(Fy_or_n_p, Fyes_or_no_p): Obey use_dialog_box.
[bpt/emacs.git] / src / regex.c
CommitLineData
e318085a
RS
1/* Extended regular expression matching and search library, version
2 0.12. (Implements POSIX draft P10003.2/D11.2, except for
bc78d348
KB
3 internationalization features.)
4
b18215fc 5 Copyright (C) 1993, 1994, 1995, 1996, 1997 Free Software Foundation, Inc.
bc78d348 6
fa9a63c5
RM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
25fe55af 14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
fa9a63c5
RM
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
ba4a8e51 19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307,
25fe55af 20 USA. */
fa9a63c5
RM
21
22/* AIX requires this to be the first thing in the file. */
23#if defined (_AIX) && !defined (REGEX_MALLOC)
24 #pragma alloca
25#endif
26
68d96f02 27#undef _GNU_SOURCE
fa9a63c5
RM
28#define _GNU_SOURCE
29
25fe55af
RS
30/* Converts the pointer to the char to BEG-based offset from the start. */
31#define PTR_TO_OFFSET(d) \
b18215fc
RS
32 POS_AS_IN_BUFFER (MATCHING_IN_FIRST_STRING \
33 ? (d) - string1 : (d) - (string2 - size1))
34#define POS_AS_IN_BUFFER(p) ((p) + 1)
35
fa9a63c5
RM
36#ifdef HAVE_CONFIG_H
37#include <config.h>
38#endif
39
25fe55af 40/* We need this for `regex.h', and perhaps for the Emacs include files. */
fa9a63c5
RM
41#include <sys/types.h>
42
25fe55af 43/* This is for other GNU distributions with internationalized messages. */
fa9a63c5
RM
44#if HAVE_LIBINTL_H || defined (_LIBC)
45# include <libintl.h>
46#else
47# define gettext(msgid) (msgid)
48#endif
49
5e69f11e
RM
50#ifndef gettext_noop
51/* This define is so xgettext can find the internationalizable
52 strings. */
53#define gettext_noop(String) String
54#endif
55
fa9a63c5
RM
56/* The `emacs' switch turns on certain matching commands
57 that make sense only in Emacs. */
58#ifdef emacs
59
60#include "lisp.h"
61#include "buffer.h"
b18215fc
RS
62
63/* Make syntax table lookup grant data in gl_state. */
64#define SYNTAX_ENTRY_VIA_PROPERTY
65
fa9a63c5 66#include "syntax.h"
b18215fc
RS
67#include "charset.h"
68#include "category.h"
fa9a63c5 69
9abbd165
RS
70#define malloc xmalloc
71#define free xfree
72
fa9a63c5
RM
73#else /* not emacs */
74
75/* If we are not linking with Emacs proper,
76 we can't use the relocating allocator
77 even if config.h says that we can. */
78#undef REL_ALLOC
79
80#if defined (STDC_HEADERS) || defined (_LIBC)
81#include <stdlib.h>
82#else
83char *malloc ();
84char *realloc ();
85#endif
86
9e4ecb26 87/* When used in Emacs's lib-src, we need to get bzero and bcopy somehow.
25fe55af 88 If nothing else has been done, use the method below. */
9e4ecb26
KH
89#ifdef INHIBIT_STRING_HEADER
90#if !(defined (HAVE_BZERO) && defined (HAVE_BCOPY))
91#if !defined (bzero) && !defined (bcopy)
92#undef INHIBIT_STRING_HEADER
93#endif
94#endif
95#endif
96
97/* This is the normal way of making sure we have a bcopy and a bzero.
98 This is used in most programs--a few other programs avoid this
99 by defining INHIBIT_STRING_HEADER. */
fa9a63c5 100#ifndef INHIBIT_STRING_HEADER
7f998252 101#if defined (HAVE_STRING_H) || defined (STDC_HEADERS) || defined (_LIBC)
fa9a63c5
RM
102#include <string.h>
103#ifndef bcmp
104#define bcmp(s1, s2, n) memcmp ((s1), (s2), (n))
105#endif
106#ifndef bcopy
107#define bcopy(s, d, n) memcpy ((d), (s), (n))
108#endif
109#ifndef bzero
110#define bzero(s, n) memset ((s), 0, (n))
111#endif
112#else
113#include <strings.h>
114#endif
115#endif
116
117/* Define the syntax stuff for \<, \>, etc. */
118
119/* This must be nonzero for the wordchar and notwordchar pattern
120 commands in re_match_2. */
5e69f11e 121#ifndef Sword
fa9a63c5
RM
122#define Sword 1
123#endif
124
125#ifdef SWITCH_ENUM_BUG
126#define SWITCH_ENUM_CAST(x) ((int)(x))
127#else
128#define SWITCH_ENUM_CAST(x) (x)
129#endif
130
131#ifdef SYNTAX_TABLE
132
133extern char *re_syntax_table;
134
135#else /* not SYNTAX_TABLE */
136
137/* How many characters in the character set. */
138#define CHAR_SET_SIZE 256
139
140static char re_syntax_table[CHAR_SET_SIZE];
141
142static void
143init_syntax_once ()
144{
145 register int c;
146 static int done = 0;
147
148 if (done)
149 return;
150
151 bzero (re_syntax_table, sizeof re_syntax_table);
152
153 for (c = 'a'; c <= 'z'; c++)
154 re_syntax_table[c] = Sword;
155
156 for (c = 'A'; c <= 'Z'; c++)
157 re_syntax_table[c] = Sword;
158
159 for (c = '0'; c <= '9'; c++)
160 re_syntax_table[c] = Sword;
161
162 re_syntax_table['_'] = Sword;
163
164 done = 1;
165}
166
167#endif /* not SYNTAX_TABLE */
168
169#define SYNTAX(c) re_syntax_table[c]
170
b18215fc
RS
171/* Dummy macro for non emacs environments. */
172#define BASE_LEADING_CODE_P(c) (0)
173#define WORD_BOUNDARY_P(c1, c2) (0)
174#define CHAR_HEAD_P(p) (1)
175#define SINGLE_BYTE_CHAR_P(c) (1)
176#define SAME_CHARSET_P(c1, c2) (1)
177#define MULTIBYTE_FORM_LENGTH(p, s) (1)
178#define STRING_CHAR(p, s) (*(p))
179#define STRING_CHAR_AND_LENGTH(p, s, actual_len) ((actual_len) = 1, *(p))
180#define GET_CHAR_AFTER_2(c, p, str1, end1, str2, end2) \
181 (c = ((p) == (end1) ? *(str2) : *(p)))
182#define GET_CHAR_BEFORE_2(c, p, str1, end1, str2, end2) \
183 (c = ((p) == (str2) ? *((end1) - 1) : *((p) - 1)))
fa9a63c5
RM
184#endif /* not emacs */
185\f
186/* Get the interface, including the syntax bits. */
187#include "regex.h"
188
189/* isalpha etc. are used for the character classes. */
190#include <ctype.h>
191
192/* Jim Meyering writes:
193
194 "... Some ctype macros are valid only for character codes that
195 isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when
196 using /bin/cc or gcc but without giving an ansi option). So, all
25fe55af 197 ctype uses should be through macros like ISPRINT... If
fa9a63c5
RM
198 STDC_HEADERS is defined, then autoconf has verified that the ctype
199 macros don't need to be guarded with references to isascii. ...
200 Defining isascii to 1 should let any compiler worth its salt
25fe55af 201 eliminate the && through constant folding." */
fa9a63c5
RM
202
203#if defined (STDC_HEADERS) || (!defined (isascii) && !defined (HAVE_ISASCII))
204#define ISASCII(c) 1
205#else
206#define ISASCII(c) isascii(c)
207#endif
208
209#ifdef isblank
210#define ISBLANK(c) (ISASCII (c) && isblank (c))
211#else
212#define ISBLANK(c) ((c) == ' ' || (c) == '\t')
213#endif
214#ifdef isgraph
215#define ISGRAPH(c) (ISASCII (c) && isgraph (c))
216#else
217#define ISGRAPH(c) (ISASCII (c) && isprint (c) && !isspace (c))
218#endif
219
220#define ISPRINT(c) (ISASCII (c) && isprint (c))
221#define ISDIGIT(c) (ISASCII (c) && isdigit (c))
222#define ISALNUM(c) (ISASCII (c) && isalnum (c))
223#define ISALPHA(c) (ISASCII (c) && isalpha (c))
224#define ISCNTRL(c) (ISASCII (c) && iscntrl (c))
225#define ISLOWER(c) (ISASCII (c) && islower (c))
226#define ISPUNCT(c) (ISASCII (c) && ispunct (c))
227#define ISSPACE(c) (ISASCII (c) && isspace (c))
228#define ISUPPER(c) (ISASCII (c) && isupper (c))
229#define ISXDIGIT(c) (ISASCII (c) && isxdigit (c))
230
231#ifndef NULL
075f06ec 232#define NULL (void *)0
fa9a63c5
RM
233#endif
234
235/* We remove any previous definition of `SIGN_EXTEND_CHAR',
236 since ours (we hope) works properly with all combinations of
237 machines, compilers, `char' and `unsigned char' argument types.
25fe55af 238 (Per Bothner suggested the basic approach.) */
fa9a63c5
RM
239#undef SIGN_EXTEND_CHAR
240#if __STDC__
241#define SIGN_EXTEND_CHAR(c) ((signed char) (c))
242#else /* not __STDC__ */
243/* As in Harbison and Steele. */
244#define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
245#endif
246\f
247/* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we
248 use `alloca' instead of `malloc'. This is because using malloc in
249 re_search* or re_match* could cause memory leaks when C-g is used in
250 Emacs; also, malloc is slower and causes storage fragmentation. On
5e69f11e
RM
251 the other hand, malloc is more portable, and easier to debug.
252
fa9a63c5
RM
253 Because we sometimes use alloca, some routines have to be macros,
254 not functions -- `alloca'-allocated space disappears at the end of the
255 function it is called in. */
256
257#ifdef REGEX_MALLOC
258
259#define REGEX_ALLOCATE malloc
260#define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
261#define REGEX_FREE free
262
263#else /* not REGEX_MALLOC */
264
265/* Emacs already defines alloca, sometimes. */
266#ifndef alloca
267
268/* Make alloca work the best possible way. */
269#ifdef __GNUC__
270#define alloca __builtin_alloca
271#else /* not __GNUC__ */
272#if HAVE_ALLOCA_H
273#include <alloca.h>
274#else /* not __GNUC__ or HAVE_ALLOCA_H */
f3c4387f 275#if 0 /* It is a bad idea to declare alloca. We always cast the result. */
25fe55af 276#ifndef _AIX /* Already did AIX, up at the top. */
fa9a63c5
RM
277char *alloca ();
278#endif /* not _AIX */
f3c4387f 279#endif
5e69f11e 280#endif /* not HAVE_ALLOCA_H */
fa9a63c5
RM
281#endif /* not __GNUC__ */
282
283#endif /* not alloca */
284
285#define REGEX_ALLOCATE alloca
286
287/* Assumes a `char *destination' variable. */
288#define REGEX_REALLOCATE(source, osize, nsize) \
289 (destination = (char *) alloca (nsize), \
290 bcopy (source, destination, osize), \
291 destination)
292
293/* No need to do anything to free, after alloca. */
c2e1680a 294#define REGEX_FREE(arg) ((void)0) /* Do nothing! But inhibit gcc warning. */
fa9a63c5
RM
295
296#endif /* not REGEX_MALLOC */
297
298/* Define how to allocate the failure stack. */
299
33487cc8 300#if defined (REL_ALLOC) && defined (REGEX_MALLOC)
4297555e 301
fa9a63c5
RM
302#define REGEX_ALLOCATE_STACK(size) \
303 r_alloc (&failure_stack_ptr, (size))
304#define REGEX_REALLOCATE_STACK(source, osize, nsize) \
305 r_re_alloc (&failure_stack_ptr, (nsize))
306#define REGEX_FREE_STACK(ptr) \
307 r_alloc_free (&failure_stack_ptr)
308
4297555e 309#else /* not using relocating allocator */
fa9a63c5
RM
310
311#ifdef REGEX_MALLOC
312
313#define REGEX_ALLOCATE_STACK malloc
314#define REGEX_REALLOCATE_STACK(source, osize, nsize) realloc (source, nsize)
315#define REGEX_FREE_STACK free
316
317#else /* not REGEX_MALLOC */
318
319#define REGEX_ALLOCATE_STACK alloca
320
321#define REGEX_REALLOCATE_STACK(source, osize, nsize) \
322 REGEX_REALLOCATE (source, osize, nsize)
25fe55af 323/* No need to explicitly free anything. */
fa9a63c5
RM
324#define REGEX_FREE_STACK(arg)
325
326#endif /* not REGEX_MALLOC */
4297555e 327#endif /* not using relocating allocator */
fa9a63c5
RM
328
329
330/* True if `size1' is non-NULL and PTR is pointing anywhere inside
331 `string1' or just past its end. This works if PTR is NULL, which is
332 a good thing. */
25fe55af 333#define FIRST_STRING_P(ptr) \
fa9a63c5
RM
334 (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
335
336/* (Re)Allocate N items of type T using malloc, or fail. */
337#define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
338#define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
339#define RETALLOC_IF(addr, n, t) \
340 if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t)
341#define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
342
25fe55af 343#define BYTEWIDTH 8 /* In bits. */
fa9a63c5
RM
344
345#define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
346
347#undef MAX
348#undef MIN
349#define MAX(a, b) ((a) > (b) ? (a) : (b))
350#define MIN(a, b) ((a) < (b) ? (a) : (b))
351
352typedef char boolean;
353#define false 0
354#define true 1
355
356static int re_match_2_internal ();
357\f
358/* These are the command codes that appear in compiled regular
25fe55af 359 expressions. Some opcodes are followed by argument bytes. A
fa9a63c5
RM
360 command code can specify any interpretation whatsoever for its
361 arguments. Zero bytes may appear in the compiled regular expression. */
362
363typedef enum
364{
365 no_op = 0,
366
25fe55af 367 /* Succeed right away--no more backtracking. */
fa9a63c5
RM
368 succeed,
369
25fe55af 370 /* Followed by one byte giving n, then by n literal bytes. */
fa9a63c5
RM
371 exactn,
372
25fe55af 373 /* Matches any (more or less) character. */
fa9a63c5
RM
374 anychar,
375
25fe55af
RS
376 /* Matches any one char belonging to specified set. First
377 following byte is number of bitmap bytes. Then come bytes
378 for a bitmap saying which chars are in. Bits in each byte
379 are ordered low-bit-first. A character is in the set if its
380 bit is 1. A character too large to have a bit in the map is
381 automatically not in the set. */
fa9a63c5
RM
382 charset,
383
25fe55af
RS
384 /* Same parameters as charset, but match any character that is
385 not one of those specified. */
fa9a63c5
RM
386 charset_not,
387
25fe55af
RS
388 /* Start remembering the text that is matched, for storing in a
389 register. Followed by one byte with the register number, in
390 the range 0 to one less than the pattern buffer's re_nsub
391 field. Then followed by one byte with the number of groups
392 inner to this one. (This last has to be part of the
393 start_memory only because we need it in the on_failure_jump
394 of re_match_2.) */
fa9a63c5
RM
395 start_memory,
396
25fe55af
RS
397 /* Stop remembering the text that is matched and store it in a
398 memory register. Followed by one byte with the register
399 number, in the range 0 to one less than `re_nsub' in the
400 pattern buffer, and one byte with the number of inner groups,
401 just like `start_memory'. (We need the number of inner
402 groups here because we don't have any easy way of finding the
403 corresponding start_memory when we're at a stop_memory.) */
fa9a63c5
RM
404 stop_memory,
405
25fe55af
RS
406 /* Match a duplicate of something remembered. Followed by one
407 byte containing the register number. */
fa9a63c5
RM
408 duplicate,
409
25fe55af 410 /* Fail unless at beginning of line. */
fa9a63c5
RM
411 begline,
412
25fe55af 413 /* Fail unless at end of line. */
fa9a63c5
RM
414 endline,
415
25fe55af
RS
416 /* Succeeds if at beginning of buffer (if emacs) or at beginning
417 of string to be matched (if not). */
fa9a63c5
RM
418 begbuf,
419
25fe55af 420 /* Analogously, for end of buffer/string. */
fa9a63c5 421 endbuf,
5e69f11e 422
25fe55af 423 /* Followed by two byte relative address to which to jump. */
5e69f11e 424 jump,
fa9a63c5
RM
425
426 /* Same as jump, but marks the end of an alternative. */
427 jump_past_alt,
428
25fe55af
RS
429 /* Followed by two-byte relative address of place to resume at
430 in case of failure. */
fa9a63c5 431 on_failure_jump,
5e69f11e 432
25fe55af
RS
433 /* Like on_failure_jump, but pushes a placeholder instead of the
434 current string position when executed. */
fa9a63c5 435 on_failure_keep_string_jump,
5e69f11e 436
25fe55af
RS
437 /* Throw away latest failure point and then jump to following
438 two-byte relative address. */
fa9a63c5
RM
439 pop_failure_jump,
440
25fe55af
RS
441 /* Change to pop_failure_jump if know won't have to backtrack to
442 match; otherwise change to jump. This is used to jump
443 back to the beginning of a repeat. If what follows this jump
444 clearly won't match what the repeat does, such that we can be
445 sure that there is no use backtracking out of repetitions
446 already matched, then we change it to a pop_failure_jump.
447 Followed by two-byte address. */
fa9a63c5
RM
448 maybe_pop_jump,
449
25fe55af
RS
450 /* Jump to following two-byte address, and push a dummy failure
451 point. This failure point will be thrown away if an attempt
452 is made to use it for a failure. A `+' construct makes this
453 before the first repeat. Also used as an intermediary kind
454 of jump when compiling an alternative. */
fa9a63c5
RM
455 dummy_failure_jump,
456
457 /* Push a dummy failure point and continue. Used at the end of
458 alternatives. */
459 push_dummy_failure,
460
25fe55af
RS
461 /* Followed by two-byte relative address and two-byte number n.
462 After matching N times, jump to the address upon failure. */
fa9a63c5
RM
463 succeed_n,
464
25fe55af
RS
465 /* Followed by two-byte relative address, and two-byte number n.
466 Jump to the address N times, then fail. */
fa9a63c5
RM
467 jump_n,
468
25fe55af
RS
469 /* Set the following two-byte relative address to the
470 subsequent two-byte number. The address *includes* the two
471 bytes of number. */
fa9a63c5
RM
472 set_number_at,
473
474 wordchar, /* Matches any word-constituent character. */
475 notwordchar, /* Matches any char that is not a word-constituent. */
476
477 wordbeg, /* Succeeds if at word beginning. */
478 wordend, /* Succeeds if at word end. */
479
480 wordbound, /* Succeeds if at a word boundary. */
25fe55af 481 notwordbound /* Succeeds if not at a word boundary. */
fa9a63c5
RM
482
483#ifdef emacs
484 ,before_dot, /* Succeeds if before point. */
485 at_dot, /* Succeeds if at point. */
486 after_dot, /* Succeeds if after point. */
487
488 /* Matches any character whose syntax is specified. Followed by
25fe55af 489 a byte which contains a syntax code, e.g., Sword. */
fa9a63c5
RM
490 syntaxspec,
491
492 /* Matches any character whose syntax is not that specified. */
b18215fc
RS
493 notsyntaxspec,
494
495 /* Matches any character whose category-set contains the specified
25fe55af
RS
496 category. The operator is followed by a byte which contains a
497 category code (mnemonic ASCII character). */
b18215fc
RS
498 categoryspec,
499
500 /* Matches any character whose category-set does not contain the
501 specified category. The operator is followed by a byte which
502 contains the category code (mnemonic ASCII character). */
503 notcategoryspec
fa9a63c5
RM
504#endif /* emacs */
505} re_opcode_t;
506\f
507/* Common operations on the compiled pattern. */
508
509/* Store NUMBER in two contiguous bytes starting at DESTINATION. */
510
511#define STORE_NUMBER(destination, number) \
512 do { \
513 (destination)[0] = (number) & 0377; \
514 (destination)[1] = (number) >> 8; \
515 } while (0)
516
517/* Same as STORE_NUMBER, except increment DESTINATION to
518 the byte after where the number is stored. Therefore, DESTINATION
519 must be an lvalue. */
520
521#define STORE_NUMBER_AND_INCR(destination, number) \
522 do { \
523 STORE_NUMBER (destination, number); \
524 (destination) += 2; \
525 } while (0)
526
527/* Put into DESTINATION a number stored in two contiguous bytes starting
528 at SOURCE. */
529
530#define EXTRACT_NUMBER(destination, source) \
531 do { \
532 (destination) = *(source) & 0377; \
533 (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8; \
534 } while (0)
535
536#ifdef DEBUG
537static void
538extract_number (dest, source)
539 int *dest;
540 unsigned char *source;
541{
5e69f11e 542 int temp = SIGN_EXTEND_CHAR (*(source + 1));
fa9a63c5
RM
543 *dest = *source & 0377;
544 *dest += temp << 8;
545}
546
25fe55af 547#ifndef EXTRACT_MACROS /* To debug the macros. */
fa9a63c5
RM
548#undef EXTRACT_NUMBER
549#define EXTRACT_NUMBER(dest, src) extract_number (&dest, src)
550#endif /* not EXTRACT_MACROS */
551
552#endif /* DEBUG */
553
554/* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
555 SOURCE must be an lvalue. */
556
557#define EXTRACT_NUMBER_AND_INCR(destination, source) \
558 do { \
559 EXTRACT_NUMBER (destination, source); \
25fe55af 560 (source) += 2; \
fa9a63c5
RM
561 } while (0)
562
563#ifdef DEBUG
564static void
565extract_number_and_incr (destination, source)
566 int *destination;
567 unsigned char **source;
5e69f11e 568{
fa9a63c5
RM
569 extract_number (destination, *source);
570 *source += 2;
571}
572
573#ifndef EXTRACT_MACROS
574#undef EXTRACT_NUMBER_AND_INCR
575#define EXTRACT_NUMBER_AND_INCR(dest, src) \
576 extract_number_and_incr (&dest, &src)
577#endif /* not EXTRACT_MACROS */
578
579#endif /* DEBUG */
580\f
b18215fc
RS
581/* Store a multibyte character in three contiguous bytes starting
582 DESTINATION, and increment DESTINATION to the byte after where the
25fe55af 583 character is stored. Therefore, DESTINATION must be an lvalue. */
b18215fc
RS
584
585#define STORE_CHARACTER_AND_INCR(destination, character) \
586 do { \
587 (destination)[0] = (character) & 0377; \
588 (destination)[1] = ((character) >> 8) & 0377; \
589 (destination)[2] = (character) >> 16; \
590 (destination) += 3; \
591 } while (0)
592
593/* Put into DESTINATION a character stored in three contiguous bytes
25fe55af 594 starting at SOURCE. */
b18215fc
RS
595
596#define EXTRACT_CHARACTER(destination, source) \
597 do { \
598 (destination) = ((source)[0] \
599 | ((source)[1] << 8) \
600 | ((source)[2] << 16)); \
601 } while (0)
602
603
604/* Macros for charset. */
605
606/* Size of bitmap of charset P in bytes. P is a start of charset,
607 i.e. *P is (re_opcode_t) charset or (re_opcode_t) charset_not. */
608#define CHARSET_BITMAP_SIZE(p) ((p)[1] & 0x7F)
609
610/* Nonzero if charset P has range table. */
25fe55af 611#define CHARSET_RANGE_TABLE_EXISTS_P(p) ((p)[1] & 0x80)
b18215fc
RS
612
613/* Return the address of range table of charset P. But not the start
614 of table itself, but the before where the number of ranges is
25fe55af 615 stored. `2 +' means to skip re_opcode_t and size of bitmap. */
b18215fc
RS
616#define CHARSET_RANGE_TABLE(p) (&(p)[2 + CHARSET_BITMAP_SIZE (p)])
617
618/* Test if C is listed in the bitmap of charset P. */
619#define CHARSET_LOOKUP_BITMAP(p, c) \
620 ((c) < CHARSET_BITMAP_SIZE (p) * BYTEWIDTH \
621 && (p)[2 + (c) / BYTEWIDTH] & (1 << ((c) % BYTEWIDTH)))
622
623/* Return the address of end of RANGE_TABLE. COUNT is number of
25fe55af
RS
624 ranges (which is a pair of (start, end)) in the RANGE_TABLE. `* 2'
625 is start of range and end of range. `* 3' is size of each start
b18215fc
RS
626 and end. */
627#define CHARSET_RANGE_TABLE_END(range_table, count) \
628 ((range_table) + (count) * 2 * 3)
629
25fe55af 630/* Test if C is in RANGE_TABLE. A flag NOT is negated if C is in.
b18215fc
RS
631 COUNT is number of ranges in RANGE_TABLE. */
632#define CHARSET_LOOKUP_RANGE_TABLE_RAW(not, c, range_table, count) \
633 do \
634 { \
635 int range_start, range_end; \
636 unsigned char *p; \
637 unsigned char *range_table_end \
638 = CHARSET_RANGE_TABLE_END ((range_table), (count)); \
639 \
640 for (p = (range_table); p < range_table_end; p += 2 * 3) \
641 { \
642 EXTRACT_CHARACTER (range_start, p); \
643 EXTRACT_CHARACTER (range_end, p + 3); \
644 \
645 if (range_start <= (c) && (c) <= range_end) \
646 { \
647 (not) = !(not); \
648 break; \
649 } \
650 } \
651 } \
652 while (0)
653
654/* Test if C is in range table of CHARSET. The flag NOT is negated if
655 C is listed in it. */
656#define CHARSET_LOOKUP_RANGE_TABLE(not, c, charset) \
657 do \
658 { \
659 /* Number of ranges in range table. */ \
660 int count; \
661 unsigned char *range_table = CHARSET_RANGE_TABLE (charset); \
662 \
663 EXTRACT_NUMBER_AND_INCR (count, range_table); \
664 CHARSET_LOOKUP_RANGE_TABLE_RAW ((not), (c), range_table, count); \
665 } \
666 while (0)
667\f
fa9a63c5
RM
668/* If DEBUG is defined, Regex prints many voluminous messages about what
669 it is doing (if the variable `debug' is nonzero). If linked with the
670 main program in `iregex.c', you can enter patterns and strings
671 interactively. And if linked with the main program in `main.c' and
25fe55af 672 the other test files, you can run the already-written tests. */
fa9a63c5
RM
673
674#ifdef DEBUG
675
676/* We use standard I/O for debugging. */
677#include <stdio.h>
678
679/* It is useful to test things that ``must'' be true when debugging. */
680#include <assert.h>
681
682static int debug = 0;
683
684#define DEBUG_STATEMENT(e) e
685#define DEBUG_PRINT1(x) if (debug) printf (x)
686#define DEBUG_PRINT2(x1, x2) if (debug) printf (x1, x2)
687#define DEBUG_PRINT3(x1, x2, x3) if (debug) printf (x1, x2, x3)
688#define DEBUG_PRINT4(x1, x2, x3, x4) if (debug) printf (x1, x2, x3, x4)
25fe55af 689#define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \
fa9a63c5
RM
690 if (debug) print_partial_compiled_pattern (s, e)
691#define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \
692 if (debug) print_double_string (w, s1, sz1, s2, sz2)
693
694
695/* Print the fastmap in human-readable form. */
696
697void
698print_fastmap (fastmap)
699 char *fastmap;
700{
701 unsigned was_a_range = 0;
5e69f11e
RM
702 unsigned i = 0;
703
fa9a63c5
RM
704 while (i < (1 << BYTEWIDTH))
705 {
706 if (fastmap[i++])
707 {
708 was_a_range = 0;
25fe55af
RS
709 putchar (i - 1);
710 while (i < (1 << BYTEWIDTH) && fastmap[i])
711 {
712 was_a_range = 1;
713 i++;
714 }
fa9a63c5 715 if (was_a_range)
25fe55af
RS
716 {
717 printf ("-");
718 putchar (i - 1);
719 }
720 }
fa9a63c5 721 }
5e69f11e 722 putchar ('\n');
fa9a63c5
RM
723}
724
725
726/* Print a compiled pattern string in human-readable form, starting at
727 the START pointer into it and ending just before the pointer END. */
728
729void
730print_partial_compiled_pattern (start, end)
731 unsigned char *start;
732 unsigned char *end;
733{
734 int mcnt, mcnt2;
735 unsigned char *p = start;
736 unsigned char *pend = end;
737
738 if (start == NULL)
739 {
740 printf ("(null)\n");
741 return;
742 }
5e69f11e 743
fa9a63c5
RM
744 /* Loop over pattern commands. */
745 while (p < pend)
746 {
747 printf ("%d:\t", p - start);
748
749 switch ((re_opcode_t) *p++)
750 {
25fe55af
RS
751 case no_op:
752 printf ("/no_op");
753 break;
fa9a63c5
RM
754
755 case exactn:
756 mcnt = *p++;
25fe55af
RS
757 printf ("/exactn/%d", mcnt);
758 do
fa9a63c5 759 {
25fe55af 760 putchar ('/');
fa9a63c5 761 putchar (*p++);
25fe55af
RS
762 }
763 while (--mcnt);
764 break;
fa9a63c5
RM
765
766 case start_memory:
25fe55af
RS
767 mcnt = *p++;
768 printf ("/start_memory/%d/%d", mcnt, *p++);
769 break;
fa9a63c5
RM
770
771 case stop_memory:
25fe55af 772 mcnt = *p++;
fa9a63c5 773 printf ("/stop_memory/%d/%d", mcnt, *p++);
25fe55af 774 break;
fa9a63c5
RM
775
776 case duplicate:
777 printf ("/duplicate/%d", *p++);
778 break;
779
780 case anychar:
781 printf ("/anychar");
782 break;
783
784 case charset:
25fe55af
RS
785 case charset_not:
786 {
787 register int c, last = -100;
fa9a63c5
RM
788 register int in_range = 0;
789
790 printf ("/charset [%s",
25fe55af 791 (re_opcode_t) *(p - 1) == charset_not ? "^" : "");
5e69f11e 792
25fe55af 793 assert (p + *p < pend);
fa9a63c5 794
25fe55af 795 for (c = 0; c < 256; c++)
fa9a63c5
RM
796 if (c / 8 < *p
797 && (p[1 + (c/8)] & (1 << (c % 8))))
798 {
799 /* Are we starting a range? */
800 if (last + 1 == c && ! in_range)
801 {
802 putchar ('-');
803 in_range = 1;
804 }
805 /* Have we broken a range? */
806 else if (last + 1 != c && in_range)
25fe55af 807 {
fa9a63c5
RM
808 putchar (last);
809 in_range = 0;
810 }
5e69f11e 811
fa9a63c5
RM
812 if (! in_range)
813 putchar (c);
814
815 last = c;
25fe55af 816 }
fa9a63c5
RM
817
818 if (in_range)
819 putchar (last);
820
821 putchar (']');
822
823 p += 1 + *p;
824 }
825 break;
826
827 case begline:
828 printf ("/begline");
25fe55af 829 break;
fa9a63c5
RM
830
831 case endline:
25fe55af
RS
832 printf ("/endline");
833 break;
fa9a63c5
RM
834
835 case on_failure_jump:
25fe55af
RS
836 extract_number_and_incr (&mcnt, &p);
837 printf ("/on_failure_jump to %d", p + mcnt - start);
838 break;
fa9a63c5
RM
839
840 case on_failure_keep_string_jump:
25fe55af
RS
841 extract_number_and_incr (&mcnt, &p);
842 printf ("/on_failure_keep_string_jump to %d", p + mcnt - start);
843 break;
fa9a63c5
RM
844
845 case dummy_failure_jump:
25fe55af
RS
846 extract_number_and_incr (&mcnt, &p);
847 printf ("/dummy_failure_jump to %d", p + mcnt - start);
848 break;
fa9a63c5
RM
849
850 case push_dummy_failure:
25fe55af
RS
851 printf ("/push_dummy_failure");
852 break;
5e69f11e 853
25fe55af
RS
854 case maybe_pop_jump:
855 extract_number_and_incr (&mcnt, &p);
856 printf ("/maybe_pop_jump to %d", p + mcnt - start);
fa9a63c5
RM
857 break;
858
25fe55af 859 case pop_failure_jump:
fa9a63c5 860 extract_number_and_incr (&mcnt, &p);
25fe55af 861 printf ("/pop_failure_jump to %d", p + mcnt - start);
5e69f11e
RM
862 break;
863
25fe55af 864 case jump_past_alt:
fa9a63c5 865 extract_number_and_incr (&mcnt, &p);
25fe55af 866 printf ("/jump_past_alt to %d", p + mcnt - start);
5e69f11e
RM
867 break;
868
25fe55af 869 case jump:
fa9a63c5 870 extract_number_and_incr (&mcnt, &p);
25fe55af 871 printf ("/jump to %d", p + mcnt - start);
fa9a63c5
RM
872 break;
873
25fe55af
RS
874 case succeed_n:
875 extract_number_and_incr (&mcnt, &p);
876 extract_number_and_incr (&mcnt2, &p);
fa9a63c5 877 printf ("/succeed_n to %d, %d times", p + mcnt - start, mcnt2);
25fe55af 878 break;
5e69f11e 879
25fe55af
RS
880 case jump_n:
881 extract_number_and_incr (&mcnt, &p);
882 extract_number_and_incr (&mcnt2, &p);
fa9a63c5 883 printf ("/jump_n to %d, %d times", p + mcnt - start, mcnt2);
25fe55af 884 break;
5e69f11e 885
25fe55af
RS
886 case set_number_at:
887 extract_number_and_incr (&mcnt, &p);
888 extract_number_and_incr (&mcnt2, &p);
fa9a63c5 889 printf ("/set_number_at location %d to %d", p + mcnt - start, mcnt2);
25fe55af 890 break;
5e69f11e 891
25fe55af 892 case wordbound:
fa9a63c5
RM
893 printf ("/wordbound");
894 break;
895
896 case notwordbound:
897 printf ("/notwordbound");
25fe55af 898 break;
fa9a63c5
RM
899
900 case wordbeg:
901 printf ("/wordbeg");
902 break;
5e69f11e 903
fa9a63c5
RM
904 case wordend:
905 printf ("/wordend");
5e69f11e 906
fa9a63c5
RM
907#ifdef emacs
908 case before_dot:
909 printf ("/before_dot");
25fe55af 910 break;
fa9a63c5
RM
911
912 case at_dot:
913 printf ("/at_dot");
25fe55af 914 break;
fa9a63c5
RM
915
916 case after_dot:
917 printf ("/after_dot");
25fe55af 918 break;
fa9a63c5
RM
919
920 case syntaxspec:
25fe55af 921 printf ("/syntaxspec");
fa9a63c5
RM
922 mcnt = *p++;
923 printf ("/%d", mcnt);
25fe55af 924 break;
5e69f11e 925
fa9a63c5 926 case notsyntaxspec:
25fe55af 927 printf ("/notsyntaxspec");
fa9a63c5
RM
928 mcnt = *p++;
929 printf ("/%d", mcnt);
930 break;
931#endif /* emacs */
932
933 case wordchar:
934 printf ("/wordchar");
25fe55af 935 break;
5e69f11e 936
fa9a63c5
RM
937 case notwordchar:
938 printf ("/notwordchar");
25fe55af 939 break;
fa9a63c5
RM
940
941 case begbuf:
942 printf ("/begbuf");
25fe55af 943 break;
fa9a63c5
RM
944
945 case endbuf:
946 printf ("/endbuf");
25fe55af 947 break;
fa9a63c5 948
25fe55af
RS
949 default:
950 printf ("?%d", *(p-1));
fa9a63c5
RM
951 }
952
953 putchar ('\n');
954 }
955
956 printf ("%d:\tend of pattern.\n", p - start);
957}
958
959
960void
961print_compiled_pattern (bufp)
962 struct re_pattern_buffer *bufp;
963{
964 unsigned char *buffer = bufp->buffer;
965
966 print_partial_compiled_pattern (buffer, buffer + bufp->used);
967 printf ("%d bytes used/%d bytes allocated.\n", bufp->used, bufp->allocated);
968
969 if (bufp->fastmap_accurate && bufp->fastmap)
970 {
971 printf ("fastmap: ");
972 print_fastmap (bufp->fastmap);
973 }
974
975 printf ("re_nsub: %d\t", bufp->re_nsub);
976 printf ("regs_alloc: %d\t", bufp->regs_allocated);
977 printf ("can_be_null: %d\t", bufp->can_be_null);
978 printf ("newline_anchor: %d\n", bufp->newline_anchor);
979 printf ("no_sub: %d\t", bufp->no_sub);
980 printf ("not_bol: %d\t", bufp->not_bol);
981 printf ("not_eol: %d\t", bufp->not_eol);
982 printf ("syntax: %d\n", bufp->syntax);
983 /* Perhaps we should print the translate table? */
984}
985
986
987void
988print_double_string (where, string1, size1, string2, size2)
989 const char *where;
990 const char *string1;
991 const char *string2;
992 int size1;
993 int size2;
994{
995 unsigned this_char;
5e69f11e 996
fa9a63c5
RM
997 if (where == NULL)
998 printf ("(null)");
999 else
1000 {
1001 if (FIRST_STRING_P (where))
25fe55af
RS
1002 {
1003 for (this_char = where - string1; this_char < size1; this_char++)
1004 putchar (string1[this_char]);
fa9a63c5 1005
25fe55af
RS
1006 where = string2;
1007 }
fa9a63c5
RM
1008
1009 for (this_char = where - string2; this_char < size2; this_char++)
25fe55af 1010 putchar (string2[this_char]);
fa9a63c5
RM
1011 }
1012}
1013
1014#else /* not DEBUG */
1015
1016#undef assert
1017#define assert(e)
1018
1019#define DEBUG_STATEMENT(e)
1020#define DEBUG_PRINT1(x)
1021#define DEBUG_PRINT2(x1, x2)
1022#define DEBUG_PRINT3(x1, x2, x3)
1023#define DEBUG_PRINT4(x1, x2, x3, x4)
1024#define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
1025#define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
1026
1027#endif /* not DEBUG */
1028\f
1029/* Set by `re_set_syntax' to the current regexp syntax to recognize. Can
1030 also be assigned to arbitrarily: each pattern buffer stores its own
1031 syntax, so it can be changed between regex compilations. */
1032/* This has no initializer because initialized variables in Emacs
1033 become read-only after dumping. */
1034reg_syntax_t re_syntax_options;
1035
1036
1037/* Specify the precise syntax of regexps for compilation. This provides
1038 for compatibility for various utilities which historically have
1039 different, incompatible syntaxes.
1040
1041 The argument SYNTAX is a bit mask comprised of the various bits
25fe55af 1042 defined in regex.h. We return the old syntax. */
fa9a63c5
RM
1043
1044reg_syntax_t
1045re_set_syntax (syntax)
1046 reg_syntax_t syntax;
1047{
1048 reg_syntax_t ret = re_syntax_options;
5e69f11e 1049
fa9a63c5
RM
1050 re_syntax_options = syntax;
1051 return ret;
1052}
1053\f
1054/* This table gives an error message for each of the error codes listed
25fe55af 1055 in regex.h. Obviously the order here has to be same as there.
fa9a63c5 1056 POSIX doesn't require that we do anything for REG_NOERROR,
25fe55af 1057 but why not be nice? */
fa9a63c5
RM
1058
1059static const char *re_error_msgid[] =
5e69f11e
RM
1060 {
1061 gettext_noop ("Success"), /* REG_NOERROR */
1062 gettext_noop ("No match"), /* REG_NOMATCH */
1063 gettext_noop ("Invalid regular expression"), /* REG_BADPAT */
1064 gettext_noop ("Invalid collation character"), /* REG_ECOLLATE */
1065 gettext_noop ("Invalid character class name"), /* REG_ECTYPE */
1066 gettext_noop ("Trailing backslash"), /* REG_EESCAPE */
1067 gettext_noop ("Invalid back reference"), /* REG_ESUBREG */
1068 gettext_noop ("Unmatched [ or [^"), /* REG_EBRACK */
1069 gettext_noop ("Unmatched ( or \\("), /* REG_EPAREN */
1070 gettext_noop ("Unmatched \\{"), /* REG_EBRACE */
1071 gettext_noop ("Invalid content of \\{\\}"), /* REG_BADBR */
1072 gettext_noop ("Invalid range end"), /* REG_ERANGE */
1073 gettext_noop ("Memory exhausted"), /* REG_ESPACE */
1074 gettext_noop ("Invalid preceding regular expression"), /* REG_BADRPT */
1075 gettext_noop ("Premature end of regular expression"), /* REG_EEND */
1076 gettext_noop ("Regular expression too big"), /* REG_ESIZE */
1077 gettext_noop ("Unmatched ) or \\)"), /* REG_ERPAREN */
fa9a63c5
RM
1078 };
1079\f
25fe55af 1080/* Avoiding alloca during matching, to placate r_alloc. */
fa9a63c5
RM
1081
1082/* Define MATCH_MAY_ALLOCATE unless we need to make sure that the
1083 searching and matching functions should not call alloca. On some
1084 systems, alloca is implemented in terms of malloc, and if we're
1085 using the relocating allocator routines, then malloc could cause a
1086 relocation, which might (if the strings being searched are in the
1087 ralloc heap) shift the data out from underneath the regexp
1088 routines.
1089
5e69f11e 1090 Here's another reason to avoid allocation: Emacs
fa9a63c5
RM
1091 processes input from X in a signal handler; processing X input may
1092 call malloc; if input arrives while a matching routine is calling
1093 malloc, then we're scrod. But Emacs can't just block input while
1094 calling matching routines; then we don't notice interrupts when
1095 they come in. So, Emacs blocks input around all regexp calls
1096 except the matching calls, which it leaves unprotected, in the
1097 faith that they will not malloc. */
1098
1099/* Normally, this is fine. */
1100#define MATCH_MAY_ALLOCATE
1101
1102/* When using GNU C, we are not REALLY using the C alloca, no matter
1103 what config.h may say. So don't take precautions for it. */
1104#ifdef __GNUC__
1105#undef C_ALLOCA
1106#endif
1107
1108/* The match routines may not allocate if (1) they would do it with malloc
1109 and (2) it's not safe for them to use malloc.
1110 Note that if REL_ALLOC is defined, matching would not use malloc for the
1111 failure stack, but we would still use it for the register vectors;
25fe55af 1112 so REL_ALLOC should not affect this. */
fa9a63c5
RM
1113#if (defined (C_ALLOCA) || defined (REGEX_MALLOC)) && defined (emacs)
1114#undef MATCH_MAY_ALLOCATE
1115#endif
1116
1117\f
1118/* Failure stack declarations and macros; both re_compile_fastmap and
1119 re_match_2 use a failure stack. These have to be macros because of
1120 REGEX_ALLOCATE_STACK. */
5e69f11e 1121
fa9a63c5
RM
1122
1123/* Number of failure points for which to initially allocate space
1124 when matching. If this number is exceeded, we allocate more
1125 space, so it is not a hard limit. */
1126#ifndef INIT_FAILURE_ALLOC
1127#define INIT_FAILURE_ALLOC 5
1128#endif
1129
1130/* Roughly the maximum number of failure points on the stack. Would be
ffd76827 1131 exactly that if always used MAX_FAILURE_ITEMS items each time we failed.
fa9a63c5 1132 This is a variable only so users of regex can assign to it; we never
25fe55af 1133 change it ourselves. */
fa9a63c5 1134#if defined (MATCH_MAY_ALLOCATE)
0f374b2b 1135/* 4400 was enough to cause a crash on Alpha OSF/1,
264d34bf 1136 whose default stack limit is 2mb. */
6411ab23 1137int re_max_failures = 20000;
fa9a63c5
RM
1138#else
1139int re_max_failures = 2000;
1140#endif
1141
1142union fail_stack_elt
1143{
1144 unsigned char *pointer;
1145 int integer;
1146};
1147
1148typedef union fail_stack_elt fail_stack_elt_t;
1149
1150typedef struct
1151{
1152 fail_stack_elt_t *stack;
1153 unsigned size;
1154 unsigned avail; /* Offset of next open position. */
1155} fail_stack_type;
1156
1157#define FAIL_STACK_EMPTY() (fail_stack.avail == 0)
1158#define FAIL_STACK_PTR_EMPTY() (fail_stack_ptr->avail == 0)
1159#define FAIL_STACK_FULL() (fail_stack.avail == fail_stack.size)
1160
1161
1162/* Define macros to initialize and free the failure stack.
1163 Do `return -2' if the alloc fails. */
1164
1165#ifdef MATCH_MAY_ALLOCATE
1166#define INIT_FAIL_STACK() \
1167 do { \
1168 fail_stack.stack = (fail_stack_elt_t *) \
1169 REGEX_ALLOCATE_STACK (INIT_FAILURE_ALLOC * sizeof (fail_stack_elt_t)); \
1170 \
1171 if (fail_stack.stack == NULL) \
1172 return -2; \
1173 \
1174 fail_stack.size = INIT_FAILURE_ALLOC; \
1175 fail_stack.avail = 0; \
1176 } while (0)
1177
1178#define RESET_FAIL_STACK() REGEX_FREE_STACK (fail_stack.stack)
1179#else
1180#define INIT_FAIL_STACK() \
1181 do { \
1182 fail_stack.avail = 0; \
1183 } while (0)
1184
1185#define RESET_FAIL_STACK()
1186#endif
1187
1188
1189/* Double the size of FAIL_STACK, up to approximately `re_max_failures' items.
1190
1191 Return 1 if succeeds, and 0 if either ran out of memory
5e69f11e
RM
1192 allocating space for it or it was already too large.
1193
25fe55af 1194 REGEX_REALLOCATE_STACK requires `destination' be declared. */
fa9a63c5
RM
1195
1196#define DOUBLE_FAIL_STACK(fail_stack) \
1197 ((fail_stack).size > re_max_failures * MAX_FAILURE_ITEMS \
1198 ? 0 \
1199 : ((fail_stack).stack = (fail_stack_elt_t *) \
25fe55af
RS
1200 REGEX_REALLOCATE_STACK ((fail_stack).stack, \
1201 (fail_stack).size * sizeof (fail_stack_elt_t), \
1202 ((fail_stack).size << 1) * sizeof (fail_stack_elt_t)), \
fa9a63c5
RM
1203 \
1204 (fail_stack).stack == NULL \
1205 ? 0 \
25fe55af
RS
1206 : ((fail_stack).size <<= 1, \
1207 1)))
fa9a63c5
RM
1208
1209
5e69f11e 1210/* Push pointer POINTER on FAIL_STACK.
fa9a63c5
RM
1211 Return 1 if was able to do so and 0 if ran out of memory allocating
1212 space to do so. */
1213#define PUSH_PATTERN_OP(POINTER, FAIL_STACK) \
1214 ((FAIL_STACK_FULL () \
1215 && !DOUBLE_FAIL_STACK (FAIL_STACK)) \
1216 ? 0 \
1217 : ((FAIL_STACK).stack[(FAIL_STACK).avail++].pointer = POINTER, \
1218 1))
1219
1220/* Push a pointer value onto the failure stack.
1221 Assumes the variable `fail_stack'. Probably should only
25fe55af 1222 be called from within `PUSH_FAILURE_POINT'. */
fa9a63c5
RM
1223#define PUSH_FAILURE_POINTER(item) \
1224 fail_stack.stack[fail_stack.avail++].pointer = (unsigned char *) (item)
1225
1226/* This pushes an integer-valued item onto the failure stack.
1227 Assumes the variable `fail_stack'. Probably should only
25fe55af 1228 be called from within `PUSH_FAILURE_POINT'. */
fa9a63c5
RM
1229#define PUSH_FAILURE_INT(item) \
1230 fail_stack.stack[fail_stack.avail++].integer = (item)
1231
1232/* Push a fail_stack_elt_t value onto the failure stack.
1233 Assumes the variable `fail_stack'. Probably should only
25fe55af 1234 be called from within `PUSH_FAILURE_POINT'. */
fa9a63c5
RM
1235#define PUSH_FAILURE_ELT(item) \
1236 fail_stack.stack[fail_stack.avail++] = (item)
1237
1238/* These three POP... operations complement the three PUSH... operations.
1239 All assume that `fail_stack' is nonempty. */
1240#define POP_FAILURE_POINTER() fail_stack.stack[--fail_stack.avail].pointer
1241#define POP_FAILURE_INT() fail_stack.stack[--fail_stack.avail].integer
1242#define POP_FAILURE_ELT() fail_stack.stack[--fail_stack.avail]
1243
1244/* Used to omit pushing failure point id's when we're not debugging. */
1245#ifdef DEBUG
1246#define DEBUG_PUSH PUSH_FAILURE_INT
1247#define DEBUG_POP(item_addr) *(item_addr) = POP_FAILURE_INT ()
1248#else
1249#define DEBUG_PUSH(item)
1250#define DEBUG_POP(item_addr)
1251#endif
1252
1253
1254/* Push the information about the state we will need
5e69f11e
RM
1255 if we ever fail back to it.
1256
fa9a63c5
RM
1257 Requires variables fail_stack, regstart, regend, reg_info, and
1258 num_regs be declared. DOUBLE_FAIL_STACK requires `destination' be
1259 declared.
5e69f11e 1260
fa9a63c5
RM
1261 Does `return FAILURE_CODE' if runs out of memory. */
1262
1263#define PUSH_FAILURE_POINT(pattern_place, string_place, failure_code) \
1264 do { \
1265 char *destination; \
1266 /* Must be int, so when we don't save any registers, the arithmetic \
1267 of 0 + -1 isn't done as unsigned. */ \
1268 int this_reg; \
25fe55af 1269 \
fa9a63c5
RM
1270 DEBUG_STATEMENT (failure_id++); \
1271 DEBUG_STATEMENT (nfailure_points_pushed++); \
1272 DEBUG_PRINT2 ("\nPUSH_FAILURE_POINT #%u:\n", failure_id); \
1273 DEBUG_PRINT2 (" Before push, next avail: %d\n", (fail_stack).avail);\
25fe55af 1274 DEBUG_PRINT2 (" size: %d\n", (fail_stack).size);\
fa9a63c5
RM
1275 \
1276 DEBUG_PRINT2 (" slots needed: %d\n", NUM_FAILURE_ITEMS); \
25fe55af 1277 DEBUG_PRINT2 (" available: %d\n", REMAINING_AVAIL_SLOTS); \
fa9a63c5
RM
1278 \
1279 /* Ensure we have enough space allocated for what we will push. */ \
1280 while (REMAINING_AVAIL_SLOTS < NUM_FAILURE_ITEMS) \
1281 { \
25fe55af
RS
1282 if (!DOUBLE_FAIL_STACK (fail_stack)) \
1283 return failure_code; \
fa9a63c5 1284 \
25fe55af 1285 DEBUG_PRINT2 ("\n Doubled stack; size now: %d\n", \
fa9a63c5 1286 (fail_stack).size); \
25fe55af 1287 DEBUG_PRINT2 (" slots available: %d\n", REMAINING_AVAIL_SLOTS);\
fa9a63c5
RM
1288 } \
1289 \
1290 /* Push the info, starting with the registers. */ \
1291 DEBUG_PRINT1 ("\n"); \
1292 \
68d96f02 1293 if (1) \
faec11db
RS
1294 for (this_reg = lowest_active_reg; this_reg <= highest_active_reg; \
1295 this_reg++) \
1296 { \
1297 DEBUG_PRINT2 (" Pushing reg: %d\n", this_reg); \
1298 DEBUG_STATEMENT (num_regs_pushed++); \
fa9a63c5 1299 \
faec11db
RS
1300 DEBUG_PRINT2 (" start: 0x%x\n", regstart[this_reg]); \
1301 PUSH_FAILURE_POINTER (regstart[this_reg]); \
fa9a63c5 1302 \
faec11db
RS
1303 DEBUG_PRINT2 (" end: 0x%x\n", regend[this_reg]); \
1304 PUSH_FAILURE_POINTER (regend[this_reg]); \
1305 \
1306 DEBUG_PRINT2 (" info: 0x%x\n ", reg_info[this_reg]); \
1307 DEBUG_PRINT2 (" match_null=%d", \
1308 REG_MATCH_NULL_STRING_P (reg_info[this_reg])); \
1309 DEBUG_PRINT2 (" active=%d", IS_ACTIVE (reg_info[this_reg])); \
1310 DEBUG_PRINT2 (" matched_something=%d", \
1311 MATCHED_SOMETHING (reg_info[this_reg])); \
1312 DEBUG_PRINT2 (" ever_matched=%d", \
1313 EVER_MATCHED_SOMETHING (reg_info[this_reg])); \
1314 DEBUG_PRINT1 ("\n"); \
1315 PUSH_FAILURE_ELT (reg_info[this_reg].word); \
1316 } \
fa9a63c5
RM
1317 \
1318 DEBUG_PRINT2 (" Pushing low active reg: %d\n", lowest_active_reg);\
1319 PUSH_FAILURE_INT (lowest_active_reg); \
1320 \
1321 DEBUG_PRINT2 (" Pushing high active reg: %d\n", highest_active_reg);\
1322 PUSH_FAILURE_INT (highest_active_reg); \
1323 \
1324 DEBUG_PRINT2 (" Pushing pattern 0x%x: ", pattern_place); \
1325 DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern_place, pend); \
1326 PUSH_FAILURE_POINTER (pattern_place); \
1327 \
1328 DEBUG_PRINT2 (" Pushing string 0x%x: `", string_place); \
25fe55af 1329 DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, \
fa9a63c5
RM
1330 size2); \
1331 DEBUG_PRINT1 ("'\n"); \
1332 PUSH_FAILURE_POINTER (string_place); \
1333 \
1334 DEBUG_PRINT2 (" Pushing failure id: %u\n", failure_id); \
1335 DEBUG_PUSH (failure_id); \
1336 } while (0)
1337
1338/* This is the number of items that are pushed and popped on the stack
1339 for each register. */
1340#define NUM_REG_ITEMS 3
1341
1342/* Individual items aside from the registers. */
1343#ifdef DEBUG
1344#define NUM_NONREG_ITEMS 5 /* Includes failure point id. */
1345#else
1346#define NUM_NONREG_ITEMS 4
1347#endif
1348
1349/* We push at most this many items on the stack. */
ffd76827
RS
1350/* We used to use (num_regs - 1), which is the number of registers
1351 this regexp will save; but that was changed to 5
1352 to avoid stack overflow for a regexp with lots of parens. */
1353#define MAX_FAILURE_ITEMS (5 * NUM_REG_ITEMS + NUM_NONREG_ITEMS)
fa9a63c5
RM
1354
1355/* We actually push this many items. */
faec11db 1356#define NUM_FAILURE_ITEMS \
68d96f02 1357 (((0 \
faec11db
RS
1358 ? 0 : highest_active_reg - lowest_active_reg + 1) \
1359 * NUM_REG_ITEMS) \
1360 + NUM_NONREG_ITEMS)
fa9a63c5
RM
1361
1362/* How many items can still be added to the stack without overflowing it. */
1363#define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
1364
1365
1366/* Pops what PUSH_FAIL_STACK pushes.
1367
1368 We restore into the parameters, all of which should be lvalues:
1369 STR -- the saved data position.
1370 PAT -- the saved pattern position.
1371 LOW_REG, HIGH_REG -- the highest and lowest active registers.
1372 REGSTART, REGEND -- arrays of string positions.
1373 REG_INFO -- array of information about each subexpression.
5e69f11e 1374
fa9a63c5 1375 Also assumes the variables `fail_stack' and (if debugging), `bufp',
25fe55af 1376 `pend', `string1', `size1', `string2', and `size2'. */
fa9a63c5
RM
1377
1378#define POP_FAILURE_POINT(str, pat, low_reg, high_reg, regstart, regend, reg_info)\
1379{ \
1380 DEBUG_STATEMENT (fail_stack_elt_t failure_id;) \
1381 int this_reg; \
1382 const unsigned char *string_temp; \
1383 \
1384 assert (!FAIL_STACK_EMPTY ()); \
1385 \
1386 /* Remove failure points and point to how many regs pushed. */ \
1387 DEBUG_PRINT1 ("POP_FAILURE_POINT:\n"); \
1388 DEBUG_PRINT2 (" Before pop, next avail: %d\n", fail_stack.avail); \
25fe55af 1389 DEBUG_PRINT2 (" size: %d\n", fail_stack.size); \
fa9a63c5
RM
1390 \
1391 assert (fail_stack.avail >= NUM_NONREG_ITEMS); \
1392 \
1393 DEBUG_POP (&failure_id); \
1394 DEBUG_PRINT2 (" Popping failure id: %u\n", failure_id); \
1395 \
1396 /* If the saved string location is NULL, it came from an \
1397 on_failure_keep_string_jump opcode, and we want to throw away the \
1398 saved NULL, thus retaining our current position in the string. */ \
1399 string_temp = POP_FAILURE_POINTER (); \
1400 if (string_temp != NULL) \
1401 str = (const char *) string_temp; \
1402 \
1403 DEBUG_PRINT2 (" Popping string 0x%x: `", str); \
1404 DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2); \
1405 DEBUG_PRINT1 ("'\n"); \
1406 \
1407 pat = (unsigned char *) POP_FAILURE_POINTER (); \
1408 DEBUG_PRINT2 (" Popping pattern 0x%x: ", pat); \
1409 DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend); \
1410 \
1411 /* Restore register info. */ \
1412 high_reg = (unsigned) POP_FAILURE_INT (); \
1413 DEBUG_PRINT2 (" Popping high active reg: %d\n", high_reg); \
1414 \
1415 low_reg = (unsigned) POP_FAILURE_INT (); \
1416 DEBUG_PRINT2 (" Popping low active reg: %d\n", low_reg); \
1417 \
68d96f02 1418 if (1) \
faec11db
RS
1419 for (this_reg = high_reg; this_reg >= low_reg; this_reg--) \
1420 { \
25fe55af 1421 DEBUG_PRINT2 (" Popping reg: %d\n", this_reg); \
fa9a63c5 1422 \
faec11db 1423 reg_info[this_reg].word = POP_FAILURE_ELT (); \
25fe55af 1424 DEBUG_PRINT2 (" info: 0x%x\n", reg_info[this_reg]); \
fa9a63c5 1425 \
faec11db 1426 regend[this_reg] = (const char *) POP_FAILURE_POINTER (); \
25fe55af 1427 DEBUG_PRINT2 (" end: 0x%x\n", regend[this_reg]); \
fa9a63c5 1428 \
faec11db 1429 regstart[this_reg] = (const char *) POP_FAILURE_POINTER (); \
25fe55af 1430 DEBUG_PRINT2 (" start: 0x%x\n", regstart[this_reg]); \
faec11db 1431 } \
6676cb1c
RS
1432 else \
1433 { \
1434 for (this_reg = highest_active_reg; this_reg > high_reg; this_reg--) \
1435 { \
4fcecab1 1436 reg_info[this_reg].word.integer = 0; \
6676cb1c
RS
1437 regend[this_reg] = 0; \
1438 regstart[this_reg] = 0; \
1439 } \
1440 highest_active_reg = high_reg; \
1441 } \
fa9a63c5
RM
1442 \
1443 set_regs_matched_done = 0; \
1444 DEBUG_STATEMENT (nfailure_points_popped++); \
1445} /* POP_FAILURE_POINT */
1446
1447
1448\f
1449/* Structure for per-register (a.k.a. per-group) information.
1450 Other register information, such as the
1451 starting and ending positions (which are addresses), and the list of
1452 inner groups (which is a bits list) are maintained in separate
5e69f11e
RM
1453 variables.
1454
fa9a63c5
RM
1455 We are making a (strictly speaking) nonportable assumption here: that
1456 the compiler will pack our bit fields into something that fits into
1457 the type of `word', i.e., is something that fits into one item on the
1458 failure stack. */
1459
1460typedef union
1461{
1462 fail_stack_elt_t word;
1463 struct
1464 {
1465 /* This field is one if this group can match the empty string,
25fe55af 1466 zero if not. If not yet determined, `MATCH_NULL_UNSET_VALUE'. */
fa9a63c5
RM
1467#define MATCH_NULL_UNSET_VALUE 3
1468 unsigned match_null_string_p : 2;
1469 unsigned is_active : 1;
1470 unsigned matched_something : 1;
1471 unsigned ever_matched_something : 1;
1472 } bits;
1473} register_info_type;
1474
1475#define REG_MATCH_NULL_STRING_P(R) ((R).bits.match_null_string_p)
1476#define IS_ACTIVE(R) ((R).bits.is_active)
1477#define MATCHED_SOMETHING(R) ((R).bits.matched_something)
1478#define EVER_MATCHED_SOMETHING(R) ((R).bits.ever_matched_something)
1479
1480
1481/* Call this when have matched a real character; it sets `matched' flags
1482 for the subexpressions which we are currently inside. Also records
1483 that those subexprs have matched. */
1484#define SET_REGS_MATCHED() \
1485 do \
1486 { \
1487 if (!set_regs_matched_done) \
1488 { \
1489 unsigned r; \
1490 set_regs_matched_done = 1; \
1491 for (r = lowest_active_reg; r <= highest_active_reg; r++) \
1492 { \
1493 MATCHED_SOMETHING (reg_info[r]) \
1494 = EVER_MATCHED_SOMETHING (reg_info[r]) \
1495 = 1; \
1496 } \
1497 } \
1498 } \
1499 while (0)
1500
1501/* Registers are set to a sentinel when they haven't yet matched. */
1502static char reg_unset_dummy;
1503#define REG_UNSET_VALUE (&reg_unset_dummy)
1504#define REG_UNSET(e) ((e) == REG_UNSET_VALUE)
1505\f
1506/* Subroutine declarations and macros for regex_compile. */
1507
1508static void store_op1 (), store_op2 ();
1509static void insert_op1 (), insert_op2 ();
1510static boolean at_begline_loc_p (), at_endline_loc_p ();
1511static boolean group_in_compile_stack ();
1512static reg_errcode_t compile_range ();
1513
5e69f11e 1514/* Fetch the next character in the uncompiled pattern---translating it
fa9a63c5
RM
1515 if necessary. Also cast from a signed character in the constant
1516 string passed to us by the user to an unsigned char that we can use
1517 as an array index (in, e.g., `translate'). */
6676cb1c 1518#ifndef PATFETCH
fa9a63c5
RM
1519#define PATFETCH(c) \
1520 do {if (p == pend) return REG_EEND; \
1521 c = (unsigned char) *p++; \
6676cb1c 1522 if (translate) c = (unsigned char) translate[c]; \
fa9a63c5 1523 } while (0)
6676cb1c 1524#endif
fa9a63c5
RM
1525
1526/* Fetch the next character in the uncompiled pattern, with no
25fe55af 1527 translation. */
fa9a63c5
RM
1528#define PATFETCH_RAW(c) \
1529 do {if (p == pend) return REG_EEND; \
25fe55af 1530 c = (unsigned char) *p++; \
fa9a63c5
RM
1531 } while (0)
1532
1533/* Go backwards one character in the pattern. */
1534#define PATUNFETCH p--
1535
1536
1537/* If `translate' is non-null, return translate[D], else just D. We
1538 cast the subscript to translate because some data is declared as
1539 `char *', to avoid warnings when a string constant is passed. But
1540 when we use a character as a subscript we must make it unsigned. */
6676cb1c
RS
1541#ifndef TRANSLATE
1542#define TRANSLATE(d) \
b18215fc 1543 (translate ? (unsigned char) translate[(unsigned char) (d)] : (d))
6676cb1c 1544#endif
fa9a63c5
RM
1545
1546
1547/* Macros for outputting the compiled pattern into `buffer'. */
1548
1549/* If the buffer isn't allocated when it comes in, use this. */
1550#define INIT_BUF_SIZE 32
1551
25fe55af 1552/* Make sure we have at least N more bytes of space in buffer. */
fa9a63c5
RM
1553#define GET_BUFFER_SPACE(n) \
1554 while (b - bufp->buffer + (n) > bufp->allocated) \
1555 EXTEND_BUFFER ()
1556
1557/* Make sure we have one more byte of buffer space and then add C to it. */
1558#define BUF_PUSH(c) \
1559 do { \
1560 GET_BUFFER_SPACE (1); \
1561 *b++ = (unsigned char) (c); \
1562 } while (0)
1563
1564
1565/* Ensure we have two more bytes of buffer space and then append C1 and C2. */
1566#define BUF_PUSH_2(c1, c2) \
1567 do { \
1568 GET_BUFFER_SPACE (2); \
1569 *b++ = (unsigned char) (c1); \
1570 *b++ = (unsigned char) (c2); \
1571 } while (0)
1572
1573
25fe55af 1574/* As with BUF_PUSH_2, except for three bytes. */
fa9a63c5
RM
1575#define BUF_PUSH_3(c1, c2, c3) \
1576 do { \
1577 GET_BUFFER_SPACE (3); \
1578 *b++ = (unsigned char) (c1); \
1579 *b++ = (unsigned char) (c2); \
1580 *b++ = (unsigned char) (c3); \
1581 } while (0)
1582
1583
1584/* Store a jump with opcode OP at LOC to location TO. We store a
25fe55af 1585 relative address offset by the three bytes the jump itself occupies. */
fa9a63c5
RM
1586#define STORE_JUMP(op, loc, to) \
1587 store_op1 (op, loc, (to) - (loc) - 3)
1588
1589/* Likewise, for a two-argument jump. */
1590#define STORE_JUMP2(op, loc, to, arg) \
1591 store_op2 (op, loc, (to) - (loc) - 3, arg)
1592
25fe55af 1593/* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */
fa9a63c5
RM
1594#define INSERT_JUMP(op, loc, to) \
1595 insert_op1 (op, loc, (to) - (loc) - 3, b)
1596
1597/* Like `STORE_JUMP2', but for inserting. Assume `b' is the buffer end. */
1598#define INSERT_JUMP2(op, loc, to, arg) \
1599 insert_op2 (op, loc, (to) - (loc) - 3, arg, b)
1600
1601
1602/* This is not an arbitrary limit: the arguments which represent offsets
25fe55af 1603 into the pattern are two bytes long. So if 2^16 bytes turns out to
fa9a63c5
RM
1604 be too small, many things would have to change. */
1605#define MAX_BUF_SIZE (1L << 16)
1606
1607
1608/* Extend the buffer by twice its current size via realloc and
1609 reset the pointers that pointed into the old block to point to the
1610 correct places in the new one. If extending the buffer results in it
25fe55af 1611 being larger than MAX_BUF_SIZE, then flag memory exhausted. */
fa9a63c5 1612#define EXTEND_BUFFER() \
25fe55af 1613 do { \
fa9a63c5 1614 unsigned char *old_buffer = bufp->buffer; \
25fe55af 1615 if (bufp->allocated == MAX_BUF_SIZE) \
fa9a63c5
RM
1616 return REG_ESIZE; \
1617 bufp->allocated <<= 1; \
1618 if (bufp->allocated > MAX_BUF_SIZE) \
25fe55af 1619 bufp->allocated = MAX_BUF_SIZE; \
fa9a63c5
RM
1620 bufp->buffer = (unsigned char *) realloc (bufp->buffer, bufp->allocated);\
1621 if (bufp->buffer == NULL) \
1622 return REG_ESPACE; \
1623 /* If the buffer moved, move all the pointers into it. */ \
1624 if (old_buffer != bufp->buffer) \
1625 { \
25fe55af
RS
1626 b = (b - old_buffer) + bufp->buffer; \
1627 begalt = (begalt - old_buffer) + bufp->buffer; \
1628 if (fixup_alt_jump) \
1629 fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer;\
1630 if (laststart) \
1631 laststart = (laststart - old_buffer) + bufp->buffer; \
1632 if (pending_exact) \
1633 pending_exact = (pending_exact - old_buffer) + bufp->buffer; \
fa9a63c5
RM
1634 } \
1635 } while (0)
1636
1637
1638/* Since we have one byte reserved for the register number argument to
1639 {start,stop}_memory, the maximum number of groups we can report
1640 things about is what fits in that byte. */
1641#define MAX_REGNUM 255
1642
1643/* But patterns can have more than `MAX_REGNUM' registers. We just
1644 ignore the excess. */
1645typedef unsigned regnum_t;
1646
1647
1648/* Macros for the compile stack. */
1649
1650/* Since offsets can go either forwards or backwards, this type needs to
25fe55af 1651 be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */
fa9a63c5
RM
1652typedef int pattern_offset_t;
1653
1654typedef struct
1655{
1656 pattern_offset_t begalt_offset;
1657 pattern_offset_t fixup_alt_jump;
1658 pattern_offset_t inner_group_offset;
5e69f11e 1659 pattern_offset_t laststart_offset;
fa9a63c5
RM
1660 regnum_t regnum;
1661} compile_stack_elt_t;
1662
1663
1664typedef struct
1665{
1666 compile_stack_elt_t *stack;
1667 unsigned size;
1668 unsigned avail; /* Offset of next open position. */
1669} compile_stack_type;
1670
1671
1672#define INIT_COMPILE_STACK_SIZE 32
1673
1674#define COMPILE_STACK_EMPTY (compile_stack.avail == 0)
1675#define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size)
1676
25fe55af 1677/* The next available element. */
fa9a63c5
RM
1678#define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
1679
1680
b18215fc
RS
1681/* Structure to manage work area for range table. */
1682struct range_table_work_area
1683{
1684 int *table; /* actual work area. */
1685 int allocated; /* allocated size for work area in bytes. */
25fe55af 1686 int used; /* actually used size in words. */
b18215fc
RS
1687};
1688
1689/* Make sure that WORK_AREA can hold more N multibyte characters. */
1690#define EXTEND_RANGE_TABLE_WORK_AREA(work_area, n) \
1691 do { \
1692 if (((work_area).used + (n)) * sizeof (int) > (work_area).allocated) \
1693 { \
1694 (work_area).allocated += 16 * sizeof (int); \
1695 if ((work_area).table) \
1696 (work_area).table \
1697 = (int *) realloc ((work_area).table, (work_area).allocated); \
1698 else \
1699 (work_area).table \
1700 = (int *) malloc ((work_area).allocated); \
1701 if ((work_area).table == 0) \
1702 FREE_STACK_RETURN (REG_ESPACE); \
1703 } \
1704 } while (0)
1705
1706/* Set a range (RANGE_START, RANGE_END) to WORK_AREA. */
1707#define SET_RANGE_TABLE_WORK_AREA(work_area, range_start, range_end) \
1708 do { \
1709 EXTEND_RANGE_TABLE_WORK_AREA ((work_area), 2); \
1710 (work_area).table[(work_area).used++] = (range_start); \
1711 (work_area).table[(work_area).used++] = (range_end); \
1712 } while (0)
1713
25fe55af 1714/* Free allocated memory for WORK_AREA. */
b18215fc
RS
1715#define FREE_RANGE_TABLE_WORK_AREA(work_area) \
1716 do { \
1717 if ((work_area).table) \
1718 free ((work_area).table); \
1719 } while (0)
1720
1721#define CLEAR_RANGE_TABLE_WORK_USED(work_area) ((work_area).used = 0)
1722#define RANGE_TABLE_WORK_USED(work_area) ((work_area).used)
1723#define RANGE_TABLE_WORK_ELT(work_area, i) ((work_area).table[i])
1724
1725
fa9a63c5 1726/* Set the bit for character C in a list. */
25fe55af
RS
1727#define SET_LIST_BIT(c) \
1728 (b[((unsigned char) (c)) / BYTEWIDTH] \
fa9a63c5
RM
1729 |= 1 << (((unsigned char) c) % BYTEWIDTH))
1730
1731
1732/* Get the next unsigned number in the uncompiled pattern. */
25fe55af 1733#define GET_UNSIGNED_NUMBER(num) \
fa9a63c5
RM
1734 { if (p != pend) \
1735 { \
25fe55af
RS
1736 PATFETCH (c); \
1737 while (ISDIGIT (c)) \
1738 { \
1739 if (num < 0) \
1740 num = 0; \
1741 num = num * 10 + c - '0'; \
1742 if (p == pend) \
1743 break; \
1744 PATFETCH (c); \
1745 } \
1746 } \
5e69f11e 1747 }
fa9a63c5
RM
1748
1749#define CHAR_CLASS_MAX_LENGTH 6 /* Namely, `xdigit'. */
1750
1751#define IS_CHAR_CLASS(string) \
1752 (STREQ (string, "alpha") || STREQ (string, "upper") \
1753 || STREQ (string, "lower") || STREQ (string, "digit") \
1754 || STREQ (string, "alnum") || STREQ (string, "xdigit") \
1755 || STREQ (string, "space") || STREQ (string, "print") \
1756 || STREQ (string, "punct") || STREQ (string, "graph") \
1757 || STREQ (string, "cntrl") || STREQ (string, "blank"))
1758\f
1759#ifndef MATCH_MAY_ALLOCATE
1760
1761/* If we cannot allocate large objects within re_match_2_internal,
1762 we make the fail stack and register vectors global.
1763 The fail stack, we grow to the maximum size when a regexp
1764 is compiled.
1765 The register vectors, we adjust in size each time we
1766 compile a regexp, according to the number of registers it needs. */
1767
1768static fail_stack_type fail_stack;
1769
1770/* Size with which the following vectors are currently allocated.
1771 That is so we can make them bigger as needed,
25fe55af 1772 but never make them smaller. */
fa9a63c5
RM
1773static int regs_allocated_size;
1774
25fe55af 1775static const char ** regstart, ** regend;
fa9a63c5
RM
1776static const char ** old_regstart, ** old_regend;
1777static const char **best_regstart, **best_regend;
5e69f11e 1778static register_info_type *reg_info;
fa9a63c5
RM
1779static const char **reg_dummy;
1780static register_info_type *reg_info_dummy;
1781
1782/* Make the register vectors big enough for NUM_REGS registers,
25fe55af 1783 but don't make them smaller. */
fa9a63c5
RM
1784
1785static
1786regex_grow_registers (num_regs)
1787 int num_regs;
1788{
1789 if (num_regs > regs_allocated_size)
1790 {
1791 RETALLOC_IF (regstart, num_regs, const char *);
1792 RETALLOC_IF (regend, num_regs, const char *);
1793 RETALLOC_IF (old_regstart, num_regs, const char *);
1794 RETALLOC_IF (old_regend, num_regs, const char *);
1795 RETALLOC_IF (best_regstart, num_regs, const char *);
1796 RETALLOC_IF (best_regend, num_regs, const char *);
1797 RETALLOC_IF (reg_info, num_regs, register_info_type);
1798 RETALLOC_IF (reg_dummy, num_regs, const char *);
1799 RETALLOC_IF (reg_info_dummy, num_regs, register_info_type);
1800
1801 regs_allocated_size = num_regs;
1802 }
1803}
1804
1805#endif /* not MATCH_MAY_ALLOCATE */
1806\f
1807/* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
1808 Returns one of error codes defined in `regex.h', or zero for success.
1809
1810 Assumes the `allocated' (and perhaps `buffer') and `translate'
1811 fields are set in BUFP on entry.
1812
1813 If it succeeds, results are put in BUFP (if it returns an error, the
1814 contents of BUFP are undefined):
1815 `buffer' is the compiled pattern;
1816 `syntax' is set to SYNTAX;
1817 `used' is set to the length of the compiled pattern;
1818 `fastmap_accurate' is zero;
1819 `re_nsub' is the number of subexpressions in PATTERN;
1820 `not_bol' and `not_eol' are zero;
5e69f11e 1821
fa9a63c5
RM
1822 The `fastmap' and `newline_anchor' fields are neither
1823 examined nor set. */
1824
1825/* Return, freeing storage we allocated. */
1826#define FREE_STACK_RETURN(value) \
b18215fc
RS
1827 do { \
1828 FREE_RANGE_TABLE_WORK_AREA (range_table_work); \
1829 free (compile_stack.stack); \
1830 return value; \
1831 } while (0)
fa9a63c5
RM
1832
1833static reg_errcode_t
1834regex_compile (pattern, size, syntax, bufp)
1835 const char *pattern;
1836 int size;
1837 reg_syntax_t syntax;
1838 struct re_pattern_buffer *bufp;
1839{
1840 /* We fetch characters from PATTERN here. Even though PATTERN is
1841 `char *' (i.e., signed), we declare these variables as unsigned, so
1842 they can be reliably used as array indices. */
b18215fc 1843 register unsigned int c, c1;
5e69f11e 1844
fa9a63c5
RM
1845 /* A random temporary spot in PATTERN. */
1846 const char *p1;
1847
1848 /* Points to the end of the buffer, where we should append. */
1849 register unsigned char *b;
5e69f11e 1850
fa9a63c5
RM
1851 /* Keeps track of unclosed groups. */
1852 compile_stack_type compile_stack;
1853
1854 /* Points to the current (ending) position in the pattern. */
1855 const char *p = pattern;
1856 const char *pend = pattern + size;
5e69f11e 1857
fa9a63c5 1858 /* How to translate the characters in the pattern. */
6676cb1c 1859 RE_TRANSLATE_TYPE translate = bufp->translate;
fa9a63c5
RM
1860
1861 /* Address of the count-byte of the most recently inserted `exactn'
1862 command. This makes it possible to tell if a new exact-match
1863 character can be added to that command or if the character requires
1864 a new `exactn' command. */
1865 unsigned char *pending_exact = 0;
1866
1867 /* Address of start of the most recently finished expression.
1868 This tells, e.g., postfix * where to find the start of its
1869 operand. Reset at the beginning of groups and alternatives. */
1870 unsigned char *laststart = 0;
1871
1872 /* Address of beginning of regexp, or inside of last group. */
1873 unsigned char *begalt;
1874
1875 /* Place in the uncompiled pattern (i.e., the {) to
1876 which to go back if the interval is invalid. */
1877 const char *beg_interval;
5e69f11e 1878
fa9a63c5 1879 /* Address of the place where a forward jump should go to the end of
25fe55af 1880 the containing expression. Each alternative of an `or' -- except the
fa9a63c5
RM
1881 last -- ends with a forward jump of this sort. */
1882 unsigned char *fixup_alt_jump = 0;
1883
1884 /* Counts open-groups as they are encountered. Remembered for the
1885 matching close-group on the compile stack, so the same register
1886 number is put in the stop_memory as the start_memory. */
1887 regnum_t regnum = 0;
1888
b18215fc
RS
1889 /* Work area for range table of charset. */
1890 struct range_table_work_area range_table_work;
1891
fa9a63c5
RM
1892#ifdef DEBUG
1893 DEBUG_PRINT1 ("\nCompiling pattern: ");
1894 if (debug)
1895 {
1896 unsigned debug_count;
5e69f11e 1897
fa9a63c5 1898 for (debug_count = 0; debug_count < size; debug_count++)
25fe55af 1899 putchar (pattern[debug_count]);
fa9a63c5
RM
1900 putchar ('\n');
1901 }
1902#endif /* DEBUG */
1903
1904 /* Initialize the compile stack. */
1905 compile_stack.stack = TALLOC (INIT_COMPILE_STACK_SIZE, compile_stack_elt_t);
1906 if (compile_stack.stack == NULL)
1907 return REG_ESPACE;
1908
1909 compile_stack.size = INIT_COMPILE_STACK_SIZE;
1910 compile_stack.avail = 0;
1911
b18215fc
RS
1912 range_table_work.table = 0;
1913 range_table_work.allocated = 0;
1914
fa9a63c5
RM
1915 /* Initialize the pattern buffer. */
1916 bufp->syntax = syntax;
1917 bufp->fastmap_accurate = 0;
1918 bufp->not_bol = bufp->not_eol = 0;
1919
1920 /* Set `used' to zero, so that if we return an error, the pattern
1921 printer (for debugging) will think there's no pattern. We reset it
1922 at the end. */
1923 bufp->used = 0;
5e69f11e 1924
fa9a63c5 1925 /* Always count groups, whether or not bufp->no_sub is set. */
5e69f11e 1926 bufp->re_nsub = 0;
fa9a63c5 1927
b18215fc
RS
1928#ifdef emacs
1929 /* bufp->multibyte is set before regex_compile is called, so don't alter
1930 it. */
1931#else /* not emacs */
1932 /* Nothing is recognized as a multibyte character. */
1933 bufp->multibyte = 0;
1934#endif
1935
fa9a63c5
RM
1936#if !defined (emacs) && !defined (SYNTAX_TABLE)
1937 /* Initialize the syntax table. */
1938 init_syntax_once ();
1939#endif
1940
1941 if (bufp->allocated == 0)
1942 {
1943 if (bufp->buffer)
1944 { /* If zero allocated, but buffer is non-null, try to realloc
25fe55af
RS
1945 enough space. This loses if buffer's address is bogus, but
1946 that is the user's responsibility. */
1947 RETALLOC (bufp->buffer, INIT_BUF_SIZE, unsigned char);
1948 }
fa9a63c5 1949 else
25fe55af
RS
1950 { /* Caller did not allocate a buffer. Do it for them. */
1951 bufp->buffer = TALLOC (INIT_BUF_SIZE, unsigned char);
1952 }
fa9a63c5
RM
1953 if (!bufp->buffer) FREE_STACK_RETURN (REG_ESPACE);
1954
1955 bufp->allocated = INIT_BUF_SIZE;
1956 }
1957
1958 begalt = b = bufp->buffer;
1959
1960 /* Loop through the uncompiled pattern until we're at the end. */
1961 while (p != pend)
1962 {
1963 PATFETCH (c);
1964
1965 switch (c)
25fe55af
RS
1966 {
1967 case '^':
1968 {
1969 if ( /* If at start of pattern, it's an operator. */
1970 p == pattern + 1
1971 /* If context independent, it's an operator. */
1972 || syntax & RE_CONTEXT_INDEP_ANCHORS
1973 /* Otherwise, depends on what's come before. */
1974 || at_begline_loc_p (pattern, p, syntax))
1975 BUF_PUSH (begline);
1976 else
1977 goto normal_char;
1978 }
1979 break;
1980
1981
1982 case '$':
1983 {
1984 if ( /* If at end of pattern, it's an operator. */
1985 p == pend
1986 /* If context independent, it's an operator. */
1987 || syntax & RE_CONTEXT_INDEP_ANCHORS
1988 /* Otherwise, depends on what's next. */
1989 || at_endline_loc_p (p, pend, syntax))
1990 BUF_PUSH (endline);
1991 else
1992 goto normal_char;
1993 }
1994 break;
fa9a63c5
RM
1995
1996
1997 case '+':
25fe55af
RS
1998 case '?':
1999 if ((syntax & RE_BK_PLUS_QM)
2000 || (syntax & RE_LIMITED_OPS))
2001 goto normal_char;
2002 handle_plus:
2003 case '*':
2004 /* If there is no previous pattern... */
2005 if (!laststart)
2006 {
2007 if (syntax & RE_CONTEXT_INVALID_OPS)
2008 FREE_STACK_RETURN (REG_BADRPT);
2009 else if (!(syntax & RE_CONTEXT_INDEP_OPS))
2010 goto normal_char;
2011 }
2012
2013 {
2014 /* Are we optimizing this jump? */
2015 boolean keep_string_p = false;
2016
2017 /* 1 means zero (many) matches is allowed. */
2018 char zero_times_ok = 0, many_times_ok = 0;
2019
2020 /* If there is a sequence of repetition chars, collapse it
2021 down to just one (the right one). We can't combine
2022 interval operators with these because of, e.g., `a{2}*',
2023 which should only match an even number of `a's. */
2024
2025 for (;;)
2026 {
2027 zero_times_ok |= c != '+';
2028 many_times_ok |= c != '?';
2029
2030 if (p == pend)
2031 break;
2032
2033 PATFETCH (c);
2034
2035 if (c == '*'
2036 || (!(syntax & RE_BK_PLUS_QM) && (c == '+' || c == '?')))
2037 ;
2038
2039 else if (syntax & RE_BK_PLUS_QM && c == '\\')
2040 {
2041 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2042
2043 PATFETCH (c1);
2044 if (!(c1 == '+' || c1 == '?'))
2045 {
2046 PATUNFETCH;
2047 PATUNFETCH;
2048 break;
2049 }
2050
2051 c = c1;
2052 }
2053 else
2054 {
2055 PATUNFETCH;
2056 break;
2057 }
2058
2059 /* If we get here, we found another repeat character. */
2060 }
2061
2062 /* Star, etc. applied to an empty pattern is equivalent
2063 to an empty pattern. */
2064 if (!laststart)
2065 break;
2066
2067 /* Now we know whether or not zero matches is allowed
2068 and also whether or not two or more matches is allowed. */
2069 if (many_times_ok)
2070 { /* More than one repetition is allowed, so put in at the
2071 end a backward relative jump from `b' to before the next
2072 jump we're going to put in below (which jumps from
2073 laststart to after this jump).
2074
2075 But if we are at the `*' in the exact sequence `.*\n',
2076 insert an unconditional jump backwards to the .,
2077 instead of the beginning of the loop. This way we only
2078 push a failure point once, instead of every time
2079 through the loop. */
2080 assert (p - 1 > pattern);
2081
2082 /* Allocate the space for the jump. */
2083 GET_BUFFER_SPACE (3);
2084
2085 /* We know we are not at the first character of the pattern,
2086 because laststart was nonzero. And we've already
2087 incremented `p', by the way, to be the character after
2088 the `*'. Do we have to do something analogous here
2089 for null bytes, because of RE_DOT_NOT_NULL? */
2090 if (TRANSLATE (*(p - 2)) == TRANSLATE ('.')
fa9a63c5 2091 && zero_times_ok
25fe55af
RS
2092 && p < pend && TRANSLATE (*p) == TRANSLATE ('\n')
2093 && !(syntax & RE_DOT_NEWLINE))
2094 { /* We have .*\n. */
2095 STORE_JUMP (jump, b, laststart);
2096 keep_string_p = true;
2097 }
2098 else
2099 /* Anything else. */
2100 STORE_JUMP (maybe_pop_jump, b, laststart - 3);
2101
2102 /* We've added more stuff to the buffer. */
2103 b += 3;
2104 }
2105
2106 /* On failure, jump from laststart to b + 3, which will be the
2107 end of the buffer after this jump is inserted. */
2108 GET_BUFFER_SPACE (3);
2109 INSERT_JUMP (keep_string_p ? on_failure_keep_string_jump
2110 : on_failure_jump,
2111 laststart, b + 3);
2112 pending_exact = 0;
2113 b += 3;
2114
2115 if (!zero_times_ok)
2116 {
2117 /* At least one repetition is required, so insert a
2118 `dummy_failure_jump' before the initial
2119 `on_failure_jump' instruction of the loop. This
2120 effects a skip over that instruction the first time
2121 we hit that loop. */
2122 GET_BUFFER_SPACE (3);
2123 INSERT_JUMP (dummy_failure_jump, laststart, laststart + 6);
2124 b += 3;
2125 }
2126 }
fa9a63c5
RM
2127 break;
2128
2129
2130 case '.':
25fe55af
RS
2131 laststart = b;
2132 BUF_PUSH (anychar);
2133 break;
fa9a63c5
RM
2134
2135
25fe55af
RS
2136 case '[':
2137 {
b18215fc 2138 CLEAR_RANGE_TABLE_WORK_USED (range_table_work);
fa9a63c5 2139
25fe55af 2140 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
fa9a63c5 2141
25fe55af
RS
2142 /* Ensure that we have enough space to push a charset: the
2143 opcode, the length count, and the bitset; 34 bytes in all. */
fa9a63c5
RM
2144 GET_BUFFER_SPACE (34);
2145
25fe55af 2146 laststart = b;
e318085a 2147
25fe55af
RS
2148 /* We test `*p == '^' twice, instead of using an if
2149 statement, so we only need one BUF_PUSH. */
2150 BUF_PUSH (*p == '^' ? charset_not : charset);
2151 if (*p == '^')
2152 p++;
e318085a 2153
25fe55af
RS
2154 /* Remember the first position in the bracket expression. */
2155 p1 = p;
e318085a 2156
25fe55af
RS
2157 /* Push the number of bytes in the bitmap. */
2158 BUF_PUSH ((1 << BYTEWIDTH) / BYTEWIDTH);
e318085a 2159
25fe55af
RS
2160 /* Clear the whole map. */
2161 bzero (b, (1 << BYTEWIDTH) / BYTEWIDTH);
e318085a 2162
25fe55af
RS
2163 /* charset_not matches newline according to a syntax bit. */
2164 if ((re_opcode_t) b[-2] == charset_not
2165 && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
2166 SET_LIST_BIT ('\n');
fa9a63c5 2167
25fe55af
RS
2168 /* Read in characters and ranges, setting map bits. */
2169 for (;;)
2170 {
b18215fc
RS
2171 int len;
2172 boolean escaped_char = false;
e318085a 2173
25fe55af 2174 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
e318085a 2175
25fe55af 2176 PATFETCH (c);
e318085a 2177
25fe55af
RS
2178 /* \ might escape characters inside [...] and [^...]. */
2179 if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
2180 {
2181 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
e318085a
RS
2182
2183 PATFETCH (c);
b18215fc 2184 escaped_char = true;
25fe55af 2185 }
b18215fc
RS
2186 else
2187 {
25fe55af
RS
2188 /* Could be the end of the bracket expression. If it's
2189 not (i.e., when the bracket expression is `[]' so
2190 far), the ']' character bit gets set way below. */
2191 if (c == ']' && p != p1 + 1)
2192 break;
2193 }
b18215fc
RS
2194
2195 /* If C indicates start of multibyte char, get the
2196 actual character code in C, and set the pattern
2197 pointer P to the next character boundary. */
2198 if (bufp->multibyte && BASE_LEADING_CODE_P (c))
2199 {
2200 PATUNFETCH;
2201 c = STRING_CHAR_AND_LENGTH (p, pend - p, len);
2202 p += len;
25fe55af 2203 }
b18215fc
RS
2204 /* What should we do for the character which is
2205 greater than 0x7F, but not BASE_LEADING_CODE_P?
2206 XXX */
2207
25fe55af
RS
2208 /* See if we're at the beginning of a possible character
2209 class. */
b18215fc
RS
2210
2211 else if (!escaped_char &&
2212 syntax & RE_CHAR_CLASSES && c == '[' && *p == ':')
25fe55af
RS
2213 { /* Leave room for the null. */
2214 char str[CHAR_CLASS_MAX_LENGTH + 1];
b18215fc 2215
25fe55af
RS
2216 PATFETCH (c);
2217 c1 = 0;
b18215fc 2218
25fe55af
RS
2219 /* If pattern is `[[:'. */
2220 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
b18215fc 2221
25fe55af
RS
2222 for (;;)
2223 {
2224 PATFETCH (c);
2225 if (c == ':' || c == ']' || p == pend
2226 || c1 == CHAR_CLASS_MAX_LENGTH)
2227 break;
2228 str[c1++] = c;
2229 }
2230 str[c1] = '\0';
b18215fc
RS
2231
2232 /* If isn't a word bracketed by `[:' and `:]':
2233 undo the ending character, the letters, and
2234 leave the leading `:' and `[' (but set bits for
2235 them). */
25fe55af
RS
2236 if (c == ':' && *p == ']')
2237 {
2238 int ch;
2239 boolean is_alnum = STREQ (str, "alnum");
2240 boolean is_alpha = STREQ (str, "alpha");
2241 boolean is_blank = STREQ (str, "blank");
2242 boolean is_cntrl = STREQ (str, "cntrl");
2243 boolean is_digit = STREQ (str, "digit");
2244 boolean is_graph = STREQ (str, "graph");
2245 boolean is_lower = STREQ (str, "lower");
2246 boolean is_print = STREQ (str, "print");
2247 boolean is_punct = STREQ (str, "punct");
2248 boolean is_space = STREQ (str, "space");
2249 boolean is_upper = STREQ (str, "upper");
2250 boolean is_xdigit = STREQ (str, "xdigit");
2251
2252 if (!IS_CHAR_CLASS (str))
fa9a63c5
RM
2253 FREE_STACK_RETURN (REG_ECTYPE);
2254
25fe55af
RS
2255 /* Throw away the ] at the end of the character
2256 class. */
2257 PATFETCH (c);
fa9a63c5 2258
25fe55af 2259 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
fa9a63c5 2260
25fe55af
RS
2261 for (ch = 0; ch < 1 << BYTEWIDTH; ch++)
2262 {
7ae68633 2263 int translated = TRANSLATE (ch);
fa9a63c5
RM
2264 /* This was split into 3 if's to
2265 avoid an arbitrary limit in some compiler. */
25fe55af
RS
2266 if ( (is_alnum && ISALNUM (ch))
2267 || (is_alpha && ISALPHA (ch))
2268 || (is_blank && ISBLANK (ch))
2269 || (is_cntrl && ISCNTRL (ch)))
7ae68633 2270 SET_LIST_BIT (translated);
fa9a63c5 2271 if ( (is_digit && ISDIGIT (ch))
25fe55af
RS
2272 || (is_graph && ISGRAPH (ch))
2273 || (is_lower && ISLOWER (ch))
2274 || (is_print && ISPRINT (ch)))
7ae68633 2275 SET_LIST_BIT (translated);
fa9a63c5 2276 if ( (is_punct && ISPUNCT (ch))
25fe55af
RS
2277 || (is_space && ISSPACE (ch))
2278 || (is_upper && ISUPPER (ch))
2279 || (is_xdigit && ISXDIGIT (ch)))
7ae68633 2280 SET_LIST_BIT (translated);
25fe55af 2281 }
b18215fc
RS
2282
2283 /* Repeat the loop. */
2284 continue;
25fe55af
RS
2285 }
2286 else
2287 {
2288 c1++;
2289 while (c1--)
2290 PATUNFETCH;
2291 SET_LIST_BIT ('[');
b18215fc
RS
2292
2293 /* Because the `:' may starts the range, we
2294 can't simply set bit and repeat the loop.
25fe55af 2295 Instead, just set it to C and handle below. */
b18215fc 2296 c = ':';
25fe55af
RS
2297 }
2298 }
b18215fc
RS
2299
2300 if (p < pend && p[0] == '-' && p[1] != ']')
2301 {
2302
2303 /* Discard the `-'. */
2304 PATFETCH (c1);
2305
2306 /* Fetch the character which ends the range. */
2307 PATFETCH (c1);
2308 if (bufp->multibyte && BASE_LEADING_CODE_P (c1))
e318085a 2309 {
b18215fc
RS
2310 PATUNFETCH;
2311 c1 = STRING_CHAR_AND_LENGTH (p, pend - p, len);
2312 p += len;
e318085a 2313 }
b18215fc
RS
2314
2315 if (!SAME_CHARSET_P (c, c1))
2316 FREE_STACK_RETURN (REG_ERANGE);
e318085a 2317 }
25fe55af 2318 else
b18215fc
RS
2319 /* Range from C to C. */
2320 c1 = c;
2321
2322 /* Set the range ... */
2323 if (SINGLE_BYTE_CHAR_P (c))
2324 /* ... into bitmap. */
25fe55af 2325 {
b18215fc
RS
2326 unsigned this_char;
2327 int range_start = c, range_end = c1;
2328
2329 /* If the start is after the end, the range is empty. */
2330 if (range_start > range_end)
2331 {
2332 if (syntax & RE_NO_EMPTY_RANGES)
2333 FREE_STACK_RETURN (REG_ERANGE);
2334 /* Else, repeat the loop. */
2335 }
2336 else
2337 {
2338 for (this_char = range_start; this_char <= range_end;
2339 this_char++)
2340 SET_LIST_BIT (TRANSLATE (this_char));
25fe55af
RS
2341 }
2342 }
e318085a 2343 else
b18215fc
RS
2344 /* ... into range table. */
2345 SET_RANGE_TABLE_WORK_AREA (range_table_work, c, c1);
e318085a
RS
2346 }
2347
25fe55af
RS
2348 /* Discard any (non)matching list bytes that are all 0 at the
2349 end of the map. Decrease the map-length byte too. */
2350 while ((int) b[-1] > 0 && b[b[-1] - 1] == 0)
2351 b[-1]--;
2352 b += b[-1];
fa9a63c5 2353
b18215fc
RS
2354 /* Build real range table from work area. */
2355 if (RANGE_TABLE_WORK_USED (range_table_work))
2356 {
2357 int i;
2358 int used = RANGE_TABLE_WORK_USED (range_table_work);
fa9a63c5 2359
b18215fc 2360 /* Allocate space for COUNT + RANGE_TABLE. Needs two
25fe55af 2361 bytes for COUNT and three bytes for each character. */
b18215fc 2362 GET_BUFFER_SPACE (2 + used * 3);
fa9a63c5 2363
b18215fc
RS
2364 /* Indicate the existence of range table. */
2365 laststart[1] |= 0x80;
fa9a63c5 2366
b18215fc
RS
2367 STORE_NUMBER_AND_INCR (b, used / 2);
2368 for (i = 0; i < used; i++)
2369 STORE_CHARACTER_AND_INCR
2370 (b, RANGE_TABLE_WORK_ELT (range_table_work, i));
2371 }
25fe55af
RS
2372 }
2373 break;
fa9a63c5
RM
2374
2375
b18215fc 2376 case '(':
25fe55af
RS
2377 if (syntax & RE_NO_BK_PARENS)
2378 goto handle_open;
2379 else
2380 goto normal_char;
fa9a63c5
RM
2381
2382
25fe55af
RS
2383 case ')':
2384 if (syntax & RE_NO_BK_PARENS)
2385 goto handle_close;
2386 else
2387 goto normal_char;
e318085a
RS
2388
2389
25fe55af
RS
2390 case '\n':
2391 if (syntax & RE_NEWLINE_ALT)
2392 goto handle_alt;
2393 else
2394 goto normal_char;
e318085a
RS
2395
2396
b18215fc 2397 case '|':
25fe55af
RS
2398 if (syntax & RE_NO_BK_VBAR)
2399 goto handle_alt;
2400 else
2401 goto normal_char;
2402
2403
2404 case '{':
2405 if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES)
2406 goto handle_interval;
2407 else
2408 goto normal_char;
2409
2410
2411 case '\\':
2412 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2413
2414 /* Do not translate the character after the \, so that we can
2415 distinguish, e.g., \B from \b, even if we normally would
2416 translate, e.g., B to b. */
2417 PATFETCH_RAW (c);
2418
2419 switch (c)
2420 {
2421 case '(':
2422 if (syntax & RE_NO_BK_PARENS)
2423 goto normal_backslash;
2424
2425 handle_open:
2426 bufp->re_nsub++;
2427 regnum++;
2428
2429 if (COMPILE_STACK_FULL)
2430 {
2431 RETALLOC (compile_stack.stack, compile_stack.size << 1,
2432 compile_stack_elt_t);
2433 if (compile_stack.stack == NULL) return REG_ESPACE;
2434
2435 compile_stack.size <<= 1;
2436 }
2437
2438 /* These are the values to restore when we hit end of this
2439 group. They are all relative offsets, so that if the
2440 whole pattern moves because of realloc, they will still
2441 be valid. */
2442 COMPILE_STACK_TOP.begalt_offset = begalt - bufp->buffer;
2443 COMPILE_STACK_TOP.fixup_alt_jump
2444 = fixup_alt_jump ? fixup_alt_jump - bufp->buffer + 1 : 0;
2445 COMPILE_STACK_TOP.laststart_offset = b - bufp->buffer;
2446 COMPILE_STACK_TOP.regnum = regnum;
2447
2448 /* We will eventually replace the 0 with the number of
2449 groups inner to this one. But do not push a
2450 start_memory for groups beyond the last one we can
2451 represent in the compiled pattern. */
2452 if (regnum <= MAX_REGNUM)
2453 {
2454 COMPILE_STACK_TOP.inner_group_offset = b - bufp->buffer + 2;
2455 BUF_PUSH_3 (start_memory, regnum, 0);
2456 }
2457
2458 compile_stack.avail++;
2459
2460 fixup_alt_jump = 0;
2461 laststart = 0;
2462 begalt = b;
b18215fc
RS
2463 /* If we've reached MAX_REGNUM groups, then this open
2464 won't actually generate any code, so we'll have to
2465 clear pending_exact explicitly. */
2466 pending_exact = 0;
25fe55af
RS
2467 break;
2468
2469
2470 case ')':
2471 if (syntax & RE_NO_BK_PARENS) goto normal_backslash;
2472
2473 if (COMPILE_STACK_EMPTY)
2474 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
2475 goto normal_backslash;
2476 else
2477 FREE_STACK_RETURN (REG_ERPAREN);
2478
2479 handle_close:
2480 if (fixup_alt_jump)
2481 { /* Push a dummy failure point at the end of the
2482 alternative for a possible future
2483 `pop_failure_jump' to pop. See comments at
2484 `push_dummy_failure' in `re_match_2'. */
2485 BUF_PUSH (push_dummy_failure);
2486
2487 /* We allocated space for this jump when we assigned
2488 to `fixup_alt_jump', in the `handle_alt' case below. */
2489 STORE_JUMP (jump_past_alt, fixup_alt_jump, b - 1);
2490 }
2491
2492 /* See similar code for backslashed left paren above. */
2493 if (COMPILE_STACK_EMPTY)
2494 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
2495 goto normal_char;
2496 else
2497 FREE_STACK_RETURN (REG_ERPAREN);
2498
2499 /* Since we just checked for an empty stack above, this
2500 ``can't happen''. */
2501 assert (compile_stack.avail != 0);
2502 {
2503 /* We don't just want to restore into `regnum', because
2504 later groups should continue to be numbered higher,
2505 as in `(ab)c(de)' -- the second group is #2. */
2506 regnum_t this_group_regnum;
2507
2508 compile_stack.avail--;
2509 begalt = bufp->buffer + COMPILE_STACK_TOP.begalt_offset;
2510 fixup_alt_jump
2511 = COMPILE_STACK_TOP.fixup_alt_jump
2512 ? bufp->buffer + COMPILE_STACK_TOP.fixup_alt_jump - 1
2513 : 0;
2514 laststart = bufp->buffer + COMPILE_STACK_TOP.laststart_offset;
2515 this_group_regnum = COMPILE_STACK_TOP.regnum;
b18215fc
RS
2516 /* If we've reached MAX_REGNUM groups, then this open
2517 won't actually generate any code, so we'll have to
2518 clear pending_exact explicitly. */
2519 pending_exact = 0;
e318085a 2520
25fe55af
RS
2521 /* We're at the end of the group, so now we know how many
2522 groups were inside this one. */
2523 if (this_group_regnum <= MAX_REGNUM)
2524 {
2525 unsigned char *inner_group_loc
2526 = bufp->buffer + COMPILE_STACK_TOP.inner_group_offset;
2527
2528 *inner_group_loc = regnum - this_group_regnum;
2529 BUF_PUSH_3 (stop_memory, this_group_regnum,
2530 regnum - this_group_regnum);
2531 }
2532 }
2533 break;
2534
2535
2536 case '|': /* `\|'. */
2537 if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR)
2538 goto normal_backslash;
2539 handle_alt:
2540 if (syntax & RE_LIMITED_OPS)
2541 goto normal_char;
2542
2543 /* Insert before the previous alternative a jump which
2544 jumps to this alternative if the former fails. */
2545 GET_BUFFER_SPACE (3);
2546 INSERT_JUMP (on_failure_jump, begalt, b + 6);
2547 pending_exact = 0;
2548 b += 3;
2549
2550 /* The alternative before this one has a jump after it
2551 which gets executed if it gets matched. Adjust that
2552 jump so it will jump to this alternative's analogous
2553 jump (put in below, which in turn will jump to the next
2554 (if any) alternative's such jump, etc.). The last such
2555 jump jumps to the correct final destination. A picture:
2556 _____ _____
2557 | | | |
2558 | v | v
2559 a | b | c
2560
2561 If we are at `b', then fixup_alt_jump right now points to a
2562 three-byte space after `a'. We'll put in the jump, set
2563 fixup_alt_jump to right after `b', and leave behind three
2564 bytes which we'll fill in when we get to after `c'. */
2565
2566 if (fixup_alt_jump)
2567 STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
2568
2569 /* Mark and leave space for a jump after this alternative,
2570 to be filled in later either by next alternative or
2571 when know we're at the end of a series of alternatives. */
2572 fixup_alt_jump = b;
2573 GET_BUFFER_SPACE (3);
2574 b += 3;
2575
2576 laststart = 0;
2577 begalt = b;
2578 break;
2579
2580
2581 case '{':
2582 /* If \{ is a literal. */
2583 if (!(syntax & RE_INTERVALS)
2584 /* If we're at `\{' and it's not the open-interval
2585 operator. */
2586 || ((syntax & RE_INTERVALS) && (syntax & RE_NO_BK_BRACES))
2587 || (p - 2 == pattern && p == pend))
2588 goto normal_backslash;
2589
2590 handle_interval:
2591 {
2592 /* If got here, then the syntax allows intervals. */
2593
2594 /* At least (most) this many matches must be made. */
2595 int lower_bound = -1, upper_bound = -1;
2596
2597 beg_interval = p - 1;
2598
2599 if (p == pend)
2600 {
2601 if (syntax & RE_NO_BK_BRACES)
2602 goto unfetch_interval;
2603 else
2604 FREE_STACK_RETURN (REG_EBRACE);
2605 }
2606
2607 GET_UNSIGNED_NUMBER (lower_bound);
2608
2609 if (c == ',')
2610 {
2611 GET_UNSIGNED_NUMBER (upper_bound);
2612 if (upper_bound < 0) upper_bound = RE_DUP_MAX;
2613 }
2614 else
2615 /* Interval such as `{1}' => match exactly once. */
2616 upper_bound = lower_bound;
2617
2618 if (lower_bound < 0 || upper_bound > RE_DUP_MAX
2619 || lower_bound > upper_bound)
2620 {
2621 if (syntax & RE_NO_BK_BRACES)
2622 goto unfetch_interval;
2623 else
2624 FREE_STACK_RETURN (REG_BADBR);
2625 }
2626
2627 if (!(syntax & RE_NO_BK_BRACES))
2628 {
2629 if (c != '\\') FREE_STACK_RETURN (REG_EBRACE);
2630
2631 PATFETCH (c);
2632 }
2633
2634 if (c != '}')
2635 {
2636 if (syntax & RE_NO_BK_BRACES)
2637 goto unfetch_interval;
2638 else
2639 FREE_STACK_RETURN (REG_BADBR);
2640 }
2641
2642 /* We just parsed a valid interval. */
2643
2644 /* If it's invalid to have no preceding re. */
2645 if (!laststart)
2646 {
2647 if (syntax & RE_CONTEXT_INVALID_OPS)
2648 FREE_STACK_RETURN (REG_BADRPT);
2649 else if (syntax & RE_CONTEXT_INDEP_OPS)
2650 laststart = b;
2651 else
2652 goto unfetch_interval;
2653 }
2654
2655 /* If the upper bound is zero, don't want to succeed at
2656 all; jump from `laststart' to `b + 3', which will be
2657 the end of the buffer after we insert the jump. */
2658 if (upper_bound == 0)
2659 {
2660 GET_BUFFER_SPACE (3);
2661 INSERT_JUMP (jump, laststart, b + 3);
2662 b += 3;
2663 }
2664
2665 /* Otherwise, we have a nontrivial interval. When
2666 we're all done, the pattern will look like:
2667 set_number_at <jump count> <upper bound>
2668 set_number_at <succeed_n count> <lower bound>
2669 succeed_n <after jump addr> <succeed_n count>
2670 <body of loop>
2671 jump_n <succeed_n addr> <jump count>
2672 (The upper bound and `jump_n' are omitted if
2673 `upper_bound' is 1, though.) */
2674 else
2675 { /* If the upper bound is > 1, we need to insert
2676 more at the end of the loop. */
2677 unsigned nbytes = 10 + (upper_bound > 1) * 10;
2678
2679 GET_BUFFER_SPACE (nbytes);
2680
2681 /* Initialize lower bound of the `succeed_n', even
2682 though it will be set during matching by its
2683 attendant `set_number_at' (inserted next),
2684 because `re_compile_fastmap' needs to know.
2685 Jump to the `jump_n' we might insert below. */
2686 INSERT_JUMP2 (succeed_n, laststart,
2687 b + 5 + (upper_bound > 1) * 5,
2688 lower_bound);
2689 b += 5;
2690
2691 /* Code to initialize the lower bound. Insert
2692 before the `succeed_n'. The `5' is the last two
2693 bytes of this `set_number_at', plus 3 bytes of
2694 the following `succeed_n'. */
2695 insert_op2 (set_number_at, laststart, 5, lower_bound, b);
2696 b += 5;
2697
2698 if (upper_bound > 1)
2699 { /* More than one repetition is allowed, so
2700 append a backward jump to the `succeed_n'
2701 that starts this interval.
2702
2703 When we've reached this during matching,
2704 we'll have matched the interval once, so
2705 jump back only `upper_bound - 1' times. */
2706 STORE_JUMP2 (jump_n, b, laststart + 5,
2707 upper_bound - 1);
2708 b += 5;
2709
2710 /* The location we want to set is the second
2711 parameter of the `jump_n'; that is `b-2' as
2712 an absolute address. `laststart' will be
2713 the `set_number_at' we're about to insert;
2714 `laststart+3' the number to set, the source
2715 for the relative address. But we are
2716 inserting into the middle of the pattern --
2717 so everything is getting moved up by 5.
2718 Conclusion: (b - 2) - (laststart + 3) + 5,
2719 i.e., b - laststart.
2720
2721 We insert this at the beginning of the loop
2722 so that if we fail during matching, we'll
2723 reinitialize the bounds. */
2724 insert_op2 (set_number_at, laststart, b - laststart,
2725 upper_bound - 1, b);
2726 b += 5;
2727 }
2728 }
2729 pending_exact = 0;
2730 beg_interval = NULL;
2731 }
2732 break;
2733
2734 unfetch_interval:
2735 /* If an invalid interval, match the characters as literals. */
2736 assert (beg_interval);
2737 p = beg_interval;
2738 beg_interval = NULL;
2739
2740 /* normal_char and normal_backslash need `c'. */
2741 PATFETCH (c);
2742
2743 if (!(syntax & RE_NO_BK_BRACES))
2744 {
2745 if (p > pattern && p[-1] == '\\')
2746 goto normal_backslash;
2747 }
2748 goto normal_char;
e318085a 2749
b18215fc 2750#ifdef emacs
25fe55af
RS
2751 /* There is no way to specify the before_dot and after_dot
2752 operators. rms says this is ok. --karl */
2753 case '=':
2754 BUF_PUSH (at_dot);
2755 break;
2756
2757 case 's':
2758 laststart = b;
2759 PATFETCH (c);
2760 BUF_PUSH_2 (syntaxspec, syntax_spec_code[c]);
2761 break;
2762
2763 case 'S':
2764 laststart = b;
2765 PATFETCH (c);
2766 BUF_PUSH_2 (notsyntaxspec, syntax_spec_code[c]);
2767 break;
b18215fc
RS
2768
2769 case 'c':
2770 laststart = b;
2771 PATFETCH_RAW (c);
2772 BUF_PUSH_2 (categoryspec, c);
2773 break;
e318085a 2774
b18215fc
RS
2775 case 'C':
2776 laststart = b;
2777 PATFETCH_RAW (c);
2778 BUF_PUSH_2 (notcategoryspec, c);
2779 break;
2780#endif /* emacs */
e318085a 2781
e318085a 2782
25fe55af
RS
2783 case 'w':
2784 laststart = b;
2785 BUF_PUSH (wordchar);
2786 break;
e318085a 2787
e318085a 2788
25fe55af
RS
2789 case 'W':
2790 laststart = b;
2791 BUF_PUSH (notwordchar);
2792 break;
e318085a
RS
2793
2794
25fe55af
RS
2795 case '<':
2796 BUF_PUSH (wordbeg);
2797 break;
e318085a 2798
25fe55af
RS
2799 case '>':
2800 BUF_PUSH (wordend);
2801 break;
e318085a 2802
25fe55af
RS
2803 case 'b':
2804 BUF_PUSH (wordbound);
2805 break;
e318085a 2806
25fe55af
RS
2807 case 'B':
2808 BUF_PUSH (notwordbound);
2809 break;
fa9a63c5 2810
25fe55af
RS
2811 case '`':
2812 BUF_PUSH (begbuf);
2813 break;
e318085a 2814
25fe55af
RS
2815 case '\'':
2816 BUF_PUSH (endbuf);
2817 break;
e318085a 2818
25fe55af
RS
2819 case '1': case '2': case '3': case '4': case '5':
2820 case '6': case '7': case '8': case '9':
2821 if (syntax & RE_NO_BK_REFS)
2822 goto normal_char;
e318085a 2823
25fe55af 2824 c1 = c - '0';
e318085a 2825
25fe55af
RS
2826 if (c1 > regnum)
2827 FREE_STACK_RETURN (REG_ESUBREG);
e318085a 2828
25fe55af
RS
2829 /* Can't back reference to a subexpression if inside of it. */
2830 if (group_in_compile_stack (compile_stack, c1))
2831 goto normal_char;
e318085a 2832
25fe55af
RS
2833 laststart = b;
2834 BUF_PUSH_2 (duplicate, c1);
2835 break;
e318085a 2836
e318085a 2837
25fe55af
RS
2838 case '+':
2839 case '?':
2840 if (syntax & RE_BK_PLUS_QM)
2841 goto handle_plus;
2842 else
2843 goto normal_backslash;
2844
2845 default:
2846 normal_backslash:
2847 /* You might think it would be useful for \ to mean
2848 not to translate; but if we don't translate it
2849 it will never match anything. */
2850 c = TRANSLATE (c);
2851 goto normal_char;
2852 }
2853 break;
fa9a63c5
RM
2854
2855
2856 default:
25fe55af 2857 /* Expects the character in `c'. */
fa9a63c5 2858 normal_char:
b18215fc
RS
2859 p1 = p - 1; /* P1 points the head of C. */
2860#ifdef emacs
2861 if (bufp->multibyte)
2862 /* Set P to the next character boundary. */
2863 p += MULTIBYTE_FORM_LENGTH (p1, pend - p1) - 1;
2864#endif
fa9a63c5 2865 /* If no exactn currently being built. */
25fe55af 2866 if (!pending_exact
fa9a63c5 2867
25fe55af
RS
2868 /* If last exactn not at current position. */
2869 || pending_exact + *pending_exact + 1 != b
5e69f11e 2870
25fe55af 2871 /* We have only one byte following the exactn for the count. */
b18215fc 2872 || *pending_exact >= (1 << BYTEWIDTH) - (p - p1)
fa9a63c5 2873
25fe55af
RS
2874 /* If followed by a repetition operator. */
2875 || *p == '*' || *p == '^'
fa9a63c5
RM
2876 || ((syntax & RE_BK_PLUS_QM)
2877 ? *p == '\\' && (p[1] == '+' || p[1] == '?')
2878 : (*p == '+' || *p == '?'))
2879 || ((syntax & RE_INTERVALS)
25fe55af 2880 && ((syntax & RE_NO_BK_BRACES)
fa9a63c5 2881 ? *p == '{'
25fe55af 2882 : (p[0] == '\\' && p[1] == '{'))))
fa9a63c5
RM
2883 {
2884 /* Start building a new exactn. */
5e69f11e 2885
25fe55af 2886 laststart = b;
fa9a63c5
RM
2887
2888 BUF_PUSH_2 (exactn, 0);
2889 pending_exact = b - 1;
25fe55af 2890 }
5e69f11e 2891
b18215fc
RS
2892 /* Here, C may translated, therefore C may not equal to *P1. */
2893 while (1)
2894 {
fa9a63c5 2895 BUF_PUSH (c);
25fe55af 2896 (*pending_exact)++;
b18215fc
RS
2897 if (++p1 == p)
2898 break;
2899
2900 /* Rest of multibyte form should be copied literally. */
2901 c = *(unsigned char *)p1;
2902 }
fa9a63c5 2903 break;
25fe55af 2904 } /* switch (c) */
fa9a63c5
RM
2905 } /* while p != pend */
2906
5e69f11e 2907
fa9a63c5 2908 /* Through the pattern now. */
5e69f11e 2909
fa9a63c5
RM
2910 if (fixup_alt_jump)
2911 STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
2912
5e69f11e 2913 if (!COMPILE_STACK_EMPTY)
fa9a63c5
RM
2914 FREE_STACK_RETURN (REG_EPAREN);
2915
2916 /* If we don't want backtracking, force success
2917 the first time we reach the end of the compiled pattern. */
2918 if (syntax & RE_NO_POSIX_BACKTRACKING)
2919 BUF_PUSH (succeed);
2920
2921 free (compile_stack.stack);
2922
2923 /* We have succeeded; set the length of the buffer. */
2924 bufp->used = b - bufp->buffer;
2925
2926#ifdef DEBUG
2927 if (debug)
2928 {
2929 DEBUG_PRINT1 ("\nCompiled pattern: \n");
2930 print_compiled_pattern (bufp);
2931 }
2932#endif /* DEBUG */
2933
2934#ifndef MATCH_MAY_ALLOCATE
2935 /* Initialize the failure stack to the largest possible stack. This
2936 isn't necessary unless we're trying to avoid calling alloca in
2937 the search and match routines. */
2938 {
2939 int num_regs = bufp->re_nsub + 1;
2940
2941 /* Since DOUBLE_FAIL_STACK refuses to double only if the current size
2942 is strictly greater than re_max_failures, the largest possible stack
2943 is 2 * re_max_failures failure points. */
2944 if (fail_stack.size < (2 * re_max_failures * MAX_FAILURE_ITEMS))
2945 {
2946 fail_stack.size = (2 * re_max_failures * MAX_FAILURE_ITEMS);
2947
2948#ifdef emacs
2949 if (! fail_stack.stack)
2950 fail_stack.stack
5e69f11e 2951 = (fail_stack_elt_t *) xmalloc (fail_stack.size
fa9a63c5
RM
2952 * sizeof (fail_stack_elt_t));
2953 else
2954 fail_stack.stack
2955 = (fail_stack_elt_t *) xrealloc (fail_stack.stack,
2956 (fail_stack.size
2957 * sizeof (fail_stack_elt_t)));
2958#else /* not emacs */
2959 if (! fail_stack.stack)
2960 fail_stack.stack
5e69f11e 2961 = (fail_stack_elt_t *) malloc (fail_stack.size
fa9a63c5
RM
2962 * sizeof (fail_stack_elt_t));
2963 else
2964 fail_stack.stack
2965 = (fail_stack_elt_t *) realloc (fail_stack.stack,
2966 (fail_stack.size
2967 * sizeof (fail_stack_elt_t)));
2968#endif /* not emacs */
2969 }
2970
2971 regex_grow_registers (num_regs);
2972 }
2973#endif /* not MATCH_MAY_ALLOCATE */
2974
2975 return REG_NOERROR;
2976} /* regex_compile */
2977\f
2978/* Subroutines for `regex_compile'. */
2979
25fe55af 2980/* Store OP at LOC followed by two-byte integer parameter ARG. */
fa9a63c5
RM
2981
2982static void
2983store_op1 (op, loc, arg)
2984 re_opcode_t op;
2985 unsigned char *loc;
2986 int arg;
2987{
2988 *loc = (unsigned char) op;
2989 STORE_NUMBER (loc + 1, arg);
2990}
2991
2992
2993/* Like `store_op1', but for two two-byte parameters ARG1 and ARG2. */
2994
2995static void
2996store_op2 (op, loc, arg1, arg2)
2997 re_opcode_t op;
2998 unsigned char *loc;
2999 int arg1, arg2;
3000{
3001 *loc = (unsigned char) op;
3002 STORE_NUMBER (loc + 1, arg1);
3003 STORE_NUMBER (loc + 3, arg2);
3004}
3005
3006
3007/* Copy the bytes from LOC to END to open up three bytes of space at LOC
3008 for OP followed by two-byte integer parameter ARG. */
3009
3010static void
3011insert_op1 (op, loc, arg, end)
3012 re_opcode_t op;
3013 unsigned char *loc;
3014 int arg;
5e69f11e 3015 unsigned char *end;
fa9a63c5
RM
3016{
3017 register unsigned char *pfrom = end;
3018 register unsigned char *pto = end + 3;
3019
3020 while (pfrom != loc)
3021 *--pto = *--pfrom;
5e69f11e 3022
fa9a63c5
RM
3023 store_op1 (op, loc, arg);
3024}
3025
3026
3027/* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2. */
3028
3029static void
3030insert_op2 (op, loc, arg1, arg2, end)
3031 re_opcode_t op;
3032 unsigned char *loc;
3033 int arg1, arg2;
5e69f11e 3034 unsigned char *end;
fa9a63c5
RM
3035{
3036 register unsigned char *pfrom = end;
3037 register unsigned char *pto = end + 5;
3038
3039 while (pfrom != loc)
3040 *--pto = *--pfrom;
5e69f11e 3041
fa9a63c5
RM
3042 store_op2 (op, loc, arg1, arg2);
3043}
3044
3045
3046/* P points to just after a ^ in PATTERN. Return true if that ^ comes
3047 after an alternative or a begin-subexpression. We assume there is at
3048 least one character before the ^. */
3049
3050static boolean
3051at_begline_loc_p (pattern, p, syntax)
3052 const char *pattern, *p;
3053 reg_syntax_t syntax;
3054{
3055 const char *prev = p - 2;
3056 boolean prev_prev_backslash = prev > pattern && prev[-1] == '\\';
5e69f11e 3057
fa9a63c5
RM
3058 return
3059 /* After a subexpression? */
3060 (*prev == '(' && (syntax & RE_NO_BK_PARENS || prev_prev_backslash))
25fe55af 3061 /* After an alternative? */
fa9a63c5
RM
3062 || (*prev == '|' && (syntax & RE_NO_BK_VBAR || prev_prev_backslash));
3063}
3064
3065
3066/* The dual of at_begline_loc_p. This one is for $. We assume there is
3067 at least one character after the $, i.e., `P < PEND'. */
3068
3069static boolean
3070at_endline_loc_p (p, pend, syntax)
3071 const char *p, *pend;
3072 int syntax;
3073{
3074 const char *next = p;
3075 boolean next_backslash = *next == '\\';
5bb52971 3076 const char *next_next = p + 1 < pend ? p + 1 : 0;
5e69f11e 3077
fa9a63c5
RM
3078 return
3079 /* Before a subexpression? */
3080 (syntax & RE_NO_BK_PARENS ? *next == ')'
25fe55af 3081 : next_backslash && next_next && *next_next == ')')
fa9a63c5
RM
3082 /* Before an alternative? */
3083 || (syntax & RE_NO_BK_VBAR ? *next == '|'
25fe55af 3084 : next_backslash && next_next && *next_next == '|');
fa9a63c5
RM
3085}
3086
3087
5e69f11e 3088/* Returns true if REGNUM is in one of COMPILE_STACK's elements and
fa9a63c5
RM
3089 false if it's not. */
3090
3091static boolean
3092group_in_compile_stack (compile_stack, regnum)
3093 compile_stack_type compile_stack;
3094 regnum_t regnum;
3095{
3096 int this_element;
3097
5e69f11e
RM
3098 for (this_element = compile_stack.avail - 1;
3099 this_element >= 0;
fa9a63c5
RM
3100 this_element--)
3101 if (compile_stack.stack[this_element].regnum == regnum)
3102 return true;
3103
3104 return false;
3105}
3106
3107
3108/* Read the ending character of a range (in a bracket expression) from the
3109 uncompiled pattern *P_PTR (which ends at PEND). We assume the
3110 starting character is in `P[-2]'. (`P[-1]' is the character `-'.)
3111 Then we set the translation of all bits between the starting and
3112 ending characters (inclusive) in the compiled pattern B.
5e69f11e 3113
fa9a63c5 3114 Return an error code.
5e69f11e 3115
fa9a63c5
RM
3116 We use these short variable names so we can use the same macros as
3117 `regex_compile' itself. */
3118
3119static reg_errcode_t
3120compile_range (p_ptr, pend, translate, syntax, b)
3121 const char **p_ptr, *pend;
6676cb1c 3122 RE_TRANSLATE_TYPE translate;
fa9a63c5
RM
3123 reg_syntax_t syntax;
3124 unsigned char *b;
3125{
3126 unsigned this_char;
3127
3128 const char *p = *p_ptr;
3129 int range_start, range_end;
5e69f11e 3130
fa9a63c5
RM
3131 if (p == pend)
3132 return REG_ERANGE;
3133
3134 /* Even though the pattern is a signed `char *', we need to fetch
3135 with unsigned char *'s; if the high bit of the pattern character
3136 is set, the range endpoints will be negative if we fetch using a
3137 signed char *.
3138
5e69f11e 3139 We also want to fetch the endpoints without translating them; the
fa9a63c5
RM
3140 appropriate translation is done in the bit-setting loop below. */
3141 /* The SVR4 compiler on the 3B2 had trouble with unsigned const char *. */
3142 range_start = ((const unsigned char *) p)[-2];
3143 range_end = ((const unsigned char *) p)[0];
3144
3145 /* Have to increment the pointer into the pattern string, so the
3146 caller isn't still at the ending character. */
3147 (*p_ptr)++;
3148
25fe55af 3149 /* If the start is after the end, the range is empty. */
fa9a63c5
RM
3150 if (range_start > range_end)
3151 return syntax & RE_NO_EMPTY_RANGES ? REG_ERANGE : REG_NOERROR;
3152
3153 /* Here we see why `this_char' has to be larger than an `unsigned
3154 char' -- the range is inclusive, so if `range_end' == 0xff
3155 (assuming 8-bit characters), we would otherwise go into an infinite
3156 loop, since all characters <= 0xff. */
3157 for (this_char = range_start; this_char <= range_end; this_char++)
3158 {
3159 SET_LIST_BIT (TRANSLATE (this_char));
3160 }
5e69f11e 3161
fa9a63c5
RM
3162 return REG_NOERROR;
3163}
3164\f
3165/* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
3166 BUFP. A fastmap records which of the (1 << BYTEWIDTH) possible
3167 characters can start a string that matches the pattern. This fastmap
3168 is used by re_search to skip quickly over impossible starting points.
3169
3170 The caller must supply the address of a (1 << BYTEWIDTH)-byte data
3171 area as BUFP->fastmap.
5e69f11e 3172
fa9a63c5
RM
3173 We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
3174 the pattern buffer.
3175
3176 Returns 0 if we succeed, -2 if an internal error. */
3177
3178int
3179re_compile_fastmap (bufp)
3180 struct re_pattern_buffer *bufp;
3181{
b18215fc 3182 int i, j, k;
fa9a63c5
RM
3183#ifdef MATCH_MAY_ALLOCATE
3184 fail_stack_type fail_stack;
3185#endif
3186#ifndef REGEX_MALLOC
3187 char *destination;
3188#endif
3189 /* We don't push any register information onto the failure stack. */
3190 unsigned num_regs = 0;
5e69f11e 3191
fa9a63c5
RM
3192 register char *fastmap = bufp->fastmap;
3193 unsigned char *pattern = bufp->buffer;
3194 unsigned long size = bufp->used;
3195 unsigned char *p = pattern;
3196 register unsigned char *pend = pattern + size;
3197
3198 /* This holds the pointer to the failure stack, when
3199 it is allocated relocatably. */
3200 fail_stack_elt_t *failure_stack_ptr;
3201
3202 /* Assume that each path through the pattern can be null until
25fe55af 3203 proven otherwise. We set this false at the bottom of switch
fa9a63c5
RM
3204 statement, to which we get only if a particular path doesn't
3205 match the empty string. */
3206 boolean path_can_be_null = true;
3207
3208 /* We aren't doing a `succeed_n' to begin with. */
3209 boolean succeed_n_p = false;
3210
b18215fc 3211 /* If all elements for base leading-codes in fastmap is set, this
25fe55af 3212 flag is set true. */
b18215fc
RS
3213 boolean match_any_multibyte_characters = false;
3214
3215 /* Maximum code of simple (single byte) character. */
3216 int simple_char_max;
3217
fa9a63c5 3218 assert (fastmap != NULL && p != NULL);
5e69f11e 3219
fa9a63c5 3220 INIT_FAIL_STACK ();
25fe55af 3221 bzero (fastmap, 1 << BYTEWIDTH); /* Assume nothing's valid. */
fa9a63c5
RM
3222 bufp->fastmap_accurate = 1; /* It will be when we're done. */
3223 bufp->can_be_null = 0;
5e69f11e 3224
fa9a63c5
RM
3225 while (1)
3226 {
3227 if (p == pend || *p == succeed)
3228 {
3229 /* We have reached the (effective) end of pattern. */
3230 if (!FAIL_STACK_EMPTY ())
3231 {
3232 bufp->can_be_null |= path_can_be_null;
3233
3234 /* Reset for next path. */
3235 path_can_be_null = true;
3236
3237 p = fail_stack.stack[--fail_stack.avail].pointer;
3238
3239 continue;
3240 }
3241 else
3242 break;
3243 }
3244
25fe55af 3245 /* We should never be about to go beyond the end of the pattern. */
fa9a63c5 3246 assert (p < pend);
5e69f11e 3247
fa9a63c5
RM
3248 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
3249 {
3250
25fe55af
RS
3251 /* I guess the idea here is to simply not bother with a fastmap
3252 if a backreference is used, since it's too hard to figure out
3253 the fastmap for the corresponding group. Setting
3254 `can_be_null' stops `re_search_2' from using the fastmap, so
3255 that is all we do. */
fa9a63c5
RM
3256 case duplicate:
3257 bufp->can_be_null = 1;
25fe55af 3258 goto done;
fa9a63c5
RM
3259
3260
3261 /* Following are the cases which match a character. These end
25fe55af 3262 with `break'. */
fa9a63c5
RM
3263
3264 case exactn:
25fe55af 3265 fastmap[p[1]] = 1;
fa9a63c5
RM
3266 break;
3267
3268
b18215fc 3269#ifndef emacs
25fe55af
RS
3270 case charset:
3271 for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
fa9a63c5 3272 if (p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH)))
25fe55af 3273 fastmap[j] = 1;
fa9a63c5
RM
3274 break;
3275
3276
3277 case charset_not:
3278 /* Chars beyond end of map must be allowed. */
3279 for (j = *p * BYTEWIDTH; j < (1 << BYTEWIDTH); j++)
25fe55af 3280 fastmap[j] = 1;
fa9a63c5
RM
3281
3282 for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
3283 if (!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))))
25fe55af
RS
3284 fastmap[j] = 1;
3285 break;
fa9a63c5
RM
3286
3287
3288 case wordchar:
3289 for (j = 0; j < (1 << BYTEWIDTH); j++)
3290 if (SYNTAX (j) == Sword)
3291 fastmap[j] = 1;
3292 break;
3293
3294
3295 case notwordchar:
3296 for (j = 0; j < (1 << BYTEWIDTH); j++)
3297 if (SYNTAX (j) != Sword)
3298 fastmap[j] = 1;
3299 break;
b18215fc
RS
3300#else /* emacs */
3301 case charset:
3302 for (j = CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH - 1, p++;
3303 j >= 0; j--)
3304 if (p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH)))
3305 fastmap[j] = 1;
3306
3307 if (CHARSET_RANGE_TABLE_EXISTS_P (&p[-2])
3308 && match_any_multibyte_characters == false)
3309 {
3310 /* Set fastmap[I] 1 where I is a base leading code of each
3311 multibyte character in the range table. */
3312 int c, count;
3313
3314 /* Make P points the range table. */
3315 p += CHARSET_BITMAP_SIZE (&p[-2]);
3316
3317 /* Extract the number of ranges in range table into
25fe55af 3318 COUNT. */
b18215fc
RS
3319 EXTRACT_NUMBER_AND_INCR (count, p);
3320 for (; count > 0; count--, p += 2 * 3) /* XXX */
3321 {
3322 /* Extract the start of each range. */
3323 EXTRACT_CHARACTER (c, p);
3324 j = CHAR_CHARSET (c);
3325 fastmap[CHARSET_LEADING_CODE_BASE (j)] = 1;
3326 }
3327 }
3328 break;
fa9a63c5
RM
3329
3330
b18215fc
RS
3331 case charset_not:
3332 /* Chars beyond end of map must be allowed. End of map is
3333 `127' if bufp->multibyte is nonzero. */
3334 simple_char_max = bufp->multibyte ? 0x80 : (1 << BYTEWIDTH);
3335 for (j = CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH;
3336 j < simple_char_max; j++)
3337 fastmap[j] = 1;
3338
3339 for (j = CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH - 1, p++;
3340 j >= 0; j--)
3341 if (!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))))
3342 fastmap[j] = 1;
3343
3344 if (bufp->multibyte)
3345 /* Any character set can possibly contain a character
3346 which doesn't match the specified set of characters. */
3347 {
3348 set_fastmap_for_multibyte_characters:
3349 if (match_any_multibyte_characters == false)
3350 {
3351 for (j = 0x80; j < 0xA0; j++) /* XXX */
3352 if (BASE_LEADING_CODE_P (j))
3353 fastmap[j] = 1;
3354 match_any_multibyte_characters = true;
3355 }
3356 }
3357 break;
3358
3359
3360 case wordchar:
3361 simple_char_max = bufp->multibyte ? 0x80 : (1 << BYTEWIDTH);
3362 for (j = 0; j < simple_char_max; j++)
3363 if (SYNTAX (j) == Sword)
3364 fastmap[j] = 1;
3365
3366 if (bufp->multibyte)
3367 /* Any character set can possibly contain a character
25fe55af 3368 whose syntax is `Sword'. */
b18215fc
RS
3369 goto set_fastmap_for_multibyte_characters;
3370 break;
3371
3372
3373 case notwordchar:
3374 simple_char_max = bufp->multibyte ? 0x80 : (1 << BYTEWIDTH);
3375 for (j = 0; j < simple_char_max; j++)
3376 if (SYNTAX (j) != Sword)
3377 fastmap[j] = 1;
3378
3379 if (bufp->multibyte)
3380 /* Any character set can possibly contain a character
3381 whose syntax is not `Sword'. */
3382 goto set_fastmap_for_multibyte_characters;
3383 break;
3384#endif
3385
25fe55af 3386 case anychar:
fa9a63c5
RM
3387 {
3388 int fastmap_newline = fastmap['\n'];
3389
b18215fc
RS
3390 /* `.' matches anything (but if bufp->multibyte is
3391 nonzero, matches `\000' .. `\127' and possible multibyte
3392 character) ... */
3393 if (bufp->multibyte)
3394 {
3395 simple_char_max = 0x80;
3396
3397 for (j = 0x80; j < 0xA0; j++)
3398 if (BASE_LEADING_CODE_P (j))
3399 fastmap[j] = 1;
3400 match_any_multibyte_characters = true;
3401 }
3402 else
3403 simple_char_max = (1 << BYTEWIDTH);
3404
3405 for (j = 0; j < simple_char_max; j++)
fa9a63c5
RM
3406 fastmap[j] = 1;
3407
3408 /* ... except perhaps newline. */
3409 if (!(bufp->syntax & RE_DOT_NEWLINE))
3410 fastmap['\n'] = fastmap_newline;
3411
3412 /* Return if we have already set `can_be_null'; if we have,
25fe55af 3413 then the fastmap is irrelevant. Something's wrong here. */
fa9a63c5
RM
3414 else if (bufp->can_be_null)
3415 goto done;
3416
3417 /* Otherwise, have to check alternative paths. */
3418 break;
3419 }
3420
3421#ifdef emacs
b18215fc
RS
3422 case wordbound:
3423 case notwordbound:
3424 case wordbeg:
3425 case wordend:
3426 case notsyntaxspec:
25fe55af 3427 case syntaxspec:
b18215fc
RS
3428 /* This match depends on text properties. These end with
3429 aborting optimizations. */
3430 bufp->can_be_null = 1;
25fe55af 3431 goto done;
b18215fc 3432#if 0
fa9a63c5 3433 k = *p++;
b18215fc
RS
3434 simple_char_max = bufp->multibyte ? 0x80 : (1 << BYTEWIDTH);
3435 for (j = 0; j < simple_char_max; j++)
fa9a63c5
RM
3436 if (SYNTAX (j) == (enum syntaxcode) k)
3437 fastmap[j] = 1;
fa9a63c5 3438
b18215fc
RS
3439 if (bufp->multibyte)
3440 /* Any character set can possibly contain a character
3441 whose syntax is K. */
3442 goto set_fastmap_for_multibyte_characters;
3443 break;
fa9a63c5
RM
3444
3445 case notsyntaxspec:
3446 k = *p++;
b18215fc
RS
3447 simple_char_max = bufp->multibyte ? 0x80 : (1 << BYTEWIDTH);
3448 for (j = 0; j < simple_char_max; j++)
fa9a63c5
RM
3449 if (SYNTAX (j) != (enum syntaxcode) k)
3450 fastmap[j] = 1;
b18215fc
RS
3451
3452 if (bufp->multibyte)
3453 /* Any character set can possibly contain a character
3454 whose syntax is not K. */
3455 goto set_fastmap_for_multibyte_characters;
3456 break;
3457#endif
3458
3459
3460 case categoryspec:
3461 k = *p++;
3462 simple_char_max = bufp->multibyte ? 0x80 : (1 << BYTEWIDTH);
3463 for (j = 0; j < simple_char_max; j++)
3464 if (CHAR_HAS_CATEGORY (j, k))
3465 fastmap[j] = 1;
3466
3467 if (bufp->multibyte)
3468 /* Any character set can possibly contain a character
3469 whose category is K. */
3470 goto set_fastmap_for_multibyte_characters;
fa9a63c5
RM
3471 break;
3472
3473
b18215fc
RS
3474 case notcategoryspec:
3475 k = *p++;
3476 simple_char_max = bufp->multibyte ? 0x80 : (1 << BYTEWIDTH);
3477 for (j = 0; j < simple_char_max; j++)
3478 if (!CHAR_HAS_CATEGORY (j, k))
3479 fastmap[j] = 1;
3480
3481 if (bufp->multibyte)
3482 /* Any character set can possibly contain a character
25fe55af 3483 whose category is not K. */
b18215fc
RS
3484 goto set_fastmap_for_multibyte_characters;
3485 break;
3486
fa9a63c5 3487 /* All cases after this match the empty string. These end with
25fe55af 3488 `continue'. */
fa9a63c5
RM
3489
3490
3491 case before_dot:
3492 case at_dot:
3493 case after_dot:
25fe55af 3494 continue;
ae4788a8 3495#endif /* emacs */
fa9a63c5
RM
3496
3497
25fe55af
RS
3498 case no_op:
3499 case begline:
3500 case endline:
fa9a63c5
RM
3501 case begbuf:
3502 case endbuf:
b18215fc 3503#ifndef emacs
fa9a63c5
RM
3504 case wordbound:
3505 case notwordbound:
3506 case wordbeg:
3507 case wordend:
25fe55af
RS
3508#endif
3509 case push_dummy_failure:
3510 continue;
fa9a63c5
RM
3511
3512
3513 case jump_n:
25fe55af 3514 case pop_failure_jump:
fa9a63c5
RM
3515 case maybe_pop_jump:
3516 case jump:
25fe55af 3517 case jump_past_alt:
fa9a63c5 3518 case dummy_failure_jump:
25fe55af 3519 EXTRACT_NUMBER_AND_INCR (j, p);
5e69f11e 3520 p += j;
fa9a63c5
RM
3521 if (j > 0)
3522 continue;
5e69f11e 3523
25fe55af
RS
3524 /* Jump backward implies we just went through the body of a
3525 loop and matched nothing. Opcode jumped to should be
3526 `on_failure_jump' or `succeed_n'. Just treat it like an
3527 ordinary jump. For a * loop, it has pushed its failure
3528 point already; if so, discard that as redundant. */
3529 if ((re_opcode_t) *p != on_failure_jump
fa9a63c5
RM
3530 && (re_opcode_t) *p != succeed_n)
3531 continue;
3532
25fe55af
RS
3533 p++;
3534 EXTRACT_NUMBER_AND_INCR (j, p);
3535 p += j;
5e69f11e 3536
25fe55af
RS
3537 /* If what's on the stack is where we are now, pop it. */
3538 if (!FAIL_STACK_EMPTY ()
fa9a63c5 3539 && fail_stack.stack[fail_stack.avail - 1].pointer == p)
25fe55af 3540 fail_stack.avail--;
fa9a63c5 3541
25fe55af 3542 continue;
fa9a63c5
RM
3543
3544
25fe55af
RS
3545 case on_failure_jump:
3546 case on_failure_keep_string_jump:
fa9a63c5 3547 handle_on_failure_jump:
25fe55af
RS
3548 EXTRACT_NUMBER_AND_INCR (j, p);
3549
3550 /* For some patterns, e.g., `(a?)?', `p+j' here points to the
3551 end of the pattern. We don't want to push such a point,
3552 since when we restore it above, entering the switch will
3553 increment `p' past the end of the pattern. We don't need
3554 to push such a point since we obviously won't find any more
3555 fastmap entries beyond `pend'. Such a pattern can match
3556 the null string, though. */
3557 if (p + j < pend)
3558 {
3559 if (!PUSH_PATTERN_OP (p + j, fail_stack))
fa9a63c5
RM
3560 {
3561 RESET_FAIL_STACK ();
3562 return -2;
3563 }
fa9a63c5 3564 }
25fe55af
RS
3565 else
3566 bufp->can_be_null = 1;
fa9a63c5 3567
25fe55af
RS
3568 if (succeed_n_p)
3569 {
3570 EXTRACT_NUMBER_AND_INCR (k, p); /* Skip the n. */
3571 succeed_n_p = false;
3572 }
3573
3574 continue;
fa9a63c5
RM
3575
3576
3577 case succeed_n:
25fe55af
RS
3578 /* Get to the number of times to succeed. */
3579 p += 2;
fa9a63c5 3580
25fe55af
RS
3581 /* Increment p past the n for when k != 0. */
3582 EXTRACT_NUMBER_AND_INCR (k, p);
3583 if (k == 0)
fa9a63c5 3584 {
25fe55af
RS
3585 p -= 4;
3586 succeed_n_p = true; /* Spaghetti code alert. */
3587 goto handle_on_failure_jump;
3588 }
3589 continue;
fa9a63c5
RM
3590
3591
3592 case set_number_at:
25fe55af
RS
3593 p += 4;
3594 continue;
fa9a63c5
RM
3595
3596
3597 case start_memory:
25fe55af 3598 case stop_memory:
fa9a63c5
RM
3599 p += 2;
3600 continue;
3601
3602
3603 default:
25fe55af
RS
3604 abort (); /* We have listed all the cases. */
3605 } /* switch *p++ */
fa9a63c5
RM
3606
3607 /* Getting here means we have found the possible starting
25fe55af
RS
3608 characters for one path of the pattern -- and that the empty
3609 string does not match. We need not follow this path further.
3610 Instead, look at the next alternative (remembered on the
3611 stack), or quit if no more. The test at the top of the loop
3612 does these things. */
fa9a63c5
RM
3613 path_can_be_null = false;
3614 p = pend;
3615 } /* while p */
3616
3617 /* Set `can_be_null' for the last path (also the first path, if the
25fe55af 3618 pattern is empty). */
fa9a63c5
RM
3619 bufp->can_be_null |= path_can_be_null;
3620
3621 done:
3622 RESET_FAIL_STACK ();
3623 return 0;
3624} /* re_compile_fastmap */
3625\f
3626/* Set REGS to hold NUM_REGS registers, storing them in STARTS and
3627 ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use
3628 this memory for recording register information. STARTS and ENDS
3629 must be allocated using the malloc library routine, and must each
3630 be at least NUM_REGS * sizeof (regoff_t) bytes long.
3631
3632 If NUM_REGS == 0, then subsequent matches should allocate their own
3633 register data.
3634
3635 Unless this function is called, the first search or match using
3636 PATTERN_BUFFER will allocate its own register data, without
3637 freeing the old data. */
3638
3639void
3640re_set_registers (bufp, regs, num_regs, starts, ends)
3641 struct re_pattern_buffer *bufp;
3642 struct re_registers *regs;
3643 unsigned num_regs;
3644 regoff_t *starts, *ends;
3645{
3646 if (num_regs)
3647 {
3648 bufp->regs_allocated = REGS_REALLOCATE;
3649 regs->num_regs = num_regs;
3650 regs->start = starts;
3651 regs->end = ends;
3652 }
3653 else
3654 {
3655 bufp->regs_allocated = REGS_UNALLOCATED;
3656 regs->num_regs = 0;
3657 regs->start = regs->end = (regoff_t *) 0;
3658 }
3659}
3660\f
25fe55af 3661/* Searching routines. */
fa9a63c5
RM
3662
3663/* Like re_search_2, below, but only one string is specified, and
3664 doesn't let you say where to stop matching. */
3665
3666int
3667re_search (bufp, string, size, startpos, range, regs)
3668 struct re_pattern_buffer *bufp;
3669 const char *string;
3670 int size, startpos, range;
3671 struct re_registers *regs;
3672{
5e69f11e 3673 return re_search_2 (bufp, NULL, 0, string, size, startpos, range,
fa9a63c5
RM
3674 regs, size);
3675}
3676
b18215fc
RS
3677/* End address of virtual concatenation of string. */
3678#define STOP_ADDR_VSTRING(P) \
3679 (((P) >= size1 ? string2 + size2 : string1 + size1))
3680
3681/* Address of POS in the concatenation of virtual string. */
3682#define POS_ADDR_VSTRING(POS) \
3683 (((POS) >= size1 ? string2 - size1 : string1) + (POS))
fa9a63c5
RM
3684
3685/* Using the compiled pattern in BUFP->buffer, first tries to match the
3686 virtual concatenation of STRING1 and STRING2, starting first at index
3687 STARTPOS, then at STARTPOS + 1, and so on.
5e69f11e 3688
fa9a63c5 3689 STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
5e69f11e 3690
fa9a63c5
RM
3691 RANGE is how far to scan while trying to match. RANGE = 0 means try
3692 only at STARTPOS; in general, the last start tried is STARTPOS +
3693 RANGE.
5e69f11e 3694
fa9a63c5
RM
3695 In REGS, return the indices of the virtual concatenation of STRING1
3696 and STRING2 that matched the entire BUFP->buffer and its contained
3697 subexpressions.
5e69f11e 3698
fa9a63c5
RM
3699 Do not consider matching one past the index STOP in the virtual
3700 concatenation of STRING1 and STRING2.
3701
3702 We return either the position in the strings at which the match was
3703 found, -1 if no match, or -2 if error (such as failure
3704 stack overflow). */
3705
3706int
3707re_search_2 (bufp, string1, size1, string2, size2, startpos, range, regs, stop)
3708 struct re_pattern_buffer *bufp;
3709 const char *string1, *string2;
3710 int size1, size2;
3711 int startpos;
3712 int range;
3713 struct re_registers *regs;
3714 int stop;
3715{
3716 int val;
3717 register char *fastmap = bufp->fastmap;
6676cb1c 3718 register RE_TRANSLATE_TYPE translate = bufp->translate;
fa9a63c5
RM
3719 int total_size = size1 + size2;
3720 int endpos = startpos + range;
c8499ba5 3721 int anchored_start = 0;
fa9a63c5 3722
25fe55af 3723 /* Nonzero if we have to concern multibyte character. */
b18215fc
RS
3724 int multibyte = bufp->multibyte;
3725
fa9a63c5
RM
3726 /* Check for out-of-range STARTPOS. */
3727 if (startpos < 0 || startpos > total_size)
3728 return -1;
5e69f11e 3729
fa9a63c5 3730 /* Fix up RANGE if it might eventually take us outside
34597fa9 3731 the virtual concatenation of STRING1 and STRING2.
5e69f11e 3732 Make sure we won't move STARTPOS below 0 or above TOTAL_SIZE. */
34597fa9
RS
3733 if (endpos < 0)
3734 range = 0 - startpos;
fa9a63c5
RM
3735 else if (endpos > total_size)
3736 range = total_size - startpos;
3737
3738 /* If the search isn't to be a backwards one, don't waste time in a
3739 search for a pattern that must be anchored. */
3740 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == begbuf && range > 0)
3741 {
3742 if (startpos > 0)
3743 return -1;
3744 else
3745 range = 1;
3746 }
3747
ae4788a8
RS
3748#ifdef emacs
3749 /* In a forward search for something that starts with \=.
3750 don't keep searching past point. */
3751 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == at_dot && range > 0)
3752 {
3753 range = PT - startpos;
3754 if (range <= 0)
3755 return -1;
3756 }
3757#endif /* emacs */
3758
fa9a63c5
RM
3759 /* Update the fastmap now if not correct already. */
3760 if (fastmap && !bufp->fastmap_accurate)
3761 if (re_compile_fastmap (bufp) == -2)
3762 return -2;
5e69f11e 3763
c8499ba5
RS
3764 /* See whether the pattern is anchored. */
3765 if (bufp->buffer[0] == begline)
3766 anchored_start = 1;
3767
b18215fc
RS
3768#ifdef emacs
3769 SETUP_SYNTAX_TABLE_FOR_OBJECT (re_match_object,
25fe55af 3770 POS_AS_IN_BUFFER (startpos > 0
b18215fc
RS
3771 ? startpos - 1 : startpos),
3772 1);
3773#endif
3774
fa9a63c5
RM
3775 /* Loop through the string, looking for a place to start matching. */
3776 for (;;)
5e69f11e 3777 {
c8499ba5
RS
3778 /* If the pattern is anchored,
3779 skip quickly past places we cannot match.
3780 We don't bother to treat startpos == 0 specially
3781 because that case doesn't repeat. */
3782 if (anchored_start && startpos > 0)
3783 {
3784 if (! (bufp->newline_anchor
3785 && ((startpos <= size1 ? string1[startpos - 1]
3786 : string2[startpos - size1 - 1])
3787 == '\n')))
3788 goto advance;
3789 }
3790
fa9a63c5 3791 /* If a fastmap is supplied, skip quickly over characters that
25fe55af
RS
3792 cannot be the start of a match. If the pattern can match the
3793 null string, however, we don't need to skip characters; we want
3794 the first null string. */
fa9a63c5
RM
3795 if (fastmap && startpos < total_size && !bufp->can_be_null)
3796 {
25fe55af 3797 if (range > 0) /* Searching forwards. */
fa9a63c5
RM
3798 {
3799 register const char *d;
3800 register int lim = 0;
3801 int irange = range;
3802
25fe55af
RS
3803 if (startpos < size1 && startpos + range >= size1)
3804 lim = range - (size1 - startpos);
fa9a63c5 3805
b18215fc 3806 d = POS_ADDR_VSTRING (startpos);
5e69f11e 3807
25fe55af
RS
3808 /* Written out as an if-else to avoid testing `translate'
3809 inside the loop. */
fa9a63c5 3810 if (translate)
25fe55af
RS
3811 while (range > lim
3812 && !fastmap[(unsigned char)
fa9a63c5 3813 translate[(unsigned char) *d++]])
25fe55af 3814 range--;
fa9a63c5 3815 else
25fe55af
RS
3816 while (range > lim && !fastmap[(unsigned char) *d++])
3817 range--;
fa9a63c5
RM
3818
3819 startpos += irange - range;
3820 }
25fe55af 3821 else /* Searching backwards. */
fa9a63c5
RM
3822 {
3823 register char c = (size1 == 0 || startpos >= size1
25fe55af
RS
3824 ? string2[startpos - size1]
3825 : string1[startpos]);
fa9a63c5
RM
3826
3827 if (!fastmap[(unsigned char) TRANSLATE (c)])
3828 goto advance;
3829 }
3830 }
3831
3832 /* If can't match the null string, and that's all we have left, fail. */
3833 if (range >= 0 && startpos == total_size && fastmap
25fe55af 3834 && !bufp->can_be_null)
fa9a63c5
RM
3835 return -1;
3836
3837 val = re_match_2_internal (bufp, string1, size1, string2, size2,
3838 startpos, regs, stop);
3839#ifndef REGEX_MALLOC
3840#ifdef C_ALLOCA
3841 alloca (0);
3842#endif
3843#endif
3844
3845 if (val >= 0)
3846 return startpos;
5e69f11e 3847
fa9a63c5
RM
3848 if (val == -2)
3849 return -2;
3850
3851 advance:
5e69f11e 3852 if (!range)
25fe55af 3853 break;
5e69f11e 3854 else if (range > 0)
25fe55af 3855 {
b18215fc
RS
3856 /* Update STARTPOS to the next character boundary. */
3857 if (multibyte)
3858 {
3859 const unsigned char *p = POS_ADDR_VSTRING (startpos);
3860 const unsigned char *pend = STOP_ADDR_VSTRING (startpos);
3861 int len = MULTIBYTE_FORM_LENGTH (p, pend - p);
3862
3863 range -= len;
3864 if (range < 0)
3865 break;
3866 startpos += len;
3867 }
3868 else
3869 {
25fe55af
RS
3870 range--;
3871 startpos++;
3872 }
e318085a 3873 }
fa9a63c5 3874 else
25fe55af
RS
3875 {
3876 range++;
3877 startpos--;
b18215fc
RS
3878
3879 /* Update STARTPOS to the previous character boundary. */
3880 if (multibyte)
3881 {
3882 const unsigned char *p = POS_ADDR_VSTRING (startpos);
3883 int len = 0;
3884
3885 /* Find the head of multibyte form. */
3886 while (!CHAR_HEAD_P (p))
3887 p--, len++;
3888
3889 /* Adjust it. */
3890#if 0 /* XXX */
3891 if (MULTIBYTE_FORM_LENGTH (p, len + 1) != (len + 1))
3892 ;
3893 else
3894#endif
3895 {
3896 range += len;
3897 if (range > 0)
3898 break;
3899
3900 startpos -= len;
3901 }
3902 }
25fe55af 3903 }
fa9a63c5
RM
3904 }
3905 return -1;
3906} /* re_search_2 */
3907\f
3908/* Declarations and macros for re_match_2. */
3909
3910static int bcmp_translate ();
3911static boolean alt_match_null_string_p (),
25fe55af
RS
3912 common_op_match_null_string_p (),
3913 group_match_null_string_p ();
fa9a63c5
RM
3914
3915/* This converts PTR, a pointer into one of the search strings `string1'
3916 and `string2' into an offset from the beginning of that string. */
3917#define POINTER_TO_OFFSET(ptr) \
3918 (FIRST_STRING_P (ptr) \
3919 ? ((regoff_t) ((ptr) - string1)) \
3920 : ((regoff_t) ((ptr) - string2 + size1)))
3921
3922/* Macros for dealing with the split strings in re_match_2. */
3923
3924#define MATCHING_IN_FIRST_STRING (dend == end_match_1)
3925
3926/* Call before fetching a character with *d. This switches over to
3927 string2 if necessary. */
3928#define PREFETCH() \
25fe55af 3929 while (d == dend) \
fa9a63c5
RM
3930 { \
3931 /* End of string2 => fail. */ \
25fe55af
RS
3932 if (dend == end_match_2) \
3933 goto fail; \
3934 /* End of string1 => advance to string2. */ \
3935 d = string2; \
fa9a63c5
RM
3936 dend = end_match_2; \
3937 }
3938
3939
3940/* Test if at very beginning or at very end of the virtual concatenation
25fe55af 3941 of `string1' and `string2'. If only one string, it's `string2'. */
fa9a63c5 3942#define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
5e69f11e 3943#define AT_STRINGS_END(d) ((d) == end2)
fa9a63c5
RM
3944
3945
3946/* Test if D points to a character which is word-constituent. We have
3947 two special cases to check for: if past the end of string1, look at
3948 the first character in string2; and if before the beginning of
3949 string2, look at the last character in string1. */
3950#define WORDCHAR_P(d) \
3951 (SYNTAX ((d) == end1 ? *string2 \
25fe55af 3952 : (d) == string2 - 1 ? *(end1 - 1) : *(d)) \
fa9a63c5
RM
3953 == Sword)
3954
9121ca40 3955/* Disabled due to a compiler bug -- see comment at case wordbound */
b18215fc
RS
3956
3957/* The comment at case wordbound is following one, but we don't use
3958 AT_WORD_BOUNDARY anymore to support multibyte form.
3959
3960 The DEC Alpha C compiler 3.x generates incorrect code for the
25fe55af
RS
3961 test WORDCHAR_P (d - 1) != WORDCHAR_P (d) in the expansion of
3962 AT_WORD_BOUNDARY, so this code is disabled. Expanding the
b18215fc
RS
3963 macro and introducing temporary variables works around the bug. */
3964
9121ca40 3965#if 0
fa9a63c5
RM
3966/* Test if the character before D and the one at D differ with respect
3967 to being word-constituent. */
3968#define AT_WORD_BOUNDARY(d) \
3969 (AT_STRINGS_BEG (d) || AT_STRINGS_END (d) \
3970 || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
9121ca40 3971#endif
fa9a63c5
RM
3972
3973/* Free everything we malloc. */
3974#ifdef MATCH_MAY_ALLOCATE
00049484 3975#define FREE_VAR(var) if (var) { REGEX_FREE (var); var = NULL; } else
fa9a63c5
RM
3976#define FREE_VARIABLES() \
3977 do { \
3978 REGEX_FREE_STACK (fail_stack.stack); \
3979 FREE_VAR (regstart); \
3980 FREE_VAR (regend); \
3981 FREE_VAR (old_regstart); \
3982 FREE_VAR (old_regend); \
3983 FREE_VAR (best_regstart); \
3984 FREE_VAR (best_regend); \
3985 FREE_VAR (reg_info); \
3986 FREE_VAR (reg_dummy); \
3987 FREE_VAR (reg_info_dummy); \
3988 } while (0)
3989#else
3990#define FREE_VARIABLES() ((void)0) /* Do nothing! But inhibit gcc warning. */
3991#endif /* not MATCH_MAY_ALLOCATE */
3992
25fe55af 3993/* These values must meet several constraints. They must not be valid
fa9a63c5
RM
3994 register values; since we have a limit of 255 registers (because
3995 we use only one byte in the pattern for the register number), we can
25fe55af 3996 use numbers larger than 255. They must differ by 1, because of
fa9a63c5
RM
3997 NUM_FAILURE_ITEMS above. And the value for the lowest register must
3998 be larger than the value for the highest register, so we do not try
25fe55af 3999 to actually save any registers when none are active. */
fa9a63c5
RM
4000#define NO_HIGHEST_ACTIVE_REG (1 << BYTEWIDTH)
4001#define NO_LOWEST_ACTIVE_REG (NO_HIGHEST_ACTIVE_REG + 1)
4002\f
4003/* Matching routines. */
4004
25fe55af 4005#ifndef emacs /* Emacs never uses this. */
fa9a63c5
RM
4006/* re_match is like re_match_2 except it takes only a single string. */
4007
4008int
4009re_match (bufp, string, size, pos, regs)
4010 struct re_pattern_buffer *bufp;
4011 const char *string;
4012 int size, pos;
4013 struct re_registers *regs;
4014{
4015 int result = re_match_2_internal (bufp, NULL, 0, string, size,
4016 pos, regs, size);
4017 alloca (0);
4018 return result;
4019}
4020#endif /* not emacs */
4021
b18215fc
RS
4022#ifdef emacs
4023/* In Emacs, this is the string or buffer in which we
25fe55af 4024 are matching. It is used for looking up syntax properties. */
b18215fc
RS
4025Lisp_Object re_match_object;
4026#endif
fa9a63c5
RM
4027
4028/* re_match_2 matches the compiled pattern in BUFP against the
4029 the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
4030 and SIZE2, respectively). We start matching at POS, and stop
4031 matching at STOP.
5e69f11e 4032
fa9a63c5 4033 If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
25fe55af 4034 store offsets for the substring each group matched in REGS. See the
fa9a63c5
RM
4035 documentation for exactly how many groups we fill.
4036
4037 We return -1 if no match, -2 if an internal error (such as the
25fe55af 4038 failure stack overflowing). Otherwise, we return the length of the
fa9a63c5
RM
4039 matched substring. */
4040
4041int
4042re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
4043 struct re_pattern_buffer *bufp;
4044 const char *string1, *string2;
4045 int size1, size2;
4046 int pos;
4047 struct re_registers *regs;
4048 int stop;
4049{
b18215fc 4050 int result;
25fe55af 4051
b18215fc 4052#ifdef emacs
25fe55af
RS
4053 SETUP_SYNTAX_TABLE_FOR_OBJECT (re_match_object,
4054 POS_AS_IN_BUFFER (pos > 0 ? pos - 1 : pos),
b18215fc
RS
4055 1);
4056#endif
4057
4058 result = re_match_2_internal (bufp, string1, size1, string2, size2,
fa9a63c5
RM
4059 pos, regs, stop);
4060 alloca (0);
4061 return result;
4062}
4063
4064/* This is a separate function so that we can force an alloca cleanup
25fe55af 4065 afterwards. */
fa9a63c5
RM
4066static int
4067re_match_2_internal (bufp, string1, size1, string2, size2, pos, regs, stop)
4068 struct re_pattern_buffer *bufp;
4069 const char *string1, *string2;
4070 int size1, size2;
4071 int pos;
4072 struct re_registers *regs;
4073 int stop;
4074{
4075 /* General temporaries. */
4076 int mcnt;
4077 unsigned char *p1;
4078
4079 /* Just past the end of the corresponding string. */
4080 const char *end1, *end2;
4081
4082 /* Pointers into string1 and string2, just past the last characters in
25fe55af 4083 each to consider matching. */
fa9a63c5
RM
4084 const char *end_match_1, *end_match_2;
4085
4086 /* Where we are in the data, and the end of the current string. */
4087 const char *d, *dend;
5e69f11e 4088
fa9a63c5
RM
4089 /* Where we are in the pattern, and the end of the pattern. */
4090 unsigned char *p = bufp->buffer;
4091 register unsigned char *pend = p + bufp->used;
4092
4093 /* Mark the opcode just after a start_memory, so we can test for an
4094 empty subpattern when we get to the stop_memory. */
4095 unsigned char *just_past_start_mem = 0;
4096
25fe55af 4097 /* We use this to map every character in the string. */
6676cb1c 4098 RE_TRANSLATE_TYPE translate = bufp->translate;
fa9a63c5 4099
25fe55af 4100 /* Nonzero if we have to concern multibyte character. */
b18215fc
RS
4101 int multibyte = bufp->multibyte;
4102
fa9a63c5
RM
4103 /* Failure point stack. Each place that can handle a failure further
4104 down the line pushes a failure point on this stack. It consists of
4105 restart, regend, and reg_info for all registers corresponding to
4106 the subexpressions we're currently inside, plus the number of such
4107 registers, and, finally, two char *'s. The first char * is where
4108 to resume scanning the pattern; the second one is where to resume
4109 scanning the strings. If the latter is zero, the failure point is
4110 a ``dummy''; if a failure happens and the failure point is a dummy,
25fe55af
RS
4111 it gets discarded and the next next one is tried. */
4112#ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
fa9a63c5
RM
4113 fail_stack_type fail_stack;
4114#endif
4115#ifdef DEBUG
4116 static unsigned failure_id = 0;
4117 unsigned nfailure_points_pushed = 0, nfailure_points_popped = 0;
4118#endif
4119
4120 /* This holds the pointer to the failure stack, when
4121 it is allocated relocatably. */
4122 fail_stack_elt_t *failure_stack_ptr;
4123
4124 /* We fill all the registers internally, independent of what we
25fe55af 4125 return, for use in backreferences. The number here includes
fa9a63c5
RM
4126 an element for register zero. */
4127 unsigned num_regs = bufp->re_nsub + 1;
5e69f11e 4128
fa9a63c5
RM
4129 /* The currently active registers. */
4130 unsigned lowest_active_reg = NO_LOWEST_ACTIVE_REG;
4131 unsigned highest_active_reg = NO_HIGHEST_ACTIVE_REG;
4132
4133 /* Information on the contents of registers. These are pointers into
4134 the input strings; they record just what was matched (on this
4135 attempt) by a subexpression part of the pattern, that is, the
4136 regnum-th regstart pointer points to where in the pattern we began
4137 matching and the regnum-th regend points to right after where we
4138 stopped matching the regnum-th subexpression. (The zeroth register
4139 keeps track of what the whole pattern matches.) */
4140#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
4141 const char **regstart, **regend;
4142#endif
4143
4144 /* If a group that's operated upon by a repetition operator fails to
4145 match anything, then the register for its start will need to be
4146 restored because it will have been set to wherever in the string we
4147 are when we last see its open-group operator. Similarly for a
4148 register's end. */
4149#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
4150 const char **old_regstart, **old_regend;
4151#endif
4152
4153 /* The is_active field of reg_info helps us keep track of which (possibly
4154 nested) subexpressions we are currently in. The matched_something
4155 field of reg_info[reg_num] helps us tell whether or not we have
4156 matched any of the pattern so far this time through the reg_num-th
4157 subexpression. These two fields get reset each time through any
25fe55af
RS
4158 loop their register is in. */
4159#ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
5e69f11e 4160 register_info_type *reg_info;
fa9a63c5
RM
4161#endif
4162
4163 /* The following record the register info as found in the above
5e69f11e 4164 variables when we find a match better than any we've seen before.
fa9a63c5
RM
4165 This happens as we backtrack through the failure points, which in
4166 turn happens only if we have not yet matched the entire string. */
4167 unsigned best_regs_set = false;
4168#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
4169 const char **best_regstart, **best_regend;
4170#endif
5e69f11e 4171
fa9a63c5
RM
4172 /* Logically, this is `best_regend[0]'. But we don't want to have to
4173 allocate space for that if we're not allocating space for anything
25fe55af 4174 else (see below). Also, we never need info about register 0 for
fa9a63c5
RM
4175 any of the other register vectors, and it seems rather a kludge to
4176 treat `best_regend' differently than the rest. So we keep track of
4177 the end of the best match so far in a separate variable. We
4178 initialize this to NULL so that when we backtrack the first time
4179 and need to test it, it's not garbage. */
4180 const char *match_end = NULL;
4181
4182 /* This helps SET_REGS_MATCHED avoid doing redundant work. */
4183 int set_regs_matched_done = 0;
4184
4185 /* Used when we pop values we don't care about. */
4186#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
4187 const char **reg_dummy;
4188 register_info_type *reg_info_dummy;
4189#endif
4190
4191#ifdef DEBUG
4192 /* Counts the total number of registers pushed. */
5e69f11e 4193 unsigned num_regs_pushed = 0;
fa9a63c5
RM
4194#endif
4195
4196 DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
5e69f11e 4197
fa9a63c5 4198 INIT_FAIL_STACK ();
5e69f11e 4199
fa9a63c5
RM
4200#ifdef MATCH_MAY_ALLOCATE
4201 /* Do not bother to initialize all the register variables if there are
4202 no groups in the pattern, as it takes a fair amount of time. If
4203 there are groups, we include space for register 0 (the whole
4204 pattern), even though we never use it, since it simplifies the
4205 array indexing. We should fix this. */
4206 if (bufp->re_nsub)
4207 {
4208 regstart = REGEX_TALLOC (num_regs, const char *);
4209 regend = REGEX_TALLOC (num_regs, const char *);
4210 old_regstart = REGEX_TALLOC (num_regs, const char *);
4211 old_regend = REGEX_TALLOC (num_regs, const char *);
4212 best_regstart = REGEX_TALLOC (num_regs, const char *);
4213 best_regend = REGEX_TALLOC (num_regs, const char *);
4214 reg_info = REGEX_TALLOC (num_regs, register_info_type);
4215 reg_dummy = REGEX_TALLOC (num_regs, const char *);
4216 reg_info_dummy = REGEX_TALLOC (num_regs, register_info_type);
4217
5e69f11e 4218 if (!(regstart && regend && old_regstart && old_regend && reg_info
25fe55af
RS
4219 && best_regstart && best_regend && reg_dummy && reg_info_dummy))
4220 {
4221 FREE_VARIABLES ();
4222 return -2;
4223 }
fa9a63c5
RM
4224 }
4225 else
4226 {
4227 /* We must initialize all our variables to NULL, so that
25fe55af 4228 `FREE_VARIABLES' doesn't try to free them. */
fa9a63c5 4229 regstart = regend = old_regstart = old_regend = best_regstart
25fe55af 4230 = best_regend = reg_dummy = NULL;
fa9a63c5
RM
4231 reg_info = reg_info_dummy = (register_info_type *) NULL;
4232 }
4233#endif /* MATCH_MAY_ALLOCATE */
4234
4235 /* The starting position is bogus. */
4236 if (pos < 0 || pos > size1 + size2)
4237 {
4238 FREE_VARIABLES ();
4239 return -1;
4240 }
5e69f11e 4241
fa9a63c5
RM
4242 /* Initialize subexpression text positions to -1 to mark ones that no
4243 start_memory/stop_memory has been seen for. Also initialize the
4244 register information struct. */
4245 for (mcnt = 1; mcnt < num_regs; mcnt++)
4246 {
5e69f11e 4247 regstart[mcnt] = regend[mcnt]
25fe55af 4248 = old_regstart[mcnt] = old_regend[mcnt] = REG_UNSET_VALUE;
5e69f11e 4249
fa9a63c5
RM
4250 REG_MATCH_NULL_STRING_P (reg_info[mcnt]) = MATCH_NULL_UNSET_VALUE;
4251 IS_ACTIVE (reg_info[mcnt]) = 0;
4252 MATCHED_SOMETHING (reg_info[mcnt]) = 0;
4253 EVER_MATCHED_SOMETHING (reg_info[mcnt]) = 0;
4254 }
5e69f11e 4255
fa9a63c5 4256 /* We move `string1' into `string2' if the latter's empty -- but not if
25fe55af 4257 `string1' is null. */
fa9a63c5
RM
4258 if (size2 == 0 && string1 != NULL)
4259 {
4260 string2 = string1;
4261 size2 = size1;
4262 string1 = 0;
4263 size1 = 0;
4264 }
4265 end1 = string1 + size1;
4266 end2 = string2 + size2;
4267
4268 /* Compute where to stop matching, within the two strings. */
4269 if (stop <= size1)
4270 {
4271 end_match_1 = string1 + stop;
4272 end_match_2 = string2;
4273 }
4274 else
4275 {
4276 end_match_1 = end1;
4277 end_match_2 = string2 + stop - size1;
4278 }
4279
5e69f11e 4280 /* `p' scans through the pattern as `d' scans through the data.
fa9a63c5
RM
4281 `dend' is the end of the input string that `d' points within. `d'
4282 is advanced into the following input string whenever necessary, but
4283 this happens before fetching; therefore, at the beginning of the
4284 loop, `d' can be pointing at the end of a string, but it cannot
4285 equal `string2'. */
4286 if (size1 > 0 && pos <= size1)
4287 {
4288 d = string1 + pos;
4289 dend = end_match_1;
4290 }
4291 else
4292 {
4293 d = string2 + pos - size1;
4294 dend = end_match_2;
4295 }
4296
4297 DEBUG_PRINT1 ("The compiled pattern is: ");
4298 DEBUG_PRINT_COMPILED_PATTERN (bufp, p, pend);
4299 DEBUG_PRINT1 ("The string to match is: `");
4300 DEBUG_PRINT_DOUBLE_STRING (d, string1, size1, string2, size2);
4301 DEBUG_PRINT1 ("'\n");
5e69f11e 4302
25fe55af 4303 /* This loops over pattern commands. It exits by returning from the
fa9a63c5
RM
4304 function if the match is complete, or it drops through if the match
4305 fails at this starting point in the input data. */
4306 for (;;)
4307 {
4308 DEBUG_PRINT2 ("\n0x%x: ", p);
4309
4310 if (p == pend)
4311 { /* End of pattern means we might have succeeded. */
25fe55af 4312 DEBUG_PRINT1 ("end of pattern ... ");
5e69f11e 4313
fa9a63c5 4314 /* If we haven't matched the entire string, and we want the
25fe55af
RS
4315 longest match, try backtracking. */
4316 if (d != end_match_2)
fa9a63c5
RM
4317 {
4318 /* 1 if this match ends in the same string (string1 or string2)
4319 as the best previous match. */
5e69f11e 4320 boolean same_str_p = (FIRST_STRING_P (match_end)
fa9a63c5
RM
4321 == MATCHING_IN_FIRST_STRING);
4322 /* 1 if this match is the best seen so far. */
4323 boolean best_match_p;
4324
4325 /* AIX compiler got confused when this was combined
25fe55af 4326 with the previous declaration. */
fa9a63c5
RM
4327 if (same_str_p)
4328 best_match_p = d > match_end;
4329 else
4330 best_match_p = !MATCHING_IN_FIRST_STRING;
4331
25fe55af
RS
4332 DEBUG_PRINT1 ("backtracking.\n");
4333
4334 if (!FAIL_STACK_EMPTY ())
4335 { /* More failure points to try. */
4336
4337 /* If exceeds best match so far, save it. */
4338 if (!best_regs_set || best_match_p)
4339 {
4340 best_regs_set = true;
4341 match_end = d;
4342
4343 DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
4344
4345 for (mcnt = 1; mcnt < num_regs; mcnt++)
4346 {
4347 best_regstart[mcnt] = regstart[mcnt];
4348 best_regend[mcnt] = regend[mcnt];
4349 }
4350 }
4351 goto fail;
4352 }
4353
4354 /* If no failure points, don't restore garbage. And if
4355 last match is real best match, don't restore second
4356 best one. */
4357 else if (best_regs_set && !best_match_p)
4358 {
4359 restore_best_regs:
4360 /* Restore best match. It may happen that `dend ==
4361 end_match_1' while the restored d is in string2.
4362 For example, the pattern `x.*y.*z' against the
4363 strings `x-' and `y-z-', if the two strings are
4364 not consecutive in memory. */
4365 DEBUG_PRINT1 ("Restoring best registers.\n");
4366
4367 d = match_end;
4368 dend = ((d >= string1 && d <= end1)
4369 ? end_match_1 : end_match_2);
fa9a63c5
RM
4370
4371 for (mcnt = 1; mcnt < num_regs; mcnt++)
4372 {
4373 regstart[mcnt] = best_regstart[mcnt];
4374 regend[mcnt] = best_regend[mcnt];
4375 }
25fe55af
RS
4376 }
4377 } /* d != end_match_2 */
fa9a63c5
RM
4378
4379 succeed_label:
25fe55af 4380 DEBUG_PRINT1 ("Accepting match.\n");
fa9a63c5 4381
25fe55af
RS
4382 /* If caller wants register contents data back, do it. */
4383 if (regs && !bufp->no_sub)
fa9a63c5 4384 {
25fe55af
RS
4385 /* Have the register data arrays been allocated? */
4386 if (bufp->regs_allocated == REGS_UNALLOCATED)
4387 { /* No. So allocate them with malloc. We need one
4388 extra element beyond `num_regs' for the `-1' marker
4389 GNU code uses. */
4390 regs->num_regs = MAX (RE_NREGS, num_regs + 1);
4391 regs->start = TALLOC (regs->num_regs, regoff_t);
4392 regs->end = TALLOC (regs->num_regs, regoff_t);
4393 if (regs->start == NULL || regs->end == NULL)
fa9a63c5
RM
4394 {
4395 FREE_VARIABLES ();
4396 return -2;
4397 }
25fe55af
RS
4398 bufp->regs_allocated = REGS_REALLOCATE;
4399 }
4400 else if (bufp->regs_allocated == REGS_REALLOCATE)
4401 { /* Yes. If we need more elements than were already
4402 allocated, reallocate them. If we need fewer, just
4403 leave it alone. */
4404 if (regs->num_regs < num_regs + 1)
4405 {
4406 regs->num_regs = num_regs + 1;
4407 RETALLOC (regs->start, regs->num_regs, regoff_t);
4408 RETALLOC (regs->end, regs->num_regs, regoff_t);
4409 if (regs->start == NULL || regs->end == NULL)
fa9a63c5
RM
4410 {
4411 FREE_VARIABLES ();
4412 return -2;
4413 }
25fe55af
RS
4414 }
4415 }
4416 else
fa9a63c5
RM
4417 {
4418 /* These braces fend off a "empty body in an else-statement"
25fe55af 4419 warning under GCC when assert expands to nothing. */
fa9a63c5
RM
4420 assert (bufp->regs_allocated == REGS_FIXED);
4421 }
4422
25fe55af
RS
4423 /* Convert the pointer data in `regstart' and `regend' to
4424 indices. Register zero has to be set differently,
4425 since we haven't kept track of any info for it. */
4426 if (regs->num_regs > 0)
4427 {
4428 regs->start[0] = pos;
4429 regs->end[0] = (MATCHING_IN_FIRST_STRING
fa9a63c5 4430 ? ((regoff_t) (d - string1))
25fe55af
RS
4431 : ((regoff_t) (d - string2 + size1)));
4432 }
5e69f11e 4433
25fe55af
RS
4434 /* Go through the first `min (num_regs, regs->num_regs)'
4435 registers, since that is all we initialized. */
fa9a63c5
RM
4436 for (mcnt = 1; mcnt < MIN (num_regs, regs->num_regs); mcnt++)
4437 {
25fe55af
RS
4438 if (REG_UNSET (regstart[mcnt]) || REG_UNSET (regend[mcnt]))
4439 regs->start[mcnt] = regs->end[mcnt] = -1;
4440 else
4441 {
fa9a63c5
RM
4442 regs->start[mcnt]
4443 = (regoff_t) POINTER_TO_OFFSET (regstart[mcnt]);
25fe55af 4444 regs->end[mcnt]
fa9a63c5 4445 = (regoff_t) POINTER_TO_OFFSET (regend[mcnt]);
25fe55af 4446 }
fa9a63c5 4447 }
5e69f11e 4448
25fe55af
RS
4449 /* If the regs structure we return has more elements than
4450 were in the pattern, set the extra elements to -1. If
4451 we (re)allocated the registers, this is the case,
4452 because we always allocate enough to have at least one
4453 -1 at the end. */
4454 for (mcnt = num_regs; mcnt < regs->num_regs; mcnt++)
4455 regs->start[mcnt] = regs->end[mcnt] = -1;
fa9a63c5
RM
4456 } /* regs && !bufp->no_sub */
4457
25fe55af
RS
4458 DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
4459 nfailure_points_pushed, nfailure_points_popped,
4460 nfailure_points_pushed - nfailure_points_popped);
4461 DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed);
fa9a63c5 4462
25fe55af 4463 mcnt = d - pos - (MATCHING_IN_FIRST_STRING
5e69f11e 4464 ? string1
fa9a63c5
RM
4465 : string2 - size1);
4466
25fe55af 4467 DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt);
fa9a63c5 4468
25fe55af
RS
4469 FREE_VARIABLES ();
4470 return mcnt;
4471 }
fa9a63c5 4472
25fe55af 4473 /* Otherwise match next pattern command. */
fa9a63c5
RM
4474 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
4475 {
25fe55af
RS
4476 /* Ignore these. Used to ignore the n of succeed_n's which
4477 currently have n == 0. */
4478 case no_op:
4479 DEBUG_PRINT1 ("EXECUTING no_op.\n");
4480 break;
fa9a63c5
RM
4481
4482 case succeed:
25fe55af 4483 DEBUG_PRINT1 ("EXECUTING succeed.\n");
fa9a63c5
RM
4484 goto succeed_label;
4485
25fe55af
RS
4486 /* Match the next n pattern characters exactly. The following
4487 byte in the pattern defines n, and the n bytes after that
4488 are the characters to match. */
fa9a63c5
RM
4489 case exactn:
4490 mcnt = *p++;
25fe55af 4491 DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt);
fa9a63c5 4492
25fe55af
RS
4493 /* This is written out as an if-else so we don't waste time
4494 testing `translate' inside the loop. */
4495 if (translate)
fa9a63c5
RM
4496 {
4497 do
4498 {
4499 PREFETCH ();
6676cb1c
RS
4500 if ((unsigned char) translate[(unsigned char) *d++]
4501 != (unsigned char) *p++)
25fe55af 4502 goto fail;
fa9a63c5
RM
4503 }
4504 while (--mcnt);
4505 }
4506 else
4507 {
4508 do
4509 {
4510 PREFETCH ();
4511 if (*d++ != (char) *p++) goto fail;
4512 }
4513 while (--mcnt);
4514 }
4515 SET_REGS_MATCHED ();
25fe55af 4516 break;
fa9a63c5
RM
4517
4518
25fe55af 4519 /* Match any character except possibly a newline or a null. */
fa9a63c5 4520 case anychar:
25fe55af 4521 DEBUG_PRINT1 ("EXECUTING anychar.\n");
fa9a63c5 4522
25fe55af 4523 PREFETCH ();
fa9a63c5 4524
25fe55af
RS
4525 if ((!(bufp->syntax & RE_DOT_NEWLINE) && TRANSLATE (*d) == '\n')
4526 || (bufp->syntax & RE_DOT_NOT_NULL && TRANSLATE (*d) == '\000'))
fa9a63c5
RM
4527 goto fail;
4528
25fe55af
RS
4529 SET_REGS_MATCHED ();
4530 DEBUG_PRINT2 (" Matched `%d'.\n", *d);
b18215fc 4531 d += multibyte ? MULTIBYTE_FORM_LENGTH (d, dend - d) : 1;
fa9a63c5
RM
4532 break;
4533
4534
4535 case charset:
4536 case charset_not:
4537 {
b18215fc 4538 register unsigned int c;
fa9a63c5 4539 boolean not = (re_opcode_t) *(p - 1) == charset_not;
b18215fc
RS
4540 int len;
4541
4542 /* Start of actual range_table, or end of bitmap if there is no
4543 range table. */
4544 unsigned char *range_table;
4545
25fe55af 4546 /* Nonzero if there is range table. */
b18215fc
RS
4547 int range_table_exists;
4548
25fe55af 4549 /* Number of ranges of range table. Not in bytes. */
b18215fc 4550 int count;
fa9a63c5 4551
25fe55af 4552 DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : "");
fa9a63c5
RM
4553
4554 PREFETCH ();
b18215fc 4555 c = (unsigned char) *d;
fa9a63c5 4556
b18215fc
RS
4557 range_table = CHARSET_RANGE_TABLE (&p[-1]); /* Past the bitmap. */
4558 range_table_exists = CHARSET_RANGE_TABLE_EXISTS_P (&p[-1]);
4559 if (range_table_exists)
4560 EXTRACT_NUMBER_AND_INCR (count, range_table);
4561 else
4562 count = 0;
4563
4564 if (multibyte && BASE_LEADING_CODE_P (c))
4565 c = STRING_CHAR_AND_LENGTH (d, dend - d, len);
4566
4567 if (SINGLE_BYTE_CHAR_P (c))
4568 { /* Lookup bitmap. */
4569 c = TRANSLATE (c); /* The character to match. */
4570 len = 1;
4571
4572 /* Cast to `unsigned' instead of `unsigned char' in
4573 case the bit list is a full 32 bytes long. */
4574 if (c < (unsigned) (CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH)
fa9a63c5
RM
4575 && p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
4576 not = !not;
b18215fc
RS
4577 }
4578 else if (range_table_exists)
4579 CHARSET_LOOKUP_RANGE_TABLE_RAW (not, c, range_table, count);
fa9a63c5 4580
b18215fc 4581 p = CHARSET_RANGE_TABLE_END (range_table, count);
fa9a63c5
RM
4582
4583 if (!not) goto fail;
5e69f11e 4584
fa9a63c5 4585 SET_REGS_MATCHED ();
b18215fc 4586 d += len;
fa9a63c5
RM
4587 break;
4588 }
4589
4590
25fe55af
RS
4591 /* The beginning of a group is represented by start_memory.
4592 The arguments are the register number in the next byte, and the
4593 number of groups inner to this one in the next. The text
4594 matched within the group is recorded (in the internal
4595 registers data structure) under the register number. */
4596 case start_memory:
fa9a63c5
RM
4597 DEBUG_PRINT3 ("EXECUTING start_memory %d (%d):\n", *p, p[1]);
4598
25fe55af 4599 /* Find out if this group can match the empty string. */
fa9a63c5 4600 p1 = p; /* To send to group_match_null_string_p. */
5e69f11e 4601
25fe55af
RS
4602 if (REG_MATCH_NULL_STRING_P (reg_info[*p]) == MATCH_NULL_UNSET_VALUE)
4603 REG_MATCH_NULL_STRING_P (reg_info[*p])
4604 = group_match_null_string_p (&p1, pend, reg_info);
4605
4606 /* Save the position in the string where we were the last time
4607 we were at this open-group operator in case the group is
4608 operated upon by a repetition operator, e.g., with `(a*)*b'
4609 against `ab'; then we want to ignore where we are now in
4610 the string in case this attempt to match fails. */
4611 old_regstart[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
4612 ? REG_UNSET (regstart[*p]) ? d : regstart[*p]
4613 : regstart[*p];
5e69f11e 4614 DEBUG_PRINT2 (" old_regstart: %d\n",
fa9a63c5
RM
4615 POINTER_TO_OFFSET (old_regstart[*p]));
4616
25fe55af 4617 regstart[*p] = d;
fa9a63c5
RM
4618 DEBUG_PRINT2 (" regstart: %d\n", POINTER_TO_OFFSET (regstart[*p]));
4619
25fe55af
RS
4620 IS_ACTIVE (reg_info[*p]) = 1;
4621 MATCHED_SOMETHING (reg_info[*p]) = 0;
fa9a63c5
RM
4622
4623 /* Clear this whenever we change the register activity status. */
4624 set_regs_matched_done = 0;
5e69f11e 4625
25fe55af
RS
4626 /* This is the new highest active register. */
4627 highest_active_reg = *p;
5e69f11e 4628
25fe55af
RS
4629 /* If nothing was active before, this is the new lowest active
4630 register. */
4631 if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
4632 lowest_active_reg = *p;
fa9a63c5 4633
25fe55af
RS
4634 /* Move past the register number and inner group count. */
4635 p += 2;
fa9a63c5
RM
4636 just_past_start_mem = p;
4637
25fe55af 4638 break;
fa9a63c5
RM
4639
4640
25fe55af
RS
4641 /* The stop_memory opcode represents the end of a group. Its
4642 arguments are the same as start_memory's: the register
4643 number, and the number of inner groups. */
fa9a63c5
RM
4644 case stop_memory:
4645 DEBUG_PRINT3 ("EXECUTING stop_memory %d (%d):\n", *p, p[1]);
5e69f11e 4646
25fe55af
RS
4647 /* We need to save the string position the last time we were at
4648 this close-group operator in case the group is operated
4649 upon by a repetition operator, e.g., with `((a*)*(b*)*)*'
4650 against `aba'; then we want to ignore where we are now in
4651 the string in case this attempt to match fails. */
4652 old_regend[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
4653 ? REG_UNSET (regend[*p]) ? d : regend[*p]
fa9a63c5 4654 : regend[*p];
5e69f11e 4655 DEBUG_PRINT2 (" old_regend: %d\n",
fa9a63c5
RM
4656 POINTER_TO_OFFSET (old_regend[*p]));
4657
25fe55af 4658 regend[*p] = d;
fa9a63c5
RM
4659 DEBUG_PRINT2 (" regend: %d\n", POINTER_TO_OFFSET (regend[*p]));
4660
25fe55af
RS
4661 /* This register isn't active anymore. */
4662 IS_ACTIVE (reg_info[*p]) = 0;
fa9a63c5
RM
4663
4664 /* Clear this whenever we change the register activity status. */
4665 set_regs_matched_done = 0;
4666
25fe55af
RS
4667 /* If this was the only register active, nothing is active
4668 anymore. */
4669 if (lowest_active_reg == highest_active_reg)
4670 {
4671 lowest_active_reg = NO_LOWEST_ACTIVE_REG;
4672 highest_active_reg = NO_HIGHEST_ACTIVE_REG;
4673 }
4674 else
4675 { /* We must scan for the new highest active register, since
4676 it isn't necessarily one less than now: consider
4677 (a(b)c(d(e)f)g). When group 3 ends, after the f), the
4678 new highest active register is 1. */
4679 unsigned char r = *p - 1;
4680 while (r > 0 && !IS_ACTIVE (reg_info[r]))
4681 r--;
4682
4683 /* If we end up at register zero, that means that we saved
4684 the registers as the result of an `on_failure_jump', not
4685 a `start_memory', and we jumped to past the innermost
4686 `stop_memory'. For example, in ((.)*) we save
4687 registers 1 and 2 as a result of the *, but when we pop
4688 back to the second ), we are at the stop_memory 1.
4689 Thus, nothing is active. */
fa9a63c5 4690 if (r == 0)
25fe55af
RS
4691 {
4692 lowest_active_reg = NO_LOWEST_ACTIVE_REG;
4693 highest_active_reg = NO_HIGHEST_ACTIVE_REG;
4694 }
4695 else
4696 highest_active_reg = r;
4697 }
4698
4699 /* If just failed to match something this time around with a
4700 group that's operated on by a repetition operator, try to
4701 force exit from the ``loop'', and restore the register
4702 information for this group that we had before trying this
4703 last match. */
4704 if ((!MATCHED_SOMETHING (reg_info[*p])
4705 || just_past_start_mem == p - 1)
5e69f11e 4706 && (p + 2) < pend)
25fe55af
RS
4707 {
4708 boolean is_a_jump_n = false;
4709
4710 p1 = p + 2;
4711 mcnt = 0;
4712 switch ((re_opcode_t) *p1++)
4713 {
4714 case jump_n:
fa9a63c5 4715 is_a_jump_n = true;
25fe55af 4716 case pop_failure_jump:
fa9a63c5
RM
4717 case maybe_pop_jump:
4718 case jump:
4719 case dummy_failure_jump:
25fe55af 4720 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
fa9a63c5
RM
4721 if (is_a_jump_n)
4722 p1 += 2;
25fe55af 4723 break;
5e69f11e 4724
25fe55af
RS
4725 default:
4726 /* do nothing */ ;
4727 }
fa9a63c5 4728 p1 += mcnt;
5e69f11e 4729
25fe55af
RS
4730 /* If the next operation is a jump backwards in the pattern
4731 to an on_failure_jump right before the start_memory
4732 corresponding to this stop_memory, exit from the loop
4733 by forcing a failure after pushing on the stack the
4734 on_failure_jump's jump in the pattern, and d. */
4735 if (mcnt < 0 && (re_opcode_t) *p1 == on_failure_jump
4736 && (re_opcode_t) p1[3] == start_memory && p1[4] == *p)
fa9a63c5 4737 {
25fe55af
RS
4738 /* If this group ever matched anything, then restore
4739 what its registers were before trying this last
4740 failed match, e.g., with `(a*)*b' against `ab' for
4741 regstart[1], and, e.g., with `((a*)*(b*)*)*'
4742 against `aba' for regend[3].
5e69f11e 4743
25fe55af
RS
4744 Also restore the registers for inner groups for,
4745 e.g., `((a*)(b*))*' against `aba' (register 3 would
4746 otherwise get trashed). */
5e69f11e 4747
25fe55af 4748 if (EVER_MATCHED_SOMETHING (reg_info[*p]))
fa9a63c5 4749 {
5e69f11e
RM
4750 unsigned r;
4751
25fe55af 4752 EVER_MATCHED_SOMETHING (reg_info[*p]) = 0;
5e69f11e 4753
fa9a63c5 4754 /* Restore this and inner groups' (if any) registers. */
25fe55af
RS
4755 for (r = *p; r < *p + *(p + 1); r++)
4756 {
4757 regstart[r] = old_regstart[r];
4758
4759 /* xx why this test? */
4760 if (old_regend[r] >= regstart[r])
4761 regend[r] = old_regend[r];
4762 }
4763 }
fa9a63c5 4764 p1++;
25fe55af
RS
4765 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4766 PUSH_FAILURE_POINT (p1 + mcnt, d, -2);
fa9a63c5 4767
25fe55af
RS
4768 goto fail;
4769 }
4770 }
5e69f11e 4771
25fe55af
RS
4772 /* Move past the register number and the inner group count. */
4773 p += 2;
4774 break;
fa9a63c5
RM
4775
4776
4777 /* \<digit> has been turned into a `duplicate' command which is
25fe55af
RS
4778 followed by the numeric value of <digit> as the register number. */
4779 case duplicate:
fa9a63c5
RM
4780 {
4781 register const char *d2, *dend2;
25fe55af 4782 int regno = *p++; /* Get which register to match against. */
fa9a63c5
RM
4783 DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno);
4784
25fe55af
RS
4785 /* Can't back reference a group which we've never matched. */
4786 if (REG_UNSET (regstart[regno]) || REG_UNSET (regend[regno]))
4787 goto fail;
5e69f11e 4788
25fe55af
RS
4789 /* Where in input to try to start matching. */
4790 d2 = regstart[regno];
5e69f11e 4791
25fe55af
RS
4792 /* Where to stop matching; if both the place to start and
4793 the place to stop matching are in the same string, then
4794 set to the place to stop, otherwise, for now have to use
4795 the end of the first string. */
fa9a63c5 4796
25fe55af 4797 dend2 = ((FIRST_STRING_P (regstart[regno])
fa9a63c5
RM
4798 == FIRST_STRING_P (regend[regno]))
4799 ? regend[regno] : end_match_1);
4800 for (;;)
4801 {
4802 /* If necessary, advance to next segment in register
25fe55af 4803 contents. */
fa9a63c5
RM
4804 while (d2 == dend2)
4805 {
4806 if (dend2 == end_match_2) break;
4807 if (dend2 == regend[regno]) break;
4808
25fe55af
RS
4809 /* End of string1 => advance to string2. */
4810 d2 = string2;
4811 dend2 = regend[regno];
fa9a63c5
RM
4812 }
4813 /* At end of register contents => success */
4814 if (d2 == dend2) break;
4815
4816 /* If necessary, advance to next segment in data. */
4817 PREFETCH ();
4818
4819 /* How many characters left in this segment to match. */
4820 mcnt = dend - d;
5e69f11e 4821
fa9a63c5 4822 /* Want how many consecutive characters we can match in
25fe55af
RS
4823 one shot, so, if necessary, adjust the count. */
4824 if (mcnt > dend2 - d2)
fa9a63c5 4825 mcnt = dend2 - d2;
5e69f11e 4826
fa9a63c5 4827 /* Compare that many; failure if mismatch, else move
25fe55af 4828 past them. */
5e69f11e 4829 if (translate
25fe55af
RS
4830 ? bcmp_translate (d, d2, mcnt, translate)
4831 : bcmp (d, d2, mcnt))
fa9a63c5
RM
4832 goto fail;
4833 d += mcnt, d2 += mcnt;
4834
25fe55af 4835 /* Do this because we've match some characters. */
fa9a63c5
RM
4836 SET_REGS_MATCHED ();
4837 }
4838 }
4839 break;
4840
4841
25fe55af
RS
4842 /* begline matches the empty string at the beginning of the string
4843 (unless `not_bol' is set in `bufp'), and, if
4844 `newline_anchor' is set, after newlines. */
fa9a63c5 4845 case begline:
25fe55af 4846 DEBUG_PRINT1 ("EXECUTING begline.\n");
5e69f11e 4847
25fe55af
RS
4848 if (AT_STRINGS_BEG (d))
4849 {
4850 if (!bufp->not_bol) break;
4851 }
4852 else if (d[-1] == '\n' && bufp->newline_anchor)
4853 {
4854 break;
4855 }
4856 /* In all other cases, we fail. */
4857 goto fail;
fa9a63c5
RM
4858
4859
25fe55af 4860 /* endline is the dual of begline. */
fa9a63c5 4861 case endline:
25fe55af 4862 DEBUG_PRINT1 ("EXECUTING endline.\n");
fa9a63c5 4863
25fe55af
RS
4864 if (AT_STRINGS_END (d))
4865 {
4866 if (!bufp->not_eol) break;
4867 }
5e69f11e 4868
25fe55af
RS
4869 /* We have to ``prefetch'' the next character. */
4870 else if ((d == end1 ? *string2 : *d) == '\n'
4871 && bufp->newline_anchor)
4872 {
4873 break;
4874 }
4875 goto fail;
fa9a63c5
RM
4876
4877
4878 /* Match at the very beginning of the data. */
25fe55af
RS
4879 case begbuf:
4880 DEBUG_PRINT1 ("EXECUTING begbuf.\n");
4881 if (AT_STRINGS_BEG (d))
4882 break;
4883 goto fail;
fa9a63c5
RM
4884
4885
4886 /* Match at the very end of the data. */
25fe55af
RS
4887 case endbuf:
4888 DEBUG_PRINT1 ("EXECUTING endbuf.\n");
fa9a63c5
RM
4889 if (AT_STRINGS_END (d))
4890 break;
25fe55af 4891 goto fail;
5e69f11e 4892
5e69f11e 4893
25fe55af
RS
4894 /* on_failure_keep_string_jump is used to optimize `.*\n'. It
4895 pushes NULL as the value for the string on the stack. Then
4896 `pop_failure_point' will keep the current value for the
4897 string, instead of restoring it. To see why, consider
4898 matching `foo\nbar' against `.*\n'. The .* matches the foo;
4899 then the . fails against the \n. But the next thing we want
4900 to do is match the \n against the \n; if we restored the
4901 string value, we would be back at the foo.
4902
4903 Because this is used only in specific cases, we don't need to
4904 check all the things that `on_failure_jump' does, to make
4905 sure the right things get saved on the stack. Hence we don't
4906 share its code. The only reason to push anything on the
4907 stack at all is that otherwise we would have to change
4908 `anychar's code to do something besides goto fail in this
4909 case; that seems worse than this. */
4910 case on_failure_keep_string_jump:
4911 DEBUG_PRINT1 ("EXECUTING on_failure_keep_string_jump");
fa9a63c5 4912
25fe55af
RS
4913 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4914 DEBUG_PRINT3 (" %d (to 0x%x):\n", mcnt, p + mcnt);
b18215fc 4915
25fe55af
RS
4916 PUSH_FAILURE_POINT (p + mcnt, NULL, -2);
4917 break;
fa9a63c5
RM
4918
4919
4920 /* Uses of on_failure_jump:
5e69f11e 4921
25fe55af
RS
4922 Each alternative starts with an on_failure_jump that points
4923 to the beginning of the next alternative. Each alternative
4924 except the last ends with a jump that in effect jumps past
4925 the rest of the alternatives. (They really jump to the
4926 ending jump of the following alternative, because tensioning
4927 these jumps is a hassle.)
fa9a63c5 4928
25fe55af
RS
4929 Repeats start with an on_failure_jump that points past both
4930 the repetition text and either the following jump or
4931 pop_failure_jump back to this on_failure_jump. */
fa9a63c5 4932 case on_failure_jump:
25fe55af
RS
4933 on_failure:
4934 DEBUG_PRINT1 ("EXECUTING on_failure_jump");
4935
4936 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4937 DEBUG_PRINT3 (" %d (to 0x%x)", mcnt, p + mcnt);
4938
4939 /* If this on_failure_jump comes right before a group (i.e.,
4940 the original * applied to a group), save the information
4941 for that group and all inner ones, so that if we fail back
4942 to this point, the group's information will be correct.
4943 For example, in \(a*\)*\1, we need the preceding group,
4944 and in \(zz\(a*\)b*\)\2, we need the inner group. */
4945
4946 /* We can't use `p' to check ahead because we push
4947 a failure point to `p + mcnt' after we do this. */
4948 p1 = p;
4949
4950 /* We need to skip no_op's before we look for the
4951 start_memory in case this on_failure_jump is happening as
4952 the result of a completed succeed_n, as in \(a\)\{1,3\}b\1
4953 against aba. */
4954 while (p1 < pend && (re_opcode_t) *p1 == no_op)
4955 p1++;
4956
4957 if (p1 < pend && (re_opcode_t) *p1 == start_memory)
4958 {
4959 /* We have a new highest active register now. This will
4960 get reset at the start_memory we are about to get to,
4961 but we will have saved all the registers relevant to
4962 this repetition op, as described above. */
4963 highest_active_reg = *(p1 + 1) + *(p1 + 2);
4964 if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
4965 lowest_active_reg = *(p1 + 1);
4966 }
4967
4968 DEBUG_PRINT1 (":\n");
4969 PUSH_FAILURE_POINT (p + mcnt, d, -2);
4970 break;
4971
4972
4973 /* A smart repeat ends with `maybe_pop_jump'.
4974 We change it to either `pop_failure_jump' or `jump'. */
4975 case maybe_pop_jump:
4976 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4977 DEBUG_PRINT2 ("EXECUTING maybe_pop_jump %d.\n", mcnt);
4978 {
fa9a63c5
RM
4979 register unsigned char *p2 = p;
4980
25fe55af
RS
4981 /* Compare the beginning of the repeat with what in the
4982 pattern follows its end. If we can establish that there
4983 is nothing that they would both match, i.e., that we
4984 would have to backtrack because of (as in, e.g., `a*a')
4985 then we can change to pop_failure_jump, because we'll
4986 never have to backtrack.
5e69f11e 4987
25fe55af
RS
4988 This is not true in the case of alternatives: in
4989 `(a|ab)*' we do need to backtrack to the `ab' alternative
4990 (e.g., if the string was `ab'). But instead of trying to
4991 detect that here, the alternative has put on a dummy
4992 failure point which is what we will end up popping. */
fa9a63c5
RM
4993
4994 /* Skip over open/close-group commands.
4995 If what follows this loop is a ...+ construct,
4996 look at what begins its body, since we will have to
4997 match at least one of that. */
4998 while (1)
4999 {
5000 if (p2 + 2 < pend
5001 && ((re_opcode_t) *p2 == stop_memory
5002 || (re_opcode_t) *p2 == start_memory))
5003 p2 += 3;
5004 else if (p2 + 6 < pend
5005 && (re_opcode_t) *p2 == dummy_failure_jump)
5006 p2 += 6;
5007 else
5008 break;
5009 }
5010
5011 p1 = p + mcnt;
5012 /* p1[0] ... p1[2] are the `on_failure_jump' corresponding
5e69f11e 5013 to the `maybe_finalize_jump' of this case. Examine what
25fe55af 5014 follows. */
fa9a63c5 5015
25fe55af
RS
5016 /* If we're at the end of the pattern, we can change. */
5017 if (p2 == pend)
fa9a63c5
RM
5018 {
5019 /* Consider what happens when matching ":\(.*\)"
5020 against ":/". I don't really understand this code
25fe55af
RS
5021 yet. */
5022 p[-3] = (unsigned char) pop_failure_jump;
5023 DEBUG_PRINT1
5024 (" End of pattern: change to `pop_failure_jump'.\n");
5025 }
fa9a63c5 5026
25fe55af 5027 else if ((re_opcode_t) *p2 == exactn
fa9a63c5
RM
5028 || (bufp->newline_anchor && (re_opcode_t) *p2 == endline))
5029 {
b18215fc 5030 register unsigned int c
25fe55af 5031 = *p2 == (unsigned char) endline ? '\n' : p2[2];
fa9a63c5 5032
b18215fc 5033 if ((re_opcode_t) p1[3] == exactn)
e318085a 5034 {
b18215fc
RS
5035 if (!(multibyte /* && (c != '\n') */
5036 && BASE_LEADING_CODE_P (c))
5037 ? c != p1[5]
5038 : (STRING_CHAR (&p2[2], pend - &p2[2])
5039 != STRING_CHAR (&p1[5], pend - &p1[5])))
25fe55af
RS
5040 {
5041 p[-3] = (unsigned char) pop_failure_jump;
5042 DEBUG_PRINT3 (" %c != %c => pop_failure_jump.\n",
5043 c, p1[5]);
5044 }
e318085a 5045 }
5e69f11e 5046
fa9a63c5
RM
5047 else if ((re_opcode_t) p1[3] == charset
5048 || (re_opcode_t) p1[3] == charset_not)
5049 {
5050 int not = (re_opcode_t) p1[3] == charset_not;
5e69f11e 5051
b18215fc
RS
5052 if (multibyte /* && (c != '\n') */
5053 && BASE_LEADING_CODE_P (c))
5054 c = STRING_CHAR (&p2[2], pend - &p2[2]);
5055
5056 /* Test if C is listed in charset (or charset_not)
5057 at `&p1[3]'. */
5058 if (SINGLE_BYTE_CHAR_P (c))
5059 {
5060 if (c < CHARSET_BITMAP_SIZE (&p1[3]) * BYTEWIDTH
fa9a63c5
RM
5061 && p1[5 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
5062 not = !not;
b18215fc
RS
5063 }
5064 else if (CHARSET_RANGE_TABLE_EXISTS_P (&p1[3]))
5065 CHARSET_LOOKUP_RANGE_TABLE (not, c, &p1[3]);
fa9a63c5 5066
25fe55af
RS
5067 /* `not' is equal to 1 if c would match, which means
5068 that we can't change to pop_failure_jump. */
fa9a63c5 5069 if (!not)
25fe55af
RS
5070 {
5071 p[-3] = (unsigned char) pop_failure_jump;
5072 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
5073 }
fa9a63c5
RM
5074 }
5075 }
25fe55af 5076 else if ((re_opcode_t) *p2 == charset)
fa9a63c5 5077 {
b18215fc 5078 if ((re_opcode_t) p1[3] == exactn)
e318085a 5079 {
b18215fc
RS
5080 register unsigned int c = p1[5];
5081 int not = 0;
5082
5083 if (multibyte && BASE_LEADING_CODE_P (c))
5084 c = STRING_CHAR (&p1[5], pend - &p1[5]);
5085
25fe55af 5086 /* Test if C is listed in charset at `p2'. */
b18215fc
RS
5087 if (SINGLE_BYTE_CHAR_P (c))
5088 {
5089 if (c < CHARSET_BITMAP_SIZE (p2) * BYTEWIDTH
5090 && (p2[2 + c / BYTEWIDTH]
5091 & (1 << (c % BYTEWIDTH))))
5092 not = !not;
5093 }
5094 else if (CHARSET_RANGE_TABLE_EXISTS_P (p2))
5095 CHARSET_LOOKUP_RANGE_TABLE (not, c, p2);
5096
5097 if (!not)
25fe55af
RS
5098 {
5099 p[-3] = (unsigned char) pop_failure_jump;
5100 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
b18215fc 5101 }
25fe55af 5102 }
5e69f11e 5103
b18215fc
RS
5104 /* It is hard to list up all the character in charset
5105 P2 if it includes multibyte character. Give up in
5106 such case. */
5107 else if (!multibyte || !CHARSET_RANGE_TABLE_EXISTS_P (p2))
5108 {
5109 /* Now, we are sure that P2 has no range table.
5110 So, for the size of bitmap in P2, `p2[1]' is
25fe55af 5111 enough. But P1 may have range table, so the
b18215fc
RS
5112 size of bitmap table of P1 is extracted by
5113 using macro `CHARSET_BITMAP_SIZE'.
5114
5115 Since we know that all the character listed in
5116 P2 is ASCII, it is enough to test only bitmap
5117 table of P1. */
25fe55af 5118
b18215fc 5119 if ((re_opcode_t) p1[3] == charset_not)
fa9a63c5
RM
5120 {
5121 int idx;
b18215fc 5122 /* We win if the charset_not inside the loop lists
25fe55af 5123 every character listed in the charset after. */
fa9a63c5
RM
5124 for (idx = 0; idx < (int) p2[1]; idx++)
5125 if (! (p2[2 + idx] == 0
b18215fc 5126 || (idx < CHARSET_BITMAP_SIZE (&p1[3])
fa9a63c5
RM
5127 && ((p2[2 + idx] & ~ p1[5 + idx]) == 0))))
5128 break;
5129
5130 if (idx == p2[1])
25fe55af
RS
5131 {
5132 p[-3] = (unsigned char) pop_failure_jump;
5133 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
5134 }
fa9a63c5
RM
5135 }
5136 else if ((re_opcode_t) p1[3] == charset)
5137 {
5138 int idx;
5139 /* We win if the charset inside the loop
5140 has no overlap with the one after the loop. */
5141 for (idx = 0;
b18215fc
RS
5142 (idx < (int) p2[1]
5143 && idx < CHARSET_BITMAP_SIZE (&p1[3]));
fa9a63c5
RM
5144 idx++)
5145 if ((p2[2 + idx] & p1[5 + idx]) != 0)
5146 break;
5147
b18215fc
RS
5148 if (idx == p2[1]
5149 || idx == CHARSET_BITMAP_SIZE (&p1[3]))
25fe55af
RS
5150 {
5151 p[-3] = (unsigned char) pop_failure_jump;
5152 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
5153 }
fa9a63c5
RM
5154 }
5155 }
5156 }
b18215fc 5157 }
fa9a63c5
RM
5158 p -= 2; /* Point at relative address again. */
5159 if ((re_opcode_t) p[-1] != pop_failure_jump)
5160 {
5161 p[-1] = (unsigned char) jump;
25fe55af 5162 DEBUG_PRINT1 (" Match => jump.\n");
fa9a63c5
RM
5163 goto unconditional_jump;
5164 }
25fe55af 5165 /* Note fall through. */
fa9a63c5
RM
5166
5167
5168 /* The end of a simple repeat has a pop_failure_jump back to
25fe55af
RS
5169 its matching on_failure_jump, where the latter will push a
5170 failure point. The pop_failure_jump takes off failure
5171 points put on by this pop_failure_jump's matching
5172 on_failure_jump; we got through the pattern to here from the
5173 matching on_failure_jump, so didn't fail. */
5174 case pop_failure_jump:
5175 {
5176 /* We need to pass separate storage for the lowest and
5177 highest registers, even though we don't care about the
5178 actual values. Otherwise, we will restore only one
5179 register from the stack, since lowest will == highest in
5180 `pop_failure_point'. */
5181 unsigned dummy_low_reg, dummy_high_reg;
5182 unsigned char *pdummy;
5183 const char *sdummy;
5184
5185 DEBUG_PRINT1 ("EXECUTING pop_failure_jump.\n");
5186 POP_FAILURE_POINT (sdummy, pdummy,
5187 dummy_low_reg, dummy_high_reg,
5188 reg_dummy, reg_dummy, reg_info_dummy);
5189 }
5190 /* Note fall through. */
5191
5192
5193 /* Unconditionally jump (without popping any failure points). */
5194 case jump:
fa9a63c5
RM
5195 unconditional_jump:
5196 EXTRACT_NUMBER_AND_INCR (mcnt, p); /* Get the amount to jump. */
25fe55af
RS
5197 DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt);
5198 p += mcnt; /* Do the jump. */
5199 DEBUG_PRINT2 ("(to 0x%x).\n", p);
5200 break;
5201
5202
5203 /* We need this opcode so we can detect where alternatives end
5204 in `group_match_null_string_p' et al. */
5205 case jump_past_alt:
5206 DEBUG_PRINT1 ("EXECUTING jump_past_alt.\n");
5207 goto unconditional_jump;
5208
5209
5210 /* Normally, the on_failure_jump pushes a failure point, which
5211 then gets popped at pop_failure_jump. We will end up at
5212 pop_failure_jump, also, and with a pattern of, say, `a+', we
5213 are skipping over the on_failure_jump, so we have to push
5214 something meaningless for pop_failure_jump to pop. */
5215 case dummy_failure_jump:
5216 DEBUG_PRINT1 ("EXECUTING dummy_failure_jump.\n");
5217 /* It doesn't matter what we push for the string here. What
5218 the code at `fail' tests is the value for the pattern. */
5219 PUSH_FAILURE_POINT (0, 0, -2);
5220 goto unconditional_jump;
5221
5222
5223 /* At the end of an alternative, we need to push a dummy failure
5224 point in case we are followed by a `pop_failure_jump', because
5225 we don't want the failure point for the alternative to be
5226 popped. For example, matching `(a|ab)*' against `aab'
5227 requires that we match the `ab' alternative. */
5228 case push_dummy_failure:
5229 DEBUG_PRINT1 ("EXECUTING push_dummy_failure.\n");
5230 /* See comments just above at `dummy_failure_jump' about the
5231 two zeroes. */
5232 PUSH_FAILURE_POINT (0, 0, -2);
fa9a63c5
RM
5233 break;
5234
25fe55af
RS
5235 /* Have to succeed matching what follows at least n times.
5236 After that, handle like `on_failure_jump'. */
5237 case succeed_n:
5238 EXTRACT_NUMBER (mcnt, p + 2);
5239 DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt);
5e69f11e 5240
25fe55af
RS
5241 assert (mcnt >= 0);
5242 /* Originally, this is how many times we HAVE to succeed. */
5243 if (mcnt > 0)
5244 {
5245 mcnt--;
fa9a63c5 5246 p += 2;
25fe55af
RS
5247 STORE_NUMBER_AND_INCR (p, mcnt);
5248 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p, mcnt);
5249 }
fa9a63c5 5250 else if (mcnt == 0)
25fe55af
RS
5251 {
5252 DEBUG_PRINT2 (" Setting two bytes from 0x%x to no_op.\n", p+2);
fa9a63c5 5253 p[2] = (unsigned char) no_op;
25fe55af
RS
5254 p[3] = (unsigned char) no_op;
5255 goto on_failure;
5256 }
5257 break;
5258
5259 case jump_n:
5260 EXTRACT_NUMBER (mcnt, p + 2);
5261 DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt);
5262
5263 /* Originally, this is how many times we CAN jump. */
5264 if (mcnt)
5265 {
5266 mcnt--;
5267 STORE_NUMBER (p + 2, mcnt);
5e69f11e 5268 goto unconditional_jump;
25fe55af
RS
5269 }
5270 /* If don't have to jump any more, skip over the rest of command. */
5e69f11e
RM
5271 else
5272 p += 4;
25fe55af 5273 break;
5e69f11e 5274
fa9a63c5
RM
5275 case set_number_at:
5276 {
25fe55af 5277 DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
fa9a63c5 5278
25fe55af
RS
5279 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5280 p1 = p + mcnt;
5281 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5282 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p1, mcnt);
fa9a63c5 5283 STORE_NUMBER (p1, mcnt);
25fe55af
RS
5284 break;
5285 }
9121ca40
KH
5286
5287 case wordbound:
5288 DEBUG_PRINT1 ("EXECUTING wordbound.\n");
fa9a63c5 5289
b18215fc 5290 /* We SUCCEED in one of the following cases: */
9121ca40 5291
b18215fc 5292 /* Case 1: D is at the beginning or the end of string. */
9121ca40
KH
5293 if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
5294 break;
b18215fc
RS
5295 else
5296 {
5297 /* C1 is the character before D, S1 is the syntax of C1, C2
5298 is the character at D, and S2 is the syntax of C2. */
5299 int c1, c2, s1, s2;
5300 int pos1 = PTR_TO_OFFSET (d - 1);
9121ca40 5301
b18215fc
RS
5302 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
5303 GET_CHAR_AFTER_2 (c2, d, string1, end1, string2, end2);
5304#ifdef emacs
5305 UPDATE_SYNTAX_TABLE (pos1 ? pos1 : 1);
25fe55af 5306#endif
b18215fc
RS
5307 s1 = SYNTAX (c1);
5308#ifdef emacs
5309 UPDATE_SYNTAX_TABLE_FORWARD (pos1 + 1);
25fe55af 5310#endif
b18215fc
RS
5311 s2 = SYNTAX (c2);
5312
5313 if (/* Case 2: Only one of S1 and S2 is Sword. */
5314 ((s1 == Sword) != (s2 == Sword))
5315 /* Case 3: Both of S1 and S2 are Sword, and macro
25fe55af 5316 WORD_BOUNDARY_P (C1, C2) returns nonzero. */
b18215fc 5317 || ((s1 == Sword) && WORD_BOUNDARY_P (c1, c2)))
9121ca40 5318 break;
9121ca40 5319 }
b18215fc 5320 goto fail;
9121ca40
KH
5321
5322 case notwordbound:
9121ca40 5323 DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
b18215fc
RS
5324
5325 /* We FAIL in one of the following cases: */
5326
5327 /* Case 1: D is at the beginning or the end of string. */
9121ca40
KH
5328 if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
5329 goto fail;
b18215fc
RS
5330 else
5331 {
5332 /* C1 is the character before D, S1 is the syntax of C1, C2
5333 is the character at D, and S2 is the syntax of C2. */
5334 int c1, c2, s1, s2;
5335 int pos1 = PTR_TO_OFFSET (d - 1);
9121ca40 5336
b18215fc
RS
5337 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
5338 GET_CHAR_AFTER_2 (c2, d, string1, end1, string2, end2);
5339#ifdef emacs
5340 UPDATE_SYNTAX_TABLE (pos1);
25fe55af 5341#endif
b18215fc
RS
5342 s1 = SYNTAX (c1);
5343#ifdef emacs
5344 UPDATE_SYNTAX_TABLE_FORWARD (pos1 + 1);
25fe55af 5345#endif
b18215fc
RS
5346 s2 = SYNTAX (c2);
5347
5348 if (/* Case 2: Only one of S1 and S2 is Sword. */
5349 ((s1 == Sword) != (s2 == Sword))
5350 /* Case 3: Both of S1 and S2 are Sword, and macro
25fe55af 5351 WORD_BOUNDARY_P (C1, C2) returns nonzero. */
b18215fc 5352 || ((s1 == Sword) && WORD_BOUNDARY_P (c1, c2)))
9121ca40 5353 goto fail;
9121ca40 5354 }
b18215fc 5355 break;
fa9a63c5
RM
5356
5357 case wordbeg:
25fe55af 5358 DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
fa9a63c5 5359
b18215fc
RS
5360 /* We FAIL in one of the following cases: */
5361
25fe55af 5362 /* Case 1: D is at the end of string. */
b18215fc 5363 if (AT_STRINGS_END (d))
25fe55af 5364 goto fail;
b18215fc
RS
5365 else
5366 {
5367 /* C1 is the character before D, S1 is the syntax of C1, C2
5368 is the character at D, and S2 is the syntax of C2. */
5369 int c1, c2, s1, s2;
5370 int pos1 = PTR_TO_OFFSET (d);
fa9a63c5 5371
b18215fc 5372 GET_CHAR_AFTER_2 (c2, d, string1, end1, string2, end2);
fa9a63c5 5373#ifdef emacs
b18215fc 5374 UPDATE_SYNTAX_TABLE (pos1);
25fe55af 5375#endif
b18215fc 5376 s2 = SYNTAX (c2);
25fe55af 5377
b18215fc
RS
5378 /* Case 2: S2 is not Sword. */
5379 if (s2 != Sword)
5380 goto fail;
5381
5382 /* Case 3: D is not at the beginning of string ... */
5383 if (!AT_STRINGS_BEG (d))
5384 {
5385 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
5386#ifdef emacs
5387 UPDATE_SYNTAX_TABLE_BACKWARD (pos1 - 1);
25fe55af 5388#endif
b18215fc
RS
5389 s1 = SYNTAX (c1);
5390
5391 /* ... and S1 is Sword, and WORD_BOUNDARY_P (C1, C2)
25fe55af 5392 returns 0. */
b18215fc
RS
5393 if ((s1 == Sword) && !WORD_BOUNDARY_P (c1, c2))
5394 goto fail;
5395 }
5396 }
e318085a
RS
5397 break;
5398
b18215fc 5399 case wordend:
25fe55af 5400 DEBUG_PRINT1 ("EXECUTING wordend.\n");
b18215fc
RS
5401
5402 /* We FAIL in one of the following cases: */
5403
5404 /* Case 1: D is at the beginning of string. */
5405 if (AT_STRINGS_BEG (d))
e318085a 5406 goto fail;
b18215fc
RS
5407 else
5408 {
5409 /* C1 is the character before D, S1 is the syntax of C1, C2
5410 is the character at D, and S2 is the syntax of C2. */
5411 int c1, c2, s1, s2;
5412
5413 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
5414 s1 = SYNTAX (c1);
5415
5416 /* Case 2: S1 is not Sword. */
5417 if (s1 != Sword)
5418 goto fail;
5419
5420 /* Case 3: D is not at the end of string ... */
5421 if (!AT_STRINGS_END (d))
5422 {
5423 GET_CHAR_AFTER_2 (c2, d, string1, end1, string2, end2);
5424 s2 = SYNTAX (c2);
5425
5426 /* ... and S2 is Sword, and WORD_BOUNDARY_P (C1, C2)
25fe55af 5427 returns 0. */
b18215fc 5428 if ((s2 == Sword) && !WORD_BOUNDARY_P (c1, c2))
25fe55af 5429 goto fail;
b18215fc
RS
5430 }
5431 }
e318085a
RS
5432 break;
5433
b18215fc 5434#ifdef emacs
25fe55af
RS
5435 case before_dot:
5436 DEBUG_PRINT1 ("EXECUTING before_dot.\n");
b18215fc 5437 if (PTR_CHAR_POS ((unsigned char *) d) >= PT)
25fe55af
RS
5438 goto fail;
5439 break;
b18215fc 5440
25fe55af
RS
5441 case at_dot:
5442 DEBUG_PRINT1 ("EXECUTING at_dot.\n");
b18215fc 5443 if (PTR_CHAR_POS ((unsigned char *) d) != PT)
25fe55af
RS
5444 goto fail;
5445 break;
b18215fc 5446
25fe55af
RS
5447 case after_dot:
5448 DEBUG_PRINT1 ("EXECUTING after_dot.\n");
ae93ce92 5449 if (PTR_CHAR_POS ((unsigned char *) d) <= PT)
25fe55af
RS
5450 goto fail;
5451 break;
fa9a63c5
RM
5452
5453 case syntaxspec:
25fe55af 5454 DEBUG_PRINT2 ("EXECUTING syntaxspec %d.\n", mcnt);
fa9a63c5
RM
5455 mcnt = *p++;
5456 goto matchsyntax;
5457
25fe55af
RS
5458 case wordchar:
5459 DEBUG_PRINT1 ("EXECUTING Emacs wordchar.\n");
fa9a63c5 5460 mcnt = (int) Sword;
25fe55af 5461 matchsyntax:
fa9a63c5 5462 PREFETCH ();
b18215fc
RS
5463#ifdef emacs
5464 {
5465 int pos1 = PTR_TO_OFFSET (d);
5466 UPDATE_SYNTAX_TABLE (pos1);
5467 }
25fe55af 5468#endif
b18215fc
RS
5469 {
5470 int c, len;
5471
5472 if (multibyte)
5473 /* we must concern about multibyte form, ... */
5474 c = STRING_CHAR_AND_LENGTH (d, dend - d, len);
5475 else
5476 /* everything should be handled as ASCII, even though it
5477 looks like multibyte form. */
5478 c = *d, len = 1;
5479
5480 if (SYNTAX (c) != (enum syntaxcode) mcnt)
fa9a63c5 5481 goto fail;
b18215fc
RS
5482 d += len;
5483 }
25fe55af 5484 SET_REGS_MATCHED ();
fa9a63c5
RM
5485 break;
5486
5487 case notsyntaxspec:
25fe55af 5488 DEBUG_PRINT2 ("EXECUTING notsyntaxspec %d.\n", mcnt);
fa9a63c5
RM
5489 mcnt = *p++;
5490 goto matchnotsyntax;
5491
25fe55af
RS
5492 case notwordchar:
5493 DEBUG_PRINT1 ("EXECUTING Emacs notwordchar.\n");
fa9a63c5 5494 mcnt = (int) Sword;
25fe55af 5495 matchnotsyntax:
fa9a63c5 5496 PREFETCH ();
b18215fc
RS
5497#ifdef emacs
5498 {
5499 int pos1 = PTR_TO_OFFSET (d);
5500 UPDATE_SYNTAX_TABLE (pos1);
5501 }
25fe55af 5502#endif
b18215fc
RS
5503 {
5504 int c, len;
5505
5506 if (multibyte)
5507 c = STRING_CHAR_AND_LENGTH (d, dend - d, len);
5508 else
5509 c = *d, len = 1;
5510
5511 if (SYNTAX (c) == (enum syntaxcode) mcnt)
fa9a63c5 5512 goto fail;
b18215fc
RS
5513 d += len;
5514 }
5515 SET_REGS_MATCHED ();
5516 break;
5517
5518 case categoryspec:
5519 DEBUG_PRINT2 ("EXECUTING categoryspec %d.\n", *p);
5520 mcnt = *p++;
5521 PREFETCH ();
5522 {
5523 int c, len;
5524
5525 if (multibyte)
5526 c = STRING_CHAR_AND_LENGTH (d, dend - d, len);
5527 else
5528 c = *d, len = 1;
5529
5530 if (!CHAR_HAS_CATEGORY (c, mcnt))
5531 goto fail;
5532 d += len;
5533 }
fa9a63c5 5534 SET_REGS_MATCHED ();
e318085a 5535 break;
fa9a63c5 5536
b18215fc
RS
5537 case notcategoryspec:
5538 DEBUG_PRINT2 ("EXECUTING notcategoryspec %d.\n", *p);
5539 mcnt = *p++;
5540 PREFETCH ();
5541 {
5542 int c, len;
5543
5544 if (multibyte)
5545 c = STRING_CHAR_AND_LENGTH (d, dend - d, len);
5546 else
5547 c = *d, len = 1;
5548
5549 if (CHAR_HAS_CATEGORY (c, mcnt))
5550 goto fail;
5551 d += len;
5552 }
5553 SET_REGS_MATCHED ();
5554 break;
5555
fa9a63c5
RM
5556#else /* not emacs */
5557 case wordchar:
b18215fc 5558 DEBUG_PRINT1 ("EXECUTING non-Emacs wordchar.\n");
fa9a63c5 5559 PREFETCH ();
b18215fc
RS
5560 if (!WORDCHAR_P (d))
5561 goto fail;
fa9a63c5 5562 SET_REGS_MATCHED ();
b18215fc 5563 d++;
fa9a63c5 5564 break;
5e69f11e 5565
fa9a63c5 5566 case notwordchar:
b18215fc 5567 DEBUG_PRINT1 ("EXECUTING non-Emacs notwordchar.\n");
fa9a63c5
RM
5568 PREFETCH ();
5569 if (WORDCHAR_P (d))
b18215fc
RS
5570 goto fail;
5571 SET_REGS_MATCHED ();
5572 d++;
fa9a63c5
RM
5573 break;
5574#endif /* not emacs */
5e69f11e 5575
b18215fc
RS
5576 default:
5577 abort ();
fa9a63c5 5578 }
b18215fc 5579 continue; /* Successfully executed one pattern command; keep going. */
fa9a63c5
RM
5580
5581
5582 /* We goto here if a matching operation fails. */
5583 fail:
5584 if (!FAIL_STACK_EMPTY ())
b18215fc
RS
5585 { /* A restart point is known. Restore to that state. */
5586 DEBUG_PRINT1 ("\nFAIL:\n");
5587 POP_FAILURE_POINT (d, p,
5588 lowest_active_reg, highest_active_reg,
5589 regstart, regend, reg_info);
5590
5591 /* If this failure point is a dummy, try the next one. */
5592 if (!p)
fa9a63c5
RM
5593 goto fail;
5594
b18215fc 5595 /* If we failed to the end of the pattern, don't examine *p. */
fa9a63c5 5596 assert (p <= pend);
b18215fc
RS
5597 if (p < pend)
5598 {
5599 boolean is_a_jump_n = false;
5600
5601 /* If failed to a backwards jump that's part of a repetition
5602 loop, need to pop this failure point and use the next one. */
5603 switch ((re_opcode_t) *p)
5604 {
5605 case jump_n:
5606 is_a_jump_n = true;
5607 case maybe_pop_jump:
5608 case pop_failure_jump:
5609 case jump:
5610 p1 = p + 1;
5611 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5612 p1 += mcnt;
5613
5614 if ((is_a_jump_n && (re_opcode_t) *p1 == succeed_n)
5615 || (!is_a_jump_n
5616 && (re_opcode_t) *p1 == on_failure_jump))
5617 goto fail;
5618 break;
5619 default:
5620 /* do nothing */ ;
5621 }
5622 }
5623
5624 if (d >= string1 && d <= end1)
fa9a63c5 5625 dend = end_match_1;
b18215fc 5626 }
fa9a63c5 5627 else
b18215fc 5628 break; /* Matching at this starting point really fails. */
fa9a63c5
RM
5629 } /* for (;;) */
5630
5631 if (best_regs_set)
5632 goto restore_best_regs;
5633
5634 FREE_VARIABLES ();
5635
b18215fc 5636 return -1; /* Failure to match. */
fa9a63c5
RM
5637} /* re_match_2 */
5638\f
5639/* Subroutine definitions for re_match_2. */
5640
5641
5642/* We are passed P pointing to a register number after a start_memory.
5e69f11e 5643
fa9a63c5
RM
5644 Return true if the pattern up to the corresponding stop_memory can
5645 match the empty string, and false otherwise.
5e69f11e 5646
fa9a63c5
RM
5647 If we find the matching stop_memory, sets P to point to one past its number.
5648 Otherwise, sets P to an undefined byte less than or equal to END.
5649
5650 We don't handle duplicates properly (yet). */
5651
5652static boolean
5653group_match_null_string_p (p, end, reg_info)
5654 unsigned char **p, *end;
5655 register_info_type *reg_info;
5656{
5657 int mcnt;
5658 /* Point to after the args to the start_memory. */
5659 unsigned char *p1 = *p + 2;
5e69f11e 5660
fa9a63c5
RM
5661 while (p1 < end)
5662 {
5663 /* Skip over opcodes that can match nothing, and return true or
5664 false, as appropriate, when we get to one that can't, or to the
b18215fc 5665 matching stop_memory. */
5e69f11e 5666
fa9a63c5 5667 switch ((re_opcode_t) *p1)
b18215fc
RS
5668 {
5669 /* Could be either a loop or a series of alternatives. */
5670 case on_failure_jump:
5671 p1++;
5672 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5e69f11e 5673
b18215fc 5674 /* If the next operation is not a jump backwards in the
fa9a63c5
RM
5675 pattern. */
5676
5677 if (mcnt >= 0)
5678 {
b18215fc
RS
5679 /* Go through the on_failure_jumps of the alternatives,
5680 seeing if any of the alternatives cannot match nothing.
5681 The last alternative starts with only a jump,
5682 whereas the rest start with on_failure_jump and end
5683 with a jump, e.g., here is the pattern for `a|b|c':
fa9a63c5 5684
b18215fc
RS
5685 /on_failure_jump/0/6/exactn/1/a/jump_past_alt/0/6
5686 /on_failure_jump/0/6/exactn/1/b/jump_past_alt/0/3
5687 /exactn/1/c
fa9a63c5 5688
b18215fc
RS
5689 So, we have to first go through the first (n-1)
5690 alternatives and then deal with the last one separately. */
fa9a63c5
RM
5691
5692
b18215fc
RS
5693 /* Deal with the first (n-1) alternatives, which start
5694 with an on_failure_jump (see above) that jumps to right
5695 past a jump_past_alt. */
fa9a63c5 5696
b18215fc
RS
5697 while ((re_opcode_t) p1[mcnt-3] == jump_past_alt)
5698 {
5699 /* `mcnt' holds how many bytes long the alternative
5700 is, including the ending `jump_past_alt' and
5701 its number. */
fa9a63c5 5702
b18215fc
RS
5703 if (!alt_match_null_string_p (p1, p1 + mcnt - 3,
5704 reg_info))
5705 return false;
fa9a63c5 5706
b18215fc 5707 /* Move to right after this alternative, including the
fa9a63c5 5708 jump_past_alt. */
b18215fc 5709 p1 += mcnt;
fa9a63c5 5710
b18215fc
RS
5711 /* Break if it's the beginning of an n-th alternative
5712 that doesn't begin with an on_failure_jump. */
5713 if ((re_opcode_t) *p1 != on_failure_jump)
5714 break;
5e69f11e 5715
fa9a63c5
RM
5716 /* Still have to check that it's not an n-th
5717 alternative that starts with an on_failure_jump. */
5718 p1++;
b18215fc
RS
5719 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5720 if ((re_opcode_t) p1[mcnt-3] != jump_past_alt)
5721 {
5722 /* Get to the beginning of the n-th alternative. */
5723 p1 -= 3;
5724 break;
5725 }
5726 }
fa9a63c5 5727
b18215fc
RS
5728 /* Deal with the last alternative: go back and get number
5729 of the `jump_past_alt' just before it. `mcnt' contains
5730 the length of the alternative. */
5731 EXTRACT_NUMBER (mcnt, p1 - 2);
fa9a63c5 5732
b18215fc
RS
5733 if (!alt_match_null_string_p (p1, p1 + mcnt, reg_info))
5734 return false;
fa9a63c5 5735
b18215fc
RS
5736 p1 += mcnt; /* Get past the n-th alternative. */
5737 } /* if mcnt > 0 */
5738 break;
fa9a63c5 5739
5e69f11e 5740
b18215fc 5741 case stop_memory:
fa9a63c5 5742 assert (p1[1] == **p);
b18215fc
RS
5743 *p = p1 + 2;
5744 return true;
fa9a63c5 5745
5e69f11e 5746
b18215fc
RS
5747 default:
5748 if (!common_op_match_null_string_p (&p1, end, reg_info))
5749 return false;
5750 }
fa9a63c5
RM
5751 } /* while p1 < end */
5752
5753 return false;
5754} /* group_match_null_string_p */
5755
5756
5757/* Similar to group_match_null_string_p, but doesn't deal with alternatives:
5758 It expects P to be the first byte of a single alternative and END one
5759 byte past the last. The alternative can contain groups. */
5e69f11e 5760
fa9a63c5
RM
5761static boolean
5762alt_match_null_string_p (p, end, reg_info)
5763 unsigned char *p, *end;
5764 register_info_type *reg_info;
5765{
5766 int mcnt;
5767 unsigned char *p1 = p;
5e69f11e 5768
fa9a63c5
RM
5769 while (p1 < end)
5770 {
5e69f11e 5771 /* Skip over opcodes that can match nothing, and break when we get
b18215fc 5772 to one that can't. */
5e69f11e 5773
fa9a63c5 5774 switch ((re_opcode_t) *p1)
b18215fc
RS
5775 {
5776 /* It's a loop. */
5777 case on_failure_jump:
5778 p1++;
5779 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5780 p1 += mcnt;
5781 break;
5e69f11e
RM
5782
5783 default:
b18215fc
RS
5784 if (!common_op_match_null_string_p (&p1, end, reg_info))
5785 return false;
5786 }
fa9a63c5
RM
5787 } /* while p1 < end */
5788
5789 return true;
5790} /* alt_match_null_string_p */
5791
5792
5793/* Deals with the ops common to group_match_null_string_p and
5e69f11e
RM
5794 alt_match_null_string_p.
5795
fa9a63c5
RM
5796 Sets P to one after the op and its arguments, if any. */
5797
5798static boolean
5799common_op_match_null_string_p (p, end, reg_info)
5800 unsigned char **p, *end;
5801 register_info_type *reg_info;
5802{
5803 int mcnt;
5804 boolean ret;
5805 int reg_no;
5806 unsigned char *p1 = *p;
5807
5808 switch ((re_opcode_t) *p1++)
5809 {
5810 case no_op:
5811 case begline:
5812 case endline:
5813 case begbuf:
5814 case endbuf:
5815 case wordbeg:
5816 case wordend:
5817 case wordbound:
5818 case notwordbound:
5819#ifdef emacs
5820 case before_dot:
5821 case at_dot:
5822 case after_dot:
5823#endif
5824 break;
5825
5826 case start_memory:
5827 reg_no = *p1;
5828 assert (reg_no > 0 && reg_no <= MAX_REGNUM);
5829 ret = group_match_null_string_p (&p1, end, reg_info);
5e69f11e 5830
fa9a63c5 5831 /* Have to set this here in case we're checking a group which
b18215fc 5832 contains a group and a back reference to it. */
fa9a63c5
RM
5833
5834 if (REG_MATCH_NULL_STRING_P (reg_info[reg_no]) == MATCH_NULL_UNSET_VALUE)
b18215fc 5835 REG_MATCH_NULL_STRING_P (reg_info[reg_no]) = ret;
fa9a63c5
RM
5836
5837 if (!ret)
b18215fc 5838 return false;
fa9a63c5 5839 break;
5e69f11e 5840
b18215fc 5841 /* If this is an optimized succeed_n for zero times, make the jump. */
fa9a63c5
RM
5842 case jump:
5843 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5844 if (mcnt >= 0)
b18215fc 5845 p1 += mcnt;
fa9a63c5 5846 else
b18215fc 5847 return false;
fa9a63c5
RM
5848 break;
5849
5850 case succeed_n:
b18215fc 5851 /* Get to the number of times to succeed. */
5e69f11e 5852 p1 += 2;
fa9a63c5
RM
5853 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5854
5855 if (mcnt == 0)
b18215fc
RS
5856 {
5857 p1 -= 4;
5858 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5859 p1 += mcnt;
5860 }
fa9a63c5 5861 else
b18215fc 5862 return false;
fa9a63c5
RM
5863 break;
5864
5e69f11e 5865 case duplicate:
fa9a63c5 5866 if (!REG_MATCH_NULL_STRING_P (reg_info[*p1]))
b18215fc 5867 return false;
fa9a63c5
RM
5868 break;
5869
5870 case set_number_at:
5871 p1 += 4;
5872
5873 default:
5874 /* All other opcodes mean we cannot match the empty string. */
5875 return false;
5876 }
5877
5878 *p = p1;
5879 return true;
5880} /* common_op_match_null_string_p */
5881
5882
5883/* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
5884 bytes; nonzero otherwise. */
5e69f11e 5885
fa9a63c5
RM
5886static int
5887bcmp_translate (s1, s2, len, translate)
5888 unsigned char *s1, *s2;
5889 register int len;
6676cb1c 5890 RE_TRANSLATE_TYPE translate;
fa9a63c5
RM
5891{
5892 register unsigned char *p1 = s1, *p2 = s2;
5893 while (len)
5894 {
5895 if (translate[*p1++] != translate[*p2++]) return 1;
5896 len--;
5897 }
5898 return 0;
5899}
5900\f
5901/* Entry points for GNU code. */
5902
5903/* re_compile_pattern is the GNU regular expression compiler: it
5904 compiles PATTERN (of length SIZE) and puts the result in BUFP.
5905 Returns 0 if the pattern was valid, otherwise an error string.
5e69f11e 5906
fa9a63c5
RM
5907 Assumes the `allocated' (and perhaps `buffer') and `translate' fields
5908 are set in BUFP on entry.
5e69f11e 5909
b18215fc 5910 We call regex_compile to do the actual compilation. */
fa9a63c5
RM
5911
5912const char *
5913re_compile_pattern (pattern, length, bufp)
5914 const char *pattern;
5915 int length;
5916 struct re_pattern_buffer *bufp;
5917{
5918 reg_errcode_t ret;
5e69f11e 5919
fa9a63c5
RM
5920 /* GNU code is written to assume at least RE_NREGS registers will be set
5921 (and at least one extra will be -1). */
5922 bufp->regs_allocated = REGS_UNALLOCATED;
5e69f11e 5923
fa9a63c5
RM
5924 /* And GNU code determines whether or not to get register information
5925 by passing null for the REGS argument to re_match, etc., not by
5926 setting no_sub. */
5927 bufp->no_sub = 0;
5e69f11e 5928
b18215fc 5929 /* Match anchors at newline. */
fa9a63c5 5930 bufp->newline_anchor = 1;
5e69f11e 5931
fa9a63c5
RM
5932 ret = regex_compile (pattern, length, re_syntax_options, bufp);
5933
5934 if (!ret)
5935 return NULL;
5936 return gettext (re_error_msgid[(int) ret]);
5e69f11e 5937}
fa9a63c5 5938\f
b18215fc
RS
5939/* Entry points compatible with 4.2 BSD regex library. We don't define
5940 them unless specifically requested. */
fa9a63c5 5941
0c085854 5942#if defined (_REGEX_RE_COMP) || defined (_LIBC)
fa9a63c5
RM
5943
5944/* BSD has one and only one pattern buffer. */
5945static struct re_pattern_buffer re_comp_buf;
5946
5947char *
48afdd44
RM
5948#ifdef _LIBC
5949/* Make these definitions weak in libc, so POSIX programs can redefine
5950 these names if they don't use our functions, and still use
5951 regcomp/regexec below without link errors. */
5952weak_function
5953#endif
fa9a63c5
RM
5954re_comp (s)
5955 const char *s;
5956{
5957 reg_errcode_t ret;
5e69f11e 5958
fa9a63c5
RM
5959 if (!s)
5960 {
5961 if (!re_comp_buf.buffer)
5962 return gettext ("No previous regular expression");
5963 return 0;
5964 }
5965
5966 if (!re_comp_buf.buffer)
5967 {
5968 re_comp_buf.buffer = (unsigned char *) malloc (200);
5969 if (re_comp_buf.buffer == NULL)
b18215fc 5970 return gettext (re_error_msgid[(int) REG_ESPACE]);
fa9a63c5
RM
5971 re_comp_buf.allocated = 200;
5972
5973 re_comp_buf.fastmap = (char *) malloc (1 << BYTEWIDTH);
5974 if (re_comp_buf.fastmap == NULL)
5975 return gettext (re_error_msgid[(int) REG_ESPACE]);
5976 }
5977
5978 /* Since `re_exec' always passes NULL for the `regs' argument, we
5979 don't need to initialize the pattern buffer fields which affect it. */
5980
b18215fc 5981 /* Match anchors at newlines. */
fa9a63c5
RM
5982 re_comp_buf.newline_anchor = 1;
5983
5984 ret = regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf);
5e69f11e 5985
fa9a63c5
RM
5986 if (!ret)
5987 return NULL;
5988
5989 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
5990 return (char *) gettext (re_error_msgid[(int) ret]);
5991}
5992
5993
5994int
48afdd44
RM
5995#ifdef _LIBC
5996weak_function
5997#endif
fa9a63c5
RM
5998re_exec (s)
5999 const char *s;
6000{
6001 const int len = strlen (s);
6002 return
6003 0 <= re_search (&re_comp_buf, s, len, 0, len, (struct re_registers *) 0);
6004}
6005#endif /* _REGEX_RE_COMP */
6006\f
6007/* POSIX.2 functions. Don't define these for Emacs. */
6008
6009#ifndef emacs
6010
6011/* regcomp takes a regular expression as a string and compiles it.
6012
b18215fc 6013 PREG is a regex_t *. We do not expect any fields to be initialized,
fa9a63c5
RM
6014 since POSIX says we shouldn't. Thus, we set
6015
6016 `buffer' to the compiled pattern;
6017 `used' to the length of the compiled pattern;
6018 `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
6019 REG_EXTENDED bit in CFLAGS is set; otherwise, to
6020 RE_SYNTAX_POSIX_BASIC;
6021 `newline_anchor' to REG_NEWLINE being set in CFLAGS;
6022 `fastmap' and `fastmap_accurate' to zero;
6023 `re_nsub' to the number of subexpressions in PATTERN.
6024
6025 PATTERN is the address of the pattern string.
6026
6027 CFLAGS is a series of bits which affect compilation.
6028
6029 If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
6030 use POSIX basic syntax.
6031
6032 If REG_NEWLINE is set, then . and [^...] don't match newline.
6033 Also, regexec will try a match beginning after every newline.
6034
6035 If REG_ICASE is set, then we considers upper- and lowercase
6036 versions of letters to be equivalent when matching.
6037
6038 If REG_NOSUB is set, then when PREG is passed to regexec, that
6039 routine will report only success or failure, and nothing about the
6040 registers.
6041
b18215fc 6042 It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for
fa9a63c5
RM
6043 the return codes and their meanings.) */
6044
6045int
6046regcomp (preg, pattern, cflags)
6047 regex_t *preg;
5e69f11e 6048 const char *pattern;
fa9a63c5
RM
6049 int cflags;
6050{
6051 reg_errcode_t ret;
6052 unsigned syntax
6053 = (cflags & REG_EXTENDED) ?
6054 RE_SYNTAX_POSIX_EXTENDED : RE_SYNTAX_POSIX_BASIC;
6055
6056 /* regex_compile will allocate the space for the compiled pattern. */
6057 preg->buffer = 0;
6058 preg->allocated = 0;
6059 preg->used = 0;
5e69f11e 6060
fa9a63c5
RM
6061 /* Don't bother to use a fastmap when searching. This simplifies the
6062 REG_NEWLINE case: if we used a fastmap, we'd have to put all the
6063 characters after newlines into the fastmap. This way, we just try
6064 every character. */
6065 preg->fastmap = 0;
5e69f11e 6066
fa9a63c5
RM
6067 if (cflags & REG_ICASE)
6068 {
6069 unsigned i;
5e69f11e 6070
6676cb1c
RS
6071 preg->translate
6072 = (RE_TRANSLATE_TYPE) malloc (CHAR_SET_SIZE
6073 * sizeof (*(RE_TRANSLATE_TYPE)0));
fa9a63c5 6074 if (preg->translate == NULL)
b18215fc 6075 return (int) REG_ESPACE;
fa9a63c5
RM
6076
6077 /* Map uppercase characters to corresponding lowercase ones. */
6078 for (i = 0; i < CHAR_SET_SIZE; i++)
b18215fc 6079 preg->translate[i] = ISUPPER (i) ? tolower (i) : i;
fa9a63c5
RM
6080 }
6081 else
6082 preg->translate = NULL;
6083
6084 /* If REG_NEWLINE is set, newlines are treated differently. */
6085 if (cflags & REG_NEWLINE)
6086 { /* REG_NEWLINE implies neither . nor [^...] match newline. */
6087 syntax &= ~RE_DOT_NEWLINE;
6088 syntax |= RE_HAT_LISTS_NOT_NEWLINE;
b18215fc 6089 /* It also changes the matching behavior. */
fa9a63c5
RM
6090 preg->newline_anchor = 1;
6091 }
6092 else
6093 preg->newline_anchor = 0;
6094
6095 preg->no_sub = !!(cflags & REG_NOSUB);
6096
5e69f11e 6097 /* POSIX says a null character in the pattern terminates it, so we
fa9a63c5
RM
6098 can use strlen here in compiling the pattern. */
6099 ret = regex_compile (pattern, strlen (pattern), syntax, preg);
5e69f11e 6100
fa9a63c5
RM
6101 /* POSIX doesn't distinguish between an unmatched open-group and an
6102 unmatched close-group: both are REG_EPAREN. */
6103 if (ret == REG_ERPAREN) ret = REG_EPAREN;
5e69f11e 6104
fa9a63c5
RM
6105 return (int) ret;
6106}
6107
6108
6109/* regexec searches for a given pattern, specified by PREG, in the
6110 string STRING.
5e69f11e 6111
fa9a63c5 6112 If NMATCH is zero or REG_NOSUB was set in the cflags argument to
b18215fc 6113 `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at
fa9a63c5
RM
6114 least NMATCH elements, and we set them to the offsets of the
6115 corresponding matched substrings.
5e69f11e 6116
fa9a63c5
RM
6117 EFLAGS specifies `execution flags' which affect matching: if
6118 REG_NOTBOL is set, then ^ does not match at the beginning of the
6119 string; if REG_NOTEOL is set, then $ does not match at the end.
5e69f11e 6120
fa9a63c5
RM
6121 We return 0 if we find a match and REG_NOMATCH if not. */
6122
6123int
6124regexec (preg, string, nmatch, pmatch, eflags)
6125 const regex_t *preg;
5e69f11e
RM
6126 const char *string;
6127 size_t nmatch;
6128 regmatch_t pmatch[];
fa9a63c5
RM
6129 int eflags;
6130{
6131 int ret;
6132 struct re_registers regs;
6133 regex_t private_preg;
6134 int len = strlen (string);
6135 boolean want_reg_info = !preg->no_sub && nmatch > 0;
6136
6137 private_preg = *preg;
5e69f11e 6138
fa9a63c5
RM
6139 private_preg.not_bol = !!(eflags & REG_NOTBOL);
6140 private_preg.not_eol = !!(eflags & REG_NOTEOL);
5e69f11e 6141
fa9a63c5
RM
6142 /* The user has told us exactly how many registers to return
6143 information about, via `nmatch'. We have to pass that on to the
b18215fc 6144 matching routines. */
fa9a63c5 6145 private_preg.regs_allocated = REGS_FIXED;
5e69f11e 6146
fa9a63c5
RM
6147 if (want_reg_info)
6148 {
6149 regs.num_regs = nmatch;
6150 regs.start = TALLOC (nmatch, regoff_t);
6151 regs.end = TALLOC (nmatch, regoff_t);
6152 if (regs.start == NULL || regs.end == NULL)
b18215fc 6153 return (int) REG_NOMATCH;
fa9a63c5
RM
6154 }
6155
6156 /* Perform the searching operation. */
6157 ret = re_search (&private_preg, string, len,
b18215fc
RS
6158 /* start: */ 0, /* range: */ len,
6159 want_reg_info ? &regs : (struct re_registers *) 0);
5e69f11e 6160
fa9a63c5
RM
6161 /* Copy the register information to the POSIX structure. */
6162 if (want_reg_info)
6163 {
6164 if (ret >= 0)
b18215fc
RS
6165 {
6166 unsigned r;
fa9a63c5 6167
b18215fc
RS
6168 for (r = 0; r < nmatch; r++)
6169 {
6170 pmatch[r].rm_so = regs.start[r];
6171 pmatch[r].rm_eo = regs.end[r];
6172 }
6173 }
fa9a63c5 6174
b18215fc 6175 /* If we needed the temporary register info, free the space now. */
fa9a63c5
RM
6176 free (regs.start);
6177 free (regs.end);
6178 }
6179
6180 /* We want zero return to mean success, unlike `re_search'. */
6181 return ret >= 0 ? (int) REG_NOERROR : (int) REG_NOMATCH;
6182}
6183
6184
6185/* Returns a message corresponding to an error code, ERRCODE, returned
6186 from either regcomp or regexec. We don't use PREG here. */
6187
6188size_t
6189regerror (errcode, preg, errbuf, errbuf_size)
6190 int errcode;
6191 const regex_t *preg;
6192 char *errbuf;
6193 size_t errbuf_size;
6194{
6195 const char *msg;
6196 size_t msg_size;
6197
6198 if (errcode < 0
6199 || errcode >= (sizeof (re_error_msgid) / sizeof (re_error_msgid[0])))
5e69f11e 6200 /* Only error codes returned by the rest of the code should be passed
b18215fc 6201 to this routine. If we are given anything else, or if other regex
fa9a63c5
RM
6202 code generates an invalid error code, then the program has a bug.
6203 Dump core so we can fix it. */
6204 abort ();
6205
6206 msg = gettext (re_error_msgid[errcode]);
6207
6208 msg_size = strlen (msg) + 1; /* Includes the null. */
5e69f11e 6209
fa9a63c5
RM
6210 if (errbuf_size != 0)
6211 {
6212 if (msg_size > errbuf_size)
b18215fc
RS
6213 {
6214 strncpy (errbuf, msg, errbuf_size - 1);
6215 errbuf[errbuf_size - 1] = 0;
6216 }
fa9a63c5 6217 else
b18215fc 6218 strcpy (errbuf, msg);
fa9a63c5
RM
6219 }
6220
6221 return msg_size;
6222}
6223
6224
6225/* Free dynamically allocated space used by PREG. */
6226
6227void
6228regfree (preg)
6229 regex_t *preg;
6230{
6231 if (preg->buffer != NULL)
6232 free (preg->buffer);
6233 preg->buffer = NULL;
5e69f11e 6234
fa9a63c5
RM
6235 preg->allocated = 0;
6236 preg->used = 0;
6237
6238 if (preg->fastmap != NULL)
6239 free (preg->fastmap);
6240 preg->fastmap = NULL;
6241 preg->fastmap_accurate = 0;
6242
6243 if (preg->translate != NULL)
6244 free (preg->translate);
6245 preg->translate = NULL;
6246}
6247
6248#endif /* not emacs */