I spell gud.
[bpt/emacs.git] / src / regex.c
CommitLineData
e318085a 1/* Extended regular expression matching and search library, version
0b32bf0e 2 0.12. (Implements POSIX draft P1003.2/D11.2, except for some of the
bc78d348
KB
3 internationalization features.)
4
0b5538bd 5 Copyright (C) 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
76b6f707 6 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
e468b87f 7 Free Software Foundation, Inc.
bc78d348 8
fa9a63c5
RM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
e468b87f 11 the Free Software Foundation; either version 3, or (at your option)
fa9a63c5
RM
12 any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
7814e705 16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
fa9a63c5
RM
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
4fc5845f 21 Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
7814e705 22 USA. */
fa9a63c5 23
6df42991 24/* TODO:
505bde11 25 - structure the opcode space into opcode+flag.
dc1e502d 26 - merge with glibc's regex.[ch].
01618498 27 - replace (succeed_n + jump_n + set_number_at) with something that doesn't
6dcf2d0e
SM
28 need to modify the compiled regexp so that re_match can be reentrant.
29 - get rid of on_failure_jump_smart by doing the optimization in re_comp
30 rather than at run-time, so that re_match can be reentrant.
01618498 31*/
505bde11 32
fa9a63c5 33/* AIX requires this to be the first thing in the file. */
0b32bf0e 34#if defined _AIX && !defined REGEX_MALLOC
fa9a63c5
RM
35 #pragma alloca
36#endif
37
fa9a63c5 38#ifdef HAVE_CONFIG_H
0b32bf0e 39# include <config.h>
fa9a63c5
RM
40#endif
41
4bb91c68
SM
42#if defined STDC_HEADERS && !defined emacs
43# include <stddef.h>
44#else
45/* We need this for `regex.h', and perhaps for the Emacs include files. */
46# include <sys/types.h>
47#endif
fa9a63c5 48
14473664
SM
49/* Whether to use ISO C Amendment 1 wide char functions.
50 Those should not be used for Emacs since it uses its own. */
5e5388f6
GM
51#if defined _LIBC
52#define WIDE_CHAR_SUPPORT 1
53#else
14473664 54#define WIDE_CHAR_SUPPORT \
5e5388f6
GM
55 (HAVE_WCTYPE_H && HAVE_WCHAR_H && HAVE_BTOWC && !emacs)
56#endif
14473664
SM
57
58/* For platform which support the ISO C amendement 1 functionality we
59 support user defined character classes. */
a0ad02f7 60#if WIDE_CHAR_SUPPORT
14473664
SM
61/* Solaris 2.5 has a bug: <wchar.h> must be included before <wctype.h>. */
62# include <wchar.h>
63# include <wctype.h>
64#endif
65
c0f9ea08
SM
66#ifdef _LIBC
67/* We have to keep the namespace clean. */
68# define regfree(preg) __regfree (preg)
69# define regexec(pr, st, nm, pm, ef) __regexec (pr, st, nm, pm, ef)
70# define regcomp(preg, pattern, cflags) __regcomp (preg, pattern, cflags)
ec869672
JR
71# define regerror(err_code, preg, errbuf, errbuf_size) \
72 __regerror(err_code, preg, errbuf, errbuf_size)
c0f9ea08
SM
73# define re_set_registers(bu, re, nu, st, en) \
74 __re_set_registers (bu, re, nu, st, en)
75# define re_match_2(bufp, string1, size1, string2, size2, pos, regs, stop) \
76 __re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
77# define re_match(bufp, string, size, pos, regs) \
78 __re_match (bufp, string, size, pos, regs)
79# define re_search(bufp, string, size, startpos, range, regs) \
80 __re_search (bufp, string, size, startpos, range, regs)
81# define re_compile_pattern(pattern, length, bufp) \
82 __re_compile_pattern (pattern, length, bufp)
83# define re_set_syntax(syntax) __re_set_syntax (syntax)
84# define re_search_2(bufp, st1, s1, st2, s2, startpos, range, regs, stop) \
85 __re_search_2 (bufp, st1, s1, st2, s2, startpos, range, regs, stop)
86# define re_compile_fastmap(bufp) __re_compile_fastmap (bufp)
87
14473664
SM
88/* Make sure we call libc's function even if the user overrides them. */
89# define btowc __btowc
90# define iswctype __iswctype
91# define wctype __wctype
92
c0f9ea08
SM
93# define WEAK_ALIAS(a,b) weak_alias (a, b)
94
95/* We are also using some library internals. */
96# include <locale/localeinfo.h>
97# include <locale/elem-hash.h>
98# include <langinfo.h>
99#else
100# define WEAK_ALIAS(a,b)
101#endif
102
4bb91c68 103/* This is for other GNU distributions with internationalized messages. */
0b32bf0e 104#if HAVE_LIBINTL_H || defined _LIBC
fa9a63c5
RM
105# include <libintl.h>
106#else
107# define gettext(msgid) (msgid)
108#endif
109
5e69f11e
RM
110#ifndef gettext_noop
111/* This define is so xgettext can find the internationalizable
112 strings. */
0b32bf0e 113# define gettext_noop(String) String
5e69f11e
RM
114#endif
115
fa9a63c5
RM
116/* The `emacs' switch turns on certain matching commands
117 that make sense only in Emacs. */
118#ifdef emacs
119
0b32bf0e
SM
120# include "lisp.h"
121# include "buffer.h"
b18215fc
RS
122
123/* Make syntax table lookup grant data in gl_state. */
0b32bf0e 124# define SYNTAX_ENTRY_VIA_PROPERTY
b18215fc 125
0b32bf0e 126# include "syntax.h"
9117d724 127# include "character.h"
0b32bf0e 128# include "category.h"
fa9a63c5 129
7689ef0b
EZ
130# ifdef malloc
131# undef malloc
132# endif
0b32bf0e 133# define malloc xmalloc
7689ef0b
EZ
134# ifdef realloc
135# undef realloc
136# endif
0b32bf0e 137# define realloc xrealloc
7689ef0b
EZ
138# ifdef free
139# undef free
140# endif
0b32bf0e 141# define free xfree
9abbd165 142
7814e705 143/* Converts the pointer to the char to BEG-based offset from the start. */
0b32bf0e
SM
144# define PTR_TO_OFFSET(d) POS_AS_IN_BUFFER (POINTER_TO_OFFSET (d))
145# define POS_AS_IN_BUFFER(p) ((p) + (NILP (re_match_object) || BUFFERP (re_match_object)))
146
147# define RE_MULTIBYTE_P(bufp) ((bufp)->multibyte)
bf216479 148# define RE_TARGET_MULTIBYTE_P(bufp) ((bufp)->target_multibyte)
cf9c99bc 149# define RE_STRING_CHAR(p, s, multibyte) \
4e8a9132 150 (multibyte ? (STRING_CHAR (p, s)) : (*(p)))
cf9c99bc 151# define RE_STRING_CHAR_AND_LENGTH(p, s, len, multibyte) \
2d1675e4
SM
152 (multibyte ? (STRING_CHAR_AND_LENGTH (p, s, len)) : ((len) = 1, *(p)))
153
cf9c99bc
KH
154# define RE_CHAR_TO_MULTIBYTE(c) unibyte_to_multibyte_table[(c)]
155
2afc21f5 156# define RE_CHAR_TO_UNIBYTE(c) CHAR_TO_BYTE_SAFE (c)
cf9c99bc 157
6fdd04b0
KH
158/* Set C a (possibly converted to multibyte) character before P. P
159 points into a string which is the virtual concatenation of STR1
160 (which ends at END1) or STR2 (which ends at END2). */
bf216479
KH
161# define GET_CHAR_BEFORE_2(c, p, str1, end1, str2, end2) \
162 do { \
02cb78b5 163 if (target_multibyte) \
bf216479
KH
164 { \
165 re_char *dtemp = (p) == (str2) ? (end1) : (p); \
166 re_char *dlimit = ((p) > (str2) && (p) <= (end2)) ? (str2) : (str1); \
167 while (dtemp-- > dlimit && !CHAR_HEAD_P (*dtemp)); \
168 c = STRING_CHAR (dtemp, (p) - dtemp); \
169 } \
170 else \
171 { \
172 (c = ((p) == (str2) ? (end1) : (p))[-1]); \
cf9c99bc 173 (c) = RE_CHAR_TO_MULTIBYTE (c); \
bf216479 174 } \
2d1675e4
SM
175 } while (0)
176
6fdd04b0
KH
177/* Set C a (possibly converted to multibyte) character at P, and set
178 LEN to the byte length of that character. */
179# define GET_CHAR_AFTER(c, p, len) \
180 do { \
02cb78b5 181 if (target_multibyte) \
cf9c99bc 182 (c) = STRING_CHAR_AND_LENGTH (p, 0, len); \
6fdd04b0
KH
183 else \
184 { \
cf9c99bc 185 (c) = *p; \
6fdd04b0 186 len = 1; \
cf9c99bc 187 (c) = RE_CHAR_TO_MULTIBYTE (c); \
6fdd04b0 188 } \
8f924df7 189 } while (0)
4e8a9132 190
fa9a63c5
RM
191#else /* not emacs */
192
193/* If we are not linking with Emacs proper,
194 we can't use the relocating allocator
195 even if config.h says that we can. */
0b32bf0e 196# undef REL_ALLOC
fa9a63c5 197
0b32bf0e
SM
198# if defined STDC_HEADERS || defined _LIBC
199# include <stdlib.h>
200# else
fa9a63c5
RM
201char *malloc ();
202char *realloc ();
0b32bf0e 203# endif
fa9a63c5 204
a77f947b
CY
205/* When used in Emacs's lib-src, we need xmalloc and xrealloc. */
206
207void *
208xmalloc (size)
209 size_t size;
210{
211 register void *val;
212 val = (void *) malloc (size);
213 if (!val && size)
214 {
215 write (2, "virtual memory exhausted\n", 25);
216 exit (1);
217 }
218 return val;
219}
220
221void *
222xrealloc (block, size)
223 void *block;
224 size_t size;
225{
226 register void *val;
227 /* We must call malloc explicitly when BLOCK is 0, since some
228 reallocs don't do this. */
229 if (! block)
230 val = (void *) malloc (size);
231 else
232 val = (void *) realloc (block, size);
233 if (!val && size)
234 {
235 write (2, "virtual memory exhausted\n", 25);
236 exit (1);
237 }
238 return val;
239}
240
a073faa6
CY
241# ifdef malloc
242# undef malloc
243# endif
244# define malloc xmalloc
245# ifdef realloc
246# undef realloc
247# endif
248# define realloc xrealloc
249
9e4ecb26 250/* When used in Emacs's lib-src, we need to get bzero and bcopy somehow.
4bb91c68 251 If nothing else has been done, use the method below. */
0b32bf0e
SM
252# ifdef INHIBIT_STRING_HEADER
253# if !(defined HAVE_BZERO && defined HAVE_BCOPY)
254# if !defined bzero && !defined bcopy
255# undef INHIBIT_STRING_HEADER
256# endif
257# endif
258# endif
9e4ecb26 259
4bb91c68 260/* This is the normal way of making sure we have memcpy, memcmp and bzero.
9e4ecb26
KH
261 This is used in most programs--a few other programs avoid this
262 by defining INHIBIT_STRING_HEADER. */
0b32bf0e
SM
263# ifndef INHIBIT_STRING_HEADER
264# if defined HAVE_STRING_H || defined STDC_HEADERS || defined _LIBC
265# include <string.h>
0b32bf0e 266# ifndef bzero
4bb91c68
SM
267# ifndef _LIBC
268# define bzero(s, n) (memset (s, '\0', n), (s))
269# else
270# define bzero(s, n) __bzero (s, n)
271# endif
0b32bf0e
SM
272# endif
273# else
274# include <strings.h>
4bb91c68
SM
275# ifndef memcmp
276# define memcmp(s1, s2, n) bcmp (s1, s2, n)
277# endif
278# ifndef memcpy
279# define memcpy(d, s, n) (bcopy (s, d, n), (d))
280# endif
0b32bf0e
SM
281# endif
282# endif
fa9a63c5
RM
283
284/* Define the syntax stuff for \<, \>, etc. */
285
990b2375 286/* Sword must be nonzero for the wordchar pattern commands in re_match_2. */
669fa600 287enum syntaxcode { Swhitespace = 0, Sword = 1, Ssymbol = 2 };
fa9a63c5 288
0b32bf0e 289# define SWITCH_ENUM_CAST(x) (x)
fa9a63c5 290
e934739e 291/* Dummy macros for non-Emacs environments. */
0b32bf0e
SM
292# define BASE_LEADING_CODE_P(c) (0)
293# define CHAR_CHARSET(c) 0
294# define CHARSET_LEADING_CODE_BASE(c) 0
295# define MAX_MULTIBYTE_LENGTH 1
296# define RE_MULTIBYTE_P(x) 0
bf216479 297# define RE_TARGET_MULTIBYTE_P(x) 0
0b32bf0e
SM
298# define WORD_BOUNDARY_P(c1, c2) (0)
299# define CHAR_HEAD_P(p) (1)
300# define SINGLE_BYTE_CHAR_P(c) (1)
301# define SAME_CHARSET_P(c1, c2) (1)
302# define MULTIBYTE_FORM_LENGTH(p, s) (1)
70806df6 303# define PREV_CHAR_BOUNDARY(p, limit) ((p)--)
0b32bf0e 304# define STRING_CHAR(p, s) (*(p))
cf9c99bc 305# define RE_STRING_CHAR(p, s, multibyte) STRING_CHAR ((p), (s))
0b32bf0e
SM
306# define CHAR_STRING(c, s) (*(s) = (c), 1)
307# define STRING_CHAR_AND_LENGTH(p, s, actual_len) ((actual_len) = 1, *(p))
99f76c1e 308# define RE_STRING_CHAR_AND_LENGTH(p, s, len, multibyte) STRING_CHAR_AND_LENGTH ((p), (s), (len))
cf9c99bc
KH
309# define RE_CHAR_TO_MULTIBYTE(c) (c)
310# define RE_CHAR_TO_UNIBYTE(c) (c)
0b32bf0e 311# define GET_CHAR_BEFORE_2(c, p, str1, end1, str2, end2) \
b18215fc 312 (c = ((p) == (str2) ? *((end1) - 1) : *((p) - 1)))
6fdd04b0
KH
313# define GET_CHAR_AFTER(c, p, len) \
314 (c = *p, len = 1)
0b32bf0e 315# define MAKE_CHAR(charset, c1, c2) (c1)
9117d724
KH
316# define BYTE8_TO_CHAR(c) (c)
317# define CHAR_BYTE8_P(c) (0)
bf216479 318# define CHAR_LEADING_CODE(c) (c)
8f924df7 319
fa9a63c5 320#endif /* not emacs */
4e8a9132
SM
321
322#ifndef RE_TRANSLATE
0b32bf0e
SM
323# define RE_TRANSLATE(TBL, C) ((unsigned char)(TBL)[C])
324# define RE_TRANSLATE_P(TBL) (TBL)
4e8a9132 325#endif
fa9a63c5
RM
326\f
327/* Get the interface, including the syntax bits. */
328#include "regex.h"
329
f71b19b6
DL
330/* isalpha etc. are used for the character classes. */
331#include <ctype.h>
fa9a63c5 332
f71b19b6 333#ifdef emacs
fa9a63c5 334
f71b19b6 335/* 1 if C is an ASCII character. */
0b32bf0e 336# define IS_REAL_ASCII(c) ((c) < 0200)
fa9a63c5 337
f71b19b6 338/* 1 if C is a unibyte character. */
0b32bf0e 339# define ISUNIBYTE(c) (SINGLE_BYTE_CHAR_P ((c)))
96cc36cc 340
f71b19b6 341/* The Emacs definitions should not be directly affected by locales. */
96cc36cc 342
f71b19b6 343/* In Emacs, these are only used for single-byte characters. */
0b32bf0e
SM
344# define ISDIGIT(c) ((c) >= '0' && (c) <= '9')
345# define ISCNTRL(c) ((c) < ' ')
346# define ISXDIGIT(c) (((c) >= '0' && (c) <= '9') \
f71b19b6
DL
347 || ((c) >= 'a' && (c) <= 'f') \
348 || ((c) >= 'A' && (c) <= 'F'))
96cc36cc
RS
349
350/* This is only used for single-byte characters. */
0b32bf0e 351# define ISBLANK(c) ((c) == ' ' || (c) == '\t')
96cc36cc
RS
352
353/* The rest must handle multibyte characters. */
354
0b32bf0e 355# define ISGRAPH(c) (SINGLE_BYTE_CHAR_P (c) \
f71b19b6 356 ? (c) > ' ' && !((c) >= 0177 && (c) <= 0237) \
96cc36cc
RS
357 : 1)
358
14473664 359# define ISPRINT(c) (SINGLE_BYTE_CHAR_P (c) \
f71b19b6 360 ? (c) >= ' ' && !((c) >= 0177 && (c) <= 0237) \
96cc36cc
RS
361 : 1)
362
0b32bf0e 363# define ISALNUM(c) (IS_REAL_ASCII (c) \
f71b19b6
DL
364 ? (((c) >= 'a' && (c) <= 'z') \
365 || ((c) >= 'A' && (c) <= 'Z') \
366 || ((c) >= '0' && (c) <= '9')) \
96cc36cc
RS
367 : SYNTAX (c) == Sword)
368
0b32bf0e 369# define ISALPHA(c) (IS_REAL_ASCII (c) \
f71b19b6
DL
370 ? (((c) >= 'a' && (c) <= 'z') \
371 || ((c) >= 'A' && (c) <= 'Z')) \
96cc36cc
RS
372 : SYNTAX (c) == Sword)
373
0b32bf0e 374# define ISLOWER(c) (LOWERCASEP (c))
96cc36cc 375
0b32bf0e 376# define ISPUNCT(c) (IS_REAL_ASCII (c) \
f71b19b6
DL
377 ? ((c) > ' ' && (c) < 0177 \
378 && !(((c) >= 'a' && (c) <= 'z') \
4bb91c68
SM
379 || ((c) >= 'A' && (c) <= 'Z') \
380 || ((c) >= '0' && (c) <= '9'))) \
96cc36cc
RS
381 : SYNTAX (c) != Sword)
382
0b32bf0e 383# define ISSPACE(c) (SYNTAX (c) == Swhitespace)
96cc36cc 384
0b32bf0e 385# define ISUPPER(c) (UPPERCASEP (c))
96cc36cc 386
0b32bf0e 387# define ISWORD(c) (SYNTAX (c) == Sword)
96cc36cc
RS
388
389#else /* not emacs */
390
f71b19b6
DL
391/* Jim Meyering writes:
392
393 "... Some ctype macros are valid only for character codes that
394 isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when
395 using /bin/cc or gcc but without giving an ansi option). So, all
4bb91c68 396 ctype uses should be through macros like ISPRINT... If
f71b19b6
DL
397 STDC_HEADERS is defined, then autoconf has verified that the ctype
398 macros don't need to be guarded with references to isascii. ...
399 Defining isascii to 1 should let any compiler worth its salt
4bb91c68
SM
400 eliminate the && through constant folding."
401 Solaris defines some of these symbols so we must undefine them first. */
f71b19b6 402
4bb91c68 403# undef ISASCII
0b32bf0e
SM
404# if defined STDC_HEADERS || (!defined isascii && !defined HAVE_ISASCII)
405# define ISASCII(c) 1
406# else
407# define ISASCII(c) isascii(c)
408# endif
f71b19b6
DL
409
410/* 1 if C is an ASCII character. */
0b32bf0e 411# define IS_REAL_ASCII(c) ((c) < 0200)
f71b19b6
DL
412
413/* This distinction is not meaningful, except in Emacs. */
0b32bf0e
SM
414# define ISUNIBYTE(c) 1
415
416# ifdef isblank
417# define ISBLANK(c) (ISASCII (c) && isblank (c))
418# else
419# define ISBLANK(c) ((c) == ' ' || (c) == '\t')
420# endif
421# ifdef isgraph
422# define ISGRAPH(c) (ISASCII (c) && isgraph (c))
423# else
424# define ISGRAPH(c) (ISASCII (c) && isprint (c) && !isspace (c))
425# endif
426
4bb91c68 427# undef ISPRINT
0b32bf0e
SM
428# define ISPRINT(c) (ISASCII (c) && isprint (c))
429# define ISDIGIT(c) (ISASCII (c) && isdigit (c))
430# define ISALNUM(c) (ISASCII (c) && isalnum (c))
431# define ISALPHA(c) (ISASCII (c) && isalpha (c))
432# define ISCNTRL(c) (ISASCII (c) && iscntrl (c))
433# define ISLOWER(c) (ISASCII (c) && islower (c))
434# define ISPUNCT(c) (ISASCII (c) && ispunct (c))
435# define ISSPACE(c) (ISASCII (c) && isspace (c))
436# define ISUPPER(c) (ISASCII (c) && isupper (c))
437# define ISXDIGIT(c) (ISASCII (c) && isxdigit (c))
438
439# define ISWORD(c) ISALPHA(c)
440
4bb91c68
SM
441# ifdef _tolower
442# define TOLOWER(c) _tolower(c)
443# else
444# define TOLOWER(c) tolower(c)
445# endif
446
447/* How many characters in the character set. */
448# define CHAR_SET_SIZE 256
449
0b32bf0e 450# ifdef SYNTAX_TABLE
f71b19b6 451
0b32bf0e 452extern char *re_syntax_table;
f71b19b6 453
0b32bf0e
SM
454# else /* not SYNTAX_TABLE */
455
0b32bf0e
SM
456static char re_syntax_table[CHAR_SET_SIZE];
457
458static void
459init_syntax_once ()
460{
461 register int c;
462 static int done = 0;
463
464 if (done)
465 return;
466
467 bzero (re_syntax_table, sizeof re_syntax_table);
468
4bb91c68
SM
469 for (c = 0; c < CHAR_SET_SIZE; ++c)
470 if (ISALNUM (c))
471 re_syntax_table[c] = Sword;
fa9a63c5 472
669fa600 473 re_syntax_table['_'] = Ssymbol;
fa9a63c5 474
0b32bf0e
SM
475 done = 1;
476}
477
478# endif /* not SYNTAX_TABLE */
96cc36cc 479
4bb91c68
SM
480# define SYNTAX(c) re_syntax_table[(c)]
481
96cc36cc
RS
482#endif /* not emacs */
483\f
fa9a63c5 484#ifndef NULL
0b32bf0e 485# define NULL (void *)0
fa9a63c5
RM
486#endif
487
488/* We remove any previous definition of `SIGN_EXTEND_CHAR',
489 since ours (we hope) works properly with all combinations of
490 machines, compilers, `char' and `unsigned char' argument types.
4bb91c68 491 (Per Bothner suggested the basic approach.) */
fa9a63c5
RM
492#undef SIGN_EXTEND_CHAR
493#if __STDC__
0b32bf0e 494# define SIGN_EXTEND_CHAR(c) ((signed char) (c))
fa9a63c5
RM
495#else /* not __STDC__ */
496/* As in Harbison and Steele. */
0b32bf0e 497# define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
fa9a63c5
RM
498#endif
499\f
500/* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we
501 use `alloca' instead of `malloc'. This is because using malloc in
502 re_search* or re_match* could cause memory leaks when C-g is used in
503 Emacs; also, malloc is slower and causes storage fragmentation. On
5e69f11e
RM
504 the other hand, malloc is more portable, and easier to debug.
505
fa9a63c5
RM
506 Because we sometimes use alloca, some routines have to be macros,
507 not functions -- `alloca'-allocated space disappears at the end of the
508 function it is called in. */
509
510#ifdef REGEX_MALLOC
511
0b32bf0e
SM
512# define REGEX_ALLOCATE malloc
513# define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
514# define REGEX_FREE free
fa9a63c5
RM
515
516#else /* not REGEX_MALLOC */
517
518/* Emacs already defines alloca, sometimes. */
0b32bf0e 519# ifndef alloca
fa9a63c5
RM
520
521/* Make alloca work the best possible way. */
0b32bf0e
SM
522# ifdef __GNUC__
523# define alloca __builtin_alloca
524# else /* not __GNUC__ */
7f585e7a 525# ifdef HAVE_ALLOCA_H
0b32bf0e
SM
526# include <alloca.h>
527# endif /* HAVE_ALLOCA_H */
528# endif /* not __GNUC__ */
fa9a63c5 529
0b32bf0e 530# endif /* not alloca */
fa9a63c5 531
0b32bf0e 532# define REGEX_ALLOCATE alloca
fa9a63c5
RM
533
534/* Assumes a `char *destination' variable. */
0b32bf0e 535# define REGEX_REALLOCATE(source, osize, nsize) \
fa9a63c5 536 (destination = (char *) alloca (nsize), \
4bb91c68 537 memcpy (destination, source, osize))
fa9a63c5
RM
538
539/* No need to do anything to free, after alloca. */
0b32bf0e 540# define REGEX_FREE(arg) ((void)0) /* Do nothing! But inhibit gcc warning. */
fa9a63c5
RM
541
542#endif /* not REGEX_MALLOC */
543
544/* Define how to allocate the failure stack. */
545
0b32bf0e 546#if defined REL_ALLOC && defined REGEX_MALLOC
4297555e 547
0b32bf0e 548# define REGEX_ALLOCATE_STACK(size) \
fa9a63c5 549 r_alloc (&failure_stack_ptr, (size))
0b32bf0e 550# define REGEX_REALLOCATE_STACK(source, osize, nsize) \
fa9a63c5 551 r_re_alloc (&failure_stack_ptr, (nsize))
0b32bf0e 552# define REGEX_FREE_STACK(ptr) \
fa9a63c5
RM
553 r_alloc_free (&failure_stack_ptr)
554
4297555e 555#else /* not using relocating allocator */
fa9a63c5 556
0b32bf0e 557# ifdef REGEX_MALLOC
fa9a63c5 558
0b32bf0e
SM
559# define REGEX_ALLOCATE_STACK malloc
560# define REGEX_REALLOCATE_STACK(source, osize, nsize) realloc (source, nsize)
561# define REGEX_FREE_STACK free
fa9a63c5 562
0b32bf0e 563# else /* not REGEX_MALLOC */
fa9a63c5 564
0b32bf0e 565# define REGEX_ALLOCATE_STACK alloca
fa9a63c5 566
0b32bf0e 567# define REGEX_REALLOCATE_STACK(source, osize, nsize) \
fa9a63c5 568 REGEX_REALLOCATE (source, osize, nsize)
7814e705 569/* No need to explicitly free anything. */
0b32bf0e 570# define REGEX_FREE_STACK(arg) ((void)0)
fa9a63c5 571
0b32bf0e 572# endif /* not REGEX_MALLOC */
4297555e 573#endif /* not using relocating allocator */
fa9a63c5
RM
574
575
576/* True if `size1' is non-NULL and PTR is pointing anywhere inside
577 `string1' or just past its end. This works if PTR is NULL, which is
578 a good thing. */
25fe55af 579#define FIRST_STRING_P(ptr) \
fa9a63c5
RM
580 (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
581
582/* (Re)Allocate N items of type T using malloc, or fail. */
583#define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
584#define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
585#define RETALLOC_IF(addr, n, t) \
586 if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t)
587#define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
588
4bb91c68 589#define BYTEWIDTH 8 /* In bits. */
fa9a63c5
RM
590
591#define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
592
593#undef MAX
594#undef MIN
595#define MAX(a, b) ((a) > (b) ? (a) : (b))
596#define MIN(a, b) ((a) < (b) ? (a) : (b))
597
66f0296e
SM
598/* Type of source-pattern and string chars. */
599typedef const unsigned char re_char;
600
fa9a63c5
RM
601typedef char boolean;
602#define false 0
603#define true 1
604
4bb91c68
SM
605static int re_match_2_internal _RE_ARGS ((struct re_pattern_buffer *bufp,
606 re_char *string1, int size1,
607 re_char *string2, int size2,
608 int pos,
609 struct re_registers *regs,
610 int stop));
fa9a63c5
RM
611\f
612/* These are the command codes that appear in compiled regular
4bb91c68 613 expressions. Some opcodes are followed by argument bytes. A
fa9a63c5
RM
614 command code can specify any interpretation whatsoever for its
615 arguments. Zero bytes may appear in the compiled regular expression. */
616
617typedef enum
618{
619 no_op = 0,
620
4bb91c68 621 /* Succeed right away--no more backtracking. */
fa9a63c5
RM
622 succeed,
623
25fe55af 624 /* Followed by one byte giving n, then by n literal bytes. */
fa9a63c5
RM
625 exactn,
626
25fe55af 627 /* Matches any (more or less) character. */
fa9a63c5
RM
628 anychar,
629
25fe55af
RS
630 /* Matches any one char belonging to specified set. First
631 following byte is number of bitmap bytes. Then come bytes
632 for a bitmap saying which chars are in. Bits in each byte
633 are ordered low-bit-first. A character is in the set if its
634 bit is 1. A character too large to have a bit in the map is
96cc36cc
RS
635 automatically not in the set.
636
637 If the length byte has the 0x80 bit set, then that stuff
638 is followed by a range table:
639 2 bytes of flags for character sets (low 8 bits, high 8 bits)
0b32bf0e 640 See RANGE_TABLE_WORK_BITS below.
01618498 641 2 bytes, the number of pairs that follow (upto 32767)
96cc36cc 642 pairs, each 2 multibyte characters,
0b32bf0e 643 each multibyte character represented as 3 bytes. */
fa9a63c5
RM
644 charset,
645
25fe55af 646 /* Same parameters as charset, but match any character that is
4bb91c68 647 not one of those specified. */
fa9a63c5
RM
648 charset_not,
649
25fe55af
RS
650 /* Start remembering the text that is matched, for storing in a
651 register. Followed by one byte with the register number, in
652 the range 0 to one less than the pattern buffer's re_nsub
505bde11 653 field. */
fa9a63c5
RM
654 start_memory,
655
25fe55af
RS
656 /* Stop remembering the text that is matched and store it in a
657 memory register. Followed by one byte with the register
658 number, in the range 0 to one less than `re_nsub' in the
505bde11 659 pattern buffer. */
fa9a63c5
RM
660 stop_memory,
661
25fe55af 662 /* Match a duplicate of something remembered. Followed by one
4bb91c68 663 byte containing the register number. */
fa9a63c5
RM
664 duplicate,
665
25fe55af 666 /* Fail unless at beginning of line. */
fa9a63c5
RM
667 begline,
668
4bb91c68 669 /* Fail unless at end of line. */
fa9a63c5
RM
670 endline,
671
25fe55af
RS
672 /* Succeeds if at beginning of buffer (if emacs) or at beginning
673 of string to be matched (if not). */
fa9a63c5
RM
674 begbuf,
675
25fe55af 676 /* Analogously, for end of buffer/string. */
fa9a63c5 677 endbuf,
5e69f11e 678
25fe55af 679 /* Followed by two byte relative address to which to jump. */
5e69f11e 680 jump,
fa9a63c5 681
25fe55af 682 /* Followed by two-byte relative address of place to resume at
7814e705 683 in case of failure. */
fa9a63c5 684 on_failure_jump,
5e69f11e 685
25fe55af
RS
686 /* Like on_failure_jump, but pushes a placeholder instead of the
687 current string position when executed. */
fa9a63c5 688 on_failure_keep_string_jump,
5e69f11e 689
505bde11
SM
690 /* Just like `on_failure_jump', except that it checks that we
691 don't get stuck in an infinite loop (matching an empty string
692 indefinitely). */
693 on_failure_jump_loop,
694
0683b6fa
SM
695 /* Just like `on_failure_jump_loop', except that it checks for
696 a different kind of loop (the kind that shows up with non-greedy
697 operators). This operation has to be immediately preceded
698 by a `no_op'. */
699 on_failure_jump_nastyloop,
700
0b32bf0e 701 /* A smart `on_failure_jump' used for greedy * and + operators.
505bde11
SM
702 It analyses the loop before which it is put and if the
703 loop does not require backtracking, it changes itself to
4e8a9132
SM
704 `on_failure_keep_string_jump' and short-circuits the loop,
705 else it just defaults to changing itself into `on_failure_jump'.
706 It assumes that it is pointing to just past a `jump'. */
505bde11 707 on_failure_jump_smart,
fa9a63c5 708
25fe55af 709 /* Followed by two-byte relative address and two-byte number n.
ed0767d8
SM
710 After matching N times, jump to the address upon failure.
711 Does not work if N starts at 0: use on_failure_jump_loop
712 instead. */
fa9a63c5
RM
713 succeed_n,
714
25fe55af
RS
715 /* Followed by two-byte relative address, and two-byte number n.
716 Jump to the address N times, then fail. */
fa9a63c5
RM
717 jump_n,
718
25fe55af 719 /* Set the following two-byte relative address to the
7814e705 720 subsequent two-byte number. The address *includes* the two
25fe55af 721 bytes of number. */
fa9a63c5
RM
722 set_number_at,
723
fa9a63c5
RM
724 wordbeg, /* Succeeds if at word beginning. */
725 wordend, /* Succeeds if at word end. */
726
727 wordbound, /* Succeeds if at a word boundary. */
7814e705 728 notwordbound, /* Succeeds if not at a word boundary. */
fa9a63c5 729
669fa600
SM
730 symbeg, /* Succeeds if at symbol beginning. */
731 symend, /* Succeeds if at symbol end. */
732
fa9a63c5 733 /* Matches any character whose syntax is specified. Followed by
25fe55af 734 a byte which contains a syntax code, e.g., Sword. */
fa9a63c5
RM
735 syntaxspec,
736
737 /* Matches any character whose syntax is not that specified. */
1fb352e0
SM
738 notsyntaxspec
739
740#ifdef emacs
741 ,before_dot, /* Succeeds if before point. */
742 at_dot, /* Succeeds if at point. */
743 after_dot, /* Succeeds if after point. */
b18215fc
RS
744
745 /* Matches any character whose category-set contains the specified
7814e705
JB
746 category. The operator is followed by a byte which contains a
747 category code (mnemonic ASCII character). */
b18215fc
RS
748 categoryspec,
749
750 /* Matches any character whose category-set does not contain the
751 specified category. The operator is followed by a byte which
752 contains the category code (mnemonic ASCII character). */
753 notcategoryspec
fa9a63c5
RM
754#endif /* emacs */
755} re_opcode_t;
756\f
757/* Common operations on the compiled pattern. */
758
759/* Store NUMBER in two contiguous bytes starting at DESTINATION. */
760
761#define STORE_NUMBER(destination, number) \
762 do { \
763 (destination)[0] = (number) & 0377; \
764 (destination)[1] = (number) >> 8; \
765 } while (0)
766
767/* Same as STORE_NUMBER, except increment DESTINATION to
768 the byte after where the number is stored. Therefore, DESTINATION
769 must be an lvalue. */
770
771#define STORE_NUMBER_AND_INCR(destination, number) \
772 do { \
773 STORE_NUMBER (destination, number); \
774 (destination) += 2; \
775 } while (0)
776
777/* Put into DESTINATION a number stored in two contiguous bytes starting
778 at SOURCE. */
779
780#define EXTRACT_NUMBER(destination, source) \
781 do { \
782 (destination) = *(source) & 0377; \
783 (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8; \
784 } while (0)
785
786#ifdef DEBUG
4bb91c68 787static void extract_number _RE_ARGS ((int *dest, re_char *source));
fa9a63c5
RM
788static void
789extract_number (dest, source)
790 int *dest;
01618498 791 re_char *source;
fa9a63c5 792{
5e69f11e 793 int temp = SIGN_EXTEND_CHAR (*(source + 1));
fa9a63c5
RM
794 *dest = *source & 0377;
795 *dest += temp << 8;
796}
797
4bb91c68 798# ifndef EXTRACT_MACROS /* To debug the macros. */
0b32bf0e
SM
799# undef EXTRACT_NUMBER
800# define EXTRACT_NUMBER(dest, src) extract_number (&dest, src)
801# endif /* not EXTRACT_MACROS */
fa9a63c5
RM
802
803#endif /* DEBUG */
804
805/* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
806 SOURCE must be an lvalue. */
807
808#define EXTRACT_NUMBER_AND_INCR(destination, source) \
809 do { \
810 EXTRACT_NUMBER (destination, source); \
25fe55af 811 (source) += 2; \
fa9a63c5
RM
812 } while (0)
813
814#ifdef DEBUG
4bb91c68
SM
815static void extract_number_and_incr _RE_ARGS ((int *destination,
816 re_char **source));
fa9a63c5
RM
817static void
818extract_number_and_incr (destination, source)
819 int *destination;
01618498 820 re_char **source;
5e69f11e 821{
fa9a63c5
RM
822 extract_number (destination, *source);
823 *source += 2;
824}
825
0b32bf0e
SM
826# ifndef EXTRACT_MACROS
827# undef EXTRACT_NUMBER_AND_INCR
828# define EXTRACT_NUMBER_AND_INCR(dest, src) \
fa9a63c5 829 extract_number_and_incr (&dest, &src)
0b32bf0e 830# endif /* not EXTRACT_MACROS */
fa9a63c5
RM
831
832#endif /* DEBUG */
833\f
b18215fc
RS
834/* Store a multibyte character in three contiguous bytes starting
835 DESTINATION, and increment DESTINATION to the byte after where the
7814e705 836 character is stored. Therefore, DESTINATION must be an lvalue. */
b18215fc
RS
837
838#define STORE_CHARACTER_AND_INCR(destination, character) \
839 do { \
840 (destination)[0] = (character) & 0377; \
841 (destination)[1] = ((character) >> 8) & 0377; \
842 (destination)[2] = (character) >> 16; \
843 (destination) += 3; \
844 } while (0)
845
846/* Put into DESTINATION a character stored in three contiguous bytes
7814e705 847 starting at SOURCE. */
b18215fc
RS
848
849#define EXTRACT_CHARACTER(destination, source) \
850 do { \
851 (destination) = ((source)[0] \
852 | ((source)[1] << 8) \
853 | ((source)[2] << 16)); \
854 } while (0)
855
856
857/* Macros for charset. */
858
859/* Size of bitmap of charset P in bytes. P is a start of charset,
860 i.e. *P is (re_opcode_t) charset or (re_opcode_t) charset_not. */
861#define CHARSET_BITMAP_SIZE(p) ((p)[1] & 0x7F)
862
863/* Nonzero if charset P has range table. */
25fe55af 864#define CHARSET_RANGE_TABLE_EXISTS_P(p) ((p)[1] & 0x80)
b18215fc
RS
865
866/* Return the address of range table of charset P. But not the start
867 of table itself, but the before where the number of ranges is
96cc36cc
RS
868 stored. `2 +' means to skip re_opcode_t and size of bitmap,
869 and the 2 bytes of flags at the start of the range table. */
870#define CHARSET_RANGE_TABLE(p) (&(p)[4 + CHARSET_BITMAP_SIZE (p)])
871
872/* Extract the bit flags that start a range table. */
873#define CHARSET_RANGE_TABLE_BITS(p) \
874 ((p)[2 + CHARSET_BITMAP_SIZE (p)] \
875 + (p)[3 + CHARSET_BITMAP_SIZE (p)] * 0x100)
b18215fc
RS
876
877/* Test if C is listed in the bitmap of charset P. */
878#define CHARSET_LOOKUP_BITMAP(p, c) \
879 ((c) < CHARSET_BITMAP_SIZE (p) * BYTEWIDTH \
880 && (p)[2 + (c) / BYTEWIDTH] & (1 << ((c) % BYTEWIDTH)))
881
882/* Return the address of end of RANGE_TABLE. COUNT is number of
7814e705
JB
883 ranges (which is a pair of (start, end)) in the RANGE_TABLE. `* 2'
884 is start of range and end of range. `* 3' is size of each start
b18215fc
RS
885 and end. */
886#define CHARSET_RANGE_TABLE_END(range_table, count) \
887 ((range_table) + (count) * 2 * 3)
888
7814e705 889/* Test if C is in RANGE_TABLE. A flag NOT is negated if C is in.
b18215fc
RS
890 COUNT is number of ranges in RANGE_TABLE. */
891#define CHARSET_LOOKUP_RANGE_TABLE_RAW(not, c, range_table, count) \
892 do \
893 { \
01618498
SM
894 re_wchar_t range_start, range_end; \
895 re_char *p; \
896 re_char *range_table_end \
b18215fc
RS
897 = CHARSET_RANGE_TABLE_END ((range_table), (count)); \
898 \
899 for (p = (range_table); p < range_table_end; p += 2 * 3) \
900 { \
901 EXTRACT_CHARACTER (range_start, p); \
902 EXTRACT_CHARACTER (range_end, p + 3); \
903 \
904 if (range_start <= (c) && (c) <= range_end) \
905 { \
906 (not) = !(not); \
907 break; \
908 } \
909 } \
910 } \
911 while (0)
912
913/* Test if C is in range table of CHARSET. The flag NOT is negated if
914 C is listed in it. */
915#define CHARSET_LOOKUP_RANGE_TABLE(not, c, charset) \
916 do \
917 { \
918 /* Number of ranges in range table. */ \
919 int count; \
01618498
SM
920 re_char *range_table = CHARSET_RANGE_TABLE (charset); \
921 \
b18215fc
RS
922 EXTRACT_NUMBER_AND_INCR (count, range_table); \
923 CHARSET_LOOKUP_RANGE_TABLE_RAW ((not), (c), range_table, count); \
924 } \
925 while (0)
926\f
fa9a63c5
RM
927/* If DEBUG is defined, Regex prints many voluminous messages about what
928 it is doing (if the variable `debug' is nonzero). If linked with the
929 main program in `iregex.c', you can enter patterns and strings
930 interactively. And if linked with the main program in `main.c' and
4bb91c68 931 the other test files, you can run the already-written tests. */
fa9a63c5
RM
932
933#ifdef DEBUG
934
935/* We use standard I/O for debugging. */
0b32bf0e 936# include <stdio.h>
fa9a63c5
RM
937
938/* It is useful to test things that ``must'' be true when debugging. */
0b32bf0e 939# include <assert.h>
fa9a63c5 940
99633e97 941static int debug = -100000;
fa9a63c5 942
0b32bf0e
SM
943# define DEBUG_STATEMENT(e) e
944# define DEBUG_PRINT1(x) if (debug > 0) printf (x)
945# define DEBUG_PRINT2(x1, x2) if (debug > 0) printf (x1, x2)
946# define DEBUG_PRINT3(x1, x2, x3) if (debug > 0) printf (x1, x2, x3)
947# define DEBUG_PRINT4(x1, x2, x3, x4) if (debug > 0) printf (x1, x2, x3, x4)
948# define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \
99633e97 949 if (debug > 0) print_partial_compiled_pattern (s, e)
0b32bf0e 950# define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \
99633e97 951 if (debug > 0) print_double_string (w, s1, sz1, s2, sz2)
fa9a63c5
RM
952
953
954/* Print the fastmap in human-readable form. */
955
956void
957print_fastmap (fastmap)
958 char *fastmap;
959{
960 unsigned was_a_range = 0;
5e69f11e
RM
961 unsigned i = 0;
962
fa9a63c5
RM
963 while (i < (1 << BYTEWIDTH))
964 {
965 if (fastmap[i++])
966 {
967 was_a_range = 0;
25fe55af
RS
968 putchar (i - 1);
969 while (i < (1 << BYTEWIDTH) && fastmap[i])
970 {
971 was_a_range = 1;
972 i++;
973 }
fa9a63c5 974 if (was_a_range)
25fe55af
RS
975 {
976 printf ("-");
977 putchar (i - 1);
978 }
979 }
fa9a63c5 980 }
5e69f11e 981 putchar ('\n');
fa9a63c5
RM
982}
983
984
985/* Print a compiled pattern string in human-readable form, starting at
986 the START pointer into it and ending just before the pointer END. */
987
988void
989print_partial_compiled_pattern (start, end)
01618498
SM
990 re_char *start;
991 re_char *end;
fa9a63c5
RM
992{
993 int mcnt, mcnt2;
01618498
SM
994 re_char *p = start;
995 re_char *pend = end;
fa9a63c5
RM
996
997 if (start == NULL)
998 {
a1a052df 999 fprintf (stderr, "(null)\n");
fa9a63c5
RM
1000 return;
1001 }
5e69f11e 1002
fa9a63c5
RM
1003 /* Loop over pattern commands. */
1004 while (p < pend)
1005 {
a1a052df 1006 fprintf (stderr, "%d:\t", p - start);
fa9a63c5
RM
1007
1008 switch ((re_opcode_t) *p++)
1009 {
25fe55af 1010 case no_op:
a1a052df 1011 fprintf (stderr, "/no_op");
25fe55af 1012 break;
fa9a63c5 1013
99633e97 1014 case succeed:
a1a052df 1015 fprintf (stderr, "/succeed");
99633e97
SM
1016 break;
1017
fa9a63c5
RM
1018 case exactn:
1019 mcnt = *p++;
a1a052df 1020 fprintf (stderr, "/exactn/%d", mcnt);
25fe55af 1021 do
fa9a63c5 1022 {
a1a052df 1023 fprintf (stderr, "/%c", *p++);
25fe55af
RS
1024 }
1025 while (--mcnt);
1026 break;
fa9a63c5
RM
1027
1028 case start_memory:
a1a052df 1029 fprintf (stderr, "/start_memory/%d", *p++);
25fe55af 1030 break;
fa9a63c5
RM
1031
1032 case stop_memory:
a1a052df 1033 fprintf (stderr, "/stop_memory/%d", *p++);
25fe55af 1034 break;
fa9a63c5
RM
1035
1036 case duplicate:
a1a052df 1037 fprintf (stderr, "/duplicate/%d", *p++);
fa9a63c5
RM
1038 break;
1039
1040 case anychar:
a1a052df 1041 fprintf (stderr, "/anychar");
fa9a63c5
RM
1042 break;
1043
1044 case charset:
25fe55af
RS
1045 case charset_not:
1046 {
1047 register int c, last = -100;
fa9a63c5 1048 register int in_range = 0;
99633e97
SM
1049 int length = CHARSET_BITMAP_SIZE (p - 1);
1050 int has_range_table = CHARSET_RANGE_TABLE_EXISTS_P (p - 1);
fa9a63c5 1051
a1a052df 1052 fprintf (stderr, "/charset [%s",
839966f3 1053 (re_opcode_t) *(p - 1) == charset_not ? "^" : "");
5e69f11e 1054
839966f3
KH
1055 if (p + *p >= pend)
1056 fprintf (stderr, " !extends past end of pattern! ");
fa9a63c5 1057
25fe55af 1058 for (c = 0; c < 256; c++)
96cc36cc 1059 if (c / 8 < length
fa9a63c5
RM
1060 && (p[1 + (c/8)] & (1 << (c % 8))))
1061 {
1062 /* Are we starting a range? */
1063 if (last + 1 == c && ! in_range)
1064 {
a1a052df 1065 fprintf (stderr, "-");
fa9a63c5
RM
1066 in_range = 1;
1067 }
1068 /* Have we broken a range? */
1069 else if (last + 1 != c && in_range)
96cc36cc 1070 {
a1a052df 1071 fprintf (stderr, "%c", last);
fa9a63c5
RM
1072 in_range = 0;
1073 }
5e69f11e 1074
fa9a63c5 1075 if (! in_range)
a1a052df 1076 fprintf (stderr, "%c", c);
fa9a63c5
RM
1077
1078 last = c;
25fe55af 1079 }
fa9a63c5
RM
1080
1081 if (in_range)
a1a052df 1082 fprintf (stderr, "%c", last);
fa9a63c5 1083
a1a052df 1084 fprintf (stderr, "]");
fa9a63c5 1085
99633e97 1086 p += 1 + length;
96cc36cc 1087
96cc36cc 1088 if (has_range_table)
99633e97
SM
1089 {
1090 int count;
a1a052df 1091 fprintf (stderr, "has-range-table");
99633e97
SM
1092
1093 /* ??? Should print the range table; for now, just skip it. */
1094 p += 2; /* skip range table bits */
1095 EXTRACT_NUMBER_AND_INCR (count, p);
1096 p = CHARSET_RANGE_TABLE_END (p, count);
1097 }
fa9a63c5
RM
1098 }
1099 break;
1100
1101 case begline:
a1a052df 1102 fprintf (stderr, "/begline");
25fe55af 1103 break;
fa9a63c5
RM
1104
1105 case endline:
a1a052df 1106 fprintf (stderr, "/endline");
25fe55af 1107 break;
fa9a63c5
RM
1108
1109 case on_failure_jump:
25fe55af 1110 extract_number_and_incr (&mcnt, &p);
a1a052df 1111 fprintf (stderr, "/on_failure_jump to %d", p + mcnt - start);
25fe55af 1112 break;
fa9a63c5
RM
1113
1114 case on_failure_keep_string_jump:
25fe55af 1115 extract_number_and_incr (&mcnt, &p);
a1a052df 1116 fprintf (stderr, "/on_failure_keep_string_jump to %d", p + mcnt - start);
25fe55af 1117 break;
fa9a63c5 1118
0683b6fa
SM
1119 case on_failure_jump_nastyloop:
1120 extract_number_and_incr (&mcnt, &p);
a1a052df 1121 fprintf (stderr, "/on_failure_jump_nastyloop to %d", p + mcnt - start);
0683b6fa
SM
1122 break;
1123
505bde11 1124 case on_failure_jump_loop:
fa9a63c5 1125 extract_number_and_incr (&mcnt, &p);
a1a052df 1126 fprintf (stderr, "/on_failure_jump_loop to %d", p + mcnt - start);
5e69f11e
RM
1127 break;
1128
505bde11 1129 case on_failure_jump_smart:
fa9a63c5 1130 extract_number_and_incr (&mcnt, &p);
a1a052df 1131 fprintf (stderr, "/on_failure_jump_smart to %d", p + mcnt - start);
5e69f11e
RM
1132 break;
1133
25fe55af 1134 case jump:
fa9a63c5 1135 extract_number_and_incr (&mcnt, &p);
a1a052df 1136 fprintf (stderr, "/jump to %d", p + mcnt - start);
fa9a63c5
RM
1137 break;
1138
25fe55af
RS
1139 case succeed_n:
1140 extract_number_and_incr (&mcnt, &p);
1141 extract_number_and_incr (&mcnt2, &p);
a1a052df 1142 fprintf (stderr, "/succeed_n to %d, %d times", p - 2 + mcnt - start, mcnt2);
25fe55af 1143 break;
5e69f11e 1144
25fe55af
RS
1145 case jump_n:
1146 extract_number_and_incr (&mcnt, &p);
1147 extract_number_and_incr (&mcnt2, &p);
a1a052df 1148 fprintf (stderr, "/jump_n to %d, %d times", p - 2 + mcnt - start, mcnt2);
25fe55af 1149 break;
5e69f11e 1150
25fe55af
RS
1151 case set_number_at:
1152 extract_number_and_incr (&mcnt, &p);
1153 extract_number_and_incr (&mcnt2, &p);
a1a052df 1154 fprintf (stderr, "/set_number_at location %d to %d", p - 2 + mcnt - start, mcnt2);
25fe55af 1155 break;
5e69f11e 1156
25fe55af 1157 case wordbound:
a1a052df 1158 fprintf (stderr, "/wordbound");
fa9a63c5
RM
1159 break;
1160
1161 case notwordbound:
a1a052df 1162 fprintf (stderr, "/notwordbound");
25fe55af 1163 break;
fa9a63c5
RM
1164
1165 case wordbeg:
a1a052df 1166 fprintf (stderr, "/wordbeg");
fa9a63c5 1167 break;
5e69f11e 1168
fa9a63c5 1169 case wordend:
a1a052df 1170 fprintf (stderr, "/wordend");
e2543b02 1171 break;
5e69f11e 1172
669fa600 1173 case symbeg:
e2543b02 1174 fprintf (stderr, "/symbeg");
669fa600
SM
1175 break;
1176
1177 case symend:
e2543b02 1178 fprintf (stderr, "/symend");
669fa600 1179 break;
5e69f11e 1180
1fb352e0 1181 case syntaxspec:
a1a052df 1182 fprintf (stderr, "/syntaxspec");
1fb352e0 1183 mcnt = *p++;
a1a052df 1184 fprintf (stderr, "/%d", mcnt);
1fb352e0
SM
1185 break;
1186
1187 case notsyntaxspec:
a1a052df 1188 fprintf (stderr, "/notsyntaxspec");
1fb352e0 1189 mcnt = *p++;
a1a052df 1190 fprintf (stderr, "/%d", mcnt);
1fb352e0
SM
1191 break;
1192
0b32bf0e 1193# ifdef emacs
fa9a63c5 1194 case before_dot:
a1a052df 1195 fprintf (stderr, "/before_dot");
25fe55af 1196 break;
fa9a63c5
RM
1197
1198 case at_dot:
a1a052df 1199 fprintf (stderr, "/at_dot");
25fe55af 1200 break;
fa9a63c5
RM
1201
1202 case after_dot:
a1a052df 1203 fprintf (stderr, "/after_dot");
25fe55af 1204 break;
fa9a63c5 1205
1fb352e0 1206 case categoryspec:
a1a052df 1207 fprintf (stderr, "/categoryspec");
fa9a63c5 1208 mcnt = *p++;
a1a052df 1209 fprintf (stderr, "/%d", mcnt);
25fe55af 1210 break;
5e69f11e 1211
1fb352e0 1212 case notcategoryspec:
a1a052df 1213 fprintf (stderr, "/notcategoryspec");
fa9a63c5 1214 mcnt = *p++;
a1a052df 1215 fprintf (stderr, "/%d", mcnt);
fa9a63c5 1216 break;
0b32bf0e 1217# endif /* emacs */
fa9a63c5 1218
fa9a63c5 1219 case begbuf:
a1a052df 1220 fprintf (stderr, "/begbuf");
25fe55af 1221 break;
fa9a63c5
RM
1222
1223 case endbuf:
a1a052df 1224 fprintf (stderr, "/endbuf");
25fe55af 1225 break;
fa9a63c5 1226
25fe55af 1227 default:
a1a052df 1228 fprintf (stderr, "?%d", *(p-1));
fa9a63c5
RM
1229 }
1230
a1a052df 1231 fprintf (stderr, "\n");
fa9a63c5
RM
1232 }
1233
a1a052df 1234 fprintf (stderr, "%d:\tend of pattern.\n", p - start);
fa9a63c5
RM
1235}
1236
1237
1238void
1239print_compiled_pattern (bufp)
1240 struct re_pattern_buffer *bufp;
1241{
01618498 1242 re_char *buffer = bufp->buffer;
fa9a63c5
RM
1243
1244 print_partial_compiled_pattern (buffer, buffer + bufp->used);
4bb91c68
SM
1245 printf ("%ld bytes used/%ld bytes allocated.\n",
1246 bufp->used, bufp->allocated);
fa9a63c5
RM
1247
1248 if (bufp->fastmap_accurate && bufp->fastmap)
1249 {
1250 printf ("fastmap: ");
1251 print_fastmap (bufp->fastmap);
1252 }
1253
1254 printf ("re_nsub: %d\t", bufp->re_nsub);
1255 printf ("regs_alloc: %d\t", bufp->regs_allocated);
1256 printf ("can_be_null: %d\t", bufp->can_be_null);
fa9a63c5
RM
1257 printf ("no_sub: %d\t", bufp->no_sub);
1258 printf ("not_bol: %d\t", bufp->not_bol);
1259 printf ("not_eol: %d\t", bufp->not_eol);
4bb91c68 1260 printf ("syntax: %lx\n", bufp->syntax);
505bde11 1261 fflush (stdout);
fa9a63c5
RM
1262 /* Perhaps we should print the translate table? */
1263}
1264
1265
1266void
1267print_double_string (where, string1, size1, string2, size2)
66f0296e
SM
1268 re_char *where;
1269 re_char *string1;
1270 re_char *string2;
fa9a63c5
RM
1271 int size1;
1272 int size2;
1273{
4bb91c68 1274 int this_char;
5e69f11e 1275
fa9a63c5
RM
1276 if (where == NULL)
1277 printf ("(null)");
1278 else
1279 {
1280 if (FIRST_STRING_P (where))
25fe55af
RS
1281 {
1282 for (this_char = where - string1; this_char < size1; this_char++)
1283 putchar (string1[this_char]);
fa9a63c5 1284
25fe55af
RS
1285 where = string2;
1286 }
fa9a63c5
RM
1287
1288 for (this_char = where - string2; this_char < size2; this_char++)
25fe55af 1289 putchar (string2[this_char]);
fa9a63c5
RM
1290 }
1291}
1292
1293#else /* not DEBUG */
1294
0b32bf0e
SM
1295# undef assert
1296# define assert(e)
fa9a63c5 1297
0b32bf0e
SM
1298# define DEBUG_STATEMENT(e)
1299# define DEBUG_PRINT1(x)
1300# define DEBUG_PRINT2(x1, x2)
1301# define DEBUG_PRINT3(x1, x2, x3)
1302# define DEBUG_PRINT4(x1, x2, x3, x4)
1303# define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
1304# define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
fa9a63c5
RM
1305
1306#endif /* not DEBUG */
1307\f
1308/* Set by `re_set_syntax' to the current regexp syntax to recognize. Can
1309 also be assigned to arbitrarily: each pattern buffer stores its own
1310 syntax, so it can be changed between regex compilations. */
1311/* This has no initializer because initialized variables in Emacs
1312 become read-only after dumping. */
1313reg_syntax_t re_syntax_options;
1314
1315
1316/* Specify the precise syntax of regexps for compilation. This provides
1317 for compatibility for various utilities which historically have
1318 different, incompatible syntaxes.
1319
1320 The argument SYNTAX is a bit mask comprised of the various bits
4bb91c68 1321 defined in regex.h. We return the old syntax. */
fa9a63c5
RM
1322
1323reg_syntax_t
1324re_set_syntax (syntax)
f9b0fd99 1325 reg_syntax_t syntax;
fa9a63c5
RM
1326{
1327 reg_syntax_t ret = re_syntax_options;
5e69f11e 1328
fa9a63c5
RM
1329 re_syntax_options = syntax;
1330 return ret;
1331}
c0f9ea08 1332WEAK_ALIAS (__re_set_syntax, re_set_syntax)
f9b0fd99
RS
1333
1334/* Regexp to use to replace spaces, or NULL meaning don't. */
1335static re_char *whitespace_regexp;
1336
1337void
1338re_set_whitespace_regexp (regexp)
6470ea05 1339 const char *regexp;
f9b0fd99 1340{
6470ea05 1341 whitespace_regexp = (re_char *) regexp;
f9b0fd99
RS
1342}
1343WEAK_ALIAS (__re_set_syntax, re_set_syntax)
fa9a63c5
RM
1344\f
1345/* This table gives an error message for each of the error codes listed
4bb91c68 1346 in regex.h. Obviously the order here has to be same as there.
fa9a63c5 1347 POSIX doesn't require that we do anything for REG_NOERROR,
4bb91c68 1348 but why not be nice? */
fa9a63c5
RM
1349
1350static const char *re_error_msgid[] =
5e69f11e
RM
1351 {
1352 gettext_noop ("Success"), /* REG_NOERROR */
1353 gettext_noop ("No match"), /* REG_NOMATCH */
1354 gettext_noop ("Invalid regular expression"), /* REG_BADPAT */
1355 gettext_noop ("Invalid collation character"), /* REG_ECOLLATE */
1356 gettext_noop ("Invalid character class name"), /* REG_ECTYPE */
1357 gettext_noop ("Trailing backslash"), /* REG_EESCAPE */
1358 gettext_noop ("Invalid back reference"), /* REG_ESUBREG */
1359 gettext_noop ("Unmatched [ or [^"), /* REG_EBRACK */
1360 gettext_noop ("Unmatched ( or \\("), /* REG_EPAREN */
1361 gettext_noop ("Unmatched \\{"), /* REG_EBRACE */
1362 gettext_noop ("Invalid content of \\{\\}"), /* REG_BADBR */
1363 gettext_noop ("Invalid range end"), /* REG_ERANGE */
1364 gettext_noop ("Memory exhausted"), /* REG_ESPACE */
1365 gettext_noop ("Invalid preceding regular expression"), /* REG_BADRPT */
1366 gettext_noop ("Premature end of regular expression"), /* REG_EEND */
1367 gettext_noop ("Regular expression too big"), /* REG_ESIZE */
1368 gettext_noop ("Unmatched ) or \\)"), /* REG_ERPAREN */
b3e4c897 1369 gettext_noop ("Range striding over charsets") /* REG_ERANGEX */
fa9a63c5
RM
1370 };
1371\f
4bb91c68 1372/* Avoiding alloca during matching, to placate r_alloc. */
fa9a63c5
RM
1373
1374/* Define MATCH_MAY_ALLOCATE unless we need to make sure that the
1375 searching and matching functions should not call alloca. On some
1376 systems, alloca is implemented in terms of malloc, and if we're
1377 using the relocating allocator routines, then malloc could cause a
1378 relocation, which might (if the strings being searched are in the
1379 ralloc heap) shift the data out from underneath the regexp
1380 routines.
1381
5e69f11e 1382 Here's another reason to avoid allocation: Emacs
fa9a63c5
RM
1383 processes input from X in a signal handler; processing X input may
1384 call malloc; if input arrives while a matching routine is calling
1385 malloc, then we're scrod. But Emacs can't just block input while
1386 calling matching routines; then we don't notice interrupts when
1387 they come in. So, Emacs blocks input around all regexp calls
1388 except the matching calls, which it leaves unprotected, in the
1389 faith that they will not malloc. */
1390
1391/* Normally, this is fine. */
1392#define MATCH_MAY_ALLOCATE
1393
fa9a63c5
RM
1394/* The match routines may not allocate if (1) they would do it with malloc
1395 and (2) it's not safe for them to use malloc.
1396 Note that if REL_ALLOC is defined, matching would not use malloc for the
1397 failure stack, but we would still use it for the register vectors;
4bb91c68 1398 so REL_ALLOC should not affect this. */
b588157e 1399#if defined REGEX_MALLOC && defined emacs
0b32bf0e 1400# undef MATCH_MAY_ALLOCATE
fa9a63c5
RM
1401#endif
1402
1403\f
1404/* Failure stack declarations and macros; both re_compile_fastmap and
1405 re_match_2 use a failure stack. These have to be macros because of
1406 REGEX_ALLOCATE_STACK. */
5e69f11e 1407
fa9a63c5 1408
320a2a73 1409/* Approximate number of failure points for which to initially allocate space
fa9a63c5
RM
1410 when matching. If this number is exceeded, we allocate more
1411 space, so it is not a hard limit. */
1412#ifndef INIT_FAILURE_ALLOC
0b32bf0e 1413# define INIT_FAILURE_ALLOC 20
fa9a63c5
RM
1414#endif
1415
1416/* Roughly the maximum number of failure points on the stack. Would be
320a2a73 1417 exactly that if always used TYPICAL_FAILURE_SIZE items each time we failed.
fa9a63c5 1418 This is a variable only so users of regex can assign to it; we never
ada30c0e
SM
1419 change it ourselves. We always multiply it by TYPICAL_FAILURE_SIZE
1420 before using it, so it should probably be a byte-count instead. */
c0f9ea08
SM
1421# if defined MATCH_MAY_ALLOCATE
1422/* Note that 4400 was enough to cause a crash on Alpha OSF/1,
320a2a73
KH
1423 whose default stack limit is 2mb. In order for a larger
1424 value to work reliably, you have to try to make it accord
1425 with the process stack limit. */
c0f9ea08
SM
1426size_t re_max_failures = 40000;
1427# else
1428size_t re_max_failures = 4000;
1429# endif
fa9a63c5
RM
1430
1431union fail_stack_elt
1432{
01618498 1433 re_char *pointer;
c0f9ea08
SM
1434 /* This should be the biggest `int' that's no bigger than a pointer. */
1435 long integer;
fa9a63c5
RM
1436};
1437
1438typedef union fail_stack_elt fail_stack_elt_t;
1439
1440typedef struct
1441{
1442 fail_stack_elt_t *stack;
c0f9ea08
SM
1443 size_t size;
1444 size_t avail; /* Offset of next open position. */
1445 size_t frame; /* Offset of the cur constructed frame. */
fa9a63c5
RM
1446} fail_stack_type;
1447
505bde11 1448#define FAIL_STACK_EMPTY() (fail_stack.frame == 0)
fa9a63c5
RM
1449#define FAIL_STACK_FULL() (fail_stack.avail == fail_stack.size)
1450
1451
1452/* Define macros to initialize and free the failure stack.
1453 Do `return -2' if the alloc fails. */
1454
1455#ifdef MATCH_MAY_ALLOCATE
0b32bf0e 1456# define INIT_FAIL_STACK() \
fa9a63c5
RM
1457 do { \
1458 fail_stack.stack = (fail_stack_elt_t *) \
320a2a73
KH
1459 REGEX_ALLOCATE_STACK (INIT_FAILURE_ALLOC * TYPICAL_FAILURE_SIZE \
1460 * sizeof (fail_stack_elt_t)); \
fa9a63c5
RM
1461 \
1462 if (fail_stack.stack == NULL) \
1463 return -2; \
1464 \
1465 fail_stack.size = INIT_FAILURE_ALLOC; \
1466 fail_stack.avail = 0; \
505bde11 1467 fail_stack.frame = 0; \
fa9a63c5
RM
1468 } while (0)
1469
0b32bf0e 1470# define RESET_FAIL_STACK() REGEX_FREE_STACK (fail_stack.stack)
fa9a63c5 1471#else
0b32bf0e 1472# define INIT_FAIL_STACK() \
fa9a63c5
RM
1473 do { \
1474 fail_stack.avail = 0; \
505bde11 1475 fail_stack.frame = 0; \
fa9a63c5
RM
1476 } while (0)
1477
0b32bf0e 1478# define RESET_FAIL_STACK() ((void)0)
fa9a63c5
RM
1479#endif
1480
1481
320a2a73
KH
1482/* Double the size of FAIL_STACK, up to a limit
1483 which allows approximately `re_max_failures' items.
fa9a63c5
RM
1484
1485 Return 1 if succeeds, and 0 if either ran out of memory
5e69f11e
RM
1486 allocating space for it or it was already too large.
1487
4bb91c68 1488 REGEX_REALLOCATE_STACK requires `destination' be declared. */
fa9a63c5 1489
320a2a73
KH
1490/* Factor to increase the failure stack size by
1491 when we increase it.
1492 This used to be 2, but 2 was too wasteful
1493 because the old discarded stacks added up to as much space
1494 were as ultimate, maximum-size stack. */
1495#define FAIL_STACK_GROWTH_FACTOR 4
1496
1497#define GROW_FAIL_STACK(fail_stack) \
eead07d6
KH
1498 (((fail_stack).size * sizeof (fail_stack_elt_t) \
1499 >= re_max_failures * TYPICAL_FAILURE_SIZE) \
fa9a63c5 1500 ? 0 \
320a2a73
KH
1501 : ((fail_stack).stack \
1502 = (fail_stack_elt_t *) \
25fe55af
RS
1503 REGEX_REALLOCATE_STACK ((fail_stack).stack, \
1504 (fail_stack).size * sizeof (fail_stack_elt_t), \
320a2a73
KH
1505 MIN (re_max_failures * TYPICAL_FAILURE_SIZE, \
1506 ((fail_stack).size * sizeof (fail_stack_elt_t) \
1507 * FAIL_STACK_GROWTH_FACTOR))), \
fa9a63c5
RM
1508 \
1509 (fail_stack).stack == NULL \
1510 ? 0 \
6453db45
KH
1511 : ((fail_stack).size \
1512 = (MIN (re_max_failures * TYPICAL_FAILURE_SIZE, \
1513 ((fail_stack).size * sizeof (fail_stack_elt_t) \
1514 * FAIL_STACK_GROWTH_FACTOR)) \
1515 / sizeof (fail_stack_elt_t)), \
25fe55af 1516 1)))
fa9a63c5
RM
1517
1518
fa9a63c5
RM
1519/* Push a pointer value onto the failure stack.
1520 Assumes the variable `fail_stack'. Probably should only
4bb91c68 1521 be called from within `PUSH_FAILURE_POINT'. */
fa9a63c5 1522#define PUSH_FAILURE_POINTER(item) \
01618498 1523 fail_stack.stack[fail_stack.avail++].pointer = (item)
fa9a63c5
RM
1524
1525/* This pushes an integer-valued item onto the failure stack.
1526 Assumes the variable `fail_stack'. Probably should only
4bb91c68 1527 be called from within `PUSH_FAILURE_POINT'. */
fa9a63c5
RM
1528#define PUSH_FAILURE_INT(item) \
1529 fail_stack.stack[fail_stack.avail++].integer = (item)
1530
1531/* Push a fail_stack_elt_t value onto the failure stack.
1532 Assumes the variable `fail_stack'. Probably should only
4bb91c68 1533 be called from within `PUSH_FAILURE_POINT'. */
fa9a63c5
RM
1534#define PUSH_FAILURE_ELT(item) \
1535 fail_stack.stack[fail_stack.avail++] = (item)
1536
1537/* These three POP... operations complement the three PUSH... operations.
1538 All assume that `fail_stack' is nonempty. */
1539#define POP_FAILURE_POINTER() fail_stack.stack[--fail_stack.avail].pointer
1540#define POP_FAILURE_INT() fail_stack.stack[--fail_stack.avail].integer
1541#define POP_FAILURE_ELT() fail_stack.stack[--fail_stack.avail]
1542
505bde11
SM
1543/* Individual items aside from the registers. */
1544#define NUM_NONREG_ITEMS 3
1545
1546/* Used to examine the stack (to detect infinite loops). */
1547#define FAILURE_PAT(h) fail_stack.stack[(h) - 1].pointer
66f0296e 1548#define FAILURE_STR(h) (fail_stack.stack[(h) - 2].pointer)
505bde11
SM
1549#define NEXT_FAILURE_HANDLE(h) fail_stack.stack[(h) - 3].integer
1550#define TOP_FAILURE_HANDLE() fail_stack.frame
fa9a63c5
RM
1551
1552
505bde11
SM
1553#define ENSURE_FAIL_STACK(space) \
1554while (REMAINING_AVAIL_SLOTS <= space) { \
1555 if (!GROW_FAIL_STACK (fail_stack)) \
1556 return -2; \
1557 DEBUG_PRINT2 ("\n Doubled stack; size now: %d\n", (fail_stack).size);\
1558 DEBUG_PRINT2 (" slots available: %d\n", REMAINING_AVAIL_SLOTS);\
1559}
1560
1561/* Push register NUM onto the stack. */
1562#define PUSH_FAILURE_REG(num) \
1563do { \
1564 char *destination; \
1565 ENSURE_FAIL_STACK(3); \
1566 DEBUG_PRINT4 (" Push reg %d (spanning %p -> %p)\n", \
1567 num, regstart[num], regend[num]); \
1568 PUSH_FAILURE_POINTER (regstart[num]); \
1569 PUSH_FAILURE_POINTER (regend[num]); \
1570 PUSH_FAILURE_INT (num); \
1571} while (0)
1572
01618498
SM
1573/* Change the counter's value to VAL, but make sure that it will
1574 be reset when backtracking. */
1575#define PUSH_NUMBER(ptr,val) \
dc1e502d
SM
1576do { \
1577 char *destination; \
1578 int c; \
1579 ENSURE_FAIL_STACK(3); \
1580 EXTRACT_NUMBER (c, ptr); \
01618498 1581 DEBUG_PRINT4 (" Push number %p = %d -> %d\n", ptr, c, val); \
dc1e502d
SM
1582 PUSH_FAILURE_INT (c); \
1583 PUSH_FAILURE_POINTER (ptr); \
1584 PUSH_FAILURE_INT (-1); \
01618498 1585 STORE_NUMBER (ptr, val); \
dc1e502d
SM
1586} while (0)
1587
505bde11 1588/* Pop a saved register off the stack. */
dc1e502d 1589#define POP_FAILURE_REG_OR_COUNT() \
505bde11
SM
1590do { \
1591 int reg = POP_FAILURE_INT (); \
dc1e502d
SM
1592 if (reg == -1) \
1593 { \
1594 /* It's a counter. */ \
6dcf2d0e
SM
1595 /* Here, we discard `const', making re_match non-reentrant. */ \
1596 unsigned char *ptr = (unsigned char*) POP_FAILURE_POINTER (); \
dc1e502d
SM
1597 reg = POP_FAILURE_INT (); \
1598 STORE_NUMBER (ptr, reg); \
1599 DEBUG_PRINT3 (" Pop counter %p = %d\n", ptr, reg); \
1600 } \
1601 else \
1602 { \
1603 regend[reg] = POP_FAILURE_POINTER (); \
1604 regstart[reg] = POP_FAILURE_POINTER (); \
1605 DEBUG_PRINT4 (" Pop reg %d (spanning %p -> %p)\n", \
1606 reg, regstart[reg], regend[reg]); \
1607 } \
505bde11
SM
1608} while (0)
1609
1610/* Check that we are not stuck in an infinite loop. */
1611#define CHECK_INFINITE_LOOP(pat_cur, string_place) \
1612do { \
f6df485f 1613 int failure = TOP_FAILURE_HANDLE (); \
505bde11 1614 /* Check for infinite matching loops */ \
f6df485f
RS
1615 while (failure > 0 \
1616 && (FAILURE_STR (failure) == string_place \
1617 || FAILURE_STR (failure) == NULL)) \
505bde11
SM
1618 { \
1619 assert (FAILURE_PAT (failure) >= bufp->buffer \
66f0296e 1620 && FAILURE_PAT (failure) <= bufp->buffer + bufp->used); \
505bde11 1621 if (FAILURE_PAT (failure) == pat_cur) \
f6df485f 1622 { \
6df42991
SM
1623 cycle = 1; \
1624 break; \
f6df485f 1625 } \
66f0296e 1626 DEBUG_PRINT2 (" Other pattern: %p\n", FAILURE_PAT (failure)); \
505bde11
SM
1627 failure = NEXT_FAILURE_HANDLE(failure); \
1628 } \
1629 DEBUG_PRINT2 (" Other string: %p\n", FAILURE_STR (failure)); \
1630} while (0)
6df42991 1631
fa9a63c5 1632/* Push the information about the state we will need
5e69f11e
RM
1633 if we ever fail back to it.
1634
505bde11 1635 Requires variables fail_stack, regstart, regend and
320a2a73 1636 num_regs be declared. GROW_FAIL_STACK requires `destination' be
fa9a63c5 1637 declared.
5e69f11e 1638
fa9a63c5
RM
1639 Does `return FAILURE_CODE' if runs out of memory. */
1640
505bde11
SM
1641#define PUSH_FAILURE_POINT(pattern, string_place) \
1642do { \
1643 char *destination; \
1644 /* Must be int, so when we don't save any registers, the arithmetic \
1645 of 0 + -1 isn't done as unsigned. */ \
1646 \
505bde11 1647 DEBUG_STATEMENT (nfailure_points_pushed++); \
4bb91c68 1648 DEBUG_PRINT1 ("\nPUSH_FAILURE_POINT:\n"); \
505bde11
SM
1649 DEBUG_PRINT2 (" Before push, next avail: %d\n", (fail_stack).avail); \
1650 DEBUG_PRINT2 (" size: %d\n", (fail_stack).size);\
1651 \
1652 ENSURE_FAIL_STACK (NUM_NONREG_ITEMS); \
1653 \
1654 DEBUG_PRINT1 ("\n"); \
1655 \
1656 DEBUG_PRINT2 (" Push frame index: %d\n", fail_stack.frame); \
1657 PUSH_FAILURE_INT (fail_stack.frame); \
1658 \
1659 DEBUG_PRINT2 (" Push string %p: `", string_place); \
1660 DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, size2);\
1661 DEBUG_PRINT1 ("'\n"); \
1662 PUSH_FAILURE_POINTER (string_place); \
1663 \
1664 DEBUG_PRINT2 (" Push pattern %p: ", pattern); \
1665 DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern, pend); \
1666 PUSH_FAILURE_POINTER (pattern); \
1667 \
1668 /* Close the frame by moving the frame pointer past it. */ \
1669 fail_stack.frame = fail_stack.avail; \
1670} while (0)
fa9a63c5 1671
320a2a73
KH
1672/* Estimate the size of data pushed by a typical failure stack entry.
1673 An estimate is all we need, because all we use this for
1674 is to choose a limit for how big to make the failure stack. */
ada30c0e 1675/* BEWARE, the value `20' is hard-coded in emacs.c:main(). */
320a2a73 1676#define TYPICAL_FAILURE_SIZE 20
fa9a63c5 1677
fa9a63c5
RM
1678/* How many items can still be added to the stack without overflowing it. */
1679#define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
1680
1681
1682/* Pops what PUSH_FAIL_STACK pushes.
1683
1684 We restore into the parameters, all of which should be lvalues:
1685 STR -- the saved data position.
1686 PAT -- the saved pattern position.
fa9a63c5 1687 REGSTART, REGEND -- arrays of string positions.
5e69f11e 1688
fa9a63c5 1689 Also assumes the variables `fail_stack' and (if debugging), `bufp',
7814e705 1690 `pend', `string1', `size1', `string2', and `size2'. */
fa9a63c5 1691
505bde11
SM
1692#define POP_FAILURE_POINT(str, pat) \
1693do { \
fa9a63c5
RM
1694 assert (!FAIL_STACK_EMPTY ()); \
1695 \
1696 /* Remove failure points and point to how many regs pushed. */ \
1697 DEBUG_PRINT1 ("POP_FAILURE_POINT:\n"); \
1698 DEBUG_PRINT2 (" Before pop, next avail: %d\n", fail_stack.avail); \
25fe55af 1699 DEBUG_PRINT2 (" size: %d\n", fail_stack.size); \
fa9a63c5 1700 \
505bde11
SM
1701 /* Pop the saved registers. */ \
1702 while (fail_stack.frame < fail_stack.avail) \
dc1e502d 1703 POP_FAILURE_REG_OR_COUNT (); \
fa9a63c5 1704 \
01618498 1705 pat = POP_FAILURE_POINTER (); \
505bde11
SM
1706 DEBUG_PRINT2 (" Popping pattern %p: ", pat); \
1707 DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend); \
fa9a63c5
RM
1708 \
1709 /* If the saved string location is NULL, it came from an \
1710 on_failure_keep_string_jump opcode, and we want to throw away the \
1711 saved NULL, thus retaining our current position in the string. */ \
01618498 1712 str = POP_FAILURE_POINTER (); \
505bde11 1713 DEBUG_PRINT2 (" Popping string %p: `", str); \
fa9a63c5
RM
1714 DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2); \
1715 DEBUG_PRINT1 ("'\n"); \
1716 \
505bde11
SM
1717 fail_stack.frame = POP_FAILURE_INT (); \
1718 DEBUG_PRINT2 (" Popping frame index: %d\n", fail_stack.frame); \
fa9a63c5 1719 \
505bde11
SM
1720 assert (fail_stack.avail >= 0); \
1721 assert (fail_stack.frame <= fail_stack.avail); \
fa9a63c5 1722 \
fa9a63c5 1723 DEBUG_STATEMENT (nfailure_points_popped++); \
505bde11 1724} while (0) /* POP_FAILURE_POINT */
fa9a63c5
RM
1725
1726
1727\f
fa9a63c5 1728/* Registers are set to a sentinel when they haven't yet matched. */
4bb91c68 1729#define REG_UNSET(e) ((e) == NULL)
fa9a63c5
RM
1730\f
1731/* Subroutine declarations and macros for regex_compile. */
1732
4bb91c68
SM
1733static reg_errcode_t regex_compile _RE_ARGS ((re_char *pattern, size_t size,
1734 reg_syntax_t syntax,
1735 struct re_pattern_buffer *bufp));
1736static void store_op1 _RE_ARGS ((re_opcode_t op, unsigned char *loc, int arg));
1737static void store_op2 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
1738 int arg1, int arg2));
1739static void insert_op1 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
1740 int arg, unsigned char *end));
1741static void insert_op2 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
1742 int arg1, int arg2, unsigned char *end));
01618498
SM
1743static boolean at_begline_loc_p _RE_ARGS ((re_char *pattern,
1744 re_char *p,
4bb91c68 1745 reg_syntax_t syntax));
01618498
SM
1746static boolean at_endline_loc_p _RE_ARGS ((re_char *p,
1747 re_char *pend,
4bb91c68 1748 reg_syntax_t syntax));
01618498
SM
1749static re_char *skip_one_char _RE_ARGS ((re_char *p));
1750static int analyse_first _RE_ARGS ((re_char *p, re_char *pend,
4bb91c68 1751 char *fastmap, const int multibyte));
fa9a63c5 1752
fa9a63c5 1753/* Fetch the next character in the uncompiled pattern, with no
4bb91c68 1754 translation. */
36595814 1755#define PATFETCH(c) \
2d1675e4
SM
1756 do { \
1757 int len; \
1758 if (p == pend) return REG_EEND; \
cf9c99bc 1759 c = RE_STRING_CHAR_AND_LENGTH (p, pend - p, len, multibyte); \
2d1675e4 1760 p += len; \
fa9a63c5
RM
1761 } while (0)
1762
fa9a63c5
RM
1763
1764/* If `translate' is non-null, return translate[D], else just D. We
1765 cast the subscript to translate because some data is declared as
1766 `char *', to avoid warnings when a string constant is passed. But
1767 when we use a character as a subscript we must make it unsigned. */
6676cb1c 1768#ifndef TRANSLATE
0b32bf0e 1769# define TRANSLATE(d) \
66f0296e 1770 (RE_TRANSLATE_P (translate) ? RE_TRANSLATE (translate, (d)) : (d))
6676cb1c 1771#endif
fa9a63c5
RM
1772
1773
1774/* Macros for outputting the compiled pattern into `buffer'. */
1775
1776/* If the buffer isn't allocated when it comes in, use this. */
1777#define INIT_BUF_SIZE 32
1778
4bb91c68 1779/* Make sure we have at least N more bytes of space in buffer. */
fa9a63c5 1780#define GET_BUFFER_SPACE(n) \
01618498 1781 while ((size_t) (b - bufp->buffer + (n)) > bufp->allocated) \
fa9a63c5
RM
1782 EXTEND_BUFFER ()
1783
1784/* Make sure we have one more byte of buffer space and then add C to it. */
1785#define BUF_PUSH(c) \
1786 do { \
1787 GET_BUFFER_SPACE (1); \
1788 *b++ = (unsigned char) (c); \
1789 } while (0)
1790
1791
1792/* Ensure we have two more bytes of buffer space and then append C1 and C2. */
1793#define BUF_PUSH_2(c1, c2) \
1794 do { \
1795 GET_BUFFER_SPACE (2); \
1796 *b++ = (unsigned char) (c1); \
1797 *b++ = (unsigned char) (c2); \
1798 } while (0)
1799
1800
4bb91c68 1801/* As with BUF_PUSH_2, except for three bytes. */
fa9a63c5
RM
1802#define BUF_PUSH_3(c1, c2, c3) \
1803 do { \
1804 GET_BUFFER_SPACE (3); \
1805 *b++ = (unsigned char) (c1); \
1806 *b++ = (unsigned char) (c2); \
1807 *b++ = (unsigned char) (c3); \
1808 } while (0)
1809
1810
1811/* Store a jump with opcode OP at LOC to location TO. We store a
4bb91c68 1812 relative address offset by the three bytes the jump itself occupies. */
fa9a63c5
RM
1813#define STORE_JUMP(op, loc, to) \
1814 store_op1 (op, loc, (to) - (loc) - 3)
1815
1816/* Likewise, for a two-argument jump. */
1817#define STORE_JUMP2(op, loc, to, arg) \
1818 store_op2 (op, loc, (to) - (loc) - 3, arg)
1819
4bb91c68 1820/* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */
fa9a63c5
RM
1821#define INSERT_JUMP(op, loc, to) \
1822 insert_op1 (op, loc, (to) - (loc) - 3, b)
1823
1824/* Like `STORE_JUMP2', but for inserting. Assume `b' is the buffer end. */
1825#define INSERT_JUMP2(op, loc, to, arg) \
1826 insert_op2 (op, loc, (to) - (loc) - 3, arg, b)
1827
1828
1829/* This is not an arbitrary limit: the arguments which represent offsets
839966f3 1830 into the pattern are two bytes long. So if 2^15 bytes turns out to
fa9a63c5 1831 be too small, many things would have to change. */
839966f3
KH
1832# define MAX_BUF_SIZE (1L << 15)
1833
1834#if 0 /* This is when we thought it could be 2^16 bytes. */
4bb91c68
SM
1835/* Any other compiler which, like MSC, has allocation limit below 2^16
1836 bytes will have to use approach similar to what was done below for
1837 MSC and drop MAX_BUF_SIZE a bit. Otherwise you may end up
1838 reallocating to 0 bytes. Such thing is not going to work too well.
1839 You have been warned!! */
1840#if defined _MSC_VER && !defined WIN32
1841/* Microsoft C 16-bit versions limit malloc to approx 65512 bytes. */
1842# define MAX_BUF_SIZE 65500L
1843#else
1844# define MAX_BUF_SIZE (1L << 16)
1845#endif
839966f3 1846#endif /* 0 */
fa9a63c5
RM
1847
1848/* Extend the buffer by twice its current size via realloc and
1849 reset the pointers that pointed into the old block to point to the
1850 correct places in the new one. If extending the buffer results in it
4bb91c68
SM
1851 being larger than MAX_BUF_SIZE, then flag memory exhausted. */
1852#if __BOUNDED_POINTERS__
1853# define SET_HIGH_BOUND(P) (__ptrhigh (P) = __ptrlow (P) + bufp->allocated)
381880b0
CY
1854# define MOVE_BUFFER_POINTER(P) \
1855 (__ptrlow (P) = new_buffer + (__ptrlow (P) - old_buffer), \
1856 SET_HIGH_BOUND (P), \
1857 __ptrvalue (P) = new_buffer + (__ptrvalue (P) - old_buffer))
4bb91c68
SM
1858# define ELSE_EXTEND_BUFFER_HIGH_BOUND \
1859 else \
1860 { \
1861 SET_HIGH_BOUND (b); \
1862 SET_HIGH_BOUND (begalt); \
1863 if (fixup_alt_jump) \
1864 SET_HIGH_BOUND (fixup_alt_jump); \
1865 if (laststart) \
1866 SET_HIGH_BOUND (laststart); \
1867 if (pending_exact) \
1868 SET_HIGH_BOUND (pending_exact); \
1869 }
1870#else
381880b0 1871# define MOVE_BUFFER_POINTER(P) ((P) = new_buffer + ((P) - old_buffer))
4bb91c68
SM
1872# define ELSE_EXTEND_BUFFER_HIGH_BOUND
1873#endif
fa9a63c5 1874#define EXTEND_BUFFER() \
25fe55af 1875 do { \
381880b0 1876 unsigned char *old_buffer = bufp->buffer; \
25fe55af 1877 if (bufp->allocated == MAX_BUF_SIZE) \
fa9a63c5
RM
1878 return REG_ESIZE; \
1879 bufp->allocated <<= 1; \
1880 if (bufp->allocated > MAX_BUF_SIZE) \
25fe55af 1881 bufp->allocated = MAX_BUF_SIZE; \
01618498 1882 RETALLOC (bufp->buffer, bufp->allocated, unsigned char); \
fa9a63c5
RM
1883 if (bufp->buffer == NULL) \
1884 return REG_ESPACE; \
1885 /* If the buffer moved, move all the pointers into it. */ \
1886 if (old_buffer != bufp->buffer) \
1887 { \
381880b0 1888 unsigned char *new_buffer = bufp->buffer; \
4bb91c68
SM
1889 MOVE_BUFFER_POINTER (b); \
1890 MOVE_BUFFER_POINTER (begalt); \
25fe55af 1891 if (fixup_alt_jump) \
4bb91c68 1892 MOVE_BUFFER_POINTER (fixup_alt_jump); \
25fe55af 1893 if (laststart) \
4bb91c68 1894 MOVE_BUFFER_POINTER (laststart); \
25fe55af 1895 if (pending_exact) \
4bb91c68 1896 MOVE_BUFFER_POINTER (pending_exact); \
fa9a63c5 1897 } \
4bb91c68 1898 ELSE_EXTEND_BUFFER_HIGH_BOUND \
fa9a63c5
RM
1899 } while (0)
1900
1901
1902/* Since we have one byte reserved for the register number argument to
1903 {start,stop}_memory, the maximum number of groups we can report
1904 things about is what fits in that byte. */
1905#define MAX_REGNUM 255
1906
1907/* But patterns can have more than `MAX_REGNUM' registers. We just
1908 ignore the excess. */
098d42af 1909typedef int regnum_t;
fa9a63c5
RM
1910
1911
1912/* Macros for the compile stack. */
1913
1914/* Since offsets can go either forwards or backwards, this type needs to
4bb91c68
SM
1915 be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */
1916/* int may be not enough when sizeof(int) == 2. */
1917typedef long pattern_offset_t;
fa9a63c5
RM
1918
1919typedef struct
1920{
1921 pattern_offset_t begalt_offset;
1922 pattern_offset_t fixup_alt_jump;
5e69f11e 1923 pattern_offset_t laststart_offset;
fa9a63c5
RM
1924 regnum_t regnum;
1925} compile_stack_elt_t;
1926
1927
1928typedef struct
1929{
1930 compile_stack_elt_t *stack;
1931 unsigned size;
1932 unsigned avail; /* Offset of next open position. */
1933} compile_stack_type;
1934
1935
1936#define INIT_COMPILE_STACK_SIZE 32
1937
1938#define COMPILE_STACK_EMPTY (compile_stack.avail == 0)
1939#define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size)
1940
4bb91c68 1941/* The next available element. */
fa9a63c5
RM
1942#define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
1943
1cee1e27
SM
1944/* Explicit quit checking is only used on NTemacs and whenever we
1945 use polling to process input events. */
1946#if defined emacs && (defined WINDOWSNT || defined SYNC_INPUT) && defined QUIT
77d11aec
RS
1947extern int immediate_quit;
1948# define IMMEDIATE_QUIT_CHECK \
1949 do { \
1950 if (immediate_quit) QUIT; \
1951 } while (0)
1952#else
1953# define IMMEDIATE_QUIT_CHECK ((void)0)
1954#endif
1955\f
b18215fc
RS
1956/* Structure to manage work area for range table. */
1957struct range_table_work_area
1958{
1959 int *table; /* actual work area. */
1960 int allocated; /* allocated size for work area in bytes. */
7814e705 1961 int used; /* actually used size in words. */
96cc36cc 1962 int bits; /* flag to record character classes */
b18215fc
RS
1963};
1964
77d11aec
RS
1965/* Make sure that WORK_AREA can hold more N multibyte characters.
1966 This is used only in set_image_of_range and set_image_of_range_1.
1967 It expects WORK_AREA to be a pointer.
1968 If it can't get the space, it returns from the surrounding function. */
1969
1970#define EXTEND_RANGE_TABLE(work_area, n) \
1971 do { \
8f924df7 1972 if (((work_area).used + (n)) * sizeof (int) > (work_area).allocated) \
77d11aec 1973 { \
8f924df7
KH
1974 extend_range_table_work_area (&work_area); \
1975 if ((work_area).table == 0) \
77d11aec
RS
1976 return (REG_ESPACE); \
1977 } \
b18215fc
RS
1978 } while (0)
1979
96cc36cc
RS
1980#define SET_RANGE_TABLE_WORK_AREA_BIT(work_area, bit) \
1981 (work_area).bits |= (bit)
1982
14473664
SM
1983/* Bits used to implement the multibyte-part of the various character classes
1984 such as [:alnum:] in a charset's range table. */
1985#define BIT_WORD 0x1
1986#define BIT_LOWER 0x2
1987#define BIT_PUNCT 0x4
1988#define BIT_SPACE 0x8
1989#define BIT_UPPER 0x10
1990#define BIT_MULTIBYTE 0x20
96cc36cc 1991
b18215fc
RS
1992/* Set a range (RANGE_START, RANGE_END) to WORK_AREA. */
1993#define SET_RANGE_TABLE_WORK_AREA(work_area, range_start, range_end) \
77d11aec 1994 do { \
8f924df7 1995 EXTEND_RANGE_TABLE ((work_area), 2); \
b18215fc
RS
1996 (work_area).table[(work_area).used++] = (range_start); \
1997 (work_area).table[(work_area).used++] = (range_end); \
1998 } while (0)
1999
7814e705 2000/* Free allocated memory for WORK_AREA. */
b18215fc
RS
2001#define FREE_RANGE_TABLE_WORK_AREA(work_area) \
2002 do { \
2003 if ((work_area).table) \
2004 free ((work_area).table); \
2005 } while (0)
2006
96cc36cc 2007#define CLEAR_RANGE_TABLE_WORK_USED(work_area) ((work_area).used = 0, (work_area).bits = 0)
b18215fc 2008#define RANGE_TABLE_WORK_USED(work_area) ((work_area).used)
96cc36cc 2009#define RANGE_TABLE_WORK_BITS(work_area) ((work_area).bits)
b18215fc 2010#define RANGE_TABLE_WORK_ELT(work_area, i) ((work_area).table[i])
77d11aec 2011\f
b18215fc 2012
fa9a63c5 2013/* Set the bit for character C in a list. */
01618498 2014#define SET_LIST_BIT(c) (b[((c)) / BYTEWIDTH] |= 1 << ((c) % BYTEWIDTH))
fa9a63c5
RM
2015
2016
bf216479
KH
2017#ifdef emacs
2018
cf9c99bc
KH
2019/* Store characters in the range FROM to TO in the bitmap at B (for
2020 ASCII and unibyte characters) and WORK_AREA (for multibyte
2021 characters) while translating them and paying attention to the
2022 continuity of translated characters.
8f924df7 2023
cf9c99bc
KH
2024 Implementation note: It is better to implement these fairly big
2025 macros by a function, but it's not that easy because macros called
8f924df7 2026 in this macro assume various local variables already declared. */
bf216479 2027
cf9c99bc
KH
2028/* Both FROM and TO are ASCII characters. */
2029
2030#define SETUP_ASCII_RANGE(work_area, FROM, TO) \
2031 do { \
2032 int C0, C1; \
2033 \
2034 for (C0 = (FROM); C0 <= (TO); C0++) \
2035 { \
2036 C1 = TRANSLATE (C0); \
2037 if (! ASCII_CHAR_P (C1)) \
2038 { \
2039 SET_RANGE_TABLE_WORK_AREA ((work_area), C1, C1); \
2040 if ((C1 = RE_CHAR_TO_UNIBYTE (C1)) < 0) \
2041 C1 = C0; \
2042 } \
2043 SET_LIST_BIT (C1); \
2044 } \
2045 } while (0)
2046
2047
2048/* Both FROM and TO are unibyte characters (0x80..0xFF). */
2049
2050#define SETUP_UNIBYTE_RANGE(work_area, FROM, TO) \
2051 do { \
2052 int C0, C1, C2, I; \
2053 int USED = RANGE_TABLE_WORK_USED (work_area); \
2054 \
2055 for (C0 = (FROM); C0 <= (TO); C0++) \
2056 { \
2057 C1 = RE_CHAR_TO_MULTIBYTE (C0); \
2058 if (CHAR_BYTE8_P (C1)) \
2059 SET_LIST_BIT (C0); \
2060 else \
2061 { \
2062 C2 = TRANSLATE (C1); \
2063 if (C2 == C1 \
2064 || (C1 = RE_CHAR_TO_UNIBYTE (C2)) < 0) \
2065 C1 = C0; \
2066 SET_LIST_BIT (C1); \
2067 for (I = RANGE_TABLE_WORK_USED (work_area) - 2; I >= USED; I -= 2) \
2068 { \
2069 int from = RANGE_TABLE_WORK_ELT (work_area, I); \
2070 int to = RANGE_TABLE_WORK_ELT (work_area, I + 1); \
2071 \
2072 if (C2 >= from - 1 && C2 <= to + 1) \
2073 { \
2074 if (C2 == from - 1) \
2075 RANGE_TABLE_WORK_ELT (work_area, I)--; \
2076 else if (C2 == to + 1) \
2077 RANGE_TABLE_WORK_ELT (work_area, I + 1)++; \
2078 break; \
2079 } \
2080 } \
2081 if (I < USED) \
2082 SET_RANGE_TABLE_WORK_AREA ((work_area), C2, C2); \
2083 } \
2084 } \
2085 } while (0)
2086
2087
2088/* Both FROM and TO are mulitbyte characters. */
2089
2090#define SETUP_MULTIBYTE_RANGE(work_area, FROM, TO) \
2091 do { \
2092 int C0, C1, C2, I, USED = RANGE_TABLE_WORK_USED (work_area); \
2093 \
2094 SET_RANGE_TABLE_WORK_AREA ((work_area), (FROM), (TO)); \
2095 for (C0 = (FROM); C0 <= (TO); C0++) \
2096 { \
2097 C1 = TRANSLATE (C0); \
2098 if ((C2 = RE_CHAR_TO_UNIBYTE (C1)) >= 0 \
2099 || (C1 != C0 && (C2 = RE_CHAR_TO_UNIBYTE (C0)) >= 0)) \
2100 SET_LIST_BIT (C2); \
2101 if (C1 >= (FROM) && C1 <= (TO)) \
2102 continue; \
2103 for (I = RANGE_TABLE_WORK_USED (work_area) - 2; I >= USED; I -= 2) \
2104 { \
2105 int from = RANGE_TABLE_WORK_ELT (work_area, I); \
2106 int to = RANGE_TABLE_WORK_ELT (work_area, I + 1); \
2107 \
2108 if (C1 >= from - 1 && C1 <= to + 1) \
2109 { \
2110 if (C1 == from - 1) \
2111 RANGE_TABLE_WORK_ELT (work_area, I)--; \
2112 else if (C1 == to + 1) \
2113 RANGE_TABLE_WORK_ELT (work_area, I + 1)++; \
2114 break; \
2115 } \
2116 } \
2117 if (I < USED) \
2118 SET_RANGE_TABLE_WORK_AREA ((work_area), C1, C1); \
2119 } \
bf216479
KH
2120 } while (0)
2121
2122#endif /* emacs */
2123
fa9a63c5 2124/* Get the next unsigned number in the uncompiled pattern. */
25fe55af 2125#define GET_UNSIGNED_NUMBER(num) \
c72b0edd
SM
2126 do { \
2127 if (p == pend) \
2128 FREE_STACK_RETURN (REG_EBRACE); \
2129 else \
2130 { \
2131 PATFETCH (c); \
2132 while ('0' <= c && c <= '9') \
2133 { \
2134 int prev; \
2135 if (num < 0) \
2136 num = 0; \
2137 prev = num; \
2138 num = num * 10 + c - '0'; \
2139 if (num / 10 != prev) \
2140 FREE_STACK_RETURN (REG_BADBR); \
2141 if (p == pend) \
2142 FREE_STACK_RETURN (REG_EBRACE); \
2143 PATFETCH (c); \
2144 } \
2145 } \
2146 } while (0)
77d11aec 2147\f
1fdab503 2148#if ! WIDE_CHAR_SUPPORT
01618498 2149
14473664 2150/* Map a string to the char class it names (if any). */
1fdab503 2151re_wctype_t
ada30c0e
SM
2152re_wctype (str)
2153 re_char *str;
14473664 2154{
ada30c0e 2155 const char *string = str;
14473664
SM
2156 if (STREQ (string, "alnum")) return RECC_ALNUM;
2157 else if (STREQ (string, "alpha")) return RECC_ALPHA;
2158 else if (STREQ (string, "word")) return RECC_WORD;
2159 else if (STREQ (string, "ascii")) return RECC_ASCII;
2160 else if (STREQ (string, "nonascii")) return RECC_NONASCII;
2161 else if (STREQ (string, "graph")) return RECC_GRAPH;
2162 else if (STREQ (string, "lower")) return RECC_LOWER;
2163 else if (STREQ (string, "print")) return RECC_PRINT;
2164 else if (STREQ (string, "punct")) return RECC_PUNCT;
2165 else if (STREQ (string, "space")) return RECC_SPACE;
2166 else if (STREQ (string, "upper")) return RECC_UPPER;
2167 else if (STREQ (string, "unibyte")) return RECC_UNIBYTE;
2168 else if (STREQ (string, "multibyte")) return RECC_MULTIBYTE;
2169 else if (STREQ (string, "digit")) return RECC_DIGIT;
2170 else if (STREQ (string, "xdigit")) return RECC_XDIGIT;
2171 else if (STREQ (string, "cntrl")) return RECC_CNTRL;
2172 else if (STREQ (string, "blank")) return RECC_BLANK;
2173 else return 0;
2174}
2175
e0f24100 2176/* True if CH is in the char class CC. */
1fdab503 2177boolean
14473664
SM
2178re_iswctype (ch, cc)
2179 int ch;
2180 re_wctype_t cc;
2181{
2182 switch (cc)
2183 {
0cdd06f8
SM
2184 case RECC_ALNUM: return ISALNUM (ch);
2185 case RECC_ALPHA: return ISALPHA (ch);
2186 case RECC_BLANK: return ISBLANK (ch);
2187 case RECC_CNTRL: return ISCNTRL (ch);
2188 case RECC_DIGIT: return ISDIGIT (ch);
2189 case RECC_GRAPH: return ISGRAPH (ch);
2190 case RECC_LOWER: return ISLOWER (ch);
2191 case RECC_PRINT: return ISPRINT (ch);
2192 case RECC_PUNCT: return ISPUNCT (ch);
2193 case RECC_SPACE: return ISSPACE (ch);
2194 case RECC_UPPER: return ISUPPER (ch);
2195 case RECC_XDIGIT: return ISXDIGIT (ch);
2196 case RECC_ASCII: return IS_REAL_ASCII (ch);
2197 case RECC_NONASCII: return !IS_REAL_ASCII (ch);
2198 case RECC_UNIBYTE: return ISUNIBYTE (ch);
2199 case RECC_MULTIBYTE: return !ISUNIBYTE (ch);
2200 case RECC_WORD: return ISWORD (ch);
2201 case RECC_ERROR: return false;
2202 default:
2203 abort();
14473664
SM
2204 }
2205}
fa9a63c5 2206
14473664
SM
2207/* Return a bit-pattern to use in the range-table bits to match multibyte
2208 chars of class CC. */
2209static int
2210re_wctype_to_bit (cc)
2211 re_wctype_t cc;
2212{
2213 switch (cc)
2214 {
2215 case RECC_NONASCII: case RECC_PRINT: case RECC_GRAPH:
0cdd06f8
SM
2216 case RECC_MULTIBYTE: return BIT_MULTIBYTE;
2217 case RECC_ALPHA: case RECC_ALNUM: case RECC_WORD: return BIT_WORD;
2218 case RECC_LOWER: return BIT_LOWER;
2219 case RECC_UPPER: return BIT_UPPER;
2220 case RECC_PUNCT: return BIT_PUNCT;
2221 case RECC_SPACE: return BIT_SPACE;
14473664 2222 case RECC_ASCII: case RECC_DIGIT: case RECC_XDIGIT: case RECC_CNTRL:
0cdd06f8
SM
2223 case RECC_BLANK: case RECC_UNIBYTE: case RECC_ERROR: return 0;
2224 default:
2225 abort();
14473664
SM
2226 }
2227}
2228#endif
77d11aec
RS
2229\f
2230/* Filling in the work area of a range. */
2231
2232/* Actually extend the space in WORK_AREA. */
2233
2234static void
2235extend_range_table_work_area (work_area)
2236 struct range_table_work_area *work_area;
177c0ea7 2237{
77d11aec
RS
2238 work_area->allocated += 16 * sizeof (int);
2239 if (work_area->table)
2240 work_area->table
2241 = (int *) realloc (work_area->table, work_area->allocated);
2242 else
2243 work_area->table
2244 = (int *) malloc (work_area->allocated);
2245}
2246
8f924df7 2247#if 0
77d11aec
RS
2248#ifdef emacs
2249
2250/* Carefully find the ranges of codes that are equivalent
2251 under case conversion to the range start..end when passed through
2252 TRANSLATE. Handle the case where non-letters can come in between
2253 two upper-case letters (which happens in Latin-1).
2254 Also handle the case of groups of more than 2 case-equivalent chars.
2255
2256 The basic method is to look at consecutive characters and see
2257 if they can form a run that can be handled as one.
2258
2259 Returns -1 if successful, REG_ESPACE if ran out of space. */
2260
2261static int
2262set_image_of_range_1 (work_area, start, end, translate)
2263 RE_TRANSLATE_TYPE translate;
2264 struct range_table_work_area *work_area;
2265 re_wchar_t start, end;
2266{
2267 /* `one_case' indicates a character, or a run of characters,
2268 each of which is an isolate (no case-equivalents).
2269 This includes all ASCII non-letters.
2270
2271 `two_case' indicates a character, or a run of characters,
2272 each of which has two case-equivalent forms.
2273 This includes all ASCII letters.
2274
2275 `strange' indicates a character that has more than one
2276 case-equivalent. */
177c0ea7 2277
77d11aec
RS
2278 enum case_type {one_case, two_case, strange};
2279
2280 /* Describe the run that is in progress,
2281 which the next character can try to extend.
2282 If run_type is strange, that means there really is no run.
2283 If run_type is one_case, then run_start...run_end is the run.
2284 If run_type is two_case, then the run is run_start...run_end,
2285 and the case-equivalents end at run_eqv_end. */
2286
2287 enum case_type run_type = strange;
2288 int run_start, run_end, run_eqv_end;
2289
2290 Lisp_Object eqv_table;
2291
2292 if (!RE_TRANSLATE_P (translate))
2293 {
b7c12565 2294 EXTEND_RANGE_TABLE (work_area, 2);
77d11aec
RS
2295 work_area->table[work_area->used++] = (start);
2296 work_area->table[work_area->used++] = (end);
b7c12565 2297 return -1;
77d11aec
RS
2298 }
2299
2300 eqv_table = XCHAR_TABLE (translate)->extras[2];
99633e97 2301
77d11aec
RS
2302 for (; start <= end; start++)
2303 {
2304 enum case_type this_type;
2305 int eqv = RE_TRANSLATE (eqv_table, start);
2306 int minchar, maxchar;
2307
2308 /* Classify this character */
2309 if (eqv == start)
2310 this_type = one_case;
2311 else if (RE_TRANSLATE (eqv_table, eqv) == start)
2312 this_type = two_case;
2313 else
2314 this_type = strange;
2315
2316 if (start < eqv)
2317 minchar = start, maxchar = eqv;
2318 else
2319 minchar = eqv, maxchar = start;
2320
2321 /* Can this character extend the run in progress? */
2322 if (this_type == strange || this_type != run_type
2323 || !(minchar == run_end + 1
2324 && (run_type == two_case
2325 ? maxchar == run_eqv_end + 1 : 1)))
2326 {
2327 /* No, end the run.
2328 Record each of its equivalent ranges. */
2329 if (run_type == one_case)
2330 {
2331 EXTEND_RANGE_TABLE (work_area, 2);
2332 work_area->table[work_area->used++] = run_start;
2333 work_area->table[work_area->used++] = run_end;
2334 }
2335 else if (run_type == two_case)
2336 {
2337 EXTEND_RANGE_TABLE (work_area, 4);
2338 work_area->table[work_area->used++] = run_start;
2339 work_area->table[work_area->used++] = run_end;
2340 work_area->table[work_area->used++]
2341 = RE_TRANSLATE (eqv_table, run_start);
2342 work_area->table[work_area->used++]
2343 = RE_TRANSLATE (eqv_table, run_end);
2344 }
2345 run_type = strange;
2346 }
177c0ea7 2347
77d11aec
RS
2348 if (this_type == strange)
2349 {
2350 /* For a strange character, add each of its equivalents, one
2351 by one. Don't start a range. */
2352 do
2353 {
2354 EXTEND_RANGE_TABLE (work_area, 2);
2355 work_area->table[work_area->used++] = eqv;
2356 work_area->table[work_area->used++] = eqv;
2357 eqv = RE_TRANSLATE (eqv_table, eqv);
2358 }
2359 while (eqv != start);
2360 }
2361
2362 /* Add this char to the run, or start a new run. */
2363 else if (run_type == strange)
2364 {
2365 /* Initialize a new range. */
2366 run_type = this_type;
2367 run_start = start;
2368 run_end = start;
2369 run_eqv_end = RE_TRANSLATE (eqv_table, run_end);
2370 }
2371 else
2372 {
2373 /* Extend a running range. */
2374 run_end = minchar;
2375 run_eqv_end = RE_TRANSLATE (eqv_table, run_end);
2376 }
2377 }
2378
2379 /* If a run is still in progress at the end, finish it now
2380 by recording its equivalent ranges. */
2381 if (run_type == one_case)
2382 {
2383 EXTEND_RANGE_TABLE (work_area, 2);
2384 work_area->table[work_area->used++] = run_start;
2385 work_area->table[work_area->used++] = run_end;
2386 }
2387 else if (run_type == two_case)
2388 {
2389 EXTEND_RANGE_TABLE (work_area, 4);
2390 work_area->table[work_area->used++] = run_start;
2391 work_area->table[work_area->used++] = run_end;
2392 work_area->table[work_area->used++]
2393 = RE_TRANSLATE (eqv_table, run_start);
2394 work_area->table[work_area->used++]
2395 = RE_TRANSLATE (eqv_table, run_end);
2396 }
2397
2398 return -1;
2399}
36595814 2400
77d11aec 2401#endif /* emacs */
36595814 2402
2b34df4e 2403/* Record the image of the range start..end when passed through
36595814
SM
2404 TRANSLATE. This is not necessarily TRANSLATE(start)..TRANSLATE(end)
2405 and is not even necessarily contiguous.
b7c12565
RS
2406 Normally we approximate it with the smallest contiguous range that contains
2407 all the chars we need. However, for Latin-1 we go to extra effort
2408 to do a better job.
2409
2410 This function is not called for ASCII ranges.
77d11aec
RS
2411
2412 Returns -1 if successful, REG_ESPACE if ran out of space. */
2413
2414static int
36595814
SM
2415set_image_of_range (work_area, start, end, translate)
2416 RE_TRANSLATE_TYPE translate;
2417 struct range_table_work_area *work_area;
2418 re_wchar_t start, end;
2419{
77d11aec
RS
2420 re_wchar_t cmin, cmax;
2421
2422#ifdef emacs
2423 /* For Latin-1 ranges, use set_image_of_range_1
2424 to get proper handling of ranges that include letters and nonletters.
b7c12565 2425 For a range that includes the whole of Latin-1, this is not necessary.
77d11aec 2426 For other character sets, we don't bother to get this right. */
b7c12565
RS
2427 if (RE_TRANSLATE_P (translate) && start < 04400
2428 && !(start < 04200 && end >= 04377))
77d11aec 2429 {
b7c12565 2430 int newend;
77d11aec 2431 int tem;
b7c12565
RS
2432 newend = end;
2433 if (newend > 04377)
2434 newend = 04377;
2435 tem = set_image_of_range_1 (work_area, start, newend, translate);
77d11aec
RS
2436 if (tem > 0)
2437 return tem;
2438
2439 start = 04400;
2440 if (end < 04400)
2441 return -1;
2442 }
2443#endif
2444
b7c12565
RS
2445 EXTEND_RANGE_TABLE (work_area, 2);
2446 work_area->table[work_area->used++] = (start);
2447 work_area->table[work_area->used++] = (end);
2448
2449 cmin = -1, cmax = -1;
77d11aec 2450
36595814 2451 if (RE_TRANSLATE_P (translate))
b7c12565
RS
2452 {
2453 int ch;
77d11aec 2454
b7c12565
RS
2455 for (ch = start; ch <= end; ch++)
2456 {
2457 re_wchar_t c = TRANSLATE (ch);
2458 if (! (start <= c && c <= end))
2459 {
2460 if (cmin == -1)
2461 cmin = c, cmax = c;
2462 else
2463 {
2464 cmin = MIN (cmin, c);
2465 cmax = MAX (cmax, c);
2466 }
2467 }
2468 }
2469
2470 if (cmin != -1)
2471 {
2472 EXTEND_RANGE_TABLE (work_area, 2);
2473 work_area->table[work_area->used++] = (cmin);
2474 work_area->table[work_area->used++] = (cmax);
2475 }
2476 }
36595814 2477
77d11aec
RS
2478 return -1;
2479}
8f924df7 2480#endif /* 0 */
fa9a63c5
RM
2481\f
2482#ifndef MATCH_MAY_ALLOCATE
2483
2484/* If we cannot allocate large objects within re_match_2_internal,
2485 we make the fail stack and register vectors global.
2486 The fail stack, we grow to the maximum size when a regexp
2487 is compiled.
2488 The register vectors, we adjust in size each time we
2489 compile a regexp, according to the number of registers it needs. */
2490
2491static fail_stack_type fail_stack;
2492
2493/* Size with which the following vectors are currently allocated.
2494 That is so we can make them bigger as needed,
4bb91c68 2495 but never make them smaller. */
fa9a63c5
RM
2496static int regs_allocated_size;
2497
66f0296e
SM
2498static re_char ** regstart, ** regend;
2499static re_char **best_regstart, **best_regend;
fa9a63c5
RM
2500
2501/* Make the register vectors big enough for NUM_REGS registers,
4bb91c68 2502 but don't make them smaller. */
fa9a63c5
RM
2503
2504static
2505regex_grow_registers (num_regs)
2506 int num_regs;
2507{
2508 if (num_regs > regs_allocated_size)
2509 {
66f0296e
SM
2510 RETALLOC_IF (regstart, num_regs, re_char *);
2511 RETALLOC_IF (regend, num_regs, re_char *);
2512 RETALLOC_IF (best_regstart, num_regs, re_char *);
2513 RETALLOC_IF (best_regend, num_regs, re_char *);
fa9a63c5
RM
2514
2515 regs_allocated_size = num_regs;
2516 }
2517}
2518
2519#endif /* not MATCH_MAY_ALLOCATE */
2520\f
99633e97
SM
2521static boolean group_in_compile_stack _RE_ARGS ((compile_stack_type
2522 compile_stack,
2523 regnum_t regnum));
2524
fa9a63c5
RM
2525/* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
2526 Returns one of error codes defined in `regex.h', or zero for success.
2527
2528 Assumes the `allocated' (and perhaps `buffer') and `translate'
2529 fields are set in BUFP on entry.
2530
2531 If it succeeds, results are put in BUFP (if it returns an error, the
2532 contents of BUFP are undefined):
2533 `buffer' is the compiled pattern;
2534 `syntax' is set to SYNTAX;
2535 `used' is set to the length of the compiled pattern;
2536 `fastmap_accurate' is zero;
2537 `re_nsub' is the number of subexpressions in PATTERN;
2538 `not_bol' and `not_eol' are zero;
5e69f11e 2539
c0f9ea08 2540 The `fastmap' field is neither examined nor set. */
fa9a63c5 2541
505bde11
SM
2542/* Insert the `jump' from the end of last alternative to "here".
2543 The space for the jump has already been allocated. */
2544#define FIXUP_ALT_JUMP() \
2545do { \
2546 if (fixup_alt_jump) \
2547 STORE_JUMP (jump, fixup_alt_jump, b); \
2548} while (0)
2549
2550
fa9a63c5
RM
2551/* Return, freeing storage we allocated. */
2552#define FREE_STACK_RETURN(value) \
b18215fc
RS
2553 do { \
2554 FREE_RANGE_TABLE_WORK_AREA (range_table_work); \
2555 free (compile_stack.stack); \
2556 return value; \
2557 } while (0)
fa9a63c5
RM
2558
2559static reg_errcode_t
2560regex_compile (pattern, size, syntax, bufp)
66f0296e 2561 re_char *pattern;
4bb91c68 2562 size_t size;
fa9a63c5
RM
2563 reg_syntax_t syntax;
2564 struct re_pattern_buffer *bufp;
2565{
01618498
SM
2566 /* We fetch characters from PATTERN here. */
2567 register re_wchar_t c, c1;
5e69f11e 2568
fa9a63c5 2569 /* A random temporary spot in PATTERN. */
66f0296e 2570 re_char *p1;
fa9a63c5
RM
2571
2572 /* Points to the end of the buffer, where we should append. */
2573 register unsigned char *b;
5e69f11e 2574
fa9a63c5
RM
2575 /* Keeps track of unclosed groups. */
2576 compile_stack_type compile_stack;
2577
2578 /* Points to the current (ending) position in the pattern. */
22336245
RS
2579#ifdef AIX
2580 /* `const' makes AIX compiler fail. */
66f0296e 2581 unsigned char *p = pattern;
22336245 2582#else
66f0296e 2583 re_char *p = pattern;
22336245 2584#endif
66f0296e 2585 re_char *pend = pattern + size;
5e69f11e 2586
fa9a63c5 2587 /* How to translate the characters in the pattern. */
6676cb1c 2588 RE_TRANSLATE_TYPE translate = bufp->translate;
fa9a63c5
RM
2589
2590 /* Address of the count-byte of the most recently inserted `exactn'
2591 command. This makes it possible to tell if a new exact-match
2592 character can be added to that command or if the character requires
2593 a new `exactn' command. */
2594 unsigned char *pending_exact = 0;
2595
2596 /* Address of start of the most recently finished expression.
2597 This tells, e.g., postfix * where to find the start of its
2598 operand. Reset at the beginning of groups and alternatives. */
2599 unsigned char *laststart = 0;
2600
2601 /* Address of beginning of regexp, or inside of last group. */
2602 unsigned char *begalt;
2603
2604 /* Place in the uncompiled pattern (i.e., the {) to
2605 which to go back if the interval is invalid. */
66f0296e 2606 re_char *beg_interval;
5e69f11e 2607
fa9a63c5 2608 /* Address of the place where a forward jump should go to the end of
7814e705 2609 the containing expression. Each alternative of an `or' -- except the
fa9a63c5
RM
2610 last -- ends with a forward jump of this sort. */
2611 unsigned char *fixup_alt_jump = 0;
2612
b18215fc
RS
2613 /* Work area for range table of charset. */
2614 struct range_table_work_area range_table_work;
2615
2d1675e4
SM
2616 /* If the object matched can contain multibyte characters. */
2617 const boolean multibyte = RE_MULTIBYTE_P (bufp);
2618
8f924df7 2619 /* If a target of matching can contain multibyte characters. */
6fdd04b0
KH
2620 const boolean target_multibyte = RE_TARGET_MULTIBYTE_P (bufp);
2621
f9b0fd99
RS
2622 /* Nonzero if we have pushed down into a subpattern. */
2623 int in_subpattern = 0;
2624
2625 /* These hold the values of p, pattern, and pend from the main
2626 pattern when we have pushed into a subpattern. */
2627 re_char *main_p;
2628 re_char *main_pattern;
2629 re_char *main_pend;
2630
fa9a63c5 2631#ifdef DEBUG
99633e97 2632 debug++;
fa9a63c5 2633 DEBUG_PRINT1 ("\nCompiling pattern: ");
99633e97 2634 if (debug > 0)
fa9a63c5
RM
2635 {
2636 unsigned debug_count;
5e69f11e 2637
fa9a63c5 2638 for (debug_count = 0; debug_count < size; debug_count++)
25fe55af 2639 putchar (pattern[debug_count]);
fa9a63c5
RM
2640 putchar ('\n');
2641 }
2642#endif /* DEBUG */
2643
2644 /* Initialize the compile stack. */
2645 compile_stack.stack = TALLOC (INIT_COMPILE_STACK_SIZE, compile_stack_elt_t);
2646 if (compile_stack.stack == NULL)
2647 return REG_ESPACE;
2648
2649 compile_stack.size = INIT_COMPILE_STACK_SIZE;
2650 compile_stack.avail = 0;
2651
b18215fc
RS
2652 range_table_work.table = 0;
2653 range_table_work.allocated = 0;
2654
fa9a63c5
RM
2655 /* Initialize the pattern buffer. */
2656 bufp->syntax = syntax;
2657 bufp->fastmap_accurate = 0;
2658 bufp->not_bol = bufp->not_eol = 0;
6224b623 2659 bufp->used_syntax = 0;
fa9a63c5
RM
2660
2661 /* Set `used' to zero, so that if we return an error, the pattern
2662 printer (for debugging) will think there's no pattern. We reset it
2663 at the end. */
2664 bufp->used = 0;
5e69f11e 2665
fa9a63c5 2666 /* Always count groups, whether or not bufp->no_sub is set. */
5e69f11e 2667 bufp->re_nsub = 0;
fa9a63c5 2668
0b32bf0e 2669#if !defined emacs && !defined SYNTAX_TABLE
fa9a63c5
RM
2670 /* Initialize the syntax table. */
2671 init_syntax_once ();
2672#endif
2673
2674 if (bufp->allocated == 0)
2675 {
2676 if (bufp->buffer)
2677 { /* If zero allocated, but buffer is non-null, try to realloc
25fe55af 2678 enough space. This loses if buffer's address is bogus, but
7814e705 2679 that is the user's responsibility. */
25fe55af
RS
2680 RETALLOC (bufp->buffer, INIT_BUF_SIZE, unsigned char);
2681 }
fa9a63c5 2682 else
7814e705 2683 { /* Caller did not allocate a buffer. Do it for them. */
25fe55af
RS
2684 bufp->buffer = TALLOC (INIT_BUF_SIZE, unsigned char);
2685 }
fa9a63c5
RM
2686 if (!bufp->buffer) FREE_STACK_RETURN (REG_ESPACE);
2687
2688 bufp->allocated = INIT_BUF_SIZE;
2689 }
2690
2691 begalt = b = bufp->buffer;
2692
2693 /* Loop through the uncompiled pattern until we're at the end. */
f9b0fd99 2694 while (1)
fa9a63c5 2695 {
f9b0fd99
RS
2696 if (p == pend)
2697 {
2698 /* If this is the end of an included regexp,
2699 pop back to the main regexp and try again. */
2700 if (in_subpattern)
2701 {
2702 in_subpattern = 0;
2703 pattern = main_pattern;
2704 p = main_p;
2705 pend = main_pend;
2706 continue;
2707 }
2708 /* If this is the end of the main regexp, we are done. */
2709 break;
2710 }
2711
fa9a63c5
RM
2712 PATFETCH (c);
2713
2714 switch (c)
25fe55af 2715 {
f9b0fd99
RS
2716 case ' ':
2717 {
2718 re_char *p1 = p;
2719
2720 /* If there's no special whitespace regexp, treat
4fb680cd
RS
2721 spaces normally. And don't try to do this recursively. */
2722 if (!whitespace_regexp || in_subpattern)
f9b0fd99
RS
2723 goto normal_char;
2724
2725 /* Peek past following spaces. */
2726 while (p1 != pend)
2727 {
2728 if (*p1 != ' ')
2729 break;
2730 p1++;
2731 }
2732 /* If the spaces are followed by a repetition op,
2733 treat them normally. */
c721eee5
RS
2734 if (p1 != pend
2735 && (*p1 == '*' || *p1 == '+' || *p1 == '?'
f9b0fd99
RS
2736 || (*p1 == '\\' && p1 + 1 != pend && p1[1] == '{')))
2737 goto normal_char;
2738
2739 /* Replace the spaces with the whitespace regexp. */
2740 in_subpattern = 1;
2741 main_p = p1;
2742 main_pend = pend;
2743 main_pattern = pattern;
2744 p = pattern = whitespace_regexp;
2745 pend = p + strlen (p);
2746 break;
7814e705 2747 }
f9b0fd99 2748
25fe55af
RS
2749 case '^':
2750 {
7814e705 2751 if ( /* If at start of pattern, it's an operator. */
25fe55af 2752 p == pattern + 1
7814e705 2753 /* If context independent, it's an operator. */
25fe55af 2754 || syntax & RE_CONTEXT_INDEP_ANCHORS
7814e705 2755 /* Otherwise, depends on what's come before. */
25fe55af 2756 || at_begline_loc_p (pattern, p, syntax))
c0f9ea08 2757 BUF_PUSH ((syntax & RE_NO_NEWLINE_ANCHOR) ? begbuf : begline);
25fe55af
RS
2758 else
2759 goto normal_char;
2760 }
2761 break;
2762
2763
2764 case '$':
2765 {
2766 if ( /* If at end of pattern, it's an operator. */
2767 p == pend
7814e705 2768 /* If context independent, it's an operator. */
25fe55af
RS
2769 || syntax & RE_CONTEXT_INDEP_ANCHORS
2770 /* Otherwise, depends on what's next. */
2771 || at_endline_loc_p (p, pend, syntax))
c0f9ea08 2772 BUF_PUSH ((syntax & RE_NO_NEWLINE_ANCHOR) ? endbuf : endline);
25fe55af
RS
2773 else
2774 goto normal_char;
2775 }
2776 break;
fa9a63c5
RM
2777
2778
2779 case '+':
25fe55af
RS
2780 case '?':
2781 if ((syntax & RE_BK_PLUS_QM)
2782 || (syntax & RE_LIMITED_OPS))
2783 goto normal_char;
2784 handle_plus:
2785 case '*':
2786 /* If there is no previous pattern... */
2787 if (!laststart)
2788 {
2789 if (syntax & RE_CONTEXT_INVALID_OPS)
2790 FREE_STACK_RETURN (REG_BADRPT);
2791 else if (!(syntax & RE_CONTEXT_INDEP_OPS))
2792 goto normal_char;
2793 }
2794
2795 {
7814e705 2796 /* 1 means zero (many) matches is allowed. */
66f0296e
SM
2797 boolean zero_times_ok = 0, many_times_ok = 0;
2798 boolean greedy = 1;
25fe55af
RS
2799
2800 /* If there is a sequence of repetition chars, collapse it
2801 down to just one (the right one). We can't combine
2802 interval operators with these because of, e.g., `a{2}*',
7814e705 2803 which should only match an even number of `a's. */
25fe55af
RS
2804
2805 for (;;)
2806 {
0b32bf0e 2807 if ((syntax & RE_FRUGAL)
1c8c6d39
DL
2808 && c == '?' && (zero_times_ok || many_times_ok))
2809 greedy = 0;
2810 else
2811 {
2812 zero_times_ok |= c != '+';
2813 many_times_ok |= c != '?';
2814 }
25fe55af
RS
2815
2816 if (p == pend)
2817 break;
ed0767d8
SM
2818 else if (*p == '*'
2819 || (!(syntax & RE_BK_PLUS_QM)
2820 && (*p == '+' || *p == '?')))
25fe55af 2821 ;
ed0767d8 2822 else if (syntax & RE_BK_PLUS_QM && *p == '\\')
25fe55af 2823 {
ed0767d8
SM
2824 if (p+1 == pend)
2825 FREE_STACK_RETURN (REG_EESCAPE);
2826 if (p[1] == '+' || p[1] == '?')
2827 PATFETCH (c); /* Gobble up the backslash. */
2828 else
2829 break;
25fe55af
RS
2830 }
2831 else
ed0767d8 2832 break;
25fe55af 2833 /* If we get here, we found another repeat character. */
ed0767d8
SM
2834 PATFETCH (c);
2835 }
25fe55af
RS
2836
2837 /* Star, etc. applied to an empty pattern is equivalent
2838 to an empty pattern. */
4e8a9132 2839 if (!laststart || laststart == b)
25fe55af
RS
2840 break;
2841
2842 /* Now we know whether or not zero matches is allowed
7814e705 2843 and also whether or not two or more matches is allowed. */
1c8c6d39
DL
2844 if (greedy)
2845 {
99633e97 2846 if (many_times_ok)
4e8a9132
SM
2847 {
2848 boolean simple = skip_one_char (laststart) == b;
2849 unsigned int startoffset = 0;
f6a3f532 2850 re_opcode_t ofj =
01618498 2851 /* Check if the loop can match the empty string. */
6df42991
SM
2852 (simple || !analyse_first (laststart, b, NULL, 0))
2853 ? on_failure_jump : on_failure_jump_loop;
4e8a9132 2854 assert (skip_one_char (laststart) <= b);
177c0ea7 2855
4e8a9132
SM
2856 if (!zero_times_ok && simple)
2857 { /* Since simple * loops can be made faster by using
2858 on_failure_keep_string_jump, we turn simple P+
2859 into PP* if P is simple. */
2860 unsigned char *p1, *p2;
2861 startoffset = b - laststart;
2862 GET_BUFFER_SPACE (startoffset);
2863 p1 = b; p2 = laststart;
2864 while (p2 < p1)
2865 *b++ = *p2++;
2866 zero_times_ok = 1;
99633e97 2867 }
4e8a9132
SM
2868
2869 GET_BUFFER_SPACE (6);
2870 if (!zero_times_ok)
2871 /* A + loop. */
f6a3f532 2872 STORE_JUMP (ofj, b, b + 6);
99633e97 2873 else
4e8a9132
SM
2874 /* Simple * loops can use on_failure_keep_string_jump
2875 depending on what follows. But since we don't know
2876 that yet, we leave the decision up to
2877 on_failure_jump_smart. */
f6a3f532 2878 INSERT_JUMP (simple ? on_failure_jump_smart : ofj,
4e8a9132 2879 laststart + startoffset, b + 6);
99633e97 2880 b += 3;
4e8a9132 2881 STORE_JUMP (jump, b, laststart + startoffset);
99633e97
SM
2882 b += 3;
2883 }
2884 else
2885 {
4e8a9132
SM
2886 /* A simple ? pattern. */
2887 assert (zero_times_ok);
2888 GET_BUFFER_SPACE (3);
2889 INSERT_JUMP (on_failure_jump, laststart, b + 3);
99633e97
SM
2890 b += 3;
2891 }
1c8c6d39
DL
2892 }
2893 else /* not greedy */
2894 { /* I wish the greedy and non-greedy cases could be merged. */
2895
0683b6fa 2896 GET_BUFFER_SPACE (7); /* We might use less. */
1c8c6d39
DL
2897 if (many_times_ok)
2898 {
f6a3f532
SM
2899 boolean emptyp = analyse_first (laststart, b, NULL, 0);
2900
6df42991
SM
2901 /* The non-greedy multiple match looks like
2902 a repeat..until: we only need a conditional jump
2903 at the end of the loop. */
f6a3f532
SM
2904 if (emptyp) BUF_PUSH (no_op);
2905 STORE_JUMP (emptyp ? on_failure_jump_nastyloop
2906 : on_failure_jump, b, laststart);
1c8c6d39
DL
2907 b += 3;
2908 if (zero_times_ok)
2909 {
2910 /* The repeat...until naturally matches one or more.
2911 To also match zero times, we need to first jump to
6df42991 2912 the end of the loop (its conditional jump). */
1c8c6d39
DL
2913 INSERT_JUMP (jump, laststart, b);
2914 b += 3;
2915 }
2916 }
2917 else
2918 {
2919 /* non-greedy a?? */
1c8c6d39
DL
2920 INSERT_JUMP (jump, laststart, b + 3);
2921 b += 3;
2922 INSERT_JUMP (on_failure_jump, laststart, laststart + 6);
2923 b += 3;
2924 }
2925 }
2926 }
4e8a9132 2927 pending_exact = 0;
fa9a63c5
RM
2928 break;
2929
2930
2931 case '.':
25fe55af
RS
2932 laststart = b;
2933 BUF_PUSH (anychar);
2934 break;
fa9a63c5
RM
2935
2936
25fe55af
RS
2937 case '[':
2938 {
b18215fc 2939 CLEAR_RANGE_TABLE_WORK_USED (range_table_work);
fa9a63c5 2940
25fe55af 2941 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
fa9a63c5 2942
25fe55af
RS
2943 /* Ensure that we have enough space to push a charset: the
2944 opcode, the length count, and the bitset; 34 bytes in all. */
fa9a63c5
RM
2945 GET_BUFFER_SPACE (34);
2946
25fe55af 2947 laststart = b;
e318085a 2948
25fe55af 2949 /* We test `*p == '^' twice, instead of using an if
7814e705 2950 statement, so we only need one BUF_PUSH. */
25fe55af
RS
2951 BUF_PUSH (*p == '^' ? charset_not : charset);
2952 if (*p == '^')
2953 p++;
e318085a 2954
25fe55af
RS
2955 /* Remember the first position in the bracket expression. */
2956 p1 = p;
e318085a 2957
7814e705 2958 /* Push the number of bytes in the bitmap. */
25fe55af 2959 BUF_PUSH ((1 << BYTEWIDTH) / BYTEWIDTH);
e318085a 2960
25fe55af
RS
2961 /* Clear the whole map. */
2962 bzero (b, (1 << BYTEWIDTH) / BYTEWIDTH);
e318085a 2963
25fe55af
RS
2964 /* charset_not matches newline according to a syntax bit. */
2965 if ((re_opcode_t) b[-2] == charset_not
2966 && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
2967 SET_LIST_BIT ('\n');
fa9a63c5 2968
7814e705 2969 /* Read in characters and ranges, setting map bits. */
25fe55af
RS
2970 for (;;)
2971 {
b18215fc 2972 boolean escaped_char = false;
2d1675e4 2973 const unsigned char *p2 = p;
cf9c99bc 2974 re_wchar_t ch, c2;
e318085a 2975
25fe55af 2976 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
e318085a 2977
36595814
SM
2978 /* Don't translate yet. The range TRANSLATE(X..Y) cannot
2979 always be determined from TRANSLATE(X) and TRANSLATE(Y)
2980 So the translation is done later in a loop. Example:
2981 (let ((case-fold-search t)) (string-match "[A-_]" "A")) */
25fe55af 2982 PATFETCH (c);
e318085a 2983
25fe55af
RS
2984 /* \ might escape characters inside [...] and [^...]. */
2985 if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
2986 {
2987 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
e318085a
RS
2988
2989 PATFETCH (c);
b18215fc 2990 escaped_char = true;
25fe55af 2991 }
b18215fc
RS
2992 else
2993 {
7814e705 2994 /* Could be the end of the bracket expression. If it's
657fcfbd
RS
2995 not (i.e., when the bracket expression is `[]' so
2996 far), the ']' character bit gets set way below. */
2d1675e4 2997 if (c == ']' && p2 != p1)
657fcfbd 2998 break;
25fe55af 2999 }
b18215fc 3000
25fe55af
RS
3001 /* See if we're at the beginning of a possible character
3002 class. */
b18215fc 3003
2d1675e4
SM
3004 if (!escaped_char &&
3005 syntax & RE_CHAR_CLASSES && c == '[' && *p == ':')
657fcfbd 3006 {
7814e705 3007 /* Leave room for the null. */
14473664 3008 unsigned char str[CHAR_CLASS_MAX_LENGTH + 1];
ed0767d8 3009 const unsigned char *class_beg;
b18215fc 3010
25fe55af
RS
3011 PATFETCH (c);
3012 c1 = 0;
ed0767d8 3013 class_beg = p;
b18215fc 3014
25fe55af
RS
3015 /* If pattern is `[[:'. */
3016 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
b18215fc 3017
25fe55af
RS
3018 for (;;)
3019 {
14473664
SM
3020 PATFETCH (c);
3021 if ((c == ':' && *p == ']') || p == pend)
3022 break;
3023 if (c1 < CHAR_CLASS_MAX_LENGTH)
3024 str[c1++] = c;
3025 else
3026 /* This is in any case an invalid class name. */
3027 str[0] = '\0';
25fe55af
RS
3028 }
3029 str[c1] = '\0';
b18215fc
RS
3030
3031 /* If isn't a word bracketed by `[:' and `:]':
3032 undo the ending character, the letters, and
3033 leave the leading `:' and `[' (but set bits for
3034 them). */
25fe55af
RS
3035 if (c == ':' && *p == ']')
3036 {
14473664 3037 re_wctype_t cc;
8f924df7 3038 int limit;
14473664
SM
3039
3040 cc = re_wctype (str);
3041
3042 if (cc == 0)
fa9a63c5
RM
3043 FREE_STACK_RETURN (REG_ECTYPE);
3044
14473664
SM
3045 /* Throw away the ] at the end of the character
3046 class. */
3047 PATFETCH (c);
fa9a63c5 3048
14473664 3049 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
fa9a63c5 3050
cf9c99bc
KH
3051#ifndef emacs
3052 for (ch = 0; ch < (1 << BYTEWIDTH); ++ch)
8f924df7
KH
3053 if (re_iswctype (btowc (ch), cc))
3054 {
3055 c = TRANSLATE (ch);
ed00c2ac
KH
3056 if (c < (1 << BYTEWIDTH))
3057 SET_LIST_BIT (c);
8f924df7 3058 }
cf9c99bc
KH
3059#else /* emacs */
3060 /* Most character classes in a multibyte match
3061 just set a flag. Exceptions are is_blank,
3062 is_digit, is_cntrl, and is_xdigit, since
3063 they can only match ASCII characters. We
3064 don't need to handle them for multibyte.
3065 They are distinguished by a negative wctype. */
96cc36cc 3066
cf9c99bc 3067 for (ch = 0; ch < 256; ++ch)
25fe55af 3068 {
cf9c99bc
KH
3069 c = RE_CHAR_TO_MULTIBYTE (ch);
3070 if (! CHAR_BYTE8_P (c)
3071 && re_iswctype (c, cc))
8f924df7 3072 {
cf9c99bc
KH
3073 SET_LIST_BIT (ch);
3074 c1 = TRANSLATE (c);
3075 if (c1 == c)
3076 continue;
3077 if (ASCII_CHAR_P (c1))
3078 SET_LIST_BIT (c1);
3079 else if ((c1 = RE_CHAR_TO_UNIBYTE (c1)) >= 0)
3080 SET_LIST_BIT (c1);
8f924df7 3081 }
25fe55af 3082 }
cf9c99bc
KH
3083 SET_RANGE_TABLE_WORK_AREA_BIT
3084 (range_table_work, re_wctype_to_bit (cc));
3085#endif /* emacs */
6224b623
SM
3086 /* In most cases the matching rule for char classes
3087 only uses the syntax table for multibyte chars,
3088 so that the content of the syntax-table it is not
3089 hardcoded in the range_table. SPACE and WORD are
3090 the two exceptions. */
3091 if ((1 << cc) & ((1 << RECC_SPACE) | (1 << RECC_WORD)))
3092 bufp->used_syntax = 1;
3093
b18215fc
RS
3094 /* Repeat the loop. */
3095 continue;
25fe55af
RS
3096 }
3097 else
3098 {
ed0767d8
SM
3099 /* Go back to right after the "[:". */
3100 p = class_beg;
25fe55af 3101 SET_LIST_BIT ('[');
b18215fc
RS
3102
3103 /* Because the `:' may starts the range, we
3104 can't simply set bit and repeat the loop.
7814e705 3105 Instead, just set it to C and handle below. */
b18215fc 3106 c = ':';
25fe55af
RS
3107 }
3108 }
b18215fc
RS
3109
3110 if (p < pend && p[0] == '-' && p[1] != ']')
3111 {
3112
3113 /* Discard the `-'. */
3114 PATFETCH (c1);
3115
3116 /* Fetch the character which ends the range. */
3117 PATFETCH (c1);
cf9c99bc
KH
3118#ifdef emacs
3119 if (CHAR_BYTE8_P (c1)
3120 && ! ASCII_CHAR_P (c) && ! CHAR_BYTE8_P (c))
3121 /* Treat the range from a multibyte character to
3122 raw-byte character as empty. */
3123 c = c1 + 1;
3124#endif /* emacs */
e318085a 3125 }
25fe55af 3126 else
b18215fc
RS
3127 /* Range from C to C. */
3128 c1 = c;
3129
cf9c99bc 3130 if (c > c1)
25fe55af 3131 {
cf9c99bc
KH
3132 if (syntax & RE_NO_EMPTY_RANGES)
3133 FREE_STACK_RETURN (REG_ERANGEX);
3134 /* Else, repeat the loop. */
bf216479 3135 }
6fdd04b0 3136 else
25fe55af 3137 {
cf9c99bc
KH
3138#ifndef emacs
3139 /* Set the range into bitmap */
8f924df7 3140 for (; c <= c1; c++)
b18215fc 3141 {
cf9c99bc
KH
3142 ch = TRANSLATE (c);
3143 if (ch < (1 << BYTEWIDTH))
3144 SET_LIST_BIT (ch);
3145 }
3146#else /* emacs */
3147 if (c < 128)
3148 {
3149 ch = MIN (127, c1);
3150 SETUP_ASCII_RANGE (range_table_work, c, ch);
3151 c = ch + 1;
3152 if (CHAR_BYTE8_P (c1))
3153 c = BYTE8_TO_CHAR (128);
3154 }
3155 if (c <= c1)
3156 {
3157 if (CHAR_BYTE8_P (c))
3158 {
3159 c = CHAR_TO_BYTE8 (c);
3160 c1 = CHAR_TO_BYTE8 (c1);
3161 for (; c <= c1; c++)
3162 SET_LIST_BIT (c);
3163 }
3164 else if (multibyte)
3165 {
3166 SETUP_MULTIBYTE_RANGE (range_table_work, c, c1);
3167 }
3168 else
3169 {
3170 SETUP_UNIBYTE_RANGE (range_table_work, c, c1);
3171 }
e934739e 3172 }
cf9c99bc 3173#endif /* emacs */
25fe55af 3174 }
e318085a
RS
3175 }
3176
25fe55af 3177 /* Discard any (non)matching list bytes that are all 0 at the
7814e705 3178 end of the map. Decrease the map-length byte too. */
25fe55af
RS
3179 while ((int) b[-1] > 0 && b[b[-1] - 1] == 0)
3180 b[-1]--;
3181 b += b[-1];
fa9a63c5 3182
96cc36cc
RS
3183 /* Build real range table from work area. */
3184 if (RANGE_TABLE_WORK_USED (range_table_work)
3185 || RANGE_TABLE_WORK_BITS (range_table_work))
b18215fc
RS
3186 {
3187 int i;
3188 int used = RANGE_TABLE_WORK_USED (range_table_work);
fa9a63c5 3189
b18215fc 3190 /* Allocate space for COUNT + RANGE_TABLE. Needs two
96cc36cc
RS
3191 bytes for flags, two for COUNT, and three bytes for
3192 each character. */
3193 GET_BUFFER_SPACE (4 + used * 3);
fa9a63c5 3194
b18215fc
RS
3195 /* Indicate the existence of range table. */
3196 laststart[1] |= 0x80;
fa9a63c5 3197
96cc36cc
RS
3198 /* Store the character class flag bits into the range table.
3199 If not in emacs, these flag bits are always 0. */
3200 *b++ = RANGE_TABLE_WORK_BITS (range_table_work) & 0xff;
3201 *b++ = RANGE_TABLE_WORK_BITS (range_table_work) >> 8;
3202
b18215fc
RS
3203 STORE_NUMBER_AND_INCR (b, used / 2);
3204 for (i = 0; i < used; i++)
3205 STORE_CHARACTER_AND_INCR
3206 (b, RANGE_TABLE_WORK_ELT (range_table_work, i));
3207 }
25fe55af
RS
3208 }
3209 break;
fa9a63c5
RM
3210
3211
b18215fc 3212 case '(':
25fe55af
RS
3213 if (syntax & RE_NO_BK_PARENS)
3214 goto handle_open;
3215 else
3216 goto normal_char;
fa9a63c5
RM
3217
3218
25fe55af
RS
3219 case ')':
3220 if (syntax & RE_NO_BK_PARENS)
3221 goto handle_close;
3222 else
3223 goto normal_char;
e318085a
RS
3224
3225
25fe55af
RS
3226 case '\n':
3227 if (syntax & RE_NEWLINE_ALT)
3228 goto handle_alt;
3229 else
3230 goto normal_char;
e318085a
RS
3231
3232
b18215fc 3233 case '|':
25fe55af
RS
3234 if (syntax & RE_NO_BK_VBAR)
3235 goto handle_alt;
3236 else
3237 goto normal_char;
3238
3239
3240 case '{':
3241 if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES)
3242 goto handle_interval;
3243 else
3244 goto normal_char;
3245
3246
3247 case '\\':
3248 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
3249
3250 /* Do not translate the character after the \, so that we can
3251 distinguish, e.g., \B from \b, even if we normally would
3252 translate, e.g., B to b. */
36595814 3253 PATFETCH (c);
25fe55af
RS
3254
3255 switch (c)
3256 {
3257 case '(':
3258 if (syntax & RE_NO_BK_PARENS)
3259 goto normal_backslash;
3260
3261 handle_open:
505bde11
SM
3262 {
3263 int shy = 0;
c69b0314 3264 regnum_t regnum = 0;
505bde11
SM
3265 if (p+1 < pend)
3266 {
3267 /* Look for a special (?...) construct */
ed0767d8 3268 if ((syntax & RE_SHY_GROUPS) && *p == '?')
505bde11 3269 {
ed0767d8 3270 PATFETCH (c); /* Gobble up the '?'. */
c69b0314 3271 while (!shy)
505bde11 3272 {
c69b0314
SM
3273 PATFETCH (c);
3274 switch (c)
3275 {
3276 case ':': shy = 1; break;
3277 case '0':
3278 /* An explicitly specified regnum must start
3279 with non-0. */
3280 if (regnum == 0)
3281 FREE_STACK_RETURN (REG_BADPAT);
3282 case '1': case '2': case '3': case '4':
3283 case '5': case '6': case '7': case '8': case '9':
3284 regnum = 10*regnum + (c - '0'); break;
3285 default:
3286 /* Only (?:...) is supported right now. */
3287 FREE_STACK_RETURN (REG_BADPAT);
3288 }
505bde11
SM
3289 }
3290 }
505bde11
SM
3291 }
3292
3293 if (!shy)
c69b0314
SM
3294 regnum = ++bufp->re_nsub;
3295 else if (regnum)
3296 { /* It's actually not shy, but explicitly numbered. */
3297 shy = 0;
3298 if (regnum > bufp->re_nsub)
3299 bufp->re_nsub = regnum;
3300 else if (regnum > bufp->re_nsub
3301 /* Ideally, we'd want to check that the specified
3302 group can't have matched (i.e. all subgroups
3303 using the same regnum are in other branches of
3304 OR patterns), but we don't currently keep track
3305 of enough info to do that easily. */
3306 || group_in_compile_stack (compile_stack, regnum))
3307 FREE_STACK_RETURN (REG_BADPAT);
505bde11 3308 }
c69b0314
SM
3309 else
3310 /* It's really shy. */
3311 regnum = - bufp->re_nsub;
25fe55af 3312
99633e97
SM
3313 if (COMPILE_STACK_FULL)
3314 {
3315 RETALLOC (compile_stack.stack, compile_stack.size << 1,
3316 compile_stack_elt_t);
3317 if (compile_stack.stack == NULL) return REG_ESPACE;
25fe55af 3318
99633e97
SM
3319 compile_stack.size <<= 1;
3320 }
25fe55af 3321
99633e97 3322 /* These are the values to restore when we hit end of this
7814e705 3323 group. They are all relative offsets, so that if the
99633e97
SM
3324 whole pattern moves because of realloc, they will still
3325 be valid. */
3326 COMPILE_STACK_TOP.begalt_offset = begalt - bufp->buffer;
3327 COMPILE_STACK_TOP.fixup_alt_jump
3328 = fixup_alt_jump ? fixup_alt_jump - bufp->buffer + 1 : 0;
3329 COMPILE_STACK_TOP.laststart_offset = b - bufp->buffer;
c69b0314 3330 COMPILE_STACK_TOP.regnum = regnum;
99633e97 3331
c69b0314
SM
3332 /* Do not push a start_memory for groups beyond the last one
3333 we can represent in the compiled pattern. */
3334 if (regnum <= MAX_REGNUM && regnum > 0)
99633e97
SM
3335 BUF_PUSH_2 (start_memory, regnum);
3336
3337 compile_stack.avail++;
3338
3339 fixup_alt_jump = 0;
3340 laststart = 0;
3341 begalt = b;
3342 /* If we've reached MAX_REGNUM groups, then this open
3343 won't actually generate any code, so we'll have to
3344 clear pending_exact explicitly. */
3345 pending_exact = 0;
3346 break;
505bde11 3347 }
25fe55af
RS
3348
3349 case ')':
3350 if (syntax & RE_NO_BK_PARENS) goto normal_backslash;
3351
3352 if (COMPILE_STACK_EMPTY)
505bde11
SM
3353 {
3354 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
3355 goto normal_backslash;
3356 else
3357 FREE_STACK_RETURN (REG_ERPAREN);
3358 }
25fe55af
RS
3359
3360 handle_close:
505bde11 3361 FIXUP_ALT_JUMP ();
25fe55af
RS
3362
3363 /* See similar code for backslashed left paren above. */
3364 if (COMPILE_STACK_EMPTY)
505bde11
SM
3365 {
3366 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
3367 goto normal_char;
3368 else
3369 FREE_STACK_RETURN (REG_ERPAREN);
3370 }
25fe55af
RS
3371
3372 /* Since we just checked for an empty stack above, this
3373 ``can't happen''. */
3374 assert (compile_stack.avail != 0);
3375 {
3376 /* We don't just want to restore into `regnum', because
3377 later groups should continue to be numbered higher,
7814e705 3378 as in `(ab)c(de)' -- the second group is #2. */
c69b0314 3379 regnum_t regnum;
25fe55af
RS
3380
3381 compile_stack.avail--;
3382 begalt = bufp->buffer + COMPILE_STACK_TOP.begalt_offset;
3383 fixup_alt_jump
3384 = COMPILE_STACK_TOP.fixup_alt_jump
3385 ? bufp->buffer + COMPILE_STACK_TOP.fixup_alt_jump - 1
3386 : 0;
3387 laststart = bufp->buffer + COMPILE_STACK_TOP.laststart_offset;
c69b0314 3388 regnum = COMPILE_STACK_TOP.regnum;
b18215fc
RS
3389 /* If we've reached MAX_REGNUM groups, then this open
3390 won't actually generate any code, so we'll have to
3391 clear pending_exact explicitly. */
3392 pending_exact = 0;
e318085a 3393
25fe55af 3394 /* We're at the end of the group, so now we know how many
7814e705 3395 groups were inside this one. */
c69b0314
SM
3396 if (regnum <= MAX_REGNUM && regnum > 0)
3397 BUF_PUSH_2 (stop_memory, regnum);
25fe55af
RS
3398 }
3399 break;
3400
3401
3402 case '|': /* `\|'. */
3403 if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR)
3404 goto normal_backslash;
3405 handle_alt:
3406 if (syntax & RE_LIMITED_OPS)
3407 goto normal_char;
3408
3409 /* Insert before the previous alternative a jump which
7814e705 3410 jumps to this alternative if the former fails. */
25fe55af
RS
3411 GET_BUFFER_SPACE (3);
3412 INSERT_JUMP (on_failure_jump, begalt, b + 6);
3413 pending_exact = 0;
3414 b += 3;
3415
3416 /* The alternative before this one has a jump after it
3417 which gets executed if it gets matched. Adjust that
3418 jump so it will jump to this alternative's analogous
3419 jump (put in below, which in turn will jump to the next
3420 (if any) alternative's such jump, etc.). The last such
3421 jump jumps to the correct final destination. A picture:
3422 _____ _____
3423 | | | |
3424 | v | v
3425 a | b | c
3426
3427 If we are at `b', then fixup_alt_jump right now points to a
3428 three-byte space after `a'. We'll put in the jump, set
3429 fixup_alt_jump to right after `b', and leave behind three
3430 bytes which we'll fill in when we get to after `c'. */
3431
505bde11 3432 FIXUP_ALT_JUMP ();
25fe55af
RS
3433
3434 /* Mark and leave space for a jump after this alternative,
3435 to be filled in later either by next alternative or
3436 when know we're at the end of a series of alternatives. */
3437 fixup_alt_jump = b;
3438 GET_BUFFER_SPACE (3);
3439 b += 3;
3440
3441 laststart = 0;
3442 begalt = b;
3443 break;
3444
3445
3446 case '{':
3447 /* If \{ is a literal. */
3448 if (!(syntax & RE_INTERVALS)
3449 /* If we're at `\{' and it's not the open-interval
3450 operator. */
4bb91c68 3451 || (syntax & RE_NO_BK_BRACES))
25fe55af
RS
3452 goto normal_backslash;
3453
3454 handle_interval:
3455 {
3456 /* If got here, then the syntax allows intervals. */
3457
3458 /* At least (most) this many matches must be made. */
99633e97 3459 int lower_bound = 0, upper_bound = -1;
25fe55af 3460
ed0767d8 3461 beg_interval = p;
25fe55af 3462
25fe55af
RS
3463 GET_UNSIGNED_NUMBER (lower_bound);
3464
3465 if (c == ',')
ed0767d8 3466 GET_UNSIGNED_NUMBER (upper_bound);
25fe55af
RS
3467 else
3468 /* Interval such as `{1}' => match exactly once. */
3469 upper_bound = lower_bound;
3470
3471 if (lower_bound < 0 || upper_bound > RE_DUP_MAX
ed0767d8 3472 || (upper_bound >= 0 && lower_bound > upper_bound))
4bb91c68 3473 FREE_STACK_RETURN (REG_BADBR);
25fe55af
RS
3474
3475 if (!(syntax & RE_NO_BK_BRACES))
3476 {
4bb91c68
SM
3477 if (c != '\\')
3478 FREE_STACK_RETURN (REG_BADBR);
c72b0edd
SM
3479 if (p == pend)
3480 FREE_STACK_RETURN (REG_EESCAPE);
25fe55af
RS
3481 PATFETCH (c);
3482 }
3483
3484 if (c != '}')
4bb91c68 3485 FREE_STACK_RETURN (REG_BADBR);
25fe55af
RS
3486
3487 /* We just parsed a valid interval. */
3488
3489 /* If it's invalid to have no preceding re. */
3490 if (!laststart)
3491 {
3492 if (syntax & RE_CONTEXT_INVALID_OPS)
3493 FREE_STACK_RETURN (REG_BADRPT);
3494 else if (syntax & RE_CONTEXT_INDEP_OPS)
3495 laststart = b;
3496 else
3497 goto unfetch_interval;
3498 }
3499
6df42991
SM
3500 if (upper_bound == 0)
3501 /* If the upper bound is zero, just drop the sub pattern
3502 altogether. */
3503 b = laststart;
3504 else if (lower_bound == 1 && upper_bound == 1)
3505 /* Just match it once: nothing to do here. */
3506 ;
3507
3508 /* Otherwise, we have a nontrivial interval. When
3509 we're all done, the pattern will look like:
3510 set_number_at <jump count> <upper bound>
3511 set_number_at <succeed_n count> <lower bound>
3512 succeed_n <after jump addr> <succeed_n count>
3513 <body of loop>
3514 jump_n <succeed_n addr> <jump count>
3515 (The upper bound and `jump_n' are omitted if
3516 `upper_bound' is 1, though.) */
3517 else
3518 { /* If the upper bound is > 1, we need to insert
3519 more at the end of the loop. */
3520 unsigned int nbytes = (upper_bound < 0 ? 3
3521 : upper_bound > 1 ? 5 : 0);
3522 unsigned int startoffset = 0;
3523
3524 GET_BUFFER_SPACE (20); /* We might use less. */
3525
3526 if (lower_bound == 0)
3527 {
3528 /* A succeed_n that starts with 0 is really a
3529 a simple on_failure_jump_loop. */
3530 INSERT_JUMP (on_failure_jump_loop, laststart,
3531 b + 3 + nbytes);
3532 b += 3;
3533 }
3534 else
3535 {
3536 /* Initialize lower bound of the `succeed_n', even
3537 though it will be set during matching by its
3538 attendant `set_number_at' (inserted next),
3539 because `re_compile_fastmap' needs to know.
3540 Jump to the `jump_n' we might insert below. */
3541 INSERT_JUMP2 (succeed_n, laststart,
3542 b + 5 + nbytes,
3543 lower_bound);
3544 b += 5;
3545
3546 /* Code to initialize the lower bound. Insert
7814e705 3547 before the `succeed_n'. The `5' is the last two
6df42991
SM
3548 bytes of this `set_number_at', plus 3 bytes of
3549 the following `succeed_n'. */
3550 insert_op2 (set_number_at, laststart, 5, lower_bound, b);
3551 b += 5;
3552 startoffset += 5;
3553 }
3554
3555 if (upper_bound < 0)
3556 {
3557 /* A negative upper bound stands for infinity,
3558 in which case it degenerates to a plain jump. */
3559 STORE_JUMP (jump, b, laststart + startoffset);
3560 b += 3;
3561 }
3562 else if (upper_bound > 1)
3563 { /* More than one repetition is allowed, so
3564 append a backward jump to the `succeed_n'
3565 that starts this interval.
3566
3567 When we've reached this during matching,
3568 we'll have matched the interval once, so
3569 jump back only `upper_bound - 1' times. */
3570 STORE_JUMP2 (jump_n, b, laststart + startoffset,
3571 upper_bound - 1);
3572 b += 5;
3573
3574 /* The location we want to set is the second
3575 parameter of the `jump_n'; that is `b-2' as
3576 an absolute address. `laststart' will be
3577 the `set_number_at' we're about to insert;
3578 `laststart+3' the number to set, the source
3579 for the relative address. But we are
3580 inserting into the middle of the pattern --
3581 so everything is getting moved up by 5.
3582 Conclusion: (b - 2) - (laststart + 3) + 5,
3583 i.e., b - laststart.
3584
3585 We insert this at the beginning of the loop
3586 so that if we fail during matching, we'll
3587 reinitialize the bounds. */
3588 insert_op2 (set_number_at, laststart, b - laststart,
3589 upper_bound - 1, b);
3590 b += 5;
3591 }
3592 }
25fe55af
RS
3593 pending_exact = 0;
3594 beg_interval = NULL;
3595 }
3596 break;
3597
3598 unfetch_interval:
3599 /* If an invalid interval, match the characters as literals. */
3600 assert (beg_interval);
3601 p = beg_interval;
3602 beg_interval = NULL;
3603
3604 /* normal_char and normal_backslash need `c'. */
ed0767d8 3605 c = '{';
25fe55af
RS
3606
3607 if (!(syntax & RE_NO_BK_BRACES))
3608 {
ed0767d8
SM
3609 assert (p > pattern && p[-1] == '\\');
3610 goto normal_backslash;
25fe55af 3611 }
ed0767d8
SM
3612 else
3613 goto normal_char;
e318085a 3614
b18215fc 3615#ifdef emacs
25fe55af 3616 /* There is no way to specify the before_dot and after_dot
7814e705 3617 operators. rms says this is ok. --karl */
25fe55af
RS
3618 case '=':
3619 BUF_PUSH (at_dot);
3620 break;
3621
3622 case 's':
3623 laststart = b;
3624 PATFETCH (c);
3625 BUF_PUSH_2 (syntaxspec, syntax_spec_code[c]);
3626 break;
3627
3628 case 'S':
3629 laststart = b;
3630 PATFETCH (c);
3631 BUF_PUSH_2 (notsyntaxspec, syntax_spec_code[c]);
3632 break;
b18215fc
RS
3633
3634 case 'c':
3635 laststart = b;
36595814 3636 PATFETCH (c);
b18215fc
RS
3637 BUF_PUSH_2 (categoryspec, c);
3638 break;
e318085a 3639
b18215fc
RS
3640 case 'C':
3641 laststart = b;
36595814 3642 PATFETCH (c);
b18215fc
RS
3643 BUF_PUSH_2 (notcategoryspec, c);
3644 break;
3645#endif /* emacs */
e318085a 3646
e318085a 3647
25fe55af 3648 case 'w':
4bb91c68
SM
3649 if (syntax & RE_NO_GNU_OPS)
3650 goto normal_char;
25fe55af 3651 laststart = b;
1fb352e0 3652 BUF_PUSH_2 (syntaxspec, Sword);
25fe55af 3653 break;
e318085a 3654
e318085a 3655
25fe55af 3656 case 'W':
4bb91c68
SM
3657 if (syntax & RE_NO_GNU_OPS)
3658 goto normal_char;
25fe55af 3659 laststart = b;
1fb352e0 3660 BUF_PUSH_2 (notsyntaxspec, Sword);
25fe55af 3661 break;
e318085a
RS
3662
3663
25fe55af 3664 case '<':
4bb91c68
SM
3665 if (syntax & RE_NO_GNU_OPS)
3666 goto normal_char;
25fe55af
RS
3667 BUF_PUSH (wordbeg);
3668 break;
e318085a 3669
25fe55af 3670 case '>':
4bb91c68
SM
3671 if (syntax & RE_NO_GNU_OPS)
3672 goto normal_char;
25fe55af
RS
3673 BUF_PUSH (wordend);
3674 break;
e318085a 3675
669fa600
SM
3676 case '_':
3677 if (syntax & RE_NO_GNU_OPS)
3678 goto normal_char;
3679 laststart = b;
3680 PATFETCH (c);
3681 if (c == '<')
3682 BUF_PUSH (symbeg);
3683 else if (c == '>')
3684 BUF_PUSH (symend);
3685 else
3686 FREE_STACK_RETURN (REG_BADPAT);
3687 break;
3688
25fe55af 3689 case 'b':
4bb91c68
SM
3690 if (syntax & RE_NO_GNU_OPS)
3691 goto normal_char;
25fe55af
RS
3692 BUF_PUSH (wordbound);
3693 break;
e318085a 3694
25fe55af 3695 case 'B':
4bb91c68
SM
3696 if (syntax & RE_NO_GNU_OPS)
3697 goto normal_char;
25fe55af
RS
3698 BUF_PUSH (notwordbound);
3699 break;
fa9a63c5 3700
25fe55af 3701 case '`':
4bb91c68
SM
3702 if (syntax & RE_NO_GNU_OPS)
3703 goto normal_char;
25fe55af
RS
3704 BUF_PUSH (begbuf);
3705 break;
e318085a 3706
25fe55af 3707 case '\'':
4bb91c68
SM
3708 if (syntax & RE_NO_GNU_OPS)
3709 goto normal_char;
25fe55af
RS
3710 BUF_PUSH (endbuf);
3711 break;
e318085a 3712
25fe55af
RS
3713 case '1': case '2': case '3': case '4': case '5':
3714 case '6': case '7': case '8': case '9':
0cdd06f8
SM
3715 {
3716 regnum_t reg;
e318085a 3717
0cdd06f8
SM
3718 if (syntax & RE_NO_BK_REFS)
3719 goto normal_backslash;
e318085a 3720
0cdd06f8 3721 reg = c - '0';
e318085a 3722
c69b0314
SM
3723 if (reg > bufp->re_nsub || reg < 1
3724 /* Can't back reference to a subexp before its end. */
3725 || group_in_compile_stack (compile_stack, reg))
0cdd06f8 3726 FREE_STACK_RETURN (REG_ESUBREG);
e318085a 3727
0cdd06f8
SM
3728 laststart = b;
3729 BUF_PUSH_2 (duplicate, reg);
3730 }
25fe55af 3731 break;
e318085a 3732
e318085a 3733
25fe55af
RS
3734 case '+':
3735 case '?':
3736 if (syntax & RE_BK_PLUS_QM)
3737 goto handle_plus;
3738 else
3739 goto normal_backslash;
3740
3741 default:
3742 normal_backslash:
3743 /* You might think it would be useful for \ to mean
3744 not to translate; but if we don't translate it
4bb91c68 3745 it will never match anything. */
25fe55af
RS
3746 goto normal_char;
3747 }
3748 break;
fa9a63c5
RM
3749
3750
3751 default:
25fe55af 3752 /* Expects the character in `c'. */
fa9a63c5 3753 normal_char:
36595814 3754 /* If no exactn currently being built. */
25fe55af 3755 if (!pending_exact
fa9a63c5 3756
25fe55af
RS
3757 /* If last exactn not at current position. */
3758 || pending_exact + *pending_exact + 1 != b
5e69f11e 3759
25fe55af 3760 /* We have only one byte following the exactn for the count. */
2d1675e4 3761 || *pending_exact >= (1 << BYTEWIDTH) - MAX_MULTIBYTE_LENGTH
fa9a63c5 3762
7814e705 3763 /* If followed by a repetition operator. */
9d99031f 3764 || (p != pend && (*p == '*' || *p == '^'))
fa9a63c5 3765 || ((syntax & RE_BK_PLUS_QM)
9d99031f
RS
3766 ? p + 1 < pend && *p == '\\' && (p[1] == '+' || p[1] == '?')
3767 : p != pend && (*p == '+' || *p == '?'))
fa9a63c5 3768 || ((syntax & RE_INTERVALS)
25fe55af 3769 && ((syntax & RE_NO_BK_BRACES)
9d99031f
RS
3770 ? p != pend && *p == '{'
3771 : p + 1 < pend && p[0] == '\\' && p[1] == '{')))
fa9a63c5
RM
3772 {
3773 /* Start building a new exactn. */
5e69f11e 3774
25fe55af 3775 laststart = b;
fa9a63c5
RM
3776
3777 BUF_PUSH_2 (exactn, 0);
3778 pending_exact = b - 1;
25fe55af 3779 }
5e69f11e 3780
2d1675e4
SM
3781 GET_BUFFER_SPACE (MAX_MULTIBYTE_LENGTH);
3782 {
e0277a47
KH
3783 int len;
3784
cf9c99bc 3785 if (multibyte)
6fdd04b0 3786 {
cf9c99bc 3787 c = TRANSLATE (c);
6fdd04b0
KH
3788 len = CHAR_STRING (c, b);
3789 b += len;
3790 }
e0277a47 3791 else
6fdd04b0 3792 {
cf9c99bc
KH
3793 c1 = RE_CHAR_TO_MULTIBYTE (c);
3794 if (! CHAR_BYTE8_P (c1))
3795 {
3796 re_wchar_t c2 = TRANSLATE (c1);
3797
3798 if (c1 != c2 && (c1 = RE_CHAR_TO_UNIBYTE (c2)) >= 0)
3799 c = c1;
3800 }
6fdd04b0
KH
3801 *b++ = c;
3802 len = 1;
3803 }
2d1675e4
SM
3804 (*pending_exact) += len;
3805 }
3806
fa9a63c5 3807 break;
25fe55af 3808 } /* switch (c) */
fa9a63c5
RM
3809 } /* while p != pend */
3810
5e69f11e 3811
fa9a63c5 3812 /* Through the pattern now. */
5e69f11e 3813
505bde11 3814 FIXUP_ALT_JUMP ();
fa9a63c5 3815
5e69f11e 3816 if (!COMPILE_STACK_EMPTY)
fa9a63c5
RM
3817 FREE_STACK_RETURN (REG_EPAREN);
3818
3819 /* If we don't want backtracking, force success
3820 the first time we reach the end of the compiled pattern. */
3821 if (syntax & RE_NO_POSIX_BACKTRACKING)
3822 BUF_PUSH (succeed);
3823
fa9a63c5
RM
3824 /* We have succeeded; set the length of the buffer. */
3825 bufp->used = b - bufp->buffer;
3826
3827#ifdef DEBUG
99633e97 3828 if (debug > 0)
fa9a63c5 3829 {
505bde11 3830 re_compile_fastmap (bufp);
fa9a63c5
RM
3831 DEBUG_PRINT1 ("\nCompiled pattern: \n");
3832 print_compiled_pattern (bufp);
3833 }
99633e97 3834 debug--;
fa9a63c5
RM
3835#endif /* DEBUG */
3836
3837#ifndef MATCH_MAY_ALLOCATE
3838 /* Initialize the failure stack to the largest possible stack. This
3839 isn't necessary unless we're trying to avoid calling alloca in
3840 the search and match routines. */
3841 {
3842 int num_regs = bufp->re_nsub + 1;
3843
320a2a73 3844 if (fail_stack.size < re_max_failures * TYPICAL_FAILURE_SIZE)
fa9a63c5 3845 {
a26f4ccd 3846 fail_stack.size = re_max_failures * TYPICAL_FAILURE_SIZE;
fa9a63c5 3847
fa9a63c5
RM
3848 if (! fail_stack.stack)
3849 fail_stack.stack
5e69f11e 3850 = (fail_stack_elt_t *) malloc (fail_stack.size
fa9a63c5
RM
3851 * sizeof (fail_stack_elt_t));
3852 else
3853 fail_stack.stack
3854 = (fail_stack_elt_t *) realloc (fail_stack.stack,
3855 (fail_stack.size
3856 * sizeof (fail_stack_elt_t)));
fa9a63c5
RM
3857 }
3858
3859 regex_grow_registers (num_regs);
3860 }
3861#endif /* not MATCH_MAY_ALLOCATE */
3862
839966f3 3863 FREE_STACK_RETURN (REG_NOERROR);
fa9a63c5
RM
3864} /* regex_compile */
3865\f
3866/* Subroutines for `regex_compile'. */
3867
7814e705 3868/* Store OP at LOC followed by two-byte integer parameter ARG. */
fa9a63c5
RM
3869
3870static void
3871store_op1 (op, loc, arg)
3872 re_opcode_t op;
3873 unsigned char *loc;
3874 int arg;
3875{
3876 *loc = (unsigned char) op;
3877 STORE_NUMBER (loc + 1, arg);
3878}
3879
3880
3881/* Like `store_op1', but for two two-byte parameters ARG1 and ARG2. */
3882
3883static void
3884store_op2 (op, loc, arg1, arg2)
3885 re_opcode_t op;
3886 unsigned char *loc;
3887 int arg1, arg2;
3888{
3889 *loc = (unsigned char) op;
3890 STORE_NUMBER (loc + 1, arg1);
3891 STORE_NUMBER (loc + 3, arg2);
3892}
3893
3894
3895/* Copy the bytes from LOC to END to open up three bytes of space at LOC
3896 for OP followed by two-byte integer parameter ARG. */
3897
3898static void
3899insert_op1 (op, loc, arg, end)
3900 re_opcode_t op;
3901 unsigned char *loc;
3902 int arg;
5e69f11e 3903 unsigned char *end;
fa9a63c5
RM
3904{
3905 register unsigned char *pfrom = end;
3906 register unsigned char *pto = end + 3;
3907
3908 while (pfrom != loc)
3909 *--pto = *--pfrom;
5e69f11e 3910
fa9a63c5
RM
3911 store_op1 (op, loc, arg);
3912}
3913
3914
3915/* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2. */
3916
3917static void
3918insert_op2 (op, loc, arg1, arg2, end)
3919 re_opcode_t op;
3920 unsigned char *loc;
3921 int arg1, arg2;
5e69f11e 3922 unsigned char *end;
fa9a63c5
RM
3923{
3924 register unsigned char *pfrom = end;
3925 register unsigned char *pto = end + 5;
3926
3927 while (pfrom != loc)
3928 *--pto = *--pfrom;
5e69f11e 3929
fa9a63c5
RM
3930 store_op2 (op, loc, arg1, arg2);
3931}
3932
3933
3934/* P points to just after a ^ in PATTERN. Return true if that ^ comes
3935 after an alternative or a begin-subexpression. We assume there is at
3936 least one character before the ^. */
3937
3938static boolean
3939at_begline_loc_p (pattern, p, syntax)
01618498 3940 re_char *pattern, *p;
fa9a63c5
RM
3941 reg_syntax_t syntax;
3942{
01618498 3943 re_char *prev = p - 2;
fa9a63c5 3944 boolean prev_prev_backslash = prev > pattern && prev[-1] == '\\';
5e69f11e 3945
fa9a63c5
RM
3946 return
3947 /* After a subexpression? */
3948 (*prev == '(' && (syntax & RE_NO_BK_PARENS || prev_prev_backslash))
25fe55af 3949 /* After an alternative? */
d2af47df
SM
3950 || (*prev == '|' && (syntax & RE_NO_BK_VBAR || prev_prev_backslash))
3951 /* After a shy subexpression? */
3952 || ((syntax & RE_SHY_GROUPS) && prev - 2 >= pattern
3953 && prev[-1] == '?' && prev[-2] == '('
3954 && (syntax & RE_NO_BK_PARENS
3955 || (prev - 3 >= pattern && prev[-3] == '\\')));
fa9a63c5
RM
3956}
3957
3958
3959/* The dual of at_begline_loc_p. This one is for $. We assume there is
3960 at least one character after the $, i.e., `P < PEND'. */
3961
3962static boolean
3963at_endline_loc_p (p, pend, syntax)
01618498 3964 re_char *p, *pend;
99633e97 3965 reg_syntax_t syntax;
fa9a63c5 3966{
01618498 3967 re_char *next = p;
fa9a63c5 3968 boolean next_backslash = *next == '\\';
01618498 3969 re_char *next_next = p + 1 < pend ? p + 1 : 0;
5e69f11e 3970
fa9a63c5
RM
3971 return
3972 /* Before a subexpression? */
3973 (syntax & RE_NO_BK_PARENS ? *next == ')'
25fe55af 3974 : next_backslash && next_next && *next_next == ')')
fa9a63c5
RM
3975 /* Before an alternative? */
3976 || (syntax & RE_NO_BK_VBAR ? *next == '|'
25fe55af 3977 : next_backslash && next_next && *next_next == '|');
fa9a63c5
RM
3978}
3979
3980
5e69f11e 3981/* Returns true if REGNUM is in one of COMPILE_STACK's elements and
fa9a63c5
RM
3982 false if it's not. */
3983
3984static boolean
3985group_in_compile_stack (compile_stack, regnum)
3986 compile_stack_type compile_stack;
3987 regnum_t regnum;
3988{
3989 int this_element;
3990
5e69f11e
RM
3991 for (this_element = compile_stack.avail - 1;
3992 this_element >= 0;
fa9a63c5
RM
3993 this_element--)
3994 if (compile_stack.stack[this_element].regnum == regnum)
3995 return true;
3996
3997 return false;
3998}
fa9a63c5 3999\f
f6a3f532
SM
4000/* analyse_first.
4001 If fastmap is non-NULL, go through the pattern and fill fastmap
4002 with all the possible leading chars. If fastmap is NULL, don't
4003 bother filling it up (obviously) and only return whether the
4004 pattern could potentially match the empty string.
4005
4006 Return 1 if p..pend might match the empty string.
4007 Return 0 if p..pend matches at least one char.
01618498 4008 Return -1 if fastmap was not updated accurately. */
f6a3f532
SM
4009
4010static int
4011analyse_first (p, pend, fastmap, multibyte)
01618498 4012 re_char *p, *pend;
f6a3f532
SM
4013 char *fastmap;
4014 const int multibyte;
fa9a63c5 4015{
505bde11 4016 int j, k;
1fb352e0 4017 boolean not;
fa9a63c5 4018
b18215fc 4019 /* If all elements for base leading-codes in fastmap is set, this
7814e705 4020 flag is set true. */
b18215fc
RS
4021 boolean match_any_multibyte_characters = false;
4022
f6a3f532 4023 assert (p);
5e69f11e 4024
505bde11
SM
4025 /* The loop below works as follows:
4026 - It has a working-list kept in the PATTERN_STACK and which basically
4027 starts by only containing a pointer to the first operation.
4028 - If the opcode we're looking at is a match against some set of
4029 chars, then we add those chars to the fastmap and go on to the
4030 next work element from the worklist (done via `break').
4031 - If the opcode is a control operator on the other hand, we either
4032 ignore it (if it's meaningless at this point, such as `start_memory')
4033 or execute it (if it's a jump). If the jump has several destinations
4034 (i.e. `on_failure_jump'), then we push the other destination onto the
4035 worklist.
4036 We guarantee termination by ignoring backward jumps (more or less),
4037 so that `p' is monotonically increasing. More to the point, we
4038 never set `p' (or push) anything `<= p1'. */
4039
01618498 4040 while (p < pend)
fa9a63c5 4041 {
505bde11
SM
4042 /* `p1' is used as a marker of how far back a `on_failure_jump'
4043 can go without being ignored. It is normally equal to `p'
4044 (which prevents any backward `on_failure_jump') except right
4045 after a plain `jump', to allow patterns such as:
4046 0: jump 10
4047 3..9: <body>
4048 10: on_failure_jump 3
4049 as used for the *? operator. */
01618498 4050 re_char *p1 = p;
5e69f11e 4051
fa9a63c5
RM
4052 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
4053 {
f6a3f532 4054 case succeed:
01618498 4055 return 1;
f6a3f532 4056 continue;
fa9a63c5 4057
fa9a63c5 4058 case duplicate:
505bde11
SM
4059 /* If the first character has to match a backreference, that means
4060 that the group was empty (since it already matched). Since this
4061 is the only case that interests us here, we can assume that the
4062 backreference must match the empty string. */
4063 p++;
4064 continue;
fa9a63c5
RM
4065
4066
4067 /* Following are the cases which match a character. These end
7814e705 4068 with `break'. */
fa9a63c5
RM
4069
4070 case exactn:
e0277a47 4071 if (fastmap)
cf9c99bc
KH
4072 {
4073 /* If multibyte is nonzero, the first byte of each
4074 character is an ASCII or a leading code. Otherwise,
4075 each byte is a character. Thus, this works in both
4076 cases. */
4077 fastmap[p[1]] = 1;
4078 if (! multibyte)
4079 {
4080 /* For the case of matching this unibyte regex
4081 against multibyte, we must set a leading code of
4082 the corresponding multibyte character. */
4083 int c = RE_CHAR_TO_MULTIBYTE (p[1]);
4084
4085 if (! CHAR_BYTE8_P (c))
4086 fastmap[CHAR_LEADING_CODE (c)] = 1;
4087 }
4088 }
fa9a63c5
RM
4089 break;
4090
4091
1fb352e0
SM
4092 case anychar:
4093 /* We could put all the chars except for \n (and maybe \0)
4094 but we don't bother since it is generally not worth it. */
f6a3f532 4095 if (!fastmap) break;
01618498 4096 return -1;
fa9a63c5
RM
4097
4098
b18215fc 4099 case charset_not:
1fb352e0 4100 if (!fastmap) break;
bf216479
KH
4101 {
4102 /* Chars beyond end of bitmap are possible matches. */
bf216479 4103 for (j = CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH;
cf9c99bc 4104 j < (1 << BYTEWIDTH); j++)
bf216479
KH
4105 fastmap[j] = 1;
4106 }
4107
1fb352e0
SM
4108 /* Fallthrough */
4109 case charset:
4110 if (!fastmap) break;
4111 not = (re_opcode_t) *(p - 1) == charset_not;
b18215fc
RS
4112 for (j = CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH - 1, p++;
4113 j >= 0; j--)
1fb352e0 4114 if (!!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))) ^ not)
49da453b 4115 fastmap[j] = 1;
b18215fc 4116
6482db2e
KH
4117#ifdef emacs
4118 if (/* Any leading code can possibly start a character
1fb352e0 4119 which doesn't match the specified set of characters. */
6482db2e
KH
4120 not
4121 ||
4122 /* If we can match a character class, we can match any
4123 multibyte characters. */
4124 (CHARSET_RANGE_TABLE_EXISTS_P (&p[-2])
4125 && CHARSET_RANGE_TABLE_BITS (&p[-2]) != 0))
4126
b18215fc 4127 {
b18215fc
RS
4128 if (match_any_multibyte_characters == false)
4129 {
6482db2e
KH
4130 for (j = MIN_MULTIBYTE_LEADING_CODE;
4131 j <= MAX_MULTIBYTE_LEADING_CODE; j++)
6fdd04b0 4132 fastmap[j] = 1;
b18215fc
RS
4133 match_any_multibyte_characters = true;
4134 }
4135 }
b18215fc 4136
1fb352e0
SM
4137 else if (!not && CHARSET_RANGE_TABLE_EXISTS_P (&p[-2])
4138 && match_any_multibyte_characters == false)
4139 {
bf216479 4140 /* Set fastmap[I] to 1 where I is a leading code of each
9117d724 4141 multibyte characer in the range table. */
1fb352e0 4142 int c, count;
bf216479 4143 unsigned char lc1, lc2;
b18215fc 4144
1fb352e0 4145 /* Make P points the range table. `+ 2' is to skip flag
0b32bf0e 4146 bits for a character class. */
1fb352e0 4147 p += CHARSET_BITMAP_SIZE (&p[-2]) + 2;
b18215fc 4148
1fb352e0
SM
4149 /* Extract the number of ranges in range table into COUNT. */
4150 EXTRACT_NUMBER_AND_INCR (count, p);
cf9c99bc 4151 for (; count > 0; count--, p += 3)
1fb352e0 4152 {
9117d724
KH
4153 /* Extract the start and end of each range. */
4154 EXTRACT_CHARACTER (c, p);
bf216479 4155 lc1 = CHAR_LEADING_CODE (c);
9117d724 4156 p += 3;
1fb352e0 4157 EXTRACT_CHARACTER (c, p);
bf216479
KH
4158 lc2 = CHAR_LEADING_CODE (c);
4159 for (j = lc1; j <= lc2; j++)
9117d724 4160 fastmap[j] = 1;
1fb352e0
SM
4161 }
4162 }
6482db2e 4163#endif
b18215fc
RS
4164 break;
4165
1fb352e0
SM
4166 case syntaxspec:
4167 case notsyntaxspec:
4168 if (!fastmap) break;
4169#ifndef emacs
4170 not = (re_opcode_t)p[-1] == notsyntaxspec;
4171 k = *p++;
4172 for (j = 0; j < (1 << BYTEWIDTH); j++)
990b2375 4173 if ((SYNTAX (j) == (enum syntaxcode) k) ^ not)
b18215fc 4174 fastmap[j] = 1;
b18215fc 4175 break;
1fb352e0 4176#else /* emacs */
b18215fc
RS
4177 /* This match depends on text properties. These end with
4178 aborting optimizations. */
01618498 4179 return -1;
b18215fc
RS
4180
4181 case categoryspec:
b18215fc 4182 case notcategoryspec:
1fb352e0
SM
4183 if (!fastmap) break;
4184 not = (re_opcode_t)p[-1] == notcategoryspec;
b18215fc 4185 k = *p++;
6482db2e 4186 for (j = (1 << BYTEWIDTH); j >= 0; j--)
1fb352e0 4187 if ((CHAR_HAS_CATEGORY (j, k)) ^ not)
b18215fc
RS
4188 fastmap[j] = 1;
4189
6482db2e
KH
4190 /* Any leading code can possibly start a character which
4191 has or doesn't has the specified category. */
4192 if (match_any_multibyte_characters == false)
6fdd04b0 4193 {
6482db2e
KH
4194 for (j = MIN_MULTIBYTE_LEADING_CODE;
4195 j <= MAX_MULTIBYTE_LEADING_CODE; j++)
4196 fastmap[j] = 1;
4197 match_any_multibyte_characters = true;
6fdd04b0 4198 }
b18215fc
RS
4199 break;
4200
fa9a63c5 4201 /* All cases after this match the empty string. These end with
25fe55af 4202 `continue'. */
fa9a63c5 4203
fa9a63c5
RM
4204 case before_dot:
4205 case at_dot:
4206 case after_dot:
1fb352e0 4207#endif /* !emacs */
25fe55af
RS
4208 case no_op:
4209 case begline:
4210 case endline:
fa9a63c5
RM
4211 case begbuf:
4212 case endbuf:
4213 case wordbound:
4214 case notwordbound:
4215 case wordbeg:
4216 case wordend:
669fa600
SM
4217 case symbeg:
4218 case symend:
25fe55af 4219 continue;
fa9a63c5
RM
4220
4221
fa9a63c5 4222 case jump:
25fe55af 4223 EXTRACT_NUMBER_AND_INCR (j, p);
505bde11
SM
4224 if (j < 0)
4225 /* Backward jumps can only go back to code that we've already
4226 visited. `re_compile' should make sure this is true. */
4227 break;
25fe55af 4228 p += j;
505bde11
SM
4229 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p))
4230 {
4231 case on_failure_jump:
4232 case on_failure_keep_string_jump:
505bde11 4233 case on_failure_jump_loop:
0683b6fa 4234 case on_failure_jump_nastyloop:
505bde11
SM
4235 case on_failure_jump_smart:
4236 p++;
4237 break;
4238 default:
4239 continue;
4240 };
4241 /* Keep `p1' to allow the `on_failure_jump' we are jumping to
4242 to jump back to "just after here". */
4243 /* Fallthrough */
fa9a63c5 4244
25fe55af
RS
4245 case on_failure_jump:
4246 case on_failure_keep_string_jump:
0683b6fa 4247 case on_failure_jump_nastyloop:
505bde11
SM
4248 case on_failure_jump_loop:
4249 case on_failure_jump_smart:
25fe55af 4250 EXTRACT_NUMBER_AND_INCR (j, p);
505bde11 4251 if (p + j <= p1)
ed0767d8 4252 ; /* Backward jump to be ignored. */
01618498
SM
4253 else
4254 { /* We have to look down both arms.
4255 We first go down the "straight" path so as to minimize
4256 stack usage when going through alternatives. */
4257 int r = analyse_first (p, pend, fastmap, multibyte);
4258 if (r) return r;
4259 p += j;
4260 }
25fe55af 4261 continue;
fa9a63c5
RM
4262
4263
ed0767d8
SM
4264 case jump_n:
4265 /* This code simply does not properly handle forward jump_n. */
4266 DEBUG_STATEMENT (EXTRACT_NUMBER (j, p); assert (j < 0));
4267 p += 4;
4268 /* jump_n can either jump or fall through. The (backward) jump
4269 case has already been handled, so we only need to look at the
4270 fallthrough case. */
4271 continue;
177c0ea7 4272
fa9a63c5 4273 case succeed_n:
ed0767d8
SM
4274 /* If N == 0, it should be an on_failure_jump_loop instead. */
4275 DEBUG_STATEMENT (EXTRACT_NUMBER (j, p + 2); assert (j > 0));
4276 p += 4;
4277 /* We only care about one iteration of the loop, so we don't
4278 need to consider the case where this behaves like an
4279 on_failure_jump. */
25fe55af 4280 continue;
fa9a63c5
RM
4281
4282
4283 case set_number_at:
25fe55af
RS
4284 p += 4;
4285 continue;
fa9a63c5
RM
4286
4287
4288 case start_memory:
25fe55af 4289 case stop_memory:
505bde11 4290 p += 1;
fa9a63c5
RM
4291 continue;
4292
4293
4294 default:
25fe55af
RS
4295 abort (); /* We have listed all the cases. */
4296 } /* switch *p++ */
fa9a63c5
RM
4297
4298 /* Getting here means we have found the possible starting
25fe55af 4299 characters for one path of the pattern -- and that the empty
7814e705 4300 string does not match. We need not follow this path further. */
01618498 4301 return 0;
fa9a63c5
RM
4302 } /* while p */
4303
01618498
SM
4304 /* We reached the end without matching anything. */
4305 return 1;
4306
f6a3f532
SM
4307} /* analyse_first */
4308\f
4309/* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
4310 BUFP. A fastmap records which of the (1 << BYTEWIDTH) possible
4311 characters can start a string that matches the pattern. This fastmap
4312 is used by re_search to skip quickly over impossible starting points.
4313
4314 Character codes above (1 << BYTEWIDTH) are not represented in the
4315 fastmap, but the leading codes are represented. Thus, the fastmap
4316 indicates which character sets could start a match.
4317
4318 The caller must supply the address of a (1 << BYTEWIDTH)-byte data
4319 area as BUFP->fastmap.
4320
4321 We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
4322 the pattern buffer.
4323
4324 Returns 0 if we succeed, -2 if an internal error. */
4325
4326int
4327re_compile_fastmap (bufp)
4328 struct re_pattern_buffer *bufp;
4329{
4330 char *fastmap = bufp->fastmap;
4331 int analysis;
4332
4333 assert (fastmap && bufp->buffer);
4334
7814e705 4335 bzero (fastmap, 1 << BYTEWIDTH); /* Assume nothing's valid. */
f6a3f532
SM
4336 bufp->fastmap_accurate = 1; /* It will be when we're done. */
4337
4338 analysis = analyse_first (bufp->buffer, bufp->buffer + bufp->used,
2d1675e4 4339 fastmap, RE_MULTIBYTE_P (bufp));
c0f9ea08 4340 bufp->can_be_null = (analysis != 0);
fa9a63c5
RM
4341 return 0;
4342} /* re_compile_fastmap */
4343\f
4344/* Set REGS to hold NUM_REGS registers, storing them in STARTS and
4345 ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use
4346 this memory for recording register information. STARTS and ENDS
4347 must be allocated using the malloc library routine, and must each
4348 be at least NUM_REGS * sizeof (regoff_t) bytes long.
4349
4350 If NUM_REGS == 0, then subsequent matches should allocate their own
4351 register data.
4352
4353 Unless this function is called, the first search or match using
4354 PATTERN_BUFFER will allocate its own register data, without
4355 freeing the old data. */
4356
4357void
4358re_set_registers (bufp, regs, num_regs, starts, ends)
4359 struct re_pattern_buffer *bufp;
4360 struct re_registers *regs;
4361 unsigned num_regs;
4362 regoff_t *starts, *ends;
4363{
4364 if (num_regs)
4365 {
4366 bufp->regs_allocated = REGS_REALLOCATE;
4367 regs->num_regs = num_regs;
4368 regs->start = starts;
4369 regs->end = ends;
4370 }
4371 else
4372 {
4373 bufp->regs_allocated = REGS_UNALLOCATED;
4374 regs->num_regs = 0;
4375 regs->start = regs->end = (regoff_t *) 0;
4376 }
4377}
c0f9ea08 4378WEAK_ALIAS (__re_set_registers, re_set_registers)
fa9a63c5 4379\f
7814e705 4380/* Searching routines. */
fa9a63c5
RM
4381
4382/* Like re_search_2, below, but only one string is specified, and
4383 doesn't let you say where to stop matching. */
4384
4385int
4386re_search (bufp, string, size, startpos, range, regs)
4387 struct re_pattern_buffer *bufp;
4388 const char *string;
4389 int size, startpos, range;
4390 struct re_registers *regs;
4391{
5e69f11e 4392 return re_search_2 (bufp, NULL, 0, string, size, startpos, range,
fa9a63c5
RM
4393 regs, size);
4394}
c0f9ea08 4395WEAK_ALIAS (__re_search, re_search)
fa9a63c5 4396
70806df6
KH
4397/* Head address of virtual concatenation of string. */
4398#define HEAD_ADDR_VSTRING(P) \
4399 (((P) >= size1 ? string2 : string1))
4400
b18215fc
RS
4401/* End address of virtual concatenation of string. */
4402#define STOP_ADDR_VSTRING(P) \
4403 (((P) >= size1 ? string2 + size2 : string1 + size1))
4404
4405/* Address of POS in the concatenation of virtual string. */
4406#define POS_ADDR_VSTRING(POS) \
4407 (((POS) >= size1 ? string2 - size1 : string1) + (POS))
fa9a63c5
RM
4408
4409/* Using the compiled pattern in BUFP->buffer, first tries to match the
4410 virtual concatenation of STRING1 and STRING2, starting first at index
4411 STARTPOS, then at STARTPOS + 1, and so on.
5e69f11e 4412
fa9a63c5 4413 STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
5e69f11e 4414
fa9a63c5
RM
4415 RANGE is how far to scan while trying to match. RANGE = 0 means try
4416 only at STARTPOS; in general, the last start tried is STARTPOS +
4417 RANGE.
5e69f11e 4418
fa9a63c5
RM
4419 In REGS, return the indices of the virtual concatenation of STRING1
4420 and STRING2 that matched the entire BUFP->buffer and its contained
4421 subexpressions.
5e69f11e 4422
fa9a63c5
RM
4423 Do not consider matching one past the index STOP in the virtual
4424 concatenation of STRING1 and STRING2.
4425
4426 We return either the position in the strings at which the match was
4427 found, -1 if no match, or -2 if error (such as failure
4428 stack overflow). */
4429
4430int
66f0296e 4431re_search_2 (bufp, str1, size1, str2, size2, startpos, range, regs, stop)
fa9a63c5 4432 struct re_pattern_buffer *bufp;
66f0296e 4433 const char *str1, *str2;
fa9a63c5
RM
4434 int size1, size2;
4435 int startpos;
4436 int range;
4437 struct re_registers *regs;
4438 int stop;
4439{
4440 int val;
66f0296e
SM
4441 re_char *string1 = (re_char*) str1;
4442 re_char *string2 = (re_char*) str2;
fa9a63c5 4443 register char *fastmap = bufp->fastmap;
6676cb1c 4444 register RE_TRANSLATE_TYPE translate = bufp->translate;
fa9a63c5
RM
4445 int total_size = size1 + size2;
4446 int endpos = startpos + range;
c0f9ea08 4447 boolean anchored_start;
cf9c99bc
KH
4448 /* Nonzero if we are searching multibyte string. */
4449 const boolean multibyte = RE_TARGET_MULTIBYTE_P (bufp);
b18215fc 4450
fa9a63c5
RM
4451 /* Check for out-of-range STARTPOS. */
4452 if (startpos < 0 || startpos > total_size)
4453 return -1;
5e69f11e 4454
fa9a63c5 4455 /* Fix up RANGE if it might eventually take us outside
34597fa9 4456 the virtual concatenation of STRING1 and STRING2.
5e69f11e 4457 Make sure we won't move STARTPOS below 0 or above TOTAL_SIZE. */
34597fa9
RS
4458 if (endpos < 0)
4459 range = 0 - startpos;
fa9a63c5
RM
4460 else if (endpos > total_size)
4461 range = total_size - startpos;
4462
4463 /* If the search isn't to be a backwards one, don't waste time in a
7b140fd7 4464 search for a pattern anchored at beginning of buffer. */
fa9a63c5
RM
4465 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == begbuf && range > 0)
4466 {
4467 if (startpos > 0)
4468 return -1;
4469 else
7b140fd7 4470 range = 0;
fa9a63c5
RM
4471 }
4472
ae4788a8
RS
4473#ifdef emacs
4474 /* In a forward search for something that starts with \=.
4475 don't keep searching past point. */
4476 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == at_dot && range > 0)
4477 {
7b140fd7
RS
4478 range = PT_BYTE - BEGV_BYTE - startpos;
4479 if (range < 0)
ae4788a8
RS
4480 return -1;
4481 }
4482#endif /* emacs */
4483
fa9a63c5
RM
4484 /* Update the fastmap now if not correct already. */
4485 if (fastmap && !bufp->fastmap_accurate)
01618498 4486 re_compile_fastmap (bufp);
5e69f11e 4487
c8499ba5 4488 /* See whether the pattern is anchored. */
c0f9ea08 4489 anchored_start = (bufp->buffer[0] == begline);
c8499ba5 4490
b18215fc 4491#ifdef emacs
cc9b4df2
KH
4492 gl_state.object = re_match_object;
4493 {
99633e97 4494 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (POS_AS_IN_BUFFER (startpos));
cc9b4df2
KH
4495
4496 SETUP_SYNTAX_TABLE_FOR_OBJECT (re_match_object, charpos, 1);
4497 }
b18215fc
RS
4498#endif
4499
fa9a63c5
RM
4500 /* Loop through the string, looking for a place to start matching. */
4501 for (;;)
5e69f11e 4502 {
c8499ba5
RS
4503 /* If the pattern is anchored,
4504 skip quickly past places we cannot match.
4505 We don't bother to treat startpos == 0 specially
4506 because that case doesn't repeat. */
4507 if (anchored_start && startpos > 0)
4508 {
c0f9ea08
SM
4509 if (! ((startpos <= size1 ? string1[startpos - 1]
4510 : string2[startpos - size1 - 1])
4511 == '\n'))
c8499ba5
RS
4512 goto advance;
4513 }
4514
fa9a63c5 4515 /* If a fastmap is supplied, skip quickly over characters that
25fe55af
RS
4516 cannot be the start of a match. If the pattern can match the
4517 null string, however, we don't need to skip characters; we want
7814e705 4518 the first null string. */
fa9a63c5
RM
4519 if (fastmap && startpos < total_size && !bufp->can_be_null)
4520 {
66f0296e 4521 register re_char *d;
01618498 4522 register re_wchar_t buf_ch;
e934739e
RS
4523
4524 d = POS_ADDR_VSTRING (startpos);
4525
7814e705 4526 if (range > 0) /* Searching forwards. */
fa9a63c5 4527 {
fa9a63c5
RM
4528 register int lim = 0;
4529 int irange = range;
4530
25fe55af
RS
4531 if (startpos < size1 && startpos + range >= size1)
4532 lim = range - (size1 - startpos);
fa9a63c5 4533
25fe55af
RS
4534 /* Written out as an if-else to avoid testing `translate'
4535 inside the loop. */
28ae27ae
AS
4536 if (RE_TRANSLATE_P (translate))
4537 {
e934739e
RS
4538 if (multibyte)
4539 while (range > lim)
4540 {
4541 int buf_charlen;
4542
4543 buf_ch = STRING_CHAR_AND_LENGTH (d, range - lim,
4544 buf_charlen);
e934739e 4545 buf_ch = RE_TRANSLATE (translate, buf_ch);
bf216479 4546 if (fastmap[CHAR_LEADING_CODE (buf_ch)])
e934739e
RS
4547 break;
4548
4549 range -= buf_charlen;
4550 d += buf_charlen;
4551 }
4552 else
bf216479 4553 while (range > lim)
33c46939 4554 {
cf9c99bc
KH
4555 register re_wchar_t ch, translated;
4556
bf216479 4557 buf_ch = *d;
cf9c99bc
KH
4558 ch = RE_CHAR_TO_MULTIBYTE (buf_ch);
4559 translated = RE_TRANSLATE (translate, ch);
4560 if (translated != ch
4561 && (ch = RE_CHAR_TO_UNIBYTE (translated)) >= 0)
4562 buf_ch = ch;
6fdd04b0 4563 if (fastmap[buf_ch])
bf216479 4564 break;
33c46939
RS
4565 d++;
4566 range--;
4567 }
e934739e 4568 }
fa9a63c5 4569 else
6fdd04b0
KH
4570 {
4571 if (multibyte)
4572 while (range > lim)
4573 {
4574 int buf_charlen;
fa9a63c5 4575
6fdd04b0
KH
4576 buf_ch = STRING_CHAR_AND_LENGTH (d, range - lim,
4577 buf_charlen);
4578 if (fastmap[CHAR_LEADING_CODE (buf_ch)])
4579 break;
4580 range -= buf_charlen;
4581 d += buf_charlen;
4582 }
e934739e 4583 else
6fdd04b0 4584 while (range > lim && !fastmap[*d])
33c46939
RS
4585 {
4586 d++;
4587 range--;
4588 }
e934739e 4589 }
fa9a63c5
RM
4590 startpos += irange - range;
4591 }
7814e705 4592 else /* Searching backwards. */
fa9a63c5 4593 {
2d1675e4
SM
4594 int room = (startpos >= size1
4595 ? size2 + size1 - startpos
4596 : size1 - startpos);
ba5e343c
KH
4597 if (multibyte)
4598 {
6fdd04b0 4599 buf_ch = STRING_CHAR (d, room);
ba5e343c
KH
4600 buf_ch = TRANSLATE (buf_ch);
4601 if (! fastmap[CHAR_LEADING_CODE (buf_ch)])
4602 goto advance;
4603 }
4604 else
4605 {
cf9c99bc
KH
4606 register re_wchar_t ch, translated;
4607
4608 buf_ch = *d;
4609 ch = RE_CHAR_TO_MULTIBYTE (buf_ch);
4610 translated = TRANSLATE (ch);
4611 if (translated != ch
4612 && (ch = RE_CHAR_TO_UNIBYTE (translated)) >= 0)
4613 buf_ch = ch;
4614 if (! fastmap[TRANSLATE (buf_ch)])
ba5e343c
KH
4615 goto advance;
4616 }
fa9a63c5
RM
4617 }
4618 }
4619
4620 /* If can't match the null string, and that's all we have left, fail. */
4621 if (range >= 0 && startpos == total_size && fastmap
25fe55af 4622 && !bufp->can_be_null)
fa9a63c5
RM
4623 return -1;
4624
4625 val = re_match_2_internal (bufp, string1, size1, string2, size2,
4626 startpos, regs, stop);
fa9a63c5
RM
4627
4628 if (val >= 0)
4629 return startpos;
5e69f11e 4630
fa9a63c5
RM
4631 if (val == -2)
4632 return -2;
4633
4634 advance:
5e69f11e 4635 if (!range)
25fe55af 4636 break;
5e69f11e 4637 else if (range > 0)
25fe55af 4638 {
b18215fc
RS
4639 /* Update STARTPOS to the next character boundary. */
4640 if (multibyte)
4641 {
66f0296e
SM
4642 re_char *p = POS_ADDR_VSTRING (startpos);
4643 re_char *pend = STOP_ADDR_VSTRING (startpos);
b18215fc
RS
4644 int len = MULTIBYTE_FORM_LENGTH (p, pend - p);
4645
4646 range -= len;
4647 if (range < 0)
4648 break;
4649 startpos += len;
4650 }
4651 else
4652 {
b560c397
RS
4653 range--;
4654 startpos++;
4655 }
e318085a 4656 }
fa9a63c5 4657 else
25fe55af
RS
4658 {
4659 range++;
4660 startpos--;
b18215fc
RS
4661
4662 /* Update STARTPOS to the previous character boundary. */
4663 if (multibyte)
4664 {
70806df6
KH
4665 re_char *p = POS_ADDR_VSTRING (startpos) + 1;
4666 re_char *p0 = p;
4667 re_char *phead = HEAD_ADDR_VSTRING (startpos);
b18215fc
RS
4668
4669 /* Find the head of multibyte form. */
70806df6
KH
4670 PREV_CHAR_BOUNDARY (p, phead);
4671 range += p0 - 1 - p;
4672 if (range > 0)
4673 break;
b18215fc 4674
70806df6 4675 startpos -= p0 - 1 - p;
b18215fc 4676 }
25fe55af 4677 }
fa9a63c5
RM
4678 }
4679 return -1;
4680} /* re_search_2 */
c0f9ea08 4681WEAK_ALIAS (__re_search_2, re_search_2)
fa9a63c5
RM
4682\f
4683/* Declarations and macros for re_match_2. */
4684
2d1675e4
SM
4685static int bcmp_translate _RE_ARGS((re_char *s1, re_char *s2,
4686 register int len,
4687 RE_TRANSLATE_TYPE translate,
4688 const int multibyte));
fa9a63c5
RM
4689
4690/* This converts PTR, a pointer into one of the search strings `string1'
4691 and `string2' into an offset from the beginning of that string. */
4692#define POINTER_TO_OFFSET(ptr) \
4693 (FIRST_STRING_P (ptr) \
4694 ? ((regoff_t) ((ptr) - string1)) \
4695 : ((regoff_t) ((ptr) - string2 + size1)))
4696
fa9a63c5 4697/* Call before fetching a character with *d. This switches over to
419d1c74
SM
4698 string2 if necessary.
4699 Check re_match_2_internal for a discussion of why end_match_2 might
4700 not be within string2 (but be equal to end_match_1 instead). */
fa9a63c5 4701#define PREFETCH() \
25fe55af 4702 while (d == dend) \
fa9a63c5
RM
4703 { \
4704 /* End of string2 => fail. */ \
25fe55af
RS
4705 if (dend == end_match_2) \
4706 goto fail; \
4bb91c68 4707 /* End of string1 => advance to string2. */ \
25fe55af 4708 d = string2; \
fa9a63c5
RM
4709 dend = end_match_2; \
4710 }
4711
f1ad044f
SM
4712/* Call before fetching a char with *d if you already checked other limits.
4713 This is meant for use in lookahead operations like wordend, etc..
4714 where we might need to look at parts of the string that might be
4715 outside of the LIMITs (i.e past `stop'). */
4716#define PREFETCH_NOLIMIT() \
4717 if (d == end1) \
4718 { \
4719 d = string2; \
4720 dend = end_match_2; \
4721 } \
fa9a63c5
RM
4722
4723/* Test if at very beginning or at very end of the virtual concatenation
7814e705 4724 of `string1' and `string2'. If only one string, it's `string2'. */
fa9a63c5 4725#define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
5e69f11e 4726#define AT_STRINGS_END(d) ((d) == end2)
fa9a63c5
RM
4727
4728
4729/* Test if D points to a character which is word-constituent. We have
4730 two special cases to check for: if past the end of string1, look at
4731 the first character in string2; and if before the beginning of
4732 string2, look at the last character in string1. */
4733#define WORDCHAR_P(d) \
4734 (SYNTAX ((d) == end1 ? *string2 \
25fe55af 4735 : (d) == string2 - 1 ? *(end1 - 1) : *(d)) \
fa9a63c5
RM
4736 == Sword)
4737
9121ca40 4738/* Disabled due to a compiler bug -- see comment at case wordbound */
b18215fc
RS
4739
4740/* The comment at case wordbound is following one, but we don't use
4741 AT_WORD_BOUNDARY anymore to support multibyte form.
4742
4743 The DEC Alpha C compiler 3.x generates incorrect code for the
25fe55af 4744 test WORDCHAR_P (d - 1) != WORDCHAR_P (d) in the expansion of
7814e705 4745 AT_WORD_BOUNDARY, so this code is disabled. Expanding the
b18215fc
RS
4746 macro and introducing temporary variables works around the bug. */
4747
9121ca40 4748#if 0
fa9a63c5
RM
4749/* Test if the character before D and the one at D differ with respect
4750 to being word-constituent. */
4751#define AT_WORD_BOUNDARY(d) \
4752 (AT_STRINGS_BEG (d) || AT_STRINGS_END (d) \
4753 || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
9121ca40 4754#endif
fa9a63c5
RM
4755
4756/* Free everything we malloc. */
4757#ifdef MATCH_MAY_ALLOCATE
0b32bf0e
SM
4758# define FREE_VAR(var) if (var) { REGEX_FREE (var); var = NULL; } else
4759# define FREE_VARIABLES() \
fa9a63c5
RM
4760 do { \
4761 REGEX_FREE_STACK (fail_stack.stack); \
4762 FREE_VAR (regstart); \
4763 FREE_VAR (regend); \
fa9a63c5
RM
4764 FREE_VAR (best_regstart); \
4765 FREE_VAR (best_regend); \
fa9a63c5
RM
4766 } while (0)
4767#else
0b32bf0e 4768# define FREE_VARIABLES() ((void)0) /* Do nothing! But inhibit gcc warning. */
fa9a63c5
RM
4769#endif /* not MATCH_MAY_ALLOCATE */
4770
505bde11
SM
4771\f
4772/* Optimization routines. */
4773
4e8a9132
SM
4774/* If the operation is a match against one or more chars,
4775 return a pointer to the next operation, else return NULL. */
01618498 4776static re_char *
4e8a9132 4777skip_one_char (p)
01618498 4778 re_char *p;
4e8a9132
SM
4779{
4780 switch (SWITCH_ENUM_CAST (*p++))
4781 {
4782 case anychar:
4783 break;
177c0ea7 4784
4e8a9132
SM
4785 case exactn:
4786 p += *p + 1;
4787 break;
4788
4789 case charset_not:
4790 case charset:
4791 if (CHARSET_RANGE_TABLE_EXISTS_P (p - 1))
4792 {
4793 int mcnt;
4794 p = CHARSET_RANGE_TABLE (p - 1);
4795 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4796 p = CHARSET_RANGE_TABLE_END (p, mcnt);
4797 }
4798 else
4799 p += 1 + CHARSET_BITMAP_SIZE (p - 1);
4800 break;
177c0ea7 4801
4e8a9132
SM
4802 case syntaxspec:
4803 case notsyntaxspec:
1fb352e0 4804#ifdef emacs
4e8a9132
SM
4805 case categoryspec:
4806 case notcategoryspec:
4807#endif /* emacs */
4808 p++;
4809 break;
4810
4811 default:
4812 p = NULL;
4813 }
4814 return p;
4815}
4816
4817
505bde11 4818/* Jump over non-matching operations. */
839966f3 4819static re_char *
4e8a9132 4820skip_noops (p, pend)
839966f3 4821 re_char *p, *pend;
505bde11
SM
4822{
4823 int mcnt;
4824 while (p < pend)
4825 {
4826 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p))
4827 {
4828 case start_memory:
505bde11
SM
4829 case stop_memory:
4830 p += 2; break;
4831 case no_op:
4832 p += 1; break;
4833 case jump:
4834 p += 1;
4835 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4836 p += mcnt;
4837 break;
4838 default:
4839 return p;
4840 }
4841 }
4842 assert (p == pend);
4843 return p;
4844}
4845
4846/* Non-zero if "p1 matches something" implies "p2 fails". */
4847static int
4848mutually_exclusive_p (bufp, p1, p2)
4849 struct re_pattern_buffer *bufp;
839966f3 4850 re_char *p1, *p2;
505bde11 4851{
4e8a9132 4852 re_opcode_t op2;
2d1675e4 4853 const boolean multibyte = RE_MULTIBYTE_P (bufp);
505bde11
SM
4854 unsigned char *pend = bufp->buffer + bufp->used;
4855
4e8a9132 4856 assert (p1 >= bufp->buffer && p1 < pend
505bde11
SM
4857 && p2 >= bufp->buffer && p2 <= pend);
4858
4859 /* Skip over open/close-group commands.
4860 If what follows this loop is a ...+ construct,
4861 look at what begins its body, since we will have to
4862 match at least one of that. */
4e8a9132
SM
4863 p2 = skip_noops (p2, pend);
4864 /* The same skip can be done for p1, except that this function
4865 is only used in the case where p1 is a simple match operator. */
4866 /* p1 = skip_noops (p1, pend); */
4867
4868 assert (p1 >= bufp->buffer && p1 < pend
4869 && p2 >= bufp->buffer && p2 <= pend);
4870
4871 op2 = p2 == pend ? succeed : *p2;
4872
4873 switch (SWITCH_ENUM_CAST (op2))
505bde11 4874 {
4e8a9132
SM
4875 case succeed:
4876 case endbuf:
4877 /* If we're at the end of the pattern, we can change. */
4878 if (skip_one_char (p1))
505bde11 4879 {
505bde11
SM
4880 DEBUG_PRINT1 (" End of pattern: fast loop.\n");
4881 return 1;
505bde11 4882 }
4e8a9132 4883 break;
177c0ea7 4884
4e8a9132 4885 case endline:
4e8a9132
SM
4886 case exactn:
4887 {
01618498 4888 register re_wchar_t c
4e8a9132 4889 = (re_opcode_t) *p2 == endline ? '\n'
cf9c99bc 4890 : RE_STRING_CHAR (p2 + 2, pend - p2 - 2, multibyte);
505bde11 4891
4e8a9132
SM
4892 if ((re_opcode_t) *p1 == exactn)
4893 {
cf9c99bc 4894 if (c != RE_STRING_CHAR (p1 + 2, pend - p1 - 2, multibyte))
4e8a9132
SM
4895 {
4896 DEBUG_PRINT3 (" '%c' != '%c' => fast loop.\n", c, p1[2]);
4897 return 1;
4898 }
4899 }
505bde11 4900
4e8a9132
SM
4901 else if ((re_opcode_t) *p1 == charset
4902 || (re_opcode_t) *p1 == charset_not)
4903 {
4904 int not = (re_opcode_t) *p1 == charset_not;
505bde11 4905
4e8a9132
SM
4906 /* Test if C is listed in charset (or charset_not)
4907 at `p1'. */
6fdd04b0 4908 if (! multibyte || IS_REAL_ASCII (c))
4e8a9132
SM
4909 {
4910 if (c < CHARSET_BITMAP_SIZE (p1) * BYTEWIDTH
4911 && p1[2 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
4912 not = !not;
4913 }
4914 else if (CHARSET_RANGE_TABLE_EXISTS_P (p1))
4915 CHARSET_LOOKUP_RANGE_TABLE (not, c, p1);
505bde11 4916
4e8a9132
SM
4917 /* `not' is equal to 1 if c would match, which means
4918 that we can't change to pop_failure_jump. */
4919 if (!not)
4920 {
4921 DEBUG_PRINT1 (" No match => fast loop.\n");
4922 return 1;
4923 }
4924 }
4925 else if ((re_opcode_t) *p1 == anychar
4926 && c == '\n')
4927 {
4928 DEBUG_PRINT1 (" . != \\n => fast loop.\n");
4929 return 1;
4930 }
4931 }
4932 break;
505bde11 4933
4e8a9132 4934 case charset:
4e8a9132
SM
4935 {
4936 if ((re_opcode_t) *p1 == exactn)
4937 /* Reuse the code above. */
4938 return mutually_exclusive_p (bufp, p2, p1);
505bde11 4939
505bde11
SM
4940 /* It is hard to list up all the character in charset
4941 P2 if it includes multibyte character. Give up in
4942 such case. */
4943 else if (!multibyte || !CHARSET_RANGE_TABLE_EXISTS_P (p2))
4944 {
4945 /* Now, we are sure that P2 has no range table.
4946 So, for the size of bitmap in P2, `p2[1]' is
7814e705 4947 enough. But P1 may have range table, so the
505bde11
SM
4948 size of bitmap table of P1 is extracted by
4949 using macro `CHARSET_BITMAP_SIZE'.
4950
6fdd04b0
KH
4951 In a multibyte case, we know that all the character
4952 listed in P2 is ASCII. In a unibyte case, P1 has only a
4953 bitmap table. So, in both cases, it is enough to test
4954 only the bitmap table of P1. */
505bde11 4955
411e4203 4956 if ((re_opcode_t) *p1 == charset)
505bde11
SM
4957 {
4958 int idx;
4959 /* We win if the charset inside the loop
4960 has no overlap with the one after the loop. */
4961 for (idx = 0;
4962 (idx < (int) p2[1]
4963 && idx < CHARSET_BITMAP_SIZE (p1));
4964 idx++)
4965 if ((p2[2 + idx] & p1[2 + idx]) != 0)
4966 break;
4967
4968 if (idx == p2[1]
4969 || idx == CHARSET_BITMAP_SIZE (p1))
4970 {
4971 DEBUG_PRINT1 (" No match => fast loop.\n");
4972 return 1;
4973 }
4974 }
411e4203 4975 else if ((re_opcode_t) *p1 == charset_not)
505bde11
SM
4976 {
4977 int idx;
4978 /* We win if the charset_not inside the loop lists
7814e705 4979 every character listed in the charset after. */
505bde11
SM
4980 for (idx = 0; idx < (int) p2[1]; idx++)
4981 if (! (p2[2 + idx] == 0
4982 || (idx < CHARSET_BITMAP_SIZE (p1)
4983 && ((p2[2 + idx] & ~ p1[2 + idx]) == 0))))
4984 break;
4985
4e8a9132
SM
4986 if (idx == p2[1])
4987 {
4988 DEBUG_PRINT1 (" No match => fast loop.\n");
4989 return 1;
4990 }
4991 }
4992 }
4993 }
609b757a 4994 break;
177c0ea7 4995
411e4203
SM
4996 case charset_not:
4997 switch (SWITCH_ENUM_CAST (*p1))
4998 {
4999 case exactn:
5000 case charset:
5001 /* Reuse the code above. */
5002 return mutually_exclusive_p (bufp, p2, p1);
5003 case charset_not:
5004 /* When we have two charset_not, it's very unlikely that
5005 they don't overlap. The union of the two sets of excluded
5006 chars should cover all possible chars, which, as a matter of
5007 fact, is virtually impossible in multibyte buffers. */
36595814 5008 break;
411e4203
SM
5009 }
5010 break;
5011
4e8a9132 5012 case wordend:
669fa600
SM
5013 return ((re_opcode_t) *p1 == syntaxspec && p1[1] == Sword);
5014 case symend:
4e8a9132 5015 return ((re_opcode_t) *p1 == syntaxspec
669fa600
SM
5016 && (p1[1] == Ssymbol || p1[1] == Sword));
5017 case notsyntaxspec:
5018 return ((re_opcode_t) *p1 == syntaxspec && p1[1] == p2[1]);
4e8a9132
SM
5019
5020 case wordbeg:
669fa600
SM
5021 return ((re_opcode_t) *p1 == notsyntaxspec && p1[1] == Sword);
5022 case symbeg:
4e8a9132 5023 return ((re_opcode_t) *p1 == notsyntaxspec
669fa600
SM
5024 && (p1[1] == Ssymbol || p1[1] == Sword));
5025 case syntaxspec:
5026 return ((re_opcode_t) *p1 == notsyntaxspec && p1[1] == p2[1]);
4e8a9132
SM
5027
5028 case wordbound:
5029 return (((re_opcode_t) *p1 == notsyntaxspec
5030 || (re_opcode_t) *p1 == syntaxspec)
5031 && p1[1] == Sword);
5032
1fb352e0 5033#ifdef emacs
4e8a9132
SM
5034 case categoryspec:
5035 return ((re_opcode_t) *p1 == notcategoryspec && p1[1] == p2[1]);
5036 case notcategoryspec:
5037 return ((re_opcode_t) *p1 == categoryspec && p1[1] == p2[1]);
5038#endif /* emacs */
5039
5040 default:
5041 ;
505bde11
SM
5042 }
5043
5044 /* Safe default. */
5045 return 0;
5046}
5047
fa9a63c5
RM
5048\f
5049/* Matching routines. */
5050
25fe55af 5051#ifndef emacs /* Emacs never uses this. */
fa9a63c5
RM
5052/* re_match is like re_match_2 except it takes only a single string. */
5053
5054int
5055re_match (bufp, string, size, pos, regs)
5056 struct re_pattern_buffer *bufp;
5057 const char *string;
5058 int size, pos;
5059 struct re_registers *regs;
5060{
4bb91c68 5061 int result = re_match_2_internal (bufp, NULL, 0, (re_char*) string, size,
fa9a63c5 5062 pos, regs, size);
fa9a63c5
RM
5063 return result;
5064}
c0f9ea08 5065WEAK_ALIAS (__re_match, re_match)
fa9a63c5
RM
5066#endif /* not emacs */
5067
b18215fc
RS
5068#ifdef emacs
5069/* In Emacs, this is the string or buffer in which we
7814e705 5070 are matching. It is used for looking up syntax properties. */
b18215fc
RS
5071Lisp_Object re_match_object;
5072#endif
fa9a63c5
RM
5073
5074/* re_match_2 matches the compiled pattern in BUFP against the
5075 the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
5076 and SIZE2, respectively). We start matching at POS, and stop
5077 matching at STOP.
5e69f11e 5078
fa9a63c5 5079 If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
7814e705 5080 store offsets for the substring each group matched in REGS. See the
fa9a63c5
RM
5081 documentation for exactly how many groups we fill.
5082
5083 We return -1 if no match, -2 if an internal error (such as the
7814e705 5084 failure stack overflowing). Otherwise, we return the length of the
fa9a63c5
RM
5085 matched substring. */
5086
5087int
5088re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
5089 struct re_pattern_buffer *bufp;
5090 const char *string1, *string2;
5091 int size1, size2;
5092 int pos;
5093 struct re_registers *regs;
5094 int stop;
5095{
b18215fc 5096 int result;
25fe55af 5097
b18215fc 5098#ifdef emacs
cc9b4df2
KH
5099 int charpos;
5100 gl_state.object = re_match_object;
99633e97 5101 charpos = SYNTAX_TABLE_BYTE_TO_CHAR (POS_AS_IN_BUFFER (pos));
cc9b4df2 5102 SETUP_SYNTAX_TABLE_FOR_OBJECT (re_match_object, charpos, 1);
b18215fc
RS
5103#endif
5104
4bb91c68
SM
5105 result = re_match_2_internal (bufp, (re_char*) string1, size1,
5106 (re_char*) string2, size2,
cc9b4df2 5107 pos, regs, stop);
fa9a63c5
RM
5108 return result;
5109}
c0f9ea08 5110WEAK_ALIAS (__re_match_2, re_match_2)
fa9a63c5 5111
bf216479 5112
fa9a63c5 5113/* This is a separate function so that we can force an alloca cleanup
7814e705 5114 afterwards. */
fa9a63c5
RM
5115static int
5116re_match_2_internal (bufp, string1, size1, string2, size2, pos, regs, stop)
5117 struct re_pattern_buffer *bufp;
66f0296e 5118 re_char *string1, *string2;
fa9a63c5
RM
5119 int size1, size2;
5120 int pos;
5121 struct re_registers *regs;
5122 int stop;
5123{
5124 /* General temporaries. */
5125 int mcnt;
01618498 5126 size_t reg;
66f0296e 5127 boolean not;
fa9a63c5
RM
5128
5129 /* Just past the end of the corresponding string. */
66f0296e 5130 re_char *end1, *end2;
fa9a63c5
RM
5131
5132 /* Pointers into string1 and string2, just past the last characters in
7814e705 5133 each to consider matching. */
66f0296e 5134 re_char *end_match_1, *end_match_2;
fa9a63c5
RM
5135
5136 /* Where we are in the data, and the end of the current string. */
66f0296e 5137 re_char *d, *dend;
5e69f11e 5138
99633e97
SM
5139 /* Used sometimes to remember where we were before starting matching
5140 an operator so that we can go back in case of failure. This "atomic"
5141 behavior of matching opcodes is indispensable to the correctness
5142 of the on_failure_keep_string_jump optimization. */
5143 re_char *dfail;
5144
fa9a63c5 5145 /* Where we are in the pattern, and the end of the pattern. */
01618498
SM
5146 re_char *p = bufp->buffer;
5147 re_char *pend = p + bufp->used;
fa9a63c5 5148
25fe55af 5149 /* We use this to map every character in the string. */
6676cb1c 5150 RE_TRANSLATE_TYPE translate = bufp->translate;
fa9a63c5 5151
cf9c99bc 5152 /* Nonzero if BUFP is setup from a multibyte regex. */
2d1675e4 5153 const boolean multibyte = RE_MULTIBYTE_P (bufp);
b18215fc 5154
cf9c99bc
KH
5155 /* Nonzero if STRING1/STRING2 are multibyte. */
5156 const boolean target_multibyte = RE_TARGET_MULTIBYTE_P (bufp);
5157
fa9a63c5
RM
5158 /* Failure point stack. Each place that can handle a failure further
5159 down the line pushes a failure point on this stack. It consists of
505bde11 5160 regstart, and regend for all registers corresponding to
fa9a63c5
RM
5161 the subexpressions we're currently inside, plus the number of such
5162 registers, and, finally, two char *'s. The first char * is where
5163 to resume scanning the pattern; the second one is where to resume
7814e705
JB
5164 scanning the strings. */
5165#ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
fa9a63c5
RM
5166 fail_stack_type fail_stack;
5167#endif
5168#ifdef DEBUG
fa9a63c5
RM
5169 unsigned nfailure_points_pushed = 0, nfailure_points_popped = 0;
5170#endif
5171
0b32bf0e 5172#if defined REL_ALLOC && defined REGEX_MALLOC
fa9a63c5
RM
5173 /* This holds the pointer to the failure stack, when
5174 it is allocated relocatably. */
5175 fail_stack_elt_t *failure_stack_ptr;
99633e97 5176#endif
fa9a63c5
RM
5177
5178 /* We fill all the registers internally, independent of what we
7814e705 5179 return, for use in backreferences. The number here includes
fa9a63c5 5180 an element for register zero. */
4bb91c68 5181 size_t num_regs = bufp->re_nsub + 1;
5e69f11e 5182
fa9a63c5
RM
5183 /* Information on the contents of registers. These are pointers into
5184 the input strings; they record just what was matched (on this
5185 attempt) by a subexpression part of the pattern, that is, the
5186 regnum-th regstart pointer points to where in the pattern we began
5187 matching and the regnum-th regend points to right after where we
5188 stopped matching the regnum-th subexpression. (The zeroth register
5189 keeps track of what the whole pattern matches.) */
5190#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
66f0296e 5191 re_char **regstart, **regend;
fa9a63c5
RM
5192#endif
5193
fa9a63c5 5194 /* The following record the register info as found in the above
5e69f11e 5195 variables when we find a match better than any we've seen before.
fa9a63c5
RM
5196 This happens as we backtrack through the failure points, which in
5197 turn happens only if we have not yet matched the entire string. */
5198 unsigned best_regs_set = false;
5199#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
66f0296e 5200 re_char **best_regstart, **best_regend;
fa9a63c5 5201#endif
5e69f11e 5202
fa9a63c5
RM
5203 /* Logically, this is `best_regend[0]'. But we don't want to have to
5204 allocate space for that if we're not allocating space for anything
7814e705 5205 else (see below). Also, we never need info about register 0 for
fa9a63c5
RM
5206 any of the other register vectors, and it seems rather a kludge to
5207 treat `best_regend' differently than the rest. So we keep track of
5208 the end of the best match so far in a separate variable. We
5209 initialize this to NULL so that when we backtrack the first time
5210 and need to test it, it's not garbage. */
66f0296e 5211 re_char *match_end = NULL;
fa9a63c5 5212
fa9a63c5
RM
5213#ifdef DEBUG
5214 /* Counts the total number of registers pushed. */
5e69f11e 5215 unsigned num_regs_pushed = 0;
fa9a63c5
RM
5216#endif
5217
5218 DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
5e69f11e 5219
fa9a63c5 5220 INIT_FAIL_STACK ();
5e69f11e 5221
fa9a63c5
RM
5222#ifdef MATCH_MAY_ALLOCATE
5223 /* Do not bother to initialize all the register variables if there are
5224 no groups in the pattern, as it takes a fair amount of time. If
5225 there are groups, we include space for register 0 (the whole
5226 pattern), even though we never use it, since it simplifies the
5227 array indexing. We should fix this. */
5228 if (bufp->re_nsub)
5229 {
66f0296e
SM
5230 regstart = REGEX_TALLOC (num_regs, re_char *);
5231 regend = REGEX_TALLOC (num_regs, re_char *);
5232 best_regstart = REGEX_TALLOC (num_regs, re_char *);
5233 best_regend = REGEX_TALLOC (num_regs, re_char *);
fa9a63c5 5234
505bde11 5235 if (!(regstart && regend && best_regstart && best_regend))
25fe55af
RS
5236 {
5237 FREE_VARIABLES ();
5238 return -2;
5239 }
fa9a63c5
RM
5240 }
5241 else
5242 {
5243 /* We must initialize all our variables to NULL, so that
25fe55af 5244 `FREE_VARIABLES' doesn't try to free them. */
505bde11 5245 regstart = regend = best_regstart = best_regend = NULL;
fa9a63c5
RM
5246 }
5247#endif /* MATCH_MAY_ALLOCATE */
5248
5249 /* The starting position is bogus. */
5250 if (pos < 0 || pos > size1 + size2)
5251 {
5252 FREE_VARIABLES ();
5253 return -1;
5254 }
5e69f11e 5255
fa9a63c5
RM
5256 /* Initialize subexpression text positions to -1 to mark ones that no
5257 start_memory/stop_memory has been seen for. Also initialize the
5258 register information struct. */
01618498
SM
5259 for (reg = 1; reg < num_regs; reg++)
5260 regstart[reg] = regend[reg] = NULL;
99633e97 5261
fa9a63c5 5262 /* We move `string1' into `string2' if the latter's empty -- but not if
7814e705 5263 `string1' is null. */
fa9a63c5
RM
5264 if (size2 == 0 && string1 != NULL)
5265 {
5266 string2 = string1;
5267 size2 = size1;
5268 string1 = 0;
5269 size1 = 0;
5270 }
5271 end1 = string1 + size1;
5272 end2 = string2 + size2;
5273
5e69f11e 5274 /* `p' scans through the pattern as `d' scans through the data.
fa9a63c5
RM
5275 `dend' is the end of the input string that `d' points within. `d'
5276 is advanced into the following input string whenever necessary, but
5277 this happens before fetching; therefore, at the beginning of the
5278 loop, `d' can be pointing at the end of a string, but it cannot
5279 equal `string2'. */
419d1c74 5280 if (pos >= size1)
fa9a63c5 5281 {
419d1c74
SM
5282 /* Only match within string2. */
5283 d = string2 + pos - size1;
5284 dend = end_match_2 = string2 + stop - size1;
5285 end_match_1 = end1; /* Just to give it a value. */
fa9a63c5
RM
5286 }
5287 else
5288 {
f1ad044f 5289 if (stop < size1)
419d1c74
SM
5290 {
5291 /* Only match within string1. */
5292 end_match_1 = string1 + stop;
5293 /* BEWARE!
5294 When we reach end_match_1, PREFETCH normally switches to string2.
5295 But in the present case, this means that just doing a PREFETCH
5296 makes us jump from `stop' to `gap' within the string.
5297 What we really want here is for the search to stop as
5298 soon as we hit end_match_1. That's why we set end_match_2
5299 to end_match_1 (since PREFETCH fails as soon as we hit
5300 end_match_2). */
5301 end_match_2 = end_match_1;
5302 }
5303 else
f1ad044f
SM
5304 { /* It's important to use this code when stop == size so that
5305 moving `d' from end1 to string2 will not prevent the d == dend
5306 check from catching the end of string. */
419d1c74
SM
5307 end_match_1 = end1;
5308 end_match_2 = string2 + stop - size1;
5309 }
5310 d = string1 + pos;
5311 dend = end_match_1;
fa9a63c5
RM
5312 }
5313
5314 DEBUG_PRINT1 ("The compiled pattern is: ");
5315 DEBUG_PRINT_COMPILED_PATTERN (bufp, p, pend);
5316 DEBUG_PRINT1 ("The string to match is: `");
5317 DEBUG_PRINT_DOUBLE_STRING (d, string1, size1, string2, size2);
5318 DEBUG_PRINT1 ("'\n");
5e69f11e 5319
7814e705 5320 /* This loops over pattern commands. It exits by returning from the
fa9a63c5
RM
5321 function if the match is complete, or it drops through if the match
5322 fails at this starting point in the input data. */
5323 for (;;)
5324 {
505bde11 5325 DEBUG_PRINT2 ("\n%p: ", p);
fa9a63c5
RM
5326
5327 if (p == pend)
5328 { /* End of pattern means we might have succeeded. */
25fe55af 5329 DEBUG_PRINT1 ("end of pattern ... ");
5e69f11e 5330
fa9a63c5 5331 /* If we haven't matched the entire string, and we want the
25fe55af
RS
5332 longest match, try backtracking. */
5333 if (d != end_match_2)
fa9a63c5
RM
5334 {
5335 /* 1 if this match ends in the same string (string1 or string2)
5336 as the best previous match. */
5e69f11e 5337 boolean same_str_p = (FIRST_STRING_P (match_end)
99633e97 5338 == FIRST_STRING_P (d));
fa9a63c5
RM
5339 /* 1 if this match is the best seen so far. */
5340 boolean best_match_p;
5341
5342 /* AIX compiler got confused when this was combined
7814e705 5343 with the previous declaration. */
fa9a63c5
RM
5344 if (same_str_p)
5345 best_match_p = d > match_end;
5346 else
99633e97 5347 best_match_p = !FIRST_STRING_P (d);
fa9a63c5 5348
25fe55af
RS
5349 DEBUG_PRINT1 ("backtracking.\n");
5350
5351 if (!FAIL_STACK_EMPTY ())
5352 { /* More failure points to try. */
5353
5354 /* If exceeds best match so far, save it. */
5355 if (!best_regs_set || best_match_p)
5356 {
5357 best_regs_set = true;
5358 match_end = d;
5359
5360 DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
5361
01618498 5362 for (reg = 1; reg < num_regs; reg++)
25fe55af 5363 {
01618498
SM
5364 best_regstart[reg] = regstart[reg];
5365 best_regend[reg] = regend[reg];
25fe55af
RS
5366 }
5367 }
5368 goto fail;
5369 }
5370
5371 /* If no failure points, don't restore garbage. And if
5372 last match is real best match, don't restore second
5373 best one. */
5374 else if (best_regs_set && !best_match_p)
5375 {
5376 restore_best_regs:
5377 /* Restore best match. It may happen that `dend ==
5378 end_match_1' while the restored d is in string2.
5379 For example, the pattern `x.*y.*z' against the
5380 strings `x-' and `y-z-', if the two strings are
7814e705 5381 not consecutive in memory. */
25fe55af
RS
5382 DEBUG_PRINT1 ("Restoring best registers.\n");
5383
5384 d = match_end;
5385 dend = ((d >= string1 && d <= end1)
5386 ? end_match_1 : end_match_2);
fa9a63c5 5387
01618498 5388 for (reg = 1; reg < num_regs; reg++)
fa9a63c5 5389 {
01618498
SM
5390 regstart[reg] = best_regstart[reg];
5391 regend[reg] = best_regend[reg];
fa9a63c5 5392 }
25fe55af
RS
5393 }
5394 } /* d != end_match_2 */
fa9a63c5
RM
5395
5396 succeed_label:
25fe55af 5397 DEBUG_PRINT1 ("Accepting match.\n");
fa9a63c5 5398
25fe55af
RS
5399 /* If caller wants register contents data back, do it. */
5400 if (regs && !bufp->no_sub)
fa9a63c5 5401 {
25fe55af
RS
5402 /* Have the register data arrays been allocated? */
5403 if (bufp->regs_allocated == REGS_UNALLOCATED)
7814e705 5404 { /* No. So allocate them with malloc. We need one
25fe55af
RS
5405 extra element beyond `num_regs' for the `-1' marker
5406 GNU code uses. */
5407 regs->num_regs = MAX (RE_NREGS, num_regs + 1);
5408 regs->start = TALLOC (regs->num_regs, regoff_t);
5409 regs->end = TALLOC (regs->num_regs, regoff_t);
5410 if (regs->start == NULL || regs->end == NULL)
fa9a63c5
RM
5411 {
5412 FREE_VARIABLES ();
5413 return -2;
5414 }
25fe55af
RS
5415 bufp->regs_allocated = REGS_REALLOCATE;
5416 }
5417 else if (bufp->regs_allocated == REGS_REALLOCATE)
5418 { /* Yes. If we need more elements than were already
5419 allocated, reallocate them. If we need fewer, just
5420 leave it alone. */
5421 if (regs->num_regs < num_regs + 1)
5422 {
5423 regs->num_regs = num_regs + 1;
5424 RETALLOC (regs->start, regs->num_regs, regoff_t);
5425 RETALLOC (regs->end, regs->num_regs, regoff_t);
5426 if (regs->start == NULL || regs->end == NULL)
fa9a63c5
RM
5427 {
5428 FREE_VARIABLES ();
5429 return -2;
5430 }
25fe55af
RS
5431 }
5432 }
5433 else
fa9a63c5
RM
5434 {
5435 /* These braces fend off a "empty body in an else-statement"
7814e705 5436 warning under GCC when assert expands to nothing. */
fa9a63c5
RM
5437 assert (bufp->regs_allocated == REGS_FIXED);
5438 }
5439
25fe55af
RS
5440 /* Convert the pointer data in `regstart' and `regend' to
5441 indices. Register zero has to be set differently,
5442 since we haven't kept track of any info for it. */
5443 if (regs->num_regs > 0)
5444 {
5445 regs->start[0] = pos;
99633e97 5446 regs->end[0] = POINTER_TO_OFFSET (d);
25fe55af 5447 }
5e69f11e 5448
25fe55af
RS
5449 /* Go through the first `min (num_regs, regs->num_regs)'
5450 registers, since that is all we initialized. */
01618498 5451 for (reg = 1; reg < MIN (num_regs, regs->num_regs); reg++)
fa9a63c5 5452 {
01618498
SM
5453 if (REG_UNSET (regstart[reg]) || REG_UNSET (regend[reg]))
5454 regs->start[reg] = regs->end[reg] = -1;
25fe55af
RS
5455 else
5456 {
01618498
SM
5457 regs->start[reg]
5458 = (regoff_t) POINTER_TO_OFFSET (regstart[reg]);
5459 regs->end[reg]
5460 = (regoff_t) POINTER_TO_OFFSET (regend[reg]);
25fe55af 5461 }
fa9a63c5 5462 }
5e69f11e 5463
25fe55af
RS
5464 /* If the regs structure we return has more elements than
5465 were in the pattern, set the extra elements to -1. If
5466 we (re)allocated the registers, this is the case,
5467 because we always allocate enough to have at least one
7814e705 5468 -1 at the end. */
01618498
SM
5469 for (reg = num_regs; reg < regs->num_regs; reg++)
5470 regs->start[reg] = regs->end[reg] = -1;
fa9a63c5
RM
5471 } /* regs && !bufp->no_sub */
5472
25fe55af
RS
5473 DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
5474 nfailure_points_pushed, nfailure_points_popped,
5475 nfailure_points_pushed - nfailure_points_popped);
5476 DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed);
fa9a63c5 5477
99633e97 5478 mcnt = POINTER_TO_OFFSET (d) - pos;
fa9a63c5 5479
25fe55af 5480 DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt);
fa9a63c5 5481
25fe55af
RS
5482 FREE_VARIABLES ();
5483 return mcnt;
5484 }
fa9a63c5 5485
7814e705 5486 /* Otherwise match next pattern command. */
fa9a63c5
RM
5487 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
5488 {
25fe55af
RS
5489 /* Ignore these. Used to ignore the n of succeed_n's which
5490 currently have n == 0. */
5491 case no_op:
5492 DEBUG_PRINT1 ("EXECUTING no_op.\n");
5493 break;
fa9a63c5
RM
5494
5495 case succeed:
25fe55af 5496 DEBUG_PRINT1 ("EXECUTING succeed.\n");
fa9a63c5
RM
5497 goto succeed_label;
5498
7814e705 5499 /* Match the next n pattern characters exactly. The following
25fe55af 5500 byte in the pattern defines n, and the n bytes after that
7814e705 5501 are the characters to match. */
fa9a63c5
RM
5502 case exactn:
5503 mcnt = *p++;
25fe55af 5504 DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt);
fa9a63c5 5505
99633e97
SM
5506 /* Remember the start point to rollback upon failure. */
5507 dfail = d;
5508
6fdd04b0 5509#ifndef emacs
25fe55af
RS
5510 /* This is written out as an if-else so we don't waste time
5511 testing `translate' inside the loop. */
28703c16 5512 if (RE_TRANSLATE_P (translate))
6fdd04b0
KH
5513 do
5514 {
5515 PREFETCH ();
5516 if (RE_TRANSLATE (translate, *d) != *p++)
e934739e 5517 {
6fdd04b0
KH
5518 d = dfail;
5519 goto fail;
e934739e 5520 }
6fdd04b0
KH
5521 d++;
5522 }
5523 while (--mcnt);
fa9a63c5 5524 else
6fdd04b0
KH
5525 do
5526 {
5527 PREFETCH ();
5528 if (*d++ != *p++)
bf216479 5529 {
6fdd04b0
KH
5530 d = dfail;
5531 goto fail;
bf216479 5532 }
6fdd04b0
KH
5533 }
5534 while (--mcnt);
5535#else /* emacs */
5536 /* The cost of testing `translate' is comparatively small. */
cf9c99bc 5537 if (target_multibyte)
6fdd04b0
KH
5538 do
5539 {
5540 int pat_charlen, buf_charlen;
cf9c99bc 5541 int pat_ch, buf_ch;
e934739e 5542
6fdd04b0 5543 PREFETCH ();
cf9c99bc
KH
5544 if (multibyte)
5545 pat_ch = STRING_CHAR_AND_LENGTH (p, pend - p, pat_charlen);
5546 else
5547 {
5548 pat_ch = RE_CHAR_TO_MULTIBYTE (*p);
5549 pat_charlen = 1;
5550 }
6fdd04b0 5551 buf_ch = STRING_CHAR_AND_LENGTH (d, dend - d, buf_charlen);
e934739e 5552
6fdd04b0 5553 if (TRANSLATE (buf_ch) != pat_ch)
e934739e 5554 {
6fdd04b0
KH
5555 d = dfail;
5556 goto fail;
e934739e 5557 }
bf216479 5558
6fdd04b0
KH
5559 p += pat_charlen;
5560 d += buf_charlen;
5561 mcnt -= pat_charlen;
5562 }
5563 while (mcnt > 0);
fa9a63c5 5564 else
6fdd04b0
KH
5565 do
5566 {
cf9c99bc
KH
5567 int pat_charlen, buf_charlen;
5568 int pat_ch, buf_ch;
bf216479 5569
6fdd04b0 5570 PREFETCH ();
cf9c99bc
KH
5571 if (multibyte)
5572 {
5573 pat_ch = STRING_CHAR_AND_LENGTH (p, pend - p, pat_charlen);
2afc21f5 5574 pat_ch = RE_CHAR_TO_UNIBYTE (pat_ch);
cf9c99bc
KH
5575 }
5576 else
5577 {
5578 pat_ch = *p;
5579 pat_charlen = 1;
5580 }
5581 buf_ch = RE_CHAR_TO_MULTIBYTE (*d);
5582 if (! CHAR_BYTE8_P (buf_ch))
5583 {
5584 buf_ch = TRANSLATE (buf_ch);
5585 buf_ch = RE_CHAR_TO_UNIBYTE (buf_ch);
5586 if (buf_ch < 0)
5587 buf_ch = *d;
5588 }
0e2501ed
AS
5589 else
5590 buf_ch = *d;
cf9c99bc 5591 if (buf_ch != pat_ch)
6fdd04b0
KH
5592 {
5593 d = dfail;
5594 goto fail;
bf216479 5595 }
cf9c99bc
KH
5596 p += pat_charlen;
5597 d++;
6fdd04b0
KH
5598 }
5599 while (--mcnt);
5600#endif
25fe55af 5601 break;
fa9a63c5
RM
5602
5603
25fe55af 5604 /* Match any character except possibly a newline or a null. */
fa9a63c5 5605 case anychar:
e934739e
RS
5606 {
5607 int buf_charlen;
01618498 5608 re_wchar_t buf_ch;
fa9a63c5 5609
e934739e 5610 DEBUG_PRINT1 ("EXECUTING anychar.\n");
fa9a63c5 5611
e934739e 5612 PREFETCH ();
cf9c99bc
KH
5613 buf_ch = RE_STRING_CHAR_AND_LENGTH (d, dend - d, buf_charlen,
5614 target_multibyte);
e934739e
RS
5615 buf_ch = TRANSLATE (buf_ch);
5616
5617 if ((!(bufp->syntax & RE_DOT_NEWLINE)
5618 && buf_ch == '\n')
5619 || ((bufp->syntax & RE_DOT_NOT_NULL)
5620 && buf_ch == '\000'))
5621 goto fail;
5622
e934739e
RS
5623 DEBUG_PRINT2 (" Matched `%d'.\n", *d);
5624 d += buf_charlen;
5625 }
fa9a63c5
RM
5626 break;
5627
5628
5629 case charset:
5630 case charset_not:
5631 {
b18215fc 5632 register unsigned int c;
fa9a63c5 5633 boolean not = (re_opcode_t) *(p - 1) == charset_not;
b18215fc
RS
5634 int len;
5635
5636 /* Start of actual range_table, or end of bitmap if there is no
5637 range table. */
01618498 5638 re_char *range_table;
b18215fc 5639
96cc36cc 5640 /* Nonzero if there is a range table. */
b18215fc
RS
5641 int range_table_exists;
5642
96cc36cc
RS
5643 /* Number of ranges of range table. This is not included
5644 in the initial byte-length of the command. */
5645 int count = 0;
fa9a63c5 5646
f5020181
AS
5647 /* Whether matching against a unibyte character. */
5648 boolean unibyte_char = false;
5649
25fe55af 5650 DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : "");
fa9a63c5 5651
b18215fc 5652 range_table_exists = CHARSET_RANGE_TABLE_EXISTS_P (&p[-1]);
96cc36cc 5653
b18215fc 5654 if (range_table_exists)
96cc36cc
RS
5655 {
5656 range_table = CHARSET_RANGE_TABLE (&p[-1]); /* Past the bitmap. */
5657 EXTRACT_NUMBER_AND_INCR (count, range_table);
5658 }
b18215fc 5659
2d1675e4 5660 PREFETCH ();
cf9c99bc
KH
5661 c = RE_STRING_CHAR_AND_LENGTH (d, dend - d, len, target_multibyte);
5662 if (target_multibyte)
5663 {
5664 int c1;
b18215fc 5665
cf9c99bc
KH
5666 c = TRANSLATE (c);
5667 c1 = RE_CHAR_TO_UNIBYTE (c);
5668 if (c1 >= 0)
f5020181
AS
5669 {
5670 unibyte_char = true;
5671 c = c1;
5672 }
cf9c99bc
KH
5673 }
5674 else
5675 {
5676 int c1 = RE_CHAR_TO_MULTIBYTE (c);
5677
5678 if (! CHAR_BYTE8_P (c1))
5679 {
5680 c1 = TRANSLATE (c1);
5681 c1 = RE_CHAR_TO_UNIBYTE (c1);
5682 if (c1 >= 0)
f5020181
AS
5683 {
5684 unibyte_char = true;
5685 c = c1;
5686 }
cf9c99bc 5687 }
0b8be006
AS
5688 else
5689 unibyte_char = true;
cf9c99bc
KH
5690 }
5691
f5020181 5692 if (unibyte_char && c < (1 << BYTEWIDTH))
b18215fc 5693 { /* Lookup bitmap. */
b18215fc
RS
5694 /* Cast to `unsigned' instead of `unsigned char' in
5695 case the bit list is a full 32 bytes long. */
5696 if (c < (unsigned) (CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH)
96cc36cc
RS
5697 && p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
5698 not = !not;
b18215fc 5699 }
96cc36cc 5700#ifdef emacs
b18215fc 5701 else if (range_table_exists)
96cc36cc
RS
5702 {
5703 int class_bits = CHARSET_RANGE_TABLE_BITS (&p[-1]);
5704
14473664
SM
5705 if ( (class_bits & BIT_LOWER && ISLOWER (c))
5706 | (class_bits & BIT_MULTIBYTE)
96cc36cc
RS
5707 | (class_bits & BIT_PUNCT && ISPUNCT (c))
5708 | (class_bits & BIT_SPACE && ISSPACE (c))
5709 | (class_bits & BIT_UPPER && ISUPPER (c))
5710 | (class_bits & BIT_WORD && ISWORD (c)))
5711 not = !not;
5712 else
5713 CHARSET_LOOKUP_RANGE_TABLE_RAW (not, c, range_table, count);
5714 }
5715#endif /* emacs */
fa9a63c5 5716
96cc36cc
RS
5717 if (range_table_exists)
5718 p = CHARSET_RANGE_TABLE_END (range_table, count);
5719 else
5720 p += CHARSET_BITMAP_SIZE (&p[-1]) + 1;
fa9a63c5
RM
5721
5722 if (!not) goto fail;
5e69f11e 5723
b18215fc 5724 d += len;
fa9a63c5
RM
5725 break;
5726 }
5727
5728
25fe55af 5729 /* The beginning of a group is represented by start_memory.
505bde11 5730 The argument is the register number. The text
25fe55af 5731 matched within the group is recorded (in the internal
7814e705 5732 registers data structure) under the register number. */
25fe55af 5733 case start_memory:
505bde11
SM
5734 DEBUG_PRINT2 ("EXECUTING start_memory %d:\n", *p);
5735
5736 /* In case we need to undo this operation (via backtracking). */
5737 PUSH_FAILURE_REG ((unsigned int)*p);
fa9a63c5 5738
25fe55af 5739 regstart[*p] = d;
4bb91c68 5740 regend[*p] = NULL; /* probably unnecessary. -sm */
fa9a63c5
RM
5741 DEBUG_PRINT2 (" regstart: %d\n", POINTER_TO_OFFSET (regstart[*p]));
5742
25fe55af 5743 /* Move past the register number and inner group count. */
505bde11 5744 p += 1;
25fe55af 5745 break;
fa9a63c5
RM
5746
5747
25fe55af 5748 /* The stop_memory opcode represents the end of a group. Its
505bde11 5749 argument is the same as start_memory's: the register number. */
fa9a63c5 5750 case stop_memory:
505bde11
SM
5751 DEBUG_PRINT2 ("EXECUTING stop_memory %d:\n", *p);
5752
5753 assert (!REG_UNSET (regstart[*p]));
5754 /* Strictly speaking, there should be code such as:
177c0ea7 5755
0b32bf0e 5756 assert (REG_UNSET (regend[*p]));
505bde11
SM
5757 PUSH_FAILURE_REGSTOP ((unsigned int)*p);
5758
5759 But the only info to be pushed is regend[*p] and it is known to
5760 be UNSET, so there really isn't anything to push.
5761 Not pushing anything, on the other hand deprives us from the
5762 guarantee that regend[*p] is UNSET since undoing this operation
5763 will not reset its value properly. This is not important since
5764 the value will only be read on the next start_memory or at
5765 the very end and both events can only happen if this stop_memory
5766 is *not* undone. */
fa9a63c5 5767
25fe55af 5768 regend[*p] = d;
fa9a63c5
RM
5769 DEBUG_PRINT2 (" regend: %d\n", POINTER_TO_OFFSET (regend[*p]));
5770
25fe55af 5771 /* Move past the register number and the inner group count. */
505bde11 5772 p += 1;
25fe55af 5773 break;
fa9a63c5
RM
5774
5775
5776 /* \<digit> has been turned into a `duplicate' command which is
25fe55af
RS
5777 followed by the numeric value of <digit> as the register number. */
5778 case duplicate:
fa9a63c5 5779 {
66f0296e 5780 register re_char *d2, *dend2;
7814e705 5781 int regno = *p++; /* Get which register to match against. */
fa9a63c5
RM
5782 DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno);
5783
7814e705 5784 /* Can't back reference a group which we've never matched. */
25fe55af
RS
5785 if (REG_UNSET (regstart[regno]) || REG_UNSET (regend[regno]))
5786 goto fail;
5e69f11e 5787
7814e705 5788 /* Where in input to try to start matching. */
25fe55af 5789 d2 = regstart[regno];
5e69f11e 5790
99633e97
SM
5791 /* Remember the start point to rollback upon failure. */
5792 dfail = d;
5793
25fe55af
RS
5794 /* Where to stop matching; if both the place to start and
5795 the place to stop matching are in the same string, then
5796 set to the place to stop, otherwise, for now have to use
5797 the end of the first string. */
fa9a63c5 5798
25fe55af 5799 dend2 = ((FIRST_STRING_P (regstart[regno])
fa9a63c5
RM
5800 == FIRST_STRING_P (regend[regno]))
5801 ? regend[regno] : end_match_1);
5802 for (;;)
5803 {
5804 /* If necessary, advance to next segment in register
25fe55af 5805 contents. */
fa9a63c5
RM
5806 while (d2 == dend2)
5807 {
5808 if (dend2 == end_match_2) break;
5809 if (dend2 == regend[regno]) break;
5810
25fe55af
RS
5811 /* End of string1 => advance to string2. */
5812 d2 = string2;
5813 dend2 = regend[regno];
fa9a63c5
RM
5814 }
5815 /* At end of register contents => success */
5816 if (d2 == dend2) break;
5817
5818 /* If necessary, advance to next segment in data. */
5819 PREFETCH ();
5820
5821 /* How many characters left in this segment to match. */
5822 mcnt = dend - d;
5e69f11e 5823
fa9a63c5 5824 /* Want how many consecutive characters we can match in
25fe55af
RS
5825 one shot, so, if necessary, adjust the count. */
5826 if (mcnt > dend2 - d2)
fa9a63c5 5827 mcnt = dend2 - d2;
5e69f11e 5828
fa9a63c5 5829 /* Compare that many; failure if mismatch, else move
25fe55af 5830 past them. */
28703c16 5831 if (RE_TRANSLATE_P (translate)
02cb78b5 5832 ? bcmp_translate (d, d2, mcnt, translate, target_multibyte)
4bb91c68 5833 : memcmp (d, d2, mcnt))
99633e97
SM
5834 {
5835 d = dfail;
5836 goto fail;
5837 }
fa9a63c5 5838 d += mcnt, d2 += mcnt;
fa9a63c5
RM
5839 }
5840 }
5841 break;
5842
5843
25fe55af 5844 /* begline matches the empty string at the beginning of the string
c0f9ea08 5845 (unless `not_bol' is set in `bufp'), and after newlines. */
fa9a63c5 5846 case begline:
25fe55af 5847 DEBUG_PRINT1 ("EXECUTING begline.\n");
5e69f11e 5848
25fe55af
RS
5849 if (AT_STRINGS_BEG (d))
5850 {
5851 if (!bufp->not_bol) break;
5852 }
419d1c74 5853 else
25fe55af 5854 {
bf216479 5855 unsigned c;
419d1c74 5856 GET_CHAR_BEFORE_2 (c, d, string1, end1, string2, end2);
c0f9ea08 5857 if (c == '\n')
419d1c74 5858 break;
25fe55af
RS
5859 }
5860 /* In all other cases, we fail. */
5861 goto fail;
fa9a63c5
RM
5862
5863
25fe55af 5864 /* endline is the dual of begline. */
fa9a63c5 5865 case endline:
25fe55af 5866 DEBUG_PRINT1 ("EXECUTING endline.\n");
fa9a63c5 5867
25fe55af
RS
5868 if (AT_STRINGS_END (d))
5869 {
5870 if (!bufp->not_eol) break;
5871 }
f1ad044f 5872 else
25fe55af 5873 {
f1ad044f 5874 PREFETCH_NOLIMIT ();
c0f9ea08 5875 if (*d == '\n')
f1ad044f 5876 break;
25fe55af
RS
5877 }
5878 goto fail;
fa9a63c5
RM
5879
5880
5881 /* Match at the very beginning of the data. */
25fe55af
RS
5882 case begbuf:
5883 DEBUG_PRINT1 ("EXECUTING begbuf.\n");
5884 if (AT_STRINGS_BEG (d))
5885 break;
5886 goto fail;
fa9a63c5
RM
5887
5888
5889 /* Match at the very end of the data. */
25fe55af
RS
5890 case endbuf:
5891 DEBUG_PRINT1 ("EXECUTING endbuf.\n");
fa9a63c5
RM
5892 if (AT_STRINGS_END (d))
5893 break;
25fe55af 5894 goto fail;
5e69f11e 5895
5e69f11e 5896
25fe55af
RS
5897 /* on_failure_keep_string_jump is used to optimize `.*\n'. It
5898 pushes NULL as the value for the string on the stack. Then
505bde11 5899 `POP_FAILURE_POINT' will keep the current value for the
25fe55af 5900 string, instead of restoring it. To see why, consider
7814e705 5901 matching `foo\nbar' against `.*\n'. The .* matches the foo;
25fe55af
RS
5902 then the . fails against the \n. But the next thing we want
5903 to do is match the \n against the \n; if we restored the
5904 string value, we would be back at the foo.
5905
5906 Because this is used only in specific cases, we don't need to
5907 check all the things that `on_failure_jump' does, to make
5908 sure the right things get saved on the stack. Hence we don't
5909 share its code. The only reason to push anything on the
5910 stack at all is that otherwise we would have to change
5911 `anychar's code to do something besides goto fail in this
5912 case; that seems worse than this. */
5913 case on_failure_keep_string_jump:
505bde11
SM
5914 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5915 DEBUG_PRINT3 ("EXECUTING on_failure_keep_string_jump %d (to %p):\n",
5916 mcnt, p + mcnt);
fa9a63c5 5917
505bde11
SM
5918 PUSH_FAILURE_POINT (p - 3, NULL);
5919 break;
5920
0683b6fa
SM
5921 /* A nasty loop is introduced by the non-greedy *? and +?.
5922 With such loops, the stack only ever contains one failure point
5923 at a time, so that a plain on_failure_jump_loop kind of
5924 cycle detection cannot work. Worse yet, such a detection
5925 can not only fail to detect a cycle, but it can also wrongly
5926 detect a cycle (between different instantiations of the same
6df42991 5927 loop).
0683b6fa
SM
5928 So the method used for those nasty loops is a little different:
5929 We use a special cycle-detection-stack-frame which is pushed
5930 when the on_failure_jump_nastyloop failure-point is *popped*.
5931 This special frame thus marks the beginning of one iteration
5932 through the loop and we can hence easily check right here
5933 whether something matched between the beginning and the end of
5934 the loop. */
5935 case on_failure_jump_nastyloop:
5936 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5937 DEBUG_PRINT3 ("EXECUTING on_failure_jump_nastyloop %d (to %p):\n",
5938 mcnt, p + mcnt);
5939
5940 assert ((re_opcode_t)p[-4] == no_op);
6df42991
SM
5941 {
5942 int cycle = 0;
5943 CHECK_INFINITE_LOOP (p - 4, d);
5944 if (!cycle)
5945 /* If there's a cycle, just continue without pushing
5946 this failure point. The failure point is the "try again"
5947 option, which shouldn't be tried.
5948 We want (x?)*?y\1z to match both xxyz and xxyxz. */
5949 PUSH_FAILURE_POINT (p - 3, d);
5950 }
0683b6fa
SM
5951 break;
5952
4e8a9132
SM
5953 /* Simple loop detecting on_failure_jump: just check on the
5954 failure stack if the same spot was already hit earlier. */
505bde11
SM
5955 case on_failure_jump_loop:
5956 on_failure:
5957 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5958 DEBUG_PRINT3 ("EXECUTING on_failure_jump_loop %d (to %p):\n",
5959 mcnt, p + mcnt);
6df42991
SM
5960 {
5961 int cycle = 0;
5962 CHECK_INFINITE_LOOP (p - 3, d);
5963 if (cycle)
5964 /* If there's a cycle, get out of the loop, as if the matching
5965 had failed. We used to just `goto fail' here, but that was
5966 aborting the search a bit too early: we want to keep the
5967 empty-loop-match and keep matching after the loop.
5968 We want (x?)*y\1z to match both xxyz and xxyxz. */
5969 p += mcnt;
5970 else
5971 PUSH_FAILURE_POINT (p - 3, d);
5972 }
25fe55af 5973 break;
fa9a63c5
RM
5974
5975
5976 /* Uses of on_failure_jump:
5e69f11e 5977
25fe55af
RS
5978 Each alternative starts with an on_failure_jump that points
5979 to the beginning of the next alternative. Each alternative
5980 except the last ends with a jump that in effect jumps past
5981 the rest of the alternatives. (They really jump to the
5982 ending jump of the following alternative, because tensioning
5983 these jumps is a hassle.)
fa9a63c5 5984
25fe55af
RS
5985 Repeats start with an on_failure_jump that points past both
5986 the repetition text and either the following jump or
5987 pop_failure_jump back to this on_failure_jump. */
fa9a63c5 5988 case on_failure_jump:
25fe55af 5989 EXTRACT_NUMBER_AND_INCR (mcnt, p);
505bde11
SM
5990 DEBUG_PRINT3 ("EXECUTING on_failure_jump %d (to %p):\n",
5991 mcnt, p + mcnt);
25fe55af 5992
505bde11 5993 PUSH_FAILURE_POINT (p -3, d);
25fe55af
RS
5994 break;
5995
4e8a9132 5996 /* This operation is used for greedy *.
505bde11
SM
5997 Compare the beginning of the repeat with what in the
5998 pattern follows its end. If we can establish that there
5999 is nothing that they would both match, i.e., that we
6000 would have to backtrack because of (as in, e.g., `a*a')
6001 then we can use a non-backtracking loop based on
4e8a9132 6002 on_failure_keep_string_jump instead of on_failure_jump. */
505bde11 6003 case on_failure_jump_smart:
25fe55af 6004 EXTRACT_NUMBER_AND_INCR (mcnt, p);
505bde11
SM
6005 DEBUG_PRINT3 ("EXECUTING on_failure_jump_smart %d (to %p).\n",
6006 mcnt, p + mcnt);
25fe55af 6007 {
01618498 6008 re_char *p1 = p; /* Next operation. */
6dcf2d0e
SM
6009 /* Here, we discard `const', making re_match non-reentrant. */
6010 unsigned char *p2 = (unsigned char*) p + mcnt; /* Jump dest. */
6011 unsigned char *p3 = (unsigned char*) p - 3; /* opcode location. */
fa9a63c5 6012
505bde11
SM
6013 p -= 3; /* Reset so that we will re-execute the
6014 instruction once it's been changed. */
fa9a63c5 6015
4e8a9132
SM
6016 EXTRACT_NUMBER (mcnt, p2 - 2);
6017
6018 /* Ensure this is a indeed the trivial kind of loop
6019 we are expecting. */
6020 assert (skip_one_char (p1) == p2 - 3);
6021 assert ((re_opcode_t) p2[-3] == jump && p2 + mcnt == p);
99633e97 6022 DEBUG_STATEMENT (debug += 2);
505bde11 6023 if (mutually_exclusive_p (bufp, p1, p2))
fa9a63c5 6024 {
505bde11 6025 /* Use a fast `on_failure_keep_string_jump' loop. */
4e8a9132 6026 DEBUG_PRINT1 (" smart exclusive => fast loop.\n");
01618498 6027 *p3 = (unsigned char) on_failure_keep_string_jump;
4e8a9132 6028 STORE_NUMBER (p2 - 2, mcnt + 3);
25fe55af 6029 }
505bde11 6030 else
fa9a63c5 6031 {
505bde11
SM
6032 /* Default to a safe `on_failure_jump' loop. */
6033 DEBUG_PRINT1 (" smart default => slow loop.\n");
01618498 6034 *p3 = (unsigned char) on_failure_jump;
fa9a63c5 6035 }
99633e97 6036 DEBUG_STATEMENT (debug -= 2);
25fe55af 6037 }
505bde11 6038 break;
25fe55af
RS
6039
6040 /* Unconditionally jump (without popping any failure points). */
6041 case jump:
fa9a63c5 6042 unconditional_jump:
5b370c2b 6043 IMMEDIATE_QUIT_CHECK;
fa9a63c5 6044 EXTRACT_NUMBER_AND_INCR (mcnt, p); /* Get the amount to jump. */
25fe55af 6045 DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt);
7814e705 6046 p += mcnt; /* Do the jump. */
505bde11 6047 DEBUG_PRINT2 ("(to %p).\n", p);
25fe55af
RS
6048 break;
6049
6050
25fe55af
RS
6051 /* Have to succeed matching what follows at least n times.
6052 After that, handle like `on_failure_jump'. */
6053 case succeed_n:
01618498 6054 /* Signedness doesn't matter since we only compare MCNT to 0. */
25fe55af
RS
6055 EXTRACT_NUMBER (mcnt, p + 2);
6056 DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt);
5e69f11e 6057
dc1e502d
SM
6058 /* Originally, mcnt is how many times we HAVE to succeed. */
6059 if (mcnt != 0)
25fe55af 6060 {
6dcf2d0e
SM
6061 /* Here, we discard `const', making re_match non-reentrant. */
6062 unsigned char *p2 = (unsigned char*) p + 2; /* counter loc. */
dc1e502d 6063 mcnt--;
01618498
SM
6064 p += 4;
6065 PUSH_NUMBER (p2, mcnt);
25fe55af 6066 }
dc1e502d
SM
6067 else
6068 /* The two bytes encoding mcnt == 0 are two no_op opcodes. */
6069 goto on_failure;
25fe55af
RS
6070 break;
6071
6072 case jump_n:
01618498 6073 /* Signedness doesn't matter since we only compare MCNT to 0. */
25fe55af
RS
6074 EXTRACT_NUMBER (mcnt, p + 2);
6075 DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt);
6076
6077 /* Originally, this is how many times we CAN jump. */
dc1e502d 6078 if (mcnt != 0)
25fe55af 6079 {
6dcf2d0e
SM
6080 /* Here, we discard `const', making re_match non-reentrant. */
6081 unsigned char *p2 = (unsigned char*) p + 2; /* counter loc. */
dc1e502d 6082 mcnt--;
01618498 6083 PUSH_NUMBER (p2, mcnt);
dc1e502d 6084 goto unconditional_jump;
25fe55af
RS
6085 }
6086 /* If don't have to jump any more, skip over the rest of command. */
5e69f11e
RM
6087 else
6088 p += 4;
25fe55af 6089 break;
5e69f11e 6090
fa9a63c5
RM
6091 case set_number_at:
6092 {
01618498 6093 unsigned char *p2; /* Location of the counter. */
25fe55af 6094 DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
fa9a63c5 6095
25fe55af 6096 EXTRACT_NUMBER_AND_INCR (mcnt, p);
6dcf2d0e
SM
6097 /* Here, we discard `const', making re_match non-reentrant. */
6098 p2 = (unsigned char*) p + mcnt;
01618498 6099 /* Signedness doesn't matter since we only copy MCNT's bits . */
25fe55af 6100 EXTRACT_NUMBER_AND_INCR (mcnt, p);
01618498
SM
6101 DEBUG_PRINT3 (" Setting %p to %d.\n", p2, mcnt);
6102 PUSH_NUMBER (p2, mcnt);
25fe55af
RS
6103 break;
6104 }
9121ca40
KH
6105
6106 case wordbound:
66f0296e
SM
6107 case notwordbound:
6108 not = (re_opcode_t) *(p - 1) == notwordbound;
6109 DEBUG_PRINT2 ("EXECUTING %swordbound.\n", not?"not":"");
fa9a63c5 6110
99633e97 6111 /* We SUCCEED (or FAIL) in one of the following cases: */
9121ca40 6112
b18215fc 6113 /* Case 1: D is at the beginning or the end of string. */
9121ca40 6114 if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
66f0296e 6115 not = !not;
b18215fc
RS
6116 else
6117 {
6118 /* C1 is the character before D, S1 is the syntax of C1, C2
6119 is the character at D, and S2 is the syntax of C2. */
01618498
SM
6120 re_wchar_t c1, c2;
6121 int s1, s2;
bf216479 6122 int dummy;
b18215fc 6123#ifdef emacs
2d1675e4
SM
6124 int offset = PTR_TO_OFFSET (d - 1);
6125 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
5d967c7a 6126 UPDATE_SYNTAX_TABLE (charpos);
25fe55af 6127#endif
66f0296e 6128 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
b18215fc
RS
6129 s1 = SYNTAX (c1);
6130#ifdef emacs
5d967c7a 6131 UPDATE_SYNTAX_TABLE_FORWARD (charpos + 1);
25fe55af 6132#endif
f1ad044f 6133 PREFETCH_NOLIMIT ();
6fdd04b0 6134 GET_CHAR_AFTER (c2, d, dummy);
b18215fc
RS
6135 s2 = SYNTAX (c2);
6136
6137 if (/* Case 2: Only one of S1 and S2 is Sword. */
6138 ((s1 == Sword) != (s2 == Sword))
6139 /* Case 3: Both of S1 and S2 are Sword, and macro
7814e705 6140 WORD_BOUNDARY_P (C1, C2) returns nonzero. */
b18215fc 6141 || ((s1 == Sword) && WORD_BOUNDARY_P (c1, c2)))
66f0296e
SM
6142 not = !not;
6143 }
6144 if (not)
9121ca40 6145 break;
b18215fc 6146 else
9121ca40 6147 goto fail;
fa9a63c5
RM
6148
6149 case wordbeg:
25fe55af 6150 DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
fa9a63c5 6151
b18215fc
RS
6152 /* We FAIL in one of the following cases: */
6153
7814e705 6154 /* Case 1: D is at the end of string. */
b18215fc 6155 if (AT_STRINGS_END (d))
99633e97 6156 goto fail;
b18215fc
RS
6157 else
6158 {
6159 /* C1 is the character before D, S1 is the syntax of C1, C2
6160 is the character at D, and S2 is the syntax of C2. */
01618498
SM
6161 re_wchar_t c1, c2;
6162 int s1, s2;
bf216479 6163 int dummy;
fa9a63c5 6164#ifdef emacs
2d1675e4
SM
6165 int offset = PTR_TO_OFFSET (d);
6166 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
92432794 6167 UPDATE_SYNTAX_TABLE (charpos);
25fe55af 6168#endif
99633e97 6169 PREFETCH ();
6fdd04b0 6170 GET_CHAR_AFTER (c2, d, dummy);
b18215fc 6171 s2 = SYNTAX (c2);
177c0ea7 6172
b18215fc
RS
6173 /* Case 2: S2 is not Sword. */
6174 if (s2 != Sword)
6175 goto fail;
6176
6177 /* Case 3: D is not at the beginning of string ... */
6178 if (!AT_STRINGS_BEG (d))
6179 {
6180 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
6181#ifdef emacs
5d967c7a 6182 UPDATE_SYNTAX_TABLE_BACKWARD (charpos - 1);
25fe55af 6183#endif
b18215fc
RS
6184 s1 = SYNTAX (c1);
6185
6186 /* ... and S1 is Sword, and WORD_BOUNDARY_P (C1, C2)
7814e705 6187 returns 0. */
b18215fc
RS
6188 if ((s1 == Sword) && !WORD_BOUNDARY_P (c1, c2))
6189 goto fail;
6190 }
6191 }
e318085a
RS
6192 break;
6193
b18215fc 6194 case wordend:
25fe55af 6195 DEBUG_PRINT1 ("EXECUTING wordend.\n");
b18215fc
RS
6196
6197 /* We FAIL in one of the following cases: */
6198
6199 /* Case 1: D is at the beginning of string. */
6200 if (AT_STRINGS_BEG (d))
e318085a 6201 goto fail;
b18215fc
RS
6202 else
6203 {
6204 /* C1 is the character before D, S1 is the syntax of C1, C2
6205 is the character at D, and S2 is the syntax of C2. */
01618498
SM
6206 re_wchar_t c1, c2;
6207 int s1, s2;
bf216479 6208 int dummy;
5d967c7a 6209#ifdef emacs
2d1675e4
SM
6210 int offset = PTR_TO_OFFSET (d) - 1;
6211 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
92432794 6212 UPDATE_SYNTAX_TABLE (charpos);
5d967c7a 6213#endif
99633e97 6214 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
b18215fc
RS
6215 s1 = SYNTAX (c1);
6216
6217 /* Case 2: S1 is not Sword. */
6218 if (s1 != Sword)
6219 goto fail;
6220
6221 /* Case 3: D is not at the end of string ... */
6222 if (!AT_STRINGS_END (d))
6223 {
f1ad044f 6224 PREFETCH_NOLIMIT ();
6fdd04b0 6225 GET_CHAR_AFTER (c2, d, dummy);
5d967c7a
RS
6226#ifdef emacs
6227 UPDATE_SYNTAX_TABLE_FORWARD (charpos);
6228#endif
b18215fc
RS
6229 s2 = SYNTAX (c2);
6230
6231 /* ... and S2 is Sword, and WORD_BOUNDARY_P (C1, C2)
7814e705 6232 returns 0. */
b18215fc 6233 if ((s2 == Sword) && !WORD_BOUNDARY_P (c1, c2))
25fe55af 6234 goto fail;
b18215fc
RS
6235 }
6236 }
e318085a
RS
6237 break;
6238
669fa600
SM
6239 case symbeg:
6240 DEBUG_PRINT1 ("EXECUTING symbeg.\n");
6241
6242 /* We FAIL in one of the following cases: */
6243
7814e705 6244 /* Case 1: D is at the end of string. */
669fa600
SM
6245 if (AT_STRINGS_END (d))
6246 goto fail;
6247 else
6248 {
6249 /* C1 is the character before D, S1 is the syntax of C1, C2
6250 is the character at D, and S2 is the syntax of C2. */
6251 re_wchar_t c1, c2;
6252 int s1, s2;
6253#ifdef emacs
6254 int offset = PTR_TO_OFFSET (d);
6255 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
6256 UPDATE_SYNTAX_TABLE (charpos);
6257#endif
6258 PREFETCH ();
cf9c99bc 6259 c2 = RE_STRING_CHAR (d, dend - d, target_multibyte);
669fa600 6260 s2 = SYNTAX (c2);
7814e705 6261
669fa600
SM
6262 /* Case 2: S2 is neither Sword nor Ssymbol. */
6263 if (s2 != Sword && s2 != Ssymbol)
6264 goto fail;
6265
6266 /* Case 3: D is not at the beginning of string ... */
6267 if (!AT_STRINGS_BEG (d))
6268 {
6269 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
6270#ifdef emacs
6271 UPDATE_SYNTAX_TABLE_BACKWARD (charpos - 1);
6272#endif
6273 s1 = SYNTAX (c1);
6274
6275 /* ... and S1 is Sword or Ssymbol. */
6276 if (s1 == Sword || s1 == Ssymbol)
6277 goto fail;
6278 }
6279 }
6280 break;
6281
6282 case symend:
6283 DEBUG_PRINT1 ("EXECUTING symend.\n");
6284
6285 /* We FAIL in one of the following cases: */
6286
6287 /* Case 1: D is at the beginning of string. */
6288 if (AT_STRINGS_BEG (d))
6289 goto fail;
6290 else
6291 {
6292 /* C1 is the character before D, S1 is the syntax of C1, C2
6293 is the character at D, and S2 is the syntax of C2. */
6294 re_wchar_t c1, c2;
6295 int s1, s2;
6296#ifdef emacs
6297 int offset = PTR_TO_OFFSET (d) - 1;
6298 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
6299 UPDATE_SYNTAX_TABLE (charpos);
6300#endif
6301 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
6302 s1 = SYNTAX (c1);
6303
6304 /* Case 2: S1 is neither Ssymbol nor Sword. */
6305 if (s1 != Sword && s1 != Ssymbol)
6306 goto fail;
6307
6308 /* Case 3: D is not at the end of string ... */
6309 if (!AT_STRINGS_END (d))
6310 {
6311 PREFETCH_NOLIMIT ();
cf9c99bc 6312 c2 = RE_STRING_CHAR (d, dend - d, target_multibyte);
669fa600 6313#ifdef emacs
134579f2 6314 UPDATE_SYNTAX_TABLE_FORWARD (charpos + 1);
669fa600
SM
6315#endif
6316 s2 = SYNTAX (c2);
6317
6318 /* ... and S2 is Sword or Ssymbol. */
6319 if (s2 == Sword || s2 == Ssymbol)
6320 goto fail;
b18215fc
RS
6321 }
6322 }
e318085a
RS
6323 break;
6324
fa9a63c5 6325 case syntaxspec:
1fb352e0
SM
6326 case notsyntaxspec:
6327 not = (re_opcode_t) *(p - 1) == notsyntaxspec;
fa9a63c5 6328 mcnt = *p++;
1fb352e0 6329 DEBUG_PRINT3 ("EXECUTING %ssyntaxspec %d.\n", not?"not":"", mcnt);
fa9a63c5 6330 PREFETCH ();
b18215fc
RS
6331#ifdef emacs
6332 {
2d1675e4
SM
6333 int offset = PTR_TO_OFFSET (d);
6334 int pos1 = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
b18215fc
RS
6335 UPDATE_SYNTAX_TABLE (pos1);
6336 }
25fe55af 6337#endif
b18215fc 6338 {
01618498
SM
6339 int len;
6340 re_wchar_t c;
b18215fc 6341
6fdd04b0 6342 GET_CHAR_AFTER (c, d, len);
990b2375 6343 if ((SYNTAX (c) != (enum syntaxcode) mcnt) ^ not)
1fb352e0 6344 goto fail;
b18215fc
RS
6345 d += len;
6346 }
fa9a63c5
RM
6347 break;
6348
b18215fc 6349#ifdef emacs
1fb352e0
SM
6350 case before_dot:
6351 DEBUG_PRINT1 ("EXECUTING before_dot.\n");
6352 if (PTR_BYTE_POS (d) >= PT_BYTE)
fa9a63c5 6353 goto fail;
b18215fc
RS
6354 break;
6355
1fb352e0
SM
6356 case at_dot:
6357 DEBUG_PRINT1 ("EXECUTING at_dot.\n");
6358 if (PTR_BYTE_POS (d) != PT_BYTE)
6359 goto fail;
6360 break;
b18215fc 6361
1fb352e0
SM
6362 case after_dot:
6363 DEBUG_PRINT1 ("EXECUTING after_dot.\n");
6364 if (PTR_BYTE_POS (d) <= PT_BYTE)
6365 goto fail;
e318085a 6366 break;
fa9a63c5 6367
1fb352e0 6368 case categoryspec:
b18215fc 6369 case notcategoryspec:
1fb352e0 6370 not = (re_opcode_t) *(p - 1) == notcategoryspec;
b18215fc 6371 mcnt = *p++;
1fb352e0 6372 DEBUG_PRINT3 ("EXECUTING %scategoryspec %d.\n", not?"not":"", mcnt);
b18215fc
RS
6373 PREFETCH ();
6374 {
01618498
SM
6375 int len;
6376 re_wchar_t c;
6377
6fdd04b0 6378 GET_CHAR_AFTER (c, d, len);
1fb352e0 6379 if ((!CHAR_HAS_CATEGORY (c, mcnt)) ^ not)
b18215fc
RS
6380 goto fail;
6381 d += len;
6382 }
fa9a63c5 6383 break;
5e69f11e 6384
1fb352e0 6385#endif /* emacs */
5e69f11e 6386
0b32bf0e
SM
6387 default:
6388 abort ();
fa9a63c5 6389 }
b18215fc 6390 continue; /* Successfully executed one pattern command; keep going. */
fa9a63c5
RM
6391
6392
6393 /* We goto here if a matching operation fails. */
6394 fail:
5b370c2b 6395 IMMEDIATE_QUIT_CHECK;
fa9a63c5 6396 if (!FAIL_STACK_EMPTY ())
505bde11 6397 {
01618498 6398 re_char *str, *pat;
505bde11 6399 /* A restart point is known. Restore to that state. */
0b32bf0e
SM
6400 DEBUG_PRINT1 ("\nFAIL:\n");
6401 POP_FAILURE_POINT (str, pat);
505bde11
SM
6402 switch (SWITCH_ENUM_CAST ((re_opcode_t) *pat++))
6403 {
6404 case on_failure_keep_string_jump:
6405 assert (str == NULL);
6406 goto continue_failure_jump;
6407
0683b6fa
SM
6408 case on_failure_jump_nastyloop:
6409 assert ((re_opcode_t)pat[-2] == no_op);
6410 PUSH_FAILURE_POINT (pat - 2, str);
6411 /* Fallthrough */
6412
505bde11
SM
6413 case on_failure_jump_loop:
6414 case on_failure_jump:
6415 case succeed_n:
6416 d = str;
6417 continue_failure_jump:
6418 EXTRACT_NUMBER_AND_INCR (mcnt, pat);
6419 p = pat + mcnt;
6420 break;
b18215fc 6421
0683b6fa
SM
6422 case no_op:
6423 /* A special frame used for nastyloops. */
6424 goto fail;
6425
505bde11
SM
6426 default:
6427 abort();
6428 }
fa9a63c5 6429
505bde11 6430 assert (p >= bufp->buffer && p <= pend);
b18215fc 6431
0b32bf0e 6432 if (d >= string1 && d <= end1)
fa9a63c5 6433 dend = end_match_1;
0b32bf0e 6434 }
fa9a63c5 6435 else
0b32bf0e 6436 break; /* Matching at this starting point really fails. */
fa9a63c5
RM
6437 } /* for (;;) */
6438
6439 if (best_regs_set)
6440 goto restore_best_regs;
6441
6442 FREE_VARIABLES ();
6443
b18215fc 6444 return -1; /* Failure to match. */
fa9a63c5
RM
6445} /* re_match_2 */
6446\f
6447/* Subroutine definitions for re_match_2. */
6448
fa9a63c5
RM
6449/* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
6450 bytes; nonzero otherwise. */
5e69f11e 6451
fa9a63c5 6452static int
02cb78b5 6453bcmp_translate (s1, s2, len, translate, target_multibyte)
2d1675e4 6454 re_char *s1, *s2;
fa9a63c5 6455 register int len;
6676cb1c 6456 RE_TRANSLATE_TYPE translate;
02cb78b5 6457 const int target_multibyte;
fa9a63c5 6458{
2d1675e4
SM
6459 register re_char *p1 = s1, *p2 = s2;
6460 re_char *p1_end = s1 + len;
6461 re_char *p2_end = s2 + len;
e934739e 6462
4bb91c68
SM
6463 /* FIXME: Checking both p1 and p2 presumes that the two strings might have
6464 different lengths, but relying on a single `len' would break this. -sm */
6465 while (p1 < p1_end && p2 < p2_end)
fa9a63c5 6466 {
e934739e 6467 int p1_charlen, p2_charlen;
01618498 6468 re_wchar_t p1_ch, p2_ch;
e934739e 6469
6fdd04b0
KH
6470 GET_CHAR_AFTER (p1_ch, p1, p1_charlen);
6471 GET_CHAR_AFTER (p2_ch, p2, p2_charlen);
e934739e
RS
6472
6473 if (RE_TRANSLATE (translate, p1_ch)
6474 != RE_TRANSLATE (translate, p2_ch))
bc192b5b 6475 return 1;
e934739e
RS
6476
6477 p1 += p1_charlen, p2 += p2_charlen;
fa9a63c5 6478 }
e934739e
RS
6479
6480 if (p1 != p1_end || p2 != p2_end)
6481 return 1;
6482
fa9a63c5
RM
6483 return 0;
6484}
6485\f
6486/* Entry points for GNU code. */
6487
6488/* re_compile_pattern is the GNU regular expression compiler: it
6489 compiles PATTERN (of length SIZE) and puts the result in BUFP.
6490 Returns 0 if the pattern was valid, otherwise an error string.
5e69f11e 6491
fa9a63c5
RM
6492 Assumes the `allocated' (and perhaps `buffer') and `translate' fields
6493 are set in BUFP on entry.
5e69f11e 6494
b18215fc 6495 We call regex_compile to do the actual compilation. */
fa9a63c5
RM
6496
6497const char *
6498re_compile_pattern (pattern, length, bufp)
6499 const char *pattern;
0b32bf0e 6500 size_t length;
fa9a63c5
RM
6501 struct re_pattern_buffer *bufp;
6502{
6503 reg_errcode_t ret;
5e69f11e 6504
1208f11a
RS
6505#ifdef emacs
6506 gl_state.current_syntax_table = current_buffer->syntax_table;
6507#endif
6508
fa9a63c5
RM
6509 /* GNU code is written to assume at least RE_NREGS registers will be set
6510 (and at least one extra will be -1). */
6511 bufp->regs_allocated = REGS_UNALLOCATED;
5e69f11e 6512
fa9a63c5
RM
6513 /* And GNU code determines whether or not to get register information
6514 by passing null for the REGS argument to re_match, etc., not by
6515 setting no_sub. */
6516 bufp->no_sub = 0;
5e69f11e 6517
4bb91c68 6518 ret = regex_compile ((re_char*) pattern, length, re_syntax_options, bufp);
fa9a63c5
RM
6519
6520 if (!ret)
6521 return NULL;
6522 return gettext (re_error_msgid[(int) ret]);
5e69f11e 6523}
c0f9ea08 6524WEAK_ALIAS (__re_compile_pattern, re_compile_pattern)
fa9a63c5 6525\f
b18215fc
RS
6526/* Entry points compatible with 4.2 BSD regex library. We don't define
6527 them unless specifically requested. */
fa9a63c5 6528
0b32bf0e 6529#if defined _REGEX_RE_COMP || defined _LIBC
fa9a63c5
RM
6530
6531/* BSD has one and only one pattern buffer. */
6532static struct re_pattern_buffer re_comp_buf;
6533
6534char *
0b32bf0e 6535# ifdef _LIBC
48afdd44
RM
6536/* Make these definitions weak in libc, so POSIX programs can redefine
6537 these names if they don't use our functions, and still use
6538 regcomp/regexec below without link errors. */
6539weak_function
0b32bf0e 6540# endif
fa9a63c5
RM
6541re_comp (s)
6542 const char *s;
6543{
6544 reg_errcode_t ret;
5e69f11e 6545
fa9a63c5
RM
6546 if (!s)
6547 {
6548 if (!re_comp_buf.buffer)
0b32bf0e 6549 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
a60198e5 6550 return (char *) gettext ("No previous regular expression");
fa9a63c5
RM
6551 return 0;
6552 }
6553
6554 if (!re_comp_buf.buffer)
6555 {
6556 re_comp_buf.buffer = (unsigned char *) malloc (200);
6557 if (re_comp_buf.buffer == NULL)
0b32bf0e
SM
6558 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
6559 return (char *) gettext (re_error_msgid[(int) REG_ESPACE]);
fa9a63c5
RM
6560 re_comp_buf.allocated = 200;
6561
6562 re_comp_buf.fastmap = (char *) malloc (1 << BYTEWIDTH);
6563 if (re_comp_buf.fastmap == NULL)
a60198e5
SM
6564 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
6565 return (char *) gettext (re_error_msgid[(int) REG_ESPACE]);
fa9a63c5
RM
6566 }
6567
6568 /* Since `re_exec' always passes NULL for the `regs' argument, we
6569 don't need to initialize the pattern buffer fields which affect it. */
6570
fa9a63c5 6571 ret = regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf);
5e69f11e 6572
fa9a63c5
RM
6573 if (!ret)
6574 return NULL;
6575
6576 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
6577 return (char *) gettext (re_error_msgid[(int) ret]);
6578}
6579
6580
6581int
0b32bf0e 6582# ifdef _LIBC
48afdd44 6583weak_function
0b32bf0e 6584# endif
fa9a63c5
RM
6585re_exec (s)
6586 const char *s;
6587{
6588 const int len = strlen (s);
6589 return
6590 0 <= re_search (&re_comp_buf, s, len, 0, len, (struct re_registers *) 0);
6591}
6592#endif /* _REGEX_RE_COMP */
6593\f
6594/* POSIX.2 functions. Don't define these for Emacs. */
6595
6596#ifndef emacs
6597
6598/* regcomp takes a regular expression as a string and compiles it.
6599
b18215fc 6600 PREG is a regex_t *. We do not expect any fields to be initialized,
fa9a63c5
RM
6601 since POSIX says we shouldn't. Thus, we set
6602
6603 `buffer' to the compiled pattern;
6604 `used' to the length of the compiled pattern;
6605 `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
6606 REG_EXTENDED bit in CFLAGS is set; otherwise, to
6607 RE_SYNTAX_POSIX_BASIC;
c0f9ea08
SM
6608 `fastmap' to an allocated space for the fastmap;
6609 `fastmap_accurate' to zero;
fa9a63c5
RM
6610 `re_nsub' to the number of subexpressions in PATTERN.
6611
6612 PATTERN is the address of the pattern string.
6613
6614 CFLAGS is a series of bits which affect compilation.
6615
6616 If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
6617 use POSIX basic syntax.
6618
6619 If REG_NEWLINE is set, then . and [^...] don't match newline.
6620 Also, regexec will try a match beginning after every newline.
6621
6622 If REG_ICASE is set, then we considers upper- and lowercase
6623 versions of letters to be equivalent when matching.
6624
6625 If REG_NOSUB is set, then when PREG is passed to regexec, that
6626 routine will report only success or failure, and nothing about the
6627 registers.
6628
b18215fc 6629 It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for
fa9a63c5
RM
6630 the return codes and their meanings.) */
6631
6632int
6633regcomp (preg, pattern, cflags)
ada30c0e
SM
6634 regex_t *__restrict preg;
6635 const char *__restrict pattern;
fa9a63c5
RM
6636 int cflags;
6637{
6638 reg_errcode_t ret;
4bb91c68 6639 reg_syntax_t syntax
fa9a63c5
RM
6640 = (cflags & REG_EXTENDED) ?
6641 RE_SYNTAX_POSIX_EXTENDED : RE_SYNTAX_POSIX_BASIC;
6642
6643 /* regex_compile will allocate the space for the compiled pattern. */
6644 preg->buffer = 0;
6645 preg->allocated = 0;
6646 preg->used = 0;
5e69f11e 6647
c0f9ea08
SM
6648 /* Try to allocate space for the fastmap. */
6649 preg->fastmap = (char *) malloc (1 << BYTEWIDTH);
5e69f11e 6650
fa9a63c5
RM
6651 if (cflags & REG_ICASE)
6652 {
6653 unsigned i;
5e69f11e 6654
6676cb1c
RS
6655 preg->translate
6656 = (RE_TRANSLATE_TYPE) malloc (CHAR_SET_SIZE
6657 * sizeof (*(RE_TRANSLATE_TYPE)0));
fa9a63c5 6658 if (preg->translate == NULL)
0b32bf0e 6659 return (int) REG_ESPACE;
fa9a63c5
RM
6660
6661 /* Map uppercase characters to corresponding lowercase ones. */
6662 for (i = 0; i < CHAR_SET_SIZE; i++)
4bb91c68 6663 preg->translate[i] = ISUPPER (i) ? TOLOWER (i) : i;
fa9a63c5
RM
6664 }
6665 else
6666 preg->translate = NULL;
6667
6668 /* If REG_NEWLINE is set, newlines are treated differently. */
6669 if (cflags & REG_NEWLINE)
6670 { /* REG_NEWLINE implies neither . nor [^...] match newline. */
6671 syntax &= ~RE_DOT_NEWLINE;
6672 syntax |= RE_HAT_LISTS_NOT_NEWLINE;
fa9a63c5
RM
6673 }
6674 else
c0f9ea08 6675 syntax |= RE_NO_NEWLINE_ANCHOR;
fa9a63c5
RM
6676
6677 preg->no_sub = !!(cflags & REG_NOSUB);
6678
5e69f11e 6679 /* POSIX says a null character in the pattern terminates it, so we
fa9a63c5 6680 can use strlen here in compiling the pattern. */
4bb91c68 6681 ret = regex_compile ((re_char*) pattern, strlen (pattern), syntax, preg);
5e69f11e 6682
fa9a63c5
RM
6683 /* POSIX doesn't distinguish between an unmatched open-group and an
6684 unmatched close-group: both are REG_EPAREN. */
c0f9ea08
SM
6685 if (ret == REG_ERPAREN)
6686 ret = REG_EPAREN;
6687
6688 if (ret == REG_NOERROR && preg->fastmap)
6689 { /* Compute the fastmap now, since regexec cannot modify the pattern
6690 buffer. */
6691 re_compile_fastmap (preg);
6692 if (preg->can_be_null)
6693 { /* The fastmap can't be used anyway. */
6694 free (preg->fastmap);
6695 preg->fastmap = NULL;
6696 }
6697 }
fa9a63c5
RM
6698 return (int) ret;
6699}
c0f9ea08 6700WEAK_ALIAS (__regcomp, regcomp)
fa9a63c5
RM
6701
6702
6703/* regexec searches for a given pattern, specified by PREG, in the
6704 string STRING.
5e69f11e 6705
fa9a63c5 6706 If NMATCH is zero or REG_NOSUB was set in the cflags argument to
b18215fc 6707 `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at
fa9a63c5
RM
6708 least NMATCH elements, and we set them to the offsets of the
6709 corresponding matched substrings.
5e69f11e 6710
fa9a63c5
RM
6711 EFLAGS specifies `execution flags' which affect matching: if
6712 REG_NOTBOL is set, then ^ does not match at the beginning of the
6713 string; if REG_NOTEOL is set, then $ does not match at the end.
5e69f11e 6714
fa9a63c5
RM
6715 We return 0 if we find a match and REG_NOMATCH if not. */
6716
6717int
6718regexec (preg, string, nmatch, pmatch, eflags)
ada30c0e
SM
6719 const regex_t *__restrict preg;
6720 const char *__restrict string;
5e69f11e 6721 size_t nmatch;
9f2dbe01 6722 regmatch_t pmatch[__restrict_arr];
fa9a63c5
RM
6723 int eflags;
6724{
6725 int ret;
6726 struct re_registers regs;
6727 regex_t private_preg;
6728 int len = strlen (string);
c0f9ea08 6729 boolean want_reg_info = !preg->no_sub && nmatch > 0 && pmatch;
fa9a63c5
RM
6730
6731 private_preg = *preg;
5e69f11e 6732
fa9a63c5
RM
6733 private_preg.not_bol = !!(eflags & REG_NOTBOL);
6734 private_preg.not_eol = !!(eflags & REG_NOTEOL);
5e69f11e 6735
fa9a63c5
RM
6736 /* The user has told us exactly how many registers to return
6737 information about, via `nmatch'. We have to pass that on to the
b18215fc 6738 matching routines. */
fa9a63c5 6739 private_preg.regs_allocated = REGS_FIXED;
5e69f11e 6740
fa9a63c5
RM
6741 if (want_reg_info)
6742 {
6743 regs.num_regs = nmatch;
4bb91c68
SM
6744 regs.start = TALLOC (nmatch * 2, regoff_t);
6745 if (regs.start == NULL)
0b32bf0e 6746 return (int) REG_NOMATCH;
4bb91c68 6747 regs.end = regs.start + nmatch;
fa9a63c5
RM
6748 }
6749
c0f9ea08
SM
6750 /* Instead of using not_eol to implement REG_NOTEOL, we could simply
6751 pass (&private_preg, string, len + 1, 0, len, ...) pretending the string
6752 was a little bit longer but still only matching the real part.
6753 This works because the `endline' will check for a '\n' and will find a
6754 '\0', correctly deciding that this is not the end of a line.
6755 But it doesn't work out so nicely for REG_NOTBOL, since we don't have
6756 a convenient '\0' there. For all we know, the string could be preceded
6757 by '\n' which would throw things off. */
6758
fa9a63c5
RM
6759 /* Perform the searching operation. */
6760 ret = re_search (&private_preg, string, len,
0b32bf0e
SM
6761 /* start: */ 0, /* range: */ len,
6762 want_reg_info ? &regs : (struct re_registers *) 0);
5e69f11e 6763
fa9a63c5
RM
6764 /* Copy the register information to the POSIX structure. */
6765 if (want_reg_info)
6766 {
6767 if (ret >= 0)
0b32bf0e
SM
6768 {
6769 unsigned r;
fa9a63c5 6770
0b32bf0e
SM
6771 for (r = 0; r < nmatch; r++)
6772 {
6773 pmatch[r].rm_so = regs.start[r];
6774 pmatch[r].rm_eo = regs.end[r];
6775 }
6776 }
fa9a63c5 6777
b18215fc 6778 /* If we needed the temporary register info, free the space now. */
fa9a63c5 6779 free (regs.start);
fa9a63c5
RM
6780 }
6781
6782 /* We want zero return to mean success, unlike `re_search'. */
6783 return ret >= 0 ? (int) REG_NOERROR : (int) REG_NOMATCH;
6784}
c0f9ea08 6785WEAK_ALIAS (__regexec, regexec)
fa9a63c5
RM
6786
6787
ec869672
JR
6788/* Returns a message corresponding to an error code, ERR_CODE, returned
6789 from either regcomp or regexec. We don't use PREG here.
6790
6791 ERR_CODE was previously called ERRCODE, but that name causes an
6792 error with msvc8 compiler. */
fa9a63c5
RM
6793
6794size_t
ec869672
JR
6795regerror (err_code, preg, errbuf, errbuf_size)
6796 int err_code;
fa9a63c5
RM
6797 const regex_t *preg;
6798 char *errbuf;
6799 size_t errbuf_size;
6800{
6801 const char *msg;
6802 size_t msg_size;
6803
ec869672
JR
6804 if (err_code < 0
6805 || err_code >= (sizeof (re_error_msgid) / sizeof (re_error_msgid[0])))
5e69f11e 6806 /* Only error codes returned by the rest of the code should be passed
b18215fc 6807 to this routine. If we are given anything else, or if other regex
fa9a63c5
RM
6808 code generates an invalid error code, then the program has a bug.
6809 Dump core so we can fix it. */
6810 abort ();
6811
ec869672 6812 msg = gettext (re_error_msgid[err_code]);
fa9a63c5
RM
6813
6814 msg_size = strlen (msg) + 1; /* Includes the null. */
5e69f11e 6815
fa9a63c5
RM
6816 if (errbuf_size != 0)
6817 {
6818 if (msg_size > errbuf_size)
0b32bf0e
SM
6819 {
6820 strncpy (errbuf, msg, errbuf_size - 1);
6821 errbuf[errbuf_size - 1] = 0;
6822 }
fa9a63c5 6823 else
0b32bf0e 6824 strcpy (errbuf, msg);
fa9a63c5
RM
6825 }
6826
6827 return msg_size;
6828}
c0f9ea08 6829WEAK_ALIAS (__regerror, regerror)
fa9a63c5
RM
6830
6831
6832/* Free dynamically allocated space used by PREG. */
6833
6834void
6835regfree (preg)
6836 regex_t *preg;
6837{
c2cd06e6 6838 free (preg->buffer);
fa9a63c5 6839 preg->buffer = NULL;
5e69f11e 6840
fa9a63c5
RM
6841 preg->allocated = 0;
6842 preg->used = 0;
6843
c2cd06e6 6844 free (preg->fastmap);
fa9a63c5
RM
6845 preg->fastmap = NULL;
6846 preg->fastmap_accurate = 0;
6847
c2cd06e6 6848 free (preg->translate);
fa9a63c5
RM
6849 preg->translate = NULL;
6850}
c0f9ea08 6851WEAK_ALIAS (__regfree, regfree)
fa9a63c5
RM
6852
6853#endif /* not emacs */
839966f3
KH
6854
6855/* arch-tag: 4ffd68ba-2a9e-435b-a21a-018990f9eeb2
6856 (do not change this comment) */