Declare etext.
[bpt/emacs.git] / src / regex.c
CommitLineData
bc78d348 1/* Extended regular expression matching and search library,
8b20806d 2 version 0.12.
bc78d348
KB
3 (Implements POSIX draft P10003.2/D11.2, except for
4 internationalization features.)
5
2860be63 6 Copyright (C) 1993, 1994, 1995 Free Software Foundation, Inc.
bc78d348 7
fa9a63c5
RM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
21
22/* AIX requires this to be the first thing in the file. */
23#if defined (_AIX) && !defined (REGEX_MALLOC)
24 #pragma alloca
25#endif
26
68d96f02 27#undef _GNU_SOURCE
fa9a63c5
RM
28#define _GNU_SOURCE
29
30#ifdef HAVE_CONFIG_H
31#include <config.h>
32#endif
33
34/* We need this for `regex.h', and perhaps for the Emacs include files. */
35#include <sys/types.h>
36
37/* This is for other GNU distributions with internationalized messages. */
38#if HAVE_LIBINTL_H || defined (_LIBC)
39# include <libintl.h>
40#else
41# define gettext(msgid) (msgid)
42#endif
43
44/* The `emacs' switch turns on certain matching commands
45 that make sense only in Emacs. */
46#ifdef emacs
47
48#include "lisp.h"
49#include "buffer.h"
50#include "syntax.h"
51
52#else /* not emacs */
53
54/* If we are not linking with Emacs proper,
55 we can't use the relocating allocator
56 even if config.h says that we can. */
57#undef REL_ALLOC
58
59#if defined (STDC_HEADERS) || defined (_LIBC)
60#include <stdlib.h>
61#else
62char *malloc ();
63char *realloc ();
64#endif
65
9e4ecb26
KH
66/* When used in Emacs's lib-src, we need to get bzero and bcopy somehow.
67 If nothing else has been done, use the method below. */
68#ifdef INHIBIT_STRING_HEADER
69#if !(defined (HAVE_BZERO) && defined (HAVE_BCOPY))
70#if !defined (bzero) && !defined (bcopy)
71#undef INHIBIT_STRING_HEADER
72#endif
73#endif
74#endif
75
76/* This is the normal way of making sure we have a bcopy and a bzero.
77 This is used in most programs--a few other programs avoid this
78 by defining INHIBIT_STRING_HEADER. */
fa9a63c5 79#ifndef INHIBIT_STRING_HEADER
7f998252 80#if defined (HAVE_STRING_H) || defined (STDC_HEADERS) || defined (_LIBC)
fa9a63c5
RM
81#include <string.h>
82#ifndef bcmp
83#define bcmp(s1, s2, n) memcmp ((s1), (s2), (n))
84#endif
85#ifndef bcopy
86#define bcopy(s, d, n) memcpy ((d), (s), (n))
87#endif
88#ifndef bzero
89#define bzero(s, n) memset ((s), 0, (n))
90#endif
91#else
92#include <strings.h>
93#endif
94#endif
95
96/* Define the syntax stuff for \<, \>, etc. */
97
98/* This must be nonzero for the wordchar and notwordchar pattern
99 commands in re_match_2. */
100#ifndef Sword
101#define Sword 1
102#endif
103
104#ifdef SWITCH_ENUM_BUG
105#define SWITCH_ENUM_CAST(x) ((int)(x))
106#else
107#define SWITCH_ENUM_CAST(x) (x)
108#endif
109
110#ifdef SYNTAX_TABLE
111
112extern char *re_syntax_table;
113
114#else /* not SYNTAX_TABLE */
115
116/* How many characters in the character set. */
117#define CHAR_SET_SIZE 256
118
119static char re_syntax_table[CHAR_SET_SIZE];
120
121static void
122init_syntax_once ()
123{
124 register int c;
125 static int done = 0;
126
127 if (done)
128 return;
129
130 bzero (re_syntax_table, sizeof re_syntax_table);
131
132 for (c = 'a'; c <= 'z'; c++)
133 re_syntax_table[c] = Sword;
134
135 for (c = 'A'; c <= 'Z'; c++)
136 re_syntax_table[c] = Sword;
137
138 for (c = '0'; c <= '9'; c++)
139 re_syntax_table[c] = Sword;
140
141 re_syntax_table['_'] = Sword;
142
143 done = 1;
144}
145
146#endif /* not SYNTAX_TABLE */
147
148#define SYNTAX(c) re_syntax_table[c]
149
150#endif /* not emacs */
151\f
152/* Get the interface, including the syntax bits. */
153#include "regex.h"
154
155/* isalpha etc. are used for the character classes. */
156#include <ctype.h>
157
158/* Jim Meyering writes:
159
160 "... Some ctype macros are valid only for character codes that
161 isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when
162 using /bin/cc or gcc but without giving an ansi option). So, all
163 ctype uses should be through macros like ISPRINT... If
164 STDC_HEADERS is defined, then autoconf has verified that the ctype
165 macros don't need to be guarded with references to isascii. ...
166 Defining isascii to 1 should let any compiler worth its salt
167 eliminate the && through constant folding." */
168
169#if defined (STDC_HEADERS) || (!defined (isascii) && !defined (HAVE_ISASCII))
170#define ISASCII(c) 1
171#else
172#define ISASCII(c) isascii(c)
173#endif
174
175#ifdef isblank
176#define ISBLANK(c) (ISASCII (c) && isblank (c))
177#else
178#define ISBLANK(c) ((c) == ' ' || (c) == '\t')
179#endif
180#ifdef isgraph
181#define ISGRAPH(c) (ISASCII (c) && isgraph (c))
182#else
183#define ISGRAPH(c) (ISASCII (c) && isprint (c) && !isspace (c))
184#endif
185
186#define ISPRINT(c) (ISASCII (c) && isprint (c))
187#define ISDIGIT(c) (ISASCII (c) && isdigit (c))
188#define ISALNUM(c) (ISASCII (c) && isalnum (c))
189#define ISALPHA(c) (ISASCII (c) && isalpha (c))
190#define ISCNTRL(c) (ISASCII (c) && iscntrl (c))
191#define ISLOWER(c) (ISASCII (c) && islower (c))
192#define ISPUNCT(c) (ISASCII (c) && ispunct (c))
193#define ISSPACE(c) (ISASCII (c) && isspace (c))
194#define ISUPPER(c) (ISASCII (c) && isupper (c))
195#define ISXDIGIT(c) (ISASCII (c) && isxdigit (c))
196
197#ifndef NULL
075f06ec 198#define NULL (void *)0
fa9a63c5
RM
199#endif
200
201/* We remove any previous definition of `SIGN_EXTEND_CHAR',
202 since ours (we hope) works properly with all combinations of
203 machines, compilers, `char' and `unsigned char' argument types.
204 (Per Bothner suggested the basic approach.) */
205#undef SIGN_EXTEND_CHAR
206#if __STDC__
207#define SIGN_EXTEND_CHAR(c) ((signed char) (c))
208#else /* not __STDC__ */
209/* As in Harbison and Steele. */
210#define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
211#endif
212\f
213/* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we
214 use `alloca' instead of `malloc'. This is because using malloc in
215 re_search* or re_match* could cause memory leaks when C-g is used in
216 Emacs; also, malloc is slower and causes storage fragmentation. On
217 the other hand, malloc is more portable, and easier to debug.
218
219 Because we sometimes use alloca, some routines have to be macros,
220 not functions -- `alloca'-allocated space disappears at the end of the
221 function it is called in. */
222
223#ifdef REGEX_MALLOC
224
225#define REGEX_ALLOCATE malloc
226#define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
227#define REGEX_FREE free
228
229#else /* not REGEX_MALLOC */
230
231/* Emacs already defines alloca, sometimes. */
232#ifndef alloca
233
234/* Make alloca work the best possible way. */
235#ifdef __GNUC__
236#define alloca __builtin_alloca
237#else /* not __GNUC__ */
238#if HAVE_ALLOCA_H
239#include <alloca.h>
240#else /* not __GNUC__ or HAVE_ALLOCA_H */
f3c4387f 241#if 0 /* It is a bad idea to declare alloca. We always cast the result. */
fa9a63c5
RM
242#ifndef _AIX /* Already did AIX, up at the top. */
243char *alloca ();
244#endif /* not _AIX */
f3c4387f 245#endif
fa9a63c5
RM
246#endif /* not HAVE_ALLOCA_H */
247#endif /* not __GNUC__ */
248
249#endif /* not alloca */
250
251#define REGEX_ALLOCATE alloca
252
253/* Assumes a `char *destination' variable. */
254#define REGEX_REALLOCATE(source, osize, nsize) \
255 (destination = (char *) alloca (nsize), \
256 bcopy (source, destination, osize), \
257 destination)
258
259/* No need to do anything to free, after alloca. */
c2e1680a 260#define REGEX_FREE(arg) ((void)0) /* Do nothing! But inhibit gcc warning. */
fa9a63c5
RM
261
262#endif /* not REGEX_MALLOC */
263
264/* Define how to allocate the failure stack. */
265
33487cc8 266#if defined (REL_ALLOC) && defined (REGEX_MALLOC)
4297555e 267
fa9a63c5
RM
268#define REGEX_ALLOCATE_STACK(size) \
269 r_alloc (&failure_stack_ptr, (size))
270#define REGEX_REALLOCATE_STACK(source, osize, nsize) \
271 r_re_alloc (&failure_stack_ptr, (nsize))
272#define REGEX_FREE_STACK(ptr) \
273 r_alloc_free (&failure_stack_ptr)
274
4297555e 275#else /* not using relocating allocator */
fa9a63c5
RM
276
277#ifdef REGEX_MALLOC
278
279#define REGEX_ALLOCATE_STACK malloc
280#define REGEX_REALLOCATE_STACK(source, osize, nsize) realloc (source, nsize)
281#define REGEX_FREE_STACK free
282
283#else /* not REGEX_MALLOC */
284
285#define REGEX_ALLOCATE_STACK alloca
286
287#define REGEX_REALLOCATE_STACK(source, osize, nsize) \
288 REGEX_REALLOCATE (source, osize, nsize)
289/* No need to explicitly free anything. */
290#define REGEX_FREE_STACK(arg)
291
292#endif /* not REGEX_MALLOC */
4297555e 293#endif /* not using relocating allocator */
fa9a63c5
RM
294
295
296/* True if `size1' is non-NULL and PTR is pointing anywhere inside
297 `string1' or just past its end. This works if PTR is NULL, which is
298 a good thing. */
299#define FIRST_STRING_P(ptr) \
300 (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
301
302/* (Re)Allocate N items of type T using malloc, or fail. */
303#define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
304#define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
305#define RETALLOC_IF(addr, n, t) \
306 if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t)
307#define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
308
309#define BYTEWIDTH 8 /* In bits. */
310
311#define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
312
313#undef MAX
314#undef MIN
315#define MAX(a, b) ((a) > (b) ? (a) : (b))
316#define MIN(a, b) ((a) < (b) ? (a) : (b))
317
318typedef char boolean;
319#define false 0
320#define true 1
321
322static int re_match_2_internal ();
323\f
324/* These are the command codes that appear in compiled regular
325 expressions. Some opcodes are followed by argument bytes. A
326 command code can specify any interpretation whatsoever for its
327 arguments. Zero bytes may appear in the compiled regular expression. */
328
329typedef enum
330{
331 no_op = 0,
332
333 /* Succeed right away--no more backtracking. */
334 succeed,
335
336 /* Followed by one byte giving n, then by n literal bytes. */
337 exactn,
338
339 /* Matches any (more or less) character. */
340 anychar,
341
342 /* Matches any one char belonging to specified set. First
343 following byte is number of bitmap bytes. Then come bytes
344 for a bitmap saying which chars are in. Bits in each byte
345 are ordered low-bit-first. A character is in the set if its
346 bit is 1. A character too large to have a bit in the map is
347 automatically not in the set. */
348 charset,
349
350 /* Same parameters as charset, but match any character that is
351 not one of those specified. */
352 charset_not,
353
354 /* Start remembering the text that is matched, for storing in a
355 register. Followed by one byte with the register number, in
356 the range 0 to one less than the pattern buffer's re_nsub
357 field. Then followed by one byte with the number of groups
358 inner to this one. (This last has to be part of the
359 start_memory only because we need it in the on_failure_jump
360 of re_match_2.) */
361 start_memory,
362
363 /* Stop remembering the text that is matched and store it in a
364 memory register. Followed by one byte with the register
365 number, in the range 0 to one less than `re_nsub' in the
366 pattern buffer, and one byte with the number of inner groups,
367 just like `start_memory'. (We need the number of inner
368 groups here because we don't have any easy way of finding the
369 corresponding start_memory when we're at a stop_memory.) */
370 stop_memory,
371
372 /* Match a duplicate of something remembered. Followed by one
373 byte containing the register number. */
374 duplicate,
375
376 /* Fail unless at beginning of line. */
377 begline,
378
379 /* Fail unless at end of line. */
380 endline,
381
382 /* Succeeds if at beginning of buffer (if emacs) or at beginning
383 of string to be matched (if not). */
384 begbuf,
385
386 /* Analogously, for end of buffer/string. */
387 endbuf,
388
389 /* Followed by two byte relative address to which to jump. */
390 jump,
391
392 /* Same as jump, but marks the end of an alternative. */
393 jump_past_alt,
394
395 /* Followed by two-byte relative address of place to resume at
396 in case of failure. */
397 on_failure_jump,
398
399 /* Like on_failure_jump, but pushes a placeholder instead of the
400 current string position when executed. */
401 on_failure_keep_string_jump,
402
403 /* Throw away latest failure point and then jump to following
404 two-byte relative address. */
405 pop_failure_jump,
406
407 /* Change to pop_failure_jump if know won't have to backtrack to
408 match; otherwise change to jump. This is used to jump
409 back to the beginning of a repeat. If what follows this jump
410 clearly won't match what the repeat does, such that we can be
411 sure that there is no use backtracking out of repetitions
412 already matched, then we change it to a pop_failure_jump.
413 Followed by two-byte address. */
414 maybe_pop_jump,
415
416 /* Jump to following two-byte address, and push a dummy failure
417 point. This failure point will be thrown away if an attempt
418 is made to use it for a failure. A `+' construct makes this
419 before the first repeat. Also used as an intermediary kind
420 of jump when compiling an alternative. */
421 dummy_failure_jump,
422
423 /* Push a dummy failure point and continue. Used at the end of
424 alternatives. */
425 push_dummy_failure,
426
427 /* Followed by two-byte relative address and two-byte number n.
428 After matching N times, jump to the address upon failure. */
429 succeed_n,
430
431 /* Followed by two-byte relative address, and two-byte number n.
432 Jump to the address N times, then fail. */
433 jump_n,
434
435 /* Set the following two-byte relative address to the
436 subsequent two-byte number. The address *includes* the two
437 bytes of number. */
438 set_number_at,
439
440 wordchar, /* Matches any word-constituent character. */
441 notwordchar, /* Matches any char that is not a word-constituent. */
442
443 wordbeg, /* Succeeds if at word beginning. */
444 wordend, /* Succeeds if at word end. */
445
446 wordbound, /* Succeeds if at a word boundary. */
447 notwordbound /* Succeeds if not at a word boundary. */
448
449#ifdef emacs
450 ,before_dot, /* Succeeds if before point. */
451 at_dot, /* Succeeds if at point. */
452 after_dot, /* Succeeds if after point. */
453
454 /* Matches any character whose syntax is specified. Followed by
455 a byte which contains a syntax code, e.g., Sword. */
456 syntaxspec,
457
458 /* Matches any character whose syntax is not that specified. */
459 notsyntaxspec
460#endif /* emacs */
461} re_opcode_t;
462\f
463/* Common operations on the compiled pattern. */
464
465/* Store NUMBER in two contiguous bytes starting at DESTINATION. */
466
467#define STORE_NUMBER(destination, number) \
468 do { \
469 (destination)[0] = (number) & 0377; \
470 (destination)[1] = (number) >> 8; \
471 } while (0)
472
473/* Same as STORE_NUMBER, except increment DESTINATION to
474 the byte after where the number is stored. Therefore, DESTINATION
475 must be an lvalue. */
476
477#define STORE_NUMBER_AND_INCR(destination, number) \
478 do { \
479 STORE_NUMBER (destination, number); \
480 (destination) += 2; \
481 } while (0)
482
483/* Put into DESTINATION a number stored in two contiguous bytes starting
484 at SOURCE. */
485
486#define EXTRACT_NUMBER(destination, source) \
487 do { \
488 (destination) = *(source) & 0377; \
489 (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8; \
490 } while (0)
491
492#ifdef DEBUG
493static void
494extract_number (dest, source)
495 int *dest;
496 unsigned char *source;
497{
498 int temp = SIGN_EXTEND_CHAR (*(source + 1));
499 *dest = *source & 0377;
500 *dest += temp << 8;
501}
502
503#ifndef EXTRACT_MACROS /* To debug the macros. */
504#undef EXTRACT_NUMBER
505#define EXTRACT_NUMBER(dest, src) extract_number (&dest, src)
506#endif /* not EXTRACT_MACROS */
507
508#endif /* DEBUG */
509
510/* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
511 SOURCE must be an lvalue. */
512
513#define EXTRACT_NUMBER_AND_INCR(destination, source) \
514 do { \
515 EXTRACT_NUMBER (destination, source); \
516 (source) += 2; \
517 } while (0)
518
519#ifdef DEBUG
520static void
521extract_number_and_incr (destination, source)
522 int *destination;
523 unsigned char **source;
524{
525 extract_number (destination, *source);
526 *source += 2;
527}
528
529#ifndef EXTRACT_MACROS
530#undef EXTRACT_NUMBER_AND_INCR
531#define EXTRACT_NUMBER_AND_INCR(dest, src) \
532 extract_number_and_incr (&dest, &src)
533#endif /* not EXTRACT_MACROS */
534
535#endif /* DEBUG */
536\f
537/* If DEBUG is defined, Regex prints many voluminous messages about what
538 it is doing (if the variable `debug' is nonzero). If linked with the
539 main program in `iregex.c', you can enter patterns and strings
540 interactively. And if linked with the main program in `main.c' and
541 the other test files, you can run the already-written tests. */
542
543#ifdef DEBUG
544
545/* We use standard I/O for debugging. */
546#include <stdio.h>
547
548/* It is useful to test things that ``must'' be true when debugging. */
549#include <assert.h>
550
551static int debug = 0;
552
553#define DEBUG_STATEMENT(e) e
554#define DEBUG_PRINT1(x) if (debug) printf (x)
555#define DEBUG_PRINT2(x1, x2) if (debug) printf (x1, x2)
556#define DEBUG_PRINT3(x1, x2, x3) if (debug) printf (x1, x2, x3)
557#define DEBUG_PRINT4(x1, x2, x3, x4) if (debug) printf (x1, x2, x3, x4)
558#define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \
559 if (debug) print_partial_compiled_pattern (s, e)
560#define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \
561 if (debug) print_double_string (w, s1, sz1, s2, sz2)
562
563
564/* Print the fastmap in human-readable form. */
565
566void
567print_fastmap (fastmap)
568 char *fastmap;
569{
570 unsigned was_a_range = 0;
571 unsigned i = 0;
572
573 while (i < (1 << BYTEWIDTH))
574 {
575 if (fastmap[i++])
576 {
577 was_a_range = 0;
578 putchar (i - 1);
579 while (i < (1 << BYTEWIDTH) && fastmap[i])
580 {
581 was_a_range = 1;
582 i++;
583 }
584 if (was_a_range)
585 {
586 printf ("-");
587 putchar (i - 1);
588 }
589 }
590 }
591 putchar ('\n');
592}
593
594
595/* Print a compiled pattern string in human-readable form, starting at
596 the START pointer into it and ending just before the pointer END. */
597
598void
599print_partial_compiled_pattern (start, end)
600 unsigned char *start;
601 unsigned char *end;
602{
603 int mcnt, mcnt2;
604 unsigned char *p = start;
605 unsigned char *pend = end;
606
607 if (start == NULL)
608 {
609 printf ("(null)\n");
610 return;
611 }
612
613 /* Loop over pattern commands. */
614 while (p < pend)
615 {
616 printf ("%d:\t", p - start);
617
618 switch ((re_opcode_t) *p++)
619 {
620 case no_op:
621 printf ("/no_op");
622 break;
623
624 case exactn:
625 mcnt = *p++;
626 printf ("/exactn/%d", mcnt);
627 do
628 {
629 putchar ('/');
630 putchar (*p++);
631 }
632 while (--mcnt);
633 break;
634
635 case start_memory:
636 mcnt = *p++;
637 printf ("/start_memory/%d/%d", mcnt, *p++);
638 break;
639
640 case stop_memory:
641 mcnt = *p++;
642 printf ("/stop_memory/%d/%d", mcnt, *p++);
643 break;
644
645 case duplicate:
646 printf ("/duplicate/%d", *p++);
647 break;
648
649 case anychar:
650 printf ("/anychar");
651 break;
652
653 case charset:
654 case charset_not:
655 {
656 register int c, last = -100;
657 register int in_range = 0;
658
659 printf ("/charset [%s",
660 (re_opcode_t) *(p - 1) == charset_not ? "^" : "");
661
662 assert (p + *p < pend);
663
664 for (c = 0; c < 256; c++)
665 if (c / 8 < *p
666 && (p[1 + (c/8)] & (1 << (c % 8))))
667 {
668 /* Are we starting a range? */
669 if (last + 1 == c && ! in_range)
670 {
671 putchar ('-');
672 in_range = 1;
673 }
674 /* Have we broken a range? */
675 else if (last + 1 != c && in_range)
676 {
677 putchar (last);
678 in_range = 0;
679 }
680
681 if (! in_range)
682 putchar (c);
683
684 last = c;
685 }
686
687 if (in_range)
688 putchar (last);
689
690 putchar (']');
691
692 p += 1 + *p;
693 }
694 break;
695
696 case begline:
697 printf ("/begline");
698 break;
699
700 case endline:
701 printf ("/endline");
702 break;
703
704 case on_failure_jump:
705 extract_number_and_incr (&mcnt, &p);
706 printf ("/on_failure_jump to %d", p + mcnt - start);
707 break;
708
709 case on_failure_keep_string_jump:
710 extract_number_and_incr (&mcnt, &p);
711 printf ("/on_failure_keep_string_jump to %d", p + mcnt - start);
712 break;
713
714 case dummy_failure_jump:
715 extract_number_and_incr (&mcnt, &p);
716 printf ("/dummy_failure_jump to %d", p + mcnt - start);
717 break;
718
719 case push_dummy_failure:
720 printf ("/push_dummy_failure");
721 break;
722
723 case maybe_pop_jump:
724 extract_number_and_incr (&mcnt, &p);
725 printf ("/maybe_pop_jump to %d", p + mcnt - start);
726 break;
727
728 case pop_failure_jump:
729 extract_number_and_incr (&mcnt, &p);
730 printf ("/pop_failure_jump to %d", p + mcnt - start);
731 break;
732
733 case jump_past_alt:
734 extract_number_and_incr (&mcnt, &p);
735 printf ("/jump_past_alt to %d", p + mcnt - start);
736 break;
737
738 case jump:
739 extract_number_and_incr (&mcnt, &p);
740 printf ("/jump to %d", p + mcnt - start);
741 break;
742
743 case succeed_n:
744 extract_number_and_incr (&mcnt, &p);
745 extract_number_and_incr (&mcnt2, &p);
746 printf ("/succeed_n to %d, %d times", p + mcnt - start, mcnt2);
747 break;
748
749 case jump_n:
750 extract_number_and_incr (&mcnt, &p);
751 extract_number_and_incr (&mcnt2, &p);
752 printf ("/jump_n to %d, %d times", p + mcnt - start, mcnt2);
753 break;
754
755 case set_number_at:
756 extract_number_and_incr (&mcnt, &p);
757 extract_number_and_incr (&mcnt2, &p);
758 printf ("/set_number_at location %d to %d", p + mcnt - start, mcnt2);
759 break;
760
761 case wordbound:
762 printf ("/wordbound");
763 break;
764
765 case notwordbound:
766 printf ("/notwordbound");
767 break;
768
769 case wordbeg:
770 printf ("/wordbeg");
771 break;
772
773 case wordend:
774 printf ("/wordend");
775
776#ifdef emacs
777 case before_dot:
778 printf ("/before_dot");
779 break;
780
781 case at_dot:
782 printf ("/at_dot");
783 break;
784
785 case after_dot:
786 printf ("/after_dot");
787 break;
788
789 case syntaxspec:
790 printf ("/syntaxspec");
791 mcnt = *p++;
792 printf ("/%d", mcnt);
793 break;
794
795 case notsyntaxspec:
796 printf ("/notsyntaxspec");
797 mcnt = *p++;
798 printf ("/%d", mcnt);
799 break;
800#endif /* emacs */
801
802 case wordchar:
803 printf ("/wordchar");
804 break;
805
806 case notwordchar:
807 printf ("/notwordchar");
808 break;
809
810 case begbuf:
811 printf ("/begbuf");
812 break;
813
814 case endbuf:
815 printf ("/endbuf");
816 break;
817
818 default:
819 printf ("?%d", *(p-1));
820 }
821
822 putchar ('\n');
823 }
824
825 printf ("%d:\tend of pattern.\n", p - start);
826}
827
828
829void
830print_compiled_pattern (bufp)
831 struct re_pattern_buffer *bufp;
832{
833 unsigned char *buffer = bufp->buffer;
834
835 print_partial_compiled_pattern (buffer, buffer + bufp->used);
836 printf ("%d bytes used/%d bytes allocated.\n", bufp->used, bufp->allocated);
837
838 if (bufp->fastmap_accurate && bufp->fastmap)
839 {
840 printf ("fastmap: ");
841 print_fastmap (bufp->fastmap);
842 }
843
844 printf ("re_nsub: %d\t", bufp->re_nsub);
845 printf ("regs_alloc: %d\t", bufp->regs_allocated);
846 printf ("can_be_null: %d\t", bufp->can_be_null);
847 printf ("newline_anchor: %d\n", bufp->newline_anchor);
848 printf ("no_sub: %d\t", bufp->no_sub);
849 printf ("not_bol: %d\t", bufp->not_bol);
850 printf ("not_eol: %d\t", bufp->not_eol);
851 printf ("syntax: %d\n", bufp->syntax);
852 /* Perhaps we should print the translate table? */
853}
854
855
856void
857print_double_string (where, string1, size1, string2, size2)
858 const char *where;
859 const char *string1;
860 const char *string2;
861 int size1;
862 int size2;
863{
864 unsigned this_char;
865
866 if (where == NULL)
867 printf ("(null)");
868 else
869 {
870 if (FIRST_STRING_P (where))
871 {
872 for (this_char = where - string1; this_char < size1; this_char++)
873 putchar (string1[this_char]);
874
875 where = string2;
876 }
877
878 for (this_char = where - string2; this_char < size2; this_char++)
879 putchar (string2[this_char]);
880 }
881}
882
883#else /* not DEBUG */
884
885#undef assert
886#define assert(e)
887
888#define DEBUG_STATEMENT(e)
889#define DEBUG_PRINT1(x)
890#define DEBUG_PRINT2(x1, x2)
891#define DEBUG_PRINT3(x1, x2, x3)
892#define DEBUG_PRINT4(x1, x2, x3, x4)
893#define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
894#define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
895
896#endif /* not DEBUG */
897\f
898/* Set by `re_set_syntax' to the current regexp syntax to recognize. Can
899 also be assigned to arbitrarily: each pattern buffer stores its own
900 syntax, so it can be changed between regex compilations. */
901/* This has no initializer because initialized variables in Emacs
902 become read-only after dumping. */
903reg_syntax_t re_syntax_options;
904
905
906/* Specify the precise syntax of regexps for compilation. This provides
907 for compatibility for various utilities which historically have
908 different, incompatible syntaxes.
909
910 The argument SYNTAX is a bit mask comprised of the various bits
911 defined in regex.h. We return the old syntax. */
912
913reg_syntax_t
914re_set_syntax (syntax)
915 reg_syntax_t syntax;
916{
917 reg_syntax_t ret = re_syntax_options;
918
919 re_syntax_options = syntax;
920 return ret;
921}
922\f
923/* This table gives an error message for each of the error codes listed
924 in regex.h. Obviously the order here has to be same as there.
925 POSIX doesn't require that we do anything for REG_NOERROR,
926 but why not be nice? */
927
928static const char *re_error_msgid[] =
929 { "Success", /* REG_NOERROR */
930 "No match", /* REG_NOMATCH */
931 "Invalid regular expression", /* REG_BADPAT */
932 "Invalid collation character", /* REG_ECOLLATE */
933 "Invalid character class name", /* REG_ECTYPE */
934 "Trailing backslash", /* REG_EESCAPE */
935 "Invalid back reference", /* REG_ESUBREG */
936 "Unmatched [ or [^", /* REG_EBRACK */
937 "Unmatched ( or \\(", /* REG_EPAREN */
938 "Unmatched \\{", /* REG_EBRACE */
939 "Invalid content of \\{\\}", /* REG_BADBR */
940 "Invalid range end", /* REG_ERANGE */
941 "Memory exhausted", /* REG_ESPACE */
942 "Invalid preceding regular expression", /* REG_BADRPT */
943 "Premature end of regular expression", /* REG_EEND */
944 "Regular expression too big", /* REG_ESIZE */
945 "Unmatched ) or \\)", /* REG_ERPAREN */
946 };
947\f
948/* Avoiding alloca during matching, to placate r_alloc. */
949
950/* Define MATCH_MAY_ALLOCATE unless we need to make sure that the
951 searching and matching functions should not call alloca. On some
952 systems, alloca is implemented in terms of malloc, and if we're
953 using the relocating allocator routines, then malloc could cause a
954 relocation, which might (if the strings being searched are in the
955 ralloc heap) shift the data out from underneath the regexp
956 routines.
957
958 Here's another reason to avoid allocation: Emacs
959 processes input from X in a signal handler; processing X input may
960 call malloc; if input arrives while a matching routine is calling
961 malloc, then we're scrod. But Emacs can't just block input while
962 calling matching routines; then we don't notice interrupts when
963 they come in. So, Emacs blocks input around all regexp calls
964 except the matching calls, which it leaves unprotected, in the
965 faith that they will not malloc. */
966
967/* Normally, this is fine. */
968#define MATCH_MAY_ALLOCATE
969
970/* When using GNU C, we are not REALLY using the C alloca, no matter
971 what config.h may say. So don't take precautions for it. */
972#ifdef __GNUC__
973#undef C_ALLOCA
974#endif
975
976/* The match routines may not allocate if (1) they would do it with malloc
977 and (2) it's not safe for them to use malloc.
978 Note that if REL_ALLOC is defined, matching would not use malloc for the
979 failure stack, but we would still use it for the register vectors;
980 so REL_ALLOC should not affect this. */
981#if (defined (C_ALLOCA) || defined (REGEX_MALLOC)) && defined (emacs)
982#undef MATCH_MAY_ALLOCATE
983#endif
984
985\f
986/* Failure stack declarations and macros; both re_compile_fastmap and
987 re_match_2 use a failure stack. These have to be macros because of
988 REGEX_ALLOCATE_STACK. */
989
990
991/* Number of failure points for which to initially allocate space
992 when matching. If this number is exceeded, we allocate more
993 space, so it is not a hard limit. */
994#ifndef INIT_FAILURE_ALLOC
995#define INIT_FAILURE_ALLOC 5
996#endif
997
998/* Roughly the maximum number of failure points on the stack. Would be
999 exactly that if always used MAX_FAILURE_SPACE each time we failed.
1000 This is a variable only so users of regex can assign to it; we never
1001 change it ourselves. */
1002#if defined (MATCH_MAY_ALLOCATE)
68d96f02 1003int re_max_failures = 20000;
fa9a63c5
RM
1004#else
1005int re_max_failures = 2000;
1006#endif
1007
1008union fail_stack_elt
1009{
1010 unsigned char *pointer;
1011 int integer;
1012};
1013
1014typedef union fail_stack_elt fail_stack_elt_t;
1015
1016typedef struct
1017{
1018 fail_stack_elt_t *stack;
1019 unsigned size;
1020 unsigned avail; /* Offset of next open position. */
1021} fail_stack_type;
1022
1023#define FAIL_STACK_EMPTY() (fail_stack.avail == 0)
1024#define FAIL_STACK_PTR_EMPTY() (fail_stack_ptr->avail == 0)
1025#define FAIL_STACK_FULL() (fail_stack.avail == fail_stack.size)
1026
1027
1028/* Define macros to initialize and free the failure stack.
1029 Do `return -2' if the alloc fails. */
1030
1031#ifdef MATCH_MAY_ALLOCATE
1032#define INIT_FAIL_STACK() \
1033 do { \
1034 fail_stack.stack = (fail_stack_elt_t *) \
1035 REGEX_ALLOCATE_STACK (INIT_FAILURE_ALLOC * sizeof (fail_stack_elt_t)); \
1036 \
1037 if (fail_stack.stack == NULL) \
1038 return -2; \
1039 \
1040 fail_stack.size = INIT_FAILURE_ALLOC; \
1041 fail_stack.avail = 0; \
1042 } while (0)
1043
1044#define RESET_FAIL_STACK() REGEX_FREE_STACK (fail_stack.stack)
1045#else
1046#define INIT_FAIL_STACK() \
1047 do { \
1048 fail_stack.avail = 0; \
1049 } while (0)
1050
1051#define RESET_FAIL_STACK()
1052#endif
1053
1054
1055/* Double the size of FAIL_STACK, up to approximately `re_max_failures' items.
1056
1057 Return 1 if succeeds, and 0 if either ran out of memory
1058 allocating space for it or it was already too large.
1059
1060 REGEX_REALLOCATE_STACK requires `destination' be declared. */
1061
1062#define DOUBLE_FAIL_STACK(fail_stack) \
1063 ((fail_stack).size > re_max_failures * MAX_FAILURE_ITEMS \
1064 ? 0 \
1065 : ((fail_stack).stack = (fail_stack_elt_t *) \
1066 REGEX_REALLOCATE_STACK ((fail_stack).stack, \
1067 (fail_stack).size * sizeof (fail_stack_elt_t), \
1068 ((fail_stack).size << 1) * sizeof (fail_stack_elt_t)), \
1069 \
1070 (fail_stack).stack == NULL \
1071 ? 0 \
1072 : ((fail_stack).size <<= 1, \
1073 1)))
1074
1075
1076/* Push pointer POINTER on FAIL_STACK.
1077 Return 1 if was able to do so and 0 if ran out of memory allocating
1078 space to do so. */
1079#define PUSH_PATTERN_OP(POINTER, FAIL_STACK) \
1080 ((FAIL_STACK_FULL () \
1081 && !DOUBLE_FAIL_STACK (FAIL_STACK)) \
1082 ? 0 \
1083 : ((FAIL_STACK).stack[(FAIL_STACK).avail++].pointer = POINTER, \
1084 1))
1085
1086/* Push a pointer value onto the failure stack.
1087 Assumes the variable `fail_stack'. Probably should only
1088 be called from within `PUSH_FAILURE_POINT'. */
1089#define PUSH_FAILURE_POINTER(item) \
1090 fail_stack.stack[fail_stack.avail++].pointer = (unsigned char *) (item)
1091
1092/* This pushes an integer-valued item onto the failure stack.
1093 Assumes the variable `fail_stack'. Probably should only
1094 be called from within `PUSH_FAILURE_POINT'. */
1095#define PUSH_FAILURE_INT(item) \
1096 fail_stack.stack[fail_stack.avail++].integer = (item)
1097
1098/* Push a fail_stack_elt_t value onto the failure stack.
1099 Assumes the variable `fail_stack'. Probably should only
1100 be called from within `PUSH_FAILURE_POINT'. */
1101#define PUSH_FAILURE_ELT(item) \
1102 fail_stack.stack[fail_stack.avail++] = (item)
1103
1104/* These three POP... operations complement the three PUSH... operations.
1105 All assume that `fail_stack' is nonempty. */
1106#define POP_FAILURE_POINTER() fail_stack.stack[--fail_stack.avail].pointer
1107#define POP_FAILURE_INT() fail_stack.stack[--fail_stack.avail].integer
1108#define POP_FAILURE_ELT() fail_stack.stack[--fail_stack.avail]
1109
1110/* Used to omit pushing failure point id's when we're not debugging. */
1111#ifdef DEBUG
1112#define DEBUG_PUSH PUSH_FAILURE_INT
1113#define DEBUG_POP(item_addr) *(item_addr) = POP_FAILURE_INT ()
1114#else
1115#define DEBUG_PUSH(item)
1116#define DEBUG_POP(item_addr)
1117#endif
1118
1119
1120/* Push the information about the state we will need
1121 if we ever fail back to it.
1122
1123 Requires variables fail_stack, regstart, regend, reg_info, and
1124 num_regs be declared. DOUBLE_FAIL_STACK requires `destination' be
1125 declared.
1126
1127 Does `return FAILURE_CODE' if runs out of memory. */
1128
1129#define PUSH_FAILURE_POINT(pattern_place, string_place, failure_code) \
1130 do { \
1131 char *destination; \
1132 /* Must be int, so when we don't save any registers, the arithmetic \
1133 of 0 + -1 isn't done as unsigned. */ \
1134 int this_reg; \
1135 \
1136 DEBUG_STATEMENT (failure_id++); \
1137 DEBUG_STATEMENT (nfailure_points_pushed++); \
1138 DEBUG_PRINT2 ("\nPUSH_FAILURE_POINT #%u:\n", failure_id); \
1139 DEBUG_PRINT2 (" Before push, next avail: %d\n", (fail_stack).avail);\
1140 DEBUG_PRINT2 (" size: %d\n", (fail_stack).size);\
1141 \
1142 DEBUG_PRINT2 (" slots needed: %d\n", NUM_FAILURE_ITEMS); \
1143 DEBUG_PRINT2 (" available: %d\n", REMAINING_AVAIL_SLOTS); \
1144 \
1145 /* Ensure we have enough space allocated for what we will push. */ \
1146 while (REMAINING_AVAIL_SLOTS < NUM_FAILURE_ITEMS) \
1147 { \
1148 if (!DOUBLE_FAIL_STACK (fail_stack)) \
1149 return failure_code; \
1150 \
1151 DEBUG_PRINT2 ("\n Doubled stack; size now: %d\n", \
1152 (fail_stack).size); \
1153 DEBUG_PRINT2 (" slots available: %d\n", REMAINING_AVAIL_SLOTS);\
1154 } \
1155 \
1156 /* Push the info, starting with the registers. */ \
1157 DEBUG_PRINT1 ("\n"); \
1158 \
68d96f02 1159 if (1) \
faec11db
RS
1160 for (this_reg = lowest_active_reg; this_reg <= highest_active_reg; \
1161 this_reg++) \
1162 { \
1163 DEBUG_PRINT2 (" Pushing reg: %d\n", this_reg); \
1164 DEBUG_STATEMENT (num_regs_pushed++); \
fa9a63c5 1165 \
faec11db
RS
1166 DEBUG_PRINT2 (" start: 0x%x\n", regstart[this_reg]); \
1167 PUSH_FAILURE_POINTER (regstart[this_reg]); \
fa9a63c5 1168 \
faec11db
RS
1169 DEBUG_PRINT2 (" end: 0x%x\n", regend[this_reg]); \
1170 PUSH_FAILURE_POINTER (regend[this_reg]); \
1171 \
1172 DEBUG_PRINT2 (" info: 0x%x\n ", reg_info[this_reg]); \
1173 DEBUG_PRINT2 (" match_null=%d", \
1174 REG_MATCH_NULL_STRING_P (reg_info[this_reg])); \
1175 DEBUG_PRINT2 (" active=%d", IS_ACTIVE (reg_info[this_reg])); \
1176 DEBUG_PRINT2 (" matched_something=%d", \
1177 MATCHED_SOMETHING (reg_info[this_reg])); \
1178 DEBUG_PRINT2 (" ever_matched=%d", \
1179 EVER_MATCHED_SOMETHING (reg_info[this_reg])); \
1180 DEBUG_PRINT1 ("\n"); \
1181 PUSH_FAILURE_ELT (reg_info[this_reg].word); \
1182 } \
fa9a63c5
RM
1183 \
1184 DEBUG_PRINT2 (" Pushing low active reg: %d\n", lowest_active_reg);\
1185 PUSH_FAILURE_INT (lowest_active_reg); \
1186 \
1187 DEBUG_PRINT2 (" Pushing high active reg: %d\n", highest_active_reg);\
1188 PUSH_FAILURE_INT (highest_active_reg); \
1189 \
1190 DEBUG_PRINT2 (" Pushing pattern 0x%x: ", pattern_place); \
1191 DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern_place, pend); \
1192 PUSH_FAILURE_POINTER (pattern_place); \
1193 \
1194 DEBUG_PRINT2 (" Pushing string 0x%x: `", string_place); \
1195 DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, \
1196 size2); \
1197 DEBUG_PRINT1 ("'\n"); \
1198 PUSH_FAILURE_POINTER (string_place); \
1199 \
1200 DEBUG_PRINT2 (" Pushing failure id: %u\n", failure_id); \
1201 DEBUG_PUSH (failure_id); \
1202 } while (0)
1203
1204/* This is the number of items that are pushed and popped on the stack
1205 for each register. */
1206#define NUM_REG_ITEMS 3
1207
1208/* Individual items aside from the registers. */
1209#ifdef DEBUG
1210#define NUM_NONREG_ITEMS 5 /* Includes failure point id. */
1211#else
1212#define NUM_NONREG_ITEMS 4
1213#endif
1214
1215/* We push at most this many items on the stack. */
1216#define MAX_FAILURE_ITEMS ((num_regs - 1) * NUM_REG_ITEMS + NUM_NONREG_ITEMS)
1217
1218/* We actually push this many items. */
faec11db 1219#define NUM_FAILURE_ITEMS \
68d96f02 1220 (((0 \
faec11db
RS
1221 ? 0 : highest_active_reg - lowest_active_reg + 1) \
1222 * NUM_REG_ITEMS) \
1223 + NUM_NONREG_ITEMS)
fa9a63c5
RM
1224
1225/* How many items can still be added to the stack without overflowing it. */
1226#define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
1227
1228
1229/* Pops what PUSH_FAIL_STACK pushes.
1230
1231 We restore into the parameters, all of which should be lvalues:
1232 STR -- the saved data position.
1233 PAT -- the saved pattern position.
1234 LOW_REG, HIGH_REG -- the highest and lowest active registers.
1235 REGSTART, REGEND -- arrays of string positions.
1236 REG_INFO -- array of information about each subexpression.
1237
1238 Also assumes the variables `fail_stack' and (if debugging), `bufp',
1239 `pend', `string1', `size1', `string2', and `size2'. */
1240
1241#define POP_FAILURE_POINT(str, pat, low_reg, high_reg, regstart, regend, reg_info)\
1242{ \
1243 DEBUG_STATEMENT (fail_stack_elt_t failure_id;) \
1244 int this_reg; \
1245 const unsigned char *string_temp; \
1246 \
1247 assert (!FAIL_STACK_EMPTY ()); \
1248 \
1249 /* Remove failure points and point to how many regs pushed. */ \
1250 DEBUG_PRINT1 ("POP_FAILURE_POINT:\n"); \
1251 DEBUG_PRINT2 (" Before pop, next avail: %d\n", fail_stack.avail); \
1252 DEBUG_PRINT2 (" size: %d\n", fail_stack.size); \
1253 \
1254 assert (fail_stack.avail >= NUM_NONREG_ITEMS); \
1255 \
1256 DEBUG_POP (&failure_id); \
1257 DEBUG_PRINT2 (" Popping failure id: %u\n", failure_id); \
1258 \
1259 /* If the saved string location is NULL, it came from an \
1260 on_failure_keep_string_jump opcode, and we want to throw away the \
1261 saved NULL, thus retaining our current position in the string. */ \
1262 string_temp = POP_FAILURE_POINTER (); \
1263 if (string_temp != NULL) \
1264 str = (const char *) string_temp; \
1265 \
1266 DEBUG_PRINT2 (" Popping string 0x%x: `", str); \
1267 DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2); \
1268 DEBUG_PRINT1 ("'\n"); \
1269 \
1270 pat = (unsigned char *) POP_FAILURE_POINTER (); \
1271 DEBUG_PRINT2 (" Popping pattern 0x%x: ", pat); \
1272 DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend); \
1273 \
1274 /* Restore register info. */ \
1275 high_reg = (unsigned) POP_FAILURE_INT (); \
1276 DEBUG_PRINT2 (" Popping high active reg: %d\n", high_reg); \
1277 \
1278 low_reg = (unsigned) POP_FAILURE_INT (); \
1279 DEBUG_PRINT2 (" Popping low active reg: %d\n", low_reg); \
1280 \
68d96f02 1281 if (1) \
faec11db
RS
1282 for (this_reg = high_reg; this_reg >= low_reg; this_reg--) \
1283 { \
1284 DEBUG_PRINT2 (" Popping reg: %d\n", this_reg); \
fa9a63c5 1285 \
faec11db
RS
1286 reg_info[this_reg].word = POP_FAILURE_ELT (); \
1287 DEBUG_PRINT2 (" info: 0x%x\n", reg_info[this_reg]); \
fa9a63c5 1288 \
faec11db
RS
1289 regend[this_reg] = (const char *) POP_FAILURE_POINTER (); \
1290 DEBUG_PRINT2 (" end: 0x%x\n", regend[this_reg]); \
fa9a63c5 1291 \
faec11db
RS
1292 regstart[this_reg] = (const char *) POP_FAILURE_POINTER (); \
1293 DEBUG_PRINT2 (" start: 0x%x\n", regstart[this_reg]); \
1294 } \
6676cb1c
RS
1295 else \
1296 { \
1297 for (this_reg = highest_active_reg; this_reg > high_reg; this_reg--) \
1298 { \
4fcecab1 1299 reg_info[this_reg].word.integer = 0; \
6676cb1c
RS
1300 regend[this_reg] = 0; \
1301 regstart[this_reg] = 0; \
1302 } \
1303 highest_active_reg = high_reg; \
1304 } \
fa9a63c5
RM
1305 \
1306 set_regs_matched_done = 0; \
1307 DEBUG_STATEMENT (nfailure_points_popped++); \
1308} /* POP_FAILURE_POINT */
1309
1310
1311\f
1312/* Structure for per-register (a.k.a. per-group) information.
1313 Other register information, such as the
1314 starting and ending positions (which are addresses), and the list of
1315 inner groups (which is a bits list) are maintained in separate
1316 variables.
1317
1318 We are making a (strictly speaking) nonportable assumption here: that
1319 the compiler will pack our bit fields into something that fits into
1320 the type of `word', i.e., is something that fits into one item on the
1321 failure stack. */
1322
1323typedef union
1324{
1325 fail_stack_elt_t word;
1326 struct
1327 {
1328 /* This field is one if this group can match the empty string,
1329 zero if not. If not yet determined, `MATCH_NULL_UNSET_VALUE'. */
1330#define MATCH_NULL_UNSET_VALUE 3
1331 unsigned match_null_string_p : 2;
1332 unsigned is_active : 1;
1333 unsigned matched_something : 1;
1334 unsigned ever_matched_something : 1;
1335 } bits;
1336} register_info_type;
1337
1338#define REG_MATCH_NULL_STRING_P(R) ((R).bits.match_null_string_p)
1339#define IS_ACTIVE(R) ((R).bits.is_active)
1340#define MATCHED_SOMETHING(R) ((R).bits.matched_something)
1341#define EVER_MATCHED_SOMETHING(R) ((R).bits.ever_matched_something)
1342
1343
1344/* Call this when have matched a real character; it sets `matched' flags
1345 for the subexpressions which we are currently inside. Also records
1346 that those subexprs have matched. */
1347#define SET_REGS_MATCHED() \
1348 do \
1349 { \
1350 if (!set_regs_matched_done) \
1351 { \
1352 unsigned r; \
1353 set_regs_matched_done = 1; \
1354 for (r = lowest_active_reg; r <= highest_active_reg; r++) \
1355 { \
1356 MATCHED_SOMETHING (reg_info[r]) \
1357 = EVER_MATCHED_SOMETHING (reg_info[r]) \
1358 = 1; \
1359 } \
1360 } \
1361 } \
1362 while (0)
1363
1364/* Registers are set to a sentinel when they haven't yet matched. */
1365static char reg_unset_dummy;
1366#define REG_UNSET_VALUE (&reg_unset_dummy)
1367#define REG_UNSET(e) ((e) == REG_UNSET_VALUE)
1368\f
1369/* Subroutine declarations and macros for regex_compile. */
1370
1371static void store_op1 (), store_op2 ();
1372static void insert_op1 (), insert_op2 ();
1373static boolean at_begline_loc_p (), at_endline_loc_p ();
1374static boolean group_in_compile_stack ();
1375static reg_errcode_t compile_range ();
1376
1377/* Fetch the next character in the uncompiled pattern---translating it
1378 if necessary. Also cast from a signed character in the constant
1379 string passed to us by the user to an unsigned char that we can use
1380 as an array index (in, e.g., `translate'). */
6676cb1c 1381#ifndef PATFETCH
fa9a63c5
RM
1382#define PATFETCH(c) \
1383 do {if (p == pend) return REG_EEND; \
1384 c = (unsigned char) *p++; \
6676cb1c 1385 if (translate) c = (unsigned char) translate[c]; \
fa9a63c5 1386 } while (0)
6676cb1c 1387#endif
fa9a63c5
RM
1388
1389/* Fetch the next character in the uncompiled pattern, with no
1390 translation. */
1391#define PATFETCH_RAW(c) \
1392 do {if (p == pend) return REG_EEND; \
1393 c = (unsigned char) *p++; \
1394 } while (0)
1395
1396/* Go backwards one character in the pattern. */
1397#define PATUNFETCH p--
1398
1399
1400/* If `translate' is non-null, return translate[D], else just D. We
1401 cast the subscript to translate because some data is declared as
1402 `char *', to avoid warnings when a string constant is passed. But
1403 when we use a character as a subscript we must make it unsigned. */
6676cb1c
RS
1404#ifndef TRANSLATE
1405#define TRANSLATE(d) \
1406 (translate ? (char) translate[(unsigned char) (d)] : (d))
1407#endif
fa9a63c5
RM
1408
1409
1410/* Macros for outputting the compiled pattern into `buffer'. */
1411
1412/* If the buffer isn't allocated when it comes in, use this. */
1413#define INIT_BUF_SIZE 32
1414
1415/* Make sure we have at least N more bytes of space in buffer. */
1416#define GET_BUFFER_SPACE(n) \
1417 while (b - bufp->buffer + (n) > bufp->allocated) \
1418 EXTEND_BUFFER ()
1419
1420/* Make sure we have one more byte of buffer space and then add C to it. */
1421#define BUF_PUSH(c) \
1422 do { \
1423 GET_BUFFER_SPACE (1); \
1424 *b++ = (unsigned char) (c); \
1425 } while (0)
1426
1427
1428/* Ensure we have two more bytes of buffer space and then append C1 and C2. */
1429#define BUF_PUSH_2(c1, c2) \
1430 do { \
1431 GET_BUFFER_SPACE (2); \
1432 *b++ = (unsigned char) (c1); \
1433 *b++ = (unsigned char) (c2); \
1434 } while (0)
1435
1436
1437/* As with BUF_PUSH_2, except for three bytes. */
1438#define BUF_PUSH_3(c1, c2, c3) \
1439 do { \
1440 GET_BUFFER_SPACE (3); \
1441 *b++ = (unsigned char) (c1); \
1442 *b++ = (unsigned char) (c2); \
1443 *b++ = (unsigned char) (c3); \
1444 } while (0)
1445
1446
1447/* Store a jump with opcode OP at LOC to location TO. We store a
1448 relative address offset by the three bytes the jump itself occupies. */
1449#define STORE_JUMP(op, loc, to) \
1450 store_op1 (op, loc, (to) - (loc) - 3)
1451
1452/* Likewise, for a two-argument jump. */
1453#define STORE_JUMP2(op, loc, to, arg) \
1454 store_op2 (op, loc, (to) - (loc) - 3, arg)
1455
1456/* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */
1457#define INSERT_JUMP(op, loc, to) \
1458 insert_op1 (op, loc, (to) - (loc) - 3, b)
1459
1460/* Like `STORE_JUMP2', but for inserting. Assume `b' is the buffer end. */
1461#define INSERT_JUMP2(op, loc, to, arg) \
1462 insert_op2 (op, loc, (to) - (loc) - 3, arg, b)
1463
1464
1465/* This is not an arbitrary limit: the arguments which represent offsets
1466 into the pattern are two bytes long. So if 2^16 bytes turns out to
1467 be too small, many things would have to change. */
1468#define MAX_BUF_SIZE (1L << 16)
1469
1470
1471/* Extend the buffer by twice its current size via realloc and
1472 reset the pointers that pointed into the old block to point to the
1473 correct places in the new one. If extending the buffer results in it
1474 being larger than MAX_BUF_SIZE, then flag memory exhausted. */
1475#define EXTEND_BUFFER() \
1476 do { \
1477 unsigned char *old_buffer = bufp->buffer; \
1478 if (bufp->allocated == MAX_BUF_SIZE) \
1479 return REG_ESIZE; \
1480 bufp->allocated <<= 1; \
1481 if (bufp->allocated > MAX_BUF_SIZE) \
1482 bufp->allocated = MAX_BUF_SIZE; \
1483 bufp->buffer = (unsigned char *) realloc (bufp->buffer, bufp->allocated);\
1484 if (bufp->buffer == NULL) \
1485 return REG_ESPACE; \
1486 /* If the buffer moved, move all the pointers into it. */ \
1487 if (old_buffer != bufp->buffer) \
1488 { \
1489 b = (b - old_buffer) + bufp->buffer; \
1490 begalt = (begalt - old_buffer) + bufp->buffer; \
1491 if (fixup_alt_jump) \
1492 fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer;\
1493 if (laststart) \
1494 laststart = (laststart - old_buffer) + bufp->buffer; \
1495 if (pending_exact) \
1496 pending_exact = (pending_exact - old_buffer) + bufp->buffer; \
1497 } \
1498 } while (0)
1499
1500
1501/* Since we have one byte reserved for the register number argument to
1502 {start,stop}_memory, the maximum number of groups we can report
1503 things about is what fits in that byte. */
1504#define MAX_REGNUM 255
1505
1506/* But patterns can have more than `MAX_REGNUM' registers. We just
1507 ignore the excess. */
1508typedef unsigned regnum_t;
1509
1510
1511/* Macros for the compile stack. */
1512
1513/* Since offsets can go either forwards or backwards, this type needs to
1514 be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */
1515typedef int pattern_offset_t;
1516
1517typedef struct
1518{
1519 pattern_offset_t begalt_offset;
1520 pattern_offset_t fixup_alt_jump;
1521 pattern_offset_t inner_group_offset;
1522 pattern_offset_t laststart_offset;
1523 regnum_t regnum;
1524} compile_stack_elt_t;
1525
1526
1527typedef struct
1528{
1529 compile_stack_elt_t *stack;
1530 unsigned size;
1531 unsigned avail; /* Offset of next open position. */
1532} compile_stack_type;
1533
1534
1535#define INIT_COMPILE_STACK_SIZE 32
1536
1537#define COMPILE_STACK_EMPTY (compile_stack.avail == 0)
1538#define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size)
1539
1540/* The next available element. */
1541#define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
1542
1543
1544/* Set the bit for character C in a list. */
1545#define SET_LIST_BIT(c) \
1546 (b[((unsigned char) (c)) / BYTEWIDTH] \
1547 |= 1 << (((unsigned char) c) % BYTEWIDTH))
1548
1549
1550/* Get the next unsigned number in the uncompiled pattern. */
1551#define GET_UNSIGNED_NUMBER(num) \
1552 { if (p != pend) \
1553 { \
1554 PATFETCH (c); \
1555 while (ISDIGIT (c)) \
1556 { \
1557 if (num < 0) \
1558 num = 0; \
1559 num = num * 10 + c - '0'; \
1560 if (p == pend) \
1561 break; \
1562 PATFETCH (c); \
1563 } \
1564 } \
1565 }
1566
1567#define CHAR_CLASS_MAX_LENGTH 6 /* Namely, `xdigit'. */
1568
1569#define IS_CHAR_CLASS(string) \
1570 (STREQ (string, "alpha") || STREQ (string, "upper") \
1571 || STREQ (string, "lower") || STREQ (string, "digit") \
1572 || STREQ (string, "alnum") || STREQ (string, "xdigit") \
1573 || STREQ (string, "space") || STREQ (string, "print") \
1574 || STREQ (string, "punct") || STREQ (string, "graph") \
1575 || STREQ (string, "cntrl") || STREQ (string, "blank"))
1576\f
1577#ifndef MATCH_MAY_ALLOCATE
1578
1579/* If we cannot allocate large objects within re_match_2_internal,
1580 we make the fail stack and register vectors global.
1581 The fail stack, we grow to the maximum size when a regexp
1582 is compiled.
1583 The register vectors, we adjust in size each time we
1584 compile a regexp, according to the number of registers it needs. */
1585
1586static fail_stack_type fail_stack;
1587
1588/* Size with which the following vectors are currently allocated.
1589 That is so we can make them bigger as needed,
1590 but never make them smaller. */
1591static int regs_allocated_size;
1592
1593static const char ** regstart, ** regend;
1594static const char ** old_regstart, ** old_regend;
1595static const char **best_regstart, **best_regend;
1596static register_info_type *reg_info;
1597static const char **reg_dummy;
1598static register_info_type *reg_info_dummy;
1599
1600/* Make the register vectors big enough for NUM_REGS registers,
1601 but don't make them smaller. */
1602
1603static
1604regex_grow_registers (num_regs)
1605 int num_regs;
1606{
1607 if (num_regs > regs_allocated_size)
1608 {
1609 RETALLOC_IF (regstart, num_regs, const char *);
1610 RETALLOC_IF (regend, num_regs, const char *);
1611 RETALLOC_IF (old_regstart, num_regs, const char *);
1612 RETALLOC_IF (old_regend, num_regs, const char *);
1613 RETALLOC_IF (best_regstart, num_regs, const char *);
1614 RETALLOC_IF (best_regend, num_regs, const char *);
1615 RETALLOC_IF (reg_info, num_regs, register_info_type);
1616 RETALLOC_IF (reg_dummy, num_regs, const char *);
1617 RETALLOC_IF (reg_info_dummy, num_regs, register_info_type);
1618
1619 regs_allocated_size = num_regs;
1620 }
1621}
1622
1623#endif /* not MATCH_MAY_ALLOCATE */
1624\f
1625/* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
1626 Returns one of error codes defined in `regex.h', or zero for success.
1627
1628 Assumes the `allocated' (and perhaps `buffer') and `translate'
1629 fields are set in BUFP on entry.
1630
1631 If it succeeds, results are put in BUFP (if it returns an error, the
1632 contents of BUFP are undefined):
1633 `buffer' is the compiled pattern;
1634 `syntax' is set to SYNTAX;
1635 `used' is set to the length of the compiled pattern;
1636 `fastmap_accurate' is zero;
1637 `re_nsub' is the number of subexpressions in PATTERN;
1638 `not_bol' and `not_eol' are zero;
1639
1640 The `fastmap' and `newline_anchor' fields are neither
1641 examined nor set. */
1642
1643/* Return, freeing storage we allocated. */
1644#define FREE_STACK_RETURN(value) \
1645 return (free (compile_stack.stack), value)
1646
1647static reg_errcode_t
1648regex_compile (pattern, size, syntax, bufp)
1649 const char *pattern;
1650 int size;
1651 reg_syntax_t syntax;
1652 struct re_pattern_buffer *bufp;
1653{
1654 /* We fetch characters from PATTERN here. Even though PATTERN is
1655 `char *' (i.e., signed), we declare these variables as unsigned, so
1656 they can be reliably used as array indices. */
1657 register unsigned char c, c1;
1658
1659 /* A random temporary spot in PATTERN. */
1660 const char *p1;
1661
1662 /* Points to the end of the buffer, where we should append. */
1663 register unsigned char *b;
1664
1665 /* Keeps track of unclosed groups. */
1666 compile_stack_type compile_stack;
1667
1668 /* Points to the current (ending) position in the pattern. */
1669 const char *p = pattern;
1670 const char *pend = pattern + size;
1671
1672 /* How to translate the characters in the pattern. */
6676cb1c 1673 RE_TRANSLATE_TYPE translate = bufp->translate;
fa9a63c5
RM
1674
1675 /* Address of the count-byte of the most recently inserted `exactn'
1676 command. This makes it possible to tell if a new exact-match
1677 character can be added to that command or if the character requires
1678 a new `exactn' command. */
1679 unsigned char *pending_exact = 0;
1680
1681 /* Address of start of the most recently finished expression.
1682 This tells, e.g., postfix * where to find the start of its
1683 operand. Reset at the beginning of groups and alternatives. */
1684 unsigned char *laststart = 0;
1685
1686 /* Address of beginning of regexp, or inside of last group. */
1687 unsigned char *begalt;
1688
1689 /* Place in the uncompiled pattern (i.e., the {) to
1690 which to go back if the interval is invalid. */
1691 const char *beg_interval;
1692
1693 /* Address of the place where a forward jump should go to the end of
1694 the containing expression. Each alternative of an `or' -- except the
1695 last -- ends with a forward jump of this sort. */
1696 unsigned char *fixup_alt_jump = 0;
1697
1698 /* Counts open-groups as they are encountered. Remembered for the
1699 matching close-group on the compile stack, so the same register
1700 number is put in the stop_memory as the start_memory. */
1701 regnum_t regnum = 0;
1702
1703#ifdef DEBUG
1704 DEBUG_PRINT1 ("\nCompiling pattern: ");
1705 if (debug)
1706 {
1707 unsigned debug_count;
1708
1709 for (debug_count = 0; debug_count < size; debug_count++)
1710 putchar (pattern[debug_count]);
1711 putchar ('\n');
1712 }
1713#endif /* DEBUG */
1714
1715 /* Initialize the compile stack. */
1716 compile_stack.stack = TALLOC (INIT_COMPILE_STACK_SIZE, compile_stack_elt_t);
1717 if (compile_stack.stack == NULL)
1718 return REG_ESPACE;
1719
1720 compile_stack.size = INIT_COMPILE_STACK_SIZE;
1721 compile_stack.avail = 0;
1722
1723 /* Initialize the pattern buffer. */
1724 bufp->syntax = syntax;
1725 bufp->fastmap_accurate = 0;
1726 bufp->not_bol = bufp->not_eol = 0;
1727
1728 /* Set `used' to zero, so that if we return an error, the pattern
1729 printer (for debugging) will think there's no pattern. We reset it
1730 at the end. */
1731 bufp->used = 0;
1732
1733 /* Always count groups, whether or not bufp->no_sub is set. */
1734 bufp->re_nsub = 0;
1735
1736#if !defined (emacs) && !defined (SYNTAX_TABLE)
1737 /* Initialize the syntax table. */
1738 init_syntax_once ();
1739#endif
1740
1741 if (bufp->allocated == 0)
1742 {
1743 if (bufp->buffer)
1744 { /* If zero allocated, but buffer is non-null, try to realloc
1745 enough space. This loses if buffer's address is bogus, but
1746 that is the user's responsibility. */
1747 RETALLOC (bufp->buffer, INIT_BUF_SIZE, unsigned char);
1748 }
1749 else
1750 { /* Caller did not allocate a buffer. Do it for them. */
1751 bufp->buffer = TALLOC (INIT_BUF_SIZE, unsigned char);
1752 }
1753 if (!bufp->buffer) FREE_STACK_RETURN (REG_ESPACE);
1754
1755 bufp->allocated = INIT_BUF_SIZE;
1756 }
1757
1758 begalt = b = bufp->buffer;
1759
1760 /* Loop through the uncompiled pattern until we're at the end. */
1761 while (p != pend)
1762 {
1763 PATFETCH (c);
1764
1765 switch (c)
1766 {
1767 case '^':
1768 {
1769 if ( /* If at start of pattern, it's an operator. */
1770 p == pattern + 1
1771 /* If context independent, it's an operator. */
1772 || syntax & RE_CONTEXT_INDEP_ANCHORS
1773 /* Otherwise, depends on what's come before. */
1774 || at_begline_loc_p (pattern, p, syntax))
1775 BUF_PUSH (begline);
1776 else
1777 goto normal_char;
1778 }
1779 break;
1780
1781
1782 case '$':
1783 {
1784 if ( /* If at end of pattern, it's an operator. */
1785 p == pend
1786 /* If context independent, it's an operator. */
1787 || syntax & RE_CONTEXT_INDEP_ANCHORS
1788 /* Otherwise, depends on what's next. */
1789 || at_endline_loc_p (p, pend, syntax))
1790 BUF_PUSH (endline);
1791 else
1792 goto normal_char;
1793 }
1794 break;
1795
1796
1797 case '+':
1798 case '?':
1799 if ((syntax & RE_BK_PLUS_QM)
1800 || (syntax & RE_LIMITED_OPS))
1801 goto normal_char;
1802 handle_plus:
1803 case '*':
1804 /* If there is no previous pattern... */
1805 if (!laststart)
1806 {
1807 if (syntax & RE_CONTEXT_INVALID_OPS)
1808 FREE_STACK_RETURN (REG_BADRPT);
1809 else if (!(syntax & RE_CONTEXT_INDEP_OPS))
1810 goto normal_char;
1811 }
1812
1813 {
1814 /* Are we optimizing this jump? */
1815 boolean keep_string_p = false;
1816
1817 /* 1 means zero (many) matches is allowed. */
1818 char zero_times_ok = 0, many_times_ok = 0;
1819
1820 /* If there is a sequence of repetition chars, collapse it
1821 down to just one (the right one). We can't combine
1822 interval operators with these because of, e.g., `a{2}*',
1823 which should only match an even number of `a's. */
1824
1825 for (;;)
1826 {
1827 zero_times_ok |= c != '+';
1828 many_times_ok |= c != '?';
1829
1830 if (p == pend)
1831 break;
1832
1833 PATFETCH (c);
1834
1835 if (c == '*'
1836 || (!(syntax & RE_BK_PLUS_QM) && (c == '+' || c == '?')))
1837 ;
1838
1839 else if (syntax & RE_BK_PLUS_QM && c == '\\')
1840 {
1841 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
1842
1843 PATFETCH (c1);
1844 if (!(c1 == '+' || c1 == '?'))
1845 {
1846 PATUNFETCH;
1847 PATUNFETCH;
1848 break;
1849 }
1850
1851 c = c1;
1852 }
1853 else
1854 {
1855 PATUNFETCH;
1856 break;
1857 }
1858
1859 /* If we get here, we found another repeat character. */
1860 }
1861
1862 /* Star, etc. applied to an empty pattern is equivalent
1863 to an empty pattern. */
1864 if (!laststart)
1865 break;
1866
1867 /* Now we know whether or not zero matches is allowed
1868 and also whether or not two or more matches is allowed. */
1869 if (many_times_ok)
1870 { /* More than one repetition is allowed, so put in at the
1871 end a backward relative jump from `b' to before the next
1872 jump we're going to put in below (which jumps from
1873 laststart to after this jump).
1874
1875 But if we are at the `*' in the exact sequence `.*\n',
1876 insert an unconditional jump backwards to the .,
1877 instead of the beginning of the loop. This way we only
1878 push a failure point once, instead of every time
1879 through the loop. */
1880 assert (p - 1 > pattern);
1881
1882 /* Allocate the space for the jump. */
1883 GET_BUFFER_SPACE (3);
1884
1885 /* We know we are not at the first character of the pattern,
1886 because laststart was nonzero. And we've already
1887 incremented `p', by the way, to be the character after
1888 the `*'. Do we have to do something analogous here
1889 for null bytes, because of RE_DOT_NOT_NULL? */
1890 if (TRANSLATE (*(p - 2)) == TRANSLATE ('.')
1891 && zero_times_ok
1892 && p < pend && TRANSLATE (*p) == TRANSLATE ('\n')
1893 && !(syntax & RE_DOT_NEWLINE))
1894 { /* We have .*\n. */
1895 STORE_JUMP (jump, b, laststart);
1896 keep_string_p = true;
1897 }
1898 else
1899 /* Anything else. */
1900 STORE_JUMP (maybe_pop_jump, b, laststart - 3);
1901
1902 /* We've added more stuff to the buffer. */
1903 b += 3;
1904 }
1905
1906 /* On failure, jump from laststart to b + 3, which will be the
1907 end of the buffer after this jump is inserted. */
1908 GET_BUFFER_SPACE (3);
1909 INSERT_JUMP (keep_string_p ? on_failure_keep_string_jump
1910 : on_failure_jump,
1911 laststart, b + 3);
1912 pending_exact = 0;
1913 b += 3;
1914
1915 if (!zero_times_ok)
1916 {
1917 /* At least one repetition is required, so insert a
1918 `dummy_failure_jump' before the initial
1919 `on_failure_jump' instruction of the loop. This
1920 effects a skip over that instruction the first time
1921 we hit that loop. */
1922 GET_BUFFER_SPACE (3);
1923 INSERT_JUMP (dummy_failure_jump, laststart, laststart + 6);
1924 b += 3;
1925 }
1926 }
1927 break;
1928
1929
1930 case '.':
1931 laststart = b;
1932 BUF_PUSH (anychar);
1933 break;
1934
1935
1936 case '[':
1937 {
1938 boolean had_char_class = false;
1939
1940 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
1941
1942 /* Ensure that we have enough space to push a charset: the
1943 opcode, the length count, and the bitset; 34 bytes in all. */
1944 GET_BUFFER_SPACE (34);
1945
1946 laststart = b;
1947
1948 /* We test `*p == '^' twice, instead of using an if
1949 statement, so we only need one BUF_PUSH. */
1950 BUF_PUSH (*p == '^' ? charset_not : charset);
1951 if (*p == '^')
1952 p++;
1953
1954 /* Remember the first position in the bracket expression. */
1955 p1 = p;
1956
1957 /* Push the number of bytes in the bitmap. */
1958 BUF_PUSH ((1 << BYTEWIDTH) / BYTEWIDTH);
1959
1960 /* Clear the whole map. */
1961 bzero (b, (1 << BYTEWIDTH) / BYTEWIDTH);
1962
1963 /* charset_not matches newline according to a syntax bit. */
1964 if ((re_opcode_t) b[-2] == charset_not
1965 && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
1966 SET_LIST_BIT ('\n');
1967
1968 /* Read in characters and ranges, setting map bits. */
1969 for (;;)
1970 {
1971 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
1972
1973 PATFETCH (c);
1974
1975 /* \ might escape characters inside [...] and [^...]. */
1976 if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
1977 {
1978 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
1979
1980 PATFETCH (c1);
1981 SET_LIST_BIT (c1);
1982 continue;
1983 }
1984
1985 /* Could be the end of the bracket expression. If it's
1986 not (i.e., when the bracket expression is `[]' so
1987 far), the ']' character bit gets set way below. */
1988 if (c == ']' && p != p1 + 1)
1989 break;
1990
1991 /* Look ahead to see if it's a range when the last thing
1992 was a character class. */
1993 if (had_char_class && c == '-' && *p != ']')
1994 FREE_STACK_RETURN (REG_ERANGE);
1995
1996 /* Look ahead to see if it's a range when the last thing
1997 was a character: if this is a hyphen not at the
1998 beginning or the end of a list, then it's the range
1999 operator. */
2000 if (c == '-'
2001 && !(p - 2 >= pattern && p[-2] == '[')
2002 && !(p - 3 >= pattern && p[-3] == '[' && p[-2] == '^')
2003 && *p != ']')
2004 {
2005 reg_errcode_t ret
2006 = compile_range (&p, pend, translate, syntax, b);
2007 if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
2008 }
2009
2010 else if (p[0] == '-' && p[1] != ']')
2011 { /* This handles ranges made up of characters only. */
2012 reg_errcode_t ret;
2013
2014 /* Move past the `-'. */
2015 PATFETCH (c1);
2016
2017 ret = compile_range (&p, pend, translate, syntax, b);
2018 if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
2019 }
2020
2021 /* See if we're at the beginning of a possible character
2022 class. */
2023
2024 else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == ':')
2025 { /* Leave room for the null. */
2026 char str[CHAR_CLASS_MAX_LENGTH + 1];
2027
2028 PATFETCH (c);
2029 c1 = 0;
2030
2031 /* If pattern is `[[:'. */
2032 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2033
2034 for (;;)
2035 {
2036 PATFETCH (c);
2037 if (c == ':' || c == ']' || p == pend
2038 || c1 == CHAR_CLASS_MAX_LENGTH)
2039 break;
2040 str[c1++] = c;
2041 }
2042 str[c1] = '\0';
2043
2044 /* If isn't a word bracketed by `[:' and:`]':
2045 undo the ending character, the letters, and leave
2046 the leading `:' and `[' (but set bits for them). */
2047 if (c == ':' && *p == ']')
2048 {
2049 int ch;
2050 boolean is_alnum = STREQ (str, "alnum");
2051 boolean is_alpha = STREQ (str, "alpha");
2052 boolean is_blank = STREQ (str, "blank");
2053 boolean is_cntrl = STREQ (str, "cntrl");
2054 boolean is_digit = STREQ (str, "digit");
2055 boolean is_graph = STREQ (str, "graph");
2056 boolean is_lower = STREQ (str, "lower");
2057 boolean is_print = STREQ (str, "print");
2058 boolean is_punct = STREQ (str, "punct");
2059 boolean is_space = STREQ (str, "space");
2060 boolean is_upper = STREQ (str, "upper");
2061 boolean is_xdigit = STREQ (str, "xdigit");
2062
2063 if (!IS_CHAR_CLASS (str))
2064 FREE_STACK_RETURN (REG_ECTYPE);
2065
2066 /* Throw away the ] at the end of the character
2067 class. */
2068 PATFETCH (c);
2069
2070 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2071
2072 for (ch = 0; ch < 1 << BYTEWIDTH; ch++)
2073 {
2074 /* This was split into 3 if's to
2075 avoid an arbitrary limit in some compiler. */
2076 if ( (is_alnum && ISALNUM (ch))
2077 || (is_alpha && ISALPHA (ch))
2078 || (is_blank && ISBLANK (ch))
2079 || (is_cntrl && ISCNTRL (ch)))
2080 SET_LIST_BIT (ch);
2081 if ( (is_digit && ISDIGIT (ch))
2082 || (is_graph && ISGRAPH (ch))
2083 || (is_lower && ISLOWER (ch))
2084 || (is_print && ISPRINT (ch)))
2085 SET_LIST_BIT (ch);
2086 if ( (is_punct && ISPUNCT (ch))
2087 || (is_space && ISSPACE (ch))
2088 || (is_upper && ISUPPER (ch))
2089 || (is_xdigit && ISXDIGIT (ch)))
2090 SET_LIST_BIT (ch);
2091 }
2092 had_char_class = true;
2093 }
2094 else
2095 {
2096 c1++;
2097 while (c1--)
2098 PATUNFETCH;
2099 SET_LIST_BIT ('[');
2100 SET_LIST_BIT (':');
2101 had_char_class = false;
2102 }
2103 }
2104 else
2105 {
2106 had_char_class = false;
2107 SET_LIST_BIT (c);
2108 }
2109 }
2110
2111 /* Discard any (non)matching list bytes that are all 0 at the
2112 end of the map. Decrease the map-length byte too. */
2113 while ((int) b[-1] > 0 && b[b[-1] - 1] == 0)
2114 b[-1]--;
2115 b += b[-1];
2116 }
2117 break;
2118
2119
2120 case '(':
2121 if (syntax & RE_NO_BK_PARENS)
2122 goto handle_open;
2123 else
2124 goto normal_char;
2125
2126
2127 case ')':
2128 if (syntax & RE_NO_BK_PARENS)
2129 goto handle_close;
2130 else
2131 goto normal_char;
2132
2133
2134 case '\n':
2135 if (syntax & RE_NEWLINE_ALT)
2136 goto handle_alt;
2137 else
2138 goto normal_char;
2139
2140
2141 case '|':
2142 if (syntax & RE_NO_BK_VBAR)
2143 goto handle_alt;
2144 else
2145 goto normal_char;
2146
2147
2148 case '{':
2149 if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES)
2150 goto handle_interval;
2151 else
2152 goto normal_char;
2153
2154
2155 case '\\':
2156 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2157
2158 /* Do not translate the character after the \, so that we can
2159 distinguish, e.g., \B from \b, even if we normally would
2160 translate, e.g., B to b. */
2161 PATFETCH_RAW (c);
2162
2163 switch (c)
2164 {
2165 case '(':
2166 if (syntax & RE_NO_BK_PARENS)
2167 goto normal_backslash;
2168
2169 handle_open:
2170 bufp->re_nsub++;
2171 regnum++;
2172
2173 if (COMPILE_STACK_FULL)
2174 {
2175 RETALLOC (compile_stack.stack, compile_stack.size << 1,
2176 compile_stack_elt_t);
2177 if (compile_stack.stack == NULL) return REG_ESPACE;
2178
2179 compile_stack.size <<= 1;
2180 }
2181
2182 /* These are the values to restore when we hit end of this
2183 group. They are all relative offsets, so that if the
2184 whole pattern moves because of realloc, they will still
2185 be valid. */
2186 COMPILE_STACK_TOP.begalt_offset = begalt - bufp->buffer;
2187 COMPILE_STACK_TOP.fixup_alt_jump
2188 = fixup_alt_jump ? fixup_alt_jump - bufp->buffer + 1 : 0;
2189 COMPILE_STACK_TOP.laststart_offset = b - bufp->buffer;
2190 COMPILE_STACK_TOP.regnum = regnum;
2191
2192 /* We will eventually replace the 0 with the number of
2193 groups inner to this one. But do not push a
2194 start_memory for groups beyond the last one we can
2195 represent in the compiled pattern. */
2196 if (regnum <= MAX_REGNUM)
2197 {
2198 COMPILE_STACK_TOP.inner_group_offset = b - bufp->buffer + 2;
2199 BUF_PUSH_3 (start_memory, regnum, 0);
2200 }
2201
2202 compile_stack.avail++;
2203
2204 fixup_alt_jump = 0;
2205 laststart = 0;
2206 begalt = b;
2207 /* If we've reached MAX_REGNUM groups, then this open
2208 won't actually generate any code, so we'll have to
2209 clear pending_exact explicitly. */
2210 pending_exact = 0;
2211 break;
2212
2213
2214 case ')':
2215 if (syntax & RE_NO_BK_PARENS) goto normal_backslash;
2216
2217 if (COMPILE_STACK_EMPTY)
2218 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
2219 goto normal_backslash;
2220 else
2221 FREE_STACK_RETURN (REG_ERPAREN);
2222
2223 handle_close:
2224 if (fixup_alt_jump)
2225 { /* Push a dummy failure point at the end of the
2226 alternative for a possible future
2227 `pop_failure_jump' to pop. See comments at
2228 `push_dummy_failure' in `re_match_2'. */
2229 BUF_PUSH (push_dummy_failure);
2230
2231 /* We allocated space for this jump when we assigned
2232 to `fixup_alt_jump', in the `handle_alt' case below. */
2233 STORE_JUMP (jump_past_alt, fixup_alt_jump, b - 1);
2234 }
2235
2236 /* See similar code for backslashed left paren above. */
2237 if (COMPILE_STACK_EMPTY)
2238 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
2239 goto normal_char;
2240 else
2241 FREE_STACK_RETURN (REG_ERPAREN);
2242
2243 /* Since we just checked for an empty stack above, this
2244 ``can't happen''. */
2245 assert (compile_stack.avail != 0);
2246 {
2247 /* We don't just want to restore into `regnum', because
2248 later groups should continue to be numbered higher,
2249 as in `(ab)c(de)' -- the second group is #2. */
2250 regnum_t this_group_regnum;
2251
2252 compile_stack.avail--;
2253 begalt = bufp->buffer + COMPILE_STACK_TOP.begalt_offset;
2254 fixup_alt_jump
2255 = COMPILE_STACK_TOP.fixup_alt_jump
2256 ? bufp->buffer + COMPILE_STACK_TOP.fixup_alt_jump - 1
2257 : 0;
2258 laststart = bufp->buffer + COMPILE_STACK_TOP.laststart_offset;
2259 this_group_regnum = COMPILE_STACK_TOP.regnum;
2260 /* If we've reached MAX_REGNUM groups, then this open
2261 won't actually generate any code, so we'll have to
2262 clear pending_exact explicitly. */
2263 pending_exact = 0;
2264
2265 /* We're at the end of the group, so now we know how many
2266 groups were inside this one. */
2267 if (this_group_regnum <= MAX_REGNUM)
2268 {
2269 unsigned char *inner_group_loc
2270 = bufp->buffer + COMPILE_STACK_TOP.inner_group_offset;
2271
2272 *inner_group_loc = regnum - this_group_regnum;
2273 BUF_PUSH_3 (stop_memory, this_group_regnum,
2274 regnum - this_group_regnum);
2275 }
2276 }
2277 break;
2278
2279
2280 case '|': /* `\|'. */
2281 if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR)
2282 goto normal_backslash;
2283 handle_alt:
2284 if (syntax & RE_LIMITED_OPS)
2285 goto normal_char;
2286
2287 /* Insert before the previous alternative a jump which
2288 jumps to this alternative if the former fails. */
2289 GET_BUFFER_SPACE (3);
2290 INSERT_JUMP (on_failure_jump, begalt, b + 6);
2291 pending_exact = 0;
2292 b += 3;
2293
2294 /* The alternative before this one has a jump after it
2295 which gets executed if it gets matched. Adjust that
2296 jump so it will jump to this alternative's analogous
2297 jump (put in below, which in turn will jump to the next
2298 (if any) alternative's such jump, etc.). The last such
2299 jump jumps to the correct final destination. A picture:
2300 _____ _____
2301 | | | |
2302 | v | v
2303 a | b | c
2304
2305 If we are at `b', then fixup_alt_jump right now points to a
2306 three-byte space after `a'. We'll put in the jump, set
2307 fixup_alt_jump to right after `b', and leave behind three
2308 bytes which we'll fill in when we get to after `c'. */
2309
2310 if (fixup_alt_jump)
2311 STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
2312
2313 /* Mark and leave space for a jump after this alternative,
2314 to be filled in later either by next alternative or
2315 when know we're at the end of a series of alternatives. */
2316 fixup_alt_jump = b;
2317 GET_BUFFER_SPACE (3);
2318 b += 3;
2319
2320 laststart = 0;
2321 begalt = b;
2322 break;
2323
2324
2325 case '{':
2326 /* If \{ is a literal. */
2327 if (!(syntax & RE_INTERVALS)
2328 /* If we're at `\{' and it's not the open-interval
2329 operator. */
2330 || ((syntax & RE_INTERVALS) && (syntax & RE_NO_BK_BRACES))
2331 || (p - 2 == pattern && p == pend))
2332 goto normal_backslash;
2333
2334 handle_interval:
2335 {
2336 /* If got here, then the syntax allows intervals. */
2337
2338 /* At least (most) this many matches must be made. */
2339 int lower_bound = -1, upper_bound = -1;
2340
2341 beg_interval = p - 1;
2342
2343 if (p == pend)
2344 {
2345 if (syntax & RE_NO_BK_BRACES)
2346 goto unfetch_interval;
2347 else
2348 FREE_STACK_RETURN (REG_EBRACE);
2349 }
2350
2351 GET_UNSIGNED_NUMBER (lower_bound);
2352
2353 if (c == ',')
2354 {
2355 GET_UNSIGNED_NUMBER (upper_bound);
2356 if (upper_bound < 0) upper_bound = RE_DUP_MAX;
2357 }
2358 else
2359 /* Interval such as `{1}' => match exactly once. */
2360 upper_bound = lower_bound;
2361
2362 if (lower_bound < 0 || upper_bound > RE_DUP_MAX
2363 || lower_bound > upper_bound)
2364 {
2365 if (syntax & RE_NO_BK_BRACES)
2366 goto unfetch_interval;
2367 else
2368 FREE_STACK_RETURN (REG_BADBR);
2369 }
2370
2371 if (!(syntax & RE_NO_BK_BRACES))
2372 {
2373 if (c != '\\') FREE_STACK_RETURN (REG_EBRACE);
2374
2375 PATFETCH (c);
2376 }
2377
2378 if (c != '}')
2379 {
2380 if (syntax & RE_NO_BK_BRACES)
2381 goto unfetch_interval;
2382 else
2383 FREE_STACK_RETURN (REG_BADBR);
2384 }
2385
2386 /* We just parsed a valid interval. */
2387
2388 /* If it's invalid to have no preceding re. */
2389 if (!laststart)
2390 {
2391 if (syntax & RE_CONTEXT_INVALID_OPS)
2392 FREE_STACK_RETURN (REG_BADRPT);
2393 else if (syntax & RE_CONTEXT_INDEP_OPS)
2394 laststart = b;
2395 else
2396 goto unfetch_interval;
2397 }
2398
2399 /* If the upper bound is zero, don't want to succeed at
2400 all; jump from `laststart' to `b + 3', which will be
2401 the end of the buffer after we insert the jump. */
2402 if (upper_bound == 0)
2403 {
2404 GET_BUFFER_SPACE (3);
2405 INSERT_JUMP (jump, laststart, b + 3);
2406 b += 3;
2407 }
2408
2409 /* Otherwise, we have a nontrivial interval. When
2410 we're all done, the pattern will look like:
2411 set_number_at <jump count> <upper bound>
2412 set_number_at <succeed_n count> <lower bound>
2413 succeed_n <after jump addr> <succeed_n count>
2414 <body of loop>
2415 jump_n <succeed_n addr> <jump count>
2416 (The upper bound and `jump_n' are omitted if
2417 `upper_bound' is 1, though.) */
2418 else
2419 { /* If the upper bound is > 1, we need to insert
2420 more at the end of the loop. */
2421 unsigned nbytes = 10 + (upper_bound > 1) * 10;
2422
2423 GET_BUFFER_SPACE (nbytes);
2424
2425 /* Initialize lower bound of the `succeed_n', even
2426 though it will be set during matching by its
2427 attendant `set_number_at' (inserted next),
2428 because `re_compile_fastmap' needs to know.
2429 Jump to the `jump_n' we might insert below. */
2430 INSERT_JUMP2 (succeed_n, laststart,
2431 b + 5 + (upper_bound > 1) * 5,
2432 lower_bound);
2433 b += 5;
2434
2435 /* Code to initialize the lower bound. Insert
2436 before the `succeed_n'. The `5' is the last two
2437 bytes of this `set_number_at', plus 3 bytes of
2438 the following `succeed_n'. */
2439 insert_op2 (set_number_at, laststart, 5, lower_bound, b);
2440 b += 5;
2441
2442 if (upper_bound > 1)
2443 { /* More than one repetition is allowed, so
2444 append a backward jump to the `succeed_n'
2445 that starts this interval.
2446
2447 When we've reached this during matching,
2448 we'll have matched the interval once, so
2449 jump back only `upper_bound - 1' times. */
2450 STORE_JUMP2 (jump_n, b, laststart + 5,
2451 upper_bound - 1);
2452 b += 5;
2453
2454 /* The location we want to set is the second
2455 parameter of the `jump_n'; that is `b-2' as
2456 an absolute address. `laststart' will be
2457 the `set_number_at' we're about to insert;
2458 `laststart+3' the number to set, the source
2459 for the relative address. But we are
2460 inserting into the middle of the pattern --
2461 so everything is getting moved up by 5.
2462 Conclusion: (b - 2) - (laststart + 3) + 5,
2463 i.e., b - laststart.
2464
2465 We insert this at the beginning of the loop
2466 so that if we fail during matching, we'll
2467 reinitialize the bounds. */
2468 insert_op2 (set_number_at, laststart, b - laststart,
2469 upper_bound - 1, b);
2470 b += 5;
2471 }
2472 }
2473 pending_exact = 0;
2474 beg_interval = NULL;
2475 }
2476 break;
2477
2478 unfetch_interval:
2479 /* If an invalid interval, match the characters as literals. */
2480 assert (beg_interval);
2481 p = beg_interval;
2482 beg_interval = NULL;
2483
2484 /* normal_char and normal_backslash need `c'. */
2485 PATFETCH (c);
2486
2487 if (!(syntax & RE_NO_BK_BRACES))
2488 {
2489 if (p > pattern && p[-1] == '\\')
2490 goto normal_backslash;
2491 }
2492 goto normal_char;
2493
2494#ifdef emacs
2495 /* There is no way to specify the before_dot and after_dot
2496 operators. rms says this is ok. --karl */
2497 case '=':
2498 BUF_PUSH (at_dot);
2499 break;
2500
2501 case 's':
2502 laststart = b;
2503 PATFETCH (c);
2504 BUF_PUSH_2 (syntaxspec, syntax_spec_code[c]);
2505 break;
2506
2507 case 'S':
2508 laststart = b;
2509 PATFETCH (c);
2510 BUF_PUSH_2 (notsyntaxspec, syntax_spec_code[c]);
2511 break;
2512#endif /* emacs */
2513
2514
2515 case 'w':
2516 laststart = b;
2517 BUF_PUSH (wordchar);
2518 break;
2519
2520
2521 case 'W':
2522 laststart = b;
2523 BUF_PUSH (notwordchar);
2524 break;
2525
2526
2527 case '<':
2528 BUF_PUSH (wordbeg);
2529 break;
2530
2531 case '>':
2532 BUF_PUSH (wordend);
2533 break;
2534
2535 case 'b':
2536 BUF_PUSH (wordbound);
2537 break;
2538
2539 case 'B':
2540 BUF_PUSH (notwordbound);
2541 break;
2542
2543 case '`':
2544 BUF_PUSH (begbuf);
2545 break;
2546
2547 case '\'':
2548 BUF_PUSH (endbuf);
2549 break;
2550
2551 case '1': case '2': case '3': case '4': case '5':
2552 case '6': case '7': case '8': case '9':
2553 if (syntax & RE_NO_BK_REFS)
2554 goto normal_char;
2555
2556 c1 = c - '0';
2557
2558 if (c1 > regnum)
2559 FREE_STACK_RETURN (REG_ESUBREG);
2560
2561 /* Can't back reference to a subexpression if inside of it. */
2562 if (group_in_compile_stack (compile_stack, c1))
2563 goto normal_char;
2564
2565 laststart = b;
2566 BUF_PUSH_2 (duplicate, c1);
2567 break;
2568
2569
2570 case '+':
2571 case '?':
2572 if (syntax & RE_BK_PLUS_QM)
2573 goto handle_plus;
2574 else
2575 goto normal_backslash;
2576
2577 default:
2578 normal_backslash:
2579 /* You might think it would be useful for \ to mean
2580 not to translate; but if we don't translate it
2581 it will never match anything. */
2582 c = TRANSLATE (c);
2583 goto normal_char;
2584 }
2585 break;
2586
2587
2588 default:
2589 /* Expects the character in `c'. */
2590 normal_char:
2591 /* If no exactn currently being built. */
2592 if (!pending_exact
2593
2594 /* If last exactn not at current position. */
2595 || pending_exact + *pending_exact + 1 != b
2596
2597 /* We have only one byte following the exactn for the count. */
2598 || *pending_exact == (1 << BYTEWIDTH) - 1
2599
2600 /* If followed by a repetition operator. */
2601 || *p == '*' || *p == '^'
2602 || ((syntax & RE_BK_PLUS_QM)
2603 ? *p == '\\' && (p[1] == '+' || p[1] == '?')
2604 : (*p == '+' || *p == '?'))
2605 || ((syntax & RE_INTERVALS)
2606 && ((syntax & RE_NO_BK_BRACES)
2607 ? *p == '{'
2608 : (p[0] == '\\' && p[1] == '{'))))
2609 {
2610 /* Start building a new exactn. */
2611
2612 laststart = b;
2613
2614 BUF_PUSH_2 (exactn, 0);
2615 pending_exact = b - 1;
2616 }
2617
2618 BUF_PUSH (c);
2619 (*pending_exact)++;
2620 break;
2621 } /* switch (c) */
2622 } /* while p != pend */
2623
2624
2625 /* Through the pattern now. */
2626
2627 if (fixup_alt_jump)
2628 STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
2629
2630 if (!COMPILE_STACK_EMPTY)
2631 FREE_STACK_RETURN (REG_EPAREN);
2632
2633 /* If we don't want backtracking, force success
2634 the first time we reach the end of the compiled pattern. */
2635 if (syntax & RE_NO_POSIX_BACKTRACKING)
2636 BUF_PUSH (succeed);
2637
2638 free (compile_stack.stack);
2639
2640 /* We have succeeded; set the length of the buffer. */
2641 bufp->used = b - bufp->buffer;
2642
2643#ifdef DEBUG
2644 if (debug)
2645 {
2646 DEBUG_PRINT1 ("\nCompiled pattern: \n");
2647 print_compiled_pattern (bufp);
2648 }
2649#endif /* DEBUG */
2650
2651#ifndef MATCH_MAY_ALLOCATE
2652 /* Initialize the failure stack to the largest possible stack. This
2653 isn't necessary unless we're trying to avoid calling alloca in
2654 the search and match routines. */
2655 {
2656 int num_regs = bufp->re_nsub + 1;
2657
2658 /* Since DOUBLE_FAIL_STACK refuses to double only if the current size
2659 is strictly greater than re_max_failures, the largest possible stack
2660 is 2 * re_max_failures failure points. */
2661 if (fail_stack.size < (2 * re_max_failures * MAX_FAILURE_ITEMS))
2662 {
2663 fail_stack.size = (2 * re_max_failures * MAX_FAILURE_ITEMS);
2664
2665#ifdef emacs
2666 if (! fail_stack.stack)
2667 fail_stack.stack
2668 = (fail_stack_elt_t *) xmalloc (fail_stack.size
2669 * sizeof (fail_stack_elt_t));
2670 else
2671 fail_stack.stack
2672 = (fail_stack_elt_t *) xrealloc (fail_stack.stack,
2673 (fail_stack.size
2674 * sizeof (fail_stack_elt_t)));
2675#else /* not emacs */
2676 if (! fail_stack.stack)
2677 fail_stack.stack
2678 = (fail_stack_elt_t *) malloc (fail_stack.size
2679 * sizeof (fail_stack_elt_t));
2680 else
2681 fail_stack.stack
2682 = (fail_stack_elt_t *) realloc (fail_stack.stack,
2683 (fail_stack.size
2684 * sizeof (fail_stack_elt_t)));
2685#endif /* not emacs */
2686 }
2687
2688 regex_grow_registers (num_regs);
2689 }
2690#endif /* not MATCH_MAY_ALLOCATE */
2691
2692 return REG_NOERROR;
2693} /* regex_compile */
2694\f
2695/* Subroutines for `regex_compile'. */
2696
2697/* Store OP at LOC followed by two-byte integer parameter ARG. */
2698
2699static void
2700store_op1 (op, loc, arg)
2701 re_opcode_t op;
2702 unsigned char *loc;
2703 int arg;
2704{
2705 *loc = (unsigned char) op;
2706 STORE_NUMBER (loc + 1, arg);
2707}
2708
2709
2710/* Like `store_op1', but for two two-byte parameters ARG1 and ARG2. */
2711
2712static void
2713store_op2 (op, loc, arg1, arg2)
2714 re_opcode_t op;
2715 unsigned char *loc;
2716 int arg1, arg2;
2717{
2718 *loc = (unsigned char) op;
2719 STORE_NUMBER (loc + 1, arg1);
2720 STORE_NUMBER (loc + 3, arg2);
2721}
2722
2723
2724/* Copy the bytes from LOC to END to open up three bytes of space at LOC
2725 for OP followed by two-byte integer parameter ARG. */
2726
2727static void
2728insert_op1 (op, loc, arg, end)
2729 re_opcode_t op;
2730 unsigned char *loc;
2731 int arg;
2732 unsigned char *end;
2733{
2734 register unsigned char *pfrom = end;
2735 register unsigned char *pto = end + 3;
2736
2737 while (pfrom != loc)
2738 *--pto = *--pfrom;
2739
2740 store_op1 (op, loc, arg);
2741}
2742
2743
2744/* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2. */
2745
2746static void
2747insert_op2 (op, loc, arg1, arg2, end)
2748 re_opcode_t op;
2749 unsigned char *loc;
2750 int arg1, arg2;
2751 unsigned char *end;
2752{
2753 register unsigned char *pfrom = end;
2754 register unsigned char *pto = end + 5;
2755
2756 while (pfrom != loc)
2757 *--pto = *--pfrom;
2758
2759 store_op2 (op, loc, arg1, arg2);
2760}
2761
2762
2763/* P points to just after a ^ in PATTERN. Return true if that ^ comes
2764 after an alternative or a begin-subexpression. We assume there is at
2765 least one character before the ^. */
2766
2767static boolean
2768at_begline_loc_p (pattern, p, syntax)
2769 const char *pattern, *p;
2770 reg_syntax_t syntax;
2771{
2772 const char *prev = p - 2;
2773 boolean prev_prev_backslash = prev > pattern && prev[-1] == '\\';
2774
2775 return
2776 /* After a subexpression? */
2777 (*prev == '(' && (syntax & RE_NO_BK_PARENS || prev_prev_backslash))
2778 /* After an alternative? */
2779 || (*prev == '|' && (syntax & RE_NO_BK_VBAR || prev_prev_backslash));
2780}
2781
2782
2783/* The dual of at_begline_loc_p. This one is for $. We assume there is
2784 at least one character after the $, i.e., `P < PEND'. */
2785
2786static boolean
2787at_endline_loc_p (p, pend, syntax)
2788 const char *p, *pend;
2789 int syntax;
2790{
2791 const char *next = p;
2792 boolean next_backslash = *next == '\\';
5bb52971 2793 const char *next_next = p + 1 < pend ? p + 1 : 0;
fa9a63c5
RM
2794
2795 return
2796 /* Before a subexpression? */
2797 (syntax & RE_NO_BK_PARENS ? *next == ')'
2798 : next_backslash && next_next && *next_next == ')')
2799 /* Before an alternative? */
2800 || (syntax & RE_NO_BK_VBAR ? *next == '|'
2801 : next_backslash && next_next && *next_next == '|');
2802}
2803
2804
2805/* Returns true if REGNUM is in one of COMPILE_STACK's elements and
2806 false if it's not. */
2807
2808static boolean
2809group_in_compile_stack (compile_stack, regnum)
2810 compile_stack_type compile_stack;
2811 regnum_t regnum;
2812{
2813 int this_element;
2814
2815 for (this_element = compile_stack.avail - 1;
2816 this_element >= 0;
2817 this_element--)
2818 if (compile_stack.stack[this_element].regnum == regnum)
2819 return true;
2820
2821 return false;
2822}
2823
2824
2825/* Read the ending character of a range (in a bracket expression) from the
2826 uncompiled pattern *P_PTR (which ends at PEND). We assume the
2827 starting character is in `P[-2]'. (`P[-1]' is the character `-'.)
2828 Then we set the translation of all bits between the starting and
2829 ending characters (inclusive) in the compiled pattern B.
2830
2831 Return an error code.
2832
2833 We use these short variable names so we can use the same macros as
2834 `regex_compile' itself. */
2835
2836static reg_errcode_t
2837compile_range (p_ptr, pend, translate, syntax, b)
2838 const char **p_ptr, *pend;
6676cb1c 2839 RE_TRANSLATE_TYPE translate;
fa9a63c5
RM
2840 reg_syntax_t syntax;
2841 unsigned char *b;
2842{
2843 unsigned this_char;
2844
2845 const char *p = *p_ptr;
2846 int range_start, range_end;
2847
2848 if (p == pend)
2849 return REG_ERANGE;
2850
2851 /* Even though the pattern is a signed `char *', we need to fetch
2852 with unsigned char *'s; if the high bit of the pattern character
2853 is set, the range endpoints will be negative if we fetch using a
2854 signed char *.
2855
2856 We also want to fetch the endpoints without translating them; the
2857 appropriate translation is done in the bit-setting loop below. */
2858 /* The SVR4 compiler on the 3B2 had trouble with unsigned const char *. */
2859 range_start = ((const unsigned char *) p)[-2];
2860 range_end = ((const unsigned char *) p)[0];
2861
2862 /* Have to increment the pointer into the pattern string, so the
2863 caller isn't still at the ending character. */
2864 (*p_ptr)++;
2865
2866 /* If the start is after the end, the range is empty. */
2867 if (range_start > range_end)
2868 return syntax & RE_NO_EMPTY_RANGES ? REG_ERANGE : REG_NOERROR;
2869
2870 /* Here we see why `this_char' has to be larger than an `unsigned
2871 char' -- the range is inclusive, so if `range_end' == 0xff
2872 (assuming 8-bit characters), we would otherwise go into an infinite
2873 loop, since all characters <= 0xff. */
2874 for (this_char = range_start; this_char <= range_end; this_char++)
2875 {
2876 SET_LIST_BIT (TRANSLATE (this_char));
2877 }
2878
2879 return REG_NOERROR;
2880}
2881\f
2882/* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
2883 BUFP. A fastmap records which of the (1 << BYTEWIDTH) possible
2884 characters can start a string that matches the pattern. This fastmap
2885 is used by re_search to skip quickly over impossible starting points.
2886
2887 The caller must supply the address of a (1 << BYTEWIDTH)-byte data
2888 area as BUFP->fastmap.
2889
2890 We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
2891 the pattern buffer.
2892
2893 Returns 0 if we succeed, -2 if an internal error. */
2894
2895int
2896re_compile_fastmap (bufp)
2897 struct re_pattern_buffer *bufp;
2898{
2899 int j, k;
2900#ifdef MATCH_MAY_ALLOCATE
2901 fail_stack_type fail_stack;
2902#endif
2903#ifndef REGEX_MALLOC
2904 char *destination;
2905#endif
2906 /* We don't push any register information onto the failure stack. */
2907 unsigned num_regs = 0;
2908
2909 register char *fastmap = bufp->fastmap;
2910 unsigned char *pattern = bufp->buffer;
2911 unsigned long size = bufp->used;
2912 unsigned char *p = pattern;
2913 register unsigned char *pend = pattern + size;
2914
2915 /* This holds the pointer to the failure stack, when
2916 it is allocated relocatably. */
2917 fail_stack_elt_t *failure_stack_ptr;
2918
2919 /* Assume that each path through the pattern can be null until
2920 proven otherwise. We set this false at the bottom of switch
2921 statement, to which we get only if a particular path doesn't
2922 match the empty string. */
2923 boolean path_can_be_null = true;
2924
2925 /* We aren't doing a `succeed_n' to begin with. */
2926 boolean succeed_n_p = false;
2927
2928 assert (fastmap != NULL && p != NULL);
2929
2930 INIT_FAIL_STACK ();
2931 bzero (fastmap, 1 << BYTEWIDTH); /* Assume nothing's valid. */
2932 bufp->fastmap_accurate = 1; /* It will be when we're done. */
2933 bufp->can_be_null = 0;
2934
2935 while (1)
2936 {
2937 if (p == pend || *p == succeed)
2938 {
2939 /* We have reached the (effective) end of pattern. */
2940 if (!FAIL_STACK_EMPTY ())
2941 {
2942 bufp->can_be_null |= path_can_be_null;
2943
2944 /* Reset for next path. */
2945 path_can_be_null = true;
2946
2947 p = fail_stack.stack[--fail_stack.avail].pointer;
2948
2949 continue;
2950 }
2951 else
2952 break;
2953 }
2954
2955 /* We should never be about to go beyond the end of the pattern. */
2956 assert (p < pend);
2957
2958 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
2959 {
2960
2961 /* I guess the idea here is to simply not bother with a fastmap
2962 if a backreference is used, since it's too hard to figure out
2963 the fastmap for the corresponding group. Setting
2964 `can_be_null' stops `re_search_2' from using the fastmap, so
2965 that is all we do. */
2966 case duplicate:
2967 bufp->can_be_null = 1;
2968 goto done;
2969
2970
2971 /* Following are the cases which match a character. These end
2972 with `break'. */
2973
2974 case exactn:
2975 fastmap[p[1]] = 1;
2976 break;
2977
2978
2979 case charset:
2980 for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
2981 if (p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH)))
2982 fastmap[j] = 1;
2983 break;
2984
2985
2986 case charset_not:
2987 /* Chars beyond end of map must be allowed. */
2988 for (j = *p * BYTEWIDTH; j < (1 << BYTEWIDTH); j++)
2989 fastmap[j] = 1;
2990
2991 for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
2992 if (!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))))
2993 fastmap[j] = 1;
2994 break;
2995
2996
2997 case wordchar:
2998 for (j = 0; j < (1 << BYTEWIDTH); j++)
2999 if (SYNTAX (j) == Sword)
3000 fastmap[j] = 1;
3001 break;
3002
3003
3004 case notwordchar:
3005 for (j = 0; j < (1 << BYTEWIDTH); j++)
3006 if (SYNTAX (j) != Sword)
3007 fastmap[j] = 1;
3008 break;
3009
3010
3011 case anychar:
3012 {
3013 int fastmap_newline = fastmap['\n'];
3014
3015 /* `.' matches anything ... */
3016 for (j = 0; j < (1 << BYTEWIDTH); j++)
3017 fastmap[j] = 1;
3018
3019 /* ... except perhaps newline. */
3020 if (!(bufp->syntax & RE_DOT_NEWLINE))
3021 fastmap['\n'] = fastmap_newline;
3022
3023 /* Return if we have already set `can_be_null'; if we have,
3024 then the fastmap is irrelevant. Something's wrong here. */
3025 else if (bufp->can_be_null)
3026 goto done;
3027
3028 /* Otherwise, have to check alternative paths. */
3029 break;
3030 }
3031
3032#ifdef emacs
3033 case syntaxspec:
3034 k = *p++;
3035 for (j = 0; j < (1 << BYTEWIDTH); j++)
3036 if (SYNTAX (j) == (enum syntaxcode) k)
3037 fastmap[j] = 1;
3038 break;
3039
3040
3041 case notsyntaxspec:
3042 k = *p++;
3043 for (j = 0; j < (1 << BYTEWIDTH); j++)
3044 if (SYNTAX (j) != (enum syntaxcode) k)
3045 fastmap[j] = 1;
3046 break;
3047
3048
3049 /* All cases after this match the empty string. These end with
3050 `continue'. */
3051
3052
3053 case before_dot:
3054 case at_dot:
3055 case after_dot:
3056 continue;
ae4788a8 3057#endif /* emacs */
fa9a63c5
RM
3058
3059
3060 case no_op:
3061 case begline:
3062 case endline:
3063 case begbuf:
3064 case endbuf:
3065 case wordbound:
3066 case notwordbound:
3067 case wordbeg:
3068 case wordend:
3069 case push_dummy_failure:
3070 continue;
3071
3072
3073 case jump_n:
3074 case pop_failure_jump:
3075 case maybe_pop_jump:
3076 case jump:
3077 case jump_past_alt:
3078 case dummy_failure_jump:
3079 EXTRACT_NUMBER_AND_INCR (j, p);
3080 p += j;
3081 if (j > 0)
3082 continue;
3083
3084 /* Jump backward implies we just went through the body of a
3085 loop and matched nothing. Opcode jumped to should be
3086 `on_failure_jump' or `succeed_n'. Just treat it like an
3087 ordinary jump. For a * loop, it has pushed its failure
3088 point already; if so, discard that as redundant. */
3089 if ((re_opcode_t) *p != on_failure_jump
3090 && (re_opcode_t) *p != succeed_n)
3091 continue;
3092
3093 p++;
3094 EXTRACT_NUMBER_AND_INCR (j, p);
3095 p += j;
3096
3097 /* If what's on the stack is where we are now, pop it. */
3098 if (!FAIL_STACK_EMPTY ()
3099 && fail_stack.stack[fail_stack.avail - 1].pointer == p)
3100 fail_stack.avail--;
3101
3102 continue;
3103
3104
3105 case on_failure_jump:
3106 case on_failure_keep_string_jump:
3107 handle_on_failure_jump:
3108 EXTRACT_NUMBER_AND_INCR (j, p);
3109
3110 /* For some patterns, e.g., `(a?)?', `p+j' here points to the
3111 end of the pattern. We don't want to push such a point,
3112 since when we restore it above, entering the switch will
3113 increment `p' past the end of the pattern. We don't need
3114 to push such a point since we obviously won't find any more
3115 fastmap entries beyond `pend'. Such a pattern can match
3116 the null string, though. */
3117 if (p + j < pend)
3118 {
3119 if (!PUSH_PATTERN_OP (p + j, fail_stack))
3120 {
3121 RESET_FAIL_STACK ();
3122 return -2;
3123 }
3124 }
3125 else
3126 bufp->can_be_null = 1;
3127
3128 if (succeed_n_p)
3129 {
3130 EXTRACT_NUMBER_AND_INCR (k, p); /* Skip the n. */
3131 succeed_n_p = false;
3132 }
3133
3134 continue;
3135
3136
3137 case succeed_n:
3138 /* Get to the number of times to succeed. */
3139 p += 2;
3140
3141 /* Increment p past the n for when k != 0. */
3142 EXTRACT_NUMBER_AND_INCR (k, p);
3143 if (k == 0)
3144 {
3145 p -= 4;
3146 succeed_n_p = true; /* Spaghetti code alert. */
3147 goto handle_on_failure_jump;
3148 }
3149 continue;
3150
3151
3152 case set_number_at:
3153 p += 4;
3154 continue;
3155
3156
3157 case start_memory:
3158 case stop_memory:
3159 p += 2;
3160 continue;
3161
3162
3163 default:
3164 abort (); /* We have listed all the cases. */
3165 } /* switch *p++ */
3166
3167 /* Getting here means we have found the possible starting
3168 characters for one path of the pattern -- and that the empty
3169 string does not match. We need not follow this path further.
3170 Instead, look at the next alternative (remembered on the
3171 stack), or quit if no more. The test at the top of the loop
3172 does these things. */
3173 path_can_be_null = false;
3174 p = pend;
3175 } /* while p */
3176
3177 /* Set `can_be_null' for the last path (also the first path, if the
3178 pattern is empty). */
3179 bufp->can_be_null |= path_can_be_null;
3180
3181 done:
3182 RESET_FAIL_STACK ();
3183 return 0;
3184} /* re_compile_fastmap */
3185\f
3186/* Set REGS to hold NUM_REGS registers, storing them in STARTS and
3187 ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use
3188 this memory for recording register information. STARTS and ENDS
3189 must be allocated using the malloc library routine, and must each
3190 be at least NUM_REGS * sizeof (regoff_t) bytes long.
3191
3192 If NUM_REGS == 0, then subsequent matches should allocate their own
3193 register data.
3194
3195 Unless this function is called, the first search or match using
3196 PATTERN_BUFFER will allocate its own register data, without
3197 freeing the old data. */
3198
3199void
3200re_set_registers (bufp, regs, num_regs, starts, ends)
3201 struct re_pattern_buffer *bufp;
3202 struct re_registers *regs;
3203 unsigned num_regs;
3204 regoff_t *starts, *ends;
3205{
3206 if (num_regs)
3207 {
3208 bufp->regs_allocated = REGS_REALLOCATE;
3209 regs->num_regs = num_regs;
3210 regs->start = starts;
3211 regs->end = ends;
3212 }
3213 else
3214 {
3215 bufp->regs_allocated = REGS_UNALLOCATED;
3216 regs->num_regs = 0;
3217 regs->start = regs->end = (regoff_t *) 0;
3218 }
3219}
3220\f
3221/* Searching routines. */
3222
3223/* Like re_search_2, below, but only one string is specified, and
3224 doesn't let you say where to stop matching. */
3225
3226int
3227re_search (bufp, string, size, startpos, range, regs)
3228 struct re_pattern_buffer *bufp;
3229 const char *string;
3230 int size, startpos, range;
3231 struct re_registers *regs;
3232{
3233 return re_search_2 (bufp, NULL, 0, string, size, startpos, range,
3234 regs, size);
3235}
3236
3237
3238/* Using the compiled pattern in BUFP->buffer, first tries to match the
3239 virtual concatenation of STRING1 and STRING2, starting first at index
3240 STARTPOS, then at STARTPOS + 1, and so on.
3241
3242 STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
3243
3244 RANGE is how far to scan while trying to match. RANGE = 0 means try
3245 only at STARTPOS; in general, the last start tried is STARTPOS +
3246 RANGE.
3247
3248 In REGS, return the indices of the virtual concatenation of STRING1
3249 and STRING2 that matched the entire BUFP->buffer and its contained
3250 subexpressions.
3251
3252 Do not consider matching one past the index STOP in the virtual
3253 concatenation of STRING1 and STRING2.
3254
3255 We return either the position in the strings at which the match was
3256 found, -1 if no match, or -2 if error (such as failure
3257 stack overflow). */
3258
3259int
3260re_search_2 (bufp, string1, size1, string2, size2, startpos, range, regs, stop)
3261 struct re_pattern_buffer *bufp;
3262 const char *string1, *string2;
3263 int size1, size2;
3264 int startpos;
3265 int range;
3266 struct re_registers *regs;
3267 int stop;
3268{
3269 int val;
3270 register char *fastmap = bufp->fastmap;
6676cb1c 3271 register RE_TRANSLATE_TYPE translate = bufp->translate;
fa9a63c5
RM
3272 int total_size = size1 + size2;
3273 int endpos = startpos + range;
3274
3275 /* Check for out-of-range STARTPOS. */
3276 if (startpos < 0 || startpos > total_size)
3277 return -1;
3278
3279 /* Fix up RANGE if it might eventually take us outside
34597fa9
RS
3280 the virtual concatenation of STRING1 and STRING2.
3281 Make sure we won't move STARTPOS below 0 or above TOTAL_SIZE. */
3282 if (endpos < 0)
3283 range = 0 - startpos;
fa9a63c5
RM
3284 else if (endpos > total_size)
3285 range = total_size - startpos;
3286
3287 /* If the search isn't to be a backwards one, don't waste time in a
3288 search for a pattern that must be anchored. */
3289 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == begbuf && range > 0)
3290 {
3291 if (startpos > 0)
3292 return -1;
3293 else
3294 range = 1;
3295 }
3296
ae4788a8
RS
3297#ifdef emacs
3298 /* In a forward search for something that starts with \=.
3299 don't keep searching past point. */
3300 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == at_dot && range > 0)
3301 {
3302 range = PT - startpos;
3303 if (range <= 0)
3304 return -1;
3305 }
3306#endif /* emacs */
3307
fa9a63c5
RM
3308 /* Update the fastmap now if not correct already. */
3309 if (fastmap && !bufp->fastmap_accurate)
3310 if (re_compile_fastmap (bufp) == -2)
3311 return -2;
3312
3313 /* Loop through the string, looking for a place to start matching. */
3314 for (;;)
3315 {
3316 /* If a fastmap is supplied, skip quickly over characters that
3317 cannot be the start of a match. If the pattern can match the
3318 null string, however, we don't need to skip characters; we want
3319 the first null string. */
3320 if (fastmap && startpos < total_size && !bufp->can_be_null)
3321 {
3322 if (range > 0) /* Searching forwards. */
3323 {
3324 register const char *d;
3325 register int lim = 0;
3326 int irange = range;
3327
3328 if (startpos < size1 && startpos + range >= size1)
3329 lim = range - (size1 - startpos);
3330
3331 d = (startpos >= size1 ? string2 - size1 : string1) + startpos;
3332
3333 /* Written out as an if-else to avoid testing `translate'
3334 inside the loop. */
3335 if (translate)
3336 while (range > lim
3337 && !fastmap[(unsigned char)
3338 translate[(unsigned char) *d++]])
3339 range--;
3340 else
3341 while (range > lim && !fastmap[(unsigned char) *d++])
3342 range--;
3343
3344 startpos += irange - range;
3345 }
3346 else /* Searching backwards. */
3347 {
3348 register char c = (size1 == 0 || startpos >= size1
3349 ? string2[startpos - size1]
3350 : string1[startpos]);
3351
3352 if (!fastmap[(unsigned char) TRANSLATE (c)])
3353 goto advance;
3354 }
3355 }
3356
3357 /* If can't match the null string, and that's all we have left, fail. */
3358 if (range >= 0 && startpos == total_size && fastmap
3359 && !bufp->can_be_null)
3360 return -1;
3361
3362 val = re_match_2_internal (bufp, string1, size1, string2, size2,
3363 startpos, regs, stop);
3364#ifndef REGEX_MALLOC
3365#ifdef C_ALLOCA
3366 alloca (0);
3367#endif
3368#endif
3369
3370 if (val >= 0)
3371 return startpos;
3372
3373 if (val == -2)
3374 return -2;
3375
3376 advance:
3377 if (!range)
3378 break;
3379 else if (range > 0)
3380 {
3381 range--;
3382 startpos++;
3383 }
3384 else
3385 {
3386 range++;
3387 startpos--;
3388 }
3389 }
3390 return -1;
3391} /* re_search_2 */
3392\f
3393/* Declarations and macros for re_match_2. */
3394
3395static int bcmp_translate ();
3396static boolean alt_match_null_string_p (),
3397 common_op_match_null_string_p (),
3398 group_match_null_string_p ();
3399
3400/* This converts PTR, a pointer into one of the search strings `string1'
3401 and `string2' into an offset from the beginning of that string. */
3402#define POINTER_TO_OFFSET(ptr) \
3403 (FIRST_STRING_P (ptr) \
3404 ? ((regoff_t) ((ptr) - string1)) \
3405 : ((regoff_t) ((ptr) - string2 + size1)))
3406
3407/* Macros for dealing with the split strings in re_match_2. */
3408
3409#define MATCHING_IN_FIRST_STRING (dend == end_match_1)
3410
3411/* Call before fetching a character with *d. This switches over to
3412 string2 if necessary. */
3413#define PREFETCH() \
3414 while (d == dend) \
3415 { \
3416 /* End of string2 => fail. */ \
3417 if (dend == end_match_2) \
3418 goto fail; \
3419 /* End of string1 => advance to string2. */ \
3420 d = string2; \
3421 dend = end_match_2; \
3422 }
3423
3424
3425/* Test if at very beginning or at very end of the virtual concatenation
3426 of `string1' and `string2'. If only one string, it's `string2'. */
3427#define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
3428#define AT_STRINGS_END(d) ((d) == end2)
3429
3430
3431/* Test if D points to a character which is word-constituent. We have
3432 two special cases to check for: if past the end of string1, look at
3433 the first character in string2; and if before the beginning of
3434 string2, look at the last character in string1. */
3435#define WORDCHAR_P(d) \
3436 (SYNTAX ((d) == end1 ? *string2 \
3437 : (d) == string2 - 1 ? *(end1 - 1) : *(d)) \
3438 == Sword)
3439
3440/* Test if the character before D and the one at D differ with respect
3441 to being word-constituent. */
3442#define AT_WORD_BOUNDARY(d) \
3443 (AT_STRINGS_BEG (d) || AT_STRINGS_END (d) \
3444 || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
3445
3446
3447/* Free everything we malloc. */
3448#ifdef MATCH_MAY_ALLOCATE
3449#define FREE_VAR(var) if (var) REGEX_FREE (var); var = NULL
3450#define FREE_VARIABLES() \
3451 do { \
3452 REGEX_FREE_STACK (fail_stack.stack); \
3453 FREE_VAR (regstart); \
3454 FREE_VAR (regend); \
3455 FREE_VAR (old_regstart); \
3456 FREE_VAR (old_regend); \
3457 FREE_VAR (best_regstart); \
3458 FREE_VAR (best_regend); \
3459 FREE_VAR (reg_info); \
3460 FREE_VAR (reg_dummy); \
3461 FREE_VAR (reg_info_dummy); \
3462 } while (0)
3463#else
3464#define FREE_VARIABLES() ((void)0) /* Do nothing! But inhibit gcc warning. */
3465#endif /* not MATCH_MAY_ALLOCATE */
3466
3467/* These values must meet several constraints. They must not be valid
3468 register values; since we have a limit of 255 registers (because
3469 we use only one byte in the pattern for the register number), we can
3470 use numbers larger than 255. They must differ by 1, because of
3471 NUM_FAILURE_ITEMS above. And the value for the lowest register must
3472 be larger than the value for the highest register, so we do not try
3473 to actually save any registers when none are active. */
3474#define NO_HIGHEST_ACTIVE_REG (1 << BYTEWIDTH)
3475#define NO_LOWEST_ACTIVE_REG (NO_HIGHEST_ACTIVE_REG + 1)
3476\f
3477/* Matching routines. */
3478
3479#ifndef emacs /* Emacs never uses this. */
3480/* re_match is like re_match_2 except it takes only a single string. */
3481
3482int
3483re_match (bufp, string, size, pos, regs)
3484 struct re_pattern_buffer *bufp;
3485 const char *string;
3486 int size, pos;
3487 struct re_registers *regs;
3488{
3489 int result = re_match_2_internal (bufp, NULL, 0, string, size,
3490 pos, regs, size);
3491 alloca (0);
3492 return result;
3493}
3494#endif /* not emacs */
3495
3496
3497/* re_match_2 matches the compiled pattern in BUFP against the
3498 the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
3499 and SIZE2, respectively). We start matching at POS, and stop
3500 matching at STOP.
3501
3502 If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
3503 store offsets for the substring each group matched in REGS. See the
3504 documentation for exactly how many groups we fill.
3505
3506 We return -1 if no match, -2 if an internal error (such as the
3507 failure stack overflowing). Otherwise, we return the length of the
3508 matched substring. */
3509
3510int
3511re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
3512 struct re_pattern_buffer *bufp;
3513 const char *string1, *string2;
3514 int size1, size2;
3515 int pos;
3516 struct re_registers *regs;
3517 int stop;
3518{
3519 int result = re_match_2_internal (bufp, string1, size1, string2, size2,
3520 pos, regs, stop);
3521 alloca (0);
3522 return result;
3523}
3524
3525/* This is a separate function so that we can force an alloca cleanup
3526 afterwards. */
3527static int
3528re_match_2_internal (bufp, string1, size1, string2, size2, pos, regs, stop)
3529 struct re_pattern_buffer *bufp;
3530 const char *string1, *string2;
3531 int size1, size2;
3532 int pos;
3533 struct re_registers *regs;
3534 int stop;
3535{
3536 /* General temporaries. */
3537 int mcnt;
3538 unsigned char *p1;
3539
3540 /* Just past the end of the corresponding string. */
3541 const char *end1, *end2;
3542
3543 /* Pointers into string1 and string2, just past the last characters in
3544 each to consider matching. */
3545 const char *end_match_1, *end_match_2;
3546
3547 /* Where we are in the data, and the end of the current string. */
3548 const char *d, *dend;
3549
3550 /* Where we are in the pattern, and the end of the pattern. */
3551 unsigned char *p = bufp->buffer;
3552 register unsigned char *pend = p + bufp->used;
3553
3554 /* Mark the opcode just after a start_memory, so we can test for an
3555 empty subpattern when we get to the stop_memory. */
3556 unsigned char *just_past_start_mem = 0;
3557
3558 /* We use this to map every character in the string. */
6676cb1c 3559 RE_TRANSLATE_TYPE translate = bufp->translate;
fa9a63c5
RM
3560
3561 /* Failure point stack. Each place that can handle a failure further
3562 down the line pushes a failure point on this stack. It consists of
3563 restart, regend, and reg_info for all registers corresponding to
3564 the subexpressions we're currently inside, plus the number of such
3565 registers, and, finally, two char *'s. The first char * is where
3566 to resume scanning the pattern; the second one is where to resume
3567 scanning the strings. If the latter is zero, the failure point is
3568 a ``dummy''; if a failure happens and the failure point is a dummy,
3569 it gets discarded and the next next one is tried. */
3570#ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
3571 fail_stack_type fail_stack;
3572#endif
3573#ifdef DEBUG
3574 static unsigned failure_id = 0;
3575 unsigned nfailure_points_pushed = 0, nfailure_points_popped = 0;
3576#endif
3577
3578 /* This holds the pointer to the failure stack, when
3579 it is allocated relocatably. */
3580 fail_stack_elt_t *failure_stack_ptr;
3581
3582 /* We fill all the registers internally, independent of what we
3583 return, for use in backreferences. The number here includes
3584 an element for register zero. */
3585 unsigned num_regs = bufp->re_nsub + 1;
3586
3587 /* The currently active registers. */
3588 unsigned lowest_active_reg = NO_LOWEST_ACTIVE_REG;
3589 unsigned highest_active_reg = NO_HIGHEST_ACTIVE_REG;
3590
3591 /* Information on the contents of registers. These are pointers into
3592 the input strings; they record just what was matched (on this
3593 attempt) by a subexpression part of the pattern, that is, the
3594 regnum-th regstart pointer points to where in the pattern we began
3595 matching and the regnum-th regend points to right after where we
3596 stopped matching the regnum-th subexpression. (The zeroth register
3597 keeps track of what the whole pattern matches.) */
3598#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
3599 const char **regstart, **regend;
3600#endif
3601
3602 /* If a group that's operated upon by a repetition operator fails to
3603 match anything, then the register for its start will need to be
3604 restored because it will have been set to wherever in the string we
3605 are when we last see its open-group operator. Similarly for a
3606 register's end. */
3607#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
3608 const char **old_regstart, **old_regend;
3609#endif
3610
3611 /* The is_active field of reg_info helps us keep track of which (possibly
3612 nested) subexpressions we are currently in. The matched_something
3613 field of reg_info[reg_num] helps us tell whether or not we have
3614 matched any of the pattern so far this time through the reg_num-th
3615 subexpression. These two fields get reset each time through any
3616 loop their register is in. */
3617#ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
3618 register_info_type *reg_info;
3619#endif
3620
3621 /* The following record the register info as found in the above
3622 variables when we find a match better than any we've seen before.
3623 This happens as we backtrack through the failure points, which in
3624 turn happens only if we have not yet matched the entire string. */
3625 unsigned best_regs_set = false;
3626#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
3627 const char **best_regstart, **best_regend;
3628#endif
3629
3630 /* Logically, this is `best_regend[0]'. But we don't want to have to
3631 allocate space for that if we're not allocating space for anything
3632 else (see below). Also, we never need info about register 0 for
3633 any of the other register vectors, and it seems rather a kludge to
3634 treat `best_regend' differently than the rest. So we keep track of
3635 the end of the best match so far in a separate variable. We
3636 initialize this to NULL so that when we backtrack the first time
3637 and need to test it, it's not garbage. */
3638 const char *match_end = NULL;
3639
3640 /* This helps SET_REGS_MATCHED avoid doing redundant work. */
3641 int set_regs_matched_done = 0;
3642
3643 /* Used when we pop values we don't care about. */
3644#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
3645 const char **reg_dummy;
3646 register_info_type *reg_info_dummy;
3647#endif
3648
3649#ifdef DEBUG
3650 /* Counts the total number of registers pushed. */
3651 unsigned num_regs_pushed = 0;
3652#endif
3653
3654 DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
3655
3656 INIT_FAIL_STACK ();
3657
3658#ifdef MATCH_MAY_ALLOCATE
3659 /* Do not bother to initialize all the register variables if there are
3660 no groups in the pattern, as it takes a fair amount of time. If
3661 there are groups, we include space for register 0 (the whole
3662 pattern), even though we never use it, since it simplifies the
3663 array indexing. We should fix this. */
3664 if (bufp->re_nsub)
3665 {
3666 regstart = REGEX_TALLOC (num_regs, const char *);
3667 regend = REGEX_TALLOC (num_regs, const char *);
3668 old_regstart = REGEX_TALLOC (num_regs, const char *);
3669 old_regend = REGEX_TALLOC (num_regs, const char *);
3670 best_regstart = REGEX_TALLOC (num_regs, const char *);
3671 best_regend = REGEX_TALLOC (num_regs, const char *);
3672 reg_info = REGEX_TALLOC (num_regs, register_info_type);
3673 reg_dummy = REGEX_TALLOC (num_regs, const char *);
3674 reg_info_dummy = REGEX_TALLOC (num_regs, register_info_type);
3675
3676 if (!(regstart && regend && old_regstart && old_regend && reg_info
3677 && best_regstart && best_regend && reg_dummy && reg_info_dummy))
3678 {
3679 FREE_VARIABLES ();
3680 return -2;
3681 }
3682 }
3683 else
3684 {
3685 /* We must initialize all our variables to NULL, so that
3686 `FREE_VARIABLES' doesn't try to free them. */
3687 regstart = regend = old_regstart = old_regend = best_regstart
3688 = best_regend = reg_dummy = NULL;
3689 reg_info = reg_info_dummy = (register_info_type *) NULL;
3690 }
3691#endif /* MATCH_MAY_ALLOCATE */
3692
3693 /* The starting position is bogus. */
3694 if (pos < 0 || pos > size1 + size2)
3695 {
3696 FREE_VARIABLES ();
3697 return -1;
3698 }
3699
3700 /* Initialize subexpression text positions to -1 to mark ones that no
3701 start_memory/stop_memory has been seen for. Also initialize the
3702 register information struct. */
3703 for (mcnt = 1; mcnt < num_regs; mcnt++)
3704 {
3705 regstart[mcnt] = regend[mcnt]
3706 = old_regstart[mcnt] = old_regend[mcnt] = REG_UNSET_VALUE;
3707
3708 REG_MATCH_NULL_STRING_P (reg_info[mcnt]) = MATCH_NULL_UNSET_VALUE;
3709 IS_ACTIVE (reg_info[mcnt]) = 0;
3710 MATCHED_SOMETHING (reg_info[mcnt]) = 0;
3711 EVER_MATCHED_SOMETHING (reg_info[mcnt]) = 0;
3712 }
3713
3714 /* We move `string1' into `string2' if the latter's empty -- but not if
3715 `string1' is null. */
3716 if (size2 == 0 && string1 != NULL)
3717 {
3718 string2 = string1;
3719 size2 = size1;
3720 string1 = 0;
3721 size1 = 0;
3722 }
3723 end1 = string1 + size1;
3724 end2 = string2 + size2;
3725
3726 /* Compute where to stop matching, within the two strings. */
3727 if (stop <= size1)
3728 {
3729 end_match_1 = string1 + stop;
3730 end_match_2 = string2;
3731 }
3732 else
3733 {
3734 end_match_1 = end1;
3735 end_match_2 = string2 + stop - size1;
3736 }
3737
3738 /* `p' scans through the pattern as `d' scans through the data.
3739 `dend' is the end of the input string that `d' points within. `d'
3740 is advanced into the following input string whenever necessary, but
3741 this happens before fetching; therefore, at the beginning of the
3742 loop, `d' can be pointing at the end of a string, but it cannot
3743 equal `string2'. */
3744 if (size1 > 0 && pos <= size1)
3745 {
3746 d = string1 + pos;
3747 dend = end_match_1;
3748 }
3749 else
3750 {
3751 d = string2 + pos - size1;
3752 dend = end_match_2;
3753 }
3754
3755 DEBUG_PRINT1 ("The compiled pattern is: ");
3756 DEBUG_PRINT_COMPILED_PATTERN (bufp, p, pend);
3757 DEBUG_PRINT1 ("The string to match is: `");
3758 DEBUG_PRINT_DOUBLE_STRING (d, string1, size1, string2, size2);
3759 DEBUG_PRINT1 ("'\n");
3760
3761 /* This loops over pattern commands. It exits by returning from the
3762 function if the match is complete, or it drops through if the match
3763 fails at this starting point in the input data. */
3764 for (;;)
3765 {
3766 DEBUG_PRINT2 ("\n0x%x: ", p);
3767
3768 if (p == pend)
3769 { /* End of pattern means we might have succeeded. */
3770 DEBUG_PRINT1 ("end of pattern ... ");
3771
3772 /* If we haven't matched the entire string, and we want the
3773 longest match, try backtracking. */
3774 if (d != end_match_2)
3775 {
3776 /* 1 if this match ends in the same string (string1 or string2)
3777 as the best previous match. */
3778 boolean same_str_p = (FIRST_STRING_P (match_end)
3779 == MATCHING_IN_FIRST_STRING);
3780 /* 1 if this match is the best seen so far. */
3781 boolean best_match_p;
3782
3783 /* AIX compiler got confused when this was combined
3784 with the previous declaration. */
3785 if (same_str_p)
3786 best_match_p = d > match_end;
3787 else
3788 best_match_p = !MATCHING_IN_FIRST_STRING;
3789
3790 DEBUG_PRINT1 ("backtracking.\n");
3791
3792 if (!FAIL_STACK_EMPTY ())
3793 { /* More failure points to try. */
3794
3795 /* If exceeds best match so far, save it. */
3796 if (!best_regs_set || best_match_p)
3797 {
3798 best_regs_set = true;
3799 match_end = d;
3800
3801 DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
3802
3803 for (mcnt = 1; mcnt < num_regs; mcnt++)
3804 {
3805 best_regstart[mcnt] = regstart[mcnt];
3806 best_regend[mcnt] = regend[mcnt];
3807 }
3808 }
3809 goto fail;
3810 }
3811
3812 /* If no failure points, don't restore garbage. And if
3813 last match is real best match, don't restore second
3814 best one. */
3815 else if (best_regs_set && !best_match_p)
3816 {
3817 restore_best_regs:
3818 /* Restore best match. It may happen that `dend ==
3819 end_match_1' while the restored d is in string2.
3820 For example, the pattern `x.*y.*z' against the
3821 strings `x-' and `y-z-', if the two strings are
3822 not consecutive in memory. */
3823 DEBUG_PRINT1 ("Restoring best registers.\n");
3824
3825 d = match_end;
3826 dend = ((d >= string1 && d <= end1)
3827 ? end_match_1 : end_match_2);
3828
3829 for (mcnt = 1; mcnt < num_regs; mcnt++)
3830 {
3831 regstart[mcnt] = best_regstart[mcnt];
3832 regend[mcnt] = best_regend[mcnt];
3833 }
3834 }
3835 } /* d != end_match_2 */
3836
3837 succeed_label:
3838 DEBUG_PRINT1 ("Accepting match.\n");
3839
3840 /* If caller wants register contents data back, do it. */
3841 if (regs && !bufp->no_sub)
3842 {
3843 /* Have the register data arrays been allocated? */
3844 if (bufp->regs_allocated == REGS_UNALLOCATED)
3845 { /* No. So allocate them with malloc. We need one
3846 extra element beyond `num_regs' for the `-1' marker
3847 GNU code uses. */
3848 regs->num_regs = MAX (RE_NREGS, num_regs + 1);
3849 regs->start = TALLOC (regs->num_regs, regoff_t);
3850 regs->end = TALLOC (regs->num_regs, regoff_t);
3851 if (regs->start == NULL || regs->end == NULL)
3852 {
3853 FREE_VARIABLES ();
3854 return -2;
3855 }
3856 bufp->regs_allocated = REGS_REALLOCATE;
3857 }
3858 else if (bufp->regs_allocated == REGS_REALLOCATE)
3859 { /* Yes. If we need more elements than were already
3860 allocated, reallocate them. If we need fewer, just
3861 leave it alone. */
3862 if (regs->num_regs < num_regs + 1)
3863 {
3864 regs->num_regs = num_regs + 1;
3865 RETALLOC (regs->start, regs->num_regs, regoff_t);
3866 RETALLOC (regs->end, regs->num_regs, regoff_t);
3867 if (regs->start == NULL || regs->end == NULL)
3868 {
3869 FREE_VARIABLES ();
3870 return -2;
3871 }
3872 }
3873 }
3874 else
3875 {
3876 /* These braces fend off a "empty body in an else-statement"
3877 warning under GCC when assert expands to nothing. */
3878 assert (bufp->regs_allocated == REGS_FIXED);
3879 }
3880
3881 /* Convert the pointer data in `regstart' and `regend' to
3882 indices. Register zero has to be set differently,
3883 since we haven't kept track of any info for it. */
3884 if (regs->num_regs > 0)
3885 {
3886 regs->start[0] = pos;
3887 regs->end[0] = (MATCHING_IN_FIRST_STRING
3888 ? ((regoff_t) (d - string1))
3889 : ((regoff_t) (d - string2 + size1)));
3890 }
3891
3892 /* Go through the first `min (num_regs, regs->num_regs)'
3893 registers, since that is all we initialized. */
3894 for (mcnt = 1; mcnt < MIN (num_regs, regs->num_regs); mcnt++)
3895 {
3896 if (REG_UNSET (regstart[mcnt]) || REG_UNSET (regend[mcnt]))
3897 regs->start[mcnt] = regs->end[mcnt] = -1;
3898 else
3899 {
3900 regs->start[mcnt]
3901 = (regoff_t) POINTER_TO_OFFSET (regstart[mcnt]);
3902 regs->end[mcnt]
3903 = (regoff_t) POINTER_TO_OFFSET (regend[mcnt]);
3904 }
3905 }
3906
3907 /* If the regs structure we return has more elements than
3908 were in the pattern, set the extra elements to -1. If
3909 we (re)allocated the registers, this is the case,
3910 because we always allocate enough to have at least one
3911 -1 at the end. */
3912 for (mcnt = num_regs; mcnt < regs->num_regs; mcnt++)
3913 regs->start[mcnt] = regs->end[mcnt] = -1;
3914 } /* regs && !bufp->no_sub */
3915
3916 DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
3917 nfailure_points_pushed, nfailure_points_popped,
3918 nfailure_points_pushed - nfailure_points_popped);
3919 DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed);
3920
3921 mcnt = d - pos - (MATCHING_IN_FIRST_STRING
3922 ? string1
3923 : string2 - size1);
3924
3925 DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt);
3926
3927 FREE_VARIABLES ();
3928 return mcnt;
3929 }
3930
3931 /* Otherwise match next pattern command. */
3932 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
3933 {
3934 /* Ignore these. Used to ignore the n of succeed_n's which
3935 currently have n == 0. */
3936 case no_op:
3937 DEBUG_PRINT1 ("EXECUTING no_op.\n");
3938 break;
3939
3940 case succeed:
3941 DEBUG_PRINT1 ("EXECUTING succeed.\n");
3942 goto succeed_label;
3943
3944 /* Match the next n pattern characters exactly. The following
3945 byte in the pattern defines n, and the n bytes after that
3946 are the characters to match. */
3947 case exactn:
3948 mcnt = *p++;
3949 DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt);
3950
3951 /* This is written out as an if-else so we don't waste time
3952 testing `translate' inside the loop. */
3953 if (translate)
3954 {
3955 do
3956 {
3957 PREFETCH ();
6676cb1c
RS
3958 if ((unsigned char) translate[(unsigned char) *d++]
3959 != (unsigned char) *p++)
fa9a63c5
RM
3960 goto fail;
3961 }
3962 while (--mcnt);
3963 }
3964 else
3965 {
3966 do
3967 {
3968 PREFETCH ();
3969 if (*d++ != (char) *p++) goto fail;
3970 }
3971 while (--mcnt);
3972 }
3973 SET_REGS_MATCHED ();
3974 break;
3975
3976
3977 /* Match any character except possibly a newline or a null. */
3978 case anychar:
3979 DEBUG_PRINT1 ("EXECUTING anychar.\n");
3980
3981 PREFETCH ();
3982
3983 if ((!(bufp->syntax & RE_DOT_NEWLINE) && TRANSLATE (*d) == '\n')
3984 || (bufp->syntax & RE_DOT_NOT_NULL && TRANSLATE (*d) == '\000'))
3985 goto fail;
3986
3987 SET_REGS_MATCHED ();
3988 DEBUG_PRINT2 (" Matched `%d'.\n", *d);
3989 d++;
3990 break;
3991
3992
3993 case charset:
3994 case charset_not:
3995 {
3996 register unsigned char c;
3997 boolean not = (re_opcode_t) *(p - 1) == charset_not;
3998
3999 DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : "");
4000
4001 PREFETCH ();
4002 c = TRANSLATE (*d); /* The character to match. */
4003
4004 /* Cast to `unsigned' instead of `unsigned char' in case the
4005 bit list is a full 32 bytes long. */
4006 if (c < (unsigned) (*p * BYTEWIDTH)
4007 && p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
4008 not = !not;
4009
4010 p += 1 + *p;
4011
4012 if (!not) goto fail;
4013
4014 SET_REGS_MATCHED ();
4015 d++;
4016 break;
4017 }
4018
4019
4020 /* The beginning of a group is represented by start_memory.
4021 The arguments are the register number in the next byte, and the
4022 number of groups inner to this one in the next. The text
4023 matched within the group is recorded (in the internal
4024 registers data structure) under the register number. */
4025 case start_memory:
4026 DEBUG_PRINT3 ("EXECUTING start_memory %d (%d):\n", *p, p[1]);
4027
4028 /* Find out if this group can match the empty string. */
4029 p1 = p; /* To send to group_match_null_string_p. */
4030
4031 if (REG_MATCH_NULL_STRING_P (reg_info[*p]) == MATCH_NULL_UNSET_VALUE)
4032 REG_MATCH_NULL_STRING_P (reg_info[*p])
4033 = group_match_null_string_p (&p1, pend, reg_info);
4034
4035 /* Save the position in the string where we were the last time
4036 we were at this open-group operator in case the group is
4037 operated upon by a repetition operator, e.g., with `(a*)*b'
4038 against `ab'; then we want to ignore where we are now in
4039 the string in case this attempt to match fails. */
4040 old_regstart[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
4041 ? REG_UNSET (regstart[*p]) ? d : regstart[*p]
4042 : regstart[*p];
4043 DEBUG_PRINT2 (" old_regstart: %d\n",
4044 POINTER_TO_OFFSET (old_regstart[*p]));
4045
4046 regstart[*p] = d;
4047 DEBUG_PRINT2 (" regstart: %d\n", POINTER_TO_OFFSET (regstart[*p]));
4048
4049 IS_ACTIVE (reg_info[*p]) = 1;
4050 MATCHED_SOMETHING (reg_info[*p]) = 0;
4051
4052 /* Clear this whenever we change the register activity status. */
4053 set_regs_matched_done = 0;
4054
4055 /* This is the new highest active register. */
4056 highest_active_reg = *p;
4057
4058 /* If nothing was active before, this is the new lowest active
4059 register. */
4060 if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
4061 lowest_active_reg = *p;
4062
4063 /* Move past the register number and inner group count. */
4064 p += 2;
4065 just_past_start_mem = p;
4066
4067 break;
4068
4069
4070 /* The stop_memory opcode represents the end of a group. Its
4071 arguments are the same as start_memory's: the register
4072 number, and the number of inner groups. */
4073 case stop_memory:
4074 DEBUG_PRINT3 ("EXECUTING stop_memory %d (%d):\n", *p, p[1]);
4075
4076 /* We need to save the string position the last time we were at
4077 this close-group operator in case the group is operated
4078 upon by a repetition operator, e.g., with `((a*)*(b*)*)*'
4079 against `aba'; then we want to ignore where we are now in
4080 the string in case this attempt to match fails. */
4081 old_regend[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
4082 ? REG_UNSET (regend[*p]) ? d : regend[*p]
4083 : regend[*p];
4084 DEBUG_PRINT2 (" old_regend: %d\n",
4085 POINTER_TO_OFFSET (old_regend[*p]));
4086
4087 regend[*p] = d;
4088 DEBUG_PRINT2 (" regend: %d\n", POINTER_TO_OFFSET (regend[*p]));
4089
4090 /* This register isn't active anymore. */
4091 IS_ACTIVE (reg_info[*p]) = 0;
4092
4093 /* Clear this whenever we change the register activity status. */
4094 set_regs_matched_done = 0;
4095
4096 /* If this was the only register active, nothing is active
4097 anymore. */
4098 if (lowest_active_reg == highest_active_reg)
4099 {
4100 lowest_active_reg = NO_LOWEST_ACTIVE_REG;
4101 highest_active_reg = NO_HIGHEST_ACTIVE_REG;
4102 }
4103 else
4104 { /* We must scan for the new highest active register, since
4105 it isn't necessarily one less than now: consider
4106 (a(b)c(d(e)f)g). When group 3 ends, after the f), the
4107 new highest active register is 1. */
4108 unsigned char r = *p - 1;
4109 while (r > 0 && !IS_ACTIVE (reg_info[r]))
4110 r--;
4111
4112 /* If we end up at register zero, that means that we saved
4113 the registers as the result of an `on_failure_jump', not
4114 a `start_memory', and we jumped to past the innermost
4115 `stop_memory'. For example, in ((.)*) we save
4116 registers 1 and 2 as a result of the *, but when we pop
4117 back to the second ), we are at the stop_memory 1.
4118 Thus, nothing is active. */
4119 if (r == 0)
4120 {
4121 lowest_active_reg = NO_LOWEST_ACTIVE_REG;
4122 highest_active_reg = NO_HIGHEST_ACTIVE_REG;
4123 }
4124 else
4125 highest_active_reg = r;
4126 }
4127
4128 /* If just failed to match something this time around with a
4129 group that's operated on by a repetition operator, try to
4130 force exit from the ``loop'', and restore the register
4131 information for this group that we had before trying this
4132 last match. */
4133 if ((!MATCHED_SOMETHING (reg_info[*p])
4134 || just_past_start_mem == p - 1)
4135 && (p + 2) < pend)
4136 {
4137 boolean is_a_jump_n = false;
4138
4139 p1 = p + 2;
4140 mcnt = 0;
4141 switch ((re_opcode_t) *p1++)
4142 {
4143 case jump_n:
4144 is_a_jump_n = true;
4145 case pop_failure_jump:
4146 case maybe_pop_jump:
4147 case jump:
4148 case dummy_failure_jump:
4149 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4150 if (is_a_jump_n)
4151 p1 += 2;
4152 break;
4153
4154 default:
4155 /* do nothing */ ;
4156 }
4157 p1 += mcnt;
4158
4159 /* If the next operation is a jump backwards in the pattern
4160 to an on_failure_jump right before the start_memory
4161 corresponding to this stop_memory, exit from the loop
4162 by forcing a failure after pushing on the stack the
4163 on_failure_jump's jump in the pattern, and d. */
4164 if (mcnt < 0 && (re_opcode_t) *p1 == on_failure_jump
4165 && (re_opcode_t) p1[3] == start_memory && p1[4] == *p)
4166 {
4167 /* If this group ever matched anything, then restore
4168 what its registers were before trying this last
4169 failed match, e.g., with `(a*)*b' against `ab' for
4170 regstart[1], and, e.g., with `((a*)*(b*)*)*'
4171 against `aba' for regend[3].
4172
4173 Also restore the registers for inner groups for,
4174 e.g., `((a*)(b*))*' against `aba' (register 3 would
4175 otherwise get trashed). */
4176
4177 if (EVER_MATCHED_SOMETHING (reg_info[*p]))
4178 {
4179 unsigned r;
4180
4181 EVER_MATCHED_SOMETHING (reg_info[*p]) = 0;
4182
4183 /* Restore this and inner groups' (if any) registers. */
4184 for (r = *p; r < *p + *(p + 1); r++)
4185 {
4186 regstart[r] = old_regstart[r];
4187
4188 /* xx why this test? */
4189 if (old_regend[r] >= regstart[r])
4190 regend[r] = old_regend[r];
4191 }
4192 }
4193 p1++;
4194 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4195 PUSH_FAILURE_POINT (p1 + mcnt, d, -2);
4196
4197 goto fail;
4198 }
4199 }
4200
4201 /* Move past the register number and the inner group count. */
4202 p += 2;
4203 break;
4204
4205
4206 /* \<digit> has been turned into a `duplicate' command which is
4207 followed by the numeric value of <digit> as the register number. */
4208 case duplicate:
4209 {
4210 register const char *d2, *dend2;
4211 int regno = *p++; /* Get which register to match against. */
4212 DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno);
4213
4214 /* Can't back reference a group which we've never matched. */
4215 if (REG_UNSET (regstart[regno]) || REG_UNSET (regend[regno]))
4216 goto fail;
4217
4218 /* Where in input to try to start matching. */
4219 d2 = regstart[regno];
4220
4221 /* Where to stop matching; if both the place to start and
4222 the place to stop matching are in the same string, then
4223 set to the place to stop, otherwise, for now have to use
4224 the end of the first string. */
4225
4226 dend2 = ((FIRST_STRING_P (regstart[regno])
4227 == FIRST_STRING_P (regend[regno]))
4228 ? regend[regno] : end_match_1);
4229 for (;;)
4230 {
4231 /* If necessary, advance to next segment in register
4232 contents. */
4233 while (d2 == dend2)
4234 {
4235 if (dend2 == end_match_2) break;
4236 if (dend2 == regend[regno]) break;
4237
4238 /* End of string1 => advance to string2. */
4239 d2 = string2;
4240 dend2 = regend[regno];
4241 }
4242 /* At end of register contents => success */
4243 if (d2 == dend2) break;
4244
4245 /* If necessary, advance to next segment in data. */
4246 PREFETCH ();
4247
4248 /* How many characters left in this segment to match. */
4249 mcnt = dend - d;
4250
4251 /* Want how many consecutive characters we can match in
4252 one shot, so, if necessary, adjust the count. */
4253 if (mcnt > dend2 - d2)
4254 mcnt = dend2 - d2;
4255
4256 /* Compare that many; failure if mismatch, else move
4257 past them. */
4258 if (translate
4259 ? bcmp_translate (d, d2, mcnt, translate)
4260 : bcmp (d, d2, mcnt))
4261 goto fail;
4262 d += mcnt, d2 += mcnt;
4263
4264 /* Do this because we've match some characters. */
4265 SET_REGS_MATCHED ();
4266 }
4267 }
4268 break;
4269
4270
4271 /* begline matches the empty string at the beginning of the string
4272 (unless `not_bol' is set in `bufp'), and, if
4273 `newline_anchor' is set, after newlines. */
4274 case begline:
4275 DEBUG_PRINT1 ("EXECUTING begline.\n");
4276
4277 if (AT_STRINGS_BEG (d))
4278 {
4279 if (!bufp->not_bol) break;
4280 }
4281 else if (d[-1] == '\n' && bufp->newline_anchor)
4282 {
4283 break;
4284 }
4285 /* In all other cases, we fail. */
4286 goto fail;
4287
4288
4289 /* endline is the dual of begline. */
4290 case endline:
4291 DEBUG_PRINT1 ("EXECUTING endline.\n");
4292
4293 if (AT_STRINGS_END (d))
4294 {
4295 if (!bufp->not_eol) break;
4296 }
4297
4298 /* We have to ``prefetch'' the next character. */
4299 else if ((d == end1 ? *string2 : *d) == '\n'
4300 && bufp->newline_anchor)
4301 {
4302 break;
4303 }
4304 goto fail;
4305
4306
4307 /* Match at the very beginning of the data. */
4308 case begbuf:
4309 DEBUG_PRINT1 ("EXECUTING begbuf.\n");
4310 if (AT_STRINGS_BEG (d))
4311 break;
4312 goto fail;
4313
4314
4315 /* Match at the very end of the data. */
4316 case endbuf:
4317 DEBUG_PRINT1 ("EXECUTING endbuf.\n");
4318 if (AT_STRINGS_END (d))
4319 break;
4320 goto fail;
4321
4322
4323 /* on_failure_keep_string_jump is used to optimize `.*\n'. It
4324 pushes NULL as the value for the string on the stack. Then
4325 `pop_failure_point' will keep the current value for the
4326 string, instead of restoring it. To see why, consider
4327 matching `foo\nbar' against `.*\n'. The .* matches the foo;
4328 then the . fails against the \n. But the next thing we want
4329 to do is match the \n against the \n; if we restored the
4330 string value, we would be back at the foo.
4331
4332 Because this is used only in specific cases, we don't need to
4333 check all the things that `on_failure_jump' does, to make
4334 sure the right things get saved on the stack. Hence we don't
4335 share its code. The only reason to push anything on the
4336 stack at all is that otherwise we would have to change
4337 `anychar's code to do something besides goto fail in this
4338 case; that seems worse than this. */
4339 case on_failure_keep_string_jump:
4340 DEBUG_PRINT1 ("EXECUTING on_failure_keep_string_jump");
4341
4342 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4343 DEBUG_PRINT3 (" %d (to 0x%x):\n", mcnt, p + mcnt);
4344
4345 PUSH_FAILURE_POINT (p + mcnt, NULL, -2);
4346 break;
4347
4348
4349 /* Uses of on_failure_jump:
4350
4351 Each alternative starts with an on_failure_jump that points
4352 to the beginning of the next alternative. Each alternative
4353 except the last ends with a jump that in effect jumps past
4354 the rest of the alternatives. (They really jump to the
4355 ending jump of the following alternative, because tensioning
4356 these jumps is a hassle.)
4357
4358 Repeats start with an on_failure_jump that points past both
4359 the repetition text and either the following jump or
4360 pop_failure_jump back to this on_failure_jump. */
4361 case on_failure_jump:
4362 on_failure:
4363 DEBUG_PRINT1 ("EXECUTING on_failure_jump");
4364
4365 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4366 DEBUG_PRINT3 (" %d (to 0x%x)", mcnt, p + mcnt);
4367
4368 /* If this on_failure_jump comes right before a group (i.e.,
4369 the original * applied to a group), save the information
4370 for that group and all inner ones, so that if we fail back
4371 to this point, the group's information will be correct.
4372 For example, in \(a*\)*\1, we need the preceding group,
6676cb1c 4373 and in \(zz\(a*\)b*\)\2, we need the inner group. */
fa9a63c5
RM
4374
4375 /* We can't use `p' to check ahead because we push
4376 a failure point to `p + mcnt' after we do this. */
4377 p1 = p;
4378
4379 /* We need to skip no_op's before we look for the
4380 start_memory in case this on_failure_jump is happening as
4381 the result of a completed succeed_n, as in \(a\)\{1,3\}b\1
4382 against aba. */
4383 while (p1 < pend && (re_opcode_t) *p1 == no_op)
4384 p1++;
4385
4386 if (p1 < pend && (re_opcode_t) *p1 == start_memory)
4387 {
4388 /* We have a new highest active register now. This will
4389 get reset at the start_memory we are about to get to,
4390 but we will have saved all the registers relevant to
4391 this repetition op, as described above. */
4392 highest_active_reg = *(p1 + 1) + *(p1 + 2);
4393 if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
4394 lowest_active_reg = *(p1 + 1);
4395 }
4396
4397 DEBUG_PRINT1 (":\n");
4398 PUSH_FAILURE_POINT (p + mcnt, d, -2);
4399 break;
4400
4401
4402 /* A smart repeat ends with `maybe_pop_jump'.
4403 We change it to either `pop_failure_jump' or `jump'. */
4404 case maybe_pop_jump:
4405 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4406 DEBUG_PRINT2 ("EXECUTING maybe_pop_jump %d.\n", mcnt);
4407 {
4408 register unsigned char *p2 = p;
4409
4410 /* Compare the beginning of the repeat with what in the
4411 pattern follows its end. If we can establish that there
4412 is nothing that they would both match, i.e., that we
4413 would have to backtrack because of (as in, e.g., `a*a')
4414 then we can change to pop_failure_jump, because we'll
4415 never have to backtrack.
4416
4417 This is not true in the case of alternatives: in
4418 `(a|ab)*' we do need to backtrack to the `ab' alternative
4419 (e.g., if the string was `ab'). But instead of trying to
4420 detect that here, the alternative has put on a dummy
4421 failure point which is what we will end up popping. */
4422
4423 /* Skip over open/close-group commands.
4424 If what follows this loop is a ...+ construct,
4425 look at what begins its body, since we will have to
4426 match at least one of that. */
4427 while (1)
4428 {
4429 if (p2 + 2 < pend
4430 && ((re_opcode_t) *p2 == stop_memory
4431 || (re_opcode_t) *p2 == start_memory))
4432 p2 += 3;
4433 else if (p2 + 6 < pend
4434 && (re_opcode_t) *p2 == dummy_failure_jump)
4435 p2 += 6;
4436 else
4437 break;
4438 }
4439
4440 p1 = p + mcnt;
4441 /* p1[0] ... p1[2] are the `on_failure_jump' corresponding
4442 to the `maybe_finalize_jump' of this case. Examine what
4443 follows. */
4444
4445 /* If we're at the end of the pattern, we can change. */
4446 if (p2 == pend)
4447 {
4448 /* Consider what happens when matching ":\(.*\)"
4449 against ":/". I don't really understand this code
4450 yet. */
4451 p[-3] = (unsigned char) pop_failure_jump;
4452 DEBUG_PRINT1
4453 (" End of pattern: change to `pop_failure_jump'.\n");
4454 }
4455
4456 else if ((re_opcode_t) *p2 == exactn
4457 || (bufp->newline_anchor && (re_opcode_t) *p2 == endline))
4458 {
4459 register unsigned char c
4460 = *p2 == (unsigned char) endline ? '\n' : p2[2];
4461
4462 if ((re_opcode_t) p1[3] == exactn && p1[5] != c)
4463 {
4464 p[-3] = (unsigned char) pop_failure_jump;
4465 DEBUG_PRINT3 (" %c != %c => pop_failure_jump.\n",
4466 c, p1[5]);
4467 }
4468
4469 else if ((re_opcode_t) p1[3] == charset
4470 || (re_opcode_t) p1[3] == charset_not)
4471 {
4472 int not = (re_opcode_t) p1[3] == charset_not;
4473
4474 if (c < (unsigned char) (p1[4] * BYTEWIDTH)
4475 && p1[5 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
4476 not = !not;
4477
4478 /* `not' is equal to 1 if c would match, which means
4479 that we can't change to pop_failure_jump. */
4480 if (!not)
4481 {
4482 p[-3] = (unsigned char) pop_failure_jump;
4483 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
4484 }
4485 }
4486 }
4487 else if ((re_opcode_t) *p2 == charset)
4488 {
4489#ifdef DEBUG
4490 register unsigned char c
4491 = *p2 == (unsigned char) endline ? '\n' : p2[2];
4492#endif
4493
4494 if ((re_opcode_t) p1[3] == exactn
4495 && ! ((int) p2[1] * BYTEWIDTH > (int) p1[4]
4496 && (p2[1 + p1[4] / BYTEWIDTH]
4497 & (1 << (p1[4] % BYTEWIDTH)))))
4498 {
4499 p[-3] = (unsigned char) pop_failure_jump;
4500 DEBUG_PRINT3 (" %c != %c => pop_failure_jump.\n",
4501 c, p1[5]);
4502 }
4503
4504 else if ((re_opcode_t) p1[3] == charset_not)
4505 {
4506 int idx;
4507 /* We win if the charset_not inside the loop
4508 lists every character listed in the charset after. */
4509 for (idx = 0; idx < (int) p2[1]; idx++)
4510 if (! (p2[2 + idx] == 0
4511 || (idx < (int) p1[4]
4512 && ((p2[2 + idx] & ~ p1[5 + idx]) == 0))))
4513 break;
4514
4515 if (idx == p2[1])
4516 {
4517 p[-3] = (unsigned char) pop_failure_jump;
4518 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
4519 }
4520 }
4521 else if ((re_opcode_t) p1[3] == charset)
4522 {
4523 int idx;
4524 /* We win if the charset inside the loop
4525 has no overlap with the one after the loop. */
4526 for (idx = 0;
4527 idx < (int) p2[1] && idx < (int) p1[4];
4528 idx++)
4529 if ((p2[2 + idx] & p1[5 + idx]) != 0)
4530 break;
4531
4532 if (idx == p2[1] || idx == p1[4])
4533 {
4534 p[-3] = (unsigned char) pop_failure_jump;
4535 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
4536 }
4537 }
4538 }
4539 }
4540 p -= 2; /* Point at relative address again. */
4541 if ((re_opcode_t) p[-1] != pop_failure_jump)
4542 {
4543 p[-1] = (unsigned char) jump;
4544 DEBUG_PRINT1 (" Match => jump.\n");
4545 goto unconditional_jump;
4546 }
4547 /* Note fall through. */
4548
4549
4550 /* The end of a simple repeat has a pop_failure_jump back to
4551 its matching on_failure_jump, where the latter will push a
4552 failure point. The pop_failure_jump takes off failure
4553 points put on by this pop_failure_jump's matching
4554 on_failure_jump; we got through the pattern to here from the
4555 matching on_failure_jump, so didn't fail. */
4556 case pop_failure_jump:
4557 {
4558 /* We need to pass separate storage for the lowest and
4559 highest registers, even though we don't care about the
4560 actual values. Otherwise, we will restore only one
4561 register from the stack, since lowest will == highest in
4562 `pop_failure_point'. */
4563 unsigned dummy_low_reg, dummy_high_reg;
4564 unsigned char *pdummy;
4565 const char *sdummy;
4566
4567 DEBUG_PRINT1 ("EXECUTING pop_failure_jump.\n");
4568 POP_FAILURE_POINT (sdummy, pdummy,
4569 dummy_low_reg, dummy_high_reg,
4570 reg_dummy, reg_dummy, reg_info_dummy);
4571 }
4572 /* Note fall through. */
4573
4574
4575 /* Unconditionally jump (without popping any failure points). */
4576 case jump:
4577 unconditional_jump:
4578 EXTRACT_NUMBER_AND_INCR (mcnt, p); /* Get the amount to jump. */
4579 DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt);
4580 p += mcnt; /* Do the jump. */
4581 DEBUG_PRINT2 ("(to 0x%x).\n", p);
4582 break;
4583
4584
4585 /* We need this opcode so we can detect where alternatives end
4586 in `group_match_null_string_p' et al. */
4587 case jump_past_alt:
4588 DEBUG_PRINT1 ("EXECUTING jump_past_alt.\n");
4589 goto unconditional_jump;
4590
4591
4592 /* Normally, the on_failure_jump pushes a failure point, which
4593 then gets popped at pop_failure_jump. We will end up at
4594 pop_failure_jump, also, and with a pattern of, say, `a+', we
4595 are skipping over the on_failure_jump, so we have to push
4596 something meaningless for pop_failure_jump to pop. */
4597 case dummy_failure_jump:
4598 DEBUG_PRINT1 ("EXECUTING dummy_failure_jump.\n");
4599 /* It doesn't matter what we push for the string here. What
4600 the code at `fail' tests is the value for the pattern. */
4601 PUSH_FAILURE_POINT (0, 0, -2);
4602 goto unconditional_jump;
4603
4604
4605 /* At the end of an alternative, we need to push a dummy failure
4606 point in case we are followed by a `pop_failure_jump', because
4607 we don't want the failure point for the alternative to be
4608 popped. For example, matching `(a|ab)*' against `aab'
4609 requires that we match the `ab' alternative. */
4610 case push_dummy_failure:
4611 DEBUG_PRINT1 ("EXECUTING push_dummy_failure.\n");
4612 /* See comments just above at `dummy_failure_jump' about the
4613 two zeroes. */
4614 PUSH_FAILURE_POINT (0, 0, -2);
4615 break;
4616
4617 /* Have to succeed matching what follows at least n times.
4618 After that, handle like `on_failure_jump'. */
4619 case succeed_n:
4620 EXTRACT_NUMBER (mcnt, p + 2);
4621 DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt);
4622
4623 assert (mcnt >= 0);
4624 /* Originally, this is how many times we HAVE to succeed. */
4625 if (mcnt > 0)
4626 {
4627 mcnt--;
4628 p += 2;
4629 STORE_NUMBER_AND_INCR (p, mcnt);
4630 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p, mcnt);
4631 }
4632 else if (mcnt == 0)
4633 {
4634 DEBUG_PRINT2 (" Setting two bytes from 0x%x to no_op.\n", p+2);
4635 p[2] = (unsigned char) no_op;
4636 p[3] = (unsigned char) no_op;
4637 goto on_failure;
4638 }
4639 break;
4640
4641 case jump_n:
4642 EXTRACT_NUMBER (mcnt, p + 2);
4643 DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt);
4644
4645 /* Originally, this is how many times we CAN jump. */
4646 if (mcnt)
4647 {
4648 mcnt--;
4649 STORE_NUMBER (p + 2, mcnt);
4650 goto unconditional_jump;
4651 }
4652 /* If don't have to jump any more, skip over the rest of command. */
4653 else
4654 p += 4;
4655 break;
4656
4657 case set_number_at:
4658 {
4659 DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
4660
4661 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4662 p1 = p + mcnt;
4663 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4664 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p1, mcnt);
4665 STORE_NUMBER (p1, mcnt);
4666 break;
4667 }
4668
4669 case wordbound:
4670 DEBUG_PRINT1 ("EXECUTING wordbound.\n");
4671 if (AT_WORD_BOUNDARY (d))
4672 break;
4673 goto fail;
4674
4675 case notwordbound:
4676 DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
4677 if (AT_WORD_BOUNDARY (d))
4678 goto fail;
4679 break;
4680
4681 case wordbeg:
4682 DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
4683 if (WORDCHAR_P (d) && (AT_STRINGS_BEG (d) || !WORDCHAR_P (d - 1)))
4684 break;
4685 goto fail;
4686
4687 case wordend:
4688 DEBUG_PRINT1 ("EXECUTING wordend.\n");
4689 if (!AT_STRINGS_BEG (d) && WORDCHAR_P (d - 1)
4690 && (!WORDCHAR_P (d) || AT_STRINGS_END (d)))
4691 break;
4692 goto fail;
4693
4694#ifdef emacs
4695 case before_dot:
4696 DEBUG_PRINT1 ("EXECUTING before_dot.\n");
4697 if (PTR_CHAR_POS ((unsigned char *) d) >= point)
4698 goto fail;
4699 break;
4700
4701 case at_dot:
4702 DEBUG_PRINT1 ("EXECUTING at_dot.\n");
4703 if (PTR_CHAR_POS ((unsigned char *) d) != point)
4704 goto fail;
4705 break;
4706
4707 case after_dot:
4708 DEBUG_PRINT1 ("EXECUTING after_dot.\n");
4709 if (PTR_CHAR_POS ((unsigned char *) d) <= point)
4710 goto fail;
4711 break;
fa9a63c5
RM
4712
4713 case syntaxspec:
4714 DEBUG_PRINT2 ("EXECUTING syntaxspec %d.\n", mcnt);
4715 mcnt = *p++;
4716 goto matchsyntax;
4717
4718 case wordchar:
4719 DEBUG_PRINT1 ("EXECUTING Emacs wordchar.\n");
4720 mcnt = (int) Sword;
4721 matchsyntax:
4722 PREFETCH ();
4723 /* Can't use *d++ here; SYNTAX may be an unsafe macro. */
4724 d++;
4725 if (SYNTAX (d[-1]) != (enum syntaxcode) mcnt)
4726 goto fail;
4727 SET_REGS_MATCHED ();
4728 break;
4729
4730 case notsyntaxspec:
4731 DEBUG_PRINT2 ("EXECUTING notsyntaxspec %d.\n", mcnt);
4732 mcnt = *p++;
4733 goto matchnotsyntax;
4734
4735 case notwordchar:
4736 DEBUG_PRINT1 ("EXECUTING Emacs notwordchar.\n");
4737 mcnt = (int) Sword;
4738 matchnotsyntax:
4739 PREFETCH ();
4740 /* Can't use *d++ here; SYNTAX may be an unsafe macro. */
4741 d++;
4742 if (SYNTAX (d[-1]) == (enum syntaxcode) mcnt)
4743 goto fail;
4744 SET_REGS_MATCHED ();
4745 break;
4746
4747#else /* not emacs */
4748 case wordchar:
4749 DEBUG_PRINT1 ("EXECUTING non-Emacs wordchar.\n");
4750 PREFETCH ();
4751 if (!WORDCHAR_P (d))
4752 goto fail;
4753 SET_REGS_MATCHED ();
4754 d++;
4755 break;
4756
4757 case notwordchar:
4758 DEBUG_PRINT1 ("EXECUTING non-Emacs notwordchar.\n");
4759 PREFETCH ();
4760 if (WORDCHAR_P (d))
4761 goto fail;
4762 SET_REGS_MATCHED ();
4763 d++;
4764 break;
4765#endif /* not emacs */
4766
4767 default:
4768 abort ();
4769 }
4770 continue; /* Successfully executed one pattern command; keep going. */
4771
4772
4773 /* We goto here if a matching operation fails. */
4774 fail:
4775 if (!FAIL_STACK_EMPTY ())
4776 { /* A restart point is known. Restore to that state. */
4777 DEBUG_PRINT1 ("\nFAIL:\n");
4778 POP_FAILURE_POINT (d, p,
4779 lowest_active_reg, highest_active_reg,
4780 regstart, regend, reg_info);
4781
4782 /* If this failure point is a dummy, try the next one. */
4783 if (!p)
4784 goto fail;
4785
4786 /* If we failed to the end of the pattern, don't examine *p. */
4787 assert (p <= pend);
4788 if (p < pend)
4789 {
4790 boolean is_a_jump_n = false;
4791
4792 /* If failed to a backwards jump that's part of a repetition
4793 loop, need to pop this failure point and use the next one. */
4794 switch ((re_opcode_t) *p)
4795 {
4796 case jump_n:
4797 is_a_jump_n = true;
4798 case maybe_pop_jump:
4799 case pop_failure_jump:
4800 case jump:
4801 p1 = p + 1;
4802 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4803 p1 += mcnt;
4804
4805 if ((is_a_jump_n && (re_opcode_t) *p1 == succeed_n)
4806 || (!is_a_jump_n
4807 && (re_opcode_t) *p1 == on_failure_jump))
4808 goto fail;
4809 break;
4810 default:
4811 /* do nothing */ ;
4812 }
4813 }
4814
4815 if (d >= string1 && d <= end1)
4816 dend = end_match_1;
4817 }
4818 else
4819 break; /* Matching at this starting point really fails. */
4820 } /* for (;;) */
4821
4822 if (best_regs_set)
4823 goto restore_best_regs;
4824
4825 FREE_VARIABLES ();
4826
4827 return -1; /* Failure to match. */
4828} /* re_match_2 */
4829\f
4830/* Subroutine definitions for re_match_2. */
4831
4832
4833/* We are passed P pointing to a register number after a start_memory.
4834
4835 Return true if the pattern up to the corresponding stop_memory can
4836 match the empty string, and false otherwise.
4837
4838 If we find the matching stop_memory, sets P to point to one past its number.
4839 Otherwise, sets P to an undefined byte less than or equal to END.
4840
4841 We don't handle duplicates properly (yet). */
4842
4843static boolean
4844group_match_null_string_p (p, end, reg_info)
4845 unsigned char **p, *end;
4846 register_info_type *reg_info;
4847{
4848 int mcnt;
4849 /* Point to after the args to the start_memory. */
4850 unsigned char *p1 = *p + 2;
4851
4852 while (p1 < end)
4853 {
4854 /* Skip over opcodes that can match nothing, and return true or
4855 false, as appropriate, when we get to one that can't, or to the
4856 matching stop_memory. */
4857
4858 switch ((re_opcode_t) *p1)
4859 {
4860 /* Could be either a loop or a series of alternatives. */
4861 case on_failure_jump:
4862 p1++;
4863 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4864
4865 /* If the next operation is not a jump backwards in the
4866 pattern. */
4867
4868 if (mcnt >= 0)
4869 {
4870 /* Go through the on_failure_jumps of the alternatives,
4871 seeing if any of the alternatives cannot match nothing.
4872 The last alternative starts with only a jump,
4873 whereas the rest start with on_failure_jump and end
4874 with a jump, e.g., here is the pattern for `a|b|c':
4875
4876 /on_failure_jump/0/6/exactn/1/a/jump_past_alt/0/6
4877 /on_failure_jump/0/6/exactn/1/b/jump_past_alt/0/3
4878 /exactn/1/c
4879
4880 So, we have to first go through the first (n-1)
4881 alternatives and then deal with the last one separately. */
4882
4883
4884 /* Deal with the first (n-1) alternatives, which start
4885 with an on_failure_jump (see above) that jumps to right
4886 past a jump_past_alt. */
4887
4888 while ((re_opcode_t) p1[mcnt-3] == jump_past_alt)
4889 {
4890 /* `mcnt' holds how many bytes long the alternative
4891 is, including the ending `jump_past_alt' and
4892 its number. */
4893
4894 if (!alt_match_null_string_p (p1, p1 + mcnt - 3,
4895 reg_info))
4896 return false;
4897
4898 /* Move to right after this alternative, including the
4899 jump_past_alt. */
4900 p1 += mcnt;
4901
4902 /* Break if it's the beginning of an n-th alternative
4903 that doesn't begin with an on_failure_jump. */
4904 if ((re_opcode_t) *p1 != on_failure_jump)
4905 break;
4906
4907 /* Still have to check that it's not an n-th
4908 alternative that starts with an on_failure_jump. */
4909 p1++;
4910 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4911 if ((re_opcode_t) p1[mcnt-3] != jump_past_alt)
4912 {
4913 /* Get to the beginning of the n-th alternative. */
4914 p1 -= 3;
4915 break;
4916 }
4917 }
4918
4919 /* Deal with the last alternative: go back and get number
4920 of the `jump_past_alt' just before it. `mcnt' contains
4921 the length of the alternative. */
4922 EXTRACT_NUMBER (mcnt, p1 - 2);
4923
4924 if (!alt_match_null_string_p (p1, p1 + mcnt, reg_info))
4925 return false;
4926
4927 p1 += mcnt; /* Get past the n-th alternative. */
4928 } /* if mcnt > 0 */
4929 break;
4930
4931
4932 case stop_memory:
4933 assert (p1[1] == **p);
4934 *p = p1 + 2;
4935 return true;
4936
4937
4938 default:
4939 if (!common_op_match_null_string_p (&p1, end, reg_info))
4940 return false;
4941 }
4942 } /* while p1 < end */
4943
4944 return false;
4945} /* group_match_null_string_p */
4946
4947
4948/* Similar to group_match_null_string_p, but doesn't deal with alternatives:
4949 It expects P to be the first byte of a single alternative and END one
4950 byte past the last. The alternative can contain groups. */
4951
4952static boolean
4953alt_match_null_string_p (p, end, reg_info)
4954 unsigned char *p, *end;
4955 register_info_type *reg_info;
4956{
4957 int mcnt;
4958 unsigned char *p1 = p;
4959
4960 while (p1 < end)
4961 {
4962 /* Skip over opcodes that can match nothing, and break when we get
4963 to one that can't. */
4964
4965 switch ((re_opcode_t) *p1)
4966 {
4967 /* It's a loop. */
4968 case on_failure_jump:
4969 p1++;
4970 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4971 p1 += mcnt;
4972 break;
4973
4974 default:
4975 if (!common_op_match_null_string_p (&p1, end, reg_info))
4976 return false;
4977 }
4978 } /* while p1 < end */
4979
4980 return true;
4981} /* alt_match_null_string_p */
4982
4983
4984/* Deals with the ops common to group_match_null_string_p and
4985 alt_match_null_string_p.
4986
4987 Sets P to one after the op and its arguments, if any. */
4988
4989static boolean
4990common_op_match_null_string_p (p, end, reg_info)
4991 unsigned char **p, *end;
4992 register_info_type *reg_info;
4993{
4994 int mcnt;
4995 boolean ret;
4996 int reg_no;
4997 unsigned char *p1 = *p;
4998
4999 switch ((re_opcode_t) *p1++)
5000 {
5001 case no_op:
5002 case begline:
5003 case endline:
5004 case begbuf:
5005 case endbuf:
5006 case wordbeg:
5007 case wordend:
5008 case wordbound:
5009 case notwordbound:
5010#ifdef emacs
5011 case before_dot:
5012 case at_dot:
5013 case after_dot:
5014#endif
5015 break;
5016
5017 case start_memory:
5018 reg_no = *p1;
5019 assert (reg_no > 0 && reg_no <= MAX_REGNUM);
5020 ret = group_match_null_string_p (&p1, end, reg_info);
5021
5022 /* Have to set this here in case we're checking a group which
5023 contains a group and a back reference to it. */
5024
5025 if (REG_MATCH_NULL_STRING_P (reg_info[reg_no]) == MATCH_NULL_UNSET_VALUE)
5026 REG_MATCH_NULL_STRING_P (reg_info[reg_no]) = ret;
5027
5028 if (!ret)
5029 return false;
5030 break;
5031
5032 /* If this is an optimized succeed_n for zero times, make the jump. */
5033 case jump:
5034 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5035 if (mcnt >= 0)
5036 p1 += mcnt;
5037 else
5038 return false;
5039 break;
5040
5041 case succeed_n:
5042 /* Get to the number of times to succeed. */
5043 p1 += 2;
5044 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5045
5046 if (mcnt == 0)
5047 {
5048 p1 -= 4;
5049 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5050 p1 += mcnt;
5051 }
5052 else
5053 return false;
5054 break;
5055
5056 case duplicate:
5057 if (!REG_MATCH_NULL_STRING_P (reg_info[*p1]))
5058 return false;
5059 break;
5060
5061 case set_number_at:
5062 p1 += 4;
5063
5064 default:
5065 /* All other opcodes mean we cannot match the empty string. */
5066 return false;
5067 }
5068
5069 *p = p1;
5070 return true;
5071} /* common_op_match_null_string_p */
5072
5073
5074/* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
5075 bytes; nonzero otherwise. */
5076
5077static int
5078bcmp_translate (s1, s2, len, translate)
5079 unsigned char *s1, *s2;
5080 register int len;
6676cb1c 5081 RE_TRANSLATE_TYPE translate;
fa9a63c5
RM
5082{
5083 register unsigned char *p1 = s1, *p2 = s2;
5084 while (len)
5085 {
5086 if (translate[*p1++] != translate[*p2++]) return 1;
5087 len--;
5088 }
5089 return 0;
5090}
5091\f
5092/* Entry points for GNU code. */
5093
5094/* re_compile_pattern is the GNU regular expression compiler: it
5095 compiles PATTERN (of length SIZE) and puts the result in BUFP.
5096 Returns 0 if the pattern was valid, otherwise an error string.
5097
5098 Assumes the `allocated' (and perhaps `buffer') and `translate' fields
5099 are set in BUFP on entry.
5100
5101 We call regex_compile to do the actual compilation. */
5102
5103const char *
5104re_compile_pattern (pattern, length, bufp)
5105 const char *pattern;
5106 int length;
5107 struct re_pattern_buffer *bufp;
5108{
5109 reg_errcode_t ret;
5110
5111 /* GNU code is written to assume at least RE_NREGS registers will be set
5112 (and at least one extra will be -1). */
5113 bufp->regs_allocated = REGS_UNALLOCATED;
5114
5115 /* And GNU code determines whether or not to get register information
5116 by passing null for the REGS argument to re_match, etc., not by
5117 setting no_sub. */
5118 bufp->no_sub = 0;
5119
5120 /* Match anchors at newline. */
5121 bufp->newline_anchor = 1;
5122
5123 ret = regex_compile (pattern, length, re_syntax_options, bufp);
5124
5125 if (!ret)
5126 return NULL;
5127 return gettext (re_error_msgid[(int) ret]);
5128}
5129\f
5130/* Entry points compatible with 4.2 BSD regex library. We don't define
5131 them unless specifically requested. */
5132
5133#ifdef _REGEX_RE_COMP
5134
5135/* BSD has one and only one pattern buffer. */
5136static struct re_pattern_buffer re_comp_buf;
5137
5138char *
5139re_comp (s)
5140 const char *s;
5141{
5142 reg_errcode_t ret;
5143
5144 if (!s)
5145 {
5146 if (!re_comp_buf.buffer)
5147 return gettext ("No previous regular expression");
5148 return 0;
5149 }
5150
5151 if (!re_comp_buf.buffer)
5152 {
5153 re_comp_buf.buffer = (unsigned char *) malloc (200);
5154 if (re_comp_buf.buffer == NULL)
5155 return gettext (re_error_msgid[(int) REG_ESPACE]);
5156 re_comp_buf.allocated = 200;
5157
5158 re_comp_buf.fastmap = (char *) malloc (1 << BYTEWIDTH);
5159 if (re_comp_buf.fastmap == NULL)
5160 return gettext (re_error_msgid[(int) REG_ESPACE]);
5161 }
5162
5163 /* Since `re_exec' always passes NULL for the `regs' argument, we
5164 don't need to initialize the pattern buffer fields which affect it. */
5165
5166 /* Match anchors at newlines. */
5167 re_comp_buf.newline_anchor = 1;
5168
5169 ret = regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf);
5170
5171 if (!ret)
5172 return NULL;
5173
5174 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
5175 return (char *) gettext (re_error_msgid[(int) ret]);
5176}
5177
5178
5179int
5180re_exec (s)
5181 const char *s;
5182{
5183 const int len = strlen (s);
5184 return
5185 0 <= re_search (&re_comp_buf, s, len, 0, len, (struct re_registers *) 0);
5186}
5187#endif /* _REGEX_RE_COMP */
5188\f
5189/* POSIX.2 functions. Don't define these for Emacs. */
5190
5191#ifndef emacs
5192
5193/* regcomp takes a regular expression as a string and compiles it.
5194
5195 PREG is a regex_t *. We do not expect any fields to be initialized,
5196 since POSIX says we shouldn't. Thus, we set
5197
5198 `buffer' to the compiled pattern;
5199 `used' to the length of the compiled pattern;
5200 `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
5201 REG_EXTENDED bit in CFLAGS is set; otherwise, to
5202 RE_SYNTAX_POSIX_BASIC;
5203 `newline_anchor' to REG_NEWLINE being set in CFLAGS;
5204 `fastmap' and `fastmap_accurate' to zero;
5205 `re_nsub' to the number of subexpressions in PATTERN.
5206
5207 PATTERN is the address of the pattern string.
5208
5209 CFLAGS is a series of bits which affect compilation.
5210
5211 If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
5212 use POSIX basic syntax.
5213
5214 If REG_NEWLINE is set, then . and [^...] don't match newline.
5215 Also, regexec will try a match beginning after every newline.
5216
5217 If REG_ICASE is set, then we considers upper- and lowercase
5218 versions of letters to be equivalent when matching.
5219
5220 If REG_NOSUB is set, then when PREG is passed to regexec, that
5221 routine will report only success or failure, and nothing about the
5222 registers.
5223
5224 It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for
5225 the return codes and their meanings.) */
5226
5227int
5228regcomp (preg, pattern, cflags)
5229 regex_t *preg;
5230 const char *pattern;
5231 int cflags;
5232{
5233 reg_errcode_t ret;
5234 unsigned syntax
5235 = (cflags & REG_EXTENDED) ?
5236 RE_SYNTAX_POSIX_EXTENDED : RE_SYNTAX_POSIX_BASIC;
5237
5238 /* regex_compile will allocate the space for the compiled pattern. */
5239 preg->buffer = 0;
5240 preg->allocated = 0;
5241 preg->used = 0;
5242
5243 /* Don't bother to use a fastmap when searching. This simplifies the
5244 REG_NEWLINE case: if we used a fastmap, we'd have to put all the
5245 characters after newlines into the fastmap. This way, we just try
5246 every character. */
5247 preg->fastmap = 0;
5248
5249 if (cflags & REG_ICASE)
5250 {
5251 unsigned i;
5252
6676cb1c
RS
5253 preg->translate
5254 = (RE_TRANSLATE_TYPE) malloc (CHAR_SET_SIZE
5255 * sizeof (*(RE_TRANSLATE_TYPE)0));
fa9a63c5
RM
5256 if (preg->translate == NULL)
5257 return (int) REG_ESPACE;
5258
5259 /* Map uppercase characters to corresponding lowercase ones. */
5260 for (i = 0; i < CHAR_SET_SIZE; i++)
5261 preg->translate[i] = ISUPPER (i) ? tolower (i) : i;
5262 }
5263 else
5264 preg->translate = NULL;
5265
5266 /* If REG_NEWLINE is set, newlines are treated differently. */
5267 if (cflags & REG_NEWLINE)
5268 { /* REG_NEWLINE implies neither . nor [^...] match newline. */
5269 syntax &= ~RE_DOT_NEWLINE;
5270 syntax |= RE_HAT_LISTS_NOT_NEWLINE;
5271 /* It also changes the matching behavior. */
5272 preg->newline_anchor = 1;
5273 }
5274 else
5275 preg->newline_anchor = 0;
5276
5277 preg->no_sub = !!(cflags & REG_NOSUB);
5278
5279 /* POSIX says a null character in the pattern terminates it, so we
5280 can use strlen here in compiling the pattern. */
5281 ret = regex_compile (pattern, strlen (pattern), syntax, preg);
5282
5283 /* POSIX doesn't distinguish between an unmatched open-group and an
5284 unmatched close-group: both are REG_EPAREN. */
5285 if (ret == REG_ERPAREN) ret = REG_EPAREN;
5286
5287 return (int) ret;
5288}
5289
5290
5291/* regexec searches for a given pattern, specified by PREG, in the
5292 string STRING.
5293
5294 If NMATCH is zero or REG_NOSUB was set in the cflags argument to
5295 `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at
5296 least NMATCH elements, and we set them to the offsets of the
5297 corresponding matched substrings.
5298
5299 EFLAGS specifies `execution flags' which affect matching: if
5300 REG_NOTBOL is set, then ^ does not match at the beginning of the
5301 string; if REG_NOTEOL is set, then $ does not match at the end.
5302
5303 We return 0 if we find a match and REG_NOMATCH if not. */
5304
5305int
5306regexec (preg, string, nmatch, pmatch, eflags)
5307 const regex_t *preg;
5308 const char *string;
5309 size_t nmatch;
5310 regmatch_t pmatch[];
5311 int eflags;
5312{
5313 int ret;
5314 struct re_registers regs;
5315 regex_t private_preg;
5316 int len = strlen (string);
5317 boolean want_reg_info = !preg->no_sub && nmatch > 0;
5318
5319 private_preg = *preg;
5320
5321 private_preg.not_bol = !!(eflags & REG_NOTBOL);
5322 private_preg.not_eol = !!(eflags & REG_NOTEOL);
5323
5324 /* The user has told us exactly how many registers to return
5325 information about, via `nmatch'. We have to pass that on to the
5326 matching routines. */
5327 private_preg.regs_allocated = REGS_FIXED;
5328
5329 if (want_reg_info)
5330 {
5331 regs.num_regs = nmatch;
5332 regs.start = TALLOC (nmatch, regoff_t);
5333 regs.end = TALLOC (nmatch, regoff_t);
5334 if (regs.start == NULL || regs.end == NULL)
5335 return (int) REG_NOMATCH;
5336 }
5337
5338 /* Perform the searching operation. */
5339 ret = re_search (&private_preg, string, len,
5340 /* start: */ 0, /* range: */ len,
5341 want_reg_info ? &regs : (struct re_registers *) 0);
5342
5343 /* Copy the register information to the POSIX structure. */
5344 if (want_reg_info)
5345 {
5346 if (ret >= 0)
5347 {
5348 unsigned r;
5349
5350 for (r = 0; r < nmatch; r++)
5351 {
5352 pmatch[r].rm_so = regs.start[r];
5353 pmatch[r].rm_eo = regs.end[r];
5354 }
5355 }
5356
5357 /* If we needed the temporary register info, free the space now. */
5358 free (regs.start);
5359 free (regs.end);
5360 }
5361
5362 /* We want zero return to mean success, unlike `re_search'. */
5363 return ret >= 0 ? (int) REG_NOERROR : (int) REG_NOMATCH;
5364}
5365
5366
5367/* Returns a message corresponding to an error code, ERRCODE, returned
5368 from either regcomp or regexec. We don't use PREG here. */
5369
5370size_t
5371regerror (errcode, preg, errbuf, errbuf_size)
5372 int errcode;
5373 const regex_t *preg;
5374 char *errbuf;
5375 size_t errbuf_size;
5376{
5377 const char *msg;
5378 size_t msg_size;
5379
5380 if (errcode < 0
5381 || errcode >= (sizeof (re_error_msgid) / sizeof (re_error_msgid[0])))
5382 /* Only error codes returned by the rest of the code should be passed
5383 to this routine. If we are given anything else, or if other regex
5384 code generates an invalid error code, then the program has a bug.
5385 Dump core so we can fix it. */
5386 abort ();
5387
5388 msg = gettext (re_error_msgid[errcode]);
5389
5390 msg_size = strlen (msg) + 1; /* Includes the null. */
5391
5392 if (errbuf_size != 0)
5393 {
5394 if (msg_size > errbuf_size)
5395 {
5396 strncpy (errbuf, msg, errbuf_size - 1);
5397 errbuf[errbuf_size - 1] = 0;
5398 }
5399 else
5400 strcpy (errbuf, msg);
5401 }
5402
5403 return msg_size;
5404}
5405
5406
5407/* Free dynamically allocated space used by PREG. */
5408
5409void
5410regfree (preg)
5411 regex_t *preg;
5412{
5413 if (preg->buffer != NULL)
5414 free (preg->buffer);
5415 preg->buffer = NULL;
5416
5417 preg->allocated = 0;
5418 preg->used = 0;
5419
5420 if (preg->fastmap != NULL)
5421 free (preg->fastmap);
5422 preg->fastmap = NULL;
5423 preg->fastmap_accurate = 0;
5424
5425 if (preg->translate != NULL)
5426 free (preg->translate);
5427 preg->translate = NULL;
5428}
5429
5430#endif /* not emacs */
5431\f
5432/*
5433Local variables:
5434make-backup-files: t
5435version-control: t
5436trim-versions-without-asking: nil
5437End:
5438*/