
RM
3846 if (val == -2)
3847 return -2;
3848
3849 advance:
5e69f11e 3850 if (!range)
25fe55af 3851 break;
5e69f11e 3852 else if (range > 0)
25fe55af 3853 {
b18215fc
RS
3854 /* Update STARTPOS to the next character boundary. */
3855 if (multibyte)
3856 {
b560c397
RS
3857 const unsigned char *p
3858 = (const unsigned char *) POS_ADDR_VSTRING (startpos);
3859 const unsigned char *pend
3860 = (const unsigned char *) STOP_ADDR_VSTRING (startpos);
b18215fc
RS
3861 int len = MULTIBYTE_FORM_LENGTH (p, pend - p);
3862
3863 range -= len;
3864 if (range < 0)
3865 break;
3866 startpos += len;
3867 }
3868 else
3869 {
b560c397
RS
3870 range--;
3871 startpos++;
3872 }
e318085a 3873 }
fa9a63c5 3874 else
25fe55af
RS
3875 {
3876 range++;
3877 startpos--;
b18215fc
RS
3878
3879 /* Update STARTPOS to the previous character boundary. */
3880 if (multibyte)
3881 {
b560c397
RS
3882 const unsigned char *p
3883 = (const unsigned char *) POS_ADDR_VSTRING (startpos);
b18215fc
RS
3884 int len = 0;
3885
3886 /* Find the head of multibyte form. */
5d967c7a 3887 while (!CHAR_HEAD_P (*p))
b18215fc
RS
3888 p--, len++;
3889
3890 /* Adjust it. */
3891#if 0 /* XXX */
3892 if (MULTIBYTE_FORM_LENGTH (p, len + 1) != (len + 1))
3893 ;
3894 else
3895#endif
3896 {
3897 range += len;
3898 if (range > 0)
3899 break;
3900
3901 startpos -= len;
3902 }
3903 }
25fe55af 3904 }
fa9a63c5
RM
3905 }
3906 return -1;
3907} /* re_search_2 */
3908\f
3909/* Declarations and macros for re_match_2. */
3910
3911static int bcmp_translate ();
3912static boolean alt_match_null_string_p (),
25fe55af
RS
3913 common_op_match_null_string_p (),
3914 group_match_null_string_p ();
fa9a63c5
RM
3915
3916/* This converts PTR, a pointer into one of the search strings `string1'
3917 and `string2' into an offset from the beginning of that string. */
3918#define POINTER_TO_OFFSET(ptr) \
3919 (FIRST_STRING_P (ptr) \
3920 ? ((regoff_t) ((ptr) - string1)) \
3921 : ((regoff_t) ((ptr) - string2 + size1)))
3922
3923/* Macros for dealing with the split strings in re_match_2. */
3924
3925#define MATCHING_IN_FIRST_STRING (dend == end_match_1)
3926
3927/* Call before fetching a character with *d. This switches over to
3928 string2 if necessary. */
3929#define PREFETCH() \
25fe55af 3930 while (d == dend) \
fa9a63c5
RM
3931 { \
3932 /* End of string2 => fail. */ \
25fe55af
RS
3933 if (dend == end_match_2) \
3934 goto fail; \
3935 /* End of string1 => advance to string2. */ \
3936 d = string2; \
fa9a63c5
RM
3937 dend = end_match_2; \
3938 }
3939
3940
3941/* Test if at very beginning or at very end of the virtual concatenation
25fe55af 3942 of `string1' and `string2'. If only one string, it's `string2'. */
fa9a63c5 3943#define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
5e69f11e 3944#define AT_STRINGS_END(d) ((d) == end2)
fa9a63c5
RM
3945
3946
3947/* Test if D points to a character which is word-constituent. We have
3948 two special cases to check for: if past the end of string1, look at
3949 the first character in string2; and if before the beginning of
3950 string2, look at the last character in string1. */
3951#define WORDCHAR_P(d) \
3952 (SYNTAX ((d) == end1 ? *string2 \
25fe55af 3953 : (d) == string2 - 1 ? *(end1 - 1) : *(d)) \
fa9a63c5
RM
3954 == Sword)
3955
9121ca40 3956/* Disabled due to a compiler bug -- see comment at case wordbound */
b18215fc
RS
3957
3958/* The comment at case wordbound is following one, but we don't use
3959 AT_WORD_BOUNDARY anymore to support multibyte form.
3960
3961 The DEC Alpha C compiler 3.x generates incorrect code for the
25fe55af
RS
3962 test WORDCHAR_P (d - 1) != WORDCHAR_P (d) in the expansion of
3963 AT_WORD_BOUNDARY, so this code is disabled. Expanding the
b18215fc
RS
3964 macro and introducing temporary variables works around the bug. */
3965
9121ca40 3966#if 0
fa9a63c5
RM
3967/* Test if the character before D and the one at D differ with respect
3968 to being word-constituent. */
3969#define AT_WORD_BOUNDARY(d) \
3970 (AT_STRINGS_BEG (d) || AT_STRINGS_END (d) \
3971 || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
9121ca40 3972#endif
fa9a63c5
RM
3973
3974/* Free everything we malloc. */
3975#ifdef MATCH_MAY_ALLOCATE
00049484 3976#define FREE_VAR(var) if (var) { REGEX_FREE (var); var = NULL; } else
fa9a63c5
RM
3977#define FREE_VARIABLES() \
3978 do { \
3979 REGEX_FREE_STACK (fail_stack.stack); \
3980 FREE_VAR (regstart); \
3981 FREE_VAR (regend); \
3982 FREE_VAR (old_regstart); \
3983 FREE_VAR (old_regend); \
3984 FREE_VAR (best_regstart); \
3985 FREE_VAR (best_regend); \
3986 FREE_VAR (reg_info); \
3987 FREE_VAR (reg_dummy); \
3988 FREE_VAR (reg_info_dummy); \
3989 } while (0)
3990#else
3991#define FREE_VARIABLES() ((void)0) /* Do nothing! But inhibit gcc warning. */
3992#endif /* not MATCH_MAY_ALLOCATE */
3993
25fe55af 3994/* These values must meet several constraints. They must not be valid
fa9a63c5
RM
3995 register values; since we have a limit of 255 registers (because
3996 we use only one byte in the pattern for the register number), we can
25fe55af 3997 use numbers larger than 255. They must differ by 1, because of
fa9a63c5
RM
3998 NUM_FAILURE_ITEMS above. And the value for the lowest register must
3999 be larger than the value for the highest register, so we do not try
25fe55af 4000 to actually save any registers when none are active. */
fa9a63c5
RM
4001#define NO_HIGHEST_ACTIVE_REG (1 << BYTEWIDTH)
4002#define NO_LOWEST_ACTIVE_REG (NO_HIGHEST_ACTIVE_REG + 1)
4003\f
4004/* Matching routines. */
4005
25fe55af 4006#ifndef emacs /* Emacs never uses this. */
fa9a63c5
RM
4007/* re_match is like re_match_2 except it takes only a single string. */
4008
4009int
4010re_match (bufp, string, size, pos, regs)
4011 struct re_pattern_buffer *bufp;
4012 const char *string;
4013 int size, pos;
4014 struct re_registers *regs;
4015{
4016 int result = re_match_2_internal (bufp, NULL, 0, string, size,
4017 pos, regs, size);
4018 alloca (0);
4019 return result;
4020}
4021#endif /* not emacs */
4022
b18215fc
RS
4023#ifdef emacs
4024/* In Emacs, this is the string or buffer in which we
25fe55af 4025 are matching. It is used for looking up syntax properties. */
b18215fc
RS
4026Lisp_Object re_match_object;
4027#endif
fa9a63c5
RM
4028
4029/* re_match_2 matches the compiled pattern in BUFP against the
4030 the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
4031 and SIZE2, respectively). We start matching at POS, and stop
4032 matching at STOP.
5e69f11e 4033
fa9a63c5 4034 If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
25fe55af 4035 store offsets for the substring each group matched in REGS. See the
fa9a63c5
RM
4036 documentation for exactly how many groups we fill.
4037
4038 We return -1 if no match, -2 if an internal error (such as the
25fe55af 4039 failure stack overflowing). Otherwise, we return the length of the
fa9a63c5
RM
4040 matched substring. */
4041
4042int
4043re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
4044 struct re_pattern_buffer *bufp;
4045 const char *string1, *string2;
4046 int size1, size2;
4047 int pos;
4048 struct re_registers *regs;
4049 int stop;
4050{
b18215fc 4051 int result;
25fe55af 4052
b18215fc 4053#ifdef emacs
25fe55af
RS
4054 SETUP_SYNTAX_TABLE_FOR_OBJECT (re_match_object,
4055 POS_AS_IN_BUFFER (pos > 0 ? pos - 1 : pos),
b18215fc
RS
4056 1);
4057#endif
4058
4059 result = re_match_2_internal (bufp, string1, size1, string2, size2,
fa9a63c5
RM
4060 pos, regs, stop);
4061 alloca (0);
4062 return result;
4063}
4064
4065/* This is a separate function so that we can force an alloca cleanup
25fe55af 4066 afterwards. */
fa9a63c5
RM
4067static int
4068re_match_2_internal (bufp, string1, size1, string2, size2, pos, regs, stop)
4069 struct re_pattern_buffer *bufp;
4070 const char *string1, *string2;
4071 int size1, size2;
4072 int pos;
4073 struct re_registers *regs;
4074 int stop;
4075{
4076 /* General temporaries. */
4077 int mcnt;
4078 unsigned char *p1;
4079
4080 /* Just past the end of the corresponding string. */
4081 const char *end1, *end2;
4082
4083 /* Pointers into string1 and string2, just past the last characters in
25fe55af 4084 each to consider matching. */
fa9a63c5
RM
4085 const char *end_match_1, *end_match_2;
4086
4087 /* Where we are in the data, and the end of the current string. */
4088 const char *d, *dend;
5e69f11e 4089
fa9a63c5
RM
4090 /* Where we are in the pattern, and the end of the pattern. */
4091 unsigned char *p = bufp->buffer;
4092 register unsigned char *pend = p + bufp->used;
4093
4094 /* Mark the opcode just after a start_memory, so we can test for an
4095 empty subpattern when we get to the stop_memory. */
4096 unsigned char *just_past_start_mem = 0;
4097
25fe55af 4098 /* We use this to map every character in the string. */
6676cb1c 4099 RE_TRANSLATE_TYPE translate = bufp->translate;
fa9a63c5 4100
25fe55af 4101 /* Nonzero if we have to concern multibyte character. */
b18215fc
RS
4102 int multibyte = bufp->multibyte;
4103
fa9a63c5
RM
4104 /* Failure point stack. Each place that can handle a failure further
4105 down the line pushes a failure point on this stack. It consists of
4106 restart, regend, and reg_info for all registers corresponding to
4107 the subexpressions we're currently inside, plus the number of such
4108 registers, and, finally, two char *'s. The first char * is where
4109 to resume scanning the pattern; the second one is where to resume
4110 scanning the strings. If the latter is zero, the failure point is
4111 a ``dummy''; if a failure happens and the failure point is a dummy,
25fe55af
RS
4112 it gets discarded and the next next one is tried. */
4113#ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
fa9a63c5
RM
4114 fail_stack_type fail_stack;
4115#endif
4116#ifdef DEBUG
4117 static unsigned failure_id = 0;
4118 unsigned nfailure_points_pushed = 0, nfailure_points_popped = 0;
4119#endif
4120
4121 /* This holds the pointer to the failure stack, when
4122 it is allocated relocatably. */
4123 fail_stack_elt_t *failure_stack_ptr;
4124
4125 /* We fill all the registers internally, independent of what we
25fe55af 4126 return, for use in backreferences. The number here includes
fa9a63c5
RM
4127 an element for register zero. */
4128 unsigned num_regs = bufp->re_nsub + 1;
5e69f11e 4129
fa9a63c5
RM
4130 /* The currently active registers. */
4131 unsigned lowest_active_reg = NO_LOWEST_ACTIVE_REG;
4132 unsigned highest_active_reg = NO_HIGHEST_ACTIVE_REG;
4133
4134 /* Information on the contents of registers. These are pointers into
4135 the input strings; they record just what was matched (on this
4136 attempt) by a subexpression part of the pattern, that is, the
4137 regnum-th regstart pointer points to where in the pattern we began
4138 matching and the regnum-th regend points to right after where we
4139 stopped matching the regnum-th subexpression. (The zeroth register
4140 keeps track of what the whole pattern matches.) */
4141#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
4142 const char **regstart, **regend;
4143#endif
4144
4145 /* If a group that's operated upon by a repetition operator fails to
4146 match anything, then the register for its start will need to be
4147 restored because it will have been set to wherever in the string we
4148 are when we last see its open-group operator. Similarly for a
4149 register's end. */
4150#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
4151 const char **old_regstart, **old_regend;
4152#endif
4153
4154 /* The is_active field of reg_info helps us keep track of which (possibly
4155 nested) subexpressions we are currently in. The matched_something
4156 field of reg_info[reg_num] helps us tell whether or not we have
4157 matched any of the pattern so far this time through the reg_num-th
4158 subexpression. These two fields get reset each time through any
25fe55af
RS
4159 loop their register is in. */
4160#ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
5e69f11e 4161 register_info_type *reg_info;
fa9a63c5
RM
4162#endif
4163
4164 /* The following record the register info as found in the above
5e69f11e 4165 variables when we find a match better than any we've seen before.
fa9a63c5
RM
4166 This happens as we backtrack through the failure points, which in
4167 turn happens only if we have not yet matched the entire string. */
4168 unsigned best_regs_set = false;
4169#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
4170 const char **best_regstart, **best_regend;
4171#endif
5e69f11e 4172
fa9a63c5
RM
4173 /* Logically, this is `best_regend[0]'. But we don't want to have to
4174 allocate space for that if we're not allocating space for anything
25fe55af 4175 else (see below). Also, we never need info about register 0 for
fa9a63c5
RM
4176 any of the other register vectors, and it seems rather a kludge to
4177 treat `best_regend' differently than the rest. So we keep track of
4178 the end of the best match so far in a separate variable. We
4179 initialize this to NULL so that when we backtrack the first time
4180 and need to test it, it's not garbage. */
4181 const char *match_end = NULL;
4182
4183 /* This helps SET_REGS_MATCHED avoid doing redundant work. */
4184 int set_regs_matched_done = 0;
4185
4186 /* Used when we pop values we don't care about. */
4187#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
4188 const char **reg_dummy;
4189 register_info_type *reg_info_dummy;
4190#endif
4191
4192#ifdef DEBUG
4193 /* Counts the total number of registers pushed. */
5e69f11e 4194 unsigned num_regs_pushed = 0;
fa9a63c5
RM
4195#endif
4196
4197 DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
5e69f11e 4198
fa9a63c5 4199 INIT_FAIL_STACK ();
5e69f11e 4200
fa9a63c5
RM
4201#ifdef MATCH_MAY_ALLOCATE
4202 /* Do not bother to initialize all the register variables if there are
4203 no groups in the pattern, as it takes a fair amount of time. If
4204 there are groups, we include space for register 0 (the whole
4205 pattern), even though we never use it, since it simplifies the
4206 array indexing. We should fix this. */
4207 if (bufp->re_nsub)
4208 {
4209 regstart = REGEX_TALLOC (num_regs, const char *);
4210 regend = REGEX_TALLOC (num_regs, const char *);
4211 old_regstart = REGEX_TALLOC (num_regs, const char *);
4212 old_regend = REGEX_TALLOC (num_regs, const char *);
4213 best_regstart = REGEX_TALLOC (num_regs, const char *);
4214 best_regend = REGEX_TALLOC (num_regs, const char *);
4215 reg_info = REGEX_TALLOC (num_regs, register_info_type);
4216 reg_dummy = REGEX_TALLOC (num_regs, const char *);
4217 reg_info_dummy = REGEX_TALLOC (num_regs, register_info_type);
4218
5e69f11e 4219 if (!(regstart && regend && old_regstart && old_regend && reg_info
25fe55af
RS
4220 && best_regstart && best_regend && reg_dummy && reg_info_dummy))
4221 {
4222 FREE_VARIABLES ();
4223 return -2;
4224 }
fa9a63c5
RM
4225 }
4226 else
4227 {
4228 /* We must initialize all our variables to NULL, so that
25fe55af 4229 `FREE_VARIABLES' doesn't try to free them. */
fa9a63c5 4230 regstart = regend = old_regstart = old_regend = best_regstart
25fe55af 4231 = best_regend = reg_dummy = NULL;
fa9a63c5
RM
4232 reg_info = reg_info_dummy = (register_info_type *) NULL;
4233 }
4234#endif /* MATCH_MAY_ALLOCATE */
4235
4236 /* The starting position is bogus. */
4237 if (pos < 0 || pos > size1 + size2)
4238 {
4239 FREE_VARIABLES ();
4240 return -1;
4241 }
5e69f11e 4242
fa9a63c5
RM
4243 /* Initialize subexpression text positions to -1 to mark ones that no
4244 start_memory/stop_memory has been seen for. Also initialize the
4245 register information struct. */
4246 for (mcnt = 1; mcnt < num_regs; mcnt++)
4247 {
5e69f11e 4248 regstart[mcnt] = regend[mcnt]
25fe55af 4249 = old_regstart[mcnt] = old_regend[mcnt] = REG_UNSET_VALUE;
5e69f11e 4250
fa9a63c5
RM
4251 REG_MATCH_NULL_STRING_P (reg_info[mcnt]) = MATCH_NULL_UNSET_VALUE;
4252 IS_ACTIVE (reg_info[mcnt]) = 0;
4253 MATCHED_SOMETHING (reg_info[mcnt]) = 0;
4254 EVER_MATCHED_SOMETHING (reg_info[mcnt]) = 0;
4255 }
5e69f11e 4256
fa9a63c5 4257 /* We move `string1' into `string2' if the latter's empty -- but not if
25fe55af 4258 `string1' is null. */
fa9a63c5
RM
4259 if (size2 == 0 && string1 != NULL)
4260 {
4261 string2 = string1;
4262 size2 = size1;
4263 string1 = 0;
4264 size1 = 0;
4265 }
4266 end1 = string1 + size1;
4267 end2 = string2 + size2;
4268
4269 /* Compute where to stop matching, within the two strings. */
4270 if (stop <= size1)
4271 {
4272 end_match_1 = string1 + stop;
4273 end_match_2 = string2;
4274 }
4275 else
4276 {
4277 end_match_1 = end1;
4278 end_match_2 = string2 + stop - size1;
4279 }
4280
5e69f11e 4281 /* `p' scans through the pattern as `d' scans through the data.
fa9a63c5
RM
4282 `dend' is the end of the input string that `d' points within. `d'
4283 is advanced into the following input string whenever necessary, but
4284 this happens before fetching; therefore, at the beginning of the
4285 loop, `d' can be pointing at the end of a string, but it cannot
4286 equal `string2'. */
4287 if (size1 > 0 && pos <= size1)
4288 {
4289 d = string1 + pos;
4290 dend = end_match_1;
4291 }
4292 else
4293 {
4294 d = string2 + pos - size1;
4295 dend = end_match_2;
4296 }
4297
4298 DEBUG_PRINT1 ("The compiled pattern is: ");
4299 DEBUG_PRINT_COMPILED_PATTERN (bufp, p, pend);
4300 DEBUG_PRINT1 ("The string to match is: `");
4301 DEBUG_PRINT_DOUBLE_STRING (d, string1, size1, string2, size2);
4302 DEBUG_PRINT1 ("'\n");
5e69f11e 4303
25fe55af 4304 /* This loops over pattern commands. It exits by returning from the
fa9a63c5
RM
4305 function if the match is complete, or it drops through if the match
4306 fails at this starting point in the input data. */
4307 for (;;)
4308 {
4309 DEBUG_PRINT2 ("\n0x%x: ", p);
4310
4311 if (p == pend)
4312 { /* End of pattern means we might have succeeded. */
25fe55af 4313 DEBUG_PRINT1 ("end of pattern ... ");
5e69f11e 4314
fa9a63c5 4315 /* If we haven't matched the entire string, and we want the
25fe55af
RS
4316 longest match, try backtracking. */
4317 if (d != end_match_2)
fa9a63c5
RM
4318 {
4319 /* 1 if this match ends in the same string (string1 or string2)
4320 as the best previous match. */
5e69f11e 4321 boolean same_str_p = (FIRST_STRING_P (match_end)
fa9a63c5
RM
4322 == MATCHING_IN_FIRST_STRING);
4323 /* 1 if this match is the best seen so far. */
4324 boolean best_match_p;
4325
4326 /* AIX compiler got confused when this was combined
25fe55af 4327 with the previous declaration. */
fa9a63c5
RM
4328 if (same_str_p)
4329 best_match_p = d > match_end;
4330 else
4331 best_match_p = !MATCHING_IN_FIRST_STRING;
4332
25fe55af
RS
4333 DEBUG_PRINT1 ("backtracking.\n");
4334
4335 if (!FAIL_STACK_EMPTY ())
4336 { /* More failure points to try. */
4337
4338 /* If exceeds best match so far, save it. */
4339 if (!best_regs_set || best_match_p)
4340 {
4341 best_regs_set = true;
4342 match_end = d;
4343
4344 DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
4345
4346 for (mcnt = 1; mcnt < num_regs; mcnt++)
4347 {
4348 best_regstart[mcnt] = regstart[mcnt];
4349 best_regend[mcnt] = regend[mcnt];
4350 }
4351 }
4352 goto fail;
4353 }
4354
4355 /* If no failure points, don't restore garbage. And if
4356 last match is real best match, don't restore second
4357 best one. */
4358 else if (best_regs_set && !best_match_p)
4359 {
4360 restore_best_regs:
4361 /* Restore best match. It may happen that `dend ==
4362 end_match_1' while the restored d is in string2.
4363 For example, the pattern `x.*y.*z' against the
4364 strings `x-' and `y-z-', if the two strings are
4365 not consecutive in memory. */
4366 DEBUG_PRINT1 ("Restoring best registers.\n");
4367
4368 d = match_end;
4369 dend = ((d >= string1 && d <= end1)
4370 ? end_match_1 : end_match_2);
fa9a63c5
RM
4371
4372 for (mcnt = 1; mcnt < num_regs; mcnt++)
4373 {
4374 regstart[mcnt] = best_regstart[mcnt];
4375 regend[mcnt] = best_regend[mcnt];
4376 }
25fe55af
RS
4377 }
4378 } /* d != end_match_2 */
fa9a63c5
RM
4379
4380 succeed_label:
25fe55af 4381 DEBUG_PRINT1 ("Accepting match.\n");
fa9a63c5 4382
25fe55af
RS
4383 /* If caller wants register contents data back, do it. */
4384 if (regs && !bufp->no_sub)
fa9a63c5 4385 {
25fe55af
RS
4386 /* Have the register data arrays been allocated? */
4387 if (bufp->regs_allocated == REGS_UNALLOCATED)
4388 { /* No. So allocate them with malloc. We need one
4389 extra element beyond `num_regs' for the `-1' marker
4390 GNU code uses. */
4391 regs->num_regs = MAX (RE_NREGS, num_regs + 1);
4392 regs->start = TALLOC (regs->num_regs, regoff_t);
4393 regs->end = TALLOC (regs->num_regs, regoff_t);
4394 if (regs->start == NULL || regs->end == NULL)
fa9a63c5
RM
4395 {
4396 FREE_VARIABLES ();
4397 return -2;
4398 }
25fe55af
RS
4399 bufp->regs_allocated = REGS_REALLOCATE;
4400 }
4401 else if (bufp->regs_allocated == REGS_REALLOCATE)
4402 { /* Yes. If we need more elements than were already
4403 allocated, reallocate them. If we need fewer, just
4404 leave it alone. */
4405 if (regs->num_regs < num_regs + 1)
4406 {
4407 regs->num_regs = num_regs + 1;
4408 RETALLOC (regs->start, regs->num_regs, regoff_t);
4409 RETALLOC (regs->end, regs->num_regs, regoff_t);
4410 if (regs->start == NULL || regs->end == NULL)
fa9a63c5
RM
4411 {
4412 FREE_VARIABLES ();
4413 return -2;
4414 }
25fe55af
RS
4415 }
4416 }
4417 else
fa9a63c5
RM
4418 {
4419 /* These braces fend off a "empty body in an else-statement"
25fe55af 4420 warning under GCC when assert expands to nothing. */
fa9a63c5
RM
4421 assert (bufp->regs_allocated == REGS_FIXED);
4422 }
4423
25fe55af
RS
4424 /* Convert the pointer data in `regstart' and `regend' to
4425 indices. Register zero has to be set differently,
4426 since we haven't kept track of any info for it. */
4427 if (regs->num_regs > 0)
4428 {
4429 regs->start[0] = pos;
4430 regs->end[0] = (MATCHING_IN_FIRST_STRING
fa9a63c5 4431 ? ((regoff_t) (d - string1))
25fe55af
RS
4432 : ((regoff_t) (d - string2 + size1)));
4433 }
5e69f11e 4434
25fe55af
RS
4435 /* Go through the first `min (num_regs, regs->num_regs)'
4436 registers, since that is all we initialized. */
fa9a63c5
RM
4437 for (mcnt = 1; mcnt < MIN (num_regs, regs->num_regs); mcnt++)
4438 {
25fe55af
RS
4439 if (REG_UNSET (regstart[mcnt]) || REG_UNSET (regend[mcnt]))
4440 regs->start[mcnt] = regs->end[mcnt] = -1;
4441 else
4442 {
fa9a63c5
RM
4443 regs->start[mcnt]
4444 = (regoff_t) POINTER_TO_OFFSET (regstart[mcnt]);
25fe55af 4445 regs->end[mcnt]
fa9a63c5 4446 = (regoff_t) POINTER_TO_OFFSET (regend[mcnt]);
25fe55af 4447 }
fa9a63c5 4448 }
5e69f11e 4449
25fe55af
RS
4450 /* If the regs structure we return has more elements than
4451 were in the pattern, set the extra elements to -1. If
4452 we (re)allocated the registers, this is the case,
4453 because we always allocate enough to have at least one
4454 -1 at the end. */
4455 for (mcnt = num_regs; mcnt < regs->num_regs; mcnt++)
4456 regs->start[mcnt] = regs->end[mcnt] = -1;
fa9a63c5
RM
4457 } /* regs && !bufp->no_sub */
4458
25fe55af
RS
4459 DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
4460 nfailure_points_pushed, nfailure_points_popped,
4461 nfailure_points_pushed - nfailure_points_popped);
4462 DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed);
fa9a63c5 4463
25fe55af 4464 mcnt = d - pos - (MATCHING_IN_FIRST_STRING
5e69f11e 4465 ? string1
fa9a63c5
RM
4466 : string2 - size1);
4467
25fe55af 4468 DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt);
fa9a63c5 4469
25fe55af
RS
4470 FREE_VARIABLES ();
4471 return mcnt;
4472 }
fa9a63c5 4473
25fe55af 4474 /* Otherwise match next pattern command. */
fa9a63c5
RM
4475 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
4476 {
25fe55af
RS
4477 /* Ignore these. Used to ignore the n of succeed_n's which
4478 currently have n == 0. */
4479 case no_op:
4480 DEBUG_PRINT1 ("EXECUTING no_op.\n");
4481 break;
fa9a63c5
RM
4482
4483 case succeed:
25fe55af 4484 DEBUG_PRINT1 ("EXECUTING succeed.\n");
fa9a63c5
RM
4485 goto succeed_label;
4486
25fe55af
RS
4487 /* Match the next n pattern characters exactly. The following
4488 byte in the pattern defines n, and the n bytes after that
4489 are the characters to match. */
fa9a63c5
RM
4490 case exactn:
4491 mcnt = *p++;
25fe55af 4492 DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt);
fa9a63c5 4493
25fe55af
RS
4494 /* This is written out as an if-else so we don't waste time
4495 testing `translate' inside the loop. */
4496 if (translate)
fa9a63c5 4497 {
e934739e
RS
4498#ifdef emacs
4499 if (multibyte)
4500 do
4501 {
4502 int pat_charlen, buf_charlen;
e71b1971 4503 unsigned int pat_ch, buf_ch;
e934739e
RS
4504
4505 PREFETCH ();
4506 pat_ch = STRING_CHAR_AND_LENGTH (p, pend - p, pat_charlen);
4507 buf_ch = STRING_CHAR_AND_LENGTH (d, dend - d, buf_charlen);
4508
4509 if (RE_TRANSLATE (translate, buf_ch)
4510 != pat_ch)
4511 goto fail;
4512
4513 p += pat_charlen;
4514 d += buf_charlen;
4515 mcnt -= pat_charlen;
4516 }
4517 while (mcnt > 0);
4518 else
4519#endif /* not emacs */
4520 do
4521 {
4522 PREFETCH ();
4523 if ((unsigned char) RE_TRANSLATE (translate, (unsigned char) *d++)
4524 != (unsigned char) *p++)
4525 goto fail;
4526 }
4527 while (--mcnt);
fa9a63c5
RM
4528 }
4529 else
4530 {
4531 do
4532 {
4533 PREFETCH ();
4534 if (*d++ != (char) *p++) goto fail;
4535 }
4536 while (--mcnt);
4537 }
4538 SET_REGS_MATCHED ();
25fe55af 4539 break;
fa9a63c5
RM
4540
4541
25fe55af 4542 /* Match any character except possibly a newline or a null. */
fa9a63c5 4543 case anychar:
e934739e
RS
4544 {
4545 int buf_charlen;
e71b1971 4546 unsigned int buf_ch;
fa9a63c5 4547
e934739e 4548 DEBUG_PRINT1 ("EXECUTING anychar.\n");
fa9a63c5 4549
e934739e 4550 PREFETCH ();
fa9a63c5 4551
e934739e
RS
4552#ifdef emacs
4553 if (multibyte)
4554 buf_ch = STRING_CHAR_AND_LENGTH (d, dend - d, buf_charlen);
4555 else
4556#endif /* not emacs */
4557 {
85bc1d4e 4558 buf_ch = (unsigned char) *d;
e934739e
RS
4559 buf_charlen = 1;
4560 }
4561
4562 buf_ch = TRANSLATE (buf_ch);
4563
4564 if ((!(bufp->syntax & RE_DOT_NEWLINE)
4565 && buf_ch == '\n')
4566 || ((bufp->syntax & RE_DOT_NOT_NULL)
4567 && buf_ch == '\000'))
4568 goto fail;
4569
4570 SET_REGS_MATCHED ();
4571 DEBUG_PRINT2 (" Matched `%d'.\n", *d);
4572 d += buf_charlen;
4573 }
fa9a63c5
RM
4574 break;
4575
4576
4577 case charset:
4578 case charset_not:
4579 {
b18215fc 4580 register unsigned int c;
fa9a63c5 4581 boolean not = (re_opcode_t) *(p - 1) == charset_not;
b18215fc
RS
4582 int len;
4583
4584 /* Start of actual range_table, or end of bitmap if there is no
4585 range table. */
4586 unsigned char *range_table;
4587
25fe55af 4588 /* Nonzero if there is range table. */
b18215fc
RS
4589 int range_table_exists;
4590
25fe55af 4591 /* Number of ranges of range table. Not in bytes. */
b18215fc 4592 int count;
fa9a63c5 4593
25fe55af 4594 DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : "");
fa9a63c5
RM
4595
4596 PREFETCH ();
b18215fc 4597 c = (unsigned char) *d;
fa9a63c5 4598
b18215fc
RS
4599 range_table = CHARSET_RANGE_TABLE (&p[-1]); /* Past the bitmap. */
4600 range_table_exists = CHARSET_RANGE_TABLE_EXISTS_P (&p[-1]);
4601 if (range_table_exists)
4602 EXTRACT_NUMBER_AND_INCR (count, range_table);
4603 else
4604 count = 0;
4605
4606 if (multibyte && BASE_LEADING_CODE_P (c))
4607 c = STRING_CHAR_AND_LENGTH (d, dend - d, len);
4608
4609 if (SINGLE_BYTE_CHAR_P (c))
4610 { /* Lookup bitmap. */
4611 c = TRANSLATE (c); /* The character to match. */
4612 len = 1;
4613
4614 /* Cast to `unsigned' instead of `unsigned char' in
4615 case the bit list is a full 32 bytes long. */
4616 if (c < (unsigned) (CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH)
fa9a63c5
RM
4617 && p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
4618 not = !not;
b18215fc
RS
4619 }
4620 else if (range_table_exists)
4621 CHARSET_LOOKUP_RANGE_TABLE_RAW (not, c, range_table, count);
fa9a63c5 4622
b18215fc 4623 p = CHARSET_RANGE_TABLE_END (range_table, count);
fa9a63c5
RM
4624
4625 if (!not) goto fail;
5e69f11e 4626
fa9a63c5 4627 SET_REGS_MATCHED ();
b18215fc 4628 d += len;
fa9a63c5
RM
4629 break;
4630 }
4631
4632
25fe55af
RS
4633 /* The beginning of a group is represented by start_memory.
4634 The arguments are the register number in the next byte, and the
4635 number of groups inner to this one in the next. The text
4636 matched within the group is recorded (in the internal
4637 registers data structure) under the register number. */
4638 case start_memory:
fa9a63c5
RM
4639 DEBUG_PRINT3 ("EXECUTING start_memory %d (%d):\n", *p, p[1]);
4640
25fe55af 4641 /* Find out if this group can match the empty string. */
fa9a63c5 4642 p1 = p; /* To send to group_match_null_string_p. */
5e69f11e 4643
25fe55af
RS
4644 if (REG_MATCH_NULL_STRING_P (reg_info[*p]) == MATCH_NULL_UNSET_VALUE)
4645 REG_MATCH_NULL_STRING_P (reg_info[*p])
4646 = group_match_null_string_p (&p1, pend, reg_info);
4647
4648 /* Save the position in the string where we were the last time
4649 we were at this open-group operator in case the group is
4650 operated upon by a repetition operator, e.g., with `(a*)*b'
4651 against `ab'; then we want to ignore where we are now in
4652 the string in case this attempt to match fails. */
4653 old_regstart[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
4654 ? REG_UNSET (regstart[*p]) ? d : regstart[*p]
4655 : regstart[*p];
5e69f11e 4656 DEBUG_PRINT2 (" old_regstart: %d\n",
fa9a63c5
RM
4657 POINTER_TO_OFFSET (old_regstart[*p]));
4658
25fe55af 4659 regstart[*p] = d;
fa9a63c5
RM
4660 DEBUG_PRINT2 (" regstart: %d\n", POINTER_TO_OFFSET (regstart[*p]));
4661
25fe55af
RS
4662 IS_ACTIVE (reg_info[*p]) = 1;
4663 MATCHED_SOMETHING (reg_info[*p]) = 0;
fa9a63c5
RM
4664
4665 /* Clear this whenever we change the register activity status. */
4666 set_regs_matched_done = 0;
5e69f11e 4667
25fe55af
RS
4668 /* This is the new highest active register. */
4669 highest_active_reg = *p;
5e69f11e 4670
25fe55af
RS
4671 /* If nothing was active before, this is the new lowest active
4672 register. */
4673 if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
4674 lowest_active_reg = *p;
fa9a63c5 4675
25fe55af
RS
4676 /* Move past the register number and inner group count. */
4677 p += 2;
fa9a63c5
RM
4678 just_past_start_mem = p;
4679
25fe55af 4680 break;
fa9a63c5
RM
4681
4682
25fe55af
RS
4683 /* The stop_memory opcode represents the end of a group. Its
4684 arguments are the same as start_memory's: the register
4685 number, and the number of inner groups. */
fa9a63c5
RM
4686 case stop_memory:
4687 DEBUG_PRINT3 ("EXECUTING stop_memory %d (%d):\n", *p, p[1]);
5e69f11e 4688
25fe55af
RS
4689 /* We need to save the string position the last time we were at
4690 this close-group operator in case the group is operated
4691 upon by a repetition operator, e.g., with `((a*)*(b*)*)*'
4692 against `aba'; then we want to ignore where we are now in
4693 the string in case this attempt to match fails. */
4694 old_regend[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
4695 ? REG_UNSET (regend[*p]) ? d : regend[*p]
fa9a63c5 4696 : regend[*p];
5e69f11e 4697 DEBUG_PRINT2 (" old_regend: %d\n",
fa9a63c5
RM
4698 POINTER_TO_OFFSET (old_regend[*p]));
4699
25fe55af 4700 regend[*p] = d;
fa9a63c5
RM
4701 DEBUG_PRINT2 (" regend: %d\n", POINTER_TO_OFFSET (regend[*p]));
4702
25fe55af
RS
4703 /* This register isn't active anymore. */
4704 IS_ACTIVE (reg_info[*p]) = 0;
fa9a63c5
RM
4705
4706 /* Clear this whenever we change the register activity status. */
4707 set_regs_matched_done = 0;
4708
25fe55af
RS
4709 /* If this was the only register active, nothing is active
4710 anymore. */
4711 if (lowest_active_reg == highest_active_reg)
4712 {
4713 lowest_active_reg = NO_LOWEST_ACTIVE_REG;
4714 highest_active_reg = NO_HIGHEST_ACTIVE_REG;
4715 }
4716 else
4717 { /* We must scan for the new highest active register, since
4718 it isn't necessarily one less than now: consider
4719 (a(b)c(d(e)f)g). When group 3 ends, after the f), the
4720 new highest active register is 1. */
4721 unsigned char r = *p - 1;
4722 while (r > 0 && !IS_ACTIVE (reg_info[r]))
4723 r--;
4724
4725 /* If we end up at register zero, that means that we saved
4726 the registers as the result of an `on_failure_jump', not
4727 a `start_memory', and we jumped to past the innermost
4728 `stop_memory'. For example, in ((.)*) we save
4729 registers 1 and 2 as a result of the *, but when we pop
4730 back to the second ), we are at the stop_memory 1.
4731 Thus, nothing is active. */
fa9a63c5 4732 if (r == 0)
25fe55af
RS
4733 {
4734 lowest_active_reg = NO_LOWEST_ACTIVE_REG;
4735 highest_active_reg = NO_HIGHEST_ACTIVE_REG;
4736 }
4737 else
4738 highest_active_reg = r;
4739 }
4740
4741 /* If just failed to match something this time around with a
4742 group that's operated on by a repetition operator, try to
4743 force exit from the ``loop'', and restore the register
4744 information for this group that we had before trying this
4745 last match. */
4746 if ((!MATCHED_SOMETHING (reg_info[*p])
4747 || just_past_start_mem == p - 1)
5e69f11e 4748 && (p + 2) < pend)
25fe55af
RS
4749 {
4750 boolean is_a_jump_n = false;
4751
4752 p1 = p + 2;
4753 mcnt = 0;
4754 switch ((re_opcode_t) *p1++)
4755 {
4756 case jump_n:
fa9a63c5 4757 is_a_jump_n = true;
25fe55af 4758 case pop_failure_jump:
fa9a63c5
RM
4759 case maybe_pop_jump:
4760 case jump:
4761 case dummy_failure_jump:
25fe55af 4762 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
fa9a63c5
RM
4763 if (is_a_jump_n)
4764 p1 += 2;
25fe55af 4765 break;
5e69f11e 4766
25fe55af
RS
4767 default:
4768 /* do nothing */ ;
4769 }
fa9a63c5 4770 p1 += mcnt;
5e69f11e 4771
25fe55af
RS
4772 /* If the next operation is a jump backwards in the pattern
4773 to an on_failure_jump right before the start_memory
4774 corresponding to this stop_memory, exit from the loop
4775 by forcing a failure after pushing on the stack the
4776 on_failure_jump's jump in the pattern, and d. */
4777 if (mcnt < 0 && (re_opcode_t) *p1 == on_failure_jump
4778 && (re_opcode_t) p1[3] == start_memory && p1[4] == *p)
fa9a63c5 4779 {
25fe55af
RS
4780 /* If this group ever matched anything, then restore
4781 what its registers were before trying this last
4782 failed match, e.g., with `(a*)*b' against `ab' for
4783 regstart[1], and, e.g., with `((a*)*(b*)*)*'
4784 against `aba' for regend[3].
5e69f11e 4785
25fe55af
RS
4786 Also restore the registers for inner groups for,
4787 e.g., `((a*)(b*))*' against `aba' (register 3 would
4788 otherwise get trashed). */
5e69f11e 4789
25fe55af 4790 if (EVER_MATCHED_SOMETHING (reg_info[*p]))
fa9a63c5 4791 {
5e69f11e
RM
4792 unsigned r;
4793
25fe55af 4794 EVER_MATCHED_SOMETHING (reg_info[*p]) = 0;
5e69f11e 4795
fa9a63c5 4796 /* Restore this and inner groups' (if any) registers. */
25fe55af
RS
4797 for (r = *p; r < *p + *(p + 1); r++)
4798 {
4799 regstart[r] = old_regstart[r];
4800
4801 /* xx why this test? */
4802 if (old_regend[r] >= regstart[r])
4803 regend[r] = old_regend[r];
4804 }
4805 }
fa9a63c5 4806 p1++;
25fe55af
RS
4807 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4808 PUSH_FAILURE_POINT (p1 + mcnt, d, -2);
fa9a63c5 4809
25fe55af
RS
4810 goto fail;
4811 }
4812 }
5e69f11e 4813
25fe55af
RS
4814 /* Move past the register number and the inner group count. */
4815 p += 2;
4816 break;
fa9a63c5
RM
4817
4818
4819 /* \<digit> has been turned into a `duplicate' command which is
25fe55af
RS
4820 followed by the numeric value of <digit> as the register number. */
4821 case duplicate:
fa9a63c5
RM
4822 {
4823 register const char *d2, *dend2;
25fe55af 4824 int regno = *p++; /* Get which register to match against. */
fa9a63c5
RM
4825 DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno);
4826
25fe55af
RS
4827 /* Can't back reference a group which we've never matched. */
4828 if (REG_UNSET (regstart[regno]) || REG_UNSET (regend[regno]))
4829 goto fail;
5e69f11e 4830
25fe55af
RS
4831 /* Where in input to try to start matching. */
4832 d2 = regstart[regno];
5e69f11e 4833
25fe55af
RS
4834 /* Where to stop matching; if both the place to start and
4835 the place to stop matching are in the same string, then
4836 set to the place to stop, otherwise, for now have to use
4837 the end of the first string. */
fa9a63c5 4838
25fe55af 4839 dend2 = ((FIRST_STRING_P (regstart[regno])
fa9a63c5
RM
4840 == FIRST_STRING_P (regend[regno]))
4841 ? regend[regno] : end_match_1);
4842 for (;;)
4843 {
4844 /* If necessary, advance to next segment in register
25fe55af 4845 contents. */
fa9a63c5
RM
4846 while (d2 == dend2)
4847 {
4848 if (dend2 == end_match_2) break;
4849 if (dend2 == regend[regno]) break;
4850
25fe55af
RS
4851 /* End of string1 => advance to string2. */
4852 d2 = string2;
4853 dend2 = regend[regno];
fa9a63c5
RM
4854 }
4855 /* At end of register contents => success */
4856 if (d2 == dend2) break;
4857
4858 /* If necessary, advance to next segment in data. */
4859 PREFETCH ();
4860
4861 /* How many characters left in this segment to match. */
4862 mcnt = dend - d;
5e69f11e 4863
fa9a63c5 4864 /* Want how many consecutive characters we can match in
25fe55af
RS
4865 one shot, so, if necessary, adjust the count. */
4866 if (mcnt > dend2 - d2)
fa9a63c5 4867 mcnt = dend2 - d2;
5e69f11e 4868
fa9a63c5 4869 /* Compare that many; failure if mismatch, else move
25fe55af 4870 past them. */
5e69f11e 4871 if (translate
25fe55af
RS
4872 ? bcmp_translate (d, d2, mcnt, translate)
4873 : bcmp (d, d2, mcnt))
fa9a63c5
RM
4874 goto fail;
4875 d += mcnt, d2 += mcnt;
4876
25fe55af 4877 /* Do this because we've match some characters. */
fa9a63c5
RM
4878 SET_REGS_MATCHED ();
4879 }
4880 }
4881 break;
4882
4883
25fe55af
RS
4884 /* begline matches the empty string at the beginning of the string
4885 (unless `not_bol' is set in `bufp'), and, if
4886 `newline_anchor' is set, after newlines. */
fa9a63c5 4887 case begline:
25fe55af 4888 DEBUG_PRINT1 ("EXECUTING begline.\n");
5e69f11e 4889
25fe55af
RS
4890 if (AT_STRINGS_BEG (d))
4891 {
4892 if (!bufp->not_bol) break;
4893 }
4894 else if (d[-1] == '\n' && bufp->newline_anchor)
4895 {
4896 break;
4897 }
4898 /* In all other cases, we fail. */
4899 goto fail;
fa9a63c5
RM
4900
4901
25fe55af 4902 /* endline is the dual of begline. */
fa9a63c5 4903 case endline:
25fe55af 4904 DEBUG_PRINT1 ("EXECUTING endline.\n");
fa9a63c5 4905
25fe55af
RS
4906 if (AT_STRINGS_END (d))
4907 {
4908 if (!bufp->not_eol) break;
4909 }
5e69f11e 4910
25fe55af
RS
4911 /* We have to ``prefetch'' the next character. */
4912 else if ((d == end1 ? *string2 : *d) == '\n'
4913 && bufp->newline_anchor)
4914 {
4915 break;
4916 }
4917 goto fail;
fa9a63c5
RM
4918
4919
4920 /* Match at the very beginning of the data. */
25fe55af
RS
4921 case begbuf:
4922 DEBUG_PRINT1 ("EXECUTING begbuf.\n");
4923 if (AT_STRINGS_BEG (d))
4924 break;
4925 goto fail;
fa9a63c5
RM
4926
4927
4928 /* Match at the very end of the data. */
25fe55af
RS
4929 case endbuf:
4930 DEBUG_PRINT1 ("EXECUTING endbuf.\n");
fa9a63c5
RM
4931 if (AT_STRINGS_END (d))
4932 break;
25fe55af 4933 goto fail;
5e69f11e 4934
5e69f11e 4935
25fe55af
RS
4936 /* on_failure_keep_string_jump is used to optimize `.*\n'. It
4937 pushes NULL as the value for the string on the stack. Then
4938 `pop_failure_point' will keep the current value for the
4939 string, instead of restoring it. To see why, consider
4940 matching `foo\nbar' against `.*\n'. The .* matches the foo;
4941 then the . fails against the \n. But the next thing we want
4942 to do is match the \n against the \n; if we restored the
4943 string value, we would be back at the foo.
4944
4945 Because this is used only in specific cases, we don't need to
4946 check all the things that `on_failure_jump' does, to make
4947 sure the right things get saved on the stack. Hence we don't
4948 share its code. The only reason to push anything on the
4949 stack at all is that otherwise we would have to change
4950 `anychar's code to do something besides goto fail in this
4951 case; that seems worse than this. */
4952 case on_failure_keep_string_jump:
4953 DEBUG_PRINT1 ("EXECUTING on_failure_keep_string_jump");
fa9a63c5 4954
25fe55af
RS
4955 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4956 DEBUG_PRINT3 (" %d (to 0x%x):\n", mcnt, p + mcnt);
b18215fc 4957
25fe55af
RS
4958 PUSH_FAILURE_POINT (p + mcnt, NULL, -2);
4959 break;
fa9a63c5
RM
4960
4961
4962 /* Uses of on_failure_jump:
5e69f11e 4963
25fe55af
RS
4964 Each alternative starts with an on_failure_jump that points
4965 to the beginning of the next alternative. Each alternative
4966 except the last ends with a jump that in effect jumps past
4967 the rest of the alternatives. (They really jump to the
4968 ending jump of the following alternative, because tensioning
4969 these jumps is a hassle.)
fa9a63c5 4970
25fe55af
RS
4971 Repeats start with an on_failure_jump that points past both
4972 the repetition text and either the following jump or
4973 pop_failure_jump back to this on_failure_jump. */
fa9a63c5 4974 case on_failure_jump:
25fe55af
RS
4975 on_failure:
4976 DEBUG_PRINT1 ("EXECUTING on_failure_jump");
4977
4978 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4979 DEBUG_PRINT3 (" %d (to 0x%x)", mcnt, p + mcnt);
4980
4981 /* If this on_failure_jump comes right before a group (i.e.,
4982 the original * applied to a group), save the information
4983 for that group and all inner ones, so that if we fail back
4984 to this point, the group's information will be correct.
4985 For example, in \(a*\)*\1, we need the preceding group,
4986 and in \(zz\(a*\)b*\)\2, we need the inner group. */
4987
4988 /* We can't use `p' to check ahead because we push
4989 a failure point to `p + mcnt' after we do this. */
4990 p1 = p;
4991
4992 /* We need to skip no_op's before we look for the
4993 start_memory in case this on_failure_jump is happening as
4994 the result of a completed succeed_n, as in \(a\)\{1,3\}b\1
4995 against aba. */
4996 while (p1 < pend && (re_opcode_t) *p1 == no_op)
4997 p1++;
4998
4999 if (p1 < pend && (re_opcode_t) *p1 == start_memory)
5000 {
5001 /* We have a new highest active register now. This will
5002 get reset at the start_memory we are about to get to,
5003 but we will have saved all the registers relevant to
5004 this repetition op, as described above. */
5005 highest_active_reg = *(p1 + 1) + *(p1 + 2);
5006 if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
5007 lowest_active_reg = *(p1 + 1);
5008 }
5009
5010 DEBUG_PRINT1 (":\n");
5011 PUSH_FAILURE_POINT (p + mcnt, d, -2);
5012 break;
5013
5014
5015 /* A smart repeat ends with `maybe_pop_jump'.
5016 We change it to either `pop_failure_jump' or `jump'. */
5017 case maybe_pop_jump:
5018 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5019 DEBUG_PRINT2 ("EXECUTING maybe_pop_jump %d.\n", mcnt);
5020 {
fa9a63c5
RM
5021 register unsigned char *p2 = p;
5022
25fe55af
RS
5023 /* Compare the beginning of the repeat with what in the
5024 pattern follows its end. If we can establish that there
5025 is nothing that they would both match, i.e., that we
5026 would have to backtrack because of (as in, e.g., `a*a')
5027 then we can change to pop_failure_jump, because we'll
5028 never have to backtrack.
5e69f11e 5029
25fe55af
RS
5030 This is not true in the case of alternatives: in
5031 `(a|ab)*' we do need to backtrack to the `ab' alternative
5032 (e.g., if the string was `ab'). But instead of trying to
5033 detect that here, the alternative has put on a dummy
5034 failure point which is what we will end up popping. */
fa9a63c5
RM
5035
5036 /* Skip over open/close-group commands.
5037 If what follows this loop is a ...+ construct,
5038 look at what begins its body, since we will have to
5039 match at least one of that. */
5040 while (1)
5041 {
5042 if (p2 + 2 < pend
5043 && ((re_opcode_t) *p2 == stop_memory
5044 || (re_opcode_t) *p2 == start_memory))
5045 p2 += 3;
5046 else if (p2 + 6 < pend
5047 && (re_opcode_t) *p2 == dummy_failure_jump)
5048 p2 += 6;
5049 else
5050 break;
5051 }
5052
5053 p1 = p + mcnt;
5054 /* p1[0] ... p1[2] are the `on_failure_jump' corresponding
5e69f11e 5055 to the `maybe_finalize_jump' of this case. Examine what
25fe55af 5056 follows. */
fa9a63c5 5057
25fe55af
RS
5058 /* If we're at the end of the pattern, we can change. */
5059 if (p2 == pend)
fa9a63c5
RM
5060 {
5061 /* Consider what happens when matching ":\(.*\)"
5062 against ":/". I don't really understand this code
25fe55af
RS
5063 yet. */
5064 p[-3] = (unsigned char) pop_failure_jump;
5065 DEBUG_PRINT1
5066 (" End of pattern: change to `pop_failure_jump'.\n");
5067 }
fa9a63c5 5068
25fe55af 5069 else if ((re_opcode_t) *p2 == exactn
fa9a63c5
RM
5070 || (bufp->newline_anchor && (re_opcode_t) *p2 == endline))
5071 {
b18215fc 5072 register unsigned int c
25fe55af 5073 = *p2 == (unsigned char) endline ? '\n' : p2[2];
fa9a63c5 5074
b18215fc 5075 if ((re_opcode_t) p1[3] == exactn)
e318085a 5076 {
b18215fc
RS
5077 if (!(multibyte /* && (c != '\n') */
5078 && BASE_LEADING_CODE_P (c))
5079 ? c != p1[5]
5080 : (STRING_CHAR (&p2[2], pend - &p2[2])
5081 != STRING_CHAR (&p1[5], pend - &p1[5])))
25fe55af
RS
5082 {
5083 p[-3] = (unsigned char) pop_failure_jump;
5084 DEBUG_PRINT3 (" %c != %c => pop_failure_jump.\n",
5085 c, p1[5]);
5086 }
e318085a 5087 }
5e69f11e 5088
fa9a63c5
RM
5089 else if ((re_opcode_t) p1[3] == charset
5090 || (re_opcode_t) p1[3] == charset_not)
5091 {
5092 int not = (re_opcode_t) p1[3] == charset_not;
5e69f11e 5093
b18215fc
RS
5094 if (multibyte /* && (c != '\n') */
5095 && BASE_LEADING_CODE_P (c))
5096 c = STRING_CHAR (&p2[2], pend - &p2[2]);
5097
5098 /* Test if C is listed in charset (or charset_not)
5099 at `&p1[3]'. */
5100 if (SINGLE_BYTE_CHAR_P (c))
5101 {
5102 if (c < CHARSET_BITMAP_SIZE (&p1[3]) * BYTEWIDTH
fa9a63c5
RM
5103 && p1[5 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
5104 not = !not;
b18215fc
RS
5105 }
5106 else if (CHARSET_RANGE_TABLE_EXISTS_P (&p1[3]))
5107 CHARSET_LOOKUP_RANGE_TABLE (not, c, &p1[3]);
fa9a63c5 5108
25fe55af
RS
5109 /* `not' is equal to 1 if c would match, which means
5110 that we can't change to pop_failure_jump. */
fa9a63c5 5111 if (!not)
25fe55af
RS
5112 {
5113 p[-3] = (unsigned char) pop_failure_jump;
5114 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
5115 }
fa9a63c5
RM
5116 }
5117 }
25fe55af 5118 else if ((re_opcode_t) *p2 == charset)
fa9a63c5 5119 {
b18215fc 5120 if ((re_opcode_t) p1[3] == exactn)
e318085a 5121 {
b18215fc
RS
5122 register unsigned int c = p1[5];
5123 int not = 0;
5124
5125 if (multibyte && BASE_LEADING_CODE_P (c))
5126 c = STRING_CHAR (&p1[5], pend - &p1[5]);
5127
25fe55af 5128 /* Test if C is listed in charset at `p2'. */
b18215fc
RS
5129 if (SINGLE_BYTE_CHAR_P (c))
5130 {
5131 if (c < CHARSET_BITMAP_SIZE (p2) * BYTEWIDTH
5132 && (p2[2 + c / BYTEWIDTH]
5133 & (1 << (c % BYTEWIDTH))))
5134 not = !not;
5135 }
5136 else if (CHARSET_RANGE_TABLE_EXISTS_P (p2))
5137 CHARSET_LOOKUP_RANGE_TABLE (not, c, p2);
5138
5139 if (!not)
25fe55af
RS
5140 {
5141 p[-3] = (unsigned char) pop_failure_jump;
5142 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
b18215fc 5143 }
25fe55af 5144 }
5e69f11e 5145
b18215fc
RS
5146 /* It is hard to list up all the character in charset
5147 P2 if it includes multibyte character. Give up in
5148 such case. */
5149 else if (!multibyte || !CHARSET_RANGE_TABLE_EXISTS_P (p2))
5150 {
5151 /* Now, we are sure that P2 has no range table.
5152 So, for the size of bitmap in P2, `p2[1]' is
25fe55af 5153 enough. But P1 may have range table, so the
b18215fc
RS
5154 size of bitmap table of P1 is extracted by
5155 using macro `CHARSET_BITMAP_SIZE'.
5156
5157 Since we know that all the character listed in
5158 P2 is ASCII, it is enough to test only bitmap
5159 table of P1. */
25fe55af 5160
b18215fc 5161 if ((re_opcode_t) p1[3] == charset_not)
fa9a63c5
RM
5162 {
5163 int idx;
b18215fc 5164 /* We win if the charset_not inside the loop lists
25fe55af 5165 every character listed in the charset after. */
fa9a63c5
RM
5166 for (idx = 0; idx < (int) p2[1]; idx++)
5167 if (! (p2[2 + idx] == 0
b18215fc 5168 || (idx < CHARSET_BITMAP_SIZE (&p1[3])
fa9a63c5
RM
5169 && ((p2[2 + idx] & ~ p1[5 + idx]) == 0))))
5170 break;
5171
5172 if (idx == p2[1])
25fe55af
RS
5173 {
5174 p[-3] = (unsigned char) pop_failure_jump;
5175 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
5176 }
fa9a63c5
RM
5177 }
5178 else if ((re_opcode_t) p1[3] == charset)
5179 {
5180 int idx;
5181 /* We win if the charset inside the loop
5182 has no overlap with the one after the loop. */
5183 for (idx = 0;
b18215fc
RS
5184 (idx < (int) p2[1]
5185 && idx < CHARSET_BITMAP_SIZE (&p1[3]));
fa9a63c5
RM
5186 idx++)
5187 if ((p2[2 + idx] & p1[5 + idx]) != 0)
5188 break;
5189
b18215fc
RS
5190 if (idx == p2[1]
5191 || idx == CHARSET_BITMAP_SIZE (&p1[3]))
25fe55af
RS
5192 {
5193 p[-3] = (unsigned char) pop_failure_jump;
5194 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
5195 }
fa9a63c5
RM
5196 }
5197 }
5198 }
b18215fc 5199 }
fa9a63c5
RM
5200 p -= 2; /* Point at relative address again. */
5201 if ((re_opcode_t) p[-1] != pop_failure_jump)
5202 {
5203 p[-1] = (unsigned char) jump;
25fe55af 5204 DEBUG_PRINT1 (" Match => jump.\n");
fa9a63c5
RM
5205 goto unconditional_jump;
5206 }
25fe55af 5207 /* Note fall through. */
fa9a63c5
RM
5208
5209
5210 /* The end of a simple repeat has a pop_failure_jump back to
25fe55af
RS
5211 its matching on_failure_jump, where the latter will push a
5212 failure point. The pop_failure_jump takes off failure
5213 points put on by this pop_failure_jump's matching
5214 on_failure_jump; we got through the pattern to here from the
5215 matching on_failure_jump, so didn't fail. */
5216 case pop_failure_jump:
5217 {
5218 /* We need to pass separate storage for the lowest and
5219 highest registers, even though we don't care about the
5220 actual values. Otherwise, we will restore only one
5221 register from the stack, since lowest will == highest in
5222 `pop_failure_point'. */
5223 unsigned dummy_low_reg, dummy_high_reg;
5224 unsigned char *pdummy;
5225 const char *sdummy;
5226
5227 DEBUG_PRINT1 ("EXECUTING pop_failure_jump.\n");
5228 POP_FAILURE_POINT (sdummy, pdummy,
5229 dummy_low_reg, dummy_high_reg,
5230 reg_dummy, reg_dummy, reg_info_dummy);
5231 }
5232 /* Note fall through. */
5233
5234
5235 /* Unconditionally jump (without popping any failure points). */
5236 case jump:
fa9a63c5
RM
5237 unconditional_jump:
5238 EXTRACT_NUMBER_AND_INCR (mcnt, p); /* Get the amount to jump. */
25fe55af
RS
5239 DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt);
5240 p += mcnt; /* Do the jump. */
5241 DEBUG_PRINT2 ("(to 0x%x).\n", p);
5242 break;
5243
5244
5245 /* We need this opcode so we can detect where alternatives end
5246 in `group_match_null_string_p' et al. */
5247 case jump_past_alt:
5248 DEBUG_PRINT1 ("EXECUTING jump_past_alt.\n");
5249 goto unconditional_jump;
5250
5251
5252 /* Normally, the on_failure_jump pushes a failure point, which
5253 then gets popped at pop_failure_jump. We will end up at
5254 pop_failure_jump, also, and with a pattern of, say, `a+', we
5255 are skipping over the on_failure_jump, so we have to push
5256 something meaningless for pop_failure_jump to pop. */
5257 case dummy_failure_jump:
5258 DEBUG_PRINT1 ("EXECUTING dummy_failure_jump.\n");
5259 /* It doesn't matter what we push for the string here. What
5260 the code at `fail' tests is the value for the pattern. */
5261 PUSH_FAILURE_POINT (0, 0, -2);
5262 goto unconditional_jump;
5263
5264
5265 /* At the end of an alternative, we need to push a dummy failure
5266 point in case we are followed by a `pop_failure_jump', because
5267 we don't want the failure point for the alternative to be
5268 popped. For example, matching `(a|ab)*' against `aab'
5269 requires that we match the `ab' alternative. */
5270 case push_dummy_failure:
5271 DEBUG_PRINT1 ("EXECUTING push_dummy_failure.\n");
5272 /* See comments just above at `dummy_failure_jump' about the
5273 two zeroes. */
5274 PUSH_FAILURE_POINT (0, 0, -2);
fa9a63c5
RM
5275 break;
5276
25fe55af
RS
5277 /* Have to succeed matching what follows at least n times.
5278 After that, handle like `on_failure_jump'. */
5279 case succeed_n:
5280 EXTRACT_NUMBER (mcnt, p + 2);
5281 DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt);
5e69f11e 5282
25fe55af
RS
5283 assert (mcnt >= 0);
5284 /* Originally, this is how many times we HAVE to succeed. */
5285 if (mcnt > 0)
5286 {
5287 mcnt--;
fa9a63c5 5288 p += 2;
25fe55af
RS
5289 STORE_NUMBER_AND_INCR (p, mcnt);
5290 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p, mcnt);
5291 }
fa9a63c5 5292 else if (mcnt == 0)
25fe55af
RS
5293 {
5294 DEBUG_PRINT2 (" Setting two bytes from 0x%x to no_op.\n", p+2);
fa9a63c5 5295 p[2] = (unsigned char) no_op;
25fe55af
RS
5296 p[3] = (unsigned char) no_op;
5297 goto on_failure;
5298 }
5299 break;
5300
5301 case jump_n:
5302 EXTRACT_NUMBER (mcnt, p + 2);
5303 DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt);
5304
5305 /* Originally, this is how many times we CAN jump. */
5306 if (mcnt)
5307 {
5308 mcnt--;
5309 STORE_NUMBER (p + 2, mcnt);
5e69f11e 5310 goto unconditional_jump;
25fe55af
RS
5311 }
5312 /* If don't have to jump any more, skip over the rest of command. */
5e69f11e
RM
5313 else
5314 p += 4;
25fe55af 5315 break;
5e69f11e 5316
fa9a63c5
RM
5317 case set_number_at:
5318 {
25fe55af 5319 DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
fa9a63c5 5320
25fe55af
RS
5321 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5322 p1 = p + mcnt;
5323 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5324 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p1, mcnt);
fa9a63c5 5325 STORE_NUMBER (p1, mcnt);
25fe55af
RS
5326 break;
5327 }
9121ca40
KH
5328
5329 case wordbound:
5330 DEBUG_PRINT1 ("EXECUTING wordbound.\n");
fa9a63c5 5331
b18215fc 5332 /* We SUCCEED in one of the following cases: */
9121ca40 5333
b18215fc 5334 /* Case 1: D is at the beginning or the end of string. */
9121ca40
KH
5335 if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
5336 break;
b18215fc
RS
5337 else
5338 {
5339 /* C1 is the character before D, S1 is the syntax of C1, C2
5340 is the character at D, and S2 is the syntax of C2. */
5341 int c1, c2, s1, s2;
5342 int pos1 = PTR_TO_OFFSET (d - 1);
5d967c7a 5343 int charpos;
9121ca40 5344
b18215fc
RS
5345 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
5346 GET_CHAR_AFTER_2 (c2, d, string1, end1, string2, end2);
5347#ifdef emacs
92432794 5348 charpos = SYNTAX_TABLE_BYTE_TO_CHAR (pos1 ? pos1 : 1);
5d967c7a 5349 UPDATE_SYNTAX_TABLE (charpos);
25fe55af 5350#endif
b18215fc
RS
5351 s1 = SYNTAX (c1);
5352#ifdef emacs
5d967c7a 5353 UPDATE_SYNTAX_TABLE_FORWARD (charpos + 1);
25fe55af 5354#endif
b18215fc
RS
5355 s2 = SYNTAX (c2);
5356
5357 if (/* Case 2: Only one of S1 and S2 is Sword. */
5358 ((s1 == Sword) != (s2 == Sword))
5359 /* Case 3: Both of S1 and S2 are Sword, and macro
25fe55af 5360 WORD_BOUNDARY_P (C1, C2) returns nonzero. */
b18215fc 5361 || ((s1 == Sword) && WORD_BOUNDARY_P (c1, c2)))
9121ca40 5362 break;
9121ca40 5363 }
b18215fc 5364 goto fail;
9121ca40
KH
5365
5366 case notwordbound:
9121ca40 5367 DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
b18215fc
RS
5368
5369 /* We FAIL in one of the following cases: */
5370
5371 /* Case 1: D is at the beginning or the end of string. */
9121ca40
KH
5372 if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
5373 goto fail;
b18215fc
RS
5374 else
5375 {
5376 /* C1 is the character before D, S1 is the syntax of C1, C2
5377 is the character at D, and S2 is the syntax of C2. */
5378 int c1, c2, s1, s2;
5379 int pos1 = PTR_TO_OFFSET (d - 1);
5d967c7a 5380 int charpos;
9121ca40 5381
b18215fc
RS
5382 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
5383 GET_CHAR_AFTER_2 (c2, d, string1, end1, string2, end2);
5384#ifdef emacs
92432794 5385 charpos = SYNTAX_TABLE_BYTE_TO_CHAR (pos1);
5d967c7a 5386 UPDATE_SYNTAX_TABLE (charpos);
25fe55af 5387#endif
b18215fc
RS
5388 s1 = SYNTAX (c1);
5389#ifdef emacs
5d967c7a 5390 UPDATE_SYNTAX_TABLE_FORWARD (charpos + 1);
25fe55af 5391#endif
b18215fc
RS
5392 s2 = SYNTAX (c2);
5393
5394 if (/* Case 2: Only one of S1 and S2 is Sword. */
5395 ((s1 == Sword) != (s2 == Sword))
5396 /* Case 3: Both of S1 and S2 are Sword, and macro
25fe55af 5397 WORD_BOUNDARY_P (C1, C2) returns nonzero. */
b18215fc 5398 || ((s1 == Sword) && WORD_BOUNDARY_P (c1, c2)))
9121ca40 5399 goto fail;
9121ca40 5400 }
b18215fc 5401 break;
fa9a63c5
RM
5402
5403 case wordbeg:
25fe55af 5404 DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
fa9a63c5 5405
b18215fc
RS
5406 /* We FAIL in one of the following cases: */
5407
25fe55af 5408 /* Case 1: D is at the end of string. */
b18215fc 5409 if (AT_STRINGS_END (d))
25fe55af 5410 goto fail;
b18215fc
RS
5411 else
5412 {
5413 /* C1 is the character before D, S1 is the syntax of C1, C2
5414 is the character at D, and S2 is the syntax of C2. */
5415 int c1, c2, s1, s2;
5416 int pos1 = PTR_TO_OFFSET (d);
5d967c7a 5417 int charpos;
fa9a63c5 5418
b18215fc 5419 GET_CHAR_AFTER_2 (c2, d, string1, end1, string2, end2);
fa9a63c5 5420#ifdef emacs
92432794
RS
5421 charpos = SYNTAX_TABLE_BYTE_TO_CHAR (pos1);
5422 UPDATE_SYNTAX_TABLE (charpos);
25fe55af 5423#endif
b18215fc 5424 s2 = SYNTAX (c2);
25fe55af 5425
b18215fc
RS
5426 /* Case 2: S2 is not Sword. */
5427 if (s2 != Sword)
5428 goto fail;
5429
5430 /* Case 3: D is not at the beginning of string ... */
5431 if (!AT_STRINGS_BEG (d))
5432 {
5433 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
5434#ifdef emacs
5d967c7a 5435 UPDATE_SYNTAX_TABLE_BACKWARD (charpos - 1);
25fe55af 5436#endif
b18215fc
RS
5437 s1 = SYNTAX (c1);
5438
5439 /* ... and S1 is Sword, and WORD_BOUNDARY_P (C1, C2)
25fe55af 5440 returns 0. */
b18215fc
RS
5441 if ((s1 == Sword) && !WORD_BOUNDARY_P (c1, c2))
5442 goto fail;
5443 }
5444 }
e318085a
RS
5445 break;
5446
b18215fc 5447 case wordend:
25fe55af 5448 DEBUG_PRINT1 ("EXECUTING wordend.\n");
b18215fc
RS
5449
5450 /* We FAIL in one of the following cases: */
5451
5452 /* Case 1: D is at the beginning of string. */
5453 if (AT_STRINGS_BEG (d))
e318085a 5454 goto fail;
b18215fc
RS
5455 else
5456 {
5457 /* C1 is the character before D, S1 is the syntax of C1, C2
5458 is the character at D, and S2 is the syntax of C2. */
5459 int c1, c2, s1, s2;
5d967c7a
RS
5460 int pos1 = PTR_TO_OFFSET (d);
5461 int charpos;
b18215fc
RS
5462
5463 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
5d967c7a 5464#ifdef emacs
92432794
RS
5465 charpos = SYNTAX_TABLE_BYTE_TO_CHAR (pos1 - 1);
5466 UPDATE_SYNTAX_TABLE (charpos);
5d967c7a 5467#endif
b18215fc
RS
5468 s1 = SYNTAX (c1);
5469
5470 /* Case 2: S1 is not Sword. */
5471 if (s1 != Sword)
5472 goto fail;
5473
5474 /* Case 3: D is not at the end of string ... */
5475 if (!AT_STRINGS_END (d))
5476 {
5477 GET_CHAR_AFTER_2 (c2, d, string1, end1, string2, end2);
5d967c7a
RS
5478#ifdef emacs
5479 UPDATE_SYNTAX_TABLE_FORWARD (charpos);
5480#endif
b18215fc
RS
5481 s2 = SYNTAX (c2);
5482
5483 /* ... and S2 is Sword, and WORD_BOUNDARY_P (C1, C2)
25fe55af 5484 returns 0. */
b18215fc 5485 if ((s2 == Sword) && !WORD_BOUNDARY_P (c1, c2))
25fe55af 5486 goto fail;
b18215fc
RS
5487 }
5488 }
e318085a
RS
5489 break;
5490
b18215fc 5491#ifdef emacs
25fe55af
RS
5492 case before_dot:
5493 DEBUG_PRINT1 ("EXECUTING before_dot.\n");
5d967c7a 5494 if (PTR_BYTE_POS ((unsigned char *) d) >= PT_BYTE)
25fe55af
RS
5495 goto fail;
5496 break;
b18215fc 5497
25fe55af
RS
5498 case at_dot:
5499 DEBUG_PRINT1 ("EXECUTING at_dot.\n");
5d967c7a 5500 if (PTR_BYTE_POS ((unsigned char *) d) != PT_BYTE)
25fe55af
RS
5501 goto fail;
5502 break;
b18215fc 5503
25fe55af
RS
5504 case after_dot:
5505 DEBUG_PRINT1 ("EXECUTING after_dot.\n");
5d967c7a 5506 if (PTR_BYTE_POS ((unsigned char *) d) <= PT_BYTE)
25fe55af
RS
5507 goto fail;
5508 break;
fa9a63c5
RM
5509
5510 case syntaxspec:
25fe55af 5511 DEBUG_PRINT2 ("EXECUTING syntaxspec %d.\n", mcnt);
fa9a63c5
RM
5512 mcnt = *p++;
5513 goto matchsyntax;
5514
25fe55af
RS
5515 case wordchar:
5516 DEBUG_PRINT1 ("EXECUTING Emacs wordchar.\n");
fa9a63c5 5517 mcnt = (int) Sword;
25fe55af 5518 matchsyntax:
fa9a63c5 5519 PREFETCH ();
b18215fc
RS
5520#ifdef emacs
5521 {
92432794 5522 int pos1 = SYNTAX_TABLE_BYTE_TO_CHAR (PTR_TO_OFFSET (d));
b18215fc
RS
5523 UPDATE_SYNTAX_TABLE (pos1);
5524 }
25fe55af 5525#endif
b18215fc
RS
5526 {
5527 int c, len;
5528
5529 if (multibyte)
5530 /* we must concern about multibyte form, ... */
5531 c = STRING_CHAR_AND_LENGTH (d, dend - d, len);
5532 else
5533 /* everything should be handled as ASCII, even though it
5534 looks like multibyte form. */
5535 c = *d, len = 1;
5536
5537 if (SYNTAX (c) != (enum syntaxcode) mcnt)
fa9a63c5 5538 goto fail;
b18215fc
RS
5539 d += len;
5540 }
25fe55af 5541 SET_REGS_MATCHED ();
fa9a63c5
RM
5542 break;
5543
5544 case notsyntaxspec:
25fe55af 5545 DEBUG_PRINT2 ("EXECUTING notsyntaxspec %d.\n", mcnt);
fa9a63c5
RM
5546 mcnt = *p++;
5547 goto matchnotsyntax;
5548
25fe55af
RS
5549 case notwordchar:
5550 DEBUG_PRINT1 ("EXECUTING Emacs notwordchar.\n");
fa9a63c5 5551 mcnt = (int) Sword;
25fe55af 5552 matchnotsyntax:
fa9a63c5 5553 PREFETCH ();
b18215fc
RS
5554#ifdef emacs
5555 {
92432794 5556 int pos1 = SYNTAX_TABLE_BYTE_TO_CHAR (PTR_TO_OFFSET (d));
b18215fc
RS
5557 UPDATE_SYNTAX_TABLE (pos1);
5558 }
25fe55af 5559#endif
b18215fc
RS
5560 {
5561 int c, len;
5562
5563 if (multibyte)
5564 c = STRING_CHAR_AND_LENGTH (d, dend - d, len);
5565 else
5566 c = *d, len = 1;
5567
5568 if (SYNTAX (c) == (enum syntaxcode) mcnt)
fa9a63c5 5569 goto fail;
b18215fc
RS
5570 d += len;
5571 }
5572 SET_REGS_MATCHED ();
5573 break;
5574
5575 case categoryspec:
5576 DEBUG_PRINT2 ("EXECUTING categoryspec %d.\n", *p);
5577 mcnt = *p++;
5578 PREFETCH ();
5579 {
5580 int c, len;
5581
5582 if (multibyte)
5583 c = STRING_CHAR_AND_LENGTH (d, dend - d, len);
5584 else
5585 c = *d, len = 1;
5586
5587 if (!CHAR_HAS_CATEGORY (c, mcnt))
5588 goto fail;
5589 d += len;
5590 }
fa9a63c5 5591 SET_REGS_MATCHED ();
e318085a 5592 break;
fa9a63c5 5593
b18215fc
RS
5594 case notcategoryspec:
5595 DEBUG_PRINT2 ("EXECUTING notcategoryspec %d.\n", *p);
5596 mcnt = *p++;
5597 PREFETCH ();
5598 {
5599 int c, len;
5600
5601 if (multibyte)
5602 c = STRING_CHAR_AND_LENGTH (d, dend - d, len);
5603 else
5604 c = *d, len = 1;
5605
5606 if (CHAR_HAS_CATEGORY (c, mcnt))
5607 goto fail;
5608 d += len;
5609 }
5610 SET_REGS_MATCHED ();
5611 break;
5612
fa9a63c5
RM
5613#else /* not emacs */
5614 case wordchar:
b18215fc 5615 DEBUG_PRINT1 ("EXECUTING non-Emacs wordchar.\n");
fa9a63c5 5616 PREFETCH ();
b18215fc
RS
5617 if (!WORDCHAR_P (d))
5618 goto fail;
fa9a63c5 5619 SET_REGS_MATCHED ();
b18215fc 5620 d++;
fa9a63c5 5621 break;
5e69f11e 5622
fa9a63c5 5623 case notwordchar:
b18215fc 5624 DEBUG_PRINT1 ("EXECUTING non-Emacs notwordchar.\n");
fa9a63c5
RM
5625 PREFETCH ();
5626 if (WORDCHAR_P (d))
b18215fc
RS
5627 goto fail;
5628 SET_REGS_MATCHED ();
5629 d++;
fa9a63c5
RM
5630 break;
5631#endif /* not emacs */
5e69f11e 5632
b18215fc
RS
5633 default:
5634 abort ();
fa9a63c5 5635 }
b18215fc 5636 continue; /* Successfully executed one pattern command; keep going. */
fa9a63c5
RM
5637
5638
5639 /* We goto here if a matching operation fails. */
5640 fail:
5641 if (!FAIL_STACK_EMPTY ())
b18215fc
RS
5642 { /* A restart point is known. Restore to that state. */
5643 DEBUG_PRINT1 ("\nFAIL:\n");
5644 POP_FAILURE_POINT (d, p,
5645 lowest_active_reg, highest_active_reg,
5646 regstart, regend, reg_info);
5647
5648 /* If this failure point is a dummy, try the next one. */
5649 if (!p)
fa9a63c5
RM
5650 goto fail;
5651
b18215fc 5652 /* If we failed to the end of the pattern, don't examine *p. */
fa9a63c5 5653 assert (p <= pend);
b18215fc
RS
5654 if (p < pend)
5655 {
5656 boolean is_a_jump_n = false;
5657
5658 /* If failed to a backwards jump that's part of a repetition
5659 loop, need to pop this failure point and use the next one. */
5660 switch ((re_opcode_t) *p)
5661 {
5662 case jump_n:
5663 is_a_jump_n = true;
5664 case maybe_pop_jump:
5665 case pop_failure_jump:
5666 case jump:
5667 p1 = p + 1;
5668 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5669 p1 += mcnt;
5670
5671 if ((is_a_jump_n && (re_opcode_t) *p1 == succeed_n)
5672 || (!is_a_jump_n
5673 && (re_opcode_t) *p1 == on_failure_jump))
5674 goto fail;
5675 break;
5676 default:
5677 /* do nothing */ ;
5678 }
5679 }
5680
5681 if (d >= string1 && d <= end1)
fa9a63c5 5682 dend = end_match_1;
b18215fc 5683 }
fa9a63c5 5684 else
b18215fc 5685 break; /* Matching at this starting point really fails. */
fa9a63c5
RM
5686 } /* for (;;) */
5687
5688 if (best_regs_set)
5689 goto restore_best_regs;
5690
5691 FREE_VARIABLES ();
5692
b18215fc 5693 return -1; /* Failure to match. */
fa9a63c5
RM
5694} /* re_match_2 */
5695\f
5696/* Subroutine definitions for re_match_2. */
5697
5698
5699/* We are passed P pointing to a register number after a start_memory.
5e69f11e 5700
fa9a63c5
RM
5701 Return true if the pattern up to the corresponding stop_memory can
5702 match the empty string, and false otherwise.
5e69f11e 5703
fa9a63c5
RM
5704 If we find the matching stop_memory, sets P to point to one past its number.
5705 Otherwise, sets P to an undefined byte less than or equal to END.
5706
5707 We don't handle duplicates properly (yet). */
5708
5709static boolean
5710group_match_null_string_p (p, end, reg_info)
5711 unsigned char **p, *end;
5712 register_info_type *reg_info;
5713{
5714 int mcnt;
5715 /* Point to after the args to the start_memory. */
5716 unsigned char *p1 = *p + 2;
5e69f11e 5717
fa9a63c5
RM
5718 while (p1 < end)
5719 {
5720 /* Skip over opcodes that can match nothing, and return true or
5721 false, as appropriate, when we get to one that can't, or to the
b18215fc 5722 matching stop_memory. */
5e69f11e 5723
fa9a63c5 5724 switch ((re_opcode_t) *p1)
b18215fc
RS
5725 {
5726 /* Could be either a loop or a series of alternatives. */
5727 case on_failure_jump:
5728 p1++;
5729 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5e69f11e 5730
b18215fc 5731 /* If the next operation is not a jump backwards in the
fa9a63c5
RM
5732 pattern. */
5733
5734 if (mcnt >= 0)
5735 {
b18215fc
RS
5736 /* Go through the on_failure_jumps of the alternatives,
5737 seeing if any of the alternatives cannot match nothing.
5738 The last alternative starts with only a jump,
5739 whereas the rest start with on_failure_jump and end
5740 with a jump, e.g., here is the pattern for `a|b|c':
fa9a63c5 5741
b18215fc
RS
5742 /on_failure_jump/0/6/exactn/1/a/jump_past_alt/0/6
5743 /on_failure_jump/0/6/exactn/1/b/jump_past_alt/0/3
5744 /exactn/1/c
fa9a63c5 5745
b18215fc
RS
5746 So, we have to first go through the first (n-1)
5747 alternatives and then deal with the last one separately. */
fa9a63c5
RM
5748
5749
b18215fc
RS
5750 /* Deal with the first (n-1) alternatives, which start
5751 with an on_failure_jump (see above) that jumps to right
5752 past a jump_past_alt. */
fa9a63c5 5753
b18215fc
RS
5754 while ((re_opcode_t) p1[mcnt-3] == jump_past_alt)
5755 {
5756 /* `mcnt' holds how many bytes long the alternative
5757 is, including the ending `jump_past_alt' and
5758 its number. */
fa9a63c5 5759
b18215fc
RS
5760 if (!alt_match_null_string_p (p1, p1 + mcnt - 3,
5761 reg_info))
5762 return false;
fa9a63c5 5763
b18215fc 5764 /* Move to right after this alternative, including the
fa9a63c5 5765 jump_past_alt. */
b18215fc 5766 p1 += mcnt;
fa9a63c5 5767
b18215fc
RS
5768 /* Break if it's the beginning of an n-th alternative
5769 that doesn't begin with an on_failure_jump. */
5770 if ((re_opcode_t) *p1 != on_failure_jump)
5771 break;
5e69f11e 5772
fa9a63c5
RM
5773 /* Still have to check that it's not an n-th
5774 alternative that starts with an on_failure_jump. */
5775 p1++;
b18215fc
RS
5776 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5777 if ((re_opcode_t) p1[mcnt-3] != jump_past_alt)
5778 {
5779 /* Get to the beginning of the n-th alternative. */
5780 p1 -= 3;
5781 break;
5782 }
5783 }
fa9a63c5 5784
b18215fc
RS
5785 /* Deal with the last alternative: go back and get number
5786 of the `jump_past_alt' just before it. `mcnt' contains
5787 the length of the alternative. */
5788 EXTRACT_NUMBER (mcnt, p1 - 2);
fa9a63c5 5789
b18215fc
RS
5790 if (!alt_match_null_string_p (p1, p1 + mcnt, reg_info))
5791 return false;
fa9a63c5 5792
b18215fc
RS
5793 p1 += mcnt; /* Get past the n-th alternative. */
5794 } /* if mcnt > 0 */
5795 break;
fa9a63c5 5796
5e69f11e 5797
b18215fc 5798 case stop_memory:
fa9a63c5 5799 assert (p1[1] == **p);
b18215fc
RS
5800 *p = p1 + 2;
5801 return true;
fa9a63c5 5802
5e69f11e 5803
b18215fc
RS
5804 default:
5805 if (!common_op_match_null_string_p (&p1, end, reg_info))
5806 return false;
5807 }
fa9a63c5
RM
5808 } /* while p1 < end */
5809
5810 return false;
5811} /* group_match_null_string_p */
5812
5813
5814/* Similar to group_match_null_string_p, but doesn't deal with alternatives:
5815 It expects P to be the first byte of a single alternative and END one
5816 byte past the last. The alternative can contain groups. */
5e69f11e 5817
fa9a63c5
RM
5818static boolean
5819alt_match_null_string_p (p, end, reg_info)
5820 unsigned char *p, *end;
5821 register_info_type *reg_info;
5822{
5823 int mcnt;
5824 unsigned char *p1 = p;
5e69f11e 5825
fa9a63c5
RM
5826 while (p1 < end)
5827 {
5e69f11e 5828 /* Skip over opcodes that can match nothing, and break when we get
b18215fc 5829 to one that can't. */
5e69f11e 5830
fa9a63c5 5831 switch ((re_opcode_t) *p1)
b18215fc
RS
5832 {
5833 /* It's a loop. */
5834 case on_failure_jump:
5835 p1++;
5836 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5837 p1 += mcnt;
5838 break;
5e69f11e
RM
5839
5840 default:
b18215fc
RS
5841 if (!common_op_match_null_string_p (&p1, end, reg_info))
5842 return false;
5843 }
fa9a63c5
RM
5844 } /* while p1 < end */
5845
5846 return true;
5847} /* alt_match_null_string_p */
5848
5849
5850/* Deals with the ops common to group_match_null_string_p and
5e69f11e
RM
5851 alt_match_null_string_p.
5852
fa9a63c5
RM
5853 Sets P to one after the op and its arguments, if any. */
5854
5855static boolean
5856common_op_match_null_string_p (p, end, reg_info)
5857 unsigned char **p, *end;
5858 register_info_type *reg_info;
5859{
5860 int mcnt;
5861 boolean ret;
5862 int reg_no;
5863 unsigned char *p1 = *p;
5864
5865 switch ((re_opcode_t) *p1++)
5866 {
5867 case no_op:
5868 case begline:
5869 case endline:
5870 case begbuf:
5871 case endbuf:
5872 case wordbeg:
5873 case wordend:
5874 case wordbound:
5875 case notwordbound:
5876#ifdef emacs
5877 case before_dot:
5878 case at_dot:
5879 case after_dot:
5880#endif
5881 break;
5882
5883 case start_memory:
5884 reg_no = *p1;
5885 assert (reg_no > 0 && reg_no <= MAX_REGNUM);
5886 ret = group_match_null_string_p (&p1, end, reg_info);
5e69f11e 5887
fa9a63c5 5888 /* Have to set this here in case we're checking a group which
b18215fc 5889 contains a group and a back reference to it. */
fa9a63c5
RM
5890
5891 if (REG_MATCH_NULL_STRING_P (reg_info[reg_no]) == MATCH_NULL_UNSET_VALUE)
b18215fc 5892 REG_MATCH_NULL_STRING_P (reg_info[reg_no]) = ret;
fa9a63c5
RM
5893
5894 if (!ret)
b18215fc 5895 return false;
fa9a63c5 5896 break;
5e69f11e 5897
b18215fc 5898 /* If this is an optimized succeed_n for zero times, make the jump. */
fa9a63c5
RM
5899 case jump:
5900 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5901 if (mcnt >= 0)
b18215fc 5902 p1 += mcnt;
fa9a63c5 5903 else
b18215fc 5904 return false;
fa9a63c5
RM
5905 break;
5906
5907 case succeed_n:
b18215fc 5908 /* Get to the number of times to succeed. */
5e69f11e 5909 p1 += 2;
fa9a63c5
RM
5910 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5911
5912 if (mcnt == 0)
b18215fc
RS
5913 {
5914 p1 -= 4;
5915 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5916 p1 += mcnt;
5917 }
fa9a63c5 5918 else
b18215fc 5919 return false;
fa9a63c5
RM
5920 break;
5921
5e69f11e 5922 case duplicate:
fa9a63c5 5923 if (!REG_MATCH_NULL_STRING_P (reg_info[*p1]))
b18215fc 5924 return false;
fa9a63c5
RM
5925 break;
5926
5927 case set_number_at:
5928 p1 += 4;
5929
5930 default:
5931 /* All other opcodes mean we cannot match the empty string. */
5932 return false;
5933 }
5934
5935 *p = p1;
5936 return true;
5937} /* common_op_match_null_string_p */
5938
5939
5940/* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
5941 bytes; nonzero otherwise. */
5e69f11e 5942
fa9a63c5
RM
5943static int
5944bcmp_translate (s1, s2, len, translate)
5945 unsigned char *s1, *s2;
5946 register int len;
6676cb1c 5947 RE_TRANSLATE_TYPE translate;
fa9a63c5
RM
5948{
5949 register unsigned char *p1 = s1, *p2 = s2;
e934739e
RS
5950 unsigned char *p1_end = s1 + len;
5951 unsigned char *p2_end = s2 + len;
5952
5953 while (p1 != p1_end && p2 != p2_end)
fa9a63c5 5954 {
e934739e
RS
5955 int p1_charlen, p2_charlen;
5956 int p1_ch, p2_ch;
5957
5958 p1_ch = STRING_CHAR_AND_LENGTH (p1, p1_end - p1, p1_charlen);
5959 p2_ch = STRING_CHAR_AND_LENGTH (p2, p2_end - p2, p2_charlen);
5960
5961 if (RE_TRANSLATE (translate, p1_ch)
5962 != RE_TRANSLATE (translate, p2_ch))
bc192b5b 5963 return 1;
e934739e
RS
5964
5965 p1 += p1_charlen, p2 += p2_charlen;
fa9a63c5 5966 }
e934739e
RS
5967
5968 if (p1 != p1_end || p2 != p2_end)
5969 return 1;
5970
fa9a63c5
RM
5971 return 0;
5972}
5973\f
5974/* Entry points for GNU code. */
5975
5976/* re_compile_pattern is the GNU regular expression compiler: it
5977 compiles PATTERN (of length SIZE) and puts the result in BUFP.
5978 Returns 0 if the pattern was valid, otherwise an error string.
5e69f11e 5979
fa9a63c5
RM
5980 Assumes the `allocated' (and perhaps `buffer') and `translate' fields
5981 are set in BUFP on entry.
5e69f11e 5982
b18215fc 5983 We call regex_compile to do the actual compilation. */
fa9a63c5
RM
5984
5985const char *
5986re_compile_pattern (pattern, length, bufp)
5987 const char *pattern;
5988 int length;
5989 struct re_pattern_buffer *bufp;
5990{
5991 reg_errcode_t ret;
5e69f11e 5992
fa9a63c5
RM
5993 /* GNU code is written to assume at least RE_NREGS registers will be set
5994 (and at least one extra will be -1). */
5995 bufp->regs_allocated = REGS_UNALLOCATED;
5e69f11e 5996
fa9a63c5
RM
5997 /* And GNU code determines whether or not to get register information
5998 by passing null for the REGS argument to re_match, etc., not by
5999 setting no_sub. */
6000 bufp->no_sub = 0;
5e69f11e 6001
b18215fc 6002 /* Match anchors at newline. */
fa9a63c5 6003 bufp->newline_anchor = 1;
5e69f11e 6004
fa9a63c5
RM
6005 ret = regex_compile (pattern, length, re_syntax_options, bufp);
6006
6007 if (!ret)
6008 return NULL;
6009 return gettext (re_error_msgid[(int) ret]);
5e69f11e 6010}
fa9a63c5 6011\f
b18215fc
RS
6012/* Entry points compatible with 4.2 BSD regex library. We don't define
6013 them unless specifically requested. */
fa9a63c5 6014
0c085854 6015#if defined (_REGEX_RE_COMP) || defined (_LIBC)
fa9a63c5
RM
6016
6017/* BSD has one and only one pattern buffer. */
6018static struct re_pattern_buffer re_comp_buf;
6019
6020char *
48afdd44
RM
6021#ifdef _LIBC
6022/* Make these definitions weak in libc, so POSIX programs can redefine
6023 these names if they don't use our functions, and still use
6024 regcomp/regexec below without link errors. */
6025weak_function
6026#endif
fa9a63c5
RM
6027re_comp (s)
6028 const char *s;
6029{
6030 reg_errcode_t ret;
5e69f11e 6031
fa9a63c5
RM
6032 if (!s)
6033 {
6034 if (!re_comp_buf.buffer)
6035 return gettext ("No previous regular expression");
6036 return 0;
6037 }
6038
6039 if (!re_comp_buf.buffer)
6040 {
6041 re_comp_buf.buffer = (unsigned char *) malloc (200);
6042 if (re_comp_buf.buffer == NULL)
b18215fc 6043 return gettext (re_error_msgid[(int) REG_ESPACE]);
fa9a63c5
RM
6044 re_comp_buf.allocated = 200;
6045
6046 re_comp_buf.fastmap = (char *) malloc (1 << BYTEWIDTH);
6047 if (re_comp_buf.fastmap == NULL)
6048 return gettext (re_error_msgid[(int) REG_ESPACE]);
6049 }
6050
6051 /* Since `re_exec' always passes NULL for the `regs' argument, we
6052 don't need to initialize the pattern buffer fields which affect it. */
6053
b18215fc 6054 /* Match anchors at newlines. */
fa9a63c5
RM
6055 re_comp_buf.newline_anchor = 1;
6056
6057 ret = regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf);
5e69f11e 6058
fa9a63c5
RM
6059 if (!ret)
6060 return NULL;
6061
6062 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
6063 return (char *) gettext (re_error_msgid[(int) ret]);
6064}
6065
6066
6067int
48afdd44
RM
6068#ifdef _LIBC
6069weak_function
6070#endif
fa9a63c5
RM
6071re_exec (s)
6072 const char *s;
6073{
6074 const int len = strlen (s);
6075 return
6076 0 <= re_search (&re_comp_buf, s, len, 0, len, (struct re_registers *) 0);
6077}
6078#endif /* _REGEX_RE_COMP */
6079\f
6080/* POSIX.2 functions. Don't define these for Emacs. */
6081
6082#ifndef emacs
6083
6084/* regcomp takes a regular expression as a string and compiles it.
6085
b18215fc 6086 PREG is a regex_t *. We do not expect any fields to be initialized,
fa9a63c5
RM
6087 since POSIX says we shouldn't. Thus, we set
6088
6089 `buffer' to the compiled pattern;
6090 `used' to the length of the compiled pattern;
6091 `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
6092 REG_EXTENDED bit in CFLAGS is set; otherwise, to
6093 RE_SYNTAX_POSIX_BASIC;
6094 `newline_anchor' to REG_NEWLINE being set in CFLAGS;
6095 `fastmap' and `fastmap_accurate' to zero;
6096 `re_nsub' to the number of subexpressions in PATTERN.
6097
6098 PATTERN is the address of the pattern string.
6099
6100 CFLAGS is a series of bits which affect compilation.
6101
6102 If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
6103 use POSIX basic syntax.
6104
6105 If REG_NEWLINE is set, then . and [^...] don't match newline.
6106 Also, regexec will try a match beginning after every newline.
6107
6108 If REG_ICASE is set, then we considers upper- and lowercase
6109 versions of letters to be equivalent when matching.
6110
6111 If REG_NOSUB is set, then when PREG is passed to regexec, that
6112 routine will report only success or failure, and nothing about the
6113 registers.
6114
b18215fc 6115 It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for
fa9a63c5
RM
6116 the return codes and their meanings.) */
6117
6118int
6119regcomp (preg, pattern, cflags)
6120 regex_t *preg;
5e69f11e 6121 const char *pattern;
fa9a63c5
RM
6122 int cflags;
6123{
6124 reg_errcode_t ret;
6125 unsigned syntax
6126 = (cflags & REG_EXTENDED) ?
6127 RE_SYNTAX_POSIX_EXTENDED : RE_SYNTAX_POSIX_BASIC;
6128
6129 /* regex_compile will allocate the space for the compiled pattern. */
6130 preg->buffer = 0;
6131 preg->allocated = 0;
6132 preg->used = 0;
5e69f11e 6133
fa9a63c5
RM
6134 /* Don't bother to use a fastmap when searching. This simplifies the
6135 REG_NEWLINE case: if we used a fastmap, we'd have to put all the
6136 characters after newlines into the fastmap. This way, we just try
6137 every character. */
6138 preg->fastmap = 0;
5e69f11e 6139
fa9a63c5
RM
6140 if (cflags & REG_ICASE)
6141 {
6142 unsigned i;
5e69f11e 6143
6676cb1c
RS
6144 preg->translate
6145 = (RE_TRANSLATE_TYPE) malloc (CHAR_SET_SIZE
6146 * sizeof (*(RE_TRANSLATE_TYPE)0));
fa9a63c5 6147 if (preg->translate == NULL)
b18215fc 6148 return (int) REG_ESPACE;
fa9a63c5
RM
6149
6150 /* Map uppercase characters to corresponding lowercase ones. */
6151 for (i = 0; i < CHAR_SET_SIZE; i++)
b18215fc 6152 preg->translate[i] = ISUPPER (i) ? tolower (i) : i;
fa9a63c5
RM
6153 }
6154 else
6155 preg->translate = NULL;
6156
6157 /* If REG_NEWLINE is set, newlines are treated differently. */
6158 if (cflags & REG_NEWLINE)
6159 { /* REG_NEWLINE implies neither . nor [^...] match newline. */
6160 syntax &= ~RE_DOT_NEWLINE;
6161 syntax |= RE_HAT_LISTS_NOT_NEWLINE;
b18215fc 6162 /* It also changes the matching behavior. */
fa9a63c5
RM
6163 preg->newline_anchor = 1;
6164 }
6165 else
6166 preg->newline_anchor = 0;
6167
6168 preg->no_sub = !!(cflags & REG_NOSUB);
6169
5e69f11e 6170 /* POSIX says a null character in the pattern terminates it, so we
fa9a63c5
RM
6171 can use strlen here in compiling the pattern. */
6172 ret = regex_compile (pattern, strlen (pattern), syntax, preg);
5e69f11e 6173
fa9a63c5
RM
6174 /* POSIX doesn't distinguish between an unmatched open-group and an
6175 unmatched close-group: both are REG_EPAREN. */
6176 if (ret == REG_ERPAREN) ret = REG_EPAREN;
5e69f11e 6177
fa9a63c5
RM
6178 return (int) ret;
6179}
6180
6181
6182/* regexec searches for a given pattern, specified by PREG, in the
6183 string STRING.
5e69f11e 6184
fa9a63c5 6185 If NMATCH is zero or REG_NOSUB was set in the cflags argument to
b18215fc 6186 `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at
fa9a63c5
RM
6187 least NMATCH elements, and we set them to the offsets of the
6188 corresponding matched substrings.
5e69f11e 6189
fa9a63c5
RM
6190 EFLAGS specifies `execution flags' which affect matching: if
6191 REG_NOTBOL is set, then ^ does not match at the beginning of the
6192 string; if REG_NOTEOL is set, then $ does not match at the end.
5e69f11e 6193
fa9a63c5
RM
6194 We return 0 if we find a match and REG_NOMATCH if not. */
6195
6196int
6197regexec (preg, string, nmatch, pmatch, eflags)
6198 const regex_t *preg;
5e69f11e
RM
6199 const char *string;
6200 size_t nmatch;
6201 regmatch_t pmatch[];
fa9a63c5
RM
6202 int eflags;
6203{
6204 int ret;
6205 struct re_registers regs;
6206 regex_t private_preg;
6207 int len = strlen (string);
6208 boolean want_reg_info = !preg->no_sub && nmatch > 0;
6209
6210 private_preg = *preg;
5e69f11e 6211
fa9a63c5
RM
6212 private_preg.not_bol = !!(eflags & REG_NOTBOL);
6213 private_preg.not_eol = !!(eflags & REG_NOTEOL);
5e69f11e 6214
fa9a63c5
RM
6215 /* The user has told us exactly how many registers to return
6216 information about, via `nmatch'. We have to pass that on to the
b18215fc 6217 matching routines. */
fa9a63c5 6218 private_preg.regs_allocated = REGS_FIXED;
5e69f11e 6219
fa9a63c5
RM
6220 if (want_reg_info)
6221 {
6222 regs.num_regs = nmatch;
6223 regs.start = TALLOC (nmatch, regoff_t);
6224 regs.end = TALLOC (nmatch, regoff_t);
6225 if (regs.start == NULL || regs.end == NULL)
b18215fc 6226 return (int) REG_NOMATCH;
fa9a63c5
RM
6227 }
6228
6229 /* Perform the searching operation. */
6230 ret = re_search (&private_preg, string, len,
b18215fc
RS
6231 /* start: */ 0, /* range: */ len,
6232 want_reg_info ? &regs : (struct re_registers *) 0);
5e69f11e 6233
fa9a63c5
RM
6234 /* Copy the register information to the POSIX structure. */
6235 if (want_reg_info)
6236 {
6237 if (ret >= 0)
b18215fc
RS
6238 {
6239 unsigned r;
fa9a63c5 6240
b18215fc
RS
6241 for (r = 0; r < nmatch; r++)
6242 {
6243 pmatch[r].rm_so = regs.start[r];
6244 pmatch[r].rm_eo = regs.end[r];
6245 }
6246 }
fa9a63c5 6247
b18215fc 6248 /* If we needed the temporary register info, free the space now. */
fa9a63c5
RM
6249 free (regs.start);
6250 free (regs.end);
6251 }
6252
6253 /* We want zero return to mean success, unlike `re_search'. */
6254 return ret >= 0 ? (int) REG_NOERROR : (int) REG_NOMATCH;
6255}
6256
6257
6258/* Returns a message corresponding to an error code, ERRCODE, returned
6259 from either regcomp or regexec. We don't use PREG here. */
6260
6261size_t
6262regerror (errcode, preg, errbuf, errbuf_size)
6263 int errcode;
6264 const regex_t *preg;
6265 char *errbuf;
6266 size_t errbuf_size;
6267{
6268 const char *msg;
6269 size_t msg_size;
6270
6271 if (errcode < 0
6272 || errcode >= (sizeof (re_error_msgid) / sizeof (re_error_msgid[0])))
5e69f11e 6273 /* Only error codes returned by the rest of the code should be passed
b18215fc 6274 to this routine. If we are given anything else, or if other regex
fa9a63c5
RM
6275 code generates an invalid error code, then the program has a bug.
6276 Dump core so we can fix it. */
6277 abort ();
6278
6279 msg = gettext (re_error_msgid[errcode]);
6280
6281 msg_size = strlen (msg) + 1; /* Includes the null. */
5e69f11e 6282
fa9a63c5
RM
6283 if (errbuf_size != 0)
6284 {
6285 if (msg_size > errbuf_size)
b18215fc
RS
6286 {
6287 strncpy (errbuf, msg, errbuf_size - 1);
6288 errbuf[errbuf_size - 1] = 0;
6289 }
fa9a63c5 6290 else
b18215fc 6291 strcpy (errbuf, msg);
fa9a63c5
RM
6292 }
6293
6294 return msg_size;
6295}
6296
6297
6298/* Free dynamically allocated space used by PREG. */
6299
6300void
6301regfree (preg)
6302 regex_t *preg;
6303{
6304 if (preg->buffer != NULL)
6305 free (preg->buffer);
6306 preg->buffer = NULL;
5e69f11e 6307
fa9a63c5
RM
6308 preg->allocated = 0;
6309 preg->used = 0;
6310
6311 if (preg->fastmap != NULL)
6312 free (preg->fastmap);
6313 preg->fastmap = NULL;
6314 preg->fastmap_accurate = 0;
6315
6316 if (preg->translate != NULL)
6317 free (preg->translate);
6318 preg->translate = NULL;
6319}
6320
6321#endif /* not emacs */