* custom.el (customize-mark-to-save, customize-mark-as-set): Load
[bpt/emacs.git] / src / regex.c
CommitLineData
e318085a 1/* Extended regular expression matching and search library, version
0b32bf0e 2 0.12. (Implements POSIX draft P1003.2/D11.2, except for some of the
bc78d348
KB
3 internationalization features.)
4
0b5538bd 5 Copyright (C) 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
1cee1e27 6 2002, 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
bc78d348 7
fa9a63c5
RM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
25fe55af 15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
fa9a63c5
RM
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
4fc5845f 20 Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
25fe55af 21 USA. */
fa9a63c5 22
6df42991 23/* TODO:
505bde11 24 - structure the opcode space into opcode+flag.
dc1e502d 25 - merge with glibc's regex.[ch].
01618498 26 - replace (succeed_n + jump_n + set_number_at) with something that doesn't
6dcf2d0e
SM
27 need to modify the compiled regexp so that re_match can be reentrant.
28 - get rid of on_failure_jump_smart by doing the optimization in re_comp
29 rather than at run-time, so that re_match can be reentrant.
01618498 30*/
505bde11 31
fa9a63c5 32/* AIX requires this to be the first thing in the file. */
0b32bf0e 33#if defined _AIX && !defined REGEX_MALLOC
fa9a63c5
RM
34 #pragma alloca
35#endif
36
fa9a63c5 37#ifdef HAVE_CONFIG_H
0b32bf0e 38# include <config.h>
fa9a63c5
RM
39#endif
40
4bb91c68
SM
41#if defined STDC_HEADERS && !defined emacs
42# include <stddef.h>
43#else
44/* We need this for `regex.h', and perhaps for the Emacs include files. */
45# include <sys/types.h>
46#endif
fa9a63c5 47
14473664
SM
48/* Whether to use ISO C Amendment 1 wide char functions.
49 Those should not be used for Emacs since it uses its own. */
5e5388f6
GM
50#if defined _LIBC
51#define WIDE_CHAR_SUPPORT 1
52#else
14473664 53#define WIDE_CHAR_SUPPORT \
5e5388f6
GM
54 (HAVE_WCTYPE_H && HAVE_WCHAR_H && HAVE_BTOWC && !emacs)
55#endif
14473664
SM
56
57/* For platform which support the ISO C amendement 1 functionality we
58 support user defined character classes. */
a0ad02f7 59#if WIDE_CHAR_SUPPORT
14473664
SM
60/* Solaris 2.5 has a bug: <wchar.h> must be included before <wctype.h>. */
61# include <wchar.h>
62# include <wctype.h>
63#endif
64
c0f9ea08
SM
65#ifdef _LIBC
66/* We have to keep the namespace clean. */
67# define regfree(preg) __regfree (preg)
68# define regexec(pr, st, nm, pm, ef) __regexec (pr, st, nm, pm, ef)
69# define regcomp(preg, pattern, cflags) __regcomp (preg, pattern, cflags)
70# define regerror(errcode, preg, errbuf, errbuf_size) \
71 __regerror(errcode, preg, errbuf, errbuf_size)
72# define re_set_registers(bu, re, nu, st, en) \
73 __re_set_registers (bu, re, nu, st, en)
74# define re_match_2(bufp, string1, size1, string2, size2, pos, regs, stop) \
75 __re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
76# define re_match(bufp, string, size, pos, regs) \
77 __re_match (bufp, string, size, pos, regs)
78# define re_search(bufp, string, size, startpos, range, regs) \
79 __re_search (bufp, string, size, startpos, range, regs)
80# define re_compile_pattern(pattern, length, bufp) \
81 __re_compile_pattern (pattern, length, bufp)
82# define re_set_syntax(syntax) __re_set_syntax (syntax)
83# define re_search_2(bufp, st1, s1, st2, s2, startpos, range, regs, stop) \
84 __re_search_2 (bufp, st1, s1, st2, s2, startpos, range, regs, stop)
85# define re_compile_fastmap(bufp) __re_compile_fastmap (bufp)
86
14473664
SM
87/* Make sure we call libc's function even if the user overrides them. */
88# define btowc __btowc
89# define iswctype __iswctype
90# define wctype __wctype
91
c0f9ea08
SM
92# define WEAK_ALIAS(a,b) weak_alias (a, b)
93
94/* We are also using some library internals. */
95# include <locale/localeinfo.h>
96# include <locale/elem-hash.h>
97# include <langinfo.h>
98#else
99# define WEAK_ALIAS(a,b)
100#endif
101
4bb91c68 102/* This is for other GNU distributions with internationalized messages. */
0b32bf0e 103#if HAVE_LIBINTL_H || defined _LIBC
fa9a63c5
RM
104# include <libintl.h>
105#else
106# define gettext(msgid) (msgid)
107#endif
108
5e69f11e
RM
109#ifndef gettext_noop
110/* This define is so xgettext can find the internationalizable
111 strings. */
0b32bf0e 112# define gettext_noop(String) String
5e69f11e
RM
113#endif
114
fa9a63c5
RM
115/* The `emacs' switch turns on certain matching commands
116 that make sense only in Emacs. */
117#ifdef emacs
118
0b32bf0e
SM
119# include "lisp.h"
120# include "buffer.h"
b18215fc
RS
121
122/* Make syntax table lookup grant data in gl_state. */
0b32bf0e 123# define SYNTAX_ENTRY_VIA_PROPERTY
b18215fc 124
0b32bf0e
SM
125# include "syntax.h"
126# include "charset.h"
127# include "category.h"
fa9a63c5 128
7689ef0b
EZ
129# ifdef malloc
130# undef malloc
131# endif
0b32bf0e 132# define malloc xmalloc
7689ef0b
EZ
133# ifdef realloc
134# undef realloc
135# endif
0b32bf0e 136# define realloc xrealloc
7689ef0b
EZ
137# ifdef free
138# undef free
139# endif
0b32bf0e 140# define free xfree
9abbd165 141
0b32bf0e
SM
142/* Converts the pointer to the char to BEG-based offset from the start. */
143# define PTR_TO_OFFSET(d) POS_AS_IN_BUFFER (POINTER_TO_OFFSET (d))
144# define POS_AS_IN_BUFFER(p) ((p) + (NILP (re_match_object) || BUFFERP (re_match_object)))
145
146# define RE_MULTIBYTE_P(bufp) ((bufp)->multibyte)
147# define RE_STRING_CHAR(p, s) \
4e8a9132 148 (multibyte ? (STRING_CHAR (p, s)) : (*(p)))
0b32bf0e 149# define RE_STRING_CHAR_AND_LENGTH(p, s, len) \
2d1675e4
SM
150 (multibyte ? (STRING_CHAR_AND_LENGTH (p, s, len)) : ((len) = 1, *(p)))
151
152/* Set C a (possibly multibyte) character before P. P points into a
153 string which is the virtual concatenation of STR1 (which ends at
154 END1) or STR2 (which ends at END2). */
0b32bf0e 155# define GET_CHAR_BEFORE_2(c, p, str1, end1, str2, end2) \
2d1675e4
SM
156 do { \
157 if (multibyte) \
158 { \
0b32bf0e
SM
159 re_char *dtemp = (p) == (str2) ? (end1) : (p); \
160 re_char *dlimit = ((p) > (str2) && (p) <= (end2)) ? (str2) : (str1); \
70806df6
KH
161 re_char *d0 = dtemp; \
162 PREV_CHAR_BOUNDARY (d0, dlimit); \
163 c = STRING_CHAR (d0, dtemp - d0); \
2d1675e4
SM
164 } \
165 else \
166 (c = ((p) == (str2) ? (end1) : (p))[-1]); \
167 } while (0)
168
4e8a9132 169
fa9a63c5
RM
170#else /* not emacs */
171
172/* If we are not linking with Emacs proper,
173 we can't use the relocating allocator
174 even if config.h says that we can. */
0b32bf0e 175# undef REL_ALLOC
fa9a63c5 176
0b32bf0e
SM
177# if defined STDC_HEADERS || defined _LIBC
178# include <stdlib.h>
179# else
fa9a63c5
RM
180char *malloc ();
181char *realloc ();
0b32bf0e 182# endif
fa9a63c5 183
9e4ecb26 184/* When used in Emacs's lib-src, we need to get bzero and bcopy somehow.
4bb91c68 185 If nothing else has been done, use the method below. */
0b32bf0e
SM
186# ifdef INHIBIT_STRING_HEADER
187# if !(defined HAVE_BZERO && defined HAVE_BCOPY)
188# if !defined bzero && !defined bcopy
189# undef INHIBIT_STRING_HEADER
190# endif
191# endif
192# endif
9e4ecb26 193
4bb91c68 194/* This is the normal way of making sure we have memcpy, memcmp and bzero.
9e4ecb26
KH
195 This is used in most programs--a few other programs avoid this
196 by defining INHIBIT_STRING_HEADER. */
0b32bf0e
SM
197# ifndef INHIBIT_STRING_HEADER
198# if defined HAVE_STRING_H || defined STDC_HEADERS || defined _LIBC
199# include <string.h>
0b32bf0e 200# ifndef bzero
4bb91c68
SM
201# ifndef _LIBC
202# define bzero(s, n) (memset (s, '\0', n), (s))
203# else
204# define bzero(s, n) __bzero (s, n)
205# endif
0b32bf0e
SM
206# endif
207# else
208# include <strings.h>
4bb91c68
SM
209# ifndef memcmp
210# define memcmp(s1, s2, n) bcmp (s1, s2, n)
211# endif
212# ifndef memcpy
213# define memcpy(d, s, n) (bcopy (s, d, n), (d))
214# endif
0b32bf0e
SM
215# endif
216# endif
fa9a63c5
RM
217
218/* Define the syntax stuff for \<, \>, etc. */
219
990b2375 220/* Sword must be nonzero for the wordchar pattern commands in re_match_2. */
669fa600 221enum syntaxcode { Swhitespace = 0, Sword = 1, Ssymbol = 2 };
fa9a63c5 222
0b32bf0e
SM
223# ifdef SWITCH_ENUM_BUG
224# define SWITCH_ENUM_CAST(x) ((int)(x))
225# else
226# define SWITCH_ENUM_CAST(x) (x)
227# endif
fa9a63c5 228
e934739e 229/* Dummy macros for non-Emacs environments. */
0b32bf0e
SM
230# define BASE_LEADING_CODE_P(c) (0)
231# define CHAR_CHARSET(c) 0
232# define CHARSET_LEADING_CODE_BASE(c) 0
233# define MAX_MULTIBYTE_LENGTH 1
234# define RE_MULTIBYTE_P(x) 0
235# define WORD_BOUNDARY_P(c1, c2) (0)
236# define CHAR_HEAD_P(p) (1)
237# define SINGLE_BYTE_CHAR_P(c) (1)
238# define SAME_CHARSET_P(c1, c2) (1)
239# define MULTIBYTE_FORM_LENGTH(p, s) (1)
70806df6 240# define PREV_CHAR_BOUNDARY(p, limit) ((p)--)
0b32bf0e
SM
241# define STRING_CHAR(p, s) (*(p))
242# define RE_STRING_CHAR STRING_CHAR
243# define CHAR_STRING(c, s) (*(s) = (c), 1)
244# define STRING_CHAR_AND_LENGTH(p, s, actual_len) ((actual_len) = 1, *(p))
245# define RE_STRING_CHAR_AND_LENGTH STRING_CHAR_AND_LENGTH
246# define GET_CHAR_BEFORE_2(c, p, str1, end1, str2, end2) \
b18215fc 247 (c = ((p) == (str2) ? *((end1) - 1) : *((p) - 1)))
0b32bf0e 248# define MAKE_CHAR(charset, c1, c2) (c1)
fa9a63c5 249#endif /* not emacs */
4e8a9132
SM
250
251#ifndef RE_TRANSLATE
0b32bf0e
SM
252# define RE_TRANSLATE(TBL, C) ((unsigned char)(TBL)[C])
253# define RE_TRANSLATE_P(TBL) (TBL)
4e8a9132 254#endif
fa9a63c5
RM
255\f
256/* Get the interface, including the syntax bits. */
257#include "regex.h"
258
f71b19b6
DL
259/* isalpha etc. are used for the character classes. */
260#include <ctype.h>
fa9a63c5 261
f71b19b6 262#ifdef emacs
fa9a63c5 263
f71b19b6 264/* 1 if C is an ASCII character. */
0b32bf0e 265# define IS_REAL_ASCII(c) ((c) < 0200)
fa9a63c5 266
f71b19b6 267/* 1 if C is a unibyte character. */
0b32bf0e 268# define ISUNIBYTE(c) (SINGLE_BYTE_CHAR_P ((c)))
96cc36cc 269
f71b19b6 270/* The Emacs definitions should not be directly affected by locales. */
96cc36cc 271
f71b19b6 272/* In Emacs, these are only used for single-byte characters. */
0b32bf0e
SM
273# define ISDIGIT(c) ((c) >= '0' && (c) <= '9')
274# define ISCNTRL(c) ((c) < ' ')
275# define ISXDIGIT(c) (((c) >= '0' && (c) <= '9') \
f71b19b6
DL
276 || ((c) >= 'a' && (c) <= 'f') \
277 || ((c) >= 'A' && (c) <= 'F'))
96cc36cc
RS
278
279/* This is only used for single-byte characters. */
0b32bf0e 280# define ISBLANK(c) ((c) == ' ' || (c) == '\t')
96cc36cc
RS
281
282/* The rest must handle multibyte characters. */
283
0b32bf0e 284# define ISGRAPH(c) (SINGLE_BYTE_CHAR_P (c) \
f71b19b6 285 ? (c) > ' ' && !((c) >= 0177 && (c) <= 0237) \
96cc36cc
RS
286 : 1)
287
14473664 288# define ISPRINT(c) (SINGLE_BYTE_CHAR_P (c) \
f71b19b6 289 ? (c) >= ' ' && !((c) >= 0177 && (c) <= 0237) \
96cc36cc
RS
290 : 1)
291
0b32bf0e 292# define ISALNUM(c) (IS_REAL_ASCII (c) \
f71b19b6
DL
293 ? (((c) >= 'a' && (c) <= 'z') \
294 || ((c) >= 'A' && (c) <= 'Z') \
295 || ((c) >= '0' && (c) <= '9')) \
96cc36cc
RS
296 : SYNTAX (c) == Sword)
297
0b32bf0e 298# define ISALPHA(c) (IS_REAL_ASCII (c) \
f71b19b6
DL
299 ? (((c) >= 'a' && (c) <= 'z') \
300 || ((c) >= 'A' && (c) <= 'Z')) \
96cc36cc
RS
301 : SYNTAX (c) == Sword)
302
0b32bf0e 303# define ISLOWER(c) (LOWERCASEP (c))
96cc36cc 304
0b32bf0e 305# define ISPUNCT(c) (IS_REAL_ASCII (c) \
f71b19b6
DL
306 ? ((c) > ' ' && (c) < 0177 \
307 && !(((c) >= 'a' && (c) <= 'z') \
4bb91c68
SM
308 || ((c) >= 'A' && (c) <= 'Z') \
309 || ((c) >= '0' && (c) <= '9'))) \
96cc36cc
RS
310 : SYNTAX (c) != Sword)
311
0b32bf0e 312# define ISSPACE(c) (SYNTAX (c) == Swhitespace)
96cc36cc 313
0b32bf0e 314# define ISUPPER(c) (UPPERCASEP (c))
96cc36cc 315
0b32bf0e 316# define ISWORD(c) (SYNTAX (c) == Sword)
96cc36cc
RS
317
318#else /* not emacs */
319
f71b19b6
DL
320/* Jim Meyering writes:
321
322 "... Some ctype macros are valid only for character codes that
323 isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when
324 using /bin/cc or gcc but without giving an ansi option). So, all
4bb91c68 325 ctype uses should be through macros like ISPRINT... If
f71b19b6
DL
326 STDC_HEADERS is defined, then autoconf has verified that the ctype
327 macros don't need to be guarded with references to isascii. ...
328 Defining isascii to 1 should let any compiler worth its salt
4bb91c68
SM
329 eliminate the && through constant folding."
330 Solaris defines some of these symbols so we must undefine them first. */
f71b19b6 331
4bb91c68 332# undef ISASCII
0b32bf0e
SM
333# if defined STDC_HEADERS || (!defined isascii && !defined HAVE_ISASCII)
334# define ISASCII(c) 1
335# else
336# define ISASCII(c) isascii(c)
337# endif
f71b19b6
DL
338
339/* 1 if C is an ASCII character. */
0b32bf0e 340# define IS_REAL_ASCII(c) ((c) < 0200)
f71b19b6
DL
341
342/* This distinction is not meaningful, except in Emacs. */
0b32bf0e
SM
343# define ISUNIBYTE(c) 1
344
345# ifdef isblank
346# define ISBLANK(c) (ISASCII (c) && isblank (c))
347# else
348# define ISBLANK(c) ((c) == ' ' || (c) == '\t')
349# endif
350# ifdef isgraph
351# define ISGRAPH(c) (ISASCII (c) && isgraph (c))
352# else
353# define ISGRAPH(c) (ISASCII (c) && isprint (c) && !isspace (c))
354# endif
355
4bb91c68 356# undef ISPRINT
0b32bf0e
SM
357# define ISPRINT(c) (ISASCII (c) && isprint (c))
358# define ISDIGIT(c) (ISASCII (c) && isdigit (c))
359# define ISALNUM(c) (ISASCII (c) && isalnum (c))
360# define ISALPHA(c) (ISASCII (c) && isalpha (c))
361# define ISCNTRL(c) (ISASCII (c) && iscntrl (c))
362# define ISLOWER(c) (ISASCII (c) && islower (c))
363# define ISPUNCT(c) (ISASCII (c) && ispunct (c))
364# define ISSPACE(c) (ISASCII (c) && isspace (c))
365# define ISUPPER(c) (ISASCII (c) && isupper (c))
366# define ISXDIGIT(c) (ISASCII (c) && isxdigit (c))
367
368# define ISWORD(c) ISALPHA(c)
369
4bb91c68
SM
370# ifdef _tolower
371# define TOLOWER(c) _tolower(c)
372# else
373# define TOLOWER(c) tolower(c)
374# endif
375
376/* How many characters in the character set. */
377# define CHAR_SET_SIZE 256
378
0b32bf0e 379# ifdef SYNTAX_TABLE
f71b19b6 380
0b32bf0e 381extern char *re_syntax_table;
f71b19b6 382
0b32bf0e
SM
383# else /* not SYNTAX_TABLE */
384
0b32bf0e
SM
385static char re_syntax_table[CHAR_SET_SIZE];
386
387static void
388init_syntax_once ()
389{
390 register int c;
391 static int done = 0;
392
393 if (done)
394 return;
395
396 bzero (re_syntax_table, sizeof re_syntax_table);
397
4bb91c68
SM
398 for (c = 0; c < CHAR_SET_SIZE; ++c)
399 if (ISALNUM (c))
400 re_syntax_table[c] = Sword;
fa9a63c5 401
669fa600 402 re_syntax_table['_'] = Ssymbol;
fa9a63c5 403
0b32bf0e
SM
404 done = 1;
405}
406
407# endif /* not SYNTAX_TABLE */
96cc36cc 408
4bb91c68
SM
409# define SYNTAX(c) re_syntax_table[(c)]
410
96cc36cc
RS
411#endif /* not emacs */
412\f
fa9a63c5 413#ifndef NULL
0b32bf0e 414# define NULL (void *)0
fa9a63c5
RM
415#endif
416
417/* We remove any previous definition of `SIGN_EXTEND_CHAR',
418 since ours (we hope) works properly with all combinations of
419 machines, compilers, `char' and `unsigned char' argument types.
4bb91c68 420 (Per Bothner suggested the basic approach.) */
fa9a63c5
RM
421#undef SIGN_EXTEND_CHAR
422#if __STDC__
0b32bf0e 423# define SIGN_EXTEND_CHAR(c) ((signed char) (c))
fa9a63c5
RM
424#else /* not __STDC__ */
425/* As in Harbison and Steele. */
0b32bf0e 426# define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
fa9a63c5
RM
427#endif
428\f
429/* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we
430 use `alloca' instead of `malloc'. This is because using malloc in
431 re_search* or re_match* could cause memory leaks when C-g is used in
432 Emacs; also, malloc is slower and causes storage fragmentation. On
5e69f11e
RM
433 the other hand, malloc is more portable, and easier to debug.
434
fa9a63c5
RM
435 Because we sometimes use alloca, some routines have to be macros,
436 not functions -- `alloca'-allocated space disappears at the end of the
437 function it is called in. */
438
439#ifdef REGEX_MALLOC
440
0b32bf0e
SM
441# define REGEX_ALLOCATE malloc
442# define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
443# define REGEX_FREE free
fa9a63c5
RM
444
445#else /* not REGEX_MALLOC */
446
447/* Emacs already defines alloca, sometimes. */
0b32bf0e 448# ifndef alloca
fa9a63c5
RM
449
450/* Make alloca work the best possible way. */
0b32bf0e
SM
451# ifdef __GNUC__
452# define alloca __builtin_alloca
453# else /* not __GNUC__ */
454# if HAVE_ALLOCA_H
455# include <alloca.h>
456# endif /* HAVE_ALLOCA_H */
457# endif /* not __GNUC__ */
fa9a63c5 458
0b32bf0e 459# endif /* not alloca */
fa9a63c5 460
0b32bf0e 461# define REGEX_ALLOCATE alloca
fa9a63c5
RM
462
463/* Assumes a `char *destination' variable. */
0b32bf0e 464# define REGEX_REALLOCATE(source, osize, nsize) \
fa9a63c5 465 (destination = (char *) alloca (nsize), \
4bb91c68 466 memcpy (destination, source, osize))
fa9a63c5
RM
467
468/* No need to do anything to free, after alloca. */
0b32bf0e 469# define REGEX_FREE(arg) ((void)0) /* Do nothing! But inhibit gcc warning. */
fa9a63c5
RM
470
471#endif /* not REGEX_MALLOC */
472
473/* Define how to allocate the failure stack. */
474
0b32bf0e 475#if defined REL_ALLOC && defined REGEX_MALLOC
4297555e 476
0b32bf0e 477# define REGEX_ALLOCATE_STACK(size) \
fa9a63c5 478 r_alloc (&failure_stack_ptr, (size))
0b32bf0e 479# define REGEX_REALLOCATE_STACK(source, osize, nsize) \
fa9a63c5 480 r_re_alloc (&failure_stack_ptr, (nsize))
0b32bf0e 481# define REGEX_FREE_STACK(ptr) \
fa9a63c5
RM
482 r_alloc_free (&failure_stack_ptr)
483
4297555e 484#else /* not using relocating allocator */
fa9a63c5 485
0b32bf0e 486# ifdef REGEX_MALLOC
fa9a63c5 487
0b32bf0e
SM
488# define REGEX_ALLOCATE_STACK malloc
489# define REGEX_REALLOCATE_STACK(source, osize, nsize) realloc (source, nsize)
490# define REGEX_FREE_STACK free
fa9a63c5 491
0b32bf0e 492# else /* not REGEX_MALLOC */
fa9a63c5 493
0b32bf0e 494# define REGEX_ALLOCATE_STACK alloca
fa9a63c5 495
0b32bf0e 496# define REGEX_REALLOCATE_STACK(source, osize, nsize) \
fa9a63c5 497 REGEX_REALLOCATE (source, osize, nsize)
25fe55af 498/* No need to explicitly free anything. */
0b32bf0e 499# define REGEX_FREE_STACK(arg) ((void)0)
fa9a63c5 500
0b32bf0e 501# endif /* not REGEX_MALLOC */
4297555e 502#endif /* not using relocating allocator */
fa9a63c5
RM
503
504
505/* True if `size1' is non-NULL and PTR is pointing anywhere inside
506 `string1' or just past its end. This works if PTR is NULL, which is
507 a good thing. */
25fe55af 508#define FIRST_STRING_P(ptr) \
fa9a63c5
RM
509 (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
510
511/* (Re)Allocate N items of type T using malloc, or fail. */
512#define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
513#define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
514#define RETALLOC_IF(addr, n, t) \
515 if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t)
516#define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
517
4bb91c68 518#define BYTEWIDTH 8 /* In bits. */
fa9a63c5
RM
519
520#define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
521
522#undef MAX
523#undef MIN
524#define MAX(a, b) ((a) > (b) ? (a) : (b))
525#define MIN(a, b) ((a) < (b) ? (a) : (b))
526
6470ea05
SM
527/* Type of source-pattern and string chars. */
528typedef const unsigned char re_char;
529
fa9a63c5
RM
530typedef char boolean;
531#define false 0
532#define true 1
533
4bb91c68
SM
534static int re_match_2_internal _RE_ARGS ((struct re_pattern_buffer *bufp,
535 re_char *string1, int size1,
536 re_char *string2, int size2,
537 int pos,
538 struct re_registers *regs,
539 int stop));
fa9a63c5
RM
540\f
541/* These are the command codes that appear in compiled regular
4bb91c68 542 expressions. Some opcodes are followed by argument bytes. A
fa9a63c5
RM
543 command code can specify any interpretation whatsoever for its
544 arguments. Zero bytes may appear in the compiled regular expression. */
545
546typedef enum
547{
548 no_op = 0,
549
4bb91c68 550 /* Succeed right away--no more backtracking. */
fa9a63c5
RM
551 succeed,
552
25fe55af 553 /* Followed by one byte giving n, then by n literal bytes. */
fa9a63c5
RM
554 exactn,
555
25fe55af 556 /* Matches any (more or less) character. */
fa9a63c5
RM
557 anychar,
558
25fe55af
RS
559 /* Matches any one char belonging to specified set. First
560 following byte is number of bitmap bytes. Then come bytes
561 for a bitmap saying which chars are in. Bits in each byte
562 are ordered low-bit-first. A character is in the set if its
563 bit is 1. A character too large to have a bit in the map is
96cc36cc
RS
564 automatically not in the set.
565
566 If the length byte has the 0x80 bit set, then that stuff
567 is followed by a range table:
568 2 bytes of flags for character sets (low 8 bits, high 8 bits)
0b32bf0e 569 See RANGE_TABLE_WORK_BITS below.
01618498 570 2 bytes, the number of pairs that follow (upto 32767)
96cc36cc 571 pairs, each 2 multibyte characters,
0b32bf0e 572 each multibyte character represented as 3 bytes. */
fa9a63c5
RM
573 charset,
574
25fe55af 575 /* Same parameters as charset, but match any character that is
4bb91c68 576 not one of those specified. */
fa9a63c5
RM
577 charset_not,
578
25fe55af
RS
579 /* Start remembering the text that is matched, for storing in a
580 register. Followed by one byte with the register number, in
581 the range 0 to one less than the pattern buffer's re_nsub
505bde11 582 field. */
fa9a63c5
RM
583 start_memory,
584
25fe55af
RS
585 /* Stop remembering the text that is matched and store it in a
586 memory register. Followed by one byte with the register
587 number, in the range 0 to one less than `re_nsub' in the
505bde11 588 pattern buffer. */
fa9a63c5
RM
589 stop_memory,
590
25fe55af 591 /* Match a duplicate of something remembered. Followed by one
4bb91c68 592 byte containing the register number. */
fa9a63c5
RM
593 duplicate,
594
25fe55af 595 /* Fail unless at beginning of line. */
fa9a63c5
RM
596 begline,
597
4bb91c68 598 /* Fail unless at end of line. */
fa9a63c5
RM
599 endline,
600
25fe55af
RS
601 /* Succeeds if at beginning of buffer (if emacs) or at beginning
602 of string to be matched (if not). */
fa9a63c5
RM
603 begbuf,
604
25fe55af 605 /* Analogously, for end of buffer/string. */
fa9a63c5 606 endbuf,
5e69f11e 607
25fe55af 608 /* Followed by two byte relative address to which to jump. */
5e69f11e 609 jump,
fa9a63c5 610
25fe55af
RS
611 /* Followed by two-byte relative address of place to resume at
612 in case of failure. */
fa9a63c5 613 on_failure_jump,
5e69f11e 614
25fe55af
RS
615 /* Like on_failure_jump, but pushes a placeholder instead of the
616 current string position when executed. */
fa9a63c5 617 on_failure_keep_string_jump,
5e69f11e 618
505bde11
SM
619 /* Just like `on_failure_jump', except that it checks that we
620 don't get stuck in an infinite loop (matching an empty string
621 indefinitely). */
622 on_failure_jump_loop,
623
0683b6fa
SM
624 /* Just like `on_failure_jump_loop', except that it checks for
625 a different kind of loop (the kind that shows up with non-greedy
626 operators). This operation has to be immediately preceded
627 by a `no_op'. */
628 on_failure_jump_nastyloop,
629
0b32bf0e 630 /* A smart `on_failure_jump' used for greedy * and + operators.
505bde11
SM
631 It analyses the loop before which it is put and if the
632 loop does not require backtracking, it changes itself to
4e8a9132
SM
633 `on_failure_keep_string_jump' and short-circuits the loop,
634 else it just defaults to changing itself into `on_failure_jump'.
635 It assumes that it is pointing to just past a `jump'. */
505bde11 636 on_failure_jump_smart,
fa9a63c5 637
25fe55af 638 /* Followed by two-byte relative address and two-byte number n.
ed0767d8
SM
639 After matching N times, jump to the address upon failure.
640 Does not work if N starts at 0: use on_failure_jump_loop
641 instead. */
fa9a63c5
RM
642 succeed_n,
643
25fe55af
RS
644 /* Followed by two-byte relative address, and two-byte number n.
645 Jump to the address N times, then fail. */
fa9a63c5
RM
646 jump_n,
647
25fe55af
RS
648 /* Set the following two-byte relative address to the
649 subsequent two-byte number. The address *includes* the two
650 bytes of number. */
fa9a63c5
RM
651 set_number_at,
652
fa9a63c5
RM
653 wordbeg, /* Succeeds if at word beginning. */
654 wordend, /* Succeeds if at word end. */
655
656 wordbound, /* Succeeds if at a word boundary. */
1fb352e0 657 notwordbound, /* Succeeds if not at a word boundary. */
fa9a63c5 658
669fa600
SM
659 symbeg, /* Succeeds if at symbol beginning. */
660 symend, /* Succeeds if at symbol end. */
661
fa9a63c5 662 /* Matches any character whose syntax is specified. Followed by
25fe55af 663 a byte which contains a syntax code, e.g., Sword. */
fa9a63c5
RM
664 syntaxspec,
665
666 /* Matches any character whose syntax is not that specified. */
1fb352e0
SM
667 notsyntaxspec
668
669#ifdef emacs
670 ,before_dot, /* Succeeds if before point. */
671 at_dot, /* Succeeds if at point. */
672 after_dot, /* Succeeds if after point. */
b18215fc
RS
673
674 /* Matches any character whose category-set contains the specified
25fe55af
RS
675 category. The operator is followed by a byte which contains a
676 category code (mnemonic ASCII character). */
b18215fc
RS
677 categoryspec,
678
679 /* Matches any character whose category-set does not contain the
680 specified category. The operator is followed by a byte which
681 contains the category code (mnemonic ASCII character). */
682 notcategoryspec
fa9a63c5
RM
683#endif /* emacs */
684} re_opcode_t;
685\f
686/* Common operations on the compiled pattern. */
687
688/* Store NUMBER in two contiguous bytes starting at DESTINATION. */
689
690#define STORE_NUMBER(destination, number) \
691 do { \
692 (destination)[0] = (number) & 0377; \
693 (destination)[1] = (number) >> 8; \
694 } while (0)
695
696/* Same as STORE_NUMBER, except increment DESTINATION to
697 the byte after where the number is stored. Therefore, DESTINATION
698 must be an lvalue. */
699
700#define STORE_NUMBER_AND_INCR(destination, number) \
701 do { \
702 STORE_NUMBER (destination, number); \
703 (destination) += 2; \
704 } while (0)
705
706/* Put into DESTINATION a number stored in two contiguous bytes starting
707 at SOURCE. */
708
709#define EXTRACT_NUMBER(destination, source) \
710 do { \
711 (destination) = *(source) & 0377; \
712 (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8; \
713 } while (0)
714
715#ifdef DEBUG
4bb91c68 716static void extract_number _RE_ARGS ((int *dest, re_char *source));
fa9a63c5
RM
717static void
718extract_number (dest, source)
719 int *dest;
01618498 720 re_char *source;
fa9a63c5 721{
5e69f11e 722 int temp = SIGN_EXTEND_CHAR (*(source + 1));
fa9a63c5
RM
723 *dest = *source & 0377;
724 *dest += temp << 8;
725}
726
4bb91c68 727# ifndef EXTRACT_MACROS /* To debug the macros. */
0b32bf0e
SM
728# undef EXTRACT_NUMBER
729# define EXTRACT_NUMBER(dest, src) extract_number (&dest, src)
730# endif /* not EXTRACT_MACROS */
fa9a63c5
RM
731
732#endif /* DEBUG */
733
734/* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
735 SOURCE must be an lvalue. */
736
737#define EXTRACT_NUMBER_AND_INCR(destination, source) \
738 do { \
739 EXTRACT_NUMBER (destination, source); \
25fe55af 740 (source) += 2; \
fa9a63c5
RM
741 } while (0)
742
743#ifdef DEBUG
4bb91c68
SM
744static void extract_number_and_incr _RE_ARGS ((int *destination,
745 re_char **source));
fa9a63c5
RM
746static void
747extract_number_and_incr (destination, source)
748 int *destination;
01618498 749 re_char **source;
5e69f11e 750{
fa9a63c5
RM
751 extract_number (destination, *source);
752 *source += 2;
753}
754
0b32bf0e
SM
755# ifndef EXTRACT_MACROS
756# undef EXTRACT_NUMBER_AND_INCR
757# define EXTRACT_NUMBER_AND_INCR(dest, src) \
fa9a63c5 758 extract_number_and_incr (&dest, &src)
0b32bf0e 759# endif /* not EXTRACT_MACROS */
fa9a63c5
RM
760
761#endif /* DEBUG */
762\f
b18215fc
RS
763/* Store a multibyte character in three contiguous bytes starting
764 DESTINATION, and increment DESTINATION to the byte after where the
25fe55af 765 character is stored. Therefore, DESTINATION must be an lvalue. */
b18215fc
RS
766
767#define STORE_CHARACTER_AND_INCR(destination, character) \
768 do { \
769 (destination)[0] = (character) & 0377; \
770 (destination)[1] = ((character) >> 8) & 0377; \
771 (destination)[2] = (character) >> 16; \
772 (destination) += 3; \
773 } while (0)
774
775/* Put into DESTINATION a character stored in three contiguous bytes
25fe55af 776 starting at SOURCE. */
b18215fc
RS
777
778#define EXTRACT_CHARACTER(destination, source) \
779 do { \
780 (destination) = ((source)[0] \
781 | ((source)[1] << 8) \
782 | ((source)[2] << 16)); \
783 } while (0)
784
785
786/* Macros for charset. */
787
788/* Size of bitmap of charset P in bytes. P is a start of charset,
789 i.e. *P is (re_opcode_t) charset or (re_opcode_t) charset_not. */
790#define CHARSET_BITMAP_SIZE(p) ((p)[1] & 0x7F)
791
792/* Nonzero if charset P has range table. */
25fe55af 793#define CHARSET_RANGE_TABLE_EXISTS_P(p) ((p)[1] & 0x80)
b18215fc
RS
794
795/* Return the address of range table of charset P. But not the start
796 of table itself, but the before where the number of ranges is
96cc36cc
RS
797 stored. `2 +' means to skip re_opcode_t and size of bitmap,
798 and the 2 bytes of flags at the start of the range table. */
799#define CHARSET_RANGE_TABLE(p) (&(p)[4 + CHARSET_BITMAP_SIZE (p)])
800
801/* Extract the bit flags that start a range table. */
802#define CHARSET_RANGE_TABLE_BITS(p) \
803 ((p)[2 + CHARSET_BITMAP_SIZE (p)] \
804 + (p)[3 + CHARSET_BITMAP_SIZE (p)] * 0x100)
b18215fc
RS
805
806/* Test if C is listed in the bitmap of charset P. */
807#define CHARSET_LOOKUP_BITMAP(p, c) \
808 ((c) < CHARSET_BITMAP_SIZE (p) * BYTEWIDTH \
809 && (p)[2 + (c) / BYTEWIDTH] & (1 << ((c) % BYTEWIDTH)))
810
811/* Return the address of end of RANGE_TABLE. COUNT is number of
25fe55af
RS
812 ranges (which is a pair of (start, end)) in the RANGE_TABLE. `* 2'
813 is start of range and end of range. `* 3' is size of each start
b18215fc
RS
814 and end. */
815#define CHARSET_RANGE_TABLE_END(range_table, count) \
816 ((range_table) + (count) * 2 * 3)
817
25fe55af 818/* Test if C is in RANGE_TABLE. A flag NOT is negated if C is in.
b18215fc
RS
819 COUNT is number of ranges in RANGE_TABLE. */
820#define CHARSET_LOOKUP_RANGE_TABLE_RAW(not, c, range_table, count) \
821 do \
822 { \
01618498
SM
823 re_wchar_t range_start, range_end; \
824 re_char *p; \
825 re_char *range_table_end \
b18215fc
RS
826 = CHARSET_RANGE_TABLE_END ((range_table), (count)); \
827 \
828 for (p = (range_table); p < range_table_end; p += 2 * 3) \
829 { \
830 EXTRACT_CHARACTER (range_start, p); \
831 EXTRACT_CHARACTER (range_end, p + 3); \
832 \
833 if (range_start <= (c) && (c) <= range_end) \
834 { \
835 (not) = !(not); \
836 break; \
837 } \
838 } \
839 } \
840 while (0)
841
842/* Test if C is in range table of CHARSET. The flag NOT is negated if
843 C is listed in it. */
844#define CHARSET_LOOKUP_RANGE_TABLE(not, c, charset) \
845 do \
846 { \
847 /* Number of ranges in range table. */ \
848 int count; \
01618498
SM
849 re_char *range_table = CHARSET_RANGE_TABLE (charset); \
850 \
b18215fc
RS
851 EXTRACT_NUMBER_AND_INCR (count, range_table); \
852 CHARSET_LOOKUP_RANGE_TABLE_RAW ((not), (c), range_table, count); \
853 } \
854 while (0)
855\f
fa9a63c5
RM
856/* If DEBUG is defined, Regex prints many voluminous messages about what
857 it is doing (if the variable `debug' is nonzero). If linked with the
858 main program in `iregex.c', you can enter patterns and strings
859 interactively. And if linked with the main program in `main.c' and
4bb91c68 860 the other test files, you can run the already-written tests. */
fa9a63c5
RM
861
862#ifdef DEBUG
863
864/* We use standard I/O for debugging. */
0b32bf0e 865# include <stdio.h>
fa9a63c5
RM
866
867/* It is useful to test things that ``must'' be true when debugging. */
0b32bf0e 868# include <assert.h>
fa9a63c5 869
99633e97 870static int debug = -100000;
fa9a63c5 871
0b32bf0e
SM
872# define DEBUG_STATEMENT(e) e
873# define DEBUG_PRINT1(x) if (debug > 0) printf (x)
874# define DEBUG_PRINT2(x1, x2) if (debug > 0) printf (x1, x2)
875# define DEBUG_PRINT3(x1, x2, x3) if (debug > 0) printf (x1, x2, x3)
876# define DEBUG_PRINT4(x1, x2, x3, x4) if (debug > 0) printf (x1, x2, x3, x4)
877# define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \
99633e97 878 if (debug > 0) print_partial_compiled_pattern (s, e)
0b32bf0e 879# define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \
99633e97 880 if (debug > 0) print_double_string (w, s1, sz1, s2, sz2)
fa9a63c5
RM
881
882
883/* Print the fastmap in human-readable form. */
884
885void
886print_fastmap (fastmap)
887 char *fastmap;
888{
889 unsigned was_a_range = 0;
5e69f11e
RM
890 unsigned i = 0;
891
fa9a63c5
RM
892 while (i < (1 << BYTEWIDTH))
893 {
894 if (fastmap[i++])
895 {
896 was_a_range = 0;
25fe55af
RS
897 putchar (i - 1);
898 while (i < (1 << BYTEWIDTH) && fastmap[i])
899 {
900 was_a_range = 1;
901 i++;
902 }
fa9a63c5 903 if (was_a_range)
25fe55af
RS
904 {
905 printf ("-");
906 putchar (i - 1);
907 }
908 }
fa9a63c5 909 }
5e69f11e 910 putchar ('\n');
fa9a63c5
RM
911}
912
913
914/* Print a compiled pattern string in human-readable form, starting at
915 the START pointer into it and ending just before the pointer END. */
916
917void
918print_partial_compiled_pattern (start, end)
01618498
SM
919 re_char *start;
920 re_char *end;
fa9a63c5
RM
921{
922 int mcnt, mcnt2;
01618498
SM
923 re_char *p = start;
924 re_char *pend = end;
fa9a63c5
RM
925
926 if (start == NULL)
927 {
a1a052df 928 fprintf (stderr, "(null)\n");
fa9a63c5
RM
929 return;
930 }
5e69f11e 931
fa9a63c5
RM
932 /* Loop over pattern commands. */
933 while (p < pend)
934 {
a1a052df 935 fprintf (stderr, "%d:\t", p - start);
fa9a63c5
RM
936
937 switch ((re_opcode_t) *p++)
938 {
25fe55af 939 case no_op:
a1a052df 940 fprintf (stderr, "/no_op");
25fe55af 941 break;
fa9a63c5 942
99633e97 943 case succeed:
a1a052df 944 fprintf (stderr, "/succeed");
99633e97
SM
945 break;
946
fa9a63c5
RM
947 case exactn:
948 mcnt = *p++;
a1a052df 949 fprintf (stderr, "/exactn/%d", mcnt);
25fe55af 950 do
fa9a63c5 951 {
a1a052df 952 fprintf (stderr, "/%c", *p++);
25fe55af
RS
953 }
954 while (--mcnt);
955 break;
fa9a63c5
RM
956
957 case start_memory:
a1a052df 958 fprintf (stderr, "/start_memory/%d", *p++);
25fe55af 959 break;
fa9a63c5
RM
960
961 case stop_memory:
a1a052df 962 fprintf (stderr, "/stop_memory/%d", *p++);
25fe55af 963 break;
fa9a63c5
RM
964
965 case duplicate:
a1a052df 966 fprintf (stderr, "/duplicate/%d", *p++);
fa9a63c5
RM
967 break;
968
969 case anychar:
a1a052df 970 fprintf (stderr, "/anychar");
fa9a63c5
RM
971 break;
972
973 case charset:
25fe55af
RS
974 case charset_not:
975 {
976 register int c, last = -100;
fa9a63c5 977 register int in_range = 0;
99633e97
SM
978 int length = CHARSET_BITMAP_SIZE (p - 1);
979 int has_range_table = CHARSET_RANGE_TABLE_EXISTS_P (p - 1);
fa9a63c5 980
a1a052df 981 fprintf (stderr, "/charset [%s",
275a3409 982 (re_opcode_t) *(p - 1) == charset_not ? "^" : "");
5e69f11e 983
275a3409
RS
984 if (p + *p >= pend)
985 fprintf (stderr, " !extends past end of pattern! ");
fa9a63c5 986
25fe55af 987 for (c = 0; c < 256; c++)
96cc36cc 988 if (c / 8 < length
fa9a63c5
RM
989 && (p[1 + (c/8)] & (1 << (c % 8))))
990 {
991 /* Are we starting a range? */
992 if (last + 1 == c && ! in_range)
993 {
a1a052df 994 fprintf (stderr, "-");
fa9a63c5
RM
995 in_range = 1;
996 }
997 /* Have we broken a range? */
998 else if (last + 1 != c && in_range)
96cc36cc 999 {
a1a052df 1000 fprintf (stderr, "%c", last);
fa9a63c5
RM
1001 in_range = 0;
1002 }
5e69f11e 1003
fa9a63c5 1004 if (! in_range)
a1a052df 1005 fprintf (stderr, "%c", c);
fa9a63c5
RM
1006
1007 last = c;
25fe55af 1008 }
fa9a63c5
RM
1009
1010 if (in_range)
a1a052df 1011 fprintf (stderr, "%c", last);
fa9a63c5 1012
a1a052df 1013 fprintf (stderr, "]");
fa9a63c5 1014
99633e97 1015 p += 1 + length;
96cc36cc 1016
96cc36cc 1017 if (has_range_table)
99633e97
SM
1018 {
1019 int count;
a1a052df 1020 fprintf (stderr, "has-range-table");
99633e97
SM
1021
1022 /* ??? Should print the range table; for now, just skip it. */
1023 p += 2; /* skip range table bits */
1024 EXTRACT_NUMBER_AND_INCR (count, p);
1025 p = CHARSET_RANGE_TABLE_END (p, count);
1026 }
fa9a63c5
RM
1027 }
1028 break;
1029
1030 case begline:
a1a052df 1031 fprintf (stderr, "/begline");
25fe55af 1032 break;
fa9a63c5
RM
1033
1034 case endline:
a1a052df 1035 fprintf (stderr, "/endline");
25fe55af 1036 break;
fa9a63c5
RM
1037
1038 case on_failure_jump:
25fe55af 1039 extract_number_and_incr (&mcnt, &p);
a1a052df 1040 fprintf (stderr, "/on_failure_jump to %d", p + mcnt - start);
25fe55af 1041 break;
fa9a63c5
RM
1042
1043 case on_failure_keep_string_jump:
25fe55af 1044 extract_number_and_incr (&mcnt, &p);
a1a052df 1045 fprintf (stderr, "/on_failure_keep_string_jump to %d", p + mcnt - start);
25fe55af 1046 break;
fa9a63c5 1047
0683b6fa
SM
1048 case on_failure_jump_nastyloop:
1049 extract_number_and_incr (&mcnt, &p);
a1a052df 1050 fprintf (stderr, "/on_failure_jump_nastyloop to %d", p + mcnt - start);
0683b6fa
SM
1051 break;
1052
505bde11 1053 case on_failure_jump_loop:
fa9a63c5 1054 extract_number_and_incr (&mcnt, &p);
a1a052df 1055 fprintf (stderr, "/on_failure_jump_loop to %d", p + mcnt - start);
5e69f11e
RM
1056 break;
1057
505bde11 1058 case on_failure_jump_smart:
fa9a63c5 1059 extract_number_and_incr (&mcnt, &p);
a1a052df 1060 fprintf (stderr, "/on_failure_jump_smart to %d", p + mcnt - start);
5e69f11e
RM
1061 break;
1062
25fe55af 1063 case jump:
fa9a63c5 1064 extract_number_and_incr (&mcnt, &p);
a1a052df 1065 fprintf (stderr, "/jump to %d", p + mcnt - start);
fa9a63c5
RM
1066 break;
1067
25fe55af
RS
1068 case succeed_n:
1069 extract_number_and_incr (&mcnt, &p);
1070 extract_number_and_incr (&mcnt2, &p);
a1a052df 1071 fprintf (stderr, "/succeed_n to %d, %d times", p - 2 + mcnt - start, mcnt2);
25fe55af 1072 break;
5e69f11e 1073
25fe55af
RS
1074 case jump_n:
1075 extract_number_and_incr (&mcnt, &p);
1076 extract_number_and_incr (&mcnt2, &p);
a1a052df 1077 fprintf (stderr, "/jump_n to %d, %d times", p - 2 + mcnt - start, mcnt2);
25fe55af 1078 break;
5e69f11e 1079
25fe55af
RS
1080 case set_number_at:
1081 extract_number_and_incr (&mcnt, &p);
1082 extract_number_and_incr (&mcnt2, &p);
a1a052df 1083 fprintf (stderr, "/set_number_at location %d to %d", p - 2 + mcnt - start, mcnt2);
25fe55af 1084 break;
5e69f11e 1085
25fe55af 1086 case wordbound:
a1a052df 1087 fprintf (stderr, "/wordbound");
fa9a63c5
RM
1088 break;
1089
1090 case notwordbound:
a1a052df 1091 fprintf (stderr, "/notwordbound");
25fe55af 1092 break;
fa9a63c5
RM
1093
1094 case wordbeg:
a1a052df 1095 fprintf (stderr, "/wordbeg");
fa9a63c5 1096 break;
5e69f11e 1097
fa9a63c5 1098 case wordend:
a1a052df 1099 fprintf (stderr, "/wordend");
e2543b02 1100 break;
5e69f11e 1101
669fa600 1102 case symbeg:
e2543b02 1103 fprintf (stderr, "/symbeg");
669fa600
SM
1104 break;
1105
1106 case symend:
e2543b02 1107 fprintf (stderr, "/symend");
669fa600
SM
1108 break;
1109
1fb352e0 1110 case syntaxspec:
a1a052df 1111 fprintf (stderr, "/syntaxspec");
1fb352e0 1112 mcnt = *p++;
a1a052df 1113 fprintf (stderr, "/%d", mcnt);
1fb352e0
SM
1114 break;
1115
1116 case notsyntaxspec:
a1a052df 1117 fprintf (stderr, "/notsyntaxspec");
1fb352e0 1118 mcnt = *p++;
a1a052df 1119 fprintf (stderr, "/%d", mcnt);
1fb352e0
SM
1120 break;
1121
0b32bf0e 1122# ifdef emacs
fa9a63c5 1123 case before_dot:
a1a052df 1124 fprintf (stderr, "/before_dot");
25fe55af 1125 break;
fa9a63c5
RM
1126
1127 case at_dot:
a1a052df 1128 fprintf (stderr, "/at_dot");
25fe55af 1129 break;
fa9a63c5
RM
1130
1131 case after_dot:
a1a052df 1132 fprintf (stderr, "/after_dot");
25fe55af 1133 break;
fa9a63c5 1134
1fb352e0 1135 case categoryspec:
a1a052df 1136 fprintf (stderr, "/categoryspec");
fa9a63c5 1137 mcnt = *p++;
a1a052df 1138 fprintf (stderr, "/%d", mcnt);
25fe55af 1139 break;
5e69f11e 1140
1fb352e0 1141 case notcategoryspec:
a1a052df 1142 fprintf (stderr, "/notcategoryspec");
fa9a63c5 1143 mcnt = *p++;
a1a052df 1144 fprintf (stderr, "/%d", mcnt);
fa9a63c5 1145 break;
0b32bf0e 1146# endif /* emacs */
fa9a63c5 1147
fa9a63c5 1148 case begbuf:
a1a052df 1149 fprintf (stderr, "/begbuf");
25fe55af 1150 break;
fa9a63c5
RM
1151
1152 case endbuf:
a1a052df 1153 fprintf (stderr, "/endbuf");
25fe55af 1154 break;
fa9a63c5 1155
25fe55af 1156 default:
a1a052df 1157 fprintf (stderr, "?%d", *(p-1));
fa9a63c5
RM
1158 }
1159
a1a052df 1160 fprintf (stderr, "\n");
fa9a63c5
RM
1161 }
1162
a1a052df 1163 fprintf (stderr, "%d:\tend of pattern.\n", p - start);
fa9a63c5
RM
1164}
1165
1166
1167void
1168print_compiled_pattern (bufp)
1169 struct re_pattern_buffer *bufp;
1170{
01618498 1171 re_char *buffer = bufp->buffer;
fa9a63c5
RM
1172
1173 print_partial_compiled_pattern (buffer, buffer + bufp->used);
4bb91c68
SM
1174 printf ("%ld bytes used/%ld bytes allocated.\n",
1175 bufp->used, bufp->allocated);
fa9a63c5
RM
1176
1177 if (bufp->fastmap_accurate && bufp->fastmap)
1178 {
1179 printf ("fastmap: ");
1180 print_fastmap (bufp->fastmap);
1181 }
1182
1183 printf ("re_nsub: %d\t", bufp->re_nsub);
1184 printf ("regs_alloc: %d\t", bufp->regs_allocated);
1185 printf ("can_be_null: %d\t", bufp->can_be_null);
fa9a63c5
RM
1186 printf ("no_sub: %d\t", bufp->no_sub);
1187 printf ("not_bol: %d\t", bufp->not_bol);
1188 printf ("not_eol: %d\t", bufp->not_eol);
4bb91c68 1189 printf ("syntax: %lx\n", bufp->syntax);
505bde11 1190 fflush (stdout);
fa9a63c5
RM
1191 /* Perhaps we should print the translate table? */
1192}
1193
1194
1195void
1196print_double_string (where, string1, size1, string2, size2)
66f0296e
SM
1197 re_char *where;
1198 re_char *string1;
1199 re_char *string2;
fa9a63c5
RM
1200 int size1;
1201 int size2;
1202{
4bb91c68 1203 int this_char;
5e69f11e 1204
fa9a63c5
RM
1205 if (where == NULL)
1206 printf ("(null)");
1207 else
1208 {
1209 if (FIRST_STRING_P (where))
25fe55af
RS
1210 {
1211 for (this_char = where - string1; this_char < size1; this_char++)
1212 putchar (string1[this_char]);
fa9a63c5 1213
25fe55af
RS
1214 where = string2;
1215 }
fa9a63c5
RM
1216
1217 for (this_char = where - string2; this_char < size2; this_char++)
25fe55af 1218 putchar (string2[this_char]);
fa9a63c5
RM
1219 }
1220}
1221
1222#else /* not DEBUG */
1223
0b32bf0e
SM
1224# undef assert
1225# define assert(e)
fa9a63c5 1226
0b32bf0e
SM
1227# define DEBUG_STATEMENT(e)
1228# define DEBUG_PRINT1(x)
1229# define DEBUG_PRINT2(x1, x2)
1230# define DEBUG_PRINT3(x1, x2, x3)
1231# define DEBUG_PRINT4(x1, x2, x3, x4)
1232# define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
1233# define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
fa9a63c5
RM
1234
1235#endif /* not DEBUG */
1236\f
1237/* Set by `re_set_syntax' to the current regexp syntax to recognize. Can
1238 also be assigned to arbitrarily: each pattern buffer stores its own
1239 syntax, so it can be changed between regex compilations. */
1240/* This has no initializer because initialized variables in Emacs
1241 become read-only after dumping. */
1242reg_syntax_t re_syntax_options;
1243
1244
1245/* Specify the precise syntax of regexps for compilation. This provides
1246 for compatibility for various utilities which historically have
1247 different, incompatible syntaxes.
1248
1249 The argument SYNTAX is a bit mask comprised of the various bits
4bb91c68 1250 defined in regex.h. We return the old syntax. */
fa9a63c5
RM
1251
1252reg_syntax_t
1253re_set_syntax (syntax)
f9b0fd99 1254 reg_syntax_t syntax;
fa9a63c5
RM
1255{
1256 reg_syntax_t ret = re_syntax_options;
5e69f11e 1257
fa9a63c5
RM
1258 re_syntax_options = syntax;
1259 return ret;
1260}
c0f9ea08 1261WEAK_ALIAS (__re_set_syntax, re_set_syntax)
f9b0fd99
RS
1262
1263/* Regexp to use to replace spaces, or NULL meaning don't. */
1264static re_char *whitespace_regexp;
1265
1266void
1267re_set_whitespace_regexp (regexp)
6470ea05 1268 const char *regexp;
f9b0fd99 1269{
6470ea05 1270 whitespace_regexp = (re_char *) regexp;
f9b0fd99
RS
1271}
1272WEAK_ALIAS (__re_set_syntax, re_set_syntax)
fa9a63c5
RM
1273\f
1274/* This table gives an error message for each of the error codes listed
4bb91c68 1275 in regex.h. Obviously the order here has to be same as there.
fa9a63c5 1276 POSIX doesn't require that we do anything for REG_NOERROR,
4bb91c68 1277 but why not be nice? */
fa9a63c5
RM
1278
1279static const char *re_error_msgid[] =
5e69f11e
RM
1280 {
1281 gettext_noop ("Success"), /* REG_NOERROR */
1282 gettext_noop ("No match"), /* REG_NOMATCH */
1283 gettext_noop ("Invalid regular expression"), /* REG_BADPAT */
1284 gettext_noop ("Invalid collation character"), /* REG_ECOLLATE */
1285 gettext_noop ("Invalid character class name"), /* REG_ECTYPE */
1286 gettext_noop ("Trailing backslash"), /* REG_EESCAPE */
1287 gettext_noop ("Invalid back reference"), /* REG_ESUBREG */
1288 gettext_noop ("Unmatched [ or [^"), /* REG_EBRACK */
1289 gettext_noop ("Unmatched ( or \\("), /* REG_EPAREN */
1290 gettext_noop ("Unmatched \\{"), /* REG_EBRACE */
1291 gettext_noop ("Invalid content of \\{\\}"), /* REG_BADBR */
1292 gettext_noop ("Invalid range end"), /* REG_ERANGE */
1293 gettext_noop ("Memory exhausted"), /* REG_ESPACE */
1294 gettext_noop ("Invalid preceding regular expression"), /* REG_BADRPT */
1295 gettext_noop ("Premature end of regular expression"), /* REG_EEND */
1296 gettext_noop ("Regular expression too big"), /* REG_ESIZE */
1297 gettext_noop ("Unmatched ) or \\)"), /* REG_ERPAREN */
b3e4c897 1298 gettext_noop ("Range striding over charsets") /* REG_ERANGEX */
fa9a63c5
RM
1299 };
1300\f
4bb91c68 1301/* Avoiding alloca during matching, to placate r_alloc. */
fa9a63c5
RM
1302
1303/* Define MATCH_MAY_ALLOCATE unless we need to make sure that the
1304 searching and matching functions should not call alloca. On some
1305 systems, alloca is implemented in terms of malloc, and if we're
1306 using the relocating allocator routines, then malloc could cause a
1307 relocation, which might (if the strings being searched are in the
1308 ralloc heap) shift the data out from underneath the regexp
1309 routines.
1310
5e69f11e 1311 Here's another reason to avoid allocation: Emacs
fa9a63c5
RM
1312 processes input from X in a signal handler; processing X input may
1313 call malloc; if input arrives while a matching routine is calling
1314 malloc, then we're scrod. But Emacs can't just block input while
1315 calling matching routines; then we don't notice interrupts when
1316 they come in. So, Emacs blocks input around all regexp calls
1317 except the matching calls, which it leaves unprotected, in the
1318 faith that they will not malloc. */
1319
1320/* Normally, this is fine. */
1321#define MATCH_MAY_ALLOCATE
1322
1323/* When using GNU C, we are not REALLY using the C alloca, no matter
1324 what config.h may say. So don't take precautions for it. */
1325#ifdef __GNUC__
0b32bf0e 1326# undef C_ALLOCA
fa9a63c5
RM
1327#endif
1328
1329/* The match routines may not allocate if (1) they would do it with malloc
1330 and (2) it's not safe for them to use malloc.
1331 Note that if REL_ALLOC is defined, matching would not use malloc for the
1332 failure stack, but we would still use it for the register vectors;
4bb91c68 1333 so REL_ALLOC should not affect this. */
0b32bf0e
SM
1334#if (defined C_ALLOCA || defined REGEX_MALLOC) && defined emacs
1335# undef MATCH_MAY_ALLOCATE
fa9a63c5
RM
1336#endif
1337
1338\f
1339/* Failure stack declarations and macros; both re_compile_fastmap and
1340 re_match_2 use a failure stack. These have to be macros because of
1341 REGEX_ALLOCATE_STACK. */
5e69f11e 1342
fa9a63c5 1343
320a2a73 1344/* Approximate number of failure points for which to initially allocate space
fa9a63c5
RM
1345 when matching. If this number is exceeded, we allocate more
1346 space, so it is not a hard limit. */
1347#ifndef INIT_FAILURE_ALLOC
0b32bf0e 1348# define INIT_FAILURE_ALLOC 20
fa9a63c5
RM
1349#endif
1350
1351/* Roughly the maximum number of failure points on the stack. Would be
320a2a73 1352 exactly that if always used TYPICAL_FAILURE_SIZE items each time we failed.
fa9a63c5 1353 This is a variable only so users of regex can assign to it; we never
ada30c0e
SM
1354 change it ourselves. We always multiply it by TYPICAL_FAILURE_SIZE
1355 before using it, so it should probably be a byte-count instead. */
c0f9ea08
SM
1356# if defined MATCH_MAY_ALLOCATE
1357/* Note that 4400 was enough to cause a crash on Alpha OSF/1,
320a2a73
KH
1358 whose default stack limit is 2mb. In order for a larger
1359 value to work reliably, you have to try to make it accord
1360 with the process stack limit. */
c0f9ea08
SM
1361size_t re_max_failures = 40000;
1362# else
1363size_t re_max_failures = 4000;
1364# endif
fa9a63c5
RM
1365
1366union fail_stack_elt
1367{
01618498 1368 re_char *pointer;
c0f9ea08
SM
1369 /* This should be the biggest `int' that's no bigger than a pointer. */
1370 long integer;
fa9a63c5
RM
1371};
1372
1373typedef union fail_stack_elt fail_stack_elt_t;
1374
1375typedef struct
1376{
1377 fail_stack_elt_t *stack;
c0f9ea08
SM
1378 size_t size;
1379 size_t avail; /* Offset of next open position. */
1380 size_t frame; /* Offset of the cur constructed frame. */
fa9a63c5
RM
1381} fail_stack_type;
1382
505bde11 1383#define FAIL_STACK_EMPTY() (fail_stack.frame == 0)
fa9a63c5
RM
1384#define FAIL_STACK_FULL() (fail_stack.avail == fail_stack.size)
1385
1386
1387/* Define macros to initialize and free the failure stack.
1388 Do `return -2' if the alloc fails. */
1389
1390#ifdef MATCH_MAY_ALLOCATE
0b32bf0e 1391# define INIT_FAIL_STACK() \
fa9a63c5
RM
1392 do { \
1393 fail_stack.stack = (fail_stack_elt_t *) \
320a2a73
KH
1394 REGEX_ALLOCATE_STACK (INIT_FAILURE_ALLOC * TYPICAL_FAILURE_SIZE \
1395 * sizeof (fail_stack_elt_t)); \
fa9a63c5
RM
1396 \
1397 if (fail_stack.stack == NULL) \
1398 return -2; \
1399 \
1400 fail_stack.size = INIT_FAILURE_ALLOC; \
1401 fail_stack.avail = 0; \
505bde11 1402 fail_stack.frame = 0; \
fa9a63c5
RM
1403 } while (0)
1404
0b32bf0e 1405# define RESET_FAIL_STACK() REGEX_FREE_STACK (fail_stack.stack)
fa9a63c5 1406#else
0b32bf0e 1407# define INIT_FAIL_STACK() \
fa9a63c5
RM
1408 do { \
1409 fail_stack.avail = 0; \
505bde11 1410 fail_stack.frame = 0; \
fa9a63c5
RM
1411 } while (0)
1412
0b32bf0e 1413# define RESET_FAIL_STACK() ((void)0)
fa9a63c5
RM
1414#endif
1415
1416
320a2a73
KH
1417/* Double the size of FAIL_STACK, up to a limit
1418 which allows approximately `re_max_failures' items.
fa9a63c5
RM
1419
1420 Return 1 if succeeds, and 0 if either ran out of memory
5e69f11e
RM
1421 allocating space for it or it was already too large.
1422
4bb91c68 1423 REGEX_REALLOCATE_STACK requires `destination' be declared. */
fa9a63c5 1424
320a2a73
KH
1425/* Factor to increase the failure stack size by
1426 when we increase it.
1427 This used to be 2, but 2 was too wasteful
1428 because the old discarded stacks added up to as much space
1429 were as ultimate, maximum-size stack. */
1430#define FAIL_STACK_GROWTH_FACTOR 4
1431
1432#define GROW_FAIL_STACK(fail_stack) \
eead07d6
KH
1433 (((fail_stack).size * sizeof (fail_stack_elt_t) \
1434 >= re_max_failures * TYPICAL_FAILURE_SIZE) \
fa9a63c5 1435 ? 0 \
320a2a73
KH
1436 : ((fail_stack).stack \
1437 = (fail_stack_elt_t *) \
25fe55af
RS
1438 REGEX_REALLOCATE_STACK ((fail_stack).stack, \
1439 (fail_stack).size * sizeof (fail_stack_elt_t), \
320a2a73
KH
1440 MIN (re_max_failures * TYPICAL_FAILURE_SIZE, \
1441 ((fail_stack).size * sizeof (fail_stack_elt_t) \
1442 * FAIL_STACK_GROWTH_FACTOR))), \
fa9a63c5
RM
1443 \
1444 (fail_stack).stack == NULL \
1445 ? 0 \
6453db45
KH
1446 : ((fail_stack).size \
1447 = (MIN (re_max_failures * TYPICAL_FAILURE_SIZE, \
1448 ((fail_stack).size * sizeof (fail_stack_elt_t) \
1449 * FAIL_STACK_GROWTH_FACTOR)) \
1450 / sizeof (fail_stack_elt_t)), \
25fe55af 1451 1)))
fa9a63c5
RM
1452
1453
fa9a63c5
RM
1454/* Push a pointer value onto the failure stack.
1455 Assumes the variable `fail_stack'. Probably should only
4bb91c68 1456 be called from within `PUSH_FAILURE_POINT'. */
fa9a63c5 1457#define PUSH_FAILURE_POINTER(item) \
01618498 1458 fail_stack.stack[fail_stack.avail++].pointer = (item)
fa9a63c5
RM
1459
1460/* This pushes an integer-valued item onto the failure stack.
1461 Assumes the variable `fail_stack'. Probably should only
4bb91c68 1462 be called from within `PUSH_FAILURE_POINT'. */
fa9a63c5
RM
1463#define PUSH_FAILURE_INT(item) \
1464 fail_stack.stack[fail_stack.avail++].integer = (item)
1465
1466/* Push a fail_stack_elt_t value onto the failure stack.
1467 Assumes the variable `fail_stack'. Probably should only
4bb91c68 1468 be called from within `PUSH_FAILURE_POINT'. */
fa9a63c5
RM
1469#define PUSH_FAILURE_ELT(item) \
1470 fail_stack.stack[fail_stack.avail++] = (item)
1471
1472/* These three POP... operations complement the three PUSH... operations.
1473 All assume that `fail_stack' is nonempty. */
1474#define POP_FAILURE_POINTER() fail_stack.stack[--fail_stack.avail].pointer
1475#define POP_FAILURE_INT() fail_stack.stack[--fail_stack.avail].integer
1476#define POP_FAILURE_ELT() fail_stack.stack[--fail_stack.avail]
1477
505bde11
SM
1478/* Individual items aside from the registers. */
1479#define NUM_NONREG_ITEMS 3
1480
1481/* Used to examine the stack (to detect infinite loops). */
1482#define FAILURE_PAT(h) fail_stack.stack[(h) - 1].pointer
66f0296e 1483#define FAILURE_STR(h) (fail_stack.stack[(h) - 2].pointer)
505bde11
SM
1484#define NEXT_FAILURE_HANDLE(h) fail_stack.stack[(h) - 3].integer
1485#define TOP_FAILURE_HANDLE() fail_stack.frame
fa9a63c5
RM
1486
1487
505bde11
SM
1488#define ENSURE_FAIL_STACK(space) \
1489while (REMAINING_AVAIL_SLOTS <= space) { \
1490 if (!GROW_FAIL_STACK (fail_stack)) \
1491 return -2; \
1492 DEBUG_PRINT2 ("\n Doubled stack; size now: %d\n", (fail_stack).size);\
1493 DEBUG_PRINT2 (" slots available: %d\n", REMAINING_AVAIL_SLOTS);\
1494}
1495
1496/* Push register NUM onto the stack. */
1497#define PUSH_FAILURE_REG(num) \
1498do { \
1499 char *destination; \
1500 ENSURE_FAIL_STACK(3); \
1501 DEBUG_PRINT4 (" Push reg %d (spanning %p -> %p)\n", \
1502 num, regstart[num], regend[num]); \
1503 PUSH_FAILURE_POINTER (regstart[num]); \
1504 PUSH_FAILURE_POINTER (regend[num]); \
1505 PUSH_FAILURE_INT (num); \
1506} while (0)
1507
01618498
SM
1508/* Change the counter's value to VAL, but make sure that it will
1509 be reset when backtracking. */
1510#define PUSH_NUMBER(ptr,val) \
dc1e502d
SM
1511do { \
1512 char *destination; \
1513 int c; \
1514 ENSURE_FAIL_STACK(3); \
1515 EXTRACT_NUMBER (c, ptr); \
01618498 1516 DEBUG_PRINT4 (" Push number %p = %d -> %d\n", ptr, c, val); \
dc1e502d
SM
1517 PUSH_FAILURE_INT (c); \
1518 PUSH_FAILURE_POINTER (ptr); \
1519 PUSH_FAILURE_INT (-1); \
01618498 1520 STORE_NUMBER (ptr, val); \
dc1e502d
SM
1521} while (0)
1522
505bde11 1523/* Pop a saved register off the stack. */
dc1e502d 1524#define POP_FAILURE_REG_OR_COUNT() \
505bde11
SM
1525do { \
1526 int reg = POP_FAILURE_INT (); \
dc1e502d
SM
1527 if (reg == -1) \
1528 { \
1529 /* It's a counter. */ \
6dcf2d0e
SM
1530 /* Here, we discard `const', making re_match non-reentrant. */ \
1531 unsigned char *ptr = (unsigned char*) POP_FAILURE_POINTER (); \
dc1e502d
SM
1532 reg = POP_FAILURE_INT (); \
1533 STORE_NUMBER (ptr, reg); \
1534 DEBUG_PRINT3 (" Pop counter %p = %d\n", ptr, reg); \
1535 } \
1536 else \
1537 { \
1538 regend[reg] = POP_FAILURE_POINTER (); \
1539 regstart[reg] = POP_FAILURE_POINTER (); \
1540 DEBUG_PRINT4 (" Pop reg %d (spanning %p -> %p)\n", \
1541 reg, regstart[reg], regend[reg]); \
1542 } \
505bde11
SM
1543} while (0)
1544
1545/* Check that we are not stuck in an infinite loop. */
1546#define CHECK_INFINITE_LOOP(pat_cur, string_place) \
1547do { \
f6df485f 1548 int failure = TOP_FAILURE_HANDLE (); \
505bde11 1549 /* Check for infinite matching loops */ \
f6df485f
RS
1550 while (failure > 0 \
1551 && (FAILURE_STR (failure) == string_place \
1552 || FAILURE_STR (failure) == NULL)) \
505bde11
SM
1553 { \
1554 assert (FAILURE_PAT (failure) >= bufp->buffer \
66f0296e 1555 && FAILURE_PAT (failure) <= bufp->buffer + bufp->used); \
505bde11 1556 if (FAILURE_PAT (failure) == pat_cur) \
f6df485f 1557 { \
6df42991
SM
1558 cycle = 1; \
1559 break; \
f6df485f 1560 } \
66f0296e 1561 DEBUG_PRINT2 (" Other pattern: %p\n", FAILURE_PAT (failure)); \
505bde11
SM
1562 failure = NEXT_FAILURE_HANDLE(failure); \
1563 } \
1564 DEBUG_PRINT2 (" Other string: %p\n", FAILURE_STR (failure)); \
1565} while (0)
6df42991 1566
fa9a63c5 1567/* Push the information about the state we will need
5e69f11e
RM
1568 if we ever fail back to it.
1569
505bde11 1570 Requires variables fail_stack, regstart, regend and
320a2a73 1571 num_regs be declared. GROW_FAIL_STACK requires `destination' be
fa9a63c5 1572 declared.
5e69f11e 1573
fa9a63c5
RM
1574 Does `return FAILURE_CODE' if runs out of memory. */
1575
505bde11
SM
1576#define PUSH_FAILURE_POINT(pattern, string_place) \
1577do { \
1578 char *destination; \
1579 /* Must be int, so when we don't save any registers, the arithmetic \
1580 of 0 + -1 isn't done as unsigned. */ \
1581 \
505bde11 1582 DEBUG_STATEMENT (nfailure_points_pushed++); \
4bb91c68 1583 DEBUG_PRINT1 ("\nPUSH_FAILURE_POINT:\n"); \
505bde11
SM
1584 DEBUG_PRINT2 (" Before push, next avail: %d\n", (fail_stack).avail); \
1585 DEBUG_PRINT2 (" size: %d\n", (fail_stack).size);\
1586 \
1587 ENSURE_FAIL_STACK (NUM_NONREG_ITEMS); \
1588 \
1589 DEBUG_PRINT1 ("\n"); \
1590 \
1591 DEBUG_PRINT2 (" Push frame index: %d\n", fail_stack.frame); \
1592 PUSH_FAILURE_INT (fail_stack.frame); \
1593 \
1594 DEBUG_PRINT2 (" Push string %p: `", string_place); \
1595 DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, size2);\
1596 DEBUG_PRINT1 ("'\n"); \
1597 PUSH_FAILURE_POINTER (string_place); \
1598 \
1599 DEBUG_PRINT2 (" Push pattern %p: ", pattern); \
1600 DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern, pend); \
1601 PUSH_FAILURE_POINTER (pattern); \
1602 \
1603 /* Close the frame by moving the frame pointer past it. */ \
1604 fail_stack.frame = fail_stack.avail; \
1605} while (0)
fa9a63c5 1606
320a2a73
KH
1607/* Estimate the size of data pushed by a typical failure stack entry.
1608 An estimate is all we need, because all we use this for
1609 is to choose a limit for how big to make the failure stack. */
ada30c0e 1610/* BEWARE, the value `20' is hard-coded in emacs.c:main(). */
320a2a73 1611#define TYPICAL_FAILURE_SIZE 20
fa9a63c5 1612
fa9a63c5
RM
1613/* How many items can still be added to the stack without overflowing it. */
1614#define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
1615
1616
1617/* Pops what PUSH_FAIL_STACK pushes.
1618
1619 We restore into the parameters, all of which should be lvalues:
1620 STR -- the saved data position.
1621 PAT -- the saved pattern position.
fa9a63c5 1622 REGSTART, REGEND -- arrays of string positions.
5e69f11e 1623
fa9a63c5 1624 Also assumes the variables `fail_stack' and (if debugging), `bufp',
25fe55af 1625 `pend', `string1', `size1', `string2', and `size2'. */
fa9a63c5 1626
505bde11
SM
1627#define POP_FAILURE_POINT(str, pat) \
1628do { \
fa9a63c5
RM
1629 assert (!FAIL_STACK_EMPTY ()); \
1630 \
1631 /* Remove failure points and point to how many regs pushed. */ \
1632 DEBUG_PRINT1 ("POP_FAILURE_POINT:\n"); \
1633 DEBUG_PRINT2 (" Before pop, next avail: %d\n", fail_stack.avail); \
25fe55af 1634 DEBUG_PRINT2 (" size: %d\n", fail_stack.size); \
fa9a63c5 1635 \
505bde11
SM
1636 /* Pop the saved registers. */ \
1637 while (fail_stack.frame < fail_stack.avail) \
dc1e502d 1638 POP_FAILURE_REG_OR_COUNT (); \
fa9a63c5 1639 \
01618498 1640 pat = POP_FAILURE_POINTER (); \
505bde11
SM
1641 DEBUG_PRINT2 (" Popping pattern %p: ", pat); \
1642 DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend); \
fa9a63c5
RM
1643 \
1644 /* If the saved string location is NULL, it came from an \
1645 on_failure_keep_string_jump opcode, and we want to throw away the \
1646 saved NULL, thus retaining our current position in the string. */ \
01618498 1647 str = POP_FAILURE_POINTER (); \
505bde11 1648 DEBUG_PRINT2 (" Popping string %p: `", str); \
fa9a63c5
RM
1649 DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2); \
1650 DEBUG_PRINT1 ("'\n"); \
1651 \
505bde11
SM
1652 fail_stack.frame = POP_FAILURE_INT (); \
1653 DEBUG_PRINT2 (" Popping frame index: %d\n", fail_stack.frame); \
fa9a63c5 1654 \
505bde11
SM
1655 assert (fail_stack.avail >= 0); \
1656 assert (fail_stack.frame <= fail_stack.avail); \
fa9a63c5 1657 \
fa9a63c5 1658 DEBUG_STATEMENT (nfailure_points_popped++); \
505bde11 1659} while (0) /* POP_FAILURE_POINT */
fa9a63c5
RM
1660
1661
1662\f
fa9a63c5 1663/* Registers are set to a sentinel when they haven't yet matched. */
4bb91c68 1664#define REG_UNSET(e) ((e) == NULL)
fa9a63c5
RM
1665\f
1666/* Subroutine declarations and macros for regex_compile. */
1667
4bb91c68
SM
1668static reg_errcode_t regex_compile _RE_ARGS ((re_char *pattern, size_t size,
1669 reg_syntax_t syntax,
1670 struct re_pattern_buffer *bufp));
1671static void store_op1 _RE_ARGS ((re_opcode_t op, unsigned char *loc, int arg));
1672static void store_op2 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
1673 int arg1, int arg2));
1674static void insert_op1 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
1675 int arg, unsigned char *end));
1676static void insert_op2 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
1677 int arg1, int arg2, unsigned char *end));
01618498
SM
1678static boolean at_begline_loc_p _RE_ARGS ((re_char *pattern,
1679 re_char *p,
4bb91c68 1680 reg_syntax_t syntax));
01618498
SM
1681static boolean at_endline_loc_p _RE_ARGS ((re_char *p,
1682 re_char *pend,
4bb91c68 1683 reg_syntax_t syntax));
01618498
SM
1684static re_char *skip_one_char _RE_ARGS ((re_char *p));
1685static int analyse_first _RE_ARGS ((re_char *p, re_char *pend,
4bb91c68 1686 char *fastmap, const int multibyte));
fa9a63c5 1687
fa9a63c5 1688/* Fetch the next character in the uncompiled pattern, with no
4bb91c68 1689 translation. */
36595814 1690#define PATFETCH(c) \
2d1675e4
SM
1691 do { \
1692 int len; \
1693 if (p == pend) return REG_EEND; \
1694 c = RE_STRING_CHAR_AND_LENGTH (p, pend - p, len); \
1695 p += len; \
fa9a63c5
RM
1696 } while (0)
1697
fa9a63c5
RM
1698
1699/* If `translate' is non-null, return translate[D], else just D. We
1700 cast the subscript to translate because some data is declared as
1701 `char *', to avoid warnings when a string constant is passed. But
1702 when we use a character as a subscript we must make it unsigned. */
6676cb1c 1703#ifndef TRANSLATE
0b32bf0e 1704# define TRANSLATE(d) \
66f0296e 1705 (RE_TRANSLATE_P (translate) ? RE_TRANSLATE (translate, (d)) : (d))
6676cb1c 1706#endif
fa9a63c5
RM
1707
1708
1709/* Macros for outputting the compiled pattern into `buffer'. */
1710
1711/* If the buffer isn't allocated when it comes in, use this. */
1712#define INIT_BUF_SIZE 32
1713
4bb91c68 1714/* Make sure we have at least N more bytes of space in buffer. */
fa9a63c5 1715#define GET_BUFFER_SPACE(n) \
01618498 1716 while ((size_t) (b - bufp->buffer + (n)) > bufp->allocated) \
fa9a63c5
RM
1717 EXTEND_BUFFER ()
1718
1719/* Make sure we have one more byte of buffer space and then add C to it. */
1720#define BUF_PUSH(c) \
1721 do { \
1722 GET_BUFFER_SPACE (1); \
1723 *b++ = (unsigned char) (c); \
1724 } while (0)
1725
1726
1727/* Ensure we have two more bytes of buffer space and then append C1 and C2. */
1728#define BUF_PUSH_2(c1, c2) \
1729 do { \
1730 GET_BUFFER_SPACE (2); \
1731 *b++ = (unsigned char) (c1); \
1732 *b++ = (unsigned char) (c2); \
1733 } while (0)
1734
1735
4bb91c68 1736/* As with BUF_PUSH_2, except for three bytes. */
fa9a63c5
RM
1737#define BUF_PUSH_3(c1, c2, c3) \
1738 do { \
1739 GET_BUFFER_SPACE (3); \
1740 *b++ = (unsigned char) (c1); \
1741 *b++ = (unsigned char) (c2); \
1742 *b++ = (unsigned char) (c3); \
1743 } while (0)
1744
1745
1746/* Store a jump with opcode OP at LOC to location TO. We store a
4bb91c68 1747 relative address offset by the three bytes the jump itself occupies. */
fa9a63c5
RM
1748#define STORE_JUMP(op, loc, to) \
1749 store_op1 (op, loc, (to) - (loc) - 3)
1750
1751/* Likewise, for a two-argument jump. */
1752#define STORE_JUMP2(op, loc, to, arg) \
1753 store_op2 (op, loc, (to) - (loc) - 3, arg)
1754
4bb91c68 1755/* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */
fa9a63c5
RM
1756#define INSERT_JUMP(op, loc, to) \
1757 insert_op1 (op, loc, (to) - (loc) - 3, b)
1758
1759/* Like `STORE_JUMP2', but for inserting. Assume `b' is the buffer end. */
1760#define INSERT_JUMP2(op, loc, to, arg) \
1761 insert_op2 (op, loc, (to) - (loc) - 3, arg, b)
1762
1763
1764/* This is not an arbitrary limit: the arguments which represent offsets
275a3409 1765 into the pattern are two bytes long. So if 2^15 bytes turns out to
fa9a63c5 1766 be too small, many things would have to change. */
275a3409
RS
1767# define MAX_BUF_SIZE (1L << 15)
1768
1769#if 0 /* This is when we thought it could be 2^16 bytes. */
4bb91c68
SM
1770/* Any other compiler which, like MSC, has allocation limit below 2^16
1771 bytes will have to use approach similar to what was done below for
1772 MSC and drop MAX_BUF_SIZE a bit. Otherwise you may end up
1773 reallocating to 0 bytes. Such thing is not going to work too well.
1774 You have been warned!! */
1775#if defined _MSC_VER && !defined WIN32
1776/* Microsoft C 16-bit versions limit malloc to approx 65512 bytes. */
1777# define MAX_BUF_SIZE 65500L
1778#else
1779# define MAX_BUF_SIZE (1L << 16)
1780#endif
275a3409 1781#endif /* 0 */
fa9a63c5
RM
1782
1783/* Extend the buffer by twice its current size via realloc and
1784 reset the pointers that pointed into the old block to point to the
1785 correct places in the new one. If extending the buffer results in it
4bb91c68
SM
1786 being larger than MAX_BUF_SIZE, then flag memory exhausted. */
1787#if __BOUNDED_POINTERS__
1788# define SET_HIGH_BOUND(P) (__ptrhigh (P) = __ptrlow (P) + bufp->allocated)
1789# define MOVE_BUFFER_POINTER(P) \
1790 (__ptrlow (P) += incr, SET_HIGH_BOUND (P), __ptrvalue (P) += incr)
1791# define ELSE_EXTEND_BUFFER_HIGH_BOUND \
1792 else \
1793 { \
1794 SET_HIGH_BOUND (b); \
1795 SET_HIGH_BOUND (begalt); \
1796 if (fixup_alt_jump) \
1797 SET_HIGH_BOUND (fixup_alt_jump); \
1798 if (laststart) \
1799 SET_HIGH_BOUND (laststart); \
1800 if (pending_exact) \
1801 SET_HIGH_BOUND (pending_exact); \
1802 }
1803#else
1804# define MOVE_BUFFER_POINTER(P) (P) += incr
1805# define ELSE_EXTEND_BUFFER_HIGH_BOUND
1806#endif
fa9a63c5 1807#define EXTEND_BUFFER() \
25fe55af 1808 do { \
01618498 1809 re_char *old_buffer = bufp->buffer; \
25fe55af 1810 if (bufp->allocated == MAX_BUF_SIZE) \
fa9a63c5
RM
1811 return REG_ESIZE; \
1812 bufp->allocated <<= 1; \
1813 if (bufp->allocated > MAX_BUF_SIZE) \
25fe55af 1814 bufp->allocated = MAX_BUF_SIZE; \
01618498 1815 RETALLOC (bufp->buffer, bufp->allocated, unsigned char); \
fa9a63c5
RM
1816 if (bufp->buffer == NULL) \
1817 return REG_ESPACE; \
1818 /* If the buffer moved, move all the pointers into it. */ \
1819 if (old_buffer != bufp->buffer) \
1820 { \
4bb91c68
SM
1821 int incr = bufp->buffer - old_buffer; \
1822 MOVE_BUFFER_POINTER (b); \
1823 MOVE_BUFFER_POINTER (begalt); \
25fe55af 1824 if (fixup_alt_jump) \
4bb91c68 1825 MOVE_BUFFER_POINTER (fixup_alt_jump); \
25fe55af 1826 if (laststart) \
4bb91c68 1827 MOVE_BUFFER_POINTER (laststart); \
25fe55af 1828 if (pending_exact) \
4bb91c68 1829 MOVE_BUFFER_POINTER (pending_exact); \
fa9a63c5 1830 } \
4bb91c68 1831 ELSE_EXTEND_BUFFER_HIGH_BOUND \
fa9a63c5
RM
1832 } while (0)
1833
1834
1835/* Since we have one byte reserved for the register number argument to
1836 {start,stop}_memory, the maximum number of groups we can report
1837 things about is what fits in that byte. */
1838#define MAX_REGNUM 255
1839
1840/* But patterns can have more than `MAX_REGNUM' registers. We just
1841 ignore the excess. */
098d42af 1842typedef int regnum_t;
fa9a63c5
RM
1843
1844
1845/* Macros for the compile stack. */
1846
1847/* Since offsets can go either forwards or backwards, this type needs to
4bb91c68
SM
1848 be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */
1849/* int may be not enough when sizeof(int) == 2. */
1850typedef long pattern_offset_t;
fa9a63c5
RM
1851
1852typedef struct
1853{
1854 pattern_offset_t begalt_offset;
1855 pattern_offset_t fixup_alt_jump;
5e69f11e 1856 pattern_offset_t laststart_offset;
fa9a63c5
RM
1857 regnum_t regnum;
1858} compile_stack_elt_t;
1859
1860
1861typedef struct
1862{
1863 compile_stack_elt_t *stack;
1864 unsigned size;
1865 unsigned avail; /* Offset of next open position. */
1866} compile_stack_type;
1867
1868
1869#define INIT_COMPILE_STACK_SIZE 32
1870
1871#define COMPILE_STACK_EMPTY (compile_stack.avail == 0)
1872#define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size)
1873
4bb91c68 1874/* The next available element. */
fa9a63c5
RM
1875#define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
1876
1cee1e27
SM
1877/* Explicit quit checking is only used on NTemacs and whenever we
1878 use polling to process input events. */
1879#if defined emacs && (defined WINDOWSNT || defined SYNC_INPUT) && defined QUIT
77d11aec
RS
1880extern int immediate_quit;
1881# define IMMEDIATE_QUIT_CHECK \
1882 do { \
1883 if (immediate_quit) QUIT; \
1884 } while (0)
1885#else
1886# define IMMEDIATE_QUIT_CHECK ((void)0)
1887#endif
1888\f
b18215fc
RS
1889/* Structure to manage work area for range table. */
1890struct range_table_work_area
1891{
1892 int *table; /* actual work area. */
1893 int allocated; /* allocated size for work area in bytes. */
25fe55af 1894 int used; /* actually used size in words. */
96cc36cc 1895 int bits; /* flag to record character classes */
b18215fc
RS
1896};
1897
77d11aec
RS
1898/* Make sure that WORK_AREA can hold more N multibyte characters.
1899 This is used only in set_image_of_range and set_image_of_range_1.
1900 It expects WORK_AREA to be a pointer.
1901 If it can't get the space, it returns from the surrounding function. */
1902
1903#define EXTEND_RANGE_TABLE(work_area, n) \
1904 do { \
1905 if (((work_area)->used + (n)) * sizeof (int) > (work_area)->allocated) \
1906 { \
1907 extend_range_table_work_area (work_area); \
1908 if ((work_area)->table == 0) \
1909 return (REG_ESPACE); \
1910 } \
b18215fc
RS
1911 } while (0)
1912
96cc36cc
RS
1913#define SET_RANGE_TABLE_WORK_AREA_BIT(work_area, bit) \
1914 (work_area).bits |= (bit)
1915
14473664
SM
1916/* Bits used to implement the multibyte-part of the various character classes
1917 such as [:alnum:] in a charset's range table. */
1918#define BIT_WORD 0x1
1919#define BIT_LOWER 0x2
1920#define BIT_PUNCT 0x4
1921#define BIT_SPACE 0x8
1922#define BIT_UPPER 0x10
1923#define BIT_MULTIBYTE 0x20
96cc36cc 1924
36595814
SM
1925/* Set a range START..END to WORK_AREA.
1926 The range is passed through TRANSLATE, so START and END
1927 should be untranslated. */
77d11aec
RS
1928#define SET_RANGE_TABLE_WORK_AREA(work_area, start, end) \
1929 do { \
1930 int tem; \
1931 tem = set_image_of_range (&work_area, start, end, translate); \
1932 if (tem > 0) \
1933 FREE_STACK_RETURN (tem); \
b18215fc
RS
1934 } while (0)
1935
25fe55af 1936/* Free allocated memory for WORK_AREA. */
b18215fc
RS
1937#define FREE_RANGE_TABLE_WORK_AREA(work_area) \
1938 do { \
1939 if ((work_area).table) \
1940 free ((work_area).table); \
1941 } while (0)
1942
96cc36cc 1943#define CLEAR_RANGE_TABLE_WORK_USED(work_area) ((work_area).used = 0, (work_area).bits = 0)
b18215fc 1944#define RANGE_TABLE_WORK_USED(work_area) ((work_area).used)
96cc36cc 1945#define RANGE_TABLE_WORK_BITS(work_area) ((work_area).bits)
b18215fc 1946#define RANGE_TABLE_WORK_ELT(work_area, i) ((work_area).table[i])
77d11aec 1947\f
b18215fc 1948
fa9a63c5 1949/* Set the bit for character C in a list. */
01618498 1950#define SET_LIST_BIT(c) (b[((c)) / BYTEWIDTH] |= 1 << ((c) % BYTEWIDTH))
fa9a63c5
RM
1951
1952
1953/* Get the next unsigned number in the uncompiled pattern. */
25fe55af 1954#define GET_UNSIGNED_NUMBER(num) \
c72b0edd
SM
1955 do { \
1956 if (p == pend) \
1957 FREE_STACK_RETURN (REG_EBRACE); \
1958 else \
1959 { \
1960 PATFETCH (c); \
1961 while ('0' <= c && c <= '9') \
1962 { \
1963 int prev; \
1964 if (num < 0) \
1965 num = 0; \
1966 prev = num; \
1967 num = num * 10 + c - '0'; \
1968 if (num / 10 != prev) \
1969 FREE_STACK_RETURN (REG_BADBR); \
1970 if (p == pend) \
1971 FREE_STACK_RETURN (REG_EBRACE); \
1972 PATFETCH (c); \
1973 } \
1974 } \
1975 } while (0)
77d11aec 1976\f
1fdab503 1977#if ! WIDE_CHAR_SUPPORT
01618498 1978
14473664 1979/* Map a string to the char class it names (if any). */
1fdab503 1980re_wctype_t
ada30c0e
SM
1981re_wctype (str)
1982 re_char *str;
14473664 1983{
ada30c0e 1984 const char *string = str;
14473664
SM
1985 if (STREQ (string, "alnum")) return RECC_ALNUM;
1986 else if (STREQ (string, "alpha")) return RECC_ALPHA;
1987 else if (STREQ (string, "word")) return RECC_WORD;
1988 else if (STREQ (string, "ascii")) return RECC_ASCII;
1989 else if (STREQ (string, "nonascii")) return RECC_NONASCII;
1990 else if (STREQ (string, "graph")) return RECC_GRAPH;
1991 else if (STREQ (string, "lower")) return RECC_LOWER;
1992 else if (STREQ (string, "print")) return RECC_PRINT;
1993 else if (STREQ (string, "punct")) return RECC_PUNCT;
1994 else if (STREQ (string, "space")) return RECC_SPACE;
1995 else if (STREQ (string, "upper")) return RECC_UPPER;
1996 else if (STREQ (string, "unibyte")) return RECC_UNIBYTE;
1997 else if (STREQ (string, "multibyte")) return RECC_MULTIBYTE;
1998 else if (STREQ (string, "digit")) return RECC_DIGIT;
1999 else if (STREQ (string, "xdigit")) return RECC_XDIGIT;
2000 else if (STREQ (string, "cntrl")) return RECC_CNTRL;
2001 else if (STREQ (string, "blank")) return RECC_BLANK;
2002 else return 0;
2003}
2004
2005/* True iff CH is in the char class CC. */
1fdab503 2006boolean
14473664
SM
2007re_iswctype (ch, cc)
2008 int ch;
2009 re_wctype_t cc;
2010{
2011 switch (cc)
2012 {
0cdd06f8
SM
2013 case RECC_ALNUM: return ISALNUM (ch);
2014 case RECC_ALPHA: return ISALPHA (ch);
2015 case RECC_BLANK: return ISBLANK (ch);
2016 case RECC_CNTRL: return ISCNTRL (ch);
2017 case RECC_DIGIT: return ISDIGIT (ch);
2018 case RECC_GRAPH: return ISGRAPH (ch);
2019 case RECC_LOWER: return ISLOWER (ch);
2020 case RECC_PRINT: return ISPRINT (ch);
2021 case RECC_PUNCT: return ISPUNCT (ch);
2022 case RECC_SPACE: return ISSPACE (ch);
2023 case RECC_UPPER: return ISUPPER (ch);
2024 case RECC_XDIGIT: return ISXDIGIT (ch);
2025 case RECC_ASCII: return IS_REAL_ASCII (ch);
2026 case RECC_NONASCII: return !IS_REAL_ASCII (ch);
2027 case RECC_UNIBYTE: return ISUNIBYTE (ch);
2028 case RECC_MULTIBYTE: return !ISUNIBYTE (ch);
2029 case RECC_WORD: return ISWORD (ch);
2030 case RECC_ERROR: return false;
2031 default:
2032 abort();
14473664
SM
2033 }
2034}
fa9a63c5 2035
14473664
SM
2036/* Return a bit-pattern to use in the range-table bits to match multibyte
2037 chars of class CC. */
2038static int
2039re_wctype_to_bit (cc)
2040 re_wctype_t cc;
2041{
2042 switch (cc)
2043 {
2044 case RECC_NONASCII: case RECC_PRINT: case RECC_GRAPH:
0cdd06f8
SM
2045 case RECC_MULTIBYTE: return BIT_MULTIBYTE;
2046 case RECC_ALPHA: case RECC_ALNUM: case RECC_WORD: return BIT_WORD;
2047 case RECC_LOWER: return BIT_LOWER;
2048 case RECC_UPPER: return BIT_UPPER;
2049 case RECC_PUNCT: return BIT_PUNCT;
2050 case RECC_SPACE: return BIT_SPACE;
14473664 2051 case RECC_ASCII: case RECC_DIGIT: case RECC_XDIGIT: case RECC_CNTRL:
0cdd06f8
SM
2052 case RECC_BLANK: case RECC_UNIBYTE: case RECC_ERROR: return 0;
2053 default:
2054 abort();
14473664
SM
2055 }
2056}
2057#endif
77d11aec
RS
2058\f
2059/* Filling in the work area of a range. */
2060
2061/* Actually extend the space in WORK_AREA. */
2062
2063static void
2064extend_range_table_work_area (work_area)
2065 struct range_table_work_area *work_area;
177c0ea7 2066{
77d11aec
RS
2067 work_area->allocated += 16 * sizeof (int);
2068 if (work_area->table)
2069 work_area->table
8a169494 2070 = (int *) xrealloc (work_area->table, work_area->allocated);
77d11aec
RS
2071 else
2072 work_area->table
4aea1d4b 2073 = (int *) xmalloc (work_area->allocated);
77d11aec
RS
2074}
2075
2076#ifdef emacs
2077
2078/* Carefully find the ranges of codes that are equivalent
2079 under case conversion to the range start..end when passed through
2080 TRANSLATE. Handle the case where non-letters can come in between
2081 two upper-case letters (which happens in Latin-1).
2082 Also handle the case of groups of more than 2 case-equivalent chars.
2083
2084 The basic method is to look at consecutive characters and see
2085 if they can form a run that can be handled as one.
2086
2087 Returns -1 if successful, REG_ESPACE if ran out of space. */
2088
2089static int
2090set_image_of_range_1 (work_area, start, end, translate)
2091 RE_TRANSLATE_TYPE translate;
2092 struct range_table_work_area *work_area;
2093 re_wchar_t start, end;
2094{
2095 /* `one_case' indicates a character, or a run of characters,
2096 each of which is an isolate (no case-equivalents).
2097 This includes all ASCII non-letters.
2098
2099 `two_case' indicates a character, or a run of characters,
2100 each of which has two case-equivalent forms.
2101 This includes all ASCII letters.
2102
2103 `strange' indicates a character that has more than one
2104 case-equivalent. */
177c0ea7 2105
77d11aec
RS
2106 enum case_type {one_case, two_case, strange};
2107
2108 /* Describe the run that is in progress,
2109 which the next character can try to extend.
2110 If run_type is strange, that means there really is no run.
2111 If run_type is one_case, then run_start...run_end is the run.
2112 If run_type is two_case, then the run is run_start...run_end,
2113 and the case-equivalents end at run_eqv_end. */
2114
2115 enum case_type run_type = strange;
2116 int run_start, run_end, run_eqv_end;
2117
2118 Lisp_Object eqv_table;
2119
2120 if (!RE_TRANSLATE_P (translate))
2121 {
b7c12565 2122 EXTEND_RANGE_TABLE (work_area, 2);
77d11aec
RS
2123 work_area->table[work_area->used++] = (start);
2124 work_area->table[work_area->used++] = (end);
b7c12565 2125 return -1;
77d11aec
RS
2126 }
2127
2128 eqv_table = XCHAR_TABLE (translate)->extras[2];
99633e97 2129
77d11aec
RS
2130 for (; start <= end; start++)
2131 {
2132 enum case_type this_type;
2133 int eqv = RE_TRANSLATE (eqv_table, start);
2134 int minchar, maxchar;
2135
2136 /* Classify this character */
2137 if (eqv == start)
2138 this_type = one_case;
2139 else if (RE_TRANSLATE (eqv_table, eqv) == start)
2140 this_type = two_case;
2141 else
2142 this_type = strange;
2143
2144 if (start < eqv)
2145 minchar = start, maxchar = eqv;
2146 else
2147 minchar = eqv, maxchar = start;
2148
2149 /* Can this character extend the run in progress? */
2150 if (this_type == strange || this_type != run_type
2151 || !(minchar == run_end + 1
2152 && (run_type == two_case
2153 ? maxchar == run_eqv_end + 1 : 1)))
2154 {
2155 /* No, end the run.
2156 Record each of its equivalent ranges. */
2157 if (run_type == one_case)
2158 {
2159 EXTEND_RANGE_TABLE (work_area, 2);
2160 work_area->table[work_area->used++] = run_start;
2161 work_area->table[work_area->used++] = run_end;
2162 }
2163 else if (run_type == two_case)
2164 {
2165 EXTEND_RANGE_TABLE (work_area, 4);
2166 work_area->table[work_area->used++] = run_start;
2167 work_area->table[work_area->used++] = run_end;
2168 work_area->table[work_area->used++]
2169 = RE_TRANSLATE (eqv_table, run_start);
2170 work_area->table[work_area->used++]
2171 = RE_TRANSLATE (eqv_table, run_end);
2172 }
2173 run_type = strange;
2174 }
177c0ea7 2175
77d11aec
RS
2176 if (this_type == strange)
2177 {
2178 /* For a strange character, add each of its equivalents, one
2179 by one. Don't start a range. */
2180 do
2181 {
2182 EXTEND_RANGE_TABLE (work_area, 2);
2183 work_area->table[work_area->used++] = eqv;
2184 work_area->table[work_area->used++] = eqv;
2185 eqv = RE_TRANSLATE (eqv_table, eqv);
2186 }
2187 while (eqv != start);
2188 }
2189
2190 /* Add this char to the run, or start a new run. */
2191 else if (run_type == strange)
2192 {
2193 /* Initialize a new range. */
2194 run_type = this_type;
2195 run_start = start;
2196 run_end = start;
2197 run_eqv_end = RE_TRANSLATE (eqv_table, run_end);
2198 }
2199 else
2200 {
2201 /* Extend a running range. */
2202 run_end = minchar;
2203 run_eqv_end = RE_TRANSLATE (eqv_table, run_end);
2204 }
2205 }
2206
2207 /* If a run is still in progress at the end, finish it now
2208 by recording its equivalent ranges. */
2209 if (run_type == one_case)
2210 {
2211 EXTEND_RANGE_TABLE (work_area, 2);
2212 work_area->table[work_area->used++] = run_start;
2213 work_area->table[work_area->used++] = run_end;
2214 }
2215 else if (run_type == two_case)
2216 {
2217 EXTEND_RANGE_TABLE (work_area, 4);
2218 work_area->table[work_area->used++] = run_start;
2219 work_area->table[work_area->used++] = run_end;
2220 work_area->table[work_area->used++]
2221 = RE_TRANSLATE (eqv_table, run_start);
2222 work_area->table[work_area->used++]
2223 = RE_TRANSLATE (eqv_table, run_end);
2224 }
2225
2226 return -1;
2227}
36595814 2228
77d11aec 2229#endif /* emacs */
36595814 2230
b7c12565 2231/* Record the the image of the range start..end when passed through
36595814
SM
2232 TRANSLATE. This is not necessarily TRANSLATE(start)..TRANSLATE(end)
2233 and is not even necessarily contiguous.
b7c12565
RS
2234 Normally we approximate it with the smallest contiguous range that contains
2235 all the chars we need. However, for Latin-1 we go to extra effort
2236 to do a better job.
2237
2238 This function is not called for ASCII ranges.
77d11aec
RS
2239
2240 Returns -1 if successful, REG_ESPACE if ran out of space. */
2241
2242static int
36595814
SM
2243set_image_of_range (work_area, start, end, translate)
2244 RE_TRANSLATE_TYPE translate;
2245 struct range_table_work_area *work_area;
2246 re_wchar_t start, end;
2247{
77d11aec
RS
2248 re_wchar_t cmin, cmax;
2249
2250#ifdef emacs
2251 /* For Latin-1 ranges, use set_image_of_range_1
2252 to get proper handling of ranges that include letters and nonletters.
b7c12565 2253 For a range that includes the whole of Latin-1, this is not necessary.
77d11aec 2254 For other character sets, we don't bother to get this right. */
b7c12565
RS
2255 if (RE_TRANSLATE_P (translate) && start < 04400
2256 && !(start < 04200 && end >= 04377))
77d11aec 2257 {
b7c12565 2258 int newend;
77d11aec 2259 int tem;
b7c12565
RS
2260 newend = end;
2261 if (newend > 04377)
2262 newend = 04377;
2263 tem = set_image_of_range_1 (work_area, start, newend, translate);
77d11aec
RS
2264 if (tem > 0)
2265 return tem;
2266
2267 start = 04400;
2268 if (end < 04400)
2269 return -1;
2270 }
2271#endif
2272
b7c12565
RS
2273 EXTEND_RANGE_TABLE (work_area, 2);
2274 work_area->table[work_area->used++] = (start);
2275 work_area->table[work_area->used++] = (end);
2276
2277 cmin = -1, cmax = -1;
77d11aec 2278
36595814 2279 if (RE_TRANSLATE_P (translate))
b7c12565
RS
2280 {
2281 int ch;
77d11aec 2282
b7c12565
RS
2283 for (ch = start; ch <= end; ch++)
2284 {
2285 re_wchar_t c = TRANSLATE (ch);
2286 if (! (start <= c && c <= end))
2287 {
2288 if (cmin == -1)
2289 cmin = c, cmax = c;
2290 else
2291 {
2292 cmin = MIN (cmin, c);
2293 cmax = MAX (cmax, c);
2294 }
2295 }
2296 }
2297
2298 if (cmin != -1)
2299 {
2300 EXTEND_RANGE_TABLE (work_area, 2);
2301 work_area->table[work_area->used++] = (cmin);
2302 work_area->table[work_area->used++] = (cmax);
2303 }
2304 }
36595814 2305
77d11aec
RS
2306 return -1;
2307}
fa9a63c5
RM
2308\f
2309#ifndef MATCH_MAY_ALLOCATE
2310
2311/* If we cannot allocate large objects within re_match_2_internal,
2312 we make the fail stack and register vectors global.
2313 The fail stack, we grow to the maximum size when a regexp
2314 is compiled.
2315 The register vectors, we adjust in size each time we
2316 compile a regexp, according to the number of registers it needs. */
2317
2318static fail_stack_type fail_stack;
2319
2320/* Size with which the following vectors are currently allocated.
2321 That is so we can make them bigger as needed,
4bb91c68 2322 but never make them smaller. */
fa9a63c5
RM
2323static int regs_allocated_size;
2324
66f0296e
SM
2325static re_char ** regstart, ** regend;
2326static re_char **best_regstart, **best_regend;
fa9a63c5
RM
2327
2328/* Make the register vectors big enough for NUM_REGS registers,
4bb91c68 2329 but don't make them smaller. */
fa9a63c5
RM
2330
2331static
2332regex_grow_registers (num_regs)
2333 int num_regs;
2334{
2335 if (num_regs > regs_allocated_size)
2336 {
66f0296e
SM
2337 RETALLOC_IF (regstart, num_regs, re_char *);
2338 RETALLOC_IF (regend, num_regs, re_char *);
2339 RETALLOC_IF (best_regstart, num_regs, re_char *);
2340 RETALLOC_IF (best_regend, num_regs, re_char *);
fa9a63c5
RM
2341
2342 regs_allocated_size = num_regs;
2343 }
2344}
2345
2346#endif /* not MATCH_MAY_ALLOCATE */
2347\f
99633e97
SM
2348static boolean group_in_compile_stack _RE_ARGS ((compile_stack_type
2349 compile_stack,
2350 regnum_t regnum));
2351
fa9a63c5
RM
2352/* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
2353 Returns one of error codes defined in `regex.h', or zero for success.
2354
2355 Assumes the `allocated' (and perhaps `buffer') and `translate'
2356 fields are set in BUFP on entry.
2357
2358 If it succeeds, results are put in BUFP (if it returns an error, the
2359 contents of BUFP are undefined):
2360 `buffer' is the compiled pattern;
2361 `syntax' is set to SYNTAX;
2362 `used' is set to the length of the compiled pattern;
2363 `fastmap_accurate' is zero;
2364 `re_nsub' is the number of subexpressions in PATTERN;
2365 `not_bol' and `not_eol' are zero;
5e69f11e 2366
c0f9ea08 2367 The `fastmap' field is neither examined nor set. */
fa9a63c5 2368
505bde11
SM
2369/* Insert the `jump' from the end of last alternative to "here".
2370 The space for the jump has already been allocated. */
2371#define FIXUP_ALT_JUMP() \
2372do { \
2373 if (fixup_alt_jump) \
2374 STORE_JUMP (jump, fixup_alt_jump, b); \
2375} while (0)
2376
2377
fa9a63c5
RM
2378/* Return, freeing storage we allocated. */
2379#define FREE_STACK_RETURN(value) \
b18215fc
RS
2380 do { \
2381 FREE_RANGE_TABLE_WORK_AREA (range_table_work); \
2382 free (compile_stack.stack); \
2383 return value; \
2384 } while (0)
fa9a63c5
RM
2385
2386static reg_errcode_t
2387regex_compile (pattern, size, syntax, bufp)
66f0296e 2388 re_char *pattern;
4bb91c68 2389 size_t size;
fa9a63c5
RM
2390 reg_syntax_t syntax;
2391 struct re_pattern_buffer *bufp;
2392{
01618498
SM
2393 /* We fetch characters from PATTERN here. */
2394 register re_wchar_t c, c1;
5e69f11e 2395
fa9a63c5 2396 /* A random temporary spot in PATTERN. */
66f0296e 2397 re_char *p1;
fa9a63c5
RM
2398
2399 /* Points to the end of the buffer, where we should append. */
2400 register unsigned char *b;
5e69f11e 2401
fa9a63c5
RM
2402 /* Keeps track of unclosed groups. */
2403 compile_stack_type compile_stack;
2404
2405 /* Points to the current (ending) position in the pattern. */
22336245
RS
2406#ifdef AIX
2407 /* `const' makes AIX compiler fail. */
66f0296e 2408 unsigned char *p = pattern;
22336245 2409#else
66f0296e 2410 re_char *p = pattern;
22336245 2411#endif
66f0296e 2412 re_char *pend = pattern + size;
5e69f11e 2413
fa9a63c5 2414 /* How to translate the characters in the pattern. */
6676cb1c 2415 RE_TRANSLATE_TYPE translate = bufp->translate;
fa9a63c5
RM
2416
2417 /* Address of the count-byte of the most recently inserted `exactn'
2418 command. This makes it possible to tell if a new exact-match
2419 character can be added to that command or if the character requires
2420 a new `exactn' command. */
2421 unsigned char *pending_exact = 0;
2422
2423 /* Address of start of the most recently finished expression.
2424 This tells, e.g., postfix * where to find the start of its
2425 operand. Reset at the beginning of groups and alternatives. */
2426 unsigned char *laststart = 0;
2427
2428 /* Address of beginning of regexp, or inside of last group. */
2429 unsigned char *begalt;
2430
2431 /* Place in the uncompiled pattern (i.e., the {) to
2432 which to go back if the interval is invalid. */
66f0296e 2433 re_char *beg_interval;
5e69f11e 2434
fa9a63c5 2435 /* Address of the place where a forward jump should go to the end of
25fe55af 2436 the containing expression. Each alternative of an `or' -- except the
fa9a63c5
RM
2437 last -- ends with a forward jump of this sort. */
2438 unsigned char *fixup_alt_jump = 0;
2439
2440 /* Counts open-groups as they are encountered. Remembered for the
2441 matching close-group on the compile stack, so the same register
2442 number is put in the stop_memory as the start_memory. */
2443 regnum_t regnum = 0;
2444
b18215fc
RS
2445 /* Work area for range table of charset. */
2446 struct range_table_work_area range_table_work;
2447
2d1675e4
SM
2448 /* If the object matched can contain multibyte characters. */
2449 const boolean multibyte = RE_MULTIBYTE_P (bufp);
2450
f9b0fd99
RS
2451 /* Nonzero if we have pushed down into a subpattern. */
2452 int in_subpattern = 0;
2453
2454 /* These hold the values of p, pattern, and pend from the main
2455 pattern when we have pushed into a subpattern. */
2456 re_char *main_p;
2457 re_char *main_pattern;
2458 re_char *main_pend;
2459
fa9a63c5 2460#ifdef DEBUG
99633e97 2461 debug++;
fa9a63c5 2462 DEBUG_PRINT1 ("\nCompiling pattern: ");
99633e97 2463 if (debug > 0)
fa9a63c5
RM
2464 {
2465 unsigned debug_count;
5e69f11e 2466
fa9a63c5 2467 for (debug_count = 0; debug_count < size; debug_count++)
25fe55af 2468 putchar (pattern[debug_count]);
fa9a63c5
RM
2469 putchar ('\n');
2470 }
2471#endif /* DEBUG */
2472
2473 /* Initialize the compile stack. */
2474 compile_stack.stack = TALLOC (INIT_COMPILE_STACK_SIZE, compile_stack_elt_t);
2475 if (compile_stack.stack == NULL)
2476 return REG_ESPACE;
2477
2478 compile_stack.size = INIT_COMPILE_STACK_SIZE;
2479 compile_stack.avail = 0;
2480
b18215fc
RS
2481 range_table_work.table = 0;
2482 range_table_work.allocated = 0;
2483
fa9a63c5
RM
2484 /* Initialize the pattern buffer. */
2485 bufp->syntax = syntax;
2486 bufp->fastmap_accurate = 0;
2487 bufp->not_bol = bufp->not_eol = 0;
2488
2489 /* Set `used' to zero, so that if we return an error, the pattern
2490 printer (for debugging) will think there's no pattern. We reset it
2491 at the end. */
2492 bufp->used = 0;
5e69f11e 2493
fa9a63c5 2494 /* Always count groups, whether or not bufp->no_sub is set. */
5e69f11e 2495 bufp->re_nsub = 0;
fa9a63c5 2496
0b32bf0e 2497#if !defined emacs && !defined SYNTAX_TABLE
fa9a63c5
RM
2498 /* Initialize the syntax table. */
2499 init_syntax_once ();
2500#endif
2501
2502 if (bufp->allocated == 0)
2503 {
2504 if (bufp->buffer)
2505 { /* If zero allocated, but buffer is non-null, try to realloc
25fe55af
RS
2506 enough space. This loses if buffer's address is bogus, but
2507 that is the user's responsibility. */
2508 RETALLOC (bufp->buffer, INIT_BUF_SIZE, unsigned char);
2509 }
fa9a63c5 2510 else
25fe55af
RS
2511 { /* Caller did not allocate a buffer. Do it for them. */
2512 bufp->buffer = TALLOC (INIT_BUF_SIZE, unsigned char);
2513 }
fa9a63c5
RM
2514 if (!bufp->buffer) FREE_STACK_RETURN (REG_ESPACE);
2515
2516 bufp->allocated = INIT_BUF_SIZE;
2517 }
2518
2519 begalt = b = bufp->buffer;
2520
2521 /* Loop through the uncompiled pattern until we're at the end. */
f9b0fd99 2522 while (1)
fa9a63c5 2523 {
f9b0fd99
RS
2524 if (p == pend)
2525 {
2526 /* If this is the end of an included regexp,
2527 pop back to the main regexp and try again. */
2528 if (in_subpattern)
2529 {
2530 in_subpattern = 0;
2531 pattern = main_pattern;
2532 p = main_p;
2533 pend = main_pend;
2534 continue;
2535 }
2536 /* If this is the end of the main regexp, we are done. */
2537 break;
2538 }
2539
fa9a63c5
RM
2540 PATFETCH (c);
2541
2542 switch (c)
25fe55af 2543 {
f9b0fd99
RS
2544 case ' ':
2545 {
2546 re_char *p1 = p;
2547
2548 /* If there's no special whitespace regexp, treat
4fb680cd
RS
2549 spaces normally. And don't try to do this recursively. */
2550 if (!whitespace_regexp || in_subpattern)
f9b0fd99
RS
2551 goto normal_char;
2552
2553 /* Peek past following spaces. */
2554 while (p1 != pend)
2555 {
2556 if (*p1 != ' ')
2557 break;
2558 p1++;
2559 }
2560 /* If the spaces are followed by a repetition op,
2561 treat them normally. */
c721eee5
RS
2562 if (p1 != pend
2563 && (*p1 == '*' || *p1 == '+' || *p1 == '?'
f9b0fd99
RS
2564 || (*p1 == '\\' && p1 + 1 != pend && p1[1] == '{')))
2565 goto normal_char;
2566
2567 /* Replace the spaces with the whitespace regexp. */
2568 in_subpattern = 1;
2569 main_p = p1;
2570 main_pend = pend;
2571 main_pattern = pattern;
2572 p = pattern = whitespace_regexp;
2573 pend = p + strlen (p);
2574 break;
2575 }
2576
25fe55af
RS
2577 case '^':
2578 {
2579 if ( /* If at start of pattern, it's an operator. */
2580 p == pattern + 1
2581 /* If context independent, it's an operator. */
2582 || syntax & RE_CONTEXT_INDEP_ANCHORS
2583 /* Otherwise, depends on what's come before. */
2584 || at_begline_loc_p (pattern, p, syntax))
c0f9ea08 2585 BUF_PUSH ((syntax & RE_NO_NEWLINE_ANCHOR) ? begbuf : begline);
25fe55af
RS
2586 else
2587 goto normal_char;
2588 }
2589 break;
2590
2591
2592 case '$':
2593 {
2594 if ( /* If at end of pattern, it's an operator. */
2595 p == pend
2596 /* If context independent, it's an operator. */
2597 || syntax & RE_CONTEXT_INDEP_ANCHORS
2598 /* Otherwise, depends on what's next. */
2599 || at_endline_loc_p (p, pend, syntax))
c0f9ea08 2600 BUF_PUSH ((syntax & RE_NO_NEWLINE_ANCHOR) ? endbuf : endline);
25fe55af
RS
2601 else
2602 goto normal_char;
2603 }
2604 break;
fa9a63c5
RM
2605
2606
2607 case '+':
25fe55af
RS
2608 case '?':
2609 if ((syntax & RE_BK_PLUS_QM)
2610 || (syntax & RE_LIMITED_OPS))
2611 goto normal_char;
2612 handle_plus:
2613 case '*':
2614 /* If there is no previous pattern... */
2615 if (!laststart)
2616 {
2617 if (syntax & RE_CONTEXT_INVALID_OPS)
2618 FREE_STACK_RETURN (REG_BADRPT);
2619 else if (!(syntax & RE_CONTEXT_INDEP_OPS))
2620 goto normal_char;
2621 }
2622
2623 {
25fe55af 2624 /* 1 means zero (many) matches is allowed. */
66f0296e
SM
2625 boolean zero_times_ok = 0, many_times_ok = 0;
2626 boolean greedy = 1;
25fe55af
RS
2627
2628 /* If there is a sequence of repetition chars, collapse it
2629 down to just one (the right one). We can't combine
2630 interval operators with these because of, e.g., `a{2}*',
2631 which should only match an even number of `a's. */
2632
2633 for (;;)
2634 {
0b32bf0e 2635 if ((syntax & RE_FRUGAL)
1c8c6d39
DL
2636 && c == '?' && (zero_times_ok || many_times_ok))
2637 greedy = 0;
2638 else
2639 {
2640 zero_times_ok |= c != '+';
2641 many_times_ok |= c != '?';
2642 }
25fe55af
RS
2643
2644 if (p == pend)
2645 break;
ed0767d8
SM
2646 else if (*p == '*'
2647 || (!(syntax & RE_BK_PLUS_QM)
2648 && (*p == '+' || *p == '?')))
25fe55af 2649 ;
ed0767d8 2650 else if (syntax & RE_BK_PLUS_QM && *p == '\\')
25fe55af 2651 {
ed0767d8
SM
2652 if (p+1 == pend)
2653 FREE_STACK_RETURN (REG_EESCAPE);
2654 if (p[1] == '+' || p[1] == '?')
2655 PATFETCH (c); /* Gobble up the backslash. */
2656 else
2657 break;
25fe55af
RS
2658 }
2659 else
ed0767d8 2660 break;
25fe55af 2661 /* If we get here, we found another repeat character. */
ed0767d8
SM
2662 PATFETCH (c);
2663 }
25fe55af
RS
2664
2665 /* Star, etc. applied to an empty pattern is equivalent
2666 to an empty pattern. */
4e8a9132 2667 if (!laststart || laststart == b)
25fe55af
RS
2668 break;
2669
2670 /* Now we know whether or not zero matches is allowed
2671 and also whether or not two or more matches is allowed. */
1c8c6d39
DL
2672 if (greedy)
2673 {
99633e97 2674 if (many_times_ok)
4e8a9132
SM
2675 {
2676 boolean simple = skip_one_char (laststart) == b;
2677 unsigned int startoffset = 0;
f6a3f532 2678 re_opcode_t ofj =
01618498 2679 /* Check if the loop can match the empty string. */
6df42991
SM
2680 (simple || !analyse_first (laststart, b, NULL, 0))
2681 ? on_failure_jump : on_failure_jump_loop;
4e8a9132 2682 assert (skip_one_char (laststart) <= b);
177c0ea7 2683
4e8a9132
SM
2684 if (!zero_times_ok && simple)
2685 { /* Since simple * loops can be made faster by using
2686 on_failure_keep_string_jump, we turn simple P+
2687 into PP* if P is simple. */
2688 unsigned char *p1, *p2;
2689 startoffset = b - laststart;
2690 GET_BUFFER_SPACE (startoffset);
2691 p1 = b; p2 = laststart;
2692 while (p2 < p1)
2693 *b++ = *p2++;
2694 zero_times_ok = 1;
99633e97 2695 }
4e8a9132
SM
2696
2697 GET_BUFFER_SPACE (6);
2698 if (!zero_times_ok)
2699 /* A + loop. */
f6a3f532 2700 STORE_JUMP (ofj, b, b + 6);
99633e97 2701 else
4e8a9132
SM
2702 /* Simple * loops can use on_failure_keep_string_jump
2703 depending on what follows. But since we don't know
2704 that yet, we leave the decision up to
2705 on_failure_jump_smart. */
f6a3f532 2706 INSERT_JUMP (simple ? on_failure_jump_smart : ofj,
4e8a9132 2707 laststart + startoffset, b + 6);
99633e97 2708 b += 3;
4e8a9132 2709 STORE_JUMP (jump, b, laststart + startoffset);
99633e97
SM
2710 b += 3;
2711 }
2712 else
2713 {
4e8a9132
SM
2714 /* A simple ? pattern. */
2715 assert (zero_times_ok);
2716 GET_BUFFER_SPACE (3);
2717 INSERT_JUMP (on_failure_jump, laststart, b + 3);
99633e97
SM
2718 b += 3;
2719 }
1c8c6d39
DL
2720 }
2721 else /* not greedy */
2722 { /* I wish the greedy and non-greedy cases could be merged. */
2723
0683b6fa 2724 GET_BUFFER_SPACE (7); /* We might use less. */
1c8c6d39
DL
2725 if (many_times_ok)
2726 {
f6a3f532
SM
2727 boolean emptyp = analyse_first (laststart, b, NULL, 0);
2728
6df42991
SM
2729 /* The non-greedy multiple match looks like
2730 a repeat..until: we only need a conditional jump
2731 at the end of the loop. */
f6a3f532
SM
2732 if (emptyp) BUF_PUSH (no_op);
2733 STORE_JUMP (emptyp ? on_failure_jump_nastyloop
2734 : on_failure_jump, b, laststart);
1c8c6d39
DL
2735 b += 3;
2736 if (zero_times_ok)
2737 {
2738 /* The repeat...until naturally matches one or more.
2739 To also match zero times, we need to first jump to
6df42991 2740 the end of the loop (its conditional jump). */
1c8c6d39
DL
2741 INSERT_JUMP (jump, laststart, b);
2742 b += 3;
2743 }
2744 }
2745 else
2746 {
2747 /* non-greedy a?? */
1c8c6d39
DL
2748 INSERT_JUMP (jump, laststart, b + 3);
2749 b += 3;
2750 INSERT_JUMP (on_failure_jump, laststart, laststart + 6);
2751 b += 3;
2752 }
2753 }
2754 }
4e8a9132 2755 pending_exact = 0;
fa9a63c5
RM
2756 break;
2757
2758
2759 case '.':
25fe55af
RS
2760 laststart = b;
2761 BUF_PUSH (anychar);
2762 break;
fa9a63c5
RM
2763
2764
25fe55af
RS
2765 case '[':
2766 {
b18215fc 2767 CLEAR_RANGE_TABLE_WORK_USED (range_table_work);
fa9a63c5 2768
25fe55af 2769 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
fa9a63c5 2770
25fe55af
RS
2771 /* Ensure that we have enough space to push a charset: the
2772 opcode, the length count, and the bitset; 34 bytes in all. */
fa9a63c5
RM
2773 GET_BUFFER_SPACE (34);
2774
25fe55af 2775 laststart = b;
e318085a 2776
25fe55af
RS
2777 /* We test `*p == '^' twice, instead of using an if
2778 statement, so we only need one BUF_PUSH. */
2779 BUF_PUSH (*p == '^' ? charset_not : charset);
2780 if (*p == '^')
2781 p++;
e318085a 2782
25fe55af
RS
2783 /* Remember the first position in the bracket expression. */
2784 p1 = p;
e318085a 2785
25fe55af
RS
2786 /* Push the number of bytes in the bitmap. */
2787 BUF_PUSH ((1 << BYTEWIDTH) / BYTEWIDTH);
e318085a 2788
25fe55af
RS
2789 /* Clear the whole map. */
2790 bzero (b, (1 << BYTEWIDTH) / BYTEWIDTH);
e318085a 2791
25fe55af
RS
2792 /* charset_not matches newline according to a syntax bit. */
2793 if ((re_opcode_t) b[-2] == charset_not
2794 && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
2795 SET_LIST_BIT ('\n');
fa9a63c5 2796
25fe55af
RS
2797 /* Read in characters and ranges, setting map bits. */
2798 for (;;)
2799 {
b18215fc 2800 boolean escaped_char = false;
2d1675e4 2801 const unsigned char *p2 = p;
e318085a 2802
25fe55af 2803 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
e318085a 2804
36595814
SM
2805 /* Don't translate yet. The range TRANSLATE(X..Y) cannot
2806 always be determined from TRANSLATE(X) and TRANSLATE(Y)
2807 So the translation is done later in a loop. Example:
2808 (let ((case-fold-search t)) (string-match "[A-_]" "A")) */
25fe55af 2809 PATFETCH (c);
e318085a 2810
25fe55af
RS
2811 /* \ might escape characters inside [...] and [^...]. */
2812 if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
2813 {
2814 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
e318085a
RS
2815
2816 PATFETCH (c);
b18215fc 2817 escaped_char = true;
25fe55af 2818 }
b18215fc
RS
2819 else
2820 {
657fcfbd
RS
2821 /* Could be the end of the bracket expression. If it's
2822 not (i.e., when the bracket expression is `[]' so
2823 far), the ']' character bit gets set way below. */
2d1675e4 2824 if (c == ']' && p2 != p1)
657fcfbd 2825 break;
25fe55af 2826 }
b18215fc 2827
b18215fc
RS
2828 /* What should we do for the character which is
2829 greater than 0x7F, but not BASE_LEADING_CODE_P?
2830 XXX */
2831
25fe55af
RS
2832 /* See if we're at the beginning of a possible character
2833 class. */
b18215fc 2834
2d1675e4
SM
2835 if (!escaped_char &&
2836 syntax & RE_CHAR_CLASSES && c == '[' && *p == ':')
657fcfbd
RS
2837 {
2838 /* Leave room for the null. */
14473664 2839 unsigned char str[CHAR_CLASS_MAX_LENGTH + 1];
ed0767d8 2840 const unsigned char *class_beg;
b18215fc 2841
25fe55af
RS
2842 PATFETCH (c);
2843 c1 = 0;
ed0767d8 2844 class_beg = p;
b18215fc 2845
25fe55af
RS
2846 /* If pattern is `[[:'. */
2847 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
b18215fc 2848
25fe55af
RS
2849 for (;;)
2850 {
14473664
SM
2851 PATFETCH (c);
2852 if ((c == ':' && *p == ']') || p == pend)
2853 break;
2854 if (c1 < CHAR_CLASS_MAX_LENGTH)
2855 str[c1++] = c;
2856 else
2857 /* This is in any case an invalid class name. */
2858 str[0] = '\0';
25fe55af
RS
2859 }
2860 str[c1] = '\0';
b18215fc
RS
2861
2862 /* If isn't a word bracketed by `[:' and `:]':
2863 undo the ending character, the letters, and
2864 leave the leading `:' and `[' (but set bits for
2865 them). */
25fe55af
RS
2866 if (c == ':' && *p == ']')
2867 {
36595814 2868 re_wchar_t ch;
14473664
SM
2869 re_wctype_t cc;
2870
2871 cc = re_wctype (str);
2872
2873 if (cc == 0)
fa9a63c5
RM
2874 FREE_STACK_RETURN (REG_ECTYPE);
2875
14473664
SM
2876 /* Throw away the ] at the end of the character
2877 class. */
2878 PATFETCH (c);
fa9a63c5 2879
14473664 2880 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
fa9a63c5 2881
96cc36cc
RS
2882 /* Most character classes in a multibyte match
2883 just set a flag. Exceptions are is_blank,
2884 is_digit, is_cntrl, and is_xdigit, since
2885 they can only match ASCII characters. We
14473664
SM
2886 don't need to handle them for multibyte.
2887 They are distinguished by a negative wctype. */
96cc36cc 2888
2d1675e4 2889 if (multibyte)
14473664
SM
2890 SET_RANGE_TABLE_WORK_AREA_BIT (range_table_work,
2891 re_wctype_to_bit (cc));
96cc36cc 2892
14473664 2893 for (ch = 0; ch < 1 << BYTEWIDTH; ++ch)
25fe55af 2894 {
7ae68633 2895 int translated = TRANSLATE (ch);
14473664 2896 if (re_iswctype (btowc (ch), cc))
96cc36cc 2897 SET_LIST_BIT (translated);
25fe55af 2898 }
b18215fc
RS
2899
2900 /* Repeat the loop. */
2901 continue;
25fe55af
RS
2902 }
2903 else
2904 {
ed0767d8
SM
2905 /* Go back to right after the "[:". */
2906 p = class_beg;
25fe55af 2907 SET_LIST_BIT ('[');
b18215fc
RS
2908
2909 /* Because the `:' may starts the range, we
2910 can't simply set bit and repeat the loop.
25fe55af 2911 Instead, just set it to C and handle below. */
b18215fc 2912 c = ':';
25fe55af
RS
2913 }
2914 }
b18215fc
RS
2915
2916 if (p < pend && p[0] == '-' && p[1] != ']')
2917 {
2918
2919 /* Discard the `-'. */
2920 PATFETCH (c1);
2921
2922 /* Fetch the character which ends the range. */
2923 PATFETCH (c1);
b18215fc 2924
b54f61ed 2925 if (SINGLE_BYTE_CHAR_P (c))
e934739e 2926 {
b54f61ed
KH
2927 if (! SINGLE_BYTE_CHAR_P (c1))
2928 {
3ff2446d
KH
2929 /* Handle a range starting with a
2930 character of less than 256, and ending
2931 with a character of not less than 256.
2932 Split that into two ranges, the low one
2933 ending at 0377, and the high one
2934 starting at the smallest character in
2935 the charset of C1 and ending at C1. */
b54f61ed 2936 int charset = CHAR_CHARSET (c1);
36595814
SM
2937 re_wchar_t c2 = MAKE_CHAR (charset, 0, 0);
2938
b54f61ed
KH
2939 SET_RANGE_TABLE_WORK_AREA (range_table_work,
2940 c2, c1);
333526e0 2941 c1 = 0377;
b54f61ed 2942 }
e934739e
RS
2943 }
2944 else if (!SAME_CHARSET_P (c, c1))
b3e4c897 2945 FREE_STACK_RETURN (REG_ERANGEX);
e318085a 2946 }
25fe55af 2947 else
b18215fc
RS
2948 /* Range from C to C. */
2949 c1 = c;
2950
2951 /* Set the range ... */
2952 if (SINGLE_BYTE_CHAR_P (c))
2953 /* ... into bitmap. */
25fe55af 2954 {
01618498 2955 re_wchar_t this_char;
36595814 2956 re_wchar_t range_start = c, range_end = c1;
b18215fc
RS
2957
2958 /* If the start is after the end, the range is empty. */
2959 if (range_start > range_end)
2960 {
2961 if (syntax & RE_NO_EMPTY_RANGES)
2962 FREE_STACK_RETURN (REG_ERANGE);
2963 /* Else, repeat the loop. */
2964 }
2965 else
2966 {
2967 for (this_char = range_start; this_char <= range_end;
2968 this_char++)
2969 SET_LIST_BIT (TRANSLATE (this_char));
e934739e 2970 }
25fe55af 2971 }
e318085a 2972 else
b18215fc
RS
2973 /* ... into range table. */
2974 SET_RANGE_TABLE_WORK_AREA (range_table_work, c, c1);
e318085a
RS
2975 }
2976
25fe55af
RS
2977 /* Discard any (non)matching list bytes that are all 0 at the
2978 end of the map. Decrease the map-length byte too. */
2979 while ((int) b[-1] > 0 && b[b[-1] - 1] == 0)
2980 b[-1]--;
2981 b += b[-1];
fa9a63c5 2982
96cc36cc
RS
2983 /* Build real range table from work area. */
2984 if (RANGE_TABLE_WORK_USED (range_table_work)
2985 || RANGE_TABLE_WORK_BITS (range_table_work))
b18215fc
RS
2986 {
2987 int i;
2988 int used = RANGE_TABLE_WORK_USED (range_table_work);
fa9a63c5 2989
b18215fc 2990 /* Allocate space for COUNT + RANGE_TABLE. Needs two
96cc36cc
RS
2991 bytes for flags, two for COUNT, and three bytes for
2992 each character. */
2993 GET_BUFFER_SPACE (4 + used * 3);
fa9a63c5 2994
b18215fc
RS
2995 /* Indicate the existence of range table. */
2996 laststart[1] |= 0x80;
fa9a63c5 2997
96cc36cc
RS
2998 /* Store the character class flag bits into the range table.
2999 If not in emacs, these flag bits are always 0. */
3000 *b++ = RANGE_TABLE_WORK_BITS (range_table_work) & 0xff;
3001 *b++ = RANGE_TABLE_WORK_BITS (range_table_work) >> 8;
3002
b18215fc
RS
3003 STORE_NUMBER_AND_INCR (b, used / 2);
3004 for (i = 0; i < used; i++)
3005 STORE_CHARACTER_AND_INCR
3006 (b, RANGE_TABLE_WORK_ELT (range_table_work, i));
3007 }
25fe55af
RS
3008 }
3009 break;
fa9a63c5
RM
3010
3011
b18215fc 3012 case '(':
25fe55af
RS
3013 if (syntax & RE_NO_BK_PARENS)
3014 goto handle_open;
3015 else
3016 goto normal_char;
fa9a63c5
RM
3017
3018
25fe55af
RS
3019 case ')':
3020 if (syntax & RE_NO_BK_PARENS)
3021 goto handle_close;
3022 else
3023 goto normal_char;
e318085a
RS
3024
3025
25fe55af
RS
3026 case '\n':
3027 if (syntax & RE_NEWLINE_ALT)
3028 goto handle_alt;
3029 else
3030 goto normal_char;
e318085a
RS
3031
3032
b18215fc 3033 case '|':
25fe55af
RS
3034 if (syntax & RE_NO_BK_VBAR)
3035 goto handle_alt;
3036 else
3037 goto normal_char;
3038
3039
3040 case '{':
3041 if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES)
3042 goto handle_interval;
3043 else
3044 goto normal_char;
3045
3046
3047 case '\\':
3048 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
3049
3050 /* Do not translate the character after the \, so that we can
3051 distinguish, e.g., \B from \b, even if we normally would
3052 translate, e.g., B to b. */
36595814 3053 PATFETCH (c);
25fe55af
RS
3054
3055 switch (c)
3056 {
3057 case '(':
3058 if (syntax & RE_NO_BK_PARENS)
3059 goto normal_backslash;
3060
3061 handle_open:
505bde11
SM
3062 {
3063 int shy = 0;
3064 if (p+1 < pend)
3065 {
3066 /* Look for a special (?...) construct */
ed0767d8 3067 if ((syntax & RE_SHY_GROUPS) && *p == '?')
505bde11 3068 {
ed0767d8 3069 PATFETCH (c); /* Gobble up the '?'. */
505bde11
SM
3070 PATFETCH (c);
3071 switch (c)
3072 {
3073 case ':': shy = 1; break;
3074 default:
3075 /* Only (?:...) is supported right now. */
3076 FREE_STACK_RETURN (REG_BADPAT);
3077 }
3078 }
505bde11
SM
3079 }
3080
3081 if (!shy)
3082 {
3083 bufp->re_nsub++;
3084 regnum++;
3085 }
25fe55af 3086
99633e97
SM
3087 if (COMPILE_STACK_FULL)
3088 {
3089 RETALLOC (compile_stack.stack, compile_stack.size << 1,
3090 compile_stack_elt_t);
3091 if (compile_stack.stack == NULL) return REG_ESPACE;
25fe55af 3092
99633e97
SM
3093 compile_stack.size <<= 1;
3094 }
25fe55af 3095
99633e97
SM
3096 /* These are the values to restore when we hit end of this
3097 group. They are all relative offsets, so that if the
3098 whole pattern moves because of realloc, they will still
3099 be valid. */
3100 COMPILE_STACK_TOP.begalt_offset = begalt - bufp->buffer;
3101 COMPILE_STACK_TOP.fixup_alt_jump
3102 = fixup_alt_jump ? fixup_alt_jump - bufp->buffer + 1 : 0;
3103 COMPILE_STACK_TOP.laststart_offset = b - bufp->buffer;
3104 COMPILE_STACK_TOP.regnum = shy ? -regnum : regnum;
3105
3106 /* Do not push a
3107 start_memory for groups beyond the last one we can
3108 represent in the compiled pattern. */
3109 if (regnum <= MAX_REGNUM && !shy)
3110 BUF_PUSH_2 (start_memory, regnum);
3111
3112 compile_stack.avail++;
3113
3114 fixup_alt_jump = 0;
3115 laststart = 0;
3116 begalt = b;
3117 /* If we've reached MAX_REGNUM groups, then this open
3118 won't actually generate any code, so we'll have to
3119 clear pending_exact explicitly. */
3120 pending_exact = 0;
3121 break;
505bde11 3122 }
25fe55af
RS
3123
3124 case ')':
3125 if (syntax & RE_NO_BK_PARENS) goto normal_backslash;
3126
3127 if (COMPILE_STACK_EMPTY)
505bde11
SM
3128 {
3129 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
3130 goto normal_backslash;
3131 else
3132 FREE_STACK_RETURN (REG_ERPAREN);
3133 }
25fe55af
RS
3134
3135 handle_close:
505bde11 3136 FIXUP_ALT_JUMP ();
25fe55af
RS
3137
3138 /* See similar code for backslashed left paren above. */
3139 if (COMPILE_STACK_EMPTY)
505bde11
SM
3140 {
3141 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
3142 goto normal_char;
3143 else
3144 FREE_STACK_RETURN (REG_ERPAREN);
3145 }
25fe55af
RS
3146
3147 /* Since we just checked for an empty stack above, this
3148 ``can't happen''. */
3149 assert (compile_stack.avail != 0);
3150 {
3151 /* We don't just want to restore into `regnum', because
3152 later groups should continue to be numbered higher,
3153 as in `(ab)c(de)' -- the second group is #2. */
3154 regnum_t this_group_regnum;
3155
3156 compile_stack.avail--;
3157 begalt = bufp->buffer + COMPILE_STACK_TOP.begalt_offset;
3158 fixup_alt_jump
3159 = COMPILE_STACK_TOP.fixup_alt_jump
3160 ? bufp->buffer + COMPILE_STACK_TOP.fixup_alt_jump - 1
3161 : 0;
3162 laststart = bufp->buffer + COMPILE_STACK_TOP.laststart_offset;
3163 this_group_regnum = COMPILE_STACK_TOP.regnum;
b18215fc
RS
3164 /* If we've reached MAX_REGNUM groups, then this open
3165 won't actually generate any code, so we'll have to
3166 clear pending_exact explicitly. */
3167 pending_exact = 0;
e318085a 3168
25fe55af
RS
3169 /* We're at the end of the group, so now we know how many
3170 groups were inside this one. */
505bde11
SM
3171 if (this_group_regnum <= MAX_REGNUM && this_group_regnum > 0)
3172 BUF_PUSH_2 (stop_memory, this_group_regnum);
25fe55af
RS
3173 }
3174 break;
3175
3176
3177 case '|': /* `\|'. */
3178 if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR)
3179 goto normal_backslash;
3180 handle_alt:
3181 if (syntax & RE_LIMITED_OPS)
3182 goto normal_char;
3183
3184 /* Insert before the previous alternative a jump which
3185 jumps to this alternative if the former fails. */
3186 GET_BUFFER_SPACE (3);
3187 INSERT_JUMP (on_failure_jump, begalt, b + 6);
3188 pending_exact = 0;
3189 b += 3;
3190
3191 /* The alternative before this one has a jump after it
3192 which gets executed if it gets matched. Adjust that
3193 jump so it will jump to this alternative's analogous
3194 jump (put in below, which in turn will jump to the next
3195 (if any) alternative's such jump, etc.). The last such
3196 jump jumps to the correct final destination. A picture:
3197 _____ _____
3198 | | | |
3199 | v | v
3200 a | b | c
3201
3202 If we are at `b', then fixup_alt_jump right now points to a
3203 three-byte space after `a'. We'll put in the jump, set
3204 fixup_alt_jump to right after `b', and leave behind three
3205 bytes which we'll fill in when we get to after `c'. */
3206
505bde11 3207 FIXUP_ALT_JUMP ();
25fe55af
RS
3208
3209 /* Mark and leave space for a jump after this alternative,
3210 to be filled in later either by next alternative or
3211 when know we're at the end of a series of alternatives. */
3212 fixup_alt_jump = b;
3213 GET_BUFFER_SPACE (3);
3214 b += 3;
3215
3216 laststart = 0;
3217 begalt = b;
3218 break;
3219
3220
3221 case '{':
3222 /* If \{ is a literal. */
3223 if (!(syntax & RE_INTERVALS)
3224 /* If we're at `\{' and it's not the open-interval
3225 operator. */
4bb91c68 3226 || (syntax & RE_NO_BK_BRACES))
25fe55af
RS
3227 goto normal_backslash;
3228
3229 handle_interval:
3230 {
3231 /* If got here, then the syntax allows intervals. */
3232
3233 /* At least (most) this many matches must be made. */
99633e97 3234 int lower_bound = 0, upper_bound = -1;
25fe55af 3235
ed0767d8 3236 beg_interval = p;
25fe55af 3237
25fe55af
RS
3238 GET_UNSIGNED_NUMBER (lower_bound);
3239
3240 if (c == ',')
ed0767d8 3241 GET_UNSIGNED_NUMBER (upper_bound);
25fe55af
RS
3242 else
3243 /* Interval such as `{1}' => match exactly once. */
3244 upper_bound = lower_bound;
3245
3246 if (lower_bound < 0 || upper_bound > RE_DUP_MAX
ed0767d8 3247 || (upper_bound >= 0 && lower_bound > upper_bound))
4bb91c68 3248 FREE_STACK_RETURN (REG_BADBR);
25fe55af
RS
3249
3250 if (!(syntax & RE_NO_BK_BRACES))
3251 {
4bb91c68
SM
3252 if (c != '\\')
3253 FREE_STACK_RETURN (REG_BADBR);
c72b0edd
SM
3254 if (p == pend)
3255 FREE_STACK_RETURN (REG_EESCAPE);
25fe55af
RS
3256 PATFETCH (c);
3257 }
3258
3259 if (c != '}')
4bb91c68 3260 FREE_STACK_RETURN (REG_BADBR);
25fe55af
RS
3261
3262 /* We just parsed a valid interval. */
3263
3264 /* If it's invalid to have no preceding re. */
3265 if (!laststart)
3266 {
3267 if (syntax & RE_CONTEXT_INVALID_OPS)
3268 FREE_STACK_RETURN (REG_BADRPT);
3269 else if (syntax & RE_CONTEXT_INDEP_OPS)
3270 laststart = b;
3271 else
3272 goto unfetch_interval;
3273 }
3274
6df42991
SM
3275 if (upper_bound == 0)
3276 /* If the upper bound is zero, just drop the sub pattern
3277 altogether. */
3278 b = laststart;
3279 else if (lower_bound == 1 && upper_bound == 1)
3280 /* Just match it once: nothing to do here. */
3281 ;
3282
3283 /* Otherwise, we have a nontrivial interval. When
3284 we're all done, the pattern will look like:
3285 set_number_at <jump count> <upper bound>
3286 set_number_at <succeed_n count> <lower bound>
3287 succeed_n <after jump addr> <succeed_n count>
3288 <body of loop>
3289 jump_n <succeed_n addr> <jump count>
3290 (The upper bound and `jump_n' are omitted if
3291 `upper_bound' is 1, though.) */
3292 else
3293 { /* If the upper bound is > 1, we need to insert
3294 more at the end of the loop. */
3295 unsigned int nbytes = (upper_bound < 0 ? 3
3296 : upper_bound > 1 ? 5 : 0);
3297 unsigned int startoffset = 0;
3298
3299 GET_BUFFER_SPACE (20); /* We might use less. */
3300
3301 if (lower_bound == 0)
3302 {
3303 /* A succeed_n that starts with 0 is really a
3304 a simple on_failure_jump_loop. */
3305 INSERT_JUMP (on_failure_jump_loop, laststart,
3306 b + 3 + nbytes);
3307 b += 3;
3308 }
3309 else
3310 {
3311 /* Initialize lower bound of the `succeed_n', even
3312 though it will be set during matching by its
3313 attendant `set_number_at' (inserted next),
3314 because `re_compile_fastmap' needs to know.
3315 Jump to the `jump_n' we might insert below. */
3316 INSERT_JUMP2 (succeed_n, laststart,
3317 b + 5 + nbytes,
3318 lower_bound);
3319 b += 5;
3320
3321 /* Code to initialize the lower bound. Insert
3322 before the `succeed_n'. The `5' is the last two
3323 bytes of this `set_number_at', plus 3 bytes of
3324 the following `succeed_n'. */
3325 insert_op2 (set_number_at, laststart, 5, lower_bound, b);
3326 b += 5;
3327 startoffset += 5;
3328 }
3329
3330 if (upper_bound < 0)
3331 {
3332 /* A negative upper bound stands for infinity,
3333 in which case it degenerates to a plain jump. */
3334 STORE_JUMP (jump, b, laststart + startoffset);
3335 b += 3;
3336 }
3337 else if (upper_bound > 1)
3338 { /* More than one repetition is allowed, so
3339 append a backward jump to the `succeed_n'
3340 that starts this interval.
3341
3342 When we've reached this during matching,
3343 we'll have matched the interval once, so
3344 jump back only `upper_bound - 1' times. */
3345 STORE_JUMP2 (jump_n, b, laststart + startoffset,
3346 upper_bound - 1);
3347 b += 5;
3348
3349 /* The location we want to set is the second
3350 parameter of the `jump_n'; that is `b-2' as
3351 an absolute address. `laststart' will be
3352 the `set_number_at' we're about to insert;
3353 `laststart+3' the number to set, the source
3354 for the relative address. But we are
3355 inserting into the middle of the pattern --
3356 so everything is getting moved up by 5.
3357 Conclusion: (b - 2) - (laststart + 3) + 5,
3358 i.e., b - laststart.
3359
3360 We insert this at the beginning of the loop
3361 so that if we fail during matching, we'll
3362 reinitialize the bounds. */
3363 insert_op2 (set_number_at, laststart, b - laststart,
3364 upper_bound - 1, b);
3365 b += 5;
3366 }
3367 }
25fe55af
RS
3368 pending_exact = 0;
3369 beg_interval = NULL;
3370 }
3371 break;
3372
3373 unfetch_interval:
3374 /* If an invalid interval, match the characters as literals. */
3375 assert (beg_interval);
3376 p = beg_interval;
3377 beg_interval = NULL;
3378
3379 /* normal_char and normal_backslash need `c'. */
ed0767d8 3380 c = '{';
25fe55af
RS
3381
3382 if (!(syntax & RE_NO_BK_BRACES))
3383 {
ed0767d8
SM
3384 assert (p > pattern && p[-1] == '\\');
3385 goto normal_backslash;
25fe55af 3386 }
ed0767d8
SM
3387 else
3388 goto normal_char;
e318085a 3389
b18215fc 3390#ifdef emacs
25fe55af
RS
3391 /* There is no way to specify the before_dot and after_dot
3392 operators. rms says this is ok. --karl */
3393 case '=':
3394 BUF_PUSH (at_dot);
3395 break;
3396
3397 case 's':
3398 laststart = b;
3399 PATFETCH (c);
3400 BUF_PUSH_2 (syntaxspec, syntax_spec_code[c]);
3401 break;
3402
3403 case 'S':
3404 laststart = b;
3405 PATFETCH (c);
3406 BUF_PUSH_2 (notsyntaxspec, syntax_spec_code[c]);
3407 break;
b18215fc
RS
3408
3409 case 'c':
3410 laststart = b;
36595814 3411 PATFETCH (c);
b18215fc
RS
3412 BUF_PUSH_2 (categoryspec, c);
3413 break;
e318085a 3414
b18215fc
RS
3415 case 'C':
3416 laststart = b;
36595814 3417 PATFETCH (c);
b18215fc
RS
3418 BUF_PUSH_2 (notcategoryspec, c);
3419 break;
3420#endif /* emacs */
e318085a 3421
e318085a 3422
25fe55af 3423 case 'w':
4bb91c68
SM
3424 if (syntax & RE_NO_GNU_OPS)
3425 goto normal_char;
25fe55af 3426 laststart = b;
1fb352e0 3427 BUF_PUSH_2 (syntaxspec, Sword);
25fe55af 3428 break;
e318085a 3429
e318085a 3430
25fe55af 3431 case 'W':
4bb91c68
SM
3432 if (syntax & RE_NO_GNU_OPS)
3433 goto normal_char;
25fe55af 3434 laststart = b;
1fb352e0 3435 BUF_PUSH_2 (notsyntaxspec, Sword);
25fe55af 3436 break;
e318085a
RS
3437
3438
25fe55af 3439 case '<':
4bb91c68
SM
3440 if (syntax & RE_NO_GNU_OPS)
3441 goto normal_char;
25fe55af
RS
3442 BUF_PUSH (wordbeg);
3443 break;
e318085a 3444
25fe55af 3445 case '>':
4bb91c68
SM
3446 if (syntax & RE_NO_GNU_OPS)
3447 goto normal_char;
25fe55af
RS
3448 BUF_PUSH (wordend);
3449 break;
e318085a 3450
669fa600
SM
3451 case '_':
3452 if (syntax & RE_NO_GNU_OPS)
3453 goto normal_char;
3454 laststart = b;
3455 PATFETCH (c);
3456 if (c == '<')
3457 BUF_PUSH (symbeg);
3458 else if (c == '>')
3459 BUF_PUSH (symend);
3460 else
3461 FREE_STACK_RETURN (REG_BADPAT);
3462 break;
3463
25fe55af 3464 case 'b':
4bb91c68
SM
3465 if (syntax & RE_NO_GNU_OPS)
3466 goto normal_char;
25fe55af
RS
3467 BUF_PUSH (wordbound);
3468 break;
e318085a 3469
25fe55af 3470 case 'B':
4bb91c68
SM
3471 if (syntax & RE_NO_GNU_OPS)
3472 goto normal_char;
25fe55af
RS
3473 BUF_PUSH (notwordbound);
3474 break;
fa9a63c5 3475
25fe55af 3476 case '`':
4bb91c68
SM
3477 if (syntax & RE_NO_GNU_OPS)
3478 goto normal_char;
25fe55af
RS
3479 BUF_PUSH (begbuf);
3480 break;
e318085a 3481
25fe55af 3482 case '\'':
4bb91c68
SM
3483 if (syntax & RE_NO_GNU_OPS)
3484 goto normal_char;
25fe55af
RS
3485 BUF_PUSH (endbuf);
3486 break;
e318085a 3487
25fe55af
RS
3488 case '1': case '2': case '3': case '4': case '5':
3489 case '6': case '7': case '8': case '9':
0cdd06f8
SM
3490 {
3491 regnum_t reg;
e318085a 3492
0cdd06f8
SM
3493 if (syntax & RE_NO_BK_REFS)
3494 goto normal_backslash;
e318085a 3495
0cdd06f8 3496 reg = c - '0';
e318085a 3497
0cdd06f8
SM
3498 /* Can't back reference to a subexpression before its end. */
3499 if (reg > regnum || group_in_compile_stack (compile_stack, reg))
3500 FREE_STACK_RETURN (REG_ESUBREG);
e318085a 3501
0cdd06f8
SM
3502 laststart = b;
3503 BUF_PUSH_2 (duplicate, reg);
3504 }
25fe55af 3505 break;
e318085a 3506
e318085a 3507
25fe55af
RS
3508 case '+':
3509 case '?':
3510 if (syntax & RE_BK_PLUS_QM)
3511 goto handle_plus;
3512 else
3513 goto normal_backslash;
3514
3515 default:
3516 normal_backslash:
3517 /* You might think it would be useful for \ to mean
3518 not to translate; but if we don't translate it
4bb91c68 3519 it will never match anything. */
25fe55af
RS
3520 goto normal_char;
3521 }
3522 break;
fa9a63c5
RM
3523
3524
3525 default:
25fe55af 3526 /* Expects the character in `c'. */
fa9a63c5 3527 normal_char:
36595814 3528 /* If no exactn currently being built. */
25fe55af 3529 if (!pending_exact
fa9a63c5 3530
25fe55af
RS
3531 /* If last exactn not at current position. */
3532 || pending_exact + *pending_exact + 1 != b
5e69f11e 3533
25fe55af 3534 /* We have only one byte following the exactn for the count. */
2d1675e4 3535 || *pending_exact >= (1 << BYTEWIDTH) - MAX_MULTIBYTE_LENGTH
fa9a63c5 3536
25fe55af 3537 /* If followed by a repetition operator. */
9d99031f 3538 || (p != pend && (*p == '*' || *p == '^'))
fa9a63c5 3539 || ((syntax & RE_BK_PLUS_QM)
9d99031f
RS
3540 ? p + 1 < pend && *p == '\\' && (p[1] == '+' || p[1] == '?')
3541 : p != pend && (*p == '+' || *p == '?'))
fa9a63c5 3542 || ((syntax & RE_INTERVALS)
25fe55af 3543 && ((syntax & RE_NO_BK_BRACES)
9d99031f
RS
3544 ? p != pend && *p == '{'
3545 : p + 1 < pend && p[0] == '\\' && p[1] == '{')))
fa9a63c5
RM
3546 {
3547 /* Start building a new exactn. */
5e69f11e 3548
25fe55af 3549 laststart = b;
fa9a63c5
RM
3550
3551 BUF_PUSH_2 (exactn, 0);
3552 pending_exact = b - 1;
25fe55af 3553 }
5e69f11e 3554
2d1675e4
SM
3555 GET_BUFFER_SPACE (MAX_MULTIBYTE_LENGTH);
3556 {
e0277a47
KH
3557 int len;
3558
36595814 3559 c = TRANSLATE (c);
e0277a47
KH
3560 if (multibyte)
3561 len = CHAR_STRING (c, b);
3562 else
3563 *b = c, len = 1;
2d1675e4
SM
3564 b += len;
3565 (*pending_exact) += len;
3566 }
3567
fa9a63c5 3568 break;
25fe55af 3569 } /* switch (c) */
fa9a63c5
RM
3570 } /* while p != pend */
3571
5e69f11e 3572
fa9a63c5 3573 /* Through the pattern now. */
5e69f11e 3574
505bde11 3575 FIXUP_ALT_JUMP ();
fa9a63c5 3576
5e69f11e 3577 if (!COMPILE_STACK_EMPTY)
fa9a63c5
RM
3578 FREE_STACK_RETURN (REG_EPAREN);
3579
3580 /* If we don't want backtracking, force success
3581 the first time we reach the end of the compiled pattern. */
3582 if (syntax & RE_NO_POSIX_BACKTRACKING)
3583 BUF_PUSH (succeed);
3584
fa9a63c5
RM
3585 /* We have succeeded; set the length of the buffer. */
3586 bufp->used = b - bufp->buffer;
3587
3588#ifdef DEBUG
99633e97 3589 if (debug > 0)
fa9a63c5 3590 {
505bde11 3591 re_compile_fastmap (bufp);
fa9a63c5
RM
3592 DEBUG_PRINT1 ("\nCompiled pattern: \n");
3593 print_compiled_pattern (bufp);
3594 }
99633e97 3595 debug--;
fa9a63c5
RM
3596#endif /* DEBUG */
3597
3598#ifndef MATCH_MAY_ALLOCATE
3599 /* Initialize the failure stack to the largest possible stack. This
3600 isn't necessary unless we're trying to avoid calling alloca in
3601 the search and match routines. */
3602 {
3603 int num_regs = bufp->re_nsub + 1;
3604
320a2a73 3605 if (fail_stack.size < re_max_failures * TYPICAL_FAILURE_SIZE)
fa9a63c5 3606 {
a26f4ccd 3607 fail_stack.size = re_max_failures * TYPICAL_FAILURE_SIZE;
fa9a63c5 3608
fa9a63c5
RM
3609 if (! fail_stack.stack)
3610 fail_stack.stack
7b1d7d66
RS
3611 = (fail_stack_elt_t *) xmalloc (fail_stack.size
3612 * sizeof (fail_stack_elt_t));
fa9a63c5
RM
3613 else
3614 fail_stack.stack
7b1d7d66
RS
3615 = (fail_stack_elt_t *) xrealloc (fail_stack.stack,
3616 (fail_stack.size
3617 * sizeof (fail_stack_elt_t)));
fa9a63c5
RM
3618 }
3619
3620 regex_grow_registers (num_regs);
3621 }
3622#endif /* not MATCH_MAY_ALLOCATE */
3623
7c67c9f6 3624 FREE_STACK_RETURN (REG_NOERROR);
fa9a63c5
RM
3625} /* regex_compile */
3626\f
3627/* Subroutines for `regex_compile'. */
3628
25fe55af 3629/* Store OP at LOC followed by two-byte integer parameter ARG. */
fa9a63c5
RM
3630
3631static void
3632store_op1 (op, loc, arg)
3633 re_opcode_t op;
3634 unsigned char *loc;
3635 int arg;
3636{
3637 *loc = (unsigned char) op;
3638 STORE_NUMBER (loc + 1, arg);
3639}
3640
3641
3642/* Like `store_op1', but for two two-byte parameters ARG1 and ARG2. */
3643
3644static void
3645store_op2 (op, loc, arg1, arg2)
3646 re_opcode_t op;
3647 unsigned char *loc;
3648 int arg1, arg2;
3649{
3650 *loc = (unsigned char) op;
3651 STORE_NUMBER (loc + 1, arg1);
3652 STORE_NUMBER (loc + 3, arg2);
3653}
3654
3655
3656/* Copy the bytes from LOC to END to open up three bytes of space at LOC
3657 for OP followed by two-byte integer parameter ARG. */
3658
3659static void
3660insert_op1 (op, loc, arg, end)
3661 re_opcode_t op;
3662 unsigned char *loc;
3663 int arg;
5e69f11e 3664 unsigned char *end;
fa9a63c5
RM
3665{
3666 register unsigned char *pfrom = end;
3667 register unsigned char *pto = end + 3;
3668
3669 while (pfrom != loc)
3670 *--pto = *--pfrom;
5e69f11e 3671
fa9a63c5
RM
3672 store_op1 (op, loc, arg);
3673}
3674
3675
3676/* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2. */
3677
3678static void
3679insert_op2 (op, loc, arg1, arg2, end)
3680 re_opcode_t op;
3681 unsigned char *loc;
3682 int arg1, arg2;
5e69f11e 3683 unsigned char *end;
fa9a63c5
RM
3684{
3685 register unsigned char *pfrom = end;
3686 register unsigned char *pto = end + 5;
3687
3688 while (pfrom != loc)
3689 *--pto = *--pfrom;
5e69f11e 3690
fa9a63c5
RM
3691 store_op2 (op, loc, arg1, arg2);
3692}
3693
3694
3695/* P points to just after a ^ in PATTERN. Return true if that ^ comes
3696 after an alternative or a begin-subexpression. We assume there is at
3697 least one character before the ^. */
3698
3699static boolean
3700at_begline_loc_p (pattern, p, syntax)
01618498 3701 re_char *pattern, *p;
fa9a63c5
RM
3702 reg_syntax_t syntax;
3703{
01618498 3704 re_char *prev = p - 2;
fa9a63c5 3705 boolean prev_prev_backslash = prev > pattern && prev[-1] == '\\';
5e69f11e 3706
fa9a63c5
RM
3707 return
3708 /* After a subexpression? */
3709 (*prev == '(' && (syntax & RE_NO_BK_PARENS || prev_prev_backslash))
25fe55af 3710 /* After an alternative? */
d2af47df
SM
3711 || (*prev == '|' && (syntax & RE_NO_BK_VBAR || prev_prev_backslash))
3712 /* After a shy subexpression? */
3713 || ((syntax & RE_SHY_GROUPS) && prev - 2 >= pattern
3714 && prev[-1] == '?' && prev[-2] == '('
3715 && (syntax & RE_NO_BK_PARENS
3716 || (prev - 3 >= pattern && prev[-3] == '\\')));
fa9a63c5
RM
3717}
3718
3719
3720/* The dual of at_begline_loc_p. This one is for $. We assume there is
3721 at least one character after the $, i.e., `P < PEND'. */
3722
3723static boolean
3724at_endline_loc_p (p, pend, syntax)
01618498 3725 re_char *p, *pend;
99633e97 3726 reg_syntax_t syntax;
fa9a63c5 3727{
01618498 3728 re_char *next = p;
fa9a63c5 3729 boolean next_backslash = *next == '\\';
01618498 3730 re_char *next_next = p + 1 < pend ? p + 1 : 0;
5e69f11e 3731
fa9a63c5
RM
3732 return
3733 /* Before a subexpression? */
3734 (syntax & RE_NO_BK_PARENS ? *next == ')'
25fe55af 3735 : next_backslash && next_next && *next_next == ')')
fa9a63c5
RM
3736 /* Before an alternative? */
3737 || (syntax & RE_NO_BK_VBAR ? *next == '|'
25fe55af 3738 : next_backslash && next_next && *next_next == '|');
fa9a63c5
RM
3739}
3740
3741
5e69f11e 3742/* Returns true if REGNUM is in one of COMPILE_STACK's elements and
fa9a63c5
RM
3743 false if it's not. */
3744
3745static boolean
3746group_in_compile_stack (compile_stack, regnum)
3747 compile_stack_type compile_stack;
3748 regnum_t regnum;
3749{
3750 int this_element;
3751
5e69f11e
RM
3752 for (this_element = compile_stack.avail - 1;
3753 this_element >= 0;
fa9a63c5
RM
3754 this_element--)
3755 if (compile_stack.stack[this_element].regnum == regnum)
3756 return true;
3757
3758 return false;
3759}
fa9a63c5 3760\f
f6a3f532
SM
3761/* analyse_first.
3762 If fastmap is non-NULL, go through the pattern and fill fastmap
3763 with all the possible leading chars. If fastmap is NULL, don't
3764 bother filling it up (obviously) and only return whether the
3765 pattern could potentially match the empty string.
3766
3767 Return 1 if p..pend might match the empty string.
3768 Return 0 if p..pend matches at least one char.
01618498 3769 Return -1 if fastmap was not updated accurately. */
f6a3f532
SM
3770
3771static int
3772analyse_first (p, pend, fastmap, multibyte)
01618498 3773 re_char *p, *pend;
f6a3f532
SM
3774 char *fastmap;
3775 const int multibyte;
fa9a63c5 3776{
505bde11 3777 int j, k;
1fb352e0 3778 boolean not;
fa9a63c5 3779
b18215fc 3780 /* If all elements for base leading-codes in fastmap is set, this
25fe55af 3781 flag is set true. */
b18215fc
RS
3782 boolean match_any_multibyte_characters = false;
3783
f6a3f532 3784 assert (p);
5e69f11e 3785
505bde11
SM
3786 /* The loop below works as follows:
3787 - It has a working-list kept in the PATTERN_STACK and which basically
3788 starts by only containing a pointer to the first operation.
3789 - If the opcode we're looking at is a match against some set of
3790 chars, then we add those chars to the fastmap and go on to the
3791 next work element from the worklist (done via `break').
3792 - If the opcode is a control operator on the other hand, we either
3793 ignore it (if it's meaningless at this point, such as `start_memory')
3794 or execute it (if it's a jump). If the jump has several destinations
3795 (i.e. `on_failure_jump'), then we push the other destination onto the
3796 worklist.
3797 We guarantee termination by ignoring backward jumps (more or less),
3798 so that `p' is monotonically increasing. More to the point, we
3799 never set `p' (or push) anything `<= p1'. */
3800
01618498 3801 while (p < pend)
fa9a63c5 3802 {
505bde11
SM
3803 /* `p1' is used as a marker of how far back a `on_failure_jump'
3804 can go without being ignored. It is normally equal to `p'
3805 (which prevents any backward `on_failure_jump') except right
3806 after a plain `jump', to allow patterns such as:
3807 0: jump 10
3808 3..9: <body>
3809 10: on_failure_jump 3
3810 as used for the *? operator. */
01618498 3811 re_char *p1 = p;
5e69f11e 3812
fa9a63c5
RM
3813 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
3814 {
f6a3f532 3815 case succeed:
01618498 3816 return 1;
f6a3f532 3817 continue;
fa9a63c5 3818
fa9a63c5 3819 case duplicate:
505bde11
SM
3820 /* If the first character has to match a backreference, that means
3821 that the group was empty (since it already matched). Since this
3822 is the only case that interests us here, we can assume that the
3823 backreference must match the empty string. */
3824 p++;
3825 continue;
fa9a63c5
RM
3826
3827
3828 /* Following are the cases which match a character. These end
25fe55af 3829 with `break'. */
fa9a63c5
RM
3830
3831 case exactn:
e0277a47
KH
3832 if (fastmap)
3833 {
3834 int c = RE_STRING_CHAR (p + 1, pend - p);
3835
3836 if (SINGLE_BYTE_CHAR_P (c))
3837 fastmap[c] = 1;
3838 else
3839 fastmap[p[1]] = 1;
3840 }
fa9a63c5
RM
3841 break;
3842
3843
1fb352e0
SM
3844 case anychar:
3845 /* We could put all the chars except for \n (and maybe \0)
3846 but we don't bother since it is generally not worth it. */
f6a3f532 3847 if (!fastmap) break;
01618498 3848 return -1;
fa9a63c5
RM
3849
3850
b18215fc 3851 case charset_not:
ba5c004d
RS
3852 /* Chars beyond end of bitmap are possible matches.
3853 All the single-byte codes can occur in multibyte buffers.
3854 So any that are not listed in the charset
3855 are possible matches, even in multibyte buffers. */
1fb352e0 3856 if (!fastmap) break;
b18215fc 3857 for (j = CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH;
1fb352e0 3858 j < (1 << BYTEWIDTH); j++)
b18215fc 3859 fastmap[j] = 1;
1fb352e0
SM
3860 /* Fallthrough */
3861 case charset:
3862 if (!fastmap) break;
3863 not = (re_opcode_t) *(p - 1) == charset_not;
b18215fc
RS
3864 for (j = CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH - 1, p++;
3865 j >= 0; j--)
1fb352e0 3866 if (!!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))) ^ not)
b18215fc
RS
3867 fastmap[j] = 1;
3868
1fb352e0
SM
3869 if ((not && multibyte)
3870 /* Any character set can possibly contain a character
3871 which doesn't match the specified set of characters. */
3872 || (CHARSET_RANGE_TABLE_EXISTS_P (&p[-2])
3873 && CHARSET_RANGE_TABLE_BITS (&p[-2]) != 0))
3874 /* If we can match a character class, we can match
3875 any character set. */
b18215fc
RS
3876 {
3877 set_fastmap_for_multibyte_characters:
3878 if (match_any_multibyte_characters == false)
3879 {
3880 for (j = 0x80; j < 0xA0; j++) /* XXX */
3881 if (BASE_LEADING_CODE_P (j))
3882 fastmap[j] = 1;
3883 match_any_multibyte_characters = true;
3884 }
3885 }
b18215fc 3886
1fb352e0
SM
3887 else if (!not && CHARSET_RANGE_TABLE_EXISTS_P (&p[-2])
3888 && match_any_multibyte_characters == false)
3889 {
3890 /* Set fastmap[I] 1 where I is a base leading code of each
3891 multibyte character in the range table. */
3892 int c, count;
b18215fc 3893
1fb352e0 3894 /* Make P points the range table. `+ 2' is to skip flag
0b32bf0e 3895 bits for a character class. */
1fb352e0 3896 p += CHARSET_BITMAP_SIZE (&p[-2]) + 2;
b18215fc 3897
1fb352e0
SM
3898 /* Extract the number of ranges in range table into COUNT. */
3899 EXTRACT_NUMBER_AND_INCR (count, p);
3900 for (; count > 0; count--, p += 2 * 3) /* XXX */
3901 {
3902 /* Extract the start of each range. */
3903 EXTRACT_CHARACTER (c, p);
3904 j = CHAR_CHARSET (c);
3905 fastmap[CHARSET_LEADING_CODE_BASE (j)] = 1;
3906 }
3907 }
b18215fc
RS
3908 break;
3909
1fb352e0
SM
3910 case syntaxspec:
3911 case notsyntaxspec:
3912 if (!fastmap) break;
3913#ifndef emacs
3914 not = (re_opcode_t)p[-1] == notsyntaxspec;
3915 k = *p++;
3916 for (j = 0; j < (1 << BYTEWIDTH); j++)
990b2375 3917 if ((SYNTAX (j) == (enum syntaxcode) k) ^ not)
b18215fc 3918 fastmap[j] = 1;
b18215fc 3919 break;
1fb352e0 3920#else /* emacs */
b18215fc
RS
3921 /* This match depends on text properties. These end with
3922 aborting optimizations. */
01618498 3923 return -1;
b18215fc
RS
3924
3925 case categoryspec:
b18215fc 3926 case notcategoryspec:
1fb352e0
SM
3927 if (!fastmap) break;
3928 not = (re_opcode_t)p[-1] == notcategoryspec;
b18215fc 3929 k = *p++;
1fb352e0
SM
3930 for (j = 0; j < (1 << BYTEWIDTH); j++)
3931 if ((CHAR_HAS_CATEGORY (j, k)) ^ not)
b18215fc
RS
3932 fastmap[j] = 1;
3933
1fb352e0 3934 if (multibyte)
b18215fc 3935 /* Any character set can possibly contain a character
1fb352e0 3936 whose category is K (or not). */
b18215fc
RS
3937 goto set_fastmap_for_multibyte_characters;
3938 break;
3939
fa9a63c5 3940 /* All cases after this match the empty string. These end with
25fe55af 3941 `continue'. */
fa9a63c5 3942
fa9a63c5
RM
3943 case before_dot:
3944 case at_dot:
3945 case after_dot:
1fb352e0 3946#endif /* !emacs */
25fe55af
RS
3947 case no_op:
3948 case begline:
3949 case endline:
fa9a63c5
RM
3950 case begbuf:
3951 case endbuf:
3952 case wordbound:
3953 case notwordbound:
3954 case wordbeg:
3955 case wordend:
669fa600
SM
3956 case symbeg:
3957 case symend:
25fe55af 3958 continue;
fa9a63c5
RM
3959
3960
fa9a63c5 3961 case jump:
25fe55af 3962 EXTRACT_NUMBER_AND_INCR (j, p);
505bde11
SM
3963 if (j < 0)
3964 /* Backward jumps can only go back to code that we've already
3965 visited. `re_compile' should make sure this is true. */
3966 break;
25fe55af 3967 p += j;
505bde11
SM
3968 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p))
3969 {
3970 case on_failure_jump:
3971 case on_failure_keep_string_jump:
505bde11 3972 case on_failure_jump_loop:
0683b6fa 3973 case on_failure_jump_nastyloop:
505bde11
SM
3974 case on_failure_jump_smart:
3975 p++;
3976 break;
3977 default:
3978 continue;
3979 };
3980 /* Keep `p1' to allow the `on_failure_jump' we are jumping to
3981 to jump back to "just after here". */
3982 /* Fallthrough */
fa9a63c5 3983
25fe55af
RS
3984 case on_failure_jump:
3985 case on_failure_keep_string_jump:
0683b6fa 3986 case on_failure_jump_nastyloop:
505bde11
SM
3987 case on_failure_jump_loop:
3988 case on_failure_jump_smart:
25fe55af 3989 EXTRACT_NUMBER_AND_INCR (j, p);
505bde11 3990 if (p + j <= p1)
ed0767d8 3991 ; /* Backward jump to be ignored. */
01618498
SM
3992 else
3993 { /* We have to look down both arms.
3994 We first go down the "straight" path so as to minimize
3995 stack usage when going through alternatives. */
3996 int r = analyse_first (p, pend, fastmap, multibyte);
3997 if (r) return r;
3998 p += j;
3999 }
25fe55af 4000 continue;
fa9a63c5
RM
4001
4002
ed0767d8
SM
4003 case jump_n:
4004 /* This code simply does not properly handle forward jump_n. */
4005 DEBUG_STATEMENT (EXTRACT_NUMBER (j, p); assert (j < 0));
4006 p += 4;
4007 /* jump_n can either jump or fall through. The (backward) jump
4008 case has already been handled, so we only need to look at the
4009 fallthrough case. */
4010 continue;
177c0ea7 4011
fa9a63c5 4012 case succeed_n:
ed0767d8
SM
4013 /* If N == 0, it should be an on_failure_jump_loop instead. */
4014 DEBUG_STATEMENT (EXTRACT_NUMBER (j, p + 2); assert (j > 0));
4015 p += 4;
4016 /* We only care about one iteration of the loop, so we don't
4017 need to consider the case where this behaves like an
4018 on_failure_jump. */
25fe55af 4019 continue;
fa9a63c5
RM
4020
4021
4022 case set_number_at:
25fe55af
RS
4023 p += 4;
4024 continue;
fa9a63c5
RM
4025
4026
4027 case start_memory:
25fe55af 4028 case stop_memory:
505bde11 4029 p += 1;
fa9a63c5
RM
4030 continue;
4031
4032
4033 default:
25fe55af
RS
4034 abort (); /* We have listed all the cases. */
4035 } /* switch *p++ */
fa9a63c5
RM
4036
4037 /* Getting here means we have found the possible starting
25fe55af 4038 characters for one path of the pattern -- and that the empty
01618498
SM
4039 string does not match. We need not follow this path further. */
4040 return 0;
fa9a63c5
RM
4041 } /* while p */
4042
01618498
SM
4043 /* We reached the end without matching anything. */
4044 return 1;
4045
f6a3f532
SM
4046} /* analyse_first */
4047\f
4048/* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
4049 BUFP. A fastmap records which of the (1 << BYTEWIDTH) possible
4050 characters can start a string that matches the pattern. This fastmap
4051 is used by re_search to skip quickly over impossible starting points.
4052
4053 Character codes above (1 << BYTEWIDTH) are not represented in the
4054 fastmap, but the leading codes are represented. Thus, the fastmap
4055 indicates which character sets could start a match.
4056
4057 The caller must supply the address of a (1 << BYTEWIDTH)-byte data
4058 area as BUFP->fastmap.
4059
4060 We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
4061 the pattern buffer.
4062
4063 Returns 0 if we succeed, -2 if an internal error. */
4064
4065int
4066re_compile_fastmap (bufp)
4067 struct re_pattern_buffer *bufp;
4068{
4069 char *fastmap = bufp->fastmap;
4070 int analysis;
4071
4072 assert (fastmap && bufp->buffer);
4073
4074 bzero (fastmap, 1 << BYTEWIDTH); /* Assume nothing's valid. */
4075 bufp->fastmap_accurate = 1; /* It will be when we're done. */
4076
4077 analysis = analyse_first (bufp->buffer, bufp->buffer + bufp->used,
2d1675e4 4078 fastmap, RE_MULTIBYTE_P (bufp));
c0f9ea08 4079 bufp->can_be_null = (analysis != 0);
fa9a63c5
RM
4080 return 0;
4081} /* re_compile_fastmap */
4082\f
4083/* Set REGS to hold NUM_REGS registers, storing them in STARTS and
4084 ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use
4085 this memory for recording register information. STARTS and ENDS
4086 must be allocated using the malloc library routine, and must each
4087 be at least NUM_REGS * sizeof (regoff_t) bytes long.
4088
4089 If NUM_REGS == 0, then subsequent matches should allocate their own
4090 register data.
4091
4092 Unless this function is called, the first search or match using
4093 PATTERN_BUFFER will allocate its own register data, without
4094 freeing the old data. */
4095
4096void
4097re_set_registers (bufp, regs, num_regs, starts, ends)
4098 struct re_pattern_buffer *bufp;
4099 struct re_registers *regs;
4100 unsigned num_regs;
4101 regoff_t *starts, *ends;
4102{
4103 if (num_regs)
4104 {
4105 bufp->regs_allocated = REGS_REALLOCATE;
4106 regs->num_regs = num_regs;
4107 regs->start = starts;
4108 regs->end = ends;
4109 }
4110 else
4111 {
4112 bufp->regs_allocated = REGS_UNALLOCATED;
4113 regs->num_regs = 0;
4114 regs->start = regs->end = (regoff_t *) 0;
4115 }
4116}
c0f9ea08 4117WEAK_ALIAS (__re_set_registers, re_set_registers)
fa9a63c5 4118\f
25fe55af 4119/* Searching routines. */
fa9a63c5
RM
4120
4121/* Like re_search_2, below, but only one string is specified, and
4122 doesn't let you say where to stop matching. */
4123
4124int
4125re_search (bufp, string, size, startpos, range, regs)
4126 struct re_pattern_buffer *bufp;
4127 const char *string;
4128 int size, startpos, range;
4129 struct re_registers *regs;
4130{
5e69f11e 4131 return re_search_2 (bufp, NULL, 0, string, size, startpos, range,
fa9a63c5
RM
4132 regs, size);
4133}
c0f9ea08 4134WEAK_ALIAS (__re_search, re_search)
fa9a63c5 4135
70806df6
KH
4136/* Head address of virtual concatenation of string. */
4137#define HEAD_ADDR_VSTRING(P) \
4138 (((P) >= size1 ? string2 : string1))
4139
b18215fc
RS
4140/* End address of virtual concatenation of string. */
4141#define STOP_ADDR_VSTRING(P) \
4142 (((P) >= size1 ? string2 + size2 : string1 + size1))
4143
4144/* Address of POS in the concatenation of virtual string. */
4145#define POS_ADDR_VSTRING(POS) \
4146 (((POS) >= size1 ? string2 - size1 : string1) + (POS))
fa9a63c5
RM
4147
4148/* Using the compiled pattern in BUFP->buffer, first tries to match the
4149 virtual concatenation of STRING1 and STRING2, starting first at index
4150 STARTPOS, then at STARTPOS + 1, and so on.
5e69f11e 4151
fa9a63c5 4152 STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
5e69f11e 4153
fa9a63c5
RM
4154 RANGE is how far to scan while trying to match. RANGE = 0 means try
4155 only at STARTPOS; in general, the last start tried is STARTPOS +
4156 RANGE.
5e69f11e 4157
fa9a63c5
RM
4158 In REGS, return the indices of the virtual concatenation of STRING1
4159 and STRING2 that matched the entire BUFP->buffer and its contained
4160 subexpressions.
5e69f11e 4161
fa9a63c5
RM
4162 Do not consider matching one past the index STOP in the virtual
4163 concatenation of STRING1 and STRING2.
4164
4165 We return either the position in the strings at which the match was
4166 found, -1 if no match, or -2 if error (such as failure
4167 stack overflow). */
4168
4169int
66f0296e 4170re_search_2 (bufp, str1, size1, str2, size2, startpos, range, regs, stop)
fa9a63c5 4171 struct re_pattern_buffer *bufp;
66f0296e 4172 const char *str1, *str2;
fa9a63c5
RM
4173 int size1, size2;
4174 int startpos;
4175 int range;
4176 struct re_registers *regs;
4177 int stop;
4178{
4179 int val;
66f0296e
SM
4180 re_char *string1 = (re_char*) str1;
4181 re_char *string2 = (re_char*) str2;
fa9a63c5 4182 register char *fastmap = bufp->fastmap;
6676cb1c 4183 register RE_TRANSLATE_TYPE translate = bufp->translate;
fa9a63c5
RM
4184 int total_size = size1 + size2;
4185 int endpos = startpos + range;
c0f9ea08 4186 boolean anchored_start;
fa9a63c5 4187
25fe55af 4188 /* Nonzero if we have to concern multibyte character. */
2d1675e4 4189 const boolean multibyte = RE_MULTIBYTE_P (bufp);
b18215fc 4190
fa9a63c5
RM
4191 /* Check for out-of-range STARTPOS. */
4192 if (startpos < 0 || startpos > total_size)
4193 return -1;
5e69f11e 4194
fa9a63c5 4195 /* Fix up RANGE if it might eventually take us outside
34597fa9 4196 the virtual concatenation of STRING1 and STRING2.
5e69f11e 4197 Make sure we won't move STARTPOS below 0 or above TOTAL_SIZE. */
34597fa9
RS
4198 if (endpos < 0)
4199 range = 0 - startpos;
fa9a63c5
RM
4200 else if (endpos > total_size)
4201 range = total_size - startpos;
4202
4203 /* If the search isn't to be a backwards one, don't waste time in a
7b140fd7 4204 search for a pattern anchored at beginning of buffer. */
fa9a63c5
RM
4205 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == begbuf && range > 0)
4206 {
4207 if (startpos > 0)
4208 return -1;
4209 else
7b140fd7 4210 range = 0;
fa9a63c5
RM
4211 }
4212
ae4788a8
RS
4213#ifdef emacs
4214 /* In a forward search for something that starts with \=.
4215 don't keep searching past point. */
4216 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == at_dot && range > 0)
4217 {
7b140fd7
RS
4218 range = PT_BYTE - BEGV_BYTE - startpos;
4219 if (range < 0)
ae4788a8
RS
4220 return -1;
4221 }
4222#endif /* emacs */
4223
fa9a63c5
RM
4224 /* Update the fastmap now if not correct already. */
4225 if (fastmap && !bufp->fastmap_accurate)
01618498 4226 re_compile_fastmap (bufp);
5e69f11e 4227
c8499ba5 4228 /* See whether the pattern is anchored. */
c0f9ea08 4229 anchored_start = (bufp->buffer[0] == begline);
c8499ba5 4230
b18215fc 4231#ifdef emacs
cc9b4df2
KH
4232 gl_state.object = re_match_object;
4233 {
99633e97 4234 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (POS_AS_IN_BUFFER (startpos));
cc9b4df2
KH
4235
4236 SETUP_SYNTAX_TABLE_FOR_OBJECT (re_match_object, charpos, 1);
4237 }
b18215fc
RS
4238#endif
4239
fa9a63c5
RM
4240 /* Loop through the string, looking for a place to start matching. */
4241 for (;;)
5e69f11e 4242 {
c8499ba5
RS
4243 /* If the pattern is anchored,
4244 skip quickly past places we cannot match.
4245 We don't bother to treat startpos == 0 specially
4246 because that case doesn't repeat. */
4247 if (anchored_start && startpos > 0)
4248 {
c0f9ea08
SM
4249 if (! ((startpos <= size1 ? string1[startpos - 1]
4250 : string2[startpos - size1 - 1])
4251 == '\n'))
c8499ba5
RS
4252 goto advance;
4253 }
4254
fa9a63c5 4255 /* If a fastmap is supplied, skip quickly over characters that
25fe55af
RS
4256 cannot be the start of a match. If the pattern can match the
4257 null string, however, we don't need to skip characters; we want
4258 the first null string. */
fa9a63c5
RM
4259 if (fastmap && startpos < total_size && !bufp->can_be_null)
4260 {
66f0296e 4261 register re_char *d;
01618498 4262 register re_wchar_t buf_ch;
e934739e
RS
4263
4264 d = POS_ADDR_VSTRING (startpos);
4265
25fe55af 4266 if (range > 0) /* Searching forwards. */
fa9a63c5 4267 {
fa9a63c5
RM
4268 register int lim = 0;
4269 int irange = range;
4270
25fe55af
RS
4271 if (startpos < size1 && startpos + range >= size1)
4272 lim = range - (size1 - startpos);
fa9a63c5 4273
25fe55af
RS
4274 /* Written out as an if-else to avoid testing `translate'
4275 inside the loop. */
28ae27ae
AS
4276 if (RE_TRANSLATE_P (translate))
4277 {
e934739e
RS
4278 if (multibyte)
4279 while (range > lim)
4280 {
4281 int buf_charlen;
4282
4283 buf_ch = STRING_CHAR_AND_LENGTH (d, range - lim,
4284 buf_charlen);
4285
4286 buf_ch = RE_TRANSLATE (translate, buf_ch);
4287 if (buf_ch >= 0400
4288 || fastmap[buf_ch])
4289 break;
4290
4291 range -= buf_charlen;
4292 d += buf_charlen;
4293 }
4294 else
cf1982d9
EZ
4295 {
4296 /* Convert *d to integer to shut up GCC's
4297 whining about comparison that is always
4298 true. */
4299 int di = *d;
4300
4301 while (range > lim
4302 && !fastmap[RE_TRANSLATE (translate, di)])
4303 {
4304 di = *(++d);
4305 range--;
4306 }
4307 }
e934739e 4308 }
fa9a63c5 4309 else
66f0296e 4310 while (range > lim && !fastmap[*d])
33c46939
RS
4311 {
4312 d++;
4313 range--;
4314 }
fa9a63c5
RM
4315
4316 startpos += irange - range;
4317 }
25fe55af 4318 else /* Searching backwards. */
fa9a63c5 4319 {
2d1675e4
SM
4320 int room = (startpos >= size1
4321 ? size2 + size1 - startpos
4322 : size1 - startpos);
4323 buf_ch = RE_STRING_CHAR (d, room);
4324 buf_ch = TRANSLATE (buf_ch);
fa9a63c5 4325
e934739e
RS
4326 if (! (buf_ch >= 0400
4327 || fastmap[buf_ch]))
fa9a63c5
RM
4328 goto advance;
4329 }
4330 }
4331
4332 /* If can't match the null string, and that's all we have left, fail. */
4333 if (range >= 0 && startpos == total_size && fastmap
25fe55af 4334 && !bufp->can_be_null)
fa9a63c5
RM
4335 return -1;
4336
4337 val = re_match_2_internal (bufp, string1, size1, string2, size2,
4338 startpos, regs, stop);
4339#ifndef REGEX_MALLOC
0b32bf0e 4340# ifdef C_ALLOCA
fa9a63c5 4341 alloca (0);
0b32bf0e 4342# endif
fa9a63c5
RM
4343#endif
4344
4345 if (val >= 0)
4346 return startpos;
5e69f11e 4347
fa9a63c5
RM
4348 if (val == -2)
4349 return -2;
4350
4351 advance:
5e69f11e 4352 if (!range)
25fe55af 4353 break;
5e69f11e 4354 else if (range > 0)
25fe55af 4355 {
b18215fc
RS
4356 /* Update STARTPOS to the next character boundary. */
4357 if (multibyte)
4358 {
66f0296e
SM
4359 re_char *p = POS_ADDR_VSTRING (startpos);
4360 re_char *pend = STOP_ADDR_VSTRING (startpos);
b18215fc
RS
4361 int len = MULTIBYTE_FORM_LENGTH (p, pend - p);
4362
4363 range -= len;
4364 if (range < 0)
4365 break;
4366 startpos += len;
4367 }
4368 else
4369 {
b560c397
RS
4370 range--;
4371 startpos++;
4372 }
e318085a 4373 }
fa9a63c5 4374 else
25fe55af
RS
4375 {
4376 range++;
4377 startpos--;
b18215fc
RS
4378
4379 /* Update STARTPOS to the previous character boundary. */
4380 if (multibyte)
4381 {
70806df6
KH
4382 re_char *p = POS_ADDR_VSTRING (startpos) + 1;
4383 re_char *p0 = p;
4384 re_char *phead = HEAD_ADDR_VSTRING (startpos);
b18215fc
RS
4385
4386 /* Find the head of multibyte form. */
70806df6
KH
4387 PREV_CHAR_BOUNDARY (p, phead);
4388 range += p0 - 1 - p;
4389 if (range > 0)
4390 break;
b18215fc 4391
70806df6 4392 startpos -= p0 - 1 - p;
b18215fc 4393 }
25fe55af 4394 }
fa9a63c5
RM
4395 }
4396 return -1;
4397} /* re_search_2 */
c0f9ea08 4398WEAK_ALIAS (__re_search_2, re_search_2)
fa9a63c5
RM
4399\f
4400/* Declarations and macros for re_match_2. */
4401
2d1675e4
SM
4402static int bcmp_translate _RE_ARGS((re_char *s1, re_char *s2,
4403 register int len,
4404 RE_TRANSLATE_TYPE translate,
4405 const int multibyte));
fa9a63c5
RM
4406
4407/* This converts PTR, a pointer into one of the search strings `string1'
4408 and `string2' into an offset from the beginning of that string. */
4409#define POINTER_TO_OFFSET(ptr) \
4410 (FIRST_STRING_P (ptr) \
4411 ? ((regoff_t) ((ptr) - string1)) \
4412 : ((regoff_t) ((ptr) - string2 + size1)))
4413
fa9a63c5 4414/* Call before fetching a character with *d. This switches over to
419d1c74
SM
4415 string2 if necessary.
4416 Check re_match_2_internal for a discussion of why end_match_2 might
4417 not be within string2 (but be equal to end_match_1 instead). */
fa9a63c5 4418#define PREFETCH() \
25fe55af 4419 while (d == dend) \
fa9a63c5
RM
4420 { \
4421 /* End of string2 => fail. */ \
25fe55af
RS
4422 if (dend == end_match_2) \
4423 goto fail; \
4bb91c68 4424 /* End of string1 => advance to string2. */ \
25fe55af 4425 d = string2; \
fa9a63c5
RM
4426 dend = end_match_2; \
4427 }
4428
f1ad044f
SM
4429/* Call before fetching a char with *d if you already checked other limits.
4430 This is meant for use in lookahead operations like wordend, etc..
4431 where we might need to look at parts of the string that might be
4432 outside of the LIMITs (i.e past `stop'). */
4433#define PREFETCH_NOLIMIT() \
4434 if (d == end1) \
4435 { \
4436 d = string2; \
4437 dend = end_match_2; \
4438 } \
fa9a63c5
RM
4439
4440/* Test if at very beginning or at very end of the virtual concatenation
25fe55af 4441 of `string1' and `string2'. If only one string, it's `string2'. */
fa9a63c5 4442#define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
5e69f11e 4443#define AT_STRINGS_END(d) ((d) == end2)
fa9a63c5
RM
4444
4445
4446/* Test if D points to a character which is word-constituent. We have
4447 two special cases to check for: if past the end of string1, look at
4448 the first character in string2; and if before the beginning of
4449 string2, look at the last character in string1. */
4450#define WORDCHAR_P(d) \
4451 (SYNTAX ((d) == end1 ? *string2 \
25fe55af 4452 : (d) == string2 - 1 ? *(end1 - 1) : *(d)) \
fa9a63c5
RM
4453 == Sword)
4454
9121ca40 4455/* Disabled due to a compiler bug -- see comment at case wordbound */
b18215fc
RS
4456
4457/* The comment at case wordbound is following one, but we don't use
4458 AT_WORD_BOUNDARY anymore to support multibyte form.
4459
4460 The DEC Alpha C compiler 3.x generates incorrect code for the
25fe55af
RS
4461 test WORDCHAR_P (d - 1) != WORDCHAR_P (d) in the expansion of
4462 AT_WORD_BOUNDARY, so this code is disabled. Expanding the
b18215fc
RS
4463 macro and introducing temporary variables works around the bug. */
4464
9121ca40 4465#if 0
fa9a63c5
RM
4466/* Test if the character before D and the one at D differ with respect
4467 to being word-constituent. */
4468#define AT_WORD_BOUNDARY(d) \
4469 (AT_STRINGS_BEG (d) || AT_STRINGS_END (d) \
4470 || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
9121ca40 4471#endif
fa9a63c5
RM
4472
4473/* Free everything we malloc. */
4474#ifdef MATCH_MAY_ALLOCATE
0b32bf0e
SM
4475# define FREE_VAR(var) if (var) { REGEX_FREE (var); var = NULL; } else
4476# define FREE_VARIABLES() \
fa9a63c5
RM
4477 do { \
4478 REGEX_FREE_STACK (fail_stack.stack); \
4479 FREE_VAR (regstart); \
4480 FREE_VAR (regend); \
fa9a63c5
RM
4481 FREE_VAR (best_regstart); \
4482 FREE_VAR (best_regend); \
fa9a63c5
RM
4483 } while (0)
4484#else
0b32bf0e 4485# define FREE_VARIABLES() ((void)0) /* Do nothing! But inhibit gcc warning. */
fa9a63c5
RM
4486#endif /* not MATCH_MAY_ALLOCATE */
4487
505bde11
SM
4488\f
4489/* Optimization routines. */
4490
4e8a9132
SM
4491/* If the operation is a match against one or more chars,
4492 return a pointer to the next operation, else return NULL. */
01618498 4493static re_char *
4e8a9132 4494skip_one_char (p)
01618498 4495 re_char *p;
4e8a9132
SM
4496{
4497 switch (SWITCH_ENUM_CAST (*p++))
4498 {
4499 case anychar:
4500 break;
177c0ea7 4501
4e8a9132
SM
4502 case exactn:
4503 p += *p + 1;
4504 break;
4505
4506 case charset_not:
4507 case charset:
4508 if (CHARSET_RANGE_TABLE_EXISTS_P (p - 1))
4509 {
4510 int mcnt;
4511 p = CHARSET_RANGE_TABLE (p - 1);
4512 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4513 p = CHARSET_RANGE_TABLE_END (p, mcnt);
4514 }
4515 else
4516 p += 1 + CHARSET_BITMAP_SIZE (p - 1);
4517 break;
177c0ea7 4518
4e8a9132
SM
4519 case syntaxspec:
4520 case notsyntaxspec:
1fb352e0 4521#ifdef emacs
4e8a9132
SM
4522 case categoryspec:
4523 case notcategoryspec:
4524#endif /* emacs */
4525 p++;
4526 break;
4527
4528 default:
4529 p = NULL;
4530 }
4531 return p;
4532}
4533
4534
505bde11 4535/* Jump over non-matching operations. */
275a3409 4536static re_char *
4e8a9132 4537skip_noops (p, pend)
275a3409 4538 re_char *p, *pend;
505bde11
SM
4539{
4540 int mcnt;
4541 while (p < pend)
4542 {
4543 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p))
4544 {
4545 case start_memory:
505bde11
SM
4546 case stop_memory:
4547 p += 2; break;
4548 case no_op:
4549 p += 1; break;
4550 case jump:
4551 p += 1;
4552 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4553 p += mcnt;
4554 break;
4555 default:
4556 return p;
4557 }
4558 }
4559 assert (p == pend);
4560 return p;
4561}
4562
4563/* Non-zero if "p1 matches something" implies "p2 fails". */
4564static int
4565mutually_exclusive_p (bufp, p1, p2)
4566 struct re_pattern_buffer *bufp;
275a3409 4567 re_char *p1, *p2;
505bde11 4568{
4e8a9132 4569 re_opcode_t op2;
2d1675e4 4570 const boolean multibyte = RE_MULTIBYTE_P (bufp);
505bde11
SM
4571 unsigned char *pend = bufp->buffer + bufp->used;
4572
4e8a9132 4573 assert (p1 >= bufp->buffer && p1 < pend
505bde11
SM
4574 && p2 >= bufp->buffer && p2 <= pend);
4575
4576 /* Skip over open/close-group commands.
4577 If what follows this loop is a ...+ construct,
4578 look at what begins its body, since we will have to
4579 match at least one of that. */
4e8a9132
SM
4580 p2 = skip_noops (p2, pend);
4581 /* The same skip can be done for p1, except that this function
4582 is only used in the case where p1 is a simple match operator. */
4583 /* p1 = skip_noops (p1, pend); */
4584
4585 assert (p1 >= bufp->buffer && p1 < pend
4586 && p2 >= bufp->buffer && p2 <= pend);
4587
4588 op2 = p2 == pend ? succeed : *p2;
4589
4590 switch (SWITCH_ENUM_CAST (op2))
505bde11 4591 {
4e8a9132
SM
4592 case succeed:
4593 case endbuf:
4594 /* If we're at the end of the pattern, we can change. */
4595 if (skip_one_char (p1))
505bde11 4596 {
505bde11
SM
4597 DEBUG_PRINT1 (" End of pattern: fast loop.\n");
4598 return 1;
505bde11 4599 }
4e8a9132 4600 break;
177c0ea7 4601
4e8a9132 4602 case endline:
4e8a9132
SM
4603 case exactn:
4604 {
01618498 4605 register re_wchar_t c
4e8a9132 4606 = (re_opcode_t) *p2 == endline ? '\n'
411e4203 4607 : RE_STRING_CHAR (p2 + 2, pend - p2 - 2);
505bde11 4608
4e8a9132
SM
4609 if ((re_opcode_t) *p1 == exactn)
4610 {
4611 if (c != RE_STRING_CHAR (p1 + 2, pend - p1 - 2))
4612 {
4613 DEBUG_PRINT3 (" '%c' != '%c' => fast loop.\n", c, p1[2]);
4614 return 1;
4615 }
4616 }
505bde11 4617
4e8a9132
SM
4618 else if ((re_opcode_t) *p1 == charset
4619 || (re_opcode_t) *p1 == charset_not)
4620 {
4621 int not = (re_opcode_t) *p1 == charset_not;
505bde11 4622
4e8a9132
SM
4623 /* Test if C is listed in charset (or charset_not)
4624 at `p1'. */
4625 if (SINGLE_BYTE_CHAR_P (c))
4626 {
4627 if (c < CHARSET_BITMAP_SIZE (p1) * BYTEWIDTH
4628 && p1[2 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
4629 not = !not;
4630 }
4631 else if (CHARSET_RANGE_TABLE_EXISTS_P (p1))
4632 CHARSET_LOOKUP_RANGE_TABLE (not, c, p1);
505bde11 4633
4e8a9132
SM
4634 /* `not' is equal to 1 if c would match, which means
4635 that we can't change to pop_failure_jump. */
4636 if (!not)
4637 {
4638 DEBUG_PRINT1 (" No match => fast loop.\n");
4639 return 1;
4640 }
4641 }
4642 else if ((re_opcode_t) *p1 == anychar
4643 && c == '\n')
4644 {
4645 DEBUG_PRINT1 (" . != \\n => fast loop.\n");
4646 return 1;
4647 }
4648 }
4649 break;
505bde11 4650
4e8a9132 4651 case charset:
4e8a9132
SM
4652 {
4653 if ((re_opcode_t) *p1 == exactn)
4654 /* Reuse the code above. */
4655 return mutually_exclusive_p (bufp, p2, p1);
505bde11 4656
505bde11
SM
4657 /* It is hard to list up all the character in charset
4658 P2 if it includes multibyte character. Give up in
4659 such case. */
4660 else if (!multibyte || !CHARSET_RANGE_TABLE_EXISTS_P (p2))
4661 {
4662 /* Now, we are sure that P2 has no range table.
4663 So, for the size of bitmap in P2, `p2[1]' is
4664 enough. But P1 may have range table, so the
4665 size of bitmap table of P1 is extracted by
4666 using macro `CHARSET_BITMAP_SIZE'.
4667
4668 Since we know that all the character listed in
4669 P2 is ASCII, it is enough to test only bitmap
4670 table of P1. */
4671
411e4203 4672 if ((re_opcode_t) *p1 == charset)
505bde11
SM
4673 {
4674 int idx;
4675 /* We win if the charset inside the loop
4676 has no overlap with the one after the loop. */
4677 for (idx = 0;
4678 (idx < (int) p2[1]
4679 && idx < CHARSET_BITMAP_SIZE (p1));
4680 idx++)
4681 if ((p2[2 + idx] & p1[2 + idx]) != 0)
4682 break;
4683
4684 if (idx == p2[1]
4685 || idx == CHARSET_BITMAP_SIZE (p1))
4686 {
4687 DEBUG_PRINT1 (" No match => fast loop.\n");
4688 return 1;
4689 }
4690 }
411e4203 4691 else if ((re_opcode_t) *p1 == charset_not)
505bde11
SM
4692 {
4693 int idx;
4694 /* We win if the charset_not inside the loop lists
4695 every character listed in the charset after. */
4696 for (idx = 0; idx < (int) p2[1]; idx++)
4697 if (! (p2[2 + idx] == 0
4698 || (idx < CHARSET_BITMAP_SIZE (p1)
4699 && ((p2[2 + idx] & ~ p1[2 + idx]) == 0))))
4700 break;
4701
4e8a9132
SM
4702 if (idx == p2[1])
4703 {
4704 DEBUG_PRINT1 (" No match => fast loop.\n");
4705 return 1;
4706 }
4707 }
4708 }
4709 }
609b757a 4710 break;
177c0ea7 4711
411e4203
SM
4712 case charset_not:
4713 switch (SWITCH_ENUM_CAST (*p1))
4714 {
4715 case exactn:
4716 case charset:
4717 /* Reuse the code above. */
4718 return mutually_exclusive_p (bufp, p2, p1);
4719 case charset_not:
4720 /* When we have two charset_not, it's very unlikely that
4721 they don't overlap. The union of the two sets of excluded
4722 chars should cover all possible chars, which, as a matter of
4723 fact, is virtually impossible in multibyte buffers. */
36595814 4724 break;
411e4203
SM
4725 }
4726 break;
4727
4e8a9132 4728 case wordend:
669fa600
SM
4729 return ((re_opcode_t) *p1 == syntaxspec && p1[1] == Sword);
4730 case symend:
4e8a9132 4731 return ((re_opcode_t) *p1 == syntaxspec
669fa600
SM
4732 && (p1[1] == Ssymbol || p1[1] == Sword));
4733 case notsyntaxspec:
4734 return ((re_opcode_t) *p1 == syntaxspec && p1[1] == p2[1]);
4e8a9132
SM
4735
4736 case wordbeg:
669fa600
SM
4737 return ((re_opcode_t) *p1 == notsyntaxspec && p1[1] == Sword);
4738 case symbeg:
4e8a9132 4739 return ((re_opcode_t) *p1 == notsyntaxspec
669fa600
SM
4740 && (p1[1] == Ssymbol || p1[1] == Sword));
4741 case syntaxspec:
4742 return ((re_opcode_t) *p1 == notsyntaxspec && p1[1] == p2[1]);
4e8a9132
SM
4743
4744 case wordbound:
4745 return (((re_opcode_t) *p1 == notsyntaxspec
4746 || (re_opcode_t) *p1 == syntaxspec)
4747 && p1[1] == Sword);
4748
1fb352e0 4749#ifdef emacs
4e8a9132
SM
4750 case categoryspec:
4751 return ((re_opcode_t) *p1 == notcategoryspec && p1[1] == p2[1]);
4752 case notcategoryspec:
4753 return ((re_opcode_t) *p1 == categoryspec && p1[1] == p2[1]);
4754#endif /* emacs */
4755
4756 default:
4757 ;
505bde11
SM
4758 }
4759
4760 /* Safe default. */
4761 return 0;
4762}
4763
fa9a63c5
RM
4764\f
4765/* Matching routines. */
4766
25fe55af 4767#ifndef emacs /* Emacs never uses this. */
fa9a63c5
RM
4768/* re_match is like re_match_2 except it takes only a single string. */
4769
4770int
4771re_match (bufp, string, size, pos, regs)
4772 struct re_pattern_buffer *bufp;
4773 const char *string;
4774 int size, pos;
4775 struct re_registers *regs;
4776{
4bb91c68 4777 int result = re_match_2_internal (bufp, NULL, 0, (re_char*) string, size,
fa9a63c5 4778 pos, regs, size);
0b32bf0e 4779# if defined C_ALLOCA && !defined REGEX_MALLOC
fa9a63c5 4780 alloca (0);
0b32bf0e 4781# endif
fa9a63c5
RM
4782 return result;
4783}
c0f9ea08 4784WEAK_ALIAS (__re_match, re_match)
fa9a63c5
RM
4785#endif /* not emacs */
4786
b18215fc
RS
4787#ifdef emacs
4788/* In Emacs, this is the string or buffer in which we
25fe55af 4789 are matching. It is used for looking up syntax properties. */
b18215fc
RS
4790Lisp_Object re_match_object;
4791#endif
fa9a63c5
RM
4792
4793/* re_match_2 matches the compiled pattern in BUFP against the
4794 the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
4795 and SIZE2, respectively). We start matching at POS, and stop
4796 matching at STOP.
5e69f11e 4797
fa9a63c5 4798 If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
25fe55af 4799 store offsets for the substring each group matched in REGS. See the
fa9a63c5
RM
4800 documentation for exactly how many groups we fill.
4801
4802 We return -1 if no match, -2 if an internal error (such as the
25fe55af 4803 failure stack overflowing). Otherwise, we return the length of the
fa9a63c5
RM
4804 matched substring. */
4805
4806int
4807re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
4808 struct re_pattern_buffer *bufp;
4809 const char *string1, *string2;
4810 int size1, size2;
4811 int pos;
4812 struct re_registers *regs;
4813 int stop;
4814{
b18215fc 4815 int result;
25fe55af 4816
b18215fc 4817#ifdef emacs
cc9b4df2
KH
4818 int charpos;
4819 gl_state.object = re_match_object;
99633e97 4820 charpos = SYNTAX_TABLE_BYTE_TO_CHAR (POS_AS_IN_BUFFER (pos));
cc9b4df2 4821 SETUP_SYNTAX_TABLE_FOR_OBJECT (re_match_object, charpos, 1);
b18215fc
RS
4822#endif
4823
4bb91c68
SM
4824 result = re_match_2_internal (bufp, (re_char*) string1, size1,
4825 (re_char*) string2, size2,
cc9b4df2 4826 pos, regs, stop);
0b32bf0e 4827#if defined C_ALLOCA && !defined REGEX_MALLOC
fa9a63c5 4828 alloca (0);
a60198e5 4829#endif
fa9a63c5
RM
4830 return result;
4831}
c0f9ea08 4832WEAK_ALIAS (__re_match_2, re_match_2)
fa9a63c5
RM
4833
4834/* This is a separate function so that we can force an alloca cleanup
25fe55af 4835 afterwards. */
fa9a63c5
RM
4836static int
4837re_match_2_internal (bufp, string1, size1, string2, size2, pos, regs, stop)
4838 struct re_pattern_buffer *bufp;
66f0296e 4839 re_char *string1, *string2;
fa9a63c5
RM
4840 int size1, size2;
4841 int pos;
4842 struct re_registers *regs;
4843 int stop;
4844{
4845 /* General temporaries. */
4846 int mcnt;
01618498 4847 size_t reg;
66f0296e 4848 boolean not;
fa9a63c5
RM
4849
4850 /* Just past the end of the corresponding string. */
66f0296e 4851 re_char *end1, *end2;
fa9a63c5
RM
4852
4853 /* Pointers into string1 and string2, just past the last characters in
25fe55af 4854 each to consider matching. */
66f0296e 4855 re_char *end_match_1, *end_match_2;
fa9a63c5
RM
4856
4857 /* Where we are in the data, and the end of the current string. */
66f0296e 4858 re_char *d, *dend;
5e69f11e 4859
99633e97
SM
4860 /* Used sometimes to remember where we were before starting matching
4861 an operator so that we can go back in case of failure. This "atomic"
4862 behavior of matching opcodes is indispensable to the correctness
4863 of the on_failure_keep_string_jump optimization. */
4864 re_char *dfail;
4865
fa9a63c5 4866 /* Where we are in the pattern, and the end of the pattern. */
01618498
SM
4867 re_char *p = bufp->buffer;
4868 re_char *pend = p + bufp->used;
fa9a63c5 4869
25fe55af 4870 /* We use this to map every character in the string. */
6676cb1c 4871 RE_TRANSLATE_TYPE translate = bufp->translate;
fa9a63c5 4872
25fe55af 4873 /* Nonzero if we have to concern multibyte character. */
2d1675e4 4874 const boolean multibyte = RE_MULTIBYTE_P (bufp);
b18215fc 4875
fa9a63c5
RM
4876 /* Failure point stack. Each place that can handle a failure further
4877 down the line pushes a failure point on this stack. It consists of
505bde11 4878 regstart, and regend for all registers corresponding to
fa9a63c5
RM
4879 the subexpressions we're currently inside, plus the number of such
4880 registers, and, finally, two char *'s. The first char * is where
4881 to resume scanning the pattern; the second one is where to resume
505bde11 4882 scanning the strings. */
25fe55af 4883#ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
fa9a63c5
RM
4884 fail_stack_type fail_stack;
4885#endif
4886#ifdef DEBUG
fa9a63c5
RM
4887 unsigned nfailure_points_pushed = 0, nfailure_points_popped = 0;
4888#endif
4889
0b32bf0e 4890#if defined REL_ALLOC && defined REGEX_MALLOC
fa9a63c5
RM
4891 /* This holds the pointer to the failure stack, when
4892 it is allocated relocatably. */
4893 fail_stack_elt_t *failure_stack_ptr;
99633e97 4894#endif
fa9a63c5
RM
4895
4896 /* We fill all the registers internally, independent of what we
25fe55af 4897 return, for use in backreferences. The number here includes
fa9a63c5 4898 an element for register zero. */
4bb91c68 4899 size_t num_regs = bufp->re_nsub + 1;
5e69f11e 4900
fa9a63c5
RM
4901 /* Information on the contents of registers. These are pointers into
4902 the input strings; they record just what was matched (on this
4903 attempt) by a subexpression part of the pattern, that is, the
4904 regnum-th regstart pointer points to where in the pattern we began
4905 matching and the regnum-th regend points to right after where we
4906 stopped matching the regnum-th subexpression. (The zeroth register
4907 keeps track of what the whole pattern matches.) */
4908#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
66f0296e 4909 re_char **regstart, **regend;
fa9a63c5
RM
4910#endif
4911
fa9a63c5 4912 /* The following record the register info as found in the above
5e69f11e 4913 variables when we find a match better than any we've seen before.
fa9a63c5
RM
4914 This happens as we backtrack through the failure points, which in
4915 turn happens only if we have not yet matched the entire string. */
4916 unsigned best_regs_set = false;
4917#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
66f0296e 4918 re_char **best_regstart, **best_regend;
fa9a63c5 4919#endif
5e69f11e 4920
fa9a63c5
RM
4921 /* Logically, this is `best_regend[0]'. But we don't want to have to
4922 allocate space for that if we're not allocating space for anything
25fe55af 4923 else (see below). Also, we never need info about register 0 for
fa9a63c5
RM
4924 any of the other register vectors, and it seems rather a kludge to
4925 treat `best_regend' differently than the rest. So we keep track of
4926 the end of the best match so far in a separate variable. We
4927 initialize this to NULL so that when we backtrack the first time
4928 and need to test it, it's not garbage. */
66f0296e 4929 re_char *match_end = NULL;
fa9a63c5 4930
fa9a63c5
RM
4931#ifdef DEBUG
4932 /* Counts the total number of registers pushed. */
5e69f11e 4933 unsigned num_regs_pushed = 0;
fa9a63c5
RM
4934#endif
4935
4936 DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
5e69f11e 4937
fa9a63c5 4938 INIT_FAIL_STACK ();
5e69f11e 4939
fa9a63c5
RM
4940#ifdef MATCH_MAY_ALLOCATE
4941 /* Do not bother to initialize all the register variables if there are
4942 no groups in the pattern, as it takes a fair amount of time. If
4943 there are groups, we include space for register 0 (the whole
4944 pattern), even though we never use it, since it simplifies the
4945 array indexing. We should fix this. */
4946 if (bufp->re_nsub)
4947 {
66f0296e
SM
4948 regstart = REGEX_TALLOC (num_regs, re_char *);
4949 regend = REGEX_TALLOC (num_regs, re_char *);
4950 best_regstart = REGEX_TALLOC (num_regs, re_char *);
4951 best_regend = REGEX_TALLOC (num_regs, re_char *);
fa9a63c5 4952
505bde11 4953 if (!(regstart && regend && best_regstart && best_regend))
25fe55af
RS
4954 {
4955 FREE_VARIABLES ();
4956 return -2;
4957 }
fa9a63c5
RM
4958 }
4959 else
4960 {
4961 /* We must initialize all our variables to NULL, so that
25fe55af 4962 `FREE_VARIABLES' doesn't try to free them. */
505bde11 4963 regstart = regend = best_regstart = best_regend = NULL;
fa9a63c5
RM
4964 }
4965#endif /* MATCH_MAY_ALLOCATE */
4966
4967 /* The starting position is bogus. */
4968 if (pos < 0 || pos > size1 + size2)
4969 {
4970 FREE_VARIABLES ();
4971 return -1;
4972 }
5e69f11e 4973
fa9a63c5
RM
4974 /* Initialize subexpression text positions to -1 to mark ones that no
4975 start_memory/stop_memory has been seen for. Also initialize the
4976 register information struct. */
01618498
SM
4977 for (reg = 1; reg < num_regs; reg++)
4978 regstart[reg] = regend[reg] = NULL;
99633e97 4979
fa9a63c5 4980 /* We move `string1' into `string2' if the latter's empty -- but not if
25fe55af 4981 `string1' is null. */
fa9a63c5
RM
4982 if (size2 == 0 && string1 != NULL)
4983 {
4984 string2 = string1;
4985 size2 = size1;
4986 string1 = 0;
4987 size1 = 0;
4988 }
4989 end1 = string1 + size1;
4990 end2 = string2 + size2;
4991
5e69f11e 4992 /* `p' scans through the pattern as `d' scans through the data.
fa9a63c5
RM
4993 `dend' is the end of the input string that `d' points within. `d'
4994 is advanced into the following input string whenever necessary, but
4995 this happens before fetching; therefore, at the beginning of the
4996 loop, `d' can be pointing at the end of a string, but it cannot
4997 equal `string2'. */
419d1c74 4998 if (pos >= size1)
fa9a63c5 4999 {
419d1c74
SM
5000 /* Only match within string2. */
5001 d = string2 + pos - size1;
5002 dend = end_match_2 = string2 + stop - size1;
5003 end_match_1 = end1; /* Just to give it a value. */
fa9a63c5
RM
5004 }
5005 else
5006 {
f1ad044f 5007 if (stop < size1)
419d1c74
SM
5008 {
5009 /* Only match within string1. */
5010 end_match_1 = string1 + stop;
5011 /* BEWARE!
5012 When we reach end_match_1, PREFETCH normally switches to string2.
5013 But in the present case, this means that just doing a PREFETCH
5014 makes us jump from `stop' to `gap' within the string.
5015 What we really want here is for the search to stop as
5016 soon as we hit end_match_1. That's why we set end_match_2
5017 to end_match_1 (since PREFETCH fails as soon as we hit
5018 end_match_2). */
5019 end_match_2 = end_match_1;
5020 }
5021 else
f1ad044f
SM
5022 { /* It's important to use this code when stop == size so that
5023 moving `d' from end1 to string2 will not prevent the d == dend
5024 check from catching the end of string. */
419d1c74
SM
5025 end_match_1 = end1;
5026 end_match_2 = string2 + stop - size1;
5027 }
5028 d = string1 + pos;
5029 dend = end_match_1;
fa9a63c5
RM
5030 }
5031
5032 DEBUG_PRINT1 ("The compiled pattern is: ");
5033 DEBUG_PRINT_COMPILED_PATTERN (bufp, p, pend);
5034 DEBUG_PRINT1 ("The string to match is: `");
5035 DEBUG_PRINT_DOUBLE_STRING (d, string1, size1, string2, size2);
5036 DEBUG_PRINT1 ("'\n");
5e69f11e 5037
25fe55af 5038 /* This loops over pattern commands. It exits by returning from the
fa9a63c5
RM
5039 function if the match is complete, or it drops through if the match
5040 fails at this starting point in the input data. */
5041 for (;;)
5042 {
505bde11 5043 DEBUG_PRINT2 ("\n%p: ", p);
fa9a63c5
RM
5044
5045 if (p == pend)
5046 { /* End of pattern means we might have succeeded. */
25fe55af 5047 DEBUG_PRINT1 ("end of pattern ... ");
5e69f11e 5048
fa9a63c5 5049 /* If we haven't matched the entire string, and we want the
25fe55af
RS
5050 longest match, try backtracking. */
5051 if (d != end_match_2)
fa9a63c5
RM
5052 {
5053 /* 1 if this match ends in the same string (string1 or string2)
5054 as the best previous match. */
5e69f11e 5055 boolean same_str_p = (FIRST_STRING_P (match_end)
99633e97 5056 == FIRST_STRING_P (d));
fa9a63c5
RM
5057 /* 1 if this match is the best seen so far. */
5058 boolean best_match_p;
5059
5060 /* AIX compiler got confused when this was combined
25fe55af 5061 with the previous declaration. */
fa9a63c5
RM
5062 if (same_str_p)
5063 best_match_p = d > match_end;
5064 else
99633e97 5065 best_match_p = !FIRST_STRING_P (d);
fa9a63c5 5066
25fe55af
RS
5067 DEBUG_PRINT1 ("backtracking.\n");
5068
5069 if (!FAIL_STACK_EMPTY ())
5070 { /* More failure points to try. */
5071
5072 /* If exceeds best match so far, save it. */
5073 if (!best_regs_set || best_match_p)
5074 {
5075 best_regs_set = true;
5076 match_end = d;
5077
5078 DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
5079
01618498 5080 for (reg = 1; reg < num_regs; reg++)
25fe55af 5081 {
01618498
SM
5082 best_regstart[reg] = regstart[reg];
5083 best_regend[reg] = regend[reg];
25fe55af
RS
5084 }
5085 }
5086 goto fail;
5087 }
5088
5089 /* If no failure points, don't restore garbage. And if
5090 last match is real best match, don't restore second
5091 best one. */
5092 else if (best_regs_set && !best_match_p)
5093 {
5094 restore_best_regs:
5095 /* Restore best match. It may happen that `dend ==
5096 end_match_1' while the restored d is in string2.
5097 For example, the pattern `x.*y.*z' against the
5098 strings `x-' and `y-z-', if the two strings are
5099 not consecutive in memory. */
5100 DEBUG_PRINT1 ("Restoring best registers.\n");
5101
5102 d = match_end;
5103 dend = ((d >= string1 && d <= end1)
5104 ? end_match_1 : end_match_2);
fa9a63c5 5105
01618498 5106 for (reg = 1; reg < num_regs; reg++)
fa9a63c5 5107 {
01618498
SM
5108 regstart[reg] = best_regstart[reg];
5109 regend[reg] = best_regend[reg];
fa9a63c5 5110 }
25fe55af
RS
5111 }
5112 } /* d != end_match_2 */
fa9a63c5
RM
5113
5114 succeed_label:
25fe55af 5115 DEBUG_PRINT1 ("Accepting match.\n");
fa9a63c5 5116
25fe55af
RS
5117 /* If caller wants register contents data back, do it. */
5118 if (regs && !bufp->no_sub)
fa9a63c5 5119 {
25fe55af
RS
5120 /* Have the register data arrays been allocated? */
5121 if (bufp->regs_allocated == REGS_UNALLOCATED)
5122 { /* No. So allocate them with malloc. We need one
5123 extra element beyond `num_regs' for the `-1' marker
5124 GNU code uses. */
5125 regs->num_regs = MAX (RE_NREGS, num_regs + 1);
5126 regs->start = TALLOC (regs->num_regs, regoff_t);
5127 regs->end = TALLOC (regs->num_regs, regoff_t);
5128 if (regs->start == NULL || regs->end == NULL)
fa9a63c5
RM
5129 {
5130 FREE_VARIABLES ();
5131 return -2;
5132 }
25fe55af
RS
5133 bufp->regs_allocated = REGS_REALLOCATE;
5134 }
5135 else if (bufp->regs_allocated == REGS_REALLOCATE)
5136 { /* Yes. If we need more elements than were already
5137 allocated, reallocate them. If we need fewer, just
5138 leave it alone. */
5139 if (regs->num_regs < num_regs + 1)
5140 {
5141 regs->num_regs = num_regs + 1;
5142 RETALLOC (regs->start, regs->num_regs, regoff_t);
5143 RETALLOC (regs->end, regs->num_regs, regoff_t);
5144 if (regs->start == NULL || regs->end == NULL)
fa9a63c5
RM
5145 {
5146 FREE_VARIABLES ();
5147 return -2;
5148 }
25fe55af
RS
5149 }
5150 }
5151 else
fa9a63c5
RM
5152 {
5153 /* These braces fend off a "empty body in an else-statement"
25fe55af 5154 warning under GCC when assert expands to nothing. */
fa9a63c5
RM
5155 assert (bufp->regs_allocated == REGS_FIXED);
5156 }
5157
25fe55af
RS
5158 /* Convert the pointer data in `regstart' and `regend' to
5159 indices. Register zero has to be set differently,
5160 since we haven't kept track of any info for it. */
5161 if (regs->num_regs > 0)
5162 {
5163 regs->start[0] = pos;
99633e97 5164 regs->end[0] = POINTER_TO_OFFSET (d);
25fe55af 5165 }
5e69f11e 5166
25fe55af
RS
5167 /* Go through the first `min (num_regs, regs->num_regs)'
5168 registers, since that is all we initialized. */
01618498 5169 for (reg = 1; reg < MIN (num_regs, regs->num_regs); reg++)
fa9a63c5 5170 {
01618498
SM
5171 if (REG_UNSET (regstart[reg]) || REG_UNSET (regend[reg]))
5172 regs->start[reg] = regs->end[reg] = -1;
25fe55af
RS
5173 else
5174 {
01618498
SM
5175 regs->start[reg]
5176 = (regoff_t) POINTER_TO_OFFSET (regstart[reg]);
5177 regs->end[reg]
5178 = (regoff_t) POINTER_TO_OFFSET (regend[reg]);
25fe55af 5179 }
fa9a63c5 5180 }
5e69f11e 5181
25fe55af
RS
5182 /* If the regs structure we return has more elements than
5183 were in the pattern, set the extra elements to -1. If
5184 we (re)allocated the registers, this is the case,
5185 because we always allocate enough to have at least one
5186 -1 at the end. */
01618498
SM
5187 for (reg = num_regs; reg < regs->num_regs; reg++)
5188 regs->start[reg] = regs->end[reg] = -1;
fa9a63c5
RM
5189 } /* regs && !bufp->no_sub */
5190
25fe55af
RS
5191 DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
5192 nfailure_points_pushed, nfailure_points_popped,
5193 nfailure_points_pushed - nfailure_points_popped);
5194 DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed);
fa9a63c5 5195
99633e97 5196 mcnt = POINTER_TO_OFFSET (d) - pos;
fa9a63c5 5197
25fe55af 5198 DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt);
fa9a63c5 5199
25fe55af
RS
5200 FREE_VARIABLES ();
5201 return mcnt;
5202 }
fa9a63c5 5203
25fe55af 5204 /* Otherwise match next pattern command. */
fa9a63c5
RM
5205 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
5206 {
25fe55af
RS
5207 /* Ignore these. Used to ignore the n of succeed_n's which
5208 currently have n == 0. */
5209 case no_op:
5210 DEBUG_PRINT1 ("EXECUTING no_op.\n");
5211 break;
fa9a63c5
RM
5212
5213 case succeed:
25fe55af 5214 DEBUG_PRINT1 ("EXECUTING succeed.\n");
fa9a63c5
RM
5215 goto succeed_label;
5216
25fe55af
RS
5217 /* Match the next n pattern characters exactly. The following
5218 byte in the pattern defines n, and the n bytes after that
5219 are the characters to match. */
fa9a63c5
RM
5220 case exactn:
5221 mcnt = *p++;
25fe55af 5222 DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt);
fa9a63c5 5223
99633e97
SM
5224 /* Remember the start point to rollback upon failure. */
5225 dfail = d;
5226
25fe55af
RS
5227 /* This is written out as an if-else so we don't waste time
5228 testing `translate' inside the loop. */
28703c16 5229 if (RE_TRANSLATE_P (translate))
fa9a63c5 5230 {
e934739e
RS
5231 if (multibyte)
5232 do
5233 {
5234 int pat_charlen, buf_charlen;
e71b1971 5235 unsigned int pat_ch, buf_ch;
e934739e
RS
5236
5237 PREFETCH ();
5238 pat_ch = STRING_CHAR_AND_LENGTH (p, pend - p, pat_charlen);
5239 buf_ch = STRING_CHAR_AND_LENGTH (d, dend - d, buf_charlen);
5240
5241 if (RE_TRANSLATE (translate, buf_ch)
5242 != pat_ch)
99633e97
SM
5243 {
5244 d = dfail;
5245 goto fail;
5246 }
e934739e
RS
5247
5248 p += pat_charlen;
5249 d += buf_charlen;
5250 mcnt -= pat_charlen;
5251 }
5252 while (mcnt > 0);
5253 else
e934739e
RS
5254 do
5255 {
cf1982d9
EZ
5256 /* Avoid compiler whining about comparison being
5257 always true. */
5258 int di;
5259
e934739e 5260 PREFETCH ();
cf1982d9
EZ
5261 di = *d;
5262 if (RE_TRANSLATE (translate, di) != *p++)
99633e97
SM
5263 {
5264 d = dfail;
5265 goto fail;
5266 }
33c46939 5267 d++;
e934739e
RS
5268 }
5269 while (--mcnt);
fa9a63c5
RM
5270 }
5271 else
5272 {
5273 do
5274 {
5275 PREFETCH ();
99633e97
SM
5276 if (*d++ != *p++)
5277 {
5278 d = dfail;
5279 goto fail;
5280 }
fa9a63c5
RM
5281 }
5282 while (--mcnt);
5283 }
25fe55af 5284 break;
fa9a63c5
RM
5285
5286
25fe55af 5287 /* Match any character except possibly a newline or a null. */
fa9a63c5 5288 case anychar:
e934739e
RS
5289 {
5290 int buf_charlen;
01618498 5291 re_wchar_t buf_ch;
fa9a63c5 5292
e934739e 5293 DEBUG_PRINT1 ("EXECUTING anychar.\n");
fa9a63c5 5294
e934739e 5295 PREFETCH ();
2d1675e4 5296 buf_ch = RE_STRING_CHAR_AND_LENGTH (d, dend - d, buf_charlen);
e934739e
RS
5297 buf_ch = TRANSLATE (buf_ch);
5298
5299 if ((!(bufp->syntax & RE_DOT_NEWLINE)
5300 && buf_ch == '\n')
5301 || ((bufp->syntax & RE_DOT_NOT_NULL)
5302 && buf_ch == '\000'))
5303 goto fail;
5304
e934739e
RS
5305 DEBUG_PRINT2 (" Matched `%d'.\n", *d);
5306 d += buf_charlen;
5307 }
fa9a63c5
RM
5308 break;
5309
5310
5311 case charset:
5312 case charset_not:
5313 {
b18215fc 5314 register unsigned int c;
fa9a63c5 5315 boolean not = (re_opcode_t) *(p - 1) == charset_not;
b18215fc
RS
5316 int len;
5317
5318 /* Start of actual range_table, or end of bitmap if there is no
5319 range table. */
01618498 5320 re_char *range_table;
b18215fc 5321
96cc36cc 5322 /* Nonzero if there is a range table. */
b18215fc
RS
5323 int range_table_exists;
5324
96cc36cc
RS
5325 /* Number of ranges of range table. This is not included
5326 in the initial byte-length of the command. */
5327 int count = 0;
fa9a63c5 5328
25fe55af 5329 DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : "");
fa9a63c5 5330
b18215fc 5331 range_table_exists = CHARSET_RANGE_TABLE_EXISTS_P (&p[-1]);
96cc36cc 5332
b18215fc 5333 if (range_table_exists)
96cc36cc
RS
5334 {
5335 range_table = CHARSET_RANGE_TABLE (&p[-1]); /* Past the bitmap. */
5336 EXTRACT_NUMBER_AND_INCR (count, range_table);
5337 }
b18215fc 5338
2d1675e4
SM
5339 PREFETCH ();
5340 c = RE_STRING_CHAR_AND_LENGTH (d, dend - d, len);
5341 c = TRANSLATE (c); /* The character to match. */
b18215fc
RS
5342
5343 if (SINGLE_BYTE_CHAR_P (c))
5344 { /* Lookup bitmap. */
b18215fc
RS
5345 /* Cast to `unsigned' instead of `unsigned char' in
5346 case the bit list is a full 32 bytes long. */
5347 if (c < (unsigned) (CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH)
96cc36cc
RS
5348 && p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
5349 not = !not;
b18215fc 5350 }
96cc36cc 5351#ifdef emacs
b18215fc 5352 else if (range_table_exists)
96cc36cc
RS
5353 {
5354 int class_bits = CHARSET_RANGE_TABLE_BITS (&p[-1]);
5355
14473664
SM
5356 if ( (class_bits & BIT_LOWER && ISLOWER (c))
5357 | (class_bits & BIT_MULTIBYTE)
96cc36cc
RS
5358 | (class_bits & BIT_PUNCT && ISPUNCT (c))
5359 | (class_bits & BIT_SPACE && ISSPACE (c))
5360 | (class_bits & BIT_UPPER && ISUPPER (c))
5361 | (class_bits & BIT_WORD && ISWORD (c)))
5362 not = !not;
5363 else
5364 CHARSET_LOOKUP_RANGE_TABLE_RAW (not, c, range_table, count);
5365 }
5366#endif /* emacs */
fa9a63c5 5367
96cc36cc
RS
5368 if (range_table_exists)
5369 p = CHARSET_RANGE_TABLE_END (range_table, count);
5370 else
5371 p += CHARSET_BITMAP_SIZE (&p[-1]) + 1;
fa9a63c5
RM
5372
5373 if (!not) goto fail;
5e69f11e 5374
b18215fc 5375 d += len;
fa9a63c5
RM
5376 break;
5377 }
5378
5379
25fe55af 5380 /* The beginning of a group is represented by start_memory.
505bde11 5381 The argument is the register number. The text
25fe55af
RS
5382 matched within the group is recorded (in the internal
5383 registers data structure) under the register number. */
5384 case start_memory:
505bde11
SM
5385 DEBUG_PRINT2 ("EXECUTING start_memory %d:\n", *p);
5386
5387 /* In case we need to undo this operation (via backtracking). */
5388 PUSH_FAILURE_REG ((unsigned int)*p);
fa9a63c5 5389
25fe55af 5390 regstart[*p] = d;
4bb91c68 5391 regend[*p] = NULL; /* probably unnecessary. -sm */
fa9a63c5
RM
5392 DEBUG_PRINT2 (" regstart: %d\n", POINTER_TO_OFFSET (regstart[*p]));
5393
25fe55af 5394 /* Move past the register number and inner group count. */
505bde11 5395 p += 1;
25fe55af 5396 break;
fa9a63c5
RM
5397
5398
25fe55af 5399 /* The stop_memory opcode represents the end of a group. Its
505bde11 5400 argument is the same as start_memory's: the register number. */
fa9a63c5 5401 case stop_memory:
505bde11
SM
5402 DEBUG_PRINT2 ("EXECUTING stop_memory %d:\n", *p);
5403
5404 assert (!REG_UNSET (regstart[*p]));
5405 /* Strictly speaking, there should be code such as:
177c0ea7 5406
0b32bf0e 5407 assert (REG_UNSET (regend[*p]));
505bde11
SM
5408 PUSH_FAILURE_REGSTOP ((unsigned int)*p);
5409
5410 But the only info to be pushed is regend[*p] and it is known to
5411 be UNSET, so there really isn't anything to push.
5412 Not pushing anything, on the other hand deprives us from the
5413 guarantee that regend[*p] is UNSET since undoing this operation
5414 will not reset its value properly. This is not important since
5415 the value will only be read on the next start_memory or at
5416 the very end and both events can only happen if this stop_memory
5417 is *not* undone. */
fa9a63c5 5418
25fe55af 5419 regend[*p] = d;
fa9a63c5
RM
5420 DEBUG_PRINT2 (" regend: %d\n", POINTER_TO_OFFSET (regend[*p]));
5421
25fe55af 5422 /* Move past the register number and the inner group count. */
505bde11 5423 p += 1;
25fe55af 5424 break;
fa9a63c5
RM
5425
5426
5427 /* \<digit> has been turned into a `duplicate' command which is
25fe55af
RS
5428 followed by the numeric value of <digit> as the register number. */
5429 case duplicate:
fa9a63c5 5430 {
66f0296e 5431 register re_char *d2, *dend2;
25fe55af 5432 int regno = *p++; /* Get which register to match against. */
fa9a63c5
RM
5433 DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno);
5434
25fe55af
RS
5435 /* Can't back reference a group which we've never matched. */
5436 if (REG_UNSET (regstart[regno]) || REG_UNSET (regend[regno]))
5437 goto fail;
5e69f11e 5438
25fe55af
RS
5439 /* Where in input to try to start matching. */
5440 d2 = regstart[regno];
5e69f11e 5441
99633e97
SM
5442 /* Remember the start point to rollback upon failure. */
5443 dfail = d;
5444
25fe55af
RS
5445 /* Where to stop matching; if both the place to start and
5446 the place to stop matching are in the same string, then
5447 set to the place to stop, otherwise, for now have to use
5448 the end of the first string. */
fa9a63c5 5449
25fe55af 5450 dend2 = ((FIRST_STRING_P (regstart[regno])
fa9a63c5
RM
5451 == FIRST_STRING_P (regend[regno]))
5452 ? regend[regno] : end_match_1);
5453 for (;;)
5454 {
5455 /* If necessary, advance to next segment in register
25fe55af 5456 contents. */
fa9a63c5
RM
5457 while (d2 == dend2)
5458 {
5459 if (dend2 == end_match_2) break;
5460 if (dend2 == regend[regno]) break;
5461
25fe55af
RS
5462 /* End of string1 => advance to string2. */
5463 d2 = string2;
5464 dend2 = regend[regno];
fa9a63c5
RM
5465 }
5466 /* At end of register contents => success */
5467 if (d2 == dend2) break;
5468
5469 /* If necessary, advance to next segment in data. */
5470 PREFETCH ();
5471
5472 /* How many characters left in this segment to match. */
5473 mcnt = dend - d;
5e69f11e 5474
fa9a63c5 5475 /* Want how many consecutive characters we can match in
25fe55af
RS
5476 one shot, so, if necessary, adjust the count. */
5477 if (mcnt > dend2 - d2)
fa9a63c5 5478 mcnt = dend2 - d2;
5e69f11e 5479
fa9a63c5 5480 /* Compare that many; failure if mismatch, else move
25fe55af 5481 past them. */
28703c16 5482 if (RE_TRANSLATE_P (translate)
2d1675e4 5483 ? bcmp_translate (d, d2, mcnt, translate, multibyte)
4bb91c68 5484 : memcmp (d, d2, mcnt))
99633e97
SM
5485 {
5486 d = dfail;
5487 goto fail;
5488 }
fa9a63c5 5489 d += mcnt, d2 += mcnt;
fa9a63c5
RM
5490 }
5491 }
5492 break;
5493
5494
25fe55af 5495 /* begline matches the empty string at the beginning of the string
c0f9ea08 5496 (unless `not_bol' is set in `bufp'), and after newlines. */
fa9a63c5 5497 case begline:
25fe55af 5498 DEBUG_PRINT1 ("EXECUTING begline.\n");
5e69f11e 5499
25fe55af
RS
5500 if (AT_STRINGS_BEG (d))
5501 {
5502 if (!bufp->not_bol) break;
5503 }
419d1c74 5504 else
25fe55af 5505 {
419d1c74
SM
5506 unsigned char c;
5507 GET_CHAR_BEFORE_2 (c, d, string1, end1, string2, end2);
c0f9ea08 5508 if (c == '\n')
419d1c74 5509 break;
25fe55af
RS
5510 }
5511 /* In all other cases, we fail. */
5512 goto fail;
fa9a63c5
RM
5513
5514
25fe55af 5515 /* endline is the dual of begline. */
fa9a63c5 5516 case endline:
25fe55af 5517 DEBUG_PRINT1 ("EXECUTING endline.\n");
fa9a63c5 5518
25fe55af
RS
5519 if (AT_STRINGS_END (d))
5520 {
5521 if (!bufp->not_eol) break;
5522 }
f1ad044f 5523 else
25fe55af 5524 {
f1ad044f 5525 PREFETCH_NOLIMIT ();
c0f9ea08 5526 if (*d == '\n')
f1ad044f 5527 break;
25fe55af
RS
5528 }
5529 goto fail;
fa9a63c5
RM
5530
5531
5532 /* Match at the very beginning of the data. */
25fe55af
RS
5533 case begbuf:
5534 DEBUG_PRINT1 ("EXECUTING begbuf.\n");
5535 if (AT_STRINGS_BEG (d))
5536 break;
5537 goto fail;
fa9a63c5
RM
5538
5539
5540 /* Match at the very end of the data. */
25fe55af
RS
5541 case endbuf:
5542 DEBUG_PRINT1 ("EXECUTING endbuf.\n");
fa9a63c5
RM
5543 if (AT_STRINGS_END (d))
5544 break;
25fe55af 5545 goto fail;
5e69f11e 5546
5e69f11e 5547
25fe55af
RS
5548 /* on_failure_keep_string_jump is used to optimize `.*\n'. It
5549 pushes NULL as the value for the string on the stack. Then
505bde11 5550 `POP_FAILURE_POINT' will keep the current value for the
25fe55af
RS
5551 string, instead of restoring it. To see why, consider
5552 matching `foo\nbar' against `.*\n'. The .* matches the foo;
5553 then the . fails against the \n. But the next thing we want
5554 to do is match the \n against the \n; if we restored the
5555 string value, we would be back at the foo.
5556
5557 Because this is used only in specific cases, we don't need to
5558 check all the things that `on_failure_jump' does, to make
5559 sure the right things get saved on the stack. Hence we don't
5560 share its code. The only reason to push anything on the
5561 stack at all is that otherwise we would have to change
5562 `anychar's code to do something besides goto fail in this
5563 case; that seems worse than this. */
5564 case on_failure_keep_string_jump:
505bde11
SM
5565 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5566 DEBUG_PRINT3 ("EXECUTING on_failure_keep_string_jump %d (to %p):\n",
5567 mcnt, p + mcnt);
fa9a63c5 5568
505bde11
SM
5569 PUSH_FAILURE_POINT (p - 3, NULL);
5570 break;
5571
0683b6fa
SM
5572 /* A nasty loop is introduced by the non-greedy *? and +?.
5573 With such loops, the stack only ever contains one failure point
5574 at a time, so that a plain on_failure_jump_loop kind of
5575 cycle detection cannot work. Worse yet, such a detection
5576 can not only fail to detect a cycle, but it can also wrongly
5577 detect a cycle (between different instantiations of the same
6df42991 5578 loop).
0683b6fa
SM
5579 So the method used for those nasty loops is a little different:
5580 We use a special cycle-detection-stack-frame which is pushed
5581 when the on_failure_jump_nastyloop failure-point is *popped*.
5582 This special frame thus marks the beginning of one iteration
5583 through the loop and we can hence easily check right here
5584 whether something matched between the beginning and the end of
5585 the loop. */
5586 case on_failure_jump_nastyloop:
5587 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5588 DEBUG_PRINT3 ("EXECUTING on_failure_jump_nastyloop %d (to %p):\n",
5589 mcnt, p + mcnt);
5590
5591 assert ((re_opcode_t)p[-4] == no_op);
6df42991
SM
5592 {
5593 int cycle = 0;
5594 CHECK_INFINITE_LOOP (p - 4, d);
5595 if (!cycle)
5596 /* If there's a cycle, just continue without pushing
5597 this failure point. The failure point is the "try again"
5598 option, which shouldn't be tried.
5599 We want (x?)*?y\1z to match both xxyz and xxyxz. */
5600 PUSH_FAILURE_POINT (p - 3, d);
5601 }
0683b6fa
SM
5602 break;
5603
4e8a9132
SM
5604 /* Simple loop detecting on_failure_jump: just check on the
5605 failure stack if the same spot was already hit earlier. */
505bde11
SM
5606 case on_failure_jump_loop:
5607 on_failure:
5608 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5609 DEBUG_PRINT3 ("EXECUTING on_failure_jump_loop %d (to %p):\n",
5610 mcnt, p + mcnt);
6df42991
SM
5611 {
5612 int cycle = 0;
5613 CHECK_INFINITE_LOOP (p - 3, d);
5614 if (cycle)
5615 /* If there's a cycle, get out of the loop, as if the matching
5616 had failed. We used to just `goto fail' here, but that was
5617 aborting the search a bit too early: we want to keep the
5618 empty-loop-match and keep matching after the loop.
5619 We want (x?)*y\1z to match both xxyz and xxyxz. */
5620 p += mcnt;
5621 else
5622 PUSH_FAILURE_POINT (p - 3, d);
5623 }
25fe55af 5624 break;
fa9a63c5
RM
5625
5626
5627 /* Uses of on_failure_jump:
5e69f11e 5628
25fe55af
RS
5629 Each alternative starts with an on_failure_jump that points
5630 to the beginning of the next alternative. Each alternative
5631 except the last ends with a jump that in effect jumps past
5632 the rest of the alternatives. (They really jump to the
5633 ending jump of the following alternative, because tensioning
5634 these jumps is a hassle.)
fa9a63c5 5635
25fe55af
RS
5636 Repeats start with an on_failure_jump that points past both
5637 the repetition text and either the following jump or
5638 pop_failure_jump back to this on_failure_jump. */
fa9a63c5 5639 case on_failure_jump:
25fe55af 5640 EXTRACT_NUMBER_AND_INCR (mcnt, p);
505bde11
SM
5641 DEBUG_PRINT3 ("EXECUTING on_failure_jump %d (to %p):\n",
5642 mcnt, p + mcnt);
25fe55af 5643
505bde11 5644 PUSH_FAILURE_POINT (p -3, d);
25fe55af
RS
5645 break;
5646
4e8a9132 5647 /* This operation is used for greedy *.
505bde11
SM
5648 Compare the beginning of the repeat with what in the
5649 pattern follows its end. If we can establish that there
5650 is nothing that they would both match, i.e., that we
5651 would have to backtrack because of (as in, e.g., `a*a')
5652 then we can use a non-backtracking loop based on
4e8a9132 5653 on_failure_keep_string_jump instead of on_failure_jump. */
505bde11 5654 case on_failure_jump_smart:
25fe55af 5655 EXTRACT_NUMBER_AND_INCR (mcnt, p);
505bde11
SM
5656 DEBUG_PRINT3 ("EXECUTING on_failure_jump_smart %d (to %p).\n",
5657 mcnt, p + mcnt);
25fe55af 5658 {
01618498 5659 re_char *p1 = p; /* Next operation. */
6dcf2d0e
SM
5660 /* Here, we discard `const', making re_match non-reentrant. */
5661 unsigned char *p2 = (unsigned char*) p + mcnt; /* Jump dest. */
5662 unsigned char *p3 = (unsigned char*) p - 3; /* opcode location. */
fa9a63c5 5663
505bde11
SM
5664 p -= 3; /* Reset so that we will re-execute the
5665 instruction once it's been changed. */
fa9a63c5 5666
4e8a9132
SM
5667 EXTRACT_NUMBER (mcnt, p2 - 2);
5668
5669 /* Ensure this is a indeed the trivial kind of loop
5670 we are expecting. */
5671 assert (skip_one_char (p1) == p2 - 3);
5672 assert ((re_opcode_t) p2[-3] == jump && p2 + mcnt == p);
99633e97 5673 DEBUG_STATEMENT (debug += 2);
505bde11 5674 if (mutually_exclusive_p (bufp, p1, p2))
fa9a63c5 5675 {
505bde11 5676 /* Use a fast `on_failure_keep_string_jump' loop. */
4e8a9132 5677 DEBUG_PRINT1 (" smart exclusive => fast loop.\n");
01618498 5678 *p3 = (unsigned char) on_failure_keep_string_jump;
4e8a9132 5679 STORE_NUMBER (p2 - 2, mcnt + 3);
25fe55af 5680 }
505bde11 5681 else
fa9a63c5 5682 {
505bde11
SM
5683 /* Default to a safe `on_failure_jump' loop. */
5684 DEBUG_PRINT1 (" smart default => slow loop.\n");
01618498 5685 *p3 = (unsigned char) on_failure_jump;
fa9a63c5 5686 }
99633e97 5687 DEBUG_STATEMENT (debug -= 2);
25fe55af 5688 }
505bde11 5689 break;
25fe55af
RS
5690
5691 /* Unconditionally jump (without popping any failure points). */
5692 case jump:
fa9a63c5 5693 unconditional_jump:
5b370c2b 5694 IMMEDIATE_QUIT_CHECK;
fa9a63c5 5695 EXTRACT_NUMBER_AND_INCR (mcnt, p); /* Get the amount to jump. */
25fe55af
RS
5696 DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt);
5697 p += mcnt; /* Do the jump. */
505bde11 5698 DEBUG_PRINT2 ("(to %p).\n", p);
25fe55af
RS
5699 break;
5700
5701
25fe55af
RS
5702 /* Have to succeed matching what follows at least n times.
5703 After that, handle like `on_failure_jump'. */
5704 case succeed_n:
01618498 5705 /* Signedness doesn't matter since we only compare MCNT to 0. */
25fe55af
RS
5706 EXTRACT_NUMBER (mcnt, p + 2);
5707 DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt);
5e69f11e 5708
dc1e502d
SM
5709 /* Originally, mcnt is how many times we HAVE to succeed. */
5710 if (mcnt != 0)
25fe55af 5711 {
6dcf2d0e
SM
5712 /* Here, we discard `const', making re_match non-reentrant. */
5713 unsigned char *p2 = (unsigned char*) p + 2; /* counter loc. */
dc1e502d 5714 mcnt--;
01618498
SM
5715 p += 4;
5716 PUSH_NUMBER (p2, mcnt);
25fe55af 5717 }
dc1e502d
SM
5718 else
5719 /* The two bytes encoding mcnt == 0 are two no_op opcodes. */
5720 goto on_failure;
25fe55af
RS
5721 break;
5722
5723 case jump_n:
01618498 5724 /* Signedness doesn't matter since we only compare MCNT to 0. */
25fe55af
RS
5725 EXTRACT_NUMBER (mcnt, p + 2);
5726 DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt);
5727
5728 /* Originally, this is how many times we CAN jump. */
dc1e502d 5729 if (mcnt != 0)
25fe55af 5730 {
6dcf2d0e
SM
5731 /* Here, we discard `const', making re_match non-reentrant. */
5732 unsigned char *p2 = (unsigned char*) p + 2; /* counter loc. */
dc1e502d 5733 mcnt--;
01618498 5734 PUSH_NUMBER (p2, mcnt);
dc1e502d 5735 goto unconditional_jump;
25fe55af
RS
5736 }
5737 /* If don't have to jump any more, skip over the rest of command. */
5e69f11e
RM
5738 else
5739 p += 4;
25fe55af 5740 break;
5e69f11e 5741
fa9a63c5
RM
5742 case set_number_at:
5743 {
01618498 5744 unsigned char *p2; /* Location of the counter. */
25fe55af 5745 DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
fa9a63c5 5746
25fe55af 5747 EXTRACT_NUMBER_AND_INCR (mcnt, p);
6dcf2d0e
SM
5748 /* Here, we discard `const', making re_match non-reentrant. */
5749 p2 = (unsigned char*) p + mcnt;
01618498 5750 /* Signedness doesn't matter since we only copy MCNT's bits . */
25fe55af 5751 EXTRACT_NUMBER_AND_INCR (mcnt, p);
01618498
SM
5752 DEBUG_PRINT3 (" Setting %p to %d.\n", p2, mcnt);
5753 PUSH_NUMBER (p2, mcnt);
25fe55af
RS
5754 break;
5755 }
9121ca40
KH
5756
5757 case wordbound:
66f0296e
SM
5758 case notwordbound:
5759 not = (re_opcode_t) *(p - 1) == notwordbound;
5760 DEBUG_PRINT2 ("EXECUTING %swordbound.\n", not?"not":"");
fa9a63c5 5761
99633e97 5762 /* We SUCCEED (or FAIL) in one of the following cases: */
9121ca40 5763
b18215fc 5764 /* Case 1: D is at the beginning or the end of string. */
9121ca40 5765 if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
66f0296e 5766 not = !not;
b18215fc
RS
5767 else
5768 {
5769 /* C1 is the character before D, S1 is the syntax of C1, C2
5770 is the character at D, and S2 is the syntax of C2. */
01618498
SM
5771 re_wchar_t c1, c2;
5772 int s1, s2;
b18215fc 5773#ifdef emacs
2d1675e4
SM
5774 int offset = PTR_TO_OFFSET (d - 1);
5775 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
5d967c7a 5776 UPDATE_SYNTAX_TABLE (charpos);
25fe55af 5777#endif
66f0296e 5778 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
b18215fc
RS
5779 s1 = SYNTAX (c1);
5780#ifdef emacs
5d967c7a 5781 UPDATE_SYNTAX_TABLE_FORWARD (charpos + 1);
25fe55af 5782#endif
f1ad044f 5783 PREFETCH_NOLIMIT ();
2d1675e4 5784 c2 = RE_STRING_CHAR (d, dend - d);
b18215fc
RS
5785 s2 = SYNTAX (c2);
5786
5787 if (/* Case 2: Only one of S1 and S2 is Sword. */
5788 ((s1 == Sword) != (s2 == Sword))
5789 /* Case 3: Both of S1 and S2 are Sword, and macro
25fe55af 5790 WORD_BOUNDARY_P (C1, C2) returns nonzero. */
b18215fc 5791 || ((s1 == Sword) && WORD_BOUNDARY_P (c1, c2)))
66f0296e
SM
5792 not = !not;
5793 }
5794 if (not)
9121ca40 5795 break;
b18215fc 5796 else
9121ca40 5797 goto fail;
fa9a63c5
RM
5798
5799 case wordbeg:
25fe55af 5800 DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
fa9a63c5 5801
b18215fc
RS
5802 /* We FAIL in one of the following cases: */
5803
25fe55af 5804 /* Case 1: D is at the end of string. */
b18215fc 5805 if (AT_STRINGS_END (d))
99633e97 5806 goto fail;
b18215fc
RS
5807 else
5808 {
5809 /* C1 is the character before D, S1 is the syntax of C1, C2
5810 is the character at D, and S2 is the syntax of C2. */
01618498
SM
5811 re_wchar_t c1, c2;
5812 int s1, s2;
fa9a63c5 5813#ifdef emacs
2d1675e4
SM
5814 int offset = PTR_TO_OFFSET (d);
5815 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
92432794 5816 UPDATE_SYNTAX_TABLE (charpos);
25fe55af 5817#endif
99633e97 5818 PREFETCH ();
2d1675e4 5819 c2 = RE_STRING_CHAR (d, dend - d);
b18215fc 5820 s2 = SYNTAX (c2);
177c0ea7 5821
b18215fc
RS
5822 /* Case 2: S2 is not Sword. */
5823 if (s2 != Sword)
5824 goto fail;
5825
5826 /* Case 3: D is not at the beginning of string ... */
5827 if (!AT_STRINGS_BEG (d))
5828 {
5829 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
5830#ifdef emacs
5d967c7a 5831 UPDATE_SYNTAX_TABLE_BACKWARD (charpos - 1);
25fe55af 5832#endif
b18215fc
RS
5833 s1 = SYNTAX (c1);
5834
5835 /* ... and S1 is Sword, and WORD_BOUNDARY_P (C1, C2)
25fe55af 5836 returns 0. */
b18215fc
RS
5837 if ((s1 == Sword) && !WORD_BOUNDARY_P (c1, c2))
5838 goto fail;
5839 }
5840 }
e318085a
RS
5841 break;
5842
b18215fc 5843 case wordend:
25fe55af 5844 DEBUG_PRINT1 ("EXECUTING wordend.\n");
b18215fc
RS
5845
5846 /* We FAIL in one of the following cases: */
5847
5848 /* Case 1: D is at the beginning of string. */
5849 if (AT_STRINGS_BEG (d))
e318085a 5850 goto fail;
b18215fc
RS
5851 else
5852 {
5853 /* C1 is the character before D, S1 is the syntax of C1, C2
5854 is the character at D, and S2 is the syntax of C2. */
01618498
SM
5855 re_wchar_t c1, c2;
5856 int s1, s2;
5d967c7a 5857#ifdef emacs
2d1675e4
SM
5858 int offset = PTR_TO_OFFSET (d) - 1;
5859 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
92432794 5860 UPDATE_SYNTAX_TABLE (charpos);
5d967c7a 5861#endif
99633e97 5862 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
b18215fc
RS
5863 s1 = SYNTAX (c1);
5864
5865 /* Case 2: S1 is not Sword. */
5866 if (s1 != Sword)
5867 goto fail;
5868
5869 /* Case 3: D is not at the end of string ... */
5870 if (!AT_STRINGS_END (d))
5871 {
f1ad044f 5872 PREFETCH_NOLIMIT ();
2d1675e4 5873 c2 = RE_STRING_CHAR (d, dend - d);
5d967c7a 5874#ifdef emacs
134579f2 5875 UPDATE_SYNTAX_TABLE_FORWARD (charpos + 1);
5d967c7a 5876#endif
b18215fc
RS
5877 s2 = SYNTAX (c2);
5878
5879 /* ... and S2 is Sword, and WORD_BOUNDARY_P (C1, C2)
25fe55af 5880 returns 0. */
b18215fc 5881 if ((s2 == Sword) && !WORD_BOUNDARY_P (c1, c2))
25fe55af 5882 goto fail;
b18215fc
RS
5883 }
5884 }
e318085a
RS
5885 break;
5886
669fa600
SM
5887 case symbeg:
5888 DEBUG_PRINT1 ("EXECUTING symbeg.\n");
5889
5890 /* We FAIL in one of the following cases: */
5891
5892 /* Case 1: D is at the end of string. */
5893 if (AT_STRINGS_END (d))
5894 goto fail;
5895 else
5896 {
5897 /* C1 is the character before D, S1 is the syntax of C1, C2
5898 is the character at D, and S2 is the syntax of C2. */
5899 re_wchar_t c1, c2;
5900 int s1, s2;
5901#ifdef emacs
5902 int offset = PTR_TO_OFFSET (d);
5903 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
5904 UPDATE_SYNTAX_TABLE (charpos);
5905#endif
5906 PREFETCH ();
5907 c2 = RE_STRING_CHAR (d, dend - d);
5908 s2 = SYNTAX (c2);
5909
5910 /* Case 2: S2 is neither Sword nor Ssymbol. */
5911 if (s2 != Sword && s2 != Ssymbol)
5912 goto fail;
5913
5914 /* Case 3: D is not at the beginning of string ... */
5915 if (!AT_STRINGS_BEG (d))
5916 {
5917 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
5918#ifdef emacs
5919 UPDATE_SYNTAX_TABLE_BACKWARD (charpos - 1);
5920#endif
5921 s1 = SYNTAX (c1);
5922
5923 /* ... and S1 is Sword or Ssymbol. */
5924 if (s1 == Sword || s1 == Ssymbol)
5925 goto fail;
5926 }
5927 }
5928 break;
5929
5930 case symend:
5931 DEBUG_PRINT1 ("EXECUTING symend.\n");
5932
5933 /* We FAIL in one of the following cases: */
5934
5935 /* Case 1: D is at the beginning of string. */
5936 if (AT_STRINGS_BEG (d))
5937 goto fail;
5938 else
5939 {
5940 /* C1 is the character before D, S1 is the syntax of C1, C2
5941 is the character at D, and S2 is the syntax of C2. */
5942 re_wchar_t c1, c2;
5943 int s1, s2;
5944#ifdef emacs
5945 int offset = PTR_TO_OFFSET (d) - 1;
5946 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
5947 UPDATE_SYNTAX_TABLE (charpos);
5948#endif
5949 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
5950 s1 = SYNTAX (c1);
5951
5952 /* Case 2: S1 is neither Ssymbol nor Sword. */
5953 if (s1 != Sword && s1 != Ssymbol)
5954 goto fail;
5955
5956 /* Case 3: D is not at the end of string ... */
5957 if (!AT_STRINGS_END (d))
5958 {
5959 PREFETCH_NOLIMIT ();
5960 c2 = RE_STRING_CHAR (d, dend - d);
5961#ifdef emacs
134579f2 5962 UPDATE_SYNTAX_TABLE_FORWARD (charpos + 1);
669fa600
SM
5963#endif
5964 s2 = SYNTAX (c2);
5965
5966 /* ... and S2 is Sword or Ssymbol. */
5967 if (s2 == Sword || s2 == Ssymbol)
5968 goto fail;
5969 }
5970 }
5971 break;
5972
fa9a63c5 5973 case syntaxspec:
1fb352e0
SM
5974 case notsyntaxspec:
5975 not = (re_opcode_t) *(p - 1) == notsyntaxspec;
fa9a63c5 5976 mcnt = *p++;
1fb352e0 5977 DEBUG_PRINT3 ("EXECUTING %ssyntaxspec %d.\n", not?"not":"", mcnt);
fa9a63c5 5978 PREFETCH ();
b18215fc
RS
5979#ifdef emacs
5980 {
2d1675e4
SM
5981 int offset = PTR_TO_OFFSET (d);
5982 int pos1 = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
b18215fc
RS
5983 UPDATE_SYNTAX_TABLE (pos1);
5984 }
25fe55af 5985#endif
b18215fc 5986 {
01618498
SM
5987 int len;
5988 re_wchar_t c;
b18215fc 5989
2d1675e4 5990 c = RE_STRING_CHAR_AND_LENGTH (d, dend - d, len);
b18215fc 5991
990b2375 5992 if ((SYNTAX (c) != (enum syntaxcode) mcnt) ^ not)
1fb352e0 5993 goto fail;
b18215fc
RS
5994 d += len;
5995 }
fa9a63c5
RM
5996 break;
5997
b18215fc 5998#ifdef emacs
1fb352e0
SM
5999 case before_dot:
6000 DEBUG_PRINT1 ("EXECUTING before_dot.\n");
6001 if (PTR_BYTE_POS (d) >= PT_BYTE)
fa9a63c5 6002 goto fail;
b18215fc
RS
6003 break;
6004
1fb352e0
SM
6005 case at_dot:
6006 DEBUG_PRINT1 ("EXECUTING at_dot.\n");
6007 if (PTR_BYTE_POS (d) != PT_BYTE)
6008 goto fail;
6009 break;
b18215fc 6010
1fb352e0
SM
6011 case after_dot:
6012 DEBUG_PRINT1 ("EXECUTING after_dot.\n");
6013 if (PTR_BYTE_POS (d) <= PT_BYTE)
6014 goto fail;
e318085a 6015 break;
fa9a63c5 6016
1fb352e0 6017 case categoryspec:
b18215fc 6018 case notcategoryspec:
1fb352e0 6019 not = (re_opcode_t) *(p - 1) == notcategoryspec;
b18215fc 6020 mcnt = *p++;
1fb352e0 6021 DEBUG_PRINT3 ("EXECUTING %scategoryspec %d.\n", not?"not":"", mcnt);
b18215fc
RS
6022 PREFETCH ();
6023 {
01618498
SM
6024 int len;
6025 re_wchar_t c;
6026
2d1675e4 6027 c = RE_STRING_CHAR_AND_LENGTH (d, dend - d, len);
b18215fc 6028
1fb352e0 6029 if ((!CHAR_HAS_CATEGORY (c, mcnt)) ^ not)
b18215fc
RS
6030 goto fail;
6031 d += len;
6032 }
fa9a63c5 6033 break;
5e69f11e 6034
1fb352e0 6035#endif /* emacs */
5e69f11e 6036
0b32bf0e
SM
6037 default:
6038 abort ();
fa9a63c5 6039 }
b18215fc 6040 continue; /* Successfully executed one pattern command; keep going. */
fa9a63c5
RM
6041
6042
6043 /* We goto here if a matching operation fails. */
6044 fail:
5b370c2b 6045 IMMEDIATE_QUIT_CHECK;
fa9a63c5 6046 if (!FAIL_STACK_EMPTY ())
505bde11 6047 {
01618498 6048 re_char *str, *pat;
505bde11 6049 /* A restart point is known. Restore to that state. */
0b32bf0e
SM
6050 DEBUG_PRINT1 ("\nFAIL:\n");
6051 POP_FAILURE_POINT (str, pat);
505bde11
SM
6052 switch (SWITCH_ENUM_CAST ((re_opcode_t) *pat++))
6053 {
6054 case on_failure_keep_string_jump:
6055 assert (str == NULL);
6056 goto continue_failure_jump;
6057
0683b6fa
SM
6058 case on_failure_jump_nastyloop:
6059 assert ((re_opcode_t)pat[-2] == no_op);
6060 PUSH_FAILURE_POINT (pat - 2, str);
6061 /* Fallthrough */
6062
505bde11
SM
6063 case on_failure_jump_loop:
6064 case on_failure_jump:
6065 case succeed_n:
6066 d = str;
6067 continue_failure_jump:
6068 EXTRACT_NUMBER_AND_INCR (mcnt, pat);
6069 p = pat + mcnt;
6070 break;
b18215fc 6071
0683b6fa
SM
6072 case no_op:
6073 /* A special frame used for nastyloops. */
6074 goto fail;
6075
505bde11
SM
6076 default:
6077 abort();
6078 }
fa9a63c5 6079
505bde11 6080 assert (p >= bufp->buffer && p <= pend);
b18215fc 6081
0b32bf0e 6082 if (d >= string1 && d <= end1)
fa9a63c5 6083 dend = end_match_1;
0b32bf0e 6084 }
fa9a63c5 6085 else
0b32bf0e 6086 break; /* Matching at this starting point really fails. */
fa9a63c5
RM
6087 } /* for (;;) */
6088
6089 if (best_regs_set)
6090 goto restore_best_regs;
6091
6092 FREE_VARIABLES ();
6093
b18215fc 6094 return -1; /* Failure to match. */
fa9a63c5
RM
6095} /* re_match_2 */
6096\f
6097/* Subroutine definitions for re_match_2. */
6098
fa9a63c5
RM
6099/* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
6100 bytes; nonzero otherwise. */
5e69f11e 6101
fa9a63c5 6102static int
2d1675e4
SM
6103bcmp_translate (s1, s2, len, translate, multibyte)
6104 re_char *s1, *s2;
fa9a63c5 6105 register int len;
6676cb1c 6106 RE_TRANSLATE_TYPE translate;
2d1675e4 6107 const int multibyte;
fa9a63c5 6108{
2d1675e4
SM
6109 register re_char *p1 = s1, *p2 = s2;
6110 re_char *p1_end = s1 + len;
6111 re_char *p2_end = s2 + len;
e934739e 6112
4bb91c68
SM
6113 /* FIXME: Checking both p1 and p2 presumes that the two strings might have
6114 different lengths, but relying on a single `len' would break this. -sm */
6115 while (p1 < p1_end && p2 < p2_end)
fa9a63c5 6116 {
e934739e 6117 int p1_charlen, p2_charlen;
01618498 6118 re_wchar_t p1_ch, p2_ch;
e934739e 6119
2d1675e4
SM
6120 p1_ch = RE_STRING_CHAR_AND_LENGTH (p1, p1_end - p1, p1_charlen);
6121 p2_ch = RE_STRING_CHAR_AND_LENGTH (p2, p2_end - p2, p2_charlen);
e934739e
RS
6122
6123 if (RE_TRANSLATE (translate, p1_ch)
6124 != RE_TRANSLATE (translate, p2_ch))
bc192b5b 6125 return 1;
e934739e
RS
6126
6127 p1 += p1_charlen, p2 += p2_charlen;
fa9a63c5 6128 }
e934739e
RS
6129
6130 if (p1 != p1_end || p2 != p2_end)
6131 return 1;
6132
fa9a63c5
RM
6133 return 0;
6134}
6135\f
6136/* Entry points for GNU code. */
6137
6138/* re_compile_pattern is the GNU regular expression compiler: it
6139 compiles PATTERN (of length SIZE) and puts the result in BUFP.
6140 Returns 0 if the pattern was valid, otherwise an error string.
5e69f11e 6141
fa9a63c5
RM
6142 Assumes the `allocated' (and perhaps `buffer') and `translate' fields
6143 are set in BUFP on entry.
5e69f11e 6144
b18215fc 6145 We call regex_compile to do the actual compilation. */
fa9a63c5
RM
6146
6147const char *
6148re_compile_pattern (pattern, length, bufp)
6149 const char *pattern;
0b32bf0e 6150 size_t length;
fa9a63c5
RM
6151 struct re_pattern_buffer *bufp;
6152{
6153 reg_errcode_t ret;
5e69f11e 6154
fa9a63c5
RM
6155 /* GNU code is written to assume at least RE_NREGS registers will be set
6156 (and at least one extra will be -1). */
6157 bufp->regs_allocated = REGS_UNALLOCATED;
5e69f11e 6158
fa9a63c5
RM
6159 /* And GNU code determines whether or not to get register information
6160 by passing null for the REGS argument to re_match, etc., not by
6161 setting no_sub. */
6162 bufp->no_sub = 0;
5e69f11e 6163
4bb91c68 6164 ret = regex_compile ((re_char*) pattern, length, re_syntax_options, bufp);
fa9a63c5
RM
6165
6166 if (!ret)
6167 return NULL;
6168 return gettext (re_error_msgid[(int) ret]);
5e69f11e 6169}
c0f9ea08 6170WEAK_ALIAS (__re_compile_pattern, re_compile_pattern)
fa9a63c5 6171\f
b18215fc
RS
6172/* Entry points compatible with 4.2 BSD regex library. We don't define
6173 them unless specifically requested. */
fa9a63c5 6174
0b32bf0e 6175#if defined _REGEX_RE_COMP || defined _LIBC
fa9a63c5
RM
6176
6177/* BSD has one and only one pattern buffer. */
6178static struct re_pattern_buffer re_comp_buf;
6179
6180char *
0b32bf0e 6181# ifdef _LIBC
48afdd44
RM
6182/* Make these definitions weak in libc, so POSIX programs can redefine
6183 these names if they don't use our functions, and still use
6184 regcomp/regexec below without link errors. */
6185weak_function
0b32bf0e 6186# endif
fa9a63c5
RM
6187re_comp (s)
6188 const char *s;
6189{
6190 reg_errcode_t ret;
5e69f11e 6191
fa9a63c5
RM
6192 if (!s)
6193 {
6194 if (!re_comp_buf.buffer)
0b32bf0e 6195 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
a60198e5 6196 return (char *) gettext ("No previous regular expression");
fa9a63c5
RM
6197 return 0;
6198 }
6199
6200 if (!re_comp_buf.buffer)
6201 {
6202 re_comp_buf.buffer = (unsigned char *) malloc (200);
6203 if (re_comp_buf.buffer == NULL)
0b32bf0e
SM
6204 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
6205 return (char *) gettext (re_error_msgid[(int) REG_ESPACE]);
fa9a63c5
RM
6206 re_comp_buf.allocated = 200;
6207
6208 re_comp_buf.fastmap = (char *) malloc (1 << BYTEWIDTH);
6209 if (re_comp_buf.fastmap == NULL)
a60198e5
SM
6210 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
6211 return (char *) gettext (re_error_msgid[(int) REG_ESPACE]);
fa9a63c5
RM
6212 }
6213
6214 /* Since `re_exec' always passes NULL for the `regs' argument, we
6215 don't need to initialize the pattern buffer fields which affect it. */
6216
fa9a63c5 6217 ret = regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf);
5e69f11e 6218
fa9a63c5
RM
6219 if (!ret)
6220 return NULL;
6221
6222 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
6223 return (char *) gettext (re_error_msgid[(int) ret]);
6224}
6225
6226
6227int
0b32bf0e 6228# ifdef _LIBC
48afdd44 6229weak_function
0b32bf0e 6230# endif
fa9a63c5
RM
6231re_exec (s)
6232 const char *s;
6233{
6234 const int len = strlen (s);
6235 return
6236 0 <= re_search (&re_comp_buf, s, len, 0, len, (struct re_registers *) 0);
6237}
6238#endif /* _REGEX_RE_COMP */
6239\f
6240/* POSIX.2 functions. Don't define these for Emacs. */
6241
6242#ifndef emacs
6243
6244/* regcomp takes a regular expression as a string and compiles it.
6245
b18215fc 6246 PREG is a regex_t *. We do not expect any fields to be initialized,
fa9a63c5
RM
6247 since POSIX says we shouldn't. Thus, we set
6248
6249 `buffer' to the compiled pattern;
6250 `used' to the length of the compiled pattern;
6251 `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
6252 REG_EXTENDED bit in CFLAGS is set; otherwise, to
6253 RE_SYNTAX_POSIX_BASIC;
c0f9ea08
SM
6254 `fastmap' to an allocated space for the fastmap;
6255 `fastmap_accurate' to zero;
fa9a63c5
RM
6256 `re_nsub' to the number of subexpressions in PATTERN.
6257
6258 PATTERN is the address of the pattern string.
6259
6260 CFLAGS is a series of bits which affect compilation.
6261
6262 If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
6263 use POSIX basic syntax.
6264
6265 If REG_NEWLINE is set, then . and [^...] don't match newline.
6266 Also, regexec will try a match beginning after every newline.
6267
6268 If REG_ICASE is set, then we considers upper- and lowercase
6269 versions of letters to be equivalent when matching.
6270
6271 If REG_NOSUB is set, then when PREG is passed to regexec, that
6272 routine will report only success or failure, and nothing about the
6273 registers.
6274
b18215fc 6275 It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for
fa9a63c5
RM
6276 the return codes and their meanings.) */
6277
6278int
6279regcomp (preg, pattern, cflags)
ada30c0e
SM
6280 regex_t *__restrict preg;
6281 const char *__restrict pattern;
fa9a63c5
RM
6282 int cflags;
6283{
6284 reg_errcode_t ret;
4bb91c68 6285 reg_syntax_t syntax
fa9a63c5
RM
6286 = (cflags & REG_EXTENDED) ?
6287 RE_SYNTAX_POSIX_EXTENDED : RE_SYNTAX_POSIX_BASIC;
6288
6289 /* regex_compile will allocate the space for the compiled pattern. */
6290 preg->buffer = 0;
6291 preg->allocated = 0;
6292 preg->used = 0;
5e69f11e 6293
c0f9ea08 6294 /* Try to allocate space for the fastmap. */
7b1d7d66 6295 preg->fastmap = (char *) xmalloc (1 << BYTEWIDTH);
5e69f11e 6296
fa9a63c5
RM
6297 if (cflags & REG_ICASE)
6298 {
6299 unsigned i;
5e69f11e 6300
6676cb1c 6301 preg->translate
7b1d7d66
RS
6302 = (RE_TRANSLATE_TYPE) xmalloc (CHAR_SET_SIZE
6303 * sizeof (*(RE_TRANSLATE_TYPE)0));
fa9a63c5 6304 if (preg->translate == NULL)
0b32bf0e 6305 return (int) REG_ESPACE;
fa9a63c5
RM
6306
6307 /* Map uppercase characters to corresponding lowercase ones. */
6308 for (i = 0; i < CHAR_SET_SIZE; i++)
4bb91c68 6309 preg->translate[i] = ISUPPER (i) ? TOLOWER (i) : i;
fa9a63c5
RM
6310 }
6311 else
6312 preg->translate = NULL;
6313
6314 /* If REG_NEWLINE is set, newlines are treated differently. */
6315 if (cflags & REG_NEWLINE)
6316 { /* REG_NEWLINE implies neither . nor [^...] match newline. */
6317 syntax &= ~RE_DOT_NEWLINE;
6318 syntax |= RE_HAT_LISTS_NOT_NEWLINE;
fa9a63c5
RM
6319 }
6320 else
c0f9ea08 6321 syntax |= RE_NO_NEWLINE_ANCHOR;
fa9a63c5
RM
6322
6323 preg->no_sub = !!(cflags & REG_NOSUB);
6324
5e69f11e 6325 /* POSIX says a null character in the pattern terminates it, so we
fa9a63c5 6326 can use strlen here in compiling the pattern. */
4bb91c68 6327 ret = regex_compile ((re_char*) pattern, strlen (pattern), syntax, preg);
5e69f11e 6328
fa9a63c5
RM
6329 /* POSIX doesn't distinguish between an unmatched open-group and an
6330 unmatched close-group: both are REG_EPAREN. */
c0f9ea08
SM
6331 if (ret == REG_ERPAREN)
6332 ret = REG_EPAREN;
6333
6334 if (ret == REG_NOERROR && preg->fastmap)
6335 { /* Compute the fastmap now, since regexec cannot modify the pattern
6336 buffer. */
6337 re_compile_fastmap (preg);
6338 if (preg->can_be_null)
6339 { /* The fastmap can't be used anyway. */
6340 free (preg->fastmap);
6341 preg->fastmap = NULL;
6342 }
6343 }
fa9a63c5
RM
6344 return (int) ret;
6345}
c0f9ea08 6346WEAK_ALIAS (__regcomp, regcomp)
fa9a63c5
RM
6347
6348
6349/* regexec searches for a given pattern, specified by PREG, in the
6350 string STRING.
5e69f11e 6351
fa9a63c5 6352 If NMATCH is zero or REG_NOSUB was set in the cflags argument to
b18215fc 6353 `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at
fa9a63c5
RM
6354 least NMATCH elements, and we set them to the offsets of the
6355 corresponding matched substrings.
5e69f11e 6356
fa9a63c5
RM
6357 EFLAGS specifies `execution flags' which affect matching: if
6358 REG_NOTBOL is set, then ^ does not match at the beginning of the
6359 string; if REG_NOTEOL is set, then $ does not match at the end.
5e69f11e 6360
fa9a63c5
RM
6361 We return 0 if we find a match and REG_NOMATCH if not. */
6362
6363int
6364regexec (preg, string, nmatch, pmatch, eflags)
ada30c0e
SM
6365 const regex_t *__restrict preg;
6366 const char *__restrict string;
5e69f11e 6367 size_t nmatch;
9f2dbe01 6368 regmatch_t pmatch[__restrict_arr];
fa9a63c5
RM
6369 int eflags;
6370{
6371 int ret;
6372 struct re_registers regs;
6373 regex_t private_preg;
6374 int len = strlen (string);
c0f9ea08 6375 boolean want_reg_info = !preg->no_sub && nmatch > 0 && pmatch;
fa9a63c5
RM
6376
6377 private_preg = *preg;
5e69f11e 6378
fa9a63c5
RM
6379 private_preg.not_bol = !!(eflags & REG_NOTBOL);
6380 private_preg.not_eol = !!(eflags & REG_NOTEOL);
5e69f11e 6381
fa9a63c5
RM
6382 /* The user has told us exactly how many registers to return
6383 information about, via `nmatch'. We have to pass that on to the
b18215fc 6384 matching routines. */
fa9a63c5 6385 private_preg.regs_allocated = REGS_FIXED;
5e69f11e 6386
fa9a63c5
RM
6387 if (want_reg_info)
6388 {
6389 regs.num_regs = nmatch;
4bb91c68
SM
6390 regs.start = TALLOC (nmatch * 2, regoff_t);
6391 if (regs.start == NULL)
0b32bf0e 6392 return (int) REG_NOMATCH;
4bb91c68 6393 regs.end = regs.start + nmatch;
fa9a63c5
RM
6394 }
6395
c0f9ea08
SM
6396 /* Instead of using not_eol to implement REG_NOTEOL, we could simply
6397 pass (&private_preg, string, len + 1, 0, len, ...) pretending the string
6398 was a little bit longer but still only matching the real part.
6399 This works because the `endline' will check for a '\n' and will find a
6400 '\0', correctly deciding that this is not the end of a line.
6401 But it doesn't work out so nicely for REG_NOTBOL, since we don't have
6402 a convenient '\0' there. For all we know, the string could be preceded
6403 by '\n' which would throw things off. */
6404
fa9a63c5
RM
6405 /* Perform the searching operation. */
6406 ret = re_search (&private_preg, string, len,
0b32bf0e
SM
6407 /* start: */ 0, /* range: */ len,
6408 want_reg_info ? &regs : (struct re_registers *) 0);
5e69f11e 6409
fa9a63c5
RM
6410 /* Copy the register information to the POSIX structure. */
6411 if (want_reg_info)
6412 {
6413 if (ret >= 0)
0b32bf0e
SM
6414 {
6415 unsigned r;
fa9a63c5 6416
0b32bf0e
SM
6417 for (r = 0; r < nmatch; r++)
6418 {
6419 pmatch[r].rm_so = regs.start[r];
6420 pmatch[r].rm_eo = regs.end[r];
6421 }
6422 }
fa9a63c5 6423
b18215fc 6424 /* If we needed the temporary register info, free the space now. */
fa9a63c5 6425 free (regs.start);
fa9a63c5
RM
6426 }
6427
6428 /* We want zero return to mean success, unlike `re_search'. */
6429 return ret >= 0 ? (int) REG_NOERROR : (int) REG_NOMATCH;
6430}
c0f9ea08 6431WEAK_ALIAS (__regexec, regexec)
fa9a63c5
RM
6432
6433
6434/* Returns a message corresponding to an error code, ERRCODE, returned
6435 from either regcomp or regexec. We don't use PREG here. */
6436
6437size_t
6438regerror (errcode, preg, errbuf, errbuf_size)
6439 int errcode;
6440 const regex_t *preg;
6441 char *errbuf;
6442 size_t errbuf_size;
6443{
6444 const char *msg;
6445 size_t msg_size;
6446
6447 if (errcode < 0
6448 || errcode >= (sizeof (re_error_msgid) / sizeof (re_error_msgid[0])))
5e69f11e 6449 /* Only error codes returned by the rest of the code should be passed
b18215fc 6450 to this routine. If we are given anything else, or if other regex
fa9a63c5
RM
6451 code generates an invalid error code, then the program has a bug.
6452 Dump core so we can fix it. */
6453 abort ();
6454
6455 msg = gettext (re_error_msgid[errcode]);
6456
6457 msg_size = strlen (msg) + 1; /* Includes the null. */
5e69f11e 6458
fa9a63c5
RM
6459 if (errbuf_size != 0)
6460 {
6461 if (msg_size > errbuf_size)
0b32bf0e
SM
6462 {
6463 strncpy (errbuf, msg, errbuf_size - 1);
6464 errbuf[errbuf_size - 1] = 0;
6465 }
fa9a63c5 6466 else
0b32bf0e 6467 strcpy (errbuf, msg);
fa9a63c5
RM
6468 }
6469
6470 return msg_size;
6471}
c0f9ea08 6472WEAK_ALIAS (__regerror, regerror)
fa9a63c5
RM
6473
6474
6475/* Free dynamically allocated space used by PREG. */
6476
6477void
6478regfree (preg)
6479 regex_t *preg;
6480{
6481 if (preg->buffer != NULL)
6482 free (preg->buffer);
6483 preg->buffer = NULL;
5e69f11e 6484
fa9a63c5
RM
6485 preg->allocated = 0;
6486 preg->used = 0;
6487
6488 if (preg->fastmap != NULL)
6489 free (preg->fastmap);
6490 preg->fastmap = NULL;
6491 preg->fastmap_accurate = 0;
6492
6493 if (preg->translate != NULL)
6494 free (preg->translate);
6495 preg->translate = NULL;
6496}
c0f9ea08 6497WEAK_ALIAS (__regfree, regfree)
fa9a63c5
RM
6498
6499#endif /* not emacs */
ab5796a9
MB
6500
6501/* arch-tag: 4ffd68ba-2a9e-435b-a21a-018990f9eeb2
6502 (do not change this comment) */