Look for LessTif in /usr/X11R6/LessTif/ before Motif.
[bpt/emacs.git] / src / regex.c
CommitLineData
e318085a 1/* Extended regular expression matching and search library, version
0b32bf0e 2 0.12. (Implements POSIX draft P1003.2/D11.2, except for some of the
bc78d348
KB
3 internationalization features.)
4
4bb91c68 5 Copyright (C) 1993,94,95,96,97,98,99,2000 Free Software Foundation, Inc.
bc78d348 6
fa9a63c5
RM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
25fe55af 14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
fa9a63c5
RM
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
ba4a8e51 19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307,
25fe55af 20 USA. */
fa9a63c5 21
36595814
SM
22/* BUGS:
23 - (x?)*y\1z should match both xxxxyxz and xxxyz.
24 TODO:
505bde11 25 - structure the opcode space into opcode+flag.
dc1e502d 26 - merge with glibc's regex.[ch].
01618498 27 - replace (succeed_n + jump_n + set_number_at) with something that doesn't
6dcf2d0e
SM
28 need to modify the compiled regexp so that re_match can be reentrant.
29 - get rid of on_failure_jump_smart by doing the optimization in re_comp
30 rather than at run-time, so that re_match can be reentrant.
01618498 31*/
505bde11 32
fa9a63c5 33/* AIX requires this to be the first thing in the file. */
0b32bf0e 34#if defined _AIX && !defined REGEX_MALLOC
fa9a63c5
RM
35 #pragma alloca
36#endif
37
68d96f02 38#undef _GNU_SOURCE
fa9a63c5
RM
39#define _GNU_SOURCE
40
41#ifdef HAVE_CONFIG_H
0b32bf0e 42# include <config.h>
fa9a63c5
RM
43#endif
44
4bb91c68
SM
45#if defined STDC_HEADERS && !defined emacs
46# include <stddef.h>
47#else
48/* We need this for `regex.h', and perhaps for the Emacs include files. */
49# include <sys/types.h>
50#endif
fa9a63c5 51
14473664
SM
52/* Whether to use ISO C Amendment 1 wide char functions.
53 Those should not be used for Emacs since it uses its own. */
5e5388f6
GM
54#if defined _LIBC
55#define WIDE_CHAR_SUPPORT 1
56#else
14473664 57#define WIDE_CHAR_SUPPORT \
5e5388f6
GM
58 (HAVE_WCTYPE_H && HAVE_WCHAR_H && HAVE_BTOWC && !emacs)
59#endif
14473664
SM
60
61/* For platform which support the ISO C amendement 1 functionality we
62 support user defined character classes. */
a0ad02f7 63#if WIDE_CHAR_SUPPORT
14473664
SM
64/* Solaris 2.5 has a bug: <wchar.h> must be included before <wctype.h>. */
65# include <wchar.h>
66# include <wctype.h>
67#endif
68
c0f9ea08
SM
69#ifdef _LIBC
70/* We have to keep the namespace clean. */
71# define regfree(preg) __regfree (preg)
72# define regexec(pr, st, nm, pm, ef) __regexec (pr, st, nm, pm, ef)
73# define regcomp(preg, pattern, cflags) __regcomp (preg, pattern, cflags)
74# define regerror(errcode, preg, errbuf, errbuf_size) \
75 __regerror(errcode, preg, errbuf, errbuf_size)
76# define re_set_registers(bu, re, nu, st, en) \
77 __re_set_registers (bu, re, nu, st, en)
78# define re_match_2(bufp, string1, size1, string2, size2, pos, regs, stop) \
79 __re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
80# define re_match(bufp, string, size, pos, regs) \
81 __re_match (bufp, string, size, pos, regs)
82# define re_search(bufp, string, size, startpos, range, regs) \
83 __re_search (bufp, string, size, startpos, range, regs)
84# define re_compile_pattern(pattern, length, bufp) \
85 __re_compile_pattern (pattern, length, bufp)
86# define re_set_syntax(syntax) __re_set_syntax (syntax)
87# define re_search_2(bufp, st1, s1, st2, s2, startpos, range, regs, stop) \
88 __re_search_2 (bufp, st1, s1, st2, s2, startpos, range, regs, stop)
89# define re_compile_fastmap(bufp) __re_compile_fastmap (bufp)
90
14473664
SM
91/* Make sure we call libc's function even if the user overrides them. */
92# define btowc __btowc
93# define iswctype __iswctype
94# define wctype __wctype
95
c0f9ea08
SM
96# define WEAK_ALIAS(a,b) weak_alias (a, b)
97
98/* We are also using some library internals. */
99# include <locale/localeinfo.h>
100# include <locale/elem-hash.h>
101# include <langinfo.h>
102#else
103# define WEAK_ALIAS(a,b)
104#endif
105
4bb91c68 106/* This is for other GNU distributions with internationalized messages. */
0b32bf0e 107#if HAVE_LIBINTL_H || defined _LIBC
fa9a63c5
RM
108# include <libintl.h>
109#else
110# define gettext(msgid) (msgid)
111#endif
112
5e69f11e
RM
113#ifndef gettext_noop
114/* This define is so xgettext can find the internationalizable
115 strings. */
0b32bf0e 116# define gettext_noop(String) String
5e69f11e
RM
117#endif
118
fa9a63c5
RM
119/* The `emacs' switch turns on certain matching commands
120 that make sense only in Emacs. */
121#ifdef emacs
122
0b32bf0e
SM
123# include "lisp.h"
124# include "buffer.h"
b18215fc
RS
125
126/* Make syntax table lookup grant data in gl_state. */
0b32bf0e 127# define SYNTAX_ENTRY_VIA_PROPERTY
b18215fc 128
0b32bf0e
SM
129# include "syntax.h"
130# include "charset.h"
131# include "category.h"
fa9a63c5 132
7689ef0b
EZ
133# ifdef malloc
134# undef malloc
135# endif
0b32bf0e 136# define malloc xmalloc
7689ef0b
EZ
137# ifdef realloc
138# undef realloc
139# endif
0b32bf0e 140# define realloc xrealloc
7689ef0b
EZ
141# ifdef free
142# undef free
143# endif
0b32bf0e 144# define free xfree
9abbd165 145
0b32bf0e
SM
146/* Converts the pointer to the char to BEG-based offset from the start. */
147# define PTR_TO_OFFSET(d) POS_AS_IN_BUFFER (POINTER_TO_OFFSET (d))
148# define POS_AS_IN_BUFFER(p) ((p) + (NILP (re_match_object) || BUFFERP (re_match_object)))
149
150# define RE_MULTIBYTE_P(bufp) ((bufp)->multibyte)
151# define RE_STRING_CHAR(p, s) \
4e8a9132 152 (multibyte ? (STRING_CHAR (p, s)) : (*(p)))
0b32bf0e 153# define RE_STRING_CHAR_AND_LENGTH(p, s, len) \
2d1675e4
SM
154 (multibyte ? (STRING_CHAR_AND_LENGTH (p, s, len)) : ((len) = 1, *(p)))
155
156/* Set C a (possibly multibyte) character before P. P points into a
157 string which is the virtual concatenation of STR1 (which ends at
158 END1) or STR2 (which ends at END2). */
0b32bf0e 159# define GET_CHAR_BEFORE_2(c, p, str1, end1, str2, end2) \
2d1675e4
SM
160 do { \
161 if (multibyte) \
162 { \
0b32bf0e
SM
163 re_char *dtemp = (p) == (str2) ? (end1) : (p); \
164 re_char *dlimit = ((p) > (str2) && (p) <= (end2)) ? (str2) : (str1); \
165 while (dtemp-- > dlimit && !CHAR_HEAD_P (*dtemp)); \
166 c = STRING_CHAR (dtemp, (p) - dtemp); \
2d1675e4
SM
167 } \
168 else \
169 (c = ((p) == (str2) ? (end1) : (p))[-1]); \
170 } while (0)
171
4e8a9132 172
fa9a63c5
RM
173#else /* not emacs */
174
175/* If we are not linking with Emacs proper,
176 we can't use the relocating allocator
177 even if config.h says that we can. */
0b32bf0e 178# undef REL_ALLOC
fa9a63c5 179
0b32bf0e
SM
180# if defined STDC_HEADERS || defined _LIBC
181# include <stdlib.h>
182# else
fa9a63c5
RM
183char *malloc ();
184char *realloc ();
0b32bf0e 185# endif
fa9a63c5 186
9e4ecb26 187/* When used in Emacs's lib-src, we need to get bzero and bcopy somehow.
4bb91c68 188 If nothing else has been done, use the method below. */
0b32bf0e
SM
189# ifdef INHIBIT_STRING_HEADER
190# if !(defined HAVE_BZERO && defined HAVE_BCOPY)
191# if !defined bzero && !defined bcopy
192# undef INHIBIT_STRING_HEADER
193# endif
194# endif
195# endif
9e4ecb26 196
4bb91c68 197/* This is the normal way of making sure we have memcpy, memcmp and bzero.
9e4ecb26
KH
198 This is used in most programs--a few other programs avoid this
199 by defining INHIBIT_STRING_HEADER. */
0b32bf0e
SM
200# ifndef INHIBIT_STRING_HEADER
201# if defined HAVE_STRING_H || defined STDC_HEADERS || defined _LIBC
202# include <string.h>
0b32bf0e 203# ifndef bzero
4bb91c68
SM
204# ifndef _LIBC
205# define bzero(s, n) (memset (s, '\0', n), (s))
206# else
207# define bzero(s, n) __bzero (s, n)
208# endif
0b32bf0e
SM
209# endif
210# else
211# include <strings.h>
4bb91c68
SM
212# ifndef memcmp
213# define memcmp(s1, s2, n) bcmp (s1, s2, n)
214# endif
215# ifndef memcpy
216# define memcpy(d, s, n) (bcopy (s, d, n), (d))
217# endif
0b32bf0e
SM
218# endif
219# endif
fa9a63c5
RM
220
221/* Define the syntax stuff for \<, \>, etc. */
222
990b2375
SM
223/* Sword must be nonzero for the wordchar pattern commands in re_match_2. */
224enum syntaxcode { Swhitespace = 0, Sword = 1 };
fa9a63c5 225
0b32bf0e
SM
226# ifdef SWITCH_ENUM_BUG
227# define SWITCH_ENUM_CAST(x) ((int)(x))
228# else
229# define SWITCH_ENUM_CAST(x) (x)
230# endif
fa9a63c5 231
e934739e 232/* Dummy macros for non-Emacs environments. */
0b32bf0e
SM
233# define BASE_LEADING_CODE_P(c) (0)
234# define CHAR_CHARSET(c) 0
235# define CHARSET_LEADING_CODE_BASE(c) 0
236# define MAX_MULTIBYTE_LENGTH 1
237# define RE_MULTIBYTE_P(x) 0
238# define WORD_BOUNDARY_P(c1, c2) (0)
239# define CHAR_HEAD_P(p) (1)
240# define SINGLE_BYTE_CHAR_P(c) (1)
241# define SAME_CHARSET_P(c1, c2) (1)
242# define MULTIBYTE_FORM_LENGTH(p, s) (1)
243# define STRING_CHAR(p, s) (*(p))
244# define RE_STRING_CHAR STRING_CHAR
245# define CHAR_STRING(c, s) (*(s) = (c), 1)
246# define STRING_CHAR_AND_LENGTH(p, s, actual_len) ((actual_len) = 1, *(p))
247# define RE_STRING_CHAR_AND_LENGTH STRING_CHAR_AND_LENGTH
248# define GET_CHAR_BEFORE_2(c, p, str1, end1, str2, end2) \
b18215fc 249 (c = ((p) == (str2) ? *((end1) - 1) : *((p) - 1)))
0b32bf0e 250# define MAKE_CHAR(charset, c1, c2) (c1)
fa9a63c5 251#endif /* not emacs */
4e8a9132
SM
252
253#ifndef RE_TRANSLATE
0b32bf0e
SM
254# define RE_TRANSLATE(TBL, C) ((unsigned char)(TBL)[C])
255# define RE_TRANSLATE_P(TBL) (TBL)
4e8a9132 256#endif
fa9a63c5
RM
257\f
258/* Get the interface, including the syntax bits. */
259#include "regex.h"
260
f71b19b6
DL
261/* isalpha etc. are used for the character classes. */
262#include <ctype.h>
fa9a63c5 263
f71b19b6 264#ifdef emacs
fa9a63c5 265
f71b19b6 266/* 1 if C is an ASCII character. */
0b32bf0e 267# define IS_REAL_ASCII(c) ((c) < 0200)
fa9a63c5 268
f71b19b6 269/* 1 if C is a unibyte character. */
0b32bf0e 270# define ISUNIBYTE(c) (SINGLE_BYTE_CHAR_P ((c)))
96cc36cc 271
f71b19b6 272/* The Emacs definitions should not be directly affected by locales. */
96cc36cc 273
f71b19b6 274/* In Emacs, these are only used for single-byte characters. */
0b32bf0e
SM
275# define ISDIGIT(c) ((c) >= '0' && (c) <= '9')
276# define ISCNTRL(c) ((c) < ' ')
277# define ISXDIGIT(c) (((c) >= '0' && (c) <= '9') \
f71b19b6
DL
278 || ((c) >= 'a' && (c) <= 'f') \
279 || ((c) >= 'A' && (c) <= 'F'))
96cc36cc
RS
280
281/* This is only used for single-byte characters. */
0b32bf0e 282# define ISBLANK(c) ((c) == ' ' || (c) == '\t')
96cc36cc
RS
283
284/* The rest must handle multibyte characters. */
285
0b32bf0e 286# define ISGRAPH(c) (SINGLE_BYTE_CHAR_P (c) \
f71b19b6 287 ? (c) > ' ' && !((c) >= 0177 && (c) <= 0237) \
96cc36cc
RS
288 : 1)
289
14473664 290# define ISPRINT(c) (SINGLE_BYTE_CHAR_P (c) \
f71b19b6 291 ? (c) >= ' ' && !((c) >= 0177 && (c) <= 0237) \
96cc36cc
RS
292 : 1)
293
0b32bf0e 294# define ISALNUM(c) (IS_REAL_ASCII (c) \
f71b19b6
DL
295 ? (((c) >= 'a' && (c) <= 'z') \
296 || ((c) >= 'A' && (c) <= 'Z') \
297 || ((c) >= '0' && (c) <= '9')) \
96cc36cc
RS
298 : SYNTAX (c) == Sword)
299
0b32bf0e 300# define ISALPHA(c) (IS_REAL_ASCII (c) \
f71b19b6
DL
301 ? (((c) >= 'a' && (c) <= 'z') \
302 || ((c) >= 'A' && (c) <= 'Z')) \
96cc36cc
RS
303 : SYNTAX (c) == Sword)
304
0b32bf0e 305# define ISLOWER(c) (LOWERCASEP (c))
96cc36cc 306
0b32bf0e 307# define ISPUNCT(c) (IS_REAL_ASCII (c) \
f71b19b6
DL
308 ? ((c) > ' ' && (c) < 0177 \
309 && !(((c) >= 'a' && (c) <= 'z') \
4bb91c68
SM
310 || ((c) >= 'A' && (c) <= 'Z') \
311 || ((c) >= '0' && (c) <= '9'))) \
96cc36cc
RS
312 : SYNTAX (c) != Sword)
313
0b32bf0e 314# define ISSPACE(c) (SYNTAX (c) == Swhitespace)
96cc36cc 315
0b32bf0e 316# define ISUPPER(c) (UPPERCASEP (c))
96cc36cc 317
0b32bf0e 318# define ISWORD(c) (SYNTAX (c) == Sword)
96cc36cc
RS
319
320#else /* not emacs */
321
f71b19b6
DL
322/* Jim Meyering writes:
323
324 "... Some ctype macros are valid only for character codes that
325 isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when
326 using /bin/cc or gcc but without giving an ansi option). So, all
4bb91c68 327 ctype uses should be through macros like ISPRINT... If
f71b19b6
DL
328 STDC_HEADERS is defined, then autoconf has verified that the ctype
329 macros don't need to be guarded with references to isascii. ...
330 Defining isascii to 1 should let any compiler worth its salt
4bb91c68
SM
331 eliminate the && through constant folding."
332 Solaris defines some of these symbols so we must undefine them first. */
f71b19b6 333
4bb91c68 334# undef ISASCII
0b32bf0e
SM
335# if defined STDC_HEADERS || (!defined isascii && !defined HAVE_ISASCII)
336# define ISASCII(c) 1
337# else
338# define ISASCII(c) isascii(c)
339# endif
f71b19b6
DL
340
341/* 1 if C is an ASCII character. */
0b32bf0e 342# define IS_REAL_ASCII(c) ((c) < 0200)
f71b19b6
DL
343
344/* This distinction is not meaningful, except in Emacs. */
0b32bf0e
SM
345# define ISUNIBYTE(c) 1
346
347# ifdef isblank
348# define ISBLANK(c) (ISASCII (c) && isblank (c))
349# else
350# define ISBLANK(c) ((c) == ' ' || (c) == '\t')
351# endif
352# ifdef isgraph
353# define ISGRAPH(c) (ISASCII (c) && isgraph (c))
354# else
355# define ISGRAPH(c) (ISASCII (c) && isprint (c) && !isspace (c))
356# endif
357
4bb91c68 358# undef ISPRINT
0b32bf0e
SM
359# define ISPRINT(c) (ISASCII (c) && isprint (c))
360# define ISDIGIT(c) (ISASCII (c) && isdigit (c))
361# define ISALNUM(c) (ISASCII (c) && isalnum (c))
362# define ISALPHA(c) (ISASCII (c) && isalpha (c))
363# define ISCNTRL(c) (ISASCII (c) && iscntrl (c))
364# define ISLOWER(c) (ISASCII (c) && islower (c))
365# define ISPUNCT(c) (ISASCII (c) && ispunct (c))
366# define ISSPACE(c) (ISASCII (c) && isspace (c))
367# define ISUPPER(c) (ISASCII (c) && isupper (c))
368# define ISXDIGIT(c) (ISASCII (c) && isxdigit (c))
369
370# define ISWORD(c) ISALPHA(c)
371
4bb91c68
SM
372# ifdef _tolower
373# define TOLOWER(c) _tolower(c)
374# else
375# define TOLOWER(c) tolower(c)
376# endif
377
378/* How many characters in the character set. */
379# define CHAR_SET_SIZE 256
380
0b32bf0e 381# ifdef SYNTAX_TABLE
f71b19b6 382
0b32bf0e 383extern char *re_syntax_table;
f71b19b6 384
0b32bf0e
SM
385# else /* not SYNTAX_TABLE */
386
0b32bf0e
SM
387static char re_syntax_table[CHAR_SET_SIZE];
388
389static void
390init_syntax_once ()
391{
392 register int c;
393 static int done = 0;
394
395 if (done)
396 return;
397
398 bzero (re_syntax_table, sizeof re_syntax_table);
399
4bb91c68
SM
400 for (c = 0; c < CHAR_SET_SIZE; ++c)
401 if (ISALNUM (c))
402 re_syntax_table[c] = Sword;
fa9a63c5 403
0b32bf0e 404 re_syntax_table['_'] = Sword;
fa9a63c5 405
0b32bf0e
SM
406 done = 1;
407}
408
409# endif /* not SYNTAX_TABLE */
96cc36cc 410
4bb91c68
SM
411# define SYNTAX(c) re_syntax_table[(c)]
412
96cc36cc
RS
413#endif /* not emacs */
414\f
fa9a63c5 415#ifndef NULL
0b32bf0e 416# define NULL (void *)0
fa9a63c5
RM
417#endif
418
419/* We remove any previous definition of `SIGN_EXTEND_CHAR',
420 since ours (we hope) works properly with all combinations of
421 machines, compilers, `char' and `unsigned char' argument types.
4bb91c68 422 (Per Bothner suggested the basic approach.) */
fa9a63c5
RM
423#undef SIGN_EXTEND_CHAR
424#if __STDC__
0b32bf0e 425# define SIGN_EXTEND_CHAR(c) ((signed char) (c))
fa9a63c5
RM
426#else /* not __STDC__ */
427/* As in Harbison and Steele. */
0b32bf0e 428# define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
fa9a63c5
RM
429#endif
430\f
431/* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we
432 use `alloca' instead of `malloc'. This is because using malloc in
433 re_search* or re_match* could cause memory leaks when C-g is used in
434 Emacs; also, malloc is slower and causes storage fragmentation. On
5e69f11e
RM
435 the other hand, malloc is more portable, and easier to debug.
436
fa9a63c5
RM
437 Because we sometimes use alloca, some routines have to be macros,
438 not functions -- `alloca'-allocated space disappears at the end of the
439 function it is called in. */
440
441#ifdef REGEX_MALLOC
442
0b32bf0e
SM
443# define REGEX_ALLOCATE malloc
444# define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
445# define REGEX_FREE free
fa9a63c5
RM
446
447#else /* not REGEX_MALLOC */
448
449/* Emacs already defines alloca, sometimes. */
0b32bf0e 450# ifndef alloca
fa9a63c5
RM
451
452/* Make alloca work the best possible way. */
0b32bf0e
SM
453# ifdef __GNUC__
454# define alloca __builtin_alloca
455# else /* not __GNUC__ */
456# if HAVE_ALLOCA_H
457# include <alloca.h>
458# endif /* HAVE_ALLOCA_H */
459# endif /* not __GNUC__ */
fa9a63c5 460
0b32bf0e 461# endif /* not alloca */
fa9a63c5 462
0b32bf0e 463# define REGEX_ALLOCATE alloca
fa9a63c5
RM
464
465/* Assumes a `char *destination' variable. */
0b32bf0e 466# define REGEX_REALLOCATE(source, osize, nsize) \
fa9a63c5 467 (destination = (char *) alloca (nsize), \
4bb91c68 468 memcpy (destination, source, osize))
fa9a63c5
RM
469
470/* No need to do anything to free, after alloca. */
0b32bf0e 471# define REGEX_FREE(arg) ((void)0) /* Do nothing! But inhibit gcc warning. */
fa9a63c5
RM
472
473#endif /* not REGEX_MALLOC */
474
475/* Define how to allocate the failure stack. */
476
0b32bf0e 477#if defined REL_ALLOC && defined REGEX_MALLOC
4297555e 478
0b32bf0e 479# define REGEX_ALLOCATE_STACK(size) \
fa9a63c5 480 r_alloc (&failure_stack_ptr, (size))
0b32bf0e 481# define REGEX_REALLOCATE_STACK(source, osize, nsize) \
fa9a63c5 482 r_re_alloc (&failure_stack_ptr, (nsize))
0b32bf0e 483# define REGEX_FREE_STACK(ptr) \
fa9a63c5
RM
484 r_alloc_free (&failure_stack_ptr)
485
4297555e 486#else /* not using relocating allocator */
fa9a63c5 487
0b32bf0e 488# ifdef REGEX_MALLOC
fa9a63c5 489
0b32bf0e
SM
490# define REGEX_ALLOCATE_STACK malloc
491# define REGEX_REALLOCATE_STACK(source, osize, nsize) realloc (source, nsize)
492# define REGEX_FREE_STACK free
fa9a63c5 493
0b32bf0e 494# else /* not REGEX_MALLOC */
fa9a63c5 495
0b32bf0e 496# define REGEX_ALLOCATE_STACK alloca
fa9a63c5 497
0b32bf0e 498# define REGEX_REALLOCATE_STACK(source, osize, nsize) \
fa9a63c5 499 REGEX_REALLOCATE (source, osize, nsize)
25fe55af 500/* No need to explicitly free anything. */
0b32bf0e 501# define REGEX_FREE_STACK(arg) ((void)0)
fa9a63c5 502
0b32bf0e 503# endif /* not REGEX_MALLOC */
4297555e 504#endif /* not using relocating allocator */
fa9a63c5
RM
505
506
507/* True if `size1' is non-NULL and PTR is pointing anywhere inside
508 `string1' or just past its end. This works if PTR is NULL, which is
509 a good thing. */
25fe55af 510#define FIRST_STRING_P(ptr) \
fa9a63c5
RM
511 (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
512
513/* (Re)Allocate N items of type T using malloc, or fail. */
514#define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
515#define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
516#define RETALLOC_IF(addr, n, t) \
517 if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t)
518#define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
519
4bb91c68 520#define BYTEWIDTH 8 /* In bits. */
fa9a63c5
RM
521
522#define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
523
524#undef MAX
525#undef MIN
526#define MAX(a, b) ((a) > (b) ? (a) : (b))
527#define MIN(a, b) ((a) < (b) ? (a) : (b))
528
66f0296e
SM
529/* Type of source-pattern and string chars. */
530typedef const unsigned char re_char;
531
fa9a63c5
RM
532typedef char boolean;
533#define false 0
534#define true 1
535
4bb91c68
SM
536static int re_match_2_internal _RE_ARGS ((struct re_pattern_buffer *bufp,
537 re_char *string1, int size1,
538 re_char *string2, int size2,
539 int pos,
540 struct re_registers *regs,
541 int stop));
fa9a63c5
RM
542\f
543/* These are the command codes that appear in compiled regular
4bb91c68 544 expressions. Some opcodes are followed by argument bytes. A
fa9a63c5
RM
545 command code can specify any interpretation whatsoever for its
546 arguments. Zero bytes may appear in the compiled regular expression. */
547
548typedef enum
549{
550 no_op = 0,
551
4bb91c68 552 /* Succeed right away--no more backtracking. */
fa9a63c5
RM
553 succeed,
554
25fe55af 555 /* Followed by one byte giving n, then by n literal bytes. */
fa9a63c5
RM
556 exactn,
557
25fe55af 558 /* Matches any (more or less) character. */
fa9a63c5
RM
559 anychar,
560
25fe55af
RS
561 /* Matches any one char belonging to specified set. First
562 following byte is number of bitmap bytes. Then come bytes
563 for a bitmap saying which chars are in. Bits in each byte
564 are ordered low-bit-first. A character is in the set if its
565 bit is 1. A character too large to have a bit in the map is
96cc36cc
RS
566 automatically not in the set.
567
568 If the length byte has the 0x80 bit set, then that stuff
569 is followed by a range table:
570 2 bytes of flags for character sets (low 8 bits, high 8 bits)
0b32bf0e 571 See RANGE_TABLE_WORK_BITS below.
01618498 572 2 bytes, the number of pairs that follow (upto 32767)
96cc36cc 573 pairs, each 2 multibyte characters,
0b32bf0e 574 each multibyte character represented as 3 bytes. */
fa9a63c5
RM
575 charset,
576
25fe55af 577 /* Same parameters as charset, but match any character that is
4bb91c68 578 not one of those specified. */
fa9a63c5
RM
579 charset_not,
580
25fe55af
RS
581 /* Start remembering the text that is matched, for storing in a
582 register. Followed by one byte with the register number, in
583 the range 0 to one less than the pattern buffer's re_nsub
505bde11 584 field. */
fa9a63c5
RM
585 start_memory,
586
25fe55af
RS
587 /* Stop remembering the text that is matched and store it in a
588 memory register. Followed by one byte with the register
589 number, in the range 0 to one less than `re_nsub' in the
505bde11 590 pattern buffer. */
fa9a63c5
RM
591 stop_memory,
592
25fe55af 593 /* Match a duplicate of something remembered. Followed by one
4bb91c68 594 byte containing the register number. */
fa9a63c5
RM
595 duplicate,
596
25fe55af 597 /* Fail unless at beginning of line. */
fa9a63c5
RM
598 begline,
599
4bb91c68 600 /* Fail unless at end of line. */
fa9a63c5
RM
601 endline,
602
25fe55af
RS
603 /* Succeeds if at beginning of buffer (if emacs) or at beginning
604 of string to be matched (if not). */
fa9a63c5
RM
605 begbuf,
606
25fe55af 607 /* Analogously, for end of buffer/string. */
fa9a63c5 608 endbuf,
5e69f11e 609
25fe55af 610 /* Followed by two byte relative address to which to jump. */
5e69f11e 611 jump,
fa9a63c5 612
25fe55af
RS
613 /* Followed by two-byte relative address of place to resume at
614 in case of failure. */
fa9a63c5 615 on_failure_jump,
5e69f11e 616
25fe55af
RS
617 /* Like on_failure_jump, but pushes a placeholder instead of the
618 current string position when executed. */
fa9a63c5 619 on_failure_keep_string_jump,
5e69f11e 620
505bde11
SM
621 /* Just like `on_failure_jump', except that it checks that we
622 don't get stuck in an infinite loop (matching an empty string
623 indefinitely). */
624 on_failure_jump_loop,
625
0683b6fa
SM
626 /* Just like `on_failure_jump_loop', except that it checks for
627 a different kind of loop (the kind that shows up with non-greedy
628 operators). This operation has to be immediately preceded
629 by a `no_op'. */
630 on_failure_jump_nastyloop,
631
0b32bf0e 632 /* A smart `on_failure_jump' used for greedy * and + operators.
505bde11
SM
633 It analyses the loop before which it is put and if the
634 loop does not require backtracking, it changes itself to
4e8a9132
SM
635 `on_failure_keep_string_jump' and short-circuits the loop,
636 else it just defaults to changing itself into `on_failure_jump'.
637 It assumes that it is pointing to just past a `jump'. */
505bde11 638 on_failure_jump_smart,
fa9a63c5 639
25fe55af 640 /* Followed by two-byte relative address and two-byte number n.
ed0767d8
SM
641 After matching N times, jump to the address upon failure.
642 Does not work if N starts at 0: use on_failure_jump_loop
643 instead. */
fa9a63c5
RM
644 succeed_n,
645
25fe55af
RS
646 /* Followed by two-byte relative address, and two-byte number n.
647 Jump to the address N times, then fail. */
fa9a63c5
RM
648 jump_n,
649
25fe55af
RS
650 /* Set the following two-byte relative address to the
651 subsequent two-byte number. The address *includes* the two
652 bytes of number. */
fa9a63c5
RM
653 set_number_at,
654
fa9a63c5
RM
655 wordbeg, /* Succeeds if at word beginning. */
656 wordend, /* Succeeds if at word end. */
657
658 wordbound, /* Succeeds if at a word boundary. */
1fb352e0 659 notwordbound, /* Succeeds if not at a word boundary. */
fa9a63c5
RM
660
661 /* Matches any character whose syntax is specified. Followed by
25fe55af 662 a byte which contains a syntax code, e.g., Sword. */
fa9a63c5
RM
663 syntaxspec,
664
665 /* Matches any character whose syntax is not that specified. */
1fb352e0
SM
666 notsyntaxspec
667
668#ifdef emacs
669 ,before_dot, /* Succeeds if before point. */
670 at_dot, /* Succeeds if at point. */
671 after_dot, /* Succeeds if after point. */
b18215fc
RS
672
673 /* Matches any character whose category-set contains the specified
25fe55af
RS
674 category. The operator is followed by a byte which contains a
675 category code (mnemonic ASCII character). */
b18215fc
RS
676 categoryspec,
677
678 /* Matches any character whose category-set does not contain the
679 specified category. The operator is followed by a byte which
680 contains the category code (mnemonic ASCII character). */
681 notcategoryspec
fa9a63c5
RM
682#endif /* emacs */
683} re_opcode_t;
684\f
685/* Common operations on the compiled pattern. */
686
687/* Store NUMBER in two contiguous bytes starting at DESTINATION. */
688
689#define STORE_NUMBER(destination, number) \
690 do { \
691 (destination)[0] = (number) & 0377; \
692 (destination)[1] = (number) >> 8; \
693 } while (0)
694
695/* Same as STORE_NUMBER, except increment DESTINATION to
696 the byte after where the number is stored. Therefore, DESTINATION
697 must be an lvalue. */
698
699#define STORE_NUMBER_AND_INCR(destination, number) \
700 do { \
701 STORE_NUMBER (destination, number); \
702 (destination) += 2; \
703 } while (0)
704
705/* Put into DESTINATION a number stored in two contiguous bytes starting
706 at SOURCE. */
707
708#define EXTRACT_NUMBER(destination, source) \
709 do { \
710 (destination) = *(source) & 0377; \
711 (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8; \
712 } while (0)
713
714#ifdef DEBUG
4bb91c68 715static void extract_number _RE_ARGS ((int *dest, re_char *source));
fa9a63c5
RM
716static void
717extract_number (dest, source)
718 int *dest;
01618498 719 re_char *source;
fa9a63c5 720{
5e69f11e 721 int temp = SIGN_EXTEND_CHAR (*(source + 1));
fa9a63c5
RM
722 *dest = *source & 0377;
723 *dest += temp << 8;
724}
725
4bb91c68 726# ifndef EXTRACT_MACROS /* To debug the macros. */
0b32bf0e
SM
727# undef EXTRACT_NUMBER
728# define EXTRACT_NUMBER(dest, src) extract_number (&dest, src)
729# endif /* not EXTRACT_MACROS */
fa9a63c5
RM
730
731#endif /* DEBUG */
732
733/* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
734 SOURCE must be an lvalue. */
735
736#define EXTRACT_NUMBER_AND_INCR(destination, source) \
737 do { \
738 EXTRACT_NUMBER (destination, source); \
25fe55af 739 (source) += 2; \
fa9a63c5
RM
740 } while (0)
741
742#ifdef DEBUG
4bb91c68
SM
743static void extract_number_and_incr _RE_ARGS ((int *destination,
744 re_char **source));
fa9a63c5
RM
745static void
746extract_number_and_incr (destination, source)
747 int *destination;
01618498 748 re_char **source;
5e69f11e 749{
fa9a63c5
RM
750 extract_number (destination, *source);
751 *source += 2;
752}
753
0b32bf0e
SM
754# ifndef EXTRACT_MACROS
755# undef EXTRACT_NUMBER_AND_INCR
756# define EXTRACT_NUMBER_AND_INCR(dest, src) \
fa9a63c5 757 extract_number_and_incr (&dest, &src)
0b32bf0e 758# endif /* not EXTRACT_MACROS */
fa9a63c5
RM
759
760#endif /* DEBUG */
761\f
b18215fc
RS
762/* Store a multibyte character in three contiguous bytes starting
763 DESTINATION, and increment DESTINATION to the byte after where the
25fe55af 764 character is stored. Therefore, DESTINATION must be an lvalue. */
b18215fc
RS
765
766#define STORE_CHARACTER_AND_INCR(destination, character) \
767 do { \
768 (destination)[0] = (character) & 0377; \
769 (destination)[1] = ((character) >> 8) & 0377; \
770 (destination)[2] = (character) >> 16; \
771 (destination) += 3; \
772 } while (0)
773
774/* Put into DESTINATION a character stored in three contiguous bytes
25fe55af 775 starting at SOURCE. */
b18215fc
RS
776
777#define EXTRACT_CHARACTER(destination, source) \
778 do { \
779 (destination) = ((source)[0] \
780 | ((source)[1] << 8) \
781 | ((source)[2] << 16)); \
782 } while (0)
783
784
785/* Macros for charset. */
786
787/* Size of bitmap of charset P in bytes. P is a start of charset,
788 i.e. *P is (re_opcode_t) charset or (re_opcode_t) charset_not. */
789#define CHARSET_BITMAP_SIZE(p) ((p)[1] & 0x7F)
790
791/* Nonzero if charset P has range table. */
25fe55af 792#define CHARSET_RANGE_TABLE_EXISTS_P(p) ((p)[1] & 0x80)
b18215fc
RS
793
794/* Return the address of range table of charset P. But not the start
795 of table itself, but the before where the number of ranges is
96cc36cc
RS
796 stored. `2 +' means to skip re_opcode_t and size of bitmap,
797 and the 2 bytes of flags at the start of the range table. */
798#define CHARSET_RANGE_TABLE(p) (&(p)[4 + CHARSET_BITMAP_SIZE (p)])
799
800/* Extract the bit flags that start a range table. */
801#define CHARSET_RANGE_TABLE_BITS(p) \
802 ((p)[2 + CHARSET_BITMAP_SIZE (p)] \
803 + (p)[3 + CHARSET_BITMAP_SIZE (p)] * 0x100)
b18215fc
RS
804
805/* Test if C is listed in the bitmap of charset P. */
806#define CHARSET_LOOKUP_BITMAP(p, c) \
807 ((c) < CHARSET_BITMAP_SIZE (p) * BYTEWIDTH \
808 && (p)[2 + (c) / BYTEWIDTH] & (1 << ((c) % BYTEWIDTH)))
809
810/* Return the address of end of RANGE_TABLE. COUNT is number of
25fe55af
RS
811 ranges (which is a pair of (start, end)) in the RANGE_TABLE. `* 2'
812 is start of range and end of range. `* 3' is size of each start
b18215fc
RS
813 and end. */
814#define CHARSET_RANGE_TABLE_END(range_table, count) \
815 ((range_table) + (count) * 2 * 3)
816
25fe55af 817/* Test if C is in RANGE_TABLE. A flag NOT is negated if C is in.
b18215fc
RS
818 COUNT is number of ranges in RANGE_TABLE. */
819#define CHARSET_LOOKUP_RANGE_TABLE_RAW(not, c, range_table, count) \
820 do \
821 { \
01618498
SM
822 re_wchar_t range_start, range_end; \
823 re_char *p; \
824 re_char *range_table_end \
b18215fc
RS
825 = CHARSET_RANGE_TABLE_END ((range_table), (count)); \
826 \
827 for (p = (range_table); p < range_table_end; p += 2 * 3) \
828 { \
829 EXTRACT_CHARACTER (range_start, p); \
830 EXTRACT_CHARACTER (range_end, p + 3); \
831 \
832 if (range_start <= (c) && (c) <= range_end) \
833 { \
834 (not) = !(not); \
835 break; \
836 } \
837 } \
838 } \
839 while (0)
840
841/* Test if C is in range table of CHARSET. The flag NOT is negated if
842 C is listed in it. */
843#define CHARSET_LOOKUP_RANGE_TABLE(not, c, charset) \
844 do \
845 { \
846 /* Number of ranges in range table. */ \
847 int count; \
01618498
SM
848 re_char *range_table = CHARSET_RANGE_TABLE (charset); \
849 \
b18215fc
RS
850 EXTRACT_NUMBER_AND_INCR (count, range_table); \
851 CHARSET_LOOKUP_RANGE_TABLE_RAW ((not), (c), range_table, count); \
852 } \
853 while (0)
854\f
fa9a63c5
RM
855/* If DEBUG is defined, Regex prints many voluminous messages about what
856 it is doing (if the variable `debug' is nonzero). If linked with the
857 main program in `iregex.c', you can enter patterns and strings
858 interactively. And if linked with the main program in `main.c' and
4bb91c68 859 the other test files, you can run the already-written tests. */
fa9a63c5
RM
860
861#ifdef DEBUG
862
863/* We use standard I/O for debugging. */
0b32bf0e 864# include <stdio.h>
fa9a63c5
RM
865
866/* It is useful to test things that ``must'' be true when debugging. */
0b32bf0e 867# include <assert.h>
fa9a63c5 868
99633e97 869static int debug = -100000;
fa9a63c5 870
0b32bf0e
SM
871# define DEBUG_STATEMENT(e) e
872# define DEBUG_PRINT1(x) if (debug > 0) printf (x)
873# define DEBUG_PRINT2(x1, x2) if (debug > 0) printf (x1, x2)
874# define DEBUG_PRINT3(x1, x2, x3) if (debug > 0) printf (x1, x2, x3)
875# define DEBUG_PRINT4(x1, x2, x3, x4) if (debug > 0) printf (x1, x2, x3, x4)
876# define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \
99633e97 877 if (debug > 0) print_partial_compiled_pattern (s, e)
0b32bf0e 878# define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \
99633e97 879 if (debug > 0) print_double_string (w, s1, sz1, s2, sz2)
fa9a63c5
RM
880
881
882/* Print the fastmap in human-readable form. */
883
884void
885print_fastmap (fastmap)
886 char *fastmap;
887{
888 unsigned was_a_range = 0;
5e69f11e
RM
889 unsigned i = 0;
890
fa9a63c5
RM
891 while (i < (1 << BYTEWIDTH))
892 {
893 if (fastmap[i++])
894 {
895 was_a_range = 0;
25fe55af
RS
896 putchar (i - 1);
897 while (i < (1 << BYTEWIDTH) && fastmap[i])
898 {
899 was_a_range = 1;
900 i++;
901 }
fa9a63c5 902 if (was_a_range)
25fe55af
RS
903 {
904 printf ("-");
905 putchar (i - 1);
906 }
907 }
fa9a63c5 908 }
5e69f11e 909 putchar ('\n');
fa9a63c5
RM
910}
911
912
913/* Print a compiled pattern string in human-readable form, starting at
914 the START pointer into it and ending just before the pointer END. */
915
916void
917print_partial_compiled_pattern (start, end)
01618498
SM
918 re_char *start;
919 re_char *end;
fa9a63c5
RM
920{
921 int mcnt, mcnt2;
01618498
SM
922 re_char *p = start;
923 re_char *pend = end;
fa9a63c5
RM
924
925 if (start == NULL)
926 {
927 printf ("(null)\n");
928 return;
929 }
5e69f11e 930
fa9a63c5
RM
931 /* Loop over pattern commands. */
932 while (p < pend)
933 {
934 printf ("%d:\t", p - start);
935
936 switch ((re_opcode_t) *p++)
937 {
25fe55af
RS
938 case no_op:
939 printf ("/no_op");
940 break;
fa9a63c5 941
99633e97
SM
942 case succeed:
943 printf ("/succeed");
944 break;
945
fa9a63c5
RM
946 case exactn:
947 mcnt = *p++;
25fe55af
RS
948 printf ("/exactn/%d", mcnt);
949 do
fa9a63c5 950 {
25fe55af 951 putchar ('/');
fa9a63c5 952 putchar (*p++);
25fe55af
RS
953 }
954 while (--mcnt);
955 break;
fa9a63c5
RM
956
957 case start_memory:
505bde11 958 printf ("/start_memory/%d", *p++);
25fe55af 959 break;
fa9a63c5
RM
960
961 case stop_memory:
505bde11 962 printf ("/stop_memory/%d", *p++);
25fe55af 963 break;
fa9a63c5
RM
964
965 case duplicate:
966 printf ("/duplicate/%d", *p++);
967 break;
968
969 case anychar:
970 printf ("/anychar");
971 break;
972
973 case charset:
25fe55af
RS
974 case charset_not:
975 {
976 register int c, last = -100;
fa9a63c5 977 register int in_range = 0;
99633e97
SM
978 int length = CHARSET_BITMAP_SIZE (p - 1);
979 int has_range_table = CHARSET_RANGE_TABLE_EXISTS_P (p - 1);
fa9a63c5
RM
980
981 printf ("/charset [%s",
25fe55af 982 (re_opcode_t) *(p - 1) == charset_not ? "^" : "");
5e69f11e 983
25fe55af 984 assert (p + *p < pend);
fa9a63c5 985
25fe55af 986 for (c = 0; c < 256; c++)
96cc36cc 987 if (c / 8 < length
fa9a63c5
RM
988 && (p[1 + (c/8)] & (1 << (c % 8))))
989 {
990 /* Are we starting a range? */
991 if (last + 1 == c && ! in_range)
992 {
993 putchar ('-');
994 in_range = 1;
995 }
996 /* Have we broken a range? */
997 else if (last + 1 != c && in_range)
96cc36cc 998 {
fa9a63c5
RM
999 putchar (last);
1000 in_range = 0;
1001 }
5e69f11e 1002
fa9a63c5
RM
1003 if (! in_range)
1004 putchar (c);
1005
1006 last = c;
25fe55af 1007 }
fa9a63c5
RM
1008
1009 if (in_range)
1010 putchar (last);
1011
1012 putchar (']');
1013
99633e97 1014 p += 1 + length;
96cc36cc 1015
96cc36cc 1016 if (has_range_table)
99633e97
SM
1017 {
1018 int count;
1019 printf ("has-range-table");
1020
1021 /* ??? Should print the range table; for now, just skip it. */
1022 p += 2; /* skip range table bits */
1023 EXTRACT_NUMBER_AND_INCR (count, p);
1024 p = CHARSET_RANGE_TABLE_END (p, count);
1025 }
fa9a63c5
RM
1026 }
1027 break;
1028
1029 case begline:
1030 printf ("/begline");
25fe55af 1031 break;
fa9a63c5
RM
1032
1033 case endline:
25fe55af
RS
1034 printf ("/endline");
1035 break;
fa9a63c5
RM
1036
1037 case on_failure_jump:
25fe55af
RS
1038 extract_number_and_incr (&mcnt, &p);
1039 printf ("/on_failure_jump to %d", p + mcnt - start);
1040 break;
fa9a63c5
RM
1041
1042 case on_failure_keep_string_jump:
25fe55af
RS
1043 extract_number_and_incr (&mcnt, &p);
1044 printf ("/on_failure_keep_string_jump to %d", p + mcnt - start);
1045 break;
fa9a63c5 1046
0683b6fa
SM
1047 case on_failure_jump_nastyloop:
1048 extract_number_and_incr (&mcnt, &p);
1049 printf ("/on_failure_jump_nastyloop to %d", p + mcnt - start);
1050 break;
1051
505bde11 1052 case on_failure_jump_loop:
fa9a63c5 1053 extract_number_and_incr (&mcnt, &p);
505bde11 1054 printf ("/on_failure_jump_loop to %d", p + mcnt - start);
5e69f11e
RM
1055 break;
1056
505bde11 1057 case on_failure_jump_smart:
fa9a63c5 1058 extract_number_and_incr (&mcnt, &p);
505bde11 1059 printf ("/on_failure_jump_smart to %d", p + mcnt - start);
5e69f11e
RM
1060 break;
1061
25fe55af 1062 case jump:
fa9a63c5 1063 extract_number_and_incr (&mcnt, &p);
25fe55af 1064 printf ("/jump to %d", p + mcnt - start);
fa9a63c5
RM
1065 break;
1066
25fe55af
RS
1067 case succeed_n:
1068 extract_number_and_incr (&mcnt, &p);
1069 extract_number_and_incr (&mcnt2, &p);
99633e97 1070 printf ("/succeed_n to %d, %d times", p - 2 + mcnt - start, mcnt2);
25fe55af 1071 break;
5e69f11e 1072
25fe55af
RS
1073 case jump_n:
1074 extract_number_and_incr (&mcnt, &p);
1075 extract_number_and_incr (&mcnt2, &p);
99633e97 1076 printf ("/jump_n to %d, %d times", p - 2 + mcnt - start, mcnt2);
25fe55af 1077 break;
5e69f11e 1078
25fe55af
RS
1079 case set_number_at:
1080 extract_number_and_incr (&mcnt, &p);
1081 extract_number_and_incr (&mcnt2, &p);
99633e97 1082 printf ("/set_number_at location %d to %d", p - 2 + mcnt - start, mcnt2);
25fe55af 1083 break;
5e69f11e 1084
25fe55af 1085 case wordbound:
fa9a63c5
RM
1086 printf ("/wordbound");
1087 break;
1088
1089 case notwordbound:
1090 printf ("/notwordbound");
25fe55af 1091 break;
fa9a63c5
RM
1092
1093 case wordbeg:
1094 printf ("/wordbeg");
1095 break;
5e69f11e 1096
fa9a63c5
RM
1097 case wordend:
1098 printf ("/wordend");
5e69f11e 1099
1fb352e0
SM
1100 case syntaxspec:
1101 printf ("/syntaxspec");
1102 mcnt = *p++;
1103 printf ("/%d", mcnt);
1104 break;
1105
1106 case notsyntaxspec:
1107 printf ("/notsyntaxspec");
1108 mcnt = *p++;
1109 printf ("/%d", mcnt);
1110 break;
1111
0b32bf0e 1112# ifdef emacs
fa9a63c5
RM
1113 case before_dot:
1114 printf ("/before_dot");
25fe55af 1115 break;
fa9a63c5
RM
1116
1117 case at_dot:
1118 printf ("/at_dot");
25fe55af 1119 break;
fa9a63c5
RM
1120
1121 case after_dot:
1122 printf ("/after_dot");
25fe55af 1123 break;
fa9a63c5 1124
1fb352e0
SM
1125 case categoryspec:
1126 printf ("/categoryspec");
fa9a63c5
RM
1127 mcnt = *p++;
1128 printf ("/%d", mcnt);
25fe55af 1129 break;
5e69f11e 1130
1fb352e0
SM
1131 case notcategoryspec:
1132 printf ("/notcategoryspec");
fa9a63c5
RM
1133 mcnt = *p++;
1134 printf ("/%d", mcnt);
1135 break;
0b32bf0e 1136# endif /* emacs */
fa9a63c5 1137
fa9a63c5
RM
1138 case begbuf:
1139 printf ("/begbuf");
25fe55af 1140 break;
fa9a63c5
RM
1141
1142 case endbuf:
1143 printf ("/endbuf");
25fe55af 1144 break;
fa9a63c5 1145
25fe55af
RS
1146 default:
1147 printf ("?%d", *(p-1));
fa9a63c5
RM
1148 }
1149
1150 putchar ('\n');
1151 }
1152
1153 printf ("%d:\tend of pattern.\n", p - start);
1154}
1155
1156
1157void
1158print_compiled_pattern (bufp)
1159 struct re_pattern_buffer *bufp;
1160{
01618498 1161 re_char *buffer = bufp->buffer;
fa9a63c5
RM
1162
1163 print_partial_compiled_pattern (buffer, buffer + bufp->used);
4bb91c68
SM
1164 printf ("%ld bytes used/%ld bytes allocated.\n",
1165 bufp->used, bufp->allocated);
fa9a63c5
RM
1166
1167 if (bufp->fastmap_accurate && bufp->fastmap)
1168 {
1169 printf ("fastmap: ");
1170 print_fastmap (bufp->fastmap);
1171 }
1172
1173 printf ("re_nsub: %d\t", bufp->re_nsub);
1174 printf ("regs_alloc: %d\t", bufp->regs_allocated);
1175 printf ("can_be_null: %d\t", bufp->can_be_null);
fa9a63c5
RM
1176 printf ("no_sub: %d\t", bufp->no_sub);
1177 printf ("not_bol: %d\t", bufp->not_bol);
1178 printf ("not_eol: %d\t", bufp->not_eol);
4bb91c68 1179 printf ("syntax: %lx\n", bufp->syntax);
505bde11 1180 fflush (stdout);
fa9a63c5
RM
1181 /* Perhaps we should print the translate table? */
1182}
1183
1184
1185void
1186print_double_string (where, string1, size1, string2, size2)
66f0296e
SM
1187 re_char *where;
1188 re_char *string1;
1189 re_char *string2;
fa9a63c5
RM
1190 int size1;
1191 int size2;
1192{
4bb91c68 1193 int this_char;
5e69f11e 1194
fa9a63c5
RM
1195 if (where == NULL)
1196 printf ("(null)");
1197 else
1198 {
1199 if (FIRST_STRING_P (where))
25fe55af
RS
1200 {
1201 for (this_char = where - string1; this_char < size1; this_char++)
1202 putchar (string1[this_char]);
fa9a63c5 1203
25fe55af
RS
1204 where = string2;
1205 }
fa9a63c5
RM
1206
1207 for (this_char = where - string2; this_char < size2; this_char++)
25fe55af 1208 putchar (string2[this_char]);
fa9a63c5
RM
1209 }
1210}
1211
1212#else /* not DEBUG */
1213
0b32bf0e
SM
1214# undef assert
1215# define assert(e)
fa9a63c5 1216
0b32bf0e
SM
1217# define DEBUG_STATEMENT(e)
1218# define DEBUG_PRINT1(x)
1219# define DEBUG_PRINT2(x1, x2)
1220# define DEBUG_PRINT3(x1, x2, x3)
1221# define DEBUG_PRINT4(x1, x2, x3, x4)
1222# define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
1223# define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
fa9a63c5
RM
1224
1225#endif /* not DEBUG */
1226\f
1227/* Set by `re_set_syntax' to the current regexp syntax to recognize. Can
1228 also be assigned to arbitrarily: each pattern buffer stores its own
1229 syntax, so it can be changed between regex compilations. */
1230/* This has no initializer because initialized variables in Emacs
1231 become read-only after dumping. */
1232reg_syntax_t re_syntax_options;
1233
1234
1235/* Specify the precise syntax of regexps for compilation. This provides
1236 for compatibility for various utilities which historically have
1237 different, incompatible syntaxes.
1238
1239 The argument SYNTAX is a bit mask comprised of the various bits
4bb91c68 1240 defined in regex.h. We return the old syntax. */
fa9a63c5
RM
1241
1242reg_syntax_t
1243re_set_syntax (syntax)
1244 reg_syntax_t syntax;
1245{
1246 reg_syntax_t ret = re_syntax_options;
5e69f11e 1247
fa9a63c5
RM
1248 re_syntax_options = syntax;
1249 return ret;
1250}
c0f9ea08 1251WEAK_ALIAS (__re_set_syntax, re_set_syntax)
fa9a63c5
RM
1252\f
1253/* This table gives an error message for each of the error codes listed
4bb91c68 1254 in regex.h. Obviously the order here has to be same as there.
fa9a63c5 1255 POSIX doesn't require that we do anything for REG_NOERROR,
4bb91c68 1256 but why not be nice? */
fa9a63c5
RM
1257
1258static const char *re_error_msgid[] =
5e69f11e
RM
1259 {
1260 gettext_noop ("Success"), /* REG_NOERROR */
1261 gettext_noop ("No match"), /* REG_NOMATCH */
1262 gettext_noop ("Invalid regular expression"), /* REG_BADPAT */
1263 gettext_noop ("Invalid collation character"), /* REG_ECOLLATE */
1264 gettext_noop ("Invalid character class name"), /* REG_ECTYPE */
1265 gettext_noop ("Trailing backslash"), /* REG_EESCAPE */
1266 gettext_noop ("Invalid back reference"), /* REG_ESUBREG */
1267 gettext_noop ("Unmatched [ or [^"), /* REG_EBRACK */
1268 gettext_noop ("Unmatched ( or \\("), /* REG_EPAREN */
1269 gettext_noop ("Unmatched \\{"), /* REG_EBRACE */
1270 gettext_noop ("Invalid content of \\{\\}"), /* REG_BADBR */
1271 gettext_noop ("Invalid range end"), /* REG_ERANGE */
1272 gettext_noop ("Memory exhausted"), /* REG_ESPACE */
1273 gettext_noop ("Invalid preceding regular expression"), /* REG_BADRPT */
1274 gettext_noop ("Premature end of regular expression"), /* REG_EEND */
1275 gettext_noop ("Regular expression too big"), /* REG_ESIZE */
1276 gettext_noop ("Unmatched ) or \\)"), /* REG_ERPAREN */
fa9a63c5
RM
1277 };
1278\f
4bb91c68 1279/* Avoiding alloca during matching, to placate r_alloc. */
fa9a63c5
RM
1280
1281/* Define MATCH_MAY_ALLOCATE unless we need to make sure that the
1282 searching and matching functions should not call alloca. On some
1283 systems, alloca is implemented in terms of malloc, and if we're
1284 using the relocating allocator routines, then malloc could cause a
1285 relocation, which might (if the strings being searched are in the
1286 ralloc heap) shift the data out from underneath the regexp
1287 routines.
1288
5e69f11e 1289 Here's another reason to avoid allocation: Emacs
fa9a63c5
RM
1290 processes input from X in a signal handler; processing X input may
1291 call malloc; if input arrives while a matching routine is calling
1292 malloc, then we're scrod. But Emacs can't just block input while
1293 calling matching routines; then we don't notice interrupts when
1294 they come in. So, Emacs blocks input around all regexp calls
1295 except the matching calls, which it leaves unprotected, in the
1296 faith that they will not malloc. */
1297
1298/* Normally, this is fine. */
1299#define MATCH_MAY_ALLOCATE
1300
1301/* When using GNU C, we are not REALLY using the C alloca, no matter
1302 what config.h may say. So don't take precautions for it. */
1303#ifdef __GNUC__
0b32bf0e 1304# undef C_ALLOCA
fa9a63c5
RM
1305#endif
1306
1307/* The match routines may not allocate if (1) they would do it with malloc
1308 and (2) it's not safe for them to use malloc.
1309 Note that if REL_ALLOC is defined, matching would not use malloc for the
1310 failure stack, but we would still use it for the register vectors;
4bb91c68 1311 so REL_ALLOC should not affect this. */
0b32bf0e
SM
1312#if (defined C_ALLOCA || defined REGEX_MALLOC) && defined emacs
1313# undef MATCH_MAY_ALLOCATE
fa9a63c5
RM
1314#endif
1315
1316\f
1317/* Failure stack declarations and macros; both re_compile_fastmap and
1318 re_match_2 use a failure stack. These have to be macros because of
1319 REGEX_ALLOCATE_STACK. */
5e69f11e 1320
fa9a63c5 1321
320a2a73 1322/* Approximate number of failure points for which to initially allocate space
fa9a63c5
RM
1323 when matching. If this number is exceeded, we allocate more
1324 space, so it is not a hard limit. */
1325#ifndef INIT_FAILURE_ALLOC
0b32bf0e 1326# define INIT_FAILURE_ALLOC 20
fa9a63c5
RM
1327#endif
1328
1329/* Roughly the maximum number of failure points on the stack. Would be
320a2a73 1330 exactly that if always used TYPICAL_FAILURE_SIZE items each time we failed.
fa9a63c5 1331 This is a variable only so users of regex can assign to it; we never
ada30c0e
SM
1332 change it ourselves. We always multiply it by TYPICAL_FAILURE_SIZE
1333 before using it, so it should probably be a byte-count instead. */
c0f9ea08
SM
1334# if defined MATCH_MAY_ALLOCATE
1335/* Note that 4400 was enough to cause a crash on Alpha OSF/1,
320a2a73
KH
1336 whose default stack limit is 2mb. In order for a larger
1337 value to work reliably, you have to try to make it accord
1338 with the process stack limit. */
c0f9ea08
SM
1339size_t re_max_failures = 40000;
1340# else
1341size_t re_max_failures = 4000;
1342# endif
fa9a63c5
RM
1343
1344union fail_stack_elt
1345{
01618498 1346 re_char *pointer;
c0f9ea08
SM
1347 /* This should be the biggest `int' that's no bigger than a pointer. */
1348 long integer;
fa9a63c5
RM
1349};
1350
1351typedef union fail_stack_elt fail_stack_elt_t;
1352
1353typedef struct
1354{
1355 fail_stack_elt_t *stack;
c0f9ea08
SM
1356 size_t size;
1357 size_t avail; /* Offset of next open position. */
1358 size_t frame; /* Offset of the cur constructed frame. */
fa9a63c5
RM
1359} fail_stack_type;
1360
505bde11 1361#define FAIL_STACK_EMPTY() (fail_stack.frame == 0)
fa9a63c5
RM
1362#define FAIL_STACK_FULL() (fail_stack.avail == fail_stack.size)
1363
1364
1365/* Define macros to initialize and free the failure stack.
1366 Do `return -2' if the alloc fails. */
1367
1368#ifdef MATCH_MAY_ALLOCATE
0b32bf0e 1369# define INIT_FAIL_STACK() \
fa9a63c5
RM
1370 do { \
1371 fail_stack.stack = (fail_stack_elt_t *) \
320a2a73
KH
1372 REGEX_ALLOCATE_STACK (INIT_FAILURE_ALLOC * TYPICAL_FAILURE_SIZE \
1373 * sizeof (fail_stack_elt_t)); \
fa9a63c5
RM
1374 \
1375 if (fail_stack.stack == NULL) \
1376 return -2; \
1377 \
1378 fail_stack.size = INIT_FAILURE_ALLOC; \
1379 fail_stack.avail = 0; \
505bde11 1380 fail_stack.frame = 0; \
fa9a63c5
RM
1381 } while (0)
1382
0b32bf0e 1383# define RESET_FAIL_STACK() REGEX_FREE_STACK (fail_stack.stack)
fa9a63c5 1384#else
0b32bf0e 1385# define INIT_FAIL_STACK() \
fa9a63c5
RM
1386 do { \
1387 fail_stack.avail = 0; \
505bde11 1388 fail_stack.frame = 0; \
fa9a63c5
RM
1389 } while (0)
1390
0b32bf0e 1391# define RESET_FAIL_STACK() ((void)0)
fa9a63c5
RM
1392#endif
1393
1394
320a2a73
KH
1395/* Double the size of FAIL_STACK, up to a limit
1396 which allows approximately `re_max_failures' items.
fa9a63c5
RM
1397
1398 Return 1 if succeeds, and 0 if either ran out of memory
5e69f11e
RM
1399 allocating space for it or it was already too large.
1400
4bb91c68 1401 REGEX_REALLOCATE_STACK requires `destination' be declared. */
fa9a63c5 1402
320a2a73
KH
1403/* Factor to increase the failure stack size by
1404 when we increase it.
1405 This used to be 2, but 2 was too wasteful
1406 because the old discarded stacks added up to as much space
1407 were as ultimate, maximum-size stack. */
1408#define FAIL_STACK_GROWTH_FACTOR 4
1409
1410#define GROW_FAIL_STACK(fail_stack) \
eead07d6
KH
1411 (((fail_stack).size * sizeof (fail_stack_elt_t) \
1412 >= re_max_failures * TYPICAL_FAILURE_SIZE) \
fa9a63c5 1413 ? 0 \
320a2a73
KH
1414 : ((fail_stack).stack \
1415 = (fail_stack_elt_t *) \
25fe55af
RS
1416 REGEX_REALLOCATE_STACK ((fail_stack).stack, \
1417 (fail_stack).size * sizeof (fail_stack_elt_t), \
320a2a73
KH
1418 MIN (re_max_failures * TYPICAL_FAILURE_SIZE, \
1419 ((fail_stack).size * sizeof (fail_stack_elt_t) \
1420 * FAIL_STACK_GROWTH_FACTOR))), \
fa9a63c5
RM
1421 \
1422 (fail_stack).stack == NULL \
1423 ? 0 \
6453db45
KH
1424 : ((fail_stack).size \
1425 = (MIN (re_max_failures * TYPICAL_FAILURE_SIZE, \
1426 ((fail_stack).size * sizeof (fail_stack_elt_t) \
1427 * FAIL_STACK_GROWTH_FACTOR)) \
1428 / sizeof (fail_stack_elt_t)), \
25fe55af 1429 1)))
fa9a63c5
RM
1430
1431
fa9a63c5
RM
1432/* Push a pointer value onto the failure stack.
1433 Assumes the variable `fail_stack'. Probably should only
4bb91c68 1434 be called from within `PUSH_FAILURE_POINT'. */
fa9a63c5 1435#define PUSH_FAILURE_POINTER(item) \
01618498 1436 fail_stack.stack[fail_stack.avail++].pointer = (item)
fa9a63c5
RM
1437
1438/* This pushes an integer-valued item onto the failure stack.
1439 Assumes the variable `fail_stack'. Probably should only
4bb91c68 1440 be called from within `PUSH_FAILURE_POINT'. */
fa9a63c5
RM
1441#define PUSH_FAILURE_INT(item) \
1442 fail_stack.stack[fail_stack.avail++].integer = (item)
1443
1444/* Push a fail_stack_elt_t value onto the failure stack.
1445 Assumes the variable `fail_stack'. Probably should only
4bb91c68 1446 be called from within `PUSH_FAILURE_POINT'. */
fa9a63c5
RM
1447#define PUSH_FAILURE_ELT(item) \
1448 fail_stack.stack[fail_stack.avail++] = (item)
1449
1450/* These three POP... operations complement the three PUSH... operations.
1451 All assume that `fail_stack' is nonempty. */
1452#define POP_FAILURE_POINTER() fail_stack.stack[--fail_stack.avail].pointer
1453#define POP_FAILURE_INT() fail_stack.stack[--fail_stack.avail].integer
1454#define POP_FAILURE_ELT() fail_stack.stack[--fail_stack.avail]
1455
505bde11
SM
1456/* Individual items aside from the registers. */
1457#define NUM_NONREG_ITEMS 3
1458
1459/* Used to examine the stack (to detect infinite loops). */
1460#define FAILURE_PAT(h) fail_stack.stack[(h) - 1].pointer
66f0296e 1461#define FAILURE_STR(h) (fail_stack.stack[(h) - 2].pointer)
505bde11
SM
1462#define NEXT_FAILURE_HANDLE(h) fail_stack.stack[(h) - 3].integer
1463#define TOP_FAILURE_HANDLE() fail_stack.frame
fa9a63c5
RM
1464
1465
505bde11
SM
1466#define ENSURE_FAIL_STACK(space) \
1467while (REMAINING_AVAIL_SLOTS <= space) { \
1468 if (!GROW_FAIL_STACK (fail_stack)) \
1469 return -2; \
1470 DEBUG_PRINT2 ("\n Doubled stack; size now: %d\n", (fail_stack).size);\
1471 DEBUG_PRINT2 (" slots available: %d\n", REMAINING_AVAIL_SLOTS);\
1472}
1473
1474/* Push register NUM onto the stack. */
1475#define PUSH_FAILURE_REG(num) \
1476do { \
1477 char *destination; \
1478 ENSURE_FAIL_STACK(3); \
1479 DEBUG_PRINT4 (" Push reg %d (spanning %p -> %p)\n", \
1480 num, regstart[num], regend[num]); \
1481 PUSH_FAILURE_POINTER (regstart[num]); \
1482 PUSH_FAILURE_POINTER (regend[num]); \
1483 PUSH_FAILURE_INT (num); \
1484} while (0)
1485
01618498
SM
1486/* Change the counter's value to VAL, but make sure that it will
1487 be reset when backtracking. */
1488#define PUSH_NUMBER(ptr,val) \
dc1e502d
SM
1489do { \
1490 char *destination; \
1491 int c; \
1492 ENSURE_FAIL_STACK(3); \
1493 EXTRACT_NUMBER (c, ptr); \
01618498 1494 DEBUG_PRINT4 (" Push number %p = %d -> %d\n", ptr, c, val); \
dc1e502d
SM
1495 PUSH_FAILURE_INT (c); \
1496 PUSH_FAILURE_POINTER (ptr); \
1497 PUSH_FAILURE_INT (-1); \
01618498 1498 STORE_NUMBER (ptr, val); \
dc1e502d
SM
1499} while (0)
1500
505bde11 1501/* Pop a saved register off the stack. */
dc1e502d 1502#define POP_FAILURE_REG_OR_COUNT() \
505bde11
SM
1503do { \
1504 int reg = POP_FAILURE_INT (); \
dc1e502d
SM
1505 if (reg == -1) \
1506 { \
1507 /* It's a counter. */ \
6dcf2d0e
SM
1508 /* Here, we discard `const', making re_match non-reentrant. */ \
1509 unsigned char *ptr = (unsigned char*) POP_FAILURE_POINTER (); \
dc1e502d
SM
1510 reg = POP_FAILURE_INT (); \
1511 STORE_NUMBER (ptr, reg); \
1512 DEBUG_PRINT3 (" Pop counter %p = %d\n", ptr, reg); \
1513 } \
1514 else \
1515 { \
1516 regend[reg] = POP_FAILURE_POINTER (); \
1517 regstart[reg] = POP_FAILURE_POINTER (); \
1518 DEBUG_PRINT4 (" Pop reg %d (spanning %p -> %p)\n", \
1519 reg, regstart[reg], regend[reg]); \
1520 } \
505bde11
SM
1521} while (0)
1522
f6df485f
RS
1523/* Discard a saved register off the stack. */
1524#define DISCARD_FAILURE_REG_OR_COUNT() \
1525do { \
1526 int reg = POP_FAILURE_INT (); \
1527 if (reg == -1) \
1528 { \
1529 /* It's a counter. */ \
1530 POP_FAILURE_POINTER (); \
1531 reg = POP_FAILURE_INT (); \
1532 DEBUG_PRINT3 (" Discard counter %p = %d\n", ptr, reg); \
1533 } \
1534 else \
1535 { \
1536 POP_FAILURE_POINTER (); \
1537 POP_FAILURE_POINTER (); \
1538 DEBUG_PRINT4 (" Discard reg %d (spanning %p -> %p)\n", \
1539 reg, regstart[reg], regend[reg]); \
1540 } \
1541} while (0)
1542
505bde11
SM
1543/* Check that we are not stuck in an infinite loop. */
1544#define CHECK_INFINITE_LOOP(pat_cur, string_place) \
1545do { \
f6df485f 1546 int failure = TOP_FAILURE_HANDLE (); \
505bde11 1547 /* Check for infinite matching loops */ \
f6df485f
RS
1548 while (failure > 0 \
1549 && (FAILURE_STR (failure) == string_place \
1550 || FAILURE_STR (failure) == NULL)) \
505bde11
SM
1551 { \
1552 assert (FAILURE_PAT (failure) >= bufp->buffer \
66f0296e 1553 && FAILURE_PAT (failure) <= bufp->buffer + bufp->used); \
505bde11 1554 if (FAILURE_PAT (failure) == pat_cur) \
f6df485f
RS
1555 { \
1556 while (fail_stack.frame < fail_stack.avail) \
1557 DISCARD_FAILURE_REG_OR_COUNT (); \
1558 goto fail; \
1559 } \
66f0296e 1560 DEBUG_PRINT2 (" Other pattern: %p\n", FAILURE_PAT (failure)); \
505bde11
SM
1561 failure = NEXT_FAILURE_HANDLE(failure); \
1562 } \
1563 DEBUG_PRINT2 (" Other string: %p\n", FAILURE_STR (failure)); \
1564} while (0)
1565
fa9a63c5 1566/* Push the information about the state we will need
5e69f11e
RM
1567 if we ever fail back to it.
1568
505bde11 1569 Requires variables fail_stack, regstart, regend and
320a2a73 1570 num_regs be declared. GROW_FAIL_STACK requires `destination' be
fa9a63c5 1571 declared.
5e69f11e 1572
fa9a63c5
RM
1573 Does `return FAILURE_CODE' if runs out of memory. */
1574
505bde11
SM
1575#define PUSH_FAILURE_POINT(pattern, string_place) \
1576do { \
1577 char *destination; \
1578 /* Must be int, so when we don't save any registers, the arithmetic \
1579 of 0 + -1 isn't done as unsigned. */ \
1580 \
505bde11 1581 DEBUG_STATEMENT (nfailure_points_pushed++); \
4bb91c68 1582 DEBUG_PRINT1 ("\nPUSH_FAILURE_POINT:\n"); \
505bde11
SM
1583 DEBUG_PRINT2 (" Before push, next avail: %d\n", (fail_stack).avail); \
1584 DEBUG_PRINT2 (" size: %d\n", (fail_stack).size);\
1585 \
1586 ENSURE_FAIL_STACK (NUM_NONREG_ITEMS); \
1587 \
1588 DEBUG_PRINT1 ("\n"); \
1589 \
1590 DEBUG_PRINT2 (" Push frame index: %d\n", fail_stack.frame); \
1591 PUSH_FAILURE_INT (fail_stack.frame); \
1592 \
1593 DEBUG_PRINT2 (" Push string %p: `", string_place); \
1594 DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, size2);\
1595 DEBUG_PRINT1 ("'\n"); \
1596 PUSH_FAILURE_POINTER (string_place); \
1597 \
1598 DEBUG_PRINT2 (" Push pattern %p: ", pattern); \
1599 DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern, pend); \
1600 PUSH_FAILURE_POINTER (pattern); \
1601 \
1602 /* Close the frame by moving the frame pointer past it. */ \
1603 fail_stack.frame = fail_stack.avail; \
1604} while (0)
fa9a63c5 1605
320a2a73
KH
1606/* Estimate the size of data pushed by a typical failure stack entry.
1607 An estimate is all we need, because all we use this for
1608 is to choose a limit for how big to make the failure stack. */
ada30c0e 1609/* BEWARE, the value `20' is hard-coded in emacs.c:main(). */
320a2a73 1610#define TYPICAL_FAILURE_SIZE 20
fa9a63c5 1611
fa9a63c5
RM
1612/* How many items can still be added to the stack without overflowing it. */
1613#define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
1614
1615
1616/* Pops what PUSH_FAIL_STACK pushes.
1617
1618 We restore into the parameters, all of which should be lvalues:
1619 STR -- the saved data position.
1620 PAT -- the saved pattern position.
fa9a63c5 1621 REGSTART, REGEND -- arrays of string positions.
5e69f11e 1622
fa9a63c5 1623 Also assumes the variables `fail_stack' and (if debugging), `bufp',
25fe55af 1624 `pend', `string1', `size1', `string2', and `size2'. */
fa9a63c5 1625
505bde11
SM
1626#define POP_FAILURE_POINT(str, pat) \
1627do { \
fa9a63c5
RM
1628 assert (!FAIL_STACK_EMPTY ()); \
1629 \
1630 /* Remove failure points and point to how many regs pushed. */ \
1631 DEBUG_PRINT1 ("POP_FAILURE_POINT:\n"); \
1632 DEBUG_PRINT2 (" Before pop, next avail: %d\n", fail_stack.avail); \
25fe55af 1633 DEBUG_PRINT2 (" size: %d\n", fail_stack.size); \
fa9a63c5 1634 \
505bde11
SM
1635 /* Pop the saved registers. */ \
1636 while (fail_stack.frame < fail_stack.avail) \
dc1e502d 1637 POP_FAILURE_REG_OR_COUNT (); \
fa9a63c5 1638 \
01618498 1639 pat = POP_FAILURE_POINTER (); \
505bde11
SM
1640 DEBUG_PRINT2 (" Popping pattern %p: ", pat); \
1641 DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend); \
fa9a63c5
RM
1642 \
1643 /* If the saved string location is NULL, it came from an \
1644 on_failure_keep_string_jump opcode, and we want to throw away the \
1645 saved NULL, thus retaining our current position in the string. */ \
01618498 1646 str = POP_FAILURE_POINTER (); \
505bde11 1647 DEBUG_PRINT2 (" Popping string %p: `", str); \
fa9a63c5
RM
1648 DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2); \
1649 DEBUG_PRINT1 ("'\n"); \
1650 \
505bde11
SM
1651 fail_stack.frame = POP_FAILURE_INT (); \
1652 DEBUG_PRINT2 (" Popping frame index: %d\n", fail_stack.frame); \
fa9a63c5 1653 \
505bde11
SM
1654 assert (fail_stack.avail >= 0); \
1655 assert (fail_stack.frame <= fail_stack.avail); \
fa9a63c5 1656 \
fa9a63c5 1657 DEBUG_STATEMENT (nfailure_points_popped++); \
505bde11 1658} while (0) /* POP_FAILURE_POINT */
fa9a63c5
RM
1659
1660
1661\f
fa9a63c5 1662/* Registers are set to a sentinel when they haven't yet matched. */
4bb91c68 1663#define REG_UNSET(e) ((e) == NULL)
fa9a63c5
RM
1664\f
1665/* Subroutine declarations and macros for regex_compile. */
1666
4bb91c68
SM
1667static reg_errcode_t regex_compile _RE_ARGS ((re_char *pattern, size_t size,
1668 reg_syntax_t syntax,
1669 struct re_pattern_buffer *bufp));
1670static void store_op1 _RE_ARGS ((re_opcode_t op, unsigned char *loc, int arg));
1671static void store_op2 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
1672 int arg1, int arg2));
1673static void insert_op1 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
1674 int arg, unsigned char *end));
1675static void insert_op2 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
1676 int arg1, int arg2, unsigned char *end));
01618498
SM
1677static boolean at_begline_loc_p _RE_ARGS ((re_char *pattern,
1678 re_char *p,
4bb91c68 1679 reg_syntax_t syntax));
01618498
SM
1680static boolean at_endline_loc_p _RE_ARGS ((re_char *p,
1681 re_char *pend,
4bb91c68 1682 reg_syntax_t syntax));
01618498
SM
1683static re_char *skip_one_char _RE_ARGS ((re_char *p));
1684static int analyse_first _RE_ARGS ((re_char *p, re_char *pend,
4bb91c68 1685 char *fastmap, const int multibyte));
fa9a63c5 1686
fa9a63c5 1687/* Fetch the next character in the uncompiled pattern, with no
4bb91c68 1688 translation. */
36595814 1689#define PATFETCH(c) \
2d1675e4
SM
1690 do { \
1691 int len; \
1692 if (p == pend) return REG_EEND; \
1693 c = RE_STRING_CHAR_AND_LENGTH (p, pend - p, len); \
1694 p += len; \
fa9a63c5
RM
1695 } while (0)
1696
fa9a63c5
RM
1697
1698/* If `translate' is non-null, return translate[D], else just D. We
1699 cast the subscript to translate because some data is declared as
1700 `char *', to avoid warnings when a string constant is passed. But
1701 when we use a character as a subscript we must make it unsigned. */
6676cb1c 1702#ifndef TRANSLATE
0b32bf0e 1703# define TRANSLATE(d) \
66f0296e 1704 (RE_TRANSLATE_P (translate) ? RE_TRANSLATE (translate, (d)) : (d))
6676cb1c 1705#endif
fa9a63c5
RM
1706
1707
1708/* Macros for outputting the compiled pattern into `buffer'. */
1709
1710/* If the buffer isn't allocated when it comes in, use this. */
1711#define INIT_BUF_SIZE 32
1712
4bb91c68 1713/* Make sure we have at least N more bytes of space in buffer. */
fa9a63c5 1714#define GET_BUFFER_SPACE(n) \
01618498 1715 while ((size_t) (b - bufp->buffer + (n)) > bufp->allocated) \
fa9a63c5
RM
1716 EXTEND_BUFFER ()
1717
1718/* Make sure we have one more byte of buffer space and then add C to it. */
1719#define BUF_PUSH(c) \
1720 do { \
1721 GET_BUFFER_SPACE (1); \
1722 *b++ = (unsigned char) (c); \
1723 } while (0)
1724
1725
1726/* Ensure we have two more bytes of buffer space and then append C1 and C2. */
1727#define BUF_PUSH_2(c1, c2) \
1728 do { \
1729 GET_BUFFER_SPACE (2); \
1730 *b++ = (unsigned char) (c1); \
1731 *b++ = (unsigned char) (c2); \
1732 } while (0)
1733
1734
4bb91c68 1735/* As with BUF_PUSH_2, except for three bytes. */
fa9a63c5
RM
1736#define BUF_PUSH_3(c1, c2, c3) \
1737 do { \
1738 GET_BUFFER_SPACE (3); \
1739 *b++ = (unsigned char) (c1); \
1740 *b++ = (unsigned char) (c2); \
1741 *b++ = (unsigned char) (c3); \
1742 } while (0)
1743
1744
1745/* Store a jump with opcode OP at LOC to location TO. We store a
4bb91c68 1746 relative address offset by the three bytes the jump itself occupies. */
fa9a63c5
RM
1747#define STORE_JUMP(op, loc, to) \
1748 store_op1 (op, loc, (to) - (loc) - 3)
1749
1750/* Likewise, for a two-argument jump. */
1751#define STORE_JUMP2(op, loc, to, arg) \
1752 store_op2 (op, loc, (to) - (loc) - 3, arg)
1753
4bb91c68 1754/* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */
fa9a63c5
RM
1755#define INSERT_JUMP(op, loc, to) \
1756 insert_op1 (op, loc, (to) - (loc) - 3, b)
1757
1758/* Like `STORE_JUMP2', but for inserting. Assume `b' is the buffer end. */
1759#define INSERT_JUMP2(op, loc, to, arg) \
1760 insert_op2 (op, loc, (to) - (loc) - 3, arg, b)
1761
1762
1763/* This is not an arbitrary limit: the arguments which represent offsets
4bb91c68 1764 into the pattern are two bytes long. So if 2^16 bytes turns out to
fa9a63c5 1765 be too small, many things would have to change. */
4bb91c68
SM
1766/* Any other compiler which, like MSC, has allocation limit below 2^16
1767 bytes will have to use approach similar to what was done below for
1768 MSC and drop MAX_BUF_SIZE a bit. Otherwise you may end up
1769 reallocating to 0 bytes. Such thing is not going to work too well.
1770 You have been warned!! */
1771#if defined _MSC_VER && !defined WIN32
1772/* Microsoft C 16-bit versions limit malloc to approx 65512 bytes. */
1773# define MAX_BUF_SIZE 65500L
1774#else
1775# define MAX_BUF_SIZE (1L << 16)
1776#endif
fa9a63c5
RM
1777
1778/* Extend the buffer by twice its current size via realloc and
1779 reset the pointers that pointed into the old block to point to the
1780 correct places in the new one. If extending the buffer results in it
4bb91c68
SM
1781 being larger than MAX_BUF_SIZE, then flag memory exhausted. */
1782#if __BOUNDED_POINTERS__
1783# define SET_HIGH_BOUND(P) (__ptrhigh (P) = __ptrlow (P) + bufp->allocated)
1784# define MOVE_BUFFER_POINTER(P) \
1785 (__ptrlow (P) += incr, SET_HIGH_BOUND (P), __ptrvalue (P) += incr)
1786# define ELSE_EXTEND_BUFFER_HIGH_BOUND \
1787 else \
1788 { \
1789 SET_HIGH_BOUND (b); \
1790 SET_HIGH_BOUND (begalt); \
1791 if (fixup_alt_jump) \
1792 SET_HIGH_BOUND (fixup_alt_jump); \
1793 if (laststart) \
1794 SET_HIGH_BOUND (laststart); \
1795 if (pending_exact) \
1796 SET_HIGH_BOUND (pending_exact); \
1797 }
1798#else
1799# define MOVE_BUFFER_POINTER(P) (P) += incr
1800# define ELSE_EXTEND_BUFFER_HIGH_BOUND
1801#endif
fa9a63c5 1802#define EXTEND_BUFFER() \
25fe55af 1803 do { \
01618498 1804 re_char *old_buffer = bufp->buffer; \
25fe55af 1805 if (bufp->allocated == MAX_BUF_SIZE) \
fa9a63c5
RM
1806 return REG_ESIZE; \
1807 bufp->allocated <<= 1; \
1808 if (bufp->allocated > MAX_BUF_SIZE) \
25fe55af 1809 bufp->allocated = MAX_BUF_SIZE; \
01618498 1810 RETALLOC (bufp->buffer, bufp->allocated, unsigned char); \
fa9a63c5
RM
1811 if (bufp->buffer == NULL) \
1812 return REG_ESPACE; \
1813 /* If the buffer moved, move all the pointers into it. */ \
1814 if (old_buffer != bufp->buffer) \
1815 { \
4bb91c68
SM
1816 int incr = bufp->buffer - old_buffer; \
1817 MOVE_BUFFER_POINTER (b); \
1818 MOVE_BUFFER_POINTER (begalt); \
25fe55af 1819 if (fixup_alt_jump) \
4bb91c68 1820 MOVE_BUFFER_POINTER (fixup_alt_jump); \
25fe55af 1821 if (laststart) \
4bb91c68 1822 MOVE_BUFFER_POINTER (laststart); \
25fe55af 1823 if (pending_exact) \
4bb91c68 1824 MOVE_BUFFER_POINTER (pending_exact); \
fa9a63c5 1825 } \
4bb91c68 1826 ELSE_EXTEND_BUFFER_HIGH_BOUND \
fa9a63c5
RM
1827 } while (0)
1828
1829
1830/* Since we have one byte reserved for the register number argument to
1831 {start,stop}_memory, the maximum number of groups we can report
1832 things about is what fits in that byte. */
1833#define MAX_REGNUM 255
1834
1835/* But patterns can have more than `MAX_REGNUM' registers. We just
1836 ignore the excess. */
1837typedef unsigned regnum_t;
1838
1839
1840/* Macros for the compile stack. */
1841
1842/* Since offsets can go either forwards or backwards, this type needs to
4bb91c68
SM
1843 be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */
1844/* int may be not enough when sizeof(int) == 2. */
1845typedef long pattern_offset_t;
fa9a63c5
RM
1846
1847typedef struct
1848{
1849 pattern_offset_t begalt_offset;
1850 pattern_offset_t fixup_alt_jump;
5e69f11e 1851 pattern_offset_t laststart_offset;
fa9a63c5
RM
1852 regnum_t regnum;
1853} compile_stack_elt_t;
1854
1855
1856typedef struct
1857{
1858 compile_stack_elt_t *stack;
1859 unsigned size;
1860 unsigned avail; /* Offset of next open position. */
1861} compile_stack_type;
1862
1863
1864#define INIT_COMPILE_STACK_SIZE 32
1865
1866#define COMPILE_STACK_EMPTY (compile_stack.avail == 0)
1867#define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size)
1868
4bb91c68 1869/* The next available element. */
fa9a63c5
RM
1870#define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
1871
77d11aec
RS
1872/* Explicit quit checking is only used on NTemacs. */
1873#if defined WINDOWSNT && defined emacs && defined QUIT
1874extern int immediate_quit;
1875# define IMMEDIATE_QUIT_CHECK \
1876 do { \
1877 if (immediate_quit) QUIT; \
1878 } while (0)
1879#else
1880# define IMMEDIATE_QUIT_CHECK ((void)0)
1881#endif
1882\f
b18215fc
RS
1883/* Structure to manage work area for range table. */
1884struct range_table_work_area
1885{
1886 int *table; /* actual work area. */
1887 int allocated; /* allocated size for work area in bytes. */
25fe55af 1888 int used; /* actually used size in words. */
96cc36cc 1889 int bits; /* flag to record character classes */
b18215fc
RS
1890};
1891
77d11aec
RS
1892/* Make sure that WORK_AREA can hold more N multibyte characters.
1893 This is used only in set_image_of_range and set_image_of_range_1.
1894 It expects WORK_AREA to be a pointer.
1895 If it can't get the space, it returns from the surrounding function. */
1896
1897#define EXTEND_RANGE_TABLE(work_area, n) \
1898 do { \
1899 if (((work_area)->used + (n)) * sizeof (int) > (work_area)->allocated) \
1900 { \
1901 extend_range_table_work_area (work_area); \
1902 if ((work_area)->table == 0) \
1903 return (REG_ESPACE); \
1904 } \
b18215fc
RS
1905 } while (0)
1906
96cc36cc
RS
1907#define SET_RANGE_TABLE_WORK_AREA_BIT(work_area, bit) \
1908 (work_area).bits |= (bit)
1909
14473664
SM
1910/* Bits used to implement the multibyte-part of the various character classes
1911 such as [:alnum:] in a charset's range table. */
1912#define BIT_WORD 0x1
1913#define BIT_LOWER 0x2
1914#define BIT_PUNCT 0x4
1915#define BIT_SPACE 0x8
1916#define BIT_UPPER 0x10
1917#define BIT_MULTIBYTE 0x20
96cc36cc 1918
36595814
SM
1919/* Set a range START..END to WORK_AREA.
1920 The range is passed through TRANSLATE, so START and END
1921 should be untranslated. */
77d11aec
RS
1922#define SET_RANGE_TABLE_WORK_AREA(work_area, start, end) \
1923 do { \
1924 int tem; \
1925 tem = set_image_of_range (&work_area, start, end, translate); \
1926 if (tem > 0) \
1927 FREE_STACK_RETURN (tem); \
b18215fc
RS
1928 } while (0)
1929
25fe55af 1930/* Free allocated memory for WORK_AREA. */
b18215fc
RS
1931#define FREE_RANGE_TABLE_WORK_AREA(work_area) \
1932 do { \
1933 if ((work_area).table) \
1934 free ((work_area).table); \
1935 } while (0)
1936
96cc36cc 1937#define CLEAR_RANGE_TABLE_WORK_USED(work_area) ((work_area).used = 0, (work_area).bits = 0)
b18215fc 1938#define RANGE_TABLE_WORK_USED(work_area) ((work_area).used)
96cc36cc 1939#define RANGE_TABLE_WORK_BITS(work_area) ((work_area).bits)
b18215fc 1940#define RANGE_TABLE_WORK_ELT(work_area, i) ((work_area).table[i])
77d11aec 1941\f
b18215fc 1942
fa9a63c5 1943/* Set the bit for character C in a list. */
01618498 1944#define SET_LIST_BIT(c) (b[((c)) / BYTEWIDTH] |= 1 << ((c) % BYTEWIDTH))
fa9a63c5
RM
1945
1946
1947/* Get the next unsigned number in the uncompiled pattern. */
25fe55af 1948#define GET_UNSIGNED_NUMBER(num) \
99633e97 1949 do { if (p != pend) \
fa9a63c5 1950 { \
25fe55af 1951 PATFETCH (c); \
060cc8ff
RS
1952 if (c == ' ') \
1953 FREE_STACK_RETURN (REG_BADBR); \
4bb91c68 1954 while ('0' <= c && c <= '9') \
25fe55af 1955 { \
f6df485f 1956 int prev; \
25fe55af 1957 if (num < 0) \
f6df485f
RS
1958 num = 0; \
1959 prev = num; \
25fe55af 1960 num = num * 10 + c - '0'; \
f6df485f
RS
1961 if (num / 10 != prev) \
1962 FREE_STACK_RETURN (REG_BADBR); \
25fe55af 1963 if (p == pend) \
f6df485f 1964 break; \
25fe55af
RS
1965 PATFETCH (c); \
1966 } \
060cc8ff
RS
1967 if (c == ' ') \
1968 FREE_STACK_RETURN (REG_BADBR); \
25fe55af 1969 } \
99633e97 1970 } while (0)
77d11aec 1971\f
a0ad02f7 1972#if WIDE_CHAR_SUPPORT
14473664
SM
1973/* The GNU C library provides support for user-defined character classes
1974 and the functions from ISO C amendement 1. */
1975# ifdef CHARCLASS_NAME_MAX
1976# define CHAR_CLASS_MAX_LENGTH CHARCLASS_NAME_MAX
1977# else
1978/* This shouldn't happen but some implementation might still have this
1979 problem. Use a reasonable default value. */
1980# define CHAR_CLASS_MAX_LENGTH 256
1981# endif
1982typedef wctype_t re_wctype_t;
01618498 1983typedef wchar_t re_wchar_t;
14473664
SM
1984# define re_wctype wctype
1985# define re_iswctype iswctype
1986# define re_wctype_to_bit(cc) 0
1987#else
1988# define CHAR_CLASS_MAX_LENGTH 9 /* Namely, `multibyte'. */
1989# define btowc(c) c
1990
01618498 1991/* Character classes. */
14473664
SM
1992typedef enum { RECC_ERROR = 0,
1993 RECC_ALNUM, RECC_ALPHA, RECC_WORD,
1994 RECC_GRAPH, RECC_PRINT,
1995 RECC_LOWER, RECC_UPPER,
1996 RECC_PUNCT, RECC_CNTRL,
1997 RECC_DIGIT, RECC_XDIGIT,
1998 RECC_BLANK, RECC_SPACE,
1999 RECC_MULTIBYTE, RECC_NONASCII,
2000 RECC_ASCII, RECC_UNIBYTE
2001} re_wctype_t;
2002
01618498
SM
2003typedef int re_wchar_t;
2004
14473664
SM
2005/* Map a string to the char class it names (if any). */
2006static re_wctype_t
ada30c0e
SM
2007re_wctype (str)
2008 re_char *str;
14473664 2009{
ada30c0e 2010 const char *string = str;
14473664
SM
2011 if (STREQ (string, "alnum")) return RECC_ALNUM;
2012 else if (STREQ (string, "alpha")) return RECC_ALPHA;
2013 else if (STREQ (string, "word")) return RECC_WORD;
2014 else if (STREQ (string, "ascii")) return RECC_ASCII;
2015 else if (STREQ (string, "nonascii")) return RECC_NONASCII;
2016 else if (STREQ (string, "graph")) return RECC_GRAPH;
2017 else if (STREQ (string, "lower")) return RECC_LOWER;
2018 else if (STREQ (string, "print")) return RECC_PRINT;
2019 else if (STREQ (string, "punct")) return RECC_PUNCT;
2020 else if (STREQ (string, "space")) return RECC_SPACE;
2021 else if (STREQ (string, "upper")) return RECC_UPPER;
2022 else if (STREQ (string, "unibyte")) return RECC_UNIBYTE;
2023 else if (STREQ (string, "multibyte")) return RECC_MULTIBYTE;
2024 else if (STREQ (string, "digit")) return RECC_DIGIT;
2025 else if (STREQ (string, "xdigit")) return RECC_XDIGIT;
2026 else if (STREQ (string, "cntrl")) return RECC_CNTRL;
2027 else if (STREQ (string, "blank")) return RECC_BLANK;
2028 else return 0;
2029}
2030
2031/* True iff CH is in the char class CC. */
2032static boolean
2033re_iswctype (ch, cc)
2034 int ch;
2035 re_wctype_t cc;
2036{
2037 switch (cc)
2038 {
0cdd06f8
SM
2039 case RECC_ALNUM: return ISALNUM (ch);
2040 case RECC_ALPHA: return ISALPHA (ch);
2041 case RECC_BLANK: return ISBLANK (ch);
2042 case RECC_CNTRL: return ISCNTRL (ch);
2043 case RECC_DIGIT: return ISDIGIT (ch);
2044 case RECC_GRAPH: return ISGRAPH (ch);
2045 case RECC_LOWER: return ISLOWER (ch);
2046 case RECC_PRINT: return ISPRINT (ch);
2047 case RECC_PUNCT: return ISPUNCT (ch);
2048 case RECC_SPACE: return ISSPACE (ch);
2049 case RECC_UPPER: return ISUPPER (ch);
2050 case RECC_XDIGIT: return ISXDIGIT (ch);
2051 case RECC_ASCII: return IS_REAL_ASCII (ch);
2052 case RECC_NONASCII: return !IS_REAL_ASCII (ch);
2053 case RECC_UNIBYTE: return ISUNIBYTE (ch);
2054 case RECC_MULTIBYTE: return !ISUNIBYTE (ch);
2055 case RECC_WORD: return ISWORD (ch);
2056 case RECC_ERROR: return false;
2057 default:
2058 abort();
14473664
SM
2059 }
2060}
fa9a63c5 2061
14473664
SM
2062/* Return a bit-pattern to use in the range-table bits to match multibyte
2063 chars of class CC. */
2064static int
2065re_wctype_to_bit (cc)
2066 re_wctype_t cc;
2067{
2068 switch (cc)
2069 {
2070 case RECC_NONASCII: case RECC_PRINT: case RECC_GRAPH:
0cdd06f8
SM
2071 case RECC_MULTIBYTE: return BIT_MULTIBYTE;
2072 case RECC_ALPHA: case RECC_ALNUM: case RECC_WORD: return BIT_WORD;
2073 case RECC_LOWER: return BIT_LOWER;
2074 case RECC_UPPER: return BIT_UPPER;
2075 case RECC_PUNCT: return BIT_PUNCT;
2076 case RECC_SPACE: return BIT_SPACE;
14473664 2077 case RECC_ASCII: case RECC_DIGIT: case RECC_XDIGIT: case RECC_CNTRL:
0cdd06f8
SM
2078 case RECC_BLANK: case RECC_UNIBYTE: case RECC_ERROR: return 0;
2079 default:
2080 abort();
14473664
SM
2081 }
2082}
2083#endif
77d11aec
RS
2084\f
2085/* Filling in the work area of a range. */
2086
2087/* Actually extend the space in WORK_AREA. */
2088
2089static void
2090extend_range_table_work_area (work_area)
2091 struct range_table_work_area *work_area;
2092{
2093 work_area->allocated += 16 * sizeof (int);
2094 if (work_area->table)
2095 work_area->table
2096 = (int *) realloc (work_area->table, work_area->allocated);
2097 else
2098 work_area->table
2099 = (int *) malloc (work_area->allocated);
2100}
2101
2102#ifdef emacs
2103
2104/* Carefully find the ranges of codes that are equivalent
2105 under case conversion to the range start..end when passed through
2106 TRANSLATE. Handle the case where non-letters can come in between
2107 two upper-case letters (which happens in Latin-1).
2108 Also handle the case of groups of more than 2 case-equivalent chars.
2109
2110 The basic method is to look at consecutive characters and see
2111 if they can form a run that can be handled as one.
2112
2113 Returns -1 if successful, REG_ESPACE if ran out of space. */
2114
2115static int
2116set_image_of_range_1 (work_area, start, end, translate)
2117 RE_TRANSLATE_TYPE translate;
2118 struct range_table_work_area *work_area;
2119 re_wchar_t start, end;
2120{
2121 /* `one_case' indicates a character, or a run of characters,
2122 each of which is an isolate (no case-equivalents).
2123 This includes all ASCII non-letters.
2124
2125 `two_case' indicates a character, or a run of characters,
2126 each of which has two case-equivalent forms.
2127 This includes all ASCII letters.
2128
2129 `strange' indicates a character that has more than one
2130 case-equivalent. */
2131
2132 enum case_type {one_case, two_case, strange};
2133
2134 /* Describe the run that is in progress,
2135 which the next character can try to extend.
2136 If run_type is strange, that means there really is no run.
2137 If run_type is one_case, then run_start...run_end is the run.
2138 If run_type is two_case, then the run is run_start...run_end,
2139 and the case-equivalents end at run_eqv_end. */
2140
2141 enum case_type run_type = strange;
2142 int run_start, run_end, run_eqv_end;
2143
2144 Lisp_Object eqv_table;
2145
2146 if (!RE_TRANSLATE_P (translate))
2147 {
2148 work_area->table[work_area->used++] = (start);
2149 work_area->table[work_area->used++] = (end);
2150 return;
2151 }
2152
2153 eqv_table = XCHAR_TABLE (translate)->extras[2];
99633e97 2154
77d11aec
RS
2155 for (; start <= end; start++)
2156 {
2157 enum case_type this_type;
2158 int eqv = RE_TRANSLATE (eqv_table, start);
2159 int minchar, maxchar;
2160
2161 /* Classify this character */
2162 if (eqv == start)
2163 this_type = one_case;
2164 else if (RE_TRANSLATE (eqv_table, eqv) == start)
2165 this_type = two_case;
2166 else
2167 this_type = strange;
2168
2169 if (start < eqv)
2170 minchar = start, maxchar = eqv;
2171 else
2172 minchar = eqv, maxchar = start;
2173
2174 /* Can this character extend the run in progress? */
2175 if (this_type == strange || this_type != run_type
2176 || !(minchar == run_end + 1
2177 && (run_type == two_case
2178 ? maxchar == run_eqv_end + 1 : 1)))
2179 {
2180 /* No, end the run.
2181 Record each of its equivalent ranges. */
2182 if (run_type == one_case)
2183 {
2184 EXTEND_RANGE_TABLE (work_area, 2);
2185 work_area->table[work_area->used++] = run_start;
2186 work_area->table[work_area->used++] = run_end;
2187 }
2188 else if (run_type == two_case)
2189 {
2190 EXTEND_RANGE_TABLE (work_area, 4);
2191 work_area->table[work_area->used++] = run_start;
2192 work_area->table[work_area->used++] = run_end;
2193 work_area->table[work_area->used++]
2194 = RE_TRANSLATE (eqv_table, run_start);
2195 work_area->table[work_area->used++]
2196 = RE_TRANSLATE (eqv_table, run_end);
2197 }
2198 run_type = strange;
2199 }
2200
2201 if (this_type == strange)
2202 {
2203 /* For a strange character, add each of its equivalents, one
2204 by one. Don't start a range. */
2205 do
2206 {
2207 EXTEND_RANGE_TABLE (work_area, 2);
2208 work_area->table[work_area->used++] = eqv;
2209 work_area->table[work_area->used++] = eqv;
2210 eqv = RE_TRANSLATE (eqv_table, eqv);
2211 }
2212 while (eqv != start);
2213 }
2214
2215 /* Add this char to the run, or start a new run. */
2216 else if (run_type == strange)
2217 {
2218 /* Initialize a new range. */
2219 run_type = this_type;
2220 run_start = start;
2221 run_end = start;
2222 run_eqv_end = RE_TRANSLATE (eqv_table, run_end);
2223 }
2224 else
2225 {
2226 /* Extend a running range. */
2227 run_end = minchar;
2228 run_eqv_end = RE_TRANSLATE (eqv_table, run_end);
2229 }
2230 }
2231
2232 /* If a run is still in progress at the end, finish it now
2233 by recording its equivalent ranges. */
2234 if (run_type == one_case)
2235 {
2236 EXTEND_RANGE_TABLE (work_area, 2);
2237 work_area->table[work_area->used++] = run_start;
2238 work_area->table[work_area->used++] = run_end;
2239 }
2240 else if (run_type == two_case)
2241 {
2242 EXTEND_RANGE_TABLE (work_area, 4);
2243 work_area->table[work_area->used++] = run_start;
2244 work_area->table[work_area->used++] = run_end;
2245 work_area->table[work_area->used++]
2246 = RE_TRANSLATE (eqv_table, run_start);
2247 work_area->table[work_area->used++]
2248 = RE_TRANSLATE (eqv_table, run_end);
2249 }
2250
2251 return -1;
2252}
36595814 2253
77d11aec 2254#endif /* emacs */
36595814
SM
2255
2256/* We need to find the image of the range start..end when passed through
2257 TRANSLATE. This is not necessarily TRANSLATE(start)..TRANSLATE(end)
2258 and is not even necessarily contiguous.
2259 We approximate it with the smallest contiguous range that contains
77d11aec
RS
2260 all the chars we need. However, that is not good enough for Latin-1,
2261 so we do a better job in that case.
2262
2263 Returns -1 if successful, REG_ESPACE if ran out of space. */
2264
2265static int
36595814
SM
2266set_image_of_range (work_area, start, end, translate)
2267 RE_TRANSLATE_TYPE translate;
2268 struct range_table_work_area *work_area;
2269 re_wchar_t start, end;
2270{
77d11aec
RS
2271 re_wchar_t cmin, cmax;
2272
2273#ifdef emacs
2274 /* For Latin-1 ranges, use set_image_of_range_1
2275 to get proper handling of ranges that include letters and nonletters.
2276 For ASCII, this is not necessary.
2277 For other character sets, we don't bother to get this right. */
2278 if (start < 04400 && end > 0200)
2279 {
2280 int tem;
2281 tem = set_image_of_range_1 (work_area, start, end, translate);
2282 if (tem > 0)
2283 return tem;
2284
2285 start = 04400;
2286 if (end < 04400)
2287 return -1;
2288 }
2289#endif
2290
2291 cmin = TRANSLATE (start), cmax = TRANSLATE (end);
2292
36595814
SM
2293 if (RE_TRANSLATE_P (translate))
2294 for (; start <= end; start++)
2295 {
2296 re_wchar_t c = TRANSLATE (start);
2297 cmin = MIN (cmin, c);
2298 cmax = MAX (cmax, c);
2299 }
77d11aec
RS
2300
2301 EXTEND_RANGE_TABLE (work_area, 2);
36595814
SM
2302 work_area->table[work_area->used++] = (cmin);
2303 work_area->table[work_area->used++] = (cmax);
36595814 2304
77d11aec
RS
2305 return -1;
2306}
fa9a63c5
RM
2307\f
2308#ifndef MATCH_MAY_ALLOCATE
2309
2310/* If we cannot allocate large objects within re_match_2_internal,
2311 we make the fail stack and register vectors global.
2312 The fail stack, we grow to the maximum size when a regexp
2313 is compiled.
2314 The register vectors, we adjust in size each time we
2315 compile a regexp, according to the number of registers it needs. */
2316
2317static fail_stack_type fail_stack;
2318
2319/* Size with which the following vectors are currently allocated.
2320 That is so we can make them bigger as needed,
4bb91c68 2321 but never make them smaller. */
fa9a63c5
RM
2322static int regs_allocated_size;
2323
66f0296e
SM
2324static re_char ** regstart, ** regend;
2325static re_char **best_regstart, **best_regend;
fa9a63c5
RM
2326
2327/* Make the register vectors big enough for NUM_REGS registers,
4bb91c68 2328 but don't make them smaller. */
fa9a63c5
RM
2329
2330static
2331regex_grow_registers (num_regs)
2332 int num_regs;
2333{
2334 if (num_regs > regs_allocated_size)
2335 {
66f0296e
SM
2336 RETALLOC_IF (regstart, num_regs, re_char *);
2337 RETALLOC_IF (regend, num_regs, re_char *);
2338 RETALLOC_IF (best_regstart, num_regs, re_char *);
2339 RETALLOC_IF (best_regend, num_regs, re_char *);
fa9a63c5
RM
2340
2341 regs_allocated_size = num_regs;
2342 }
2343}
2344
2345#endif /* not MATCH_MAY_ALLOCATE */
2346\f
99633e97
SM
2347static boolean group_in_compile_stack _RE_ARGS ((compile_stack_type
2348 compile_stack,
2349 regnum_t regnum));
2350
fa9a63c5
RM
2351/* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
2352 Returns one of error codes defined in `regex.h', or zero for success.
2353
2354 Assumes the `allocated' (and perhaps `buffer') and `translate'
2355 fields are set in BUFP on entry.
2356
2357 If it succeeds, results are put in BUFP (if it returns an error, the
2358 contents of BUFP are undefined):
2359 `buffer' is the compiled pattern;
2360 `syntax' is set to SYNTAX;
2361 `used' is set to the length of the compiled pattern;
2362 `fastmap_accurate' is zero;
2363 `re_nsub' is the number of subexpressions in PATTERN;
2364 `not_bol' and `not_eol' are zero;
5e69f11e 2365
c0f9ea08 2366 The `fastmap' field is neither examined nor set. */
fa9a63c5 2367
505bde11
SM
2368/* Insert the `jump' from the end of last alternative to "here".
2369 The space for the jump has already been allocated. */
2370#define FIXUP_ALT_JUMP() \
2371do { \
2372 if (fixup_alt_jump) \
2373 STORE_JUMP (jump, fixup_alt_jump, b); \
2374} while (0)
2375
2376
fa9a63c5
RM
2377/* Return, freeing storage we allocated. */
2378#define FREE_STACK_RETURN(value) \
b18215fc
RS
2379 do { \
2380 FREE_RANGE_TABLE_WORK_AREA (range_table_work); \
2381 free (compile_stack.stack); \
2382 return value; \
2383 } while (0)
fa9a63c5
RM
2384
2385static reg_errcode_t
2386regex_compile (pattern, size, syntax, bufp)
66f0296e 2387 re_char *pattern;
4bb91c68 2388 size_t size;
fa9a63c5
RM
2389 reg_syntax_t syntax;
2390 struct re_pattern_buffer *bufp;
2391{
01618498
SM
2392 /* We fetch characters from PATTERN here. */
2393 register re_wchar_t c, c1;
5e69f11e 2394
fa9a63c5 2395 /* A random temporary spot in PATTERN. */
66f0296e 2396 re_char *p1;
fa9a63c5
RM
2397
2398 /* Points to the end of the buffer, where we should append. */
2399 register unsigned char *b;
5e69f11e 2400
fa9a63c5
RM
2401 /* Keeps track of unclosed groups. */
2402 compile_stack_type compile_stack;
2403
2404 /* Points to the current (ending) position in the pattern. */
22336245
RS
2405#ifdef AIX
2406 /* `const' makes AIX compiler fail. */
66f0296e 2407 unsigned char *p = pattern;
22336245 2408#else
66f0296e 2409 re_char *p = pattern;
22336245 2410#endif
66f0296e 2411 re_char *pend = pattern + size;
5e69f11e 2412
fa9a63c5 2413 /* How to translate the characters in the pattern. */
6676cb1c 2414 RE_TRANSLATE_TYPE translate = bufp->translate;
fa9a63c5
RM
2415
2416 /* Address of the count-byte of the most recently inserted `exactn'
2417 command. This makes it possible to tell if a new exact-match
2418 character can be added to that command or if the character requires
2419 a new `exactn' command. */
2420 unsigned char *pending_exact = 0;
2421
2422 /* Address of start of the most recently finished expression.
2423 This tells, e.g., postfix * where to find the start of its
2424 operand. Reset at the beginning of groups and alternatives. */
2425 unsigned char *laststart = 0;
2426
2427 /* Address of beginning of regexp, or inside of last group. */
2428 unsigned char *begalt;
2429
2430 /* Place in the uncompiled pattern (i.e., the {) to
2431 which to go back if the interval is invalid. */
66f0296e 2432 re_char *beg_interval;
5e69f11e 2433
fa9a63c5 2434 /* Address of the place where a forward jump should go to the end of
25fe55af 2435 the containing expression. Each alternative of an `or' -- except the
fa9a63c5
RM
2436 last -- ends with a forward jump of this sort. */
2437 unsigned char *fixup_alt_jump = 0;
2438
2439 /* Counts open-groups as they are encountered. Remembered for the
2440 matching close-group on the compile stack, so the same register
2441 number is put in the stop_memory as the start_memory. */
2442 regnum_t regnum = 0;
2443
b18215fc
RS
2444 /* Work area for range table of charset. */
2445 struct range_table_work_area range_table_work;
2446
2d1675e4
SM
2447 /* If the object matched can contain multibyte characters. */
2448 const boolean multibyte = RE_MULTIBYTE_P (bufp);
2449
fa9a63c5 2450#ifdef DEBUG
99633e97 2451 debug++;
fa9a63c5 2452 DEBUG_PRINT1 ("\nCompiling pattern: ");
99633e97 2453 if (debug > 0)
fa9a63c5
RM
2454 {
2455 unsigned debug_count;
5e69f11e 2456
fa9a63c5 2457 for (debug_count = 0; debug_count < size; debug_count++)
25fe55af 2458 putchar (pattern[debug_count]);
fa9a63c5
RM
2459 putchar ('\n');
2460 }
2461#endif /* DEBUG */
2462
2463 /* Initialize the compile stack. */
2464 compile_stack.stack = TALLOC (INIT_COMPILE_STACK_SIZE, compile_stack_elt_t);
2465 if (compile_stack.stack == NULL)
2466 return REG_ESPACE;
2467
2468 compile_stack.size = INIT_COMPILE_STACK_SIZE;
2469 compile_stack.avail = 0;
2470
b18215fc
RS
2471 range_table_work.table = 0;
2472 range_table_work.allocated = 0;
2473
fa9a63c5
RM
2474 /* Initialize the pattern buffer. */
2475 bufp->syntax = syntax;
2476 bufp->fastmap_accurate = 0;
2477 bufp->not_bol = bufp->not_eol = 0;
2478
2479 /* Set `used' to zero, so that if we return an error, the pattern
2480 printer (for debugging) will think there's no pattern. We reset it
2481 at the end. */
2482 bufp->used = 0;
5e69f11e 2483
fa9a63c5 2484 /* Always count groups, whether or not bufp->no_sub is set. */
5e69f11e 2485 bufp->re_nsub = 0;
fa9a63c5 2486
0b32bf0e 2487#if !defined emacs && !defined SYNTAX_TABLE
fa9a63c5
RM
2488 /* Initialize the syntax table. */
2489 init_syntax_once ();
2490#endif
2491
2492 if (bufp->allocated == 0)
2493 {
2494 if (bufp->buffer)
2495 { /* If zero allocated, but buffer is non-null, try to realloc
25fe55af
RS
2496 enough space. This loses if buffer's address is bogus, but
2497 that is the user's responsibility. */
2498 RETALLOC (bufp->buffer, INIT_BUF_SIZE, unsigned char);
2499 }
fa9a63c5 2500 else
25fe55af
RS
2501 { /* Caller did not allocate a buffer. Do it for them. */
2502 bufp->buffer = TALLOC (INIT_BUF_SIZE, unsigned char);
2503 }
fa9a63c5
RM
2504 if (!bufp->buffer) FREE_STACK_RETURN (REG_ESPACE);
2505
2506 bufp->allocated = INIT_BUF_SIZE;
2507 }
2508
2509 begalt = b = bufp->buffer;
2510
2511 /* Loop through the uncompiled pattern until we're at the end. */
2512 while (p != pend)
2513 {
2514 PATFETCH (c);
2515
2516 switch (c)
25fe55af
RS
2517 {
2518 case '^':
2519 {
2520 if ( /* If at start of pattern, it's an operator. */
2521 p == pattern + 1
2522 /* If context independent, it's an operator. */
2523 || syntax & RE_CONTEXT_INDEP_ANCHORS
2524 /* Otherwise, depends on what's come before. */
2525 || at_begline_loc_p (pattern, p, syntax))
c0f9ea08 2526 BUF_PUSH ((syntax & RE_NO_NEWLINE_ANCHOR) ? begbuf : begline);
25fe55af
RS
2527 else
2528 goto normal_char;
2529 }
2530 break;
2531
2532
2533 case '$':
2534 {
2535 if ( /* If at end of pattern, it's an operator. */
2536 p == pend
2537 /* If context independent, it's an operator. */
2538 || syntax & RE_CONTEXT_INDEP_ANCHORS
2539 /* Otherwise, depends on what's next. */
2540 || at_endline_loc_p (p, pend, syntax))
c0f9ea08 2541 BUF_PUSH ((syntax & RE_NO_NEWLINE_ANCHOR) ? endbuf : endline);
25fe55af
RS
2542 else
2543 goto normal_char;
2544 }
2545 break;
fa9a63c5
RM
2546
2547
2548 case '+':
25fe55af
RS
2549 case '?':
2550 if ((syntax & RE_BK_PLUS_QM)
2551 || (syntax & RE_LIMITED_OPS))
2552 goto normal_char;
2553 handle_plus:
2554 case '*':
2555 /* If there is no previous pattern... */
2556 if (!laststart)
2557 {
2558 if (syntax & RE_CONTEXT_INVALID_OPS)
2559 FREE_STACK_RETURN (REG_BADRPT);
2560 else if (!(syntax & RE_CONTEXT_INDEP_OPS))
2561 goto normal_char;
2562 }
2563
2564 {
25fe55af 2565 /* 1 means zero (many) matches is allowed. */
66f0296e
SM
2566 boolean zero_times_ok = 0, many_times_ok = 0;
2567 boolean greedy = 1;
25fe55af
RS
2568
2569 /* If there is a sequence of repetition chars, collapse it
2570 down to just one (the right one). We can't combine
2571 interval operators with these because of, e.g., `a{2}*',
2572 which should only match an even number of `a's. */
2573
2574 for (;;)
2575 {
0b32bf0e 2576 if ((syntax & RE_FRUGAL)
1c8c6d39
DL
2577 && c == '?' && (zero_times_ok || many_times_ok))
2578 greedy = 0;
2579 else
2580 {
2581 zero_times_ok |= c != '+';
2582 many_times_ok |= c != '?';
2583 }
25fe55af
RS
2584
2585 if (p == pend)
2586 break;
ed0767d8
SM
2587 else if (*p == '*'
2588 || (!(syntax & RE_BK_PLUS_QM)
2589 && (*p == '+' || *p == '?')))
25fe55af 2590 ;
ed0767d8 2591 else if (syntax & RE_BK_PLUS_QM && *p == '\\')
25fe55af 2592 {
ed0767d8
SM
2593 if (p+1 == pend)
2594 FREE_STACK_RETURN (REG_EESCAPE);
2595 if (p[1] == '+' || p[1] == '?')
2596 PATFETCH (c); /* Gobble up the backslash. */
2597 else
2598 break;
25fe55af
RS
2599 }
2600 else
ed0767d8 2601 break;
25fe55af 2602 /* If we get here, we found another repeat character. */
ed0767d8
SM
2603 PATFETCH (c);
2604 }
25fe55af
RS
2605
2606 /* Star, etc. applied to an empty pattern is equivalent
2607 to an empty pattern. */
4e8a9132 2608 if (!laststart || laststart == b)
25fe55af
RS
2609 break;
2610
2611 /* Now we know whether or not zero matches is allowed
2612 and also whether or not two or more matches is allowed. */
1c8c6d39
DL
2613 if (greedy)
2614 {
99633e97 2615 if (many_times_ok)
4e8a9132
SM
2616 {
2617 boolean simple = skip_one_char (laststart) == b;
2618 unsigned int startoffset = 0;
f6a3f532 2619 re_opcode_t ofj =
01618498 2620 /* Check if the loop can match the empty string. */
f6a3f532
SM
2621 (simple || !analyse_first (laststart, b, NULL, 0)) ?
2622 on_failure_jump : on_failure_jump_loop;
4e8a9132
SM
2623 assert (skip_one_char (laststart) <= b);
2624
2625 if (!zero_times_ok && simple)
2626 { /* Since simple * loops can be made faster by using
2627 on_failure_keep_string_jump, we turn simple P+
2628 into PP* if P is simple. */
2629 unsigned char *p1, *p2;
2630 startoffset = b - laststart;
2631 GET_BUFFER_SPACE (startoffset);
2632 p1 = b; p2 = laststart;
2633 while (p2 < p1)
2634 *b++ = *p2++;
2635 zero_times_ok = 1;
99633e97 2636 }
4e8a9132
SM
2637
2638 GET_BUFFER_SPACE (6);
2639 if (!zero_times_ok)
2640 /* A + loop. */
f6a3f532 2641 STORE_JUMP (ofj, b, b + 6);
99633e97 2642 else
4e8a9132
SM
2643 /* Simple * loops can use on_failure_keep_string_jump
2644 depending on what follows. But since we don't know
2645 that yet, we leave the decision up to
2646 on_failure_jump_smart. */
f6a3f532 2647 INSERT_JUMP (simple ? on_failure_jump_smart : ofj,
4e8a9132 2648 laststart + startoffset, b + 6);
99633e97 2649 b += 3;
4e8a9132 2650 STORE_JUMP (jump, b, laststart + startoffset);
99633e97
SM
2651 b += 3;
2652 }
2653 else
2654 {
4e8a9132
SM
2655 /* A simple ? pattern. */
2656 assert (zero_times_ok);
2657 GET_BUFFER_SPACE (3);
2658 INSERT_JUMP (on_failure_jump, laststart, b + 3);
99633e97
SM
2659 b += 3;
2660 }
1c8c6d39
DL
2661 }
2662 else /* not greedy */
2663 { /* I wish the greedy and non-greedy cases could be merged. */
2664
0683b6fa 2665 GET_BUFFER_SPACE (7); /* We might use less. */
1c8c6d39
DL
2666 if (many_times_ok)
2667 {
f6a3f532
SM
2668 boolean emptyp = analyse_first (laststart, b, NULL, 0);
2669
505bde11 2670 /* The non-greedy multiple match looks like a repeat..until:
1c8c6d39 2671 we only need a conditional jump at the end of the loop */
f6a3f532
SM
2672 if (emptyp) BUF_PUSH (no_op);
2673 STORE_JUMP (emptyp ? on_failure_jump_nastyloop
2674 : on_failure_jump, b, laststart);
1c8c6d39
DL
2675 b += 3;
2676 if (zero_times_ok)
2677 {
2678 /* The repeat...until naturally matches one or more.
2679 To also match zero times, we need to first jump to
2680 the end of the loop (its conditional jump). */
1c8c6d39
DL
2681 INSERT_JUMP (jump, laststart, b);
2682 b += 3;
2683 }
2684 }
2685 else
2686 {
2687 /* non-greedy a?? */
1c8c6d39
DL
2688 INSERT_JUMP (jump, laststart, b + 3);
2689 b += 3;
2690 INSERT_JUMP (on_failure_jump, laststart, laststart + 6);
2691 b += 3;
2692 }
2693 }
2694 }
4e8a9132 2695 pending_exact = 0;
fa9a63c5
RM
2696 break;
2697
2698
2699 case '.':
25fe55af
RS
2700 laststart = b;
2701 BUF_PUSH (anychar);
2702 break;
fa9a63c5
RM
2703
2704
25fe55af
RS
2705 case '[':
2706 {
b18215fc 2707 CLEAR_RANGE_TABLE_WORK_USED (range_table_work);
fa9a63c5 2708
25fe55af 2709 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
fa9a63c5 2710
25fe55af
RS
2711 /* Ensure that we have enough space to push a charset: the
2712 opcode, the length count, and the bitset; 34 bytes in all. */
fa9a63c5
RM
2713 GET_BUFFER_SPACE (34);
2714
25fe55af 2715 laststart = b;
e318085a 2716
25fe55af
RS
2717 /* We test `*p == '^' twice, instead of using an if
2718 statement, so we only need one BUF_PUSH. */
2719 BUF_PUSH (*p == '^' ? charset_not : charset);
2720 if (*p == '^')
2721 p++;
e318085a 2722
25fe55af
RS
2723 /* Remember the first position in the bracket expression. */
2724 p1 = p;
e318085a 2725
25fe55af
RS
2726 /* Push the number of bytes in the bitmap. */
2727 BUF_PUSH ((1 << BYTEWIDTH) / BYTEWIDTH);
e318085a 2728
25fe55af
RS
2729 /* Clear the whole map. */
2730 bzero (b, (1 << BYTEWIDTH) / BYTEWIDTH);
e318085a 2731
25fe55af
RS
2732 /* charset_not matches newline according to a syntax bit. */
2733 if ((re_opcode_t) b[-2] == charset_not
2734 && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
2735 SET_LIST_BIT ('\n');
fa9a63c5 2736
25fe55af
RS
2737 /* Read in characters and ranges, setting map bits. */
2738 for (;;)
2739 {
b18215fc 2740 boolean escaped_char = false;
2d1675e4 2741 const unsigned char *p2 = p;
e318085a 2742
25fe55af 2743 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
e318085a 2744
36595814
SM
2745 /* Don't translate yet. The range TRANSLATE(X..Y) cannot
2746 always be determined from TRANSLATE(X) and TRANSLATE(Y)
2747 So the translation is done later in a loop. Example:
2748 (let ((case-fold-search t)) (string-match "[A-_]" "A")) */
25fe55af 2749 PATFETCH (c);
e318085a 2750
25fe55af
RS
2751 /* \ might escape characters inside [...] and [^...]. */
2752 if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
2753 {
2754 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
e318085a
RS
2755
2756 PATFETCH (c);
b18215fc 2757 escaped_char = true;
25fe55af 2758 }
b18215fc
RS
2759 else
2760 {
657fcfbd
RS
2761 /* Could be the end of the bracket expression. If it's
2762 not (i.e., when the bracket expression is `[]' so
2763 far), the ']' character bit gets set way below. */
2d1675e4 2764 if (c == ']' && p2 != p1)
657fcfbd 2765 break;
25fe55af 2766 }
b18215fc 2767
b18215fc
RS
2768 /* What should we do for the character which is
2769 greater than 0x7F, but not BASE_LEADING_CODE_P?
2770 XXX */
2771
25fe55af
RS
2772 /* See if we're at the beginning of a possible character
2773 class. */
b18215fc 2774
2d1675e4
SM
2775 if (!escaped_char &&
2776 syntax & RE_CHAR_CLASSES && c == '[' && *p == ':')
657fcfbd
RS
2777 {
2778 /* Leave room for the null. */
14473664 2779 unsigned char str[CHAR_CLASS_MAX_LENGTH + 1];
ed0767d8 2780 const unsigned char *class_beg;
b18215fc 2781
25fe55af
RS
2782 PATFETCH (c);
2783 c1 = 0;
ed0767d8 2784 class_beg = p;
b18215fc 2785
25fe55af
RS
2786 /* If pattern is `[[:'. */
2787 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
b18215fc 2788
25fe55af
RS
2789 for (;;)
2790 {
14473664
SM
2791 PATFETCH (c);
2792 if ((c == ':' && *p == ']') || p == pend)
2793 break;
2794 if (c1 < CHAR_CLASS_MAX_LENGTH)
2795 str[c1++] = c;
2796 else
2797 /* This is in any case an invalid class name. */
2798 str[0] = '\0';
25fe55af
RS
2799 }
2800 str[c1] = '\0';
b18215fc
RS
2801
2802 /* If isn't a word bracketed by `[:' and `:]':
2803 undo the ending character, the letters, and
2804 leave the leading `:' and `[' (but set bits for
2805 them). */
25fe55af
RS
2806 if (c == ':' && *p == ']')
2807 {
36595814 2808 re_wchar_t ch;
14473664
SM
2809 re_wctype_t cc;
2810
2811 cc = re_wctype (str);
2812
2813 if (cc == 0)
fa9a63c5
RM
2814 FREE_STACK_RETURN (REG_ECTYPE);
2815
14473664
SM
2816 /* Throw away the ] at the end of the character
2817 class. */
2818 PATFETCH (c);
fa9a63c5 2819
14473664 2820 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
fa9a63c5 2821
96cc36cc
RS
2822 /* Most character classes in a multibyte match
2823 just set a flag. Exceptions are is_blank,
2824 is_digit, is_cntrl, and is_xdigit, since
2825 they can only match ASCII characters. We
14473664
SM
2826 don't need to handle them for multibyte.
2827 They are distinguished by a negative wctype. */
96cc36cc 2828
2d1675e4 2829 if (multibyte)
14473664
SM
2830 SET_RANGE_TABLE_WORK_AREA_BIT (range_table_work,
2831 re_wctype_to_bit (cc));
96cc36cc 2832
14473664 2833 for (ch = 0; ch < 1 << BYTEWIDTH; ++ch)
25fe55af 2834 {
7ae68633 2835 int translated = TRANSLATE (ch);
14473664 2836 if (re_iswctype (btowc (ch), cc))
96cc36cc 2837 SET_LIST_BIT (translated);
25fe55af 2838 }
b18215fc
RS
2839
2840 /* Repeat the loop. */
2841 continue;
25fe55af
RS
2842 }
2843 else
2844 {
ed0767d8
SM
2845 /* Go back to right after the "[:". */
2846 p = class_beg;
25fe55af 2847 SET_LIST_BIT ('[');
b18215fc
RS
2848
2849 /* Because the `:' may starts the range, we
2850 can't simply set bit and repeat the loop.
25fe55af 2851 Instead, just set it to C and handle below. */
b18215fc 2852 c = ':';
25fe55af
RS
2853 }
2854 }
b18215fc
RS
2855
2856 if (p < pend && p[0] == '-' && p[1] != ']')
2857 {
2858
2859 /* Discard the `-'. */
2860 PATFETCH (c1);
2861
2862 /* Fetch the character which ends the range. */
2863 PATFETCH (c1);
b18215fc 2864
b54f61ed 2865 if (SINGLE_BYTE_CHAR_P (c))
e934739e 2866 {
b54f61ed
KH
2867 if (! SINGLE_BYTE_CHAR_P (c1))
2868 {
3ff2446d
KH
2869 /* Handle a range starting with a
2870 character of less than 256, and ending
2871 with a character of not less than 256.
2872 Split that into two ranges, the low one
2873 ending at 0377, and the high one
2874 starting at the smallest character in
2875 the charset of C1 and ending at C1. */
b54f61ed 2876 int charset = CHAR_CHARSET (c1);
36595814
SM
2877 re_wchar_t c2 = MAKE_CHAR (charset, 0, 0);
2878
b54f61ed
KH
2879 SET_RANGE_TABLE_WORK_AREA (range_table_work,
2880 c2, c1);
333526e0 2881 c1 = 0377;
b54f61ed 2882 }
e934739e
RS
2883 }
2884 else if (!SAME_CHARSET_P (c, c1))
b18215fc 2885 FREE_STACK_RETURN (REG_ERANGE);
e318085a 2886 }
25fe55af 2887 else
b18215fc
RS
2888 /* Range from C to C. */
2889 c1 = c;
2890
2891 /* Set the range ... */
2892 if (SINGLE_BYTE_CHAR_P (c))
2893 /* ... into bitmap. */
25fe55af 2894 {
01618498 2895 re_wchar_t this_char;
36595814 2896 re_wchar_t range_start = c, range_end = c1;
b18215fc
RS
2897
2898 /* If the start is after the end, the range is empty. */
2899 if (range_start > range_end)
2900 {
2901 if (syntax & RE_NO_EMPTY_RANGES)
2902 FREE_STACK_RETURN (REG_ERANGE);
2903 /* Else, repeat the loop. */
2904 }
2905 else
2906 {
2907 for (this_char = range_start; this_char <= range_end;
2908 this_char++)
2909 SET_LIST_BIT (TRANSLATE (this_char));
e934739e 2910 }
25fe55af 2911 }
e318085a 2912 else
b18215fc
RS
2913 /* ... into range table. */
2914 SET_RANGE_TABLE_WORK_AREA (range_table_work, c, c1);
e318085a
RS
2915 }
2916
25fe55af
RS
2917 /* Discard any (non)matching list bytes that are all 0 at the
2918 end of the map. Decrease the map-length byte too. */
2919 while ((int) b[-1] > 0 && b[b[-1] - 1] == 0)
2920 b[-1]--;
2921 b += b[-1];
fa9a63c5 2922
96cc36cc
RS
2923 /* Build real range table from work area. */
2924 if (RANGE_TABLE_WORK_USED (range_table_work)
2925 || RANGE_TABLE_WORK_BITS (range_table_work))
b18215fc
RS
2926 {
2927 int i;
2928 int used = RANGE_TABLE_WORK_USED (range_table_work);
fa9a63c5 2929
b18215fc 2930 /* Allocate space for COUNT + RANGE_TABLE. Needs two
96cc36cc
RS
2931 bytes for flags, two for COUNT, and three bytes for
2932 each character. */
2933 GET_BUFFER_SPACE (4 + used * 3);
fa9a63c5 2934
b18215fc
RS
2935 /* Indicate the existence of range table. */
2936 laststart[1] |= 0x80;
fa9a63c5 2937
96cc36cc
RS
2938 /* Store the character class flag bits into the range table.
2939 If not in emacs, these flag bits are always 0. */
2940 *b++ = RANGE_TABLE_WORK_BITS (range_table_work) & 0xff;
2941 *b++ = RANGE_TABLE_WORK_BITS (range_table_work) >> 8;
2942
b18215fc
RS
2943 STORE_NUMBER_AND_INCR (b, used / 2);
2944 for (i = 0; i < used; i++)
2945 STORE_CHARACTER_AND_INCR
2946 (b, RANGE_TABLE_WORK_ELT (range_table_work, i));
2947 }
25fe55af
RS
2948 }
2949 break;
fa9a63c5
RM
2950
2951
b18215fc 2952 case '(':
25fe55af
RS
2953 if (syntax & RE_NO_BK_PARENS)
2954 goto handle_open;
2955 else
2956 goto normal_char;
fa9a63c5
RM
2957
2958
25fe55af
RS
2959 case ')':
2960 if (syntax & RE_NO_BK_PARENS)
2961 goto handle_close;
2962 else
2963 goto normal_char;
e318085a
RS
2964
2965
25fe55af
RS
2966 case '\n':
2967 if (syntax & RE_NEWLINE_ALT)
2968 goto handle_alt;
2969 else
2970 goto normal_char;
e318085a
RS
2971
2972
b18215fc 2973 case '|':
25fe55af
RS
2974 if (syntax & RE_NO_BK_VBAR)
2975 goto handle_alt;
2976 else
2977 goto normal_char;
2978
2979
2980 case '{':
2981 if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES)
2982 goto handle_interval;
2983 else
2984 goto normal_char;
2985
2986
2987 case '\\':
2988 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2989
2990 /* Do not translate the character after the \, so that we can
2991 distinguish, e.g., \B from \b, even if we normally would
2992 translate, e.g., B to b. */
36595814 2993 PATFETCH (c);
25fe55af
RS
2994
2995 switch (c)
2996 {
2997 case '(':
2998 if (syntax & RE_NO_BK_PARENS)
2999 goto normal_backslash;
3000
3001 handle_open:
505bde11
SM
3002 {
3003 int shy = 0;
3004 if (p+1 < pend)
3005 {
3006 /* Look for a special (?...) construct */
ed0767d8 3007 if ((syntax & RE_SHY_GROUPS) && *p == '?')
505bde11 3008 {
ed0767d8 3009 PATFETCH (c); /* Gobble up the '?'. */
505bde11
SM
3010 PATFETCH (c);
3011 switch (c)
3012 {
3013 case ':': shy = 1; break;
3014 default:
3015 /* Only (?:...) is supported right now. */
3016 FREE_STACK_RETURN (REG_BADPAT);
3017 }
3018 }
505bde11
SM
3019 }
3020
3021 if (!shy)
3022 {
3023 bufp->re_nsub++;
3024 regnum++;
3025 }
25fe55af 3026
99633e97
SM
3027 if (COMPILE_STACK_FULL)
3028 {
3029 RETALLOC (compile_stack.stack, compile_stack.size << 1,
3030 compile_stack_elt_t);
3031 if (compile_stack.stack == NULL) return REG_ESPACE;
25fe55af 3032
99633e97
SM
3033 compile_stack.size <<= 1;
3034 }
25fe55af 3035
99633e97
SM
3036 /* These are the values to restore when we hit end of this
3037 group. They are all relative offsets, so that if the
3038 whole pattern moves because of realloc, they will still
3039 be valid. */
3040 COMPILE_STACK_TOP.begalt_offset = begalt - bufp->buffer;
3041 COMPILE_STACK_TOP.fixup_alt_jump
3042 = fixup_alt_jump ? fixup_alt_jump - bufp->buffer + 1 : 0;
3043 COMPILE_STACK_TOP.laststart_offset = b - bufp->buffer;
3044 COMPILE_STACK_TOP.regnum = shy ? -regnum : regnum;
3045
3046 /* Do not push a
3047 start_memory for groups beyond the last one we can
3048 represent in the compiled pattern. */
3049 if (regnum <= MAX_REGNUM && !shy)
3050 BUF_PUSH_2 (start_memory, regnum);
3051
3052 compile_stack.avail++;
3053
3054 fixup_alt_jump = 0;
3055 laststart = 0;
3056 begalt = b;
3057 /* If we've reached MAX_REGNUM groups, then this open
3058 won't actually generate any code, so we'll have to
3059 clear pending_exact explicitly. */
3060 pending_exact = 0;
3061 break;
505bde11 3062 }
25fe55af
RS
3063
3064 case ')':
3065 if (syntax & RE_NO_BK_PARENS) goto normal_backslash;
3066
3067 if (COMPILE_STACK_EMPTY)
505bde11
SM
3068 {
3069 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
3070 goto normal_backslash;
3071 else
3072 FREE_STACK_RETURN (REG_ERPAREN);
3073 }
25fe55af
RS
3074
3075 handle_close:
505bde11 3076 FIXUP_ALT_JUMP ();
25fe55af
RS
3077
3078 /* See similar code for backslashed left paren above. */
3079 if (COMPILE_STACK_EMPTY)
505bde11
SM
3080 {
3081 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
3082 goto normal_char;
3083 else
3084 FREE_STACK_RETURN (REG_ERPAREN);
3085 }
25fe55af
RS
3086
3087 /* Since we just checked for an empty stack above, this
3088 ``can't happen''. */
3089 assert (compile_stack.avail != 0);
3090 {
3091 /* We don't just want to restore into `regnum', because
3092 later groups should continue to be numbered higher,
3093 as in `(ab)c(de)' -- the second group is #2. */
3094 regnum_t this_group_regnum;
3095
3096 compile_stack.avail--;
3097 begalt = bufp->buffer + COMPILE_STACK_TOP.begalt_offset;
3098 fixup_alt_jump
3099 = COMPILE_STACK_TOP.fixup_alt_jump
3100 ? bufp->buffer + COMPILE_STACK_TOP.fixup_alt_jump - 1
3101 : 0;
3102 laststart = bufp->buffer + COMPILE_STACK_TOP.laststart_offset;
3103 this_group_regnum = COMPILE_STACK_TOP.regnum;
b18215fc
RS
3104 /* If we've reached MAX_REGNUM groups, then this open
3105 won't actually generate any code, so we'll have to
3106 clear pending_exact explicitly. */
3107 pending_exact = 0;
e318085a 3108
25fe55af
RS
3109 /* We're at the end of the group, so now we know how many
3110 groups were inside this one. */
505bde11
SM
3111 if (this_group_regnum <= MAX_REGNUM && this_group_regnum > 0)
3112 BUF_PUSH_2 (stop_memory, this_group_regnum);
25fe55af
RS
3113 }
3114 break;
3115
3116
3117 case '|': /* `\|'. */
3118 if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR)
3119 goto normal_backslash;
3120 handle_alt:
3121 if (syntax & RE_LIMITED_OPS)
3122 goto normal_char;
3123
3124 /* Insert before the previous alternative a jump which
3125 jumps to this alternative if the former fails. */
3126 GET_BUFFER_SPACE (3);
3127 INSERT_JUMP (on_failure_jump, begalt, b + 6);
3128 pending_exact = 0;
3129 b += 3;
3130
3131 /* The alternative before this one has a jump after it
3132 which gets executed if it gets matched. Adjust that
3133 jump so it will jump to this alternative's analogous
3134 jump (put in below, which in turn will jump to the next
3135 (if any) alternative's such jump, etc.). The last such
3136 jump jumps to the correct final destination. A picture:
3137 _____ _____
3138 | | | |
3139 | v | v
3140 a | b | c
3141
3142 If we are at `b', then fixup_alt_jump right now points to a
3143 three-byte space after `a'. We'll put in the jump, set
3144 fixup_alt_jump to right after `b', and leave behind three
3145 bytes which we'll fill in when we get to after `c'. */
3146
505bde11 3147 FIXUP_ALT_JUMP ();
25fe55af
RS
3148
3149 /* Mark and leave space for a jump after this alternative,
3150 to be filled in later either by next alternative or
3151 when know we're at the end of a series of alternatives. */
3152 fixup_alt_jump = b;
3153 GET_BUFFER_SPACE (3);
3154 b += 3;
3155
3156 laststart = 0;
3157 begalt = b;
3158 break;
3159
3160
3161 case '{':
3162 /* If \{ is a literal. */
3163 if (!(syntax & RE_INTERVALS)
3164 /* If we're at `\{' and it's not the open-interval
3165 operator. */
4bb91c68 3166 || (syntax & RE_NO_BK_BRACES))
25fe55af
RS
3167 goto normal_backslash;
3168
3169 handle_interval:
3170 {
3171 /* If got here, then the syntax allows intervals. */
3172
3173 /* At least (most) this many matches must be made. */
99633e97 3174 int lower_bound = 0, upper_bound = -1;
25fe55af 3175
ed0767d8 3176 beg_interval = p;
25fe55af
RS
3177
3178 if (p == pend)
4bb91c68 3179 FREE_STACK_RETURN (REG_EBRACE);
25fe55af
RS
3180
3181 GET_UNSIGNED_NUMBER (lower_bound);
3182
3183 if (c == ',')
ed0767d8 3184 GET_UNSIGNED_NUMBER (upper_bound);
25fe55af
RS
3185 else
3186 /* Interval such as `{1}' => match exactly once. */
3187 upper_bound = lower_bound;
3188
3189 if (lower_bound < 0 || upper_bound > RE_DUP_MAX
ed0767d8 3190 || (upper_bound >= 0 && lower_bound > upper_bound))
4bb91c68 3191 FREE_STACK_RETURN (REG_BADBR);
25fe55af
RS
3192
3193 if (!(syntax & RE_NO_BK_BRACES))
3194 {
4bb91c68
SM
3195 if (c != '\\')
3196 FREE_STACK_RETURN (REG_BADBR);
25fe55af
RS
3197
3198 PATFETCH (c);
3199 }
3200
3201 if (c != '}')
4bb91c68 3202 FREE_STACK_RETURN (REG_BADBR);
25fe55af
RS
3203
3204 /* We just parsed a valid interval. */
3205
3206 /* If it's invalid to have no preceding re. */
3207 if (!laststart)
3208 {
3209 if (syntax & RE_CONTEXT_INVALID_OPS)
3210 FREE_STACK_RETURN (REG_BADRPT);
3211 else if (syntax & RE_CONTEXT_INDEP_OPS)
3212 laststart = b;
3213 else
3214 goto unfetch_interval;
3215 }
3216
25fe55af 3217 if (upper_bound == 0)
ed0767d8
SM
3218 /* If the upper bound is zero, just drop the sub pattern
3219 altogether. */
3220 b = laststart;
3221 else if (lower_bound == 1 && upper_bound == 1)
3222 /* Just match it once: nothing to do here. */
3223 ;
25fe55af
RS
3224
3225 /* Otherwise, we have a nontrivial interval. When
3226 we're all done, the pattern will look like:
3227 set_number_at <jump count> <upper bound>
3228 set_number_at <succeed_n count> <lower bound>
3229 succeed_n <after jump addr> <succeed_n count>
3230 <body of loop>
3231 jump_n <succeed_n addr> <jump count>
3232 (The upper bound and `jump_n' are omitted if
3233 `upper_bound' is 1, though.) */
3234 else
3235 { /* If the upper bound is > 1, we need to insert
3236 more at the end of the loop. */
ed0767d8
SM
3237 unsigned int nbytes = (upper_bound < 0 ? 3
3238 : upper_bound > 1 ? 5 : 0);
3239 unsigned int startoffset = 0;
3240
3241 GET_BUFFER_SPACE (20); /* We might use less. */
3242
3243 if (lower_bound == 0)
3244 {
3245 /* A succeed_n that starts with 0 is really a
3246 a simple on_failure_jump_loop. */
3247 INSERT_JUMP (on_failure_jump_loop, laststart,
3248 b + 3 + nbytes);
3249 b += 3;
3250 }
3251 else
3252 {
3253 /* Initialize lower bound of the `succeed_n', even
3254 though it will be set during matching by its
3255 attendant `set_number_at' (inserted next),
3256 because `re_compile_fastmap' needs to know.
3257 Jump to the `jump_n' we might insert below. */
3258 INSERT_JUMP2 (succeed_n, laststart,
3259 b + 5 + nbytes,
3260 lower_bound);
3261 b += 5;
3262
3263 /* Code to initialize the lower bound. Insert
3264 before the `succeed_n'. The `5' is the last two
3265 bytes of this `set_number_at', plus 3 bytes of
3266 the following `succeed_n'. */
3267 insert_op2 (set_number_at, laststart, 5, lower_bound, b);
3268 b += 5;
3269 startoffset += 5;
3270 }
3271
3272 if (upper_bound < 0)
3273 {
3274 /* A negative upper bound stands for infinity,
3275 in which case it degenerates to a plain jump. */
3276 STORE_JUMP (jump, b, laststart + startoffset);
3277 b += 3;
3278 }
3279 else if (upper_bound > 1)
25fe55af
RS
3280 { /* More than one repetition is allowed, so
3281 append a backward jump to the `succeed_n'
3282 that starts this interval.
3283
3284 When we've reached this during matching,
3285 we'll have matched the interval once, so
3286 jump back only `upper_bound - 1' times. */
ed0767d8 3287 STORE_JUMP2 (jump_n, b, laststart + startoffset,
25fe55af
RS
3288 upper_bound - 1);
3289 b += 5;
3290
3291 /* The location we want to set is the second
3292 parameter of the `jump_n'; that is `b-2' as
3293 an absolute address. `laststart' will be
3294 the `set_number_at' we're about to insert;
3295 `laststart+3' the number to set, the source
3296 for the relative address. But we are
3297 inserting into the middle of the pattern --
3298 so everything is getting moved up by 5.
3299 Conclusion: (b - 2) - (laststart + 3) + 5,
3300 i.e., b - laststart.
3301
3302 We insert this at the beginning of the loop
3303 so that if we fail during matching, we'll
3304 reinitialize the bounds. */
3305 insert_op2 (set_number_at, laststart, b - laststart,
3306 upper_bound - 1, b);
3307 b += 5;
3308 }
3309 }
3310 pending_exact = 0;
3311 beg_interval = NULL;
3312 }
3313 break;
3314
3315 unfetch_interval:
3316 /* If an invalid interval, match the characters as literals. */
3317 assert (beg_interval);
3318 p = beg_interval;
3319 beg_interval = NULL;
3320
3321 /* normal_char and normal_backslash need `c'. */
ed0767d8 3322 c = '{';
25fe55af
RS
3323
3324 if (!(syntax & RE_NO_BK_BRACES))
3325 {
ed0767d8
SM
3326 assert (p > pattern && p[-1] == '\\');
3327 goto normal_backslash;
25fe55af 3328 }
ed0767d8
SM
3329 else
3330 goto normal_char;
e318085a 3331
b18215fc 3332#ifdef emacs
25fe55af
RS
3333 /* There is no way to specify the before_dot and after_dot
3334 operators. rms says this is ok. --karl */
3335 case '=':
3336 BUF_PUSH (at_dot);
3337 break;
3338
3339 case 's':
3340 laststart = b;
3341 PATFETCH (c);
3342 BUF_PUSH_2 (syntaxspec, syntax_spec_code[c]);
3343 break;
3344
3345 case 'S':
3346 laststart = b;
3347 PATFETCH (c);
3348 BUF_PUSH_2 (notsyntaxspec, syntax_spec_code[c]);
3349 break;
b18215fc
RS
3350
3351 case 'c':
3352 laststart = b;
36595814 3353 PATFETCH (c);
b18215fc
RS
3354 BUF_PUSH_2 (categoryspec, c);
3355 break;
e318085a 3356
b18215fc
RS
3357 case 'C':
3358 laststart = b;
36595814 3359 PATFETCH (c);
b18215fc
RS
3360 BUF_PUSH_2 (notcategoryspec, c);
3361 break;
3362#endif /* emacs */
e318085a 3363
e318085a 3364
25fe55af 3365 case 'w':
4bb91c68
SM
3366 if (syntax & RE_NO_GNU_OPS)
3367 goto normal_char;
25fe55af 3368 laststart = b;
1fb352e0 3369 BUF_PUSH_2 (syntaxspec, Sword);
25fe55af 3370 break;
e318085a 3371
e318085a 3372
25fe55af 3373 case 'W':
4bb91c68
SM
3374 if (syntax & RE_NO_GNU_OPS)
3375 goto normal_char;
25fe55af 3376 laststart = b;
1fb352e0 3377 BUF_PUSH_2 (notsyntaxspec, Sword);
25fe55af 3378 break;
e318085a
RS
3379
3380
25fe55af 3381 case '<':
4bb91c68
SM
3382 if (syntax & RE_NO_GNU_OPS)
3383 goto normal_char;
25fe55af
RS
3384 BUF_PUSH (wordbeg);
3385 break;
e318085a 3386
25fe55af 3387 case '>':
4bb91c68
SM
3388 if (syntax & RE_NO_GNU_OPS)
3389 goto normal_char;
25fe55af
RS
3390 BUF_PUSH (wordend);
3391 break;
e318085a 3392
25fe55af 3393 case 'b':
4bb91c68
SM
3394 if (syntax & RE_NO_GNU_OPS)
3395 goto normal_char;
25fe55af
RS
3396 BUF_PUSH (wordbound);
3397 break;
e318085a 3398
25fe55af 3399 case 'B':
4bb91c68
SM
3400 if (syntax & RE_NO_GNU_OPS)
3401 goto normal_char;
25fe55af
RS
3402 BUF_PUSH (notwordbound);
3403 break;
fa9a63c5 3404
25fe55af 3405 case '`':
4bb91c68
SM
3406 if (syntax & RE_NO_GNU_OPS)
3407 goto normal_char;
25fe55af
RS
3408 BUF_PUSH (begbuf);
3409 break;
e318085a 3410
25fe55af 3411 case '\'':
4bb91c68
SM
3412 if (syntax & RE_NO_GNU_OPS)
3413 goto normal_char;
25fe55af
RS
3414 BUF_PUSH (endbuf);
3415 break;
e318085a 3416
25fe55af
RS
3417 case '1': case '2': case '3': case '4': case '5':
3418 case '6': case '7': case '8': case '9':
0cdd06f8
SM
3419 {
3420 regnum_t reg;
e318085a 3421
0cdd06f8
SM
3422 if (syntax & RE_NO_BK_REFS)
3423 goto normal_backslash;
e318085a 3424
0cdd06f8 3425 reg = c - '0';
e318085a 3426
0cdd06f8
SM
3427 /* Can't back reference to a subexpression before its end. */
3428 if (reg > regnum || group_in_compile_stack (compile_stack, reg))
3429 FREE_STACK_RETURN (REG_ESUBREG);
e318085a 3430
0cdd06f8
SM
3431 laststart = b;
3432 BUF_PUSH_2 (duplicate, reg);
3433 }
25fe55af 3434 break;
e318085a 3435
e318085a 3436
25fe55af
RS
3437 case '+':
3438 case '?':
3439 if (syntax & RE_BK_PLUS_QM)
3440 goto handle_plus;
3441 else
3442 goto normal_backslash;
3443
3444 default:
3445 normal_backslash:
3446 /* You might think it would be useful for \ to mean
3447 not to translate; but if we don't translate it
4bb91c68 3448 it will never match anything. */
25fe55af
RS
3449 goto normal_char;
3450 }
3451 break;
fa9a63c5
RM
3452
3453
3454 default:
25fe55af 3455 /* Expects the character in `c'. */
fa9a63c5 3456 normal_char:
36595814 3457 /* If no exactn currently being built. */
25fe55af 3458 if (!pending_exact
fa9a63c5 3459
25fe55af
RS
3460 /* If last exactn not at current position. */
3461 || pending_exact + *pending_exact + 1 != b
5e69f11e 3462
25fe55af 3463 /* We have only one byte following the exactn for the count. */
2d1675e4 3464 || *pending_exact >= (1 << BYTEWIDTH) - MAX_MULTIBYTE_LENGTH
fa9a63c5 3465
25fe55af 3466 /* If followed by a repetition operator. */
9d99031f 3467 || (p != pend && (*p == '*' || *p == '^'))
fa9a63c5 3468 || ((syntax & RE_BK_PLUS_QM)
9d99031f
RS
3469 ? p + 1 < pend && *p == '\\' && (p[1] == '+' || p[1] == '?')
3470 : p != pend && (*p == '+' || *p == '?'))
fa9a63c5 3471 || ((syntax & RE_INTERVALS)
25fe55af 3472 && ((syntax & RE_NO_BK_BRACES)
9d99031f
RS
3473 ? p != pend && *p == '{'
3474 : p + 1 < pend && p[0] == '\\' && p[1] == '{')))
fa9a63c5
RM
3475 {
3476 /* Start building a new exactn. */
5e69f11e 3477
25fe55af 3478 laststart = b;
fa9a63c5
RM
3479
3480 BUF_PUSH_2 (exactn, 0);
3481 pending_exact = b - 1;
25fe55af 3482 }
5e69f11e 3483
2d1675e4
SM
3484 GET_BUFFER_SPACE (MAX_MULTIBYTE_LENGTH);
3485 {
e0277a47
KH
3486 int len;
3487
36595814 3488 c = TRANSLATE (c);
e0277a47
KH
3489 if (multibyte)
3490 len = CHAR_STRING (c, b);
3491 else
3492 *b = c, len = 1;
2d1675e4
SM
3493 b += len;
3494 (*pending_exact) += len;
3495 }
3496
fa9a63c5 3497 break;
25fe55af 3498 } /* switch (c) */
fa9a63c5
RM
3499 } /* while p != pend */
3500
5e69f11e 3501
fa9a63c5 3502 /* Through the pattern now. */
5e69f11e 3503
505bde11 3504 FIXUP_ALT_JUMP ();
fa9a63c5 3505
5e69f11e 3506 if (!COMPILE_STACK_EMPTY)
fa9a63c5
RM
3507 FREE_STACK_RETURN (REG_EPAREN);
3508
3509 /* If we don't want backtracking, force success
3510 the first time we reach the end of the compiled pattern. */
3511 if (syntax & RE_NO_POSIX_BACKTRACKING)
3512 BUF_PUSH (succeed);
3513
3514 free (compile_stack.stack);
3515
3516 /* We have succeeded; set the length of the buffer. */
3517 bufp->used = b - bufp->buffer;
3518
3519#ifdef DEBUG
99633e97 3520 if (debug > 0)
fa9a63c5 3521 {
505bde11 3522 re_compile_fastmap (bufp);
fa9a63c5
RM
3523 DEBUG_PRINT1 ("\nCompiled pattern: \n");
3524 print_compiled_pattern (bufp);
3525 }
99633e97 3526 debug--;
fa9a63c5
RM
3527#endif /* DEBUG */
3528
3529#ifndef MATCH_MAY_ALLOCATE
3530 /* Initialize the failure stack to the largest possible stack. This
3531 isn't necessary unless we're trying to avoid calling alloca in
3532 the search and match routines. */
3533 {
3534 int num_regs = bufp->re_nsub + 1;
3535
320a2a73 3536 if (fail_stack.size < re_max_failures * TYPICAL_FAILURE_SIZE)
fa9a63c5 3537 {
a26f4ccd 3538 fail_stack.size = re_max_failures * TYPICAL_FAILURE_SIZE;
fa9a63c5 3539
fa9a63c5
RM
3540 if (! fail_stack.stack)
3541 fail_stack.stack
5e69f11e 3542 = (fail_stack_elt_t *) malloc (fail_stack.size
fa9a63c5
RM
3543 * sizeof (fail_stack_elt_t));
3544 else
3545 fail_stack.stack
3546 = (fail_stack_elt_t *) realloc (fail_stack.stack,
3547 (fail_stack.size
3548 * sizeof (fail_stack_elt_t)));
fa9a63c5
RM
3549 }
3550
3551 regex_grow_registers (num_regs);
3552 }
3553#endif /* not MATCH_MAY_ALLOCATE */
3554
3555 return REG_NOERROR;
3556} /* regex_compile */
3557\f
3558/* Subroutines for `regex_compile'. */
3559
25fe55af 3560/* Store OP at LOC followed by two-byte integer parameter ARG. */
fa9a63c5
RM
3561
3562static void
3563store_op1 (op, loc, arg)
3564 re_opcode_t op;
3565 unsigned char *loc;
3566 int arg;
3567{
3568 *loc = (unsigned char) op;
3569 STORE_NUMBER (loc + 1, arg);
3570}
3571
3572
3573/* Like `store_op1', but for two two-byte parameters ARG1 and ARG2. */
3574
3575static void
3576store_op2 (op, loc, arg1, arg2)
3577 re_opcode_t op;
3578 unsigned char *loc;
3579 int arg1, arg2;
3580{
3581 *loc = (unsigned char) op;
3582 STORE_NUMBER (loc + 1, arg1);
3583 STORE_NUMBER (loc + 3, arg2);
3584}
3585
3586
3587/* Copy the bytes from LOC to END to open up three bytes of space at LOC
3588 for OP followed by two-byte integer parameter ARG. */
3589
3590static void
3591insert_op1 (op, loc, arg, end)
3592 re_opcode_t op;
3593 unsigned char *loc;
3594 int arg;
5e69f11e 3595 unsigned char *end;
fa9a63c5
RM
3596{
3597 register unsigned char *pfrom = end;
3598 register unsigned char *pto = end + 3;
3599
3600 while (pfrom != loc)
3601 *--pto = *--pfrom;
5e69f11e 3602
fa9a63c5
RM
3603 store_op1 (op, loc, arg);
3604}
3605
3606
3607/* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2. */
3608
3609static void
3610insert_op2 (op, loc, arg1, arg2, end)
3611 re_opcode_t op;
3612 unsigned char *loc;
3613 int arg1, arg2;
5e69f11e 3614 unsigned char *end;
fa9a63c5
RM
3615{
3616 register unsigned char *pfrom = end;
3617 register unsigned char *pto = end + 5;
3618
3619 while (pfrom != loc)
3620 *--pto = *--pfrom;
5e69f11e 3621
fa9a63c5
RM
3622 store_op2 (op, loc, arg1, arg2);
3623}
3624
3625
3626/* P points to just after a ^ in PATTERN. Return true if that ^ comes
3627 after an alternative or a begin-subexpression. We assume there is at
3628 least one character before the ^. */
3629
3630static boolean
3631at_begline_loc_p (pattern, p, syntax)
01618498 3632 re_char *pattern, *p;
fa9a63c5
RM
3633 reg_syntax_t syntax;
3634{
01618498 3635 re_char *prev = p - 2;
fa9a63c5 3636 boolean prev_prev_backslash = prev > pattern && prev[-1] == '\\';
5e69f11e 3637
fa9a63c5
RM
3638 return
3639 /* After a subexpression? */
3640 (*prev == '(' && (syntax & RE_NO_BK_PARENS || prev_prev_backslash))
25fe55af 3641 /* After an alternative? */
d2af47df
SM
3642 || (*prev == '|' && (syntax & RE_NO_BK_VBAR || prev_prev_backslash))
3643 /* After a shy subexpression? */
3644 || ((syntax & RE_SHY_GROUPS) && prev - 2 >= pattern
3645 && prev[-1] == '?' && prev[-2] == '('
3646 && (syntax & RE_NO_BK_PARENS
3647 || (prev - 3 >= pattern && prev[-3] == '\\')));
fa9a63c5
RM
3648}
3649
3650
3651/* The dual of at_begline_loc_p. This one is for $. We assume there is
3652 at least one character after the $, i.e., `P < PEND'. */
3653
3654static boolean
3655at_endline_loc_p (p, pend, syntax)
01618498 3656 re_char *p, *pend;
99633e97 3657 reg_syntax_t syntax;
fa9a63c5 3658{
01618498 3659 re_char *next = p;
fa9a63c5 3660 boolean next_backslash = *next == '\\';
01618498 3661 re_char *next_next = p + 1 < pend ? p + 1 : 0;
5e69f11e 3662
fa9a63c5
RM
3663 return
3664 /* Before a subexpression? */
3665 (syntax & RE_NO_BK_PARENS ? *next == ')'
25fe55af 3666 : next_backslash && next_next && *next_next == ')')
fa9a63c5
RM
3667 /* Before an alternative? */
3668 || (syntax & RE_NO_BK_VBAR ? *next == '|'
25fe55af 3669 : next_backslash && next_next && *next_next == '|');
fa9a63c5
RM
3670}
3671
3672
5e69f11e 3673/* Returns true if REGNUM is in one of COMPILE_STACK's elements and
fa9a63c5
RM
3674 false if it's not. */
3675
3676static boolean
3677group_in_compile_stack (compile_stack, regnum)
3678 compile_stack_type compile_stack;
3679 regnum_t regnum;
3680{
3681 int this_element;
3682
5e69f11e
RM
3683 for (this_element = compile_stack.avail - 1;
3684 this_element >= 0;
fa9a63c5
RM
3685 this_element--)
3686 if (compile_stack.stack[this_element].regnum == regnum)
3687 return true;
3688
3689 return false;
3690}
fa9a63c5 3691\f
f6a3f532
SM
3692/* analyse_first.
3693 If fastmap is non-NULL, go through the pattern and fill fastmap
3694 with all the possible leading chars. If fastmap is NULL, don't
3695 bother filling it up (obviously) and only return whether the
3696 pattern could potentially match the empty string.
3697
3698 Return 1 if p..pend might match the empty string.
3699 Return 0 if p..pend matches at least one char.
01618498 3700 Return -1 if fastmap was not updated accurately. */
f6a3f532
SM
3701
3702static int
3703analyse_first (p, pend, fastmap, multibyte)
01618498 3704 re_char *p, *pend;
f6a3f532
SM
3705 char *fastmap;
3706 const int multibyte;
fa9a63c5 3707{
505bde11 3708 int j, k;
1fb352e0 3709 boolean not;
fa9a63c5 3710
b18215fc 3711 /* If all elements for base leading-codes in fastmap is set, this
25fe55af 3712 flag is set true. */
b18215fc
RS
3713 boolean match_any_multibyte_characters = false;
3714
f6a3f532 3715 assert (p);
5e69f11e 3716
505bde11
SM
3717 /* The loop below works as follows:
3718 - It has a working-list kept in the PATTERN_STACK and which basically
3719 starts by only containing a pointer to the first operation.
3720 - If the opcode we're looking at is a match against some set of
3721 chars, then we add those chars to the fastmap and go on to the
3722 next work element from the worklist (done via `break').
3723 - If the opcode is a control operator on the other hand, we either
3724 ignore it (if it's meaningless at this point, such as `start_memory')
3725 or execute it (if it's a jump). If the jump has several destinations
3726 (i.e. `on_failure_jump'), then we push the other destination onto the
3727 worklist.
3728 We guarantee termination by ignoring backward jumps (more or less),
3729 so that `p' is monotonically increasing. More to the point, we
3730 never set `p' (or push) anything `<= p1'. */
3731
01618498 3732 while (p < pend)
fa9a63c5 3733 {
505bde11
SM
3734 /* `p1' is used as a marker of how far back a `on_failure_jump'
3735 can go without being ignored. It is normally equal to `p'
3736 (which prevents any backward `on_failure_jump') except right
3737 after a plain `jump', to allow patterns such as:
3738 0: jump 10
3739 3..9: <body>
3740 10: on_failure_jump 3
3741 as used for the *? operator. */
01618498 3742 re_char *p1 = p;
5e69f11e 3743
fa9a63c5
RM
3744 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
3745 {
f6a3f532 3746 case succeed:
01618498 3747 return 1;
f6a3f532 3748 continue;
fa9a63c5 3749
fa9a63c5 3750 case duplicate:
505bde11
SM
3751 /* If the first character has to match a backreference, that means
3752 that the group was empty (since it already matched). Since this
3753 is the only case that interests us here, we can assume that the
3754 backreference must match the empty string. */
3755 p++;
3756 continue;
fa9a63c5
RM
3757
3758
3759 /* Following are the cases which match a character. These end
25fe55af 3760 with `break'. */
fa9a63c5
RM
3761
3762 case exactn:
e0277a47
KH
3763 if (fastmap)
3764 {
3765 int c = RE_STRING_CHAR (p + 1, pend - p);
3766
3767 if (SINGLE_BYTE_CHAR_P (c))
3768 fastmap[c] = 1;
3769 else
3770 fastmap[p[1]] = 1;
3771 }
fa9a63c5
RM
3772 break;
3773
3774
1fb352e0
SM
3775 case anychar:
3776 /* We could put all the chars except for \n (and maybe \0)
3777 but we don't bother since it is generally not worth it. */
f6a3f532 3778 if (!fastmap) break;
01618498 3779 return -1;
fa9a63c5
RM
3780
3781
b18215fc 3782 case charset_not:
ba5c004d
RS
3783 /* Chars beyond end of bitmap are possible matches.
3784 All the single-byte codes can occur in multibyte buffers.
3785 So any that are not listed in the charset
3786 are possible matches, even in multibyte buffers. */
1fb352e0 3787 if (!fastmap) break;
b18215fc 3788 for (j = CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH;
1fb352e0 3789 j < (1 << BYTEWIDTH); j++)
b18215fc 3790 fastmap[j] = 1;
1fb352e0
SM
3791 /* Fallthrough */
3792 case charset:
3793 if (!fastmap) break;
3794 not = (re_opcode_t) *(p - 1) == charset_not;
b18215fc
RS
3795 for (j = CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH - 1, p++;
3796 j >= 0; j--)
1fb352e0 3797 if (!!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))) ^ not)
b18215fc
RS
3798 fastmap[j] = 1;
3799
1fb352e0
SM
3800 if ((not && multibyte)
3801 /* Any character set can possibly contain a character
3802 which doesn't match the specified set of characters. */
3803 || (CHARSET_RANGE_TABLE_EXISTS_P (&p[-2])
3804 && CHARSET_RANGE_TABLE_BITS (&p[-2]) != 0))
3805 /* If we can match a character class, we can match
3806 any character set. */
b18215fc
RS
3807 {
3808 set_fastmap_for_multibyte_characters:
3809 if (match_any_multibyte_characters == false)
3810 {
3811 for (j = 0x80; j < 0xA0; j++) /* XXX */
3812 if (BASE_LEADING_CODE_P (j))
3813 fastmap[j] = 1;
3814 match_any_multibyte_characters = true;
3815 }
3816 }
b18215fc 3817
1fb352e0
SM
3818 else if (!not && CHARSET_RANGE_TABLE_EXISTS_P (&p[-2])
3819 && match_any_multibyte_characters == false)
3820 {
3821 /* Set fastmap[I] 1 where I is a base leading code of each
3822 multibyte character in the range table. */
3823 int c, count;
b18215fc 3824
1fb352e0 3825 /* Make P points the range table. `+ 2' is to skip flag
0b32bf0e 3826 bits for a character class. */
1fb352e0 3827 p += CHARSET_BITMAP_SIZE (&p[-2]) + 2;
b18215fc 3828
1fb352e0
SM
3829 /* Extract the number of ranges in range table into COUNT. */
3830 EXTRACT_NUMBER_AND_INCR (count, p);
3831 for (; count > 0; count--, p += 2 * 3) /* XXX */
3832 {
3833 /* Extract the start of each range. */
3834 EXTRACT_CHARACTER (c, p);
3835 j = CHAR_CHARSET (c);
3836 fastmap[CHARSET_LEADING_CODE_BASE (j)] = 1;
3837 }
3838 }
b18215fc
RS
3839 break;
3840
1fb352e0
SM
3841 case syntaxspec:
3842 case notsyntaxspec:
3843 if (!fastmap) break;
3844#ifndef emacs
3845 not = (re_opcode_t)p[-1] == notsyntaxspec;
3846 k = *p++;
3847 for (j = 0; j < (1 << BYTEWIDTH); j++)
990b2375 3848 if ((SYNTAX (j) == (enum syntaxcode) k) ^ not)
b18215fc 3849 fastmap[j] = 1;
b18215fc 3850 break;
1fb352e0 3851#else /* emacs */
b18215fc
RS
3852 /* This match depends on text properties. These end with
3853 aborting optimizations. */
01618498 3854 return -1;
b18215fc
RS
3855
3856 case categoryspec:
b18215fc 3857 case notcategoryspec:
1fb352e0
SM
3858 if (!fastmap) break;
3859 not = (re_opcode_t)p[-1] == notcategoryspec;
b18215fc 3860 k = *p++;
1fb352e0
SM
3861 for (j = 0; j < (1 << BYTEWIDTH); j++)
3862 if ((CHAR_HAS_CATEGORY (j, k)) ^ not)
b18215fc
RS
3863 fastmap[j] = 1;
3864
1fb352e0 3865 if (multibyte)
b18215fc 3866 /* Any character set can possibly contain a character
1fb352e0 3867 whose category is K (or not). */
b18215fc
RS
3868 goto set_fastmap_for_multibyte_characters;
3869 break;
3870
fa9a63c5 3871 /* All cases after this match the empty string. These end with
25fe55af 3872 `continue'. */
fa9a63c5 3873
fa9a63c5
RM
3874 case before_dot:
3875 case at_dot:
3876 case after_dot:
1fb352e0 3877#endif /* !emacs */
25fe55af
RS
3878 case no_op:
3879 case begline:
3880 case endline:
fa9a63c5
RM
3881 case begbuf:
3882 case endbuf:
3883 case wordbound:
3884 case notwordbound:
3885 case wordbeg:
3886 case wordend:
25fe55af 3887 continue;
fa9a63c5
RM
3888
3889
fa9a63c5 3890 case jump:
25fe55af 3891 EXTRACT_NUMBER_AND_INCR (j, p);
505bde11
SM
3892 if (j < 0)
3893 /* Backward jumps can only go back to code that we've already
3894 visited. `re_compile' should make sure this is true. */
3895 break;
25fe55af 3896 p += j;
505bde11
SM
3897 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p))
3898 {
3899 case on_failure_jump:
3900 case on_failure_keep_string_jump:
505bde11 3901 case on_failure_jump_loop:
0683b6fa 3902 case on_failure_jump_nastyloop:
505bde11
SM
3903 case on_failure_jump_smart:
3904 p++;
3905 break;
3906 default:
3907 continue;
3908 };
3909 /* Keep `p1' to allow the `on_failure_jump' we are jumping to
3910 to jump back to "just after here". */
3911 /* Fallthrough */
fa9a63c5 3912
25fe55af
RS
3913 case on_failure_jump:
3914 case on_failure_keep_string_jump:
0683b6fa 3915 case on_failure_jump_nastyloop:
505bde11
SM
3916 case on_failure_jump_loop:
3917 case on_failure_jump_smart:
25fe55af 3918 EXTRACT_NUMBER_AND_INCR (j, p);
505bde11 3919 if (p + j <= p1)
ed0767d8 3920 ; /* Backward jump to be ignored. */
01618498
SM
3921 else
3922 { /* We have to look down both arms.
3923 We first go down the "straight" path so as to minimize
3924 stack usage when going through alternatives. */
3925 int r = analyse_first (p, pend, fastmap, multibyte);
3926 if (r) return r;
3927 p += j;
3928 }
25fe55af 3929 continue;
fa9a63c5
RM
3930
3931
ed0767d8
SM
3932 case jump_n:
3933 /* This code simply does not properly handle forward jump_n. */
3934 DEBUG_STATEMENT (EXTRACT_NUMBER (j, p); assert (j < 0));
3935 p += 4;
3936 /* jump_n can either jump or fall through. The (backward) jump
3937 case has already been handled, so we only need to look at the
3938 fallthrough case. */
3939 continue;
3940
fa9a63c5 3941 case succeed_n:
ed0767d8
SM
3942 /* If N == 0, it should be an on_failure_jump_loop instead. */
3943 DEBUG_STATEMENT (EXTRACT_NUMBER (j, p + 2); assert (j > 0));
3944 p += 4;
3945 /* We only care about one iteration of the loop, so we don't
3946 need to consider the case where this behaves like an
3947 on_failure_jump. */
25fe55af 3948 continue;
fa9a63c5
RM
3949
3950
3951 case set_number_at:
25fe55af
RS
3952 p += 4;
3953 continue;
fa9a63c5
RM
3954
3955
3956 case start_memory:
25fe55af 3957 case stop_memory:
505bde11 3958 p += 1;
fa9a63c5
RM
3959 continue;
3960
3961
3962 default:
25fe55af
RS
3963 abort (); /* We have listed all the cases. */
3964 } /* switch *p++ */
fa9a63c5
RM
3965
3966 /* Getting here means we have found the possible starting
25fe55af 3967 characters for one path of the pattern -- and that the empty
01618498
SM
3968 string does not match. We need not follow this path further. */
3969 return 0;
fa9a63c5
RM
3970 } /* while p */
3971
01618498
SM
3972 /* We reached the end without matching anything. */
3973 return 1;
3974
f6a3f532
SM
3975} /* analyse_first */
3976\f
3977/* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
3978 BUFP. A fastmap records which of the (1 << BYTEWIDTH) possible
3979 characters can start a string that matches the pattern. This fastmap
3980 is used by re_search to skip quickly over impossible starting points.
3981
3982 Character codes above (1 << BYTEWIDTH) are not represented in the
3983 fastmap, but the leading codes are represented. Thus, the fastmap
3984 indicates which character sets could start a match.
3985
3986 The caller must supply the address of a (1 << BYTEWIDTH)-byte data
3987 area as BUFP->fastmap.
3988
3989 We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
3990 the pattern buffer.
3991
3992 Returns 0 if we succeed, -2 if an internal error. */
3993
3994int
3995re_compile_fastmap (bufp)
3996 struct re_pattern_buffer *bufp;
3997{
3998 char *fastmap = bufp->fastmap;
3999 int analysis;
4000
4001 assert (fastmap && bufp->buffer);
4002
4003 bzero (fastmap, 1 << BYTEWIDTH); /* Assume nothing's valid. */
4004 bufp->fastmap_accurate = 1; /* It will be when we're done. */
4005
4006 analysis = analyse_first (bufp->buffer, bufp->buffer + bufp->used,
2d1675e4 4007 fastmap, RE_MULTIBYTE_P (bufp));
c0f9ea08 4008 bufp->can_be_null = (analysis != 0);
fa9a63c5
RM
4009 return 0;
4010} /* re_compile_fastmap */
4011\f
4012/* Set REGS to hold NUM_REGS registers, storing them in STARTS and
4013 ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use
4014 this memory for recording register information. STARTS and ENDS
4015 must be allocated using the malloc library routine, and must each
4016 be at least NUM_REGS * sizeof (regoff_t) bytes long.
4017
4018 If NUM_REGS == 0, then subsequent matches should allocate their own
4019 register data.
4020
4021 Unless this function is called, the first search or match using
4022 PATTERN_BUFFER will allocate its own register data, without
4023 freeing the old data. */
4024
4025void
4026re_set_registers (bufp, regs, num_regs, starts, ends)
4027 struct re_pattern_buffer *bufp;
4028 struct re_registers *regs;
4029 unsigned num_regs;
4030 regoff_t *starts, *ends;
4031{
4032 if (num_regs)
4033 {
4034 bufp->regs_allocated = REGS_REALLOCATE;
4035 regs->num_regs = num_regs;
4036 regs->start = starts;
4037 regs->end = ends;
4038 }
4039 else
4040 {
4041 bufp->regs_allocated = REGS_UNALLOCATED;
4042 regs->num_regs = 0;
4043 regs->start = regs->end = (regoff_t *) 0;
4044 }
4045}
c0f9ea08 4046WEAK_ALIAS (__re_set_registers, re_set_registers)
fa9a63c5 4047\f
25fe55af 4048/* Searching routines. */
fa9a63c5
RM
4049
4050/* Like re_search_2, below, but only one string is specified, and
4051 doesn't let you say where to stop matching. */
4052
4053int
4054re_search (bufp, string, size, startpos, range, regs)
4055 struct re_pattern_buffer *bufp;
4056 const char *string;
4057 int size, startpos, range;
4058 struct re_registers *regs;
4059{
5e69f11e 4060 return re_search_2 (bufp, NULL, 0, string, size, startpos, range,
fa9a63c5
RM
4061 regs, size);
4062}
c0f9ea08 4063WEAK_ALIAS (__re_search, re_search)
fa9a63c5 4064
b18215fc
RS
4065/* End address of virtual concatenation of string. */
4066#define STOP_ADDR_VSTRING(P) \
4067 (((P) >= size1 ? string2 + size2 : string1 + size1))
4068
4069/* Address of POS in the concatenation of virtual string. */
4070#define POS_ADDR_VSTRING(POS) \
4071 (((POS) >= size1 ? string2 - size1 : string1) + (POS))
fa9a63c5
RM
4072
4073/* Using the compiled pattern in BUFP->buffer, first tries to match the
4074 virtual concatenation of STRING1 and STRING2, starting first at index
4075 STARTPOS, then at STARTPOS + 1, and so on.
5e69f11e 4076
fa9a63c5 4077 STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
5e69f11e 4078
fa9a63c5
RM
4079 RANGE is how far to scan while trying to match. RANGE = 0 means try
4080 only at STARTPOS; in general, the last start tried is STARTPOS +
4081 RANGE.
5e69f11e 4082
fa9a63c5
RM
4083 In REGS, return the indices of the virtual concatenation of STRING1
4084 and STRING2 that matched the entire BUFP->buffer and its contained
4085 subexpressions.
5e69f11e 4086
fa9a63c5
RM
4087 Do not consider matching one past the index STOP in the virtual
4088 concatenation of STRING1 and STRING2.
4089
4090 We return either the position in the strings at which the match was
4091 found, -1 if no match, or -2 if error (such as failure
4092 stack overflow). */
4093
4094int
66f0296e 4095re_search_2 (bufp, str1, size1, str2, size2, startpos, range, regs, stop)
fa9a63c5 4096 struct re_pattern_buffer *bufp;
66f0296e 4097 const char *str1, *str2;
fa9a63c5
RM
4098 int size1, size2;
4099 int startpos;
4100 int range;
4101 struct re_registers *regs;
4102 int stop;
4103{
4104 int val;
66f0296e
SM
4105 re_char *string1 = (re_char*) str1;
4106 re_char *string2 = (re_char*) str2;
fa9a63c5 4107 register char *fastmap = bufp->fastmap;
6676cb1c 4108 register RE_TRANSLATE_TYPE translate = bufp->translate;
fa9a63c5
RM
4109 int total_size = size1 + size2;
4110 int endpos = startpos + range;
c0f9ea08 4111 boolean anchored_start;
fa9a63c5 4112
25fe55af 4113 /* Nonzero if we have to concern multibyte character. */
2d1675e4 4114 const boolean multibyte = RE_MULTIBYTE_P (bufp);
b18215fc 4115
fa9a63c5
RM
4116 /* Check for out-of-range STARTPOS. */
4117 if (startpos < 0 || startpos > total_size)
4118 return -1;
5e69f11e 4119
fa9a63c5 4120 /* Fix up RANGE if it might eventually take us outside
34597fa9 4121 the virtual concatenation of STRING1 and STRING2.
5e69f11e 4122 Make sure we won't move STARTPOS below 0 or above TOTAL_SIZE. */
34597fa9
RS
4123 if (endpos < 0)
4124 range = 0 - startpos;
fa9a63c5
RM
4125 else if (endpos > total_size)
4126 range = total_size - startpos;
4127
4128 /* If the search isn't to be a backwards one, don't waste time in a
7b140fd7 4129 search for a pattern anchored at beginning of buffer. */
fa9a63c5
RM
4130 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == begbuf && range > 0)
4131 {
4132 if (startpos > 0)
4133 return -1;
4134 else
7b140fd7 4135 range = 0;
fa9a63c5
RM
4136 }
4137
ae4788a8
RS
4138#ifdef emacs
4139 /* In a forward search for something that starts with \=.
4140 don't keep searching past point. */
4141 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == at_dot && range > 0)
4142 {
7b140fd7
RS
4143 range = PT_BYTE - BEGV_BYTE - startpos;
4144 if (range < 0)
ae4788a8
RS
4145 return -1;
4146 }
4147#endif /* emacs */
4148
fa9a63c5
RM
4149 /* Update the fastmap now if not correct already. */
4150 if (fastmap && !bufp->fastmap_accurate)
01618498 4151 re_compile_fastmap (bufp);
5e69f11e 4152
c8499ba5 4153 /* See whether the pattern is anchored. */
c0f9ea08 4154 anchored_start = (bufp->buffer[0] == begline);
c8499ba5 4155
b18215fc 4156#ifdef emacs
cc9b4df2
KH
4157 gl_state.object = re_match_object;
4158 {
99633e97 4159 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (POS_AS_IN_BUFFER (startpos));
cc9b4df2
KH
4160
4161 SETUP_SYNTAX_TABLE_FOR_OBJECT (re_match_object, charpos, 1);
4162 }
b18215fc
RS
4163#endif
4164
fa9a63c5
RM
4165 /* Loop through the string, looking for a place to start matching. */
4166 for (;;)
5e69f11e 4167 {
c8499ba5
RS
4168 /* If the pattern is anchored,
4169 skip quickly past places we cannot match.
4170 We don't bother to treat startpos == 0 specially
4171 because that case doesn't repeat. */
4172 if (anchored_start && startpos > 0)
4173 {
c0f9ea08
SM
4174 if (! ((startpos <= size1 ? string1[startpos - 1]
4175 : string2[startpos - size1 - 1])
4176 == '\n'))
c8499ba5
RS
4177 goto advance;
4178 }
4179
fa9a63c5 4180 /* If a fastmap is supplied, skip quickly over characters that
25fe55af
RS
4181 cannot be the start of a match. If the pattern can match the
4182 null string, however, we don't need to skip characters; we want
4183 the first null string. */
fa9a63c5
RM
4184 if (fastmap && startpos < total_size && !bufp->can_be_null)
4185 {
66f0296e 4186 register re_char *d;
01618498 4187 register re_wchar_t buf_ch;
e934739e
RS
4188
4189 d = POS_ADDR_VSTRING (startpos);
4190
25fe55af 4191 if (range > 0) /* Searching forwards. */
fa9a63c5 4192 {
fa9a63c5
RM
4193 register int lim = 0;
4194 int irange = range;
4195
25fe55af
RS
4196 if (startpos < size1 && startpos + range >= size1)
4197 lim = range - (size1 - startpos);
fa9a63c5 4198
25fe55af
RS
4199 /* Written out as an if-else to avoid testing `translate'
4200 inside the loop. */
28ae27ae
AS
4201 if (RE_TRANSLATE_P (translate))
4202 {
e934739e
RS
4203 if (multibyte)
4204 while (range > lim)
4205 {
4206 int buf_charlen;
4207
4208 buf_ch = STRING_CHAR_AND_LENGTH (d, range - lim,
4209 buf_charlen);
4210
4211 buf_ch = RE_TRANSLATE (translate, buf_ch);
4212 if (buf_ch >= 0400
4213 || fastmap[buf_ch])
4214 break;
4215
4216 range -= buf_charlen;
4217 d += buf_charlen;
4218 }
4219 else
4220 while (range > lim
66f0296e 4221 && !fastmap[RE_TRANSLATE (translate, *d)])
33c46939
RS
4222 {
4223 d++;
4224 range--;
4225 }
e934739e 4226 }
fa9a63c5 4227 else
66f0296e 4228 while (range > lim && !fastmap[*d])
33c46939
RS
4229 {
4230 d++;
4231 range--;
4232 }
fa9a63c5
RM
4233
4234 startpos += irange - range;
4235 }
25fe55af 4236 else /* Searching backwards. */
fa9a63c5 4237 {
2d1675e4
SM
4238 int room = (startpos >= size1
4239 ? size2 + size1 - startpos
4240 : size1 - startpos);
4241 buf_ch = RE_STRING_CHAR (d, room);
4242 buf_ch = TRANSLATE (buf_ch);
fa9a63c5 4243
e934739e
RS
4244 if (! (buf_ch >= 0400
4245 || fastmap[buf_ch]))
fa9a63c5
RM
4246 goto advance;
4247 }
4248 }
4249
4250 /* If can't match the null string, and that's all we have left, fail. */
4251 if (range >= 0 && startpos == total_size && fastmap
25fe55af 4252 && !bufp->can_be_null)
fa9a63c5
RM
4253 return -1;
4254
4255 val = re_match_2_internal (bufp, string1, size1, string2, size2,
4256 startpos, regs, stop);
4257#ifndef REGEX_MALLOC
0b32bf0e 4258# ifdef C_ALLOCA
fa9a63c5 4259 alloca (0);
0b32bf0e 4260# endif
fa9a63c5
RM
4261#endif
4262
4263 if (val >= 0)
4264 return startpos;
5e69f11e 4265
fa9a63c5
RM
4266 if (val == -2)
4267 return -2;
4268
4269 advance:
5e69f11e 4270 if (!range)
25fe55af 4271 break;
5e69f11e 4272 else if (range > 0)
25fe55af 4273 {
b18215fc
RS
4274 /* Update STARTPOS to the next character boundary. */
4275 if (multibyte)
4276 {
66f0296e
SM
4277 re_char *p = POS_ADDR_VSTRING (startpos);
4278 re_char *pend = STOP_ADDR_VSTRING (startpos);
b18215fc
RS
4279 int len = MULTIBYTE_FORM_LENGTH (p, pend - p);
4280
4281 range -= len;
4282 if (range < 0)
4283 break;
4284 startpos += len;
4285 }
4286 else
4287 {
b560c397
RS
4288 range--;
4289 startpos++;
4290 }
e318085a 4291 }
fa9a63c5 4292 else
25fe55af
RS
4293 {
4294 range++;
4295 startpos--;
b18215fc
RS
4296
4297 /* Update STARTPOS to the previous character boundary. */
4298 if (multibyte)
4299 {
66f0296e 4300 re_char *p = POS_ADDR_VSTRING (startpos);
b18215fc
RS
4301 int len = 0;
4302
4303 /* Find the head of multibyte form. */
5d967c7a 4304 while (!CHAR_HEAD_P (*p))
b18215fc
RS
4305 p--, len++;
4306
4307 /* Adjust it. */
4308#if 0 /* XXX */
4309 if (MULTIBYTE_FORM_LENGTH (p, len + 1) != (len + 1))
4310 ;
4311 else
4312#endif
4313 {
4314 range += len;
4315 if (range > 0)
4316 break;
4317
4318 startpos -= len;
4319 }
4320 }
25fe55af 4321 }
fa9a63c5
RM
4322 }
4323 return -1;
4324} /* re_search_2 */
c0f9ea08 4325WEAK_ALIAS (__re_search_2, re_search_2)
fa9a63c5
RM
4326\f
4327/* Declarations and macros for re_match_2. */
4328
2d1675e4
SM
4329static int bcmp_translate _RE_ARGS((re_char *s1, re_char *s2,
4330 register int len,
4331 RE_TRANSLATE_TYPE translate,
4332 const int multibyte));
fa9a63c5
RM
4333
4334/* This converts PTR, a pointer into one of the search strings `string1'
4335 and `string2' into an offset from the beginning of that string. */
4336#define POINTER_TO_OFFSET(ptr) \
4337 (FIRST_STRING_P (ptr) \
4338 ? ((regoff_t) ((ptr) - string1)) \
4339 : ((regoff_t) ((ptr) - string2 + size1)))
4340
fa9a63c5 4341/* Call before fetching a character with *d. This switches over to
419d1c74
SM
4342 string2 if necessary.
4343 Check re_match_2_internal for a discussion of why end_match_2 might
4344 not be within string2 (but be equal to end_match_1 instead). */
fa9a63c5 4345#define PREFETCH() \
25fe55af 4346 while (d == dend) \
fa9a63c5
RM
4347 { \
4348 /* End of string2 => fail. */ \
25fe55af
RS
4349 if (dend == end_match_2) \
4350 goto fail; \
4bb91c68 4351 /* End of string1 => advance to string2. */ \
25fe55af 4352 d = string2; \
fa9a63c5
RM
4353 dend = end_match_2; \
4354 }
4355
f1ad044f
SM
4356/* Call before fetching a char with *d if you already checked other limits.
4357 This is meant for use in lookahead operations like wordend, etc..
4358 where we might need to look at parts of the string that might be
4359 outside of the LIMITs (i.e past `stop'). */
4360#define PREFETCH_NOLIMIT() \
4361 if (d == end1) \
4362 { \
4363 d = string2; \
4364 dend = end_match_2; \
4365 } \
fa9a63c5
RM
4366
4367/* Test if at very beginning or at very end of the virtual concatenation
25fe55af 4368 of `string1' and `string2'. If only one string, it's `string2'. */
fa9a63c5 4369#define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
5e69f11e 4370#define AT_STRINGS_END(d) ((d) == end2)
fa9a63c5
RM
4371
4372
4373/* Test if D points to a character which is word-constituent. We have
4374 two special cases to check for: if past the end of string1, look at
4375 the first character in string2; and if before the beginning of
4376 string2, look at the last character in string1. */
4377#define WORDCHAR_P(d) \
4378 (SYNTAX ((d) == end1 ? *string2 \
25fe55af 4379 : (d) == string2 - 1 ? *(end1 - 1) : *(d)) \
fa9a63c5
RM
4380 == Sword)
4381
9121ca40 4382/* Disabled due to a compiler bug -- see comment at case wordbound */
b18215fc
RS
4383
4384/* The comment at case wordbound is following one, but we don't use
4385 AT_WORD_BOUNDARY anymore to support multibyte form.
4386
4387 The DEC Alpha C compiler 3.x generates incorrect code for the
25fe55af
RS
4388 test WORDCHAR_P (d - 1) != WORDCHAR_P (d) in the expansion of
4389 AT_WORD_BOUNDARY, so this code is disabled. Expanding the
b18215fc
RS
4390 macro and introducing temporary variables works around the bug. */
4391
9121ca40 4392#if 0
fa9a63c5
RM
4393/* Test if the character before D and the one at D differ with respect
4394 to being word-constituent. */
4395#define AT_WORD_BOUNDARY(d) \
4396 (AT_STRINGS_BEG (d) || AT_STRINGS_END (d) \
4397 || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
9121ca40 4398#endif
fa9a63c5
RM
4399
4400/* Free everything we malloc. */
4401#ifdef MATCH_MAY_ALLOCATE
0b32bf0e
SM
4402# define FREE_VAR(var) if (var) { REGEX_FREE (var); var = NULL; } else
4403# define FREE_VARIABLES() \
fa9a63c5
RM
4404 do { \
4405 REGEX_FREE_STACK (fail_stack.stack); \
4406 FREE_VAR (regstart); \
4407 FREE_VAR (regend); \
fa9a63c5
RM
4408 FREE_VAR (best_regstart); \
4409 FREE_VAR (best_regend); \
fa9a63c5
RM
4410 } while (0)
4411#else
0b32bf0e 4412# define FREE_VARIABLES() ((void)0) /* Do nothing! But inhibit gcc warning. */
fa9a63c5
RM
4413#endif /* not MATCH_MAY_ALLOCATE */
4414
505bde11
SM
4415\f
4416/* Optimization routines. */
4417
4e8a9132
SM
4418/* If the operation is a match against one or more chars,
4419 return a pointer to the next operation, else return NULL. */
01618498 4420static re_char *
4e8a9132 4421skip_one_char (p)
01618498 4422 re_char *p;
4e8a9132
SM
4423{
4424 switch (SWITCH_ENUM_CAST (*p++))
4425 {
4426 case anychar:
4427 break;
4428
4429 case exactn:
4430 p += *p + 1;
4431 break;
4432
4433 case charset_not:
4434 case charset:
4435 if (CHARSET_RANGE_TABLE_EXISTS_P (p - 1))
4436 {
4437 int mcnt;
4438 p = CHARSET_RANGE_TABLE (p - 1);
4439 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4440 p = CHARSET_RANGE_TABLE_END (p, mcnt);
4441 }
4442 else
4443 p += 1 + CHARSET_BITMAP_SIZE (p - 1);
4444 break;
4445
4e8a9132
SM
4446 case syntaxspec:
4447 case notsyntaxspec:
1fb352e0 4448#ifdef emacs
4e8a9132
SM
4449 case categoryspec:
4450 case notcategoryspec:
4451#endif /* emacs */
4452 p++;
4453 break;
4454
4455 default:
4456 p = NULL;
4457 }
4458 return p;
4459}
4460
4461
505bde11
SM
4462/* Jump over non-matching operations. */
4463static unsigned char *
4e8a9132 4464skip_noops (p, pend)
505bde11 4465 unsigned char *p, *pend;
505bde11
SM
4466{
4467 int mcnt;
4468 while (p < pend)
4469 {
4470 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p))
4471 {
4472 case start_memory:
505bde11
SM
4473 case stop_memory:
4474 p += 2; break;
4475 case no_op:
4476 p += 1; break;
4477 case jump:
4478 p += 1;
4479 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4480 p += mcnt;
4481 break;
4482 default:
4483 return p;
4484 }
4485 }
4486 assert (p == pend);
4487 return p;
4488}
4489
4490/* Non-zero if "p1 matches something" implies "p2 fails". */
4491static int
4492mutually_exclusive_p (bufp, p1, p2)
4493 struct re_pattern_buffer *bufp;
4494 unsigned char *p1, *p2;
4495{
4e8a9132 4496 re_opcode_t op2;
2d1675e4 4497 const boolean multibyte = RE_MULTIBYTE_P (bufp);
505bde11
SM
4498 unsigned char *pend = bufp->buffer + bufp->used;
4499
4e8a9132 4500 assert (p1 >= bufp->buffer && p1 < pend
505bde11
SM
4501 && p2 >= bufp->buffer && p2 <= pend);
4502
4503 /* Skip over open/close-group commands.
4504 If what follows this loop is a ...+ construct,
4505 look at what begins its body, since we will have to
4506 match at least one of that. */
4e8a9132
SM
4507 p2 = skip_noops (p2, pend);
4508 /* The same skip can be done for p1, except that this function
4509 is only used in the case where p1 is a simple match operator. */
4510 /* p1 = skip_noops (p1, pend); */
4511
4512 assert (p1 >= bufp->buffer && p1 < pend
4513 && p2 >= bufp->buffer && p2 <= pend);
4514
4515 op2 = p2 == pend ? succeed : *p2;
4516
4517 switch (SWITCH_ENUM_CAST (op2))
505bde11 4518 {
4e8a9132
SM
4519 case succeed:
4520 case endbuf:
4521 /* If we're at the end of the pattern, we can change. */
4522 if (skip_one_char (p1))
505bde11 4523 {
505bde11
SM
4524 DEBUG_PRINT1 (" End of pattern: fast loop.\n");
4525 return 1;
505bde11 4526 }
4e8a9132
SM
4527 break;
4528
4529 case endline:
4e8a9132
SM
4530 case exactn:
4531 {
01618498 4532 register re_wchar_t c
4e8a9132 4533 = (re_opcode_t) *p2 == endline ? '\n'
411e4203 4534 : RE_STRING_CHAR (p2 + 2, pend - p2 - 2);
505bde11 4535
4e8a9132
SM
4536 if ((re_opcode_t) *p1 == exactn)
4537 {
4538 if (c != RE_STRING_CHAR (p1 + 2, pend - p1 - 2))
4539 {
4540 DEBUG_PRINT3 (" '%c' != '%c' => fast loop.\n", c, p1[2]);
4541 return 1;
4542 }
4543 }
505bde11 4544
4e8a9132
SM
4545 else if ((re_opcode_t) *p1 == charset
4546 || (re_opcode_t) *p1 == charset_not)
4547 {
4548 int not = (re_opcode_t) *p1 == charset_not;
505bde11 4549
4e8a9132
SM
4550 /* Test if C is listed in charset (or charset_not)
4551 at `p1'. */
4552 if (SINGLE_BYTE_CHAR_P (c))
4553 {
4554 if (c < CHARSET_BITMAP_SIZE (p1) * BYTEWIDTH
4555 && p1[2 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
4556 not = !not;
4557 }
4558 else if (CHARSET_RANGE_TABLE_EXISTS_P (p1))
4559 CHARSET_LOOKUP_RANGE_TABLE (not, c, p1);
505bde11 4560
4e8a9132
SM
4561 /* `not' is equal to 1 if c would match, which means
4562 that we can't change to pop_failure_jump. */
4563 if (!not)
4564 {
4565 DEBUG_PRINT1 (" No match => fast loop.\n");
4566 return 1;
4567 }
4568 }
4569 else if ((re_opcode_t) *p1 == anychar
4570 && c == '\n')
4571 {
4572 DEBUG_PRINT1 (" . != \\n => fast loop.\n");
4573 return 1;
4574 }
4575 }
4576 break;
505bde11 4577
4e8a9132 4578 case charset:
4e8a9132
SM
4579 {
4580 if ((re_opcode_t) *p1 == exactn)
4581 /* Reuse the code above. */
4582 return mutually_exclusive_p (bufp, p2, p1);
505bde11 4583
505bde11
SM
4584 /* It is hard to list up all the character in charset
4585 P2 if it includes multibyte character. Give up in
4586 such case. */
4587 else if (!multibyte || !CHARSET_RANGE_TABLE_EXISTS_P (p2))
4588 {
4589 /* Now, we are sure that P2 has no range table.
4590 So, for the size of bitmap in P2, `p2[1]' is
4591 enough. But P1 may have range table, so the
4592 size of bitmap table of P1 is extracted by
4593 using macro `CHARSET_BITMAP_SIZE'.
4594
4595 Since we know that all the character listed in
4596 P2 is ASCII, it is enough to test only bitmap
4597 table of P1. */
4598
411e4203 4599 if ((re_opcode_t) *p1 == charset)
505bde11
SM
4600 {
4601 int idx;
4602 /* We win if the charset inside the loop
4603 has no overlap with the one after the loop. */
4604 for (idx = 0;
4605 (idx < (int) p2[1]
4606 && idx < CHARSET_BITMAP_SIZE (p1));
4607 idx++)
4608 if ((p2[2 + idx] & p1[2 + idx]) != 0)
4609 break;
4610
4611 if (idx == p2[1]
4612 || idx == CHARSET_BITMAP_SIZE (p1))
4613 {
4614 DEBUG_PRINT1 (" No match => fast loop.\n");
4615 return 1;
4616 }
4617 }
411e4203 4618 else if ((re_opcode_t) *p1 == charset_not)
505bde11
SM
4619 {
4620 int idx;
4621 /* We win if the charset_not inside the loop lists
4622 every character listed in the charset after. */
4623 for (idx = 0; idx < (int) p2[1]; idx++)
4624 if (! (p2[2 + idx] == 0
4625 || (idx < CHARSET_BITMAP_SIZE (p1)
4626 && ((p2[2 + idx] & ~ p1[2 + idx]) == 0))))
4627 break;
4628
4e8a9132
SM
4629 if (idx == p2[1])
4630 {
4631 DEBUG_PRINT1 (" No match => fast loop.\n");
4632 return 1;
4633 }
4634 }
4635 }
4636 }
609b757a 4637 break;
4e8a9132 4638
411e4203
SM
4639 case charset_not:
4640 switch (SWITCH_ENUM_CAST (*p1))
4641 {
4642 case exactn:
4643 case charset:
4644 /* Reuse the code above. */
4645 return mutually_exclusive_p (bufp, p2, p1);
4646 case charset_not:
4647 /* When we have two charset_not, it's very unlikely that
4648 they don't overlap. The union of the two sets of excluded
4649 chars should cover all possible chars, which, as a matter of
4650 fact, is virtually impossible in multibyte buffers. */
36595814 4651 break;
411e4203
SM
4652 }
4653 break;
4654
4e8a9132
SM
4655 case wordend:
4656 case notsyntaxspec:
4657 return ((re_opcode_t) *p1 == syntaxspec
4658 && p1[1] == (op2 == wordend ? Sword : p2[1]));
4659
4660 case wordbeg:
4661 case syntaxspec:
4662 return ((re_opcode_t) *p1 == notsyntaxspec
4663 && p1[1] == (op2 == wordend ? Sword : p2[1]));
4664
4665 case wordbound:
4666 return (((re_opcode_t) *p1 == notsyntaxspec
4667 || (re_opcode_t) *p1 == syntaxspec)
4668 && p1[1] == Sword);
4669
1fb352e0 4670#ifdef emacs
4e8a9132
SM
4671 case categoryspec:
4672 return ((re_opcode_t) *p1 == notcategoryspec && p1[1] == p2[1]);
4673 case notcategoryspec:
4674 return ((re_opcode_t) *p1 == categoryspec && p1[1] == p2[1]);
4675#endif /* emacs */
4676
4677 default:
4678 ;
505bde11
SM
4679 }
4680
4681 /* Safe default. */
4682 return 0;
4683}
4684
fa9a63c5
RM
4685\f
4686/* Matching routines. */
4687
25fe55af 4688#ifndef emacs /* Emacs never uses this. */
fa9a63c5
RM
4689/* re_match is like re_match_2 except it takes only a single string. */
4690
4691int
4692re_match (bufp, string, size, pos, regs)
4693 struct re_pattern_buffer *bufp;
4694 const char *string;
4695 int size, pos;
4696 struct re_registers *regs;
4697{
4bb91c68 4698 int result = re_match_2_internal (bufp, NULL, 0, (re_char*) string, size,
fa9a63c5 4699 pos, regs, size);
0b32bf0e 4700# if defined C_ALLOCA && !defined REGEX_MALLOC
fa9a63c5 4701 alloca (0);
0b32bf0e 4702# endif
fa9a63c5
RM
4703 return result;
4704}
c0f9ea08 4705WEAK_ALIAS (__re_match, re_match)
fa9a63c5
RM
4706#endif /* not emacs */
4707
b18215fc
RS
4708#ifdef emacs
4709/* In Emacs, this is the string or buffer in which we
25fe55af 4710 are matching. It is used for looking up syntax properties. */
b18215fc
RS
4711Lisp_Object re_match_object;
4712#endif
fa9a63c5
RM
4713
4714/* re_match_2 matches the compiled pattern in BUFP against the
4715 the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
4716 and SIZE2, respectively). We start matching at POS, and stop
4717 matching at STOP.
5e69f11e 4718
fa9a63c5 4719 If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
25fe55af 4720 store offsets for the substring each group matched in REGS. See the
fa9a63c5
RM
4721 documentation for exactly how many groups we fill.
4722
4723 We return -1 if no match, -2 if an internal error (such as the
25fe55af 4724 failure stack overflowing). Otherwise, we return the length of the
fa9a63c5
RM
4725 matched substring. */
4726
4727int
4728re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
4729 struct re_pattern_buffer *bufp;
4730 const char *string1, *string2;
4731 int size1, size2;
4732 int pos;
4733 struct re_registers *regs;
4734 int stop;
4735{
b18215fc 4736 int result;
25fe55af 4737
b18215fc 4738#ifdef emacs
cc9b4df2
KH
4739 int charpos;
4740 gl_state.object = re_match_object;
99633e97 4741 charpos = SYNTAX_TABLE_BYTE_TO_CHAR (POS_AS_IN_BUFFER (pos));
cc9b4df2 4742 SETUP_SYNTAX_TABLE_FOR_OBJECT (re_match_object, charpos, 1);
b18215fc
RS
4743#endif
4744
4bb91c68
SM
4745 result = re_match_2_internal (bufp, (re_char*) string1, size1,
4746 (re_char*) string2, size2,
cc9b4df2 4747 pos, regs, stop);
0b32bf0e 4748#if defined C_ALLOCA && !defined REGEX_MALLOC
fa9a63c5 4749 alloca (0);
a60198e5 4750#endif
fa9a63c5
RM
4751 return result;
4752}
c0f9ea08 4753WEAK_ALIAS (__re_match_2, re_match_2)
fa9a63c5
RM
4754
4755/* This is a separate function so that we can force an alloca cleanup
25fe55af 4756 afterwards. */
fa9a63c5
RM
4757static int
4758re_match_2_internal (bufp, string1, size1, string2, size2, pos, regs, stop)
4759 struct re_pattern_buffer *bufp;
66f0296e 4760 re_char *string1, *string2;
fa9a63c5
RM
4761 int size1, size2;
4762 int pos;
4763 struct re_registers *regs;
4764 int stop;
4765{
4766 /* General temporaries. */
4767 int mcnt;
01618498 4768 size_t reg;
66f0296e 4769 boolean not;
fa9a63c5
RM
4770
4771 /* Just past the end of the corresponding string. */
66f0296e 4772 re_char *end1, *end2;
fa9a63c5
RM
4773
4774 /* Pointers into string1 and string2, just past the last characters in
25fe55af 4775 each to consider matching. */
66f0296e 4776 re_char *end_match_1, *end_match_2;
fa9a63c5
RM
4777
4778 /* Where we are in the data, and the end of the current string. */
66f0296e 4779 re_char *d, *dend;
5e69f11e 4780
99633e97
SM
4781 /* Used sometimes to remember where we were before starting matching
4782 an operator so that we can go back in case of failure. This "atomic"
4783 behavior of matching opcodes is indispensable to the correctness
4784 of the on_failure_keep_string_jump optimization. */
4785 re_char *dfail;
4786
fa9a63c5 4787 /* Where we are in the pattern, and the end of the pattern. */
01618498
SM
4788 re_char *p = bufp->buffer;
4789 re_char *pend = p + bufp->used;
fa9a63c5 4790
25fe55af 4791 /* We use this to map every character in the string. */
6676cb1c 4792 RE_TRANSLATE_TYPE translate = bufp->translate;
fa9a63c5 4793
25fe55af 4794 /* Nonzero if we have to concern multibyte character. */
2d1675e4 4795 const boolean multibyte = RE_MULTIBYTE_P (bufp);
b18215fc 4796
fa9a63c5
RM
4797 /* Failure point stack. Each place that can handle a failure further
4798 down the line pushes a failure point on this stack. It consists of
505bde11 4799 regstart, and regend for all registers corresponding to
fa9a63c5
RM
4800 the subexpressions we're currently inside, plus the number of such
4801 registers, and, finally, two char *'s. The first char * is where
4802 to resume scanning the pattern; the second one is where to resume
505bde11 4803 scanning the strings. */
25fe55af 4804#ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
fa9a63c5
RM
4805 fail_stack_type fail_stack;
4806#endif
4807#ifdef DEBUG
fa9a63c5
RM
4808 unsigned nfailure_points_pushed = 0, nfailure_points_popped = 0;
4809#endif
4810
0b32bf0e 4811#if defined REL_ALLOC && defined REGEX_MALLOC
fa9a63c5
RM
4812 /* This holds the pointer to the failure stack, when
4813 it is allocated relocatably. */
4814 fail_stack_elt_t *failure_stack_ptr;
99633e97 4815#endif
fa9a63c5
RM
4816
4817 /* We fill all the registers internally, independent of what we
25fe55af 4818 return, for use in backreferences. The number here includes
fa9a63c5 4819 an element for register zero. */
4bb91c68 4820 size_t num_regs = bufp->re_nsub + 1;
5e69f11e 4821
fa9a63c5
RM
4822 /* Information on the contents of registers. These are pointers into
4823 the input strings; they record just what was matched (on this
4824 attempt) by a subexpression part of the pattern, that is, the
4825 regnum-th regstart pointer points to where in the pattern we began
4826 matching and the regnum-th regend points to right after where we
4827 stopped matching the regnum-th subexpression. (The zeroth register
4828 keeps track of what the whole pattern matches.) */
4829#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
66f0296e 4830 re_char **regstart, **regend;
fa9a63c5
RM
4831#endif
4832
fa9a63c5 4833 /* The following record the register info as found in the above
5e69f11e 4834 variables when we find a match better than any we've seen before.
fa9a63c5
RM
4835 This happens as we backtrack through the failure points, which in
4836 turn happens only if we have not yet matched the entire string. */
4837 unsigned best_regs_set = false;
4838#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
66f0296e 4839 re_char **best_regstart, **best_regend;
fa9a63c5 4840#endif
5e69f11e 4841
fa9a63c5
RM
4842 /* Logically, this is `best_regend[0]'. But we don't want to have to
4843 allocate space for that if we're not allocating space for anything
25fe55af 4844 else (see below). Also, we never need info about register 0 for
fa9a63c5
RM
4845 any of the other register vectors, and it seems rather a kludge to
4846 treat `best_regend' differently than the rest. So we keep track of
4847 the end of the best match so far in a separate variable. We
4848 initialize this to NULL so that when we backtrack the first time
4849 and need to test it, it's not garbage. */
66f0296e 4850 re_char *match_end = NULL;
fa9a63c5 4851
fa9a63c5
RM
4852#ifdef DEBUG
4853 /* Counts the total number of registers pushed. */
5e69f11e 4854 unsigned num_regs_pushed = 0;
fa9a63c5
RM
4855#endif
4856
4857 DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
5e69f11e 4858
fa9a63c5 4859 INIT_FAIL_STACK ();
5e69f11e 4860
fa9a63c5
RM
4861#ifdef MATCH_MAY_ALLOCATE
4862 /* Do not bother to initialize all the register variables if there are
4863 no groups in the pattern, as it takes a fair amount of time. If
4864 there are groups, we include space for register 0 (the whole
4865 pattern), even though we never use it, since it simplifies the
4866 array indexing. We should fix this. */
4867 if (bufp->re_nsub)
4868 {
66f0296e
SM
4869 regstart = REGEX_TALLOC (num_regs, re_char *);
4870 regend = REGEX_TALLOC (num_regs, re_char *);
4871 best_regstart = REGEX_TALLOC (num_regs, re_char *);
4872 best_regend = REGEX_TALLOC (num_regs, re_char *);
fa9a63c5 4873
505bde11 4874 if (!(regstart && regend && best_regstart && best_regend))
25fe55af
RS
4875 {
4876 FREE_VARIABLES ();
4877 return -2;
4878 }
fa9a63c5
RM
4879 }
4880 else
4881 {
4882 /* We must initialize all our variables to NULL, so that
25fe55af 4883 `FREE_VARIABLES' doesn't try to free them. */
505bde11 4884 regstart = regend = best_regstart = best_regend = NULL;
fa9a63c5
RM
4885 }
4886#endif /* MATCH_MAY_ALLOCATE */
4887
4888 /* The starting position is bogus. */
4889 if (pos < 0 || pos > size1 + size2)
4890 {
4891 FREE_VARIABLES ();
4892 return -1;
4893 }
5e69f11e 4894
fa9a63c5
RM
4895 /* Initialize subexpression text positions to -1 to mark ones that no
4896 start_memory/stop_memory has been seen for. Also initialize the
4897 register information struct. */
01618498
SM
4898 for (reg = 1; reg < num_regs; reg++)
4899 regstart[reg] = regend[reg] = NULL;
99633e97 4900
fa9a63c5 4901 /* We move `string1' into `string2' if the latter's empty -- but not if
25fe55af 4902 `string1' is null. */
fa9a63c5
RM
4903 if (size2 == 0 && string1 != NULL)
4904 {
4905 string2 = string1;
4906 size2 = size1;
4907 string1 = 0;
4908 size1 = 0;
4909 }
4910 end1 = string1 + size1;
4911 end2 = string2 + size2;
4912
5e69f11e 4913 /* `p' scans through the pattern as `d' scans through the data.
fa9a63c5
RM
4914 `dend' is the end of the input string that `d' points within. `d'
4915 is advanced into the following input string whenever necessary, but
4916 this happens before fetching; therefore, at the beginning of the
4917 loop, `d' can be pointing at the end of a string, but it cannot
4918 equal `string2'. */
419d1c74 4919 if (pos >= size1)
fa9a63c5 4920 {
419d1c74
SM
4921 /* Only match within string2. */
4922 d = string2 + pos - size1;
4923 dend = end_match_2 = string2 + stop - size1;
4924 end_match_1 = end1; /* Just to give it a value. */
fa9a63c5
RM
4925 }
4926 else
4927 {
f1ad044f 4928 if (stop < size1)
419d1c74
SM
4929 {
4930 /* Only match within string1. */
4931 end_match_1 = string1 + stop;
4932 /* BEWARE!
4933 When we reach end_match_1, PREFETCH normally switches to string2.
4934 But in the present case, this means that just doing a PREFETCH
4935 makes us jump from `stop' to `gap' within the string.
4936 What we really want here is for the search to stop as
4937 soon as we hit end_match_1. That's why we set end_match_2
4938 to end_match_1 (since PREFETCH fails as soon as we hit
4939 end_match_2). */
4940 end_match_2 = end_match_1;
4941 }
4942 else
f1ad044f
SM
4943 { /* It's important to use this code when stop == size so that
4944 moving `d' from end1 to string2 will not prevent the d == dend
4945 check from catching the end of string. */
419d1c74
SM
4946 end_match_1 = end1;
4947 end_match_2 = string2 + stop - size1;
4948 }
4949 d = string1 + pos;
4950 dend = end_match_1;
fa9a63c5
RM
4951 }
4952
4953 DEBUG_PRINT1 ("The compiled pattern is: ");
4954 DEBUG_PRINT_COMPILED_PATTERN (bufp, p, pend);
4955 DEBUG_PRINT1 ("The string to match is: `");
4956 DEBUG_PRINT_DOUBLE_STRING (d, string1, size1, string2, size2);
4957 DEBUG_PRINT1 ("'\n");
5e69f11e 4958
25fe55af 4959 /* This loops over pattern commands. It exits by returning from the
fa9a63c5
RM
4960 function if the match is complete, or it drops through if the match
4961 fails at this starting point in the input data. */
4962 for (;;)
4963 {
505bde11 4964 DEBUG_PRINT2 ("\n%p: ", p);
fa9a63c5
RM
4965
4966 if (p == pend)
4967 { /* End of pattern means we might have succeeded. */
25fe55af 4968 DEBUG_PRINT1 ("end of pattern ... ");
5e69f11e 4969
fa9a63c5 4970 /* If we haven't matched the entire string, and we want the
25fe55af
RS
4971 longest match, try backtracking. */
4972 if (d != end_match_2)
fa9a63c5
RM
4973 {
4974 /* 1 if this match ends in the same string (string1 or string2)
4975 as the best previous match. */
5e69f11e 4976 boolean same_str_p = (FIRST_STRING_P (match_end)
99633e97 4977 == FIRST_STRING_P (d));
fa9a63c5
RM
4978 /* 1 if this match is the best seen so far. */
4979 boolean best_match_p;
4980
4981 /* AIX compiler got confused when this was combined
25fe55af 4982 with the previous declaration. */
fa9a63c5
RM
4983 if (same_str_p)
4984 best_match_p = d > match_end;
4985 else
99633e97 4986 best_match_p = !FIRST_STRING_P (d);
fa9a63c5 4987
25fe55af
RS
4988 DEBUG_PRINT1 ("backtracking.\n");
4989
4990 if (!FAIL_STACK_EMPTY ())
4991 { /* More failure points to try. */
4992
4993 /* If exceeds best match so far, save it. */
4994 if (!best_regs_set || best_match_p)
4995 {
4996 best_regs_set = true;
4997 match_end = d;
4998
4999 DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
5000
01618498 5001 for (reg = 1; reg < num_regs; reg++)
25fe55af 5002 {
01618498
SM
5003 best_regstart[reg] = regstart[reg];
5004 best_regend[reg] = regend[reg];
25fe55af
RS
5005 }
5006 }
5007 goto fail;
5008 }
5009
5010 /* If no failure points, don't restore garbage. And if
5011 last match is real best match, don't restore second
5012 best one. */
5013 else if (best_regs_set && !best_match_p)
5014 {
5015 restore_best_regs:
5016 /* Restore best match. It may happen that `dend ==
5017 end_match_1' while the restored d is in string2.
5018 For example, the pattern `x.*y.*z' against the
5019 strings `x-' and `y-z-', if the two strings are
5020 not consecutive in memory. */
5021 DEBUG_PRINT1 ("Restoring best registers.\n");
5022
5023 d = match_end;
5024 dend = ((d >= string1 && d <= end1)
5025 ? end_match_1 : end_match_2);
fa9a63c5 5026
01618498 5027 for (reg = 1; reg < num_regs; reg++)
fa9a63c5 5028 {
01618498
SM
5029 regstart[reg] = best_regstart[reg];
5030 regend[reg] = best_regend[reg];
fa9a63c5 5031 }
25fe55af
RS
5032 }
5033 } /* d != end_match_2 */
fa9a63c5
RM
5034
5035 succeed_label:
25fe55af 5036 DEBUG_PRINT1 ("Accepting match.\n");
fa9a63c5 5037
25fe55af
RS
5038 /* If caller wants register contents data back, do it. */
5039 if (regs && !bufp->no_sub)
fa9a63c5 5040 {
25fe55af
RS
5041 /* Have the register data arrays been allocated? */
5042 if (bufp->regs_allocated == REGS_UNALLOCATED)
5043 { /* No. So allocate them with malloc. We need one
5044 extra element beyond `num_regs' for the `-1' marker
5045 GNU code uses. */
5046 regs->num_regs = MAX (RE_NREGS, num_regs + 1);
5047 regs->start = TALLOC (regs->num_regs, regoff_t);
5048 regs->end = TALLOC (regs->num_regs, regoff_t);
5049 if (regs->start == NULL || regs->end == NULL)
fa9a63c5
RM
5050 {
5051 FREE_VARIABLES ();
5052 return -2;
5053 }
25fe55af
RS
5054 bufp->regs_allocated = REGS_REALLOCATE;
5055 }
5056 else if (bufp->regs_allocated == REGS_REALLOCATE)
5057 { /* Yes. If we need more elements than were already
5058 allocated, reallocate them. If we need fewer, just
5059 leave it alone. */
5060 if (regs->num_regs < num_regs + 1)
5061 {
5062 regs->num_regs = num_regs + 1;
5063 RETALLOC (regs->start, regs->num_regs, regoff_t);
5064 RETALLOC (regs->end, regs->num_regs, regoff_t);
5065 if (regs->start == NULL || regs->end == NULL)
fa9a63c5
RM
5066 {
5067 FREE_VARIABLES ();
5068 return -2;
5069 }
25fe55af
RS
5070 }
5071 }
5072 else
fa9a63c5
RM
5073 {
5074 /* These braces fend off a "empty body in an else-statement"
25fe55af 5075 warning under GCC when assert expands to nothing. */
fa9a63c5
RM
5076 assert (bufp->regs_allocated == REGS_FIXED);
5077 }
5078
25fe55af
RS
5079 /* Convert the pointer data in `regstart' and `regend' to
5080 indices. Register zero has to be set differently,
5081 since we haven't kept track of any info for it. */
5082 if (regs->num_regs > 0)
5083 {
5084 regs->start[0] = pos;
99633e97 5085 regs->end[0] = POINTER_TO_OFFSET (d);
25fe55af 5086 }
5e69f11e 5087
25fe55af
RS
5088 /* Go through the first `min (num_regs, regs->num_regs)'
5089 registers, since that is all we initialized. */
01618498 5090 for (reg = 1; reg < MIN (num_regs, regs->num_regs); reg++)
fa9a63c5 5091 {
01618498
SM
5092 if (REG_UNSET (regstart[reg]) || REG_UNSET (regend[reg]))
5093 regs->start[reg] = regs->end[reg] = -1;
25fe55af
RS
5094 else
5095 {
01618498
SM
5096 regs->start[reg]
5097 = (regoff_t) POINTER_TO_OFFSET (regstart[reg]);
5098 regs->end[reg]
5099 = (regoff_t) POINTER_TO_OFFSET (regend[reg]);
25fe55af 5100 }
fa9a63c5 5101 }
5e69f11e 5102
25fe55af
RS
5103 /* If the regs structure we return has more elements than
5104 were in the pattern, set the extra elements to -1. If
5105 we (re)allocated the registers, this is the case,
5106 because we always allocate enough to have at least one
5107 -1 at the end. */
01618498
SM
5108 for (reg = num_regs; reg < regs->num_regs; reg++)
5109 regs->start[reg] = regs->end[reg] = -1;
fa9a63c5
RM
5110 } /* regs && !bufp->no_sub */
5111
25fe55af
RS
5112 DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
5113 nfailure_points_pushed, nfailure_points_popped,
5114 nfailure_points_pushed - nfailure_points_popped);
5115 DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed);
fa9a63c5 5116
99633e97 5117 mcnt = POINTER_TO_OFFSET (d) - pos;
fa9a63c5 5118
25fe55af 5119 DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt);
fa9a63c5 5120
25fe55af
RS
5121 FREE_VARIABLES ();
5122 return mcnt;
5123 }
fa9a63c5 5124
25fe55af 5125 /* Otherwise match next pattern command. */
fa9a63c5
RM
5126 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
5127 {
25fe55af
RS
5128 /* Ignore these. Used to ignore the n of succeed_n's which
5129 currently have n == 0. */
5130 case no_op:
5131 DEBUG_PRINT1 ("EXECUTING no_op.\n");
5132 break;
fa9a63c5
RM
5133
5134 case succeed:
25fe55af 5135 DEBUG_PRINT1 ("EXECUTING succeed.\n");
fa9a63c5
RM
5136 goto succeed_label;
5137
25fe55af
RS
5138 /* Match the next n pattern characters exactly. The following
5139 byte in the pattern defines n, and the n bytes after that
5140 are the characters to match. */
fa9a63c5
RM
5141 case exactn:
5142 mcnt = *p++;
25fe55af 5143 DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt);
fa9a63c5 5144
99633e97
SM
5145 /* Remember the start point to rollback upon failure. */
5146 dfail = d;
5147
25fe55af
RS
5148 /* This is written out as an if-else so we don't waste time
5149 testing `translate' inside the loop. */
28703c16 5150 if (RE_TRANSLATE_P (translate))
fa9a63c5 5151 {
e934739e
RS
5152 if (multibyte)
5153 do
5154 {
5155 int pat_charlen, buf_charlen;
e71b1971 5156 unsigned int pat_ch, buf_ch;
e934739e
RS
5157
5158 PREFETCH ();
5159 pat_ch = STRING_CHAR_AND_LENGTH (p, pend - p, pat_charlen);
5160 buf_ch = STRING_CHAR_AND_LENGTH (d, dend - d, buf_charlen);
5161
5162 if (RE_TRANSLATE (translate, buf_ch)
5163 != pat_ch)
99633e97
SM
5164 {
5165 d = dfail;
5166 goto fail;
5167 }
e934739e
RS
5168
5169 p += pat_charlen;
5170 d += buf_charlen;
5171 mcnt -= pat_charlen;
5172 }
5173 while (mcnt > 0);
5174 else
e934739e
RS
5175 do
5176 {
5177 PREFETCH ();
66f0296e 5178 if (RE_TRANSLATE (translate, *d) != *p++)
99633e97
SM
5179 {
5180 d = dfail;
5181 goto fail;
5182 }
33c46939 5183 d++;
e934739e
RS
5184 }
5185 while (--mcnt);
fa9a63c5
RM
5186 }
5187 else
5188 {
5189 do
5190 {
5191 PREFETCH ();
99633e97
SM
5192 if (*d++ != *p++)
5193 {
5194 d = dfail;
5195 goto fail;
5196 }
fa9a63c5
RM
5197 }
5198 while (--mcnt);
5199 }
25fe55af 5200 break;
fa9a63c5
RM
5201
5202
25fe55af 5203 /* Match any character except possibly a newline or a null. */
fa9a63c5 5204 case anychar:
e934739e
RS
5205 {
5206 int buf_charlen;
01618498 5207 re_wchar_t buf_ch;
fa9a63c5 5208
e934739e 5209 DEBUG_PRINT1 ("EXECUTING anychar.\n");
fa9a63c5 5210
e934739e 5211 PREFETCH ();
2d1675e4 5212 buf_ch = RE_STRING_CHAR_AND_LENGTH (d, dend - d, buf_charlen);
e934739e
RS
5213 buf_ch = TRANSLATE (buf_ch);
5214
5215 if ((!(bufp->syntax & RE_DOT_NEWLINE)
5216 && buf_ch == '\n')
5217 || ((bufp->syntax & RE_DOT_NOT_NULL)
5218 && buf_ch == '\000'))
5219 goto fail;
5220
e934739e
RS
5221 DEBUG_PRINT2 (" Matched `%d'.\n", *d);
5222 d += buf_charlen;
5223 }
fa9a63c5
RM
5224 break;
5225
5226
5227 case charset:
5228 case charset_not:
5229 {
b18215fc 5230 register unsigned int c;
fa9a63c5 5231 boolean not = (re_opcode_t) *(p - 1) == charset_not;
b18215fc
RS
5232 int len;
5233
5234 /* Start of actual range_table, or end of bitmap if there is no
5235 range table. */
01618498 5236 re_char *range_table;
b18215fc 5237
96cc36cc 5238 /* Nonzero if there is a range table. */
b18215fc
RS
5239 int range_table_exists;
5240
96cc36cc
RS
5241 /* Number of ranges of range table. This is not included
5242 in the initial byte-length of the command. */
5243 int count = 0;
fa9a63c5 5244
25fe55af 5245 DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : "");
fa9a63c5 5246
b18215fc 5247 range_table_exists = CHARSET_RANGE_TABLE_EXISTS_P (&p[-1]);
96cc36cc 5248
b18215fc 5249 if (range_table_exists)
96cc36cc
RS
5250 {
5251 range_table = CHARSET_RANGE_TABLE (&p[-1]); /* Past the bitmap. */
5252 EXTRACT_NUMBER_AND_INCR (count, range_table);
5253 }
b18215fc 5254
2d1675e4
SM
5255 PREFETCH ();
5256 c = RE_STRING_CHAR_AND_LENGTH (d, dend - d, len);
5257 c = TRANSLATE (c); /* The character to match. */
b18215fc
RS
5258
5259 if (SINGLE_BYTE_CHAR_P (c))
5260 { /* Lookup bitmap. */
b18215fc
RS
5261 /* Cast to `unsigned' instead of `unsigned char' in
5262 case the bit list is a full 32 bytes long. */
5263 if (c < (unsigned) (CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH)
96cc36cc
RS
5264 && p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
5265 not = !not;
b18215fc 5266 }
96cc36cc 5267#ifdef emacs
b18215fc 5268 else if (range_table_exists)
96cc36cc
RS
5269 {
5270 int class_bits = CHARSET_RANGE_TABLE_BITS (&p[-1]);
5271
14473664
SM
5272 if ( (class_bits & BIT_LOWER && ISLOWER (c))
5273 | (class_bits & BIT_MULTIBYTE)
96cc36cc
RS
5274 | (class_bits & BIT_PUNCT && ISPUNCT (c))
5275 | (class_bits & BIT_SPACE && ISSPACE (c))
5276 | (class_bits & BIT_UPPER && ISUPPER (c))
5277 | (class_bits & BIT_WORD && ISWORD (c)))
5278 not = !not;
5279 else
5280 CHARSET_LOOKUP_RANGE_TABLE_RAW (not, c, range_table, count);
5281 }
5282#endif /* emacs */
fa9a63c5 5283
96cc36cc
RS
5284 if (range_table_exists)
5285 p = CHARSET_RANGE_TABLE_END (range_table, count);
5286 else
5287 p += CHARSET_BITMAP_SIZE (&p[-1]) + 1;
fa9a63c5
RM
5288
5289 if (!not) goto fail;
5e69f11e 5290
b18215fc 5291 d += len;
fa9a63c5
RM
5292 break;
5293 }
5294
5295
25fe55af 5296 /* The beginning of a group is represented by start_memory.
505bde11 5297 The argument is the register number. The text
25fe55af
RS
5298 matched within the group is recorded (in the internal
5299 registers data structure) under the register number. */
5300 case start_memory:
505bde11
SM
5301 DEBUG_PRINT2 ("EXECUTING start_memory %d:\n", *p);
5302
5303 /* In case we need to undo this operation (via backtracking). */
5304 PUSH_FAILURE_REG ((unsigned int)*p);
fa9a63c5 5305
25fe55af 5306 regstart[*p] = d;
4bb91c68 5307 regend[*p] = NULL; /* probably unnecessary. -sm */
fa9a63c5
RM
5308 DEBUG_PRINT2 (" regstart: %d\n", POINTER_TO_OFFSET (regstart[*p]));
5309
25fe55af 5310 /* Move past the register number and inner group count. */
505bde11 5311 p += 1;
25fe55af 5312 break;
fa9a63c5
RM
5313
5314
25fe55af 5315 /* The stop_memory opcode represents the end of a group. Its
505bde11 5316 argument is the same as start_memory's: the register number. */
fa9a63c5 5317 case stop_memory:
505bde11
SM
5318 DEBUG_PRINT2 ("EXECUTING stop_memory %d:\n", *p);
5319
5320 assert (!REG_UNSET (regstart[*p]));
5321 /* Strictly speaking, there should be code such as:
5322
0b32bf0e 5323 assert (REG_UNSET (regend[*p]));
505bde11
SM
5324 PUSH_FAILURE_REGSTOP ((unsigned int)*p);
5325
5326 But the only info to be pushed is regend[*p] and it is known to
5327 be UNSET, so there really isn't anything to push.
5328 Not pushing anything, on the other hand deprives us from the
5329 guarantee that regend[*p] is UNSET since undoing this operation
5330 will not reset its value properly. This is not important since
5331 the value will only be read on the next start_memory or at
5332 the very end and both events can only happen if this stop_memory
5333 is *not* undone. */
fa9a63c5 5334
25fe55af 5335 regend[*p] = d;
fa9a63c5
RM
5336 DEBUG_PRINT2 (" regend: %d\n", POINTER_TO_OFFSET (regend[*p]));
5337
25fe55af 5338 /* Move past the register number and the inner group count. */
505bde11 5339 p += 1;
25fe55af 5340 break;
fa9a63c5
RM
5341
5342
5343 /* \<digit> has been turned into a `duplicate' command which is
25fe55af
RS
5344 followed by the numeric value of <digit> as the register number. */
5345 case duplicate:
fa9a63c5 5346 {
66f0296e 5347 register re_char *d2, *dend2;
25fe55af 5348 int regno = *p++; /* Get which register to match against. */
fa9a63c5
RM
5349 DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno);
5350
25fe55af
RS
5351 /* Can't back reference a group which we've never matched. */
5352 if (REG_UNSET (regstart[regno]) || REG_UNSET (regend[regno]))
5353 goto fail;
5e69f11e 5354
25fe55af
RS
5355 /* Where in input to try to start matching. */
5356 d2 = regstart[regno];
5e69f11e 5357
99633e97
SM
5358 /* Remember the start point to rollback upon failure. */
5359 dfail = d;
5360
25fe55af
RS
5361 /* Where to stop matching; if both the place to start and
5362 the place to stop matching are in the same string, then
5363 set to the place to stop, otherwise, for now have to use
5364 the end of the first string. */
fa9a63c5 5365
25fe55af 5366 dend2 = ((FIRST_STRING_P (regstart[regno])
fa9a63c5
RM
5367 == FIRST_STRING_P (regend[regno]))
5368 ? regend[regno] : end_match_1);
5369 for (;;)
5370 {
5371 /* If necessary, advance to next segment in register
25fe55af 5372 contents. */
fa9a63c5
RM
5373 while (d2 == dend2)
5374 {
5375 if (dend2 == end_match_2) break;
5376 if (dend2 == regend[regno]) break;
5377
25fe55af
RS
5378 /* End of string1 => advance to string2. */
5379 d2 = string2;
5380 dend2 = regend[regno];
fa9a63c5
RM
5381 }
5382 /* At end of register contents => success */
5383 if (d2 == dend2) break;
5384
5385 /* If necessary, advance to next segment in data. */
5386 PREFETCH ();
5387
5388 /* How many characters left in this segment to match. */
5389 mcnt = dend - d;
5e69f11e 5390
fa9a63c5 5391 /* Want how many consecutive characters we can match in
25fe55af
RS
5392 one shot, so, if necessary, adjust the count. */
5393 if (mcnt > dend2 - d2)
fa9a63c5 5394 mcnt = dend2 - d2;
5e69f11e 5395
fa9a63c5 5396 /* Compare that many; failure if mismatch, else move
25fe55af 5397 past them. */
28703c16 5398 if (RE_TRANSLATE_P (translate)
2d1675e4 5399 ? bcmp_translate (d, d2, mcnt, translate, multibyte)
4bb91c68 5400 : memcmp (d, d2, mcnt))
99633e97
SM
5401 {
5402 d = dfail;
5403 goto fail;
5404 }
fa9a63c5 5405 d += mcnt, d2 += mcnt;
fa9a63c5
RM
5406 }
5407 }
5408 break;
5409
5410
25fe55af 5411 /* begline matches the empty string at the beginning of the string
c0f9ea08 5412 (unless `not_bol' is set in `bufp'), and after newlines. */
fa9a63c5 5413 case begline:
25fe55af 5414 DEBUG_PRINT1 ("EXECUTING begline.\n");
5e69f11e 5415
25fe55af
RS
5416 if (AT_STRINGS_BEG (d))
5417 {
5418 if (!bufp->not_bol) break;
5419 }
419d1c74 5420 else
25fe55af 5421 {
419d1c74
SM
5422 unsigned char c;
5423 GET_CHAR_BEFORE_2 (c, d, string1, end1, string2, end2);
c0f9ea08 5424 if (c == '\n')
419d1c74 5425 break;
25fe55af
RS
5426 }
5427 /* In all other cases, we fail. */
5428 goto fail;
fa9a63c5
RM
5429
5430
25fe55af 5431 /* endline is the dual of begline. */
fa9a63c5 5432 case endline:
25fe55af 5433 DEBUG_PRINT1 ("EXECUTING endline.\n");
fa9a63c5 5434
25fe55af
RS
5435 if (AT_STRINGS_END (d))
5436 {
5437 if (!bufp->not_eol) break;
5438 }
f1ad044f 5439 else
25fe55af 5440 {
f1ad044f 5441 PREFETCH_NOLIMIT ();
c0f9ea08 5442 if (*d == '\n')
f1ad044f 5443 break;
25fe55af
RS
5444 }
5445 goto fail;
fa9a63c5
RM
5446
5447
5448 /* Match at the very beginning of the data. */
25fe55af
RS
5449 case begbuf:
5450 DEBUG_PRINT1 ("EXECUTING begbuf.\n");
5451 if (AT_STRINGS_BEG (d))
5452 break;
5453 goto fail;
fa9a63c5
RM
5454
5455
5456 /* Match at the very end of the data. */
25fe55af
RS
5457 case endbuf:
5458 DEBUG_PRINT1 ("EXECUTING endbuf.\n");
fa9a63c5
RM
5459 if (AT_STRINGS_END (d))
5460 break;
25fe55af 5461 goto fail;
5e69f11e 5462
5e69f11e 5463
25fe55af
RS
5464 /* on_failure_keep_string_jump is used to optimize `.*\n'. It
5465 pushes NULL as the value for the string on the stack. Then
505bde11 5466 `POP_FAILURE_POINT' will keep the current value for the
25fe55af
RS
5467 string, instead of restoring it. To see why, consider
5468 matching `foo\nbar' against `.*\n'. The .* matches the foo;
5469 then the . fails against the \n. But the next thing we want
5470 to do is match the \n against the \n; if we restored the
5471 string value, we would be back at the foo.
5472
5473 Because this is used only in specific cases, we don't need to
5474 check all the things that `on_failure_jump' does, to make
5475 sure the right things get saved on the stack. Hence we don't
5476 share its code. The only reason to push anything on the
5477 stack at all is that otherwise we would have to change
5478 `anychar's code to do something besides goto fail in this
5479 case; that seems worse than this. */
5480 case on_failure_keep_string_jump:
505bde11
SM
5481 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5482 DEBUG_PRINT3 ("EXECUTING on_failure_keep_string_jump %d (to %p):\n",
5483 mcnt, p + mcnt);
fa9a63c5 5484
505bde11
SM
5485 PUSH_FAILURE_POINT (p - 3, NULL);
5486 break;
5487
0683b6fa
SM
5488 /* A nasty loop is introduced by the non-greedy *? and +?.
5489 With such loops, the stack only ever contains one failure point
5490 at a time, so that a plain on_failure_jump_loop kind of
5491 cycle detection cannot work. Worse yet, such a detection
5492 can not only fail to detect a cycle, but it can also wrongly
5493 detect a cycle (between different instantiations of the same
5494 loop.
5495 So the method used for those nasty loops is a little different:
5496 We use a special cycle-detection-stack-frame which is pushed
5497 when the on_failure_jump_nastyloop failure-point is *popped*.
5498 This special frame thus marks the beginning of one iteration
5499 through the loop and we can hence easily check right here
5500 whether something matched between the beginning and the end of
5501 the loop. */
5502 case on_failure_jump_nastyloop:
5503 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5504 DEBUG_PRINT3 ("EXECUTING on_failure_jump_nastyloop %d (to %p):\n",
5505 mcnt, p + mcnt);
5506
5507 assert ((re_opcode_t)p[-4] == no_op);
5508 CHECK_INFINITE_LOOP (p - 4, d);
5509 PUSH_FAILURE_POINT (p - 3, d);
5510 break;
5511
505bde11 5512
4e8a9132
SM
5513 /* Simple loop detecting on_failure_jump: just check on the
5514 failure stack if the same spot was already hit earlier. */
505bde11
SM
5515 case on_failure_jump_loop:
5516 on_failure:
5517 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5518 DEBUG_PRINT3 ("EXECUTING on_failure_jump_loop %d (to %p):\n",
5519 mcnt, p + mcnt);
5520
5521 CHECK_INFINITE_LOOP (p - 3, d);
5522 PUSH_FAILURE_POINT (p - 3, d);
25fe55af 5523 break;
fa9a63c5
RM
5524
5525
5526 /* Uses of on_failure_jump:
5e69f11e 5527
25fe55af
RS
5528 Each alternative starts with an on_failure_jump that points
5529 to the beginning of the next alternative. Each alternative
5530 except the last ends with a jump that in effect jumps past
5531 the rest of the alternatives. (They really jump to the
5532 ending jump of the following alternative, because tensioning
5533 these jumps is a hassle.)
fa9a63c5 5534
25fe55af
RS
5535 Repeats start with an on_failure_jump that points past both
5536 the repetition text and either the following jump or
5537 pop_failure_jump back to this on_failure_jump. */
fa9a63c5 5538 case on_failure_jump:
5b370c2b 5539 IMMEDIATE_QUIT_CHECK;
25fe55af 5540 EXTRACT_NUMBER_AND_INCR (mcnt, p);
505bde11
SM
5541 DEBUG_PRINT3 ("EXECUTING on_failure_jump %d (to %p):\n",
5542 mcnt, p + mcnt);
25fe55af 5543
505bde11 5544 PUSH_FAILURE_POINT (p -3, d);
25fe55af
RS
5545 break;
5546
4e8a9132 5547 /* This operation is used for greedy *.
505bde11
SM
5548 Compare the beginning of the repeat with what in the
5549 pattern follows its end. If we can establish that there
5550 is nothing that they would both match, i.e., that we
5551 would have to backtrack because of (as in, e.g., `a*a')
5552 then we can use a non-backtracking loop based on
4e8a9132 5553 on_failure_keep_string_jump instead of on_failure_jump. */
505bde11 5554 case on_failure_jump_smart:
5b370c2b 5555 IMMEDIATE_QUIT_CHECK;
25fe55af 5556 EXTRACT_NUMBER_AND_INCR (mcnt, p);
505bde11
SM
5557 DEBUG_PRINT3 ("EXECUTING on_failure_jump_smart %d (to %p).\n",
5558 mcnt, p + mcnt);
25fe55af 5559 {
01618498 5560 re_char *p1 = p; /* Next operation. */
6dcf2d0e
SM
5561 /* Here, we discard `const', making re_match non-reentrant. */
5562 unsigned char *p2 = (unsigned char*) p + mcnt; /* Jump dest. */
5563 unsigned char *p3 = (unsigned char*) p - 3; /* opcode location. */
fa9a63c5 5564
505bde11
SM
5565 p -= 3; /* Reset so that we will re-execute the
5566 instruction once it's been changed. */
fa9a63c5 5567
4e8a9132
SM
5568 EXTRACT_NUMBER (mcnt, p2 - 2);
5569
5570 /* Ensure this is a indeed the trivial kind of loop
5571 we are expecting. */
5572 assert (skip_one_char (p1) == p2 - 3);
5573 assert ((re_opcode_t) p2[-3] == jump && p2 + mcnt == p);
99633e97 5574 DEBUG_STATEMENT (debug += 2);
505bde11 5575 if (mutually_exclusive_p (bufp, p1, p2))
fa9a63c5 5576 {
505bde11 5577 /* Use a fast `on_failure_keep_string_jump' loop. */
4e8a9132 5578 DEBUG_PRINT1 (" smart exclusive => fast loop.\n");
01618498 5579 *p3 = (unsigned char) on_failure_keep_string_jump;
4e8a9132 5580 STORE_NUMBER (p2 - 2, mcnt + 3);
25fe55af 5581 }
505bde11 5582 else
fa9a63c5 5583 {
505bde11
SM
5584 /* Default to a safe `on_failure_jump' loop. */
5585 DEBUG_PRINT1 (" smart default => slow loop.\n");
01618498 5586 *p3 = (unsigned char) on_failure_jump;
fa9a63c5 5587 }
99633e97 5588 DEBUG_STATEMENT (debug -= 2);
25fe55af 5589 }
505bde11 5590 break;
25fe55af
RS
5591
5592 /* Unconditionally jump (without popping any failure points). */
5593 case jump:
fa9a63c5 5594 unconditional_jump:
5b370c2b 5595 IMMEDIATE_QUIT_CHECK;
fa9a63c5 5596 EXTRACT_NUMBER_AND_INCR (mcnt, p); /* Get the amount to jump. */
25fe55af
RS
5597 DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt);
5598 p += mcnt; /* Do the jump. */
505bde11 5599 DEBUG_PRINT2 ("(to %p).\n", p);
25fe55af
RS
5600 break;
5601
5602
25fe55af
RS
5603 /* Have to succeed matching what follows at least n times.
5604 After that, handle like `on_failure_jump'. */
5605 case succeed_n:
01618498 5606 /* Signedness doesn't matter since we only compare MCNT to 0. */
25fe55af
RS
5607 EXTRACT_NUMBER (mcnt, p + 2);
5608 DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt);
5e69f11e 5609
dc1e502d
SM
5610 /* Originally, mcnt is how many times we HAVE to succeed. */
5611 if (mcnt != 0)
25fe55af 5612 {
6dcf2d0e
SM
5613 /* Here, we discard `const', making re_match non-reentrant. */
5614 unsigned char *p2 = (unsigned char*) p + 2; /* counter loc. */
dc1e502d 5615 mcnt--;
01618498
SM
5616 p += 4;
5617 PUSH_NUMBER (p2, mcnt);
25fe55af 5618 }
dc1e502d
SM
5619 else
5620 /* The two bytes encoding mcnt == 0 are two no_op opcodes. */
5621 goto on_failure;
25fe55af
RS
5622 break;
5623
5624 case jump_n:
01618498 5625 /* Signedness doesn't matter since we only compare MCNT to 0. */
25fe55af
RS
5626 EXTRACT_NUMBER (mcnt, p + 2);
5627 DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt);
5628
5629 /* Originally, this is how many times we CAN jump. */
dc1e502d 5630 if (mcnt != 0)
25fe55af 5631 {
6dcf2d0e
SM
5632 /* Here, we discard `const', making re_match non-reentrant. */
5633 unsigned char *p2 = (unsigned char*) p + 2; /* counter loc. */
dc1e502d 5634 mcnt--;
01618498 5635 PUSH_NUMBER (p2, mcnt);
dc1e502d 5636 goto unconditional_jump;
25fe55af
RS
5637 }
5638 /* If don't have to jump any more, skip over the rest of command. */
5e69f11e
RM
5639 else
5640 p += 4;
25fe55af 5641 break;
5e69f11e 5642
fa9a63c5
RM
5643 case set_number_at:
5644 {
01618498 5645 unsigned char *p2; /* Location of the counter. */
25fe55af 5646 DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
fa9a63c5 5647
25fe55af 5648 EXTRACT_NUMBER_AND_INCR (mcnt, p);
6dcf2d0e
SM
5649 /* Here, we discard `const', making re_match non-reentrant. */
5650 p2 = (unsigned char*) p + mcnt;
01618498 5651 /* Signedness doesn't matter since we only copy MCNT's bits . */
25fe55af 5652 EXTRACT_NUMBER_AND_INCR (mcnt, p);
01618498
SM
5653 DEBUG_PRINT3 (" Setting %p to %d.\n", p2, mcnt);
5654 PUSH_NUMBER (p2, mcnt);
25fe55af
RS
5655 break;
5656 }
9121ca40
KH
5657
5658 case wordbound:
66f0296e
SM
5659 case notwordbound:
5660 not = (re_opcode_t) *(p - 1) == notwordbound;
5661 DEBUG_PRINT2 ("EXECUTING %swordbound.\n", not?"not":"");
fa9a63c5 5662
99633e97 5663 /* We SUCCEED (or FAIL) in one of the following cases: */
9121ca40 5664
b18215fc 5665 /* Case 1: D is at the beginning or the end of string. */
9121ca40 5666 if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
66f0296e 5667 not = !not;
b18215fc
RS
5668 else
5669 {
5670 /* C1 is the character before D, S1 is the syntax of C1, C2
5671 is the character at D, and S2 is the syntax of C2. */
01618498
SM
5672 re_wchar_t c1, c2;
5673 int s1, s2;
b18215fc 5674#ifdef emacs
2d1675e4
SM
5675 int offset = PTR_TO_OFFSET (d - 1);
5676 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
5d967c7a 5677 UPDATE_SYNTAX_TABLE (charpos);
25fe55af 5678#endif
66f0296e 5679 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
b18215fc
RS
5680 s1 = SYNTAX (c1);
5681#ifdef emacs
5d967c7a 5682 UPDATE_SYNTAX_TABLE_FORWARD (charpos + 1);
25fe55af 5683#endif
f1ad044f 5684 PREFETCH_NOLIMIT ();
2d1675e4 5685 c2 = RE_STRING_CHAR (d, dend - d);
b18215fc
RS
5686 s2 = SYNTAX (c2);
5687
5688 if (/* Case 2: Only one of S1 and S2 is Sword. */
5689 ((s1 == Sword) != (s2 == Sword))
5690 /* Case 3: Both of S1 and S2 are Sword, and macro
25fe55af 5691 WORD_BOUNDARY_P (C1, C2) returns nonzero. */
b18215fc 5692 || ((s1 == Sword) && WORD_BOUNDARY_P (c1, c2)))
66f0296e
SM
5693 not = !not;
5694 }
5695 if (not)
9121ca40 5696 break;
b18215fc 5697 else
9121ca40 5698 goto fail;
fa9a63c5
RM
5699
5700 case wordbeg:
25fe55af 5701 DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
fa9a63c5 5702
b18215fc
RS
5703 /* We FAIL in one of the following cases: */
5704
25fe55af 5705 /* Case 1: D is at the end of string. */
b18215fc 5706 if (AT_STRINGS_END (d))
99633e97 5707 goto fail;
b18215fc
RS
5708 else
5709 {
5710 /* C1 is the character before D, S1 is the syntax of C1, C2
5711 is the character at D, and S2 is the syntax of C2. */
01618498
SM
5712 re_wchar_t c1, c2;
5713 int s1, s2;
fa9a63c5 5714#ifdef emacs
2d1675e4
SM
5715 int offset = PTR_TO_OFFSET (d);
5716 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
92432794 5717 UPDATE_SYNTAX_TABLE (charpos);
25fe55af 5718#endif
99633e97 5719 PREFETCH ();
2d1675e4 5720 c2 = RE_STRING_CHAR (d, dend - d);
b18215fc 5721 s2 = SYNTAX (c2);
25fe55af 5722
b18215fc
RS
5723 /* Case 2: S2 is not Sword. */
5724 if (s2 != Sword)
5725 goto fail;
5726
5727 /* Case 3: D is not at the beginning of string ... */
5728 if (!AT_STRINGS_BEG (d))
5729 {
5730 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
5731#ifdef emacs
5d967c7a 5732 UPDATE_SYNTAX_TABLE_BACKWARD (charpos - 1);
25fe55af 5733#endif
b18215fc
RS
5734 s1 = SYNTAX (c1);
5735
5736 /* ... and S1 is Sword, and WORD_BOUNDARY_P (C1, C2)
25fe55af 5737 returns 0. */
b18215fc
RS
5738 if ((s1 == Sword) && !WORD_BOUNDARY_P (c1, c2))
5739 goto fail;
5740 }
5741 }
e318085a
RS
5742 break;
5743
b18215fc 5744 case wordend:
25fe55af 5745 DEBUG_PRINT1 ("EXECUTING wordend.\n");
b18215fc
RS
5746
5747 /* We FAIL in one of the following cases: */
5748
5749 /* Case 1: D is at the beginning of string. */
5750 if (AT_STRINGS_BEG (d))
e318085a 5751 goto fail;
b18215fc
RS
5752 else
5753 {
5754 /* C1 is the character before D, S1 is the syntax of C1, C2
5755 is the character at D, and S2 is the syntax of C2. */
01618498
SM
5756 re_wchar_t c1, c2;
5757 int s1, s2;
5d967c7a 5758#ifdef emacs
2d1675e4
SM
5759 int offset = PTR_TO_OFFSET (d) - 1;
5760 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
92432794 5761 UPDATE_SYNTAX_TABLE (charpos);
5d967c7a 5762#endif
99633e97 5763 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
b18215fc
RS
5764 s1 = SYNTAX (c1);
5765
5766 /* Case 2: S1 is not Sword. */
5767 if (s1 != Sword)
5768 goto fail;
5769
5770 /* Case 3: D is not at the end of string ... */
5771 if (!AT_STRINGS_END (d))
5772 {
f1ad044f 5773 PREFETCH_NOLIMIT ();
2d1675e4 5774 c2 = RE_STRING_CHAR (d, dend - d);
5d967c7a
RS
5775#ifdef emacs
5776 UPDATE_SYNTAX_TABLE_FORWARD (charpos);
5777#endif
b18215fc
RS
5778 s2 = SYNTAX (c2);
5779
5780 /* ... and S2 is Sword, and WORD_BOUNDARY_P (C1, C2)
25fe55af 5781 returns 0. */
b18215fc 5782 if ((s2 == Sword) && !WORD_BOUNDARY_P (c1, c2))
25fe55af 5783 goto fail;
b18215fc
RS
5784 }
5785 }
e318085a
RS
5786 break;
5787
fa9a63c5 5788 case syntaxspec:
1fb352e0
SM
5789 case notsyntaxspec:
5790 not = (re_opcode_t) *(p - 1) == notsyntaxspec;
fa9a63c5 5791 mcnt = *p++;
1fb352e0 5792 DEBUG_PRINT3 ("EXECUTING %ssyntaxspec %d.\n", not?"not":"", mcnt);
fa9a63c5 5793 PREFETCH ();
b18215fc
RS
5794#ifdef emacs
5795 {
2d1675e4
SM
5796 int offset = PTR_TO_OFFSET (d);
5797 int pos1 = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
b18215fc
RS
5798 UPDATE_SYNTAX_TABLE (pos1);
5799 }
25fe55af 5800#endif
b18215fc 5801 {
01618498
SM
5802 int len;
5803 re_wchar_t c;
b18215fc 5804
2d1675e4 5805 c = RE_STRING_CHAR_AND_LENGTH (d, dend - d, len);
b18215fc 5806
990b2375 5807 if ((SYNTAX (c) != (enum syntaxcode) mcnt) ^ not)
1fb352e0 5808 goto fail;
b18215fc
RS
5809 d += len;
5810 }
fa9a63c5
RM
5811 break;
5812
b18215fc 5813#ifdef emacs
1fb352e0
SM
5814 case before_dot:
5815 DEBUG_PRINT1 ("EXECUTING before_dot.\n");
5816 if (PTR_BYTE_POS (d) >= PT_BYTE)
fa9a63c5 5817 goto fail;
b18215fc
RS
5818 break;
5819
1fb352e0
SM
5820 case at_dot:
5821 DEBUG_PRINT1 ("EXECUTING at_dot.\n");
5822 if (PTR_BYTE_POS (d) != PT_BYTE)
5823 goto fail;
5824 break;
b18215fc 5825
1fb352e0
SM
5826 case after_dot:
5827 DEBUG_PRINT1 ("EXECUTING after_dot.\n");
5828 if (PTR_BYTE_POS (d) <= PT_BYTE)
5829 goto fail;
e318085a 5830 break;
fa9a63c5 5831
1fb352e0 5832 case categoryspec:
b18215fc 5833 case notcategoryspec:
1fb352e0 5834 not = (re_opcode_t) *(p - 1) == notcategoryspec;
b18215fc 5835 mcnt = *p++;
1fb352e0 5836 DEBUG_PRINT3 ("EXECUTING %scategoryspec %d.\n", not?"not":"", mcnt);
b18215fc
RS
5837 PREFETCH ();
5838 {
01618498
SM
5839 int len;
5840 re_wchar_t c;
5841
2d1675e4 5842 c = RE_STRING_CHAR_AND_LENGTH (d, dend - d, len);
b18215fc 5843
1fb352e0 5844 if ((!CHAR_HAS_CATEGORY (c, mcnt)) ^ not)
b18215fc
RS
5845 goto fail;
5846 d += len;
5847 }
fa9a63c5 5848 break;
5e69f11e 5849
1fb352e0 5850#endif /* emacs */
5e69f11e 5851
0b32bf0e
SM
5852 default:
5853 abort ();
fa9a63c5 5854 }
b18215fc 5855 continue; /* Successfully executed one pattern command; keep going. */
fa9a63c5
RM
5856
5857
5858 /* We goto here if a matching operation fails. */
5859 fail:
5b370c2b 5860 IMMEDIATE_QUIT_CHECK;
fa9a63c5 5861 if (!FAIL_STACK_EMPTY ())
505bde11 5862 {
01618498 5863 re_char *str, *pat;
505bde11 5864 /* A restart point is known. Restore to that state. */
0b32bf0e
SM
5865 DEBUG_PRINT1 ("\nFAIL:\n");
5866 POP_FAILURE_POINT (str, pat);
505bde11
SM
5867 switch (SWITCH_ENUM_CAST ((re_opcode_t) *pat++))
5868 {
5869 case on_failure_keep_string_jump:
5870 assert (str == NULL);
5871 goto continue_failure_jump;
5872
0683b6fa
SM
5873 case on_failure_jump_nastyloop:
5874 assert ((re_opcode_t)pat[-2] == no_op);
5875 PUSH_FAILURE_POINT (pat - 2, str);
5876 /* Fallthrough */
5877
505bde11
SM
5878 case on_failure_jump_loop:
5879 case on_failure_jump:
5880 case succeed_n:
5881 d = str;
5882 continue_failure_jump:
5883 EXTRACT_NUMBER_AND_INCR (mcnt, pat);
5884 p = pat + mcnt;
5885 break;
b18215fc 5886
0683b6fa
SM
5887 case no_op:
5888 /* A special frame used for nastyloops. */
5889 goto fail;
5890
505bde11
SM
5891 default:
5892 abort();
5893 }
fa9a63c5 5894
505bde11 5895 assert (p >= bufp->buffer && p <= pend);
b18215fc 5896
0b32bf0e 5897 if (d >= string1 && d <= end1)
fa9a63c5 5898 dend = end_match_1;
0b32bf0e 5899 }
fa9a63c5 5900 else
0b32bf0e 5901 break; /* Matching at this starting point really fails. */
fa9a63c5
RM
5902 } /* for (;;) */
5903
5904 if (best_regs_set)
5905 goto restore_best_regs;
5906
5907 FREE_VARIABLES ();
5908
b18215fc 5909 return -1; /* Failure to match. */
fa9a63c5
RM
5910} /* re_match_2 */
5911\f
5912/* Subroutine definitions for re_match_2. */
5913
fa9a63c5
RM
5914/* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
5915 bytes; nonzero otherwise. */
5e69f11e 5916
fa9a63c5 5917static int
2d1675e4
SM
5918bcmp_translate (s1, s2, len, translate, multibyte)
5919 re_char *s1, *s2;
fa9a63c5 5920 register int len;
6676cb1c 5921 RE_TRANSLATE_TYPE translate;
2d1675e4 5922 const int multibyte;
fa9a63c5 5923{
2d1675e4
SM
5924 register re_char *p1 = s1, *p2 = s2;
5925 re_char *p1_end = s1 + len;
5926 re_char *p2_end = s2 + len;
e934739e 5927
4bb91c68
SM
5928 /* FIXME: Checking both p1 and p2 presumes that the two strings might have
5929 different lengths, but relying on a single `len' would break this. -sm */
5930 while (p1 < p1_end && p2 < p2_end)
fa9a63c5 5931 {
e934739e 5932 int p1_charlen, p2_charlen;
01618498 5933 re_wchar_t p1_ch, p2_ch;
e934739e 5934
2d1675e4
SM
5935 p1_ch = RE_STRING_CHAR_AND_LENGTH (p1, p1_end - p1, p1_charlen);
5936 p2_ch = RE_STRING_CHAR_AND_LENGTH (p2, p2_end - p2, p2_charlen);
e934739e
RS
5937
5938 if (RE_TRANSLATE (translate, p1_ch)
5939 != RE_TRANSLATE (translate, p2_ch))
bc192b5b 5940 return 1;
e934739e
RS
5941
5942 p1 += p1_charlen, p2 += p2_charlen;
fa9a63c5 5943 }
e934739e
RS
5944
5945 if (p1 != p1_end || p2 != p2_end)
5946 return 1;
5947
fa9a63c5
RM
5948 return 0;
5949}
5950\f
5951/* Entry points for GNU code. */
5952
5953/* re_compile_pattern is the GNU regular expression compiler: it
5954 compiles PATTERN (of length SIZE) and puts the result in BUFP.
5955 Returns 0 if the pattern was valid, otherwise an error string.
5e69f11e 5956
fa9a63c5
RM
5957 Assumes the `allocated' (and perhaps `buffer') and `translate' fields
5958 are set in BUFP on entry.
5e69f11e 5959
b18215fc 5960 We call regex_compile to do the actual compilation. */
fa9a63c5
RM
5961
5962const char *
5963re_compile_pattern (pattern, length, bufp)
5964 const char *pattern;
0b32bf0e 5965 size_t length;
fa9a63c5
RM
5966 struct re_pattern_buffer *bufp;
5967{
5968 reg_errcode_t ret;
5e69f11e 5969
fa9a63c5
RM
5970 /* GNU code is written to assume at least RE_NREGS registers will be set
5971 (and at least one extra will be -1). */
5972 bufp->regs_allocated = REGS_UNALLOCATED;
5e69f11e 5973
fa9a63c5
RM
5974 /* And GNU code determines whether or not to get register information
5975 by passing null for the REGS argument to re_match, etc., not by
5976 setting no_sub. */
5977 bufp->no_sub = 0;
5e69f11e 5978
4bb91c68 5979 ret = regex_compile ((re_char*) pattern, length, re_syntax_options, bufp);
fa9a63c5
RM
5980
5981 if (!ret)
5982 return NULL;
5983 return gettext (re_error_msgid[(int) ret]);
5e69f11e 5984}
c0f9ea08 5985WEAK_ALIAS (__re_compile_pattern, re_compile_pattern)
fa9a63c5 5986\f
b18215fc
RS
5987/* Entry points compatible with 4.2 BSD regex library. We don't define
5988 them unless specifically requested. */
fa9a63c5 5989
0b32bf0e 5990#if defined _REGEX_RE_COMP || defined _LIBC
fa9a63c5
RM
5991
5992/* BSD has one and only one pattern buffer. */
5993static struct re_pattern_buffer re_comp_buf;
5994
5995char *
0b32bf0e 5996# ifdef _LIBC
48afdd44
RM
5997/* Make these definitions weak in libc, so POSIX programs can redefine
5998 these names if they don't use our functions, and still use
5999 regcomp/regexec below without link errors. */
6000weak_function
0b32bf0e 6001# endif
fa9a63c5
RM
6002re_comp (s)
6003 const char *s;
6004{
6005 reg_errcode_t ret;
5e69f11e 6006
fa9a63c5
RM
6007 if (!s)
6008 {
6009 if (!re_comp_buf.buffer)
0b32bf0e 6010 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
a60198e5 6011 return (char *) gettext ("No previous regular expression");
fa9a63c5
RM
6012 return 0;
6013 }
6014
6015 if (!re_comp_buf.buffer)
6016 {
6017 re_comp_buf.buffer = (unsigned char *) malloc (200);
6018 if (re_comp_buf.buffer == NULL)
0b32bf0e
SM
6019 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
6020 return (char *) gettext (re_error_msgid[(int) REG_ESPACE]);
fa9a63c5
RM
6021 re_comp_buf.allocated = 200;
6022
6023 re_comp_buf.fastmap = (char *) malloc (1 << BYTEWIDTH);
6024 if (re_comp_buf.fastmap == NULL)
a60198e5
SM
6025 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
6026 return (char *) gettext (re_error_msgid[(int) REG_ESPACE]);
fa9a63c5
RM
6027 }
6028
6029 /* Since `re_exec' always passes NULL for the `regs' argument, we
6030 don't need to initialize the pattern buffer fields which affect it. */
6031
fa9a63c5 6032 ret = regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf);
5e69f11e 6033
fa9a63c5
RM
6034 if (!ret)
6035 return NULL;
6036
6037 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
6038 return (char *) gettext (re_error_msgid[(int) ret]);
6039}
6040
6041
6042int
0b32bf0e 6043# ifdef _LIBC
48afdd44 6044weak_function
0b32bf0e 6045# endif
fa9a63c5
RM
6046re_exec (s)
6047 const char *s;
6048{
6049 const int len = strlen (s);
6050 return
6051 0 <= re_search (&re_comp_buf, s, len, 0, len, (struct re_registers *) 0);
6052}
6053#endif /* _REGEX_RE_COMP */
6054\f
6055/* POSIX.2 functions. Don't define these for Emacs. */
6056
6057#ifndef emacs
6058
6059/* regcomp takes a regular expression as a string and compiles it.
6060
b18215fc 6061 PREG is a regex_t *. We do not expect any fields to be initialized,
fa9a63c5
RM
6062 since POSIX says we shouldn't. Thus, we set
6063
6064 `buffer' to the compiled pattern;
6065 `used' to the length of the compiled pattern;
6066 `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
6067 REG_EXTENDED bit in CFLAGS is set; otherwise, to
6068 RE_SYNTAX_POSIX_BASIC;
c0f9ea08
SM
6069 `fastmap' to an allocated space for the fastmap;
6070 `fastmap_accurate' to zero;
fa9a63c5
RM
6071 `re_nsub' to the number of subexpressions in PATTERN.
6072
6073 PATTERN is the address of the pattern string.
6074
6075 CFLAGS is a series of bits which affect compilation.
6076
6077 If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
6078 use POSIX basic syntax.
6079
6080 If REG_NEWLINE is set, then . and [^...] don't match newline.
6081 Also, regexec will try a match beginning after every newline.
6082
6083 If REG_ICASE is set, then we considers upper- and lowercase
6084 versions of letters to be equivalent when matching.
6085
6086 If REG_NOSUB is set, then when PREG is passed to regexec, that
6087 routine will report only success or failure, and nothing about the
6088 registers.
6089
b18215fc 6090 It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for
fa9a63c5
RM
6091 the return codes and their meanings.) */
6092
6093int
6094regcomp (preg, pattern, cflags)
ada30c0e
SM
6095 regex_t *__restrict preg;
6096 const char *__restrict pattern;
fa9a63c5
RM
6097 int cflags;
6098{
6099 reg_errcode_t ret;
4bb91c68 6100 reg_syntax_t syntax
fa9a63c5
RM
6101 = (cflags & REG_EXTENDED) ?
6102 RE_SYNTAX_POSIX_EXTENDED : RE_SYNTAX_POSIX_BASIC;
6103
6104 /* regex_compile will allocate the space for the compiled pattern. */
6105 preg->buffer = 0;
6106 preg->allocated = 0;
6107 preg->used = 0;
5e69f11e 6108
c0f9ea08
SM
6109 /* Try to allocate space for the fastmap. */
6110 preg->fastmap = (char *) malloc (1 << BYTEWIDTH);
5e69f11e 6111
fa9a63c5
RM
6112 if (cflags & REG_ICASE)
6113 {
6114 unsigned i;
5e69f11e 6115
6676cb1c
RS
6116 preg->translate
6117 = (RE_TRANSLATE_TYPE) malloc (CHAR_SET_SIZE
6118 * sizeof (*(RE_TRANSLATE_TYPE)0));
fa9a63c5 6119 if (preg->translate == NULL)
0b32bf0e 6120 return (int) REG_ESPACE;
fa9a63c5
RM
6121
6122 /* Map uppercase characters to corresponding lowercase ones. */
6123 for (i = 0; i < CHAR_SET_SIZE; i++)
4bb91c68 6124 preg->translate[i] = ISUPPER (i) ? TOLOWER (i) : i;
fa9a63c5
RM
6125 }
6126 else
6127 preg->translate = NULL;
6128
6129 /* If REG_NEWLINE is set, newlines are treated differently. */
6130 if (cflags & REG_NEWLINE)
6131 { /* REG_NEWLINE implies neither . nor [^...] match newline. */
6132 syntax &= ~RE_DOT_NEWLINE;
6133 syntax |= RE_HAT_LISTS_NOT_NEWLINE;
fa9a63c5
RM
6134 }
6135 else
c0f9ea08 6136 syntax |= RE_NO_NEWLINE_ANCHOR;
fa9a63c5
RM
6137
6138 preg->no_sub = !!(cflags & REG_NOSUB);
6139
5e69f11e 6140 /* POSIX says a null character in the pattern terminates it, so we
fa9a63c5 6141 can use strlen here in compiling the pattern. */
4bb91c68 6142 ret = regex_compile ((re_char*) pattern, strlen (pattern), syntax, preg);
5e69f11e 6143
fa9a63c5
RM
6144 /* POSIX doesn't distinguish between an unmatched open-group and an
6145 unmatched close-group: both are REG_EPAREN. */
c0f9ea08
SM
6146 if (ret == REG_ERPAREN)
6147 ret = REG_EPAREN;
6148
6149 if (ret == REG_NOERROR && preg->fastmap)
6150 { /* Compute the fastmap now, since regexec cannot modify the pattern
6151 buffer. */
6152 re_compile_fastmap (preg);
6153 if (preg->can_be_null)
6154 { /* The fastmap can't be used anyway. */
6155 free (preg->fastmap);
6156 preg->fastmap = NULL;
6157 }
6158 }
fa9a63c5
RM
6159 return (int) ret;
6160}
c0f9ea08 6161WEAK_ALIAS (__regcomp, regcomp)
fa9a63c5
RM
6162
6163
6164/* regexec searches for a given pattern, specified by PREG, in the
6165 string STRING.
5e69f11e 6166
fa9a63c5 6167 If NMATCH is zero or REG_NOSUB was set in the cflags argument to
b18215fc 6168 `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at
fa9a63c5
RM
6169 least NMATCH elements, and we set them to the offsets of the
6170 corresponding matched substrings.
5e69f11e 6171
fa9a63c5
RM
6172 EFLAGS specifies `execution flags' which affect matching: if
6173 REG_NOTBOL is set, then ^ does not match at the beginning of the
6174 string; if REG_NOTEOL is set, then $ does not match at the end.
5e69f11e 6175
fa9a63c5
RM
6176 We return 0 if we find a match and REG_NOMATCH if not. */
6177
6178int
6179regexec (preg, string, nmatch, pmatch, eflags)
ada30c0e
SM
6180 const regex_t *__restrict preg;
6181 const char *__restrict string;
5e69f11e
RM
6182 size_t nmatch;
6183 regmatch_t pmatch[];
fa9a63c5
RM
6184 int eflags;
6185{
6186 int ret;
6187 struct re_registers regs;
6188 regex_t private_preg;
6189 int len = strlen (string);
c0f9ea08 6190 boolean want_reg_info = !preg->no_sub && nmatch > 0 && pmatch;
fa9a63c5
RM
6191
6192 private_preg = *preg;
5e69f11e 6193
fa9a63c5
RM
6194 private_preg.not_bol = !!(eflags & REG_NOTBOL);
6195 private_preg.not_eol = !!(eflags & REG_NOTEOL);
5e69f11e 6196
fa9a63c5
RM
6197 /* The user has told us exactly how many registers to return
6198 information about, via `nmatch'. We have to pass that on to the
b18215fc 6199 matching routines. */
fa9a63c5 6200 private_preg.regs_allocated = REGS_FIXED;
5e69f11e 6201
fa9a63c5
RM
6202 if (want_reg_info)
6203 {
6204 regs.num_regs = nmatch;
4bb91c68
SM
6205 regs.start = TALLOC (nmatch * 2, regoff_t);
6206 if (regs.start == NULL)
0b32bf0e 6207 return (int) REG_NOMATCH;
4bb91c68 6208 regs.end = regs.start + nmatch;
fa9a63c5
RM
6209 }
6210
c0f9ea08
SM
6211 /* Instead of using not_eol to implement REG_NOTEOL, we could simply
6212 pass (&private_preg, string, len + 1, 0, len, ...) pretending the string
6213 was a little bit longer but still only matching the real part.
6214 This works because the `endline' will check for a '\n' and will find a
6215 '\0', correctly deciding that this is not the end of a line.
6216 But it doesn't work out so nicely for REG_NOTBOL, since we don't have
6217 a convenient '\0' there. For all we know, the string could be preceded
6218 by '\n' which would throw things off. */
6219
fa9a63c5
RM
6220 /* Perform the searching operation. */
6221 ret = re_search (&private_preg, string, len,
0b32bf0e
SM
6222 /* start: */ 0, /* range: */ len,
6223 want_reg_info ? &regs : (struct re_registers *) 0);
5e69f11e 6224
fa9a63c5
RM
6225 /* Copy the register information to the POSIX structure. */
6226 if (want_reg_info)
6227 {
6228 if (ret >= 0)
0b32bf0e
SM
6229 {
6230 unsigned r;
fa9a63c5 6231
0b32bf0e
SM
6232 for (r = 0; r < nmatch; r++)
6233 {
6234 pmatch[r].rm_so = regs.start[r];
6235 pmatch[r].rm_eo = regs.end[r];
6236 }
6237 }
fa9a63c5 6238
b18215fc 6239 /* If we needed the temporary register info, free the space now. */
fa9a63c5 6240 free (regs.start);
fa9a63c5
RM
6241 }
6242
6243 /* We want zero return to mean success, unlike `re_search'. */
6244 return ret >= 0 ? (int) REG_NOERROR : (int) REG_NOMATCH;
6245}
c0f9ea08 6246WEAK_ALIAS (__regexec, regexec)
fa9a63c5
RM
6247
6248
6249/* Returns a message corresponding to an error code, ERRCODE, returned
6250 from either regcomp or regexec. We don't use PREG here. */
6251
6252size_t
6253regerror (errcode, preg, errbuf, errbuf_size)
6254 int errcode;
6255 const regex_t *preg;
6256 char *errbuf;
6257 size_t errbuf_size;
6258{
6259 const char *msg;
6260 size_t msg_size;
6261
6262 if (errcode < 0
6263 || errcode >= (sizeof (re_error_msgid) / sizeof (re_error_msgid[0])))
5e69f11e 6264 /* Only error codes returned by the rest of the code should be passed
b18215fc 6265 to this routine. If we are given anything else, or if other regex
fa9a63c5
RM
6266 code generates an invalid error code, then the program has a bug.
6267 Dump core so we can fix it. */
6268 abort ();
6269
6270 msg = gettext (re_error_msgid[errcode]);
6271
6272 msg_size = strlen (msg) + 1; /* Includes the null. */
5e69f11e 6273
fa9a63c5
RM
6274 if (errbuf_size != 0)
6275 {
6276 if (msg_size > errbuf_size)
0b32bf0e
SM
6277 {
6278 strncpy (errbuf, msg, errbuf_size - 1);
6279 errbuf[errbuf_size - 1] = 0;
6280 }
fa9a63c5 6281 else
0b32bf0e 6282 strcpy (errbuf, msg);
fa9a63c5
RM
6283 }
6284
6285 return msg_size;
6286}
c0f9ea08 6287WEAK_ALIAS (__regerror, regerror)
fa9a63c5
RM
6288
6289
6290/* Free dynamically allocated space used by PREG. */
6291
6292void
6293regfree (preg)
6294 regex_t *preg;
6295{
6296 if (preg->buffer != NULL)
6297 free (preg->buffer);
6298 preg->buffer = NULL;
5e69f11e 6299
fa9a63c5
RM
6300 preg->allocated = 0;
6301 preg->used = 0;
6302
6303 if (preg->fastmap != NULL)
6304 free (preg->fastmap);
6305 preg->fastmap = NULL;
6306 preg->fastmap_accurate = 0;
6307
6308 if (preg->translate != NULL)
6309 free (preg->translate);
6310 preg->translate = NULL;
6311}
c0f9ea08 6312WEAK_ALIAS (__regfree, regfree)
fa9a63c5
RM
6313
6314#endif /* not emacs */