Merge from trunk
[bpt/emacs.git] / src / regex.c
CommitLineData
e318085a 1/* Extended regular expression matching and search library, version
0b32bf0e 2 0.12. (Implements POSIX draft P1003.2/D11.2, except for some of the
bc78d348
KB
3 internationalization features.)
4
0b5538bd 5 Copyright (C) 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
114f9c96 6 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
e468b87f 7 Free Software Foundation, Inc.
bc78d348 8
fa9a63c5
RM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
e468b87f 11 the Free Software Foundation; either version 3, or (at your option)
fa9a63c5
RM
12 any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
7814e705 16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
fa9a63c5
RM
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
4fc5845f 21 Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
7814e705 22 USA. */
fa9a63c5 23
6df42991 24/* TODO:
505bde11 25 - structure the opcode space into opcode+flag.
dc1e502d 26 - merge with glibc's regex.[ch].
01618498 27 - replace (succeed_n + jump_n + set_number_at) with something that doesn't
6dcf2d0e
SM
28 need to modify the compiled regexp so that re_match can be reentrant.
29 - get rid of on_failure_jump_smart by doing the optimization in re_comp
30 rather than at run-time, so that re_match can be reentrant.
01618498 31*/
505bde11 32
fa9a63c5 33/* AIX requires this to be the first thing in the file. */
0b32bf0e 34#if defined _AIX && !defined REGEX_MALLOC
fa9a63c5
RM
35 #pragma alloca
36#endif
37
fa9a63c5 38#ifdef HAVE_CONFIG_H
0b32bf0e 39# include <config.h>
fa9a63c5
RM
40#endif
41
4bb91c68
SM
42#if defined STDC_HEADERS && !defined emacs
43# include <stddef.h>
44#else
45/* We need this for `regex.h', and perhaps for the Emacs include files. */
46# include <sys/types.h>
47#endif
fa9a63c5 48
14473664
SM
49/* Whether to use ISO C Amendment 1 wide char functions.
50 Those should not be used for Emacs since it uses its own. */
5e5388f6
GM
51#if defined _LIBC
52#define WIDE_CHAR_SUPPORT 1
53#else
14473664 54#define WIDE_CHAR_SUPPORT \
5e5388f6
GM
55 (HAVE_WCTYPE_H && HAVE_WCHAR_H && HAVE_BTOWC && !emacs)
56#endif
14473664
SM
57
58/* For platform which support the ISO C amendement 1 functionality we
59 support user defined character classes. */
a0ad02f7 60#if WIDE_CHAR_SUPPORT
14473664
SM
61/* Solaris 2.5 has a bug: <wchar.h> must be included before <wctype.h>. */
62# include <wchar.h>
63# include <wctype.h>
64#endif
65
c0f9ea08
SM
66#ifdef _LIBC
67/* We have to keep the namespace clean. */
68# define regfree(preg) __regfree (preg)
69# define regexec(pr, st, nm, pm, ef) __regexec (pr, st, nm, pm, ef)
70# define regcomp(preg, pattern, cflags) __regcomp (preg, pattern, cflags)
ec869672
JR
71# define regerror(err_code, preg, errbuf, errbuf_size) \
72 __regerror(err_code, preg, errbuf, errbuf_size)
c0f9ea08
SM
73# define re_set_registers(bu, re, nu, st, en) \
74 __re_set_registers (bu, re, nu, st, en)
75# define re_match_2(bufp, string1, size1, string2, size2, pos, regs, stop) \
76 __re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
77# define re_match(bufp, string, size, pos, regs) \
78 __re_match (bufp, string, size, pos, regs)
79# define re_search(bufp, string, size, startpos, range, regs) \
80 __re_search (bufp, string, size, startpos, range, regs)
81# define re_compile_pattern(pattern, length, bufp) \
82 __re_compile_pattern (pattern, length, bufp)
83# define re_set_syntax(syntax) __re_set_syntax (syntax)
84# define re_search_2(bufp, st1, s1, st2, s2, startpos, range, regs, stop) \
85 __re_search_2 (bufp, st1, s1, st2, s2, startpos, range, regs, stop)
86# define re_compile_fastmap(bufp) __re_compile_fastmap (bufp)
87
14473664
SM
88/* Make sure we call libc's function even if the user overrides them. */
89# define btowc __btowc
90# define iswctype __iswctype
91# define wctype __wctype
92
c0f9ea08
SM
93# define WEAK_ALIAS(a,b) weak_alias (a, b)
94
95/* We are also using some library internals. */
96# include <locale/localeinfo.h>
97# include <locale/elem-hash.h>
98# include <langinfo.h>
99#else
100# define WEAK_ALIAS(a,b)
101#endif
102
4bb91c68 103/* This is for other GNU distributions with internationalized messages. */
0b32bf0e 104#if HAVE_LIBINTL_H || defined _LIBC
fa9a63c5
RM
105# include <libintl.h>
106#else
107# define gettext(msgid) (msgid)
108#endif
109
5e69f11e
RM
110#ifndef gettext_noop
111/* This define is so xgettext can find the internationalizable
112 strings. */
0b32bf0e 113# define gettext_noop(String) String
5e69f11e
RM
114#endif
115
fa9a63c5
RM
116/* The `emacs' switch turns on certain matching commands
117 that make sense only in Emacs. */
118#ifdef emacs
119
d7306fe6 120# include <setjmp.h>
0b32bf0e
SM
121# include "lisp.h"
122# include "buffer.h"
b18215fc
RS
123
124/* Make syntax table lookup grant data in gl_state. */
0b32bf0e 125# define SYNTAX_ENTRY_VIA_PROPERTY
b18215fc 126
0b32bf0e 127# include "syntax.h"
9117d724 128# include "character.h"
0b32bf0e 129# include "category.h"
fa9a63c5 130
7689ef0b
EZ
131# ifdef malloc
132# undef malloc
133# endif
0b32bf0e 134# define malloc xmalloc
7689ef0b
EZ
135# ifdef realloc
136# undef realloc
137# endif
0b32bf0e 138# define realloc xrealloc
7689ef0b
EZ
139# ifdef free
140# undef free
141# endif
0b32bf0e 142# define free xfree
9abbd165 143
7814e705 144/* Converts the pointer to the char to BEG-based offset from the start. */
0b32bf0e
SM
145# define PTR_TO_OFFSET(d) POS_AS_IN_BUFFER (POINTER_TO_OFFSET (d))
146# define POS_AS_IN_BUFFER(p) ((p) + (NILP (re_match_object) || BUFFERP (re_match_object)))
147
148# define RE_MULTIBYTE_P(bufp) ((bufp)->multibyte)
bf216479 149# define RE_TARGET_MULTIBYTE_P(bufp) ((bufp)->target_multibyte)
62a6e103
AS
150# define RE_STRING_CHAR(p, multibyte) \
151 (multibyte ? (STRING_CHAR (p)) : (*(p)))
152# define RE_STRING_CHAR_AND_LENGTH(p, len, multibyte) \
153 (multibyte ? (STRING_CHAR_AND_LENGTH (p, len)) : ((len) = 1, *(p)))
2d1675e4 154
4c0354d7 155# define RE_CHAR_TO_MULTIBYTE(c) UNIBYTE_TO_CHAR (c)
cf9c99bc 156
2afc21f5 157# define RE_CHAR_TO_UNIBYTE(c) CHAR_TO_BYTE_SAFE (c)
cf9c99bc 158
6fdd04b0
KH
159/* Set C a (possibly converted to multibyte) character before P. P
160 points into a string which is the virtual concatenation of STR1
161 (which ends at END1) or STR2 (which ends at END2). */
bf216479
KH
162# define GET_CHAR_BEFORE_2(c, p, str1, end1, str2, end2) \
163 do { \
02cb78b5 164 if (target_multibyte) \
bf216479
KH
165 { \
166 re_char *dtemp = (p) == (str2) ? (end1) : (p); \
167 re_char *dlimit = ((p) > (str2) && (p) <= (end2)) ? (str2) : (str1); \
168 while (dtemp-- > dlimit && !CHAR_HEAD_P (*dtemp)); \
62a6e103 169 c = STRING_CHAR (dtemp); \
bf216479
KH
170 } \
171 else \
172 { \
173 (c = ((p) == (str2) ? (end1) : (p))[-1]); \
cf9c99bc 174 (c) = RE_CHAR_TO_MULTIBYTE (c); \
bf216479 175 } \
2d1675e4
SM
176 } while (0)
177
6fdd04b0
KH
178/* Set C a (possibly converted to multibyte) character at P, and set
179 LEN to the byte length of that character. */
180# define GET_CHAR_AFTER(c, p, len) \
181 do { \
02cb78b5 182 if (target_multibyte) \
62a6e103 183 (c) = STRING_CHAR_AND_LENGTH (p, len); \
6fdd04b0
KH
184 else \
185 { \
cf9c99bc 186 (c) = *p; \
6fdd04b0 187 len = 1; \
cf9c99bc 188 (c) = RE_CHAR_TO_MULTIBYTE (c); \
6fdd04b0 189 } \
8f924df7 190 } while (0)
4e8a9132 191
fa9a63c5
RM
192#else /* not emacs */
193
194/* If we are not linking with Emacs proper,
195 we can't use the relocating allocator
196 even if config.h says that we can. */
0b32bf0e 197# undef REL_ALLOC
fa9a63c5 198
0b32bf0e
SM
199# if defined STDC_HEADERS || defined _LIBC
200# include <stdlib.h>
201# else
fa9a63c5
RM
202char *malloc ();
203char *realloc ();
0b32bf0e 204# endif
fa9a63c5 205
a77f947b
CY
206/* When used in Emacs's lib-src, we need xmalloc and xrealloc. */
207
208void *
209xmalloc (size)
210 size_t size;
211{
212 register void *val;
213 val = (void *) malloc (size);
214 if (!val && size)
215 {
216 write (2, "virtual memory exhausted\n", 25);
217 exit (1);
218 }
219 return val;
220}
221
222void *
223xrealloc (block, size)
224 void *block;
225 size_t size;
226{
227 register void *val;
228 /* We must call malloc explicitly when BLOCK is 0, since some
229 reallocs don't do this. */
230 if (! block)
231 val = (void *) malloc (size);
232 else
233 val = (void *) realloc (block, size);
234 if (!val && size)
235 {
236 write (2, "virtual memory exhausted\n", 25);
237 exit (1);
238 }
239 return val;
240}
241
a073faa6
CY
242# ifdef malloc
243# undef malloc
244# endif
245# define malloc xmalloc
246# ifdef realloc
247# undef realloc
248# endif
249# define realloc xrealloc
250
9e4ecb26 251/* When used in Emacs's lib-src, we need to get bzero and bcopy somehow.
4bb91c68 252 If nothing else has been done, use the method below. */
0b32bf0e
SM
253# ifdef INHIBIT_STRING_HEADER
254# if !(defined HAVE_BZERO && defined HAVE_BCOPY)
255# if !defined bzero && !defined bcopy
256# undef INHIBIT_STRING_HEADER
257# endif
258# endif
259# endif
9e4ecb26 260
4bb91c68 261/* This is the normal way of making sure we have memcpy, memcmp and bzero.
9e4ecb26
KH
262 This is used in most programs--a few other programs avoid this
263 by defining INHIBIT_STRING_HEADER. */
0b32bf0e
SM
264# ifndef INHIBIT_STRING_HEADER
265# if defined HAVE_STRING_H || defined STDC_HEADERS || defined _LIBC
266# include <string.h>
0b32bf0e 267# ifndef bzero
4bb91c68
SM
268# ifndef _LIBC
269# define bzero(s, n) (memset (s, '\0', n), (s))
270# else
271# define bzero(s, n) __bzero (s, n)
272# endif
0b32bf0e
SM
273# endif
274# else
275# include <strings.h>
4bb91c68
SM
276# ifndef memcmp
277# define memcmp(s1, s2, n) bcmp (s1, s2, n)
278# endif
279# ifndef memcpy
280# define memcpy(d, s, n) (bcopy (s, d, n), (d))
281# endif
0b32bf0e
SM
282# endif
283# endif
fa9a63c5
RM
284
285/* Define the syntax stuff for \<, \>, etc. */
286
990b2375 287/* Sword must be nonzero for the wordchar pattern commands in re_match_2. */
669fa600 288enum syntaxcode { Swhitespace = 0, Sword = 1, Ssymbol = 2 };
fa9a63c5 289
0b32bf0e 290# define SWITCH_ENUM_CAST(x) (x)
fa9a63c5 291
e934739e 292/* Dummy macros for non-Emacs environments. */
0b32bf0e
SM
293# define BASE_LEADING_CODE_P(c) (0)
294# define CHAR_CHARSET(c) 0
295# define CHARSET_LEADING_CODE_BASE(c) 0
296# define MAX_MULTIBYTE_LENGTH 1
297# define RE_MULTIBYTE_P(x) 0
bf216479 298# define RE_TARGET_MULTIBYTE_P(x) 0
0b32bf0e
SM
299# define WORD_BOUNDARY_P(c1, c2) (0)
300# define CHAR_HEAD_P(p) (1)
301# define SINGLE_BYTE_CHAR_P(c) (1)
302# define SAME_CHARSET_P(c1, c2) (1)
303# define MULTIBYTE_FORM_LENGTH(p, s) (1)
70806df6 304# define PREV_CHAR_BOUNDARY(p, limit) ((p)--)
62a6e103
AS
305# define STRING_CHAR(p) (*(p))
306# define RE_STRING_CHAR(p, multibyte) STRING_CHAR (p)
0b32bf0e 307# define CHAR_STRING(c, s) (*(s) = (c), 1)
62a6e103
AS
308# define STRING_CHAR_AND_LENGTH(p, actual_len) ((actual_len) = 1, *(p))
309# define RE_STRING_CHAR_AND_LENGTH(p, len, multibyte) STRING_CHAR_AND_LENGTH (p, len)
cf9c99bc
KH
310# define RE_CHAR_TO_MULTIBYTE(c) (c)
311# define RE_CHAR_TO_UNIBYTE(c) (c)
0b32bf0e 312# define GET_CHAR_BEFORE_2(c, p, str1, end1, str2, end2) \
b18215fc 313 (c = ((p) == (str2) ? *((end1) - 1) : *((p) - 1)))
6fdd04b0
KH
314# define GET_CHAR_AFTER(c, p, len) \
315 (c = *p, len = 1)
0b32bf0e 316# define MAKE_CHAR(charset, c1, c2) (c1)
9117d724
KH
317# define BYTE8_TO_CHAR(c) (c)
318# define CHAR_BYTE8_P(c) (0)
bf216479 319# define CHAR_LEADING_CODE(c) (c)
8f924df7 320
fa9a63c5 321#endif /* not emacs */
4e8a9132
SM
322
323#ifndef RE_TRANSLATE
0b32bf0e
SM
324# define RE_TRANSLATE(TBL, C) ((unsigned char)(TBL)[C])
325# define RE_TRANSLATE_P(TBL) (TBL)
4e8a9132 326#endif
fa9a63c5
RM
327\f
328/* Get the interface, including the syntax bits. */
329#include "regex.h"
330
f71b19b6
DL
331/* isalpha etc. are used for the character classes. */
332#include <ctype.h>
fa9a63c5 333
f71b19b6 334#ifdef emacs
fa9a63c5 335
f71b19b6 336/* 1 if C is an ASCII character. */
0b32bf0e 337# define IS_REAL_ASCII(c) ((c) < 0200)
fa9a63c5 338
f71b19b6 339/* 1 if C is a unibyte character. */
0b32bf0e 340# define ISUNIBYTE(c) (SINGLE_BYTE_CHAR_P ((c)))
96cc36cc 341
f71b19b6 342/* The Emacs definitions should not be directly affected by locales. */
96cc36cc 343
f71b19b6 344/* In Emacs, these are only used for single-byte characters. */
0b32bf0e
SM
345# define ISDIGIT(c) ((c) >= '0' && (c) <= '9')
346# define ISCNTRL(c) ((c) < ' ')
347# define ISXDIGIT(c) (((c) >= '0' && (c) <= '9') \
f71b19b6
DL
348 || ((c) >= 'a' && (c) <= 'f') \
349 || ((c) >= 'A' && (c) <= 'F'))
96cc36cc
RS
350
351/* This is only used for single-byte characters. */
0b32bf0e 352# define ISBLANK(c) ((c) == ' ' || (c) == '\t')
96cc36cc
RS
353
354/* The rest must handle multibyte characters. */
355
0b32bf0e 356# define ISGRAPH(c) (SINGLE_BYTE_CHAR_P (c) \
f71b19b6 357 ? (c) > ' ' && !((c) >= 0177 && (c) <= 0237) \
96cc36cc
RS
358 : 1)
359
14473664 360# define ISPRINT(c) (SINGLE_BYTE_CHAR_P (c) \
f71b19b6 361 ? (c) >= ' ' && !((c) >= 0177 && (c) <= 0237) \
96cc36cc
RS
362 : 1)
363
0b32bf0e 364# define ISALNUM(c) (IS_REAL_ASCII (c) \
f71b19b6
DL
365 ? (((c) >= 'a' && (c) <= 'z') \
366 || ((c) >= 'A' && (c) <= 'Z') \
367 || ((c) >= '0' && (c) <= '9')) \
96cc36cc
RS
368 : SYNTAX (c) == Sword)
369
0b32bf0e 370# define ISALPHA(c) (IS_REAL_ASCII (c) \
f71b19b6
DL
371 ? (((c) >= 'a' && (c) <= 'z') \
372 || ((c) >= 'A' && (c) <= 'Z')) \
96cc36cc
RS
373 : SYNTAX (c) == Sword)
374
0b32bf0e 375# define ISLOWER(c) (LOWERCASEP (c))
96cc36cc 376
0b32bf0e 377# define ISPUNCT(c) (IS_REAL_ASCII (c) \
f71b19b6
DL
378 ? ((c) > ' ' && (c) < 0177 \
379 && !(((c) >= 'a' && (c) <= 'z') \
4bb91c68
SM
380 || ((c) >= 'A' && (c) <= 'Z') \
381 || ((c) >= '0' && (c) <= '9'))) \
96cc36cc
RS
382 : SYNTAX (c) != Sword)
383
0b32bf0e 384# define ISSPACE(c) (SYNTAX (c) == Swhitespace)
96cc36cc 385
0b32bf0e 386# define ISUPPER(c) (UPPERCASEP (c))
96cc36cc 387
0b32bf0e 388# define ISWORD(c) (SYNTAX (c) == Sword)
96cc36cc
RS
389
390#else /* not emacs */
391
f71b19b6
DL
392/* Jim Meyering writes:
393
394 "... Some ctype macros are valid only for character codes that
395 isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when
396 using /bin/cc or gcc but without giving an ansi option). So, all
4bb91c68 397 ctype uses should be through macros like ISPRINT... If
f71b19b6
DL
398 STDC_HEADERS is defined, then autoconf has verified that the ctype
399 macros don't need to be guarded with references to isascii. ...
400 Defining isascii to 1 should let any compiler worth its salt
4bb91c68
SM
401 eliminate the && through constant folding."
402 Solaris defines some of these symbols so we must undefine them first. */
f71b19b6 403
4bb91c68 404# undef ISASCII
0b32bf0e
SM
405# if defined STDC_HEADERS || (!defined isascii && !defined HAVE_ISASCII)
406# define ISASCII(c) 1
407# else
408# define ISASCII(c) isascii(c)
409# endif
f71b19b6
DL
410
411/* 1 if C is an ASCII character. */
0b32bf0e 412# define IS_REAL_ASCII(c) ((c) < 0200)
f71b19b6
DL
413
414/* This distinction is not meaningful, except in Emacs. */
0b32bf0e
SM
415# define ISUNIBYTE(c) 1
416
417# ifdef isblank
418# define ISBLANK(c) (ISASCII (c) && isblank (c))
419# else
420# define ISBLANK(c) ((c) == ' ' || (c) == '\t')
421# endif
422# ifdef isgraph
423# define ISGRAPH(c) (ISASCII (c) && isgraph (c))
424# else
425# define ISGRAPH(c) (ISASCII (c) && isprint (c) && !isspace (c))
426# endif
427
4bb91c68 428# undef ISPRINT
0b32bf0e
SM
429# define ISPRINT(c) (ISASCII (c) && isprint (c))
430# define ISDIGIT(c) (ISASCII (c) && isdigit (c))
431# define ISALNUM(c) (ISASCII (c) && isalnum (c))
432# define ISALPHA(c) (ISASCII (c) && isalpha (c))
433# define ISCNTRL(c) (ISASCII (c) && iscntrl (c))
434# define ISLOWER(c) (ISASCII (c) && islower (c))
435# define ISPUNCT(c) (ISASCII (c) && ispunct (c))
436# define ISSPACE(c) (ISASCII (c) && isspace (c))
437# define ISUPPER(c) (ISASCII (c) && isupper (c))
438# define ISXDIGIT(c) (ISASCII (c) && isxdigit (c))
439
440# define ISWORD(c) ISALPHA(c)
441
4bb91c68
SM
442# ifdef _tolower
443# define TOLOWER(c) _tolower(c)
444# else
445# define TOLOWER(c) tolower(c)
446# endif
447
448/* How many characters in the character set. */
449# define CHAR_SET_SIZE 256
450
0b32bf0e 451# ifdef SYNTAX_TABLE
f71b19b6 452
0b32bf0e 453extern char *re_syntax_table;
f71b19b6 454
0b32bf0e
SM
455# else /* not SYNTAX_TABLE */
456
0b32bf0e
SM
457static char re_syntax_table[CHAR_SET_SIZE];
458
459static void
460init_syntax_once ()
461{
462 register int c;
463 static int done = 0;
464
465 if (done)
466 return;
467
468 bzero (re_syntax_table, sizeof re_syntax_table);
469
4bb91c68
SM
470 for (c = 0; c < CHAR_SET_SIZE; ++c)
471 if (ISALNUM (c))
472 re_syntax_table[c] = Sword;
fa9a63c5 473
669fa600 474 re_syntax_table['_'] = Ssymbol;
fa9a63c5 475
0b32bf0e
SM
476 done = 1;
477}
478
479# endif /* not SYNTAX_TABLE */
96cc36cc 480
4bb91c68
SM
481# define SYNTAX(c) re_syntax_table[(c)]
482
96cc36cc
RS
483#endif /* not emacs */
484\f
fa9a63c5 485#ifndef NULL
0b32bf0e 486# define NULL (void *)0
fa9a63c5
RM
487#endif
488
489/* We remove any previous definition of `SIGN_EXTEND_CHAR',
490 since ours (we hope) works properly with all combinations of
491 machines, compilers, `char' and `unsigned char' argument types.
4bb91c68 492 (Per Bothner suggested the basic approach.) */
fa9a63c5
RM
493#undef SIGN_EXTEND_CHAR
494#if __STDC__
0b32bf0e 495# define SIGN_EXTEND_CHAR(c) ((signed char) (c))
fa9a63c5
RM
496#else /* not __STDC__ */
497/* As in Harbison and Steele. */
0b32bf0e 498# define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
fa9a63c5
RM
499#endif
500\f
501/* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we
502 use `alloca' instead of `malloc'. This is because using malloc in
503 re_search* or re_match* could cause memory leaks when C-g is used in
504 Emacs; also, malloc is slower and causes storage fragmentation. On
5e69f11e
RM
505 the other hand, malloc is more portable, and easier to debug.
506
fa9a63c5
RM
507 Because we sometimes use alloca, some routines have to be macros,
508 not functions -- `alloca'-allocated space disappears at the end of the
509 function it is called in. */
510
511#ifdef REGEX_MALLOC
512
0b32bf0e
SM
513# define REGEX_ALLOCATE malloc
514# define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
515# define REGEX_FREE free
fa9a63c5
RM
516
517#else /* not REGEX_MALLOC */
518
519/* Emacs already defines alloca, sometimes. */
0b32bf0e 520# ifndef alloca
fa9a63c5
RM
521
522/* Make alloca work the best possible way. */
0b32bf0e
SM
523# ifdef __GNUC__
524# define alloca __builtin_alloca
525# else /* not __GNUC__ */
7f585e7a 526# ifdef HAVE_ALLOCA_H
0b32bf0e
SM
527# include <alloca.h>
528# endif /* HAVE_ALLOCA_H */
529# endif /* not __GNUC__ */
fa9a63c5 530
0b32bf0e 531# endif /* not alloca */
fa9a63c5 532
0b32bf0e 533# define REGEX_ALLOCATE alloca
fa9a63c5
RM
534
535/* Assumes a `char *destination' variable. */
0b32bf0e 536# define REGEX_REALLOCATE(source, osize, nsize) \
fa9a63c5 537 (destination = (char *) alloca (nsize), \
4bb91c68 538 memcpy (destination, source, osize))
fa9a63c5
RM
539
540/* No need to do anything to free, after alloca. */
0b32bf0e 541# define REGEX_FREE(arg) ((void)0) /* Do nothing! But inhibit gcc warning. */
fa9a63c5
RM
542
543#endif /* not REGEX_MALLOC */
544
545/* Define how to allocate the failure stack. */
546
0b32bf0e 547#if defined REL_ALLOC && defined REGEX_MALLOC
4297555e 548
0b32bf0e 549# define REGEX_ALLOCATE_STACK(size) \
fa9a63c5 550 r_alloc (&failure_stack_ptr, (size))
0b32bf0e 551# define REGEX_REALLOCATE_STACK(source, osize, nsize) \
fa9a63c5 552 r_re_alloc (&failure_stack_ptr, (nsize))
0b32bf0e 553# define REGEX_FREE_STACK(ptr) \
fa9a63c5
RM
554 r_alloc_free (&failure_stack_ptr)
555
4297555e 556#else /* not using relocating allocator */
fa9a63c5 557
0b32bf0e 558# ifdef REGEX_MALLOC
fa9a63c5 559
0b32bf0e
SM
560# define REGEX_ALLOCATE_STACK malloc
561# define REGEX_REALLOCATE_STACK(source, osize, nsize) realloc (source, nsize)
562# define REGEX_FREE_STACK free
fa9a63c5 563
0b32bf0e 564# else /* not REGEX_MALLOC */
fa9a63c5 565
0b32bf0e 566# define REGEX_ALLOCATE_STACK alloca
fa9a63c5 567
0b32bf0e 568# define REGEX_REALLOCATE_STACK(source, osize, nsize) \
fa9a63c5 569 REGEX_REALLOCATE (source, osize, nsize)
7814e705 570/* No need to explicitly free anything. */
0b32bf0e 571# define REGEX_FREE_STACK(arg) ((void)0)
fa9a63c5 572
0b32bf0e 573# endif /* not REGEX_MALLOC */
4297555e 574#endif /* not using relocating allocator */
fa9a63c5
RM
575
576
577/* True if `size1' is non-NULL and PTR is pointing anywhere inside
578 `string1' or just past its end. This works if PTR is NULL, which is
579 a good thing. */
25fe55af 580#define FIRST_STRING_P(ptr) \
fa9a63c5
RM
581 (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
582
583/* (Re)Allocate N items of type T using malloc, or fail. */
584#define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
585#define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
586#define RETALLOC_IF(addr, n, t) \
587 if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t)
588#define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
589
4bb91c68 590#define BYTEWIDTH 8 /* In bits. */
fa9a63c5
RM
591
592#define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
593
594#undef MAX
595#undef MIN
596#define MAX(a, b) ((a) > (b) ? (a) : (b))
597#define MIN(a, b) ((a) < (b) ? (a) : (b))
598
66f0296e
SM
599/* Type of source-pattern and string chars. */
600typedef const unsigned char re_char;
601
fa9a63c5
RM
602typedef char boolean;
603#define false 0
604#define true 1
605
4bb91c68
SM
606static int re_match_2_internal _RE_ARGS ((struct re_pattern_buffer *bufp,
607 re_char *string1, int size1,
608 re_char *string2, int size2,
609 int pos,
610 struct re_registers *regs,
611 int stop));
fa9a63c5
RM
612\f
613/* These are the command codes that appear in compiled regular
4bb91c68 614 expressions. Some opcodes are followed by argument bytes. A
fa9a63c5
RM
615 command code can specify any interpretation whatsoever for its
616 arguments. Zero bytes may appear in the compiled regular expression. */
617
618typedef enum
619{
620 no_op = 0,
621
4bb91c68 622 /* Succeed right away--no more backtracking. */
fa9a63c5
RM
623 succeed,
624
25fe55af 625 /* Followed by one byte giving n, then by n literal bytes. */
fa9a63c5
RM
626 exactn,
627
25fe55af 628 /* Matches any (more or less) character. */
fa9a63c5
RM
629 anychar,
630
25fe55af
RS
631 /* Matches any one char belonging to specified set. First
632 following byte is number of bitmap bytes. Then come bytes
633 for a bitmap saying which chars are in. Bits in each byte
634 are ordered low-bit-first. A character is in the set if its
635 bit is 1. A character too large to have a bit in the map is
96cc36cc
RS
636 automatically not in the set.
637
638 If the length byte has the 0x80 bit set, then that stuff
639 is followed by a range table:
640 2 bytes of flags for character sets (low 8 bits, high 8 bits)
0b32bf0e 641 See RANGE_TABLE_WORK_BITS below.
01618498 642 2 bytes, the number of pairs that follow (upto 32767)
96cc36cc 643 pairs, each 2 multibyte characters,
0b32bf0e 644 each multibyte character represented as 3 bytes. */
fa9a63c5
RM
645 charset,
646
25fe55af 647 /* Same parameters as charset, but match any character that is
4bb91c68 648 not one of those specified. */
fa9a63c5
RM
649 charset_not,
650
25fe55af
RS
651 /* Start remembering the text that is matched, for storing in a
652 register. Followed by one byte with the register number, in
653 the range 0 to one less than the pattern buffer's re_nsub
505bde11 654 field. */
fa9a63c5
RM
655 start_memory,
656
25fe55af
RS
657 /* Stop remembering the text that is matched and store it in a
658 memory register. Followed by one byte with the register
659 number, in the range 0 to one less than `re_nsub' in the
505bde11 660 pattern buffer. */
fa9a63c5
RM
661 stop_memory,
662
25fe55af 663 /* Match a duplicate of something remembered. Followed by one
4bb91c68 664 byte containing the register number. */
fa9a63c5
RM
665 duplicate,
666
25fe55af 667 /* Fail unless at beginning of line. */
fa9a63c5
RM
668 begline,
669
4bb91c68 670 /* Fail unless at end of line. */
fa9a63c5
RM
671 endline,
672
25fe55af
RS
673 /* Succeeds if at beginning of buffer (if emacs) or at beginning
674 of string to be matched (if not). */
fa9a63c5
RM
675 begbuf,
676
25fe55af 677 /* Analogously, for end of buffer/string. */
fa9a63c5 678 endbuf,
5e69f11e 679
25fe55af 680 /* Followed by two byte relative address to which to jump. */
5e69f11e 681 jump,
fa9a63c5 682
25fe55af 683 /* Followed by two-byte relative address of place to resume at
7814e705 684 in case of failure. */
fa9a63c5 685 on_failure_jump,
5e69f11e 686
25fe55af
RS
687 /* Like on_failure_jump, but pushes a placeholder instead of the
688 current string position when executed. */
fa9a63c5 689 on_failure_keep_string_jump,
5e69f11e 690
505bde11
SM
691 /* Just like `on_failure_jump', except that it checks that we
692 don't get stuck in an infinite loop (matching an empty string
693 indefinitely). */
694 on_failure_jump_loop,
695
0683b6fa
SM
696 /* Just like `on_failure_jump_loop', except that it checks for
697 a different kind of loop (the kind that shows up with non-greedy
698 operators). This operation has to be immediately preceded
699 by a `no_op'. */
700 on_failure_jump_nastyloop,
701
0b32bf0e 702 /* A smart `on_failure_jump' used for greedy * and + operators.
505bde11
SM
703 It analyses the loop before which it is put and if the
704 loop does not require backtracking, it changes itself to
4e8a9132
SM
705 `on_failure_keep_string_jump' and short-circuits the loop,
706 else it just defaults to changing itself into `on_failure_jump'.
707 It assumes that it is pointing to just past a `jump'. */
505bde11 708 on_failure_jump_smart,
fa9a63c5 709
25fe55af 710 /* Followed by two-byte relative address and two-byte number n.
ed0767d8
SM
711 After matching N times, jump to the address upon failure.
712 Does not work if N starts at 0: use on_failure_jump_loop
713 instead. */
fa9a63c5
RM
714 succeed_n,
715
25fe55af
RS
716 /* Followed by two-byte relative address, and two-byte number n.
717 Jump to the address N times, then fail. */
fa9a63c5
RM
718 jump_n,
719
25fe55af 720 /* Set the following two-byte relative address to the
7814e705 721 subsequent two-byte number. The address *includes* the two
25fe55af 722 bytes of number. */
fa9a63c5
RM
723 set_number_at,
724
fa9a63c5
RM
725 wordbeg, /* Succeeds if at word beginning. */
726 wordend, /* Succeeds if at word end. */
727
728 wordbound, /* Succeeds if at a word boundary. */
7814e705 729 notwordbound, /* Succeeds if not at a word boundary. */
fa9a63c5 730
669fa600
SM
731 symbeg, /* Succeeds if at symbol beginning. */
732 symend, /* Succeeds if at symbol end. */
733
fa9a63c5 734 /* Matches any character whose syntax is specified. Followed by
25fe55af 735 a byte which contains a syntax code, e.g., Sword. */
fa9a63c5
RM
736 syntaxspec,
737
738 /* Matches any character whose syntax is not that specified. */
1fb352e0
SM
739 notsyntaxspec
740
741#ifdef emacs
742 ,before_dot, /* Succeeds if before point. */
743 at_dot, /* Succeeds if at point. */
744 after_dot, /* Succeeds if after point. */
b18215fc
RS
745
746 /* Matches any character whose category-set contains the specified
7814e705
JB
747 category. The operator is followed by a byte which contains a
748 category code (mnemonic ASCII character). */
b18215fc
RS
749 categoryspec,
750
751 /* Matches any character whose category-set does not contain the
752 specified category. The operator is followed by a byte which
753 contains the category code (mnemonic ASCII character). */
754 notcategoryspec
fa9a63c5
RM
755#endif /* emacs */
756} re_opcode_t;
757\f
758/* Common operations on the compiled pattern. */
759
760/* Store NUMBER in two contiguous bytes starting at DESTINATION. */
761
762#define STORE_NUMBER(destination, number) \
763 do { \
764 (destination)[0] = (number) & 0377; \
765 (destination)[1] = (number) >> 8; \
766 } while (0)
767
768/* Same as STORE_NUMBER, except increment DESTINATION to
769 the byte after where the number is stored. Therefore, DESTINATION
770 must be an lvalue. */
771
772#define STORE_NUMBER_AND_INCR(destination, number) \
773 do { \
774 STORE_NUMBER (destination, number); \
775 (destination) += 2; \
776 } while (0)
777
778/* Put into DESTINATION a number stored in two contiguous bytes starting
779 at SOURCE. */
780
781#define EXTRACT_NUMBER(destination, source) \
782 do { \
783 (destination) = *(source) & 0377; \
784 (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8; \
785 } while (0)
786
787#ifdef DEBUG
4bb91c68 788static void extract_number _RE_ARGS ((int *dest, re_char *source));
fa9a63c5
RM
789static void
790extract_number (dest, source)
791 int *dest;
01618498 792 re_char *source;
fa9a63c5 793{
5e69f11e 794 int temp = SIGN_EXTEND_CHAR (*(source + 1));
fa9a63c5
RM
795 *dest = *source & 0377;
796 *dest += temp << 8;
797}
798
4bb91c68 799# ifndef EXTRACT_MACROS /* To debug the macros. */
0b32bf0e
SM
800# undef EXTRACT_NUMBER
801# define EXTRACT_NUMBER(dest, src) extract_number (&dest, src)
802# endif /* not EXTRACT_MACROS */
fa9a63c5
RM
803
804#endif /* DEBUG */
805
806/* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
807 SOURCE must be an lvalue. */
808
809#define EXTRACT_NUMBER_AND_INCR(destination, source) \
810 do { \
811 EXTRACT_NUMBER (destination, source); \
25fe55af 812 (source) += 2; \
fa9a63c5
RM
813 } while (0)
814
815#ifdef DEBUG
4bb91c68
SM
816static void extract_number_and_incr _RE_ARGS ((int *destination,
817 re_char **source));
fa9a63c5
RM
818static void
819extract_number_and_incr (destination, source)
820 int *destination;
01618498 821 re_char **source;
5e69f11e 822{
fa9a63c5
RM
823 extract_number (destination, *source);
824 *source += 2;
825}
826
0b32bf0e
SM
827# ifndef EXTRACT_MACROS
828# undef EXTRACT_NUMBER_AND_INCR
829# define EXTRACT_NUMBER_AND_INCR(dest, src) \
fa9a63c5 830 extract_number_and_incr (&dest, &src)
0b32bf0e 831# endif /* not EXTRACT_MACROS */
fa9a63c5
RM
832
833#endif /* DEBUG */
834\f
b18215fc
RS
835/* Store a multibyte character in three contiguous bytes starting
836 DESTINATION, and increment DESTINATION to the byte after where the
7814e705 837 character is stored. Therefore, DESTINATION must be an lvalue. */
b18215fc
RS
838
839#define STORE_CHARACTER_AND_INCR(destination, character) \
840 do { \
841 (destination)[0] = (character) & 0377; \
842 (destination)[1] = ((character) >> 8) & 0377; \
843 (destination)[2] = (character) >> 16; \
844 (destination) += 3; \
845 } while (0)
846
847/* Put into DESTINATION a character stored in three contiguous bytes
7814e705 848 starting at SOURCE. */
b18215fc
RS
849
850#define EXTRACT_CHARACTER(destination, source) \
851 do { \
852 (destination) = ((source)[0] \
853 | ((source)[1] << 8) \
854 | ((source)[2] << 16)); \
855 } while (0)
856
857
858/* Macros for charset. */
859
860/* Size of bitmap of charset P in bytes. P is a start of charset,
861 i.e. *P is (re_opcode_t) charset or (re_opcode_t) charset_not. */
862#define CHARSET_BITMAP_SIZE(p) ((p)[1] & 0x7F)
863
864/* Nonzero if charset P has range table. */
25fe55af 865#define CHARSET_RANGE_TABLE_EXISTS_P(p) ((p)[1] & 0x80)
b18215fc
RS
866
867/* Return the address of range table of charset P. But not the start
868 of table itself, but the before where the number of ranges is
96cc36cc
RS
869 stored. `2 +' means to skip re_opcode_t and size of bitmap,
870 and the 2 bytes of flags at the start of the range table. */
871#define CHARSET_RANGE_TABLE(p) (&(p)[4 + CHARSET_BITMAP_SIZE (p)])
872
873/* Extract the bit flags that start a range table. */
874#define CHARSET_RANGE_TABLE_BITS(p) \
875 ((p)[2 + CHARSET_BITMAP_SIZE (p)] \
876 + (p)[3 + CHARSET_BITMAP_SIZE (p)] * 0x100)
b18215fc
RS
877
878/* Test if C is listed in the bitmap of charset P. */
879#define CHARSET_LOOKUP_BITMAP(p, c) \
880 ((c) < CHARSET_BITMAP_SIZE (p) * BYTEWIDTH \
881 && (p)[2 + (c) / BYTEWIDTH] & (1 << ((c) % BYTEWIDTH)))
882
883/* Return the address of end of RANGE_TABLE. COUNT is number of
7814e705
JB
884 ranges (which is a pair of (start, end)) in the RANGE_TABLE. `* 2'
885 is start of range and end of range. `* 3' is size of each start
b18215fc
RS
886 and end. */
887#define CHARSET_RANGE_TABLE_END(range_table, count) \
888 ((range_table) + (count) * 2 * 3)
889
7814e705 890/* Test if C is in RANGE_TABLE. A flag NOT is negated if C is in.
b18215fc
RS
891 COUNT is number of ranges in RANGE_TABLE. */
892#define CHARSET_LOOKUP_RANGE_TABLE_RAW(not, c, range_table, count) \
893 do \
894 { \
01618498
SM
895 re_wchar_t range_start, range_end; \
896 re_char *p; \
897 re_char *range_table_end \
b18215fc
RS
898 = CHARSET_RANGE_TABLE_END ((range_table), (count)); \
899 \
900 for (p = (range_table); p < range_table_end; p += 2 * 3) \
901 { \
902 EXTRACT_CHARACTER (range_start, p); \
903 EXTRACT_CHARACTER (range_end, p + 3); \
904 \
905 if (range_start <= (c) && (c) <= range_end) \
906 { \
907 (not) = !(not); \
908 break; \
909 } \
910 } \
911 } \
912 while (0)
913
914/* Test if C is in range table of CHARSET. The flag NOT is negated if
915 C is listed in it. */
916#define CHARSET_LOOKUP_RANGE_TABLE(not, c, charset) \
917 do \
918 { \
919 /* Number of ranges in range table. */ \
920 int count; \
01618498
SM
921 re_char *range_table = CHARSET_RANGE_TABLE (charset); \
922 \
b18215fc
RS
923 EXTRACT_NUMBER_AND_INCR (count, range_table); \
924 CHARSET_LOOKUP_RANGE_TABLE_RAW ((not), (c), range_table, count); \
925 } \
926 while (0)
927\f
fa9a63c5
RM
928/* If DEBUG is defined, Regex prints many voluminous messages about what
929 it is doing (if the variable `debug' is nonzero). If linked with the
930 main program in `iregex.c', you can enter patterns and strings
931 interactively. And if linked with the main program in `main.c' and
4bb91c68 932 the other test files, you can run the already-written tests. */
fa9a63c5
RM
933
934#ifdef DEBUG
935
936/* We use standard I/O for debugging. */
0b32bf0e 937# include <stdio.h>
fa9a63c5
RM
938
939/* It is useful to test things that ``must'' be true when debugging. */
0b32bf0e 940# include <assert.h>
fa9a63c5 941
99633e97 942static int debug = -100000;
fa9a63c5 943
0b32bf0e
SM
944# define DEBUG_STATEMENT(e) e
945# define DEBUG_PRINT1(x) if (debug > 0) printf (x)
946# define DEBUG_PRINT2(x1, x2) if (debug > 0) printf (x1, x2)
947# define DEBUG_PRINT3(x1, x2, x3) if (debug > 0) printf (x1, x2, x3)
948# define DEBUG_PRINT4(x1, x2, x3, x4) if (debug > 0) printf (x1, x2, x3, x4)
949# define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \
99633e97 950 if (debug > 0) print_partial_compiled_pattern (s, e)
0b32bf0e 951# define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \
99633e97 952 if (debug > 0) print_double_string (w, s1, sz1, s2, sz2)
fa9a63c5
RM
953
954
955/* Print the fastmap in human-readable form. */
956
957void
958print_fastmap (fastmap)
959 char *fastmap;
960{
961 unsigned was_a_range = 0;
5e69f11e
RM
962 unsigned i = 0;
963
fa9a63c5
RM
964 while (i < (1 << BYTEWIDTH))
965 {
966 if (fastmap[i++])
967 {
968 was_a_range = 0;
25fe55af
RS
969 putchar (i - 1);
970 while (i < (1 << BYTEWIDTH) && fastmap[i])
971 {
972 was_a_range = 1;
973 i++;
974 }
fa9a63c5 975 if (was_a_range)
25fe55af
RS
976 {
977 printf ("-");
978 putchar (i - 1);
979 }
980 }
fa9a63c5 981 }
5e69f11e 982 putchar ('\n');
fa9a63c5
RM
983}
984
985
986/* Print a compiled pattern string in human-readable form, starting at
987 the START pointer into it and ending just before the pointer END. */
988
989void
990print_partial_compiled_pattern (start, end)
01618498
SM
991 re_char *start;
992 re_char *end;
fa9a63c5
RM
993{
994 int mcnt, mcnt2;
01618498
SM
995 re_char *p = start;
996 re_char *pend = end;
fa9a63c5
RM
997
998 if (start == NULL)
999 {
a1a052df 1000 fprintf (stderr, "(null)\n");
fa9a63c5
RM
1001 return;
1002 }
5e69f11e 1003
fa9a63c5
RM
1004 /* Loop over pattern commands. */
1005 while (p < pend)
1006 {
a1a052df 1007 fprintf (stderr, "%d:\t", p - start);
fa9a63c5
RM
1008
1009 switch ((re_opcode_t) *p++)
1010 {
25fe55af 1011 case no_op:
a1a052df 1012 fprintf (stderr, "/no_op");
25fe55af 1013 break;
fa9a63c5 1014
99633e97 1015 case succeed:
a1a052df 1016 fprintf (stderr, "/succeed");
99633e97
SM
1017 break;
1018
fa9a63c5
RM
1019 case exactn:
1020 mcnt = *p++;
a1a052df 1021 fprintf (stderr, "/exactn/%d", mcnt);
25fe55af 1022 do
fa9a63c5 1023 {
a1a052df 1024 fprintf (stderr, "/%c", *p++);
25fe55af
RS
1025 }
1026 while (--mcnt);
1027 break;
fa9a63c5
RM
1028
1029 case start_memory:
a1a052df 1030 fprintf (stderr, "/start_memory/%d", *p++);
25fe55af 1031 break;
fa9a63c5
RM
1032
1033 case stop_memory:
a1a052df 1034 fprintf (stderr, "/stop_memory/%d", *p++);
25fe55af 1035 break;
fa9a63c5
RM
1036
1037 case duplicate:
a1a052df 1038 fprintf (stderr, "/duplicate/%d", *p++);
fa9a63c5
RM
1039 break;
1040
1041 case anychar:
a1a052df 1042 fprintf (stderr, "/anychar");
fa9a63c5
RM
1043 break;
1044
1045 case charset:
25fe55af
RS
1046 case charset_not:
1047 {
1048 register int c, last = -100;
fa9a63c5 1049 register int in_range = 0;
99633e97
SM
1050 int length = CHARSET_BITMAP_SIZE (p - 1);
1051 int has_range_table = CHARSET_RANGE_TABLE_EXISTS_P (p - 1);
fa9a63c5 1052
a1a052df 1053 fprintf (stderr, "/charset [%s",
839966f3 1054 (re_opcode_t) *(p - 1) == charset_not ? "^" : "");
5e69f11e 1055
839966f3
KH
1056 if (p + *p >= pend)
1057 fprintf (stderr, " !extends past end of pattern! ");
fa9a63c5 1058
25fe55af 1059 for (c = 0; c < 256; c++)
96cc36cc 1060 if (c / 8 < length
fa9a63c5
RM
1061 && (p[1 + (c/8)] & (1 << (c % 8))))
1062 {
1063 /* Are we starting a range? */
1064 if (last + 1 == c && ! in_range)
1065 {
a1a052df 1066 fprintf (stderr, "-");
fa9a63c5
RM
1067 in_range = 1;
1068 }
1069 /* Have we broken a range? */
1070 else if (last + 1 != c && in_range)
96cc36cc 1071 {
a1a052df 1072 fprintf (stderr, "%c", last);
fa9a63c5
RM
1073 in_range = 0;
1074 }
5e69f11e 1075
fa9a63c5 1076 if (! in_range)
a1a052df 1077 fprintf (stderr, "%c", c);
fa9a63c5
RM
1078
1079 last = c;
25fe55af 1080 }
fa9a63c5
RM
1081
1082 if (in_range)
a1a052df 1083 fprintf (stderr, "%c", last);
fa9a63c5 1084
a1a052df 1085 fprintf (stderr, "]");
fa9a63c5 1086
99633e97 1087 p += 1 + length;
96cc36cc 1088
96cc36cc 1089 if (has_range_table)
99633e97
SM
1090 {
1091 int count;
a1a052df 1092 fprintf (stderr, "has-range-table");
99633e97
SM
1093
1094 /* ??? Should print the range table; for now, just skip it. */
1095 p += 2; /* skip range table bits */
1096 EXTRACT_NUMBER_AND_INCR (count, p);
1097 p = CHARSET_RANGE_TABLE_END (p, count);
1098 }
fa9a63c5
RM
1099 }
1100 break;
1101
1102 case begline:
a1a052df 1103 fprintf (stderr, "/begline");
25fe55af 1104 break;
fa9a63c5
RM
1105
1106 case endline:
a1a052df 1107 fprintf (stderr, "/endline");
25fe55af 1108 break;
fa9a63c5
RM
1109
1110 case on_failure_jump:
25fe55af 1111 extract_number_and_incr (&mcnt, &p);
a1a052df 1112 fprintf (stderr, "/on_failure_jump to %d", p + mcnt - start);
25fe55af 1113 break;
fa9a63c5
RM
1114
1115 case on_failure_keep_string_jump:
25fe55af 1116 extract_number_and_incr (&mcnt, &p);
a1a052df 1117 fprintf (stderr, "/on_failure_keep_string_jump to %d", p + mcnt - start);
25fe55af 1118 break;
fa9a63c5 1119
0683b6fa
SM
1120 case on_failure_jump_nastyloop:
1121 extract_number_and_incr (&mcnt, &p);
a1a052df 1122 fprintf (stderr, "/on_failure_jump_nastyloop to %d", p + mcnt - start);
0683b6fa
SM
1123 break;
1124
505bde11 1125 case on_failure_jump_loop:
fa9a63c5 1126 extract_number_and_incr (&mcnt, &p);
a1a052df 1127 fprintf (stderr, "/on_failure_jump_loop to %d", p + mcnt - start);
5e69f11e
RM
1128 break;
1129
505bde11 1130 case on_failure_jump_smart:
fa9a63c5 1131 extract_number_and_incr (&mcnt, &p);
a1a052df 1132 fprintf (stderr, "/on_failure_jump_smart to %d", p + mcnt - start);
5e69f11e
RM
1133 break;
1134
25fe55af 1135 case jump:
fa9a63c5 1136 extract_number_and_incr (&mcnt, &p);
a1a052df 1137 fprintf (stderr, "/jump to %d", p + mcnt - start);
fa9a63c5
RM
1138 break;
1139
25fe55af
RS
1140 case succeed_n:
1141 extract_number_and_incr (&mcnt, &p);
1142 extract_number_and_incr (&mcnt2, &p);
a1a052df 1143 fprintf (stderr, "/succeed_n to %d, %d times", p - 2 + mcnt - start, mcnt2);
25fe55af 1144 break;
5e69f11e 1145
25fe55af
RS
1146 case jump_n:
1147 extract_number_and_incr (&mcnt, &p);
1148 extract_number_and_incr (&mcnt2, &p);
a1a052df 1149 fprintf (stderr, "/jump_n to %d, %d times", p - 2 + mcnt - start, mcnt2);
25fe55af 1150 break;
5e69f11e 1151
25fe55af
RS
1152 case set_number_at:
1153 extract_number_and_incr (&mcnt, &p);
1154 extract_number_and_incr (&mcnt2, &p);
a1a052df 1155 fprintf (stderr, "/set_number_at location %d to %d", p - 2 + mcnt - start, mcnt2);
25fe55af 1156 break;
5e69f11e 1157
25fe55af 1158 case wordbound:
a1a052df 1159 fprintf (stderr, "/wordbound");
fa9a63c5
RM
1160 break;
1161
1162 case notwordbound:
a1a052df 1163 fprintf (stderr, "/notwordbound");
25fe55af 1164 break;
fa9a63c5
RM
1165
1166 case wordbeg:
a1a052df 1167 fprintf (stderr, "/wordbeg");
fa9a63c5 1168 break;
5e69f11e 1169
fa9a63c5 1170 case wordend:
a1a052df 1171 fprintf (stderr, "/wordend");
e2543b02 1172 break;
5e69f11e 1173
669fa600 1174 case symbeg:
e2543b02 1175 fprintf (stderr, "/symbeg");
669fa600
SM
1176 break;
1177
1178 case symend:
e2543b02 1179 fprintf (stderr, "/symend");
669fa600 1180 break;
5e69f11e 1181
1fb352e0 1182 case syntaxspec:
a1a052df 1183 fprintf (stderr, "/syntaxspec");
1fb352e0 1184 mcnt = *p++;
a1a052df 1185 fprintf (stderr, "/%d", mcnt);
1fb352e0
SM
1186 break;
1187
1188 case notsyntaxspec:
a1a052df 1189 fprintf (stderr, "/notsyntaxspec");
1fb352e0 1190 mcnt = *p++;
a1a052df 1191 fprintf (stderr, "/%d", mcnt);
1fb352e0
SM
1192 break;
1193
0b32bf0e 1194# ifdef emacs
fa9a63c5 1195 case before_dot:
a1a052df 1196 fprintf (stderr, "/before_dot");
25fe55af 1197 break;
fa9a63c5
RM
1198
1199 case at_dot:
a1a052df 1200 fprintf (stderr, "/at_dot");
25fe55af 1201 break;
fa9a63c5
RM
1202
1203 case after_dot:
a1a052df 1204 fprintf (stderr, "/after_dot");
25fe55af 1205 break;
fa9a63c5 1206
1fb352e0 1207 case categoryspec:
a1a052df 1208 fprintf (stderr, "/categoryspec");
fa9a63c5 1209 mcnt = *p++;
a1a052df 1210 fprintf (stderr, "/%d", mcnt);
25fe55af 1211 break;
5e69f11e 1212
1fb352e0 1213 case notcategoryspec:
a1a052df 1214 fprintf (stderr, "/notcategoryspec");
fa9a63c5 1215 mcnt = *p++;
a1a052df 1216 fprintf (stderr, "/%d", mcnt);
fa9a63c5 1217 break;
0b32bf0e 1218# endif /* emacs */
fa9a63c5 1219
fa9a63c5 1220 case begbuf:
a1a052df 1221 fprintf (stderr, "/begbuf");
25fe55af 1222 break;
fa9a63c5
RM
1223
1224 case endbuf:
a1a052df 1225 fprintf (stderr, "/endbuf");
25fe55af 1226 break;
fa9a63c5 1227
25fe55af 1228 default:
a1a052df 1229 fprintf (stderr, "?%d", *(p-1));
fa9a63c5
RM
1230 }
1231
a1a052df 1232 fprintf (stderr, "\n");
fa9a63c5
RM
1233 }
1234
a1a052df 1235 fprintf (stderr, "%d:\tend of pattern.\n", p - start);
fa9a63c5
RM
1236}
1237
1238
1239void
1240print_compiled_pattern (bufp)
1241 struct re_pattern_buffer *bufp;
1242{
01618498 1243 re_char *buffer = bufp->buffer;
fa9a63c5
RM
1244
1245 print_partial_compiled_pattern (buffer, buffer + bufp->used);
4bb91c68
SM
1246 printf ("%ld bytes used/%ld bytes allocated.\n",
1247 bufp->used, bufp->allocated);
fa9a63c5
RM
1248
1249 if (bufp->fastmap_accurate && bufp->fastmap)
1250 {
1251 printf ("fastmap: ");
1252 print_fastmap (bufp->fastmap);
1253 }
1254
1255 printf ("re_nsub: %d\t", bufp->re_nsub);
1256 printf ("regs_alloc: %d\t", bufp->regs_allocated);
1257 printf ("can_be_null: %d\t", bufp->can_be_null);
fa9a63c5
RM
1258 printf ("no_sub: %d\t", bufp->no_sub);
1259 printf ("not_bol: %d\t", bufp->not_bol);
1260 printf ("not_eol: %d\t", bufp->not_eol);
4bb91c68 1261 printf ("syntax: %lx\n", bufp->syntax);
505bde11 1262 fflush (stdout);
fa9a63c5
RM
1263 /* Perhaps we should print the translate table? */
1264}
1265
1266
1267void
1268print_double_string (where, string1, size1, string2, size2)
66f0296e
SM
1269 re_char *where;
1270 re_char *string1;
1271 re_char *string2;
fa9a63c5
RM
1272 int size1;
1273 int size2;
1274{
4bb91c68 1275 int this_char;
5e69f11e 1276
fa9a63c5
RM
1277 if (where == NULL)
1278 printf ("(null)");
1279 else
1280 {
1281 if (FIRST_STRING_P (where))
25fe55af
RS
1282 {
1283 for (this_char = where - string1; this_char < size1; this_char++)
1284 putchar (string1[this_char]);
fa9a63c5 1285
25fe55af
RS
1286 where = string2;
1287 }
fa9a63c5
RM
1288
1289 for (this_char = where - string2; this_char < size2; this_char++)
25fe55af 1290 putchar (string2[this_char]);
fa9a63c5
RM
1291 }
1292}
1293
1294#else /* not DEBUG */
1295
0b32bf0e
SM
1296# undef assert
1297# define assert(e)
fa9a63c5 1298
0b32bf0e
SM
1299# define DEBUG_STATEMENT(e)
1300# define DEBUG_PRINT1(x)
1301# define DEBUG_PRINT2(x1, x2)
1302# define DEBUG_PRINT3(x1, x2, x3)
1303# define DEBUG_PRINT4(x1, x2, x3, x4)
1304# define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
1305# define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
fa9a63c5
RM
1306
1307#endif /* not DEBUG */
1308\f
1309/* Set by `re_set_syntax' to the current regexp syntax to recognize. Can
1310 also be assigned to arbitrarily: each pattern buffer stores its own
1311 syntax, so it can be changed between regex compilations. */
1312/* This has no initializer because initialized variables in Emacs
1313 become read-only after dumping. */
1314reg_syntax_t re_syntax_options;
1315
1316
1317/* Specify the precise syntax of regexps for compilation. This provides
1318 for compatibility for various utilities which historically have
1319 different, incompatible syntaxes.
1320
1321 The argument SYNTAX is a bit mask comprised of the various bits
4bb91c68 1322 defined in regex.h. We return the old syntax. */
fa9a63c5
RM
1323
1324reg_syntax_t
1325re_set_syntax (syntax)
f9b0fd99 1326 reg_syntax_t syntax;
fa9a63c5
RM
1327{
1328 reg_syntax_t ret = re_syntax_options;
5e69f11e 1329
fa9a63c5
RM
1330 re_syntax_options = syntax;
1331 return ret;
1332}
c0f9ea08 1333WEAK_ALIAS (__re_set_syntax, re_set_syntax)
f9b0fd99
RS
1334
1335/* Regexp to use to replace spaces, or NULL meaning don't. */
1336static re_char *whitespace_regexp;
1337
1338void
1339re_set_whitespace_regexp (regexp)
6470ea05 1340 const char *regexp;
f9b0fd99 1341{
6470ea05 1342 whitespace_regexp = (re_char *) regexp;
f9b0fd99
RS
1343}
1344WEAK_ALIAS (__re_set_syntax, re_set_syntax)
fa9a63c5
RM
1345\f
1346/* This table gives an error message for each of the error codes listed
4bb91c68 1347 in regex.h. Obviously the order here has to be same as there.
fa9a63c5 1348 POSIX doesn't require that we do anything for REG_NOERROR,
4bb91c68 1349 but why not be nice? */
fa9a63c5
RM
1350
1351static const char *re_error_msgid[] =
5e69f11e
RM
1352 {
1353 gettext_noop ("Success"), /* REG_NOERROR */
1354 gettext_noop ("No match"), /* REG_NOMATCH */
1355 gettext_noop ("Invalid regular expression"), /* REG_BADPAT */
1356 gettext_noop ("Invalid collation character"), /* REG_ECOLLATE */
1357 gettext_noop ("Invalid character class name"), /* REG_ECTYPE */
1358 gettext_noop ("Trailing backslash"), /* REG_EESCAPE */
1359 gettext_noop ("Invalid back reference"), /* REG_ESUBREG */
1360 gettext_noop ("Unmatched [ or [^"), /* REG_EBRACK */
1361 gettext_noop ("Unmatched ( or \\("), /* REG_EPAREN */
1362 gettext_noop ("Unmatched \\{"), /* REG_EBRACE */
1363 gettext_noop ("Invalid content of \\{\\}"), /* REG_BADBR */
1364 gettext_noop ("Invalid range end"), /* REG_ERANGE */
1365 gettext_noop ("Memory exhausted"), /* REG_ESPACE */
1366 gettext_noop ("Invalid preceding regular expression"), /* REG_BADRPT */
1367 gettext_noop ("Premature end of regular expression"), /* REG_EEND */
1368 gettext_noop ("Regular expression too big"), /* REG_ESIZE */
1369 gettext_noop ("Unmatched ) or \\)"), /* REG_ERPAREN */
b3e4c897 1370 gettext_noop ("Range striding over charsets") /* REG_ERANGEX */
fa9a63c5
RM
1371 };
1372\f
4bb91c68 1373/* Avoiding alloca during matching, to placate r_alloc. */
fa9a63c5
RM
1374
1375/* Define MATCH_MAY_ALLOCATE unless we need to make sure that the
1376 searching and matching functions should not call alloca. On some
1377 systems, alloca is implemented in terms of malloc, and if we're
1378 using the relocating allocator routines, then malloc could cause a
1379 relocation, which might (if the strings being searched are in the
1380 ralloc heap) shift the data out from underneath the regexp
1381 routines.
1382
5e69f11e 1383 Here's another reason to avoid allocation: Emacs
fa9a63c5
RM
1384 processes input from X in a signal handler; processing X input may
1385 call malloc; if input arrives while a matching routine is calling
1386 malloc, then we're scrod. But Emacs can't just block input while
1387 calling matching routines; then we don't notice interrupts when
1388 they come in. So, Emacs blocks input around all regexp calls
1389 except the matching calls, which it leaves unprotected, in the
1390 faith that they will not malloc. */
1391
1392/* Normally, this is fine. */
1393#define MATCH_MAY_ALLOCATE
1394
fa9a63c5
RM
1395/* The match routines may not allocate if (1) they would do it with malloc
1396 and (2) it's not safe for them to use malloc.
1397 Note that if REL_ALLOC is defined, matching would not use malloc for the
1398 failure stack, but we would still use it for the register vectors;
4bb91c68 1399 so REL_ALLOC should not affect this. */
b588157e 1400#if defined REGEX_MALLOC && defined emacs
0b32bf0e 1401# undef MATCH_MAY_ALLOCATE
fa9a63c5
RM
1402#endif
1403
1404\f
1405/* Failure stack declarations and macros; both re_compile_fastmap and
1406 re_match_2 use a failure stack. These have to be macros because of
1407 REGEX_ALLOCATE_STACK. */
5e69f11e 1408
fa9a63c5 1409
320a2a73 1410/* Approximate number of failure points for which to initially allocate space
fa9a63c5
RM
1411 when matching. If this number is exceeded, we allocate more
1412 space, so it is not a hard limit. */
1413#ifndef INIT_FAILURE_ALLOC
0b32bf0e 1414# define INIT_FAILURE_ALLOC 20
fa9a63c5
RM
1415#endif
1416
1417/* Roughly the maximum number of failure points on the stack. Would be
320a2a73 1418 exactly that if always used TYPICAL_FAILURE_SIZE items each time we failed.
fa9a63c5 1419 This is a variable only so users of regex can assign to it; we never
ada30c0e
SM
1420 change it ourselves. We always multiply it by TYPICAL_FAILURE_SIZE
1421 before using it, so it should probably be a byte-count instead. */
c0f9ea08
SM
1422# if defined MATCH_MAY_ALLOCATE
1423/* Note that 4400 was enough to cause a crash on Alpha OSF/1,
320a2a73
KH
1424 whose default stack limit is 2mb. In order for a larger
1425 value to work reliably, you have to try to make it accord
1426 with the process stack limit. */
c0f9ea08
SM
1427size_t re_max_failures = 40000;
1428# else
1429size_t re_max_failures = 4000;
1430# endif
fa9a63c5
RM
1431
1432union fail_stack_elt
1433{
01618498 1434 re_char *pointer;
c0f9ea08
SM
1435 /* This should be the biggest `int' that's no bigger than a pointer. */
1436 long integer;
fa9a63c5
RM
1437};
1438
1439typedef union fail_stack_elt fail_stack_elt_t;
1440
1441typedef struct
1442{
1443 fail_stack_elt_t *stack;
c0f9ea08
SM
1444 size_t size;
1445 size_t avail; /* Offset of next open position. */
1446 size_t frame; /* Offset of the cur constructed frame. */
fa9a63c5
RM
1447} fail_stack_type;
1448
505bde11 1449#define FAIL_STACK_EMPTY() (fail_stack.frame == 0)
fa9a63c5
RM
1450#define FAIL_STACK_FULL() (fail_stack.avail == fail_stack.size)
1451
1452
1453/* Define macros to initialize and free the failure stack.
1454 Do `return -2' if the alloc fails. */
1455
1456#ifdef MATCH_MAY_ALLOCATE
0b32bf0e 1457# define INIT_FAIL_STACK() \
fa9a63c5
RM
1458 do { \
1459 fail_stack.stack = (fail_stack_elt_t *) \
320a2a73
KH
1460 REGEX_ALLOCATE_STACK (INIT_FAILURE_ALLOC * TYPICAL_FAILURE_SIZE \
1461 * sizeof (fail_stack_elt_t)); \
fa9a63c5
RM
1462 \
1463 if (fail_stack.stack == NULL) \
1464 return -2; \
1465 \
1466 fail_stack.size = INIT_FAILURE_ALLOC; \
1467 fail_stack.avail = 0; \
505bde11 1468 fail_stack.frame = 0; \
fa9a63c5
RM
1469 } while (0)
1470
0b32bf0e 1471# define RESET_FAIL_STACK() REGEX_FREE_STACK (fail_stack.stack)
fa9a63c5 1472#else
0b32bf0e 1473# define INIT_FAIL_STACK() \
fa9a63c5
RM
1474 do { \
1475 fail_stack.avail = 0; \
505bde11 1476 fail_stack.frame = 0; \
fa9a63c5
RM
1477 } while (0)
1478
0b32bf0e 1479# define RESET_FAIL_STACK() ((void)0)
fa9a63c5
RM
1480#endif
1481
1482
320a2a73
KH
1483/* Double the size of FAIL_STACK, up to a limit
1484 which allows approximately `re_max_failures' items.
fa9a63c5
RM
1485
1486 Return 1 if succeeds, and 0 if either ran out of memory
5e69f11e
RM
1487 allocating space for it or it was already too large.
1488
4bb91c68 1489 REGEX_REALLOCATE_STACK requires `destination' be declared. */
fa9a63c5 1490
320a2a73
KH
1491/* Factor to increase the failure stack size by
1492 when we increase it.
1493 This used to be 2, but 2 was too wasteful
1494 because the old discarded stacks added up to as much space
1495 were as ultimate, maximum-size stack. */
1496#define FAIL_STACK_GROWTH_FACTOR 4
1497
1498#define GROW_FAIL_STACK(fail_stack) \
eead07d6
KH
1499 (((fail_stack).size * sizeof (fail_stack_elt_t) \
1500 >= re_max_failures * TYPICAL_FAILURE_SIZE) \
fa9a63c5 1501 ? 0 \
320a2a73
KH
1502 : ((fail_stack).stack \
1503 = (fail_stack_elt_t *) \
25fe55af
RS
1504 REGEX_REALLOCATE_STACK ((fail_stack).stack, \
1505 (fail_stack).size * sizeof (fail_stack_elt_t), \
320a2a73
KH
1506 MIN (re_max_failures * TYPICAL_FAILURE_SIZE, \
1507 ((fail_stack).size * sizeof (fail_stack_elt_t) \
1508 * FAIL_STACK_GROWTH_FACTOR))), \
fa9a63c5
RM
1509 \
1510 (fail_stack).stack == NULL \
1511 ? 0 \
6453db45
KH
1512 : ((fail_stack).size \
1513 = (MIN (re_max_failures * TYPICAL_FAILURE_SIZE, \
1514 ((fail_stack).size * sizeof (fail_stack_elt_t) \
1515 * FAIL_STACK_GROWTH_FACTOR)) \
1516 / sizeof (fail_stack_elt_t)), \
25fe55af 1517 1)))
fa9a63c5
RM
1518
1519
fa9a63c5
RM
1520/* Push a pointer value onto the failure stack.
1521 Assumes the variable `fail_stack'. Probably should only
4bb91c68 1522 be called from within `PUSH_FAILURE_POINT'. */
fa9a63c5 1523#define PUSH_FAILURE_POINTER(item) \
01618498 1524 fail_stack.stack[fail_stack.avail++].pointer = (item)
fa9a63c5
RM
1525
1526/* This pushes an integer-valued item onto the failure stack.
1527 Assumes the variable `fail_stack'. Probably should only
4bb91c68 1528 be called from within `PUSH_FAILURE_POINT'. */
fa9a63c5
RM
1529#define PUSH_FAILURE_INT(item) \
1530 fail_stack.stack[fail_stack.avail++].integer = (item)
1531
1532/* Push a fail_stack_elt_t value onto the failure stack.
1533 Assumes the variable `fail_stack'. Probably should only
4bb91c68 1534 be called from within `PUSH_FAILURE_POINT'. */
fa9a63c5
RM
1535#define PUSH_FAILURE_ELT(item) \
1536 fail_stack.stack[fail_stack.avail++] = (item)
1537
1538/* These three POP... operations complement the three PUSH... operations.
1539 All assume that `fail_stack' is nonempty. */
1540#define POP_FAILURE_POINTER() fail_stack.stack[--fail_stack.avail].pointer
1541#define POP_FAILURE_INT() fail_stack.stack[--fail_stack.avail].integer
1542#define POP_FAILURE_ELT() fail_stack.stack[--fail_stack.avail]
1543
505bde11
SM
1544/* Individual items aside from the registers. */
1545#define NUM_NONREG_ITEMS 3
1546
1547/* Used to examine the stack (to detect infinite loops). */
1548#define FAILURE_PAT(h) fail_stack.stack[(h) - 1].pointer
66f0296e 1549#define FAILURE_STR(h) (fail_stack.stack[(h) - 2].pointer)
505bde11
SM
1550#define NEXT_FAILURE_HANDLE(h) fail_stack.stack[(h) - 3].integer
1551#define TOP_FAILURE_HANDLE() fail_stack.frame
fa9a63c5
RM
1552
1553
505bde11
SM
1554#define ENSURE_FAIL_STACK(space) \
1555while (REMAINING_AVAIL_SLOTS <= space) { \
1556 if (!GROW_FAIL_STACK (fail_stack)) \
1557 return -2; \
1558 DEBUG_PRINT2 ("\n Doubled stack; size now: %d\n", (fail_stack).size);\
1559 DEBUG_PRINT2 (" slots available: %d\n", REMAINING_AVAIL_SLOTS);\
1560}
1561
1562/* Push register NUM onto the stack. */
1563#define PUSH_FAILURE_REG(num) \
1564do { \
1565 char *destination; \
1566 ENSURE_FAIL_STACK(3); \
1567 DEBUG_PRINT4 (" Push reg %d (spanning %p -> %p)\n", \
1568 num, regstart[num], regend[num]); \
1569 PUSH_FAILURE_POINTER (regstart[num]); \
1570 PUSH_FAILURE_POINTER (regend[num]); \
1571 PUSH_FAILURE_INT (num); \
1572} while (0)
1573
01618498
SM
1574/* Change the counter's value to VAL, but make sure that it will
1575 be reset when backtracking. */
1576#define PUSH_NUMBER(ptr,val) \
dc1e502d
SM
1577do { \
1578 char *destination; \
1579 int c; \
1580 ENSURE_FAIL_STACK(3); \
1581 EXTRACT_NUMBER (c, ptr); \
01618498 1582 DEBUG_PRINT4 (" Push number %p = %d -> %d\n", ptr, c, val); \
dc1e502d
SM
1583 PUSH_FAILURE_INT (c); \
1584 PUSH_FAILURE_POINTER (ptr); \
1585 PUSH_FAILURE_INT (-1); \
01618498 1586 STORE_NUMBER (ptr, val); \
dc1e502d
SM
1587} while (0)
1588
505bde11 1589/* Pop a saved register off the stack. */
dc1e502d 1590#define POP_FAILURE_REG_OR_COUNT() \
505bde11
SM
1591do { \
1592 int reg = POP_FAILURE_INT (); \
dc1e502d
SM
1593 if (reg == -1) \
1594 { \
1595 /* It's a counter. */ \
6dcf2d0e
SM
1596 /* Here, we discard `const', making re_match non-reentrant. */ \
1597 unsigned char *ptr = (unsigned char*) POP_FAILURE_POINTER (); \
dc1e502d
SM
1598 reg = POP_FAILURE_INT (); \
1599 STORE_NUMBER (ptr, reg); \
1600 DEBUG_PRINT3 (" Pop counter %p = %d\n", ptr, reg); \
1601 } \
1602 else \
1603 { \
1604 regend[reg] = POP_FAILURE_POINTER (); \
1605 regstart[reg] = POP_FAILURE_POINTER (); \
1606 DEBUG_PRINT4 (" Pop reg %d (spanning %p -> %p)\n", \
1607 reg, regstart[reg], regend[reg]); \
1608 } \
505bde11
SM
1609} while (0)
1610
1611/* Check that we are not stuck in an infinite loop. */
1612#define CHECK_INFINITE_LOOP(pat_cur, string_place) \
1613do { \
f6df485f 1614 int failure = TOP_FAILURE_HANDLE (); \
505bde11 1615 /* Check for infinite matching loops */ \
f6df485f
RS
1616 while (failure > 0 \
1617 && (FAILURE_STR (failure) == string_place \
1618 || FAILURE_STR (failure) == NULL)) \
505bde11
SM
1619 { \
1620 assert (FAILURE_PAT (failure) >= bufp->buffer \
66f0296e 1621 && FAILURE_PAT (failure) <= bufp->buffer + bufp->used); \
505bde11 1622 if (FAILURE_PAT (failure) == pat_cur) \
f6df485f 1623 { \
6df42991
SM
1624 cycle = 1; \
1625 break; \
f6df485f 1626 } \
66f0296e 1627 DEBUG_PRINT2 (" Other pattern: %p\n", FAILURE_PAT (failure)); \
505bde11
SM
1628 failure = NEXT_FAILURE_HANDLE(failure); \
1629 } \
1630 DEBUG_PRINT2 (" Other string: %p\n", FAILURE_STR (failure)); \
1631} while (0)
6df42991 1632
fa9a63c5 1633/* Push the information about the state we will need
5e69f11e
RM
1634 if we ever fail back to it.
1635
505bde11 1636 Requires variables fail_stack, regstart, regend and
320a2a73 1637 num_regs be declared. GROW_FAIL_STACK requires `destination' be
fa9a63c5 1638 declared.
5e69f11e 1639
fa9a63c5
RM
1640 Does `return FAILURE_CODE' if runs out of memory. */
1641
505bde11
SM
1642#define PUSH_FAILURE_POINT(pattern, string_place) \
1643do { \
1644 char *destination; \
1645 /* Must be int, so when we don't save any registers, the arithmetic \
1646 of 0 + -1 isn't done as unsigned. */ \
1647 \
505bde11 1648 DEBUG_STATEMENT (nfailure_points_pushed++); \
4bb91c68 1649 DEBUG_PRINT1 ("\nPUSH_FAILURE_POINT:\n"); \
505bde11
SM
1650 DEBUG_PRINT2 (" Before push, next avail: %d\n", (fail_stack).avail); \
1651 DEBUG_PRINT2 (" size: %d\n", (fail_stack).size);\
1652 \
1653 ENSURE_FAIL_STACK (NUM_NONREG_ITEMS); \
1654 \
1655 DEBUG_PRINT1 ("\n"); \
1656 \
1657 DEBUG_PRINT2 (" Push frame index: %d\n", fail_stack.frame); \
1658 PUSH_FAILURE_INT (fail_stack.frame); \
1659 \
1660 DEBUG_PRINT2 (" Push string %p: `", string_place); \
1661 DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, size2);\
1662 DEBUG_PRINT1 ("'\n"); \
1663 PUSH_FAILURE_POINTER (string_place); \
1664 \
1665 DEBUG_PRINT2 (" Push pattern %p: ", pattern); \
1666 DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern, pend); \
1667 PUSH_FAILURE_POINTER (pattern); \
1668 \
1669 /* Close the frame by moving the frame pointer past it. */ \
1670 fail_stack.frame = fail_stack.avail; \
1671} while (0)
fa9a63c5 1672
320a2a73
KH
1673/* Estimate the size of data pushed by a typical failure stack entry.
1674 An estimate is all we need, because all we use this for
1675 is to choose a limit for how big to make the failure stack. */
ada30c0e 1676/* BEWARE, the value `20' is hard-coded in emacs.c:main(). */
320a2a73 1677#define TYPICAL_FAILURE_SIZE 20
fa9a63c5 1678
fa9a63c5
RM
1679/* How many items can still be added to the stack without overflowing it. */
1680#define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
1681
1682
1683/* Pops what PUSH_FAIL_STACK pushes.
1684
1685 We restore into the parameters, all of which should be lvalues:
1686 STR -- the saved data position.
1687 PAT -- the saved pattern position.
fa9a63c5 1688 REGSTART, REGEND -- arrays of string positions.
5e69f11e 1689
fa9a63c5 1690 Also assumes the variables `fail_stack' and (if debugging), `bufp',
7814e705 1691 `pend', `string1', `size1', `string2', and `size2'. */
fa9a63c5 1692
505bde11
SM
1693#define POP_FAILURE_POINT(str, pat) \
1694do { \
fa9a63c5
RM
1695 assert (!FAIL_STACK_EMPTY ()); \
1696 \
1697 /* Remove failure points and point to how many regs pushed. */ \
1698 DEBUG_PRINT1 ("POP_FAILURE_POINT:\n"); \
1699 DEBUG_PRINT2 (" Before pop, next avail: %d\n", fail_stack.avail); \
25fe55af 1700 DEBUG_PRINT2 (" size: %d\n", fail_stack.size); \
fa9a63c5 1701 \
505bde11
SM
1702 /* Pop the saved registers. */ \
1703 while (fail_stack.frame < fail_stack.avail) \
dc1e502d 1704 POP_FAILURE_REG_OR_COUNT (); \
fa9a63c5 1705 \
01618498 1706 pat = POP_FAILURE_POINTER (); \
505bde11
SM
1707 DEBUG_PRINT2 (" Popping pattern %p: ", pat); \
1708 DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend); \
fa9a63c5
RM
1709 \
1710 /* If the saved string location is NULL, it came from an \
1711 on_failure_keep_string_jump opcode, and we want to throw away the \
1712 saved NULL, thus retaining our current position in the string. */ \
01618498 1713 str = POP_FAILURE_POINTER (); \
505bde11 1714 DEBUG_PRINT2 (" Popping string %p: `", str); \
fa9a63c5
RM
1715 DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2); \
1716 DEBUG_PRINT1 ("'\n"); \
1717 \
505bde11
SM
1718 fail_stack.frame = POP_FAILURE_INT (); \
1719 DEBUG_PRINT2 (" Popping frame index: %d\n", fail_stack.frame); \
fa9a63c5 1720 \
505bde11
SM
1721 assert (fail_stack.avail >= 0); \
1722 assert (fail_stack.frame <= fail_stack.avail); \
fa9a63c5 1723 \
fa9a63c5 1724 DEBUG_STATEMENT (nfailure_points_popped++); \
505bde11 1725} while (0) /* POP_FAILURE_POINT */
fa9a63c5
RM
1726
1727
1728\f
fa9a63c5 1729/* Registers are set to a sentinel when they haven't yet matched. */
4bb91c68 1730#define REG_UNSET(e) ((e) == NULL)
fa9a63c5
RM
1731\f
1732/* Subroutine declarations and macros for regex_compile. */
1733
4bb91c68
SM
1734static reg_errcode_t regex_compile _RE_ARGS ((re_char *pattern, size_t size,
1735 reg_syntax_t syntax,
1736 struct re_pattern_buffer *bufp));
1737static void store_op1 _RE_ARGS ((re_opcode_t op, unsigned char *loc, int arg));
1738static void store_op2 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
1739 int arg1, int arg2));
1740static void insert_op1 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
1741 int arg, unsigned char *end));
1742static void insert_op2 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
1743 int arg1, int arg2, unsigned char *end));
01618498
SM
1744static boolean at_begline_loc_p _RE_ARGS ((re_char *pattern,
1745 re_char *p,
4bb91c68 1746 reg_syntax_t syntax));
01618498
SM
1747static boolean at_endline_loc_p _RE_ARGS ((re_char *p,
1748 re_char *pend,
4bb91c68 1749 reg_syntax_t syntax));
01618498
SM
1750static re_char *skip_one_char _RE_ARGS ((re_char *p));
1751static int analyse_first _RE_ARGS ((re_char *p, re_char *pend,
4bb91c68 1752 char *fastmap, const int multibyte));
fa9a63c5 1753
fa9a63c5 1754/* Fetch the next character in the uncompiled pattern, with no
4bb91c68 1755 translation. */
36595814 1756#define PATFETCH(c) \
2d1675e4
SM
1757 do { \
1758 int len; \
1759 if (p == pend) return REG_EEND; \
62a6e103 1760 c = RE_STRING_CHAR_AND_LENGTH (p, len, multibyte); \
2d1675e4 1761 p += len; \
fa9a63c5
RM
1762 } while (0)
1763
fa9a63c5
RM
1764
1765/* If `translate' is non-null, return translate[D], else just D. We
1766 cast the subscript to translate because some data is declared as
1767 `char *', to avoid warnings when a string constant is passed. But
1768 when we use a character as a subscript we must make it unsigned. */
6676cb1c 1769#ifndef TRANSLATE
0b32bf0e 1770# define TRANSLATE(d) \
66f0296e 1771 (RE_TRANSLATE_P (translate) ? RE_TRANSLATE (translate, (d)) : (d))
6676cb1c 1772#endif
fa9a63c5
RM
1773
1774
1775/* Macros for outputting the compiled pattern into `buffer'. */
1776
1777/* If the buffer isn't allocated when it comes in, use this. */
1778#define INIT_BUF_SIZE 32
1779
4bb91c68 1780/* Make sure we have at least N more bytes of space in buffer. */
fa9a63c5 1781#define GET_BUFFER_SPACE(n) \
01618498 1782 while ((size_t) (b - bufp->buffer + (n)) > bufp->allocated) \
fa9a63c5
RM
1783 EXTEND_BUFFER ()
1784
1785/* Make sure we have one more byte of buffer space and then add C to it. */
1786#define BUF_PUSH(c) \
1787 do { \
1788 GET_BUFFER_SPACE (1); \
1789 *b++ = (unsigned char) (c); \
1790 } while (0)
1791
1792
1793/* Ensure we have two more bytes of buffer space and then append C1 and C2. */
1794#define BUF_PUSH_2(c1, c2) \
1795 do { \
1796 GET_BUFFER_SPACE (2); \
1797 *b++ = (unsigned char) (c1); \
1798 *b++ = (unsigned char) (c2); \
1799 } while (0)
1800
1801
4bb91c68 1802/* As with BUF_PUSH_2, except for three bytes. */
fa9a63c5
RM
1803#define BUF_PUSH_3(c1, c2, c3) \
1804 do { \
1805 GET_BUFFER_SPACE (3); \
1806 *b++ = (unsigned char) (c1); \
1807 *b++ = (unsigned char) (c2); \
1808 *b++ = (unsigned char) (c3); \
1809 } while (0)
1810
1811
1812/* Store a jump with opcode OP at LOC to location TO. We store a
4bb91c68 1813 relative address offset by the three bytes the jump itself occupies. */
fa9a63c5
RM
1814#define STORE_JUMP(op, loc, to) \
1815 store_op1 (op, loc, (to) - (loc) - 3)
1816
1817/* Likewise, for a two-argument jump. */
1818#define STORE_JUMP2(op, loc, to, arg) \
1819 store_op2 (op, loc, (to) - (loc) - 3, arg)
1820
4bb91c68 1821/* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */
fa9a63c5
RM
1822#define INSERT_JUMP(op, loc, to) \
1823 insert_op1 (op, loc, (to) - (loc) - 3, b)
1824
1825/* Like `STORE_JUMP2', but for inserting. Assume `b' is the buffer end. */
1826#define INSERT_JUMP2(op, loc, to, arg) \
1827 insert_op2 (op, loc, (to) - (loc) - 3, arg, b)
1828
1829
1830/* This is not an arbitrary limit: the arguments which represent offsets
839966f3 1831 into the pattern are two bytes long. So if 2^15 bytes turns out to
fa9a63c5 1832 be too small, many things would have to change. */
839966f3
KH
1833# define MAX_BUF_SIZE (1L << 15)
1834
1835#if 0 /* This is when we thought it could be 2^16 bytes. */
4bb91c68
SM
1836/* Any other compiler which, like MSC, has allocation limit below 2^16
1837 bytes will have to use approach similar to what was done below for
1838 MSC and drop MAX_BUF_SIZE a bit. Otherwise you may end up
1839 reallocating to 0 bytes. Such thing is not going to work too well.
1840 You have been warned!! */
1841#if defined _MSC_VER && !defined WIN32
1842/* Microsoft C 16-bit versions limit malloc to approx 65512 bytes. */
1843# define MAX_BUF_SIZE 65500L
1844#else
1845# define MAX_BUF_SIZE (1L << 16)
1846#endif
839966f3 1847#endif /* 0 */
fa9a63c5
RM
1848
1849/* Extend the buffer by twice its current size via realloc and
1850 reset the pointers that pointed into the old block to point to the
1851 correct places in the new one. If extending the buffer results in it
4bb91c68
SM
1852 being larger than MAX_BUF_SIZE, then flag memory exhausted. */
1853#if __BOUNDED_POINTERS__
1854# define SET_HIGH_BOUND(P) (__ptrhigh (P) = __ptrlow (P) + bufp->allocated)
381880b0
CY
1855# define MOVE_BUFFER_POINTER(P) \
1856 (__ptrlow (P) = new_buffer + (__ptrlow (P) - old_buffer), \
1857 SET_HIGH_BOUND (P), \
1858 __ptrvalue (P) = new_buffer + (__ptrvalue (P) - old_buffer))
4bb91c68
SM
1859# define ELSE_EXTEND_BUFFER_HIGH_BOUND \
1860 else \
1861 { \
1862 SET_HIGH_BOUND (b); \
1863 SET_HIGH_BOUND (begalt); \
1864 if (fixup_alt_jump) \
1865 SET_HIGH_BOUND (fixup_alt_jump); \
1866 if (laststart) \
1867 SET_HIGH_BOUND (laststart); \
1868 if (pending_exact) \
1869 SET_HIGH_BOUND (pending_exact); \
1870 }
1871#else
381880b0 1872# define MOVE_BUFFER_POINTER(P) ((P) = new_buffer + ((P) - old_buffer))
4bb91c68
SM
1873# define ELSE_EXTEND_BUFFER_HIGH_BOUND
1874#endif
fa9a63c5 1875#define EXTEND_BUFFER() \
25fe55af 1876 do { \
381880b0 1877 unsigned char *old_buffer = bufp->buffer; \
25fe55af 1878 if (bufp->allocated == MAX_BUF_SIZE) \
fa9a63c5
RM
1879 return REG_ESIZE; \
1880 bufp->allocated <<= 1; \
1881 if (bufp->allocated > MAX_BUF_SIZE) \
25fe55af 1882 bufp->allocated = MAX_BUF_SIZE; \
01618498 1883 RETALLOC (bufp->buffer, bufp->allocated, unsigned char); \
fa9a63c5
RM
1884 if (bufp->buffer == NULL) \
1885 return REG_ESPACE; \
1886 /* If the buffer moved, move all the pointers into it. */ \
1887 if (old_buffer != bufp->buffer) \
1888 { \
381880b0 1889 unsigned char *new_buffer = bufp->buffer; \
4bb91c68
SM
1890 MOVE_BUFFER_POINTER (b); \
1891 MOVE_BUFFER_POINTER (begalt); \
25fe55af 1892 if (fixup_alt_jump) \
4bb91c68 1893 MOVE_BUFFER_POINTER (fixup_alt_jump); \
25fe55af 1894 if (laststart) \
4bb91c68 1895 MOVE_BUFFER_POINTER (laststart); \
25fe55af 1896 if (pending_exact) \
4bb91c68 1897 MOVE_BUFFER_POINTER (pending_exact); \
fa9a63c5 1898 } \
4bb91c68 1899 ELSE_EXTEND_BUFFER_HIGH_BOUND \
fa9a63c5
RM
1900 } while (0)
1901
1902
1903/* Since we have one byte reserved for the register number argument to
1904 {start,stop}_memory, the maximum number of groups we can report
1905 things about is what fits in that byte. */
1906#define MAX_REGNUM 255
1907
1908/* But patterns can have more than `MAX_REGNUM' registers. We just
1909 ignore the excess. */
098d42af 1910typedef int regnum_t;
fa9a63c5
RM
1911
1912
1913/* Macros for the compile stack. */
1914
1915/* Since offsets can go either forwards or backwards, this type needs to
4bb91c68
SM
1916 be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */
1917/* int may be not enough when sizeof(int) == 2. */
1918typedef long pattern_offset_t;
fa9a63c5
RM
1919
1920typedef struct
1921{
1922 pattern_offset_t begalt_offset;
1923 pattern_offset_t fixup_alt_jump;
5e69f11e 1924 pattern_offset_t laststart_offset;
fa9a63c5
RM
1925 regnum_t regnum;
1926} compile_stack_elt_t;
1927
1928
1929typedef struct
1930{
1931 compile_stack_elt_t *stack;
1932 unsigned size;
1933 unsigned avail; /* Offset of next open position. */
1934} compile_stack_type;
1935
1936
1937#define INIT_COMPILE_STACK_SIZE 32
1938
1939#define COMPILE_STACK_EMPTY (compile_stack.avail == 0)
1940#define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size)
1941
4bb91c68 1942/* The next available element. */
fa9a63c5
RM
1943#define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
1944
1cee1e27
SM
1945/* Explicit quit checking is only used on NTemacs and whenever we
1946 use polling to process input events. */
1947#if defined emacs && (defined WINDOWSNT || defined SYNC_INPUT) && defined QUIT
77d11aec
RS
1948extern int immediate_quit;
1949# define IMMEDIATE_QUIT_CHECK \
1950 do { \
1951 if (immediate_quit) QUIT; \
1952 } while (0)
1953#else
1954# define IMMEDIATE_QUIT_CHECK ((void)0)
1955#endif
1956\f
b18215fc
RS
1957/* Structure to manage work area for range table. */
1958struct range_table_work_area
1959{
1960 int *table; /* actual work area. */
1961 int allocated; /* allocated size for work area in bytes. */
7814e705 1962 int used; /* actually used size in words. */
96cc36cc 1963 int bits; /* flag to record character classes */
b18215fc
RS
1964};
1965
77d11aec
RS
1966/* Make sure that WORK_AREA can hold more N multibyte characters.
1967 This is used only in set_image_of_range and set_image_of_range_1.
1968 It expects WORK_AREA to be a pointer.
1969 If it can't get the space, it returns from the surrounding function. */
1970
1971#define EXTEND_RANGE_TABLE(work_area, n) \
1972 do { \
8f924df7 1973 if (((work_area).used + (n)) * sizeof (int) > (work_area).allocated) \
77d11aec 1974 { \
8f924df7
KH
1975 extend_range_table_work_area (&work_area); \
1976 if ((work_area).table == 0) \
77d11aec
RS
1977 return (REG_ESPACE); \
1978 } \
b18215fc
RS
1979 } while (0)
1980
96cc36cc
RS
1981#define SET_RANGE_TABLE_WORK_AREA_BIT(work_area, bit) \
1982 (work_area).bits |= (bit)
1983
14473664
SM
1984/* Bits used to implement the multibyte-part of the various character classes
1985 such as [:alnum:] in a charset's range table. */
1986#define BIT_WORD 0x1
1987#define BIT_LOWER 0x2
1988#define BIT_PUNCT 0x4
1989#define BIT_SPACE 0x8
1990#define BIT_UPPER 0x10
1991#define BIT_MULTIBYTE 0x20
96cc36cc 1992
b18215fc
RS
1993/* Set a range (RANGE_START, RANGE_END) to WORK_AREA. */
1994#define SET_RANGE_TABLE_WORK_AREA(work_area, range_start, range_end) \
77d11aec 1995 do { \
8f924df7 1996 EXTEND_RANGE_TABLE ((work_area), 2); \
b18215fc
RS
1997 (work_area).table[(work_area).used++] = (range_start); \
1998 (work_area).table[(work_area).used++] = (range_end); \
1999 } while (0)
2000
7814e705 2001/* Free allocated memory for WORK_AREA. */
b18215fc
RS
2002#define FREE_RANGE_TABLE_WORK_AREA(work_area) \
2003 do { \
2004 if ((work_area).table) \
2005 free ((work_area).table); \
2006 } while (0)
2007
96cc36cc 2008#define CLEAR_RANGE_TABLE_WORK_USED(work_area) ((work_area).used = 0, (work_area).bits = 0)
b18215fc 2009#define RANGE_TABLE_WORK_USED(work_area) ((work_area).used)
96cc36cc 2010#define RANGE_TABLE_WORK_BITS(work_area) ((work_area).bits)
b18215fc 2011#define RANGE_TABLE_WORK_ELT(work_area, i) ((work_area).table[i])
77d11aec 2012\f
b18215fc 2013
fa9a63c5 2014/* Set the bit for character C in a list. */
01618498 2015#define SET_LIST_BIT(c) (b[((c)) / BYTEWIDTH] |= 1 << ((c) % BYTEWIDTH))
fa9a63c5
RM
2016
2017
bf216479
KH
2018#ifdef emacs
2019
cf9c99bc
KH
2020/* Store characters in the range FROM to TO in the bitmap at B (for
2021 ASCII and unibyte characters) and WORK_AREA (for multibyte
2022 characters) while translating them and paying attention to the
2023 continuity of translated characters.
8f924df7 2024
cf9c99bc
KH
2025 Implementation note: It is better to implement these fairly big
2026 macros by a function, but it's not that easy because macros called
8f924df7 2027 in this macro assume various local variables already declared. */
bf216479 2028
cf9c99bc
KH
2029/* Both FROM and TO are ASCII characters. */
2030
2031#define SETUP_ASCII_RANGE(work_area, FROM, TO) \
2032 do { \
2033 int C0, C1; \
2034 \
2035 for (C0 = (FROM); C0 <= (TO); C0++) \
2036 { \
2037 C1 = TRANSLATE (C0); \
2038 if (! ASCII_CHAR_P (C1)) \
2039 { \
2040 SET_RANGE_TABLE_WORK_AREA ((work_area), C1, C1); \
2041 if ((C1 = RE_CHAR_TO_UNIBYTE (C1)) < 0) \
2042 C1 = C0; \
2043 } \
2044 SET_LIST_BIT (C1); \
2045 } \
2046 } while (0)
2047
2048
2049/* Both FROM and TO are unibyte characters (0x80..0xFF). */
2050
2051#define SETUP_UNIBYTE_RANGE(work_area, FROM, TO) \
2052 do { \
2053 int C0, C1, C2, I; \
2054 int USED = RANGE_TABLE_WORK_USED (work_area); \
2055 \
2056 for (C0 = (FROM); C0 <= (TO); C0++) \
2057 { \
2058 C1 = RE_CHAR_TO_MULTIBYTE (C0); \
2059 if (CHAR_BYTE8_P (C1)) \
2060 SET_LIST_BIT (C0); \
2061 else \
2062 { \
2063 C2 = TRANSLATE (C1); \
2064 if (C2 == C1 \
2065 || (C1 = RE_CHAR_TO_UNIBYTE (C2)) < 0) \
2066 C1 = C0; \
2067 SET_LIST_BIT (C1); \
2068 for (I = RANGE_TABLE_WORK_USED (work_area) - 2; I >= USED; I -= 2) \
2069 { \
2070 int from = RANGE_TABLE_WORK_ELT (work_area, I); \
2071 int to = RANGE_TABLE_WORK_ELT (work_area, I + 1); \
2072 \
2073 if (C2 >= from - 1 && C2 <= to + 1) \
2074 { \
2075 if (C2 == from - 1) \
2076 RANGE_TABLE_WORK_ELT (work_area, I)--; \
2077 else if (C2 == to + 1) \
2078 RANGE_TABLE_WORK_ELT (work_area, I + 1)++; \
2079 break; \
2080 } \
2081 } \
2082 if (I < USED) \
2083 SET_RANGE_TABLE_WORK_AREA ((work_area), C2, C2); \
2084 } \
2085 } \
2086 } while (0)
2087
2088
2089/* Both FROM and TO are mulitbyte characters. */
2090
2091#define SETUP_MULTIBYTE_RANGE(work_area, FROM, TO) \
2092 do { \
2093 int C0, C1, C2, I, USED = RANGE_TABLE_WORK_USED (work_area); \
2094 \
2095 SET_RANGE_TABLE_WORK_AREA ((work_area), (FROM), (TO)); \
2096 for (C0 = (FROM); C0 <= (TO); C0++) \
2097 { \
2098 C1 = TRANSLATE (C0); \
2099 if ((C2 = RE_CHAR_TO_UNIBYTE (C1)) >= 0 \
2100 || (C1 != C0 && (C2 = RE_CHAR_TO_UNIBYTE (C0)) >= 0)) \
2101 SET_LIST_BIT (C2); \
2102 if (C1 >= (FROM) && C1 <= (TO)) \
2103 continue; \
2104 for (I = RANGE_TABLE_WORK_USED (work_area) - 2; I >= USED; I -= 2) \
2105 { \
2106 int from = RANGE_TABLE_WORK_ELT (work_area, I); \
2107 int to = RANGE_TABLE_WORK_ELT (work_area, I + 1); \
2108 \
2109 if (C1 >= from - 1 && C1 <= to + 1) \
2110 { \
2111 if (C1 == from - 1) \
2112 RANGE_TABLE_WORK_ELT (work_area, I)--; \
2113 else if (C1 == to + 1) \
2114 RANGE_TABLE_WORK_ELT (work_area, I + 1)++; \
2115 break; \
2116 } \
2117 } \
2118 if (I < USED) \
2119 SET_RANGE_TABLE_WORK_AREA ((work_area), C1, C1); \
2120 } \
bf216479
KH
2121 } while (0)
2122
2123#endif /* emacs */
2124
fa9a63c5 2125/* Get the next unsigned number in the uncompiled pattern. */
25fe55af 2126#define GET_UNSIGNED_NUMBER(num) \
c72b0edd
SM
2127 do { \
2128 if (p == pend) \
2129 FREE_STACK_RETURN (REG_EBRACE); \
2130 else \
2131 { \
2132 PATFETCH (c); \
2133 while ('0' <= c && c <= '9') \
2134 { \
2135 int prev; \
2136 if (num < 0) \
2137 num = 0; \
2138 prev = num; \
2139 num = num * 10 + c - '0'; \
2140 if (num / 10 != prev) \
2141 FREE_STACK_RETURN (REG_BADBR); \
2142 if (p == pend) \
2143 FREE_STACK_RETURN (REG_EBRACE); \
2144 PATFETCH (c); \
2145 } \
2146 } \
2147 } while (0)
77d11aec 2148\f
1fdab503 2149#if ! WIDE_CHAR_SUPPORT
01618498 2150
14473664 2151/* Map a string to the char class it names (if any). */
1fdab503 2152re_wctype_t
ada30c0e
SM
2153re_wctype (str)
2154 re_char *str;
14473664 2155{
ada30c0e 2156 const char *string = str;
14473664
SM
2157 if (STREQ (string, "alnum")) return RECC_ALNUM;
2158 else if (STREQ (string, "alpha")) return RECC_ALPHA;
2159 else if (STREQ (string, "word")) return RECC_WORD;
2160 else if (STREQ (string, "ascii")) return RECC_ASCII;
2161 else if (STREQ (string, "nonascii")) return RECC_NONASCII;
2162 else if (STREQ (string, "graph")) return RECC_GRAPH;
2163 else if (STREQ (string, "lower")) return RECC_LOWER;
2164 else if (STREQ (string, "print")) return RECC_PRINT;
2165 else if (STREQ (string, "punct")) return RECC_PUNCT;
2166 else if (STREQ (string, "space")) return RECC_SPACE;
2167 else if (STREQ (string, "upper")) return RECC_UPPER;
2168 else if (STREQ (string, "unibyte")) return RECC_UNIBYTE;
2169 else if (STREQ (string, "multibyte")) return RECC_MULTIBYTE;
2170 else if (STREQ (string, "digit")) return RECC_DIGIT;
2171 else if (STREQ (string, "xdigit")) return RECC_XDIGIT;
2172 else if (STREQ (string, "cntrl")) return RECC_CNTRL;
2173 else if (STREQ (string, "blank")) return RECC_BLANK;
2174 else return 0;
2175}
2176
e0f24100 2177/* True if CH is in the char class CC. */
1fdab503 2178boolean
14473664
SM
2179re_iswctype (ch, cc)
2180 int ch;
2181 re_wctype_t cc;
2182{
2183 switch (cc)
2184 {
0cdd06f8
SM
2185 case RECC_ALNUM: return ISALNUM (ch);
2186 case RECC_ALPHA: return ISALPHA (ch);
2187 case RECC_BLANK: return ISBLANK (ch);
2188 case RECC_CNTRL: return ISCNTRL (ch);
2189 case RECC_DIGIT: return ISDIGIT (ch);
2190 case RECC_GRAPH: return ISGRAPH (ch);
2191 case RECC_LOWER: return ISLOWER (ch);
2192 case RECC_PRINT: return ISPRINT (ch);
2193 case RECC_PUNCT: return ISPUNCT (ch);
2194 case RECC_SPACE: return ISSPACE (ch);
2195 case RECC_UPPER: return ISUPPER (ch);
2196 case RECC_XDIGIT: return ISXDIGIT (ch);
2197 case RECC_ASCII: return IS_REAL_ASCII (ch);
2198 case RECC_NONASCII: return !IS_REAL_ASCII (ch);
2199 case RECC_UNIBYTE: return ISUNIBYTE (ch);
2200 case RECC_MULTIBYTE: return !ISUNIBYTE (ch);
2201 case RECC_WORD: return ISWORD (ch);
2202 case RECC_ERROR: return false;
2203 default:
2204 abort();
14473664
SM
2205 }
2206}
fa9a63c5 2207
14473664
SM
2208/* Return a bit-pattern to use in the range-table bits to match multibyte
2209 chars of class CC. */
2210static int
2211re_wctype_to_bit (cc)
2212 re_wctype_t cc;
2213{
2214 switch (cc)
2215 {
2216 case RECC_NONASCII: case RECC_PRINT: case RECC_GRAPH:
0cdd06f8
SM
2217 case RECC_MULTIBYTE: return BIT_MULTIBYTE;
2218 case RECC_ALPHA: case RECC_ALNUM: case RECC_WORD: return BIT_WORD;
2219 case RECC_LOWER: return BIT_LOWER;
2220 case RECC_UPPER: return BIT_UPPER;
2221 case RECC_PUNCT: return BIT_PUNCT;
2222 case RECC_SPACE: return BIT_SPACE;
14473664 2223 case RECC_ASCII: case RECC_DIGIT: case RECC_XDIGIT: case RECC_CNTRL:
0cdd06f8
SM
2224 case RECC_BLANK: case RECC_UNIBYTE: case RECC_ERROR: return 0;
2225 default:
2226 abort();
14473664
SM
2227 }
2228}
2229#endif
77d11aec
RS
2230\f
2231/* Filling in the work area of a range. */
2232
2233/* Actually extend the space in WORK_AREA. */
2234
2235static void
2236extend_range_table_work_area (work_area)
2237 struct range_table_work_area *work_area;
177c0ea7 2238{
77d11aec
RS
2239 work_area->allocated += 16 * sizeof (int);
2240 if (work_area->table)
2241 work_area->table
2242 = (int *) realloc (work_area->table, work_area->allocated);
2243 else
2244 work_area->table
2245 = (int *) malloc (work_area->allocated);
2246}
2247
8f924df7 2248#if 0
77d11aec
RS
2249#ifdef emacs
2250
2251/* Carefully find the ranges of codes that are equivalent
2252 under case conversion to the range start..end when passed through
2253 TRANSLATE. Handle the case where non-letters can come in between
2254 two upper-case letters (which happens in Latin-1).
2255 Also handle the case of groups of more than 2 case-equivalent chars.
2256
2257 The basic method is to look at consecutive characters and see
2258 if they can form a run that can be handled as one.
2259
2260 Returns -1 if successful, REG_ESPACE if ran out of space. */
2261
2262static int
2263set_image_of_range_1 (work_area, start, end, translate)
2264 RE_TRANSLATE_TYPE translate;
2265 struct range_table_work_area *work_area;
2266 re_wchar_t start, end;
2267{
2268 /* `one_case' indicates a character, or a run of characters,
2269 each of which is an isolate (no case-equivalents).
2270 This includes all ASCII non-letters.
2271
2272 `two_case' indicates a character, or a run of characters,
2273 each of which has two case-equivalent forms.
2274 This includes all ASCII letters.
2275
2276 `strange' indicates a character that has more than one
2277 case-equivalent. */
177c0ea7 2278
77d11aec
RS
2279 enum case_type {one_case, two_case, strange};
2280
2281 /* Describe the run that is in progress,
2282 which the next character can try to extend.
2283 If run_type is strange, that means there really is no run.
2284 If run_type is one_case, then run_start...run_end is the run.
2285 If run_type is two_case, then the run is run_start...run_end,
2286 and the case-equivalents end at run_eqv_end. */
2287
2288 enum case_type run_type = strange;
2289 int run_start, run_end, run_eqv_end;
2290
2291 Lisp_Object eqv_table;
2292
2293 if (!RE_TRANSLATE_P (translate))
2294 {
b7c12565 2295 EXTEND_RANGE_TABLE (work_area, 2);
77d11aec
RS
2296 work_area->table[work_area->used++] = (start);
2297 work_area->table[work_area->used++] = (end);
b7c12565 2298 return -1;
77d11aec
RS
2299 }
2300
2301 eqv_table = XCHAR_TABLE (translate)->extras[2];
99633e97 2302
77d11aec
RS
2303 for (; start <= end; start++)
2304 {
2305 enum case_type this_type;
2306 int eqv = RE_TRANSLATE (eqv_table, start);
2307 int minchar, maxchar;
2308
2309 /* Classify this character */
2310 if (eqv == start)
2311 this_type = one_case;
2312 else if (RE_TRANSLATE (eqv_table, eqv) == start)
2313 this_type = two_case;
2314 else
2315 this_type = strange;
2316
2317 if (start < eqv)
2318 minchar = start, maxchar = eqv;
2319 else
2320 minchar = eqv, maxchar = start;
2321
2322 /* Can this character extend the run in progress? */
2323 if (this_type == strange || this_type != run_type
2324 || !(minchar == run_end + 1
2325 && (run_type == two_case
2326 ? maxchar == run_eqv_end + 1 : 1)))
2327 {
2328 /* No, end the run.
2329 Record each of its equivalent ranges. */
2330 if (run_type == one_case)
2331 {
2332 EXTEND_RANGE_TABLE (work_area, 2);
2333 work_area->table[work_area->used++] = run_start;
2334 work_area->table[work_area->used++] = run_end;
2335 }
2336 else if (run_type == two_case)
2337 {
2338 EXTEND_RANGE_TABLE (work_area, 4);
2339 work_area->table[work_area->used++] = run_start;
2340 work_area->table[work_area->used++] = run_end;
2341 work_area->table[work_area->used++]
2342 = RE_TRANSLATE (eqv_table, run_start);
2343 work_area->table[work_area->used++]
2344 = RE_TRANSLATE (eqv_table, run_end);
2345 }
2346 run_type = strange;
2347 }
177c0ea7 2348
77d11aec
RS
2349 if (this_type == strange)
2350 {
2351 /* For a strange character, add each of its equivalents, one
2352 by one. Don't start a range. */
2353 do
2354 {
2355 EXTEND_RANGE_TABLE (work_area, 2);
2356 work_area->table[work_area->used++] = eqv;
2357 work_area->table[work_area->used++] = eqv;
2358 eqv = RE_TRANSLATE (eqv_table, eqv);
2359 }
2360 while (eqv != start);
2361 }
2362
2363 /* Add this char to the run, or start a new run. */
2364 else if (run_type == strange)
2365 {
2366 /* Initialize a new range. */
2367 run_type = this_type;
2368 run_start = start;
2369 run_end = start;
2370 run_eqv_end = RE_TRANSLATE (eqv_table, run_end);
2371 }
2372 else
2373 {
2374 /* Extend a running range. */
2375 run_end = minchar;
2376 run_eqv_end = RE_TRANSLATE (eqv_table, run_end);
2377 }
2378 }
2379
2380 /* If a run is still in progress at the end, finish it now
2381 by recording its equivalent ranges. */
2382 if (run_type == one_case)
2383 {
2384 EXTEND_RANGE_TABLE (work_area, 2);
2385 work_area->table[work_area->used++] = run_start;
2386 work_area->table[work_area->used++] = run_end;
2387 }
2388 else if (run_type == two_case)
2389 {
2390 EXTEND_RANGE_TABLE (work_area, 4);
2391 work_area->table[work_area->used++] = run_start;
2392 work_area->table[work_area->used++] = run_end;
2393 work_area->table[work_area->used++]
2394 = RE_TRANSLATE (eqv_table, run_start);
2395 work_area->table[work_area->used++]
2396 = RE_TRANSLATE (eqv_table, run_end);
2397 }
2398
2399 return -1;
2400}
36595814 2401
77d11aec 2402#endif /* emacs */
36595814 2403
2b34df4e 2404/* Record the image of the range start..end when passed through
36595814
SM
2405 TRANSLATE. This is not necessarily TRANSLATE(start)..TRANSLATE(end)
2406 and is not even necessarily contiguous.
b7c12565
RS
2407 Normally we approximate it with the smallest contiguous range that contains
2408 all the chars we need. However, for Latin-1 we go to extra effort
2409 to do a better job.
2410
2411 This function is not called for ASCII ranges.
77d11aec
RS
2412
2413 Returns -1 if successful, REG_ESPACE if ran out of space. */
2414
2415static int
36595814
SM
2416set_image_of_range (work_area, start, end, translate)
2417 RE_TRANSLATE_TYPE translate;
2418 struct range_table_work_area *work_area;
2419 re_wchar_t start, end;
2420{
77d11aec
RS
2421 re_wchar_t cmin, cmax;
2422
2423#ifdef emacs
2424 /* For Latin-1 ranges, use set_image_of_range_1
2425 to get proper handling of ranges that include letters and nonletters.
b7c12565 2426 For a range that includes the whole of Latin-1, this is not necessary.
77d11aec 2427 For other character sets, we don't bother to get this right. */
b7c12565
RS
2428 if (RE_TRANSLATE_P (translate) && start < 04400
2429 && !(start < 04200 && end >= 04377))
77d11aec 2430 {
b7c12565 2431 int newend;
77d11aec 2432 int tem;
b7c12565
RS
2433 newend = end;
2434 if (newend > 04377)
2435 newend = 04377;
2436 tem = set_image_of_range_1 (work_area, start, newend, translate);
77d11aec
RS
2437 if (tem > 0)
2438 return tem;
2439
2440 start = 04400;
2441 if (end < 04400)
2442 return -1;
2443 }
2444#endif
2445
b7c12565
RS
2446 EXTEND_RANGE_TABLE (work_area, 2);
2447 work_area->table[work_area->used++] = (start);
2448 work_area->table[work_area->used++] = (end);
2449
2450 cmin = -1, cmax = -1;
77d11aec 2451
36595814 2452 if (RE_TRANSLATE_P (translate))
b7c12565
RS
2453 {
2454 int ch;
77d11aec 2455
b7c12565
RS
2456 for (ch = start; ch <= end; ch++)
2457 {
2458 re_wchar_t c = TRANSLATE (ch);
2459 if (! (start <= c && c <= end))
2460 {
2461 if (cmin == -1)
2462 cmin = c, cmax = c;
2463 else
2464 {
2465 cmin = MIN (cmin, c);
2466 cmax = MAX (cmax, c);
2467 }
2468 }
2469 }
2470
2471 if (cmin != -1)
2472 {
2473 EXTEND_RANGE_TABLE (work_area, 2);
2474 work_area->table[work_area->used++] = (cmin);
2475 work_area->table[work_area->used++] = (cmax);
2476 }
2477 }
36595814 2478
77d11aec
RS
2479 return -1;
2480}
8f924df7 2481#endif /* 0 */
fa9a63c5
RM
2482\f
2483#ifndef MATCH_MAY_ALLOCATE
2484
2485/* If we cannot allocate large objects within re_match_2_internal,
2486 we make the fail stack and register vectors global.
2487 The fail stack, we grow to the maximum size when a regexp
2488 is compiled.
2489 The register vectors, we adjust in size each time we
2490 compile a regexp, according to the number of registers it needs. */
2491
2492static fail_stack_type fail_stack;
2493
2494/* Size with which the following vectors are currently allocated.
2495 That is so we can make them bigger as needed,
4bb91c68 2496 but never make them smaller. */
fa9a63c5
RM
2497static int regs_allocated_size;
2498
66f0296e
SM
2499static re_char ** regstart, ** regend;
2500static re_char **best_regstart, **best_regend;
fa9a63c5
RM
2501
2502/* Make the register vectors big enough for NUM_REGS registers,
4bb91c68 2503 but don't make them smaller. */
fa9a63c5
RM
2504
2505static
2506regex_grow_registers (num_regs)
2507 int num_regs;
2508{
2509 if (num_regs > regs_allocated_size)
2510 {
66f0296e
SM
2511 RETALLOC_IF (regstart, num_regs, re_char *);
2512 RETALLOC_IF (regend, num_regs, re_char *);
2513 RETALLOC_IF (best_regstart, num_regs, re_char *);
2514 RETALLOC_IF (best_regend, num_regs, re_char *);
fa9a63c5
RM
2515
2516 regs_allocated_size = num_regs;
2517 }
2518}
2519
2520#endif /* not MATCH_MAY_ALLOCATE */
2521\f
99633e97
SM
2522static boolean group_in_compile_stack _RE_ARGS ((compile_stack_type
2523 compile_stack,
2524 regnum_t regnum));
2525
fa9a63c5
RM
2526/* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
2527 Returns one of error codes defined in `regex.h', or zero for success.
2528
2529 Assumes the `allocated' (and perhaps `buffer') and `translate'
2530 fields are set in BUFP on entry.
2531
2532 If it succeeds, results are put in BUFP (if it returns an error, the
2533 contents of BUFP are undefined):
2534 `buffer' is the compiled pattern;
2535 `syntax' is set to SYNTAX;
2536 `used' is set to the length of the compiled pattern;
2537 `fastmap_accurate' is zero;
2538 `re_nsub' is the number of subexpressions in PATTERN;
2539 `not_bol' and `not_eol' are zero;
5e69f11e 2540
c0f9ea08 2541 The `fastmap' field is neither examined nor set. */
fa9a63c5 2542
505bde11
SM
2543/* Insert the `jump' from the end of last alternative to "here".
2544 The space for the jump has already been allocated. */
2545#define FIXUP_ALT_JUMP() \
2546do { \
2547 if (fixup_alt_jump) \
2548 STORE_JUMP (jump, fixup_alt_jump, b); \
2549} while (0)
2550
2551
fa9a63c5
RM
2552/* Return, freeing storage we allocated. */
2553#define FREE_STACK_RETURN(value) \
b18215fc
RS
2554 do { \
2555 FREE_RANGE_TABLE_WORK_AREA (range_table_work); \
2556 free (compile_stack.stack); \
2557 return value; \
2558 } while (0)
fa9a63c5
RM
2559
2560static reg_errcode_t
2561regex_compile (pattern, size, syntax, bufp)
66f0296e 2562 re_char *pattern;
4bb91c68 2563 size_t size;
fa9a63c5
RM
2564 reg_syntax_t syntax;
2565 struct re_pattern_buffer *bufp;
2566{
01618498
SM
2567 /* We fetch characters from PATTERN here. */
2568 register re_wchar_t c, c1;
5e69f11e 2569
fa9a63c5 2570 /* A random temporary spot in PATTERN. */
66f0296e 2571 re_char *p1;
fa9a63c5
RM
2572
2573 /* Points to the end of the buffer, where we should append. */
2574 register unsigned char *b;
5e69f11e 2575
fa9a63c5
RM
2576 /* Keeps track of unclosed groups. */
2577 compile_stack_type compile_stack;
2578
2579 /* Points to the current (ending) position in the pattern. */
22336245
RS
2580#ifdef AIX
2581 /* `const' makes AIX compiler fail. */
66f0296e 2582 unsigned char *p = pattern;
22336245 2583#else
66f0296e 2584 re_char *p = pattern;
22336245 2585#endif
66f0296e 2586 re_char *pend = pattern + size;
5e69f11e 2587
fa9a63c5 2588 /* How to translate the characters in the pattern. */
6676cb1c 2589 RE_TRANSLATE_TYPE translate = bufp->translate;
fa9a63c5
RM
2590
2591 /* Address of the count-byte of the most recently inserted `exactn'
2592 command. This makes it possible to tell if a new exact-match
2593 character can be added to that command or if the character requires
2594 a new `exactn' command. */
2595 unsigned char *pending_exact = 0;
2596
2597 /* Address of start of the most recently finished expression.
2598 This tells, e.g., postfix * where to find the start of its
2599 operand. Reset at the beginning of groups and alternatives. */
2600 unsigned char *laststart = 0;
2601
2602 /* Address of beginning of regexp, or inside of last group. */
2603 unsigned char *begalt;
2604
2605 /* Place in the uncompiled pattern (i.e., the {) to
2606 which to go back if the interval is invalid. */
66f0296e 2607 re_char *beg_interval;
5e69f11e 2608
fa9a63c5 2609 /* Address of the place where a forward jump should go to the end of
7814e705 2610 the containing expression. Each alternative of an `or' -- except the
fa9a63c5
RM
2611 last -- ends with a forward jump of this sort. */
2612 unsigned char *fixup_alt_jump = 0;
2613
b18215fc
RS
2614 /* Work area for range table of charset. */
2615 struct range_table_work_area range_table_work;
2616
2d1675e4
SM
2617 /* If the object matched can contain multibyte characters. */
2618 const boolean multibyte = RE_MULTIBYTE_P (bufp);
2619
8f924df7 2620 /* If a target of matching can contain multibyte characters. */
6fdd04b0
KH
2621 const boolean target_multibyte = RE_TARGET_MULTIBYTE_P (bufp);
2622
f9b0fd99
RS
2623 /* Nonzero if we have pushed down into a subpattern. */
2624 int in_subpattern = 0;
2625
2626 /* These hold the values of p, pattern, and pend from the main
2627 pattern when we have pushed into a subpattern. */
2628 re_char *main_p;
2629 re_char *main_pattern;
2630 re_char *main_pend;
2631
fa9a63c5 2632#ifdef DEBUG
99633e97 2633 debug++;
fa9a63c5 2634 DEBUG_PRINT1 ("\nCompiling pattern: ");
99633e97 2635 if (debug > 0)
fa9a63c5
RM
2636 {
2637 unsigned debug_count;
5e69f11e 2638
fa9a63c5 2639 for (debug_count = 0; debug_count < size; debug_count++)
25fe55af 2640 putchar (pattern[debug_count]);
fa9a63c5
RM
2641 putchar ('\n');
2642 }
2643#endif /* DEBUG */
2644
2645 /* Initialize the compile stack. */
2646 compile_stack.stack = TALLOC (INIT_COMPILE_STACK_SIZE, compile_stack_elt_t);
2647 if (compile_stack.stack == NULL)
2648 return REG_ESPACE;
2649
2650 compile_stack.size = INIT_COMPILE_STACK_SIZE;
2651 compile_stack.avail = 0;
2652
b18215fc
RS
2653 range_table_work.table = 0;
2654 range_table_work.allocated = 0;
2655
fa9a63c5
RM
2656 /* Initialize the pattern buffer. */
2657 bufp->syntax = syntax;
2658 bufp->fastmap_accurate = 0;
2659 bufp->not_bol = bufp->not_eol = 0;
6224b623 2660 bufp->used_syntax = 0;
fa9a63c5
RM
2661
2662 /* Set `used' to zero, so that if we return an error, the pattern
2663 printer (for debugging) will think there's no pattern. We reset it
2664 at the end. */
2665 bufp->used = 0;
5e69f11e 2666
fa9a63c5 2667 /* Always count groups, whether or not bufp->no_sub is set. */
5e69f11e 2668 bufp->re_nsub = 0;
fa9a63c5 2669
0b32bf0e 2670#if !defined emacs && !defined SYNTAX_TABLE
fa9a63c5
RM
2671 /* Initialize the syntax table. */
2672 init_syntax_once ();
2673#endif
2674
2675 if (bufp->allocated == 0)
2676 {
2677 if (bufp->buffer)
2678 { /* If zero allocated, but buffer is non-null, try to realloc
25fe55af 2679 enough space. This loses if buffer's address is bogus, but
7814e705 2680 that is the user's responsibility. */
25fe55af
RS
2681 RETALLOC (bufp->buffer, INIT_BUF_SIZE, unsigned char);
2682 }
fa9a63c5 2683 else
7814e705 2684 { /* Caller did not allocate a buffer. Do it for them. */
25fe55af
RS
2685 bufp->buffer = TALLOC (INIT_BUF_SIZE, unsigned char);
2686 }
fa9a63c5
RM
2687 if (!bufp->buffer) FREE_STACK_RETURN (REG_ESPACE);
2688
2689 bufp->allocated = INIT_BUF_SIZE;
2690 }
2691
2692 begalt = b = bufp->buffer;
2693
2694 /* Loop through the uncompiled pattern until we're at the end. */
f9b0fd99 2695 while (1)
fa9a63c5 2696 {
f9b0fd99
RS
2697 if (p == pend)
2698 {
2699 /* If this is the end of an included regexp,
2700 pop back to the main regexp and try again. */
2701 if (in_subpattern)
2702 {
2703 in_subpattern = 0;
2704 pattern = main_pattern;
2705 p = main_p;
2706 pend = main_pend;
2707 continue;
2708 }
2709 /* If this is the end of the main regexp, we are done. */
2710 break;
2711 }
2712
fa9a63c5
RM
2713 PATFETCH (c);
2714
2715 switch (c)
25fe55af 2716 {
f9b0fd99
RS
2717 case ' ':
2718 {
2719 re_char *p1 = p;
2720
2721 /* If there's no special whitespace regexp, treat
4fb680cd
RS
2722 spaces normally. And don't try to do this recursively. */
2723 if (!whitespace_regexp || in_subpattern)
f9b0fd99
RS
2724 goto normal_char;
2725
2726 /* Peek past following spaces. */
2727 while (p1 != pend)
2728 {
2729 if (*p1 != ' ')
2730 break;
2731 p1++;
2732 }
2733 /* If the spaces are followed by a repetition op,
2734 treat them normally. */
c721eee5
RS
2735 if (p1 != pend
2736 && (*p1 == '*' || *p1 == '+' || *p1 == '?'
f9b0fd99
RS
2737 || (*p1 == '\\' && p1 + 1 != pend && p1[1] == '{')))
2738 goto normal_char;
2739
2740 /* Replace the spaces with the whitespace regexp. */
2741 in_subpattern = 1;
2742 main_p = p1;
2743 main_pend = pend;
2744 main_pattern = pattern;
2745 p = pattern = whitespace_regexp;
2746 pend = p + strlen (p);
2747 break;
7814e705 2748 }
f9b0fd99 2749
25fe55af
RS
2750 case '^':
2751 {
7814e705 2752 if ( /* If at start of pattern, it's an operator. */
25fe55af 2753 p == pattern + 1
7814e705 2754 /* If context independent, it's an operator. */
25fe55af 2755 || syntax & RE_CONTEXT_INDEP_ANCHORS
7814e705 2756 /* Otherwise, depends on what's come before. */
25fe55af 2757 || at_begline_loc_p (pattern, p, syntax))
c0f9ea08 2758 BUF_PUSH ((syntax & RE_NO_NEWLINE_ANCHOR) ? begbuf : begline);
25fe55af
RS
2759 else
2760 goto normal_char;
2761 }
2762 break;
2763
2764
2765 case '$':
2766 {
2767 if ( /* If at end of pattern, it's an operator. */
2768 p == pend
7814e705 2769 /* If context independent, it's an operator. */
25fe55af
RS
2770 || syntax & RE_CONTEXT_INDEP_ANCHORS
2771 /* Otherwise, depends on what's next. */
2772 || at_endline_loc_p (p, pend, syntax))
c0f9ea08 2773 BUF_PUSH ((syntax & RE_NO_NEWLINE_ANCHOR) ? endbuf : endline);
25fe55af
RS
2774 else
2775 goto normal_char;
2776 }
2777 break;
fa9a63c5
RM
2778
2779
2780 case '+':
25fe55af
RS
2781 case '?':
2782 if ((syntax & RE_BK_PLUS_QM)
2783 || (syntax & RE_LIMITED_OPS))
2784 goto normal_char;
2785 handle_plus:
2786 case '*':
2787 /* If there is no previous pattern... */
2788 if (!laststart)
2789 {
2790 if (syntax & RE_CONTEXT_INVALID_OPS)
2791 FREE_STACK_RETURN (REG_BADRPT);
2792 else if (!(syntax & RE_CONTEXT_INDEP_OPS))
2793 goto normal_char;
2794 }
2795
2796 {
7814e705 2797 /* 1 means zero (many) matches is allowed. */
66f0296e
SM
2798 boolean zero_times_ok = 0, many_times_ok = 0;
2799 boolean greedy = 1;
25fe55af
RS
2800
2801 /* If there is a sequence of repetition chars, collapse it
2802 down to just one (the right one). We can't combine
2803 interval operators with these because of, e.g., `a{2}*',
7814e705 2804 which should only match an even number of `a's. */
25fe55af
RS
2805
2806 for (;;)
2807 {
0b32bf0e 2808 if ((syntax & RE_FRUGAL)
1c8c6d39
DL
2809 && c == '?' && (zero_times_ok || many_times_ok))
2810 greedy = 0;
2811 else
2812 {
2813 zero_times_ok |= c != '+';
2814 many_times_ok |= c != '?';
2815 }
25fe55af
RS
2816
2817 if (p == pend)
2818 break;
ed0767d8
SM
2819 else if (*p == '*'
2820 || (!(syntax & RE_BK_PLUS_QM)
2821 && (*p == '+' || *p == '?')))
25fe55af 2822 ;
ed0767d8 2823 else if (syntax & RE_BK_PLUS_QM && *p == '\\')
25fe55af 2824 {
ed0767d8
SM
2825 if (p+1 == pend)
2826 FREE_STACK_RETURN (REG_EESCAPE);
2827 if (p[1] == '+' || p[1] == '?')
2828 PATFETCH (c); /* Gobble up the backslash. */
2829 else
2830 break;
25fe55af
RS
2831 }
2832 else
ed0767d8 2833 break;
25fe55af 2834 /* If we get here, we found another repeat character. */
ed0767d8
SM
2835 PATFETCH (c);
2836 }
25fe55af
RS
2837
2838 /* Star, etc. applied to an empty pattern is equivalent
2839 to an empty pattern. */
4e8a9132 2840 if (!laststart || laststart == b)
25fe55af
RS
2841 break;
2842
2843 /* Now we know whether or not zero matches is allowed
7814e705 2844 and also whether or not two or more matches is allowed. */
1c8c6d39
DL
2845 if (greedy)
2846 {
99633e97 2847 if (many_times_ok)
4e8a9132
SM
2848 {
2849 boolean simple = skip_one_char (laststart) == b;
2850 unsigned int startoffset = 0;
f6a3f532 2851 re_opcode_t ofj =
01618498 2852 /* Check if the loop can match the empty string. */
6df42991
SM
2853 (simple || !analyse_first (laststart, b, NULL, 0))
2854 ? on_failure_jump : on_failure_jump_loop;
4e8a9132 2855 assert (skip_one_char (laststart) <= b);
177c0ea7 2856
4e8a9132
SM
2857 if (!zero_times_ok && simple)
2858 { /* Since simple * loops can be made faster by using
2859 on_failure_keep_string_jump, we turn simple P+
2860 into PP* if P is simple. */
2861 unsigned char *p1, *p2;
2862 startoffset = b - laststart;
2863 GET_BUFFER_SPACE (startoffset);
2864 p1 = b; p2 = laststart;
2865 while (p2 < p1)
2866 *b++ = *p2++;
2867 zero_times_ok = 1;
99633e97 2868 }
4e8a9132
SM
2869
2870 GET_BUFFER_SPACE (6);
2871 if (!zero_times_ok)
2872 /* A + loop. */
f6a3f532 2873 STORE_JUMP (ofj, b, b + 6);
99633e97 2874 else
4e8a9132
SM
2875 /* Simple * loops can use on_failure_keep_string_jump
2876 depending on what follows. But since we don't know
2877 that yet, we leave the decision up to
2878 on_failure_jump_smart. */
f6a3f532 2879 INSERT_JUMP (simple ? on_failure_jump_smart : ofj,
4e8a9132 2880 laststart + startoffset, b + 6);
99633e97 2881 b += 3;
4e8a9132 2882 STORE_JUMP (jump, b, laststart + startoffset);
99633e97
SM
2883 b += 3;
2884 }
2885 else
2886 {
4e8a9132
SM
2887 /* A simple ? pattern. */
2888 assert (zero_times_ok);
2889 GET_BUFFER_SPACE (3);
2890 INSERT_JUMP (on_failure_jump, laststart, b + 3);
99633e97
SM
2891 b += 3;
2892 }
1c8c6d39
DL
2893 }
2894 else /* not greedy */
2895 { /* I wish the greedy and non-greedy cases could be merged. */
2896
0683b6fa 2897 GET_BUFFER_SPACE (7); /* We might use less. */
1c8c6d39
DL
2898 if (many_times_ok)
2899 {
f6a3f532
SM
2900 boolean emptyp = analyse_first (laststart, b, NULL, 0);
2901
6df42991
SM
2902 /* The non-greedy multiple match looks like
2903 a repeat..until: we only need a conditional jump
2904 at the end of the loop. */
f6a3f532
SM
2905 if (emptyp) BUF_PUSH (no_op);
2906 STORE_JUMP (emptyp ? on_failure_jump_nastyloop
2907 : on_failure_jump, b, laststart);
1c8c6d39
DL
2908 b += 3;
2909 if (zero_times_ok)
2910 {
2911 /* The repeat...until naturally matches one or more.
2912 To also match zero times, we need to first jump to
6df42991 2913 the end of the loop (its conditional jump). */
1c8c6d39
DL
2914 INSERT_JUMP (jump, laststart, b);
2915 b += 3;
2916 }
2917 }
2918 else
2919 {
2920 /* non-greedy a?? */
1c8c6d39
DL
2921 INSERT_JUMP (jump, laststart, b + 3);
2922 b += 3;
2923 INSERT_JUMP (on_failure_jump, laststart, laststart + 6);
2924 b += 3;
2925 }
2926 }
2927 }
4e8a9132 2928 pending_exact = 0;
fa9a63c5
RM
2929 break;
2930
2931
2932 case '.':
25fe55af
RS
2933 laststart = b;
2934 BUF_PUSH (anychar);
2935 break;
fa9a63c5
RM
2936
2937
25fe55af
RS
2938 case '[':
2939 {
b18215fc 2940 CLEAR_RANGE_TABLE_WORK_USED (range_table_work);
fa9a63c5 2941
25fe55af 2942 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
fa9a63c5 2943
25fe55af
RS
2944 /* Ensure that we have enough space to push a charset: the
2945 opcode, the length count, and the bitset; 34 bytes in all. */
fa9a63c5
RM
2946 GET_BUFFER_SPACE (34);
2947
25fe55af 2948 laststart = b;
e318085a 2949
25fe55af 2950 /* We test `*p == '^' twice, instead of using an if
7814e705 2951 statement, so we only need one BUF_PUSH. */
25fe55af
RS
2952 BUF_PUSH (*p == '^' ? charset_not : charset);
2953 if (*p == '^')
2954 p++;
e318085a 2955
25fe55af
RS
2956 /* Remember the first position in the bracket expression. */
2957 p1 = p;
e318085a 2958
7814e705 2959 /* Push the number of bytes in the bitmap. */
25fe55af 2960 BUF_PUSH ((1 << BYTEWIDTH) / BYTEWIDTH);
e318085a 2961
25fe55af
RS
2962 /* Clear the whole map. */
2963 bzero (b, (1 << BYTEWIDTH) / BYTEWIDTH);
e318085a 2964
25fe55af
RS
2965 /* charset_not matches newline according to a syntax bit. */
2966 if ((re_opcode_t) b[-2] == charset_not
2967 && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
2968 SET_LIST_BIT ('\n');
fa9a63c5 2969
7814e705 2970 /* Read in characters and ranges, setting map bits. */
25fe55af
RS
2971 for (;;)
2972 {
b18215fc 2973 boolean escaped_char = false;
2d1675e4 2974 const unsigned char *p2 = p;
cf9c99bc 2975 re_wchar_t ch, c2;
e318085a 2976
25fe55af 2977 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
e318085a 2978
36595814
SM
2979 /* Don't translate yet. The range TRANSLATE(X..Y) cannot
2980 always be determined from TRANSLATE(X) and TRANSLATE(Y)
2981 So the translation is done later in a loop. Example:
2982 (let ((case-fold-search t)) (string-match "[A-_]" "A")) */
25fe55af 2983 PATFETCH (c);
e318085a 2984
25fe55af
RS
2985 /* \ might escape characters inside [...] and [^...]. */
2986 if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
2987 {
2988 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
e318085a
RS
2989
2990 PATFETCH (c);
b18215fc 2991 escaped_char = true;
25fe55af 2992 }
b18215fc
RS
2993 else
2994 {
7814e705 2995 /* Could be the end of the bracket expression. If it's
657fcfbd
RS
2996 not (i.e., when the bracket expression is `[]' so
2997 far), the ']' character bit gets set way below. */
2d1675e4 2998 if (c == ']' && p2 != p1)
657fcfbd 2999 break;
25fe55af 3000 }
b18215fc 3001
25fe55af
RS
3002 /* See if we're at the beginning of a possible character
3003 class. */
b18215fc 3004
2d1675e4
SM
3005 if (!escaped_char &&
3006 syntax & RE_CHAR_CLASSES && c == '[' && *p == ':')
657fcfbd 3007 {
7814e705 3008 /* Leave room for the null. */
14473664 3009 unsigned char str[CHAR_CLASS_MAX_LENGTH + 1];
ed0767d8 3010 const unsigned char *class_beg;
b18215fc 3011
25fe55af
RS
3012 PATFETCH (c);
3013 c1 = 0;
ed0767d8 3014 class_beg = p;
b18215fc 3015
25fe55af
RS
3016 /* If pattern is `[[:'. */
3017 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
b18215fc 3018
25fe55af
RS
3019 for (;;)
3020 {
14473664
SM
3021 PATFETCH (c);
3022 if ((c == ':' && *p == ']') || p == pend)
3023 break;
3024 if (c1 < CHAR_CLASS_MAX_LENGTH)
3025 str[c1++] = c;
3026 else
3027 /* This is in any case an invalid class name. */
3028 str[0] = '\0';
25fe55af
RS
3029 }
3030 str[c1] = '\0';
b18215fc
RS
3031
3032 /* If isn't a word bracketed by `[:' and `:]':
3033 undo the ending character, the letters, and
3034 leave the leading `:' and `[' (but set bits for
3035 them). */
25fe55af
RS
3036 if (c == ':' && *p == ']')
3037 {
14473664 3038 re_wctype_t cc;
8f924df7 3039 int limit;
14473664
SM
3040
3041 cc = re_wctype (str);
3042
3043 if (cc == 0)
fa9a63c5
RM
3044 FREE_STACK_RETURN (REG_ECTYPE);
3045
14473664
SM
3046 /* Throw away the ] at the end of the character
3047 class. */
3048 PATFETCH (c);
fa9a63c5 3049
14473664 3050 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
fa9a63c5 3051
cf9c99bc
KH
3052#ifndef emacs
3053 for (ch = 0; ch < (1 << BYTEWIDTH); ++ch)
8f924df7
KH
3054 if (re_iswctype (btowc (ch), cc))
3055 {
3056 c = TRANSLATE (ch);
ed00c2ac
KH
3057 if (c < (1 << BYTEWIDTH))
3058 SET_LIST_BIT (c);
8f924df7 3059 }
cf9c99bc
KH
3060#else /* emacs */
3061 /* Most character classes in a multibyte match
3062 just set a flag. Exceptions are is_blank,
3063 is_digit, is_cntrl, and is_xdigit, since
3064 they can only match ASCII characters. We
3065 don't need to handle them for multibyte.
3066 They are distinguished by a negative wctype. */
96cc36cc 3067
cf9c99bc 3068 for (ch = 0; ch < 256; ++ch)
25fe55af 3069 {
cf9c99bc
KH
3070 c = RE_CHAR_TO_MULTIBYTE (ch);
3071 if (! CHAR_BYTE8_P (c)
3072 && re_iswctype (c, cc))
8f924df7 3073 {
cf9c99bc
KH
3074 SET_LIST_BIT (ch);
3075 c1 = TRANSLATE (c);
3076 if (c1 == c)
3077 continue;
3078 if (ASCII_CHAR_P (c1))
3079 SET_LIST_BIT (c1);
3080 else if ((c1 = RE_CHAR_TO_UNIBYTE (c1)) >= 0)
3081 SET_LIST_BIT (c1);
8f924df7 3082 }
25fe55af 3083 }
cf9c99bc
KH
3084 SET_RANGE_TABLE_WORK_AREA_BIT
3085 (range_table_work, re_wctype_to_bit (cc));
3086#endif /* emacs */
6224b623
SM
3087 /* In most cases the matching rule for char classes
3088 only uses the syntax table for multibyte chars,
3089 so that the content of the syntax-table it is not
3090 hardcoded in the range_table. SPACE and WORD are
3091 the two exceptions. */
3092 if ((1 << cc) & ((1 << RECC_SPACE) | (1 << RECC_WORD)))
3093 bufp->used_syntax = 1;
3094
b18215fc
RS
3095 /* Repeat the loop. */
3096 continue;
25fe55af
RS
3097 }
3098 else
3099 {
ed0767d8
SM
3100 /* Go back to right after the "[:". */
3101 p = class_beg;
25fe55af 3102 SET_LIST_BIT ('[');
b18215fc
RS
3103
3104 /* Because the `:' may starts the range, we
3105 can't simply set bit and repeat the loop.
7814e705 3106 Instead, just set it to C and handle below. */
b18215fc 3107 c = ':';
25fe55af
RS
3108 }
3109 }
b18215fc
RS
3110
3111 if (p < pend && p[0] == '-' && p[1] != ']')
3112 {
3113
3114 /* Discard the `-'. */
3115 PATFETCH (c1);
3116
3117 /* Fetch the character which ends the range. */
3118 PATFETCH (c1);
cf9c99bc
KH
3119#ifdef emacs
3120 if (CHAR_BYTE8_P (c1)
3121 && ! ASCII_CHAR_P (c) && ! CHAR_BYTE8_P (c))
3122 /* Treat the range from a multibyte character to
3123 raw-byte character as empty. */
3124 c = c1 + 1;
3125#endif /* emacs */
e318085a 3126 }
25fe55af 3127 else
b18215fc
RS
3128 /* Range from C to C. */
3129 c1 = c;
3130
cf9c99bc 3131 if (c > c1)
25fe55af 3132 {
cf9c99bc
KH
3133 if (syntax & RE_NO_EMPTY_RANGES)
3134 FREE_STACK_RETURN (REG_ERANGEX);
3135 /* Else, repeat the loop. */
bf216479 3136 }
6fdd04b0 3137 else
25fe55af 3138 {
cf9c99bc
KH
3139#ifndef emacs
3140 /* Set the range into bitmap */
8f924df7 3141 for (; c <= c1; c++)
b18215fc 3142 {
cf9c99bc
KH
3143 ch = TRANSLATE (c);
3144 if (ch < (1 << BYTEWIDTH))
3145 SET_LIST_BIT (ch);
3146 }
3147#else /* emacs */
3148 if (c < 128)
3149 {
3150 ch = MIN (127, c1);
3151 SETUP_ASCII_RANGE (range_table_work, c, ch);
3152 c = ch + 1;
3153 if (CHAR_BYTE8_P (c1))
3154 c = BYTE8_TO_CHAR (128);
3155 }
3156 if (c <= c1)
3157 {
3158 if (CHAR_BYTE8_P (c))
3159 {
3160 c = CHAR_TO_BYTE8 (c);
3161 c1 = CHAR_TO_BYTE8 (c1);
3162 for (; c <= c1; c++)
3163 SET_LIST_BIT (c);
3164 }
3165 else if (multibyte)
3166 {
3167 SETUP_MULTIBYTE_RANGE (range_table_work, c, c1);
3168 }
3169 else
3170 {
3171 SETUP_UNIBYTE_RANGE (range_table_work, c, c1);
3172 }
e934739e 3173 }
cf9c99bc 3174#endif /* emacs */
25fe55af 3175 }
e318085a
RS
3176 }
3177
25fe55af 3178 /* Discard any (non)matching list bytes that are all 0 at the
7814e705 3179 end of the map. Decrease the map-length byte too. */
25fe55af
RS
3180 while ((int) b[-1] > 0 && b[b[-1] - 1] == 0)
3181 b[-1]--;
3182 b += b[-1];
fa9a63c5 3183
96cc36cc
RS
3184 /* Build real range table from work area. */
3185 if (RANGE_TABLE_WORK_USED (range_table_work)
3186 || RANGE_TABLE_WORK_BITS (range_table_work))
b18215fc
RS
3187 {
3188 int i;
3189 int used = RANGE_TABLE_WORK_USED (range_table_work);
fa9a63c5 3190
b18215fc 3191 /* Allocate space for COUNT + RANGE_TABLE. Needs two
96cc36cc
RS
3192 bytes for flags, two for COUNT, and three bytes for
3193 each character. */
3194 GET_BUFFER_SPACE (4 + used * 3);
fa9a63c5 3195
b18215fc
RS
3196 /* Indicate the existence of range table. */
3197 laststart[1] |= 0x80;
fa9a63c5 3198
96cc36cc
RS
3199 /* Store the character class flag bits into the range table.
3200 If not in emacs, these flag bits are always 0. */
3201 *b++ = RANGE_TABLE_WORK_BITS (range_table_work) & 0xff;
3202 *b++ = RANGE_TABLE_WORK_BITS (range_table_work) >> 8;
3203
b18215fc
RS
3204 STORE_NUMBER_AND_INCR (b, used / 2);
3205 for (i = 0; i < used; i++)
3206 STORE_CHARACTER_AND_INCR
3207 (b, RANGE_TABLE_WORK_ELT (range_table_work, i));
3208 }
25fe55af
RS
3209 }
3210 break;
fa9a63c5
RM
3211
3212
b18215fc 3213 case '(':
25fe55af
RS
3214 if (syntax & RE_NO_BK_PARENS)
3215 goto handle_open;
3216 else
3217 goto normal_char;
fa9a63c5
RM
3218
3219
25fe55af
RS
3220 case ')':
3221 if (syntax & RE_NO_BK_PARENS)
3222 goto handle_close;
3223 else
3224 goto normal_char;
e318085a
RS
3225
3226
25fe55af
RS
3227 case '\n':
3228 if (syntax & RE_NEWLINE_ALT)
3229 goto handle_alt;
3230 else
3231 goto normal_char;
e318085a
RS
3232
3233
b18215fc 3234 case '|':
25fe55af
RS
3235 if (syntax & RE_NO_BK_VBAR)
3236 goto handle_alt;
3237 else
3238 goto normal_char;
3239
3240
3241 case '{':
3242 if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES)
3243 goto handle_interval;
3244 else
3245 goto normal_char;
3246
3247
3248 case '\\':
3249 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
3250
3251 /* Do not translate the character after the \, so that we can
3252 distinguish, e.g., \B from \b, even if we normally would
3253 translate, e.g., B to b. */
36595814 3254 PATFETCH (c);
25fe55af
RS
3255
3256 switch (c)
3257 {
3258 case '(':
3259 if (syntax & RE_NO_BK_PARENS)
3260 goto normal_backslash;
3261
3262 handle_open:
505bde11
SM
3263 {
3264 int shy = 0;
c69b0314 3265 regnum_t regnum = 0;
505bde11
SM
3266 if (p+1 < pend)
3267 {
3268 /* Look for a special (?...) construct */
ed0767d8 3269 if ((syntax & RE_SHY_GROUPS) && *p == '?')
505bde11 3270 {
ed0767d8 3271 PATFETCH (c); /* Gobble up the '?'. */
c69b0314 3272 while (!shy)
505bde11 3273 {
c69b0314
SM
3274 PATFETCH (c);
3275 switch (c)
3276 {
3277 case ':': shy = 1; break;
3278 case '0':
3279 /* An explicitly specified regnum must start
3280 with non-0. */
3281 if (regnum == 0)
3282 FREE_STACK_RETURN (REG_BADPAT);
3283 case '1': case '2': case '3': case '4':
3284 case '5': case '6': case '7': case '8': case '9':
3285 regnum = 10*regnum + (c - '0'); break;
3286 default:
3287 /* Only (?:...) is supported right now. */
3288 FREE_STACK_RETURN (REG_BADPAT);
3289 }
505bde11
SM
3290 }
3291 }
505bde11
SM
3292 }
3293
3294 if (!shy)
c69b0314
SM
3295 regnum = ++bufp->re_nsub;
3296 else if (regnum)
3297 { /* It's actually not shy, but explicitly numbered. */
3298 shy = 0;
3299 if (regnum > bufp->re_nsub)
3300 bufp->re_nsub = regnum;
3301 else if (regnum > bufp->re_nsub
3302 /* Ideally, we'd want to check that the specified
3303 group can't have matched (i.e. all subgroups
3304 using the same regnum are in other branches of
3305 OR patterns), but we don't currently keep track
3306 of enough info to do that easily. */
3307 || group_in_compile_stack (compile_stack, regnum))
3308 FREE_STACK_RETURN (REG_BADPAT);
505bde11 3309 }
c69b0314
SM
3310 else
3311 /* It's really shy. */
3312 regnum = - bufp->re_nsub;
25fe55af 3313
99633e97
SM
3314 if (COMPILE_STACK_FULL)
3315 {
3316 RETALLOC (compile_stack.stack, compile_stack.size << 1,
3317 compile_stack_elt_t);
3318 if (compile_stack.stack == NULL) return REG_ESPACE;
25fe55af 3319
99633e97
SM
3320 compile_stack.size <<= 1;
3321 }
25fe55af 3322
99633e97 3323 /* These are the values to restore when we hit end of this
7814e705 3324 group. They are all relative offsets, so that if the
99633e97
SM
3325 whole pattern moves because of realloc, they will still
3326 be valid. */
3327 COMPILE_STACK_TOP.begalt_offset = begalt - bufp->buffer;
3328 COMPILE_STACK_TOP.fixup_alt_jump
3329 = fixup_alt_jump ? fixup_alt_jump - bufp->buffer + 1 : 0;
3330 COMPILE_STACK_TOP.laststart_offset = b - bufp->buffer;
c69b0314 3331 COMPILE_STACK_TOP.regnum = regnum;
99633e97 3332
c69b0314
SM
3333 /* Do not push a start_memory for groups beyond the last one
3334 we can represent in the compiled pattern. */
3335 if (regnum <= MAX_REGNUM && regnum > 0)
99633e97
SM
3336 BUF_PUSH_2 (start_memory, regnum);
3337
3338 compile_stack.avail++;
3339
3340 fixup_alt_jump = 0;
3341 laststart = 0;
3342 begalt = b;
3343 /* If we've reached MAX_REGNUM groups, then this open
3344 won't actually generate any code, so we'll have to
3345 clear pending_exact explicitly. */
3346 pending_exact = 0;
3347 break;
505bde11 3348 }
25fe55af
RS
3349
3350 case ')':
3351 if (syntax & RE_NO_BK_PARENS) goto normal_backslash;
3352
3353 if (COMPILE_STACK_EMPTY)
505bde11
SM
3354 {
3355 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
3356 goto normal_backslash;
3357 else
3358 FREE_STACK_RETURN (REG_ERPAREN);
3359 }
25fe55af
RS
3360
3361 handle_close:
505bde11 3362 FIXUP_ALT_JUMP ();
25fe55af
RS
3363
3364 /* See similar code for backslashed left paren above. */
3365 if (COMPILE_STACK_EMPTY)
505bde11
SM
3366 {
3367 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
3368 goto normal_char;
3369 else
3370 FREE_STACK_RETURN (REG_ERPAREN);
3371 }
25fe55af
RS
3372
3373 /* Since we just checked for an empty stack above, this
3374 ``can't happen''. */
3375 assert (compile_stack.avail != 0);
3376 {
3377 /* We don't just want to restore into `regnum', because
3378 later groups should continue to be numbered higher,
7814e705 3379 as in `(ab)c(de)' -- the second group is #2. */
c69b0314 3380 regnum_t regnum;
25fe55af
RS
3381
3382 compile_stack.avail--;
3383 begalt = bufp->buffer + COMPILE_STACK_TOP.begalt_offset;
3384 fixup_alt_jump
3385 = COMPILE_STACK_TOP.fixup_alt_jump
3386 ? bufp->buffer + COMPILE_STACK_TOP.fixup_alt_jump - 1
3387 : 0;
3388 laststart = bufp->buffer + COMPILE_STACK_TOP.laststart_offset;
c69b0314 3389 regnum = COMPILE_STACK_TOP.regnum;
b18215fc
RS
3390 /* If we've reached MAX_REGNUM groups, then this open
3391 won't actually generate any code, so we'll have to
3392 clear pending_exact explicitly. */
3393 pending_exact = 0;
e318085a 3394
25fe55af 3395 /* We're at the end of the group, so now we know how many
7814e705 3396 groups were inside this one. */
c69b0314
SM
3397 if (regnum <= MAX_REGNUM && regnum > 0)
3398 BUF_PUSH_2 (stop_memory, regnum);
25fe55af
RS
3399 }
3400 break;
3401
3402
3403 case '|': /* `\|'. */
3404 if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR)
3405 goto normal_backslash;
3406 handle_alt:
3407 if (syntax & RE_LIMITED_OPS)
3408 goto normal_char;
3409
3410 /* Insert before the previous alternative a jump which
7814e705 3411 jumps to this alternative if the former fails. */
25fe55af
RS
3412 GET_BUFFER_SPACE (3);
3413 INSERT_JUMP (on_failure_jump, begalt, b + 6);
3414 pending_exact = 0;
3415 b += 3;
3416
3417 /* The alternative before this one has a jump after it
3418 which gets executed if it gets matched. Adjust that
3419 jump so it will jump to this alternative's analogous
3420 jump (put in below, which in turn will jump to the next
3421 (if any) alternative's such jump, etc.). The last such
3422 jump jumps to the correct final destination. A picture:
3423 _____ _____
3424 | | | |
3425 | v | v
3426 a | b | c
3427
3428 If we are at `b', then fixup_alt_jump right now points to a
3429 three-byte space after `a'. We'll put in the jump, set
3430 fixup_alt_jump to right after `b', and leave behind three
3431 bytes which we'll fill in when we get to after `c'. */
3432
505bde11 3433 FIXUP_ALT_JUMP ();
25fe55af
RS
3434
3435 /* Mark and leave space for a jump after this alternative,
3436 to be filled in later either by next alternative or
3437 when know we're at the end of a series of alternatives. */
3438 fixup_alt_jump = b;
3439 GET_BUFFER_SPACE (3);
3440 b += 3;
3441
3442 laststart = 0;
3443 begalt = b;
3444 break;
3445
3446
3447 case '{':
3448 /* If \{ is a literal. */
3449 if (!(syntax & RE_INTERVALS)
3450 /* If we're at `\{' and it's not the open-interval
3451 operator. */
4bb91c68 3452 || (syntax & RE_NO_BK_BRACES))
25fe55af
RS
3453 goto normal_backslash;
3454
3455 handle_interval:
3456 {
3457 /* If got here, then the syntax allows intervals. */
3458
3459 /* At least (most) this many matches must be made. */
99633e97 3460 int lower_bound = 0, upper_bound = -1;
25fe55af 3461
ed0767d8 3462 beg_interval = p;
25fe55af 3463
25fe55af
RS
3464 GET_UNSIGNED_NUMBER (lower_bound);
3465
3466 if (c == ',')
ed0767d8 3467 GET_UNSIGNED_NUMBER (upper_bound);
25fe55af
RS
3468 else
3469 /* Interval such as `{1}' => match exactly once. */
3470 upper_bound = lower_bound;
3471
3472 if (lower_bound < 0 || upper_bound > RE_DUP_MAX
ed0767d8 3473 || (upper_bound >= 0 && lower_bound > upper_bound))
4bb91c68 3474 FREE_STACK_RETURN (REG_BADBR);
25fe55af
RS
3475
3476 if (!(syntax & RE_NO_BK_BRACES))
3477 {
4bb91c68
SM
3478 if (c != '\\')
3479 FREE_STACK_RETURN (REG_BADBR);
c72b0edd
SM
3480 if (p == pend)
3481 FREE_STACK_RETURN (REG_EESCAPE);
25fe55af
RS
3482 PATFETCH (c);
3483 }
3484
3485 if (c != '}')
4bb91c68 3486 FREE_STACK_RETURN (REG_BADBR);
25fe55af
RS
3487
3488 /* We just parsed a valid interval. */
3489
3490 /* If it's invalid to have no preceding re. */
3491 if (!laststart)
3492 {
3493 if (syntax & RE_CONTEXT_INVALID_OPS)
3494 FREE_STACK_RETURN (REG_BADRPT);
3495 else if (syntax & RE_CONTEXT_INDEP_OPS)
3496 laststart = b;
3497 else
3498 goto unfetch_interval;
3499 }
3500
6df42991
SM
3501 if (upper_bound == 0)
3502 /* If the upper bound is zero, just drop the sub pattern
3503 altogether. */
3504 b = laststart;
3505 else if (lower_bound == 1 && upper_bound == 1)
3506 /* Just match it once: nothing to do here. */
3507 ;
3508
3509 /* Otherwise, we have a nontrivial interval. When
3510 we're all done, the pattern will look like:
3511 set_number_at <jump count> <upper bound>
3512 set_number_at <succeed_n count> <lower bound>
3513 succeed_n <after jump addr> <succeed_n count>
3514 <body of loop>
3515 jump_n <succeed_n addr> <jump count>
3516 (The upper bound and `jump_n' are omitted if
3517 `upper_bound' is 1, though.) */
3518 else
3519 { /* If the upper bound is > 1, we need to insert
3520 more at the end of the loop. */
3521 unsigned int nbytes = (upper_bound < 0 ? 3
3522 : upper_bound > 1 ? 5 : 0);
3523 unsigned int startoffset = 0;
3524
3525 GET_BUFFER_SPACE (20); /* We might use less. */
3526
3527 if (lower_bound == 0)
3528 {
3529 /* A succeed_n that starts with 0 is really a
3530 a simple on_failure_jump_loop. */
3531 INSERT_JUMP (on_failure_jump_loop, laststart,
3532 b + 3 + nbytes);
3533 b += 3;
3534 }
3535 else
3536 {
3537 /* Initialize lower bound of the `succeed_n', even
3538 though it will be set during matching by its
3539 attendant `set_number_at' (inserted next),
3540 because `re_compile_fastmap' needs to know.
3541 Jump to the `jump_n' we might insert below. */
3542 INSERT_JUMP2 (succeed_n, laststart,
3543 b + 5 + nbytes,
3544 lower_bound);
3545 b += 5;
3546
3547 /* Code to initialize the lower bound. Insert
7814e705 3548 before the `succeed_n'. The `5' is the last two
6df42991
SM
3549 bytes of this `set_number_at', plus 3 bytes of
3550 the following `succeed_n'. */
3551 insert_op2 (set_number_at, laststart, 5, lower_bound, b);
3552 b += 5;
3553 startoffset += 5;
3554 }
3555
3556 if (upper_bound < 0)
3557 {
3558 /* A negative upper bound stands for infinity,
3559 in which case it degenerates to a plain jump. */
3560 STORE_JUMP (jump, b, laststart + startoffset);
3561 b += 3;
3562 }
3563 else if (upper_bound > 1)
3564 { /* More than one repetition is allowed, so
3565 append a backward jump to the `succeed_n'
3566 that starts this interval.
3567
3568 When we've reached this during matching,
3569 we'll have matched the interval once, so
3570 jump back only `upper_bound - 1' times. */
3571 STORE_JUMP2 (jump_n, b, laststart + startoffset,
3572 upper_bound - 1);
3573 b += 5;
3574
3575 /* The location we want to set is the second
3576 parameter of the `jump_n'; that is `b-2' as
3577 an absolute address. `laststart' will be
3578 the `set_number_at' we're about to insert;
3579 `laststart+3' the number to set, the source
3580 for the relative address. But we are
3581 inserting into the middle of the pattern --
3582 so everything is getting moved up by 5.
3583 Conclusion: (b - 2) - (laststart + 3) + 5,
3584 i.e., b - laststart.
3585
3586 We insert this at the beginning of the loop
3587 so that if we fail during matching, we'll
3588 reinitialize the bounds. */
3589 insert_op2 (set_number_at, laststart, b - laststart,
3590 upper_bound - 1, b);
3591 b += 5;
3592 }
3593 }
25fe55af
RS
3594 pending_exact = 0;
3595 beg_interval = NULL;
3596 }
3597 break;
3598
3599 unfetch_interval:
3600 /* If an invalid interval, match the characters as literals. */
3601 assert (beg_interval);
3602 p = beg_interval;
3603 beg_interval = NULL;
3604
3605 /* normal_char and normal_backslash need `c'. */
ed0767d8 3606 c = '{';
25fe55af
RS
3607
3608 if (!(syntax & RE_NO_BK_BRACES))
3609 {
ed0767d8
SM
3610 assert (p > pattern && p[-1] == '\\');
3611 goto normal_backslash;
25fe55af 3612 }
ed0767d8
SM
3613 else
3614 goto normal_char;
e318085a 3615
b18215fc 3616#ifdef emacs
25fe55af 3617 /* There is no way to specify the before_dot and after_dot
7814e705 3618 operators. rms says this is ok. --karl */
25fe55af
RS
3619 case '=':
3620 BUF_PUSH (at_dot);
3621 break;
3622
3623 case 's':
3624 laststart = b;
3625 PATFETCH (c);
3626 BUF_PUSH_2 (syntaxspec, syntax_spec_code[c]);
3627 break;
3628
3629 case 'S':
3630 laststart = b;
3631 PATFETCH (c);
3632 BUF_PUSH_2 (notsyntaxspec, syntax_spec_code[c]);
3633 break;
b18215fc
RS
3634
3635 case 'c':
3636 laststart = b;
36595814 3637 PATFETCH (c);
b18215fc
RS
3638 BUF_PUSH_2 (categoryspec, c);
3639 break;
e318085a 3640
b18215fc
RS
3641 case 'C':
3642 laststart = b;
36595814 3643 PATFETCH (c);
b18215fc
RS
3644 BUF_PUSH_2 (notcategoryspec, c);
3645 break;
3646#endif /* emacs */
e318085a 3647
e318085a 3648
25fe55af 3649 case 'w':
4bb91c68
SM
3650 if (syntax & RE_NO_GNU_OPS)
3651 goto normal_char;
25fe55af 3652 laststart = b;
1fb352e0 3653 BUF_PUSH_2 (syntaxspec, Sword);
25fe55af 3654 break;
e318085a 3655
e318085a 3656
25fe55af 3657 case 'W':
4bb91c68
SM
3658 if (syntax & RE_NO_GNU_OPS)
3659 goto normal_char;
25fe55af 3660 laststart = b;
1fb352e0 3661 BUF_PUSH_2 (notsyntaxspec, Sword);
25fe55af 3662 break;
e318085a
RS
3663
3664
25fe55af 3665 case '<':
4bb91c68
SM
3666 if (syntax & RE_NO_GNU_OPS)
3667 goto normal_char;
25fe55af
RS
3668 BUF_PUSH (wordbeg);
3669 break;
e318085a 3670
25fe55af 3671 case '>':
4bb91c68
SM
3672 if (syntax & RE_NO_GNU_OPS)
3673 goto normal_char;
25fe55af
RS
3674 BUF_PUSH (wordend);
3675 break;
e318085a 3676
669fa600
SM
3677 case '_':
3678 if (syntax & RE_NO_GNU_OPS)
3679 goto normal_char;
3680 laststart = b;
3681 PATFETCH (c);
3682 if (c == '<')
3683 BUF_PUSH (symbeg);
3684 else if (c == '>')
3685 BUF_PUSH (symend);
3686 else
3687 FREE_STACK_RETURN (REG_BADPAT);
3688 break;
3689
25fe55af 3690 case 'b':
4bb91c68
SM
3691 if (syntax & RE_NO_GNU_OPS)
3692 goto normal_char;
25fe55af
RS
3693 BUF_PUSH (wordbound);
3694 break;
e318085a 3695
25fe55af 3696 case 'B':
4bb91c68
SM
3697 if (syntax & RE_NO_GNU_OPS)
3698 goto normal_char;
25fe55af
RS
3699 BUF_PUSH (notwordbound);
3700 break;
fa9a63c5 3701
25fe55af 3702 case '`':
4bb91c68
SM
3703 if (syntax & RE_NO_GNU_OPS)
3704 goto normal_char;
25fe55af
RS
3705 BUF_PUSH (begbuf);
3706 break;
e318085a 3707
25fe55af 3708 case '\'':
4bb91c68
SM
3709 if (syntax & RE_NO_GNU_OPS)
3710 goto normal_char;
25fe55af
RS
3711 BUF_PUSH (endbuf);
3712 break;
e318085a 3713
25fe55af
RS
3714 case '1': case '2': case '3': case '4': case '5':
3715 case '6': case '7': case '8': case '9':
0cdd06f8
SM
3716 {
3717 regnum_t reg;
e318085a 3718
0cdd06f8
SM
3719 if (syntax & RE_NO_BK_REFS)
3720 goto normal_backslash;
e318085a 3721
0cdd06f8 3722 reg = c - '0';
e318085a 3723
c69b0314
SM
3724 if (reg > bufp->re_nsub || reg < 1
3725 /* Can't back reference to a subexp before its end. */
3726 || group_in_compile_stack (compile_stack, reg))
0cdd06f8 3727 FREE_STACK_RETURN (REG_ESUBREG);
e318085a 3728
0cdd06f8
SM
3729 laststart = b;
3730 BUF_PUSH_2 (duplicate, reg);
3731 }
25fe55af 3732 break;
e318085a 3733
e318085a 3734
25fe55af
RS
3735 case '+':
3736 case '?':
3737 if (syntax & RE_BK_PLUS_QM)
3738 goto handle_plus;
3739 else
3740 goto normal_backslash;
3741
3742 default:
3743 normal_backslash:
3744 /* You might think it would be useful for \ to mean
3745 not to translate; but if we don't translate it
4bb91c68 3746 it will never match anything. */
25fe55af
RS
3747 goto normal_char;
3748 }
3749 break;
fa9a63c5
RM
3750
3751
3752 default:
25fe55af 3753 /* Expects the character in `c'. */
fa9a63c5 3754 normal_char:
36595814 3755 /* If no exactn currently being built. */
25fe55af 3756 if (!pending_exact
fa9a63c5 3757
25fe55af
RS
3758 /* If last exactn not at current position. */
3759 || pending_exact + *pending_exact + 1 != b
5e69f11e 3760
25fe55af 3761 /* We have only one byte following the exactn for the count. */
2d1675e4 3762 || *pending_exact >= (1 << BYTEWIDTH) - MAX_MULTIBYTE_LENGTH
fa9a63c5 3763
7814e705 3764 /* If followed by a repetition operator. */
9d99031f 3765 || (p != pend && (*p == '*' || *p == '^'))
fa9a63c5 3766 || ((syntax & RE_BK_PLUS_QM)
9d99031f
RS
3767 ? p + 1 < pend && *p == '\\' && (p[1] == '+' || p[1] == '?')
3768 : p != pend && (*p == '+' || *p == '?'))
fa9a63c5 3769 || ((syntax & RE_INTERVALS)
25fe55af 3770 && ((syntax & RE_NO_BK_BRACES)
9d99031f
RS
3771 ? p != pend && *p == '{'
3772 : p + 1 < pend && p[0] == '\\' && p[1] == '{')))
fa9a63c5
RM
3773 {
3774 /* Start building a new exactn. */
5e69f11e 3775
25fe55af 3776 laststart = b;
fa9a63c5
RM
3777
3778 BUF_PUSH_2 (exactn, 0);
3779 pending_exact = b - 1;
25fe55af 3780 }
5e69f11e 3781
2d1675e4
SM
3782 GET_BUFFER_SPACE (MAX_MULTIBYTE_LENGTH);
3783 {
e0277a47
KH
3784 int len;
3785
cf9c99bc 3786 if (multibyte)
6fdd04b0 3787 {
cf9c99bc 3788 c = TRANSLATE (c);
6fdd04b0
KH
3789 len = CHAR_STRING (c, b);
3790 b += len;
3791 }
e0277a47 3792 else
6fdd04b0 3793 {
cf9c99bc
KH
3794 c1 = RE_CHAR_TO_MULTIBYTE (c);
3795 if (! CHAR_BYTE8_P (c1))
3796 {
3797 re_wchar_t c2 = TRANSLATE (c1);
3798
3799 if (c1 != c2 && (c1 = RE_CHAR_TO_UNIBYTE (c2)) >= 0)
3800 c = c1;
3801 }
6fdd04b0
KH
3802 *b++ = c;
3803 len = 1;
3804 }
2d1675e4
SM
3805 (*pending_exact) += len;
3806 }
3807
fa9a63c5 3808 break;
25fe55af 3809 } /* switch (c) */
fa9a63c5
RM
3810 } /* while p != pend */
3811
5e69f11e 3812
fa9a63c5 3813 /* Through the pattern now. */
5e69f11e 3814
505bde11 3815 FIXUP_ALT_JUMP ();
fa9a63c5 3816
5e69f11e 3817 if (!COMPILE_STACK_EMPTY)
fa9a63c5
RM
3818 FREE_STACK_RETURN (REG_EPAREN);
3819
3820 /* If we don't want backtracking, force success
3821 the first time we reach the end of the compiled pattern. */
3822 if (syntax & RE_NO_POSIX_BACKTRACKING)
3823 BUF_PUSH (succeed);
3824
fa9a63c5
RM
3825 /* We have succeeded; set the length of the buffer. */
3826 bufp->used = b - bufp->buffer;
3827
3828#ifdef DEBUG
99633e97 3829 if (debug > 0)
fa9a63c5 3830 {
505bde11 3831 re_compile_fastmap (bufp);
fa9a63c5
RM
3832 DEBUG_PRINT1 ("\nCompiled pattern: \n");
3833 print_compiled_pattern (bufp);
3834 }
99633e97 3835 debug--;
fa9a63c5
RM
3836#endif /* DEBUG */
3837
3838#ifndef MATCH_MAY_ALLOCATE
3839 /* Initialize the failure stack to the largest possible stack. This
3840 isn't necessary unless we're trying to avoid calling alloca in
3841 the search and match routines. */
3842 {
3843 int num_regs = bufp->re_nsub + 1;
3844
320a2a73 3845 if (fail_stack.size < re_max_failures * TYPICAL_FAILURE_SIZE)
fa9a63c5 3846 {
a26f4ccd 3847 fail_stack.size = re_max_failures * TYPICAL_FAILURE_SIZE;
fa9a63c5 3848
fa9a63c5
RM
3849 if (! fail_stack.stack)
3850 fail_stack.stack
5e69f11e 3851 = (fail_stack_elt_t *) malloc (fail_stack.size
fa9a63c5
RM
3852 * sizeof (fail_stack_elt_t));
3853 else
3854 fail_stack.stack
3855 = (fail_stack_elt_t *) realloc (fail_stack.stack,
3856 (fail_stack.size
3857 * sizeof (fail_stack_elt_t)));
fa9a63c5
RM
3858 }
3859
3860 regex_grow_registers (num_regs);
3861 }
3862#endif /* not MATCH_MAY_ALLOCATE */
3863
839966f3 3864 FREE_STACK_RETURN (REG_NOERROR);
fa9a63c5
RM
3865} /* regex_compile */
3866\f
3867/* Subroutines for `regex_compile'. */
3868
7814e705 3869/* Store OP at LOC followed by two-byte integer parameter ARG. */
fa9a63c5
RM
3870
3871static void
3872store_op1 (op, loc, arg)
3873 re_opcode_t op;
3874 unsigned char *loc;
3875 int arg;
3876{
3877 *loc = (unsigned char) op;
3878 STORE_NUMBER (loc + 1, arg);
3879}
3880
3881
3882/* Like `store_op1', but for two two-byte parameters ARG1 and ARG2. */
3883
3884static void
3885store_op2 (op, loc, arg1, arg2)
3886 re_opcode_t op;
3887 unsigned char *loc;
3888 int arg1, arg2;
3889{
3890 *loc = (unsigned char) op;
3891 STORE_NUMBER (loc + 1, arg1);
3892 STORE_NUMBER (loc + 3, arg2);
3893}
3894
3895
3896/* Copy the bytes from LOC to END to open up three bytes of space at LOC
3897 for OP followed by two-byte integer parameter ARG. */
3898
3899static void
3900insert_op1 (op, loc, arg, end)
3901 re_opcode_t op;
3902 unsigned char *loc;
3903 int arg;
5e69f11e 3904 unsigned char *end;
fa9a63c5
RM
3905{
3906 register unsigned char *pfrom = end;
3907 register unsigned char *pto = end + 3;
3908
3909 while (pfrom != loc)
3910 *--pto = *--pfrom;
5e69f11e 3911
fa9a63c5
RM
3912 store_op1 (op, loc, arg);
3913}
3914
3915
3916/* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2. */
3917
3918static void
3919insert_op2 (op, loc, arg1, arg2, end)
3920 re_opcode_t op;
3921 unsigned char *loc;
3922 int arg1, arg2;
5e69f11e 3923 unsigned char *end;
fa9a63c5
RM
3924{
3925 register unsigned char *pfrom = end;
3926 register unsigned char *pto = end + 5;
3927
3928 while (pfrom != loc)
3929 *--pto = *--pfrom;
5e69f11e 3930
fa9a63c5
RM
3931 store_op2 (op, loc, arg1, arg2);
3932}
3933
3934
3935/* P points to just after a ^ in PATTERN. Return true if that ^ comes
3936 after an alternative or a begin-subexpression. We assume there is at
3937 least one character before the ^. */
3938
3939static boolean
3940at_begline_loc_p (pattern, p, syntax)
01618498 3941 re_char *pattern, *p;
fa9a63c5
RM
3942 reg_syntax_t syntax;
3943{
01618498 3944 re_char *prev = p - 2;
fa9a63c5 3945 boolean prev_prev_backslash = prev > pattern && prev[-1] == '\\';
5e69f11e 3946
fa9a63c5
RM
3947 return
3948 /* After a subexpression? */
3949 (*prev == '(' && (syntax & RE_NO_BK_PARENS || prev_prev_backslash))
25fe55af 3950 /* After an alternative? */
d2af47df
SM
3951 || (*prev == '|' && (syntax & RE_NO_BK_VBAR || prev_prev_backslash))
3952 /* After a shy subexpression? */
3953 || ((syntax & RE_SHY_GROUPS) && prev - 2 >= pattern
3954 && prev[-1] == '?' && prev[-2] == '('
3955 && (syntax & RE_NO_BK_PARENS
3956 || (prev - 3 >= pattern && prev[-3] == '\\')));
fa9a63c5
RM
3957}
3958
3959
3960/* The dual of at_begline_loc_p. This one is for $. We assume there is
3961 at least one character after the $, i.e., `P < PEND'. */
3962
3963static boolean
3964at_endline_loc_p (p, pend, syntax)
01618498 3965 re_char *p, *pend;
99633e97 3966 reg_syntax_t syntax;
fa9a63c5 3967{
01618498 3968 re_char *next = p;
fa9a63c5 3969 boolean next_backslash = *next == '\\';
01618498 3970 re_char *next_next = p + 1 < pend ? p + 1 : 0;
5e69f11e 3971
fa9a63c5
RM
3972 return
3973 /* Before a subexpression? */
3974 (syntax & RE_NO_BK_PARENS ? *next == ')'
25fe55af 3975 : next_backslash && next_next && *next_next == ')')
fa9a63c5
RM
3976 /* Before an alternative? */
3977 || (syntax & RE_NO_BK_VBAR ? *next == '|'
25fe55af 3978 : next_backslash && next_next && *next_next == '|');
fa9a63c5
RM
3979}
3980
3981
5e69f11e 3982/* Returns true if REGNUM is in one of COMPILE_STACK's elements and
fa9a63c5
RM
3983 false if it's not. */
3984
3985static boolean
3986group_in_compile_stack (compile_stack, regnum)
3987 compile_stack_type compile_stack;
3988 regnum_t regnum;
3989{
3990 int this_element;
3991
5e69f11e
RM
3992 for (this_element = compile_stack.avail - 1;
3993 this_element >= 0;
fa9a63c5
RM
3994 this_element--)
3995 if (compile_stack.stack[this_element].regnum == regnum)
3996 return true;
3997
3998 return false;
3999}
fa9a63c5 4000\f
f6a3f532
SM
4001/* analyse_first.
4002 If fastmap is non-NULL, go through the pattern and fill fastmap
4003 with all the possible leading chars. If fastmap is NULL, don't
4004 bother filling it up (obviously) and only return whether the
4005 pattern could potentially match the empty string.
4006
4007 Return 1 if p..pend might match the empty string.
4008 Return 0 if p..pend matches at least one char.
01618498 4009 Return -1 if fastmap was not updated accurately. */
f6a3f532
SM
4010
4011static int
4012analyse_first (p, pend, fastmap, multibyte)
01618498 4013 re_char *p, *pend;
f6a3f532
SM
4014 char *fastmap;
4015 const int multibyte;
fa9a63c5 4016{
505bde11 4017 int j, k;
1fb352e0 4018 boolean not;
fa9a63c5 4019
b18215fc 4020 /* If all elements for base leading-codes in fastmap is set, this
7814e705 4021 flag is set true. */
b18215fc
RS
4022 boolean match_any_multibyte_characters = false;
4023
f6a3f532 4024 assert (p);
5e69f11e 4025
505bde11
SM
4026 /* The loop below works as follows:
4027 - It has a working-list kept in the PATTERN_STACK and which basically
4028 starts by only containing a pointer to the first operation.
4029 - If the opcode we're looking at is a match against some set of
4030 chars, then we add those chars to the fastmap and go on to the
4031 next work element from the worklist (done via `break').
4032 - If the opcode is a control operator on the other hand, we either
4033 ignore it (if it's meaningless at this point, such as `start_memory')
4034 or execute it (if it's a jump). If the jump has several destinations
4035 (i.e. `on_failure_jump'), then we push the other destination onto the
4036 worklist.
4037 We guarantee termination by ignoring backward jumps (more or less),
4038 so that `p' is monotonically increasing. More to the point, we
4039 never set `p' (or push) anything `<= p1'. */
4040
01618498 4041 while (p < pend)
fa9a63c5 4042 {
505bde11
SM
4043 /* `p1' is used as a marker of how far back a `on_failure_jump'
4044 can go without being ignored. It is normally equal to `p'
4045 (which prevents any backward `on_failure_jump') except right
4046 after a plain `jump', to allow patterns such as:
4047 0: jump 10
4048 3..9: <body>
4049 10: on_failure_jump 3
4050 as used for the *? operator. */
01618498 4051 re_char *p1 = p;
5e69f11e 4052
fa9a63c5
RM
4053 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
4054 {
f6a3f532 4055 case succeed:
01618498 4056 return 1;
f6a3f532 4057 continue;
fa9a63c5 4058
fa9a63c5 4059 case duplicate:
505bde11
SM
4060 /* If the first character has to match a backreference, that means
4061 that the group was empty (since it already matched). Since this
4062 is the only case that interests us here, we can assume that the
4063 backreference must match the empty string. */
4064 p++;
4065 continue;
fa9a63c5
RM
4066
4067
4068 /* Following are the cases which match a character. These end
7814e705 4069 with `break'. */
fa9a63c5
RM
4070
4071 case exactn:
e0277a47 4072 if (fastmap)
cf9c99bc
KH
4073 {
4074 /* If multibyte is nonzero, the first byte of each
4075 character is an ASCII or a leading code. Otherwise,
4076 each byte is a character. Thus, this works in both
4077 cases. */
4078 fastmap[p[1]] = 1;
4079 if (! multibyte)
4080 {
4081 /* For the case of matching this unibyte regex
4082 against multibyte, we must set a leading code of
4083 the corresponding multibyte character. */
4084 int c = RE_CHAR_TO_MULTIBYTE (p[1]);
4085
4086 if (! CHAR_BYTE8_P (c))
4087 fastmap[CHAR_LEADING_CODE (c)] = 1;
4088 }
4089 }
fa9a63c5
RM
4090 break;
4091
4092
1fb352e0
SM
4093 case anychar:
4094 /* We could put all the chars except for \n (and maybe \0)
4095 but we don't bother since it is generally not worth it. */
f6a3f532 4096 if (!fastmap) break;
01618498 4097 return -1;
fa9a63c5
RM
4098
4099
b18215fc 4100 case charset_not:
1fb352e0 4101 if (!fastmap) break;
bf216479
KH
4102 {
4103 /* Chars beyond end of bitmap are possible matches. */
bf216479 4104 for (j = CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH;
cf9c99bc 4105 j < (1 << BYTEWIDTH); j++)
bf216479
KH
4106 fastmap[j] = 1;
4107 }
4108
1fb352e0
SM
4109 /* Fallthrough */
4110 case charset:
4111 if (!fastmap) break;
4112 not = (re_opcode_t) *(p - 1) == charset_not;
b18215fc
RS
4113 for (j = CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH - 1, p++;
4114 j >= 0; j--)
1fb352e0 4115 if (!!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))) ^ not)
49da453b 4116 fastmap[j] = 1;
b18215fc 4117
6482db2e
KH
4118#ifdef emacs
4119 if (/* Any leading code can possibly start a character
1fb352e0 4120 which doesn't match the specified set of characters. */
6482db2e
KH
4121 not
4122 ||
4123 /* If we can match a character class, we can match any
4124 multibyte characters. */
4125 (CHARSET_RANGE_TABLE_EXISTS_P (&p[-2])
4126 && CHARSET_RANGE_TABLE_BITS (&p[-2]) != 0))
4127
b18215fc 4128 {
b18215fc
RS
4129 if (match_any_multibyte_characters == false)
4130 {
6482db2e
KH
4131 for (j = MIN_MULTIBYTE_LEADING_CODE;
4132 j <= MAX_MULTIBYTE_LEADING_CODE; j++)
6fdd04b0 4133 fastmap[j] = 1;
b18215fc
RS
4134 match_any_multibyte_characters = true;
4135 }
4136 }
b18215fc 4137
1fb352e0
SM
4138 else if (!not && CHARSET_RANGE_TABLE_EXISTS_P (&p[-2])
4139 && match_any_multibyte_characters == false)
4140 {
bf216479 4141 /* Set fastmap[I] to 1 where I is a leading code of each
9117d724 4142 multibyte characer in the range table. */
1fb352e0 4143 int c, count;
bf216479 4144 unsigned char lc1, lc2;
b18215fc 4145
1fb352e0 4146 /* Make P points the range table. `+ 2' is to skip flag
0b32bf0e 4147 bits for a character class. */
1fb352e0 4148 p += CHARSET_BITMAP_SIZE (&p[-2]) + 2;
b18215fc 4149
1fb352e0
SM
4150 /* Extract the number of ranges in range table into COUNT. */
4151 EXTRACT_NUMBER_AND_INCR (count, p);
cf9c99bc 4152 for (; count > 0; count--, p += 3)
1fb352e0 4153 {
9117d724
KH
4154 /* Extract the start and end of each range. */
4155 EXTRACT_CHARACTER (c, p);
bf216479 4156 lc1 = CHAR_LEADING_CODE (c);
9117d724 4157 p += 3;
1fb352e0 4158 EXTRACT_CHARACTER (c, p);
bf216479
KH
4159 lc2 = CHAR_LEADING_CODE (c);
4160 for (j = lc1; j <= lc2; j++)
9117d724 4161 fastmap[j] = 1;
1fb352e0
SM
4162 }
4163 }
6482db2e 4164#endif
b18215fc
RS
4165 break;
4166
1fb352e0
SM
4167 case syntaxspec:
4168 case notsyntaxspec:
4169 if (!fastmap) break;
4170#ifndef emacs
4171 not = (re_opcode_t)p[-1] == notsyntaxspec;
4172 k = *p++;
4173 for (j = 0; j < (1 << BYTEWIDTH); j++)
990b2375 4174 if ((SYNTAX (j) == (enum syntaxcode) k) ^ not)
b18215fc 4175 fastmap[j] = 1;
b18215fc 4176 break;
1fb352e0 4177#else /* emacs */
b18215fc
RS
4178 /* This match depends on text properties. These end with
4179 aborting optimizations. */
01618498 4180 return -1;
b18215fc
RS
4181
4182 case categoryspec:
b18215fc 4183 case notcategoryspec:
1fb352e0
SM
4184 if (!fastmap) break;
4185 not = (re_opcode_t)p[-1] == notcategoryspec;
b18215fc 4186 k = *p++;
6482db2e 4187 for (j = (1 << BYTEWIDTH); j >= 0; j--)
1fb352e0 4188 if ((CHAR_HAS_CATEGORY (j, k)) ^ not)
b18215fc
RS
4189 fastmap[j] = 1;
4190
6482db2e
KH
4191 /* Any leading code can possibly start a character which
4192 has or doesn't has the specified category. */
4193 if (match_any_multibyte_characters == false)
6fdd04b0 4194 {
6482db2e
KH
4195 for (j = MIN_MULTIBYTE_LEADING_CODE;
4196 j <= MAX_MULTIBYTE_LEADING_CODE; j++)
4197 fastmap[j] = 1;
4198 match_any_multibyte_characters = true;
6fdd04b0 4199 }
b18215fc
RS
4200 break;
4201
fa9a63c5 4202 /* All cases after this match the empty string. These end with
25fe55af 4203 `continue'. */
fa9a63c5 4204
fa9a63c5
RM
4205 case before_dot:
4206 case at_dot:
4207 case after_dot:
1fb352e0 4208#endif /* !emacs */
25fe55af
RS
4209 case no_op:
4210 case begline:
4211 case endline:
fa9a63c5
RM
4212 case begbuf:
4213 case endbuf:
4214 case wordbound:
4215 case notwordbound:
4216 case wordbeg:
4217 case wordend:
669fa600
SM
4218 case symbeg:
4219 case symend:
25fe55af 4220 continue;
fa9a63c5
RM
4221
4222
fa9a63c5 4223 case jump:
25fe55af 4224 EXTRACT_NUMBER_AND_INCR (j, p);
505bde11
SM
4225 if (j < 0)
4226 /* Backward jumps can only go back to code that we've already
4227 visited. `re_compile' should make sure this is true. */
4228 break;
25fe55af 4229 p += j;
505bde11
SM
4230 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p))
4231 {
4232 case on_failure_jump:
4233 case on_failure_keep_string_jump:
505bde11 4234 case on_failure_jump_loop:
0683b6fa 4235 case on_failure_jump_nastyloop:
505bde11
SM
4236 case on_failure_jump_smart:
4237 p++;
4238 break;
4239 default:
4240 continue;
4241 };
4242 /* Keep `p1' to allow the `on_failure_jump' we are jumping to
4243 to jump back to "just after here". */
4244 /* Fallthrough */
fa9a63c5 4245
25fe55af
RS
4246 case on_failure_jump:
4247 case on_failure_keep_string_jump:
0683b6fa 4248 case on_failure_jump_nastyloop:
505bde11
SM
4249 case on_failure_jump_loop:
4250 case on_failure_jump_smart:
25fe55af 4251 EXTRACT_NUMBER_AND_INCR (j, p);
505bde11 4252 if (p + j <= p1)
ed0767d8 4253 ; /* Backward jump to be ignored. */
01618498
SM
4254 else
4255 { /* We have to look down both arms.
4256 We first go down the "straight" path so as to minimize
4257 stack usage when going through alternatives. */
4258 int r = analyse_first (p, pend, fastmap, multibyte);
4259 if (r) return r;
4260 p += j;
4261 }
25fe55af 4262 continue;
fa9a63c5
RM
4263
4264
ed0767d8
SM
4265 case jump_n:
4266 /* This code simply does not properly handle forward jump_n. */
4267 DEBUG_STATEMENT (EXTRACT_NUMBER (j, p); assert (j < 0));
4268 p += 4;
4269 /* jump_n can either jump or fall through. The (backward) jump
4270 case has already been handled, so we only need to look at the
4271 fallthrough case. */
4272 continue;
177c0ea7 4273
fa9a63c5 4274 case succeed_n:
ed0767d8
SM
4275 /* If N == 0, it should be an on_failure_jump_loop instead. */
4276 DEBUG_STATEMENT (EXTRACT_NUMBER (j, p + 2); assert (j > 0));
4277 p += 4;
4278 /* We only care about one iteration of the loop, so we don't
4279 need to consider the case where this behaves like an
4280 on_failure_jump. */
25fe55af 4281 continue;
fa9a63c5
RM
4282
4283
4284 case set_number_at:
25fe55af
RS
4285 p += 4;
4286 continue;
fa9a63c5
RM
4287
4288
4289 case start_memory:
25fe55af 4290 case stop_memory:
505bde11 4291 p += 1;
fa9a63c5
RM
4292 continue;
4293
4294
4295 default:
25fe55af
RS
4296 abort (); /* We have listed all the cases. */
4297 } /* switch *p++ */
fa9a63c5
RM
4298
4299 /* Getting here means we have found the possible starting
25fe55af 4300 characters for one path of the pattern -- and that the empty
7814e705 4301 string does not match. We need not follow this path further. */
01618498 4302 return 0;
fa9a63c5
RM
4303 } /* while p */
4304
01618498
SM
4305 /* We reached the end without matching anything. */
4306 return 1;
4307
f6a3f532
SM
4308} /* analyse_first */
4309\f
4310/* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
4311 BUFP. A fastmap records which of the (1 << BYTEWIDTH) possible
4312 characters can start a string that matches the pattern. This fastmap
4313 is used by re_search to skip quickly over impossible starting points.
4314
4315 Character codes above (1 << BYTEWIDTH) are not represented in the
4316 fastmap, but the leading codes are represented. Thus, the fastmap
4317 indicates which character sets could start a match.
4318
4319 The caller must supply the address of a (1 << BYTEWIDTH)-byte data
4320 area as BUFP->fastmap.
4321
4322 We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
4323 the pattern buffer.
4324
4325 Returns 0 if we succeed, -2 if an internal error. */
4326
4327int
4328re_compile_fastmap (bufp)
4329 struct re_pattern_buffer *bufp;
4330{
4331 char *fastmap = bufp->fastmap;
4332 int analysis;
4333
4334 assert (fastmap && bufp->buffer);
4335
7814e705 4336 bzero (fastmap, 1 << BYTEWIDTH); /* Assume nothing's valid. */
f6a3f532
SM
4337 bufp->fastmap_accurate = 1; /* It will be when we're done. */
4338
4339 analysis = analyse_first (bufp->buffer, bufp->buffer + bufp->used,
2d1675e4 4340 fastmap, RE_MULTIBYTE_P (bufp));
c0f9ea08 4341 bufp->can_be_null = (analysis != 0);
fa9a63c5
RM
4342 return 0;
4343} /* re_compile_fastmap */
4344\f
4345/* Set REGS to hold NUM_REGS registers, storing them in STARTS and
4346 ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use
4347 this memory for recording register information. STARTS and ENDS
4348 must be allocated using the malloc library routine, and must each
4349 be at least NUM_REGS * sizeof (regoff_t) bytes long.
4350
4351 If NUM_REGS == 0, then subsequent matches should allocate their own
4352 register data.
4353
4354 Unless this function is called, the first search or match using
4355 PATTERN_BUFFER will allocate its own register data, without
4356 freeing the old data. */
4357
4358void
4359re_set_registers (bufp, regs, num_regs, starts, ends)
4360 struct re_pattern_buffer *bufp;
4361 struct re_registers *regs;
4362 unsigned num_regs;
4363 regoff_t *starts, *ends;
4364{
4365 if (num_regs)
4366 {
4367 bufp->regs_allocated = REGS_REALLOCATE;
4368 regs->num_regs = num_regs;
4369 regs->start = starts;
4370 regs->end = ends;
4371 }
4372 else
4373 {
4374 bufp->regs_allocated = REGS_UNALLOCATED;
4375 regs->num_regs = 0;
4376 regs->start = regs->end = (regoff_t *) 0;
4377 }
4378}
c0f9ea08 4379WEAK_ALIAS (__re_set_registers, re_set_registers)
fa9a63c5 4380\f
7814e705 4381/* Searching routines. */
fa9a63c5
RM
4382
4383/* Like re_search_2, below, but only one string is specified, and
4384 doesn't let you say where to stop matching. */
4385
4386int
4387re_search (bufp, string, size, startpos, range, regs)
4388 struct re_pattern_buffer *bufp;
4389 const char *string;
4390 int size, startpos, range;
4391 struct re_registers *regs;
4392{
5e69f11e 4393 return re_search_2 (bufp, NULL, 0, string, size, startpos, range,
fa9a63c5
RM
4394 regs, size);
4395}
c0f9ea08 4396WEAK_ALIAS (__re_search, re_search)
fa9a63c5 4397
70806df6
KH
4398/* Head address of virtual concatenation of string. */
4399#define HEAD_ADDR_VSTRING(P) \
4400 (((P) >= size1 ? string2 : string1))
4401
b18215fc
RS
4402/* End address of virtual concatenation of string. */
4403#define STOP_ADDR_VSTRING(P) \
4404 (((P) >= size1 ? string2 + size2 : string1 + size1))
4405
4406/* Address of POS in the concatenation of virtual string. */
4407#define POS_ADDR_VSTRING(POS) \
4408 (((POS) >= size1 ? string2 - size1 : string1) + (POS))
fa9a63c5
RM
4409
4410/* Using the compiled pattern in BUFP->buffer, first tries to match the
4411 virtual concatenation of STRING1 and STRING2, starting first at index
4412 STARTPOS, then at STARTPOS + 1, and so on.
5e69f11e 4413
fa9a63c5 4414 STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
5e69f11e 4415
fa9a63c5
RM
4416 RANGE is how far to scan while trying to match. RANGE = 0 means try
4417 only at STARTPOS; in general, the last start tried is STARTPOS +
4418 RANGE.
5e69f11e 4419
fa9a63c5
RM
4420 In REGS, return the indices of the virtual concatenation of STRING1
4421 and STRING2 that matched the entire BUFP->buffer and its contained
4422 subexpressions.
5e69f11e 4423
fa9a63c5
RM
4424 Do not consider matching one past the index STOP in the virtual
4425 concatenation of STRING1 and STRING2.
4426
4427 We return either the position in the strings at which the match was
4428 found, -1 if no match, or -2 if error (such as failure
4429 stack overflow). */
4430
4431int
66f0296e 4432re_search_2 (bufp, str1, size1, str2, size2, startpos, range, regs, stop)
fa9a63c5 4433 struct re_pattern_buffer *bufp;
66f0296e 4434 const char *str1, *str2;
fa9a63c5
RM
4435 int size1, size2;
4436 int startpos;
4437 int range;
4438 struct re_registers *regs;
4439 int stop;
4440{
4441 int val;
66f0296e
SM
4442 re_char *string1 = (re_char*) str1;
4443 re_char *string2 = (re_char*) str2;
fa9a63c5 4444 register char *fastmap = bufp->fastmap;
6676cb1c 4445 register RE_TRANSLATE_TYPE translate = bufp->translate;
fa9a63c5
RM
4446 int total_size = size1 + size2;
4447 int endpos = startpos + range;
c0f9ea08 4448 boolean anchored_start;
cf9c99bc
KH
4449 /* Nonzero if we are searching multibyte string. */
4450 const boolean multibyte = RE_TARGET_MULTIBYTE_P (bufp);
b18215fc 4451
fa9a63c5
RM
4452 /* Check for out-of-range STARTPOS. */
4453 if (startpos < 0 || startpos > total_size)
4454 return -1;
5e69f11e 4455
fa9a63c5 4456 /* Fix up RANGE if it might eventually take us outside
34597fa9 4457 the virtual concatenation of STRING1 and STRING2.
5e69f11e 4458 Make sure we won't move STARTPOS below 0 or above TOTAL_SIZE. */
34597fa9
RS
4459 if (endpos < 0)
4460 range = 0 - startpos;
fa9a63c5
RM
4461 else if (endpos > total_size)
4462 range = total_size - startpos;
4463
4464 /* If the search isn't to be a backwards one, don't waste time in a
7b140fd7 4465 search for a pattern anchored at beginning of buffer. */
fa9a63c5
RM
4466 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == begbuf && range > 0)
4467 {
4468 if (startpos > 0)
4469 return -1;
4470 else
7b140fd7 4471 range = 0;
fa9a63c5
RM
4472 }
4473
ae4788a8
RS
4474#ifdef emacs
4475 /* In a forward search for something that starts with \=.
4476 don't keep searching past point. */
4477 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == at_dot && range > 0)
4478 {
7b140fd7
RS
4479 range = PT_BYTE - BEGV_BYTE - startpos;
4480 if (range < 0)
ae4788a8
RS
4481 return -1;
4482 }
4483#endif /* emacs */
4484
fa9a63c5
RM
4485 /* Update the fastmap now if not correct already. */
4486 if (fastmap && !bufp->fastmap_accurate)
01618498 4487 re_compile_fastmap (bufp);
5e69f11e 4488
c8499ba5 4489 /* See whether the pattern is anchored. */
c0f9ea08 4490 anchored_start = (bufp->buffer[0] == begline);
c8499ba5 4491
b18215fc 4492#ifdef emacs
cc9b4df2
KH
4493 gl_state.object = re_match_object;
4494 {
99633e97 4495 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (POS_AS_IN_BUFFER (startpos));
cc9b4df2
KH
4496
4497 SETUP_SYNTAX_TABLE_FOR_OBJECT (re_match_object, charpos, 1);
4498 }
b18215fc
RS
4499#endif
4500
fa9a63c5
RM
4501 /* Loop through the string, looking for a place to start matching. */
4502 for (;;)
5e69f11e 4503 {
c8499ba5
RS
4504 /* If the pattern is anchored,
4505 skip quickly past places we cannot match.
4506 We don't bother to treat startpos == 0 specially
4507 because that case doesn't repeat. */
4508 if (anchored_start && startpos > 0)
4509 {
c0f9ea08
SM
4510 if (! ((startpos <= size1 ? string1[startpos - 1]
4511 : string2[startpos - size1 - 1])
4512 == '\n'))
c8499ba5
RS
4513 goto advance;
4514 }
4515
fa9a63c5 4516 /* If a fastmap is supplied, skip quickly over characters that
25fe55af
RS
4517 cannot be the start of a match. If the pattern can match the
4518 null string, however, we don't need to skip characters; we want
7814e705 4519 the first null string. */
fa9a63c5
RM
4520 if (fastmap && startpos < total_size && !bufp->can_be_null)
4521 {
66f0296e 4522 register re_char *d;
01618498 4523 register re_wchar_t buf_ch;
e934739e
RS
4524
4525 d = POS_ADDR_VSTRING (startpos);
4526
7814e705 4527 if (range > 0) /* Searching forwards. */
fa9a63c5 4528 {
fa9a63c5
RM
4529 register int lim = 0;
4530 int irange = range;
4531
25fe55af
RS
4532 if (startpos < size1 && startpos + range >= size1)
4533 lim = range - (size1 - startpos);
fa9a63c5 4534
25fe55af
RS
4535 /* Written out as an if-else to avoid testing `translate'
4536 inside the loop. */
28ae27ae
AS
4537 if (RE_TRANSLATE_P (translate))
4538 {
e934739e
RS
4539 if (multibyte)
4540 while (range > lim)
4541 {
4542 int buf_charlen;
4543
62a6e103 4544 buf_ch = STRING_CHAR_AND_LENGTH (d, buf_charlen);
e934739e 4545 buf_ch = RE_TRANSLATE (translate, buf_ch);
bf216479 4546 if (fastmap[CHAR_LEADING_CODE (buf_ch)])
e934739e
RS
4547 break;
4548
4549 range -= buf_charlen;
4550 d += buf_charlen;
4551 }
4552 else
bf216479 4553 while (range > lim)
33c46939 4554 {
cf9c99bc
KH
4555 register re_wchar_t ch, translated;
4556
bf216479 4557 buf_ch = *d;
cf9c99bc
KH
4558 ch = RE_CHAR_TO_MULTIBYTE (buf_ch);
4559 translated = RE_TRANSLATE (translate, ch);
4560 if (translated != ch
4561 && (ch = RE_CHAR_TO_UNIBYTE (translated)) >= 0)
4562 buf_ch = ch;
6fdd04b0 4563 if (fastmap[buf_ch])
bf216479 4564 break;
33c46939
RS
4565 d++;
4566 range--;
4567 }
e934739e 4568 }
fa9a63c5 4569 else
6fdd04b0
KH
4570 {
4571 if (multibyte)
4572 while (range > lim)
4573 {
4574 int buf_charlen;
fa9a63c5 4575
62a6e103 4576 buf_ch = STRING_CHAR_AND_LENGTH (d, buf_charlen);
6fdd04b0
KH
4577 if (fastmap[CHAR_LEADING_CODE (buf_ch)])
4578 break;
4579 range -= buf_charlen;
4580 d += buf_charlen;
4581 }
e934739e 4582 else
6fdd04b0 4583 while (range > lim && !fastmap[*d])
33c46939
RS
4584 {
4585 d++;
4586 range--;
4587 }
e934739e 4588 }
fa9a63c5
RM
4589 startpos += irange - range;
4590 }
7814e705 4591 else /* Searching backwards. */
fa9a63c5 4592 {
ba5e343c
KH
4593 if (multibyte)
4594 {
62a6e103 4595 buf_ch = STRING_CHAR (d);
ba5e343c
KH
4596 buf_ch = TRANSLATE (buf_ch);
4597 if (! fastmap[CHAR_LEADING_CODE (buf_ch)])
4598 goto advance;
4599 }
4600 else
4601 {
cf9c99bc
KH
4602 register re_wchar_t ch, translated;
4603
4604 buf_ch = *d;
4605 ch = RE_CHAR_TO_MULTIBYTE (buf_ch);
4606 translated = TRANSLATE (ch);
4607 if (translated != ch
4608 && (ch = RE_CHAR_TO_UNIBYTE (translated)) >= 0)
4609 buf_ch = ch;
4610 if (! fastmap[TRANSLATE (buf_ch)])
ba5e343c
KH
4611 goto advance;
4612 }
fa9a63c5
RM
4613 }
4614 }
4615
4616 /* If can't match the null string, and that's all we have left, fail. */
4617 if (range >= 0 && startpos == total_size && fastmap
25fe55af 4618 && !bufp->can_be_null)
fa9a63c5
RM
4619 return -1;
4620
4621 val = re_match_2_internal (bufp, string1, size1, string2, size2,
4622 startpos, regs, stop);
fa9a63c5
RM
4623
4624 if (val >= 0)
4625 return startpos;
5e69f11e 4626
fa9a63c5
RM
4627 if (val == -2)
4628 return -2;
4629
4630 advance:
5e69f11e 4631 if (!range)
25fe55af 4632 break;
5e69f11e 4633 else if (range > 0)
25fe55af 4634 {
b18215fc
RS
4635 /* Update STARTPOS to the next character boundary. */
4636 if (multibyte)
4637 {
66f0296e
SM
4638 re_char *p = POS_ADDR_VSTRING (startpos);
4639 re_char *pend = STOP_ADDR_VSTRING (startpos);
b18215fc
RS
4640 int len = MULTIBYTE_FORM_LENGTH (p, pend - p);
4641
4642 range -= len;
4643 if (range < 0)
4644 break;
4645 startpos += len;
4646 }
4647 else
4648 {
b560c397
RS
4649 range--;
4650 startpos++;
4651 }
e318085a 4652 }
fa9a63c5 4653 else
25fe55af
RS
4654 {
4655 range++;
4656 startpos--;
b18215fc
RS
4657
4658 /* Update STARTPOS to the previous character boundary. */
4659 if (multibyte)
4660 {
70806df6
KH
4661 re_char *p = POS_ADDR_VSTRING (startpos) + 1;
4662 re_char *p0 = p;
4663 re_char *phead = HEAD_ADDR_VSTRING (startpos);
b18215fc
RS
4664
4665 /* Find the head of multibyte form. */
70806df6
KH
4666 PREV_CHAR_BOUNDARY (p, phead);
4667 range += p0 - 1 - p;
4668 if (range > 0)
4669 break;
b18215fc 4670
70806df6 4671 startpos -= p0 - 1 - p;
b18215fc 4672 }
25fe55af 4673 }
fa9a63c5
RM
4674 }
4675 return -1;
4676} /* re_search_2 */
c0f9ea08 4677WEAK_ALIAS (__re_search_2, re_search_2)
fa9a63c5
RM
4678\f
4679/* Declarations and macros for re_match_2. */
4680
2d1675e4
SM
4681static int bcmp_translate _RE_ARGS((re_char *s1, re_char *s2,
4682 register int len,
4683 RE_TRANSLATE_TYPE translate,
4684 const int multibyte));
fa9a63c5
RM
4685
4686/* This converts PTR, a pointer into one of the search strings `string1'
4687 and `string2' into an offset from the beginning of that string. */
4688#define POINTER_TO_OFFSET(ptr) \
4689 (FIRST_STRING_P (ptr) \
4690 ? ((regoff_t) ((ptr) - string1)) \
4691 : ((regoff_t) ((ptr) - string2 + size1)))
4692
fa9a63c5 4693/* Call before fetching a character with *d. This switches over to
419d1c74
SM
4694 string2 if necessary.
4695 Check re_match_2_internal for a discussion of why end_match_2 might
4696 not be within string2 (but be equal to end_match_1 instead). */
fa9a63c5 4697#define PREFETCH() \
25fe55af 4698 while (d == dend) \
fa9a63c5
RM
4699 { \
4700 /* End of string2 => fail. */ \
25fe55af
RS
4701 if (dend == end_match_2) \
4702 goto fail; \
4bb91c68 4703 /* End of string1 => advance to string2. */ \
25fe55af 4704 d = string2; \
fa9a63c5
RM
4705 dend = end_match_2; \
4706 }
4707
f1ad044f
SM
4708/* Call before fetching a char with *d if you already checked other limits.
4709 This is meant for use in lookahead operations like wordend, etc..
4710 where we might need to look at parts of the string that might be
4711 outside of the LIMITs (i.e past `stop'). */
4712#define PREFETCH_NOLIMIT() \
4713 if (d == end1) \
4714 { \
4715 d = string2; \
4716 dend = end_match_2; \
4717 } \
fa9a63c5
RM
4718
4719/* Test if at very beginning or at very end of the virtual concatenation
7814e705 4720 of `string1' and `string2'. If only one string, it's `string2'. */
fa9a63c5 4721#define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
5e69f11e 4722#define AT_STRINGS_END(d) ((d) == end2)
fa9a63c5
RM
4723
4724
4725/* Test if D points to a character which is word-constituent. We have
4726 two special cases to check for: if past the end of string1, look at
4727 the first character in string2; and if before the beginning of
4728 string2, look at the last character in string1. */
4729#define WORDCHAR_P(d) \
4730 (SYNTAX ((d) == end1 ? *string2 \
25fe55af 4731 : (d) == string2 - 1 ? *(end1 - 1) : *(d)) \
fa9a63c5
RM
4732 == Sword)
4733
9121ca40 4734/* Disabled due to a compiler bug -- see comment at case wordbound */
b18215fc
RS
4735
4736/* The comment at case wordbound is following one, but we don't use
4737 AT_WORD_BOUNDARY anymore to support multibyte form.
4738
4739 The DEC Alpha C compiler 3.x generates incorrect code for the
25fe55af 4740 test WORDCHAR_P (d - 1) != WORDCHAR_P (d) in the expansion of
7814e705 4741 AT_WORD_BOUNDARY, so this code is disabled. Expanding the
b18215fc
RS
4742 macro and introducing temporary variables works around the bug. */
4743
9121ca40 4744#if 0
fa9a63c5
RM
4745/* Test if the character before D and the one at D differ with respect
4746 to being word-constituent. */
4747#define AT_WORD_BOUNDARY(d) \
4748 (AT_STRINGS_BEG (d) || AT_STRINGS_END (d) \
4749 || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
9121ca40 4750#endif
fa9a63c5
RM
4751
4752/* Free everything we malloc. */
4753#ifdef MATCH_MAY_ALLOCATE
0b32bf0e
SM
4754# define FREE_VAR(var) if (var) { REGEX_FREE (var); var = NULL; } else
4755# define FREE_VARIABLES() \
fa9a63c5
RM
4756 do { \
4757 REGEX_FREE_STACK (fail_stack.stack); \
4758 FREE_VAR (regstart); \
4759 FREE_VAR (regend); \
fa9a63c5
RM
4760 FREE_VAR (best_regstart); \
4761 FREE_VAR (best_regend); \
fa9a63c5
RM
4762 } while (0)
4763#else
0b32bf0e 4764# define FREE_VARIABLES() ((void)0) /* Do nothing! But inhibit gcc warning. */
fa9a63c5
RM
4765#endif /* not MATCH_MAY_ALLOCATE */
4766
505bde11
SM
4767\f
4768/* Optimization routines. */
4769
4e8a9132
SM
4770/* If the operation is a match against one or more chars,
4771 return a pointer to the next operation, else return NULL. */
01618498 4772static re_char *
4e8a9132 4773skip_one_char (p)
01618498 4774 re_char *p;
4e8a9132
SM
4775{
4776 switch (SWITCH_ENUM_CAST (*p++))
4777 {
4778 case anychar:
4779 break;
177c0ea7 4780
4e8a9132
SM
4781 case exactn:
4782 p += *p + 1;
4783 break;
4784
4785 case charset_not:
4786 case charset:
4787 if (CHARSET_RANGE_TABLE_EXISTS_P (p - 1))
4788 {
4789 int mcnt;
4790 p = CHARSET_RANGE_TABLE (p - 1);
4791 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4792 p = CHARSET_RANGE_TABLE_END (p, mcnt);
4793 }
4794 else
4795 p += 1 + CHARSET_BITMAP_SIZE (p - 1);
4796 break;
177c0ea7 4797
4e8a9132
SM
4798 case syntaxspec:
4799 case notsyntaxspec:
1fb352e0 4800#ifdef emacs
4e8a9132
SM
4801 case categoryspec:
4802 case notcategoryspec:
4803#endif /* emacs */
4804 p++;
4805 break;
4806
4807 default:
4808 p = NULL;
4809 }
4810 return p;
4811}
4812
4813
505bde11 4814/* Jump over non-matching operations. */
839966f3 4815static re_char *
4e8a9132 4816skip_noops (p, pend)
839966f3 4817 re_char *p, *pend;
505bde11
SM
4818{
4819 int mcnt;
4820 while (p < pend)
4821 {
4822 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p))
4823 {
4824 case start_memory:
505bde11
SM
4825 case stop_memory:
4826 p += 2; break;
4827 case no_op:
4828 p += 1; break;
4829 case jump:
4830 p += 1;
4831 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4832 p += mcnt;
4833 break;
4834 default:
4835 return p;
4836 }
4837 }
4838 assert (p == pend);
4839 return p;
4840}
4841
4842/* Non-zero if "p1 matches something" implies "p2 fails". */
4843static int
4844mutually_exclusive_p (bufp, p1, p2)
4845 struct re_pattern_buffer *bufp;
839966f3 4846 re_char *p1, *p2;
505bde11 4847{
4e8a9132 4848 re_opcode_t op2;
2d1675e4 4849 const boolean multibyte = RE_MULTIBYTE_P (bufp);
505bde11
SM
4850 unsigned char *pend = bufp->buffer + bufp->used;
4851
4e8a9132 4852 assert (p1 >= bufp->buffer && p1 < pend
505bde11
SM
4853 && p2 >= bufp->buffer && p2 <= pend);
4854
4855 /* Skip over open/close-group commands.
4856 If what follows this loop is a ...+ construct,
4857 look at what begins its body, since we will have to
4858 match at least one of that. */
4e8a9132
SM
4859 p2 = skip_noops (p2, pend);
4860 /* The same skip can be done for p1, except that this function
4861 is only used in the case where p1 is a simple match operator. */
4862 /* p1 = skip_noops (p1, pend); */
4863
4864 assert (p1 >= bufp->buffer && p1 < pend
4865 && p2 >= bufp->buffer && p2 <= pend);
4866
4867 op2 = p2 == pend ? succeed : *p2;
4868
4869 switch (SWITCH_ENUM_CAST (op2))
505bde11 4870 {
4e8a9132
SM
4871 case succeed:
4872 case endbuf:
4873 /* If we're at the end of the pattern, we can change. */
4874 if (skip_one_char (p1))
505bde11 4875 {
505bde11
SM
4876 DEBUG_PRINT1 (" End of pattern: fast loop.\n");
4877 return 1;
505bde11 4878 }
4e8a9132 4879 break;
177c0ea7 4880
4e8a9132 4881 case endline:
4e8a9132
SM
4882 case exactn:
4883 {
01618498 4884 register re_wchar_t c
4e8a9132 4885 = (re_opcode_t) *p2 == endline ? '\n'
62a6e103 4886 : RE_STRING_CHAR (p2 + 2, multibyte);
505bde11 4887
4e8a9132
SM
4888 if ((re_opcode_t) *p1 == exactn)
4889 {
62a6e103 4890 if (c != RE_STRING_CHAR (p1 + 2, multibyte))
4e8a9132
SM
4891 {
4892 DEBUG_PRINT3 (" '%c' != '%c' => fast loop.\n", c, p1[2]);
4893 return 1;
4894 }
4895 }
505bde11 4896
4e8a9132
SM
4897 else if ((re_opcode_t) *p1 == charset
4898 || (re_opcode_t) *p1 == charset_not)
4899 {
4900 int not = (re_opcode_t) *p1 == charset_not;
505bde11 4901
4e8a9132
SM
4902 /* Test if C is listed in charset (or charset_not)
4903 at `p1'. */
6fdd04b0 4904 if (! multibyte || IS_REAL_ASCII (c))
4e8a9132
SM
4905 {
4906 if (c < CHARSET_BITMAP_SIZE (p1) * BYTEWIDTH
4907 && p1[2 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
4908 not = !not;
4909 }
4910 else if (CHARSET_RANGE_TABLE_EXISTS_P (p1))
4911 CHARSET_LOOKUP_RANGE_TABLE (not, c, p1);
505bde11 4912
4e8a9132
SM
4913 /* `not' is equal to 1 if c would match, which means
4914 that we can't change to pop_failure_jump. */
4915 if (!not)
4916 {
4917 DEBUG_PRINT1 (" No match => fast loop.\n");
4918 return 1;
4919 }
4920 }
4921 else if ((re_opcode_t) *p1 == anychar
4922 && c == '\n')
4923 {
4924 DEBUG_PRINT1 (" . != \\n => fast loop.\n");
4925 return 1;
4926 }
4927 }
4928 break;
505bde11 4929
4e8a9132 4930 case charset:
4e8a9132
SM
4931 {
4932 if ((re_opcode_t) *p1 == exactn)
4933 /* Reuse the code above. */
4934 return mutually_exclusive_p (bufp, p2, p1);
505bde11 4935
505bde11
SM
4936 /* It is hard to list up all the character in charset
4937 P2 if it includes multibyte character. Give up in
4938 such case. */
4939 else if (!multibyte || !CHARSET_RANGE_TABLE_EXISTS_P (p2))
4940 {
4941 /* Now, we are sure that P2 has no range table.
4942 So, for the size of bitmap in P2, `p2[1]' is
7814e705 4943 enough. But P1 may have range table, so the
505bde11
SM
4944 size of bitmap table of P1 is extracted by
4945 using macro `CHARSET_BITMAP_SIZE'.
4946
6fdd04b0
KH
4947 In a multibyte case, we know that all the character
4948 listed in P2 is ASCII. In a unibyte case, P1 has only a
4949 bitmap table. So, in both cases, it is enough to test
4950 only the bitmap table of P1. */
505bde11 4951
411e4203 4952 if ((re_opcode_t) *p1 == charset)
505bde11
SM
4953 {
4954 int idx;
4955 /* We win if the charset inside the loop
4956 has no overlap with the one after the loop. */
4957 for (idx = 0;
4958 (idx < (int) p2[1]
4959 && idx < CHARSET_BITMAP_SIZE (p1));
4960 idx++)
4961 if ((p2[2 + idx] & p1[2 + idx]) != 0)
4962 break;
4963
4964 if (idx == p2[1]
4965 || idx == CHARSET_BITMAP_SIZE (p1))
4966 {
4967 DEBUG_PRINT1 (" No match => fast loop.\n");
4968 return 1;
4969 }
4970 }
411e4203 4971 else if ((re_opcode_t) *p1 == charset_not)
505bde11
SM
4972 {
4973 int idx;
4974 /* We win if the charset_not inside the loop lists
7814e705 4975 every character listed in the charset after. */
505bde11
SM
4976 for (idx = 0; idx < (int) p2[1]; idx++)
4977 if (! (p2[2 + idx] == 0
4978 || (idx < CHARSET_BITMAP_SIZE (p1)
4979 && ((p2[2 + idx] & ~ p1[2 + idx]) == 0))))
4980 break;
4981
4e8a9132
SM
4982 if (idx == p2[1])
4983 {
4984 DEBUG_PRINT1 (" No match => fast loop.\n");
4985 return 1;
4986 }
4987 }
4988 }
4989 }
609b757a 4990 break;
177c0ea7 4991
411e4203
SM
4992 case charset_not:
4993 switch (SWITCH_ENUM_CAST (*p1))
4994 {
4995 case exactn:
4996 case charset:
4997 /* Reuse the code above. */
4998 return mutually_exclusive_p (bufp, p2, p1);
4999 case charset_not:
5000 /* When we have two charset_not, it's very unlikely that
5001 they don't overlap. The union of the two sets of excluded
5002 chars should cover all possible chars, which, as a matter of
5003 fact, is virtually impossible in multibyte buffers. */
36595814 5004 break;
411e4203
SM
5005 }
5006 break;
5007
4e8a9132 5008 case wordend:
669fa600
SM
5009 return ((re_opcode_t) *p1 == syntaxspec && p1[1] == Sword);
5010 case symend:
4e8a9132 5011 return ((re_opcode_t) *p1 == syntaxspec
669fa600
SM
5012 && (p1[1] == Ssymbol || p1[1] == Sword));
5013 case notsyntaxspec:
5014 return ((re_opcode_t) *p1 == syntaxspec && p1[1] == p2[1]);
4e8a9132
SM
5015
5016 case wordbeg:
669fa600
SM
5017 return ((re_opcode_t) *p1 == notsyntaxspec && p1[1] == Sword);
5018 case symbeg:
4e8a9132 5019 return ((re_opcode_t) *p1 == notsyntaxspec
669fa600
SM
5020 && (p1[1] == Ssymbol || p1[1] == Sword));
5021 case syntaxspec:
5022 return ((re_opcode_t) *p1 == notsyntaxspec && p1[1] == p2[1]);
4e8a9132
SM
5023
5024 case wordbound:
5025 return (((re_opcode_t) *p1 == notsyntaxspec
5026 || (re_opcode_t) *p1 == syntaxspec)
5027 && p1[1] == Sword);
5028
1fb352e0 5029#ifdef emacs
4e8a9132
SM
5030 case categoryspec:
5031 return ((re_opcode_t) *p1 == notcategoryspec && p1[1] == p2[1]);
5032 case notcategoryspec:
5033 return ((re_opcode_t) *p1 == categoryspec && p1[1] == p2[1]);
5034#endif /* emacs */
5035
5036 default:
5037 ;
505bde11
SM
5038 }
5039
5040 /* Safe default. */
5041 return 0;
5042}
5043
fa9a63c5
RM
5044\f
5045/* Matching routines. */
5046
25fe55af 5047#ifndef emacs /* Emacs never uses this. */
fa9a63c5
RM
5048/* re_match is like re_match_2 except it takes only a single string. */
5049
5050int
5051re_match (bufp, string, size, pos, regs)
5052 struct re_pattern_buffer *bufp;
5053 const char *string;
5054 int size, pos;
5055 struct re_registers *regs;
5056{
4bb91c68 5057 int result = re_match_2_internal (bufp, NULL, 0, (re_char*) string, size,
fa9a63c5 5058 pos, regs, size);
fa9a63c5
RM
5059 return result;
5060}
c0f9ea08 5061WEAK_ALIAS (__re_match, re_match)
fa9a63c5
RM
5062#endif /* not emacs */
5063
b18215fc
RS
5064#ifdef emacs
5065/* In Emacs, this is the string or buffer in which we
7814e705 5066 are matching. It is used for looking up syntax properties. */
b18215fc
RS
5067Lisp_Object re_match_object;
5068#endif
fa9a63c5
RM
5069
5070/* re_match_2 matches the compiled pattern in BUFP against the
5071 the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
5072 and SIZE2, respectively). We start matching at POS, and stop
5073 matching at STOP.
5e69f11e 5074
fa9a63c5 5075 If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
7814e705 5076 store offsets for the substring each group matched in REGS. See the
fa9a63c5
RM
5077 documentation for exactly how many groups we fill.
5078
5079 We return -1 if no match, -2 if an internal error (such as the
7814e705 5080 failure stack overflowing). Otherwise, we return the length of the
fa9a63c5
RM
5081 matched substring. */
5082
5083int
5084re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
5085 struct re_pattern_buffer *bufp;
5086 const char *string1, *string2;
5087 int size1, size2;
5088 int pos;
5089 struct re_registers *regs;
5090 int stop;
5091{
b18215fc 5092 int result;
25fe55af 5093
b18215fc 5094#ifdef emacs
cc9b4df2
KH
5095 int charpos;
5096 gl_state.object = re_match_object;
99633e97 5097 charpos = SYNTAX_TABLE_BYTE_TO_CHAR (POS_AS_IN_BUFFER (pos));
cc9b4df2 5098 SETUP_SYNTAX_TABLE_FOR_OBJECT (re_match_object, charpos, 1);
b18215fc
RS
5099#endif
5100
4bb91c68
SM
5101 result = re_match_2_internal (bufp, (re_char*) string1, size1,
5102 (re_char*) string2, size2,
cc9b4df2 5103 pos, regs, stop);
fa9a63c5
RM
5104 return result;
5105}
c0f9ea08 5106WEAK_ALIAS (__re_match_2, re_match_2)
fa9a63c5 5107
bf216479 5108
fa9a63c5 5109/* This is a separate function so that we can force an alloca cleanup
7814e705 5110 afterwards. */
fa9a63c5
RM
5111static int
5112re_match_2_internal (bufp, string1, size1, string2, size2, pos, regs, stop)
5113 struct re_pattern_buffer *bufp;
66f0296e 5114 re_char *string1, *string2;
fa9a63c5
RM
5115 int size1, size2;
5116 int pos;
5117 struct re_registers *regs;
5118 int stop;
5119{
5120 /* General temporaries. */
5121 int mcnt;
01618498 5122 size_t reg;
66f0296e 5123 boolean not;
fa9a63c5
RM
5124
5125 /* Just past the end of the corresponding string. */
66f0296e 5126 re_char *end1, *end2;
fa9a63c5
RM
5127
5128 /* Pointers into string1 and string2, just past the last characters in
7814e705 5129 each to consider matching. */
66f0296e 5130 re_char *end_match_1, *end_match_2;
fa9a63c5
RM
5131
5132 /* Where we are in the data, and the end of the current string. */
66f0296e 5133 re_char *d, *dend;
5e69f11e 5134
99633e97
SM
5135 /* Used sometimes to remember where we were before starting matching
5136 an operator so that we can go back in case of failure. This "atomic"
5137 behavior of matching opcodes is indispensable to the correctness
5138 of the on_failure_keep_string_jump optimization. */
5139 re_char *dfail;
5140
fa9a63c5 5141 /* Where we are in the pattern, and the end of the pattern. */
01618498
SM
5142 re_char *p = bufp->buffer;
5143 re_char *pend = p + bufp->used;
fa9a63c5 5144
25fe55af 5145 /* We use this to map every character in the string. */
6676cb1c 5146 RE_TRANSLATE_TYPE translate = bufp->translate;
fa9a63c5 5147
cf9c99bc 5148 /* Nonzero if BUFP is setup from a multibyte regex. */
2d1675e4 5149 const boolean multibyte = RE_MULTIBYTE_P (bufp);
b18215fc 5150
cf9c99bc
KH
5151 /* Nonzero if STRING1/STRING2 are multibyte. */
5152 const boolean target_multibyte = RE_TARGET_MULTIBYTE_P (bufp);
5153
fa9a63c5
RM
5154 /* Failure point stack. Each place that can handle a failure further
5155 down the line pushes a failure point on this stack. It consists of
505bde11 5156 regstart, and regend for all registers corresponding to
fa9a63c5
RM
5157 the subexpressions we're currently inside, plus the number of such
5158 registers, and, finally, two char *'s. The first char * is where
5159 to resume scanning the pattern; the second one is where to resume
7814e705
JB
5160 scanning the strings. */
5161#ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
fa9a63c5
RM
5162 fail_stack_type fail_stack;
5163#endif
5164#ifdef DEBUG
fa9a63c5
RM
5165 unsigned nfailure_points_pushed = 0, nfailure_points_popped = 0;
5166#endif
5167
0b32bf0e 5168#if defined REL_ALLOC && defined REGEX_MALLOC
fa9a63c5
RM
5169 /* This holds the pointer to the failure stack, when
5170 it is allocated relocatably. */
5171 fail_stack_elt_t *failure_stack_ptr;
99633e97 5172#endif
fa9a63c5
RM
5173
5174 /* We fill all the registers internally, independent of what we
7814e705 5175 return, for use in backreferences. The number here includes
fa9a63c5 5176 an element for register zero. */
4bb91c68 5177 size_t num_regs = bufp->re_nsub + 1;
5e69f11e 5178
fa9a63c5
RM
5179 /* Information on the contents of registers. These are pointers into
5180 the input strings; they record just what was matched (on this
5181 attempt) by a subexpression part of the pattern, that is, the
5182 regnum-th regstart pointer points to where in the pattern we began
5183 matching and the regnum-th regend points to right after where we
5184 stopped matching the regnum-th subexpression. (The zeroth register
5185 keeps track of what the whole pattern matches.) */
5186#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
66f0296e 5187 re_char **regstart, **regend;
fa9a63c5
RM
5188#endif
5189
fa9a63c5 5190 /* The following record the register info as found in the above
5e69f11e 5191 variables when we find a match better than any we've seen before.
fa9a63c5
RM
5192 This happens as we backtrack through the failure points, which in
5193 turn happens only if we have not yet matched the entire string. */
5194 unsigned best_regs_set = false;
5195#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
66f0296e 5196 re_char **best_regstart, **best_regend;
fa9a63c5 5197#endif
5e69f11e 5198
fa9a63c5
RM
5199 /* Logically, this is `best_regend[0]'. But we don't want to have to
5200 allocate space for that if we're not allocating space for anything
7814e705 5201 else (see below). Also, we never need info about register 0 for
fa9a63c5
RM
5202 any of the other register vectors, and it seems rather a kludge to
5203 treat `best_regend' differently than the rest. So we keep track of
5204 the end of the best match so far in a separate variable. We
5205 initialize this to NULL so that when we backtrack the first time
5206 and need to test it, it's not garbage. */
66f0296e 5207 re_char *match_end = NULL;
fa9a63c5 5208
fa9a63c5
RM
5209#ifdef DEBUG
5210 /* Counts the total number of registers pushed. */
5e69f11e 5211 unsigned num_regs_pushed = 0;
fa9a63c5
RM
5212#endif
5213
5214 DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
5e69f11e 5215
fa9a63c5 5216 INIT_FAIL_STACK ();
5e69f11e 5217
fa9a63c5
RM
5218#ifdef MATCH_MAY_ALLOCATE
5219 /* Do not bother to initialize all the register variables if there are
5220 no groups in the pattern, as it takes a fair amount of time. If
5221 there are groups, we include space for register 0 (the whole
5222 pattern), even though we never use it, since it simplifies the
5223 array indexing. We should fix this. */
5224 if (bufp->re_nsub)
5225 {
66f0296e
SM
5226 regstart = REGEX_TALLOC (num_regs, re_char *);
5227 regend = REGEX_TALLOC (num_regs, re_char *);
5228 best_regstart = REGEX_TALLOC (num_regs, re_char *);
5229 best_regend = REGEX_TALLOC (num_regs, re_char *);
fa9a63c5 5230
505bde11 5231 if (!(regstart && regend && best_regstart && best_regend))
25fe55af
RS
5232 {
5233 FREE_VARIABLES ();
5234 return -2;
5235 }
fa9a63c5
RM
5236 }
5237 else
5238 {
5239 /* We must initialize all our variables to NULL, so that
25fe55af 5240 `FREE_VARIABLES' doesn't try to free them. */
505bde11 5241 regstart = regend = best_regstart = best_regend = NULL;
fa9a63c5
RM
5242 }
5243#endif /* MATCH_MAY_ALLOCATE */
5244
5245 /* The starting position is bogus. */
5246 if (pos < 0 || pos > size1 + size2)
5247 {
5248 FREE_VARIABLES ();
5249 return -1;
5250 }
5e69f11e 5251
fa9a63c5
RM
5252 /* Initialize subexpression text positions to -1 to mark ones that no
5253 start_memory/stop_memory has been seen for. Also initialize the
5254 register information struct. */
01618498
SM
5255 for (reg = 1; reg < num_regs; reg++)
5256 regstart[reg] = regend[reg] = NULL;
99633e97 5257
fa9a63c5 5258 /* We move `string1' into `string2' if the latter's empty -- but not if
7814e705 5259 `string1' is null. */
fa9a63c5
RM
5260 if (size2 == 0 && string1 != NULL)
5261 {
5262 string2 = string1;
5263 size2 = size1;
5264 string1 = 0;
5265 size1 = 0;
5266 }
5267 end1 = string1 + size1;
5268 end2 = string2 + size2;
5269
5e69f11e 5270 /* `p' scans through the pattern as `d' scans through the data.
fa9a63c5
RM
5271 `dend' is the end of the input string that `d' points within. `d'
5272 is advanced into the following input string whenever necessary, but
5273 this happens before fetching; therefore, at the beginning of the
5274 loop, `d' can be pointing at the end of a string, but it cannot
5275 equal `string2'. */
419d1c74 5276 if (pos >= size1)
fa9a63c5 5277 {
419d1c74
SM
5278 /* Only match within string2. */
5279 d = string2 + pos - size1;
5280 dend = end_match_2 = string2 + stop - size1;
5281 end_match_1 = end1; /* Just to give it a value. */
fa9a63c5
RM
5282 }
5283 else
5284 {
f1ad044f 5285 if (stop < size1)
419d1c74
SM
5286 {
5287 /* Only match within string1. */
5288 end_match_1 = string1 + stop;
5289 /* BEWARE!
5290 When we reach end_match_1, PREFETCH normally switches to string2.
5291 But in the present case, this means that just doing a PREFETCH
5292 makes us jump from `stop' to `gap' within the string.
5293 What we really want here is for the search to stop as
5294 soon as we hit end_match_1. That's why we set end_match_2
5295 to end_match_1 (since PREFETCH fails as soon as we hit
5296 end_match_2). */
5297 end_match_2 = end_match_1;
5298 }
5299 else
f1ad044f
SM
5300 { /* It's important to use this code when stop == size so that
5301 moving `d' from end1 to string2 will not prevent the d == dend
5302 check from catching the end of string. */
419d1c74
SM
5303 end_match_1 = end1;
5304 end_match_2 = string2 + stop - size1;
5305 }
5306 d = string1 + pos;
5307 dend = end_match_1;
fa9a63c5
RM
5308 }
5309
5310 DEBUG_PRINT1 ("The compiled pattern is: ");
5311 DEBUG_PRINT_COMPILED_PATTERN (bufp, p, pend);
5312 DEBUG_PRINT1 ("The string to match is: `");
5313 DEBUG_PRINT_DOUBLE_STRING (d, string1, size1, string2, size2);
5314 DEBUG_PRINT1 ("'\n");
5e69f11e 5315
7814e705 5316 /* This loops over pattern commands. It exits by returning from the
fa9a63c5
RM
5317 function if the match is complete, or it drops through if the match
5318 fails at this starting point in the input data. */
5319 for (;;)
5320 {
505bde11 5321 DEBUG_PRINT2 ("\n%p: ", p);
fa9a63c5
RM
5322
5323 if (p == pend)
5324 { /* End of pattern means we might have succeeded. */
25fe55af 5325 DEBUG_PRINT1 ("end of pattern ... ");
5e69f11e 5326
fa9a63c5 5327 /* If we haven't matched the entire string, and we want the
25fe55af
RS
5328 longest match, try backtracking. */
5329 if (d != end_match_2)
fa9a63c5
RM
5330 {
5331 /* 1 if this match ends in the same string (string1 or string2)
5332 as the best previous match. */
5e69f11e 5333 boolean same_str_p = (FIRST_STRING_P (match_end)
99633e97 5334 == FIRST_STRING_P (d));
fa9a63c5
RM
5335 /* 1 if this match is the best seen so far. */
5336 boolean best_match_p;
5337
5338 /* AIX compiler got confused when this was combined
7814e705 5339 with the previous declaration. */
fa9a63c5
RM
5340 if (same_str_p)
5341 best_match_p = d > match_end;
5342 else
99633e97 5343 best_match_p = !FIRST_STRING_P (d);
fa9a63c5 5344
25fe55af
RS
5345 DEBUG_PRINT1 ("backtracking.\n");
5346
5347 if (!FAIL_STACK_EMPTY ())
5348 { /* More failure points to try. */
5349
5350 /* If exceeds best match so far, save it. */
5351 if (!best_regs_set || best_match_p)
5352 {
5353 best_regs_set = true;
5354 match_end = d;
5355
5356 DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
5357
01618498 5358 for (reg = 1; reg < num_regs; reg++)
25fe55af 5359 {
01618498
SM
5360 best_regstart[reg] = regstart[reg];
5361 best_regend[reg] = regend[reg];
25fe55af
RS
5362 }
5363 }
5364 goto fail;
5365 }
5366
5367 /* If no failure points, don't restore garbage. And if
5368 last match is real best match, don't restore second
5369 best one. */
5370 else if (best_regs_set && !best_match_p)
5371 {
5372 restore_best_regs:
5373 /* Restore best match. It may happen that `dend ==
5374 end_match_1' while the restored d is in string2.
5375 For example, the pattern `x.*y.*z' against the
5376 strings `x-' and `y-z-', if the two strings are
7814e705 5377 not consecutive in memory. */
25fe55af
RS
5378 DEBUG_PRINT1 ("Restoring best registers.\n");
5379
5380 d = match_end;
5381 dend = ((d >= string1 && d <= end1)
5382 ? end_match_1 : end_match_2);
fa9a63c5 5383
01618498 5384 for (reg = 1; reg < num_regs; reg++)
fa9a63c5 5385 {
01618498
SM
5386 regstart[reg] = best_regstart[reg];
5387 regend[reg] = best_regend[reg];
fa9a63c5 5388 }
25fe55af
RS
5389 }
5390 } /* d != end_match_2 */
fa9a63c5
RM
5391
5392 succeed_label:
25fe55af 5393 DEBUG_PRINT1 ("Accepting match.\n");
fa9a63c5 5394
25fe55af
RS
5395 /* If caller wants register contents data back, do it. */
5396 if (regs && !bufp->no_sub)
fa9a63c5 5397 {
25fe55af
RS
5398 /* Have the register data arrays been allocated? */
5399 if (bufp->regs_allocated == REGS_UNALLOCATED)
7814e705 5400 { /* No. So allocate them with malloc. We need one
25fe55af
RS
5401 extra element beyond `num_regs' for the `-1' marker
5402 GNU code uses. */
5403 regs->num_regs = MAX (RE_NREGS, num_regs + 1);
5404 regs->start = TALLOC (regs->num_regs, regoff_t);
5405 regs->end = TALLOC (regs->num_regs, regoff_t);
5406 if (regs->start == NULL || regs->end == NULL)
fa9a63c5
RM
5407 {
5408 FREE_VARIABLES ();
5409 return -2;
5410 }
25fe55af
RS
5411 bufp->regs_allocated = REGS_REALLOCATE;
5412 }
5413 else if (bufp->regs_allocated == REGS_REALLOCATE)
5414 { /* Yes. If we need more elements than were already
5415 allocated, reallocate them. If we need fewer, just
5416 leave it alone. */
5417 if (regs->num_regs < num_regs + 1)
5418 {
5419 regs->num_regs = num_regs + 1;
5420 RETALLOC (regs->start, regs->num_regs, regoff_t);
5421 RETALLOC (regs->end, regs->num_regs, regoff_t);
5422 if (regs->start == NULL || regs->end == NULL)
fa9a63c5
RM
5423 {
5424 FREE_VARIABLES ();
5425 return -2;
5426 }
25fe55af
RS
5427 }
5428 }
5429 else
fa9a63c5
RM
5430 {
5431 /* These braces fend off a "empty body in an else-statement"
7814e705 5432 warning under GCC when assert expands to nothing. */
fa9a63c5
RM
5433 assert (bufp->regs_allocated == REGS_FIXED);
5434 }
5435
25fe55af
RS
5436 /* Convert the pointer data in `regstart' and `regend' to
5437 indices. Register zero has to be set differently,
5438 since we haven't kept track of any info for it. */
5439 if (regs->num_regs > 0)
5440 {
5441 regs->start[0] = pos;
99633e97 5442 regs->end[0] = POINTER_TO_OFFSET (d);
25fe55af 5443 }
5e69f11e 5444
25fe55af
RS
5445 /* Go through the first `min (num_regs, regs->num_regs)'
5446 registers, since that is all we initialized. */
01618498 5447 for (reg = 1; reg < MIN (num_regs, regs->num_regs); reg++)
fa9a63c5 5448 {
01618498
SM
5449 if (REG_UNSET (regstart[reg]) || REG_UNSET (regend[reg]))
5450 regs->start[reg] = regs->end[reg] = -1;
25fe55af
RS
5451 else
5452 {
01618498
SM
5453 regs->start[reg]
5454 = (regoff_t) POINTER_TO_OFFSET (regstart[reg]);
5455 regs->end[reg]
5456 = (regoff_t) POINTER_TO_OFFSET (regend[reg]);
25fe55af 5457 }
fa9a63c5 5458 }
5e69f11e 5459
25fe55af
RS
5460 /* If the regs structure we return has more elements than
5461 were in the pattern, set the extra elements to -1. If
5462 we (re)allocated the registers, this is the case,
5463 because we always allocate enough to have at least one
7814e705 5464 -1 at the end. */
01618498
SM
5465 for (reg = num_regs; reg < regs->num_regs; reg++)
5466 regs->start[reg] = regs->end[reg] = -1;
fa9a63c5
RM
5467 } /* regs && !bufp->no_sub */
5468
25fe55af
RS
5469 DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
5470 nfailure_points_pushed, nfailure_points_popped,
5471 nfailure_points_pushed - nfailure_points_popped);
5472 DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed);
fa9a63c5 5473
99633e97 5474 mcnt = POINTER_TO_OFFSET (d) - pos;
fa9a63c5 5475
25fe55af 5476 DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt);
fa9a63c5 5477
25fe55af
RS
5478 FREE_VARIABLES ();
5479 return mcnt;
5480 }
fa9a63c5 5481
7814e705 5482 /* Otherwise match next pattern command. */
fa9a63c5
RM
5483 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
5484 {
25fe55af
RS
5485 /* Ignore these. Used to ignore the n of succeed_n's which
5486 currently have n == 0. */
5487 case no_op:
5488 DEBUG_PRINT1 ("EXECUTING no_op.\n");
5489 break;
fa9a63c5
RM
5490
5491 case succeed:
25fe55af 5492 DEBUG_PRINT1 ("EXECUTING succeed.\n");
fa9a63c5
RM
5493 goto succeed_label;
5494
7814e705 5495 /* Match the next n pattern characters exactly. The following
25fe55af 5496 byte in the pattern defines n, and the n bytes after that
7814e705 5497 are the characters to match. */
fa9a63c5
RM
5498 case exactn:
5499 mcnt = *p++;
25fe55af 5500 DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt);
fa9a63c5 5501
99633e97
SM
5502 /* Remember the start point to rollback upon failure. */
5503 dfail = d;
5504
6fdd04b0 5505#ifndef emacs
25fe55af
RS
5506 /* This is written out as an if-else so we don't waste time
5507 testing `translate' inside the loop. */
28703c16 5508 if (RE_TRANSLATE_P (translate))
6fdd04b0
KH
5509 do
5510 {
5511 PREFETCH ();
5512 if (RE_TRANSLATE (translate, *d) != *p++)
e934739e 5513 {
6fdd04b0
KH
5514 d = dfail;
5515 goto fail;
e934739e 5516 }
6fdd04b0
KH
5517 d++;
5518 }
5519 while (--mcnt);
fa9a63c5 5520 else
6fdd04b0
KH
5521 do
5522 {
5523 PREFETCH ();
5524 if (*d++ != *p++)
bf216479 5525 {
6fdd04b0
KH
5526 d = dfail;
5527 goto fail;
bf216479 5528 }
6fdd04b0
KH
5529 }
5530 while (--mcnt);
5531#else /* emacs */
5532 /* The cost of testing `translate' is comparatively small. */
cf9c99bc 5533 if (target_multibyte)
6fdd04b0
KH
5534 do
5535 {
5536 int pat_charlen, buf_charlen;
cf9c99bc 5537 int pat_ch, buf_ch;
e934739e 5538
6fdd04b0 5539 PREFETCH ();
cf9c99bc 5540 if (multibyte)
62a6e103 5541 pat_ch = STRING_CHAR_AND_LENGTH (p, pat_charlen);
cf9c99bc
KH
5542 else
5543 {
5544 pat_ch = RE_CHAR_TO_MULTIBYTE (*p);
5545 pat_charlen = 1;
5546 }
62a6e103 5547 buf_ch = STRING_CHAR_AND_LENGTH (d, buf_charlen);
e934739e 5548
6fdd04b0 5549 if (TRANSLATE (buf_ch) != pat_ch)
e934739e 5550 {
6fdd04b0
KH
5551 d = dfail;
5552 goto fail;
e934739e 5553 }
bf216479 5554
6fdd04b0
KH
5555 p += pat_charlen;
5556 d += buf_charlen;
5557 mcnt -= pat_charlen;
5558 }
5559 while (mcnt > 0);
fa9a63c5 5560 else
6fdd04b0
KH
5561 do
5562 {
cf9c99bc
KH
5563 int pat_charlen, buf_charlen;
5564 int pat_ch, buf_ch;
bf216479 5565
6fdd04b0 5566 PREFETCH ();
cf9c99bc
KH
5567 if (multibyte)
5568 {
62a6e103 5569 pat_ch = STRING_CHAR_AND_LENGTH (p, pat_charlen);
2afc21f5 5570 pat_ch = RE_CHAR_TO_UNIBYTE (pat_ch);
cf9c99bc
KH
5571 }
5572 else
5573 {
5574 pat_ch = *p;
5575 pat_charlen = 1;
5576 }
5577 buf_ch = RE_CHAR_TO_MULTIBYTE (*d);
5578 if (! CHAR_BYTE8_P (buf_ch))
5579 {
5580 buf_ch = TRANSLATE (buf_ch);
5581 buf_ch = RE_CHAR_TO_UNIBYTE (buf_ch);
5582 if (buf_ch < 0)
5583 buf_ch = *d;
5584 }
0e2501ed
AS
5585 else
5586 buf_ch = *d;
cf9c99bc 5587 if (buf_ch != pat_ch)
6fdd04b0
KH
5588 {
5589 d = dfail;
5590 goto fail;
bf216479 5591 }
cf9c99bc
KH
5592 p += pat_charlen;
5593 d++;
6fdd04b0
KH
5594 }
5595 while (--mcnt);
5596#endif
25fe55af 5597 break;
fa9a63c5
RM
5598
5599
25fe55af 5600 /* Match any character except possibly a newline or a null. */
fa9a63c5 5601 case anychar:
e934739e
RS
5602 {
5603 int buf_charlen;
01618498 5604 re_wchar_t buf_ch;
fa9a63c5 5605
e934739e 5606 DEBUG_PRINT1 ("EXECUTING anychar.\n");
fa9a63c5 5607
e934739e 5608 PREFETCH ();
62a6e103 5609 buf_ch = RE_STRING_CHAR_AND_LENGTH (d, buf_charlen,
cf9c99bc 5610 target_multibyte);
e934739e
RS
5611 buf_ch = TRANSLATE (buf_ch);
5612
5613 if ((!(bufp->syntax & RE_DOT_NEWLINE)
5614 && buf_ch == '\n')
5615 || ((bufp->syntax & RE_DOT_NOT_NULL)
5616 && buf_ch == '\000'))
5617 goto fail;
5618
e934739e
RS
5619 DEBUG_PRINT2 (" Matched `%d'.\n", *d);
5620 d += buf_charlen;
5621 }
fa9a63c5
RM
5622 break;
5623
5624
5625 case charset:
5626 case charset_not:
5627 {
b18215fc 5628 register unsigned int c;
fa9a63c5 5629 boolean not = (re_opcode_t) *(p - 1) == charset_not;
b18215fc
RS
5630 int len;
5631
5632 /* Start of actual range_table, or end of bitmap if there is no
5633 range table. */
01618498 5634 re_char *range_table;
b18215fc 5635
96cc36cc 5636 /* Nonzero if there is a range table. */
b18215fc
RS
5637 int range_table_exists;
5638
96cc36cc
RS
5639 /* Number of ranges of range table. This is not included
5640 in the initial byte-length of the command. */
5641 int count = 0;
fa9a63c5 5642
f5020181
AS
5643 /* Whether matching against a unibyte character. */
5644 boolean unibyte_char = false;
5645
25fe55af 5646 DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : "");
fa9a63c5 5647
b18215fc 5648 range_table_exists = CHARSET_RANGE_TABLE_EXISTS_P (&p[-1]);
96cc36cc 5649
b18215fc 5650 if (range_table_exists)
96cc36cc
RS
5651 {
5652 range_table = CHARSET_RANGE_TABLE (&p[-1]); /* Past the bitmap. */
5653 EXTRACT_NUMBER_AND_INCR (count, range_table);
5654 }
b18215fc 5655
2d1675e4 5656 PREFETCH ();
62a6e103 5657 c = RE_STRING_CHAR_AND_LENGTH (d, len, target_multibyte);
cf9c99bc
KH
5658 if (target_multibyte)
5659 {
5660 int c1;
b18215fc 5661
cf9c99bc
KH
5662 c = TRANSLATE (c);
5663 c1 = RE_CHAR_TO_UNIBYTE (c);
5664 if (c1 >= 0)
f5020181
AS
5665 {
5666 unibyte_char = true;
5667 c = c1;
5668 }
cf9c99bc
KH
5669 }
5670 else
5671 {
5672 int c1 = RE_CHAR_TO_MULTIBYTE (c);
5673
5674 if (! CHAR_BYTE8_P (c1))
5675 {
5676 c1 = TRANSLATE (c1);
5677 c1 = RE_CHAR_TO_UNIBYTE (c1);
5678 if (c1 >= 0)
f5020181
AS
5679 {
5680 unibyte_char = true;
5681 c = c1;
5682 }
cf9c99bc 5683 }
0b8be006
AS
5684 else
5685 unibyte_char = true;
cf9c99bc
KH
5686 }
5687
f5020181 5688 if (unibyte_char && c < (1 << BYTEWIDTH))
b18215fc 5689 { /* Lookup bitmap. */
b18215fc
RS
5690 /* Cast to `unsigned' instead of `unsigned char' in
5691 case the bit list is a full 32 bytes long. */
5692 if (c < (unsigned) (CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH)
96cc36cc
RS
5693 && p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
5694 not = !not;
b18215fc 5695 }
96cc36cc 5696#ifdef emacs
b18215fc 5697 else if (range_table_exists)
96cc36cc
RS
5698 {
5699 int class_bits = CHARSET_RANGE_TABLE_BITS (&p[-1]);
5700
14473664
SM
5701 if ( (class_bits & BIT_LOWER && ISLOWER (c))
5702 | (class_bits & BIT_MULTIBYTE)
96cc36cc
RS
5703 | (class_bits & BIT_PUNCT && ISPUNCT (c))
5704 | (class_bits & BIT_SPACE && ISSPACE (c))
5705 | (class_bits & BIT_UPPER && ISUPPER (c))
5706 | (class_bits & BIT_WORD && ISWORD (c)))
5707 not = !not;
5708 else
5709 CHARSET_LOOKUP_RANGE_TABLE_RAW (not, c, range_table, count);
5710 }
5711#endif /* emacs */
fa9a63c5 5712
96cc36cc
RS
5713 if (range_table_exists)
5714 p = CHARSET_RANGE_TABLE_END (range_table, count);
5715 else
5716 p += CHARSET_BITMAP_SIZE (&p[-1]) + 1;
fa9a63c5
RM
5717
5718 if (!not) goto fail;
5e69f11e 5719
b18215fc 5720 d += len;
fa9a63c5
RM
5721 break;
5722 }
5723
5724
25fe55af 5725 /* The beginning of a group is represented by start_memory.
505bde11 5726 The argument is the register number. The text
25fe55af 5727 matched within the group is recorded (in the internal
7814e705 5728 registers data structure) under the register number. */
25fe55af 5729 case start_memory:
505bde11
SM
5730 DEBUG_PRINT2 ("EXECUTING start_memory %d:\n", *p);
5731
5732 /* In case we need to undo this operation (via backtracking). */
5733 PUSH_FAILURE_REG ((unsigned int)*p);
fa9a63c5 5734
25fe55af 5735 regstart[*p] = d;
4bb91c68 5736 regend[*p] = NULL; /* probably unnecessary. -sm */
fa9a63c5
RM
5737 DEBUG_PRINT2 (" regstart: %d\n", POINTER_TO_OFFSET (regstart[*p]));
5738
25fe55af 5739 /* Move past the register number and inner group count. */
505bde11 5740 p += 1;
25fe55af 5741 break;
fa9a63c5
RM
5742
5743
25fe55af 5744 /* The stop_memory opcode represents the end of a group. Its
505bde11 5745 argument is the same as start_memory's: the register number. */
fa9a63c5 5746 case stop_memory:
505bde11
SM
5747 DEBUG_PRINT2 ("EXECUTING stop_memory %d:\n", *p);
5748
5749 assert (!REG_UNSET (regstart[*p]));
5750 /* Strictly speaking, there should be code such as:
177c0ea7 5751
0b32bf0e 5752 assert (REG_UNSET (regend[*p]));
505bde11
SM
5753 PUSH_FAILURE_REGSTOP ((unsigned int)*p);
5754
5755 But the only info to be pushed is regend[*p] and it is known to
5756 be UNSET, so there really isn't anything to push.
5757 Not pushing anything, on the other hand deprives us from the
5758 guarantee that regend[*p] is UNSET since undoing this operation
5759 will not reset its value properly. This is not important since
5760 the value will only be read on the next start_memory or at
5761 the very end and both events can only happen if this stop_memory
5762 is *not* undone. */
fa9a63c5 5763
25fe55af 5764 regend[*p] = d;
fa9a63c5
RM
5765 DEBUG_PRINT2 (" regend: %d\n", POINTER_TO_OFFSET (regend[*p]));
5766
25fe55af 5767 /* Move past the register number and the inner group count. */
505bde11 5768 p += 1;
25fe55af 5769 break;
fa9a63c5
RM
5770
5771
5772 /* \<digit> has been turned into a `duplicate' command which is
25fe55af
RS
5773 followed by the numeric value of <digit> as the register number. */
5774 case duplicate:
fa9a63c5 5775 {
66f0296e 5776 register re_char *d2, *dend2;
7814e705 5777 int regno = *p++; /* Get which register to match against. */
fa9a63c5
RM
5778 DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno);
5779
7814e705 5780 /* Can't back reference a group which we've never matched. */
25fe55af
RS
5781 if (REG_UNSET (regstart[regno]) || REG_UNSET (regend[regno]))
5782 goto fail;
5e69f11e 5783
7814e705 5784 /* Where in input to try to start matching. */
25fe55af 5785 d2 = regstart[regno];
5e69f11e 5786
99633e97
SM
5787 /* Remember the start point to rollback upon failure. */
5788 dfail = d;
5789
25fe55af
RS
5790 /* Where to stop matching; if both the place to start and
5791 the place to stop matching are in the same string, then
5792 set to the place to stop, otherwise, for now have to use
5793 the end of the first string. */
fa9a63c5 5794
25fe55af 5795 dend2 = ((FIRST_STRING_P (regstart[regno])
fa9a63c5
RM
5796 == FIRST_STRING_P (regend[regno]))
5797 ? regend[regno] : end_match_1);
5798 for (;;)
5799 {
5800 /* If necessary, advance to next segment in register
25fe55af 5801 contents. */
fa9a63c5
RM
5802 while (d2 == dend2)
5803 {
5804 if (dend2 == end_match_2) break;
5805 if (dend2 == regend[regno]) break;
5806
25fe55af
RS
5807 /* End of string1 => advance to string2. */
5808 d2 = string2;
5809 dend2 = regend[regno];
fa9a63c5
RM
5810 }
5811 /* At end of register contents => success */
5812 if (d2 == dend2) break;
5813
5814 /* If necessary, advance to next segment in data. */
5815 PREFETCH ();
5816
5817 /* How many characters left in this segment to match. */
5818 mcnt = dend - d;
5e69f11e 5819
fa9a63c5 5820 /* Want how many consecutive characters we can match in
25fe55af
RS
5821 one shot, so, if necessary, adjust the count. */
5822 if (mcnt > dend2 - d2)
fa9a63c5 5823 mcnt = dend2 - d2;
5e69f11e 5824
fa9a63c5 5825 /* Compare that many; failure if mismatch, else move
25fe55af 5826 past them. */
28703c16 5827 if (RE_TRANSLATE_P (translate)
02cb78b5 5828 ? bcmp_translate (d, d2, mcnt, translate, target_multibyte)
4bb91c68 5829 : memcmp (d, d2, mcnt))
99633e97
SM
5830 {
5831 d = dfail;
5832 goto fail;
5833 }
fa9a63c5 5834 d += mcnt, d2 += mcnt;
fa9a63c5
RM
5835 }
5836 }
5837 break;
5838
5839
25fe55af 5840 /* begline matches the empty string at the beginning of the string
c0f9ea08 5841 (unless `not_bol' is set in `bufp'), and after newlines. */
fa9a63c5 5842 case begline:
25fe55af 5843 DEBUG_PRINT1 ("EXECUTING begline.\n");
5e69f11e 5844
25fe55af
RS
5845 if (AT_STRINGS_BEG (d))
5846 {
5847 if (!bufp->not_bol) break;
5848 }
419d1c74 5849 else
25fe55af 5850 {
bf216479 5851 unsigned c;
419d1c74 5852 GET_CHAR_BEFORE_2 (c, d, string1, end1, string2, end2);
c0f9ea08 5853 if (c == '\n')
419d1c74 5854 break;
25fe55af
RS
5855 }
5856 /* In all other cases, we fail. */
5857 goto fail;
fa9a63c5
RM
5858
5859
25fe55af 5860 /* endline is the dual of begline. */
fa9a63c5 5861 case endline:
25fe55af 5862 DEBUG_PRINT1 ("EXECUTING endline.\n");
fa9a63c5 5863
25fe55af
RS
5864 if (AT_STRINGS_END (d))
5865 {
5866 if (!bufp->not_eol) break;
5867 }
f1ad044f 5868 else
25fe55af 5869 {
f1ad044f 5870 PREFETCH_NOLIMIT ();
c0f9ea08 5871 if (*d == '\n')
f1ad044f 5872 break;
25fe55af
RS
5873 }
5874 goto fail;
fa9a63c5
RM
5875
5876
5877 /* Match at the very beginning of the data. */
25fe55af
RS
5878 case begbuf:
5879 DEBUG_PRINT1 ("EXECUTING begbuf.\n");
5880 if (AT_STRINGS_BEG (d))
5881 break;
5882 goto fail;
fa9a63c5
RM
5883
5884
5885 /* Match at the very end of the data. */
25fe55af
RS
5886 case endbuf:
5887 DEBUG_PRINT1 ("EXECUTING endbuf.\n");
fa9a63c5
RM
5888 if (AT_STRINGS_END (d))
5889 break;
25fe55af 5890 goto fail;
5e69f11e 5891
5e69f11e 5892
25fe55af
RS
5893 /* on_failure_keep_string_jump is used to optimize `.*\n'. It
5894 pushes NULL as the value for the string on the stack. Then
505bde11 5895 `POP_FAILURE_POINT' will keep the current value for the
25fe55af 5896 string, instead of restoring it. To see why, consider
7814e705 5897 matching `foo\nbar' against `.*\n'. The .* matches the foo;
25fe55af
RS
5898 then the . fails against the \n. But the next thing we want
5899 to do is match the \n against the \n; if we restored the
5900 string value, we would be back at the foo.
5901
5902 Because this is used only in specific cases, we don't need to
5903 check all the things that `on_failure_jump' does, to make
5904 sure the right things get saved on the stack. Hence we don't
5905 share its code. The only reason to push anything on the
5906 stack at all is that otherwise we would have to change
5907 `anychar's code to do something besides goto fail in this
5908 case; that seems worse than this. */
5909 case on_failure_keep_string_jump:
505bde11
SM
5910 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5911 DEBUG_PRINT3 ("EXECUTING on_failure_keep_string_jump %d (to %p):\n",
5912 mcnt, p + mcnt);
fa9a63c5 5913
505bde11
SM
5914 PUSH_FAILURE_POINT (p - 3, NULL);
5915 break;
5916
0683b6fa
SM
5917 /* A nasty loop is introduced by the non-greedy *? and +?.
5918 With such loops, the stack only ever contains one failure point
5919 at a time, so that a plain on_failure_jump_loop kind of
5920 cycle detection cannot work. Worse yet, such a detection
5921 can not only fail to detect a cycle, but it can also wrongly
5922 detect a cycle (between different instantiations of the same
6df42991 5923 loop).
0683b6fa
SM
5924 So the method used for those nasty loops is a little different:
5925 We use a special cycle-detection-stack-frame which is pushed
5926 when the on_failure_jump_nastyloop failure-point is *popped*.
5927 This special frame thus marks the beginning of one iteration
5928 through the loop and we can hence easily check right here
5929 whether something matched between the beginning and the end of
5930 the loop. */
5931 case on_failure_jump_nastyloop:
5932 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5933 DEBUG_PRINT3 ("EXECUTING on_failure_jump_nastyloop %d (to %p):\n",
5934 mcnt, p + mcnt);
5935
5936 assert ((re_opcode_t)p[-4] == no_op);
6df42991
SM
5937 {
5938 int cycle = 0;
5939 CHECK_INFINITE_LOOP (p - 4, d);
5940 if (!cycle)
5941 /* If there's a cycle, just continue without pushing
5942 this failure point. The failure point is the "try again"
5943 option, which shouldn't be tried.
5944 We want (x?)*?y\1z to match both xxyz and xxyxz. */
5945 PUSH_FAILURE_POINT (p - 3, d);
5946 }
0683b6fa
SM
5947 break;
5948
4e8a9132
SM
5949 /* Simple loop detecting on_failure_jump: just check on the
5950 failure stack if the same spot was already hit earlier. */
505bde11
SM
5951 case on_failure_jump_loop:
5952 on_failure:
5953 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5954 DEBUG_PRINT3 ("EXECUTING on_failure_jump_loop %d (to %p):\n",
5955 mcnt, p + mcnt);
6df42991
SM
5956 {
5957 int cycle = 0;
5958 CHECK_INFINITE_LOOP (p - 3, d);
5959 if (cycle)
5960 /* If there's a cycle, get out of the loop, as if the matching
5961 had failed. We used to just `goto fail' here, but that was
5962 aborting the search a bit too early: we want to keep the
5963 empty-loop-match and keep matching after the loop.
5964 We want (x?)*y\1z to match both xxyz and xxyxz. */
5965 p += mcnt;
5966 else
5967 PUSH_FAILURE_POINT (p - 3, d);
5968 }
25fe55af 5969 break;
fa9a63c5
RM
5970
5971
5972 /* Uses of on_failure_jump:
5e69f11e 5973
25fe55af
RS
5974 Each alternative starts with an on_failure_jump that points
5975 to the beginning of the next alternative. Each alternative
5976 except the last ends with a jump that in effect jumps past
5977 the rest of the alternatives. (They really jump to the
5978 ending jump of the following alternative, because tensioning
5979 these jumps is a hassle.)
fa9a63c5 5980
25fe55af
RS
5981 Repeats start with an on_failure_jump that points past both
5982 the repetition text and either the following jump or
5983 pop_failure_jump back to this on_failure_jump. */
fa9a63c5 5984 case on_failure_jump:
25fe55af 5985 EXTRACT_NUMBER_AND_INCR (mcnt, p);
505bde11
SM
5986 DEBUG_PRINT3 ("EXECUTING on_failure_jump %d (to %p):\n",
5987 mcnt, p + mcnt);
25fe55af 5988
505bde11 5989 PUSH_FAILURE_POINT (p -3, d);
25fe55af
RS
5990 break;
5991
4e8a9132 5992 /* This operation is used for greedy *.
505bde11
SM
5993 Compare the beginning of the repeat with what in the
5994 pattern follows its end. If we can establish that there
5995 is nothing that they would both match, i.e., that we
5996 would have to backtrack because of (as in, e.g., `a*a')
5997 then we can use a non-backtracking loop based on
4e8a9132 5998 on_failure_keep_string_jump instead of on_failure_jump. */
505bde11 5999 case on_failure_jump_smart:
25fe55af 6000 EXTRACT_NUMBER_AND_INCR (mcnt, p);
505bde11
SM
6001 DEBUG_PRINT3 ("EXECUTING on_failure_jump_smart %d (to %p).\n",
6002 mcnt, p + mcnt);
25fe55af 6003 {
01618498 6004 re_char *p1 = p; /* Next operation. */
6dcf2d0e
SM
6005 /* Here, we discard `const', making re_match non-reentrant. */
6006 unsigned char *p2 = (unsigned char*) p + mcnt; /* Jump dest. */
6007 unsigned char *p3 = (unsigned char*) p - 3; /* opcode location. */
fa9a63c5 6008
505bde11
SM
6009 p -= 3; /* Reset so that we will re-execute the
6010 instruction once it's been changed. */
fa9a63c5 6011
4e8a9132
SM
6012 EXTRACT_NUMBER (mcnt, p2 - 2);
6013
6014 /* Ensure this is a indeed the trivial kind of loop
6015 we are expecting. */
6016 assert (skip_one_char (p1) == p2 - 3);
6017 assert ((re_opcode_t) p2[-3] == jump && p2 + mcnt == p);
99633e97 6018 DEBUG_STATEMENT (debug += 2);
505bde11 6019 if (mutually_exclusive_p (bufp, p1, p2))
fa9a63c5 6020 {
505bde11 6021 /* Use a fast `on_failure_keep_string_jump' loop. */
4e8a9132 6022 DEBUG_PRINT1 (" smart exclusive => fast loop.\n");
01618498 6023 *p3 = (unsigned char) on_failure_keep_string_jump;
4e8a9132 6024 STORE_NUMBER (p2 - 2, mcnt + 3);
25fe55af 6025 }
505bde11 6026 else
fa9a63c5 6027 {
505bde11
SM
6028 /* Default to a safe `on_failure_jump' loop. */
6029 DEBUG_PRINT1 (" smart default => slow loop.\n");
01618498 6030 *p3 = (unsigned char) on_failure_jump;
fa9a63c5 6031 }
99633e97 6032 DEBUG_STATEMENT (debug -= 2);
25fe55af 6033 }
505bde11 6034 break;
25fe55af
RS
6035
6036 /* Unconditionally jump (without popping any failure points). */
6037 case jump:
fa9a63c5 6038 unconditional_jump:
5b370c2b 6039 IMMEDIATE_QUIT_CHECK;
fa9a63c5 6040 EXTRACT_NUMBER_AND_INCR (mcnt, p); /* Get the amount to jump. */
25fe55af 6041 DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt);
7814e705 6042 p += mcnt; /* Do the jump. */
505bde11 6043 DEBUG_PRINT2 ("(to %p).\n", p);
25fe55af
RS
6044 break;
6045
6046
25fe55af
RS
6047 /* Have to succeed matching what follows at least n times.
6048 After that, handle like `on_failure_jump'. */
6049 case succeed_n:
01618498 6050 /* Signedness doesn't matter since we only compare MCNT to 0. */
25fe55af
RS
6051 EXTRACT_NUMBER (mcnt, p + 2);
6052 DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt);
5e69f11e 6053
dc1e502d
SM
6054 /* Originally, mcnt is how many times we HAVE to succeed. */
6055 if (mcnt != 0)
25fe55af 6056 {
6dcf2d0e
SM
6057 /* Here, we discard `const', making re_match non-reentrant. */
6058 unsigned char *p2 = (unsigned char*) p + 2; /* counter loc. */
dc1e502d 6059 mcnt--;
01618498
SM
6060 p += 4;
6061 PUSH_NUMBER (p2, mcnt);
25fe55af 6062 }
dc1e502d
SM
6063 else
6064 /* The two bytes encoding mcnt == 0 are two no_op opcodes. */
6065 goto on_failure;
25fe55af
RS
6066 break;
6067
6068 case jump_n:
01618498 6069 /* Signedness doesn't matter since we only compare MCNT to 0. */
25fe55af
RS
6070 EXTRACT_NUMBER (mcnt, p + 2);
6071 DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt);
6072
6073 /* Originally, this is how many times we CAN jump. */
dc1e502d 6074 if (mcnt != 0)
25fe55af 6075 {
6dcf2d0e
SM
6076 /* Here, we discard `const', making re_match non-reentrant. */
6077 unsigned char *p2 = (unsigned char*) p + 2; /* counter loc. */
dc1e502d 6078 mcnt--;
01618498 6079 PUSH_NUMBER (p2, mcnt);
dc1e502d 6080 goto unconditional_jump;
25fe55af
RS
6081 }
6082 /* If don't have to jump any more, skip over the rest of command. */
5e69f11e
RM
6083 else
6084 p += 4;
25fe55af 6085 break;
5e69f11e 6086
fa9a63c5
RM
6087 case set_number_at:
6088 {
01618498 6089 unsigned char *p2; /* Location of the counter. */
25fe55af 6090 DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
fa9a63c5 6091
25fe55af 6092 EXTRACT_NUMBER_AND_INCR (mcnt, p);
6dcf2d0e
SM
6093 /* Here, we discard `const', making re_match non-reentrant. */
6094 p2 = (unsigned char*) p + mcnt;
01618498 6095 /* Signedness doesn't matter since we only copy MCNT's bits . */
25fe55af 6096 EXTRACT_NUMBER_AND_INCR (mcnt, p);
01618498
SM
6097 DEBUG_PRINT3 (" Setting %p to %d.\n", p2, mcnt);
6098 PUSH_NUMBER (p2, mcnt);
25fe55af
RS
6099 break;
6100 }
9121ca40
KH
6101
6102 case wordbound:
66f0296e
SM
6103 case notwordbound:
6104 not = (re_opcode_t) *(p - 1) == notwordbound;
6105 DEBUG_PRINT2 ("EXECUTING %swordbound.\n", not?"not":"");
fa9a63c5 6106
99633e97 6107 /* We SUCCEED (or FAIL) in one of the following cases: */
9121ca40 6108
b18215fc 6109 /* Case 1: D is at the beginning or the end of string. */
9121ca40 6110 if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
66f0296e 6111 not = !not;
b18215fc
RS
6112 else
6113 {
6114 /* C1 is the character before D, S1 is the syntax of C1, C2
6115 is the character at D, and S2 is the syntax of C2. */
01618498
SM
6116 re_wchar_t c1, c2;
6117 int s1, s2;
bf216479 6118 int dummy;
b18215fc 6119#ifdef emacs
2d1675e4
SM
6120 int offset = PTR_TO_OFFSET (d - 1);
6121 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
5d967c7a 6122 UPDATE_SYNTAX_TABLE (charpos);
25fe55af 6123#endif
66f0296e 6124 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
b18215fc
RS
6125 s1 = SYNTAX (c1);
6126#ifdef emacs
5d967c7a 6127 UPDATE_SYNTAX_TABLE_FORWARD (charpos + 1);
25fe55af 6128#endif
f1ad044f 6129 PREFETCH_NOLIMIT ();
6fdd04b0 6130 GET_CHAR_AFTER (c2, d, dummy);
b18215fc
RS
6131 s2 = SYNTAX (c2);
6132
6133 if (/* Case 2: Only one of S1 and S2 is Sword. */
6134 ((s1 == Sword) != (s2 == Sword))
6135 /* Case 3: Both of S1 and S2 are Sword, and macro
7814e705 6136 WORD_BOUNDARY_P (C1, C2) returns nonzero. */
b18215fc 6137 || ((s1 == Sword) && WORD_BOUNDARY_P (c1, c2)))
66f0296e
SM
6138 not = !not;
6139 }
6140 if (not)
9121ca40 6141 break;
b18215fc 6142 else
9121ca40 6143 goto fail;
fa9a63c5
RM
6144
6145 case wordbeg:
25fe55af 6146 DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
fa9a63c5 6147
b18215fc
RS
6148 /* We FAIL in one of the following cases: */
6149
7814e705 6150 /* Case 1: D is at the end of string. */
b18215fc 6151 if (AT_STRINGS_END (d))
99633e97 6152 goto fail;
b18215fc
RS
6153 else
6154 {
6155 /* C1 is the character before D, S1 is the syntax of C1, C2
6156 is the character at D, and S2 is the syntax of C2. */
01618498
SM
6157 re_wchar_t c1, c2;
6158 int s1, s2;
bf216479 6159 int dummy;
fa9a63c5 6160#ifdef emacs
2d1675e4
SM
6161 int offset = PTR_TO_OFFSET (d);
6162 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
92432794 6163 UPDATE_SYNTAX_TABLE (charpos);
25fe55af 6164#endif
99633e97 6165 PREFETCH ();
6fdd04b0 6166 GET_CHAR_AFTER (c2, d, dummy);
b18215fc 6167 s2 = SYNTAX (c2);
177c0ea7 6168
b18215fc
RS
6169 /* Case 2: S2 is not Sword. */
6170 if (s2 != Sword)
6171 goto fail;
6172
6173 /* Case 3: D is not at the beginning of string ... */
6174 if (!AT_STRINGS_BEG (d))
6175 {
6176 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
6177#ifdef emacs
5d967c7a 6178 UPDATE_SYNTAX_TABLE_BACKWARD (charpos - 1);
25fe55af 6179#endif
b18215fc
RS
6180 s1 = SYNTAX (c1);
6181
6182 /* ... and S1 is Sword, and WORD_BOUNDARY_P (C1, C2)
7814e705 6183 returns 0. */
b18215fc
RS
6184 if ((s1 == Sword) && !WORD_BOUNDARY_P (c1, c2))
6185 goto fail;
6186 }
6187 }
e318085a
RS
6188 break;
6189
b18215fc 6190 case wordend:
25fe55af 6191 DEBUG_PRINT1 ("EXECUTING wordend.\n");
b18215fc
RS
6192
6193 /* We FAIL in one of the following cases: */
6194
6195 /* Case 1: D is at the beginning of string. */
6196 if (AT_STRINGS_BEG (d))
e318085a 6197 goto fail;
b18215fc
RS
6198 else
6199 {
6200 /* C1 is the character before D, S1 is the syntax of C1, C2
6201 is the character at D, and S2 is the syntax of C2. */
01618498
SM
6202 re_wchar_t c1, c2;
6203 int s1, s2;
bf216479 6204 int dummy;
5d967c7a 6205#ifdef emacs
2d1675e4
SM
6206 int offset = PTR_TO_OFFSET (d) - 1;
6207 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
92432794 6208 UPDATE_SYNTAX_TABLE (charpos);
5d967c7a 6209#endif
99633e97 6210 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
b18215fc
RS
6211 s1 = SYNTAX (c1);
6212
6213 /* Case 2: S1 is not Sword. */
6214 if (s1 != Sword)
6215 goto fail;
6216
6217 /* Case 3: D is not at the end of string ... */
6218 if (!AT_STRINGS_END (d))
6219 {
f1ad044f 6220 PREFETCH_NOLIMIT ();
6fdd04b0 6221 GET_CHAR_AFTER (c2, d, dummy);
5d967c7a
RS
6222#ifdef emacs
6223 UPDATE_SYNTAX_TABLE_FORWARD (charpos);
6224#endif
b18215fc
RS
6225 s2 = SYNTAX (c2);
6226
6227 /* ... and S2 is Sword, and WORD_BOUNDARY_P (C1, C2)
7814e705 6228 returns 0. */
b18215fc 6229 if ((s2 == Sword) && !WORD_BOUNDARY_P (c1, c2))
25fe55af 6230 goto fail;
b18215fc
RS
6231 }
6232 }
e318085a
RS
6233 break;
6234
669fa600
SM
6235 case symbeg:
6236 DEBUG_PRINT1 ("EXECUTING symbeg.\n");
6237
6238 /* We FAIL in one of the following cases: */
6239
7814e705 6240 /* Case 1: D is at the end of string. */
669fa600
SM
6241 if (AT_STRINGS_END (d))
6242 goto fail;
6243 else
6244 {
6245 /* C1 is the character before D, S1 is the syntax of C1, C2
6246 is the character at D, and S2 is the syntax of C2. */
6247 re_wchar_t c1, c2;
6248 int s1, s2;
6249#ifdef emacs
6250 int offset = PTR_TO_OFFSET (d);
6251 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
6252 UPDATE_SYNTAX_TABLE (charpos);
6253#endif
6254 PREFETCH ();
62a6e103 6255 c2 = RE_STRING_CHAR (d, target_multibyte);
669fa600 6256 s2 = SYNTAX (c2);
7814e705 6257
669fa600
SM
6258 /* Case 2: S2 is neither Sword nor Ssymbol. */
6259 if (s2 != Sword && s2 != Ssymbol)
6260 goto fail;
6261
6262 /* Case 3: D is not at the beginning of string ... */
6263 if (!AT_STRINGS_BEG (d))
6264 {
6265 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
6266#ifdef emacs
6267 UPDATE_SYNTAX_TABLE_BACKWARD (charpos - 1);
6268#endif
6269 s1 = SYNTAX (c1);
6270
6271 /* ... and S1 is Sword or Ssymbol. */
6272 if (s1 == Sword || s1 == Ssymbol)
6273 goto fail;
6274 }
6275 }
6276 break;
6277
6278 case symend:
6279 DEBUG_PRINT1 ("EXECUTING symend.\n");
6280
6281 /* We FAIL in one of the following cases: */
6282
6283 /* Case 1: D is at the beginning of string. */
6284 if (AT_STRINGS_BEG (d))
6285 goto fail;
6286 else
6287 {
6288 /* C1 is the character before D, S1 is the syntax of C1, C2
6289 is the character at D, and S2 is the syntax of C2. */
6290 re_wchar_t c1, c2;
6291 int s1, s2;
6292#ifdef emacs
6293 int offset = PTR_TO_OFFSET (d) - 1;
6294 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
6295 UPDATE_SYNTAX_TABLE (charpos);
6296#endif
6297 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
6298 s1 = SYNTAX (c1);
6299
6300 /* Case 2: S1 is neither Ssymbol nor Sword. */
6301 if (s1 != Sword && s1 != Ssymbol)
6302 goto fail;
6303
6304 /* Case 3: D is not at the end of string ... */
6305 if (!AT_STRINGS_END (d))
6306 {
6307 PREFETCH_NOLIMIT ();
62a6e103 6308 c2 = RE_STRING_CHAR (d, target_multibyte);
669fa600 6309#ifdef emacs
134579f2 6310 UPDATE_SYNTAX_TABLE_FORWARD (charpos + 1);
669fa600
SM
6311#endif
6312 s2 = SYNTAX (c2);
6313
6314 /* ... and S2 is Sword or Ssymbol. */
6315 if (s2 == Sword || s2 == Ssymbol)
6316 goto fail;
b18215fc
RS
6317 }
6318 }
e318085a
RS
6319 break;
6320
fa9a63c5 6321 case syntaxspec:
1fb352e0
SM
6322 case notsyntaxspec:
6323 not = (re_opcode_t) *(p - 1) == notsyntaxspec;
fa9a63c5 6324 mcnt = *p++;
1fb352e0 6325 DEBUG_PRINT3 ("EXECUTING %ssyntaxspec %d.\n", not?"not":"", mcnt);
fa9a63c5 6326 PREFETCH ();
b18215fc
RS
6327#ifdef emacs
6328 {
2d1675e4
SM
6329 int offset = PTR_TO_OFFSET (d);
6330 int pos1 = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
b18215fc
RS
6331 UPDATE_SYNTAX_TABLE (pos1);
6332 }
25fe55af 6333#endif
b18215fc 6334 {
01618498
SM
6335 int len;
6336 re_wchar_t c;
b18215fc 6337
6fdd04b0 6338 GET_CHAR_AFTER (c, d, len);
990b2375 6339 if ((SYNTAX (c) != (enum syntaxcode) mcnt) ^ not)
1fb352e0 6340 goto fail;
b18215fc
RS
6341 d += len;
6342 }
fa9a63c5
RM
6343 break;
6344
b18215fc 6345#ifdef emacs
1fb352e0
SM
6346 case before_dot:
6347 DEBUG_PRINT1 ("EXECUTING before_dot.\n");
6348 if (PTR_BYTE_POS (d) >= PT_BYTE)
fa9a63c5 6349 goto fail;
b18215fc
RS
6350 break;
6351
1fb352e0
SM
6352 case at_dot:
6353 DEBUG_PRINT1 ("EXECUTING at_dot.\n");
6354 if (PTR_BYTE_POS (d) != PT_BYTE)
6355 goto fail;
6356 break;
b18215fc 6357
1fb352e0
SM
6358 case after_dot:
6359 DEBUG_PRINT1 ("EXECUTING after_dot.\n");
6360 if (PTR_BYTE_POS (d) <= PT_BYTE)
6361 goto fail;
e318085a 6362 break;
fa9a63c5 6363
1fb352e0 6364 case categoryspec:
b18215fc 6365 case notcategoryspec:
1fb352e0 6366 not = (re_opcode_t) *(p - 1) == notcategoryspec;
b18215fc 6367 mcnt = *p++;
1fb352e0 6368 DEBUG_PRINT3 ("EXECUTING %scategoryspec %d.\n", not?"not":"", mcnt);
b18215fc
RS
6369 PREFETCH ();
6370 {
01618498
SM
6371 int len;
6372 re_wchar_t c;
6373
6fdd04b0 6374 GET_CHAR_AFTER (c, d, len);
1fb352e0 6375 if ((!CHAR_HAS_CATEGORY (c, mcnt)) ^ not)
b18215fc
RS
6376 goto fail;
6377 d += len;
6378 }
fa9a63c5 6379 break;
5e69f11e 6380
1fb352e0 6381#endif /* emacs */
5e69f11e 6382
0b32bf0e
SM
6383 default:
6384 abort ();
fa9a63c5 6385 }
b18215fc 6386 continue; /* Successfully executed one pattern command; keep going. */
fa9a63c5
RM
6387
6388
6389 /* We goto here if a matching operation fails. */
6390 fail:
5b370c2b 6391 IMMEDIATE_QUIT_CHECK;
fa9a63c5 6392 if (!FAIL_STACK_EMPTY ())
505bde11 6393 {
01618498 6394 re_char *str, *pat;
505bde11 6395 /* A restart point is known. Restore to that state. */
0b32bf0e
SM
6396 DEBUG_PRINT1 ("\nFAIL:\n");
6397 POP_FAILURE_POINT (str, pat);
505bde11
SM
6398 switch (SWITCH_ENUM_CAST ((re_opcode_t) *pat++))
6399 {
6400 case on_failure_keep_string_jump:
6401 assert (str == NULL);
6402 goto continue_failure_jump;
6403
0683b6fa
SM
6404 case on_failure_jump_nastyloop:
6405 assert ((re_opcode_t)pat[-2] == no_op);
6406 PUSH_FAILURE_POINT (pat - 2, str);
6407 /* Fallthrough */
6408
505bde11
SM
6409 case on_failure_jump_loop:
6410 case on_failure_jump:
6411 case succeed_n:
6412 d = str;
6413 continue_failure_jump:
6414 EXTRACT_NUMBER_AND_INCR (mcnt, pat);
6415 p = pat + mcnt;
6416 break;
b18215fc 6417
0683b6fa
SM
6418 case no_op:
6419 /* A special frame used for nastyloops. */
6420 goto fail;
6421
505bde11
SM
6422 default:
6423 abort();
6424 }
fa9a63c5 6425
505bde11 6426 assert (p >= bufp->buffer && p <= pend);
b18215fc 6427
0b32bf0e 6428 if (d >= string1 && d <= end1)
fa9a63c5 6429 dend = end_match_1;
0b32bf0e 6430 }
fa9a63c5 6431 else
0b32bf0e 6432 break; /* Matching at this starting point really fails. */
fa9a63c5
RM
6433 } /* for (;;) */
6434
6435 if (best_regs_set)
6436 goto restore_best_regs;
6437
6438 FREE_VARIABLES ();
6439
b18215fc 6440 return -1; /* Failure to match. */
fa9a63c5
RM
6441} /* re_match_2 */
6442\f
6443/* Subroutine definitions for re_match_2. */
6444
fa9a63c5
RM
6445/* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
6446 bytes; nonzero otherwise. */
5e69f11e 6447
fa9a63c5 6448static int
02cb78b5 6449bcmp_translate (s1, s2, len, translate, target_multibyte)
2d1675e4 6450 re_char *s1, *s2;
fa9a63c5 6451 register int len;
6676cb1c 6452 RE_TRANSLATE_TYPE translate;
02cb78b5 6453 const int target_multibyte;
fa9a63c5 6454{
2d1675e4
SM
6455 register re_char *p1 = s1, *p2 = s2;
6456 re_char *p1_end = s1 + len;
6457 re_char *p2_end = s2 + len;
e934739e 6458
4bb91c68
SM
6459 /* FIXME: Checking both p1 and p2 presumes that the two strings might have
6460 different lengths, but relying on a single `len' would break this. -sm */
6461 while (p1 < p1_end && p2 < p2_end)
fa9a63c5 6462 {
e934739e 6463 int p1_charlen, p2_charlen;
01618498 6464 re_wchar_t p1_ch, p2_ch;
e934739e 6465
6fdd04b0
KH
6466 GET_CHAR_AFTER (p1_ch, p1, p1_charlen);
6467 GET_CHAR_AFTER (p2_ch, p2, p2_charlen);
e934739e
RS
6468
6469 if (RE_TRANSLATE (translate, p1_ch)
6470 != RE_TRANSLATE (translate, p2_ch))
bc192b5b 6471 return 1;
e934739e
RS
6472
6473 p1 += p1_charlen, p2 += p2_charlen;
fa9a63c5 6474 }
e934739e
RS
6475
6476 if (p1 != p1_end || p2 != p2_end)
6477 return 1;
6478
fa9a63c5
RM
6479 return 0;
6480}
6481\f
6482/* Entry points for GNU code. */
6483
6484/* re_compile_pattern is the GNU regular expression compiler: it
6485 compiles PATTERN (of length SIZE) and puts the result in BUFP.
6486 Returns 0 if the pattern was valid, otherwise an error string.
5e69f11e 6487
fa9a63c5
RM
6488 Assumes the `allocated' (and perhaps `buffer') and `translate' fields
6489 are set in BUFP on entry.
5e69f11e 6490
b18215fc 6491 We call regex_compile to do the actual compilation. */
fa9a63c5
RM
6492
6493const char *
6494re_compile_pattern (pattern, length, bufp)
6495 const char *pattern;
0b32bf0e 6496 size_t length;
fa9a63c5
RM
6497 struct re_pattern_buffer *bufp;
6498{
6499 reg_errcode_t ret;
5e69f11e 6500
1208f11a
RS
6501#ifdef emacs
6502 gl_state.current_syntax_table = current_buffer->syntax_table;
6503#endif
6504
fa9a63c5
RM
6505 /* GNU code is written to assume at least RE_NREGS registers will be set
6506 (and at least one extra will be -1). */
6507 bufp->regs_allocated = REGS_UNALLOCATED;
5e69f11e 6508
fa9a63c5
RM
6509 /* And GNU code determines whether or not to get register information
6510 by passing null for the REGS argument to re_match, etc., not by
6511 setting no_sub. */
6512 bufp->no_sub = 0;
5e69f11e 6513
4bb91c68 6514 ret = regex_compile ((re_char*) pattern, length, re_syntax_options, bufp);
fa9a63c5
RM
6515
6516 if (!ret)
6517 return NULL;
6518 return gettext (re_error_msgid[(int) ret]);
5e69f11e 6519}
c0f9ea08 6520WEAK_ALIAS (__re_compile_pattern, re_compile_pattern)
fa9a63c5 6521\f
b18215fc
RS
6522/* Entry points compatible with 4.2 BSD regex library. We don't define
6523 them unless specifically requested. */
fa9a63c5 6524
0b32bf0e 6525#if defined _REGEX_RE_COMP || defined _LIBC
fa9a63c5
RM
6526
6527/* BSD has one and only one pattern buffer. */
6528static struct re_pattern_buffer re_comp_buf;
6529
6530char *
0b32bf0e 6531# ifdef _LIBC
48afdd44
RM
6532/* Make these definitions weak in libc, so POSIX programs can redefine
6533 these names if they don't use our functions, and still use
6534 regcomp/regexec below without link errors. */
6535weak_function
0b32bf0e 6536# endif
fa9a63c5
RM
6537re_comp (s)
6538 const char *s;
6539{
6540 reg_errcode_t ret;
5e69f11e 6541
fa9a63c5
RM
6542 if (!s)
6543 {
6544 if (!re_comp_buf.buffer)
0b32bf0e 6545 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
a60198e5 6546 return (char *) gettext ("No previous regular expression");
fa9a63c5
RM
6547 return 0;
6548 }
6549
6550 if (!re_comp_buf.buffer)
6551 {
6552 re_comp_buf.buffer = (unsigned char *) malloc (200);
6553 if (re_comp_buf.buffer == NULL)
0b32bf0e
SM
6554 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
6555 return (char *) gettext (re_error_msgid[(int) REG_ESPACE]);
fa9a63c5
RM
6556 re_comp_buf.allocated = 200;
6557
6558 re_comp_buf.fastmap = (char *) malloc (1 << BYTEWIDTH);
6559 if (re_comp_buf.fastmap == NULL)
a60198e5
SM
6560 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
6561 return (char *) gettext (re_error_msgid[(int) REG_ESPACE]);
fa9a63c5
RM
6562 }
6563
6564 /* Since `re_exec' always passes NULL for the `regs' argument, we
6565 don't need to initialize the pattern buffer fields which affect it. */
6566
fa9a63c5 6567 ret = regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf);
5e69f11e 6568
fa9a63c5
RM
6569 if (!ret)
6570 return NULL;
6571
6572 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
6573 return (char *) gettext (re_error_msgid[(int) ret]);
6574}
6575
6576
6577int
0b32bf0e 6578# ifdef _LIBC
48afdd44 6579weak_function
0b32bf0e 6580# endif
fa9a63c5
RM
6581re_exec (s)
6582 const char *s;
6583{
6584 const int len = strlen (s);
6585 return
6586 0 <= re_search (&re_comp_buf, s, len, 0, len, (struct re_registers *) 0);
6587}
6588#endif /* _REGEX_RE_COMP */
6589\f
6590/* POSIX.2 functions. Don't define these for Emacs. */
6591
6592#ifndef emacs
6593
6594/* regcomp takes a regular expression as a string and compiles it.
6595
b18215fc 6596 PREG is a regex_t *. We do not expect any fields to be initialized,
fa9a63c5
RM
6597 since POSIX says we shouldn't. Thus, we set
6598
6599 `buffer' to the compiled pattern;
6600 `used' to the length of the compiled pattern;
6601 `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
6602 REG_EXTENDED bit in CFLAGS is set; otherwise, to
6603 RE_SYNTAX_POSIX_BASIC;
c0f9ea08
SM
6604 `fastmap' to an allocated space for the fastmap;
6605 `fastmap_accurate' to zero;
fa9a63c5
RM
6606 `re_nsub' to the number of subexpressions in PATTERN.
6607
6608 PATTERN is the address of the pattern string.
6609
6610 CFLAGS is a series of bits which affect compilation.
6611
6612 If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
6613 use POSIX basic syntax.
6614
6615 If REG_NEWLINE is set, then . and [^...] don't match newline.
6616 Also, regexec will try a match beginning after every newline.
6617
6618 If REG_ICASE is set, then we considers upper- and lowercase
6619 versions of letters to be equivalent when matching.
6620
6621 If REG_NOSUB is set, then when PREG is passed to regexec, that
6622 routine will report only success or failure, and nothing about the
6623 registers.
6624
b18215fc 6625 It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for
fa9a63c5
RM
6626 the return codes and their meanings.) */
6627
6628int
6629regcomp (preg, pattern, cflags)
ada30c0e
SM
6630 regex_t *__restrict preg;
6631 const char *__restrict pattern;
fa9a63c5
RM
6632 int cflags;
6633{
6634 reg_errcode_t ret;
4bb91c68 6635 reg_syntax_t syntax
fa9a63c5
RM
6636 = (cflags & REG_EXTENDED) ?
6637 RE_SYNTAX_POSIX_EXTENDED : RE_SYNTAX_POSIX_BASIC;
6638
6639 /* regex_compile will allocate the space for the compiled pattern. */
6640 preg->buffer = 0;
6641 preg->allocated = 0;
6642 preg->used = 0;
5e69f11e 6643
c0f9ea08
SM
6644 /* Try to allocate space for the fastmap. */
6645 preg->fastmap = (char *) malloc (1 << BYTEWIDTH);
5e69f11e 6646
fa9a63c5
RM
6647 if (cflags & REG_ICASE)
6648 {
6649 unsigned i;
5e69f11e 6650
6676cb1c
RS
6651 preg->translate
6652 = (RE_TRANSLATE_TYPE) malloc (CHAR_SET_SIZE
6653 * sizeof (*(RE_TRANSLATE_TYPE)0));
fa9a63c5 6654 if (preg->translate == NULL)
0b32bf0e 6655 return (int) REG_ESPACE;
fa9a63c5
RM
6656
6657 /* Map uppercase characters to corresponding lowercase ones. */
6658 for (i = 0; i < CHAR_SET_SIZE; i++)
4bb91c68 6659 preg->translate[i] = ISUPPER (i) ? TOLOWER (i) : i;
fa9a63c5
RM
6660 }
6661 else
6662 preg->translate = NULL;
6663
6664 /* If REG_NEWLINE is set, newlines are treated differently. */
6665 if (cflags & REG_NEWLINE)
6666 { /* REG_NEWLINE implies neither . nor [^...] match newline. */
6667 syntax &= ~RE_DOT_NEWLINE;
6668 syntax |= RE_HAT_LISTS_NOT_NEWLINE;
fa9a63c5
RM
6669 }
6670 else
c0f9ea08 6671 syntax |= RE_NO_NEWLINE_ANCHOR;
fa9a63c5
RM
6672
6673 preg->no_sub = !!(cflags & REG_NOSUB);
6674
5e69f11e 6675 /* POSIX says a null character in the pattern terminates it, so we
fa9a63c5 6676 can use strlen here in compiling the pattern. */
4bb91c68 6677 ret = regex_compile ((re_char*) pattern, strlen (pattern), syntax, preg);
5e69f11e 6678
fa9a63c5
RM
6679 /* POSIX doesn't distinguish between an unmatched open-group and an
6680 unmatched close-group: both are REG_EPAREN. */
c0f9ea08
SM
6681 if (ret == REG_ERPAREN)
6682 ret = REG_EPAREN;
6683
6684 if (ret == REG_NOERROR && preg->fastmap)
6685 { /* Compute the fastmap now, since regexec cannot modify the pattern
6686 buffer. */
6687 re_compile_fastmap (preg);
6688 if (preg->can_be_null)
6689 { /* The fastmap can't be used anyway. */
6690 free (preg->fastmap);
6691 preg->fastmap = NULL;
6692 }
6693 }
fa9a63c5
RM
6694 return (int) ret;
6695}
c0f9ea08 6696WEAK_ALIAS (__regcomp, regcomp)
fa9a63c5
RM
6697
6698
6699/* regexec searches for a given pattern, specified by PREG, in the
6700 string STRING.
5e69f11e 6701
fa9a63c5 6702 If NMATCH is zero or REG_NOSUB was set in the cflags argument to
b18215fc 6703 `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at
fa9a63c5
RM
6704 least NMATCH elements, and we set them to the offsets of the
6705 corresponding matched substrings.
5e69f11e 6706
fa9a63c5
RM
6707 EFLAGS specifies `execution flags' which affect matching: if
6708 REG_NOTBOL is set, then ^ does not match at the beginning of the
6709 string; if REG_NOTEOL is set, then $ does not match at the end.
5e69f11e 6710
fa9a63c5
RM
6711 We return 0 if we find a match and REG_NOMATCH if not. */
6712
6713int
6714regexec (preg, string, nmatch, pmatch, eflags)
ada30c0e
SM
6715 const regex_t *__restrict preg;
6716 const char *__restrict string;
5e69f11e 6717 size_t nmatch;
9f2dbe01 6718 regmatch_t pmatch[__restrict_arr];
fa9a63c5
RM
6719 int eflags;
6720{
6721 int ret;
6722 struct re_registers regs;
6723 regex_t private_preg;
6724 int len = strlen (string);
c0f9ea08 6725 boolean want_reg_info = !preg->no_sub && nmatch > 0 && pmatch;
fa9a63c5
RM
6726
6727 private_preg = *preg;
5e69f11e 6728
fa9a63c5
RM
6729 private_preg.not_bol = !!(eflags & REG_NOTBOL);
6730 private_preg.not_eol = !!(eflags & REG_NOTEOL);
5e69f11e 6731
fa9a63c5
RM
6732 /* The user has told us exactly how many registers to return
6733 information about, via `nmatch'. We have to pass that on to the
b18215fc 6734 matching routines. */
fa9a63c5 6735 private_preg.regs_allocated = REGS_FIXED;
5e69f11e 6736
fa9a63c5
RM
6737 if (want_reg_info)
6738 {
6739 regs.num_regs = nmatch;
4bb91c68
SM
6740 regs.start = TALLOC (nmatch * 2, regoff_t);
6741 if (regs.start == NULL)
0b32bf0e 6742 return (int) REG_NOMATCH;
4bb91c68 6743 regs.end = regs.start + nmatch;
fa9a63c5
RM
6744 }
6745
c0f9ea08
SM
6746 /* Instead of using not_eol to implement REG_NOTEOL, we could simply
6747 pass (&private_preg, string, len + 1, 0, len, ...) pretending the string
6748 was a little bit longer but still only matching the real part.
6749 This works because the `endline' will check for a '\n' and will find a
6750 '\0', correctly deciding that this is not the end of a line.
6751 But it doesn't work out so nicely for REG_NOTBOL, since we don't have
6752 a convenient '\0' there. For all we know, the string could be preceded
6753 by '\n' which would throw things off. */
6754
fa9a63c5
RM
6755 /* Perform the searching operation. */
6756 ret = re_search (&private_preg, string, len,
0b32bf0e
SM
6757 /* start: */ 0, /* range: */ len,
6758 want_reg_info ? &regs : (struct re_registers *) 0);
5e69f11e 6759
fa9a63c5
RM
6760 /* Copy the register information to the POSIX structure. */
6761 if (want_reg_info)
6762 {
6763 if (ret >= 0)
0b32bf0e
SM
6764 {
6765 unsigned r;
fa9a63c5 6766
0b32bf0e
SM
6767 for (r = 0; r < nmatch; r++)
6768 {
6769 pmatch[r].rm_so = regs.start[r];
6770 pmatch[r].rm_eo = regs.end[r];
6771 }
6772 }
fa9a63c5 6773
b18215fc 6774 /* If we needed the temporary register info, free the space now. */
fa9a63c5 6775 free (regs.start);
fa9a63c5
RM
6776 }
6777
6778 /* We want zero return to mean success, unlike `re_search'. */
6779 return ret >= 0 ? (int) REG_NOERROR : (int) REG_NOMATCH;
6780}
c0f9ea08 6781WEAK_ALIAS (__regexec, regexec)
fa9a63c5
RM
6782
6783
ec869672
JR
6784/* Returns a message corresponding to an error code, ERR_CODE, returned
6785 from either regcomp or regexec. We don't use PREG here.
6786
6787 ERR_CODE was previously called ERRCODE, but that name causes an
6788 error with msvc8 compiler. */
fa9a63c5
RM
6789
6790size_t
ec869672
JR
6791regerror (err_code, preg, errbuf, errbuf_size)
6792 int err_code;
fa9a63c5
RM
6793 const regex_t *preg;
6794 char *errbuf;
6795 size_t errbuf_size;
6796{
6797 const char *msg;
6798 size_t msg_size;
6799
ec869672
JR
6800 if (err_code < 0
6801 || err_code >= (sizeof (re_error_msgid) / sizeof (re_error_msgid[0])))
5e69f11e 6802 /* Only error codes returned by the rest of the code should be passed
b18215fc 6803 to this routine. If we are given anything else, or if other regex
fa9a63c5
RM
6804 code generates an invalid error code, then the program has a bug.
6805 Dump core so we can fix it. */
6806 abort ();
6807
ec869672 6808 msg = gettext (re_error_msgid[err_code]);
fa9a63c5
RM
6809
6810 msg_size = strlen (msg) + 1; /* Includes the null. */
5e69f11e 6811
fa9a63c5
RM
6812 if (errbuf_size != 0)
6813 {
6814 if (msg_size > errbuf_size)
0b32bf0e
SM
6815 {
6816 strncpy (errbuf, msg, errbuf_size - 1);
6817 errbuf[errbuf_size - 1] = 0;
6818 }
fa9a63c5 6819 else
0b32bf0e 6820 strcpy (errbuf, msg);
fa9a63c5
RM
6821 }
6822
6823 return msg_size;
6824}
c0f9ea08 6825WEAK_ALIAS (__regerror, regerror)
fa9a63c5
RM
6826
6827
6828/* Free dynamically allocated space used by PREG. */
6829
6830void
6831regfree (preg)
6832 regex_t *preg;
6833{
c2cd06e6 6834 free (preg->buffer);
fa9a63c5 6835 preg->buffer = NULL;
5e69f11e 6836
fa9a63c5
RM
6837 preg->allocated = 0;
6838 preg->used = 0;
6839
c2cd06e6 6840 free (preg->fastmap);
fa9a63c5
RM
6841 preg->fastmap = NULL;
6842 preg->fastmap_accurate = 0;
6843
c2cd06e6 6844 free (preg->translate);
fa9a63c5
RM
6845 preg->translate = NULL;
6846}
c0f9ea08 6847WEAK_ALIAS (__regfree, regfree)
fa9a63c5
RM
6848
6849#endif /* not emacs */
839966f3
KH
6850
6851/* arch-tag: 4ffd68ba-2a9e-435b-a21a-018990f9eeb2
6852 (do not change this comment) */