Update international/mule-util.el section.
[bpt/emacs.git] / src / regex.c
CommitLineData
e318085a 1/* Extended regular expression matching and search library, version
0b32bf0e 2 0.12. (Implements POSIX draft P1003.2/D11.2, except for some of the
bc78d348
KB
3 internationalization features.)
4
669fa600 5 Copyright (C) 1993,94,95,96,97,98,99,2000,04 Free Software Foundation, Inc.
bc78d348 6
fa9a63c5
RM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
25fe55af 14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
fa9a63c5
RM
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
ba4a8e51 19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307,
25fe55af 20 USA. */
fa9a63c5 21
6df42991 22/* TODO:
505bde11 23 - structure the opcode space into opcode+flag.
dc1e502d 24 - merge with glibc's regex.[ch].
01618498 25 - replace (succeed_n + jump_n + set_number_at) with something that doesn't
6dcf2d0e
SM
26 need to modify the compiled regexp so that re_match can be reentrant.
27 - get rid of on_failure_jump_smart by doing the optimization in re_comp
28 rather than at run-time, so that re_match can be reentrant.
01618498 29*/
505bde11 30
fa9a63c5 31/* AIX requires this to be the first thing in the file. */
0b32bf0e 32#if defined _AIX && !defined REGEX_MALLOC
fa9a63c5
RM
33 #pragma alloca
34#endif
35
fa9a63c5 36#ifdef HAVE_CONFIG_H
0b32bf0e 37# include <config.h>
fa9a63c5
RM
38#endif
39
4bb91c68
SM
40#if defined STDC_HEADERS && !defined emacs
41# include <stddef.h>
42#else
43/* We need this for `regex.h', and perhaps for the Emacs include files. */
44# include <sys/types.h>
45#endif
fa9a63c5 46
14473664
SM
47/* Whether to use ISO C Amendment 1 wide char functions.
48 Those should not be used for Emacs since it uses its own. */
5e5388f6
GM
49#if defined _LIBC
50#define WIDE_CHAR_SUPPORT 1
51#else
14473664 52#define WIDE_CHAR_SUPPORT \
5e5388f6
GM
53 (HAVE_WCTYPE_H && HAVE_WCHAR_H && HAVE_BTOWC && !emacs)
54#endif
14473664
SM
55
56/* For platform which support the ISO C amendement 1 functionality we
57 support user defined character classes. */
a0ad02f7 58#if WIDE_CHAR_SUPPORT
14473664
SM
59/* Solaris 2.5 has a bug: <wchar.h> must be included before <wctype.h>. */
60# include <wchar.h>
61# include <wctype.h>
62#endif
63
c0f9ea08
SM
64#ifdef _LIBC
65/* We have to keep the namespace clean. */
66# define regfree(preg) __regfree (preg)
67# define regexec(pr, st, nm, pm, ef) __regexec (pr, st, nm, pm, ef)
68# define regcomp(preg, pattern, cflags) __regcomp (preg, pattern, cflags)
69# define regerror(errcode, preg, errbuf, errbuf_size) \
70 __regerror(errcode, preg, errbuf, errbuf_size)
71# define re_set_registers(bu, re, nu, st, en) \
72 __re_set_registers (bu, re, nu, st, en)
73# define re_match_2(bufp, string1, size1, string2, size2, pos, regs, stop) \
74 __re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
75# define re_match(bufp, string, size, pos, regs) \
76 __re_match (bufp, string, size, pos, regs)
77# define re_search(bufp, string, size, startpos, range, regs) \
78 __re_search (bufp, string, size, startpos, range, regs)
79# define re_compile_pattern(pattern, length, bufp) \
80 __re_compile_pattern (pattern, length, bufp)
81# define re_set_syntax(syntax) __re_set_syntax (syntax)
82# define re_search_2(bufp, st1, s1, st2, s2, startpos, range, regs, stop) \
83 __re_search_2 (bufp, st1, s1, st2, s2, startpos, range, regs, stop)
84# define re_compile_fastmap(bufp) __re_compile_fastmap (bufp)
85
14473664
SM
86/* Make sure we call libc's function even if the user overrides them. */
87# define btowc __btowc
88# define iswctype __iswctype
89# define wctype __wctype
90
c0f9ea08
SM
91# define WEAK_ALIAS(a,b) weak_alias (a, b)
92
93/* We are also using some library internals. */
94# include <locale/localeinfo.h>
95# include <locale/elem-hash.h>
96# include <langinfo.h>
97#else
98# define WEAK_ALIAS(a,b)
99#endif
100
4bb91c68 101/* This is for other GNU distributions with internationalized messages. */
0b32bf0e 102#if HAVE_LIBINTL_H || defined _LIBC
fa9a63c5
RM
103# include <libintl.h>
104#else
105# define gettext(msgid) (msgid)
106#endif
107
5e69f11e
RM
108#ifndef gettext_noop
109/* This define is so xgettext can find the internationalizable
110 strings. */
0b32bf0e 111# define gettext_noop(String) String
5e69f11e
RM
112#endif
113
fa9a63c5
RM
114/* The `emacs' switch turns on certain matching commands
115 that make sense only in Emacs. */
116#ifdef emacs
117
0b32bf0e
SM
118# include "lisp.h"
119# include "buffer.h"
b18215fc
RS
120
121/* Make syntax table lookup grant data in gl_state. */
0b32bf0e 122# define SYNTAX_ENTRY_VIA_PROPERTY
b18215fc 123
0b32bf0e
SM
124# include "syntax.h"
125# include "charset.h"
126# include "category.h"
fa9a63c5 127
7689ef0b
EZ
128# ifdef malloc
129# undef malloc
130# endif
0b32bf0e 131# define malloc xmalloc
7689ef0b
EZ
132# ifdef realloc
133# undef realloc
134# endif
0b32bf0e 135# define realloc xrealloc
7689ef0b
EZ
136# ifdef free
137# undef free
138# endif
0b32bf0e 139# define free xfree
9abbd165 140
0b32bf0e
SM
141/* Converts the pointer to the char to BEG-based offset from the start. */
142# define PTR_TO_OFFSET(d) POS_AS_IN_BUFFER (POINTER_TO_OFFSET (d))
143# define POS_AS_IN_BUFFER(p) ((p) + (NILP (re_match_object) || BUFFERP (re_match_object)))
144
145# define RE_MULTIBYTE_P(bufp) ((bufp)->multibyte)
146# define RE_STRING_CHAR(p, s) \
4e8a9132 147 (multibyte ? (STRING_CHAR (p, s)) : (*(p)))
0b32bf0e 148# define RE_STRING_CHAR_AND_LENGTH(p, s, len) \
2d1675e4
SM
149 (multibyte ? (STRING_CHAR_AND_LENGTH (p, s, len)) : ((len) = 1, *(p)))
150
151/* Set C a (possibly multibyte) character before P. P points into a
152 string which is the virtual concatenation of STR1 (which ends at
153 END1) or STR2 (which ends at END2). */
0b32bf0e 154# define GET_CHAR_BEFORE_2(c, p, str1, end1, str2, end2) \
2d1675e4
SM
155 do { \
156 if (multibyte) \
157 { \
0b32bf0e
SM
158 re_char *dtemp = (p) == (str2) ? (end1) : (p); \
159 re_char *dlimit = ((p) > (str2) && (p) <= (end2)) ? (str2) : (str1); \
70806df6
KH
160 re_char *d0 = dtemp; \
161 PREV_CHAR_BOUNDARY (d0, dlimit); \
162 c = STRING_CHAR (d0, dtemp - d0); \
2d1675e4
SM
163 } \
164 else \
165 (c = ((p) == (str2) ? (end1) : (p))[-1]); \
166 } while (0)
167
4e8a9132 168
fa9a63c5
RM
169#else /* not emacs */
170
171/* If we are not linking with Emacs proper,
172 we can't use the relocating allocator
173 even if config.h says that we can. */
0b32bf0e 174# undef REL_ALLOC
fa9a63c5 175
0b32bf0e
SM
176# if defined STDC_HEADERS || defined _LIBC
177# include <stdlib.h>
178# else
fa9a63c5
RM
179char *malloc ();
180char *realloc ();
0b32bf0e 181# endif
fa9a63c5 182
9e4ecb26 183/* When used in Emacs's lib-src, we need to get bzero and bcopy somehow.
4bb91c68 184 If nothing else has been done, use the method below. */
0b32bf0e
SM
185# ifdef INHIBIT_STRING_HEADER
186# if !(defined HAVE_BZERO && defined HAVE_BCOPY)
187# if !defined bzero && !defined bcopy
188# undef INHIBIT_STRING_HEADER
189# endif
190# endif
191# endif
9e4ecb26 192
4bb91c68 193/* This is the normal way of making sure we have memcpy, memcmp and bzero.
9e4ecb26
KH
194 This is used in most programs--a few other programs avoid this
195 by defining INHIBIT_STRING_HEADER. */
0b32bf0e
SM
196# ifndef INHIBIT_STRING_HEADER
197# if defined HAVE_STRING_H || defined STDC_HEADERS || defined _LIBC
198# include <string.h>
0b32bf0e 199# ifndef bzero
4bb91c68
SM
200# ifndef _LIBC
201# define bzero(s, n) (memset (s, '\0', n), (s))
202# else
203# define bzero(s, n) __bzero (s, n)
204# endif
0b32bf0e
SM
205# endif
206# else
207# include <strings.h>
4bb91c68
SM
208# ifndef memcmp
209# define memcmp(s1, s2, n) bcmp (s1, s2, n)
210# endif
211# ifndef memcpy
212# define memcpy(d, s, n) (bcopy (s, d, n), (d))
213# endif
0b32bf0e
SM
214# endif
215# endif
fa9a63c5
RM
216
217/* Define the syntax stuff for \<, \>, etc. */
218
990b2375 219/* Sword must be nonzero for the wordchar pattern commands in re_match_2. */
669fa600 220enum syntaxcode { Swhitespace = 0, Sword = 1, Ssymbol = 2 };
fa9a63c5 221
0b32bf0e
SM
222# ifdef SWITCH_ENUM_BUG
223# define SWITCH_ENUM_CAST(x) ((int)(x))
224# else
225# define SWITCH_ENUM_CAST(x) (x)
226# endif
fa9a63c5 227
e934739e 228/* Dummy macros for non-Emacs environments. */
0b32bf0e
SM
229# define BASE_LEADING_CODE_P(c) (0)
230# define CHAR_CHARSET(c) 0
231# define CHARSET_LEADING_CODE_BASE(c) 0
232# define MAX_MULTIBYTE_LENGTH 1
233# define RE_MULTIBYTE_P(x) 0
234# define WORD_BOUNDARY_P(c1, c2) (0)
235# define CHAR_HEAD_P(p) (1)
236# define SINGLE_BYTE_CHAR_P(c) (1)
237# define SAME_CHARSET_P(c1, c2) (1)
238# define MULTIBYTE_FORM_LENGTH(p, s) (1)
70806df6 239# define PREV_CHAR_BOUNDARY(p, limit) ((p)--)
0b32bf0e
SM
240# define STRING_CHAR(p, s) (*(p))
241# define RE_STRING_CHAR STRING_CHAR
242# define CHAR_STRING(c, s) (*(s) = (c), 1)
243# define STRING_CHAR_AND_LENGTH(p, s, actual_len) ((actual_len) = 1, *(p))
244# define RE_STRING_CHAR_AND_LENGTH STRING_CHAR_AND_LENGTH
245# define GET_CHAR_BEFORE_2(c, p, str1, end1, str2, end2) \
b18215fc 246 (c = ((p) == (str2) ? *((end1) - 1) : *((p) - 1)))
0b32bf0e 247# define MAKE_CHAR(charset, c1, c2) (c1)
fa9a63c5 248#endif /* not emacs */
4e8a9132
SM
249
250#ifndef RE_TRANSLATE
0b32bf0e
SM
251# define RE_TRANSLATE(TBL, C) ((unsigned char)(TBL)[C])
252# define RE_TRANSLATE_P(TBL) (TBL)
4e8a9132 253#endif
fa9a63c5
RM
254\f
255/* Get the interface, including the syntax bits. */
256#include "regex.h"
257
f71b19b6
DL
258/* isalpha etc. are used for the character classes. */
259#include <ctype.h>
fa9a63c5 260
f71b19b6 261#ifdef emacs
fa9a63c5 262
f71b19b6 263/* 1 if C is an ASCII character. */
0b32bf0e 264# define IS_REAL_ASCII(c) ((c) < 0200)
fa9a63c5 265
f71b19b6 266/* 1 if C is a unibyte character. */
0b32bf0e 267# define ISUNIBYTE(c) (SINGLE_BYTE_CHAR_P ((c)))
96cc36cc 268
f71b19b6 269/* The Emacs definitions should not be directly affected by locales. */
96cc36cc 270
f71b19b6 271/* In Emacs, these are only used for single-byte characters. */
0b32bf0e
SM
272# define ISDIGIT(c) ((c) >= '0' && (c) <= '9')
273# define ISCNTRL(c) ((c) < ' ')
274# define ISXDIGIT(c) (((c) >= '0' && (c) <= '9') \
f71b19b6
DL
275 || ((c) >= 'a' && (c) <= 'f') \
276 || ((c) >= 'A' && (c) <= 'F'))
96cc36cc
RS
277
278/* This is only used for single-byte characters. */
0b32bf0e 279# define ISBLANK(c) ((c) == ' ' || (c) == '\t')
96cc36cc
RS
280
281/* The rest must handle multibyte characters. */
282
0b32bf0e 283# define ISGRAPH(c) (SINGLE_BYTE_CHAR_P (c) \
f71b19b6 284 ? (c) > ' ' && !((c) >= 0177 && (c) <= 0237) \
96cc36cc
RS
285 : 1)
286
14473664 287# define ISPRINT(c) (SINGLE_BYTE_CHAR_P (c) \
f71b19b6 288 ? (c) >= ' ' && !((c) >= 0177 && (c) <= 0237) \
96cc36cc
RS
289 : 1)
290
0b32bf0e 291# define ISALNUM(c) (IS_REAL_ASCII (c) \
f71b19b6
DL
292 ? (((c) >= 'a' && (c) <= 'z') \
293 || ((c) >= 'A' && (c) <= 'Z') \
294 || ((c) >= '0' && (c) <= '9')) \
96cc36cc
RS
295 : SYNTAX (c) == Sword)
296
0b32bf0e 297# define ISALPHA(c) (IS_REAL_ASCII (c) \
f71b19b6
DL
298 ? (((c) >= 'a' && (c) <= 'z') \
299 || ((c) >= 'A' && (c) <= 'Z')) \
96cc36cc
RS
300 : SYNTAX (c) == Sword)
301
0b32bf0e 302# define ISLOWER(c) (LOWERCASEP (c))
96cc36cc 303
0b32bf0e 304# define ISPUNCT(c) (IS_REAL_ASCII (c) \
f71b19b6
DL
305 ? ((c) > ' ' && (c) < 0177 \
306 && !(((c) >= 'a' && (c) <= 'z') \
4bb91c68
SM
307 || ((c) >= 'A' && (c) <= 'Z') \
308 || ((c) >= '0' && (c) <= '9'))) \
96cc36cc
RS
309 : SYNTAX (c) != Sword)
310
0b32bf0e 311# define ISSPACE(c) (SYNTAX (c) == Swhitespace)
96cc36cc 312
0b32bf0e 313# define ISUPPER(c) (UPPERCASEP (c))
96cc36cc 314
0b32bf0e 315# define ISWORD(c) (SYNTAX (c) == Sword)
96cc36cc
RS
316
317#else /* not emacs */
318
f71b19b6
DL
319/* Jim Meyering writes:
320
321 "... Some ctype macros are valid only for character codes that
322 isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when
323 using /bin/cc or gcc but without giving an ansi option). So, all
4bb91c68 324 ctype uses should be through macros like ISPRINT... If
f71b19b6
DL
325 STDC_HEADERS is defined, then autoconf has verified that the ctype
326 macros don't need to be guarded with references to isascii. ...
327 Defining isascii to 1 should let any compiler worth its salt
4bb91c68
SM
328 eliminate the && through constant folding."
329 Solaris defines some of these symbols so we must undefine them first. */
f71b19b6 330
4bb91c68 331# undef ISASCII
0b32bf0e
SM
332# if defined STDC_HEADERS || (!defined isascii && !defined HAVE_ISASCII)
333# define ISASCII(c) 1
334# else
335# define ISASCII(c) isascii(c)
336# endif
f71b19b6
DL
337
338/* 1 if C is an ASCII character. */
0b32bf0e 339# define IS_REAL_ASCII(c) ((c) < 0200)
f71b19b6
DL
340
341/* This distinction is not meaningful, except in Emacs. */
0b32bf0e
SM
342# define ISUNIBYTE(c) 1
343
344# ifdef isblank
345# define ISBLANK(c) (ISASCII (c) && isblank (c))
346# else
347# define ISBLANK(c) ((c) == ' ' || (c) == '\t')
348# endif
349# ifdef isgraph
350# define ISGRAPH(c) (ISASCII (c) && isgraph (c))
351# else
352# define ISGRAPH(c) (ISASCII (c) && isprint (c) && !isspace (c))
353# endif
354
4bb91c68 355# undef ISPRINT
0b32bf0e
SM
356# define ISPRINT(c) (ISASCII (c) && isprint (c))
357# define ISDIGIT(c) (ISASCII (c) && isdigit (c))
358# define ISALNUM(c) (ISASCII (c) && isalnum (c))
359# define ISALPHA(c) (ISASCII (c) && isalpha (c))
360# define ISCNTRL(c) (ISASCII (c) && iscntrl (c))
361# define ISLOWER(c) (ISASCII (c) && islower (c))
362# define ISPUNCT(c) (ISASCII (c) && ispunct (c))
363# define ISSPACE(c) (ISASCII (c) && isspace (c))
364# define ISUPPER(c) (ISASCII (c) && isupper (c))
365# define ISXDIGIT(c) (ISASCII (c) && isxdigit (c))
366
367# define ISWORD(c) ISALPHA(c)
368
4bb91c68
SM
369# ifdef _tolower
370# define TOLOWER(c) _tolower(c)
371# else
372# define TOLOWER(c) tolower(c)
373# endif
374
375/* How many characters in the character set. */
376# define CHAR_SET_SIZE 256
377
0b32bf0e 378# ifdef SYNTAX_TABLE
f71b19b6 379
0b32bf0e 380extern char *re_syntax_table;
f71b19b6 381
0b32bf0e
SM
382# else /* not SYNTAX_TABLE */
383
0b32bf0e
SM
384static char re_syntax_table[CHAR_SET_SIZE];
385
386static void
387init_syntax_once ()
388{
389 register int c;
390 static int done = 0;
391
392 if (done)
393 return;
394
395 bzero (re_syntax_table, sizeof re_syntax_table);
396
4bb91c68
SM
397 for (c = 0; c < CHAR_SET_SIZE; ++c)
398 if (ISALNUM (c))
399 re_syntax_table[c] = Sword;
fa9a63c5 400
669fa600 401 re_syntax_table['_'] = Ssymbol;
fa9a63c5 402
0b32bf0e
SM
403 done = 1;
404}
405
406# endif /* not SYNTAX_TABLE */
96cc36cc 407
4bb91c68
SM
408# define SYNTAX(c) re_syntax_table[(c)]
409
96cc36cc
RS
410#endif /* not emacs */
411\f
fa9a63c5 412#ifndef NULL
0b32bf0e 413# define NULL (void *)0
fa9a63c5
RM
414#endif
415
416/* We remove any previous definition of `SIGN_EXTEND_CHAR',
417 since ours (we hope) works properly with all combinations of
418 machines, compilers, `char' and `unsigned char' argument types.
4bb91c68 419 (Per Bothner suggested the basic approach.) */
fa9a63c5
RM
420#undef SIGN_EXTEND_CHAR
421#if __STDC__
0b32bf0e 422# define SIGN_EXTEND_CHAR(c) ((signed char) (c))
fa9a63c5
RM
423#else /* not __STDC__ */
424/* As in Harbison and Steele. */
0b32bf0e 425# define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
fa9a63c5
RM
426#endif
427\f
428/* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we
429 use `alloca' instead of `malloc'. This is because using malloc in
430 re_search* or re_match* could cause memory leaks when C-g is used in
431 Emacs; also, malloc is slower and causes storage fragmentation. On
5e69f11e
RM
432 the other hand, malloc is more portable, and easier to debug.
433
fa9a63c5
RM
434 Because we sometimes use alloca, some routines have to be macros,
435 not functions -- `alloca'-allocated space disappears at the end of the
436 function it is called in. */
437
438#ifdef REGEX_MALLOC
439
0b32bf0e
SM
440# define REGEX_ALLOCATE malloc
441# define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
442# define REGEX_FREE free
fa9a63c5
RM
443
444#else /* not REGEX_MALLOC */
445
446/* Emacs already defines alloca, sometimes. */
0b32bf0e 447# ifndef alloca
fa9a63c5
RM
448
449/* Make alloca work the best possible way. */
0b32bf0e
SM
450# ifdef __GNUC__
451# define alloca __builtin_alloca
452# else /* not __GNUC__ */
453# if HAVE_ALLOCA_H
454# include <alloca.h>
455# endif /* HAVE_ALLOCA_H */
456# endif /* not __GNUC__ */
fa9a63c5 457
0b32bf0e 458# endif /* not alloca */
fa9a63c5 459
0b32bf0e 460# define REGEX_ALLOCATE alloca
fa9a63c5
RM
461
462/* Assumes a `char *destination' variable. */
0b32bf0e 463# define REGEX_REALLOCATE(source, osize, nsize) \
fa9a63c5 464 (destination = (char *) alloca (nsize), \
4bb91c68 465 memcpy (destination, source, osize))
fa9a63c5
RM
466
467/* No need to do anything to free, after alloca. */
0b32bf0e 468# define REGEX_FREE(arg) ((void)0) /* Do nothing! But inhibit gcc warning. */
fa9a63c5
RM
469
470#endif /* not REGEX_MALLOC */
471
472/* Define how to allocate the failure stack. */
473
0b32bf0e 474#if defined REL_ALLOC && defined REGEX_MALLOC
4297555e 475
0b32bf0e 476# define REGEX_ALLOCATE_STACK(size) \
fa9a63c5 477 r_alloc (&failure_stack_ptr, (size))
0b32bf0e 478# define REGEX_REALLOCATE_STACK(source, osize, nsize) \
fa9a63c5 479 r_re_alloc (&failure_stack_ptr, (nsize))
0b32bf0e 480# define REGEX_FREE_STACK(ptr) \
fa9a63c5
RM
481 r_alloc_free (&failure_stack_ptr)
482
4297555e 483#else /* not using relocating allocator */
fa9a63c5 484
0b32bf0e 485# ifdef REGEX_MALLOC
fa9a63c5 486
0b32bf0e
SM
487# define REGEX_ALLOCATE_STACK malloc
488# define REGEX_REALLOCATE_STACK(source, osize, nsize) realloc (source, nsize)
489# define REGEX_FREE_STACK free
fa9a63c5 490
0b32bf0e 491# else /* not REGEX_MALLOC */
fa9a63c5 492
0b32bf0e 493# define REGEX_ALLOCATE_STACK alloca
fa9a63c5 494
0b32bf0e 495# define REGEX_REALLOCATE_STACK(source, osize, nsize) \
fa9a63c5 496 REGEX_REALLOCATE (source, osize, nsize)
25fe55af 497/* No need to explicitly free anything. */
0b32bf0e 498# define REGEX_FREE_STACK(arg) ((void)0)
fa9a63c5 499
0b32bf0e 500# endif /* not REGEX_MALLOC */
4297555e 501#endif /* not using relocating allocator */
fa9a63c5
RM
502
503
504/* True if `size1' is non-NULL and PTR is pointing anywhere inside
505 `string1' or just past its end. This works if PTR is NULL, which is
506 a good thing. */
25fe55af 507#define FIRST_STRING_P(ptr) \
fa9a63c5
RM
508 (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
509
510/* (Re)Allocate N items of type T using malloc, or fail. */
511#define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
512#define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
513#define RETALLOC_IF(addr, n, t) \
514 if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t)
515#define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
516
4bb91c68 517#define BYTEWIDTH 8 /* In bits. */
fa9a63c5
RM
518
519#define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
520
521#undef MAX
522#undef MIN
523#define MAX(a, b) ((a) > (b) ? (a) : (b))
524#define MIN(a, b) ((a) < (b) ? (a) : (b))
525
66f0296e
SM
526/* Type of source-pattern and string chars. */
527typedef const unsigned char re_char;
528
fa9a63c5
RM
529typedef char boolean;
530#define false 0
531#define true 1
532
4bb91c68
SM
533static int re_match_2_internal _RE_ARGS ((struct re_pattern_buffer *bufp,
534 re_char *string1, int size1,
535 re_char *string2, int size2,
536 int pos,
537 struct re_registers *regs,
538 int stop));
fa9a63c5
RM
539\f
540/* These are the command codes that appear in compiled regular
4bb91c68 541 expressions. Some opcodes are followed by argument bytes. A
fa9a63c5
RM
542 command code can specify any interpretation whatsoever for its
543 arguments. Zero bytes may appear in the compiled regular expression. */
544
545typedef enum
546{
547 no_op = 0,
548
4bb91c68 549 /* Succeed right away--no more backtracking. */
fa9a63c5
RM
550 succeed,
551
25fe55af 552 /* Followed by one byte giving n, then by n literal bytes. */
fa9a63c5
RM
553 exactn,
554
25fe55af 555 /* Matches any (more or less) character. */
fa9a63c5
RM
556 anychar,
557
25fe55af
RS
558 /* Matches any one char belonging to specified set. First
559 following byte is number of bitmap bytes. Then come bytes
560 for a bitmap saying which chars are in. Bits in each byte
561 are ordered low-bit-first. A character is in the set if its
562 bit is 1. A character too large to have a bit in the map is
96cc36cc
RS
563 automatically not in the set.
564
565 If the length byte has the 0x80 bit set, then that stuff
566 is followed by a range table:
567 2 bytes of flags for character sets (low 8 bits, high 8 bits)
0b32bf0e 568 See RANGE_TABLE_WORK_BITS below.
01618498 569 2 bytes, the number of pairs that follow (upto 32767)
96cc36cc 570 pairs, each 2 multibyte characters,
0b32bf0e 571 each multibyte character represented as 3 bytes. */
fa9a63c5
RM
572 charset,
573
25fe55af 574 /* Same parameters as charset, but match any character that is
4bb91c68 575 not one of those specified. */
fa9a63c5
RM
576 charset_not,
577
25fe55af
RS
578 /* Start remembering the text that is matched, for storing in a
579 register. Followed by one byte with the register number, in
580 the range 0 to one less than the pattern buffer's re_nsub
505bde11 581 field. */
fa9a63c5
RM
582 start_memory,
583
25fe55af
RS
584 /* Stop remembering the text that is matched and store it in a
585 memory register. Followed by one byte with the register
586 number, in the range 0 to one less than `re_nsub' in the
505bde11 587 pattern buffer. */
fa9a63c5
RM
588 stop_memory,
589
25fe55af 590 /* Match a duplicate of something remembered. Followed by one
4bb91c68 591 byte containing the register number. */
fa9a63c5
RM
592 duplicate,
593
25fe55af 594 /* Fail unless at beginning of line. */
fa9a63c5
RM
595 begline,
596
4bb91c68 597 /* Fail unless at end of line. */
fa9a63c5
RM
598 endline,
599
25fe55af
RS
600 /* Succeeds if at beginning of buffer (if emacs) or at beginning
601 of string to be matched (if not). */
fa9a63c5
RM
602 begbuf,
603
25fe55af 604 /* Analogously, for end of buffer/string. */
fa9a63c5 605 endbuf,
5e69f11e 606
25fe55af 607 /* Followed by two byte relative address to which to jump. */
5e69f11e 608 jump,
fa9a63c5 609
25fe55af
RS
610 /* Followed by two-byte relative address of place to resume at
611 in case of failure. */
fa9a63c5 612 on_failure_jump,
5e69f11e 613
25fe55af
RS
614 /* Like on_failure_jump, but pushes a placeholder instead of the
615 current string position when executed. */
fa9a63c5 616 on_failure_keep_string_jump,
5e69f11e 617
505bde11
SM
618 /* Just like `on_failure_jump', except that it checks that we
619 don't get stuck in an infinite loop (matching an empty string
620 indefinitely). */
621 on_failure_jump_loop,
622
0683b6fa
SM
623 /* Just like `on_failure_jump_loop', except that it checks for
624 a different kind of loop (the kind that shows up with non-greedy
625 operators). This operation has to be immediately preceded
626 by a `no_op'. */
627 on_failure_jump_nastyloop,
628
0b32bf0e 629 /* A smart `on_failure_jump' used for greedy * and + operators.
505bde11
SM
630 It analyses the loop before which it is put and if the
631 loop does not require backtracking, it changes itself to
4e8a9132
SM
632 `on_failure_keep_string_jump' and short-circuits the loop,
633 else it just defaults to changing itself into `on_failure_jump'.
634 It assumes that it is pointing to just past a `jump'. */
505bde11 635 on_failure_jump_smart,
fa9a63c5 636
25fe55af 637 /* Followed by two-byte relative address and two-byte number n.
ed0767d8
SM
638 After matching N times, jump to the address upon failure.
639 Does not work if N starts at 0: use on_failure_jump_loop
640 instead. */
fa9a63c5
RM
641 succeed_n,
642
25fe55af
RS
643 /* Followed by two-byte relative address, and two-byte number n.
644 Jump to the address N times, then fail. */
fa9a63c5
RM
645 jump_n,
646
25fe55af
RS
647 /* Set the following two-byte relative address to the
648 subsequent two-byte number. The address *includes* the two
649 bytes of number. */
fa9a63c5
RM
650 set_number_at,
651
fa9a63c5
RM
652 wordbeg, /* Succeeds if at word beginning. */
653 wordend, /* Succeeds if at word end. */
654
655 wordbound, /* Succeeds if at a word boundary. */
1fb352e0 656 notwordbound, /* Succeeds if not at a word boundary. */
fa9a63c5 657
669fa600
SM
658 symbeg, /* Succeeds if at symbol beginning. */
659 symend, /* Succeeds if at symbol end. */
660
fa9a63c5 661 /* Matches any character whose syntax is specified. Followed by
25fe55af 662 a byte which contains a syntax code, e.g., Sword. */
fa9a63c5
RM
663 syntaxspec,
664
665 /* Matches any character whose syntax is not that specified. */
1fb352e0
SM
666 notsyntaxspec
667
668#ifdef emacs
669 ,before_dot, /* Succeeds if before point. */
670 at_dot, /* Succeeds if at point. */
671 after_dot, /* Succeeds if after point. */
b18215fc
RS
672
673 /* Matches any character whose category-set contains the specified
25fe55af
RS
674 category. The operator is followed by a byte which contains a
675 category code (mnemonic ASCII character). */
b18215fc
RS
676 categoryspec,
677
678 /* Matches any character whose category-set does not contain the
679 specified category. The operator is followed by a byte which
680 contains the category code (mnemonic ASCII character). */
681 notcategoryspec
fa9a63c5
RM
682#endif /* emacs */
683} re_opcode_t;
684\f
685/* Common operations on the compiled pattern. */
686
687/* Store NUMBER in two contiguous bytes starting at DESTINATION. */
688
689#define STORE_NUMBER(destination, number) \
690 do { \
691 (destination)[0] = (number) & 0377; \
692 (destination)[1] = (number) >> 8; \
693 } while (0)
694
695/* Same as STORE_NUMBER, except increment DESTINATION to
696 the byte after where the number is stored. Therefore, DESTINATION
697 must be an lvalue. */
698
699#define STORE_NUMBER_AND_INCR(destination, number) \
700 do { \
701 STORE_NUMBER (destination, number); \
702 (destination) += 2; \
703 } while (0)
704
705/* Put into DESTINATION a number stored in two contiguous bytes starting
706 at SOURCE. */
707
708#define EXTRACT_NUMBER(destination, source) \
709 do { \
710 (destination) = *(source) & 0377; \
711 (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8; \
712 } while (0)
713
714#ifdef DEBUG
4bb91c68 715static void extract_number _RE_ARGS ((int *dest, re_char *source));
fa9a63c5
RM
716static void
717extract_number (dest, source)
718 int *dest;
01618498 719 re_char *source;
fa9a63c5 720{
5e69f11e 721 int temp = SIGN_EXTEND_CHAR (*(source + 1));
fa9a63c5
RM
722 *dest = *source & 0377;
723 *dest += temp << 8;
724}
725
4bb91c68 726# ifndef EXTRACT_MACROS /* To debug the macros. */
0b32bf0e
SM
727# undef EXTRACT_NUMBER
728# define EXTRACT_NUMBER(dest, src) extract_number (&dest, src)
729# endif /* not EXTRACT_MACROS */
fa9a63c5
RM
730
731#endif /* DEBUG */
732
733/* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
734 SOURCE must be an lvalue. */
735
736#define EXTRACT_NUMBER_AND_INCR(destination, source) \
737 do { \
738 EXTRACT_NUMBER (destination, source); \
25fe55af 739 (source) += 2; \
fa9a63c5
RM
740 } while (0)
741
742#ifdef DEBUG
4bb91c68
SM
743static void extract_number_and_incr _RE_ARGS ((int *destination,
744 re_char **source));
fa9a63c5
RM
745static void
746extract_number_and_incr (destination, source)
747 int *destination;
01618498 748 re_char **source;
5e69f11e 749{
fa9a63c5
RM
750 extract_number (destination, *source);
751 *source += 2;
752}
753
0b32bf0e
SM
754# ifndef EXTRACT_MACROS
755# undef EXTRACT_NUMBER_AND_INCR
756# define EXTRACT_NUMBER_AND_INCR(dest, src) \
fa9a63c5 757 extract_number_and_incr (&dest, &src)
0b32bf0e 758# endif /* not EXTRACT_MACROS */
fa9a63c5
RM
759
760#endif /* DEBUG */
761\f
b18215fc
RS
762/* Store a multibyte character in three contiguous bytes starting
763 DESTINATION, and increment DESTINATION to the byte after where the
25fe55af 764 character is stored. Therefore, DESTINATION must be an lvalue. */
b18215fc
RS
765
766#define STORE_CHARACTER_AND_INCR(destination, character) \
767 do { \
768 (destination)[0] = (character) & 0377; \
769 (destination)[1] = ((character) >> 8) & 0377; \
770 (destination)[2] = (character) >> 16; \
771 (destination) += 3; \
772 } while (0)
773
774/* Put into DESTINATION a character stored in three contiguous bytes
25fe55af 775 starting at SOURCE. */
b18215fc
RS
776
777#define EXTRACT_CHARACTER(destination, source) \
778 do { \
779 (destination) = ((source)[0] \
780 | ((source)[1] << 8) \
781 | ((source)[2] << 16)); \
782 } while (0)
783
784
785/* Macros for charset. */
786
787/* Size of bitmap of charset P in bytes. P is a start of charset,
788 i.e. *P is (re_opcode_t) charset or (re_opcode_t) charset_not. */
789#define CHARSET_BITMAP_SIZE(p) ((p)[1] & 0x7F)
790
791/* Nonzero if charset P has range table. */
25fe55af 792#define CHARSET_RANGE_TABLE_EXISTS_P(p) ((p)[1] & 0x80)
b18215fc
RS
793
794/* Return the address of range table of charset P. But not the start
795 of table itself, but the before where the number of ranges is
96cc36cc
RS
796 stored. `2 +' means to skip re_opcode_t and size of bitmap,
797 and the 2 bytes of flags at the start of the range table. */
798#define CHARSET_RANGE_TABLE(p) (&(p)[4 + CHARSET_BITMAP_SIZE (p)])
799
800/* Extract the bit flags that start a range table. */
801#define CHARSET_RANGE_TABLE_BITS(p) \
802 ((p)[2 + CHARSET_BITMAP_SIZE (p)] \
803 + (p)[3 + CHARSET_BITMAP_SIZE (p)] * 0x100)
b18215fc
RS
804
805/* Test if C is listed in the bitmap of charset P. */
806#define CHARSET_LOOKUP_BITMAP(p, c) \
807 ((c) < CHARSET_BITMAP_SIZE (p) * BYTEWIDTH \
808 && (p)[2 + (c) / BYTEWIDTH] & (1 << ((c) % BYTEWIDTH)))
809
810/* Return the address of end of RANGE_TABLE. COUNT is number of
25fe55af
RS
811 ranges (which is a pair of (start, end)) in the RANGE_TABLE. `* 2'
812 is start of range and end of range. `* 3' is size of each start
b18215fc
RS
813 and end. */
814#define CHARSET_RANGE_TABLE_END(range_table, count) \
815 ((range_table) + (count) * 2 * 3)
816
25fe55af 817/* Test if C is in RANGE_TABLE. A flag NOT is negated if C is in.
b18215fc
RS
818 COUNT is number of ranges in RANGE_TABLE. */
819#define CHARSET_LOOKUP_RANGE_TABLE_RAW(not, c, range_table, count) \
820 do \
821 { \
01618498
SM
822 re_wchar_t range_start, range_end; \
823 re_char *p; \
824 re_char *range_table_end \
b18215fc
RS
825 = CHARSET_RANGE_TABLE_END ((range_table), (count)); \
826 \
827 for (p = (range_table); p < range_table_end; p += 2 * 3) \
828 { \
829 EXTRACT_CHARACTER (range_start, p); \
830 EXTRACT_CHARACTER (range_end, p + 3); \
831 \
832 if (range_start <= (c) && (c) <= range_end) \
833 { \
834 (not) = !(not); \
835 break; \
836 } \
837 } \
838 } \
839 while (0)
840
841/* Test if C is in range table of CHARSET. The flag NOT is negated if
842 C is listed in it. */
843#define CHARSET_LOOKUP_RANGE_TABLE(not, c, charset) \
844 do \
845 { \
846 /* Number of ranges in range table. */ \
847 int count; \
01618498
SM
848 re_char *range_table = CHARSET_RANGE_TABLE (charset); \
849 \
b18215fc
RS
850 EXTRACT_NUMBER_AND_INCR (count, range_table); \
851 CHARSET_LOOKUP_RANGE_TABLE_RAW ((not), (c), range_table, count); \
852 } \
853 while (0)
854\f
fa9a63c5
RM
855/* If DEBUG is defined, Regex prints many voluminous messages about what
856 it is doing (if the variable `debug' is nonzero). If linked with the
857 main program in `iregex.c', you can enter patterns and strings
858 interactively. And if linked with the main program in `main.c' and
4bb91c68 859 the other test files, you can run the already-written tests. */
fa9a63c5
RM
860
861#ifdef DEBUG
862
863/* We use standard I/O for debugging. */
0b32bf0e 864# include <stdio.h>
fa9a63c5
RM
865
866/* It is useful to test things that ``must'' be true when debugging. */
0b32bf0e 867# include <assert.h>
fa9a63c5 868
99633e97 869static int debug = -100000;
fa9a63c5 870
0b32bf0e
SM
871# define DEBUG_STATEMENT(e) e
872# define DEBUG_PRINT1(x) if (debug > 0) printf (x)
873# define DEBUG_PRINT2(x1, x2) if (debug > 0) printf (x1, x2)
874# define DEBUG_PRINT3(x1, x2, x3) if (debug > 0) printf (x1, x2, x3)
875# define DEBUG_PRINT4(x1, x2, x3, x4) if (debug > 0) printf (x1, x2, x3, x4)
876# define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \
99633e97 877 if (debug > 0) print_partial_compiled_pattern (s, e)
0b32bf0e 878# define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \
99633e97 879 if (debug > 0) print_double_string (w, s1, sz1, s2, sz2)
fa9a63c5
RM
880
881
882/* Print the fastmap in human-readable form. */
883
884void
885print_fastmap (fastmap)
886 char *fastmap;
887{
888 unsigned was_a_range = 0;
5e69f11e
RM
889 unsigned i = 0;
890
fa9a63c5
RM
891 while (i < (1 << BYTEWIDTH))
892 {
893 if (fastmap[i++])
894 {
895 was_a_range = 0;
25fe55af
RS
896 putchar (i - 1);
897 while (i < (1 << BYTEWIDTH) && fastmap[i])
898 {
899 was_a_range = 1;
900 i++;
901 }
fa9a63c5 902 if (was_a_range)
25fe55af
RS
903 {
904 printf ("-");
905 putchar (i - 1);
906 }
907 }
fa9a63c5 908 }
5e69f11e 909 putchar ('\n');
fa9a63c5
RM
910}
911
912
913/* Print a compiled pattern string in human-readable form, starting at
914 the START pointer into it and ending just before the pointer END. */
915
916void
917print_partial_compiled_pattern (start, end)
01618498
SM
918 re_char *start;
919 re_char *end;
fa9a63c5
RM
920{
921 int mcnt, mcnt2;
01618498
SM
922 re_char *p = start;
923 re_char *pend = end;
fa9a63c5
RM
924
925 if (start == NULL)
926 {
a1a052df 927 fprintf (stderr, "(null)\n");
fa9a63c5
RM
928 return;
929 }
5e69f11e 930
fa9a63c5
RM
931 /* Loop over pattern commands. */
932 while (p < pend)
933 {
a1a052df 934 fprintf (stderr, "%d:\t", p - start);
fa9a63c5
RM
935
936 switch ((re_opcode_t) *p++)
937 {
25fe55af 938 case no_op:
a1a052df 939 fprintf (stderr, "/no_op");
25fe55af 940 break;
fa9a63c5 941
99633e97 942 case succeed:
a1a052df 943 fprintf (stderr, "/succeed");
99633e97
SM
944 break;
945
fa9a63c5
RM
946 case exactn:
947 mcnt = *p++;
a1a052df 948 fprintf (stderr, "/exactn/%d", mcnt);
25fe55af 949 do
fa9a63c5 950 {
a1a052df 951 fprintf (stderr, "/%c", *p++);
25fe55af
RS
952 }
953 while (--mcnt);
954 break;
fa9a63c5
RM
955
956 case start_memory:
a1a052df 957 fprintf (stderr, "/start_memory/%d", *p++);
25fe55af 958 break;
fa9a63c5
RM
959
960 case stop_memory:
a1a052df 961 fprintf (stderr, "/stop_memory/%d", *p++);
25fe55af 962 break;
fa9a63c5
RM
963
964 case duplicate:
a1a052df 965 fprintf (stderr, "/duplicate/%d", *p++);
fa9a63c5
RM
966 break;
967
968 case anychar:
a1a052df 969 fprintf (stderr, "/anychar");
fa9a63c5
RM
970 break;
971
972 case charset:
25fe55af
RS
973 case charset_not:
974 {
975 register int c, last = -100;
fa9a63c5 976 register int in_range = 0;
99633e97
SM
977 int length = CHARSET_BITMAP_SIZE (p - 1);
978 int has_range_table = CHARSET_RANGE_TABLE_EXISTS_P (p - 1);
fa9a63c5 979
a1a052df 980 fprintf (stderr, "/charset [%s",
275a3409 981 (re_opcode_t) *(p - 1) == charset_not ? "^" : "");
5e69f11e 982
275a3409
RS
983 if (p + *p >= pend)
984 fprintf (stderr, " !extends past end of pattern! ");
fa9a63c5 985
25fe55af 986 for (c = 0; c < 256; c++)
96cc36cc 987 if (c / 8 < length
fa9a63c5
RM
988 && (p[1 + (c/8)] & (1 << (c % 8))))
989 {
990 /* Are we starting a range? */
991 if (last + 1 == c && ! in_range)
992 {
a1a052df 993 fprintf (stderr, "-");
fa9a63c5
RM
994 in_range = 1;
995 }
996 /* Have we broken a range? */
997 else if (last + 1 != c && in_range)
96cc36cc 998 {
a1a052df 999 fprintf (stderr, "%c", last);
fa9a63c5
RM
1000 in_range = 0;
1001 }
5e69f11e 1002
fa9a63c5 1003 if (! in_range)
a1a052df 1004 fprintf (stderr, "%c", c);
fa9a63c5
RM
1005
1006 last = c;
25fe55af 1007 }
fa9a63c5
RM
1008
1009 if (in_range)
a1a052df 1010 fprintf (stderr, "%c", last);
fa9a63c5 1011
a1a052df 1012 fprintf (stderr, "]");
fa9a63c5 1013
99633e97 1014 p += 1 + length;
96cc36cc 1015
96cc36cc 1016 if (has_range_table)
99633e97
SM
1017 {
1018 int count;
a1a052df 1019 fprintf (stderr, "has-range-table");
99633e97
SM
1020
1021 /* ??? Should print the range table; for now, just skip it. */
1022 p += 2; /* skip range table bits */
1023 EXTRACT_NUMBER_AND_INCR (count, p);
1024 p = CHARSET_RANGE_TABLE_END (p, count);
1025 }
fa9a63c5
RM
1026 }
1027 break;
1028
1029 case begline:
a1a052df 1030 fprintf (stderr, "/begline");
25fe55af 1031 break;
fa9a63c5
RM
1032
1033 case endline:
a1a052df 1034 fprintf (stderr, "/endline");
25fe55af 1035 break;
fa9a63c5
RM
1036
1037 case on_failure_jump:
25fe55af 1038 extract_number_and_incr (&mcnt, &p);
a1a052df 1039 fprintf (stderr, "/on_failure_jump to %d", p + mcnt - start);
25fe55af 1040 break;
fa9a63c5
RM
1041
1042 case on_failure_keep_string_jump:
25fe55af 1043 extract_number_and_incr (&mcnt, &p);
a1a052df 1044 fprintf (stderr, "/on_failure_keep_string_jump to %d", p + mcnt - start);
25fe55af 1045 break;
fa9a63c5 1046
0683b6fa
SM
1047 case on_failure_jump_nastyloop:
1048 extract_number_and_incr (&mcnt, &p);
a1a052df 1049 fprintf (stderr, "/on_failure_jump_nastyloop to %d", p + mcnt - start);
0683b6fa
SM
1050 break;
1051
505bde11 1052 case on_failure_jump_loop:
fa9a63c5 1053 extract_number_and_incr (&mcnt, &p);
a1a052df 1054 fprintf (stderr, "/on_failure_jump_loop to %d", p + mcnt - start);
5e69f11e
RM
1055 break;
1056
505bde11 1057 case on_failure_jump_smart:
fa9a63c5 1058 extract_number_and_incr (&mcnt, &p);
a1a052df 1059 fprintf (stderr, "/on_failure_jump_smart to %d", p + mcnt - start);
5e69f11e
RM
1060 break;
1061
25fe55af 1062 case jump:
fa9a63c5 1063 extract_number_and_incr (&mcnt, &p);
a1a052df 1064 fprintf (stderr, "/jump to %d", p + mcnt - start);
fa9a63c5
RM
1065 break;
1066
25fe55af
RS
1067 case succeed_n:
1068 extract_number_and_incr (&mcnt, &p);
1069 extract_number_and_incr (&mcnt2, &p);
a1a052df 1070 fprintf (stderr, "/succeed_n to %d, %d times", p - 2 + mcnt - start, mcnt2);
25fe55af 1071 break;
5e69f11e 1072
25fe55af
RS
1073 case jump_n:
1074 extract_number_and_incr (&mcnt, &p);
1075 extract_number_and_incr (&mcnt2, &p);
a1a052df 1076 fprintf (stderr, "/jump_n to %d, %d times", p - 2 + mcnt - start, mcnt2);
25fe55af 1077 break;
5e69f11e 1078
25fe55af
RS
1079 case set_number_at:
1080 extract_number_and_incr (&mcnt, &p);
1081 extract_number_and_incr (&mcnt2, &p);
a1a052df 1082 fprintf (stderr, "/set_number_at location %d to %d", p - 2 + mcnt - start, mcnt2);
25fe55af 1083 break;
5e69f11e 1084
25fe55af 1085 case wordbound:
a1a052df 1086 fprintf (stderr, "/wordbound");
fa9a63c5
RM
1087 break;
1088
1089 case notwordbound:
a1a052df 1090 fprintf (stderr, "/notwordbound");
25fe55af 1091 break;
fa9a63c5
RM
1092
1093 case wordbeg:
a1a052df 1094 fprintf (stderr, "/wordbeg");
fa9a63c5 1095 break;
5e69f11e 1096
fa9a63c5 1097 case wordend:
a1a052df 1098 fprintf (stderr, "/wordend");
e2543b02 1099 break;
5e69f11e 1100
669fa600 1101 case symbeg:
e2543b02 1102 fprintf (stderr, "/symbeg");
669fa600
SM
1103 break;
1104
1105 case symend:
e2543b02 1106 fprintf (stderr, "/symend");
669fa600
SM
1107 break;
1108
1fb352e0 1109 case syntaxspec:
a1a052df 1110 fprintf (stderr, "/syntaxspec");
1fb352e0 1111 mcnt = *p++;
a1a052df 1112 fprintf (stderr, "/%d", mcnt);
1fb352e0
SM
1113 break;
1114
1115 case notsyntaxspec:
a1a052df 1116 fprintf (stderr, "/notsyntaxspec");
1fb352e0 1117 mcnt = *p++;
a1a052df 1118 fprintf (stderr, "/%d", mcnt);
1fb352e0
SM
1119 break;
1120
0b32bf0e 1121# ifdef emacs
fa9a63c5 1122 case before_dot:
a1a052df 1123 fprintf (stderr, "/before_dot");
25fe55af 1124 break;
fa9a63c5
RM
1125
1126 case at_dot:
a1a052df 1127 fprintf (stderr, "/at_dot");
25fe55af 1128 break;
fa9a63c5
RM
1129
1130 case after_dot:
a1a052df 1131 fprintf (stderr, "/after_dot");
25fe55af 1132 break;
fa9a63c5 1133
1fb352e0 1134 case categoryspec:
a1a052df 1135 fprintf (stderr, "/categoryspec");
fa9a63c5 1136 mcnt = *p++;
a1a052df 1137 fprintf (stderr, "/%d", mcnt);
25fe55af 1138 break;
5e69f11e 1139
1fb352e0 1140 case notcategoryspec:
a1a052df 1141 fprintf (stderr, "/notcategoryspec");
fa9a63c5 1142 mcnt = *p++;
a1a052df 1143 fprintf (stderr, "/%d", mcnt);
fa9a63c5 1144 break;
0b32bf0e 1145# endif /* emacs */
fa9a63c5 1146
fa9a63c5 1147 case begbuf:
a1a052df 1148 fprintf (stderr, "/begbuf");
25fe55af 1149 break;
fa9a63c5
RM
1150
1151 case endbuf:
a1a052df 1152 fprintf (stderr, "/endbuf");
25fe55af 1153 break;
fa9a63c5 1154
25fe55af 1155 default:
a1a052df 1156 fprintf (stderr, "?%d", *(p-1));
fa9a63c5
RM
1157 }
1158
a1a052df 1159 fprintf (stderr, "\n");
fa9a63c5
RM
1160 }
1161
a1a052df 1162 fprintf (stderr, "%d:\tend of pattern.\n", p - start);
fa9a63c5
RM
1163}
1164
1165
1166void
1167print_compiled_pattern (bufp)
1168 struct re_pattern_buffer *bufp;
1169{
01618498 1170 re_char *buffer = bufp->buffer;
fa9a63c5
RM
1171
1172 print_partial_compiled_pattern (buffer, buffer + bufp->used);
4bb91c68
SM
1173 printf ("%ld bytes used/%ld bytes allocated.\n",
1174 bufp->used, bufp->allocated);
fa9a63c5
RM
1175
1176 if (bufp->fastmap_accurate && bufp->fastmap)
1177 {
1178 printf ("fastmap: ");
1179 print_fastmap (bufp->fastmap);
1180 }
1181
1182 printf ("re_nsub: %d\t", bufp->re_nsub);
1183 printf ("regs_alloc: %d\t", bufp->regs_allocated);
1184 printf ("can_be_null: %d\t", bufp->can_be_null);
fa9a63c5
RM
1185 printf ("no_sub: %d\t", bufp->no_sub);
1186 printf ("not_bol: %d\t", bufp->not_bol);
1187 printf ("not_eol: %d\t", bufp->not_eol);
4bb91c68 1188 printf ("syntax: %lx\n", bufp->syntax);
505bde11 1189 fflush (stdout);
fa9a63c5
RM
1190 /* Perhaps we should print the translate table? */
1191}
1192
1193
1194void
1195print_double_string (where, string1, size1, string2, size2)
66f0296e
SM
1196 re_char *where;
1197 re_char *string1;
1198 re_char *string2;
fa9a63c5
RM
1199 int size1;
1200 int size2;
1201{
4bb91c68 1202 int this_char;
5e69f11e 1203
fa9a63c5
RM
1204 if (where == NULL)
1205 printf ("(null)");
1206 else
1207 {
1208 if (FIRST_STRING_P (where))
25fe55af
RS
1209 {
1210 for (this_char = where - string1; this_char < size1; this_char++)
1211 putchar (string1[this_char]);
fa9a63c5 1212
25fe55af
RS
1213 where = string2;
1214 }
fa9a63c5
RM
1215
1216 for (this_char = where - string2; this_char < size2; this_char++)
25fe55af 1217 putchar (string2[this_char]);
fa9a63c5
RM
1218 }
1219}
1220
1221#else /* not DEBUG */
1222
0b32bf0e
SM
1223# undef assert
1224# define assert(e)
fa9a63c5 1225
0b32bf0e
SM
1226# define DEBUG_STATEMENT(e)
1227# define DEBUG_PRINT1(x)
1228# define DEBUG_PRINT2(x1, x2)
1229# define DEBUG_PRINT3(x1, x2, x3)
1230# define DEBUG_PRINT4(x1, x2, x3, x4)
1231# define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
1232# define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
fa9a63c5
RM
1233
1234#endif /* not DEBUG */
1235\f
1236/* Set by `re_set_syntax' to the current regexp syntax to recognize. Can
1237 also be assigned to arbitrarily: each pattern buffer stores its own
1238 syntax, so it can be changed between regex compilations. */
1239/* This has no initializer because initialized variables in Emacs
1240 become read-only after dumping. */
1241reg_syntax_t re_syntax_options;
1242
1243
1244/* Specify the precise syntax of regexps for compilation. This provides
1245 for compatibility for various utilities which historically have
1246 different, incompatible syntaxes.
1247
1248 The argument SYNTAX is a bit mask comprised of the various bits
4bb91c68 1249 defined in regex.h. We return the old syntax. */
fa9a63c5
RM
1250
1251reg_syntax_t
1252re_set_syntax (syntax)
f9b0fd99 1253 reg_syntax_t syntax;
fa9a63c5
RM
1254{
1255 reg_syntax_t ret = re_syntax_options;
5e69f11e 1256
fa9a63c5
RM
1257 re_syntax_options = syntax;
1258 return ret;
1259}
c0f9ea08 1260WEAK_ALIAS (__re_set_syntax, re_set_syntax)
f9b0fd99
RS
1261
1262/* Regexp to use to replace spaces, or NULL meaning don't. */
1263static re_char *whitespace_regexp;
1264
1265void
1266re_set_whitespace_regexp (regexp)
1267 re_char *regexp;
1268{
1269 whitespace_regexp = regexp;
1270}
1271WEAK_ALIAS (__re_set_syntax, re_set_syntax)
fa9a63c5
RM
1272\f
1273/* This table gives an error message for each of the error codes listed
4bb91c68 1274 in regex.h. Obviously the order here has to be same as there.
fa9a63c5 1275 POSIX doesn't require that we do anything for REG_NOERROR,
4bb91c68 1276 but why not be nice? */
fa9a63c5
RM
1277
1278static const char *re_error_msgid[] =
5e69f11e
RM
1279 {
1280 gettext_noop ("Success"), /* REG_NOERROR */
1281 gettext_noop ("No match"), /* REG_NOMATCH */
1282 gettext_noop ("Invalid regular expression"), /* REG_BADPAT */
1283 gettext_noop ("Invalid collation character"), /* REG_ECOLLATE */
1284 gettext_noop ("Invalid character class name"), /* REG_ECTYPE */
1285 gettext_noop ("Trailing backslash"), /* REG_EESCAPE */
1286 gettext_noop ("Invalid back reference"), /* REG_ESUBREG */
1287 gettext_noop ("Unmatched [ or [^"), /* REG_EBRACK */
1288 gettext_noop ("Unmatched ( or \\("), /* REG_EPAREN */
1289 gettext_noop ("Unmatched \\{"), /* REG_EBRACE */
1290 gettext_noop ("Invalid content of \\{\\}"), /* REG_BADBR */
1291 gettext_noop ("Invalid range end"), /* REG_ERANGE */
1292 gettext_noop ("Memory exhausted"), /* REG_ESPACE */
1293 gettext_noop ("Invalid preceding regular expression"), /* REG_BADRPT */
1294 gettext_noop ("Premature end of regular expression"), /* REG_EEND */
1295 gettext_noop ("Regular expression too big"), /* REG_ESIZE */
1296 gettext_noop ("Unmatched ) or \\)"), /* REG_ERPAREN */
b3e4c897 1297 gettext_noop ("Range striding over charsets") /* REG_ERANGEX */
fa9a63c5
RM
1298 };
1299\f
4bb91c68 1300/* Avoiding alloca during matching, to placate r_alloc. */
fa9a63c5
RM
1301
1302/* Define MATCH_MAY_ALLOCATE unless we need to make sure that the
1303 searching and matching functions should not call alloca. On some
1304 systems, alloca is implemented in terms of malloc, and if we're
1305 using the relocating allocator routines, then malloc could cause a
1306 relocation, which might (if the strings being searched are in the
1307 ralloc heap) shift the data out from underneath the regexp
1308 routines.
1309
5e69f11e 1310 Here's another reason to avoid allocation: Emacs
fa9a63c5
RM
1311 processes input from X in a signal handler; processing X input may
1312 call malloc; if input arrives while a matching routine is calling
1313 malloc, then we're scrod. But Emacs can't just block input while
1314 calling matching routines; then we don't notice interrupts when
1315 they come in. So, Emacs blocks input around all regexp calls
1316 except the matching calls, which it leaves unprotected, in the
1317 faith that they will not malloc. */
1318
1319/* Normally, this is fine. */
1320#define MATCH_MAY_ALLOCATE
1321
1322/* When using GNU C, we are not REALLY using the C alloca, no matter
1323 what config.h may say. So don't take precautions for it. */
1324#ifdef __GNUC__
0b32bf0e 1325# undef C_ALLOCA
fa9a63c5
RM
1326#endif
1327
1328/* The match routines may not allocate if (1) they would do it with malloc
1329 and (2) it's not safe for them to use malloc.
1330 Note that if REL_ALLOC is defined, matching would not use malloc for the
1331 failure stack, but we would still use it for the register vectors;
4bb91c68 1332 so REL_ALLOC should not affect this. */
0b32bf0e
SM
1333#if (defined C_ALLOCA || defined REGEX_MALLOC) && defined emacs
1334# undef MATCH_MAY_ALLOCATE
fa9a63c5
RM
1335#endif
1336
1337\f
1338/* Failure stack declarations and macros; both re_compile_fastmap and
1339 re_match_2 use a failure stack. These have to be macros because of
1340 REGEX_ALLOCATE_STACK. */
5e69f11e 1341
fa9a63c5 1342
320a2a73 1343/* Approximate number of failure points for which to initially allocate space
fa9a63c5
RM
1344 when matching. If this number is exceeded, we allocate more
1345 space, so it is not a hard limit. */
1346#ifndef INIT_FAILURE_ALLOC
0b32bf0e 1347# define INIT_FAILURE_ALLOC 20
fa9a63c5
RM
1348#endif
1349
1350/* Roughly the maximum number of failure points on the stack. Would be
320a2a73 1351 exactly that if always used TYPICAL_FAILURE_SIZE items each time we failed.
fa9a63c5 1352 This is a variable only so users of regex can assign to it; we never
ada30c0e
SM
1353 change it ourselves. We always multiply it by TYPICAL_FAILURE_SIZE
1354 before using it, so it should probably be a byte-count instead. */
c0f9ea08
SM
1355# if defined MATCH_MAY_ALLOCATE
1356/* Note that 4400 was enough to cause a crash on Alpha OSF/1,
320a2a73
KH
1357 whose default stack limit is 2mb. In order for a larger
1358 value to work reliably, you have to try to make it accord
1359 with the process stack limit. */
c0f9ea08
SM
1360size_t re_max_failures = 40000;
1361# else
1362size_t re_max_failures = 4000;
1363# endif
fa9a63c5
RM
1364
1365union fail_stack_elt
1366{
01618498 1367 re_char *pointer;
c0f9ea08
SM
1368 /* This should be the biggest `int' that's no bigger than a pointer. */
1369 long integer;
fa9a63c5
RM
1370};
1371
1372typedef union fail_stack_elt fail_stack_elt_t;
1373
1374typedef struct
1375{
1376 fail_stack_elt_t *stack;
c0f9ea08
SM
1377 size_t size;
1378 size_t avail; /* Offset of next open position. */
1379 size_t frame; /* Offset of the cur constructed frame. */
fa9a63c5
RM
1380} fail_stack_type;
1381
505bde11 1382#define FAIL_STACK_EMPTY() (fail_stack.frame == 0)
fa9a63c5
RM
1383#define FAIL_STACK_FULL() (fail_stack.avail == fail_stack.size)
1384
1385
1386/* Define macros to initialize and free the failure stack.
1387 Do `return -2' if the alloc fails. */
1388
1389#ifdef MATCH_MAY_ALLOCATE
0b32bf0e 1390# define INIT_FAIL_STACK() \
fa9a63c5
RM
1391 do { \
1392 fail_stack.stack = (fail_stack_elt_t *) \
320a2a73
KH
1393 REGEX_ALLOCATE_STACK (INIT_FAILURE_ALLOC * TYPICAL_FAILURE_SIZE \
1394 * sizeof (fail_stack_elt_t)); \
fa9a63c5
RM
1395 \
1396 if (fail_stack.stack == NULL) \
1397 return -2; \
1398 \
1399 fail_stack.size = INIT_FAILURE_ALLOC; \
1400 fail_stack.avail = 0; \
505bde11 1401 fail_stack.frame = 0; \
fa9a63c5
RM
1402 } while (0)
1403
0b32bf0e 1404# define RESET_FAIL_STACK() REGEX_FREE_STACK (fail_stack.stack)
fa9a63c5 1405#else
0b32bf0e 1406# define INIT_FAIL_STACK() \
fa9a63c5
RM
1407 do { \
1408 fail_stack.avail = 0; \
505bde11 1409 fail_stack.frame = 0; \
fa9a63c5
RM
1410 } while (0)
1411
0b32bf0e 1412# define RESET_FAIL_STACK() ((void)0)
fa9a63c5
RM
1413#endif
1414
1415
320a2a73
KH
1416/* Double the size of FAIL_STACK, up to a limit
1417 which allows approximately `re_max_failures' items.
fa9a63c5
RM
1418
1419 Return 1 if succeeds, and 0 if either ran out of memory
5e69f11e
RM
1420 allocating space for it or it was already too large.
1421
4bb91c68 1422 REGEX_REALLOCATE_STACK requires `destination' be declared. */
fa9a63c5 1423
320a2a73
KH
1424/* Factor to increase the failure stack size by
1425 when we increase it.
1426 This used to be 2, but 2 was too wasteful
1427 because the old discarded stacks added up to as much space
1428 were as ultimate, maximum-size stack. */
1429#define FAIL_STACK_GROWTH_FACTOR 4
1430
1431#define GROW_FAIL_STACK(fail_stack) \
eead07d6
KH
1432 (((fail_stack).size * sizeof (fail_stack_elt_t) \
1433 >= re_max_failures * TYPICAL_FAILURE_SIZE) \
fa9a63c5 1434 ? 0 \
320a2a73
KH
1435 : ((fail_stack).stack \
1436 = (fail_stack_elt_t *) \
25fe55af
RS
1437 REGEX_REALLOCATE_STACK ((fail_stack).stack, \
1438 (fail_stack).size * sizeof (fail_stack_elt_t), \
320a2a73
KH
1439 MIN (re_max_failures * TYPICAL_FAILURE_SIZE, \
1440 ((fail_stack).size * sizeof (fail_stack_elt_t) \
1441 * FAIL_STACK_GROWTH_FACTOR))), \
fa9a63c5
RM
1442 \
1443 (fail_stack).stack == NULL \
1444 ? 0 \
6453db45
KH
1445 : ((fail_stack).size \
1446 = (MIN (re_max_failures * TYPICAL_FAILURE_SIZE, \
1447 ((fail_stack).size * sizeof (fail_stack_elt_t) \
1448 * FAIL_STACK_GROWTH_FACTOR)) \
1449 / sizeof (fail_stack_elt_t)), \
25fe55af 1450 1)))
fa9a63c5
RM
1451
1452
fa9a63c5
RM
1453/* Push a pointer value onto the failure stack.
1454 Assumes the variable `fail_stack'. Probably should only
4bb91c68 1455 be called from within `PUSH_FAILURE_POINT'. */
fa9a63c5 1456#define PUSH_FAILURE_POINTER(item) \
01618498 1457 fail_stack.stack[fail_stack.avail++].pointer = (item)
fa9a63c5
RM
1458
1459/* This pushes an integer-valued item onto the failure stack.
1460 Assumes the variable `fail_stack'. Probably should only
4bb91c68 1461 be called from within `PUSH_FAILURE_POINT'. */
fa9a63c5
RM
1462#define PUSH_FAILURE_INT(item) \
1463 fail_stack.stack[fail_stack.avail++].integer = (item)
1464
1465/* Push a fail_stack_elt_t value onto the failure stack.
1466 Assumes the variable `fail_stack'. Probably should only
4bb91c68 1467 be called from within `PUSH_FAILURE_POINT'. */
fa9a63c5
RM
1468#define PUSH_FAILURE_ELT(item) \
1469 fail_stack.stack[fail_stack.avail++] = (item)
1470
1471/* These three POP... operations complement the three PUSH... operations.
1472 All assume that `fail_stack' is nonempty. */
1473#define POP_FAILURE_POINTER() fail_stack.stack[--fail_stack.avail].pointer
1474#define POP_FAILURE_INT() fail_stack.stack[--fail_stack.avail].integer
1475#define POP_FAILURE_ELT() fail_stack.stack[--fail_stack.avail]
1476
505bde11
SM
1477/* Individual items aside from the registers. */
1478#define NUM_NONREG_ITEMS 3
1479
1480/* Used to examine the stack (to detect infinite loops). */
1481#define FAILURE_PAT(h) fail_stack.stack[(h) - 1].pointer
66f0296e 1482#define FAILURE_STR(h) (fail_stack.stack[(h) - 2].pointer)
505bde11
SM
1483#define NEXT_FAILURE_HANDLE(h) fail_stack.stack[(h) - 3].integer
1484#define TOP_FAILURE_HANDLE() fail_stack.frame
fa9a63c5
RM
1485
1486
505bde11
SM
1487#define ENSURE_FAIL_STACK(space) \
1488while (REMAINING_AVAIL_SLOTS <= space) { \
1489 if (!GROW_FAIL_STACK (fail_stack)) \
1490 return -2; \
1491 DEBUG_PRINT2 ("\n Doubled stack; size now: %d\n", (fail_stack).size);\
1492 DEBUG_PRINT2 (" slots available: %d\n", REMAINING_AVAIL_SLOTS);\
1493}
1494
1495/* Push register NUM onto the stack. */
1496#define PUSH_FAILURE_REG(num) \
1497do { \
1498 char *destination; \
1499 ENSURE_FAIL_STACK(3); \
1500 DEBUG_PRINT4 (" Push reg %d (spanning %p -> %p)\n", \
1501 num, regstart[num], regend[num]); \
1502 PUSH_FAILURE_POINTER (regstart[num]); \
1503 PUSH_FAILURE_POINTER (regend[num]); \
1504 PUSH_FAILURE_INT (num); \
1505} while (0)
1506
01618498
SM
1507/* Change the counter's value to VAL, but make sure that it will
1508 be reset when backtracking. */
1509#define PUSH_NUMBER(ptr,val) \
dc1e502d
SM
1510do { \
1511 char *destination; \
1512 int c; \
1513 ENSURE_FAIL_STACK(3); \
1514 EXTRACT_NUMBER (c, ptr); \
01618498 1515 DEBUG_PRINT4 (" Push number %p = %d -> %d\n", ptr, c, val); \
dc1e502d
SM
1516 PUSH_FAILURE_INT (c); \
1517 PUSH_FAILURE_POINTER (ptr); \
1518 PUSH_FAILURE_INT (-1); \
01618498 1519 STORE_NUMBER (ptr, val); \
dc1e502d
SM
1520} while (0)
1521
505bde11 1522/* Pop a saved register off the stack. */
dc1e502d 1523#define POP_FAILURE_REG_OR_COUNT() \
505bde11
SM
1524do { \
1525 int reg = POP_FAILURE_INT (); \
dc1e502d
SM
1526 if (reg == -1) \
1527 { \
1528 /* It's a counter. */ \
6dcf2d0e
SM
1529 /* Here, we discard `const', making re_match non-reentrant. */ \
1530 unsigned char *ptr = (unsigned char*) POP_FAILURE_POINTER (); \
dc1e502d
SM
1531 reg = POP_FAILURE_INT (); \
1532 STORE_NUMBER (ptr, reg); \
1533 DEBUG_PRINT3 (" Pop counter %p = %d\n", ptr, reg); \
1534 } \
1535 else \
1536 { \
1537 regend[reg] = POP_FAILURE_POINTER (); \
1538 regstart[reg] = POP_FAILURE_POINTER (); \
1539 DEBUG_PRINT4 (" Pop reg %d (spanning %p -> %p)\n", \
1540 reg, regstart[reg], regend[reg]); \
1541 } \
505bde11
SM
1542} while (0)
1543
1544/* Check that we are not stuck in an infinite loop. */
1545#define CHECK_INFINITE_LOOP(pat_cur, string_place) \
1546do { \
f6df485f 1547 int failure = TOP_FAILURE_HANDLE (); \
505bde11 1548 /* Check for infinite matching loops */ \
f6df485f
RS
1549 while (failure > 0 \
1550 && (FAILURE_STR (failure) == string_place \
1551 || FAILURE_STR (failure) == NULL)) \
505bde11
SM
1552 { \
1553 assert (FAILURE_PAT (failure) >= bufp->buffer \
66f0296e 1554 && FAILURE_PAT (failure) <= bufp->buffer + bufp->used); \
505bde11 1555 if (FAILURE_PAT (failure) == pat_cur) \
f6df485f 1556 { \
6df42991
SM
1557 cycle = 1; \
1558 break; \
f6df485f 1559 } \
66f0296e 1560 DEBUG_PRINT2 (" Other pattern: %p\n", FAILURE_PAT (failure)); \
505bde11
SM
1561 failure = NEXT_FAILURE_HANDLE(failure); \
1562 } \
1563 DEBUG_PRINT2 (" Other string: %p\n", FAILURE_STR (failure)); \
1564} while (0)
6df42991 1565
fa9a63c5 1566/* Push the information about the state we will need
5e69f11e
RM
1567 if we ever fail back to it.
1568
505bde11 1569 Requires variables fail_stack, regstart, regend and
320a2a73 1570 num_regs be declared. GROW_FAIL_STACK requires `destination' be
fa9a63c5 1571 declared.
5e69f11e 1572
fa9a63c5
RM
1573 Does `return FAILURE_CODE' if runs out of memory. */
1574
505bde11
SM
1575#define PUSH_FAILURE_POINT(pattern, string_place) \
1576do { \
1577 char *destination; \
1578 /* Must be int, so when we don't save any registers, the arithmetic \
1579 of 0 + -1 isn't done as unsigned. */ \
1580 \
505bde11 1581 DEBUG_STATEMENT (nfailure_points_pushed++); \
4bb91c68 1582 DEBUG_PRINT1 ("\nPUSH_FAILURE_POINT:\n"); \
505bde11
SM
1583 DEBUG_PRINT2 (" Before push, next avail: %d\n", (fail_stack).avail); \
1584 DEBUG_PRINT2 (" size: %d\n", (fail_stack).size);\
1585 \
1586 ENSURE_FAIL_STACK (NUM_NONREG_ITEMS); \
1587 \
1588 DEBUG_PRINT1 ("\n"); \
1589 \
1590 DEBUG_PRINT2 (" Push frame index: %d\n", fail_stack.frame); \
1591 PUSH_FAILURE_INT (fail_stack.frame); \
1592 \
1593 DEBUG_PRINT2 (" Push string %p: `", string_place); \
1594 DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, size2);\
1595 DEBUG_PRINT1 ("'\n"); \
1596 PUSH_FAILURE_POINTER (string_place); \
1597 \
1598 DEBUG_PRINT2 (" Push pattern %p: ", pattern); \
1599 DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern, pend); \
1600 PUSH_FAILURE_POINTER (pattern); \
1601 \
1602 /* Close the frame by moving the frame pointer past it. */ \
1603 fail_stack.frame = fail_stack.avail; \
1604} while (0)
fa9a63c5 1605
320a2a73
KH
1606/* Estimate the size of data pushed by a typical failure stack entry.
1607 An estimate is all we need, because all we use this for
1608 is to choose a limit for how big to make the failure stack. */
ada30c0e 1609/* BEWARE, the value `20' is hard-coded in emacs.c:main(). */
320a2a73 1610#define TYPICAL_FAILURE_SIZE 20
fa9a63c5 1611
fa9a63c5
RM
1612/* How many items can still be added to the stack without overflowing it. */
1613#define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
1614
1615
1616/* Pops what PUSH_FAIL_STACK pushes.
1617
1618 We restore into the parameters, all of which should be lvalues:
1619 STR -- the saved data position.
1620 PAT -- the saved pattern position.
fa9a63c5 1621 REGSTART, REGEND -- arrays of string positions.
5e69f11e 1622
fa9a63c5 1623 Also assumes the variables `fail_stack' and (if debugging), `bufp',
25fe55af 1624 `pend', `string1', `size1', `string2', and `size2'. */
fa9a63c5 1625
505bde11
SM
1626#define POP_FAILURE_POINT(str, pat) \
1627do { \
fa9a63c5
RM
1628 assert (!FAIL_STACK_EMPTY ()); \
1629 \
1630 /* Remove failure points and point to how many regs pushed. */ \
1631 DEBUG_PRINT1 ("POP_FAILURE_POINT:\n"); \
1632 DEBUG_PRINT2 (" Before pop, next avail: %d\n", fail_stack.avail); \
25fe55af 1633 DEBUG_PRINT2 (" size: %d\n", fail_stack.size); \
fa9a63c5 1634 \
505bde11
SM
1635 /* Pop the saved registers. */ \
1636 while (fail_stack.frame < fail_stack.avail) \
dc1e502d 1637 POP_FAILURE_REG_OR_COUNT (); \
fa9a63c5 1638 \
01618498 1639 pat = POP_FAILURE_POINTER (); \
505bde11
SM
1640 DEBUG_PRINT2 (" Popping pattern %p: ", pat); \
1641 DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend); \
fa9a63c5
RM
1642 \
1643 /* If the saved string location is NULL, it came from an \
1644 on_failure_keep_string_jump opcode, and we want to throw away the \
1645 saved NULL, thus retaining our current position in the string. */ \
01618498 1646 str = POP_FAILURE_POINTER (); \
505bde11 1647 DEBUG_PRINT2 (" Popping string %p: `", str); \
fa9a63c5
RM
1648 DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2); \
1649 DEBUG_PRINT1 ("'\n"); \
1650 \
505bde11
SM
1651 fail_stack.frame = POP_FAILURE_INT (); \
1652 DEBUG_PRINT2 (" Popping frame index: %d\n", fail_stack.frame); \
fa9a63c5 1653 \
505bde11
SM
1654 assert (fail_stack.avail >= 0); \
1655 assert (fail_stack.frame <= fail_stack.avail); \
fa9a63c5 1656 \
fa9a63c5 1657 DEBUG_STATEMENT (nfailure_points_popped++); \
505bde11 1658} while (0) /* POP_FAILURE_POINT */
fa9a63c5
RM
1659
1660
1661\f
fa9a63c5 1662/* Registers are set to a sentinel when they haven't yet matched. */
4bb91c68 1663#define REG_UNSET(e) ((e) == NULL)
fa9a63c5
RM
1664\f
1665/* Subroutine declarations and macros for regex_compile. */
1666
4bb91c68
SM
1667static reg_errcode_t regex_compile _RE_ARGS ((re_char *pattern, size_t size,
1668 reg_syntax_t syntax,
1669 struct re_pattern_buffer *bufp));
1670static void store_op1 _RE_ARGS ((re_opcode_t op, unsigned char *loc, int arg));
1671static void store_op2 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
1672 int arg1, int arg2));
1673static void insert_op1 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
1674 int arg, unsigned char *end));
1675static void insert_op2 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
1676 int arg1, int arg2, unsigned char *end));
01618498
SM
1677static boolean at_begline_loc_p _RE_ARGS ((re_char *pattern,
1678 re_char *p,
4bb91c68 1679 reg_syntax_t syntax));
01618498
SM
1680static boolean at_endline_loc_p _RE_ARGS ((re_char *p,
1681 re_char *pend,
4bb91c68 1682 reg_syntax_t syntax));
01618498
SM
1683static re_char *skip_one_char _RE_ARGS ((re_char *p));
1684static int analyse_first _RE_ARGS ((re_char *p, re_char *pend,
4bb91c68 1685 char *fastmap, const int multibyte));
fa9a63c5 1686
fa9a63c5 1687/* Fetch the next character in the uncompiled pattern, with no
4bb91c68 1688 translation. */
36595814 1689#define PATFETCH(c) \
2d1675e4
SM
1690 do { \
1691 int len; \
1692 if (p == pend) return REG_EEND; \
1693 c = RE_STRING_CHAR_AND_LENGTH (p, pend - p, len); \
1694 p += len; \
fa9a63c5
RM
1695 } while (0)
1696
fa9a63c5
RM
1697
1698/* If `translate' is non-null, return translate[D], else just D. We
1699 cast the subscript to translate because some data is declared as
1700 `char *', to avoid warnings when a string constant is passed. But
1701 when we use a character as a subscript we must make it unsigned. */
6676cb1c 1702#ifndef TRANSLATE
0b32bf0e 1703# define TRANSLATE(d) \
66f0296e 1704 (RE_TRANSLATE_P (translate) ? RE_TRANSLATE (translate, (d)) : (d))
6676cb1c 1705#endif
fa9a63c5
RM
1706
1707
1708/* Macros for outputting the compiled pattern into `buffer'. */
1709
1710/* If the buffer isn't allocated when it comes in, use this. */
1711#define INIT_BUF_SIZE 32
1712
4bb91c68 1713/* Make sure we have at least N more bytes of space in buffer. */
fa9a63c5 1714#define GET_BUFFER_SPACE(n) \
01618498 1715 while ((size_t) (b - bufp->buffer + (n)) > bufp->allocated) \
fa9a63c5
RM
1716 EXTEND_BUFFER ()
1717
1718/* Make sure we have one more byte of buffer space and then add C to it. */
1719#define BUF_PUSH(c) \
1720 do { \
1721 GET_BUFFER_SPACE (1); \
1722 *b++ = (unsigned char) (c); \
1723 } while (0)
1724
1725
1726/* Ensure we have two more bytes of buffer space and then append C1 and C2. */
1727#define BUF_PUSH_2(c1, c2) \
1728 do { \
1729 GET_BUFFER_SPACE (2); \
1730 *b++ = (unsigned char) (c1); \
1731 *b++ = (unsigned char) (c2); \
1732 } while (0)
1733
1734
4bb91c68 1735/* As with BUF_PUSH_2, except for three bytes. */
fa9a63c5
RM
1736#define BUF_PUSH_3(c1, c2, c3) \
1737 do { \
1738 GET_BUFFER_SPACE (3); \
1739 *b++ = (unsigned char) (c1); \
1740 *b++ = (unsigned char) (c2); \
1741 *b++ = (unsigned char) (c3); \
1742 } while (0)
1743
1744
1745/* Store a jump with opcode OP at LOC to location TO. We store a
4bb91c68 1746 relative address offset by the three bytes the jump itself occupies. */
fa9a63c5
RM
1747#define STORE_JUMP(op, loc, to) \
1748 store_op1 (op, loc, (to) - (loc) - 3)
1749
1750/* Likewise, for a two-argument jump. */
1751#define STORE_JUMP2(op, loc, to, arg) \
1752 store_op2 (op, loc, (to) - (loc) - 3, arg)
1753
4bb91c68 1754/* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */
fa9a63c5
RM
1755#define INSERT_JUMP(op, loc, to) \
1756 insert_op1 (op, loc, (to) - (loc) - 3, b)
1757
1758/* Like `STORE_JUMP2', but for inserting. Assume `b' is the buffer end. */
1759#define INSERT_JUMP2(op, loc, to, arg) \
1760 insert_op2 (op, loc, (to) - (loc) - 3, arg, b)
1761
1762
1763/* This is not an arbitrary limit: the arguments which represent offsets
275a3409 1764 into the pattern are two bytes long. So if 2^15 bytes turns out to
fa9a63c5 1765 be too small, many things would have to change. */
275a3409
RS
1766# define MAX_BUF_SIZE (1L << 15)
1767
1768#if 0 /* This is when we thought it could be 2^16 bytes. */
4bb91c68
SM
1769/* Any other compiler which, like MSC, has allocation limit below 2^16
1770 bytes will have to use approach similar to what was done below for
1771 MSC and drop MAX_BUF_SIZE a bit. Otherwise you may end up
1772 reallocating to 0 bytes. Such thing is not going to work too well.
1773 You have been warned!! */
1774#if defined _MSC_VER && !defined WIN32
1775/* Microsoft C 16-bit versions limit malloc to approx 65512 bytes. */
1776# define MAX_BUF_SIZE 65500L
1777#else
1778# define MAX_BUF_SIZE (1L << 16)
1779#endif
275a3409 1780#endif /* 0 */
fa9a63c5
RM
1781
1782/* Extend the buffer by twice its current size via realloc and
1783 reset the pointers that pointed into the old block to point to the
1784 correct places in the new one. If extending the buffer results in it
4bb91c68
SM
1785 being larger than MAX_BUF_SIZE, then flag memory exhausted. */
1786#if __BOUNDED_POINTERS__
1787# define SET_HIGH_BOUND(P) (__ptrhigh (P) = __ptrlow (P) + bufp->allocated)
1788# define MOVE_BUFFER_POINTER(P) \
1789 (__ptrlow (P) += incr, SET_HIGH_BOUND (P), __ptrvalue (P) += incr)
1790# define ELSE_EXTEND_BUFFER_HIGH_BOUND \
1791 else \
1792 { \
1793 SET_HIGH_BOUND (b); \
1794 SET_HIGH_BOUND (begalt); \
1795 if (fixup_alt_jump) \
1796 SET_HIGH_BOUND (fixup_alt_jump); \
1797 if (laststart) \
1798 SET_HIGH_BOUND (laststart); \
1799 if (pending_exact) \
1800 SET_HIGH_BOUND (pending_exact); \
1801 }
1802#else
1803# define MOVE_BUFFER_POINTER(P) (P) += incr
1804# define ELSE_EXTEND_BUFFER_HIGH_BOUND
1805#endif
fa9a63c5 1806#define EXTEND_BUFFER() \
25fe55af 1807 do { \
01618498 1808 re_char *old_buffer = bufp->buffer; \
25fe55af 1809 if (bufp->allocated == MAX_BUF_SIZE) \
fa9a63c5
RM
1810 return REG_ESIZE; \
1811 bufp->allocated <<= 1; \
1812 if (bufp->allocated > MAX_BUF_SIZE) \
25fe55af 1813 bufp->allocated = MAX_BUF_SIZE; \
01618498 1814 RETALLOC (bufp->buffer, bufp->allocated, unsigned char); \
fa9a63c5
RM
1815 if (bufp->buffer == NULL) \
1816 return REG_ESPACE; \
1817 /* If the buffer moved, move all the pointers into it. */ \
1818 if (old_buffer != bufp->buffer) \
1819 { \
4bb91c68
SM
1820 int incr = bufp->buffer - old_buffer; \
1821 MOVE_BUFFER_POINTER (b); \
1822 MOVE_BUFFER_POINTER (begalt); \
25fe55af 1823 if (fixup_alt_jump) \
4bb91c68 1824 MOVE_BUFFER_POINTER (fixup_alt_jump); \
25fe55af 1825 if (laststart) \
4bb91c68 1826 MOVE_BUFFER_POINTER (laststart); \
25fe55af 1827 if (pending_exact) \
4bb91c68 1828 MOVE_BUFFER_POINTER (pending_exact); \
fa9a63c5 1829 } \
4bb91c68 1830 ELSE_EXTEND_BUFFER_HIGH_BOUND \
fa9a63c5
RM
1831 } while (0)
1832
1833
1834/* Since we have one byte reserved for the register number argument to
1835 {start,stop}_memory, the maximum number of groups we can report
1836 things about is what fits in that byte. */
1837#define MAX_REGNUM 255
1838
1839/* But patterns can have more than `MAX_REGNUM' registers. We just
1840 ignore the excess. */
098d42af 1841typedef int regnum_t;
fa9a63c5
RM
1842
1843
1844/* Macros for the compile stack. */
1845
1846/* Since offsets can go either forwards or backwards, this type needs to
4bb91c68
SM
1847 be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */
1848/* int may be not enough when sizeof(int) == 2. */
1849typedef long pattern_offset_t;
fa9a63c5
RM
1850
1851typedef struct
1852{
1853 pattern_offset_t begalt_offset;
1854 pattern_offset_t fixup_alt_jump;
5e69f11e 1855 pattern_offset_t laststart_offset;
fa9a63c5
RM
1856 regnum_t regnum;
1857} compile_stack_elt_t;
1858
1859
1860typedef struct
1861{
1862 compile_stack_elt_t *stack;
1863 unsigned size;
1864 unsigned avail; /* Offset of next open position. */
1865} compile_stack_type;
1866
1867
1868#define INIT_COMPILE_STACK_SIZE 32
1869
1870#define COMPILE_STACK_EMPTY (compile_stack.avail == 0)
1871#define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size)
1872
4bb91c68 1873/* The next available element. */
fa9a63c5
RM
1874#define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
1875
77d11aec
RS
1876/* Explicit quit checking is only used on NTemacs. */
1877#if defined WINDOWSNT && defined emacs && defined QUIT
1878extern int immediate_quit;
1879# define IMMEDIATE_QUIT_CHECK \
1880 do { \
1881 if (immediate_quit) QUIT; \
1882 } while (0)
1883#else
1884# define IMMEDIATE_QUIT_CHECK ((void)0)
1885#endif
1886\f
b18215fc
RS
1887/* Structure to manage work area for range table. */
1888struct range_table_work_area
1889{
1890 int *table; /* actual work area. */
1891 int allocated; /* allocated size for work area in bytes. */
25fe55af 1892 int used; /* actually used size in words. */
96cc36cc 1893 int bits; /* flag to record character classes */
b18215fc
RS
1894};
1895
77d11aec
RS
1896/* Make sure that WORK_AREA can hold more N multibyte characters.
1897 This is used only in set_image_of_range and set_image_of_range_1.
1898 It expects WORK_AREA to be a pointer.
1899 If it can't get the space, it returns from the surrounding function. */
1900
1901#define EXTEND_RANGE_TABLE(work_area, n) \
1902 do { \
1903 if (((work_area)->used + (n)) * sizeof (int) > (work_area)->allocated) \
1904 { \
1905 extend_range_table_work_area (work_area); \
1906 if ((work_area)->table == 0) \
1907 return (REG_ESPACE); \
1908 } \
b18215fc
RS
1909 } while (0)
1910
96cc36cc
RS
1911#define SET_RANGE_TABLE_WORK_AREA_BIT(work_area, bit) \
1912 (work_area).bits |= (bit)
1913
14473664
SM
1914/* Bits used to implement the multibyte-part of the various character classes
1915 such as [:alnum:] in a charset's range table. */
1916#define BIT_WORD 0x1
1917#define BIT_LOWER 0x2
1918#define BIT_PUNCT 0x4
1919#define BIT_SPACE 0x8
1920#define BIT_UPPER 0x10
1921#define BIT_MULTIBYTE 0x20
96cc36cc 1922
36595814
SM
1923/* Set a range START..END to WORK_AREA.
1924 The range is passed through TRANSLATE, so START and END
1925 should be untranslated. */
77d11aec
RS
1926#define SET_RANGE_TABLE_WORK_AREA(work_area, start, end) \
1927 do { \
1928 int tem; \
1929 tem = set_image_of_range (&work_area, start, end, translate); \
1930 if (tem > 0) \
1931 FREE_STACK_RETURN (tem); \
b18215fc
RS
1932 } while (0)
1933
25fe55af 1934/* Free allocated memory for WORK_AREA. */
b18215fc
RS
1935#define FREE_RANGE_TABLE_WORK_AREA(work_area) \
1936 do { \
1937 if ((work_area).table) \
1938 free ((work_area).table); \
1939 } while (0)
1940
96cc36cc 1941#define CLEAR_RANGE_TABLE_WORK_USED(work_area) ((work_area).used = 0, (work_area).bits = 0)
b18215fc 1942#define RANGE_TABLE_WORK_USED(work_area) ((work_area).used)
96cc36cc 1943#define RANGE_TABLE_WORK_BITS(work_area) ((work_area).bits)
b18215fc 1944#define RANGE_TABLE_WORK_ELT(work_area, i) ((work_area).table[i])
77d11aec 1945\f
b18215fc 1946
fa9a63c5 1947/* Set the bit for character C in a list. */
01618498 1948#define SET_LIST_BIT(c) (b[((c)) / BYTEWIDTH] |= 1 << ((c) % BYTEWIDTH))
fa9a63c5
RM
1949
1950
1951/* Get the next unsigned number in the uncompiled pattern. */
25fe55af 1952#define GET_UNSIGNED_NUMBER(num) \
99633e97 1953 do { if (p != pend) \
fa9a63c5 1954 { \
25fe55af 1955 PATFETCH (c); \
060cc8ff
RS
1956 if (c == ' ') \
1957 FREE_STACK_RETURN (REG_BADBR); \
4bb91c68 1958 while ('0' <= c && c <= '9') \
25fe55af 1959 { \
f6df485f 1960 int prev; \
25fe55af 1961 if (num < 0) \
f6df485f
RS
1962 num = 0; \
1963 prev = num; \
25fe55af 1964 num = num * 10 + c - '0'; \
f6df485f
RS
1965 if (num / 10 != prev) \
1966 FREE_STACK_RETURN (REG_BADBR); \
25fe55af 1967 if (p == pend) \
f6df485f 1968 break; \
25fe55af
RS
1969 PATFETCH (c); \
1970 } \
060cc8ff
RS
1971 if (c == ' ') \
1972 FREE_STACK_RETURN (REG_BADBR); \
25fe55af 1973 } \
99633e97 1974 } while (0)
77d11aec 1975\f
1fdab503 1976#if ! WIDE_CHAR_SUPPORT
01618498 1977
14473664 1978/* Map a string to the char class it names (if any). */
1fdab503 1979re_wctype_t
ada30c0e
SM
1980re_wctype (str)
1981 re_char *str;
14473664 1982{
ada30c0e 1983 const char *string = str;
14473664
SM
1984 if (STREQ (string, "alnum")) return RECC_ALNUM;
1985 else if (STREQ (string, "alpha")) return RECC_ALPHA;
1986 else if (STREQ (string, "word")) return RECC_WORD;
1987 else if (STREQ (string, "ascii")) return RECC_ASCII;
1988 else if (STREQ (string, "nonascii")) return RECC_NONASCII;
1989 else if (STREQ (string, "graph")) return RECC_GRAPH;
1990 else if (STREQ (string, "lower")) return RECC_LOWER;
1991 else if (STREQ (string, "print")) return RECC_PRINT;
1992 else if (STREQ (string, "punct")) return RECC_PUNCT;
1993 else if (STREQ (string, "space")) return RECC_SPACE;
1994 else if (STREQ (string, "upper")) return RECC_UPPER;
1995 else if (STREQ (string, "unibyte")) return RECC_UNIBYTE;
1996 else if (STREQ (string, "multibyte")) return RECC_MULTIBYTE;
1997 else if (STREQ (string, "digit")) return RECC_DIGIT;
1998 else if (STREQ (string, "xdigit")) return RECC_XDIGIT;
1999 else if (STREQ (string, "cntrl")) return RECC_CNTRL;
2000 else if (STREQ (string, "blank")) return RECC_BLANK;
2001 else return 0;
2002}
2003
2004/* True iff CH is in the char class CC. */
1fdab503 2005boolean
14473664
SM
2006re_iswctype (ch, cc)
2007 int ch;
2008 re_wctype_t cc;
2009{
2010 switch (cc)
2011 {
0cdd06f8
SM
2012 case RECC_ALNUM: return ISALNUM (ch);
2013 case RECC_ALPHA: return ISALPHA (ch);
2014 case RECC_BLANK: return ISBLANK (ch);
2015 case RECC_CNTRL: return ISCNTRL (ch);
2016 case RECC_DIGIT: return ISDIGIT (ch);
2017 case RECC_GRAPH: return ISGRAPH (ch);
2018 case RECC_LOWER: return ISLOWER (ch);
2019 case RECC_PRINT: return ISPRINT (ch);
2020 case RECC_PUNCT: return ISPUNCT (ch);
2021 case RECC_SPACE: return ISSPACE (ch);
2022 case RECC_UPPER: return ISUPPER (ch);
2023 case RECC_XDIGIT: return ISXDIGIT (ch);
2024 case RECC_ASCII: return IS_REAL_ASCII (ch);
2025 case RECC_NONASCII: return !IS_REAL_ASCII (ch);
2026 case RECC_UNIBYTE: return ISUNIBYTE (ch);
2027 case RECC_MULTIBYTE: return !ISUNIBYTE (ch);
2028 case RECC_WORD: return ISWORD (ch);
2029 case RECC_ERROR: return false;
2030 default:
2031 abort();
14473664
SM
2032 }
2033}
fa9a63c5 2034
14473664
SM
2035/* Return a bit-pattern to use in the range-table bits to match multibyte
2036 chars of class CC. */
2037static int
2038re_wctype_to_bit (cc)
2039 re_wctype_t cc;
2040{
2041 switch (cc)
2042 {
2043 case RECC_NONASCII: case RECC_PRINT: case RECC_GRAPH:
0cdd06f8
SM
2044 case RECC_MULTIBYTE: return BIT_MULTIBYTE;
2045 case RECC_ALPHA: case RECC_ALNUM: case RECC_WORD: return BIT_WORD;
2046 case RECC_LOWER: return BIT_LOWER;
2047 case RECC_UPPER: return BIT_UPPER;
2048 case RECC_PUNCT: return BIT_PUNCT;
2049 case RECC_SPACE: return BIT_SPACE;
14473664 2050 case RECC_ASCII: case RECC_DIGIT: case RECC_XDIGIT: case RECC_CNTRL:
0cdd06f8
SM
2051 case RECC_BLANK: case RECC_UNIBYTE: case RECC_ERROR: return 0;
2052 default:
2053 abort();
14473664
SM
2054 }
2055}
2056#endif
77d11aec
RS
2057\f
2058/* Filling in the work area of a range. */
2059
2060/* Actually extend the space in WORK_AREA. */
2061
2062static void
2063extend_range_table_work_area (work_area)
2064 struct range_table_work_area *work_area;
177c0ea7 2065{
77d11aec
RS
2066 work_area->allocated += 16 * sizeof (int);
2067 if (work_area->table)
2068 work_area->table
2069 = (int *) realloc (work_area->table, work_area->allocated);
2070 else
2071 work_area->table
2072 = (int *) malloc (work_area->allocated);
2073}
2074
2075#ifdef emacs
2076
2077/* Carefully find the ranges of codes that are equivalent
2078 under case conversion to the range start..end when passed through
2079 TRANSLATE. Handle the case where non-letters can come in between
2080 two upper-case letters (which happens in Latin-1).
2081 Also handle the case of groups of more than 2 case-equivalent chars.
2082
2083 The basic method is to look at consecutive characters and see
2084 if they can form a run that can be handled as one.
2085
2086 Returns -1 if successful, REG_ESPACE if ran out of space. */
2087
2088static int
2089set_image_of_range_1 (work_area, start, end, translate)
2090 RE_TRANSLATE_TYPE translate;
2091 struct range_table_work_area *work_area;
2092 re_wchar_t start, end;
2093{
2094 /* `one_case' indicates a character, or a run of characters,
2095 each of which is an isolate (no case-equivalents).
2096 This includes all ASCII non-letters.
2097
2098 `two_case' indicates a character, or a run of characters,
2099 each of which has two case-equivalent forms.
2100 This includes all ASCII letters.
2101
2102 `strange' indicates a character that has more than one
2103 case-equivalent. */
177c0ea7 2104
77d11aec
RS
2105 enum case_type {one_case, two_case, strange};
2106
2107 /* Describe the run that is in progress,
2108 which the next character can try to extend.
2109 If run_type is strange, that means there really is no run.
2110 If run_type is one_case, then run_start...run_end is the run.
2111 If run_type is two_case, then the run is run_start...run_end,
2112 and the case-equivalents end at run_eqv_end. */
2113
2114 enum case_type run_type = strange;
2115 int run_start, run_end, run_eqv_end;
2116
2117 Lisp_Object eqv_table;
2118
2119 if (!RE_TRANSLATE_P (translate))
2120 {
b7c12565 2121 EXTEND_RANGE_TABLE (work_area, 2);
77d11aec
RS
2122 work_area->table[work_area->used++] = (start);
2123 work_area->table[work_area->used++] = (end);
b7c12565 2124 return -1;
77d11aec
RS
2125 }
2126
2127 eqv_table = XCHAR_TABLE (translate)->extras[2];
99633e97 2128
77d11aec
RS
2129 for (; start <= end; start++)
2130 {
2131 enum case_type this_type;
2132 int eqv = RE_TRANSLATE (eqv_table, start);
2133 int minchar, maxchar;
2134
2135 /* Classify this character */
2136 if (eqv == start)
2137 this_type = one_case;
2138 else if (RE_TRANSLATE (eqv_table, eqv) == start)
2139 this_type = two_case;
2140 else
2141 this_type = strange;
2142
2143 if (start < eqv)
2144 minchar = start, maxchar = eqv;
2145 else
2146 minchar = eqv, maxchar = start;
2147
2148 /* Can this character extend the run in progress? */
2149 if (this_type == strange || this_type != run_type
2150 || !(minchar == run_end + 1
2151 && (run_type == two_case
2152 ? maxchar == run_eqv_end + 1 : 1)))
2153 {
2154 /* No, end the run.
2155 Record each of its equivalent ranges. */
2156 if (run_type == one_case)
2157 {
2158 EXTEND_RANGE_TABLE (work_area, 2);
2159 work_area->table[work_area->used++] = run_start;
2160 work_area->table[work_area->used++] = run_end;
2161 }
2162 else if (run_type == two_case)
2163 {
2164 EXTEND_RANGE_TABLE (work_area, 4);
2165 work_area->table[work_area->used++] = run_start;
2166 work_area->table[work_area->used++] = run_end;
2167 work_area->table[work_area->used++]
2168 = RE_TRANSLATE (eqv_table, run_start);
2169 work_area->table[work_area->used++]
2170 = RE_TRANSLATE (eqv_table, run_end);
2171 }
2172 run_type = strange;
2173 }
177c0ea7 2174
77d11aec
RS
2175 if (this_type == strange)
2176 {
2177 /* For a strange character, add each of its equivalents, one
2178 by one. Don't start a range. */
2179 do
2180 {
2181 EXTEND_RANGE_TABLE (work_area, 2);
2182 work_area->table[work_area->used++] = eqv;
2183 work_area->table[work_area->used++] = eqv;
2184 eqv = RE_TRANSLATE (eqv_table, eqv);
2185 }
2186 while (eqv != start);
2187 }
2188
2189 /* Add this char to the run, or start a new run. */
2190 else if (run_type == strange)
2191 {
2192 /* Initialize a new range. */
2193 run_type = this_type;
2194 run_start = start;
2195 run_end = start;
2196 run_eqv_end = RE_TRANSLATE (eqv_table, run_end);
2197 }
2198 else
2199 {
2200 /* Extend a running range. */
2201 run_end = minchar;
2202 run_eqv_end = RE_TRANSLATE (eqv_table, run_end);
2203 }
2204 }
2205
2206 /* If a run is still in progress at the end, finish it now
2207 by recording its equivalent ranges. */
2208 if (run_type == one_case)
2209 {
2210 EXTEND_RANGE_TABLE (work_area, 2);
2211 work_area->table[work_area->used++] = run_start;
2212 work_area->table[work_area->used++] = run_end;
2213 }
2214 else if (run_type == two_case)
2215 {
2216 EXTEND_RANGE_TABLE (work_area, 4);
2217 work_area->table[work_area->used++] = run_start;
2218 work_area->table[work_area->used++] = run_end;
2219 work_area->table[work_area->used++]
2220 = RE_TRANSLATE (eqv_table, run_start);
2221 work_area->table[work_area->used++]
2222 = RE_TRANSLATE (eqv_table, run_end);
2223 }
2224
2225 return -1;
2226}
36595814 2227
77d11aec 2228#endif /* emacs */
36595814 2229
b7c12565 2230/* Record the the image of the range start..end when passed through
36595814
SM
2231 TRANSLATE. This is not necessarily TRANSLATE(start)..TRANSLATE(end)
2232 and is not even necessarily contiguous.
b7c12565
RS
2233 Normally we approximate it with the smallest contiguous range that contains
2234 all the chars we need. However, for Latin-1 we go to extra effort
2235 to do a better job.
2236
2237 This function is not called for ASCII ranges.
77d11aec
RS
2238
2239 Returns -1 if successful, REG_ESPACE if ran out of space. */
2240
2241static int
36595814
SM
2242set_image_of_range (work_area, start, end, translate)
2243 RE_TRANSLATE_TYPE translate;
2244 struct range_table_work_area *work_area;
2245 re_wchar_t start, end;
2246{
77d11aec
RS
2247 re_wchar_t cmin, cmax;
2248
2249#ifdef emacs
2250 /* For Latin-1 ranges, use set_image_of_range_1
2251 to get proper handling of ranges that include letters and nonletters.
b7c12565 2252 For a range that includes the whole of Latin-1, this is not necessary.
77d11aec 2253 For other character sets, we don't bother to get this right. */
b7c12565
RS
2254 if (RE_TRANSLATE_P (translate) && start < 04400
2255 && !(start < 04200 && end >= 04377))
77d11aec 2256 {
b7c12565 2257 int newend;
77d11aec 2258 int tem;
b7c12565
RS
2259 newend = end;
2260 if (newend > 04377)
2261 newend = 04377;
2262 tem = set_image_of_range_1 (work_area, start, newend, translate);
77d11aec
RS
2263 if (tem > 0)
2264 return tem;
2265
2266 start = 04400;
2267 if (end < 04400)
2268 return -1;
2269 }
2270#endif
2271
b7c12565
RS
2272 EXTEND_RANGE_TABLE (work_area, 2);
2273 work_area->table[work_area->used++] = (start);
2274 work_area->table[work_area->used++] = (end);
2275
2276 cmin = -1, cmax = -1;
77d11aec 2277
36595814 2278 if (RE_TRANSLATE_P (translate))
b7c12565
RS
2279 {
2280 int ch;
77d11aec 2281
b7c12565
RS
2282 for (ch = start; ch <= end; ch++)
2283 {
2284 re_wchar_t c = TRANSLATE (ch);
2285 if (! (start <= c && c <= end))
2286 {
2287 if (cmin == -1)
2288 cmin = c, cmax = c;
2289 else
2290 {
2291 cmin = MIN (cmin, c);
2292 cmax = MAX (cmax, c);
2293 }
2294 }
2295 }
2296
2297 if (cmin != -1)
2298 {
2299 EXTEND_RANGE_TABLE (work_area, 2);
2300 work_area->table[work_area->used++] = (cmin);
2301 work_area->table[work_area->used++] = (cmax);
2302 }
2303 }
36595814 2304
77d11aec
RS
2305 return -1;
2306}
fa9a63c5
RM
2307\f
2308#ifndef MATCH_MAY_ALLOCATE
2309
2310/* If we cannot allocate large objects within re_match_2_internal,
2311 we make the fail stack and register vectors global.
2312 The fail stack, we grow to the maximum size when a regexp
2313 is compiled.
2314 The register vectors, we adjust in size each time we
2315 compile a regexp, according to the number of registers it needs. */
2316
2317static fail_stack_type fail_stack;
2318
2319/* Size with which the following vectors are currently allocated.
2320 That is so we can make them bigger as needed,
4bb91c68 2321 but never make them smaller. */
fa9a63c5
RM
2322static int regs_allocated_size;
2323
66f0296e
SM
2324static re_char ** regstart, ** regend;
2325static re_char **best_regstart, **best_regend;
fa9a63c5
RM
2326
2327/* Make the register vectors big enough for NUM_REGS registers,
4bb91c68 2328 but don't make them smaller. */
fa9a63c5
RM
2329
2330static
2331regex_grow_registers (num_regs)
2332 int num_regs;
2333{
2334 if (num_regs > regs_allocated_size)
2335 {
66f0296e
SM
2336 RETALLOC_IF (regstart, num_regs, re_char *);
2337 RETALLOC_IF (regend, num_regs, re_char *);
2338 RETALLOC_IF (best_regstart, num_regs, re_char *);
2339 RETALLOC_IF (best_regend, num_regs, re_char *);
fa9a63c5
RM
2340
2341 regs_allocated_size = num_regs;
2342 }
2343}
2344
2345#endif /* not MATCH_MAY_ALLOCATE */
2346\f
99633e97
SM
2347static boolean group_in_compile_stack _RE_ARGS ((compile_stack_type
2348 compile_stack,
2349 regnum_t regnum));
2350
fa9a63c5
RM
2351/* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
2352 Returns one of error codes defined in `regex.h', or zero for success.
2353
2354 Assumes the `allocated' (and perhaps `buffer') and `translate'
2355 fields are set in BUFP on entry.
2356
2357 If it succeeds, results are put in BUFP (if it returns an error, the
2358 contents of BUFP are undefined):
2359 `buffer' is the compiled pattern;
2360 `syntax' is set to SYNTAX;
2361 `used' is set to the length of the compiled pattern;
2362 `fastmap_accurate' is zero;
2363 `re_nsub' is the number of subexpressions in PATTERN;
2364 `not_bol' and `not_eol' are zero;
5e69f11e 2365
c0f9ea08 2366 The `fastmap' field is neither examined nor set. */
fa9a63c5 2367
505bde11
SM
2368/* Insert the `jump' from the end of last alternative to "here".
2369 The space for the jump has already been allocated. */
2370#define FIXUP_ALT_JUMP() \
2371do { \
2372 if (fixup_alt_jump) \
2373 STORE_JUMP (jump, fixup_alt_jump, b); \
2374} while (0)
2375
2376
fa9a63c5
RM
2377/* Return, freeing storage we allocated. */
2378#define FREE_STACK_RETURN(value) \
b18215fc
RS
2379 do { \
2380 FREE_RANGE_TABLE_WORK_AREA (range_table_work); \
2381 free (compile_stack.stack); \
2382 return value; \
2383 } while (0)
fa9a63c5
RM
2384
2385static reg_errcode_t
2386regex_compile (pattern, size, syntax, bufp)
66f0296e 2387 re_char *pattern;
4bb91c68 2388 size_t size;
fa9a63c5
RM
2389 reg_syntax_t syntax;
2390 struct re_pattern_buffer *bufp;
2391{
01618498
SM
2392 /* We fetch characters from PATTERN here. */
2393 register re_wchar_t c, c1;
5e69f11e 2394
fa9a63c5 2395 /* A random temporary spot in PATTERN. */
66f0296e 2396 re_char *p1;
fa9a63c5
RM
2397
2398 /* Points to the end of the buffer, where we should append. */
2399 register unsigned char *b;
5e69f11e 2400
fa9a63c5
RM
2401 /* Keeps track of unclosed groups. */
2402 compile_stack_type compile_stack;
2403
2404 /* Points to the current (ending) position in the pattern. */
22336245
RS
2405#ifdef AIX
2406 /* `const' makes AIX compiler fail. */
66f0296e 2407 unsigned char *p = pattern;
22336245 2408#else
66f0296e 2409 re_char *p = pattern;
22336245 2410#endif
66f0296e 2411 re_char *pend = pattern + size;
5e69f11e 2412
fa9a63c5 2413 /* How to translate the characters in the pattern. */
6676cb1c 2414 RE_TRANSLATE_TYPE translate = bufp->translate;
fa9a63c5
RM
2415
2416 /* Address of the count-byte of the most recently inserted `exactn'
2417 command. This makes it possible to tell if a new exact-match
2418 character can be added to that command or if the character requires
2419 a new `exactn' command. */
2420 unsigned char *pending_exact = 0;
2421
2422 /* Address of start of the most recently finished expression.
2423 This tells, e.g., postfix * where to find the start of its
2424 operand. Reset at the beginning of groups and alternatives. */
2425 unsigned char *laststart = 0;
2426
2427 /* Address of beginning of regexp, or inside of last group. */
2428 unsigned char *begalt;
2429
2430 /* Place in the uncompiled pattern (i.e., the {) to
2431 which to go back if the interval is invalid. */
66f0296e 2432 re_char *beg_interval;
5e69f11e 2433
fa9a63c5 2434 /* Address of the place where a forward jump should go to the end of
25fe55af 2435 the containing expression. Each alternative of an `or' -- except the
fa9a63c5
RM
2436 last -- ends with a forward jump of this sort. */
2437 unsigned char *fixup_alt_jump = 0;
2438
2439 /* Counts open-groups as they are encountered. Remembered for the
2440 matching close-group on the compile stack, so the same register
2441 number is put in the stop_memory as the start_memory. */
2442 regnum_t regnum = 0;
2443
b18215fc
RS
2444 /* Work area for range table of charset. */
2445 struct range_table_work_area range_table_work;
2446
2d1675e4
SM
2447 /* If the object matched can contain multibyte characters. */
2448 const boolean multibyte = RE_MULTIBYTE_P (bufp);
2449
f9b0fd99
RS
2450 /* Nonzero if we have pushed down into a subpattern. */
2451 int in_subpattern = 0;
2452
2453 /* These hold the values of p, pattern, and pend from the main
2454 pattern when we have pushed into a subpattern. */
2455 re_char *main_p;
2456 re_char *main_pattern;
2457 re_char *main_pend;
2458
fa9a63c5 2459#ifdef DEBUG
99633e97 2460 debug++;
fa9a63c5 2461 DEBUG_PRINT1 ("\nCompiling pattern: ");
99633e97 2462 if (debug > 0)
fa9a63c5
RM
2463 {
2464 unsigned debug_count;
5e69f11e 2465
fa9a63c5 2466 for (debug_count = 0; debug_count < size; debug_count++)
25fe55af 2467 putchar (pattern[debug_count]);
fa9a63c5
RM
2468 putchar ('\n');
2469 }
2470#endif /* DEBUG */
2471
2472 /* Initialize the compile stack. */
2473 compile_stack.stack = TALLOC (INIT_COMPILE_STACK_SIZE, compile_stack_elt_t);
2474 if (compile_stack.stack == NULL)
2475 return REG_ESPACE;
2476
2477 compile_stack.size = INIT_COMPILE_STACK_SIZE;
2478 compile_stack.avail = 0;
2479
b18215fc
RS
2480 range_table_work.table = 0;
2481 range_table_work.allocated = 0;
2482
fa9a63c5
RM
2483 /* Initialize the pattern buffer. */
2484 bufp->syntax = syntax;
2485 bufp->fastmap_accurate = 0;
2486 bufp->not_bol = bufp->not_eol = 0;
2487
2488 /* Set `used' to zero, so that if we return an error, the pattern
2489 printer (for debugging) will think there's no pattern. We reset it
2490 at the end. */
2491 bufp->used = 0;
5e69f11e 2492
fa9a63c5 2493 /* Always count groups, whether or not bufp->no_sub is set. */
5e69f11e 2494 bufp->re_nsub = 0;
fa9a63c5 2495
0b32bf0e 2496#if !defined emacs && !defined SYNTAX_TABLE
fa9a63c5
RM
2497 /* Initialize the syntax table. */
2498 init_syntax_once ();
2499#endif
2500
2501 if (bufp->allocated == 0)
2502 {
2503 if (bufp->buffer)
2504 { /* If zero allocated, but buffer is non-null, try to realloc
25fe55af
RS
2505 enough space. This loses if buffer's address is bogus, but
2506 that is the user's responsibility. */
2507 RETALLOC (bufp->buffer, INIT_BUF_SIZE, unsigned char);
2508 }
fa9a63c5 2509 else
25fe55af
RS
2510 { /* Caller did not allocate a buffer. Do it for them. */
2511 bufp->buffer = TALLOC (INIT_BUF_SIZE, unsigned char);
2512 }
fa9a63c5
RM
2513 if (!bufp->buffer) FREE_STACK_RETURN (REG_ESPACE);
2514
2515 bufp->allocated = INIT_BUF_SIZE;
2516 }
2517
2518 begalt = b = bufp->buffer;
2519
2520 /* Loop through the uncompiled pattern until we're at the end. */
f9b0fd99 2521 while (1)
fa9a63c5 2522 {
f9b0fd99
RS
2523 if (p == pend)
2524 {
2525 /* If this is the end of an included regexp,
2526 pop back to the main regexp and try again. */
2527 if (in_subpattern)
2528 {
2529 in_subpattern = 0;
2530 pattern = main_pattern;
2531 p = main_p;
2532 pend = main_pend;
2533 continue;
2534 }
2535 /* If this is the end of the main regexp, we are done. */
2536 break;
2537 }
2538
fa9a63c5
RM
2539 PATFETCH (c);
2540
2541 switch (c)
25fe55af 2542 {
f9b0fd99
RS
2543 case ' ':
2544 {
2545 re_char *p1 = p;
2546
2547 /* If there's no special whitespace regexp, treat
4fb680cd
RS
2548 spaces normally. And don't try to do this recursively. */
2549 if (!whitespace_regexp || in_subpattern)
f9b0fd99
RS
2550 goto normal_char;
2551
2552 /* Peek past following spaces. */
2553 while (p1 != pend)
2554 {
2555 if (*p1 != ' ')
2556 break;
2557 p1++;
2558 }
2559 /* If the spaces are followed by a repetition op,
2560 treat them normally. */
c721eee5
RS
2561 if (p1 != pend
2562 && (*p1 == '*' || *p1 == '+' || *p1 == '?'
f9b0fd99
RS
2563 || (*p1 == '\\' && p1 + 1 != pend && p1[1] == '{')))
2564 goto normal_char;
2565
2566 /* Replace the spaces with the whitespace regexp. */
2567 in_subpattern = 1;
2568 main_p = p1;
2569 main_pend = pend;
2570 main_pattern = pattern;
2571 p = pattern = whitespace_regexp;
2572 pend = p + strlen (p);
2573 break;
2574 }
2575
25fe55af
RS
2576 case '^':
2577 {
2578 if ( /* If at start of pattern, it's an operator. */
2579 p == pattern + 1
2580 /* If context independent, it's an operator. */
2581 || syntax & RE_CONTEXT_INDEP_ANCHORS
2582 /* Otherwise, depends on what's come before. */
2583 || at_begline_loc_p (pattern, p, syntax))
c0f9ea08 2584 BUF_PUSH ((syntax & RE_NO_NEWLINE_ANCHOR) ? begbuf : begline);
25fe55af
RS
2585 else
2586 goto normal_char;
2587 }
2588 break;
2589
2590
2591 case '$':
2592 {
2593 if ( /* If at end of pattern, it's an operator. */
2594 p == pend
2595 /* If context independent, it's an operator. */
2596 || syntax & RE_CONTEXT_INDEP_ANCHORS
2597 /* Otherwise, depends on what's next. */
2598 || at_endline_loc_p (p, pend, syntax))
c0f9ea08 2599 BUF_PUSH ((syntax & RE_NO_NEWLINE_ANCHOR) ? endbuf : endline);
25fe55af
RS
2600 else
2601 goto normal_char;
2602 }
2603 break;
fa9a63c5
RM
2604
2605
2606 case '+':
25fe55af
RS
2607 case '?':
2608 if ((syntax & RE_BK_PLUS_QM)
2609 || (syntax & RE_LIMITED_OPS))
2610 goto normal_char;
2611 handle_plus:
2612 case '*':
2613 /* If there is no previous pattern... */
2614 if (!laststart)
2615 {
2616 if (syntax & RE_CONTEXT_INVALID_OPS)
2617 FREE_STACK_RETURN (REG_BADRPT);
2618 else if (!(syntax & RE_CONTEXT_INDEP_OPS))
2619 goto normal_char;
2620 }
2621
2622 {
25fe55af 2623 /* 1 means zero (many) matches is allowed. */
66f0296e
SM
2624 boolean zero_times_ok = 0, many_times_ok = 0;
2625 boolean greedy = 1;
25fe55af
RS
2626
2627 /* If there is a sequence of repetition chars, collapse it
2628 down to just one (the right one). We can't combine
2629 interval operators with these because of, e.g., `a{2}*',
2630 which should only match an even number of `a's. */
2631
2632 for (;;)
2633 {
0b32bf0e 2634 if ((syntax & RE_FRUGAL)
1c8c6d39
DL
2635 && c == '?' && (zero_times_ok || many_times_ok))
2636 greedy = 0;
2637 else
2638 {
2639 zero_times_ok |= c != '+';
2640 many_times_ok |= c != '?';
2641 }
25fe55af
RS
2642
2643 if (p == pend)
2644 break;
ed0767d8
SM
2645 else if (*p == '*'
2646 || (!(syntax & RE_BK_PLUS_QM)
2647 && (*p == '+' || *p == '?')))
25fe55af 2648 ;
ed0767d8 2649 else if (syntax & RE_BK_PLUS_QM && *p == '\\')
25fe55af 2650 {
ed0767d8
SM
2651 if (p+1 == pend)
2652 FREE_STACK_RETURN (REG_EESCAPE);
2653 if (p[1] == '+' || p[1] == '?')
2654 PATFETCH (c); /* Gobble up the backslash. */
2655 else
2656 break;
25fe55af
RS
2657 }
2658 else
ed0767d8 2659 break;
25fe55af 2660 /* If we get here, we found another repeat character. */
ed0767d8
SM
2661 PATFETCH (c);
2662 }
25fe55af
RS
2663
2664 /* Star, etc. applied to an empty pattern is equivalent
2665 to an empty pattern. */
4e8a9132 2666 if (!laststart || laststart == b)
25fe55af
RS
2667 break;
2668
2669 /* Now we know whether or not zero matches is allowed
2670 and also whether or not two or more matches is allowed. */
1c8c6d39
DL
2671 if (greedy)
2672 {
99633e97 2673 if (many_times_ok)
4e8a9132
SM
2674 {
2675 boolean simple = skip_one_char (laststart) == b;
2676 unsigned int startoffset = 0;
f6a3f532 2677 re_opcode_t ofj =
01618498 2678 /* Check if the loop can match the empty string. */
6df42991
SM
2679 (simple || !analyse_first (laststart, b, NULL, 0))
2680 ? on_failure_jump : on_failure_jump_loop;
4e8a9132 2681 assert (skip_one_char (laststart) <= b);
177c0ea7 2682
4e8a9132
SM
2683 if (!zero_times_ok && simple)
2684 { /* Since simple * loops can be made faster by using
2685 on_failure_keep_string_jump, we turn simple P+
2686 into PP* if P is simple. */
2687 unsigned char *p1, *p2;
2688 startoffset = b - laststart;
2689 GET_BUFFER_SPACE (startoffset);
2690 p1 = b; p2 = laststart;
2691 while (p2 < p1)
2692 *b++ = *p2++;
2693 zero_times_ok = 1;
99633e97 2694 }
4e8a9132
SM
2695
2696 GET_BUFFER_SPACE (6);
2697 if (!zero_times_ok)
2698 /* A + loop. */
f6a3f532 2699 STORE_JUMP (ofj, b, b + 6);
99633e97 2700 else
4e8a9132
SM
2701 /* Simple * loops can use on_failure_keep_string_jump
2702 depending on what follows. But since we don't know
2703 that yet, we leave the decision up to
2704 on_failure_jump_smart. */
f6a3f532 2705 INSERT_JUMP (simple ? on_failure_jump_smart : ofj,
4e8a9132 2706 laststart + startoffset, b + 6);
99633e97 2707 b += 3;
4e8a9132 2708 STORE_JUMP (jump, b, laststart + startoffset);
99633e97
SM
2709 b += 3;
2710 }
2711 else
2712 {
4e8a9132
SM
2713 /* A simple ? pattern. */
2714 assert (zero_times_ok);
2715 GET_BUFFER_SPACE (3);
2716 INSERT_JUMP (on_failure_jump, laststart, b + 3);
99633e97
SM
2717 b += 3;
2718 }
1c8c6d39
DL
2719 }
2720 else /* not greedy */
2721 { /* I wish the greedy and non-greedy cases could be merged. */
2722
0683b6fa 2723 GET_BUFFER_SPACE (7); /* We might use less. */
1c8c6d39
DL
2724 if (many_times_ok)
2725 {
f6a3f532
SM
2726 boolean emptyp = analyse_first (laststart, b, NULL, 0);
2727
6df42991
SM
2728 /* The non-greedy multiple match looks like
2729 a repeat..until: we only need a conditional jump
2730 at the end of the loop. */
f6a3f532
SM
2731 if (emptyp) BUF_PUSH (no_op);
2732 STORE_JUMP (emptyp ? on_failure_jump_nastyloop
2733 : on_failure_jump, b, laststart);
1c8c6d39
DL
2734 b += 3;
2735 if (zero_times_ok)
2736 {
2737 /* The repeat...until naturally matches one or more.
2738 To also match zero times, we need to first jump to
6df42991 2739 the end of the loop (its conditional jump). */
1c8c6d39
DL
2740 INSERT_JUMP (jump, laststart, b);
2741 b += 3;
2742 }
2743 }
2744 else
2745 {
2746 /* non-greedy a?? */
1c8c6d39
DL
2747 INSERT_JUMP (jump, laststart, b + 3);
2748 b += 3;
2749 INSERT_JUMP (on_failure_jump, laststart, laststart + 6);
2750 b += 3;
2751 }
2752 }
2753 }
4e8a9132 2754 pending_exact = 0;
fa9a63c5
RM
2755 break;
2756
2757
2758 case '.':
25fe55af
RS
2759 laststart = b;
2760 BUF_PUSH (anychar);
2761 break;
fa9a63c5
RM
2762
2763
25fe55af
RS
2764 case '[':
2765 {
b18215fc 2766 CLEAR_RANGE_TABLE_WORK_USED (range_table_work);
fa9a63c5 2767
25fe55af 2768 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
fa9a63c5 2769
25fe55af
RS
2770 /* Ensure that we have enough space to push a charset: the
2771 opcode, the length count, and the bitset; 34 bytes in all. */
fa9a63c5
RM
2772 GET_BUFFER_SPACE (34);
2773
25fe55af 2774 laststart = b;
e318085a 2775
25fe55af
RS
2776 /* We test `*p == '^' twice, instead of using an if
2777 statement, so we only need one BUF_PUSH. */
2778 BUF_PUSH (*p == '^' ? charset_not : charset);
2779 if (*p == '^')
2780 p++;
e318085a 2781
25fe55af
RS
2782 /* Remember the first position in the bracket expression. */
2783 p1 = p;
e318085a 2784
25fe55af
RS
2785 /* Push the number of bytes in the bitmap. */
2786 BUF_PUSH ((1 << BYTEWIDTH) / BYTEWIDTH);
e318085a 2787
25fe55af
RS
2788 /* Clear the whole map. */
2789 bzero (b, (1 << BYTEWIDTH) / BYTEWIDTH);
e318085a 2790
25fe55af
RS
2791 /* charset_not matches newline according to a syntax bit. */
2792 if ((re_opcode_t) b[-2] == charset_not
2793 && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
2794 SET_LIST_BIT ('\n');
fa9a63c5 2795
25fe55af
RS
2796 /* Read in characters and ranges, setting map bits. */
2797 for (;;)
2798 {
b18215fc 2799 boolean escaped_char = false;
2d1675e4 2800 const unsigned char *p2 = p;
e318085a 2801
25fe55af 2802 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
e318085a 2803
36595814
SM
2804 /* Don't translate yet. The range TRANSLATE(X..Y) cannot
2805 always be determined from TRANSLATE(X) and TRANSLATE(Y)
2806 So the translation is done later in a loop. Example:
2807 (let ((case-fold-search t)) (string-match "[A-_]" "A")) */
25fe55af 2808 PATFETCH (c);
e318085a 2809
25fe55af
RS
2810 /* \ might escape characters inside [...] and [^...]. */
2811 if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
2812 {
2813 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
e318085a
RS
2814
2815 PATFETCH (c);
b18215fc 2816 escaped_char = true;
25fe55af 2817 }
b18215fc
RS
2818 else
2819 {
657fcfbd
RS
2820 /* Could be the end of the bracket expression. If it's
2821 not (i.e., when the bracket expression is `[]' so
2822 far), the ']' character bit gets set way below. */
2d1675e4 2823 if (c == ']' && p2 != p1)
657fcfbd 2824 break;
25fe55af 2825 }
b18215fc 2826
b18215fc
RS
2827 /* What should we do for the character which is
2828 greater than 0x7F, but not BASE_LEADING_CODE_P?
2829 XXX */
2830
25fe55af
RS
2831 /* See if we're at the beginning of a possible character
2832 class. */
b18215fc 2833
2d1675e4
SM
2834 if (!escaped_char &&
2835 syntax & RE_CHAR_CLASSES && c == '[' && *p == ':')
657fcfbd
RS
2836 {
2837 /* Leave room for the null. */
14473664 2838 unsigned char str[CHAR_CLASS_MAX_LENGTH + 1];
ed0767d8 2839 const unsigned char *class_beg;
b18215fc 2840
25fe55af
RS
2841 PATFETCH (c);
2842 c1 = 0;
ed0767d8 2843 class_beg = p;
b18215fc 2844
25fe55af
RS
2845 /* If pattern is `[[:'. */
2846 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
b18215fc 2847
25fe55af
RS
2848 for (;;)
2849 {
14473664
SM
2850 PATFETCH (c);
2851 if ((c == ':' && *p == ']') || p == pend)
2852 break;
2853 if (c1 < CHAR_CLASS_MAX_LENGTH)
2854 str[c1++] = c;
2855 else
2856 /* This is in any case an invalid class name. */
2857 str[0] = '\0';
25fe55af
RS
2858 }
2859 str[c1] = '\0';
b18215fc
RS
2860
2861 /* If isn't a word bracketed by `[:' and `:]':
2862 undo the ending character, the letters, and
2863 leave the leading `:' and `[' (but set bits for
2864 them). */
25fe55af
RS
2865 if (c == ':' && *p == ']')
2866 {
36595814 2867 re_wchar_t ch;
14473664
SM
2868 re_wctype_t cc;
2869
2870 cc = re_wctype (str);
2871
2872 if (cc == 0)
fa9a63c5
RM
2873 FREE_STACK_RETURN (REG_ECTYPE);
2874
14473664
SM
2875 /* Throw away the ] at the end of the character
2876 class. */
2877 PATFETCH (c);
fa9a63c5 2878
14473664 2879 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
fa9a63c5 2880
96cc36cc
RS
2881 /* Most character classes in a multibyte match
2882 just set a flag. Exceptions are is_blank,
2883 is_digit, is_cntrl, and is_xdigit, since
2884 they can only match ASCII characters. We
14473664
SM
2885 don't need to handle them for multibyte.
2886 They are distinguished by a negative wctype. */
96cc36cc 2887
2d1675e4 2888 if (multibyte)
14473664
SM
2889 SET_RANGE_TABLE_WORK_AREA_BIT (range_table_work,
2890 re_wctype_to_bit (cc));
96cc36cc 2891
14473664 2892 for (ch = 0; ch < 1 << BYTEWIDTH; ++ch)
25fe55af 2893 {
7ae68633 2894 int translated = TRANSLATE (ch);
14473664 2895 if (re_iswctype (btowc (ch), cc))
96cc36cc 2896 SET_LIST_BIT (translated);
25fe55af 2897 }
b18215fc
RS
2898
2899 /* Repeat the loop. */
2900 continue;
25fe55af
RS
2901 }
2902 else
2903 {
ed0767d8
SM
2904 /* Go back to right after the "[:". */
2905 p = class_beg;
25fe55af 2906 SET_LIST_BIT ('[');
b18215fc
RS
2907
2908 /* Because the `:' may starts the range, we
2909 can't simply set bit and repeat the loop.
25fe55af 2910 Instead, just set it to C and handle below. */
b18215fc 2911 c = ':';
25fe55af
RS
2912 }
2913 }
b18215fc
RS
2914
2915 if (p < pend && p[0] == '-' && p[1] != ']')
2916 {
2917
2918 /* Discard the `-'. */
2919 PATFETCH (c1);
2920
2921 /* Fetch the character which ends the range. */
2922 PATFETCH (c1);
b18215fc 2923
b54f61ed 2924 if (SINGLE_BYTE_CHAR_P (c))
e934739e 2925 {
b54f61ed
KH
2926 if (! SINGLE_BYTE_CHAR_P (c1))
2927 {
3ff2446d
KH
2928 /* Handle a range starting with a
2929 character of less than 256, and ending
2930 with a character of not less than 256.
2931 Split that into two ranges, the low one
2932 ending at 0377, and the high one
2933 starting at the smallest character in
2934 the charset of C1 and ending at C1. */
b54f61ed 2935 int charset = CHAR_CHARSET (c1);
36595814
SM
2936 re_wchar_t c2 = MAKE_CHAR (charset, 0, 0);
2937
b54f61ed
KH
2938 SET_RANGE_TABLE_WORK_AREA (range_table_work,
2939 c2, c1);
333526e0 2940 c1 = 0377;
b54f61ed 2941 }
e934739e
RS
2942 }
2943 else if (!SAME_CHARSET_P (c, c1))
b3e4c897 2944 FREE_STACK_RETURN (REG_ERANGEX);
e318085a 2945 }
25fe55af 2946 else
b18215fc
RS
2947 /* Range from C to C. */
2948 c1 = c;
2949
2950 /* Set the range ... */
2951 if (SINGLE_BYTE_CHAR_P (c))
2952 /* ... into bitmap. */
25fe55af 2953 {
01618498 2954 re_wchar_t this_char;
36595814 2955 re_wchar_t range_start = c, range_end = c1;
b18215fc
RS
2956
2957 /* If the start is after the end, the range is empty. */
2958 if (range_start > range_end)
2959 {
2960 if (syntax & RE_NO_EMPTY_RANGES)
2961 FREE_STACK_RETURN (REG_ERANGE);
2962 /* Else, repeat the loop. */
2963 }
2964 else
2965 {
2966 for (this_char = range_start; this_char <= range_end;
2967 this_char++)
2968 SET_LIST_BIT (TRANSLATE (this_char));
e934739e 2969 }
25fe55af 2970 }
e318085a 2971 else
b18215fc
RS
2972 /* ... into range table. */
2973 SET_RANGE_TABLE_WORK_AREA (range_table_work, c, c1);
e318085a
RS
2974 }
2975
25fe55af
RS
2976 /* Discard any (non)matching list bytes that are all 0 at the
2977 end of the map. Decrease the map-length byte too. */
2978 while ((int) b[-1] > 0 && b[b[-1] - 1] == 0)
2979 b[-1]--;
2980 b += b[-1];
fa9a63c5 2981
96cc36cc
RS
2982 /* Build real range table from work area. */
2983 if (RANGE_TABLE_WORK_USED (range_table_work)
2984 || RANGE_TABLE_WORK_BITS (range_table_work))
b18215fc
RS
2985 {
2986 int i;
2987 int used = RANGE_TABLE_WORK_USED (range_table_work);
fa9a63c5 2988
b18215fc 2989 /* Allocate space for COUNT + RANGE_TABLE. Needs two
96cc36cc
RS
2990 bytes for flags, two for COUNT, and three bytes for
2991 each character. */
2992 GET_BUFFER_SPACE (4 + used * 3);
fa9a63c5 2993
b18215fc
RS
2994 /* Indicate the existence of range table. */
2995 laststart[1] |= 0x80;
fa9a63c5 2996
96cc36cc
RS
2997 /* Store the character class flag bits into the range table.
2998 If not in emacs, these flag bits are always 0. */
2999 *b++ = RANGE_TABLE_WORK_BITS (range_table_work) & 0xff;
3000 *b++ = RANGE_TABLE_WORK_BITS (range_table_work) >> 8;
3001
b18215fc
RS
3002 STORE_NUMBER_AND_INCR (b, used / 2);
3003 for (i = 0; i < used; i++)
3004 STORE_CHARACTER_AND_INCR
3005 (b, RANGE_TABLE_WORK_ELT (range_table_work, i));
3006 }
25fe55af
RS
3007 }
3008 break;
fa9a63c5
RM
3009
3010
b18215fc 3011 case '(':
25fe55af
RS
3012 if (syntax & RE_NO_BK_PARENS)
3013 goto handle_open;
3014 else
3015 goto normal_char;
fa9a63c5
RM
3016
3017
25fe55af
RS
3018 case ')':
3019 if (syntax & RE_NO_BK_PARENS)
3020 goto handle_close;
3021 else
3022 goto normal_char;
e318085a
RS
3023
3024
25fe55af
RS
3025 case '\n':
3026 if (syntax & RE_NEWLINE_ALT)
3027 goto handle_alt;
3028 else
3029 goto normal_char;
e318085a
RS
3030
3031
b18215fc 3032 case '|':
25fe55af
RS
3033 if (syntax & RE_NO_BK_VBAR)
3034 goto handle_alt;
3035 else
3036 goto normal_char;
3037
3038
3039 case '{':
3040 if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES)
3041 goto handle_interval;
3042 else
3043 goto normal_char;
3044
3045
3046 case '\\':
3047 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
3048
3049 /* Do not translate the character after the \, so that we can
3050 distinguish, e.g., \B from \b, even if we normally would
3051 translate, e.g., B to b. */
36595814 3052 PATFETCH (c);
25fe55af
RS
3053
3054 switch (c)
3055 {
3056 case '(':
3057 if (syntax & RE_NO_BK_PARENS)
3058 goto normal_backslash;
3059
3060 handle_open:
505bde11
SM
3061 {
3062 int shy = 0;
3063 if (p+1 < pend)
3064 {
3065 /* Look for a special (?...) construct */
ed0767d8 3066 if ((syntax & RE_SHY_GROUPS) && *p == '?')
505bde11 3067 {
ed0767d8 3068 PATFETCH (c); /* Gobble up the '?'. */
505bde11
SM
3069 PATFETCH (c);
3070 switch (c)
3071 {
3072 case ':': shy = 1; break;
3073 default:
3074 /* Only (?:...) is supported right now. */
3075 FREE_STACK_RETURN (REG_BADPAT);
3076 }
3077 }
505bde11
SM
3078 }
3079
3080 if (!shy)
3081 {
3082 bufp->re_nsub++;
3083 regnum++;
3084 }
25fe55af 3085
99633e97
SM
3086 if (COMPILE_STACK_FULL)
3087 {
3088 RETALLOC (compile_stack.stack, compile_stack.size << 1,
3089 compile_stack_elt_t);
3090 if (compile_stack.stack == NULL) return REG_ESPACE;
25fe55af 3091
99633e97
SM
3092 compile_stack.size <<= 1;
3093 }
25fe55af 3094
99633e97
SM
3095 /* These are the values to restore when we hit end of this
3096 group. They are all relative offsets, so that if the
3097 whole pattern moves because of realloc, they will still
3098 be valid. */
3099 COMPILE_STACK_TOP.begalt_offset = begalt - bufp->buffer;
3100 COMPILE_STACK_TOP.fixup_alt_jump
3101 = fixup_alt_jump ? fixup_alt_jump - bufp->buffer + 1 : 0;
3102 COMPILE_STACK_TOP.laststart_offset = b - bufp->buffer;
3103 COMPILE_STACK_TOP.regnum = shy ? -regnum : regnum;
3104
3105 /* Do not push a
3106 start_memory for groups beyond the last one we can
3107 represent in the compiled pattern. */
3108 if (regnum <= MAX_REGNUM && !shy)
3109 BUF_PUSH_2 (start_memory, regnum);
3110
3111 compile_stack.avail++;
3112
3113 fixup_alt_jump = 0;
3114 laststart = 0;
3115 begalt = b;
3116 /* If we've reached MAX_REGNUM groups, then this open
3117 won't actually generate any code, so we'll have to
3118 clear pending_exact explicitly. */
3119 pending_exact = 0;
3120 break;
505bde11 3121 }
25fe55af
RS
3122
3123 case ')':
3124 if (syntax & RE_NO_BK_PARENS) goto normal_backslash;
3125
3126 if (COMPILE_STACK_EMPTY)
505bde11
SM
3127 {
3128 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
3129 goto normal_backslash;
3130 else
3131 FREE_STACK_RETURN (REG_ERPAREN);
3132 }
25fe55af
RS
3133
3134 handle_close:
505bde11 3135 FIXUP_ALT_JUMP ();
25fe55af
RS
3136
3137 /* See similar code for backslashed left paren above. */
3138 if (COMPILE_STACK_EMPTY)
505bde11
SM
3139 {
3140 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
3141 goto normal_char;
3142 else
3143 FREE_STACK_RETURN (REG_ERPAREN);
3144 }
25fe55af
RS
3145
3146 /* Since we just checked for an empty stack above, this
3147 ``can't happen''. */
3148 assert (compile_stack.avail != 0);
3149 {
3150 /* We don't just want to restore into `regnum', because
3151 later groups should continue to be numbered higher,
3152 as in `(ab)c(de)' -- the second group is #2. */
3153 regnum_t this_group_regnum;
3154
3155 compile_stack.avail--;
3156 begalt = bufp->buffer + COMPILE_STACK_TOP.begalt_offset;
3157 fixup_alt_jump
3158 = COMPILE_STACK_TOP.fixup_alt_jump
3159 ? bufp->buffer + COMPILE_STACK_TOP.fixup_alt_jump - 1
3160 : 0;
3161 laststart = bufp->buffer + COMPILE_STACK_TOP.laststart_offset;
3162 this_group_regnum = COMPILE_STACK_TOP.regnum;
b18215fc
RS
3163 /* If we've reached MAX_REGNUM groups, then this open
3164 won't actually generate any code, so we'll have to
3165 clear pending_exact explicitly. */
3166 pending_exact = 0;
e318085a 3167
25fe55af
RS
3168 /* We're at the end of the group, so now we know how many
3169 groups were inside this one. */
505bde11
SM
3170 if (this_group_regnum <= MAX_REGNUM && this_group_regnum > 0)
3171 BUF_PUSH_2 (stop_memory, this_group_regnum);
25fe55af
RS
3172 }
3173 break;
3174
3175
3176 case '|': /* `\|'. */
3177 if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR)
3178 goto normal_backslash;
3179 handle_alt:
3180 if (syntax & RE_LIMITED_OPS)
3181 goto normal_char;
3182
3183 /* Insert before the previous alternative a jump which
3184 jumps to this alternative if the former fails. */
3185 GET_BUFFER_SPACE (3);
3186 INSERT_JUMP (on_failure_jump, begalt, b + 6);
3187 pending_exact = 0;
3188 b += 3;
3189
3190 /* The alternative before this one has a jump after it
3191 which gets executed if it gets matched. Adjust that
3192 jump so it will jump to this alternative's analogous
3193 jump (put in below, which in turn will jump to the next
3194 (if any) alternative's such jump, etc.). The last such
3195 jump jumps to the correct final destination. A picture:
3196 _____ _____
3197 | | | |
3198 | v | v
3199 a | b | c
3200
3201 If we are at `b', then fixup_alt_jump right now points to a
3202 three-byte space after `a'. We'll put in the jump, set
3203 fixup_alt_jump to right after `b', and leave behind three
3204 bytes which we'll fill in when we get to after `c'. */
3205
505bde11 3206 FIXUP_ALT_JUMP ();
25fe55af
RS
3207
3208 /* Mark and leave space for a jump after this alternative,
3209 to be filled in later either by next alternative or
3210 when know we're at the end of a series of alternatives. */
3211 fixup_alt_jump = b;
3212 GET_BUFFER_SPACE (3);
3213 b += 3;
3214
3215 laststart = 0;
3216 begalt = b;
3217 break;
3218
3219
3220 case '{':
3221 /* If \{ is a literal. */
3222 if (!(syntax & RE_INTERVALS)
3223 /* If we're at `\{' and it's not the open-interval
3224 operator. */
4bb91c68 3225 || (syntax & RE_NO_BK_BRACES))
25fe55af
RS
3226 goto normal_backslash;
3227
3228 handle_interval:
3229 {
3230 /* If got here, then the syntax allows intervals. */
3231
3232 /* At least (most) this many matches must be made. */
99633e97 3233 int lower_bound = 0, upper_bound = -1;
25fe55af 3234
ed0767d8 3235 beg_interval = p;
25fe55af
RS
3236
3237 if (p == pend)
4bb91c68 3238 FREE_STACK_RETURN (REG_EBRACE);
25fe55af
RS
3239
3240 GET_UNSIGNED_NUMBER (lower_bound);
3241
3242 if (c == ',')
ed0767d8 3243 GET_UNSIGNED_NUMBER (upper_bound);
25fe55af
RS
3244 else
3245 /* Interval such as `{1}' => match exactly once. */
3246 upper_bound = lower_bound;
3247
3248 if (lower_bound < 0 || upper_bound > RE_DUP_MAX
ed0767d8 3249 || (upper_bound >= 0 && lower_bound > upper_bound))
4bb91c68 3250 FREE_STACK_RETURN (REG_BADBR);
25fe55af
RS
3251
3252 if (!(syntax & RE_NO_BK_BRACES))
3253 {
4bb91c68
SM
3254 if (c != '\\')
3255 FREE_STACK_RETURN (REG_BADBR);
25fe55af
RS
3256
3257 PATFETCH (c);
3258 }
3259
3260 if (c != '}')
4bb91c68 3261 FREE_STACK_RETURN (REG_BADBR);
25fe55af
RS
3262
3263 /* We just parsed a valid interval. */
3264
3265 /* If it's invalid to have no preceding re. */
3266 if (!laststart)
3267 {
3268 if (syntax & RE_CONTEXT_INVALID_OPS)
3269 FREE_STACK_RETURN (REG_BADRPT);
3270 else if (syntax & RE_CONTEXT_INDEP_OPS)
3271 laststart = b;
3272 else
3273 goto unfetch_interval;
3274 }
3275
6df42991
SM
3276 if (upper_bound == 0)
3277 /* If the upper bound is zero, just drop the sub pattern
3278 altogether. */
3279 b = laststart;
3280 else if (lower_bound == 1 && upper_bound == 1)
3281 /* Just match it once: nothing to do here. */
3282 ;
3283
3284 /* Otherwise, we have a nontrivial interval. When
3285 we're all done, the pattern will look like:
3286 set_number_at <jump count> <upper bound>
3287 set_number_at <succeed_n count> <lower bound>
3288 succeed_n <after jump addr> <succeed_n count>
3289 <body of loop>
3290 jump_n <succeed_n addr> <jump count>
3291 (The upper bound and `jump_n' are omitted if
3292 `upper_bound' is 1, though.) */
3293 else
3294 { /* If the upper bound is > 1, we need to insert
3295 more at the end of the loop. */
3296 unsigned int nbytes = (upper_bound < 0 ? 3
3297 : upper_bound > 1 ? 5 : 0);
3298 unsigned int startoffset = 0;
3299
3300 GET_BUFFER_SPACE (20); /* We might use less. */
3301
3302 if (lower_bound == 0)
3303 {
3304 /* A succeed_n that starts with 0 is really a
3305 a simple on_failure_jump_loop. */
3306 INSERT_JUMP (on_failure_jump_loop, laststart,
3307 b + 3 + nbytes);
3308 b += 3;
3309 }
3310 else
3311 {
3312 /* Initialize lower bound of the `succeed_n', even
3313 though it will be set during matching by its
3314 attendant `set_number_at' (inserted next),
3315 because `re_compile_fastmap' needs to know.
3316 Jump to the `jump_n' we might insert below. */
3317 INSERT_JUMP2 (succeed_n, laststart,
3318 b + 5 + nbytes,
3319 lower_bound);
3320 b += 5;
3321
3322 /* Code to initialize the lower bound. Insert
3323 before the `succeed_n'. The `5' is the last two
3324 bytes of this `set_number_at', plus 3 bytes of
3325 the following `succeed_n'. */
3326 insert_op2 (set_number_at, laststart, 5, lower_bound, b);
3327 b += 5;
3328 startoffset += 5;
3329 }
3330
3331 if (upper_bound < 0)
3332 {
3333 /* A negative upper bound stands for infinity,
3334 in which case it degenerates to a plain jump. */
3335 STORE_JUMP (jump, b, laststart + startoffset);
3336 b += 3;
3337 }
3338 else if (upper_bound > 1)
3339 { /* More than one repetition is allowed, so
3340 append a backward jump to the `succeed_n'
3341 that starts this interval.
3342
3343 When we've reached this during matching,
3344 we'll have matched the interval once, so
3345 jump back only `upper_bound - 1' times. */
3346 STORE_JUMP2 (jump_n, b, laststart + startoffset,
3347 upper_bound - 1);
3348 b += 5;
3349
3350 /* The location we want to set is the second
3351 parameter of the `jump_n'; that is `b-2' as
3352 an absolute address. `laststart' will be
3353 the `set_number_at' we're about to insert;
3354 `laststart+3' the number to set, the source
3355 for the relative address. But we are
3356 inserting into the middle of the pattern --
3357 so everything is getting moved up by 5.
3358 Conclusion: (b - 2) - (laststart + 3) + 5,
3359 i.e., b - laststart.
3360
3361 We insert this at the beginning of the loop
3362 so that if we fail during matching, we'll
3363 reinitialize the bounds. */
3364 insert_op2 (set_number_at, laststart, b - laststart,
3365 upper_bound - 1, b);
3366 b += 5;
3367 }
3368 }
25fe55af
RS
3369 pending_exact = 0;
3370 beg_interval = NULL;
3371 }
3372 break;
3373
3374 unfetch_interval:
3375 /* If an invalid interval, match the characters as literals. */
3376 assert (beg_interval);
3377 p = beg_interval;
3378 beg_interval = NULL;
3379
3380 /* normal_char and normal_backslash need `c'. */
ed0767d8 3381 c = '{';
25fe55af
RS
3382
3383 if (!(syntax & RE_NO_BK_BRACES))
3384 {
ed0767d8
SM
3385 assert (p > pattern && p[-1] == '\\');
3386 goto normal_backslash;
25fe55af 3387 }
ed0767d8
SM
3388 else
3389 goto normal_char;
e318085a 3390
b18215fc 3391#ifdef emacs
25fe55af
RS
3392 /* There is no way to specify the before_dot and after_dot
3393 operators. rms says this is ok. --karl */
3394 case '=':
3395 BUF_PUSH (at_dot);
3396 break;
3397
3398 case 's':
3399 laststart = b;
3400 PATFETCH (c);
3401 BUF_PUSH_2 (syntaxspec, syntax_spec_code[c]);
3402 break;
3403
3404 case 'S':
3405 laststart = b;
3406 PATFETCH (c);
3407 BUF_PUSH_2 (notsyntaxspec, syntax_spec_code[c]);
3408 break;
b18215fc
RS
3409
3410 case 'c':
3411 laststart = b;
36595814 3412 PATFETCH (c);
b18215fc
RS
3413 BUF_PUSH_2 (categoryspec, c);
3414 break;
e318085a 3415
b18215fc
RS
3416 case 'C':
3417 laststart = b;
36595814 3418 PATFETCH (c);
b18215fc
RS
3419 BUF_PUSH_2 (notcategoryspec, c);
3420 break;
3421#endif /* emacs */
e318085a 3422
e318085a 3423
25fe55af 3424 case 'w':
4bb91c68
SM
3425 if (syntax & RE_NO_GNU_OPS)
3426 goto normal_char;
25fe55af 3427 laststart = b;
1fb352e0 3428 BUF_PUSH_2 (syntaxspec, Sword);
25fe55af 3429 break;
e318085a 3430
e318085a 3431
25fe55af 3432 case 'W':
4bb91c68
SM
3433 if (syntax & RE_NO_GNU_OPS)
3434 goto normal_char;
25fe55af 3435 laststart = b;
1fb352e0 3436 BUF_PUSH_2 (notsyntaxspec, Sword);
25fe55af 3437 break;
e318085a
RS
3438
3439
25fe55af 3440 case '<':
4bb91c68
SM
3441 if (syntax & RE_NO_GNU_OPS)
3442 goto normal_char;
25fe55af
RS
3443 BUF_PUSH (wordbeg);
3444 break;
e318085a 3445
25fe55af 3446 case '>':
4bb91c68
SM
3447 if (syntax & RE_NO_GNU_OPS)
3448 goto normal_char;
25fe55af
RS
3449 BUF_PUSH (wordend);
3450 break;
e318085a 3451
669fa600
SM
3452 case '_':
3453 if (syntax & RE_NO_GNU_OPS)
3454 goto normal_char;
3455 laststart = b;
3456 PATFETCH (c);
3457 if (c == '<')
3458 BUF_PUSH (symbeg);
3459 else if (c == '>')
3460 BUF_PUSH (symend);
3461 else
3462 FREE_STACK_RETURN (REG_BADPAT);
3463 break;
3464
25fe55af 3465 case 'b':
4bb91c68
SM
3466 if (syntax & RE_NO_GNU_OPS)
3467 goto normal_char;
25fe55af
RS
3468 BUF_PUSH (wordbound);
3469 break;
e318085a 3470
25fe55af 3471 case 'B':
4bb91c68
SM
3472 if (syntax & RE_NO_GNU_OPS)
3473 goto normal_char;
25fe55af
RS
3474 BUF_PUSH (notwordbound);
3475 break;
fa9a63c5 3476
25fe55af 3477 case '`':
4bb91c68
SM
3478 if (syntax & RE_NO_GNU_OPS)
3479 goto normal_char;
25fe55af
RS
3480 BUF_PUSH (begbuf);
3481 break;
e318085a 3482
25fe55af 3483 case '\'':
4bb91c68
SM
3484 if (syntax & RE_NO_GNU_OPS)
3485 goto normal_char;
25fe55af
RS
3486 BUF_PUSH (endbuf);
3487 break;
e318085a 3488
25fe55af
RS
3489 case '1': case '2': case '3': case '4': case '5':
3490 case '6': case '7': case '8': case '9':
0cdd06f8
SM
3491 {
3492 regnum_t reg;
e318085a 3493
0cdd06f8
SM
3494 if (syntax & RE_NO_BK_REFS)
3495 goto normal_backslash;
e318085a 3496
0cdd06f8 3497 reg = c - '0';
e318085a 3498
0cdd06f8
SM
3499 /* Can't back reference to a subexpression before its end. */
3500 if (reg > regnum || group_in_compile_stack (compile_stack, reg))
3501 FREE_STACK_RETURN (REG_ESUBREG);
e318085a 3502
0cdd06f8
SM
3503 laststart = b;
3504 BUF_PUSH_2 (duplicate, reg);
3505 }
25fe55af 3506 break;
e318085a 3507
e318085a 3508
25fe55af
RS
3509 case '+':
3510 case '?':
3511 if (syntax & RE_BK_PLUS_QM)
3512 goto handle_plus;
3513 else
3514 goto normal_backslash;
3515
3516 default:
3517 normal_backslash:
3518 /* You might think it would be useful for \ to mean
3519 not to translate; but if we don't translate it
4bb91c68 3520 it will never match anything. */
25fe55af
RS
3521 goto normal_char;
3522 }
3523 break;
fa9a63c5
RM
3524
3525
3526 default:
25fe55af 3527 /* Expects the character in `c'. */
fa9a63c5 3528 normal_char:
36595814 3529 /* If no exactn currently being built. */
25fe55af 3530 if (!pending_exact
fa9a63c5 3531
25fe55af
RS
3532 /* If last exactn not at current position. */
3533 || pending_exact + *pending_exact + 1 != b
5e69f11e 3534
25fe55af 3535 /* We have only one byte following the exactn for the count. */
2d1675e4 3536 || *pending_exact >= (1 << BYTEWIDTH) - MAX_MULTIBYTE_LENGTH
fa9a63c5 3537
25fe55af 3538 /* If followed by a repetition operator. */
9d99031f 3539 || (p != pend && (*p == '*' || *p == '^'))
fa9a63c5 3540 || ((syntax & RE_BK_PLUS_QM)
9d99031f
RS
3541 ? p + 1 < pend && *p == '\\' && (p[1] == '+' || p[1] == '?')
3542 : p != pend && (*p == '+' || *p == '?'))
fa9a63c5 3543 || ((syntax & RE_INTERVALS)
25fe55af 3544 && ((syntax & RE_NO_BK_BRACES)
9d99031f
RS
3545 ? p != pend && *p == '{'
3546 : p + 1 < pend && p[0] == '\\' && p[1] == '{')))
fa9a63c5
RM
3547 {
3548 /* Start building a new exactn. */
5e69f11e 3549
25fe55af 3550 laststart = b;
fa9a63c5
RM
3551
3552 BUF_PUSH_2 (exactn, 0);
3553 pending_exact = b - 1;
25fe55af 3554 }
5e69f11e 3555
2d1675e4
SM
3556 GET_BUFFER_SPACE (MAX_MULTIBYTE_LENGTH);
3557 {
e0277a47
KH
3558 int len;
3559
36595814 3560 c = TRANSLATE (c);
e0277a47
KH
3561 if (multibyte)
3562 len = CHAR_STRING (c, b);
3563 else
3564 *b = c, len = 1;
2d1675e4
SM
3565 b += len;
3566 (*pending_exact) += len;
3567 }
3568
fa9a63c5 3569 break;
25fe55af 3570 } /* switch (c) */
fa9a63c5
RM
3571 } /* while p != pend */
3572
5e69f11e 3573
fa9a63c5 3574 /* Through the pattern now. */
5e69f11e 3575
505bde11 3576 FIXUP_ALT_JUMP ();
fa9a63c5 3577
5e69f11e 3578 if (!COMPILE_STACK_EMPTY)
fa9a63c5
RM
3579 FREE_STACK_RETURN (REG_EPAREN);
3580
3581 /* If we don't want backtracking, force success
3582 the first time we reach the end of the compiled pattern. */
3583 if (syntax & RE_NO_POSIX_BACKTRACKING)
3584 BUF_PUSH (succeed);
3585
fa9a63c5
RM
3586 /* We have succeeded; set the length of the buffer. */
3587 bufp->used = b - bufp->buffer;
3588
3589#ifdef DEBUG
99633e97 3590 if (debug > 0)
fa9a63c5 3591 {
505bde11 3592 re_compile_fastmap (bufp);
fa9a63c5
RM
3593 DEBUG_PRINT1 ("\nCompiled pattern: \n");
3594 print_compiled_pattern (bufp);
3595 }
99633e97 3596 debug--;
fa9a63c5
RM
3597#endif /* DEBUG */
3598
3599#ifndef MATCH_MAY_ALLOCATE
3600 /* Initialize the failure stack to the largest possible stack. This
3601 isn't necessary unless we're trying to avoid calling alloca in
3602 the search and match routines. */
3603 {
3604 int num_regs = bufp->re_nsub + 1;
3605
320a2a73 3606 if (fail_stack.size < re_max_failures * TYPICAL_FAILURE_SIZE)
fa9a63c5 3607 {
a26f4ccd 3608 fail_stack.size = re_max_failures * TYPICAL_FAILURE_SIZE;
fa9a63c5 3609
fa9a63c5
RM
3610 if (! fail_stack.stack)
3611 fail_stack.stack
5e69f11e 3612 = (fail_stack_elt_t *) malloc (fail_stack.size
fa9a63c5
RM
3613 * sizeof (fail_stack_elt_t));
3614 else
3615 fail_stack.stack
3616 = (fail_stack_elt_t *) realloc (fail_stack.stack,
3617 (fail_stack.size
3618 * sizeof (fail_stack_elt_t)));
fa9a63c5
RM
3619 }
3620
3621 regex_grow_registers (num_regs);
3622 }
3623#endif /* not MATCH_MAY_ALLOCATE */
3624
7c67c9f6 3625 FREE_STACK_RETURN (REG_NOERROR);
fa9a63c5
RM
3626} /* regex_compile */
3627\f
3628/* Subroutines for `regex_compile'. */
3629
25fe55af 3630/* Store OP at LOC followed by two-byte integer parameter ARG. */
fa9a63c5
RM
3631
3632static void
3633store_op1 (op, loc, arg)
3634 re_opcode_t op;
3635 unsigned char *loc;
3636 int arg;
3637{
3638 *loc = (unsigned char) op;
3639 STORE_NUMBER (loc + 1, arg);
3640}
3641
3642
3643/* Like `store_op1', but for two two-byte parameters ARG1 and ARG2. */
3644
3645static void
3646store_op2 (op, loc, arg1, arg2)
3647 re_opcode_t op;
3648 unsigned char *loc;
3649 int arg1, arg2;
3650{
3651 *loc = (unsigned char) op;
3652 STORE_NUMBER (loc + 1, arg1);
3653 STORE_NUMBER (loc + 3, arg2);
3654}
3655
3656
3657/* Copy the bytes from LOC to END to open up three bytes of space at LOC
3658 for OP followed by two-byte integer parameter ARG. */
3659
3660static void
3661insert_op1 (op, loc, arg, end)
3662 re_opcode_t op;
3663 unsigned char *loc;
3664 int arg;
5e69f11e 3665 unsigned char *end;
fa9a63c5
RM
3666{
3667 register unsigned char *pfrom = end;
3668 register unsigned char *pto = end + 3;
3669
3670 while (pfrom != loc)
3671 *--pto = *--pfrom;
5e69f11e 3672
fa9a63c5
RM
3673 store_op1 (op, loc, arg);
3674}
3675
3676
3677/* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2. */
3678
3679static void
3680insert_op2 (op, loc, arg1, arg2, end)
3681 re_opcode_t op;
3682 unsigned char *loc;
3683 int arg1, arg2;
5e69f11e 3684 unsigned char *end;
fa9a63c5
RM
3685{
3686 register unsigned char *pfrom = end;
3687 register unsigned char *pto = end + 5;
3688
3689 while (pfrom != loc)
3690 *--pto = *--pfrom;
5e69f11e 3691
fa9a63c5
RM
3692 store_op2 (op, loc, arg1, arg2);
3693}
3694
3695
3696/* P points to just after a ^ in PATTERN. Return true if that ^ comes
3697 after an alternative or a begin-subexpression. We assume there is at
3698 least one character before the ^. */
3699
3700static boolean
3701at_begline_loc_p (pattern, p, syntax)
01618498 3702 re_char *pattern, *p;
fa9a63c5
RM
3703 reg_syntax_t syntax;
3704{
01618498 3705 re_char *prev = p - 2;
fa9a63c5 3706 boolean prev_prev_backslash = prev > pattern && prev[-1] == '\\';
5e69f11e 3707
fa9a63c5
RM
3708 return
3709 /* After a subexpression? */
3710 (*prev == '(' && (syntax & RE_NO_BK_PARENS || prev_prev_backslash))
25fe55af 3711 /* After an alternative? */
d2af47df
SM
3712 || (*prev == '|' && (syntax & RE_NO_BK_VBAR || prev_prev_backslash))
3713 /* After a shy subexpression? */
3714 || ((syntax & RE_SHY_GROUPS) && prev - 2 >= pattern
3715 && prev[-1] == '?' && prev[-2] == '('
3716 && (syntax & RE_NO_BK_PARENS
3717 || (prev - 3 >= pattern && prev[-3] == '\\')));
fa9a63c5
RM
3718}
3719
3720
3721/* The dual of at_begline_loc_p. This one is for $. We assume there is
3722 at least one character after the $, i.e., `P < PEND'. */
3723
3724static boolean
3725at_endline_loc_p (p, pend, syntax)
01618498 3726 re_char *p, *pend;
99633e97 3727 reg_syntax_t syntax;
fa9a63c5 3728{
01618498 3729 re_char *next = p;
fa9a63c5 3730 boolean next_backslash = *next == '\\';
01618498 3731 re_char *next_next = p + 1 < pend ? p + 1 : 0;
5e69f11e 3732
fa9a63c5
RM
3733 return
3734 /* Before a subexpression? */
3735 (syntax & RE_NO_BK_PARENS ? *next == ')'
25fe55af 3736 : next_backslash && next_next && *next_next == ')')
fa9a63c5
RM
3737 /* Before an alternative? */
3738 || (syntax & RE_NO_BK_VBAR ? *next == '|'
25fe55af 3739 : next_backslash && next_next && *next_next == '|');
fa9a63c5
RM
3740}
3741
3742
5e69f11e 3743/* Returns true if REGNUM is in one of COMPILE_STACK's elements and
fa9a63c5
RM
3744 false if it's not. */
3745
3746static boolean
3747group_in_compile_stack (compile_stack, regnum)
3748 compile_stack_type compile_stack;
3749 regnum_t regnum;
3750{
3751 int this_element;
3752
5e69f11e
RM
3753 for (this_element = compile_stack.avail - 1;
3754 this_element >= 0;
fa9a63c5
RM
3755 this_element--)
3756 if (compile_stack.stack[this_element].regnum == regnum)
3757 return true;
3758
3759 return false;
3760}
fa9a63c5 3761\f
f6a3f532
SM
3762/* analyse_first.
3763 If fastmap is non-NULL, go through the pattern and fill fastmap
3764 with all the possible leading chars. If fastmap is NULL, don't
3765 bother filling it up (obviously) and only return whether the
3766 pattern could potentially match the empty string.
3767
3768 Return 1 if p..pend might match the empty string.
3769 Return 0 if p..pend matches at least one char.
01618498 3770 Return -1 if fastmap was not updated accurately. */
f6a3f532
SM
3771
3772static int
3773analyse_first (p, pend, fastmap, multibyte)
01618498 3774 re_char *p, *pend;
f6a3f532
SM
3775 char *fastmap;
3776 const int multibyte;
fa9a63c5 3777{
505bde11 3778 int j, k;
1fb352e0 3779 boolean not;
fa9a63c5 3780
b18215fc 3781 /* If all elements for base leading-codes in fastmap is set, this
25fe55af 3782 flag is set true. */
b18215fc
RS
3783 boolean match_any_multibyte_characters = false;
3784
f6a3f532 3785 assert (p);
5e69f11e 3786
505bde11
SM
3787 /* The loop below works as follows:
3788 - It has a working-list kept in the PATTERN_STACK and which basically
3789 starts by only containing a pointer to the first operation.
3790 - If the opcode we're looking at is a match against some set of
3791 chars, then we add those chars to the fastmap and go on to the
3792 next work element from the worklist (done via `break').
3793 - If the opcode is a control operator on the other hand, we either
3794 ignore it (if it's meaningless at this point, such as `start_memory')
3795 or execute it (if it's a jump). If the jump has several destinations
3796 (i.e. `on_failure_jump'), then we push the other destination onto the
3797 worklist.
3798 We guarantee termination by ignoring backward jumps (more or less),
3799 so that `p' is monotonically increasing. More to the point, we
3800 never set `p' (or push) anything `<= p1'. */
3801
01618498 3802 while (p < pend)
fa9a63c5 3803 {
505bde11
SM
3804 /* `p1' is used as a marker of how far back a `on_failure_jump'
3805 can go without being ignored. It is normally equal to `p'
3806 (which prevents any backward `on_failure_jump') except right
3807 after a plain `jump', to allow patterns such as:
3808 0: jump 10
3809 3..9: <body>
3810 10: on_failure_jump 3
3811 as used for the *? operator. */
01618498 3812 re_char *p1 = p;
5e69f11e 3813
fa9a63c5
RM
3814 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
3815 {
f6a3f532 3816 case succeed:
01618498 3817 return 1;
f6a3f532 3818 continue;
fa9a63c5 3819
fa9a63c5 3820 case duplicate:
505bde11
SM
3821 /* If the first character has to match a backreference, that means
3822 that the group was empty (since it already matched). Since this
3823 is the only case that interests us here, we can assume that the
3824 backreference must match the empty string. */
3825 p++;
3826 continue;
fa9a63c5
RM
3827
3828
3829 /* Following are the cases which match a character. These end
25fe55af 3830 with `break'. */
fa9a63c5
RM
3831
3832 case exactn:
e0277a47
KH
3833 if (fastmap)
3834 {
3835 int c = RE_STRING_CHAR (p + 1, pend - p);
3836
3837 if (SINGLE_BYTE_CHAR_P (c))
3838 fastmap[c] = 1;
3839 else
3840 fastmap[p[1]] = 1;
3841 }
fa9a63c5
RM
3842 break;
3843
3844
1fb352e0
SM
3845 case anychar:
3846 /* We could put all the chars except for \n (and maybe \0)
3847 but we don't bother since it is generally not worth it. */
f6a3f532 3848 if (!fastmap) break;
01618498 3849 return -1;
fa9a63c5
RM
3850
3851
b18215fc 3852 case charset_not:
ba5c004d
RS
3853 /* Chars beyond end of bitmap are possible matches.
3854 All the single-byte codes can occur in multibyte buffers.
3855 So any that are not listed in the charset
3856 are possible matches, even in multibyte buffers. */
1fb352e0 3857 if (!fastmap) break;
b18215fc 3858 for (j = CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH;
1fb352e0 3859 j < (1 << BYTEWIDTH); j++)
b18215fc 3860 fastmap[j] = 1;
1fb352e0
SM
3861 /* Fallthrough */
3862 case charset:
3863 if (!fastmap) break;
3864 not = (re_opcode_t) *(p - 1) == charset_not;
b18215fc
RS
3865 for (j = CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH - 1, p++;
3866 j >= 0; j--)
1fb352e0 3867 if (!!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))) ^ not)
b18215fc
RS
3868 fastmap[j] = 1;
3869
1fb352e0
SM
3870 if ((not && multibyte)
3871 /* Any character set can possibly contain a character
3872 which doesn't match the specified set of characters. */
3873 || (CHARSET_RANGE_TABLE_EXISTS_P (&p[-2])
3874 && CHARSET_RANGE_TABLE_BITS (&p[-2]) != 0))
3875 /* If we can match a character class, we can match
3876 any character set. */
b18215fc
RS
3877 {
3878 set_fastmap_for_multibyte_characters:
3879 if (match_any_multibyte_characters == false)
3880 {
3881 for (j = 0x80; j < 0xA0; j++) /* XXX */
3882 if (BASE_LEADING_CODE_P (j))
3883 fastmap[j] = 1;
3884 match_any_multibyte_characters = true;
3885 }
3886 }
b18215fc 3887
1fb352e0
SM
3888 else if (!not && CHARSET_RANGE_TABLE_EXISTS_P (&p[-2])
3889 && match_any_multibyte_characters == false)
3890 {
3891 /* Set fastmap[I] 1 where I is a base leading code of each
3892 multibyte character in the range table. */
3893 int c, count;
b18215fc 3894
1fb352e0 3895 /* Make P points the range table. `+ 2' is to skip flag
0b32bf0e 3896 bits for a character class. */
1fb352e0 3897 p += CHARSET_BITMAP_SIZE (&p[-2]) + 2;
b18215fc 3898
1fb352e0
SM
3899 /* Extract the number of ranges in range table into COUNT. */
3900 EXTRACT_NUMBER_AND_INCR (count, p);
3901 for (; count > 0; count--, p += 2 * 3) /* XXX */
3902 {
3903 /* Extract the start of each range. */
3904 EXTRACT_CHARACTER (c, p);
3905 j = CHAR_CHARSET (c);
3906 fastmap[CHARSET_LEADING_CODE_BASE (j)] = 1;
3907 }
3908 }
b18215fc
RS
3909 break;
3910
1fb352e0
SM
3911 case syntaxspec:
3912 case notsyntaxspec:
3913 if (!fastmap) break;
3914#ifndef emacs
3915 not = (re_opcode_t)p[-1] == notsyntaxspec;
3916 k = *p++;
3917 for (j = 0; j < (1 << BYTEWIDTH); j++)
990b2375 3918 if ((SYNTAX (j) == (enum syntaxcode) k) ^ not)
b18215fc 3919 fastmap[j] = 1;
b18215fc 3920 break;
1fb352e0 3921#else /* emacs */
b18215fc
RS
3922 /* This match depends on text properties. These end with
3923 aborting optimizations. */
01618498 3924 return -1;
b18215fc
RS
3925
3926 case categoryspec:
b18215fc 3927 case notcategoryspec:
1fb352e0
SM
3928 if (!fastmap) break;
3929 not = (re_opcode_t)p[-1] == notcategoryspec;
b18215fc 3930 k = *p++;
1fb352e0
SM
3931 for (j = 0; j < (1 << BYTEWIDTH); j++)
3932 if ((CHAR_HAS_CATEGORY (j, k)) ^ not)
b18215fc
RS
3933 fastmap[j] = 1;
3934
1fb352e0 3935 if (multibyte)
b18215fc 3936 /* Any character set can possibly contain a character
1fb352e0 3937 whose category is K (or not). */
b18215fc
RS
3938 goto set_fastmap_for_multibyte_characters;
3939 break;
3940
fa9a63c5 3941 /* All cases after this match the empty string. These end with
25fe55af 3942 `continue'. */
fa9a63c5 3943
fa9a63c5
RM
3944 case before_dot:
3945 case at_dot:
3946 case after_dot:
1fb352e0 3947#endif /* !emacs */
25fe55af
RS
3948 case no_op:
3949 case begline:
3950 case endline:
fa9a63c5
RM
3951 case begbuf:
3952 case endbuf:
3953 case wordbound:
3954 case notwordbound:
3955 case wordbeg:
3956 case wordend:
669fa600
SM
3957 case symbeg:
3958 case symend:
25fe55af 3959 continue;
fa9a63c5
RM
3960
3961
fa9a63c5 3962 case jump:
25fe55af 3963 EXTRACT_NUMBER_AND_INCR (j, p);
505bde11
SM
3964 if (j < 0)
3965 /* Backward jumps can only go back to code that we've already
3966 visited. `re_compile' should make sure this is true. */
3967 break;
25fe55af 3968 p += j;
505bde11
SM
3969 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p))
3970 {
3971 case on_failure_jump:
3972 case on_failure_keep_string_jump:
505bde11 3973 case on_failure_jump_loop:
0683b6fa 3974 case on_failure_jump_nastyloop:
505bde11
SM
3975 case on_failure_jump_smart:
3976 p++;
3977 break;
3978 default:
3979 continue;
3980 };
3981 /* Keep `p1' to allow the `on_failure_jump' we are jumping to
3982 to jump back to "just after here". */
3983 /* Fallthrough */
fa9a63c5 3984
25fe55af
RS
3985 case on_failure_jump:
3986 case on_failure_keep_string_jump:
0683b6fa 3987 case on_failure_jump_nastyloop:
505bde11
SM
3988 case on_failure_jump_loop:
3989 case on_failure_jump_smart:
25fe55af 3990 EXTRACT_NUMBER_AND_INCR (j, p);
505bde11 3991 if (p + j <= p1)
ed0767d8 3992 ; /* Backward jump to be ignored. */
01618498
SM
3993 else
3994 { /* We have to look down both arms.
3995 We first go down the "straight" path so as to minimize
3996 stack usage when going through alternatives. */
3997 int r = analyse_first (p, pend, fastmap, multibyte);
3998 if (r) return r;
3999 p += j;
4000 }
25fe55af 4001 continue;
fa9a63c5
RM
4002
4003
ed0767d8
SM
4004 case jump_n:
4005 /* This code simply does not properly handle forward jump_n. */
4006 DEBUG_STATEMENT (EXTRACT_NUMBER (j, p); assert (j < 0));
4007 p += 4;
4008 /* jump_n can either jump or fall through. The (backward) jump
4009 case has already been handled, so we only need to look at the
4010 fallthrough case. */
4011 continue;
177c0ea7 4012
fa9a63c5 4013 case succeed_n:
ed0767d8
SM
4014 /* If N == 0, it should be an on_failure_jump_loop instead. */
4015 DEBUG_STATEMENT (EXTRACT_NUMBER (j, p + 2); assert (j > 0));
4016 p += 4;
4017 /* We only care about one iteration of the loop, so we don't
4018 need to consider the case where this behaves like an
4019 on_failure_jump. */
25fe55af 4020 continue;
fa9a63c5
RM
4021
4022
4023 case set_number_at:
25fe55af
RS
4024 p += 4;
4025 continue;
fa9a63c5
RM
4026
4027
4028 case start_memory:
25fe55af 4029 case stop_memory:
505bde11 4030 p += 1;
fa9a63c5
RM
4031 continue;
4032
4033
4034 default:
25fe55af
RS
4035 abort (); /* We have listed all the cases. */
4036 } /* switch *p++ */
fa9a63c5
RM
4037
4038 /* Getting here means we have found the possible starting
25fe55af 4039 characters for one path of the pattern -- and that the empty
01618498
SM
4040 string does not match. We need not follow this path further. */
4041 return 0;
fa9a63c5
RM
4042 } /* while p */
4043
01618498
SM
4044 /* We reached the end without matching anything. */
4045 return 1;
4046
f6a3f532
SM
4047} /* analyse_first */
4048\f
4049/* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
4050 BUFP. A fastmap records which of the (1 << BYTEWIDTH) possible
4051 characters can start a string that matches the pattern. This fastmap
4052 is used by re_search to skip quickly over impossible starting points.
4053
4054 Character codes above (1 << BYTEWIDTH) are not represented in the
4055 fastmap, but the leading codes are represented. Thus, the fastmap
4056 indicates which character sets could start a match.
4057
4058 The caller must supply the address of a (1 << BYTEWIDTH)-byte data
4059 area as BUFP->fastmap.
4060
4061 We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
4062 the pattern buffer.
4063
4064 Returns 0 if we succeed, -2 if an internal error. */
4065
4066int
4067re_compile_fastmap (bufp)
4068 struct re_pattern_buffer *bufp;
4069{
4070 char *fastmap = bufp->fastmap;
4071 int analysis;
4072
4073 assert (fastmap && bufp->buffer);
4074
4075 bzero (fastmap, 1 << BYTEWIDTH); /* Assume nothing's valid. */
4076 bufp->fastmap_accurate = 1; /* It will be when we're done. */
4077
4078 analysis = analyse_first (bufp->buffer, bufp->buffer + bufp->used,
2d1675e4 4079 fastmap, RE_MULTIBYTE_P (bufp));
c0f9ea08 4080 bufp->can_be_null = (analysis != 0);
fa9a63c5
RM
4081 return 0;
4082} /* re_compile_fastmap */
4083\f
4084/* Set REGS to hold NUM_REGS registers, storing them in STARTS and
4085 ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use
4086 this memory for recording register information. STARTS and ENDS
4087 must be allocated using the malloc library routine, and must each
4088 be at least NUM_REGS * sizeof (regoff_t) bytes long.
4089
4090 If NUM_REGS == 0, then subsequent matches should allocate their own
4091 register data.
4092
4093 Unless this function is called, the first search or match using
4094 PATTERN_BUFFER will allocate its own register data, without
4095 freeing the old data. */
4096
4097void
4098re_set_registers (bufp, regs, num_regs, starts, ends)
4099 struct re_pattern_buffer *bufp;
4100 struct re_registers *regs;
4101 unsigned num_regs;
4102 regoff_t *starts, *ends;
4103{
4104 if (num_regs)
4105 {
4106 bufp->regs_allocated = REGS_REALLOCATE;
4107 regs->num_regs = num_regs;
4108 regs->start = starts;
4109 regs->end = ends;
4110 }
4111 else
4112 {
4113 bufp->regs_allocated = REGS_UNALLOCATED;
4114 regs->num_regs = 0;
4115 regs->start = regs->end = (regoff_t *) 0;
4116 }
4117}
c0f9ea08 4118WEAK_ALIAS (__re_set_registers, re_set_registers)
fa9a63c5 4119\f
25fe55af 4120/* Searching routines. */
fa9a63c5
RM
4121
4122/* Like re_search_2, below, but only one string is specified, and
4123 doesn't let you say where to stop matching. */
4124
4125int
4126re_search (bufp, string, size, startpos, range, regs)
4127 struct re_pattern_buffer *bufp;
4128 const char *string;
4129 int size, startpos, range;
4130 struct re_registers *regs;
4131{
5e69f11e 4132 return re_search_2 (bufp, NULL, 0, string, size, startpos, range,
fa9a63c5
RM
4133 regs, size);
4134}
c0f9ea08 4135WEAK_ALIAS (__re_search, re_search)
fa9a63c5 4136
70806df6
KH
4137/* Head address of virtual concatenation of string. */
4138#define HEAD_ADDR_VSTRING(P) \
4139 (((P) >= size1 ? string2 : string1))
4140
b18215fc
RS
4141/* End address of virtual concatenation of string. */
4142#define STOP_ADDR_VSTRING(P) \
4143 (((P) >= size1 ? string2 + size2 : string1 + size1))
4144
4145/* Address of POS in the concatenation of virtual string. */
4146#define POS_ADDR_VSTRING(POS) \
4147 (((POS) >= size1 ? string2 - size1 : string1) + (POS))
fa9a63c5
RM
4148
4149/* Using the compiled pattern in BUFP->buffer, first tries to match the
4150 virtual concatenation of STRING1 and STRING2, starting first at index
4151 STARTPOS, then at STARTPOS + 1, and so on.
5e69f11e 4152
fa9a63c5 4153 STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
5e69f11e 4154
fa9a63c5
RM
4155 RANGE is how far to scan while trying to match. RANGE = 0 means try
4156 only at STARTPOS; in general, the last start tried is STARTPOS +
4157 RANGE.
5e69f11e 4158
fa9a63c5
RM
4159 In REGS, return the indices of the virtual concatenation of STRING1
4160 and STRING2 that matched the entire BUFP->buffer and its contained
4161 subexpressions.
5e69f11e 4162
fa9a63c5
RM
4163 Do not consider matching one past the index STOP in the virtual
4164 concatenation of STRING1 and STRING2.
4165
4166 We return either the position in the strings at which the match was
4167 found, -1 if no match, or -2 if error (such as failure
4168 stack overflow). */
4169
4170int
66f0296e 4171re_search_2 (bufp, str1, size1, str2, size2, startpos, range, regs, stop)
fa9a63c5 4172 struct re_pattern_buffer *bufp;
66f0296e 4173 const char *str1, *str2;
fa9a63c5
RM
4174 int size1, size2;
4175 int startpos;
4176 int range;
4177 struct re_registers *regs;
4178 int stop;
4179{
4180 int val;
66f0296e
SM
4181 re_char *string1 = (re_char*) str1;
4182 re_char *string2 = (re_char*) str2;
fa9a63c5 4183 register char *fastmap = bufp->fastmap;
6676cb1c 4184 register RE_TRANSLATE_TYPE translate = bufp->translate;
fa9a63c5
RM
4185 int total_size = size1 + size2;
4186 int endpos = startpos + range;
c0f9ea08 4187 boolean anchored_start;
fa9a63c5 4188
25fe55af 4189 /* Nonzero if we have to concern multibyte character. */
2d1675e4 4190 const boolean multibyte = RE_MULTIBYTE_P (bufp);
b18215fc 4191
fa9a63c5
RM
4192 /* Check for out-of-range STARTPOS. */
4193 if (startpos < 0 || startpos > total_size)
4194 return -1;
5e69f11e 4195
fa9a63c5 4196 /* Fix up RANGE if it might eventually take us outside
34597fa9 4197 the virtual concatenation of STRING1 and STRING2.
5e69f11e 4198 Make sure we won't move STARTPOS below 0 or above TOTAL_SIZE. */
34597fa9
RS
4199 if (endpos < 0)
4200 range = 0 - startpos;
fa9a63c5
RM
4201 else if (endpos > total_size)
4202 range = total_size - startpos;
4203
4204 /* If the search isn't to be a backwards one, don't waste time in a
7b140fd7 4205 search for a pattern anchored at beginning of buffer. */
fa9a63c5
RM
4206 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == begbuf && range > 0)
4207 {
4208 if (startpos > 0)
4209 return -1;
4210 else
7b140fd7 4211 range = 0;
fa9a63c5
RM
4212 }
4213
ae4788a8
RS
4214#ifdef emacs
4215 /* In a forward search for something that starts with \=.
4216 don't keep searching past point. */
4217 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == at_dot && range > 0)
4218 {
7b140fd7
RS
4219 range = PT_BYTE - BEGV_BYTE - startpos;
4220 if (range < 0)
ae4788a8
RS
4221 return -1;
4222 }
4223#endif /* emacs */
4224
fa9a63c5
RM
4225 /* Update the fastmap now if not correct already. */
4226 if (fastmap && !bufp->fastmap_accurate)
01618498 4227 re_compile_fastmap (bufp);
5e69f11e 4228
c8499ba5 4229 /* See whether the pattern is anchored. */
c0f9ea08 4230 anchored_start = (bufp->buffer[0] == begline);
c8499ba5 4231
b18215fc 4232#ifdef emacs
cc9b4df2
KH
4233 gl_state.object = re_match_object;
4234 {
99633e97 4235 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (POS_AS_IN_BUFFER (startpos));
cc9b4df2
KH
4236
4237 SETUP_SYNTAX_TABLE_FOR_OBJECT (re_match_object, charpos, 1);
4238 }
b18215fc
RS
4239#endif
4240
fa9a63c5
RM
4241 /* Loop through the string, looking for a place to start matching. */
4242 for (;;)
5e69f11e 4243 {
c8499ba5
RS
4244 /* If the pattern is anchored,
4245 skip quickly past places we cannot match.
4246 We don't bother to treat startpos == 0 specially
4247 because that case doesn't repeat. */
4248 if (anchored_start && startpos > 0)
4249 {
c0f9ea08
SM
4250 if (! ((startpos <= size1 ? string1[startpos - 1]
4251 : string2[startpos - size1 - 1])
4252 == '\n'))
c8499ba5
RS
4253 goto advance;
4254 }
4255
fa9a63c5 4256 /* If a fastmap is supplied, skip quickly over characters that
25fe55af
RS
4257 cannot be the start of a match. If the pattern can match the
4258 null string, however, we don't need to skip characters; we want
4259 the first null string. */
fa9a63c5
RM
4260 if (fastmap && startpos < total_size && !bufp->can_be_null)
4261 {
66f0296e 4262 register re_char *d;
01618498 4263 register re_wchar_t buf_ch;
e934739e
RS
4264
4265 d = POS_ADDR_VSTRING (startpos);
4266
25fe55af 4267 if (range > 0) /* Searching forwards. */
fa9a63c5 4268 {
fa9a63c5
RM
4269 register int lim = 0;
4270 int irange = range;
4271
25fe55af
RS
4272 if (startpos < size1 && startpos + range >= size1)
4273 lim = range - (size1 - startpos);
fa9a63c5 4274
25fe55af
RS
4275 /* Written out as an if-else to avoid testing `translate'
4276 inside the loop. */
28ae27ae
AS
4277 if (RE_TRANSLATE_P (translate))
4278 {
e934739e
RS
4279 if (multibyte)
4280 while (range > lim)
4281 {
4282 int buf_charlen;
4283
4284 buf_ch = STRING_CHAR_AND_LENGTH (d, range - lim,
4285 buf_charlen);
4286
4287 buf_ch = RE_TRANSLATE (translate, buf_ch);
4288 if (buf_ch >= 0400
4289 || fastmap[buf_ch])
4290 break;
4291
4292 range -= buf_charlen;
4293 d += buf_charlen;
4294 }
4295 else
4296 while (range > lim
66f0296e 4297 && !fastmap[RE_TRANSLATE (translate, *d)])
33c46939
RS
4298 {
4299 d++;
4300 range--;
4301 }
e934739e 4302 }
fa9a63c5 4303 else
66f0296e 4304 while (range > lim && !fastmap[*d])
33c46939
RS
4305 {
4306 d++;
4307 range--;
4308 }
fa9a63c5
RM
4309
4310 startpos += irange - range;
4311 }
25fe55af 4312 else /* Searching backwards. */
fa9a63c5 4313 {
2d1675e4
SM
4314 int room = (startpos >= size1
4315 ? size2 + size1 - startpos
4316 : size1 - startpos);
4317 buf_ch = RE_STRING_CHAR (d, room);
4318 buf_ch = TRANSLATE (buf_ch);
fa9a63c5 4319
e934739e
RS
4320 if (! (buf_ch >= 0400
4321 || fastmap[buf_ch]))
fa9a63c5
RM
4322 goto advance;
4323 }
4324 }
4325
4326 /* If can't match the null string, and that's all we have left, fail. */
4327 if (range >= 0 && startpos == total_size && fastmap
25fe55af 4328 && !bufp->can_be_null)
fa9a63c5
RM
4329 return -1;
4330
4331 val = re_match_2_internal (bufp, string1, size1, string2, size2,
4332 startpos, regs, stop);
4333#ifndef REGEX_MALLOC
0b32bf0e 4334# ifdef C_ALLOCA
fa9a63c5 4335 alloca (0);
0b32bf0e 4336# endif
fa9a63c5
RM
4337#endif
4338
4339 if (val >= 0)
4340 return startpos;
5e69f11e 4341
fa9a63c5
RM
4342 if (val == -2)
4343 return -2;
4344
4345 advance:
5e69f11e 4346 if (!range)
25fe55af 4347 break;
5e69f11e 4348 else if (range > 0)
25fe55af 4349 {
b18215fc
RS
4350 /* Update STARTPOS to the next character boundary. */
4351 if (multibyte)
4352 {
66f0296e
SM
4353 re_char *p = POS_ADDR_VSTRING (startpos);
4354 re_char *pend = STOP_ADDR_VSTRING (startpos);
b18215fc
RS
4355 int len = MULTIBYTE_FORM_LENGTH (p, pend - p);
4356
4357 range -= len;
4358 if (range < 0)
4359 break;
4360 startpos += len;
4361 }
4362 else
4363 {
b560c397
RS
4364 range--;
4365 startpos++;
4366 }
e318085a 4367 }
fa9a63c5 4368 else
25fe55af
RS
4369 {
4370 range++;
4371 startpos--;
b18215fc
RS
4372
4373 /* Update STARTPOS to the previous character boundary. */
4374 if (multibyte)
4375 {
70806df6
KH
4376 re_char *p = POS_ADDR_VSTRING (startpos) + 1;
4377 re_char *p0 = p;
4378 re_char *phead = HEAD_ADDR_VSTRING (startpos);
b18215fc
RS
4379
4380 /* Find the head of multibyte form. */
70806df6
KH
4381 PREV_CHAR_BOUNDARY (p, phead);
4382 range += p0 - 1 - p;
4383 if (range > 0)
4384 break;
b18215fc 4385
70806df6 4386 startpos -= p0 - 1 - p;
b18215fc 4387 }
25fe55af 4388 }
fa9a63c5
RM
4389 }
4390 return -1;
4391} /* re_search_2 */
c0f9ea08 4392WEAK_ALIAS (__re_search_2, re_search_2)
fa9a63c5
RM
4393\f
4394/* Declarations and macros for re_match_2. */
4395
2d1675e4
SM
4396static int bcmp_translate _RE_ARGS((re_char *s1, re_char *s2,
4397 register int len,
4398 RE_TRANSLATE_TYPE translate,
4399 const int multibyte));
fa9a63c5
RM
4400
4401/* This converts PTR, a pointer into one of the search strings `string1'
4402 and `string2' into an offset from the beginning of that string. */
4403#define POINTER_TO_OFFSET(ptr) \
4404 (FIRST_STRING_P (ptr) \
4405 ? ((regoff_t) ((ptr) - string1)) \
4406 : ((regoff_t) ((ptr) - string2 + size1)))
4407
fa9a63c5 4408/* Call before fetching a character with *d. This switches over to
419d1c74
SM
4409 string2 if necessary.
4410 Check re_match_2_internal for a discussion of why end_match_2 might
4411 not be within string2 (but be equal to end_match_1 instead). */
fa9a63c5 4412#define PREFETCH() \
25fe55af 4413 while (d == dend) \
fa9a63c5
RM
4414 { \
4415 /* End of string2 => fail. */ \
25fe55af
RS
4416 if (dend == end_match_2) \
4417 goto fail; \
4bb91c68 4418 /* End of string1 => advance to string2. */ \
25fe55af 4419 d = string2; \
fa9a63c5
RM
4420 dend = end_match_2; \
4421 }
4422
f1ad044f
SM
4423/* Call before fetching a char with *d if you already checked other limits.
4424 This is meant for use in lookahead operations like wordend, etc..
4425 where we might need to look at parts of the string that might be
4426 outside of the LIMITs (i.e past `stop'). */
4427#define PREFETCH_NOLIMIT() \
4428 if (d == end1) \
4429 { \
4430 d = string2; \
4431 dend = end_match_2; \
4432 } \
fa9a63c5
RM
4433
4434/* Test if at very beginning or at very end of the virtual concatenation
25fe55af 4435 of `string1' and `string2'. If only one string, it's `string2'. */
fa9a63c5 4436#define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
5e69f11e 4437#define AT_STRINGS_END(d) ((d) == end2)
fa9a63c5
RM
4438
4439
4440/* Test if D points to a character which is word-constituent. We have
4441 two special cases to check for: if past the end of string1, look at
4442 the first character in string2; and if before the beginning of
4443 string2, look at the last character in string1. */
4444#define WORDCHAR_P(d) \
4445 (SYNTAX ((d) == end1 ? *string2 \
25fe55af 4446 : (d) == string2 - 1 ? *(end1 - 1) : *(d)) \
fa9a63c5
RM
4447 == Sword)
4448
9121ca40 4449/* Disabled due to a compiler bug -- see comment at case wordbound */
b18215fc
RS
4450
4451/* The comment at case wordbound is following one, but we don't use
4452 AT_WORD_BOUNDARY anymore to support multibyte form.
4453
4454 The DEC Alpha C compiler 3.x generates incorrect code for the
25fe55af
RS
4455 test WORDCHAR_P (d - 1) != WORDCHAR_P (d) in the expansion of
4456 AT_WORD_BOUNDARY, so this code is disabled. Expanding the
b18215fc
RS
4457 macro and introducing temporary variables works around the bug. */
4458
9121ca40 4459#if 0
fa9a63c5
RM
4460/* Test if the character before D and the one at D differ with respect
4461 to being word-constituent. */
4462#define AT_WORD_BOUNDARY(d) \
4463 (AT_STRINGS_BEG (d) || AT_STRINGS_END (d) \
4464 || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
9121ca40 4465#endif
fa9a63c5
RM
4466
4467/* Free everything we malloc. */
4468#ifdef MATCH_MAY_ALLOCATE
0b32bf0e
SM
4469# define FREE_VAR(var) if (var) { REGEX_FREE (var); var = NULL; } else
4470# define FREE_VARIABLES() \
fa9a63c5
RM
4471 do { \
4472 REGEX_FREE_STACK (fail_stack.stack); \
4473 FREE_VAR (regstart); \
4474 FREE_VAR (regend); \
fa9a63c5
RM
4475 FREE_VAR (best_regstart); \
4476 FREE_VAR (best_regend); \
fa9a63c5
RM
4477 } while (0)
4478#else
0b32bf0e 4479# define FREE_VARIABLES() ((void)0) /* Do nothing! But inhibit gcc warning. */
fa9a63c5
RM
4480#endif /* not MATCH_MAY_ALLOCATE */
4481
505bde11
SM
4482\f
4483/* Optimization routines. */
4484
4e8a9132
SM
4485/* If the operation is a match against one or more chars,
4486 return a pointer to the next operation, else return NULL. */
01618498 4487static re_char *
4e8a9132 4488skip_one_char (p)
01618498 4489 re_char *p;
4e8a9132
SM
4490{
4491 switch (SWITCH_ENUM_CAST (*p++))
4492 {
4493 case anychar:
4494 break;
177c0ea7 4495
4e8a9132
SM
4496 case exactn:
4497 p += *p + 1;
4498 break;
4499
4500 case charset_not:
4501 case charset:
4502 if (CHARSET_RANGE_TABLE_EXISTS_P (p - 1))
4503 {
4504 int mcnt;
4505 p = CHARSET_RANGE_TABLE (p - 1);
4506 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4507 p = CHARSET_RANGE_TABLE_END (p, mcnt);
4508 }
4509 else
4510 p += 1 + CHARSET_BITMAP_SIZE (p - 1);
4511 break;
177c0ea7 4512
4e8a9132
SM
4513 case syntaxspec:
4514 case notsyntaxspec:
1fb352e0 4515#ifdef emacs
4e8a9132
SM
4516 case categoryspec:
4517 case notcategoryspec:
4518#endif /* emacs */
4519 p++;
4520 break;
4521
4522 default:
4523 p = NULL;
4524 }
4525 return p;
4526}
4527
4528
505bde11 4529/* Jump over non-matching operations. */
275a3409 4530static re_char *
4e8a9132 4531skip_noops (p, pend)
275a3409 4532 re_char *p, *pend;
505bde11
SM
4533{
4534 int mcnt;
4535 while (p < pend)
4536 {
4537 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p))
4538 {
4539 case start_memory:
505bde11
SM
4540 case stop_memory:
4541 p += 2; break;
4542 case no_op:
4543 p += 1; break;
4544 case jump:
4545 p += 1;
4546 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4547 p += mcnt;
4548 break;
4549 default:
4550 return p;
4551 }
4552 }
4553 assert (p == pend);
4554 return p;
4555}
4556
4557/* Non-zero if "p1 matches something" implies "p2 fails". */
4558static int
4559mutually_exclusive_p (bufp, p1, p2)
4560 struct re_pattern_buffer *bufp;
275a3409 4561 re_char *p1, *p2;
505bde11 4562{
4e8a9132 4563 re_opcode_t op2;
2d1675e4 4564 const boolean multibyte = RE_MULTIBYTE_P (bufp);
505bde11
SM
4565 unsigned char *pend = bufp->buffer + bufp->used;
4566
4e8a9132 4567 assert (p1 >= bufp->buffer && p1 < pend
505bde11
SM
4568 && p2 >= bufp->buffer && p2 <= pend);
4569
4570 /* Skip over open/close-group commands.
4571 If what follows this loop is a ...+ construct,
4572 look at what begins its body, since we will have to
4573 match at least one of that. */
4e8a9132
SM
4574 p2 = skip_noops (p2, pend);
4575 /* The same skip can be done for p1, except that this function
4576 is only used in the case where p1 is a simple match operator. */
4577 /* p1 = skip_noops (p1, pend); */
4578
4579 assert (p1 >= bufp->buffer && p1 < pend
4580 && p2 >= bufp->buffer && p2 <= pend);
4581
4582 op2 = p2 == pend ? succeed : *p2;
4583
4584 switch (SWITCH_ENUM_CAST (op2))
505bde11 4585 {
4e8a9132
SM
4586 case succeed:
4587 case endbuf:
4588 /* If we're at the end of the pattern, we can change. */
4589 if (skip_one_char (p1))
505bde11 4590 {
505bde11
SM
4591 DEBUG_PRINT1 (" End of pattern: fast loop.\n");
4592 return 1;
505bde11 4593 }
4e8a9132 4594 break;
177c0ea7 4595
4e8a9132 4596 case endline:
4e8a9132
SM
4597 case exactn:
4598 {
01618498 4599 register re_wchar_t c
4e8a9132 4600 = (re_opcode_t) *p2 == endline ? '\n'
411e4203 4601 : RE_STRING_CHAR (p2 + 2, pend - p2 - 2);
505bde11 4602
4e8a9132
SM
4603 if ((re_opcode_t) *p1 == exactn)
4604 {
4605 if (c != RE_STRING_CHAR (p1 + 2, pend - p1 - 2))
4606 {
4607 DEBUG_PRINT3 (" '%c' != '%c' => fast loop.\n", c, p1[2]);
4608 return 1;
4609 }
4610 }
505bde11 4611
4e8a9132
SM
4612 else if ((re_opcode_t) *p1 == charset
4613 || (re_opcode_t) *p1 == charset_not)
4614 {
4615 int not = (re_opcode_t) *p1 == charset_not;
505bde11 4616
4e8a9132
SM
4617 /* Test if C is listed in charset (or charset_not)
4618 at `p1'. */
4619 if (SINGLE_BYTE_CHAR_P (c))
4620 {
4621 if (c < CHARSET_BITMAP_SIZE (p1) * BYTEWIDTH
4622 && p1[2 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
4623 not = !not;
4624 }
4625 else if (CHARSET_RANGE_TABLE_EXISTS_P (p1))
4626 CHARSET_LOOKUP_RANGE_TABLE (not, c, p1);
505bde11 4627
4e8a9132
SM
4628 /* `not' is equal to 1 if c would match, which means
4629 that we can't change to pop_failure_jump. */
4630 if (!not)
4631 {
4632 DEBUG_PRINT1 (" No match => fast loop.\n");
4633 return 1;
4634 }
4635 }
4636 else if ((re_opcode_t) *p1 == anychar
4637 && c == '\n')
4638 {
4639 DEBUG_PRINT1 (" . != \\n => fast loop.\n");
4640 return 1;
4641 }
4642 }
4643 break;
505bde11 4644
4e8a9132 4645 case charset:
4e8a9132
SM
4646 {
4647 if ((re_opcode_t) *p1 == exactn)
4648 /* Reuse the code above. */
4649 return mutually_exclusive_p (bufp, p2, p1);
505bde11 4650
505bde11
SM
4651 /* It is hard to list up all the character in charset
4652 P2 if it includes multibyte character. Give up in
4653 such case. */
4654 else if (!multibyte || !CHARSET_RANGE_TABLE_EXISTS_P (p2))
4655 {
4656 /* Now, we are sure that P2 has no range table.
4657 So, for the size of bitmap in P2, `p2[1]' is
4658 enough. But P1 may have range table, so the
4659 size of bitmap table of P1 is extracted by
4660 using macro `CHARSET_BITMAP_SIZE'.
4661
4662 Since we know that all the character listed in
4663 P2 is ASCII, it is enough to test only bitmap
4664 table of P1. */
4665
411e4203 4666 if ((re_opcode_t) *p1 == charset)
505bde11
SM
4667 {
4668 int idx;
4669 /* We win if the charset inside the loop
4670 has no overlap with the one after the loop. */
4671 for (idx = 0;
4672 (idx < (int) p2[1]
4673 && idx < CHARSET_BITMAP_SIZE (p1));
4674 idx++)
4675 if ((p2[2 + idx] & p1[2 + idx]) != 0)
4676 break;
4677
4678 if (idx == p2[1]
4679 || idx == CHARSET_BITMAP_SIZE (p1))
4680 {
4681 DEBUG_PRINT1 (" No match => fast loop.\n");
4682 return 1;
4683 }
4684 }
411e4203 4685 else if ((re_opcode_t) *p1 == charset_not)
505bde11
SM
4686 {
4687 int idx;
4688 /* We win if the charset_not inside the loop lists
4689 every character listed in the charset after. */
4690 for (idx = 0; idx < (int) p2[1]; idx++)
4691 if (! (p2[2 + idx] == 0
4692 || (idx < CHARSET_BITMAP_SIZE (p1)
4693 && ((p2[2 + idx] & ~ p1[2 + idx]) == 0))))
4694 break;
4695
4e8a9132
SM
4696 if (idx == p2[1])
4697 {
4698 DEBUG_PRINT1 (" No match => fast loop.\n");
4699 return 1;
4700 }
4701 }
4702 }
4703 }
609b757a 4704 break;
177c0ea7 4705
411e4203
SM
4706 case charset_not:
4707 switch (SWITCH_ENUM_CAST (*p1))
4708 {
4709 case exactn:
4710 case charset:
4711 /* Reuse the code above. */
4712 return mutually_exclusive_p (bufp, p2, p1);
4713 case charset_not:
4714 /* When we have two charset_not, it's very unlikely that
4715 they don't overlap. The union of the two sets of excluded
4716 chars should cover all possible chars, which, as a matter of
4717 fact, is virtually impossible in multibyte buffers. */
36595814 4718 break;
411e4203
SM
4719 }
4720 break;
4721
4e8a9132 4722 case wordend:
669fa600
SM
4723 return ((re_opcode_t) *p1 == syntaxspec && p1[1] == Sword);
4724 case symend:
4e8a9132 4725 return ((re_opcode_t) *p1 == syntaxspec
669fa600
SM
4726 && (p1[1] == Ssymbol || p1[1] == Sword));
4727 case notsyntaxspec:
4728 return ((re_opcode_t) *p1 == syntaxspec && p1[1] == p2[1]);
4e8a9132
SM
4729
4730 case wordbeg:
669fa600
SM
4731 return ((re_opcode_t) *p1 == notsyntaxspec && p1[1] == Sword);
4732 case symbeg:
4e8a9132 4733 return ((re_opcode_t) *p1 == notsyntaxspec
669fa600
SM
4734 && (p1[1] == Ssymbol || p1[1] == Sword));
4735 case syntaxspec:
4736 return ((re_opcode_t) *p1 == notsyntaxspec && p1[1] == p2[1]);
4e8a9132
SM
4737
4738 case wordbound:
4739 return (((re_opcode_t) *p1 == notsyntaxspec
4740 || (re_opcode_t) *p1 == syntaxspec)
4741 && p1[1] == Sword);
4742
1fb352e0 4743#ifdef emacs
4e8a9132
SM
4744 case categoryspec:
4745 return ((re_opcode_t) *p1 == notcategoryspec && p1[1] == p2[1]);
4746 case notcategoryspec:
4747 return ((re_opcode_t) *p1 == categoryspec && p1[1] == p2[1]);
4748#endif /* emacs */
4749
4750 default:
4751 ;
505bde11
SM
4752 }
4753
4754 /* Safe default. */
4755 return 0;
4756}
4757
fa9a63c5
RM
4758\f
4759/* Matching routines. */
4760
25fe55af 4761#ifndef emacs /* Emacs never uses this. */
fa9a63c5
RM
4762/* re_match is like re_match_2 except it takes only a single string. */
4763
4764int
4765re_match (bufp, string, size, pos, regs)
4766 struct re_pattern_buffer *bufp;
4767 const char *string;
4768 int size, pos;
4769 struct re_registers *regs;
4770{
4bb91c68 4771 int result = re_match_2_internal (bufp, NULL, 0, (re_char*) string, size,
fa9a63c5 4772 pos, regs, size);
0b32bf0e 4773# if defined C_ALLOCA && !defined REGEX_MALLOC
fa9a63c5 4774 alloca (0);
0b32bf0e 4775# endif
fa9a63c5
RM
4776 return result;
4777}
c0f9ea08 4778WEAK_ALIAS (__re_match, re_match)
fa9a63c5
RM
4779#endif /* not emacs */
4780
b18215fc
RS
4781#ifdef emacs
4782/* In Emacs, this is the string or buffer in which we
25fe55af 4783 are matching. It is used for looking up syntax properties. */
b18215fc
RS
4784Lisp_Object re_match_object;
4785#endif
fa9a63c5
RM
4786
4787/* re_match_2 matches the compiled pattern in BUFP against the
4788 the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
4789 and SIZE2, respectively). We start matching at POS, and stop
4790 matching at STOP.
5e69f11e 4791
fa9a63c5 4792 If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
25fe55af 4793 store offsets for the substring each group matched in REGS. See the
fa9a63c5
RM
4794 documentation for exactly how many groups we fill.
4795
4796 We return -1 if no match, -2 if an internal error (such as the
25fe55af 4797 failure stack overflowing). Otherwise, we return the length of the
fa9a63c5
RM
4798 matched substring. */
4799
4800int
4801re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
4802 struct re_pattern_buffer *bufp;
4803 const char *string1, *string2;
4804 int size1, size2;
4805 int pos;
4806 struct re_registers *regs;
4807 int stop;
4808{
b18215fc 4809 int result;
25fe55af 4810
b18215fc 4811#ifdef emacs
cc9b4df2
KH
4812 int charpos;
4813 gl_state.object = re_match_object;
99633e97 4814 charpos = SYNTAX_TABLE_BYTE_TO_CHAR (POS_AS_IN_BUFFER (pos));
cc9b4df2 4815 SETUP_SYNTAX_TABLE_FOR_OBJECT (re_match_object, charpos, 1);
b18215fc
RS
4816#endif
4817
4bb91c68
SM
4818 result = re_match_2_internal (bufp, (re_char*) string1, size1,
4819 (re_char*) string2, size2,
cc9b4df2 4820 pos, regs, stop);
0b32bf0e 4821#if defined C_ALLOCA && !defined REGEX_MALLOC
fa9a63c5 4822 alloca (0);
a60198e5 4823#endif
fa9a63c5
RM
4824 return result;
4825}
c0f9ea08 4826WEAK_ALIAS (__re_match_2, re_match_2)
fa9a63c5
RM
4827
4828/* This is a separate function so that we can force an alloca cleanup
25fe55af 4829 afterwards. */
fa9a63c5
RM
4830static int
4831re_match_2_internal (bufp, string1, size1, string2, size2, pos, regs, stop)
4832 struct re_pattern_buffer *bufp;
66f0296e 4833 re_char *string1, *string2;
fa9a63c5
RM
4834 int size1, size2;
4835 int pos;
4836 struct re_registers *regs;
4837 int stop;
4838{
4839 /* General temporaries. */
4840 int mcnt;
01618498 4841 size_t reg;
66f0296e 4842 boolean not;
fa9a63c5
RM
4843
4844 /* Just past the end of the corresponding string. */
66f0296e 4845 re_char *end1, *end2;
fa9a63c5
RM
4846
4847 /* Pointers into string1 and string2, just past the last characters in
25fe55af 4848 each to consider matching. */
66f0296e 4849 re_char *end_match_1, *end_match_2;
fa9a63c5
RM
4850
4851 /* Where we are in the data, and the end of the current string. */
66f0296e 4852 re_char *d, *dend;
5e69f11e 4853
99633e97
SM
4854 /* Used sometimes to remember where we were before starting matching
4855 an operator so that we can go back in case of failure. This "atomic"
4856 behavior of matching opcodes is indispensable to the correctness
4857 of the on_failure_keep_string_jump optimization. */
4858 re_char *dfail;
4859
fa9a63c5 4860 /* Where we are in the pattern, and the end of the pattern. */
01618498
SM
4861 re_char *p = bufp->buffer;
4862 re_char *pend = p + bufp->used;
fa9a63c5 4863
25fe55af 4864 /* We use this to map every character in the string. */
6676cb1c 4865 RE_TRANSLATE_TYPE translate = bufp->translate;
fa9a63c5 4866
25fe55af 4867 /* Nonzero if we have to concern multibyte character. */
2d1675e4 4868 const boolean multibyte = RE_MULTIBYTE_P (bufp);
b18215fc 4869
fa9a63c5
RM
4870 /* Failure point stack. Each place that can handle a failure further
4871 down the line pushes a failure point on this stack. It consists of
505bde11 4872 regstart, and regend for all registers corresponding to
fa9a63c5
RM
4873 the subexpressions we're currently inside, plus the number of such
4874 registers, and, finally, two char *'s. The first char * is where
4875 to resume scanning the pattern; the second one is where to resume
505bde11 4876 scanning the strings. */
25fe55af 4877#ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
fa9a63c5
RM
4878 fail_stack_type fail_stack;
4879#endif
4880#ifdef DEBUG
fa9a63c5
RM
4881 unsigned nfailure_points_pushed = 0, nfailure_points_popped = 0;
4882#endif
4883
0b32bf0e 4884#if defined REL_ALLOC && defined REGEX_MALLOC
fa9a63c5
RM
4885 /* This holds the pointer to the failure stack, when
4886 it is allocated relocatably. */
4887 fail_stack_elt_t *failure_stack_ptr;
99633e97 4888#endif
fa9a63c5
RM
4889
4890 /* We fill all the registers internally, independent of what we
25fe55af 4891 return, for use in backreferences. The number here includes
fa9a63c5 4892 an element for register zero. */
4bb91c68 4893 size_t num_regs = bufp->re_nsub + 1;
5e69f11e 4894
fa9a63c5
RM
4895 /* Information on the contents of registers. These are pointers into
4896 the input strings; they record just what was matched (on this
4897 attempt) by a subexpression part of the pattern, that is, the
4898 regnum-th regstart pointer points to where in the pattern we began
4899 matching and the regnum-th regend points to right after where we
4900 stopped matching the regnum-th subexpression. (The zeroth register
4901 keeps track of what the whole pattern matches.) */
4902#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
66f0296e 4903 re_char **regstart, **regend;
fa9a63c5
RM
4904#endif
4905
fa9a63c5 4906 /* The following record the register info as found in the above
5e69f11e 4907 variables when we find a match better than any we've seen before.
fa9a63c5
RM
4908 This happens as we backtrack through the failure points, which in
4909 turn happens only if we have not yet matched the entire string. */
4910 unsigned best_regs_set = false;
4911#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
66f0296e 4912 re_char **best_regstart, **best_regend;
fa9a63c5 4913#endif
5e69f11e 4914
fa9a63c5
RM
4915 /* Logically, this is `best_regend[0]'. But we don't want to have to
4916 allocate space for that if we're not allocating space for anything
25fe55af 4917 else (see below). Also, we never need info about register 0 for
fa9a63c5
RM
4918 any of the other register vectors, and it seems rather a kludge to
4919 treat `best_regend' differently than the rest. So we keep track of
4920 the end of the best match so far in a separate variable. We
4921 initialize this to NULL so that when we backtrack the first time
4922 and need to test it, it's not garbage. */
66f0296e 4923 re_char *match_end = NULL;
fa9a63c5 4924
fa9a63c5
RM
4925#ifdef DEBUG
4926 /* Counts the total number of registers pushed. */
5e69f11e 4927 unsigned num_regs_pushed = 0;
fa9a63c5
RM
4928#endif
4929
4930 DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
5e69f11e 4931
fa9a63c5 4932 INIT_FAIL_STACK ();
5e69f11e 4933
fa9a63c5
RM
4934#ifdef MATCH_MAY_ALLOCATE
4935 /* Do not bother to initialize all the register variables if there are
4936 no groups in the pattern, as it takes a fair amount of time. If
4937 there are groups, we include space for register 0 (the whole
4938 pattern), even though we never use it, since it simplifies the
4939 array indexing. We should fix this. */
4940 if (bufp->re_nsub)
4941 {
66f0296e
SM
4942 regstart = REGEX_TALLOC (num_regs, re_char *);
4943 regend = REGEX_TALLOC (num_regs, re_char *);
4944 best_regstart = REGEX_TALLOC (num_regs, re_char *);
4945 best_regend = REGEX_TALLOC (num_regs, re_char *);
fa9a63c5 4946
505bde11 4947 if (!(regstart && regend && best_regstart && best_regend))
25fe55af
RS
4948 {
4949 FREE_VARIABLES ();
4950 return -2;
4951 }
fa9a63c5
RM
4952 }
4953 else
4954 {
4955 /* We must initialize all our variables to NULL, so that
25fe55af 4956 `FREE_VARIABLES' doesn't try to free them. */
505bde11 4957 regstart = regend = best_regstart = best_regend = NULL;
fa9a63c5
RM
4958 }
4959#endif /* MATCH_MAY_ALLOCATE */
4960
4961 /* The starting position is bogus. */
4962 if (pos < 0 || pos > size1 + size2)
4963 {
4964 FREE_VARIABLES ();
4965 return -1;
4966 }
5e69f11e 4967
fa9a63c5
RM
4968 /* Initialize subexpression text positions to -1 to mark ones that no
4969 start_memory/stop_memory has been seen for. Also initialize the
4970 register information struct. */
01618498
SM
4971 for (reg = 1; reg < num_regs; reg++)
4972 regstart[reg] = regend[reg] = NULL;
99633e97 4973
fa9a63c5 4974 /* We move `string1' into `string2' if the latter's empty -- but not if
25fe55af 4975 `string1' is null. */
fa9a63c5
RM
4976 if (size2 == 0 && string1 != NULL)
4977 {
4978 string2 = string1;
4979 size2 = size1;
4980 string1 = 0;
4981 size1 = 0;
4982 }
4983 end1 = string1 + size1;
4984 end2 = string2 + size2;
4985
5e69f11e 4986 /* `p' scans through the pattern as `d' scans through the data.
fa9a63c5
RM
4987 `dend' is the end of the input string that `d' points within. `d'
4988 is advanced into the following input string whenever necessary, but
4989 this happens before fetching; therefore, at the beginning of the
4990 loop, `d' can be pointing at the end of a string, but it cannot
4991 equal `string2'. */
419d1c74 4992 if (pos >= size1)
fa9a63c5 4993 {
419d1c74
SM
4994 /* Only match within string2. */
4995 d = string2 + pos - size1;
4996 dend = end_match_2 = string2 + stop - size1;
4997 end_match_1 = end1; /* Just to give it a value. */
fa9a63c5
RM
4998 }
4999 else
5000 {
f1ad044f 5001 if (stop < size1)
419d1c74
SM
5002 {
5003 /* Only match within string1. */
5004 end_match_1 = string1 + stop;
5005 /* BEWARE!
5006 When we reach end_match_1, PREFETCH normally switches to string2.
5007 But in the present case, this means that just doing a PREFETCH
5008 makes us jump from `stop' to `gap' within the string.
5009 What we really want here is for the search to stop as
5010 soon as we hit end_match_1. That's why we set end_match_2
5011 to end_match_1 (since PREFETCH fails as soon as we hit
5012 end_match_2). */
5013 end_match_2 = end_match_1;
5014 }
5015 else
f1ad044f
SM
5016 { /* It's important to use this code when stop == size so that
5017 moving `d' from end1 to string2 will not prevent the d == dend
5018 check from catching the end of string. */
419d1c74
SM
5019 end_match_1 = end1;
5020 end_match_2 = string2 + stop - size1;
5021 }
5022 d = string1 + pos;
5023 dend = end_match_1;
fa9a63c5
RM
5024 }
5025
5026 DEBUG_PRINT1 ("The compiled pattern is: ");
5027 DEBUG_PRINT_COMPILED_PATTERN (bufp, p, pend);
5028 DEBUG_PRINT1 ("The string to match is: `");
5029 DEBUG_PRINT_DOUBLE_STRING (d, string1, size1, string2, size2);
5030 DEBUG_PRINT1 ("'\n");
5e69f11e 5031
25fe55af 5032 /* This loops over pattern commands. It exits by returning from the
fa9a63c5
RM
5033 function if the match is complete, or it drops through if the match
5034 fails at this starting point in the input data. */
5035 for (;;)
5036 {
505bde11 5037 DEBUG_PRINT2 ("\n%p: ", p);
fa9a63c5
RM
5038
5039 if (p == pend)
5040 { /* End of pattern means we might have succeeded. */
25fe55af 5041 DEBUG_PRINT1 ("end of pattern ... ");
5e69f11e 5042
fa9a63c5 5043 /* If we haven't matched the entire string, and we want the
25fe55af
RS
5044 longest match, try backtracking. */
5045 if (d != end_match_2)
fa9a63c5
RM
5046 {
5047 /* 1 if this match ends in the same string (string1 or string2)
5048 as the best previous match. */
5e69f11e 5049 boolean same_str_p = (FIRST_STRING_P (match_end)
99633e97 5050 == FIRST_STRING_P (d));
fa9a63c5
RM
5051 /* 1 if this match is the best seen so far. */
5052 boolean best_match_p;
5053
5054 /* AIX compiler got confused when this was combined
25fe55af 5055 with the previous declaration. */
fa9a63c5
RM
5056 if (same_str_p)
5057 best_match_p = d > match_end;
5058 else
99633e97 5059 best_match_p = !FIRST_STRING_P (d);
fa9a63c5 5060
25fe55af
RS
5061 DEBUG_PRINT1 ("backtracking.\n");
5062
5063 if (!FAIL_STACK_EMPTY ())
5064 { /* More failure points to try. */
5065
5066 /* If exceeds best match so far, save it. */
5067 if (!best_regs_set || best_match_p)
5068 {
5069 best_regs_set = true;
5070 match_end = d;
5071
5072 DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
5073
01618498 5074 for (reg = 1; reg < num_regs; reg++)
25fe55af 5075 {
01618498
SM
5076 best_regstart[reg] = regstart[reg];
5077 best_regend[reg] = regend[reg];
25fe55af
RS
5078 }
5079 }
5080 goto fail;
5081 }
5082
5083 /* If no failure points, don't restore garbage. And if
5084 last match is real best match, don't restore second
5085 best one. */
5086 else if (best_regs_set && !best_match_p)
5087 {
5088 restore_best_regs:
5089 /* Restore best match. It may happen that `dend ==
5090 end_match_1' while the restored d is in string2.
5091 For example, the pattern `x.*y.*z' against the
5092 strings `x-' and `y-z-', if the two strings are
5093 not consecutive in memory. */
5094 DEBUG_PRINT1 ("Restoring best registers.\n");
5095
5096 d = match_end;
5097 dend = ((d >= string1 && d <= end1)
5098 ? end_match_1 : end_match_2);
fa9a63c5 5099
01618498 5100 for (reg = 1; reg < num_regs; reg++)
fa9a63c5 5101 {
01618498
SM
5102 regstart[reg] = best_regstart[reg];
5103 regend[reg] = best_regend[reg];
fa9a63c5 5104 }
25fe55af
RS
5105 }
5106 } /* d != end_match_2 */
fa9a63c5
RM
5107
5108 succeed_label:
25fe55af 5109 DEBUG_PRINT1 ("Accepting match.\n");
fa9a63c5 5110
25fe55af
RS
5111 /* If caller wants register contents data back, do it. */
5112 if (regs && !bufp->no_sub)
fa9a63c5 5113 {
25fe55af
RS
5114 /* Have the register data arrays been allocated? */
5115 if (bufp->regs_allocated == REGS_UNALLOCATED)
5116 { /* No. So allocate them with malloc. We need one
5117 extra element beyond `num_regs' for the `-1' marker
5118 GNU code uses. */
5119 regs->num_regs = MAX (RE_NREGS, num_regs + 1);
5120 regs->start = TALLOC (regs->num_regs, regoff_t);
5121 regs->end = TALLOC (regs->num_regs, regoff_t);
5122 if (regs->start == NULL || regs->end == NULL)
fa9a63c5
RM
5123 {
5124 FREE_VARIABLES ();
5125 return -2;
5126 }
25fe55af
RS
5127 bufp->regs_allocated = REGS_REALLOCATE;
5128 }
5129 else if (bufp->regs_allocated == REGS_REALLOCATE)
5130 { /* Yes. If we need more elements than were already
5131 allocated, reallocate them. If we need fewer, just
5132 leave it alone. */
5133 if (regs->num_regs < num_regs + 1)
5134 {
5135 regs->num_regs = num_regs + 1;
5136 RETALLOC (regs->start, regs->num_regs, regoff_t);
5137 RETALLOC (regs->end, regs->num_regs, regoff_t);
5138 if (regs->start == NULL || regs->end == NULL)
fa9a63c5
RM
5139 {
5140 FREE_VARIABLES ();
5141 return -2;
5142 }
25fe55af
RS
5143 }
5144 }
5145 else
fa9a63c5
RM
5146 {
5147 /* These braces fend off a "empty body in an else-statement"
25fe55af 5148 warning under GCC when assert expands to nothing. */
fa9a63c5
RM
5149 assert (bufp->regs_allocated == REGS_FIXED);
5150 }
5151
25fe55af
RS
5152 /* Convert the pointer data in `regstart' and `regend' to
5153 indices. Register zero has to be set differently,
5154 since we haven't kept track of any info for it. */
5155 if (regs->num_regs > 0)
5156 {
5157 regs->start[0] = pos;
99633e97 5158 regs->end[0] = POINTER_TO_OFFSET (d);
25fe55af 5159 }
5e69f11e 5160
25fe55af
RS
5161 /* Go through the first `min (num_regs, regs->num_regs)'
5162 registers, since that is all we initialized. */
01618498 5163 for (reg = 1; reg < MIN (num_regs, regs->num_regs); reg++)
fa9a63c5 5164 {
01618498
SM
5165 if (REG_UNSET (regstart[reg]) || REG_UNSET (regend[reg]))
5166 regs->start[reg] = regs->end[reg] = -1;
25fe55af
RS
5167 else
5168 {
01618498
SM
5169 regs->start[reg]
5170 = (regoff_t) POINTER_TO_OFFSET (regstart[reg]);
5171 regs->end[reg]
5172 = (regoff_t) POINTER_TO_OFFSET (regend[reg]);
25fe55af 5173 }
fa9a63c5 5174 }
5e69f11e 5175
25fe55af
RS
5176 /* If the regs structure we return has more elements than
5177 were in the pattern, set the extra elements to -1. If
5178 we (re)allocated the registers, this is the case,
5179 because we always allocate enough to have at least one
5180 -1 at the end. */
01618498
SM
5181 for (reg = num_regs; reg < regs->num_regs; reg++)
5182 regs->start[reg] = regs->end[reg] = -1;
fa9a63c5
RM
5183 } /* regs && !bufp->no_sub */
5184
25fe55af
RS
5185 DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
5186 nfailure_points_pushed, nfailure_points_popped,
5187 nfailure_points_pushed - nfailure_points_popped);
5188 DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed);
fa9a63c5 5189
99633e97 5190 mcnt = POINTER_TO_OFFSET (d) - pos;
fa9a63c5 5191
25fe55af 5192 DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt);
fa9a63c5 5193
25fe55af
RS
5194 FREE_VARIABLES ();
5195 return mcnt;
5196 }
fa9a63c5 5197
25fe55af 5198 /* Otherwise match next pattern command. */
fa9a63c5
RM
5199 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
5200 {
25fe55af
RS
5201 /* Ignore these. Used to ignore the n of succeed_n's which
5202 currently have n == 0. */
5203 case no_op:
5204 DEBUG_PRINT1 ("EXECUTING no_op.\n");
5205 break;
fa9a63c5
RM
5206
5207 case succeed:
25fe55af 5208 DEBUG_PRINT1 ("EXECUTING succeed.\n");
fa9a63c5
RM
5209 goto succeed_label;
5210
25fe55af
RS
5211 /* Match the next n pattern characters exactly. The following
5212 byte in the pattern defines n, and the n bytes after that
5213 are the characters to match. */
fa9a63c5
RM
5214 case exactn:
5215 mcnt = *p++;
25fe55af 5216 DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt);
fa9a63c5 5217
99633e97
SM
5218 /* Remember the start point to rollback upon failure. */
5219 dfail = d;
5220
25fe55af
RS
5221 /* This is written out as an if-else so we don't waste time
5222 testing `translate' inside the loop. */
28703c16 5223 if (RE_TRANSLATE_P (translate))
fa9a63c5 5224 {
e934739e
RS
5225 if (multibyte)
5226 do
5227 {
5228 int pat_charlen, buf_charlen;
e71b1971 5229 unsigned int pat_ch, buf_ch;
e934739e
RS
5230
5231 PREFETCH ();
5232 pat_ch = STRING_CHAR_AND_LENGTH (p, pend - p, pat_charlen);
5233 buf_ch = STRING_CHAR_AND_LENGTH (d, dend - d, buf_charlen);
5234
5235 if (RE_TRANSLATE (translate, buf_ch)
5236 != pat_ch)
99633e97
SM
5237 {
5238 d = dfail;
5239 goto fail;
5240 }
e934739e
RS
5241
5242 p += pat_charlen;
5243 d += buf_charlen;
5244 mcnt -= pat_charlen;
5245 }
5246 while (mcnt > 0);
5247 else
e934739e
RS
5248 do
5249 {
5250 PREFETCH ();
66f0296e 5251 if (RE_TRANSLATE (translate, *d) != *p++)
99633e97
SM
5252 {
5253 d = dfail;
5254 goto fail;
5255 }
33c46939 5256 d++;
e934739e
RS
5257 }
5258 while (--mcnt);
fa9a63c5
RM
5259 }
5260 else
5261 {
5262 do
5263 {
5264 PREFETCH ();
99633e97
SM
5265 if (*d++ != *p++)
5266 {
5267 d = dfail;
5268 goto fail;
5269 }
fa9a63c5
RM
5270 }
5271 while (--mcnt);
5272 }
25fe55af 5273 break;
fa9a63c5
RM
5274
5275
25fe55af 5276 /* Match any character except possibly a newline or a null. */
fa9a63c5 5277 case anychar:
e934739e
RS
5278 {
5279 int buf_charlen;
01618498 5280 re_wchar_t buf_ch;
fa9a63c5 5281
e934739e 5282 DEBUG_PRINT1 ("EXECUTING anychar.\n");
fa9a63c5 5283
e934739e 5284 PREFETCH ();
2d1675e4 5285 buf_ch = RE_STRING_CHAR_AND_LENGTH (d, dend - d, buf_charlen);
e934739e
RS
5286 buf_ch = TRANSLATE (buf_ch);
5287
5288 if ((!(bufp->syntax & RE_DOT_NEWLINE)
5289 && buf_ch == '\n')
5290 || ((bufp->syntax & RE_DOT_NOT_NULL)
5291 && buf_ch == '\000'))
5292 goto fail;
5293
e934739e
RS
5294 DEBUG_PRINT2 (" Matched `%d'.\n", *d);
5295 d += buf_charlen;
5296 }
fa9a63c5
RM
5297 break;
5298
5299
5300 case charset:
5301 case charset_not:
5302 {
b18215fc 5303 register unsigned int c;
fa9a63c5 5304 boolean not = (re_opcode_t) *(p - 1) == charset_not;
b18215fc
RS
5305 int len;
5306
5307 /* Start of actual range_table, or end of bitmap if there is no
5308 range table. */
01618498 5309 re_char *range_table;
b18215fc 5310
96cc36cc 5311 /* Nonzero if there is a range table. */
b18215fc
RS
5312 int range_table_exists;
5313
96cc36cc
RS
5314 /* Number of ranges of range table. This is not included
5315 in the initial byte-length of the command. */
5316 int count = 0;
fa9a63c5 5317
25fe55af 5318 DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : "");
fa9a63c5 5319
b18215fc 5320 range_table_exists = CHARSET_RANGE_TABLE_EXISTS_P (&p[-1]);
96cc36cc 5321
b18215fc 5322 if (range_table_exists)
96cc36cc
RS
5323 {
5324 range_table = CHARSET_RANGE_TABLE (&p[-1]); /* Past the bitmap. */
5325 EXTRACT_NUMBER_AND_INCR (count, range_table);
5326 }
b18215fc 5327
2d1675e4
SM
5328 PREFETCH ();
5329 c = RE_STRING_CHAR_AND_LENGTH (d, dend - d, len);
5330 c = TRANSLATE (c); /* The character to match. */
b18215fc
RS
5331
5332 if (SINGLE_BYTE_CHAR_P (c))
5333 { /* Lookup bitmap. */
b18215fc
RS
5334 /* Cast to `unsigned' instead of `unsigned char' in
5335 case the bit list is a full 32 bytes long. */
5336 if (c < (unsigned) (CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH)
96cc36cc
RS
5337 && p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
5338 not = !not;
b18215fc 5339 }
96cc36cc 5340#ifdef emacs
b18215fc 5341 else if (range_table_exists)
96cc36cc
RS
5342 {
5343 int class_bits = CHARSET_RANGE_TABLE_BITS (&p[-1]);
5344
14473664
SM
5345 if ( (class_bits & BIT_LOWER && ISLOWER (c))
5346 | (class_bits & BIT_MULTIBYTE)
96cc36cc
RS
5347 | (class_bits & BIT_PUNCT && ISPUNCT (c))
5348 | (class_bits & BIT_SPACE && ISSPACE (c))
5349 | (class_bits & BIT_UPPER && ISUPPER (c))
5350 | (class_bits & BIT_WORD && ISWORD (c)))
5351 not = !not;
5352 else
5353 CHARSET_LOOKUP_RANGE_TABLE_RAW (not, c, range_table, count);
5354 }
5355#endif /* emacs */
fa9a63c5 5356
96cc36cc
RS
5357 if (range_table_exists)
5358 p = CHARSET_RANGE_TABLE_END (range_table, count);
5359 else
5360 p += CHARSET_BITMAP_SIZE (&p[-1]) + 1;
fa9a63c5
RM
5361
5362 if (!not) goto fail;
5e69f11e 5363
b18215fc 5364 d += len;
fa9a63c5
RM
5365 break;
5366 }
5367
5368
25fe55af 5369 /* The beginning of a group is represented by start_memory.
505bde11 5370 The argument is the register number. The text
25fe55af
RS
5371 matched within the group is recorded (in the internal
5372 registers data structure) under the register number. */
5373 case start_memory:
505bde11
SM
5374 DEBUG_PRINT2 ("EXECUTING start_memory %d:\n", *p);
5375
5376 /* In case we need to undo this operation (via backtracking). */
5377 PUSH_FAILURE_REG ((unsigned int)*p);
fa9a63c5 5378
25fe55af 5379 regstart[*p] = d;
4bb91c68 5380 regend[*p] = NULL; /* probably unnecessary. -sm */
fa9a63c5
RM
5381 DEBUG_PRINT2 (" regstart: %d\n", POINTER_TO_OFFSET (regstart[*p]));
5382
25fe55af 5383 /* Move past the register number and inner group count. */
505bde11 5384 p += 1;
25fe55af 5385 break;
fa9a63c5
RM
5386
5387
25fe55af 5388 /* The stop_memory opcode represents the end of a group. Its
505bde11 5389 argument is the same as start_memory's: the register number. */
fa9a63c5 5390 case stop_memory:
505bde11
SM
5391 DEBUG_PRINT2 ("EXECUTING stop_memory %d:\n", *p);
5392
5393 assert (!REG_UNSET (regstart[*p]));
5394 /* Strictly speaking, there should be code such as:
177c0ea7 5395
0b32bf0e 5396 assert (REG_UNSET (regend[*p]));
505bde11
SM
5397 PUSH_FAILURE_REGSTOP ((unsigned int)*p);
5398
5399 But the only info to be pushed is regend[*p] and it is known to
5400 be UNSET, so there really isn't anything to push.
5401 Not pushing anything, on the other hand deprives us from the
5402 guarantee that regend[*p] is UNSET since undoing this operation
5403 will not reset its value properly. This is not important since
5404 the value will only be read on the next start_memory or at
5405 the very end and both events can only happen if this stop_memory
5406 is *not* undone. */
fa9a63c5 5407
25fe55af 5408 regend[*p] = d;
fa9a63c5
RM
5409 DEBUG_PRINT2 (" regend: %d\n", POINTER_TO_OFFSET (regend[*p]));
5410
25fe55af 5411 /* Move past the register number and the inner group count. */
505bde11 5412 p += 1;
25fe55af 5413 break;
fa9a63c5
RM
5414
5415
5416 /* \<digit> has been turned into a `duplicate' command which is
25fe55af
RS
5417 followed by the numeric value of <digit> as the register number. */
5418 case duplicate:
fa9a63c5 5419 {
66f0296e 5420 register re_char *d2, *dend2;
25fe55af 5421 int regno = *p++; /* Get which register to match against. */
fa9a63c5
RM
5422 DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno);
5423
25fe55af
RS
5424 /* Can't back reference a group which we've never matched. */
5425 if (REG_UNSET (regstart[regno]) || REG_UNSET (regend[regno]))
5426 goto fail;
5e69f11e 5427
25fe55af
RS
5428 /* Where in input to try to start matching. */
5429 d2 = regstart[regno];
5e69f11e 5430
99633e97
SM
5431 /* Remember the start point to rollback upon failure. */
5432 dfail = d;
5433
25fe55af
RS
5434 /* Where to stop matching; if both the place to start and
5435 the place to stop matching are in the same string, then
5436 set to the place to stop, otherwise, for now have to use
5437 the end of the first string. */
fa9a63c5 5438
25fe55af 5439 dend2 = ((FIRST_STRING_P (regstart[regno])
fa9a63c5
RM
5440 == FIRST_STRING_P (regend[regno]))
5441 ? regend[regno] : end_match_1);
5442 for (;;)
5443 {
5444 /* If necessary, advance to next segment in register
25fe55af 5445 contents. */
fa9a63c5
RM
5446 while (d2 == dend2)
5447 {
5448 if (dend2 == end_match_2) break;
5449 if (dend2 == regend[regno]) break;
5450
25fe55af
RS
5451 /* End of string1 => advance to string2. */
5452 d2 = string2;
5453 dend2 = regend[regno];
fa9a63c5
RM
5454 }
5455 /* At end of register contents => success */
5456 if (d2 == dend2) break;
5457
5458 /* If necessary, advance to next segment in data. */
5459 PREFETCH ();
5460
5461 /* How many characters left in this segment to match. */
5462 mcnt = dend - d;
5e69f11e 5463
fa9a63c5 5464 /* Want how many consecutive characters we can match in
25fe55af
RS
5465 one shot, so, if necessary, adjust the count. */
5466 if (mcnt > dend2 - d2)
fa9a63c5 5467 mcnt = dend2 - d2;
5e69f11e 5468
fa9a63c5 5469 /* Compare that many; failure if mismatch, else move
25fe55af 5470 past them. */
28703c16 5471 if (RE_TRANSLATE_P (translate)
2d1675e4 5472 ? bcmp_translate (d, d2, mcnt, translate, multibyte)
4bb91c68 5473 : memcmp (d, d2, mcnt))
99633e97
SM
5474 {
5475 d = dfail;
5476 goto fail;
5477 }
fa9a63c5 5478 d += mcnt, d2 += mcnt;
fa9a63c5
RM
5479 }
5480 }
5481 break;
5482
5483
25fe55af 5484 /* begline matches the empty string at the beginning of the string
c0f9ea08 5485 (unless `not_bol' is set in `bufp'), and after newlines. */
fa9a63c5 5486 case begline:
25fe55af 5487 DEBUG_PRINT1 ("EXECUTING begline.\n");
5e69f11e 5488
25fe55af
RS
5489 if (AT_STRINGS_BEG (d))
5490 {
5491 if (!bufp->not_bol) break;
5492 }
419d1c74 5493 else
25fe55af 5494 {
419d1c74
SM
5495 unsigned char c;
5496 GET_CHAR_BEFORE_2 (c, d, string1, end1, string2, end2);
c0f9ea08 5497 if (c == '\n')
419d1c74 5498 break;
25fe55af
RS
5499 }
5500 /* In all other cases, we fail. */
5501 goto fail;
fa9a63c5
RM
5502
5503
25fe55af 5504 /* endline is the dual of begline. */
fa9a63c5 5505 case endline:
25fe55af 5506 DEBUG_PRINT1 ("EXECUTING endline.\n");
fa9a63c5 5507
25fe55af
RS
5508 if (AT_STRINGS_END (d))
5509 {
5510 if (!bufp->not_eol) break;
5511 }
f1ad044f 5512 else
25fe55af 5513 {
f1ad044f 5514 PREFETCH_NOLIMIT ();
c0f9ea08 5515 if (*d == '\n')
f1ad044f 5516 break;
25fe55af
RS
5517 }
5518 goto fail;
fa9a63c5
RM
5519
5520
5521 /* Match at the very beginning of the data. */
25fe55af
RS
5522 case begbuf:
5523 DEBUG_PRINT1 ("EXECUTING begbuf.\n");
5524 if (AT_STRINGS_BEG (d))
5525 break;
5526 goto fail;
fa9a63c5
RM
5527
5528
5529 /* Match at the very end of the data. */
25fe55af
RS
5530 case endbuf:
5531 DEBUG_PRINT1 ("EXECUTING endbuf.\n");
fa9a63c5
RM
5532 if (AT_STRINGS_END (d))
5533 break;
25fe55af 5534 goto fail;
5e69f11e 5535
5e69f11e 5536
25fe55af
RS
5537 /* on_failure_keep_string_jump is used to optimize `.*\n'. It
5538 pushes NULL as the value for the string on the stack. Then
505bde11 5539 `POP_FAILURE_POINT' will keep the current value for the
25fe55af
RS
5540 string, instead of restoring it. To see why, consider
5541 matching `foo\nbar' against `.*\n'. The .* matches the foo;
5542 then the . fails against the \n. But the next thing we want
5543 to do is match the \n against the \n; if we restored the
5544 string value, we would be back at the foo.
5545
5546 Because this is used only in specific cases, we don't need to
5547 check all the things that `on_failure_jump' does, to make
5548 sure the right things get saved on the stack. Hence we don't
5549 share its code. The only reason to push anything on the
5550 stack at all is that otherwise we would have to change
5551 `anychar's code to do something besides goto fail in this
5552 case; that seems worse than this. */
5553 case on_failure_keep_string_jump:
505bde11
SM
5554 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5555 DEBUG_PRINT3 ("EXECUTING on_failure_keep_string_jump %d (to %p):\n",
5556 mcnt, p + mcnt);
fa9a63c5 5557
505bde11
SM
5558 PUSH_FAILURE_POINT (p - 3, NULL);
5559 break;
5560
0683b6fa
SM
5561 /* A nasty loop is introduced by the non-greedy *? and +?.
5562 With such loops, the stack only ever contains one failure point
5563 at a time, so that a plain on_failure_jump_loop kind of
5564 cycle detection cannot work. Worse yet, such a detection
5565 can not only fail to detect a cycle, but it can also wrongly
5566 detect a cycle (between different instantiations of the same
6df42991 5567 loop).
0683b6fa
SM
5568 So the method used for those nasty loops is a little different:
5569 We use a special cycle-detection-stack-frame which is pushed
5570 when the on_failure_jump_nastyloop failure-point is *popped*.
5571 This special frame thus marks the beginning of one iteration
5572 through the loop and we can hence easily check right here
5573 whether something matched between the beginning and the end of
5574 the loop. */
5575 case on_failure_jump_nastyloop:
5576 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5577 DEBUG_PRINT3 ("EXECUTING on_failure_jump_nastyloop %d (to %p):\n",
5578 mcnt, p + mcnt);
5579
5580 assert ((re_opcode_t)p[-4] == no_op);
6df42991
SM
5581 {
5582 int cycle = 0;
5583 CHECK_INFINITE_LOOP (p - 4, d);
5584 if (!cycle)
5585 /* If there's a cycle, just continue without pushing
5586 this failure point. The failure point is the "try again"
5587 option, which shouldn't be tried.
5588 We want (x?)*?y\1z to match both xxyz and xxyxz. */
5589 PUSH_FAILURE_POINT (p - 3, d);
5590 }
0683b6fa
SM
5591 break;
5592
4e8a9132
SM
5593 /* Simple loop detecting on_failure_jump: just check on the
5594 failure stack if the same spot was already hit earlier. */
505bde11
SM
5595 case on_failure_jump_loop:
5596 on_failure:
5597 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5598 DEBUG_PRINT3 ("EXECUTING on_failure_jump_loop %d (to %p):\n",
5599 mcnt, p + mcnt);
6df42991
SM
5600 {
5601 int cycle = 0;
5602 CHECK_INFINITE_LOOP (p - 3, d);
5603 if (cycle)
5604 /* If there's a cycle, get out of the loop, as if the matching
5605 had failed. We used to just `goto fail' here, but that was
5606 aborting the search a bit too early: we want to keep the
5607 empty-loop-match and keep matching after the loop.
5608 We want (x?)*y\1z to match both xxyz and xxyxz. */
5609 p += mcnt;
5610 else
5611 PUSH_FAILURE_POINT (p - 3, d);
5612 }
25fe55af 5613 break;
fa9a63c5
RM
5614
5615
5616 /* Uses of on_failure_jump:
5e69f11e 5617
25fe55af
RS
5618 Each alternative starts with an on_failure_jump that points
5619 to the beginning of the next alternative. Each alternative
5620 except the last ends with a jump that in effect jumps past
5621 the rest of the alternatives. (They really jump to the
5622 ending jump of the following alternative, because tensioning
5623 these jumps is a hassle.)
fa9a63c5 5624
25fe55af
RS
5625 Repeats start with an on_failure_jump that points past both
5626 the repetition text and either the following jump or
5627 pop_failure_jump back to this on_failure_jump. */
fa9a63c5 5628 case on_failure_jump:
5b370c2b 5629 IMMEDIATE_QUIT_CHECK;
25fe55af 5630 EXTRACT_NUMBER_AND_INCR (mcnt, p);
505bde11
SM
5631 DEBUG_PRINT3 ("EXECUTING on_failure_jump %d (to %p):\n",
5632 mcnt, p + mcnt);
25fe55af 5633
505bde11 5634 PUSH_FAILURE_POINT (p -3, d);
25fe55af
RS
5635 break;
5636
4e8a9132 5637 /* This operation is used for greedy *.
505bde11
SM
5638 Compare the beginning of the repeat with what in the
5639 pattern follows its end. If we can establish that there
5640 is nothing that they would both match, i.e., that we
5641 would have to backtrack because of (as in, e.g., `a*a')
5642 then we can use a non-backtracking loop based on
4e8a9132 5643 on_failure_keep_string_jump instead of on_failure_jump. */
505bde11 5644 case on_failure_jump_smart:
5b370c2b 5645 IMMEDIATE_QUIT_CHECK;
25fe55af 5646 EXTRACT_NUMBER_AND_INCR (mcnt, p);
505bde11
SM
5647 DEBUG_PRINT3 ("EXECUTING on_failure_jump_smart %d (to %p).\n",
5648 mcnt, p + mcnt);
25fe55af 5649 {
01618498 5650 re_char *p1 = p; /* Next operation. */
6dcf2d0e
SM
5651 /* Here, we discard `const', making re_match non-reentrant. */
5652 unsigned char *p2 = (unsigned char*) p + mcnt; /* Jump dest. */
5653 unsigned char *p3 = (unsigned char*) p - 3; /* opcode location. */
fa9a63c5 5654
505bde11
SM
5655 p -= 3; /* Reset so that we will re-execute the
5656 instruction once it's been changed. */
fa9a63c5 5657
4e8a9132
SM
5658 EXTRACT_NUMBER (mcnt, p2 - 2);
5659
5660 /* Ensure this is a indeed the trivial kind of loop
5661 we are expecting. */
5662 assert (skip_one_char (p1) == p2 - 3);
5663 assert ((re_opcode_t) p2[-3] == jump && p2 + mcnt == p);
99633e97 5664 DEBUG_STATEMENT (debug += 2);
505bde11 5665 if (mutually_exclusive_p (bufp, p1, p2))
fa9a63c5 5666 {
505bde11 5667 /* Use a fast `on_failure_keep_string_jump' loop. */
4e8a9132 5668 DEBUG_PRINT1 (" smart exclusive => fast loop.\n");
01618498 5669 *p3 = (unsigned char) on_failure_keep_string_jump;
4e8a9132 5670 STORE_NUMBER (p2 - 2, mcnt + 3);
25fe55af 5671 }
505bde11 5672 else
fa9a63c5 5673 {
505bde11
SM
5674 /* Default to a safe `on_failure_jump' loop. */
5675 DEBUG_PRINT1 (" smart default => slow loop.\n");
01618498 5676 *p3 = (unsigned char) on_failure_jump;
fa9a63c5 5677 }
99633e97 5678 DEBUG_STATEMENT (debug -= 2);
25fe55af 5679 }
505bde11 5680 break;
25fe55af
RS
5681
5682 /* Unconditionally jump (without popping any failure points). */
5683 case jump:
fa9a63c5 5684 unconditional_jump:
5b370c2b 5685 IMMEDIATE_QUIT_CHECK;
fa9a63c5 5686 EXTRACT_NUMBER_AND_INCR (mcnt, p); /* Get the amount to jump. */
25fe55af
RS
5687 DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt);
5688 p += mcnt; /* Do the jump. */
505bde11 5689 DEBUG_PRINT2 ("(to %p).\n", p);
25fe55af
RS
5690 break;
5691
5692
25fe55af
RS
5693 /* Have to succeed matching what follows at least n times.
5694 After that, handle like `on_failure_jump'. */
5695 case succeed_n:
01618498 5696 /* Signedness doesn't matter since we only compare MCNT to 0. */
25fe55af
RS
5697 EXTRACT_NUMBER (mcnt, p + 2);
5698 DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt);
5e69f11e 5699
dc1e502d
SM
5700 /* Originally, mcnt is how many times we HAVE to succeed. */
5701 if (mcnt != 0)
25fe55af 5702 {
6dcf2d0e
SM
5703 /* Here, we discard `const', making re_match non-reentrant. */
5704 unsigned char *p2 = (unsigned char*) p + 2; /* counter loc. */
dc1e502d 5705 mcnt--;
01618498
SM
5706 p += 4;
5707 PUSH_NUMBER (p2, mcnt);
25fe55af 5708 }
dc1e502d
SM
5709 else
5710 /* The two bytes encoding mcnt == 0 are two no_op opcodes. */
5711 goto on_failure;
25fe55af
RS
5712 break;
5713
5714 case jump_n:
01618498 5715 /* Signedness doesn't matter since we only compare MCNT to 0. */
25fe55af
RS
5716 EXTRACT_NUMBER (mcnt, p + 2);
5717 DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt);
5718
5719 /* Originally, this is how many times we CAN jump. */
dc1e502d 5720 if (mcnt != 0)
25fe55af 5721 {
6dcf2d0e
SM
5722 /* Here, we discard `const', making re_match non-reentrant. */
5723 unsigned char *p2 = (unsigned char*) p + 2; /* counter loc. */
dc1e502d 5724 mcnt--;
01618498 5725 PUSH_NUMBER (p2, mcnt);
dc1e502d 5726 goto unconditional_jump;
25fe55af
RS
5727 }
5728 /* If don't have to jump any more, skip over the rest of command. */
5e69f11e
RM
5729 else
5730 p += 4;
25fe55af 5731 break;
5e69f11e 5732
fa9a63c5
RM
5733 case set_number_at:
5734 {
01618498 5735 unsigned char *p2; /* Location of the counter. */
25fe55af 5736 DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
fa9a63c5 5737
25fe55af 5738 EXTRACT_NUMBER_AND_INCR (mcnt, p);
6dcf2d0e
SM
5739 /* Here, we discard `const', making re_match non-reentrant. */
5740 p2 = (unsigned char*) p + mcnt;
01618498 5741 /* Signedness doesn't matter since we only copy MCNT's bits . */
25fe55af 5742 EXTRACT_NUMBER_AND_INCR (mcnt, p);
01618498
SM
5743 DEBUG_PRINT3 (" Setting %p to %d.\n", p2, mcnt);
5744 PUSH_NUMBER (p2, mcnt);
25fe55af
RS
5745 break;
5746 }
9121ca40
KH
5747
5748 case wordbound:
66f0296e
SM
5749 case notwordbound:
5750 not = (re_opcode_t) *(p - 1) == notwordbound;
5751 DEBUG_PRINT2 ("EXECUTING %swordbound.\n", not?"not":"");
fa9a63c5 5752
99633e97 5753 /* We SUCCEED (or FAIL) in one of the following cases: */
9121ca40 5754
b18215fc 5755 /* Case 1: D is at the beginning or the end of string. */
9121ca40 5756 if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
66f0296e 5757 not = !not;
b18215fc
RS
5758 else
5759 {
5760 /* C1 is the character before D, S1 is the syntax of C1, C2
5761 is the character at D, and S2 is the syntax of C2. */
01618498
SM
5762 re_wchar_t c1, c2;
5763 int s1, s2;
b18215fc 5764#ifdef emacs
2d1675e4
SM
5765 int offset = PTR_TO_OFFSET (d - 1);
5766 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
5d967c7a 5767 UPDATE_SYNTAX_TABLE (charpos);
25fe55af 5768#endif
66f0296e 5769 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
b18215fc
RS
5770 s1 = SYNTAX (c1);
5771#ifdef emacs
5d967c7a 5772 UPDATE_SYNTAX_TABLE_FORWARD (charpos + 1);
25fe55af 5773#endif
f1ad044f 5774 PREFETCH_NOLIMIT ();
2d1675e4 5775 c2 = RE_STRING_CHAR (d, dend - d);
b18215fc
RS
5776 s2 = SYNTAX (c2);
5777
5778 if (/* Case 2: Only one of S1 and S2 is Sword. */
5779 ((s1 == Sword) != (s2 == Sword))
5780 /* Case 3: Both of S1 and S2 are Sword, and macro
25fe55af 5781 WORD_BOUNDARY_P (C1, C2) returns nonzero. */
b18215fc 5782 || ((s1 == Sword) && WORD_BOUNDARY_P (c1, c2)))
66f0296e
SM
5783 not = !not;
5784 }
5785 if (not)
9121ca40 5786 break;
b18215fc 5787 else
9121ca40 5788 goto fail;
fa9a63c5
RM
5789
5790 case wordbeg:
25fe55af 5791 DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
fa9a63c5 5792
b18215fc
RS
5793 /* We FAIL in one of the following cases: */
5794
25fe55af 5795 /* Case 1: D is at the end of string. */
b18215fc 5796 if (AT_STRINGS_END (d))
99633e97 5797 goto fail;
b18215fc
RS
5798 else
5799 {
5800 /* C1 is the character before D, S1 is the syntax of C1, C2
5801 is the character at D, and S2 is the syntax of C2. */
01618498
SM
5802 re_wchar_t c1, c2;
5803 int s1, s2;
fa9a63c5 5804#ifdef emacs
2d1675e4
SM
5805 int offset = PTR_TO_OFFSET (d);
5806 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
92432794 5807 UPDATE_SYNTAX_TABLE (charpos);
25fe55af 5808#endif
99633e97 5809 PREFETCH ();
2d1675e4 5810 c2 = RE_STRING_CHAR (d, dend - d);
b18215fc 5811 s2 = SYNTAX (c2);
177c0ea7 5812
b18215fc
RS
5813 /* Case 2: S2 is not Sword. */
5814 if (s2 != Sword)
5815 goto fail;
5816
5817 /* Case 3: D is not at the beginning of string ... */
5818 if (!AT_STRINGS_BEG (d))
5819 {
5820 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
5821#ifdef emacs
5d967c7a 5822 UPDATE_SYNTAX_TABLE_BACKWARD (charpos - 1);
25fe55af 5823#endif
b18215fc
RS
5824 s1 = SYNTAX (c1);
5825
5826 /* ... and S1 is Sword, and WORD_BOUNDARY_P (C1, C2)
25fe55af 5827 returns 0. */
b18215fc
RS
5828 if ((s1 == Sword) && !WORD_BOUNDARY_P (c1, c2))
5829 goto fail;
5830 }
5831 }
e318085a
RS
5832 break;
5833
b18215fc 5834 case wordend:
25fe55af 5835 DEBUG_PRINT1 ("EXECUTING wordend.\n");
b18215fc
RS
5836
5837 /* We FAIL in one of the following cases: */
5838
5839 /* Case 1: D is at the beginning of string. */
5840 if (AT_STRINGS_BEG (d))
e318085a 5841 goto fail;
b18215fc
RS
5842 else
5843 {
5844 /* C1 is the character before D, S1 is the syntax of C1, C2
5845 is the character at D, and S2 is the syntax of C2. */
01618498
SM
5846 re_wchar_t c1, c2;
5847 int s1, s2;
5d967c7a 5848#ifdef emacs
2d1675e4
SM
5849 int offset = PTR_TO_OFFSET (d) - 1;
5850 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
92432794 5851 UPDATE_SYNTAX_TABLE (charpos);
5d967c7a 5852#endif
99633e97 5853 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
b18215fc
RS
5854 s1 = SYNTAX (c1);
5855
5856 /* Case 2: S1 is not Sword. */
5857 if (s1 != Sword)
5858 goto fail;
5859
5860 /* Case 3: D is not at the end of string ... */
5861 if (!AT_STRINGS_END (d))
5862 {
f1ad044f 5863 PREFETCH_NOLIMIT ();
2d1675e4 5864 c2 = RE_STRING_CHAR (d, dend - d);
5d967c7a
RS
5865#ifdef emacs
5866 UPDATE_SYNTAX_TABLE_FORWARD (charpos);
5867#endif
b18215fc
RS
5868 s2 = SYNTAX (c2);
5869
5870 /* ... and S2 is Sword, and WORD_BOUNDARY_P (C1, C2)
25fe55af 5871 returns 0. */
b18215fc 5872 if ((s2 == Sword) && !WORD_BOUNDARY_P (c1, c2))
25fe55af 5873 goto fail;
b18215fc
RS
5874 }
5875 }
e318085a
RS
5876 break;
5877
669fa600
SM
5878 case symbeg:
5879 DEBUG_PRINT1 ("EXECUTING symbeg.\n");
5880
5881 /* We FAIL in one of the following cases: */
5882
5883 /* Case 1: D is at the end of string. */
5884 if (AT_STRINGS_END (d))
5885 goto fail;
5886 else
5887 {
5888 /* C1 is the character before D, S1 is the syntax of C1, C2
5889 is the character at D, and S2 is the syntax of C2. */
5890 re_wchar_t c1, c2;
5891 int s1, s2;
5892#ifdef emacs
5893 int offset = PTR_TO_OFFSET (d);
5894 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
5895 UPDATE_SYNTAX_TABLE (charpos);
5896#endif
5897 PREFETCH ();
5898 c2 = RE_STRING_CHAR (d, dend - d);
5899 s2 = SYNTAX (c2);
5900
5901 /* Case 2: S2 is neither Sword nor Ssymbol. */
5902 if (s2 != Sword && s2 != Ssymbol)
5903 goto fail;
5904
5905 /* Case 3: D is not at the beginning of string ... */
5906 if (!AT_STRINGS_BEG (d))
5907 {
5908 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
5909#ifdef emacs
5910 UPDATE_SYNTAX_TABLE_BACKWARD (charpos - 1);
5911#endif
5912 s1 = SYNTAX (c1);
5913
5914 /* ... and S1 is Sword or Ssymbol. */
5915 if (s1 == Sword || s1 == Ssymbol)
5916 goto fail;
5917 }
5918 }
5919 break;
5920
5921 case symend:
5922 DEBUG_PRINT1 ("EXECUTING symend.\n");
5923
5924 /* We FAIL in one of the following cases: */
5925
5926 /* Case 1: D is at the beginning of string. */
5927 if (AT_STRINGS_BEG (d))
5928 goto fail;
5929 else
5930 {
5931 /* C1 is the character before D, S1 is the syntax of C1, C2
5932 is the character at D, and S2 is the syntax of C2. */
5933 re_wchar_t c1, c2;
5934 int s1, s2;
5935#ifdef emacs
5936 int offset = PTR_TO_OFFSET (d) - 1;
5937 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
5938 UPDATE_SYNTAX_TABLE (charpos);
5939#endif
5940 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
5941 s1 = SYNTAX (c1);
5942
5943 /* Case 2: S1 is neither Ssymbol nor Sword. */
5944 if (s1 != Sword && s1 != Ssymbol)
5945 goto fail;
5946
5947 /* Case 3: D is not at the end of string ... */
5948 if (!AT_STRINGS_END (d))
5949 {
5950 PREFETCH_NOLIMIT ();
5951 c2 = RE_STRING_CHAR (d, dend - d);
5952#ifdef emacs
5953 UPDATE_SYNTAX_TABLE_FORWARD (charpos);
5954#endif
5955 s2 = SYNTAX (c2);
5956
5957 /* ... and S2 is Sword or Ssymbol. */
5958 if (s2 == Sword || s2 == Ssymbol)
5959 goto fail;
5960 }
5961 }
5962 break;
5963
fa9a63c5 5964 case syntaxspec:
1fb352e0
SM
5965 case notsyntaxspec:
5966 not = (re_opcode_t) *(p - 1) == notsyntaxspec;
fa9a63c5 5967 mcnt = *p++;
1fb352e0 5968 DEBUG_PRINT3 ("EXECUTING %ssyntaxspec %d.\n", not?"not":"", mcnt);
fa9a63c5 5969 PREFETCH ();
b18215fc
RS
5970#ifdef emacs
5971 {
2d1675e4
SM
5972 int offset = PTR_TO_OFFSET (d);
5973 int pos1 = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
b18215fc
RS
5974 UPDATE_SYNTAX_TABLE (pos1);
5975 }
25fe55af 5976#endif
b18215fc 5977 {
01618498
SM
5978 int len;
5979 re_wchar_t c;
b18215fc 5980
2d1675e4 5981 c = RE_STRING_CHAR_AND_LENGTH (d, dend - d, len);
b18215fc 5982
990b2375 5983 if ((SYNTAX (c) != (enum syntaxcode) mcnt) ^ not)
1fb352e0 5984 goto fail;
b18215fc
RS
5985 d += len;
5986 }
fa9a63c5
RM
5987 break;
5988
b18215fc 5989#ifdef emacs
1fb352e0
SM
5990 case before_dot:
5991 DEBUG_PRINT1 ("EXECUTING before_dot.\n");
5992 if (PTR_BYTE_POS (d) >= PT_BYTE)
fa9a63c5 5993 goto fail;
b18215fc
RS
5994 break;
5995
1fb352e0
SM
5996 case at_dot:
5997 DEBUG_PRINT1 ("EXECUTING at_dot.\n");
5998 if (PTR_BYTE_POS (d) != PT_BYTE)
5999 goto fail;
6000 break;
b18215fc 6001
1fb352e0
SM
6002 case after_dot:
6003 DEBUG_PRINT1 ("EXECUTING after_dot.\n");
6004 if (PTR_BYTE_POS (d) <= PT_BYTE)
6005 goto fail;
e318085a 6006 break;
fa9a63c5 6007
1fb352e0 6008 case categoryspec:
b18215fc 6009 case notcategoryspec:
1fb352e0 6010 not = (re_opcode_t) *(p - 1) == notcategoryspec;
b18215fc 6011 mcnt = *p++;
1fb352e0 6012 DEBUG_PRINT3 ("EXECUTING %scategoryspec %d.\n", not?"not":"", mcnt);
b18215fc
RS
6013 PREFETCH ();
6014 {
01618498
SM
6015 int len;
6016 re_wchar_t c;
6017
2d1675e4 6018 c = RE_STRING_CHAR_AND_LENGTH (d, dend - d, len);
b18215fc 6019
1fb352e0 6020 if ((!CHAR_HAS_CATEGORY (c, mcnt)) ^ not)
b18215fc
RS
6021 goto fail;
6022 d += len;
6023 }
fa9a63c5 6024 break;
5e69f11e 6025
1fb352e0 6026#endif /* emacs */
5e69f11e 6027
0b32bf0e
SM
6028 default:
6029 abort ();
fa9a63c5 6030 }
b18215fc 6031 continue; /* Successfully executed one pattern command; keep going. */
fa9a63c5
RM
6032
6033
6034 /* We goto here if a matching operation fails. */
6035 fail:
5b370c2b 6036 IMMEDIATE_QUIT_CHECK;
fa9a63c5 6037 if (!FAIL_STACK_EMPTY ())
505bde11 6038 {
01618498 6039 re_char *str, *pat;
505bde11 6040 /* A restart point is known. Restore to that state. */
0b32bf0e
SM
6041 DEBUG_PRINT1 ("\nFAIL:\n");
6042 POP_FAILURE_POINT (str, pat);
505bde11
SM
6043 switch (SWITCH_ENUM_CAST ((re_opcode_t) *pat++))
6044 {
6045 case on_failure_keep_string_jump:
6046 assert (str == NULL);
6047 goto continue_failure_jump;
6048
0683b6fa
SM
6049 case on_failure_jump_nastyloop:
6050 assert ((re_opcode_t)pat[-2] == no_op);
6051 PUSH_FAILURE_POINT (pat - 2, str);
6052 /* Fallthrough */
6053
505bde11
SM
6054 case on_failure_jump_loop:
6055 case on_failure_jump:
6056 case succeed_n:
6057 d = str;
6058 continue_failure_jump:
6059 EXTRACT_NUMBER_AND_INCR (mcnt, pat);
6060 p = pat + mcnt;
6061 break;
b18215fc 6062
0683b6fa
SM
6063 case no_op:
6064 /* A special frame used for nastyloops. */
6065 goto fail;
6066
505bde11
SM
6067 default:
6068 abort();
6069 }
fa9a63c5 6070
505bde11 6071 assert (p >= bufp->buffer && p <= pend);
b18215fc 6072
0b32bf0e 6073 if (d >= string1 && d <= end1)
fa9a63c5 6074 dend = end_match_1;
0b32bf0e 6075 }
fa9a63c5 6076 else
0b32bf0e 6077 break; /* Matching at this starting point really fails. */
fa9a63c5
RM
6078 } /* for (;;) */
6079
6080 if (best_regs_set)
6081 goto restore_best_regs;
6082
6083 FREE_VARIABLES ();
6084
b18215fc 6085 return -1; /* Failure to match. */
fa9a63c5
RM
6086} /* re_match_2 */
6087\f
6088/* Subroutine definitions for re_match_2. */
6089
fa9a63c5
RM
6090/* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
6091 bytes; nonzero otherwise. */
5e69f11e 6092
fa9a63c5 6093static int
2d1675e4
SM
6094bcmp_translate (s1, s2, len, translate, multibyte)
6095 re_char *s1, *s2;
fa9a63c5 6096 register int len;
6676cb1c 6097 RE_TRANSLATE_TYPE translate;
2d1675e4 6098 const int multibyte;
fa9a63c5 6099{
2d1675e4
SM
6100 register re_char *p1 = s1, *p2 = s2;
6101 re_char *p1_end = s1 + len;
6102 re_char *p2_end = s2 + len;
e934739e 6103
4bb91c68
SM
6104 /* FIXME: Checking both p1 and p2 presumes that the two strings might have
6105 different lengths, but relying on a single `len' would break this. -sm */
6106 while (p1 < p1_end && p2 < p2_end)
fa9a63c5 6107 {
e934739e 6108 int p1_charlen, p2_charlen;
01618498 6109 re_wchar_t p1_ch, p2_ch;
e934739e 6110
2d1675e4
SM
6111 p1_ch = RE_STRING_CHAR_AND_LENGTH (p1, p1_end - p1, p1_charlen);
6112 p2_ch = RE_STRING_CHAR_AND_LENGTH (p2, p2_end - p2, p2_charlen);
e934739e
RS
6113
6114 if (RE_TRANSLATE (translate, p1_ch)
6115 != RE_TRANSLATE (translate, p2_ch))
bc192b5b 6116 return 1;
e934739e
RS
6117
6118 p1 += p1_charlen, p2 += p2_charlen;
fa9a63c5 6119 }
e934739e
RS
6120
6121 if (p1 != p1_end || p2 != p2_end)
6122 return 1;
6123
fa9a63c5
RM
6124 return 0;
6125}
6126\f
6127/* Entry points for GNU code. */
6128
6129/* re_compile_pattern is the GNU regular expression compiler: it
6130 compiles PATTERN (of length SIZE) and puts the result in BUFP.
6131 Returns 0 if the pattern was valid, otherwise an error string.
5e69f11e 6132
fa9a63c5
RM
6133 Assumes the `allocated' (and perhaps `buffer') and `translate' fields
6134 are set in BUFP on entry.
5e69f11e 6135
b18215fc 6136 We call regex_compile to do the actual compilation. */
fa9a63c5
RM
6137
6138const char *
6139re_compile_pattern (pattern, length, bufp)
6140 const char *pattern;
0b32bf0e 6141 size_t length;
fa9a63c5
RM
6142 struct re_pattern_buffer *bufp;
6143{
6144 reg_errcode_t ret;
5e69f11e 6145
fa9a63c5
RM
6146 /* GNU code is written to assume at least RE_NREGS registers will be set
6147 (and at least one extra will be -1). */
6148 bufp->regs_allocated = REGS_UNALLOCATED;
5e69f11e 6149
fa9a63c5
RM
6150 /* And GNU code determines whether or not to get register information
6151 by passing null for the REGS argument to re_match, etc., not by
6152 setting no_sub. */
6153 bufp->no_sub = 0;
5e69f11e 6154
4bb91c68 6155 ret = regex_compile ((re_char*) pattern, length, re_syntax_options, bufp);
fa9a63c5
RM
6156
6157 if (!ret)
6158 return NULL;
6159 return gettext (re_error_msgid[(int) ret]);
5e69f11e 6160}
c0f9ea08 6161WEAK_ALIAS (__re_compile_pattern, re_compile_pattern)
fa9a63c5 6162\f
b18215fc
RS
6163/* Entry points compatible with 4.2 BSD regex library. We don't define
6164 them unless specifically requested. */
fa9a63c5 6165
0b32bf0e 6166#if defined _REGEX_RE_COMP || defined _LIBC
fa9a63c5
RM
6167
6168/* BSD has one and only one pattern buffer. */
6169static struct re_pattern_buffer re_comp_buf;
6170
6171char *
0b32bf0e 6172# ifdef _LIBC
48afdd44
RM
6173/* Make these definitions weak in libc, so POSIX programs can redefine
6174 these names if they don't use our functions, and still use
6175 regcomp/regexec below without link errors. */
6176weak_function
0b32bf0e 6177# endif
fa9a63c5
RM
6178re_comp (s)
6179 const char *s;
6180{
6181 reg_errcode_t ret;
5e69f11e 6182
fa9a63c5
RM
6183 if (!s)
6184 {
6185 if (!re_comp_buf.buffer)
0b32bf0e 6186 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
a60198e5 6187 return (char *) gettext ("No previous regular expression");
fa9a63c5
RM
6188 return 0;
6189 }
6190
6191 if (!re_comp_buf.buffer)
6192 {
6193 re_comp_buf.buffer = (unsigned char *) malloc (200);
6194 if (re_comp_buf.buffer == NULL)
0b32bf0e
SM
6195 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
6196 return (char *) gettext (re_error_msgid[(int) REG_ESPACE]);
fa9a63c5
RM
6197 re_comp_buf.allocated = 200;
6198
6199 re_comp_buf.fastmap = (char *) malloc (1 << BYTEWIDTH);
6200 if (re_comp_buf.fastmap == NULL)
a60198e5
SM
6201 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
6202 return (char *) gettext (re_error_msgid[(int) REG_ESPACE]);
fa9a63c5
RM
6203 }
6204
6205 /* Since `re_exec' always passes NULL for the `regs' argument, we
6206 don't need to initialize the pattern buffer fields which affect it. */
6207
fa9a63c5 6208 ret = regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf);
5e69f11e 6209
fa9a63c5
RM
6210 if (!ret)
6211 return NULL;
6212
6213 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
6214 return (char *) gettext (re_error_msgid[(int) ret]);
6215}
6216
6217
6218int
0b32bf0e 6219# ifdef _LIBC
48afdd44 6220weak_function
0b32bf0e 6221# endif
fa9a63c5
RM
6222re_exec (s)
6223 const char *s;
6224{
6225 const int len = strlen (s);
6226 return
6227 0 <= re_search (&re_comp_buf, s, len, 0, len, (struct re_registers *) 0);
6228}
6229#endif /* _REGEX_RE_COMP */
6230\f
6231/* POSIX.2 functions. Don't define these for Emacs. */
6232
6233#ifndef emacs
6234
6235/* regcomp takes a regular expression as a string and compiles it.
6236
b18215fc 6237 PREG is a regex_t *. We do not expect any fields to be initialized,
fa9a63c5
RM
6238 since POSIX says we shouldn't. Thus, we set
6239
6240 `buffer' to the compiled pattern;
6241 `used' to the length of the compiled pattern;
6242 `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
6243 REG_EXTENDED bit in CFLAGS is set; otherwise, to
6244 RE_SYNTAX_POSIX_BASIC;
c0f9ea08
SM
6245 `fastmap' to an allocated space for the fastmap;
6246 `fastmap_accurate' to zero;
fa9a63c5
RM
6247 `re_nsub' to the number of subexpressions in PATTERN.
6248
6249 PATTERN is the address of the pattern string.
6250
6251 CFLAGS is a series of bits which affect compilation.
6252
6253 If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
6254 use POSIX basic syntax.
6255
6256 If REG_NEWLINE is set, then . and [^...] don't match newline.
6257 Also, regexec will try a match beginning after every newline.
6258
6259 If REG_ICASE is set, then we considers upper- and lowercase
6260 versions of letters to be equivalent when matching.
6261
6262 If REG_NOSUB is set, then when PREG is passed to regexec, that
6263 routine will report only success or failure, and nothing about the
6264 registers.
6265
b18215fc 6266 It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for
fa9a63c5
RM
6267 the return codes and their meanings.) */
6268
6269int
6270regcomp (preg, pattern, cflags)
ada30c0e
SM
6271 regex_t *__restrict preg;
6272 const char *__restrict pattern;
fa9a63c5
RM
6273 int cflags;
6274{
6275 reg_errcode_t ret;
4bb91c68 6276 reg_syntax_t syntax
fa9a63c5
RM
6277 = (cflags & REG_EXTENDED) ?
6278 RE_SYNTAX_POSIX_EXTENDED : RE_SYNTAX_POSIX_BASIC;
6279
6280 /* regex_compile will allocate the space for the compiled pattern. */
6281 preg->buffer = 0;
6282 preg->allocated = 0;
6283 preg->used = 0;
5e69f11e 6284
c0f9ea08
SM
6285 /* Try to allocate space for the fastmap. */
6286 preg->fastmap = (char *) malloc (1 << BYTEWIDTH);
5e69f11e 6287
fa9a63c5
RM
6288 if (cflags & REG_ICASE)
6289 {
6290 unsigned i;
5e69f11e 6291
6676cb1c
RS
6292 preg->translate
6293 = (RE_TRANSLATE_TYPE) malloc (CHAR_SET_SIZE
6294 * sizeof (*(RE_TRANSLATE_TYPE)0));
fa9a63c5 6295 if (preg->translate == NULL)
0b32bf0e 6296 return (int) REG_ESPACE;
fa9a63c5
RM
6297
6298 /* Map uppercase characters to corresponding lowercase ones. */
6299 for (i = 0; i < CHAR_SET_SIZE; i++)
4bb91c68 6300 preg->translate[i] = ISUPPER (i) ? TOLOWER (i) : i;
fa9a63c5
RM
6301 }
6302 else
6303 preg->translate = NULL;
6304
6305 /* If REG_NEWLINE is set, newlines are treated differently. */
6306 if (cflags & REG_NEWLINE)
6307 { /* REG_NEWLINE implies neither . nor [^...] match newline. */
6308 syntax &= ~RE_DOT_NEWLINE;
6309 syntax |= RE_HAT_LISTS_NOT_NEWLINE;
fa9a63c5
RM
6310 }
6311 else
c0f9ea08 6312 syntax |= RE_NO_NEWLINE_ANCHOR;
fa9a63c5
RM
6313
6314 preg->no_sub = !!(cflags & REG_NOSUB);
6315
5e69f11e 6316 /* POSIX says a null character in the pattern terminates it, so we
fa9a63c5 6317 can use strlen here in compiling the pattern. */
4bb91c68 6318 ret = regex_compile ((re_char*) pattern, strlen (pattern), syntax, preg);
5e69f11e 6319
fa9a63c5
RM
6320 /* POSIX doesn't distinguish between an unmatched open-group and an
6321 unmatched close-group: both are REG_EPAREN. */
c0f9ea08
SM
6322 if (ret == REG_ERPAREN)
6323 ret = REG_EPAREN;
6324
6325 if (ret == REG_NOERROR && preg->fastmap)
6326 { /* Compute the fastmap now, since regexec cannot modify the pattern
6327 buffer. */
6328 re_compile_fastmap (preg);
6329 if (preg->can_be_null)
6330 { /* The fastmap can't be used anyway. */
6331 free (preg->fastmap);
6332 preg->fastmap = NULL;
6333 }
6334 }
fa9a63c5
RM
6335 return (int) ret;
6336}
c0f9ea08 6337WEAK_ALIAS (__regcomp, regcomp)
fa9a63c5
RM
6338
6339
6340/* regexec searches for a given pattern, specified by PREG, in the
6341 string STRING.
5e69f11e 6342
fa9a63c5 6343 If NMATCH is zero or REG_NOSUB was set in the cflags argument to
b18215fc 6344 `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at
fa9a63c5
RM
6345 least NMATCH elements, and we set them to the offsets of the
6346 corresponding matched substrings.
5e69f11e 6347
fa9a63c5
RM
6348 EFLAGS specifies `execution flags' which affect matching: if
6349 REG_NOTBOL is set, then ^ does not match at the beginning of the
6350 string; if REG_NOTEOL is set, then $ does not match at the end.
5e69f11e 6351
fa9a63c5
RM
6352 We return 0 if we find a match and REG_NOMATCH if not. */
6353
6354int
6355regexec (preg, string, nmatch, pmatch, eflags)
ada30c0e
SM
6356 const regex_t *__restrict preg;
6357 const char *__restrict string;
5e69f11e 6358 size_t nmatch;
9f2dbe01 6359 regmatch_t pmatch[__restrict_arr];
fa9a63c5
RM
6360 int eflags;
6361{
6362 int ret;
6363 struct re_registers regs;
6364 regex_t private_preg;
6365 int len = strlen (string);
c0f9ea08 6366 boolean want_reg_info = !preg->no_sub && nmatch > 0 && pmatch;
fa9a63c5
RM
6367
6368 private_preg = *preg;
5e69f11e 6369
fa9a63c5
RM
6370 private_preg.not_bol = !!(eflags & REG_NOTBOL);
6371 private_preg.not_eol = !!(eflags & REG_NOTEOL);
5e69f11e 6372
fa9a63c5
RM
6373 /* The user has told us exactly how many registers to return
6374 information about, via `nmatch'. We have to pass that on to the
b18215fc 6375 matching routines. */
fa9a63c5 6376 private_preg.regs_allocated = REGS_FIXED;
5e69f11e 6377
fa9a63c5
RM
6378 if (want_reg_info)
6379 {
6380 regs.num_regs = nmatch;
4bb91c68
SM
6381 regs.start = TALLOC (nmatch * 2, regoff_t);
6382 if (regs.start == NULL)
0b32bf0e 6383 return (int) REG_NOMATCH;
4bb91c68 6384 regs.end = regs.start + nmatch;
fa9a63c5
RM
6385 }
6386
c0f9ea08
SM
6387 /* Instead of using not_eol to implement REG_NOTEOL, we could simply
6388 pass (&private_preg, string, len + 1, 0, len, ...) pretending the string
6389 was a little bit longer but still only matching the real part.
6390 This works because the `endline' will check for a '\n' and will find a
6391 '\0', correctly deciding that this is not the end of a line.
6392 But it doesn't work out so nicely for REG_NOTBOL, since we don't have
6393 a convenient '\0' there. For all we know, the string could be preceded
6394 by '\n' which would throw things off. */
6395
fa9a63c5
RM
6396 /* Perform the searching operation. */
6397 ret = re_search (&private_preg, string, len,
0b32bf0e
SM
6398 /* start: */ 0, /* range: */ len,
6399 want_reg_info ? &regs : (struct re_registers *) 0);
5e69f11e 6400
fa9a63c5
RM
6401 /* Copy the register information to the POSIX structure. */
6402 if (want_reg_info)
6403 {
6404 if (ret >= 0)
0b32bf0e
SM
6405 {
6406 unsigned r;
fa9a63c5 6407
0b32bf0e
SM
6408 for (r = 0; r < nmatch; r++)
6409 {
6410 pmatch[r].rm_so = regs.start[r];
6411 pmatch[r].rm_eo = regs.end[r];
6412 }
6413 }
fa9a63c5 6414
b18215fc 6415 /* If we needed the temporary register info, free the space now. */
fa9a63c5 6416 free (regs.start);
fa9a63c5
RM
6417 }
6418
6419 /* We want zero return to mean success, unlike `re_search'. */
6420 return ret >= 0 ? (int) REG_NOERROR : (int) REG_NOMATCH;
6421}
c0f9ea08 6422WEAK_ALIAS (__regexec, regexec)
fa9a63c5
RM
6423
6424
6425/* Returns a message corresponding to an error code, ERRCODE, returned
6426 from either regcomp or regexec. We don't use PREG here. */
6427
6428size_t
6429regerror (errcode, preg, errbuf, errbuf_size)
6430 int errcode;
6431 const regex_t *preg;
6432 char *errbuf;
6433 size_t errbuf_size;
6434{
6435 const char *msg;
6436 size_t msg_size;
6437
6438 if (errcode < 0
6439 || errcode >= (sizeof (re_error_msgid) / sizeof (re_error_msgid[0])))
5e69f11e 6440 /* Only error codes returned by the rest of the code should be passed
b18215fc 6441 to this routine. If we are given anything else, or if other regex
fa9a63c5
RM
6442 code generates an invalid error code, then the program has a bug.
6443 Dump core so we can fix it. */
6444 abort ();
6445
6446 msg = gettext (re_error_msgid[errcode]);
6447
6448 msg_size = strlen (msg) + 1; /* Includes the null. */
5e69f11e 6449
fa9a63c5
RM
6450 if (errbuf_size != 0)
6451 {
6452 if (msg_size > errbuf_size)
0b32bf0e
SM
6453 {
6454 strncpy (errbuf, msg, errbuf_size - 1);
6455 errbuf[errbuf_size - 1] = 0;
6456 }
fa9a63c5 6457 else
0b32bf0e 6458 strcpy (errbuf, msg);
fa9a63c5
RM
6459 }
6460
6461 return msg_size;
6462}
c0f9ea08 6463WEAK_ALIAS (__regerror, regerror)
fa9a63c5
RM
6464
6465
6466/* Free dynamically allocated space used by PREG. */
6467
6468void
6469regfree (preg)
6470 regex_t *preg;
6471{
6472 if (preg->buffer != NULL)
6473 free (preg->buffer);
6474 preg->buffer = NULL;
5e69f11e 6475
fa9a63c5
RM
6476 preg->allocated = 0;
6477 preg->used = 0;
6478
6479 if (preg->fastmap != NULL)
6480 free (preg->fastmap);
6481 preg->fastmap = NULL;
6482 preg->fastmap_accurate = 0;
6483
6484 if (preg->translate != NULL)
6485 free (preg->translate);
6486 preg->translate = NULL;
6487}
c0f9ea08 6488WEAK_ALIAS (__regfree, regfree)
fa9a63c5
RM
6489
6490#endif /* not emacs */
ab5796a9
MB
6491
6492/* arch-tag: 4ffd68ba-2a9e-435b-a21a-018990f9eeb2
6493 (do not change this comment) */