(FREE_VAR): Clean up C syntax.
[bpt/emacs.git] / src / regex.c
CommitLineData
bc78d348 1/* Extended regular expression matching and search library,
8b20806d 2 version 0.12.
bc78d348
KB
3 (Implements POSIX draft P10003.2/D11.2, except for
4 internationalization features.)
5
0c085854 6 Copyright (C) 1993, 1994, 1995, 1996 Free Software Foundation, Inc.
bc78d348 7
fa9a63c5
RM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
ba4a8e51
KH
20 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307,
21 USA. */
fa9a63c5
RM
22
23/* AIX requires this to be the first thing in the file. */
24#if defined (_AIX) && !defined (REGEX_MALLOC)
25 #pragma alloca
26#endif
27
68d96f02 28#undef _GNU_SOURCE
fa9a63c5
RM
29#define _GNU_SOURCE
30
31#ifdef HAVE_CONFIG_H
32#include <config.h>
33#endif
34
35/* We need this for `regex.h', and perhaps for the Emacs include files. */
36#include <sys/types.h>
37
38/* This is for other GNU distributions with internationalized messages. */
39#if HAVE_LIBINTL_H || defined (_LIBC)
40# include <libintl.h>
41#else
42# define gettext(msgid) (msgid)
43#endif
44
5e69f11e
RM
45#ifndef gettext_noop
46/* This define is so xgettext can find the internationalizable
47 strings. */
48#define gettext_noop(String) String
49#endif
50
fa9a63c5
RM
51/* The `emacs' switch turns on certain matching commands
52 that make sense only in Emacs. */
53#ifdef emacs
54
55#include "lisp.h"
56#include "buffer.h"
57#include "syntax.h"
58
59#else /* not emacs */
60
61/* If we are not linking with Emacs proper,
62 we can't use the relocating allocator
63 even if config.h says that we can. */
64#undef REL_ALLOC
65
66#if defined (STDC_HEADERS) || defined (_LIBC)
67#include <stdlib.h>
68#else
69char *malloc ();
70char *realloc ();
71#endif
72
9e4ecb26
KH
73/* When used in Emacs's lib-src, we need to get bzero and bcopy somehow.
74 If nothing else has been done, use the method below. */
75#ifdef INHIBIT_STRING_HEADER
76#if !(defined (HAVE_BZERO) && defined (HAVE_BCOPY))
77#if !defined (bzero) && !defined (bcopy)
78#undef INHIBIT_STRING_HEADER
79#endif
80#endif
81#endif
82
83/* This is the normal way of making sure we have a bcopy and a bzero.
84 This is used in most programs--a few other programs avoid this
85 by defining INHIBIT_STRING_HEADER. */
fa9a63c5 86#ifndef INHIBIT_STRING_HEADER
7f998252 87#if defined (HAVE_STRING_H) || defined (STDC_HEADERS) || defined (_LIBC)
fa9a63c5
RM
88#include <string.h>
89#ifndef bcmp
90#define bcmp(s1, s2, n) memcmp ((s1), (s2), (n))
91#endif
92#ifndef bcopy
93#define bcopy(s, d, n) memcpy ((d), (s), (n))
94#endif
95#ifndef bzero
96#define bzero(s, n) memset ((s), 0, (n))
97#endif
98#else
99#include <strings.h>
100#endif
101#endif
102
103/* Define the syntax stuff for \<, \>, etc. */
104
105/* This must be nonzero for the wordchar and notwordchar pattern
106 commands in re_match_2. */
5e69f11e 107#ifndef Sword
fa9a63c5
RM
108#define Sword 1
109#endif
110
111#ifdef SWITCH_ENUM_BUG
112#define SWITCH_ENUM_CAST(x) ((int)(x))
113#else
114#define SWITCH_ENUM_CAST(x) (x)
115#endif
116
117#ifdef SYNTAX_TABLE
118
119extern char *re_syntax_table;
120
121#else /* not SYNTAX_TABLE */
122
123/* How many characters in the character set. */
124#define CHAR_SET_SIZE 256
125
126static char re_syntax_table[CHAR_SET_SIZE];
127
128static void
129init_syntax_once ()
130{
131 register int c;
132 static int done = 0;
133
134 if (done)
135 return;
136
137 bzero (re_syntax_table, sizeof re_syntax_table);
138
139 for (c = 'a'; c <= 'z'; c++)
140 re_syntax_table[c] = Sword;
141
142 for (c = 'A'; c <= 'Z'; c++)
143 re_syntax_table[c] = Sword;
144
145 for (c = '0'; c <= '9'; c++)
146 re_syntax_table[c] = Sword;
147
148 re_syntax_table['_'] = Sword;
149
150 done = 1;
151}
152
153#endif /* not SYNTAX_TABLE */
154
155#define SYNTAX(c) re_syntax_table[c]
156
157#endif /* not emacs */
158\f
159/* Get the interface, including the syntax bits. */
160#include "regex.h"
161
162/* isalpha etc. are used for the character classes. */
163#include <ctype.h>
164
165/* Jim Meyering writes:
166
167 "... Some ctype macros are valid only for character codes that
168 isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when
169 using /bin/cc or gcc but without giving an ansi option). So, all
170 ctype uses should be through macros like ISPRINT... If
171 STDC_HEADERS is defined, then autoconf has verified that the ctype
172 macros don't need to be guarded with references to isascii. ...
173 Defining isascii to 1 should let any compiler worth its salt
174 eliminate the && through constant folding." */
175
176#if defined (STDC_HEADERS) || (!defined (isascii) && !defined (HAVE_ISASCII))
177#define ISASCII(c) 1
178#else
179#define ISASCII(c) isascii(c)
180#endif
181
182#ifdef isblank
183#define ISBLANK(c) (ISASCII (c) && isblank (c))
184#else
185#define ISBLANK(c) ((c) == ' ' || (c) == '\t')
186#endif
187#ifdef isgraph
188#define ISGRAPH(c) (ISASCII (c) && isgraph (c))
189#else
190#define ISGRAPH(c) (ISASCII (c) && isprint (c) && !isspace (c))
191#endif
192
193#define ISPRINT(c) (ISASCII (c) && isprint (c))
194#define ISDIGIT(c) (ISASCII (c) && isdigit (c))
195#define ISALNUM(c) (ISASCII (c) && isalnum (c))
196#define ISALPHA(c) (ISASCII (c) && isalpha (c))
197#define ISCNTRL(c) (ISASCII (c) && iscntrl (c))
198#define ISLOWER(c) (ISASCII (c) && islower (c))
199#define ISPUNCT(c) (ISASCII (c) && ispunct (c))
200#define ISSPACE(c) (ISASCII (c) && isspace (c))
201#define ISUPPER(c) (ISASCII (c) && isupper (c))
202#define ISXDIGIT(c) (ISASCII (c) && isxdigit (c))
203
204#ifndef NULL
075f06ec 205#define NULL (void *)0
fa9a63c5
RM
206#endif
207
208/* We remove any previous definition of `SIGN_EXTEND_CHAR',
209 since ours (we hope) works properly with all combinations of
210 machines, compilers, `char' and `unsigned char' argument types.
211 (Per Bothner suggested the basic approach.) */
212#undef SIGN_EXTEND_CHAR
213#if __STDC__
214#define SIGN_EXTEND_CHAR(c) ((signed char) (c))
215#else /* not __STDC__ */
216/* As in Harbison and Steele. */
217#define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
218#endif
219\f
220/* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we
221 use `alloca' instead of `malloc'. This is because using malloc in
222 re_search* or re_match* could cause memory leaks when C-g is used in
223 Emacs; also, malloc is slower and causes storage fragmentation. On
5e69f11e
RM
224 the other hand, malloc is more portable, and easier to debug.
225
fa9a63c5
RM
226 Because we sometimes use alloca, some routines have to be macros,
227 not functions -- `alloca'-allocated space disappears at the end of the
228 function it is called in. */
229
230#ifdef REGEX_MALLOC
231
232#define REGEX_ALLOCATE malloc
233#define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
234#define REGEX_FREE free
235
236#else /* not REGEX_MALLOC */
237
238/* Emacs already defines alloca, sometimes. */
239#ifndef alloca
240
241/* Make alloca work the best possible way. */
242#ifdef __GNUC__
243#define alloca __builtin_alloca
244#else /* not __GNUC__ */
245#if HAVE_ALLOCA_H
246#include <alloca.h>
247#else /* not __GNUC__ or HAVE_ALLOCA_H */
f3c4387f 248#if 0 /* It is a bad idea to declare alloca. We always cast the result. */
fa9a63c5
RM
249#ifndef _AIX /* Already did AIX, up at the top. */
250char *alloca ();
251#endif /* not _AIX */
f3c4387f 252#endif
5e69f11e 253#endif /* not HAVE_ALLOCA_H */
fa9a63c5
RM
254#endif /* not __GNUC__ */
255
256#endif /* not alloca */
257
258#define REGEX_ALLOCATE alloca
259
260/* Assumes a `char *destination' variable. */
261#define REGEX_REALLOCATE(source, osize, nsize) \
262 (destination = (char *) alloca (nsize), \
263 bcopy (source, destination, osize), \
264 destination)
265
266/* No need to do anything to free, after alloca. */
c2e1680a 267#define REGEX_FREE(arg) ((void)0) /* Do nothing! But inhibit gcc warning. */
fa9a63c5
RM
268
269#endif /* not REGEX_MALLOC */
270
271/* Define how to allocate the failure stack. */
272
33487cc8 273#if defined (REL_ALLOC) && defined (REGEX_MALLOC)
4297555e 274
fa9a63c5
RM
275#define REGEX_ALLOCATE_STACK(size) \
276 r_alloc (&failure_stack_ptr, (size))
277#define REGEX_REALLOCATE_STACK(source, osize, nsize) \
278 r_re_alloc (&failure_stack_ptr, (nsize))
279#define REGEX_FREE_STACK(ptr) \
280 r_alloc_free (&failure_stack_ptr)
281
4297555e 282#else /* not using relocating allocator */
fa9a63c5
RM
283
284#ifdef REGEX_MALLOC
285
286#define REGEX_ALLOCATE_STACK malloc
287#define REGEX_REALLOCATE_STACK(source, osize, nsize) realloc (source, nsize)
288#define REGEX_FREE_STACK free
289
290#else /* not REGEX_MALLOC */
291
292#define REGEX_ALLOCATE_STACK alloca
293
294#define REGEX_REALLOCATE_STACK(source, osize, nsize) \
295 REGEX_REALLOCATE (source, osize, nsize)
296/* No need to explicitly free anything. */
297#define REGEX_FREE_STACK(arg)
298
299#endif /* not REGEX_MALLOC */
4297555e 300#endif /* not using relocating allocator */
fa9a63c5
RM
301
302
303/* True if `size1' is non-NULL and PTR is pointing anywhere inside
304 `string1' or just past its end. This works if PTR is NULL, which is
305 a good thing. */
306#define FIRST_STRING_P(ptr) \
307 (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
308
309/* (Re)Allocate N items of type T using malloc, or fail. */
310#define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
311#define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
312#define RETALLOC_IF(addr, n, t) \
313 if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t)
314#define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
315
316#define BYTEWIDTH 8 /* In bits. */
317
318#define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
319
320#undef MAX
321#undef MIN
322#define MAX(a, b) ((a) > (b) ? (a) : (b))
323#define MIN(a, b) ((a) < (b) ? (a) : (b))
324
325typedef char boolean;
326#define false 0
327#define true 1
328
329static int re_match_2_internal ();
330\f
331/* These are the command codes that appear in compiled regular
332 expressions. Some opcodes are followed by argument bytes. A
333 command code can specify any interpretation whatsoever for its
334 arguments. Zero bytes may appear in the compiled regular expression. */
335
336typedef enum
337{
338 no_op = 0,
339
340 /* Succeed right away--no more backtracking. */
341 succeed,
342
343 /* Followed by one byte giving n, then by n literal bytes. */
344 exactn,
345
346 /* Matches any (more or less) character. */
347 anychar,
348
349 /* Matches any one char belonging to specified set. First
350 following byte is number of bitmap bytes. Then come bytes
351 for a bitmap saying which chars are in. Bits in each byte
352 are ordered low-bit-first. A character is in the set if its
353 bit is 1. A character too large to have a bit in the map is
354 automatically not in the set. */
355 charset,
356
357 /* Same parameters as charset, but match any character that is
358 not one of those specified. */
359 charset_not,
360
361 /* Start remembering the text that is matched, for storing in a
362 register. Followed by one byte with the register number, in
363 the range 0 to one less than the pattern buffer's re_nsub
364 field. Then followed by one byte with the number of groups
365 inner to this one. (This last has to be part of the
366 start_memory only because we need it in the on_failure_jump
367 of re_match_2.) */
368 start_memory,
369
370 /* Stop remembering the text that is matched and store it in a
371 memory register. Followed by one byte with the register
372 number, in the range 0 to one less than `re_nsub' in the
373 pattern buffer, and one byte with the number of inner groups,
374 just like `start_memory'. (We need the number of inner
375 groups here because we don't have any easy way of finding the
376 corresponding start_memory when we're at a stop_memory.) */
377 stop_memory,
378
379 /* Match a duplicate of something remembered. Followed by one
380 byte containing the register number. */
381 duplicate,
382
383 /* Fail unless at beginning of line. */
384 begline,
385
386 /* Fail unless at end of line. */
387 endline,
388
389 /* Succeeds if at beginning of buffer (if emacs) or at beginning
390 of string to be matched (if not). */
391 begbuf,
392
393 /* Analogously, for end of buffer/string. */
394 endbuf,
5e69f11e 395
fa9a63c5 396 /* Followed by two byte relative address to which to jump. */
5e69f11e 397 jump,
fa9a63c5
RM
398
399 /* Same as jump, but marks the end of an alternative. */
400 jump_past_alt,
401
402 /* Followed by two-byte relative address of place to resume at
403 in case of failure. */
404 on_failure_jump,
5e69f11e 405
fa9a63c5
RM
406 /* Like on_failure_jump, but pushes a placeholder instead of the
407 current string position when executed. */
408 on_failure_keep_string_jump,
5e69f11e 409
fa9a63c5
RM
410 /* Throw away latest failure point and then jump to following
411 two-byte relative address. */
412 pop_failure_jump,
413
414 /* Change to pop_failure_jump if know won't have to backtrack to
415 match; otherwise change to jump. This is used to jump
416 back to the beginning of a repeat. If what follows this jump
417 clearly won't match what the repeat does, such that we can be
418 sure that there is no use backtracking out of repetitions
419 already matched, then we change it to a pop_failure_jump.
420 Followed by two-byte address. */
421 maybe_pop_jump,
422
423 /* Jump to following two-byte address, and push a dummy failure
424 point. This failure point will be thrown away if an attempt
425 is made to use it for a failure. A `+' construct makes this
426 before the first repeat. Also used as an intermediary kind
427 of jump when compiling an alternative. */
428 dummy_failure_jump,
429
430 /* Push a dummy failure point and continue. Used at the end of
431 alternatives. */
432 push_dummy_failure,
433
434 /* Followed by two-byte relative address and two-byte number n.
435 After matching N times, jump to the address upon failure. */
436 succeed_n,
437
438 /* Followed by two-byte relative address, and two-byte number n.
439 Jump to the address N times, then fail. */
440 jump_n,
441
442 /* Set the following two-byte relative address to the
443 subsequent two-byte number. The address *includes* the two
444 bytes of number. */
445 set_number_at,
446
447 wordchar, /* Matches any word-constituent character. */
448 notwordchar, /* Matches any char that is not a word-constituent. */
449
450 wordbeg, /* Succeeds if at word beginning. */
451 wordend, /* Succeeds if at word end. */
452
453 wordbound, /* Succeeds if at a word boundary. */
454 notwordbound /* Succeeds if not at a word boundary. */
455
456#ifdef emacs
457 ,before_dot, /* Succeeds if before point. */
458 at_dot, /* Succeeds if at point. */
459 after_dot, /* Succeeds if after point. */
460
461 /* Matches any character whose syntax is specified. Followed by
462 a byte which contains a syntax code, e.g., Sword. */
463 syntaxspec,
464
465 /* Matches any character whose syntax is not that specified. */
466 notsyntaxspec
467#endif /* emacs */
468} re_opcode_t;
469\f
470/* Common operations on the compiled pattern. */
471
472/* Store NUMBER in two contiguous bytes starting at DESTINATION. */
473
474#define STORE_NUMBER(destination, number) \
475 do { \
476 (destination)[0] = (number) & 0377; \
477 (destination)[1] = (number) >> 8; \
478 } while (0)
479
480/* Same as STORE_NUMBER, except increment DESTINATION to
481 the byte after where the number is stored. Therefore, DESTINATION
482 must be an lvalue. */
483
484#define STORE_NUMBER_AND_INCR(destination, number) \
485 do { \
486 STORE_NUMBER (destination, number); \
487 (destination) += 2; \
488 } while (0)
489
490/* Put into DESTINATION a number stored in two contiguous bytes starting
491 at SOURCE. */
492
493#define EXTRACT_NUMBER(destination, source) \
494 do { \
495 (destination) = *(source) & 0377; \
496 (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8; \
497 } while (0)
498
499#ifdef DEBUG
500static void
501extract_number (dest, source)
502 int *dest;
503 unsigned char *source;
504{
5e69f11e 505 int temp = SIGN_EXTEND_CHAR (*(source + 1));
fa9a63c5
RM
506 *dest = *source & 0377;
507 *dest += temp << 8;
508}
509
510#ifndef EXTRACT_MACROS /* To debug the macros. */
511#undef EXTRACT_NUMBER
512#define EXTRACT_NUMBER(dest, src) extract_number (&dest, src)
513#endif /* not EXTRACT_MACROS */
514
515#endif /* DEBUG */
516
517/* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
518 SOURCE must be an lvalue. */
519
520#define EXTRACT_NUMBER_AND_INCR(destination, source) \
521 do { \
522 EXTRACT_NUMBER (destination, source); \
523 (source) += 2; \
524 } while (0)
525
526#ifdef DEBUG
527static void
528extract_number_and_incr (destination, source)
529 int *destination;
530 unsigned char **source;
5e69f11e 531{
fa9a63c5
RM
532 extract_number (destination, *source);
533 *source += 2;
534}
535
536#ifndef EXTRACT_MACROS
537#undef EXTRACT_NUMBER_AND_INCR
538#define EXTRACT_NUMBER_AND_INCR(dest, src) \
539 extract_number_and_incr (&dest, &src)
540#endif /* not EXTRACT_MACROS */
541
542#endif /* DEBUG */
543\f
544/* If DEBUG is defined, Regex prints many voluminous messages about what
545 it is doing (if the variable `debug' is nonzero). If linked with the
546 main program in `iregex.c', you can enter patterns and strings
547 interactively. And if linked with the main program in `main.c' and
548 the other test files, you can run the already-written tests. */
549
550#ifdef DEBUG
551
552/* We use standard I/O for debugging. */
553#include <stdio.h>
554
555/* It is useful to test things that ``must'' be true when debugging. */
556#include <assert.h>
557
558static int debug = 0;
559
560#define DEBUG_STATEMENT(e) e
561#define DEBUG_PRINT1(x) if (debug) printf (x)
562#define DEBUG_PRINT2(x1, x2) if (debug) printf (x1, x2)
563#define DEBUG_PRINT3(x1, x2, x3) if (debug) printf (x1, x2, x3)
564#define DEBUG_PRINT4(x1, x2, x3, x4) if (debug) printf (x1, x2, x3, x4)
565#define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \
566 if (debug) print_partial_compiled_pattern (s, e)
567#define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \
568 if (debug) print_double_string (w, s1, sz1, s2, sz2)
569
570
571/* Print the fastmap in human-readable form. */
572
573void
574print_fastmap (fastmap)
575 char *fastmap;
576{
577 unsigned was_a_range = 0;
5e69f11e
RM
578 unsigned i = 0;
579
fa9a63c5
RM
580 while (i < (1 << BYTEWIDTH))
581 {
582 if (fastmap[i++])
583 {
584 was_a_range = 0;
585 putchar (i - 1);
586 while (i < (1 << BYTEWIDTH) && fastmap[i])
587 {
588 was_a_range = 1;
589 i++;
590 }
591 if (was_a_range)
592 {
593 printf ("-");
594 putchar (i - 1);
595 }
596 }
597 }
5e69f11e 598 putchar ('\n');
fa9a63c5
RM
599}
600
601
602/* Print a compiled pattern string in human-readable form, starting at
603 the START pointer into it and ending just before the pointer END. */
604
605void
606print_partial_compiled_pattern (start, end)
607 unsigned char *start;
608 unsigned char *end;
609{
610 int mcnt, mcnt2;
611 unsigned char *p = start;
612 unsigned char *pend = end;
613
614 if (start == NULL)
615 {
616 printf ("(null)\n");
617 return;
618 }
5e69f11e 619
fa9a63c5
RM
620 /* Loop over pattern commands. */
621 while (p < pend)
622 {
623 printf ("%d:\t", p - start);
624
625 switch ((re_opcode_t) *p++)
626 {
627 case no_op:
628 printf ("/no_op");
629 break;
630
631 case exactn:
632 mcnt = *p++;
633 printf ("/exactn/%d", mcnt);
634 do
635 {
636 putchar ('/');
637 putchar (*p++);
638 }
639 while (--mcnt);
640 break;
641
642 case start_memory:
643 mcnt = *p++;
644 printf ("/start_memory/%d/%d", mcnt, *p++);
645 break;
646
647 case stop_memory:
648 mcnt = *p++;
649 printf ("/stop_memory/%d/%d", mcnt, *p++);
650 break;
651
652 case duplicate:
653 printf ("/duplicate/%d", *p++);
654 break;
655
656 case anychar:
657 printf ("/anychar");
658 break;
659
660 case charset:
661 case charset_not:
662 {
663 register int c, last = -100;
664 register int in_range = 0;
665
666 printf ("/charset [%s",
667 (re_opcode_t) *(p - 1) == charset_not ? "^" : "");
5e69f11e 668
fa9a63c5
RM
669 assert (p + *p < pend);
670
671 for (c = 0; c < 256; c++)
672 if (c / 8 < *p
673 && (p[1 + (c/8)] & (1 << (c % 8))))
674 {
675 /* Are we starting a range? */
676 if (last + 1 == c && ! in_range)
677 {
678 putchar ('-');
679 in_range = 1;
680 }
681 /* Have we broken a range? */
682 else if (last + 1 != c && in_range)
683 {
684 putchar (last);
685 in_range = 0;
686 }
5e69f11e 687
fa9a63c5
RM
688 if (! in_range)
689 putchar (c);
690
691 last = c;
692 }
693
694 if (in_range)
695 putchar (last);
696
697 putchar (']');
698
699 p += 1 + *p;
700 }
701 break;
702
703 case begline:
704 printf ("/begline");
705 break;
706
707 case endline:
708 printf ("/endline");
709 break;
710
711 case on_failure_jump:
712 extract_number_and_incr (&mcnt, &p);
713 printf ("/on_failure_jump to %d", p + mcnt - start);
714 break;
715
716 case on_failure_keep_string_jump:
717 extract_number_and_incr (&mcnt, &p);
718 printf ("/on_failure_keep_string_jump to %d", p + mcnt - start);
719 break;
720
721 case dummy_failure_jump:
722 extract_number_and_incr (&mcnt, &p);
723 printf ("/dummy_failure_jump to %d", p + mcnt - start);
724 break;
725
726 case push_dummy_failure:
727 printf ("/push_dummy_failure");
728 break;
5e69f11e 729
fa9a63c5
RM
730 case maybe_pop_jump:
731 extract_number_and_incr (&mcnt, &p);
732 printf ("/maybe_pop_jump to %d", p + mcnt - start);
733 break;
734
735 case pop_failure_jump:
736 extract_number_and_incr (&mcnt, &p);
737 printf ("/pop_failure_jump to %d", p + mcnt - start);
5e69f11e
RM
738 break;
739
fa9a63c5
RM
740 case jump_past_alt:
741 extract_number_and_incr (&mcnt, &p);
742 printf ("/jump_past_alt to %d", p + mcnt - start);
5e69f11e
RM
743 break;
744
fa9a63c5
RM
745 case jump:
746 extract_number_and_incr (&mcnt, &p);
747 printf ("/jump to %d", p + mcnt - start);
748 break;
749
5e69f11e 750 case succeed_n:
fa9a63c5
RM
751 extract_number_and_incr (&mcnt, &p);
752 extract_number_and_incr (&mcnt2, &p);
753 printf ("/succeed_n to %d, %d times", p + mcnt - start, mcnt2);
754 break;
5e69f11e
RM
755
756 case jump_n:
fa9a63c5
RM
757 extract_number_and_incr (&mcnt, &p);
758 extract_number_and_incr (&mcnt2, &p);
759 printf ("/jump_n to %d, %d times", p + mcnt - start, mcnt2);
760 break;
5e69f11e
RM
761
762 case set_number_at:
fa9a63c5
RM
763 extract_number_and_incr (&mcnt, &p);
764 extract_number_and_incr (&mcnt2, &p);
765 printf ("/set_number_at location %d to %d", p + mcnt - start, mcnt2);
766 break;
5e69f11e 767
fa9a63c5
RM
768 case wordbound:
769 printf ("/wordbound");
770 break;
771
772 case notwordbound:
773 printf ("/notwordbound");
774 break;
775
776 case wordbeg:
777 printf ("/wordbeg");
778 break;
5e69f11e 779
fa9a63c5
RM
780 case wordend:
781 printf ("/wordend");
5e69f11e 782
fa9a63c5
RM
783#ifdef emacs
784 case before_dot:
785 printf ("/before_dot");
786 break;
787
788 case at_dot:
789 printf ("/at_dot");
790 break;
791
792 case after_dot:
793 printf ("/after_dot");
794 break;
795
796 case syntaxspec:
797 printf ("/syntaxspec");
798 mcnt = *p++;
799 printf ("/%d", mcnt);
800 break;
5e69f11e 801
fa9a63c5
RM
802 case notsyntaxspec:
803 printf ("/notsyntaxspec");
804 mcnt = *p++;
805 printf ("/%d", mcnt);
806 break;
807#endif /* emacs */
808
809 case wordchar:
810 printf ("/wordchar");
811 break;
5e69f11e 812
fa9a63c5
RM
813 case notwordchar:
814 printf ("/notwordchar");
815 break;
816
817 case begbuf:
818 printf ("/begbuf");
819 break;
820
821 case endbuf:
822 printf ("/endbuf");
823 break;
824
825 default:
826 printf ("?%d", *(p-1));
827 }
828
829 putchar ('\n');
830 }
831
832 printf ("%d:\tend of pattern.\n", p - start);
833}
834
835
836void
837print_compiled_pattern (bufp)
838 struct re_pattern_buffer *bufp;
839{
840 unsigned char *buffer = bufp->buffer;
841
842 print_partial_compiled_pattern (buffer, buffer + bufp->used);
843 printf ("%d bytes used/%d bytes allocated.\n", bufp->used, bufp->allocated);
844
845 if (bufp->fastmap_accurate && bufp->fastmap)
846 {
847 printf ("fastmap: ");
848 print_fastmap (bufp->fastmap);
849 }
850
851 printf ("re_nsub: %d\t", bufp->re_nsub);
852 printf ("regs_alloc: %d\t", bufp->regs_allocated);
853 printf ("can_be_null: %d\t", bufp->can_be_null);
854 printf ("newline_anchor: %d\n", bufp->newline_anchor);
855 printf ("no_sub: %d\t", bufp->no_sub);
856 printf ("not_bol: %d\t", bufp->not_bol);
857 printf ("not_eol: %d\t", bufp->not_eol);
858 printf ("syntax: %d\n", bufp->syntax);
859 /* Perhaps we should print the translate table? */
860}
861
862
863void
864print_double_string (where, string1, size1, string2, size2)
865 const char *where;
866 const char *string1;
867 const char *string2;
868 int size1;
869 int size2;
870{
871 unsigned this_char;
5e69f11e 872
fa9a63c5
RM
873 if (where == NULL)
874 printf ("(null)");
875 else
876 {
877 if (FIRST_STRING_P (where))
878 {
879 for (this_char = where - string1; this_char < size1; this_char++)
880 putchar (string1[this_char]);
881
5e69f11e 882 where = string2;
fa9a63c5
RM
883 }
884
885 for (this_char = where - string2; this_char < size2; this_char++)
886 putchar (string2[this_char]);
887 }
888}
889
890#else /* not DEBUG */
891
892#undef assert
893#define assert(e)
894
895#define DEBUG_STATEMENT(e)
896#define DEBUG_PRINT1(x)
897#define DEBUG_PRINT2(x1, x2)
898#define DEBUG_PRINT3(x1, x2, x3)
899#define DEBUG_PRINT4(x1, x2, x3, x4)
900#define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
901#define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
902
903#endif /* not DEBUG */
904\f
905/* Set by `re_set_syntax' to the current regexp syntax to recognize. Can
906 also be assigned to arbitrarily: each pattern buffer stores its own
907 syntax, so it can be changed between regex compilations. */
908/* This has no initializer because initialized variables in Emacs
909 become read-only after dumping. */
910reg_syntax_t re_syntax_options;
911
912
913/* Specify the precise syntax of regexps for compilation. This provides
914 for compatibility for various utilities which historically have
915 different, incompatible syntaxes.
916
917 The argument SYNTAX is a bit mask comprised of the various bits
918 defined in regex.h. We return the old syntax. */
919
920reg_syntax_t
921re_set_syntax (syntax)
922 reg_syntax_t syntax;
923{
924 reg_syntax_t ret = re_syntax_options;
5e69f11e 925
fa9a63c5
RM
926 re_syntax_options = syntax;
927 return ret;
928}
929\f
930/* This table gives an error message for each of the error codes listed
931 in regex.h. Obviously the order here has to be same as there.
932 POSIX doesn't require that we do anything for REG_NOERROR,
933 but why not be nice? */
934
935static const char *re_error_msgid[] =
5e69f11e
RM
936 {
937 gettext_noop ("Success"), /* REG_NOERROR */
938 gettext_noop ("No match"), /* REG_NOMATCH */
939 gettext_noop ("Invalid regular expression"), /* REG_BADPAT */
940 gettext_noop ("Invalid collation character"), /* REG_ECOLLATE */
941 gettext_noop ("Invalid character class name"), /* REG_ECTYPE */
942 gettext_noop ("Trailing backslash"), /* REG_EESCAPE */
943 gettext_noop ("Invalid back reference"), /* REG_ESUBREG */
944 gettext_noop ("Unmatched [ or [^"), /* REG_EBRACK */
945 gettext_noop ("Unmatched ( or \\("), /* REG_EPAREN */
946 gettext_noop ("Unmatched \\{"), /* REG_EBRACE */
947 gettext_noop ("Invalid content of \\{\\}"), /* REG_BADBR */
948 gettext_noop ("Invalid range end"), /* REG_ERANGE */
949 gettext_noop ("Memory exhausted"), /* REG_ESPACE */
950 gettext_noop ("Invalid preceding regular expression"), /* REG_BADRPT */
951 gettext_noop ("Premature end of regular expression"), /* REG_EEND */
952 gettext_noop ("Regular expression too big"), /* REG_ESIZE */
953 gettext_noop ("Unmatched ) or \\)"), /* REG_ERPAREN */
fa9a63c5
RM
954 };
955\f
956/* Avoiding alloca during matching, to placate r_alloc. */
957
958/* Define MATCH_MAY_ALLOCATE unless we need to make sure that the
959 searching and matching functions should not call alloca. On some
960 systems, alloca is implemented in terms of malloc, and if we're
961 using the relocating allocator routines, then malloc could cause a
962 relocation, which might (if the strings being searched are in the
963 ralloc heap) shift the data out from underneath the regexp
964 routines.
965
5e69f11e 966 Here's another reason to avoid allocation: Emacs
fa9a63c5
RM
967 processes input from X in a signal handler; processing X input may
968 call malloc; if input arrives while a matching routine is calling
969 malloc, then we're scrod. But Emacs can't just block input while
970 calling matching routines; then we don't notice interrupts when
971 they come in. So, Emacs blocks input around all regexp calls
972 except the matching calls, which it leaves unprotected, in the
973 faith that they will not malloc. */
974
975/* Normally, this is fine. */
976#define MATCH_MAY_ALLOCATE
977
978/* When using GNU C, we are not REALLY using the C alloca, no matter
979 what config.h may say. So don't take precautions for it. */
980#ifdef __GNUC__
981#undef C_ALLOCA
982#endif
983
984/* The match routines may not allocate if (1) they would do it with malloc
985 and (2) it's not safe for them to use malloc.
986 Note that if REL_ALLOC is defined, matching would not use malloc for the
987 failure stack, but we would still use it for the register vectors;
988 so REL_ALLOC should not affect this. */
989#if (defined (C_ALLOCA) || defined (REGEX_MALLOC)) && defined (emacs)
990#undef MATCH_MAY_ALLOCATE
991#endif
992
993\f
994/* Failure stack declarations and macros; both re_compile_fastmap and
995 re_match_2 use a failure stack. These have to be macros because of
996 REGEX_ALLOCATE_STACK. */
5e69f11e 997
fa9a63c5
RM
998
999/* Number of failure points for which to initially allocate space
1000 when matching. If this number is exceeded, we allocate more
1001 space, so it is not a hard limit. */
1002#ifndef INIT_FAILURE_ALLOC
1003#define INIT_FAILURE_ALLOC 5
1004#endif
1005
1006/* Roughly the maximum number of failure points on the stack. Would be
ffd76827 1007 exactly that if always used MAX_FAILURE_ITEMS items each time we failed.
fa9a63c5
RM
1008 This is a variable only so users of regex can assign to it; we never
1009 change it ourselves. */
1010#if defined (MATCH_MAY_ALLOCATE)
0f374b2b 1011/* 4400 was enough to cause a crash on Alpha OSF/1,
264d34bf 1012 whose default stack limit is 2mb. */
6411ab23 1013int re_max_failures = 20000;
fa9a63c5
RM
1014#else
1015int re_max_failures = 2000;
1016#endif
1017
1018union fail_stack_elt
1019{
1020 unsigned char *pointer;
1021 int integer;
1022};
1023
1024typedef union fail_stack_elt fail_stack_elt_t;
1025
1026typedef struct
1027{
1028 fail_stack_elt_t *stack;
1029 unsigned size;
1030 unsigned avail; /* Offset of next open position. */
1031} fail_stack_type;
1032
1033#define FAIL_STACK_EMPTY() (fail_stack.avail == 0)
1034#define FAIL_STACK_PTR_EMPTY() (fail_stack_ptr->avail == 0)
1035#define FAIL_STACK_FULL() (fail_stack.avail == fail_stack.size)
1036
1037
1038/* Define macros to initialize and free the failure stack.
1039 Do `return -2' if the alloc fails. */
1040
1041#ifdef MATCH_MAY_ALLOCATE
1042#define INIT_FAIL_STACK() \
1043 do { \
1044 fail_stack.stack = (fail_stack_elt_t *) \
1045 REGEX_ALLOCATE_STACK (INIT_FAILURE_ALLOC * sizeof (fail_stack_elt_t)); \
1046 \
1047 if (fail_stack.stack == NULL) \
1048 return -2; \
1049 \
1050 fail_stack.size = INIT_FAILURE_ALLOC; \
1051 fail_stack.avail = 0; \
1052 } while (0)
1053
1054#define RESET_FAIL_STACK() REGEX_FREE_STACK (fail_stack.stack)
1055#else
1056#define INIT_FAIL_STACK() \
1057 do { \
1058 fail_stack.avail = 0; \
1059 } while (0)
1060
1061#define RESET_FAIL_STACK()
1062#endif
1063
1064
1065/* Double the size of FAIL_STACK, up to approximately `re_max_failures' items.
1066
1067 Return 1 if succeeds, and 0 if either ran out of memory
5e69f11e
RM
1068 allocating space for it or it was already too large.
1069
fa9a63c5
RM
1070 REGEX_REALLOCATE_STACK requires `destination' be declared. */
1071
1072#define DOUBLE_FAIL_STACK(fail_stack) \
1073 ((fail_stack).size > re_max_failures * MAX_FAILURE_ITEMS \
1074 ? 0 \
1075 : ((fail_stack).stack = (fail_stack_elt_t *) \
1076 REGEX_REALLOCATE_STACK ((fail_stack).stack, \
1077 (fail_stack).size * sizeof (fail_stack_elt_t), \
1078 ((fail_stack).size << 1) * sizeof (fail_stack_elt_t)), \
1079 \
1080 (fail_stack).stack == NULL \
1081 ? 0 \
1082 : ((fail_stack).size <<= 1, \
1083 1)))
1084
1085
5e69f11e 1086/* Push pointer POINTER on FAIL_STACK.
fa9a63c5
RM
1087 Return 1 if was able to do so and 0 if ran out of memory allocating
1088 space to do so. */
1089#define PUSH_PATTERN_OP(POINTER, FAIL_STACK) \
1090 ((FAIL_STACK_FULL () \
1091 && !DOUBLE_FAIL_STACK (FAIL_STACK)) \
1092 ? 0 \
1093 : ((FAIL_STACK).stack[(FAIL_STACK).avail++].pointer = POINTER, \
1094 1))
1095
1096/* Push a pointer value onto the failure stack.
1097 Assumes the variable `fail_stack'. Probably should only
1098 be called from within `PUSH_FAILURE_POINT'. */
1099#define PUSH_FAILURE_POINTER(item) \
1100 fail_stack.stack[fail_stack.avail++].pointer = (unsigned char *) (item)
1101
1102/* This pushes an integer-valued item onto the failure stack.
1103 Assumes the variable `fail_stack'. Probably should only
1104 be called from within `PUSH_FAILURE_POINT'. */
1105#define PUSH_FAILURE_INT(item) \
1106 fail_stack.stack[fail_stack.avail++].integer = (item)
1107
1108/* Push a fail_stack_elt_t value onto the failure stack.
1109 Assumes the variable `fail_stack'. Probably should only
1110 be called from within `PUSH_FAILURE_POINT'. */
1111#define PUSH_FAILURE_ELT(item) \
1112 fail_stack.stack[fail_stack.avail++] = (item)
1113
1114/* These three POP... operations complement the three PUSH... operations.
1115 All assume that `fail_stack' is nonempty. */
1116#define POP_FAILURE_POINTER() fail_stack.stack[--fail_stack.avail].pointer
1117#define POP_FAILURE_INT() fail_stack.stack[--fail_stack.avail].integer
1118#define POP_FAILURE_ELT() fail_stack.stack[--fail_stack.avail]
1119
1120/* Used to omit pushing failure point id's when we're not debugging. */
1121#ifdef DEBUG
1122#define DEBUG_PUSH PUSH_FAILURE_INT
1123#define DEBUG_POP(item_addr) *(item_addr) = POP_FAILURE_INT ()
1124#else
1125#define DEBUG_PUSH(item)
1126#define DEBUG_POP(item_addr)
1127#endif
1128
1129
1130/* Push the information about the state we will need
5e69f11e
RM
1131 if we ever fail back to it.
1132
fa9a63c5
RM
1133 Requires variables fail_stack, regstart, regend, reg_info, and
1134 num_regs be declared. DOUBLE_FAIL_STACK requires `destination' be
1135 declared.
5e69f11e 1136
fa9a63c5
RM
1137 Does `return FAILURE_CODE' if runs out of memory. */
1138
1139#define PUSH_FAILURE_POINT(pattern_place, string_place, failure_code) \
1140 do { \
1141 char *destination; \
1142 /* Must be int, so when we don't save any registers, the arithmetic \
1143 of 0 + -1 isn't done as unsigned. */ \
1144 int this_reg; \
1145 \
1146 DEBUG_STATEMENT (failure_id++); \
1147 DEBUG_STATEMENT (nfailure_points_pushed++); \
1148 DEBUG_PRINT2 ("\nPUSH_FAILURE_POINT #%u:\n", failure_id); \
1149 DEBUG_PRINT2 (" Before push, next avail: %d\n", (fail_stack).avail);\
1150 DEBUG_PRINT2 (" size: %d\n", (fail_stack).size);\
1151 \
1152 DEBUG_PRINT2 (" slots needed: %d\n", NUM_FAILURE_ITEMS); \
1153 DEBUG_PRINT2 (" available: %d\n", REMAINING_AVAIL_SLOTS); \
1154 \
1155 /* Ensure we have enough space allocated for what we will push. */ \
1156 while (REMAINING_AVAIL_SLOTS < NUM_FAILURE_ITEMS) \
1157 { \
1158 if (!DOUBLE_FAIL_STACK (fail_stack)) \
1159 return failure_code; \
1160 \
1161 DEBUG_PRINT2 ("\n Doubled stack; size now: %d\n", \
1162 (fail_stack).size); \
1163 DEBUG_PRINT2 (" slots available: %d\n", REMAINING_AVAIL_SLOTS);\
1164 } \
1165 \
1166 /* Push the info, starting with the registers. */ \
1167 DEBUG_PRINT1 ("\n"); \
1168 \
68d96f02 1169 if (1) \
faec11db
RS
1170 for (this_reg = lowest_active_reg; this_reg <= highest_active_reg; \
1171 this_reg++) \
1172 { \
1173 DEBUG_PRINT2 (" Pushing reg: %d\n", this_reg); \
1174 DEBUG_STATEMENT (num_regs_pushed++); \
fa9a63c5 1175 \
faec11db
RS
1176 DEBUG_PRINT2 (" start: 0x%x\n", regstart[this_reg]); \
1177 PUSH_FAILURE_POINTER (regstart[this_reg]); \
fa9a63c5 1178 \
faec11db
RS
1179 DEBUG_PRINT2 (" end: 0x%x\n", regend[this_reg]); \
1180 PUSH_FAILURE_POINTER (regend[this_reg]); \
1181 \
1182 DEBUG_PRINT2 (" info: 0x%x\n ", reg_info[this_reg]); \
1183 DEBUG_PRINT2 (" match_null=%d", \
1184 REG_MATCH_NULL_STRING_P (reg_info[this_reg])); \
1185 DEBUG_PRINT2 (" active=%d", IS_ACTIVE (reg_info[this_reg])); \
1186 DEBUG_PRINT2 (" matched_something=%d", \
1187 MATCHED_SOMETHING (reg_info[this_reg])); \
1188 DEBUG_PRINT2 (" ever_matched=%d", \
1189 EVER_MATCHED_SOMETHING (reg_info[this_reg])); \
1190 DEBUG_PRINT1 ("\n"); \
1191 PUSH_FAILURE_ELT (reg_info[this_reg].word); \
1192 } \
fa9a63c5
RM
1193 \
1194 DEBUG_PRINT2 (" Pushing low active reg: %d\n", lowest_active_reg);\
1195 PUSH_FAILURE_INT (lowest_active_reg); \
1196 \
1197 DEBUG_PRINT2 (" Pushing high active reg: %d\n", highest_active_reg);\
1198 PUSH_FAILURE_INT (highest_active_reg); \
1199 \
1200 DEBUG_PRINT2 (" Pushing pattern 0x%x: ", pattern_place); \
1201 DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern_place, pend); \
1202 PUSH_FAILURE_POINTER (pattern_place); \
1203 \
1204 DEBUG_PRINT2 (" Pushing string 0x%x: `", string_place); \
1205 DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, \
1206 size2); \
1207 DEBUG_PRINT1 ("'\n"); \
1208 PUSH_FAILURE_POINTER (string_place); \
1209 \
1210 DEBUG_PRINT2 (" Pushing failure id: %u\n", failure_id); \
1211 DEBUG_PUSH (failure_id); \
1212 } while (0)
1213
1214/* This is the number of items that are pushed and popped on the stack
1215 for each register. */
1216#define NUM_REG_ITEMS 3
1217
1218/* Individual items aside from the registers. */
1219#ifdef DEBUG
1220#define NUM_NONREG_ITEMS 5 /* Includes failure point id. */
1221#else
1222#define NUM_NONREG_ITEMS 4
1223#endif
1224
1225/* We push at most this many items on the stack. */
ffd76827
RS
1226/* We used to use (num_regs - 1), which is the number of registers
1227 this regexp will save; but that was changed to 5
1228 to avoid stack overflow for a regexp with lots of parens. */
1229#define MAX_FAILURE_ITEMS (5 * NUM_REG_ITEMS + NUM_NONREG_ITEMS)
fa9a63c5
RM
1230
1231/* We actually push this many items. */
faec11db 1232#define NUM_FAILURE_ITEMS \
68d96f02 1233 (((0 \
faec11db
RS
1234 ? 0 : highest_active_reg - lowest_active_reg + 1) \
1235 * NUM_REG_ITEMS) \
1236 + NUM_NONREG_ITEMS)
fa9a63c5
RM
1237
1238/* How many items can still be added to the stack without overflowing it. */
1239#define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
1240
1241
1242/* Pops what PUSH_FAIL_STACK pushes.
1243
1244 We restore into the parameters, all of which should be lvalues:
1245 STR -- the saved data position.
1246 PAT -- the saved pattern position.
1247 LOW_REG, HIGH_REG -- the highest and lowest active registers.
1248 REGSTART, REGEND -- arrays of string positions.
1249 REG_INFO -- array of information about each subexpression.
5e69f11e 1250
fa9a63c5
RM
1251 Also assumes the variables `fail_stack' and (if debugging), `bufp',
1252 `pend', `string1', `size1', `string2', and `size2'. */
1253
1254#define POP_FAILURE_POINT(str, pat, low_reg, high_reg, regstart, regend, reg_info)\
1255{ \
1256 DEBUG_STATEMENT (fail_stack_elt_t failure_id;) \
1257 int this_reg; \
1258 const unsigned char *string_temp; \
1259 \
1260 assert (!FAIL_STACK_EMPTY ()); \
1261 \
1262 /* Remove failure points and point to how many regs pushed. */ \
1263 DEBUG_PRINT1 ("POP_FAILURE_POINT:\n"); \
1264 DEBUG_PRINT2 (" Before pop, next avail: %d\n", fail_stack.avail); \
1265 DEBUG_PRINT2 (" size: %d\n", fail_stack.size); \
1266 \
1267 assert (fail_stack.avail >= NUM_NONREG_ITEMS); \
1268 \
1269 DEBUG_POP (&failure_id); \
1270 DEBUG_PRINT2 (" Popping failure id: %u\n", failure_id); \
1271 \
1272 /* If the saved string location is NULL, it came from an \
1273 on_failure_keep_string_jump opcode, and we want to throw away the \
1274 saved NULL, thus retaining our current position in the string. */ \
1275 string_temp = POP_FAILURE_POINTER (); \
1276 if (string_temp != NULL) \
1277 str = (const char *) string_temp; \
1278 \
1279 DEBUG_PRINT2 (" Popping string 0x%x: `", str); \
1280 DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2); \
1281 DEBUG_PRINT1 ("'\n"); \
1282 \
1283 pat = (unsigned char *) POP_FAILURE_POINTER (); \
1284 DEBUG_PRINT2 (" Popping pattern 0x%x: ", pat); \
1285 DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend); \
1286 \
1287 /* Restore register info. */ \
1288 high_reg = (unsigned) POP_FAILURE_INT (); \
1289 DEBUG_PRINT2 (" Popping high active reg: %d\n", high_reg); \
1290 \
1291 low_reg = (unsigned) POP_FAILURE_INT (); \
1292 DEBUG_PRINT2 (" Popping low active reg: %d\n", low_reg); \
1293 \
68d96f02 1294 if (1) \
faec11db
RS
1295 for (this_reg = high_reg; this_reg >= low_reg; this_reg--) \
1296 { \
1297 DEBUG_PRINT2 (" Popping reg: %d\n", this_reg); \
fa9a63c5 1298 \
faec11db
RS
1299 reg_info[this_reg].word = POP_FAILURE_ELT (); \
1300 DEBUG_PRINT2 (" info: 0x%x\n", reg_info[this_reg]); \
fa9a63c5 1301 \
faec11db
RS
1302 regend[this_reg] = (const char *) POP_FAILURE_POINTER (); \
1303 DEBUG_PRINT2 (" end: 0x%x\n", regend[this_reg]); \
fa9a63c5 1304 \
faec11db
RS
1305 regstart[this_reg] = (const char *) POP_FAILURE_POINTER (); \
1306 DEBUG_PRINT2 (" start: 0x%x\n", regstart[this_reg]); \
1307 } \
6676cb1c
RS
1308 else \
1309 { \
1310 for (this_reg = highest_active_reg; this_reg > high_reg; this_reg--) \
1311 { \
4fcecab1 1312 reg_info[this_reg].word.integer = 0; \
6676cb1c
RS
1313 regend[this_reg] = 0; \
1314 regstart[this_reg] = 0; \
1315 } \
1316 highest_active_reg = high_reg; \
1317 } \
fa9a63c5
RM
1318 \
1319 set_regs_matched_done = 0; \
1320 DEBUG_STATEMENT (nfailure_points_popped++); \
1321} /* POP_FAILURE_POINT */
1322
1323
1324\f
1325/* Structure for per-register (a.k.a. per-group) information.
1326 Other register information, such as the
1327 starting and ending positions (which are addresses), and the list of
1328 inner groups (which is a bits list) are maintained in separate
5e69f11e
RM
1329 variables.
1330
fa9a63c5
RM
1331 We are making a (strictly speaking) nonportable assumption here: that
1332 the compiler will pack our bit fields into something that fits into
1333 the type of `word', i.e., is something that fits into one item on the
1334 failure stack. */
1335
1336typedef union
1337{
1338 fail_stack_elt_t word;
1339 struct
1340 {
1341 /* This field is one if this group can match the empty string,
1342 zero if not. If not yet determined, `MATCH_NULL_UNSET_VALUE'. */
1343#define MATCH_NULL_UNSET_VALUE 3
1344 unsigned match_null_string_p : 2;
1345 unsigned is_active : 1;
1346 unsigned matched_something : 1;
1347 unsigned ever_matched_something : 1;
1348 } bits;
1349} register_info_type;
1350
1351#define REG_MATCH_NULL_STRING_P(R) ((R).bits.match_null_string_p)
1352#define IS_ACTIVE(R) ((R).bits.is_active)
1353#define MATCHED_SOMETHING(R) ((R).bits.matched_something)
1354#define EVER_MATCHED_SOMETHING(R) ((R).bits.ever_matched_something)
1355
1356
1357/* Call this when have matched a real character; it sets `matched' flags
1358 for the subexpressions which we are currently inside. Also records
1359 that those subexprs have matched. */
1360#define SET_REGS_MATCHED() \
1361 do \
1362 { \
1363 if (!set_regs_matched_done) \
1364 { \
1365 unsigned r; \
1366 set_regs_matched_done = 1; \
1367 for (r = lowest_active_reg; r <= highest_active_reg; r++) \
1368 { \
1369 MATCHED_SOMETHING (reg_info[r]) \
1370 = EVER_MATCHED_SOMETHING (reg_info[r]) \
1371 = 1; \
1372 } \
1373 } \
1374 } \
1375 while (0)
1376
1377/* Registers are set to a sentinel when they haven't yet matched. */
1378static char reg_unset_dummy;
1379#define REG_UNSET_VALUE (&reg_unset_dummy)
1380#define REG_UNSET(e) ((e) == REG_UNSET_VALUE)
1381\f
1382/* Subroutine declarations and macros for regex_compile. */
1383
1384static void store_op1 (), store_op2 ();
1385static void insert_op1 (), insert_op2 ();
1386static boolean at_begline_loc_p (), at_endline_loc_p ();
1387static boolean group_in_compile_stack ();
1388static reg_errcode_t compile_range ();
1389
5e69f11e 1390/* Fetch the next character in the uncompiled pattern---translating it
fa9a63c5
RM
1391 if necessary. Also cast from a signed character in the constant
1392 string passed to us by the user to an unsigned char that we can use
1393 as an array index (in, e.g., `translate'). */
6676cb1c 1394#ifndef PATFETCH
fa9a63c5
RM
1395#define PATFETCH(c) \
1396 do {if (p == pend) return REG_EEND; \
1397 c = (unsigned char) *p++; \
6676cb1c 1398 if (translate) c = (unsigned char) translate[c]; \
fa9a63c5 1399 } while (0)
6676cb1c 1400#endif
fa9a63c5
RM
1401
1402/* Fetch the next character in the uncompiled pattern, with no
1403 translation. */
1404#define PATFETCH_RAW(c) \
1405 do {if (p == pend) return REG_EEND; \
1406 c = (unsigned char) *p++; \
1407 } while (0)
1408
1409/* Go backwards one character in the pattern. */
1410#define PATUNFETCH p--
1411
1412
1413/* If `translate' is non-null, return translate[D], else just D. We
1414 cast the subscript to translate because some data is declared as
1415 `char *', to avoid warnings when a string constant is passed. But
1416 when we use a character as a subscript we must make it unsigned. */
6676cb1c
RS
1417#ifndef TRANSLATE
1418#define TRANSLATE(d) \
1419 (translate ? (char) translate[(unsigned char) (d)] : (d))
1420#endif
fa9a63c5
RM
1421
1422
1423/* Macros for outputting the compiled pattern into `buffer'. */
1424
1425/* If the buffer isn't allocated when it comes in, use this. */
1426#define INIT_BUF_SIZE 32
1427
1428/* Make sure we have at least N more bytes of space in buffer. */
1429#define GET_BUFFER_SPACE(n) \
1430 while (b - bufp->buffer + (n) > bufp->allocated) \
1431 EXTEND_BUFFER ()
1432
1433/* Make sure we have one more byte of buffer space and then add C to it. */
1434#define BUF_PUSH(c) \
1435 do { \
1436 GET_BUFFER_SPACE (1); \
1437 *b++ = (unsigned char) (c); \
1438 } while (0)
1439
1440
1441/* Ensure we have two more bytes of buffer space and then append C1 and C2. */
1442#define BUF_PUSH_2(c1, c2) \
1443 do { \
1444 GET_BUFFER_SPACE (2); \
1445 *b++ = (unsigned char) (c1); \
1446 *b++ = (unsigned char) (c2); \
1447 } while (0)
1448
1449
1450/* As with BUF_PUSH_2, except for three bytes. */
1451#define BUF_PUSH_3(c1, c2, c3) \
1452 do { \
1453 GET_BUFFER_SPACE (3); \
1454 *b++ = (unsigned char) (c1); \
1455 *b++ = (unsigned char) (c2); \
1456 *b++ = (unsigned char) (c3); \
1457 } while (0)
1458
1459
1460/* Store a jump with opcode OP at LOC to location TO. We store a
1461 relative address offset by the three bytes the jump itself occupies. */
1462#define STORE_JUMP(op, loc, to) \
1463 store_op1 (op, loc, (to) - (loc) - 3)
1464
1465/* Likewise, for a two-argument jump. */
1466#define STORE_JUMP2(op, loc, to, arg) \
1467 store_op2 (op, loc, (to) - (loc) - 3, arg)
1468
1469/* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */
1470#define INSERT_JUMP(op, loc, to) \
1471 insert_op1 (op, loc, (to) - (loc) - 3, b)
1472
1473/* Like `STORE_JUMP2', but for inserting. Assume `b' is the buffer end. */
1474#define INSERT_JUMP2(op, loc, to, arg) \
1475 insert_op2 (op, loc, (to) - (loc) - 3, arg, b)
1476
1477
1478/* This is not an arbitrary limit: the arguments which represent offsets
1479 into the pattern are two bytes long. So if 2^16 bytes turns out to
1480 be too small, many things would have to change. */
1481#define MAX_BUF_SIZE (1L << 16)
1482
1483
1484/* Extend the buffer by twice its current size via realloc and
1485 reset the pointers that pointed into the old block to point to the
1486 correct places in the new one. If extending the buffer results in it
1487 being larger than MAX_BUF_SIZE, then flag memory exhausted. */
1488#define EXTEND_BUFFER() \
1489 do { \
1490 unsigned char *old_buffer = bufp->buffer; \
1491 if (bufp->allocated == MAX_BUF_SIZE) \
1492 return REG_ESIZE; \
1493 bufp->allocated <<= 1; \
1494 if (bufp->allocated > MAX_BUF_SIZE) \
1495 bufp->allocated = MAX_BUF_SIZE; \
1496 bufp->buffer = (unsigned char *) realloc (bufp->buffer, bufp->allocated);\
1497 if (bufp->buffer == NULL) \
1498 return REG_ESPACE; \
1499 /* If the buffer moved, move all the pointers into it. */ \
1500 if (old_buffer != bufp->buffer) \
1501 { \
1502 b = (b - old_buffer) + bufp->buffer; \
1503 begalt = (begalt - old_buffer) + bufp->buffer; \
1504 if (fixup_alt_jump) \
1505 fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer;\
1506 if (laststart) \
1507 laststart = (laststart - old_buffer) + bufp->buffer; \
1508 if (pending_exact) \
1509 pending_exact = (pending_exact - old_buffer) + bufp->buffer; \
1510 } \
1511 } while (0)
1512
1513
1514/* Since we have one byte reserved for the register number argument to
1515 {start,stop}_memory, the maximum number of groups we can report
1516 things about is what fits in that byte. */
1517#define MAX_REGNUM 255
1518
1519/* But patterns can have more than `MAX_REGNUM' registers. We just
1520 ignore the excess. */
1521typedef unsigned regnum_t;
1522
1523
1524/* Macros for the compile stack. */
1525
1526/* Since offsets can go either forwards or backwards, this type needs to
1527 be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */
1528typedef int pattern_offset_t;
1529
1530typedef struct
1531{
1532 pattern_offset_t begalt_offset;
1533 pattern_offset_t fixup_alt_jump;
1534 pattern_offset_t inner_group_offset;
5e69f11e 1535 pattern_offset_t laststart_offset;
fa9a63c5
RM
1536 regnum_t regnum;
1537} compile_stack_elt_t;
1538
1539
1540typedef struct
1541{
1542 compile_stack_elt_t *stack;
1543 unsigned size;
1544 unsigned avail; /* Offset of next open position. */
1545} compile_stack_type;
1546
1547
1548#define INIT_COMPILE_STACK_SIZE 32
1549
1550#define COMPILE_STACK_EMPTY (compile_stack.avail == 0)
1551#define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size)
1552
1553/* The next available element. */
1554#define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
1555
1556
1557/* Set the bit for character C in a list. */
1558#define SET_LIST_BIT(c) \
1559 (b[((unsigned char) (c)) / BYTEWIDTH] \
1560 |= 1 << (((unsigned char) c) % BYTEWIDTH))
1561
1562
1563/* Get the next unsigned number in the uncompiled pattern. */
1564#define GET_UNSIGNED_NUMBER(num) \
1565 { if (p != pend) \
1566 { \
1567 PATFETCH (c); \
1568 while (ISDIGIT (c)) \
1569 { \
1570 if (num < 0) \
1571 num = 0; \
1572 num = num * 10 + c - '0'; \
1573 if (p == pend) \
1574 break; \
1575 PATFETCH (c); \
1576 } \
1577 } \
5e69f11e 1578 }
fa9a63c5
RM
1579
1580#define CHAR_CLASS_MAX_LENGTH 6 /* Namely, `xdigit'. */
1581
1582#define IS_CHAR_CLASS(string) \
1583 (STREQ (string, "alpha") || STREQ (string, "upper") \
1584 || STREQ (string, "lower") || STREQ (string, "digit") \
1585 || STREQ (string, "alnum") || STREQ (string, "xdigit") \
1586 || STREQ (string, "space") || STREQ (string, "print") \
1587 || STREQ (string, "punct") || STREQ (string, "graph") \
1588 || STREQ (string, "cntrl") || STREQ (string, "blank"))
1589\f
1590#ifndef MATCH_MAY_ALLOCATE
1591
1592/* If we cannot allocate large objects within re_match_2_internal,
1593 we make the fail stack and register vectors global.
1594 The fail stack, we grow to the maximum size when a regexp
1595 is compiled.
1596 The register vectors, we adjust in size each time we
1597 compile a regexp, according to the number of registers it needs. */
1598
1599static fail_stack_type fail_stack;
1600
1601/* Size with which the following vectors are currently allocated.
1602 That is so we can make them bigger as needed,
1603 but never make them smaller. */
1604static int regs_allocated_size;
1605
1606static const char ** regstart, ** regend;
1607static const char ** old_regstart, ** old_regend;
1608static const char **best_regstart, **best_regend;
5e69f11e 1609static register_info_type *reg_info;
fa9a63c5
RM
1610static const char **reg_dummy;
1611static register_info_type *reg_info_dummy;
1612
1613/* Make the register vectors big enough for NUM_REGS registers,
1614 but don't make them smaller. */
1615
1616static
1617regex_grow_registers (num_regs)
1618 int num_regs;
1619{
1620 if (num_regs > regs_allocated_size)
1621 {
1622 RETALLOC_IF (regstart, num_regs, const char *);
1623 RETALLOC_IF (regend, num_regs, const char *);
1624 RETALLOC_IF (old_regstart, num_regs, const char *);
1625 RETALLOC_IF (old_regend, num_regs, const char *);
1626 RETALLOC_IF (best_regstart, num_regs, const char *);
1627 RETALLOC_IF (best_regend, num_regs, const char *);
1628 RETALLOC_IF (reg_info, num_regs, register_info_type);
1629 RETALLOC_IF (reg_dummy, num_regs, const char *);
1630 RETALLOC_IF (reg_info_dummy, num_regs, register_info_type);
1631
1632 regs_allocated_size = num_regs;
1633 }
1634}
1635
1636#endif /* not MATCH_MAY_ALLOCATE */
1637\f
1638/* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
1639 Returns one of error codes defined in `regex.h', or zero for success.
1640
1641 Assumes the `allocated' (and perhaps `buffer') and `translate'
1642 fields are set in BUFP on entry.
1643
1644 If it succeeds, results are put in BUFP (if it returns an error, the
1645 contents of BUFP are undefined):
1646 `buffer' is the compiled pattern;
1647 `syntax' is set to SYNTAX;
1648 `used' is set to the length of the compiled pattern;
1649 `fastmap_accurate' is zero;
1650 `re_nsub' is the number of subexpressions in PATTERN;
1651 `not_bol' and `not_eol' are zero;
5e69f11e 1652
fa9a63c5
RM
1653 The `fastmap' and `newline_anchor' fields are neither
1654 examined nor set. */
1655
1656/* Return, freeing storage we allocated. */
1657#define FREE_STACK_RETURN(value) \
1658 return (free (compile_stack.stack), value)
1659
1660static reg_errcode_t
1661regex_compile (pattern, size, syntax, bufp)
1662 const char *pattern;
1663 int size;
1664 reg_syntax_t syntax;
1665 struct re_pattern_buffer *bufp;
1666{
1667 /* We fetch characters from PATTERN here. Even though PATTERN is
1668 `char *' (i.e., signed), we declare these variables as unsigned, so
1669 they can be reliably used as array indices. */
1670 register unsigned char c, c1;
5e69f11e 1671
fa9a63c5
RM
1672 /* A random temporary spot in PATTERN. */
1673 const char *p1;
1674
1675 /* Points to the end of the buffer, where we should append. */
1676 register unsigned char *b;
5e69f11e 1677
fa9a63c5
RM
1678 /* Keeps track of unclosed groups. */
1679 compile_stack_type compile_stack;
1680
1681 /* Points to the current (ending) position in the pattern. */
1682 const char *p = pattern;
1683 const char *pend = pattern + size;
5e69f11e 1684
fa9a63c5 1685 /* How to translate the characters in the pattern. */
6676cb1c 1686 RE_TRANSLATE_TYPE translate = bufp->translate;
fa9a63c5
RM
1687
1688 /* Address of the count-byte of the most recently inserted `exactn'
1689 command. This makes it possible to tell if a new exact-match
1690 character can be added to that command or if the character requires
1691 a new `exactn' command. */
1692 unsigned char *pending_exact = 0;
1693
1694 /* Address of start of the most recently finished expression.
1695 This tells, e.g., postfix * where to find the start of its
1696 operand. Reset at the beginning of groups and alternatives. */
1697 unsigned char *laststart = 0;
1698
1699 /* Address of beginning of regexp, or inside of last group. */
1700 unsigned char *begalt;
1701
1702 /* Place in the uncompiled pattern (i.e., the {) to
1703 which to go back if the interval is invalid. */
1704 const char *beg_interval;
5e69f11e 1705
fa9a63c5
RM
1706 /* Address of the place where a forward jump should go to the end of
1707 the containing expression. Each alternative of an `or' -- except the
1708 last -- ends with a forward jump of this sort. */
1709 unsigned char *fixup_alt_jump = 0;
1710
1711 /* Counts open-groups as they are encountered. Remembered for the
1712 matching close-group on the compile stack, so the same register
1713 number is put in the stop_memory as the start_memory. */
1714 regnum_t regnum = 0;
1715
1716#ifdef DEBUG
1717 DEBUG_PRINT1 ("\nCompiling pattern: ");
1718 if (debug)
1719 {
1720 unsigned debug_count;
5e69f11e 1721
fa9a63c5
RM
1722 for (debug_count = 0; debug_count < size; debug_count++)
1723 putchar (pattern[debug_count]);
1724 putchar ('\n');
1725 }
1726#endif /* DEBUG */
1727
1728 /* Initialize the compile stack. */
1729 compile_stack.stack = TALLOC (INIT_COMPILE_STACK_SIZE, compile_stack_elt_t);
1730 if (compile_stack.stack == NULL)
1731 return REG_ESPACE;
1732
1733 compile_stack.size = INIT_COMPILE_STACK_SIZE;
1734 compile_stack.avail = 0;
1735
1736 /* Initialize the pattern buffer. */
1737 bufp->syntax = syntax;
1738 bufp->fastmap_accurate = 0;
1739 bufp->not_bol = bufp->not_eol = 0;
1740
1741 /* Set `used' to zero, so that if we return an error, the pattern
1742 printer (for debugging) will think there's no pattern. We reset it
1743 at the end. */
1744 bufp->used = 0;
5e69f11e 1745
fa9a63c5 1746 /* Always count groups, whether or not bufp->no_sub is set. */
5e69f11e 1747 bufp->re_nsub = 0;
fa9a63c5
RM
1748
1749#if !defined (emacs) && !defined (SYNTAX_TABLE)
1750 /* Initialize the syntax table. */
1751 init_syntax_once ();
1752#endif
1753
1754 if (bufp->allocated == 0)
1755 {
1756 if (bufp->buffer)
1757 { /* If zero allocated, but buffer is non-null, try to realloc
1758 enough space. This loses if buffer's address is bogus, but
1759 that is the user's responsibility. */
1760 RETALLOC (bufp->buffer, INIT_BUF_SIZE, unsigned char);
1761 }
1762 else
1763 { /* Caller did not allocate a buffer. Do it for them. */
1764 bufp->buffer = TALLOC (INIT_BUF_SIZE, unsigned char);
1765 }
1766 if (!bufp->buffer) FREE_STACK_RETURN (REG_ESPACE);
1767
1768 bufp->allocated = INIT_BUF_SIZE;
1769 }
1770
1771 begalt = b = bufp->buffer;
1772
1773 /* Loop through the uncompiled pattern until we're at the end. */
1774 while (p != pend)
1775 {
1776 PATFETCH (c);
1777
1778 switch (c)
1779 {
1780 case '^':
1781 {
1782 if ( /* If at start of pattern, it's an operator. */
1783 p == pattern + 1
1784 /* If context independent, it's an operator. */
1785 || syntax & RE_CONTEXT_INDEP_ANCHORS
1786 /* Otherwise, depends on what's come before. */
1787 || at_begline_loc_p (pattern, p, syntax))
1788 BUF_PUSH (begline);
1789 else
1790 goto normal_char;
1791 }
1792 break;
1793
1794
1795 case '$':
1796 {
1797 if ( /* If at end of pattern, it's an operator. */
5e69f11e 1798 p == pend
fa9a63c5
RM
1799 /* If context independent, it's an operator. */
1800 || syntax & RE_CONTEXT_INDEP_ANCHORS
1801 /* Otherwise, depends on what's next. */
1802 || at_endline_loc_p (p, pend, syntax))
1803 BUF_PUSH (endline);
1804 else
1805 goto normal_char;
1806 }
1807 break;
1808
1809
1810 case '+':
1811 case '?':
1812 if ((syntax & RE_BK_PLUS_QM)
1813 || (syntax & RE_LIMITED_OPS))
1814 goto normal_char;
1815 handle_plus:
1816 case '*':
1817 /* If there is no previous pattern... */
1818 if (!laststart)
1819 {
1820 if (syntax & RE_CONTEXT_INVALID_OPS)
1821 FREE_STACK_RETURN (REG_BADRPT);
1822 else if (!(syntax & RE_CONTEXT_INDEP_OPS))
1823 goto normal_char;
1824 }
1825
1826 {
1827 /* Are we optimizing this jump? */
1828 boolean keep_string_p = false;
5e69f11e 1829
fa9a63c5
RM
1830 /* 1 means zero (many) matches is allowed. */
1831 char zero_times_ok = 0, many_times_ok = 0;
1832
1833 /* If there is a sequence of repetition chars, collapse it
1834 down to just one (the right one). We can't combine
1835 interval operators with these because of, e.g., `a{2}*',
1836 which should only match an even number of `a's. */
1837
1838 for (;;)
1839 {
1840 zero_times_ok |= c != '+';
1841 many_times_ok |= c != '?';
1842
1843 if (p == pend)
1844 break;
1845
1846 PATFETCH (c);
1847
1848 if (c == '*'
1849 || (!(syntax & RE_BK_PLUS_QM) && (c == '+' || c == '?')))
1850 ;
1851
1852 else if (syntax & RE_BK_PLUS_QM && c == '\\')
1853 {
1854 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
1855
1856 PATFETCH (c1);
1857 if (!(c1 == '+' || c1 == '?'))
1858 {
1859 PATUNFETCH;
1860 PATUNFETCH;
1861 break;
1862 }
1863
1864 c = c1;
1865 }
1866 else
1867 {
1868 PATUNFETCH;
1869 break;
1870 }
1871
1872 /* If we get here, we found another repeat character. */
1873 }
1874
1875 /* Star, etc. applied to an empty pattern is equivalent
1876 to an empty pattern. */
5e69f11e 1877 if (!laststart)
fa9a63c5
RM
1878 break;
1879
1880 /* Now we know whether or not zero matches is allowed
1881 and also whether or not two or more matches is allowed. */
1882 if (many_times_ok)
1883 { /* More than one repetition is allowed, so put in at the
1884 end a backward relative jump from `b' to before the next
1885 jump we're going to put in below (which jumps from
5e69f11e 1886 laststart to after this jump).
fa9a63c5
RM
1887
1888 But if we are at the `*' in the exact sequence `.*\n',
1889 insert an unconditional jump backwards to the .,
1890 instead of the beginning of the loop. This way we only
1891 push a failure point once, instead of every time
1892 through the loop. */
1893 assert (p - 1 > pattern);
1894
1895 /* Allocate the space for the jump. */
1896 GET_BUFFER_SPACE (3);
1897
1898 /* We know we are not at the first character of the pattern,
1899 because laststart was nonzero. And we've already
1900 incremented `p', by the way, to be the character after
1901 the `*'. Do we have to do something analogous here
1902 for null bytes, because of RE_DOT_NOT_NULL? */
1903 if (TRANSLATE (*(p - 2)) == TRANSLATE ('.')
1904 && zero_times_ok
1905 && p < pend && TRANSLATE (*p) == TRANSLATE ('\n')
1906 && !(syntax & RE_DOT_NEWLINE))
1907 { /* We have .*\n. */
1908 STORE_JUMP (jump, b, laststart);
1909 keep_string_p = true;
1910 }
1911 else
1912 /* Anything else. */
1913 STORE_JUMP (maybe_pop_jump, b, laststart - 3);
1914
1915 /* We've added more stuff to the buffer. */
1916 b += 3;
1917 }
1918
1919 /* On failure, jump from laststart to b + 3, which will be the
1920 end of the buffer after this jump is inserted. */
1921 GET_BUFFER_SPACE (3);
1922 INSERT_JUMP (keep_string_p ? on_failure_keep_string_jump
1923 : on_failure_jump,
1924 laststart, b + 3);
1925 pending_exact = 0;
1926 b += 3;
1927
1928 if (!zero_times_ok)
1929 {
1930 /* At least one repetition is required, so insert a
1931 `dummy_failure_jump' before the initial
1932 `on_failure_jump' instruction of the loop. This
1933 effects a skip over that instruction the first time
1934 we hit that loop. */
1935 GET_BUFFER_SPACE (3);
1936 INSERT_JUMP (dummy_failure_jump, laststart, laststart + 6);
1937 b += 3;
1938 }
1939 }
1940 break;
1941
1942
1943 case '.':
1944 laststart = b;
1945 BUF_PUSH (anychar);
1946 break;
1947
1948
1949 case '[':
1950 {
1951 boolean had_char_class = false;
1952
1953 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
1954
1955 /* Ensure that we have enough space to push a charset: the
1956 opcode, the length count, and the bitset; 34 bytes in all. */
1957 GET_BUFFER_SPACE (34);
1958
1959 laststart = b;
1960
1961 /* We test `*p == '^' twice, instead of using an if
1962 statement, so we only need one BUF_PUSH. */
5e69f11e 1963 BUF_PUSH (*p == '^' ? charset_not : charset);
fa9a63c5
RM
1964 if (*p == '^')
1965 p++;
1966
1967 /* Remember the first position in the bracket expression. */
1968 p1 = p;
1969
1970 /* Push the number of bytes in the bitmap. */
1971 BUF_PUSH ((1 << BYTEWIDTH) / BYTEWIDTH);
1972
1973 /* Clear the whole map. */
1974 bzero (b, (1 << BYTEWIDTH) / BYTEWIDTH);
1975
1976 /* charset_not matches newline according to a syntax bit. */
1977 if ((re_opcode_t) b[-2] == charset_not
1978 && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
1979 SET_LIST_BIT ('\n');
1980
1981 /* Read in characters and ranges, setting map bits. */
1982 for (;;)
1983 {
1984 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
1985
1986 PATFETCH (c);
1987
1988 /* \ might escape characters inside [...] and [^...]. */
1989 if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
1990 {
1991 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
1992
1993 PATFETCH (c1);
1994 SET_LIST_BIT (c1);
1995 continue;
1996 }
1997
1998 /* Could be the end of the bracket expression. If it's
1999 not (i.e., when the bracket expression is `[]' so
2000 far), the ']' character bit gets set way below. */
2001 if (c == ']' && p != p1 + 1)
2002 break;
2003
2004 /* Look ahead to see if it's a range when the last thing
2005 was a character class. */
2006 if (had_char_class && c == '-' && *p != ']')
2007 FREE_STACK_RETURN (REG_ERANGE);
2008
2009 /* Look ahead to see if it's a range when the last thing
2010 was a character: if this is a hyphen not at the
2011 beginning or the end of a list, then it's the range
2012 operator. */
5e69f11e
RM
2013 if (c == '-'
2014 && !(p - 2 >= pattern && p[-2] == '[')
fa9a63c5
RM
2015 && !(p - 3 >= pattern && p[-3] == '[' && p[-2] == '^')
2016 && *p != ']')
2017 {
2018 reg_errcode_t ret
2019 = compile_range (&p, pend, translate, syntax, b);
2020 if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
2021 }
2022
2023 else if (p[0] == '-' && p[1] != ']')
2024 { /* This handles ranges made up of characters only. */
2025 reg_errcode_t ret;
2026
2027 /* Move past the `-'. */
2028 PATFETCH (c1);
5e69f11e 2029
fa9a63c5
RM
2030 ret = compile_range (&p, pend, translate, syntax, b);
2031 if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
2032 }
2033
2034 /* See if we're at the beginning of a possible character
2035 class. */
2036
2037 else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == ':')
2038 { /* Leave room for the null. */
2039 char str[CHAR_CLASS_MAX_LENGTH + 1];
2040
2041 PATFETCH (c);
2042 c1 = 0;
2043
2044 /* If pattern is `[[:'. */
2045 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2046
2047 for (;;)
2048 {
2049 PATFETCH (c);
2050 if (c == ':' || c == ']' || p == pend
2051 || c1 == CHAR_CLASS_MAX_LENGTH)
2052 break;
2053 str[c1++] = c;
2054 }
2055 str[c1] = '\0';
2056
2057 /* If isn't a word bracketed by `[:' and:`]':
5e69f11e 2058 undo the ending character, the letters, and leave
fa9a63c5
RM
2059 the leading `:' and `[' (but set bits for them). */
2060 if (c == ':' && *p == ']')
2061 {
2062 int ch;
2063 boolean is_alnum = STREQ (str, "alnum");
2064 boolean is_alpha = STREQ (str, "alpha");
2065 boolean is_blank = STREQ (str, "blank");
2066 boolean is_cntrl = STREQ (str, "cntrl");
2067 boolean is_digit = STREQ (str, "digit");
2068 boolean is_graph = STREQ (str, "graph");
2069 boolean is_lower = STREQ (str, "lower");
2070 boolean is_print = STREQ (str, "print");
2071 boolean is_punct = STREQ (str, "punct");
2072 boolean is_space = STREQ (str, "space");
2073 boolean is_upper = STREQ (str, "upper");
2074 boolean is_xdigit = STREQ (str, "xdigit");
5e69f11e 2075
fa9a63c5
RM
2076 if (!IS_CHAR_CLASS (str))
2077 FREE_STACK_RETURN (REG_ECTYPE);
2078
2079 /* Throw away the ] at the end of the character
2080 class. */
5e69f11e 2081 PATFETCH (c);
fa9a63c5
RM
2082
2083 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2084
2085 for (ch = 0; ch < 1 << BYTEWIDTH; ch++)
2086 {
2087 /* This was split into 3 if's to
2088 avoid an arbitrary limit in some compiler. */
2089 if ( (is_alnum && ISALNUM (ch))
2090 || (is_alpha && ISALPHA (ch))
2091 || (is_blank && ISBLANK (ch))
2092 || (is_cntrl && ISCNTRL (ch)))
2093 SET_LIST_BIT (ch);
2094 if ( (is_digit && ISDIGIT (ch))
2095 || (is_graph && ISGRAPH (ch))
2096 || (is_lower && ISLOWER (ch))
2097 || (is_print && ISPRINT (ch)))
2098 SET_LIST_BIT (ch);
2099 if ( (is_punct && ISPUNCT (ch))
2100 || (is_space && ISSPACE (ch))
2101 || (is_upper && ISUPPER (ch))
2102 || (is_xdigit && ISXDIGIT (ch)))
2103 SET_LIST_BIT (ch);
2104 }
2105 had_char_class = true;
2106 }
2107 else
2108 {
2109 c1++;
5e69f11e 2110 while (c1--)
fa9a63c5
RM
2111 PATUNFETCH;
2112 SET_LIST_BIT ('[');
2113 SET_LIST_BIT (':');
2114 had_char_class = false;
2115 }
2116 }
2117 else
2118 {
2119 had_char_class = false;
2120 SET_LIST_BIT (c);
2121 }
2122 }
2123
2124 /* Discard any (non)matching list bytes that are all 0 at the
2125 end of the map. Decrease the map-length byte too. */
5e69f11e
RM
2126 while ((int) b[-1] > 0 && b[b[-1] - 1] == 0)
2127 b[-1]--;
fa9a63c5
RM
2128 b += b[-1];
2129 }
2130 break;
2131
2132
2133 case '(':
2134 if (syntax & RE_NO_BK_PARENS)
2135 goto handle_open;
2136 else
2137 goto normal_char;
2138
2139
2140 case ')':
2141 if (syntax & RE_NO_BK_PARENS)
2142 goto handle_close;
2143 else
2144 goto normal_char;
2145
2146
2147 case '\n':
2148 if (syntax & RE_NEWLINE_ALT)
2149 goto handle_alt;
2150 else
2151 goto normal_char;
2152
2153
2154 case '|':
2155 if (syntax & RE_NO_BK_VBAR)
2156 goto handle_alt;
2157 else
2158 goto normal_char;
2159
2160
2161 case '{':
2162 if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES)
2163 goto handle_interval;
2164 else
2165 goto normal_char;
2166
2167
2168 case '\\':
2169 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2170
2171 /* Do not translate the character after the \, so that we can
2172 distinguish, e.g., \B from \b, even if we normally would
2173 translate, e.g., B to b. */
2174 PATFETCH_RAW (c);
2175
2176 switch (c)
2177 {
2178 case '(':
2179 if (syntax & RE_NO_BK_PARENS)
2180 goto normal_backslash;
2181
2182 handle_open:
2183 bufp->re_nsub++;
2184 regnum++;
2185
2186 if (COMPILE_STACK_FULL)
5e69f11e 2187 {
fa9a63c5
RM
2188 RETALLOC (compile_stack.stack, compile_stack.size << 1,
2189 compile_stack_elt_t);
2190 if (compile_stack.stack == NULL) return REG_ESPACE;
2191
2192 compile_stack.size <<= 1;
2193 }
2194
2195 /* These are the values to restore when we hit end of this
2196 group. They are all relative offsets, so that if the
2197 whole pattern moves because of realloc, they will still
2198 be valid. */
2199 COMPILE_STACK_TOP.begalt_offset = begalt - bufp->buffer;
5e69f11e 2200 COMPILE_STACK_TOP.fixup_alt_jump
fa9a63c5
RM
2201 = fixup_alt_jump ? fixup_alt_jump - bufp->buffer + 1 : 0;
2202 COMPILE_STACK_TOP.laststart_offset = b - bufp->buffer;
2203 COMPILE_STACK_TOP.regnum = regnum;
2204
2205 /* We will eventually replace the 0 with the number of
2206 groups inner to this one. But do not push a
2207 start_memory for groups beyond the last one we can
2208 represent in the compiled pattern. */
2209 if (regnum <= MAX_REGNUM)
2210 {
2211 COMPILE_STACK_TOP.inner_group_offset = b - bufp->buffer + 2;
2212 BUF_PUSH_3 (start_memory, regnum, 0);
2213 }
5e69f11e 2214
fa9a63c5
RM
2215 compile_stack.avail++;
2216
2217 fixup_alt_jump = 0;
2218 laststart = 0;
2219 begalt = b;
2220 /* If we've reached MAX_REGNUM groups, then this open
2221 won't actually generate any code, so we'll have to
2222 clear pending_exact explicitly. */
2223 pending_exact = 0;
2224 break;
2225
2226
2227 case ')':
2228 if (syntax & RE_NO_BK_PARENS) goto normal_backslash;
2229
2230 if (COMPILE_STACK_EMPTY)
2231 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
2232 goto normal_backslash;
2233 else
2234 FREE_STACK_RETURN (REG_ERPAREN);
2235
2236 handle_close:
2237 if (fixup_alt_jump)
2238 { /* Push a dummy failure point at the end of the
2239 alternative for a possible future
2240 `pop_failure_jump' to pop. See comments at
2241 `push_dummy_failure' in `re_match_2'. */
2242 BUF_PUSH (push_dummy_failure);
5e69f11e 2243
fa9a63c5
RM
2244 /* We allocated space for this jump when we assigned
2245 to `fixup_alt_jump', in the `handle_alt' case below. */
2246 STORE_JUMP (jump_past_alt, fixup_alt_jump, b - 1);
2247 }
2248
2249 /* See similar code for backslashed left paren above. */
2250 if (COMPILE_STACK_EMPTY)
2251 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
2252 goto normal_char;
2253 else
2254 FREE_STACK_RETURN (REG_ERPAREN);
2255
2256 /* Since we just checked for an empty stack above, this
2257 ``can't happen''. */
2258 assert (compile_stack.avail != 0);
2259 {
2260 /* We don't just want to restore into `regnum', because
2261 later groups should continue to be numbered higher,
2262 as in `(ab)c(de)' -- the second group is #2. */
2263 regnum_t this_group_regnum;
2264
5e69f11e 2265 compile_stack.avail--;
fa9a63c5
RM
2266 begalt = bufp->buffer + COMPILE_STACK_TOP.begalt_offset;
2267 fixup_alt_jump
2268 = COMPILE_STACK_TOP.fixup_alt_jump
5e69f11e 2269 ? bufp->buffer + COMPILE_STACK_TOP.fixup_alt_jump - 1
fa9a63c5
RM
2270 : 0;
2271 laststart = bufp->buffer + COMPILE_STACK_TOP.laststart_offset;
2272 this_group_regnum = COMPILE_STACK_TOP.regnum;
2273 /* If we've reached MAX_REGNUM groups, then this open
2274 won't actually generate any code, so we'll have to
2275 clear pending_exact explicitly. */
2276 pending_exact = 0;
2277
2278 /* We're at the end of the group, so now we know how many
2279 groups were inside this one. */
2280 if (this_group_regnum <= MAX_REGNUM)
2281 {
2282 unsigned char *inner_group_loc
2283 = bufp->buffer + COMPILE_STACK_TOP.inner_group_offset;
5e69f11e 2284
fa9a63c5
RM
2285 *inner_group_loc = regnum - this_group_regnum;
2286 BUF_PUSH_3 (stop_memory, this_group_regnum,
2287 regnum - this_group_regnum);
2288 }
2289 }
2290 break;
2291
2292
2293 case '|': /* `\|'. */
2294 if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR)
2295 goto normal_backslash;
2296 handle_alt:
2297 if (syntax & RE_LIMITED_OPS)
2298 goto normal_char;
2299
2300 /* Insert before the previous alternative a jump which
2301 jumps to this alternative if the former fails. */
2302 GET_BUFFER_SPACE (3);
2303 INSERT_JUMP (on_failure_jump, begalt, b + 6);
2304 pending_exact = 0;
2305 b += 3;
2306
2307 /* The alternative before this one has a jump after it
2308 which gets executed if it gets matched. Adjust that
2309 jump so it will jump to this alternative's analogous
2310 jump (put in below, which in turn will jump to the next
2311 (if any) alternative's such jump, etc.). The last such
2312 jump jumps to the correct final destination. A picture:
5e69f11e
RM
2313 _____ _____
2314 | | | |
2315 | v | v
2316 a | b | c
fa9a63c5
RM
2317
2318 If we are at `b', then fixup_alt_jump right now points to a
2319 three-byte space after `a'. We'll put in the jump, set
2320 fixup_alt_jump to right after `b', and leave behind three
2321 bytes which we'll fill in when we get to after `c'. */
2322
2323 if (fixup_alt_jump)
2324 STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
2325
2326 /* Mark and leave space for a jump after this alternative,
2327 to be filled in later either by next alternative or
2328 when know we're at the end of a series of alternatives. */
2329 fixup_alt_jump = b;
2330 GET_BUFFER_SPACE (3);
2331 b += 3;
2332
2333 laststart = 0;
2334 begalt = b;
2335 break;
2336
2337
5e69f11e 2338 case '{':
fa9a63c5
RM
2339 /* If \{ is a literal. */
2340 if (!(syntax & RE_INTERVALS)
5e69f11e 2341 /* If we're at `\{' and it's not the open-interval
fa9a63c5
RM
2342 operator. */
2343 || ((syntax & RE_INTERVALS) && (syntax & RE_NO_BK_BRACES))
2344 || (p - 2 == pattern && p == pend))
2345 goto normal_backslash;
2346
2347 handle_interval:
2348 {
2349 /* If got here, then the syntax allows intervals. */
2350
2351 /* At least (most) this many matches must be made. */
2352 int lower_bound = -1, upper_bound = -1;
2353
2354 beg_interval = p - 1;
2355
2356 if (p == pend)
2357 {
2358 if (syntax & RE_NO_BK_BRACES)
2359 goto unfetch_interval;
2360 else
2361 FREE_STACK_RETURN (REG_EBRACE);
2362 }
2363
2364 GET_UNSIGNED_NUMBER (lower_bound);
2365
2366 if (c == ',')
2367 {
2368 GET_UNSIGNED_NUMBER (upper_bound);
2369 if (upper_bound < 0) upper_bound = RE_DUP_MAX;
2370 }
2371 else
2372 /* Interval such as `{1}' => match exactly once. */
2373 upper_bound = lower_bound;
2374
2375 if (lower_bound < 0 || upper_bound > RE_DUP_MAX
2376 || lower_bound > upper_bound)
2377 {
2378 if (syntax & RE_NO_BK_BRACES)
2379 goto unfetch_interval;
5e69f11e 2380 else
fa9a63c5
RM
2381 FREE_STACK_RETURN (REG_BADBR);
2382 }
2383
5e69f11e 2384 if (!(syntax & RE_NO_BK_BRACES))
fa9a63c5
RM
2385 {
2386 if (c != '\\') FREE_STACK_RETURN (REG_EBRACE);
2387
2388 PATFETCH (c);
2389 }
2390
2391 if (c != '}')
2392 {
2393 if (syntax & RE_NO_BK_BRACES)
2394 goto unfetch_interval;
5e69f11e 2395 else
fa9a63c5
RM
2396 FREE_STACK_RETURN (REG_BADBR);
2397 }
2398
2399 /* We just parsed a valid interval. */
2400
2401 /* If it's invalid to have no preceding re. */
2402 if (!laststart)
2403 {
2404 if (syntax & RE_CONTEXT_INVALID_OPS)
2405 FREE_STACK_RETURN (REG_BADRPT);
2406 else if (syntax & RE_CONTEXT_INDEP_OPS)
2407 laststart = b;
2408 else
2409 goto unfetch_interval;
2410 }
2411
2412 /* If the upper bound is zero, don't want to succeed at
2413 all; jump from `laststart' to `b + 3', which will be
2414 the end of the buffer after we insert the jump. */
2415 if (upper_bound == 0)
2416 {
2417 GET_BUFFER_SPACE (3);
2418 INSERT_JUMP (jump, laststart, b + 3);
2419 b += 3;
2420 }
2421
2422 /* Otherwise, we have a nontrivial interval. When
2423 we're all done, the pattern will look like:
2424 set_number_at <jump count> <upper bound>
2425 set_number_at <succeed_n count> <lower bound>
2426 succeed_n <after jump addr> <succeed_n count>
2427 <body of loop>
2428 jump_n <succeed_n addr> <jump count>
2429 (The upper bound and `jump_n' are omitted if
2430 `upper_bound' is 1, though.) */
5e69f11e 2431 else
fa9a63c5
RM
2432 { /* If the upper bound is > 1, we need to insert
2433 more at the end of the loop. */
2434 unsigned nbytes = 10 + (upper_bound > 1) * 10;
2435
2436 GET_BUFFER_SPACE (nbytes);
2437
2438 /* Initialize lower bound of the `succeed_n', even
2439 though it will be set during matching by its
2440 attendant `set_number_at' (inserted next),
2441 because `re_compile_fastmap' needs to know.
2442 Jump to the `jump_n' we might insert below. */
2443 INSERT_JUMP2 (succeed_n, laststart,
2444 b + 5 + (upper_bound > 1) * 5,
2445 lower_bound);
2446 b += 5;
2447
5e69f11e 2448 /* Code to initialize the lower bound. Insert
fa9a63c5
RM
2449 before the `succeed_n'. The `5' is the last two
2450 bytes of this `set_number_at', plus 3 bytes of
2451 the following `succeed_n'. */
2452 insert_op2 (set_number_at, laststart, 5, lower_bound, b);
2453 b += 5;
2454
2455 if (upper_bound > 1)
2456 { /* More than one repetition is allowed, so
2457 append a backward jump to the `succeed_n'
2458 that starts this interval.
5e69f11e 2459
fa9a63c5
RM
2460 When we've reached this during matching,
2461 we'll have matched the interval once, so
2462 jump back only `upper_bound - 1' times. */
2463 STORE_JUMP2 (jump_n, b, laststart + 5,
2464 upper_bound - 1);
2465 b += 5;
2466
2467 /* The location we want to set is the second
2468 parameter of the `jump_n'; that is `b-2' as
2469 an absolute address. `laststart' will be
2470 the `set_number_at' we're about to insert;
2471 `laststart+3' the number to set, the source
2472 for the relative address. But we are
2473 inserting into the middle of the pattern --
2474 so everything is getting moved up by 5.
2475 Conclusion: (b - 2) - (laststart + 3) + 5,
2476 i.e., b - laststart.
5e69f11e 2477
fa9a63c5
RM
2478 We insert this at the beginning of the loop
2479 so that if we fail during matching, we'll
2480 reinitialize the bounds. */
2481 insert_op2 (set_number_at, laststart, b - laststart,
2482 upper_bound - 1, b);
2483 b += 5;
2484 }
2485 }
2486 pending_exact = 0;
2487 beg_interval = NULL;
2488 }
2489 break;
2490
2491 unfetch_interval:
2492 /* If an invalid interval, match the characters as literals. */
2493 assert (beg_interval);
2494 p = beg_interval;
2495 beg_interval = NULL;
2496
2497 /* normal_char and normal_backslash need `c'. */
5e69f11e 2498 PATFETCH (c);
fa9a63c5
RM
2499
2500 if (!(syntax & RE_NO_BK_BRACES))
2501 {
2502 if (p > pattern && p[-1] == '\\')
2503 goto normal_backslash;
2504 }
2505 goto normal_char;
2506
2507#ifdef emacs
2508 /* There is no way to specify the before_dot and after_dot
2509 operators. rms says this is ok. --karl */
2510 case '=':
2511 BUF_PUSH (at_dot);
2512 break;
2513
5e69f11e 2514 case 's':
fa9a63c5
RM
2515 laststart = b;
2516 PATFETCH (c);
2517 BUF_PUSH_2 (syntaxspec, syntax_spec_code[c]);
2518 break;
2519
2520 case 'S':
2521 laststart = b;
2522 PATFETCH (c);
2523 BUF_PUSH_2 (notsyntaxspec, syntax_spec_code[c]);
2524 break;
2525#endif /* emacs */
2526
2527
2528 case 'w':
2529 laststart = b;
2530 BUF_PUSH (wordchar);
2531 break;
2532
2533
2534 case 'W':
2535 laststart = b;
2536 BUF_PUSH (notwordchar);
2537 break;
2538
2539
2540 case '<':
2541 BUF_PUSH (wordbeg);
2542 break;
2543
2544 case '>':
2545 BUF_PUSH (wordend);
2546 break;
2547
2548 case 'b':
2549 BUF_PUSH (wordbound);
2550 break;
2551
2552 case 'B':
2553 BUF_PUSH (notwordbound);
2554 break;
2555
2556 case '`':
2557 BUF_PUSH (begbuf);
2558 break;
2559
2560 case '\'':
2561 BUF_PUSH (endbuf);
2562 break;
2563
2564 case '1': case '2': case '3': case '4': case '5':
2565 case '6': case '7': case '8': case '9':
2566 if (syntax & RE_NO_BK_REFS)
2567 goto normal_char;
2568
2569 c1 = c - '0';
2570
2571 if (c1 > regnum)
2572 FREE_STACK_RETURN (REG_ESUBREG);
2573
2574 /* Can't back reference to a subexpression if inside of it. */
2575 if (group_in_compile_stack (compile_stack, c1))
2576 goto normal_char;
2577
2578 laststart = b;
2579 BUF_PUSH_2 (duplicate, c1);
2580 break;
2581
2582
2583 case '+':
2584 case '?':
2585 if (syntax & RE_BK_PLUS_QM)
2586 goto handle_plus;
2587 else
2588 goto normal_backslash;
2589
2590 default:
2591 normal_backslash:
2592 /* You might think it would be useful for \ to mean
2593 not to translate; but if we don't translate it
2594 it will never match anything. */
2595 c = TRANSLATE (c);
2596 goto normal_char;
2597 }
2598 break;
2599
2600
2601 default:
2602 /* Expects the character in `c'. */
2603 normal_char:
2604 /* If no exactn currently being built. */
5e69f11e 2605 if (!pending_exact
fa9a63c5
RM
2606
2607 /* If last exactn not at current position. */
2608 || pending_exact + *pending_exact + 1 != b
5e69f11e 2609
fa9a63c5
RM
2610 /* We have only one byte following the exactn for the count. */
2611 || *pending_exact == (1 << BYTEWIDTH) - 1
2612
2613 /* If followed by a repetition operator. */
2614 || *p == '*' || *p == '^'
2615 || ((syntax & RE_BK_PLUS_QM)
2616 ? *p == '\\' && (p[1] == '+' || p[1] == '?')
2617 : (*p == '+' || *p == '?'))
2618 || ((syntax & RE_INTERVALS)
2619 && ((syntax & RE_NO_BK_BRACES)
2620 ? *p == '{'
2621 : (p[0] == '\\' && p[1] == '{'))))
2622 {
2623 /* Start building a new exactn. */
5e69f11e 2624
fa9a63c5
RM
2625 laststart = b;
2626
2627 BUF_PUSH_2 (exactn, 0);
2628 pending_exact = b - 1;
2629 }
5e69f11e 2630
fa9a63c5
RM
2631 BUF_PUSH (c);
2632 (*pending_exact)++;
2633 break;
2634 } /* switch (c) */
2635 } /* while p != pend */
2636
5e69f11e 2637
fa9a63c5 2638 /* Through the pattern now. */
5e69f11e 2639
fa9a63c5
RM
2640 if (fixup_alt_jump)
2641 STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
2642
5e69f11e 2643 if (!COMPILE_STACK_EMPTY)
fa9a63c5
RM
2644 FREE_STACK_RETURN (REG_EPAREN);
2645
2646 /* If we don't want backtracking, force success
2647 the first time we reach the end of the compiled pattern. */
2648 if (syntax & RE_NO_POSIX_BACKTRACKING)
2649 BUF_PUSH (succeed);
2650
2651 free (compile_stack.stack);
2652
2653 /* We have succeeded; set the length of the buffer. */
2654 bufp->used = b - bufp->buffer;
2655
2656#ifdef DEBUG
2657 if (debug)
2658 {
2659 DEBUG_PRINT1 ("\nCompiled pattern: \n");
2660 print_compiled_pattern (bufp);
2661 }
2662#endif /* DEBUG */
2663
2664#ifndef MATCH_MAY_ALLOCATE
2665 /* Initialize the failure stack to the largest possible stack. This
2666 isn't necessary unless we're trying to avoid calling alloca in
2667 the search and match routines. */
2668 {
2669 int num_regs = bufp->re_nsub + 1;
2670
2671 /* Since DOUBLE_FAIL_STACK refuses to double only if the current size
2672 is strictly greater than re_max_failures, the largest possible stack
2673 is 2 * re_max_failures failure points. */
2674 if (fail_stack.size < (2 * re_max_failures * MAX_FAILURE_ITEMS))
2675 {
2676 fail_stack.size = (2 * re_max_failures * MAX_FAILURE_ITEMS);
2677
2678#ifdef emacs
2679 if (! fail_stack.stack)
2680 fail_stack.stack
5e69f11e 2681 = (fail_stack_elt_t *) xmalloc (fail_stack.size
fa9a63c5
RM
2682 * sizeof (fail_stack_elt_t));
2683 else
2684 fail_stack.stack
2685 = (fail_stack_elt_t *) xrealloc (fail_stack.stack,
2686 (fail_stack.size
2687 * sizeof (fail_stack_elt_t)));
2688#else /* not emacs */
2689 if (! fail_stack.stack)
2690 fail_stack.stack
5e69f11e 2691 = (fail_stack_elt_t *) malloc (fail_stack.size
fa9a63c5
RM
2692 * sizeof (fail_stack_elt_t));
2693 else
2694 fail_stack.stack
2695 = (fail_stack_elt_t *) realloc (fail_stack.stack,
2696 (fail_stack.size
2697 * sizeof (fail_stack_elt_t)));
2698#endif /* not emacs */
2699 }
2700
2701 regex_grow_registers (num_regs);
2702 }
2703#endif /* not MATCH_MAY_ALLOCATE */
2704
2705 return REG_NOERROR;
2706} /* regex_compile */
2707\f
2708/* Subroutines for `regex_compile'. */
2709
2710/* Store OP at LOC followed by two-byte integer parameter ARG. */
2711
2712static void
2713store_op1 (op, loc, arg)
2714 re_opcode_t op;
2715 unsigned char *loc;
2716 int arg;
2717{
2718 *loc = (unsigned char) op;
2719 STORE_NUMBER (loc + 1, arg);
2720}
2721
2722
2723/* Like `store_op1', but for two two-byte parameters ARG1 and ARG2. */
2724
2725static void
2726store_op2 (op, loc, arg1, arg2)
2727 re_opcode_t op;
2728 unsigned char *loc;
2729 int arg1, arg2;
2730{
2731 *loc = (unsigned char) op;
2732 STORE_NUMBER (loc + 1, arg1);
2733 STORE_NUMBER (loc + 3, arg2);
2734}
2735
2736
2737/* Copy the bytes from LOC to END to open up three bytes of space at LOC
2738 for OP followed by two-byte integer parameter ARG. */
2739
2740static void
2741insert_op1 (op, loc, arg, end)
2742 re_opcode_t op;
2743 unsigned char *loc;
2744 int arg;
5e69f11e 2745 unsigned char *end;
fa9a63c5
RM
2746{
2747 register unsigned char *pfrom = end;
2748 register unsigned char *pto = end + 3;
2749
2750 while (pfrom != loc)
2751 *--pto = *--pfrom;
5e69f11e 2752
fa9a63c5
RM
2753 store_op1 (op, loc, arg);
2754}
2755
2756
2757/* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2. */
2758
2759static void
2760insert_op2 (op, loc, arg1, arg2, end)
2761 re_opcode_t op;
2762 unsigned char *loc;
2763 int arg1, arg2;
5e69f11e 2764 unsigned char *end;
fa9a63c5
RM
2765{
2766 register unsigned char *pfrom = end;
2767 register unsigned char *pto = end + 5;
2768
2769 while (pfrom != loc)
2770 *--pto = *--pfrom;
5e69f11e 2771
fa9a63c5
RM
2772 store_op2 (op, loc, arg1, arg2);
2773}
2774
2775
2776/* P points to just after a ^ in PATTERN. Return true if that ^ comes
2777 after an alternative or a begin-subexpression. We assume there is at
2778 least one character before the ^. */
2779
2780static boolean
2781at_begline_loc_p (pattern, p, syntax)
2782 const char *pattern, *p;
2783 reg_syntax_t syntax;
2784{
2785 const char *prev = p - 2;
2786 boolean prev_prev_backslash = prev > pattern && prev[-1] == '\\';
5e69f11e 2787
fa9a63c5
RM
2788 return
2789 /* After a subexpression? */
2790 (*prev == '(' && (syntax & RE_NO_BK_PARENS || prev_prev_backslash))
2791 /* After an alternative? */
2792 || (*prev == '|' && (syntax & RE_NO_BK_VBAR || prev_prev_backslash));
2793}
2794
2795
2796/* The dual of at_begline_loc_p. This one is for $. We assume there is
2797 at least one character after the $, i.e., `P < PEND'. */
2798
2799static boolean
2800at_endline_loc_p (p, pend, syntax)
2801 const char *p, *pend;
2802 int syntax;
2803{
2804 const char *next = p;
2805 boolean next_backslash = *next == '\\';
5bb52971 2806 const char *next_next = p + 1 < pend ? p + 1 : 0;
5e69f11e 2807
fa9a63c5
RM
2808 return
2809 /* Before a subexpression? */
2810 (syntax & RE_NO_BK_PARENS ? *next == ')'
2811 : next_backslash && next_next && *next_next == ')')
2812 /* Before an alternative? */
2813 || (syntax & RE_NO_BK_VBAR ? *next == '|'
2814 : next_backslash && next_next && *next_next == '|');
2815}
2816
2817
5e69f11e 2818/* Returns true if REGNUM is in one of COMPILE_STACK's elements and
fa9a63c5
RM
2819 false if it's not. */
2820
2821static boolean
2822group_in_compile_stack (compile_stack, regnum)
2823 compile_stack_type compile_stack;
2824 regnum_t regnum;
2825{
2826 int this_element;
2827
5e69f11e
RM
2828 for (this_element = compile_stack.avail - 1;
2829 this_element >= 0;
fa9a63c5
RM
2830 this_element--)
2831 if (compile_stack.stack[this_element].regnum == regnum)
2832 return true;
2833
2834 return false;
2835}
2836
2837
2838/* Read the ending character of a range (in a bracket expression) from the
2839 uncompiled pattern *P_PTR (which ends at PEND). We assume the
2840 starting character is in `P[-2]'. (`P[-1]' is the character `-'.)
2841 Then we set the translation of all bits between the starting and
2842 ending characters (inclusive) in the compiled pattern B.
5e69f11e 2843
fa9a63c5 2844 Return an error code.
5e69f11e 2845
fa9a63c5
RM
2846 We use these short variable names so we can use the same macros as
2847 `regex_compile' itself. */
2848
2849static reg_errcode_t
2850compile_range (p_ptr, pend, translate, syntax, b)
2851 const char **p_ptr, *pend;
6676cb1c 2852 RE_TRANSLATE_TYPE translate;
fa9a63c5
RM
2853 reg_syntax_t syntax;
2854 unsigned char *b;
2855{
2856 unsigned this_char;
2857
2858 const char *p = *p_ptr;
2859 int range_start, range_end;
5e69f11e 2860
fa9a63c5
RM
2861 if (p == pend)
2862 return REG_ERANGE;
2863
2864 /* Even though the pattern is a signed `char *', we need to fetch
2865 with unsigned char *'s; if the high bit of the pattern character
2866 is set, the range endpoints will be negative if we fetch using a
2867 signed char *.
2868
5e69f11e 2869 We also want to fetch the endpoints without translating them; the
fa9a63c5
RM
2870 appropriate translation is done in the bit-setting loop below. */
2871 /* The SVR4 compiler on the 3B2 had trouble with unsigned const char *. */
2872 range_start = ((const unsigned char *) p)[-2];
2873 range_end = ((const unsigned char *) p)[0];
2874
2875 /* Have to increment the pointer into the pattern string, so the
2876 caller isn't still at the ending character. */
2877 (*p_ptr)++;
2878
2879 /* If the start is after the end, the range is empty. */
2880 if (range_start > range_end)
2881 return syntax & RE_NO_EMPTY_RANGES ? REG_ERANGE : REG_NOERROR;
2882
2883 /* Here we see why `this_char' has to be larger than an `unsigned
2884 char' -- the range is inclusive, so if `range_end' == 0xff
2885 (assuming 8-bit characters), we would otherwise go into an infinite
2886 loop, since all characters <= 0xff. */
2887 for (this_char = range_start; this_char <= range_end; this_char++)
2888 {
2889 SET_LIST_BIT (TRANSLATE (this_char));
2890 }
5e69f11e 2891
fa9a63c5
RM
2892 return REG_NOERROR;
2893}
2894\f
2895/* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
2896 BUFP. A fastmap records which of the (1 << BYTEWIDTH) possible
2897 characters can start a string that matches the pattern. This fastmap
2898 is used by re_search to skip quickly over impossible starting points.
2899
2900 The caller must supply the address of a (1 << BYTEWIDTH)-byte data
2901 area as BUFP->fastmap.
5e69f11e 2902
fa9a63c5
RM
2903 We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
2904 the pattern buffer.
2905
2906 Returns 0 if we succeed, -2 if an internal error. */
2907
2908int
2909re_compile_fastmap (bufp)
2910 struct re_pattern_buffer *bufp;
2911{
2912 int j, k;
2913#ifdef MATCH_MAY_ALLOCATE
2914 fail_stack_type fail_stack;
2915#endif
2916#ifndef REGEX_MALLOC
2917 char *destination;
2918#endif
2919 /* We don't push any register information onto the failure stack. */
2920 unsigned num_regs = 0;
5e69f11e 2921
fa9a63c5
RM
2922 register char *fastmap = bufp->fastmap;
2923 unsigned char *pattern = bufp->buffer;
2924 unsigned long size = bufp->used;
2925 unsigned char *p = pattern;
2926 register unsigned char *pend = pattern + size;
2927
2928 /* This holds the pointer to the failure stack, when
2929 it is allocated relocatably. */
2930 fail_stack_elt_t *failure_stack_ptr;
2931
2932 /* Assume that each path through the pattern can be null until
2933 proven otherwise. We set this false at the bottom of switch
2934 statement, to which we get only if a particular path doesn't
2935 match the empty string. */
2936 boolean path_can_be_null = true;
2937
2938 /* We aren't doing a `succeed_n' to begin with. */
2939 boolean succeed_n_p = false;
2940
2941 assert (fastmap != NULL && p != NULL);
5e69f11e 2942
fa9a63c5
RM
2943 INIT_FAIL_STACK ();
2944 bzero (fastmap, 1 << BYTEWIDTH); /* Assume nothing's valid. */
2945 bufp->fastmap_accurate = 1; /* It will be when we're done. */
2946 bufp->can_be_null = 0;
5e69f11e 2947
fa9a63c5
RM
2948 while (1)
2949 {
2950 if (p == pend || *p == succeed)
2951 {
2952 /* We have reached the (effective) end of pattern. */
2953 if (!FAIL_STACK_EMPTY ())
2954 {
2955 bufp->can_be_null |= path_can_be_null;
2956
2957 /* Reset for next path. */
2958 path_can_be_null = true;
2959
2960 p = fail_stack.stack[--fail_stack.avail].pointer;
2961
2962 continue;
2963 }
2964 else
2965 break;
2966 }
2967
2968 /* We should never be about to go beyond the end of the pattern. */
2969 assert (p < pend);
5e69f11e 2970
fa9a63c5
RM
2971 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
2972 {
2973
2974 /* I guess the idea here is to simply not bother with a fastmap
2975 if a backreference is used, since it's too hard to figure out
2976 the fastmap for the corresponding group. Setting
2977 `can_be_null' stops `re_search_2' from using the fastmap, so
2978 that is all we do. */
2979 case duplicate:
2980 bufp->can_be_null = 1;
2981 goto done;
2982
2983
2984 /* Following are the cases which match a character. These end
2985 with `break'. */
2986
2987 case exactn:
2988 fastmap[p[1]] = 1;
2989 break;
2990
2991
2992 case charset:
2993 for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
2994 if (p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH)))
2995 fastmap[j] = 1;
2996 break;
2997
2998
2999 case charset_not:
3000 /* Chars beyond end of map must be allowed. */
3001 for (j = *p * BYTEWIDTH; j < (1 << BYTEWIDTH); j++)
3002 fastmap[j] = 1;
3003
3004 for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
3005 if (!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))))
3006 fastmap[j] = 1;
3007 break;
3008
3009
3010 case wordchar:
3011 for (j = 0; j < (1 << BYTEWIDTH); j++)
3012 if (SYNTAX (j) == Sword)
3013 fastmap[j] = 1;
3014 break;
3015
3016
3017 case notwordchar:
3018 for (j = 0; j < (1 << BYTEWIDTH); j++)
3019 if (SYNTAX (j) != Sword)
3020 fastmap[j] = 1;
3021 break;
3022
3023
3024 case anychar:
3025 {
3026 int fastmap_newline = fastmap['\n'];
3027
3028 /* `.' matches anything ... */
3029 for (j = 0; j < (1 << BYTEWIDTH); j++)
3030 fastmap[j] = 1;
3031
3032 /* ... except perhaps newline. */
3033 if (!(bufp->syntax & RE_DOT_NEWLINE))
3034 fastmap['\n'] = fastmap_newline;
3035
3036 /* Return if we have already set `can_be_null'; if we have,
3037 then the fastmap is irrelevant. Something's wrong here. */
3038 else if (bufp->can_be_null)
3039 goto done;
3040
3041 /* Otherwise, have to check alternative paths. */
3042 break;
3043 }
3044
3045#ifdef emacs
3046 case syntaxspec:
3047 k = *p++;
3048 for (j = 0; j < (1 << BYTEWIDTH); j++)
3049 if (SYNTAX (j) == (enum syntaxcode) k)
3050 fastmap[j] = 1;
3051 break;
3052
3053
3054 case notsyntaxspec:
3055 k = *p++;
3056 for (j = 0; j < (1 << BYTEWIDTH); j++)
3057 if (SYNTAX (j) != (enum syntaxcode) k)
3058 fastmap[j] = 1;
3059 break;
3060
3061
3062 /* All cases after this match the empty string. These end with
3063 `continue'. */
3064
3065
3066 case before_dot:
3067 case at_dot:
3068 case after_dot:
3069 continue;
ae4788a8 3070#endif /* emacs */
fa9a63c5
RM
3071
3072
3073 case no_op:
3074 case begline:
3075 case endline:
3076 case begbuf:
3077 case endbuf:
3078 case wordbound:
3079 case notwordbound:
3080 case wordbeg:
3081 case wordend:
3082 case push_dummy_failure:
3083 continue;
3084
3085
3086 case jump_n:
3087 case pop_failure_jump:
3088 case maybe_pop_jump:
3089 case jump:
3090 case jump_past_alt:
3091 case dummy_failure_jump:
3092 EXTRACT_NUMBER_AND_INCR (j, p);
5e69f11e 3093 p += j;
fa9a63c5
RM
3094 if (j > 0)
3095 continue;
5e69f11e 3096
fa9a63c5
RM
3097 /* Jump backward implies we just went through the body of a
3098 loop and matched nothing. Opcode jumped to should be
3099 `on_failure_jump' or `succeed_n'. Just treat it like an
3100 ordinary jump. For a * loop, it has pushed its failure
3101 point already; if so, discard that as redundant. */
3102 if ((re_opcode_t) *p != on_failure_jump
3103 && (re_opcode_t) *p != succeed_n)
3104 continue;
3105
3106 p++;
3107 EXTRACT_NUMBER_AND_INCR (j, p);
5e69f11e
RM
3108 p += j;
3109
fa9a63c5 3110 /* If what's on the stack is where we are now, pop it. */
5e69f11e 3111 if (!FAIL_STACK_EMPTY ()
fa9a63c5
RM
3112 && fail_stack.stack[fail_stack.avail - 1].pointer == p)
3113 fail_stack.avail--;
3114
3115 continue;
3116
3117
3118 case on_failure_jump:
3119 case on_failure_keep_string_jump:
3120 handle_on_failure_jump:
3121 EXTRACT_NUMBER_AND_INCR (j, p);
3122
3123 /* For some patterns, e.g., `(a?)?', `p+j' here points to the
3124 end of the pattern. We don't want to push such a point,
3125 since when we restore it above, entering the switch will
3126 increment `p' past the end of the pattern. We don't need
3127 to push such a point since we obviously won't find any more
3128 fastmap entries beyond `pend'. Such a pattern can match
3129 the null string, though. */
3130 if (p + j < pend)
3131 {
3132 if (!PUSH_PATTERN_OP (p + j, fail_stack))
3133 {
3134 RESET_FAIL_STACK ();
3135 return -2;
3136 }
3137 }
3138 else
3139 bufp->can_be_null = 1;
3140
3141 if (succeed_n_p)
3142 {
3143 EXTRACT_NUMBER_AND_INCR (k, p); /* Skip the n. */
3144 succeed_n_p = false;
3145 }
3146
3147 continue;
3148
3149
3150 case succeed_n:
3151 /* Get to the number of times to succeed. */
5e69f11e 3152 p += 2;
fa9a63c5
RM
3153
3154 /* Increment p past the n for when k != 0. */
3155 EXTRACT_NUMBER_AND_INCR (k, p);
3156 if (k == 0)
3157 {
3158 p -= 4;
3159 succeed_n_p = true; /* Spaghetti code alert. */
3160 goto handle_on_failure_jump;
3161 }
3162 continue;
3163
3164
3165 case set_number_at:
3166 p += 4;
3167 continue;
3168
3169
3170 case start_memory:
3171 case stop_memory:
3172 p += 2;
3173 continue;
3174
3175
3176 default:
3177 abort (); /* We have listed all the cases. */
3178 } /* switch *p++ */
3179
3180 /* Getting here means we have found the possible starting
3181 characters for one path of the pattern -- and that the empty
3182 string does not match. We need not follow this path further.
3183 Instead, look at the next alternative (remembered on the
3184 stack), or quit if no more. The test at the top of the loop
3185 does these things. */
3186 path_can_be_null = false;
3187 p = pend;
3188 } /* while p */
3189
3190 /* Set `can_be_null' for the last path (also the first path, if the
3191 pattern is empty). */
3192 bufp->can_be_null |= path_can_be_null;
3193
3194 done:
3195 RESET_FAIL_STACK ();
3196 return 0;
3197} /* re_compile_fastmap */
3198\f
3199/* Set REGS to hold NUM_REGS registers, storing them in STARTS and
3200 ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use
3201 this memory for recording register information. STARTS and ENDS
3202 must be allocated using the malloc library routine, and must each
3203 be at least NUM_REGS * sizeof (regoff_t) bytes long.
3204
3205 If NUM_REGS == 0, then subsequent matches should allocate their own
3206 register data.
3207
3208 Unless this function is called, the first search or match using
3209 PATTERN_BUFFER will allocate its own register data, without
3210 freeing the old data. */
3211
3212void
3213re_set_registers (bufp, regs, num_regs, starts, ends)
3214 struct re_pattern_buffer *bufp;
3215 struct re_registers *regs;
3216 unsigned num_regs;
3217 regoff_t *starts, *ends;
3218{
3219 if (num_regs)
3220 {
3221 bufp->regs_allocated = REGS_REALLOCATE;
3222 regs->num_regs = num_regs;
3223 regs->start = starts;
3224 regs->end = ends;
3225 }
3226 else
3227 {
3228 bufp->regs_allocated = REGS_UNALLOCATED;
3229 regs->num_regs = 0;
3230 regs->start = regs->end = (regoff_t *) 0;
3231 }
3232}
3233\f
3234/* Searching routines. */
3235
3236/* Like re_search_2, below, but only one string is specified, and
3237 doesn't let you say where to stop matching. */
3238
3239int
3240re_search (bufp, string, size, startpos, range, regs)
3241 struct re_pattern_buffer *bufp;
3242 const char *string;
3243 int size, startpos, range;
3244 struct re_registers *regs;
3245{
5e69f11e 3246 return re_search_2 (bufp, NULL, 0, string, size, startpos, range,
fa9a63c5
RM
3247 regs, size);
3248}
3249
3250
3251/* Using the compiled pattern in BUFP->buffer, first tries to match the
3252 virtual concatenation of STRING1 and STRING2, starting first at index
3253 STARTPOS, then at STARTPOS + 1, and so on.
5e69f11e 3254
fa9a63c5 3255 STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
5e69f11e 3256
fa9a63c5
RM
3257 RANGE is how far to scan while trying to match. RANGE = 0 means try
3258 only at STARTPOS; in general, the last start tried is STARTPOS +
3259 RANGE.
5e69f11e 3260
fa9a63c5
RM
3261 In REGS, return the indices of the virtual concatenation of STRING1
3262 and STRING2 that matched the entire BUFP->buffer and its contained
3263 subexpressions.
5e69f11e 3264
fa9a63c5
RM
3265 Do not consider matching one past the index STOP in the virtual
3266 concatenation of STRING1 and STRING2.
3267
3268 We return either the position in the strings at which the match was
3269 found, -1 if no match, or -2 if error (such as failure
3270 stack overflow). */
3271
3272int
3273re_search_2 (bufp, string1, size1, string2, size2, startpos, range, regs, stop)
3274 struct re_pattern_buffer *bufp;
3275 const char *string1, *string2;
3276 int size1, size2;
3277 int startpos;
3278 int range;
3279 struct re_registers *regs;
3280 int stop;
3281{
3282 int val;
3283 register char *fastmap = bufp->fastmap;
6676cb1c 3284 register RE_TRANSLATE_TYPE translate = bufp->translate;
fa9a63c5
RM
3285 int total_size = size1 + size2;
3286 int endpos = startpos + range;
3287
3288 /* Check for out-of-range STARTPOS. */
3289 if (startpos < 0 || startpos > total_size)
3290 return -1;
5e69f11e 3291
fa9a63c5 3292 /* Fix up RANGE if it might eventually take us outside
34597fa9 3293 the virtual concatenation of STRING1 and STRING2.
5e69f11e 3294 Make sure we won't move STARTPOS below 0 or above TOTAL_SIZE. */
34597fa9
RS
3295 if (endpos < 0)
3296 range = 0 - startpos;
fa9a63c5
RM
3297 else if (endpos > total_size)
3298 range = total_size - startpos;
3299
3300 /* If the search isn't to be a backwards one, don't waste time in a
3301 search for a pattern that must be anchored. */
3302 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == begbuf && range > 0)
3303 {
3304 if (startpos > 0)
3305 return -1;
3306 else
3307 range = 1;
3308 }
3309
ae4788a8
RS
3310#ifdef emacs
3311 /* In a forward search for something that starts with \=.
3312 don't keep searching past point. */
3313 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == at_dot && range > 0)
3314 {
3315 range = PT - startpos;
3316 if (range <= 0)
3317 return -1;
3318 }
3319#endif /* emacs */
3320
fa9a63c5
RM
3321 /* Update the fastmap now if not correct already. */
3322 if (fastmap && !bufp->fastmap_accurate)
3323 if (re_compile_fastmap (bufp) == -2)
3324 return -2;
5e69f11e 3325
fa9a63c5
RM
3326 /* Loop through the string, looking for a place to start matching. */
3327 for (;;)
5e69f11e 3328 {
fa9a63c5
RM
3329 /* If a fastmap is supplied, skip quickly over characters that
3330 cannot be the start of a match. If the pattern can match the
3331 null string, however, we don't need to skip characters; we want
3332 the first null string. */
3333 if (fastmap && startpos < total_size && !bufp->can_be_null)
3334 {
3335 if (range > 0) /* Searching forwards. */
3336 {
3337 register const char *d;
3338 register int lim = 0;
3339 int irange = range;
3340
3341 if (startpos < size1 && startpos + range >= size1)
3342 lim = range - (size1 - startpos);
3343
3344 d = (startpos >= size1 ? string2 - size1 : string1) + startpos;
5e69f11e 3345
fa9a63c5
RM
3346 /* Written out as an if-else to avoid testing `translate'
3347 inside the loop. */
3348 if (translate)
3349 while (range > lim
3350 && !fastmap[(unsigned char)
3351 translate[(unsigned char) *d++]])
3352 range--;
3353 else
3354 while (range > lim && !fastmap[(unsigned char) *d++])
3355 range--;
3356
3357 startpos += irange - range;
3358 }
3359 else /* Searching backwards. */
3360 {
3361 register char c = (size1 == 0 || startpos >= size1
5e69f11e 3362 ? string2[startpos - size1]
fa9a63c5
RM
3363 : string1[startpos]);
3364
3365 if (!fastmap[(unsigned char) TRANSLATE (c)])
3366 goto advance;
3367 }
3368 }
3369
3370 /* If can't match the null string, and that's all we have left, fail. */
3371 if (range >= 0 && startpos == total_size && fastmap
3372 && !bufp->can_be_null)
3373 return -1;
3374
3375 val = re_match_2_internal (bufp, string1, size1, string2, size2,
3376 startpos, regs, stop);
3377#ifndef REGEX_MALLOC
3378#ifdef C_ALLOCA
3379 alloca (0);
3380#endif
3381#endif
3382
3383 if (val >= 0)
3384 return startpos;
5e69f11e 3385
fa9a63c5
RM
3386 if (val == -2)
3387 return -2;
3388
3389 advance:
5e69f11e 3390 if (!range)
fa9a63c5 3391 break;
5e69f11e 3392 else if (range > 0)
fa9a63c5 3393 {
5e69f11e 3394 range--;
fa9a63c5
RM
3395 startpos++;
3396 }
3397 else
3398 {
5e69f11e 3399 range++;
fa9a63c5
RM
3400 startpos--;
3401 }
3402 }
3403 return -1;
3404} /* re_search_2 */
3405\f
3406/* Declarations and macros for re_match_2. */
3407
3408static int bcmp_translate ();
3409static boolean alt_match_null_string_p (),
3410 common_op_match_null_string_p (),
3411 group_match_null_string_p ();
3412
3413/* This converts PTR, a pointer into one of the search strings `string1'
3414 and `string2' into an offset from the beginning of that string. */
3415#define POINTER_TO_OFFSET(ptr) \
3416 (FIRST_STRING_P (ptr) \
3417 ? ((regoff_t) ((ptr) - string1)) \
3418 : ((regoff_t) ((ptr) - string2 + size1)))
3419
3420/* Macros for dealing with the split strings in re_match_2. */
3421
3422#define MATCHING_IN_FIRST_STRING (dend == end_match_1)
3423
3424/* Call before fetching a character with *d. This switches over to
3425 string2 if necessary. */
3426#define PREFETCH() \
3427 while (d == dend) \
3428 { \
3429 /* End of string2 => fail. */ \
3430 if (dend == end_match_2) \
3431 goto fail; \
3432 /* End of string1 => advance to string2. */ \
3433 d = string2; \
3434 dend = end_match_2; \
3435 }
3436
3437
3438/* Test if at very beginning or at very end of the virtual concatenation
3439 of `string1' and `string2'. If only one string, it's `string2'. */
3440#define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
5e69f11e 3441#define AT_STRINGS_END(d) ((d) == end2)
fa9a63c5
RM
3442
3443
3444/* Test if D points to a character which is word-constituent. We have
3445 two special cases to check for: if past the end of string1, look at
3446 the first character in string2; and if before the beginning of
3447 string2, look at the last character in string1. */
3448#define WORDCHAR_P(d) \
3449 (SYNTAX ((d) == end1 ? *string2 \
3450 : (d) == string2 - 1 ? *(end1 - 1) : *(d)) \
3451 == Sword)
3452
9121ca40
KH
3453/* Disabled due to a compiler bug -- see comment at case wordbound */
3454#if 0
fa9a63c5
RM
3455/* Test if the character before D and the one at D differ with respect
3456 to being word-constituent. */
3457#define AT_WORD_BOUNDARY(d) \
3458 (AT_STRINGS_BEG (d) || AT_STRINGS_END (d) \
3459 || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
9121ca40 3460#endif
fa9a63c5
RM
3461
3462/* Free everything we malloc. */
3463#ifdef MATCH_MAY_ALLOCATE
590027f7 3464#define FREE_VAR(var) if (var) then { REGEX_FREE (var); var = NULL; } else
fa9a63c5
RM
3465#define FREE_VARIABLES() \
3466 do { \
3467 REGEX_FREE_STACK (fail_stack.stack); \
3468 FREE_VAR (regstart); \
3469 FREE_VAR (regend); \
3470 FREE_VAR (old_regstart); \
3471 FREE_VAR (old_regend); \
3472 FREE_VAR (best_regstart); \
3473 FREE_VAR (best_regend); \
3474 FREE_VAR (reg_info); \
3475 FREE_VAR (reg_dummy); \
3476 FREE_VAR (reg_info_dummy); \
3477 } while (0)
3478#else
3479#define FREE_VARIABLES() ((void)0) /* Do nothing! But inhibit gcc warning. */
3480#endif /* not MATCH_MAY_ALLOCATE */
3481
3482/* These values must meet several constraints. They must not be valid
3483 register values; since we have a limit of 255 registers (because
3484 we use only one byte in the pattern for the register number), we can
3485 use numbers larger than 255. They must differ by 1, because of
3486 NUM_FAILURE_ITEMS above. And the value for the lowest register must
3487 be larger than the value for the highest register, so we do not try
3488 to actually save any registers when none are active. */
3489#define NO_HIGHEST_ACTIVE_REG (1 << BYTEWIDTH)
3490#define NO_LOWEST_ACTIVE_REG (NO_HIGHEST_ACTIVE_REG + 1)
3491\f
3492/* Matching routines. */
3493
3494#ifndef emacs /* Emacs never uses this. */
3495/* re_match is like re_match_2 except it takes only a single string. */
3496
3497int
3498re_match (bufp, string, size, pos, regs)
3499 struct re_pattern_buffer *bufp;
3500 const char *string;
3501 int size, pos;
3502 struct re_registers *regs;
3503{
3504 int result = re_match_2_internal (bufp, NULL, 0, string, size,
3505 pos, regs, size);
3506 alloca (0);
3507 return result;
3508}
3509#endif /* not emacs */
3510
3511
3512/* re_match_2 matches the compiled pattern in BUFP against the
3513 the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
3514 and SIZE2, respectively). We start matching at POS, and stop
3515 matching at STOP.
5e69f11e 3516
fa9a63c5
RM
3517 If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
3518 store offsets for the substring each group matched in REGS. See the
3519 documentation for exactly how many groups we fill.
3520
3521 We return -1 if no match, -2 if an internal error (such as the
3522 failure stack overflowing). Otherwise, we return the length of the
3523 matched substring. */
3524
3525int
3526re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
3527 struct re_pattern_buffer *bufp;
3528 const char *string1, *string2;
3529 int size1, size2;
3530 int pos;
3531 struct re_registers *regs;
3532 int stop;
3533{
3534 int result = re_match_2_internal (bufp, string1, size1, string2, size2,
3535 pos, regs, stop);
3536 alloca (0);
3537 return result;
3538}
3539
3540/* This is a separate function so that we can force an alloca cleanup
3541 afterwards. */
3542static int
3543re_match_2_internal (bufp, string1, size1, string2, size2, pos, regs, stop)
3544 struct re_pattern_buffer *bufp;
3545 const char *string1, *string2;
3546 int size1, size2;
3547 int pos;
3548 struct re_registers *regs;
3549 int stop;
3550{
3551 /* General temporaries. */
3552 int mcnt;
3553 unsigned char *p1;
3554
3555 /* Just past the end of the corresponding string. */
3556 const char *end1, *end2;
3557
3558 /* Pointers into string1 and string2, just past the last characters in
3559 each to consider matching. */
3560 const char *end_match_1, *end_match_2;
3561
3562 /* Where we are in the data, and the end of the current string. */
3563 const char *d, *dend;
5e69f11e 3564
fa9a63c5
RM
3565 /* Where we are in the pattern, and the end of the pattern. */
3566 unsigned char *p = bufp->buffer;
3567 register unsigned char *pend = p + bufp->used;
3568
3569 /* Mark the opcode just after a start_memory, so we can test for an
3570 empty subpattern when we get to the stop_memory. */
3571 unsigned char *just_past_start_mem = 0;
3572
3573 /* We use this to map every character in the string. */
6676cb1c 3574 RE_TRANSLATE_TYPE translate = bufp->translate;
fa9a63c5
RM
3575
3576 /* Failure point stack. Each place that can handle a failure further
3577 down the line pushes a failure point on this stack. It consists of
3578 restart, regend, and reg_info for all registers corresponding to
3579 the subexpressions we're currently inside, plus the number of such
3580 registers, and, finally, two char *'s. The first char * is where
3581 to resume scanning the pattern; the second one is where to resume
3582 scanning the strings. If the latter is zero, the failure point is
3583 a ``dummy''; if a failure happens and the failure point is a dummy,
3584 it gets discarded and the next next one is tried. */
3585#ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
3586 fail_stack_type fail_stack;
3587#endif
3588#ifdef DEBUG
3589 static unsigned failure_id = 0;
3590 unsigned nfailure_points_pushed = 0, nfailure_points_popped = 0;
3591#endif
3592
3593 /* This holds the pointer to the failure stack, when
3594 it is allocated relocatably. */
3595 fail_stack_elt_t *failure_stack_ptr;
3596
3597 /* We fill all the registers internally, independent of what we
3598 return, for use in backreferences. The number here includes
3599 an element for register zero. */
3600 unsigned num_regs = bufp->re_nsub + 1;
5e69f11e 3601
fa9a63c5
RM
3602 /* The currently active registers. */
3603 unsigned lowest_active_reg = NO_LOWEST_ACTIVE_REG;
3604 unsigned highest_active_reg = NO_HIGHEST_ACTIVE_REG;
3605
3606 /* Information on the contents of registers. These are pointers into
3607 the input strings; they record just what was matched (on this
3608 attempt) by a subexpression part of the pattern, that is, the
3609 regnum-th regstart pointer points to where in the pattern we began
3610 matching and the regnum-th regend points to right after where we
3611 stopped matching the regnum-th subexpression. (The zeroth register
3612 keeps track of what the whole pattern matches.) */
3613#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
3614 const char **regstart, **regend;
3615#endif
3616
3617 /* If a group that's operated upon by a repetition operator fails to
3618 match anything, then the register for its start will need to be
3619 restored because it will have been set to wherever in the string we
3620 are when we last see its open-group operator. Similarly for a
3621 register's end. */
3622#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
3623 const char **old_regstart, **old_regend;
3624#endif
3625
3626 /* The is_active field of reg_info helps us keep track of which (possibly
3627 nested) subexpressions we are currently in. The matched_something
3628 field of reg_info[reg_num] helps us tell whether or not we have
3629 matched any of the pattern so far this time through the reg_num-th
3630 subexpression. These two fields get reset each time through any
3631 loop their register is in. */
3632#ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
5e69f11e 3633 register_info_type *reg_info;
fa9a63c5
RM
3634#endif
3635
3636 /* The following record the register info as found in the above
5e69f11e 3637 variables when we find a match better than any we've seen before.
fa9a63c5
RM
3638 This happens as we backtrack through the failure points, which in
3639 turn happens only if we have not yet matched the entire string. */
3640 unsigned best_regs_set = false;
3641#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
3642 const char **best_regstart, **best_regend;
3643#endif
5e69f11e 3644
fa9a63c5
RM
3645 /* Logically, this is `best_regend[0]'. But we don't want to have to
3646 allocate space for that if we're not allocating space for anything
3647 else (see below). Also, we never need info about register 0 for
3648 any of the other register vectors, and it seems rather a kludge to
3649 treat `best_regend' differently than the rest. So we keep track of
3650 the end of the best match so far in a separate variable. We
3651 initialize this to NULL so that when we backtrack the first time
3652 and need to test it, it's not garbage. */
3653 const char *match_end = NULL;
3654
3655 /* This helps SET_REGS_MATCHED avoid doing redundant work. */
3656 int set_regs_matched_done = 0;
3657
3658 /* Used when we pop values we don't care about. */
3659#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
3660 const char **reg_dummy;
3661 register_info_type *reg_info_dummy;
3662#endif
3663
3664#ifdef DEBUG
3665 /* Counts the total number of registers pushed. */
5e69f11e 3666 unsigned num_regs_pushed = 0;
fa9a63c5
RM
3667#endif
3668
3669 DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
5e69f11e 3670
fa9a63c5 3671 INIT_FAIL_STACK ();
5e69f11e 3672
fa9a63c5
RM
3673#ifdef MATCH_MAY_ALLOCATE
3674 /* Do not bother to initialize all the register variables if there are
3675 no groups in the pattern, as it takes a fair amount of time. If
3676 there are groups, we include space for register 0 (the whole
3677 pattern), even though we never use it, since it simplifies the
3678 array indexing. We should fix this. */
3679 if (bufp->re_nsub)
3680 {
3681 regstart = REGEX_TALLOC (num_regs, const char *);
3682 regend = REGEX_TALLOC (num_regs, const char *);
3683 old_regstart = REGEX_TALLOC (num_regs, const char *);
3684 old_regend = REGEX_TALLOC (num_regs, const char *);
3685 best_regstart = REGEX_TALLOC (num_regs, const char *);
3686 best_regend = REGEX_TALLOC (num_regs, const char *);
3687 reg_info = REGEX_TALLOC (num_regs, register_info_type);
3688 reg_dummy = REGEX_TALLOC (num_regs, const char *);
3689 reg_info_dummy = REGEX_TALLOC (num_regs, register_info_type);
3690
5e69f11e
RM
3691 if (!(regstart && regend && old_regstart && old_regend && reg_info
3692 && best_regstart && best_regend && reg_dummy && reg_info_dummy))
fa9a63c5
RM
3693 {
3694 FREE_VARIABLES ();
3695 return -2;
3696 }
3697 }
3698 else
3699 {
3700 /* We must initialize all our variables to NULL, so that
3701 `FREE_VARIABLES' doesn't try to free them. */
3702 regstart = regend = old_regstart = old_regend = best_regstart
3703 = best_regend = reg_dummy = NULL;
3704 reg_info = reg_info_dummy = (register_info_type *) NULL;
3705 }
3706#endif /* MATCH_MAY_ALLOCATE */
3707
3708 /* The starting position is bogus. */
3709 if (pos < 0 || pos > size1 + size2)
3710 {
3711 FREE_VARIABLES ();
3712 return -1;
3713 }
5e69f11e 3714
fa9a63c5
RM
3715 /* Initialize subexpression text positions to -1 to mark ones that no
3716 start_memory/stop_memory has been seen for. Also initialize the
3717 register information struct. */
3718 for (mcnt = 1; mcnt < num_regs; mcnt++)
3719 {
5e69f11e 3720 regstart[mcnt] = regend[mcnt]
fa9a63c5 3721 = old_regstart[mcnt] = old_regend[mcnt] = REG_UNSET_VALUE;
5e69f11e 3722
fa9a63c5
RM
3723 REG_MATCH_NULL_STRING_P (reg_info[mcnt]) = MATCH_NULL_UNSET_VALUE;
3724 IS_ACTIVE (reg_info[mcnt]) = 0;
3725 MATCHED_SOMETHING (reg_info[mcnt]) = 0;
3726 EVER_MATCHED_SOMETHING (reg_info[mcnt]) = 0;
3727 }
5e69f11e 3728
fa9a63c5
RM
3729 /* We move `string1' into `string2' if the latter's empty -- but not if
3730 `string1' is null. */
3731 if (size2 == 0 && string1 != NULL)
3732 {
3733 string2 = string1;
3734 size2 = size1;
3735 string1 = 0;
3736 size1 = 0;
3737 }
3738 end1 = string1 + size1;
3739 end2 = string2 + size2;
3740
3741 /* Compute where to stop matching, within the two strings. */
3742 if (stop <= size1)
3743 {
3744 end_match_1 = string1 + stop;
3745 end_match_2 = string2;
3746 }
3747 else
3748 {
3749 end_match_1 = end1;
3750 end_match_2 = string2 + stop - size1;
3751 }
3752
5e69f11e 3753 /* `p' scans through the pattern as `d' scans through the data.
fa9a63c5
RM
3754 `dend' is the end of the input string that `d' points within. `d'
3755 is advanced into the following input string whenever necessary, but
3756 this happens before fetching; therefore, at the beginning of the
3757 loop, `d' can be pointing at the end of a string, but it cannot
3758 equal `string2'. */
3759 if (size1 > 0 && pos <= size1)
3760 {
3761 d = string1 + pos;
3762 dend = end_match_1;
3763 }
3764 else
3765 {
3766 d = string2 + pos - size1;
3767 dend = end_match_2;
3768 }
3769
3770 DEBUG_PRINT1 ("The compiled pattern is: ");
3771 DEBUG_PRINT_COMPILED_PATTERN (bufp, p, pend);
3772 DEBUG_PRINT1 ("The string to match is: `");
3773 DEBUG_PRINT_DOUBLE_STRING (d, string1, size1, string2, size2);
3774 DEBUG_PRINT1 ("'\n");
5e69f11e 3775
fa9a63c5
RM
3776 /* This loops over pattern commands. It exits by returning from the
3777 function if the match is complete, or it drops through if the match
3778 fails at this starting point in the input data. */
3779 for (;;)
3780 {
3781 DEBUG_PRINT2 ("\n0x%x: ", p);
3782
3783 if (p == pend)
3784 { /* End of pattern means we might have succeeded. */
3785 DEBUG_PRINT1 ("end of pattern ... ");
5e69f11e 3786
fa9a63c5
RM
3787 /* If we haven't matched the entire string, and we want the
3788 longest match, try backtracking. */
3789 if (d != end_match_2)
3790 {
3791 /* 1 if this match ends in the same string (string1 or string2)
3792 as the best previous match. */
5e69f11e 3793 boolean same_str_p = (FIRST_STRING_P (match_end)
fa9a63c5
RM
3794 == MATCHING_IN_FIRST_STRING);
3795 /* 1 if this match is the best seen so far. */
3796 boolean best_match_p;
3797
3798 /* AIX compiler got confused when this was combined
3799 with the previous declaration. */
3800 if (same_str_p)
3801 best_match_p = d > match_end;
3802 else
3803 best_match_p = !MATCHING_IN_FIRST_STRING;
3804
3805 DEBUG_PRINT1 ("backtracking.\n");
5e69f11e 3806
fa9a63c5
RM
3807 if (!FAIL_STACK_EMPTY ())
3808 { /* More failure points to try. */
3809
3810 /* If exceeds best match so far, save it. */
3811 if (!best_regs_set || best_match_p)
3812 {
3813 best_regs_set = true;
3814 match_end = d;
5e69f11e 3815
fa9a63c5 3816 DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
5e69f11e 3817
fa9a63c5
RM
3818 for (mcnt = 1; mcnt < num_regs; mcnt++)
3819 {
3820 best_regstart[mcnt] = regstart[mcnt];
3821 best_regend[mcnt] = regend[mcnt];
3822 }
3823 }
5e69f11e 3824 goto fail;
fa9a63c5
RM
3825 }
3826
3827 /* If no failure points, don't restore garbage. And if
3828 last match is real best match, don't restore second
3829 best one. */
3830 else if (best_regs_set && !best_match_p)
3831 {
3832 restore_best_regs:
3833 /* Restore best match. It may happen that `dend ==
3834 end_match_1' while the restored d is in string2.
3835 For example, the pattern `x.*y.*z' against the
3836 strings `x-' and `y-z-', if the two strings are
3837 not consecutive in memory. */
3838 DEBUG_PRINT1 ("Restoring best registers.\n");
5e69f11e 3839
fa9a63c5
RM
3840 d = match_end;
3841 dend = ((d >= string1 && d <= end1)
3842 ? end_match_1 : end_match_2);
3843
3844 for (mcnt = 1; mcnt < num_regs; mcnt++)
3845 {
3846 regstart[mcnt] = best_regstart[mcnt];
3847 regend[mcnt] = best_regend[mcnt];
3848 }
3849 }
3850 } /* d != end_match_2 */
3851
3852 succeed_label:
3853 DEBUG_PRINT1 ("Accepting match.\n");
3854
3855 /* If caller wants register contents data back, do it. */
3856 if (regs && !bufp->no_sub)
3857 {
3858 /* Have the register data arrays been allocated? */
3859 if (bufp->regs_allocated == REGS_UNALLOCATED)
3860 { /* No. So allocate them with malloc. We need one
3861 extra element beyond `num_regs' for the `-1' marker
3862 GNU code uses. */
3863 regs->num_regs = MAX (RE_NREGS, num_regs + 1);
3864 regs->start = TALLOC (regs->num_regs, regoff_t);
3865 regs->end = TALLOC (regs->num_regs, regoff_t);
3866 if (regs->start == NULL || regs->end == NULL)
3867 {
3868 FREE_VARIABLES ();
3869 return -2;
3870 }
3871 bufp->regs_allocated = REGS_REALLOCATE;
3872 }
3873 else if (bufp->regs_allocated == REGS_REALLOCATE)
3874 { /* Yes. If we need more elements than were already
3875 allocated, reallocate them. If we need fewer, just
3876 leave it alone. */
3877 if (regs->num_regs < num_regs + 1)
3878 {
3879 regs->num_regs = num_regs + 1;
3880 RETALLOC (regs->start, regs->num_regs, regoff_t);
3881 RETALLOC (regs->end, regs->num_regs, regoff_t);
3882 if (regs->start == NULL || regs->end == NULL)
3883 {
3884 FREE_VARIABLES ();
3885 return -2;
3886 }
3887 }
3888 }
3889 else
3890 {
3891 /* These braces fend off a "empty body in an else-statement"
3892 warning under GCC when assert expands to nothing. */
3893 assert (bufp->regs_allocated == REGS_FIXED);
3894 }
3895
3896 /* Convert the pointer data in `regstart' and `regend' to
3897 indices. Register zero has to be set differently,
3898 since we haven't kept track of any info for it. */
3899 if (regs->num_regs > 0)
3900 {
3901 regs->start[0] = pos;
3902 regs->end[0] = (MATCHING_IN_FIRST_STRING
3903 ? ((regoff_t) (d - string1))
3904 : ((regoff_t) (d - string2 + size1)));
3905 }
5e69f11e 3906
fa9a63c5
RM
3907 /* Go through the first `min (num_regs, regs->num_regs)'
3908 registers, since that is all we initialized. */
3909 for (mcnt = 1; mcnt < MIN (num_regs, regs->num_regs); mcnt++)
3910 {
3911 if (REG_UNSET (regstart[mcnt]) || REG_UNSET (regend[mcnt]))
3912 regs->start[mcnt] = regs->end[mcnt] = -1;
3913 else
3914 {
3915 regs->start[mcnt]
3916 = (regoff_t) POINTER_TO_OFFSET (regstart[mcnt]);
3917 regs->end[mcnt]
3918 = (regoff_t) POINTER_TO_OFFSET (regend[mcnt]);
3919 }
3920 }
5e69f11e 3921
fa9a63c5
RM
3922 /* If the regs structure we return has more elements than
3923 were in the pattern, set the extra elements to -1. If
3924 we (re)allocated the registers, this is the case,
3925 because we always allocate enough to have at least one
3926 -1 at the end. */
3927 for (mcnt = num_regs; mcnt < regs->num_regs; mcnt++)
3928 regs->start[mcnt] = regs->end[mcnt] = -1;
3929 } /* regs && !bufp->no_sub */
3930
3931 DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
3932 nfailure_points_pushed, nfailure_points_popped,
3933 nfailure_points_pushed - nfailure_points_popped);
3934 DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed);
3935
5e69f11e
RM
3936 mcnt = d - pos - (MATCHING_IN_FIRST_STRING
3937 ? string1
fa9a63c5
RM
3938 : string2 - size1);
3939
3940 DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt);
3941
3942 FREE_VARIABLES ();
3943 return mcnt;
3944 }
3945
3946 /* Otherwise match next pattern command. */
3947 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
3948 {
3949 /* Ignore these. Used to ignore the n of succeed_n's which
3950 currently have n == 0. */
3951 case no_op:
3952 DEBUG_PRINT1 ("EXECUTING no_op.\n");
3953 break;
3954
3955 case succeed:
3956 DEBUG_PRINT1 ("EXECUTING succeed.\n");
3957 goto succeed_label;
3958
3959 /* Match the next n pattern characters exactly. The following
3960 byte in the pattern defines n, and the n bytes after that
3961 are the characters to match. */
3962 case exactn:
3963 mcnt = *p++;
3964 DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt);
3965
3966 /* This is written out as an if-else so we don't waste time
3967 testing `translate' inside the loop. */
3968 if (translate)
3969 {
3970 do
3971 {
3972 PREFETCH ();
6676cb1c
RS
3973 if ((unsigned char) translate[(unsigned char) *d++]
3974 != (unsigned char) *p++)
fa9a63c5
RM
3975 goto fail;
3976 }
3977 while (--mcnt);
3978 }
3979 else
3980 {
3981 do
3982 {
3983 PREFETCH ();
3984 if (*d++ != (char) *p++) goto fail;
3985 }
3986 while (--mcnt);
3987 }
3988 SET_REGS_MATCHED ();
3989 break;
3990
3991
3992 /* Match any character except possibly a newline or a null. */
3993 case anychar:
3994 DEBUG_PRINT1 ("EXECUTING anychar.\n");
3995
3996 PREFETCH ();
3997
3998 if ((!(bufp->syntax & RE_DOT_NEWLINE) && TRANSLATE (*d) == '\n')
3999 || (bufp->syntax & RE_DOT_NOT_NULL && TRANSLATE (*d) == '\000'))
4000 goto fail;
4001
4002 SET_REGS_MATCHED ();
4003 DEBUG_PRINT2 (" Matched `%d'.\n", *d);
4004 d++;
4005 break;
4006
4007
4008 case charset:
4009 case charset_not:
4010 {
4011 register unsigned char c;
4012 boolean not = (re_opcode_t) *(p - 1) == charset_not;
4013
4014 DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : "");
4015
4016 PREFETCH ();
4017 c = TRANSLATE (*d); /* The character to match. */
4018
4019 /* Cast to `unsigned' instead of `unsigned char' in case the
4020 bit list is a full 32 bytes long. */
4021 if (c < (unsigned) (*p * BYTEWIDTH)
4022 && p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
4023 not = !not;
4024
4025 p += 1 + *p;
4026
4027 if (!not) goto fail;
5e69f11e 4028
fa9a63c5
RM
4029 SET_REGS_MATCHED ();
4030 d++;
4031 break;
4032 }
4033
4034
4035 /* The beginning of a group is represented by start_memory.
4036 The arguments are the register number in the next byte, and the
4037 number of groups inner to this one in the next. The text
4038 matched within the group is recorded (in the internal
4039 registers data structure) under the register number. */
4040 case start_memory:
4041 DEBUG_PRINT3 ("EXECUTING start_memory %d (%d):\n", *p, p[1]);
4042
4043 /* Find out if this group can match the empty string. */
4044 p1 = p; /* To send to group_match_null_string_p. */
5e69f11e 4045
fa9a63c5 4046 if (REG_MATCH_NULL_STRING_P (reg_info[*p]) == MATCH_NULL_UNSET_VALUE)
5e69f11e 4047 REG_MATCH_NULL_STRING_P (reg_info[*p])
fa9a63c5
RM
4048 = group_match_null_string_p (&p1, pend, reg_info);
4049
4050 /* Save the position in the string where we were the last time
4051 we were at this open-group operator in case the group is
4052 operated upon by a repetition operator, e.g., with `(a*)*b'
4053 against `ab'; then we want to ignore where we are now in
4054 the string in case this attempt to match fails. */
4055 old_regstart[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
4056 ? REG_UNSET (regstart[*p]) ? d : regstart[*p]
4057 : regstart[*p];
5e69f11e 4058 DEBUG_PRINT2 (" old_regstart: %d\n",
fa9a63c5
RM
4059 POINTER_TO_OFFSET (old_regstart[*p]));
4060
4061 regstart[*p] = d;
4062 DEBUG_PRINT2 (" regstart: %d\n", POINTER_TO_OFFSET (regstart[*p]));
4063
4064 IS_ACTIVE (reg_info[*p]) = 1;
4065 MATCHED_SOMETHING (reg_info[*p]) = 0;
4066
4067 /* Clear this whenever we change the register activity status. */
4068 set_regs_matched_done = 0;
5e69f11e 4069
fa9a63c5
RM
4070 /* This is the new highest active register. */
4071 highest_active_reg = *p;
5e69f11e 4072
fa9a63c5
RM
4073 /* If nothing was active before, this is the new lowest active
4074 register. */
4075 if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
4076 lowest_active_reg = *p;
4077
4078 /* Move past the register number and inner group count. */
4079 p += 2;
4080 just_past_start_mem = p;
4081
4082 break;
4083
4084
4085 /* The stop_memory opcode represents the end of a group. Its
4086 arguments are the same as start_memory's: the register
4087 number, and the number of inner groups. */
4088 case stop_memory:
4089 DEBUG_PRINT3 ("EXECUTING stop_memory %d (%d):\n", *p, p[1]);
5e69f11e 4090
fa9a63c5
RM
4091 /* We need to save the string position the last time we were at
4092 this close-group operator in case the group is operated
4093 upon by a repetition operator, e.g., with `((a*)*(b*)*)*'
4094 against `aba'; then we want to ignore where we are now in
4095 the string in case this attempt to match fails. */
4096 old_regend[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
4097 ? REG_UNSET (regend[*p]) ? d : regend[*p]
4098 : regend[*p];
5e69f11e 4099 DEBUG_PRINT2 (" old_regend: %d\n",
fa9a63c5
RM
4100 POINTER_TO_OFFSET (old_regend[*p]));
4101
4102 regend[*p] = d;
4103 DEBUG_PRINT2 (" regend: %d\n", POINTER_TO_OFFSET (regend[*p]));
4104
4105 /* This register isn't active anymore. */
4106 IS_ACTIVE (reg_info[*p]) = 0;
4107
4108 /* Clear this whenever we change the register activity status. */
4109 set_regs_matched_done = 0;
4110
4111 /* If this was the only register active, nothing is active
4112 anymore. */
4113 if (lowest_active_reg == highest_active_reg)
4114 {
4115 lowest_active_reg = NO_LOWEST_ACTIVE_REG;
4116 highest_active_reg = NO_HIGHEST_ACTIVE_REG;
4117 }
4118 else
4119 { /* We must scan for the new highest active register, since
4120 it isn't necessarily one less than now: consider
4121 (a(b)c(d(e)f)g). When group 3 ends, after the f), the
4122 new highest active register is 1. */
4123 unsigned char r = *p - 1;
4124 while (r > 0 && !IS_ACTIVE (reg_info[r]))
4125 r--;
5e69f11e 4126
fa9a63c5
RM
4127 /* If we end up at register zero, that means that we saved
4128 the registers as the result of an `on_failure_jump', not
4129 a `start_memory', and we jumped to past the innermost
4130 `stop_memory'. For example, in ((.)*) we save
4131 registers 1 and 2 as a result of the *, but when we pop
4132 back to the second ), we are at the stop_memory 1.
4133 Thus, nothing is active. */
4134 if (r == 0)
4135 {
4136 lowest_active_reg = NO_LOWEST_ACTIVE_REG;
4137 highest_active_reg = NO_HIGHEST_ACTIVE_REG;
4138 }
4139 else
4140 highest_active_reg = r;
4141 }
5e69f11e 4142
fa9a63c5
RM
4143 /* If just failed to match something this time around with a
4144 group that's operated on by a repetition operator, try to
4145 force exit from the ``loop'', and restore the register
4146 information for this group that we had before trying this
4147 last match. */
4148 if ((!MATCHED_SOMETHING (reg_info[*p])
4149 || just_past_start_mem == p - 1)
5e69f11e 4150 && (p + 2) < pend)
fa9a63c5
RM
4151 {
4152 boolean is_a_jump_n = false;
5e69f11e 4153
fa9a63c5
RM
4154 p1 = p + 2;
4155 mcnt = 0;
4156 switch ((re_opcode_t) *p1++)
4157 {
4158 case jump_n:
4159 is_a_jump_n = true;
4160 case pop_failure_jump:
4161 case maybe_pop_jump:
4162 case jump:
4163 case dummy_failure_jump:
4164 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4165 if (is_a_jump_n)
4166 p1 += 2;
4167 break;
5e69f11e 4168
fa9a63c5
RM
4169 default:
4170 /* do nothing */ ;
4171 }
4172 p1 += mcnt;
5e69f11e 4173
fa9a63c5
RM
4174 /* If the next operation is a jump backwards in the pattern
4175 to an on_failure_jump right before the start_memory
4176 corresponding to this stop_memory, exit from the loop
4177 by forcing a failure after pushing on the stack the
4178 on_failure_jump's jump in the pattern, and d. */
4179 if (mcnt < 0 && (re_opcode_t) *p1 == on_failure_jump
4180 && (re_opcode_t) p1[3] == start_memory && p1[4] == *p)
4181 {
4182 /* If this group ever matched anything, then restore
4183 what its registers were before trying this last
4184 failed match, e.g., with `(a*)*b' against `ab' for
4185 regstart[1], and, e.g., with `((a*)*(b*)*)*'
4186 against `aba' for regend[3].
5e69f11e 4187
fa9a63c5
RM
4188 Also restore the registers for inner groups for,
4189 e.g., `((a*)(b*))*' against `aba' (register 3 would
4190 otherwise get trashed). */
5e69f11e 4191
fa9a63c5
RM
4192 if (EVER_MATCHED_SOMETHING (reg_info[*p]))
4193 {
5e69f11e
RM
4194 unsigned r;
4195
fa9a63c5 4196 EVER_MATCHED_SOMETHING (reg_info[*p]) = 0;
5e69f11e 4197
fa9a63c5
RM
4198 /* Restore this and inner groups' (if any) registers. */
4199 for (r = *p; r < *p + *(p + 1); r++)
4200 {
4201 regstart[r] = old_regstart[r];
4202
4203 /* xx why this test? */
4204 if (old_regend[r] >= regstart[r])
4205 regend[r] = old_regend[r];
5e69f11e 4206 }
fa9a63c5
RM
4207 }
4208 p1++;
4209 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4210 PUSH_FAILURE_POINT (p1 + mcnt, d, -2);
4211
4212 goto fail;
4213 }
4214 }
5e69f11e 4215
fa9a63c5
RM
4216 /* Move past the register number and the inner group count. */
4217 p += 2;
4218 break;
4219
4220
4221 /* \<digit> has been turned into a `duplicate' command which is
4222 followed by the numeric value of <digit> as the register number. */
4223 case duplicate:
4224 {
4225 register const char *d2, *dend2;
4226 int regno = *p++; /* Get which register to match against. */
4227 DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno);
4228
4229 /* Can't back reference a group which we've never matched. */
4230 if (REG_UNSET (regstart[regno]) || REG_UNSET (regend[regno]))
4231 goto fail;
5e69f11e 4232
fa9a63c5
RM
4233 /* Where in input to try to start matching. */
4234 d2 = regstart[regno];
5e69f11e 4235
fa9a63c5
RM
4236 /* Where to stop matching; if both the place to start and
4237 the place to stop matching are in the same string, then
4238 set to the place to stop, otherwise, for now have to use
4239 the end of the first string. */
4240
5e69f11e 4241 dend2 = ((FIRST_STRING_P (regstart[regno])
fa9a63c5
RM
4242 == FIRST_STRING_P (regend[regno]))
4243 ? regend[regno] : end_match_1);
4244 for (;;)
4245 {
4246 /* If necessary, advance to next segment in register
4247 contents. */
4248 while (d2 == dend2)
4249 {
4250 if (dend2 == end_match_2) break;
4251 if (dend2 == regend[regno]) break;
4252
4253 /* End of string1 => advance to string2. */
4254 d2 = string2;
4255 dend2 = regend[regno];
4256 }
4257 /* At end of register contents => success */
4258 if (d2 == dend2) break;
4259
4260 /* If necessary, advance to next segment in data. */
4261 PREFETCH ();
4262
4263 /* How many characters left in this segment to match. */
4264 mcnt = dend - d;
5e69f11e 4265
fa9a63c5
RM
4266 /* Want how many consecutive characters we can match in
4267 one shot, so, if necessary, adjust the count. */
4268 if (mcnt > dend2 - d2)
4269 mcnt = dend2 - d2;
5e69f11e 4270
fa9a63c5
RM
4271 /* Compare that many; failure if mismatch, else move
4272 past them. */
5e69f11e
RM
4273 if (translate
4274 ? bcmp_translate (d, d2, mcnt, translate)
fa9a63c5
RM
4275 : bcmp (d, d2, mcnt))
4276 goto fail;
4277 d += mcnt, d2 += mcnt;
4278
4279 /* Do this because we've match some characters. */
4280 SET_REGS_MATCHED ();
4281 }
4282 }
4283 break;
4284
4285
4286 /* begline matches the empty string at the beginning of the string
4287 (unless `not_bol' is set in `bufp'), and, if
4288 `newline_anchor' is set, after newlines. */
4289 case begline:
4290 DEBUG_PRINT1 ("EXECUTING begline.\n");
5e69f11e 4291
fa9a63c5
RM
4292 if (AT_STRINGS_BEG (d))
4293 {
4294 if (!bufp->not_bol) break;
4295 }
4296 else if (d[-1] == '\n' && bufp->newline_anchor)
4297 {
4298 break;
4299 }
4300 /* In all other cases, we fail. */
4301 goto fail;
4302
4303
4304 /* endline is the dual of begline. */
4305 case endline:
4306 DEBUG_PRINT1 ("EXECUTING endline.\n");
4307
4308 if (AT_STRINGS_END (d))
4309 {
4310 if (!bufp->not_eol) break;
4311 }
5e69f11e 4312
fa9a63c5
RM
4313 /* We have to ``prefetch'' the next character. */
4314 else if ((d == end1 ? *string2 : *d) == '\n'
4315 && bufp->newline_anchor)
4316 {
4317 break;
4318 }
4319 goto fail;
4320
4321
4322 /* Match at the very beginning of the data. */
4323 case begbuf:
4324 DEBUG_PRINT1 ("EXECUTING begbuf.\n");
4325 if (AT_STRINGS_BEG (d))
4326 break;
4327 goto fail;
4328
4329
4330 /* Match at the very end of the data. */
4331 case endbuf:
4332 DEBUG_PRINT1 ("EXECUTING endbuf.\n");
4333 if (AT_STRINGS_END (d))
4334 break;
4335 goto fail;
4336
4337
4338 /* on_failure_keep_string_jump is used to optimize `.*\n'. It
4339 pushes NULL as the value for the string on the stack. Then
4340 `pop_failure_point' will keep the current value for the
4341 string, instead of restoring it. To see why, consider
4342 matching `foo\nbar' against `.*\n'. The .* matches the foo;
4343 then the . fails against the \n. But the next thing we want
4344 to do is match the \n against the \n; if we restored the
4345 string value, we would be back at the foo.
5e69f11e 4346
fa9a63c5
RM
4347 Because this is used only in specific cases, we don't need to
4348 check all the things that `on_failure_jump' does, to make
4349 sure the right things get saved on the stack. Hence we don't
4350 share its code. The only reason to push anything on the
4351 stack at all is that otherwise we would have to change
4352 `anychar's code to do something besides goto fail in this
4353 case; that seems worse than this. */
4354 case on_failure_keep_string_jump:
4355 DEBUG_PRINT1 ("EXECUTING on_failure_keep_string_jump");
5e69f11e 4356
fa9a63c5
RM
4357 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4358 DEBUG_PRINT3 (" %d (to 0x%x):\n", mcnt, p + mcnt);
4359
4360 PUSH_FAILURE_POINT (p + mcnt, NULL, -2);
4361 break;
4362
4363
4364 /* Uses of on_failure_jump:
5e69f11e 4365
fa9a63c5
RM
4366 Each alternative starts with an on_failure_jump that points
4367 to the beginning of the next alternative. Each alternative
4368 except the last ends with a jump that in effect jumps past
4369 the rest of the alternatives. (They really jump to the
4370 ending jump of the following alternative, because tensioning
4371 these jumps is a hassle.)
4372
4373 Repeats start with an on_failure_jump that points past both
4374 the repetition text and either the following jump or
4375 pop_failure_jump back to this on_failure_jump. */
4376 case on_failure_jump:
4377 on_failure:
4378 DEBUG_PRINT1 ("EXECUTING on_failure_jump");
4379
4380 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4381 DEBUG_PRINT3 (" %d (to 0x%x)", mcnt, p + mcnt);
4382
4383 /* If this on_failure_jump comes right before a group (i.e.,
4384 the original * applied to a group), save the information
4385 for that group and all inner ones, so that if we fail back
4386 to this point, the group's information will be correct.
4387 For example, in \(a*\)*\1, we need the preceding group,
6676cb1c 4388 and in \(zz\(a*\)b*\)\2, we need the inner group. */
fa9a63c5
RM
4389
4390 /* We can't use `p' to check ahead because we push
4391 a failure point to `p + mcnt' after we do this. */
4392 p1 = p;
4393
4394 /* We need to skip no_op's before we look for the
4395 start_memory in case this on_failure_jump is happening as
4396 the result of a completed succeed_n, as in \(a\)\{1,3\}b\1
4397 against aba. */
4398 while (p1 < pend && (re_opcode_t) *p1 == no_op)
4399 p1++;
4400
4401 if (p1 < pend && (re_opcode_t) *p1 == start_memory)
4402 {
4403 /* We have a new highest active register now. This will
4404 get reset at the start_memory we are about to get to,
4405 but we will have saved all the registers relevant to
4406 this repetition op, as described above. */
4407 highest_active_reg = *(p1 + 1) + *(p1 + 2);
4408 if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
4409 lowest_active_reg = *(p1 + 1);
4410 }
4411
4412 DEBUG_PRINT1 (":\n");
4413 PUSH_FAILURE_POINT (p + mcnt, d, -2);
4414 break;
4415
4416
4417 /* A smart repeat ends with `maybe_pop_jump'.
4418 We change it to either `pop_failure_jump' or `jump'. */
4419 case maybe_pop_jump:
4420 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4421 DEBUG_PRINT2 ("EXECUTING maybe_pop_jump %d.\n", mcnt);
4422 {
4423 register unsigned char *p2 = p;
4424
4425 /* Compare the beginning of the repeat with what in the
4426 pattern follows its end. If we can establish that there
4427 is nothing that they would both match, i.e., that we
4428 would have to backtrack because of (as in, e.g., `a*a')
4429 then we can change to pop_failure_jump, because we'll
4430 never have to backtrack.
5e69f11e 4431
fa9a63c5
RM
4432 This is not true in the case of alternatives: in
4433 `(a|ab)*' we do need to backtrack to the `ab' alternative
4434 (e.g., if the string was `ab'). But instead of trying to
4435 detect that here, the alternative has put on a dummy
4436 failure point which is what we will end up popping. */
4437
4438 /* Skip over open/close-group commands.
4439 If what follows this loop is a ...+ construct,
4440 look at what begins its body, since we will have to
4441 match at least one of that. */
4442 while (1)
4443 {
4444 if (p2 + 2 < pend
4445 && ((re_opcode_t) *p2 == stop_memory
4446 || (re_opcode_t) *p2 == start_memory))
4447 p2 += 3;
4448 else if (p2 + 6 < pend
4449 && (re_opcode_t) *p2 == dummy_failure_jump)
4450 p2 += 6;
4451 else
4452 break;
4453 }
4454
4455 p1 = p + mcnt;
4456 /* p1[0] ... p1[2] are the `on_failure_jump' corresponding
5e69f11e 4457 to the `maybe_finalize_jump' of this case. Examine what
fa9a63c5
RM
4458 follows. */
4459
4460 /* If we're at the end of the pattern, we can change. */
4461 if (p2 == pend)
4462 {
4463 /* Consider what happens when matching ":\(.*\)"
4464 against ":/". I don't really understand this code
4465 yet. */
4466 p[-3] = (unsigned char) pop_failure_jump;
4467 DEBUG_PRINT1
4468 (" End of pattern: change to `pop_failure_jump'.\n");
4469 }
4470
4471 else if ((re_opcode_t) *p2 == exactn
4472 || (bufp->newline_anchor && (re_opcode_t) *p2 == endline))
4473 {
4474 register unsigned char c
4475 = *p2 == (unsigned char) endline ? '\n' : p2[2];
4476
4477 if ((re_opcode_t) p1[3] == exactn && p1[5] != c)
4478 {
4479 p[-3] = (unsigned char) pop_failure_jump;
4480 DEBUG_PRINT3 (" %c != %c => pop_failure_jump.\n",
4481 c, p1[5]);
4482 }
5e69f11e 4483
fa9a63c5
RM
4484 else if ((re_opcode_t) p1[3] == charset
4485 || (re_opcode_t) p1[3] == charset_not)
4486 {
4487 int not = (re_opcode_t) p1[3] == charset_not;
5e69f11e 4488
fa9a63c5
RM
4489 if (c < (unsigned char) (p1[4] * BYTEWIDTH)
4490 && p1[5 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
4491 not = !not;
4492
4493 /* `not' is equal to 1 if c would match, which means
4494 that we can't change to pop_failure_jump. */
4495 if (!not)
4496 {
4497 p[-3] = (unsigned char) pop_failure_jump;
4498 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
4499 }
4500 }
4501 }
4502 else if ((re_opcode_t) *p2 == charset)
4503 {
4504#ifdef DEBUG
4505 register unsigned char c
4506 = *p2 == (unsigned char) endline ? '\n' : p2[2];
4507#endif
4508
4509 if ((re_opcode_t) p1[3] == exactn
12c11fcd
RS
4510 && ! ((int) p2[1] * BYTEWIDTH > (int) p1[5]
4511 && (p2[2 + p1[5] / BYTEWIDTH]
4512 & (1 << (p1[5] % BYTEWIDTH)))))
fa9a63c5
RM
4513 {
4514 p[-3] = (unsigned char) pop_failure_jump;
4515 DEBUG_PRINT3 (" %c != %c => pop_failure_jump.\n",
4516 c, p1[5]);
4517 }
5e69f11e 4518
fa9a63c5
RM
4519 else if ((re_opcode_t) p1[3] == charset_not)
4520 {
4521 int idx;
4522 /* We win if the charset_not inside the loop
4523 lists every character listed in the charset after. */
4524 for (idx = 0; idx < (int) p2[1]; idx++)
4525 if (! (p2[2 + idx] == 0
4526 || (idx < (int) p1[4]
4527 && ((p2[2 + idx] & ~ p1[5 + idx]) == 0))))
4528 break;
4529
4530 if (idx == p2[1])
4531 {
4532 p[-3] = (unsigned char) pop_failure_jump;
4533 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
4534 }
4535 }
4536 else if ((re_opcode_t) p1[3] == charset)
4537 {
4538 int idx;
4539 /* We win if the charset inside the loop
4540 has no overlap with the one after the loop. */
4541 for (idx = 0;
4542 idx < (int) p2[1] && idx < (int) p1[4];
4543 idx++)
4544 if ((p2[2 + idx] & p1[5 + idx]) != 0)
4545 break;
4546
4547 if (idx == p2[1] || idx == p1[4])
4548 {
4549 p[-3] = (unsigned char) pop_failure_jump;
4550 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
4551 }
4552 }
4553 }
4554 }
4555 p -= 2; /* Point at relative address again. */
4556 if ((re_opcode_t) p[-1] != pop_failure_jump)
4557 {
4558 p[-1] = (unsigned char) jump;
4559 DEBUG_PRINT1 (" Match => jump.\n");
4560 goto unconditional_jump;
4561 }
4562 /* Note fall through. */
4563
4564
4565 /* The end of a simple repeat has a pop_failure_jump back to
4566 its matching on_failure_jump, where the latter will push a
4567 failure point. The pop_failure_jump takes off failure
4568 points put on by this pop_failure_jump's matching
4569 on_failure_jump; we got through the pattern to here from the
4570 matching on_failure_jump, so didn't fail. */
4571 case pop_failure_jump:
4572 {
4573 /* We need to pass separate storage for the lowest and
4574 highest registers, even though we don't care about the
4575 actual values. Otherwise, we will restore only one
4576 register from the stack, since lowest will == highest in
4577 `pop_failure_point'. */
4578 unsigned dummy_low_reg, dummy_high_reg;
4579 unsigned char *pdummy;
4580 const char *sdummy;
4581
4582 DEBUG_PRINT1 ("EXECUTING pop_failure_jump.\n");
4583 POP_FAILURE_POINT (sdummy, pdummy,
4584 dummy_low_reg, dummy_high_reg,
4585 reg_dummy, reg_dummy, reg_info_dummy);
4586 }
4587 /* Note fall through. */
4588
5e69f11e 4589
fa9a63c5
RM
4590 /* Unconditionally jump (without popping any failure points). */
4591 case jump:
4592 unconditional_jump:
4593 EXTRACT_NUMBER_AND_INCR (mcnt, p); /* Get the amount to jump. */
4594 DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt);
4595 p += mcnt; /* Do the jump. */
4596 DEBUG_PRINT2 ("(to 0x%x).\n", p);
4597 break;
4598
5e69f11e 4599
fa9a63c5
RM
4600 /* We need this opcode so we can detect where alternatives end
4601 in `group_match_null_string_p' et al. */
4602 case jump_past_alt:
4603 DEBUG_PRINT1 ("EXECUTING jump_past_alt.\n");
4604 goto unconditional_jump;
4605
4606
4607 /* Normally, the on_failure_jump pushes a failure point, which
4608 then gets popped at pop_failure_jump. We will end up at
4609 pop_failure_jump, also, and with a pattern of, say, `a+', we
4610 are skipping over the on_failure_jump, so we have to push
4611 something meaningless for pop_failure_jump to pop. */
4612 case dummy_failure_jump:
4613 DEBUG_PRINT1 ("EXECUTING dummy_failure_jump.\n");
4614 /* It doesn't matter what we push for the string here. What
4615 the code at `fail' tests is the value for the pattern. */
4616 PUSH_FAILURE_POINT (0, 0, -2);
4617 goto unconditional_jump;
4618
4619
4620 /* At the end of an alternative, we need to push a dummy failure
4621 point in case we are followed by a `pop_failure_jump', because
4622 we don't want the failure point for the alternative to be
4623 popped. For example, matching `(a|ab)*' against `aab'
4624 requires that we match the `ab' alternative. */
4625 case push_dummy_failure:
4626 DEBUG_PRINT1 ("EXECUTING push_dummy_failure.\n");
4627 /* See comments just above at `dummy_failure_jump' about the
4628 two zeroes. */
4629 PUSH_FAILURE_POINT (0, 0, -2);
4630 break;
4631
4632 /* Have to succeed matching what follows at least n times.
4633 After that, handle like `on_failure_jump'. */
5e69f11e 4634 case succeed_n:
fa9a63c5
RM
4635 EXTRACT_NUMBER (mcnt, p + 2);
4636 DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt);
4637
4638 assert (mcnt >= 0);
4639 /* Originally, this is how many times we HAVE to succeed. */
4640 if (mcnt > 0)
4641 {
4642 mcnt--;
4643 p += 2;
4644 STORE_NUMBER_AND_INCR (p, mcnt);
4645 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p, mcnt);
4646 }
4647 else if (mcnt == 0)
4648 {
4649 DEBUG_PRINT2 (" Setting two bytes from 0x%x to no_op.\n", p+2);
4650 p[2] = (unsigned char) no_op;
4651 p[3] = (unsigned char) no_op;
4652 goto on_failure;
4653 }
4654 break;
5e69f11e
RM
4655
4656 case jump_n:
fa9a63c5
RM
4657 EXTRACT_NUMBER (mcnt, p + 2);
4658 DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt);
4659
4660 /* Originally, this is how many times we CAN jump. */
4661 if (mcnt)
4662 {
4663 mcnt--;
4664 STORE_NUMBER (p + 2, mcnt);
5e69f11e 4665 goto unconditional_jump;
fa9a63c5
RM
4666 }
4667 /* If don't have to jump any more, skip over the rest of command. */
5e69f11e
RM
4668 else
4669 p += 4;
fa9a63c5 4670 break;
5e69f11e 4671
fa9a63c5
RM
4672 case set_number_at:
4673 {
4674 DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
4675
4676 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4677 p1 = p + mcnt;
4678 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4679 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p1, mcnt);
4680 STORE_NUMBER (p1, mcnt);
4681 break;
4682 }
4683
9121ca40
KH
4684#if 0
4685 /* The DEC Alpha C compiler 3.x generates incorrect code for the
4686 test WORDCHAR_P (d - 1) != WORDCHAR_P (d) in the expansion of
4687 AT_WORD_BOUNDARY, so this code is disabled. Expanding the
4688 macro and introducing temporary variables works around the bug. */
4689
4690 case wordbound:
4691 DEBUG_PRINT1 ("EXECUTING wordbound.\n");
4692 if (AT_WORD_BOUNDARY (d))
fa9a63c5 4693 break;
9121ca40 4694 goto fail;
fa9a63c5
RM
4695
4696 case notwordbound:
9121ca40 4697 DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
fa9a63c5
RM
4698 if (AT_WORD_BOUNDARY (d))
4699 goto fail;
9121ca40
KH
4700 break;
4701#else
4702 case wordbound:
4703 {
4704 boolean prevchar, thischar;
4705
4706 DEBUG_PRINT1 ("EXECUTING wordbound.\n");
4707 if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
4708 break;
4709
4710 prevchar = WORDCHAR_P (d - 1);
4711 thischar = WORDCHAR_P (d);
4712 if (prevchar != thischar)
4713 break;
4714 goto fail;
4715 }
4716
4717 case notwordbound:
4718 {
4719 boolean prevchar, thischar;
4720
4721 DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
4722 if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
4723 goto fail;
4724
4725 prevchar = WORDCHAR_P (d - 1);
4726 thischar = WORDCHAR_P (d);
4727 if (prevchar != thischar)
4728 goto fail;
4729 break;
4730 }
4731#endif
fa9a63c5
RM
4732
4733 case wordbeg:
4734 DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
4735 if (WORDCHAR_P (d) && (AT_STRINGS_BEG (d) || !WORDCHAR_P (d - 1)))
4736 break;
4737 goto fail;
4738
4739 case wordend:
4740 DEBUG_PRINT1 ("EXECUTING wordend.\n");
4741 if (!AT_STRINGS_BEG (d) && WORDCHAR_P (d - 1)
4742 && (!WORDCHAR_P (d) || AT_STRINGS_END (d)))
4743 break;
4744 goto fail;
4745
4746#ifdef emacs
4747 case before_dot:
4748 DEBUG_PRINT1 ("EXECUTING before_dot.\n");
4749 if (PTR_CHAR_POS ((unsigned char *) d) >= point)
4750 goto fail;
4751 break;
5e69f11e 4752
fa9a63c5
RM
4753 case at_dot:
4754 DEBUG_PRINT1 ("EXECUTING at_dot.\n");
4755 if (PTR_CHAR_POS ((unsigned char *) d) != point)
4756 goto fail;
4757 break;
5e69f11e 4758
fa9a63c5
RM
4759 case after_dot:
4760 DEBUG_PRINT1 ("EXECUTING after_dot.\n");
4761 if (PTR_CHAR_POS ((unsigned char *) d) <= point)
4762 goto fail;
4763 break;
fa9a63c5
RM
4764
4765 case syntaxspec:
4766 DEBUG_PRINT2 ("EXECUTING syntaxspec %d.\n", mcnt);
4767 mcnt = *p++;
4768 goto matchsyntax;
4769
4770 case wordchar:
4771 DEBUG_PRINT1 ("EXECUTING Emacs wordchar.\n");
4772 mcnt = (int) Sword;
4773 matchsyntax:
4774 PREFETCH ();
4775 /* Can't use *d++ here; SYNTAX may be an unsafe macro. */
4776 d++;
4777 if (SYNTAX (d[-1]) != (enum syntaxcode) mcnt)
4778 goto fail;
4779 SET_REGS_MATCHED ();
4780 break;
4781
4782 case notsyntaxspec:
4783 DEBUG_PRINT2 ("EXECUTING notsyntaxspec %d.\n", mcnt);
4784 mcnt = *p++;
4785 goto matchnotsyntax;
4786
4787 case notwordchar:
4788 DEBUG_PRINT1 ("EXECUTING Emacs notwordchar.\n");
4789 mcnt = (int) Sword;
4790 matchnotsyntax:
4791 PREFETCH ();
4792 /* Can't use *d++ here; SYNTAX may be an unsafe macro. */
4793 d++;
4794 if (SYNTAX (d[-1]) == (enum syntaxcode) mcnt)
4795 goto fail;
4796 SET_REGS_MATCHED ();
4797 break;
4798
4799#else /* not emacs */
4800 case wordchar:
4801 DEBUG_PRINT1 ("EXECUTING non-Emacs wordchar.\n");
4802 PREFETCH ();
4803 if (!WORDCHAR_P (d))
4804 goto fail;
4805 SET_REGS_MATCHED ();
4806 d++;
4807 break;
5e69f11e 4808
fa9a63c5
RM
4809 case notwordchar:
4810 DEBUG_PRINT1 ("EXECUTING non-Emacs notwordchar.\n");
4811 PREFETCH ();
4812 if (WORDCHAR_P (d))
4813 goto fail;
4814 SET_REGS_MATCHED ();
4815 d++;
4816 break;
4817#endif /* not emacs */
5e69f11e 4818
fa9a63c5
RM
4819 default:
4820 abort ();
4821 }
4822 continue; /* Successfully executed one pattern command; keep going. */
4823
4824
4825 /* We goto here if a matching operation fails. */
4826 fail:
4827 if (!FAIL_STACK_EMPTY ())
4828 { /* A restart point is known. Restore to that state. */
4829 DEBUG_PRINT1 ("\nFAIL:\n");
4830 POP_FAILURE_POINT (d, p,
4831 lowest_active_reg, highest_active_reg,
4832 regstart, regend, reg_info);
4833
4834 /* If this failure point is a dummy, try the next one. */
4835 if (!p)
4836 goto fail;
4837
4838 /* If we failed to the end of the pattern, don't examine *p. */
4839 assert (p <= pend);
4840 if (p < pend)
4841 {
4842 boolean is_a_jump_n = false;
5e69f11e 4843
fa9a63c5
RM
4844 /* If failed to a backwards jump that's part of a repetition
4845 loop, need to pop this failure point and use the next one. */
4846 switch ((re_opcode_t) *p)
4847 {
4848 case jump_n:
4849 is_a_jump_n = true;
4850 case maybe_pop_jump:
4851 case pop_failure_jump:
4852 case jump:
4853 p1 = p + 1;
4854 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5e69f11e 4855 p1 += mcnt;
fa9a63c5
RM
4856
4857 if ((is_a_jump_n && (re_opcode_t) *p1 == succeed_n)
4858 || (!is_a_jump_n
4859 && (re_opcode_t) *p1 == on_failure_jump))
4860 goto fail;
4861 break;
4862 default:
4863 /* do nothing */ ;
4864 }
4865 }
4866
4867 if (d >= string1 && d <= end1)
4868 dend = end_match_1;
4869 }
4870 else
4871 break; /* Matching at this starting point really fails. */
4872 } /* for (;;) */
4873
4874 if (best_regs_set)
4875 goto restore_best_regs;
4876
4877 FREE_VARIABLES ();
4878
4879 return -1; /* Failure to match. */
4880} /* re_match_2 */
4881\f
4882/* Subroutine definitions for re_match_2. */
4883
4884
4885/* We are passed P pointing to a register number after a start_memory.
5e69f11e 4886
fa9a63c5
RM
4887 Return true if the pattern up to the corresponding stop_memory can
4888 match the empty string, and false otherwise.
5e69f11e 4889
fa9a63c5
RM
4890 If we find the matching stop_memory, sets P to point to one past its number.
4891 Otherwise, sets P to an undefined byte less than or equal to END.
4892
4893 We don't handle duplicates properly (yet). */
4894
4895static boolean
4896group_match_null_string_p (p, end, reg_info)
4897 unsigned char **p, *end;
4898 register_info_type *reg_info;
4899{
4900 int mcnt;
4901 /* Point to after the args to the start_memory. */
4902 unsigned char *p1 = *p + 2;
5e69f11e 4903
fa9a63c5
RM
4904 while (p1 < end)
4905 {
4906 /* Skip over opcodes that can match nothing, and return true or
4907 false, as appropriate, when we get to one that can't, or to the
4908 matching stop_memory. */
5e69f11e 4909
fa9a63c5
RM
4910 switch ((re_opcode_t) *p1)
4911 {
4912 /* Could be either a loop or a series of alternatives. */
4913 case on_failure_jump:
4914 p1++;
4915 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5e69f11e 4916
fa9a63c5
RM
4917 /* If the next operation is not a jump backwards in the
4918 pattern. */
4919
4920 if (mcnt >= 0)
4921 {
4922 /* Go through the on_failure_jumps of the alternatives,
4923 seeing if any of the alternatives cannot match nothing.
4924 The last alternative starts with only a jump,
4925 whereas the rest start with on_failure_jump and end
4926 with a jump, e.g., here is the pattern for `a|b|c':
4927
4928 /on_failure_jump/0/6/exactn/1/a/jump_past_alt/0/6
4929 /on_failure_jump/0/6/exactn/1/b/jump_past_alt/0/3
5e69f11e 4930 /exactn/1/c
fa9a63c5
RM
4931
4932 So, we have to first go through the first (n-1)
4933 alternatives and then deal with the last one separately. */
4934
4935
4936 /* Deal with the first (n-1) alternatives, which start
4937 with an on_failure_jump (see above) that jumps to right
4938 past a jump_past_alt. */
4939
4940 while ((re_opcode_t) p1[mcnt-3] == jump_past_alt)
4941 {
4942 /* `mcnt' holds how many bytes long the alternative
4943 is, including the ending `jump_past_alt' and
4944 its number. */
4945
5e69f11e 4946 if (!alt_match_null_string_p (p1, p1 + mcnt - 3,
fa9a63c5
RM
4947 reg_info))
4948 return false;
4949
4950 /* Move to right after this alternative, including the
4951 jump_past_alt. */
5e69f11e 4952 p1 += mcnt;
fa9a63c5
RM
4953
4954 /* Break if it's the beginning of an n-th alternative
4955 that doesn't begin with an on_failure_jump. */
4956 if ((re_opcode_t) *p1 != on_failure_jump)
4957 break;
5e69f11e 4958
fa9a63c5
RM
4959 /* Still have to check that it's not an n-th
4960 alternative that starts with an on_failure_jump. */
4961 p1++;
4962 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4963 if ((re_opcode_t) p1[mcnt-3] != jump_past_alt)
4964 {
4965 /* Get to the beginning of the n-th alternative. */
4966 p1 -= 3;
4967 break;
4968 }
4969 }
4970
4971 /* Deal with the last alternative: go back and get number
4972 of the `jump_past_alt' just before it. `mcnt' contains
4973 the length of the alternative. */
4974 EXTRACT_NUMBER (mcnt, p1 - 2);
4975
4976 if (!alt_match_null_string_p (p1, p1 + mcnt, reg_info))
4977 return false;
4978
4979 p1 += mcnt; /* Get past the n-th alternative. */
4980 } /* if mcnt > 0 */
4981 break;
4982
5e69f11e 4983
fa9a63c5
RM
4984 case stop_memory:
4985 assert (p1[1] == **p);
4986 *p = p1 + 2;
4987 return true;
4988
5e69f11e
RM
4989
4990 default:
fa9a63c5
RM
4991 if (!common_op_match_null_string_p (&p1, end, reg_info))
4992 return false;
4993 }
4994 } /* while p1 < end */
4995
4996 return false;
4997} /* group_match_null_string_p */
4998
4999
5000/* Similar to group_match_null_string_p, but doesn't deal with alternatives:
5001 It expects P to be the first byte of a single alternative and END one
5002 byte past the last. The alternative can contain groups. */
5e69f11e 5003
fa9a63c5
RM
5004static boolean
5005alt_match_null_string_p (p, end, reg_info)
5006 unsigned char *p, *end;
5007 register_info_type *reg_info;
5008{
5009 int mcnt;
5010 unsigned char *p1 = p;
5e69f11e 5011
fa9a63c5
RM
5012 while (p1 < end)
5013 {
5e69f11e 5014 /* Skip over opcodes that can match nothing, and break when we get
fa9a63c5 5015 to one that can't. */
5e69f11e 5016
fa9a63c5
RM
5017 switch ((re_opcode_t) *p1)
5018 {
5019 /* It's a loop. */
5020 case on_failure_jump:
5021 p1++;
5022 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5023 p1 += mcnt;
5024 break;
5e69f11e
RM
5025
5026 default:
fa9a63c5
RM
5027 if (!common_op_match_null_string_p (&p1, end, reg_info))
5028 return false;
5029 }
5030 } /* while p1 < end */
5031
5032 return true;
5033} /* alt_match_null_string_p */
5034
5035
5036/* Deals with the ops common to group_match_null_string_p and
5e69f11e
RM
5037 alt_match_null_string_p.
5038
fa9a63c5
RM
5039 Sets P to one after the op and its arguments, if any. */
5040
5041static boolean
5042common_op_match_null_string_p (p, end, reg_info)
5043 unsigned char **p, *end;
5044 register_info_type *reg_info;
5045{
5046 int mcnt;
5047 boolean ret;
5048 int reg_no;
5049 unsigned char *p1 = *p;
5050
5051 switch ((re_opcode_t) *p1++)
5052 {
5053 case no_op:
5054 case begline:
5055 case endline:
5056 case begbuf:
5057 case endbuf:
5058 case wordbeg:
5059 case wordend:
5060 case wordbound:
5061 case notwordbound:
5062#ifdef emacs
5063 case before_dot:
5064 case at_dot:
5065 case after_dot:
5066#endif
5067 break;
5068
5069 case start_memory:
5070 reg_no = *p1;
5071 assert (reg_no > 0 && reg_no <= MAX_REGNUM);
5072 ret = group_match_null_string_p (&p1, end, reg_info);
5e69f11e 5073
fa9a63c5
RM
5074 /* Have to set this here in case we're checking a group which
5075 contains a group and a back reference to it. */
5076
5077 if (REG_MATCH_NULL_STRING_P (reg_info[reg_no]) == MATCH_NULL_UNSET_VALUE)
5078 REG_MATCH_NULL_STRING_P (reg_info[reg_no]) = ret;
5079
5080 if (!ret)
5081 return false;
5082 break;
5e69f11e 5083
fa9a63c5
RM
5084 /* If this is an optimized succeed_n for zero times, make the jump. */
5085 case jump:
5086 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5087 if (mcnt >= 0)
5088 p1 += mcnt;
5089 else
5090 return false;
5091 break;
5092
5093 case succeed_n:
5094 /* Get to the number of times to succeed. */
5e69f11e 5095 p1 += 2;
fa9a63c5
RM
5096 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5097
5098 if (mcnt == 0)
5099 {
5100 p1 -= 4;
5101 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5102 p1 += mcnt;
5103 }
5104 else
5105 return false;
5106 break;
5107
5e69f11e 5108 case duplicate:
fa9a63c5
RM
5109 if (!REG_MATCH_NULL_STRING_P (reg_info[*p1]))
5110 return false;
5111 break;
5112
5113 case set_number_at:
5114 p1 += 4;
5115
5116 default:
5117 /* All other opcodes mean we cannot match the empty string. */
5118 return false;
5119 }
5120
5121 *p = p1;
5122 return true;
5123} /* common_op_match_null_string_p */
5124
5125
5126/* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
5127 bytes; nonzero otherwise. */
5e69f11e 5128
fa9a63c5
RM
5129static int
5130bcmp_translate (s1, s2, len, translate)
5131 unsigned char *s1, *s2;
5132 register int len;
6676cb1c 5133 RE_TRANSLATE_TYPE translate;
fa9a63c5
RM
5134{
5135 register unsigned char *p1 = s1, *p2 = s2;
5136 while (len)
5137 {
5138 if (translate[*p1++] != translate[*p2++]) return 1;
5139 len--;
5140 }
5141 return 0;
5142}
5143\f
5144/* Entry points for GNU code. */
5145
5146/* re_compile_pattern is the GNU regular expression compiler: it
5147 compiles PATTERN (of length SIZE) and puts the result in BUFP.
5148 Returns 0 if the pattern was valid, otherwise an error string.
5e69f11e 5149
fa9a63c5
RM
5150 Assumes the `allocated' (and perhaps `buffer') and `translate' fields
5151 are set in BUFP on entry.
5e69f11e 5152
fa9a63c5
RM
5153 We call regex_compile to do the actual compilation. */
5154
5155const char *
5156re_compile_pattern (pattern, length, bufp)
5157 const char *pattern;
5158 int length;
5159 struct re_pattern_buffer *bufp;
5160{
5161 reg_errcode_t ret;
5e69f11e 5162
fa9a63c5
RM
5163 /* GNU code is written to assume at least RE_NREGS registers will be set
5164 (and at least one extra will be -1). */
5165 bufp->regs_allocated = REGS_UNALLOCATED;
5e69f11e 5166
fa9a63c5
RM
5167 /* And GNU code determines whether or not to get register information
5168 by passing null for the REGS argument to re_match, etc., not by
5169 setting no_sub. */
5170 bufp->no_sub = 0;
5e69f11e 5171
fa9a63c5
RM
5172 /* Match anchors at newline. */
5173 bufp->newline_anchor = 1;
5e69f11e 5174
fa9a63c5
RM
5175 ret = regex_compile (pattern, length, re_syntax_options, bufp);
5176
5177 if (!ret)
5178 return NULL;
5179 return gettext (re_error_msgid[(int) ret]);
5e69f11e 5180}
fa9a63c5
RM
5181\f
5182/* Entry points compatible with 4.2 BSD regex library. We don't define
5183 them unless specifically requested. */
5184
0c085854 5185#if defined (_REGEX_RE_COMP) || defined (_LIBC)
fa9a63c5
RM
5186
5187/* BSD has one and only one pattern buffer. */
5188static struct re_pattern_buffer re_comp_buf;
5189
5190char *
48afdd44
RM
5191#ifdef _LIBC
5192/* Make these definitions weak in libc, so POSIX programs can redefine
5193 these names if they don't use our functions, and still use
5194 regcomp/regexec below without link errors. */
5195weak_function
5196#endif
fa9a63c5
RM
5197re_comp (s)
5198 const char *s;
5199{
5200 reg_errcode_t ret;
5e69f11e 5201
fa9a63c5
RM
5202 if (!s)
5203 {
5204 if (!re_comp_buf.buffer)
5205 return gettext ("No previous regular expression");
5206 return 0;
5207 }
5208
5209 if (!re_comp_buf.buffer)
5210 {
5211 re_comp_buf.buffer = (unsigned char *) malloc (200);
5212 if (re_comp_buf.buffer == NULL)
5213 return gettext (re_error_msgid[(int) REG_ESPACE]);
5214 re_comp_buf.allocated = 200;
5215
5216 re_comp_buf.fastmap = (char *) malloc (1 << BYTEWIDTH);
5217 if (re_comp_buf.fastmap == NULL)
5218 return gettext (re_error_msgid[(int) REG_ESPACE]);
5219 }
5220
5221 /* Since `re_exec' always passes NULL for the `regs' argument, we
5222 don't need to initialize the pattern buffer fields which affect it. */
5223
5224 /* Match anchors at newlines. */
5225 re_comp_buf.newline_anchor = 1;
5226
5227 ret = regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf);
5e69f11e 5228
fa9a63c5
RM
5229 if (!ret)
5230 return NULL;
5231
5232 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
5233 return (char *) gettext (re_error_msgid[(int) ret]);
5234}
5235
5236
5237int
48afdd44
RM
5238#ifdef _LIBC
5239weak_function
5240#endif
fa9a63c5
RM
5241re_exec (s)
5242 const char *s;
5243{
5244 const int len = strlen (s);
5245 return
5246 0 <= re_search (&re_comp_buf, s, len, 0, len, (struct re_registers *) 0);
5247}
5248#endif /* _REGEX_RE_COMP */
5249\f
5250/* POSIX.2 functions. Don't define these for Emacs. */
5251
5252#ifndef emacs
5253
5254/* regcomp takes a regular expression as a string and compiles it.
5255
5256 PREG is a regex_t *. We do not expect any fields to be initialized,
5257 since POSIX says we shouldn't. Thus, we set
5258
5259 `buffer' to the compiled pattern;
5260 `used' to the length of the compiled pattern;
5261 `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
5262 REG_EXTENDED bit in CFLAGS is set; otherwise, to
5263 RE_SYNTAX_POSIX_BASIC;
5264 `newline_anchor' to REG_NEWLINE being set in CFLAGS;
5265 `fastmap' and `fastmap_accurate' to zero;
5266 `re_nsub' to the number of subexpressions in PATTERN.
5267
5268 PATTERN is the address of the pattern string.
5269
5270 CFLAGS is a series of bits which affect compilation.
5271
5272 If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
5273 use POSIX basic syntax.
5274
5275 If REG_NEWLINE is set, then . and [^...] don't match newline.
5276 Also, regexec will try a match beginning after every newline.
5277
5278 If REG_ICASE is set, then we considers upper- and lowercase
5279 versions of letters to be equivalent when matching.
5280
5281 If REG_NOSUB is set, then when PREG is passed to regexec, that
5282 routine will report only success or failure, and nothing about the
5283 registers.
5284
5285 It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for
5286 the return codes and their meanings.) */
5287
5288int
5289regcomp (preg, pattern, cflags)
5290 regex_t *preg;
5e69f11e 5291 const char *pattern;
fa9a63c5
RM
5292 int cflags;
5293{
5294 reg_errcode_t ret;
5295 unsigned syntax
5296 = (cflags & REG_EXTENDED) ?
5297 RE_SYNTAX_POSIX_EXTENDED : RE_SYNTAX_POSIX_BASIC;
5298
5299 /* regex_compile will allocate the space for the compiled pattern. */
5300 preg->buffer = 0;
5301 preg->allocated = 0;
5302 preg->used = 0;
5e69f11e 5303
fa9a63c5
RM
5304 /* Don't bother to use a fastmap when searching. This simplifies the
5305 REG_NEWLINE case: if we used a fastmap, we'd have to put all the
5306 characters after newlines into the fastmap. This way, we just try
5307 every character. */
5308 preg->fastmap = 0;
5e69f11e 5309
fa9a63c5
RM
5310 if (cflags & REG_ICASE)
5311 {
5312 unsigned i;
5e69f11e 5313
6676cb1c
RS
5314 preg->translate
5315 = (RE_TRANSLATE_TYPE) malloc (CHAR_SET_SIZE
5316 * sizeof (*(RE_TRANSLATE_TYPE)0));
fa9a63c5
RM
5317 if (preg->translate == NULL)
5318 return (int) REG_ESPACE;
5319
5320 /* Map uppercase characters to corresponding lowercase ones. */
5321 for (i = 0; i < CHAR_SET_SIZE; i++)
5322 preg->translate[i] = ISUPPER (i) ? tolower (i) : i;
5323 }
5324 else
5325 preg->translate = NULL;
5326
5327 /* If REG_NEWLINE is set, newlines are treated differently. */
5328 if (cflags & REG_NEWLINE)
5329 { /* REG_NEWLINE implies neither . nor [^...] match newline. */
5330 syntax &= ~RE_DOT_NEWLINE;
5331 syntax |= RE_HAT_LISTS_NOT_NEWLINE;
5332 /* It also changes the matching behavior. */
5333 preg->newline_anchor = 1;
5334 }
5335 else
5336 preg->newline_anchor = 0;
5337
5338 preg->no_sub = !!(cflags & REG_NOSUB);
5339
5e69f11e 5340 /* POSIX says a null character in the pattern terminates it, so we
fa9a63c5
RM
5341 can use strlen here in compiling the pattern. */
5342 ret = regex_compile (pattern, strlen (pattern), syntax, preg);
5e69f11e 5343
fa9a63c5
RM
5344 /* POSIX doesn't distinguish between an unmatched open-group and an
5345 unmatched close-group: both are REG_EPAREN. */
5346 if (ret == REG_ERPAREN) ret = REG_EPAREN;
5e69f11e 5347
fa9a63c5
RM
5348 return (int) ret;
5349}
5350
5351
5352/* regexec searches for a given pattern, specified by PREG, in the
5353 string STRING.
5e69f11e 5354
fa9a63c5
RM
5355 If NMATCH is zero or REG_NOSUB was set in the cflags argument to
5356 `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at
5357 least NMATCH elements, and we set them to the offsets of the
5358 corresponding matched substrings.
5e69f11e 5359
fa9a63c5
RM
5360 EFLAGS specifies `execution flags' which affect matching: if
5361 REG_NOTBOL is set, then ^ does not match at the beginning of the
5362 string; if REG_NOTEOL is set, then $ does not match at the end.
5e69f11e 5363
fa9a63c5
RM
5364 We return 0 if we find a match and REG_NOMATCH if not. */
5365
5366int
5367regexec (preg, string, nmatch, pmatch, eflags)
5368 const regex_t *preg;
5e69f11e
RM
5369 const char *string;
5370 size_t nmatch;
5371 regmatch_t pmatch[];
fa9a63c5
RM
5372 int eflags;
5373{
5374 int ret;
5375 struct re_registers regs;
5376 regex_t private_preg;
5377 int len = strlen (string);
5378 boolean want_reg_info = !preg->no_sub && nmatch > 0;
5379
5380 private_preg = *preg;
5e69f11e 5381
fa9a63c5
RM
5382 private_preg.not_bol = !!(eflags & REG_NOTBOL);
5383 private_preg.not_eol = !!(eflags & REG_NOTEOL);
5e69f11e 5384
fa9a63c5
RM
5385 /* The user has told us exactly how many registers to return
5386 information about, via `nmatch'. We have to pass that on to the
5387 matching routines. */
5388 private_preg.regs_allocated = REGS_FIXED;
5e69f11e 5389
fa9a63c5
RM
5390 if (want_reg_info)
5391 {
5392 regs.num_regs = nmatch;
5393 regs.start = TALLOC (nmatch, regoff_t);
5394 regs.end = TALLOC (nmatch, regoff_t);
5395 if (regs.start == NULL || regs.end == NULL)
5396 return (int) REG_NOMATCH;
5397 }
5398
5399 /* Perform the searching operation. */
5400 ret = re_search (&private_preg, string, len,
5401 /* start: */ 0, /* range: */ len,
5402 want_reg_info ? &regs : (struct re_registers *) 0);
5e69f11e 5403
fa9a63c5
RM
5404 /* Copy the register information to the POSIX structure. */
5405 if (want_reg_info)
5406 {
5407 if (ret >= 0)
5408 {
5409 unsigned r;
5410
5411 for (r = 0; r < nmatch; r++)
5412 {
5413 pmatch[r].rm_so = regs.start[r];
5414 pmatch[r].rm_eo = regs.end[r];
5415 }
5416 }
5417
5418 /* If we needed the temporary register info, free the space now. */
5419 free (regs.start);
5420 free (regs.end);
5421 }
5422
5423 /* We want zero return to mean success, unlike `re_search'. */
5424 return ret >= 0 ? (int) REG_NOERROR : (int) REG_NOMATCH;
5425}
5426
5427
5428/* Returns a message corresponding to an error code, ERRCODE, returned
5429 from either regcomp or regexec. We don't use PREG here. */
5430
5431size_t
5432regerror (errcode, preg, errbuf, errbuf_size)
5433 int errcode;
5434 const regex_t *preg;
5435 char *errbuf;
5436 size_t errbuf_size;
5437{
5438 const char *msg;
5439 size_t msg_size;
5440
5441 if (errcode < 0
5442 || errcode >= (sizeof (re_error_msgid) / sizeof (re_error_msgid[0])))
5e69f11e 5443 /* Only error codes returned by the rest of the code should be passed
fa9a63c5
RM
5444 to this routine. If we are given anything else, or if other regex
5445 code generates an invalid error code, then the program has a bug.
5446 Dump core so we can fix it. */
5447 abort ();
5448
5449 msg = gettext (re_error_msgid[errcode]);
5450
5451 msg_size = strlen (msg) + 1; /* Includes the null. */
5e69f11e 5452
fa9a63c5
RM
5453 if (errbuf_size != 0)
5454 {
5455 if (msg_size > errbuf_size)
5456 {
5457 strncpy (errbuf, msg, errbuf_size - 1);
5458 errbuf[errbuf_size - 1] = 0;
5459 }
5460 else
5461 strcpy (errbuf, msg);
5462 }
5463
5464 return msg_size;
5465}
5466
5467
5468/* Free dynamically allocated space used by PREG. */
5469
5470void
5471regfree (preg)
5472 regex_t *preg;
5473{
5474 if (preg->buffer != NULL)
5475 free (preg->buffer);
5476 preg->buffer = NULL;
5e69f11e 5477
fa9a63c5
RM
5478 preg->allocated = 0;
5479 preg->used = 0;
5480
5481 if (preg->fastmap != NULL)
5482 free (preg->fastmap);
5483 preg->fastmap = NULL;
5484 preg->fastmap_accurate = 0;
5485
5486 if (preg->translate != NULL)
5487 free (preg->translate);
5488 preg->translate = NULL;
5489}
5490
5491#endif /* not emacs */