* regex.c (EXTEND_BUFFER): Change order of pointer addition
[bpt/emacs.git] / src / regex.c
CommitLineData
e318085a 1/* Extended regular expression matching and search library, version
0b32bf0e 2 0.12. (Implements POSIX draft P1003.2/D11.2, except for some of the
bc78d348
KB
3 internationalization features.)
4
0b5538bd 5 Copyright (C) 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
fff23de2 6 2002, 2003, 2004, 2005, 2006, 2007, 2008
e468b87f 7 Free Software Foundation, Inc.
bc78d348 8
fa9a63c5
RM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
e468b87f 11 the Free Software Foundation; either version 3, or (at your option)
fa9a63c5
RM
12 any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
7814e705 16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
fa9a63c5
RM
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
4fc5845f 21 Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
7814e705 22 USA. */
fa9a63c5 23
6df42991 24/* TODO:
505bde11 25 - structure the opcode space into opcode+flag.
dc1e502d 26 - merge with glibc's regex.[ch].
01618498 27 - replace (succeed_n + jump_n + set_number_at) with something that doesn't
6dcf2d0e
SM
28 need to modify the compiled regexp so that re_match can be reentrant.
29 - get rid of on_failure_jump_smart by doing the optimization in re_comp
30 rather than at run-time, so that re_match can be reentrant.
01618498 31*/
505bde11 32
fa9a63c5 33/* AIX requires this to be the first thing in the file. */
0b32bf0e 34#if defined _AIX && !defined REGEX_MALLOC
fa9a63c5
RM
35 #pragma alloca
36#endif
37
fa9a63c5 38#ifdef HAVE_CONFIG_H
0b32bf0e 39# include <config.h>
fa9a63c5
RM
40#endif
41
4bb91c68
SM
42#if defined STDC_HEADERS && !defined emacs
43# include <stddef.h>
44#else
45/* We need this for `regex.h', and perhaps for the Emacs include files. */
46# include <sys/types.h>
47#endif
fa9a63c5 48
14473664
SM
49/* Whether to use ISO C Amendment 1 wide char functions.
50 Those should not be used for Emacs since it uses its own. */
5e5388f6
GM
51#if defined _LIBC
52#define WIDE_CHAR_SUPPORT 1
53#else
14473664 54#define WIDE_CHAR_SUPPORT \
5e5388f6
GM
55 (HAVE_WCTYPE_H && HAVE_WCHAR_H && HAVE_BTOWC && !emacs)
56#endif
14473664
SM
57
58/* For platform which support the ISO C amendement 1 functionality we
59 support user defined character classes. */
a0ad02f7 60#if WIDE_CHAR_SUPPORT
14473664
SM
61/* Solaris 2.5 has a bug: <wchar.h> must be included before <wctype.h>. */
62# include <wchar.h>
63# include <wctype.h>
64#endif
65
c0f9ea08
SM
66#ifdef _LIBC
67/* We have to keep the namespace clean. */
68# define regfree(preg) __regfree (preg)
69# define regexec(pr, st, nm, pm, ef) __regexec (pr, st, nm, pm, ef)
70# define regcomp(preg, pattern, cflags) __regcomp (preg, pattern, cflags)
ec869672
JR
71# define regerror(err_code, preg, errbuf, errbuf_size) \
72 __regerror(err_code, preg, errbuf, errbuf_size)
c0f9ea08
SM
73# define re_set_registers(bu, re, nu, st, en) \
74 __re_set_registers (bu, re, nu, st, en)
75# define re_match_2(bufp, string1, size1, string2, size2, pos, regs, stop) \
76 __re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
77# define re_match(bufp, string, size, pos, regs) \
78 __re_match (bufp, string, size, pos, regs)
79# define re_search(bufp, string, size, startpos, range, regs) \
80 __re_search (bufp, string, size, startpos, range, regs)
81# define re_compile_pattern(pattern, length, bufp) \
82 __re_compile_pattern (pattern, length, bufp)
83# define re_set_syntax(syntax) __re_set_syntax (syntax)
84# define re_search_2(bufp, st1, s1, st2, s2, startpos, range, regs, stop) \
85 __re_search_2 (bufp, st1, s1, st2, s2, startpos, range, regs, stop)
86# define re_compile_fastmap(bufp) __re_compile_fastmap (bufp)
87
14473664
SM
88/* Make sure we call libc's function even if the user overrides them. */
89# define btowc __btowc
90# define iswctype __iswctype
91# define wctype __wctype
92
c0f9ea08
SM
93# define WEAK_ALIAS(a,b) weak_alias (a, b)
94
95/* We are also using some library internals. */
96# include <locale/localeinfo.h>
97# include <locale/elem-hash.h>
98# include <langinfo.h>
99#else
100# define WEAK_ALIAS(a,b)
101#endif
102
4bb91c68 103/* This is for other GNU distributions with internationalized messages. */
0b32bf0e 104#if HAVE_LIBINTL_H || defined _LIBC
fa9a63c5
RM
105# include <libintl.h>
106#else
107# define gettext(msgid) (msgid)
108#endif
109
5e69f11e
RM
110#ifndef gettext_noop
111/* This define is so xgettext can find the internationalizable
112 strings. */
0b32bf0e 113# define gettext_noop(String) String
5e69f11e
RM
114#endif
115
fa9a63c5
RM
116/* The `emacs' switch turns on certain matching commands
117 that make sense only in Emacs. */
118#ifdef emacs
119
0b32bf0e
SM
120# include "lisp.h"
121# include "buffer.h"
b18215fc
RS
122
123/* Make syntax table lookup grant data in gl_state. */
0b32bf0e 124# define SYNTAX_ENTRY_VIA_PROPERTY
b18215fc 125
0b32bf0e 126# include "syntax.h"
9117d724 127# include "character.h"
0b32bf0e 128# include "category.h"
fa9a63c5 129
7689ef0b
EZ
130# ifdef malloc
131# undef malloc
132# endif
0b32bf0e 133# define malloc xmalloc
7689ef0b
EZ
134# ifdef realloc
135# undef realloc
136# endif
0b32bf0e 137# define realloc xrealloc
7689ef0b
EZ
138# ifdef free
139# undef free
140# endif
0b32bf0e 141# define free xfree
9abbd165 142
7814e705 143/* Converts the pointer to the char to BEG-based offset from the start. */
0b32bf0e
SM
144# define PTR_TO_OFFSET(d) POS_AS_IN_BUFFER (POINTER_TO_OFFSET (d))
145# define POS_AS_IN_BUFFER(p) ((p) + (NILP (re_match_object) || BUFFERP (re_match_object)))
146
147# define RE_MULTIBYTE_P(bufp) ((bufp)->multibyte)
bf216479 148# define RE_TARGET_MULTIBYTE_P(bufp) ((bufp)->target_multibyte)
cf9c99bc 149# define RE_STRING_CHAR(p, s, multibyte) \
4e8a9132 150 (multibyte ? (STRING_CHAR (p, s)) : (*(p)))
cf9c99bc 151# define RE_STRING_CHAR_AND_LENGTH(p, s, len, multibyte) \
2d1675e4
SM
152 (multibyte ? (STRING_CHAR_AND_LENGTH (p, s, len)) : ((len) = 1, *(p)))
153
cf9c99bc
KH
154# define RE_CHAR_TO_MULTIBYTE(c) unibyte_to_multibyte_table[(c)]
155
156# define RE_CHAR_TO_UNIBYTE(c) \
157 (ASCII_CHAR_P (c) ? (c) \
158 : CHAR_BYTE8_P (c) ? CHAR_TO_BYTE8 (c) \
159 : multibyte_char_to_unibyte_safe (c))
160
6fdd04b0
KH
161/* Set C a (possibly converted to multibyte) character before P. P
162 points into a string which is the virtual concatenation of STR1
163 (which ends at END1) or STR2 (which ends at END2). */
bf216479
KH
164# define GET_CHAR_BEFORE_2(c, p, str1, end1, str2, end2) \
165 do { \
02cb78b5 166 if (target_multibyte) \
bf216479
KH
167 { \
168 re_char *dtemp = (p) == (str2) ? (end1) : (p); \
169 re_char *dlimit = ((p) > (str2) && (p) <= (end2)) ? (str2) : (str1); \
170 while (dtemp-- > dlimit && !CHAR_HEAD_P (*dtemp)); \
171 c = STRING_CHAR (dtemp, (p) - dtemp); \
172 } \
173 else \
174 { \
175 (c = ((p) == (str2) ? (end1) : (p))[-1]); \
cf9c99bc 176 (c) = RE_CHAR_TO_MULTIBYTE (c); \
bf216479 177 } \
2d1675e4
SM
178 } while (0)
179
6fdd04b0
KH
180/* Set C a (possibly converted to multibyte) character at P, and set
181 LEN to the byte length of that character. */
182# define GET_CHAR_AFTER(c, p, len) \
183 do { \
02cb78b5 184 if (target_multibyte) \
cf9c99bc 185 (c) = STRING_CHAR_AND_LENGTH (p, 0, len); \
6fdd04b0
KH
186 else \
187 { \
cf9c99bc 188 (c) = *p; \
6fdd04b0 189 len = 1; \
cf9c99bc 190 (c) = RE_CHAR_TO_MULTIBYTE (c); \
6fdd04b0 191 } \
8f924df7 192 } while (0)
4e8a9132 193
fa9a63c5
RM
194#else /* not emacs */
195
196/* If we are not linking with Emacs proper,
197 we can't use the relocating allocator
198 even if config.h says that we can. */
0b32bf0e 199# undef REL_ALLOC
fa9a63c5 200
0b32bf0e
SM
201# if defined STDC_HEADERS || defined _LIBC
202# include <stdlib.h>
203# else
fa9a63c5
RM
204char *malloc ();
205char *realloc ();
0b32bf0e 206# endif
fa9a63c5 207
a77f947b
CY
208/* When used in Emacs's lib-src, we need xmalloc and xrealloc. */
209
210void *
211xmalloc (size)
212 size_t size;
213{
214 register void *val;
215 val = (void *) malloc (size);
216 if (!val && size)
217 {
218 write (2, "virtual memory exhausted\n", 25);
219 exit (1);
220 }
221 return val;
222}
223
224void *
225xrealloc (block, size)
226 void *block;
227 size_t size;
228{
229 register void *val;
230 /* We must call malloc explicitly when BLOCK is 0, since some
231 reallocs don't do this. */
232 if (! block)
233 val = (void *) malloc (size);
234 else
235 val = (void *) realloc (block, size);
236 if (!val && size)
237 {
238 write (2, "virtual memory exhausted\n", 25);
239 exit (1);
240 }
241 return val;
242}
243
a073faa6
CY
244# ifdef malloc
245# undef malloc
246# endif
247# define malloc xmalloc
248# ifdef realloc
249# undef realloc
250# endif
251# define realloc xrealloc
252
9e4ecb26 253/* When used in Emacs's lib-src, we need to get bzero and bcopy somehow.
4bb91c68 254 If nothing else has been done, use the method below. */
0b32bf0e
SM
255# ifdef INHIBIT_STRING_HEADER
256# if !(defined HAVE_BZERO && defined HAVE_BCOPY)
257# if !defined bzero && !defined bcopy
258# undef INHIBIT_STRING_HEADER
259# endif
260# endif
261# endif
9e4ecb26 262
4bb91c68 263/* This is the normal way of making sure we have memcpy, memcmp and bzero.
9e4ecb26
KH
264 This is used in most programs--a few other programs avoid this
265 by defining INHIBIT_STRING_HEADER. */
0b32bf0e
SM
266# ifndef INHIBIT_STRING_HEADER
267# if defined HAVE_STRING_H || defined STDC_HEADERS || defined _LIBC
268# include <string.h>
0b32bf0e 269# ifndef bzero
4bb91c68
SM
270# ifndef _LIBC
271# define bzero(s, n) (memset (s, '\0', n), (s))
272# else
273# define bzero(s, n) __bzero (s, n)
274# endif
0b32bf0e
SM
275# endif
276# else
277# include <strings.h>
4bb91c68
SM
278# ifndef memcmp
279# define memcmp(s1, s2, n) bcmp (s1, s2, n)
280# endif
281# ifndef memcpy
282# define memcpy(d, s, n) (bcopy (s, d, n), (d))
283# endif
0b32bf0e
SM
284# endif
285# endif
fa9a63c5
RM
286
287/* Define the syntax stuff for \<, \>, etc. */
288
990b2375 289/* Sword must be nonzero for the wordchar pattern commands in re_match_2. */
669fa600 290enum syntaxcode { Swhitespace = 0, Sword = 1, Ssymbol = 2 };
fa9a63c5 291
0b32bf0e 292# define SWITCH_ENUM_CAST(x) (x)
fa9a63c5 293
e934739e 294/* Dummy macros for non-Emacs environments. */
0b32bf0e
SM
295# define BASE_LEADING_CODE_P(c) (0)
296# define CHAR_CHARSET(c) 0
297# define CHARSET_LEADING_CODE_BASE(c) 0
298# define MAX_MULTIBYTE_LENGTH 1
299# define RE_MULTIBYTE_P(x) 0
bf216479 300# define RE_TARGET_MULTIBYTE_P(x) 0
0b32bf0e
SM
301# define WORD_BOUNDARY_P(c1, c2) (0)
302# define CHAR_HEAD_P(p) (1)
303# define SINGLE_BYTE_CHAR_P(c) (1)
304# define SAME_CHARSET_P(c1, c2) (1)
305# define MULTIBYTE_FORM_LENGTH(p, s) (1)
70806df6 306# define PREV_CHAR_BOUNDARY(p, limit) ((p)--)
0b32bf0e 307# define STRING_CHAR(p, s) (*(p))
cf9c99bc 308# define RE_STRING_CHAR(p, s, multibyte) STRING_CHAR ((p), (s))
0b32bf0e
SM
309# define CHAR_STRING(c, s) (*(s) = (c), 1)
310# define STRING_CHAR_AND_LENGTH(p, s, actual_len) ((actual_len) = 1, *(p))
99f76c1e 311# define RE_STRING_CHAR_AND_LENGTH(p, s, len, multibyte) STRING_CHAR_AND_LENGTH ((p), (s), (len))
cf9c99bc
KH
312# define RE_CHAR_TO_MULTIBYTE(c) (c)
313# define RE_CHAR_TO_UNIBYTE(c) (c)
0b32bf0e 314# define GET_CHAR_BEFORE_2(c, p, str1, end1, str2, end2) \
b18215fc 315 (c = ((p) == (str2) ? *((end1) - 1) : *((p) - 1)))
6fdd04b0
KH
316# define GET_CHAR_AFTER(c, p, len) \
317 (c = *p, len = 1)
0b32bf0e 318# define MAKE_CHAR(charset, c1, c2) (c1)
9117d724
KH
319# define BYTE8_TO_CHAR(c) (c)
320# define CHAR_BYTE8_P(c) (0)
bf216479 321# define CHAR_LEADING_CODE(c) (c)
8f924df7 322
fa9a63c5 323#endif /* not emacs */
4e8a9132
SM
324
325#ifndef RE_TRANSLATE
0b32bf0e
SM
326# define RE_TRANSLATE(TBL, C) ((unsigned char)(TBL)[C])
327# define RE_TRANSLATE_P(TBL) (TBL)
4e8a9132 328#endif
fa9a63c5
RM
329\f
330/* Get the interface, including the syntax bits. */
331#include "regex.h"
332
f71b19b6
DL
333/* isalpha etc. are used for the character classes. */
334#include <ctype.h>
fa9a63c5 335
f71b19b6 336#ifdef emacs
fa9a63c5 337
f71b19b6 338/* 1 if C is an ASCII character. */
0b32bf0e 339# define IS_REAL_ASCII(c) ((c) < 0200)
fa9a63c5 340
f71b19b6 341/* 1 if C is a unibyte character. */
0b32bf0e 342# define ISUNIBYTE(c) (SINGLE_BYTE_CHAR_P ((c)))
96cc36cc 343
f71b19b6 344/* The Emacs definitions should not be directly affected by locales. */
96cc36cc 345
f71b19b6 346/* In Emacs, these are only used for single-byte characters. */
0b32bf0e
SM
347# define ISDIGIT(c) ((c) >= '0' && (c) <= '9')
348# define ISCNTRL(c) ((c) < ' ')
349# define ISXDIGIT(c) (((c) >= '0' && (c) <= '9') \
f71b19b6
DL
350 || ((c) >= 'a' && (c) <= 'f') \
351 || ((c) >= 'A' && (c) <= 'F'))
96cc36cc
RS
352
353/* This is only used for single-byte characters. */
0b32bf0e 354# define ISBLANK(c) ((c) == ' ' || (c) == '\t')
96cc36cc
RS
355
356/* The rest must handle multibyte characters. */
357
0b32bf0e 358# define ISGRAPH(c) (SINGLE_BYTE_CHAR_P (c) \
f71b19b6 359 ? (c) > ' ' && !((c) >= 0177 && (c) <= 0237) \
96cc36cc
RS
360 : 1)
361
14473664 362# define ISPRINT(c) (SINGLE_BYTE_CHAR_P (c) \
f71b19b6 363 ? (c) >= ' ' && !((c) >= 0177 && (c) <= 0237) \
96cc36cc
RS
364 : 1)
365
0b32bf0e 366# define ISALNUM(c) (IS_REAL_ASCII (c) \
f71b19b6
DL
367 ? (((c) >= 'a' && (c) <= 'z') \
368 || ((c) >= 'A' && (c) <= 'Z') \
369 || ((c) >= '0' && (c) <= '9')) \
96cc36cc
RS
370 : SYNTAX (c) == Sword)
371
0b32bf0e 372# define ISALPHA(c) (IS_REAL_ASCII (c) \
f71b19b6
DL
373 ? (((c) >= 'a' && (c) <= 'z') \
374 || ((c) >= 'A' && (c) <= 'Z')) \
96cc36cc
RS
375 : SYNTAX (c) == Sword)
376
0b32bf0e 377# define ISLOWER(c) (LOWERCASEP (c))
96cc36cc 378
0b32bf0e 379# define ISPUNCT(c) (IS_REAL_ASCII (c) \
f71b19b6
DL
380 ? ((c) > ' ' && (c) < 0177 \
381 && !(((c) >= 'a' && (c) <= 'z') \
4bb91c68
SM
382 || ((c) >= 'A' && (c) <= 'Z') \
383 || ((c) >= '0' && (c) <= '9'))) \
96cc36cc
RS
384 : SYNTAX (c) != Sword)
385
0b32bf0e 386# define ISSPACE(c) (SYNTAX (c) == Swhitespace)
96cc36cc 387
0b32bf0e 388# define ISUPPER(c) (UPPERCASEP (c))
96cc36cc 389
0b32bf0e 390# define ISWORD(c) (SYNTAX (c) == Sword)
96cc36cc
RS
391
392#else /* not emacs */
393
f71b19b6
DL
394/* Jim Meyering writes:
395
396 "... Some ctype macros are valid only for character codes that
397 isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when
398 using /bin/cc or gcc but without giving an ansi option). So, all
4bb91c68 399 ctype uses should be through macros like ISPRINT... If
f71b19b6
DL
400 STDC_HEADERS is defined, then autoconf has verified that the ctype
401 macros don't need to be guarded with references to isascii. ...
402 Defining isascii to 1 should let any compiler worth its salt
4bb91c68
SM
403 eliminate the && through constant folding."
404 Solaris defines some of these symbols so we must undefine them first. */
f71b19b6 405
4bb91c68 406# undef ISASCII
0b32bf0e
SM
407# if defined STDC_HEADERS || (!defined isascii && !defined HAVE_ISASCII)
408# define ISASCII(c) 1
409# else
410# define ISASCII(c) isascii(c)
411# endif
f71b19b6
DL
412
413/* 1 if C is an ASCII character. */
0b32bf0e 414# define IS_REAL_ASCII(c) ((c) < 0200)
f71b19b6
DL
415
416/* This distinction is not meaningful, except in Emacs. */
0b32bf0e
SM
417# define ISUNIBYTE(c) 1
418
419# ifdef isblank
420# define ISBLANK(c) (ISASCII (c) && isblank (c))
421# else
422# define ISBLANK(c) ((c) == ' ' || (c) == '\t')
423# endif
424# ifdef isgraph
425# define ISGRAPH(c) (ISASCII (c) && isgraph (c))
426# else
427# define ISGRAPH(c) (ISASCII (c) && isprint (c) && !isspace (c))
428# endif
429
4bb91c68 430# undef ISPRINT
0b32bf0e
SM
431# define ISPRINT(c) (ISASCII (c) && isprint (c))
432# define ISDIGIT(c) (ISASCII (c) && isdigit (c))
433# define ISALNUM(c) (ISASCII (c) && isalnum (c))
434# define ISALPHA(c) (ISASCII (c) && isalpha (c))
435# define ISCNTRL(c) (ISASCII (c) && iscntrl (c))
436# define ISLOWER(c) (ISASCII (c) && islower (c))
437# define ISPUNCT(c) (ISASCII (c) && ispunct (c))
438# define ISSPACE(c) (ISASCII (c) && isspace (c))
439# define ISUPPER(c) (ISASCII (c) && isupper (c))
440# define ISXDIGIT(c) (ISASCII (c) && isxdigit (c))
441
442# define ISWORD(c) ISALPHA(c)
443
4bb91c68
SM
444# ifdef _tolower
445# define TOLOWER(c) _tolower(c)
446# else
447# define TOLOWER(c) tolower(c)
448# endif
449
450/* How many characters in the character set. */
451# define CHAR_SET_SIZE 256
452
0b32bf0e 453# ifdef SYNTAX_TABLE
f71b19b6 454
0b32bf0e 455extern char *re_syntax_table;
f71b19b6 456
0b32bf0e
SM
457# else /* not SYNTAX_TABLE */
458
0b32bf0e
SM
459static char re_syntax_table[CHAR_SET_SIZE];
460
461static void
462init_syntax_once ()
463{
464 register int c;
465 static int done = 0;
466
467 if (done)
468 return;
469
470 bzero (re_syntax_table, sizeof re_syntax_table);
471
4bb91c68
SM
472 for (c = 0; c < CHAR_SET_SIZE; ++c)
473 if (ISALNUM (c))
474 re_syntax_table[c] = Sword;
fa9a63c5 475
669fa600 476 re_syntax_table['_'] = Ssymbol;
fa9a63c5 477
0b32bf0e
SM
478 done = 1;
479}
480
481# endif /* not SYNTAX_TABLE */
96cc36cc 482
4bb91c68
SM
483# define SYNTAX(c) re_syntax_table[(c)]
484
96cc36cc
RS
485#endif /* not emacs */
486\f
fa9a63c5 487#ifndef NULL
0b32bf0e 488# define NULL (void *)0
fa9a63c5
RM
489#endif
490
491/* We remove any previous definition of `SIGN_EXTEND_CHAR',
492 since ours (we hope) works properly with all combinations of
493 machines, compilers, `char' and `unsigned char' argument types.
4bb91c68 494 (Per Bothner suggested the basic approach.) */
fa9a63c5
RM
495#undef SIGN_EXTEND_CHAR
496#if __STDC__
0b32bf0e 497# define SIGN_EXTEND_CHAR(c) ((signed char) (c))
fa9a63c5
RM
498#else /* not __STDC__ */
499/* As in Harbison and Steele. */
0b32bf0e 500# define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
fa9a63c5
RM
501#endif
502\f
503/* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we
504 use `alloca' instead of `malloc'. This is because using malloc in
505 re_search* or re_match* could cause memory leaks when C-g is used in
506 Emacs; also, malloc is slower and causes storage fragmentation. On
5e69f11e
RM
507 the other hand, malloc is more portable, and easier to debug.
508
fa9a63c5
RM
509 Because we sometimes use alloca, some routines have to be macros,
510 not functions -- `alloca'-allocated space disappears at the end of the
511 function it is called in. */
512
513#ifdef REGEX_MALLOC
514
0b32bf0e
SM
515# define REGEX_ALLOCATE malloc
516# define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
517# define REGEX_FREE free
fa9a63c5
RM
518
519#else /* not REGEX_MALLOC */
520
521/* Emacs already defines alloca, sometimes. */
0b32bf0e 522# ifndef alloca
fa9a63c5
RM
523
524/* Make alloca work the best possible way. */
0b32bf0e
SM
525# ifdef __GNUC__
526# define alloca __builtin_alloca
527# else /* not __GNUC__ */
7f585e7a 528# ifdef HAVE_ALLOCA_H
0b32bf0e
SM
529# include <alloca.h>
530# endif /* HAVE_ALLOCA_H */
531# endif /* not __GNUC__ */
fa9a63c5 532
0b32bf0e 533# endif /* not alloca */
fa9a63c5 534
0b32bf0e 535# define REGEX_ALLOCATE alloca
fa9a63c5
RM
536
537/* Assumes a `char *destination' variable. */
0b32bf0e 538# define REGEX_REALLOCATE(source, osize, nsize) \
fa9a63c5 539 (destination = (char *) alloca (nsize), \
4bb91c68 540 memcpy (destination, source, osize))
fa9a63c5
RM
541
542/* No need to do anything to free, after alloca. */
0b32bf0e 543# define REGEX_FREE(arg) ((void)0) /* Do nothing! But inhibit gcc warning. */
fa9a63c5
RM
544
545#endif /* not REGEX_MALLOC */
546
547/* Define how to allocate the failure stack. */
548
0b32bf0e 549#if defined REL_ALLOC && defined REGEX_MALLOC
4297555e 550
0b32bf0e 551# define REGEX_ALLOCATE_STACK(size) \
fa9a63c5 552 r_alloc (&failure_stack_ptr, (size))
0b32bf0e 553# define REGEX_REALLOCATE_STACK(source, osize, nsize) \
fa9a63c5 554 r_re_alloc (&failure_stack_ptr, (nsize))
0b32bf0e 555# define REGEX_FREE_STACK(ptr) \
fa9a63c5
RM
556 r_alloc_free (&failure_stack_ptr)
557
4297555e 558#else /* not using relocating allocator */
fa9a63c5 559
0b32bf0e 560# ifdef REGEX_MALLOC
fa9a63c5 561
0b32bf0e
SM
562# define REGEX_ALLOCATE_STACK malloc
563# define REGEX_REALLOCATE_STACK(source, osize, nsize) realloc (source, nsize)
564# define REGEX_FREE_STACK free
fa9a63c5 565
0b32bf0e 566# else /* not REGEX_MALLOC */
fa9a63c5 567
0b32bf0e 568# define REGEX_ALLOCATE_STACK alloca
fa9a63c5 569
0b32bf0e 570# define REGEX_REALLOCATE_STACK(source, osize, nsize) \
fa9a63c5 571 REGEX_REALLOCATE (source, osize, nsize)
7814e705 572/* No need to explicitly free anything. */
0b32bf0e 573# define REGEX_FREE_STACK(arg) ((void)0)
fa9a63c5 574
0b32bf0e 575# endif /* not REGEX_MALLOC */
4297555e 576#endif /* not using relocating allocator */
fa9a63c5
RM
577
578
579/* True if `size1' is non-NULL and PTR is pointing anywhere inside
580 `string1' or just past its end. This works if PTR is NULL, which is
581 a good thing. */
25fe55af 582#define FIRST_STRING_P(ptr) \
fa9a63c5
RM
583 (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
584
585/* (Re)Allocate N items of type T using malloc, or fail. */
586#define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
587#define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
588#define RETALLOC_IF(addr, n, t) \
589 if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t)
590#define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
591
4bb91c68 592#define BYTEWIDTH 8 /* In bits. */
fa9a63c5
RM
593
594#define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
595
596#undef MAX
597#undef MIN
598#define MAX(a, b) ((a) > (b) ? (a) : (b))
599#define MIN(a, b) ((a) < (b) ? (a) : (b))
600
66f0296e
SM
601/* Type of source-pattern and string chars. */
602typedef const unsigned char re_char;
603
fa9a63c5
RM
604typedef char boolean;
605#define false 0
606#define true 1
607
4bb91c68
SM
608static int re_match_2_internal _RE_ARGS ((struct re_pattern_buffer *bufp,
609 re_char *string1, int size1,
610 re_char *string2, int size2,
611 int pos,
612 struct re_registers *regs,
613 int stop));
fa9a63c5
RM
614\f
615/* These are the command codes that appear in compiled regular
4bb91c68 616 expressions. Some opcodes are followed by argument bytes. A
fa9a63c5
RM
617 command code can specify any interpretation whatsoever for its
618 arguments. Zero bytes may appear in the compiled regular expression. */
619
620typedef enum
621{
622 no_op = 0,
623
4bb91c68 624 /* Succeed right away--no more backtracking. */
fa9a63c5
RM
625 succeed,
626
25fe55af 627 /* Followed by one byte giving n, then by n literal bytes. */
fa9a63c5
RM
628 exactn,
629
25fe55af 630 /* Matches any (more or less) character. */
fa9a63c5
RM
631 anychar,
632
25fe55af
RS
633 /* Matches any one char belonging to specified set. First
634 following byte is number of bitmap bytes. Then come bytes
635 for a bitmap saying which chars are in. Bits in each byte
636 are ordered low-bit-first. A character is in the set if its
637 bit is 1. A character too large to have a bit in the map is
96cc36cc
RS
638 automatically not in the set.
639
640 If the length byte has the 0x80 bit set, then that stuff
641 is followed by a range table:
642 2 bytes of flags for character sets (low 8 bits, high 8 bits)
0b32bf0e 643 See RANGE_TABLE_WORK_BITS below.
01618498 644 2 bytes, the number of pairs that follow (upto 32767)
96cc36cc 645 pairs, each 2 multibyte characters,
0b32bf0e 646 each multibyte character represented as 3 bytes. */
fa9a63c5
RM
647 charset,
648
25fe55af 649 /* Same parameters as charset, but match any character that is
4bb91c68 650 not one of those specified. */
fa9a63c5
RM
651 charset_not,
652
25fe55af
RS
653 /* Start remembering the text that is matched, for storing in a
654 register. Followed by one byte with the register number, in
655 the range 0 to one less than the pattern buffer's re_nsub
505bde11 656 field. */
fa9a63c5
RM
657 start_memory,
658
25fe55af
RS
659 /* Stop remembering the text that is matched and store it in a
660 memory register. Followed by one byte with the register
661 number, in the range 0 to one less than `re_nsub' in the
505bde11 662 pattern buffer. */
fa9a63c5
RM
663 stop_memory,
664
25fe55af 665 /* Match a duplicate of something remembered. Followed by one
4bb91c68 666 byte containing the register number. */
fa9a63c5
RM
667 duplicate,
668
25fe55af 669 /* Fail unless at beginning of line. */
fa9a63c5
RM
670 begline,
671
4bb91c68 672 /* Fail unless at end of line. */
fa9a63c5
RM
673 endline,
674
25fe55af
RS
675 /* Succeeds if at beginning of buffer (if emacs) or at beginning
676 of string to be matched (if not). */
fa9a63c5
RM
677 begbuf,
678
25fe55af 679 /* Analogously, for end of buffer/string. */
fa9a63c5 680 endbuf,
5e69f11e 681
25fe55af 682 /* Followed by two byte relative address to which to jump. */
5e69f11e 683 jump,
fa9a63c5 684
25fe55af 685 /* Followed by two-byte relative address of place to resume at
7814e705 686 in case of failure. */
fa9a63c5 687 on_failure_jump,
5e69f11e 688
25fe55af
RS
689 /* Like on_failure_jump, but pushes a placeholder instead of the
690 current string position when executed. */
fa9a63c5 691 on_failure_keep_string_jump,
5e69f11e 692
505bde11
SM
693 /* Just like `on_failure_jump', except that it checks that we
694 don't get stuck in an infinite loop (matching an empty string
695 indefinitely). */
696 on_failure_jump_loop,
697
0683b6fa
SM
698 /* Just like `on_failure_jump_loop', except that it checks for
699 a different kind of loop (the kind that shows up with non-greedy
700 operators). This operation has to be immediately preceded
701 by a `no_op'. */
702 on_failure_jump_nastyloop,
703
0b32bf0e 704 /* A smart `on_failure_jump' used for greedy * and + operators.
505bde11
SM
705 It analyses the loop before which it is put and if the
706 loop does not require backtracking, it changes itself to
4e8a9132
SM
707 `on_failure_keep_string_jump' and short-circuits the loop,
708 else it just defaults to changing itself into `on_failure_jump'.
709 It assumes that it is pointing to just past a `jump'. */
505bde11 710 on_failure_jump_smart,
fa9a63c5 711
25fe55af 712 /* Followed by two-byte relative address and two-byte number n.
ed0767d8
SM
713 After matching N times, jump to the address upon failure.
714 Does not work if N starts at 0: use on_failure_jump_loop
715 instead. */
fa9a63c5
RM
716 succeed_n,
717
25fe55af
RS
718 /* Followed by two-byte relative address, and two-byte number n.
719 Jump to the address N times, then fail. */
fa9a63c5
RM
720 jump_n,
721
25fe55af 722 /* Set the following two-byte relative address to the
7814e705 723 subsequent two-byte number. The address *includes* the two
25fe55af 724 bytes of number. */
fa9a63c5
RM
725 set_number_at,
726
fa9a63c5
RM
727 wordbeg, /* Succeeds if at word beginning. */
728 wordend, /* Succeeds if at word end. */
729
730 wordbound, /* Succeeds if at a word boundary. */
7814e705 731 notwordbound, /* Succeeds if not at a word boundary. */
fa9a63c5 732
669fa600
SM
733 symbeg, /* Succeeds if at symbol beginning. */
734 symend, /* Succeeds if at symbol end. */
735
fa9a63c5 736 /* Matches any character whose syntax is specified. Followed by
25fe55af 737 a byte which contains a syntax code, e.g., Sword. */
fa9a63c5
RM
738 syntaxspec,
739
740 /* Matches any character whose syntax is not that specified. */
1fb352e0
SM
741 notsyntaxspec
742
743#ifdef emacs
744 ,before_dot, /* Succeeds if before point. */
745 at_dot, /* Succeeds if at point. */
746 after_dot, /* Succeeds if after point. */
b18215fc
RS
747
748 /* Matches any character whose category-set contains the specified
7814e705
JB
749 category. The operator is followed by a byte which contains a
750 category code (mnemonic ASCII character). */
b18215fc
RS
751 categoryspec,
752
753 /* Matches any character whose category-set does not contain the
754 specified category. The operator is followed by a byte which
755 contains the category code (mnemonic ASCII character). */
756 notcategoryspec
fa9a63c5
RM
757#endif /* emacs */
758} re_opcode_t;
759\f
760/* Common operations on the compiled pattern. */
761
762/* Store NUMBER in two contiguous bytes starting at DESTINATION. */
763
764#define STORE_NUMBER(destination, number) \
765 do { \
766 (destination)[0] = (number) & 0377; \
767 (destination)[1] = (number) >> 8; \
768 } while (0)
769
770/* Same as STORE_NUMBER, except increment DESTINATION to
771 the byte after where the number is stored. Therefore, DESTINATION
772 must be an lvalue. */
773
774#define STORE_NUMBER_AND_INCR(destination, number) \
775 do { \
776 STORE_NUMBER (destination, number); \
777 (destination) += 2; \
778 } while (0)
779
780/* Put into DESTINATION a number stored in two contiguous bytes starting
781 at SOURCE. */
782
783#define EXTRACT_NUMBER(destination, source) \
784 do { \
785 (destination) = *(source) & 0377; \
786 (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8; \
787 } while (0)
788
789#ifdef DEBUG
4bb91c68 790static void extract_number _RE_ARGS ((int *dest, re_char *source));
fa9a63c5
RM
791static void
792extract_number (dest, source)
793 int *dest;
01618498 794 re_char *source;
fa9a63c5 795{
5e69f11e 796 int temp = SIGN_EXTEND_CHAR (*(source + 1));
fa9a63c5
RM
797 *dest = *source & 0377;
798 *dest += temp << 8;
799}
800
4bb91c68 801# ifndef EXTRACT_MACROS /* To debug the macros. */
0b32bf0e
SM
802# undef EXTRACT_NUMBER
803# define EXTRACT_NUMBER(dest, src) extract_number (&dest, src)
804# endif /* not EXTRACT_MACROS */
fa9a63c5
RM
805
806#endif /* DEBUG */
807
808/* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
809 SOURCE must be an lvalue. */
810
811#define EXTRACT_NUMBER_AND_INCR(destination, source) \
812 do { \
813 EXTRACT_NUMBER (destination, source); \
25fe55af 814 (source) += 2; \
fa9a63c5
RM
815 } while (0)
816
817#ifdef DEBUG
4bb91c68
SM
818static void extract_number_and_incr _RE_ARGS ((int *destination,
819 re_char **source));
fa9a63c5
RM
820static void
821extract_number_and_incr (destination, source)
822 int *destination;
01618498 823 re_char **source;
5e69f11e 824{
fa9a63c5
RM
825 extract_number (destination, *source);
826 *source += 2;
827}
828
0b32bf0e
SM
829# ifndef EXTRACT_MACROS
830# undef EXTRACT_NUMBER_AND_INCR
831# define EXTRACT_NUMBER_AND_INCR(dest, src) \
fa9a63c5 832 extract_number_and_incr (&dest, &src)
0b32bf0e 833# endif /* not EXTRACT_MACROS */
fa9a63c5
RM
834
835#endif /* DEBUG */
836\f
b18215fc
RS
837/* Store a multibyte character in three contiguous bytes starting
838 DESTINATION, and increment DESTINATION to the byte after where the
7814e705 839 character is stored. Therefore, DESTINATION must be an lvalue. */
b18215fc
RS
840
841#define STORE_CHARACTER_AND_INCR(destination, character) \
842 do { \
843 (destination)[0] = (character) & 0377; \
844 (destination)[1] = ((character) >> 8) & 0377; \
845 (destination)[2] = (character) >> 16; \
846 (destination) += 3; \
847 } while (0)
848
849/* Put into DESTINATION a character stored in three contiguous bytes
7814e705 850 starting at SOURCE. */
b18215fc
RS
851
852#define EXTRACT_CHARACTER(destination, source) \
853 do { \
854 (destination) = ((source)[0] \
855 | ((source)[1] << 8) \
856 | ((source)[2] << 16)); \
857 } while (0)
858
859
860/* Macros for charset. */
861
862/* Size of bitmap of charset P in bytes. P is a start of charset,
863 i.e. *P is (re_opcode_t) charset or (re_opcode_t) charset_not. */
864#define CHARSET_BITMAP_SIZE(p) ((p)[1] & 0x7F)
865
866/* Nonzero if charset P has range table. */
25fe55af 867#define CHARSET_RANGE_TABLE_EXISTS_P(p) ((p)[1] & 0x80)
b18215fc
RS
868
869/* Return the address of range table of charset P. But not the start
870 of table itself, but the before where the number of ranges is
96cc36cc
RS
871 stored. `2 +' means to skip re_opcode_t and size of bitmap,
872 and the 2 bytes of flags at the start of the range table. */
873#define CHARSET_RANGE_TABLE(p) (&(p)[4 + CHARSET_BITMAP_SIZE (p)])
874
875/* Extract the bit flags that start a range table. */
876#define CHARSET_RANGE_TABLE_BITS(p) \
877 ((p)[2 + CHARSET_BITMAP_SIZE (p)] \
878 + (p)[3 + CHARSET_BITMAP_SIZE (p)] * 0x100)
b18215fc
RS
879
880/* Test if C is listed in the bitmap of charset P. */
881#define CHARSET_LOOKUP_BITMAP(p, c) \
882 ((c) < CHARSET_BITMAP_SIZE (p) * BYTEWIDTH \
883 && (p)[2 + (c) / BYTEWIDTH] & (1 << ((c) % BYTEWIDTH)))
884
885/* Return the address of end of RANGE_TABLE. COUNT is number of
7814e705
JB
886 ranges (which is a pair of (start, end)) in the RANGE_TABLE. `* 2'
887 is start of range and end of range. `* 3' is size of each start
b18215fc
RS
888 and end. */
889#define CHARSET_RANGE_TABLE_END(range_table, count) \
890 ((range_table) + (count) * 2 * 3)
891
7814e705 892/* Test if C is in RANGE_TABLE. A flag NOT is negated if C is in.
b18215fc
RS
893 COUNT is number of ranges in RANGE_TABLE. */
894#define CHARSET_LOOKUP_RANGE_TABLE_RAW(not, c, range_table, count) \
895 do \
896 { \
01618498
SM
897 re_wchar_t range_start, range_end; \
898 re_char *p; \
899 re_char *range_table_end \
b18215fc
RS
900 = CHARSET_RANGE_TABLE_END ((range_table), (count)); \
901 \
902 for (p = (range_table); p < range_table_end; p += 2 * 3) \
903 { \
904 EXTRACT_CHARACTER (range_start, p); \
905 EXTRACT_CHARACTER (range_end, p + 3); \
906 \
907 if (range_start <= (c) && (c) <= range_end) \
908 { \
909 (not) = !(not); \
910 break; \
911 } \
912 } \
913 } \
914 while (0)
915
916/* Test if C is in range table of CHARSET. The flag NOT is negated if
917 C is listed in it. */
918#define CHARSET_LOOKUP_RANGE_TABLE(not, c, charset) \
919 do \
920 { \
921 /* Number of ranges in range table. */ \
922 int count; \
01618498
SM
923 re_char *range_table = CHARSET_RANGE_TABLE (charset); \
924 \
b18215fc
RS
925 EXTRACT_NUMBER_AND_INCR (count, range_table); \
926 CHARSET_LOOKUP_RANGE_TABLE_RAW ((not), (c), range_table, count); \
927 } \
928 while (0)
929\f
fa9a63c5
RM
930/* If DEBUG is defined, Regex prints many voluminous messages about what
931 it is doing (if the variable `debug' is nonzero). If linked with the
932 main program in `iregex.c', you can enter patterns and strings
933 interactively. And if linked with the main program in `main.c' and
4bb91c68 934 the other test files, you can run the already-written tests. */
fa9a63c5
RM
935
936#ifdef DEBUG
937
938/* We use standard I/O for debugging. */
0b32bf0e 939# include <stdio.h>
fa9a63c5
RM
940
941/* It is useful to test things that ``must'' be true when debugging. */
0b32bf0e 942# include <assert.h>
fa9a63c5 943
99633e97 944static int debug = -100000;
fa9a63c5 945
0b32bf0e
SM
946# define DEBUG_STATEMENT(e) e
947# define DEBUG_PRINT1(x) if (debug > 0) printf (x)
948# define DEBUG_PRINT2(x1, x2) if (debug > 0) printf (x1, x2)
949# define DEBUG_PRINT3(x1, x2, x3) if (debug > 0) printf (x1, x2, x3)
950# define DEBUG_PRINT4(x1, x2, x3, x4) if (debug > 0) printf (x1, x2, x3, x4)
951# define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \
99633e97 952 if (debug > 0) print_partial_compiled_pattern (s, e)
0b32bf0e 953# define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \
99633e97 954 if (debug > 0) print_double_string (w, s1, sz1, s2, sz2)
fa9a63c5
RM
955
956
957/* Print the fastmap in human-readable form. */
958
959void
960print_fastmap (fastmap)
961 char *fastmap;
962{
963 unsigned was_a_range = 0;
5e69f11e
RM
964 unsigned i = 0;
965
fa9a63c5
RM
966 while (i < (1 << BYTEWIDTH))
967 {
968 if (fastmap[i++])
969 {
970 was_a_range = 0;
25fe55af
RS
971 putchar (i - 1);
972 while (i < (1 << BYTEWIDTH) && fastmap[i])
973 {
974 was_a_range = 1;
975 i++;
976 }
fa9a63c5 977 if (was_a_range)
25fe55af
RS
978 {
979 printf ("-");
980 putchar (i - 1);
981 }
982 }
fa9a63c5 983 }
5e69f11e 984 putchar ('\n');
fa9a63c5
RM
985}
986
987
988/* Print a compiled pattern string in human-readable form, starting at
989 the START pointer into it and ending just before the pointer END. */
990
991void
992print_partial_compiled_pattern (start, end)
01618498
SM
993 re_char *start;
994 re_char *end;
fa9a63c5
RM
995{
996 int mcnt, mcnt2;
01618498
SM
997 re_char *p = start;
998 re_char *pend = end;
fa9a63c5
RM
999
1000 if (start == NULL)
1001 {
a1a052df 1002 fprintf (stderr, "(null)\n");
fa9a63c5
RM
1003 return;
1004 }
5e69f11e 1005
fa9a63c5
RM
1006 /* Loop over pattern commands. */
1007 while (p < pend)
1008 {
a1a052df 1009 fprintf (stderr, "%d:\t", p - start);
fa9a63c5
RM
1010
1011 switch ((re_opcode_t) *p++)
1012 {
25fe55af 1013 case no_op:
a1a052df 1014 fprintf (stderr, "/no_op");
25fe55af 1015 break;
fa9a63c5 1016
99633e97 1017 case succeed:
a1a052df 1018 fprintf (stderr, "/succeed");
99633e97
SM
1019 break;
1020
fa9a63c5
RM
1021 case exactn:
1022 mcnt = *p++;
a1a052df 1023 fprintf (stderr, "/exactn/%d", mcnt);
25fe55af 1024 do
fa9a63c5 1025 {
a1a052df 1026 fprintf (stderr, "/%c", *p++);
25fe55af
RS
1027 }
1028 while (--mcnt);
1029 break;
fa9a63c5
RM
1030
1031 case start_memory:
a1a052df 1032 fprintf (stderr, "/start_memory/%d", *p++);
25fe55af 1033 break;
fa9a63c5
RM
1034
1035 case stop_memory:
a1a052df 1036 fprintf (stderr, "/stop_memory/%d", *p++);
25fe55af 1037 break;
fa9a63c5
RM
1038
1039 case duplicate:
a1a052df 1040 fprintf (stderr, "/duplicate/%d", *p++);
fa9a63c5
RM
1041 break;
1042
1043 case anychar:
a1a052df 1044 fprintf (stderr, "/anychar");
fa9a63c5
RM
1045 break;
1046
1047 case charset:
25fe55af
RS
1048 case charset_not:
1049 {
1050 register int c, last = -100;
fa9a63c5 1051 register int in_range = 0;
99633e97
SM
1052 int length = CHARSET_BITMAP_SIZE (p - 1);
1053 int has_range_table = CHARSET_RANGE_TABLE_EXISTS_P (p - 1);
fa9a63c5 1054
a1a052df 1055 fprintf (stderr, "/charset [%s",
839966f3 1056 (re_opcode_t) *(p - 1) == charset_not ? "^" : "");
5e69f11e 1057
839966f3
KH
1058 if (p + *p >= pend)
1059 fprintf (stderr, " !extends past end of pattern! ");
fa9a63c5 1060
25fe55af 1061 for (c = 0; c < 256; c++)
96cc36cc 1062 if (c / 8 < length
fa9a63c5
RM
1063 && (p[1 + (c/8)] & (1 << (c % 8))))
1064 {
1065 /* Are we starting a range? */
1066 if (last + 1 == c && ! in_range)
1067 {
a1a052df 1068 fprintf (stderr, "-");
fa9a63c5
RM
1069 in_range = 1;
1070 }
1071 /* Have we broken a range? */
1072 else if (last + 1 != c && in_range)
96cc36cc 1073 {
a1a052df 1074 fprintf (stderr, "%c", last);
fa9a63c5
RM
1075 in_range = 0;
1076 }
5e69f11e 1077
fa9a63c5 1078 if (! in_range)
a1a052df 1079 fprintf (stderr, "%c", c);
fa9a63c5
RM
1080
1081 last = c;
25fe55af 1082 }
fa9a63c5
RM
1083
1084 if (in_range)
a1a052df 1085 fprintf (stderr, "%c", last);
fa9a63c5 1086
a1a052df 1087 fprintf (stderr, "]");
fa9a63c5 1088
99633e97 1089 p += 1 + length;
96cc36cc 1090
96cc36cc 1091 if (has_range_table)
99633e97
SM
1092 {
1093 int count;
a1a052df 1094 fprintf (stderr, "has-range-table");
99633e97
SM
1095
1096 /* ??? Should print the range table; for now, just skip it. */
1097 p += 2; /* skip range table bits */
1098 EXTRACT_NUMBER_AND_INCR (count, p);
1099 p = CHARSET_RANGE_TABLE_END (p, count);
1100 }
fa9a63c5
RM
1101 }
1102 break;
1103
1104 case begline:
a1a052df 1105 fprintf (stderr, "/begline");
25fe55af 1106 break;
fa9a63c5
RM
1107
1108 case endline:
a1a052df 1109 fprintf (stderr, "/endline");
25fe55af 1110 break;
fa9a63c5
RM
1111
1112 case on_failure_jump:
25fe55af 1113 extract_number_and_incr (&mcnt, &p);
a1a052df 1114 fprintf (stderr, "/on_failure_jump to %d", p + mcnt - start);
25fe55af 1115 break;
fa9a63c5
RM
1116
1117 case on_failure_keep_string_jump:
25fe55af 1118 extract_number_and_incr (&mcnt, &p);
a1a052df 1119 fprintf (stderr, "/on_failure_keep_string_jump to %d", p + mcnt - start);
25fe55af 1120 break;
fa9a63c5 1121
0683b6fa
SM
1122 case on_failure_jump_nastyloop:
1123 extract_number_and_incr (&mcnt, &p);
a1a052df 1124 fprintf (stderr, "/on_failure_jump_nastyloop to %d", p + mcnt - start);
0683b6fa
SM
1125 break;
1126
505bde11 1127 case on_failure_jump_loop:
fa9a63c5 1128 extract_number_and_incr (&mcnt, &p);
a1a052df 1129 fprintf (stderr, "/on_failure_jump_loop to %d", p + mcnt - start);
5e69f11e
RM
1130 break;
1131
505bde11 1132 case on_failure_jump_smart:
fa9a63c5 1133 extract_number_and_incr (&mcnt, &p);
a1a052df 1134 fprintf (stderr, "/on_failure_jump_smart to %d", p + mcnt - start);
5e69f11e
RM
1135 break;
1136
25fe55af 1137 case jump:
fa9a63c5 1138 extract_number_and_incr (&mcnt, &p);
a1a052df 1139 fprintf (stderr, "/jump to %d", p + mcnt - start);
fa9a63c5
RM
1140 break;
1141
25fe55af
RS
1142 case succeed_n:
1143 extract_number_and_incr (&mcnt, &p);
1144 extract_number_and_incr (&mcnt2, &p);
a1a052df 1145 fprintf (stderr, "/succeed_n to %d, %d times", p - 2 + mcnt - start, mcnt2);
25fe55af 1146 break;
5e69f11e 1147
25fe55af
RS
1148 case jump_n:
1149 extract_number_and_incr (&mcnt, &p);
1150 extract_number_and_incr (&mcnt2, &p);
a1a052df 1151 fprintf (stderr, "/jump_n to %d, %d times", p - 2 + mcnt - start, mcnt2);
25fe55af 1152 break;
5e69f11e 1153
25fe55af
RS
1154 case set_number_at:
1155 extract_number_and_incr (&mcnt, &p);
1156 extract_number_and_incr (&mcnt2, &p);
a1a052df 1157 fprintf (stderr, "/set_number_at location %d to %d", p - 2 + mcnt - start, mcnt2);
25fe55af 1158 break;
5e69f11e 1159
25fe55af 1160 case wordbound:
a1a052df 1161 fprintf (stderr, "/wordbound");
fa9a63c5
RM
1162 break;
1163
1164 case notwordbound:
a1a052df 1165 fprintf (stderr, "/notwordbound");
25fe55af 1166 break;
fa9a63c5
RM
1167
1168 case wordbeg:
a1a052df 1169 fprintf (stderr, "/wordbeg");
fa9a63c5 1170 break;
5e69f11e 1171
fa9a63c5 1172 case wordend:
a1a052df 1173 fprintf (stderr, "/wordend");
e2543b02 1174 break;
5e69f11e 1175
669fa600 1176 case symbeg:
e2543b02 1177 fprintf (stderr, "/symbeg");
669fa600
SM
1178 break;
1179
1180 case symend:
e2543b02 1181 fprintf (stderr, "/symend");
669fa600 1182 break;
5e69f11e 1183
1fb352e0 1184 case syntaxspec:
a1a052df 1185 fprintf (stderr, "/syntaxspec");
1fb352e0 1186 mcnt = *p++;
a1a052df 1187 fprintf (stderr, "/%d", mcnt);
1fb352e0
SM
1188 break;
1189
1190 case notsyntaxspec:
a1a052df 1191 fprintf (stderr, "/notsyntaxspec");
1fb352e0 1192 mcnt = *p++;
a1a052df 1193 fprintf (stderr, "/%d", mcnt);
1fb352e0
SM
1194 break;
1195
0b32bf0e 1196# ifdef emacs
fa9a63c5 1197 case before_dot:
a1a052df 1198 fprintf (stderr, "/before_dot");
25fe55af 1199 break;
fa9a63c5
RM
1200
1201 case at_dot:
a1a052df 1202 fprintf (stderr, "/at_dot");
25fe55af 1203 break;
fa9a63c5
RM
1204
1205 case after_dot:
a1a052df 1206 fprintf (stderr, "/after_dot");
25fe55af 1207 break;
fa9a63c5 1208
1fb352e0 1209 case categoryspec:
a1a052df 1210 fprintf (stderr, "/categoryspec");
fa9a63c5 1211 mcnt = *p++;
a1a052df 1212 fprintf (stderr, "/%d", mcnt);
25fe55af 1213 break;
5e69f11e 1214
1fb352e0 1215 case notcategoryspec:
a1a052df 1216 fprintf (stderr, "/notcategoryspec");
fa9a63c5 1217 mcnt = *p++;
a1a052df 1218 fprintf (stderr, "/%d", mcnt);
fa9a63c5 1219 break;
0b32bf0e 1220# endif /* emacs */
fa9a63c5 1221
fa9a63c5 1222 case begbuf:
a1a052df 1223 fprintf (stderr, "/begbuf");
25fe55af 1224 break;
fa9a63c5
RM
1225
1226 case endbuf:
a1a052df 1227 fprintf (stderr, "/endbuf");
25fe55af 1228 break;
fa9a63c5 1229
25fe55af 1230 default:
a1a052df 1231 fprintf (stderr, "?%d", *(p-1));
fa9a63c5
RM
1232 }
1233
a1a052df 1234 fprintf (stderr, "\n");
fa9a63c5
RM
1235 }
1236
a1a052df 1237 fprintf (stderr, "%d:\tend of pattern.\n", p - start);
fa9a63c5
RM
1238}
1239
1240
1241void
1242print_compiled_pattern (bufp)
1243 struct re_pattern_buffer *bufp;
1244{
01618498 1245 re_char *buffer = bufp->buffer;
fa9a63c5
RM
1246
1247 print_partial_compiled_pattern (buffer, buffer + bufp->used);
4bb91c68
SM
1248 printf ("%ld bytes used/%ld bytes allocated.\n",
1249 bufp->used, bufp->allocated);
fa9a63c5
RM
1250
1251 if (bufp->fastmap_accurate && bufp->fastmap)
1252 {
1253 printf ("fastmap: ");
1254 print_fastmap (bufp->fastmap);
1255 }
1256
1257 printf ("re_nsub: %d\t", bufp->re_nsub);
1258 printf ("regs_alloc: %d\t", bufp->regs_allocated);
1259 printf ("can_be_null: %d\t", bufp->can_be_null);
fa9a63c5
RM
1260 printf ("no_sub: %d\t", bufp->no_sub);
1261 printf ("not_bol: %d\t", bufp->not_bol);
1262 printf ("not_eol: %d\t", bufp->not_eol);
4bb91c68 1263 printf ("syntax: %lx\n", bufp->syntax);
505bde11 1264 fflush (stdout);
fa9a63c5
RM
1265 /* Perhaps we should print the translate table? */
1266}
1267
1268
1269void
1270print_double_string (where, string1, size1, string2, size2)
66f0296e
SM
1271 re_char *where;
1272 re_char *string1;
1273 re_char *string2;
fa9a63c5
RM
1274 int size1;
1275 int size2;
1276{
4bb91c68 1277 int this_char;
5e69f11e 1278
fa9a63c5
RM
1279 if (where == NULL)
1280 printf ("(null)");
1281 else
1282 {
1283 if (FIRST_STRING_P (where))
25fe55af
RS
1284 {
1285 for (this_char = where - string1; this_char < size1; this_char++)
1286 putchar (string1[this_char]);
fa9a63c5 1287
25fe55af
RS
1288 where = string2;
1289 }
fa9a63c5
RM
1290
1291 for (this_char = where - string2; this_char < size2; this_char++)
25fe55af 1292 putchar (string2[this_char]);
fa9a63c5
RM
1293 }
1294}
1295
1296#else /* not DEBUG */
1297
0b32bf0e
SM
1298# undef assert
1299# define assert(e)
fa9a63c5 1300
0b32bf0e
SM
1301# define DEBUG_STATEMENT(e)
1302# define DEBUG_PRINT1(x)
1303# define DEBUG_PRINT2(x1, x2)
1304# define DEBUG_PRINT3(x1, x2, x3)
1305# define DEBUG_PRINT4(x1, x2, x3, x4)
1306# define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
1307# define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
fa9a63c5
RM
1308
1309#endif /* not DEBUG */
1310\f
1311/* Set by `re_set_syntax' to the current regexp syntax to recognize. Can
1312 also be assigned to arbitrarily: each pattern buffer stores its own
1313 syntax, so it can be changed between regex compilations. */
1314/* This has no initializer because initialized variables in Emacs
1315 become read-only after dumping. */
1316reg_syntax_t re_syntax_options;
1317
1318
1319/* Specify the precise syntax of regexps for compilation. This provides
1320 for compatibility for various utilities which historically have
1321 different, incompatible syntaxes.
1322
1323 The argument SYNTAX is a bit mask comprised of the various bits
4bb91c68 1324 defined in regex.h. We return the old syntax. */
fa9a63c5
RM
1325
1326reg_syntax_t
1327re_set_syntax (syntax)
f9b0fd99 1328 reg_syntax_t syntax;
fa9a63c5
RM
1329{
1330 reg_syntax_t ret = re_syntax_options;
5e69f11e 1331
fa9a63c5
RM
1332 re_syntax_options = syntax;
1333 return ret;
1334}
c0f9ea08 1335WEAK_ALIAS (__re_set_syntax, re_set_syntax)
f9b0fd99
RS
1336
1337/* Regexp to use to replace spaces, or NULL meaning don't. */
1338static re_char *whitespace_regexp;
1339
1340void
1341re_set_whitespace_regexp (regexp)
6470ea05 1342 const char *regexp;
f9b0fd99 1343{
6470ea05 1344 whitespace_regexp = (re_char *) regexp;
f9b0fd99
RS
1345}
1346WEAK_ALIAS (__re_set_syntax, re_set_syntax)
fa9a63c5
RM
1347\f
1348/* This table gives an error message for each of the error codes listed
4bb91c68 1349 in regex.h. Obviously the order here has to be same as there.
fa9a63c5 1350 POSIX doesn't require that we do anything for REG_NOERROR,
4bb91c68 1351 but why not be nice? */
fa9a63c5
RM
1352
1353static const char *re_error_msgid[] =
5e69f11e
RM
1354 {
1355 gettext_noop ("Success"), /* REG_NOERROR */
1356 gettext_noop ("No match"), /* REG_NOMATCH */
1357 gettext_noop ("Invalid regular expression"), /* REG_BADPAT */
1358 gettext_noop ("Invalid collation character"), /* REG_ECOLLATE */
1359 gettext_noop ("Invalid character class name"), /* REG_ECTYPE */
1360 gettext_noop ("Trailing backslash"), /* REG_EESCAPE */
1361 gettext_noop ("Invalid back reference"), /* REG_ESUBREG */
1362 gettext_noop ("Unmatched [ or [^"), /* REG_EBRACK */
1363 gettext_noop ("Unmatched ( or \\("), /* REG_EPAREN */
1364 gettext_noop ("Unmatched \\{"), /* REG_EBRACE */
1365 gettext_noop ("Invalid content of \\{\\}"), /* REG_BADBR */
1366 gettext_noop ("Invalid range end"), /* REG_ERANGE */
1367 gettext_noop ("Memory exhausted"), /* REG_ESPACE */
1368 gettext_noop ("Invalid preceding regular expression"), /* REG_BADRPT */
1369 gettext_noop ("Premature end of regular expression"), /* REG_EEND */
1370 gettext_noop ("Regular expression too big"), /* REG_ESIZE */
1371 gettext_noop ("Unmatched ) or \\)"), /* REG_ERPAREN */
b3e4c897 1372 gettext_noop ("Range striding over charsets") /* REG_ERANGEX */
fa9a63c5
RM
1373 };
1374\f
4bb91c68 1375/* Avoiding alloca during matching, to placate r_alloc. */
fa9a63c5
RM
1376
1377/* Define MATCH_MAY_ALLOCATE unless we need to make sure that the
1378 searching and matching functions should not call alloca. On some
1379 systems, alloca is implemented in terms of malloc, and if we're
1380 using the relocating allocator routines, then malloc could cause a
1381 relocation, which might (if the strings being searched are in the
1382 ralloc heap) shift the data out from underneath the regexp
1383 routines.
1384
5e69f11e 1385 Here's another reason to avoid allocation: Emacs
fa9a63c5
RM
1386 processes input from X in a signal handler; processing X input may
1387 call malloc; if input arrives while a matching routine is calling
1388 malloc, then we're scrod. But Emacs can't just block input while
1389 calling matching routines; then we don't notice interrupts when
1390 they come in. So, Emacs blocks input around all regexp calls
1391 except the matching calls, which it leaves unprotected, in the
1392 faith that they will not malloc. */
1393
1394/* Normally, this is fine. */
1395#define MATCH_MAY_ALLOCATE
1396
fa9a63c5
RM
1397/* The match routines may not allocate if (1) they would do it with malloc
1398 and (2) it's not safe for them to use malloc.
1399 Note that if REL_ALLOC is defined, matching would not use malloc for the
1400 failure stack, but we would still use it for the register vectors;
4bb91c68 1401 so REL_ALLOC should not affect this. */
b588157e 1402#if defined REGEX_MALLOC && defined emacs
0b32bf0e 1403# undef MATCH_MAY_ALLOCATE
fa9a63c5
RM
1404#endif
1405
1406\f
1407/* Failure stack declarations and macros; both re_compile_fastmap and
1408 re_match_2 use a failure stack. These have to be macros because of
1409 REGEX_ALLOCATE_STACK. */
5e69f11e 1410
fa9a63c5 1411
320a2a73 1412/* Approximate number of failure points for which to initially allocate space
fa9a63c5
RM
1413 when matching. If this number is exceeded, we allocate more
1414 space, so it is not a hard limit. */
1415#ifndef INIT_FAILURE_ALLOC
0b32bf0e 1416# define INIT_FAILURE_ALLOC 20
fa9a63c5
RM
1417#endif
1418
1419/* Roughly the maximum number of failure points on the stack. Would be
320a2a73 1420 exactly that if always used TYPICAL_FAILURE_SIZE items each time we failed.
fa9a63c5 1421 This is a variable only so users of regex can assign to it; we never
ada30c0e
SM
1422 change it ourselves. We always multiply it by TYPICAL_FAILURE_SIZE
1423 before using it, so it should probably be a byte-count instead. */
c0f9ea08
SM
1424# if defined MATCH_MAY_ALLOCATE
1425/* Note that 4400 was enough to cause a crash on Alpha OSF/1,
320a2a73
KH
1426 whose default stack limit is 2mb. In order for a larger
1427 value to work reliably, you have to try to make it accord
1428 with the process stack limit. */
c0f9ea08
SM
1429size_t re_max_failures = 40000;
1430# else
1431size_t re_max_failures = 4000;
1432# endif
fa9a63c5
RM
1433
1434union fail_stack_elt
1435{
01618498 1436 re_char *pointer;
c0f9ea08
SM
1437 /* This should be the biggest `int' that's no bigger than a pointer. */
1438 long integer;
fa9a63c5
RM
1439};
1440
1441typedef union fail_stack_elt fail_stack_elt_t;
1442
1443typedef struct
1444{
1445 fail_stack_elt_t *stack;
c0f9ea08
SM
1446 size_t size;
1447 size_t avail; /* Offset of next open position. */
1448 size_t frame; /* Offset of the cur constructed frame. */
fa9a63c5
RM
1449} fail_stack_type;
1450
505bde11 1451#define FAIL_STACK_EMPTY() (fail_stack.frame == 0)
fa9a63c5
RM
1452#define FAIL_STACK_FULL() (fail_stack.avail == fail_stack.size)
1453
1454
1455/* Define macros to initialize and free the failure stack.
1456 Do `return -2' if the alloc fails. */
1457
1458#ifdef MATCH_MAY_ALLOCATE
0b32bf0e 1459# define INIT_FAIL_STACK() \
fa9a63c5
RM
1460 do { \
1461 fail_stack.stack = (fail_stack_elt_t *) \
320a2a73
KH
1462 REGEX_ALLOCATE_STACK (INIT_FAILURE_ALLOC * TYPICAL_FAILURE_SIZE \
1463 * sizeof (fail_stack_elt_t)); \
fa9a63c5
RM
1464 \
1465 if (fail_stack.stack == NULL) \
1466 return -2; \
1467 \
1468 fail_stack.size = INIT_FAILURE_ALLOC; \
1469 fail_stack.avail = 0; \
505bde11 1470 fail_stack.frame = 0; \
fa9a63c5
RM
1471 } while (0)
1472
0b32bf0e 1473# define RESET_FAIL_STACK() REGEX_FREE_STACK (fail_stack.stack)
fa9a63c5 1474#else
0b32bf0e 1475# define INIT_FAIL_STACK() \
fa9a63c5
RM
1476 do { \
1477 fail_stack.avail = 0; \
505bde11 1478 fail_stack.frame = 0; \
fa9a63c5
RM
1479 } while (0)
1480
0b32bf0e 1481# define RESET_FAIL_STACK() ((void)0)
fa9a63c5
RM
1482#endif
1483
1484
320a2a73
KH
1485/* Double the size of FAIL_STACK, up to a limit
1486 which allows approximately `re_max_failures' items.
fa9a63c5
RM
1487
1488 Return 1 if succeeds, and 0 if either ran out of memory
5e69f11e
RM
1489 allocating space for it or it was already too large.
1490
4bb91c68 1491 REGEX_REALLOCATE_STACK requires `destination' be declared. */
fa9a63c5 1492
320a2a73
KH
1493/* Factor to increase the failure stack size by
1494 when we increase it.
1495 This used to be 2, but 2 was too wasteful
1496 because the old discarded stacks added up to as much space
1497 were as ultimate, maximum-size stack. */
1498#define FAIL_STACK_GROWTH_FACTOR 4
1499
1500#define GROW_FAIL_STACK(fail_stack) \
eead07d6
KH
1501 (((fail_stack).size * sizeof (fail_stack_elt_t) \
1502 >= re_max_failures * TYPICAL_FAILURE_SIZE) \
fa9a63c5 1503 ? 0 \
320a2a73
KH
1504 : ((fail_stack).stack \
1505 = (fail_stack_elt_t *) \
25fe55af
RS
1506 REGEX_REALLOCATE_STACK ((fail_stack).stack, \
1507 (fail_stack).size * sizeof (fail_stack_elt_t), \
320a2a73
KH
1508 MIN (re_max_failures * TYPICAL_FAILURE_SIZE, \
1509 ((fail_stack).size * sizeof (fail_stack_elt_t) \
1510 * FAIL_STACK_GROWTH_FACTOR))), \
fa9a63c5
RM
1511 \
1512 (fail_stack).stack == NULL \
1513 ? 0 \
6453db45
KH
1514 : ((fail_stack).size \
1515 = (MIN (re_max_failures * TYPICAL_FAILURE_SIZE, \
1516 ((fail_stack).size * sizeof (fail_stack_elt_t) \
1517 * FAIL_STACK_GROWTH_FACTOR)) \
1518 / sizeof (fail_stack_elt_t)), \
25fe55af 1519 1)))
fa9a63c5
RM
1520
1521
fa9a63c5
RM
1522/* Push a pointer value onto the failure stack.
1523 Assumes the variable `fail_stack'. Probably should only
4bb91c68 1524 be called from within `PUSH_FAILURE_POINT'. */
fa9a63c5 1525#define PUSH_FAILURE_POINTER(item) \
01618498 1526 fail_stack.stack[fail_stack.avail++].pointer = (item)
fa9a63c5
RM
1527
1528/* This pushes an integer-valued item onto the failure stack.
1529 Assumes the variable `fail_stack'. Probably should only
4bb91c68 1530 be called from within `PUSH_FAILURE_POINT'. */
fa9a63c5
RM
1531#define PUSH_FAILURE_INT(item) \
1532 fail_stack.stack[fail_stack.avail++].integer = (item)
1533
1534/* Push a fail_stack_elt_t value onto the failure stack.
1535 Assumes the variable `fail_stack'. Probably should only
4bb91c68 1536 be called from within `PUSH_FAILURE_POINT'. */
fa9a63c5
RM
1537#define PUSH_FAILURE_ELT(item) \
1538 fail_stack.stack[fail_stack.avail++] = (item)
1539
1540/* These three POP... operations complement the three PUSH... operations.
1541 All assume that `fail_stack' is nonempty. */
1542#define POP_FAILURE_POINTER() fail_stack.stack[--fail_stack.avail].pointer
1543#define POP_FAILURE_INT() fail_stack.stack[--fail_stack.avail].integer
1544#define POP_FAILURE_ELT() fail_stack.stack[--fail_stack.avail]
1545
505bde11
SM
1546/* Individual items aside from the registers. */
1547#define NUM_NONREG_ITEMS 3
1548
1549/* Used to examine the stack (to detect infinite loops). */
1550#define FAILURE_PAT(h) fail_stack.stack[(h) - 1].pointer
66f0296e 1551#define FAILURE_STR(h) (fail_stack.stack[(h) - 2].pointer)
505bde11
SM
1552#define NEXT_FAILURE_HANDLE(h) fail_stack.stack[(h) - 3].integer
1553#define TOP_FAILURE_HANDLE() fail_stack.frame
fa9a63c5
RM
1554
1555
505bde11
SM
1556#define ENSURE_FAIL_STACK(space) \
1557while (REMAINING_AVAIL_SLOTS <= space) { \
1558 if (!GROW_FAIL_STACK (fail_stack)) \
1559 return -2; \
1560 DEBUG_PRINT2 ("\n Doubled stack; size now: %d\n", (fail_stack).size);\
1561 DEBUG_PRINT2 (" slots available: %d\n", REMAINING_AVAIL_SLOTS);\
1562}
1563
1564/* Push register NUM onto the stack. */
1565#define PUSH_FAILURE_REG(num) \
1566do { \
1567 char *destination; \
1568 ENSURE_FAIL_STACK(3); \
1569 DEBUG_PRINT4 (" Push reg %d (spanning %p -> %p)\n", \
1570 num, regstart[num], regend[num]); \
1571 PUSH_FAILURE_POINTER (regstart[num]); \
1572 PUSH_FAILURE_POINTER (regend[num]); \
1573 PUSH_FAILURE_INT (num); \
1574} while (0)
1575
01618498
SM
1576/* Change the counter's value to VAL, but make sure that it will
1577 be reset when backtracking. */
1578#define PUSH_NUMBER(ptr,val) \
dc1e502d
SM
1579do { \
1580 char *destination; \
1581 int c; \
1582 ENSURE_FAIL_STACK(3); \
1583 EXTRACT_NUMBER (c, ptr); \
01618498 1584 DEBUG_PRINT4 (" Push number %p = %d -> %d\n", ptr, c, val); \
dc1e502d
SM
1585 PUSH_FAILURE_INT (c); \
1586 PUSH_FAILURE_POINTER (ptr); \
1587 PUSH_FAILURE_INT (-1); \
01618498 1588 STORE_NUMBER (ptr, val); \
dc1e502d
SM
1589} while (0)
1590
505bde11 1591/* Pop a saved register off the stack. */
dc1e502d 1592#define POP_FAILURE_REG_OR_COUNT() \
505bde11
SM
1593do { \
1594 int reg = POP_FAILURE_INT (); \
dc1e502d
SM
1595 if (reg == -1) \
1596 { \
1597 /* It's a counter. */ \
6dcf2d0e
SM
1598 /* Here, we discard `const', making re_match non-reentrant. */ \
1599 unsigned char *ptr = (unsigned char*) POP_FAILURE_POINTER (); \
dc1e502d
SM
1600 reg = POP_FAILURE_INT (); \
1601 STORE_NUMBER (ptr, reg); \
1602 DEBUG_PRINT3 (" Pop counter %p = %d\n", ptr, reg); \
1603 } \
1604 else \
1605 { \
1606 regend[reg] = POP_FAILURE_POINTER (); \
1607 regstart[reg] = POP_FAILURE_POINTER (); \
1608 DEBUG_PRINT4 (" Pop reg %d (spanning %p -> %p)\n", \
1609 reg, regstart[reg], regend[reg]); \
1610 } \
505bde11
SM
1611} while (0)
1612
1613/* Check that we are not stuck in an infinite loop. */
1614#define CHECK_INFINITE_LOOP(pat_cur, string_place) \
1615do { \
f6df485f 1616 int failure = TOP_FAILURE_HANDLE (); \
505bde11 1617 /* Check for infinite matching loops */ \
f6df485f
RS
1618 while (failure > 0 \
1619 && (FAILURE_STR (failure) == string_place \
1620 || FAILURE_STR (failure) == NULL)) \
505bde11
SM
1621 { \
1622 assert (FAILURE_PAT (failure) >= bufp->buffer \
66f0296e 1623 && FAILURE_PAT (failure) <= bufp->buffer + bufp->used); \
505bde11 1624 if (FAILURE_PAT (failure) == pat_cur) \
f6df485f 1625 { \
6df42991
SM
1626 cycle = 1; \
1627 break; \
f6df485f 1628 } \
66f0296e 1629 DEBUG_PRINT2 (" Other pattern: %p\n", FAILURE_PAT (failure)); \
505bde11
SM
1630 failure = NEXT_FAILURE_HANDLE(failure); \
1631 } \
1632 DEBUG_PRINT2 (" Other string: %p\n", FAILURE_STR (failure)); \
1633} while (0)
6df42991 1634
fa9a63c5 1635/* Push the information about the state we will need
5e69f11e
RM
1636 if we ever fail back to it.
1637
505bde11 1638 Requires variables fail_stack, regstart, regend and
320a2a73 1639 num_regs be declared. GROW_FAIL_STACK requires `destination' be
fa9a63c5 1640 declared.
5e69f11e 1641
fa9a63c5
RM
1642 Does `return FAILURE_CODE' if runs out of memory. */
1643
505bde11
SM
1644#define PUSH_FAILURE_POINT(pattern, string_place) \
1645do { \
1646 char *destination; \
1647 /* Must be int, so when we don't save any registers, the arithmetic \
1648 of 0 + -1 isn't done as unsigned. */ \
1649 \
505bde11 1650 DEBUG_STATEMENT (nfailure_points_pushed++); \
4bb91c68 1651 DEBUG_PRINT1 ("\nPUSH_FAILURE_POINT:\n"); \
505bde11
SM
1652 DEBUG_PRINT2 (" Before push, next avail: %d\n", (fail_stack).avail); \
1653 DEBUG_PRINT2 (" size: %d\n", (fail_stack).size);\
1654 \
1655 ENSURE_FAIL_STACK (NUM_NONREG_ITEMS); \
1656 \
1657 DEBUG_PRINT1 ("\n"); \
1658 \
1659 DEBUG_PRINT2 (" Push frame index: %d\n", fail_stack.frame); \
1660 PUSH_FAILURE_INT (fail_stack.frame); \
1661 \
1662 DEBUG_PRINT2 (" Push string %p: `", string_place); \
1663 DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, size2);\
1664 DEBUG_PRINT1 ("'\n"); \
1665 PUSH_FAILURE_POINTER (string_place); \
1666 \
1667 DEBUG_PRINT2 (" Push pattern %p: ", pattern); \
1668 DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern, pend); \
1669 PUSH_FAILURE_POINTER (pattern); \
1670 \
1671 /* Close the frame by moving the frame pointer past it. */ \
1672 fail_stack.frame = fail_stack.avail; \
1673} while (0)
fa9a63c5 1674
320a2a73
KH
1675/* Estimate the size of data pushed by a typical failure stack entry.
1676 An estimate is all we need, because all we use this for
1677 is to choose a limit for how big to make the failure stack. */
ada30c0e 1678/* BEWARE, the value `20' is hard-coded in emacs.c:main(). */
320a2a73 1679#define TYPICAL_FAILURE_SIZE 20
fa9a63c5 1680
fa9a63c5
RM
1681/* How many items can still be added to the stack without overflowing it. */
1682#define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
1683
1684
1685/* Pops what PUSH_FAIL_STACK pushes.
1686
1687 We restore into the parameters, all of which should be lvalues:
1688 STR -- the saved data position.
1689 PAT -- the saved pattern position.
fa9a63c5 1690 REGSTART, REGEND -- arrays of string positions.
5e69f11e 1691
fa9a63c5 1692 Also assumes the variables `fail_stack' and (if debugging), `bufp',
7814e705 1693 `pend', `string1', `size1', `string2', and `size2'. */
fa9a63c5 1694
505bde11
SM
1695#define POP_FAILURE_POINT(str, pat) \
1696do { \
fa9a63c5
RM
1697 assert (!FAIL_STACK_EMPTY ()); \
1698 \
1699 /* Remove failure points and point to how many regs pushed. */ \
1700 DEBUG_PRINT1 ("POP_FAILURE_POINT:\n"); \
1701 DEBUG_PRINT2 (" Before pop, next avail: %d\n", fail_stack.avail); \
25fe55af 1702 DEBUG_PRINT2 (" size: %d\n", fail_stack.size); \
fa9a63c5 1703 \
505bde11
SM
1704 /* Pop the saved registers. */ \
1705 while (fail_stack.frame < fail_stack.avail) \
dc1e502d 1706 POP_FAILURE_REG_OR_COUNT (); \
fa9a63c5 1707 \
01618498 1708 pat = POP_FAILURE_POINTER (); \
505bde11
SM
1709 DEBUG_PRINT2 (" Popping pattern %p: ", pat); \
1710 DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend); \
fa9a63c5
RM
1711 \
1712 /* If the saved string location is NULL, it came from an \
1713 on_failure_keep_string_jump opcode, and we want to throw away the \
1714 saved NULL, thus retaining our current position in the string. */ \
01618498 1715 str = POP_FAILURE_POINTER (); \
505bde11 1716 DEBUG_PRINT2 (" Popping string %p: `", str); \
fa9a63c5
RM
1717 DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2); \
1718 DEBUG_PRINT1 ("'\n"); \
1719 \
505bde11
SM
1720 fail_stack.frame = POP_FAILURE_INT (); \
1721 DEBUG_PRINT2 (" Popping frame index: %d\n", fail_stack.frame); \
fa9a63c5 1722 \
505bde11
SM
1723 assert (fail_stack.avail >= 0); \
1724 assert (fail_stack.frame <= fail_stack.avail); \
fa9a63c5 1725 \
fa9a63c5 1726 DEBUG_STATEMENT (nfailure_points_popped++); \
505bde11 1727} while (0) /* POP_FAILURE_POINT */
fa9a63c5
RM
1728
1729
1730\f
fa9a63c5 1731/* Registers are set to a sentinel when they haven't yet matched. */
4bb91c68 1732#define REG_UNSET(e) ((e) == NULL)
fa9a63c5
RM
1733\f
1734/* Subroutine declarations and macros for regex_compile. */
1735
4bb91c68
SM
1736static reg_errcode_t regex_compile _RE_ARGS ((re_char *pattern, size_t size,
1737 reg_syntax_t syntax,
1738 struct re_pattern_buffer *bufp));
1739static void store_op1 _RE_ARGS ((re_opcode_t op, unsigned char *loc, int arg));
1740static void store_op2 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
1741 int arg1, int arg2));
1742static void insert_op1 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
1743 int arg, unsigned char *end));
1744static void insert_op2 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
1745 int arg1, int arg2, unsigned char *end));
01618498
SM
1746static boolean at_begline_loc_p _RE_ARGS ((re_char *pattern,
1747 re_char *p,
4bb91c68 1748 reg_syntax_t syntax));
01618498
SM
1749static boolean at_endline_loc_p _RE_ARGS ((re_char *p,
1750 re_char *pend,
4bb91c68 1751 reg_syntax_t syntax));
01618498
SM
1752static re_char *skip_one_char _RE_ARGS ((re_char *p));
1753static int analyse_first _RE_ARGS ((re_char *p, re_char *pend,
4bb91c68 1754 char *fastmap, const int multibyte));
fa9a63c5 1755
fa9a63c5 1756/* Fetch the next character in the uncompiled pattern, with no
4bb91c68 1757 translation. */
36595814 1758#define PATFETCH(c) \
2d1675e4
SM
1759 do { \
1760 int len; \
1761 if (p == pend) return REG_EEND; \
cf9c99bc 1762 c = RE_STRING_CHAR_AND_LENGTH (p, pend - p, len, multibyte); \
2d1675e4 1763 p += len; \
fa9a63c5
RM
1764 } while (0)
1765
fa9a63c5
RM
1766
1767/* If `translate' is non-null, return translate[D], else just D. We
1768 cast the subscript to translate because some data is declared as
1769 `char *', to avoid warnings when a string constant is passed. But
1770 when we use a character as a subscript we must make it unsigned. */
6676cb1c 1771#ifndef TRANSLATE
0b32bf0e 1772# define TRANSLATE(d) \
66f0296e 1773 (RE_TRANSLATE_P (translate) ? RE_TRANSLATE (translate, (d)) : (d))
6676cb1c 1774#endif
fa9a63c5
RM
1775
1776
1777/* Macros for outputting the compiled pattern into `buffer'. */
1778
1779/* If the buffer isn't allocated when it comes in, use this. */
1780#define INIT_BUF_SIZE 32
1781
4bb91c68 1782/* Make sure we have at least N more bytes of space in buffer. */
fa9a63c5 1783#define GET_BUFFER_SPACE(n) \
01618498 1784 while ((size_t) (b - bufp->buffer + (n)) > bufp->allocated) \
fa9a63c5
RM
1785 EXTEND_BUFFER ()
1786
1787/* Make sure we have one more byte of buffer space and then add C to it. */
1788#define BUF_PUSH(c) \
1789 do { \
1790 GET_BUFFER_SPACE (1); \
1791 *b++ = (unsigned char) (c); \
1792 } while (0)
1793
1794
1795/* Ensure we have two more bytes of buffer space and then append C1 and C2. */
1796#define BUF_PUSH_2(c1, c2) \
1797 do { \
1798 GET_BUFFER_SPACE (2); \
1799 *b++ = (unsigned char) (c1); \
1800 *b++ = (unsigned char) (c2); \
1801 } while (0)
1802
1803
4bb91c68 1804/* As with BUF_PUSH_2, except for three bytes. */
fa9a63c5
RM
1805#define BUF_PUSH_3(c1, c2, c3) \
1806 do { \
1807 GET_BUFFER_SPACE (3); \
1808 *b++ = (unsigned char) (c1); \
1809 *b++ = (unsigned char) (c2); \
1810 *b++ = (unsigned char) (c3); \
1811 } while (0)
1812
1813
1814/* Store a jump with opcode OP at LOC to location TO. We store a
4bb91c68 1815 relative address offset by the three bytes the jump itself occupies. */
fa9a63c5
RM
1816#define STORE_JUMP(op, loc, to) \
1817 store_op1 (op, loc, (to) - (loc) - 3)
1818
1819/* Likewise, for a two-argument jump. */
1820#define STORE_JUMP2(op, loc, to, arg) \
1821 store_op2 (op, loc, (to) - (loc) - 3, arg)
1822
4bb91c68 1823/* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */
fa9a63c5
RM
1824#define INSERT_JUMP(op, loc, to) \
1825 insert_op1 (op, loc, (to) - (loc) - 3, b)
1826
1827/* Like `STORE_JUMP2', but for inserting. Assume `b' is the buffer end. */
1828#define INSERT_JUMP2(op, loc, to, arg) \
1829 insert_op2 (op, loc, (to) - (loc) - 3, arg, b)
1830
1831
1832/* This is not an arbitrary limit: the arguments which represent offsets
839966f3 1833 into the pattern are two bytes long. So if 2^15 bytes turns out to
fa9a63c5 1834 be too small, many things would have to change. */
839966f3
KH
1835# define MAX_BUF_SIZE (1L << 15)
1836
1837#if 0 /* This is when we thought it could be 2^16 bytes. */
4bb91c68
SM
1838/* Any other compiler which, like MSC, has allocation limit below 2^16
1839 bytes will have to use approach similar to what was done below for
1840 MSC and drop MAX_BUF_SIZE a bit. Otherwise you may end up
1841 reallocating to 0 bytes. Such thing is not going to work too well.
1842 You have been warned!! */
1843#if defined _MSC_VER && !defined WIN32
1844/* Microsoft C 16-bit versions limit malloc to approx 65512 bytes. */
1845# define MAX_BUF_SIZE 65500L
1846#else
1847# define MAX_BUF_SIZE (1L << 16)
1848#endif
839966f3 1849#endif /* 0 */
fa9a63c5
RM
1850
1851/* Extend the buffer by twice its current size via realloc and
1852 reset the pointers that pointed into the old block to point to the
1853 correct places in the new one. If extending the buffer results in it
4bb91c68
SM
1854 being larger than MAX_BUF_SIZE, then flag memory exhausted. */
1855#if __BOUNDED_POINTERS__
1856# define SET_HIGH_BOUND(P) (__ptrhigh (P) = __ptrlow (P) + bufp->allocated)
1857# define MOVE_BUFFER_POINTER(P) \
1858 (__ptrlow (P) += incr, SET_HIGH_BOUND (P), __ptrvalue (P) += incr)
1859# define ELSE_EXTEND_BUFFER_HIGH_BOUND \
1860 else \
1861 { \
1862 SET_HIGH_BOUND (b); \
1863 SET_HIGH_BOUND (begalt); \
1864 if (fixup_alt_jump) \
1865 SET_HIGH_BOUND (fixup_alt_jump); \
1866 if (laststart) \
1867 SET_HIGH_BOUND (laststart); \
1868 if (pending_exact) \
1869 SET_HIGH_BOUND (pending_exact); \
1870 }
1871#else
1872# define MOVE_BUFFER_POINTER(P) (P) += incr
1873# define ELSE_EXTEND_BUFFER_HIGH_BOUND
1874#endif
fa9a63c5 1875#define EXTEND_BUFFER() \
25fe55af 1876 do { \
01618498 1877 re_char *old_buffer = bufp->buffer; \
25fe55af 1878 if (bufp->allocated == MAX_BUF_SIZE) \
fa9a63c5
RM
1879 return REG_ESIZE; \
1880 bufp->allocated <<= 1; \
1881 if (bufp->allocated > MAX_BUF_SIZE) \
25fe55af 1882 bufp->allocated = MAX_BUF_SIZE; \
01618498 1883 RETALLOC (bufp->buffer, bufp->allocated, unsigned char); \
fa9a63c5
RM
1884 if (bufp->buffer == NULL) \
1885 return REG_ESPACE; \
1886 /* If the buffer moved, move all the pointers into it. */ \
1887 if (old_buffer != bufp->buffer) \
1888 { \
4bb91c68
SM
1889 int incr = bufp->buffer - old_buffer; \
1890 MOVE_BUFFER_POINTER (b); \
1891 MOVE_BUFFER_POINTER (begalt); \
25fe55af 1892 if (fixup_alt_jump) \
4bb91c68 1893 MOVE_BUFFER_POINTER (fixup_alt_jump); \
25fe55af 1894 if (laststart) \
4bb91c68 1895 MOVE_BUFFER_POINTER (laststart); \
25fe55af 1896 if (pending_exact) \
4bb91c68 1897 MOVE_BUFFER_POINTER (pending_exact); \
fa9a63c5 1898 } \
4bb91c68 1899 ELSE_EXTEND_BUFFER_HIGH_BOUND \
fa9a63c5
RM
1900 } while (0)
1901
1902
1903/* Since we have one byte reserved for the register number argument to
1904 {start,stop}_memory, the maximum number of groups we can report
1905 things about is what fits in that byte. */
1906#define MAX_REGNUM 255
1907
1908/* But patterns can have more than `MAX_REGNUM' registers. We just
1909 ignore the excess. */
098d42af 1910typedef int regnum_t;
fa9a63c5
RM
1911
1912
1913/* Macros for the compile stack. */
1914
1915/* Since offsets can go either forwards or backwards, this type needs to
4bb91c68
SM
1916 be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */
1917/* int may be not enough when sizeof(int) == 2. */
1918typedef long pattern_offset_t;
fa9a63c5
RM
1919
1920typedef struct
1921{
1922 pattern_offset_t begalt_offset;
1923 pattern_offset_t fixup_alt_jump;
5e69f11e 1924 pattern_offset_t laststart_offset;
fa9a63c5
RM
1925 regnum_t regnum;
1926} compile_stack_elt_t;
1927
1928
1929typedef struct
1930{
1931 compile_stack_elt_t *stack;
1932 unsigned size;
1933 unsigned avail; /* Offset of next open position. */
1934} compile_stack_type;
1935
1936
1937#define INIT_COMPILE_STACK_SIZE 32
1938
1939#define COMPILE_STACK_EMPTY (compile_stack.avail == 0)
1940#define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size)
1941
4bb91c68 1942/* The next available element. */
fa9a63c5
RM
1943#define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
1944
1cee1e27
SM
1945/* Explicit quit checking is only used on NTemacs and whenever we
1946 use polling to process input events. */
1947#if defined emacs && (defined WINDOWSNT || defined SYNC_INPUT) && defined QUIT
77d11aec
RS
1948extern int immediate_quit;
1949# define IMMEDIATE_QUIT_CHECK \
1950 do { \
1951 if (immediate_quit) QUIT; \
1952 } while (0)
1953#else
1954# define IMMEDIATE_QUIT_CHECK ((void)0)
1955#endif
1956\f
b18215fc
RS
1957/* Structure to manage work area for range table. */
1958struct range_table_work_area
1959{
1960 int *table; /* actual work area. */
1961 int allocated; /* allocated size for work area in bytes. */
7814e705 1962 int used; /* actually used size in words. */
96cc36cc 1963 int bits; /* flag to record character classes */
b18215fc
RS
1964};
1965
77d11aec
RS
1966/* Make sure that WORK_AREA can hold more N multibyte characters.
1967 This is used only in set_image_of_range and set_image_of_range_1.
1968 It expects WORK_AREA to be a pointer.
1969 If it can't get the space, it returns from the surrounding function. */
1970
1971#define EXTEND_RANGE_TABLE(work_area, n) \
1972 do { \
8f924df7 1973 if (((work_area).used + (n)) * sizeof (int) > (work_area).allocated) \
77d11aec 1974 { \
8f924df7
KH
1975 extend_range_table_work_area (&work_area); \
1976 if ((work_area).table == 0) \
77d11aec
RS
1977 return (REG_ESPACE); \
1978 } \
b18215fc
RS
1979 } while (0)
1980
96cc36cc
RS
1981#define SET_RANGE_TABLE_WORK_AREA_BIT(work_area, bit) \
1982 (work_area).bits |= (bit)
1983
14473664
SM
1984/* Bits used to implement the multibyte-part of the various character classes
1985 such as [:alnum:] in a charset's range table. */
1986#define BIT_WORD 0x1
1987#define BIT_LOWER 0x2
1988#define BIT_PUNCT 0x4
1989#define BIT_SPACE 0x8
1990#define BIT_UPPER 0x10
1991#define BIT_MULTIBYTE 0x20
96cc36cc 1992
b18215fc
RS
1993/* Set a range (RANGE_START, RANGE_END) to WORK_AREA. */
1994#define SET_RANGE_TABLE_WORK_AREA(work_area, range_start, range_end) \
77d11aec 1995 do { \
8f924df7 1996 EXTEND_RANGE_TABLE ((work_area), 2); \
b18215fc
RS
1997 (work_area).table[(work_area).used++] = (range_start); \
1998 (work_area).table[(work_area).used++] = (range_end); \
1999 } while (0)
2000
7814e705 2001/* Free allocated memory for WORK_AREA. */
b18215fc
RS
2002#define FREE_RANGE_TABLE_WORK_AREA(work_area) \
2003 do { \
2004 if ((work_area).table) \
2005 free ((work_area).table); \
2006 } while (0)
2007
96cc36cc 2008#define CLEAR_RANGE_TABLE_WORK_USED(work_area) ((work_area).used = 0, (work_area).bits = 0)
b18215fc 2009#define RANGE_TABLE_WORK_USED(work_area) ((work_area).used)
96cc36cc 2010#define RANGE_TABLE_WORK_BITS(work_area) ((work_area).bits)
b18215fc 2011#define RANGE_TABLE_WORK_ELT(work_area, i) ((work_area).table[i])
77d11aec 2012\f
b18215fc 2013
fa9a63c5 2014/* Set the bit for character C in a list. */
01618498 2015#define SET_LIST_BIT(c) (b[((c)) / BYTEWIDTH] |= 1 << ((c) % BYTEWIDTH))
fa9a63c5
RM
2016
2017
bf216479
KH
2018#ifdef emacs
2019
cf9c99bc
KH
2020/* Store characters in the range FROM to TO in the bitmap at B (for
2021 ASCII and unibyte characters) and WORK_AREA (for multibyte
2022 characters) while translating them and paying attention to the
2023 continuity of translated characters.
8f924df7 2024
cf9c99bc
KH
2025 Implementation note: It is better to implement these fairly big
2026 macros by a function, but it's not that easy because macros called
8f924df7 2027 in this macro assume various local variables already declared. */
bf216479 2028
cf9c99bc
KH
2029/* Both FROM and TO are ASCII characters. */
2030
2031#define SETUP_ASCII_RANGE(work_area, FROM, TO) \
2032 do { \
2033 int C0, C1; \
2034 \
2035 for (C0 = (FROM); C0 <= (TO); C0++) \
2036 { \
2037 C1 = TRANSLATE (C0); \
2038 if (! ASCII_CHAR_P (C1)) \
2039 { \
2040 SET_RANGE_TABLE_WORK_AREA ((work_area), C1, C1); \
2041 if ((C1 = RE_CHAR_TO_UNIBYTE (C1)) < 0) \
2042 C1 = C0; \
2043 } \
2044 SET_LIST_BIT (C1); \
2045 } \
2046 } while (0)
2047
2048
2049/* Both FROM and TO are unibyte characters (0x80..0xFF). */
2050
2051#define SETUP_UNIBYTE_RANGE(work_area, FROM, TO) \
2052 do { \
2053 int C0, C1, C2, I; \
2054 int USED = RANGE_TABLE_WORK_USED (work_area); \
2055 \
2056 for (C0 = (FROM); C0 <= (TO); C0++) \
2057 { \
2058 C1 = RE_CHAR_TO_MULTIBYTE (C0); \
2059 if (CHAR_BYTE8_P (C1)) \
2060 SET_LIST_BIT (C0); \
2061 else \
2062 { \
2063 C2 = TRANSLATE (C1); \
2064 if (C2 == C1 \
2065 || (C1 = RE_CHAR_TO_UNIBYTE (C2)) < 0) \
2066 C1 = C0; \
2067 SET_LIST_BIT (C1); \
2068 for (I = RANGE_TABLE_WORK_USED (work_area) - 2; I >= USED; I -= 2) \
2069 { \
2070 int from = RANGE_TABLE_WORK_ELT (work_area, I); \
2071 int to = RANGE_TABLE_WORK_ELT (work_area, I + 1); \
2072 \
2073 if (C2 >= from - 1 && C2 <= to + 1) \
2074 { \
2075 if (C2 == from - 1) \
2076 RANGE_TABLE_WORK_ELT (work_area, I)--; \
2077 else if (C2 == to + 1) \
2078 RANGE_TABLE_WORK_ELT (work_area, I + 1)++; \
2079 break; \
2080 } \
2081 } \
2082 if (I < USED) \
2083 SET_RANGE_TABLE_WORK_AREA ((work_area), C2, C2); \
2084 } \
2085 } \
2086 } while (0)
2087
2088
2089/* Both FROM and TO are mulitbyte characters. */
2090
2091#define SETUP_MULTIBYTE_RANGE(work_area, FROM, TO) \
2092 do { \
2093 int C0, C1, C2, I, USED = RANGE_TABLE_WORK_USED (work_area); \
2094 \
2095 SET_RANGE_TABLE_WORK_AREA ((work_area), (FROM), (TO)); \
2096 for (C0 = (FROM); C0 <= (TO); C0++) \
2097 { \
2098 C1 = TRANSLATE (C0); \
2099 if ((C2 = RE_CHAR_TO_UNIBYTE (C1)) >= 0 \
2100 || (C1 != C0 && (C2 = RE_CHAR_TO_UNIBYTE (C0)) >= 0)) \
2101 SET_LIST_BIT (C2); \
2102 if (C1 >= (FROM) && C1 <= (TO)) \
2103 continue; \
2104 for (I = RANGE_TABLE_WORK_USED (work_area) - 2; I >= USED; I -= 2) \
2105 { \
2106 int from = RANGE_TABLE_WORK_ELT (work_area, I); \
2107 int to = RANGE_TABLE_WORK_ELT (work_area, I + 1); \
2108 \
2109 if (C1 >= from - 1 && C1 <= to + 1) \
2110 { \
2111 if (C1 == from - 1) \
2112 RANGE_TABLE_WORK_ELT (work_area, I)--; \
2113 else if (C1 == to + 1) \
2114 RANGE_TABLE_WORK_ELT (work_area, I + 1)++; \
2115 break; \
2116 } \
2117 } \
2118 if (I < USED) \
2119 SET_RANGE_TABLE_WORK_AREA ((work_area), C1, C1); \
2120 } \
bf216479
KH
2121 } while (0)
2122
2123#endif /* emacs */
2124
fa9a63c5 2125/* Get the next unsigned number in the uncompiled pattern. */
25fe55af 2126#define GET_UNSIGNED_NUMBER(num) \
c72b0edd
SM
2127 do { \
2128 if (p == pend) \
2129 FREE_STACK_RETURN (REG_EBRACE); \
2130 else \
2131 { \
2132 PATFETCH (c); \
2133 while ('0' <= c && c <= '9') \
2134 { \
2135 int prev; \
2136 if (num < 0) \
2137 num = 0; \
2138 prev = num; \
2139 num = num * 10 + c - '0'; \
2140 if (num / 10 != prev) \
2141 FREE_STACK_RETURN (REG_BADBR); \
2142 if (p == pend) \
2143 FREE_STACK_RETURN (REG_EBRACE); \
2144 PATFETCH (c); \
2145 } \
2146 } \
2147 } while (0)
77d11aec 2148\f
1fdab503 2149#if ! WIDE_CHAR_SUPPORT
01618498 2150
14473664 2151/* Map a string to the char class it names (if any). */
1fdab503 2152re_wctype_t
ada30c0e
SM
2153re_wctype (str)
2154 re_char *str;
14473664 2155{
ada30c0e 2156 const char *string = str;
14473664
SM
2157 if (STREQ (string, "alnum")) return RECC_ALNUM;
2158 else if (STREQ (string, "alpha")) return RECC_ALPHA;
2159 else if (STREQ (string, "word")) return RECC_WORD;
2160 else if (STREQ (string, "ascii")) return RECC_ASCII;
2161 else if (STREQ (string, "nonascii")) return RECC_NONASCII;
2162 else if (STREQ (string, "graph")) return RECC_GRAPH;
2163 else if (STREQ (string, "lower")) return RECC_LOWER;
2164 else if (STREQ (string, "print")) return RECC_PRINT;
2165 else if (STREQ (string, "punct")) return RECC_PUNCT;
2166 else if (STREQ (string, "space")) return RECC_SPACE;
2167 else if (STREQ (string, "upper")) return RECC_UPPER;
2168 else if (STREQ (string, "unibyte")) return RECC_UNIBYTE;
2169 else if (STREQ (string, "multibyte")) return RECC_MULTIBYTE;
2170 else if (STREQ (string, "digit")) return RECC_DIGIT;
2171 else if (STREQ (string, "xdigit")) return RECC_XDIGIT;
2172 else if (STREQ (string, "cntrl")) return RECC_CNTRL;
2173 else if (STREQ (string, "blank")) return RECC_BLANK;
2174 else return 0;
2175}
2176
e0f24100 2177/* True if CH is in the char class CC. */
1fdab503 2178boolean
14473664
SM
2179re_iswctype (ch, cc)
2180 int ch;
2181 re_wctype_t cc;
2182{
2183 switch (cc)
2184 {
0cdd06f8
SM
2185 case RECC_ALNUM: return ISALNUM (ch);
2186 case RECC_ALPHA: return ISALPHA (ch);
2187 case RECC_BLANK: return ISBLANK (ch);
2188 case RECC_CNTRL: return ISCNTRL (ch);
2189 case RECC_DIGIT: return ISDIGIT (ch);
2190 case RECC_GRAPH: return ISGRAPH (ch);
2191 case RECC_LOWER: return ISLOWER (ch);
2192 case RECC_PRINT: return ISPRINT (ch);
2193 case RECC_PUNCT: return ISPUNCT (ch);
2194 case RECC_SPACE: return ISSPACE (ch);
2195 case RECC_UPPER: return ISUPPER (ch);
2196 case RECC_XDIGIT: return ISXDIGIT (ch);
2197 case RECC_ASCII: return IS_REAL_ASCII (ch);
2198 case RECC_NONASCII: return !IS_REAL_ASCII (ch);
2199 case RECC_UNIBYTE: return ISUNIBYTE (ch);
2200 case RECC_MULTIBYTE: return !ISUNIBYTE (ch);
2201 case RECC_WORD: return ISWORD (ch);
2202 case RECC_ERROR: return false;
2203 default:
2204 abort();
14473664
SM
2205 }
2206}
fa9a63c5 2207
14473664
SM
2208/* Return a bit-pattern to use in the range-table bits to match multibyte
2209 chars of class CC. */
2210static int
2211re_wctype_to_bit (cc)
2212 re_wctype_t cc;
2213{
2214 switch (cc)
2215 {
2216 case RECC_NONASCII: case RECC_PRINT: case RECC_GRAPH:
0cdd06f8
SM
2217 case RECC_MULTIBYTE: return BIT_MULTIBYTE;
2218 case RECC_ALPHA: case RECC_ALNUM: case RECC_WORD: return BIT_WORD;
2219 case RECC_LOWER: return BIT_LOWER;
2220 case RECC_UPPER: return BIT_UPPER;
2221 case RECC_PUNCT: return BIT_PUNCT;
2222 case RECC_SPACE: return BIT_SPACE;
14473664 2223 case RECC_ASCII: case RECC_DIGIT: case RECC_XDIGIT: case RECC_CNTRL:
0cdd06f8
SM
2224 case RECC_BLANK: case RECC_UNIBYTE: case RECC_ERROR: return 0;
2225 default:
2226 abort();
14473664
SM
2227 }
2228}
2229#endif
77d11aec
RS
2230\f
2231/* Filling in the work area of a range. */
2232
2233/* Actually extend the space in WORK_AREA. */
2234
2235static void
2236extend_range_table_work_area (work_area)
2237 struct range_table_work_area *work_area;
177c0ea7 2238{
77d11aec
RS
2239 work_area->allocated += 16 * sizeof (int);
2240 if (work_area->table)
2241 work_area->table
2242 = (int *) realloc (work_area->table, work_area->allocated);
2243 else
2244 work_area->table
2245 = (int *) malloc (work_area->allocated);
2246}
2247
8f924df7 2248#if 0
77d11aec
RS
2249#ifdef emacs
2250
2251/* Carefully find the ranges of codes that are equivalent
2252 under case conversion to the range start..end when passed through
2253 TRANSLATE. Handle the case where non-letters can come in between
2254 two upper-case letters (which happens in Latin-1).
2255 Also handle the case of groups of more than 2 case-equivalent chars.
2256
2257 The basic method is to look at consecutive characters and see
2258 if they can form a run that can be handled as one.
2259
2260 Returns -1 if successful, REG_ESPACE if ran out of space. */
2261
2262static int
2263set_image_of_range_1 (work_area, start, end, translate)
2264 RE_TRANSLATE_TYPE translate;
2265 struct range_table_work_area *work_area;
2266 re_wchar_t start, end;
2267{
2268 /* `one_case' indicates a character, or a run of characters,
2269 each of which is an isolate (no case-equivalents).
2270 This includes all ASCII non-letters.
2271
2272 `two_case' indicates a character, or a run of characters,
2273 each of which has two case-equivalent forms.
2274 This includes all ASCII letters.
2275
2276 `strange' indicates a character that has more than one
2277 case-equivalent. */
177c0ea7 2278
77d11aec
RS
2279 enum case_type {one_case, two_case, strange};
2280
2281 /* Describe the run that is in progress,
2282 which the next character can try to extend.
2283 If run_type is strange, that means there really is no run.
2284 If run_type is one_case, then run_start...run_end is the run.
2285 If run_type is two_case, then the run is run_start...run_end,
2286 and the case-equivalents end at run_eqv_end. */
2287
2288 enum case_type run_type = strange;
2289 int run_start, run_end, run_eqv_end;
2290
2291 Lisp_Object eqv_table;
2292
2293 if (!RE_TRANSLATE_P (translate))
2294 {
b7c12565 2295 EXTEND_RANGE_TABLE (work_area, 2);
77d11aec
RS
2296 work_area->table[work_area->used++] = (start);
2297 work_area->table[work_area->used++] = (end);
b7c12565 2298 return -1;
77d11aec
RS
2299 }
2300
2301 eqv_table = XCHAR_TABLE (translate)->extras[2];
99633e97 2302
77d11aec
RS
2303 for (; start <= end; start++)
2304 {
2305 enum case_type this_type;
2306 int eqv = RE_TRANSLATE (eqv_table, start);
2307 int minchar, maxchar;
2308
2309 /* Classify this character */
2310 if (eqv == start)
2311 this_type = one_case;
2312 else if (RE_TRANSLATE (eqv_table, eqv) == start)
2313 this_type = two_case;
2314 else
2315 this_type = strange;
2316
2317 if (start < eqv)
2318 minchar = start, maxchar = eqv;
2319 else
2320 minchar = eqv, maxchar = start;
2321
2322 /* Can this character extend the run in progress? */
2323 if (this_type == strange || this_type != run_type
2324 || !(minchar == run_end + 1
2325 && (run_type == two_case
2326 ? maxchar == run_eqv_end + 1 : 1)))
2327 {
2328 /* No, end the run.
2329 Record each of its equivalent ranges. */
2330 if (run_type == one_case)
2331 {
2332 EXTEND_RANGE_TABLE (work_area, 2);
2333 work_area->table[work_area->used++] = run_start;
2334 work_area->table[work_area->used++] = run_end;
2335 }
2336 else if (run_type == two_case)
2337 {
2338 EXTEND_RANGE_TABLE (work_area, 4);
2339 work_area->table[work_area->used++] = run_start;
2340 work_area->table[work_area->used++] = run_end;
2341 work_area->table[work_area->used++]
2342 = RE_TRANSLATE (eqv_table, run_start);
2343 work_area->table[work_area->used++]
2344 = RE_TRANSLATE (eqv_table, run_end);
2345 }
2346 run_type = strange;
2347 }
177c0ea7 2348
77d11aec
RS
2349 if (this_type == strange)
2350 {
2351 /* For a strange character, add each of its equivalents, one
2352 by one. Don't start a range. */
2353 do
2354 {
2355 EXTEND_RANGE_TABLE (work_area, 2);
2356 work_area->table[work_area->used++] = eqv;
2357 work_area->table[work_area->used++] = eqv;
2358 eqv = RE_TRANSLATE (eqv_table, eqv);
2359 }
2360 while (eqv != start);
2361 }
2362
2363 /* Add this char to the run, or start a new run. */
2364 else if (run_type == strange)
2365 {
2366 /* Initialize a new range. */
2367 run_type = this_type;
2368 run_start = start;
2369 run_end = start;
2370 run_eqv_end = RE_TRANSLATE (eqv_table, run_end);
2371 }
2372 else
2373 {
2374 /* Extend a running range. */
2375 run_end = minchar;
2376 run_eqv_end = RE_TRANSLATE (eqv_table, run_end);
2377 }
2378 }
2379
2380 /* If a run is still in progress at the end, finish it now
2381 by recording its equivalent ranges. */
2382 if (run_type == one_case)
2383 {
2384 EXTEND_RANGE_TABLE (work_area, 2);
2385 work_area->table[work_area->used++] = run_start;
2386 work_area->table[work_area->used++] = run_end;
2387 }
2388 else if (run_type == two_case)
2389 {
2390 EXTEND_RANGE_TABLE (work_area, 4);
2391 work_area->table[work_area->used++] = run_start;
2392 work_area->table[work_area->used++] = run_end;
2393 work_area->table[work_area->used++]
2394 = RE_TRANSLATE (eqv_table, run_start);
2395 work_area->table[work_area->used++]
2396 = RE_TRANSLATE (eqv_table, run_end);
2397 }
2398
2399 return -1;
2400}
36595814 2401
77d11aec 2402#endif /* emacs */
36595814 2403
b7c12565 2404/* Record the the image of the range start..end when passed through
36595814
SM
2405 TRANSLATE. This is not necessarily TRANSLATE(start)..TRANSLATE(end)
2406 and is not even necessarily contiguous.
b7c12565
RS
2407 Normally we approximate it with the smallest contiguous range that contains
2408 all the chars we need. However, for Latin-1 we go to extra effort
2409 to do a better job.
2410
2411 This function is not called for ASCII ranges.
77d11aec
RS
2412
2413 Returns -1 if successful, REG_ESPACE if ran out of space. */
2414
2415static int
36595814
SM
2416set_image_of_range (work_area, start, end, translate)
2417 RE_TRANSLATE_TYPE translate;
2418 struct range_table_work_area *work_area;
2419 re_wchar_t start, end;
2420{
77d11aec
RS
2421 re_wchar_t cmin, cmax;
2422
2423#ifdef emacs
2424 /* For Latin-1 ranges, use set_image_of_range_1
2425 to get proper handling of ranges that include letters and nonletters.
b7c12565 2426 For a range that includes the whole of Latin-1, this is not necessary.
77d11aec 2427 For other character sets, we don't bother to get this right. */
b7c12565
RS
2428 if (RE_TRANSLATE_P (translate) && start < 04400
2429 && !(start < 04200 && end >= 04377))
77d11aec 2430 {
b7c12565 2431 int newend;
77d11aec 2432 int tem;
b7c12565
RS
2433 newend = end;
2434 if (newend > 04377)
2435 newend = 04377;
2436 tem = set_image_of_range_1 (work_area, start, newend, translate);
77d11aec
RS
2437 if (tem > 0)
2438 return tem;
2439
2440 start = 04400;
2441 if (end < 04400)
2442 return -1;
2443 }
2444#endif
2445
b7c12565
RS
2446 EXTEND_RANGE_TABLE (work_area, 2);
2447 work_area->table[work_area->used++] = (start);
2448 work_area->table[work_area->used++] = (end);
2449
2450 cmin = -1, cmax = -1;
77d11aec 2451
36595814 2452 if (RE_TRANSLATE_P (translate))
b7c12565
RS
2453 {
2454 int ch;
77d11aec 2455
b7c12565
RS
2456 for (ch = start; ch <= end; ch++)
2457 {
2458 re_wchar_t c = TRANSLATE (ch);
2459 if (! (start <= c && c <= end))
2460 {
2461 if (cmin == -1)
2462 cmin = c, cmax = c;
2463 else
2464 {
2465 cmin = MIN (cmin, c);
2466 cmax = MAX (cmax, c);
2467 }
2468 }
2469 }
2470
2471 if (cmin != -1)
2472 {
2473 EXTEND_RANGE_TABLE (work_area, 2);
2474 work_area->table[work_area->used++] = (cmin);
2475 work_area->table[work_area->used++] = (cmax);
2476 }
2477 }
36595814 2478
77d11aec
RS
2479 return -1;
2480}
8f924df7 2481#endif /* 0 */
fa9a63c5
RM
2482\f
2483#ifndef MATCH_MAY_ALLOCATE
2484
2485/* If we cannot allocate large objects within re_match_2_internal,
2486 we make the fail stack and register vectors global.
2487 The fail stack, we grow to the maximum size when a regexp
2488 is compiled.
2489 The register vectors, we adjust in size each time we
2490 compile a regexp, according to the number of registers it needs. */
2491
2492static fail_stack_type fail_stack;
2493
2494/* Size with which the following vectors are currently allocated.
2495 That is so we can make them bigger as needed,
4bb91c68 2496 but never make them smaller. */
fa9a63c5
RM
2497static int regs_allocated_size;
2498
66f0296e
SM
2499static re_char ** regstart, ** regend;
2500static re_char **best_regstart, **best_regend;
fa9a63c5
RM
2501
2502/* Make the register vectors big enough for NUM_REGS registers,
4bb91c68 2503 but don't make them smaller. */
fa9a63c5
RM
2504
2505static
2506regex_grow_registers (num_regs)
2507 int num_regs;
2508{
2509 if (num_regs > regs_allocated_size)
2510 {
66f0296e
SM
2511 RETALLOC_IF (regstart, num_regs, re_char *);
2512 RETALLOC_IF (regend, num_regs, re_char *);
2513 RETALLOC_IF (best_regstart, num_regs, re_char *);
2514 RETALLOC_IF (best_regend, num_regs, re_char *);
fa9a63c5
RM
2515
2516 regs_allocated_size = num_regs;
2517 }
2518}
2519
2520#endif /* not MATCH_MAY_ALLOCATE */
2521\f
99633e97
SM
2522static boolean group_in_compile_stack _RE_ARGS ((compile_stack_type
2523 compile_stack,
2524 regnum_t regnum));
2525
fa9a63c5
RM
2526/* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
2527 Returns one of error codes defined in `regex.h', or zero for success.
2528
2529 Assumes the `allocated' (and perhaps `buffer') and `translate'
2530 fields are set in BUFP on entry.
2531
2532 If it succeeds, results are put in BUFP (if it returns an error, the
2533 contents of BUFP are undefined):
2534 `buffer' is the compiled pattern;
2535 `syntax' is set to SYNTAX;
2536 `used' is set to the length of the compiled pattern;
2537 `fastmap_accurate' is zero;
2538 `re_nsub' is the number of subexpressions in PATTERN;
2539 `not_bol' and `not_eol' are zero;
5e69f11e 2540
c0f9ea08 2541 The `fastmap' field is neither examined nor set. */
fa9a63c5 2542
505bde11
SM
2543/* Insert the `jump' from the end of last alternative to "here".
2544 The space for the jump has already been allocated. */
2545#define FIXUP_ALT_JUMP() \
2546do { \
2547 if (fixup_alt_jump) \
2548 STORE_JUMP (jump, fixup_alt_jump, b); \
2549} while (0)
2550
2551
fa9a63c5
RM
2552/* Return, freeing storage we allocated. */
2553#define FREE_STACK_RETURN(value) \
b18215fc
RS
2554 do { \
2555 FREE_RANGE_TABLE_WORK_AREA (range_table_work); \
2556 free (compile_stack.stack); \
2557 return value; \
2558 } while (0)
fa9a63c5
RM
2559
2560static reg_errcode_t
2561regex_compile (pattern, size, syntax, bufp)
66f0296e 2562 re_char *pattern;
4bb91c68 2563 size_t size;
fa9a63c5
RM
2564 reg_syntax_t syntax;
2565 struct re_pattern_buffer *bufp;
2566{
01618498
SM
2567 /* We fetch characters from PATTERN here. */
2568 register re_wchar_t c, c1;
5e69f11e 2569
fa9a63c5 2570 /* A random temporary spot in PATTERN. */
66f0296e 2571 re_char *p1;
fa9a63c5
RM
2572
2573 /* Points to the end of the buffer, where we should append. */
2574 register unsigned char *b;
5e69f11e 2575
fa9a63c5
RM
2576 /* Keeps track of unclosed groups. */
2577 compile_stack_type compile_stack;
2578
2579 /* Points to the current (ending) position in the pattern. */
22336245
RS
2580#ifdef AIX
2581 /* `const' makes AIX compiler fail. */
66f0296e 2582 unsigned char *p = pattern;
22336245 2583#else
66f0296e 2584 re_char *p = pattern;
22336245 2585#endif
66f0296e 2586 re_char *pend = pattern + size;
5e69f11e 2587
fa9a63c5 2588 /* How to translate the characters in the pattern. */
6676cb1c 2589 RE_TRANSLATE_TYPE translate = bufp->translate;
fa9a63c5
RM
2590
2591 /* Address of the count-byte of the most recently inserted `exactn'
2592 command. This makes it possible to tell if a new exact-match
2593 character can be added to that command or if the character requires
2594 a new `exactn' command. */
2595 unsigned char *pending_exact = 0;
2596
2597 /* Address of start of the most recently finished expression.
2598 This tells, e.g., postfix * where to find the start of its
2599 operand. Reset at the beginning of groups and alternatives. */
2600 unsigned char *laststart = 0;
2601
2602 /* Address of beginning of regexp, or inside of last group. */
2603 unsigned char *begalt;
2604
2605 /* Place in the uncompiled pattern (i.e., the {) to
2606 which to go back if the interval is invalid. */
66f0296e 2607 re_char *beg_interval;
5e69f11e 2608
fa9a63c5 2609 /* Address of the place where a forward jump should go to the end of
7814e705 2610 the containing expression. Each alternative of an `or' -- except the
fa9a63c5
RM
2611 last -- ends with a forward jump of this sort. */
2612 unsigned char *fixup_alt_jump = 0;
2613
b18215fc
RS
2614 /* Work area for range table of charset. */
2615 struct range_table_work_area range_table_work;
2616
2d1675e4
SM
2617 /* If the object matched can contain multibyte characters. */
2618 const boolean multibyte = RE_MULTIBYTE_P (bufp);
2619
8f924df7 2620 /* If a target of matching can contain multibyte characters. */
6fdd04b0
KH
2621 const boolean target_multibyte = RE_TARGET_MULTIBYTE_P (bufp);
2622
f9b0fd99
RS
2623 /* Nonzero if we have pushed down into a subpattern. */
2624 int in_subpattern = 0;
2625
2626 /* These hold the values of p, pattern, and pend from the main
2627 pattern when we have pushed into a subpattern. */
2628 re_char *main_p;
2629 re_char *main_pattern;
2630 re_char *main_pend;
2631
fa9a63c5 2632#ifdef DEBUG
99633e97 2633 debug++;
fa9a63c5 2634 DEBUG_PRINT1 ("\nCompiling pattern: ");
99633e97 2635 if (debug > 0)
fa9a63c5
RM
2636 {
2637 unsigned debug_count;
5e69f11e 2638
fa9a63c5 2639 for (debug_count = 0; debug_count < size; debug_count++)
25fe55af 2640 putchar (pattern[debug_count]);
fa9a63c5
RM
2641 putchar ('\n');
2642 }
2643#endif /* DEBUG */
2644
2645 /* Initialize the compile stack. */
2646 compile_stack.stack = TALLOC (INIT_COMPILE_STACK_SIZE, compile_stack_elt_t);
2647 if (compile_stack.stack == NULL)
2648 return REG_ESPACE;
2649
2650 compile_stack.size = INIT_COMPILE_STACK_SIZE;
2651 compile_stack.avail = 0;
2652
b18215fc
RS
2653 range_table_work.table = 0;
2654 range_table_work.allocated = 0;
2655
fa9a63c5
RM
2656 /* Initialize the pattern buffer. */
2657 bufp->syntax = syntax;
2658 bufp->fastmap_accurate = 0;
2659 bufp->not_bol = bufp->not_eol = 0;
6224b623 2660 bufp->used_syntax = 0;
fa9a63c5
RM
2661
2662 /* Set `used' to zero, so that if we return an error, the pattern
2663 printer (for debugging) will think there's no pattern. We reset it
2664 at the end. */
2665 bufp->used = 0;
5e69f11e 2666
fa9a63c5 2667 /* Always count groups, whether or not bufp->no_sub is set. */
5e69f11e 2668 bufp->re_nsub = 0;
fa9a63c5 2669
0b32bf0e 2670#if !defined emacs && !defined SYNTAX_TABLE
fa9a63c5
RM
2671 /* Initialize the syntax table. */
2672 init_syntax_once ();
2673#endif
2674
2675 if (bufp->allocated == 0)
2676 {
2677 if (bufp->buffer)
2678 { /* If zero allocated, but buffer is non-null, try to realloc
25fe55af 2679 enough space. This loses if buffer's address is bogus, but
7814e705 2680 that is the user's responsibility. */
25fe55af
RS
2681 RETALLOC (bufp->buffer, INIT_BUF_SIZE, unsigned char);
2682 }
fa9a63c5 2683 else
7814e705 2684 { /* Caller did not allocate a buffer. Do it for them. */
25fe55af
RS
2685 bufp->buffer = TALLOC (INIT_BUF_SIZE, unsigned char);
2686 }
fa9a63c5
RM
2687 if (!bufp->buffer) FREE_STACK_RETURN (REG_ESPACE);
2688
2689 bufp->allocated = INIT_BUF_SIZE;
2690 }
2691
2692 begalt = b = bufp->buffer;
2693
2694 /* Loop through the uncompiled pattern until we're at the end. */
f9b0fd99 2695 while (1)
fa9a63c5 2696 {
f9b0fd99
RS
2697 if (p == pend)
2698 {
2699 /* If this is the end of an included regexp,
2700 pop back to the main regexp and try again. */
2701 if (in_subpattern)
2702 {
2703 in_subpattern = 0;
2704 pattern = main_pattern;
2705 p = main_p;
2706 pend = main_pend;
2707 continue;
2708 }
2709 /* If this is the end of the main regexp, we are done. */
2710 break;
2711 }
2712
fa9a63c5
RM
2713 PATFETCH (c);
2714
2715 switch (c)
25fe55af 2716 {
f9b0fd99
RS
2717 case ' ':
2718 {
2719 re_char *p1 = p;
2720
2721 /* If there's no special whitespace regexp, treat
4fb680cd
RS
2722 spaces normally. And don't try to do this recursively. */
2723 if (!whitespace_regexp || in_subpattern)
f9b0fd99
RS
2724 goto normal_char;
2725
2726 /* Peek past following spaces. */
2727 while (p1 != pend)
2728 {
2729 if (*p1 != ' ')
2730 break;
2731 p1++;
2732 }
2733 /* If the spaces are followed by a repetition op,
2734 treat them normally. */
c721eee5
RS
2735 if (p1 != pend
2736 && (*p1 == '*' || *p1 == '+' || *p1 == '?'
f9b0fd99
RS
2737 || (*p1 == '\\' && p1 + 1 != pend && p1[1] == '{')))
2738 goto normal_char;
2739
2740 /* Replace the spaces with the whitespace regexp. */
2741 in_subpattern = 1;
2742 main_p = p1;
2743 main_pend = pend;
2744 main_pattern = pattern;
2745 p = pattern = whitespace_regexp;
2746 pend = p + strlen (p);
2747 break;
7814e705 2748 }
f9b0fd99 2749
25fe55af
RS
2750 case '^':
2751 {
7814e705 2752 if ( /* If at start of pattern, it's an operator. */
25fe55af 2753 p == pattern + 1
7814e705 2754 /* If context independent, it's an operator. */
25fe55af 2755 || syntax & RE_CONTEXT_INDEP_ANCHORS
7814e705 2756 /* Otherwise, depends on what's come before. */
25fe55af 2757 || at_begline_loc_p (pattern, p, syntax))
c0f9ea08 2758 BUF_PUSH ((syntax & RE_NO_NEWLINE_ANCHOR) ? begbuf : begline);
25fe55af
RS
2759 else
2760 goto normal_char;
2761 }
2762 break;
2763
2764
2765 case '$':
2766 {
2767 if ( /* If at end of pattern, it's an operator. */
2768 p == pend
7814e705 2769 /* If context independent, it's an operator. */
25fe55af
RS
2770 || syntax & RE_CONTEXT_INDEP_ANCHORS
2771 /* Otherwise, depends on what's next. */
2772 || at_endline_loc_p (p, pend, syntax))
c0f9ea08 2773 BUF_PUSH ((syntax & RE_NO_NEWLINE_ANCHOR) ? endbuf : endline);
25fe55af
RS
2774 else
2775 goto normal_char;
2776 }
2777 break;
fa9a63c5
RM
2778
2779
2780 case '+':
25fe55af
RS
2781 case '?':
2782 if ((syntax & RE_BK_PLUS_QM)
2783 || (syntax & RE_LIMITED_OPS))
2784 goto normal_char;
2785 handle_plus:
2786 case '*':
2787 /* If there is no previous pattern... */
2788 if (!laststart)
2789 {
2790 if (syntax & RE_CONTEXT_INVALID_OPS)
2791 FREE_STACK_RETURN (REG_BADRPT);
2792 else if (!(syntax & RE_CONTEXT_INDEP_OPS))
2793 goto normal_char;
2794 }
2795
2796 {
7814e705 2797 /* 1 means zero (many) matches is allowed. */
66f0296e
SM
2798 boolean zero_times_ok = 0, many_times_ok = 0;
2799 boolean greedy = 1;
25fe55af
RS
2800
2801 /* If there is a sequence of repetition chars, collapse it
2802 down to just one (the right one). We can't combine
2803 interval operators with these because of, e.g., `a{2}*',
7814e705 2804 which should only match an even number of `a's. */
25fe55af
RS
2805
2806 for (;;)
2807 {
0b32bf0e 2808 if ((syntax & RE_FRUGAL)
1c8c6d39
DL
2809 && c == '?' && (zero_times_ok || many_times_ok))
2810 greedy = 0;
2811 else
2812 {
2813 zero_times_ok |= c != '+';
2814 many_times_ok |= c != '?';
2815 }
25fe55af
RS
2816
2817 if (p == pend)
2818 break;
ed0767d8
SM
2819 else if (*p == '*'
2820 || (!(syntax & RE_BK_PLUS_QM)
2821 && (*p == '+' || *p == '?')))
25fe55af 2822 ;
ed0767d8 2823 else if (syntax & RE_BK_PLUS_QM && *p == '\\')
25fe55af 2824 {
ed0767d8
SM
2825 if (p+1 == pend)
2826 FREE_STACK_RETURN (REG_EESCAPE);
2827 if (p[1] == '+' || p[1] == '?')
2828 PATFETCH (c); /* Gobble up the backslash. */
2829 else
2830 break;
25fe55af
RS
2831 }
2832 else
ed0767d8 2833 break;
25fe55af 2834 /* If we get here, we found another repeat character. */
ed0767d8
SM
2835 PATFETCH (c);
2836 }
25fe55af
RS
2837
2838 /* Star, etc. applied to an empty pattern is equivalent
2839 to an empty pattern. */
4e8a9132 2840 if (!laststart || laststart == b)
25fe55af
RS
2841 break;
2842
2843 /* Now we know whether or not zero matches is allowed
7814e705 2844 and also whether or not two or more matches is allowed. */
1c8c6d39
DL
2845 if (greedy)
2846 {
99633e97 2847 if (many_times_ok)
4e8a9132
SM
2848 {
2849 boolean simple = skip_one_char (laststart) == b;
2850 unsigned int startoffset = 0;
f6a3f532 2851 re_opcode_t ofj =
01618498 2852 /* Check if the loop can match the empty string. */
6df42991
SM
2853 (simple || !analyse_first (laststart, b, NULL, 0))
2854 ? on_failure_jump : on_failure_jump_loop;
4e8a9132 2855 assert (skip_one_char (laststart) <= b);
177c0ea7 2856
4e8a9132
SM
2857 if (!zero_times_ok && simple)
2858 { /* Since simple * loops can be made faster by using
2859 on_failure_keep_string_jump, we turn simple P+
2860 into PP* if P is simple. */
2861 unsigned char *p1, *p2;
2862 startoffset = b - laststart;
2863 GET_BUFFER_SPACE (startoffset);
2864 p1 = b; p2 = laststart;
2865 while (p2 < p1)
2866 *b++ = *p2++;
2867 zero_times_ok = 1;
99633e97 2868 }
4e8a9132
SM
2869
2870 GET_BUFFER_SPACE (6);
2871 if (!zero_times_ok)
2872 /* A + loop. */
f6a3f532 2873 STORE_JUMP (ofj, b, b + 6);
99633e97 2874 else
4e8a9132
SM
2875 /* Simple * loops can use on_failure_keep_string_jump
2876 depending on what follows. But since we don't know
2877 that yet, we leave the decision up to
2878 on_failure_jump_smart. */
f6a3f532 2879 INSERT_JUMP (simple ? on_failure_jump_smart : ofj,
4e8a9132 2880 laststart + startoffset, b + 6);
99633e97 2881 b += 3;
4e8a9132 2882 STORE_JUMP (jump, b, laststart + startoffset);
99633e97
SM
2883 b += 3;
2884 }
2885 else
2886 {
4e8a9132
SM
2887 /* A simple ? pattern. */
2888 assert (zero_times_ok);
2889 GET_BUFFER_SPACE (3);
2890 INSERT_JUMP (on_failure_jump, laststart, b + 3);
99633e97
SM
2891 b += 3;
2892 }
1c8c6d39
DL
2893 }
2894 else /* not greedy */
2895 { /* I wish the greedy and non-greedy cases could be merged. */
2896
0683b6fa 2897 GET_BUFFER_SPACE (7); /* We might use less. */
1c8c6d39
DL
2898 if (many_times_ok)
2899 {
f6a3f532
SM
2900 boolean emptyp = analyse_first (laststart, b, NULL, 0);
2901
6df42991
SM
2902 /* The non-greedy multiple match looks like
2903 a repeat..until: we only need a conditional jump
2904 at the end of the loop. */
f6a3f532
SM
2905 if (emptyp) BUF_PUSH (no_op);
2906 STORE_JUMP (emptyp ? on_failure_jump_nastyloop
2907 : on_failure_jump, b, laststart);
1c8c6d39
DL
2908 b += 3;
2909 if (zero_times_ok)
2910 {
2911 /* The repeat...until naturally matches one or more.
2912 To also match zero times, we need to first jump to
6df42991 2913 the end of the loop (its conditional jump). */
1c8c6d39
DL
2914 INSERT_JUMP (jump, laststart, b);
2915 b += 3;
2916 }
2917 }
2918 else
2919 {
2920 /* non-greedy a?? */
1c8c6d39
DL
2921 INSERT_JUMP (jump, laststart, b + 3);
2922 b += 3;
2923 INSERT_JUMP (on_failure_jump, laststart, laststart + 6);
2924 b += 3;
2925 }
2926 }
2927 }
4e8a9132 2928 pending_exact = 0;
fa9a63c5
RM
2929 break;
2930
2931
2932 case '.':
25fe55af
RS
2933 laststart = b;
2934 BUF_PUSH (anychar);
2935 break;
fa9a63c5
RM
2936
2937
25fe55af
RS
2938 case '[':
2939 {
b18215fc 2940 CLEAR_RANGE_TABLE_WORK_USED (range_table_work);
fa9a63c5 2941
25fe55af 2942 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
fa9a63c5 2943
25fe55af
RS
2944 /* Ensure that we have enough space to push a charset: the
2945 opcode, the length count, and the bitset; 34 bytes in all. */
fa9a63c5
RM
2946 GET_BUFFER_SPACE (34);
2947
25fe55af 2948 laststart = b;
e318085a 2949
25fe55af 2950 /* We test `*p == '^' twice, instead of using an if
7814e705 2951 statement, so we only need one BUF_PUSH. */
25fe55af
RS
2952 BUF_PUSH (*p == '^' ? charset_not : charset);
2953 if (*p == '^')
2954 p++;
e318085a 2955
25fe55af
RS
2956 /* Remember the first position in the bracket expression. */
2957 p1 = p;
e318085a 2958
7814e705 2959 /* Push the number of bytes in the bitmap. */
25fe55af 2960 BUF_PUSH ((1 << BYTEWIDTH) / BYTEWIDTH);
e318085a 2961
25fe55af
RS
2962 /* Clear the whole map. */
2963 bzero (b, (1 << BYTEWIDTH) / BYTEWIDTH);
e318085a 2964
25fe55af
RS
2965 /* charset_not matches newline according to a syntax bit. */
2966 if ((re_opcode_t) b[-2] == charset_not
2967 && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
2968 SET_LIST_BIT ('\n');
fa9a63c5 2969
7814e705 2970 /* Read in characters and ranges, setting map bits. */
25fe55af
RS
2971 for (;;)
2972 {
b18215fc 2973 boolean escaped_char = false;
2d1675e4 2974 const unsigned char *p2 = p;
cf9c99bc 2975 re_wchar_t ch, c2;
e318085a 2976
25fe55af 2977 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
e318085a 2978
36595814
SM
2979 /* Don't translate yet. The range TRANSLATE(X..Y) cannot
2980 always be determined from TRANSLATE(X) and TRANSLATE(Y)
2981 So the translation is done later in a loop. Example:
2982 (let ((case-fold-search t)) (string-match "[A-_]" "A")) */
25fe55af 2983 PATFETCH (c);
e318085a 2984
25fe55af
RS
2985 /* \ might escape characters inside [...] and [^...]. */
2986 if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
2987 {
2988 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
e318085a
RS
2989
2990 PATFETCH (c);
b18215fc 2991 escaped_char = true;
25fe55af 2992 }
b18215fc
RS
2993 else
2994 {
7814e705 2995 /* Could be the end of the bracket expression. If it's
657fcfbd
RS
2996 not (i.e., when the bracket expression is `[]' so
2997 far), the ']' character bit gets set way below. */
2d1675e4 2998 if (c == ']' && p2 != p1)
657fcfbd 2999 break;
25fe55af 3000 }
b18215fc 3001
25fe55af
RS
3002 /* See if we're at the beginning of a possible character
3003 class. */
b18215fc 3004
2d1675e4
SM
3005 if (!escaped_char &&
3006 syntax & RE_CHAR_CLASSES && c == '[' && *p == ':')
657fcfbd 3007 {
7814e705 3008 /* Leave room for the null. */
14473664 3009 unsigned char str[CHAR_CLASS_MAX_LENGTH + 1];
ed0767d8 3010 const unsigned char *class_beg;
b18215fc 3011
25fe55af
RS
3012 PATFETCH (c);
3013 c1 = 0;
ed0767d8 3014 class_beg = p;
b18215fc 3015
25fe55af
RS
3016 /* If pattern is `[[:'. */
3017 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
b18215fc 3018
25fe55af
RS
3019 for (;;)
3020 {
14473664
SM
3021 PATFETCH (c);
3022 if ((c == ':' && *p == ']') || p == pend)
3023 break;
3024 if (c1 < CHAR_CLASS_MAX_LENGTH)
3025 str[c1++] = c;
3026 else
3027 /* This is in any case an invalid class name. */
3028 str[0] = '\0';
25fe55af
RS
3029 }
3030 str[c1] = '\0';
b18215fc
RS
3031
3032 /* If isn't a word bracketed by `[:' and `:]':
3033 undo the ending character, the letters, and
3034 leave the leading `:' and `[' (but set bits for
3035 them). */
25fe55af
RS
3036 if (c == ':' && *p == ']')
3037 {
14473664 3038 re_wctype_t cc;
8f924df7 3039 int limit;
14473664
SM
3040
3041 cc = re_wctype (str);
3042
3043 if (cc == 0)
fa9a63c5
RM
3044 FREE_STACK_RETURN (REG_ECTYPE);
3045
14473664
SM
3046 /* Throw away the ] at the end of the character
3047 class. */
3048 PATFETCH (c);
fa9a63c5 3049
14473664 3050 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
fa9a63c5 3051
cf9c99bc
KH
3052#ifndef emacs
3053 for (ch = 0; ch < (1 << BYTEWIDTH); ++ch)
8f924df7
KH
3054 if (re_iswctype (btowc (ch), cc))
3055 {
3056 c = TRANSLATE (ch);
ed00c2ac
KH
3057 if (c < (1 << BYTEWIDTH))
3058 SET_LIST_BIT (c);
8f924df7 3059 }
cf9c99bc
KH
3060#else /* emacs */
3061 /* Most character classes in a multibyte match
3062 just set a flag. Exceptions are is_blank,
3063 is_digit, is_cntrl, and is_xdigit, since
3064 they can only match ASCII characters. We
3065 don't need to handle them for multibyte.
3066 They are distinguished by a negative wctype. */
96cc36cc 3067
cf9c99bc 3068 for (ch = 0; ch < 256; ++ch)
25fe55af 3069 {
cf9c99bc
KH
3070 c = RE_CHAR_TO_MULTIBYTE (ch);
3071 if (! CHAR_BYTE8_P (c)
3072 && re_iswctype (c, cc))
8f924df7 3073 {
cf9c99bc
KH
3074 SET_LIST_BIT (ch);
3075 c1 = TRANSLATE (c);
3076 if (c1 == c)
3077 continue;
3078 if (ASCII_CHAR_P (c1))
3079 SET_LIST_BIT (c1);
3080 else if ((c1 = RE_CHAR_TO_UNIBYTE (c1)) >= 0)
3081 SET_LIST_BIT (c1);
8f924df7 3082 }
25fe55af 3083 }
cf9c99bc
KH
3084 SET_RANGE_TABLE_WORK_AREA_BIT
3085 (range_table_work, re_wctype_to_bit (cc));
3086#endif /* emacs */
6224b623
SM
3087 /* In most cases the matching rule for char classes
3088 only uses the syntax table for multibyte chars,
3089 so that the content of the syntax-table it is not
3090 hardcoded in the range_table. SPACE and WORD are
3091 the two exceptions. */
3092 if ((1 << cc) & ((1 << RECC_SPACE) | (1 << RECC_WORD)))
3093 bufp->used_syntax = 1;
3094
b18215fc
RS
3095 /* Repeat the loop. */
3096 continue;
25fe55af
RS
3097 }
3098 else
3099 {
ed0767d8
SM
3100 /* Go back to right after the "[:". */
3101 p = class_beg;
25fe55af 3102 SET_LIST_BIT ('[');
b18215fc
RS
3103
3104 /* Because the `:' may starts the range, we
3105 can't simply set bit and repeat the loop.
7814e705 3106 Instead, just set it to C and handle below. */
b18215fc 3107 c = ':';
25fe55af
RS
3108 }
3109 }
b18215fc
RS
3110
3111 if (p < pend && p[0] == '-' && p[1] != ']')
3112 {
3113
3114 /* Discard the `-'. */
3115 PATFETCH (c1);
3116
3117 /* Fetch the character which ends the range. */
3118 PATFETCH (c1);
cf9c99bc
KH
3119#ifdef emacs
3120 if (CHAR_BYTE8_P (c1)
3121 && ! ASCII_CHAR_P (c) && ! CHAR_BYTE8_P (c))
3122 /* Treat the range from a multibyte character to
3123 raw-byte character as empty. */
3124 c = c1 + 1;
3125#endif /* emacs */
e318085a 3126 }
25fe55af 3127 else
b18215fc
RS
3128 /* Range from C to C. */
3129 c1 = c;
3130
cf9c99bc 3131 if (c > c1)
25fe55af 3132 {
cf9c99bc
KH
3133 if (syntax & RE_NO_EMPTY_RANGES)
3134 FREE_STACK_RETURN (REG_ERANGEX);
3135 /* Else, repeat the loop. */
bf216479 3136 }
6fdd04b0 3137 else
25fe55af 3138 {
cf9c99bc
KH
3139#ifndef emacs
3140 /* Set the range into bitmap */
8f924df7 3141 for (; c <= c1; c++)
b18215fc 3142 {
cf9c99bc
KH
3143 ch = TRANSLATE (c);
3144 if (ch < (1 << BYTEWIDTH))
3145 SET_LIST_BIT (ch);
3146 }
3147#else /* emacs */
3148 if (c < 128)
3149 {
3150 ch = MIN (127, c1);
3151 SETUP_ASCII_RANGE (range_table_work, c, ch);
3152 c = ch + 1;
3153 if (CHAR_BYTE8_P (c1))
3154 c = BYTE8_TO_CHAR (128);
3155 }
3156 if (c <= c1)
3157 {
3158 if (CHAR_BYTE8_P (c))
3159 {
3160 c = CHAR_TO_BYTE8 (c);
3161 c1 = CHAR_TO_BYTE8 (c1);
3162 for (; c <= c1; c++)
3163 SET_LIST_BIT (c);
3164 }
3165 else if (multibyte)
3166 {
3167 SETUP_MULTIBYTE_RANGE (range_table_work, c, c1);
3168 }
3169 else
3170 {
3171 SETUP_UNIBYTE_RANGE (range_table_work, c, c1);
3172 }
e934739e 3173 }
cf9c99bc 3174#endif /* emacs */
25fe55af 3175 }
e318085a
RS
3176 }
3177
25fe55af 3178 /* Discard any (non)matching list bytes that are all 0 at the
7814e705 3179 end of the map. Decrease the map-length byte too. */
25fe55af
RS
3180 while ((int) b[-1] > 0 && b[b[-1] - 1] == 0)
3181 b[-1]--;
3182 b += b[-1];
fa9a63c5 3183
96cc36cc
RS
3184 /* Build real range table from work area. */
3185 if (RANGE_TABLE_WORK_USED (range_table_work)
3186 || RANGE_TABLE_WORK_BITS (range_table_work))
b18215fc
RS
3187 {
3188 int i;
3189 int used = RANGE_TABLE_WORK_USED (range_table_work);
fa9a63c5 3190
b18215fc 3191 /* Allocate space for COUNT + RANGE_TABLE. Needs two
96cc36cc
RS
3192 bytes for flags, two for COUNT, and three bytes for
3193 each character. */
3194 GET_BUFFER_SPACE (4 + used * 3);
fa9a63c5 3195
b18215fc
RS
3196 /* Indicate the existence of range table. */
3197 laststart[1] |= 0x80;
fa9a63c5 3198
96cc36cc
RS
3199 /* Store the character class flag bits into the range table.
3200 If not in emacs, these flag bits are always 0. */
3201 *b++ = RANGE_TABLE_WORK_BITS (range_table_work) & 0xff;
3202 *b++ = RANGE_TABLE_WORK_BITS (range_table_work) >> 8;
3203
b18215fc
RS
3204 STORE_NUMBER_AND_INCR (b, used / 2);
3205 for (i = 0; i < used; i++)
3206 STORE_CHARACTER_AND_INCR
3207 (b, RANGE_TABLE_WORK_ELT (range_table_work, i));
3208 }
25fe55af
RS
3209 }
3210 break;
fa9a63c5
RM
3211
3212
b18215fc 3213 case '(':
25fe55af
RS
3214 if (syntax & RE_NO_BK_PARENS)
3215 goto handle_open;
3216 else
3217 goto normal_char;
fa9a63c5
RM
3218
3219
25fe55af
RS
3220 case ')':
3221 if (syntax & RE_NO_BK_PARENS)
3222 goto handle_close;
3223 else
3224 goto normal_char;
e318085a
RS
3225
3226
25fe55af
RS
3227 case '\n':
3228 if (syntax & RE_NEWLINE_ALT)
3229 goto handle_alt;
3230 else
3231 goto normal_char;
e318085a
RS
3232
3233
b18215fc 3234 case '|':
25fe55af
RS
3235 if (syntax & RE_NO_BK_VBAR)
3236 goto handle_alt;
3237 else
3238 goto normal_char;
3239
3240
3241 case '{':
3242 if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES)
3243 goto handle_interval;
3244 else
3245 goto normal_char;
3246
3247
3248 case '\\':
3249 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
3250
3251 /* Do not translate the character after the \, so that we can
3252 distinguish, e.g., \B from \b, even if we normally would
3253 translate, e.g., B to b. */
36595814 3254 PATFETCH (c);
25fe55af
RS
3255
3256 switch (c)
3257 {
3258 case '(':
3259 if (syntax & RE_NO_BK_PARENS)
3260 goto normal_backslash;
3261
3262 handle_open:
505bde11
SM
3263 {
3264 int shy = 0;
c69b0314 3265 regnum_t regnum = 0;
505bde11
SM
3266 if (p+1 < pend)
3267 {
3268 /* Look for a special (?...) construct */
ed0767d8 3269 if ((syntax & RE_SHY_GROUPS) && *p == '?')
505bde11 3270 {
ed0767d8 3271 PATFETCH (c); /* Gobble up the '?'. */
c69b0314 3272 while (!shy)
505bde11 3273 {
c69b0314
SM
3274 PATFETCH (c);
3275 switch (c)
3276 {
3277 case ':': shy = 1; break;
3278 case '0':
3279 /* An explicitly specified regnum must start
3280 with non-0. */
3281 if (regnum == 0)
3282 FREE_STACK_RETURN (REG_BADPAT);
3283 case '1': case '2': case '3': case '4':
3284 case '5': case '6': case '7': case '8': case '9':
3285 regnum = 10*regnum + (c - '0'); break;
3286 default:
3287 /* Only (?:...) is supported right now. */
3288 FREE_STACK_RETURN (REG_BADPAT);
3289 }
505bde11
SM
3290 }
3291 }
505bde11
SM
3292 }
3293
3294 if (!shy)
c69b0314
SM
3295 regnum = ++bufp->re_nsub;
3296 else if (regnum)
3297 { /* It's actually not shy, but explicitly numbered. */
3298 shy = 0;
3299 if (regnum > bufp->re_nsub)
3300 bufp->re_nsub = regnum;
3301 else if (regnum > bufp->re_nsub
3302 /* Ideally, we'd want to check that the specified
3303 group can't have matched (i.e. all subgroups
3304 using the same regnum are in other branches of
3305 OR patterns), but we don't currently keep track
3306 of enough info to do that easily. */
3307 || group_in_compile_stack (compile_stack, regnum))
3308 FREE_STACK_RETURN (REG_BADPAT);
505bde11 3309 }
c69b0314
SM
3310 else
3311 /* It's really shy. */
3312 regnum = - bufp->re_nsub;
25fe55af 3313
99633e97
SM
3314 if (COMPILE_STACK_FULL)
3315 {
3316 RETALLOC (compile_stack.stack, compile_stack.size << 1,
3317 compile_stack_elt_t);
3318 if (compile_stack.stack == NULL) return REG_ESPACE;
25fe55af 3319
99633e97
SM
3320 compile_stack.size <<= 1;
3321 }
25fe55af 3322
99633e97 3323 /* These are the values to restore when we hit end of this
7814e705 3324 group. They are all relative offsets, so that if the
99633e97
SM
3325 whole pattern moves because of realloc, they will still
3326 be valid. */
3327 COMPILE_STACK_TOP.begalt_offset = begalt - bufp->buffer;
3328 COMPILE_STACK_TOP.fixup_alt_jump
3329 = fixup_alt_jump ? fixup_alt_jump - bufp->buffer + 1 : 0;
3330 COMPILE_STACK_TOP.laststart_offset = b - bufp->buffer;
c69b0314 3331 COMPILE_STACK_TOP.regnum = regnum;
99633e97 3332
c69b0314
SM
3333 /* Do not push a start_memory for groups beyond the last one
3334 we can represent in the compiled pattern. */
3335 if (regnum <= MAX_REGNUM && regnum > 0)
99633e97
SM
3336 BUF_PUSH_2 (start_memory, regnum);
3337
3338 compile_stack.avail++;
3339
3340 fixup_alt_jump = 0;
3341 laststart = 0;
3342 begalt = b;
3343 /* If we've reached MAX_REGNUM groups, then this open
3344 won't actually generate any code, so we'll have to
3345 clear pending_exact explicitly. */
3346 pending_exact = 0;
3347 break;
505bde11 3348 }
25fe55af
RS
3349
3350 case ')':
3351 if (syntax & RE_NO_BK_PARENS) goto normal_backslash;
3352
3353 if (COMPILE_STACK_EMPTY)
505bde11
SM
3354 {
3355 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
3356 goto normal_backslash;
3357 else
3358 FREE_STACK_RETURN (REG_ERPAREN);
3359 }
25fe55af
RS
3360
3361 handle_close:
505bde11 3362 FIXUP_ALT_JUMP ();
25fe55af
RS
3363
3364 /* See similar code for backslashed left paren above. */
3365 if (COMPILE_STACK_EMPTY)
505bde11
SM
3366 {
3367 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
3368 goto normal_char;
3369 else
3370 FREE_STACK_RETURN (REG_ERPAREN);
3371 }
25fe55af
RS
3372
3373 /* Since we just checked for an empty stack above, this
3374 ``can't happen''. */
3375 assert (compile_stack.avail != 0);
3376 {
3377 /* We don't just want to restore into `regnum', because
3378 later groups should continue to be numbered higher,
7814e705 3379 as in `(ab)c(de)' -- the second group is #2. */
c69b0314 3380 regnum_t regnum;
25fe55af
RS
3381
3382 compile_stack.avail--;
3383 begalt = bufp->buffer + COMPILE_STACK_TOP.begalt_offset;
3384 fixup_alt_jump
3385 = COMPILE_STACK_TOP.fixup_alt_jump
3386 ? bufp->buffer + COMPILE_STACK_TOP.fixup_alt_jump - 1
3387 : 0;
3388 laststart = bufp->buffer + COMPILE_STACK_TOP.laststart_offset;
c69b0314 3389 regnum = COMPILE_STACK_TOP.regnum;
b18215fc
RS
3390 /* If we've reached MAX_REGNUM groups, then this open
3391 won't actually generate any code, so we'll have to
3392 clear pending_exact explicitly. */
3393 pending_exact = 0;
e318085a 3394
25fe55af 3395 /* We're at the end of the group, so now we know how many
7814e705 3396 groups were inside this one. */
c69b0314
SM
3397 if (regnum <= MAX_REGNUM && regnum > 0)
3398 BUF_PUSH_2 (stop_memory, regnum);
25fe55af
RS
3399 }
3400 break;
3401
3402
3403 case '|': /* `\|'. */
3404 if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR)
3405 goto normal_backslash;
3406 handle_alt:
3407 if (syntax & RE_LIMITED_OPS)
3408 goto normal_char;
3409
3410 /* Insert before the previous alternative a jump which
7814e705 3411 jumps to this alternative if the former fails. */
25fe55af
RS
3412 GET_BUFFER_SPACE (3);
3413 INSERT_JUMP (on_failure_jump, begalt, b + 6);
3414 pending_exact = 0;
3415 b += 3;
3416
3417 /* The alternative before this one has a jump after it
3418 which gets executed if it gets matched. Adjust that
3419 jump so it will jump to this alternative's analogous
3420 jump (put in below, which in turn will jump to the next
3421 (if any) alternative's such jump, etc.). The last such
3422 jump jumps to the correct final destination. A picture:
3423 _____ _____
3424 | | | |
3425 | v | v
3426 a | b | c
3427
3428 If we are at `b', then fixup_alt_jump right now points to a
3429 three-byte space after `a'. We'll put in the jump, set
3430 fixup_alt_jump to right after `b', and leave behind three
3431 bytes which we'll fill in when we get to after `c'. */
3432
505bde11 3433 FIXUP_ALT_JUMP ();
25fe55af
RS
3434
3435 /* Mark and leave space for a jump after this alternative,
3436 to be filled in later either by next alternative or
3437 when know we're at the end of a series of alternatives. */
3438 fixup_alt_jump = b;
3439 GET_BUFFER_SPACE (3);
3440 b += 3;
3441
3442 laststart = 0;
3443 begalt = b;
3444 break;
3445
3446
3447 case '{':
3448 /* If \{ is a literal. */
3449 if (!(syntax & RE_INTERVALS)
3450 /* If we're at `\{' and it's not the open-interval
3451 operator. */
4bb91c68 3452 || (syntax & RE_NO_BK_BRACES))
25fe55af
RS
3453 goto normal_backslash;
3454
3455 handle_interval:
3456 {
3457 /* If got here, then the syntax allows intervals. */
3458
3459 /* At least (most) this many matches must be made. */
99633e97 3460 int lower_bound = 0, upper_bound = -1;
25fe55af 3461
ed0767d8 3462 beg_interval = p;
25fe55af 3463
25fe55af
RS
3464 GET_UNSIGNED_NUMBER (lower_bound);
3465
3466 if (c == ',')
ed0767d8 3467 GET_UNSIGNED_NUMBER (upper_bound);
25fe55af
RS
3468 else
3469 /* Interval such as `{1}' => match exactly once. */
3470 upper_bound = lower_bound;
3471
3472 if (lower_bound < 0 || upper_bound > RE_DUP_MAX
ed0767d8 3473 || (upper_bound >= 0 && lower_bound > upper_bound))
4bb91c68 3474 FREE_STACK_RETURN (REG_BADBR);
25fe55af
RS
3475
3476 if (!(syntax & RE_NO_BK_BRACES))
3477 {
4bb91c68
SM
3478 if (c != '\\')
3479 FREE_STACK_RETURN (REG_BADBR);
c72b0edd
SM
3480 if (p == pend)
3481 FREE_STACK_RETURN (REG_EESCAPE);
25fe55af
RS
3482 PATFETCH (c);
3483 }
3484
3485 if (c != '}')
4bb91c68 3486 FREE_STACK_RETURN (REG_BADBR);
25fe55af
RS
3487
3488 /* We just parsed a valid interval. */
3489
3490 /* If it's invalid to have no preceding re. */
3491 if (!laststart)
3492 {
3493 if (syntax & RE_CONTEXT_INVALID_OPS)
3494 FREE_STACK_RETURN (REG_BADRPT);
3495 else if (syntax & RE_CONTEXT_INDEP_OPS)
3496 laststart = b;
3497 else
3498 goto unfetch_interval;
3499 }
3500
6df42991
SM
3501 if (upper_bound == 0)
3502 /* If the upper bound is zero, just drop the sub pattern
3503 altogether. */
3504 b = laststart;
3505 else if (lower_bound == 1 && upper_bound == 1)
3506 /* Just match it once: nothing to do here. */
3507 ;
3508
3509 /* Otherwise, we have a nontrivial interval. When
3510 we're all done, the pattern will look like:
3511 set_number_at <jump count> <upper bound>
3512 set_number_at <succeed_n count> <lower bound>
3513 succeed_n <after jump addr> <succeed_n count>
3514 <body of loop>
3515 jump_n <succeed_n addr> <jump count>
3516 (The upper bound and `jump_n' are omitted if
3517 `upper_bound' is 1, though.) */
3518 else
3519 { /* If the upper bound is > 1, we need to insert
3520 more at the end of the loop. */
3521 unsigned int nbytes = (upper_bound < 0 ? 3
3522 : upper_bound > 1 ? 5 : 0);
3523 unsigned int startoffset = 0;
3524
3525 GET_BUFFER_SPACE (20); /* We might use less. */
3526
3527 if (lower_bound == 0)
3528 {
3529 /* A succeed_n that starts with 0 is really a
3530 a simple on_failure_jump_loop. */
3531 INSERT_JUMP (on_failure_jump_loop, laststart,
3532 b + 3 + nbytes);
3533 b += 3;
3534 }
3535 else
3536 {
3537 /* Initialize lower bound of the `succeed_n', even
3538 though it will be set during matching by its
3539 attendant `set_number_at' (inserted next),
3540 because `re_compile_fastmap' needs to know.
3541 Jump to the `jump_n' we might insert below. */
3542 INSERT_JUMP2 (succeed_n, laststart,
3543 b + 5 + nbytes,
3544 lower_bound);
3545 b += 5;
3546
3547 /* Code to initialize the lower bound. Insert
7814e705 3548 before the `succeed_n'. The `5' is the last two
6df42991
SM
3549 bytes of this `set_number_at', plus 3 bytes of
3550 the following `succeed_n'. */
3551 insert_op2 (set_number_at, laststart, 5, lower_bound, b);
3552 b += 5;
3553 startoffset += 5;
3554 }
3555
3556 if (upper_bound < 0)
3557 {
3558 /* A negative upper bound stands for infinity,
3559 in which case it degenerates to a plain jump. */
3560 STORE_JUMP (jump, b, laststart + startoffset);
3561 b += 3;
3562 }
3563 else if (upper_bound > 1)
3564 { /* More than one repetition is allowed, so
3565 append a backward jump to the `succeed_n'
3566 that starts this interval.
3567
3568 When we've reached this during matching,
3569 we'll have matched the interval once, so
3570 jump back only `upper_bound - 1' times. */
3571 STORE_JUMP2 (jump_n, b, laststart + startoffset,
3572 upper_bound - 1);
3573 b += 5;
3574
3575 /* The location we want to set is the second
3576 parameter of the `jump_n'; that is `b-2' as
3577 an absolute address. `laststart' will be
3578 the `set_number_at' we're about to insert;
3579 `laststart+3' the number to set, the source
3580 for the relative address. But we are
3581 inserting into the middle of the pattern --
3582 so everything is getting moved up by 5.
3583 Conclusion: (b - 2) - (laststart + 3) + 5,
3584 i.e., b - laststart.
3585
3586 We insert this at the beginning of the loop
3587 so that if we fail during matching, we'll
3588 reinitialize the bounds. */
3589 insert_op2 (set_number_at, laststart, b - laststart,
3590 upper_bound - 1, b);
3591 b += 5;
3592 }
3593 }
25fe55af
RS
3594 pending_exact = 0;
3595 beg_interval = NULL;
3596 }
3597 break;
3598
3599 unfetch_interval:
3600 /* If an invalid interval, match the characters as literals. */
3601 assert (beg_interval);
3602 p = beg_interval;
3603 beg_interval = NULL;
3604
3605 /* normal_char and normal_backslash need `c'. */
ed0767d8 3606 c = '{';
25fe55af
RS
3607
3608 if (!(syntax & RE_NO_BK_BRACES))
3609 {
ed0767d8
SM
3610 assert (p > pattern && p[-1] == '\\');
3611 goto normal_backslash;
25fe55af 3612 }
ed0767d8
SM
3613 else
3614 goto normal_char;
e318085a 3615
b18215fc 3616#ifdef emacs
25fe55af 3617 /* There is no way to specify the before_dot and after_dot
7814e705 3618 operators. rms says this is ok. --karl */
25fe55af
RS
3619 case '=':
3620 BUF_PUSH (at_dot);
3621 break;
3622
3623 case 's':
3624 laststart = b;
3625 PATFETCH (c);
3626 BUF_PUSH_2 (syntaxspec, syntax_spec_code[c]);
3627 break;
3628
3629 case 'S':
3630 laststart = b;
3631 PATFETCH (c);
3632 BUF_PUSH_2 (notsyntaxspec, syntax_spec_code[c]);
3633 break;
b18215fc
RS
3634
3635 case 'c':
3636 laststart = b;
36595814 3637 PATFETCH (c);
b18215fc
RS
3638 BUF_PUSH_2 (categoryspec, c);
3639 break;
e318085a 3640
b18215fc
RS
3641 case 'C':
3642 laststart = b;
36595814 3643 PATFETCH (c);
b18215fc
RS
3644 BUF_PUSH_2 (notcategoryspec, c);
3645 break;
3646#endif /* emacs */
e318085a 3647
e318085a 3648
25fe55af 3649 case 'w':
4bb91c68
SM
3650 if (syntax & RE_NO_GNU_OPS)
3651 goto normal_char;
25fe55af 3652 laststart = b;
1fb352e0 3653 BUF_PUSH_2 (syntaxspec, Sword);
25fe55af 3654 break;
e318085a 3655
e318085a 3656
25fe55af 3657 case 'W':
4bb91c68
SM
3658 if (syntax & RE_NO_GNU_OPS)
3659 goto normal_char;
25fe55af 3660 laststart = b;
1fb352e0 3661 BUF_PUSH_2 (notsyntaxspec, Sword);
25fe55af 3662 break;
e318085a
RS
3663
3664
25fe55af 3665 case '<':
4bb91c68
SM
3666 if (syntax & RE_NO_GNU_OPS)
3667 goto normal_char;
25fe55af
RS
3668 BUF_PUSH (wordbeg);
3669 break;
e318085a 3670
25fe55af 3671 case '>':
4bb91c68
SM
3672 if (syntax & RE_NO_GNU_OPS)
3673 goto normal_char;
25fe55af
RS
3674 BUF_PUSH (wordend);
3675 break;
e318085a 3676
669fa600
SM
3677 case '_':
3678 if (syntax & RE_NO_GNU_OPS)
3679 goto normal_char;
3680 laststart = b;
3681 PATFETCH (c);
3682 if (c == '<')
3683 BUF_PUSH (symbeg);
3684 else if (c == '>')
3685 BUF_PUSH (symend);
3686 else
3687 FREE_STACK_RETURN (REG_BADPAT);
3688 break;
3689
25fe55af 3690 case 'b':
4bb91c68
SM
3691 if (syntax & RE_NO_GNU_OPS)
3692 goto normal_char;
25fe55af
RS
3693 BUF_PUSH (wordbound);
3694 break;
e318085a 3695
25fe55af 3696 case 'B':
4bb91c68
SM
3697 if (syntax & RE_NO_GNU_OPS)
3698 goto normal_char;
25fe55af
RS
3699 BUF_PUSH (notwordbound);
3700 break;
fa9a63c5 3701
25fe55af 3702 case '`':
4bb91c68
SM
3703 if (syntax & RE_NO_GNU_OPS)
3704 goto normal_char;
25fe55af
RS
3705 BUF_PUSH (begbuf);
3706 break;
e318085a 3707
25fe55af 3708 case '\'':
4bb91c68
SM
3709 if (syntax & RE_NO_GNU_OPS)
3710 goto normal_char;
25fe55af
RS
3711 BUF_PUSH (endbuf);
3712 break;
e318085a 3713
25fe55af
RS
3714 case '1': case '2': case '3': case '4': case '5':
3715 case '6': case '7': case '8': case '9':
0cdd06f8
SM
3716 {
3717 regnum_t reg;
e318085a 3718
0cdd06f8
SM
3719 if (syntax & RE_NO_BK_REFS)
3720 goto normal_backslash;
e318085a 3721
0cdd06f8 3722 reg = c - '0';
e318085a 3723
c69b0314
SM
3724 if (reg > bufp->re_nsub || reg < 1
3725 /* Can't back reference to a subexp before its end. */
3726 || group_in_compile_stack (compile_stack, reg))
0cdd06f8 3727 FREE_STACK_RETURN (REG_ESUBREG);
e318085a 3728
0cdd06f8
SM
3729 laststart = b;
3730 BUF_PUSH_2 (duplicate, reg);
3731 }
25fe55af 3732 break;
e318085a 3733
e318085a 3734
25fe55af
RS
3735 case '+':
3736 case '?':
3737 if (syntax & RE_BK_PLUS_QM)
3738 goto handle_plus;
3739 else
3740 goto normal_backslash;
3741
3742 default:
3743 normal_backslash:
3744 /* You might think it would be useful for \ to mean
3745 not to translate; but if we don't translate it
4bb91c68 3746 it will never match anything. */
25fe55af
RS
3747 goto normal_char;
3748 }
3749 break;
fa9a63c5
RM
3750
3751
3752 default:
25fe55af 3753 /* Expects the character in `c'. */
fa9a63c5 3754 normal_char:
36595814 3755 /* If no exactn currently being built. */
25fe55af 3756 if (!pending_exact
fa9a63c5 3757
25fe55af
RS
3758 /* If last exactn not at current position. */
3759 || pending_exact + *pending_exact + 1 != b
5e69f11e 3760
25fe55af 3761 /* We have only one byte following the exactn for the count. */
2d1675e4 3762 || *pending_exact >= (1 << BYTEWIDTH) - MAX_MULTIBYTE_LENGTH
fa9a63c5 3763
7814e705 3764 /* If followed by a repetition operator. */
9d99031f 3765 || (p != pend && (*p == '*' || *p == '^'))
fa9a63c5 3766 || ((syntax & RE_BK_PLUS_QM)
9d99031f
RS
3767 ? p + 1 < pend && *p == '\\' && (p[1] == '+' || p[1] == '?')
3768 : p != pend && (*p == '+' || *p == '?'))
fa9a63c5 3769 || ((syntax & RE_INTERVALS)
25fe55af 3770 && ((syntax & RE_NO_BK_BRACES)
9d99031f
RS
3771 ? p != pend && *p == '{'
3772 : p + 1 < pend && p[0] == '\\' && p[1] == '{')))
fa9a63c5
RM
3773 {
3774 /* Start building a new exactn. */
5e69f11e 3775
25fe55af 3776 laststart = b;
fa9a63c5
RM
3777
3778 BUF_PUSH_2 (exactn, 0);
3779 pending_exact = b - 1;
25fe55af 3780 }
5e69f11e 3781
2d1675e4
SM
3782 GET_BUFFER_SPACE (MAX_MULTIBYTE_LENGTH);
3783 {
e0277a47
KH
3784 int len;
3785
cf9c99bc 3786 if (multibyte)
6fdd04b0 3787 {
cf9c99bc 3788 c = TRANSLATE (c);
6fdd04b0
KH
3789 len = CHAR_STRING (c, b);
3790 b += len;
3791 }
e0277a47 3792 else
6fdd04b0 3793 {
cf9c99bc
KH
3794 c1 = RE_CHAR_TO_MULTIBYTE (c);
3795 if (! CHAR_BYTE8_P (c1))
3796 {
3797 re_wchar_t c2 = TRANSLATE (c1);
3798
3799 if (c1 != c2 && (c1 = RE_CHAR_TO_UNIBYTE (c2)) >= 0)
3800 c = c1;
3801 }
6fdd04b0
KH
3802 *b++ = c;
3803 len = 1;
3804 }
2d1675e4
SM
3805 (*pending_exact) += len;
3806 }
3807
fa9a63c5 3808 break;
25fe55af 3809 } /* switch (c) */
fa9a63c5
RM
3810 } /* while p != pend */
3811
5e69f11e 3812
fa9a63c5 3813 /* Through the pattern now. */
5e69f11e 3814
505bde11 3815 FIXUP_ALT_JUMP ();
fa9a63c5 3816
5e69f11e 3817 if (!COMPILE_STACK_EMPTY)
fa9a63c5
RM
3818 FREE_STACK_RETURN (REG_EPAREN);
3819
3820 /* If we don't want backtracking, force success
3821 the first time we reach the end of the compiled pattern. */
3822 if (syntax & RE_NO_POSIX_BACKTRACKING)
3823 BUF_PUSH (succeed);
3824
fa9a63c5
RM
3825 /* We have succeeded; set the length of the buffer. */
3826 bufp->used = b - bufp->buffer;
3827
3828#ifdef DEBUG
99633e97 3829 if (debug > 0)
fa9a63c5 3830 {
505bde11 3831 re_compile_fastmap (bufp);
fa9a63c5
RM
3832 DEBUG_PRINT1 ("\nCompiled pattern: \n");
3833 print_compiled_pattern (bufp);
3834 }
99633e97 3835 debug--;
fa9a63c5
RM
3836#endif /* DEBUG */
3837
3838#ifndef MATCH_MAY_ALLOCATE
3839 /* Initialize the failure stack to the largest possible stack. This
3840 isn't necessary unless we're trying to avoid calling alloca in
3841 the search and match routines. */
3842 {
3843 int num_regs = bufp->re_nsub + 1;
3844
320a2a73 3845 if (fail_stack.size < re_max_failures * TYPICAL_FAILURE_SIZE)
fa9a63c5 3846 {
a26f4ccd 3847 fail_stack.size = re_max_failures * TYPICAL_FAILURE_SIZE;
fa9a63c5 3848
fa9a63c5
RM
3849 if (! fail_stack.stack)
3850 fail_stack.stack
5e69f11e 3851 = (fail_stack_elt_t *) malloc (fail_stack.size
fa9a63c5
RM
3852 * sizeof (fail_stack_elt_t));
3853 else
3854 fail_stack.stack
3855 = (fail_stack_elt_t *) realloc (fail_stack.stack,
3856 (fail_stack.size
3857 * sizeof (fail_stack_elt_t)));
fa9a63c5
RM
3858 }
3859
3860 regex_grow_registers (num_regs);
3861 }
3862#endif /* not MATCH_MAY_ALLOCATE */
3863
839966f3 3864 FREE_STACK_RETURN (REG_NOERROR);
fa9a63c5
RM
3865} /* regex_compile */
3866\f
3867/* Subroutines for `regex_compile'. */
3868
7814e705 3869/* Store OP at LOC followed by two-byte integer parameter ARG. */
fa9a63c5
RM
3870
3871static void
3872store_op1 (op, loc, arg)
3873 re_opcode_t op;
3874 unsigned char *loc;
3875 int arg;
3876{
3877 *loc = (unsigned char) op;
3878 STORE_NUMBER (loc + 1, arg);
3879}
3880
3881
3882/* Like `store_op1', but for two two-byte parameters ARG1 and ARG2. */
3883
3884static void
3885store_op2 (op, loc, arg1, arg2)
3886 re_opcode_t op;
3887 unsigned char *loc;
3888 int arg1, arg2;
3889{
3890 *loc = (unsigned char) op;
3891 STORE_NUMBER (loc + 1, arg1);
3892 STORE_NUMBER (loc + 3, arg2);
3893}
3894
3895
3896/* Copy the bytes from LOC to END to open up three bytes of space at LOC
3897 for OP followed by two-byte integer parameter ARG. */
3898
3899static void
3900insert_op1 (op, loc, arg, end)
3901 re_opcode_t op;
3902 unsigned char *loc;
3903 int arg;
5e69f11e 3904 unsigned char *end;
fa9a63c5
RM
3905{
3906 register unsigned char *pfrom = end;
3907 register unsigned char *pto = end + 3;
3908
3909 while (pfrom != loc)
3910 *--pto = *--pfrom;
5e69f11e 3911
fa9a63c5
RM
3912 store_op1 (op, loc, arg);
3913}
3914
3915
3916/* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2. */
3917
3918static void
3919insert_op2 (op, loc, arg1, arg2, end)
3920 re_opcode_t op;
3921 unsigned char *loc;
3922 int arg1, arg2;
5e69f11e 3923 unsigned char *end;
fa9a63c5
RM
3924{
3925 register unsigned char *pfrom = end;
3926 register unsigned char *pto = end + 5;
3927
3928 while (pfrom != loc)
3929 *--pto = *--pfrom;
5e69f11e 3930
fa9a63c5
RM
3931 store_op2 (op, loc, arg1, arg2);
3932}
3933
3934
3935/* P points to just after a ^ in PATTERN. Return true if that ^ comes
3936 after an alternative or a begin-subexpression. We assume there is at
3937 least one character before the ^. */
3938
3939static boolean
3940at_begline_loc_p (pattern, p, syntax)
01618498 3941 re_char *pattern, *p;
fa9a63c5
RM
3942 reg_syntax_t syntax;
3943{
01618498 3944 re_char *prev = p - 2;
fa9a63c5 3945 boolean prev_prev_backslash = prev > pattern && prev[-1] == '\\';
5e69f11e 3946
fa9a63c5
RM
3947 return
3948 /* After a subexpression? */
3949 (*prev == '(' && (syntax & RE_NO_BK_PARENS || prev_prev_backslash))
25fe55af 3950 /* After an alternative? */
d2af47df
SM
3951 || (*prev == '|' && (syntax & RE_NO_BK_VBAR || prev_prev_backslash))
3952 /* After a shy subexpression? */
3953 || ((syntax & RE_SHY_GROUPS) && prev - 2 >= pattern
3954 && prev[-1] == '?' && prev[-2] == '('
3955 && (syntax & RE_NO_BK_PARENS
3956 || (prev - 3 >= pattern && prev[-3] == '\\')));
fa9a63c5
RM
3957}
3958
3959
3960/* The dual of at_begline_loc_p. This one is for $. We assume there is
3961 at least one character after the $, i.e., `P < PEND'. */
3962
3963static boolean
3964at_endline_loc_p (p, pend, syntax)
01618498 3965 re_char *p, *pend;
99633e97 3966 reg_syntax_t syntax;
fa9a63c5 3967{
01618498 3968 re_char *next = p;
fa9a63c5 3969 boolean next_backslash = *next == '\\';
01618498 3970 re_char *next_next = p + 1 < pend ? p + 1 : 0;
5e69f11e 3971
fa9a63c5
RM
3972 return
3973 /* Before a subexpression? */
3974 (syntax & RE_NO_BK_PARENS ? *next == ')'
25fe55af 3975 : next_backslash && next_next && *next_next == ')')
fa9a63c5
RM
3976 /* Before an alternative? */
3977 || (syntax & RE_NO_BK_VBAR ? *next == '|'
25fe55af 3978 : next_backslash && next_next && *next_next == '|');
fa9a63c5
RM
3979}
3980
3981
5e69f11e 3982/* Returns true if REGNUM is in one of COMPILE_STACK's elements and
fa9a63c5
RM
3983 false if it's not. */
3984
3985static boolean
3986group_in_compile_stack (compile_stack, regnum)
3987 compile_stack_type compile_stack;
3988 regnum_t regnum;
3989{
3990 int this_element;
3991
5e69f11e
RM
3992 for (this_element = compile_stack.avail - 1;
3993 this_element >= 0;
fa9a63c5
RM
3994 this_element--)
3995 if (compile_stack.stack[this_element].regnum == regnum)
3996 return true;
3997
3998 return false;
3999}
fa9a63c5 4000\f
f6a3f532
SM
4001/* analyse_first.
4002 If fastmap is non-NULL, go through the pattern and fill fastmap
4003 with all the possible leading chars. If fastmap is NULL, don't
4004 bother filling it up (obviously) and only return whether the
4005 pattern could potentially match the empty string.
4006
4007 Return 1 if p..pend might match the empty string.
4008 Return 0 if p..pend matches at least one char.
01618498 4009 Return -1 if fastmap was not updated accurately. */
f6a3f532
SM
4010
4011static int
4012analyse_first (p, pend, fastmap, multibyte)
01618498 4013 re_char *p, *pend;
f6a3f532
SM
4014 char *fastmap;
4015 const int multibyte;
fa9a63c5 4016{
505bde11 4017 int j, k;
1fb352e0 4018 boolean not;
fa9a63c5 4019
b18215fc 4020 /* If all elements for base leading-codes in fastmap is set, this
7814e705 4021 flag is set true. */
b18215fc
RS
4022 boolean match_any_multibyte_characters = false;
4023
f6a3f532 4024 assert (p);
5e69f11e 4025
505bde11
SM
4026 /* The loop below works as follows:
4027 - It has a working-list kept in the PATTERN_STACK and which basically
4028 starts by only containing a pointer to the first operation.
4029 - If the opcode we're looking at is a match against some set of
4030 chars, then we add those chars to the fastmap and go on to the
4031 next work element from the worklist (done via `break').
4032 - If the opcode is a control operator on the other hand, we either
4033 ignore it (if it's meaningless at this point, such as `start_memory')
4034 or execute it (if it's a jump). If the jump has several destinations
4035 (i.e. `on_failure_jump'), then we push the other destination onto the
4036 worklist.
4037 We guarantee termination by ignoring backward jumps (more or less),
4038 so that `p' is monotonically increasing. More to the point, we
4039 never set `p' (or push) anything `<= p1'. */
4040
01618498 4041 while (p < pend)
fa9a63c5 4042 {
505bde11
SM
4043 /* `p1' is used as a marker of how far back a `on_failure_jump'
4044 can go without being ignored. It is normally equal to `p'
4045 (which prevents any backward `on_failure_jump') except right
4046 after a plain `jump', to allow patterns such as:
4047 0: jump 10
4048 3..9: <body>
4049 10: on_failure_jump 3
4050 as used for the *? operator. */
01618498 4051 re_char *p1 = p;
5e69f11e 4052
fa9a63c5
RM
4053 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
4054 {
f6a3f532 4055 case succeed:
01618498 4056 return 1;
f6a3f532 4057 continue;
fa9a63c5 4058
fa9a63c5 4059 case duplicate:
505bde11
SM
4060 /* If the first character has to match a backreference, that means
4061 that the group was empty (since it already matched). Since this
4062 is the only case that interests us here, we can assume that the
4063 backreference must match the empty string. */
4064 p++;
4065 continue;
fa9a63c5
RM
4066
4067
4068 /* Following are the cases which match a character. These end
7814e705 4069 with `break'. */
fa9a63c5
RM
4070
4071 case exactn:
e0277a47 4072 if (fastmap)
cf9c99bc
KH
4073 {
4074 /* If multibyte is nonzero, the first byte of each
4075 character is an ASCII or a leading code. Otherwise,
4076 each byte is a character. Thus, this works in both
4077 cases. */
4078 fastmap[p[1]] = 1;
4079 if (! multibyte)
4080 {
4081 /* For the case of matching this unibyte regex
4082 against multibyte, we must set a leading code of
4083 the corresponding multibyte character. */
4084 int c = RE_CHAR_TO_MULTIBYTE (p[1]);
4085
4086 if (! CHAR_BYTE8_P (c))
4087 fastmap[CHAR_LEADING_CODE (c)] = 1;
4088 }
4089 }
fa9a63c5
RM
4090 break;
4091
4092
1fb352e0
SM
4093 case anychar:
4094 /* We could put all the chars except for \n (and maybe \0)
4095 but we don't bother since it is generally not worth it. */
f6a3f532 4096 if (!fastmap) break;
01618498 4097 return -1;
fa9a63c5
RM
4098
4099
b18215fc 4100 case charset_not:
1fb352e0 4101 if (!fastmap) break;
bf216479
KH
4102 {
4103 /* Chars beyond end of bitmap are possible matches. */
bf216479 4104 for (j = CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH;
cf9c99bc 4105 j < (1 << BYTEWIDTH); j++)
bf216479
KH
4106 fastmap[j] = 1;
4107 }
4108
1fb352e0
SM
4109 /* Fallthrough */
4110 case charset:
4111 if (!fastmap) break;
4112 not = (re_opcode_t) *(p - 1) == charset_not;
b18215fc
RS
4113 for (j = CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH - 1, p++;
4114 j >= 0; j--)
1fb352e0 4115 if (!!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))) ^ not)
49da453b 4116 fastmap[j] = 1;
b18215fc 4117
6482db2e
KH
4118#ifdef emacs
4119 if (/* Any leading code can possibly start a character
1fb352e0 4120 which doesn't match the specified set of characters. */
6482db2e
KH
4121 not
4122 ||
4123 /* If we can match a character class, we can match any
4124 multibyte characters. */
4125 (CHARSET_RANGE_TABLE_EXISTS_P (&p[-2])
4126 && CHARSET_RANGE_TABLE_BITS (&p[-2]) != 0))
4127
b18215fc 4128 {
b18215fc
RS
4129 if (match_any_multibyte_characters == false)
4130 {
6482db2e
KH
4131 for (j = MIN_MULTIBYTE_LEADING_CODE;
4132 j <= MAX_MULTIBYTE_LEADING_CODE; j++)
6fdd04b0 4133 fastmap[j] = 1;
b18215fc
RS
4134 match_any_multibyte_characters = true;
4135 }
4136 }
b18215fc 4137
1fb352e0
SM
4138 else if (!not && CHARSET_RANGE_TABLE_EXISTS_P (&p[-2])
4139 && match_any_multibyte_characters == false)
4140 {
bf216479 4141 /* Set fastmap[I] to 1 where I is a leading code of each
9117d724 4142 multibyte characer in the range table. */
1fb352e0 4143 int c, count;
bf216479 4144 unsigned char lc1, lc2;
b18215fc 4145
1fb352e0 4146 /* Make P points the range table. `+ 2' is to skip flag
0b32bf0e 4147 bits for a character class. */
1fb352e0 4148 p += CHARSET_BITMAP_SIZE (&p[-2]) + 2;
b18215fc 4149
1fb352e0
SM
4150 /* Extract the number of ranges in range table into COUNT. */
4151 EXTRACT_NUMBER_AND_INCR (count, p);
cf9c99bc 4152 for (; count > 0; count--, p += 3)
1fb352e0 4153 {
9117d724
KH
4154 /* Extract the start and end of each range. */
4155 EXTRACT_CHARACTER (c, p);
bf216479 4156 lc1 = CHAR_LEADING_CODE (c);
9117d724 4157 p += 3;
1fb352e0 4158 EXTRACT_CHARACTER (c, p);
bf216479
KH
4159 lc2 = CHAR_LEADING_CODE (c);
4160 for (j = lc1; j <= lc2; j++)
9117d724 4161 fastmap[j] = 1;
1fb352e0
SM
4162 }
4163 }
6482db2e 4164#endif
b18215fc
RS
4165 break;
4166
1fb352e0
SM
4167 case syntaxspec:
4168 case notsyntaxspec:
4169 if (!fastmap) break;
4170#ifndef emacs
4171 not = (re_opcode_t)p[-1] == notsyntaxspec;
4172 k = *p++;
4173 for (j = 0; j < (1 << BYTEWIDTH); j++)
990b2375 4174 if ((SYNTAX (j) == (enum syntaxcode) k) ^ not)
b18215fc 4175 fastmap[j] = 1;
b18215fc 4176 break;
1fb352e0 4177#else /* emacs */
b18215fc
RS
4178 /* This match depends on text properties. These end with
4179 aborting optimizations. */
01618498 4180 return -1;
b18215fc
RS
4181
4182 case categoryspec:
b18215fc 4183 case notcategoryspec:
1fb352e0
SM
4184 if (!fastmap) break;
4185 not = (re_opcode_t)p[-1] == notcategoryspec;
b18215fc 4186 k = *p++;
6482db2e 4187 for (j = (1 << BYTEWIDTH); j >= 0; j--)
1fb352e0 4188 if ((CHAR_HAS_CATEGORY (j, k)) ^ not)
b18215fc
RS
4189 fastmap[j] = 1;
4190
6482db2e
KH
4191 /* Any leading code can possibly start a character which
4192 has or doesn't has the specified category. */
4193 if (match_any_multibyte_characters == false)
6fdd04b0 4194 {
6482db2e
KH
4195 for (j = MIN_MULTIBYTE_LEADING_CODE;
4196 j <= MAX_MULTIBYTE_LEADING_CODE; j++)
4197 fastmap[j] = 1;
4198 match_any_multibyte_characters = true;
6fdd04b0 4199 }
b18215fc
RS
4200 break;
4201
fa9a63c5 4202 /* All cases after this match the empty string. These end with
25fe55af 4203 `continue'. */
fa9a63c5 4204
fa9a63c5
RM
4205 case before_dot:
4206 case at_dot:
4207 case after_dot:
1fb352e0 4208#endif /* !emacs */
25fe55af
RS
4209 case no_op:
4210 case begline:
4211 case endline:
fa9a63c5
RM
4212 case begbuf:
4213 case endbuf:
4214 case wordbound:
4215 case notwordbound:
4216 case wordbeg:
4217 case wordend:
669fa600
SM
4218 case symbeg:
4219 case symend:
25fe55af 4220 continue;
fa9a63c5
RM
4221
4222
fa9a63c5 4223 case jump:
25fe55af 4224 EXTRACT_NUMBER_AND_INCR (j, p);
505bde11
SM
4225 if (j < 0)
4226 /* Backward jumps can only go back to code that we've already
4227 visited. `re_compile' should make sure this is true. */
4228 break;
25fe55af 4229 p += j;
505bde11
SM
4230 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p))
4231 {
4232 case on_failure_jump:
4233 case on_failure_keep_string_jump:
505bde11 4234 case on_failure_jump_loop:
0683b6fa 4235 case on_failure_jump_nastyloop:
505bde11
SM
4236 case on_failure_jump_smart:
4237 p++;
4238 break;
4239 default:
4240 continue;
4241 };
4242 /* Keep `p1' to allow the `on_failure_jump' we are jumping to
4243 to jump back to "just after here". */
4244 /* Fallthrough */
fa9a63c5 4245
25fe55af
RS
4246 case on_failure_jump:
4247 case on_failure_keep_string_jump:
0683b6fa 4248 case on_failure_jump_nastyloop:
505bde11
SM
4249 case on_failure_jump_loop:
4250 case on_failure_jump_smart:
25fe55af 4251 EXTRACT_NUMBER_AND_INCR (j, p);
505bde11 4252 if (p + j <= p1)
ed0767d8 4253 ; /* Backward jump to be ignored. */
01618498
SM
4254 else
4255 { /* We have to look down both arms.
4256 We first go down the "straight" path so as to minimize
4257 stack usage when going through alternatives. */
4258 int r = analyse_first (p, pend, fastmap, multibyte);
4259 if (r) return r;
4260 p += j;
4261 }
25fe55af 4262 continue;
fa9a63c5
RM
4263
4264
ed0767d8
SM
4265 case jump_n:
4266 /* This code simply does not properly handle forward jump_n. */
4267 DEBUG_STATEMENT (EXTRACT_NUMBER (j, p); assert (j < 0));
4268 p += 4;
4269 /* jump_n can either jump or fall through. The (backward) jump
4270 case has already been handled, so we only need to look at the
4271 fallthrough case. */
4272 continue;
177c0ea7 4273
fa9a63c5 4274 case succeed_n:
ed0767d8
SM
4275 /* If N == 0, it should be an on_failure_jump_loop instead. */
4276 DEBUG_STATEMENT (EXTRACT_NUMBER (j, p + 2); assert (j > 0));
4277 p += 4;
4278 /* We only care about one iteration of the loop, so we don't
4279 need to consider the case where this behaves like an
4280 on_failure_jump. */
25fe55af 4281 continue;
fa9a63c5
RM
4282
4283
4284 case set_number_at:
25fe55af
RS
4285 p += 4;
4286 continue;
fa9a63c5
RM
4287
4288
4289 case start_memory:
25fe55af 4290 case stop_memory:
505bde11 4291 p += 1;
fa9a63c5
RM
4292 continue;
4293
4294
4295 default:
25fe55af
RS
4296 abort (); /* We have listed all the cases. */
4297 } /* switch *p++ */
fa9a63c5
RM
4298
4299 /* Getting here means we have found the possible starting
25fe55af 4300 characters for one path of the pattern -- and that the empty
7814e705 4301 string does not match. We need not follow this path further. */
01618498 4302 return 0;
fa9a63c5
RM
4303 } /* while p */
4304
01618498
SM
4305 /* We reached the end without matching anything. */
4306 return 1;
4307
f6a3f532
SM
4308} /* analyse_first */
4309\f
4310/* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
4311 BUFP. A fastmap records which of the (1 << BYTEWIDTH) possible
4312 characters can start a string that matches the pattern. This fastmap
4313 is used by re_search to skip quickly over impossible starting points.
4314
4315 Character codes above (1 << BYTEWIDTH) are not represented in the
4316 fastmap, but the leading codes are represented. Thus, the fastmap
4317 indicates which character sets could start a match.
4318
4319 The caller must supply the address of a (1 << BYTEWIDTH)-byte data
4320 area as BUFP->fastmap.
4321
4322 We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
4323 the pattern buffer.
4324
4325 Returns 0 if we succeed, -2 if an internal error. */
4326
4327int
4328re_compile_fastmap (bufp)
4329 struct re_pattern_buffer *bufp;
4330{
4331 char *fastmap = bufp->fastmap;
4332 int analysis;
4333
4334 assert (fastmap && bufp->buffer);
4335
7814e705 4336 bzero (fastmap, 1 << BYTEWIDTH); /* Assume nothing's valid. */
f6a3f532
SM
4337 bufp->fastmap_accurate = 1; /* It will be when we're done. */
4338
4339 analysis = analyse_first (bufp->buffer, bufp->buffer + bufp->used,
2d1675e4 4340 fastmap, RE_MULTIBYTE_P (bufp));
c0f9ea08 4341 bufp->can_be_null = (analysis != 0);
fa9a63c5
RM
4342 return 0;
4343} /* re_compile_fastmap */
4344\f
4345/* Set REGS to hold NUM_REGS registers, storing them in STARTS and
4346 ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use
4347 this memory for recording register information. STARTS and ENDS
4348 must be allocated using the malloc library routine, and must each
4349 be at least NUM_REGS * sizeof (regoff_t) bytes long.
4350
4351 If NUM_REGS == 0, then subsequent matches should allocate their own
4352 register data.
4353
4354 Unless this function is called, the first search or match using
4355 PATTERN_BUFFER will allocate its own register data, without
4356 freeing the old data. */
4357
4358void
4359re_set_registers (bufp, regs, num_regs, starts, ends)
4360 struct re_pattern_buffer *bufp;
4361 struct re_registers *regs;
4362 unsigned num_regs;
4363 regoff_t *starts, *ends;
4364{
4365 if (num_regs)
4366 {
4367 bufp->regs_allocated = REGS_REALLOCATE;
4368 regs->num_regs = num_regs;
4369 regs->start = starts;
4370 regs->end = ends;
4371 }
4372 else
4373 {
4374 bufp->regs_allocated = REGS_UNALLOCATED;
4375 regs->num_regs = 0;
4376 regs->start = regs->end = (regoff_t *) 0;
4377 }
4378}
c0f9ea08 4379WEAK_ALIAS (__re_set_registers, re_set_registers)
fa9a63c5 4380\f
7814e705 4381/* Searching routines. */
fa9a63c5
RM
4382
4383/* Like re_search_2, below, but only one string is specified, and
4384 doesn't let you say where to stop matching. */
4385
4386int
4387re_search (bufp, string, size, startpos, range, regs)
4388 struct re_pattern_buffer *bufp;
4389 const char *string;
4390 int size, startpos, range;
4391 struct re_registers *regs;
4392{
5e69f11e 4393 return re_search_2 (bufp, NULL, 0, string, size, startpos, range,
fa9a63c5
RM
4394 regs, size);
4395}
c0f9ea08 4396WEAK_ALIAS (__re_search, re_search)
fa9a63c5 4397
70806df6
KH
4398/* Head address of virtual concatenation of string. */
4399#define HEAD_ADDR_VSTRING(P) \
4400 (((P) >= size1 ? string2 : string1))
4401
b18215fc
RS
4402/* End address of virtual concatenation of string. */
4403#define STOP_ADDR_VSTRING(P) \
4404 (((P) >= size1 ? string2 + size2 : string1 + size1))
4405
4406/* Address of POS in the concatenation of virtual string. */
4407#define POS_ADDR_VSTRING(POS) \
4408 (((POS) >= size1 ? string2 - size1 : string1) + (POS))
fa9a63c5
RM
4409
4410/* Using the compiled pattern in BUFP->buffer, first tries to match the
4411 virtual concatenation of STRING1 and STRING2, starting first at index
4412 STARTPOS, then at STARTPOS + 1, and so on.
5e69f11e 4413
fa9a63c5 4414 STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
5e69f11e 4415
fa9a63c5
RM
4416 RANGE is how far to scan while trying to match. RANGE = 0 means try
4417 only at STARTPOS; in general, the last start tried is STARTPOS +
4418 RANGE.
5e69f11e 4419
fa9a63c5
RM
4420 In REGS, return the indices of the virtual concatenation of STRING1
4421 and STRING2 that matched the entire BUFP->buffer and its contained
4422 subexpressions.
5e69f11e 4423
fa9a63c5
RM
4424 Do not consider matching one past the index STOP in the virtual
4425 concatenation of STRING1 and STRING2.
4426
4427 We return either the position in the strings at which the match was
4428 found, -1 if no match, or -2 if error (such as failure
4429 stack overflow). */
4430
4431int
66f0296e 4432re_search_2 (bufp, str1, size1, str2, size2, startpos, range, regs, stop)
fa9a63c5 4433 struct re_pattern_buffer *bufp;
66f0296e 4434 const char *str1, *str2;
fa9a63c5
RM
4435 int size1, size2;
4436 int startpos;
4437 int range;
4438 struct re_registers *regs;
4439 int stop;
4440{
4441 int val;
66f0296e
SM
4442 re_char *string1 = (re_char*) str1;
4443 re_char *string2 = (re_char*) str2;
fa9a63c5 4444 register char *fastmap = bufp->fastmap;
6676cb1c 4445 register RE_TRANSLATE_TYPE translate = bufp->translate;
fa9a63c5
RM
4446 int total_size = size1 + size2;
4447 int endpos = startpos + range;
c0f9ea08 4448 boolean anchored_start;
cf9c99bc
KH
4449 /* Nonzero if we are searching multibyte string. */
4450 const boolean multibyte = RE_TARGET_MULTIBYTE_P (bufp);
b18215fc 4451
fa9a63c5
RM
4452 /* Check for out-of-range STARTPOS. */
4453 if (startpos < 0 || startpos > total_size)
4454 return -1;
5e69f11e 4455
fa9a63c5 4456 /* Fix up RANGE if it might eventually take us outside
34597fa9 4457 the virtual concatenation of STRING1 and STRING2.
5e69f11e 4458 Make sure we won't move STARTPOS below 0 or above TOTAL_SIZE. */
34597fa9
RS
4459 if (endpos < 0)
4460 range = 0 - startpos;
fa9a63c5
RM
4461 else if (endpos > total_size)
4462 range = total_size - startpos;
4463
4464 /* If the search isn't to be a backwards one, don't waste time in a
7b140fd7 4465 search for a pattern anchored at beginning of buffer. */
fa9a63c5
RM
4466 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == begbuf && range > 0)
4467 {
4468 if (startpos > 0)
4469 return -1;
4470 else
7b140fd7 4471 range = 0;
fa9a63c5
RM
4472 }
4473
ae4788a8
RS
4474#ifdef emacs
4475 /* In a forward search for something that starts with \=.
4476 don't keep searching past point. */
4477 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == at_dot && range > 0)
4478 {
7b140fd7
RS
4479 range = PT_BYTE - BEGV_BYTE - startpos;
4480 if (range < 0)
ae4788a8
RS
4481 return -1;
4482 }
4483#endif /* emacs */
4484
fa9a63c5
RM
4485 /* Update the fastmap now if not correct already. */
4486 if (fastmap && !bufp->fastmap_accurate)
01618498 4487 re_compile_fastmap (bufp);
5e69f11e 4488
c8499ba5 4489 /* See whether the pattern is anchored. */
c0f9ea08 4490 anchored_start = (bufp->buffer[0] == begline);
c8499ba5 4491
b18215fc 4492#ifdef emacs
cc9b4df2
KH
4493 gl_state.object = re_match_object;
4494 {
99633e97 4495 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (POS_AS_IN_BUFFER (startpos));
cc9b4df2
KH
4496
4497 SETUP_SYNTAX_TABLE_FOR_OBJECT (re_match_object, charpos, 1);
4498 }
b18215fc
RS
4499#endif
4500
fa9a63c5
RM
4501 /* Loop through the string, looking for a place to start matching. */
4502 for (;;)
5e69f11e 4503 {
c8499ba5
RS
4504 /* If the pattern is anchored,
4505 skip quickly past places we cannot match.
4506 We don't bother to treat startpos == 0 specially
4507 because that case doesn't repeat. */
4508 if (anchored_start && startpos > 0)
4509 {
c0f9ea08
SM
4510 if (! ((startpos <= size1 ? string1[startpos - 1]
4511 : string2[startpos - size1 - 1])
4512 == '\n'))
c8499ba5
RS
4513 goto advance;
4514 }
4515
fa9a63c5 4516 /* If a fastmap is supplied, skip quickly over characters that
25fe55af
RS
4517 cannot be the start of a match. If the pattern can match the
4518 null string, however, we don't need to skip characters; we want
7814e705 4519 the first null string. */
fa9a63c5
RM
4520 if (fastmap && startpos < total_size && !bufp->can_be_null)
4521 {
66f0296e 4522 register re_char *d;
01618498 4523 register re_wchar_t buf_ch;
e934739e
RS
4524
4525 d = POS_ADDR_VSTRING (startpos);
4526
7814e705 4527 if (range > 0) /* Searching forwards. */
fa9a63c5 4528 {
fa9a63c5
RM
4529 register int lim = 0;
4530 int irange = range;
4531
25fe55af
RS
4532 if (startpos < size1 && startpos + range >= size1)
4533 lim = range - (size1 - startpos);
fa9a63c5 4534
25fe55af
RS
4535 /* Written out as an if-else to avoid testing `translate'
4536 inside the loop. */
28ae27ae
AS
4537 if (RE_TRANSLATE_P (translate))
4538 {
e934739e
RS
4539 if (multibyte)
4540 while (range > lim)
4541 {
4542 int buf_charlen;
4543
4544 buf_ch = STRING_CHAR_AND_LENGTH (d, range - lim,
4545 buf_charlen);
e934739e 4546 buf_ch = RE_TRANSLATE (translate, buf_ch);
bf216479 4547 if (fastmap[CHAR_LEADING_CODE (buf_ch)])
e934739e
RS
4548 break;
4549
4550 range -= buf_charlen;
4551 d += buf_charlen;
4552 }
4553 else
bf216479 4554 while (range > lim)
33c46939 4555 {
cf9c99bc
KH
4556 register re_wchar_t ch, translated;
4557
bf216479 4558 buf_ch = *d;
cf9c99bc
KH
4559 ch = RE_CHAR_TO_MULTIBYTE (buf_ch);
4560 translated = RE_TRANSLATE (translate, ch);
4561 if (translated != ch
4562 && (ch = RE_CHAR_TO_UNIBYTE (translated)) >= 0)
4563 buf_ch = ch;
6fdd04b0 4564 if (fastmap[buf_ch])
bf216479 4565 break;
33c46939
RS
4566 d++;
4567 range--;
4568 }
e934739e 4569 }
fa9a63c5 4570 else
6fdd04b0
KH
4571 {
4572 if (multibyte)
4573 while (range > lim)
4574 {
4575 int buf_charlen;
fa9a63c5 4576
6fdd04b0
KH
4577 buf_ch = STRING_CHAR_AND_LENGTH (d, range - lim,
4578 buf_charlen);
4579 if (fastmap[CHAR_LEADING_CODE (buf_ch)])
4580 break;
4581 range -= buf_charlen;
4582 d += buf_charlen;
4583 }
e934739e 4584 else
6fdd04b0 4585 while (range > lim && !fastmap[*d])
33c46939
RS
4586 {
4587 d++;
4588 range--;
4589 }
e934739e 4590 }
fa9a63c5
RM
4591 startpos += irange - range;
4592 }
7814e705 4593 else /* Searching backwards. */
fa9a63c5 4594 {
2d1675e4
SM
4595 int room = (startpos >= size1
4596 ? size2 + size1 - startpos
4597 : size1 - startpos);
ba5e343c
KH
4598 if (multibyte)
4599 {
6fdd04b0 4600 buf_ch = STRING_CHAR (d, room);
ba5e343c
KH
4601 buf_ch = TRANSLATE (buf_ch);
4602 if (! fastmap[CHAR_LEADING_CODE (buf_ch)])
4603 goto advance;
4604 }
4605 else
4606 {
cf9c99bc
KH
4607 register re_wchar_t ch, translated;
4608
4609 buf_ch = *d;
4610 ch = RE_CHAR_TO_MULTIBYTE (buf_ch);
4611 translated = TRANSLATE (ch);
4612 if (translated != ch
4613 && (ch = RE_CHAR_TO_UNIBYTE (translated)) >= 0)
4614 buf_ch = ch;
4615 if (! fastmap[TRANSLATE (buf_ch)])
ba5e343c
KH
4616 goto advance;
4617 }
fa9a63c5
RM
4618 }
4619 }
4620
4621 /* If can't match the null string, and that's all we have left, fail. */
4622 if (range >= 0 && startpos == total_size && fastmap
25fe55af 4623 && !bufp->can_be_null)
fa9a63c5
RM
4624 return -1;
4625
4626 val = re_match_2_internal (bufp, string1, size1, string2, size2,
4627 startpos, regs, stop);
fa9a63c5
RM
4628
4629 if (val >= 0)
4630 return startpos;
5e69f11e 4631
fa9a63c5
RM
4632 if (val == -2)
4633 return -2;
4634
4635 advance:
5e69f11e 4636 if (!range)
25fe55af 4637 break;
5e69f11e 4638 else if (range > 0)
25fe55af 4639 {
b18215fc
RS
4640 /* Update STARTPOS to the next character boundary. */
4641 if (multibyte)
4642 {
66f0296e
SM
4643 re_char *p = POS_ADDR_VSTRING (startpos);
4644 re_char *pend = STOP_ADDR_VSTRING (startpos);
b18215fc
RS
4645 int len = MULTIBYTE_FORM_LENGTH (p, pend - p);
4646
4647 range -= len;
4648 if (range < 0)
4649 break;
4650 startpos += len;
4651 }
4652 else
4653 {
b560c397
RS
4654 range--;
4655 startpos++;
4656 }
e318085a 4657 }
fa9a63c5 4658 else
25fe55af
RS
4659 {
4660 range++;
4661 startpos--;
b18215fc
RS
4662
4663 /* Update STARTPOS to the previous character boundary. */
4664 if (multibyte)
4665 {
70806df6
KH
4666 re_char *p = POS_ADDR_VSTRING (startpos) + 1;
4667 re_char *p0 = p;
4668 re_char *phead = HEAD_ADDR_VSTRING (startpos);
b18215fc
RS
4669
4670 /* Find the head of multibyte form. */
70806df6
KH
4671 PREV_CHAR_BOUNDARY (p, phead);
4672 range += p0 - 1 - p;
4673 if (range > 0)
4674 break;
b18215fc 4675
70806df6 4676 startpos -= p0 - 1 - p;
b18215fc 4677 }
25fe55af 4678 }
fa9a63c5
RM
4679 }
4680 return -1;
4681} /* re_search_2 */
c0f9ea08 4682WEAK_ALIAS (__re_search_2, re_search_2)
fa9a63c5
RM
4683\f
4684/* Declarations and macros for re_match_2. */
4685
2d1675e4
SM
4686static int bcmp_translate _RE_ARGS((re_char *s1, re_char *s2,
4687 register int len,
4688 RE_TRANSLATE_TYPE translate,
4689 const int multibyte));
fa9a63c5
RM
4690
4691/* This converts PTR, a pointer into one of the search strings `string1'
4692 and `string2' into an offset from the beginning of that string. */
4693#define POINTER_TO_OFFSET(ptr) \
4694 (FIRST_STRING_P (ptr) \
4695 ? ((regoff_t) ((ptr) - string1)) \
4696 : ((regoff_t) ((ptr) - string2 + size1)))
4697
fa9a63c5 4698/* Call before fetching a character with *d. This switches over to
419d1c74
SM
4699 string2 if necessary.
4700 Check re_match_2_internal for a discussion of why end_match_2 might
4701 not be within string2 (but be equal to end_match_1 instead). */
fa9a63c5 4702#define PREFETCH() \
25fe55af 4703 while (d == dend) \
fa9a63c5
RM
4704 { \
4705 /* End of string2 => fail. */ \
25fe55af
RS
4706 if (dend == end_match_2) \
4707 goto fail; \
4bb91c68 4708 /* End of string1 => advance to string2. */ \
25fe55af 4709 d = string2; \
fa9a63c5
RM
4710 dend = end_match_2; \
4711 }
4712
f1ad044f
SM
4713/* Call before fetching a char with *d if you already checked other limits.
4714 This is meant for use in lookahead operations like wordend, etc..
4715 where we might need to look at parts of the string that might be
4716 outside of the LIMITs (i.e past `stop'). */
4717#define PREFETCH_NOLIMIT() \
4718 if (d == end1) \
4719 { \
4720 d = string2; \
4721 dend = end_match_2; \
4722 } \
fa9a63c5
RM
4723
4724/* Test if at very beginning or at very end of the virtual concatenation
7814e705 4725 of `string1' and `string2'. If only one string, it's `string2'. */
fa9a63c5 4726#define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
5e69f11e 4727#define AT_STRINGS_END(d) ((d) == end2)
fa9a63c5
RM
4728
4729
4730/* Test if D points to a character which is word-constituent. We have
4731 two special cases to check for: if past the end of string1, look at
4732 the first character in string2; and if before the beginning of
4733 string2, look at the last character in string1. */
4734#define WORDCHAR_P(d) \
4735 (SYNTAX ((d) == end1 ? *string2 \
25fe55af 4736 : (d) == string2 - 1 ? *(end1 - 1) : *(d)) \
fa9a63c5
RM
4737 == Sword)
4738
9121ca40 4739/* Disabled due to a compiler bug -- see comment at case wordbound */
b18215fc
RS
4740
4741/* The comment at case wordbound is following one, but we don't use
4742 AT_WORD_BOUNDARY anymore to support multibyte form.
4743
4744 The DEC Alpha C compiler 3.x generates incorrect code for the
25fe55af 4745 test WORDCHAR_P (d - 1) != WORDCHAR_P (d) in the expansion of
7814e705 4746 AT_WORD_BOUNDARY, so this code is disabled. Expanding the
b18215fc
RS
4747 macro and introducing temporary variables works around the bug. */
4748
9121ca40 4749#if 0
fa9a63c5
RM
4750/* Test if the character before D and the one at D differ with respect
4751 to being word-constituent. */
4752#define AT_WORD_BOUNDARY(d) \
4753 (AT_STRINGS_BEG (d) || AT_STRINGS_END (d) \
4754 || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
9121ca40 4755#endif
fa9a63c5
RM
4756
4757/* Free everything we malloc. */
4758#ifdef MATCH_MAY_ALLOCATE
0b32bf0e
SM
4759# define FREE_VAR(var) if (var) { REGEX_FREE (var); var = NULL; } else
4760# define FREE_VARIABLES() \
fa9a63c5
RM
4761 do { \
4762 REGEX_FREE_STACK (fail_stack.stack); \
4763 FREE_VAR (regstart); \
4764 FREE_VAR (regend); \
fa9a63c5
RM
4765 FREE_VAR (best_regstart); \
4766 FREE_VAR (best_regend); \
fa9a63c5
RM
4767 } while (0)
4768#else
0b32bf0e 4769# define FREE_VARIABLES() ((void)0) /* Do nothing! But inhibit gcc warning. */
fa9a63c5
RM
4770#endif /* not MATCH_MAY_ALLOCATE */
4771
505bde11
SM
4772\f
4773/* Optimization routines. */
4774
4e8a9132
SM
4775/* If the operation is a match against one or more chars,
4776 return a pointer to the next operation, else return NULL. */
01618498 4777static re_char *
4e8a9132 4778skip_one_char (p)
01618498 4779 re_char *p;
4e8a9132
SM
4780{
4781 switch (SWITCH_ENUM_CAST (*p++))
4782 {
4783 case anychar:
4784 break;
177c0ea7 4785
4e8a9132
SM
4786 case exactn:
4787 p += *p + 1;
4788 break;
4789
4790 case charset_not:
4791 case charset:
4792 if (CHARSET_RANGE_TABLE_EXISTS_P (p - 1))
4793 {
4794 int mcnt;
4795 p = CHARSET_RANGE_TABLE (p - 1);
4796 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4797 p = CHARSET_RANGE_TABLE_END (p, mcnt);
4798 }
4799 else
4800 p += 1 + CHARSET_BITMAP_SIZE (p - 1);
4801 break;
177c0ea7 4802
4e8a9132
SM
4803 case syntaxspec:
4804 case notsyntaxspec:
1fb352e0 4805#ifdef emacs
4e8a9132
SM
4806 case categoryspec:
4807 case notcategoryspec:
4808#endif /* emacs */
4809 p++;
4810 break;
4811
4812 default:
4813 p = NULL;
4814 }
4815 return p;
4816}
4817
4818
505bde11 4819/* Jump over non-matching operations. */
839966f3 4820static re_char *
4e8a9132 4821skip_noops (p, pend)
839966f3 4822 re_char *p, *pend;
505bde11
SM
4823{
4824 int mcnt;
4825 while (p < pend)
4826 {
4827 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p))
4828 {
4829 case start_memory:
505bde11
SM
4830 case stop_memory:
4831 p += 2; break;
4832 case no_op:
4833 p += 1; break;
4834 case jump:
4835 p += 1;
4836 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4837 p += mcnt;
4838 break;
4839 default:
4840 return p;
4841 }
4842 }
4843 assert (p == pend);
4844 return p;
4845}
4846
4847/* Non-zero if "p1 matches something" implies "p2 fails". */
4848static int
4849mutually_exclusive_p (bufp, p1, p2)
4850 struct re_pattern_buffer *bufp;
839966f3 4851 re_char *p1, *p2;
505bde11 4852{
4e8a9132 4853 re_opcode_t op2;
2d1675e4 4854 const boolean multibyte = RE_MULTIBYTE_P (bufp);
505bde11
SM
4855 unsigned char *pend = bufp->buffer + bufp->used;
4856
4e8a9132 4857 assert (p1 >= bufp->buffer && p1 < pend
505bde11
SM
4858 && p2 >= bufp->buffer && p2 <= pend);
4859
4860 /* Skip over open/close-group commands.
4861 If what follows this loop is a ...+ construct,
4862 look at what begins its body, since we will have to
4863 match at least one of that. */
4e8a9132
SM
4864 p2 = skip_noops (p2, pend);
4865 /* The same skip can be done for p1, except that this function
4866 is only used in the case where p1 is a simple match operator. */
4867 /* p1 = skip_noops (p1, pend); */
4868
4869 assert (p1 >= bufp->buffer && p1 < pend
4870 && p2 >= bufp->buffer && p2 <= pend);
4871
4872 op2 = p2 == pend ? succeed : *p2;
4873
4874 switch (SWITCH_ENUM_CAST (op2))
505bde11 4875 {
4e8a9132
SM
4876 case succeed:
4877 case endbuf:
4878 /* If we're at the end of the pattern, we can change. */
4879 if (skip_one_char (p1))
505bde11 4880 {
505bde11
SM
4881 DEBUG_PRINT1 (" End of pattern: fast loop.\n");
4882 return 1;
505bde11 4883 }
4e8a9132 4884 break;
177c0ea7 4885
4e8a9132 4886 case endline:
4e8a9132
SM
4887 case exactn:
4888 {
01618498 4889 register re_wchar_t c
4e8a9132 4890 = (re_opcode_t) *p2 == endline ? '\n'
cf9c99bc 4891 : RE_STRING_CHAR (p2 + 2, pend - p2 - 2, multibyte);
505bde11 4892
4e8a9132
SM
4893 if ((re_opcode_t) *p1 == exactn)
4894 {
cf9c99bc 4895 if (c != RE_STRING_CHAR (p1 + 2, pend - p1 - 2, multibyte))
4e8a9132
SM
4896 {
4897 DEBUG_PRINT3 (" '%c' != '%c' => fast loop.\n", c, p1[2]);
4898 return 1;
4899 }
4900 }
505bde11 4901
4e8a9132
SM
4902 else if ((re_opcode_t) *p1 == charset
4903 || (re_opcode_t) *p1 == charset_not)
4904 {
4905 int not = (re_opcode_t) *p1 == charset_not;
505bde11 4906
4e8a9132
SM
4907 /* Test if C is listed in charset (or charset_not)
4908 at `p1'. */
6fdd04b0 4909 if (! multibyte || IS_REAL_ASCII (c))
4e8a9132
SM
4910 {
4911 if (c < CHARSET_BITMAP_SIZE (p1) * BYTEWIDTH
4912 && p1[2 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
4913 not = !not;
4914 }
4915 else if (CHARSET_RANGE_TABLE_EXISTS_P (p1))
4916 CHARSET_LOOKUP_RANGE_TABLE (not, c, p1);
505bde11 4917
4e8a9132
SM
4918 /* `not' is equal to 1 if c would match, which means
4919 that we can't change to pop_failure_jump. */
4920 if (!not)
4921 {
4922 DEBUG_PRINT1 (" No match => fast loop.\n");
4923 return 1;
4924 }
4925 }
4926 else if ((re_opcode_t) *p1 == anychar
4927 && c == '\n')
4928 {
4929 DEBUG_PRINT1 (" . != \\n => fast loop.\n");
4930 return 1;
4931 }
4932 }
4933 break;
505bde11 4934
4e8a9132 4935 case charset:
4e8a9132
SM
4936 {
4937 if ((re_opcode_t) *p1 == exactn)
4938 /* Reuse the code above. */
4939 return mutually_exclusive_p (bufp, p2, p1);
505bde11 4940
505bde11
SM
4941 /* It is hard to list up all the character in charset
4942 P2 if it includes multibyte character. Give up in
4943 such case. */
4944 else if (!multibyte || !CHARSET_RANGE_TABLE_EXISTS_P (p2))
4945 {
4946 /* Now, we are sure that P2 has no range table.
4947 So, for the size of bitmap in P2, `p2[1]' is
7814e705 4948 enough. But P1 may have range table, so the
505bde11
SM
4949 size of bitmap table of P1 is extracted by
4950 using macro `CHARSET_BITMAP_SIZE'.
4951
6fdd04b0
KH
4952 In a multibyte case, we know that all the character
4953 listed in P2 is ASCII. In a unibyte case, P1 has only a
4954 bitmap table. So, in both cases, it is enough to test
4955 only the bitmap table of P1. */
505bde11 4956
411e4203 4957 if ((re_opcode_t) *p1 == charset)
505bde11
SM
4958 {
4959 int idx;
4960 /* We win if the charset inside the loop
4961 has no overlap with the one after the loop. */
4962 for (idx = 0;
4963 (idx < (int) p2[1]
4964 && idx < CHARSET_BITMAP_SIZE (p1));
4965 idx++)
4966 if ((p2[2 + idx] & p1[2 + idx]) != 0)
4967 break;
4968
4969 if (idx == p2[1]
4970 || idx == CHARSET_BITMAP_SIZE (p1))
4971 {
4972 DEBUG_PRINT1 (" No match => fast loop.\n");
4973 return 1;
4974 }
4975 }
411e4203 4976 else if ((re_opcode_t) *p1 == charset_not)
505bde11
SM
4977 {
4978 int idx;
4979 /* We win if the charset_not inside the loop lists
7814e705 4980 every character listed in the charset after. */
505bde11
SM
4981 for (idx = 0; idx < (int) p2[1]; idx++)
4982 if (! (p2[2 + idx] == 0
4983 || (idx < CHARSET_BITMAP_SIZE (p1)
4984 && ((p2[2 + idx] & ~ p1[2 + idx]) == 0))))
4985 break;
4986
4e8a9132
SM
4987 if (idx == p2[1])
4988 {
4989 DEBUG_PRINT1 (" No match => fast loop.\n");
4990 return 1;
4991 }
4992 }
4993 }
4994 }
609b757a 4995 break;
177c0ea7 4996
411e4203
SM
4997 case charset_not:
4998 switch (SWITCH_ENUM_CAST (*p1))
4999 {
5000 case exactn:
5001 case charset:
5002 /* Reuse the code above. */
5003 return mutually_exclusive_p (bufp, p2, p1);
5004 case charset_not:
5005 /* When we have two charset_not, it's very unlikely that
5006 they don't overlap. The union of the two sets of excluded
5007 chars should cover all possible chars, which, as a matter of
5008 fact, is virtually impossible in multibyte buffers. */
36595814 5009 break;
411e4203
SM
5010 }
5011 break;
5012
4e8a9132 5013 case wordend:
669fa600
SM
5014 return ((re_opcode_t) *p1 == syntaxspec && p1[1] == Sword);
5015 case symend:
4e8a9132 5016 return ((re_opcode_t) *p1 == syntaxspec
669fa600
SM
5017 && (p1[1] == Ssymbol || p1[1] == Sword));
5018 case notsyntaxspec:
5019 return ((re_opcode_t) *p1 == syntaxspec && p1[1] == p2[1]);
4e8a9132
SM
5020
5021 case wordbeg:
669fa600
SM
5022 return ((re_opcode_t) *p1 == notsyntaxspec && p1[1] == Sword);
5023 case symbeg:
4e8a9132 5024 return ((re_opcode_t) *p1 == notsyntaxspec
669fa600
SM
5025 && (p1[1] == Ssymbol || p1[1] == Sword));
5026 case syntaxspec:
5027 return ((re_opcode_t) *p1 == notsyntaxspec && p1[1] == p2[1]);
4e8a9132
SM
5028
5029 case wordbound:
5030 return (((re_opcode_t) *p1 == notsyntaxspec
5031 || (re_opcode_t) *p1 == syntaxspec)
5032 && p1[1] == Sword);
5033
1fb352e0 5034#ifdef emacs
4e8a9132
SM
5035 case categoryspec:
5036 return ((re_opcode_t) *p1 == notcategoryspec && p1[1] == p2[1]);
5037 case notcategoryspec:
5038 return ((re_opcode_t) *p1 == categoryspec && p1[1] == p2[1]);
5039#endif /* emacs */
5040
5041 default:
5042 ;
505bde11
SM
5043 }
5044
5045 /* Safe default. */
5046 return 0;
5047}
5048
fa9a63c5
RM
5049\f
5050/* Matching routines. */
5051
25fe55af 5052#ifndef emacs /* Emacs never uses this. */
fa9a63c5
RM
5053/* re_match is like re_match_2 except it takes only a single string. */
5054
5055int
5056re_match (bufp, string, size, pos, regs)
5057 struct re_pattern_buffer *bufp;
5058 const char *string;
5059 int size, pos;
5060 struct re_registers *regs;
5061{
4bb91c68 5062 int result = re_match_2_internal (bufp, NULL, 0, (re_char*) string, size,
fa9a63c5 5063 pos, regs, size);
fa9a63c5
RM
5064 return result;
5065}
c0f9ea08 5066WEAK_ALIAS (__re_match, re_match)
fa9a63c5
RM
5067#endif /* not emacs */
5068
b18215fc
RS
5069#ifdef emacs
5070/* In Emacs, this is the string or buffer in which we
7814e705 5071 are matching. It is used for looking up syntax properties. */
b18215fc
RS
5072Lisp_Object re_match_object;
5073#endif
fa9a63c5
RM
5074
5075/* re_match_2 matches the compiled pattern in BUFP against the
5076 the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
5077 and SIZE2, respectively). We start matching at POS, and stop
5078 matching at STOP.
5e69f11e 5079
fa9a63c5 5080 If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
7814e705 5081 store offsets for the substring each group matched in REGS. See the
fa9a63c5
RM
5082 documentation for exactly how many groups we fill.
5083
5084 We return -1 if no match, -2 if an internal error (such as the
7814e705 5085 failure stack overflowing). Otherwise, we return the length of the
fa9a63c5
RM
5086 matched substring. */
5087
5088int
5089re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
5090 struct re_pattern_buffer *bufp;
5091 const char *string1, *string2;
5092 int size1, size2;
5093 int pos;
5094 struct re_registers *regs;
5095 int stop;
5096{
b18215fc 5097 int result;
25fe55af 5098
b18215fc 5099#ifdef emacs
cc9b4df2
KH
5100 int charpos;
5101 gl_state.object = re_match_object;
99633e97 5102 charpos = SYNTAX_TABLE_BYTE_TO_CHAR (POS_AS_IN_BUFFER (pos));
cc9b4df2 5103 SETUP_SYNTAX_TABLE_FOR_OBJECT (re_match_object, charpos, 1);
b18215fc
RS
5104#endif
5105
4bb91c68
SM
5106 result = re_match_2_internal (bufp, (re_char*) string1, size1,
5107 (re_char*) string2, size2,
cc9b4df2 5108 pos, regs, stop);
fa9a63c5
RM
5109 return result;
5110}
c0f9ea08 5111WEAK_ALIAS (__re_match_2, re_match_2)
fa9a63c5 5112
bf216479 5113
fa9a63c5 5114/* This is a separate function so that we can force an alloca cleanup
7814e705 5115 afterwards. */
fa9a63c5
RM
5116static int
5117re_match_2_internal (bufp, string1, size1, string2, size2, pos, regs, stop)
5118 struct re_pattern_buffer *bufp;
66f0296e 5119 re_char *string1, *string2;
fa9a63c5
RM
5120 int size1, size2;
5121 int pos;
5122 struct re_registers *regs;
5123 int stop;
5124{
5125 /* General temporaries. */
5126 int mcnt;
01618498 5127 size_t reg;
66f0296e 5128 boolean not;
fa9a63c5
RM
5129
5130 /* Just past the end of the corresponding string. */
66f0296e 5131 re_char *end1, *end2;
fa9a63c5
RM
5132
5133 /* Pointers into string1 and string2, just past the last characters in
7814e705 5134 each to consider matching. */
66f0296e 5135 re_char *end_match_1, *end_match_2;
fa9a63c5
RM
5136
5137 /* Where we are in the data, and the end of the current string. */
66f0296e 5138 re_char *d, *dend;
5e69f11e 5139
99633e97
SM
5140 /* Used sometimes to remember where we were before starting matching
5141 an operator so that we can go back in case of failure. This "atomic"
5142 behavior of matching opcodes is indispensable to the correctness
5143 of the on_failure_keep_string_jump optimization. */
5144 re_char *dfail;
5145
fa9a63c5 5146 /* Where we are in the pattern, and the end of the pattern. */
01618498
SM
5147 re_char *p = bufp->buffer;
5148 re_char *pend = p + bufp->used;
fa9a63c5 5149
25fe55af 5150 /* We use this to map every character in the string. */
6676cb1c 5151 RE_TRANSLATE_TYPE translate = bufp->translate;
fa9a63c5 5152
cf9c99bc 5153 /* Nonzero if BUFP is setup from a multibyte regex. */
2d1675e4 5154 const boolean multibyte = RE_MULTIBYTE_P (bufp);
b18215fc 5155
cf9c99bc
KH
5156 /* Nonzero if STRING1/STRING2 are multibyte. */
5157 const boolean target_multibyte = RE_TARGET_MULTIBYTE_P (bufp);
5158
fa9a63c5
RM
5159 /* Failure point stack. Each place that can handle a failure further
5160 down the line pushes a failure point on this stack. It consists of
505bde11 5161 regstart, and regend for all registers corresponding to
fa9a63c5
RM
5162 the subexpressions we're currently inside, plus the number of such
5163 registers, and, finally, two char *'s. The first char * is where
5164 to resume scanning the pattern; the second one is where to resume
7814e705
JB
5165 scanning the strings. */
5166#ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
fa9a63c5
RM
5167 fail_stack_type fail_stack;
5168#endif
5169#ifdef DEBUG
fa9a63c5
RM
5170 unsigned nfailure_points_pushed = 0, nfailure_points_popped = 0;
5171#endif
5172
0b32bf0e 5173#if defined REL_ALLOC && defined REGEX_MALLOC
fa9a63c5
RM
5174 /* This holds the pointer to the failure stack, when
5175 it is allocated relocatably. */
5176 fail_stack_elt_t *failure_stack_ptr;
99633e97 5177#endif
fa9a63c5
RM
5178
5179 /* We fill all the registers internally, independent of what we
7814e705 5180 return, for use in backreferences. The number here includes
fa9a63c5 5181 an element for register zero. */
4bb91c68 5182 size_t num_regs = bufp->re_nsub + 1;
5e69f11e 5183
fa9a63c5
RM
5184 /* Information on the contents of registers. These are pointers into
5185 the input strings; they record just what was matched (on this
5186 attempt) by a subexpression part of the pattern, that is, the
5187 regnum-th regstart pointer points to where in the pattern we began
5188 matching and the regnum-th regend points to right after where we
5189 stopped matching the regnum-th subexpression. (The zeroth register
5190 keeps track of what the whole pattern matches.) */
5191#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
66f0296e 5192 re_char **regstart, **regend;
fa9a63c5
RM
5193#endif
5194
fa9a63c5 5195 /* The following record the register info as found in the above
5e69f11e 5196 variables when we find a match better than any we've seen before.
fa9a63c5
RM
5197 This happens as we backtrack through the failure points, which in
5198 turn happens only if we have not yet matched the entire string. */
5199 unsigned best_regs_set = false;
5200#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
66f0296e 5201 re_char **best_regstart, **best_regend;
fa9a63c5 5202#endif
5e69f11e 5203
fa9a63c5
RM
5204 /* Logically, this is `best_regend[0]'. But we don't want to have to
5205 allocate space for that if we're not allocating space for anything
7814e705 5206 else (see below). Also, we never need info about register 0 for
fa9a63c5
RM
5207 any of the other register vectors, and it seems rather a kludge to
5208 treat `best_regend' differently than the rest. So we keep track of
5209 the end of the best match so far in a separate variable. We
5210 initialize this to NULL so that when we backtrack the first time
5211 and need to test it, it's not garbage. */
66f0296e 5212 re_char *match_end = NULL;
fa9a63c5 5213
fa9a63c5
RM
5214#ifdef DEBUG
5215 /* Counts the total number of registers pushed. */
5e69f11e 5216 unsigned num_regs_pushed = 0;
fa9a63c5
RM
5217#endif
5218
5219 DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
5e69f11e 5220
fa9a63c5 5221 INIT_FAIL_STACK ();
5e69f11e 5222
fa9a63c5
RM
5223#ifdef MATCH_MAY_ALLOCATE
5224 /* Do not bother to initialize all the register variables if there are
5225 no groups in the pattern, as it takes a fair amount of time. If
5226 there are groups, we include space for register 0 (the whole
5227 pattern), even though we never use it, since it simplifies the
5228 array indexing. We should fix this. */
5229 if (bufp->re_nsub)
5230 {
66f0296e
SM
5231 regstart = REGEX_TALLOC (num_regs, re_char *);
5232 regend = REGEX_TALLOC (num_regs, re_char *);
5233 best_regstart = REGEX_TALLOC (num_regs, re_char *);
5234 best_regend = REGEX_TALLOC (num_regs, re_char *);
fa9a63c5 5235
505bde11 5236 if (!(regstart && regend && best_regstart && best_regend))
25fe55af
RS
5237 {
5238 FREE_VARIABLES ();
5239 return -2;
5240 }
fa9a63c5
RM
5241 }
5242 else
5243 {
5244 /* We must initialize all our variables to NULL, so that
25fe55af 5245 `FREE_VARIABLES' doesn't try to free them. */
505bde11 5246 regstart = regend = best_regstart = best_regend = NULL;
fa9a63c5
RM
5247 }
5248#endif /* MATCH_MAY_ALLOCATE */
5249
5250 /* The starting position is bogus. */
5251 if (pos < 0 || pos > size1 + size2)
5252 {
5253 FREE_VARIABLES ();
5254 return -1;
5255 }
5e69f11e 5256
fa9a63c5
RM
5257 /* Initialize subexpression text positions to -1 to mark ones that no
5258 start_memory/stop_memory has been seen for. Also initialize the
5259 register information struct. */
01618498
SM
5260 for (reg = 1; reg < num_regs; reg++)
5261 regstart[reg] = regend[reg] = NULL;
99633e97 5262
fa9a63c5 5263 /* We move `string1' into `string2' if the latter's empty -- but not if
7814e705 5264 `string1' is null. */
fa9a63c5
RM
5265 if (size2 == 0 && string1 != NULL)
5266 {
5267 string2 = string1;
5268 size2 = size1;
5269 string1 = 0;
5270 size1 = 0;
5271 }
5272 end1 = string1 + size1;
5273 end2 = string2 + size2;
5274
5e69f11e 5275 /* `p' scans through the pattern as `d' scans through the data.
fa9a63c5
RM
5276 `dend' is the end of the input string that `d' points within. `d'
5277 is advanced into the following input string whenever necessary, but
5278 this happens before fetching; therefore, at the beginning of the
5279 loop, `d' can be pointing at the end of a string, but it cannot
5280 equal `string2'. */
419d1c74 5281 if (pos >= size1)
fa9a63c5 5282 {
419d1c74
SM
5283 /* Only match within string2. */
5284 d = string2 + pos - size1;
5285 dend = end_match_2 = string2 + stop - size1;
5286 end_match_1 = end1; /* Just to give it a value. */
fa9a63c5
RM
5287 }
5288 else
5289 {
f1ad044f 5290 if (stop < size1)
419d1c74
SM
5291 {
5292 /* Only match within string1. */
5293 end_match_1 = string1 + stop;
5294 /* BEWARE!
5295 When we reach end_match_1, PREFETCH normally switches to string2.
5296 But in the present case, this means that just doing a PREFETCH
5297 makes us jump from `stop' to `gap' within the string.
5298 What we really want here is for the search to stop as
5299 soon as we hit end_match_1. That's why we set end_match_2
5300 to end_match_1 (since PREFETCH fails as soon as we hit
5301 end_match_2). */
5302 end_match_2 = end_match_1;
5303 }
5304 else
f1ad044f
SM
5305 { /* It's important to use this code when stop == size so that
5306 moving `d' from end1 to string2 will not prevent the d == dend
5307 check from catching the end of string. */
419d1c74
SM
5308 end_match_1 = end1;
5309 end_match_2 = string2 + stop - size1;
5310 }
5311 d = string1 + pos;
5312 dend = end_match_1;
fa9a63c5
RM
5313 }
5314
5315 DEBUG_PRINT1 ("The compiled pattern is: ");
5316 DEBUG_PRINT_COMPILED_PATTERN (bufp, p, pend);
5317 DEBUG_PRINT1 ("The string to match is: `");
5318 DEBUG_PRINT_DOUBLE_STRING (d, string1, size1, string2, size2);
5319 DEBUG_PRINT1 ("'\n");
5e69f11e 5320
7814e705 5321 /* This loops over pattern commands. It exits by returning from the
fa9a63c5
RM
5322 function if the match is complete, or it drops through if the match
5323 fails at this starting point in the input data. */
5324 for (;;)
5325 {
505bde11 5326 DEBUG_PRINT2 ("\n%p: ", p);
fa9a63c5
RM
5327
5328 if (p == pend)
5329 { /* End of pattern means we might have succeeded. */
25fe55af 5330 DEBUG_PRINT1 ("end of pattern ... ");
5e69f11e 5331
fa9a63c5 5332 /* If we haven't matched the entire string, and we want the
25fe55af
RS
5333 longest match, try backtracking. */
5334 if (d != end_match_2)
fa9a63c5
RM
5335 {
5336 /* 1 if this match ends in the same string (string1 or string2)
5337 as the best previous match. */
5e69f11e 5338 boolean same_str_p = (FIRST_STRING_P (match_end)
99633e97 5339 == FIRST_STRING_P (d));
fa9a63c5
RM
5340 /* 1 if this match is the best seen so far. */
5341 boolean best_match_p;
5342
5343 /* AIX compiler got confused when this was combined
7814e705 5344 with the previous declaration. */
fa9a63c5
RM
5345 if (same_str_p)
5346 best_match_p = d > match_end;
5347 else
99633e97 5348 best_match_p = !FIRST_STRING_P (d);
fa9a63c5 5349
25fe55af
RS
5350 DEBUG_PRINT1 ("backtracking.\n");
5351
5352 if (!FAIL_STACK_EMPTY ())
5353 { /* More failure points to try. */
5354
5355 /* If exceeds best match so far, save it. */
5356 if (!best_regs_set || best_match_p)
5357 {
5358 best_regs_set = true;
5359 match_end = d;
5360
5361 DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
5362
01618498 5363 for (reg = 1; reg < num_regs; reg++)
25fe55af 5364 {
01618498
SM
5365 best_regstart[reg] = regstart[reg];
5366 best_regend[reg] = regend[reg];
25fe55af
RS
5367 }
5368 }
5369 goto fail;
5370 }
5371
5372 /* If no failure points, don't restore garbage. And if
5373 last match is real best match, don't restore second
5374 best one. */
5375 else if (best_regs_set && !best_match_p)
5376 {
5377 restore_best_regs:
5378 /* Restore best match. It may happen that `dend ==
5379 end_match_1' while the restored d is in string2.
5380 For example, the pattern `x.*y.*z' against the
5381 strings `x-' and `y-z-', if the two strings are
7814e705 5382 not consecutive in memory. */
25fe55af
RS
5383 DEBUG_PRINT1 ("Restoring best registers.\n");
5384
5385 d = match_end;
5386 dend = ((d >= string1 && d <= end1)
5387 ? end_match_1 : end_match_2);
fa9a63c5 5388
01618498 5389 for (reg = 1; reg < num_regs; reg++)
fa9a63c5 5390 {
01618498
SM
5391 regstart[reg] = best_regstart[reg];
5392 regend[reg] = best_regend[reg];
fa9a63c5 5393 }
25fe55af
RS
5394 }
5395 } /* d != end_match_2 */
fa9a63c5
RM
5396
5397 succeed_label:
25fe55af 5398 DEBUG_PRINT1 ("Accepting match.\n");
fa9a63c5 5399
25fe55af
RS
5400 /* If caller wants register contents data back, do it. */
5401 if (regs && !bufp->no_sub)
fa9a63c5 5402 {
25fe55af
RS
5403 /* Have the register data arrays been allocated? */
5404 if (bufp->regs_allocated == REGS_UNALLOCATED)
7814e705 5405 { /* No. So allocate them with malloc. We need one
25fe55af
RS
5406 extra element beyond `num_regs' for the `-1' marker
5407 GNU code uses. */
5408 regs->num_regs = MAX (RE_NREGS, num_regs + 1);
5409 regs->start = TALLOC (regs->num_regs, regoff_t);
5410 regs->end = TALLOC (regs->num_regs, regoff_t);
5411 if (regs->start == NULL || regs->end == NULL)
fa9a63c5
RM
5412 {
5413 FREE_VARIABLES ();
5414 return -2;
5415 }
25fe55af
RS
5416 bufp->regs_allocated = REGS_REALLOCATE;
5417 }
5418 else if (bufp->regs_allocated == REGS_REALLOCATE)
5419 { /* Yes. If we need more elements than were already
5420 allocated, reallocate them. If we need fewer, just
5421 leave it alone. */
5422 if (regs->num_regs < num_regs + 1)
5423 {
5424 regs->num_regs = num_regs + 1;
5425 RETALLOC (regs->start, regs->num_regs, regoff_t);
5426 RETALLOC (regs->end, regs->num_regs, regoff_t);
5427 if (regs->start == NULL || regs->end == NULL)
fa9a63c5
RM
5428 {
5429 FREE_VARIABLES ();
5430 return -2;
5431 }
25fe55af
RS
5432 }
5433 }
5434 else
fa9a63c5
RM
5435 {
5436 /* These braces fend off a "empty body in an else-statement"
7814e705 5437 warning under GCC when assert expands to nothing. */
fa9a63c5
RM
5438 assert (bufp->regs_allocated == REGS_FIXED);
5439 }
5440
25fe55af
RS
5441 /* Convert the pointer data in `regstart' and `regend' to
5442 indices. Register zero has to be set differently,
5443 since we haven't kept track of any info for it. */
5444 if (regs->num_regs > 0)
5445 {
5446 regs->start[0] = pos;
99633e97 5447 regs->end[0] = POINTER_TO_OFFSET (d);
25fe55af 5448 }
5e69f11e 5449
25fe55af
RS
5450 /* Go through the first `min (num_regs, regs->num_regs)'
5451 registers, since that is all we initialized. */
01618498 5452 for (reg = 1; reg < MIN (num_regs, regs->num_regs); reg++)
fa9a63c5 5453 {
01618498
SM
5454 if (REG_UNSET (regstart[reg]) || REG_UNSET (regend[reg]))
5455 regs->start[reg] = regs->end[reg] = -1;
25fe55af
RS
5456 else
5457 {
01618498
SM
5458 regs->start[reg]
5459 = (regoff_t) POINTER_TO_OFFSET (regstart[reg]);
5460 regs->end[reg]
5461 = (regoff_t) POINTER_TO_OFFSET (regend[reg]);
25fe55af 5462 }
fa9a63c5 5463 }
5e69f11e 5464
25fe55af
RS
5465 /* If the regs structure we return has more elements than
5466 were in the pattern, set the extra elements to -1. If
5467 we (re)allocated the registers, this is the case,
5468 because we always allocate enough to have at least one
7814e705 5469 -1 at the end. */
01618498
SM
5470 for (reg = num_regs; reg < regs->num_regs; reg++)
5471 regs->start[reg] = regs->end[reg] = -1;
fa9a63c5
RM
5472 } /* regs && !bufp->no_sub */
5473
25fe55af
RS
5474 DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
5475 nfailure_points_pushed, nfailure_points_popped,
5476 nfailure_points_pushed - nfailure_points_popped);
5477 DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed);
fa9a63c5 5478
99633e97 5479 mcnt = POINTER_TO_OFFSET (d) - pos;
fa9a63c5 5480
25fe55af 5481 DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt);
fa9a63c5 5482
25fe55af
RS
5483 FREE_VARIABLES ();
5484 return mcnt;
5485 }
fa9a63c5 5486
7814e705 5487 /* Otherwise match next pattern command. */
fa9a63c5
RM
5488 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
5489 {
25fe55af
RS
5490 /* Ignore these. Used to ignore the n of succeed_n's which
5491 currently have n == 0. */
5492 case no_op:
5493 DEBUG_PRINT1 ("EXECUTING no_op.\n");
5494 break;
fa9a63c5
RM
5495
5496 case succeed:
25fe55af 5497 DEBUG_PRINT1 ("EXECUTING succeed.\n");
fa9a63c5
RM
5498 goto succeed_label;
5499
7814e705 5500 /* Match the next n pattern characters exactly. The following
25fe55af 5501 byte in the pattern defines n, and the n bytes after that
7814e705 5502 are the characters to match. */
fa9a63c5
RM
5503 case exactn:
5504 mcnt = *p++;
25fe55af 5505 DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt);
fa9a63c5 5506
99633e97
SM
5507 /* Remember the start point to rollback upon failure. */
5508 dfail = d;
5509
6fdd04b0 5510#ifndef emacs
25fe55af
RS
5511 /* This is written out as an if-else so we don't waste time
5512 testing `translate' inside the loop. */
28703c16 5513 if (RE_TRANSLATE_P (translate))
6fdd04b0
KH
5514 do
5515 {
5516 PREFETCH ();
5517 if (RE_TRANSLATE (translate, *d) != *p++)
e934739e 5518 {
6fdd04b0
KH
5519 d = dfail;
5520 goto fail;
e934739e 5521 }
6fdd04b0
KH
5522 d++;
5523 }
5524 while (--mcnt);
fa9a63c5 5525 else
6fdd04b0
KH
5526 do
5527 {
5528 PREFETCH ();
5529 if (*d++ != *p++)
bf216479 5530 {
6fdd04b0
KH
5531 d = dfail;
5532 goto fail;
bf216479 5533 }
6fdd04b0
KH
5534 }
5535 while (--mcnt);
5536#else /* emacs */
5537 /* The cost of testing `translate' is comparatively small. */
cf9c99bc 5538 if (target_multibyte)
6fdd04b0
KH
5539 do
5540 {
5541 int pat_charlen, buf_charlen;
cf9c99bc 5542 int pat_ch, buf_ch;
e934739e 5543
6fdd04b0 5544 PREFETCH ();
cf9c99bc
KH
5545 if (multibyte)
5546 pat_ch = STRING_CHAR_AND_LENGTH (p, pend - p, pat_charlen);
5547 else
5548 {
5549 pat_ch = RE_CHAR_TO_MULTIBYTE (*p);
5550 pat_charlen = 1;
5551 }
6fdd04b0 5552 buf_ch = STRING_CHAR_AND_LENGTH (d, dend - d, buf_charlen);
e934739e 5553
6fdd04b0 5554 if (TRANSLATE (buf_ch) != pat_ch)
e934739e 5555 {
6fdd04b0
KH
5556 d = dfail;
5557 goto fail;
e934739e 5558 }
bf216479 5559
6fdd04b0
KH
5560 p += pat_charlen;
5561 d += buf_charlen;
5562 mcnt -= pat_charlen;
5563 }
5564 while (mcnt > 0);
fa9a63c5 5565 else
6fdd04b0
KH
5566 do
5567 {
cf9c99bc
KH
5568 int pat_charlen, buf_charlen;
5569 int pat_ch, buf_ch;
bf216479 5570
6fdd04b0 5571 PREFETCH ();
cf9c99bc
KH
5572 if (multibyte)
5573 {
5574 pat_ch = STRING_CHAR_AND_LENGTH (p, pend - p, pat_charlen);
5575 if (CHAR_BYTE8_P (pat_ch))
5576 pat_ch = CHAR_TO_BYTE8 (pat_ch);
5577 else
5578 pat_ch = RE_CHAR_TO_UNIBYTE (pat_ch);
5579 }
5580 else
5581 {
5582 pat_ch = *p;
5583 pat_charlen = 1;
5584 }
5585 buf_ch = RE_CHAR_TO_MULTIBYTE (*d);
5586 if (! CHAR_BYTE8_P (buf_ch))
5587 {
5588 buf_ch = TRANSLATE (buf_ch);
5589 buf_ch = RE_CHAR_TO_UNIBYTE (buf_ch);
5590 if (buf_ch < 0)
5591 buf_ch = *d;
5592 }
0e2501ed
AS
5593 else
5594 buf_ch = *d;
cf9c99bc 5595 if (buf_ch != pat_ch)
6fdd04b0
KH
5596 {
5597 d = dfail;
5598 goto fail;
bf216479 5599 }
cf9c99bc
KH
5600 p += pat_charlen;
5601 d++;
6fdd04b0
KH
5602 }
5603 while (--mcnt);
5604#endif
25fe55af 5605 break;
fa9a63c5
RM
5606
5607
25fe55af 5608 /* Match any character except possibly a newline or a null. */
fa9a63c5 5609 case anychar:
e934739e
RS
5610 {
5611 int buf_charlen;
01618498 5612 re_wchar_t buf_ch;
fa9a63c5 5613
e934739e 5614 DEBUG_PRINT1 ("EXECUTING anychar.\n");
fa9a63c5 5615
e934739e 5616 PREFETCH ();
cf9c99bc
KH
5617 buf_ch = RE_STRING_CHAR_AND_LENGTH (d, dend - d, buf_charlen,
5618 target_multibyte);
e934739e
RS
5619 buf_ch = TRANSLATE (buf_ch);
5620
5621 if ((!(bufp->syntax & RE_DOT_NEWLINE)
5622 && buf_ch == '\n')
5623 || ((bufp->syntax & RE_DOT_NOT_NULL)
5624 && buf_ch == '\000'))
5625 goto fail;
5626
e934739e
RS
5627 DEBUG_PRINT2 (" Matched `%d'.\n", *d);
5628 d += buf_charlen;
5629 }
fa9a63c5
RM
5630 break;
5631
5632
5633 case charset:
5634 case charset_not:
5635 {
b18215fc 5636 register unsigned int c;
fa9a63c5 5637 boolean not = (re_opcode_t) *(p - 1) == charset_not;
b18215fc
RS
5638 int len;
5639
5640 /* Start of actual range_table, or end of bitmap if there is no
5641 range table. */
01618498 5642 re_char *range_table;
b18215fc 5643
96cc36cc 5644 /* Nonzero if there is a range table. */
b18215fc
RS
5645 int range_table_exists;
5646
96cc36cc
RS
5647 /* Number of ranges of range table. This is not included
5648 in the initial byte-length of the command. */
5649 int count = 0;
fa9a63c5 5650
f5020181
AS
5651 /* Whether matching against a unibyte character. */
5652 boolean unibyte_char = false;
5653
25fe55af 5654 DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : "");
fa9a63c5 5655
b18215fc 5656 range_table_exists = CHARSET_RANGE_TABLE_EXISTS_P (&p[-1]);
96cc36cc 5657
b18215fc 5658 if (range_table_exists)
96cc36cc
RS
5659 {
5660 range_table = CHARSET_RANGE_TABLE (&p[-1]); /* Past the bitmap. */
5661 EXTRACT_NUMBER_AND_INCR (count, range_table);
5662 }
b18215fc 5663
2d1675e4 5664 PREFETCH ();
cf9c99bc
KH
5665 c = RE_STRING_CHAR_AND_LENGTH (d, dend - d, len, target_multibyte);
5666 if (target_multibyte)
5667 {
5668 int c1;
b18215fc 5669
cf9c99bc
KH
5670 c = TRANSLATE (c);
5671 c1 = RE_CHAR_TO_UNIBYTE (c);
5672 if (c1 >= 0)
f5020181
AS
5673 {
5674 unibyte_char = true;
5675 c = c1;
5676 }
cf9c99bc
KH
5677 }
5678 else
5679 {
5680 int c1 = RE_CHAR_TO_MULTIBYTE (c);
5681
5682 if (! CHAR_BYTE8_P (c1))
5683 {
5684 c1 = TRANSLATE (c1);
5685 c1 = RE_CHAR_TO_UNIBYTE (c1);
5686 if (c1 >= 0)
f5020181
AS
5687 {
5688 unibyte_char = true;
5689 c = c1;
5690 }
cf9c99bc 5691 }
0b8be006
AS
5692 else
5693 unibyte_char = true;
cf9c99bc
KH
5694 }
5695
f5020181 5696 if (unibyte_char && c < (1 << BYTEWIDTH))
b18215fc 5697 { /* Lookup bitmap. */
b18215fc
RS
5698 /* Cast to `unsigned' instead of `unsigned char' in
5699 case the bit list is a full 32 bytes long. */
5700 if (c < (unsigned) (CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH)
96cc36cc
RS
5701 && p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
5702 not = !not;
b18215fc 5703 }
96cc36cc 5704#ifdef emacs
b18215fc 5705 else if (range_table_exists)
96cc36cc
RS
5706 {
5707 int class_bits = CHARSET_RANGE_TABLE_BITS (&p[-1]);
5708
14473664
SM
5709 if ( (class_bits & BIT_LOWER && ISLOWER (c))
5710 | (class_bits & BIT_MULTIBYTE)
96cc36cc
RS
5711 | (class_bits & BIT_PUNCT && ISPUNCT (c))
5712 | (class_bits & BIT_SPACE && ISSPACE (c))
5713 | (class_bits & BIT_UPPER && ISUPPER (c))
5714 | (class_bits & BIT_WORD && ISWORD (c)))
5715 not = !not;
5716 else
5717 CHARSET_LOOKUP_RANGE_TABLE_RAW (not, c, range_table, count);
5718 }
5719#endif /* emacs */
fa9a63c5 5720
96cc36cc
RS
5721 if (range_table_exists)
5722 p = CHARSET_RANGE_TABLE_END (range_table, count);
5723 else
5724 p += CHARSET_BITMAP_SIZE (&p[-1]) + 1;
fa9a63c5
RM
5725
5726 if (!not) goto fail;
5e69f11e 5727
b18215fc 5728 d += len;
fa9a63c5
RM
5729 break;
5730 }
5731
5732
25fe55af 5733 /* The beginning of a group is represented by start_memory.
505bde11 5734 The argument is the register number. The text
25fe55af 5735 matched within the group is recorded (in the internal
7814e705 5736 registers data structure) under the register number. */
25fe55af 5737 case start_memory:
505bde11
SM
5738 DEBUG_PRINT2 ("EXECUTING start_memory %d:\n", *p);
5739
5740 /* In case we need to undo this operation (via backtracking). */
5741 PUSH_FAILURE_REG ((unsigned int)*p);
fa9a63c5 5742
25fe55af 5743 regstart[*p] = d;
4bb91c68 5744 regend[*p] = NULL; /* probably unnecessary. -sm */
fa9a63c5
RM
5745 DEBUG_PRINT2 (" regstart: %d\n", POINTER_TO_OFFSET (regstart[*p]));
5746
25fe55af 5747 /* Move past the register number and inner group count. */
505bde11 5748 p += 1;
25fe55af 5749 break;
fa9a63c5
RM
5750
5751
25fe55af 5752 /* The stop_memory opcode represents the end of a group. Its
505bde11 5753 argument is the same as start_memory's: the register number. */
fa9a63c5 5754 case stop_memory:
505bde11
SM
5755 DEBUG_PRINT2 ("EXECUTING stop_memory %d:\n", *p);
5756
5757 assert (!REG_UNSET (regstart[*p]));
5758 /* Strictly speaking, there should be code such as:
177c0ea7 5759
0b32bf0e 5760 assert (REG_UNSET (regend[*p]));
505bde11
SM
5761 PUSH_FAILURE_REGSTOP ((unsigned int)*p);
5762
5763 But the only info to be pushed is regend[*p] and it is known to
5764 be UNSET, so there really isn't anything to push.
5765 Not pushing anything, on the other hand deprives us from the
5766 guarantee that regend[*p] is UNSET since undoing this operation
5767 will not reset its value properly. This is not important since
5768 the value will only be read on the next start_memory or at
5769 the very end and both events can only happen if this stop_memory
5770 is *not* undone. */
fa9a63c5 5771
25fe55af 5772 regend[*p] = d;
fa9a63c5
RM
5773 DEBUG_PRINT2 (" regend: %d\n", POINTER_TO_OFFSET (regend[*p]));
5774
25fe55af 5775 /* Move past the register number and the inner group count. */
505bde11 5776 p += 1;
25fe55af 5777 break;
fa9a63c5
RM
5778
5779
5780 /* \<digit> has been turned into a `duplicate' command which is
25fe55af
RS
5781 followed by the numeric value of <digit> as the register number. */
5782 case duplicate:
fa9a63c5 5783 {
66f0296e 5784 register re_char *d2, *dend2;
7814e705 5785 int regno = *p++; /* Get which register to match against. */
fa9a63c5
RM
5786 DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno);
5787
7814e705 5788 /* Can't back reference a group which we've never matched. */
25fe55af
RS
5789 if (REG_UNSET (regstart[regno]) || REG_UNSET (regend[regno]))
5790 goto fail;
5e69f11e 5791
7814e705 5792 /* Where in input to try to start matching. */
25fe55af 5793 d2 = regstart[regno];
5e69f11e 5794
99633e97
SM
5795 /* Remember the start point to rollback upon failure. */
5796 dfail = d;
5797
25fe55af
RS
5798 /* Where to stop matching; if both the place to start and
5799 the place to stop matching are in the same string, then
5800 set to the place to stop, otherwise, for now have to use
5801 the end of the first string. */
fa9a63c5 5802
25fe55af 5803 dend2 = ((FIRST_STRING_P (regstart[regno])
fa9a63c5
RM
5804 == FIRST_STRING_P (regend[regno]))
5805 ? regend[regno] : end_match_1);
5806 for (;;)
5807 {
5808 /* If necessary, advance to next segment in register
25fe55af 5809 contents. */
fa9a63c5
RM
5810 while (d2 == dend2)
5811 {
5812 if (dend2 == end_match_2) break;
5813 if (dend2 == regend[regno]) break;
5814
25fe55af
RS
5815 /* End of string1 => advance to string2. */
5816 d2 = string2;
5817 dend2 = regend[regno];
fa9a63c5
RM
5818 }
5819 /* At end of register contents => success */
5820 if (d2 == dend2) break;
5821
5822 /* If necessary, advance to next segment in data. */
5823 PREFETCH ();
5824
5825 /* How many characters left in this segment to match. */
5826 mcnt = dend - d;
5e69f11e 5827
fa9a63c5 5828 /* Want how many consecutive characters we can match in
25fe55af
RS
5829 one shot, so, if necessary, adjust the count. */
5830 if (mcnt > dend2 - d2)
fa9a63c5 5831 mcnt = dend2 - d2;
5e69f11e 5832
fa9a63c5 5833 /* Compare that many; failure if mismatch, else move
25fe55af 5834 past them. */
28703c16 5835 if (RE_TRANSLATE_P (translate)
02cb78b5 5836 ? bcmp_translate (d, d2, mcnt, translate, target_multibyte)
4bb91c68 5837 : memcmp (d, d2, mcnt))
99633e97
SM
5838 {
5839 d = dfail;
5840 goto fail;
5841 }
fa9a63c5 5842 d += mcnt, d2 += mcnt;
fa9a63c5
RM
5843 }
5844 }
5845 break;
5846
5847
25fe55af 5848 /* begline matches the empty string at the beginning of the string
c0f9ea08 5849 (unless `not_bol' is set in `bufp'), and after newlines. */
fa9a63c5 5850 case begline:
25fe55af 5851 DEBUG_PRINT1 ("EXECUTING begline.\n");
5e69f11e 5852
25fe55af
RS
5853 if (AT_STRINGS_BEG (d))
5854 {
5855 if (!bufp->not_bol) break;
5856 }
419d1c74 5857 else
25fe55af 5858 {
bf216479 5859 unsigned c;
419d1c74 5860 GET_CHAR_BEFORE_2 (c, d, string1, end1, string2, end2);
c0f9ea08 5861 if (c == '\n')
419d1c74 5862 break;
25fe55af
RS
5863 }
5864 /* In all other cases, we fail. */
5865 goto fail;
fa9a63c5
RM
5866
5867
25fe55af 5868 /* endline is the dual of begline. */
fa9a63c5 5869 case endline:
25fe55af 5870 DEBUG_PRINT1 ("EXECUTING endline.\n");
fa9a63c5 5871
25fe55af
RS
5872 if (AT_STRINGS_END (d))
5873 {
5874 if (!bufp->not_eol) break;
5875 }
f1ad044f 5876 else
25fe55af 5877 {
f1ad044f 5878 PREFETCH_NOLIMIT ();
c0f9ea08 5879 if (*d == '\n')
f1ad044f 5880 break;
25fe55af
RS
5881 }
5882 goto fail;
fa9a63c5
RM
5883
5884
5885 /* Match at the very beginning of the data. */
25fe55af
RS
5886 case begbuf:
5887 DEBUG_PRINT1 ("EXECUTING begbuf.\n");
5888 if (AT_STRINGS_BEG (d))
5889 break;
5890 goto fail;
fa9a63c5
RM
5891
5892
5893 /* Match at the very end of the data. */
25fe55af
RS
5894 case endbuf:
5895 DEBUG_PRINT1 ("EXECUTING endbuf.\n");
fa9a63c5
RM
5896 if (AT_STRINGS_END (d))
5897 break;
25fe55af 5898 goto fail;
5e69f11e 5899
5e69f11e 5900
25fe55af
RS
5901 /* on_failure_keep_string_jump is used to optimize `.*\n'. It
5902 pushes NULL as the value for the string on the stack. Then
505bde11 5903 `POP_FAILURE_POINT' will keep the current value for the
25fe55af 5904 string, instead of restoring it. To see why, consider
7814e705 5905 matching `foo\nbar' against `.*\n'. The .* matches the foo;
25fe55af
RS
5906 then the . fails against the \n. But the next thing we want
5907 to do is match the \n against the \n; if we restored the
5908 string value, we would be back at the foo.
5909
5910 Because this is used only in specific cases, we don't need to
5911 check all the things that `on_failure_jump' does, to make
5912 sure the right things get saved on the stack. Hence we don't
5913 share its code. The only reason to push anything on the
5914 stack at all is that otherwise we would have to change
5915 `anychar's code to do something besides goto fail in this
5916 case; that seems worse than this. */
5917 case on_failure_keep_string_jump:
505bde11
SM
5918 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5919 DEBUG_PRINT3 ("EXECUTING on_failure_keep_string_jump %d (to %p):\n",
5920 mcnt, p + mcnt);
fa9a63c5 5921
505bde11
SM
5922 PUSH_FAILURE_POINT (p - 3, NULL);
5923 break;
5924
0683b6fa
SM
5925 /* A nasty loop is introduced by the non-greedy *? and +?.
5926 With such loops, the stack only ever contains one failure point
5927 at a time, so that a plain on_failure_jump_loop kind of
5928 cycle detection cannot work. Worse yet, such a detection
5929 can not only fail to detect a cycle, but it can also wrongly
5930 detect a cycle (between different instantiations of the same
6df42991 5931 loop).
0683b6fa
SM
5932 So the method used for those nasty loops is a little different:
5933 We use a special cycle-detection-stack-frame which is pushed
5934 when the on_failure_jump_nastyloop failure-point is *popped*.
5935 This special frame thus marks the beginning of one iteration
5936 through the loop and we can hence easily check right here
5937 whether something matched between the beginning and the end of
5938 the loop. */
5939 case on_failure_jump_nastyloop:
5940 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5941 DEBUG_PRINT3 ("EXECUTING on_failure_jump_nastyloop %d (to %p):\n",
5942 mcnt, p + mcnt);
5943
5944 assert ((re_opcode_t)p[-4] == no_op);
6df42991
SM
5945 {
5946 int cycle = 0;
5947 CHECK_INFINITE_LOOP (p - 4, d);
5948 if (!cycle)
5949 /* If there's a cycle, just continue without pushing
5950 this failure point. The failure point is the "try again"
5951 option, which shouldn't be tried.
5952 We want (x?)*?y\1z to match both xxyz and xxyxz. */
5953 PUSH_FAILURE_POINT (p - 3, d);
5954 }
0683b6fa
SM
5955 break;
5956
4e8a9132
SM
5957 /* Simple loop detecting on_failure_jump: just check on the
5958 failure stack if the same spot was already hit earlier. */
505bde11
SM
5959 case on_failure_jump_loop:
5960 on_failure:
5961 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5962 DEBUG_PRINT3 ("EXECUTING on_failure_jump_loop %d (to %p):\n",
5963 mcnt, p + mcnt);
6df42991
SM
5964 {
5965 int cycle = 0;
5966 CHECK_INFINITE_LOOP (p - 3, d);
5967 if (cycle)
5968 /* If there's a cycle, get out of the loop, as if the matching
5969 had failed. We used to just `goto fail' here, but that was
5970 aborting the search a bit too early: we want to keep the
5971 empty-loop-match and keep matching after the loop.
5972 We want (x?)*y\1z to match both xxyz and xxyxz. */
5973 p += mcnt;
5974 else
5975 PUSH_FAILURE_POINT (p - 3, d);
5976 }
25fe55af 5977 break;
fa9a63c5
RM
5978
5979
5980 /* Uses of on_failure_jump:
5e69f11e 5981
25fe55af
RS
5982 Each alternative starts with an on_failure_jump that points
5983 to the beginning of the next alternative. Each alternative
5984 except the last ends with a jump that in effect jumps past
5985 the rest of the alternatives. (They really jump to the
5986 ending jump of the following alternative, because tensioning
5987 these jumps is a hassle.)
fa9a63c5 5988
25fe55af
RS
5989 Repeats start with an on_failure_jump that points past both
5990 the repetition text and either the following jump or
5991 pop_failure_jump back to this on_failure_jump. */
fa9a63c5 5992 case on_failure_jump:
25fe55af 5993 EXTRACT_NUMBER_AND_INCR (mcnt, p);
505bde11
SM
5994 DEBUG_PRINT3 ("EXECUTING on_failure_jump %d (to %p):\n",
5995 mcnt, p + mcnt);
25fe55af 5996
505bde11 5997 PUSH_FAILURE_POINT (p -3, d);
25fe55af
RS
5998 break;
5999
4e8a9132 6000 /* This operation is used for greedy *.
505bde11
SM
6001 Compare the beginning of the repeat with what in the
6002 pattern follows its end. If we can establish that there
6003 is nothing that they would both match, i.e., that we
6004 would have to backtrack because of (as in, e.g., `a*a')
6005 then we can use a non-backtracking loop based on
4e8a9132 6006 on_failure_keep_string_jump instead of on_failure_jump. */
505bde11 6007 case on_failure_jump_smart:
25fe55af 6008 EXTRACT_NUMBER_AND_INCR (mcnt, p);
505bde11
SM
6009 DEBUG_PRINT3 ("EXECUTING on_failure_jump_smart %d (to %p).\n",
6010 mcnt, p + mcnt);
25fe55af 6011 {
01618498 6012 re_char *p1 = p; /* Next operation. */
6dcf2d0e
SM
6013 /* Here, we discard `const', making re_match non-reentrant. */
6014 unsigned char *p2 = (unsigned char*) p + mcnt; /* Jump dest. */
6015 unsigned char *p3 = (unsigned char*) p - 3; /* opcode location. */
fa9a63c5 6016
505bde11
SM
6017 p -= 3; /* Reset so that we will re-execute the
6018 instruction once it's been changed. */
fa9a63c5 6019
4e8a9132
SM
6020 EXTRACT_NUMBER (mcnt, p2 - 2);
6021
6022 /* Ensure this is a indeed the trivial kind of loop
6023 we are expecting. */
6024 assert (skip_one_char (p1) == p2 - 3);
6025 assert ((re_opcode_t) p2[-3] == jump && p2 + mcnt == p);
99633e97 6026 DEBUG_STATEMENT (debug += 2);
505bde11 6027 if (mutually_exclusive_p (bufp, p1, p2))
fa9a63c5 6028 {
505bde11 6029 /* Use a fast `on_failure_keep_string_jump' loop. */
4e8a9132 6030 DEBUG_PRINT1 (" smart exclusive => fast loop.\n");
01618498 6031 *p3 = (unsigned char) on_failure_keep_string_jump;
4e8a9132 6032 STORE_NUMBER (p2 - 2, mcnt + 3);
25fe55af 6033 }
505bde11 6034 else
fa9a63c5 6035 {
505bde11
SM
6036 /* Default to a safe `on_failure_jump' loop. */
6037 DEBUG_PRINT1 (" smart default => slow loop.\n");
01618498 6038 *p3 = (unsigned char) on_failure_jump;
fa9a63c5 6039 }
99633e97 6040 DEBUG_STATEMENT (debug -= 2);
25fe55af 6041 }
505bde11 6042 break;
25fe55af
RS
6043
6044 /* Unconditionally jump (without popping any failure points). */
6045 case jump:
fa9a63c5 6046 unconditional_jump:
5b370c2b 6047 IMMEDIATE_QUIT_CHECK;
fa9a63c5 6048 EXTRACT_NUMBER_AND_INCR (mcnt, p); /* Get the amount to jump. */
25fe55af 6049 DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt);
7814e705 6050 p += mcnt; /* Do the jump. */
505bde11 6051 DEBUG_PRINT2 ("(to %p).\n", p);
25fe55af
RS
6052 break;
6053
6054
25fe55af
RS
6055 /* Have to succeed matching what follows at least n times.
6056 After that, handle like `on_failure_jump'. */
6057 case succeed_n:
01618498 6058 /* Signedness doesn't matter since we only compare MCNT to 0. */
25fe55af
RS
6059 EXTRACT_NUMBER (mcnt, p + 2);
6060 DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt);
5e69f11e 6061
dc1e502d
SM
6062 /* Originally, mcnt is how many times we HAVE to succeed. */
6063 if (mcnt != 0)
25fe55af 6064 {
6dcf2d0e
SM
6065 /* Here, we discard `const', making re_match non-reentrant. */
6066 unsigned char *p2 = (unsigned char*) p + 2; /* counter loc. */
dc1e502d 6067 mcnt--;
01618498
SM
6068 p += 4;
6069 PUSH_NUMBER (p2, mcnt);
25fe55af 6070 }
dc1e502d
SM
6071 else
6072 /* The two bytes encoding mcnt == 0 are two no_op opcodes. */
6073 goto on_failure;
25fe55af
RS
6074 break;
6075
6076 case jump_n:
01618498 6077 /* Signedness doesn't matter since we only compare MCNT to 0. */
25fe55af
RS
6078 EXTRACT_NUMBER (mcnt, p + 2);
6079 DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt);
6080
6081 /* Originally, this is how many times we CAN jump. */
dc1e502d 6082 if (mcnt != 0)
25fe55af 6083 {
6dcf2d0e
SM
6084 /* Here, we discard `const', making re_match non-reentrant. */
6085 unsigned char *p2 = (unsigned char*) p + 2; /* counter loc. */
dc1e502d 6086 mcnt--;
01618498 6087 PUSH_NUMBER (p2, mcnt);
dc1e502d 6088 goto unconditional_jump;
25fe55af
RS
6089 }
6090 /* If don't have to jump any more, skip over the rest of command. */
5e69f11e
RM
6091 else
6092 p += 4;
25fe55af 6093 break;
5e69f11e 6094
fa9a63c5
RM
6095 case set_number_at:
6096 {
01618498 6097 unsigned char *p2; /* Location of the counter. */
25fe55af 6098 DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
fa9a63c5 6099
25fe55af 6100 EXTRACT_NUMBER_AND_INCR (mcnt, p);
6dcf2d0e
SM
6101 /* Here, we discard `const', making re_match non-reentrant. */
6102 p2 = (unsigned char*) p + mcnt;
01618498 6103 /* Signedness doesn't matter since we only copy MCNT's bits . */
25fe55af 6104 EXTRACT_NUMBER_AND_INCR (mcnt, p);
01618498
SM
6105 DEBUG_PRINT3 (" Setting %p to %d.\n", p2, mcnt);
6106 PUSH_NUMBER (p2, mcnt);
25fe55af
RS
6107 break;
6108 }
9121ca40
KH
6109
6110 case wordbound:
66f0296e
SM
6111 case notwordbound:
6112 not = (re_opcode_t) *(p - 1) == notwordbound;
6113 DEBUG_PRINT2 ("EXECUTING %swordbound.\n", not?"not":"");
fa9a63c5 6114
99633e97 6115 /* We SUCCEED (or FAIL) in one of the following cases: */
9121ca40 6116
b18215fc 6117 /* Case 1: D is at the beginning or the end of string. */
9121ca40 6118 if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
66f0296e 6119 not = !not;
b18215fc
RS
6120 else
6121 {
6122 /* C1 is the character before D, S1 is the syntax of C1, C2
6123 is the character at D, and S2 is the syntax of C2. */
01618498
SM
6124 re_wchar_t c1, c2;
6125 int s1, s2;
bf216479 6126 int dummy;
b18215fc 6127#ifdef emacs
2d1675e4
SM
6128 int offset = PTR_TO_OFFSET (d - 1);
6129 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
5d967c7a 6130 UPDATE_SYNTAX_TABLE (charpos);
25fe55af 6131#endif
66f0296e 6132 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
b18215fc
RS
6133 s1 = SYNTAX (c1);
6134#ifdef emacs
5d967c7a 6135 UPDATE_SYNTAX_TABLE_FORWARD (charpos + 1);
25fe55af 6136#endif
f1ad044f 6137 PREFETCH_NOLIMIT ();
6fdd04b0 6138 GET_CHAR_AFTER (c2, d, dummy);
b18215fc
RS
6139 s2 = SYNTAX (c2);
6140
6141 if (/* Case 2: Only one of S1 and S2 is Sword. */
6142 ((s1 == Sword) != (s2 == Sword))
6143 /* Case 3: Both of S1 and S2 are Sword, and macro
7814e705 6144 WORD_BOUNDARY_P (C1, C2) returns nonzero. */
b18215fc 6145 || ((s1 == Sword) && WORD_BOUNDARY_P (c1, c2)))
66f0296e
SM
6146 not = !not;
6147 }
6148 if (not)
9121ca40 6149 break;
b18215fc 6150 else
9121ca40 6151 goto fail;
fa9a63c5
RM
6152
6153 case wordbeg:
25fe55af 6154 DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
fa9a63c5 6155
b18215fc
RS
6156 /* We FAIL in one of the following cases: */
6157
7814e705 6158 /* Case 1: D is at the end of string. */
b18215fc 6159 if (AT_STRINGS_END (d))
99633e97 6160 goto fail;
b18215fc
RS
6161 else
6162 {
6163 /* C1 is the character before D, S1 is the syntax of C1, C2
6164 is the character at D, and S2 is the syntax of C2. */
01618498
SM
6165 re_wchar_t c1, c2;
6166 int s1, s2;
bf216479 6167 int dummy;
fa9a63c5 6168#ifdef emacs
2d1675e4
SM
6169 int offset = PTR_TO_OFFSET (d);
6170 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
92432794 6171 UPDATE_SYNTAX_TABLE (charpos);
25fe55af 6172#endif
99633e97 6173 PREFETCH ();
6fdd04b0 6174 GET_CHAR_AFTER (c2, d, dummy);
b18215fc 6175 s2 = SYNTAX (c2);
177c0ea7 6176
b18215fc
RS
6177 /* Case 2: S2 is not Sword. */
6178 if (s2 != Sword)
6179 goto fail;
6180
6181 /* Case 3: D is not at the beginning of string ... */
6182 if (!AT_STRINGS_BEG (d))
6183 {
6184 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
6185#ifdef emacs
5d967c7a 6186 UPDATE_SYNTAX_TABLE_BACKWARD (charpos - 1);
25fe55af 6187#endif
b18215fc
RS
6188 s1 = SYNTAX (c1);
6189
6190 /* ... and S1 is Sword, and WORD_BOUNDARY_P (C1, C2)
7814e705 6191 returns 0. */
b18215fc
RS
6192 if ((s1 == Sword) && !WORD_BOUNDARY_P (c1, c2))
6193 goto fail;
6194 }
6195 }
e318085a
RS
6196 break;
6197
b18215fc 6198 case wordend:
25fe55af 6199 DEBUG_PRINT1 ("EXECUTING wordend.\n");
b18215fc
RS
6200
6201 /* We FAIL in one of the following cases: */
6202
6203 /* Case 1: D is at the beginning of string. */
6204 if (AT_STRINGS_BEG (d))
e318085a 6205 goto fail;
b18215fc
RS
6206 else
6207 {
6208 /* C1 is the character before D, S1 is the syntax of C1, C2
6209 is the character at D, and S2 is the syntax of C2. */
01618498
SM
6210 re_wchar_t c1, c2;
6211 int s1, s2;
bf216479 6212 int dummy;
5d967c7a 6213#ifdef emacs
2d1675e4
SM
6214 int offset = PTR_TO_OFFSET (d) - 1;
6215 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
92432794 6216 UPDATE_SYNTAX_TABLE (charpos);
5d967c7a 6217#endif
99633e97 6218 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
b18215fc
RS
6219 s1 = SYNTAX (c1);
6220
6221 /* Case 2: S1 is not Sword. */
6222 if (s1 != Sword)
6223 goto fail;
6224
6225 /* Case 3: D is not at the end of string ... */
6226 if (!AT_STRINGS_END (d))
6227 {
f1ad044f 6228 PREFETCH_NOLIMIT ();
6fdd04b0 6229 GET_CHAR_AFTER (c2, d, dummy);
5d967c7a
RS
6230#ifdef emacs
6231 UPDATE_SYNTAX_TABLE_FORWARD (charpos);
6232#endif
b18215fc
RS
6233 s2 = SYNTAX (c2);
6234
6235 /* ... and S2 is Sword, and WORD_BOUNDARY_P (C1, C2)
7814e705 6236 returns 0. */
b18215fc 6237 if ((s2 == Sword) && !WORD_BOUNDARY_P (c1, c2))
25fe55af 6238 goto fail;
b18215fc
RS
6239 }
6240 }
e318085a
RS
6241 break;
6242
669fa600
SM
6243 case symbeg:
6244 DEBUG_PRINT1 ("EXECUTING symbeg.\n");
6245
6246 /* We FAIL in one of the following cases: */
6247
7814e705 6248 /* Case 1: D is at the end of string. */
669fa600
SM
6249 if (AT_STRINGS_END (d))
6250 goto fail;
6251 else
6252 {
6253 /* C1 is the character before D, S1 is the syntax of C1, C2
6254 is the character at D, and S2 is the syntax of C2. */
6255 re_wchar_t c1, c2;
6256 int s1, s2;
6257#ifdef emacs
6258 int offset = PTR_TO_OFFSET (d);
6259 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
6260 UPDATE_SYNTAX_TABLE (charpos);
6261#endif
6262 PREFETCH ();
cf9c99bc 6263 c2 = RE_STRING_CHAR (d, dend - d, target_multibyte);
669fa600 6264 s2 = SYNTAX (c2);
7814e705 6265
669fa600
SM
6266 /* Case 2: S2 is neither Sword nor Ssymbol. */
6267 if (s2 != Sword && s2 != Ssymbol)
6268 goto fail;
6269
6270 /* Case 3: D is not at the beginning of string ... */
6271 if (!AT_STRINGS_BEG (d))
6272 {
6273 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
6274#ifdef emacs
6275 UPDATE_SYNTAX_TABLE_BACKWARD (charpos - 1);
6276#endif
6277 s1 = SYNTAX (c1);
6278
6279 /* ... and S1 is Sword or Ssymbol. */
6280 if (s1 == Sword || s1 == Ssymbol)
6281 goto fail;
6282 }
6283 }
6284 break;
6285
6286 case symend:
6287 DEBUG_PRINT1 ("EXECUTING symend.\n");
6288
6289 /* We FAIL in one of the following cases: */
6290
6291 /* Case 1: D is at the beginning of string. */
6292 if (AT_STRINGS_BEG (d))
6293 goto fail;
6294 else
6295 {
6296 /* C1 is the character before D, S1 is the syntax of C1, C2
6297 is the character at D, and S2 is the syntax of C2. */
6298 re_wchar_t c1, c2;
6299 int s1, s2;
6300#ifdef emacs
6301 int offset = PTR_TO_OFFSET (d) - 1;
6302 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
6303 UPDATE_SYNTAX_TABLE (charpos);
6304#endif
6305 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
6306 s1 = SYNTAX (c1);
6307
6308 /* Case 2: S1 is neither Ssymbol nor Sword. */
6309 if (s1 != Sword && s1 != Ssymbol)
6310 goto fail;
6311
6312 /* Case 3: D is not at the end of string ... */
6313 if (!AT_STRINGS_END (d))
6314 {
6315 PREFETCH_NOLIMIT ();
cf9c99bc 6316 c2 = RE_STRING_CHAR (d, dend - d, target_multibyte);
669fa600 6317#ifdef emacs
134579f2 6318 UPDATE_SYNTAX_TABLE_FORWARD (charpos + 1);
669fa600
SM
6319#endif
6320 s2 = SYNTAX (c2);
6321
6322 /* ... and S2 is Sword or Ssymbol. */
6323 if (s2 == Sword || s2 == Ssymbol)
6324 goto fail;
b18215fc
RS
6325 }
6326 }
e318085a
RS
6327 break;
6328
fa9a63c5 6329 case syntaxspec:
1fb352e0
SM
6330 case notsyntaxspec:
6331 not = (re_opcode_t) *(p - 1) == notsyntaxspec;
fa9a63c5 6332 mcnt = *p++;
1fb352e0 6333 DEBUG_PRINT3 ("EXECUTING %ssyntaxspec %d.\n", not?"not":"", mcnt);
fa9a63c5 6334 PREFETCH ();
b18215fc
RS
6335#ifdef emacs
6336 {
2d1675e4
SM
6337 int offset = PTR_TO_OFFSET (d);
6338 int pos1 = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
b18215fc
RS
6339 UPDATE_SYNTAX_TABLE (pos1);
6340 }
25fe55af 6341#endif
b18215fc 6342 {
01618498
SM
6343 int len;
6344 re_wchar_t c;
b18215fc 6345
6fdd04b0 6346 GET_CHAR_AFTER (c, d, len);
990b2375 6347 if ((SYNTAX (c) != (enum syntaxcode) mcnt) ^ not)
1fb352e0 6348 goto fail;
b18215fc
RS
6349 d += len;
6350 }
fa9a63c5
RM
6351 break;
6352
b18215fc 6353#ifdef emacs
1fb352e0
SM
6354 case before_dot:
6355 DEBUG_PRINT1 ("EXECUTING before_dot.\n");
6356 if (PTR_BYTE_POS (d) >= PT_BYTE)
fa9a63c5 6357 goto fail;
b18215fc
RS
6358 break;
6359
1fb352e0
SM
6360 case at_dot:
6361 DEBUG_PRINT1 ("EXECUTING at_dot.\n");
6362 if (PTR_BYTE_POS (d) != PT_BYTE)
6363 goto fail;
6364 break;
b18215fc 6365
1fb352e0
SM
6366 case after_dot:
6367 DEBUG_PRINT1 ("EXECUTING after_dot.\n");
6368 if (PTR_BYTE_POS (d) <= PT_BYTE)
6369 goto fail;
e318085a 6370 break;
fa9a63c5 6371
1fb352e0 6372 case categoryspec:
b18215fc 6373 case notcategoryspec:
1fb352e0 6374 not = (re_opcode_t) *(p - 1) == notcategoryspec;
b18215fc 6375 mcnt = *p++;
1fb352e0 6376 DEBUG_PRINT3 ("EXECUTING %scategoryspec %d.\n", not?"not":"", mcnt);
b18215fc
RS
6377 PREFETCH ();
6378 {
01618498
SM
6379 int len;
6380 re_wchar_t c;
6381
6fdd04b0 6382 GET_CHAR_AFTER (c, d, len);
1fb352e0 6383 if ((!CHAR_HAS_CATEGORY (c, mcnt)) ^ not)
b18215fc
RS
6384 goto fail;
6385 d += len;
6386 }
fa9a63c5 6387 break;
5e69f11e 6388
1fb352e0 6389#endif /* emacs */
5e69f11e 6390
0b32bf0e
SM
6391 default:
6392 abort ();
fa9a63c5 6393 }
b18215fc 6394 continue; /* Successfully executed one pattern command; keep going. */
fa9a63c5
RM
6395
6396
6397 /* We goto here if a matching operation fails. */
6398 fail:
5b370c2b 6399 IMMEDIATE_QUIT_CHECK;
fa9a63c5 6400 if (!FAIL_STACK_EMPTY ())
505bde11 6401 {
01618498 6402 re_char *str, *pat;
505bde11 6403 /* A restart point is known. Restore to that state. */
0b32bf0e
SM
6404 DEBUG_PRINT1 ("\nFAIL:\n");
6405 POP_FAILURE_POINT (str, pat);
505bde11
SM
6406 switch (SWITCH_ENUM_CAST ((re_opcode_t) *pat++))
6407 {
6408 case on_failure_keep_string_jump:
6409 assert (str == NULL);
6410 goto continue_failure_jump;
6411
0683b6fa
SM
6412 case on_failure_jump_nastyloop:
6413 assert ((re_opcode_t)pat[-2] == no_op);
6414 PUSH_FAILURE_POINT (pat - 2, str);
6415 /* Fallthrough */
6416
505bde11
SM
6417 case on_failure_jump_loop:
6418 case on_failure_jump:
6419 case succeed_n:
6420 d = str;
6421 continue_failure_jump:
6422 EXTRACT_NUMBER_AND_INCR (mcnt, pat);
6423 p = pat + mcnt;
6424 break;
b18215fc 6425
0683b6fa
SM
6426 case no_op:
6427 /* A special frame used for nastyloops. */
6428 goto fail;
6429
505bde11
SM
6430 default:
6431 abort();
6432 }
fa9a63c5 6433
505bde11 6434 assert (p >= bufp->buffer && p <= pend);
b18215fc 6435
0b32bf0e 6436 if (d >= string1 && d <= end1)
fa9a63c5 6437 dend = end_match_1;
0b32bf0e 6438 }
fa9a63c5 6439 else
0b32bf0e 6440 break; /* Matching at this starting point really fails. */
fa9a63c5
RM
6441 } /* for (;;) */
6442
6443 if (best_regs_set)
6444 goto restore_best_regs;
6445
6446 FREE_VARIABLES ();
6447
b18215fc 6448 return -1; /* Failure to match. */
fa9a63c5
RM
6449} /* re_match_2 */
6450\f
6451/* Subroutine definitions for re_match_2. */
6452
fa9a63c5
RM
6453/* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
6454 bytes; nonzero otherwise. */
5e69f11e 6455
fa9a63c5 6456static int
02cb78b5 6457bcmp_translate (s1, s2, len, translate, target_multibyte)
2d1675e4 6458 re_char *s1, *s2;
fa9a63c5 6459 register int len;
6676cb1c 6460 RE_TRANSLATE_TYPE translate;
02cb78b5 6461 const int target_multibyte;
fa9a63c5 6462{
2d1675e4
SM
6463 register re_char *p1 = s1, *p2 = s2;
6464 re_char *p1_end = s1 + len;
6465 re_char *p2_end = s2 + len;
e934739e 6466
4bb91c68
SM
6467 /* FIXME: Checking both p1 and p2 presumes that the two strings might have
6468 different lengths, but relying on a single `len' would break this. -sm */
6469 while (p1 < p1_end && p2 < p2_end)
fa9a63c5 6470 {
e934739e 6471 int p1_charlen, p2_charlen;
01618498 6472 re_wchar_t p1_ch, p2_ch;
e934739e 6473
6fdd04b0
KH
6474 GET_CHAR_AFTER (p1_ch, p1, p1_charlen);
6475 GET_CHAR_AFTER (p2_ch, p2, p2_charlen);
e934739e
RS
6476
6477 if (RE_TRANSLATE (translate, p1_ch)
6478 != RE_TRANSLATE (translate, p2_ch))
bc192b5b 6479 return 1;
e934739e
RS
6480
6481 p1 += p1_charlen, p2 += p2_charlen;
fa9a63c5 6482 }
e934739e
RS
6483
6484 if (p1 != p1_end || p2 != p2_end)
6485 return 1;
6486
fa9a63c5
RM
6487 return 0;
6488}
6489\f
6490/* Entry points for GNU code. */
6491
6492/* re_compile_pattern is the GNU regular expression compiler: it
6493 compiles PATTERN (of length SIZE) and puts the result in BUFP.
6494 Returns 0 if the pattern was valid, otherwise an error string.
5e69f11e 6495
fa9a63c5
RM
6496 Assumes the `allocated' (and perhaps `buffer') and `translate' fields
6497 are set in BUFP on entry.
5e69f11e 6498
b18215fc 6499 We call regex_compile to do the actual compilation. */
fa9a63c5
RM
6500
6501const char *
6502re_compile_pattern (pattern, length, bufp)
6503 const char *pattern;
0b32bf0e 6504 size_t length;
fa9a63c5
RM
6505 struct re_pattern_buffer *bufp;
6506{
6507 reg_errcode_t ret;
5e69f11e 6508
1208f11a
RS
6509#ifdef emacs
6510 gl_state.current_syntax_table = current_buffer->syntax_table;
6511#endif
6512
fa9a63c5
RM
6513 /* GNU code is written to assume at least RE_NREGS registers will be set
6514 (and at least one extra will be -1). */
6515 bufp->regs_allocated = REGS_UNALLOCATED;
5e69f11e 6516
fa9a63c5
RM
6517 /* And GNU code determines whether or not to get register information
6518 by passing null for the REGS argument to re_match, etc., not by
6519 setting no_sub. */
6520 bufp->no_sub = 0;
5e69f11e 6521
4bb91c68 6522 ret = regex_compile ((re_char*) pattern, length, re_syntax_options, bufp);
fa9a63c5
RM
6523
6524 if (!ret)
6525 return NULL;
6526 return gettext (re_error_msgid[(int) ret]);
5e69f11e 6527}
c0f9ea08 6528WEAK_ALIAS (__re_compile_pattern, re_compile_pattern)
fa9a63c5 6529\f
b18215fc
RS
6530/* Entry points compatible with 4.2 BSD regex library. We don't define
6531 them unless specifically requested. */
fa9a63c5 6532
0b32bf0e 6533#if defined _REGEX_RE_COMP || defined _LIBC
fa9a63c5
RM
6534
6535/* BSD has one and only one pattern buffer. */
6536static struct re_pattern_buffer re_comp_buf;
6537
6538char *
0b32bf0e 6539# ifdef _LIBC
48afdd44
RM
6540/* Make these definitions weak in libc, so POSIX programs can redefine
6541 these names if they don't use our functions, and still use
6542 regcomp/regexec below without link errors. */
6543weak_function
0b32bf0e 6544# endif
fa9a63c5
RM
6545re_comp (s)
6546 const char *s;
6547{
6548 reg_errcode_t ret;
5e69f11e 6549
fa9a63c5
RM
6550 if (!s)
6551 {
6552 if (!re_comp_buf.buffer)
0b32bf0e 6553 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
a60198e5 6554 return (char *) gettext ("No previous regular expression");
fa9a63c5
RM
6555 return 0;
6556 }
6557
6558 if (!re_comp_buf.buffer)
6559 {
6560 re_comp_buf.buffer = (unsigned char *) malloc (200);
6561 if (re_comp_buf.buffer == NULL)
0b32bf0e
SM
6562 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
6563 return (char *) gettext (re_error_msgid[(int) REG_ESPACE]);
fa9a63c5
RM
6564 re_comp_buf.allocated = 200;
6565
6566 re_comp_buf.fastmap = (char *) malloc (1 << BYTEWIDTH);
6567 if (re_comp_buf.fastmap == NULL)
a60198e5
SM
6568 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
6569 return (char *) gettext (re_error_msgid[(int) REG_ESPACE]);
fa9a63c5
RM
6570 }
6571
6572 /* Since `re_exec' always passes NULL for the `regs' argument, we
6573 don't need to initialize the pattern buffer fields which affect it. */
6574
fa9a63c5 6575 ret = regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf);
5e69f11e 6576
fa9a63c5
RM
6577 if (!ret)
6578 return NULL;
6579
6580 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
6581 return (char *) gettext (re_error_msgid[(int) ret]);
6582}
6583
6584
6585int
0b32bf0e 6586# ifdef _LIBC
48afdd44 6587weak_function
0b32bf0e 6588# endif
fa9a63c5
RM
6589re_exec (s)
6590 const char *s;
6591{
6592 const int len = strlen (s);
6593 return
6594 0 <= re_search (&re_comp_buf, s, len, 0, len, (struct re_registers *) 0);
6595}
6596#endif /* _REGEX_RE_COMP */
6597\f
6598/* POSIX.2 functions. Don't define these for Emacs. */
6599
6600#ifndef emacs
6601
6602/* regcomp takes a regular expression as a string and compiles it.
6603
b18215fc 6604 PREG is a regex_t *. We do not expect any fields to be initialized,
fa9a63c5
RM
6605 since POSIX says we shouldn't. Thus, we set
6606
6607 `buffer' to the compiled pattern;
6608 `used' to the length of the compiled pattern;
6609 `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
6610 REG_EXTENDED bit in CFLAGS is set; otherwise, to
6611 RE_SYNTAX_POSIX_BASIC;
c0f9ea08
SM
6612 `fastmap' to an allocated space for the fastmap;
6613 `fastmap_accurate' to zero;
fa9a63c5
RM
6614 `re_nsub' to the number of subexpressions in PATTERN.
6615
6616 PATTERN is the address of the pattern string.
6617
6618 CFLAGS is a series of bits which affect compilation.
6619
6620 If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
6621 use POSIX basic syntax.
6622
6623 If REG_NEWLINE is set, then . and [^...] don't match newline.
6624 Also, regexec will try a match beginning after every newline.
6625
6626 If REG_ICASE is set, then we considers upper- and lowercase
6627 versions of letters to be equivalent when matching.
6628
6629 If REG_NOSUB is set, then when PREG is passed to regexec, that
6630 routine will report only success or failure, and nothing about the
6631 registers.
6632
b18215fc 6633 It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for
fa9a63c5
RM
6634 the return codes and their meanings.) */
6635
6636int
6637regcomp (preg, pattern, cflags)
ada30c0e
SM
6638 regex_t *__restrict preg;
6639 const char *__restrict pattern;
fa9a63c5
RM
6640 int cflags;
6641{
6642 reg_errcode_t ret;
4bb91c68 6643 reg_syntax_t syntax
fa9a63c5
RM
6644 = (cflags & REG_EXTENDED) ?
6645 RE_SYNTAX_POSIX_EXTENDED : RE_SYNTAX_POSIX_BASIC;
6646
6647 /* regex_compile will allocate the space for the compiled pattern. */
6648 preg->buffer = 0;
6649 preg->allocated = 0;
6650 preg->used = 0;
5e69f11e 6651
c0f9ea08
SM
6652 /* Try to allocate space for the fastmap. */
6653 preg->fastmap = (char *) malloc (1 << BYTEWIDTH);
5e69f11e 6654
fa9a63c5
RM
6655 if (cflags & REG_ICASE)
6656 {
6657 unsigned i;
5e69f11e 6658
6676cb1c
RS
6659 preg->translate
6660 = (RE_TRANSLATE_TYPE) malloc (CHAR_SET_SIZE
6661 * sizeof (*(RE_TRANSLATE_TYPE)0));
fa9a63c5 6662 if (preg->translate == NULL)
0b32bf0e 6663 return (int) REG_ESPACE;
fa9a63c5
RM
6664
6665 /* Map uppercase characters to corresponding lowercase ones. */
6666 for (i = 0; i < CHAR_SET_SIZE; i++)
4bb91c68 6667 preg->translate[i] = ISUPPER (i) ? TOLOWER (i) : i;
fa9a63c5
RM
6668 }
6669 else
6670 preg->translate = NULL;
6671
6672 /* If REG_NEWLINE is set, newlines are treated differently. */
6673 if (cflags & REG_NEWLINE)
6674 { /* REG_NEWLINE implies neither . nor [^...] match newline. */
6675 syntax &= ~RE_DOT_NEWLINE;
6676 syntax |= RE_HAT_LISTS_NOT_NEWLINE;
fa9a63c5
RM
6677 }
6678 else
c0f9ea08 6679 syntax |= RE_NO_NEWLINE_ANCHOR;
fa9a63c5
RM
6680
6681 preg->no_sub = !!(cflags & REG_NOSUB);
6682
5e69f11e 6683 /* POSIX says a null character in the pattern terminates it, so we
fa9a63c5 6684 can use strlen here in compiling the pattern. */
4bb91c68 6685 ret = regex_compile ((re_char*) pattern, strlen (pattern), syntax, preg);
5e69f11e 6686
fa9a63c5
RM
6687 /* POSIX doesn't distinguish between an unmatched open-group and an
6688 unmatched close-group: both are REG_EPAREN. */
c0f9ea08
SM
6689 if (ret == REG_ERPAREN)
6690 ret = REG_EPAREN;
6691
6692 if (ret == REG_NOERROR && preg->fastmap)
6693 { /* Compute the fastmap now, since regexec cannot modify the pattern
6694 buffer. */
6695 re_compile_fastmap (preg);
6696 if (preg->can_be_null)
6697 { /* The fastmap can't be used anyway. */
6698 free (preg->fastmap);
6699 preg->fastmap = NULL;
6700 }
6701 }
fa9a63c5
RM
6702 return (int) ret;
6703}
c0f9ea08 6704WEAK_ALIAS (__regcomp, regcomp)
fa9a63c5
RM
6705
6706
6707/* regexec searches for a given pattern, specified by PREG, in the
6708 string STRING.
5e69f11e 6709
fa9a63c5 6710 If NMATCH is zero or REG_NOSUB was set in the cflags argument to
b18215fc 6711 `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at
fa9a63c5
RM
6712 least NMATCH elements, and we set them to the offsets of the
6713 corresponding matched substrings.
5e69f11e 6714
fa9a63c5
RM
6715 EFLAGS specifies `execution flags' which affect matching: if
6716 REG_NOTBOL is set, then ^ does not match at the beginning of the
6717 string; if REG_NOTEOL is set, then $ does not match at the end.
5e69f11e 6718
fa9a63c5
RM
6719 We return 0 if we find a match and REG_NOMATCH if not. */
6720
6721int
6722regexec (preg, string, nmatch, pmatch, eflags)
ada30c0e
SM
6723 const regex_t *__restrict preg;
6724 const char *__restrict string;
5e69f11e 6725 size_t nmatch;
9f2dbe01 6726 regmatch_t pmatch[__restrict_arr];
fa9a63c5
RM
6727 int eflags;
6728{
6729 int ret;
6730 struct re_registers regs;
6731 regex_t private_preg;
6732 int len = strlen (string);
c0f9ea08 6733 boolean want_reg_info = !preg->no_sub && nmatch > 0 && pmatch;
fa9a63c5
RM
6734
6735 private_preg = *preg;
5e69f11e 6736
fa9a63c5
RM
6737 private_preg.not_bol = !!(eflags & REG_NOTBOL);
6738 private_preg.not_eol = !!(eflags & REG_NOTEOL);
5e69f11e 6739
fa9a63c5
RM
6740 /* The user has told us exactly how many registers to return
6741 information about, via `nmatch'. We have to pass that on to the
b18215fc 6742 matching routines. */
fa9a63c5 6743 private_preg.regs_allocated = REGS_FIXED;
5e69f11e 6744
fa9a63c5
RM
6745 if (want_reg_info)
6746 {
6747 regs.num_regs = nmatch;
4bb91c68
SM
6748 regs.start = TALLOC (nmatch * 2, regoff_t);
6749 if (regs.start == NULL)
0b32bf0e 6750 return (int) REG_NOMATCH;
4bb91c68 6751 regs.end = regs.start + nmatch;
fa9a63c5
RM
6752 }
6753
c0f9ea08
SM
6754 /* Instead of using not_eol to implement REG_NOTEOL, we could simply
6755 pass (&private_preg, string, len + 1, 0, len, ...) pretending the string
6756 was a little bit longer but still only matching the real part.
6757 This works because the `endline' will check for a '\n' and will find a
6758 '\0', correctly deciding that this is not the end of a line.
6759 But it doesn't work out so nicely for REG_NOTBOL, since we don't have
6760 a convenient '\0' there. For all we know, the string could be preceded
6761 by '\n' which would throw things off. */
6762
fa9a63c5
RM
6763 /* Perform the searching operation. */
6764 ret = re_search (&private_preg, string, len,
0b32bf0e
SM
6765 /* start: */ 0, /* range: */ len,
6766 want_reg_info ? &regs : (struct re_registers *) 0);
5e69f11e 6767
fa9a63c5
RM
6768 /* Copy the register information to the POSIX structure. */
6769 if (want_reg_info)
6770 {
6771 if (ret >= 0)
0b32bf0e
SM
6772 {
6773 unsigned r;
fa9a63c5 6774
0b32bf0e
SM
6775 for (r = 0; r < nmatch; r++)
6776 {
6777 pmatch[r].rm_so = regs.start[r];
6778 pmatch[r].rm_eo = regs.end[r];
6779 }
6780 }
fa9a63c5 6781
b18215fc 6782 /* If we needed the temporary register info, free the space now. */
fa9a63c5 6783 free (regs.start);
fa9a63c5
RM
6784 }
6785
6786 /* We want zero return to mean success, unlike `re_search'. */
6787 return ret >= 0 ? (int) REG_NOERROR : (int) REG_NOMATCH;
6788}
c0f9ea08 6789WEAK_ALIAS (__regexec, regexec)
fa9a63c5
RM
6790
6791
ec869672
JR
6792/* Returns a message corresponding to an error code, ERR_CODE, returned
6793 from either regcomp or regexec. We don't use PREG here.
6794
6795 ERR_CODE was previously called ERRCODE, but that name causes an
6796 error with msvc8 compiler. */
fa9a63c5
RM
6797
6798size_t
ec869672
JR
6799regerror (err_code, preg, errbuf, errbuf_size)
6800 int err_code;
fa9a63c5
RM
6801 const regex_t *preg;
6802 char *errbuf;
6803 size_t errbuf_size;
6804{
6805 const char *msg;
6806 size_t msg_size;
6807
ec869672
JR
6808 if (err_code < 0
6809 || err_code >= (sizeof (re_error_msgid) / sizeof (re_error_msgid[0])))
5e69f11e 6810 /* Only error codes returned by the rest of the code should be passed
b18215fc 6811 to this routine. If we are given anything else, or if other regex
fa9a63c5
RM
6812 code generates an invalid error code, then the program has a bug.
6813 Dump core so we can fix it. */
6814 abort ();
6815
ec869672 6816 msg = gettext (re_error_msgid[err_code]);
fa9a63c5
RM
6817
6818 msg_size = strlen (msg) + 1; /* Includes the null. */
5e69f11e 6819
fa9a63c5
RM
6820 if (errbuf_size != 0)
6821 {
6822 if (msg_size > errbuf_size)
0b32bf0e
SM
6823 {
6824 strncpy (errbuf, msg, errbuf_size - 1);
6825 errbuf[errbuf_size - 1] = 0;
6826 }
fa9a63c5 6827 else
0b32bf0e 6828 strcpy (errbuf, msg);
fa9a63c5
RM
6829 }
6830
6831 return msg_size;
6832}
c0f9ea08 6833WEAK_ALIAS (__regerror, regerror)
fa9a63c5
RM
6834
6835
6836/* Free dynamically allocated space used by PREG. */
6837
6838void
6839regfree (preg)
6840 regex_t *preg;
6841{
6842 if (preg->buffer != NULL)
6843 free (preg->buffer);
6844 preg->buffer = NULL;
5e69f11e 6845
fa9a63c5
RM
6846 preg->allocated = 0;
6847 preg->used = 0;
6848
6849 if (preg->fastmap != NULL)
6850 free (preg->fastmap);
6851 preg->fastmap = NULL;
6852 preg->fastmap_accurate = 0;
6853
6854 if (preg->translate != NULL)
6855 free (preg->translate);
6856 preg->translate = NULL;
6857}
c0f9ea08 6858WEAK_ALIAS (__regfree, regfree)
fa9a63c5
RM
6859
6860#endif /* not emacs */
839966f3
KH
6861
6862/* arch-tag: 4ffd68ba-2a9e-435b-a21a-018990f9eeb2
6863 (do not change this comment) */