Put back archlibdir. Require autoconf 2.4.1 or later.
[bpt/emacs.git] / src / regex.c
CommitLineData
bc78d348 1/* Extended regular expression matching and search library,
8b20806d 2 version 0.12.
bc78d348
KB
3 (Implements POSIX draft P10003.2/D11.2, except for
4 internationalization features.)
5
2860be63 6 Copyright (C) 1993, 1994, 1995 Free Software Foundation, Inc.
bc78d348 7
fa9a63c5
RM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
21
22/* AIX requires this to be the first thing in the file. */
23#if defined (_AIX) && !defined (REGEX_MALLOC)
24 #pragma alloca
25#endif
26
27#define _GNU_SOURCE
28
29#ifdef HAVE_CONFIG_H
30#include <config.h>
31#endif
32
33/* We need this for `regex.h', and perhaps for the Emacs include files. */
34#include <sys/types.h>
35
36/* This is for other GNU distributions with internationalized messages. */
37#if HAVE_LIBINTL_H || defined (_LIBC)
38# include <libintl.h>
39#else
40# define gettext(msgid) (msgid)
41#endif
42
43/* The `emacs' switch turns on certain matching commands
44 that make sense only in Emacs. */
45#ifdef emacs
46
47#include "lisp.h"
48#include "buffer.h"
49#include "syntax.h"
50
51#else /* not emacs */
52
53/* If we are not linking with Emacs proper,
54 we can't use the relocating allocator
55 even if config.h says that we can. */
56#undef REL_ALLOC
57
58#if defined (STDC_HEADERS) || defined (_LIBC)
59#include <stdlib.h>
60#else
61char *malloc ();
62char *realloc ();
63#endif
64
9e4ecb26
KH
65/* When used in Emacs's lib-src, we need to get bzero and bcopy somehow.
66 If nothing else has been done, use the method below. */
67#ifdef INHIBIT_STRING_HEADER
68#if !(defined (HAVE_BZERO) && defined (HAVE_BCOPY))
69#if !defined (bzero) && !defined (bcopy)
70#undef INHIBIT_STRING_HEADER
71#endif
72#endif
73#endif
74
75/* This is the normal way of making sure we have a bcopy and a bzero.
76 This is used in most programs--a few other programs avoid this
77 by defining INHIBIT_STRING_HEADER. */
fa9a63c5 78#ifndef INHIBIT_STRING_HEADER
7f998252 79#if defined (HAVE_STRING_H) || defined (STDC_HEADERS) || defined (_LIBC)
fa9a63c5
RM
80#include <string.h>
81#ifndef bcmp
82#define bcmp(s1, s2, n) memcmp ((s1), (s2), (n))
83#endif
84#ifndef bcopy
85#define bcopy(s, d, n) memcpy ((d), (s), (n))
86#endif
87#ifndef bzero
88#define bzero(s, n) memset ((s), 0, (n))
89#endif
90#else
91#include <strings.h>
92#endif
93#endif
94
95/* Define the syntax stuff for \<, \>, etc. */
96
97/* This must be nonzero for the wordchar and notwordchar pattern
98 commands in re_match_2. */
99#ifndef Sword
100#define Sword 1
101#endif
102
103#ifdef SWITCH_ENUM_BUG
104#define SWITCH_ENUM_CAST(x) ((int)(x))
105#else
106#define SWITCH_ENUM_CAST(x) (x)
107#endif
108
109#ifdef SYNTAX_TABLE
110
111extern char *re_syntax_table;
112
113#else /* not SYNTAX_TABLE */
114
115/* How many characters in the character set. */
116#define CHAR_SET_SIZE 256
117
118static char re_syntax_table[CHAR_SET_SIZE];
119
120static void
121init_syntax_once ()
122{
123 register int c;
124 static int done = 0;
125
126 if (done)
127 return;
128
129 bzero (re_syntax_table, sizeof re_syntax_table);
130
131 for (c = 'a'; c <= 'z'; c++)
132 re_syntax_table[c] = Sword;
133
134 for (c = 'A'; c <= 'Z'; c++)
135 re_syntax_table[c] = Sword;
136
137 for (c = '0'; c <= '9'; c++)
138 re_syntax_table[c] = Sword;
139
140 re_syntax_table['_'] = Sword;
141
142 done = 1;
143}
144
145#endif /* not SYNTAX_TABLE */
146
147#define SYNTAX(c) re_syntax_table[c]
148
149#endif /* not emacs */
150\f
151/* Get the interface, including the syntax bits. */
152#include "regex.h"
153
154/* isalpha etc. are used for the character classes. */
155#include <ctype.h>
156
157/* Jim Meyering writes:
158
159 "... Some ctype macros are valid only for character codes that
160 isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when
161 using /bin/cc or gcc but without giving an ansi option). So, all
162 ctype uses should be through macros like ISPRINT... If
163 STDC_HEADERS is defined, then autoconf has verified that the ctype
164 macros don't need to be guarded with references to isascii. ...
165 Defining isascii to 1 should let any compiler worth its salt
166 eliminate the && through constant folding." */
167
168#if defined (STDC_HEADERS) || (!defined (isascii) && !defined (HAVE_ISASCII))
169#define ISASCII(c) 1
170#else
171#define ISASCII(c) isascii(c)
172#endif
173
174#ifdef isblank
175#define ISBLANK(c) (ISASCII (c) && isblank (c))
176#else
177#define ISBLANK(c) ((c) == ' ' || (c) == '\t')
178#endif
179#ifdef isgraph
180#define ISGRAPH(c) (ISASCII (c) && isgraph (c))
181#else
182#define ISGRAPH(c) (ISASCII (c) && isprint (c) && !isspace (c))
183#endif
184
185#define ISPRINT(c) (ISASCII (c) && isprint (c))
186#define ISDIGIT(c) (ISASCII (c) && isdigit (c))
187#define ISALNUM(c) (ISASCII (c) && isalnum (c))
188#define ISALPHA(c) (ISASCII (c) && isalpha (c))
189#define ISCNTRL(c) (ISASCII (c) && iscntrl (c))
190#define ISLOWER(c) (ISASCII (c) && islower (c))
191#define ISPUNCT(c) (ISASCII (c) && ispunct (c))
192#define ISSPACE(c) (ISASCII (c) && isspace (c))
193#define ISUPPER(c) (ISASCII (c) && isupper (c))
194#define ISXDIGIT(c) (ISASCII (c) && isxdigit (c))
195
196#ifndef NULL
075f06ec 197#define NULL (void *)0
fa9a63c5
RM
198#endif
199
200/* We remove any previous definition of `SIGN_EXTEND_CHAR',
201 since ours (we hope) works properly with all combinations of
202 machines, compilers, `char' and `unsigned char' argument types.
203 (Per Bothner suggested the basic approach.) */
204#undef SIGN_EXTEND_CHAR
205#if __STDC__
206#define SIGN_EXTEND_CHAR(c) ((signed char) (c))
207#else /* not __STDC__ */
208/* As in Harbison and Steele. */
209#define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
210#endif
211\f
212/* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we
213 use `alloca' instead of `malloc'. This is because using malloc in
214 re_search* or re_match* could cause memory leaks when C-g is used in
215 Emacs; also, malloc is slower and causes storage fragmentation. On
216 the other hand, malloc is more portable, and easier to debug.
217
218 Because we sometimes use alloca, some routines have to be macros,
219 not functions -- `alloca'-allocated space disappears at the end of the
220 function it is called in. */
221
222#ifdef REGEX_MALLOC
223
224#define REGEX_ALLOCATE malloc
225#define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
226#define REGEX_FREE free
227
228#else /* not REGEX_MALLOC */
229
230/* Emacs already defines alloca, sometimes. */
231#ifndef alloca
232
233/* Make alloca work the best possible way. */
234#ifdef __GNUC__
235#define alloca __builtin_alloca
236#else /* not __GNUC__ */
237#if HAVE_ALLOCA_H
238#include <alloca.h>
239#else /* not __GNUC__ or HAVE_ALLOCA_H */
240#ifndef _AIX /* Already did AIX, up at the top. */
241char *alloca ();
242#endif /* not _AIX */
243#endif /* not HAVE_ALLOCA_H */
244#endif /* not __GNUC__ */
245
246#endif /* not alloca */
247
248#define REGEX_ALLOCATE alloca
249
250/* Assumes a `char *destination' variable. */
251#define REGEX_REALLOCATE(source, osize, nsize) \
252 (destination = (char *) alloca (nsize), \
253 bcopy (source, destination, osize), \
254 destination)
255
256/* No need to do anything to free, after alloca. */
c2e1680a 257#define REGEX_FREE(arg) ((void)0) /* Do nothing! But inhibit gcc warning. */
fa9a63c5
RM
258
259#endif /* not REGEX_MALLOC */
260
261/* Define how to allocate the failure stack. */
262
263#ifdef REL_ALLOC
264#define REGEX_ALLOCATE_STACK(size) \
265 r_alloc (&failure_stack_ptr, (size))
266#define REGEX_REALLOCATE_STACK(source, osize, nsize) \
267 r_re_alloc (&failure_stack_ptr, (nsize))
268#define REGEX_FREE_STACK(ptr) \
269 r_alloc_free (&failure_stack_ptr)
270
271#else /* not REL_ALLOC */
272
273#ifdef REGEX_MALLOC
274
275#define REGEX_ALLOCATE_STACK malloc
276#define REGEX_REALLOCATE_STACK(source, osize, nsize) realloc (source, nsize)
277#define REGEX_FREE_STACK free
278
279#else /* not REGEX_MALLOC */
280
281#define REGEX_ALLOCATE_STACK alloca
282
283#define REGEX_REALLOCATE_STACK(source, osize, nsize) \
284 REGEX_REALLOCATE (source, osize, nsize)
285/* No need to explicitly free anything. */
286#define REGEX_FREE_STACK(arg)
287
288#endif /* not REGEX_MALLOC */
289#endif /* not REL_ALLOC */
290
291
292/* True if `size1' is non-NULL and PTR is pointing anywhere inside
293 `string1' or just past its end. This works if PTR is NULL, which is
294 a good thing. */
295#define FIRST_STRING_P(ptr) \
296 (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
297
298/* (Re)Allocate N items of type T using malloc, or fail. */
299#define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
300#define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
301#define RETALLOC_IF(addr, n, t) \
302 if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t)
303#define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
304
305#define BYTEWIDTH 8 /* In bits. */
306
307#define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
308
309#undef MAX
310#undef MIN
311#define MAX(a, b) ((a) > (b) ? (a) : (b))
312#define MIN(a, b) ((a) < (b) ? (a) : (b))
313
314typedef char boolean;
315#define false 0
316#define true 1
317
318static int re_match_2_internal ();
319\f
320/* These are the command codes that appear in compiled regular
321 expressions. Some opcodes are followed by argument bytes. A
322 command code can specify any interpretation whatsoever for its
323 arguments. Zero bytes may appear in the compiled regular expression. */
324
325typedef enum
326{
327 no_op = 0,
328
329 /* Succeed right away--no more backtracking. */
330 succeed,
331
332 /* Followed by one byte giving n, then by n literal bytes. */
333 exactn,
334
335 /* Matches any (more or less) character. */
336 anychar,
337
338 /* Matches any one char belonging to specified set. First
339 following byte is number of bitmap bytes. Then come bytes
340 for a bitmap saying which chars are in. Bits in each byte
341 are ordered low-bit-first. A character is in the set if its
342 bit is 1. A character too large to have a bit in the map is
343 automatically not in the set. */
344 charset,
345
346 /* Same parameters as charset, but match any character that is
347 not one of those specified. */
348 charset_not,
349
350 /* Start remembering the text that is matched, for storing in a
351 register. Followed by one byte with the register number, in
352 the range 0 to one less than the pattern buffer's re_nsub
353 field. Then followed by one byte with the number of groups
354 inner to this one. (This last has to be part of the
355 start_memory only because we need it in the on_failure_jump
356 of re_match_2.) */
357 start_memory,
358
359 /* Stop remembering the text that is matched and store it in a
360 memory register. Followed by one byte with the register
361 number, in the range 0 to one less than `re_nsub' in the
362 pattern buffer, and one byte with the number of inner groups,
363 just like `start_memory'. (We need the number of inner
364 groups here because we don't have any easy way of finding the
365 corresponding start_memory when we're at a stop_memory.) */
366 stop_memory,
367
368 /* Match a duplicate of something remembered. Followed by one
369 byte containing the register number. */
370 duplicate,
371
372 /* Fail unless at beginning of line. */
373 begline,
374
375 /* Fail unless at end of line. */
376 endline,
377
378 /* Succeeds if at beginning of buffer (if emacs) or at beginning
379 of string to be matched (if not). */
380 begbuf,
381
382 /* Analogously, for end of buffer/string. */
383 endbuf,
384
385 /* Followed by two byte relative address to which to jump. */
386 jump,
387
388 /* Same as jump, but marks the end of an alternative. */
389 jump_past_alt,
390
391 /* Followed by two-byte relative address of place to resume at
392 in case of failure. */
393 on_failure_jump,
394
395 /* Like on_failure_jump, but pushes a placeholder instead of the
396 current string position when executed. */
397 on_failure_keep_string_jump,
398
399 /* Throw away latest failure point and then jump to following
400 two-byte relative address. */
401 pop_failure_jump,
402
403 /* Change to pop_failure_jump if know won't have to backtrack to
404 match; otherwise change to jump. This is used to jump
405 back to the beginning of a repeat. If what follows this jump
406 clearly won't match what the repeat does, such that we can be
407 sure that there is no use backtracking out of repetitions
408 already matched, then we change it to a pop_failure_jump.
409 Followed by two-byte address. */
410 maybe_pop_jump,
411
412 /* Jump to following two-byte address, and push a dummy failure
413 point. This failure point will be thrown away if an attempt
414 is made to use it for a failure. A `+' construct makes this
415 before the first repeat. Also used as an intermediary kind
416 of jump when compiling an alternative. */
417 dummy_failure_jump,
418
419 /* Push a dummy failure point and continue. Used at the end of
420 alternatives. */
421 push_dummy_failure,
422
423 /* Followed by two-byte relative address and two-byte number n.
424 After matching N times, jump to the address upon failure. */
425 succeed_n,
426
427 /* Followed by two-byte relative address, and two-byte number n.
428 Jump to the address N times, then fail. */
429 jump_n,
430
431 /* Set the following two-byte relative address to the
432 subsequent two-byte number. The address *includes* the two
433 bytes of number. */
434 set_number_at,
435
436 wordchar, /* Matches any word-constituent character. */
437 notwordchar, /* Matches any char that is not a word-constituent. */
438
439 wordbeg, /* Succeeds if at word beginning. */
440 wordend, /* Succeeds if at word end. */
441
442 wordbound, /* Succeeds if at a word boundary. */
443 notwordbound /* Succeeds if not at a word boundary. */
444
445#ifdef emacs
446 ,before_dot, /* Succeeds if before point. */
447 at_dot, /* Succeeds if at point. */
448 after_dot, /* Succeeds if after point. */
449
450 /* Matches any character whose syntax is specified. Followed by
451 a byte which contains a syntax code, e.g., Sword. */
452 syntaxspec,
453
454 /* Matches any character whose syntax is not that specified. */
455 notsyntaxspec
456#endif /* emacs */
457} re_opcode_t;
458\f
459/* Common operations on the compiled pattern. */
460
461/* Store NUMBER in two contiguous bytes starting at DESTINATION. */
462
463#define STORE_NUMBER(destination, number) \
464 do { \
465 (destination)[0] = (number) & 0377; \
466 (destination)[1] = (number) >> 8; \
467 } while (0)
468
469/* Same as STORE_NUMBER, except increment DESTINATION to
470 the byte after where the number is stored. Therefore, DESTINATION
471 must be an lvalue. */
472
473#define STORE_NUMBER_AND_INCR(destination, number) \
474 do { \
475 STORE_NUMBER (destination, number); \
476 (destination) += 2; \
477 } while (0)
478
479/* Put into DESTINATION a number stored in two contiguous bytes starting
480 at SOURCE. */
481
482#define EXTRACT_NUMBER(destination, source) \
483 do { \
484 (destination) = *(source) & 0377; \
485 (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8; \
486 } while (0)
487
488#ifdef DEBUG
489static void
490extract_number (dest, source)
491 int *dest;
492 unsigned char *source;
493{
494 int temp = SIGN_EXTEND_CHAR (*(source + 1));
495 *dest = *source & 0377;
496 *dest += temp << 8;
497}
498
499#ifndef EXTRACT_MACROS /* To debug the macros. */
500#undef EXTRACT_NUMBER
501#define EXTRACT_NUMBER(dest, src) extract_number (&dest, src)
502#endif /* not EXTRACT_MACROS */
503
504#endif /* DEBUG */
505
506/* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
507 SOURCE must be an lvalue. */
508
509#define EXTRACT_NUMBER_AND_INCR(destination, source) \
510 do { \
511 EXTRACT_NUMBER (destination, source); \
512 (source) += 2; \
513 } while (0)
514
515#ifdef DEBUG
516static void
517extract_number_and_incr (destination, source)
518 int *destination;
519 unsigned char **source;
520{
521 extract_number (destination, *source);
522 *source += 2;
523}
524
525#ifndef EXTRACT_MACROS
526#undef EXTRACT_NUMBER_AND_INCR
527#define EXTRACT_NUMBER_AND_INCR(dest, src) \
528 extract_number_and_incr (&dest, &src)
529#endif /* not EXTRACT_MACROS */
530
531#endif /* DEBUG */
532\f
533/* If DEBUG is defined, Regex prints many voluminous messages about what
534 it is doing (if the variable `debug' is nonzero). If linked with the
535 main program in `iregex.c', you can enter patterns and strings
536 interactively. And if linked with the main program in `main.c' and
537 the other test files, you can run the already-written tests. */
538
539#ifdef DEBUG
540
541/* We use standard I/O for debugging. */
542#include <stdio.h>
543
544/* It is useful to test things that ``must'' be true when debugging. */
545#include <assert.h>
546
547static int debug = 0;
548
549#define DEBUG_STATEMENT(e) e
550#define DEBUG_PRINT1(x) if (debug) printf (x)
551#define DEBUG_PRINT2(x1, x2) if (debug) printf (x1, x2)
552#define DEBUG_PRINT3(x1, x2, x3) if (debug) printf (x1, x2, x3)
553#define DEBUG_PRINT4(x1, x2, x3, x4) if (debug) printf (x1, x2, x3, x4)
554#define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \
555 if (debug) print_partial_compiled_pattern (s, e)
556#define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \
557 if (debug) print_double_string (w, s1, sz1, s2, sz2)
558
559
560/* Print the fastmap in human-readable form. */
561
562void
563print_fastmap (fastmap)
564 char *fastmap;
565{
566 unsigned was_a_range = 0;
567 unsigned i = 0;
568
569 while (i < (1 << BYTEWIDTH))
570 {
571 if (fastmap[i++])
572 {
573 was_a_range = 0;
574 putchar (i - 1);
575 while (i < (1 << BYTEWIDTH) && fastmap[i])
576 {
577 was_a_range = 1;
578 i++;
579 }
580 if (was_a_range)
581 {
582 printf ("-");
583 putchar (i - 1);
584 }
585 }
586 }
587 putchar ('\n');
588}
589
590
591/* Print a compiled pattern string in human-readable form, starting at
592 the START pointer into it and ending just before the pointer END. */
593
594void
595print_partial_compiled_pattern (start, end)
596 unsigned char *start;
597 unsigned char *end;
598{
599 int mcnt, mcnt2;
600 unsigned char *p = start;
601 unsigned char *pend = end;
602
603 if (start == NULL)
604 {
605 printf ("(null)\n");
606 return;
607 }
608
609 /* Loop over pattern commands. */
610 while (p < pend)
611 {
612 printf ("%d:\t", p - start);
613
614 switch ((re_opcode_t) *p++)
615 {
616 case no_op:
617 printf ("/no_op");
618 break;
619
620 case exactn:
621 mcnt = *p++;
622 printf ("/exactn/%d", mcnt);
623 do
624 {
625 putchar ('/');
626 putchar (*p++);
627 }
628 while (--mcnt);
629 break;
630
631 case start_memory:
632 mcnt = *p++;
633 printf ("/start_memory/%d/%d", mcnt, *p++);
634 break;
635
636 case stop_memory:
637 mcnt = *p++;
638 printf ("/stop_memory/%d/%d", mcnt, *p++);
639 break;
640
641 case duplicate:
642 printf ("/duplicate/%d", *p++);
643 break;
644
645 case anychar:
646 printf ("/anychar");
647 break;
648
649 case charset:
650 case charset_not:
651 {
652 register int c, last = -100;
653 register int in_range = 0;
654
655 printf ("/charset [%s",
656 (re_opcode_t) *(p - 1) == charset_not ? "^" : "");
657
658 assert (p + *p < pend);
659
660 for (c = 0; c < 256; c++)
661 if (c / 8 < *p
662 && (p[1 + (c/8)] & (1 << (c % 8))))
663 {
664 /* Are we starting a range? */
665 if (last + 1 == c && ! in_range)
666 {
667 putchar ('-');
668 in_range = 1;
669 }
670 /* Have we broken a range? */
671 else if (last + 1 != c && in_range)
672 {
673 putchar (last);
674 in_range = 0;
675 }
676
677 if (! in_range)
678 putchar (c);
679
680 last = c;
681 }
682
683 if (in_range)
684 putchar (last);
685
686 putchar (']');
687
688 p += 1 + *p;
689 }
690 break;
691
692 case begline:
693 printf ("/begline");
694 break;
695
696 case endline:
697 printf ("/endline");
698 break;
699
700 case on_failure_jump:
701 extract_number_and_incr (&mcnt, &p);
702 printf ("/on_failure_jump to %d", p + mcnt - start);
703 break;
704
705 case on_failure_keep_string_jump:
706 extract_number_and_incr (&mcnt, &p);
707 printf ("/on_failure_keep_string_jump to %d", p + mcnt - start);
708 break;
709
710 case dummy_failure_jump:
711 extract_number_and_incr (&mcnt, &p);
712 printf ("/dummy_failure_jump to %d", p + mcnt - start);
713 break;
714
715 case push_dummy_failure:
716 printf ("/push_dummy_failure");
717 break;
718
719 case maybe_pop_jump:
720 extract_number_and_incr (&mcnt, &p);
721 printf ("/maybe_pop_jump to %d", p + mcnt - start);
722 break;
723
724 case pop_failure_jump:
725 extract_number_and_incr (&mcnt, &p);
726 printf ("/pop_failure_jump to %d", p + mcnt - start);
727 break;
728
729 case jump_past_alt:
730 extract_number_and_incr (&mcnt, &p);
731 printf ("/jump_past_alt to %d", p + mcnt - start);
732 break;
733
734 case jump:
735 extract_number_and_incr (&mcnt, &p);
736 printf ("/jump to %d", p + mcnt - start);
737 break;
738
739 case succeed_n:
740 extract_number_and_incr (&mcnt, &p);
741 extract_number_and_incr (&mcnt2, &p);
742 printf ("/succeed_n to %d, %d times", p + mcnt - start, mcnt2);
743 break;
744
745 case jump_n:
746 extract_number_and_incr (&mcnt, &p);
747 extract_number_and_incr (&mcnt2, &p);
748 printf ("/jump_n to %d, %d times", p + mcnt - start, mcnt2);
749 break;
750
751 case set_number_at:
752 extract_number_and_incr (&mcnt, &p);
753 extract_number_and_incr (&mcnt2, &p);
754 printf ("/set_number_at location %d to %d", p + mcnt - start, mcnt2);
755 break;
756
757 case wordbound:
758 printf ("/wordbound");
759 break;
760
761 case notwordbound:
762 printf ("/notwordbound");
763 break;
764
765 case wordbeg:
766 printf ("/wordbeg");
767 break;
768
769 case wordend:
770 printf ("/wordend");
771
772#ifdef emacs
773 case before_dot:
774 printf ("/before_dot");
775 break;
776
777 case at_dot:
778 printf ("/at_dot");
779 break;
780
781 case after_dot:
782 printf ("/after_dot");
783 break;
784
785 case syntaxspec:
786 printf ("/syntaxspec");
787 mcnt = *p++;
788 printf ("/%d", mcnt);
789 break;
790
791 case notsyntaxspec:
792 printf ("/notsyntaxspec");
793 mcnt = *p++;
794 printf ("/%d", mcnt);
795 break;
796#endif /* emacs */
797
798 case wordchar:
799 printf ("/wordchar");
800 break;
801
802 case notwordchar:
803 printf ("/notwordchar");
804 break;
805
806 case begbuf:
807 printf ("/begbuf");
808 break;
809
810 case endbuf:
811 printf ("/endbuf");
812 break;
813
814 default:
815 printf ("?%d", *(p-1));
816 }
817
818 putchar ('\n');
819 }
820
821 printf ("%d:\tend of pattern.\n", p - start);
822}
823
824
825void
826print_compiled_pattern (bufp)
827 struct re_pattern_buffer *bufp;
828{
829 unsigned char *buffer = bufp->buffer;
830
831 print_partial_compiled_pattern (buffer, buffer + bufp->used);
832 printf ("%d bytes used/%d bytes allocated.\n", bufp->used, bufp->allocated);
833
834 if (bufp->fastmap_accurate && bufp->fastmap)
835 {
836 printf ("fastmap: ");
837 print_fastmap (bufp->fastmap);
838 }
839
840 printf ("re_nsub: %d\t", bufp->re_nsub);
841 printf ("regs_alloc: %d\t", bufp->regs_allocated);
842 printf ("can_be_null: %d\t", bufp->can_be_null);
843 printf ("newline_anchor: %d\n", bufp->newline_anchor);
844 printf ("no_sub: %d\t", bufp->no_sub);
845 printf ("not_bol: %d\t", bufp->not_bol);
846 printf ("not_eol: %d\t", bufp->not_eol);
847 printf ("syntax: %d\n", bufp->syntax);
848 /* Perhaps we should print the translate table? */
849}
850
851
852void
853print_double_string (where, string1, size1, string2, size2)
854 const char *where;
855 const char *string1;
856 const char *string2;
857 int size1;
858 int size2;
859{
860 unsigned this_char;
861
862 if (where == NULL)
863 printf ("(null)");
864 else
865 {
866 if (FIRST_STRING_P (where))
867 {
868 for (this_char = where - string1; this_char < size1; this_char++)
869 putchar (string1[this_char]);
870
871 where = string2;
872 }
873
874 for (this_char = where - string2; this_char < size2; this_char++)
875 putchar (string2[this_char]);
876 }
877}
878
879#else /* not DEBUG */
880
881#undef assert
882#define assert(e)
883
884#define DEBUG_STATEMENT(e)
885#define DEBUG_PRINT1(x)
886#define DEBUG_PRINT2(x1, x2)
887#define DEBUG_PRINT3(x1, x2, x3)
888#define DEBUG_PRINT4(x1, x2, x3, x4)
889#define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
890#define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
891
892#endif /* not DEBUG */
893\f
894/* Set by `re_set_syntax' to the current regexp syntax to recognize. Can
895 also be assigned to arbitrarily: each pattern buffer stores its own
896 syntax, so it can be changed between regex compilations. */
897/* This has no initializer because initialized variables in Emacs
898 become read-only after dumping. */
899reg_syntax_t re_syntax_options;
900
901
902/* Specify the precise syntax of regexps for compilation. This provides
903 for compatibility for various utilities which historically have
904 different, incompatible syntaxes.
905
906 The argument SYNTAX is a bit mask comprised of the various bits
907 defined in regex.h. We return the old syntax. */
908
909reg_syntax_t
910re_set_syntax (syntax)
911 reg_syntax_t syntax;
912{
913 reg_syntax_t ret = re_syntax_options;
914
915 re_syntax_options = syntax;
916 return ret;
917}
918\f
919/* This table gives an error message for each of the error codes listed
920 in regex.h. Obviously the order here has to be same as there.
921 POSIX doesn't require that we do anything for REG_NOERROR,
922 but why not be nice? */
923
924static const char *re_error_msgid[] =
925 { "Success", /* REG_NOERROR */
926 "No match", /* REG_NOMATCH */
927 "Invalid regular expression", /* REG_BADPAT */
928 "Invalid collation character", /* REG_ECOLLATE */
929 "Invalid character class name", /* REG_ECTYPE */
930 "Trailing backslash", /* REG_EESCAPE */
931 "Invalid back reference", /* REG_ESUBREG */
932 "Unmatched [ or [^", /* REG_EBRACK */
933 "Unmatched ( or \\(", /* REG_EPAREN */
934 "Unmatched \\{", /* REG_EBRACE */
935 "Invalid content of \\{\\}", /* REG_BADBR */
936 "Invalid range end", /* REG_ERANGE */
937 "Memory exhausted", /* REG_ESPACE */
938 "Invalid preceding regular expression", /* REG_BADRPT */
939 "Premature end of regular expression", /* REG_EEND */
940 "Regular expression too big", /* REG_ESIZE */
941 "Unmatched ) or \\)", /* REG_ERPAREN */
942 };
943\f
944/* Avoiding alloca during matching, to placate r_alloc. */
945
946/* Define MATCH_MAY_ALLOCATE unless we need to make sure that the
947 searching and matching functions should not call alloca. On some
948 systems, alloca is implemented in terms of malloc, and if we're
949 using the relocating allocator routines, then malloc could cause a
950 relocation, which might (if the strings being searched are in the
951 ralloc heap) shift the data out from underneath the regexp
952 routines.
953
954 Here's another reason to avoid allocation: Emacs
955 processes input from X in a signal handler; processing X input may
956 call malloc; if input arrives while a matching routine is calling
957 malloc, then we're scrod. But Emacs can't just block input while
958 calling matching routines; then we don't notice interrupts when
959 they come in. So, Emacs blocks input around all regexp calls
960 except the matching calls, which it leaves unprotected, in the
961 faith that they will not malloc. */
962
963/* Normally, this is fine. */
964#define MATCH_MAY_ALLOCATE
965
966/* When using GNU C, we are not REALLY using the C alloca, no matter
967 what config.h may say. So don't take precautions for it. */
968#ifdef __GNUC__
969#undef C_ALLOCA
970#endif
971
972/* The match routines may not allocate if (1) they would do it with malloc
973 and (2) it's not safe for them to use malloc.
974 Note that if REL_ALLOC is defined, matching would not use malloc for the
975 failure stack, but we would still use it for the register vectors;
976 so REL_ALLOC should not affect this. */
977#if (defined (C_ALLOCA) || defined (REGEX_MALLOC)) && defined (emacs)
978#undef MATCH_MAY_ALLOCATE
979#endif
980
981\f
982/* Failure stack declarations and macros; both re_compile_fastmap and
983 re_match_2 use a failure stack. These have to be macros because of
984 REGEX_ALLOCATE_STACK. */
985
986
987/* Number of failure points for which to initially allocate space
988 when matching. If this number is exceeded, we allocate more
989 space, so it is not a hard limit. */
990#ifndef INIT_FAILURE_ALLOC
991#define INIT_FAILURE_ALLOC 5
992#endif
993
994/* Roughly the maximum number of failure points on the stack. Would be
995 exactly that if always used MAX_FAILURE_SPACE each time we failed.
996 This is a variable only so users of regex can assign to it; we never
997 change it ourselves. */
998#if defined (MATCH_MAY_ALLOCATE)
999int re_max_failures = 200000;
1000#else
1001int re_max_failures = 2000;
1002#endif
1003
1004union fail_stack_elt
1005{
1006 unsigned char *pointer;
1007 int integer;
1008};
1009
1010typedef union fail_stack_elt fail_stack_elt_t;
1011
1012typedef struct
1013{
1014 fail_stack_elt_t *stack;
1015 unsigned size;
1016 unsigned avail; /* Offset of next open position. */
1017} fail_stack_type;
1018
1019#define FAIL_STACK_EMPTY() (fail_stack.avail == 0)
1020#define FAIL_STACK_PTR_EMPTY() (fail_stack_ptr->avail == 0)
1021#define FAIL_STACK_FULL() (fail_stack.avail == fail_stack.size)
1022
1023
1024/* Define macros to initialize and free the failure stack.
1025 Do `return -2' if the alloc fails. */
1026
1027#ifdef MATCH_MAY_ALLOCATE
1028#define INIT_FAIL_STACK() \
1029 do { \
1030 fail_stack.stack = (fail_stack_elt_t *) \
1031 REGEX_ALLOCATE_STACK (INIT_FAILURE_ALLOC * sizeof (fail_stack_elt_t)); \
1032 \
1033 if (fail_stack.stack == NULL) \
1034 return -2; \
1035 \
1036 fail_stack.size = INIT_FAILURE_ALLOC; \
1037 fail_stack.avail = 0; \
1038 } while (0)
1039
1040#define RESET_FAIL_STACK() REGEX_FREE_STACK (fail_stack.stack)
1041#else
1042#define INIT_FAIL_STACK() \
1043 do { \
1044 fail_stack.avail = 0; \
1045 } while (0)
1046
1047#define RESET_FAIL_STACK()
1048#endif
1049
1050
1051/* Double the size of FAIL_STACK, up to approximately `re_max_failures' items.
1052
1053 Return 1 if succeeds, and 0 if either ran out of memory
1054 allocating space for it or it was already too large.
1055
1056 REGEX_REALLOCATE_STACK requires `destination' be declared. */
1057
1058#define DOUBLE_FAIL_STACK(fail_stack) \
1059 ((fail_stack).size > re_max_failures * MAX_FAILURE_ITEMS \
1060 ? 0 \
1061 : ((fail_stack).stack = (fail_stack_elt_t *) \
1062 REGEX_REALLOCATE_STACK ((fail_stack).stack, \
1063 (fail_stack).size * sizeof (fail_stack_elt_t), \
1064 ((fail_stack).size << 1) * sizeof (fail_stack_elt_t)), \
1065 \
1066 (fail_stack).stack == NULL \
1067 ? 0 \
1068 : ((fail_stack).size <<= 1, \
1069 1)))
1070
1071
1072/* Push pointer POINTER on FAIL_STACK.
1073 Return 1 if was able to do so and 0 if ran out of memory allocating
1074 space to do so. */
1075#define PUSH_PATTERN_OP(POINTER, FAIL_STACK) \
1076 ((FAIL_STACK_FULL () \
1077 && !DOUBLE_FAIL_STACK (FAIL_STACK)) \
1078 ? 0 \
1079 : ((FAIL_STACK).stack[(FAIL_STACK).avail++].pointer = POINTER, \
1080 1))
1081
1082/* Push a pointer value onto the failure stack.
1083 Assumes the variable `fail_stack'. Probably should only
1084 be called from within `PUSH_FAILURE_POINT'. */
1085#define PUSH_FAILURE_POINTER(item) \
1086 fail_stack.stack[fail_stack.avail++].pointer = (unsigned char *) (item)
1087
1088/* This pushes an integer-valued item onto the failure stack.
1089 Assumes the variable `fail_stack'. Probably should only
1090 be called from within `PUSH_FAILURE_POINT'. */
1091#define PUSH_FAILURE_INT(item) \
1092 fail_stack.stack[fail_stack.avail++].integer = (item)
1093
1094/* Push a fail_stack_elt_t value onto the failure stack.
1095 Assumes the variable `fail_stack'. Probably should only
1096 be called from within `PUSH_FAILURE_POINT'. */
1097#define PUSH_FAILURE_ELT(item) \
1098 fail_stack.stack[fail_stack.avail++] = (item)
1099
1100/* These three POP... operations complement the three PUSH... operations.
1101 All assume that `fail_stack' is nonempty. */
1102#define POP_FAILURE_POINTER() fail_stack.stack[--fail_stack.avail].pointer
1103#define POP_FAILURE_INT() fail_stack.stack[--fail_stack.avail].integer
1104#define POP_FAILURE_ELT() fail_stack.stack[--fail_stack.avail]
1105
1106/* Used to omit pushing failure point id's when we're not debugging. */
1107#ifdef DEBUG
1108#define DEBUG_PUSH PUSH_FAILURE_INT
1109#define DEBUG_POP(item_addr) *(item_addr) = POP_FAILURE_INT ()
1110#else
1111#define DEBUG_PUSH(item)
1112#define DEBUG_POP(item_addr)
1113#endif
1114
1115
1116/* Push the information about the state we will need
1117 if we ever fail back to it.
1118
1119 Requires variables fail_stack, regstart, regend, reg_info, and
1120 num_regs be declared. DOUBLE_FAIL_STACK requires `destination' be
1121 declared.
1122
1123 Does `return FAILURE_CODE' if runs out of memory. */
1124
1125#define PUSH_FAILURE_POINT(pattern_place, string_place, failure_code) \
1126 do { \
1127 char *destination; \
1128 /* Must be int, so when we don't save any registers, the arithmetic \
1129 of 0 + -1 isn't done as unsigned. */ \
1130 int this_reg; \
1131 \
1132 DEBUG_STATEMENT (failure_id++); \
1133 DEBUG_STATEMENT (nfailure_points_pushed++); \
1134 DEBUG_PRINT2 ("\nPUSH_FAILURE_POINT #%u:\n", failure_id); \
1135 DEBUG_PRINT2 (" Before push, next avail: %d\n", (fail_stack).avail);\
1136 DEBUG_PRINT2 (" size: %d\n", (fail_stack).size);\
1137 \
1138 DEBUG_PRINT2 (" slots needed: %d\n", NUM_FAILURE_ITEMS); \
1139 DEBUG_PRINT2 (" available: %d\n", REMAINING_AVAIL_SLOTS); \
1140 \
1141 /* Ensure we have enough space allocated for what we will push. */ \
1142 while (REMAINING_AVAIL_SLOTS < NUM_FAILURE_ITEMS) \
1143 { \
1144 if (!DOUBLE_FAIL_STACK (fail_stack)) \
1145 return failure_code; \
1146 \
1147 DEBUG_PRINT2 ("\n Doubled stack; size now: %d\n", \
1148 (fail_stack).size); \
1149 DEBUG_PRINT2 (" slots available: %d\n", REMAINING_AVAIL_SLOTS);\
1150 } \
1151 \
1152 /* Push the info, starting with the registers. */ \
1153 DEBUG_PRINT1 ("\n"); \
1154 \
1155 for (this_reg = lowest_active_reg; this_reg <= highest_active_reg; \
1156 this_reg++) \
1157 { \
1158 DEBUG_PRINT2 (" Pushing reg: %d\n", this_reg); \
1159 DEBUG_STATEMENT (num_regs_pushed++); \
1160 \
1161 DEBUG_PRINT2 (" start: 0x%x\n", regstart[this_reg]); \
1162 PUSH_FAILURE_POINTER (regstart[this_reg]); \
1163 \
1164 DEBUG_PRINT2 (" end: 0x%x\n", regend[this_reg]); \
1165 PUSH_FAILURE_POINTER (regend[this_reg]); \
1166 \
1167 DEBUG_PRINT2 (" info: 0x%x\n ", reg_info[this_reg]); \
1168 DEBUG_PRINT2 (" match_null=%d", \
1169 REG_MATCH_NULL_STRING_P (reg_info[this_reg])); \
1170 DEBUG_PRINT2 (" active=%d", IS_ACTIVE (reg_info[this_reg])); \
1171 DEBUG_PRINT2 (" matched_something=%d", \
1172 MATCHED_SOMETHING (reg_info[this_reg])); \
1173 DEBUG_PRINT2 (" ever_matched=%d", \
1174 EVER_MATCHED_SOMETHING (reg_info[this_reg])); \
1175 DEBUG_PRINT1 ("\n"); \
1176 PUSH_FAILURE_ELT (reg_info[this_reg].word); \
1177 } \
1178 \
1179 DEBUG_PRINT2 (" Pushing low active reg: %d\n", lowest_active_reg);\
1180 PUSH_FAILURE_INT (lowest_active_reg); \
1181 \
1182 DEBUG_PRINT2 (" Pushing high active reg: %d\n", highest_active_reg);\
1183 PUSH_FAILURE_INT (highest_active_reg); \
1184 \
1185 DEBUG_PRINT2 (" Pushing pattern 0x%x: ", pattern_place); \
1186 DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern_place, pend); \
1187 PUSH_FAILURE_POINTER (pattern_place); \
1188 \
1189 DEBUG_PRINT2 (" Pushing string 0x%x: `", string_place); \
1190 DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, \
1191 size2); \
1192 DEBUG_PRINT1 ("'\n"); \
1193 PUSH_FAILURE_POINTER (string_place); \
1194 \
1195 DEBUG_PRINT2 (" Pushing failure id: %u\n", failure_id); \
1196 DEBUG_PUSH (failure_id); \
1197 } while (0)
1198
1199/* This is the number of items that are pushed and popped on the stack
1200 for each register. */
1201#define NUM_REG_ITEMS 3
1202
1203/* Individual items aside from the registers. */
1204#ifdef DEBUG
1205#define NUM_NONREG_ITEMS 5 /* Includes failure point id. */
1206#else
1207#define NUM_NONREG_ITEMS 4
1208#endif
1209
1210/* We push at most this many items on the stack. */
1211#define MAX_FAILURE_ITEMS ((num_regs - 1) * NUM_REG_ITEMS + NUM_NONREG_ITEMS)
1212
1213/* We actually push this many items. */
1214#define NUM_FAILURE_ITEMS \
1215 ((highest_active_reg - lowest_active_reg + 1) * NUM_REG_ITEMS \
1216 + NUM_NONREG_ITEMS)
1217
1218/* How many items can still be added to the stack without overflowing it. */
1219#define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
1220
1221
1222/* Pops what PUSH_FAIL_STACK pushes.
1223
1224 We restore into the parameters, all of which should be lvalues:
1225 STR -- the saved data position.
1226 PAT -- the saved pattern position.
1227 LOW_REG, HIGH_REG -- the highest and lowest active registers.
1228 REGSTART, REGEND -- arrays of string positions.
1229 REG_INFO -- array of information about each subexpression.
1230
1231 Also assumes the variables `fail_stack' and (if debugging), `bufp',
1232 `pend', `string1', `size1', `string2', and `size2'. */
1233
1234#define POP_FAILURE_POINT(str, pat, low_reg, high_reg, regstart, regend, reg_info)\
1235{ \
1236 DEBUG_STATEMENT (fail_stack_elt_t failure_id;) \
1237 int this_reg; \
1238 const unsigned char *string_temp; \
1239 \
1240 assert (!FAIL_STACK_EMPTY ()); \
1241 \
1242 /* Remove failure points and point to how many regs pushed. */ \
1243 DEBUG_PRINT1 ("POP_FAILURE_POINT:\n"); \
1244 DEBUG_PRINT2 (" Before pop, next avail: %d\n", fail_stack.avail); \
1245 DEBUG_PRINT2 (" size: %d\n", fail_stack.size); \
1246 \
1247 assert (fail_stack.avail >= NUM_NONREG_ITEMS); \
1248 \
1249 DEBUG_POP (&failure_id); \
1250 DEBUG_PRINT2 (" Popping failure id: %u\n", failure_id); \
1251 \
1252 /* If the saved string location is NULL, it came from an \
1253 on_failure_keep_string_jump opcode, and we want to throw away the \
1254 saved NULL, thus retaining our current position in the string. */ \
1255 string_temp = POP_FAILURE_POINTER (); \
1256 if (string_temp != NULL) \
1257 str = (const char *) string_temp; \
1258 \
1259 DEBUG_PRINT2 (" Popping string 0x%x: `", str); \
1260 DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2); \
1261 DEBUG_PRINT1 ("'\n"); \
1262 \
1263 pat = (unsigned char *) POP_FAILURE_POINTER (); \
1264 DEBUG_PRINT2 (" Popping pattern 0x%x: ", pat); \
1265 DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend); \
1266 \
1267 /* Restore register info. */ \
1268 high_reg = (unsigned) POP_FAILURE_INT (); \
1269 DEBUG_PRINT2 (" Popping high active reg: %d\n", high_reg); \
1270 \
1271 low_reg = (unsigned) POP_FAILURE_INT (); \
1272 DEBUG_PRINT2 (" Popping low active reg: %d\n", low_reg); \
1273 \
1274 for (this_reg = high_reg; this_reg >= low_reg; this_reg--) \
1275 { \
1276 DEBUG_PRINT2 (" Popping reg: %d\n", this_reg); \
1277 \
1278 reg_info[this_reg].word = POP_FAILURE_ELT (); \
1279 DEBUG_PRINT2 (" info: 0x%x\n", reg_info[this_reg]); \
1280 \
1281 regend[this_reg] = (const char *) POP_FAILURE_POINTER (); \
1282 DEBUG_PRINT2 (" end: 0x%x\n", regend[this_reg]); \
1283 \
1284 regstart[this_reg] = (const char *) POP_FAILURE_POINTER (); \
1285 DEBUG_PRINT2 (" start: 0x%x\n", regstart[this_reg]); \
1286 } \
1287 \
1288 set_regs_matched_done = 0; \
1289 DEBUG_STATEMENT (nfailure_points_popped++); \
1290} /* POP_FAILURE_POINT */
1291
1292
1293\f
1294/* Structure for per-register (a.k.a. per-group) information.
1295 Other register information, such as the
1296 starting and ending positions (which are addresses), and the list of
1297 inner groups (which is a bits list) are maintained in separate
1298 variables.
1299
1300 We are making a (strictly speaking) nonportable assumption here: that
1301 the compiler will pack our bit fields into something that fits into
1302 the type of `word', i.e., is something that fits into one item on the
1303 failure stack. */
1304
1305typedef union
1306{
1307 fail_stack_elt_t word;
1308 struct
1309 {
1310 /* This field is one if this group can match the empty string,
1311 zero if not. If not yet determined, `MATCH_NULL_UNSET_VALUE'. */
1312#define MATCH_NULL_UNSET_VALUE 3
1313 unsigned match_null_string_p : 2;
1314 unsigned is_active : 1;
1315 unsigned matched_something : 1;
1316 unsigned ever_matched_something : 1;
1317 } bits;
1318} register_info_type;
1319
1320#define REG_MATCH_NULL_STRING_P(R) ((R).bits.match_null_string_p)
1321#define IS_ACTIVE(R) ((R).bits.is_active)
1322#define MATCHED_SOMETHING(R) ((R).bits.matched_something)
1323#define EVER_MATCHED_SOMETHING(R) ((R).bits.ever_matched_something)
1324
1325
1326/* Call this when have matched a real character; it sets `matched' flags
1327 for the subexpressions which we are currently inside. Also records
1328 that those subexprs have matched. */
1329#define SET_REGS_MATCHED() \
1330 do \
1331 { \
1332 if (!set_regs_matched_done) \
1333 { \
1334 unsigned r; \
1335 set_regs_matched_done = 1; \
1336 for (r = lowest_active_reg; r <= highest_active_reg; r++) \
1337 { \
1338 MATCHED_SOMETHING (reg_info[r]) \
1339 = EVER_MATCHED_SOMETHING (reg_info[r]) \
1340 = 1; \
1341 } \
1342 } \
1343 } \
1344 while (0)
1345
1346/* Registers are set to a sentinel when they haven't yet matched. */
1347static char reg_unset_dummy;
1348#define REG_UNSET_VALUE (&reg_unset_dummy)
1349#define REG_UNSET(e) ((e) == REG_UNSET_VALUE)
1350\f
1351/* Subroutine declarations and macros for regex_compile. */
1352
1353static void store_op1 (), store_op2 ();
1354static void insert_op1 (), insert_op2 ();
1355static boolean at_begline_loc_p (), at_endline_loc_p ();
1356static boolean group_in_compile_stack ();
1357static reg_errcode_t compile_range ();
1358
1359/* Fetch the next character in the uncompiled pattern---translating it
1360 if necessary. Also cast from a signed character in the constant
1361 string passed to us by the user to an unsigned char that we can use
1362 as an array index (in, e.g., `translate'). */
1363#define PATFETCH(c) \
1364 do {if (p == pend) return REG_EEND; \
1365 c = (unsigned char) *p++; \
1366 if (translate) c = translate[c]; \
1367 } while (0)
1368
1369/* Fetch the next character in the uncompiled pattern, with no
1370 translation. */
1371#define PATFETCH_RAW(c) \
1372 do {if (p == pend) return REG_EEND; \
1373 c = (unsigned char) *p++; \
1374 } while (0)
1375
1376/* Go backwards one character in the pattern. */
1377#define PATUNFETCH p--
1378
1379
1380/* If `translate' is non-null, return translate[D], else just D. We
1381 cast the subscript to translate because some data is declared as
1382 `char *', to avoid warnings when a string constant is passed. But
1383 when we use a character as a subscript we must make it unsigned. */
1384#define TRANSLATE(d) (translate ? translate[(unsigned char) (d)] : (d))
1385
1386
1387/* Macros for outputting the compiled pattern into `buffer'. */
1388
1389/* If the buffer isn't allocated when it comes in, use this. */
1390#define INIT_BUF_SIZE 32
1391
1392/* Make sure we have at least N more bytes of space in buffer. */
1393#define GET_BUFFER_SPACE(n) \
1394 while (b - bufp->buffer + (n) > bufp->allocated) \
1395 EXTEND_BUFFER ()
1396
1397/* Make sure we have one more byte of buffer space and then add C to it. */
1398#define BUF_PUSH(c) \
1399 do { \
1400 GET_BUFFER_SPACE (1); \
1401 *b++ = (unsigned char) (c); \
1402 } while (0)
1403
1404
1405/* Ensure we have two more bytes of buffer space and then append C1 and C2. */
1406#define BUF_PUSH_2(c1, c2) \
1407 do { \
1408 GET_BUFFER_SPACE (2); \
1409 *b++ = (unsigned char) (c1); \
1410 *b++ = (unsigned char) (c2); \
1411 } while (0)
1412
1413
1414/* As with BUF_PUSH_2, except for three bytes. */
1415#define BUF_PUSH_3(c1, c2, c3) \
1416 do { \
1417 GET_BUFFER_SPACE (3); \
1418 *b++ = (unsigned char) (c1); \
1419 *b++ = (unsigned char) (c2); \
1420 *b++ = (unsigned char) (c3); \
1421 } while (0)
1422
1423
1424/* Store a jump with opcode OP at LOC to location TO. We store a
1425 relative address offset by the three bytes the jump itself occupies. */
1426#define STORE_JUMP(op, loc, to) \
1427 store_op1 (op, loc, (to) - (loc) - 3)
1428
1429/* Likewise, for a two-argument jump. */
1430#define STORE_JUMP2(op, loc, to, arg) \
1431 store_op2 (op, loc, (to) - (loc) - 3, arg)
1432
1433/* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */
1434#define INSERT_JUMP(op, loc, to) \
1435 insert_op1 (op, loc, (to) - (loc) - 3, b)
1436
1437/* Like `STORE_JUMP2', but for inserting. Assume `b' is the buffer end. */
1438#define INSERT_JUMP2(op, loc, to, arg) \
1439 insert_op2 (op, loc, (to) - (loc) - 3, arg, b)
1440
1441
1442/* This is not an arbitrary limit: the arguments which represent offsets
1443 into the pattern are two bytes long. So if 2^16 bytes turns out to
1444 be too small, many things would have to change. */
1445#define MAX_BUF_SIZE (1L << 16)
1446
1447
1448/* Extend the buffer by twice its current size via realloc and
1449 reset the pointers that pointed into the old block to point to the
1450 correct places in the new one. If extending the buffer results in it
1451 being larger than MAX_BUF_SIZE, then flag memory exhausted. */
1452#define EXTEND_BUFFER() \
1453 do { \
1454 unsigned char *old_buffer = bufp->buffer; \
1455 if (bufp->allocated == MAX_BUF_SIZE) \
1456 return REG_ESIZE; \
1457 bufp->allocated <<= 1; \
1458 if (bufp->allocated > MAX_BUF_SIZE) \
1459 bufp->allocated = MAX_BUF_SIZE; \
1460 bufp->buffer = (unsigned char *) realloc (bufp->buffer, bufp->allocated);\
1461 if (bufp->buffer == NULL) \
1462 return REG_ESPACE; \
1463 /* If the buffer moved, move all the pointers into it. */ \
1464 if (old_buffer != bufp->buffer) \
1465 { \
1466 b = (b - old_buffer) + bufp->buffer; \
1467 begalt = (begalt - old_buffer) + bufp->buffer; \
1468 if (fixup_alt_jump) \
1469 fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer;\
1470 if (laststart) \
1471 laststart = (laststart - old_buffer) + bufp->buffer; \
1472 if (pending_exact) \
1473 pending_exact = (pending_exact - old_buffer) + bufp->buffer; \
1474 } \
1475 } while (0)
1476
1477
1478/* Since we have one byte reserved for the register number argument to
1479 {start,stop}_memory, the maximum number of groups we can report
1480 things about is what fits in that byte. */
1481#define MAX_REGNUM 255
1482
1483/* But patterns can have more than `MAX_REGNUM' registers. We just
1484 ignore the excess. */
1485typedef unsigned regnum_t;
1486
1487
1488/* Macros for the compile stack. */
1489
1490/* Since offsets can go either forwards or backwards, this type needs to
1491 be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */
1492typedef int pattern_offset_t;
1493
1494typedef struct
1495{
1496 pattern_offset_t begalt_offset;
1497 pattern_offset_t fixup_alt_jump;
1498 pattern_offset_t inner_group_offset;
1499 pattern_offset_t laststart_offset;
1500 regnum_t regnum;
1501} compile_stack_elt_t;
1502
1503
1504typedef struct
1505{
1506 compile_stack_elt_t *stack;
1507 unsigned size;
1508 unsigned avail; /* Offset of next open position. */
1509} compile_stack_type;
1510
1511
1512#define INIT_COMPILE_STACK_SIZE 32
1513
1514#define COMPILE_STACK_EMPTY (compile_stack.avail == 0)
1515#define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size)
1516
1517/* The next available element. */
1518#define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
1519
1520
1521/* Set the bit for character C in a list. */
1522#define SET_LIST_BIT(c) \
1523 (b[((unsigned char) (c)) / BYTEWIDTH] \
1524 |= 1 << (((unsigned char) c) % BYTEWIDTH))
1525
1526
1527/* Get the next unsigned number in the uncompiled pattern. */
1528#define GET_UNSIGNED_NUMBER(num) \
1529 { if (p != pend) \
1530 { \
1531 PATFETCH (c); \
1532 while (ISDIGIT (c)) \
1533 { \
1534 if (num < 0) \
1535 num = 0; \
1536 num = num * 10 + c - '0'; \
1537 if (p == pend) \
1538 break; \
1539 PATFETCH (c); \
1540 } \
1541 } \
1542 }
1543
1544#define CHAR_CLASS_MAX_LENGTH 6 /* Namely, `xdigit'. */
1545
1546#define IS_CHAR_CLASS(string) \
1547 (STREQ (string, "alpha") || STREQ (string, "upper") \
1548 || STREQ (string, "lower") || STREQ (string, "digit") \
1549 || STREQ (string, "alnum") || STREQ (string, "xdigit") \
1550 || STREQ (string, "space") || STREQ (string, "print") \
1551 || STREQ (string, "punct") || STREQ (string, "graph") \
1552 || STREQ (string, "cntrl") || STREQ (string, "blank"))
1553\f
1554#ifndef MATCH_MAY_ALLOCATE
1555
1556/* If we cannot allocate large objects within re_match_2_internal,
1557 we make the fail stack and register vectors global.
1558 The fail stack, we grow to the maximum size when a regexp
1559 is compiled.
1560 The register vectors, we adjust in size each time we
1561 compile a regexp, according to the number of registers it needs. */
1562
1563static fail_stack_type fail_stack;
1564
1565/* Size with which the following vectors are currently allocated.
1566 That is so we can make them bigger as needed,
1567 but never make them smaller. */
1568static int regs_allocated_size;
1569
1570static const char ** regstart, ** regend;
1571static const char ** old_regstart, ** old_regend;
1572static const char **best_regstart, **best_regend;
1573static register_info_type *reg_info;
1574static const char **reg_dummy;
1575static register_info_type *reg_info_dummy;
1576
1577/* Make the register vectors big enough for NUM_REGS registers,
1578 but don't make them smaller. */
1579
1580static
1581regex_grow_registers (num_regs)
1582 int num_regs;
1583{
1584 if (num_regs > regs_allocated_size)
1585 {
1586 RETALLOC_IF (regstart, num_regs, const char *);
1587 RETALLOC_IF (regend, num_regs, const char *);
1588 RETALLOC_IF (old_regstart, num_regs, const char *);
1589 RETALLOC_IF (old_regend, num_regs, const char *);
1590 RETALLOC_IF (best_regstart, num_regs, const char *);
1591 RETALLOC_IF (best_regend, num_regs, const char *);
1592 RETALLOC_IF (reg_info, num_regs, register_info_type);
1593 RETALLOC_IF (reg_dummy, num_regs, const char *);
1594 RETALLOC_IF (reg_info_dummy, num_regs, register_info_type);
1595
1596 regs_allocated_size = num_regs;
1597 }
1598}
1599
1600#endif /* not MATCH_MAY_ALLOCATE */
1601\f
1602/* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
1603 Returns one of error codes defined in `regex.h', or zero for success.
1604
1605 Assumes the `allocated' (and perhaps `buffer') and `translate'
1606 fields are set in BUFP on entry.
1607
1608 If it succeeds, results are put in BUFP (if it returns an error, the
1609 contents of BUFP are undefined):
1610 `buffer' is the compiled pattern;
1611 `syntax' is set to SYNTAX;
1612 `used' is set to the length of the compiled pattern;
1613 `fastmap_accurate' is zero;
1614 `re_nsub' is the number of subexpressions in PATTERN;
1615 `not_bol' and `not_eol' are zero;
1616
1617 The `fastmap' and `newline_anchor' fields are neither
1618 examined nor set. */
1619
1620/* Return, freeing storage we allocated. */
1621#define FREE_STACK_RETURN(value) \
1622 return (free (compile_stack.stack), value)
1623
1624static reg_errcode_t
1625regex_compile (pattern, size, syntax, bufp)
1626 const char *pattern;
1627 int size;
1628 reg_syntax_t syntax;
1629 struct re_pattern_buffer *bufp;
1630{
1631 /* We fetch characters from PATTERN here. Even though PATTERN is
1632 `char *' (i.e., signed), we declare these variables as unsigned, so
1633 they can be reliably used as array indices. */
1634 register unsigned char c, c1;
1635
1636 /* A random temporary spot in PATTERN. */
1637 const char *p1;
1638
1639 /* Points to the end of the buffer, where we should append. */
1640 register unsigned char *b;
1641
1642 /* Keeps track of unclosed groups. */
1643 compile_stack_type compile_stack;
1644
1645 /* Points to the current (ending) position in the pattern. */
1646 const char *p = pattern;
1647 const char *pend = pattern + size;
1648
1649 /* How to translate the characters in the pattern. */
1650 char *translate = bufp->translate;
1651
1652 /* Address of the count-byte of the most recently inserted `exactn'
1653 command. This makes it possible to tell if a new exact-match
1654 character can be added to that command or if the character requires
1655 a new `exactn' command. */
1656 unsigned char *pending_exact = 0;
1657
1658 /* Address of start of the most recently finished expression.
1659 This tells, e.g., postfix * where to find the start of its
1660 operand. Reset at the beginning of groups and alternatives. */
1661 unsigned char *laststart = 0;
1662
1663 /* Address of beginning of regexp, or inside of last group. */
1664 unsigned char *begalt;
1665
1666 /* Place in the uncompiled pattern (i.e., the {) to
1667 which to go back if the interval is invalid. */
1668 const char *beg_interval;
1669
1670 /* Address of the place where a forward jump should go to the end of
1671 the containing expression. Each alternative of an `or' -- except the
1672 last -- ends with a forward jump of this sort. */
1673 unsigned char *fixup_alt_jump = 0;
1674
1675 /* Counts open-groups as they are encountered. Remembered for the
1676 matching close-group on the compile stack, so the same register
1677 number is put in the stop_memory as the start_memory. */
1678 regnum_t regnum = 0;
1679
1680#ifdef DEBUG
1681 DEBUG_PRINT1 ("\nCompiling pattern: ");
1682 if (debug)
1683 {
1684 unsigned debug_count;
1685
1686 for (debug_count = 0; debug_count < size; debug_count++)
1687 putchar (pattern[debug_count]);
1688 putchar ('\n');
1689 }
1690#endif /* DEBUG */
1691
1692 /* Initialize the compile stack. */
1693 compile_stack.stack = TALLOC (INIT_COMPILE_STACK_SIZE, compile_stack_elt_t);
1694 if (compile_stack.stack == NULL)
1695 return REG_ESPACE;
1696
1697 compile_stack.size = INIT_COMPILE_STACK_SIZE;
1698 compile_stack.avail = 0;
1699
1700 /* Initialize the pattern buffer. */
1701 bufp->syntax = syntax;
1702 bufp->fastmap_accurate = 0;
1703 bufp->not_bol = bufp->not_eol = 0;
1704
1705 /* Set `used' to zero, so that if we return an error, the pattern
1706 printer (for debugging) will think there's no pattern. We reset it
1707 at the end. */
1708 bufp->used = 0;
1709
1710 /* Always count groups, whether or not bufp->no_sub is set. */
1711 bufp->re_nsub = 0;
1712
1713#if !defined (emacs) && !defined (SYNTAX_TABLE)
1714 /* Initialize the syntax table. */
1715 init_syntax_once ();
1716#endif
1717
1718 if (bufp->allocated == 0)
1719 {
1720 if (bufp->buffer)
1721 { /* If zero allocated, but buffer is non-null, try to realloc
1722 enough space. This loses if buffer's address is bogus, but
1723 that is the user's responsibility. */
1724 RETALLOC (bufp->buffer, INIT_BUF_SIZE, unsigned char);
1725 }
1726 else
1727 { /* Caller did not allocate a buffer. Do it for them. */
1728 bufp->buffer = TALLOC (INIT_BUF_SIZE, unsigned char);
1729 }
1730 if (!bufp->buffer) FREE_STACK_RETURN (REG_ESPACE);
1731
1732 bufp->allocated = INIT_BUF_SIZE;
1733 }
1734
1735 begalt = b = bufp->buffer;
1736
1737 /* Loop through the uncompiled pattern until we're at the end. */
1738 while (p != pend)
1739 {
1740 PATFETCH (c);
1741
1742 switch (c)
1743 {
1744 case '^':
1745 {
1746 if ( /* If at start of pattern, it's an operator. */
1747 p == pattern + 1
1748 /* If context independent, it's an operator. */
1749 || syntax & RE_CONTEXT_INDEP_ANCHORS
1750 /* Otherwise, depends on what's come before. */
1751 || at_begline_loc_p (pattern, p, syntax))
1752 BUF_PUSH (begline);
1753 else
1754 goto normal_char;
1755 }
1756 break;
1757
1758
1759 case '$':
1760 {
1761 if ( /* If at end of pattern, it's an operator. */
1762 p == pend
1763 /* If context independent, it's an operator. */
1764 || syntax & RE_CONTEXT_INDEP_ANCHORS
1765 /* Otherwise, depends on what's next. */
1766 || at_endline_loc_p (p, pend, syntax))
1767 BUF_PUSH (endline);
1768 else
1769 goto normal_char;
1770 }
1771 break;
1772
1773
1774 case '+':
1775 case '?':
1776 if ((syntax & RE_BK_PLUS_QM)
1777 || (syntax & RE_LIMITED_OPS))
1778 goto normal_char;
1779 handle_plus:
1780 case '*':
1781 /* If there is no previous pattern... */
1782 if (!laststart)
1783 {
1784 if (syntax & RE_CONTEXT_INVALID_OPS)
1785 FREE_STACK_RETURN (REG_BADRPT);
1786 else if (!(syntax & RE_CONTEXT_INDEP_OPS))
1787 goto normal_char;
1788 }
1789
1790 {
1791 /* Are we optimizing this jump? */
1792 boolean keep_string_p = false;
1793
1794 /* 1 means zero (many) matches is allowed. */
1795 char zero_times_ok = 0, many_times_ok = 0;
1796
1797 /* If there is a sequence of repetition chars, collapse it
1798 down to just one (the right one). We can't combine
1799 interval operators with these because of, e.g., `a{2}*',
1800 which should only match an even number of `a's. */
1801
1802 for (;;)
1803 {
1804 zero_times_ok |= c != '+';
1805 many_times_ok |= c != '?';
1806
1807 if (p == pend)
1808 break;
1809
1810 PATFETCH (c);
1811
1812 if (c == '*'
1813 || (!(syntax & RE_BK_PLUS_QM) && (c == '+' || c == '?')))
1814 ;
1815
1816 else if (syntax & RE_BK_PLUS_QM && c == '\\')
1817 {
1818 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
1819
1820 PATFETCH (c1);
1821 if (!(c1 == '+' || c1 == '?'))
1822 {
1823 PATUNFETCH;
1824 PATUNFETCH;
1825 break;
1826 }
1827
1828 c = c1;
1829 }
1830 else
1831 {
1832 PATUNFETCH;
1833 break;
1834 }
1835
1836 /* If we get here, we found another repeat character. */
1837 }
1838
1839 /* Star, etc. applied to an empty pattern is equivalent
1840 to an empty pattern. */
1841 if (!laststart)
1842 break;
1843
1844 /* Now we know whether or not zero matches is allowed
1845 and also whether or not two or more matches is allowed. */
1846 if (many_times_ok)
1847 { /* More than one repetition is allowed, so put in at the
1848 end a backward relative jump from `b' to before the next
1849 jump we're going to put in below (which jumps from
1850 laststart to after this jump).
1851
1852 But if we are at the `*' in the exact sequence `.*\n',
1853 insert an unconditional jump backwards to the .,
1854 instead of the beginning of the loop. This way we only
1855 push a failure point once, instead of every time
1856 through the loop. */
1857 assert (p - 1 > pattern);
1858
1859 /* Allocate the space for the jump. */
1860 GET_BUFFER_SPACE (3);
1861
1862 /* We know we are not at the first character of the pattern,
1863 because laststart was nonzero. And we've already
1864 incremented `p', by the way, to be the character after
1865 the `*'. Do we have to do something analogous here
1866 for null bytes, because of RE_DOT_NOT_NULL? */
1867 if (TRANSLATE (*(p - 2)) == TRANSLATE ('.')
1868 && zero_times_ok
1869 && p < pend && TRANSLATE (*p) == TRANSLATE ('\n')
1870 && !(syntax & RE_DOT_NEWLINE))
1871 { /* We have .*\n. */
1872 STORE_JUMP (jump, b, laststart);
1873 keep_string_p = true;
1874 }
1875 else
1876 /* Anything else. */
1877 STORE_JUMP (maybe_pop_jump, b, laststart - 3);
1878
1879 /* We've added more stuff to the buffer. */
1880 b += 3;
1881 }
1882
1883 /* On failure, jump from laststart to b + 3, which will be the
1884 end of the buffer after this jump is inserted. */
1885 GET_BUFFER_SPACE (3);
1886 INSERT_JUMP (keep_string_p ? on_failure_keep_string_jump
1887 : on_failure_jump,
1888 laststart, b + 3);
1889 pending_exact = 0;
1890 b += 3;
1891
1892 if (!zero_times_ok)
1893 {
1894 /* At least one repetition is required, so insert a
1895 `dummy_failure_jump' before the initial
1896 `on_failure_jump' instruction of the loop. This
1897 effects a skip over that instruction the first time
1898 we hit that loop. */
1899 GET_BUFFER_SPACE (3);
1900 INSERT_JUMP (dummy_failure_jump, laststart, laststart + 6);
1901 b += 3;
1902 }
1903 }
1904 break;
1905
1906
1907 case '.':
1908 laststart = b;
1909 BUF_PUSH (anychar);
1910 break;
1911
1912
1913 case '[':
1914 {
1915 boolean had_char_class = false;
1916
1917 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
1918
1919 /* Ensure that we have enough space to push a charset: the
1920 opcode, the length count, and the bitset; 34 bytes in all. */
1921 GET_BUFFER_SPACE (34);
1922
1923 laststart = b;
1924
1925 /* We test `*p == '^' twice, instead of using an if
1926 statement, so we only need one BUF_PUSH. */
1927 BUF_PUSH (*p == '^' ? charset_not : charset);
1928 if (*p == '^')
1929 p++;
1930
1931 /* Remember the first position in the bracket expression. */
1932 p1 = p;
1933
1934 /* Push the number of bytes in the bitmap. */
1935 BUF_PUSH ((1 << BYTEWIDTH) / BYTEWIDTH);
1936
1937 /* Clear the whole map. */
1938 bzero (b, (1 << BYTEWIDTH) / BYTEWIDTH);
1939
1940 /* charset_not matches newline according to a syntax bit. */
1941 if ((re_opcode_t) b[-2] == charset_not
1942 && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
1943 SET_LIST_BIT ('\n');
1944
1945 /* Read in characters and ranges, setting map bits. */
1946 for (;;)
1947 {
1948 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
1949
1950 PATFETCH (c);
1951
1952 /* \ might escape characters inside [...] and [^...]. */
1953 if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
1954 {
1955 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
1956
1957 PATFETCH (c1);
1958 SET_LIST_BIT (c1);
1959 continue;
1960 }
1961
1962 /* Could be the end of the bracket expression. If it's
1963 not (i.e., when the bracket expression is `[]' so
1964 far), the ']' character bit gets set way below. */
1965 if (c == ']' && p != p1 + 1)
1966 break;
1967
1968 /* Look ahead to see if it's a range when the last thing
1969 was a character class. */
1970 if (had_char_class && c == '-' && *p != ']')
1971 FREE_STACK_RETURN (REG_ERANGE);
1972
1973 /* Look ahead to see if it's a range when the last thing
1974 was a character: if this is a hyphen not at the
1975 beginning or the end of a list, then it's the range
1976 operator. */
1977 if (c == '-'
1978 && !(p - 2 >= pattern && p[-2] == '[')
1979 && !(p - 3 >= pattern && p[-3] == '[' && p[-2] == '^')
1980 && *p != ']')
1981 {
1982 reg_errcode_t ret
1983 = compile_range (&p, pend, translate, syntax, b);
1984 if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
1985 }
1986
1987 else if (p[0] == '-' && p[1] != ']')
1988 { /* This handles ranges made up of characters only. */
1989 reg_errcode_t ret;
1990
1991 /* Move past the `-'. */
1992 PATFETCH (c1);
1993
1994 ret = compile_range (&p, pend, translate, syntax, b);
1995 if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
1996 }
1997
1998 /* See if we're at the beginning of a possible character
1999 class. */
2000
2001 else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == ':')
2002 { /* Leave room for the null. */
2003 char str[CHAR_CLASS_MAX_LENGTH + 1];
2004
2005 PATFETCH (c);
2006 c1 = 0;
2007
2008 /* If pattern is `[[:'. */
2009 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2010
2011 for (;;)
2012 {
2013 PATFETCH (c);
2014 if (c == ':' || c == ']' || p == pend
2015 || c1 == CHAR_CLASS_MAX_LENGTH)
2016 break;
2017 str[c1++] = c;
2018 }
2019 str[c1] = '\0';
2020
2021 /* If isn't a word bracketed by `[:' and:`]':
2022 undo the ending character, the letters, and leave
2023 the leading `:' and `[' (but set bits for them). */
2024 if (c == ':' && *p == ']')
2025 {
2026 int ch;
2027 boolean is_alnum = STREQ (str, "alnum");
2028 boolean is_alpha = STREQ (str, "alpha");
2029 boolean is_blank = STREQ (str, "blank");
2030 boolean is_cntrl = STREQ (str, "cntrl");
2031 boolean is_digit = STREQ (str, "digit");
2032 boolean is_graph = STREQ (str, "graph");
2033 boolean is_lower = STREQ (str, "lower");
2034 boolean is_print = STREQ (str, "print");
2035 boolean is_punct = STREQ (str, "punct");
2036 boolean is_space = STREQ (str, "space");
2037 boolean is_upper = STREQ (str, "upper");
2038 boolean is_xdigit = STREQ (str, "xdigit");
2039
2040 if (!IS_CHAR_CLASS (str))
2041 FREE_STACK_RETURN (REG_ECTYPE);
2042
2043 /* Throw away the ] at the end of the character
2044 class. */
2045 PATFETCH (c);
2046
2047 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2048
2049 for (ch = 0; ch < 1 << BYTEWIDTH; ch++)
2050 {
2051 /* This was split into 3 if's to
2052 avoid an arbitrary limit in some compiler. */
2053 if ( (is_alnum && ISALNUM (ch))
2054 || (is_alpha && ISALPHA (ch))
2055 || (is_blank && ISBLANK (ch))
2056 || (is_cntrl && ISCNTRL (ch)))
2057 SET_LIST_BIT (ch);
2058 if ( (is_digit && ISDIGIT (ch))
2059 || (is_graph && ISGRAPH (ch))
2060 || (is_lower && ISLOWER (ch))
2061 || (is_print && ISPRINT (ch)))
2062 SET_LIST_BIT (ch);
2063 if ( (is_punct && ISPUNCT (ch))
2064 || (is_space && ISSPACE (ch))
2065 || (is_upper && ISUPPER (ch))
2066 || (is_xdigit && ISXDIGIT (ch)))
2067 SET_LIST_BIT (ch);
2068 }
2069 had_char_class = true;
2070 }
2071 else
2072 {
2073 c1++;
2074 while (c1--)
2075 PATUNFETCH;
2076 SET_LIST_BIT ('[');
2077 SET_LIST_BIT (':');
2078 had_char_class = false;
2079 }
2080 }
2081 else
2082 {
2083 had_char_class = false;
2084 SET_LIST_BIT (c);
2085 }
2086 }
2087
2088 /* Discard any (non)matching list bytes that are all 0 at the
2089 end of the map. Decrease the map-length byte too. */
2090 while ((int) b[-1] > 0 && b[b[-1] - 1] == 0)
2091 b[-1]--;
2092 b += b[-1];
2093 }
2094 break;
2095
2096
2097 case '(':
2098 if (syntax & RE_NO_BK_PARENS)
2099 goto handle_open;
2100 else
2101 goto normal_char;
2102
2103
2104 case ')':
2105 if (syntax & RE_NO_BK_PARENS)
2106 goto handle_close;
2107 else
2108 goto normal_char;
2109
2110
2111 case '\n':
2112 if (syntax & RE_NEWLINE_ALT)
2113 goto handle_alt;
2114 else
2115 goto normal_char;
2116
2117
2118 case '|':
2119 if (syntax & RE_NO_BK_VBAR)
2120 goto handle_alt;
2121 else
2122 goto normal_char;
2123
2124
2125 case '{':
2126 if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES)
2127 goto handle_interval;
2128 else
2129 goto normal_char;
2130
2131
2132 case '\\':
2133 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2134
2135 /* Do not translate the character after the \, so that we can
2136 distinguish, e.g., \B from \b, even if we normally would
2137 translate, e.g., B to b. */
2138 PATFETCH_RAW (c);
2139
2140 switch (c)
2141 {
2142 case '(':
2143 if (syntax & RE_NO_BK_PARENS)
2144 goto normal_backslash;
2145
2146 handle_open:
2147 bufp->re_nsub++;
2148 regnum++;
2149
2150 if (COMPILE_STACK_FULL)
2151 {
2152 RETALLOC (compile_stack.stack, compile_stack.size << 1,
2153 compile_stack_elt_t);
2154 if (compile_stack.stack == NULL) return REG_ESPACE;
2155
2156 compile_stack.size <<= 1;
2157 }
2158
2159 /* These are the values to restore when we hit end of this
2160 group. They are all relative offsets, so that if the
2161 whole pattern moves because of realloc, they will still
2162 be valid. */
2163 COMPILE_STACK_TOP.begalt_offset = begalt - bufp->buffer;
2164 COMPILE_STACK_TOP.fixup_alt_jump
2165 = fixup_alt_jump ? fixup_alt_jump - bufp->buffer + 1 : 0;
2166 COMPILE_STACK_TOP.laststart_offset = b - bufp->buffer;
2167 COMPILE_STACK_TOP.regnum = regnum;
2168
2169 /* We will eventually replace the 0 with the number of
2170 groups inner to this one. But do not push a
2171 start_memory for groups beyond the last one we can
2172 represent in the compiled pattern. */
2173 if (regnum <= MAX_REGNUM)
2174 {
2175 COMPILE_STACK_TOP.inner_group_offset = b - bufp->buffer + 2;
2176 BUF_PUSH_3 (start_memory, regnum, 0);
2177 }
2178
2179 compile_stack.avail++;
2180
2181 fixup_alt_jump = 0;
2182 laststart = 0;
2183 begalt = b;
2184 /* If we've reached MAX_REGNUM groups, then this open
2185 won't actually generate any code, so we'll have to
2186 clear pending_exact explicitly. */
2187 pending_exact = 0;
2188 break;
2189
2190
2191 case ')':
2192 if (syntax & RE_NO_BK_PARENS) goto normal_backslash;
2193
2194 if (COMPILE_STACK_EMPTY)
2195 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
2196 goto normal_backslash;
2197 else
2198 FREE_STACK_RETURN (REG_ERPAREN);
2199
2200 handle_close:
2201 if (fixup_alt_jump)
2202 { /* Push a dummy failure point at the end of the
2203 alternative for a possible future
2204 `pop_failure_jump' to pop. See comments at
2205 `push_dummy_failure' in `re_match_2'. */
2206 BUF_PUSH (push_dummy_failure);
2207
2208 /* We allocated space for this jump when we assigned
2209 to `fixup_alt_jump', in the `handle_alt' case below. */
2210 STORE_JUMP (jump_past_alt, fixup_alt_jump, b - 1);
2211 }
2212
2213 /* See similar code for backslashed left paren above. */
2214 if (COMPILE_STACK_EMPTY)
2215 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
2216 goto normal_char;
2217 else
2218 FREE_STACK_RETURN (REG_ERPAREN);
2219
2220 /* Since we just checked for an empty stack above, this
2221 ``can't happen''. */
2222 assert (compile_stack.avail != 0);
2223 {
2224 /* We don't just want to restore into `regnum', because
2225 later groups should continue to be numbered higher,
2226 as in `(ab)c(de)' -- the second group is #2. */
2227 regnum_t this_group_regnum;
2228
2229 compile_stack.avail--;
2230 begalt = bufp->buffer + COMPILE_STACK_TOP.begalt_offset;
2231 fixup_alt_jump
2232 = COMPILE_STACK_TOP.fixup_alt_jump
2233 ? bufp->buffer + COMPILE_STACK_TOP.fixup_alt_jump - 1
2234 : 0;
2235 laststart = bufp->buffer + COMPILE_STACK_TOP.laststart_offset;
2236 this_group_regnum = COMPILE_STACK_TOP.regnum;
2237 /* If we've reached MAX_REGNUM groups, then this open
2238 won't actually generate any code, so we'll have to
2239 clear pending_exact explicitly. */
2240 pending_exact = 0;
2241
2242 /* We're at the end of the group, so now we know how many
2243 groups were inside this one. */
2244 if (this_group_regnum <= MAX_REGNUM)
2245 {
2246 unsigned char *inner_group_loc
2247 = bufp->buffer + COMPILE_STACK_TOP.inner_group_offset;
2248
2249 *inner_group_loc = regnum - this_group_regnum;
2250 BUF_PUSH_3 (stop_memory, this_group_regnum,
2251 regnum - this_group_regnum);
2252 }
2253 }
2254 break;
2255
2256
2257 case '|': /* `\|'. */
2258 if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR)
2259 goto normal_backslash;
2260 handle_alt:
2261 if (syntax & RE_LIMITED_OPS)
2262 goto normal_char;
2263
2264 /* Insert before the previous alternative a jump which
2265 jumps to this alternative if the former fails. */
2266 GET_BUFFER_SPACE (3);
2267 INSERT_JUMP (on_failure_jump, begalt, b + 6);
2268 pending_exact = 0;
2269 b += 3;
2270
2271 /* The alternative before this one has a jump after it
2272 which gets executed if it gets matched. Adjust that
2273 jump so it will jump to this alternative's analogous
2274 jump (put in below, which in turn will jump to the next
2275 (if any) alternative's such jump, etc.). The last such
2276 jump jumps to the correct final destination. A picture:
2277 _____ _____
2278 | | | |
2279 | v | v
2280 a | b | c
2281
2282 If we are at `b', then fixup_alt_jump right now points to a
2283 three-byte space after `a'. We'll put in the jump, set
2284 fixup_alt_jump to right after `b', and leave behind three
2285 bytes which we'll fill in when we get to after `c'. */
2286
2287 if (fixup_alt_jump)
2288 STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
2289
2290 /* Mark and leave space for a jump after this alternative,
2291 to be filled in later either by next alternative or
2292 when know we're at the end of a series of alternatives. */
2293 fixup_alt_jump = b;
2294 GET_BUFFER_SPACE (3);
2295 b += 3;
2296
2297 laststart = 0;
2298 begalt = b;
2299 break;
2300
2301
2302 case '{':
2303 /* If \{ is a literal. */
2304 if (!(syntax & RE_INTERVALS)
2305 /* If we're at `\{' and it's not the open-interval
2306 operator. */
2307 || ((syntax & RE_INTERVALS) && (syntax & RE_NO_BK_BRACES))
2308 || (p - 2 == pattern && p == pend))
2309 goto normal_backslash;
2310
2311 handle_interval:
2312 {
2313 /* If got here, then the syntax allows intervals. */
2314
2315 /* At least (most) this many matches must be made. */
2316 int lower_bound = -1, upper_bound = -1;
2317
2318 beg_interval = p - 1;
2319
2320 if (p == pend)
2321 {
2322 if (syntax & RE_NO_BK_BRACES)
2323 goto unfetch_interval;
2324 else
2325 FREE_STACK_RETURN (REG_EBRACE);
2326 }
2327
2328 GET_UNSIGNED_NUMBER (lower_bound);
2329
2330 if (c == ',')
2331 {
2332 GET_UNSIGNED_NUMBER (upper_bound);
2333 if (upper_bound < 0) upper_bound = RE_DUP_MAX;
2334 }
2335 else
2336 /* Interval such as `{1}' => match exactly once. */
2337 upper_bound = lower_bound;
2338
2339 if (lower_bound < 0 || upper_bound > RE_DUP_MAX
2340 || lower_bound > upper_bound)
2341 {
2342 if (syntax & RE_NO_BK_BRACES)
2343 goto unfetch_interval;
2344 else
2345 FREE_STACK_RETURN (REG_BADBR);
2346 }
2347
2348 if (!(syntax & RE_NO_BK_BRACES))
2349 {
2350 if (c != '\\') FREE_STACK_RETURN (REG_EBRACE);
2351
2352 PATFETCH (c);
2353 }
2354
2355 if (c != '}')
2356 {
2357 if (syntax & RE_NO_BK_BRACES)
2358 goto unfetch_interval;
2359 else
2360 FREE_STACK_RETURN (REG_BADBR);
2361 }
2362
2363 /* We just parsed a valid interval. */
2364
2365 /* If it's invalid to have no preceding re. */
2366 if (!laststart)
2367 {
2368 if (syntax & RE_CONTEXT_INVALID_OPS)
2369 FREE_STACK_RETURN (REG_BADRPT);
2370 else if (syntax & RE_CONTEXT_INDEP_OPS)
2371 laststart = b;
2372 else
2373 goto unfetch_interval;
2374 }
2375
2376 /* If the upper bound is zero, don't want to succeed at
2377 all; jump from `laststart' to `b + 3', which will be
2378 the end of the buffer after we insert the jump. */
2379 if (upper_bound == 0)
2380 {
2381 GET_BUFFER_SPACE (3);
2382 INSERT_JUMP (jump, laststart, b + 3);
2383 b += 3;
2384 }
2385
2386 /* Otherwise, we have a nontrivial interval. When
2387 we're all done, the pattern will look like:
2388 set_number_at <jump count> <upper bound>
2389 set_number_at <succeed_n count> <lower bound>
2390 succeed_n <after jump addr> <succeed_n count>
2391 <body of loop>
2392 jump_n <succeed_n addr> <jump count>
2393 (The upper bound and `jump_n' are omitted if
2394 `upper_bound' is 1, though.) */
2395 else
2396 { /* If the upper bound is > 1, we need to insert
2397 more at the end of the loop. */
2398 unsigned nbytes = 10 + (upper_bound > 1) * 10;
2399
2400 GET_BUFFER_SPACE (nbytes);
2401
2402 /* Initialize lower bound of the `succeed_n', even
2403 though it will be set during matching by its
2404 attendant `set_number_at' (inserted next),
2405 because `re_compile_fastmap' needs to know.
2406 Jump to the `jump_n' we might insert below. */
2407 INSERT_JUMP2 (succeed_n, laststart,
2408 b + 5 + (upper_bound > 1) * 5,
2409 lower_bound);
2410 b += 5;
2411
2412 /* Code to initialize the lower bound. Insert
2413 before the `succeed_n'. The `5' is the last two
2414 bytes of this `set_number_at', plus 3 bytes of
2415 the following `succeed_n'. */
2416 insert_op2 (set_number_at, laststart, 5, lower_bound, b);
2417 b += 5;
2418
2419 if (upper_bound > 1)
2420 { /* More than one repetition is allowed, so
2421 append a backward jump to the `succeed_n'
2422 that starts this interval.
2423
2424 When we've reached this during matching,
2425 we'll have matched the interval once, so
2426 jump back only `upper_bound - 1' times. */
2427 STORE_JUMP2 (jump_n, b, laststart + 5,
2428 upper_bound - 1);
2429 b += 5;
2430
2431 /* The location we want to set is the second
2432 parameter of the `jump_n'; that is `b-2' as
2433 an absolute address. `laststart' will be
2434 the `set_number_at' we're about to insert;
2435 `laststart+3' the number to set, the source
2436 for the relative address. But we are
2437 inserting into the middle of the pattern --
2438 so everything is getting moved up by 5.
2439 Conclusion: (b - 2) - (laststart + 3) + 5,
2440 i.e., b - laststart.
2441
2442 We insert this at the beginning of the loop
2443 so that if we fail during matching, we'll
2444 reinitialize the bounds. */
2445 insert_op2 (set_number_at, laststart, b - laststart,
2446 upper_bound - 1, b);
2447 b += 5;
2448 }
2449 }
2450 pending_exact = 0;
2451 beg_interval = NULL;
2452 }
2453 break;
2454
2455 unfetch_interval:
2456 /* If an invalid interval, match the characters as literals. */
2457 assert (beg_interval);
2458 p = beg_interval;
2459 beg_interval = NULL;
2460
2461 /* normal_char and normal_backslash need `c'. */
2462 PATFETCH (c);
2463
2464 if (!(syntax & RE_NO_BK_BRACES))
2465 {
2466 if (p > pattern && p[-1] == '\\')
2467 goto normal_backslash;
2468 }
2469 goto normal_char;
2470
2471#ifdef emacs
2472 /* There is no way to specify the before_dot and after_dot
2473 operators. rms says this is ok. --karl */
2474 case '=':
2475 BUF_PUSH (at_dot);
2476 break;
2477
2478 case 's':
2479 laststart = b;
2480 PATFETCH (c);
2481 BUF_PUSH_2 (syntaxspec, syntax_spec_code[c]);
2482 break;
2483
2484 case 'S':
2485 laststart = b;
2486 PATFETCH (c);
2487 BUF_PUSH_2 (notsyntaxspec, syntax_spec_code[c]);
2488 break;
2489#endif /* emacs */
2490
2491
2492 case 'w':
2493 laststart = b;
2494 BUF_PUSH (wordchar);
2495 break;
2496
2497
2498 case 'W':
2499 laststart = b;
2500 BUF_PUSH (notwordchar);
2501 break;
2502
2503
2504 case '<':
2505 BUF_PUSH (wordbeg);
2506 break;
2507
2508 case '>':
2509 BUF_PUSH (wordend);
2510 break;
2511
2512 case 'b':
2513 BUF_PUSH (wordbound);
2514 break;
2515
2516 case 'B':
2517 BUF_PUSH (notwordbound);
2518 break;
2519
2520 case '`':
2521 BUF_PUSH (begbuf);
2522 break;
2523
2524 case '\'':
2525 BUF_PUSH (endbuf);
2526 break;
2527
2528 case '1': case '2': case '3': case '4': case '5':
2529 case '6': case '7': case '8': case '9':
2530 if (syntax & RE_NO_BK_REFS)
2531 goto normal_char;
2532
2533 c1 = c - '0';
2534
2535 if (c1 > regnum)
2536 FREE_STACK_RETURN (REG_ESUBREG);
2537
2538 /* Can't back reference to a subexpression if inside of it. */
2539 if (group_in_compile_stack (compile_stack, c1))
2540 goto normal_char;
2541
2542 laststart = b;
2543 BUF_PUSH_2 (duplicate, c1);
2544 break;
2545
2546
2547 case '+':
2548 case '?':
2549 if (syntax & RE_BK_PLUS_QM)
2550 goto handle_plus;
2551 else
2552 goto normal_backslash;
2553
2554 default:
2555 normal_backslash:
2556 /* You might think it would be useful for \ to mean
2557 not to translate; but if we don't translate it
2558 it will never match anything. */
2559 c = TRANSLATE (c);
2560 goto normal_char;
2561 }
2562 break;
2563
2564
2565 default:
2566 /* Expects the character in `c'. */
2567 normal_char:
2568 /* If no exactn currently being built. */
2569 if (!pending_exact
2570
2571 /* If last exactn not at current position. */
2572 || pending_exact + *pending_exact + 1 != b
2573
2574 /* We have only one byte following the exactn for the count. */
2575 || *pending_exact == (1 << BYTEWIDTH) - 1
2576
2577 /* If followed by a repetition operator. */
2578 || *p == '*' || *p == '^'
2579 || ((syntax & RE_BK_PLUS_QM)
2580 ? *p == '\\' && (p[1] == '+' || p[1] == '?')
2581 : (*p == '+' || *p == '?'))
2582 || ((syntax & RE_INTERVALS)
2583 && ((syntax & RE_NO_BK_BRACES)
2584 ? *p == '{'
2585 : (p[0] == '\\' && p[1] == '{'))))
2586 {
2587 /* Start building a new exactn. */
2588
2589 laststart = b;
2590
2591 BUF_PUSH_2 (exactn, 0);
2592 pending_exact = b - 1;
2593 }
2594
2595 BUF_PUSH (c);
2596 (*pending_exact)++;
2597 break;
2598 } /* switch (c) */
2599 } /* while p != pend */
2600
2601
2602 /* Through the pattern now. */
2603
2604 if (fixup_alt_jump)
2605 STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
2606
2607 if (!COMPILE_STACK_EMPTY)
2608 FREE_STACK_RETURN (REG_EPAREN);
2609
2610 /* If we don't want backtracking, force success
2611 the first time we reach the end of the compiled pattern. */
2612 if (syntax & RE_NO_POSIX_BACKTRACKING)
2613 BUF_PUSH (succeed);
2614
2615 free (compile_stack.stack);
2616
2617 /* We have succeeded; set the length of the buffer. */
2618 bufp->used = b - bufp->buffer;
2619
2620#ifdef DEBUG
2621 if (debug)
2622 {
2623 DEBUG_PRINT1 ("\nCompiled pattern: \n");
2624 print_compiled_pattern (bufp);
2625 }
2626#endif /* DEBUG */
2627
2628#ifndef MATCH_MAY_ALLOCATE
2629 /* Initialize the failure stack to the largest possible stack. This
2630 isn't necessary unless we're trying to avoid calling alloca in
2631 the search and match routines. */
2632 {
2633 int num_regs = bufp->re_nsub + 1;
2634
2635 /* Since DOUBLE_FAIL_STACK refuses to double only if the current size
2636 is strictly greater than re_max_failures, the largest possible stack
2637 is 2 * re_max_failures failure points. */
2638 if (fail_stack.size < (2 * re_max_failures * MAX_FAILURE_ITEMS))
2639 {
2640 fail_stack.size = (2 * re_max_failures * MAX_FAILURE_ITEMS);
2641
2642#ifdef emacs
2643 if (! fail_stack.stack)
2644 fail_stack.stack
2645 = (fail_stack_elt_t *) xmalloc (fail_stack.size
2646 * sizeof (fail_stack_elt_t));
2647 else
2648 fail_stack.stack
2649 = (fail_stack_elt_t *) xrealloc (fail_stack.stack,
2650 (fail_stack.size
2651 * sizeof (fail_stack_elt_t)));
2652#else /* not emacs */
2653 if (! fail_stack.stack)
2654 fail_stack.stack
2655 = (fail_stack_elt_t *) malloc (fail_stack.size
2656 * sizeof (fail_stack_elt_t));
2657 else
2658 fail_stack.stack
2659 = (fail_stack_elt_t *) realloc (fail_stack.stack,
2660 (fail_stack.size
2661 * sizeof (fail_stack_elt_t)));
2662#endif /* not emacs */
2663 }
2664
2665 regex_grow_registers (num_regs);
2666 }
2667#endif /* not MATCH_MAY_ALLOCATE */
2668
2669 return REG_NOERROR;
2670} /* regex_compile */
2671\f
2672/* Subroutines for `regex_compile'. */
2673
2674/* Store OP at LOC followed by two-byte integer parameter ARG. */
2675
2676static void
2677store_op1 (op, loc, arg)
2678 re_opcode_t op;
2679 unsigned char *loc;
2680 int arg;
2681{
2682 *loc = (unsigned char) op;
2683 STORE_NUMBER (loc + 1, arg);
2684}
2685
2686
2687/* Like `store_op1', but for two two-byte parameters ARG1 and ARG2. */
2688
2689static void
2690store_op2 (op, loc, arg1, arg2)
2691 re_opcode_t op;
2692 unsigned char *loc;
2693 int arg1, arg2;
2694{
2695 *loc = (unsigned char) op;
2696 STORE_NUMBER (loc + 1, arg1);
2697 STORE_NUMBER (loc + 3, arg2);
2698}
2699
2700
2701/* Copy the bytes from LOC to END to open up three bytes of space at LOC
2702 for OP followed by two-byte integer parameter ARG. */
2703
2704static void
2705insert_op1 (op, loc, arg, end)
2706 re_opcode_t op;
2707 unsigned char *loc;
2708 int arg;
2709 unsigned char *end;
2710{
2711 register unsigned char *pfrom = end;
2712 register unsigned char *pto = end + 3;
2713
2714 while (pfrom != loc)
2715 *--pto = *--pfrom;
2716
2717 store_op1 (op, loc, arg);
2718}
2719
2720
2721/* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2. */
2722
2723static void
2724insert_op2 (op, loc, arg1, arg2, end)
2725 re_opcode_t op;
2726 unsigned char *loc;
2727 int arg1, arg2;
2728 unsigned char *end;
2729{
2730 register unsigned char *pfrom = end;
2731 register unsigned char *pto = end + 5;
2732
2733 while (pfrom != loc)
2734 *--pto = *--pfrom;
2735
2736 store_op2 (op, loc, arg1, arg2);
2737}
2738
2739
2740/* P points to just after a ^ in PATTERN. Return true if that ^ comes
2741 after an alternative or a begin-subexpression. We assume there is at
2742 least one character before the ^. */
2743
2744static boolean
2745at_begline_loc_p (pattern, p, syntax)
2746 const char *pattern, *p;
2747 reg_syntax_t syntax;
2748{
2749 const char *prev = p - 2;
2750 boolean prev_prev_backslash = prev > pattern && prev[-1] == '\\';
2751
2752 return
2753 /* After a subexpression? */
2754 (*prev == '(' && (syntax & RE_NO_BK_PARENS || prev_prev_backslash))
2755 /* After an alternative? */
2756 || (*prev == '|' && (syntax & RE_NO_BK_VBAR || prev_prev_backslash));
2757}
2758
2759
2760/* The dual of at_begline_loc_p. This one is for $. We assume there is
2761 at least one character after the $, i.e., `P < PEND'. */
2762
2763static boolean
2764at_endline_loc_p (p, pend, syntax)
2765 const char *p, *pend;
2766 int syntax;
2767{
2768 const char *next = p;
2769 boolean next_backslash = *next == '\\';
5bb52971 2770 const char *next_next = p + 1 < pend ? p + 1 : 0;
fa9a63c5
RM
2771
2772 return
2773 /* Before a subexpression? */
2774 (syntax & RE_NO_BK_PARENS ? *next == ')'
2775 : next_backslash && next_next && *next_next == ')')
2776 /* Before an alternative? */
2777 || (syntax & RE_NO_BK_VBAR ? *next == '|'
2778 : next_backslash && next_next && *next_next == '|');
2779}
2780
2781
2782/* Returns true if REGNUM is in one of COMPILE_STACK's elements and
2783 false if it's not. */
2784
2785static boolean
2786group_in_compile_stack (compile_stack, regnum)
2787 compile_stack_type compile_stack;
2788 regnum_t regnum;
2789{
2790 int this_element;
2791
2792 for (this_element = compile_stack.avail - 1;
2793 this_element >= 0;
2794 this_element--)
2795 if (compile_stack.stack[this_element].regnum == regnum)
2796 return true;
2797
2798 return false;
2799}
2800
2801
2802/* Read the ending character of a range (in a bracket expression) from the
2803 uncompiled pattern *P_PTR (which ends at PEND). We assume the
2804 starting character is in `P[-2]'. (`P[-1]' is the character `-'.)
2805 Then we set the translation of all bits between the starting and
2806 ending characters (inclusive) in the compiled pattern B.
2807
2808 Return an error code.
2809
2810 We use these short variable names so we can use the same macros as
2811 `regex_compile' itself. */
2812
2813static reg_errcode_t
2814compile_range (p_ptr, pend, translate, syntax, b)
2815 const char **p_ptr, *pend;
2816 char *translate;
2817 reg_syntax_t syntax;
2818 unsigned char *b;
2819{
2820 unsigned this_char;
2821
2822 const char *p = *p_ptr;
2823 int range_start, range_end;
2824
2825 if (p == pend)
2826 return REG_ERANGE;
2827
2828 /* Even though the pattern is a signed `char *', we need to fetch
2829 with unsigned char *'s; if the high bit of the pattern character
2830 is set, the range endpoints will be negative if we fetch using a
2831 signed char *.
2832
2833 We also want to fetch the endpoints without translating them; the
2834 appropriate translation is done in the bit-setting loop below. */
2835 /* The SVR4 compiler on the 3B2 had trouble with unsigned const char *. */
2836 range_start = ((const unsigned char *) p)[-2];
2837 range_end = ((const unsigned char *) p)[0];
2838
2839 /* Have to increment the pointer into the pattern string, so the
2840 caller isn't still at the ending character. */
2841 (*p_ptr)++;
2842
2843 /* If the start is after the end, the range is empty. */
2844 if (range_start > range_end)
2845 return syntax & RE_NO_EMPTY_RANGES ? REG_ERANGE : REG_NOERROR;
2846
2847 /* Here we see why `this_char' has to be larger than an `unsigned
2848 char' -- the range is inclusive, so if `range_end' == 0xff
2849 (assuming 8-bit characters), we would otherwise go into an infinite
2850 loop, since all characters <= 0xff. */
2851 for (this_char = range_start; this_char <= range_end; this_char++)
2852 {
2853 SET_LIST_BIT (TRANSLATE (this_char));
2854 }
2855
2856 return REG_NOERROR;
2857}
2858\f
2859/* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
2860 BUFP. A fastmap records which of the (1 << BYTEWIDTH) possible
2861 characters can start a string that matches the pattern. This fastmap
2862 is used by re_search to skip quickly over impossible starting points.
2863
2864 The caller must supply the address of a (1 << BYTEWIDTH)-byte data
2865 area as BUFP->fastmap.
2866
2867 We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
2868 the pattern buffer.
2869
2870 Returns 0 if we succeed, -2 if an internal error. */
2871
2872int
2873re_compile_fastmap (bufp)
2874 struct re_pattern_buffer *bufp;
2875{
2876 int j, k;
2877#ifdef MATCH_MAY_ALLOCATE
2878 fail_stack_type fail_stack;
2879#endif
2880#ifndef REGEX_MALLOC
2881 char *destination;
2882#endif
2883 /* We don't push any register information onto the failure stack. */
2884 unsigned num_regs = 0;
2885
2886 register char *fastmap = bufp->fastmap;
2887 unsigned char *pattern = bufp->buffer;
2888 unsigned long size = bufp->used;
2889 unsigned char *p = pattern;
2890 register unsigned char *pend = pattern + size;
2891
2892 /* This holds the pointer to the failure stack, when
2893 it is allocated relocatably. */
2894 fail_stack_elt_t *failure_stack_ptr;
2895
2896 /* Assume that each path through the pattern can be null until
2897 proven otherwise. We set this false at the bottom of switch
2898 statement, to which we get only if a particular path doesn't
2899 match the empty string. */
2900 boolean path_can_be_null = true;
2901
2902 /* We aren't doing a `succeed_n' to begin with. */
2903 boolean succeed_n_p = false;
2904
2905 assert (fastmap != NULL && p != NULL);
2906
2907 INIT_FAIL_STACK ();
2908 bzero (fastmap, 1 << BYTEWIDTH); /* Assume nothing's valid. */
2909 bufp->fastmap_accurate = 1; /* It will be when we're done. */
2910 bufp->can_be_null = 0;
2911
2912 while (1)
2913 {
2914 if (p == pend || *p == succeed)
2915 {
2916 /* We have reached the (effective) end of pattern. */
2917 if (!FAIL_STACK_EMPTY ())
2918 {
2919 bufp->can_be_null |= path_can_be_null;
2920
2921 /* Reset for next path. */
2922 path_can_be_null = true;
2923
2924 p = fail_stack.stack[--fail_stack.avail].pointer;
2925
2926 continue;
2927 }
2928 else
2929 break;
2930 }
2931
2932 /* We should never be about to go beyond the end of the pattern. */
2933 assert (p < pend);
2934
2935 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
2936 {
2937
2938 /* I guess the idea here is to simply not bother with a fastmap
2939 if a backreference is used, since it's too hard to figure out
2940 the fastmap for the corresponding group. Setting
2941 `can_be_null' stops `re_search_2' from using the fastmap, so
2942 that is all we do. */
2943 case duplicate:
2944 bufp->can_be_null = 1;
2945 goto done;
2946
2947
2948 /* Following are the cases which match a character. These end
2949 with `break'. */
2950
2951 case exactn:
2952 fastmap[p[1]] = 1;
2953 break;
2954
2955
2956 case charset:
2957 for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
2958 if (p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH)))
2959 fastmap[j] = 1;
2960 break;
2961
2962
2963 case charset_not:
2964 /* Chars beyond end of map must be allowed. */
2965 for (j = *p * BYTEWIDTH; j < (1 << BYTEWIDTH); j++)
2966 fastmap[j] = 1;
2967
2968 for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
2969 if (!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))))
2970 fastmap[j] = 1;
2971 break;
2972
2973
2974 case wordchar:
2975 for (j = 0; j < (1 << BYTEWIDTH); j++)
2976 if (SYNTAX (j) == Sword)
2977 fastmap[j] = 1;
2978 break;
2979
2980
2981 case notwordchar:
2982 for (j = 0; j < (1 << BYTEWIDTH); j++)
2983 if (SYNTAX (j) != Sword)
2984 fastmap[j] = 1;
2985 break;
2986
2987
2988 case anychar:
2989 {
2990 int fastmap_newline = fastmap['\n'];
2991
2992 /* `.' matches anything ... */
2993 for (j = 0; j < (1 << BYTEWIDTH); j++)
2994 fastmap[j] = 1;
2995
2996 /* ... except perhaps newline. */
2997 if (!(bufp->syntax & RE_DOT_NEWLINE))
2998 fastmap['\n'] = fastmap_newline;
2999
3000 /* Return if we have already set `can_be_null'; if we have,
3001 then the fastmap is irrelevant. Something's wrong here. */
3002 else if (bufp->can_be_null)
3003 goto done;
3004
3005 /* Otherwise, have to check alternative paths. */
3006 break;
3007 }
3008
3009#ifdef emacs
3010 case syntaxspec:
3011 k = *p++;
3012 for (j = 0; j < (1 << BYTEWIDTH); j++)
3013 if (SYNTAX (j) == (enum syntaxcode) k)
3014 fastmap[j] = 1;
3015 break;
3016
3017
3018 case notsyntaxspec:
3019 k = *p++;
3020 for (j = 0; j < (1 << BYTEWIDTH); j++)
3021 if (SYNTAX (j) != (enum syntaxcode) k)
3022 fastmap[j] = 1;
3023 break;
3024
3025
3026 /* All cases after this match the empty string. These end with
3027 `continue'. */
3028
3029
3030 case before_dot:
3031 case at_dot:
3032 case after_dot:
3033 continue;
3034#endif /* not emacs */
3035
3036
3037 case no_op:
3038 case begline:
3039 case endline:
3040 case begbuf:
3041 case endbuf:
3042 case wordbound:
3043 case notwordbound:
3044 case wordbeg:
3045 case wordend:
3046 case push_dummy_failure:
3047 continue;
3048
3049
3050 case jump_n:
3051 case pop_failure_jump:
3052 case maybe_pop_jump:
3053 case jump:
3054 case jump_past_alt:
3055 case dummy_failure_jump:
3056 EXTRACT_NUMBER_AND_INCR (j, p);
3057 p += j;
3058 if (j > 0)
3059 continue;
3060
3061 /* Jump backward implies we just went through the body of a
3062 loop and matched nothing. Opcode jumped to should be
3063 `on_failure_jump' or `succeed_n'. Just treat it like an
3064 ordinary jump. For a * loop, it has pushed its failure
3065 point already; if so, discard that as redundant. */
3066 if ((re_opcode_t) *p != on_failure_jump
3067 && (re_opcode_t) *p != succeed_n)
3068 continue;
3069
3070 p++;
3071 EXTRACT_NUMBER_AND_INCR (j, p);
3072 p += j;
3073
3074 /* If what's on the stack is where we are now, pop it. */
3075 if (!FAIL_STACK_EMPTY ()
3076 && fail_stack.stack[fail_stack.avail - 1].pointer == p)
3077 fail_stack.avail--;
3078
3079 continue;
3080
3081
3082 case on_failure_jump:
3083 case on_failure_keep_string_jump:
3084 handle_on_failure_jump:
3085 EXTRACT_NUMBER_AND_INCR (j, p);
3086
3087 /* For some patterns, e.g., `(a?)?', `p+j' here points to the
3088 end of the pattern. We don't want to push such a point,
3089 since when we restore it above, entering the switch will
3090 increment `p' past the end of the pattern. We don't need
3091 to push such a point since we obviously won't find any more
3092 fastmap entries beyond `pend'. Such a pattern can match
3093 the null string, though. */
3094 if (p + j < pend)
3095 {
3096 if (!PUSH_PATTERN_OP (p + j, fail_stack))
3097 {
3098 RESET_FAIL_STACK ();
3099 return -2;
3100 }
3101 }
3102 else
3103 bufp->can_be_null = 1;
3104
3105 if (succeed_n_p)
3106 {
3107 EXTRACT_NUMBER_AND_INCR (k, p); /* Skip the n. */
3108 succeed_n_p = false;
3109 }
3110
3111 continue;
3112
3113
3114 case succeed_n:
3115 /* Get to the number of times to succeed. */
3116 p += 2;
3117
3118 /* Increment p past the n for when k != 0. */
3119 EXTRACT_NUMBER_AND_INCR (k, p);
3120 if (k == 0)
3121 {
3122 p -= 4;
3123 succeed_n_p = true; /* Spaghetti code alert. */
3124 goto handle_on_failure_jump;
3125 }
3126 continue;
3127
3128
3129 case set_number_at:
3130 p += 4;
3131 continue;
3132
3133
3134 case start_memory:
3135 case stop_memory:
3136 p += 2;
3137 continue;
3138
3139
3140 default:
3141 abort (); /* We have listed all the cases. */
3142 } /* switch *p++ */
3143
3144 /* Getting here means we have found the possible starting
3145 characters for one path of the pattern -- and that the empty
3146 string does not match. We need not follow this path further.
3147 Instead, look at the next alternative (remembered on the
3148 stack), or quit if no more. The test at the top of the loop
3149 does these things. */
3150 path_can_be_null = false;
3151 p = pend;
3152 } /* while p */
3153
3154 /* Set `can_be_null' for the last path (also the first path, if the
3155 pattern is empty). */
3156 bufp->can_be_null |= path_can_be_null;
3157
3158 done:
3159 RESET_FAIL_STACK ();
3160 return 0;
3161} /* re_compile_fastmap */
3162\f
3163/* Set REGS to hold NUM_REGS registers, storing them in STARTS and
3164 ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use
3165 this memory for recording register information. STARTS and ENDS
3166 must be allocated using the malloc library routine, and must each
3167 be at least NUM_REGS * sizeof (regoff_t) bytes long.
3168
3169 If NUM_REGS == 0, then subsequent matches should allocate their own
3170 register data.
3171
3172 Unless this function is called, the first search or match using
3173 PATTERN_BUFFER will allocate its own register data, without
3174 freeing the old data. */
3175
3176void
3177re_set_registers (bufp, regs, num_regs, starts, ends)
3178 struct re_pattern_buffer *bufp;
3179 struct re_registers *regs;
3180 unsigned num_regs;
3181 regoff_t *starts, *ends;
3182{
3183 if (num_regs)
3184 {
3185 bufp->regs_allocated = REGS_REALLOCATE;
3186 regs->num_regs = num_regs;
3187 regs->start = starts;
3188 regs->end = ends;
3189 }
3190 else
3191 {
3192 bufp->regs_allocated = REGS_UNALLOCATED;
3193 regs->num_regs = 0;
3194 regs->start = regs->end = (regoff_t *) 0;
3195 }
3196}
3197\f
3198/* Searching routines. */
3199
3200/* Like re_search_2, below, but only one string is specified, and
3201 doesn't let you say where to stop matching. */
3202
3203int
3204re_search (bufp, string, size, startpos, range, regs)
3205 struct re_pattern_buffer *bufp;
3206 const char *string;
3207 int size, startpos, range;
3208 struct re_registers *regs;
3209{
3210 return re_search_2 (bufp, NULL, 0, string, size, startpos, range,
3211 regs, size);
3212}
3213
3214
3215/* Using the compiled pattern in BUFP->buffer, first tries to match the
3216 virtual concatenation of STRING1 and STRING2, starting first at index
3217 STARTPOS, then at STARTPOS + 1, and so on.
3218
3219 STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
3220
3221 RANGE is how far to scan while trying to match. RANGE = 0 means try
3222 only at STARTPOS; in general, the last start tried is STARTPOS +
3223 RANGE.
3224
3225 In REGS, return the indices of the virtual concatenation of STRING1
3226 and STRING2 that matched the entire BUFP->buffer and its contained
3227 subexpressions.
3228
3229 Do not consider matching one past the index STOP in the virtual
3230 concatenation of STRING1 and STRING2.
3231
3232 We return either the position in the strings at which the match was
3233 found, -1 if no match, or -2 if error (such as failure
3234 stack overflow). */
3235
3236int
3237re_search_2 (bufp, string1, size1, string2, size2, startpos, range, regs, stop)
3238 struct re_pattern_buffer *bufp;
3239 const char *string1, *string2;
3240 int size1, size2;
3241 int startpos;
3242 int range;
3243 struct re_registers *regs;
3244 int stop;
3245{
3246 int val;
3247 register char *fastmap = bufp->fastmap;
3248 register char *translate = bufp->translate;
3249 int total_size = size1 + size2;
3250 int endpos = startpos + range;
3251
3252 /* Check for out-of-range STARTPOS. */
3253 if (startpos < 0 || startpos > total_size)
3254 return -1;
3255
3256 /* Fix up RANGE if it might eventually take us outside
3257 the virtual concatenation of STRING1 and STRING2. */
3258 if (endpos < -1)
3259 range = -1 - startpos;
3260 else if (endpos > total_size)
3261 range = total_size - startpos;
3262
3263 /* If the search isn't to be a backwards one, don't waste time in a
3264 search for a pattern that must be anchored. */
3265 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == begbuf && range > 0)
3266 {
3267 if (startpos > 0)
3268 return -1;
3269 else
3270 range = 1;
3271 }
3272
3273 /* Update the fastmap now if not correct already. */
3274 if (fastmap && !bufp->fastmap_accurate)
3275 if (re_compile_fastmap (bufp) == -2)
3276 return -2;
3277
3278 /* Loop through the string, looking for a place to start matching. */
3279 for (;;)
3280 {
3281 /* If a fastmap is supplied, skip quickly over characters that
3282 cannot be the start of a match. If the pattern can match the
3283 null string, however, we don't need to skip characters; we want
3284 the first null string. */
3285 if (fastmap && startpos < total_size && !bufp->can_be_null)
3286 {
3287 if (range > 0) /* Searching forwards. */
3288 {
3289 register const char *d;
3290 register int lim = 0;
3291 int irange = range;
3292
3293 if (startpos < size1 && startpos + range >= size1)
3294 lim = range - (size1 - startpos);
3295
3296 d = (startpos >= size1 ? string2 - size1 : string1) + startpos;
3297
3298 /* Written out as an if-else to avoid testing `translate'
3299 inside the loop. */
3300 if (translate)
3301 while (range > lim
3302 && !fastmap[(unsigned char)
3303 translate[(unsigned char) *d++]])
3304 range--;
3305 else
3306 while (range > lim && !fastmap[(unsigned char) *d++])
3307 range--;
3308
3309 startpos += irange - range;
3310 }
3311 else /* Searching backwards. */
3312 {
3313 register char c = (size1 == 0 || startpos >= size1
3314 ? string2[startpos - size1]
3315 : string1[startpos]);
3316
3317 if (!fastmap[(unsigned char) TRANSLATE (c)])
3318 goto advance;
3319 }
3320 }
3321
3322 /* If can't match the null string, and that's all we have left, fail. */
3323 if (range >= 0 && startpos == total_size && fastmap
3324 && !bufp->can_be_null)
3325 return -1;
3326
3327 val = re_match_2_internal (bufp, string1, size1, string2, size2,
3328 startpos, regs, stop);
3329#ifndef REGEX_MALLOC
3330#ifdef C_ALLOCA
3331 alloca (0);
3332#endif
3333#endif
3334
3335 if (val >= 0)
3336 return startpos;
3337
3338 if (val == -2)
3339 return -2;
3340
3341 advance:
3342 if (!range)
3343 break;
3344 else if (range > 0)
3345 {
3346 range--;
3347 startpos++;
3348 }
3349 else
3350 {
3351 range++;
3352 startpos--;
3353 }
3354 }
3355 return -1;
3356} /* re_search_2 */
3357\f
3358/* Declarations and macros for re_match_2. */
3359
3360static int bcmp_translate ();
3361static boolean alt_match_null_string_p (),
3362 common_op_match_null_string_p (),
3363 group_match_null_string_p ();
3364
3365/* This converts PTR, a pointer into one of the search strings `string1'
3366 and `string2' into an offset from the beginning of that string. */
3367#define POINTER_TO_OFFSET(ptr) \
3368 (FIRST_STRING_P (ptr) \
3369 ? ((regoff_t) ((ptr) - string1)) \
3370 : ((regoff_t) ((ptr) - string2 + size1)))
3371
3372/* Macros for dealing with the split strings in re_match_2. */
3373
3374#define MATCHING_IN_FIRST_STRING (dend == end_match_1)
3375
3376/* Call before fetching a character with *d. This switches over to
3377 string2 if necessary. */
3378#define PREFETCH() \
3379 while (d == dend) \
3380 { \
3381 /* End of string2 => fail. */ \
3382 if (dend == end_match_2) \
3383 goto fail; \
3384 /* End of string1 => advance to string2. */ \
3385 d = string2; \
3386 dend = end_match_2; \
3387 }
3388
3389
3390/* Test if at very beginning or at very end of the virtual concatenation
3391 of `string1' and `string2'. If only one string, it's `string2'. */
3392#define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
3393#define AT_STRINGS_END(d) ((d) == end2)
3394
3395
3396/* Test if D points to a character which is word-constituent. We have
3397 two special cases to check for: if past the end of string1, look at
3398 the first character in string2; and if before the beginning of
3399 string2, look at the last character in string1. */
3400#define WORDCHAR_P(d) \
3401 (SYNTAX ((d) == end1 ? *string2 \
3402 : (d) == string2 - 1 ? *(end1 - 1) : *(d)) \
3403 == Sword)
3404
3405/* Test if the character before D and the one at D differ with respect
3406 to being word-constituent. */
3407#define AT_WORD_BOUNDARY(d) \
3408 (AT_STRINGS_BEG (d) || AT_STRINGS_END (d) \
3409 || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
3410
3411
3412/* Free everything we malloc. */
3413#ifdef MATCH_MAY_ALLOCATE
3414#define FREE_VAR(var) if (var) REGEX_FREE (var); var = NULL
3415#define FREE_VARIABLES() \
3416 do { \
3417 REGEX_FREE_STACK (fail_stack.stack); \
3418 FREE_VAR (regstart); \
3419 FREE_VAR (regend); \
3420 FREE_VAR (old_regstart); \
3421 FREE_VAR (old_regend); \
3422 FREE_VAR (best_regstart); \
3423 FREE_VAR (best_regend); \
3424 FREE_VAR (reg_info); \
3425 FREE_VAR (reg_dummy); \
3426 FREE_VAR (reg_info_dummy); \
3427 } while (0)
3428#else
3429#define FREE_VARIABLES() ((void)0) /* Do nothing! But inhibit gcc warning. */
3430#endif /* not MATCH_MAY_ALLOCATE */
3431
3432/* These values must meet several constraints. They must not be valid
3433 register values; since we have a limit of 255 registers (because
3434 we use only one byte in the pattern for the register number), we can
3435 use numbers larger than 255. They must differ by 1, because of
3436 NUM_FAILURE_ITEMS above. And the value for the lowest register must
3437 be larger than the value for the highest register, so we do not try
3438 to actually save any registers when none are active. */
3439#define NO_HIGHEST_ACTIVE_REG (1 << BYTEWIDTH)
3440#define NO_LOWEST_ACTIVE_REG (NO_HIGHEST_ACTIVE_REG + 1)
3441\f
3442/* Matching routines. */
3443
3444#ifndef emacs /* Emacs never uses this. */
3445/* re_match is like re_match_2 except it takes only a single string. */
3446
3447int
3448re_match (bufp, string, size, pos, regs)
3449 struct re_pattern_buffer *bufp;
3450 const char *string;
3451 int size, pos;
3452 struct re_registers *regs;
3453{
3454 int result = re_match_2_internal (bufp, NULL, 0, string, size,
3455 pos, regs, size);
3456 alloca (0);
3457 return result;
3458}
3459#endif /* not emacs */
3460
3461
3462/* re_match_2 matches the compiled pattern in BUFP against the
3463 the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
3464 and SIZE2, respectively). We start matching at POS, and stop
3465 matching at STOP.
3466
3467 If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
3468 store offsets for the substring each group matched in REGS. See the
3469 documentation for exactly how many groups we fill.
3470
3471 We return -1 if no match, -2 if an internal error (such as the
3472 failure stack overflowing). Otherwise, we return the length of the
3473 matched substring. */
3474
3475int
3476re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
3477 struct re_pattern_buffer *bufp;
3478 const char *string1, *string2;
3479 int size1, size2;
3480 int pos;
3481 struct re_registers *regs;
3482 int stop;
3483{
3484 int result = re_match_2_internal (bufp, string1, size1, string2, size2,
3485 pos, regs, stop);
3486 alloca (0);
3487 return result;
3488}
3489
3490/* This is a separate function so that we can force an alloca cleanup
3491 afterwards. */
3492static int
3493re_match_2_internal (bufp, string1, size1, string2, size2, pos, regs, stop)
3494 struct re_pattern_buffer *bufp;
3495 const char *string1, *string2;
3496 int size1, size2;
3497 int pos;
3498 struct re_registers *regs;
3499 int stop;
3500{
3501 /* General temporaries. */
3502 int mcnt;
3503 unsigned char *p1;
3504
3505 /* Just past the end of the corresponding string. */
3506 const char *end1, *end2;
3507
3508 /* Pointers into string1 and string2, just past the last characters in
3509 each to consider matching. */
3510 const char *end_match_1, *end_match_2;
3511
3512 /* Where we are in the data, and the end of the current string. */
3513 const char *d, *dend;
3514
3515 /* Where we are in the pattern, and the end of the pattern. */
3516 unsigned char *p = bufp->buffer;
3517 register unsigned char *pend = p + bufp->used;
3518
3519 /* Mark the opcode just after a start_memory, so we can test for an
3520 empty subpattern when we get to the stop_memory. */
3521 unsigned char *just_past_start_mem = 0;
3522
3523 /* We use this to map every character in the string. */
3524 char *translate = bufp->translate;
3525
3526 /* Failure point stack. Each place that can handle a failure further
3527 down the line pushes a failure point on this stack. It consists of
3528 restart, regend, and reg_info for all registers corresponding to
3529 the subexpressions we're currently inside, plus the number of such
3530 registers, and, finally, two char *'s. The first char * is where
3531 to resume scanning the pattern; the second one is where to resume
3532 scanning the strings. If the latter is zero, the failure point is
3533 a ``dummy''; if a failure happens and the failure point is a dummy,
3534 it gets discarded and the next next one is tried. */
3535#ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
3536 fail_stack_type fail_stack;
3537#endif
3538#ifdef DEBUG
3539 static unsigned failure_id = 0;
3540 unsigned nfailure_points_pushed = 0, nfailure_points_popped = 0;
3541#endif
3542
3543 /* This holds the pointer to the failure stack, when
3544 it is allocated relocatably. */
3545 fail_stack_elt_t *failure_stack_ptr;
3546
3547 /* We fill all the registers internally, independent of what we
3548 return, for use in backreferences. The number here includes
3549 an element for register zero. */
3550 unsigned num_regs = bufp->re_nsub + 1;
3551
3552 /* The currently active registers. */
3553 unsigned lowest_active_reg = NO_LOWEST_ACTIVE_REG;
3554 unsigned highest_active_reg = NO_HIGHEST_ACTIVE_REG;
3555
3556 /* Information on the contents of registers. These are pointers into
3557 the input strings; they record just what was matched (on this
3558 attempt) by a subexpression part of the pattern, that is, the
3559 regnum-th regstart pointer points to where in the pattern we began
3560 matching and the regnum-th regend points to right after where we
3561 stopped matching the regnum-th subexpression. (The zeroth register
3562 keeps track of what the whole pattern matches.) */
3563#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
3564 const char **regstart, **regend;
3565#endif
3566
3567 /* If a group that's operated upon by a repetition operator fails to
3568 match anything, then the register for its start will need to be
3569 restored because it will have been set to wherever in the string we
3570 are when we last see its open-group operator. Similarly for a
3571 register's end. */
3572#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
3573 const char **old_regstart, **old_regend;
3574#endif
3575
3576 /* The is_active field of reg_info helps us keep track of which (possibly
3577 nested) subexpressions we are currently in. The matched_something
3578 field of reg_info[reg_num] helps us tell whether or not we have
3579 matched any of the pattern so far this time through the reg_num-th
3580 subexpression. These two fields get reset each time through any
3581 loop their register is in. */
3582#ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
3583 register_info_type *reg_info;
3584#endif
3585
3586 /* The following record the register info as found in the above
3587 variables when we find a match better than any we've seen before.
3588 This happens as we backtrack through the failure points, which in
3589 turn happens only if we have not yet matched the entire string. */
3590 unsigned best_regs_set = false;
3591#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
3592 const char **best_regstart, **best_regend;
3593#endif
3594
3595 /* Logically, this is `best_regend[0]'. But we don't want to have to
3596 allocate space for that if we're not allocating space for anything
3597 else (see below). Also, we never need info about register 0 for
3598 any of the other register vectors, and it seems rather a kludge to
3599 treat `best_regend' differently than the rest. So we keep track of
3600 the end of the best match so far in a separate variable. We
3601 initialize this to NULL so that when we backtrack the first time
3602 and need to test it, it's not garbage. */
3603 const char *match_end = NULL;
3604
3605 /* This helps SET_REGS_MATCHED avoid doing redundant work. */
3606 int set_regs_matched_done = 0;
3607
3608 /* Used when we pop values we don't care about. */
3609#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
3610 const char **reg_dummy;
3611 register_info_type *reg_info_dummy;
3612#endif
3613
3614#ifdef DEBUG
3615 /* Counts the total number of registers pushed. */
3616 unsigned num_regs_pushed = 0;
3617#endif
3618
3619 DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
3620
3621 INIT_FAIL_STACK ();
3622
3623#ifdef MATCH_MAY_ALLOCATE
3624 /* Do not bother to initialize all the register variables if there are
3625 no groups in the pattern, as it takes a fair amount of time. If
3626 there are groups, we include space for register 0 (the whole
3627 pattern), even though we never use it, since it simplifies the
3628 array indexing. We should fix this. */
3629 if (bufp->re_nsub)
3630 {
3631 regstart = REGEX_TALLOC (num_regs, const char *);
3632 regend = REGEX_TALLOC (num_regs, const char *);
3633 old_regstart = REGEX_TALLOC (num_regs, const char *);
3634 old_regend = REGEX_TALLOC (num_regs, const char *);
3635 best_regstart = REGEX_TALLOC (num_regs, const char *);
3636 best_regend = REGEX_TALLOC (num_regs, const char *);
3637 reg_info = REGEX_TALLOC (num_regs, register_info_type);
3638 reg_dummy = REGEX_TALLOC (num_regs, const char *);
3639 reg_info_dummy = REGEX_TALLOC (num_regs, register_info_type);
3640
3641 if (!(regstart && regend && old_regstart && old_regend && reg_info
3642 && best_regstart && best_regend && reg_dummy && reg_info_dummy))
3643 {
3644 FREE_VARIABLES ();
3645 return -2;
3646 }
3647 }
3648 else
3649 {
3650 /* We must initialize all our variables to NULL, so that
3651 `FREE_VARIABLES' doesn't try to free them. */
3652 regstart = regend = old_regstart = old_regend = best_regstart
3653 = best_regend = reg_dummy = NULL;
3654 reg_info = reg_info_dummy = (register_info_type *) NULL;
3655 }
3656#endif /* MATCH_MAY_ALLOCATE */
3657
3658 /* The starting position is bogus. */
3659 if (pos < 0 || pos > size1 + size2)
3660 {
3661 FREE_VARIABLES ();
3662 return -1;
3663 }
3664
3665 /* Initialize subexpression text positions to -1 to mark ones that no
3666 start_memory/stop_memory has been seen for. Also initialize the
3667 register information struct. */
3668 for (mcnt = 1; mcnt < num_regs; mcnt++)
3669 {
3670 regstart[mcnt] = regend[mcnt]
3671 = old_regstart[mcnt] = old_regend[mcnt] = REG_UNSET_VALUE;
3672
3673 REG_MATCH_NULL_STRING_P (reg_info[mcnt]) = MATCH_NULL_UNSET_VALUE;
3674 IS_ACTIVE (reg_info[mcnt]) = 0;
3675 MATCHED_SOMETHING (reg_info[mcnt]) = 0;
3676 EVER_MATCHED_SOMETHING (reg_info[mcnt]) = 0;
3677 }
3678
3679 /* We move `string1' into `string2' if the latter's empty -- but not if
3680 `string1' is null. */
3681 if (size2 == 0 && string1 != NULL)
3682 {
3683 string2 = string1;
3684 size2 = size1;
3685 string1 = 0;
3686 size1 = 0;
3687 }
3688 end1 = string1 + size1;
3689 end2 = string2 + size2;
3690
3691 /* Compute where to stop matching, within the two strings. */
3692 if (stop <= size1)
3693 {
3694 end_match_1 = string1 + stop;
3695 end_match_2 = string2;
3696 }
3697 else
3698 {
3699 end_match_1 = end1;
3700 end_match_2 = string2 + stop - size1;
3701 }
3702
3703 /* `p' scans through the pattern as `d' scans through the data.
3704 `dend' is the end of the input string that `d' points within. `d'
3705 is advanced into the following input string whenever necessary, but
3706 this happens before fetching; therefore, at the beginning of the
3707 loop, `d' can be pointing at the end of a string, but it cannot
3708 equal `string2'. */
3709 if (size1 > 0 && pos <= size1)
3710 {
3711 d = string1 + pos;
3712 dend = end_match_1;
3713 }
3714 else
3715 {
3716 d = string2 + pos - size1;
3717 dend = end_match_2;
3718 }
3719
3720 DEBUG_PRINT1 ("The compiled pattern is: ");
3721 DEBUG_PRINT_COMPILED_PATTERN (bufp, p, pend);
3722 DEBUG_PRINT1 ("The string to match is: `");
3723 DEBUG_PRINT_DOUBLE_STRING (d, string1, size1, string2, size2);
3724 DEBUG_PRINT1 ("'\n");
3725
3726 /* This loops over pattern commands. It exits by returning from the
3727 function if the match is complete, or it drops through if the match
3728 fails at this starting point in the input data. */
3729 for (;;)
3730 {
3731 DEBUG_PRINT2 ("\n0x%x: ", p);
3732
3733 if (p == pend)
3734 { /* End of pattern means we might have succeeded. */
3735 DEBUG_PRINT1 ("end of pattern ... ");
3736
3737 /* If we haven't matched the entire string, and we want the
3738 longest match, try backtracking. */
3739 if (d != end_match_2)
3740 {
3741 /* 1 if this match ends in the same string (string1 or string2)
3742 as the best previous match. */
3743 boolean same_str_p = (FIRST_STRING_P (match_end)
3744 == MATCHING_IN_FIRST_STRING);
3745 /* 1 if this match is the best seen so far. */
3746 boolean best_match_p;
3747
3748 /* AIX compiler got confused when this was combined
3749 with the previous declaration. */
3750 if (same_str_p)
3751 best_match_p = d > match_end;
3752 else
3753 best_match_p = !MATCHING_IN_FIRST_STRING;
3754
3755 DEBUG_PRINT1 ("backtracking.\n");
3756
3757 if (!FAIL_STACK_EMPTY ())
3758 { /* More failure points to try. */
3759
3760 /* If exceeds best match so far, save it. */
3761 if (!best_regs_set || best_match_p)
3762 {
3763 best_regs_set = true;
3764 match_end = d;
3765
3766 DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
3767
3768 for (mcnt = 1; mcnt < num_regs; mcnt++)
3769 {
3770 best_regstart[mcnt] = regstart[mcnt];
3771 best_regend[mcnt] = regend[mcnt];
3772 }
3773 }
3774 goto fail;
3775 }
3776
3777 /* If no failure points, don't restore garbage. And if
3778 last match is real best match, don't restore second
3779 best one. */
3780 else if (best_regs_set && !best_match_p)
3781 {
3782 restore_best_regs:
3783 /* Restore best match. It may happen that `dend ==
3784 end_match_1' while the restored d is in string2.
3785 For example, the pattern `x.*y.*z' against the
3786 strings `x-' and `y-z-', if the two strings are
3787 not consecutive in memory. */
3788 DEBUG_PRINT1 ("Restoring best registers.\n");
3789
3790 d = match_end;
3791 dend = ((d >= string1 && d <= end1)
3792 ? end_match_1 : end_match_2);
3793
3794 for (mcnt = 1; mcnt < num_regs; mcnt++)
3795 {
3796 regstart[mcnt] = best_regstart[mcnt];
3797 regend[mcnt] = best_regend[mcnt];
3798 }
3799 }
3800 } /* d != end_match_2 */
3801
3802 succeed_label:
3803 DEBUG_PRINT1 ("Accepting match.\n");
3804
3805 /* If caller wants register contents data back, do it. */
3806 if (regs && !bufp->no_sub)
3807 {
3808 /* Have the register data arrays been allocated? */
3809 if (bufp->regs_allocated == REGS_UNALLOCATED)
3810 { /* No. So allocate them with malloc. We need one
3811 extra element beyond `num_regs' for the `-1' marker
3812 GNU code uses. */
3813 regs->num_regs = MAX (RE_NREGS, num_regs + 1);
3814 regs->start = TALLOC (regs->num_regs, regoff_t);
3815 regs->end = TALLOC (regs->num_regs, regoff_t);
3816 if (regs->start == NULL || regs->end == NULL)
3817 {
3818 FREE_VARIABLES ();
3819 return -2;
3820 }
3821 bufp->regs_allocated = REGS_REALLOCATE;
3822 }
3823 else if (bufp->regs_allocated == REGS_REALLOCATE)
3824 { /* Yes. If we need more elements than were already
3825 allocated, reallocate them. If we need fewer, just
3826 leave it alone. */
3827 if (regs->num_regs < num_regs + 1)
3828 {
3829 regs->num_regs = num_regs + 1;
3830 RETALLOC (regs->start, regs->num_regs, regoff_t);
3831 RETALLOC (regs->end, regs->num_regs, regoff_t);
3832 if (regs->start == NULL || regs->end == NULL)
3833 {
3834 FREE_VARIABLES ();
3835 return -2;
3836 }
3837 }
3838 }
3839 else
3840 {
3841 /* These braces fend off a "empty body in an else-statement"
3842 warning under GCC when assert expands to nothing. */
3843 assert (bufp->regs_allocated == REGS_FIXED);
3844 }
3845
3846 /* Convert the pointer data in `regstart' and `regend' to
3847 indices. Register zero has to be set differently,
3848 since we haven't kept track of any info for it. */
3849 if (regs->num_regs > 0)
3850 {
3851 regs->start[0] = pos;
3852 regs->end[0] = (MATCHING_IN_FIRST_STRING
3853 ? ((regoff_t) (d - string1))
3854 : ((regoff_t) (d - string2 + size1)));
3855 }
3856
3857 /* Go through the first `min (num_regs, regs->num_regs)'
3858 registers, since that is all we initialized. */
3859 for (mcnt = 1; mcnt < MIN (num_regs, regs->num_regs); mcnt++)
3860 {
3861 if (REG_UNSET (regstart[mcnt]) || REG_UNSET (regend[mcnt]))
3862 regs->start[mcnt] = regs->end[mcnt] = -1;
3863 else
3864 {
3865 regs->start[mcnt]
3866 = (regoff_t) POINTER_TO_OFFSET (regstart[mcnt]);
3867 regs->end[mcnt]
3868 = (regoff_t) POINTER_TO_OFFSET (regend[mcnt]);
3869 }
3870 }
3871
3872 /* If the regs structure we return has more elements than
3873 were in the pattern, set the extra elements to -1. If
3874 we (re)allocated the registers, this is the case,
3875 because we always allocate enough to have at least one
3876 -1 at the end. */
3877 for (mcnt = num_regs; mcnt < regs->num_regs; mcnt++)
3878 regs->start[mcnt] = regs->end[mcnt] = -1;
3879 } /* regs && !bufp->no_sub */
3880
3881 DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
3882 nfailure_points_pushed, nfailure_points_popped,
3883 nfailure_points_pushed - nfailure_points_popped);
3884 DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed);
3885
3886 mcnt = d - pos - (MATCHING_IN_FIRST_STRING
3887 ? string1
3888 : string2 - size1);
3889
3890 DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt);
3891
3892 FREE_VARIABLES ();
3893 return mcnt;
3894 }
3895
3896 /* Otherwise match next pattern command. */
3897 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
3898 {
3899 /* Ignore these. Used to ignore the n of succeed_n's which
3900 currently have n == 0. */
3901 case no_op:
3902 DEBUG_PRINT1 ("EXECUTING no_op.\n");
3903 break;
3904
3905 case succeed:
3906 DEBUG_PRINT1 ("EXECUTING succeed.\n");
3907 goto succeed_label;
3908
3909 /* Match the next n pattern characters exactly. The following
3910 byte in the pattern defines n, and the n bytes after that
3911 are the characters to match. */
3912 case exactn:
3913 mcnt = *p++;
3914 DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt);
3915
3916 /* This is written out as an if-else so we don't waste time
3917 testing `translate' inside the loop. */
3918 if (translate)
3919 {
3920 do
3921 {
3922 PREFETCH ();
3923 if (translate[(unsigned char) *d++] != (char) *p++)
3924 goto fail;
3925 }
3926 while (--mcnt);
3927 }
3928 else
3929 {
3930 do
3931 {
3932 PREFETCH ();
3933 if (*d++ != (char) *p++) goto fail;
3934 }
3935 while (--mcnt);
3936 }
3937 SET_REGS_MATCHED ();
3938 break;
3939
3940
3941 /* Match any character except possibly a newline or a null. */
3942 case anychar:
3943 DEBUG_PRINT1 ("EXECUTING anychar.\n");
3944
3945 PREFETCH ();
3946
3947 if ((!(bufp->syntax & RE_DOT_NEWLINE) && TRANSLATE (*d) == '\n')
3948 || (bufp->syntax & RE_DOT_NOT_NULL && TRANSLATE (*d) == '\000'))
3949 goto fail;
3950
3951 SET_REGS_MATCHED ();
3952 DEBUG_PRINT2 (" Matched `%d'.\n", *d);
3953 d++;
3954 break;
3955
3956
3957 case charset:
3958 case charset_not:
3959 {
3960 register unsigned char c;
3961 boolean not = (re_opcode_t) *(p - 1) == charset_not;
3962
3963 DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : "");
3964
3965 PREFETCH ();
3966 c = TRANSLATE (*d); /* The character to match. */
3967
3968 /* Cast to `unsigned' instead of `unsigned char' in case the
3969 bit list is a full 32 bytes long. */
3970 if (c < (unsigned) (*p * BYTEWIDTH)
3971 && p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
3972 not = !not;
3973
3974 p += 1 + *p;
3975
3976 if (!not) goto fail;
3977
3978 SET_REGS_MATCHED ();
3979 d++;
3980 break;
3981 }
3982
3983
3984 /* The beginning of a group is represented by start_memory.
3985 The arguments are the register number in the next byte, and the
3986 number of groups inner to this one in the next. The text
3987 matched within the group is recorded (in the internal
3988 registers data structure) under the register number. */
3989 case start_memory:
3990 DEBUG_PRINT3 ("EXECUTING start_memory %d (%d):\n", *p, p[1]);
3991
3992 /* Find out if this group can match the empty string. */
3993 p1 = p; /* To send to group_match_null_string_p. */
3994
3995 if (REG_MATCH_NULL_STRING_P (reg_info[*p]) == MATCH_NULL_UNSET_VALUE)
3996 REG_MATCH_NULL_STRING_P (reg_info[*p])
3997 = group_match_null_string_p (&p1, pend, reg_info);
3998
3999 /* Save the position in the string where we were the last time
4000 we were at this open-group operator in case the group is
4001 operated upon by a repetition operator, e.g., with `(a*)*b'
4002 against `ab'; then we want to ignore where we are now in
4003 the string in case this attempt to match fails. */
4004 old_regstart[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
4005 ? REG_UNSET (regstart[*p]) ? d : regstart[*p]
4006 : regstart[*p];
4007 DEBUG_PRINT2 (" old_regstart: %d\n",
4008 POINTER_TO_OFFSET (old_regstart[*p]));
4009
4010 regstart[*p] = d;
4011 DEBUG_PRINT2 (" regstart: %d\n", POINTER_TO_OFFSET (regstart[*p]));
4012
4013 IS_ACTIVE (reg_info[*p]) = 1;
4014 MATCHED_SOMETHING (reg_info[*p]) = 0;
4015
4016 /* Clear this whenever we change the register activity status. */
4017 set_regs_matched_done = 0;
4018
4019 /* This is the new highest active register. */
4020 highest_active_reg = *p;
4021
4022 /* If nothing was active before, this is the new lowest active
4023 register. */
4024 if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
4025 lowest_active_reg = *p;
4026
4027 /* Move past the register number and inner group count. */
4028 p += 2;
4029 just_past_start_mem = p;
4030
4031 break;
4032
4033
4034 /* The stop_memory opcode represents the end of a group. Its
4035 arguments are the same as start_memory's: the register
4036 number, and the number of inner groups. */
4037 case stop_memory:
4038 DEBUG_PRINT3 ("EXECUTING stop_memory %d (%d):\n", *p, p[1]);
4039
4040 /* We need to save the string position the last time we were at
4041 this close-group operator in case the group is operated
4042 upon by a repetition operator, e.g., with `((a*)*(b*)*)*'
4043 against `aba'; then we want to ignore where we are now in
4044 the string in case this attempt to match fails. */
4045 old_regend[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
4046 ? REG_UNSET (regend[*p]) ? d : regend[*p]
4047 : regend[*p];
4048 DEBUG_PRINT2 (" old_regend: %d\n",
4049 POINTER_TO_OFFSET (old_regend[*p]));
4050
4051 regend[*p] = d;
4052 DEBUG_PRINT2 (" regend: %d\n", POINTER_TO_OFFSET (regend[*p]));
4053
4054 /* This register isn't active anymore. */
4055 IS_ACTIVE (reg_info[*p]) = 0;
4056
4057 /* Clear this whenever we change the register activity status. */
4058 set_regs_matched_done = 0;
4059
4060 /* If this was the only register active, nothing is active
4061 anymore. */
4062 if (lowest_active_reg == highest_active_reg)
4063 {
4064 lowest_active_reg = NO_LOWEST_ACTIVE_REG;
4065 highest_active_reg = NO_HIGHEST_ACTIVE_REG;
4066 }
4067 else
4068 { /* We must scan for the new highest active register, since
4069 it isn't necessarily one less than now: consider
4070 (a(b)c(d(e)f)g). When group 3 ends, after the f), the
4071 new highest active register is 1. */
4072 unsigned char r = *p - 1;
4073 while (r > 0 && !IS_ACTIVE (reg_info[r]))
4074 r--;
4075
4076 /* If we end up at register zero, that means that we saved
4077 the registers as the result of an `on_failure_jump', not
4078 a `start_memory', and we jumped to past the innermost
4079 `stop_memory'. For example, in ((.)*) we save
4080 registers 1 and 2 as a result of the *, but when we pop
4081 back to the second ), we are at the stop_memory 1.
4082 Thus, nothing is active. */
4083 if (r == 0)
4084 {
4085 lowest_active_reg = NO_LOWEST_ACTIVE_REG;
4086 highest_active_reg = NO_HIGHEST_ACTIVE_REG;
4087 }
4088 else
4089 highest_active_reg = r;
4090 }
4091
4092 /* If just failed to match something this time around with a
4093 group that's operated on by a repetition operator, try to
4094 force exit from the ``loop'', and restore the register
4095 information for this group that we had before trying this
4096 last match. */
4097 if ((!MATCHED_SOMETHING (reg_info[*p])
4098 || just_past_start_mem == p - 1)
4099 && (p + 2) < pend)
4100 {
4101 boolean is_a_jump_n = false;
4102
4103 p1 = p + 2;
4104 mcnt = 0;
4105 switch ((re_opcode_t) *p1++)
4106 {
4107 case jump_n:
4108 is_a_jump_n = true;
4109 case pop_failure_jump:
4110 case maybe_pop_jump:
4111 case jump:
4112 case dummy_failure_jump:
4113 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4114 if (is_a_jump_n)
4115 p1 += 2;
4116 break;
4117
4118 default:
4119 /* do nothing */ ;
4120 }
4121 p1 += mcnt;
4122
4123 /* If the next operation is a jump backwards in the pattern
4124 to an on_failure_jump right before the start_memory
4125 corresponding to this stop_memory, exit from the loop
4126 by forcing a failure after pushing on the stack the
4127 on_failure_jump's jump in the pattern, and d. */
4128 if (mcnt < 0 && (re_opcode_t) *p1 == on_failure_jump
4129 && (re_opcode_t) p1[3] == start_memory && p1[4] == *p)
4130 {
4131 /* If this group ever matched anything, then restore
4132 what its registers were before trying this last
4133 failed match, e.g., with `(a*)*b' against `ab' for
4134 regstart[1], and, e.g., with `((a*)*(b*)*)*'
4135 against `aba' for regend[3].
4136
4137 Also restore the registers for inner groups for,
4138 e.g., `((a*)(b*))*' against `aba' (register 3 would
4139 otherwise get trashed). */
4140
4141 if (EVER_MATCHED_SOMETHING (reg_info[*p]))
4142 {
4143 unsigned r;
4144
4145 EVER_MATCHED_SOMETHING (reg_info[*p]) = 0;
4146
4147 /* Restore this and inner groups' (if any) registers. */
4148 for (r = *p; r < *p + *(p + 1); r++)
4149 {
4150 regstart[r] = old_regstart[r];
4151
4152 /* xx why this test? */
4153 if (old_regend[r] >= regstart[r])
4154 regend[r] = old_regend[r];
4155 }
4156 }
4157 p1++;
4158 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4159 PUSH_FAILURE_POINT (p1 + mcnt, d, -2);
4160
4161 goto fail;
4162 }
4163 }
4164
4165 /* Move past the register number and the inner group count. */
4166 p += 2;
4167 break;
4168
4169
4170 /* \<digit> has been turned into a `duplicate' command which is
4171 followed by the numeric value of <digit> as the register number. */
4172 case duplicate:
4173 {
4174 register const char *d2, *dend2;
4175 int regno = *p++; /* Get which register to match against. */
4176 DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno);
4177
4178 /* Can't back reference a group which we've never matched. */
4179 if (REG_UNSET (regstart[regno]) || REG_UNSET (regend[regno]))
4180 goto fail;
4181
4182 /* Where in input to try to start matching. */
4183 d2 = regstart[regno];
4184
4185 /* Where to stop matching; if both the place to start and
4186 the place to stop matching are in the same string, then
4187 set to the place to stop, otherwise, for now have to use
4188 the end of the first string. */
4189
4190 dend2 = ((FIRST_STRING_P (regstart[regno])
4191 == FIRST_STRING_P (regend[regno]))
4192 ? regend[regno] : end_match_1);
4193 for (;;)
4194 {
4195 /* If necessary, advance to next segment in register
4196 contents. */
4197 while (d2 == dend2)
4198 {
4199 if (dend2 == end_match_2) break;
4200 if (dend2 == regend[regno]) break;
4201
4202 /* End of string1 => advance to string2. */
4203 d2 = string2;
4204 dend2 = regend[regno];
4205 }
4206 /* At end of register contents => success */
4207 if (d2 == dend2) break;
4208
4209 /* If necessary, advance to next segment in data. */
4210 PREFETCH ();
4211
4212 /* How many characters left in this segment to match. */
4213 mcnt = dend - d;
4214
4215 /* Want how many consecutive characters we can match in
4216 one shot, so, if necessary, adjust the count. */
4217 if (mcnt > dend2 - d2)
4218 mcnt = dend2 - d2;
4219
4220 /* Compare that many; failure if mismatch, else move
4221 past them. */
4222 if (translate
4223 ? bcmp_translate (d, d2, mcnt, translate)
4224 : bcmp (d, d2, mcnt))
4225 goto fail;
4226 d += mcnt, d2 += mcnt;
4227
4228 /* Do this because we've match some characters. */
4229 SET_REGS_MATCHED ();
4230 }
4231 }
4232 break;
4233
4234
4235 /* begline matches the empty string at the beginning of the string
4236 (unless `not_bol' is set in `bufp'), and, if
4237 `newline_anchor' is set, after newlines. */
4238 case begline:
4239 DEBUG_PRINT1 ("EXECUTING begline.\n");
4240
4241 if (AT_STRINGS_BEG (d))
4242 {
4243 if (!bufp->not_bol) break;
4244 }
4245 else if (d[-1] == '\n' && bufp->newline_anchor)
4246 {
4247 break;
4248 }
4249 /* In all other cases, we fail. */
4250 goto fail;
4251
4252
4253 /* endline is the dual of begline. */
4254 case endline:
4255 DEBUG_PRINT1 ("EXECUTING endline.\n");
4256
4257 if (AT_STRINGS_END (d))
4258 {
4259 if (!bufp->not_eol) break;
4260 }
4261
4262 /* We have to ``prefetch'' the next character. */
4263 else if ((d == end1 ? *string2 : *d) == '\n'
4264 && bufp->newline_anchor)
4265 {
4266 break;
4267 }
4268 goto fail;
4269
4270
4271 /* Match at the very beginning of the data. */
4272 case begbuf:
4273 DEBUG_PRINT1 ("EXECUTING begbuf.\n");
4274 if (AT_STRINGS_BEG (d))
4275 break;
4276 goto fail;
4277
4278
4279 /* Match at the very end of the data. */
4280 case endbuf:
4281 DEBUG_PRINT1 ("EXECUTING endbuf.\n");
4282 if (AT_STRINGS_END (d))
4283 break;
4284 goto fail;
4285
4286
4287 /* on_failure_keep_string_jump is used to optimize `.*\n'. It
4288 pushes NULL as the value for the string on the stack. Then
4289 `pop_failure_point' will keep the current value for the
4290 string, instead of restoring it. To see why, consider
4291 matching `foo\nbar' against `.*\n'. The .* matches the foo;
4292 then the . fails against the \n. But the next thing we want
4293 to do is match the \n against the \n; if we restored the
4294 string value, we would be back at the foo.
4295
4296 Because this is used only in specific cases, we don't need to
4297 check all the things that `on_failure_jump' does, to make
4298 sure the right things get saved on the stack. Hence we don't
4299 share its code. The only reason to push anything on the
4300 stack at all is that otherwise we would have to change
4301 `anychar's code to do something besides goto fail in this
4302 case; that seems worse than this. */
4303 case on_failure_keep_string_jump:
4304 DEBUG_PRINT1 ("EXECUTING on_failure_keep_string_jump");
4305
4306 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4307 DEBUG_PRINT3 (" %d (to 0x%x):\n", mcnt, p + mcnt);
4308
4309 PUSH_FAILURE_POINT (p + mcnt, NULL, -2);
4310 break;
4311
4312
4313 /* Uses of on_failure_jump:
4314
4315 Each alternative starts with an on_failure_jump that points
4316 to the beginning of the next alternative. Each alternative
4317 except the last ends with a jump that in effect jumps past
4318 the rest of the alternatives. (They really jump to the
4319 ending jump of the following alternative, because tensioning
4320 these jumps is a hassle.)
4321
4322 Repeats start with an on_failure_jump that points past both
4323 the repetition text and either the following jump or
4324 pop_failure_jump back to this on_failure_jump. */
4325 case on_failure_jump:
4326 on_failure:
4327 DEBUG_PRINT1 ("EXECUTING on_failure_jump");
4328
4329 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4330 DEBUG_PRINT3 (" %d (to 0x%x)", mcnt, p + mcnt);
4331
4332 /* If this on_failure_jump comes right before a group (i.e.,
4333 the original * applied to a group), save the information
4334 for that group and all inner ones, so that if we fail back
4335 to this point, the group's information will be correct.
4336 For example, in \(a*\)*\1, we need the preceding group,
4337 and in \(\(a*\)b*\)\2, we need the inner group. */
4338
4339 /* We can't use `p' to check ahead because we push
4340 a failure point to `p + mcnt' after we do this. */
4341 p1 = p;
4342
4343 /* We need to skip no_op's before we look for the
4344 start_memory in case this on_failure_jump is happening as
4345 the result of a completed succeed_n, as in \(a\)\{1,3\}b\1
4346 against aba. */
4347 while (p1 < pend && (re_opcode_t) *p1 == no_op)
4348 p1++;
4349
4350 if (p1 < pend && (re_opcode_t) *p1 == start_memory)
4351 {
4352 /* We have a new highest active register now. This will
4353 get reset at the start_memory we are about to get to,
4354 but we will have saved all the registers relevant to
4355 this repetition op, as described above. */
4356 highest_active_reg = *(p1 + 1) + *(p1 + 2);
4357 if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
4358 lowest_active_reg = *(p1 + 1);
4359 }
4360
4361 DEBUG_PRINT1 (":\n");
4362 PUSH_FAILURE_POINT (p + mcnt, d, -2);
4363 break;
4364
4365
4366 /* A smart repeat ends with `maybe_pop_jump'.
4367 We change it to either `pop_failure_jump' or `jump'. */
4368 case maybe_pop_jump:
4369 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4370 DEBUG_PRINT2 ("EXECUTING maybe_pop_jump %d.\n", mcnt);
4371 {
4372 register unsigned char *p2 = p;
4373
4374 /* Compare the beginning of the repeat with what in the
4375 pattern follows its end. If we can establish that there
4376 is nothing that they would both match, i.e., that we
4377 would have to backtrack because of (as in, e.g., `a*a')
4378 then we can change to pop_failure_jump, because we'll
4379 never have to backtrack.
4380
4381 This is not true in the case of alternatives: in
4382 `(a|ab)*' we do need to backtrack to the `ab' alternative
4383 (e.g., if the string was `ab'). But instead of trying to
4384 detect that here, the alternative has put on a dummy
4385 failure point which is what we will end up popping. */
4386
4387 /* Skip over open/close-group commands.
4388 If what follows this loop is a ...+ construct,
4389 look at what begins its body, since we will have to
4390 match at least one of that. */
4391 while (1)
4392 {
4393 if (p2 + 2 < pend
4394 && ((re_opcode_t) *p2 == stop_memory
4395 || (re_opcode_t) *p2 == start_memory))
4396 p2 += 3;
4397 else if (p2 + 6 < pend
4398 && (re_opcode_t) *p2 == dummy_failure_jump)
4399 p2 += 6;
4400 else
4401 break;
4402 }
4403
4404 p1 = p + mcnt;
4405 /* p1[0] ... p1[2] are the `on_failure_jump' corresponding
4406 to the `maybe_finalize_jump' of this case. Examine what
4407 follows. */
4408
4409 /* If we're at the end of the pattern, we can change. */
4410 if (p2 == pend)
4411 {
4412 /* Consider what happens when matching ":\(.*\)"
4413 against ":/". I don't really understand this code
4414 yet. */
4415 p[-3] = (unsigned char) pop_failure_jump;
4416 DEBUG_PRINT1
4417 (" End of pattern: change to `pop_failure_jump'.\n");
4418 }
4419
4420 else if ((re_opcode_t) *p2 == exactn
4421 || (bufp->newline_anchor && (re_opcode_t) *p2 == endline))
4422 {
4423 register unsigned char c
4424 = *p2 == (unsigned char) endline ? '\n' : p2[2];
4425
4426 if ((re_opcode_t) p1[3] == exactn && p1[5] != c)
4427 {
4428 p[-3] = (unsigned char) pop_failure_jump;
4429 DEBUG_PRINT3 (" %c != %c => pop_failure_jump.\n",
4430 c, p1[5]);
4431 }
4432
4433 else if ((re_opcode_t) p1[3] == charset
4434 || (re_opcode_t) p1[3] == charset_not)
4435 {
4436 int not = (re_opcode_t) p1[3] == charset_not;
4437
4438 if (c < (unsigned char) (p1[4] * BYTEWIDTH)
4439 && p1[5 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
4440 not = !not;
4441
4442 /* `not' is equal to 1 if c would match, which means
4443 that we can't change to pop_failure_jump. */
4444 if (!not)
4445 {
4446 p[-3] = (unsigned char) pop_failure_jump;
4447 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
4448 }
4449 }
4450 }
4451 else if ((re_opcode_t) *p2 == charset)
4452 {
4453#ifdef DEBUG
4454 register unsigned char c
4455 = *p2 == (unsigned char) endline ? '\n' : p2[2];
4456#endif
4457
4458 if ((re_opcode_t) p1[3] == exactn
4459 && ! ((int) p2[1] * BYTEWIDTH > (int) p1[4]
4460 && (p2[1 + p1[4] / BYTEWIDTH]
4461 & (1 << (p1[4] % BYTEWIDTH)))))
4462 {
4463 p[-3] = (unsigned char) pop_failure_jump;
4464 DEBUG_PRINT3 (" %c != %c => pop_failure_jump.\n",
4465 c, p1[5]);
4466 }
4467
4468 else if ((re_opcode_t) p1[3] == charset_not)
4469 {
4470 int idx;
4471 /* We win if the charset_not inside the loop
4472 lists every character listed in the charset after. */
4473 for (idx = 0; idx < (int) p2[1]; idx++)
4474 if (! (p2[2 + idx] == 0
4475 || (idx < (int) p1[4]
4476 && ((p2[2 + idx] & ~ p1[5 + idx]) == 0))))
4477 break;
4478
4479 if (idx == p2[1])
4480 {
4481 p[-3] = (unsigned char) pop_failure_jump;
4482 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
4483 }
4484 }
4485 else if ((re_opcode_t) p1[3] == charset)
4486 {
4487 int idx;
4488 /* We win if the charset inside the loop
4489 has no overlap with the one after the loop. */
4490 for (idx = 0;
4491 idx < (int) p2[1] && idx < (int) p1[4];
4492 idx++)
4493 if ((p2[2 + idx] & p1[5 + idx]) != 0)
4494 break;
4495
4496 if (idx == p2[1] || idx == p1[4])
4497 {
4498 p[-3] = (unsigned char) pop_failure_jump;
4499 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
4500 }
4501 }
4502 }
4503 }
4504 p -= 2; /* Point at relative address again. */
4505 if ((re_opcode_t) p[-1] != pop_failure_jump)
4506 {
4507 p[-1] = (unsigned char) jump;
4508 DEBUG_PRINT1 (" Match => jump.\n");
4509 goto unconditional_jump;
4510 }
4511 /* Note fall through. */
4512
4513
4514 /* The end of a simple repeat has a pop_failure_jump back to
4515 its matching on_failure_jump, where the latter will push a
4516 failure point. The pop_failure_jump takes off failure
4517 points put on by this pop_failure_jump's matching
4518 on_failure_jump; we got through the pattern to here from the
4519 matching on_failure_jump, so didn't fail. */
4520 case pop_failure_jump:
4521 {
4522 /* We need to pass separate storage for the lowest and
4523 highest registers, even though we don't care about the
4524 actual values. Otherwise, we will restore only one
4525 register from the stack, since lowest will == highest in
4526 `pop_failure_point'. */
4527 unsigned dummy_low_reg, dummy_high_reg;
4528 unsigned char *pdummy;
4529 const char *sdummy;
4530
4531 DEBUG_PRINT1 ("EXECUTING pop_failure_jump.\n");
4532 POP_FAILURE_POINT (sdummy, pdummy,
4533 dummy_low_reg, dummy_high_reg,
4534 reg_dummy, reg_dummy, reg_info_dummy);
4535 }
4536 /* Note fall through. */
4537
4538
4539 /* Unconditionally jump (without popping any failure points). */
4540 case jump:
4541 unconditional_jump:
4542 EXTRACT_NUMBER_AND_INCR (mcnt, p); /* Get the amount to jump. */
4543 DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt);
4544 p += mcnt; /* Do the jump. */
4545 DEBUG_PRINT2 ("(to 0x%x).\n", p);
4546 break;
4547
4548
4549 /* We need this opcode so we can detect where alternatives end
4550 in `group_match_null_string_p' et al. */
4551 case jump_past_alt:
4552 DEBUG_PRINT1 ("EXECUTING jump_past_alt.\n");
4553 goto unconditional_jump;
4554
4555
4556 /* Normally, the on_failure_jump pushes a failure point, which
4557 then gets popped at pop_failure_jump. We will end up at
4558 pop_failure_jump, also, and with a pattern of, say, `a+', we
4559 are skipping over the on_failure_jump, so we have to push
4560 something meaningless for pop_failure_jump to pop. */
4561 case dummy_failure_jump:
4562 DEBUG_PRINT1 ("EXECUTING dummy_failure_jump.\n");
4563 /* It doesn't matter what we push for the string here. What
4564 the code at `fail' tests is the value for the pattern. */
4565 PUSH_FAILURE_POINT (0, 0, -2);
4566 goto unconditional_jump;
4567
4568
4569 /* At the end of an alternative, we need to push a dummy failure
4570 point in case we are followed by a `pop_failure_jump', because
4571 we don't want the failure point for the alternative to be
4572 popped. For example, matching `(a|ab)*' against `aab'
4573 requires that we match the `ab' alternative. */
4574 case push_dummy_failure:
4575 DEBUG_PRINT1 ("EXECUTING push_dummy_failure.\n");
4576 /* See comments just above at `dummy_failure_jump' about the
4577 two zeroes. */
4578 PUSH_FAILURE_POINT (0, 0, -2);
4579 break;
4580
4581 /* Have to succeed matching what follows at least n times.
4582 After that, handle like `on_failure_jump'. */
4583 case succeed_n:
4584 EXTRACT_NUMBER (mcnt, p + 2);
4585 DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt);
4586
4587 assert (mcnt >= 0);
4588 /* Originally, this is how many times we HAVE to succeed. */
4589 if (mcnt > 0)
4590 {
4591 mcnt--;
4592 p += 2;
4593 STORE_NUMBER_AND_INCR (p, mcnt);
4594 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p, mcnt);
4595 }
4596 else if (mcnt == 0)
4597 {
4598 DEBUG_PRINT2 (" Setting two bytes from 0x%x to no_op.\n", p+2);
4599 p[2] = (unsigned char) no_op;
4600 p[3] = (unsigned char) no_op;
4601 goto on_failure;
4602 }
4603 break;
4604
4605 case jump_n:
4606 EXTRACT_NUMBER (mcnt, p + 2);
4607 DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt);
4608
4609 /* Originally, this is how many times we CAN jump. */
4610 if (mcnt)
4611 {
4612 mcnt--;
4613 STORE_NUMBER (p + 2, mcnt);
4614 goto unconditional_jump;
4615 }
4616 /* If don't have to jump any more, skip over the rest of command. */
4617 else
4618 p += 4;
4619 break;
4620
4621 case set_number_at:
4622 {
4623 DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
4624
4625 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4626 p1 = p + mcnt;
4627 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4628 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p1, mcnt);
4629 STORE_NUMBER (p1, mcnt);
4630 break;
4631 }
4632
4633 case wordbound:
4634 DEBUG_PRINT1 ("EXECUTING wordbound.\n");
4635 if (AT_WORD_BOUNDARY (d))
4636 break;
4637 goto fail;
4638
4639 case notwordbound:
4640 DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
4641 if (AT_WORD_BOUNDARY (d))
4642 goto fail;
4643 break;
4644
4645 case wordbeg:
4646 DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
4647 if (WORDCHAR_P (d) && (AT_STRINGS_BEG (d) || !WORDCHAR_P (d - 1)))
4648 break;
4649 goto fail;
4650
4651 case wordend:
4652 DEBUG_PRINT1 ("EXECUTING wordend.\n");
4653 if (!AT_STRINGS_BEG (d) && WORDCHAR_P (d - 1)
4654 && (!WORDCHAR_P (d) || AT_STRINGS_END (d)))
4655 break;
4656 goto fail;
4657
4658#ifdef emacs
4659 case before_dot:
4660 DEBUG_PRINT1 ("EXECUTING before_dot.\n");
4661 if (PTR_CHAR_POS ((unsigned char *) d) >= point)
4662 goto fail;
4663 break;
4664
4665 case at_dot:
4666 DEBUG_PRINT1 ("EXECUTING at_dot.\n");
4667 if (PTR_CHAR_POS ((unsigned char *) d) != point)
4668 goto fail;
4669 break;
4670
4671 case after_dot:
4672 DEBUG_PRINT1 ("EXECUTING after_dot.\n");
4673 if (PTR_CHAR_POS ((unsigned char *) d) <= point)
4674 goto fail;
4675 break;
4676#if 0 /* not emacs19 */
4677 case at_dot:
4678 DEBUG_PRINT1 ("EXECUTING at_dot.\n");
4679 if (PTR_CHAR_POS ((unsigned char *) d) + 1 != point)
4680 goto fail;
4681 break;
4682#endif /* not emacs19 */
4683
4684 case syntaxspec:
4685 DEBUG_PRINT2 ("EXECUTING syntaxspec %d.\n", mcnt);
4686 mcnt = *p++;
4687 goto matchsyntax;
4688
4689 case wordchar:
4690 DEBUG_PRINT1 ("EXECUTING Emacs wordchar.\n");
4691 mcnt = (int) Sword;
4692 matchsyntax:
4693 PREFETCH ();
4694 /* Can't use *d++ here; SYNTAX may be an unsafe macro. */
4695 d++;
4696 if (SYNTAX (d[-1]) != (enum syntaxcode) mcnt)
4697 goto fail;
4698 SET_REGS_MATCHED ();
4699 break;
4700
4701 case notsyntaxspec:
4702 DEBUG_PRINT2 ("EXECUTING notsyntaxspec %d.\n", mcnt);
4703 mcnt = *p++;
4704 goto matchnotsyntax;
4705
4706 case notwordchar:
4707 DEBUG_PRINT1 ("EXECUTING Emacs notwordchar.\n");
4708 mcnt = (int) Sword;
4709 matchnotsyntax:
4710 PREFETCH ();
4711 /* Can't use *d++ here; SYNTAX may be an unsafe macro. */
4712 d++;
4713 if (SYNTAX (d[-1]) == (enum syntaxcode) mcnt)
4714 goto fail;
4715 SET_REGS_MATCHED ();
4716 break;
4717
4718#else /* not emacs */
4719 case wordchar:
4720 DEBUG_PRINT1 ("EXECUTING non-Emacs wordchar.\n");
4721 PREFETCH ();
4722 if (!WORDCHAR_P (d))
4723 goto fail;
4724 SET_REGS_MATCHED ();
4725 d++;
4726 break;
4727
4728 case notwordchar:
4729 DEBUG_PRINT1 ("EXECUTING non-Emacs notwordchar.\n");
4730 PREFETCH ();
4731 if (WORDCHAR_P (d))
4732 goto fail;
4733 SET_REGS_MATCHED ();
4734 d++;
4735 break;
4736#endif /* not emacs */
4737
4738 default:
4739 abort ();
4740 }
4741 continue; /* Successfully executed one pattern command; keep going. */
4742
4743
4744 /* We goto here if a matching operation fails. */
4745 fail:
4746 if (!FAIL_STACK_EMPTY ())
4747 { /* A restart point is known. Restore to that state. */
4748 DEBUG_PRINT1 ("\nFAIL:\n");
4749 POP_FAILURE_POINT (d, p,
4750 lowest_active_reg, highest_active_reg,
4751 regstart, regend, reg_info);
4752
4753 /* If this failure point is a dummy, try the next one. */
4754 if (!p)
4755 goto fail;
4756
4757 /* If we failed to the end of the pattern, don't examine *p. */
4758 assert (p <= pend);
4759 if (p < pend)
4760 {
4761 boolean is_a_jump_n = false;
4762
4763 /* If failed to a backwards jump that's part of a repetition
4764 loop, need to pop this failure point and use the next one. */
4765 switch ((re_opcode_t) *p)
4766 {
4767 case jump_n:
4768 is_a_jump_n = true;
4769 case maybe_pop_jump:
4770 case pop_failure_jump:
4771 case jump:
4772 p1 = p + 1;
4773 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4774 p1 += mcnt;
4775
4776 if ((is_a_jump_n && (re_opcode_t) *p1 == succeed_n)
4777 || (!is_a_jump_n
4778 && (re_opcode_t) *p1 == on_failure_jump))
4779 goto fail;
4780 break;
4781 default:
4782 /* do nothing */ ;
4783 }
4784 }
4785
4786 if (d >= string1 && d <= end1)
4787 dend = end_match_1;
4788 }
4789 else
4790 break; /* Matching at this starting point really fails. */
4791 } /* for (;;) */
4792
4793 if (best_regs_set)
4794 goto restore_best_regs;
4795
4796 FREE_VARIABLES ();
4797
4798 return -1; /* Failure to match. */
4799} /* re_match_2 */
4800\f
4801/* Subroutine definitions for re_match_2. */
4802
4803
4804/* We are passed P pointing to a register number after a start_memory.
4805
4806 Return true if the pattern up to the corresponding stop_memory can
4807 match the empty string, and false otherwise.
4808
4809 If we find the matching stop_memory, sets P to point to one past its number.
4810 Otherwise, sets P to an undefined byte less than or equal to END.
4811
4812 We don't handle duplicates properly (yet). */
4813
4814static boolean
4815group_match_null_string_p (p, end, reg_info)
4816 unsigned char **p, *end;
4817 register_info_type *reg_info;
4818{
4819 int mcnt;
4820 /* Point to after the args to the start_memory. */
4821 unsigned char *p1 = *p + 2;
4822
4823 while (p1 < end)
4824 {
4825 /* Skip over opcodes that can match nothing, and return true or
4826 false, as appropriate, when we get to one that can't, or to the
4827 matching stop_memory. */
4828
4829 switch ((re_opcode_t) *p1)
4830 {
4831 /* Could be either a loop or a series of alternatives. */
4832 case on_failure_jump:
4833 p1++;
4834 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4835
4836 /* If the next operation is not a jump backwards in the
4837 pattern. */
4838
4839 if (mcnt >= 0)
4840 {
4841 /* Go through the on_failure_jumps of the alternatives,
4842 seeing if any of the alternatives cannot match nothing.
4843 The last alternative starts with only a jump,
4844 whereas the rest start with on_failure_jump and end
4845 with a jump, e.g., here is the pattern for `a|b|c':
4846
4847 /on_failure_jump/0/6/exactn/1/a/jump_past_alt/0/6
4848 /on_failure_jump/0/6/exactn/1/b/jump_past_alt/0/3
4849 /exactn/1/c
4850
4851 So, we have to first go through the first (n-1)
4852 alternatives and then deal with the last one separately. */
4853
4854
4855 /* Deal with the first (n-1) alternatives, which start
4856 with an on_failure_jump (see above) that jumps to right
4857 past a jump_past_alt. */
4858
4859 while ((re_opcode_t) p1[mcnt-3] == jump_past_alt)
4860 {
4861 /* `mcnt' holds how many bytes long the alternative
4862 is, including the ending `jump_past_alt' and
4863 its number. */
4864
4865 if (!alt_match_null_string_p (p1, p1 + mcnt - 3,
4866 reg_info))
4867 return false;
4868
4869 /* Move to right after this alternative, including the
4870 jump_past_alt. */
4871 p1 += mcnt;
4872
4873 /* Break if it's the beginning of an n-th alternative
4874 that doesn't begin with an on_failure_jump. */
4875 if ((re_opcode_t) *p1 != on_failure_jump)
4876 break;
4877
4878 /* Still have to check that it's not an n-th
4879 alternative that starts with an on_failure_jump. */
4880 p1++;
4881 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4882 if ((re_opcode_t) p1[mcnt-3] != jump_past_alt)
4883 {
4884 /* Get to the beginning of the n-th alternative. */
4885 p1 -= 3;
4886 break;
4887 }
4888 }
4889
4890 /* Deal with the last alternative: go back and get number
4891 of the `jump_past_alt' just before it. `mcnt' contains
4892 the length of the alternative. */
4893 EXTRACT_NUMBER (mcnt, p1 - 2);
4894
4895 if (!alt_match_null_string_p (p1, p1 + mcnt, reg_info))
4896 return false;
4897
4898 p1 += mcnt; /* Get past the n-th alternative. */
4899 } /* if mcnt > 0 */
4900 break;
4901
4902
4903 case stop_memory:
4904 assert (p1[1] == **p);
4905 *p = p1 + 2;
4906 return true;
4907
4908
4909 default:
4910 if (!common_op_match_null_string_p (&p1, end, reg_info))
4911 return false;
4912 }
4913 } /* while p1 < end */
4914
4915 return false;
4916} /* group_match_null_string_p */
4917
4918
4919/* Similar to group_match_null_string_p, but doesn't deal with alternatives:
4920 It expects P to be the first byte of a single alternative and END one
4921 byte past the last. The alternative can contain groups. */
4922
4923static boolean
4924alt_match_null_string_p (p, end, reg_info)
4925 unsigned char *p, *end;
4926 register_info_type *reg_info;
4927{
4928 int mcnt;
4929 unsigned char *p1 = p;
4930
4931 while (p1 < end)
4932 {
4933 /* Skip over opcodes that can match nothing, and break when we get
4934 to one that can't. */
4935
4936 switch ((re_opcode_t) *p1)
4937 {
4938 /* It's a loop. */
4939 case on_failure_jump:
4940 p1++;
4941 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4942 p1 += mcnt;
4943 break;
4944
4945 default:
4946 if (!common_op_match_null_string_p (&p1, end, reg_info))
4947 return false;
4948 }
4949 } /* while p1 < end */
4950
4951 return true;
4952} /* alt_match_null_string_p */
4953
4954
4955/* Deals with the ops common to group_match_null_string_p and
4956 alt_match_null_string_p.
4957
4958 Sets P to one after the op and its arguments, if any. */
4959
4960static boolean
4961common_op_match_null_string_p (p, end, reg_info)
4962 unsigned char **p, *end;
4963 register_info_type *reg_info;
4964{
4965 int mcnt;
4966 boolean ret;
4967 int reg_no;
4968 unsigned char *p1 = *p;
4969
4970 switch ((re_opcode_t) *p1++)
4971 {
4972 case no_op:
4973 case begline:
4974 case endline:
4975 case begbuf:
4976 case endbuf:
4977 case wordbeg:
4978 case wordend:
4979 case wordbound:
4980 case notwordbound:
4981#ifdef emacs
4982 case before_dot:
4983 case at_dot:
4984 case after_dot:
4985#endif
4986 break;
4987
4988 case start_memory:
4989 reg_no = *p1;
4990 assert (reg_no > 0 && reg_no <= MAX_REGNUM);
4991 ret = group_match_null_string_p (&p1, end, reg_info);
4992
4993 /* Have to set this here in case we're checking a group which
4994 contains a group and a back reference to it. */
4995
4996 if (REG_MATCH_NULL_STRING_P (reg_info[reg_no]) == MATCH_NULL_UNSET_VALUE)
4997 REG_MATCH_NULL_STRING_P (reg_info[reg_no]) = ret;
4998
4999 if (!ret)
5000 return false;
5001 break;
5002
5003 /* If this is an optimized succeed_n for zero times, make the jump. */
5004 case jump:
5005 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5006 if (mcnt >= 0)
5007 p1 += mcnt;
5008 else
5009 return false;
5010 break;
5011
5012 case succeed_n:
5013 /* Get to the number of times to succeed. */
5014 p1 += 2;
5015 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5016
5017 if (mcnt == 0)
5018 {
5019 p1 -= 4;
5020 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5021 p1 += mcnt;
5022 }
5023 else
5024 return false;
5025 break;
5026
5027 case duplicate:
5028 if (!REG_MATCH_NULL_STRING_P (reg_info[*p1]))
5029 return false;
5030 break;
5031
5032 case set_number_at:
5033 p1 += 4;
5034
5035 default:
5036 /* All other opcodes mean we cannot match the empty string. */
5037 return false;
5038 }
5039
5040 *p = p1;
5041 return true;
5042} /* common_op_match_null_string_p */
5043
5044
5045/* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
5046 bytes; nonzero otherwise. */
5047
5048static int
5049bcmp_translate (s1, s2, len, translate)
5050 unsigned char *s1, *s2;
5051 register int len;
5052 char *translate;
5053{
5054 register unsigned char *p1 = s1, *p2 = s2;
5055 while (len)
5056 {
5057 if (translate[*p1++] != translate[*p2++]) return 1;
5058 len--;
5059 }
5060 return 0;
5061}
5062\f
5063/* Entry points for GNU code. */
5064
5065/* re_compile_pattern is the GNU regular expression compiler: it
5066 compiles PATTERN (of length SIZE) and puts the result in BUFP.
5067 Returns 0 if the pattern was valid, otherwise an error string.
5068
5069 Assumes the `allocated' (and perhaps `buffer') and `translate' fields
5070 are set in BUFP on entry.
5071
5072 We call regex_compile to do the actual compilation. */
5073
5074const char *
5075re_compile_pattern (pattern, length, bufp)
5076 const char *pattern;
5077 int length;
5078 struct re_pattern_buffer *bufp;
5079{
5080 reg_errcode_t ret;
5081
5082 /* GNU code is written to assume at least RE_NREGS registers will be set
5083 (and at least one extra will be -1). */
5084 bufp->regs_allocated = REGS_UNALLOCATED;
5085
5086 /* And GNU code determines whether or not to get register information
5087 by passing null for the REGS argument to re_match, etc., not by
5088 setting no_sub. */
5089 bufp->no_sub = 0;
5090
5091 /* Match anchors at newline. */
5092 bufp->newline_anchor = 1;
5093
5094 ret = regex_compile (pattern, length, re_syntax_options, bufp);
5095
5096 if (!ret)
5097 return NULL;
5098 return gettext (re_error_msgid[(int) ret]);
5099}
5100\f
5101/* Entry points compatible with 4.2 BSD regex library. We don't define
5102 them unless specifically requested. */
5103
5104#ifdef _REGEX_RE_COMP
5105
5106/* BSD has one and only one pattern buffer. */
5107static struct re_pattern_buffer re_comp_buf;
5108
5109char *
5110re_comp (s)
5111 const char *s;
5112{
5113 reg_errcode_t ret;
5114
5115 if (!s)
5116 {
5117 if (!re_comp_buf.buffer)
5118 return gettext ("No previous regular expression");
5119 return 0;
5120 }
5121
5122 if (!re_comp_buf.buffer)
5123 {
5124 re_comp_buf.buffer = (unsigned char *) malloc (200);
5125 if (re_comp_buf.buffer == NULL)
5126 return gettext (re_error_msgid[(int) REG_ESPACE]);
5127 re_comp_buf.allocated = 200;
5128
5129 re_comp_buf.fastmap = (char *) malloc (1 << BYTEWIDTH);
5130 if (re_comp_buf.fastmap == NULL)
5131 return gettext (re_error_msgid[(int) REG_ESPACE]);
5132 }
5133
5134 /* Since `re_exec' always passes NULL for the `regs' argument, we
5135 don't need to initialize the pattern buffer fields which affect it. */
5136
5137 /* Match anchors at newlines. */
5138 re_comp_buf.newline_anchor = 1;
5139
5140 ret = regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf);
5141
5142 if (!ret)
5143 return NULL;
5144
5145 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
5146 return (char *) gettext (re_error_msgid[(int) ret]);
5147}
5148
5149
5150int
5151re_exec (s)
5152 const char *s;
5153{
5154 const int len = strlen (s);
5155 return
5156 0 <= re_search (&re_comp_buf, s, len, 0, len, (struct re_registers *) 0);
5157}
5158#endif /* _REGEX_RE_COMP */
5159\f
5160/* POSIX.2 functions. Don't define these for Emacs. */
5161
5162#ifndef emacs
5163
5164/* regcomp takes a regular expression as a string and compiles it.
5165
5166 PREG is a regex_t *. We do not expect any fields to be initialized,
5167 since POSIX says we shouldn't. Thus, we set
5168
5169 `buffer' to the compiled pattern;
5170 `used' to the length of the compiled pattern;
5171 `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
5172 REG_EXTENDED bit in CFLAGS is set; otherwise, to
5173 RE_SYNTAX_POSIX_BASIC;
5174 `newline_anchor' to REG_NEWLINE being set in CFLAGS;
5175 `fastmap' and `fastmap_accurate' to zero;
5176 `re_nsub' to the number of subexpressions in PATTERN.
5177
5178 PATTERN is the address of the pattern string.
5179
5180 CFLAGS is a series of bits which affect compilation.
5181
5182 If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
5183 use POSIX basic syntax.
5184
5185 If REG_NEWLINE is set, then . and [^...] don't match newline.
5186 Also, regexec will try a match beginning after every newline.
5187
5188 If REG_ICASE is set, then we considers upper- and lowercase
5189 versions of letters to be equivalent when matching.
5190
5191 If REG_NOSUB is set, then when PREG is passed to regexec, that
5192 routine will report only success or failure, and nothing about the
5193 registers.
5194
5195 It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for
5196 the return codes and their meanings.) */
5197
5198int
5199regcomp (preg, pattern, cflags)
5200 regex_t *preg;
5201 const char *pattern;
5202 int cflags;
5203{
5204 reg_errcode_t ret;
5205 unsigned syntax
5206 = (cflags & REG_EXTENDED) ?
5207 RE_SYNTAX_POSIX_EXTENDED : RE_SYNTAX_POSIX_BASIC;
5208
5209 /* regex_compile will allocate the space for the compiled pattern. */
5210 preg->buffer = 0;
5211 preg->allocated = 0;
5212 preg->used = 0;
5213
5214 /* Don't bother to use a fastmap when searching. This simplifies the
5215 REG_NEWLINE case: if we used a fastmap, we'd have to put all the
5216 characters after newlines into the fastmap. This way, we just try
5217 every character. */
5218 preg->fastmap = 0;
5219
5220 if (cflags & REG_ICASE)
5221 {
5222 unsigned i;
5223
5224 preg->translate = (char *) malloc (CHAR_SET_SIZE);
5225 if (preg->translate == NULL)
5226 return (int) REG_ESPACE;
5227
5228 /* Map uppercase characters to corresponding lowercase ones. */
5229 for (i = 0; i < CHAR_SET_SIZE; i++)
5230 preg->translate[i] = ISUPPER (i) ? tolower (i) : i;
5231 }
5232 else
5233 preg->translate = NULL;
5234
5235 /* If REG_NEWLINE is set, newlines are treated differently. */
5236 if (cflags & REG_NEWLINE)
5237 { /* REG_NEWLINE implies neither . nor [^...] match newline. */
5238 syntax &= ~RE_DOT_NEWLINE;
5239 syntax |= RE_HAT_LISTS_NOT_NEWLINE;
5240 /* It also changes the matching behavior. */
5241 preg->newline_anchor = 1;
5242 }
5243 else
5244 preg->newline_anchor = 0;
5245
5246 preg->no_sub = !!(cflags & REG_NOSUB);
5247
5248 /* POSIX says a null character in the pattern terminates it, so we
5249 can use strlen here in compiling the pattern. */
5250 ret = regex_compile (pattern, strlen (pattern), syntax, preg);
5251
5252 /* POSIX doesn't distinguish between an unmatched open-group and an
5253 unmatched close-group: both are REG_EPAREN. */
5254 if (ret == REG_ERPAREN) ret = REG_EPAREN;
5255
5256 return (int) ret;
5257}
5258
5259
5260/* regexec searches for a given pattern, specified by PREG, in the
5261 string STRING.
5262
5263 If NMATCH is zero or REG_NOSUB was set in the cflags argument to
5264 `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at
5265 least NMATCH elements, and we set them to the offsets of the
5266 corresponding matched substrings.
5267
5268 EFLAGS specifies `execution flags' which affect matching: if
5269 REG_NOTBOL is set, then ^ does not match at the beginning of the
5270 string; if REG_NOTEOL is set, then $ does not match at the end.
5271
5272 We return 0 if we find a match and REG_NOMATCH if not. */
5273
5274int
5275regexec (preg, string, nmatch, pmatch, eflags)
5276 const regex_t *preg;
5277 const char *string;
5278 size_t nmatch;
5279 regmatch_t pmatch[];
5280 int eflags;
5281{
5282 int ret;
5283 struct re_registers regs;
5284 regex_t private_preg;
5285 int len = strlen (string);
5286 boolean want_reg_info = !preg->no_sub && nmatch > 0;
5287
5288 private_preg = *preg;
5289
5290 private_preg.not_bol = !!(eflags & REG_NOTBOL);
5291 private_preg.not_eol = !!(eflags & REG_NOTEOL);
5292
5293 /* The user has told us exactly how many registers to return
5294 information about, via `nmatch'. We have to pass that on to the
5295 matching routines. */
5296 private_preg.regs_allocated = REGS_FIXED;
5297
5298 if (want_reg_info)
5299 {
5300 regs.num_regs = nmatch;
5301 regs.start = TALLOC (nmatch, regoff_t);
5302 regs.end = TALLOC (nmatch, regoff_t);
5303 if (regs.start == NULL || regs.end == NULL)
5304 return (int) REG_NOMATCH;
5305 }
5306
5307 /* Perform the searching operation. */
5308 ret = re_search (&private_preg, string, len,
5309 /* start: */ 0, /* range: */ len,
5310 want_reg_info ? &regs : (struct re_registers *) 0);
5311
5312 /* Copy the register information to the POSIX structure. */
5313 if (want_reg_info)
5314 {
5315 if (ret >= 0)
5316 {
5317 unsigned r;
5318
5319 for (r = 0; r < nmatch; r++)
5320 {
5321 pmatch[r].rm_so = regs.start[r];
5322 pmatch[r].rm_eo = regs.end[r];
5323 }
5324 }
5325
5326 /* If we needed the temporary register info, free the space now. */
5327 free (regs.start);
5328 free (regs.end);
5329 }
5330
5331 /* We want zero return to mean success, unlike `re_search'. */
5332 return ret >= 0 ? (int) REG_NOERROR : (int) REG_NOMATCH;
5333}
5334
5335
5336/* Returns a message corresponding to an error code, ERRCODE, returned
5337 from either regcomp or regexec. We don't use PREG here. */
5338
5339size_t
5340regerror (errcode, preg, errbuf, errbuf_size)
5341 int errcode;
5342 const regex_t *preg;
5343 char *errbuf;
5344 size_t errbuf_size;
5345{
5346 const char *msg;
5347 size_t msg_size;
5348
5349 if (errcode < 0
5350 || errcode >= (sizeof (re_error_msgid) / sizeof (re_error_msgid[0])))
5351 /* Only error codes returned by the rest of the code should be passed
5352 to this routine. If we are given anything else, or if other regex
5353 code generates an invalid error code, then the program has a bug.
5354 Dump core so we can fix it. */
5355 abort ();
5356
5357 msg = gettext (re_error_msgid[errcode]);
5358
5359 msg_size = strlen (msg) + 1; /* Includes the null. */
5360
5361 if (errbuf_size != 0)
5362 {
5363 if (msg_size > errbuf_size)
5364 {
5365 strncpy (errbuf, msg, errbuf_size - 1);
5366 errbuf[errbuf_size - 1] = 0;
5367 }
5368 else
5369 strcpy (errbuf, msg);
5370 }
5371
5372 return msg_size;
5373}
5374
5375
5376/* Free dynamically allocated space used by PREG. */
5377
5378void
5379regfree (preg)
5380 regex_t *preg;
5381{
5382 if (preg->buffer != NULL)
5383 free (preg->buffer);
5384 preg->buffer = NULL;
5385
5386 preg->allocated = 0;
5387 preg->used = 0;
5388
5389 if (preg->fastmap != NULL)
5390 free (preg->fastmap);
5391 preg->fastmap = NULL;
5392 preg->fastmap_accurate = 0;
5393
5394 if (preg->translate != NULL)
5395 free (preg->translate);
5396 preg->translate = NULL;
5397}
5398
5399#endif /* not emacs */
5400\f
5401/*
5402Local variables:
5403make-backup-files: t
5404version-control: t
5405trim-versions-without-asking: nil
5406End:
5407*/