Trailing whitespace deleted.
[bpt/emacs.git] / src / regex.c
CommitLineData
e318085a 1/* Extended regular expression matching and search library, version
0b32bf0e 2 0.12. (Implements POSIX draft P1003.2/D11.2, except for some of the
bc78d348
KB
3 internationalization features.)
4
4bb91c68 5 Copyright (C) 1993,94,95,96,97,98,99,2000 Free Software Foundation, Inc.
bc78d348 6
fa9a63c5
RM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
25fe55af 14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
fa9a63c5
RM
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
ba4a8e51 19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307,
25fe55af 20 USA. */
fa9a63c5 21
6df42991 22/* TODO:
505bde11 23 - structure the opcode space into opcode+flag.
dc1e502d 24 - merge with glibc's regex.[ch].
01618498 25 - replace (succeed_n + jump_n + set_number_at) with something that doesn't
6dcf2d0e
SM
26 need to modify the compiled regexp so that re_match can be reentrant.
27 - get rid of on_failure_jump_smart by doing the optimization in re_comp
28 rather than at run-time, so that re_match can be reentrant.
01618498 29*/
505bde11 30
fa9a63c5 31/* AIX requires this to be the first thing in the file. */
0b32bf0e 32#if defined _AIX && !defined REGEX_MALLOC
fa9a63c5
RM
33 #pragma alloca
34#endif
35
fa9a63c5 36#ifdef HAVE_CONFIG_H
0b32bf0e 37# include <config.h>
fa9a63c5
RM
38#endif
39
4bb91c68
SM
40#if defined STDC_HEADERS && !defined emacs
41# include <stddef.h>
42#else
43/* We need this for `regex.h', and perhaps for the Emacs include files. */
44# include <sys/types.h>
45#endif
fa9a63c5 46
14473664
SM
47/* Whether to use ISO C Amendment 1 wide char functions.
48 Those should not be used for Emacs since it uses its own. */
5e5388f6
GM
49#if defined _LIBC
50#define WIDE_CHAR_SUPPORT 1
51#else
14473664 52#define WIDE_CHAR_SUPPORT \
5e5388f6
GM
53 (HAVE_WCTYPE_H && HAVE_WCHAR_H && HAVE_BTOWC && !emacs)
54#endif
14473664
SM
55
56/* For platform which support the ISO C amendement 1 functionality we
57 support user defined character classes. */
a0ad02f7 58#if WIDE_CHAR_SUPPORT
14473664
SM
59/* Solaris 2.5 has a bug: <wchar.h> must be included before <wctype.h>. */
60# include <wchar.h>
61# include <wctype.h>
62#endif
63
c0f9ea08
SM
64#ifdef _LIBC
65/* We have to keep the namespace clean. */
66# define regfree(preg) __regfree (preg)
67# define regexec(pr, st, nm, pm, ef) __regexec (pr, st, nm, pm, ef)
68# define regcomp(preg, pattern, cflags) __regcomp (preg, pattern, cflags)
69# define regerror(errcode, preg, errbuf, errbuf_size) \
70 __regerror(errcode, preg, errbuf, errbuf_size)
71# define re_set_registers(bu, re, nu, st, en) \
72 __re_set_registers (bu, re, nu, st, en)
73# define re_match_2(bufp, string1, size1, string2, size2, pos, regs, stop) \
74 __re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
75# define re_match(bufp, string, size, pos, regs) \
76 __re_match (bufp, string, size, pos, regs)
77# define re_search(bufp, string, size, startpos, range, regs) \
78 __re_search (bufp, string, size, startpos, range, regs)
79# define re_compile_pattern(pattern, length, bufp) \
80 __re_compile_pattern (pattern, length, bufp)
81# define re_set_syntax(syntax) __re_set_syntax (syntax)
82# define re_search_2(bufp, st1, s1, st2, s2, startpos, range, regs, stop) \
83 __re_search_2 (bufp, st1, s1, st2, s2, startpos, range, regs, stop)
84# define re_compile_fastmap(bufp) __re_compile_fastmap (bufp)
85
14473664
SM
86/* Make sure we call libc's function even if the user overrides them. */
87# define btowc __btowc
88# define iswctype __iswctype
89# define wctype __wctype
90
c0f9ea08
SM
91# define WEAK_ALIAS(a,b) weak_alias (a, b)
92
93/* We are also using some library internals. */
94# include <locale/localeinfo.h>
95# include <locale/elem-hash.h>
96# include <langinfo.h>
97#else
98# define WEAK_ALIAS(a,b)
99#endif
100
4bb91c68 101/* This is for other GNU distributions with internationalized messages. */
0b32bf0e 102#if HAVE_LIBINTL_H || defined _LIBC
fa9a63c5
RM
103# include <libintl.h>
104#else
105# define gettext(msgid) (msgid)
106#endif
107
5e69f11e
RM
108#ifndef gettext_noop
109/* This define is so xgettext can find the internationalizable
110 strings. */
0b32bf0e 111# define gettext_noop(String) String
5e69f11e
RM
112#endif
113
fa9a63c5
RM
114/* The `emacs' switch turns on certain matching commands
115 that make sense only in Emacs. */
116#ifdef emacs
117
0b32bf0e
SM
118# include "lisp.h"
119# include "buffer.h"
b18215fc
RS
120
121/* Make syntax table lookup grant data in gl_state. */
0b32bf0e 122# define SYNTAX_ENTRY_VIA_PROPERTY
b18215fc 123
0b32bf0e
SM
124# include "syntax.h"
125# include "charset.h"
126# include "category.h"
fa9a63c5 127
7689ef0b
EZ
128# ifdef malloc
129# undef malloc
130# endif
0b32bf0e 131# define malloc xmalloc
7689ef0b
EZ
132# ifdef realloc
133# undef realloc
134# endif
0b32bf0e 135# define realloc xrealloc
7689ef0b
EZ
136# ifdef free
137# undef free
138# endif
0b32bf0e 139# define free xfree
9abbd165 140
0b32bf0e
SM
141/* Converts the pointer to the char to BEG-based offset from the start. */
142# define PTR_TO_OFFSET(d) POS_AS_IN_BUFFER (POINTER_TO_OFFSET (d))
143# define POS_AS_IN_BUFFER(p) ((p) + (NILP (re_match_object) || BUFFERP (re_match_object)))
144
145# define RE_MULTIBYTE_P(bufp) ((bufp)->multibyte)
146# define RE_STRING_CHAR(p, s) \
4e8a9132 147 (multibyte ? (STRING_CHAR (p, s)) : (*(p)))
0b32bf0e 148# define RE_STRING_CHAR_AND_LENGTH(p, s, len) \
2d1675e4
SM
149 (multibyte ? (STRING_CHAR_AND_LENGTH (p, s, len)) : ((len) = 1, *(p)))
150
151/* Set C a (possibly multibyte) character before P. P points into a
152 string which is the virtual concatenation of STR1 (which ends at
153 END1) or STR2 (which ends at END2). */
0b32bf0e 154# define GET_CHAR_BEFORE_2(c, p, str1, end1, str2, end2) \
2d1675e4
SM
155 do { \
156 if (multibyte) \
157 { \
0b32bf0e
SM
158 re_char *dtemp = (p) == (str2) ? (end1) : (p); \
159 re_char *dlimit = ((p) > (str2) && (p) <= (end2)) ? (str2) : (str1); \
70806df6
KH
160 re_char *d0 = dtemp; \
161 PREV_CHAR_BOUNDARY (d0, dlimit); \
162 c = STRING_CHAR (d0, dtemp - d0); \
2d1675e4
SM
163 } \
164 else \
165 (c = ((p) == (str2) ? (end1) : (p))[-1]); \
166 } while (0)
167
4e8a9132 168
fa9a63c5
RM
169#else /* not emacs */
170
171/* If we are not linking with Emacs proper,
172 we can't use the relocating allocator
173 even if config.h says that we can. */
0b32bf0e 174# undef REL_ALLOC
fa9a63c5 175
0b32bf0e
SM
176# if defined STDC_HEADERS || defined _LIBC
177# include <stdlib.h>
178# else
fa9a63c5
RM
179char *malloc ();
180char *realloc ();
0b32bf0e 181# endif
fa9a63c5 182
9e4ecb26 183/* When used in Emacs's lib-src, we need to get bzero and bcopy somehow.
4bb91c68 184 If nothing else has been done, use the method below. */
0b32bf0e
SM
185# ifdef INHIBIT_STRING_HEADER
186# if !(defined HAVE_BZERO && defined HAVE_BCOPY)
187# if !defined bzero && !defined bcopy
188# undef INHIBIT_STRING_HEADER
189# endif
190# endif
191# endif
9e4ecb26 192
4bb91c68 193/* This is the normal way of making sure we have memcpy, memcmp and bzero.
9e4ecb26
KH
194 This is used in most programs--a few other programs avoid this
195 by defining INHIBIT_STRING_HEADER. */
0b32bf0e
SM
196# ifndef INHIBIT_STRING_HEADER
197# if defined HAVE_STRING_H || defined STDC_HEADERS || defined _LIBC
198# include <string.h>
0b32bf0e 199# ifndef bzero
4bb91c68
SM
200# ifndef _LIBC
201# define bzero(s, n) (memset (s, '\0', n), (s))
202# else
203# define bzero(s, n) __bzero (s, n)
204# endif
0b32bf0e
SM
205# endif
206# else
207# include <strings.h>
4bb91c68
SM
208# ifndef memcmp
209# define memcmp(s1, s2, n) bcmp (s1, s2, n)
210# endif
211# ifndef memcpy
212# define memcpy(d, s, n) (bcopy (s, d, n), (d))
213# endif
0b32bf0e
SM
214# endif
215# endif
fa9a63c5
RM
216
217/* Define the syntax stuff for \<, \>, etc. */
218
990b2375
SM
219/* Sword must be nonzero for the wordchar pattern commands in re_match_2. */
220enum syntaxcode { Swhitespace = 0, Sword = 1 };
fa9a63c5 221
0b32bf0e
SM
222# ifdef SWITCH_ENUM_BUG
223# define SWITCH_ENUM_CAST(x) ((int)(x))
224# else
225# define SWITCH_ENUM_CAST(x) (x)
226# endif
fa9a63c5 227
e934739e 228/* Dummy macros for non-Emacs environments. */
0b32bf0e
SM
229# define BASE_LEADING_CODE_P(c) (0)
230# define CHAR_CHARSET(c) 0
231# define CHARSET_LEADING_CODE_BASE(c) 0
232# define MAX_MULTIBYTE_LENGTH 1
233# define RE_MULTIBYTE_P(x) 0
234# define WORD_BOUNDARY_P(c1, c2) (0)
235# define CHAR_HEAD_P(p) (1)
236# define SINGLE_BYTE_CHAR_P(c) (1)
237# define SAME_CHARSET_P(c1, c2) (1)
238# define MULTIBYTE_FORM_LENGTH(p, s) (1)
70806df6 239# define PREV_CHAR_BOUNDARY(p, limit) ((p)--)
0b32bf0e
SM
240# define STRING_CHAR(p, s) (*(p))
241# define RE_STRING_CHAR STRING_CHAR
242# define CHAR_STRING(c, s) (*(s) = (c), 1)
243# define STRING_CHAR_AND_LENGTH(p, s, actual_len) ((actual_len) = 1, *(p))
244# define RE_STRING_CHAR_AND_LENGTH STRING_CHAR_AND_LENGTH
245# define GET_CHAR_BEFORE_2(c, p, str1, end1, str2, end2) \
b18215fc 246 (c = ((p) == (str2) ? *((end1) - 1) : *((p) - 1)))
0b32bf0e 247# define MAKE_CHAR(charset, c1, c2) (c1)
fa9a63c5 248#endif /* not emacs */
4e8a9132
SM
249
250#ifndef RE_TRANSLATE
0b32bf0e
SM
251# define RE_TRANSLATE(TBL, C) ((unsigned char)(TBL)[C])
252# define RE_TRANSLATE_P(TBL) (TBL)
4e8a9132 253#endif
fa9a63c5
RM
254\f
255/* Get the interface, including the syntax bits. */
256#include "regex.h"
257
f71b19b6
DL
258/* isalpha etc. are used for the character classes. */
259#include <ctype.h>
fa9a63c5 260
f71b19b6 261#ifdef emacs
fa9a63c5 262
f71b19b6 263/* 1 if C is an ASCII character. */
0b32bf0e 264# define IS_REAL_ASCII(c) ((c) < 0200)
fa9a63c5 265
f71b19b6 266/* 1 if C is a unibyte character. */
0b32bf0e 267# define ISUNIBYTE(c) (SINGLE_BYTE_CHAR_P ((c)))
96cc36cc 268
f71b19b6 269/* The Emacs definitions should not be directly affected by locales. */
96cc36cc 270
f71b19b6 271/* In Emacs, these are only used for single-byte characters. */
0b32bf0e
SM
272# define ISDIGIT(c) ((c) >= '0' && (c) <= '9')
273# define ISCNTRL(c) ((c) < ' ')
274# define ISXDIGIT(c) (((c) >= '0' && (c) <= '9') \
f71b19b6
DL
275 || ((c) >= 'a' && (c) <= 'f') \
276 || ((c) >= 'A' && (c) <= 'F'))
96cc36cc
RS
277
278/* This is only used for single-byte characters. */
0b32bf0e 279# define ISBLANK(c) ((c) == ' ' || (c) == '\t')
96cc36cc
RS
280
281/* The rest must handle multibyte characters. */
282
0b32bf0e 283# define ISGRAPH(c) (SINGLE_BYTE_CHAR_P (c) \
f71b19b6 284 ? (c) > ' ' && !((c) >= 0177 && (c) <= 0237) \
96cc36cc
RS
285 : 1)
286
14473664 287# define ISPRINT(c) (SINGLE_BYTE_CHAR_P (c) \
f71b19b6 288 ? (c) >= ' ' && !((c) >= 0177 && (c) <= 0237) \
96cc36cc
RS
289 : 1)
290
0b32bf0e 291# define ISALNUM(c) (IS_REAL_ASCII (c) \
f71b19b6
DL
292 ? (((c) >= 'a' && (c) <= 'z') \
293 || ((c) >= 'A' && (c) <= 'Z') \
294 || ((c) >= '0' && (c) <= '9')) \
96cc36cc
RS
295 : SYNTAX (c) == Sword)
296
0b32bf0e 297# define ISALPHA(c) (IS_REAL_ASCII (c) \
f71b19b6
DL
298 ? (((c) >= 'a' && (c) <= 'z') \
299 || ((c) >= 'A' && (c) <= 'Z')) \
96cc36cc
RS
300 : SYNTAX (c) == Sword)
301
0b32bf0e 302# define ISLOWER(c) (LOWERCASEP (c))
96cc36cc 303
0b32bf0e 304# define ISPUNCT(c) (IS_REAL_ASCII (c) \
f71b19b6
DL
305 ? ((c) > ' ' && (c) < 0177 \
306 && !(((c) >= 'a' && (c) <= 'z') \
4bb91c68
SM
307 || ((c) >= 'A' && (c) <= 'Z') \
308 || ((c) >= '0' && (c) <= '9'))) \
96cc36cc
RS
309 : SYNTAX (c) != Sword)
310
0b32bf0e 311# define ISSPACE(c) (SYNTAX (c) == Swhitespace)
96cc36cc 312
0b32bf0e 313# define ISUPPER(c) (UPPERCASEP (c))
96cc36cc 314
0b32bf0e 315# define ISWORD(c) (SYNTAX (c) == Sword)
96cc36cc
RS
316
317#else /* not emacs */
318
f71b19b6
DL
319/* Jim Meyering writes:
320
321 "... Some ctype macros are valid only for character codes that
322 isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when
323 using /bin/cc or gcc but without giving an ansi option). So, all
4bb91c68 324 ctype uses should be through macros like ISPRINT... If
f71b19b6
DL
325 STDC_HEADERS is defined, then autoconf has verified that the ctype
326 macros don't need to be guarded with references to isascii. ...
327 Defining isascii to 1 should let any compiler worth its salt
4bb91c68
SM
328 eliminate the && through constant folding."
329 Solaris defines some of these symbols so we must undefine them first. */
f71b19b6 330
4bb91c68 331# undef ISASCII
0b32bf0e
SM
332# if defined STDC_HEADERS || (!defined isascii && !defined HAVE_ISASCII)
333# define ISASCII(c) 1
334# else
335# define ISASCII(c) isascii(c)
336# endif
f71b19b6
DL
337
338/* 1 if C is an ASCII character. */
0b32bf0e 339# define IS_REAL_ASCII(c) ((c) < 0200)
f71b19b6
DL
340
341/* This distinction is not meaningful, except in Emacs. */
0b32bf0e
SM
342# define ISUNIBYTE(c) 1
343
344# ifdef isblank
345# define ISBLANK(c) (ISASCII (c) && isblank (c))
346# else
347# define ISBLANK(c) ((c) == ' ' || (c) == '\t')
348# endif
349# ifdef isgraph
350# define ISGRAPH(c) (ISASCII (c) && isgraph (c))
351# else
352# define ISGRAPH(c) (ISASCII (c) && isprint (c) && !isspace (c))
353# endif
354
4bb91c68 355# undef ISPRINT
0b32bf0e
SM
356# define ISPRINT(c) (ISASCII (c) && isprint (c))
357# define ISDIGIT(c) (ISASCII (c) && isdigit (c))
358# define ISALNUM(c) (ISASCII (c) && isalnum (c))
359# define ISALPHA(c) (ISASCII (c) && isalpha (c))
360# define ISCNTRL(c) (ISASCII (c) && iscntrl (c))
361# define ISLOWER(c) (ISASCII (c) && islower (c))
362# define ISPUNCT(c) (ISASCII (c) && ispunct (c))
363# define ISSPACE(c) (ISASCII (c) && isspace (c))
364# define ISUPPER(c) (ISASCII (c) && isupper (c))
365# define ISXDIGIT(c) (ISASCII (c) && isxdigit (c))
366
367# define ISWORD(c) ISALPHA(c)
368
4bb91c68
SM
369# ifdef _tolower
370# define TOLOWER(c) _tolower(c)
371# else
372# define TOLOWER(c) tolower(c)
373# endif
374
375/* How many characters in the character set. */
376# define CHAR_SET_SIZE 256
377
0b32bf0e 378# ifdef SYNTAX_TABLE
f71b19b6 379
0b32bf0e 380extern char *re_syntax_table;
f71b19b6 381
0b32bf0e
SM
382# else /* not SYNTAX_TABLE */
383
0b32bf0e
SM
384static char re_syntax_table[CHAR_SET_SIZE];
385
386static void
387init_syntax_once ()
388{
389 register int c;
390 static int done = 0;
391
392 if (done)
393 return;
394
395 bzero (re_syntax_table, sizeof re_syntax_table);
396
4bb91c68
SM
397 for (c = 0; c < CHAR_SET_SIZE; ++c)
398 if (ISALNUM (c))
399 re_syntax_table[c] = Sword;
fa9a63c5 400
0b32bf0e 401 re_syntax_table['_'] = Sword;
fa9a63c5 402
0b32bf0e
SM
403 done = 1;
404}
405
406# endif /* not SYNTAX_TABLE */
96cc36cc 407
4bb91c68
SM
408# define SYNTAX(c) re_syntax_table[(c)]
409
96cc36cc
RS
410#endif /* not emacs */
411\f
fa9a63c5 412#ifndef NULL
0b32bf0e 413# define NULL (void *)0
fa9a63c5
RM
414#endif
415
416/* We remove any previous definition of `SIGN_EXTEND_CHAR',
417 since ours (we hope) works properly with all combinations of
418 machines, compilers, `char' and `unsigned char' argument types.
4bb91c68 419 (Per Bothner suggested the basic approach.) */
fa9a63c5
RM
420#undef SIGN_EXTEND_CHAR
421#if __STDC__
0b32bf0e 422# define SIGN_EXTEND_CHAR(c) ((signed char) (c))
fa9a63c5
RM
423#else /* not __STDC__ */
424/* As in Harbison and Steele. */
0b32bf0e 425# define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
fa9a63c5
RM
426#endif
427\f
428/* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we
429 use `alloca' instead of `malloc'. This is because using malloc in
430 re_search* or re_match* could cause memory leaks when C-g is used in
431 Emacs; also, malloc is slower and causes storage fragmentation. On
5e69f11e
RM
432 the other hand, malloc is more portable, and easier to debug.
433
fa9a63c5
RM
434 Because we sometimes use alloca, some routines have to be macros,
435 not functions -- `alloca'-allocated space disappears at the end of the
436 function it is called in. */
437
438#ifdef REGEX_MALLOC
439
0b32bf0e
SM
440# define REGEX_ALLOCATE malloc
441# define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
442# define REGEX_FREE free
fa9a63c5
RM
443
444#else /* not REGEX_MALLOC */
445
446/* Emacs already defines alloca, sometimes. */
0b32bf0e 447# ifndef alloca
fa9a63c5
RM
448
449/* Make alloca work the best possible way. */
0b32bf0e
SM
450# ifdef __GNUC__
451# define alloca __builtin_alloca
452# else /* not __GNUC__ */
453# if HAVE_ALLOCA_H
454# include <alloca.h>
455# endif /* HAVE_ALLOCA_H */
456# endif /* not __GNUC__ */
fa9a63c5 457
0b32bf0e 458# endif /* not alloca */
fa9a63c5 459
0b32bf0e 460# define REGEX_ALLOCATE alloca
fa9a63c5
RM
461
462/* Assumes a `char *destination' variable. */
0b32bf0e 463# define REGEX_REALLOCATE(source, osize, nsize) \
fa9a63c5 464 (destination = (char *) alloca (nsize), \
4bb91c68 465 memcpy (destination, source, osize))
fa9a63c5
RM
466
467/* No need to do anything to free, after alloca. */
0b32bf0e 468# define REGEX_FREE(arg) ((void)0) /* Do nothing! But inhibit gcc warning. */
fa9a63c5
RM
469
470#endif /* not REGEX_MALLOC */
471
472/* Define how to allocate the failure stack. */
473
0b32bf0e 474#if defined REL_ALLOC && defined REGEX_MALLOC
4297555e 475
0b32bf0e 476# define REGEX_ALLOCATE_STACK(size) \
fa9a63c5 477 r_alloc (&failure_stack_ptr, (size))
0b32bf0e 478# define REGEX_REALLOCATE_STACK(source, osize, nsize) \
fa9a63c5 479 r_re_alloc (&failure_stack_ptr, (nsize))
0b32bf0e 480# define REGEX_FREE_STACK(ptr) \
fa9a63c5
RM
481 r_alloc_free (&failure_stack_ptr)
482
4297555e 483#else /* not using relocating allocator */
fa9a63c5 484
0b32bf0e 485# ifdef REGEX_MALLOC
fa9a63c5 486
0b32bf0e
SM
487# define REGEX_ALLOCATE_STACK malloc
488# define REGEX_REALLOCATE_STACK(source, osize, nsize) realloc (source, nsize)
489# define REGEX_FREE_STACK free
fa9a63c5 490
0b32bf0e 491# else /* not REGEX_MALLOC */
fa9a63c5 492
0b32bf0e 493# define REGEX_ALLOCATE_STACK alloca
fa9a63c5 494
0b32bf0e 495# define REGEX_REALLOCATE_STACK(source, osize, nsize) \
fa9a63c5 496 REGEX_REALLOCATE (source, osize, nsize)
25fe55af 497/* No need to explicitly free anything. */
0b32bf0e 498# define REGEX_FREE_STACK(arg) ((void)0)
fa9a63c5 499
0b32bf0e 500# endif /* not REGEX_MALLOC */
4297555e 501#endif /* not using relocating allocator */
fa9a63c5
RM
502
503
504/* True if `size1' is non-NULL and PTR is pointing anywhere inside
505 `string1' or just past its end. This works if PTR is NULL, which is
506 a good thing. */
25fe55af 507#define FIRST_STRING_P(ptr) \
fa9a63c5
RM
508 (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
509
510/* (Re)Allocate N items of type T using malloc, or fail. */
511#define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
512#define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
513#define RETALLOC_IF(addr, n, t) \
514 if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t)
515#define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
516
4bb91c68 517#define BYTEWIDTH 8 /* In bits. */
fa9a63c5
RM
518
519#define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
520
521#undef MAX
522#undef MIN
523#define MAX(a, b) ((a) > (b) ? (a) : (b))
524#define MIN(a, b) ((a) < (b) ? (a) : (b))
525
66f0296e
SM
526/* Type of source-pattern and string chars. */
527typedef const unsigned char re_char;
528
fa9a63c5
RM
529typedef char boolean;
530#define false 0
531#define true 1
532
4bb91c68
SM
533static int re_match_2_internal _RE_ARGS ((struct re_pattern_buffer *bufp,
534 re_char *string1, int size1,
535 re_char *string2, int size2,
536 int pos,
537 struct re_registers *regs,
538 int stop));
fa9a63c5
RM
539\f
540/* These are the command codes that appear in compiled regular
4bb91c68 541 expressions. Some opcodes are followed by argument bytes. A
fa9a63c5
RM
542 command code can specify any interpretation whatsoever for its
543 arguments. Zero bytes may appear in the compiled regular expression. */
544
545typedef enum
546{
547 no_op = 0,
548
4bb91c68 549 /* Succeed right away--no more backtracking. */
fa9a63c5
RM
550 succeed,
551
25fe55af 552 /* Followed by one byte giving n, then by n literal bytes. */
fa9a63c5
RM
553 exactn,
554
25fe55af 555 /* Matches any (more or less) character. */
fa9a63c5
RM
556 anychar,
557
25fe55af
RS
558 /* Matches any one char belonging to specified set. First
559 following byte is number of bitmap bytes. Then come bytes
560 for a bitmap saying which chars are in. Bits in each byte
561 are ordered low-bit-first. A character is in the set if its
562 bit is 1. A character too large to have a bit in the map is
96cc36cc
RS
563 automatically not in the set.
564
565 If the length byte has the 0x80 bit set, then that stuff
566 is followed by a range table:
567 2 bytes of flags for character sets (low 8 bits, high 8 bits)
0b32bf0e 568 See RANGE_TABLE_WORK_BITS below.
01618498 569 2 bytes, the number of pairs that follow (upto 32767)
96cc36cc 570 pairs, each 2 multibyte characters,
0b32bf0e 571 each multibyte character represented as 3 bytes. */
fa9a63c5
RM
572 charset,
573
25fe55af 574 /* Same parameters as charset, but match any character that is
4bb91c68 575 not one of those specified. */
fa9a63c5
RM
576 charset_not,
577
25fe55af
RS
578 /* Start remembering the text that is matched, for storing in a
579 register. Followed by one byte with the register number, in
580 the range 0 to one less than the pattern buffer's re_nsub
505bde11 581 field. */
fa9a63c5
RM
582 start_memory,
583
25fe55af
RS
584 /* Stop remembering the text that is matched and store it in a
585 memory register. Followed by one byte with the register
586 number, in the range 0 to one less than `re_nsub' in the
505bde11 587 pattern buffer. */
fa9a63c5
RM
588 stop_memory,
589
25fe55af 590 /* Match a duplicate of something remembered. Followed by one
4bb91c68 591 byte containing the register number. */
fa9a63c5
RM
592 duplicate,
593
25fe55af 594 /* Fail unless at beginning of line. */
fa9a63c5
RM
595 begline,
596
4bb91c68 597 /* Fail unless at end of line. */
fa9a63c5
RM
598 endline,
599
25fe55af
RS
600 /* Succeeds if at beginning of buffer (if emacs) or at beginning
601 of string to be matched (if not). */
fa9a63c5
RM
602 begbuf,
603
25fe55af 604 /* Analogously, for end of buffer/string. */
fa9a63c5 605 endbuf,
5e69f11e 606
25fe55af 607 /* Followed by two byte relative address to which to jump. */
5e69f11e 608 jump,
fa9a63c5 609
25fe55af
RS
610 /* Followed by two-byte relative address of place to resume at
611 in case of failure. */
fa9a63c5 612 on_failure_jump,
5e69f11e 613
25fe55af
RS
614 /* Like on_failure_jump, but pushes a placeholder instead of the
615 current string position when executed. */
fa9a63c5 616 on_failure_keep_string_jump,
5e69f11e 617
505bde11
SM
618 /* Just like `on_failure_jump', except that it checks that we
619 don't get stuck in an infinite loop (matching an empty string
620 indefinitely). */
621 on_failure_jump_loop,
622
0683b6fa
SM
623 /* Just like `on_failure_jump_loop', except that it checks for
624 a different kind of loop (the kind that shows up with non-greedy
625 operators). This operation has to be immediately preceded
626 by a `no_op'. */
627 on_failure_jump_nastyloop,
628
0b32bf0e 629 /* A smart `on_failure_jump' used for greedy * and + operators.
505bde11
SM
630 It analyses the loop before which it is put and if the
631 loop does not require backtracking, it changes itself to
4e8a9132
SM
632 `on_failure_keep_string_jump' and short-circuits the loop,
633 else it just defaults to changing itself into `on_failure_jump'.
634 It assumes that it is pointing to just past a `jump'. */
505bde11 635 on_failure_jump_smart,
fa9a63c5 636
25fe55af 637 /* Followed by two-byte relative address and two-byte number n.
ed0767d8
SM
638 After matching N times, jump to the address upon failure.
639 Does not work if N starts at 0: use on_failure_jump_loop
640 instead. */
fa9a63c5
RM
641 succeed_n,
642
25fe55af
RS
643 /* Followed by two-byte relative address, and two-byte number n.
644 Jump to the address N times, then fail. */
fa9a63c5
RM
645 jump_n,
646
25fe55af
RS
647 /* Set the following two-byte relative address to the
648 subsequent two-byte number. The address *includes* the two
649 bytes of number. */
fa9a63c5
RM
650 set_number_at,
651
fa9a63c5
RM
652 wordbeg, /* Succeeds if at word beginning. */
653 wordend, /* Succeeds if at word end. */
654
655 wordbound, /* Succeeds if at a word boundary. */
1fb352e0 656 notwordbound, /* Succeeds if not at a word boundary. */
fa9a63c5
RM
657
658 /* Matches any character whose syntax is specified. Followed by
25fe55af 659 a byte which contains a syntax code, e.g., Sword. */
fa9a63c5
RM
660 syntaxspec,
661
662 /* Matches any character whose syntax is not that specified. */
1fb352e0
SM
663 notsyntaxspec
664
665#ifdef emacs
666 ,before_dot, /* Succeeds if before point. */
667 at_dot, /* Succeeds if at point. */
668 after_dot, /* Succeeds if after point. */
b18215fc
RS
669
670 /* Matches any character whose category-set contains the specified
25fe55af
RS
671 category. The operator is followed by a byte which contains a
672 category code (mnemonic ASCII character). */
b18215fc
RS
673 categoryspec,
674
675 /* Matches any character whose category-set does not contain the
676 specified category. The operator is followed by a byte which
677 contains the category code (mnemonic ASCII character). */
678 notcategoryspec
fa9a63c5
RM
679#endif /* emacs */
680} re_opcode_t;
681\f
682/* Common operations on the compiled pattern. */
683
684/* Store NUMBER in two contiguous bytes starting at DESTINATION. */
685
686#define STORE_NUMBER(destination, number) \
687 do { \
688 (destination)[0] = (number) & 0377; \
689 (destination)[1] = (number) >> 8; \
690 } while (0)
691
692/* Same as STORE_NUMBER, except increment DESTINATION to
693 the byte after where the number is stored. Therefore, DESTINATION
694 must be an lvalue. */
695
696#define STORE_NUMBER_AND_INCR(destination, number) \
697 do { \
698 STORE_NUMBER (destination, number); \
699 (destination) += 2; \
700 } while (0)
701
702/* Put into DESTINATION a number stored in two contiguous bytes starting
703 at SOURCE. */
704
705#define EXTRACT_NUMBER(destination, source) \
706 do { \
707 (destination) = *(source) & 0377; \
708 (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8; \
709 } while (0)
710
711#ifdef DEBUG
4bb91c68 712static void extract_number _RE_ARGS ((int *dest, re_char *source));
fa9a63c5
RM
713static void
714extract_number (dest, source)
715 int *dest;
01618498 716 re_char *source;
fa9a63c5 717{
5e69f11e 718 int temp = SIGN_EXTEND_CHAR (*(source + 1));
fa9a63c5
RM
719 *dest = *source & 0377;
720 *dest += temp << 8;
721}
722
4bb91c68 723# ifndef EXTRACT_MACROS /* To debug the macros. */
0b32bf0e
SM
724# undef EXTRACT_NUMBER
725# define EXTRACT_NUMBER(dest, src) extract_number (&dest, src)
726# endif /* not EXTRACT_MACROS */
fa9a63c5
RM
727
728#endif /* DEBUG */
729
730/* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
731 SOURCE must be an lvalue. */
732
733#define EXTRACT_NUMBER_AND_INCR(destination, source) \
734 do { \
735 EXTRACT_NUMBER (destination, source); \
25fe55af 736 (source) += 2; \
fa9a63c5
RM
737 } while (0)
738
739#ifdef DEBUG
4bb91c68
SM
740static void extract_number_and_incr _RE_ARGS ((int *destination,
741 re_char **source));
fa9a63c5
RM
742static void
743extract_number_and_incr (destination, source)
744 int *destination;
01618498 745 re_char **source;
5e69f11e 746{
fa9a63c5
RM
747 extract_number (destination, *source);
748 *source += 2;
749}
750
0b32bf0e
SM
751# ifndef EXTRACT_MACROS
752# undef EXTRACT_NUMBER_AND_INCR
753# define EXTRACT_NUMBER_AND_INCR(dest, src) \
fa9a63c5 754 extract_number_and_incr (&dest, &src)
0b32bf0e 755# endif /* not EXTRACT_MACROS */
fa9a63c5
RM
756
757#endif /* DEBUG */
758\f
b18215fc
RS
759/* Store a multibyte character in three contiguous bytes starting
760 DESTINATION, and increment DESTINATION to the byte after where the
25fe55af 761 character is stored. Therefore, DESTINATION must be an lvalue. */
b18215fc
RS
762
763#define STORE_CHARACTER_AND_INCR(destination, character) \
764 do { \
765 (destination)[0] = (character) & 0377; \
766 (destination)[1] = ((character) >> 8) & 0377; \
767 (destination)[2] = (character) >> 16; \
768 (destination) += 3; \
769 } while (0)
770
771/* Put into DESTINATION a character stored in three contiguous bytes
25fe55af 772 starting at SOURCE. */
b18215fc
RS
773
774#define EXTRACT_CHARACTER(destination, source) \
775 do { \
776 (destination) = ((source)[0] \
777 | ((source)[1] << 8) \
778 | ((source)[2] << 16)); \
779 } while (0)
780
781
782/* Macros for charset. */
783
784/* Size of bitmap of charset P in bytes. P is a start of charset,
785 i.e. *P is (re_opcode_t) charset or (re_opcode_t) charset_not. */
786#define CHARSET_BITMAP_SIZE(p) ((p)[1] & 0x7F)
787
788/* Nonzero if charset P has range table. */
25fe55af 789#define CHARSET_RANGE_TABLE_EXISTS_P(p) ((p)[1] & 0x80)
b18215fc
RS
790
791/* Return the address of range table of charset P. But not the start
792 of table itself, but the before where the number of ranges is
96cc36cc
RS
793 stored. `2 +' means to skip re_opcode_t and size of bitmap,
794 and the 2 bytes of flags at the start of the range table. */
795#define CHARSET_RANGE_TABLE(p) (&(p)[4 + CHARSET_BITMAP_SIZE (p)])
796
797/* Extract the bit flags that start a range table. */
798#define CHARSET_RANGE_TABLE_BITS(p) \
799 ((p)[2 + CHARSET_BITMAP_SIZE (p)] \
800 + (p)[3 + CHARSET_BITMAP_SIZE (p)] * 0x100)
b18215fc
RS
801
802/* Test if C is listed in the bitmap of charset P. */
803#define CHARSET_LOOKUP_BITMAP(p, c) \
804 ((c) < CHARSET_BITMAP_SIZE (p) * BYTEWIDTH \
805 && (p)[2 + (c) / BYTEWIDTH] & (1 << ((c) % BYTEWIDTH)))
806
807/* Return the address of end of RANGE_TABLE. COUNT is number of
25fe55af
RS
808 ranges (which is a pair of (start, end)) in the RANGE_TABLE. `* 2'
809 is start of range and end of range. `* 3' is size of each start
b18215fc
RS
810 and end. */
811#define CHARSET_RANGE_TABLE_END(range_table, count) \
812 ((range_table) + (count) * 2 * 3)
813
25fe55af 814/* Test if C is in RANGE_TABLE. A flag NOT is negated if C is in.
b18215fc
RS
815 COUNT is number of ranges in RANGE_TABLE. */
816#define CHARSET_LOOKUP_RANGE_TABLE_RAW(not, c, range_table, count) \
817 do \
818 { \
01618498
SM
819 re_wchar_t range_start, range_end; \
820 re_char *p; \
821 re_char *range_table_end \
b18215fc
RS
822 = CHARSET_RANGE_TABLE_END ((range_table), (count)); \
823 \
824 for (p = (range_table); p < range_table_end; p += 2 * 3) \
825 { \
826 EXTRACT_CHARACTER (range_start, p); \
827 EXTRACT_CHARACTER (range_end, p + 3); \
828 \
829 if (range_start <= (c) && (c) <= range_end) \
830 { \
831 (not) = !(not); \
832 break; \
833 } \
834 } \
835 } \
836 while (0)
837
838/* Test if C is in range table of CHARSET. The flag NOT is negated if
839 C is listed in it. */
840#define CHARSET_LOOKUP_RANGE_TABLE(not, c, charset) \
841 do \
842 { \
843 /* Number of ranges in range table. */ \
844 int count; \
01618498
SM
845 re_char *range_table = CHARSET_RANGE_TABLE (charset); \
846 \
b18215fc
RS
847 EXTRACT_NUMBER_AND_INCR (count, range_table); \
848 CHARSET_LOOKUP_RANGE_TABLE_RAW ((not), (c), range_table, count); \
849 } \
850 while (0)
851\f
fa9a63c5
RM
852/* If DEBUG is defined, Regex prints many voluminous messages about what
853 it is doing (if the variable `debug' is nonzero). If linked with the
854 main program in `iregex.c', you can enter patterns and strings
855 interactively. And if linked with the main program in `main.c' and
4bb91c68 856 the other test files, you can run the already-written tests. */
fa9a63c5
RM
857
858#ifdef DEBUG
859
860/* We use standard I/O for debugging. */
0b32bf0e 861# include <stdio.h>
fa9a63c5
RM
862
863/* It is useful to test things that ``must'' be true when debugging. */
0b32bf0e 864# include <assert.h>
fa9a63c5 865
99633e97 866static int debug = -100000;
fa9a63c5 867
0b32bf0e
SM
868# define DEBUG_STATEMENT(e) e
869# define DEBUG_PRINT1(x) if (debug > 0) printf (x)
870# define DEBUG_PRINT2(x1, x2) if (debug > 0) printf (x1, x2)
871# define DEBUG_PRINT3(x1, x2, x3) if (debug > 0) printf (x1, x2, x3)
872# define DEBUG_PRINT4(x1, x2, x3, x4) if (debug > 0) printf (x1, x2, x3, x4)
873# define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \
99633e97 874 if (debug > 0) print_partial_compiled_pattern (s, e)
0b32bf0e 875# define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \
99633e97 876 if (debug > 0) print_double_string (w, s1, sz1, s2, sz2)
fa9a63c5
RM
877
878
879/* Print the fastmap in human-readable form. */
880
881void
882print_fastmap (fastmap)
883 char *fastmap;
884{
885 unsigned was_a_range = 0;
5e69f11e
RM
886 unsigned i = 0;
887
fa9a63c5
RM
888 while (i < (1 << BYTEWIDTH))
889 {
890 if (fastmap[i++])
891 {
892 was_a_range = 0;
25fe55af
RS
893 putchar (i - 1);
894 while (i < (1 << BYTEWIDTH) && fastmap[i])
895 {
896 was_a_range = 1;
897 i++;
898 }
fa9a63c5 899 if (was_a_range)
25fe55af
RS
900 {
901 printf ("-");
902 putchar (i - 1);
903 }
904 }
fa9a63c5 905 }
5e69f11e 906 putchar ('\n');
fa9a63c5
RM
907}
908
909
910/* Print a compiled pattern string in human-readable form, starting at
911 the START pointer into it and ending just before the pointer END. */
912
913void
914print_partial_compiled_pattern (start, end)
01618498
SM
915 re_char *start;
916 re_char *end;
fa9a63c5
RM
917{
918 int mcnt, mcnt2;
01618498
SM
919 re_char *p = start;
920 re_char *pend = end;
fa9a63c5
RM
921
922 if (start == NULL)
923 {
924 printf ("(null)\n");
925 return;
926 }
5e69f11e 927
fa9a63c5
RM
928 /* Loop over pattern commands. */
929 while (p < pend)
930 {
931 printf ("%d:\t", p - start);
932
933 switch ((re_opcode_t) *p++)
934 {
25fe55af
RS
935 case no_op:
936 printf ("/no_op");
937 break;
fa9a63c5 938
99633e97
SM
939 case succeed:
940 printf ("/succeed");
941 break;
942
fa9a63c5
RM
943 case exactn:
944 mcnt = *p++;
25fe55af
RS
945 printf ("/exactn/%d", mcnt);
946 do
fa9a63c5 947 {
25fe55af 948 putchar ('/');
fa9a63c5 949 putchar (*p++);
25fe55af
RS
950 }
951 while (--mcnt);
952 break;
fa9a63c5
RM
953
954 case start_memory:
505bde11 955 printf ("/start_memory/%d", *p++);
25fe55af 956 break;
fa9a63c5
RM
957
958 case stop_memory:
505bde11 959 printf ("/stop_memory/%d", *p++);
25fe55af 960 break;
fa9a63c5
RM
961
962 case duplicate:
963 printf ("/duplicate/%d", *p++);
964 break;
965
966 case anychar:
967 printf ("/anychar");
968 break;
969
970 case charset:
25fe55af
RS
971 case charset_not:
972 {
973 register int c, last = -100;
fa9a63c5 974 register int in_range = 0;
99633e97
SM
975 int length = CHARSET_BITMAP_SIZE (p - 1);
976 int has_range_table = CHARSET_RANGE_TABLE_EXISTS_P (p - 1);
fa9a63c5
RM
977
978 printf ("/charset [%s",
25fe55af 979 (re_opcode_t) *(p - 1) == charset_not ? "^" : "");
5e69f11e 980
25fe55af 981 assert (p + *p < pend);
fa9a63c5 982
25fe55af 983 for (c = 0; c < 256; c++)
96cc36cc 984 if (c / 8 < length
fa9a63c5
RM
985 && (p[1 + (c/8)] & (1 << (c % 8))))
986 {
987 /* Are we starting a range? */
988 if (last + 1 == c && ! in_range)
989 {
990 putchar ('-');
991 in_range = 1;
992 }
993 /* Have we broken a range? */
994 else if (last + 1 != c && in_range)
96cc36cc 995 {
fa9a63c5
RM
996 putchar (last);
997 in_range = 0;
998 }
5e69f11e 999
fa9a63c5
RM
1000 if (! in_range)
1001 putchar (c);
1002
1003 last = c;
25fe55af 1004 }
fa9a63c5
RM
1005
1006 if (in_range)
1007 putchar (last);
1008
1009 putchar (']');
1010
99633e97 1011 p += 1 + length;
96cc36cc 1012
96cc36cc 1013 if (has_range_table)
99633e97
SM
1014 {
1015 int count;
1016 printf ("has-range-table");
1017
1018 /* ??? Should print the range table; for now, just skip it. */
1019 p += 2; /* skip range table bits */
1020 EXTRACT_NUMBER_AND_INCR (count, p);
1021 p = CHARSET_RANGE_TABLE_END (p, count);
1022 }
fa9a63c5
RM
1023 }
1024 break;
1025
1026 case begline:
1027 printf ("/begline");
25fe55af 1028 break;
fa9a63c5
RM
1029
1030 case endline:
25fe55af
RS
1031 printf ("/endline");
1032 break;
fa9a63c5
RM
1033
1034 case on_failure_jump:
25fe55af
RS
1035 extract_number_and_incr (&mcnt, &p);
1036 printf ("/on_failure_jump to %d", p + mcnt - start);
1037 break;
fa9a63c5
RM
1038
1039 case on_failure_keep_string_jump:
25fe55af
RS
1040 extract_number_and_incr (&mcnt, &p);
1041 printf ("/on_failure_keep_string_jump to %d", p + mcnt - start);
1042 break;
fa9a63c5 1043
0683b6fa
SM
1044 case on_failure_jump_nastyloop:
1045 extract_number_and_incr (&mcnt, &p);
1046 printf ("/on_failure_jump_nastyloop to %d", p + mcnt - start);
1047 break;
1048
505bde11 1049 case on_failure_jump_loop:
fa9a63c5 1050 extract_number_and_incr (&mcnt, &p);
505bde11 1051 printf ("/on_failure_jump_loop to %d", p + mcnt - start);
5e69f11e
RM
1052 break;
1053
505bde11 1054 case on_failure_jump_smart:
fa9a63c5 1055 extract_number_and_incr (&mcnt, &p);
505bde11 1056 printf ("/on_failure_jump_smart to %d", p + mcnt - start);
5e69f11e
RM
1057 break;
1058
25fe55af 1059 case jump:
fa9a63c5 1060 extract_number_and_incr (&mcnt, &p);
25fe55af 1061 printf ("/jump to %d", p + mcnt - start);
fa9a63c5
RM
1062 break;
1063
25fe55af
RS
1064 case succeed_n:
1065 extract_number_and_incr (&mcnt, &p);
1066 extract_number_and_incr (&mcnt2, &p);
99633e97 1067 printf ("/succeed_n to %d, %d times", p - 2 + mcnt - start, mcnt2);
25fe55af 1068 break;
5e69f11e 1069
25fe55af
RS
1070 case jump_n:
1071 extract_number_and_incr (&mcnt, &p);
1072 extract_number_and_incr (&mcnt2, &p);
99633e97 1073 printf ("/jump_n to %d, %d times", p - 2 + mcnt - start, mcnt2);
25fe55af 1074 break;
5e69f11e 1075
25fe55af
RS
1076 case set_number_at:
1077 extract_number_and_incr (&mcnt, &p);
1078 extract_number_and_incr (&mcnt2, &p);
99633e97 1079 printf ("/set_number_at location %d to %d", p - 2 + mcnt - start, mcnt2);
25fe55af 1080 break;
5e69f11e 1081
25fe55af 1082 case wordbound:
fa9a63c5
RM
1083 printf ("/wordbound");
1084 break;
1085
1086 case notwordbound:
1087 printf ("/notwordbound");
25fe55af 1088 break;
fa9a63c5
RM
1089
1090 case wordbeg:
1091 printf ("/wordbeg");
1092 break;
5e69f11e 1093
fa9a63c5
RM
1094 case wordend:
1095 printf ("/wordend");
5e69f11e 1096
1fb352e0
SM
1097 case syntaxspec:
1098 printf ("/syntaxspec");
1099 mcnt = *p++;
1100 printf ("/%d", mcnt);
1101 break;
1102
1103 case notsyntaxspec:
1104 printf ("/notsyntaxspec");
1105 mcnt = *p++;
1106 printf ("/%d", mcnt);
1107 break;
1108
0b32bf0e 1109# ifdef emacs
fa9a63c5
RM
1110 case before_dot:
1111 printf ("/before_dot");
25fe55af 1112 break;
fa9a63c5
RM
1113
1114 case at_dot:
1115 printf ("/at_dot");
25fe55af 1116 break;
fa9a63c5
RM
1117
1118 case after_dot:
1119 printf ("/after_dot");
25fe55af 1120 break;
fa9a63c5 1121
1fb352e0
SM
1122 case categoryspec:
1123 printf ("/categoryspec");
fa9a63c5
RM
1124 mcnt = *p++;
1125 printf ("/%d", mcnt);
25fe55af 1126 break;
5e69f11e 1127
1fb352e0
SM
1128 case notcategoryspec:
1129 printf ("/notcategoryspec");
fa9a63c5
RM
1130 mcnt = *p++;
1131 printf ("/%d", mcnt);
1132 break;
0b32bf0e 1133# endif /* emacs */
fa9a63c5 1134
fa9a63c5
RM
1135 case begbuf:
1136 printf ("/begbuf");
25fe55af 1137 break;
fa9a63c5
RM
1138
1139 case endbuf:
1140 printf ("/endbuf");
25fe55af 1141 break;
fa9a63c5 1142
25fe55af
RS
1143 default:
1144 printf ("?%d", *(p-1));
fa9a63c5
RM
1145 }
1146
1147 putchar ('\n');
1148 }
1149
1150 printf ("%d:\tend of pattern.\n", p - start);
1151}
1152
1153
1154void
1155print_compiled_pattern (bufp)
1156 struct re_pattern_buffer *bufp;
1157{
01618498 1158 re_char *buffer = bufp->buffer;
fa9a63c5
RM
1159
1160 print_partial_compiled_pattern (buffer, buffer + bufp->used);
4bb91c68
SM
1161 printf ("%ld bytes used/%ld bytes allocated.\n",
1162 bufp->used, bufp->allocated);
fa9a63c5
RM
1163
1164 if (bufp->fastmap_accurate && bufp->fastmap)
1165 {
1166 printf ("fastmap: ");
1167 print_fastmap (bufp->fastmap);
1168 }
1169
1170 printf ("re_nsub: %d\t", bufp->re_nsub);
1171 printf ("regs_alloc: %d\t", bufp->regs_allocated);
1172 printf ("can_be_null: %d\t", bufp->can_be_null);
fa9a63c5
RM
1173 printf ("no_sub: %d\t", bufp->no_sub);
1174 printf ("not_bol: %d\t", bufp->not_bol);
1175 printf ("not_eol: %d\t", bufp->not_eol);
4bb91c68 1176 printf ("syntax: %lx\n", bufp->syntax);
505bde11 1177 fflush (stdout);
fa9a63c5
RM
1178 /* Perhaps we should print the translate table? */
1179}
1180
1181
1182void
1183print_double_string (where, string1, size1, string2, size2)
66f0296e
SM
1184 re_char *where;
1185 re_char *string1;
1186 re_char *string2;
fa9a63c5
RM
1187 int size1;
1188 int size2;
1189{
4bb91c68 1190 int this_char;
5e69f11e 1191
fa9a63c5
RM
1192 if (where == NULL)
1193 printf ("(null)");
1194 else
1195 {
1196 if (FIRST_STRING_P (where))
25fe55af
RS
1197 {
1198 for (this_char = where - string1; this_char < size1; this_char++)
1199 putchar (string1[this_char]);
fa9a63c5 1200
25fe55af
RS
1201 where = string2;
1202 }
fa9a63c5
RM
1203
1204 for (this_char = where - string2; this_char < size2; this_char++)
25fe55af 1205 putchar (string2[this_char]);
fa9a63c5
RM
1206 }
1207}
1208
1209#else /* not DEBUG */
1210
0b32bf0e
SM
1211# undef assert
1212# define assert(e)
fa9a63c5 1213
0b32bf0e
SM
1214# define DEBUG_STATEMENT(e)
1215# define DEBUG_PRINT1(x)
1216# define DEBUG_PRINT2(x1, x2)
1217# define DEBUG_PRINT3(x1, x2, x3)
1218# define DEBUG_PRINT4(x1, x2, x3, x4)
1219# define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
1220# define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
fa9a63c5
RM
1221
1222#endif /* not DEBUG */
1223\f
1224/* Set by `re_set_syntax' to the current regexp syntax to recognize. Can
1225 also be assigned to arbitrarily: each pattern buffer stores its own
1226 syntax, so it can be changed between regex compilations. */
1227/* This has no initializer because initialized variables in Emacs
1228 become read-only after dumping. */
1229reg_syntax_t re_syntax_options;
1230
1231
1232/* Specify the precise syntax of regexps for compilation. This provides
1233 for compatibility for various utilities which historically have
1234 different, incompatible syntaxes.
1235
1236 The argument SYNTAX is a bit mask comprised of the various bits
4bb91c68 1237 defined in regex.h. We return the old syntax. */
fa9a63c5
RM
1238
1239reg_syntax_t
1240re_set_syntax (syntax)
1241 reg_syntax_t syntax;
1242{
1243 reg_syntax_t ret = re_syntax_options;
5e69f11e 1244
fa9a63c5
RM
1245 re_syntax_options = syntax;
1246 return ret;
1247}
c0f9ea08 1248WEAK_ALIAS (__re_set_syntax, re_set_syntax)
fa9a63c5
RM
1249\f
1250/* This table gives an error message for each of the error codes listed
4bb91c68 1251 in regex.h. Obviously the order here has to be same as there.
fa9a63c5 1252 POSIX doesn't require that we do anything for REG_NOERROR,
4bb91c68 1253 but why not be nice? */
fa9a63c5
RM
1254
1255static const char *re_error_msgid[] =
5e69f11e
RM
1256 {
1257 gettext_noop ("Success"), /* REG_NOERROR */
1258 gettext_noop ("No match"), /* REG_NOMATCH */
1259 gettext_noop ("Invalid regular expression"), /* REG_BADPAT */
1260 gettext_noop ("Invalid collation character"), /* REG_ECOLLATE */
1261 gettext_noop ("Invalid character class name"), /* REG_ECTYPE */
1262 gettext_noop ("Trailing backslash"), /* REG_EESCAPE */
1263 gettext_noop ("Invalid back reference"), /* REG_ESUBREG */
1264 gettext_noop ("Unmatched [ or [^"), /* REG_EBRACK */
1265 gettext_noop ("Unmatched ( or \\("), /* REG_EPAREN */
1266 gettext_noop ("Unmatched \\{"), /* REG_EBRACE */
1267 gettext_noop ("Invalid content of \\{\\}"), /* REG_BADBR */
1268 gettext_noop ("Invalid range end"), /* REG_ERANGE */
1269 gettext_noop ("Memory exhausted"), /* REG_ESPACE */
1270 gettext_noop ("Invalid preceding regular expression"), /* REG_BADRPT */
1271 gettext_noop ("Premature end of regular expression"), /* REG_EEND */
1272 gettext_noop ("Regular expression too big"), /* REG_ESIZE */
1273 gettext_noop ("Unmatched ) or \\)"), /* REG_ERPAREN */
fa9a63c5
RM
1274 };
1275\f
4bb91c68 1276/* Avoiding alloca during matching, to placate r_alloc. */
fa9a63c5
RM
1277
1278/* Define MATCH_MAY_ALLOCATE unless we need to make sure that the
1279 searching and matching functions should not call alloca. On some
1280 systems, alloca is implemented in terms of malloc, and if we're
1281 using the relocating allocator routines, then malloc could cause a
1282 relocation, which might (if the strings being searched are in the
1283 ralloc heap) shift the data out from underneath the regexp
1284 routines.
1285
5e69f11e 1286 Here's another reason to avoid allocation: Emacs
fa9a63c5
RM
1287 processes input from X in a signal handler; processing X input may
1288 call malloc; if input arrives while a matching routine is calling
1289 malloc, then we're scrod. But Emacs can't just block input while
1290 calling matching routines; then we don't notice interrupts when
1291 they come in. So, Emacs blocks input around all regexp calls
1292 except the matching calls, which it leaves unprotected, in the
1293 faith that they will not malloc. */
1294
1295/* Normally, this is fine. */
1296#define MATCH_MAY_ALLOCATE
1297
1298/* When using GNU C, we are not REALLY using the C alloca, no matter
1299 what config.h may say. So don't take precautions for it. */
1300#ifdef __GNUC__
0b32bf0e 1301# undef C_ALLOCA
fa9a63c5
RM
1302#endif
1303
1304/* The match routines may not allocate if (1) they would do it with malloc
1305 and (2) it's not safe for them to use malloc.
1306 Note that if REL_ALLOC is defined, matching would not use malloc for the
1307 failure stack, but we would still use it for the register vectors;
4bb91c68 1308 so REL_ALLOC should not affect this. */
0b32bf0e
SM
1309#if (defined C_ALLOCA || defined REGEX_MALLOC) && defined emacs
1310# undef MATCH_MAY_ALLOCATE
fa9a63c5
RM
1311#endif
1312
1313\f
1314/* Failure stack declarations and macros; both re_compile_fastmap and
1315 re_match_2 use a failure stack. These have to be macros because of
1316 REGEX_ALLOCATE_STACK. */
5e69f11e 1317
fa9a63c5 1318
320a2a73 1319/* Approximate number of failure points for which to initially allocate space
fa9a63c5
RM
1320 when matching. If this number is exceeded, we allocate more
1321 space, so it is not a hard limit. */
1322#ifndef INIT_FAILURE_ALLOC
0b32bf0e 1323# define INIT_FAILURE_ALLOC 20
fa9a63c5
RM
1324#endif
1325
1326/* Roughly the maximum number of failure points on the stack. Would be
320a2a73 1327 exactly that if always used TYPICAL_FAILURE_SIZE items each time we failed.
fa9a63c5 1328 This is a variable only so users of regex can assign to it; we never
ada30c0e
SM
1329 change it ourselves. We always multiply it by TYPICAL_FAILURE_SIZE
1330 before using it, so it should probably be a byte-count instead. */
c0f9ea08
SM
1331# if defined MATCH_MAY_ALLOCATE
1332/* Note that 4400 was enough to cause a crash on Alpha OSF/1,
320a2a73
KH
1333 whose default stack limit is 2mb. In order for a larger
1334 value to work reliably, you have to try to make it accord
1335 with the process stack limit. */
c0f9ea08
SM
1336size_t re_max_failures = 40000;
1337# else
1338size_t re_max_failures = 4000;
1339# endif
fa9a63c5
RM
1340
1341union fail_stack_elt
1342{
01618498 1343 re_char *pointer;
c0f9ea08
SM
1344 /* This should be the biggest `int' that's no bigger than a pointer. */
1345 long integer;
fa9a63c5
RM
1346};
1347
1348typedef union fail_stack_elt fail_stack_elt_t;
1349
1350typedef struct
1351{
1352 fail_stack_elt_t *stack;
c0f9ea08
SM
1353 size_t size;
1354 size_t avail; /* Offset of next open position. */
1355 size_t frame; /* Offset of the cur constructed frame. */
fa9a63c5
RM
1356} fail_stack_type;
1357
505bde11 1358#define FAIL_STACK_EMPTY() (fail_stack.frame == 0)
fa9a63c5
RM
1359#define FAIL_STACK_FULL() (fail_stack.avail == fail_stack.size)
1360
1361
1362/* Define macros to initialize and free the failure stack.
1363 Do `return -2' if the alloc fails. */
1364
1365#ifdef MATCH_MAY_ALLOCATE
0b32bf0e 1366# define INIT_FAIL_STACK() \
fa9a63c5
RM
1367 do { \
1368 fail_stack.stack = (fail_stack_elt_t *) \
320a2a73
KH
1369 REGEX_ALLOCATE_STACK (INIT_FAILURE_ALLOC * TYPICAL_FAILURE_SIZE \
1370 * sizeof (fail_stack_elt_t)); \
fa9a63c5
RM
1371 \
1372 if (fail_stack.stack == NULL) \
1373 return -2; \
1374 \
1375 fail_stack.size = INIT_FAILURE_ALLOC; \
1376 fail_stack.avail = 0; \
505bde11 1377 fail_stack.frame = 0; \
fa9a63c5
RM
1378 } while (0)
1379
0b32bf0e 1380# define RESET_FAIL_STACK() REGEX_FREE_STACK (fail_stack.stack)
fa9a63c5 1381#else
0b32bf0e 1382# define INIT_FAIL_STACK() \
fa9a63c5
RM
1383 do { \
1384 fail_stack.avail = 0; \
505bde11 1385 fail_stack.frame = 0; \
fa9a63c5
RM
1386 } while (0)
1387
0b32bf0e 1388# define RESET_FAIL_STACK() ((void)0)
fa9a63c5
RM
1389#endif
1390
1391
320a2a73
KH
1392/* Double the size of FAIL_STACK, up to a limit
1393 which allows approximately `re_max_failures' items.
fa9a63c5
RM
1394
1395 Return 1 if succeeds, and 0 if either ran out of memory
5e69f11e
RM
1396 allocating space for it or it was already too large.
1397
4bb91c68 1398 REGEX_REALLOCATE_STACK requires `destination' be declared. */
fa9a63c5 1399
320a2a73
KH
1400/* Factor to increase the failure stack size by
1401 when we increase it.
1402 This used to be 2, but 2 was too wasteful
1403 because the old discarded stacks added up to as much space
1404 were as ultimate, maximum-size stack. */
1405#define FAIL_STACK_GROWTH_FACTOR 4
1406
1407#define GROW_FAIL_STACK(fail_stack) \
eead07d6
KH
1408 (((fail_stack).size * sizeof (fail_stack_elt_t) \
1409 >= re_max_failures * TYPICAL_FAILURE_SIZE) \
fa9a63c5 1410 ? 0 \
320a2a73
KH
1411 : ((fail_stack).stack \
1412 = (fail_stack_elt_t *) \
25fe55af
RS
1413 REGEX_REALLOCATE_STACK ((fail_stack).stack, \
1414 (fail_stack).size * sizeof (fail_stack_elt_t), \
320a2a73
KH
1415 MIN (re_max_failures * TYPICAL_FAILURE_SIZE, \
1416 ((fail_stack).size * sizeof (fail_stack_elt_t) \
1417 * FAIL_STACK_GROWTH_FACTOR))), \
fa9a63c5
RM
1418 \
1419 (fail_stack).stack == NULL \
1420 ? 0 \
6453db45
KH
1421 : ((fail_stack).size \
1422 = (MIN (re_max_failures * TYPICAL_FAILURE_SIZE, \
1423 ((fail_stack).size * sizeof (fail_stack_elt_t) \
1424 * FAIL_STACK_GROWTH_FACTOR)) \
1425 / sizeof (fail_stack_elt_t)), \
25fe55af 1426 1)))
fa9a63c5
RM
1427
1428
fa9a63c5
RM
1429/* Push a pointer value onto the failure stack.
1430 Assumes the variable `fail_stack'. Probably should only
4bb91c68 1431 be called from within `PUSH_FAILURE_POINT'. */
fa9a63c5 1432#define PUSH_FAILURE_POINTER(item) \
01618498 1433 fail_stack.stack[fail_stack.avail++].pointer = (item)
fa9a63c5
RM
1434
1435/* This pushes an integer-valued item onto the failure stack.
1436 Assumes the variable `fail_stack'. Probably should only
4bb91c68 1437 be called from within `PUSH_FAILURE_POINT'. */
fa9a63c5
RM
1438#define PUSH_FAILURE_INT(item) \
1439 fail_stack.stack[fail_stack.avail++].integer = (item)
1440
1441/* Push a fail_stack_elt_t value onto the failure stack.
1442 Assumes the variable `fail_stack'. Probably should only
4bb91c68 1443 be called from within `PUSH_FAILURE_POINT'. */
fa9a63c5
RM
1444#define PUSH_FAILURE_ELT(item) \
1445 fail_stack.stack[fail_stack.avail++] = (item)
1446
1447/* These three POP... operations complement the three PUSH... operations.
1448 All assume that `fail_stack' is nonempty. */
1449#define POP_FAILURE_POINTER() fail_stack.stack[--fail_stack.avail].pointer
1450#define POP_FAILURE_INT() fail_stack.stack[--fail_stack.avail].integer
1451#define POP_FAILURE_ELT() fail_stack.stack[--fail_stack.avail]
1452
505bde11
SM
1453/* Individual items aside from the registers. */
1454#define NUM_NONREG_ITEMS 3
1455
1456/* Used to examine the stack (to detect infinite loops). */
1457#define FAILURE_PAT(h) fail_stack.stack[(h) - 1].pointer
66f0296e 1458#define FAILURE_STR(h) (fail_stack.stack[(h) - 2].pointer)
505bde11
SM
1459#define NEXT_FAILURE_HANDLE(h) fail_stack.stack[(h) - 3].integer
1460#define TOP_FAILURE_HANDLE() fail_stack.frame
fa9a63c5
RM
1461
1462
505bde11
SM
1463#define ENSURE_FAIL_STACK(space) \
1464while (REMAINING_AVAIL_SLOTS <= space) { \
1465 if (!GROW_FAIL_STACK (fail_stack)) \
1466 return -2; \
1467 DEBUG_PRINT2 ("\n Doubled stack; size now: %d\n", (fail_stack).size);\
1468 DEBUG_PRINT2 (" slots available: %d\n", REMAINING_AVAIL_SLOTS);\
1469}
1470
1471/* Push register NUM onto the stack. */
1472#define PUSH_FAILURE_REG(num) \
1473do { \
1474 char *destination; \
1475 ENSURE_FAIL_STACK(3); \
1476 DEBUG_PRINT4 (" Push reg %d (spanning %p -> %p)\n", \
1477 num, regstart[num], regend[num]); \
1478 PUSH_FAILURE_POINTER (regstart[num]); \
1479 PUSH_FAILURE_POINTER (regend[num]); \
1480 PUSH_FAILURE_INT (num); \
1481} while (0)
1482
01618498
SM
1483/* Change the counter's value to VAL, but make sure that it will
1484 be reset when backtracking. */
1485#define PUSH_NUMBER(ptr,val) \
dc1e502d
SM
1486do { \
1487 char *destination; \
1488 int c; \
1489 ENSURE_FAIL_STACK(3); \
1490 EXTRACT_NUMBER (c, ptr); \
01618498 1491 DEBUG_PRINT4 (" Push number %p = %d -> %d\n", ptr, c, val); \
dc1e502d
SM
1492 PUSH_FAILURE_INT (c); \
1493 PUSH_FAILURE_POINTER (ptr); \
1494 PUSH_FAILURE_INT (-1); \
01618498 1495 STORE_NUMBER (ptr, val); \
dc1e502d
SM
1496} while (0)
1497
505bde11 1498/* Pop a saved register off the stack. */
dc1e502d 1499#define POP_FAILURE_REG_OR_COUNT() \
505bde11
SM
1500do { \
1501 int reg = POP_FAILURE_INT (); \
dc1e502d
SM
1502 if (reg == -1) \
1503 { \
1504 /* It's a counter. */ \
6dcf2d0e
SM
1505 /* Here, we discard `const', making re_match non-reentrant. */ \
1506 unsigned char *ptr = (unsigned char*) POP_FAILURE_POINTER (); \
dc1e502d
SM
1507 reg = POP_FAILURE_INT (); \
1508 STORE_NUMBER (ptr, reg); \
1509 DEBUG_PRINT3 (" Pop counter %p = %d\n", ptr, reg); \
1510 } \
1511 else \
1512 { \
1513 regend[reg] = POP_FAILURE_POINTER (); \
1514 regstart[reg] = POP_FAILURE_POINTER (); \
1515 DEBUG_PRINT4 (" Pop reg %d (spanning %p -> %p)\n", \
1516 reg, regstart[reg], regend[reg]); \
1517 } \
505bde11
SM
1518} while (0)
1519
1520/* Check that we are not stuck in an infinite loop. */
1521#define CHECK_INFINITE_LOOP(pat_cur, string_place) \
1522do { \
f6df485f 1523 int failure = TOP_FAILURE_HANDLE (); \
505bde11 1524 /* Check for infinite matching loops */ \
f6df485f
RS
1525 while (failure > 0 \
1526 && (FAILURE_STR (failure) == string_place \
1527 || FAILURE_STR (failure) == NULL)) \
505bde11
SM
1528 { \
1529 assert (FAILURE_PAT (failure) >= bufp->buffer \
66f0296e 1530 && FAILURE_PAT (failure) <= bufp->buffer + bufp->used); \
505bde11 1531 if (FAILURE_PAT (failure) == pat_cur) \
f6df485f 1532 { \
6df42991
SM
1533 cycle = 1; \
1534 break; \
f6df485f 1535 } \
66f0296e 1536 DEBUG_PRINT2 (" Other pattern: %p\n", FAILURE_PAT (failure)); \
505bde11
SM
1537 failure = NEXT_FAILURE_HANDLE(failure); \
1538 } \
1539 DEBUG_PRINT2 (" Other string: %p\n", FAILURE_STR (failure)); \
1540} while (0)
6df42991 1541
fa9a63c5 1542/* Push the information about the state we will need
5e69f11e
RM
1543 if we ever fail back to it.
1544
505bde11 1545 Requires variables fail_stack, regstart, regend and
320a2a73 1546 num_regs be declared. GROW_FAIL_STACK requires `destination' be
fa9a63c5 1547 declared.
5e69f11e 1548
fa9a63c5
RM
1549 Does `return FAILURE_CODE' if runs out of memory. */
1550
505bde11
SM
1551#define PUSH_FAILURE_POINT(pattern, string_place) \
1552do { \
1553 char *destination; \
1554 /* Must be int, so when we don't save any registers, the arithmetic \
1555 of 0 + -1 isn't done as unsigned. */ \
1556 \
505bde11 1557 DEBUG_STATEMENT (nfailure_points_pushed++); \
4bb91c68 1558 DEBUG_PRINT1 ("\nPUSH_FAILURE_POINT:\n"); \
505bde11
SM
1559 DEBUG_PRINT2 (" Before push, next avail: %d\n", (fail_stack).avail); \
1560 DEBUG_PRINT2 (" size: %d\n", (fail_stack).size);\
1561 \
1562 ENSURE_FAIL_STACK (NUM_NONREG_ITEMS); \
1563 \
1564 DEBUG_PRINT1 ("\n"); \
1565 \
1566 DEBUG_PRINT2 (" Push frame index: %d\n", fail_stack.frame); \
1567 PUSH_FAILURE_INT (fail_stack.frame); \
1568 \
1569 DEBUG_PRINT2 (" Push string %p: `", string_place); \
1570 DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, size2);\
1571 DEBUG_PRINT1 ("'\n"); \
1572 PUSH_FAILURE_POINTER (string_place); \
1573 \
1574 DEBUG_PRINT2 (" Push pattern %p: ", pattern); \
1575 DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern, pend); \
1576 PUSH_FAILURE_POINTER (pattern); \
1577 \
1578 /* Close the frame by moving the frame pointer past it. */ \
1579 fail_stack.frame = fail_stack.avail; \
1580} while (0)
fa9a63c5 1581
320a2a73
KH
1582/* Estimate the size of data pushed by a typical failure stack entry.
1583 An estimate is all we need, because all we use this for
1584 is to choose a limit for how big to make the failure stack. */
ada30c0e 1585/* BEWARE, the value `20' is hard-coded in emacs.c:main(). */
320a2a73 1586#define TYPICAL_FAILURE_SIZE 20
fa9a63c5 1587
fa9a63c5
RM
1588/* How many items can still be added to the stack without overflowing it. */
1589#define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
1590
1591
1592/* Pops what PUSH_FAIL_STACK pushes.
1593
1594 We restore into the parameters, all of which should be lvalues:
1595 STR -- the saved data position.
1596 PAT -- the saved pattern position.
fa9a63c5 1597 REGSTART, REGEND -- arrays of string positions.
5e69f11e 1598
fa9a63c5 1599 Also assumes the variables `fail_stack' and (if debugging), `bufp',
25fe55af 1600 `pend', `string1', `size1', `string2', and `size2'. */
fa9a63c5 1601
505bde11
SM
1602#define POP_FAILURE_POINT(str, pat) \
1603do { \
fa9a63c5
RM
1604 assert (!FAIL_STACK_EMPTY ()); \
1605 \
1606 /* Remove failure points and point to how many regs pushed. */ \
1607 DEBUG_PRINT1 ("POP_FAILURE_POINT:\n"); \
1608 DEBUG_PRINT2 (" Before pop, next avail: %d\n", fail_stack.avail); \
25fe55af 1609 DEBUG_PRINT2 (" size: %d\n", fail_stack.size); \
fa9a63c5 1610 \
505bde11
SM
1611 /* Pop the saved registers. */ \
1612 while (fail_stack.frame < fail_stack.avail) \
dc1e502d 1613 POP_FAILURE_REG_OR_COUNT (); \
fa9a63c5 1614 \
01618498 1615 pat = POP_FAILURE_POINTER (); \
505bde11
SM
1616 DEBUG_PRINT2 (" Popping pattern %p: ", pat); \
1617 DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend); \
fa9a63c5
RM
1618 \
1619 /* If the saved string location is NULL, it came from an \
1620 on_failure_keep_string_jump opcode, and we want to throw away the \
1621 saved NULL, thus retaining our current position in the string. */ \
01618498 1622 str = POP_FAILURE_POINTER (); \
505bde11 1623 DEBUG_PRINT2 (" Popping string %p: `", str); \
fa9a63c5
RM
1624 DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2); \
1625 DEBUG_PRINT1 ("'\n"); \
1626 \
505bde11
SM
1627 fail_stack.frame = POP_FAILURE_INT (); \
1628 DEBUG_PRINT2 (" Popping frame index: %d\n", fail_stack.frame); \
fa9a63c5 1629 \
505bde11
SM
1630 assert (fail_stack.avail >= 0); \
1631 assert (fail_stack.frame <= fail_stack.avail); \
fa9a63c5 1632 \
fa9a63c5 1633 DEBUG_STATEMENT (nfailure_points_popped++); \
505bde11 1634} while (0) /* POP_FAILURE_POINT */
fa9a63c5
RM
1635
1636
1637\f
fa9a63c5 1638/* Registers are set to a sentinel when they haven't yet matched. */
4bb91c68 1639#define REG_UNSET(e) ((e) == NULL)
fa9a63c5
RM
1640\f
1641/* Subroutine declarations and macros for regex_compile. */
1642
4bb91c68
SM
1643static reg_errcode_t regex_compile _RE_ARGS ((re_char *pattern, size_t size,
1644 reg_syntax_t syntax,
1645 struct re_pattern_buffer *bufp));
1646static void store_op1 _RE_ARGS ((re_opcode_t op, unsigned char *loc, int arg));
1647static void store_op2 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
1648 int arg1, int arg2));
1649static void insert_op1 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
1650 int arg, unsigned char *end));
1651static void insert_op2 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
1652 int arg1, int arg2, unsigned char *end));
01618498
SM
1653static boolean at_begline_loc_p _RE_ARGS ((re_char *pattern,
1654 re_char *p,
4bb91c68 1655 reg_syntax_t syntax));
01618498
SM
1656static boolean at_endline_loc_p _RE_ARGS ((re_char *p,
1657 re_char *pend,
4bb91c68 1658 reg_syntax_t syntax));
01618498
SM
1659static re_char *skip_one_char _RE_ARGS ((re_char *p));
1660static int analyse_first _RE_ARGS ((re_char *p, re_char *pend,
4bb91c68 1661 char *fastmap, const int multibyte));
fa9a63c5 1662
fa9a63c5 1663/* Fetch the next character in the uncompiled pattern, with no
4bb91c68 1664 translation. */
36595814 1665#define PATFETCH(c) \
2d1675e4
SM
1666 do { \
1667 int len; \
1668 if (p == pend) return REG_EEND; \
1669 c = RE_STRING_CHAR_AND_LENGTH (p, pend - p, len); \
1670 p += len; \
fa9a63c5
RM
1671 } while (0)
1672
fa9a63c5
RM
1673
1674/* If `translate' is non-null, return translate[D], else just D. We
1675 cast the subscript to translate because some data is declared as
1676 `char *', to avoid warnings when a string constant is passed. But
1677 when we use a character as a subscript we must make it unsigned. */
6676cb1c 1678#ifndef TRANSLATE
0b32bf0e 1679# define TRANSLATE(d) \
66f0296e 1680 (RE_TRANSLATE_P (translate) ? RE_TRANSLATE (translate, (d)) : (d))
6676cb1c 1681#endif
fa9a63c5
RM
1682
1683
1684/* Macros for outputting the compiled pattern into `buffer'. */
1685
1686/* If the buffer isn't allocated when it comes in, use this. */
1687#define INIT_BUF_SIZE 32
1688
4bb91c68 1689/* Make sure we have at least N more bytes of space in buffer. */
fa9a63c5 1690#define GET_BUFFER_SPACE(n) \
01618498 1691 while ((size_t) (b - bufp->buffer + (n)) > bufp->allocated) \
fa9a63c5
RM
1692 EXTEND_BUFFER ()
1693
1694/* Make sure we have one more byte of buffer space and then add C to it. */
1695#define BUF_PUSH(c) \
1696 do { \
1697 GET_BUFFER_SPACE (1); \
1698 *b++ = (unsigned char) (c); \
1699 } while (0)
1700
1701
1702/* Ensure we have two more bytes of buffer space and then append C1 and C2. */
1703#define BUF_PUSH_2(c1, c2) \
1704 do { \
1705 GET_BUFFER_SPACE (2); \
1706 *b++ = (unsigned char) (c1); \
1707 *b++ = (unsigned char) (c2); \
1708 } while (0)
1709
1710
4bb91c68 1711/* As with BUF_PUSH_2, except for three bytes. */
fa9a63c5
RM
1712#define BUF_PUSH_3(c1, c2, c3) \
1713 do { \
1714 GET_BUFFER_SPACE (3); \
1715 *b++ = (unsigned char) (c1); \
1716 *b++ = (unsigned char) (c2); \
1717 *b++ = (unsigned char) (c3); \
1718 } while (0)
1719
1720
1721/* Store a jump with opcode OP at LOC to location TO. We store a
4bb91c68 1722 relative address offset by the three bytes the jump itself occupies. */
fa9a63c5
RM
1723#define STORE_JUMP(op, loc, to) \
1724 store_op1 (op, loc, (to) - (loc) - 3)
1725
1726/* Likewise, for a two-argument jump. */
1727#define STORE_JUMP2(op, loc, to, arg) \
1728 store_op2 (op, loc, (to) - (loc) - 3, arg)
1729
4bb91c68 1730/* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */
fa9a63c5
RM
1731#define INSERT_JUMP(op, loc, to) \
1732 insert_op1 (op, loc, (to) - (loc) - 3, b)
1733
1734/* Like `STORE_JUMP2', but for inserting. Assume `b' is the buffer end. */
1735#define INSERT_JUMP2(op, loc, to, arg) \
1736 insert_op2 (op, loc, (to) - (loc) - 3, arg, b)
1737
1738
1739/* This is not an arbitrary limit: the arguments which represent offsets
4bb91c68 1740 into the pattern are two bytes long. So if 2^16 bytes turns out to
fa9a63c5 1741 be too small, many things would have to change. */
4bb91c68
SM
1742/* Any other compiler which, like MSC, has allocation limit below 2^16
1743 bytes will have to use approach similar to what was done below for
1744 MSC and drop MAX_BUF_SIZE a bit. Otherwise you may end up
1745 reallocating to 0 bytes. Such thing is not going to work too well.
1746 You have been warned!! */
1747#if defined _MSC_VER && !defined WIN32
1748/* Microsoft C 16-bit versions limit malloc to approx 65512 bytes. */
1749# define MAX_BUF_SIZE 65500L
1750#else
1751# define MAX_BUF_SIZE (1L << 16)
1752#endif
fa9a63c5
RM
1753
1754/* Extend the buffer by twice its current size via realloc and
1755 reset the pointers that pointed into the old block to point to the
1756 correct places in the new one. If extending the buffer results in it
4bb91c68
SM
1757 being larger than MAX_BUF_SIZE, then flag memory exhausted. */
1758#if __BOUNDED_POINTERS__
1759# define SET_HIGH_BOUND(P) (__ptrhigh (P) = __ptrlow (P) + bufp->allocated)
1760# define MOVE_BUFFER_POINTER(P) \
1761 (__ptrlow (P) += incr, SET_HIGH_BOUND (P), __ptrvalue (P) += incr)
1762# define ELSE_EXTEND_BUFFER_HIGH_BOUND \
1763 else \
1764 { \
1765 SET_HIGH_BOUND (b); \
1766 SET_HIGH_BOUND (begalt); \
1767 if (fixup_alt_jump) \
1768 SET_HIGH_BOUND (fixup_alt_jump); \
1769 if (laststart) \
1770 SET_HIGH_BOUND (laststart); \
1771 if (pending_exact) \
1772 SET_HIGH_BOUND (pending_exact); \
1773 }
1774#else
1775# define MOVE_BUFFER_POINTER(P) (P) += incr
1776# define ELSE_EXTEND_BUFFER_HIGH_BOUND
1777#endif
fa9a63c5 1778#define EXTEND_BUFFER() \
25fe55af 1779 do { \
01618498 1780 re_char *old_buffer = bufp->buffer; \
25fe55af 1781 if (bufp->allocated == MAX_BUF_SIZE) \
fa9a63c5
RM
1782 return REG_ESIZE; \
1783 bufp->allocated <<= 1; \
1784 if (bufp->allocated > MAX_BUF_SIZE) \
25fe55af 1785 bufp->allocated = MAX_BUF_SIZE; \
01618498 1786 RETALLOC (bufp->buffer, bufp->allocated, unsigned char); \
fa9a63c5
RM
1787 if (bufp->buffer == NULL) \
1788 return REG_ESPACE; \
1789 /* If the buffer moved, move all the pointers into it. */ \
1790 if (old_buffer != bufp->buffer) \
1791 { \
4bb91c68
SM
1792 int incr = bufp->buffer - old_buffer; \
1793 MOVE_BUFFER_POINTER (b); \
1794 MOVE_BUFFER_POINTER (begalt); \
25fe55af 1795 if (fixup_alt_jump) \
4bb91c68 1796 MOVE_BUFFER_POINTER (fixup_alt_jump); \
25fe55af 1797 if (laststart) \
4bb91c68 1798 MOVE_BUFFER_POINTER (laststart); \
25fe55af 1799 if (pending_exact) \
4bb91c68 1800 MOVE_BUFFER_POINTER (pending_exact); \
fa9a63c5 1801 } \
4bb91c68 1802 ELSE_EXTEND_BUFFER_HIGH_BOUND \
fa9a63c5
RM
1803 } while (0)
1804
1805
1806/* Since we have one byte reserved for the register number argument to
1807 {start,stop}_memory, the maximum number of groups we can report
1808 things about is what fits in that byte. */
1809#define MAX_REGNUM 255
1810
1811/* But patterns can have more than `MAX_REGNUM' registers. We just
1812 ignore the excess. */
098d42af 1813typedef int regnum_t;
fa9a63c5
RM
1814
1815
1816/* Macros for the compile stack. */
1817
1818/* Since offsets can go either forwards or backwards, this type needs to
4bb91c68
SM
1819 be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */
1820/* int may be not enough when sizeof(int) == 2. */
1821typedef long pattern_offset_t;
fa9a63c5
RM
1822
1823typedef struct
1824{
1825 pattern_offset_t begalt_offset;
1826 pattern_offset_t fixup_alt_jump;
5e69f11e 1827 pattern_offset_t laststart_offset;
fa9a63c5
RM
1828 regnum_t regnum;
1829} compile_stack_elt_t;
1830
1831
1832typedef struct
1833{
1834 compile_stack_elt_t *stack;
1835 unsigned size;
1836 unsigned avail; /* Offset of next open position. */
1837} compile_stack_type;
1838
1839
1840#define INIT_COMPILE_STACK_SIZE 32
1841
1842#define COMPILE_STACK_EMPTY (compile_stack.avail == 0)
1843#define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size)
1844
4bb91c68 1845/* The next available element. */
fa9a63c5
RM
1846#define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
1847
77d11aec
RS
1848/* Explicit quit checking is only used on NTemacs. */
1849#if defined WINDOWSNT && defined emacs && defined QUIT
1850extern int immediate_quit;
1851# define IMMEDIATE_QUIT_CHECK \
1852 do { \
1853 if (immediate_quit) QUIT; \
1854 } while (0)
1855#else
1856# define IMMEDIATE_QUIT_CHECK ((void)0)
1857#endif
1858\f
b18215fc
RS
1859/* Structure to manage work area for range table. */
1860struct range_table_work_area
1861{
1862 int *table; /* actual work area. */
1863 int allocated; /* allocated size for work area in bytes. */
25fe55af 1864 int used; /* actually used size in words. */
96cc36cc 1865 int bits; /* flag to record character classes */
b18215fc
RS
1866};
1867
77d11aec
RS
1868/* Make sure that WORK_AREA can hold more N multibyte characters.
1869 This is used only in set_image_of_range and set_image_of_range_1.
1870 It expects WORK_AREA to be a pointer.
1871 If it can't get the space, it returns from the surrounding function. */
1872
1873#define EXTEND_RANGE_TABLE(work_area, n) \
1874 do { \
1875 if (((work_area)->used + (n)) * sizeof (int) > (work_area)->allocated) \
1876 { \
1877 extend_range_table_work_area (work_area); \
1878 if ((work_area)->table == 0) \
1879 return (REG_ESPACE); \
1880 } \
b18215fc
RS
1881 } while (0)
1882
96cc36cc
RS
1883#define SET_RANGE_TABLE_WORK_AREA_BIT(work_area, bit) \
1884 (work_area).bits |= (bit)
1885
14473664
SM
1886/* Bits used to implement the multibyte-part of the various character classes
1887 such as [:alnum:] in a charset's range table. */
1888#define BIT_WORD 0x1
1889#define BIT_LOWER 0x2
1890#define BIT_PUNCT 0x4
1891#define BIT_SPACE 0x8
1892#define BIT_UPPER 0x10
1893#define BIT_MULTIBYTE 0x20
96cc36cc 1894
36595814
SM
1895/* Set a range START..END to WORK_AREA.
1896 The range is passed through TRANSLATE, so START and END
1897 should be untranslated. */
77d11aec
RS
1898#define SET_RANGE_TABLE_WORK_AREA(work_area, start, end) \
1899 do { \
1900 int tem; \
1901 tem = set_image_of_range (&work_area, start, end, translate); \
1902 if (tem > 0) \
1903 FREE_STACK_RETURN (tem); \
b18215fc
RS
1904 } while (0)
1905
25fe55af 1906/* Free allocated memory for WORK_AREA. */
b18215fc
RS
1907#define FREE_RANGE_TABLE_WORK_AREA(work_area) \
1908 do { \
1909 if ((work_area).table) \
1910 free ((work_area).table); \
1911 } while (0)
1912
96cc36cc 1913#define CLEAR_RANGE_TABLE_WORK_USED(work_area) ((work_area).used = 0, (work_area).bits = 0)
b18215fc 1914#define RANGE_TABLE_WORK_USED(work_area) ((work_area).used)
96cc36cc 1915#define RANGE_TABLE_WORK_BITS(work_area) ((work_area).bits)
b18215fc 1916#define RANGE_TABLE_WORK_ELT(work_area, i) ((work_area).table[i])
77d11aec 1917\f
b18215fc 1918
fa9a63c5 1919/* Set the bit for character C in a list. */
01618498 1920#define SET_LIST_BIT(c) (b[((c)) / BYTEWIDTH] |= 1 << ((c) % BYTEWIDTH))
fa9a63c5
RM
1921
1922
1923/* Get the next unsigned number in the uncompiled pattern. */
25fe55af 1924#define GET_UNSIGNED_NUMBER(num) \
99633e97 1925 do { if (p != pend) \
fa9a63c5 1926 { \
25fe55af 1927 PATFETCH (c); \
060cc8ff
RS
1928 if (c == ' ') \
1929 FREE_STACK_RETURN (REG_BADBR); \
4bb91c68 1930 while ('0' <= c && c <= '9') \
25fe55af 1931 { \
f6df485f 1932 int prev; \
25fe55af 1933 if (num < 0) \
f6df485f
RS
1934 num = 0; \
1935 prev = num; \
25fe55af 1936 num = num * 10 + c - '0'; \
f6df485f
RS
1937 if (num / 10 != prev) \
1938 FREE_STACK_RETURN (REG_BADBR); \
25fe55af 1939 if (p == pend) \
f6df485f 1940 break; \
25fe55af
RS
1941 PATFETCH (c); \
1942 } \
060cc8ff
RS
1943 if (c == ' ') \
1944 FREE_STACK_RETURN (REG_BADBR); \
25fe55af 1945 } \
99633e97 1946 } while (0)
77d11aec 1947\f
a0ad02f7 1948#if WIDE_CHAR_SUPPORT
14473664
SM
1949/* The GNU C library provides support for user-defined character classes
1950 and the functions from ISO C amendement 1. */
1951# ifdef CHARCLASS_NAME_MAX
1952# define CHAR_CLASS_MAX_LENGTH CHARCLASS_NAME_MAX
1953# else
1954/* This shouldn't happen but some implementation might still have this
1955 problem. Use a reasonable default value. */
1956# define CHAR_CLASS_MAX_LENGTH 256
1957# endif
1958typedef wctype_t re_wctype_t;
01618498 1959typedef wchar_t re_wchar_t;
14473664
SM
1960# define re_wctype wctype
1961# define re_iswctype iswctype
1962# define re_wctype_to_bit(cc) 0
1963#else
1964# define CHAR_CLASS_MAX_LENGTH 9 /* Namely, `multibyte'. */
1965# define btowc(c) c
1966
01618498 1967/* Character classes. */
14473664
SM
1968typedef enum { RECC_ERROR = 0,
1969 RECC_ALNUM, RECC_ALPHA, RECC_WORD,
1970 RECC_GRAPH, RECC_PRINT,
1971 RECC_LOWER, RECC_UPPER,
1972 RECC_PUNCT, RECC_CNTRL,
1973 RECC_DIGIT, RECC_XDIGIT,
1974 RECC_BLANK, RECC_SPACE,
1975 RECC_MULTIBYTE, RECC_NONASCII,
1976 RECC_ASCII, RECC_UNIBYTE
1977} re_wctype_t;
1978
01618498
SM
1979typedef int re_wchar_t;
1980
14473664
SM
1981/* Map a string to the char class it names (if any). */
1982static re_wctype_t
ada30c0e
SM
1983re_wctype (str)
1984 re_char *str;
14473664 1985{
ada30c0e 1986 const char *string = str;
14473664
SM
1987 if (STREQ (string, "alnum")) return RECC_ALNUM;
1988 else if (STREQ (string, "alpha")) return RECC_ALPHA;
1989 else if (STREQ (string, "word")) return RECC_WORD;
1990 else if (STREQ (string, "ascii")) return RECC_ASCII;
1991 else if (STREQ (string, "nonascii")) return RECC_NONASCII;
1992 else if (STREQ (string, "graph")) return RECC_GRAPH;
1993 else if (STREQ (string, "lower")) return RECC_LOWER;
1994 else if (STREQ (string, "print")) return RECC_PRINT;
1995 else if (STREQ (string, "punct")) return RECC_PUNCT;
1996 else if (STREQ (string, "space")) return RECC_SPACE;
1997 else if (STREQ (string, "upper")) return RECC_UPPER;
1998 else if (STREQ (string, "unibyte")) return RECC_UNIBYTE;
1999 else if (STREQ (string, "multibyte")) return RECC_MULTIBYTE;
2000 else if (STREQ (string, "digit")) return RECC_DIGIT;
2001 else if (STREQ (string, "xdigit")) return RECC_XDIGIT;
2002 else if (STREQ (string, "cntrl")) return RECC_CNTRL;
2003 else if (STREQ (string, "blank")) return RECC_BLANK;
2004 else return 0;
2005}
2006
2007/* True iff CH is in the char class CC. */
2008static boolean
2009re_iswctype (ch, cc)
2010 int ch;
2011 re_wctype_t cc;
2012{
2013 switch (cc)
2014 {
0cdd06f8
SM
2015 case RECC_ALNUM: return ISALNUM (ch);
2016 case RECC_ALPHA: return ISALPHA (ch);
2017 case RECC_BLANK: return ISBLANK (ch);
2018 case RECC_CNTRL: return ISCNTRL (ch);
2019 case RECC_DIGIT: return ISDIGIT (ch);
2020 case RECC_GRAPH: return ISGRAPH (ch);
2021 case RECC_LOWER: return ISLOWER (ch);
2022 case RECC_PRINT: return ISPRINT (ch);
2023 case RECC_PUNCT: return ISPUNCT (ch);
2024 case RECC_SPACE: return ISSPACE (ch);
2025 case RECC_UPPER: return ISUPPER (ch);
2026 case RECC_XDIGIT: return ISXDIGIT (ch);
2027 case RECC_ASCII: return IS_REAL_ASCII (ch);
2028 case RECC_NONASCII: return !IS_REAL_ASCII (ch);
2029 case RECC_UNIBYTE: return ISUNIBYTE (ch);
2030 case RECC_MULTIBYTE: return !ISUNIBYTE (ch);
2031 case RECC_WORD: return ISWORD (ch);
2032 case RECC_ERROR: return false;
2033 default:
2034 abort();
14473664
SM
2035 }
2036}
fa9a63c5 2037
14473664
SM
2038/* Return a bit-pattern to use in the range-table bits to match multibyte
2039 chars of class CC. */
2040static int
2041re_wctype_to_bit (cc)
2042 re_wctype_t cc;
2043{
2044 switch (cc)
2045 {
2046 case RECC_NONASCII: case RECC_PRINT: case RECC_GRAPH:
0cdd06f8
SM
2047 case RECC_MULTIBYTE: return BIT_MULTIBYTE;
2048 case RECC_ALPHA: case RECC_ALNUM: case RECC_WORD: return BIT_WORD;
2049 case RECC_LOWER: return BIT_LOWER;
2050 case RECC_UPPER: return BIT_UPPER;
2051 case RECC_PUNCT: return BIT_PUNCT;
2052 case RECC_SPACE: return BIT_SPACE;
14473664 2053 case RECC_ASCII: case RECC_DIGIT: case RECC_XDIGIT: case RECC_CNTRL:
0cdd06f8
SM
2054 case RECC_BLANK: case RECC_UNIBYTE: case RECC_ERROR: return 0;
2055 default:
2056 abort();
14473664
SM
2057 }
2058}
2059#endif
77d11aec
RS
2060\f
2061/* Filling in the work area of a range. */
2062
2063/* Actually extend the space in WORK_AREA. */
2064
2065static void
2066extend_range_table_work_area (work_area)
2067 struct range_table_work_area *work_area;
2068{
2069 work_area->allocated += 16 * sizeof (int);
2070 if (work_area->table)
2071 work_area->table
2072 = (int *) realloc (work_area->table, work_area->allocated);
2073 else
2074 work_area->table
2075 = (int *) malloc (work_area->allocated);
2076}
2077
2078#ifdef emacs
2079
2080/* Carefully find the ranges of codes that are equivalent
2081 under case conversion to the range start..end when passed through
2082 TRANSLATE. Handle the case where non-letters can come in between
2083 two upper-case letters (which happens in Latin-1).
2084 Also handle the case of groups of more than 2 case-equivalent chars.
2085
2086 The basic method is to look at consecutive characters and see
2087 if they can form a run that can be handled as one.
2088
2089 Returns -1 if successful, REG_ESPACE if ran out of space. */
2090
2091static int
2092set_image_of_range_1 (work_area, start, end, translate)
2093 RE_TRANSLATE_TYPE translate;
2094 struct range_table_work_area *work_area;
2095 re_wchar_t start, end;
2096{
2097 /* `one_case' indicates a character, or a run of characters,
2098 each of which is an isolate (no case-equivalents).
2099 This includes all ASCII non-letters.
2100
2101 `two_case' indicates a character, or a run of characters,
2102 each of which has two case-equivalent forms.
2103 This includes all ASCII letters.
2104
2105 `strange' indicates a character that has more than one
2106 case-equivalent. */
2107
2108 enum case_type {one_case, two_case, strange};
2109
2110 /* Describe the run that is in progress,
2111 which the next character can try to extend.
2112 If run_type is strange, that means there really is no run.
2113 If run_type is one_case, then run_start...run_end is the run.
2114 If run_type is two_case, then the run is run_start...run_end,
2115 and the case-equivalents end at run_eqv_end. */
2116
2117 enum case_type run_type = strange;
2118 int run_start, run_end, run_eqv_end;
2119
2120 Lisp_Object eqv_table;
2121
2122 if (!RE_TRANSLATE_P (translate))
2123 {
b7c12565 2124 EXTEND_RANGE_TABLE (work_area, 2);
77d11aec
RS
2125 work_area->table[work_area->used++] = (start);
2126 work_area->table[work_area->used++] = (end);
b7c12565 2127 return -1;
77d11aec
RS
2128 }
2129
2130 eqv_table = XCHAR_TABLE (translate)->extras[2];
99633e97 2131
77d11aec
RS
2132 for (; start <= end; start++)
2133 {
2134 enum case_type this_type;
2135 int eqv = RE_TRANSLATE (eqv_table, start);
2136 int minchar, maxchar;
2137
2138 /* Classify this character */
2139 if (eqv == start)
2140 this_type = one_case;
2141 else if (RE_TRANSLATE (eqv_table, eqv) == start)
2142 this_type = two_case;
2143 else
2144 this_type = strange;
2145
2146 if (start < eqv)
2147 minchar = start, maxchar = eqv;
2148 else
2149 minchar = eqv, maxchar = start;
2150
2151 /* Can this character extend the run in progress? */
2152 if (this_type == strange || this_type != run_type
2153 || !(minchar == run_end + 1
2154 && (run_type == two_case
2155 ? maxchar == run_eqv_end + 1 : 1)))
2156 {
2157 /* No, end the run.
2158 Record each of its equivalent ranges. */
2159 if (run_type == one_case)
2160 {
2161 EXTEND_RANGE_TABLE (work_area, 2);
2162 work_area->table[work_area->used++] = run_start;
2163 work_area->table[work_area->used++] = run_end;
2164 }
2165 else if (run_type == two_case)
2166 {
2167 EXTEND_RANGE_TABLE (work_area, 4);
2168 work_area->table[work_area->used++] = run_start;
2169 work_area->table[work_area->used++] = run_end;
2170 work_area->table[work_area->used++]
2171 = RE_TRANSLATE (eqv_table, run_start);
2172 work_area->table[work_area->used++]
2173 = RE_TRANSLATE (eqv_table, run_end);
2174 }
2175 run_type = strange;
2176 }
2177
2178 if (this_type == strange)
2179 {
2180 /* For a strange character, add each of its equivalents, one
2181 by one. Don't start a range. */
2182 do
2183 {
2184 EXTEND_RANGE_TABLE (work_area, 2);
2185 work_area->table[work_area->used++] = eqv;
2186 work_area->table[work_area->used++] = eqv;
2187 eqv = RE_TRANSLATE (eqv_table, eqv);
2188 }
2189 while (eqv != start);
2190 }
2191
2192 /* Add this char to the run, or start a new run. */
2193 else if (run_type == strange)
2194 {
2195 /* Initialize a new range. */
2196 run_type = this_type;
2197 run_start = start;
2198 run_end = start;
2199 run_eqv_end = RE_TRANSLATE (eqv_table, run_end);
2200 }
2201 else
2202 {
2203 /* Extend a running range. */
2204 run_end = minchar;
2205 run_eqv_end = RE_TRANSLATE (eqv_table, run_end);
2206 }
2207 }
2208
2209 /* If a run is still in progress at the end, finish it now
2210 by recording its equivalent ranges. */
2211 if (run_type == one_case)
2212 {
2213 EXTEND_RANGE_TABLE (work_area, 2);
2214 work_area->table[work_area->used++] = run_start;
2215 work_area->table[work_area->used++] = run_end;
2216 }
2217 else if (run_type == two_case)
2218 {
2219 EXTEND_RANGE_TABLE (work_area, 4);
2220 work_area->table[work_area->used++] = run_start;
2221 work_area->table[work_area->used++] = run_end;
2222 work_area->table[work_area->used++]
2223 = RE_TRANSLATE (eqv_table, run_start);
2224 work_area->table[work_area->used++]
2225 = RE_TRANSLATE (eqv_table, run_end);
2226 }
2227
2228 return -1;
2229}
36595814 2230
77d11aec 2231#endif /* emacs */
36595814 2232
b7c12565 2233/* Record the the image of the range start..end when passed through
36595814
SM
2234 TRANSLATE. This is not necessarily TRANSLATE(start)..TRANSLATE(end)
2235 and is not even necessarily contiguous.
b7c12565
RS
2236 Normally we approximate it with the smallest contiguous range that contains
2237 all the chars we need. However, for Latin-1 we go to extra effort
2238 to do a better job.
2239
2240 This function is not called for ASCII ranges.
77d11aec
RS
2241
2242 Returns -1 if successful, REG_ESPACE if ran out of space. */
2243
2244static int
36595814
SM
2245set_image_of_range (work_area, start, end, translate)
2246 RE_TRANSLATE_TYPE translate;
2247 struct range_table_work_area *work_area;
2248 re_wchar_t start, end;
2249{
77d11aec
RS
2250 re_wchar_t cmin, cmax;
2251
2252#ifdef emacs
2253 /* For Latin-1 ranges, use set_image_of_range_1
2254 to get proper handling of ranges that include letters and nonletters.
b7c12565 2255 For a range that includes the whole of Latin-1, this is not necessary.
77d11aec 2256 For other character sets, we don't bother to get this right. */
b7c12565
RS
2257 if (RE_TRANSLATE_P (translate) && start < 04400
2258 && !(start < 04200 && end >= 04377))
77d11aec 2259 {
b7c12565 2260 int newend;
77d11aec 2261 int tem;
b7c12565
RS
2262 newend = end;
2263 if (newend > 04377)
2264 newend = 04377;
2265 tem = set_image_of_range_1 (work_area, start, newend, translate);
77d11aec
RS
2266 if (tem > 0)
2267 return tem;
2268
2269 start = 04400;
2270 if (end < 04400)
2271 return -1;
2272 }
2273#endif
2274
b7c12565
RS
2275 EXTEND_RANGE_TABLE (work_area, 2);
2276 work_area->table[work_area->used++] = (start);
2277 work_area->table[work_area->used++] = (end);
2278
2279 cmin = -1, cmax = -1;
77d11aec 2280
36595814 2281 if (RE_TRANSLATE_P (translate))
b7c12565
RS
2282 {
2283 int ch;
77d11aec 2284
b7c12565
RS
2285 for (ch = start; ch <= end; ch++)
2286 {
2287 re_wchar_t c = TRANSLATE (ch);
2288 if (! (start <= c && c <= end))
2289 {
2290 if (cmin == -1)
2291 cmin = c, cmax = c;
2292 else
2293 {
2294 cmin = MIN (cmin, c);
2295 cmax = MAX (cmax, c);
2296 }
2297 }
2298 }
2299
2300 if (cmin != -1)
2301 {
2302 EXTEND_RANGE_TABLE (work_area, 2);
2303 work_area->table[work_area->used++] = (cmin);
2304 work_area->table[work_area->used++] = (cmax);
2305 }
2306 }
36595814 2307
77d11aec
RS
2308 return -1;
2309}
fa9a63c5
RM
2310\f
2311#ifndef MATCH_MAY_ALLOCATE
2312
2313/* If we cannot allocate large objects within re_match_2_internal,
2314 we make the fail stack and register vectors global.
2315 The fail stack, we grow to the maximum size when a regexp
2316 is compiled.
2317 The register vectors, we adjust in size each time we
2318 compile a regexp, according to the number of registers it needs. */
2319
2320static fail_stack_type fail_stack;
2321
2322/* Size with which the following vectors are currently allocated.
2323 That is so we can make them bigger as needed,
4bb91c68 2324 but never make them smaller. */
fa9a63c5
RM
2325static int regs_allocated_size;
2326
66f0296e
SM
2327static re_char ** regstart, ** regend;
2328static re_char **best_regstart, **best_regend;
fa9a63c5
RM
2329
2330/* Make the register vectors big enough for NUM_REGS registers,
4bb91c68 2331 but don't make them smaller. */
fa9a63c5
RM
2332
2333static
2334regex_grow_registers (num_regs)
2335 int num_regs;
2336{
2337 if (num_regs > regs_allocated_size)
2338 {
66f0296e
SM
2339 RETALLOC_IF (regstart, num_regs, re_char *);
2340 RETALLOC_IF (regend, num_regs, re_char *);
2341 RETALLOC_IF (best_regstart, num_regs, re_char *);
2342 RETALLOC_IF (best_regend, num_regs, re_char *);
fa9a63c5
RM
2343
2344 regs_allocated_size = num_regs;
2345 }
2346}
2347
2348#endif /* not MATCH_MAY_ALLOCATE */
2349\f
99633e97
SM
2350static boolean group_in_compile_stack _RE_ARGS ((compile_stack_type
2351 compile_stack,
2352 regnum_t regnum));
2353
fa9a63c5
RM
2354/* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
2355 Returns one of error codes defined in `regex.h', or zero for success.
2356
2357 Assumes the `allocated' (and perhaps `buffer') and `translate'
2358 fields are set in BUFP on entry.
2359
2360 If it succeeds, results are put in BUFP (if it returns an error, the
2361 contents of BUFP are undefined):
2362 `buffer' is the compiled pattern;
2363 `syntax' is set to SYNTAX;
2364 `used' is set to the length of the compiled pattern;
2365 `fastmap_accurate' is zero;
2366 `re_nsub' is the number of subexpressions in PATTERN;
2367 `not_bol' and `not_eol' are zero;
5e69f11e 2368
c0f9ea08 2369 The `fastmap' field is neither examined nor set. */
fa9a63c5 2370
505bde11
SM
2371/* Insert the `jump' from the end of last alternative to "here".
2372 The space for the jump has already been allocated. */
2373#define FIXUP_ALT_JUMP() \
2374do { \
2375 if (fixup_alt_jump) \
2376 STORE_JUMP (jump, fixup_alt_jump, b); \
2377} while (0)
2378
2379
fa9a63c5
RM
2380/* Return, freeing storage we allocated. */
2381#define FREE_STACK_RETURN(value) \
b18215fc
RS
2382 do { \
2383 FREE_RANGE_TABLE_WORK_AREA (range_table_work); \
2384 free (compile_stack.stack); \
2385 return value; \
2386 } while (0)
fa9a63c5
RM
2387
2388static reg_errcode_t
2389regex_compile (pattern, size, syntax, bufp)
66f0296e 2390 re_char *pattern;
4bb91c68 2391 size_t size;
fa9a63c5
RM
2392 reg_syntax_t syntax;
2393 struct re_pattern_buffer *bufp;
2394{
01618498
SM
2395 /* We fetch characters from PATTERN here. */
2396 register re_wchar_t c, c1;
5e69f11e 2397
fa9a63c5 2398 /* A random temporary spot in PATTERN. */
66f0296e 2399 re_char *p1;
fa9a63c5
RM
2400
2401 /* Points to the end of the buffer, where we should append. */
2402 register unsigned char *b;
5e69f11e 2403
fa9a63c5
RM
2404 /* Keeps track of unclosed groups. */
2405 compile_stack_type compile_stack;
2406
2407 /* Points to the current (ending) position in the pattern. */
22336245
RS
2408#ifdef AIX
2409 /* `const' makes AIX compiler fail. */
66f0296e 2410 unsigned char *p = pattern;
22336245 2411#else
66f0296e 2412 re_char *p = pattern;
22336245 2413#endif
66f0296e 2414 re_char *pend = pattern + size;
5e69f11e 2415
fa9a63c5 2416 /* How to translate the characters in the pattern. */
6676cb1c 2417 RE_TRANSLATE_TYPE translate = bufp->translate;
fa9a63c5
RM
2418
2419 /* Address of the count-byte of the most recently inserted `exactn'
2420 command. This makes it possible to tell if a new exact-match
2421 character can be added to that command or if the character requires
2422 a new `exactn' command. */
2423 unsigned char *pending_exact = 0;
2424
2425 /* Address of start of the most recently finished expression.
2426 This tells, e.g., postfix * where to find the start of its
2427 operand. Reset at the beginning of groups and alternatives. */
2428 unsigned char *laststart = 0;
2429
2430 /* Address of beginning of regexp, or inside of last group. */
2431 unsigned char *begalt;
2432
2433 /* Place in the uncompiled pattern (i.e., the {) to
2434 which to go back if the interval is invalid. */
66f0296e 2435 re_char *beg_interval;
5e69f11e 2436
fa9a63c5 2437 /* Address of the place where a forward jump should go to the end of
25fe55af 2438 the containing expression. Each alternative of an `or' -- except the
fa9a63c5
RM
2439 last -- ends with a forward jump of this sort. */
2440 unsigned char *fixup_alt_jump = 0;
2441
2442 /* Counts open-groups as they are encountered. Remembered for the
2443 matching close-group on the compile stack, so the same register
2444 number is put in the stop_memory as the start_memory. */
2445 regnum_t regnum = 0;
2446
b18215fc
RS
2447 /* Work area for range table of charset. */
2448 struct range_table_work_area range_table_work;
2449
2d1675e4
SM
2450 /* If the object matched can contain multibyte characters. */
2451 const boolean multibyte = RE_MULTIBYTE_P (bufp);
2452
fa9a63c5 2453#ifdef DEBUG
99633e97 2454 debug++;
fa9a63c5 2455 DEBUG_PRINT1 ("\nCompiling pattern: ");
99633e97 2456 if (debug > 0)
fa9a63c5
RM
2457 {
2458 unsigned debug_count;
5e69f11e 2459
fa9a63c5 2460 for (debug_count = 0; debug_count < size; debug_count++)
25fe55af 2461 putchar (pattern[debug_count]);
fa9a63c5
RM
2462 putchar ('\n');
2463 }
2464#endif /* DEBUG */
2465
2466 /* Initialize the compile stack. */
2467 compile_stack.stack = TALLOC (INIT_COMPILE_STACK_SIZE, compile_stack_elt_t);
2468 if (compile_stack.stack == NULL)
2469 return REG_ESPACE;
2470
2471 compile_stack.size = INIT_COMPILE_STACK_SIZE;
2472 compile_stack.avail = 0;
2473
b18215fc
RS
2474 range_table_work.table = 0;
2475 range_table_work.allocated = 0;
2476
fa9a63c5
RM
2477 /* Initialize the pattern buffer. */
2478 bufp->syntax = syntax;
2479 bufp->fastmap_accurate = 0;
2480 bufp->not_bol = bufp->not_eol = 0;
2481
2482 /* Set `used' to zero, so that if we return an error, the pattern
2483 printer (for debugging) will think there's no pattern. We reset it
2484 at the end. */
2485 bufp->used = 0;
5e69f11e 2486
fa9a63c5 2487 /* Always count groups, whether or not bufp->no_sub is set. */
5e69f11e 2488 bufp->re_nsub = 0;
fa9a63c5 2489
0b32bf0e 2490#if !defined emacs && !defined SYNTAX_TABLE
fa9a63c5
RM
2491 /* Initialize the syntax table. */
2492 init_syntax_once ();
2493#endif
2494
2495 if (bufp->allocated == 0)
2496 {
2497 if (bufp->buffer)
2498 { /* If zero allocated, but buffer is non-null, try to realloc
25fe55af
RS
2499 enough space. This loses if buffer's address is bogus, but
2500 that is the user's responsibility. */
2501 RETALLOC (bufp->buffer, INIT_BUF_SIZE, unsigned char);
2502 }
fa9a63c5 2503 else
25fe55af
RS
2504 { /* Caller did not allocate a buffer. Do it for them. */
2505 bufp->buffer = TALLOC (INIT_BUF_SIZE, unsigned char);
2506 }
fa9a63c5
RM
2507 if (!bufp->buffer) FREE_STACK_RETURN (REG_ESPACE);
2508
2509 bufp->allocated = INIT_BUF_SIZE;
2510 }
2511
2512 begalt = b = bufp->buffer;
2513
2514 /* Loop through the uncompiled pattern until we're at the end. */
2515 while (p != pend)
2516 {
2517 PATFETCH (c);
2518
2519 switch (c)
25fe55af
RS
2520 {
2521 case '^':
2522 {
2523 if ( /* If at start of pattern, it's an operator. */
2524 p == pattern + 1
2525 /* If context independent, it's an operator. */
2526 || syntax & RE_CONTEXT_INDEP_ANCHORS
2527 /* Otherwise, depends on what's come before. */
2528 || at_begline_loc_p (pattern, p, syntax))
c0f9ea08 2529 BUF_PUSH ((syntax & RE_NO_NEWLINE_ANCHOR) ? begbuf : begline);
25fe55af
RS
2530 else
2531 goto normal_char;
2532 }
2533 break;
2534
2535
2536 case '$':
2537 {
2538 if ( /* If at end of pattern, it's an operator. */
2539 p == pend
2540 /* If context independent, it's an operator. */
2541 || syntax & RE_CONTEXT_INDEP_ANCHORS
2542 /* Otherwise, depends on what's next. */
2543 || at_endline_loc_p (p, pend, syntax))
c0f9ea08 2544 BUF_PUSH ((syntax & RE_NO_NEWLINE_ANCHOR) ? endbuf : endline);
25fe55af
RS
2545 else
2546 goto normal_char;
2547 }
2548 break;
fa9a63c5
RM
2549
2550
2551 case '+':
25fe55af
RS
2552 case '?':
2553 if ((syntax & RE_BK_PLUS_QM)
2554 || (syntax & RE_LIMITED_OPS))
2555 goto normal_char;
2556 handle_plus:
2557 case '*':
2558 /* If there is no previous pattern... */
2559 if (!laststart)
2560 {
2561 if (syntax & RE_CONTEXT_INVALID_OPS)
2562 FREE_STACK_RETURN (REG_BADRPT);
2563 else if (!(syntax & RE_CONTEXT_INDEP_OPS))
2564 goto normal_char;
2565 }
2566
2567 {
25fe55af 2568 /* 1 means zero (many) matches is allowed. */
66f0296e
SM
2569 boolean zero_times_ok = 0, many_times_ok = 0;
2570 boolean greedy = 1;
25fe55af
RS
2571
2572 /* If there is a sequence of repetition chars, collapse it
2573 down to just one (the right one). We can't combine
2574 interval operators with these because of, e.g., `a{2}*',
2575 which should only match an even number of `a's. */
2576
2577 for (;;)
2578 {
0b32bf0e 2579 if ((syntax & RE_FRUGAL)
1c8c6d39
DL
2580 && c == '?' && (zero_times_ok || many_times_ok))
2581 greedy = 0;
2582 else
2583 {
2584 zero_times_ok |= c != '+';
2585 many_times_ok |= c != '?';
2586 }
25fe55af
RS
2587
2588 if (p == pend)
2589 break;
ed0767d8
SM
2590 else if (*p == '*'
2591 || (!(syntax & RE_BK_PLUS_QM)
2592 && (*p == '+' || *p == '?')))
25fe55af 2593 ;
ed0767d8 2594 else if (syntax & RE_BK_PLUS_QM && *p == '\\')
25fe55af 2595 {
ed0767d8
SM
2596 if (p+1 == pend)
2597 FREE_STACK_RETURN (REG_EESCAPE);
2598 if (p[1] == '+' || p[1] == '?')
2599 PATFETCH (c); /* Gobble up the backslash. */
2600 else
2601 break;
25fe55af
RS
2602 }
2603 else
ed0767d8 2604 break;
25fe55af 2605 /* If we get here, we found another repeat character. */
ed0767d8
SM
2606 PATFETCH (c);
2607 }
25fe55af
RS
2608
2609 /* Star, etc. applied to an empty pattern is equivalent
2610 to an empty pattern. */
4e8a9132 2611 if (!laststart || laststart == b)
25fe55af
RS
2612 break;
2613
2614 /* Now we know whether or not zero matches is allowed
2615 and also whether or not two or more matches is allowed. */
1c8c6d39
DL
2616 if (greedy)
2617 {
99633e97 2618 if (many_times_ok)
4e8a9132
SM
2619 {
2620 boolean simple = skip_one_char (laststart) == b;
2621 unsigned int startoffset = 0;
f6a3f532 2622 re_opcode_t ofj =
01618498 2623 /* Check if the loop can match the empty string. */
6df42991
SM
2624 (simple || !analyse_first (laststart, b, NULL, 0))
2625 ? on_failure_jump : on_failure_jump_loop;
4e8a9132
SM
2626 assert (skip_one_char (laststart) <= b);
2627
2628 if (!zero_times_ok && simple)
2629 { /* Since simple * loops can be made faster by using
2630 on_failure_keep_string_jump, we turn simple P+
2631 into PP* if P is simple. */
2632 unsigned char *p1, *p2;
2633 startoffset = b - laststart;
2634 GET_BUFFER_SPACE (startoffset);
2635 p1 = b; p2 = laststart;
2636 while (p2 < p1)
2637 *b++ = *p2++;
2638 zero_times_ok = 1;
99633e97 2639 }
4e8a9132
SM
2640
2641 GET_BUFFER_SPACE (6);
2642 if (!zero_times_ok)
2643 /* A + loop. */
f6a3f532 2644 STORE_JUMP (ofj, b, b + 6);
99633e97 2645 else
4e8a9132
SM
2646 /* Simple * loops can use on_failure_keep_string_jump
2647 depending on what follows. But since we don't know
2648 that yet, we leave the decision up to
2649 on_failure_jump_smart. */
f6a3f532 2650 INSERT_JUMP (simple ? on_failure_jump_smart : ofj,
4e8a9132 2651 laststart + startoffset, b + 6);
99633e97 2652 b += 3;
4e8a9132 2653 STORE_JUMP (jump, b, laststart + startoffset);
99633e97
SM
2654 b += 3;
2655 }
2656 else
2657 {
4e8a9132
SM
2658 /* A simple ? pattern. */
2659 assert (zero_times_ok);
2660 GET_BUFFER_SPACE (3);
2661 INSERT_JUMP (on_failure_jump, laststart, b + 3);
99633e97
SM
2662 b += 3;
2663 }
1c8c6d39
DL
2664 }
2665 else /* not greedy */
2666 { /* I wish the greedy and non-greedy cases could be merged. */
2667
0683b6fa 2668 GET_BUFFER_SPACE (7); /* We might use less. */
1c8c6d39
DL
2669 if (many_times_ok)
2670 {
f6a3f532
SM
2671 boolean emptyp = analyse_first (laststart, b, NULL, 0);
2672
6df42991
SM
2673 /* The non-greedy multiple match looks like
2674 a repeat..until: we only need a conditional jump
2675 at the end of the loop. */
f6a3f532
SM
2676 if (emptyp) BUF_PUSH (no_op);
2677 STORE_JUMP (emptyp ? on_failure_jump_nastyloop
2678 : on_failure_jump, b, laststart);
1c8c6d39
DL
2679 b += 3;
2680 if (zero_times_ok)
2681 {
2682 /* The repeat...until naturally matches one or more.
2683 To also match zero times, we need to first jump to
6df42991 2684 the end of the loop (its conditional jump). */
1c8c6d39
DL
2685 INSERT_JUMP (jump, laststart, b);
2686 b += 3;
2687 }
2688 }
2689 else
2690 {
2691 /* non-greedy a?? */
1c8c6d39
DL
2692 INSERT_JUMP (jump, laststart, b + 3);
2693 b += 3;
2694 INSERT_JUMP (on_failure_jump, laststart, laststart + 6);
2695 b += 3;
2696 }
2697 }
2698 }
4e8a9132 2699 pending_exact = 0;
fa9a63c5
RM
2700 break;
2701
2702
2703 case '.':
25fe55af
RS
2704 laststart = b;
2705 BUF_PUSH (anychar);
2706 break;
fa9a63c5
RM
2707
2708
25fe55af
RS
2709 case '[':
2710 {
b18215fc 2711 CLEAR_RANGE_TABLE_WORK_USED (range_table_work);
fa9a63c5 2712
25fe55af 2713 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
fa9a63c5 2714
25fe55af
RS
2715 /* Ensure that we have enough space to push a charset: the
2716 opcode, the length count, and the bitset; 34 bytes in all. */
fa9a63c5
RM
2717 GET_BUFFER_SPACE (34);
2718
25fe55af 2719 laststart = b;
e318085a 2720
25fe55af
RS
2721 /* We test `*p == '^' twice, instead of using an if
2722 statement, so we only need one BUF_PUSH. */
2723 BUF_PUSH (*p == '^' ? charset_not : charset);
2724 if (*p == '^')
2725 p++;
e318085a 2726
25fe55af
RS
2727 /* Remember the first position in the bracket expression. */
2728 p1 = p;
e318085a 2729
25fe55af
RS
2730 /* Push the number of bytes in the bitmap. */
2731 BUF_PUSH ((1 << BYTEWIDTH) / BYTEWIDTH);
e318085a 2732
25fe55af
RS
2733 /* Clear the whole map. */
2734 bzero (b, (1 << BYTEWIDTH) / BYTEWIDTH);
e318085a 2735
25fe55af
RS
2736 /* charset_not matches newline according to a syntax bit. */
2737 if ((re_opcode_t) b[-2] == charset_not
2738 && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
2739 SET_LIST_BIT ('\n');
fa9a63c5 2740
25fe55af
RS
2741 /* Read in characters and ranges, setting map bits. */
2742 for (;;)
2743 {
b18215fc 2744 boolean escaped_char = false;
2d1675e4 2745 const unsigned char *p2 = p;
e318085a 2746
25fe55af 2747 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
e318085a 2748
36595814
SM
2749 /* Don't translate yet. The range TRANSLATE(X..Y) cannot
2750 always be determined from TRANSLATE(X) and TRANSLATE(Y)
2751 So the translation is done later in a loop. Example:
2752 (let ((case-fold-search t)) (string-match "[A-_]" "A")) */
25fe55af 2753 PATFETCH (c);
e318085a 2754
25fe55af
RS
2755 /* \ might escape characters inside [...] and [^...]. */
2756 if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
2757 {
2758 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
e318085a
RS
2759
2760 PATFETCH (c);
b18215fc 2761 escaped_char = true;
25fe55af 2762 }
b18215fc
RS
2763 else
2764 {
657fcfbd
RS
2765 /* Could be the end of the bracket expression. If it's
2766 not (i.e., when the bracket expression is `[]' so
2767 far), the ']' character bit gets set way below. */
2d1675e4 2768 if (c == ']' && p2 != p1)
657fcfbd 2769 break;
25fe55af 2770 }
b18215fc 2771
b18215fc
RS
2772 /* What should we do for the character which is
2773 greater than 0x7F, but not BASE_LEADING_CODE_P?
2774 XXX */
2775
25fe55af
RS
2776 /* See if we're at the beginning of a possible character
2777 class. */
b18215fc 2778
2d1675e4
SM
2779 if (!escaped_char &&
2780 syntax & RE_CHAR_CLASSES && c == '[' && *p == ':')
657fcfbd
RS
2781 {
2782 /* Leave room for the null. */
14473664 2783 unsigned char str[CHAR_CLASS_MAX_LENGTH + 1];
ed0767d8 2784 const unsigned char *class_beg;
b18215fc 2785
25fe55af
RS
2786 PATFETCH (c);
2787 c1 = 0;
ed0767d8 2788 class_beg = p;
b18215fc 2789
25fe55af
RS
2790 /* If pattern is `[[:'. */
2791 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
b18215fc 2792
25fe55af
RS
2793 for (;;)
2794 {
14473664
SM
2795 PATFETCH (c);
2796 if ((c == ':' && *p == ']') || p == pend)
2797 break;
2798 if (c1 < CHAR_CLASS_MAX_LENGTH)
2799 str[c1++] = c;
2800 else
2801 /* This is in any case an invalid class name. */
2802 str[0] = '\0';
25fe55af
RS
2803 }
2804 str[c1] = '\0';
b18215fc
RS
2805
2806 /* If isn't a word bracketed by `[:' and `:]':
2807 undo the ending character, the letters, and
2808 leave the leading `:' and `[' (but set bits for
2809 them). */
25fe55af
RS
2810 if (c == ':' && *p == ']')
2811 {
36595814 2812 re_wchar_t ch;
14473664
SM
2813 re_wctype_t cc;
2814
2815 cc = re_wctype (str);
2816
2817 if (cc == 0)
fa9a63c5
RM
2818 FREE_STACK_RETURN (REG_ECTYPE);
2819
14473664
SM
2820 /* Throw away the ] at the end of the character
2821 class. */
2822 PATFETCH (c);
fa9a63c5 2823
14473664 2824 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
fa9a63c5 2825
96cc36cc
RS
2826 /* Most character classes in a multibyte match
2827 just set a flag. Exceptions are is_blank,
2828 is_digit, is_cntrl, and is_xdigit, since
2829 they can only match ASCII characters. We
14473664
SM
2830 don't need to handle them for multibyte.
2831 They are distinguished by a negative wctype. */
96cc36cc 2832
2d1675e4 2833 if (multibyte)
14473664
SM
2834 SET_RANGE_TABLE_WORK_AREA_BIT (range_table_work,
2835 re_wctype_to_bit (cc));
96cc36cc 2836
14473664 2837 for (ch = 0; ch < 1 << BYTEWIDTH; ++ch)
25fe55af 2838 {
7ae68633 2839 int translated = TRANSLATE (ch);
14473664 2840 if (re_iswctype (btowc (ch), cc))
96cc36cc 2841 SET_LIST_BIT (translated);
25fe55af 2842 }
b18215fc
RS
2843
2844 /* Repeat the loop. */
2845 continue;
25fe55af
RS
2846 }
2847 else
2848 {
ed0767d8
SM
2849 /* Go back to right after the "[:". */
2850 p = class_beg;
25fe55af 2851 SET_LIST_BIT ('[');
b18215fc
RS
2852
2853 /* Because the `:' may starts the range, we
2854 can't simply set bit and repeat the loop.
25fe55af 2855 Instead, just set it to C and handle below. */
b18215fc 2856 c = ':';
25fe55af
RS
2857 }
2858 }
b18215fc
RS
2859
2860 if (p < pend && p[0] == '-' && p[1] != ']')
2861 {
2862
2863 /* Discard the `-'. */
2864 PATFETCH (c1);
2865
2866 /* Fetch the character which ends the range. */
2867 PATFETCH (c1);
b18215fc 2868
b54f61ed 2869 if (SINGLE_BYTE_CHAR_P (c))
e934739e 2870 {
b54f61ed
KH
2871 if (! SINGLE_BYTE_CHAR_P (c1))
2872 {
3ff2446d
KH
2873 /* Handle a range starting with a
2874 character of less than 256, and ending
2875 with a character of not less than 256.
2876 Split that into two ranges, the low one
2877 ending at 0377, and the high one
2878 starting at the smallest character in
2879 the charset of C1 and ending at C1. */
b54f61ed 2880 int charset = CHAR_CHARSET (c1);
36595814
SM
2881 re_wchar_t c2 = MAKE_CHAR (charset, 0, 0);
2882
b54f61ed
KH
2883 SET_RANGE_TABLE_WORK_AREA (range_table_work,
2884 c2, c1);
333526e0 2885 c1 = 0377;
b54f61ed 2886 }
e934739e
RS
2887 }
2888 else if (!SAME_CHARSET_P (c, c1))
b18215fc 2889 FREE_STACK_RETURN (REG_ERANGE);
e318085a 2890 }
25fe55af 2891 else
b18215fc
RS
2892 /* Range from C to C. */
2893 c1 = c;
2894
2895 /* Set the range ... */
2896 if (SINGLE_BYTE_CHAR_P (c))
2897 /* ... into bitmap. */
25fe55af 2898 {
01618498 2899 re_wchar_t this_char;
36595814 2900 re_wchar_t range_start = c, range_end = c1;
b18215fc
RS
2901
2902 /* If the start is after the end, the range is empty. */
2903 if (range_start > range_end)
2904 {
2905 if (syntax & RE_NO_EMPTY_RANGES)
2906 FREE_STACK_RETURN (REG_ERANGE);
2907 /* Else, repeat the loop. */
2908 }
2909 else
2910 {
2911 for (this_char = range_start; this_char <= range_end;
2912 this_char++)
2913 SET_LIST_BIT (TRANSLATE (this_char));
e934739e 2914 }
25fe55af 2915 }
e318085a 2916 else
b18215fc
RS
2917 /* ... into range table. */
2918 SET_RANGE_TABLE_WORK_AREA (range_table_work, c, c1);
e318085a
RS
2919 }
2920
25fe55af
RS
2921 /* Discard any (non)matching list bytes that are all 0 at the
2922 end of the map. Decrease the map-length byte too. */
2923 while ((int) b[-1] > 0 && b[b[-1] - 1] == 0)
2924 b[-1]--;
2925 b += b[-1];
fa9a63c5 2926
96cc36cc
RS
2927 /* Build real range table from work area. */
2928 if (RANGE_TABLE_WORK_USED (range_table_work)
2929 || RANGE_TABLE_WORK_BITS (range_table_work))
b18215fc
RS
2930 {
2931 int i;
2932 int used = RANGE_TABLE_WORK_USED (range_table_work);
fa9a63c5 2933
b18215fc 2934 /* Allocate space for COUNT + RANGE_TABLE. Needs two
96cc36cc
RS
2935 bytes for flags, two for COUNT, and three bytes for
2936 each character. */
2937 GET_BUFFER_SPACE (4 + used * 3);
fa9a63c5 2938
b18215fc
RS
2939 /* Indicate the existence of range table. */
2940 laststart[1] |= 0x80;
fa9a63c5 2941
96cc36cc
RS
2942 /* Store the character class flag bits into the range table.
2943 If not in emacs, these flag bits are always 0. */
2944 *b++ = RANGE_TABLE_WORK_BITS (range_table_work) & 0xff;
2945 *b++ = RANGE_TABLE_WORK_BITS (range_table_work) >> 8;
2946
b18215fc
RS
2947 STORE_NUMBER_AND_INCR (b, used / 2);
2948 for (i = 0; i < used; i++)
2949 STORE_CHARACTER_AND_INCR
2950 (b, RANGE_TABLE_WORK_ELT (range_table_work, i));
2951 }
25fe55af
RS
2952 }
2953 break;
fa9a63c5
RM
2954
2955
b18215fc 2956 case '(':
25fe55af
RS
2957 if (syntax & RE_NO_BK_PARENS)
2958 goto handle_open;
2959 else
2960 goto normal_char;
fa9a63c5
RM
2961
2962
25fe55af
RS
2963 case ')':
2964 if (syntax & RE_NO_BK_PARENS)
2965 goto handle_close;
2966 else
2967 goto normal_char;
e318085a
RS
2968
2969
25fe55af
RS
2970 case '\n':
2971 if (syntax & RE_NEWLINE_ALT)
2972 goto handle_alt;
2973 else
2974 goto normal_char;
e318085a
RS
2975
2976
b18215fc 2977 case '|':
25fe55af
RS
2978 if (syntax & RE_NO_BK_VBAR)
2979 goto handle_alt;
2980 else
2981 goto normal_char;
2982
2983
2984 case '{':
2985 if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES)
2986 goto handle_interval;
2987 else
2988 goto normal_char;
2989
2990
2991 case '\\':
2992 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2993
2994 /* Do not translate the character after the \, so that we can
2995 distinguish, e.g., \B from \b, even if we normally would
2996 translate, e.g., B to b. */
36595814 2997 PATFETCH (c);
25fe55af
RS
2998
2999 switch (c)
3000 {
3001 case '(':
3002 if (syntax & RE_NO_BK_PARENS)
3003 goto normal_backslash;
3004
3005 handle_open:
505bde11
SM
3006 {
3007 int shy = 0;
3008 if (p+1 < pend)
3009 {
3010 /* Look for a special (?...) construct */
ed0767d8 3011 if ((syntax & RE_SHY_GROUPS) && *p == '?')
505bde11 3012 {
ed0767d8 3013 PATFETCH (c); /* Gobble up the '?'. */
505bde11
SM
3014 PATFETCH (c);
3015 switch (c)
3016 {
3017 case ':': shy = 1; break;
3018 default:
3019 /* Only (?:...) is supported right now. */
3020 FREE_STACK_RETURN (REG_BADPAT);
3021 }
3022 }
505bde11
SM
3023 }
3024
3025 if (!shy)
3026 {
3027 bufp->re_nsub++;
3028 regnum++;
3029 }
25fe55af 3030
99633e97
SM
3031 if (COMPILE_STACK_FULL)
3032 {
3033 RETALLOC (compile_stack.stack, compile_stack.size << 1,
3034 compile_stack_elt_t);
3035 if (compile_stack.stack == NULL) return REG_ESPACE;
25fe55af 3036
99633e97
SM
3037 compile_stack.size <<= 1;
3038 }
25fe55af 3039
99633e97
SM
3040 /* These are the values to restore when we hit end of this
3041 group. They are all relative offsets, so that if the
3042 whole pattern moves because of realloc, they will still
3043 be valid. */
3044 COMPILE_STACK_TOP.begalt_offset = begalt - bufp->buffer;
3045 COMPILE_STACK_TOP.fixup_alt_jump
3046 = fixup_alt_jump ? fixup_alt_jump - bufp->buffer + 1 : 0;
3047 COMPILE_STACK_TOP.laststart_offset = b - bufp->buffer;
3048 COMPILE_STACK_TOP.regnum = shy ? -regnum : regnum;
3049
3050 /* Do not push a
3051 start_memory for groups beyond the last one we can
3052 represent in the compiled pattern. */
3053 if (regnum <= MAX_REGNUM && !shy)
3054 BUF_PUSH_2 (start_memory, regnum);
3055
3056 compile_stack.avail++;
3057
3058 fixup_alt_jump = 0;
3059 laststart = 0;
3060 begalt = b;
3061 /* If we've reached MAX_REGNUM groups, then this open
3062 won't actually generate any code, so we'll have to
3063 clear pending_exact explicitly. */
3064 pending_exact = 0;
3065 break;
505bde11 3066 }
25fe55af
RS
3067
3068 case ')':
3069 if (syntax & RE_NO_BK_PARENS) goto normal_backslash;
3070
3071 if (COMPILE_STACK_EMPTY)
505bde11
SM
3072 {
3073 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
3074 goto normal_backslash;
3075 else
3076 FREE_STACK_RETURN (REG_ERPAREN);
3077 }
25fe55af
RS
3078
3079 handle_close:
505bde11 3080 FIXUP_ALT_JUMP ();
25fe55af
RS
3081
3082 /* See similar code for backslashed left paren above. */
3083 if (COMPILE_STACK_EMPTY)
505bde11
SM
3084 {
3085 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
3086 goto normal_char;
3087 else
3088 FREE_STACK_RETURN (REG_ERPAREN);
3089 }
25fe55af
RS
3090
3091 /* Since we just checked for an empty stack above, this
3092 ``can't happen''. */
3093 assert (compile_stack.avail != 0);
3094 {
3095 /* We don't just want to restore into `regnum', because
3096 later groups should continue to be numbered higher,
3097 as in `(ab)c(de)' -- the second group is #2. */
3098 regnum_t this_group_regnum;
3099
3100 compile_stack.avail--;
3101 begalt = bufp->buffer + COMPILE_STACK_TOP.begalt_offset;
3102 fixup_alt_jump
3103 = COMPILE_STACK_TOP.fixup_alt_jump
3104 ? bufp->buffer + COMPILE_STACK_TOP.fixup_alt_jump - 1
3105 : 0;
3106 laststart = bufp->buffer + COMPILE_STACK_TOP.laststart_offset;
3107 this_group_regnum = COMPILE_STACK_TOP.regnum;
b18215fc
RS
3108 /* If we've reached MAX_REGNUM groups, then this open
3109 won't actually generate any code, so we'll have to
3110 clear pending_exact explicitly. */
3111 pending_exact = 0;
e318085a 3112
25fe55af
RS
3113 /* We're at the end of the group, so now we know how many
3114 groups were inside this one. */
505bde11
SM
3115 if (this_group_regnum <= MAX_REGNUM && this_group_regnum > 0)
3116 BUF_PUSH_2 (stop_memory, this_group_regnum);
25fe55af
RS
3117 }
3118 break;
3119
3120
3121 case '|': /* `\|'. */
3122 if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR)
3123 goto normal_backslash;
3124 handle_alt:
3125 if (syntax & RE_LIMITED_OPS)
3126 goto normal_char;
3127
3128 /* Insert before the previous alternative a jump which
3129 jumps to this alternative if the former fails. */
3130 GET_BUFFER_SPACE (3);
3131 INSERT_JUMP (on_failure_jump, begalt, b + 6);
3132 pending_exact = 0;
3133 b += 3;
3134
3135 /* The alternative before this one has a jump after it
3136 which gets executed if it gets matched. Adjust that
3137 jump so it will jump to this alternative's analogous
3138 jump (put in below, which in turn will jump to the next
3139 (if any) alternative's such jump, etc.). The last such
3140 jump jumps to the correct final destination. A picture:
3141 _____ _____
3142 | | | |
3143 | v | v
3144 a | b | c
3145
3146 If we are at `b', then fixup_alt_jump right now points to a
3147 three-byte space after `a'. We'll put in the jump, set
3148 fixup_alt_jump to right after `b', and leave behind three
3149 bytes which we'll fill in when we get to after `c'. */
3150
505bde11 3151 FIXUP_ALT_JUMP ();
25fe55af
RS
3152
3153 /* Mark and leave space for a jump after this alternative,
3154 to be filled in later either by next alternative or
3155 when know we're at the end of a series of alternatives. */
3156 fixup_alt_jump = b;
3157 GET_BUFFER_SPACE (3);
3158 b += 3;
3159
3160 laststart = 0;
3161 begalt = b;
3162 break;
3163
3164
3165 case '{':
3166 /* If \{ is a literal. */
3167 if (!(syntax & RE_INTERVALS)
3168 /* If we're at `\{' and it's not the open-interval
3169 operator. */
4bb91c68 3170 || (syntax & RE_NO_BK_BRACES))
25fe55af
RS
3171 goto normal_backslash;
3172
3173 handle_interval:
3174 {
3175 /* If got here, then the syntax allows intervals. */
3176
3177 /* At least (most) this many matches must be made. */
99633e97 3178 int lower_bound = 0, upper_bound = -1;
25fe55af 3179
ed0767d8 3180 beg_interval = p;
25fe55af
RS
3181
3182 if (p == pend)
4bb91c68 3183 FREE_STACK_RETURN (REG_EBRACE);
25fe55af
RS
3184
3185 GET_UNSIGNED_NUMBER (lower_bound);
3186
3187 if (c == ',')
ed0767d8 3188 GET_UNSIGNED_NUMBER (upper_bound);
25fe55af
RS
3189 else
3190 /* Interval such as `{1}' => match exactly once. */
3191 upper_bound = lower_bound;
3192
3193 if (lower_bound < 0 || upper_bound > RE_DUP_MAX
ed0767d8 3194 || (upper_bound >= 0 && lower_bound > upper_bound))
4bb91c68 3195 FREE_STACK_RETURN (REG_BADBR);
25fe55af
RS
3196
3197 if (!(syntax & RE_NO_BK_BRACES))
3198 {
4bb91c68
SM
3199 if (c != '\\')
3200 FREE_STACK_RETURN (REG_BADBR);
25fe55af
RS
3201
3202 PATFETCH (c);
3203 }
3204
3205 if (c != '}')
4bb91c68 3206 FREE_STACK_RETURN (REG_BADBR);
25fe55af
RS
3207
3208 /* We just parsed a valid interval. */
3209
3210 /* If it's invalid to have no preceding re. */
3211 if (!laststart)
3212 {
3213 if (syntax & RE_CONTEXT_INVALID_OPS)
3214 FREE_STACK_RETURN (REG_BADRPT);
3215 else if (syntax & RE_CONTEXT_INDEP_OPS)
3216 laststart = b;
3217 else
3218 goto unfetch_interval;
3219 }
3220
6df42991
SM
3221 if (upper_bound == 0)
3222 /* If the upper bound is zero, just drop the sub pattern
3223 altogether. */
3224 b = laststart;
3225 else if (lower_bound == 1 && upper_bound == 1)
3226 /* Just match it once: nothing to do here. */
3227 ;
3228
3229 /* Otherwise, we have a nontrivial interval. When
3230 we're all done, the pattern will look like:
3231 set_number_at <jump count> <upper bound>
3232 set_number_at <succeed_n count> <lower bound>
3233 succeed_n <after jump addr> <succeed_n count>
3234 <body of loop>
3235 jump_n <succeed_n addr> <jump count>
3236 (The upper bound and `jump_n' are omitted if
3237 `upper_bound' is 1, though.) */
3238 else
3239 { /* If the upper bound is > 1, we need to insert
3240 more at the end of the loop. */
3241 unsigned int nbytes = (upper_bound < 0 ? 3
3242 : upper_bound > 1 ? 5 : 0);
3243 unsigned int startoffset = 0;
3244
3245 GET_BUFFER_SPACE (20); /* We might use less. */
3246
3247 if (lower_bound == 0)
3248 {
3249 /* A succeed_n that starts with 0 is really a
3250 a simple on_failure_jump_loop. */
3251 INSERT_JUMP (on_failure_jump_loop, laststart,
3252 b + 3 + nbytes);
3253 b += 3;
3254 }
3255 else
3256 {
3257 /* Initialize lower bound of the `succeed_n', even
3258 though it will be set during matching by its
3259 attendant `set_number_at' (inserted next),
3260 because `re_compile_fastmap' needs to know.
3261 Jump to the `jump_n' we might insert below. */
3262 INSERT_JUMP2 (succeed_n, laststart,
3263 b + 5 + nbytes,
3264 lower_bound);
3265 b += 5;
3266
3267 /* Code to initialize the lower bound. Insert
3268 before the `succeed_n'. The `5' is the last two
3269 bytes of this `set_number_at', plus 3 bytes of
3270 the following `succeed_n'. */
3271 insert_op2 (set_number_at, laststart, 5, lower_bound, b);
3272 b += 5;
3273 startoffset += 5;
3274 }
3275
3276 if (upper_bound < 0)
3277 {
3278 /* A negative upper bound stands for infinity,
3279 in which case it degenerates to a plain jump. */
3280 STORE_JUMP (jump, b, laststart + startoffset);
3281 b += 3;
3282 }
3283 else if (upper_bound > 1)
3284 { /* More than one repetition is allowed, so
3285 append a backward jump to the `succeed_n'
3286 that starts this interval.
3287
3288 When we've reached this during matching,
3289 we'll have matched the interval once, so
3290 jump back only `upper_bound - 1' times. */
3291 STORE_JUMP2 (jump_n, b, laststart + startoffset,
3292 upper_bound - 1);
3293 b += 5;
3294
3295 /* The location we want to set is the second
3296 parameter of the `jump_n'; that is `b-2' as
3297 an absolute address. `laststart' will be
3298 the `set_number_at' we're about to insert;
3299 `laststart+3' the number to set, the source
3300 for the relative address. But we are
3301 inserting into the middle of the pattern --
3302 so everything is getting moved up by 5.
3303 Conclusion: (b - 2) - (laststart + 3) + 5,
3304 i.e., b - laststart.
3305
3306 We insert this at the beginning of the loop
3307 so that if we fail during matching, we'll
3308 reinitialize the bounds. */
3309 insert_op2 (set_number_at, laststart, b - laststart,
3310 upper_bound - 1, b);
3311 b += 5;
3312 }
3313 }
25fe55af
RS
3314 pending_exact = 0;
3315 beg_interval = NULL;
3316 }
3317 break;
3318
3319 unfetch_interval:
3320 /* If an invalid interval, match the characters as literals. */
3321 assert (beg_interval);
3322 p = beg_interval;
3323 beg_interval = NULL;
3324
3325 /* normal_char and normal_backslash need `c'. */
ed0767d8 3326 c = '{';
25fe55af
RS
3327
3328 if (!(syntax & RE_NO_BK_BRACES))
3329 {
ed0767d8
SM
3330 assert (p > pattern && p[-1] == '\\');
3331 goto normal_backslash;
25fe55af 3332 }
ed0767d8
SM
3333 else
3334 goto normal_char;
e318085a 3335
b18215fc 3336#ifdef emacs
25fe55af
RS
3337 /* There is no way to specify the before_dot and after_dot
3338 operators. rms says this is ok. --karl */
3339 case '=':
3340 BUF_PUSH (at_dot);
3341 break;
3342
3343 case 's':
3344 laststart = b;
3345 PATFETCH (c);
3346 BUF_PUSH_2 (syntaxspec, syntax_spec_code[c]);
3347 break;
3348
3349 case 'S':
3350 laststart = b;
3351 PATFETCH (c);
3352 BUF_PUSH_2 (notsyntaxspec, syntax_spec_code[c]);
3353 break;
b18215fc
RS
3354
3355 case 'c':
3356 laststart = b;
36595814 3357 PATFETCH (c);
b18215fc
RS
3358 BUF_PUSH_2 (categoryspec, c);
3359 break;
e318085a 3360
b18215fc
RS
3361 case 'C':
3362 laststart = b;
36595814 3363 PATFETCH (c);
b18215fc
RS
3364 BUF_PUSH_2 (notcategoryspec, c);
3365 break;
3366#endif /* emacs */
e318085a 3367
e318085a 3368
25fe55af 3369 case 'w':
4bb91c68
SM
3370 if (syntax & RE_NO_GNU_OPS)
3371 goto normal_char;
25fe55af 3372 laststart = b;
1fb352e0 3373 BUF_PUSH_2 (syntaxspec, Sword);
25fe55af 3374 break;
e318085a 3375
e318085a 3376
25fe55af 3377 case 'W':
4bb91c68
SM
3378 if (syntax & RE_NO_GNU_OPS)
3379 goto normal_char;
25fe55af 3380 laststart = b;
1fb352e0 3381 BUF_PUSH_2 (notsyntaxspec, Sword);
25fe55af 3382 break;
e318085a
RS
3383
3384
25fe55af 3385 case '<':
4bb91c68
SM
3386 if (syntax & RE_NO_GNU_OPS)
3387 goto normal_char;
25fe55af
RS
3388 BUF_PUSH (wordbeg);
3389 break;
e318085a 3390
25fe55af 3391 case '>':
4bb91c68
SM
3392 if (syntax & RE_NO_GNU_OPS)
3393 goto normal_char;
25fe55af
RS
3394 BUF_PUSH (wordend);
3395 break;
e318085a 3396
25fe55af 3397 case 'b':
4bb91c68
SM
3398 if (syntax & RE_NO_GNU_OPS)
3399 goto normal_char;
25fe55af
RS
3400 BUF_PUSH (wordbound);
3401 break;
e318085a 3402
25fe55af 3403 case 'B':
4bb91c68
SM
3404 if (syntax & RE_NO_GNU_OPS)
3405 goto normal_char;
25fe55af
RS
3406 BUF_PUSH (notwordbound);
3407 break;
fa9a63c5 3408
25fe55af 3409 case '`':
4bb91c68
SM
3410 if (syntax & RE_NO_GNU_OPS)
3411 goto normal_char;
25fe55af
RS
3412 BUF_PUSH (begbuf);
3413 break;
e318085a 3414
25fe55af 3415 case '\'':
4bb91c68
SM
3416 if (syntax & RE_NO_GNU_OPS)
3417 goto normal_char;
25fe55af
RS
3418 BUF_PUSH (endbuf);
3419 break;
e318085a 3420
25fe55af
RS
3421 case '1': case '2': case '3': case '4': case '5':
3422 case '6': case '7': case '8': case '9':
0cdd06f8
SM
3423 {
3424 regnum_t reg;
e318085a 3425
0cdd06f8
SM
3426 if (syntax & RE_NO_BK_REFS)
3427 goto normal_backslash;
e318085a 3428
0cdd06f8 3429 reg = c - '0';
e318085a 3430
0cdd06f8
SM
3431 /* Can't back reference to a subexpression before its end. */
3432 if (reg > regnum || group_in_compile_stack (compile_stack, reg))
3433 FREE_STACK_RETURN (REG_ESUBREG);
e318085a 3434
0cdd06f8
SM
3435 laststart = b;
3436 BUF_PUSH_2 (duplicate, reg);
3437 }
25fe55af 3438 break;
e318085a 3439
e318085a 3440
25fe55af
RS
3441 case '+':
3442 case '?':
3443 if (syntax & RE_BK_PLUS_QM)
3444 goto handle_plus;
3445 else
3446 goto normal_backslash;
3447
3448 default:
3449 normal_backslash:
3450 /* You might think it would be useful for \ to mean
3451 not to translate; but if we don't translate it
4bb91c68 3452 it will never match anything. */
25fe55af
RS
3453 goto normal_char;
3454 }
3455 break;
fa9a63c5
RM
3456
3457
3458 default:
25fe55af 3459 /* Expects the character in `c'. */
fa9a63c5 3460 normal_char:
36595814 3461 /* If no exactn currently being built. */
25fe55af 3462 if (!pending_exact
fa9a63c5 3463
25fe55af
RS
3464 /* If last exactn not at current position. */
3465 || pending_exact + *pending_exact + 1 != b
5e69f11e 3466
25fe55af 3467 /* We have only one byte following the exactn for the count. */
2d1675e4 3468 || *pending_exact >= (1 << BYTEWIDTH) - MAX_MULTIBYTE_LENGTH
fa9a63c5 3469
25fe55af 3470 /* If followed by a repetition operator. */
9d99031f 3471 || (p != pend && (*p == '*' || *p == '^'))
fa9a63c5 3472 || ((syntax & RE_BK_PLUS_QM)
9d99031f
RS
3473 ? p + 1 < pend && *p == '\\' && (p[1] == '+' || p[1] == '?')
3474 : p != pend && (*p == '+' || *p == '?'))
fa9a63c5 3475 || ((syntax & RE_INTERVALS)
25fe55af 3476 && ((syntax & RE_NO_BK_BRACES)
9d99031f
RS
3477 ? p != pend && *p == '{'
3478 : p + 1 < pend && p[0] == '\\' && p[1] == '{')))
fa9a63c5
RM
3479 {
3480 /* Start building a new exactn. */
5e69f11e 3481
25fe55af 3482 laststart = b;
fa9a63c5
RM
3483
3484 BUF_PUSH_2 (exactn, 0);
3485 pending_exact = b - 1;
25fe55af 3486 }
5e69f11e 3487
2d1675e4
SM
3488 GET_BUFFER_SPACE (MAX_MULTIBYTE_LENGTH);
3489 {
e0277a47
KH
3490 int len;
3491
36595814 3492 c = TRANSLATE (c);
e0277a47
KH
3493 if (multibyte)
3494 len = CHAR_STRING (c, b);
3495 else
3496 *b = c, len = 1;
2d1675e4
SM
3497 b += len;
3498 (*pending_exact) += len;
3499 }
3500
fa9a63c5 3501 break;
25fe55af 3502 } /* switch (c) */
fa9a63c5
RM
3503 } /* while p != pend */
3504
5e69f11e 3505
fa9a63c5 3506 /* Through the pattern now. */
5e69f11e 3507
505bde11 3508 FIXUP_ALT_JUMP ();
fa9a63c5 3509
5e69f11e 3510 if (!COMPILE_STACK_EMPTY)
fa9a63c5
RM
3511 FREE_STACK_RETURN (REG_EPAREN);
3512
3513 /* If we don't want backtracking, force success
3514 the first time we reach the end of the compiled pattern. */
3515 if (syntax & RE_NO_POSIX_BACKTRACKING)
3516 BUF_PUSH (succeed);
3517
3518 free (compile_stack.stack);
3519
3520 /* We have succeeded; set the length of the buffer. */
3521 bufp->used = b - bufp->buffer;
3522
3523#ifdef DEBUG
99633e97 3524 if (debug > 0)
fa9a63c5 3525 {
505bde11 3526 re_compile_fastmap (bufp);
fa9a63c5
RM
3527 DEBUG_PRINT1 ("\nCompiled pattern: \n");
3528 print_compiled_pattern (bufp);
3529 }
99633e97 3530 debug--;
fa9a63c5
RM
3531#endif /* DEBUG */
3532
3533#ifndef MATCH_MAY_ALLOCATE
3534 /* Initialize the failure stack to the largest possible stack. This
3535 isn't necessary unless we're trying to avoid calling alloca in
3536 the search and match routines. */
3537 {
3538 int num_regs = bufp->re_nsub + 1;
3539
320a2a73 3540 if (fail_stack.size < re_max_failures * TYPICAL_FAILURE_SIZE)
fa9a63c5 3541 {
a26f4ccd 3542 fail_stack.size = re_max_failures * TYPICAL_FAILURE_SIZE;
fa9a63c5 3543
fa9a63c5
RM
3544 if (! fail_stack.stack)
3545 fail_stack.stack
5e69f11e 3546 = (fail_stack_elt_t *) malloc (fail_stack.size
fa9a63c5
RM
3547 * sizeof (fail_stack_elt_t));
3548 else
3549 fail_stack.stack
3550 = (fail_stack_elt_t *) realloc (fail_stack.stack,
3551 (fail_stack.size
3552 * sizeof (fail_stack_elt_t)));
fa9a63c5
RM
3553 }
3554
3555 regex_grow_registers (num_regs);
3556 }
3557#endif /* not MATCH_MAY_ALLOCATE */
3558
3559 return REG_NOERROR;
3560} /* regex_compile */
3561\f
3562/* Subroutines for `regex_compile'. */
3563
25fe55af 3564/* Store OP at LOC followed by two-byte integer parameter ARG. */
fa9a63c5
RM
3565
3566static void
3567store_op1 (op, loc, arg)
3568 re_opcode_t op;
3569 unsigned char *loc;
3570 int arg;
3571{
3572 *loc = (unsigned char) op;
3573 STORE_NUMBER (loc + 1, arg);
3574}
3575
3576
3577/* Like `store_op1', but for two two-byte parameters ARG1 and ARG2. */
3578
3579static void
3580store_op2 (op, loc, arg1, arg2)
3581 re_opcode_t op;
3582 unsigned char *loc;
3583 int arg1, arg2;
3584{
3585 *loc = (unsigned char) op;
3586 STORE_NUMBER (loc + 1, arg1);
3587 STORE_NUMBER (loc + 3, arg2);
3588}
3589
3590
3591/* Copy the bytes from LOC to END to open up three bytes of space at LOC
3592 for OP followed by two-byte integer parameter ARG. */
3593
3594static void
3595insert_op1 (op, loc, arg, end)
3596 re_opcode_t op;
3597 unsigned char *loc;
3598 int arg;
5e69f11e 3599 unsigned char *end;
fa9a63c5
RM
3600{
3601 register unsigned char *pfrom = end;
3602 register unsigned char *pto = end + 3;
3603
3604 while (pfrom != loc)
3605 *--pto = *--pfrom;
5e69f11e 3606
fa9a63c5
RM
3607 store_op1 (op, loc, arg);
3608}
3609
3610
3611/* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2. */
3612
3613static void
3614insert_op2 (op, loc, arg1, arg2, end)
3615 re_opcode_t op;
3616 unsigned char *loc;
3617 int arg1, arg2;
5e69f11e 3618 unsigned char *end;
fa9a63c5
RM
3619{
3620 register unsigned char *pfrom = end;
3621 register unsigned char *pto = end + 5;
3622
3623 while (pfrom != loc)
3624 *--pto = *--pfrom;
5e69f11e 3625
fa9a63c5
RM
3626 store_op2 (op, loc, arg1, arg2);
3627}
3628
3629
3630/* P points to just after a ^ in PATTERN. Return true if that ^ comes
3631 after an alternative or a begin-subexpression. We assume there is at
3632 least one character before the ^. */
3633
3634static boolean
3635at_begline_loc_p (pattern, p, syntax)
01618498 3636 re_char *pattern, *p;
fa9a63c5
RM
3637 reg_syntax_t syntax;
3638{
01618498 3639 re_char *prev = p - 2;
fa9a63c5 3640 boolean prev_prev_backslash = prev > pattern && prev[-1] == '\\';
5e69f11e 3641
fa9a63c5
RM
3642 return
3643 /* After a subexpression? */
3644 (*prev == '(' && (syntax & RE_NO_BK_PARENS || prev_prev_backslash))
25fe55af 3645 /* After an alternative? */
d2af47df
SM
3646 || (*prev == '|' && (syntax & RE_NO_BK_VBAR || prev_prev_backslash))
3647 /* After a shy subexpression? */
3648 || ((syntax & RE_SHY_GROUPS) && prev - 2 >= pattern
3649 && prev[-1] == '?' && prev[-2] == '('
3650 && (syntax & RE_NO_BK_PARENS
3651 || (prev - 3 >= pattern && prev[-3] == '\\')));
fa9a63c5
RM
3652}
3653
3654
3655/* The dual of at_begline_loc_p. This one is for $. We assume there is
3656 at least one character after the $, i.e., `P < PEND'. */
3657
3658static boolean
3659at_endline_loc_p (p, pend, syntax)
01618498 3660 re_char *p, *pend;
99633e97 3661 reg_syntax_t syntax;
fa9a63c5 3662{
01618498 3663 re_char *next = p;
fa9a63c5 3664 boolean next_backslash = *next == '\\';
01618498 3665 re_char *next_next = p + 1 < pend ? p + 1 : 0;
5e69f11e 3666
fa9a63c5
RM
3667 return
3668 /* Before a subexpression? */
3669 (syntax & RE_NO_BK_PARENS ? *next == ')'
25fe55af 3670 : next_backslash && next_next && *next_next == ')')
fa9a63c5
RM
3671 /* Before an alternative? */
3672 || (syntax & RE_NO_BK_VBAR ? *next == '|'
25fe55af 3673 : next_backslash && next_next && *next_next == '|');
fa9a63c5
RM
3674}
3675
3676
5e69f11e 3677/* Returns true if REGNUM is in one of COMPILE_STACK's elements and
fa9a63c5
RM
3678 false if it's not. */
3679
3680static boolean
3681group_in_compile_stack (compile_stack, regnum)
3682 compile_stack_type compile_stack;
3683 regnum_t regnum;
3684{
3685 int this_element;
3686
5e69f11e
RM
3687 for (this_element = compile_stack.avail - 1;
3688 this_element >= 0;
fa9a63c5
RM
3689 this_element--)
3690 if (compile_stack.stack[this_element].regnum == regnum)
3691 return true;
3692
3693 return false;
3694}
fa9a63c5 3695\f
f6a3f532
SM
3696/* analyse_first.
3697 If fastmap is non-NULL, go through the pattern and fill fastmap
3698 with all the possible leading chars. If fastmap is NULL, don't
3699 bother filling it up (obviously) and only return whether the
3700 pattern could potentially match the empty string.
3701
3702 Return 1 if p..pend might match the empty string.
3703 Return 0 if p..pend matches at least one char.
01618498 3704 Return -1 if fastmap was not updated accurately. */
f6a3f532
SM
3705
3706static int
3707analyse_first (p, pend, fastmap, multibyte)
01618498 3708 re_char *p, *pend;
f6a3f532
SM
3709 char *fastmap;
3710 const int multibyte;
fa9a63c5 3711{
505bde11 3712 int j, k;
1fb352e0 3713 boolean not;
fa9a63c5 3714
b18215fc 3715 /* If all elements for base leading-codes in fastmap is set, this
25fe55af 3716 flag is set true. */
b18215fc
RS
3717 boolean match_any_multibyte_characters = false;
3718
f6a3f532 3719 assert (p);
5e69f11e 3720
505bde11
SM
3721 /* The loop below works as follows:
3722 - It has a working-list kept in the PATTERN_STACK and which basically
3723 starts by only containing a pointer to the first operation.
3724 - If the opcode we're looking at is a match against some set of
3725 chars, then we add those chars to the fastmap and go on to the
3726 next work element from the worklist (done via `break').
3727 - If the opcode is a control operator on the other hand, we either
3728 ignore it (if it's meaningless at this point, such as `start_memory')
3729 or execute it (if it's a jump). If the jump has several destinations
3730 (i.e. `on_failure_jump'), then we push the other destination onto the
3731 worklist.
3732 We guarantee termination by ignoring backward jumps (more or less),
3733 so that `p' is monotonically increasing. More to the point, we
3734 never set `p' (or push) anything `<= p1'. */
3735
01618498 3736 while (p < pend)
fa9a63c5 3737 {
505bde11
SM
3738 /* `p1' is used as a marker of how far back a `on_failure_jump'
3739 can go without being ignored. It is normally equal to `p'
3740 (which prevents any backward `on_failure_jump') except right
3741 after a plain `jump', to allow patterns such as:
3742 0: jump 10
3743 3..9: <body>
3744 10: on_failure_jump 3
3745 as used for the *? operator. */
01618498 3746 re_char *p1 = p;
5e69f11e 3747
fa9a63c5
RM
3748 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
3749 {
f6a3f532 3750 case succeed:
01618498 3751 return 1;
f6a3f532 3752 continue;
fa9a63c5 3753
fa9a63c5 3754 case duplicate:
505bde11
SM
3755 /* If the first character has to match a backreference, that means
3756 that the group was empty (since it already matched). Since this
3757 is the only case that interests us here, we can assume that the
3758 backreference must match the empty string. */
3759 p++;
3760 continue;
fa9a63c5
RM
3761
3762
3763 /* Following are the cases which match a character. These end
25fe55af 3764 with `break'. */
fa9a63c5
RM
3765
3766 case exactn:
e0277a47
KH
3767 if (fastmap)
3768 {
3769 int c = RE_STRING_CHAR (p + 1, pend - p);
3770
3771 if (SINGLE_BYTE_CHAR_P (c))
3772 fastmap[c] = 1;
3773 else
3774 fastmap[p[1]] = 1;
3775 }
fa9a63c5
RM
3776 break;
3777
3778
1fb352e0
SM
3779 case anychar:
3780 /* We could put all the chars except for \n (and maybe \0)
3781 but we don't bother since it is generally not worth it. */
f6a3f532 3782 if (!fastmap) break;
01618498 3783 return -1;
fa9a63c5
RM
3784
3785
b18215fc 3786 case charset_not:
ba5c004d
RS
3787 /* Chars beyond end of bitmap are possible matches.
3788 All the single-byte codes can occur in multibyte buffers.
3789 So any that are not listed in the charset
3790 are possible matches, even in multibyte buffers. */
1fb352e0 3791 if (!fastmap) break;
b18215fc 3792 for (j = CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH;
1fb352e0 3793 j < (1 << BYTEWIDTH); j++)
b18215fc 3794 fastmap[j] = 1;
1fb352e0
SM
3795 /* Fallthrough */
3796 case charset:
3797 if (!fastmap) break;
3798 not = (re_opcode_t) *(p - 1) == charset_not;
b18215fc
RS
3799 for (j = CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH - 1, p++;
3800 j >= 0; j--)
1fb352e0 3801 if (!!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))) ^ not)
b18215fc
RS
3802 fastmap[j] = 1;
3803
1fb352e0
SM
3804 if ((not && multibyte)
3805 /* Any character set can possibly contain a character
3806 which doesn't match the specified set of characters. */
3807 || (CHARSET_RANGE_TABLE_EXISTS_P (&p[-2])
3808 && CHARSET_RANGE_TABLE_BITS (&p[-2]) != 0))
3809 /* If we can match a character class, we can match
3810 any character set. */
b18215fc
RS
3811 {
3812 set_fastmap_for_multibyte_characters:
3813 if (match_any_multibyte_characters == false)
3814 {
3815 for (j = 0x80; j < 0xA0; j++) /* XXX */
3816 if (BASE_LEADING_CODE_P (j))
3817 fastmap[j] = 1;
3818 match_any_multibyte_characters = true;
3819 }
3820 }
b18215fc 3821
1fb352e0
SM
3822 else if (!not && CHARSET_RANGE_TABLE_EXISTS_P (&p[-2])
3823 && match_any_multibyte_characters == false)
3824 {
3825 /* Set fastmap[I] 1 where I is a base leading code of each
3826 multibyte character in the range table. */
3827 int c, count;
b18215fc 3828
1fb352e0 3829 /* Make P points the range table. `+ 2' is to skip flag
0b32bf0e 3830 bits for a character class. */
1fb352e0 3831 p += CHARSET_BITMAP_SIZE (&p[-2]) + 2;
b18215fc 3832
1fb352e0
SM
3833 /* Extract the number of ranges in range table into COUNT. */
3834 EXTRACT_NUMBER_AND_INCR (count, p);
3835 for (; count > 0; count--, p += 2 * 3) /* XXX */
3836 {
3837 /* Extract the start of each range. */
3838 EXTRACT_CHARACTER (c, p);
3839 j = CHAR_CHARSET (c);
3840 fastmap[CHARSET_LEADING_CODE_BASE (j)] = 1;
3841 }
3842 }
b18215fc
RS
3843 break;
3844
1fb352e0
SM
3845 case syntaxspec:
3846 case notsyntaxspec:
3847 if (!fastmap) break;
3848#ifndef emacs
3849 not = (re_opcode_t)p[-1] == notsyntaxspec;
3850 k = *p++;
3851 for (j = 0; j < (1 << BYTEWIDTH); j++)
990b2375 3852 if ((SYNTAX (j) == (enum syntaxcode) k) ^ not)
b18215fc 3853 fastmap[j] = 1;
b18215fc 3854 break;
1fb352e0 3855#else /* emacs */
b18215fc
RS
3856 /* This match depends on text properties. These end with
3857 aborting optimizations. */
01618498 3858 return -1;
b18215fc
RS
3859
3860 case categoryspec:
b18215fc 3861 case notcategoryspec:
1fb352e0
SM
3862 if (!fastmap) break;
3863 not = (re_opcode_t)p[-1] == notcategoryspec;
b18215fc 3864 k = *p++;
1fb352e0
SM
3865 for (j = 0; j < (1 << BYTEWIDTH); j++)
3866 if ((CHAR_HAS_CATEGORY (j, k)) ^ not)
b18215fc
RS
3867 fastmap[j] = 1;
3868
1fb352e0 3869 if (multibyte)
b18215fc 3870 /* Any character set can possibly contain a character
1fb352e0 3871 whose category is K (or not). */
b18215fc
RS
3872 goto set_fastmap_for_multibyte_characters;
3873 break;
3874
fa9a63c5 3875 /* All cases after this match the empty string. These end with
25fe55af 3876 `continue'. */
fa9a63c5 3877
fa9a63c5
RM
3878 case before_dot:
3879 case at_dot:
3880 case after_dot:
1fb352e0 3881#endif /* !emacs */
25fe55af
RS
3882 case no_op:
3883 case begline:
3884 case endline:
fa9a63c5
RM
3885 case begbuf:
3886 case endbuf:
3887 case wordbound:
3888 case notwordbound:
3889 case wordbeg:
3890 case wordend:
25fe55af 3891 continue;
fa9a63c5
RM
3892
3893
fa9a63c5 3894 case jump:
25fe55af 3895 EXTRACT_NUMBER_AND_INCR (j, p);
505bde11
SM
3896 if (j < 0)
3897 /* Backward jumps can only go back to code that we've already
3898 visited. `re_compile' should make sure this is true. */
3899 break;
25fe55af 3900 p += j;
505bde11
SM
3901 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p))
3902 {
3903 case on_failure_jump:
3904 case on_failure_keep_string_jump:
505bde11 3905 case on_failure_jump_loop:
0683b6fa 3906 case on_failure_jump_nastyloop:
505bde11
SM
3907 case on_failure_jump_smart:
3908 p++;
3909 break;
3910 default:
3911 continue;
3912 };
3913 /* Keep `p1' to allow the `on_failure_jump' we are jumping to
3914 to jump back to "just after here". */
3915 /* Fallthrough */
fa9a63c5 3916
25fe55af
RS
3917 case on_failure_jump:
3918 case on_failure_keep_string_jump:
0683b6fa 3919 case on_failure_jump_nastyloop:
505bde11
SM
3920 case on_failure_jump_loop:
3921 case on_failure_jump_smart:
25fe55af 3922 EXTRACT_NUMBER_AND_INCR (j, p);
505bde11 3923 if (p + j <= p1)
ed0767d8 3924 ; /* Backward jump to be ignored. */
01618498
SM
3925 else
3926 { /* We have to look down both arms.
3927 We first go down the "straight" path so as to minimize
3928 stack usage when going through alternatives. */
3929 int r = analyse_first (p, pend, fastmap, multibyte);
3930 if (r) return r;
3931 p += j;
3932 }
25fe55af 3933 continue;
fa9a63c5
RM
3934
3935
ed0767d8
SM
3936 case jump_n:
3937 /* This code simply does not properly handle forward jump_n. */
3938 DEBUG_STATEMENT (EXTRACT_NUMBER (j, p); assert (j < 0));
3939 p += 4;
3940 /* jump_n can either jump or fall through. The (backward) jump
3941 case has already been handled, so we only need to look at the
3942 fallthrough case. */
3943 continue;
3944
fa9a63c5 3945 case succeed_n:
ed0767d8
SM
3946 /* If N == 0, it should be an on_failure_jump_loop instead. */
3947 DEBUG_STATEMENT (EXTRACT_NUMBER (j, p + 2); assert (j > 0));
3948 p += 4;
3949 /* We only care about one iteration of the loop, so we don't
3950 need to consider the case where this behaves like an
3951 on_failure_jump. */
25fe55af 3952 continue;
fa9a63c5
RM
3953
3954
3955 case set_number_at:
25fe55af
RS
3956 p += 4;
3957 continue;
fa9a63c5
RM
3958
3959
3960 case start_memory:
25fe55af 3961 case stop_memory:
505bde11 3962 p += 1;
fa9a63c5
RM
3963 continue;
3964
3965
3966 default:
25fe55af
RS
3967 abort (); /* We have listed all the cases. */
3968 } /* switch *p++ */
fa9a63c5
RM
3969
3970 /* Getting here means we have found the possible starting
25fe55af 3971 characters for one path of the pattern -- and that the empty
01618498
SM
3972 string does not match. We need not follow this path further. */
3973 return 0;
fa9a63c5
RM
3974 } /* while p */
3975
01618498
SM
3976 /* We reached the end without matching anything. */
3977 return 1;
3978
f6a3f532
SM
3979} /* analyse_first */
3980\f
3981/* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
3982 BUFP. A fastmap records which of the (1 << BYTEWIDTH) possible
3983 characters can start a string that matches the pattern. This fastmap
3984 is used by re_search to skip quickly over impossible starting points.
3985
3986 Character codes above (1 << BYTEWIDTH) are not represented in the
3987 fastmap, but the leading codes are represented. Thus, the fastmap
3988 indicates which character sets could start a match.
3989
3990 The caller must supply the address of a (1 << BYTEWIDTH)-byte data
3991 area as BUFP->fastmap.
3992
3993 We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
3994 the pattern buffer.
3995
3996 Returns 0 if we succeed, -2 if an internal error. */
3997
3998int
3999re_compile_fastmap (bufp)
4000 struct re_pattern_buffer *bufp;
4001{
4002 char *fastmap = bufp->fastmap;
4003 int analysis;
4004
4005 assert (fastmap && bufp->buffer);
4006
4007 bzero (fastmap, 1 << BYTEWIDTH); /* Assume nothing's valid. */
4008 bufp->fastmap_accurate = 1; /* It will be when we're done. */
4009
4010 analysis = analyse_first (bufp->buffer, bufp->buffer + bufp->used,
2d1675e4 4011 fastmap, RE_MULTIBYTE_P (bufp));
c0f9ea08 4012 bufp->can_be_null = (analysis != 0);
fa9a63c5
RM
4013 return 0;
4014} /* re_compile_fastmap */
4015\f
4016/* Set REGS to hold NUM_REGS registers, storing them in STARTS and
4017 ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use
4018 this memory for recording register information. STARTS and ENDS
4019 must be allocated using the malloc library routine, and must each
4020 be at least NUM_REGS * sizeof (regoff_t) bytes long.
4021
4022 If NUM_REGS == 0, then subsequent matches should allocate their own
4023 register data.
4024
4025 Unless this function is called, the first search or match using
4026 PATTERN_BUFFER will allocate its own register data, without
4027 freeing the old data. */
4028
4029void
4030re_set_registers (bufp, regs, num_regs, starts, ends)
4031 struct re_pattern_buffer *bufp;
4032 struct re_registers *regs;
4033 unsigned num_regs;
4034 regoff_t *starts, *ends;
4035{
4036 if (num_regs)
4037 {
4038 bufp->regs_allocated = REGS_REALLOCATE;
4039 regs->num_regs = num_regs;
4040 regs->start = starts;
4041 regs->end = ends;
4042 }
4043 else
4044 {
4045 bufp->regs_allocated = REGS_UNALLOCATED;
4046 regs->num_regs = 0;
4047 regs->start = regs->end = (regoff_t *) 0;
4048 }
4049}
c0f9ea08 4050WEAK_ALIAS (__re_set_registers, re_set_registers)
fa9a63c5 4051\f
25fe55af 4052/* Searching routines. */
fa9a63c5
RM
4053
4054/* Like re_search_2, below, but only one string is specified, and
4055 doesn't let you say where to stop matching. */
4056
4057int
4058re_search (bufp, string, size, startpos, range, regs)
4059 struct re_pattern_buffer *bufp;
4060 const char *string;
4061 int size, startpos, range;
4062 struct re_registers *regs;
4063{
5e69f11e 4064 return re_search_2 (bufp, NULL, 0, string, size, startpos, range,
fa9a63c5
RM
4065 regs, size);
4066}
c0f9ea08 4067WEAK_ALIAS (__re_search, re_search)
fa9a63c5 4068
70806df6
KH
4069/* Head address of virtual concatenation of string. */
4070#define HEAD_ADDR_VSTRING(P) \
4071 (((P) >= size1 ? string2 : string1))
4072
b18215fc
RS
4073/* End address of virtual concatenation of string. */
4074#define STOP_ADDR_VSTRING(P) \
4075 (((P) >= size1 ? string2 + size2 : string1 + size1))
4076
4077/* Address of POS in the concatenation of virtual string. */
4078#define POS_ADDR_VSTRING(POS) \
4079 (((POS) >= size1 ? string2 - size1 : string1) + (POS))
fa9a63c5
RM
4080
4081/* Using the compiled pattern in BUFP->buffer, first tries to match the
4082 virtual concatenation of STRING1 and STRING2, starting first at index
4083 STARTPOS, then at STARTPOS + 1, and so on.
5e69f11e 4084
fa9a63c5 4085 STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
5e69f11e 4086
fa9a63c5
RM
4087 RANGE is how far to scan while trying to match. RANGE = 0 means try
4088 only at STARTPOS; in general, the last start tried is STARTPOS +
4089 RANGE.
5e69f11e 4090
fa9a63c5
RM
4091 In REGS, return the indices of the virtual concatenation of STRING1
4092 and STRING2 that matched the entire BUFP->buffer and its contained
4093 subexpressions.
5e69f11e 4094
fa9a63c5
RM
4095 Do not consider matching one past the index STOP in the virtual
4096 concatenation of STRING1 and STRING2.
4097
4098 We return either the position in the strings at which the match was
4099 found, -1 if no match, or -2 if error (such as failure
4100 stack overflow). */
4101
4102int
66f0296e 4103re_search_2 (bufp, str1, size1, str2, size2, startpos, range, regs, stop)
fa9a63c5 4104 struct re_pattern_buffer *bufp;
66f0296e 4105 const char *str1, *str2;
fa9a63c5
RM
4106 int size1, size2;
4107 int startpos;
4108 int range;
4109 struct re_registers *regs;
4110 int stop;
4111{
4112 int val;
66f0296e
SM
4113 re_char *string1 = (re_char*) str1;
4114 re_char *string2 = (re_char*) str2;
fa9a63c5 4115 register char *fastmap = bufp->fastmap;
6676cb1c 4116 register RE_TRANSLATE_TYPE translate = bufp->translate;
fa9a63c5
RM
4117 int total_size = size1 + size2;
4118 int endpos = startpos + range;
c0f9ea08 4119 boolean anchored_start;
fa9a63c5 4120
25fe55af 4121 /* Nonzero if we have to concern multibyte character. */
2d1675e4 4122 const boolean multibyte = RE_MULTIBYTE_P (bufp);
b18215fc 4123
fa9a63c5
RM
4124 /* Check for out-of-range STARTPOS. */
4125 if (startpos < 0 || startpos > total_size)
4126 return -1;
5e69f11e 4127
fa9a63c5 4128 /* Fix up RANGE if it might eventually take us outside
34597fa9 4129 the virtual concatenation of STRING1 and STRING2.
5e69f11e 4130 Make sure we won't move STARTPOS below 0 or above TOTAL_SIZE. */
34597fa9
RS
4131 if (endpos < 0)
4132 range = 0 - startpos;
fa9a63c5
RM
4133 else if (endpos > total_size)
4134 range = total_size - startpos;
4135
4136 /* If the search isn't to be a backwards one, don't waste time in a
7b140fd7 4137 search for a pattern anchored at beginning of buffer. */
fa9a63c5
RM
4138 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == begbuf && range > 0)
4139 {
4140 if (startpos > 0)
4141 return -1;
4142 else
7b140fd7 4143 range = 0;
fa9a63c5
RM
4144 }
4145
ae4788a8
RS
4146#ifdef emacs
4147 /* In a forward search for something that starts with \=.
4148 don't keep searching past point. */
4149 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == at_dot && range > 0)
4150 {
7b140fd7
RS
4151 range = PT_BYTE - BEGV_BYTE - startpos;
4152 if (range < 0)
ae4788a8
RS
4153 return -1;
4154 }
4155#endif /* emacs */
4156
fa9a63c5
RM
4157 /* Update the fastmap now if not correct already. */
4158 if (fastmap && !bufp->fastmap_accurate)
01618498 4159 re_compile_fastmap (bufp);
5e69f11e 4160
c8499ba5 4161 /* See whether the pattern is anchored. */
c0f9ea08 4162 anchored_start = (bufp->buffer[0] == begline);
c8499ba5 4163
b18215fc 4164#ifdef emacs
cc9b4df2
KH
4165 gl_state.object = re_match_object;
4166 {
99633e97 4167 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (POS_AS_IN_BUFFER (startpos));
cc9b4df2
KH
4168
4169 SETUP_SYNTAX_TABLE_FOR_OBJECT (re_match_object, charpos, 1);
4170 }
b18215fc
RS
4171#endif
4172
fa9a63c5
RM
4173 /* Loop through the string, looking for a place to start matching. */
4174 for (;;)
5e69f11e 4175 {
c8499ba5
RS
4176 /* If the pattern is anchored,
4177 skip quickly past places we cannot match.
4178 We don't bother to treat startpos == 0 specially
4179 because that case doesn't repeat. */
4180 if (anchored_start && startpos > 0)
4181 {
c0f9ea08
SM
4182 if (! ((startpos <= size1 ? string1[startpos - 1]
4183 : string2[startpos - size1 - 1])
4184 == '\n'))
c8499ba5
RS
4185 goto advance;
4186 }
4187
fa9a63c5 4188 /* If a fastmap is supplied, skip quickly over characters that
25fe55af
RS
4189 cannot be the start of a match. If the pattern can match the
4190 null string, however, we don't need to skip characters; we want
4191 the first null string. */
fa9a63c5
RM
4192 if (fastmap && startpos < total_size && !bufp->can_be_null)
4193 {
66f0296e 4194 register re_char *d;
01618498 4195 register re_wchar_t buf_ch;
e934739e
RS
4196
4197 d = POS_ADDR_VSTRING (startpos);
4198
25fe55af 4199 if (range > 0) /* Searching forwards. */
fa9a63c5 4200 {
fa9a63c5
RM
4201 register int lim = 0;
4202 int irange = range;
4203
25fe55af
RS
4204 if (startpos < size1 && startpos + range >= size1)
4205 lim = range - (size1 - startpos);
fa9a63c5 4206
25fe55af
RS
4207 /* Written out as an if-else to avoid testing `translate'
4208 inside the loop. */
28ae27ae
AS
4209 if (RE_TRANSLATE_P (translate))
4210 {
e934739e
RS
4211 if (multibyte)
4212 while (range > lim)
4213 {
4214 int buf_charlen;
4215
4216 buf_ch = STRING_CHAR_AND_LENGTH (d, range - lim,
4217 buf_charlen);
4218
4219 buf_ch = RE_TRANSLATE (translate, buf_ch);
4220 if (buf_ch >= 0400
4221 || fastmap[buf_ch])
4222 break;
4223
4224 range -= buf_charlen;
4225 d += buf_charlen;
4226 }
4227 else
4228 while (range > lim
66f0296e 4229 && !fastmap[RE_TRANSLATE (translate, *d)])
33c46939
RS
4230 {
4231 d++;
4232 range--;
4233 }
e934739e 4234 }
fa9a63c5 4235 else
66f0296e 4236 while (range > lim && !fastmap[*d])
33c46939
RS
4237 {
4238 d++;
4239 range--;
4240 }
fa9a63c5
RM
4241
4242 startpos += irange - range;
4243 }
25fe55af 4244 else /* Searching backwards. */
fa9a63c5 4245 {
2d1675e4
SM
4246 int room = (startpos >= size1
4247 ? size2 + size1 - startpos
4248 : size1 - startpos);
4249 buf_ch = RE_STRING_CHAR (d, room);
4250 buf_ch = TRANSLATE (buf_ch);
fa9a63c5 4251
e934739e
RS
4252 if (! (buf_ch >= 0400
4253 || fastmap[buf_ch]))
fa9a63c5
RM
4254 goto advance;
4255 }
4256 }
4257
4258 /* If can't match the null string, and that's all we have left, fail. */
4259 if (range >= 0 && startpos == total_size && fastmap
25fe55af 4260 && !bufp->can_be_null)
fa9a63c5
RM
4261 return -1;
4262
4263 val = re_match_2_internal (bufp, string1, size1, string2, size2,
4264 startpos, regs, stop);
4265#ifndef REGEX_MALLOC
0b32bf0e 4266# ifdef C_ALLOCA
fa9a63c5 4267 alloca (0);
0b32bf0e 4268# endif
fa9a63c5
RM
4269#endif
4270
4271 if (val >= 0)
4272 return startpos;
5e69f11e 4273
fa9a63c5
RM
4274 if (val == -2)
4275 return -2;
4276
4277 advance:
5e69f11e 4278 if (!range)
25fe55af 4279 break;
5e69f11e 4280 else if (range > 0)
25fe55af 4281 {
b18215fc
RS
4282 /* Update STARTPOS to the next character boundary. */
4283 if (multibyte)
4284 {
66f0296e
SM
4285 re_char *p = POS_ADDR_VSTRING (startpos);
4286 re_char *pend = STOP_ADDR_VSTRING (startpos);
b18215fc
RS
4287 int len = MULTIBYTE_FORM_LENGTH (p, pend - p);
4288
4289 range -= len;
4290 if (range < 0)
4291 break;
4292 startpos += len;
4293 }
4294 else
4295 {
b560c397
RS
4296 range--;
4297 startpos++;
4298 }
e318085a 4299 }
fa9a63c5 4300 else
25fe55af
RS
4301 {
4302 range++;
4303 startpos--;
b18215fc
RS
4304
4305 /* Update STARTPOS to the previous character boundary. */
4306 if (multibyte)
4307 {
70806df6
KH
4308 re_char *p = POS_ADDR_VSTRING (startpos) + 1;
4309 re_char *p0 = p;
4310 re_char *phead = HEAD_ADDR_VSTRING (startpos);
b18215fc
RS
4311
4312 /* Find the head of multibyte form. */
70806df6
KH
4313 PREV_CHAR_BOUNDARY (p, phead);
4314 range += p0 - 1 - p;
4315 if (range > 0)
4316 break;
b18215fc 4317
70806df6 4318 startpos -= p0 - 1 - p;
b18215fc 4319 }
25fe55af 4320 }
fa9a63c5
RM
4321 }
4322 return -1;
4323} /* re_search_2 */
c0f9ea08 4324WEAK_ALIAS (__re_search_2, re_search_2)
fa9a63c5
RM
4325\f
4326/* Declarations and macros for re_match_2. */
4327
2d1675e4
SM
4328static int bcmp_translate _RE_ARGS((re_char *s1, re_char *s2,
4329 register int len,
4330 RE_TRANSLATE_TYPE translate,
4331 const int multibyte));
fa9a63c5
RM
4332
4333/* This converts PTR, a pointer into one of the search strings `string1'
4334 and `string2' into an offset from the beginning of that string. */
4335#define POINTER_TO_OFFSET(ptr) \
4336 (FIRST_STRING_P (ptr) \
4337 ? ((regoff_t) ((ptr) - string1)) \
4338 : ((regoff_t) ((ptr) - string2 + size1)))
4339
fa9a63c5 4340/* Call before fetching a character with *d. This switches over to
419d1c74
SM
4341 string2 if necessary.
4342 Check re_match_2_internal for a discussion of why end_match_2 might
4343 not be within string2 (but be equal to end_match_1 instead). */
fa9a63c5 4344#define PREFETCH() \
25fe55af 4345 while (d == dend) \
fa9a63c5
RM
4346 { \
4347 /* End of string2 => fail. */ \
25fe55af
RS
4348 if (dend == end_match_2) \
4349 goto fail; \
4bb91c68 4350 /* End of string1 => advance to string2. */ \
25fe55af 4351 d = string2; \
fa9a63c5
RM
4352 dend = end_match_2; \
4353 }
4354
f1ad044f
SM
4355/* Call before fetching a char with *d if you already checked other limits.
4356 This is meant for use in lookahead operations like wordend, etc..
4357 where we might need to look at parts of the string that might be
4358 outside of the LIMITs (i.e past `stop'). */
4359#define PREFETCH_NOLIMIT() \
4360 if (d == end1) \
4361 { \
4362 d = string2; \
4363 dend = end_match_2; \
4364 } \
fa9a63c5
RM
4365
4366/* Test if at very beginning or at very end of the virtual concatenation
25fe55af 4367 of `string1' and `string2'. If only one string, it's `string2'. */
fa9a63c5 4368#define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
5e69f11e 4369#define AT_STRINGS_END(d) ((d) == end2)
fa9a63c5
RM
4370
4371
4372/* Test if D points to a character which is word-constituent. We have
4373 two special cases to check for: if past the end of string1, look at
4374 the first character in string2; and if before the beginning of
4375 string2, look at the last character in string1. */
4376#define WORDCHAR_P(d) \
4377 (SYNTAX ((d) == end1 ? *string2 \
25fe55af 4378 : (d) == string2 - 1 ? *(end1 - 1) : *(d)) \
fa9a63c5
RM
4379 == Sword)
4380
9121ca40 4381/* Disabled due to a compiler bug -- see comment at case wordbound */
b18215fc
RS
4382
4383/* The comment at case wordbound is following one, but we don't use
4384 AT_WORD_BOUNDARY anymore to support multibyte form.
4385
4386 The DEC Alpha C compiler 3.x generates incorrect code for the
25fe55af
RS
4387 test WORDCHAR_P (d - 1) != WORDCHAR_P (d) in the expansion of
4388 AT_WORD_BOUNDARY, so this code is disabled. Expanding the
b18215fc
RS
4389 macro and introducing temporary variables works around the bug. */
4390
9121ca40 4391#if 0
fa9a63c5
RM
4392/* Test if the character before D and the one at D differ with respect
4393 to being word-constituent. */
4394#define AT_WORD_BOUNDARY(d) \
4395 (AT_STRINGS_BEG (d) || AT_STRINGS_END (d) \
4396 || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
9121ca40 4397#endif
fa9a63c5
RM
4398
4399/* Free everything we malloc. */
4400#ifdef MATCH_MAY_ALLOCATE
0b32bf0e
SM
4401# define FREE_VAR(var) if (var) { REGEX_FREE (var); var = NULL; } else
4402# define FREE_VARIABLES() \
fa9a63c5
RM
4403 do { \
4404 REGEX_FREE_STACK (fail_stack.stack); \
4405 FREE_VAR (regstart); \
4406 FREE_VAR (regend); \
fa9a63c5
RM
4407 FREE_VAR (best_regstart); \
4408 FREE_VAR (best_regend); \
fa9a63c5
RM
4409 } while (0)
4410#else
0b32bf0e 4411# define FREE_VARIABLES() ((void)0) /* Do nothing! But inhibit gcc warning. */
fa9a63c5
RM
4412#endif /* not MATCH_MAY_ALLOCATE */
4413
505bde11
SM
4414\f
4415/* Optimization routines. */
4416
4e8a9132
SM
4417/* If the operation is a match against one or more chars,
4418 return a pointer to the next operation, else return NULL. */
01618498 4419static re_char *
4e8a9132 4420skip_one_char (p)
01618498 4421 re_char *p;
4e8a9132
SM
4422{
4423 switch (SWITCH_ENUM_CAST (*p++))
4424 {
4425 case anychar:
4426 break;
4427
4428 case exactn:
4429 p += *p + 1;
4430 break;
4431
4432 case charset_not:
4433 case charset:
4434 if (CHARSET_RANGE_TABLE_EXISTS_P (p - 1))
4435 {
4436 int mcnt;
4437 p = CHARSET_RANGE_TABLE (p - 1);
4438 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4439 p = CHARSET_RANGE_TABLE_END (p, mcnt);
4440 }
4441 else
4442 p += 1 + CHARSET_BITMAP_SIZE (p - 1);
4443 break;
4444
4e8a9132
SM
4445 case syntaxspec:
4446 case notsyntaxspec:
1fb352e0 4447#ifdef emacs
4e8a9132
SM
4448 case categoryspec:
4449 case notcategoryspec:
4450#endif /* emacs */
4451 p++;
4452 break;
4453
4454 default:
4455 p = NULL;
4456 }
4457 return p;
4458}
4459
4460
505bde11
SM
4461/* Jump over non-matching operations. */
4462static unsigned char *
4e8a9132 4463skip_noops (p, pend)
505bde11 4464 unsigned char *p, *pend;
505bde11
SM
4465{
4466 int mcnt;
4467 while (p < pend)
4468 {
4469 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p))
4470 {
4471 case start_memory:
505bde11
SM
4472 case stop_memory:
4473 p += 2; break;
4474 case no_op:
4475 p += 1; break;
4476 case jump:
4477 p += 1;
4478 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4479 p += mcnt;
4480 break;
4481 default:
4482 return p;
4483 }
4484 }
4485 assert (p == pend);
4486 return p;
4487}
4488
4489/* Non-zero if "p1 matches something" implies "p2 fails". */
4490static int
4491mutually_exclusive_p (bufp, p1, p2)
4492 struct re_pattern_buffer *bufp;
4493 unsigned char *p1, *p2;
4494{
4e8a9132 4495 re_opcode_t op2;
2d1675e4 4496 const boolean multibyte = RE_MULTIBYTE_P (bufp);
505bde11
SM
4497 unsigned char *pend = bufp->buffer + bufp->used;
4498
4e8a9132 4499 assert (p1 >= bufp->buffer && p1 < pend
505bde11
SM
4500 && p2 >= bufp->buffer && p2 <= pend);
4501
4502 /* Skip over open/close-group commands.
4503 If what follows this loop is a ...+ construct,
4504 look at what begins its body, since we will have to
4505 match at least one of that. */
4e8a9132
SM
4506 p2 = skip_noops (p2, pend);
4507 /* The same skip can be done for p1, except that this function
4508 is only used in the case where p1 is a simple match operator. */
4509 /* p1 = skip_noops (p1, pend); */
4510
4511 assert (p1 >= bufp->buffer && p1 < pend
4512 && p2 >= bufp->buffer && p2 <= pend);
4513
4514 op2 = p2 == pend ? succeed : *p2;
4515
4516 switch (SWITCH_ENUM_CAST (op2))
505bde11 4517 {
4e8a9132
SM
4518 case succeed:
4519 case endbuf:
4520 /* If we're at the end of the pattern, we can change. */
4521 if (skip_one_char (p1))
505bde11 4522 {
505bde11
SM
4523 DEBUG_PRINT1 (" End of pattern: fast loop.\n");
4524 return 1;
505bde11 4525 }
4e8a9132
SM
4526 break;
4527
4528 case endline:
4e8a9132
SM
4529 case exactn:
4530 {
01618498 4531 register re_wchar_t c
4e8a9132 4532 = (re_opcode_t) *p2 == endline ? '\n'
411e4203 4533 : RE_STRING_CHAR (p2 + 2, pend - p2 - 2);
505bde11 4534
4e8a9132
SM
4535 if ((re_opcode_t) *p1 == exactn)
4536 {
4537 if (c != RE_STRING_CHAR (p1 + 2, pend - p1 - 2))
4538 {
4539 DEBUG_PRINT3 (" '%c' != '%c' => fast loop.\n", c, p1[2]);
4540 return 1;
4541 }
4542 }
505bde11 4543
4e8a9132
SM
4544 else if ((re_opcode_t) *p1 == charset
4545 || (re_opcode_t) *p1 == charset_not)
4546 {
4547 int not = (re_opcode_t) *p1 == charset_not;
505bde11 4548
4e8a9132
SM
4549 /* Test if C is listed in charset (or charset_not)
4550 at `p1'. */
4551 if (SINGLE_BYTE_CHAR_P (c))
4552 {
4553 if (c < CHARSET_BITMAP_SIZE (p1) * BYTEWIDTH
4554 && p1[2 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
4555 not = !not;
4556 }
4557 else if (CHARSET_RANGE_TABLE_EXISTS_P (p1))
4558 CHARSET_LOOKUP_RANGE_TABLE (not, c, p1);
505bde11 4559
4e8a9132
SM
4560 /* `not' is equal to 1 if c would match, which means
4561 that we can't change to pop_failure_jump. */
4562 if (!not)
4563 {
4564 DEBUG_PRINT1 (" No match => fast loop.\n");
4565 return 1;
4566 }
4567 }
4568 else if ((re_opcode_t) *p1 == anychar
4569 && c == '\n')
4570 {
4571 DEBUG_PRINT1 (" . != \\n => fast loop.\n");
4572 return 1;
4573 }
4574 }
4575 break;
505bde11 4576
4e8a9132 4577 case charset:
4e8a9132
SM
4578 {
4579 if ((re_opcode_t) *p1 == exactn)
4580 /* Reuse the code above. */
4581 return mutually_exclusive_p (bufp, p2, p1);
505bde11 4582
505bde11
SM
4583 /* It is hard to list up all the character in charset
4584 P2 if it includes multibyte character. Give up in
4585 such case. */
4586 else if (!multibyte || !CHARSET_RANGE_TABLE_EXISTS_P (p2))
4587 {
4588 /* Now, we are sure that P2 has no range table.
4589 So, for the size of bitmap in P2, `p2[1]' is
4590 enough. But P1 may have range table, so the
4591 size of bitmap table of P1 is extracted by
4592 using macro `CHARSET_BITMAP_SIZE'.
4593
4594 Since we know that all the character listed in
4595 P2 is ASCII, it is enough to test only bitmap
4596 table of P1. */
4597
411e4203 4598 if ((re_opcode_t) *p1 == charset)
505bde11
SM
4599 {
4600 int idx;
4601 /* We win if the charset inside the loop
4602 has no overlap with the one after the loop. */
4603 for (idx = 0;
4604 (idx < (int) p2[1]
4605 && idx < CHARSET_BITMAP_SIZE (p1));
4606 idx++)
4607 if ((p2[2 + idx] & p1[2 + idx]) != 0)
4608 break;
4609
4610 if (idx == p2[1]
4611 || idx == CHARSET_BITMAP_SIZE (p1))
4612 {
4613 DEBUG_PRINT1 (" No match => fast loop.\n");
4614 return 1;
4615 }
4616 }
411e4203 4617 else if ((re_opcode_t) *p1 == charset_not)
505bde11
SM
4618 {
4619 int idx;
4620 /* We win if the charset_not inside the loop lists
4621 every character listed in the charset after. */
4622 for (idx = 0; idx < (int) p2[1]; idx++)
4623 if (! (p2[2 + idx] == 0
4624 || (idx < CHARSET_BITMAP_SIZE (p1)
4625 && ((p2[2 + idx] & ~ p1[2 + idx]) == 0))))
4626 break;
4627
4e8a9132
SM
4628 if (idx == p2[1])
4629 {
4630 DEBUG_PRINT1 (" No match => fast loop.\n");
4631 return 1;
4632 }
4633 }
4634 }
4635 }
609b757a 4636 break;
4e8a9132 4637
411e4203
SM
4638 case charset_not:
4639 switch (SWITCH_ENUM_CAST (*p1))
4640 {
4641 case exactn:
4642 case charset:
4643 /* Reuse the code above. */
4644 return mutually_exclusive_p (bufp, p2, p1);
4645 case charset_not:
4646 /* When we have two charset_not, it's very unlikely that
4647 they don't overlap. The union of the two sets of excluded
4648 chars should cover all possible chars, which, as a matter of
4649 fact, is virtually impossible in multibyte buffers. */
36595814 4650 break;
411e4203
SM
4651 }
4652 break;
4653
4e8a9132
SM
4654 case wordend:
4655 case notsyntaxspec:
4656 return ((re_opcode_t) *p1 == syntaxspec
4657 && p1[1] == (op2 == wordend ? Sword : p2[1]));
4658
4659 case wordbeg:
4660 case syntaxspec:
4661 return ((re_opcode_t) *p1 == notsyntaxspec
4662 && p1[1] == (op2 == wordend ? Sword : p2[1]));
4663
4664 case wordbound:
4665 return (((re_opcode_t) *p1 == notsyntaxspec
4666 || (re_opcode_t) *p1 == syntaxspec)
4667 && p1[1] == Sword);
4668
1fb352e0 4669#ifdef emacs
4e8a9132
SM
4670 case categoryspec:
4671 return ((re_opcode_t) *p1 == notcategoryspec && p1[1] == p2[1]);
4672 case notcategoryspec:
4673 return ((re_opcode_t) *p1 == categoryspec && p1[1] == p2[1]);
4674#endif /* emacs */
4675
4676 default:
4677 ;
505bde11
SM
4678 }
4679
4680 /* Safe default. */
4681 return 0;
4682}
4683
fa9a63c5
RM
4684\f
4685/* Matching routines. */
4686
25fe55af 4687#ifndef emacs /* Emacs never uses this. */
fa9a63c5
RM
4688/* re_match is like re_match_2 except it takes only a single string. */
4689
4690int
4691re_match (bufp, string, size, pos, regs)
4692 struct re_pattern_buffer *bufp;
4693 const char *string;
4694 int size, pos;
4695 struct re_registers *regs;
4696{
4bb91c68 4697 int result = re_match_2_internal (bufp, NULL, 0, (re_char*) string, size,
fa9a63c5 4698 pos, regs, size);
0b32bf0e 4699# if defined C_ALLOCA && !defined REGEX_MALLOC
fa9a63c5 4700 alloca (0);
0b32bf0e 4701# endif
fa9a63c5
RM
4702 return result;
4703}
c0f9ea08 4704WEAK_ALIAS (__re_match, re_match)
fa9a63c5
RM
4705#endif /* not emacs */
4706
b18215fc
RS
4707#ifdef emacs
4708/* In Emacs, this is the string or buffer in which we
25fe55af 4709 are matching. It is used for looking up syntax properties. */
b18215fc
RS
4710Lisp_Object re_match_object;
4711#endif
fa9a63c5
RM
4712
4713/* re_match_2 matches the compiled pattern in BUFP against the
4714 the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
4715 and SIZE2, respectively). We start matching at POS, and stop
4716 matching at STOP.
5e69f11e 4717
fa9a63c5 4718 If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
25fe55af 4719 store offsets for the substring each group matched in REGS. See the
fa9a63c5
RM
4720 documentation for exactly how many groups we fill.
4721
4722 We return -1 if no match, -2 if an internal error (such as the
25fe55af 4723 failure stack overflowing). Otherwise, we return the length of the
fa9a63c5
RM
4724 matched substring. */
4725
4726int
4727re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
4728 struct re_pattern_buffer *bufp;
4729 const char *string1, *string2;
4730 int size1, size2;
4731 int pos;
4732 struct re_registers *regs;
4733 int stop;
4734{
b18215fc 4735 int result;
25fe55af 4736
b18215fc 4737#ifdef emacs
cc9b4df2
KH
4738 int charpos;
4739 gl_state.object = re_match_object;
99633e97 4740 charpos = SYNTAX_TABLE_BYTE_TO_CHAR (POS_AS_IN_BUFFER (pos));
cc9b4df2 4741 SETUP_SYNTAX_TABLE_FOR_OBJECT (re_match_object, charpos, 1);
b18215fc
RS
4742#endif
4743
4bb91c68
SM
4744 result = re_match_2_internal (bufp, (re_char*) string1, size1,
4745 (re_char*) string2, size2,
cc9b4df2 4746 pos, regs, stop);
0b32bf0e 4747#if defined C_ALLOCA && !defined REGEX_MALLOC
fa9a63c5 4748 alloca (0);
a60198e5 4749#endif
fa9a63c5
RM
4750 return result;
4751}
c0f9ea08 4752WEAK_ALIAS (__re_match_2, re_match_2)
fa9a63c5
RM
4753
4754/* This is a separate function so that we can force an alloca cleanup
25fe55af 4755 afterwards. */
fa9a63c5
RM
4756static int
4757re_match_2_internal (bufp, string1, size1, string2, size2, pos, regs, stop)
4758 struct re_pattern_buffer *bufp;
66f0296e 4759 re_char *string1, *string2;
fa9a63c5
RM
4760 int size1, size2;
4761 int pos;
4762 struct re_registers *regs;
4763 int stop;
4764{
4765 /* General temporaries. */
4766 int mcnt;
01618498 4767 size_t reg;
66f0296e 4768 boolean not;
fa9a63c5
RM
4769
4770 /* Just past the end of the corresponding string. */
66f0296e 4771 re_char *end1, *end2;
fa9a63c5
RM
4772
4773 /* Pointers into string1 and string2, just past the last characters in
25fe55af 4774 each to consider matching. */
66f0296e 4775 re_char *end_match_1, *end_match_2;
fa9a63c5
RM
4776
4777 /* Where we are in the data, and the end of the current string. */
66f0296e 4778 re_char *d, *dend;
5e69f11e 4779
99633e97
SM
4780 /* Used sometimes to remember where we were before starting matching
4781 an operator so that we can go back in case of failure. This "atomic"
4782 behavior of matching opcodes is indispensable to the correctness
4783 of the on_failure_keep_string_jump optimization. */
4784 re_char *dfail;
4785
fa9a63c5 4786 /* Where we are in the pattern, and the end of the pattern. */
01618498
SM
4787 re_char *p = bufp->buffer;
4788 re_char *pend = p + bufp->used;
fa9a63c5 4789
25fe55af 4790 /* We use this to map every character in the string. */
6676cb1c 4791 RE_TRANSLATE_TYPE translate = bufp->translate;
fa9a63c5 4792
25fe55af 4793 /* Nonzero if we have to concern multibyte character. */
2d1675e4 4794 const boolean multibyte = RE_MULTIBYTE_P (bufp);
b18215fc 4795
fa9a63c5
RM
4796 /* Failure point stack. Each place that can handle a failure further
4797 down the line pushes a failure point on this stack. It consists of
505bde11 4798 regstart, and regend for all registers corresponding to
fa9a63c5
RM
4799 the subexpressions we're currently inside, plus the number of such
4800 registers, and, finally, two char *'s. The first char * is where
4801 to resume scanning the pattern; the second one is where to resume
505bde11 4802 scanning the strings. */
25fe55af 4803#ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
fa9a63c5
RM
4804 fail_stack_type fail_stack;
4805#endif
4806#ifdef DEBUG
fa9a63c5
RM
4807 unsigned nfailure_points_pushed = 0, nfailure_points_popped = 0;
4808#endif
4809
0b32bf0e 4810#if defined REL_ALLOC && defined REGEX_MALLOC
fa9a63c5
RM
4811 /* This holds the pointer to the failure stack, when
4812 it is allocated relocatably. */
4813 fail_stack_elt_t *failure_stack_ptr;
99633e97 4814#endif
fa9a63c5
RM
4815
4816 /* We fill all the registers internally, independent of what we
25fe55af 4817 return, for use in backreferences. The number here includes
fa9a63c5 4818 an element for register zero. */
4bb91c68 4819 size_t num_regs = bufp->re_nsub + 1;
5e69f11e 4820
fa9a63c5
RM
4821 /* Information on the contents of registers. These are pointers into
4822 the input strings; they record just what was matched (on this
4823 attempt) by a subexpression part of the pattern, that is, the
4824 regnum-th regstart pointer points to where in the pattern we began
4825 matching and the regnum-th regend points to right after where we
4826 stopped matching the regnum-th subexpression. (The zeroth register
4827 keeps track of what the whole pattern matches.) */
4828#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
66f0296e 4829 re_char **regstart, **regend;
fa9a63c5
RM
4830#endif
4831
fa9a63c5 4832 /* The following record the register info as found in the above
5e69f11e 4833 variables when we find a match better than any we've seen before.
fa9a63c5
RM
4834 This happens as we backtrack through the failure points, which in
4835 turn happens only if we have not yet matched the entire string. */
4836 unsigned best_regs_set = false;
4837#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
66f0296e 4838 re_char **best_regstart, **best_regend;
fa9a63c5 4839#endif
5e69f11e 4840
fa9a63c5
RM
4841 /* Logically, this is `best_regend[0]'. But we don't want to have to
4842 allocate space for that if we're not allocating space for anything
25fe55af 4843 else (see below). Also, we never need info about register 0 for
fa9a63c5
RM
4844 any of the other register vectors, and it seems rather a kludge to
4845 treat `best_regend' differently than the rest. So we keep track of
4846 the end of the best match so far in a separate variable. We
4847 initialize this to NULL so that when we backtrack the first time
4848 and need to test it, it's not garbage. */
66f0296e 4849 re_char *match_end = NULL;
fa9a63c5 4850
fa9a63c5
RM
4851#ifdef DEBUG
4852 /* Counts the total number of registers pushed. */
5e69f11e 4853 unsigned num_regs_pushed = 0;
fa9a63c5
RM
4854#endif
4855
4856 DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
5e69f11e 4857
fa9a63c5 4858 INIT_FAIL_STACK ();
5e69f11e 4859
fa9a63c5
RM
4860#ifdef MATCH_MAY_ALLOCATE
4861 /* Do not bother to initialize all the register variables if there are
4862 no groups in the pattern, as it takes a fair amount of time. If
4863 there are groups, we include space for register 0 (the whole
4864 pattern), even though we never use it, since it simplifies the
4865 array indexing. We should fix this. */
4866 if (bufp->re_nsub)
4867 {
66f0296e
SM
4868 regstart = REGEX_TALLOC (num_regs, re_char *);
4869 regend = REGEX_TALLOC (num_regs, re_char *);
4870 best_regstart = REGEX_TALLOC (num_regs, re_char *);
4871 best_regend = REGEX_TALLOC (num_regs, re_char *);
fa9a63c5 4872
505bde11 4873 if (!(regstart && regend && best_regstart && best_regend))
25fe55af
RS
4874 {
4875 FREE_VARIABLES ();
4876 return -2;
4877 }
fa9a63c5
RM
4878 }
4879 else
4880 {
4881 /* We must initialize all our variables to NULL, so that
25fe55af 4882 `FREE_VARIABLES' doesn't try to free them. */
505bde11 4883 regstart = regend = best_regstart = best_regend = NULL;
fa9a63c5
RM
4884 }
4885#endif /* MATCH_MAY_ALLOCATE */
4886
4887 /* The starting position is bogus. */
4888 if (pos < 0 || pos > size1 + size2)
4889 {
4890 FREE_VARIABLES ();
4891 return -1;
4892 }
5e69f11e 4893
fa9a63c5
RM
4894 /* Initialize subexpression text positions to -1 to mark ones that no
4895 start_memory/stop_memory has been seen for. Also initialize the
4896 register information struct. */
01618498
SM
4897 for (reg = 1; reg < num_regs; reg++)
4898 regstart[reg] = regend[reg] = NULL;
99633e97 4899
fa9a63c5 4900 /* We move `string1' into `string2' if the latter's empty -- but not if
25fe55af 4901 `string1' is null. */
fa9a63c5
RM
4902 if (size2 == 0 && string1 != NULL)
4903 {
4904 string2 = string1;
4905 size2 = size1;
4906 string1 = 0;
4907 size1 = 0;
4908 }
4909 end1 = string1 + size1;
4910 end2 = string2 + size2;
4911
5e69f11e 4912 /* `p' scans through the pattern as `d' scans through the data.
fa9a63c5
RM
4913 `dend' is the end of the input string that `d' points within. `d'
4914 is advanced into the following input string whenever necessary, but
4915 this happens before fetching; therefore, at the beginning of the
4916 loop, `d' can be pointing at the end of a string, but it cannot
4917 equal `string2'. */
419d1c74 4918 if (pos >= size1)
fa9a63c5 4919 {
419d1c74
SM
4920 /* Only match within string2. */
4921 d = string2 + pos - size1;
4922 dend = end_match_2 = string2 + stop - size1;
4923 end_match_1 = end1; /* Just to give it a value. */
fa9a63c5
RM
4924 }
4925 else
4926 {
f1ad044f 4927 if (stop < size1)
419d1c74
SM
4928 {
4929 /* Only match within string1. */
4930 end_match_1 = string1 + stop;
4931 /* BEWARE!
4932 When we reach end_match_1, PREFETCH normally switches to string2.
4933 But in the present case, this means that just doing a PREFETCH
4934 makes us jump from `stop' to `gap' within the string.
4935 What we really want here is for the search to stop as
4936 soon as we hit end_match_1. That's why we set end_match_2
4937 to end_match_1 (since PREFETCH fails as soon as we hit
4938 end_match_2). */
4939 end_match_2 = end_match_1;
4940 }
4941 else
f1ad044f
SM
4942 { /* It's important to use this code when stop == size so that
4943 moving `d' from end1 to string2 will not prevent the d == dend
4944 check from catching the end of string. */
419d1c74
SM
4945 end_match_1 = end1;
4946 end_match_2 = string2 + stop - size1;
4947 }
4948 d = string1 + pos;
4949 dend = end_match_1;
fa9a63c5
RM
4950 }
4951
4952 DEBUG_PRINT1 ("The compiled pattern is: ");
4953 DEBUG_PRINT_COMPILED_PATTERN (bufp, p, pend);
4954 DEBUG_PRINT1 ("The string to match is: `");
4955 DEBUG_PRINT_DOUBLE_STRING (d, string1, size1, string2, size2);
4956 DEBUG_PRINT1 ("'\n");
5e69f11e 4957
25fe55af 4958 /* This loops over pattern commands. It exits by returning from the
fa9a63c5
RM
4959 function if the match is complete, or it drops through if the match
4960 fails at this starting point in the input data. */
4961 for (;;)
4962 {
505bde11 4963 DEBUG_PRINT2 ("\n%p: ", p);
fa9a63c5
RM
4964
4965 if (p == pend)
4966 { /* End of pattern means we might have succeeded. */
25fe55af 4967 DEBUG_PRINT1 ("end of pattern ... ");
5e69f11e 4968
fa9a63c5 4969 /* If we haven't matched the entire string, and we want the
25fe55af
RS
4970 longest match, try backtracking. */
4971 if (d != end_match_2)
fa9a63c5
RM
4972 {
4973 /* 1 if this match ends in the same string (string1 or string2)
4974 as the best previous match. */
5e69f11e 4975 boolean same_str_p = (FIRST_STRING_P (match_end)
99633e97 4976 == FIRST_STRING_P (d));
fa9a63c5
RM
4977 /* 1 if this match is the best seen so far. */
4978 boolean best_match_p;
4979
4980 /* AIX compiler got confused when this was combined
25fe55af 4981 with the previous declaration. */
fa9a63c5
RM
4982 if (same_str_p)
4983 best_match_p = d > match_end;
4984 else
99633e97 4985 best_match_p = !FIRST_STRING_P (d);
fa9a63c5 4986
25fe55af
RS
4987 DEBUG_PRINT1 ("backtracking.\n");
4988
4989 if (!FAIL_STACK_EMPTY ())
4990 { /* More failure points to try. */
4991
4992 /* If exceeds best match so far, save it. */
4993 if (!best_regs_set || best_match_p)
4994 {
4995 best_regs_set = true;
4996 match_end = d;
4997
4998 DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
4999
01618498 5000 for (reg = 1; reg < num_regs; reg++)
25fe55af 5001 {
01618498
SM
5002 best_regstart[reg] = regstart[reg];
5003 best_regend[reg] = regend[reg];
25fe55af
RS
5004 }
5005 }
5006 goto fail;
5007 }
5008
5009 /* If no failure points, don't restore garbage. And if
5010 last match is real best match, don't restore second
5011 best one. */
5012 else if (best_regs_set && !best_match_p)
5013 {
5014 restore_best_regs:
5015 /* Restore best match. It may happen that `dend ==
5016 end_match_1' while the restored d is in string2.
5017 For example, the pattern `x.*y.*z' against the
5018 strings `x-' and `y-z-', if the two strings are
5019 not consecutive in memory. */
5020 DEBUG_PRINT1 ("Restoring best registers.\n");
5021
5022 d = match_end;
5023 dend = ((d >= string1 && d <= end1)
5024 ? end_match_1 : end_match_2);
fa9a63c5 5025
01618498 5026 for (reg = 1; reg < num_regs; reg++)
fa9a63c5 5027 {
01618498
SM
5028 regstart[reg] = best_regstart[reg];
5029 regend[reg] = best_regend[reg];
fa9a63c5 5030 }
25fe55af
RS
5031 }
5032 } /* d != end_match_2 */
fa9a63c5
RM
5033
5034 succeed_label:
25fe55af 5035 DEBUG_PRINT1 ("Accepting match.\n");
fa9a63c5 5036
25fe55af
RS
5037 /* If caller wants register contents data back, do it. */
5038 if (regs && !bufp->no_sub)
fa9a63c5 5039 {
25fe55af
RS
5040 /* Have the register data arrays been allocated? */
5041 if (bufp->regs_allocated == REGS_UNALLOCATED)
5042 { /* No. So allocate them with malloc. We need one
5043 extra element beyond `num_regs' for the `-1' marker
5044 GNU code uses. */
5045 regs->num_regs = MAX (RE_NREGS, num_regs + 1);
5046 regs->start = TALLOC (regs->num_regs, regoff_t);
5047 regs->end = TALLOC (regs->num_regs, regoff_t);
5048 if (regs->start == NULL || regs->end == NULL)
fa9a63c5
RM
5049 {
5050 FREE_VARIABLES ();
5051 return -2;
5052 }
25fe55af
RS
5053 bufp->regs_allocated = REGS_REALLOCATE;
5054 }
5055 else if (bufp->regs_allocated == REGS_REALLOCATE)
5056 { /* Yes. If we need more elements than were already
5057 allocated, reallocate them. If we need fewer, just
5058 leave it alone. */
5059 if (regs->num_regs < num_regs + 1)
5060 {
5061 regs->num_regs = num_regs + 1;
5062 RETALLOC (regs->start, regs->num_regs, regoff_t);
5063 RETALLOC (regs->end, regs->num_regs, regoff_t);
5064 if (regs->start == NULL || regs->end == NULL)
fa9a63c5
RM
5065 {
5066 FREE_VARIABLES ();
5067 return -2;
5068 }
25fe55af
RS
5069 }
5070 }
5071 else
fa9a63c5
RM
5072 {
5073 /* These braces fend off a "empty body in an else-statement"
25fe55af 5074 warning under GCC when assert expands to nothing. */
fa9a63c5
RM
5075 assert (bufp->regs_allocated == REGS_FIXED);
5076 }
5077
25fe55af
RS
5078 /* Convert the pointer data in `regstart' and `regend' to
5079 indices. Register zero has to be set differently,
5080 since we haven't kept track of any info for it. */
5081 if (regs->num_regs > 0)
5082 {
5083 regs->start[0] = pos;
99633e97 5084 regs->end[0] = POINTER_TO_OFFSET (d);
25fe55af 5085 }
5e69f11e 5086
25fe55af
RS
5087 /* Go through the first `min (num_regs, regs->num_regs)'
5088 registers, since that is all we initialized. */
01618498 5089 for (reg = 1; reg < MIN (num_regs, regs->num_regs); reg++)
fa9a63c5 5090 {
01618498
SM
5091 if (REG_UNSET (regstart[reg]) || REG_UNSET (regend[reg]))
5092 regs->start[reg] = regs->end[reg] = -1;
25fe55af
RS
5093 else
5094 {
01618498
SM
5095 regs->start[reg]
5096 = (regoff_t) POINTER_TO_OFFSET (regstart[reg]);
5097 regs->end[reg]
5098 = (regoff_t) POINTER_TO_OFFSET (regend[reg]);
25fe55af 5099 }
fa9a63c5 5100 }
5e69f11e 5101
25fe55af
RS
5102 /* If the regs structure we return has more elements than
5103 were in the pattern, set the extra elements to -1. If
5104 we (re)allocated the registers, this is the case,
5105 because we always allocate enough to have at least one
5106 -1 at the end. */
01618498
SM
5107 for (reg = num_regs; reg < regs->num_regs; reg++)
5108 regs->start[reg] = regs->end[reg] = -1;
fa9a63c5
RM
5109 } /* regs && !bufp->no_sub */
5110
25fe55af
RS
5111 DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
5112 nfailure_points_pushed, nfailure_points_popped,
5113 nfailure_points_pushed - nfailure_points_popped);
5114 DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed);
fa9a63c5 5115
99633e97 5116 mcnt = POINTER_TO_OFFSET (d) - pos;
fa9a63c5 5117
25fe55af 5118 DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt);
fa9a63c5 5119
25fe55af
RS
5120 FREE_VARIABLES ();
5121 return mcnt;
5122 }
fa9a63c5 5123
25fe55af 5124 /* Otherwise match next pattern command. */
fa9a63c5
RM
5125 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
5126 {
25fe55af
RS
5127 /* Ignore these. Used to ignore the n of succeed_n's which
5128 currently have n == 0. */
5129 case no_op:
5130 DEBUG_PRINT1 ("EXECUTING no_op.\n");
5131 break;
fa9a63c5
RM
5132
5133 case succeed:
25fe55af 5134 DEBUG_PRINT1 ("EXECUTING succeed.\n");
fa9a63c5
RM
5135 goto succeed_label;
5136
25fe55af
RS
5137 /* Match the next n pattern characters exactly. The following
5138 byte in the pattern defines n, and the n bytes after that
5139 are the characters to match. */
fa9a63c5
RM
5140 case exactn:
5141 mcnt = *p++;
25fe55af 5142 DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt);
fa9a63c5 5143
99633e97
SM
5144 /* Remember the start point to rollback upon failure. */
5145 dfail = d;
5146
25fe55af
RS
5147 /* This is written out as an if-else so we don't waste time
5148 testing `translate' inside the loop. */
28703c16 5149 if (RE_TRANSLATE_P (translate))
fa9a63c5 5150 {
e934739e
RS
5151 if (multibyte)
5152 do
5153 {
5154 int pat_charlen, buf_charlen;
e71b1971 5155 unsigned int pat_ch, buf_ch;
e934739e
RS
5156
5157 PREFETCH ();
5158 pat_ch = STRING_CHAR_AND_LENGTH (p, pend - p, pat_charlen);
5159 buf_ch = STRING_CHAR_AND_LENGTH (d, dend - d, buf_charlen);
5160
5161 if (RE_TRANSLATE (translate, buf_ch)
5162 != pat_ch)
99633e97
SM
5163 {
5164 d = dfail;
5165 goto fail;
5166 }
e934739e
RS
5167
5168 p += pat_charlen;
5169 d += buf_charlen;
5170 mcnt -= pat_charlen;
5171 }
5172 while (mcnt > 0);
5173 else
e934739e
RS
5174 do
5175 {
5176 PREFETCH ();
66f0296e 5177 if (RE_TRANSLATE (translate, *d) != *p++)
99633e97
SM
5178 {
5179 d = dfail;
5180 goto fail;
5181 }
33c46939 5182 d++;
e934739e
RS
5183 }
5184 while (--mcnt);
fa9a63c5
RM
5185 }
5186 else
5187 {
5188 do
5189 {
5190 PREFETCH ();
99633e97
SM
5191 if (*d++ != *p++)
5192 {
5193 d = dfail;
5194 goto fail;
5195 }
fa9a63c5
RM
5196 }
5197 while (--mcnt);
5198 }
25fe55af 5199 break;
fa9a63c5
RM
5200
5201
25fe55af 5202 /* Match any character except possibly a newline or a null. */
fa9a63c5 5203 case anychar:
e934739e
RS
5204 {
5205 int buf_charlen;
01618498 5206 re_wchar_t buf_ch;
fa9a63c5 5207
e934739e 5208 DEBUG_PRINT1 ("EXECUTING anychar.\n");
fa9a63c5 5209
e934739e 5210 PREFETCH ();
2d1675e4 5211 buf_ch = RE_STRING_CHAR_AND_LENGTH (d, dend - d, buf_charlen);
e934739e
RS
5212 buf_ch = TRANSLATE (buf_ch);
5213
5214 if ((!(bufp->syntax & RE_DOT_NEWLINE)
5215 && buf_ch == '\n')
5216 || ((bufp->syntax & RE_DOT_NOT_NULL)
5217 && buf_ch == '\000'))
5218 goto fail;
5219
e934739e
RS
5220 DEBUG_PRINT2 (" Matched `%d'.\n", *d);
5221 d += buf_charlen;
5222 }
fa9a63c5
RM
5223 break;
5224
5225
5226 case charset:
5227 case charset_not:
5228 {
b18215fc 5229 register unsigned int c;
fa9a63c5 5230 boolean not = (re_opcode_t) *(p - 1) == charset_not;
b18215fc
RS
5231 int len;
5232
5233 /* Start of actual range_table, or end of bitmap if there is no
5234 range table. */
01618498 5235 re_char *range_table;
b18215fc 5236
96cc36cc 5237 /* Nonzero if there is a range table. */
b18215fc
RS
5238 int range_table_exists;
5239
96cc36cc
RS
5240 /* Number of ranges of range table. This is not included
5241 in the initial byte-length of the command. */
5242 int count = 0;
fa9a63c5 5243
25fe55af 5244 DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : "");
fa9a63c5 5245
b18215fc 5246 range_table_exists = CHARSET_RANGE_TABLE_EXISTS_P (&p[-1]);
96cc36cc 5247
b18215fc 5248 if (range_table_exists)
96cc36cc
RS
5249 {
5250 range_table = CHARSET_RANGE_TABLE (&p[-1]); /* Past the bitmap. */
5251 EXTRACT_NUMBER_AND_INCR (count, range_table);
5252 }
b18215fc 5253
2d1675e4
SM
5254 PREFETCH ();
5255 c = RE_STRING_CHAR_AND_LENGTH (d, dend - d, len);
5256 c = TRANSLATE (c); /* The character to match. */
b18215fc
RS
5257
5258 if (SINGLE_BYTE_CHAR_P (c))
5259 { /* Lookup bitmap. */
b18215fc
RS
5260 /* Cast to `unsigned' instead of `unsigned char' in
5261 case the bit list is a full 32 bytes long. */
5262 if (c < (unsigned) (CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH)
96cc36cc
RS
5263 && p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
5264 not = !not;
b18215fc 5265 }
96cc36cc 5266#ifdef emacs
b18215fc 5267 else if (range_table_exists)
96cc36cc
RS
5268 {
5269 int class_bits = CHARSET_RANGE_TABLE_BITS (&p[-1]);
5270
14473664
SM
5271 if ( (class_bits & BIT_LOWER && ISLOWER (c))
5272 | (class_bits & BIT_MULTIBYTE)
96cc36cc
RS
5273 | (class_bits & BIT_PUNCT && ISPUNCT (c))
5274 | (class_bits & BIT_SPACE && ISSPACE (c))
5275 | (class_bits & BIT_UPPER && ISUPPER (c))
5276 | (class_bits & BIT_WORD && ISWORD (c)))
5277 not = !not;
5278 else
5279 CHARSET_LOOKUP_RANGE_TABLE_RAW (not, c, range_table, count);
5280 }
5281#endif /* emacs */
fa9a63c5 5282
96cc36cc
RS
5283 if (range_table_exists)
5284 p = CHARSET_RANGE_TABLE_END (range_table, count);
5285 else
5286 p += CHARSET_BITMAP_SIZE (&p[-1]) + 1;
fa9a63c5
RM
5287
5288 if (!not) goto fail;
5e69f11e 5289
b18215fc 5290 d += len;
fa9a63c5
RM
5291 break;
5292 }
5293
5294
25fe55af 5295 /* The beginning of a group is represented by start_memory.
505bde11 5296 The argument is the register number. The text
25fe55af
RS
5297 matched within the group is recorded (in the internal
5298 registers data structure) under the register number. */
5299 case start_memory:
505bde11
SM
5300 DEBUG_PRINT2 ("EXECUTING start_memory %d:\n", *p);
5301
5302 /* In case we need to undo this operation (via backtracking). */
5303 PUSH_FAILURE_REG ((unsigned int)*p);
fa9a63c5 5304
25fe55af 5305 regstart[*p] = d;
4bb91c68 5306 regend[*p] = NULL; /* probably unnecessary. -sm */
fa9a63c5
RM
5307 DEBUG_PRINT2 (" regstart: %d\n", POINTER_TO_OFFSET (regstart[*p]));
5308
25fe55af 5309 /* Move past the register number and inner group count. */
505bde11 5310 p += 1;
25fe55af 5311 break;
fa9a63c5
RM
5312
5313
25fe55af 5314 /* The stop_memory opcode represents the end of a group. Its
505bde11 5315 argument is the same as start_memory's: the register number. */
fa9a63c5 5316 case stop_memory:
505bde11
SM
5317 DEBUG_PRINT2 ("EXECUTING stop_memory %d:\n", *p);
5318
5319 assert (!REG_UNSET (regstart[*p]));
5320 /* Strictly speaking, there should be code such as:
5321
0b32bf0e 5322 assert (REG_UNSET (regend[*p]));
505bde11
SM
5323 PUSH_FAILURE_REGSTOP ((unsigned int)*p);
5324
5325 But the only info to be pushed is regend[*p] and it is known to
5326 be UNSET, so there really isn't anything to push.
5327 Not pushing anything, on the other hand deprives us from the
5328 guarantee that regend[*p] is UNSET since undoing this operation
5329 will not reset its value properly. This is not important since
5330 the value will only be read on the next start_memory or at
5331 the very end and both events can only happen if this stop_memory
5332 is *not* undone. */
fa9a63c5 5333
25fe55af 5334 regend[*p] = d;
fa9a63c5
RM
5335 DEBUG_PRINT2 (" regend: %d\n", POINTER_TO_OFFSET (regend[*p]));
5336
25fe55af 5337 /* Move past the register number and the inner group count. */
505bde11 5338 p += 1;
25fe55af 5339 break;
fa9a63c5
RM
5340
5341
5342 /* \<digit> has been turned into a `duplicate' command which is
25fe55af
RS
5343 followed by the numeric value of <digit> as the register number. */
5344 case duplicate:
fa9a63c5 5345 {
66f0296e 5346 register re_char *d2, *dend2;
25fe55af 5347 int regno = *p++; /* Get which register to match against. */
fa9a63c5
RM
5348 DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno);
5349
25fe55af
RS
5350 /* Can't back reference a group which we've never matched. */
5351 if (REG_UNSET (regstart[regno]) || REG_UNSET (regend[regno]))
5352 goto fail;
5e69f11e 5353
25fe55af
RS
5354 /* Where in input to try to start matching. */
5355 d2 = regstart[regno];
5e69f11e 5356
99633e97
SM
5357 /* Remember the start point to rollback upon failure. */
5358 dfail = d;
5359
25fe55af
RS
5360 /* Where to stop matching; if both the place to start and
5361 the place to stop matching are in the same string, then
5362 set to the place to stop, otherwise, for now have to use
5363 the end of the first string. */
fa9a63c5 5364
25fe55af 5365 dend2 = ((FIRST_STRING_P (regstart[regno])
fa9a63c5
RM
5366 == FIRST_STRING_P (regend[regno]))
5367 ? regend[regno] : end_match_1);
5368 for (;;)
5369 {
5370 /* If necessary, advance to next segment in register
25fe55af 5371 contents. */
fa9a63c5
RM
5372 while (d2 == dend2)
5373 {
5374 if (dend2 == end_match_2) break;
5375 if (dend2 == regend[regno]) break;
5376
25fe55af
RS
5377 /* End of string1 => advance to string2. */
5378 d2 = string2;
5379 dend2 = regend[regno];
fa9a63c5
RM
5380 }
5381 /* At end of register contents => success */
5382 if (d2 == dend2) break;
5383
5384 /* If necessary, advance to next segment in data. */
5385 PREFETCH ();
5386
5387 /* How many characters left in this segment to match. */
5388 mcnt = dend - d;
5e69f11e 5389
fa9a63c5 5390 /* Want how many consecutive characters we can match in
25fe55af
RS
5391 one shot, so, if necessary, adjust the count. */
5392 if (mcnt > dend2 - d2)
fa9a63c5 5393 mcnt = dend2 - d2;
5e69f11e 5394
fa9a63c5 5395 /* Compare that many; failure if mismatch, else move
25fe55af 5396 past them. */
28703c16 5397 if (RE_TRANSLATE_P (translate)
2d1675e4 5398 ? bcmp_translate (d, d2, mcnt, translate, multibyte)
4bb91c68 5399 : memcmp (d, d2, mcnt))
99633e97
SM
5400 {
5401 d = dfail;
5402 goto fail;
5403 }
fa9a63c5 5404 d += mcnt, d2 += mcnt;
fa9a63c5
RM
5405 }
5406 }
5407 break;
5408
5409
25fe55af 5410 /* begline matches the empty string at the beginning of the string
c0f9ea08 5411 (unless `not_bol' is set in `bufp'), and after newlines. */
fa9a63c5 5412 case begline:
25fe55af 5413 DEBUG_PRINT1 ("EXECUTING begline.\n");
5e69f11e 5414
25fe55af
RS
5415 if (AT_STRINGS_BEG (d))
5416 {
5417 if (!bufp->not_bol) break;
5418 }
419d1c74 5419 else
25fe55af 5420 {
419d1c74
SM
5421 unsigned char c;
5422 GET_CHAR_BEFORE_2 (c, d, string1, end1, string2, end2);
c0f9ea08 5423 if (c == '\n')
419d1c74 5424 break;
25fe55af
RS
5425 }
5426 /* In all other cases, we fail. */
5427 goto fail;
fa9a63c5
RM
5428
5429
25fe55af 5430 /* endline is the dual of begline. */
fa9a63c5 5431 case endline:
25fe55af 5432 DEBUG_PRINT1 ("EXECUTING endline.\n");
fa9a63c5 5433
25fe55af
RS
5434 if (AT_STRINGS_END (d))
5435 {
5436 if (!bufp->not_eol) break;
5437 }
f1ad044f 5438 else
25fe55af 5439 {
f1ad044f 5440 PREFETCH_NOLIMIT ();
c0f9ea08 5441 if (*d == '\n')
f1ad044f 5442 break;
25fe55af
RS
5443 }
5444 goto fail;
fa9a63c5
RM
5445
5446
5447 /* Match at the very beginning of the data. */
25fe55af
RS
5448 case begbuf:
5449 DEBUG_PRINT1 ("EXECUTING begbuf.\n");
5450 if (AT_STRINGS_BEG (d))
5451 break;
5452 goto fail;
fa9a63c5
RM
5453
5454
5455 /* Match at the very end of the data. */
25fe55af
RS
5456 case endbuf:
5457 DEBUG_PRINT1 ("EXECUTING endbuf.\n");
fa9a63c5
RM
5458 if (AT_STRINGS_END (d))
5459 break;
25fe55af 5460 goto fail;
5e69f11e 5461
5e69f11e 5462
25fe55af
RS
5463 /* on_failure_keep_string_jump is used to optimize `.*\n'. It
5464 pushes NULL as the value for the string on the stack. Then
505bde11 5465 `POP_FAILURE_POINT' will keep the current value for the
25fe55af
RS
5466 string, instead of restoring it. To see why, consider
5467 matching `foo\nbar' against `.*\n'. The .* matches the foo;
5468 then the . fails against the \n. But the next thing we want
5469 to do is match the \n against the \n; if we restored the
5470 string value, we would be back at the foo.
5471
5472 Because this is used only in specific cases, we don't need to
5473 check all the things that `on_failure_jump' does, to make
5474 sure the right things get saved on the stack. Hence we don't
5475 share its code. The only reason to push anything on the
5476 stack at all is that otherwise we would have to change
5477 `anychar's code to do something besides goto fail in this
5478 case; that seems worse than this. */
5479 case on_failure_keep_string_jump:
505bde11
SM
5480 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5481 DEBUG_PRINT3 ("EXECUTING on_failure_keep_string_jump %d (to %p):\n",
5482 mcnt, p + mcnt);
fa9a63c5 5483
505bde11
SM
5484 PUSH_FAILURE_POINT (p - 3, NULL);
5485 break;
5486
0683b6fa
SM
5487 /* A nasty loop is introduced by the non-greedy *? and +?.
5488 With such loops, the stack only ever contains one failure point
5489 at a time, so that a plain on_failure_jump_loop kind of
5490 cycle detection cannot work. Worse yet, such a detection
5491 can not only fail to detect a cycle, but it can also wrongly
5492 detect a cycle (between different instantiations of the same
6df42991 5493 loop).
0683b6fa
SM
5494 So the method used for those nasty loops is a little different:
5495 We use a special cycle-detection-stack-frame which is pushed
5496 when the on_failure_jump_nastyloop failure-point is *popped*.
5497 This special frame thus marks the beginning of one iteration
5498 through the loop and we can hence easily check right here
5499 whether something matched between the beginning and the end of
5500 the loop. */
5501 case on_failure_jump_nastyloop:
5502 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5503 DEBUG_PRINT3 ("EXECUTING on_failure_jump_nastyloop %d (to %p):\n",
5504 mcnt, p + mcnt);
5505
5506 assert ((re_opcode_t)p[-4] == no_op);
6df42991
SM
5507 {
5508 int cycle = 0;
5509 CHECK_INFINITE_LOOP (p - 4, d);
5510 if (!cycle)
5511 /* If there's a cycle, just continue without pushing
5512 this failure point. The failure point is the "try again"
5513 option, which shouldn't be tried.
5514 We want (x?)*?y\1z to match both xxyz and xxyxz. */
5515 PUSH_FAILURE_POINT (p - 3, d);
5516 }
0683b6fa
SM
5517 break;
5518
4e8a9132
SM
5519 /* Simple loop detecting on_failure_jump: just check on the
5520 failure stack if the same spot was already hit earlier. */
505bde11
SM
5521 case on_failure_jump_loop:
5522 on_failure:
5523 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5524 DEBUG_PRINT3 ("EXECUTING on_failure_jump_loop %d (to %p):\n",
5525 mcnt, p + mcnt);
6df42991
SM
5526 {
5527 int cycle = 0;
5528 CHECK_INFINITE_LOOP (p - 3, d);
5529 if (cycle)
5530 /* If there's a cycle, get out of the loop, as if the matching
5531 had failed. We used to just `goto fail' here, but that was
5532 aborting the search a bit too early: we want to keep the
5533 empty-loop-match and keep matching after the loop.
5534 We want (x?)*y\1z to match both xxyz and xxyxz. */
5535 p += mcnt;
5536 else
5537 PUSH_FAILURE_POINT (p - 3, d);
5538 }
25fe55af 5539 break;
fa9a63c5
RM
5540
5541
5542 /* Uses of on_failure_jump:
5e69f11e 5543
25fe55af
RS
5544 Each alternative starts with an on_failure_jump that points
5545 to the beginning of the next alternative. Each alternative
5546 except the last ends with a jump that in effect jumps past
5547 the rest of the alternatives. (They really jump to the
5548 ending jump of the following alternative, because tensioning
5549 these jumps is a hassle.)
fa9a63c5 5550
25fe55af
RS
5551 Repeats start with an on_failure_jump that points past both
5552 the repetition text and either the following jump or
5553 pop_failure_jump back to this on_failure_jump. */
fa9a63c5 5554 case on_failure_jump:
5b370c2b 5555 IMMEDIATE_QUIT_CHECK;
25fe55af 5556 EXTRACT_NUMBER_AND_INCR (mcnt, p);
505bde11
SM
5557 DEBUG_PRINT3 ("EXECUTING on_failure_jump %d (to %p):\n",
5558 mcnt, p + mcnt);
25fe55af 5559
505bde11 5560 PUSH_FAILURE_POINT (p -3, d);
25fe55af
RS
5561 break;
5562
4e8a9132 5563 /* This operation is used for greedy *.
505bde11
SM
5564 Compare the beginning of the repeat with what in the
5565 pattern follows its end. If we can establish that there
5566 is nothing that they would both match, i.e., that we
5567 would have to backtrack because of (as in, e.g., `a*a')
5568 then we can use a non-backtracking loop based on
4e8a9132 5569 on_failure_keep_string_jump instead of on_failure_jump. */
505bde11 5570 case on_failure_jump_smart:
5b370c2b 5571 IMMEDIATE_QUIT_CHECK;
25fe55af 5572 EXTRACT_NUMBER_AND_INCR (mcnt, p);
505bde11
SM
5573 DEBUG_PRINT3 ("EXECUTING on_failure_jump_smart %d (to %p).\n",
5574 mcnt, p + mcnt);
25fe55af 5575 {
01618498 5576 re_char *p1 = p; /* Next operation. */
6dcf2d0e
SM
5577 /* Here, we discard `const', making re_match non-reentrant. */
5578 unsigned char *p2 = (unsigned char*) p + mcnt; /* Jump dest. */
5579 unsigned char *p3 = (unsigned char*) p - 3; /* opcode location. */
fa9a63c5 5580
505bde11
SM
5581 p -= 3; /* Reset so that we will re-execute the
5582 instruction once it's been changed. */
fa9a63c5 5583
4e8a9132
SM
5584 EXTRACT_NUMBER (mcnt, p2 - 2);
5585
5586 /* Ensure this is a indeed the trivial kind of loop
5587 we are expecting. */
5588 assert (skip_one_char (p1) == p2 - 3);
5589 assert ((re_opcode_t) p2[-3] == jump && p2 + mcnt == p);
99633e97 5590 DEBUG_STATEMENT (debug += 2);
505bde11 5591 if (mutually_exclusive_p (bufp, p1, p2))
fa9a63c5 5592 {
505bde11 5593 /* Use a fast `on_failure_keep_string_jump' loop. */
4e8a9132 5594 DEBUG_PRINT1 (" smart exclusive => fast loop.\n");
01618498 5595 *p3 = (unsigned char) on_failure_keep_string_jump;
4e8a9132 5596 STORE_NUMBER (p2 - 2, mcnt + 3);
25fe55af 5597 }
505bde11 5598 else
fa9a63c5 5599 {
505bde11
SM
5600 /* Default to a safe `on_failure_jump' loop. */
5601 DEBUG_PRINT1 (" smart default => slow loop.\n");
01618498 5602 *p3 = (unsigned char) on_failure_jump;
fa9a63c5 5603 }
99633e97 5604 DEBUG_STATEMENT (debug -= 2);
25fe55af 5605 }
505bde11 5606 break;
25fe55af
RS
5607
5608 /* Unconditionally jump (without popping any failure points). */
5609 case jump:
fa9a63c5 5610 unconditional_jump:
5b370c2b 5611 IMMEDIATE_QUIT_CHECK;
fa9a63c5 5612 EXTRACT_NUMBER_AND_INCR (mcnt, p); /* Get the amount to jump. */
25fe55af
RS
5613 DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt);
5614 p += mcnt; /* Do the jump. */
505bde11 5615 DEBUG_PRINT2 ("(to %p).\n", p);
25fe55af
RS
5616 break;
5617
5618
25fe55af
RS
5619 /* Have to succeed matching what follows at least n times.
5620 After that, handle like `on_failure_jump'. */
5621 case succeed_n:
01618498 5622 /* Signedness doesn't matter since we only compare MCNT to 0. */
25fe55af
RS
5623 EXTRACT_NUMBER (mcnt, p + 2);
5624 DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt);
5e69f11e 5625
dc1e502d
SM
5626 /* Originally, mcnt is how many times we HAVE to succeed. */
5627 if (mcnt != 0)
25fe55af 5628 {
6dcf2d0e
SM
5629 /* Here, we discard `const', making re_match non-reentrant. */
5630 unsigned char *p2 = (unsigned char*) p + 2; /* counter loc. */
dc1e502d 5631 mcnt--;
01618498
SM
5632 p += 4;
5633 PUSH_NUMBER (p2, mcnt);
25fe55af 5634 }
dc1e502d
SM
5635 else
5636 /* The two bytes encoding mcnt == 0 are two no_op opcodes. */
5637 goto on_failure;
25fe55af
RS
5638 break;
5639
5640 case jump_n:
01618498 5641 /* Signedness doesn't matter since we only compare MCNT to 0. */
25fe55af
RS
5642 EXTRACT_NUMBER (mcnt, p + 2);
5643 DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt);
5644
5645 /* Originally, this is how many times we CAN jump. */
dc1e502d 5646 if (mcnt != 0)
25fe55af 5647 {
6dcf2d0e
SM
5648 /* Here, we discard `const', making re_match non-reentrant. */
5649 unsigned char *p2 = (unsigned char*) p + 2; /* counter loc. */
dc1e502d 5650 mcnt--;
01618498 5651 PUSH_NUMBER (p2, mcnt);
dc1e502d 5652 goto unconditional_jump;
25fe55af
RS
5653 }
5654 /* If don't have to jump any more, skip over the rest of command. */
5e69f11e
RM
5655 else
5656 p += 4;
25fe55af 5657 break;
5e69f11e 5658
fa9a63c5
RM
5659 case set_number_at:
5660 {
01618498 5661 unsigned char *p2; /* Location of the counter. */
25fe55af 5662 DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
fa9a63c5 5663
25fe55af 5664 EXTRACT_NUMBER_AND_INCR (mcnt, p);
6dcf2d0e
SM
5665 /* Here, we discard `const', making re_match non-reentrant. */
5666 p2 = (unsigned char*) p + mcnt;
01618498 5667 /* Signedness doesn't matter since we only copy MCNT's bits . */
25fe55af 5668 EXTRACT_NUMBER_AND_INCR (mcnt, p);
01618498
SM
5669 DEBUG_PRINT3 (" Setting %p to %d.\n", p2, mcnt);
5670 PUSH_NUMBER (p2, mcnt);
25fe55af
RS
5671 break;
5672 }
9121ca40
KH
5673
5674 case wordbound:
66f0296e
SM
5675 case notwordbound:
5676 not = (re_opcode_t) *(p - 1) == notwordbound;
5677 DEBUG_PRINT2 ("EXECUTING %swordbound.\n", not?"not":"");
fa9a63c5 5678
99633e97 5679 /* We SUCCEED (or FAIL) in one of the following cases: */
9121ca40 5680
b18215fc 5681 /* Case 1: D is at the beginning or the end of string. */
9121ca40 5682 if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
66f0296e 5683 not = !not;
b18215fc
RS
5684 else
5685 {
5686 /* C1 is the character before D, S1 is the syntax of C1, C2
5687 is the character at D, and S2 is the syntax of C2. */
01618498
SM
5688 re_wchar_t c1, c2;
5689 int s1, s2;
b18215fc 5690#ifdef emacs
2d1675e4
SM
5691 int offset = PTR_TO_OFFSET (d - 1);
5692 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
5d967c7a 5693 UPDATE_SYNTAX_TABLE (charpos);
25fe55af 5694#endif
66f0296e 5695 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
b18215fc
RS
5696 s1 = SYNTAX (c1);
5697#ifdef emacs
5d967c7a 5698 UPDATE_SYNTAX_TABLE_FORWARD (charpos + 1);
25fe55af 5699#endif
f1ad044f 5700 PREFETCH_NOLIMIT ();
2d1675e4 5701 c2 = RE_STRING_CHAR (d, dend - d);
b18215fc
RS
5702 s2 = SYNTAX (c2);
5703
5704 if (/* Case 2: Only one of S1 and S2 is Sword. */
5705 ((s1 == Sword) != (s2 == Sword))
5706 /* Case 3: Both of S1 and S2 are Sword, and macro
25fe55af 5707 WORD_BOUNDARY_P (C1, C2) returns nonzero. */
b18215fc 5708 || ((s1 == Sword) && WORD_BOUNDARY_P (c1, c2)))
66f0296e
SM
5709 not = !not;
5710 }
5711 if (not)
9121ca40 5712 break;
b18215fc 5713 else
9121ca40 5714 goto fail;
fa9a63c5
RM
5715
5716 case wordbeg:
25fe55af 5717 DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
fa9a63c5 5718
b18215fc
RS
5719 /* We FAIL in one of the following cases: */
5720
25fe55af 5721 /* Case 1: D is at the end of string. */
b18215fc 5722 if (AT_STRINGS_END (d))
99633e97 5723 goto fail;
b18215fc
RS
5724 else
5725 {
5726 /* C1 is the character before D, S1 is the syntax of C1, C2
5727 is the character at D, and S2 is the syntax of C2. */
01618498
SM
5728 re_wchar_t c1, c2;
5729 int s1, s2;
fa9a63c5 5730#ifdef emacs
2d1675e4
SM
5731 int offset = PTR_TO_OFFSET (d);
5732 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
92432794 5733 UPDATE_SYNTAX_TABLE (charpos);
25fe55af 5734#endif
99633e97 5735 PREFETCH ();
2d1675e4 5736 c2 = RE_STRING_CHAR (d, dend - d);
b18215fc 5737 s2 = SYNTAX (c2);
25fe55af 5738
b18215fc
RS
5739 /* Case 2: S2 is not Sword. */
5740 if (s2 != Sword)
5741 goto fail;
5742
5743 /* Case 3: D is not at the beginning of string ... */
5744 if (!AT_STRINGS_BEG (d))
5745 {
5746 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
5747#ifdef emacs
5d967c7a 5748 UPDATE_SYNTAX_TABLE_BACKWARD (charpos - 1);
25fe55af 5749#endif
b18215fc
RS
5750 s1 = SYNTAX (c1);
5751
5752 /* ... and S1 is Sword, and WORD_BOUNDARY_P (C1, C2)
25fe55af 5753 returns 0. */
b18215fc
RS
5754 if ((s1 == Sword) && !WORD_BOUNDARY_P (c1, c2))
5755 goto fail;
5756 }
5757 }
e318085a
RS
5758 break;
5759
b18215fc 5760 case wordend:
25fe55af 5761 DEBUG_PRINT1 ("EXECUTING wordend.\n");
b18215fc
RS
5762
5763 /* We FAIL in one of the following cases: */
5764
5765 /* Case 1: D is at the beginning of string. */
5766 if (AT_STRINGS_BEG (d))
e318085a 5767 goto fail;
b18215fc
RS
5768 else
5769 {
5770 /* C1 is the character before D, S1 is the syntax of C1, C2
5771 is the character at D, and S2 is the syntax of C2. */
01618498
SM
5772 re_wchar_t c1, c2;
5773 int s1, s2;
5d967c7a 5774#ifdef emacs
2d1675e4
SM
5775 int offset = PTR_TO_OFFSET (d) - 1;
5776 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
92432794 5777 UPDATE_SYNTAX_TABLE (charpos);
5d967c7a 5778#endif
99633e97 5779 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
b18215fc
RS
5780 s1 = SYNTAX (c1);
5781
5782 /* Case 2: S1 is not Sword. */
5783 if (s1 != Sword)
5784 goto fail;
5785
5786 /* Case 3: D is not at the end of string ... */
5787 if (!AT_STRINGS_END (d))
5788 {
f1ad044f 5789 PREFETCH_NOLIMIT ();
2d1675e4 5790 c2 = RE_STRING_CHAR (d, dend - d);
5d967c7a
RS
5791#ifdef emacs
5792 UPDATE_SYNTAX_TABLE_FORWARD (charpos);
5793#endif
b18215fc
RS
5794 s2 = SYNTAX (c2);
5795
5796 /* ... and S2 is Sword, and WORD_BOUNDARY_P (C1, C2)
25fe55af 5797 returns 0. */
b18215fc 5798 if ((s2 == Sword) && !WORD_BOUNDARY_P (c1, c2))
25fe55af 5799 goto fail;
b18215fc
RS
5800 }
5801 }
e318085a
RS
5802 break;
5803
fa9a63c5 5804 case syntaxspec:
1fb352e0
SM
5805 case notsyntaxspec:
5806 not = (re_opcode_t) *(p - 1) == notsyntaxspec;
fa9a63c5 5807 mcnt = *p++;
1fb352e0 5808 DEBUG_PRINT3 ("EXECUTING %ssyntaxspec %d.\n", not?"not":"", mcnt);
fa9a63c5 5809 PREFETCH ();
b18215fc
RS
5810#ifdef emacs
5811 {
2d1675e4
SM
5812 int offset = PTR_TO_OFFSET (d);
5813 int pos1 = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
b18215fc
RS
5814 UPDATE_SYNTAX_TABLE (pos1);
5815 }
25fe55af 5816#endif
b18215fc 5817 {
01618498
SM
5818 int len;
5819 re_wchar_t c;
b18215fc 5820
2d1675e4 5821 c = RE_STRING_CHAR_AND_LENGTH (d, dend - d, len);
b18215fc 5822
990b2375 5823 if ((SYNTAX (c) != (enum syntaxcode) mcnt) ^ not)
1fb352e0 5824 goto fail;
b18215fc
RS
5825 d += len;
5826 }
fa9a63c5
RM
5827 break;
5828
b18215fc 5829#ifdef emacs
1fb352e0
SM
5830 case before_dot:
5831 DEBUG_PRINT1 ("EXECUTING before_dot.\n");
5832 if (PTR_BYTE_POS (d) >= PT_BYTE)
fa9a63c5 5833 goto fail;
b18215fc
RS
5834 break;
5835
1fb352e0
SM
5836 case at_dot:
5837 DEBUG_PRINT1 ("EXECUTING at_dot.\n");
5838 if (PTR_BYTE_POS (d) != PT_BYTE)
5839 goto fail;
5840 break;
b18215fc 5841
1fb352e0
SM
5842 case after_dot:
5843 DEBUG_PRINT1 ("EXECUTING after_dot.\n");
5844 if (PTR_BYTE_POS (d) <= PT_BYTE)
5845 goto fail;
e318085a 5846 break;
fa9a63c5 5847
1fb352e0 5848 case categoryspec:
b18215fc 5849 case notcategoryspec:
1fb352e0 5850 not = (re_opcode_t) *(p - 1) == notcategoryspec;
b18215fc 5851 mcnt = *p++;
1fb352e0 5852 DEBUG_PRINT3 ("EXECUTING %scategoryspec %d.\n", not?"not":"", mcnt);
b18215fc
RS
5853 PREFETCH ();
5854 {
01618498
SM
5855 int len;
5856 re_wchar_t c;
5857
2d1675e4 5858 c = RE_STRING_CHAR_AND_LENGTH (d, dend - d, len);
b18215fc 5859
1fb352e0 5860 if ((!CHAR_HAS_CATEGORY (c, mcnt)) ^ not)
b18215fc
RS
5861 goto fail;
5862 d += len;
5863 }
fa9a63c5 5864 break;
5e69f11e 5865
1fb352e0 5866#endif /* emacs */
5e69f11e 5867
0b32bf0e
SM
5868 default:
5869 abort ();
fa9a63c5 5870 }
b18215fc 5871 continue; /* Successfully executed one pattern command; keep going. */
fa9a63c5
RM
5872
5873
5874 /* We goto here if a matching operation fails. */
5875 fail:
5b370c2b 5876 IMMEDIATE_QUIT_CHECK;
fa9a63c5 5877 if (!FAIL_STACK_EMPTY ())
505bde11 5878 {
01618498 5879 re_char *str, *pat;
505bde11 5880 /* A restart point is known. Restore to that state. */
0b32bf0e
SM
5881 DEBUG_PRINT1 ("\nFAIL:\n");
5882 POP_FAILURE_POINT (str, pat);
505bde11
SM
5883 switch (SWITCH_ENUM_CAST ((re_opcode_t) *pat++))
5884 {
5885 case on_failure_keep_string_jump:
5886 assert (str == NULL);
5887 goto continue_failure_jump;
5888
0683b6fa
SM
5889 case on_failure_jump_nastyloop:
5890 assert ((re_opcode_t)pat[-2] == no_op);
5891 PUSH_FAILURE_POINT (pat - 2, str);
5892 /* Fallthrough */
5893
505bde11
SM
5894 case on_failure_jump_loop:
5895 case on_failure_jump:
5896 case succeed_n:
5897 d = str;
5898 continue_failure_jump:
5899 EXTRACT_NUMBER_AND_INCR (mcnt, pat);
5900 p = pat + mcnt;
5901 break;
b18215fc 5902
0683b6fa
SM
5903 case no_op:
5904 /* A special frame used for nastyloops. */
5905 goto fail;
5906
505bde11
SM
5907 default:
5908 abort();
5909 }
fa9a63c5 5910
505bde11 5911 assert (p >= bufp->buffer && p <= pend);
b18215fc 5912
0b32bf0e 5913 if (d >= string1 && d <= end1)
fa9a63c5 5914 dend = end_match_1;
0b32bf0e 5915 }
fa9a63c5 5916 else
0b32bf0e 5917 break; /* Matching at this starting point really fails. */
fa9a63c5
RM
5918 } /* for (;;) */
5919
5920 if (best_regs_set)
5921 goto restore_best_regs;
5922
5923 FREE_VARIABLES ();
5924
b18215fc 5925 return -1; /* Failure to match. */
fa9a63c5
RM
5926} /* re_match_2 */
5927\f
5928/* Subroutine definitions for re_match_2. */
5929
fa9a63c5
RM
5930/* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
5931 bytes; nonzero otherwise. */
5e69f11e 5932
fa9a63c5 5933static int
2d1675e4
SM
5934bcmp_translate (s1, s2, len, translate, multibyte)
5935 re_char *s1, *s2;
fa9a63c5 5936 register int len;
6676cb1c 5937 RE_TRANSLATE_TYPE translate;
2d1675e4 5938 const int multibyte;
fa9a63c5 5939{
2d1675e4
SM
5940 register re_char *p1 = s1, *p2 = s2;
5941 re_char *p1_end = s1 + len;
5942 re_char *p2_end = s2 + len;
e934739e 5943
4bb91c68
SM
5944 /* FIXME: Checking both p1 and p2 presumes that the two strings might have
5945 different lengths, but relying on a single `len' would break this. -sm */
5946 while (p1 < p1_end && p2 < p2_end)
fa9a63c5 5947 {
e934739e 5948 int p1_charlen, p2_charlen;
01618498 5949 re_wchar_t p1_ch, p2_ch;
e934739e 5950
2d1675e4
SM
5951 p1_ch = RE_STRING_CHAR_AND_LENGTH (p1, p1_end - p1, p1_charlen);
5952 p2_ch = RE_STRING_CHAR_AND_LENGTH (p2, p2_end - p2, p2_charlen);
e934739e
RS
5953
5954 if (RE_TRANSLATE (translate, p1_ch)
5955 != RE_TRANSLATE (translate, p2_ch))
bc192b5b 5956 return 1;
e934739e
RS
5957
5958 p1 += p1_charlen, p2 += p2_charlen;
fa9a63c5 5959 }
e934739e
RS
5960
5961 if (p1 != p1_end || p2 != p2_end)
5962 return 1;
5963
fa9a63c5
RM
5964 return 0;
5965}
5966\f
5967/* Entry points for GNU code. */
5968
5969/* re_compile_pattern is the GNU regular expression compiler: it
5970 compiles PATTERN (of length SIZE) and puts the result in BUFP.
5971 Returns 0 if the pattern was valid, otherwise an error string.
5e69f11e 5972
fa9a63c5
RM
5973 Assumes the `allocated' (and perhaps `buffer') and `translate' fields
5974 are set in BUFP on entry.
5e69f11e 5975
b18215fc 5976 We call regex_compile to do the actual compilation. */
fa9a63c5
RM
5977
5978const char *
5979re_compile_pattern (pattern, length, bufp)
5980 const char *pattern;
0b32bf0e 5981 size_t length;
fa9a63c5
RM
5982 struct re_pattern_buffer *bufp;
5983{
5984 reg_errcode_t ret;
5e69f11e 5985
fa9a63c5
RM
5986 /* GNU code is written to assume at least RE_NREGS registers will be set
5987 (and at least one extra will be -1). */
5988 bufp->regs_allocated = REGS_UNALLOCATED;
5e69f11e 5989
fa9a63c5
RM
5990 /* And GNU code determines whether or not to get register information
5991 by passing null for the REGS argument to re_match, etc., not by
5992 setting no_sub. */
5993 bufp->no_sub = 0;
5e69f11e 5994
4bb91c68 5995 ret = regex_compile ((re_char*) pattern, length, re_syntax_options, bufp);
fa9a63c5
RM
5996
5997 if (!ret)
5998 return NULL;
5999 return gettext (re_error_msgid[(int) ret]);
5e69f11e 6000}
c0f9ea08 6001WEAK_ALIAS (__re_compile_pattern, re_compile_pattern)
fa9a63c5 6002\f
b18215fc
RS
6003/* Entry points compatible with 4.2 BSD regex library. We don't define
6004 them unless specifically requested. */
fa9a63c5 6005
0b32bf0e 6006#if defined _REGEX_RE_COMP || defined _LIBC
fa9a63c5
RM
6007
6008/* BSD has one and only one pattern buffer. */
6009static struct re_pattern_buffer re_comp_buf;
6010
6011char *
0b32bf0e 6012# ifdef _LIBC
48afdd44
RM
6013/* Make these definitions weak in libc, so POSIX programs can redefine
6014 these names if they don't use our functions, and still use
6015 regcomp/regexec below without link errors. */
6016weak_function
0b32bf0e 6017# endif
fa9a63c5
RM
6018re_comp (s)
6019 const char *s;
6020{
6021 reg_errcode_t ret;
5e69f11e 6022
fa9a63c5
RM
6023 if (!s)
6024 {
6025 if (!re_comp_buf.buffer)
0b32bf0e 6026 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
a60198e5 6027 return (char *) gettext ("No previous regular expression");
fa9a63c5
RM
6028 return 0;
6029 }
6030
6031 if (!re_comp_buf.buffer)
6032 {
6033 re_comp_buf.buffer = (unsigned char *) malloc (200);
6034 if (re_comp_buf.buffer == NULL)
0b32bf0e
SM
6035 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
6036 return (char *) gettext (re_error_msgid[(int) REG_ESPACE]);
fa9a63c5
RM
6037 re_comp_buf.allocated = 200;
6038
6039 re_comp_buf.fastmap = (char *) malloc (1 << BYTEWIDTH);
6040 if (re_comp_buf.fastmap == NULL)
a60198e5
SM
6041 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
6042 return (char *) gettext (re_error_msgid[(int) REG_ESPACE]);
fa9a63c5
RM
6043 }
6044
6045 /* Since `re_exec' always passes NULL for the `regs' argument, we
6046 don't need to initialize the pattern buffer fields which affect it. */
6047
fa9a63c5 6048 ret = regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf);
5e69f11e 6049
fa9a63c5
RM
6050 if (!ret)
6051 return NULL;
6052
6053 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
6054 return (char *) gettext (re_error_msgid[(int) ret]);
6055}
6056
6057
6058int
0b32bf0e 6059# ifdef _LIBC
48afdd44 6060weak_function
0b32bf0e 6061# endif
fa9a63c5
RM
6062re_exec (s)
6063 const char *s;
6064{
6065 const int len = strlen (s);
6066 return
6067 0 <= re_search (&re_comp_buf, s, len, 0, len, (struct re_registers *) 0);
6068}
6069#endif /* _REGEX_RE_COMP */
6070\f
6071/* POSIX.2 functions. Don't define these for Emacs. */
6072
6073#ifndef emacs
6074
6075/* regcomp takes a regular expression as a string and compiles it.
6076
b18215fc 6077 PREG is a regex_t *. We do not expect any fields to be initialized,
fa9a63c5
RM
6078 since POSIX says we shouldn't. Thus, we set
6079
6080 `buffer' to the compiled pattern;
6081 `used' to the length of the compiled pattern;
6082 `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
6083 REG_EXTENDED bit in CFLAGS is set; otherwise, to
6084 RE_SYNTAX_POSIX_BASIC;
c0f9ea08
SM
6085 `fastmap' to an allocated space for the fastmap;
6086 `fastmap_accurate' to zero;
fa9a63c5
RM
6087 `re_nsub' to the number of subexpressions in PATTERN.
6088
6089 PATTERN is the address of the pattern string.
6090
6091 CFLAGS is a series of bits which affect compilation.
6092
6093 If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
6094 use POSIX basic syntax.
6095
6096 If REG_NEWLINE is set, then . and [^...] don't match newline.
6097 Also, regexec will try a match beginning after every newline.
6098
6099 If REG_ICASE is set, then we considers upper- and lowercase
6100 versions of letters to be equivalent when matching.
6101
6102 If REG_NOSUB is set, then when PREG is passed to regexec, that
6103 routine will report only success or failure, and nothing about the
6104 registers.
6105
b18215fc 6106 It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for
fa9a63c5
RM
6107 the return codes and their meanings.) */
6108
6109int
6110regcomp (preg, pattern, cflags)
ada30c0e
SM
6111 regex_t *__restrict preg;
6112 const char *__restrict pattern;
fa9a63c5
RM
6113 int cflags;
6114{
6115 reg_errcode_t ret;
4bb91c68 6116 reg_syntax_t syntax
fa9a63c5
RM
6117 = (cflags & REG_EXTENDED) ?
6118 RE_SYNTAX_POSIX_EXTENDED : RE_SYNTAX_POSIX_BASIC;
6119
6120 /* regex_compile will allocate the space for the compiled pattern. */
6121 preg->buffer = 0;
6122 preg->allocated = 0;
6123 preg->used = 0;
5e69f11e 6124
c0f9ea08
SM
6125 /* Try to allocate space for the fastmap. */
6126 preg->fastmap = (char *) malloc (1 << BYTEWIDTH);
5e69f11e 6127
fa9a63c5
RM
6128 if (cflags & REG_ICASE)
6129 {
6130 unsigned i;
5e69f11e 6131
6676cb1c
RS
6132 preg->translate
6133 = (RE_TRANSLATE_TYPE) malloc (CHAR_SET_SIZE
6134 * sizeof (*(RE_TRANSLATE_TYPE)0));
fa9a63c5 6135 if (preg->translate == NULL)
0b32bf0e 6136 return (int) REG_ESPACE;
fa9a63c5
RM
6137
6138 /* Map uppercase characters to corresponding lowercase ones. */
6139 for (i = 0; i < CHAR_SET_SIZE; i++)
4bb91c68 6140 preg->translate[i] = ISUPPER (i) ? TOLOWER (i) : i;
fa9a63c5
RM
6141 }
6142 else
6143 preg->translate = NULL;
6144
6145 /* If REG_NEWLINE is set, newlines are treated differently. */
6146 if (cflags & REG_NEWLINE)
6147 { /* REG_NEWLINE implies neither . nor [^...] match newline. */
6148 syntax &= ~RE_DOT_NEWLINE;
6149 syntax |= RE_HAT_LISTS_NOT_NEWLINE;
fa9a63c5
RM
6150 }
6151 else
c0f9ea08 6152 syntax |= RE_NO_NEWLINE_ANCHOR;
fa9a63c5
RM
6153
6154 preg->no_sub = !!(cflags & REG_NOSUB);
6155
5e69f11e 6156 /* POSIX says a null character in the pattern terminates it, so we
fa9a63c5 6157 can use strlen here in compiling the pattern. */
4bb91c68 6158 ret = regex_compile ((re_char*) pattern, strlen (pattern), syntax, preg);
5e69f11e 6159
fa9a63c5
RM
6160 /* POSIX doesn't distinguish between an unmatched open-group and an
6161 unmatched close-group: both are REG_EPAREN. */
c0f9ea08
SM
6162 if (ret == REG_ERPAREN)
6163 ret = REG_EPAREN;
6164
6165 if (ret == REG_NOERROR && preg->fastmap)
6166 { /* Compute the fastmap now, since regexec cannot modify the pattern
6167 buffer. */
6168 re_compile_fastmap (preg);
6169 if (preg->can_be_null)
6170 { /* The fastmap can't be used anyway. */
6171 free (preg->fastmap);
6172 preg->fastmap = NULL;
6173 }
6174 }
fa9a63c5
RM
6175 return (int) ret;
6176}
c0f9ea08 6177WEAK_ALIAS (__regcomp, regcomp)
fa9a63c5
RM
6178
6179
6180/* regexec searches for a given pattern, specified by PREG, in the
6181 string STRING.
5e69f11e 6182
fa9a63c5 6183 If NMATCH is zero or REG_NOSUB was set in the cflags argument to
b18215fc 6184 `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at
fa9a63c5
RM
6185 least NMATCH elements, and we set them to the offsets of the
6186 corresponding matched substrings.
5e69f11e 6187
fa9a63c5
RM
6188 EFLAGS specifies `execution flags' which affect matching: if
6189 REG_NOTBOL is set, then ^ does not match at the beginning of the
6190 string; if REG_NOTEOL is set, then $ does not match at the end.
5e69f11e 6191
fa9a63c5
RM
6192 We return 0 if we find a match and REG_NOMATCH if not. */
6193
6194int
6195regexec (preg, string, nmatch, pmatch, eflags)
ada30c0e
SM
6196 const regex_t *__restrict preg;
6197 const char *__restrict string;
5e69f11e 6198 size_t nmatch;
9f2dbe01 6199 regmatch_t pmatch[__restrict_arr];
fa9a63c5
RM
6200 int eflags;
6201{
6202 int ret;
6203 struct re_registers regs;
6204 regex_t private_preg;
6205 int len = strlen (string);
c0f9ea08 6206 boolean want_reg_info = !preg->no_sub && nmatch > 0 && pmatch;
fa9a63c5
RM
6207
6208 private_preg = *preg;
5e69f11e 6209
fa9a63c5
RM
6210 private_preg.not_bol = !!(eflags & REG_NOTBOL);
6211 private_preg.not_eol = !!(eflags & REG_NOTEOL);
5e69f11e 6212
fa9a63c5
RM
6213 /* The user has told us exactly how many registers to return
6214 information about, via `nmatch'. We have to pass that on to the
b18215fc 6215 matching routines. */
fa9a63c5 6216 private_preg.regs_allocated = REGS_FIXED;
5e69f11e 6217
fa9a63c5
RM
6218 if (want_reg_info)
6219 {
6220 regs.num_regs = nmatch;
4bb91c68
SM
6221 regs.start = TALLOC (nmatch * 2, regoff_t);
6222 if (regs.start == NULL)
0b32bf0e 6223 return (int) REG_NOMATCH;
4bb91c68 6224 regs.end = regs.start + nmatch;
fa9a63c5
RM
6225 }
6226
c0f9ea08
SM
6227 /* Instead of using not_eol to implement REG_NOTEOL, we could simply
6228 pass (&private_preg, string, len + 1, 0, len, ...) pretending the string
6229 was a little bit longer but still only matching the real part.
6230 This works because the `endline' will check for a '\n' and will find a
6231 '\0', correctly deciding that this is not the end of a line.
6232 But it doesn't work out so nicely for REG_NOTBOL, since we don't have
6233 a convenient '\0' there. For all we know, the string could be preceded
6234 by '\n' which would throw things off. */
6235
fa9a63c5
RM
6236 /* Perform the searching operation. */
6237 ret = re_search (&private_preg, string, len,
0b32bf0e
SM
6238 /* start: */ 0, /* range: */ len,
6239 want_reg_info ? &regs : (struct re_registers *) 0);
5e69f11e 6240
fa9a63c5
RM
6241 /* Copy the register information to the POSIX structure. */
6242 if (want_reg_info)
6243 {
6244 if (ret >= 0)
0b32bf0e
SM
6245 {
6246 unsigned r;
fa9a63c5 6247
0b32bf0e
SM
6248 for (r = 0; r < nmatch; r++)
6249 {
6250 pmatch[r].rm_so = regs.start[r];
6251 pmatch[r].rm_eo = regs.end[r];
6252 }
6253 }
fa9a63c5 6254
b18215fc 6255 /* If we needed the temporary register info, free the space now. */
fa9a63c5 6256 free (regs.start);
fa9a63c5
RM
6257 }
6258
6259 /* We want zero return to mean success, unlike `re_search'. */
6260 return ret >= 0 ? (int) REG_NOERROR : (int) REG_NOMATCH;
6261}
c0f9ea08 6262WEAK_ALIAS (__regexec, regexec)
fa9a63c5
RM
6263
6264
6265/* Returns a message corresponding to an error code, ERRCODE, returned
6266 from either regcomp or regexec. We don't use PREG here. */
6267
6268size_t
6269regerror (errcode, preg, errbuf, errbuf_size)
6270 int errcode;
6271 const regex_t *preg;
6272 char *errbuf;
6273 size_t errbuf_size;
6274{
6275 const char *msg;
6276 size_t msg_size;
6277
6278 if (errcode < 0
6279 || errcode >= (sizeof (re_error_msgid) / sizeof (re_error_msgid[0])))
5e69f11e 6280 /* Only error codes returned by the rest of the code should be passed
b18215fc 6281 to this routine. If we are given anything else, or if other regex
fa9a63c5
RM
6282 code generates an invalid error code, then the program has a bug.
6283 Dump core so we can fix it. */
6284 abort ();
6285
6286 msg = gettext (re_error_msgid[errcode]);
6287
6288 msg_size = strlen (msg) + 1; /* Includes the null. */
5e69f11e 6289
fa9a63c5
RM
6290 if (errbuf_size != 0)
6291 {
6292 if (msg_size > errbuf_size)
0b32bf0e
SM
6293 {
6294 strncpy (errbuf, msg, errbuf_size - 1);
6295 errbuf[errbuf_size - 1] = 0;
6296 }
fa9a63c5 6297 else
0b32bf0e 6298 strcpy (errbuf, msg);
fa9a63c5
RM
6299 }
6300
6301 return msg_size;
6302}
c0f9ea08 6303WEAK_ALIAS (__regerror, regerror)
fa9a63c5
RM
6304
6305
6306/* Free dynamically allocated space used by PREG. */
6307
6308void
6309regfree (preg)
6310 regex_t *preg;
6311{
6312 if (preg->buffer != NULL)
6313 free (preg->buffer);
6314 preg->buffer = NULL;
5e69f11e 6315
fa9a63c5
RM
6316 preg->allocated = 0;
6317 preg->used = 0;
6318
6319 if (preg->fastmap != NULL)
6320 free (preg->fastmap);
6321 preg->fastmap = NULL;
6322 preg->fastmap_accurate = 0;
6323
6324 if (preg->translate != NULL)
6325 free (preg->translate);
6326 preg->translate = NULL;
6327}
c0f9ea08 6328WEAK_ALIAS (__regfree, regfree)
fa9a63c5
RM
6329
6330#endif /* not emacs */