Initial revision
[bpt/emacs.git] / src / regex.c
CommitLineData
bc78d348
KB
1/* Extended regular expression matching and search library,
2 version 0.11.
3 (Implements POSIX draft P10003.2/D11.2, except for
4 internationalization features.)
5
6 Copyright (C) 1985, 89, 90, 91, 92 Free Software Foundation, Inc.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
21
22/* AIX requires this to be the first thing in the file. */
23#if defined (_AIX) && !defined (REGEX_MALLOC)
24 #pragma alloca
25#endif
26
27#define _GNU_SOURCE
28
29/* We need this for `regex.h', and perhaps for the Emacs include files. */
30#include <sys/types.h>
31
32/* The `emacs' switch turns on certain matching commands
33 that make sense only in Emacs. */
34#ifdef emacs
35
36#include "config.h"
37#include "lisp.h"
38#include "buffer.h"
39#include "syntax.h"
40
41/* Emacs uses `NULL' as a predicate. */
42#undef NULL
43
44#else /* not emacs */
45
46/* We used to test for `BSTRING' here, but only GCC and Emacs define
47 `BSTRING', as far as I know, and neither of them use this code. */
48#if USG || STDC_HEADERS
49#include <string.h>
50#define bcmp(s1, s2, n) memcmp ((s1), (s2), (n))
51#define bcopy(s, d, n) memcpy ((d), (s), (n))
52#define bzero(s, n) memset ((s), 0, (n))
53#else
54#include <strings.h>
55#endif
56
57#ifdef STDC_HEADERS
58#include <stdlib.h>
59#else
60char *malloc ();
61char *realloc ();
62#endif
63
64
65/* Define the syntax stuff for \<, \>, etc. */
66
67/* This must be nonzero for the wordchar and notwordchar pattern
68 commands in re_match_2. */
69#ifndef Sword
70#define Sword 1
71#endif
72
73#ifdef SYNTAX_TABLE
74
75extern char *re_syntax_table;
76
77#else /* not SYNTAX_TABLE */
78
79/* How many characters in the character set. */
80#define CHAR_SET_SIZE 256
81
82static char re_syntax_table[CHAR_SET_SIZE];
83
84static void
85init_syntax_once ()
86{
87 register int c;
88 static int done = 0;
89
90 if (done)
91 return;
92
93 bzero (re_syntax_table, sizeof re_syntax_table);
94
95 for (c = 'a'; c <= 'z'; c++)
96 re_syntax_table[c] = Sword;
97
98 for (c = 'A'; c <= 'Z'; c++)
99 re_syntax_table[c] = Sword;
100
101 for (c = '0'; c <= '9'; c++)
102 re_syntax_table[c] = Sword;
103
104 re_syntax_table['_'] = Sword;
105
106 done = 1;
107}
108
109#endif /* not SYNTAX_TABLE */
110
111#define SYNTAX(c) re_syntax_table[c]
112
113#endif /* not emacs */
114\f
115/* Get the interface, including the syntax bits. */
116#include "regex.h"
117
118
119/* isalpha etc. are used for the character classes. */
120#include <ctype.h>
121#ifndef isgraph
122#define isgraph(c) (isprint (c) && !isspace (c))
123#endif
124#ifndef isblank
125#define isblank(c) ((c) == ' ' || (c) == '\t')
126#endif
127
128#ifndef NULL
129#define NULL 0
130#endif
131
132/* We remove any previous definition of `SIGN_EXTEND_CHAR',
133 since ours (we hope) works properly with all combinations of
134 machines, compilers, `char' and `unsigned char' argument types.
135 (Per Bothner suggested the basic approach.) */
136#undef SIGN_EXTEND_CHAR
137#if __STDC__
138#define SIGN_EXTEND_CHAR(c) ((signed char) (c))
139#else
140/* As in Harbison and Steele. */
141#define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
142#endif
143\f
144/* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we
145 use `alloca' instead of `malloc'. This is because using malloc in
146 re_search* or re_match* could cause memory leaks when C-g is used in
147 Emacs; also, malloc is slower and causes storage fragmentation. On
148 the other hand, malloc is more portable, and easier to debug.
149
150 Because we sometimes use alloca, some routines have to be macros,
151 not functions -- `alloca'-allocated space disappears at the end of the
152 function it is called in. */
153
154#ifdef REGEX_MALLOC
155
156#define REGEX_ALLOCATE malloc
157#define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
158
159#else /* not REGEX_MALLOC */
160
161/* Emacs already defines alloca, sometimes. */
162#ifndef alloca
163
164/* Make alloca work the best possible way. */
165#ifdef __GNUC__
166#define alloca __builtin_alloca
167#else /* not __GNUC__ */
168#if HAVE_ALLOCA_H
169#include <alloca.h>
170#else /* not __GNUC__ or HAVE_ALLOCA_H */
171#ifndef _AIX /* Already did AIX, up at the top. */
172char *alloca ();
173#endif /* not _AIX */
174#endif /* not HAVE_ALLOCA_H */
175#endif /* not __GNUC__ */
176
177#endif /* not alloca */
178
179#define REGEX_ALLOCATE alloca
180
181/* Assumes a `char *destination' variable. */
182#define REGEX_REALLOCATE(source, osize, nsize) \
183 (destination = (char *) alloca (nsize), \
184 bcopy (source, destination, osize), \
185 destination)
186
187#endif /* not REGEX_MALLOC */
188
189
190/* True if `size1' is non-NULL and PTR is pointing anywhere inside
191 `string1' or just past its end. This works if PTR is NULL, which is
192 a good thing. */
193#define FIRST_STRING_P(ptr) \
194 (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
195
196/* (Re)Allocate N items of type T using malloc, or fail. */
197#define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
198#define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
199#define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
200
201#define BYTEWIDTH 8 /* In bits. */
202
203#define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
204
205#define MAX(a, b) ((a) > (b) ? (a) : (b))
206#define MIN(a, b) ((a) < (b) ? (a) : (b))
207
208typedef char boolean;
209#define false 0
210#define true 1
211\f
212/* These are the command codes that appear in compiled regular
213 expressions. Some opcodes are followed by argument bytes. A
214 command code can specify any interpretation whatsoever for its
215 arguments. Zero bytes may appear in the compiled regular expression.
216
217 The value of `exactn' is needed in search.c (search_buffer) in Emacs.
218 So regex.h defines a symbol `RE_EXACTN_VALUE' to be 1; the value of
219 `exactn' we use here must also be 1. */
220
221typedef enum
222{
223 no_op = 0,
224
225 /* Followed by one byte giving n, then by n literal bytes. */
226 exactn = 1,
227
228 /* Matches any (more or less) character. */
229 anychar,
230
231 /* Matches any one char belonging to specified set. First
232 following byte is number of bitmap bytes. Then come bytes
233 for a bitmap saying which chars are in. Bits in each byte
234 are ordered low-bit-first. A character is in the set if its
235 bit is 1. A character too large to have a bit in the map is
236 automatically not in the set. */
237 charset,
238
239 /* Same parameters as charset, but match any character that is
240 not one of those specified. */
241 charset_not,
242
243 /* Start remembering the text that is matched, for storing in a
244 register. Followed by one byte with the register number, in
245 the range 0 to one less than the pattern buffer's re_nsub
246 field. Then followed by one byte with the number of groups
247 inner to this one. (This last has to be part of the
248 start_memory only because we need it in the on_failure_jump
249 of re_match_2.) */
250 start_memory,
251
252 /* Stop remembering the text that is matched and store it in a
253 memory register. Followed by one byte with the register
254 number, in the range 0 to one less than `re_nsub' in the
255 pattern buffer, and one byte with the number of inner groups,
256 just like `start_memory'. (We need the number of inner
257 groups here because we don't have any easy way of finding the
258 corresponding start_memory when we're at a stop_memory.) */
259 stop_memory,
260
261 /* Match a duplicate of something remembered. Followed by one
262 byte containing the register number. */
263 duplicate,
264
265 /* Fail unless at beginning of line. */
266 begline,
267
268 /* Fail unless at end of line. */
269 endline,
270
271 /* Succeeds if at beginning of buffer (if emacs) or at beginning
272 of string to be matched (if not). */
273 begbuf,
274
275 /* Analogously, for end of buffer/string. */
276 endbuf,
277
278 /* Followed by two byte relative address to which to jump. */
279 jump,
280
281 /* Same as jump, but marks the end of an alternative. */
282 jump_past_alt,
283
284 /* Followed by two-byte relative address of place to resume at
285 in case of failure. */
286 on_failure_jump,
287
288 /* Like on_failure_jump, but pushes a placeholder instead of the
289 current string position when executed. */
290 on_failure_keep_string_jump,
291
292 /* Throw away latest failure point and then jump to following
293 two-byte relative address. */
294 pop_failure_jump,
295
296 /* Change to pop_failure_jump if know won't have to backtrack to
297 match; otherwise change to jump. This is used to jump
298 back to the beginning of a repeat. If what follows this jump
299 clearly won't match what the repeat does, such that we can be
300 sure that there is no use backtracking out of repetitions
301 already matched, then we change it to a pop_failure_jump.
302 Followed by two-byte address. */
303 maybe_pop_jump,
304
305 /* Jump to following two-byte address, and push a dummy failure
306 point. This failure point will be thrown away if an attempt
307 is made to use it for a failure. A `+' construct makes this
308 before the first repeat. Also used as an intermediary kind
309 of jump when compiling an alternative. */
310 dummy_failure_jump,
311
312 /* Push a dummy failure point and continue. Used at the end of
313 alternatives. */
314 push_dummy_failure,
315
316 /* Followed by two-byte relative address and two-byte number n.
317 After matching N times, jump to the address upon failure. */
318 succeed_n,
319
320 /* Followed by two-byte relative address, and two-byte number n.
321 Jump to the address N times, then fail. */
322 jump_n,
323
324 /* Set the following two-byte relative address to the
325 subsequent two-byte number. The address *includes* the two
326 bytes of number. */
327 set_number_at,
328
329 wordchar, /* Matches any word-constituent character. */
330 notwordchar, /* Matches any char that is not a word-constituent. */
331
332 wordbeg, /* Succeeds if at word beginning. */
333 wordend, /* Succeeds if at word end. */
334
335 wordbound, /* Succeeds if at a word boundary. */
336 notwordbound /* Succeeds if not at a word boundary. */
337
338#ifdef emacs
339 ,before_dot, /* Succeeds if before point. */
340 at_dot, /* Succeeds if at point. */
341 after_dot, /* Succeeds if after point. */
342
343 /* Matches any character whose syntax is specified. Followed by
344 a byte which contains a syntax code, e.g., Sword. */
345 syntaxspec,
346
347 /* Matches any character whose syntax is not that specified. */
348 notsyntaxspec
349#endif /* emacs */
350} re_opcode_t;
351\f
352/* Common operations on the compiled pattern. */
353
354/* Store NUMBER in two contiguous bytes starting at DESTINATION. */
355
356#define STORE_NUMBER(destination, number) \
357 do { \
358 (destination)[0] = (number) & 0377; \
359 (destination)[1] = (number) >> 8; \
360 } while (0)
361
362/* Same as STORE_NUMBER, except increment DESTINATION to
363 the byte after where the number is stored. Therefore, DESTINATION
364 must be an lvalue. */
365
366#define STORE_NUMBER_AND_INCR(destination, number) \
367 do { \
368 STORE_NUMBER (destination, number); \
369 (destination) += 2; \
370 } while (0)
371
372/* Put into DESTINATION a number stored in two contiguous bytes starting
373 at SOURCE. */
374
375#define EXTRACT_NUMBER(destination, source) \
376 do { \
377 (destination) = *(source) & 0377; \
378 (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8; \
379 } while (0)
380
381#ifdef DEBUG
382static void
383extract_number (dest, source)
384 int *dest;
385 unsigned char *source;
386{
387 int temp = SIGN_EXTEND_CHAR (*(source + 1));
388 *dest = *source & 0377;
389 *dest += temp << 8;
390}
391
392#ifndef EXTRACT_MACROS /* To debug the macros. */
393#undef EXTRACT_NUMBER
394#define EXTRACT_NUMBER(dest, src) extract_number (&dest, src)
395#endif /* not EXTRACT_MACROS */
396
397#endif /* DEBUG */
398
399/* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
400 SOURCE must be an lvalue. */
401
402#define EXTRACT_NUMBER_AND_INCR(destination, source) \
403 do { \
404 EXTRACT_NUMBER (destination, source); \
405 (source) += 2; \
406 } while (0)
407
408#ifdef DEBUG
409static void
410extract_number_and_incr (destination, source)
411 int *destination;
412 unsigned char **source;
413{
414 extract_number (destination, *source);
415 *source += 2;
416}
417
418#ifndef EXTRACT_MACROS
419#undef EXTRACT_NUMBER_AND_INCR
420#define EXTRACT_NUMBER_AND_INCR(dest, src) \
421 extract_number_and_incr (&dest, &src)
422#endif /* not EXTRACT_MACROS */
423
424#endif /* DEBUG */
425\f
426/* If DEBUG is defined, Regex prints many voluminous messages about what
427 it is doing (if the variable `debug' is nonzero). If linked with the
428 main program in `iregex.c', you can enter patterns and strings
429 interactively. And if linked with the main program in `main.c' and
430 the other test files, you can run the already-written tests. */
431
432#ifdef DEBUG
433
434/* We use standard I/O for debugging. */
435#include <stdio.h>
436
437/* It is useful to test things that ``must'' be true when debugging. */
438#include <assert.h>
439
440static int debug = 0;
441
442#define DEBUG_STATEMENT(e) e
443#define DEBUG_PRINT1(x) if (debug) printf (x)
444#define DEBUG_PRINT2(x1, x2) if (debug) printf (x1, x2)
445#define DEBUG_PRINT3(x1, x2, x3) if (debug) printf (x1, x2, x3)
446#define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \
447 if (debug) print_partial_compiled_pattern (s, e)
448#define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \
449 if (debug) print_double_string (w, s1, sz1, s2, sz2)
450
451
452extern void printchar ();
453
454/* Print the fastmap in human-readable form. */
455
456void
457print_fastmap (fastmap)
458 char *fastmap;
459{
460 unsigned was_a_range = 0;
461 unsigned i = 0;
462
463 while (i < (1 << BYTEWIDTH))
464 {
465 if (fastmap[i++])
466 {
467 was_a_range = 0;
468 printchar (i - 1);
469 while (i < (1 << BYTEWIDTH) && fastmap[i])
470 {
471 was_a_range = 1;
472 i++;
473 }
474 if (was_a_range)
475 {
476 printf ("-");
477 printchar (i - 1);
478 }
479 }
480 }
481 putchar ('\n');
482}
483
484
485/* Print a compiled pattern string in human-readable form, starting at
486 the START pointer into it and ending just before the pointer END. */
487
488void
489print_partial_compiled_pattern (start, end)
490 unsigned char *start;
491 unsigned char *end;
492{
493 int mcnt, mcnt2;
494 unsigned char *p = start;
495 unsigned char *pend = end;
496
497 if (start == NULL)
498 {
499 printf ("(null)\n");
500 return;
501 }
502
503 /* Loop over pattern commands. */
504 while (p < pend)
505 {
506 switch ((re_opcode_t) *p++)
507 {
508 case no_op:
509 printf ("/no_op");
510 break;
511
512 case exactn:
513 mcnt = *p++;
514 printf ("/exactn/%d", mcnt);
515 do
516 {
517 putchar ('/');
518 printchar (*p++);
519 }
520 while (--mcnt);
521 break;
522
523 case start_memory:
524 mcnt = *p++;
525 printf ("/start_memory/%d/%d", mcnt, *p++);
526 break;
527
528 case stop_memory:
529 mcnt = *p++;
530 printf ("/stop_memory/%d/%d", mcnt, *p++);
531 break;
532
533 case duplicate:
534 printf ("/duplicate/%d", *p++);
535 break;
536
537 case anychar:
538 printf ("/anychar");
539 break;
540
541 case charset:
542 case charset_not:
543 {
544 register int c;
545
546 printf ("/charset%s",
547 (re_opcode_t) *(p - 1) == charset_not ? "_not" : "");
548
549 assert (p + *p < pend);
550
551 for (c = 0; c < *p; c++)
552 {
553 unsigned bit;
554 unsigned char map_byte = p[1 + c];
555
556 putchar ('/');
557
558 for (bit = 0; bit < BYTEWIDTH; bit++)
559 if (map_byte & (1 << bit))
560 printchar (c * BYTEWIDTH + bit);
561 }
562 p += 1 + *p;
563 break;
564 }
565
566 case begline:
567 printf ("/begline");
568 break;
569
570 case endline:
571 printf ("/endline");
572 break;
573
574 case on_failure_jump:
575 extract_number_and_incr (&mcnt, &p);
576 printf ("/on_failure_jump/0/%d", mcnt);
577 break;
578
579 case on_failure_keep_string_jump:
580 extract_number_and_incr (&mcnt, &p);
581 printf ("/on_failure_keep_string_jump/0/%d", mcnt);
582 break;
583
584 case dummy_failure_jump:
585 extract_number_and_incr (&mcnt, &p);
586 printf ("/dummy_failure_jump/0/%d", mcnt);
587 break;
588
589 case push_dummy_failure:
590 printf ("/push_dummy_failure");
591 break;
592
593 case maybe_pop_jump:
594 extract_number_and_incr (&mcnt, &p);
595 printf ("/maybe_pop_jump/0/%d", mcnt);
596 break;
597
598 case pop_failure_jump:
599 extract_number_and_incr (&mcnt, &p);
600 printf ("/pop_failure_jump/0/%d", mcnt);
601 break;
602
603 case jump_past_alt:
604 extract_number_and_incr (&mcnt, &p);
605 printf ("/jump_past_alt/0/%d", mcnt);
606 break;
607
608 case jump:
609 extract_number_and_incr (&mcnt, &p);
610 printf ("/jump/0/%d", mcnt);
611 break;
612
613 case succeed_n:
614 extract_number_and_incr (&mcnt, &p);
615 extract_number_and_incr (&mcnt2, &p);
616 printf ("/succeed_n/0/%d/0/%d", mcnt, mcnt2);
617 break;
618
619 case jump_n:
620 extract_number_and_incr (&mcnt, &p);
621 extract_number_and_incr (&mcnt2, &p);
622 printf ("/jump_n/0/%d/0/%d", mcnt, mcnt2);
623 break;
624
625 case set_number_at:
626 extract_number_and_incr (&mcnt, &p);
627 extract_number_and_incr (&mcnt2, &p);
628 printf ("/set_number_at/0/%d/0/%d", mcnt, mcnt2);
629 break;
630
631 case wordbound:
632 printf ("/wordbound");
633 break;
634
635 case notwordbound:
636 printf ("/notwordbound");
637 break;
638
639 case wordbeg:
640 printf ("/wordbeg");
641 break;
642
643 case wordend:
644 printf ("/wordend");
645
646#ifdef emacs
647 case before_dot:
648 printf ("/before_dot");
649 break;
650
651 case at_dot:
652 printf ("/at_dot");
653 break;
654
655 case after_dot:
656 printf ("/after_dot");
657 break;
658
659 case syntaxspec:
660 printf ("/syntaxspec");
661 mcnt = *p++;
662 printf ("/%d", mcnt);
663 break;
664
665 case notsyntaxspec:
666 printf ("/notsyntaxspec");
667 mcnt = *p++;
668 printf ("/%d", mcnt);
669 break;
670#endif /* emacs */
671
672 case wordchar:
673 printf ("/wordchar");
674 break;
675
676 case notwordchar:
677 printf ("/notwordchar");
678 break;
679
680 case begbuf:
681 printf ("/begbuf");
682 break;
683
684 case endbuf:
685 printf ("/endbuf");
686 break;
687
688 default:
689 printf ("?%d", *(p-1));
690 }
691 }
692 printf ("/\n");
693}
694
695
696void
697print_compiled_pattern (bufp)
698 struct re_pattern_buffer *bufp;
699{
700 unsigned char *buffer = bufp->buffer;
701
702 print_partial_compiled_pattern (buffer, buffer + bufp->used);
703 printf ("%d bytes used/%d bytes allocated.\n", bufp->used, bufp->allocated);
704
705 if (bufp->fastmap_accurate && bufp->fastmap)
706 {
707 printf ("fastmap: ");
708 print_fastmap (bufp->fastmap);
709 }
710
711 printf ("re_nsub: %d\t", bufp->re_nsub);
712 printf ("regs_alloc: %d\t", bufp->regs_allocated);
713 printf ("can_be_null: %d\t", bufp->can_be_null);
714 printf ("newline_anchor: %d\n", bufp->newline_anchor);
715 printf ("no_sub: %d\t", bufp->no_sub);
716 printf ("not_bol: %d\t", bufp->not_bol);
717 printf ("not_eol: %d\t", bufp->not_eol);
718 printf ("syntax: %d\n", bufp->syntax);
719 /* Perhaps we should print the translate table? */
720}
721
722
723void
724print_double_string (where, string1, size1, string2, size2)
725 const char *where;
726 const char *string1;
727 const char *string2;
728 int size1;
729 int size2;
730{
731 unsigned this_char;
732
733 if (where == NULL)
734 printf ("(null)");
735 else
736 {
737 if (FIRST_STRING_P (where))
738 {
739 for (this_char = where - string1; this_char < size1; this_char++)
740 printchar (string1[this_char]);
741
742 where = string2;
743 }
744
745 for (this_char = where - string2; this_char < size2; this_char++)
746 printchar (string2[this_char]);
747 }
748}
749
750#else /* not DEBUG */
751
752#undef assert
753#define assert(e)
754
755#define DEBUG_STATEMENT(e)
756#define DEBUG_PRINT1(x)
757#define DEBUG_PRINT2(x1, x2)
758#define DEBUG_PRINT3(x1, x2, x3)
759#define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
760#define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
761
762#endif /* not DEBUG */
763\f
764/* Set by `re_set_syntax' to the current regexp syntax to recognize. Can
765 also be assigned to arbitrarily: each pattern buffer stores its own
766 syntax, so it can be changed between regex compilations. */
767reg_syntax_t re_syntax_options = RE_SYNTAX_EMACS;
768
769
770/* Specify the precise syntax of regexps for compilation. This provides
771 for compatibility for various utilities which historically have
772 different, incompatible syntaxes.
773
774 The argument SYNTAX is a bit mask comprised of the various bits
775 defined in regex.h. We return the old syntax. */
776
777reg_syntax_t
778re_set_syntax (syntax)
779 reg_syntax_t syntax;
780{
781 reg_syntax_t ret = re_syntax_options;
782
783 re_syntax_options = syntax;
784 return ret;
785}
786\f
787/* This table gives an error message for each of the error codes listed
788 in regex.h. Obviously the order here has to be same as there. */
789
790static const char *re_error_msg[] =
791 { NULL, /* REG_NOERROR */
792 "No match", /* REG_NOMATCH */
793 "Invalid regular expression", /* REG_BADPAT */
794 "Invalid collation character", /* REG_ECOLLATE */
795 "Invalid character class name", /* REG_ECTYPE */
796 "Trailing backslash", /* REG_EESCAPE */
797 "Invalid back reference", /* REG_ESUBREG */
798 "Unmatched [ or [^", /* REG_EBRACK */
799 "Unmatched ( or \\(", /* REG_EPAREN */
800 "Unmatched \\{", /* REG_EBRACE */
801 "Invalid content of \\{\\}", /* REG_BADBR */
802 "Invalid range end", /* REG_ERANGE */
803 "Memory exhausted", /* REG_ESPACE */
804 "Invalid preceding regular expression", /* REG_BADRPT */
805 "Premature end of regular expression", /* REG_EEND */
806 "Regular expression too big", /* REG_ESIZE */
807 "Unmatched ) or \\)", /* REG_ERPAREN */
808 };
809\f
810/* Subroutine declarations and macros for regex_compile. */
811
812static void store_op1 (), store_op2 ();
813static void insert_op1 (), insert_op2 ();
814static boolean at_begline_loc_p (), at_endline_loc_p ();
815static boolean group_in_compile_stack ();
816static reg_errcode_t compile_range ();
817
818/* Fetch the next character in the uncompiled pattern---translating it
819 if necessary. Also cast from a signed character in the constant
820 string passed to us by the user to an unsigned char that we can use
821 as an array index (in, e.g., `translate'). */
822#define PATFETCH(c) \
823 do {if (p == pend) return REG_EEND; \
824 c = (unsigned char) *p++; \
825 if (translate) c = translate[c]; \
826 } while (0)
827
828/* Fetch the next character in the uncompiled pattern, with no
829 translation. */
830#define PATFETCH_RAW(c) \
831 do {if (p == pend) return REG_EEND; \
832 c = (unsigned char) *p++; \
833 } while (0)
834
835/* Go backwards one character in the pattern. */
836#define PATUNFETCH p--
837
838
839/* If `translate' is non-null, return translate[D], else just D. We
840 cast the subscript to translate because some data is declared as
841 `char *', to avoid warnings when a string constant is passed. But
842 when we use a character as a subscript we must make it unsigned. */
843#define TRANSLATE(d) (translate ? translate[(unsigned char) (d)] : (d))
844
845
846/* Macros for outputting the compiled pattern into `buffer'. */
847
848/* If the buffer isn't allocated when it comes in, use this. */
849#define INIT_BUF_SIZE 32
850
851/* Make sure we have at least N more bytes of space in buffer. */
852#define GET_BUFFER_SPACE(n) \
853 while (b - bufp->buffer + (n) > bufp->allocated) \
854 EXTEND_BUFFER ()
855
856/* Make sure we have one more byte of buffer space and then add C to it. */
857#define BUF_PUSH(c) \
858 do { \
859 GET_BUFFER_SPACE (1); \
860 *b++ = (unsigned char) (c); \
861 } while (0)
862
863
864/* Ensure we have two more bytes of buffer space and then append C1 and C2. */
865#define BUF_PUSH_2(c1, c2) \
866 do { \
867 GET_BUFFER_SPACE (2); \
868 *b++ = (unsigned char) (c1); \
869 *b++ = (unsigned char) (c2); \
870 } while (0)
871
872
873/* As with BUF_PUSH_2, except for three bytes. */
874#define BUF_PUSH_3(c1, c2, c3) \
875 do { \
876 GET_BUFFER_SPACE (3); \
877 *b++ = (unsigned char) (c1); \
878 *b++ = (unsigned char) (c2); \
879 *b++ = (unsigned char) (c3); \
880 } while (0)
881
882
883/* Store a jump with opcode OP at LOC to location TO. We store a
884 relative address offset by the three bytes the jump itself occupies. */
885#define STORE_JUMP(op, loc, to) \
886 store_op1 (op, loc, (to) - (loc) - 3)
887
888/* Likewise, for a two-argument jump. */
889#define STORE_JUMP2(op, loc, to, arg) \
890 store_op2 (op, loc, (to) - (loc) - 3, arg)
891
892/* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */
893#define INSERT_JUMP(op, loc, to) \
894 insert_op1 (op, loc, (to) - (loc) - 3, b)
895
896/* Like `STORE_JUMP2', but for inserting. Assume `b' is the buffer end. */
897#define INSERT_JUMP2(op, loc, to, arg) \
898 insert_op2 (op, loc, (to) - (loc) - 3, arg, b)
899
900
901/* This is not an arbitrary limit: the arguments which represent offsets
902 into the pattern are two bytes long. So if 2^16 bytes turns out to
903 be too small, many things would have to change. */
904#define MAX_BUF_SIZE (1L << 16)
905
906
907/* Extend the buffer by twice its current size via realloc and
908 reset the pointers that pointed into the old block to point to the
909 correct places in the new one. If extending the buffer results in it
910 being larger than MAX_BUF_SIZE, then flag memory exhausted. */
911#define EXTEND_BUFFER() \
912 do { \
913 unsigned char *old_buffer = bufp->buffer; \
914 if (bufp->allocated == MAX_BUF_SIZE) \
915 return REG_ESIZE; \
916 bufp->allocated <<= 1; \
917 if (bufp->allocated > MAX_BUF_SIZE) \
918 bufp->allocated = MAX_BUF_SIZE; \
919 bufp->buffer = (unsigned char *) realloc (bufp->buffer, bufp->allocated);\
920 if (bufp->buffer == NULL) \
921 return REG_ESPACE; \
922 /* If the buffer moved, move all the pointers into it. */ \
923 if (old_buffer != bufp->buffer) \
924 { \
925 b = (b - old_buffer) + bufp->buffer; \
926 begalt = (begalt - old_buffer) + bufp->buffer; \
927 if (fixup_alt_jump) \
928 fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer;\
929 if (laststart) \
930 laststart = (laststart - old_buffer) + bufp->buffer; \
931 if (pending_exact) \
932 pending_exact = (pending_exact - old_buffer) + bufp->buffer; \
933 } \
934 } while (0)
935
936
937/* Since we have one byte reserved for the register number argument to
938 {start,stop}_memory, the maximum number of groups we can report
939 things about is what fits in that byte. */
940#define MAX_REGNUM 255
941
942/* But patterns can have more than `MAX_REGNUM' registers. We just
943 ignore the excess. */
944typedef unsigned regnum_t;
945
946
947/* Macros for the compile stack. */
948
949/* Since offsets can go either forwards or backwards, this type needs to
950 be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */
951typedef int pattern_offset_t;
952
953typedef struct
954{
955 pattern_offset_t begalt_offset;
956 pattern_offset_t fixup_alt_jump;
957 pattern_offset_t inner_group_offset;
958 pattern_offset_t laststart_offset;
959 regnum_t regnum;
960} compile_stack_elt_t;
961
962
963typedef struct
964{
965 compile_stack_elt_t *stack;
966 unsigned size;
967 unsigned avail; /* Offset of next open position. */
968} compile_stack_type;
969
970
971#define INIT_COMPILE_STACK_SIZE 32
972
973#define COMPILE_STACK_EMPTY (compile_stack.avail == 0)
974#define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size)
975
976/* The next available element. */
977#define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
978
979
980/* Set the bit for character C in a list. */
981#define SET_LIST_BIT(c) \
982 (b[((unsigned char) (c)) / BYTEWIDTH] \
983 |= 1 << (((unsigned char) c) % BYTEWIDTH))
984
985
986/* Get the next unsigned number in the uncompiled pattern. */
987#define GET_UNSIGNED_NUMBER(num) \
988 { if (p != pend) \
989 { \
990 PATFETCH (c); \
991 while (isdigit (c)) \
992 { \
993 if (num < 0) \
994 num = 0; \
995 num = num * 10 + c - '0'; \
996 if (p == pend) \
997 break; \
998 PATFETCH (c); \
999 } \
1000 } \
1001 }
1002
1003#define CHAR_CLASS_MAX_LENGTH 6 /* Namely, `xdigit'. */
1004
1005#define IS_CHAR_CLASS(string) \
1006 (STREQ (string, "alpha") || STREQ (string, "upper") \
1007 || STREQ (string, "lower") || STREQ (string, "digit") \
1008 || STREQ (string, "alnum") || STREQ (string, "xdigit") \
1009 || STREQ (string, "space") || STREQ (string, "print") \
1010 || STREQ (string, "punct") || STREQ (string, "graph") \
1011 || STREQ (string, "cntrl") || STREQ (string, "blank"))
1012\f
1013/* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
1014 Returns one of error codes defined in `regex.h', or zero for success.
1015
1016 Assumes the `allocated' (and perhaps `buffer') and `translate'
1017 fields are set in BUFP on entry.
1018
1019 If it succeeds, results are put in BUFP (if it returns an error, the
1020 contents of BUFP are undefined):
1021 `buffer' is the compiled pattern;
1022 `syntax' is set to SYNTAX;
1023 `used' is set to the length of the compiled pattern;
1024 `fastmap_accurate' is set to zero;
1025 `re_nsub' is set to the number of groups in PATTERN;
1026 `not_bol' and `not_eol' are set to zero.
1027
1028 The `fastmap' and `newline_anchor' fields are neither
1029 examined nor set. */
1030
1031static reg_errcode_t
1032regex_compile (pattern, size, syntax, bufp)
1033 const char *pattern;
1034 int size;
1035 reg_syntax_t syntax;
1036 struct re_pattern_buffer *bufp;
1037{
1038 /* We fetch characters from PATTERN here. Even though PATTERN is
1039 `char *' (i.e., signed), we declare these variables as unsigned, so
1040 they can be reliably used as array indices. */
1041 register unsigned char c, c1;
1042
1043 /* A random tempory spot in PATTERN. */
1044 const char *p1;
1045
1046 /* Points to the end of the buffer, where we should append. */
1047 register unsigned char *b;
1048
1049 /* Keeps track of unclosed groups. */
1050 compile_stack_type compile_stack;
1051
1052 /* Points to the current (ending) position in the pattern. */
1053 const char *p = pattern;
1054 const char *pend = pattern + size;
1055
1056 /* How to translate the characters in the pattern. */
1057 char *translate = bufp->translate;
1058
1059 /* Address of the count-byte of the most recently inserted `exactn'
1060 command. This makes it possible to tell if a new exact-match
1061 character can be added to that command or if the character requires
1062 a new `exactn' command. */
1063 unsigned char *pending_exact = 0;
1064
1065 /* Address of start of the most recently finished expression.
1066 This tells, e.g., postfix * where to find the start of its
1067 operand. Reset at the beginning of groups and alternatives. */
1068 unsigned char *laststart = 0;
1069
1070 /* Address of beginning of regexp, or inside of last group. */
1071 unsigned char *begalt;
1072
1073 /* Place in the uncompiled pattern (i.e., the {) to
1074 which to go back if the interval is invalid. */
1075 const char *beg_interval;
1076
1077 /* Address of the place where a forward jump should go to the end of
1078 the containing expression. Each alternative of an `or' -- except the
1079 last -- ends with a forward jump of this sort. */
1080 unsigned char *fixup_alt_jump = 0;
1081
1082 /* Counts open-groups as they are encountered. Remembered for the
1083 matching close-group on the compile stack, so the same register
1084 number is put in the stop_memory as the start_memory. */
1085 regnum_t regnum = 0;
1086
1087#ifdef DEBUG
1088 DEBUG_PRINT1 ("\nCompiling pattern: ");
1089 if (debug)
1090 {
1091 unsigned debug_count;
1092
1093 for (debug_count = 0; debug_count < size; debug_count++)
1094 printchar (pattern[debug_count]);
1095 putchar ('\n');
1096 }
1097#endif /* DEBUG */
1098
1099 /* Initialize the compile stack. */
1100 compile_stack.stack = TALLOC (INIT_COMPILE_STACK_SIZE, compile_stack_elt_t);
1101 if (compile_stack.stack == NULL)
1102 return REG_ESPACE;
1103
1104 compile_stack.size = INIT_COMPILE_STACK_SIZE;
1105 compile_stack.avail = 0;
1106
1107 /* Initialize the pattern buffer. */
1108 bufp->syntax = syntax;
1109 bufp->fastmap_accurate = 0;
1110 bufp->not_bol = bufp->not_eol = 0;
1111
1112 /* Set `used' to zero, so that if we return an error, the pattern
1113 printer (for debugging) will think there's no pattern. We reset it
1114 at the end. */
1115 bufp->used = 0;
1116
1117 /* Always count groups, whether or not bufp->no_sub is set. */
1118 bufp->re_nsub = 0;
1119
1120#if !defined (emacs) && !defined (SYNTAX_TABLE)
1121 /* Initialize the syntax table. */
1122 init_syntax_once ();
1123#endif
1124
1125 if (bufp->allocated == 0)
1126 {
1127 if (bufp->buffer)
1128 { /* If zero allocated, but buffer is non-null, try to realloc
1129 enough space. This loses if buffer's address is bogus, but
1130 that is the user's responsibility. */
1131 RETALLOC (bufp->buffer, INIT_BUF_SIZE, unsigned char);
1132 }
1133 else
1134 { /* Caller did not allocate a buffer. Do it for them. */
1135 bufp->buffer = TALLOC (INIT_BUF_SIZE, unsigned char);
1136 }
1137 if (!bufp->buffer) return REG_ESPACE;
1138
1139 bufp->allocated = INIT_BUF_SIZE;
1140 }
1141
1142 begalt = b = bufp->buffer;
1143
1144 /* Loop through the uncompiled pattern until we're at the end. */
1145 while (p != pend)
1146 {
1147 PATFETCH (c);
1148
1149 switch (c)
1150 {
1151 case '^':
1152 {
1153 if ( /* If at start of pattern, it's an operator. */
1154 p == pattern + 1
1155 /* If context independent, it's an operator. */
1156 || syntax & RE_CONTEXT_INDEP_ANCHORS
1157 /* Otherwise, depends on what's come before. */
1158 || at_begline_loc_p (pattern, p, syntax))
1159 BUF_PUSH (begline);
1160 else
1161 goto normal_char;
1162 }
1163 break;
1164
1165
1166 case '$':
1167 {
1168 if ( /* If at end of pattern, it's an operator. */
1169 p == pend
1170 /* If context independent, it's an operator. */
1171 || syntax & RE_CONTEXT_INDEP_ANCHORS
1172 /* Otherwise, depends on what's next. */
1173 || at_endline_loc_p (p, pend, syntax))
1174 BUF_PUSH (endline);
1175 else
1176 goto normal_char;
1177 }
1178 break;
1179
1180
1181 case '+':
1182 case '?':
1183 if ((syntax & RE_BK_PLUS_QM)
1184 || (syntax & RE_LIMITED_OPS))
1185 goto normal_char;
1186 handle_plus:
1187 case '*':
1188 /* If there is no previous pattern... */
1189 if (!laststart)
1190 {
1191 if (syntax & RE_CONTEXT_INVALID_OPS)
1192 return REG_BADRPT;
1193 else if (!(syntax & RE_CONTEXT_INDEP_OPS))
1194 goto normal_char;
1195 }
1196
1197 {
1198 /* Are we optimizing this jump? */
1199 boolean keep_string_p = false;
1200
1201 /* 1 means zero (many) matches is allowed. */
1202 char zero_times_ok = 0, many_times_ok = 0;
1203
1204 /* If there is a sequence of repetition chars, collapse it
1205 down to just one (the right one). We can't combine
1206 interval operators with these because of, e.g., `a{2}*',
1207 which should only match an even number of `a's. */
1208
1209 for (;;)
1210 {
1211 zero_times_ok |= c != '+';
1212 many_times_ok |= c != '?';
1213
1214 if (p == pend)
1215 break;
1216
1217 PATFETCH (c);
1218
1219 if (c == '*'
1220 || (!(syntax & RE_BK_PLUS_QM) && (c == '+' || c == '?')))
1221 ;
1222
1223 else if (syntax & RE_BK_PLUS_QM && c == '\\')
1224 {
1225 if (p == pend) return REG_EESCAPE;
1226
1227 PATFETCH (c1);
1228 if (!(c1 == '+' || c1 == '?'))
1229 {
1230 PATUNFETCH;
1231 PATUNFETCH;
1232 break;
1233 }
1234
1235 c = c1;
1236 }
1237 else
1238 {
1239 PATUNFETCH;
1240 break;
1241 }
1242
1243 /* If we get here, we found another repeat character. */
1244 }
1245
1246 /* Star, etc. applied to an empty pattern is equivalent
1247 to an empty pattern. */
1248 if (!laststart)
1249 break;
1250
1251 /* Now we know whether or not zero matches is allowed
1252 and also whether or not two or more matches is allowed. */
1253 if (many_times_ok)
1254 { /* More than one repetition is allowed, so put in at the
1255 end a backward relative jump from `b' to before the next
1256 jump we're going to put in below (which jumps from
1257 laststart to after this jump).
1258
1259 But if we are at the `*' in the exact sequence `.*\n',
1260 insert an unconditional jump backwards to the .,
1261 instead of the beginning of the loop. This way we only
1262 push a failure point once, instead of every time
1263 through the loop. */
1264 assert (p - 1 > pattern);
1265
1266 /* Allocate the space for the jump. */
1267 GET_BUFFER_SPACE (3);
1268
1269 /* We know we are not at the first character of the pattern,
1270 because laststart was nonzero. And we've already
1271 incremented `p', by the way, to be the character after
1272 the `*'. Do we have to do something analogous here
1273 for null bytes, because of RE_DOT_NOT_NULL? */
1274 if (TRANSLATE (*(p - 2)) == TRANSLATE ('.')
1275 && p < pend && TRANSLATE (*p) == TRANSLATE ('\n')
1276 && !(syntax & RE_DOT_NEWLINE))
1277 { /* We have .*\n. */
1278 STORE_JUMP (jump, b, laststart);
1279 keep_string_p = true;
1280 }
1281 else
1282 /* Anything else. */
1283 STORE_JUMP (maybe_pop_jump, b, laststart - 3);
1284
1285 /* We've added more stuff to the buffer. */
1286 b += 3;
1287 }
1288
1289 /* On failure, jump from laststart to b + 3, which will be the
1290 end of the buffer after this jump is inserted. */
1291 GET_BUFFER_SPACE (3);
1292 INSERT_JUMP (keep_string_p ? on_failure_keep_string_jump
1293 : on_failure_jump,
1294 laststart, b + 3);
1295 pending_exact = 0;
1296 b += 3;
1297
1298 if (!zero_times_ok)
1299 {
1300 /* At least one repetition is required, so insert a
1301 `dummy_failure_jump' before the initial
1302 `on_failure_jump' instruction of the loop. This
1303 effects a skip over that instruction the first time
1304 we hit that loop. */
1305 GET_BUFFER_SPACE (3);
1306 INSERT_JUMP (dummy_failure_jump, laststart, laststart + 6);
1307 b += 3;
1308 }
1309 }
1310 break;
1311
1312
1313 case '.':
1314 laststart = b;
1315 BUF_PUSH (anychar);
1316 break;
1317
1318
1319 case '[':
1320 {
1321 boolean had_char_class = false;
1322
1323 if (p == pend) return REG_EBRACK;
1324
1325 /* Ensure that we have enough space to push a charset: the
1326 opcode, the length count, and the bitset; 34 bytes in all. */
1327 GET_BUFFER_SPACE (34);
1328
1329 laststart = b;
1330
1331 /* We test `*p == '^' twice, instead of using an if
1332 statement, so we only need one BUF_PUSH. */
1333 BUF_PUSH (*p == '^' ? charset_not : charset);
1334 if (*p == '^')
1335 p++;
1336
1337 /* Remember the first position in the bracket expression. */
1338 p1 = p;
1339
1340 /* Push the number of bytes in the bitmap. */
1341 BUF_PUSH ((1 << BYTEWIDTH) / BYTEWIDTH);
1342
1343 /* Clear the whole map. */
1344 bzero (b, (1 << BYTEWIDTH) / BYTEWIDTH);
1345
1346 /* charset_not matches newline according to a syntax bit. */
1347 if ((re_opcode_t) b[-2] == charset_not
1348 && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
1349 SET_LIST_BIT ('\n');
1350
1351 /* Read in characters and ranges, setting map bits. */
1352 for (;;)
1353 {
1354 if (p == pend) return REG_EBRACK;
1355
1356 PATFETCH (c);
1357
1358 /* \ might escape characters inside [...] and [^...]. */
1359 if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
1360 {
1361 if (p == pend) return REG_EESCAPE;
1362
1363 PATFETCH (c1);
1364 SET_LIST_BIT (c1);
1365 continue;
1366 }
1367
1368 /* Could be the end of the bracket expression. If it's
1369 not (i.e., when the bracket expression is `[]' so
1370 far), the ']' character bit gets set way below. */
1371 if (c == ']' && p != p1 + 1)
1372 break;
1373
1374 /* Look ahead to see if it's a range when the last thing
1375 was a character class. */
1376 if (had_char_class && c == '-' && *p != ']')
1377 return REG_ERANGE;
1378
1379 /* Look ahead to see if it's a range when the last thing
1380 was a character: if this is a hyphen not at the
1381 beginning or the end of a list, then it's the range
1382 operator. */
1383 if (c == '-'
1384 && !(p - 2 >= pattern && p[-2] == '[')
1385 && !(p - 3 >= pattern && p[-3] == '[' && p[-2] == '^')
1386 && *p != ']')
1387 {
1388 reg_errcode_t ret
1389 = compile_range (&p, pend, translate, syntax, b);
1390 if (ret != REG_NOERROR) return ret;
1391 }
1392
1393 else if (p[0] == '-' && p[1] != ']')
1394 { /* This handles ranges made up of characters only. */
1395 reg_errcode_t ret;
1396
1397 /* Move past the `-'. */
1398 PATFETCH (c1);
1399
1400 ret = compile_range (&p, pend, translate, syntax, b);
1401 if (ret != REG_NOERROR) return ret;
1402 }
1403
1404 /* See if we're at the beginning of a possible character
1405 class. */
1406
1407 else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == ':')
1408 { /* Leave room for the null. */
1409 char str[CHAR_CLASS_MAX_LENGTH + 1];
1410
1411 PATFETCH (c);
1412 c1 = 0;
1413
1414 /* If pattern is `[[:'. */
1415 if (p == pend) return REG_EBRACK;
1416
1417 for (;;)
1418 {
1419 PATFETCH (c);
1420 if (c == ':' || c == ']' || p == pend
1421 || c1 == CHAR_CLASS_MAX_LENGTH)
1422 break;
1423 str[c1++] = c;
1424 }
1425 str[c1] = '\0';
1426
1427 /* If isn't a word bracketed by `[:' and:`]':
1428 undo the ending character, the letters, and leave
1429 the leading `:' and `[' (but set bits for them). */
1430 if (c == ':' && *p == ']')
1431 {
1432 int ch;
1433 boolean is_alnum = STREQ (str, "alnum");
1434 boolean is_alpha = STREQ (str, "alpha");
1435 boolean is_blank = STREQ (str, "blank");
1436 boolean is_cntrl = STREQ (str, "cntrl");
1437 boolean is_digit = STREQ (str, "digit");
1438 boolean is_graph = STREQ (str, "graph");
1439 boolean is_lower = STREQ (str, "lower");
1440 boolean is_print = STREQ (str, "print");
1441 boolean is_punct = STREQ (str, "punct");
1442 boolean is_space = STREQ (str, "space");
1443 boolean is_upper = STREQ (str, "upper");
1444 boolean is_xdigit = STREQ (str, "xdigit");
1445
1446 if (!IS_CHAR_CLASS (str)) return REG_ECTYPE;
1447
1448 /* Throw away the ] at the end of the character
1449 class. */
1450 PATFETCH (c);
1451
1452 if (p == pend) return REG_EBRACK;
1453
1454 for (ch = 0; ch < 1 << BYTEWIDTH; ch++)
1455 {
1456 if ( (is_alnum && isalnum (ch))
1457 || (is_alpha && isalpha (ch))
1458 || (is_blank && isblank (ch))
1459 || (is_cntrl && iscntrl (ch))
1460 || (is_digit && isdigit (ch))
1461 || (is_graph && isgraph (ch))
1462 || (is_lower && islower (ch))
1463 || (is_print && isprint (ch))
1464 || (is_punct && ispunct (ch))
1465 || (is_space && isspace (ch))
1466 || (is_upper && isupper (ch))
1467 || (is_xdigit && isxdigit (ch)))
1468 SET_LIST_BIT (ch);
1469 }
1470 had_char_class = true;
1471 }
1472 else
1473 {
1474 c1++;
1475 while (c1--)
1476 PATUNFETCH;
1477 SET_LIST_BIT ('[');
1478 SET_LIST_BIT (':');
1479 had_char_class = false;
1480 }
1481 }
1482 else
1483 {
1484 had_char_class = false;
1485 SET_LIST_BIT (c);
1486 }
1487 }
1488
1489 /* Discard any (non)matching list bytes that are all 0 at the
1490 end of the map. Decrease the map-length byte too. */
1491 while ((int) b[-1] > 0 && b[b[-1] - 1] == 0)
1492 b[-1]--;
1493 b += b[-1];
1494 }
1495 break;
1496
1497
1498 case '(':
1499 if (syntax & RE_NO_BK_PARENS)
1500 goto handle_open;
1501 else
1502 goto normal_char;
1503
1504
1505 case ')':
1506 if (syntax & RE_NO_BK_PARENS)
1507 goto handle_close;
1508 else
1509 goto normal_char;
1510
1511
1512 case '\n':
1513 if (syntax & RE_NEWLINE_ALT)
1514 goto handle_alt;
1515 else
1516 goto normal_char;
1517
1518
1519 case '|':
1520 if (syntax & RE_NO_BK_VBAR)
1521 goto handle_alt;
1522 else
1523 goto normal_char;
1524
1525
1526 case '{':
1527 if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES)
1528 goto handle_interval;
1529 else
1530 goto normal_char;
1531
1532
1533 case '\\':
1534 if (p == pend) return REG_EESCAPE;
1535
1536 /* Do not translate the character after the \, so that we can
1537 distinguish, e.g., \B from \b, even if we normally would
1538 translate, e.g., B to b. */
1539 PATFETCH_RAW (c);
1540
1541 switch (c)
1542 {
1543 case '(':
1544 if (syntax & RE_NO_BK_PARENS)
1545 goto normal_backslash;
1546
1547 handle_open:
1548 bufp->re_nsub++;
1549 regnum++;
1550
1551 if (COMPILE_STACK_FULL)
1552 {
1553 RETALLOC (compile_stack.stack, compile_stack.size << 1,
1554 compile_stack_elt_t);
1555 if (compile_stack.stack == NULL) return REG_ESPACE;
1556
1557 compile_stack.size <<= 1;
1558 }
1559
1560 /* These are the values to restore when we hit end of this
1561 group. They are all relative offsets, so that if the
1562 whole pattern moves because of realloc, they will still
1563 be valid. */
1564 COMPILE_STACK_TOP.begalt_offset = begalt - bufp->buffer;
1565 COMPILE_STACK_TOP.fixup_alt_jump
1566 = fixup_alt_jump ? fixup_alt_jump - bufp->buffer + 1 : 0;
1567 COMPILE_STACK_TOP.laststart_offset = b - bufp->buffer;
1568 COMPILE_STACK_TOP.regnum = regnum;
1569
1570 /* We will eventually replace the 0 with the number of
1571 groups inner to this one. But do not push a
1572 start_memory for groups beyond the last one we can
1573 represent in the compiled pattern. */
1574 if (regnum <= MAX_REGNUM)
1575 {
1576 COMPILE_STACK_TOP.inner_group_offset = b - bufp->buffer + 2;
1577 BUF_PUSH_3 (start_memory, regnum, 0);
1578 }
1579
1580 compile_stack.avail++;
1581
1582 fixup_alt_jump = 0;
1583 laststart = 0;
1584 begalt = b;
1585 break;
1586
1587
1588 case ')':
1589 if (syntax & RE_NO_BK_PARENS) goto normal_backslash;
1590
1591 if (COMPILE_STACK_EMPTY)
1592 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
1593 goto normal_backslash;
1594 else
1595 return REG_ERPAREN;
1596
1597 handle_close:
1598 if (fixup_alt_jump)
1599 { /* Push a dummy failure point at the end of the
1600 alternative for a possible future
1601 `pop_failure_jump' to pop. See comments at
1602 `push_dummy_failure' in `re_match_2'. */
1603 BUF_PUSH (push_dummy_failure);
1604
1605 /* We allocated space for this jump when we assigned
1606 to `fixup_alt_jump', in the `handle_alt' case below. */
1607 STORE_JUMP (jump_past_alt, fixup_alt_jump, b - 1);
1608 }
1609
1610 /* See similar code for backslashed left paren above. */
1611 if (COMPILE_STACK_EMPTY)
1612 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
1613 goto normal_char;
1614 else
1615 return REG_ERPAREN;
1616
1617 /* Since we just checked for an empty stack above, this
1618 ``can't happen''. */
1619 assert (compile_stack.avail != 0);
1620 {
1621 /* We don't just want to restore into `regnum', because
1622 later groups should continue to be numbered higher,
1623 as in `(ab)c(de)' -- the second group is #2. */
1624 regnum_t this_group_regnum;
1625
1626 compile_stack.avail--;
1627 begalt = bufp->buffer + COMPILE_STACK_TOP.begalt_offset;
1628 fixup_alt_jump
1629 = COMPILE_STACK_TOP.fixup_alt_jump
1630 ? bufp->buffer + COMPILE_STACK_TOP.fixup_alt_jump - 1
1631 : 0;
1632 laststart = bufp->buffer + COMPILE_STACK_TOP.laststart_offset;
1633 this_group_regnum = COMPILE_STACK_TOP.regnum;
1634
1635 /* We're at the end of the group, so now we know how many
1636 groups were inside this one. */
1637 if (this_group_regnum <= MAX_REGNUM)
1638 {
1639 unsigned char *inner_group_loc
1640 = bufp->buffer + COMPILE_STACK_TOP.inner_group_offset;
1641
1642 *inner_group_loc = regnum - this_group_regnum;
1643 BUF_PUSH_3 (stop_memory, this_group_regnum,
1644 regnum - this_group_regnum);
1645 }
1646 }
1647 break;
1648
1649
1650 case '|': /* `\|'. */
1651 if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR)
1652 goto normal_backslash;
1653 handle_alt:
1654 if (syntax & RE_LIMITED_OPS)
1655 goto normal_char;
1656
1657 /* Insert before the previous alternative a jump which
1658 jumps to this alternative if the former fails. */
1659 GET_BUFFER_SPACE (3);
1660 INSERT_JUMP (on_failure_jump, begalt, b + 6);
1661 pending_exact = 0;
1662 b += 3;
1663
1664 /* The alternative before this one has a jump after it
1665 which gets executed if it gets matched. Adjust that
1666 jump so it will jump to this alternative's analogous
1667 jump (put in below, which in turn will jump to the next
1668 (if any) alternative's such jump, etc.). The last such
1669 jump jumps to the correct final destination. A picture:
1670 _____ _____
1671 | | | |
1672 | v | v
1673 a | b | c
1674
1675 If we are at `b,' then fixup_alt_jump right now points to a
1676 three-byte space after `a.' We'll put in the jump, set
1677 fixup_alt_jump to right after `b,' and leave behind three
1678 bytes which we'll fill in when we get to after `c.' */
1679
1680 if (fixup_alt_jump)
1681 STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
1682
1683 /* Mark and leave space for a jump after this alternative,
1684 to be filled in later either by next alternative or
1685 when know we're at the end of a series of alternatives. */
1686 fixup_alt_jump = b;
1687 GET_BUFFER_SPACE (3);
1688 b += 3;
1689
1690 laststart = 0;
1691 begalt = b;
1692 break;
1693
1694
1695 case '{':
1696 /* If \{ is a literal. */
1697 if (!(syntax & RE_INTERVALS)
1698 /* If we're at `\{' and it's not the open-interval
1699 operator. */
1700 || ((syntax & RE_INTERVALS) && (syntax & RE_NO_BK_BRACES))
1701 || (p - 2 == pattern && p == pend))
1702 goto normal_backslash;
1703
1704 handle_interval:
1705 {
1706 /* If got here, then the syntax allows intervals. */
1707
1708 /* At least (most) this many matches must be made. */
1709 int lower_bound = -1, upper_bound = -1;
1710
1711 beg_interval = p - 1;
1712
1713 if (p == pend)
1714 {
1715 if (syntax & RE_NO_BK_BRACES)
1716 goto unfetch_interval;
1717 else
1718 return REG_EBRACE;
1719 }
1720
1721 GET_UNSIGNED_NUMBER (lower_bound);
1722
1723 if (c == ',')
1724 {
1725 GET_UNSIGNED_NUMBER (upper_bound);
1726 if (upper_bound < 0) upper_bound = RE_DUP_MAX;
1727 }
1728 else
1729 /* Interval such as `{1}' => match exactly once. */
1730 upper_bound = lower_bound;
1731
1732 if (lower_bound < 0 || upper_bound > RE_DUP_MAX
1733 || lower_bound > upper_bound)
1734 {
1735 if (syntax & RE_NO_BK_BRACES)
1736 goto unfetch_interval;
1737 else
1738 return REG_BADBR;
1739 }
1740
1741 if (!(syntax & RE_NO_BK_BRACES))
1742 {
1743 if (c != '\\') return REG_EBRACE;
1744
1745 PATFETCH (c);
1746 }
1747
1748 if (c != '}')
1749 {
1750 if (syntax & RE_NO_BK_BRACES)
1751 goto unfetch_interval;
1752 else
1753 return REG_BADBR;
1754 }
1755
1756 /* We just parsed a valid interval. */
1757
1758 /* If it's invalid to have no preceding re. */
1759 if (!laststart)
1760 {
1761 if (syntax & RE_CONTEXT_INVALID_OPS)
1762 return REG_BADRPT;
1763 else if (syntax & RE_CONTEXT_INDEP_OPS)
1764 laststart = b;
1765 else
1766 goto unfetch_interval;
1767 }
1768
1769 /* If the upper bound is zero, don't want to succeed at
1770 all; jump from `laststart' to `b + 3', which will be
1771 the end of the buffer after we insert the jump. */
1772 if (upper_bound == 0)
1773 {
1774 GET_BUFFER_SPACE (3);
1775 INSERT_JUMP (jump, laststart, b + 3);
1776 b += 3;
1777 }
1778
1779 /* Otherwise, we have a nontrivial interval. When
1780 we're all done, the pattern will look like:
1781 set_number_at <jump count> <upper bound>
1782 set_number_at <succeed_n count> <lower bound>
1783 succeed_n <after jump addr> <succed_n count>
1784 <body of loop>
1785 jump_n <succeed_n addr> <jump count>
1786 (The upper bound and `jump_n' are omitted if
1787 `upper_bound' is 1, though.) */
1788 else
1789 { /* If the upper bound is > 1, we need to insert
1790 more at the end of the loop. */
1791 unsigned nbytes = 10 + (upper_bound > 1) * 10;
1792
1793 GET_BUFFER_SPACE (nbytes);
1794
1795 /* Initialize lower bound of the `succeed_n', even
1796 though it will be set during matching by its
1797 attendant `set_number_at' (inserted next),
1798 because `re_compile_fastmap' needs to know.
1799 Jump to the `jump_n' we might insert below. */
1800 INSERT_JUMP2 (succeed_n, laststart,
1801 b + 5 + (upper_bound > 1) * 5,
1802 lower_bound);
1803 b += 5;
1804
1805 /* Code to initialize the lower bound. Insert
1806 before the `succeed_n'. The `5' is the last two
1807 bytes of this `set_number_at', plus 3 bytes of
1808 the following `succeed_n'. */
1809 insert_op2 (set_number_at, laststart, 5, lower_bound, b);
1810 b += 5;
1811
1812 if (upper_bound > 1)
1813 { /* More than one repetition is allowed, so
1814 append a backward jump to the `succeed_n'
1815 that starts this interval.
1816
1817 When we've reached this during matching,
1818 we'll have matched the interval once, so
1819 jump back only `upper_bound - 1' times. */
1820 STORE_JUMP2 (jump_n, b, laststart + 5,
1821 upper_bound - 1);
1822 b += 5;
1823
1824 /* The location we want to set is the second
1825 parameter of the `jump_n'; that is `b-2' as
1826 an absolute address. `laststart' will be
1827 the `set_number_at' we're about to insert;
1828 `laststart+3' the number to set, the source
1829 for the relative address. But we are
1830 inserting into the middle of the pattern --
1831 so everything is getting moved up by 5.
1832 Conclusion: (b - 2) - (laststart + 3) + 5,
1833 i.e., b - laststart.
1834
1835 We insert this at the beginning of the loop
1836 so that if we fail during matching, we'll
1837 reinitialize the bounds. */
1838 insert_op2 (set_number_at, laststart, b - laststart,
1839 upper_bound - 1, b);
1840 b += 5;
1841 }
1842 }
1843 pending_exact = 0;
1844 beg_interval = NULL;
1845 }
1846 break;
1847
1848 unfetch_interval:
1849 /* If an invalid interval, match the characters as literals. */
1850 assert (beg_interval);
1851 p = beg_interval;
1852 beg_interval = NULL;
1853
1854 /* normal_char and normal_backslash need `c'. */
1855 PATFETCH (c);
1856
1857 if (!(syntax & RE_NO_BK_BRACES))
1858 {
1859 if (p > pattern && p[-1] == '\\')
1860 goto normal_backslash;
1861 }
1862 goto normal_char;
1863
1864#ifdef emacs
1865 /* There is no way to specify the before_dot and after_dot
1866 operators. rms says this is ok. --karl */
1867 case '=':
1868 BUF_PUSH (at_dot);
1869 break;
1870
1871 case 's':
1872 laststart = b;
1873 PATFETCH (c);
1874 BUF_PUSH_2 (syntaxspec, syntax_spec_code[c]);
1875 break;
1876
1877 case 'S':
1878 laststart = b;
1879 PATFETCH (c);
1880 BUF_PUSH_2 (notsyntaxspec, syntax_spec_code[c]);
1881 break;
1882#endif /* emacs */
1883
1884
1885 case 'w':
1886 laststart = b;
1887 BUF_PUSH (wordchar);
1888 break;
1889
1890
1891 case 'W':
1892 laststart = b;
1893 BUF_PUSH (notwordchar);
1894 break;
1895
1896
1897 case '<':
1898 BUF_PUSH (wordbeg);
1899 break;
1900
1901 case '>':
1902 BUF_PUSH (wordend);
1903 break;
1904
1905 case 'b':
1906 BUF_PUSH (wordbound);
1907 break;
1908
1909 case 'B':
1910 BUF_PUSH (notwordbound);
1911 break;
1912
1913 case '`':
1914 BUF_PUSH (begbuf);
1915 break;
1916
1917 case '\'':
1918 BUF_PUSH (endbuf);
1919 break;
1920
1921 case '1': case '2': case '3': case '4': case '5':
1922 case '6': case '7': case '8': case '9':
1923 if (syntax & RE_NO_BK_REFS)
1924 goto normal_char;
1925
1926 c1 = c - '0';
1927
1928 if (c1 > regnum)
1929 return REG_ESUBREG;
1930
1931 /* Can't back reference to a subexpression if inside of it. */
1932 if (group_in_compile_stack (compile_stack, c1))
1933 goto normal_char;
1934
1935 laststart = b;
1936 BUF_PUSH_2 (duplicate, c1);
1937 break;
1938
1939
1940 case '+':
1941 case '?':
1942 if (syntax & RE_BK_PLUS_QM)
1943 goto handle_plus;
1944 else
1945 goto normal_backslash;
1946
1947 default:
1948 normal_backslash:
1949 /* You might think it would be useful for \ to mean
1950 not to translate; but if we don't translate it
1951 it will never match anything. */
1952 c = TRANSLATE (c);
1953 goto normal_char;
1954 }
1955 break;
1956
1957
1958 default:
1959 /* Expects the character in `c'. */
1960 normal_char:
1961 /* If no exactn currently being built. */
1962 if (!pending_exact
1963
1964 /* If last exactn not at current position. */
1965 || pending_exact + *pending_exact + 1 != b
1966
1967 /* We have only one byte following the exactn for the count. */
1968 || *pending_exact == (1 << BYTEWIDTH) - 1
1969
1970 /* If followed by a repetition operator. */
1971 || *p == '*' || *p == '^'
1972 || ((syntax & RE_BK_PLUS_QM)
1973 ? *p == '\\' && (p[1] == '+' || p[1] == '?')
1974 : (*p == '+' || *p == '?'))
1975 || ((syntax & RE_INTERVALS)
1976 && ((syntax & RE_NO_BK_BRACES)
1977 ? *p == '{'
1978 : (p[0] == '\\' && p[1] == '{'))))
1979 {
1980 /* Start building a new exactn. */
1981
1982 laststart = b;
1983
1984 BUF_PUSH_2 (exactn, 0);
1985 pending_exact = b - 1;
1986 }
1987
1988 BUF_PUSH (c);
1989 (*pending_exact)++;
1990 break;
1991 } /* switch (c) */
1992 } /* while p != pend */
1993
1994
1995 /* Through the pattern now. */
1996
1997 if (fixup_alt_jump)
1998 STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
1999
2000 if (!COMPILE_STACK_EMPTY)
2001 return REG_EPAREN;
2002
2003 free (compile_stack.stack);
2004
2005 /* We have succeeded; set the length of the buffer. */
2006 bufp->used = b - bufp->buffer;
2007
2008#ifdef DEBUG
2009 if (debug)
2010 {
2011 DEBUG_PRINT1 ("\nCompiled pattern: ");
2012 print_compiled_pattern (bufp);
2013 }
2014#endif /* DEBUG */
2015
2016 return REG_NOERROR;
2017} /* regex_compile */
2018\f
2019/* Subroutines for `regex_compile'. */
2020
2021/* Store OP at LOC followed by two-byte integer parameter ARG. */
2022
2023static void
2024store_op1 (op, loc, arg)
2025 re_opcode_t op;
2026 unsigned char *loc;
2027 int arg;
2028{
2029 *loc = (unsigned char) op;
2030 STORE_NUMBER (loc + 1, arg);
2031}
2032
2033
2034/* Like `store_op1', but for two two-byte parameters ARG1 and ARG2. */
2035
2036static void
2037store_op2 (op, loc, arg1, arg2)
2038 re_opcode_t op;
2039 unsigned char *loc;
2040 int arg1, arg2;
2041{
2042 *loc = (unsigned char) op;
2043 STORE_NUMBER (loc + 1, arg1);
2044 STORE_NUMBER (loc + 3, arg2);
2045}
2046
2047
2048/* Copy the bytes from LOC to END to open up three bytes of space at LOC
2049 for OP followed by two-byte integer parameter ARG. */
2050
2051static void
2052insert_op1 (op, loc, arg, end)
2053 re_opcode_t op;
2054 unsigned char *loc;
2055 int arg;
2056 unsigned char *end;
2057{
2058 register unsigned char *pfrom = end;
2059 register unsigned char *pto = end + 3;
2060
2061 while (pfrom != loc)
2062 *--pto = *--pfrom;
2063
2064 store_op1 (op, loc, arg);
2065}
2066
2067
2068/* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2. */
2069
2070static void
2071insert_op2 (op, loc, arg1, arg2, end)
2072 re_opcode_t op;
2073 unsigned char *loc;
2074 int arg1, arg2;
2075 unsigned char *end;
2076{
2077 register unsigned char *pfrom = end;
2078 register unsigned char *pto = end + 5;
2079
2080 while (pfrom != loc)
2081 *--pto = *--pfrom;
2082
2083 store_op2 (op, loc, arg1, arg2);
2084}
2085
2086
2087/* P points to just after a ^ in PATTERN. Return true if that ^ comes
2088 after an alternative or a begin-subexpression. We assume there is at
2089 least one character before the ^. */
2090
2091static boolean
2092at_begline_loc_p (pattern, p, syntax)
2093 const char *pattern, *p;
2094 reg_syntax_t syntax;
2095{
2096 const char *prev = p - 2;
2097 boolean prev_prev_backslash = prev > pattern && prev[-1] == '\\';
2098
2099 return
2100 /* After a subexpression? */
2101 (*prev == '(' && (syntax & RE_NO_BK_PARENS || prev_prev_backslash))
2102 /* After an alternative? */
2103 || (*prev == '|' && (syntax & RE_NO_BK_VBAR || prev_prev_backslash));
2104}
2105
2106
2107/* The dual of at_begline_loc_p. This one is for $. We assume there is
2108 at least one character after the $, i.e., `P < PEND'. */
2109
2110static boolean
2111at_endline_loc_p (p, pend, syntax)
2112 const char *p, *pend;
2113 int syntax;
2114{
2115 const char *next = p;
2116 boolean next_backslash = *next == '\\';
2117 const char *next_next = p + 1 < pend ? p + 1 : NULL;
2118
2119 return
2120 /* Before a subexpression? */
2121 (syntax & RE_NO_BK_PARENS ? *next == ')'
2122 : next_backslash && next_next && *next_next == ')')
2123 /* Before an alternative? */
2124 || (syntax & RE_NO_BK_VBAR ? *next == '|'
2125 : next_backslash && next_next && *next_next == '|');
2126}
2127
2128
2129/* Returns true if REGNUM is in one of COMPILE_STACK's elements and
2130 false if it's not. */
2131
2132static boolean
2133group_in_compile_stack (compile_stack, regnum)
2134 compile_stack_type compile_stack;
2135 regnum_t regnum;
2136{
2137 int this_element;
2138
2139 for (this_element = compile_stack.avail - 1;
2140 this_element >= 0;
2141 this_element--)
2142 if (compile_stack.stack[this_element].regnum == regnum)
2143 return true;
2144
2145 return false;
2146}
2147
2148
2149/* Read the ending character of a range (in a bracket expression) from the
2150 uncompiled pattern *P_PTR (which ends at PEND). We assume the
2151 starting character is in `P[-2]'. (`P[-1]' is the character `-'.)
2152 Then we set the translation of all bits between the starting and
2153 ending characters (inclusive) in the compiled pattern B.
2154
2155 Return an error code.
2156
2157 We use these short variable names so we can use the same macros as
2158 `regex_compile' itself. */
2159
2160static reg_errcode_t
2161compile_range (p_ptr, pend, translate, syntax, b)
2162 const char **p_ptr, *pend;
2163 char *translate;
2164 reg_syntax_t syntax;
2165 unsigned char *b;
2166{
2167 unsigned this_char;
2168
2169 const char *p = *p_ptr;
2170
2171 /* Even though the pattern is a signed `char *', we need to fetch into
2172 `unsigned char's. Reason: if the high bit of the pattern character
2173 is set, the range endpoints will be negative if we fetch into a
2174 signed `char *'. */
2175 unsigned char range_end;
2176 unsigned char range_start = p[-2];
2177
2178 if (p == pend)
2179 return REG_ERANGE;
2180
2181 PATFETCH (range_end);
2182
2183 /* Have to increment the pointer into the pattern string, so the
2184 caller isn't still at the ending character. */
2185 (*p_ptr)++;
2186
2187 /* If the start is after the end, the range is empty. */
2188 if (range_start > range_end)
2189 return syntax & RE_NO_EMPTY_RANGES ? REG_ERANGE : REG_NOERROR;
2190
2191 /* Here we see why `this_char' has to be larger than an `unsigned
2192 char' -- the range is inclusive, so if `range_end' == 0xff
2193 (assuming 8-bit characters), we would otherwise go into an infinite
2194 loop, since all characters <= 0xff. */
2195 for (this_char = range_start; this_char <= range_end; this_char++)
2196 {
2197 SET_LIST_BIT (TRANSLATE (this_char));
2198 }
2199
2200 return REG_NOERROR;
2201}
2202\f
2203/* Failure stack declarations and macros; both re_compile_fastmap and
2204 re_match_2 use a failure stack. These have to be macros because of
2205 REGEX_ALLOCATE. */
2206
2207
2208/* Number of failure points for which to initially allocate space
2209 when matching. If this number is exceeded, we allocate more
2210 space, so it is not a hard limit. */
2211#ifndef INIT_FAILURE_ALLOC
2212#define INIT_FAILURE_ALLOC 5
2213#endif
2214
2215/* Roughly the maximum number of failure points on the stack. Would be
2216 exactly that if always used MAX_FAILURE_SPACE each time we failed.
2217 This is a variable only so users of regex can assign to it; we never
2218 change it ourselves. */
2219int re_max_failures = 2000;
2220
2221typedef const unsigned char *fail_stack_elt_t;
2222
2223typedef struct
2224{
2225 fail_stack_elt_t *stack;
2226 unsigned size;
2227 unsigned avail; /* Offset of next open position. */
2228} fail_stack_type;
2229
2230#define FAIL_STACK_EMPTY() (fail_stack.avail == 0)
2231#define FAIL_STACK_PTR_EMPTY() (fail_stack_ptr->avail == 0)
2232#define FAIL_STACK_FULL() (fail_stack.avail == fail_stack.size)
2233#define FAIL_STACK_TOP() (fail_stack.stack[fail_stack.avail])
2234
2235
2236/* Initialize `fail_stack'. Do `return -2' if the alloc fails. */
2237
2238#define INIT_FAIL_STACK() \
2239 do { \
2240 fail_stack.stack = (fail_stack_elt_t *) \
2241 REGEX_ALLOCATE (INIT_FAILURE_ALLOC * sizeof (fail_stack_elt_t)); \
2242 \
2243 if (fail_stack.stack == NULL) \
2244 return -2; \
2245 \
2246 fail_stack.size = INIT_FAILURE_ALLOC; \
2247 fail_stack.avail = 0; \
2248 } while (0)
2249
2250
2251/* Double the size of FAIL_STACK, up to approximately `re_max_failures' items.
2252
2253 Return 1 if succeeds, and 0 if either ran out of memory
2254 allocating space for it or it was already too large.
2255
2256 REGEX_REALLOCATE requires `destination' be declared. */
2257
2258#define DOUBLE_FAIL_STACK(fail_stack) \
2259 ((fail_stack).size > re_max_failures * MAX_FAILURE_ITEMS \
2260 ? 0 \
2261 : ((fail_stack).stack = (fail_stack_elt_t *) \
2262 REGEX_REALLOCATE ((fail_stack).stack, \
2263 (fail_stack).size * sizeof (fail_stack_elt_t), \
2264 ((fail_stack).size << 1) * sizeof (fail_stack_elt_t)), \
2265 \
2266 (fail_stack).stack == NULL \
2267 ? 0 \
2268 : ((fail_stack).size <<= 1, \
2269 1)))
2270
2271
2272/* Push PATTERN_OP on FAIL_STACK.
2273
2274 Return 1 if was able to do so and 0 if ran out of memory allocating
2275 space to do so. */
2276#define PUSH_PATTERN_OP(pattern_op, fail_stack) \
2277 ((FAIL_STACK_FULL () \
2278 && !DOUBLE_FAIL_STACK (fail_stack)) \
2279 ? 0 \
2280 : ((fail_stack).stack[(fail_stack).avail++] = pattern_op, \
2281 1))
2282
2283/* This pushes an item onto the failure stack. Must be a four-byte
2284 value. Assumes the variable `fail_stack'. Probably should only
2285 be called from within `PUSH_FAILURE_POINT'. */
2286#define PUSH_FAILURE_ITEM(item) \
2287 fail_stack.stack[fail_stack.avail++] = (fail_stack_elt_t) item
2288
2289/* The complement operation. Assumes `fail_stack' is nonempty. */
2290#define POP_FAILURE_ITEM() fail_stack.stack[--fail_stack.avail]
2291
2292/* Used to omit pushing failure point id's when we're not debugging. */
2293#ifdef DEBUG
2294#define DEBUG_PUSH PUSH_FAILURE_ITEM
2295#define DEBUG_POP(item_addr) *(item_addr) = POP_FAILURE_ITEM ()
2296#else
2297#define DEBUG_PUSH(item)
2298#define DEBUG_POP(item_addr)
2299#endif
2300
2301
2302/* Push the information about the state we will need
2303 if we ever fail back to it.
2304
2305 Requires variables fail_stack, regstart, regend, reg_info, and
2306 num_regs be declared. DOUBLE_FAIL_STACK requires `destination' be
2307 declared.
2308
2309 Does `return FAILURE_CODE' if runs out of memory. */
2310
2311#define PUSH_FAILURE_POINT(pattern_place, string_place, failure_code) \
2312 do { \
2313 char *destination; \
2314 /* Must be int, so when we don't save any registers, the arithmetic \
2315 of 0 + -1 isn't done as unsigned. */ \
2316 int this_reg; \
2317 \
2318 DEBUG_STATEMENT (failure_id++); \
2319 DEBUG_PRINT2 ("\nPUSH_FAILURE_POINT #%u:\n", failure_id); \
2320 DEBUG_PRINT2 (" Before push, next avail: %d\n", (fail_stack).avail);\
2321 DEBUG_PRINT2 (" size: %d\n", (fail_stack).size);\
2322 \
2323 DEBUG_PRINT2 (" slots needed: %d\n", NUM_FAILURE_ITEMS); \
2324 DEBUG_PRINT2 (" available: %d\n", REMAINING_AVAIL_SLOTS); \
2325 \
2326 /* Ensure we have enough space allocated for what we will push. */ \
2327 while (REMAINING_AVAIL_SLOTS < NUM_FAILURE_ITEMS) \
2328 { \
2329 if (!DOUBLE_FAIL_STACK (fail_stack)) \
2330 return failure_code; \
2331 \
2332 DEBUG_PRINT2 ("\n Doubled stack; size now: %d\n", \
2333 (fail_stack).size); \
2334 DEBUG_PRINT2 (" slots available: %d\n", REMAINING_AVAIL_SLOTS);\
2335 } \
2336 \
2337 /* Push the info, starting with the registers. */ \
2338 DEBUG_PRINT1 ("\n"); \
2339 \
2340 for (this_reg = lowest_active_reg; this_reg <= highest_active_reg; \
2341 this_reg++) \
2342 { \
2343 DEBUG_PRINT2 (" Pushing reg: %d\n", this_reg); \
2344 DEBUG_STATEMENT (num_regs_pushed++); \
2345 \
2346 DEBUG_PRINT2 (" start: 0x%x\n", regstart[this_reg]); \
2347 PUSH_FAILURE_ITEM (regstart[this_reg]); \
2348 \
2349 DEBUG_PRINT2 (" end: 0x%x\n", regend[this_reg]); \
2350 PUSH_FAILURE_ITEM (regend[this_reg]); \
2351 \
2352 DEBUG_PRINT2 (" info: 0x%x\n ", reg_info[this_reg]); \
2353 DEBUG_PRINT2 (" match_null=%d", \
2354 REG_MATCH_NULL_STRING_P (reg_info[this_reg])); \
2355 DEBUG_PRINT2 (" active=%d", IS_ACTIVE (reg_info[this_reg])); \
2356 DEBUG_PRINT2 (" matched_something=%d", \
2357 MATCHED_SOMETHING (reg_info[this_reg])); \
2358 DEBUG_PRINT2 (" ever_matched=%d", \
2359 EVER_MATCHED_SOMETHING (reg_info[this_reg])); \
2360 DEBUG_PRINT1 ("\n"); \
2361 PUSH_FAILURE_ITEM (reg_info[this_reg].word); \
2362 } \
2363 \
2364 DEBUG_PRINT2 (" Pushing low active reg: %d\n", lowest_active_reg);\
2365 PUSH_FAILURE_ITEM (lowest_active_reg); \
2366 \
2367 DEBUG_PRINT2 (" Pushing high active reg: %d\n", highest_active_reg);\
2368 PUSH_FAILURE_ITEM (highest_active_reg); \
2369 \
2370 DEBUG_PRINT2 (" Pushing pattern 0x%x: ", pattern_place); \
2371 DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern_place, pend); \
2372 PUSH_FAILURE_ITEM (pattern_place); \
2373 \
2374 DEBUG_PRINT2 (" Pushing string 0x%x: `", string_place); \
2375 DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, \
2376 size2); \
2377 DEBUG_PRINT1 ("'\n"); \
2378 PUSH_FAILURE_ITEM (string_place); \
2379 \
2380 DEBUG_PRINT2 (" Pushing failure id: %u\n", failure_id); \
2381 DEBUG_PUSH (failure_id); \
2382 } while (0)
2383
2384/* This is the number of items that are pushed and popped on the stack
2385 for each register. */
2386#define NUM_REG_ITEMS 3
2387
2388/* Individual items aside from the registers. */
2389#ifdef DEBUG
2390#define NUM_NONREG_ITEMS 5 /* Includes failure point id. */
2391#else
2392#define NUM_NONREG_ITEMS 4
2393#endif
2394
2395/* We push at most this many items on the stack. */
2396#define MAX_FAILURE_ITEMS ((num_regs - 1) * NUM_REG_ITEMS + NUM_NONREG_ITEMS)
2397
2398/* We actually push this many items. */
2399#define NUM_FAILURE_ITEMS \
2400 ((highest_active_reg - lowest_active_reg + 1) * NUM_REG_ITEMS \
2401 + NUM_NONREG_ITEMS)
2402
2403/* How many items can still be added to the stack without overflowing it. */
2404#define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
2405
2406
2407/* Pops what PUSH_FAIL_STACK pushes.
2408
2409 We restore into the parameters, all of which should be lvalues:
2410 STR -- the saved data position.
2411 PAT -- the saved pattern position.
2412 LOW_REG, HIGH_REG -- the highest and lowest active registers.
2413 REGSTART, REGEND -- arrays of string positions.
2414 REG_INFO -- array of information about each subexpression.
2415
2416 Also assumes the variables `fail_stack' and (if debugging), `bufp',
2417 `pend', `string1', `size1', `string2', and `size2'. */
2418
2419#define POP_FAILURE_POINT(str, pat, low_reg, high_reg, regstart, regend, reg_info)\
2420{ \
2421 DEBUG_STATEMENT (fail_stack_elt_t failure_id;) \
2422 int this_reg; \
2423 const unsigned char *string_temp; \
2424 \
2425 assert (!FAIL_STACK_EMPTY ()); \
2426 \
2427 /* Remove failure points and point to how many regs pushed. */ \
2428 DEBUG_PRINT1 ("POP_FAILURE_POINT:\n"); \
2429 DEBUG_PRINT2 (" Before pop, next avail: %d\n", fail_stack.avail); \
2430 DEBUG_PRINT2 (" size: %d\n", fail_stack.size); \
2431 \
2432 assert (fail_stack.avail >= NUM_NONREG_ITEMS); \
2433 \
2434 DEBUG_POP (&failure_id); \
2435 DEBUG_PRINT2 (" Popping failure id: %u\n", failure_id); \
2436 \
2437 /* If the saved string location is NULL, it came from an \
2438 on_failure_keep_string_jump opcode, and we want to throw away the \
2439 saved NULL, thus retaining our current position in the string. */ \
2440 string_temp = POP_FAILURE_ITEM (); \
2441 if (string_temp != NULL) \
2442 str = (const char *) string_temp; \
2443 \
2444 DEBUG_PRINT2 (" Popping string 0x%x: `", str); \
2445 DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2); \
2446 DEBUG_PRINT1 ("'\n"); \
2447 \
2448 pat = (unsigned char *) POP_FAILURE_ITEM (); \
2449 DEBUG_PRINT2 (" Popping pattern 0x%x: ", pat); \
2450 DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend); \
2451 \
2452 /* Restore register info. */ \
2453 high_reg = (unsigned) POP_FAILURE_ITEM (); \
2454 DEBUG_PRINT2 (" Popping high active reg: %d\n", high_reg); \
2455 \
2456 low_reg = (unsigned) POP_FAILURE_ITEM (); \
2457 DEBUG_PRINT2 (" Popping low active reg: %d\n", low_reg); \
2458 \
2459 for (this_reg = high_reg; this_reg >= low_reg; this_reg--) \
2460 { \
2461 DEBUG_PRINT2 (" Popping reg: %d\n", this_reg); \
2462 \
2463 reg_info[this_reg].word = POP_FAILURE_ITEM (); \
2464 DEBUG_PRINT2 (" info: 0x%x\n", reg_info[this_reg]); \
2465 \
2466 regend[this_reg] = (const char *) POP_FAILURE_ITEM (); \
2467 DEBUG_PRINT2 (" end: 0x%x\n", regend[this_reg]); \
2468 \
2469 regstart[this_reg] = (const char *) POP_FAILURE_ITEM (); \
2470 DEBUG_PRINT2 (" start: 0x%x\n", regstart[this_reg]); \
2471 } \
2472} /* POP_FAILURE_POINT */
2473\f
2474/* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
2475 BUFP. A fastmap records which of the (1 << BYTEWIDTH) possible
2476 characters can start a string that matches the pattern. This fastmap
2477 is used by re_search to skip quickly over impossible starting points.
2478
2479 The caller must supply the address of a (1 << BYTEWIDTH)-byte data
2480 area as BUFP->fastmap.
2481
2482 We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
2483 the pattern buffer.
2484
2485 Returns 0 if we succeed, -2 if an internal error. */
2486
2487int
2488re_compile_fastmap (bufp)
2489 struct re_pattern_buffer *bufp;
2490{
2491 int j, k;
2492 fail_stack_type fail_stack;
2493#ifndef REGEX_MALLOC
2494 char *destination;
2495#endif
2496 /* We don't push any register information onto the failure stack. */
2497 unsigned num_regs = 0;
2498
2499 register char *fastmap = bufp->fastmap;
2500 unsigned char *pattern = bufp->buffer;
2501 unsigned long size = bufp->used;
2502 const unsigned char *p = pattern;
2503 register unsigned char *pend = pattern + size;
2504
2505 /* Assume that each path through the pattern can be null until
2506 proven otherwise. We set this false at the bottom of switch
2507 statement, to which we get only if a particular path doesn't
2508 match the empty string. */
2509 boolean path_can_be_null = true;
2510
2511 /* We aren't doing a `succeed_n' to begin with. */
2512 boolean succeed_n_p = false;
2513
2514 assert (fastmap != NULL && p != NULL);
2515
2516 INIT_FAIL_STACK ();
2517 bzero (fastmap, 1 << BYTEWIDTH); /* Assume nothing's valid. */
2518 bufp->fastmap_accurate = 1; /* It will be when we're done. */
2519 bufp->can_be_null = 0;
2520
2521 while (p != pend || !FAIL_STACK_EMPTY ())
2522 {
2523 if (p == pend)
2524 {
2525 bufp->can_be_null |= path_can_be_null;
2526
2527 /* Reset for next path. */
2528 path_can_be_null = true;
2529
2530 p = fail_stack.stack[--fail_stack.avail];
2531 }
2532
2533 /* We should never be about to go beyond the end of the pattern. */
2534 assert (p < pend);
2535
2536#ifdef SWITCH_ENUM_BUG
2537 switch ((int) ((re_opcode_t) *p++))
2538#else
2539 switch ((re_opcode_t) *p++)
2540#endif
2541 {
2542
2543 /* I guess the idea here is to simply not bother with a fastmap
2544 if a backreference is used, since it's too hard to figure out
2545 the fastmap for the corresponding group. Setting
2546 `can_be_null' stops `re_search_2' from using the fastmap, so
2547 that is all we do. */
2548 case duplicate:
2549 bufp->can_be_null = 1;
2550 return 0;
2551
2552
2553 /* Following are the cases which match a character. These end
2554 with `break'. */
2555
2556 case exactn:
2557 fastmap[p[1]] = 1;
2558 break;
2559
2560
2561 case charset:
2562 for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
2563 if (p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH)))
2564 fastmap[j] = 1;
2565 break;
2566
2567
2568 case charset_not:
2569 /* Chars beyond end of map must be allowed. */
2570 for (j = *p * BYTEWIDTH; j < (1 << BYTEWIDTH); j++)
2571 fastmap[j] = 1;
2572
2573 for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
2574 if (!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))))
2575 fastmap[j] = 1;
2576 break;
2577
2578
2579 case wordchar:
2580 for (j = 0; j < (1 << BYTEWIDTH); j++)
2581 if (SYNTAX (j) == Sword)
2582 fastmap[j] = 1;
2583 break;
2584
2585
2586 case notwordchar:
2587 for (j = 0; j < (1 << BYTEWIDTH); j++)
2588 if (SYNTAX (j) != Sword)
2589 fastmap[j] = 1;
2590 break;
2591
2592
2593 case anychar:
2594 /* `.' matches anything ... */
2595 for (j = 0; j < (1 << BYTEWIDTH); j++)
2596 fastmap[j] = 1;
2597
2598 /* ... except perhaps newline. */
2599 if (!(bufp->syntax & RE_DOT_NEWLINE))
2600 fastmap['\n'] = 0;
2601
2602 /* Return if we have already set `can_be_null'; if we have,
2603 then the fastmap is irrelevant. Something's wrong here. */
2604 else if (bufp->can_be_null)
2605 return 0;
2606
2607 /* Otherwise, have to check alternative paths. */
2608 break;
2609
2610
2611#ifdef emacs
2612 case syntaxspec:
2613 k = *p++;
2614 for (j = 0; j < (1 << BYTEWIDTH); j++)
2615 if (SYNTAX (j) == (enum syntaxcode) k)
2616 fastmap[j] = 1;
2617 break;
2618
2619
2620 case notsyntaxspec:
2621 k = *p++;
2622 for (j = 0; j < (1 << BYTEWIDTH); j++)
2623 if (SYNTAX (j) != (enum syntaxcode) k)
2624 fastmap[j] = 1;
2625 break;
2626
2627
2628 /* All cases after this match the empty string. These end with
2629 `continue'. */
2630
2631
2632 case before_dot:
2633 case at_dot:
2634 case after_dot:
2635 continue;
2636#endif /* not emacs */
2637
2638
2639 case no_op:
2640 case begline:
2641 case endline:
2642 case begbuf:
2643 case endbuf:
2644 case wordbound:
2645 case notwordbound:
2646 case wordbeg:
2647 case wordend:
2648 case push_dummy_failure:
2649 continue;
2650
2651
2652 case jump_n:
2653 case pop_failure_jump:
2654 case maybe_pop_jump:
2655 case jump:
2656 case jump_past_alt:
2657 case dummy_failure_jump:
2658 EXTRACT_NUMBER_AND_INCR (j, p);
2659 p += j;
2660 if (j > 0)
2661 continue;
2662
2663 /* Jump backward implies we just went through the body of a
2664 loop and matched nothing. Opcode jumped to should be
2665 `on_failure_jump' or `succeed_n'. Just treat it like an
2666 ordinary jump. For a * loop, it has pushed its failure
2667 point already; if so, discard that as redundant. */
2668 if ((re_opcode_t) *p != on_failure_jump
2669 && (re_opcode_t) *p != succeed_n)
2670 continue;
2671
2672 p++;
2673 EXTRACT_NUMBER_AND_INCR (j, p);
2674 p += j;
2675
2676 /* If what's on the stack is where we are now, pop it. */
2677 if (!FAIL_STACK_EMPTY ()
2678 && fail_stack.stack[fail_stack.avail - 1] == p)
2679 fail_stack.avail--;
2680
2681 continue;
2682
2683
2684 case on_failure_jump:
2685 case on_failure_keep_string_jump:
2686 handle_on_failure_jump:
2687 EXTRACT_NUMBER_AND_INCR (j, p);
2688
2689 /* For some patterns, e.g., `(a?)?', `p+j' here points to the
2690 end of the pattern. We don't want to push such a point,
2691 since when we restore it above, entering the switch will
2692 increment `p' past the end of the pattern. We don't need
2693 to push such a point since we obviously won't find any more
2694 fastmap entries beyond `pend'. Such a pattern can match
2695 the null string, though. */
2696 if (p + j < pend)
2697 {
2698 if (!PUSH_PATTERN_OP (p + j, fail_stack))
2699 return -2;
2700 }
2701 else
2702 bufp->can_be_null = 1;
2703
2704 if (succeed_n_p)
2705 {
2706 EXTRACT_NUMBER_AND_INCR (k, p); /* Skip the n. */
2707 succeed_n_p = false;
2708 }
2709
2710 continue;
2711
2712
2713 case succeed_n:
2714 /* Get to the number of times to succeed. */
2715 p += 2;
2716
2717 /* Increment p past the n for when k != 0. */
2718 EXTRACT_NUMBER_AND_INCR (k, p);
2719 if (k == 0)
2720 {
2721 p -= 4;
2722 succeed_n_p = true; /* Spaghetti code alert. */
2723 goto handle_on_failure_jump;
2724 }
2725 continue;
2726
2727
2728 case set_number_at:
2729 p += 4;
2730 continue;
2731
2732
2733 case start_memory:
2734 case stop_memory:
2735 p += 2;
2736 continue;
2737
2738
2739 default:
2740 abort (); /* We have listed all the cases. */
2741 } /* switch *p++ */
2742
2743 /* Getting here means we have found the possible starting
2744 characters for one path of the pattern -- and that the empty
2745 string does not match. We need not follow this path further.
2746 Instead, look at the next alternative (remembered on the
2747 stack), or quit if no more. The test at the top of the loop
2748 does these things. */
2749 path_can_be_null = false;
2750 p = pend;
2751 } /* while p */
2752
2753 /* Set `can_be_null' for the last path (also the first path, if the
2754 pattern is empty). */
2755 bufp->can_be_null |= path_can_be_null;
2756 return 0;
2757} /* re_compile_fastmap */
2758\f
2759/* Set REGS to hold NUM_REGS registers, storing them in STARTS and
2760 ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use
2761 this memory for recording register information. STARTS and ENDS
2762 must be allocated using the malloc library routine, and must each
2763 be at least NUM_REGS * sizeof (regoff_t) bytes long.
2764
2765 If NUM_REGS == 0, then subsequent matches should allocate their own
2766 register data.
2767
2768 Unless this function is called, the first search or match using
2769 PATTERN_BUFFER will allocate its own register data, without
2770 freeing the old data. */
2771
2772void
2773re_set_registers (bufp, regs, num_regs, starts, ends)
2774 struct re_pattern_buffer *bufp;
2775 struct re_registers *regs;
2776 unsigned num_regs;
2777 regoff_t *starts, *ends;
2778{
2779 if (num_regs)
2780 {
2781 bufp->regs_allocated = REGS_REALLOCATE;
2782 regs->num_regs = num_regs;
2783 regs->start = starts;
2784 regs->end = ends;
2785 }
2786 else
2787 {
2788 bufp->regs_allocated = REGS_UNALLOCATED;
2789 regs->num_regs = 0;
2790 regs->start = regs->end = (regoff_t) 0;
2791 }
2792}
2793\f
2794/* Searching routines. */
2795
2796/* Like re_search_2, below, but only one string is specified, and
2797 doesn't let you say where to stop matching. */
2798
2799int
2800re_search (bufp, string, size, startpos, range, regs)
2801 struct re_pattern_buffer *bufp;
2802 const char *string;
2803 int size, startpos, range;
2804 struct re_registers *regs;
2805{
2806 return re_search_2 (bufp, NULL, 0, string, size, startpos, range,
2807 regs, size);
2808}
2809
2810
2811/* Using the compiled pattern in BUFP->buffer, first tries to match the
2812 virtual concatenation of STRING1 and STRING2, starting first at index
2813 STARTPOS, then at STARTPOS + 1, and so on.
2814
2815 STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
2816
2817 RANGE is how far to scan while trying to match. RANGE = 0 means try
2818 only at STARTPOS; in general, the last start tried is STARTPOS +
2819 RANGE.
2820
2821 In REGS, return the indices of the virtual concatenation of STRING1
2822 and STRING2 that matched the entire BUFP->buffer and its contained
2823 subexpressions.
2824
2825 Do not consider matching one past the index STOP in the virtual
2826 concatenation of STRING1 and STRING2.
2827
2828 We return either the position in the strings at which the match was
2829 found, -1 if no match, or -2 if error (such as failure
2830 stack overflow). */
2831
2832int
2833re_search_2 (bufp, string1, size1, string2, size2, startpos, range, regs, stop)
2834 struct re_pattern_buffer *bufp;
2835 const char *string1, *string2;
2836 int size1, size2;
2837 int startpos;
2838 int range;
2839 struct re_registers *regs;
2840 int stop;
2841{
2842 int val;
2843 register char *fastmap = bufp->fastmap;
2844 register char *translate = bufp->translate;
2845 int total_size = size1 + size2;
2846 int endpos = startpos + range;
2847
2848 /* Check for out-of-range STARTPOS. */
2849 if (startpos < 0 || startpos > total_size)
2850 return -1;
2851
2852 /* Fix up RANGE if it might eventually take us outside
2853 the virtual concatenation of STRING1 and STRING2. */
2854 if (endpos < -1)
2855 range = -1 - startpos;
2856 else if (endpos > total_size)
2857 range = total_size - startpos;
2858
2859 /* Update the fastmap now if not correct already. */
2860 if (fastmap && !bufp->fastmap_accurate)
2861 if (re_compile_fastmap (bufp) == -2)
2862 return -2;
2863
2864 /* If the search isn't to be a backwards one, don't waste time in a
2865 long search for a pattern that says it is anchored. */
2866 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == begbuf
2867 && range > 0)
2868 {
2869 if (startpos > 0)
2870 return -1;
2871 else
2872 range = 1;
2873 }
2874
2875 for (;;)
2876 {
2877 /* If a fastmap is supplied, skip quickly over characters that
2878 cannot be the start of a match. If the pattern can match the
2879 null string, however, we don't need to skip characters; we want
2880 the first null string. */
2881 if (fastmap && startpos < total_size && !bufp->can_be_null)
2882 {
2883 if (range > 0) /* Searching forwards. */
2884 {
2885 register const char *d;
2886 register int lim = 0;
2887 int irange = range;
2888
2889 if (startpos < size1 && startpos + range >= size1)
2890 lim = range - (size1 - startpos);
2891
2892 d = (startpos >= size1 ? string2 - size1 : string1) + startpos;
2893
2894 /* Written out as an if-else to avoid testing `translate'
2895 inside the loop. */
2896 if (translate)
2897 while (range > lim
2898 && !fastmap[(unsigned char) translate[*d++]])
2899 range--;
2900 else
2901 while (range > lim && !fastmap[(unsigned char) *d++])
2902 range--;
2903
2904 startpos += irange - range;
2905 }
2906 else /* Searching backwards. */
2907 {
2908 register char c = (size1 == 0 || startpos >= size1
2909 ? string2[startpos - size1]
2910 : string1[startpos]);
2911
2912 if (!fastmap[TRANSLATE (c)])
2913 goto advance;
2914 }
2915 }
2916
2917 /* If can't match the null string, and that's all we have left, fail. */
2918 if (range >= 0 && startpos == total_size && fastmap
2919 && !bufp->can_be_null)
2920 return -1;
2921
2922 val = re_match_2 (bufp, string1, size1, string2, size2,
2923 startpos, regs, stop);
2924 if (val >= 0)
2925 return startpos;
2926
2927 if (val == -2)
2928 return -2;
2929
2930 advance:
2931 if (!range)
2932 break;
2933 else if (range > 0)
2934 {
2935 range--;
2936 startpos++;
2937 }
2938 else
2939 {
2940 range++;
2941 startpos--;
2942 }
2943 }
2944 return -1;
2945} /* re_search_2 */
2946\f
2947/* Declarations and macros for re_match_2. */
2948
2949static int bcmp_translate ();
2950static boolean alt_match_null_string_p (),
2951 common_op_match_null_string_p (),
2952 group_match_null_string_p ();
2953
2954/* Structure for per-register (a.k.a. per-group) information.
2955 This must not be longer than one word, because we push this value
2956 onto the failure stack. Other register information, such as the
2957 starting and ending positions (which are addresses), and the list of
2958 inner groups (which is a bits list) are maintained in separate
2959 variables.
2960
2961 We are making a (strictly speaking) nonportable assumption here: that
2962 the compiler will pack our bit fields into something that fits into
2963 the type of `word', i.e., is something that fits into one item on the
2964 failure stack. */
2965typedef union
2966{
2967 fail_stack_elt_t word;
2968 struct
2969 {
2970 /* This field is one if this group can match the empty string,
2971 zero if not. If not yet determined, `MATCH_NULL_UNSET_VALUE'. */
2972#define MATCH_NULL_UNSET_VALUE 3
2973 unsigned match_null_string_p : 2;
2974 unsigned is_active : 1;
2975 unsigned matched_something : 1;
2976 unsigned ever_matched_something : 1;
2977 } bits;
2978} register_info_type;
2979
2980#define REG_MATCH_NULL_STRING_P(R) ((R).bits.match_null_string_p)
2981#define IS_ACTIVE(R) ((R).bits.is_active)
2982#define MATCHED_SOMETHING(R) ((R).bits.matched_something)
2983#define EVER_MATCHED_SOMETHING(R) ((R).bits.ever_matched_something)
2984
2985
2986/* Call this when have matched something; it sets `matched' flags for the
2987 registers corresponding to the group of which we currently are inside.
2988 Also records whether this group ever matched something. We only care
2989 about this information at `stop_memory', and then only about the
2990 previous time through the loop (if the group is starred or whatever).
2991 So it is ok to clear all the nonactive registers here. */
2992#define SET_REGS_MATCHED() \
2993 do \
2994 { \
2995 unsigned r; \
2996 for (r = lowest_active_reg; r <= highest_active_reg; r++) \
2997 { \
2998 MATCHED_SOMETHING (reg_info[r]) \
2999 = EVER_MATCHED_SOMETHING (reg_info[r]) \
3000 = 1; \
3001 } \
3002 } \
3003 while (0)
3004
3005
3006/* This converts PTR, a pointer into one of the search strings `string1'
3007 and `string2' into an offset from the beginning of that string. */
3008#define POINTER_TO_OFFSET(ptr) \
3009 (FIRST_STRING_P (ptr) ? (ptr) - string1 : (ptr) - string2 + size1)
3010
3011/* Registers are set to a sentinel when they haven't yet matched. */
3012#define REG_UNSET_VALUE ((char *) -1)
3013#define REG_UNSET(e) ((e) == REG_UNSET_VALUE)
3014
3015
3016/* Macros for dealing with the split strings in re_match_2. */
3017
3018#define MATCHING_IN_FIRST_STRING (dend == end_match_1)
3019
3020/* Call before fetching a character with *d. This switches over to
3021 string2 if necessary. */
3022#define PREFETCH() \
3023 while (d == dend) \
3024 { \
3025 /* End of string2 => fail. */ \
3026 if (dend == end_match_2) \
3027 goto fail; \
3028 /* End of string1 => advance to string2. */ \
3029 d = string2; \
3030 dend = end_match_2; \
3031 }
3032
3033
3034/* Test if at very beginning or at very end of the virtual concatenation
3035 of `string1' and `string2'. If only one string, it's `string2'. */
3036#define AT_STRINGS_BEG() (d == (size1 ? string1 : string2) || !size2)
3037#define AT_STRINGS_END() (d == end2)
3038
3039
3040/* Test if D points to a character which is word-constituent. We have
3041 two special cases to check for: if past the end of string1, look at
3042 the first character in string2; and if before the beginning of
3043 string2, look at the last character in string1.
3044
3045 Assumes `string1' exists, so use in conjunction with AT_STRINGS_BEG (). */
3046#define LETTER_P(d) \
3047 (SYNTAX ((d) == end1 ? *string2 \
3048 : (d) == string2 - 1 ? *(end1 - 1) : *(d)) == Sword)
3049
3050/* Test if the character before D and the one at D differ with respect
3051 to being word-constituent. */
3052#define AT_WORD_BOUNDARY(d) \
3053 (AT_STRINGS_BEG () || AT_STRINGS_END () || LETTER_P (d - 1) != LETTER_P (d))
3054
3055
3056/* Free everything we malloc. */
3057#ifdef REGEX_MALLOC
3058#define FREE_VAR(var) if (var) free (var); var = NULL
3059#define FREE_VARIABLES() \
3060 do { \
3061 FREE_VAR (fail_stack.stack); \
3062 FREE_VAR (regstart); \
3063 FREE_VAR (regend); \
3064 FREE_VAR (old_regstart); \
3065 FREE_VAR (old_regend); \
3066 FREE_VAR (best_regstart); \
3067 FREE_VAR (best_regend); \
3068 FREE_VAR (reg_info); \
3069 FREE_VAR (reg_dummy); \
3070 FREE_VAR (reg_info_dummy); \
3071 } while (0)
3072#else /* not REGEX_MALLOC */
3073/* Some MIPS systems (at least) want this to free alloca'd storage. */
3074#define FREE_VARIABLES() alloca (0)
3075#endif /* not REGEX_MALLOC */
3076
3077
3078/* These values must meet several constraints. They must not be valid
3079 register values; since we have a limit of 255 registers (because
3080 we use only one byte in the pattern for the register number), we can
3081 use numbers larger than 255. They must differ by 1, because of
3082 NUM_FAILURE_ITEMS above. And the value for the lowest register must
3083 be larger than the value for the highest register, so we do not try
3084 to actually save any registers when none are active. */
3085#define NO_HIGHEST_ACTIVE_REG (1 << BYTEWIDTH)
3086#define NO_LOWEST_ACTIVE_REG (NO_HIGHEST_ACTIVE_REG + 1)
3087\f
3088/* Matching routines. */
3089
3090#ifndef emacs /* Emacs never uses this. */
3091/* re_match is like re_match_2 except it takes only a single string. */
3092
3093int
3094re_match (bufp, string, size, pos, regs)
3095 struct re_pattern_buffer *bufp;
3096 const char *string;
3097 int size, pos;
3098 struct re_registers *regs;
3099 {
3100 return re_match_2 (bufp, NULL, 0, string, size, pos, regs, size);
3101}
3102#endif /* not emacs */
3103
3104
3105/* re_match_2 matches the compiled pattern in BUFP against the
3106 the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
3107 and SIZE2, respectively). We start matching at POS, and stop
3108 matching at STOP.
3109
3110 If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
3111 store offsets for the substring each group matched in REGS. See the
3112 documentation for exactly how many groups we fill.
3113
3114 We return -1 if no match, -2 if an internal error (such as the
3115 failure stack overflowing). Otherwise, we return the length of the
3116 matched substring. */
3117
3118int
3119re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
3120 struct re_pattern_buffer *bufp;
3121 const char *string1, *string2;
3122 int size1, size2;
3123 int pos;
3124 struct re_registers *regs;
3125 int stop;
3126{
3127 /* General temporaries. */
3128 int mcnt;
3129 unsigned char *p1;
3130
3131 /* Just past the end of the corresponding string. */
3132 const char *end1, *end2;
3133
3134 /* Pointers into string1 and string2, just past the last characters in
3135 each to consider matching. */
3136 const char *end_match_1, *end_match_2;
3137
3138 /* Where we are in the data, and the end of the current string. */
3139 const char *d, *dend;
3140
3141 /* Where we are in the pattern, and the end of the pattern. */
3142 unsigned char *p = bufp->buffer;
3143 register unsigned char *pend = p + bufp->used;
3144
3145 /* We use this to map every character in the string. */
3146 char *translate = bufp->translate;
3147
3148 /* Failure point stack. Each place that can handle a failure further
3149 down the line pushes a failure point on this stack. It consists of
3150 restart, regend, and reg_info for all registers corresponding to
3151 the subexpressions we're currently inside, plus the number of such
3152 registers, and, finally, two char *'s. The first char * is where
3153 to resume scanning the pattern; the second one is where to resume
3154 scanning the strings. If the latter is zero, the failure point is
3155 a ``dummy''; if a failure happens and the failure point is a dummy,
3156 it gets discarded and the next next one is tried. */
3157 fail_stack_type fail_stack;
3158#ifdef DEBUG
3159 static unsigned failure_id = 0;
3160#endif
3161
3162 /* We fill all the registers internally, independent of what we
3163 return, for use in backreferences. The number here includes
3164 an element for register zero. */
3165 unsigned num_regs = bufp->re_nsub + 1;
3166
3167 /* The currently active registers. */
3168 unsigned lowest_active_reg = NO_LOWEST_ACTIVE_REG;
3169 unsigned highest_active_reg = NO_HIGHEST_ACTIVE_REG;
3170
3171 /* Information on the contents of registers. These are pointers into
3172 the input strings; they record just what was matched (on this
3173 attempt) by a subexpression part of the pattern, that is, the
3174 regnum-th regstart pointer points to where in the pattern we began
3175 matching and the regnum-th regend points to right after where we
3176 stopped matching the regnum-th subexpression. (The zeroth register
3177 keeps track of what the whole pattern matches.) */
3178 const char **regstart, **regend;
3179
3180 /* If a group that's operated upon by a repetition operator fails to
3181 match anything, then the register for its start will need to be
3182 restored because it will have been set to wherever in the string we
3183 are when we last see its open-group operator. Similarly for a
3184 register's end. */
3185 const char **old_regstart, **old_regend;
3186
3187 /* The is_active field of reg_info helps us keep track of which (possibly
3188 nested) subexpressions we are currently in. The matched_something
3189 field of reg_info[reg_num] helps us tell whether or not we have
3190 matched any of the pattern so far this time through the reg_num-th
3191 subexpression. These two fields get reset each time through any
3192 loop their register is in. */
3193 register_info_type *reg_info;
3194
3195 /* The following record the register info as found in the above
3196 variables when we find a match better than any we've seen before.
3197 This happens as we backtrack through the failure points, which in
3198 turn happens only if we have not yet matched the entire string. */
3199 unsigned best_regs_set = false;
3200 const char **best_regstart, **best_regend;
3201
3202 /* Logically, this is `best_regend[0]'. But we don't want to have to
3203 allocate space for that if we're not allocating space for anything
3204 else (see below). Also, we never need info about register 0 for
3205 any of the other register vectors, and it seems rather a kludge to
3206 treat `best_regend' differently than the rest. So we keep track of
3207 the end of the best match so far in a separate variable. We
3208 initialize this to NULL so that when we backtrack the first time
3209 and need to test it, it's not garbage. */
3210 const char *match_end = NULL;
3211
3212 /* Used when we pop values we don't care about. */
3213 const char **reg_dummy;
3214 register_info_type *reg_info_dummy;
3215
3216#ifdef DEBUG
3217 /* Counts the total number of registers pushed. */
3218 unsigned num_regs_pushed = 0;
3219#endif
3220
3221 DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
3222
3223 INIT_FAIL_STACK ();
3224
3225 /* Do not bother to initialize all the register variables if there are
3226 no groups in the pattern, as it takes a fair amount of time. If
3227 there are groups, we include space for register 0 (the whole
3228 pattern), even though we never use it, since it simplifies the
3229 array indexing. We should fix this. */
3230 if (bufp->re_nsub)
3231 {
3232 regstart = REGEX_TALLOC (num_regs, const char *);
3233 regend = REGEX_TALLOC (num_regs, const char *);
3234 old_regstart = REGEX_TALLOC (num_regs, const char *);
3235 old_regend = REGEX_TALLOC (num_regs, const char *);
3236 best_regstart = REGEX_TALLOC (num_regs, const char *);
3237 best_regend = REGEX_TALLOC (num_regs, const char *);
3238 reg_info = REGEX_TALLOC (num_regs, register_info_type);
3239 reg_dummy = REGEX_TALLOC (num_regs, const char *);
3240 reg_info_dummy = REGEX_TALLOC (num_regs, register_info_type);
3241
3242 if (!(regstart && regend && old_regstart && old_regend && reg_info
3243 && best_regstart && best_regend && reg_dummy && reg_info_dummy))
3244 {
3245 FREE_VARIABLES ();
3246 return -2;
3247 }
3248 }
3249#ifdef REGEX_MALLOC
3250 else
3251 {
3252 /* We must initialize all our variables to NULL, so that
3253 `FREE_VARIABLES' doesn't try to free them. Too bad this isn't
3254 Lisp, so we could have a list of variables. As it is, */
3255 regstart = regend = old_regstart = old_regend = best_regstart
3256 = best_regend = reg_dummy = NULL;
3257 reg_info = reg_info_dummy = (register_info_type *) NULL;
3258 }
3259#endif /* REGEX_MALLOC */
3260
3261 /* The starting position is bogus. */
3262 if (pos < 0 || pos > size1 + size2)
3263 {
3264 FREE_VARIABLES ();
3265 return -1;
3266 }
3267
3268 /* Initialize subexpression text positions to -1 to mark ones that no
3269 start_memory/stop_memory has been seen for. Also initialize the
3270 register information struct. */
3271 for (mcnt = 1; mcnt < num_regs; mcnt++)
3272 {
3273 regstart[mcnt] = regend[mcnt]
3274 = old_regstart[mcnt] = old_regend[mcnt] = REG_UNSET_VALUE;
3275
3276 REG_MATCH_NULL_STRING_P (reg_info[mcnt]) = MATCH_NULL_UNSET_VALUE;
3277 IS_ACTIVE (reg_info[mcnt]) = 0;
3278 MATCHED_SOMETHING (reg_info[mcnt]) = 0;
3279 EVER_MATCHED_SOMETHING (reg_info[mcnt]) = 0;
3280 }
3281
3282 /* We move `string1' into `string2' if the latter's empty -- but not if
3283 `string1' is null. */
3284 if (size2 == 0 && string1 != NULL)
3285 {
3286 string2 = string1;
3287 size2 = size1;
3288 string1 = 0;
3289 size1 = 0;
3290 }
3291 end1 = string1 + size1;
3292 end2 = string2 + size2;
3293
3294 /* Compute where to stop matching, within the two strings. */
3295 if (stop <= size1)
3296 {
3297 end_match_1 = string1 + stop;
3298 end_match_2 = string2;
3299 }
3300 else
3301 {
3302 end_match_1 = end1;
3303 end_match_2 = string2 + stop - size1;
3304 }
3305
3306 /* `p' scans through the pattern as `d' scans through the data.
3307 `dend' is the end of the input string that `d' points within. `d'
3308 is advanced into the following input string whenever necessary, but
3309 this happens before fetching; therefore, at the beginning of the
3310 loop, `d' can be pointing at the end of a string, but it cannot
3311 equal `string2'. */
3312 if (size1 > 0 && pos <= size1)
3313 {
3314 d = string1 + pos;
3315 dend = end_match_1;
3316 }
3317 else
3318 {
3319 d = string2 + pos - size1;
3320 dend = end_match_2;
3321 }
3322
3323 DEBUG_PRINT1 ("The compiled pattern is: ");
3324 DEBUG_PRINT_COMPILED_PATTERN (bufp, p, pend);
3325 DEBUG_PRINT1 ("The string to match is: `");
3326 DEBUG_PRINT_DOUBLE_STRING (d, string1, size1, string2, size2);
3327 DEBUG_PRINT1 ("'\n");
3328
3329 /* This loops over pattern commands. It exits by returning from the
3330 function if the match is complete, or it drops through if the match
3331 fails at this starting point in the input data. */
3332 for (;;)
3333 {
3334 DEBUG_PRINT2 ("\n0x%x: ", p);
3335
3336 if (p == pend)
3337 { /* End of pattern means we might have succeeded. */
3338 DEBUG_PRINT1 ("End of pattern: ");
3339 /* If not end of string, try backtracking. Otherwise done. */
3340 if (d != end_match_2)
3341 {
3342 DEBUG_PRINT1 ("backtracking.\n");
3343
3344 if (!FAIL_STACK_EMPTY ())
3345 { /* More failure points to try. */
3346 boolean same_str_p = (FIRST_STRING_P (match_end)
3347 == MATCHING_IN_FIRST_STRING);
3348
3349 /* If exceeds best match so far, save it. */
3350 if (!best_regs_set
3351 || (same_str_p && d > match_end)
3352 || (!same_str_p && !MATCHING_IN_FIRST_STRING))
3353 {
3354 best_regs_set = true;
3355 match_end = d;
3356
3357 DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
3358
3359 for (mcnt = 1; mcnt < num_regs; mcnt++)
3360 {
3361 best_regstart[mcnt] = regstart[mcnt];
3362 best_regend[mcnt] = regend[mcnt];
3363 }
3364 }
3365 goto fail;
3366 }
3367
3368 /* If no failure points, don't restore garbage. */
3369 else if (best_regs_set)
3370 {
3371 restore_best_regs:
3372 /* Restore best match. It may happen that `dend ==
3373 end_match_1' while the restored d is in string2.
3374 For example, the pattern `x.*y.*z' against the
3375 strings `x-' and `y-z-', if the two strings are
3376 not consecutive in memory. */
3377 d = match_end;
3378 dend = ((d >= string1 && d <= end1)
3379 ? end_match_1 : end_match_2);
3380
3381 for (mcnt = 1; mcnt < num_regs; mcnt++)
3382 {
3383 regstart[mcnt] = best_regstart[mcnt];
3384 regend[mcnt] = best_regend[mcnt];
3385 }
3386 }
3387 } /* d != end_match_2 */
3388
3389 DEBUG_PRINT1 ("\nAccepting match.\n");
3390
3391 /* If caller wants register contents data back, do it. */
3392 if (regs && !bufp->no_sub)
3393 {
3394 /* Have the register data arrays been allocated? */
3395 if (bufp->regs_allocated == REGS_UNALLOCATED)
3396 { /* No. So allocate them with malloc. We need one
3397 extra element beyond `num_regs' for the `-1' marker
3398 GNU code uses. */
3399 regs->num_regs = MAX (RE_NREGS, num_regs + 1);
3400 regs->start = TALLOC (regs->num_regs, regoff_t);
3401 regs->end = TALLOC (regs->num_regs, regoff_t);
3402 if (regs->start == NULL || regs->end == NULL)
3403 return -2;
3404 bufp->regs_allocated = REGS_REALLOCATE;
3405 }
3406 else if (bufp->regs_allocated == REGS_REALLOCATE)
3407 { /* Yes. If we need more elements than were already
3408 allocated, reallocate them. If we need fewer, just
3409 leave it alone. */
3410 if (regs->num_regs < num_regs + 1)
3411 {
3412 regs->num_regs = num_regs + 1;
3413 RETALLOC (regs->start, regs->num_regs, regoff_t);
3414 RETALLOC (regs->end, regs->num_regs, regoff_t);
3415 if (regs->start == NULL || regs->end == NULL)
3416 return -2;
3417 }
3418 }
3419 else
3420 assert (bufp->regs_allocated == REGS_FIXED);
3421
3422 /* Convert the pointer data in `regstart' and `regend' to
3423 indices. Register zero has to be set differently,
3424 since we haven't kept track of any info for it. */
3425 if (regs->num_regs > 0)
3426 {
3427 regs->start[0] = pos;
3428 regs->end[0] = (MATCHING_IN_FIRST_STRING ? d - string1
3429 : d - string2 + size1);
3430 }
3431
3432 /* Go through the first `min (num_regs, regs->num_regs)'
3433 registers, since that is all we initialized. */
3434 for (mcnt = 1; mcnt < MIN (num_regs, regs->num_regs); mcnt++)
3435 {
3436 if (REG_UNSET (regstart[mcnt]) || REG_UNSET (regend[mcnt]))
3437 regs->start[mcnt] = regs->end[mcnt] = -1;
3438 else
3439 {
3440 regs->start[mcnt] = POINTER_TO_OFFSET (regstart[mcnt]);
3441 regs->end[mcnt] = POINTER_TO_OFFSET (regend[mcnt]);
3442 }
3443 }
3444
3445 /* If the regs structure we return has more elements than
3446 were in the pattern, set the extra elements to -1. If
3447 we (re)allocated the registers, this is the case,
3448 because we always allocate enough to have at least one
3449 -1 at the end. */
3450 for (mcnt = num_regs; mcnt < regs->num_regs; mcnt++)
3451 regs->start[mcnt] = regs->end[mcnt] = -1;
3452 } /* regs && !bufp->no_sub */
3453
3454 FREE_VARIABLES ();
3455 DEBUG_PRINT2 ("%d registers pushed.\n", num_regs_pushed);
3456
3457 mcnt = d - pos - (MATCHING_IN_FIRST_STRING
3458 ? string1
3459 : string2 - size1);
3460
3461 DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt);
3462
3463 return mcnt;
3464 }
3465
3466 /* Otherwise match next pattern command. */
3467#ifdef SWITCH_ENUM_BUG
3468 switch ((int) ((re_opcode_t) *p++))
3469#else
3470 switch ((re_opcode_t) *p++)
3471#endif
3472 {
3473 /* Ignore these. Used to ignore the n of succeed_n's which
3474 currently have n == 0. */
3475 case no_op:
3476 DEBUG_PRINT1 ("EXECUTING no_op.\n");
3477 break;
3478
3479
3480 /* Match the next n pattern characters exactly. The following
3481 byte in the pattern defines n, and the n bytes after that
3482 are the characters to match. */
3483 case exactn:
3484 mcnt = *p++;
3485 DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt);
3486
3487 /* This is written out as an if-else so we don't waste time
3488 testing `translate' inside the loop. */
3489 if (translate)
3490 {
3491 do
3492 {
3493 PREFETCH ();
3494 if (translate[(unsigned char) *d++] != (char) *p++)
3495 goto fail;
3496 }
3497 while (--mcnt);
3498 }
3499 else
3500 {
3501 do
3502 {
3503 PREFETCH ();
3504 if (*d++ != (char) *p++) goto fail;
3505 }
3506 while (--mcnt);
3507 }
3508 SET_REGS_MATCHED ();
3509 break;
3510
3511
3512 /* Match any character except possibly a newline or a null. */
3513 case anychar:
3514 DEBUG_PRINT1 ("EXECUTING anychar.\n");
3515
3516 PREFETCH ();
3517
3518 if ((!(bufp->syntax & RE_DOT_NEWLINE) && TRANSLATE (*d) == '\n')
3519 || (bufp->syntax & RE_DOT_NOT_NULL && TRANSLATE (*d) == '\000'))
3520 goto fail;
3521
3522 SET_REGS_MATCHED ();
3523 DEBUG_PRINT2 (" Matched `%d'.\n", *d);
3524 d++;
3525 break;
3526
3527
3528 case charset:
3529 case charset_not:
3530 {
3531 register unsigned char c;
3532 boolean not = (re_opcode_t) *(p - 1) == charset_not;
3533
3534 DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : "");
3535
3536 PREFETCH ();
3537 c = TRANSLATE (*d); /* The character to match. */
3538
3539 /* Cast to `unsigned' instead of `unsigned char' in case the
3540 bit list is a full 32 bytes long. */
3541 if (c < (unsigned) (*p * BYTEWIDTH)
3542 && p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
3543 not = !not;
3544
3545 p += 1 + *p;
3546
3547 if (!not) goto fail;
3548
3549 SET_REGS_MATCHED ();
3550 d++;
3551 break;
3552 }
3553
3554
3555 /* The beginning of a group is represented by start_memory.
3556 The arguments are the register number in the next byte, and the
3557 number of groups inner to this one in the next. The text
3558 matched within the group is recorded (in the internal
3559 registers data structure) under the register number. */
3560 case start_memory:
3561 DEBUG_PRINT3 ("EXECUTING start_memory %d (%d):\n", *p, p[1]);
3562
3563 /* Find out if this group can match the empty string. */
3564 p1 = p; /* To send to group_match_null_string_p. */
3565
3566 if (REG_MATCH_NULL_STRING_P (reg_info[*p]) == MATCH_NULL_UNSET_VALUE)
3567 REG_MATCH_NULL_STRING_P (reg_info[*p])
3568 = group_match_null_string_p (&p1, pend, reg_info);
3569
3570 /* Save the position in the string where we were the last time
3571 we were at this open-group operator in case the group is
3572 operated upon by a repetition operator, e.g., with `(a*)*b'
3573 against `ab'; then we want to ignore where we are now in
3574 the string in case this attempt to match fails. */
3575 old_regstart[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
3576 ? REG_UNSET (regstart[*p]) ? d : regstart[*p]
3577 : regstart[*p];
3578 DEBUG_PRINT2 (" old_regstart: %d\n",
3579 POINTER_TO_OFFSET (old_regstart[*p]));
3580
3581 regstart[*p] = d;
3582 DEBUG_PRINT2 (" regstart: %d\n", POINTER_TO_OFFSET (regstart[*p]));
3583
3584 IS_ACTIVE (reg_info[*p]) = 1;
3585 MATCHED_SOMETHING (reg_info[*p]) = 0;
3586
3587 /* This is the new highest active register. */
3588 highest_active_reg = *p;
3589
3590 /* If nothing was active before, this is the new lowest active
3591 register. */
3592 if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
3593 lowest_active_reg = *p;
3594
3595 /* Move past the register number and inner group count. */
3596 p += 2;
3597 break;
3598
3599
3600 /* The stop_memory opcode represents the end of a group. Its
3601 arguments are the same as start_memory's: the register
3602 number, and the number of inner groups. */
3603 case stop_memory:
3604 DEBUG_PRINT3 ("EXECUTING stop_memory %d (%d):\n", *p, p[1]);
3605
3606 /* We need to save the string position the last time we were at
3607 this close-group operator in case the group is operated
3608 upon by a repetition operator, e.g., with `((a*)*(b*)*)*'
3609 against `aba'; then we want to ignore where we are now in
3610 the string in case this attempt to match fails. */
3611 old_regend[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
3612 ? REG_UNSET (regend[*p]) ? d : regend[*p]
3613 : regend[*p];
3614 DEBUG_PRINT2 (" old_regend: %d\n",
3615 POINTER_TO_OFFSET (old_regend[*p]));
3616
3617 regend[*p] = d;
3618 DEBUG_PRINT2 (" regend: %d\n", POINTER_TO_OFFSET (regend[*p]));
3619
3620 /* This register isn't active anymore. */
3621 IS_ACTIVE (reg_info[*p]) = 0;
3622
3623 /* If this was the only register active, nothing is active
3624 anymore. */
3625 if (lowest_active_reg == highest_active_reg)
3626 {
3627 lowest_active_reg = NO_LOWEST_ACTIVE_REG;
3628 highest_active_reg = NO_HIGHEST_ACTIVE_REG;
3629 }
3630 else
3631 { /* We must scan for the new highest active register, since
3632 it isn't necessarily one less than now: consider
3633 (a(b)c(d(e)f)g). When group 3 ends, after the f), the
3634 new highest active register is 1. */
3635 unsigned char r = *p - 1;
3636 while (r > 0 && !IS_ACTIVE (reg_info[r]))
3637 r--;
3638
3639 /* If we end up at register zero, that means that we saved
3640 the registers as the result of an `on_failure_jump', not
3641 a `start_memory', and we jumped to past the innermost
3642 `stop_memory'. For example, in ((.)*) we save
3643 registers 1 and 2 as a result of the *, but when we pop
3644 back to the second ), we are at the stop_memory 1.
3645 Thus, nothing is active. */
3646 if (r == 0)
3647 {
3648 lowest_active_reg = NO_LOWEST_ACTIVE_REG;
3649 highest_active_reg = NO_HIGHEST_ACTIVE_REG;
3650 }
3651 else
3652 highest_active_reg = r;
3653 }
3654
3655 /* If just failed to match something this time around with a
3656 group that's operated on by a repetition operator, try to
3657 force exit from the ``loop,'' and restore the register
3658 information for this group that we had before trying this
3659 last match. */
3660 if ((!MATCHED_SOMETHING (reg_info[*p])
3661 || (re_opcode_t) p[-3] == start_memory)
3662 && (p + 2) < pend)
3663 {
3664 boolean is_a_jump_n = false;
3665
3666 p1 = p + 2;
3667 mcnt = 0;
3668 switch ((re_opcode_t) *p1++)
3669 {
3670 case jump_n:
3671 is_a_jump_n = true;
3672 case pop_failure_jump:
3673 case maybe_pop_jump:
3674 case jump:
3675 case dummy_failure_jump:
3676 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
3677 if (is_a_jump_n)
3678 p1 += 2;
3679 break;
3680
3681 default:
3682 /* do nothing */ ;
3683 }
3684 p1 += mcnt;
3685
3686 /* If the next operation is a jump backwards in the pattern
3687 to an on_failure_jump right before the start_memory
3688 corresponding to this stop_memory, exit from the loop
3689 by forcing a failure after pushing on the stack the
3690 on_failure_jump's jump in the pattern, and d. */
3691 if (mcnt < 0 && (re_opcode_t) *p1 == on_failure_jump
3692 && (re_opcode_t) p1[3] == start_memory && p1[4] == *p)
3693 {
3694 /* If this group ever matched anything, then restore
3695 what its registers were before trying this last
3696 failed match, e.g., with `(a*)*b' against `ab' for
3697 regstart[1], and, e.g., with `((a*)*(b*)*)*'
3698 against `aba' for regend[3].
3699
3700 Also restore the registers for inner groups for,
3701 e.g., `((a*)(b*))*' against `aba' (register 3 would
3702 otherwise get trashed). */
3703
3704 if (EVER_MATCHED_SOMETHING (reg_info[*p]))
3705 {
3706 unsigned r;
3707
3708 EVER_MATCHED_SOMETHING (reg_info[*p]) = 0;
3709
3710 /* Restore this and inner groups' (if any) registers. */
3711 for (r = *p; r < *p + *(p + 1); r++)
3712 {
3713 regstart[r] = old_regstart[r];
3714
3715 /* xx why this test? */
3716 if ((int) old_regend[r] >= (int) regstart[r])
3717 regend[r] = old_regend[r];
3718 }
3719 }
3720 p1++;
3721 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
3722 PUSH_FAILURE_POINT (p1 + mcnt, d, -2);
3723
3724 goto fail;
3725 }
3726 }
3727
3728 /* Move past the register number and the inner group count. */
3729 p += 2;
3730 break;
3731
3732
3733 /* \<digit> has been turned into a `duplicate' command which is
3734 followed by the numeric value of <digit> as the register number. */
3735 case duplicate:
3736 {
3737 register const char *d2, *dend2;
3738 int regno = *p++; /* Get which register to match against. */
3739 DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno);
3740
3741 /* Can't back reference a group which we've never matched. */
3742 if (REG_UNSET (regstart[regno]) || REG_UNSET (regend[regno]))
3743 goto fail;
3744
3745 /* Where in input to try to start matching. */
3746 d2 = regstart[regno];
3747
3748 /* Where to stop matching; if both the place to start and
3749 the place to stop matching are in the same string, then
3750 set to the place to stop, otherwise, for now have to use
3751 the end of the first string. */
3752
3753 dend2 = ((FIRST_STRING_P (regstart[regno])
3754 == FIRST_STRING_P (regend[regno]))
3755 ? regend[regno] : end_match_1);
3756 for (;;)
3757 {
3758 /* If necessary, advance to next segment in register
3759 contents. */
3760 while (d2 == dend2)
3761 {
3762 if (dend2 == end_match_2) break;
3763 if (dend2 == regend[regno]) break;
3764
3765 /* End of string1 => advance to string2. */
3766 d2 = string2;
3767 dend2 = regend[regno];
3768 }
3769 /* At end of register contents => success */
3770 if (d2 == dend2) break;
3771
3772 /* If necessary, advance to next segment in data. */
3773 PREFETCH ();
3774
3775 /* How many characters left in this segment to match. */
3776 mcnt = dend - d;
3777
3778 /* Want how many consecutive characters we can match in
3779 one shot, so, if necessary, adjust the count. */
3780 if (mcnt > dend2 - d2)
3781 mcnt = dend2 - d2;
3782
3783 /* Compare that many; failure if mismatch, else move
3784 past them. */
3785 if (translate
3786 ? bcmp_translate (d, d2, mcnt, translate)
3787 : bcmp (d, d2, mcnt))
3788 goto fail;
3789 d += mcnt, d2 += mcnt;
3790 }
3791 }
3792 break;
3793
3794
3795 /* begline matches the empty string at the beginning of the string
3796 (unless `not_bol' is set in `bufp'), and, if
3797 `newline_anchor' is set, after newlines. */
3798 case begline:
3799 DEBUG_PRINT1 ("EXECUTING begline.\n");
3800
3801 if (AT_STRINGS_BEG ())
3802 {
3803 if (!bufp->not_bol) break;
3804 }
3805 else if (d[-1] == '\n' && bufp->newline_anchor)
3806 {
3807 break;
3808 }
3809 /* In all other cases, we fail. */
3810 goto fail;
3811
3812
3813 /* endline is the dual of begline. */
3814 case endline:
3815 DEBUG_PRINT1 ("EXECUTING endline.\n");
3816
3817 if (AT_STRINGS_END ())
3818 {
3819 if (!bufp->not_eol) break;
3820 }
3821
3822 /* We have to ``prefetch'' the next character. */
3823 else if ((d == end1 ? *string2 : *d) == '\n'
3824 && bufp->newline_anchor)
3825 {
3826 break;
3827 }
3828 goto fail;
3829
3830
3831 /* Match at the very beginning of the data. */
3832 case begbuf:
3833 DEBUG_PRINT1 ("EXECUTING begbuf.\n");
3834 if (AT_STRINGS_BEG ())
3835 break;
3836 goto fail;
3837
3838
3839 /* Match at the very end of the data. */
3840 case endbuf:
3841 DEBUG_PRINT1 ("EXECUTING endbuf.\n");
3842 if (AT_STRINGS_END ())
3843 break;
3844 goto fail;
3845
3846
3847 /* on_failure_keep_string_jump is used to optimize `.*\n'. It
3848 pushes NULL as the value for the string on the stack. Then
3849 `pop_failure_point' will keep the current value for the
3850 string, instead of restoring it. To see why, consider
3851 matching `foo\nbar' against `.*\n'. The .* matches the foo;
3852 then the . fails against the \n. But the next thing we want
3853 to do is match the \n against the \n; if we restored the
3854 string value, we would be back at the foo.
3855
3856 Because this is used only in specific cases, we don't need to
3857 check all the things that `on_failure_jump' does, to make
3858 sure the right things get saved on the stack. Hence we don't
3859 share its code. The only reason to push anything on the
3860 stack at all is that otherwise we would have to change
3861 `anychar's code to do something besides goto fail in this
3862 case; that seems worse than this. */
3863 case on_failure_keep_string_jump:
3864 DEBUG_PRINT1 ("EXECUTING on_failure_keep_string_jump");
3865
3866 EXTRACT_NUMBER_AND_INCR (mcnt, p);
3867 DEBUG_PRINT3 (" %d (to 0x%x):\n", mcnt, p + mcnt);
3868
3869 PUSH_FAILURE_POINT (p + mcnt, NULL, -2);
3870 break;
3871
3872
3873 /* Uses of on_failure_jump:
3874
3875 Each alternative starts with an on_failure_jump that points
3876 to the beginning of the next alternative. Each alternative
3877 except the last ends with a jump that in effect jumps past
3878 the rest of the alternatives. (They really jump to the
3879 ending jump of the following alternative, because tensioning
3880 these jumps is a hassle.)
3881
3882 Repeats start with an on_failure_jump that points past both
3883 the repetition text and either the following jump or
3884 pop_failure_jump back to this on_failure_jump. */
3885 case on_failure_jump:
3886 on_failure:
3887 DEBUG_PRINT1 ("EXECUTING on_failure_jump");
3888
3889 EXTRACT_NUMBER_AND_INCR (mcnt, p);
3890 DEBUG_PRINT3 (" %d (to 0x%x)", mcnt, p + mcnt);
3891
3892 /* If this on_failure_jump comes right before a group (i.e.,
3893 the original * applied to a group), save the information
3894 for that group and all inner ones, so that if we fail back
3895 to this point, the group's information will be correct.
3896 For example, in \(a*\)*\1, we only need the preceding group,
3897 and in \(\(a*\)b*\)\2, we need the inner group. */
3898
3899 /* We can't use `p' to check ahead because we push
3900 a failure point to `p + mcnt' after we do this. */
3901 p1 = p;
3902
3903 /* We need to skip no_op's before we look for the
3904 start_memory in case this on_failure_jump is happening as
3905 the result of a completed succeed_n, as in \(a\)\{1,3\}b\1
3906 against aba. */
3907 while (p1 < pend && (re_opcode_t) *p1 == no_op)
3908 p1++;
3909
3910 if (p1 < pend && (re_opcode_t) *p1 == start_memory)
3911 {
3912 /* We have a new highest active register now. This will
3913 get reset at the start_memory we are about to get to,
3914 but we will have saved all the registers relevant to
3915 this repetition op, as described above. */
3916 highest_active_reg = *(p1 + 1) + *(p1 + 2);
3917 if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
3918 lowest_active_reg = *(p1 + 1);
3919 }
3920
3921 DEBUG_PRINT1 (":\n");
3922 PUSH_FAILURE_POINT (p + mcnt, d, -2);
3923 break;
3924
3925
3926 /* A smart repeat ends with a maybe_pop_jump.
3927 We change it either to a pop_failure_jump or a jump. */
3928 case maybe_pop_jump:
3929 EXTRACT_NUMBER_AND_INCR (mcnt, p);
3930 DEBUG_PRINT2 ("EXECUTING maybe_pop_jump %d.\n", mcnt);
3931 {
3932 register unsigned char *p2 = p;
3933
3934 /* Compare the beginning of the repeat with what in the
3935 pattern follows its end. If we can establish that there
3936 is nothing that they would both match, i.e., that we
3937 would have to backtrack because of (as in, e.g., `a*a')
3938 then we can change to pop_failure_jump, because we'll
3939 never have to backtrack.
3940
3941 This is not true in the case of alternatives: in
3942 `(a|ab)*' we do need to backtrack to the `ab' alternative
3943 (e.g., if the string was `ab'). But instead of trying to
3944 detect that here, the alternative has put on a dummy
3945 failure point which is what we will end up popping. */
3946
3947 /* Skip over open/close-group commands. */
3948 while (p2 + 2 < pend
3949 && ((re_opcode_t) *p2 == stop_memory
3950 || (re_opcode_t) *p2 == start_memory))
3951 p2 += 3; /* Skip over args, too. */
3952
3953 /* If we're at the end of the pattern, we can change. */
3954 if (p2 == pend)
3955 {
3956 p[-3] = (unsigned char) pop_failure_jump;
3957 DEBUG_PRINT1
3958 (" End of pattern: change to `pop_failure_jump'.\n");
3959 }
3960
3961 else if ((re_opcode_t) *p2 == exactn
3962 || (bufp->newline_anchor && (re_opcode_t) *p2 == endline))
3963 {
3964 register unsigned char c
3965 = *p2 == (unsigned char) endline ? '\n' : p2[2];
3966 p1 = p + mcnt;
3967
3968 /* p1[0] ... p1[2] are the `on_failure_jump' corresponding
3969 to the `maybe_finalize_jump' of this case. Examine what
3970 follows. */
3971 if ((re_opcode_t) p1[3] == exactn && p1[5] != c)
3972 p[-3] = (unsigned char) pop_failure_jump;
3973 else if ((re_opcode_t) p1[3] == charset
3974 || (re_opcode_t) p1[3] == charset_not)
3975 {
3976 int not = (re_opcode_t) p1[3] == charset_not;
3977
3978 if (c < (unsigned char) (p1[4] * BYTEWIDTH)
3979 && p1[5 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
3980 not = !not;
3981
3982 /* `not' is equal to 1 if c would match, which means
3983 that we can't change to pop_failure_jump. */
3984 if (!not)
3985 {
3986 p[-3] = (unsigned char) pop_failure_jump;
3987 DEBUG_PRINT1
3988 (" No match: change to `pop_failure_jump'.\n");
3989
3990 }
3991 }
3992 }
3993 }
3994 p -= 2; /* Point at relative address again. */
3995 if ((re_opcode_t) p[-1] != pop_failure_jump)
3996 {
3997 p[-1] = (unsigned char) jump;
3998 goto unconditional_jump;
3999 }
4000 /* Note fall through. */
4001
4002
4003 /* The end of a simple repeat has a pop_failure_jump back to
4004 its matching on_failure_jump, where the latter will push a
4005 failure point. The pop_failure_jump takes off failure
4006 points put on by this pop_failure_jump's matching
4007 on_failure_jump; we got through the pattern to here from the
4008 matching on_failure_jump, so didn't fail. */
4009 case pop_failure_jump:
4010 {
4011 /* We need to pass separate storage for the lowest and
4012 highest registers, even though we don't care about the
4013 actual values. Otherwise, we will restore only one
4014 register from the stack, since lowest will == highest in
4015 `pop_failure_point'. */
4016 unsigned dummy_low_reg, dummy_high_reg;
4017 unsigned char *pdummy;
4018 const char *sdummy;
4019
4020 DEBUG_PRINT1 ("EXECUTING pop_failure_jump.\n");
4021 POP_FAILURE_POINT (sdummy, pdummy,
4022 dummy_low_reg, dummy_high_reg,
4023 reg_dummy, reg_dummy, reg_info_dummy);
4024 }
4025 /* Note fall through. */
4026
4027
4028 /* Unconditionally jump (without popping any failure points). */
4029 case jump:
4030 unconditional_jump:
4031 EXTRACT_NUMBER_AND_INCR (mcnt, p); /* Get the amount to jump. */
4032 DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt);
4033 p += mcnt; /* Do the jump. */
4034 DEBUG_PRINT2 ("(to 0x%x).\n", p);
4035 break;
4036
4037
4038 /* We need this opcode so we can detect where alternatives end
4039 in `group_match_null_string_p' et al. */
4040 case jump_past_alt:
4041 DEBUG_PRINT1 ("EXECUTING jump_past_alt.\n");
4042 goto unconditional_jump;
4043
4044
4045 /* Normally, the on_failure_jump pushes a failure point, which
4046 then gets popped at pop_failure_jump. We will end up at
4047 pop_failure_jump, also, and with a pattern of, say, `a+', we
4048 are skipping over the on_failure_jump, so we have to push
4049 something meaningless for pop_failure_jump to pop. */
4050 case dummy_failure_jump:
4051 DEBUG_PRINT1 ("EXECUTING dummy_failure_jump.\n");
4052 /* It doesn't matter what we push for the string here. What
4053 the code at `fail' tests is the value for the pattern. */
4054 PUSH_FAILURE_POINT (0, 0, -2);
4055 goto unconditional_jump;
4056
4057
4058 /* At the end of an alternative, we need to push a dummy failure
4059 point in case we are followed by a pop_failure_jump', because
4060 we don't want the failure point for the alternative to be
4061 popped. For example, matching `(a|ab)*' against `aab'
4062 requires that we match the `ab' alternative. */
4063 case push_dummy_failure:
4064 DEBUG_PRINT1 ("EXECUTING push_dummy_failure.\n");
4065 /* See comments just above at `dummy_failure_jump' about the
4066 two zeroes. */
4067 PUSH_FAILURE_POINT (0, 0, -2);
4068 break;
4069
4070 /* Have to succeed matching what follows at least n times.
4071 After that, handle like `on_failure_jump'. */
4072 case succeed_n:
4073 EXTRACT_NUMBER (mcnt, p + 2);
4074 DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt);
4075
4076 assert (mcnt >= 0);
4077 /* Originally, this is how many times we HAVE to succeed. */
4078 if (mcnt > 0)
4079 {
4080 mcnt--;
4081 p += 2;
4082 STORE_NUMBER_AND_INCR (p, mcnt);
4083 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p, mcnt);
4084 }
4085 else if (mcnt == 0)
4086 {
4087 DEBUG_PRINT2 (" Setting two bytes from 0x%x to no_op.\n", p+2);
4088 p[2] = (unsigned char) no_op;
4089 p[3] = (unsigned char) no_op;
4090 goto on_failure;
4091 }
4092 break;
4093
4094 case jump_n:
4095 EXTRACT_NUMBER (mcnt, p + 2);
4096 DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt);
4097
4098 /* Originally, this is how many times we CAN jump. */
4099 if (mcnt)
4100 {
4101 mcnt--;
4102 STORE_NUMBER (p + 2, mcnt);
4103 goto unconditional_jump;
4104 }
4105 /* If don't have to jump any more, skip over the rest of command. */
4106 else
4107 p += 4;
4108 break;
4109
4110 case set_number_at:
4111 {
4112 DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
4113
4114 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4115 p1 = p + mcnt;
4116 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4117 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p1, mcnt);
4118 STORE_NUMBER (p1, mcnt);
4119 break;
4120 }
4121
4122 case wordbound:
4123 DEBUG_PRINT1 ("EXECUTING wordbound.\n");
4124 if (AT_WORD_BOUNDARY (d))
4125 break;
4126 goto fail;
4127
4128 case notwordbound:
4129 DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
4130 if (AT_WORD_BOUNDARY (d))
4131 goto fail;
4132 break;
4133
4134 case wordbeg:
4135 DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
4136 if (LETTER_P (d) && (AT_STRINGS_BEG () || !LETTER_P (d - 1)))
4137 break;
4138 goto fail;
4139
4140 case wordend:
4141 DEBUG_PRINT1 ("EXECUTING wordend.\n");
4142 if (!AT_STRINGS_BEG () && LETTER_P (d - 1)
4143 && (!LETTER_P (d) || AT_STRINGS_END ()))
4144 break;
4145 goto fail;
4146
4147#ifdef emacs
4148#ifdef emacs19
4149 case before_dot:
4150 DEBUG_PRINT1 ("EXECUTING before_dot.\n");
4151 if (PTR_CHAR_POS ((unsigned char *) d) >= point)
4152 goto fail;
4153 break;
4154
4155 case at_dot:
4156 DEBUG_PRINT1 ("EXECUTING at_dot.\n");
4157 if (PTR_CHAR_POS ((unsigned char *) d) != point)
4158 goto fail;
4159 break;
4160
4161 case after_dot:
4162 DEBUG_PRINT1 ("EXECUTING after_dot.\n");
4163 if (PTR_CHAR_POS ((unsigned char *) d) <= point)
4164 goto fail;
4165 break;
4166#else /* not emacs19 */
4167 case at_dot:
4168 DEBUG_PRINT1 ("EXECUTING at_dot.\n");
4169 if (PTR_CHAR_POS ((unsigned char *) d) + 1 != point)
4170 goto fail;
4171 break;
4172#endif /* not emacs19 */
4173
4174 case syntaxspec:
4175 DEBUG_PRINT2 ("EXECUTING syntaxspec %d.\n", mcnt);
4176 mcnt = *p++;
4177 goto matchsyntax;
4178
4179 case wordchar:
4180 DEBUG_PRINT1 ("EXECUTING wordchar.\n");
4181 mcnt = (int) Sword;
4182 matchsyntax:
4183 PREFETCH ();
4184 if (SYNTAX (*d++) != (enum syntaxcode) mcnt) goto fail;
4185 SET_REGS_MATCHED ();
4186 break;
4187
4188 case notsyntaxspec:
4189 DEBUG_PRINT2 ("EXECUTING notsyntaxspec %d.\n", mcnt);
4190 mcnt = *p++;
4191 goto matchnotsyntax;
4192
4193 case notwordchar:
4194 DEBUG_PRINT1 ("EXECUTING notwordchar.\n");
4195 mcnt = (int) Sword;
4196 matchnotsyntax: /* We goto here from notsyntaxspec. */
4197 PREFETCH ();
4198 if (SYNTAX (*d++) == (enum syntaxcode) mcnt) goto fail;
4199 SET_REGS_MATCHED ();
4200 break;
4201
4202#else /* not emacs */
4203 case wordchar:
4204 DEBUG_PRINT1 ("EXECUTING non-Emacs wordchar.\n");
4205 PREFETCH ();
4206 if (!LETTER_P (d))
4207 goto fail;
4208 SET_REGS_MATCHED ();
4209 break;
4210
4211 case notwordchar:
4212 DEBUG_PRINT1 ("EXECUTING non-Emacs notwordchar.\n");
4213 PREFETCH ();
4214 if (LETTER_P (d))
4215 goto fail;
4216 SET_REGS_MATCHED ();
4217 break;
4218#endif /* not emacs */
4219
4220 default:
4221 abort ();
4222 }
4223 continue; /* Successfully executed one pattern command; keep going. */
4224
4225
4226 /* We goto here if a matching operation fails. */
4227 fail:
4228 if (!FAIL_STACK_EMPTY ())
4229 { /* A restart point is known. Restore to that state. */
4230 DEBUG_PRINT1 ("\nFAIL:\n");
4231 POP_FAILURE_POINT (d, p,
4232 lowest_active_reg, highest_active_reg,
4233 regstart, regend, reg_info);
4234
4235 /* If this failure point is a dummy, try the next one. */
4236 if (!p)
4237 goto fail;
4238
4239 /* If we failed to the end of the pattern, don't examine *p. */
4240 assert (p <= pend);
4241 if (p < pend)
4242 {
4243 boolean is_a_jump_n = false;
4244
4245 /* If failed to a backwards jump that's part of a repetition
4246 loop, need to pop this failure point and use the next one. */
4247 switch ((re_opcode_t) *p)
4248 {
4249 case jump_n:
4250 is_a_jump_n = true;
4251 case maybe_pop_jump:
4252 case pop_failure_jump:
4253 case jump:
4254 p1 = p + 1;
4255 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4256 p1 += mcnt;
4257
4258 if ((is_a_jump_n && (re_opcode_t) *p1 == succeed_n)
4259 || (!is_a_jump_n
4260 && (re_opcode_t) *p1 == on_failure_jump))
4261 goto fail;
4262 break;
4263 default:
4264 /* do nothing */ ;
4265 }
4266 }
4267
4268 if (d >= string1 && d <= end1)
4269 dend = end_match_1;
4270 }
4271 else
4272 break; /* Matching at this starting point really fails. */
4273 } /* for (;;) */
4274
4275 if (best_regs_set)
4276 goto restore_best_regs;
4277
4278 FREE_VARIABLES ();
4279
4280 return -1; /* Failure to match. */
4281} /* re_match_2 */
4282\f
4283/* Subroutine definitions for re_match_2. */
4284
4285
4286/* We are passed P pointing to a register number after a start_memory.
4287
4288 Return true if the pattern up to the corresponding stop_memory can
4289 match the empty string, and false otherwise.
4290
4291 If we find the matching stop_memory, sets P to point to one past its number.
4292 Otherwise, sets P to an undefined byte less than or equal to END.
4293
4294 We don't handle duplicates properly (yet). */
4295
4296static boolean
4297group_match_null_string_p (p, end, reg_info)
4298 unsigned char **p, *end;
4299 register_info_type *reg_info;
4300{
4301 int mcnt;
4302 /* Point to after the args to the start_memory. */
4303 unsigned char *p1 = *p + 2;
4304
4305 while (p1 < end)
4306 {
4307 /* Skip over opcodes that can match nothing, and return true or
4308 false, as appropriate, when we get to one that can't, or to the
4309 matching stop_memory. */
4310
4311 switch ((re_opcode_t) *p1)
4312 {
4313 /* Could be either a loop or a series of alternatives. */
4314 case on_failure_jump:
4315 p1++;
4316 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4317
4318 /* If the next operation is not a jump backwards in the
4319 pattern. */
4320
4321 if (mcnt >= 0)
4322 {
4323 /* Go through the on_failure_jumps of the alternatives,
4324 seeing if any of the alternatives cannot match nothing.
4325 The last alternative starts with only a jump,
4326 whereas the rest start with on_failure_jump and end
4327 with a jump, e.g., here is the pattern for `a|b|c':
4328
4329 /on_failure_jump/0/6/exactn/1/a/jump_past_alt/0/6
4330 /on_failure_jump/0/6/exactn/1/b/jump_past_alt/0/3
4331 /exactn/1/c
4332
4333 So, we have to first go through the first (n-1)
4334 alternatives and then deal with the last one separately. */
4335
4336
4337 /* Deal with the first (n-1) alternatives, which start
4338 with an on_failure_jump (see above) that jumps to right
4339 past a jump_past_alt. */
4340
4341 while ((re_opcode_t) p1[mcnt-3] == jump_past_alt)
4342 {
4343 /* `mcnt' holds how many bytes long the alternative
4344 is, including the ending `jump_past_alt' and
4345 its number. */
4346
4347 if (!alt_match_null_string_p (p1, p1 + mcnt - 3,
4348 reg_info))
4349 return false;
4350
4351 /* Move to right after this alternative, including the
4352 jump_past_alt. */
4353 p1 += mcnt;
4354
4355 /* Break if it's the beginning of an n-th alternative
4356 that doesn't begin with an on_failure_jump. */
4357 if ((re_opcode_t) *p1 != on_failure_jump)
4358 break;
4359
4360 /* Still have to check that it's not an n-th
4361 alternative that starts with an on_failure_jump. */
4362 p1++;
4363 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4364 if ((re_opcode_t) p1[mcnt-3] != jump_past_alt)
4365 {
4366 /* Get to the beginning of the n-th alternative. */
4367 p1 -= 3;
4368 break;
4369 }
4370 }
4371
4372 /* Deal with the last alternative: go back and get number
4373 of the `jump_past_alt' just before it. `mcnt' contains
4374 the length of the alternative. */
4375 EXTRACT_NUMBER (mcnt, p1 - 2);
4376
4377 if (!alt_match_null_string_p (p1, p1 + mcnt, reg_info))
4378 return false;
4379
4380 p1 += mcnt; /* Get past the n-th alternative. */
4381 } /* if mcnt > 0 */
4382 break;
4383
4384
4385 case stop_memory:
4386 assert (p1[1] == **p);
4387 *p = p1 + 2;
4388 return true;
4389
4390
4391 default:
4392 if (!common_op_match_null_string_p (&p1, end, reg_info))
4393 return false;
4394 }
4395 } /* while p1 < end */
4396
4397 return false;
4398} /* group_match_null_string_p */
4399
4400
4401/* Similar to group_match_null_string_p, but doesn't deal with alternatives:
4402 It expects P to be the first byte of a single alternative and END one
4403 byte past the last. The alternative can contain groups. */
4404
4405static boolean
4406alt_match_null_string_p (p, end, reg_info)
4407 unsigned char *p, *end;
4408 register_info_type *reg_info;
4409{
4410 int mcnt;
4411 unsigned char *p1 = p;
4412
4413 while (p1 < end)
4414 {
4415 /* Skip over opcodes that can match nothing, and break when we get
4416 to one that can't. */
4417
4418 switch ((re_opcode_t) *p1)
4419 {
4420 /* It's a loop. */
4421 case on_failure_jump:
4422 p1++;
4423 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4424 p1 += mcnt;
4425 break;
4426
4427 default:
4428 if (!common_op_match_null_string_p (&p1, end, reg_info))
4429 return false;
4430 }
4431 } /* while p1 < end */
4432
4433 return true;
4434} /* alt_match_null_string_p */
4435
4436
4437/* Deals with the ops common to group_match_null_string_p and
4438 alt_match_null_string_p.
4439
4440 Sets P to one after the op and its arguments, if any. */
4441
4442static boolean
4443common_op_match_null_string_p (p, end, reg_info)
4444 unsigned char **p, *end;
4445 register_info_type *reg_info;
4446{
4447 int mcnt;
4448 boolean ret;
4449 int reg_no;
4450 unsigned char *p1 = *p;
4451
4452 switch ((re_opcode_t) *p1++)
4453 {
4454 case no_op:
4455 case begline:
4456 case endline:
4457 case begbuf:
4458 case endbuf:
4459 case wordbeg:
4460 case wordend:
4461 case wordbound:
4462 case notwordbound:
4463#ifdef emacs
4464 case before_dot:
4465 case at_dot:
4466 case after_dot:
4467#endif
4468 break;
4469
4470 case start_memory:
4471 reg_no = *p1;
4472 assert (reg_no > 0 && reg_no <= MAX_REGNUM);
4473 ret = group_match_null_string_p (&p1, end, reg_info);
4474
4475 /* Have to set this here in case we're checking a group which
4476 contains a group and a back reference to it. */
4477
4478 if (REG_MATCH_NULL_STRING_P (reg_info[reg_no]) == MATCH_NULL_UNSET_VALUE)
4479 REG_MATCH_NULL_STRING_P (reg_info[reg_no]) = ret;
4480
4481 if (!ret)
4482 return false;
4483 break;
4484
4485 /* If this is an optimized succeed_n for zero times, make the jump. */
4486 case jump:
4487 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4488 if (mcnt >= 0)
4489 p1 += mcnt;
4490 else
4491 return false;
4492 break;
4493
4494 case succeed_n:
4495 /* Get to the number of times to succeed. */
4496 p1 += 2;
4497 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4498
4499 if (mcnt == 0)
4500 {
4501 p1 -= 4;
4502 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4503 p1 += mcnt;
4504 }
4505 else
4506 return false;
4507 break;
4508
4509 case duplicate:
4510 if (!REG_MATCH_NULL_STRING_P (reg_info[*p1]))
4511 return false;
4512 break;
4513
4514 case set_number_at:
4515 p1 += 4;
4516
4517 default:
4518 /* All other opcodes mean we cannot match the empty string. */
4519 return false;
4520 }
4521
4522 *p = p1;
4523 return true;
4524} /* common_op_match_null_string_p */
4525
4526
4527/* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
4528 bytes; nonzero otherwise. */
4529
4530static int
4531bcmp_translate (s1, s2, len, translate)
4532 unsigned char *s1, *s2;
4533 register int len;
4534 char *translate;
4535{
4536 register unsigned char *p1 = s1, *p2 = s2;
4537 while (len)
4538 {
4539 if (translate[*p1++] != translate[*p2++]) return 1;
4540 len--;
4541 }
4542 return 0;
4543}
4544\f
4545/* Entry points for GNU code. */
4546
4547/* re_compile_pattern is the GNU regular expression compiler: it
4548 compiles PATTERN (of length SIZE) and puts the result in BUFP.
4549 Returns 0 if the pattern was valid, otherwise an error string.
4550
4551 Assumes the `allocated' (and perhaps `buffer') and `translate' fields
4552 are set in BUFP on entry.
4553
4554 We call regex_compile to do the actual compilation. */
4555
4556const char *
4557re_compile_pattern (pattern, length, bufp)
4558 const char *pattern;
4559 int length;
4560 struct re_pattern_buffer *bufp;
4561{
4562 reg_errcode_t ret;
4563
4564 /* GNU code is written to assume at least RE_NREGS registers will be set
4565 (and at least one extra will be -1). */
4566 bufp->regs_allocated = REGS_UNALLOCATED;
4567
4568 /* And GNU code determines whether or not to get register information
4569 by passing null for the REGS argument to re_match, etc., not by
4570 setting no_sub. */
4571 bufp->no_sub = 0;
4572
4573 /* Match anchors at newline. */
4574 bufp->newline_anchor = 1;
4575
4576 ret = regex_compile (pattern, length, re_syntax_options, bufp);
4577
4578 return re_error_msg[(int) ret];
4579}
4580\f
4581/* Entry points compatible with 4.2 BSD regex library. We don't define
4582 them if this is an Emacs or POSIX compilation. */
4583
4584#if !defined (emacs) && !defined (_POSIX_SOURCE)
4585
4586/* BSD has one and only one pattern buffer. */
4587static struct re_pattern_buffer re_comp_buf;
4588
4589char *
4590re_comp (s)
4591 const char *s;
4592{
4593 reg_errcode_t ret;
4594
4595 if (!s)
4596 {
4597 if (!re_comp_buf.buffer)
4598 return "No previous regular expression";
4599 return 0;
4600 }
4601
4602 if (!re_comp_buf.buffer)
4603 {
4604 re_comp_buf.buffer = (unsigned char *) malloc (200);
4605 if (re_comp_buf.buffer == NULL)
4606 return "Memory exhausted";
4607 re_comp_buf.allocated = 200;
4608
4609 re_comp_buf.fastmap = (char *) malloc (1 << BYTEWIDTH);
4610 if (re_comp_buf.fastmap == NULL)
4611 return "Memory exhausted";
4612 }
4613
4614 /* Since `re_exec' always passes NULL for the `regs' argument, we
4615 don't need to initialize the pattern buffer fields which affect it. */
4616
4617 /* Match anchors at newlines. */
4618 re_comp_buf.newline_anchor = 1;
4619
4620 ret = regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf);
4621
4622 /* Yes, we're discarding `const' here. */
4623 return (char *) re_error_msg[(int) ret];
4624}
4625
4626
4627int
4628re_exec (s)
4629 const char *s;
4630{
4631 const int len = strlen (s);
4632 return
4633 0 <= re_search (&re_comp_buf, s, len, 0, len, (struct re_registers *) 0);
4634}
4635#endif /* not emacs and not _POSIX_SOURCE */
4636\f
4637/* POSIX.2 functions. Don't define these for Emacs. */
4638
4639#ifndef emacs
4640
4641/* regcomp takes a regular expression as a string and compiles it.
4642
4643 PREG is a regex_t *. We do not expect any fields to be initialized,
4644 since POSIX says we shouldn't. Thus, we set
4645
4646 `buffer' to the compiled pattern;
4647 `used' to the length of the compiled pattern;
4648 `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
4649 REG_EXTENDED bit in CFLAGS is set; otherwise, to
4650 RE_SYNTAX_POSIX_BASIC;
4651 `newline_anchor' to REG_NEWLINE being set in CFLAGS;
4652 `fastmap' and `fastmap_accurate' to zero;
4653 `re_nsub' to the number of subexpressions in PATTERN.
4654
4655 PATTERN is the address of the pattern string.
4656
4657 CFLAGS is a series of bits which affect compilation.
4658
4659 If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
4660 use POSIX basic syntax.
4661
4662 If REG_NEWLINE is set, then . and [^...] don't match newline.
4663 Also, regexec will try a match beginning after every newline.
4664
4665 If REG_ICASE is set, then we considers upper- and lowercase
4666 versions of letters to be equivalent when matching.
4667
4668 If REG_NOSUB is set, then when PREG is passed to regexec, that
4669 routine will report only success or failure, and nothing about the
4670 registers.
4671
4672 It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for
4673 the return codes and their meanings.) */
4674
4675int
4676regcomp (preg, pattern, cflags)
4677 regex_t *preg;
4678 const char *pattern;
4679 int cflags;
4680{
4681 reg_errcode_t ret;
4682 unsigned syntax
4683 = cflags & REG_EXTENDED ? RE_SYNTAX_POSIX_EXTENDED : RE_SYNTAX_POSIX_BASIC;
4684
4685 /* regex_compile will allocate the space for the compiled pattern. */
4686 preg->buffer = 0;
4687
4688 /* Don't bother to use a fastmap when searching. This simplifies the
4689 REG_NEWLINE case: if we used a fastmap, we'd have to put all the
4690 characters after newlines into the fastmap. This way, we just try
4691 every character. */
4692 preg->fastmap = 0;
4693
4694 if (cflags & REG_ICASE)
4695 {
4696 unsigned i;
4697
4698 preg->translate = (char *) malloc (CHAR_SET_SIZE);
4699 if (preg->translate == NULL)
4700 return (int) REG_ESPACE;
4701
4702 /* Map uppercase characters to corresponding lowercase ones. */
4703 for (i = 0; i < CHAR_SET_SIZE; i++)
4704 preg->translate[i] = isupper (i) ? tolower (i) : i;
4705 }
4706 else
4707 preg->translate = NULL;
4708
4709 /* If REG_NEWLINE is set, newlines are treated differently. */
4710 if (cflags & REG_NEWLINE)
4711 { /* REG_NEWLINE implies neither . nor [^...] match newline. */
4712 syntax &= ~RE_DOT_NEWLINE;
4713 syntax |= RE_HAT_LISTS_NOT_NEWLINE;
4714 /* It also changes the matching behavior. */
4715 preg->newline_anchor = 1;
4716 }
4717 else
4718 preg->newline_anchor = 0;
4719
4720 preg->no_sub = !!(cflags & REG_NOSUB);
4721
4722 /* POSIX says a null character in the pattern terminates it, so we
4723 can use strlen here in compiling the pattern. */
4724 ret = regex_compile (pattern, strlen (pattern), syntax, preg);
4725
4726 /* POSIX doesn't distinguish between an unmatched open-group and an
4727 unmatched close-group: both are REG_EPAREN. */
4728 if (ret == REG_ERPAREN) ret = REG_EPAREN;
4729
4730 return (int) ret;
4731}
4732
4733
4734/* regexec searches for a given pattern, specified by PREG, in the
4735 string STRING.
4736
4737 If NMATCH is zero or REG_NOSUB was set in the cflags argument to
4738 `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at
4739 least NMATCH elements, and we set them to the offsets of the
4740 corresponding matched substrings.
4741
4742 EFLAGS specifies `execution flags' which affect matching: if
4743 REG_NOTBOL is set, then ^ does not match at the beginning of the
4744 string; if REG_NOTEOL is set, then $ does not match at the end.
4745
4746 We return 0 if we find a match and REG_NOMATCH if not. */
4747
4748int
4749regexec (preg, string, nmatch, pmatch, eflags)
4750 const regex_t *preg;
4751 const char *string;
4752 size_t nmatch;
4753 regmatch_t pmatch[];
4754 int eflags;
4755{
4756 int ret;
4757 struct re_registers regs;
4758 regex_t private_preg;
4759 int len = strlen (string);
4760 boolean want_reg_info = !preg->no_sub && nmatch > 0;
4761
4762 private_preg = *preg;
4763
4764 private_preg.not_bol = !!(eflags & REG_NOTBOL);
4765 private_preg.not_eol = !!(eflags & REG_NOTEOL);
4766
4767 /* The user has told us exactly how many registers to return
4768 information about, via `nmatch'. We have to pass that on to the
4769 matching routines. */
4770 private_preg.regs_allocated = REGS_FIXED;
4771
4772 if (want_reg_info)
4773 {
4774 regs.num_regs = nmatch;
4775 regs.start = TALLOC (nmatch, regoff_t);
4776 regs.end = TALLOC (nmatch, regoff_t);
4777 if (regs.start == NULL || regs.end == NULL)
4778 return (int) REG_NOMATCH;
4779 }
4780
4781 /* Perform the searching operation. */
4782 ret = re_search (&private_preg, string, len,
4783 /* start: */ 0, /* range: */ len,
4784 want_reg_info ? &regs : (struct re_registers *) 0);
4785
4786 /* Copy the register information to the POSIX structure. */
4787 if (want_reg_info)
4788 {
4789 if (ret >= 0)
4790 {
4791 unsigned r;
4792
4793 for (r = 0; r < nmatch; r++)
4794 {
4795 pmatch[r].rm_so = regs.start[r];
4796 pmatch[r].rm_eo = regs.end[r];
4797 }
4798 }
4799
4800 /* If we needed the temporary register info, free the space now. */
4801 free (regs.start);
4802 free (regs.end);
4803 }
4804
4805 /* We want zero return to mean success, unlike `re_search'. */
4806 return ret >= 0 ? (int) REG_NOERROR : (int) REG_NOMATCH;
4807}
4808
4809
4810/* Returns a message corresponding to an error code, ERRCODE, returned
4811 from either regcomp or regexec. */
4812
4813size_t
4814regerror (errcode, preg, errbuf, errbuf_size)
4815 int errcode;
4816 const regex_t *preg;
4817 char *errbuf;
4818 size_t errbuf_size;
4819{
4820 const char *msg
4821 = re_error_msg[errcode] == NULL ? "Success" : re_error_msg[errcode];
4822 size_t msg_size = strlen (msg) + 1; /* Includes the null. */
4823
4824 if (errbuf_size != 0)
4825 {
4826 if (msg_size > errbuf_size)
4827 {
4828 strncpy (errbuf, msg, errbuf_size - 1);
4829 errbuf[errbuf_size - 1] = 0;
4830 }
4831 else
4832 strcpy (errbuf, msg);
4833 }
4834
4835 return msg_size;
4836}
4837
4838
4839/* Free dynamically allocated space used by PREG. */
4840
4841void
4842regfree (preg)
4843 regex_t *preg;
4844{
4845 if (preg->buffer != NULL)
4846 free (preg->buffer);
4847 preg->buffer = NULL;
4848
4849 preg->allocated = 0;
4850 preg->used = 0;
4851
4852 if (preg->fastmap != NULL)
4853 free (preg->fastmap);
4854 preg->fastmap = NULL;
4855 preg->fastmap_accurate = 0;
4856
4857 if (preg->translate != NULL)
4858 free (preg->translate);
4859 preg->translate = NULL;
4860}
4861
4862#endif /* not emacs */
4863\f
4864/*
4865Local variables:
4866make-backup-files: t
4867version-control: t
4868trim-versions-without-asking: nil
4869End:
4870*/