(BASE_PURESIZE): Increased.
[bpt/emacs.git] / src / regex.c
CommitLineData
e318085a 1/* Extended regular expression matching and search library, version
0b32bf0e 2 0.12. (Implements POSIX draft P1003.2/D11.2, except for some of the
bc78d348
KB
3 internationalization features.)
4
4bb91c68 5 Copyright (C) 1993,94,95,96,97,98,99,2000 Free Software Foundation, Inc.
bc78d348 6
fa9a63c5
RM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
25fe55af 14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
fa9a63c5
RM
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
ba4a8e51 19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307,
25fe55af 20 USA. */
fa9a63c5 21
505bde11 22/* TODO:
505bde11 23 - structure the opcode space into opcode+flag.
dc1e502d 24 - merge with glibc's regex.[ch].
01618498 25 - replace (succeed_n + jump_n + set_number_at) with something that doesn't
6dcf2d0e
SM
26 need to modify the compiled regexp so that re_match can be reentrant.
27 - get rid of on_failure_jump_smart by doing the optimization in re_comp
28 rather than at run-time, so that re_match can be reentrant.
01618498 29*/
505bde11 30
fa9a63c5 31/* AIX requires this to be the first thing in the file. */
0b32bf0e 32#if defined _AIX && !defined REGEX_MALLOC
fa9a63c5
RM
33 #pragma alloca
34#endif
35
68d96f02 36#undef _GNU_SOURCE
fa9a63c5
RM
37#define _GNU_SOURCE
38
39#ifdef HAVE_CONFIG_H
0b32bf0e 40# include <config.h>
fa9a63c5
RM
41#endif
42
4bb91c68
SM
43#if defined STDC_HEADERS && !defined emacs
44# include <stddef.h>
45#else
46/* We need this for `regex.h', and perhaps for the Emacs include files. */
47# include <sys/types.h>
48#endif
fa9a63c5 49
14473664
SM
50/* Whether to use ISO C Amendment 1 wide char functions.
51 Those should not be used for Emacs since it uses its own. */
5e5388f6
GM
52#if defined _LIBC
53#define WIDE_CHAR_SUPPORT 1
54#else
14473664 55#define WIDE_CHAR_SUPPORT \
5e5388f6
GM
56 (HAVE_WCTYPE_H && HAVE_WCHAR_H && HAVE_BTOWC && !emacs)
57#endif
14473664
SM
58
59/* For platform which support the ISO C amendement 1 functionality we
60 support user defined character classes. */
a0ad02f7 61#if WIDE_CHAR_SUPPORT
14473664
SM
62/* Solaris 2.5 has a bug: <wchar.h> must be included before <wctype.h>. */
63# include <wchar.h>
64# include <wctype.h>
65#endif
66
c0f9ea08
SM
67#ifdef _LIBC
68/* We have to keep the namespace clean. */
69# define regfree(preg) __regfree (preg)
70# define regexec(pr, st, nm, pm, ef) __regexec (pr, st, nm, pm, ef)
71# define regcomp(preg, pattern, cflags) __regcomp (preg, pattern, cflags)
72# define regerror(errcode, preg, errbuf, errbuf_size) \
73 __regerror(errcode, preg, errbuf, errbuf_size)
74# define re_set_registers(bu, re, nu, st, en) \
75 __re_set_registers (bu, re, nu, st, en)
76# define re_match_2(bufp, string1, size1, string2, size2, pos, regs, stop) \
77 __re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
78# define re_match(bufp, string, size, pos, regs) \
79 __re_match (bufp, string, size, pos, regs)
80# define re_search(bufp, string, size, startpos, range, regs) \
81 __re_search (bufp, string, size, startpos, range, regs)
82# define re_compile_pattern(pattern, length, bufp) \
83 __re_compile_pattern (pattern, length, bufp)
84# define re_set_syntax(syntax) __re_set_syntax (syntax)
85# define re_search_2(bufp, st1, s1, st2, s2, startpos, range, regs, stop) \
86 __re_search_2 (bufp, st1, s1, st2, s2, startpos, range, regs, stop)
87# define re_compile_fastmap(bufp) __re_compile_fastmap (bufp)
88
14473664
SM
89/* Make sure we call libc's function even if the user overrides them. */
90# define btowc __btowc
91# define iswctype __iswctype
92# define wctype __wctype
93
c0f9ea08
SM
94# define WEAK_ALIAS(a,b) weak_alias (a, b)
95
96/* We are also using some library internals. */
97# include <locale/localeinfo.h>
98# include <locale/elem-hash.h>
99# include <langinfo.h>
100#else
101# define WEAK_ALIAS(a,b)
102#endif
103
4bb91c68 104/* This is for other GNU distributions with internationalized messages. */
0b32bf0e 105#if HAVE_LIBINTL_H || defined _LIBC
fa9a63c5
RM
106# include <libintl.h>
107#else
108# define gettext(msgid) (msgid)
109#endif
110
5e69f11e
RM
111#ifndef gettext_noop
112/* This define is so xgettext can find the internationalizable
113 strings. */
0b32bf0e 114# define gettext_noop(String) String
5e69f11e
RM
115#endif
116
fa9a63c5
RM
117/* The `emacs' switch turns on certain matching commands
118 that make sense only in Emacs. */
119#ifdef emacs
120
0b32bf0e
SM
121# include "lisp.h"
122# include "buffer.h"
b18215fc
RS
123
124/* Make syntax table lookup grant data in gl_state. */
0b32bf0e 125# define SYNTAX_ENTRY_VIA_PROPERTY
b18215fc 126
0b32bf0e
SM
127# include "syntax.h"
128# include "charset.h"
129# include "category.h"
fa9a63c5 130
7689ef0b
EZ
131# ifdef malloc
132# undef malloc
133# endif
0b32bf0e 134# define malloc xmalloc
7689ef0b
EZ
135# ifdef realloc
136# undef realloc
137# endif
0b32bf0e 138# define realloc xrealloc
7689ef0b
EZ
139# ifdef free
140# undef free
141# endif
0b32bf0e 142# define free xfree
9abbd165 143
0b32bf0e
SM
144/* Converts the pointer to the char to BEG-based offset from the start. */
145# define PTR_TO_OFFSET(d) POS_AS_IN_BUFFER (POINTER_TO_OFFSET (d))
146# define POS_AS_IN_BUFFER(p) ((p) + (NILP (re_match_object) || BUFFERP (re_match_object)))
147
148# define RE_MULTIBYTE_P(bufp) ((bufp)->multibyte)
149# define RE_STRING_CHAR(p, s) \
4e8a9132 150 (multibyte ? (STRING_CHAR (p, s)) : (*(p)))
0b32bf0e 151# define RE_STRING_CHAR_AND_LENGTH(p, s, len) \
2d1675e4
SM
152 (multibyte ? (STRING_CHAR_AND_LENGTH (p, s, len)) : ((len) = 1, *(p)))
153
154/* Set C a (possibly multibyte) character before P. P points into a
155 string which is the virtual concatenation of STR1 (which ends at
156 END1) or STR2 (which ends at END2). */
0b32bf0e 157# define GET_CHAR_BEFORE_2(c, p, str1, end1, str2, end2) \
2d1675e4
SM
158 do { \
159 if (multibyte) \
160 { \
0b32bf0e
SM
161 re_char *dtemp = (p) == (str2) ? (end1) : (p); \
162 re_char *dlimit = ((p) > (str2) && (p) <= (end2)) ? (str2) : (str1); \
163 while (dtemp-- > dlimit && !CHAR_HEAD_P (*dtemp)); \
164 c = STRING_CHAR (dtemp, (p) - dtemp); \
2d1675e4
SM
165 } \
166 else \
167 (c = ((p) == (str2) ? (end1) : (p))[-1]); \
168 } while (0)
169
4e8a9132 170
fa9a63c5
RM
171#else /* not emacs */
172
173/* If we are not linking with Emacs proper,
174 we can't use the relocating allocator
175 even if config.h says that we can. */
0b32bf0e 176# undef REL_ALLOC
fa9a63c5 177
0b32bf0e
SM
178# if defined STDC_HEADERS || defined _LIBC
179# include <stdlib.h>
180# else
fa9a63c5
RM
181char *malloc ();
182char *realloc ();
0b32bf0e 183# endif
fa9a63c5 184
9e4ecb26 185/* When used in Emacs's lib-src, we need to get bzero and bcopy somehow.
4bb91c68 186 If nothing else has been done, use the method below. */
0b32bf0e
SM
187# ifdef INHIBIT_STRING_HEADER
188# if !(defined HAVE_BZERO && defined HAVE_BCOPY)
189# if !defined bzero && !defined bcopy
190# undef INHIBIT_STRING_HEADER
191# endif
192# endif
193# endif
9e4ecb26 194
4bb91c68 195/* This is the normal way of making sure we have memcpy, memcmp and bzero.
9e4ecb26
KH
196 This is used in most programs--a few other programs avoid this
197 by defining INHIBIT_STRING_HEADER. */
0b32bf0e
SM
198# ifndef INHIBIT_STRING_HEADER
199# if defined HAVE_STRING_H || defined STDC_HEADERS || defined _LIBC
200# include <string.h>
0b32bf0e 201# ifndef bzero
4bb91c68
SM
202# ifndef _LIBC
203# define bzero(s, n) (memset (s, '\0', n), (s))
204# else
205# define bzero(s, n) __bzero (s, n)
206# endif
0b32bf0e
SM
207# endif
208# else
209# include <strings.h>
4bb91c68
SM
210# ifndef memcmp
211# define memcmp(s1, s2, n) bcmp (s1, s2, n)
212# endif
213# ifndef memcpy
214# define memcpy(d, s, n) (bcopy (s, d, n), (d))
215# endif
0b32bf0e
SM
216# endif
217# endif
fa9a63c5
RM
218
219/* Define the syntax stuff for \<, \>, etc. */
220
990b2375
SM
221/* Sword must be nonzero for the wordchar pattern commands in re_match_2. */
222enum syntaxcode { Swhitespace = 0, Sword = 1 };
fa9a63c5 223
0b32bf0e
SM
224# ifdef SWITCH_ENUM_BUG
225# define SWITCH_ENUM_CAST(x) ((int)(x))
226# else
227# define SWITCH_ENUM_CAST(x) (x)
228# endif
fa9a63c5 229
e934739e 230/* Dummy macros for non-Emacs environments. */
0b32bf0e
SM
231# define BASE_LEADING_CODE_P(c) (0)
232# define CHAR_CHARSET(c) 0
233# define CHARSET_LEADING_CODE_BASE(c) 0
234# define MAX_MULTIBYTE_LENGTH 1
235# define RE_MULTIBYTE_P(x) 0
236# define WORD_BOUNDARY_P(c1, c2) (0)
237# define CHAR_HEAD_P(p) (1)
238# define SINGLE_BYTE_CHAR_P(c) (1)
239# define SAME_CHARSET_P(c1, c2) (1)
240# define MULTIBYTE_FORM_LENGTH(p, s) (1)
241# define STRING_CHAR(p, s) (*(p))
242# define RE_STRING_CHAR STRING_CHAR
243# define CHAR_STRING(c, s) (*(s) = (c), 1)
244# define STRING_CHAR_AND_LENGTH(p, s, actual_len) ((actual_len) = 1, *(p))
245# define RE_STRING_CHAR_AND_LENGTH STRING_CHAR_AND_LENGTH
246# define GET_CHAR_BEFORE_2(c, p, str1, end1, str2, end2) \
b18215fc 247 (c = ((p) == (str2) ? *((end1) - 1) : *((p) - 1)))
0b32bf0e 248# define MAKE_CHAR(charset, c1, c2) (c1)
fa9a63c5 249#endif /* not emacs */
4e8a9132
SM
250
251#ifndef RE_TRANSLATE
0b32bf0e
SM
252# define RE_TRANSLATE(TBL, C) ((unsigned char)(TBL)[C])
253# define RE_TRANSLATE_P(TBL) (TBL)
4e8a9132 254#endif
fa9a63c5
RM
255\f
256/* Get the interface, including the syntax bits. */
257#include "regex.h"
258
f71b19b6
DL
259/* isalpha etc. are used for the character classes. */
260#include <ctype.h>
fa9a63c5 261
f71b19b6 262#ifdef emacs
fa9a63c5 263
f71b19b6 264/* 1 if C is an ASCII character. */
0b32bf0e 265# define IS_REAL_ASCII(c) ((c) < 0200)
fa9a63c5 266
f71b19b6 267/* 1 if C is a unibyte character. */
0b32bf0e 268# define ISUNIBYTE(c) (SINGLE_BYTE_CHAR_P ((c)))
96cc36cc 269
f71b19b6 270/* The Emacs definitions should not be directly affected by locales. */
96cc36cc 271
f71b19b6 272/* In Emacs, these are only used for single-byte characters. */
0b32bf0e
SM
273# define ISDIGIT(c) ((c) >= '0' && (c) <= '9')
274# define ISCNTRL(c) ((c) < ' ')
275# define ISXDIGIT(c) (((c) >= '0' && (c) <= '9') \
f71b19b6
DL
276 || ((c) >= 'a' && (c) <= 'f') \
277 || ((c) >= 'A' && (c) <= 'F'))
96cc36cc
RS
278
279/* This is only used for single-byte characters. */
0b32bf0e 280# define ISBLANK(c) ((c) == ' ' || (c) == '\t')
96cc36cc
RS
281
282/* The rest must handle multibyte characters. */
283
0b32bf0e 284# define ISGRAPH(c) (SINGLE_BYTE_CHAR_P (c) \
f71b19b6 285 ? (c) > ' ' && !((c) >= 0177 && (c) <= 0237) \
96cc36cc
RS
286 : 1)
287
14473664 288# define ISPRINT(c) (SINGLE_BYTE_CHAR_P (c) \
f71b19b6 289 ? (c) >= ' ' && !((c) >= 0177 && (c) <= 0237) \
96cc36cc
RS
290 : 1)
291
0b32bf0e 292# define ISALNUM(c) (IS_REAL_ASCII (c) \
f71b19b6
DL
293 ? (((c) >= 'a' && (c) <= 'z') \
294 || ((c) >= 'A' && (c) <= 'Z') \
295 || ((c) >= '0' && (c) <= '9')) \
96cc36cc
RS
296 : SYNTAX (c) == Sword)
297
0b32bf0e 298# define ISALPHA(c) (IS_REAL_ASCII (c) \
f71b19b6
DL
299 ? (((c) >= 'a' && (c) <= 'z') \
300 || ((c) >= 'A' && (c) <= 'Z')) \
96cc36cc
RS
301 : SYNTAX (c) == Sword)
302
0b32bf0e 303# define ISLOWER(c) (LOWERCASEP (c))
96cc36cc 304
0b32bf0e 305# define ISPUNCT(c) (IS_REAL_ASCII (c) \
f71b19b6
DL
306 ? ((c) > ' ' && (c) < 0177 \
307 && !(((c) >= 'a' && (c) <= 'z') \
4bb91c68
SM
308 || ((c) >= 'A' && (c) <= 'Z') \
309 || ((c) >= '0' && (c) <= '9'))) \
96cc36cc
RS
310 : SYNTAX (c) != Sword)
311
0b32bf0e 312# define ISSPACE(c) (SYNTAX (c) == Swhitespace)
96cc36cc 313
0b32bf0e 314# define ISUPPER(c) (UPPERCASEP (c))
96cc36cc 315
0b32bf0e 316# define ISWORD(c) (SYNTAX (c) == Sword)
96cc36cc
RS
317
318#else /* not emacs */
319
f71b19b6
DL
320/* Jim Meyering writes:
321
322 "... Some ctype macros are valid only for character codes that
323 isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when
324 using /bin/cc or gcc but without giving an ansi option). So, all
4bb91c68 325 ctype uses should be through macros like ISPRINT... If
f71b19b6
DL
326 STDC_HEADERS is defined, then autoconf has verified that the ctype
327 macros don't need to be guarded with references to isascii. ...
328 Defining isascii to 1 should let any compiler worth its salt
4bb91c68
SM
329 eliminate the && through constant folding."
330 Solaris defines some of these symbols so we must undefine them first. */
f71b19b6 331
4bb91c68 332# undef ISASCII
0b32bf0e
SM
333# if defined STDC_HEADERS || (!defined isascii && !defined HAVE_ISASCII)
334# define ISASCII(c) 1
335# else
336# define ISASCII(c) isascii(c)
337# endif
f71b19b6
DL
338
339/* 1 if C is an ASCII character. */
0b32bf0e 340# define IS_REAL_ASCII(c) ((c) < 0200)
f71b19b6
DL
341
342/* This distinction is not meaningful, except in Emacs. */
0b32bf0e
SM
343# define ISUNIBYTE(c) 1
344
345# ifdef isblank
346# define ISBLANK(c) (ISASCII (c) && isblank (c))
347# else
348# define ISBLANK(c) ((c) == ' ' || (c) == '\t')
349# endif
350# ifdef isgraph
351# define ISGRAPH(c) (ISASCII (c) && isgraph (c))
352# else
353# define ISGRAPH(c) (ISASCII (c) && isprint (c) && !isspace (c))
354# endif
355
4bb91c68 356# undef ISPRINT
0b32bf0e
SM
357# define ISPRINT(c) (ISASCII (c) && isprint (c))
358# define ISDIGIT(c) (ISASCII (c) && isdigit (c))
359# define ISALNUM(c) (ISASCII (c) && isalnum (c))
360# define ISALPHA(c) (ISASCII (c) && isalpha (c))
361# define ISCNTRL(c) (ISASCII (c) && iscntrl (c))
362# define ISLOWER(c) (ISASCII (c) && islower (c))
363# define ISPUNCT(c) (ISASCII (c) && ispunct (c))
364# define ISSPACE(c) (ISASCII (c) && isspace (c))
365# define ISUPPER(c) (ISASCII (c) && isupper (c))
366# define ISXDIGIT(c) (ISASCII (c) && isxdigit (c))
367
368# define ISWORD(c) ISALPHA(c)
369
4bb91c68
SM
370# ifdef _tolower
371# define TOLOWER(c) _tolower(c)
372# else
373# define TOLOWER(c) tolower(c)
374# endif
375
376/* How many characters in the character set. */
377# define CHAR_SET_SIZE 256
378
0b32bf0e 379# ifdef SYNTAX_TABLE
f71b19b6 380
0b32bf0e 381extern char *re_syntax_table;
f71b19b6 382
0b32bf0e
SM
383# else /* not SYNTAX_TABLE */
384
0b32bf0e
SM
385static char re_syntax_table[CHAR_SET_SIZE];
386
387static void
388init_syntax_once ()
389{
390 register int c;
391 static int done = 0;
392
393 if (done)
394 return;
395
396 bzero (re_syntax_table, sizeof re_syntax_table);
397
4bb91c68
SM
398 for (c = 0; c < CHAR_SET_SIZE; ++c)
399 if (ISALNUM (c))
400 re_syntax_table[c] = Sword;
fa9a63c5 401
0b32bf0e 402 re_syntax_table['_'] = Sword;
fa9a63c5 403
0b32bf0e
SM
404 done = 1;
405}
406
407# endif /* not SYNTAX_TABLE */
96cc36cc 408
4bb91c68
SM
409# define SYNTAX(c) re_syntax_table[(c)]
410
96cc36cc
RS
411#endif /* not emacs */
412\f
fa9a63c5 413#ifndef NULL
0b32bf0e 414# define NULL (void *)0
fa9a63c5
RM
415#endif
416
417/* We remove any previous definition of `SIGN_EXTEND_CHAR',
418 since ours (we hope) works properly with all combinations of
419 machines, compilers, `char' and `unsigned char' argument types.
4bb91c68 420 (Per Bothner suggested the basic approach.) */
fa9a63c5
RM
421#undef SIGN_EXTEND_CHAR
422#if __STDC__
0b32bf0e 423# define SIGN_EXTEND_CHAR(c) ((signed char) (c))
fa9a63c5
RM
424#else /* not __STDC__ */
425/* As in Harbison and Steele. */
0b32bf0e 426# define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
fa9a63c5
RM
427#endif
428\f
429/* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we
430 use `alloca' instead of `malloc'. This is because using malloc in
431 re_search* or re_match* could cause memory leaks when C-g is used in
432 Emacs; also, malloc is slower and causes storage fragmentation. On
5e69f11e
RM
433 the other hand, malloc is more portable, and easier to debug.
434
fa9a63c5
RM
435 Because we sometimes use alloca, some routines have to be macros,
436 not functions -- `alloca'-allocated space disappears at the end of the
437 function it is called in. */
438
439#ifdef REGEX_MALLOC
440
0b32bf0e
SM
441# define REGEX_ALLOCATE malloc
442# define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
443# define REGEX_FREE free
fa9a63c5
RM
444
445#else /* not REGEX_MALLOC */
446
447/* Emacs already defines alloca, sometimes. */
0b32bf0e 448# ifndef alloca
fa9a63c5
RM
449
450/* Make alloca work the best possible way. */
0b32bf0e
SM
451# ifdef __GNUC__
452# define alloca __builtin_alloca
453# else /* not __GNUC__ */
454# if HAVE_ALLOCA_H
455# include <alloca.h>
456# endif /* HAVE_ALLOCA_H */
457# endif /* not __GNUC__ */
fa9a63c5 458
0b32bf0e 459# endif /* not alloca */
fa9a63c5 460
0b32bf0e 461# define REGEX_ALLOCATE alloca
fa9a63c5
RM
462
463/* Assumes a `char *destination' variable. */
0b32bf0e 464# define REGEX_REALLOCATE(source, osize, nsize) \
fa9a63c5 465 (destination = (char *) alloca (nsize), \
4bb91c68 466 memcpy (destination, source, osize))
fa9a63c5
RM
467
468/* No need to do anything to free, after alloca. */
0b32bf0e 469# define REGEX_FREE(arg) ((void)0) /* Do nothing! But inhibit gcc warning. */
fa9a63c5
RM
470
471#endif /* not REGEX_MALLOC */
472
473/* Define how to allocate the failure stack. */
474
0b32bf0e 475#if defined REL_ALLOC && defined REGEX_MALLOC
4297555e 476
0b32bf0e 477# define REGEX_ALLOCATE_STACK(size) \
fa9a63c5 478 r_alloc (&failure_stack_ptr, (size))
0b32bf0e 479# define REGEX_REALLOCATE_STACK(source, osize, nsize) \
fa9a63c5 480 r_re_alloc (&failure_stack_ptr, (nsize))
0b32bf0e 481# define REGEX_FREE_STACK(ptr) \
fa9a63c5
RM
482 r_alloc_free (&failure_stack_ptr)
483
4297555e 484#else /* not using relocating allocator */
fa9a63c5 485
0b32bf0e 486# ifdef REGEX_MALLOC
fa9a63c5 487
0b32bf0e
SM
488# define REGEX_ALLOCATE_STACK malloc
489# define REGEX_REALLOCATE_STACK(source, osize, nsize) realloc (source, nsize)
490# define REGEX_FREE_STACK free
fa9a63c5 491
0b32bf0e 492# else /* not REGEX_MALLOC */
fa9a63c5 493
0b32bf0e 494# define REGEX_ALLOCATE_STACK alloca
fa9a63c5 495
0b32bf0e 496# define REGEX_REALLOCATE_STACK(source, osize, nsize) \
fa9a63c5 497 REGEX_REALLOCATE (source, osize, nsize)
25fe55af 498/* No need to explicitly free anything. */
0b32bf0e 499# define REGEX_FREE_STACK(arg) ((void)0)
fa9a63c5 500
0b32bf0e 501# endif /* not REGEX_MALLOC */
4297555e 502#endif /* not using relocating allocator */
fa9a63c5
RM
503
504
505/* True if `size1' is non-NULL and PTR is pointing anywhere inside
506 `string1' or just past its end. This works if PTR is NULL, which is
507 a good thing. */
25fe55af 508#define FIRST_STRING_P(ptr) \
fa9a63c5
RM
509 (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
510
511/* (Re)Allocate N items of type T using malloc, or fail. */
512#define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
513#define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
514#define RETALLOC_IF(addr, n, t) \
515 if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t)
516#define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
517
4bb91c68 518#define BYTEWIDTH 8 /* In bits. */
fa9a63c5
RM
519
520#define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
521
522#undef MAX
523#undef MIN
524#define MAX(a, b) ((a) > (b) ? (a) : (b))
525#define MIN(a, b) ((a) < (b) ? (a) : (b))
526
66f0296e
SM
527/* Type of source-pattern and string chars. */
528typedef const unsigned char re_char;
529
fa9a63c5
RM
530typedef char boolean;
531#define false 0
532#define true 1
533
4bb91c68
SM
534static int re_match_2_internal _RE_ARGS ((struct re_pattern_buffer *bufp,
535 re_char *string1, int size1,
536 re_char *string2, int size2,
537 int pos,
538 struct re_registers *regs,
539 int stop));
fa9a63c5
RM
540\f
541/* These are the command codes that appear in compiled regular
4bb91c68 542 expressions. Some opcodes are followed by argument bytes. A
fa9a63c5
RM
543 command code can specify any interpretation whatsoever for its
544 arguments. Zero bytes may appear in the compiled regular expression. */
545
546typedef enum
547{
548 no_op = 0,
549
4bb91c68 550 /* Succeed right away--no more backtracking. */
fa9a63c5
RM
551 succeed,
552
25fe55af 553 /* Followed by one byte giving n, then by n literal bytes. */
fa9a63c5
RM
554 exactn,
555
25fe55af 556 /* Matches any (more or less) character. */
fa9a63c5
RM
557 anychar,
558
25fe55af
RS
559 /* Matches any one char belonging to specified set. First
560 following byte is number of bitmap bytes. Then come bytes
561 for a bitmap saying which chars are in. Bits in each byte
562 are ordered low-bit-first. A character is in the set if its
563 bit is 1. A character too large to have a bit in the map is
96cc36cc
RS
564 automatically not in the set.
565
566 If the length byte has the 0x80 bit set, then that stuff
567 is followed by a range table:
568 2 bytes of flags for character sets (low 8 bits, high 8 bits)
0b32bf0e 569 See RANGE_TABLE_WORK_BITS below.
01618498 570 2 bytes, the number of pairs that follow (upto 32767)
96cc36cc 571 pairs, each 2 multibyte characters,
0b32bf0e 572 each multibyte character represented as 3 bytes. */
fa9a63c5
RM
573 charset,
574
25fe55af 575 /* Same parameters as charset, but match any character that is
4bb91c68 576 not one of those specified. */
fa9a63c5
RM
577 charset_not,
578
25fe55af
RS
579 /* Start remembering the text that is matched, for storing in a
580 register. Followed by one byte with the register number, in
581 the range 0 to one less than the pattern buffer's re_nsub
505bde11 582 field. */
fa9a63c5
RM
583 start_memory,
584
25fe55af
RS
585 /* Stop remembering the text that is matched and store it in a
586 memory register. Followed by one byte with the register
587 number, in the range 0 to one less than `re_nsub' in the
505bde11 588 pattern buffer. */
fa9a63c5
RM
589 stop_memory,
590
25fe55af 591 /* Match a duplicate of something remembered. Followed by one
4bb91c68 592 byte containing the register number. */
fa9a63c5
RM
593 duplicate,
594
25fe55af 595 /* Fail unless at beginning of line. */
fa9a63c5
RM
596 begline,
597
4bb91c68 598 /* Fail unless at end of line. */
fa9a63c5
RM
599 endline,
600
25fe55af
RS
601 /* Succeeds if at beginning of buffer (if emacs) or at beginning
602 of string to be matched (if not). */
fa9a63c5
RM
603 begbuf,
604
25fe55af 605 /* Analogously, for end of buffer/string. */
fa9a63c5 606 endbuf,
5e69f11e 607
25fe55af 608 /* Followed by two byte relative address to which to jump. */
5e69f11e 609 jump,
fa9a63c5 610
25fe55af
RS
611 /* Followed by two-byte relative address of place to resume at
612 in case of failure. */
fa9a63c5 613 on_failure_jump,
5e69f11e 614
25fe55af
RS
615 /* Like on_failure_jump, but pushes a placeholder instead of the
616 current string position when executed. */
fa9a63c5 617 on_failure_keep_string_jump,
5e69f11e 618
505bde11
SM
619 /* Just like `on_failure_jump', except that it checks that we
620 don't get stuck in an infinite loop (matching an empty string
621 indefinitely). */
622 on_failure_jump_loop,
623
0683b6fa
SM
624 /* Just like `on_failure_jump_loop', except that it checks for
625 a different kind of loop (the kind that shows up with non-greedy
626 operators). This operation has to be immediately preceded
627 by a `no_op'. */
628 on_failure_jump_nastyloop,
629
0b32bf0e 630 /* A smart `on_failure_jump' used for greedy * and + operators.
505bde11
SM
631 It analyses the loop before which it is put and if the
632 loop does not require backtracking, it changes itself to
4e8a9132
SM
633 `on_failure_keep_string_jump' and short-circuits the loop,
634 else it just defaults to changing itself into `on_failure_jump'.
635 It assumes that it is pointing to just past a `jump'. */
505bde11 636 on_failure_jump_smart,
fa9a63c5 637
25fe55af 638 /* Followed by two-byte relative address and two-byte number n.
ed0767d8
SM
639 After matching N times, jump to the address upon failure.
640 Does not work if N starts at 0: use on_failure_jump_loop
641 instead. */
fa9a63c5
RM
642 succeed_n,
643
25fe55af
RS
644 /* Followed by two-byte relative address, and two-byte number n.
645 Jump to the address N times, then fail. */
fa9a63c5
RM
646 jump_n,
647
25fe55af
RS
648 /* Set the following two-byte relative address to the
649 subsequent two-byte number. The address *includes* the two
650 bytes of number. */
fa9a63c5
RM
651 set_number_at,
652
fa9a63c5
RM
653 wordbeg, /* Succeeds if at word beginning. */
654 wordend, /* Succeeds if at word end. */
655
656 wordbound, /* Succeeds if at a word boundary. */
1fb352e0 657 notwordbound, /* Succeeds if not at a word boundary. */
fa9a63c5
RM
658
659 /* Matches any character whose syntax is specified. Followed by
25fe55af 660 a byte which contains a syntax code, e.g., Sword. */
fa9a63c5
RM
661 syntaxspec,
662
663 /* Matches any character whose syntax is not that specified. */
1fb352e0
SM
664 notsyntaxspec
665
666#ifdef emacs
667 ,before_dot, /* Succeeds if before point. */
668 at_dot, /* Succeeds if at point. */
669 after_dot, /* Succeeds if after point. */
b18215fc
RS
670
671 /* Matches any character whose category-set contains the specified
25fe55af
RS
672 category. The operator is followed by a byte which contains a
673 category code (mnemonic ASCII character). */
b18215fc
RS
674 categoryspec,
675
676 /* Matches any character whose category-set does not contain the
677 specified category. The operator is followed by a byte which
678 contains the category code (mnemonic ASCII character). */
679 notcategoryspec
fa9a63c5
RM
680#endif /* emacs */
681} re_opcode_t;
682\f
683/* Common operations on the compiled pattern. */
684
685/* Store NUMBER in two contiguous bytes starting at DESTINATION. */
686
687#define STORE_NUMBER(destination, number) \
688 do { \
689 (destination)[0] = (number) & 0377; \
690 (destination)[1] = (number) >> 8; \
691 } while (0)
692
693/* Same as STORE_NUMBER, except increment DESTINATION to
694 the byte after where the number is stored. Therefore, DESTINATION
695 must be an lvalue. */
696
697#define STORE_NUMBER_AND_INCR(destination, number) \
698 do { \
699 STORE_NUMBER (destination, number); \
700 (destination) += 2; \
701 } while (0)
702
703/* Put into DESTINATION a number stored in two contiguous bytes starting
704 at SOURCE. */
705
706#define EXTRACT_NUMBER(destination, source) \
707 do { \
708 (destination) = *(source) & 0377; \
709 (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8; \
710 } while (0)
711
712#ifdef DEBUG
4bb91c68 713static void extract_number _RE_ARGS ((int *dest, re_char *source));
fa9a63c5
RM
714static void
715extract_number (dest, source)
716 int *dest;
01618498 717 re_char *source;
fa9a63c5 718{
5e69f11e 719 int temp = SIGN_EXTEND_CHAR (*(source + 1));
fa9a63c5
RM
720 *dest = *source & 0377;
721 *dest += temp << 8;
722}
723
4bb91c68 724# ifndef EXTRACT_MACROS /* To debug the macros. */
0b32bf0e
SM
725# undef EXTRACT_NUMBER
726# define EXTRACT_NUMBER(dest, src) extract_number (&dest, src)
727# endif /* not EXTRACT_MACROS */
fa9a63c5
RM
728
729#endif /* DEBUG */
730
731/* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
732 SOURCE must be an lvalue. */
733
734#define EXTRACT_NUMBER_AND_INCR(destination, source) \
735 do { \
736 EXTRACT_NUMBER (destination, source); \
25fe55af 737 (source) += 2; \
fa9a63c5
RM
738 } while (0)
739
740#ifdef DEBUG
4bb91c68
SM
741static void extract_number_and_incr _RE_ARGS ((int *destination,
742 re_char **source));
fa9a63c5
RM
743static void
744extract_number_and_incr (destination, source)
745 int *destination;
01618498 746 re_char **source;
5e69f11e 747{
fa9a63c5
RM
748 extract_number (destination, *source);
749 *source += 2;
750}
751
0b32bf0e
SM
752# ifndef EXTRACT_MACROS
753# undef EXTRACT_NUMBER_AND_INCR
754# define EXTRACT_NUMBER_AND_INCR(dest, src) \
fa9a63c5 755 extract_number_and_incr (&dest, &src)
0b32bf0e 756# endif /* not EXTRACT_MACROS */
fa9a63c5
RM
757
758#endif /* DEBUG */
759\f
b18215fc
RS
760/* Store a multibyte character in three contiguous bytes starting
761 DESTINATION, and increment DESTINATION to the byte after where the
25fe55af 762 character is stored. Therefore, DESTINATION must be an lvalue. */
b18215fc
RS
763
764#define STORE_CHARACTER_AND_INCR(destination, character) \
765 do { \
766 (destination)[0] = (character) & 0377; \
767 (destination)[1] = ((character) >> 8) & 0377; \
768 (destination)[2] = (character) >> 16; \
769 (destination) += 3; \
770 } while (0)
771
772/* Put into DESTINATION a character stored in three contiguous bytes
25fe55af 773 starting at SOURCE. */
b18215fc
RS
774
775#define EXTRACT_CHARACTER(destination, source) \
776 do { \
777 (destination) = ((source)[0] \
778 | ((source)[1] << 8) \
779 | ((source)[2] << 16)); \
780 } while (0)
781
782
783/* Macros for charset. */
784
785/* Size of bitmap of charset P in bytes. P is a start of charset,
786 i.e. *P is (re_opcode_t) charset or (re_opcode_t) charset_not. */
787#define CHARSET_BITMAP_SIZE(p) ((p)[1] & 0x7F)
788
789/* Nonzero if charset P has range table. */
25fe55af 790#define CHARSET_RANGE_TABLE_EXISTS_P(p) ((p)[1] & 0x80)
b18215fc
RS
791
792/* Return the address of range table of charset P. But not the start
793 of table itself, but the before where the number of ranges is
96cc36cc
RS
794 stored. `2 +' means to skip re_opcode_t and size of bitmap,
795 and the 2 bytes of flags at the start of the range table. */
796#define CHARSET_RANGE_TABLE(p) (&(p)[4 + CHARSET_BITMAP_SIZE (p)])
797
798/* Extract the bit flags that start a range table. */
799#define CHARSET_RANGE_TABLE_BITS(p) \
800 ((p)[2 + CHARSET_BITMAP_SIZE (p)] \
801 + (p)[3 + CHARSET_BITMAP_SIZE (p)] * 0x100)
b18215fc
RS
802
803/* Test if C is listed in the bitmap of charset P. */
804#define CHARSET_LOOKUP_BITMAP(p, c) \
805 ((c) < CHARSET_BITMAP_SIZE (p) * BYTEWIDTH \
806 && (p)[2 + (c) / BYTEWIDTH] & (1 << ((c) % BYTEWIDTH)))
807
808/* Return the address of end of RANGE_TABLE. COUNT is number of
25fe55af
RS
809 ranges (which is a pair of (start, end)) in the RANGE_TABLE. `* 2'
810 is start of range and end of range. `* 3' is size of each start
b18215fc
RS
811 and end. */
812#define CHARSET_RANGE_TABLE_END(range_table, count) \
813 ((range_table) + (count) * 2 * 3)
814
25fe55af 815/* Test if C is in RANGE_TABLE. A flag NOT is negated if C is in.
b18215fc
RS
816 COUNT is number of ranges in RANGE_TABLE. */
817#define CHARSET_LOOKUP_RANGE_TABLE_RAW(not, c, range_table, count) \
818 do \
819 { \
01618498
SM
820 re_wchar_t range_start, range_end; \
821 re_char *p; \
822 re_char *range_table_end \
b18215fc
RS
823 = CHARSET_RANGE_TABLE_END ((range_table), (count)); \
824 \
825 for (p = (range_table); p < range_table_end; p += 2 * 3) \
826 { \
827 EXTRACT_CHARACTER (range_start, p); \
828 EXTRACT_CHARACTER (range_end, p + 3); \
829 \
830 if (range_start <= (c) && (c) <= range_end) \
831 { \
832 (not) = !(not); \
833 break; \
834 } \
835 } \
836 } \
837 while (0)
838
839/* Test if C is in range table of CHARSET. The flag NOT is negated if
840 C is listed in it. */
841#define CHARSET_LOOKUP_RANGE_TABLE(not, c, charset) \
842 do \
843 { \
844 /* Number of ranges in range table. */ \
845 int count; \
01618498
SM
846 re_char *range_table = CHARSET_RANGE_TABLE (charset); \
847 \
b18215fc
RS
848 EXTRACT_NUMBER_AND_INCR (count, range_table); \
849 CHARSET_LOOKUP_RANGE_TABLE_RAW ((not), (c), range_table, count); \
850 } \
851 while (0)
852\f
fa9a63c5
RM
853/* If DEBUG is defined, Regex prints many voluminous messages about what
854 it is doing (if the variable `debug' is nonzero). If linked with the
855 main program in `iregex.c', you can enter patterns and strings
856 interactively. And if linked with the main program in `main.c' and
4bb91c68 857 the other test files, you can run the already-written tests. */
fa9a63c5
RM
858
859#ifdef DEBUG
860
861/* We use standard I/O for debugging. */
0b32bf0e 862# include <stdio.h>
fa9a63c5
RM
863
864/* It is useful to test things that ``must'' be true when debugging. */
0b32bf0e 865# include <assert.h>
fa9a63c5 866
99633e97 867static int debug = -100000;
fa9a63c5 868
0b32bf0e
SM
869# define DEBUG_STATEMENT(e) e
870# define DEBUG_PRINT1(x) if (debug > 0) printf (x)
871# define DEBUG_PRINT2(x1, x2) if (debug > 0) printf (x1, x2)
872# define DEBUG_PRINT3(x1, x2, x3) if (debug > 0) printf (x1, x2, x3)
873# define DEBUG_PRINT4(x1, x2, x3, x4) if (debug > 0) printf (x1, x2, x3, x4)
874# define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \
99633e97 875 if (debug > 0) print_partial_compiled_pattern (s, e)
0b32bf0e 876# define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \
99633e97 877 if (debug > 0) print_double_string (w, s1, sz1, s2, sz2)
fa9a63c5
RM
878
879
880/* Print the fastmap in human-readable form. */
881
882void
883print_fastmap (fastmap)
884 char *fastmap;
885{
886 unsigned was_a_range = 0;
5e69f11e
RM
887 unsigned i = 0;
888
fa9a63c5
RM
889 while (i < (1 << BYTEWIDTH))
890 {
891 if (fastmap[i++])
892 {
893 was_a_range = 0;
25fe55af
RS
894 putchar (i - 1);
895 while (i < (1 << BYTEWIDTH) && fastmap[i])
896 {
897 was_a_range = 1;
898 i++;
899 }
fa9a63c5 900 if (was_a_range)
25fe55af
RS
901 {
902 printf ("-");
903 putchar (i - 1);
904 }
905 }
fa9a63c5 906 }
5e69f11e 907 putchar ('\n');
fa9a63c5
RM
908}
909
910
911/* Print a compiled pattern string in human-readable form, starting at
912 the START pointer into it and ending just before the pointer END. */
913
914void
915print_partial_compiled_pattern (start, end)
01618498
SM
916 re_char *start;
917 re_char *end;
fa9a63c5
RM
918{
919 int mcnt, mcnt2;
01618498
SM
920 re_char *p = start;
921 re_char *pend = end;
fa9a63c5
RM
922
923 if (start == NULL)
924 {
925 printf ("(null)\n");
926 return;
927 }
5e69f11e 928
fa9a63c5
RM
929 /* Loop over pattern commands. */
930 while (p < pend)
931 {
932 printf ("%d:\t", p - start);
933
934 switch ((re_opcode_t) *p++)
935 {
25fe55af
RS
936 case no_op:
937 printf ("/no_op");
938 break;
fa9a63c5 939
99633e97
SM
940 case succeed:
941 printf ("/succeed");
942 break;
943
fa9a63c5
RM
944 case exactn:
945 mcnt = *p++;
25fe55af
RS
946 printf ("/exactn/%d", mcnt);
947 do
fa9a63c5 948 {
25fe55af 949 putchar ('/');
fa9a63c5 950 putchar (*p++);
25fe55af
RS
951 }
952 while (--mcnt);
953 break;
fa9a63c5
RM
954
955 case start_memory:
505bde11 956 printf ("/start_memory/%d", *p++);
25fe55af 957 break;
fa9a63c5
RM
958
959 case stop_memory:
505bde11 960 printf ("/stop_memory/%d", *p++);
25fe55af 961 break;
fa9a63c5
RM
962
963 case duplicate:
964 printf ("/duplicate/%d", *p++);
965 break;
966
967 case anychar:
968 printf ("/anychar");
969 break;
970
971 case charset:
25fe55af
RS
972 case charset_not:
973 {
974 register int c, last = -100;
fa9a63c5 975 register int in_range = 0;
99633e97
SM
976 int length = CHARSET_BITMAP_SIZE (p - 1);
977 int has_range_table = CHARSET_RANGE_TABLE_EXISTS_P (p - 1);
fa9a63c5
RM
978
979 printf ("/charset [%s",
25fe55af 980 (re_opcode_t) *(p - 1) == charset_not ? "^" : "");
5e69f11e 981
25fe55af 982 assert (p + *p < pend);
fa9a63c5 983
25fe55af 984 for (c = 0; c < 256; c++)
96cc36cc 985 if (c / 8 < length
fa9a63c5
RM
986 && (p[1 + (c/8)] & (1 << (c % 8))))
987 {
988 /* Are we starting a range? */
989 if (last + 1 == c && ! in_range)
990 {
991 putchar ('-');
992 in_range = 1;
993 }
994 /* Have we broken a range? */
995 else if (last + 1 != c && in_range)
96cc36cc 996 {
fa9a63c5
RM
997 putchar (last);
998 in_range = 0;
999 }
5e69f11e 1000
fa9a63c5
RM
1001 if (! in_range)
1002 putchar (c);
1003
1004 last = c;
25fe55af 1005 }
fa9a63c5
RM
1006
1007 if (in_range)
1008 putchar (last);
1009
1010 putchar (']');
1011
99633e97 1012 p += 1 + length;
96cc36cc 1013
96cc36cc 1014 if (has_range_table)
99633e97
SM
1015 {
1016 int count;
1017 printf ("has-range-table");
1018
1019 /* ??? Should print the range table; for now, just skip it. */
1020 p += 2; /* skip range table bits */
1021 EXTRACT_NUMBER_AND_INCR (count, p);
1022 p = CHARSET_RANGE_TABLE_END (p, count);
1023 }
fa9a63c5
RM
1024 }
1025 break;
1026
1027 case begline:
1028 printf ("/begline");
25fe55af 1029 break;
fa9a63c5
RM
1030
1031 case endline:
25fe55af
RS
1032 printf ("/endline");
1033 break;
fa9a63c5
RM
1034
1035 case on_failure_jump:
25fe55af
RS
1036 extract_number_and_incr (&mcnt, &p);
1037 printf ("/on_failure_jump to %d", p + mcnt - start);
1038 break;
fa9a63c5
RM
1039
1040 case on_failure_keep_string_jump:
25fe55af
RS
1041 extract_number_and_incr (&mcnt, &p);
1042 printf ("/on_failure_keep_string_jump to %d", p + mcnt - start);
1043 break;
fa9a63c5 1044
0683b6fa
SM
1045 case on_failure_jump_nastyloop:
1046 extract_number_and_incr (&mcnt, &p);
1047 printf ("/on_failure_jump_nastyloop to %d", p + mcnt - start);
1048 break;
1049
505bde11 1050 case on_failure_jump_loop:
fa9a63c5 1051 extract_number_and_incr (&mcnt, &p);
505bde11 1052 printf ("/on_failure_jump_loop to %d", p + mcnt - start);
5e69f11e
RM
1053 break;
1054
505bde11 1055 case on_failure_jump_smart:
fa9a63c5 1056 extract_number_and_incr (&mcnt, &p);
505bde11 1057 printf ("/on_failure_jump_smart to %d", p + mcnt - start);
5e69f11e
RM
1058 break;
1059
25fe55af 1060 case jump:
fa9a63c5 1061 extract_number_and_incr (&mcnt, &p);
25fe55af 1062 printf ("/jump to %d", p + mcnt - start);
fa9a63c5
RM
1063 break;
1064
25fe55af
RS
1065 case succeed_n:
1066 extract_number_and_incr (&mcnt, &p);
1067 extract_number_and_incr (&mcnt2, &p);
99633e97 1068 printf ("/succeed_n to %d, %d times", p - 2 + mcnt - start, mcnt2);
25fe55af 1069 break;
5e69f11e 1070
25fe55af
RS
1071 case jump_n:
1072 extract_number_and_incr (&mcnt, &p);
1073 extract_number_and_incr (&mcnt2, &p);
99633e97 1074 printf ("/jump_n to %d, %d times", p - 2 + mcnt - start, mcnt2);
25fe55af 1075 break;
5e69f11e 1076
25fe55af
RS
1077 case set_number_at:
1078 extract_number_and_incr (&mcnt, &p);
1079 extract_number_and_incr (&mcnt2, &p);
99633e97 1080 printf ("/set_number_at location %d to %d", p - 2 + mcnt - start, mcnt2);
25fe55af 1081 break;
5e69f11e 1082
25fe55af 1083 case wordbound:
fa9a63c5
RM
1084 printf ("/wordbound");
1085 break;
1086
1087 case notwordbound:
1088 printf ("/notwordbound");
25fe55af 1089 break;
fa9a63c5
RM
1090
1091 case wordbeg:
1092 printf ("/wordbeg");
1093 break;
5e69f11e 1094
fa9a63c5
RM
1095 case wordend:
1096 printf ("/wordend");
5e69f11e 1097
1fb352e0
SM
1098 case syntaxspec:
1099 printf ("/syntaxspec");
1100 mcnt = *p++;
1101 printf ("/%d", mcnt);
1102 break;
1103
1104 case notsyntaxspec:
1105 printf ("/notsyntaxspec");
1106 mcnt = *p++;
1107 printf ("/%d", mcnt);
1108 break;
1109
0b32bf0e 1110# ifdef emacs
fa9a63c5
RM
1111 case before_dot:
1112 printf ("/before_dot");
25fe55af 1113 break;
fa9a63c5
RM
1114
1115 case at_dot:
1116 printf ("/at_dot");
25fe55af 1117 break;
fa9a63c5
RM
1118
1119 case after_dot:
1120 printf ("/after_dot");
25fe55af 1121 break;
fa9a63c5 1122
1fb352e0
SM
1123 case categoryspec:
1124 printf ("/categoryspec");
fa9a63c5
RM
1125 mcnt = *p++;
1126 printf ("/%d", mcnt);
25fe55af 1127 break;
5e69f11e 1128
1fb352e0
SM
1129 case notcategoryspec:
1130 printf ("/notcategoryspec");
fa9a63c5
RM
1131 mcnt = *p++;
1132 printf ("/%d", mcnt);
1133 break;
0b32bf0e 1134# endif /* emacs */
fa9a63c5 1135
fa9a63c5
RM
1136 case begbuf:
1137 printf ("/begbuf");
25fe55af 1138 break;
fa9a63c5
RM
1139
1140 case endbuf:
1141 printf ("/endbuf");
25fe55af 1142 break;
fa9a63c5 1143
25fe55af
RS
1144 default:
1145 printf ("?%d", *(p-1));
fa9a63c5
RM
1146 }
1147
1148 putchar ('\n');
1149 }
1150
1151 printf ("%d:\tend of pattern.\n", p - start);
1152}
1153
1154
1155void
1156print_compiled_pattern (bufp)
1157 struct re_pattern_buffer *bufp;
1158{
01618498 1159 re_char *buffer = bufp->buffer;
fa9a63c5
RM
1160
1161 print_partial_compiled_pattern (buffer, buffer + bufp->used);
4bb91c68
SM
1162 printf ("%ld bytes used/%ld bytes allocated.\n",
1163 bufp->used, bufp->allocated);
fa9a63c5
RM
1164
1165 if (bufp->fastmap_accurate && bufp->fastmap)
1166 {
1167 printf ("fastmap: ");
1168 print_fastmap (bufp->fastmap);
1169 }
1170
1171 printf ("re_nsub: %d\t", bufp->re_nsub);
1172 printf ("regs_alloc: %d\t", bufp->regs_allocated);
1173 printf ("can_be_null: %d\t", bufp->can_be_null);
fa9a63c5
RM
1174 printf ("no_sub: %d\t", bufp->no_sub);
1175 printf ("not_bol: %d\t", bufp->not_bol);
1176 printf ("not_eol: %d\t", bufp->not_eol);
4bb91c68 1177 printf ("syntax: %lx\n", bufp->syntax);
505bde11 1178 fflush (stdout);
fa9a63c5
RM
1179 /* Perhaps we should print the translate table? */
1180}
1181
1182
1183void
1184print_double_string (where, string1, size1, string2, size2)
66f0296e
SM
1185 re_char *where;
1186 re_char *string1;
1187 re_char *string2;
fa9a63c5
RM
1188 int size1;
1189 int size2;
1190{
4bb91c68 1191 int this_char;
5e69f11e 1192
fa9a63c5
RM
1193 if (where == NULL)
1194 printf ("(null)");
1195 else
1196 {
1197 if (FIRST_STRING_P (where))
25fe55af
RS
1198 {
1199 for (this_char = where - string1; this_char < size1; this_char++)
1200 putchar (string1[this_char]);
fa9a63c5 1201
25fe55af
RS
1202 where = string2;
1203 }
fa9a63c5
RM
1204
1205 for (this_char = where - string2; this_char < size2; this_char++)
25fe55af 1206 putchar (string2[this_char]);
fa9a63c5
RM
1207 }
1208}
1209
1210#else /* not DEBUG */
1211
0b32bf0e
SM
1212# undef assert
1213# define assert(e)
fa9a63c5 1214
0b32bf0e
SM
1215# define DEBUG_STATEMENT(e)
1216# define DEBUG_PRINT1(x)
1217# define DEBUG_PRINT2(x1, x2)
1218# define DEBUG_PRINT3(x1, x2, x3)
1219# define DEBUG_PRINT4(x1, x2, x3, x4)
1220# define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
1221# define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
fa9a63c5
RM
1222
1223#endif /* not DEBUG */
1224\f
1225/* Set by `re_set_syntax' to the current regexp syntax to recognize. Can
1226 also be assigned to arbitrarily: each pattern buffer stores its own
1227 syntax, so it can be changed between regex compilations. */
1228/* This has no initializer because initialized variables in Emacs
1229 become read-only after dumping. */
1230reg_syntax_t re_syntax_options;
1231
1232
1233/* Specify the precise syntax of regexps for compilation. This provides
1234 for compatibility for various utilities which historically have
1235 different, incompatible syntaxes.
1236
1237 The argument SYNTAX is a bit mask comprised of the various bits
4bb91c68 1238 defined in regex.h. We return the old syntax. */
fa9a63c5
RM
1239
1240reg_syntax_t
1241re_set_syntax (syntax)
1242 reg_syntax_t syntax;
1243{
1244 reg_syntax_t ret = re_syntax_options;
5e69f11e 1245
fa9a63c5
RM
1246 re_syntax_options = syntax;
1247 return ret;
1248}
c0f9ea08 1249WEAK_ALIAS (__re_set_syntax, re_set_syntax)
fa9a63c5
RM
1250\f
1251/* This table gives an error message for each of the error codes listed
4bb91c68 1252 in regex.h. Obviously the order here has to be same as there.
fa9a63c5 1253 POSIX doesn't require that we do anything for REG_NOERROR,
4bb91c68 1254 but why not be nice? */
fa9a63c5
RM
1255
1256static const char *re_error_msgid[] =
5e69f11e
RM
1257 {
1258 gettext_noop ("Success"), /* REG_NOERROR */
1259 gettext_noop ("No match"), /* REG_NOMATCH */
1260 gettext_noop ("Invalid regular expression"), /* REG_BADPAT */
1261 gettext_noop ("Invalid collation character"), /* REG_ECOLLATE */
1262 gettext_noop ("Invalid character class name"), /* REG_ECTYPE */
1263 gettext_noop ("Trailing backslash"), /* REG_EESCAPE */
1264 gettext_noop ("Invalid back reference"), /* REG_ESUBREG */
1265 gettext_noop ("Unmatched [ or [^"), /* REG_EBRACK */
1266 gettext_noop ("Unmatched ( or \\("), /* REG_EPAREN */
1267 gettext_noop ("Unmatched \\{"), /* REG_EBRACE */
1268 gettext_noop ("Invalid content of \\{\\}"), /* REG_BADBR */
1269 gettext_noop ("Invalid range end"), /* REG_ERANGE */
1270 gettext_noop ("Memory exhausted"), /* REG_ESPACE */
1271 gettext_noop ("Invalid preceding regular expression"), /* REG_BADRPT */
1272 gettext_noop ("Premature end of regular expression"), /* REG_EEND */
1273 gettext_noop ("Regular expression too big"), /* REG_ESIZE */
1274 gettext_noop ("Unmatched ) or \\)"), /* REG_ERPAREN */
fa9a63c5
RM
1275 };
1276\f
4bb91c68 1277/* Avoiding alloca during matching, to placate r_alloc. */
fa9a63c5
RM
1278
1279/* Define MATCH_MAY_ALLOCATE unless we need to make sure that the
1280 searching and matching functions should not call alloca. On some
1281 systems, alloca is implemented in terms of malloc, and if we're
1282 using the relocating allocator routines, then malloc could cause a
1283 relocation, which might (if the strings being searched are in the
1284 ralloc heap) shift the data out from underneath the regexp
1285 routines.
1286
5e69f11e 1287 Here's another reason to avoid allocation: Emacs
fa9a63c5
RM
1288 processes input from X in a signal handler; processing X input may
1289 call malloc; if input arrives while a matching routine is calling
1290 malloc, then we're scrod. But Emacs can't just block input while
1291 calling matching routines; then we don't notice interrupts when
1292 they come in. So, Emacs blocks input around all regexp calls
1293 except the matching calls, which it leaves unprotected, in the
1294 faith that they will not malloc. */
1295
1296/* Normally, this is fine. */
1297#define MATCH_MAY_ALLOCATE
1298
1299/* When using GNU C, we are not REALLY using the C alloca, no matter
1300 what config.h may say. So don't take precautions for it. */
1301#ifdef __GNUC__
0b32bf0e 1302# undef C_ALLOCA
fa9a63c5
RM
1303#endif
1304
1305/* The match routines may not allocate if (1) they would do it with malloc
1306 and (2) it's not safe for them to use malloc.
1307 Note that if REL_ALLOC is defined, matching would not use malloc for the
1308 failure stack, but we would still use it for the register vectors;
4bb91c68 1309 so REL_ALLOC should not affect this. */
0b32bf0e
SM
1310#if (defined C_ALLOCA || defined REGEX_MALLOC) && defined emacs
1311# undef MATCH_MAY_ALLOCATE
fa9a63c5
RM
1312#endif
1313
1314\f
1315/* Failure stack declarations and macros; both re_compile_fastmap and
1316 re_match_2 use a failure stack. These have to be macros because of
1317 REGEX_ALLOCATE_STACK. */
5e69f11e 1318
fa9a63c5 1319
320a2a73 1320/* Approximate number of failure points for which to initially allocate space
fa9a63c5
RM
1321 when matching. If this number is exceeded, we allocate more
1322 space, so it is not a hard limit. */
1323#ifndef INIT_FAILURE_ALLOC
0b32bf0e 1324# define INIT_FAILURE_ALLOC 20
fa9a63c5
RM
1325#endif
1326
1327/* Roughly the maximum number of failure points on the stack. Would be
320a2a73 1328 exactly that if always used TYPICAL_FAILURE_SIZE items each time we failed.
fa9a63c5 1329 This is a variable only so users of regex can assign to it; we never
ada30c0e
SM
1330 change it ourselves. We always multiply it by TYPICAL_FAILURE_SIZE
1331 before using it, so it should probably be a byte-count instead. */
c0f9ea08
SM
1332# if defined MATCH_MAY_ALLOCATE
1333/* Note that 4400 was enough to cause a crash on Alpha OSF/1,
320a2a73
KH
1334 whose default stack limit is 2mb. In order for a larger
1335 value to work reliably, you have to try to make it accord
1336 with the process stack limit. */
c0f9ea08
SM
1337size_t re_max_failures = 40000;
1338# else
1339size_t re_max_failures = 4000;
1340# endif
fa9a63c5
RM
1341
1342union fail_stack_elt
1343{
01618498 1344 re_char *pointer;
c0f9ea08
SM
1345 /* This should be the biggest `int' that's no bigger than a pointer. */
1346 long integer;
fa9a63c5
RM
1347};
1348
1349typedef union fail_stack_elt fail_stack_elt_t;
1350
1351typedef struct
1352{
1353 fail_stack_elt_t *stack;
c0f9ea08
SM
1354 size_t size;
1355 size_t avail; /* Offset of next open position. */
1356 size_t frame; /* Offset of the cur constructed frame. */
fa9a63c5
RM
1357} fail_stack_type;
1358
505bde11 1359#define FAIL_STACK_EMPTY() (fail_stack.frame == 0)
fa9a63c5
RM
1360#define FAIL_STACK_FULL() (fail_stack.avail == fail_stack.size)
1361
1362
1363/* Define macros to initialize and free the failure stack.
1364 Do `return -2' if the alloc fails. */
1365
1366#ifdef MATCH_MAY_ALLOCATE
0b32bf0e 1367# define INIT_FAIL_STACK() \
fa9a63c5
RM
1368 do { \
1369 fail_stack.stack = (fail_stack_elt_t *) \
320a2a73
KH
1370 REGEX_ALLOCATE_STACK (INIT_FAILURE_ALLOC * TYPICAL_FAILURE_SIZE \
1371 * sizeof (fail_stack_elt_t)); \
fa9a63c5
RM
1372 \
1373 if (fail_stack.stack == NULL) \
1374 return -2; \
1375 \
1376 fail_stack.size = INIT_FAILURE_ALLOC; \
1377 fail_stack.avail = 0; \
505bde11 1378 fail_stack.frame = 0; \
fa9a63c5
RM
1379 } while (0)
1380
0b32bf0e 1381# define RESET_FAIL_STACK() REGEX_FREE_STACK (fail_stack.stack)
fa9a63c5 1382#else
0b32bf0e 1383# define INIT_FAIL_STACK() \
fa9a63c5
RM
1384 do { \
1385 fail_stack.avail = 0; \
505bde11 1386 fail_stack.frame = 0; \
fa9a63c5
RM
1387 } while (0)
1388
0b32bf0e 1389# define RESET_FAIL_STACK() ((void)0)
fa9a63c5
RM
1390#endif
1391
1392
320a2a73
KH
1393/* Double the size of FAIL_STACK, up to a limit
1394 which allows approximately `re_max_failures' items.
fa9a63c5
RM
1395
1396 Return 1 if succeeds, and 0 if either ran out of memory
5e69f11e
RM
1397 allocating space for it or it was already too large.
1398
4bb91c68 1399 REGEX_REALLOCATE_STACK requires `destination' be declared. */
fa9a63c5 1400
320a2a73
KH
1401/* Factor to increase the failure stack size by
1402 when we increase it.
1403 This used to be 2, but 2 was too wasteful
1404 because the old discarded stacks added up to as much space
1405 were as ultimate, maximum-size stack. */
1406#define FAIL_STACK_GROWTH_FACTOR 4
1407
1408#define GROW_FAIL_STACK(fail_stack) \
eead07d6
KH
1409 (((fail_stack).size * sizeof (fail_stack_elt_t) \
1410 >= re_max_failures * TYPICAL_FAILURE_SIZE) \
fa9a63c5 1411 ? 0 \
320a2a73
KH
1412 : ((fail_stack).stack \
1413 = (fail_stack_elt_t *) \
25fe55af
RS
1414 REGEX_REALLOCATE_STACK ((fail_stack).stack, \
1415 (fail_stack).size * sizeof (fail_stack_elt_t), \
320a2a73
KH
1416 MIN (re_max_failures * TYPICAL_FAILURE_SIZE, \
1417 ((fail_stack).size * sizeof (fail_stack_elt_t) \
1418 * FAIL_STACK_GROWTH_FACTOR))), \
fa9a63c5
RM
1419 \
1420 (fail_stack).stack == NULL \
1421 ? 0 \
6453db45
KH
1422 : ((fail_stack).size \
1423 = (MIN (re_max_failures * TYPICAL_FAILURE_SIZE, \
1424 ((fail_stack).size * sizeof (fail_stack_elt_t) \
1425 * FAIL_STACK_GROWTH_FACTOR)) \
1426 / sizeof (fail_stack_elt_t)), \
25fe55af 1427 1)))
fa9a63c5
RM
1428
1429
fa9a63c5
RM
1430/* Push a pointer value onto the failure stack.
1431 Assumes the variable `fail_stack'. Probably should only
4bb91c68 1432 be called from within `PUSH_FAILURE_POINT'. */
fa9a63c5 1433#define PUSH_FAILURE_POINTER(item) \
01618498 1434 fail_stack.stack[fail_stack.avail++].pointer = (item)
fa9a63c5
RM
1435
1436/* This pushes an integer-valued item onto the failure stack.
1437 Assumes the variable `fail_stack'. Probably should only
4bb91c68 1438 be called from within `PUSH_FAILURE_POINT'. */
fa9a63c5
RM
1439#define PUSH_FAILURE_INT(item) \
1440 fail_stack.stack[fail_stack.avail++].integer = (item)
1441
1442/* Push a fail_stack_elt_t value onto the failure stack.
1443 Assumes the variable `fail_stack'. Probably should only
4bb91c68 1444 be called from within `PUSH_FAILURE_POINT'. */
fa9a63c5
RM
1445#define PUSH_FAILURE_ELT(item) \
1446 fail_stack.stack[fail_stack.avail++] = (item)
1447
1448/* These three POP... operations complement the three PUSH... operations.
1449 All assume that `fail_stack' is nonempty. */
1450#define POP_FAILURE_POINTER() fail_stack.stack[--fail_stack.avail].pointer
1451#define POP_FAILURE_INT() fail_stack.stack[--fail_stack.avail].integer
1452#define POP_FAILURE_ELT() fail_stack.stack[--fail_stack.avail]
1453
505bde11
SM
1454/* Individual items aside from the registers. */
1455#define NUM_NONREG_ITEMS 3
1456
1457/* Used to examine the stack (to detect infinite loops). */
1458#define FAILURE_PAT(h) fail_stack.stack[(h) - 1].pointer
66f0296e 1459#define FAILURE_STR(h) (fail_stack.stack[(h) - 2].pointer)
505bde11
SM
1460#define NEXT_FAILURE_HANDLE(h) fail_stack.stack[(h) - 3].integer
1461#define TOP_FAILURE_HANDLE() fail_stack.frame
fa9a63c5
RM
1462
1463
505bde11
SM
1464#define ENSURE_FAIL_STACK(space) \
1465while (REMAINING_AVAIL_SLOTS <= space) { \
1466 if (!GROW_FAIL_STACK (fail_stack)) \
1467 return -2; \
1468 DEBUG_PRINT2 ("\n Doubled stack; size now: %d\n", (fail_stack).size);\
1469 DEBUG_PRINT2 (" slots available: %d\n", REMAINING_AVAIL_SLOTS);\
1470}
1471
1472/* Push register NUM onto the stack. */
1473#define PUSH_FAILURE_REG(num) \
1474do { \
1475 char *destination; \
1476 ENSURE_FAIL_STACK(3); \
1477 DEBUG_PRINT4 (" Push reg %d (spanning %p -> %p)\n", \
1478 num, regstart[num], regend[num]); \
1479 PUSH_FAILURE_POINTER (regstart[num]); \
1480 PUSH_FAILURE_POINTER (regend[num]); \
1481 PUSH_FAILURE_INT (num); \
1482} while (0)
1483
01618498
SM
1484/* Change the counter's value to VAL, but make sure that it will
1485 be reset when backtracking. */
1486#define PUSH_NUMBER(ptr,val) \
dc1e502d
SM
1487do { \
1488 char *destination; \
1489 int c; \
1490 ENSURE_FAIL_STACK(3); \
1491 EXTRACT_NUMBER (c, ptr); \
01618498 1492 DEBUG_PRINT4 (" Push number %p = %d -> %d\n", ptr, c, val); \
dc1e502d
SM
1493 PUSH_FAILURE_INT (c); \
1494 PUSH_FAILURE_POINTER (ptr); \
1495 PUSH_FAILURE_INT (-1); \
01618498 1496 STORE_NUMBER (ptr, val); \
dc1e502d
SM
1497} while (0)
1498
505bde11 1499/* Pop a saved register off the stack. */
dc1e502d 1500#define POP_FAILURE_REG_OR_COUNT() \
505bde11
SM
1501do { \
1502 int reg = POP_FAILURE_INT (); \
dc1e502d
SM
1503 if (reg == -1) \
1504 { \
1505 /* It's a counter. */ \
6dcf2d0e
SM
1506 /* Here, we discard `const', making re_match non-reentrant. */ \
1507 unsigned char *ptr = (unsigned char*) POP_FAILURE_POINTER (); \
dc1e502d
SM
1508 reg = POP_FAILURE_INT (); \
1509 STORE_NUMBER (ptr, reg); \
1510 DEBUG_PRINT3 (" Pop counter %p = %d\n", ptr, reg); \
1511 } \
1512 else \
1513 { \
1514 regend[reg] = POP_FAILURE_POINTER (); \
1515 regstart[reg] = POP_FAILURE_POINTER (); \
1516 DEBUG_PRINT4 (" Pop reg %d (spanning %p -> %p)\n", \
1517 reg, regstart[reg], regend[reg]); \
1518 } \
505bde11
SM
1519} while (0)
1520
1521/* Check that we are not stuck in an infinite loop. */
1522#define CHECK_INFINITE_LOOP(pat_cur, string_place) \
1523do { \
1524 int failure = TOP_FAILURE_HANDLE(); \
1525 /* Check for infinite matching loops */ \
1526 while (failure > 0 && \
1527 (FAILURE_STR (failure) == string_place \
1528 || FAILURE_STR (failure) == NULL)) \
1529 { \
1530 assert (FAILURE_PAT (failure) >= bufp->buffer \
66f0296e 1531 && FAILURE_PAT (failure) <= bufp->buffer + bufp->used); \
505bde11
SM
1532 if (FAILURE_PAT (failure) == pat_cur) \
1533 goto fail; \
66f0296e 1534 DEBUG_PRINT2 (" Other pattern: %p\n", FAILURE_PAT (failure)); \
505bde11
SM
1535 failure = NEXT_FAILURE_HANDLE(failure); \
1536 } \
1537 DEBUG_PRINT2 (" Other string: %p\n", FAILURE_STR (failure)); \
1538} while (0)
1539
fa9a63c5 1540/* Push the information about the state we will need
5e69f11e
RM
1541 if we ever fail back to it.
1542
505bde11 1543 Requires variables fail_stack, regstart, regend and
320a2a73 1544 num_regs be declared. GROW_FAIL_STACK requires `destination' be
fa9a63c5 1545 declared.
5e69f11e 1546
fa9a63c5
RM
1547 Does `return FAILURE_CODE' if runs out of memory. */
1548
505bde11
SM
1549#define PUSH_FAILURE_POINT(pattern, string_place) \
1550do { \
1551 char *destination; \
1552 /* Must be int, so when we don't save any registers, the arithmetic \
1553 of 0 + -1 isn't done as unsigned. */ \
1554 \
505bde11 1555 DEBUG_STATEMENT (nfailure_points_pushed++); \
4bb91c68 1556 DEBUG_PRINT1 ("\nPUSH_FAILURE_POINT:\n"); \
505bde11
SM
1557 DEBUG_PRINT2 (" Before push, next avail: %d\n", (fail_stack).avail); \
1558 DEBUG_PRINT2 (" size: %d\n", (fail_stack).size);\
1559 \
1560 ENSURE_FAIL_STACK (NUM_NONREG_ITEMS); \
1561 \
1562 DEBUG_PRINT1 ("\n"); \
1563 \
1564 DEBUG_PRINT2 (" Push frame index: %d\n", fail_stack.frame); \
1565 PUSH_FAILURE_INT (fail_stack.frame); \
1566 \
1567 DEBUG_PRINT2 (" Push string %p: `", string_place); \
1568 DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, size2);\
1569 DEBUG_PRINT1 ("'\n"); \
1570 PUSH_FAILURE_POINTER (string_place); \
1571 \
1572 DEBUG_PRINT2 (" Push pattern %p: ", pattern); \
1573 DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern, pend); \
1574 PUSH_FAILURE_POINTER (pattern); \
1575 \
1576 /* Close the frame by moving the frame pointer past it. */ \
1577 fail_stack.frame = fail_stack.avail; \
1578} while (0)
fa9a63c5 1579
320a2a73
KH
1580/* Estimate the size of data pushed by a typical failure stack entry.
1581 An estimate is all we need, because all we use this for
1582 is to choose a limit for how big to make the failure stack. */
ada30c0e 1583/* BEWARE, the value `20' is hard-coded in emacs.c:main(). */
320a2a73 1584#define TYPICAL_FAILURE_SIZE 20
fa9a63c5 1585
fa9a63c5
RM
1586/* How many items can still be added to the stack without overflowing it. */
1587#define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
1588
1589
1590/* Pops what PUSH_FAIL_STACK pushes.
1591
1592 We restore into the parameters, all of which should be lvalues:
1593 STR -- the saved data position.
1594 PAT -- the saved pattern position.
fa9a63c5 1595 REGSTART, REGEND -- arrays of string positions.
5e69f11e 1596
fa9a63c5 1597 Also assumes the variables `fail_stack' and (if debugging), `bufp',
25fe55af 1598 `pend', `string1', `size1', `string2', and `size2'. */
fa9a63c5 1599
505bde11
SM
1600#define POP_FAILURE_POINT(str, pat) \
1601do { \
fa9a63c5
RM
1602 assert (!FAIL_STACK_EMPTY ()); \
1603 \
1604 /* Remove failure points and point to how many regs pushed. */ \
1605 DEBUG_PRINT1 ("POP_FAILURE_POINT:\n"); \
1606 DEBUG_PRINT2 (" Before pop, next avail: %d\n", fail_stack.avail); \
25fe55af 1607 DEBUG_PRINT2 (" size: %d\n", fail_stack.size); \
fa9a63c5 1608 \
505bde11
SM
1609 /* Pop the saved registers. */ \
1610 while (fail_stack.frame < fail_stack.avail) \
dc1e502d 1611 POP_FAILURE_REG_OR_COUNT (); \
fa9a63c5 1612 \
01618498 1613 pat = POP_FAILURE_POINTER (); \
505bde11
SM
1614 DEBUG_PRINT2 (" Popping pattern %p: ", pat); \
1615 DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend); \
fa9a63c5
RM
1616 \
1617 /* If the saved string location is NULL, it came from an \
1618 on_failure_keep_string_jump opcode, and we want to throw away the \
1619 saved NULL, thus retaining our current position in the string. */ \
01618498 1620 str = POP_FAILURE_POINTER (); \
505bde11 1621 DEBUG_PRINT2 (" Popping string %p: `", str); \
fa9a63c5
RM
1622 DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2); \
1623 DEBUG_PRINT1 ("'\n"); \
1624 \
505bde11
SM
1625 fail_stack.frame = POP_FAILURE_INT (); \
1626 DEBUG_PRINT2 (" Popping frame index: %d\n", fail_stack.frame); \
fa9a63c5 1627 \
505bde11
SM
1628 assert (fail_stack.avail >= 0); \
1629 assert (fail_stack.frame <= fail_stack.avail); \
fa9a63c5 1630 \
fa9a63c5 1631 DEBUG_STATEMENT (nfailure_points_popped++); \
505bde11 1632} while (0) /* POP_FAILURE_POINT */
fa9a63c5
RM
1633
1634
1635\f
fa9a63c5 1636/* Registers are set to a sentinel when they haven't yet matched. */
4bb91c68 1637#define REG_UNSET(e) ((e) == NULL)
fa9a63c5
RM
1638\f
1639/* Subroutine declarations and macros for regex_compile. */
1640
4bb91c68
SM
1641static reg_errcode_t regex_compile _RE_ARGS ((re_char *pattern, size_t size,
1642 reg_syntax_t syntax,
1643 struct re_pattern_buffer *bufp));
1644static void store_op1 _RE_ARGS ((re_opcode_t op, unsigned char *loc, int arg));
1645static void store_op2 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
1646 int arg1, int arg2));
1647static void insert_op1 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
1648 int arg, unsigned char *end));
1649static void insert_op2 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
1650 int arg1, int arg2, unsigned char *end));
01618498
SM
1651static boolean at_begline_loc_p _RE_ARGS ((re_char *pattern,
1652 re_char *p,
4bb91c68 1653 reg_syntax_t syntax));
01618498
SM
1654static boolean at_endline_loc_p _RE_ARGS ((re_char *p,
1655 re_char *pend,
4bb91c68 1656 reg_syntax_t syntax));
01618498
SM
1657static re_char *skip_one_char _RE_ARGS ((re_char *p));
1658static int analyse_first _RE_ARGS ((re_char *p, re_char *pend,
4bb91c68 1659 char *fastmap, const int multibyte));
fa9a63c5 1660
5e69f11e 1661/* Fetch the next character in the uncompiled pattern---translating it
01618498 1662 if necessary. */
fa9a63c5 1663#define PATFETCH(c) \
99633e97
SM
1664 do { \
1665 PATFETCH_RAW (c); \
2d1675e4 1666 c = TRANSLATE (c); \
fa9a63c5
RM
1667 } while (0)
1668
1669/* Fetch the next character in the uncompiled pattern, with no
4bb91c68 1670 translation. */
fa9a63c5 1671#define PATFETCH_RAW(c) \
2d1675e4
SM
1672 do { \
1673 int len; \
1674 if (p == pend) return REG_EEND; \
1675 c = RE_STRING_CHAR_AND_LENGTH (p, pend - p, len); \
1676 p += len; \
fa9a63c5
RM
1677 } while (0)
1678
fa9a63c5
RM
1679
1680/* If `translate' is non-null, return translate[D], else just D. We
1681 cast the subscript to translate because some data is declared as
1682 `char *', to avoid warnings when a string constant is passed. But
1683 when we use a character as a subscript we must make it unsigned. */
6676cb1c 1684#ifndef TRANSLATE
0b32bf0e 1685# define TRANSLATE(d) \
66f0296e 1686 (RE_TRANSLATE_P (translate) ? RE_TRANSLATE (translate, (d)) : (d))
6676cb1c 1687#endif
fa9a63c5
RM
1688
1689
1690/* Macros for outputting the compiled pattern into `buffer'. */
1691
1692/* If the buffer isn't allocated when it comes in, use this. */
1693#define INIT_BUF_SIZE 32
1694
4bb91c68 1695/* Make sure we have at least N more bytes of space in buffer. */
fa9a63c5 1696#define GET_BUFFER_SPACE(n) \
01618498 1697 while ((size_t) (b - bufp->buffer + (n)) > bufp->allocated) \
fa9a63c5
RM
1698 EXTEND_BUFFER ()
1699
1700/* Make sure we have one more byte of buffer space and then add C to it. */
1701#define BUF_PUSH(c) \
1702 do { \
1703 GET_BUFFER_SPACE (1); \
1704 *b++ = (unsigned char) (c); \
1705 } while (0)
1706
1707
1708/* Ensure we have two more bytes of buffer space and then append C1 and C2. */
1709#define BUF_PUSH_2(c1, c2) \
1710 do { \
1711 GET_BUFFER_SPACE (2); \
1712 *b++ = (unsigned char) (c1); \
1713 *b++ = (unsigned char) (c2); \
1714 } while (0)
1715
1716
4bb91c68 1717/* As with BUF_PUSH_2, except for three bytes. */
fa9a63c5
RM
1718#define BUF_PUSH_3(c1, c2, c3) \
1719 do { \
1720 GET_BUFFER_SPACE (3); \
1721 *b++ = (unsigned char) (c1); \
1722 *b++ = (unsigned char) (c2); \
1723 *b++ = (unsigned char) (c3); \
1724 } while (0)
1725
1726
1727/* Store a jump with opcode OP at LOC to location TO. We store a
4bb91c68 1728 relative address offset by the three bytes the jump itself occupies. */
fa9a63c5
RM
1729#define STORE_JUMP(op, loc, to) \
1730 store_op1 (op, loc, (to) - (loc) - 3)
1731
1732/* Likewise, for a two-argument jump. */
1733#define STORE_JUMP2(op, loc, to, arg) \
1734 store_op2 (op, loc, (to) - (loc) - 3, arg)
1735
4bb91c68 1736/* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */
fa9a63c5
RM
1737#define INSERT_JUMP(op, loc, to) \
1738 insert_op1 (op, loc, (to) - (loc) - 3, b)
1739
1740/* Like `STORE_JUMP2', but for inserting. Assume `b' is the buffer end. */
1741#define INSERT_JUMP2(op, loc, to, arg) \
1742 insert_op2 (op, loc, (to) - (loc) - 3, arg, b)
1743
1744
1745/* This is not an arbitrary limit: the arguments which represent offsets
4bb91c68 1746 into the pattern are two bytes long. So if 2^16 bytes turns out to
fa9a63c5 1747 be too small, many things would have to change. */
4bb91c68
SM
1748/* Any other compiler which, like MSC, has allocation limit below 2^16
1749 bytes will have to use approach similar to what was done below for
1750 MSC and drop MAX_BUF_SIZE a bit. Otherwise you may end up
1751 reallocating to 0 bytes. Such thing is not going to work too well.
1752 You have been warned!! */
1753#if defined _MSC_VER && !defined WIN32
1754/* Microsoft C 16-bit versions limit malloc to approx 65512 bytes. */
1755# define MAX_BUF_SIZE 65500L
1756#else
1757# define MAX_BUF_SIZE (1L << 16)
1758#endif
fa9a63c5
RM
1759
1760/* Extend the buffer by twice its current size via realloc and
1761 reset the pointers that pointed into the old block to point to the
1762 correct places in the new one. If extending the buffer results in it
4bb91c68
SM
1763 being larger than MAX_BUF_SIZE, then flag memory exhausted. */
1764#if __BOUNDED_POINTERS__
1765# define SET_HIGH_BOUND(P) (__ptrhigh (P) = __ptrlow (P) + bufp->allocated)
1766# define MOVE_BUFFER_POINTER(P) \
1767 (__ptrlow (P) += incr, SET_HIGH_BOUND (P), __ptrvalue (P) += incr)
1768# define ELSE_EXTEND_BUFFER_HIGH_BOUND \
1769 else \
1770 { \
1771 SET_HIGH_BOUND (b); \
1772 SET_HIGH_BOUND (begalt); \
1773 if (fixup_alt_jump) \
1774 SET_HIGH_BOUND (fixup_alt_jump); \
1775 if (laststart) \
1776 SET_HIGH_BOUND (laststart); \
1777 if (pending_exact) \
1778 SET_HIGH_BOUND (pending_exact); \
1779 }
1780#else
1781# define MOVE_BUFFER_POINTER(P) (P) += incr
1782# define ELSE_EXTEND_BUFFER_HIGH_BOUND
1783#endif
fa9a63c5 1784#define EXTEND_BUFFER() \
25fe55af 1785 do { \
01618498 1786 re_char *old_buffer = bufp->buffer; \
25fe55af 1787 if (bufp->allocated == MAX_BUF_SIZE) \
fa9a63c5
RM
1788 return REG_ESIZE; \
1789 bufp->allocated <<= 1; \
1790 if (bufp->allocated > MAX_BUF_SIZE) \
25fe55af 1791 bufp->allocated = MAX_BUF_SIZE; \
01618498 1792 RETALLOC (bufp->buffer, bufp->allocated, unsigned char); \
fa9a63c5
RM
1793 if (bufp->buffer == NULL) \
1794 return REG_ESPACE; \
1795 /* If the buffer moved, move all the pointers into it. */ \
1796 if (old_buffer != bufp->buffer) \
1797 { \
4bb91c68
SM
1798 int incr = bufp->buffer - old_buffer; \
1799 MOVE_BUFFER_POINTER (b); \
1800 MOVE_BUFFER_POINTER (begalt); \
25fe55af 1801 if (fixup_alt_jump) \
4bb91c68 1802 MOVE_BUFFER_POINTER (fixup_alt_jump); \
25fe55af 1803 if (laststart) \
4bb91c68 1804 MOVE_BUFFER_POINTER (laststart); \
25fe55af 1805 if (pending_exact) \
4bb91c68 1806 MOVE_BUFFER_POINTER (pending_exact); \
fa9a63c5 1807 } \
4bb91c68 1808 ELSE_EXTEND_BUFFER_HIGH_BOUND \
fa9a63c5
RM
1809 } while (0)
1810
1811
1812/* Since we have one byte reserved for the register number argument to
1813 {start,stop}_memory, the maximum number of groups we can report
1814 things about is what fits in that byte. */
1815#define MAX_REGNUM 255
1816
1817/* But patterns can have more than `MAX_REGNUM' registers. We just
1818 ignore the excess. */
1819typedef unsigned regnum_t;
1820
1821
1822/* Macros for the compile stack. */
1823
1824/* Since offsets can go either forwards or backwards, this type needs to
4bb91c68
SM
1825 be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */
1826/* int may be not enough when sizeof(int) == 2. */
1827typedef long pattern_offset_t;
fa9a63c5
RM
1828
1829typedef struct
1830{
1831 pattern_offset_t begalt_offset;
1832 pattern_offset_t fixup_alt_jump;
5e69f11e 1833 pattern_offset_t laststart_offset;
fa9a63c5
RM
1834 regnum_t regnum;
1835} compile_stack_elt_t;
1836
1837
1838typedef struct
1839{
1840 compile_stack_elt_t *stack;
1841 unsigned size;
1842 unsigned avail; /* Offset of next open position. */
1843} compile_stack_type;
1844
1845
1846#define INIT_COMPILE_STACK_SIZE 32
1847
1848#define COMPILE_STACK_EMPTY (compile_stack.avail == 0)
1849#define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size)
1850
4bb91c68 1851/* The next available element. */
fa9a63c5
RM
1852#define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
1853
1854
b18215fc
RS
1855/* Structure to manage work area for range table. */
1856struct range_table_work_area
1857{
1858 int *table; /* actual work area. */
1859 int allocated; /* allocated size for work area in bytes. */
25fe55af 1860 int used; /* actually used size in words. */
96cc36cc 1861 int bits; /* flag to record character classes */
b18215fc
RS
1862};
1863
1864/* Make sure that WORK_AREA can hold more N multibyte characters. */
1865#define EXTEND_RANGE_TABLE_WORK_AREA(work_area, n) \
1866 do { \
1867 if (((work_area).used + (n)) * sizeof (int) > (work_area).allocated) \
1868 { \
1869 (work_area).allocated += 16 * sizeof (int); \
1870 if ((work_area).table) \
1871 (work_area).table \
1872 = (int *) realloc ((work_area).table, (work_area).allocated); \
1873 else \
1874 (work_area).table \
1875 = (int *) malloc ((work_area).allocated); \
1876 if ((work_area).table == 0) \
1877 FREE_STACK_RETURN (REG_ESPACE); \
1878 } \
1879 } while (0)
1880
96cc36cc
RS
1881#define SET_RANGE_TABLE_WORK_AREA_BIT(work_area, bit) \
1882 (work_area).bits |= (bit)
1883
14473664
SM
1884/* Bits used to implement the multibyte-part of the various character classes
1885 such as [:alnum:] in a charset's range table. */
1886#define BIT_WORD 0x1
1887#define BIT_LOWER 0x2
1888#define BIT_PUNCT 0x4
1889#define BIT_SPACE 0x8
1890#define BIT_UPPER 0x10
1891#define BIT_MULTIBYTE 0x20
96cc36cc 1892
b18215fc
RS
1893/* Set a range (RANGE_START, RANGE_END) to WORK_AREA. */
1894#define SET_RANGE_TABLE_WORK_AREA(work_area, range_start, range_end) \
1895 do { \
1896 EXTEND_RANGE_TABLE_WORK_AREA ((work_area), 2); \
1897 (work_area).table[(work_area).used++] = (range_start); \
1898 (work_area).table[(work_area).used++] = (range_end); \
1899 } while (0)
1900
25fe55af 1901/* Free allocated memory for WORK_AREA. */
b18215fc
RS
1902#define FREE_RANGE_TABLE_WORK_AREA(work_area) \
1903 do { \
1904 if ((work_area).table) \
1905 free ((work_area).table); \
1906 } while (0)
1907
96cc36cc 1908#define CLEAR_RANGE_TABLE_WORK_USED(work_area) ((work_area).used = 0, (work_area).bits = 0)
b18215fc 1909#define RANGE_TABLE_WORK_USED(work_area) ((work_area).used)
96cc36cc 1910#define RANGE_TABLE_WORK_BITS(work_area) ((work_area).bits)
b18215fc
RS
1911#define RANGE_TABLE_WORK_ELT(work_area, i) ((work_area).table[i])
1912
1913
fa9a63c5 1914/* Set the bit for character C in a list. */
01618498 1915#define SET_LIST_BIT(c) (b[((c)) / BYTEWIDTH] |= 1 << ((c) % BYTEWIDTH))
fa9a63c5
RM
1916
1917
1918/* Get the next unsigned number in the uncompiled pattern. */
25fe55af 1919#define GET_UNSIGNED_NUMBER(num) \
99633e97 1920 do { if (p != pend) \
fa9a63c5 1921 { \
25fe55af 1922 PATFETCH (c); \
4bb91c68 1923 while ('0' <= c && c <= '9') \
25fe55af
RS
1924 { \
1925 if (num < 0) \
1926 num = 0; \
1927 num = num * 10 + c - '0'; \
1928 if (p == pend) \
1929 break; \
1930 PATFETCH (c); \
1931 } \
1932 } \
99633e97 1933 } while (0)
fa9a63c5 1934
a0ad02f7 1935#if WIDE_CHAR_SUPPORT
14473664
SM
1936/* The GNU C library provides support for user-defined character classes
1937 and the functions from ISO C amendement 1. */
1938# ifdef CHARCLASS_NAME_MAX
1939# define CHAR_CLASS_MAX_LENGTH CHARCLASS_NAME_MAX
1940# else
1941/* This shouldn't happen but some implementation might still have this
1942 problem. Use a reasonable default value. */
1943# define CHAR_CLASS_MAX_LENGTH 256
1944# endif
1945typedef wctype_t re_wctype_t;
01618498 1946typedef wchar_t re_wchar_t;
14473664
SM
1947# define re_wctype wctype
1948# define re_iswctype iswctype
1949# define re_wctype_to_bit(cc) 0
1950#else
1951# define CHAR_CLASS_MAX_LENGTH 9 /* Namely, `multibyte'. */
1952# define btowc(c) c
1953
01618498 1954/* Character classes. */
14473664
SM
1955typedef enum { RECC_ERROR = 0,
1956 RECC_ALNUM, RECC_ALPHA, RECC_WORD,
1957 RECC_GRAPH, RECC_PRINT,
1958 RECC_LOWER, RECC_UPPER,
1959 RECC_PUNCT, RECC_CNTRL,
1960 RECC_DIGIT, RECC_XDIGIT,
1961 RECC_BLANK, RECC_SPACE,
1962 RECC_MULTIBYTE, RECC_NONASCII,
1963 RECC_ASCII, RECC_UNIBYTE
1964} re_wctype_t;
1965
01618498
SM
1966typedef int re_wchar_t;
1967
14473664
SM
1968/* Map a string to the char class it names (if any). */
1969static re_wctype_t
ada30c0e
SM
1970re_wctype (str)
1971 re_char *str;
14473664 1972{
ada30c0e 1973 const char *string = str;
14473664
SM
1974 if (STREQ (string, "alnum")) return RECC_ALNUM;
1975 else if (STREQ (string, "alpha")) return RECC_ALPHA;
1976 else if (STREQ (string, "word")) return RECC_WORD;
1977 else if (STREQ (string, "ascii")) return RECC_ASCII;
1978 else if (STREQ (string, "nonascii")) return RECC_NONASCII;
1979 else if (STREQ (string, "graph")) return RECC_GRAPH;
1980 else if (STREQ (string, "lower")) return RECC_LOWER;
1981 else if (STREQ (string, "print")) return RECC_PRINT;
1982 else if (STREQ (string, "punct")) return RECC_PUNCT;
1983 else if (STREQ (string, "space")) return RECC_SPACE;
1984 else if (STREQ (string, "upper")) return RECC_UPPER;
1985 else if (STREQ (string, "unibyte")) return RECC_UNIBYTE;
1986 else if (STREQ (string, "multibyte")) return RECC_MULTIBYTE;
1987 else if (STREQ (string, "digit")) return RECC_DIGIT;
1988 else if (STREQ (string, "xdigit")) return RECC_XDIGIT;
1989 else if (STREQ (string, "cntrl")) return RECC_CNTRL;
1990 else if (STREQ (string, "blank")) return RECC_BLANK;
1991 else return 0;
1992}
1993
1994/* True iff CH is in the char class CC. */
1995static boolean
1996re_iswctype (ch, cc)
1997 int ch;
1998 re_wctype_t cc;
1999{
2000 switch (cc)
2001 {
0cdd06f8
SM
2002 case RECC_ALNUM: return ISALNUM (ch);
2003 case RECC_ALPHA: return ISALPHA (ch);
2004 case RECC_BLANK: return ISBLANK (ch);
2005 case RECC_CNTRL: return ISCNTRL (ch);
2006 case RECC_DIGIT: return ISDIGIT (ch);
2007 case RECC_GRAPH: return ISGRAPH (ch);
2008 case RECC_LOWER: return ISLOWER (ch);
2009 case RECC_PRINT: return ISPRINT (ch);
2010 case RECC_PUNCT: return ISPUNCT (ch);
2011 case RECC_SPACE: return ISSPACE (ch);
2012 case RECC_UPPER: return ISUPPER (ch);
2013 case RECC_XDIGIT: return ISXDIGIT (ch);
2014 case RECC_ASCII: return IS_REAL_ASCII (ch);
2015 case RECC_NONASCII: return !IS_REAL_ASCII (ch);
2016 case RECC_UNIBYTE: return ISUNIBYTE (ch);
2017 case RECC_MULTIBYTE: return !ISUNIBYTE (ch);
2018 case RECC_WORD: return ISWORD (ch);
2019 case RECC_ERROR: return false;
2020 default:
2021 abort();
14473664
SM
2022 }
2023}
fa9a63c5 2024
14473664
SM
2025/* Return a bit-pattern to use in the range-table bits to match multibyte
2026 chars of class CC. */
2027static int
2028re_wctype_to_bit (cc)
2029 re_wctype_t cc;
2030{
2031 switch (cc)
2032 {
2033 case RECC_NONASCII: case RECC_PRINT: case RECC_GRAPH:
0cdd06f8
SM
2034 case RECC_MULTIBYTE: return BIT_MULTIBYTE;
2035 case RECC_ALPHA: case RECC_ALNUM: case RECC_WORD: return BIT_WORD;
2036 case RECC_LOWER: return BIT_LOWER;
2037 case RECC_UPPER: return BIT_UPPER;
2038 case RECC_PUNCT: return BIT_PUNCT;
2039 case RECC_SPACE: return BIT_SPACE;
14473664 2040 case RECC_ASCII: case RECC_DIGIT: case RECC_XDIGIT: case RECC_CNTRL:
0cdd06f8
SM
2041 case RECC_BLANK: case RECC_UNIBYTE: case RECC_ERROR: return 0;
2042 default:
2043 abort();
14473664
SM
2044 }
2045}
2046#endif
99633e97 2047
5b370c2b
AI
2048/* Explicit quit checking is only used on NTemacs. */
2049#if defined WINDOWSNT && defined emacs && defined QUIT
2050extern int immediate_quit;
2051# define IMMEDIATE_QUIT_CHECK \
2052 do { \
2053 if (immediate_quit) QUIT; \
2054 } while (0)
2055#else
01618498 2056# define IMMEDIATE_QUIT_CHECK ((void)0)
99633e97 2057#endif
fa9a63c5
RM
2058\f
2059#ifndef MATCH_MAY_ALLOCATE
2060
2061/* If we cannot allocate large objects within re_match_2_internal,
2062 we make the fail stack and register vectors global.
2063 The fail stack, we grow to the maximum size when a regexp
2064 is compiled.
2065 The register vectors, we adjust in size each time we
2066 compile a regexp, according to the number of registers it needs. */
2067
2068static fail_stack_type fail_stack;
2069
2070/* Size with which the following vectors are currently allocated.
2071 That is so we can make them bigger as needed,
4bb91c68 2072 but never make them smaller. */
fa9a63c5
RM
2073static int regs_allocated_size;
2074
66f0296e
SM
2075static re_char ** regstart, ** regend;
2076static re_char **best_regstart, **best_regend;
fa9a63c5
RM
2077
2078/* Make the register vectors big enough for NUM_REGS registers,
4bb91c68 2079 but don't make them smaller. */
fa9a63c5
RM
2080
2081static
2082regex_grow_registers (num_regs)
2083 int num_regs;
2084{
2085 if (num_regs > regs_allocated_size)
2086 {
66f0296e
SM
2087 RETALLOC_IF (regstart, num_regs, re_char *);
2088 RETALLOC_IF (regend, num_regs, re_char *);
2089 RETALLOC_IF (best_regstart, num_regs, re_char *);
2090 RETALLOC_IF (best_regend, num_regs, re_char *);
fa9a63c5
RM
2091
2092 regs_allocated_size = num_regs;
2093 }
2094}
2095
2096#endif /* not MATCH_MAY_ALLOCATE */
2097\f
99633e97
SM
2098static boolean group_in_compile_stack _RE_ARGS ((compile_stack_type
2099 compile_stack,
2100 regnum_t regnum));
2101
fa9a63c5
RM
2102/* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
2103 Returns one of error codes defined in `regex.h', or zero for success.
2104
2105 Assumes the `allocated' (and perhaps `buffer') and `translate'
2106 fields are set in BUFP on entry.
2107
2108 If it succeeds, results are put in BUFP (if it returns an error, the
2109 contents of BUFP are undefined):
2110 `buffer' is the compiled pattern;
2111 `syntax' is set to SYNTAX;
2112 `used' is set to the length of the compiled pattern;
2113 `fastmap_accurate' is zero;
2114 `re_nsub' is the number of subexpressions in PATTERN;
2115 `not_bol' and `not_eol' are zero;
5e69f11e 2116
c0f9ea08 2117 The `fastmap' field is neither examined nor set. */
fa9a63c5 2118
505bde11
SM
2119/* Insert the `jump' from the end of last alternative to "here".
2120 The space for the jump has already been allocated. */
2121#define FIXUP_ALT_JUMP() \
2122do { \
2123 if (fixup_alt_jump) \
2124 STORE_JUMP (jump, fixup_alt_jump, b); \
2125} while (0)
2126
2127
fa9a63c5
RM
2128/* Return, freeing storage we allocated. */
2129#define FREE_STACK_RETURN(value) \
b18215fc
RS
2130 do { \
2131 FREE_RANGE_TABLE_WORK_AREA (range_table_work); \
2132 free (compile_stack.stack); \
2133 return value; \
2134 } while (0)
fa9a63c5
RM
2135
2136static reg_errcode_t
2137regex_compile (pattern, size, syntax, bufp)
66f0296e 2138 re_char *pattern;
4bb91c68 2139 size_t size;
fa9a63c5
RM
2140 reg_syntax_t syntax;
2141 struct re_pattern_buffer *bufp;
2142{
01618498
SM
2143 /* We fetch characters from PATTERN here. */
2144 register re_wchar_t c, c1;
5e69f11e 2145
fa9a63c5 2146 /* A random temporary spot in PATTERN. */
66f0296e 2147 re_char *p1;
fa9a63c5
RM
2148
2149 /* Points to the end of the buffer, where we should append. */
2150 register unsigned char *b;
5e69f11e 2151
fa9a63c5
RM
2152 /* Keeps track of unclosed groups. */
2153 compile_stack_type compile_stack;
2154
2155 /* Points to the current (ending) position in the pattern. */
22336245
RS
2156#ifdef AIX
2157 /* `const' makes AIX compiler fail. */
66f0296e 2158 unsigned char *p = pattern;
22336245 2159#else
66f0296e 2160 re_char *p = pattern;
22336245 2161#endif
66f0296e 2162 re_char *pend = pattern + size;
5e69f11e 2163
fa9a63c5 2164 /* How to translate the characters in the pattern. */
6676cb1c 2165 RE_TRANSLATE_TYPE translate = bufp->translate;
fa9a63c5
RM
2166
2167 /* Address of the count-byte of the most recently inserted `exactn'
2168 command. This makes it possible to tell if a new exact-match
2169 character can be added to that command or if the character requires
2170 a new `exactn' command. */
2171 unsigned char *pending_exact = 0;
2172
2173 /* Address of start of the most recently finished expression.
2174 This tells, e.g., postfix * where to find the start of its
2175 operand. Reset at the beginning of groups and alternatives. */
2176 unsigned char *laststart = 0;
2177
2178 /* Address of beginning of regexp, or inside of last group. */
2179 unsigned char *begalt;
2180
2181 /* Place in the uncompiled pattern (i.e., the {) to
2182 which to go back if the interval is invalid. */
66f0296e 2183 re_char *beg_interval;
5e69f11e 2184
fa9a63c5 2185 /* Address of the place where a forward jump should go to the end of
25fe55af 2186 the containing expression. Each alternative of an `or' -- except the
fa9a63c5
RM
2187 last -- ends with a forward jump of this sort. */
2188 unsigned char *fixup_alt_jump = 0;
2189
2190 /* Counts open-groups as they are encountered. Remembered for the
2191 matching close-group on the compile stack, so the same register
2192 number is put in the stop_memory as the start_memory. */
2193 regnum_t regnum = 0;
2194
b18215fc
RS
2195 /* Work area for range table of charset. */
2196 struct range_table_work_area range_table_work;
2197
2d1675e4
SM
2198 /* If the object matched can contain multibyte characters. */
2199 const boolean multibyte = RE_MULTIBYTE_P (bufp);
2200
fa9a63c5 2201#ifdef DEBUG
99633e97 2202 debug++;
fa9a63c5 2203 DEBUG_PRINT1 ("\nCompiling pattern: ");
99633e97 2204 if (debug > 0)
fa9a63c5
RM
2205 {
2206 unsigned debug_count;
5e69f11e 2207
fa9a63c5 2208 for (debug_count = 0; debug_count < size; debug_count++)
25fe55af 2209 putchar (pattern[debug_count]);
fa9a63c5
RM
2210 putchar ('\n');
2211 }
2212#endif /* DEBUG */
2213
2214 /* Initialize the compile stack. */
2215 compile_stack.stack = TALLOC (INIT_COMPILE_STACK_SIZE, compile_stack_elt_t);
2216 if (compile_stack.stack == NULL)
2217 return REG_ESPACE;
2218
2219 compile_stack.size = INIT_COMPILE_STACK_SIZE;
2220 compile_stack.avail = 0;
2221
b18215fc
RS
2222 range_table_work.table = 0;
2223 range_table_work.allocated = 0;
2224
fa9a63c5
RM
2225 /* Initialize the pattern buffer. */
2226 bufp->syntax = syntax;
2227 bufp->fastmap_accurate = 0;
2228 bufp->not_bol = bufp->not_eol = 0;
2229
2230 /* Set `used' to zero, so that if we return an error, the pattern
2231 printer (for debugging) will think there's no pattern. We reset it
2232 at the end. */
2233 bufp->used = 0;
5e69f11e 2234
fa9a63c5 2235 /* Always count groups, whether or not bufp->no_sub is set. */
5e69f11e 2236 bufp->re_nsub = 0;
fa9a63c5 2237
0b32bf0e 2238#if !defined emacs && !defined SYNTAX_TABLE
fa9a63c5
RM
2239 /* Initialize the syntax table. */
2240 init_syntax_once ();
2241#endif
2242
2243 if (bufp->allocated == 0)
2244 {
2245 if (bufp->buffer)
2246 { /* If zero allocated, but buffer is non-null, try to realloc
25fe55af
RS
2247 enough space. This loses if buffer's address is bogus, but
2248 that is the user's responsibility. */
2249 RETALLOC (bufp->buffer, INIT_BUF_SIZE, unsigned char);
2250 }
fa9a63c5 2251 else
25fe55af
RS
2252 { /* Caller did not allocate a buffer. Do it for them. */
2253 bufp->buffer = TALLOC (INIT_BUF_SIZE, unsigned char);
2254 }
fa9a63c5
RM
2255 if (!bufp->buffer) FREE_STACK_RETURN (REG_ESPACE);
2256
2257 bufp->allocated = INIT_BUF_SIZE;
2258 }
2259
2260 begalt = b = bufp->buffer;
2261
2262 /* Loop through the uncompiled pattern until we're at the end. */
2263 while (p != pend)
2264 {
2265 PATFETCH (c);
2266
2267 switch (c)
25fe55af
RS
2268 {
2269 case '^':
2270 {
2271 if ( /* If at start of pattern, it's an operator. */
2272 p == pattern + 1
2273 /* If context independent, it's an operator. */
2274 || syntax & RE_CONTEXT_INDEP_ANCHORS
2275 /* Otherwise, depends on what's come before. */
2276 || at_begline_loc_p (pattern, p, syntax))
c0f9ea08 2277 BUF_PUSH ((syntax & RE_NO_NEWLINE_ANCHOR) ? begbuf : begline);
25fe55af
RS
2278 else
2279 goto normal_char;
2280 }
2281 break;
2282
2283
2284 case '$':
2285 {
2286 if ( /* If at end of pattern, it's an operator. */
2287 p == pend
2288 /* If context independent, it's an operator. */
2289 || syntax & RE_CONTEXT_INDEP_ANCHORS
2290 /* Otherwise, depends on what's next. */
2291 || at_endline_loc_p (p, pend, syntax))
c0f9ea08 2292 BUF_PUSH ((syntax & RE_NO_NEWLINE_ANCHOR) ? endbuf : endline);
25fe55af
RS
2293 else
2294 goto normal_char;
2295 }
2296 break;
fa9a63c5
RM
2297
2298
2299 case '+':
25fe55af
RS
2300 case '?':
2301 if ((syntax & RE_BK_PLUS_QM)
2302 || (syntax & RE_LIMITED_OPS))
2303 goto normal_char;
2304 handle_plus:
2305 case '*':
2306 /* If there is no previous pattern... */
2307 if (!laststart)
2308 {
2309 if (syntax & RE_CONTEXT_INVALID_OPS)
2310 FREE_STACK_RETURN (REG_BADRPT);
2311 else if (!(syntax & RE_CONTEXT_INDEP_OPS))
2312 goto normal_char;
2313 }
2314
2315 {
25fe55af 2316 /* 1 means zero (many) matches is allowed. */
66f0296e
SM
2317 boolean zero_times_ok = 0, many_times_ok = 0;
2318 boolean greedy = 1;
25fe55af
RS
2319
2320 /* If there is a sequence of repetition chars, collapse it
2321 down to just one (the right one). We can't combine
2322 interval operators with these because of, e.g., `a{2}*',
2323 which should only match an even number of `a's. */
2324
2325 for (;;)
2326 {
0b32bf0e 2327 if ((syntax & RE_FRUGAL)
1c8c6d39
DL
2328 && c == '?' && (zero_times_ok || many_times_ok))
2329 greedy = 0;
2330 else
2331 {
2332 zero_times_ok |= c != '+';
2333 many_times_ok |= c != '?';
2334 }
25fe55af
RS
2335
2336 if (p == pend)
2337 break;
ed0767d8
SM
2338 else if (*p == '*'
2339 || (!(syntax & RE_BK_PLUS_QM)
2340 && (*p == '+' || *p == '?')))
25fe55af 2341 ;
ed0767d8 2342 else if (syntax & RE_BK_PLUS_QM && *p == '\\')
25fe55af 2343 {
ed0767d8
SM
2344 if (p+1 == pend)
2345 FREE_STACK_RETURN (REG_EESCAPE);
2346 if (p[1] == '+' || p[1] == '?')
2347 PATFETCH (c); /* Gobble up the backslash. */
2348 else
2349 break;
25fe55af
RS
2350 }
2351 else
ed0767d8 2352 break;
25fe55af 2353 /* If we get here, we found another repeat character. */
ed0767d8
SM
2354 PATFETCH (c);
2355 }
25fe55af
RS
2356
2357 /* Star, etc. applied to an empty pattern is equivalent
2358 to an empty pattern. */
4e8a9132 2359 if (!laststart || laststart == b)
25fe55af
RS
2360 break;
2361
2362 /* Now we know whether or not zero matches is allowed
2363 and also whether or not two or more matches is allowed. */
1c8c6d39
DL
2364 if (greedy)
2365 {
99633e97 2366 if (many_times_ok)
4e8a9132
SM
2367 {
2368 boolean simple = skip_one_char (laststart) == b;
2369 unsigned int startoffset = 0;
f6a3f532 2370 re_opcode_t ofj =
01618498 2371 /* Check if the loop can match the empty string. */
f6a3f532
SM
2372 (simple || !analyse_first (laststart, b, NULL, 0)) ?
2373 on_failure_jump : on_failure_jump_loop;
4e8a9132
SM
2374 assert (skip_one_char (laststart) <= b);
2375
2376 if (!zero_times_ok && simple)
2377 { /* Since simple * loops can be made faster by using
2378 on_failure_keep_string_jump, we turn simple P+
2379 into PP* if P is simple. */
2380 unsigned char *p1, *p2;
2381 startoffset = b - laststart;
2382 GET_BUFFER_SPACE (startoffset);
2383 p1 = b; p2 = laststart;
2384 while (p2 < p1)
2385 *b++ = *p2++;
2386 zero_times_ok = 1;
99633e97 2387 }
4e8a9132
SM
2388
2389 GET_BUFFER_SPACE (6);
2390 if (!zero_times_ok)
2391 /* A + loop. */
f6a3f532 2392 STORE_JUMP (ofj, b, b + 6);
99633e97 2393 else
4e8a9132
SM
2394 /* Simple * loops can use on_failure_keep_string_jump
2395 depending on what follows. But since we don't know
2396 that yet, we leave the decision up to
2397 on_failure_jump_smart. */
f6a3f532 2398 INSERT_JUMP (simple ? on_failure_jump_smart : ofj,
4e8a9132 2399 laststart + startoffset, b + 6);
99633e97 2400 b += 3;
4e8a9132 2401 STORE_JUMP (jump, b, laststart + startoffset);
99633e97
SM
2402 b += 3;
2403 }
2404 else
2405 {
4e8a9132
SM
2406 /* A simple ? pattern. */
2407 assert (zero_times_ok);
2408 GET_BUFFER_SPACE (3);
2409 INSERT_JUMP (on_failure_jump, laststart, b + 3);
99633e97
SM
2410 b += 3;
2411 }
1c8c6d39
DL
2412 }
2413 else /* not greedy */
2414 { /* I wish the greedy and non-greedy cases could be merged. */
2415
0683b6fa 2416 GET_BUFFER_SPACE (7); /* We might use less. */
1c8c6d39
DL
2417 if (many_times_ok)
2418 {
f6a3f532
SM
2419 boolean emptyp = analyse_first (laststart, b, NULL, 0);
2420
505bde11 2421 /* The non-greedy multiple match looks like a repeat..until:
1c8c6d39 2422 we only need a conditional jump at the end of the loop */
f6a3f532
SM
2423 if (emptyp) BUF_PUSH (no_op);
2424 STORE_JUMP (emptyp ? on_failure_jump_nastyloop
2425 : on_failure_jump, b, laststart);
1c8c6d39
DL
2426 b += 3;
2427 if (zero_times_ok)
2428 {
2429 /* The repeat...until naturally matches one or more.
2430 To also match zero times, we need to first jump to
2431 the end of the loop (its conditional jump). */
1c8c6d39
DL
2432 INSERT_JUMP (jump, laststart, b);
2433 b += 3;
2434 }
2435 }
2436 else
2437 {
2438 /* non-greedy a?? */
1c8c6d39
DL
2439 INSERT_JUMP (jump, laststart, b + 3);
2440 b += 3;
2441 INSERT_JUMP (on_failure_jump, laststart, laststart + 6);
2442 b += 3;
2443 }
2444 }
2445 }
4e8a9132 2446 pending_exact = 0;
fa9a63c5
RM
2447 break;
2448
2449
2450 case '.':
25fe55af
RS
2451 laststart = b;
2452 BUF_PUSH (anychar);
2453 break;
fa9a63c5
RM
2454
2455
25fe55af
RS
2456 case '[':
2457 {
b18215fc 2458 CLEAR_RANGE_TABLE_WORK_USED (range_table_work);
fa9a63c5 2459
25fe55af 2460 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
fa9a63c5 2461
25fe55af
RS
2462 /* Ensure that we have enough space to push a charset: the
2463 opcode, the length count, and the bitset; 34 bytes in all. */
fa9a63c5
RM
2464 GET_BUFFER_SPACE (34);
2465
25fe55af 2466 laststart = b;
e318085a 2467
25fe55af
RS
2468 /* We test `*p == '^' twice, instead of using an if
2469 statement, so we only need one BUF_PUSH. */
2470 BUF_PUSH (*p == '^' ? charset_not : charset);
2471 if (*p == '^')
2472 p++;
e318085a 2473
25fe55af
RS
2474 /* Remember the first position in the bracket expression. */
2475 p1 = p;
e318085a 2476
25fe55af
RS
2477 /* Push the number of bytes in the bitmap. */
2478 BUF_PUSH ((1 << BYTEWIDTH) / BYTEWIDTH);
e318085a 2479
25fe55af
RS
2480 /* Clear the whole map. */
2481 bzero (b, (1 << BYTEWIDTH) / BYTEWIDTH);
e318085a 2482
25fe55af
RS
2483 /* charset_not matches newline according to a syntax bit. */
2484 if ((re_opcode_t) b[-2] == charset_not
2485 && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
2486 SET_LIST_BIT ('\n');
fa9a63c5 2487
25fe55af
RS
2488 /* Read in characters and ranges, setting map bits. */
2489 for (;;)
2490 {
b18215fc 2491 boolean escaped_char = false;
2d1675e4 2492 const unsigned char *p2 = p;
e318085a 2493
25fe55af 2494 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
e318085a 2495
25fe55af 2496 PATFETCH (c);
e318085a 2497
25fe55af
RS
2498 /* \ might escape characters inside [...] and [^...]. */
2499 if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
2500 {
2501 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
e318085a
RS
2502
2503 PATFETCH (c);
b18215fc 2504 escaped_char = true;
25fe55af 2505 }
b18215fc
RS
2506 else
2507 {
657fcfbd
RS
2508 /* Could be the end of the bracket expression. If it's
2509 not (i.e., when the bracket expression is `[]' so
2510 far), the ']' character bit gets set way below. */
2d1675e4 2511 if (c == ']' && p2 != p1)
657fcfbd 2512 break;
25fe55af 2513 }
b18215fc 2514
b18215fc
RS
2515 /* What should we do for the character which is
2516 greater than 0x7F, but not BASE_LEADING_CODE_P?
2517 XXX */
2518
25fe55af
RS
2519 /* See if we're at the beginning of a possible character
2520 class. */
b18215fc 2521
2d1675e4
SM
2522 if (!escaped_char &&
2523 syntax & RE_CHAR_CLASSES && c == '[' && *p == ':')
657fcfbd
RS
2524 {
2525 /* Leave room for the null. */
14473664 2526 unsigned char str[CHAR_CLASS_MAX_LENGTH + 1];
ed0767d8 2527 const unsigned char *class_beg;
b18215fc 2528
25fe55af
RS
2529 PATFETCH (c);
2530 c1 = 0;
ed0767d8 2531 class_beg = p;
b18215fc 2532
25fe55af
RS
2533 /* If pattern is `[[:'. */
2534 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
b18215fc 2535
25fe55af
RS
2536 for (;;)
2537 {
14473664
SM
2538 PATFETCH (c);
2539 if ((c == ':' && *p == ']') || p == pend)
2540 break;
2541 if (c1 < CHAR_CLASS_MAX_LENGTH)
2542 str[c1++] = c;
2543 else
2544 /* This is in any case an invalid class name. */
2545 str[0] = '\0';
25fe55af
RS
2546 }
2547 str[c1] = '\0';
b18215fc
RS
2548
2549 /* If isn't a word bracketed by `[:' and `:]':
2550 undo the ending character, the letters, and
2551 leave the leading `:' and `[' (but set bits for
2552 them). */
25fe55af
RS
2553 if (c == ':' && *p == ']')
2554 {
2555 int ch;
14473664
SM
2556 re_wctype_t cc;
2557
2558 cc = re_wctype (str);
2559
2560 if (cc == 0)
fa9a63c5
RM
2561 FREE_STACK_RETURN (REG_ECTYPE);
2562
14473664
SM
2563 /* Throw away the ] at the end of the character
2564 class. */
2565 PATFETCH (c);
fa9a63c5 2566
14473664 2567 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
fa9a63c5 2568
96cc36cc
RS
2569 /* Most character classes in a multibyte match
2570 just set a flag. Exceptions are is_blank,
2571 is_digit, is_cntrl, and is_xdigit, since
2572 they can only match ASCII characters. We
14473664
SM
2573 don't need to handle them for multibyte.
2574 They are distinguished by a negative wctype. */
96cc36cc 2575
2d1675e4 2576 if (multibyte)
14473664
SM
2577 SET_RANGE_TABLE_WORK_AREA_BIT (range_table_work,
2578 re_wctype_to_bit (cc));
96cc36cc 2579
14473664 2580 for (ch = 0; ch < 1 << BYTEWIDTH; ++ch)
25fe55af 2581 {
7ae68633 2582 int translated = TRANSLATE (ch);
14473664 2583 if (re_iswctype (btowc (ch), cc))
96cc36cc 2584 SET_LIST_BIT (translated);
25fe55af 2585 }
b18215fc
RS
2586
2587 /* Repeat the loop. */
2588 continue;
25fe55af
RS
2589 }
2590 else
2591 {
ed0767d8
SM
2592 /* Go back to right after the "[:". */
2593 p = class_beg;
25fe55af 2594 SET_LIST_BIT ('[');
b18215fc
RS
2595
2596 /* Because the `:' may starts the range, we
2597 can't simply set bit and repeat the loop.
25fe55af 2598 Instead, just set it to C and handle below. */
b18215fc 2599 c = ':';
25fe55af
RS
2600 }
2601 }
b18215fc
RS
2602
2603 if (p < pend && p[0] == '-' && p[1] != ']')
2604 {
2605
2606 /* Discard the `-'. */
2607 PATFETCH (c1);
2608
2609 /* Fetch the character which ends the range. */
2610 PATFETCH (c1);
b18215fc 2611
b54f61ed 2612 if (SINGLE_BYTE_CHAR_P (c))
e934739e 2613 {
b54f61ed
KH
2614 if (! SINGLE_BYTE_CHAR_P (c1))
2615 {
3ff2446d
KH
2616 /* Handle a range starting with a
2617 character of less than 256, and ending
2618 with a character of not less than 256.
2619 Split that into two ranges, the low one
2620 ending at 0377, and the high one
2621 starting at the smallest character in
2622 the charset of C1 and ending at C1. */
b54f61ed
KH
2623 int charset = CHAR_CHARSET (c1);
2624 int c2 = MAKE_CHAR (charset, 0, 0);
2625
2626 SET_RANGE_TABLE_WORK_AREA (range_table_work,
2627 c2, c1);
333526e0 2628 c1 = 0377;
b54f61ed 2629 }
e934739e
RS
2630 }
2631 else if (!SAME_CHARSET_P (c, c1))
b18215fc 2632 FREE_STACK_RETURN (REG_ERANGE);
e318085a 2633 }
25fe55af 2634 else
b18215fc
RS
2635 /* Range from C to C. */
2636 c1 = c;
2637
2638 /* Set the range ... */
2639 if (SINGLE_BYTE_CHAR_P (c))
2640 /* ... into bitmap. */
25fe55af 2641 {
01618498 2642 re_wchar_t this_char;
b18215fc
RS
2643 int range_start = c, range_end = c1;
2644
2645 /* If the start is after the end, the range is empty. */
2646 if (range_start > range_end)
2647 {
2648 if (syntax & RE_NO_EMPTY_RANGES)
2649 FREE_STACK_RETURN (REG_ERANGE);
2650 /* Else, repeat the loop. */
2651 }
2652 else
2653 {
2654 for (this_char = range_start; this_char <= range_end;
2655 this_char++)
2656 SET_LIST_BIT (TRANSLATE (this_char));
e934739e 2657 }
25fe55af 2658 }
e318085a 2659 else
b18215fc
RS
2660 /* ... into range table. */
2661 SET_RANGE_TABLE_WORK_AREA (range_table_work, c, c1);
e318085a
RS
2662 }
2663
25fe55af
RS
2664 /* Discard any (non)matching list bytes that are all 0 at the
2665 end of the map. Decrease the map-length byte too. */
2666 while ((int) b[-1] > 0 && b[b[-1] - 1] == 0)
2667 b[-1]--;
2668 b += b[-1];
fa9a63c5 2669
96cc36cc
RS
2670 /* Build real range table from work area. */
2671 if (RANGE_TABLE_WORK_USED (range_table_work)
2672 || RANGE_TABLE_WORK_BITS (range_table_work))
b18215fc
RS
2673 {
2674 int i;
2675 int used = RANGE_TABLE_WORK_USED (range_table_work);
fa9a63c5 2676
b18215fc 2677 /* Allocate space for COUNT + RANGE_TABLE. Needs two
96cc36cc
RS
2678 bytes for flags, two for COUNT, and three bytes for
2679 each character. */
2680 GET_BUFFER_SPACE (4 + used * 3);
fa9a63c5 2681
b18215fc
RS
2682 /* Indicate the existence of range table. */
2683 laststart[1] |= 0x80;
fa9a63c5 2684
96cc36cc
RS
2685 /* Store the character class flag bits into the range table.
2686 If not in emacs, these flag bits are always 0. */
2687 *b++ = RANGE_TABLE_WORK_BITS (range_table_work) & 0xff;
2688 *b++ = RANGE_TABLE_WORK_BITS (range_table_work) >> 8;
2689
b18215fc
RS
2690 STORE_NUMBER_AND_INCR (b, used / 2);
2691 for (i = 0; i < used; i++)
2692 STORE_CHARACTER_AND_INCR
2693 (b, RANGE_TABLE_WORK_ELT (range_table_work, i));
2694 }
25fe55af
RS
2695 }
2696 break;
fa9a63c5
RM
2697
2698
b18215fc 2699 case '(':
25fe55af
RS
2700 if (syntax & RE_NO_BK_PARENS)
2701 goto handle_open;
2702 else
2703 goto normal_char;
fa9a63c5
RM
2704
2705
25fe55af
RS
2706 case ')':
2707 if (syntax & RE_NO_BK_PARENS)
2708 goto handle_close;
2709 else
2710 goto normal_char;
e318085a
RS
2711
2712
25fe55af
RS
2713 case '\n':
2714 if (syntax & RE_NEWLINE_ALT)
2715 goto handle_alt;
2716 else
2717 goto normal_char;
e318085a
RS
2718
2719
b18215fc 2720 case '|':
25fe55af
RS
2721 if (syntax & RE_NO_BK_VBAR)
2722 goto handle_alt;
2723 else
2724 goto normal_char;
2725
2726
2727 case '{':
2728 if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES)
2729 goto handle_interval;
2730 else
2731 goto normal_char;
2732
2733
2734 case '\\':
2735 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2736
2737 /* Do not translate the character after the \, so that we can
2738 distinguish, e.g., \B from \b, even if we normally would
2739 translate, e.g., B to b. */
2740 PATFETCH_RAW (c);
2741
2742 switch (c)
2743 {
2744 case '(':
2745 if (syntax & RE_NO_BK_PARENS)
2746 goto normal_backslash;
2747
2748 handle_open:
505bde11
SM
2749 {
2750 int shy = 0;
2751 if (p+1 < pend)
2752 {
2753 /* Look for a special (?...) construct */
ed0767d8 2754 if ((syntax & RE_SHY_GROUPS) && *p == '?')
505bde11 2755 {
ed0767d8 2756 PATFETCH (c); /* Gobble up the '?'. */
505bde11
SM
2757 PATFETCH (c);
2758 switch (c)
2759 {
2760 case ':': shy = 1; break;
2761 default:
2762 /* Only (?:...) is supported right now. */
2763 FREE_STACK_RETURN (REG_BADPAT);
2764 }
2765 }
505bde11
SM
2766 }
2767
2768 if (!shy)
2769 {
2770 bufp->re_nsub++;
2771 regnum++;
2772 }
25fe55af 2773
99633e97
SM
2774 if (COMPILE_STACK_FULL)
2775 {
2776 RETALLOC (compile_stack.stack, compile_stack.size << 1,
2777 compile_stack_elt_t);
2778 if (compile_stack.stack == NULL) return REG_ESPACE;
25fe55af 2779
99633e97
SM
2780 compile_stack.size <<= 1;
2781 }
25fe55af 2782
99633e97
SM
2783 /* These are the values to restore when we hit end of this
2784 group. They are all relative offsets, so that if the
2785 whole pattern moves because of realloc, they will still
2786 be valid. */
2787 COMPILE_STACK_TOP.begalt_offset = begalt - bufp->buffer;
2788 COMPILE_STACK_TOP.fixup_alt_jump
2789 = fixup_alt_jump ? fixup_alt_jump - bufp->buffer + 1 : 0;
2790 COMPILE_STACK_TOP.laststart_offset = b - bufp->buffer;
2791 COMPILE_STACK_TOP.regnum = shy ? -regnum : regnum;
2792
2793 /* Do not push a
2794 start_memory for groups beyond the last one we can
2795 represent in the compiled pattern. */
2796 if (regnum <= MAX_REGNUM && !shy)
2797 BUF_PUSH_2 (start_memory, regnum);
2798
2799 compile_stack.avail++;
2800
2801 fixup_alt_jump = 0;
2802 laststart = 0;
2803 begalt = b;
2804 /* If we've reached MAX_REGNUM groups, then this open
2805 won't actually generate any code, so we'll have to
2806 clear pending_exact explicitly. */
2807 pending_exact = 0;
2808 break;
505bde11 2809 }
25fe55af
RS
2810
2811 case ')':
2812 if (syntax & RE_NO_BK_PARENS) goto normal_backslash;
2813
2814 if (COMPILE_STACK_EMPTY)
505bde11
SM
2815 {
2816 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
2817 goto normal_backslash;
2818 else
2819 FREE_STACK_RETURN (REG_ERPAREN);
2820 }
25fe55af
RS
2821
2822 handle_close:
505bde11 2823 FIXUP_ALT_JUMP ();
25fe55af
RS
2824
2825 /* See similar code for backslashed left paren above. */
2826 if (COMPILE_STACK_EMPTY)
505bde11
SM
2827 {
2828 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
2829 goto normal_char;
2830 else
2831 FREE_STACK_RETURN (REG_ERPAREN);
2832 }
25fe55af
RS
2833
2834 /* Since we just checked for an empty stack above, this
2835 ``can't happen''. */
2836 assert (compile_stack.avail != 0);
2837 {
2838 /* We don't just want to restore into `regnum', because
2839 later groups should continue to be numbered higher,
2840 as in `(ab)c(de)' -- the second group is #2. */
2841 regnum_t this_group_regnum;
2842
2843 compile_stack.avail--;
2844 begalt = bufp->buffer + COMPILE_STACK_TOP.begalt_offset;
2845 fixup_alt_jump
2846 = COMPILE_STACK_TOP.fixup_alt_jump
2847 ? bufp->buffer + COMPILE_STACK_TOP.fixup_alt_jump - 1
2848 : 0;
2849 laststart = bufp->buffer + COMPILE_STACK_TOP.laststart_offset;
2850 this_group_regnum = COMPILE_STACK_TOP.regnum;
b18215fc
RS
2851 /* If we've reached MAX_REGNUM groups, then this open
2852 won't actually generate any code, so we'll have to
2853 clear pending_exact explicitly. */
2854 pending_exact = 0;
e318085a 2855
25fe55af
RS
2856 /* We're at the end of the group, so now we know how many
2857 groups were inside this one. */
505bde11
SM
2858 if (this_group_regnum <= MAX_REGNUM && this_group_regnum > 0)
2859 BUF_PUSH_2 (stop_memory, this_group_regnum);
25fe55af
RS
2860 }
2861 break;
2862
2863
2864 case '|': /* `\|'. */
2865 if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR)
2866 goto normal_backslash;
2867 handle_alt:
2868 if (syntax & RE_LIMITED_OPS)
2869 goto normal_char;
2870
2871 /* Insert before the previous alternative a jump which
2872 jumps to this alternative if the former fails. */
2873 GET_BUFFER_SPACE (3);
2874 INSERT_JUMP (on_failure_jump, begalt, b + 6);
2875 pending_exact = 0;
2876 b += 3;
2877
2878 /* The alternative before this one has a jump after it
2879 which gets executed if it gets matched. Adjust that
2880 jump so it will jump to this alternative's analogous
2881 jump (put in below, which in turn will jump to the next
2882 (if any) alternative's such jump, etc.). The last such
2883 jump jumps to the correct final destination. A picture:
2884 _____ _____
2885 | | | |
2886 | v | v
2887 a | b | c
2888
2889 If we are at `b', then fixup_alt_jump right now points to a
2890 three-byte space after `a'. We'll put in the jump, set
2891 fixup_alt_jump to right after `b', and leave behind three
2892 bytes which we'll fill in when we get to after `c'. */
2893
505bde11 2894 FIXUP_ALT_JUMP ();
25fe55af
RS
2895
2896 /* Mark and leave space for a jump after this alternative,
2897 to be filled in later either by next alternative or
2898 when know we're at the end of a series of alternatives. */
2899 fixup_alt_jump = b;
2900 GET_BUFFER_SPACE (3);
2901 b += 3;
2902
2903 laststart = 0;
2904 begalt = b;
2905 break;
2906
2907
2908 case '{':
2909 /* If \{ is a literal. */
2910 if (!(syntax & RE_INTERVALS)
2911 /* If we're at `\{' and it's not the open-interval
2912 operator. */
4bb91c68 2913 || (syntax & RE_NO_BK_BRACES))
25fe55af
RS
2914 goto normal_backslash;
2915
2916 handle_interval:
2917 {
2918 /* If got here, then the syntax allows intervals. */
2919
2920 /* At least (most) this many matches must be made. */
99633e97 2921 int lower_bound = 0, upper_bound = -1;
25fe55af 2922
ed0767d8 2923 beg_interval = p;
25fe55af
RS
2924
2925 if (p == pend)
4bb91c68 2926 FREE_STACK_RETURN (REG_EBRACE);
25fe55af
RS
2927
2928 GET_UNSIGNED_NUMBER (lower_bound);
2929
2930 if (c == ',')
ed0767d8 2931 GET_UNSIGNED_NUMBER (upper_bound);
25fe55af
RS
2932 else
2933 /* Interval such as `{1}' => match exactly once. */
2934 upper_bound = lower_bound;
2935
2936 if (lower_bound < 0 || upper_bound > RE_DUP_MAX
ed0767d8 2937 || (upper_bound >= 0 && lower_bound > upper_bound))
4bb91c68 2938 FREE_STACK_RETURN (REG_BADBR);
25fe55af
RS
2939
2940 if (!(syntax & RE_NO_BK_BRACES))
2941 {
4bb91c68
SM
2942 if (c != '\\')
2943 FREE_STACK_RETURN (REG_BADBR);
25fe55af
RS
2944
2945 PATFETCH (c);
2946 }
2947
2948 if (c != '}')
4bb91c68 2949 FREE_STACK_RETURN (REG_BADBR);
25fe55af
RS
2950
2951 /* We just parsed a valid interval. */
2952
2953 /* If it's invalid to have no preceding re. */
2954 if (!laststart)
2955 {
2956 if (syntax & RE_CONTEXT_INVALID_OPS)
2957 FREE_STACK_RETURN (REG_BADRPT);
2958 else if (syntax & RE_CONTEXT_INDEP_OPS)
2959 laststart = b;
2960 else
2961 goto unfetch_interval;
2962 }
2963
25fe55af 2964 if (upper_bound == 0)
ed0767d8
SM
2965 /* If the upper bound is zero, just drop the sub pattern
2966 altogether. */
2967 b = laststart;
2968 else if (lower_bound == 1 && upper_bound == 1)
2969 /* Just match it once: nothing to do here. */
2970 ;
25fe55af
RS
2971
2972 /* Otherwise, we have a nontrivial interval. When
2973 we're all done, the pattern will look like:
2974 set_number_at <jump count> <upper bound>
2975 set_number_at <succeed_n count> <lower bound>
2976 succeed_n <after jump addr> <succeed_n count>
2977 <body of loop>
2978 jump_n <succeed_n addr> <jump count>
2979 (The upper bound and `jump_n' are omitted if
2980 `upper_bound' is 1, though.) */
2981 else
2982 { /* If the upper bound is > 1, we need to insert
2983 more at the end of the loop. */
ed0767d8
SM
2984 unsigned int nbytes = (upper_bound < 0 ? 3
2985 : upper_bound > 1 ? 5 : 0);
2986 unsigned int startoffset = 0;
2987
2988 GET_BUFFER_SPACE (20); /* We might use less. */
2989
2990 if (lower_bound == 0)
2991 {
2992 /* A succeed_n that starts with 0 is really a
2993 a simple on_failure_jump_loop. */
2994 INSERT_JUMP (on_failure_jump_loop, laststart,
2995 b + 3 + nbytes);
2996 b += 3;
2997 }
2998 else
2999 {
3000 /* Initialize lower bound of the `succeed_n', even
3001 though it will be set during matching by its
3002 attendant `set_number_at' (inserted next),
3003 because `re_compile_fastmap' needs to know.
3004 Jump to the `jump_n' we might insert below. */
3005 INSERT_JUMP2 (succeed_n, laststart,
3006 b + 5 + nbytes,
3007 lower_bound);
3008 b += 5;
3009
3010 /* Code to initialize the lower bound. Insert
3011 before the `succeed_n'. The `5' is the last two
3012 bytes of this `set_number_at', plus 3 bytes of
3013 the following `succeed_n'. */
3014 insert_op2 (set_number_at, laststart, 5, lower_bound, b);
3015 b += 5;
3016 startoffset += 5;
3017 }
3018
3019 if (upper_bound < 0)
3020 {
3021 /* A negative upper bound stands for infinity,
3022 in which case it degenerates to a plain jump. */
3023 STORE_JUMP (jump, b, laststart + startoffset);
3024 b += 3;
3025 }
3026 else if (upper_bound > 1)
25fe55af
RS
3027 { /* More than one repetition is allowed, so
3028 append a backward jump to the `succeed_n'
3029 that starts this interval.
3030
3031 When we've reached this during matching,
3032 we'll have matched the interval once, so
3033 jump back only `upper_bound - 1' times. */
ed0767d8 3034 STORE_JUMP2 (jump_n, b, laststart + startoffset,
25fe55af
RS
3035 upper_bound - 1);
3036 b += 5;
3037
3038 /* The location we want to set is the second
3039 parameter of the `jump_n'; that is `b-2' as
3040 an absolute address. `laststart' will be
3041 the `set_number_at' we're about to insert;
3042 `laststart+3' the number to set, the source
3043 for the relative address. But we are
3044 inserting into the middle of the pattern --
3045 so everything is getting moved up by 5.
3046 Conclusion: (b - 2) - (laststart + 3) + 5,
3047 i.e., b - laststart.
3048
3049 We insert this at the beginning of the loop
3050 so that if we fail during matching, we'll
3051 reinitialize the bounds. */
3052 insert_op2 (set_number_at, laststart, b - laststart,
3053 upper_bound - 1, b);
3054 b += 5;
3055 }
3056 }
3057 pending_exact = 0;
3058 beg_interval = NULL;
3059 }
3060 break;
3061
3062 unfetch_interval:
3063 /* If an invalid interval, match the characters as literals. */
3064 assert (beg_interval);
3065 p = beg_interval;
3066 beg_interval = NULL;
3067
3068 /* normal_char and normal_backslash need `c'. */
ed0767d8 3069 c = '{';
25fe55af
RS
3070
3071 if (!(syntax & RE_NO_BK_BRACES))
3072 {
ed0767d8
SM
3073 assert (p > pattern && p[-1] == '\\');
3074 goto normal_backslash;
25fe55af 3075 }
ed0767d8
SM
3076 else
3077 goto normal_char;
e318085a 3078
b18215fc 3079#ifdef emacs
25fe55af
RS
3080 /* There is no way to specify the before_dot and after_dot
3081 operators. rms says this is ok. --karl */
3082 case '=':
3083 BUF_PUSH (at_dot);
3084 break;
3085
3086 case 's':
3087 laststart = b;
3088 PATFETCH (c);
3089 BUF_PUSH_2 (syntaxspec, syntax_spec_code[c]);
3090 break;
3091
3092 case 'S':
3093 laststart = b;
3094 PATFETCH (c);
3095 BUF_PUSH_2 (notsyntaxspec, syntax_spec_code[c]);
3096 break;
b18215fc
RS
3097
3098 case 'c':
3099 laststart = b;
3100 PATFETCH_RAW (c);
3101 BUF_PUSH_2 (categoryspec, c);
3102 break;
e318085a 3103
b18215fc
RS
3104 case 'C':
3105 laststart = b;
3106 PATFETCH_RAW (c);
3107 BUF_PUSH_2 (notcategoryspec, c);
3108 break;
3109#endif /* emacs */
e318085a 3110
e318085a 3111
25fe55af 3112 case 'w':
4bb91c68
SM
3113 if (syntax & RE_NO_GNU_OPS)
3114 goto normal_char;
25fe55af 3115 laststart = b;
1fb352e0 3116 BUF_PUSH_2 (syntaxspec, Sword);
25fe55af 3117 break;
e318085a 3118
e318085a 3119
25fe55af 3120 case 'W':
4bb91c68
SM
3121 if (syntax & RE_NO_GNU_OPS)
3122 goto normal_char;
25fe55af 3123 laststart = b;
1fb352e0 3124 BUF_PUSH_2 (notsyntaxspec, Sword);
25fe55af 3125 break;
e318085a
RS
3126
3127
25fe55af 3128 case '<':
4bb91c68
SM
3129 if (syntax & RE_NO_GNU_OPS)
3130 goto normal_char;
25fe55af
RS
3131 BUF_PUSH (wordbeg);
3132 break;
e318085a 3133
25fe55af 3134 case '>':
4bb91c68
SM
3135 if (syntax & RE_NO_GNU_OPS)
3136 goto normal_char;
25fe55af
RS
3137 BUF_PUSH (wordend);
3138 break;
e318085a 3139
25fe55af 3140 case 'b':
4bb91c68
SM
3141 if (syntax & RE_NO_GNU_OPS)
3142 goto normal_char;
25fe55af
RS
3143 BUF_PUSH (wordbound);
3144 break;
e318085a 3145
25fe55af 3146 case 'B':
4bb91c68
SM
3147 if (syntax & RE_NO_GNU_OPS)
3148 goto normal_char;
25fe55af
RS
3149 BUF_PUSH (notwordbound);
3150 break;
fa9a63c5 3151
25fe55af 3152 case '`':
4bb91c68
SM
3153 if (syntax & RE_NO_GNU_OPS)
3154 goto normal_char;
25fe55af
RS
3155 BUF_PUSH (begbuf);
3156 break;
e318085a 3157
25fe55af 3158 case '\'':
4bb91c68
SM
3159 if (syntax & RE_NO_GNU_OPS)
3160 goto normal_char;
25fe55af
RS
3161 BUF_PUSH (endbuf);
3162 break;
e318085a 3163
25fe55af
RS
3164 case '1': case '2': case '3': case '4': case '5':
3165 case '6': case '7': case '8': case '9':
0cdd06f8
SM
3166 {
3167 regnum_t reg;
e318085a 3168
0cdd06f8
SM
3169 if (syntax & RE_NO_BK_REFS)
3170 goto normal_backslash;
e318085a 3171
0cdd06f8 3172 reg = c - '0';
e318085a 3173
0cdd06f8
SM
3174 /* Can't back reference to a subexpression before its end. */
3175 if (reg > regnum || group_in_compile_stack (compile_stack, reg))
3176 FREE_STACK_RETURN (REG_ESUBREG);
e318085a 3177
0cdd06f8
SM
3178 laststart = b;
3179 BUF_PUSH_2 (duplicate, reg);
3180 }
25fe55af 3181 break;
e318085a 3182
e318085a 3183
25fe55af
RS
3184 case '+':
3185 case '?':
3186 if (syntax & RE_BK_PLUS_QM)
3187 goto handle_plus;
3188 else
3189 goto normal_backslash;
3190
3191 default:
3192 normal_backslash:
3193 /* You might think it would be useful for \ to mean
3194 not to translate; but if we don't translate it
4bb91c68 3195 it will never match anything. */
25fe55af
RS
3196 c = TRANSLATE (c);
3197 goto normal_char;
3198 }
3199 break;
fa9a63c5
RM
3200
3201
3202 default:
25fe55af 3203 /* Expects the character in `c'. */
fa9a63c5
RM
3204 normal_char:
3205 /* If no exactn currently being built. */
25fe55af 3206 if (!pending_exact
fa9a63c5 3207
25fe55af
RS
3208 /* If last exactn not at current position. */
3209 || pending_exact + *pending_exact + 1 != b
5e69f11e 3210
25fe55af 3211 /* We have only one byte following the exactn for the count. */
2d1675e4 3212 || *pending_exact >= (1 << BYTEWIDTH) - MAX_MULTIBYTE_LENGTH
fa9a63c5 3213
25fe55af 3214 /* If followed by a repetition operator. */
9d99031f 3215 || (p != pend && (*p == '*' || *p == '^'))
fa9a63c5 3216 || ((syntax & RE_BK_PLUS_QM)
9d99031f
RS
3217 ? p + 1 < pend && *p == '\\' && (p[1] == '+' || p[1] == '?')
3218 : p != pend && (*p == '+' || *p == '?'))
fa9a63c5 3219 || ((syntax & RE_INTERVALS)
25fe55af 3220 && ((syntax & RE_NO_BK_BRACES)
9d99031f
RS
3221 ? p != pend && *p == '{'
3222 : p + 1 < pend && p[0] == '\\' && p[1] == '{')))
fa9a63c5
RM
3223 {
3224 /* Start building a new exactn. */
5e69f11e 3225
25fe55af 3226 laststart = b;
fa9a63c5
RM
3227
3228 BUF_PUSH_2 (exactn, 0);
3229 pending_exact = b - 1;
25fe55af 3230 }
5e69f11e 3231
2d1675e4
SM
3232 GET_BUFFER_SPACE (MAX_MULTIBYTE_LENGTH);
3233 {
e0277a47
KH
3234 int len;
3235
3236 if (multibyte)
3237 len = CHAR_STRING (c, b);
3238 else
3239 *b = c, len = 1;
2d1675e4
SM
3240 b += len;
3241 (*pending_exact) += len;
3242 }
3243
fa9a63c5 3244 break;
25fe55af 3245 } /* switch (c) */
fa9a63c5
RM
3246 } /* while p != pend */
3247
5e69f11e 3248
fa9a63c5 3249 /* Through the pattern now. */
5e69f11e 3250
505bde11 3251 FIXUP_ALT_JUMP ();
fa9a63c5 3252
5e69f11e 3253 if (!COMPILE_STACK_EMPTY)
fa9a63c5
RM
3254 FREE_STACK_RETURN (REG_EPAREN);
3255
3256 /* If we don't want backtracking, force success
3257 the first time we reach the end of the compiled pattern. */
3258 if (syntax & RE_NO_POSIX_BACKTRACKING)
3259 BUF_PUSH (succeed);
3260
3261 free (compile_stack.stack);
3262
3263 /* We have succeeded; set the length of the buffer. */
3264 bufp->used = b - bufp->buffer;
3265
3266#ifdef DEBUG
99633e97 3267 if (debug > 0)
fa9a63c5 3268 {
505bde11 3269 re_compile_fastmap (bufp);
fa9a63c5
RM
3270 DEBUG_PRINT1 ("\nCompiled pattern: \n");
3271 print_compiled_pattern (bufp);
3272 }
99633e97 3273 debug--;
fa9a63c5
RM
3274#endif /* DEBUG */
3275
3276#ifndef MATCH_MAY_ALLOCATE
3277 /* Initialize the failure stack to the largest possible stack. This
3278 isn't necessary unless we're trying to avoid calling alloca in
3279 the search and match routines. */
3280 {
3281 int num_regs = bufp->re_nsub + 1;
3282
320a2a73 3283 if (fail_stack.size < re_max_failures * TYPICAL_FAILURE_SIZE)
fa9a63c5 3284 {
a26f4ccd 3285 fail_stack.size = re_max_failures * TYPICAL_FAILURE_SIZE;
fa9a63c5 3286
fa9a63c5
RM
3287 if (! fail_stack.stack)
3288 fail_stack.stack
5e69f11e 3289 = (fail_stack_elt_t *) malloc (fail_stack.size
fa9a63c5
RM
3290 * sizeof (fail_stack_elt_t));
3291 else
3292 fail_stack.stack
3293 = (fail_stack_elt_t *) realloc (fail_stack.stack,
3294 (fail_stack.size
3295 * sizeof (fail_stack_elt_t)));
fa9a63c5
RM
3296 }
3297
3298 regex_grow_registers (num_regs);
3299 }
3300#endif /* not MATCH_MAY_ALLOCATE */
3301
3302 return REG_NOERROR;
3303} /* regex_compile */
3304\f
3305/* Subroutines for `regex_compile'. */
3306
25fe55af 3307/* Store OP at LOC followed by two-byte integer parameter ARG. */
fa9a63c5
RM
3308
3309static void
3310store_op1 (op, loc, arg)
3311 re_opcode_t op;
3312 unsigned char *loc;
3313 int arg;
3314{
3315 *loc = (unsigned char) op;
3316 STORE_NUMBER (loc + 1, arg);
3317}
3318
3319
3320/* Like `store_op1', but for two two-byte parameters ARG1 and ARG2. */
3321
3322static void
3323store_op2 (op, loc, arg1, arg2)
3324 re_opcode_t op;
3325 unsigned char *loc;
3326 int arg1, arg2;
3327{
3328 *loc = (unsigned char) op;
3329 STORE_NUMBER (loc + 1, arg1);
3330 STORE_NUMBER (loc + 3, arg2);
3331}
3332
3333
3334/* Copy the bytes from LOC to END to open up three bytes of space at LOC
3335 for OP followed by two-byte integer parameter ARG. */
3336
3337static void
3338insert_op1 (op, loc, arg, end)
3339 re_opcode_t op;
3340 unsigned char *loc;
3341 int arg;
5e69f11e 3342 unsigned char *end;
fa9a63c5
RM
3343{
3344 register unsigned char *pfrom = end;
3345 register unsigned char *pto = end + 3;
3346
3347 while (pfrom != loc)
3348 *--pto = *--pfrom;
5e69f11e 3349
fa9a63c5
RM
3350 store_op1 (op, loc, arg);
3351}
3352
3353
3354/* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2. */
3355
3356static void
3357insert_op2 (op, loc, arg1, arg2, end)
3358 re_opcode_t op;
3359 unsigned char *loc;
3360 int arg1, arg2;
5e69f11e 3361 unsigned char *end;
fa9a63c5
RM
3362{
3363 register unsigned char *pfrom = end;
3364 register unsigned char *pto = end + 5;
3365
3366 while (pfrom != loc)
3367 *--pto = *--pfrom;
5e69f11e 3368
fa9a63c5
RM
3369 store_op2 (op, loc, arg1, arg2);
3370}
3371
3372
3373/* P points to just after a ^ in PATTERN. Return true if that ^ comes
3374 after an alternative or a begin-subexpression. We assume there is at
3375 least one character before the ^. */
3376
3377static boolean
3378at_begline_loc_p (pattern, p, syntax)
01618498 3379 re_char *pattern, *p;
fa9a63c5
RM
3380 reg_syntax_t syntax;
3381{
01618498 3382 re_char *prev = p - 2;
fa9a63c5 3383 boolean prev_prev_backslash = prev > pattern && prev[-1] == '\\';
5e69f11e 3384
fa9a63c5
RM
3385 return
3386 /* After a subexpression? */
3387 (*prev == '(' && (syntax & RE_NO_BK_PARENS || prev_prev_backslash))
25fe55af 3388 /* After an alternative? */
d2af47df
SM
3389 || (*prev == '|' && (syntax & RE_NO_BK_VBAR || prev_prev_backslash))
3390 /* After a shy subexpression? */
3391 || ((syntax & RE_SHY_GROUPS) && prev - 2 >= pattern
3392 && prev[-1] == '?' && prev[-2] == '('
3393 && (syntax & RE_NO_BK_PARENS
3394 || (prev - 3 >= pattern && prev[-3] == '\\')));
fa9a63c5
RM
3395}
3396
3397
3398/* The dual of at_begline_loc_p. This one is for $. We assume there is
3399 at least one character after the $, i.e., `P < PEND'. */
3400
3401static boolean
3402at_endline_loc_p (p, pend, syntax)
01618498 3403 re_char *p, *pend;
99633e97 3404 reg_syntax_t syntax;
fa9a63c5 3405{
01618498 3406 re_char *next = p;
fa9a63c5 3407 boolean next_backslash = *next == '\\';
01618498 3408 re_char *next_next = p + 1 < pend ? p + 1 : 0;
5e69f11e 3409
fa9a63c5
RM
3410 return
3411 /* Before a subexpression? */
3412 (syntax & RE_NO_BK_PARENS ? *next == ')'
25fe55af 3413 : next_backslash && next_next && *next_next == ')')
fa9a63c5
RM
3414 /* Before an alternative? */
3415 || (syntax & RE_NO_BK_VBAR ? *next == '|'
25fe55af 3416 : next_backslash && next_next && *next_next == '|');
fa9a63c5
RM
3417}
3418
3419
5e69f11e 3420/* Returns true if REGNUM is in one of COMPILE_STACK's elements and
fa9a63c5
RM
3421 false if it's not. */
3422
3423static boolean
3424group_in_compile_stack (compile_stack, regnum)
3425 compile_stack_type compile_stack;
3426 regnum_t regnum;
3427{
3428 int this_element;
3429
5e69f11e
RM
3430 for (this_element = compile_stack.avail - 1;
3431 this_element >= 0;
fa9a63c5
RM
3432 this_element--)
3433 if (compile_stack.stack[this_element].regnum == regnum)
3434 return true;
3435
3436 return false;
3437}
fa9a63c5 3438\f
f6a3f532
SM
3439/* analyse_first.
3440 If fastmap is non-NULL, go through the pattern and fill fastmap
3441 with all the possible leading chars. If fastmap is NULL, don't
3442 bother filling it up (obviously) and only return whether the
3443 pattern could potentially match the empty string.
3444
3445 Return 1 if p..pend might match the empty string.
3446 Return 0 if p..pend matches at least one char.
01618498 3447 Return -1 if fastmap was not updated accurately. */
f6a3f532
SM
3448
3449static int
3450analyse_first (p, pend, fastmap, multibyte)
01618498 3451 re_char *p, *pend;
f6a3f532
SM
3452 char *fastmap;
3453 const int multibyte;
fa9a63c5 3454{
505bde11 3455 int j, k;
1fb352e0 3456 boolean not;
fa9a63c5 3457
b18215fc 3458 /* If all elements for base leading-codes in fastmap is set, this
25fe55af 3459 flag is set true. */
b18215fc
RS
3460 boolean match_any_multibyte_characters = false;
3461
f6a3f532 3462 assert (p);
5e69f11e 3463
505bde11
SM
3464 /* The loop below works as follows:
3465 - It has a working-list kept in the PATTERN_STACK and which basically
3466 starts by only containing a pointer to the first operation.
3467 - If the opcode we're looking at is a match against some set of
3468 chars, then we add those chars to the fastmap and go on to the
3469 next work element from the worklist (done via `break').
3470 - If the opcode is a control operator on the other hand, we either
3471 ignore it (if it's meaningless at this point, such as `start_memory')
3472 or execute it (if it's a jump). If the jump has several destinations
3473 (i.e. `on_failure_jump'), then we push the other destination onto the
3474 worklist.
3475 We guarantee termination by ignoring backward jumps (more or less),
3476 so that `p' is monotonically increasing. More to the point, we
3477 never set `p' (or push) anything `<= p1'. */
3478
01618498 3479 while (p < pend)
fa9a63c5 3480 {
505bde11
SM
3481 /* `p1' is used as a marker of how far back a `on_failure_jump'
3482 can go without being ignored. It is normally equal to `p'
3483 (which prevents any backward `on_failure_jump') except right
3484 after a plain `jump', to allow patterns such as:
3485 0: jump 10
3486 3..9: <body>
3487 10: on_failure_jump 3
3488 as used for the *? operator. */
01618498 3489 re_char *p1 = p;
5e69f11e 3490
fa9a63c5
RM
3491 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
3492 {
f6a3f532 3493 case succeed:
01618498 3494 return 1;
f6a3f532 3495 continue;
fa9a63c5 3496
fa9a63c5 3497 case duplicate:
505bde11
SM
3498 /* If the first character has to match a backreference, that means
3499 that the group was empty (since it already matched). Since this
3500 is the only case that interests us here, we can assume that the
3501 backreference must match the empty string. */
3502 p++;
3503 continue;
fa9a63c5
RM
3504
3505
3506 /* Following are the cases which match a character. These end
25fe55af 3507 with `break'. */
fa9a63c5
RM
3508
3509 case exactn:
e0277a47
KH
3510 if (fastmap)
3511 {
3512 int c = RE_STRING_CHAR (p + 1, pend - p);
3513
3514 if (SINGLE_BYTE_CHAR_P (c))
3515 fastmap[c] = 1;
3516 else
3517 fastmap[p[1]] = 1;
3518 }
fa9a63c5
RM
3519 break;
3520
3521
1fb352e0
SM
3522 case anychar:
3523 /* We could put all the chars except for \n (and maybe \0)
3524 but we don't bother since it is generally not worth it. */
f6a3f532 3525 if (!fastmap) break;
01618498 3526 return -1;
fa9a63c5
RM
3527
3528
b18215fc 3529 case charset_not:
ba5c004d
RS
3530 /* Chars beyond end of bitmap are possible matches.
3531 All the single-byte codes can occur in multibyte buffers.
3532 So any that are not listed in the charset
3533 are possible matches, even in multibyte buffers. */
1fb352e0 3534 if (!fastmap) break;
b18215fc 3535 for (j = CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH;
1fb352e0 3536 j < (1 << BYTEWIDTH); j++)
b18215fc 3537 fastmap[j] = 1;
1fb352e0
SM
3538 /* Fallthrough */
3539 case charset:
3540 if (!fastmap) break;
3541 not = (re_opcode_t) *(p - 1) == charset_not;
b18215fc
RS
3542 for (j = CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH - 1, p++;
3543 j >= 0; j--)
1fb352e0 3544 if (!!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))) ^ not)
b18215fc
RS
3545 fastmap[j] = 1;
3546
1fb352e0
SM
3547 if ((not && multibyte)
3548 /* Any character set can possibly contain a character
3549 which doesn't match the specified set of characters. */
3550 || (CHARSET_RANGE_TABLE_EXISTS_P (&p[-2])
3551 && CHARSET_RANGE_TABLE_BITS (&p[-2]) != 0))
3552 /* If we can match a character class, we can match
3553 any character set. */
b18215fc
RS
3554 {
3555 set_fastmap_for_multibyte_characters:
3556 if (match_any_multibyte_characters == false)
3557 {
3558 for (j = 0x80; j < 0xA0; j++) /* XXX */
3559 if (BASE_LEADING_CODE_P (j))
3560 fastmap[j] = 1;
3561 match_any_multibyte_characters = true;
3562 }
3563 }
b18215fc 3564
1fb352e0
SM
3565 else if (!not && CHARSET_RANGE_TABLE_EXISTS_P (&p[-2])
3566 && match_any_multibyte_characters == false)
3567 {
3568 /* Set fastmap[I] 1 where I is a base leading code of each
3569 multibyte character in the range table. */
3570 int c, count;
b18215fc 3571
1fb352e0 3572 /* Make P points the range table. `+ 2' is to skip flag
0b32bf0e 3573 bits for a character class. */
1fb352e0 3574 p += CHARSET_BITMAP_SIZE (&p[-2]) + 2;
b18215fc 3575
1fb352e0
SM
3576 /* Extract the number of ranges in range table into COUNT. */
3577 EXTRACT_NUMBER_AND_INCR (count, p);
3578 for (; count > 0; count--, p += 2 * 3) /* XXX */
3579 {
3580 /* Extract the start of each range. */
3581 EXTRACT_CHARACTER (c, p);
3582 j = CHAR_CHARSET (c);
3583 fastmap[CHARSET_LEADING_CODE_BASE (j)] = 1;
3584 }
3585 }
b18215fc
RS
3586 break;
3587
1fb352e0
SM
3588 case syntaxspec:
3589 case notsyntaxspec:
3590 if (!fastmap) break;
3591#ifndef emacs
3592 not = (re_opcode_t)p[-1] == notsyntaxspec;
3593 k = *p++;
3594 for (j = 0; j < (1 << BYTEWIDTH); j++)
990b2375 3595 if ((SYNTAX (j) == (enum syntaxcode) k) ^ not)
b18215fc 3596 fastmap[j] = 1;
b18215fc 3597 break;
1fb352e0 3598#else /* emacs */
b18215fc
RS
3599 /* This match depends on text properties. These end with
3600 aborting optimizations. */
01618498 3601 return -1;
b18215fc
RS
3602
3603 case categoryspec:
b18215fc 3604 case notcategoryspec:
1fb352e0
SM
3605 if (!fastmap) break;
3606 not = (re_opcode_t)p[-1] == notcategoryspec;
b18215fc 3607 k = *p++;
1fb352e0
SM
3608 for (j = 0; j < (1 << BYTEWIDTH); j++)
3609 if ((CHAR_HAS_CATEGORY (j, k)) ^ not)
b18215fc
RS
3610 fastmap[j] = 1;
3611
1fb352e0 3612 if (multibyte)
b18215fc 3613 /* Any character set can possibly contain a character
1fb352e0 3614 whose category is K (or not). */
b18215fc
RS
3615 goto set_fastmap_for_multibyte_characters;
3616 break;
3617
fa9a63c5 3618 /* All cases after this match the empty string. These end with
25fe55af 3619 `continue'. */
fa9a63c5 3620
fa9a63c5
RM
3621 case before_dot:
3622 case at_dot:
3623 case after_dot:
1fb352e0 3624#endif /* !emacs */
25fe55af
RS
3625 case no_op:
3626 case begline:
3627 case endline:
fa9a63c5
RM
3628 case begbuf:
3629 case endbuf:
3630 case wordbound:
3631 case notwordbound:
3632 case wordbeg:
3633 case wordend:
25fe55af 3634 continue;
fa9a63c5
RM
3635
3636
fa9a63c5 3637 case jump:
25fe55af 3638 EXTRACT_NUMBER_AND_INCR (j, p);
505bde11
SM
3639 if (j < 0)
3640 /* Backward jumps can only go back to code that we've already
3641 visited. `re_compile' should make sure this is true. */
3642 break;
25fe55af 3643 p += j;
505bde11
SM
3644 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p))
3645 {
3646 case on_failure_jump:
3647 case on_failure_keep_string_jump:
505bde11 3648 case on_failure_jump_loop:
0683b6fa 3649 case on_failure_jump_nastyloop:
505bde11
SM
3650 case on_failure_jump_smart:
3651 p++;
3652 break;
3653 default:
3654 continue;
3655 };
3656 /* Keep `p1' to allow the `on_failure_jump' we are jumping to
3657 to jump back to "just after here". */
3658 /* Fallthrough */
fa9a63c5 3659
25fe55af
RS
3660 case on_failure_jump:
3661 case on_failure_keep_string_jump:
0683b6fa 3662 case on_failure_jump_nastyloop:
505bde11
SM
3663 case on_failure_jump_loop:
3664 case on_failure_jump_smart:
25fe55af 3665 EXTRACT_NUMBER_AND_INCR (j, p);
505bde11 3666 if (p + j <= p1)
ed0767d8 3667 ; /* Backward jump to be ignored. */
01618498
SM
3668 else
3669 { /* We have to look down both arms.
3670 We first go down the "straight" path so as to minimize
3671 stack usage when going through alternatives. */
3672 int r = analyse_first (p, pend, fastmap, multibyte);
3673 if (r) return r;
3674 p += j;
3675 }
25fe55af 3676 continue;
fa9a63c5
RM
3677
3678
ed0767d8
SM
3679 case jump_n:
3680 /* This code simply does not properly handle forward jump_n. */
3681 DEBUG_STATEMENT (EXTRACT_NUMBER (j, p); assert (j < 0));
3682 p += 4;
3683 /* jump_n can either jump or fall through. The (backward) jump
3684 case has already been handled, so we only need to look at the
3685 fallthrough case. */
3686 continue;
3687
fa9a63c5 3688 case succeed_n:
ed0767d8
SM
3689 /* If N == 0, it should be an on_failure_jump_loop instead. */
3690 DEBUG_STATEMENT (EXTRACT_NUMBER (j, p + 2); assert (j > 0));
3691 p += 4;
3692 /* We only care about one iteration of the loop, so we don't
3693 need to consider the case where this behaves like an
3694 on_failure_jump. */
25fe55af 3695 continue;
fa9a63c5
RM
3696
3697
3698 case set_number_at:
25fe55af
RS
3699 p += 4;
3700 continue;
fa9a63c5
RM
3701
3702
3703 case start_memory:
25fe55af 3704 case stop_memory:
505bde11 3705 p += 1;
fa9a63c5
RM
3706 continue;
3707
3708
3709 default:
25fe55af
RS
3710 abort (); /* We have listed all the cases. */
3711 } /* switch *p++ */
fa9a63c5
RM
3712
3713 /* Getting here means we have found the possible starting
25fe55af 3714 characters for one path of the pattern -- and that the empty
01618498
SM
3715 string does not match. We need not follow this path further. */
3716 return 0;
fa9a63c5
RM
3717 } /* while p */
3718
01618498
SM
3719 /* We reached the end without matching anything. */
3720 return 1;
3721
f6a3f532
SM
3722} /* analyse_first */
3723\f
3724/* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
3725 BUFP. A fastmap records which of the (1 << BYTEWIDTH) possible
3726 characters can start a string that matches the pattern. This fastmap
3727 is used by re_search to skip quickly over impossible starting points.
3728
3729 Character codes above (1 << BYTEWIDTH) are not represented in the
3730 fastmap, but the leading codes are represented. Thus, the fastmap
3731 indicates which character sets could start a match.
3732
3733 The caller must supply the address of a (1 << BYTEWIDTH)-byte data
3734 area as BUFP->fastmap.
3735
3736 We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
3737 the pattern buffer.
3738
3739 Returns 0 if we succeed, -2 if an internal error. */
3740
3741int
3742re_compile_fastmap (bufp)
3743 struct re_pattern_buffer *bufp;
3744{
3745 char *fastmap = bufp->fastmap;
3746 int analysis;
3747
3748 assert (fastmap && bufp->buffer);
3749
3750 bzero (fastmap, 1 << BYTEWIDTH); /* Assume nothing's valid. */
3751 bufp->fastmap_accurate = 1; /* It will be when we're done. */
3752
3753 analysis = analyse_first (bufp->buffer, bufp->buffer + bufp->used,
2d1675e4 3754 fastmap, RE_MULTIBYTE_P (bufp));
c0f9ea08 3755 bufp->can_be_null = (analysis != 0);
fa9a63c5
RM
3756 return 0;
3757} /* re_compile_fastmap */
3758\f
3759/* Set REGS to hold NUM_REGS registers, storing them in STARTS and
3760 ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use
3761 this memory for recording register information. STARTS and ENDS
3762 must be allocated using the malloc library routine, and must each
3763 be at least NUM_REGS * sizeof (regoff_t) bytes long.
3764
3765 If NUM_REGS == 0, then subsequent matches should allocate their own
3766 register data.
3767
3768 Unless this function is called, the first search or match using
3769 PATTERN_BUFFER will allocate its own register data, without
3770 freeing the old data. */
3771
3772void
3773re_set_registers (bufp, regs, num_regs, starts, ends)
3774 struct re_pattern_buffer *bufp;
3775 struct re_registers *regs;
3776 unsigned num_regs;
3777 regoff_t *starts, *ends;
3778{
3779 if (num_regs)
3780 {
3781 bufp->regs_allocated = REGS_REALLOCATE;
3782 regs->num_regs = num_regs;
3783 regs->start = starts;
3784 regs->end = ends;
3785 }
3786 else
3787 {
3788 bufp->regs_allocated = REGS_UNALLOCATED;
3789 regs->num_regs = 0;
3790 regs->start = regs->end = (regoff_t *) 0;
3791 }
3792}
c0f9ea08 3793WEAK_ALIAS (__re_set_registers, re_set_registers)
fa9a63c5 3794\f
25fe55af 3795/* Searching routines. */
fa9a63c5
RM
3796
3797/* Like re_search_2, below, but only one string is specified, and
3798 doesn't let you say where to stop matching. */
3799
3800int
3801re_search (bufp, string, size, startpos, range, regs)
3802 struct re_pattern_buffer *bufp;
3803 const char *string;
3804 int size, startpos, range;
3805 struct re_registers *regs;
3806{
5e69f11e 3807 return re_search_2 (bufp, NULL, 0, string, size, startpos, range,
fa9a63c5
RM
3808 regs, size);
3809}
c0f9ea08 3810WEAK_ALIAS (__re_search, re_search)
fa9a63c5 3811
b18215fc
RS
3812/* End address of virtual concatenation of string. */
3813#define STOP_ADDR_VSTRING(P) \
3814 (((P) >= size1 ? string2 + size2 : string1 + size1))
3815
3816/* Address of POS in the concatenation of virtual string. */
3817#define POS_ADDR_VSTRING(POS) \
3818 (((POS) >= size1 ? string2 - size1 : string1) + (POS))
fa9a63c5
RM
3819
3820/* Using the compiled pattern in BUFP->buffer, first tries to match the
3821 virtual concatenation of STRING1 and STRING2, starting first at index
3822 STARTPOS, then at STARTPOS + 1, and so on.
5e69f11e 3823
fa9a63c5 3824 STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
5e69f11e 3825
fa9a63c5
RM
3826 RANGE is how far to scan while trying to match. RANGE = 0 means try
3827 only at STARTPOS; in general, the last start tried is STARTPOS +
3828 RANGE.
5e69f11e 3829
fa9a63c5
RM
3830 In REGS, return the indices of the virtual concatenation of STRING1
3831 and STRING2 that matched the entire BUFP->buffer and its contained
3832 subexpressions.
5e69f11e 3833
fa9a63c5
RM
3834 Do not consider matching one past the index STOP in the virtual
3835 concatenation of STRING1 and STRING2.
3836
3837 We return either the position in the strings at which the match was
3838 found, -1 if no match, or -2 if error (such as failure
3839 stack overflow). */
3840
3841int
66f0296e 3842re_search_2 (bufp, str1, size1, str2, size2, startpos, range, regs, stop)
fa9a63c5 3843 struct re_pattern_buffer *bufp;
66f0296e 3844 const char *str1, *str2;
fa9a63c5
RM
3845 int size1, size2;
3846 int startpos;
3847 int range;
3848 struct re_registers *regs;
3849 int stop;
3850{
3851 int val;
66f0296e
SM
3852 re_char *string1 = (re_char*) str1;
3853 re_char *string2 = (re_char*) str2;
fa9a63c5 3854 register char *fastmap = bufp->fastmap;
6676cb1c 3855 register RE_TRANSLATE_TYPE translate = bufp->translate;
fa9a63c5
RM
3856 int total_size = size1 + size2;
3857 int endpos = startpos + range;
c0f9ea08 3858 boolean anchored_start;
fa9a63c5 3859
25fe55af 3860 /* Nonzero if we have to concern multibyte character. */
2d1675e4 3861 const boolean multibyte = RE_MULTIBYTE_P (bufp);
b18215fc 3862
fa9a63c5
RM
3863 /* Check for out-of-range STARTPOS. */
3864 if (startpos < 0 || startpos > total_size)
3865 return -1;
5e69f11e 3866
fa9a63c5 3867 /* Fix up RANGE if it might eventually take us outside
34597fa9 3868 the virtual concatenation of STRING1 and STRING2.
5e69f11e 3869 Make sure we won't move STARTPOS below 0 or above TOTAL_SIZE. */
34597fa9
RS
3870 if (endpos < 0)
3871 range = 0 - startpos;
fa9a63c5
RM
3872 else if (endpos > total_size)
3873 range = total_size - startpos;
3874
3875 /* If the search isn't to be a backwards one, don't waste time in a
7b140fd7 3876 search for a pattern anchored at beginning of buffer. */
fa9a63c5
RM
3877 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == begbuf && range > 0)
3878 {
3879 if (startpos > 0)
3880 return -1;
3881 else
7b140fd7 3882 range = 0;
fa9a63c5
RM
3883 }
3884
ae4788a8
RS
3885#ifdef emacs
3886 /* In a forward search for something that starts with \=.
3887 don't keep searching past point. */
3888 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == at_dot && range > 0)
3889 {
7b140fd7
RS
3890 range = PT_BYTE - BEGV_BYTE - startpos;
3891 if (range < 0)
ae4788a8
RS
3892 return -1;
3893 }
3894#endif /* emacs */
3895
fa9a63c5
RM
3896 /* Update the fastmap now if not correct already. */
3897 if (fastmap && !bufp->fastmap_accurate)
01618498 3898 re_compile_fastmap (bufp);
5e69f11e 3899
c8499ba5 3900 /* See whether the pattern is anchored. */
c0f9ea08 3901 anchored_start = (bufp->buffer[0] == begline);
c8499ba5 3902
b18215fc 3903#ifdef emacs
cc9b4df2
KH
3904 gl_state.object = re_match_object;
3905 {
99633e97 3906 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (POS_AS_IN_BUFFER (startpos));
cc9b4df2
KH
3907
3908 SETUP_SYNTAX_TABLE_FOR_OBJECT (re_match_object, charpos, 1);
3909 }
b18215fc
RS
3910#endif
3911
fa9a63c5
RM
3912 /* Loop through the string, looking for a place to start matching. */
3913 for (;;)
5e69f11e 3914 {
c8499ba5
RS
3915 /* If the pattern is anchored,
3916 skip quickly past places we cannot match.
3917 We don't bother to treat startpos == 0 specially
3918 because that case doesn't repeat. */
3919 if (anchored_start && startpos > 0)
3920 {
c0f9ea08
SM
3921 if (! ((startpos <= size1 ? string1[startpos - 1]
3922 : string2[startpos - size1 - 1])
3923 == '\n'))
c8499ba5
RS
3924 goto advance;
3925 }
3926
fa9a63c5 3927 /* If a fastmap is supplied, skip quickly over characters that
25fe55af
RS
3928 cannot be the start of a match. If the pattern can match the
3929 null string, however, we don't need to skip characters; we want
3930 the first null string. */
fa9a63c5
RM
3931 if (fastmap && startpos < total_size && !bufp->can_be_null)
3932 {
66f0296e 3933 register re_char *d;
01618498 3934 register re_wchar_t buf_ch;
e934739e
RS
3935
3936 d = POS_ADDR_VSTRING (startpos);
3937
25fe55af 3938 if (range > 0) /* Searching forwards. */
fa9a63c5 3939 {
fa9a63c5
RM
3940 register int lim = 0;
3941 int irange = range;
3942
25fe55af
RS
3943 if (startpos < size1 && startpos + range >= size1)
3944 lim = range - (size1 - startpos);
fa9a63c5 3945
25fe55af
RS
3946 /* Written out as an if-else to avoid testing `translate'
3947 inside the loop. */
28ae27ae
AS
3948 if (RE_TRANSLATE_P (translate))
3949 {
e934739e
RS
3950 if (multibyte)
3951 while (range > lim)
3952 {
3953 int buf_charlen;
3954
3955 buf_ch = STRING_CHAR_AND_LENGTH (d, range - lim,
3956 buf_charlen);
3957
3958 buf_ch = RE_TRANSLATE (translate, buf_ch);
3959 if (buf_ch >= 0400
3960 || fastmap[buf_ch])
3961 break;
3962
3963 range -= buf_charlen;
3964 d += buf_charlen;
3965 }
3966 else
3967 while (range > lim
66f0296e 3968 && !fastmap[RE_TRANSLATE (translate, *d)])
33c46939
RS
3969 {
3970 d++;
3971 range--;
3972 }
e934739e 3973 }
fa9a63c5 3974 else
66f0296e 3975 while (range > lim && !fastmap[*d])
33c46939
RS
3976 {
3977 d++;
3978 range--;
3979 }
fa9a63c5
RM
3980
3981 startpos += irange - range;
3982 }
25fe55af 3983 else /* Searching backwards. */
fa9a63c5 3984 {
2d1675e4
SM
3985 int room = (startpos >= size1
3986 ? size2 + size1 - startpos
3987 : size1 - startpos);
3988 buf_ch = RE_STRING_CHAR (d, room);
3989 buf_ch = TRANSLATE (buf_ch);
fa9a63c5 3990
e934739e
RS
3991 if (! (buf_ch >= 0400
3992 || fastmap[buf_ch]))
fa9a63c5
RM
3993 goto advance;
3994 }
3995 }
3996
3997 /* If can't match the null string, and that's all we have left, fail. */
3998 if (range >= 0 && startpos == total_size && fastmap
25fe55af 3999 && !bufp->can_be_null)
fa9a63c5
RM
4000 return -1;
4001
4002 val = re_match_2_internal (bufp, string1, size1, string2, size2,
4003 startpos, regs, stop);
4004#ifndef REGEX_MALLOC
0b32bf0e 4005# ifdef C_ALLOCA
fa9a63c5 4006 alloca (0);
0b32bf0e 4007# endif
fa9a63c5
RM
4008#endif
4009
4010 if (val >= 0)
4011 return startpos;
5e69f11e 4012
fa9a63c5
RM
4013 if (val == -2)
4014 return -2;
4015
4016 advance:
5e69f11e 4017 if (!range)
25fe55af 4018 break;
5e69f11e 4019 else if (range > 0)
25fe55af 4020 {
b18215fc
RS
4021 /* Update STARTPOS to the next character boundary. */
4022 if (multibyte)
4023 {
66f0296e
SM
4024 re_char *p = POS_ADDR_VSTRING (startpos);
4025 re_char *pend = STOP_ADDR_VSTRING (startpos);
b18215fc
RS
4026 int len = MULTIBYTE_FORM_LENGTH (p, pend - p);
4027
4028 range -= len;
4029 if (range < 0)
4030 break;
4031 startpos += len;
4032 }
4033 else
4034 {
b560c397
RS
4035 range--;
4036 startpos++;
4037 }
e318085a 4038 }
fa9a63c5 4039 else
25fe55af
RS
4040 {
4041 range++;
4042 startpos--;
b18215fc
RS
4043
4044 /* Update STARTPOS to the previous character boundary. */
4045 if (multibyte)
4046 {
66f0296e 4047 re_char *p = POS_ADDR_VSTRING (startpos);
b18215fc
RS
4048 int len = 0;
4049
4050 /* Find the head of multibyte form. */
5d967c7a 4051 while (!CHAR_HEAD_P (*p))
b18215fc
RS
4052 p--, len++;
4053
4054 /* Adjust it. */
4055#if 0 /* XXX */
4056 if (MULTIBYTE_FORM_LENGTH (p, len + 1) != (len + 1))
4057 ;
4058 else
4059#endif
4060 {
4061 range += len;
4062 if (range > 0)
4063 break;
4064
4065 startpos -= len;
4066 }
4067 }
25fe55af 4068 }
fa9a63c5
RM
4069 }
4070 return -1;
4071} /* re_search_2 */
c0f9ea08 4072WEAK_ALIAS (__re_search_2, re_search_2)
fa9a63c5
RM
4073\f
4074/* Declarations and macros for re_match_2. */
4075
2d1675e4
SM
4076static int bcmp_translate _RE_ARGS((re_char *s1, re_char *s2,
4077 register int len,
4078 RE_TRANSLATE_TYPE translate,
4079 const int multibyte));
fa9a63c5
RM
4080
4081/* This converts PTR, a pointer into one of the search strings `string1'
4082 and `string2' into an offset from the beginning of that string. */
4083#define POINTER_TO_OFFSET(ptr) \
4084 (FIRST_STRING_P (ptr) \
4085 ? ((regoff_t) ((ptr) - string1)) \
4086 : ((regoff_t) ((ptr) - string2 + size1)))
4087
fa9a63c5 4088/* Call before fetching a character with *d. This switches over to
419d1c74
SM
4089 string2 if necessary.
4090 Check re_match_2_internal for a discussion of why end_match_2 might
4091 not be within string2 (but be equal to end_match_1 instead). */
fa9a63c5 4092#define PREFETCH() \
25fe55af 4093 while (d == dend) \
fa9a63c5
RM
4094 { \
4095 /* End of string2 => fail. */ \
25fe55af
RS
4096 if (dend == end_match_2) \
4097 goto fail; \
4bb91c68 4098 /* End of string1 => advance to string2. */ \
25fe55af 4099 d = string2; \
fa9a63c5
RM
4100 dend = end_match_2; \
4101 }
4102
f1ad044f
SM
4103/* Call before fetching a char with *d if you already checked other limits.
4104 This is meant for use in lookahead operations like wordend, etc..
4105 where we might need to look at parts of the string that might be
4106 outside of the LIMITs (i.e past `stop'). */
4107#define PREFETCH_NOLIMIT() \
4108 if (d == end1) \
4109 { \
4110 d = string2; \
4111 dend = end_match_2; \
4112 } \
fa9a63c5
RM
4113
4114/* Test if at very beginning or at very end of the virtual concatenation
25fe55af 4115 of `string1' and `string2'. If only one string, it's `string2'. */
fa9a63c5 4116#define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
5e69f11e 4117#define AT_STRINGS_END(d) ((d) == end2)
fa9a63c5
RM
4118
4119
4120/* Test if D points to a character which is word-constituent. We have
4121 two special cases to check for: if past the end of string1, look at
4122 the first character in string2; and if before the beginning of
4123 string2, look at the last character in string1. */
4124#define WORDCHAR_P(d) \
4125 (SYNTAX ((d) == end1 ? *string2 \
25fe55af 4126 : (d) == string2 - 1 ? *(end1 - 1) : *(d)) \
fa9a63c5
RM
4127 == Sword)
4128
9121ca40 4129/* Disabled due to a compiler bug -- see comment at case wordbound */
b18215fc
RS
4130
4131/* The comment at case wordbound is following one, but we don't use
4132 AT_WORD_BOUNDARY anymore to support multibyte form.
4133
4134 The DEC Alpha C compiler 3.x generates incorrect code for the
25fe55af
RS
4135 test WORDCHAR_P (d - 1) != WORDCHAR_P (d) in the expansion of
4136 AT_WORD_BOUNDARY, so this code is disabled. Expanding the
b18215fc
RS
4137 macro and introducing temporary variables works around the bug. */
4138
9121ca40 4139#if 0
fa9a63c5
RM
4140/* Test if the character before D and the one at D differ with respect
4141 to being word-constituent. */
4142#define AT_WORD_BOUNDARY(d) \
4143 (AT_STRINGS_BEG (d) || AT_STRINGS_END (d) \
4144 || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
9121ca40 4145#endif
fa9a63c5
RM
4146
4147/* Free everything we malloc. */
4148#ifdef MATCH_MAY_ALLOCATE
0b32bf0e
SM
4149# define FREE_VAR(var) if (var) { REGEX_FREE (var); var = NULL; } else
4150# define FREE_VARIABLES() \
fa9a63c5
RM
4151 do { \
4152 REGEX_FREE_STACK (fail_stack.stack); \
4153 FREE_VAR (regstart); \
4154 FREE_VAR (regend); \
fa9a63c5
RM
4155 FREE_VAR (best_regstart); \
4156 FREE_VAR (best_regend); \
fa9a63c5
RM
4157 } while (0)
4158#else
0b32bf0e 4159# define FREE_VARIABLES() ((void)0) /* Do nothing! But inhibit gcc warning. */
fa9a63c5
RM
4160#endif /* not MATCH_MAY_ALLOCATE */
4161
505bde11
SM
4162\f
4163/* Optimization routines. */
4164
4e8a9132
SM
4165/* If the operation is a match against one or more chars,
4166 return a pointer to the next operation, else return NULL. */
01618498 4167static re_char *
4e8a9132 4168skip_one_char (p)
01618498 4169 re_char *p;
4e8a9132
SM
4170{
4171 switch (SWITCH_ENUM_CAST (*p++))
4172 {
4173 case anychar:
4174 break;
4175
4176 case exactn:
4177 p += *p + 1;
4178 break;
4179
4180 case charset_not:
4181 case charset:
4182 if (CHARSET_RANGE_TABLE_EXISTS_P (p - 1))
4183 {
4184 int mcnt;
4185 p = CHARSET_RANGE_TABLE (p - 1);
4186 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4187 p = CHARSET_RANGE_TABLE_END (p, mcnt);
4188 }
4189 else
4190 p += 1 + CHARSET_BITMAP_SIZE (p - 1);
4191 break;
4192
4e8a9132
SM
4193 case syntaxspec:
4194 case notsyntaxspec:
1fb352e0 4195#ifdef emacs
4e8a9132
SM
4196 case categoryspec:
4197 case notcategoryspec:
4198#endif /* emacs */
4199 p++;
4200 break;
4201
4202 default:
4203 p = NULL;
4204 }
4205 return p;
4206}
4207
4208
505bde11
SM
4209/* Jump over non-matching operations. */
4210static unsigned char *
4e8a9132 4211skip_noops (p, pend)
505bde11 4212 unsigned char *p, *pend;
505bde11
SM
4213{
4214 int mcnt;
4215 while (p < pend)
4216 {
4217 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p))
4218 {
4219 case start_memory:
505bde11
SM
4220 case stop_memory:
4221 p += 2; break;
4222 case no_op:
4223 p += 1; break;
4224 case jump:
4225 p += 1;
4226 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4227 p += mcnt;
4228 break;
4229 default:
4230 return p;
4231 }
4232 }
4233 assert (p == pend);
4234 return p;
4235}
4236
4237/* Non-zero if "p1 matches something" implies "p2 fails". */
4238static int
4239mutually_exclusive_p (bufp, p1, p2)
4240 struct re_pattern_buffer *bufp;
4241 unsigned char *p1, *p2;
4242{
4e8a9132 4243 re_opcode_t op2;
2d1675e4 4244 const boolean multibyte = RE_MULTIBYTE_P (bufp);
505bde11
SM
4245 unsigned char *pend = bufp->buffer + bufp->used;
4246
4e8a9132 4247 assert (p1 >= bufp->buffer && p1 < pend
505bde11
SM
4248 && p2 >= bufp->buffer && p2 <= pend);
4249
4250 /* Skip over open/close-group commands.
4251 If what follows this loop is a ...+ construct,
4252 look at what begins its body, since we will have to
4253 match at least one of that. */
4e8a9132
SM
4254 p2 = skip_noops (p2, pend);
4255 /* The same skip can be done for p1, except that this function
4256 is only used in the case where p1 is a simple match operator. */
4257 /* p1 = skip_noops (p1, pend); */
4258
4259 assert (p1 >= bufp->buffer && p1 < pend
4260 && p2 >= bufp->buffer && p2 <= pend);
4261
4262 op2 = p2 == pend ? succeed : *p2;
4263
4264 switch (SWITCH_ENUM_CAST (op2))
505bde11 4265 {
4e8a9132
SM
4266 case succeed:
4267 case endbuf:
4268 /* If we're at the end of the pattern, we can change. */
4269 if (skip_one_char (p1))
505bde11 4270 {
505bde11
SM
4271 DEBUG_PRINT1 (" End of pattern: fast loop.\n");
4272 return 1;
505bde11 4273 }
4e8a9132
SM
4274 break;
4275
4276 case endline:
4e8a9132
SM
4277 case exactn:
4278 {
01618498 4279 register re_wchar_t c
4e8a9132 4280 = (re_opcode_t) *p2 == endline ? '\n'
411e4203 4281 : RE_STRING_CHAR (p2 + 2, pend - p2 - 2);
505bde11 4282
4e8a9132
SM
4283 if ((re_opcode_t) *p1 == exactn)
4284 {
4285 if (c != RE_STRING_CHAR (p1 + 2, pend - p1 - 2))
4286 {
4287 DEBUG_PRINT3 (" '%c' != '%c' => fast loop.\n", c, p1[2]);
4288 return 1;
4289 }
4290 }
505bde11 4291
4e8a9132
SM
4292 else if ((re_opcode_t) *p1 == charset
4293 || (re_opcode_t) *p1 == charset_not)
4294 {
4295 int not = (re_opcode_t) *p1 == charset_not;
505bde11 4296
4e8a9132
SM
4297 /* Test if C is listed in charset (or charset_not)
4298 at `p1'. */
4299 if (SINGLE_BYTE_CHAR_P (c))
4300 {
4301 if (c < CHARSET_BITMAP_SIZE (p1) * BYTEWIDTH
4302 && p1[2 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
4303 not = !not;
4304 }
4305 else if (CHARSET_RANGE_TABLE_EXISTS_P (p1))
4306 CHARSET_LOOKUP_RANGE_TABLE (not, c, p1);
505bde11 4307
4e8a9132
SM
4308 /* `not' is equal to 1 if c would match, which means
4309 that we can't change to pop_failure_jump. */
4310 if (!not)
4311 {
4312 DEBUG_PRINT1 (" No match => fast loop.\n");
4313 return 1;
4314 }
4315 }
4316 else if ((re_opcode_t) *p1 == anychar
4317 && c == '\n')
4318 {
4319 DEBUG_PRINT1 (" . != \\n => fast loop.\n");
4320 return 1;
4321 }
4322 }
4323 break;
505bde11 4324
4e8a9132 4325 case charset:
4e8a9132
SM
4326 {
4327 if ((re_opcode_t) *p1 == exactn)
4328 /* Reuse the code above. */
4329 return mutually_exclusive_p (bufp, p2, p1);
505bde11 4330
505bde11
SM
4331 /* It is hard to list up all the character in charset
4332 P2 if it includes multibyte character. Give up in
4333 such case. */
4334 else if (!multibyte || !CHARSET_RANGE_TABLE_EXISTS_P (p2))
4335 {
4336 /* Now, we are sure that P2 has no range table.
4337 So, for the size of bitmap in P2, `p2[1]' is
4338 enough. But P1 may have range table, so the
4339 size of bitmap table of P1 is extracted by
4340 using macro `CHARSET_BITMAP_SIZE'.
4341
4342 Since we know that all the character listed in
4343 P2 is ASCII, it is enough to test only bitmap
4344 table of P1. */
4345
411e4203 4346 if ((re_opcode_t) *p1 == charset)
505bde11
SM
4347 {
4348 int idx;
4349 /* We win if the charset inside the loop
4350 has no overlap with the one after the loop. */
4351 for (idx = 0;
4352 (idx < (int) p2[1]
4353 && idx < CHARSET_BITMAP_SIZE (p1));
4354 idx++)
4355 if ((p2[2 + idx] & p1[2 + idx]) != 0)
4356 break;
4357
4358 if (idx == p2[1]
4359 || idx == CHARSET_BITMAP_SIZE (p1))
4360 {
4361 DEBUG_PRINT1 (" No match => fast loop.\n");
4362 return 1;
4363 }
4364 }
411e4203 4365 else if ((re_opcode_t) *p1 == charset_not)
505bde11
SM
4366 {
4367 int idx;
4368 /* We win if the charset_not inside the loop lists
4369 every character listed in the charset after. */
4370 for (idx = 0; idx < (int) p2[1]; idx++)
4371 if (! (p2[2 + idx] == 0
4372 || (idx < CHARSET_BITMAP_SIZE (p1)
4373 && ((p2[2 + idx] & ~ p1[2 + idx]) == 0))))
4374 break;
4375
4e8a9132
SM
4376 if (idx == p2[1])
4377 {
4378 DEBUG_PRINT1 (" No match => fast loop.\n");
4379 return 1;
4380 }
4381 }
4382 }
4383 }
609b757a 4384 break;
4e8a9132 4385
411e4203
SM
4386 case charset_not:
4387 switch (SWITCH_ENUM_CAST (*p1))
4388 {
4389 case exactn:
4390 case charset:
4391 /* Reuse the code above. */
4392 return mutually_exclusive_p (bufp, p2, p1);
4393 case charset_not:
4394 /* When we have two charset_not, it's very unlikely that
4395 they don't overlap. The union of the two sets of excluded
4396 chars should cover all possible chars, which, as a matter of
4397 fact, is virtually impossible in multibyte buffers. */
4398 ;
4399 }
4400 break;
4401
4e8a9132
SM
4402 case wordend:
4403 case notsyntaxspec:
4404 return ((re_opcode_t) *p1 == syntaxspec
4405 && p1[1] == (op2 == wordend ? Sword : p2[1]));
4406
4407 case wordbeg:
4408 case syntaxspec:
4409 return ((re_opcode_t) *p1 == notsyntaxspec
4410 && p1[1] == (op2 == wordend ? Sword : p2[1]));
4411
4412 case wordbound:
4413 return (((re_opcode_t) *p1 == notsyntaxspec
4414 || (re_opcode_t) *p1 == syntaxspec)
4415 && p1[1] == Sword);
4416
1fb352e0 4417#ifdef emacs
4e8a9132
SM
4418 case categoryspec:
4419 return ((re_opcode_t) *p1 == notcategoryspec && p1[1] == p2[1]);
4420 case notcategoryspec:
4421 return ((re_opcode_t) *p1 == categoryspec && p1[1] == p2[1]);
4422#endif /* emacs */
4423
4424 default:
4425 ;
505bde11
SM
4426 }
4427
4428 /* Safe default. */
4429 return 0;
4430}
4431
fa9a63c5
RM
4432\f
4433/* Matching routines. */
4434
25fe55af 4435#ifndef emacs /* Emacs never uses this. */
fa9a63c5
RM
4436/* re_match is like re_match_2 except it takes only a single string. */
4437
4438int
4439re_match (bufp, string, size, pos, regs)
4440 struct re_pattern_buffer *bufp;
4441 const char *string;
4442 int size, pos;
4443 struct re_registers *regs;
4444{
4bb91c68 4445 int result = re_match_2_internal (bufp, NULL, 0, (re_char*) string, size,
fa9a63c5 4446 pos, regs, size);
0b32bf0e 4447# if defined C_ALLOCA && !defined REGEX_MALLOC
fa9a63c5 4448 alloca (0);
0b32bf0e 4449# endif
fa9a63c5
RM
4450 return result;
4451}
c0f9ea08 4452WEAK_ALIAS (__re_match, re_match)
fa9a63c5
RM
4453#endif /* not emacs */
4454
b18215fc
RS
4455#ifdef emacs
4456/* In Emacs, this is the string or buffer in which we
25fe55af 4457 are matching. It is used for looking up syntax properties. */
b18215fc
RS
4458Lisp_Object re_match_object;
4459#endif
fa9a63c5
RM
4460
4461/* re_match_2 matches the compiled pattern in BUFP against the
4462 the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
4463 and SIZE2, respectively). We start matching at POS, and stop
4464 matching at STOP.
5e69f11e 4465
fa9a63c5 4466 If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
25fe55af 4467 store offsets for the substring each group matched in REGS. See the
fa9a63c5
RM
4468 documentation for exactly how many groups we fill.
4469
4470 We return -1 if no match, -2 if an internal error (such as the
25fe55af 4471 failure stack overflowing). Otherwise, we return the length of the
fa9a63c5
RM
4472 matched substring. */
4473
4474int
4475re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
4476 struct re_pattern_buffer *bufp;
4477 const char *string1, *string2;
4478 int size1, size2;
4479 int pos;
4480 struct re_registers *regs;
4481 int stop;
4482{
b18215fc 4483 int result;
25fe55af 4484
b18215fc 4485#ifdef emacs
cc9b4df2
KH
4486 int charpos;
4487 gl_state.object = re_match_object;
99633e97 4488 charpos = SYNTAX_TABLE_BYTE_TO_CHAR (POS_AS_IN_BUFFER (pos));
cc9b4df2 4489 SETUP_SYNTAX_TABLE_FOR_OBJECT (re_match_object, charpos, 1);
b18215fc
RS
4490#endif
4491
4bb91c68
SM
4492 result = re_match_2_internal (bufp, (re_char*) string1, size1,
4493 (re_char*) string2, size2,
cc9b4df2 4494 pos, regs, stop);
0b32bf0e 4495#if defined C_ALLOCA && !defined REGEX_MALLOC
fa9a63c5 4496 alloca (0);
a60198e5 4497#endif
fa9a63c5
RM
4498 return result;
4499}
c0f9ea08 4500WEAK_ALIAS (__re_match_2, re_match_2)
fa9a63c5
RM
4501
4502/* This is a separate function so that we can force an alloca cleanup
25fe55af 4503 afterwards. */
fa9a63c5
RM
4504static int
4505re_match_2_internal (bufp, string1, size1, string2, size2, pos, regs, stop)
4506 struct re_pattern_buffer *bufp;
66f0296e 4507 re_char *string1, *string2;
fa9a63c5
RM
4508 int size1, size2;
4509 int pos;
4510 struct re_registers *regs;
4511 int stop;
4512{
4513 /* General temporaries. */
4514 int mcnt;
01618498 4515 size_t reg;
66f0296e 4516 boolean not;
fa9a63c5
RM
4517
4518 /* Just past the end of the corresponding string. */
66f0296e 4519 re_char *end1, *end2;
fa9a63c5
RM
4520
4521 /* Pointers into string1 and string2, just past the last characters in
25fe55af 4522 each to consider matching. */
66f0296e 4523 re_char *end_match_1, *end_match_2;
fa9a63c5
RM
4524
4525 /* Where we are in the data, and the end of the current string. */
66f0296e 4526 re_char *d, *dend;
5e69f11e 4527
99633e97
SM
4528 /* Used sometimes to remember where we were before starting matching
4529 an operator so that we can go back in case of failure. This "atomic"
4530 behavior of matching opcodes is indispensable to the correctness
4531 of the on_failure_keep_string_jump optimization. */
4532 re_char *dfail;
4533
fa9a63c5 4534 /* Where we are in the pattern, and the end of the pattern. */
01618498
SM
4535 re_char *p = bufp->buffer;
4536 re_char *pend = p + bufp->used;
fa9a63c5 4537
25fe55af 4538 /* We use this to map every character in the string. */
6676cb1c 4539 RE_TRANSLATE_TYPE translate = bufp->translate;
fa9a63c5 4540
25fe55af 4541 /* Nonzero if we have to concern multibyte character. */
2d1675e4 4542 const boolean multibyte = RE_MULTIBYTE_P (bufp);
b18215fc 4543
fa9a63c5
RM
4544 /* Failure point stack. Each place that can handle a failure further
4545 down the line pushes a failure point on this stack. It consists of
505bde11 4546 regstart, and regend for all registers corresponding to
fa9a63c5
RM
4547 the subexpressions we're currently inside, plus the number of such
4548 registers, and, finally, two char *'s. The first char * is where
4549 to resume scanning the pattern; the second one is where to resume
505bde11 4550 scanning the strings. */
25fe55af 4551#ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
fa9a63c5
RM
4552 fail_stack_type fail_stack;
4553#endif
4554#ifdef DEBUG
fa9a63c5
RM
4555 unsigned nfailure_points_pushed = 0, nfailure_points_popped = 0;
4556#endif
4557
0b32bf0e 4558#if defined REL_ALLOC && defined REGEX_MALLOC
fa9a63c5
RM
4559 /* This holds the pointer to the failure stack, when
4560 it is allocated relocatably. */
4561 fail_stack_elt_t *failure_stack_ptr;
99633e97 4562#endif
fa9a63c5
RM
4563
4564 /* We fill all the registers internally, independent of what we
25fe55af 4565 return, for use in backreferences. The number here includes
fa9a63c5 4566 an element for register zero. */
4bb91c68 4567 size_t num_regs = bufp->re_nsub + 1;
5e69f11e 4568
fa9a63c5
RM
4569 /* Information on the contents of registers. These are pointers into
4570 the input strings; they record just what was matched (on this
4571 attempt) by a subexpression part of the pattern, that is, the
4572 regnum-th regstart pointer points to where in the pattern we began
4573 matching and the regnum-th regend points to right after where we
4574 stopped matching the regnum-th subexpression. (The zeroth register
4575 keeps track of what the whole pattern matches.) */
4576#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
66f0296e 4577 re_char **regstart, **regend;
fa9a63c5
RM
4578#endif
4579
fa9a63c5 4580 /* The following record the register info as found in the above
5e69f11e 4581 variables when we find a match better than any we've seen before.
fa9a63c5
RM
4582 This happens as we backtrack through the failure points, which in
4583 turn happens only if we have not yet matched the entire string. */
4584 unsigned best_regs_set = false;
4585#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
66f0296e 4586 re_char **best_regstart, **best_regend;
fa9a63c5 4587#endif
5e69f11e 4588
fa9a63c5
RM
4589 /* Logically, this is `best_regend[0]'. But we don't want to have to
4590 allocate space for that if we're not allocating space for anything
25fe55af 4591 else (see below). Also, we never need info about register 0 for
fa9a63c5
RM
4592 any of the other register vectors, and it seems rather a kludge to
4593 treat `best_regend' differently than the rest. So we keep track of
4594 the end of the best match so far in a separate variable. We
4595 initialize this to NULL so that when we backtrack the first time
4596 and need to test it, it's not garbage. */
66f0296e 4597 re_char *match_end = NULL;
fa9a63c5 4598
fa9a63c5
RM
4599#ifdef DEBUG
4600 /* Counts the total number of registers pushed. */
5e69f11e 4601 unsigned num_regs_pushed = 0;
fa9a63c5
RM
4602#endif
4603
4604 DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
5e69f11e 4605
fa9a63c5 4606 INIT_FAIL_STACK ();
5e69f11e 4607
fa9a63c5
RM
4608#ifdef MATCH_MAY_ALLOCATE
4609 /* Do not bother to initialize all the register variables if there are
4610 no groups in the pattern, as it takes a fair amount of time. If
4611 there are groups, we include space for register 0 (the whole
4612 pattern), even though we never use it, since it simplifies the
4613 array indexing. We should fix this. */
4614 if (bufp->re_nsub)
4615 {
66f0296e
SM
4616 regstart = REGEX_TALLOC (num_regs, re_char *);
4617 regend = REGEX_TALLOC (num_regs, re_char *);
4618 best_regstart = REGEX_TALLOC (num_regs, re_char *);
4619 best_regend = REGEX_TALLOC (num_regs, re_char *);
fa9a63c5 4620
505bde11 4621 if (!(regstart && regend && best_regstart && best_regend))
25fe55af
RS
4622 {
4623 FREE_VARIABLES ();
4624 return -2;
4625 }
fa9a63c5
RM
4626 }
4627 else
4628 {
4629 /* We must initialize all our variables to NULL, so that
25fe55af 4630 `FREE_VARIABLES' doesn't try to free them. */
505bde11 4631 regstart = regend = best_regstart = best_regend = NULL;
fa9a63c5
RM
4632 }
4633#endif /* MATCH_MAY_ALLOCATE */
4634
4635 /* The starting position is bogus. */
4636 if (pos < 0 || pos > size1 + size2)
4637 {
4638 FREE_VARIABLES ();
4639 return -1;
4640 }
5e69f11e 4641
fa9a63c5
RM
4642 /* Initialize subexpression text positions to -1 to mark ones that no
4643 start_memory/stop_memory has been seen for. Also initialize the
4644 register information struct. */
01618498
SM
4645 for (reg = 1; reg < num_regs; reg++)
4646 regstart[reg] = regend[reg] = NULL;
99633e97 4647
fa9a63c5 4648 /* We move `string1' into `string2' if the latter's empty -- but not if
25fe55af 4649 `string1' is null. */
fa9a63c5
RM
4650 if (size2 == 0 && string1 != NULL)
4651 {
4652 string2 = string1;
4653 size2 = size1;
4654 string1 = 0;
4655 size1 = 0;
4656 }
4657 end1 = string1 + size1;
4658 end2 = string2 + size2;
4659
5e69f11e 4660 /* `p' scans through the pattern as `d' scans through the data.
fa9a63c5
RM
4661 `dend' is the end of the input string that `d' points within. `d'
4662 is advanced into the following input string whenever necessary, but
4663 this happens before fetching; therefore, at the beginning of the
4664 loop, `d' can be pointing at the end of a string, but it cannot
4665 equal `string2'. */
419d1c74 4666 if (pos >= size1)
fa9a63c5 4667 {
419d1c74
SM
4668 /* Only match within string2. */
4669 d = string2 + pos - size1;
4670 dend = end_match_2 = string2 + stop - size1;
4671 end_match_1 = end1; /* Just to give it a value. */
fa9a63c5
RM
4672 }
4673 else
4674 {
f1ad044f 4675 if (stop < size1)
419d1c74
SM
4676 {
4677 /* Only match within string1. */
4678 end_match_1 = string1 + stop;
4679 /* BEWARE!
4680 When we reach end_match_1, PREFETCH normally switches to string2.
4681 But in the present case, this means that just doing a PREFETCH
4682 makes us jump from `stop' to `gap' within the string.
4683 What we really want here is for the search to stop as
4684 soon as we hit end_match_1. That's why we set end_match_2
4685 to end_match_1 (since PREFETCH fails as soon as we hit
4686 end_match_2). */
4687 end_match_2 = end_match_1;
4688 }
4689 else
f1ad044f
SM
4690 { /* It's important to use this code when stop == size so that
4691 moving `d' from end1 to string2 will not prevent the d == dend
4692 check from catching the end of string. */
419d1c74
SM
4693 end_match_1 = end1;
4694 end_match_2 = string2 + stop - size1;
4695 }
4696 d = string1 + pos;
4697 dend = end_match_1;
fa9a63c5
RM
4698 }
4699
4700 DEBUG_PRINT1 ("The compiled pattern is: ");
4701 DEBUG_PRINT_COMPILED_PATTERN (bufp, p, pend);
4702 DEBUG_PRINT1 ("The string to match is: `");
4703 DEBUG_PRINT_DOUBLE_STRING (d, string1, size1, string2, size2);
4704 DEBUG_PRINT1 ("'\n");
5e69f11e 4705
25fe55af 4706 /* This loops over pattern commands. It exits by returning from the
fa9a63c5
RM
4707 function if the match is complete, or it drops through if the match
4708 fails at this starting point in the input data. */
4709 for (;;)
4710 {
505bde11 4711 DEBUG_PRINT2 ("\n%p: ", p);
fa9a63c5
RM
4712
4713 if (p == pend)
4714 { /* End of pattern means we might have succeeded. */
25fe55af 4715 DEBUG_PRINT1 ("end of pattern ... ");
5e69f11e 4716
fa9a63c5 4717 /* If we haven't matched the entire string, and we want the
25fe55af
RS
4718 longest match, try backtracking. */
4719 if (d != end_match_2)
fa9a63c5
RM
4720 {
4721 /* 1 if this match ends in the same string (string1 or string2)
4722 as the best previous match. */
5e69f11e 4723 boolean same_str_p = (FIRST_STRING_P (match_end)
99633e97 4724 == FIRST_STRING_P (d));
fa9a63c5
RM
4725 /* 1 if this match is the best seen so far. */
4726 boolean best_match_p;
4727
4728 /* AIX compiler got confused when this was combined
25fe55af 4729 with the previous declaration. */
fa9a63c5
RM
4730 if (same_str_p)
4731 best_match_p = d > match_end;
4732 else
99633e97 4733 best_match_p = !FIRST_STRING_P (d);
fa9a63c5 4734
25fe55af
RS
4735 DEBUG_PRINT1 ("backtracking.\n");
4736
4737 if (!FAIL_STACK_EMPTY ())
4738 { /* More failure points to try. */
4739
4740 /* If exceeds best match so far, save it. */
4741 if (!best_regs_set || best_match_p)
4742 {
4743 best_regs_set = true;
4744 match_end = d;
4745
4746 DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
4747
01618498 4748 for (reg = 1; reg < num_regs; reg++)
25fe55af 4749 {
01618498
SM
4750 best_regstart[reg] = regstart[reg];
4751 best_regend[reg] = regend[reg];
25fe55af
RS
4752 }
4753 }
4754 goto fail;
4755 }
4756
4757 /* If no failure points, don't restore garbage. And if
4758 last match is real best match, don't restore second
4759 best one. */
4760 else if (best_regs_set && !best_match_p)
4761 {
4762 restore_best_regs:
4763 /* Restore best match. It may happen that `dend ==
4764 end_match_1' while the restored d is in string2.
4765 For example, the pattern `x.*y.*z' against the
4766 strings `x-' and `y-z-', if the two strings are
4767 not consecutive in memory. */
4768 DEBUG_PRINT1 ("Restoring best registers.\n");
4769
4770 d = match_end;
4771 dend = ((d >= string1 && d <= end1)
4772 ? end_match_1 : end_match_2);
fa9a63c5 4773
01618498 4774 for (reg = 1; reg < num_regs; reg++)
fa9a63c5 4775 {
01618498
SM
4776 regstart[reg] = best_regstart[reg];
4777 regend[reg] = best_regend[reg];
fa9a63c5 4778 }
25fe55af
RS
4779 }
4780 } /* d != end_match_2 */
fa9a63c5
RM
4781
4782 succeed_label:
25fe55af 4783 DEBUG_PRINT1 ("Accepting match.\n");
fa9a63c5 4784
25fe55af
RS
4785 /* If caller wants register contents data back, do it. */
4786 if (regs && !bufp->no_sub)
fa9a63c5 4787 {
25fe55af
RS
4788 /* Have the register data arrays been allocated? */
4789 if (bufp->regs_allocated == REGS_UNALLOCATED)
4790 { /* No. So allocate them with malloc. We need one
4791 extra element beyond `num_regs' for the `-1' marker
4792 GNU code uses. */
4793 regs->num_regs = MAX (RE_NREGS, num_regs + 1);
4794 regs->start = TALLOC (regs->num_regs, regoff_t);
4795 regs->end = TALLOC (regs->num_regs, regoff_t);
4796 if (regs->start == NULL || regs->end == NULL)
fa9a63c5
RM
4797 {
4798 FREE_VARIABLES ();
4799 return -2;
4800 }
25fe55af
RS
4801 bufp->regs_allocated = REGS_REALLOCATE;
4802 }
4803 else if (bufp->regs_allocated == REGS_REALLOCATE)
4804 { /* Yes. If we need more elements than were already
4805 allocated, reallocate them. If we need fewer, just
4806 leave it alone. */
4807 if (regs->num_regs < num_regs + 1)
4808 {
4809 regs->num_regs = num_regs + 1;
4810 RETALLOC (regs->start, regs->num_regs, regoff_t);
4811 RETALLOC (regs->end, regs->num_regs, regoff_t);
4812 if (regs->start == NULL || regs->end == NULL)
fa9a63c5
RM
4813 {
4814 FREE_VARIABLES ();
4815 return -2;
4816 }
25fe55af
RS
4817 }
4818 }
4819 else
fa9a63c5
RM
4820 {
4821 /* These braces fend off a "empty body in an else-statement"
25fe55af 4822 warning under GCC when assert expands to nothing. */
fa9a63c5
RM
4823 assert (bufp->regs_allocated == REGS_FIXED);
4824 }
4825
25fe55af
RS
4826 /* Convert the pointer data in `regstart' and `regend' to
4827 indices. Register zero has to be set differently,
4828 since we haven't kept track of any info for it. */
4829 if (regs->num_regs > 0)
4830 {
4831 regs->start[0] = pos;
99633e97 4832 regs->end[0] = POINTER_TO_OFFSET (d);
25fe55af 4833 }
5e69f11e 4834
25fe55af
RS
4835 /* Go through the first `min (num_regs, regs->num_regs)'
4836 registers, since that is all we initialized. */
01618498 4837 for (reg = 1; reg < MIN (num_regs, regs->num_regs); reg++)
fa9a63c5 4838 {
01618498
SM
4839 if (REG_UNSET (regstart[reg]) || REG_UNSET (regend[reg]))
4840 regs->start[reg] = regs->end[reg] = -1;
25fe55af
RS
4841 else
4842 {
01618498
SM
4843 regs->start[reg]
4844 = (regoff_t) POINTER_TO_OFFSET (regstart[reg]);
4845 regs->end[reg]
4846 = (regoff_t) POINTER_TO_OFFSET (regend[reg]);
25fe55af 4847 }
fa9a63c5 4848 }
5e69f11e 4849
25fe55af
RS
4850 /* If the regs structure we return has more elements than
4851 were in the pattern, set the extra elements to -1. If
4852 we (re)allocated the registers, this is the case,
4853 because we always allocate enough to have at least one
4854 -1 at the end. */
01618498
SM
4855 for (reg = num_regs; reg < regs->num_regs; reg++)
4856 regs->start[reg] = regs->end[reg] = -1;
fa9a63c5
RM
4857 } /* regs && !bufp->no_sub */
4858
25fe55af
RS
4859 DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
4860 nfailure_points_pushed, nfailure_points_popped,
4861 nfailure_points_pushed - nfailure_points_popped);
4862 DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed);
fa9a63c5 4863
99633e97 4864 mcnt = POINTER_TO_OFFSET (d) - pos;
fa9a63c5 4865
25fe55af 4866 DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt);
fa9a63c5 4867
25fe55af
RS
4868 FREE_VARIABLES ();
4869 return mcnt;
4870 }
fa9a63c5 4871
25fe55af 4872 /* Otherwise match next pattern command. */
fa9a63c5
RM
4873 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
4874 {
25fe55af
RS
4875 /* Ignore these. Used to ignore the n of succeed_n's which
4876 currently have n == 0. */
4877 case no_op:
4878 DEBUG_PRINT1 ("EXECUTING no_op.\n");
4879 break;
fa9a63c5
RM
4880
4881 case succeed:
25fe55af 4882 DEBUG_PRINT1 ("EXECUTING succeed.\n");
fa9a63c5
RM
4883 goto succeed_label;
4884
25fe55af
RS
4885 /* Match the next n pattern characters exactly. The following
4886 byte in the pattern defines n, and the n bytes after that
4887 are the characters to match. */
fa9a63c5
RM
4888 case exactn:
4889 mcnt = *p++;
25fe55af 4890 DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt);
fa9a63c5 4891
99633e97
SM
4892 /* Remember the start point to rollback upon failure. */
4893 dfail = d;
4894
25fe55af
RS
4895 /* This is written out as an if-else so we don't waste time
4896 testing `translate' inside the loop. */
28703c16 4897 if (RE_TRANSLATE_P (translate))
fa9a63c5 4898 {
e934739e
RS
4899 if (multibyte)
4900 do
4901 {
4902 int pat_charlen, buf_charlen;
e71b1971 4903 unsigned int pat_ch, buf_ch;
e934739e
RS
4904
4905 PREFETCH ();
4906 pat_ch = STRING_CHAR_AND_LENGTH (p, pend - p, pat_charlen);
4907 buf_ch = STRING_CHAR_AND_LENGTH (d, dend - d, buf_charlen);
4908
4909 if (RE_TRANSLATE (translate, buf_ch)
4910 != pat_ch)
99633e97
SM
4911 {
4912 d = dfail;
4913 goto fail;
4914 }
e934739e
RS
4915
4916 p += pat_charlen;
4917 d += buf_charlen;
4918 mcnt -= pat_charlen;
4919 }
4920 while (mcnt > 0);
4921 else
e934739e
RS
4922 do
4923 {
4924 PREFETCH ();
66f0296e 4925 if (RE_TRANSLATE (translate, *d) != *p++)
99633e97
SM
4926 {
4927 d = dfail;
4928 goto fail;
4929 }
33c46939 4930 d++;
e934739e
RS
4931 }
4932 while (--mcnt);
fa9a63c5
RM
4933 }
4934 else
4935 {
4936 do
4937 {
4938 PREFETCH ();
99633e97
SM
4939 if (*d++ != *p++)
4940 {
4941 d = dfail;
4942 goto fail;
4943 }
fa9a63c5
RM
4944 }
4945 while (--mcnt);
4946 }
25fe55af 4947 break;
fa9a63c5
RM
4948
4949
25fe55af 4950 /* Match any character except possibly a newline or a null. */
fa9a63c5 4951 case anychar:
e934739e
RS
4952 {
4953 int buf_charlen;
01618498 4954 re_wchar_t buf_ch;
fa9a63c5 4955
e934739e 4956 DEBUG_PRINT1 ("EXECUTING anychar.\n");
fa9a63c5 4957
e934739e 4958 PREFETCH ();
2d1675e4 4959 buf_ch = RE_STRING_CHAR_AND_LENGTH (d, dend - d, buf_charlen);
e934739e
RS
4960 buf_ch = TRANSLATE (buf_ch);
4961
4962 if ((!(bufp->syntax & RE_DOT_NEWLINE)
4963 && buf_ch == '\n')
4964 || ((bufp->syntax & RE_DOT_NOT_NULL)
4965 && buf_ch == '\000'))
4966 goto fail;
4967
e934739e
RS
4968 DEBUG_PRINT2 (" Matched `%d'.\n", *d);
4969 d += buf_charlen;
4970 }
fa9a63c5
RM
4971 break;
4972
4973
4974 case charset:
4975 case charset_not:
4976 {
b18215fc 4977 register unsigned int c;
fa9a63c5 4978 boolean not = (re_opcode_t) *(p - 1) == charset_not;
b18215fc
RS
4979 int len;
4980
4981 /* Start of actual range_table, or end of bitmap if there is no
4982 range table. */
01618498 4983 re_char *range_table;
b18215fc 4984
96cc36cc 4985 /* Nonzero if there is a range table. */
b18215fc
RS
4986 int range_table_exists;
4987
96cc36cc
RS
4988 /* Number of ranges of range table. This is not included
4989 in the initial byte-length of the command. */
4990 int count = 0;
fa9a63c5 4991
25fe55af 4992 DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : "");
fa9a63c5 4993
b18215fc 4994 range_table_exists = CHARSET_RANGE_TABLE_EXISTS_P (&p[-1]);
96cc36cc 4995
b18215fc 4996 if (range_table_exists)
96cc36cc
RS
4997 {
4998 range_table = CHARSET_RANGE_TABLE (&p[-1]); /* Past the bitmap. */
4999 EXTRACT_NUMBER_AND_INCR (count, range_table);
5000 }
b18215fc 5001
2d1675e4
SM
5002 PREFETCH ();
5003 c = RE_STRING_CHAR_AND_LENGTH (d, dend - d, len);
5004 c = TRANSLATE (c); /* The character to match. */
b18215fc
RS
5005
5006 if (SINGLE_BYTE_CHAR_P (c))
5007 { /* Lookup bitmap. */
b18215fc
RS
5008 /* Cast to `unsigned' instead of `unsigned char' in
5009 case the bit list is a full 32 bytes long. */
5010 if (c < (unsigned) (CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH)
96cc36cc
RS
5011 && p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
5012 not = !not;
b18215fc 5013 }
96cc36cc 5014#ifdef emacs
b18215fc 5015 else if (range_table_exists)
96cc36cc
RS
5016 {
5017 int class_bits = CHARSET_RANGE_TABLE_BITS (&p[-1]);
5018
14473664
SM
5019 if ( (class_bits & BIT_LOWER && ISLOWER (c))
5020 | (class_bits & BIT_MULTIBYTE)
96cc36cc
RS
5021 | (class_bits & BIT_PUNCT && ISPUNCT (c))
5022 | (class_bits & BIT_SPACE && ISSPACE (c))
5023 | (class_bits & BIT_UPPER && ISUPPER (c))
5024 | (class_bits & BIT_WORD && ISWORD (c)))
5025 not = !not;
5026 else
5027 CHARSET_LOOKUP_RANGE_TABLE_RAW (not, c, range_table, count);
5028 }
5029#endif /* emacs */
fa9a63c5 5030
96cc36cc
RS
5031 if (range_table_exists)
5032 p = CHARSET_RANGE_TABLE_END (range_table, count);
5033 else
5034 p += CHARSET_BITMAP_SIZE (&p[-1]) + 1;
fa9a63c5
RM
5035
5036 if (!not) goto fail;
5e69f11e 5037
b18215fc 5038 d += len;
fa9a63c5
RM
5039 break;
5040 }
5041
5042
25fe55af 5043 /* The beginning of a group is represented by start_memory.
505bde11 5044 The argument is the register number. The text
25fe55af
RS
5045 matched within the group is recorded (in the internal
5046 registers data structure) under the register number. */
5047 case start_memory:
505bde11
SM
5048 DEBUG_PRINT2 ("EXECUTING start_memory %d:\n", *p);
5049
5050 /* In case we need to undo this operation (via backtracking). */
5051 PUSH_FAILURE_REG ((unsigned int)*p);
fa9a63c5 5052
25fe55af 5053 regstart[*p] = d;
4bb91c68 5054 regend[*p] = NULL; /* probably unnecessary. -sm */
fa9a63c5
RM
5055 DEBUG_PRINT2 (" regstart: %d\n", POINTER_TO_OFFSET (regstart[*p]));
5056
25fe55af 5057 /* Move past the register number and inner group count. */
505bde11 5058 p += 1;
25fe55af 5059 break;
fa9a63c5
RM
5060
5061
25fe55af 5062 /* The stop_memory opcode represents the end of a group. Its
505bde11 5063 argument is the same as start_memory's: the register number. */
fa9a63c5 5064 case stop_memory:
505bde11
SM
5065 DEBUG_PRINT2 ("EXECUTING stop_memory %d:\n", *p);
5066
5067 assert (!REG_UNSET (regstart[*p]));
5068 /* Strictly speaking, there should be code such as:
5069
0b32bf0e 5070 assert (REG_UNSET (regend[*p]));
505bde11
SM
5071 PUSH_FAILURE_REGSTOP ((unsigned int)*p);
5072
5073 But the only info to be pushed is regend[*p] and it is known to
5074 be UNSET, so there really isn't anything to push.
5075 Not pushing anything, on the other hand deprives us from the
5076 guarantee that regend[*p] is UNSET since undoing this operation
5077 will not reset its value properly. This is not important since
5078 the value will only be read on the next start_memory or at
5079 the very end and both events can only happen if this stop_memory
5080 is *not* undone. */
fa9a63c5 5081
25fe55af 5082 regend[*p] = d;
fa9a63c5
RM
5083 DEBUG_PRINT2 (" regend: %d\n", POINTER_TO_OFFSET (regend[*p]));
5084
25fe55af 5085 /* Move past the register number and the inner group count. */
505bde11 5086 p += 1;
25fe55af 5087 break;
fa9a63c5
RM
5088
5089
5090 /* \<digit> has been turned into a `duplicate' command which is
25fe55af
RS
5091 followed by the numeric value of <digit> as the register number. */
5092 case duplicate:
fa9a63c5 5093 {
66f0296e 5094 register re_char *d2, *dend2;
25fe55af 5095 int regno = *p++; /* Get which register to match against. */
fa9a63c5
RM
5096 DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno);
5097
25fe55af
RS
5098 /* Can't back reference a group which we've never matched. */
5099 if (REG_UNSET (regstart[regno]) || REG_UNSET (regend[regno]))
5100 goto fail;
5e69f11e 5101
25fe55af
RS
5102 /* Where in input to try to start matching. */
5103 d2 = regstart[regno];
5e69f11e 5104
99633e97
SM
5105 /* Remember the start point to rollback upon failure. */
5106 dfail = d;
5107
25fe55af
RS
5108 /* Where to stop matching; if both the place to start and
5109 the place to stop matching are in the same string, then
5110 set to the place to stop, otherwise, for now have to use
5111 the end of the first string. */
fa9a63c5 5112
25fe55af 5113 dend2 = ((FIRST_STRING_P (regstart[regno])
fa9a63c5
RM
5114 == FIRST_STRING_P (regend[regno]))
5115 ? regend[regno] : end_match_1);
5116 for (;;)
5117 {
5118 /* If necessary, advance to next segment in register
25fe55af 5119 contents. */
fa9a63c5
RM
5120 while (d2 == dend2)
5121 {
5122 if (dend2 == end_match_2) break;
5123 if (dend2 == regend[regno]) break;
5124
25fe55af
RS
5125 /* End of string1 => advance to string2. */
5126 d2 = string2;
5127 dend2 = regend[regno];
fa9a63c5
RM
5128 }
5129 /* At end of register contents => success */
5130 if (d2 == dend2) break;
5131
5132 /* If necessary, advance to next segment in data. */
5133 PREFETCH ();
5134
5135 /* How many characters left in this segment to match. */
5136 mcnt = dend - d;
5e69f11e 5137
fa9a63c5 5138 /* Want how many consecutive characters we can match in
25fe55af
RS
5139 one shot, so, if necessary, adjust the count. */
5140 if (mcnt > dend2 - d2)
fa9a63c5 5141 mcnt = dend2 - d2;
5e69f11e 5142
fa9a63c5 5143 /* Compare that many; failure if mismatch, else move
25fe55af 5144 past them. */
28703c16 5145 if (RE_TRANSLATE_P (translate)
2d1675e4 5146 ? bcmp_translate (d, d2, mcnt, translate, multibyte)
4bb91c68 5147 : memcmp (d, d2, mcnt))
99633e97
SM
5148 {
5149 d = dfail;
5150 goto fail;
5151 }
fa9a63c5 5152 d += mcnt, d2 += mcnt;
fa9a63c5
RM
5153 }
5154 }
5155 break;
5156
5157
25fe55af 5158 /* begline matches the empty string at the beginning of the string
c0f9ea08 5159 (unless `not_bol' is set in `bufp'), and after newlines. */
fa9a63c5 5160 case begline:
25fe55af 5161 DEBUG_PRINT1 ("EXECUTING begline.\n");
5e69f11e 5162
25fe55af
RS
5163 if (AT_STRINGS_BEG (d))
5164 {
5165 if (!bufp->not_bol) break;
5166 }
419d1c74 5167 else
25fe55af 5168 {
419d1c74
SM
5169 unsigned char c;
5170 GET_CHAR_BEFORE_2 (c, d, string1, end1, string2, end2);
c0f9ea08 5171 if (c == '\n')
419d1c74 5172 break;
25fe55af
RS
5173 }
5174 /* In all other cases, we fail. */
5175 goto fail;
fa9a63c5
RM
5176
5177
25fe55af 5178 /* endline is the dual of begline. */
fa9a63c5 5179 case endline:
25fe55af 5180 DEBUG_PRINT1 ("EXECUTING endline.\n");
fa9a63c5 5181
25fe55af
RS
5182 if (AT_STRINGS_END (d))
5183 {
5184 if (!bufp->not_eol) break;
5185 }
f1ad044f 5186 else
25fe55af 5187 {
f1ad044f 5188 PREFETCH_NOLIMIT ();
c0f9ea08 5189 if (*d == '\n')
f1ad044f 5190 break;
25fe55af
RS
5191 }
5192 goto fail;
fa9a63c5
RM
5193
5194
5195 /* Match at the very beginning of the data. */
25fe55af
RS
5196 case begbuf:
5197 DEBUG_PRINT1 ("EXECUTING begbuf.\n");
5198 if (AT_STRINGS_BEG (d))
5199 break;
5200 goto fail;
fa9a63c5
RM
5201
5202
5203 /* Match at the very end of the data. */
25fe55af
RS
5204 case endbuf:
5205 DEBUG_PRINT1 ("EXECUTING endbuf.\n");
fa9a63c5
RM
5206 if (AT_STRINGS_END (d))
5207 break;
25fe55af 5208 goto fail;
5e69f11e 5209
5e69f11e 5210
25fe55af
RS
5211 /* on_failure_keep_string_jump is used to optimize `.*\n'. It
5212 pushes NULL as the value for the string on the stack. Then
505bde11 5213 `POP_FAILURE_POINT' will keep the current value for the
25fe55af
RS
5214 string, instead of restoring it. To see why, consider
5215 matching `foo\nbar' against `.*\n'. The .* matches the foo;
5216 then the . fails against the \n. But the next thing we want
5217 to do is match the \n against the \n; if we restored the
5218 string value, we would be back at the foo.
5219
5220 Because this is used only in specific cases, we don't need to
5221 check all the things that `on_failure_jump' does, to make
5222 sure the right things get saved on the stack. Hence we don't
5223 share its code. The only reason to push anything on the
5224 stack at all is that otherwise we would have to change
5225 `anychar's code to do something besides goto fail in this
5226 case; that seems worse than this. */
5227 case on_failure_keep_string_jump:
505bde11
SM
5228 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5229 DEBUG_PRINT3 ("EXECUTING on_failure_keep_string_jump %d (to %p):\n",
5230 mcnt, p + mcnt);
fa9a63c5 5231
505bde11
SM
5232 PUSH_FAILURE_POINT (p - 3, NULL);
5233 break;
5234
0683b6fa
SM
5235 /* A nasty loop is introduced by the non-greedy *? and +?.
5236 With such loops, the stack only ever contains one failure point
5237 at a time, so that a plain on_failure_jump_loop kind of
5238 cycle detection cannot work. Worse yet, such a detection
5239 can not only fail to detect a cycle, but it can also wrongly
5240 detect a cycle (between different instantiations of the same
5241 loop.
5242 So the method used for those nasty loops is a little different:
5243 We use a special cycle-detection-stack-frame which is pushed
5244 when the on_failure_jump_nastyloop failure-point is *popped*.
5245 This special frame thus marks the beginning of one iteration
5246 through the loop and we can hence easily check right here
5247 whether something matched between the beginning and the end of
5248 the loop. */
5249 case on_failure_jump_nastyloop:
5250 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5251 DEBUG_PRINT3 ("EXECUTING on_failure_jump_nastyloop %d (to %p):\n",
5252 mcnt, p + mcnt);
5253
5254 assert ((re_opcode_t)p[-4] == no_op);
5255 CHECK_INFINITE_LOOP (p - 4, d);
5256 PUSH_FAILURE_POINT (p - 3, d);
5257 break;
5258
505bde11 5259
4e8a9132
SM
5260 /* Simple loop detecting on_failure_jump: just check on the
5261 failure stack if the same spot was already hit earlier. */
505bde11
SM
5262 case on_failure_jump_loop:
5263 on_failure:
5264 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5265 DEBUG_PRINT3 ("EXECUTING on_failure_jump_loop %d (to %p):\n",
5266 mcnt, p + mcnt);
5267
5268 CHECK_INFINITE_LOOP (p - 3, d);
5269 PUSH_FAILURE_POINT (p - 3, d);
25fe55af 5270 break;
fa9a63c5
RM
5271
5272
5273 /* Uses of on_failure_jump:
5e69f11e 5274
25fe55af
RS
5275 Each alternative starts with an on_failure_jump that points
5276 to the beginning of the next alternative. Each alternative
5277 except the last ends with a jump that in effect jumps past
5278 the rest of the alternatives. (They really jump to the
5279 ending jump of the following alternative, because tensioning
5280 these jumps is a hassle.)
fa9a63c5 5281
25fe55af
RS
5282 Repeats start with an on_failure_jump that points past both
5283 the repetition text and either the following jump or
5284 pop_failure_jump back to this on_failure_jump. */
fa9a63c5 5285 case on_failure_jump:
5b370c2b 5286 IMMEDIATE_QUIT_CHECK;
25fe55af 5287 EXTRACT_NUMBER_AND_INCR (mcnt, p);
505bde11
SM
5288 DEBUG_PRINT3 ("EXECUTING on_failure_jump %d (to %p):\n",
5289 mcnt, p + mcnt);
25fe55af 5290
505bde11 5291 PUSH_FAILURE_POINT (p -3, d);
25fe55af
RS
5292 break;
5293
4e8a9132 5294 /* This operation is used for greedy *.
505bde11
SM
5295 Compare the beginning of the repeat with what in the
5296 pattern follows its end. If we can establish that there
5297 is nothing that they would both match, i.e., that we
5298 would have to backtrack because of (as in, e.g., `a*a')
5299 then we can use a non-backtracking loop based on
4e8a9132 5300 on_failure_keep_string_jump instead of on_failure_jump. */
505bde11 5301 case on_failure_jump_smart:
5b370c2b 5302 IMMEDIATE_QUIT_CHECK;
25fe55af 5303 EXTRACT_NUMBER_AND_INCR (mcnt, p);
505bde11
SM
5304 DEBUG_PRINT3 ("EXECUTING on_failure_jump_smart %d (to %p).\n",
5305 mcnt, p + mcnt);
25fe55af 5306 {
01618498 5307 re_char *p1 = p; /* Next operation. */
6dcf2d0e
SM
5308 /* Here, we discard `const', making re_match non-reentrant. */
5309 unsigned char *p2 = (unsigned char*) p + mcnt; /* Jump dest. */
5310 unsigned char *p3 = (unsigned char*) p - 3; /* opcode location. */
fa9a63c5 5311
505bde11
SM
5312 p -= 3; /* Reset so that we will re-execute the
5313 instruction once it's been changed. */
fa9a63c5 5314
4e8a9132
SM
5315 EXTRACT_NUMBER (mcnt, p2 - 2);
5316
5317 /* Ensure this is a indeed the trivial kind of loop
5318 we are expecting. */
5319 assert (skip_one_char (p1) == p2 - 3);
5320 assert ((re_opcode_t) p2[-3] == jump && p2 + mcnt == p);
99633e97 5321 DEBUG_STATEMENT (debug += 2);
505bde11 5322 if (mutually_exclusive_p (bufp, p1, p2))
fa9a63c5 5323 {
505bde11 5324 /* Use a fast `on_failure_keep_string_jump' loop. */
4e8a9132 5325 DEBUG_PRINT1 (" smart exclusive => fast loop.\n");
01618498 5326 *p3 = (unsigned char) on_failure_keep_string_jump;
4e8a9132 5327 STORE_NUMBER (p2 - 2, mcnt + 3);
25fe55af 5328 }
505bde11 5329 else
fa9a63c5 5330 {
505bde11
SM
5331 /* Default to a safe `on_failure_jump' loop. */
5332 DEBUG_PRINT1 (" smart default => slow loop.\n");
01618498 5333 *p3 = (unsigned char) on_failure_jump;
fa9a63c5 5334 }
99633e97 5335 DEBUG_STATEMENT (debug -= 2);
25fe55af 5336 }
505bde11 5337 break;
25fe55af
RS
5338
5339 /* Unconditionally jump (without popping any failure points). */
5340 case jump:
fa9a63c5 5341 unconditional_jump:
5b370c2b 5342 IMMEDIATE_QUIT_CHECK;
fa9a63c5 5343 EXTRACT_NUMBER_AND_INCR (mcnt, p); /* Get the amount to jump. */
25fe55af
RS
5344 DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt);
5345 p += mcnt; /* Do the jump. */
505bde11 5346 DEBUG_PRINT2 ("(to %p).\n", p);
25fe55af
RS
5347 break;
5348
5349
25fe55af
RS
5350 /* Have to succeed matching what follows at least n times.
5351 After that, handle like `on_failure_jump'. */
5352 case succeed_n:
01618498 5353 /* Signedness doesn't matter since we only compare MCNT to 0. */
25fe55af
RS
5354 EXTRACT_NUMBER (mcnt, p + 2);
5355 DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt);
5e69f11e 5356
dc1e502d
SM
5357 /* Originally, mcnt is how many times we HAVE to succeed. */
5358 if (mcnt != 0)
25fe55af 5359 {
6dcf2d0e
SM
5360 /* Here, we discard `const', making re_match non-reentrant. */
5361 unsigned char *p2 = (unsigned char*) p + 2; /* counter loc. */
dc1e502d 5362 mcnt--;
01618498
SM
5363 p += 4;
5364 PUSH_NUMBER (p2, mcnt);
25fe55af 5365 }
dc1e502d
SM
5366 else
5367 /* The two bytes encoding mcnt == 0 are two no_op opcodes. */
5368 goto on_failure;
25fe55af
RS
5369 break;
5370
5371 case jump_n:
01618498 5372 /* Signedness doesn't matter since we only compare MCNT to 0. */
25fe55af
RS
5373 EXTRACT_NUMBER (mcnt, p + 2);
5374 DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt);
5375
5376 /* Originally, this is how many times we CAN jump. */
dc1e502d 5377 if (mcnt != 0)
25fe55af 5378 {
6dcf2d0e
SM
5379 /* Here, we discard `const', making re_match non-reentrant. */
5380 unsigned char *p2 = (unsigned char*) p + 2; /* counter loc. */
dc1e502d 5381 mcnt--;
01618498 5382 PUSH_NUMBER (p2, mcnt);
dc1e502d 5383 goto unconditional_jump;
25fe55af
RS
5384 }
5385 /* If don't have to jump any more, skip over the rest of command. */
5e69f11e
RM
5386 else
5387 p += 4;
25fe55af 5388 break;
5e69f11e 5389
fa9a63c5
RM
5390 case set_number_at:
5391 {
01618498 5392 unsigned char *p2; /* Location of the counter. */
25fe55af 5393 DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
fa9a63c5 5394
25fe55af 5395 EXTRACT_NUMBER_AND_INCR (mcnt, p);
6dcf2d0e
SM
5396 /* Here, we discard `const', making re_match non-reentrant. */
5397 p2 = (unsigned char*) p + mcnt;
01618498 5398 /* Signedness doesn't matter since we only copy MCNT's bits . */
25fe55af 5399 EXTRACT_NUMBER_AND_INCR (mcnt, p);
01618498
SM
5400 DEBUG_PRINT3 (" Setting %p to %d.\n", p2, mcnt);
5401 PUSH_NUMBER (p2, mcnt);
25fe55af
RS
5402 break;
5403 }
9121ca40
KH
5404
5405 case wordbound:
66f0296e
SM
5406 case notwordbound:
5407 not = (re_opcode_t) *(p - 1) == notwordbound;
5408 DEBUG_PRINT2 ("EXECUTING %swordbound.\n", not?"not":"");
fa9a63c5 5409
99633e97 5410 /* We SUCCEED (or FAIL) in one of the following cases: */
9121ca40 5411
b18215fc 5412 /* Case 1: D is at the beginning or the end of string. */
9121ca40 5413 if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
66f0296e 5414 not = !not;
b18215fc
RS
5415 else
5416 {
5417 /* C1 is the character before D, S1 is the syntax of C1, C2
5418 is the character at D, and S2 is the syntax of C2. */
01618498
SM
5419 re_wchar_t c1, c2;
5420 int s1, s2;
b18215fc 5421#ifdef emacs
2d1675e4
SM
5422 int offset = PTR_TO_OFFSET (d - 1);
5423 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
5d967c7a 5424 UPDATE_SYNTAX_TABLE (charpos);
25fe55af 5425#endif
66f0296e 5426 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
b18215fc
RS
5427 s1 = SYNTAX (c1);
5428#ifdef emacs
5d967c7a 5429 UPDATE_SYNTAX_TABLE_FORWARD (charpos + 1);
25fe55af 5430#endif
f1ad044f 5431 PREFETCH_NOLIMIT ();
2d1675e4 5432 c2 = RE_STRING_CHAR (d, dend - d);
b18215fc
RS
5433 s2 = SYNTAX (c2);
5434
5435 if (/* Case 2: Only one of S1 and S2 is Sword. */
5436 ((s1 == Sword) != (s2 == Sword))
5437 /* Case 3: Both of S1 and S2 are Sword, and macro
25fe55af 5438 WORD_BOUNDARY_P (C1, C2) returns nonzero. */
b18215fc 5439 || ((s1 == Sword) && WORD_BOUNDARY_P (c1, c2)))
66f0296e
SM
5440 not = !not;
5441 }
5442 if (not)
9121ca40 5443 break;
b18215fc 5444 else
9121ca40 5445 goto fail;
fa9a63c5
RM
5446
5447 case wordbeg:
25fe55af 5448 DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
fa9a63c5 5449
b18215fc
RS
5450 /* We FAIL in one of the following cases: */
5451
25fe55af 5452 /* Case 1: D is at the end of string. */
b18215fc 5453 if (AT_STRINGS_END (d))
99633e97 5454 goto fail;
b18215fc
RS
5455 else
5456 {
5457 /* C1 is the character before D, S1 is the syntax of C1, C2
5458 is the character at D, and S2 is the syntax of C2. */
01618498
SM
5459 re_wchar_t c1, c2;
5460 int s1, s2;
fa9a63c5 5461#ifdef emacs
2d1675e4
SM
5462 int offset = PTR_TO_OFFSET (d);
5463 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
92432794 5464 UPDATE_SYNTAX_TABLE (charpos);
25fe55af 5465#endif
99633e97 5466 PREFETCH ();
2d1675e4 5467 c2 = RE_STRING_CHAR (d, dend - d);
b18215fc 5468 s2 = SYNTAX (c2);
25fe55af 5469
b18215fc
RS
5470 /* Case 2: S2 is not Sword. */
5471 if (s2 != Sword)
5472 goto fail;
5473
5474 /* Case 3: D is not at the beginning of string ... */
5475 if (!AT_STRINGS_BEG (d))
5476 {
5477 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
5478#ifdef emacs
5d967c7a 5479 UPDATE_SYNTAX_TABLE_BACKWARD (charpos - 1);
25fe55af 5480#endif
b18215fc
RS
5481 s1 = SYNTAX (c1);
5482
5483 /* ... and S1 is Sword, and WORD_BOUNDARY_P (C1, C2)
25fe55af 5484 returns 0. */
b18215fc
RS
5485 if ((s1 == Sword) && !WORD_BOUNDARY_P (c1, c2))
5486 goto fail;
5487 }
5488 }
e318085a
RS
5489 break;
5490
b18215fc 5491 case wordend:
25fe55af 5492 DEBUG_PRINT1 ("EXECUTING wordend.\n");
b18215fc
RS
5493
5494 /* We FAIL in one of the following cases: */
5495
5496 /* Case 1: D is at the beginning of string. */
5497 if (AT_STRINGS_BEG (d))
e318085a 5498 goto fail;
b18215fc
RS
5499 else
5500 {
5501 /* C1 is the character before D, S1 is the syntax of C1, C2
5502 is the character at D, and S2 is the syntax of C2. */
01618498
SM
5503 re_wchar_t c1, c2;
5504 int s1, s2;
5d967c7a 5505#ifdef emacs
2d1675e4
SM
5506 int offset = PTR_TO_OFFSET (d) - 1;
5507 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
92432794 5508 UPDATE_SYNTAX_TABLE (charpos);
5d967c7a 5509#endif
99633e97 5510 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
b18215fc
RS
5511 s1 = SYNTAX (c1);
5512
5513 /* Case 2: S1 is not Sword. */
5514 if (s1 != Sword)
5515 goto fail;
5516
5517 /* Case 3: D is not at the end of string ... */
5518 if (!AT_STRINGS_END (d))
5519 {
f1ad044f 5520 PREFETCH_NOLIMIT ();
2d1675e4 5521 c2 = RE_STRING_CHAR (d, dend - d);
5d967c7a
RS
5522#ifdef emacs
5523 UPDATE_SYNTAX_TABLE_FORWARD (charpos);
5524#endif
b18215fc
RS
5525 s2 = SYNTAX (c2);
5526
5527 /* ... and S2 is Sword, and WORD_BOUNDARY_P (C1, C2)
25fe55af 5528 returns 0. */
b18215fc 5529 if ((s2 == Sword) && !WORD_BOUNDARY_P (c1, c2))
25fe55af 5530 goto fail;
b18215fc
RS
5531 }
5532 }
e318085a
RS
5533 break;
5534
fa9a63c5 5535 case syntaxspec:
1fb352e0
SM
5536 case notsyntaxspec:
5537 not = (re_opcode_t) *(p - 1) == notsyntaxspec;
fa9a63c5 5538 mcnt = *p++;
1fb352e0 5539 DEBUG_PRINT3 ("EXECUTING %ssyntaxspec %d.\n", not?"not":"", mcnt);
fa9a63c5 5540 PREFETCH ();
b18215fc
RS
5541#ifdef emacs
5542 {
2d1675e4
SM
5543 int offset = PTR_TO_OFFSET (d);
5544 int pos1 = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
b18215fc
RS
5545 UPDATE_SYNTAX_TABLE (pos1);
5546 }
25fe55af 5547#endif
b18215fc 5548 {
01618498
SM
5549 int len;
5550 re_wchar_t c;
b18215fc 5551
2d1675e4 5552 c = RE_STRING_CHAR_AND_LENGTH (d, dend - d, len);
b18215fc 5553
990b2375 5554 if ((SYNTAX (c) != (enum syntaxcode) mcnt) ^ not)
1fb352e0 5555 goto fail;
b18215fc
RS
5556 d += len;
5557 }
fa9a63c5
RM
5558 break;
5559
b18215fc 5560#ifdef emacs
1fb352e0
SM
5561 case before_dot:
5562 DEBUG_PRINT1 ("EXECUTING before_dot.\n");
5563 if (PTR_BYTE_POS (d) >= PT_BYTE)
fa9a63c5 5564 goto fail;
b18215fc
RS
5565 break;
5566
1fb352e0
SM
5567 case at_dot:
5568 DEBUG_PRINT1 ("EXECUTING at_dot.\n");
5569 if (PTR_BYTE_POS (d) != PT_BYTE)
5570 goto fail;
5571 break;
b18215fc 5572
1fb352e0
SM
5573 case after_dot:
5574 DEBUG_PRINT1 ("EXECUTING after_dot.\n");
5575 if (PTR_BYTE_POS (d) <= PT_BYTE)
5576 goto fail;
e318085a 5577 break;
fa9a63c5 5578
1fb352e0 5579 case categoryspec:
b18215fc 5580 case notcategoryspec:
1fb352e0 5581 not = (re_opcode_t) *(p - 1) == notcategoryspec;
b18215fc 5582 mcnt = *p++;
1fb352e0 5583 DEBUG_PRINT3 ("EXECUTING %scategoryspec %d.\n", not?"not":"", mcnt);
b18215fc
RS
5584 PREFETCH ();
5585 {
01618498
SM
5586 int len;
5587 re_wchar_t c;
5588
2d1675e4 5589 c = RE_STRING_CHAR_AND_LENGTH (d, dend - d, len);
b18215fc 5590
1fb352e0 5591 if ((!CHAR_HAS_CATEGORY (c, mcnt)) ^ not)
b18215fc
RS
5592 goto fail;
5593 d += len;
5594 }
fa9a63c5 5595 break;
5e69f11e 5596
1fb352e0 5597#endif /* emacs */
5e69f11e 5598
0b32bf0e
SM
5599 default:
5600 abort ();
fa9a63c5 5601 }
b18215fc 5602 continue; /* Successfully executed one pattern command; keep going. */
fa9a63c5
RM
5603
5604
5605 /* We goto here if a matching operation fails. */
5606 fail:
5b370c2b 5607 IMMEDIATE_QUIT_CHECK;
fa9a63c5 5608 if (!FAIL_STACK_EMPTY ())
505bde11 5609 {
01618498 5610 re_char *str, *pat;
505bde11 5611 /* A restart point is known. Restore to that state. */
0b32bf0e
SM
5612 DEBUG_PRINT1 ("\nFAIL:\n");
5613 POP_FAILURE_POINT (str, pat);
505bde11
SM
5614 switch (SWITCH_ENUM_CAST ((re_opcode_t) *pat++))
5615 {
5616 case on_failure_keep_string_jump:
5617 assert (str == NULL);
5618 goto continue_failure_jump;
5619
0683b6fa
SM
5620 case on_failure_jump_nastyloop:
5621 assert ((re_opcode_t)pat[-2] == no_op);
5622 PUSH_FAILURE_POINT (pat - 2, str);
5623 /* Fallthrough */
5624
505bde11
SM
5625 case on_failure_jump_loop:
5626 case on_failure_jump:
5627 case succeed_n:
5628 d = str;
5629 continue_failure_jump:
5630 EXTRACT_NUMBER_AND_INCR (mcnt, pat);
5631 p = pat + mcnt;
5632 break;
b18215fc 5633
0683b6fa
SM
5634 case no_op:
5635 /* A special frame used for nastyloops. */
5636 goto fail;
5637
505bde11
SM
5638 default:
5639 abort();
5640 }
fa9a63c5 5641
505bde11 5642 assert (p >= bufp->buffer && p <= pend);
b18215fc 5643
0b32bf0e 5644 if (d >= string1 && d <= end1)
fa9a63c5 5645 dend = end_match_1;
0b32bf0e 5646 }
fa9a63c5 5647 else
0b32bf0e 5648 break; /* Matching at this starting point really fails. */
fa9a63c5
RM
5649 } /* for (;;) */
5650
5651 if (best_regs_set)
5652 goto restore_best_regs;
5653
5654 FREE_VARIABLES ();
5655
b18215fc 5656 return -1; /* Failure to match. */
fa9a63c5
RM
5657} /* re_match_2 */
5658\f
5659/* Subroutine definitions for re_match_2. */
5660
fa9a63c5
RM
5661/* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
5662 bytes; nonzero otherwise. */
5e69f11e 5663
fa9a63c5 5664static int
2d1675e4
SM
5665bcmp_translate (s1, s2, len, translate, multibyte)
5666 re_char *s1, *s2;
fa9a63c5 5667 register int len;
6676cb1c 5668 RE_TRANSLATE_TYPE translate;
2d1675e4 5669 const int multibyte;
fa9a63c5 5670{
2d1675e4
SM
5671 register re_char *p1 = s1, *p2 = s2;
5672 re_char *p1_end = s1 + len;
5673 re_char *p2_end = s2 + len;
e934739e 5674
4bb91c68
SM
5675 /* FIXME: Checking both p1 and p2 presumes that the two strings might have
5676 different lengths, but relying on a single `len' would break this. -sm */
5677 while (p1 < p1_end && p2 < p2_end)
fa9a63c5 5678 {
e934739e 5679 int p1_charlen, p2_charlen;
01618498 5680 re_wchar_t p1_ch, p2_ch;
e934739e 5681
2d1675e4
SM
5682 p1_ch = RE_STRING_CHAR_AND_LENGTH (p1, p1_end - p1, p1_charlen);
5683 p2_ch = RE_STRING_CHAR_AND_LENGTH (p2, p2_end - p2, p2_charlen);
e934739e
RS
5684
5685 if (RE_TRANSLATE (translate, p1_ch)
5686 != RE_TRANSLATE (translate, p2_ch))
bc192b5b 5687 return 1;
e934739e
RS
5688
5689 p1 += p1_charlen, p2 += p2_charlen;
fa9a63c5 5690 }
e934739e
RS
5691
5692 if (p1 != p1_end || p2 != p2_end)
5693 return 1;
5694
fa9a63c5
RM
5695 return 0;
5696}
5697\f
5698/* Entry points for GNU code. */
5699
5700/* re_compile_pattern is the GNU regular expression compiler: it
5701 compiles PATTERN (of length SIZE) and puts the result in BUFP.
5702 Returns 0 if the pattern was valid, otherwise an error string.
5e69f11e 5703
fa9a63c5
RM
5704 Assumes the `allocated' (and perhaps `buffer') and `translate' fields
5705 are set in BUFP on entry.
5e69f11e 5706
b18215fc 5707 We call regex_compile to do the actual compilation. */
fa9a63c5
RM
5708
5709const char *
5710re_compile_pattern (pattern, length, bufp)
5711 const char *pattern;
0b32bf0e 5712 size_t length;
fa9a63c5
RM
5713 struct re_pattern_buffer *bufp;
5714{
5715 reg_errcode_t ret;
5e69f11e 5716
fa9a63c5
RM
5717 /* GNU code is written to assume at least RE_NREGS registers will be set
5718 (and at least one extra will be -1). */
5719 bufp->regs_allocated = REGS_UNALLOCATED;
5e69f11e 5720
fa9a63c5
RM
5721 /* And GNU code determines whether or not to get register information
5722 by passing null for the REGS argument to re_match, etc., not by
5723 setting no_sub. */
5724 bufp->no_sub = 0;
5e69f11e 5725
4bb91c68 5726 ret = regex_compile ((re_char*) pattern, length, re_syntax_options, bufp);
fa9a63c5
RM
5727
5728 if (!ret)
5729 return NULL;
5730 return gettext (re_error_msgid[(int) ret]);
5e69f11e 5731}
c0f9ea08 5732WEAK_ALIAS (__re_compile_pattern, re_compile_pattern)
fa9a63c5 5733\f
b18215fc
RS
5734/* Entry points compatible with 4.2 BSD regex library. We don't define
5735 them unless specifically requested. */
fa9a63c5 5736
0b32bf0e 5737#if defined _REGEX_RE_COMP || defined _LIBC
fa9a63c5
RM
5738
5739/* BSD has one and only one pattern buffer. */
5740static struct re_pattern_buffer re_comp_buf;
5741
5742char *
0b32bf0e 5743# ifdef _LIBC
48afdd44
RM
5744/* Make these definitions weak in libc, so POSIX programs can redefine
5745 these names if they don't use our functions, and still use
5746 regcomp/regexec below without link errors. */
5747weak_function
0b32bf0e 5748# endif
fa9a63c5
RM
5749re_comp (s)
5750 const char *s;
5751{
5752 reg_errcode_t ret;
5e69f11e 5753
fa9a63c5
RM
5754 if (!s)
5755 {
5756 if (!re_comp_buf.buffer)
0b32bf0e 5757 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
a60198e5 5758 return (char *) gettext ("No previous regular expression");
fa9a63c5
RM
5759 return 0;
5760 }
5761
5762 if (!re_comp_buf.buffer)
5763 {
5764 re_comp_buf.buffer = (unsigned char *) malloc (200);
5765 if (re_comp_buf.buffer == NULL)
0b32bf0e
SM
5766 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
5767 return (char *) gettext (re_error_msgid[(int) REG_ESPACE]);
fa9a63c5
RM
5768 re_comp_buf.allocated = 200;
5769
5770 re_comp_buf.fastmap = (char *) malloc (1 << BYTEWIDTH);
5771 if (re_comp_buf.fastmap == NULL)
a60198e5
SM
5772 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
5773 return (char *) gettext (re_error_msgid[(int) REG_ESPACE]);
fa9a63c5
RM
5774 }
5775
5776 /* Since `re_exec' always passes NULL for the `regs' argument, we
5777 don't need to initialize the pattern buffer fields which affect it. */
5778
fa9a63c5 5779 ret = regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf);
5e69f11e 5780
fa9a63c5
RM
5781 if (!ret)
5782 return NULL;
5783
5784 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
5785 return (char *) gettext (re_error_msgid[(int) ret]);
5786}
5787
5788
5789int
0b32bf0e 5790# ifdef _LIBC
48afdd44 5791weak_function
0b32bf0e 5792# endif
fa9a63c5
RM
5793re_exec (s)
5794 const char *s;
5795{
5796 const int len = strlen (s);
5797 return
5798 0 <= re_search (&re_comp_buf, s, len, 0, len, (struct re_registers *) 0);
5799}
5800#endif /* _REGEX_RE_COMP */
5801\f
5802/* POSIX.2 functions. Don't define these for Emacs. */
5803
5804#ifndef emacs
5805
5806/* regcomp takes a regular expression as a string and compiles it.
5807
b18215fc 5808 PREG is a regex_t *. We do not expect any fields to be initialized,
fa9a63c5
RM
5809 since POSIX says we shouldn't. Thus, we set
5810
5811 `buffer' to the compiled pattern;
5812 `used' to the length of the compiled pattern;
5813 `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
5814 REG_EXTENDED bit in CFLAGS is set; otherwise, to
5815 RE_SYNTAX_POSIX_BASIC;
c0f9ea08
SM
5816 `fastmap' to an allocated space for the fastmap;
5817 `fastmap_accurate' to zero;
fa9a63c5
RM
5818 `re_nsub' to the number of subexpressions in PATTERN.
5819
5820 PATTERN is the address of the pattern string.
5821
5822 CFLAGS is a series of bits which affect compilation.
5823
5824 If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
5825 use POSIX basic syntax.
5826
5827 If REG_NEWLINE is set, then . and [^...] don't match newline.
5828 Also, regexec will try a match beginning after every newline.
5829
5830 If REG_ICASE is set, then we considers upper- and lowercase
5831 versions of letters to be equivalent when matching.
5832
5833 If REG_NOSUB is set, then when PREG is passed to regexec, that
5834 routine will report only success or failure, and nothing about the
5835 registers.
5836
b18215fc 5837 It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for
fa9a63c5
RM
5838 the return codes and their meanings.) */
5839
5840int
5841regcomp (preg, pattern, cflags)
ada30c0e
SM
5842 regex_t *__restrict preg;
5843 const char *__restrict pattern;
fa9a63c5
RM
5844 int cflags;
5845{
5846 reg_errcode_t ret;
4bb91c68 5847 reg_syntax_t syntax
fa9a63c5
RM
5848 = (cflags & REG_EXTENDED) ?
5849 RE_SYNTAX_POSIX_EXTENDED : RE_SYNTAX_POSIX_BASIC;
5850
5851 /* regex_compile will allocate the space for the compiled pattern. */
5852 preg->buffer = 0;
5853 preg->allocated = 0;
5854 preg->used = 0;
5e69f11e 5855
c0f9ea08
SM
5856 /* Try to allocate space for the fastmap. */
5857 preg->fastmap = (char *) malloc (1 << BYTEWIDTH);
5e69f11e 5858
fa9a63c5
RM
5859 if (cflags & REG_ICASE)
5860 {
5861 unsigned i;
5e69f11e 5862
6676cb1c
RS
5863 preg->translate
5864 = (RE_TRANSLATE_TYPE) malloc (CHAR_SET_SIZE
5865 * sizeof (*(RE_TRANSLATE_TYPE)0));
fa9a63c5 5866 if (preg->translate == NULL)
0b32bf0e 5867 return (int) REG_ESPACE;
fa9a63c5
RM
5868
5869 /* Map uppercase characters to corresponding lowercase ones. */
5870 for (i = 0; i < CHAR_SET_SIZE; i++)
4bb91c68 5871 preg->translate[i] = ISUPPER (i) ? TOLOWER (i) : i;
fa9a63c5
RM
5872 }
5873 else
5874 preg->translate = NULL;
5875
5876 /* If REG_NEWLINE is set, newlines are treated differently. */
5877 if (cflags & REG_NEWLINE)
5878 { /* REG_NEWLINE implies neither . nor [^...] match newline. */
5879 syntax &= ~RE_DOT_NEWLINE;
5880 syntax |= RE_HAT_LISTS_NOT_NEWLINE;
fa9a63c5
RM
5881 }
5882 else
c0f9ea08 5883 syntax |= RE_NO_NEWLINE_ANCHOR;
fa9a63c5
RM
5884
5885 preg->no_sub = !!(cflags & REG_NOSUB);
5886
5e69f11e 5887 /* POSIX says a null character in the pattern terminates it, so we
fa9a63c5 5888 can use strlen here in compiling the pattern. */
4bb91c68 5889 ret = regex_compile ((re_char*) pattern, strlen (pattern), syntax, preg);
5e69f11e 5890
fa9a63c5
RM
5891 /* POSIX doesn't distinguish between an unmatched open-group and an
5892 unmatched close-group: both are REG_EPAREN. */
c0f9ea08
SM
5893 if (ret == REG_ERPAREN)
5894 ret = REG_EPAREN;
5895
5896 if (ret == REG_NOERROR && preg->fastmap)
5897 { /* Compute the fastmap now, since regexec cannot modify the pattern
5898 buffer. */
5899 re_compile_fastmap (preg);
5900 if (preg->can_be_null)
5901 { /* The fastmap can't be used anyway. */
5902 free (preg->fastmap);
5903 preg->fastmap = NULL;
5904 }
5905 }
fa9a63c5
RM
5906 return (int) ret;
5907}
c0f9ea08 5908WEAK_ALIAS (__regcomp, regcomp)
fa9a63c5
RM
5909
5910
5911/* regexec searches for a given pattern, specified by PREG, in the
5912 string STRING.
5e69f11e 5913
fa9a63c5 5914 If NMATCH is zero or REG_NOSUB was set in the cflags argument to
b18215fc 5915 `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at
fa9a63c5
RM
5916 least NMATCH elements, and we set them to the offsets of the
5917 corresponding matched substrings.
5e69f11e 5918
fa9a63c5
RM
5919 EFLAGS specifies `execution flags' which affect matching: if
5920 REG_NOTBOL is set, then ^ does not match at the beginning of the
5921 string; if REG_NOTEOL is set, then $ does not match at the end.
5e69f11e 5922
fa9a63c5
RM
5923 We return 0 if we find a match and REG_NOMATCH if not. */
5924
5925int
5926regexec (preg, string, nmatch, pmatch, eflags)
ada30c0e
SM
5927 const regex_t *__restrict preg;
5928 const char *__restrict string;
5e69f11e
RM
5929 size_t nmatch;
5930 regmatch_t pmatch[];
fa9a63c5
RM
5931 int eflags;
5932{
5933 int ret;
5934 struct re_registers regs;
5935 regex_t private_preg;
5936 int len = strlen (string);
c0f9ea08 5937 boolean want_reg_info = !preg->no_sub && nmatch > 0 && pmatch;
fa9a63c5
RM
5938
5939 private_preg = *preg;
5e69f11e 5940
fa9a63c5
RM
5941 private_preg.not_bol = !!(eflags & REG_NOTBOL);
5942 private_preg.not_eol = !!(eflags & REG_NOTEOL);
5e69f11e 5943
fa9a63c5
RM
5944 /* The user has told us exactly how many registers to return
5945 information about, via `nmatch'. We have to pass that on to the
b18215fc 5946 matching routines. */
fa9a63c5 5947 private_preg.regs_allocated = REGS_FIXED;
5e69f11e 5948
fa9a63c5
RM
5949 if (want_reg_info)
5950 {
5951 regs.num_regs = nmatch;
4bb91c68
SM
5952 regs.start = TALLOC (nmatch * 2, regoff_t);
5953 if (regs.start == NULL)
0b32bf0e 5954 return (int) REG_NOMATCH;
4bb91c68 5955 regs.end = regs.start + nmatch;
fa9a63c5
RM
5956 }
5957
c0f9ea08
SM
5958 /* Instead of using not_eol to implement REG_NOTEOL, we could simply
5959 pass (&private_preg, string, len + 1, 0, len, ...) pretending the string
5960 was a little bit longer but still only matching the real part.
5961 This works because the `endline' will check for a '\n' and will find a
5962 '\0', correctly deciding that this is not the end of a line.
5963 But it doesn't work out so nicely for REG_NOTBOL, since we don't have
5964 a convenient '\0' there. For all we know, the string could be preceded
5965 by '\n' which would throw things off. */
5966
fa9a63c5
RM
5967 /* Perform the searching operation. */
5968 ret = re_search (&private_preg, string, len,
0b32bf0e
SM
5969 /* start: */ 0, /* range: */ len,
5970 want_reg_info ? &regs : (struct re_registers *) 0);
5e69f11e 5971
fa9a63c5
RM
5972 /* Copy the register information to the POSIX structure. */
5973 if (want_reg_info)
5974 {
5975 if (ret >= 0)
0b32bf0e
SM
5976 {
5977 unsigned r;
fa9a63c5 5978
0b32bf0e
SM
5979 for (r = 0; r < nmatch; r++)
5980 {
5981 pmatch[r].rm_so = regs.start[r];
5982 pmatch[r].rm_eo = regs.end[r];
5983 }
5984 }
fa9a63c5 5985
b18215fc 5986 /* If we needed the temporary register info, free the space now. */
fa9a63c5 5987 free (regs.start);
fa9a63c5
RM
5988 }
5989
5990 /* We want zero return to mean success, unlike `re_search'. */
5991 return ret >= 0 ? (int) REG_NOERROR : (int) REG_NOMATCH;
5992}
c0f9ea08 5993WEAK_ALIAS (__regexec, regexec)
fa9a63c5
RM
5994
5995
5996/* Returns a message corresponding to an error code, ERRCODE, returned
5997 from either regcomp or regexec. We don't use PREG here. */
5998
5999size_t
6000regerror (errcode, preg, errbuf, errbuf_size)
6001 int errcode;
6002 const regex_t *preg;
6003 char *errbuf;
6004 size_t errbuf_size;
6005{
6006 const char *msg;
6007 size_t msg_size;
6008
6009 if (errcode < 0
6010 || errcode >= (sizeof (re_error_msgid) / sizeof (re_error_msgid[0])))
5e69f11e 6011 /* Only error codes returned by the rest of the code should be passed
b18215fc 6012 to this routine. If we are given anything else, or if other regex
fa9a63c5
RM
6013 code generates an invalid error code, then the program has a bug.
6014 Dump core so we can fix it. */
6015 abort ();
6016
6017 msg = gettext (re_error_msgid[errcode]);
6018
6019 msg_size = strlen (msg) + 1; /* Includes the null. */
5e69f11e 6020
fa9a63c5
RM
6021 if (errbuf_size != 0)
6022 {
6023 if (msg_size > errbuf_size)
0b32bf0e
SM
6024 {
6025 strncpy (errbuf, msg, errbuf_size - 1);
6026 errbuf[errbuf_size - 1] = 0;
6027 }
fa9a63c5 6028 else
0b32bf0e 6029 strcpy (errbuf, msg);
fa9a63c5
RM
6030 }
6031
6032 return msg_size;
6033}
c0f9ea08 6034WEAK_ALIAS (__regerror, regerror)
fa9a63c5
RM
6035
6036
6037/* Free dynamically allocated space used by PREG. */
6038
6039void
6040regfree (preg)
6041 regex_t *preg;
6042{
6043 if (preg->buffer != NULL)
6044 free (preg->buffer);
6045 preg->buffer = NULL;
5e69f11e 6046
fa9a63c5
RM
6047 preg->allocated = 0;
6048 preg->used = 0;
6049
6050 if (preg->fastmap != NULL)
6051 free (preg->fastmap);
6052 preg->fastmap = NULL;
6053 preg->fastmap_accurate = 0;
6054
6055 if (preg->translate != NULL)
6056 free (preg->translate);
6057 preg->translate = NULL;
6058}
c0f9ea08 6059WEAK_ALIAS (__regfree, regfree)
fa9a63c5
RM
6060
6061#endif /* not emacs */