Fix ChangeLog to reflect merge better.
[bpt/emacs.git] / src / regex.c
CommitLineData
e318085a 1/* Extended regular expression matching and search library, version
0b32bf0e 2 0.12. (Implements POSIX draft P1003.2/D11.2, except for some of the
bc78d348
KB
3 internationalization features.)
4
95df8112 5 Copyright (C) 1993-2011 Free Software Foundation, Inc.
bc78d348 6
fa9a63c5
RM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
e468b87f 9 the Free Software Foundation; either version 3, or (at your option)
fa9a63c5
RM
10 any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
7814e705 14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
fa9a63c5
RM
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
4fc5845f 19 Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
7814e705 20 USA. */
fa9a63c5 21
6df42991 22/* TODO:
505bde11 23 - structure the opcode space into opcode+flag.
dc1e502d 24 - merge with glibc's regex.[ch].
01618498 25 - replace (succeed_n + jump_n + set_number_at) with something that doesn't
6dcf2d0e
SM
26 need to modify the compiled regexp so that re_match can be reentrant.
27 - get rid of on_failure_jump_smart by doing the optimization in re_comp
28 rather than at run-time, so that re_match can be reentrant.
01618498 29*/
505bde11 30
fa9a63c5 31/* AIX requires this to be the first thing in the file. */
0b32bf0e 32#if defined _AIX && !defined REGEX_MALLOC
fa9a63c5
RM
33 #pragma alloca
34#endif
35
fa9a63c5 36#ifdef HAVE_CONFIG_H
0b32bf0e 37# include <config.h>
fa9a63c5
RM
38#endif
39
4bb91c68
SM
40#if defined STDC_HEADERS && !defined emacs
41# include <stddef.h>
42#else
43/* We need this for `regex.h', and perhaps for the Emacs include files. */
44# include <sys/types.h>
45#endif
fa9a63c5 46
14473664
SM
47/* Whether to use ISO C Amendment 1 wide char functions.
48 Those should not be used for Emacs since it uses its own. */
5e5388f6
GM
49#if defined _LIBC
50#define WIDE_CHAR_SUPPORT 1
51#else
14473664 52#define WIDE_CHAR_SUPPORT \
5e5388f6
GM
53 (HAVE_WCTYPE_H && HAVE_WCHAR_H && HAVE_BTOWC && !emacs)
54#endif
14473664
SM
55
56/* For platform which support the ISO C amendement 1 functionality we
57 support user defined character classes. */
a0ad02f7 58#if WIDE_CHAR_SUPPORT
14473664
SM
59/* Solaris 2.5 has a bug: <wchar.h> must be included before <wctype.h>. */
60# include <wchar.h>
61# include <wctype.h>
62#endif
63
c0f9ea08
SM
64#ifdef _LIBC
65/* We have to keep the namespace clean. */
66# define regfree(preg) __regfree (preg)
67# define regexec(pr, st, nm, pm, ef) __regexec (pr, st, nm, pm, ef)
68# define regcomp(preg, pattern, cflags) __regcomp (preg, pattern, cflags)
ec869672
JR
69# define regerror(err_code, preg, errbuf, errbuf_size) \
70 __regerror(err_code, preg, errbuf, errbuf_size)
c0f9ea08
SM
71# define re_set_registers(bu, re, nu, st, en) \
72 __re_set_registers (bu, re, nu, st, en)
73# define re_match_2(bufp, string1, size1, string2, size2, pos, regs, stop) \
74 __re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
75# define re_match(bufp, string, size, pos, regs) \
76 __re_match (bufp, string, size, pos, regs)
77# define re_search(bufp, string, size, startpos, range, regs) \
78 __re_search (bufp, string, size, startpos, range, regs)
79# define re_compile_pattern(pattern, length, bufp) \
80 __re_compile_pattern (pattern, length, bufp)
81# define re_set_syntax(syntax) __re_set_syntax (syntax)
82# define re_search_2(bufp, st1, s1, st2, s2, startpos, range, regs, stop) \
83 __re_search_2 (bufp, st1, s1, st2, s2, startpos, range, regs, stop)
84# define re_compile_fastmap(bufp) __re_compile_fastmap (bufp)
85
14473664
SM
86/* Make sure we call libc's function even if the user overrides them. */
87# define btowc __btowc
88# define iswctype __iswctype
89# define wctype __wctype
90
c0f9ea08
SM
91# define WEAK_ALIAS(a,b) weak_alias (a, b)
92
93/* We are also using some library internals. */
94# include <locale/localeinfo.h>
95# include <locale/elem-hash.h>
96# include <langinfo.h>
97#else
98# define WEAK_ALIAS(a,b)
99#endif
100
4bb91c68 101/* This is for other GNU distributions with internationalized messages. */
0b32bf0e 102#if HAVE_LIBINTL_H || defined _LIBC
fa9a63c5
RM
103# include <libintl.h>
104#else
105# define gettext(msgid) (msgid)
106#endif
107
5e69f11e
RM
108#ifndef gettext_noop
109/* This define is so xgettext can find the internationalizable
110 strings. */
0b32bf0e 111# define gettext_noop(String) String
5e69f11e
RM
112#endif
113
fa9a63c5
RM
114/* The `emacs' switch turns on certain matching commands
115 that make sense only in Emacs. */
116#ifdef emacs
117
d7306fe6 118# include <setjmp.h>
0b32bf0e
SM
119# include "lisp.h"
120# include "buffer.h"
b18215fc
RS
121
122/* Make syntax table lookup grant data in gl_state. */
0b32bf0e 123# define SYNTAX_ENTRY_VIA_PROPERTY
b18215fc 124
0b32bf0e 125# include "syntax.h"
9117d724 126# include "character.h"
0b32bf0e 127# include "category.h"
fa9a63c5 128
7689ef0b
EZ
129# ifdef malloc
130# undef malloc
131# endif
0b32bf0e 132# define malloc xmalloc
7689ef0b
EZ
133# ifdef realloc
134# undef realloc
135# endif
0b32bf0e 136# define realloc xrealloc
7689ef0b
EZ
137# ifdef free
138# undef free
139# endif
0b32bf0e 140# define free xfree
9abbd165 141
7814e705 142/* Converts the pointer to the char to BEG-based offset from the start. */
0b32bf0e
SM
143# define PTR_TO_OFFSET(d) POS_AS_IN_BUFFER (POINTER_TO_OFFSET (d))
144# define POS_AS_IN_BUFFER(p) ((p) + (NILP (re_match_object) || BUFFERP (re_match_object)))
145
146# define RE_MULTIBYTE_P(bufp) ((bufp)->multibyte)
bf216479 147# define RE_TARGET_MULTIBYTE_P(bufp) ((bufp)->target_multibyte)
62a6e103
AS
148# define RE_STRING_CHAR(p, multibyte) \
149 (multibyte ? (STRING_CHAR (p)) : (*(p)))
150# define RE_STRING_CHAR_AND_LENGTH(p, len, multibyte) \
151 (multibyte ? (STRING_CHAR_AND_LENGTH (p, len)) : ((len) = 1, *(p)))
2d1675e4 152
4c0354d7 153# define RE_CHAR_TO_MULTIBYTE(c) UNIBYTE_TO_CHAR (c)
cf9c99bc 154
2afc21f5 155# define RE_CHAR_TO_UNIBYTE(c) CHAR_TO_BYTE_SAFE (c)
cf9c99bc 156
6fdd04b0
KH
157/* Set C a (possibly converted to multibyte) character before P. P
158 points into a string which is the virtual concatenation of STR1
159 (which ends at END1) or STR2 (which ends at END2). */
bf216479
KH
160# define GET_CHAR_BEFORE_2(c, p, str1, end1, str2, end2) \
161 do { \
02cb78b5 162 if (target_multibyte) \
bf216479
KH
163 { \
164 re_char *dtemp = (p) == (str2) ? (end1) : (p); \
165 re_char *dlimit = ((p) > (str2) && (p) <= (end2)) ? (str2) : (str1); \
166 while (dtemp-- > dlimit && !CHAR_HEAD_P (*dtemp)); \
62a6e103 167 c = STRING_CHAR (dtemp); \
bf216479
KH
168 } \
169 else \
170 { \
171 (c = ((p) == (str2) ? (end1) : (p))[-1]); \
cf9c99bc 172 (c) = RE_CHAR_TO_MULTIBYTE (c); \
bf216479 173 } \
2d1675e4
SM
174 } while (0)
175
6fdd04b0
KH
176/* Set C a (possibly converted to multibyte) character at P, and set
177 LEN to the byte length of that character. */
178# define GET_CHAR_AFTER(c, p, len) \
179 do { \
02cb78b5 180 if (target_multibyte) \
62a6e103 181 (c) = STRING_CHAR_AND_LENGTH (p, len); \
6fdd04b0
KH
182 else \
183 { \
cf9c99bc 184 (c) = *p; \
6fdd04b0 185 len = 1; \
cf9c99bc 186 (c) = RE_CHAR_TO_MULTIBYTE (c); \
6fdd04b0 187 } \
8f924df7 188 } while (0)
4e8a9132 189
fa9a63c5
RM
190#else /* not emacs */
191
192/* If we are not linking with Emacs proper,
193 we can't use the relocating allocator
194 even if config.h says that we can. */
0b32bf0e 195# undef REL_ALLOC
fa9a63c5 196
4004364e 197# include <unistd.h>
fa9a63c5 198
a77f947b
CY
199/* When used in Emacs's lib-src, we need xmalloc and xrealloc. */
200
201void *
d2762c86 202xmalloc (size_t size)
a77f947b
CY
203{
204 register void *val;
205 val = (void *) malloc (size);
206 if (!val && size)
207 {
208 write (2, "virtual memory exhausted\n", 25);
209 exit (1);
210 }
211 return val;
212}
213
214void *
d2762c86 215xrealloc (void *block, size_t size)
a77f947b
CY
216{
217 register void *val;
218 /* We must call malloc explicitly when BLOCK is 0, since some
219 reallocs don't do this. */
220 if (! block)
221 val = (void *) malloc (size);
222 else
223 val = (void *) realloc (block, size);
224 if (!val && size)
225 {
226 write (2, "virtual memory exhausted\n", 25);
227 exit (1);
228 }
229 return val;
230}
231
a073faa6
CY
232# ifdef malloc
233# undef malloc
234# endif
235# define malloc xmalloc
236# ifdef realloc
237# undef realloc
238# endif
239# define realloc xrealloc
240
72af86bd
AS
241/* This is the normal way of making sure we have memcpy, memcmp and memset. */
242# if defined HAVE_STRING_H || defined STDC_HEADERS || defined _LIBC
243# include <string.h>
244# else
245# include <strings.h>
246# ifndef memcmp
247# define memcmp(s1, s2, n) bcmp (s1, s2, n)
0b32bf0e 248# endif
72af86bd
AS
249# ifndef memcpy
250# define memcpy(d, s, n) (bcopy (s, d, n), (d))
0b32bf0e
SM
251# endif
252# endif
fa9a63c5
RM
253
254/* Define the syntax stuff for \<, \>, etc. */
255
990b2375 256/* Sword must be nonzero for the wordchar pattern commands in re_match_2. */
669fa600 257enum syntaxcode { Swhitespace = 0, Sword = 1, Ssymbol = 2 };
fa9a63c5 258
0b32bf0e 259# define SWITCH_ENUM_CAST(x) (x)
fa9a63c5 260
e934739e 261/* Dummy macros for non-Emacs environments. */
0b32bf0e
SM
262# define CHAR_CHARSET(c) 0
263# define CHARSET_LEADING_CODE_BASE(c) 0
264# define MAX_MULTIBYTE_LENGTH 1
265# define RE_MULTIBYTE_P(x) 0
bf216479 266# define RE_TARGET_MULTIBYTE_P(x) 0
0b32bf0e
SM
267# define WORD_BOUNDARY_P(c1, c2) (0)
268# define CHAR_HEAD_P(p) (1)
269# define SINGLE_BYTE_CHAR_P(c) (1)
270# define SAME_CHARSET_P(c1, c2) (1)
aa3830c4 271# define BYTES_BY_CHAR_HEAD(p) (1)
70806df6 272# define PREV_CHAR_BOUNDARY(p, limit) ((p)--)
62a6e103
AS
273# define STRING_CHAR(p) (*(p))
274# define RE_STRING_CHAR(p, multibyte) STRING_CHAR (p)
0b32bf0e 275# define CHAR_STRING(c, s) (*(s) = (c), 1)
62a6e103
AS
276# define STRING_CHAR_AND_LENGTH(p, actual_len) ((actual_len) = 1, *(p))
277# define RE_STRING_CHAR_AND_LENGTH(p, len, multibyte) STRING_CHAR_AND_LENGTH (p, len)
cf9c99bc
KH
278# define RE_CHAR_TO_MULTIBYTE(c) (c)
279# define RE_CHAR_TO_UNIBYTE(c) (c)
0b32bf0e 280# define GET_CHAR_BEFORE_2(c, p, str1, end1, str2, end2) \
b18215fc 281 (c = ((p) == (str2) ? *((end1) - 1) : *((p) - 1)))
6fdd04b0
KH
282# define GET_CHAR_AFTER(c, p, len) \
283 (c = *p, len = 1)
0b32bf0e 284# define MAKE_CHAR(charset, c1, c2) (c1)
9117d724
KH
285# define BYTE8_TO_CHAR(c) (c)
286# define CHAR_BYTE8_P(c) (0)
bf216479 287# define CHAR_LEADING_CODE(c) (c)
8f924df7 288
fa9a63c5 289#endif /* not emacs */
4e8a9132
SM
290
291#ifndef RE_TRANSLATE
0b32bf0e
SM
292# define RE_TRANSLATE(TBL, C) ((unsigned char)(TBL)[C])
293# define RE_TRANSLATE_P(TBL) (TBL)
4e8a9132 294#endif
fa9a63c5
RM
295\f
296/* Get the interface, including the syntax bits. */
297#include "regex.h"
298
f71b19b6
DL
299/* isalpha etc. are used for the character classes. */
300#include <ctype.h>
fa9a63c5 301
f71b19b6 302#ifdef emacs
fa9a63c5 303
f71b19b6 304/* 1 if C is an ASCII character. */
0b32bf0e 305# define IS_REAL_ASCII(c) ((c) < 0200)
fa9a63c5 306
f71b19b6 307/* 1 if C is a unibyte character. */
0b32bf0e 308# define ISUNIBYTE(c) (SINGLE_BYTE_CHAR_P ((c)))
96cc36cc 309
f71b19b6 310/* The Emacs definitions should not be directly affected by locales. */
96cc36cc 311
f71b19b6 312/* In Emacs, these are only used for single-byte characters. */
0b32bf0e
SM
313# define ISDIGIT(c) ((c) >= '0' && (c) <= '9')
314# define ISCNTRL(c) ((c) < ' ')
315# define ISXDIGIT(c) (((c) >= '0' && (c) <= '9') \
f71b19b6
DL
316 || ((c) >= 'a' && (c) <= 'f') \
317 || ((c) >= 'A' && (c) <= 'F'))
96cc36cc
RS
318
319/* This is only used for single-byte characters. */
0b32bf0e 320# define ISBLANK(c) ((c) == ' ' || (c) == '\t')
96cc36cc
RS
321
322/* The rest must handle multibyte characters. */
323
0b32bf0e 324# define ISGRAPH(c) (SINGLE_BYTE_CHAR_P (c) \
f71b19b6 325 ? (c) > ' ' && !((c) >= 0177 && (c) <= 0237) \
96cc36cc
RS
326 : 1)
327
14473664 328# define ISPRINT(c) (SINGLE_BYTE_CHAR_P (c) \
f71b19b6 329 ? (c) >= ' ' && !((c) >= 0177 && (c) <= 0237) \
96cc36cc
RS
330 : 1)
331
0b32bf0e 332# define ISALNUM(c) (IS_REAL_ASCII (c) \
f71b19b6
DL
333 ? (((c) >= 'a' && (c) <= 'z') \
334 || ((c) >= 'A' && (c) <= 'Z') \
335 || ((c) >= '0' && (c) <= '9')) \
96cc36cc
RS
336 : SYNTAX (c) == Sword)
337
0b32bf0e 338# define ISALPHA(c) (IS_REAL_ASCII (c) \
f71b19b6
DL
339 ? (((c) >= 'a' && (c) <= 'z') \
340 || ((c) >= 'A' && (c) <= 'Z')) \
96cc36cc
RS
341 : SYNTAX (c) == Sword)
342
5da9919f 343# define ISLOWER(c) lowercasep (c)
96cc36cc 344
0b32bf0e 345# define ISPUNCT(c) (IS_REAL_ASCII (c) \
f71b19b6
DL
346 ? ((c) > ' ' && (c) < 0177 \
347 && !(((c) >= 'a' && (c) <= 'z') \
4bb91c68
SM
348 || ((c) >= 'A' && (c) <= 'Z') \
349 || ((c) >= '0' && (c) <= '9'))) \
96cc36cc
RS
350 : SYNTAX (c) != Sword)
351
0b32bf0e 352# define ISSPACE(c) (SYNTAX (c) == Swhitespace)
96cc36cc 353
5da9919f 354# define ISUPPER(c) uppercasep (c)
96cc36cc 355
0b32bf0e 356# define ISWORD(c) (SYNTAX (c) == Sword)
96cc36cc
RS
357
358#else /* not emacs */
359
f71b19b6
DL
360/* Jim Meyering writes:
361
362 "... Some ctype macros are valid only for character codes that
363 isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when
364 using /bin/cc or gcc but without giving an ansi option). So, all
4bb91c68 365 ctype uses should be through macros like ISPRINT... If
f71b19b6
DL
366 STDC_HEADERS is defined, then autoconf has verified that the ctype
367 macros don't need to be guarded with references to isascii. ...
368 Defining isascii to 1 should let any compiler worth its salt
4bb91c68
SM
369 eliminate the && through constant folding."
370 Solaris defines some of these symbols so we must undefine them first. */
f71b19b6 371
4bb91c68 372# undef ISASCII
0b32bf0e
SM
373# if defined STDC_HEADERS || (!defined isascii && !defined HAVE_ISASCII)
374# define ISASCII(c) 1
375# else
376# define ISASCII(c) isascii(c)
377# endif
f71b19b6
DL
378
379/* 1 if C is an ASCII character. */
0b32bf0e 380# define IS_REAL_ASCII(c) ((c) < 0200)
f71b19b6
DL
381
382/* This distinction is not meaningful, except in Emacs. */
0b32bf0e
SM
383# define ISUNIBYTE(c) 1
384
385# ifdef isblank
386# define ISBLANK(c) (ISASCII (c) && isblank (c))
387# else
388# define ISBLANK(c) ((c) == ' ' || (c) == '\t')
389# endif
390# ifdef isgraph
391# define ISGRAPH(c) (ISASCII (c) && isgraph (c))
392# else
393# define ISGRAPH(c) (ISASCII (c) && isprint (c) && !isspace (c))
394# endif
395
4bb91c68 396# undef ISPRINT
0b32bf0e
SM
397# define ISPRINT(c) (ISASCII (c) && isprint (c))
398# define ISDIGIT(c) (ISASCII (c) && isdigit (c))
399# define ISALNUM(c) (ISASCII (c) && isalnum (c))
400# define ISALPHA(c) (ISASCII (c) && isalpha (c))
401# define ISCNTRL(c) (ISASCII (c) && iscntrl (c))
402# define ISLOWER(c) (ISASCII (c) && islower (c))
403# define ISPUNCT(c) (ISASCII (c) && ispunct (c))
404# define ISSPACE(c) (ISASCII (c) && isspace (c))
405# define ISUPPER(c) (ISASCII (c) && isupper (c))
406# define ISXDIGIT(c) (ISASCII (c) && isxdigit (c))
407
408# define ISWORD(c) ISALPHA(c)
409
4bb91c68
SM
410# ifdef _tolower
411# define TOLOWER(c) _tolower(c)
412# else
413# define TOLOWER(c) tolower(c)
414# endif
415
416/* How many characters in the character set. */
417# define CHAR_SET_SIZE 256
418
0b32bf0e 419# ifdef SYNTAX_TABLE
f71b19b6 420
0b32bf0e 421extern char *re_syntax_table;
f71b19b6 422
0b32bf0e
SM
423# else /* not SYNTAX_TABLE */
424
0b32bf0e
SM
425static char re_syntax_table[CHAR_SET_SIZE];
426
427static void
d2762c86 428init_syntax_once (void)
0b32bf0e
SM
429{
430 register int c;
431 static int done = 0;
432
433 if (done)
434 return;
435
72af86bd 436 memset (re_syntax_table, 0, sizeof re_syntax_table);
0b32bf0e 437
4bb91c68
SM
438 for (c = 0; c < CHAR_SET_SIZE; ++c)
439 if (ISALNUM (c))
440 re_syntax_table[c] = Sword;
fa9a63c5 441
669fa600 442 re_syntax_table['_'] = Ssymbol;
fa9a63c5 443
0b32bf0e
SM
444 done = 1;
445}
446
447# endif /* not SYNTAX_TABLE */
96cc36cc 448
4bb91c68
SM
449# define SYNTAX(c) re_syntax_table[(c)]
450
96cc36cc
RS
451#endif /* not emacs */
452\f
fa9a63c5 453#ifndef NULL
0b32bf0e 454# define NULL (void *)0
fa9a63c5
RM
455#endif
456
457/* We remove any previous definition of `SIGN_EXTEND_CHAR',
458 since ours (we hope) works properly with all combinations of
459 machines, compilers, `char' and `unsigned char' argument types.
4bb91c68 460 (Per Bothner suggested the basic approach.) */
fa9a63c5
RM
461#undef SIGN_EXTEND_CHAR
462#if __STDC__
0b32bf0e 463# define SIGN_EXTEND_CHAR(c) ((signed char) (c))
fa9a63c5
RM
464#else /* not __STDC__ */
465/* As in Harbison and Steele. */
0b32bf0e 466# define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
fa9a63c5
RM
467#endif
468\f
469/* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we
470 use `alloca' instead of `malloc'. This is because using malloc in
471 re_search* or re_match* could cause memory leaks when C-g is used in
472 Emacs; also, malloc is slower and causes storage fragmentation. On
5e69f11e
RM
473 the other hand, malloc is more portable, and easier to debug.
474
fa9a63c5
RM
475 Because we sometimes use alloca, some routines have to be macros,
476 not functions -- `alloca'-allocated space disappears at the end of the
477 function it is called in. */
478
479#ifdef REGEX_MALLOC
480
0b32bf0e
SM
481# define REGEX_ALLOCATE malloc
482# define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
483# define REGEX_FREE free
fa9a63c5
RM
484
485#else /* not REGEX_MALLOC */
486
487/* Emacs already defines alloca, sometimes. */
0b32bf0e 488# ifndef alloca
fa9a63c5
RM
489
490/* Make alloca work the best possible way. */
0b32bf0e
SM
491# ifdef __GNUC__
492# define alloca __builtin_alloca
493# else /* not __GNUC__ */
7f585e7a 494# ifdef HAVE_ALLOCA_H
0b32bf0e
SM
495# include <alloca.h>
496# endif /* HAVE_ALLOCA_H */
497# endif /* not __GNUC__ */
fa9a63c5 498
0b32bf0e 499# endif /* not alloca */
fa9a63c5 500
0b32bf0e 501# define REGEX_ALLOCATE alloca
fa9a63c5
RM
502
503/* Assumes a `char *destination' variable. */
0b32bf0e 504# define REGEX_REALLOCATE(source, osize, nsize) \
fa9a63c5 505 (destination = (char *) alloca (nsize), \
4bb91c68 506 memcpy (destination, source, osize))
fa9a63c5
RM
507
508/* No need to do anything to free, after alloca. */
0b32bf0e 509# define REGEX_FREE(arg) ((void)0) /* Do nothing! But inhibit gcc warning. */
fa9a63c5
RM
510
511#endif /* not REGEX_MALLOC */
512
513/* Define how to allocate the failure stack. */
514
0b32bf0e 515#if defined REL_ALLOC && defined REGEX_MALLOC
4297555e 516
0b32bf0e 517# define REGEX_ALLOCATE_STACK(size) \
fa9a63c5 518 r_alloc (&failure_stack_ptr, (size))
0b32bf0e 519# define REGEX_REALLOCATE_STACK(source, osize, nsize) \
fa9a63c5 520 r_re_alloc (&failure_stack_ptr, (nsize))
0b32bf0e 521# define REGEX_FREE_STACK(ptr) \
fa9a63c5
RM
522 r_alloc_free (&failure_stack_ptr)
523
4297555e 524#else /* not using relocating allocator */
fa9a63c5 525
0b32bf0e 526# ifdef REGEX_MALLOC
fa9a63c5 527
0b32bf0e
SM
528# define REGEX_ALLOCATE_STACK malloc
529# define REGEX_REALLOCATE_STACK(source, osize, nsize) realloc (source, nsize)
530# define REGEX_FREE_STACK free
fa9a63c5 531
0b32bf0e 532# else /* not REGEX_MALLOC */
fa9a63c5 533
0b32bf0e 534# define REGEX_ALLOCATE_STACK alloca
fa9a63c5 535
0b32bf0e 536# define REGEX_REALLOCATE_STACK(source, osize, nsize) \
fa9a63c5 537 REGEX_REALLOCATE (source, osize, nsize)
7814e705 538/* No need to explicitly free anything. */
0b32bf0e 539# define REGEX_FREE_STACK(arg) ((void)0)
fa9a63c5 540
0b32bf0e 541# endif /* not REGEX_MALLOC */
4297555e 542#endif /* not using relocating allocator */
fa9a63c5
RM
543
544
545/* True if `size1' is non-NULL and PTR is pointing anywhere inside
546 `string1' or just past its end. This works if PTR is NULL, which is
547 a good thing. */
25fe55af 548#define FIRST_STRING_P(ptr) \
fa9a63c5
RM
549 (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
550
551/* (Re)Allocate N items of type T using malloc, or fail. */
552#define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
553#define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
fa9a63c5
RM
554#define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
555
4bb91c68 556#define BYTEWIDTH 8 /* In bits. */
fa9a63c5
RM
557
558#define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
559
560#undef MAX
561#undef MIN
562#define MAX(a, b) ((a) > (b) ? (a) : (b))
563#define MIN(a, b) ((a) < (b) ? (a) : (b))
564
66f0296e
SM
565/* Type of source-pattern and string chars. */
566typedef const unsigned char re_char;
567
fa9a63c5
RM
568typedef char boolean;
569#define false 0
570#define true 1
571
d1dfb56c
EZ
572static regoff_t re_match_2_internal _RE_ARGS ((struct re_pattern_buffer *bufp,
573 re_char *string1, size_t size1,
574 re_char *string2, size_t size2,
575 ssize_t pos,
576 struct re_registers *regs,
577 ssize_t stop));
fa9a63c5
RM
578\f
579/* These are the command codes that appear in compiled regular
4bb91c68 580 expressions. Some opcodes are followed by argument bytes. A
fa9a63c5
RM
581 command code can specify any interpretation whatsoever for its
582 arguments. Zero bytes may appear in the compiled regular expression. */
583
584typedef enum
585{
586 no_op = 0,
587
4bb91c68 588 /* Succeed right away--no more backtracking. */
fa9a63c5
RM
589 succeed,
590
25fe55af 591 /* Followed by one byte giving n, then by n literal bytes. */
fa9a63c5
RM
592 exactn,
593
25fe55af 594 /* Matches any (more or less) character. */
fa9a63c5
RM
595 anychar,
596
25fe55af
RS
597 /* Matches any one char belonging to specified set. First
598 following byte is number of bitmap bytes. Then come bytes
599 for a bitmap saying which chars are in. Bits in each byte
600 are ordered low-bit-first. A character is in the set if its
601 bit is 1. A character too large to have a bit in the map is
96cc36cc
RS
602 automatically not in the set.
603
604 If the length byte has the 0x80 bit set, then that stuff
605 is followed by a range table:
606 2 bytes of flags for character sets (low 8 bits, high 8 bits)
0b32bf0e 607 See RANGE_TABLE_WORK_BITS below.
01618498 608 2 bytes, the number of pairs that follow (upto 32767)
96cc36cc 609 pairs, each 2 multibyte characters,
0b32bf0e 610 each multibyte character represented as 3 bytes. */
fa9a63c5
RM
611 charset,
612
25fe55af 613 /* Same parameters as charset, but match any character that is
4bb91c68 614 not one of those specified. */
fa9a63c5
RM
615 charset_not,
616
25fe55af
RS
617 /* Start remembering the text that is matched, for storing in a
618 register. Followed by one byte with the register number, in
619 the range 0 to one less than the pattern buffer's re_nsub
505bde11 620 field. */
fa9a63c5
RM
621 start_memory,
622
25fe55af
RS
623 /* Stop remembering the text that is matched and store it in a
624 memory register. Followed by one byte with the register
625 number, in the range 0 to one less than `re_nsub' in the
505bde11 626 pattern buffer. */
fa9a63c5
RM
627 stop_memory,
628
25fe55af 629 /* Match a duplicate of something remembered. Followed by one
4bb91c68 630 byte containing the register number. */
fa9a63c5
RM
631 duplicate,
632
25fe55af 633 /* Fail unless at beginning of line. */
fa9a63c5
RM
634 begline,
635
4bb91c68 636 /* Fail unless at end of line. */
fa9a63c5
RM
637 endline,
638
25fe55af
RS
639 /* Succeeds if at beginning of buffer (if emacs) or at beginning
640 of string to be matched (if not). */
fa9a63c5
RM
641 begbuf,
642
25fe55af 643 /* Analogously, for end of buffer/string. */
fa9a63c5 644 endbuf,
5e69f11e 645
25fe55af 646 /* Followed by two byte relative address to which to jump. */
5e69f11e 647 jump,
fa9a63c5 648
25fe55af 649 /* Followed by two-byte relative address of place to resume at
7814e705 650 in case of failure. */
fa9a63c5 651 on_failure_jump,
5e69f11e 652
25fe55af
RS
653 /* Like on_failure_jump, but pushes a placeholder instead of the
654 current string position when executed. */
fa9a63c5 655 on_failure_keep_string_jump,
5e69f11e 656
505bde11
SM
657 /* Just like `on_failure_jump', except that it checks that we
658 don't get stuck in an infinite loop (matching an empty string
659 indefinitely). */
660 on_failure_jump_loop,
661
0683b6fa
SM
662 /* Just like `on_failure_jump_loop', except that it checks for
663 a different kind of loop (the kind that shows up with non-greedy
664 operators). This operation has to be immediately preceded
665 by a `no_op'. */
666 on_failure_jump_nastyloop,
667
0b32bf0e 668 /* A smart `on_failure_jump' used for greedy * and + operators.
505bde11
SM
669 It analyses the loop before which it is put and if the
670 loop does not require backtracking, it changes itself to
4e8a9132
SM
671 `on_failure_keep_string_jump' and short-circuits the loop,
672 else it just defaults to changing itself into `on_failure_jump'.
673 It assumes that it is pointing to just past a `jump'. */
505bde11 674 on_failure_jump_smart,
fa9a63c5 675
25fe55af 676 /* Followed by two-byte relative address and two-byte number n.
ed0767d8
SM
677 After matching N times, jump to the address upon failure.
678 Does not work if N starts at 0: use on_failure_jump_loop
679 instead. */
fa9a63c5
RM
680 succeed_n,
681
25fe55af
RS
682 /* Followed by two-byte relative address, and two-byte number n.
683 Jump to the address N times, then fail. */
fa9a63c5
RM
684 jump_n,
685
25fe55af 686 /* Set the following two-byte relative address to the
7814e705 687 subsequent two-byte number. The address *includes* the two
25fe55af 688 bytes of number. */
fa9a63c5
RM
689 set_number_at,
690
fa9a63c5
RM
691 wordbeg, /* Succeeds if at word beginning. */
692 wordend, /* Succeeds if at word end. */
693
694 wordbound, /* Succeeds if at a word boundary. */
7814e705 695 notwordbound, /* Succeeds if not at a word boundary. */
fa9a63c5 696
669fa600
SM
697 symbeg, /* Succeeds if at symbol beginning. */
698 symend, /* Succeeds if at symbol end. */
699
fa9a63c5 700 /* Matches any character whose syntax is specified. Followed by
25fe55af 701 a byte which contains a syntax code, e.g., Sword. */
fa9a63c5
RM
702 syntaxspec,
703
704 /* Matches any character whose syntax is not that specified. */
1fb352e0
SM
705 notsyntaxspec
706
707#ifdef emacs
708 ,before_dot, /* Succeeds if before point. */
709 at_dot, /* Succeeds if at point. */
710 after_dot, /* Succeeds if after point. */
b18215fc
RS
711
712 /* Matches any character whose category-set contains the specified
7814e705
JB
713 category. The operator is followed by a byte which contains a
714 category code (mnemonic ASCII character). */
b18215fc
RS
715 categoryspec,
716
717 /* Matches any character whose category-set does not contain the
718 specified category. The operator is followed by a byte which
719 contains the category code (mnemonic ASCII character). */
720 notcategoryspec
fa9a63c5
RM
721#endif /* emacs */
722} re_opcode_t;
723\f
724/* Common operations on the compiled pattern. */
725
726/* Store NUMBER in two contiguous bytes starting at DESTINATION. */
727
728#define STORE_NUMBER(destination, number) \
729 do { \
730 (destination)[0] = (number) & 0377; \
731 (destination)[1] = (number) >> 8; \
732 } while (0)
733
734/* Same as STORE_NUMBER, except increment DESTINATION to
735 the byte after where the number is stored. Therefore, DESTINATION
736 must be an lvalue. */
737
738#define STORE_NUMBER_AND_INCR(destination, number) \
739 do { \
740 STORE_NUMBER (destination, number); \
741 (destination) += 2; \
742 } while (0)
743
744/* Put into DESTINATION a number stored in two contiguous bytes starting
745 at SOURCE. */
746
747#define EXTRACT_NUMBER(destination, source) \
748 do { \
749 (destination) = *(source) & 0377; \
750 (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8; \
751 } while (0)
752
753#ifdef DEBUG
4bb91c68 754static void extract_number _RE_ARGS ((int *dest, re_char *source));
fa9a63c5
RM
755static void
756extract_number (dest, source)
757 int *dest;
01618498 758 re_char *source;
fa9a63c5 759{
5e69f11e 760 int temp = SIGN_EXTEND_CHAR (*(source + 1));
fa9a63c5
RM
761 *dest = *source & 0377;
762 *dest += temp << 8;
763}
764
4bb91c68 765# ifndef EXTRACT_MACROS /* To debug the macros. */
0b32bf0e
SM
766# undef EXTRACT_NUMBER
767# define EXTRACT_NUMBER(dest, src) extract_number (&dest, src)
768# endif /* not EXTRACT_MACROS */
fa9a63c5
RM
769
770#endif /* DEBUG */
771
772/* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
773 SOURCE must be an lvalue. */
774
775#define EXTRACT_NUMBER_AND_INCR(destination, source) \
776 do { \
777 EXTRACT_NUMBER (destination, source); \
25fe55af 778 (source) += 2; \
fa9a63c5
RM
779 } while (0)
780
781#ifdef DEBUG
4bb91c68
SM
782static void extract_number_and_incr _RE_ARGS ((int *destination,
783 re_char **source));
fa9a63c5
RM
784static void
785extract_number_and_incr (destination, source)
786 int *destination;
01618498 787 re_char **source;
5e69f11e 788{
fa9a63c5
RM
789 extract_number (destination, *source);
790 *source += 2;
791}
792
0b32bf0e
SM
793# ifndef EXTRACT_MACROS
794# undef EXTRACT_NUMBER_AND_INCR
795# define EXTRACT_NUMBER_AND_INCR(dest, src) \
fa9a63c5 796 extract_number_and_incr (&dest, &src)
0b32bf0e 797# endif /* not EXTRACT_MACROS */
fa9a63c5
RM
798
799#endif /* DEBUG */
800\f
b18215fc
RS
801/* Store a multibyte character in three contiguous bytes starting
802 DESTINATION, and increment DESTINATION to the byte after where the
7814e705 803 character is stored. Therefore, DESTINATION must be an lvalue. */
b18215fc
RS
804
805#define STORE_CHARACTER_AND_INCR(destination, character) \
806 do { \
807 (destination)[0] = (character) & 0377; \
808 (destination)[1] = ((character) >> 8) & 0377; \
809 (destination)[2] = (character) >> 16; \
810 (destination) += 3; \
811 } while (0)
812
813/* Put into DESTINATION a character stored in three contiguous bytes
7814e705 814 starting at SOURCE. */
b18215fc
RS
815
816#define EXTRACT_CHARACTER(destination, source) \
817 do { \
818 (destination) = ((source)[0] \
819 | ((source)[1] << 8) \
820 | ((source)[2] << 16)); \
821 } while (0)
822
823
824/* Macros for charset. */
825
826/* Size of bitmap of charset P in bytes. P is a start of charset,
827 i.e. *P is (re_opcode_t) charset or (re_opcode_t) charset_not. */
828#define CHARSET_BITMAP_SIZE(p) ((p)[1] & 0x7F)
829
830/* Nonzero if charset P has range table. */
25fe55af 831#define CHARSET_RANGE_TABLE_EXISTS_P(p) ((p)[1] & 0x80)
b18215fc
RS
832
833/* Return the address of range table of charset P. But not the start
834 of table itself, but the before where the number of ranges is
96cc36cc
RS
835 stored. `2 +' means to skip re_opcode_t and size of bitmap,
836 and the 2 bytes of flags at the start of the range table. */
837#define CHARSET_RANGE_TABLE(p) (&(p)[4 + CHARSET_BITMAP_SIZE (p)])
838
839/* Extract the bit flags that start a range table. */
840#define CHARSET_RANGE_TABLE_BITS(p) \
841 ((p)[2 + CHARSET_BITMAP_SIZE (p)] \
842 + (p)[3 + CHARSET_BITMAP_SIZE (p)] * 0x100)
b18215fc 843
b18215fc 844/* Return the address of end of RANGE_TABLE. COUNT is number of
7814e705
JB
845 ranges (which is a pair of (start, end)) in the RANGE_TABLE. `* 2'
846 is start of range and end of range. `* 3' is size of each start
b18215fc
RS
847 and end. */
848#define CHARSET_RANGE_TABLE_END(range_table, count) \
849 ((range_table) + (count) * 2 * 3)
850
7814e705 851/* Test if C is in RANGE_TABLE. A flag NOT is negated if C is in.
b18215fc
RS
852 COUNT is number of ranges in RANGE_TABLE. */
853#define CHARSET_LOOKUP_RANGE_TABLE_RAW(not, c, range_table, count) \
854 do \
855 { \
01618498 856 re_wchar_t range_start, range_end; \
19ed5445 857 re_char *rtp; \
01618498 858 re_char *range_table_end \
b18215fc
RS
859 = CHARSET_RANGE_TABLE_END ((range_table), (count)); \
860 \
19ed5445 861 for (rtp = (range_table); rtp < range_table_end; rtp += 2 * 3) \
b18215fc 862 { \
19ed5445
PE
863 EXTRACT_CHARACTER (range_start, rtp); \
864 EXTRACT_CHARACTER (range_end, rtp + 3); \
b18215fc
RS
865 \
866 if (range_start <= (c) && (c) <= range_end) \
867 { \
868 (not) = !(not); \
869 break; \
870 } \
871 } \
872 } \
873 while (0)
874
875/* Test if C is in range table of CHARSET. The flag NOT is negated if
876 C is listed in it. */
877#define CHARSET_LOOKUP_RANGE_TABLE(not, c, charset) \
878 do \
879 { \
880 /* Number of ranges in range table. */ \
881 int count; \
01618498
SM
882 re_char *range_table = CHARSET_RANGE_TABLE (charset); \
883 \
b18215fc
RS
884 EXTRACT_NUMBER_AND_INCR (count, range_table); \
885 CHARSET_LOOKUP_RANGE_TABLE_RAW ((not), (c), range_table, count); \
886 } \
887 while (0)
888\f
fa9a63c5
RM
889/* If DEBUG is defined, Regex prints many voluminous messages about what
890 it is doing (if the variable `debug' is nonzero). If linked with the
891 main program in `iregex.c', you can enter patterns and strings
892 interactively. And if linked with the main program in `main.c' and
4bb91c68 893 the other test files, you can run the already-written tests. */
fa9a63c5
RM
894
895#ifdef DEBUG
896
897/* We use standard I/O for debugging. */
0b32bf0e 898# include <stdio.h>
fa9a63c5
RM
899
900/* It is useful to test things that ``must'' be true when debugging. */
0b32bf0e 901# include <assert.h>
fa9a63c5 902
99633e97 903static int debug = -100000;
fa9a63c5 904
0b32bf0e
SM
905# define DEBUG_STATEMENT(e) e
906# define DEBUG_PRINT1(x) if (debug > 0) printf (x)
907# define DEBUG_PRINT2(x1, x2) if (debug > 0) printf (x1, x2)
908# define DEBUG_PRINT3(x1, x2, x3) if (debug > 0) printf (x1, x2, x3)
909# define DEBUG_PRINT4(x1, x2, x3, x4) if (debug > 0) printf (x1, x2, x3, x4)
910# define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \
99633e97 911 if (debug > 0) print_partial_compiled_pattern (s, e)
0b32bf0e 912# define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \
99633e97 913 if (debug > 0) print_double_string (w, s1, sz1, s2, sz2)
fa9a63c5
RM
914
915
916/* Print the fastmap in human-readable form. */
917
918void
919print_fastmap (fastmap)
920 char *fastmap;
921{
922 unsigned was_a_range = 0;
5e69f11e
RM
923 unsigned i = 0;
924
fa9a63c5
RM
925 while (i < (1 << BYTEWIDTH))
926 {
927 if (fastmap[i++])
928 {
929 was_a_range = 0;
25fe55af
RS
930 putchar (i - 1);
931 while (i < (1 << BYTEWIDTH) && fastmap[i])
932 {
933 was_a_range = 1;
934 i++;
935 }
fa9a63c5 936 if (was_a_range)
25fe55af
RS
937 {
938 printf ("-");
939 putchar (i - 1);
940 }
941 }
fa9a63c5 942 }
5e69f11e 943 putchar ('\n');
fa9a63c5
RM
944}
945
946
947/* Print a compiled pattern string in human-readable form, starting at
948 the START pointer into it and ending just before the pointer END. */
949
950void
951print_partial_compiled_pattern (start, end)
01618498
SM
952 re_char *start;
953 re_char *end;
fa9a63c5
RM
954{
955 int mcnt, mcnt2;
01618498
SM
956 re_char *p = start;
957 re_char *pend = end;
fa9a63c5
RM
958
959 if (start == NULL)
960 {
a1a052df 961 fprintf (stderr, "(null)\n");
fa9a63c5
RM
962 return;
963 }
5e69f11e 964
fa9a63c5
RM
965 /* Loop over pattern commands. */
966 while (p < pend)
967 {
a1a052df 968 fprintf (stderr, "%d:\t", p - start);
fa9a63c5
RM
969
970 switch ((re_opcode_t) *p++)
971 {
25fe55af 972 case no_op:
a1a052df 973 fprintf (stderr, "/no_op");
25fe55af 974 break;
fa9a63c5 975
99633e97 976 case succeed:
a1a052df 977 fprintf (stderr, "/succeed");
99633e97
SM
978 break;
979
fa9a63c5
RM
980 case exactn:
981 mcnt = *p++;
a1a052df 982 fprintf (stderr, "/exactn/%d", mcnt);
25fe55af 983 do
fa9a63c5 984 {
a1a052df 985 fprintf (stderr, "/%c", *p++);
25fe55af
RS
986 }
987 while (--mcnt);
988 break;
fa9a63c5
RM
989
990 case start_memory:
a1a052df 991 fprintf (stderr, "/start_memory/%d", *p++);
25fe55af 992 break;
fa9a63c5
RM
993
994 case stop_memory:
a1a052df 995 fprintf (stderr, "/stop_memory/%d", *p++);
25fe55af 996 break;
fa9a63c5
RM
997
998 case duplicate:
a1a052df 999 fprintf (stderr, "/duplicate/%d", *p++);
fa9a63c5
RM
1000 break;
1001
1002 case anychar:
a1a052df 1003 fprintf (stderr, "/anychar");
fa9a63c5
RM
1004 break;
1005
1006 case charset:
25fe55af
RS
1007 case charset_not:
1008 {
1009 register int c, last = -100;
fa9a63c5 1010 register int in_range = 0;
99633e97
SM
1011 int length = CHARSET_BITMAP_SIZE (p - 1);
1012 int has_range_table = CHARSET_RANGE_TABLE_EXISTS_P (p - 1);
fa9a63c5 1013
a1a052df 1014 fprintf (stderr, "/charset [%s",
839966f3 1015 (re_opcode_t) *(p - 1) == charset_not ? "^" : "");
5e69f11e 1016
839966f3
KH
1017 if (p + *p >= pend)
1018 fprintf (stderr, " !extends past end of pattern! ");
fa9a63c5 1019
25fe55af 1020 for (c = 0; c < 256; c++)
96cc36cc 1021 if (c / 8 < length
fa9a63c5
RM
1022 && (p[1 + (c/8)] & (1 << (c % 8))))
1023 {
1024 /* Are we starting a range? */
1025 if (last + 1 == c && ! in_range)
1026 {
a1a052df 1027 fprintf (stderr, "-");
fa9a63c5
RM
1028 in_range = 1;
1029 }
1030 /* Have we broken a range? */
1031 else if (last + 1 != c && in_range)
96cc36cc 1032 {
a1a052df 1033 fprintf (stderr, "%c", last);
fa9a63c5
RM
1034 in_range = 0;
1035 }
5e69f11e 1036
fa9a63c5 1037 if (! in_range)
a1a052df 1038 fprintf (stderr, "%c", c);
fa9a63c5
RM
1039
1040 last = c;
25fe55af 1041 }
fa9a63c5
RM
1042
1043 if (in_range)
a1a052df 1044 fprintf (stderr, "%c", last);
fa9a63c5 1045
a1a052df 1046 fprintf (stderr, "]");
fa9a63c5 1047
99633e97 1048 p += 1 + length;
96cc36cc 1049
96cc36cc 1050 if (has_range_table)
99633e97
SM
1051 {
1052 int count;
a1a052df 1053 fprintf (stderr, "has-range-table");
99633e97
SM
1054
1055 /* ??? Should print the range table; for now, just skip it. */
1056 p += 2; /* skip range table bits */
1057 EXTRACT_NUMBER_AND_INCR (count, p);
1058 p = CHARSET_RANGE_TABLE_END (p, count);
1059 }
fa9a63c5
RM
1060 }
1061 break;
1062
1063 case begline:
a1a052df 1064 fprintf (stderr, "/begline");
25fe55af 1065 break;
fa9a63c5
RM
1066
1067 case endline:
a1a052df 1068 fprintf (stderr, "/endline");
25fe55af 1069 break;
fa9a63c5
RM
1070
1071 case on_failure_jump:
25fe55af 1072 extract_number_and_incr (&mcnt, &p);
a1a052df 1073 fprintf (stderr, "/on_failure_jump to %d", p + mcnt - start);
25fe55af 1074 break;
fa9a63c5
RM
1075
1076 case on_failure_keep_string_jump:
25fe55af 1077 extract_number_and_incr (&mcnt, &p);
a1a052df 1078 fprintf (stderr, "/on_failure_keep_string_jump to %d", p + mcnt - start);
25fe55af 1079 break;
fa9a63c5 1080
0683b6fa
SM
1081 case on_failure_jump_nastyloop:
1082 extract_number_and_incr (&mcnt, &p);
a1a052df 1083 fprintf (stderr, "/on_failure_jump_nastyloop to %d", p + mcnt - start);
0683b6fa
SM
1084 break;
1085
505bde11 1086 case on_failure_jump_loop:
fa9a63c5 1087 extract_number_and_incr (&mcnt, &p);
a1a052df 1088 fprintf (stderr, "/on_failure_jump_loop to %d", p + mcnt - start);
5e69f11e
RM
1089 break;
1090
505bde11 1091 case on_failure_jump_smart:
fa9a63c5 1092 extract_number_and_incr (&mcnt, &p);
a1a052df 1093 fprintf (stderr, "/on_failure_jump_smart to %d", p + mcnt - start);
5e69f11e
RM
1094 break;
1095
25fe55af 1096 case jump:
fa9a63c5 1097 extract_number_and_incr (&mcnt, &p);
a1a052df 1098 fprintf (stderr, "/jump to %d", p + mcnt - start);
fa9a63c5
RM
1099 break;
1100
25fe55af
RS
1101 case succeed_n:
1102 extract_number_and_incr (&mcnt, &p);
1103 extract_number_and_incr (&mcnt2, &p);
a1a052df 1104 fprintf (stderr, "/succeed_n to %d, %d times", p - 2 + mcnt - start, mcnt2);
25fe55af 1105 break;
5e69f11e 1106
25fe55af
RS
1107 case jump_n:
1108 extract_number_and_incr (&mcnt, &p);
1109 extract_number_and_incr (&mcnt2, &p);
a1a052df 1110 fprintf (stderr, "/jump_n to %d, %d times", p - 2 + mcnt - start, mcnt2);
25fe55af 1111 break;
5e69f11e 1112
25fe55af
RS
1113 case set_number_at:
1114 extract_number_and_incr (&mcnt, &p);
1115 extract_number_and_incr (&mcnt2, &p);
a1a052df 1116 fprintf (stderr, "/set_number_at location %d to %d", p - 2 + mcnt - start, mcnt2);
25fe55af 1117 break;
5e69f11e 1118
25fe55af 1119 case wordbound:
a1a052df 1120 fprintf (stderr, "/wordbound");
fa9a63c5
RM
1121 break;
1122
1123 case notwordbound:
a1a052df 1124 fprintf (stderr, "/notwordbound");
25fe55af 1125 break;
fa9a63c5
RM
1126
1127 case wordbeg:
a1a052df 1128 fprintf (stderr, "/wordbeg");
fa9a63c5 1129 break;
5e69f11e 1130
fa9a63c5 1131 case wordend:
a1a052df 1132 fprintf (stderr, "/wordend");
e2543b02 1133 break;
5e69f11e 1134
669fa600 1135 case symbeg:
e2543b02 1136 fprintf (stderr, "/symbeg");
669fa600
SM
1137 break;
1138
1139 case symend:
e2543b02 1140 fprintf (stderr, "/symend");
669fa600 1141 break;
5e69f11e 1142
1fb352e0 1143 case syntaxspec:
a1a052df 1144 fprintf (stderr, "/syntaxspec");
1fb352e0 1145 mcnt = *p++;
a1a052df 1146 fprintf (stderr, "/%d", mcnt);
1fb352e0
SM
1147 break;
1148
1149 case notsyntaxspec:
a1a052df 1150 fprintf (stderr, "/notsyntaxspec");
1fb352e0 1151 mcnt = *p++;
a1a052df 1152 fprintf (stderr, "/%d", mcnt);
1fb352e0
SM
1153 break;
1154
0b32bf0e 1155# ifdef emacs
fa9a63c5 1156 case before_dot:
a1a052df 1157 fprintf (stderr, "/before_dot");
25fe55af 1158 break;
fa9a63c5
RM
1159
1160 case at_dot:
a1a052df 1161 fprintf (stderr, "/at_dot");
25fe55af 1162 break;
fa9a63c5
RM
1163
1164 case after_dot:
a1a052df 1165 fprintf (stderr, "/after_dot");
25fe55af 1166 break;
fa9a63c5 1167
1fb352e0 1168 case categoryspec:
a1a052df 1169 fprintf (stderr, "/categoryspec");
fa9a63c5 1170 mcnt = *p++;
a1a052df 1171 fprintf (stderr, "/%d", mcnt);
25fe55af 1172 break;
5e69f11e 1173
1fb352e0 1174 case notcategoryspec:
a1a052df 1175 fprintf (stderr, "/notcategoryspec");
fa9a63c5 1176 mcnt = *p++;
a1a052df 1177 fprintf (stderr, "/%d", mcnt);
fa9a63c5 1178 break;
0b32bf0e 1179# endif /* emacs */
fa9a63c5 1180
fa9a63c5 1181 case begbuf:
a1a052df 1182 fprintf (stderr, "/begbuf");
25fe55af 1183 break;
fa9a63c5
RM
1184
1185 case endbuf:
a1a052df 1186 fprintf (stderr, "/endbuf");
25fe55af 1187 break;
fa9a63c5 1188
25fe55af 1189 default:
a1a052df 1190 fprintf (stderr, "?%d", *(p-1));
fa9a63c5
RM
1191 }
1192
a1a052df 1193 fprintf (stderr, "\n");
fa9a63c5
RM
1194 }
1195
a1a052df 1196 fprintf (stderr, "%d:\tend of pattern.\n", p - start);
fa9a63c5
RM
1197}
1198
1199
1200void
1201print_compiled_pattern (bufp)
1202 struct re_pattern_buffer *bufp;
1203{
01618498 1204 re_char *buffer = bufp->buffer;
fa9a63c5
RM
1205
1206 print_partial_compiled_pattern (buffer, buffer + bufp->used);
4bb91c68
SM
1207 printf ("%ld bytes used/%ld bytes allocated.\n",
1208 bufp->used, bufp->allocated);
fa9a63c5
RM
1209
1210 if (bufp->fastmap_accurate && bufp->fastmap)
1211 {
1212 printf ("fastmap: ");
1213 print_fastmap (bufp->fastmap);
1214 }
1215
1216 printf ("re_nsub: %d\t", bufp->re_nsub);
1217 printf ("regs_alloc: %d\t", bufp->regs_allocated);
1218 printf ("can_be_null: %d\t", bufp->can_be_null);
fa9a63c5
RM
1219 printf ("no_sub: %d\t", bufp->no_sub);
1220 printf ("not_bol: %d\t", bufp->not_bol);
1221 printf ("not_eol: %d\t", bufp->not_eol);
4bb91c68 1222 printf ("syntax: %lx\n", bufp->syntax);
505bde11 1223 fflush (stdout);
fa9a63c5
RM
1224 /* Perhaps we should print the translate table? */
1225}
1226
1227
1228void
1229print_double_string (where, string1, size1, string2, size2)
66f0296e
SM
1230 re_char *where;
1231 re_char *string1;
1232 re_char *string2;
d1dfb56c
EZ
1233 ssize_t size1;
1234 ssize_t size2;
fa9a63c5 1235{
d1dfb56c 1236 ssize_t this_char;
5e69f11e 1237
fa9a63c5
RM
1238 if (where == NULL)
1239 printf ("(null)");
1240 else
1241 {
1242 if (FIRST_STRING_P (where))
25fe55af
RS
1243 {
1244 for (this_char = where - string1; this_char < size1; this_char++)
1245 putchar (string1[this_char]);
fa9a63c5 1246
25fe55af
RS
1247 where = string2;
1248 }
fa9a63c5
RM
1249
1250 for (this_char = where - string2; this_char < size2; this_char++)
25fe55af 1251 putchar (string2[this_char]);
fa9a63c5
RM
1252 }
1253}
1254
1255#else /* not DEBUG */
1256
0b32bf0e
SM
1257# undef assert
1258# define assert(e)
fa9a63c5 1259
0b32bf0e
SM
1260# define DEBUG_STATEMENT(e)
1261# define DEBUG_PRINT1(x)
1262# define DEBUG_PRINT2(x1, x2)
1263# define DEBUG_PRINT3(x1, x2, x3)
1264# define DEBUG_PRINT4(x1, x2, x3, x4)
1265# define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
1266# define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
fa9a63c5
RM
1267
1268#endif /* not DEBUG */
1269\f
4da60324
PE
1270/* Use this to suppress gcc's `...may be used before initialized' warnings. */
1271#ifdef lint
1272# define IF_LINT(Code) Code
1273#else
1274# define IF_LINT(Code) /* empty */
1275#endif
1276\f
fa9a63c5
RM
1277/* Set by `re_set_syntax' to the current regexp syntax to recognize. Can
1278 also be assigned to arbitrarily: each pattern buffer stores its own
1279 syntax, so it can be changed between regex compilations. */
1280/* This has no initializer because initialized variables in Emacs
1281 become read-only after dumping. */
1282reg_syntax_t re_syntax_options;
1283
1284
1285/* Specify the precise syntax of regexps for compilation. This provides
1286 for compatibility for various utilities which historically have
1287 different, incompatible syntaxes.
1288
1289 The argument SYNTAX is a bit mask comprised of the various bits
4bb91c68 1290 defined in regex.h. We return the old syntax. */
fa9a63c5
RM
1291
1292reg_syntax_t
971de7fb 1293re_set_syntax (reg_syntax_t syntax)
fa9a63c5
RM
1294{
1295 reg_syntax_t ret = re_syntax_options;
5e69f11e 1296
fa9a63c5
RM
1297 re_syntax_options = syntax;
1298 return ret;
1299}
c0f9ea08 1300WEAK_ALIAS (__re_set_syntax, re_set_syntax)
f9b0fd99
RS
1301
1302/* Regexp to use to replace spaces, or NULL meaning don't. */
1303static re_char *whitespace_regexp;
1304
1305void
971de7fb 1306re_set_whitespace_regexp (const char *regexp)
f9b0fd99 1307{
6470ea05 1308 whitespace_regexp = (re_char *) regexp;
f9b0fd99
RS
1309}
1310WEAK_ALIAS (__re_set_syntax, re_set_syntax)
fa9a63c5
RM
1311\f
1312/* This table gives an error message for each of the error codes listed
4bb91c68 1313 in regex.h. Obviously the order here has to be same as there.
fa9a63c5 1314 POSIX doesn't require that we do anything for REG_NOERROR,
4bb91c68 1315 but why not be nice? */
fa9a63c5
RM
1316
1317static const char *re_error_msgid[] =
5e69f11e
RM
1318 {
1319 gettext_noop ("Success"), /* REG_NOERROR */
1320 gettext_noop ("No match"), /* REG_NOMATCH */
1321 gettext_noop ("Invalid regular expression"), /* REG_BADPAT */
1322 gettext_noop ("Invalid collation character"), /* REG_ECOLLATE */
1323 gettext_noop ("Invalid character class name"), /* REG_ECTYPE */
1324 gettext_noop ("Trailing backslash"), /* REG_EESCAPE */
1325 gettext_noop ("Invalid back reference"), /* REG_ESUBREG */
1326 gettext_noop ("Unmatched [ or [^"), /* REG_EBRACK */
1327 gettext_noop ("Unmatched ( or \\("), /* REG_EPAREN */
1328 gettext_noop ("Unmatched \\{"), /* REG_EBRACE */
1329 gettext_noop ("Invalid content of \\{\\}"), /* REG_BADBR */
1330 gettext_noop ("Invalid range end"), /* REG_ERANGE */
1331 gettext_noop ("Memory exhausted"), /* REG_ESPACE */
1332 gettext_noop ("Invalid preceding regular expression"), /* REG_BADRPT */
1333 gettext_noop ("Premature end of regular expression"), /* REG_EEND */
1334 gettext_noop ("Regular expression too big"), /* REG_ESIZE */
1335 gettext_noop ("Unmatched ) or \\)"), /* REG_ERPAREN */
b3e4c897 1336 gettext_noop ("Range striding over charsets") /* REG_ERANGEX */
fa9a63c5
RM
1337 };
1338\f
4bb91c68 1339/* Avoiding alloca during matching, to placate r_alloc. */
fa9a63c5
RM
1340
1341/* Define MATCH_MAY_ALLOCATE unless we need to make sure that the
1342 searching and matching functions should not call alloca. On some
1343 systems, alloca is implemented in terms of malloc, and if we're
1344 using the relocating allocator routines, then malloc could cause a
1345 relocation, which might (if the strings being searched are in the
1346 ralloc heap) shift the data out from underneath the regexp
1347 routines.
1348
5e69f11e 1349 Here's another reason to avoid allocation: Emacs
fa9a63c5
RM
1350 processes input from X in a signal handler; processing X input may
1351 call malloc; if input arrives while a matching routine is calling
1352 malloc, then we're scrod. But Emacs can't just block input while
1353 calling matching routines; then we don't notice interrupts when
1354 they come in. So, Emacs blocks input around all regexp calls
1355 except the matching calls, which it leaves unprotected, in the
1356 faith that they will not malloc. */
1357
1358/* Normally, this is fine. */
1359#define MATCH_MAY_ALLOCATE
1360
fa9a63c5
RM
1361/* The match routines may not allocate if (1) they would do it with malloc
1362 and (2) it's not safe for them to use malloc.
1363 Note that if REL_ALLOC is defined, matching would not use malloc for the
1364 failure stack, but we would still use it for the register vectors;
4bb91c68 1365 so REL_ALLOC should not affect this. */
b588157e 1366#if defined REGEX_MALLOC && defined emacs
0b32bf0e 1367# undef MATCH_MAY_ALLOCATE
fa9a63c5
RM
1368#endif
1369
1370\f
1371/* Failure stack declarations and macros; both re_compile_fastmap and
1372 re_match_2 use a failure stack. These have to be macros because of
1373 REGEX_ALLOCATE_STACK. */
5e69f11e 1374
fa9a63c5 1375
320a2a73 1376/* Approximate number of failure points for which to initially allocate space
fa9a63c5
RM
1377 when matching. If this number is exceeded, we allocate more
1378 space, so it is not a hard limit. */
1379#ifndef INIT_FAILURE_ALLOC
0b32bf0e 1380# define INIT_FAILURE_ALLOC 20
fa9a63c5
RM
1381#endif
1382
1383/* Roughly the maximum number of failure points on the stack. Would be
320a2a73 1384 exactly that if always used TYPICAL_FAILURE_SIZE items each time we failed.
fa9a63c5 1385 This is a variable only so users of regex can assign to it; we never
ada30c0e
SM
1386 change it ourselves. We always multiply it by TYPICAL_FAILURE_SIZE
1387 before using it, so it should probably be a byte-count instead. */
c0f9ea08
SM
1388# if defined MATCH_MAY_ALLOCATE
1389/* Note that 4400 was enough to cause a crash on Alpha OSF/1,
320a2a73
KH
1390 whose default stack limit is 2mb. In order for a larger
1391 value to work reliably, you have to try to make it accord
1392 with the process stack limit. */
c0f9ea08
SM
1393size_t re_max_failures = 40000;
1394# else
1395size_t re_max_failures = 4000;
1396# endif
fa9a63c5
RM
1397
1398union fail_stack_elt
1399{
01618498 1400 re_char *pointer;
c0f9ea08
SM
1401 /* This should be the biggest `int' that's no bigger than a pointer. */
1402 long integer;
fa9a63c5
RM
1403};
1404
1405typedef union fail_stack_elt fail_stack_elt_t;
1406
1407typedef struct
1408{
1409 fail_stack_elt_t *stack;
c0f9ea08
SM
1410 size_t size;
1411 size_t avail; /* Offset of next open position. */
1412 size_t frame; /* Offset of the cur constructed frame. */
fa9a63c5
RM
1413} fail_stack_type;
1414
505bde11 1415#define FAIL_STACK_EMPTY() (fail_stack.frame == 0)
fa9a63c5
RM
1416
1417
1418/* Define macros to initialize and free the failure stack.
1419 Do `return -2' if the alloc fails. */
1420
1421#ifdef MATCH_MAY_ALLOCATE
0b32bf0e 1422# define INIT_FAIL_STACK() \
fa9a63c5
RM
1423 do { \
1424 fail_stack.stack = (fail_stack_elt_t *) \
320a2a73
KH
1425 REGEX_ALLOCATE_STACK (INIT_FAILURE_ALLOC * TYPICAL_FAILURE_SIZE \
1426 * sizeof (fail_stack_elt_t)); \
fa9a63c5
RM
1427 \
1428 if (fail_stack.stack == NULL) \
1429 return -2; \
1430 \
1431 fail_stack.size = INIT_FAILURE_ALLOC; \
1432 fail_stack.avail = 0; \
505bde11 1433 fail_stack.frame = 0; \
fa9a63c5 1434 } while (0)
fa9a63c5 1435#else
0b32bf0e 1436# define INIT_FAIL_STACK() \
fa9a63c5
RM
1437 do { \
1438 fail_stack.avail = 0; \
505bde11 1439 fail_stack.frame = 0; \
fa9a63c5
RM
1440 } while (0)
1441
b313f9d8
PE
1442# define RETALLOC_IF(addr, n, t) \
1443 if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t)
fa9a63c5
RM
1444#endif
1445
1446
320a2a73
KH
1447/* Double the size of FAIL_STACK, up to a limit
1448 which allows approximately `re_max_failures' items.
fa9a63c5
RM
1449
1450 Return 1 if succeeds, and 0 if either ran out of memory
5e69f11e
RM
1451 allocating space for it or it was already too large.
1452
4bb91c68 1453 REGEX_REALLOCATE_STACK requires `destination' be declared. */
fa9a63c5 1454
320a2a73
KH
1455/* Factor to increase the failure stack size by
1456 when we increase it.
1457 This used to be 2, but 2 was too wasteful
1458 because the old discarded stacks added up to as much space
1459 were as ultimate, maximum-size stack. */
1460#define FAIL_STACK_GROWTH_FACTOR 4
1461
1462#define GROW_FAIL_STACK(fail_stack) \
eead07d6
KH
1463 (((fail_stack).size * sizeof (fail_stack_elt_t) \
1464 >= re_max_failures * TYPICAL_FAILURE_SIZE) \
fa9a63c5 1465 ? 0 \
320a2a73
KH
1466 : ((fail_stack).stack \
1467 = (fail_stack_elt_t *) \
25fe55af
RS
1468 REGEX_REALLOCATE_STACK ((fail_stack).stack, \
1469 (fail_stack).size * sizeof (fail_stack_elt_t), \
320a2a73
KH
1470 MIN (re_max_failures * TYPICAL_FAILURE_SIZE, \
1471 ((fail_stack).size * sizeof (fail_stack_elt_t) \
1472 * FAIL_STACK_GROWTH_FACTOR))), \
fa9a63c5
RM
1473 \
1474 (fail_stack).stack == NULL \
1475 ? 0 \
6453db45
KH
1476 : ((fail_stack).size \
1477 = (MIN (re_max_failures * TYPICAL_FAILURE_SIZE, \
1478 ((fail_stack).size * sizeof (fail_stack_elt_t) \
1479 * FAIL_STACK_GROWTH_FACTOR)) \
1480 / sizeof (fail_stack_elt_t)), \
25fe55af 1481 1)))
fa9a63c5
RM
1482
1483
fa9a63c5
RM
1484/* Push a pointer value onto the failure stack.
1485 Assumes the variable `fail_stack'. Probably should only
4bb91c68 1486 be called from within `PUSH_FAILURE_POINT'. */
fa9a63c5 1487#define PUSH_FAILURE_POINTER(item) \
01618498 1488 fail_stack.stack[fail_stack.avail++].pointer = (item)
fa9a63c5
RM
1489
1490/* This pushes an integer-valued item onto the failure stack.
1491 Assumes the variable `fail_stack'. Probably should only
4bb91c68 1492 be called from within `PUSH_FAILURE_POINT'. */
fa9a63c5
RM
1493#define PUSH_FAILURE_INT(item) \
1494 fail_stack.stack[fail_stack.avail++].integer = (item)
1495
b313f9d8 1496/* These POP... operations complement the PUSH... operations.
fa9a63c5
RM
1497 All assume that `fail_stack' is nonempty. */
1498#define POP_FAILURE_POINTER() fail_stack.stack[--fail_stack.avail].pointer
1499#define POP_FAILURE_INT() fail_stack.stack[--fail_stack.avail].integer
fa9a63c5 1500
505bde11
SM
1501/* Individual items aside from the registers. */
1502#define NUM_NONREG_ITEMS 3
1503
1504/* Used to examine the stack (to detect infinite loops). */
1505#define FAILURE_PAT(h) fail_stack.stack[(h) - 1].pointer
66f0296e 1506#define FAILURE_STR(h) (fail_stack.stack[(h) - 2].pointer)
505bde11
SM
1507#define NEXT_FAILURE_HANDLE(h) fail_stack.stack[(h) - 3].integer
1508#define TOP_FAILURE_HANDLE() fail_stack.frame
fa9a63c5
RM
1509
1510
505bde11
SM
1511#define ENSURE_FAIL_STACK(space) \
1512while (REMAINING_AVAIL_SLOTS <= space) { \
1513 if (!GROW_FAIL_STACK (fail_stack)) \
1514 return -2; \
1515 DEBUG_PRINT2 ("\n Doubled stack; size now: %d\n", (fail_stack).size);\
1516 DEBUG_PRINT2 (" slots available: %d\n", REMAINING_AVAIL_SLOTS);\
1517}
1518
1519/* Push register NUM onto the stack. */
1520#define PUSH_FAILURE_REG(num) \
1521do { \
1522 char *destination; \
1523 ENSURE_FAIL_STACK(3); \
1524 DEBUG_PRINT4 (" Push reg %d (spanning %p -> %p)\n", \
1525 num, regstart[num], regend[num]); \
1526 PUSH_FAILURE_POINTER (regstart[num]); \
1527 PUSH_FAILURE_POINTER (regend[num]); \
1528 PUSH_FAILURE_INT (num); \
1529} while (0)
1530
01618498
SM
1531/* Change the counter's value to VAL, but make sure that it will
1532 be reset when backtracking. */
1533#define PUSH_NUMBER(ptr,val) \
dc1e502d
SM
1534do { \
1535 char *destination; \
1536 int c; \
1537 ENSURE_FAIL_STACK(3); \
1538 EXTRACT_NUMBER (c, ptr); \
01618498 1539 DEBUG_PRINT4 (" Push number %p = %d -> %d\n", ptr, c, val); \
dc1e502d
SM
1540 PUSH_FAILURE_INT (c); \
1541 PUSH_FAILURE_POINTER (ptr); \
1542 PUSH_FAILURE_INT (-1); \
01618498 1543 STORE_NUMBER (ptr, val); \
dc1e502d
SM
1544} while (0)
1545
505bde11 1546/* Pop a saved register off the stack. */
dc1e502d 1547#define POP_FAILURE_REG_OR_COUNT() \
505bde11 1548do { \
d1dfb56c 1549 long pfreg = POP_FAILURE_INT (); \
19ed5445 1550 if (pfreg == -1) \
dc1e502d
SM
1551 { \
1552 /* It's a counter. */ \
6dcf2d0e
SM
1553 /* Here, we discard `const', making re_match non-reentrant. */ \
1554 unsigned char *ptr = (unsigned char*) POP_FAILURE_POINTER (); \
19ed5445
PE
1555 pfreg = POP_FAILURE_INT (); \
1556 STORE_NUMBER (ptr, pfreg); \
1557 DEBUG_PRINT3 (" Pop counter %p = %d\n", ptr, pfreg); \
dc1e502d
SM
1558 } \
1559 else \
1560 { \
19ed5445
PE
1561 regend[pfreg] = POP_FAILURE_POINTER (); \
1562 regstart[pfreg] = POP_FAILURE_POINTER (); \
dc1e502d 1563 DEBUG_PRINT4 (" Pop reg %d (spanning %p -> %p)\n", \
19ed5445 1564 pfreg, regstart[pfreg], regend[pfreg]); \
dc1e502d 1565 } \
505bde11
SM
1566} while (0)
1567
1568/* Check that we are not stuck in an infinite loop. */
1569#define CHECK_INFINITE_LOOP(pat_cur, string_place) \
1570do { \
d1dfb56c 1571 ssize_t failure = TOP_FAILURE_HANDLE (); \
505bde11 1572 /* Check for infinite matching loops */ \
f6df485f
RS
1573 while (failure > 0 \
1574 && (FAILURE_STR (failure) == string_place \
1575 || FAILURE_STR (failure) == NULL)) \
505bde11
SM
1576 { \
1577 assert (FAILURE_PAT (failure) >= bufp->buffer \
66f0296e 1578 && FAILURE_PAT (failure) <= bufp->buffer + bufp->used); \
505bde11 1579 if (FAILURE_PAT (failure) == pat_cur) \
f6df485f 1580 { \
6df42991
SM
1581 cycle = 1; \
1582 break; \
f6df485f 1583 } \
66f0296e 1584 DEBUG_PRINT2 (" Other pattern: %p\n", FAILURE_PAT (failure)); \
505bde11
SM
1585 failure = NEXT_FAILURE_HANDLE(failure); \
1586 } \
1587 DEBUG_PRINT2 (" Other string: %p\n", FAILURE_STR (failure)); \
1588} while (0)
6df42991 1589
fa9a63c5 1590/* Push the information about the state we will need
5e69f11e
RM
1591 if we ever fail back to it.
1592
505bde11 1593 Requires variables fail_stack, regstart, regend and
320a2a73 1594 num_regs be declared. GROW_FAIL_STACK requires `destination' be
fa9a63c5 1595 declared.
5e69f11e 1596
fa9a63c5
RM
1597 Does `return FAILURE_CODE' if runs out of memory. */
1598
505bde11
SM
1599#define PUSH_FAILURE_POINT(pattern, string_place) \
1600do { \
1601 char *destination; \
1602 /* Must be int, so when we don't save any registers, the arithmetic \
1603 of 0 + -1 isn't done as unsigned. */ \
1604 \
505bde11 1605 DEBUG_STATEMENT (nfailure_points_pushed++); \
4bb91c68 1606 DEBUG_PRINT1 ("\nPUSH_FAILURE_POINT:\n"); \
505bde11
SM
1607 DEBUG_PRINT2 (" Before push, next avail: %d\n", (fail_stack).avail); \
1608 DEBUG_PRINT2 (" size: %d\n", (fail_stack).size);\
1609 \
1610 ENSURE_FAIL_STACK (NUM_NONREG_ITEMS); \
1611 \
1612 DEBUG_PRINT1 ("\n"); \
1613 \
1614 DEBUG_PRINT2 (" Push frame index: %d\n", fail_stack.frame); \
1615 PUSH_FAILURE_INT (fail_stack.frame); \
1616 \
1617 DEBUG_PRINT2 (" Push string %p: `", string_place); \
1618 DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, size2);\
1619 DEBUG_PRINT1 ("'\n"); \
1620 PUSH_FAILURE_POINTER (string_place); \
1621 \
1622 DEBUG_PRINT2 (" Push pattern %p: ", pattern); \
1623 DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern, pend); \
1624 PUSH_FAILURE_POINTER (pattern); \
1625 \
1626 /* Close the frame by moving the frame pointer past it. */ \
1627 fail_stack.frame = fail_stack.avail; \
1628} while (0)
fa9a63c5 1629
320a2a73
KH
1630/* Estimate the size of data pushed by a typical failure stack entry.
1631 An estimate is all we need, because all we use this for
1632 is to choose a limit for how big to make the failure stack. */
ada30c0e 1633/* BEWARE, the value `20' is hard-coded in emacs.c:main(). */
320a2a73 1634#define TYPICAL_FAILURE_SIZE 20
fa9a63c5 1635
fa9a63c5
RM
1636/* How many items can still be added to the stack without overflowing it. */
1637#define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
1638
1639
1640/* Pops what PUSH_FAIL_STACK pushes.
1641
1642 We restore into the parameters, all of which should be lvalues:
1643 STR -- the saved data position.
1644 PAT -- the saved pattern position.
fa9a63c5 1645 REGSTART, REGEND -- arrays of string positions.
5e69f11e 1646
fa9a63c5 1647 Also assumes the variables `fail_stack' and (if debugging), `bufp',
7814e705 1648 `pend', `string1', `size1', `string2', and `size2'. */
fa9a63c5 1649
505bde11
SM
1650#define POP_FAILURE_POINT(str, pat) \
1651do { \
fa9a63c5
RM
1652 assert (!FAIL_STACK_EMPTY ()); \
1653 \
1654 /* Remove failure points and point to how many regs pushed. */ \
1655 DEBUG_PRINT1 ("POP_FAILURE_POINT:\n"); \
1656 DEBUG_PRINT2 (" Before pop, next avail: %d\n", fail_stack.avail); \
25fe55af 1657 DEBUG_PRINT2 (" size: %d\n", fail_stack.size); \
fa9a63c5 1658 \
505bde11
SM
1659 /* Pop the saved registers. */ \
1660 while (fail_stack.frame < fail_stack.avail) \
dc1e502d 1661 POP_FAILURE_REG_OR_COUNT (); \
fa9a63c5 1662 \
01618498 1663 pat = POP_FAILURE_POINTER (); \
505bde11
SM
1664 DEBUG_PRINT2 (" Popping pattern %p: ", pat); \
1665 DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend); \
fa9a63c5
RM
1666 \
1667 /* If the saved string location is NULL, it came from an \
1668 on_failure_keep_string_jump opcode, and we want to throw away the \
1669 saved NULL, thus retaining our current position in the string. */ \
01618498 1670 str = POP_FAILURE_POINTER (); \
505bde11 1671 DEBUG_PRINT2 (" Popping string %p: `", str); \
fa9a63c5
RM
1672 DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2); \
1673 DEBUG_PRINT1 ("'\n"); \
1674 \
505bde11
SM
1675 fail_stack.frame = POP_FAILURE_INT (); \
1676 DEBUG_PRINT2 (" Popping frame index: %d\n", fail_stack.frame); \
fa9a63c5 1677 \
505bde11
SM
1678 assert (fail_stack.avail >= 0); \
1679 assert (fail_stack.frame <= fail_stack.avail); \
fa9a63c5 1680 \
fa9a63c5 1681 DEBUG_STATEMENT (nfailure_points_popped++); \
505bde11 1682} while (0) /* POP_FAILURE_POINT */
fa9a63c5
RM
1683
1684
1685\f
fa9a63c5 1686/* Registers are set to a sentinel when they haven't yet matched. */
4bb91c68 1687#define REG_UNSET(e) ((e) == NULL)
fa9a63c5
RM
1688\f
1689/* Subroutine declarations and macros for regex_compile. */
1690
4bb91c68
SM
1691static reg_errcode_t regex_compile _RE_ARGS ((re_char *pattern, size_t size,
1692 reg_syntax_t syntax,
1693 struct re_pattern_buffer *bufp));
1694static void store_op1 _RE_ARGS ((re_opcode_t op, unsigned char *loc, int arg));
1695static void store_op2 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
1696 int arg1, int arg2));
1697static void insert_op1 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
1698 int arg, unsigned char *end));
1699static void insert_op2 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
1700 int arg1, int arg2, unsigned char *end));
01618498
SM
1701static boolean at_begline_loc_p _RE_ARGS ((re_char *pattern,
1702 re_char *p,
4bb91c68 1703 reg_syntax_t syntax));
01618498
SM
1704static boolean at_endline_loc_p _RE_ARGS ((re_char *p,
1705 re_char *pend,
4bb91c68 1706 reg_syntax_t syntax));
01618498
SM
1707static re_char *skip_one_char _RE_ARGS ((re_char *p));
1708static int analyse_first _RE_ARGS ((re_char *p, re_char *pend,
4bb91c68 1709 char *fastmap, const int multibyte));
fa9a63c5 1710
fa9a63c5 1711/* Fetch the next character in the uncompiled pattern, with no
4bb91c68 1712 translation. */
36595814 1713#define PATFETCH(c) \
2d1675e4
SM
1714 do { \
1715 int len; \
1716 if (p == pend) return REG_EEND; \
62a6e103 1717 c = RE_STRING_CHAR_AND_LENGTH (p, len, multibyte); \
2d1675e4 1718 p += len; \
fa9a63c5
RM
1719 } while (0)
1720
fa9a63c5
RM
1721
1722/* If `translate' is non-null, return translate[D], else just D. We
1723 cast the subscript to translate because some data is declared as
1724 `char *', to avoid warnings when a string constant is passed. But
1725 when we use a character as a subscript we must make it unsigned. */
6676cb1c 1726#ifndef TRANSLATE
0b32bf0e 1727# define TRANSLATE(d) \
66f0296e 1728 (RE_TRANSLATE_P (translate) ? RE_TRANSLATE (translate, (d)) : (d))
6676cb1c 1729#endif
fa9a63c5
RM
1730
1731
1732/* Macros for outputting the compiled pattern into `buffer'. */
1733
1734/* If the buffer isn't allocated when it comes in, use this. */
1735#define INIT_BUF_SIZE 32
1736
4bb91c68 1737/* Make sure we have at least N more bytes of space in buffer. */
fa9a63c5 1738#define GET_BUFFER_SPACE(n) \
01618498 1739 while ((size_t) (b - bufp->buffer + (n)) > bufp->allocated) \
fa9a63c5
RM
1740 EXTEND_BUFFER ()
1741
1742/* Make sure we have one more byte of buffer space and then add C to it. */
1743#define BUF_PUSH(c) \
1744 do { \
1745 GET_BUFFER_SPACE (1); \
1746 *b++ = (unsigned char) (c); \
1747 } while (0)
1748
1749
1750/* Ensure we have two more bytes of buffer space and then append C1 and C2. */
1751#define BUF_PUSH_2(c1, c2) \
1752 do { \
1753 GET_BUFFER_SPACE (2); \
1754 *b++ = (unsigned char) (c1); \
1755 *b++ = (unsigned char) (c2); \
1756 } while (0)
1757
1758
fa9a63c5 1759/* Store a jump with opcode OP at LOC to location TO. We store a
4bb91c68 1760 relative address offset by the three bytes the jump itself occupies. */
fa9a63c5
RM
1761#define STORE_JUMP(op, loc, to) \
1762 store_op1 (op, loc, (to) - (loc) - 3)
1763
1764/* Likewise, for a two-argument jump. */
1765#define STORE_JUMP2(op, loc, to, arg) \
1766 store_op2 (op, loc, (to) - (loc) - 3, arg)
1767
4bb91c68 1768/* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */
fa9a63c5
RM
1769#define INSERT_JUMP(op, loc, to) \
1770 insert_op1 (op, loc, (to) - (loc) - 3, b)
1771
1772/* Like `STORE_JUMP2', but for inserting. Assume `b' is the buffer end. */
1773#define INSERT_JUMP2(op, loc, to, arg) \
1774 insert_op2 (op, loc, (to) - (loc) - 3, arg, b)
1775
1776
1777/* This is not an arbitrary limit: the arguments which represent offsets
839966f3 1778 into the pattern are two bytes long. So if 2^15 bytes turns out to
fa9a63c5 1779 be too small, many things would have to change. */
839966f3
KH
1780# define MAX_BUF_SIZE (1L << 15)
1781
1782#if 0 /* This is when we thought it could be 2^16 bytes. */
4bb91c68
SM
1783/* Any other compiler which, like MSC, has allocation limit below 2^16
1784 bytes will have to use approach similar to what was done below for
1785 MSC and drop MAX_BUF_SIZE a bit. Otherwise you may end up
1786 reallocating to 0 bytes. Such thing is not going to work too well.
1787 You have been warned!! */
1788#if defined _MSC_VER && !defined WIN32
1789/* Microsoft C 16-bit versions limit malloc to approx 65512 bytes. */
1790# define MAX_BUF_SIZE 65500L
1791#else
1792# define MAX_BUF_SIZE (1L << 16)
1793#endif
839966f3 1794#endif /* 0 */
fa9a63c5
RM
1795
1796/* Extend the buffer by twice its current size via realloc and
1797 reset the pointers that pointed into the old block to point to the
1798 correct places in the new one. If extending the buffer results in it
4bb91c68
SM
1799 being larger than MAX_BUF_SIZE, then flag memory exhausted. */
1800#if __BOUNDED_POINTERS__
1801# define SET_HIGH_BOUND(P) (__ptrhigh (P) = __ptrlow (P) + bufp->allocated)
381880b0
CY
1802# define MOVE_BUFFER_POINTER(P) \
1803 (__ptrlow (P) = new_buffer + (__ptrlow (P) - old_buffer), \
1804 SET_HIGH_BOUND (P), \
1805 __ptrvalue (P) = new_buffer + (__ptrvalue (P) - old_buffer))
4bb91c68
SM
1806# define ELSE_EXTEND_BUFFER_HIGH_BOUND \
1807 else \
1808 { \
1809 SET_HIGH_BOUND (b); \
1810 SET_HIGH_BOUND (begalt); \
1811 if (fixup_alt_jump) \
1812 SET_HIGH_BOUND (fixup_alt_jump); \
1813 if (laststart) \
1814 SET_HIGH_BOUND (laststart); \
1815 if (pending_exact) \
1816 SET_HIGH_BOUND (pending_exact); \
1817 }
1818#else
381880b0 1819# define MOVE_BUFFER_POINTER(P) ((P) = new_buffer + ((P) - old_buffer))
4bb91c68
SM
1820# define ELSE_EXTEND_BUFFER_HIGH_BOUND
1821#endif
fa9a63c5 1822#define EXTEND_BUFFER() \
25fe55af 1823 do { \
381880b0 1824 unsigned char *old_buffer = bufp->buffer; \
25fe55af 1825 if (bufp->allocated == MAX_BUF_SIZE) \
fa9a63c5
RM
1826 return REG_ESIZE; \
1827 bufp->allocated <<= 1; \
1828 if (bufp->allocated > MAX_BUF_SIZE) \
25fe55af 1829 bufp->allocated = MAX_BUF_SIZE; \
01618498 1830 RETALLOC (bufp->buffer, bufp->allocated, unsigned char); \
fa9a63c5
RM
1831 if (bufp->buffer == NULL) \
1832 return REG_ESPACE; \
1833 /* If the buffer moved, move all the pointers into it. */ \
1834 if (old_buffer != bufp->buffer) \
1835 { \
381880b0 1836 unsigned char *new_buffer = bufp->buffer; \
4bb91c68
SM
1837 MOVE_BUFFER_POINTER (b); \
1838 MOVE_BUFFER_POINTER (begalt); \
25fe55af 1839 if (fixup_alt_jump) \
4bb91c68 1840 MOVE_BUFFER_POINTER (fixup_alt_jump); \
25fe55af 1841 if (laststart) \
4bb91c68 1842 MOVE_BUFFER_POINTER (laststart); \
25fe55af 1843 if (pending_exact) \
4bb91c68 1844 MOVE_BUFFER_POINTER (pending_exact); \
fa9a63c5 1845 } \
4bb91c68 1846 ELSE_EXTEND_BUFFER_HIGH_BOUND \
fa9a63c5
RM
1847 } while (0)
1848
1849
1850/* Since we have one byte reserved for the register number argument to
1851 {start,stop}_memory, the maximum number of groups we can report
1852 things about is what fits in that byte. */
1853#define MAX_REGNUM 255
1854
1855/* But patterns can have more than `MAX_REGNUM' registers. We just
1856 ignore the excess. */
098d42af 1857typedef int regnum_t;
fa9a63c5
RM
1858
1859
1860/* Macros for the compile stack. */
1861
1862/* Since offsets can go either forwards or backwards, this type needs to
4bb91c68
SM
1863 be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */
1864/* int may be not enough when sizeof(int) == 2. */
1865typedef long pattern_offset_t;
fa9a63c5
RM
1866
1867typedef struct
1868{
1869 pattern_offset_t begalt_offset;
1870 pattern_offset_t fixup_alt_jump;
5e69f11e 1871 pattern_offset_t laststart_offset;
fa9a63c5
RM
1872 regnum_t regnum;
1873} compile_stack_elt_t;
1874
1875
1876typedef struct
1877{
1878 compile_stack_elt_t *stack;
d1dfb56c
EZ
1879 size_t size;
1880 size_t avail; /* Offset of next open position. */
fa9a63c5
RM
1881} compile_stack_type;
1882
1883
1884#define INIT_COMPILE_STACK_SIZE 32
1885
1886#define COMPILE_STACK_EMPTY (compile_stack.avail == 0)
1887#define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size)
1888
4bb91c68 1889/* The next available element. */
fa9a63c5
RM
1890#define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
1891
1cee1e27
SM
1892/* Explicit quit checking is only used on NTemacs and whenever we
1893 use polling to process input events. */
1894#if defined emacs && (defined WINDOWSNT || defined SYNC_INPUT) && defined QUIT
77d11aec
RS
1895extern int immediate_quit;
1896# define IMMEDIATE_QUIT_CHECK \
1897 do { \
1898 if (immediate_quit) QUIT; \
1899 } while (0)
1900#else
1901# define IMMEDIATE_QUIT_CHECK ((void)0)
1902#endif
1903\f
b18215fc
RS
1904/* Structure to manage work area for range table. */
1905struct range_table_work_area
1906{
1907 int *table; /* actual work area. */
1908 int allocated; /* allocated size for work area in bytes. */
7814e705 1909 int used; /* actually used size in words. */
96cc36cc 1910 int bits; /* flag to record character classes */
b18215fc
RS
1911};
1912
77d11aec
RS
1913/* Make sure that WORK_AREA can hold more N multibyte characters.
1914 This is used only in set_image_of_range and set_image_of_range_1.
1915 It expects WORK_AREA to be a pointer.
1916 If it can't get the space, it returns from the surrounding function. */
1917
1918#define EXTEND_RANGE_TABLE(work_area, n) \
1919 do { \
8f924df7 1920 if (((work_area).used + (n)) * sizeof (int) > (work_area).allocated) \
77d11aec 1921 { \
8f924df7
KH
1922 extend_range_table_work_area (&work_area); \
1923 if ((work_area).table == 0) \
77d11aec
RS
1924 return (REG_ESPACE); \
1925 } \
b18215fc
RS
1926 } while (0)
1927
96cc36cc
RS
1928#define SET_RANGE_TABLE_WORK_AREA_BIT(work_area, bit) \
1929 (work_area).bits |= (bit)
1930
14473664
SM
1931/* Bits used to implement the multibyte-part of the various character classes
1932 such as [:alnum:] in a charset's range table. */
1933#define BIT_WORD 0x1
1934#define BIT_LOWER 0x2
1935#define BIT_PUNCT 0x4
1936#define BIT_SPACE 0x8
1937#define BIT_UPPER 0x10
1938#define BIT_MULTIBYTE 0x20
96cc36cc 1939
b18215fc
RS
1940/* Set a range (RANGE_START, RANGE_END) to WORK_AREA. */
1941#define SET_RANGE_TABLE_WORK_AREA(work_area, range_start, range_end) \
77d11aec 1942 do { \
8f924df7 1943 EXTEND_RANGE_TABLE ((work_area), 2); \
b18215fc
RS
1944 (work_area).table[(work_area).used++] = (range_start); \
1945 (work_area).table[(work_area).used++] = (range_end); \
1946 } while (0)
1947
7814e705 1948/* Free allocated memory for WORK_AREA. */
b18215fc
RS
1949#define FREE_RANGE_TABLE_WORK_AREA(work_area) \
1950 do { \
1951 if ((work_area).table) \
1952 free ((work_area).table); \
1953 } while (0)
1954
96cc36cc 1955#define CLEAR_RANGE_TABLE_WORK_USED(work_area) ((work_area).used = 0, (work_area).bits = 0)
b18215fc 1956#define RANGE_TABLE_WORK_USED(work_area) ((work_area).used)
96cc36cc 1957#define RANGE_TABLE_WORK_BITS(work_area) ((work_area).bits)
b18215fc 1958#define RANGE_TABLE_WORK_ELT(work_area, i) ((work_area).table[i])
77d11aec 1959\f
b18215fc 1960
fa9a63c5 1961/* Set the bit for character C in a list. */
01618498 1962#define SET_LIST_BIT(c) (b[((c)) / BYTEWIDTH] |= 1 << ((c) % BYTEWIDTH))
fa9a63c5
RM
1963
1964
bf216479
KH
1965#ifdef emacs
1966
cf9c99bc
KH
1967/* Store characters in the range FROM to TO in the bitmap at B (for
1968 ASCII and unibyte characters) and WORK_AREA (for multibyte
1969 characters) while translating them and paying attention to the
1970 continuity of translated characters.
8f924df7 1971
cf9c99bc
KH
1972 Implementation note: It is better to implement these fairly big
1973 macros by a function, but it's not that easy because macros called
8f924df7 1974 in this macro assume various local variables already declared. */
bf216479 1975
cf9c99bc
KH
1976/* Both FROM and TO are ASCII characters. */
1977
1978#define SETUP_ASCII_RANGE(work_area, FROM, TO) \
1979 do { \
1980 int C0, C1; \
1981 \
1982 for (C0 = (FROM); C0 <= (TO); C0++) \
1983 { \
1984 C1 = TRANSLATE (C0); \
1985 if (! ASCII_CHAR_P (C1)) \
1986 { \
1987 SET_RANGE_TABLE_WORK_AREA ((work_area), C1, C1); \
1988 if ((C1 = RE_CHAR_TO_UNIBYTE (C1)) < 0) \
1989 C1 = C0; \
1990 } \
1991 SET_LIST_BIT (C1); \
1992 } \
1993 } while (0)
1994
1995
1996/* Both FROM and TO are unibyte characters (0x80..0xFF). */
1997
1998#define SETUP_UNIBYTE_RANGE(work_area, FROM, TO) \
1999 do { \
2000 int C0, C1, C2, I; \
2001 int USED = RANGE_TABLE_WORK_USED (work_area); \
2002 \
2003 for (C0 = (FROM); C0 <= (TO); C0++) \
2004 { \
2005 C1 = RE_CHAR_TO_MULTIBYTE (C0); \
2006 if (CHAR_BYTE8_P (C1)) \
2007 SET_LIST_BIT (C0); \
2008 else \
2009 { \
2010 C2 = TRANSLATE (C1); \
2011 if (C2 == C1 \
2012 || (C1 = RE_CHAR_TO_UNIBYTE (C2)) < 0) \
2013 C1 = C0; \
2014 SET_LIST_BIT (C1); \
2015 for (I = RANGE_TABLE_WORK_USED (work_area) - 2; I >= USED; I -= 2) \
2016 { \
2017 int from = RANGE_TABLE_WORK_ELT (work_area, I); \
2018 int to = RANGE_TABLE_WORK_ELT (work_area, I + 1); \
2019 \
2020 if (C2 >= from - 1 && C2 <= to + 1) \
2021 { \
2022 if (C2 == from - 1) \
2023 RANGE_TABLE_WORK_ELT (work_area, I)--; \
2024 else if (C2 == to + 1) \
2025 RANGE_TABLE_WORK_ELT (work_area, I + 1)++; \
2026 break; \
2027 } \
2028 } \
2029 if (I < USED) \
2030 SET_RANGE_TABLE_WORK_AREA ((work_area), C2, C2); \
2031 } \
2032 } \
2033 } while (0)
2034
2035
78edd3b7 2036/* Both FROM and TO are multibyte characters. */
cf9c99bc
KH
2037
2038#define SETUP_MULTIBYTE_RANGE(work_area, FROM, TO) \
2039 do { \
2040 int C0, C1, C2, I, USED = RANGE_TABLE_WORK_USED (work_area); \
2041 \
2042 SET_RANGE_TABLE_WORK_AREA ((work_area), (FROM), (TO)); \
2043 for (C0 = (FROM); C0 <= (TO); C0++) \
2044 { \
2045 C1 = TRANSLATE (C0); \
2046 if ((C2 = RE_CHAR_TO_UNIBYTE (C1)) >= 0 \
2047 || (C1 != C0 && (C2 = RE_CHAR_TO_UNIBYTE (C0)) >= 0)) \
2048 SET_LIST_BIT (C2); \
2049 if (C1 >= (FROM) && C1 <= (TO)) \
2050 continue; \
2051 for (I = RANGE_TABLE_WORK_USED (work_area) - 2; I >= USED; I -= 2) \
2052 { \
2053 int from = RANGE_TABLE_WORK_ELT (work_area, I); \
2054 int to = RANGE_TABLE_WORK_ELT (work_area, I + 1); \
2055 \
2056 if (C1 >= from - 1 && C1 <= to + 1) \
2057 { \
2058 if (C1 == from - 1) \
2059 RANGE_TABLE_WORK_ELT (work_area, I)--; \
2060 else if (C1 == to + 1) \
2061 RANGE_TABLE_WORK_ELT (work_area, I + 1)++; \
2062 break; \
2063 } \
2064 } \
2065 if (I < USED) \
2066 SET_RANGE_TABLE_WORK_AREA ((work_area), C1, C1); \
2067 } \
bf216479
KH
2068 } while (0)
2069
2070#endif /* emacs */
2071
fa9a63c5 2072/* Get the next unsigned number in the uncompiled pattern. */
25fe55af 2073#define GET_UNSIGNED_NUMBER(num) \
c72b0edd
SM
2074 do { \
2075 if (p == pend) \
2076 FREE_STACK_RETURN (REG_EBRACE); \
2077 else \
2078 { \
2079 PATFETCH (c); \
2080 while ('0' <= c && c <= '9') \
2081 { \
2082 int prev; \
2083 if (num < 0) \
2084 num = 0; \
2085 prev = num; \
2086 num = num * 10 + c - '0'; \
2087 if (num / 10 != prev) \
2088 FREE_STACK_RETURN (REG_BADBR); \
2089 if (p == pend) \
2090 FREE_STACK_RETURN (REG_EBRACE); \
2091 PATFETCH (c); \
2092 } \
2093 } \
2094 } while (0)
77d11aec 2095\f
1fdab503 2096#if ! WIDE_CHAR_SUPPORT
01618498 2097
14473664 2098/* Map a string to the char class it names (if any). */
1fdab503 2099re_wctype_t
971de7fb 2100re_wctype (const re_char *str)
14473664 2101{
5b0534c8 2102 const char *string = (const char *) str;
14473664
SM
2103 if (STREQ (string, "alnum")) return RECC_ALNUM;
2104 else if (STREQ (string, "alpha")) return RECC_ALPHA;
2105 else if (STREQ (string, "word")) return RECC_WORD;
2106 else if (STREQ (string, "ascii")) return RECC_ASCII;
2107 else if (STREQ (string, "nonascii")) return RECC_NONASCII;
2108 else if (STREQ (string, "graph")) return RECC_GRAPH;
2109 else if (STREQ (string, "lower")) return RECC_LOWER;
2110 else if (STREQ (string, "print")) return RECC_PRINT;
2111 else if (STREQ (string, "punct")) return RECC_PUNCT;
2112 else if (STREQ (string, "space")) return RECC_SPACE;
2113 else if (STREQ (string, "upper")) return RECC_UPPER;
2114 else if (STREQ (string, "unibyte")) return RECC_UNIBYTE;
2115 else if (STREQ (string, "multibyte")) return RECC_MULTIBYTE;
2116 else if (STREQ (string, "digit")) return RECC_DIGIT;
2117 else if (STREQ (string, "xdigit")) return RECC_XDIGIT;
2118 else if (STREQ (string, "cntrl")) return RECC_CNTRL;
2119 else if (STREQ (string, "blank")) return RECC_BLANK;
2120 else return 0;
2121}
2122
e0f24100 2123/* True if CH is in the char class CC. */
1fdab503 2124boolean
971de7fb 2125re_iswctype (int ch, re_wctype_t cc)
14473664
SM
2126{
2127 switch (cc)
2128 {
0cdd06f8
SM
2129 case RECC_ALNUM: return ISALNUM (ch);
2130 case RECC_ALPHA: return ISALPHA (ch);
2131 case RECC_BLANK: return ISBLANK (ch);
2132 case RECC_CNTRL: return ISCNTRL (ch);
2133 case RECC_DIGIT: return ISDIGIT (ch);
2134 case RECC_GRAPH: return ISGRAPH (ch);
2135 case RECC_LOWER: return ISLOWER (ch);
2136 case RECC_PRINT: return ISPRINT (ch);
2137 case RECC_PUNCT: return ISPUNCT (ch);
2138 case RECC_SPACE: return ISSPACE (ch);
2139 case RECC_UPPER: return ISUPPER (ch);
2140 case RECC_XDIGIT: return ISXDIGIT (ch);
2141 case RECC_ASCII: return IS_REAL_ASCII (ch);
2142 case RECC_NONASCII: return !IS_REAL_ASCII (ch);
2143 case RECC_UNIBYTE: return ISUNIBYTE (ch);
2144 case RECC_MULTIBYTE: return !ISUNIBYTE (ch);
2145 case RECC_WORD: return ISWORD (ch);
2146 case RECC_ERROR: return false;
2147 default:
2148 abort();
14473664
SM
2149 }
2150}
fa9a63c5 2151
14473664
SM
2152/* Return a bit-pattern to use in the range-table bits to match multibyte
2153 chars of class CC. */
2154static int
971de7fb 2155re_wctype_to_bit (re_wctype_t cc)
14473664
SM
2156{
2157 switch (cc)
2158 {
2159 case RECC_NONASCII: case RECC_PRINT: case RECC_GRAPH:
0cdd06f8
SM
2160 case RECC_MULTIBYTE: return BIT_MULTIBYTE;
2161 case RECC_ALPHA: case RECC_ALNUM: case RECC_WORD: return BIT_WORD;
2162 case RECC_LOWER: return BIT_LOWER;
2163 case RECC_UPPER: return BIT_UPPER;
2164 case RECC_PUNCT: return BIT_PUNCT;
2165 case RECC_SPACE: return BIT_SPACE;
14473664 2166 case RECC_ASCII: case RECC_DIGIT: case RECC_XDIGIT: case RECC_CNTRL:
0cdd06f8
SM
2167 case RECC_BLANK: case RECC_UNIBYTE: case RECC_ERROR: return 0;
2168 default:
2169 abort();
14473664
SM
2170 }
2171}
2172#endif
77d11aec
RS
2173\f
2174/* Filling in the work area of a range. */
2175
2176/* Actually extend the space in WORK_AREA. */
2177
2178static void
971de7fb 2179extend_range_table_work_area (struct range_table_work_area *work_area)
177c0ea7 2180{
77d11aec
RS
2181 work_area->allocated += 16 * sizeof (int);
2182 if (work_area->table)
2183 work_area->table
2184 = (int *) realloc (work_area->table, work_area->allocated);
2185 else
2186 work_area->table
2187 = (int *) malloc (work_area->allocated);
2188}
2189
8f924df7 2190#if 0
77d11aec
RS
2191#ifdef emacs
2192
2193/* Carefully find the ranges of codes that are equivalent
2194 under case conversion to the range start..end when passed through
2195 TRANSLATE. Handle the case where non-letters can come in between
2196 two upper-case letters (which happens in Latin-1).
2197 Also handle the case of groups of more than 2 case-equivalent chars.
2198
2199 The basic method is to look at consecutive characters and see
2200 if they can form a run that can be handled as one.
2201
2202 Returns -1 if successful, REG_ESPACE if ran out of space. */
2203
2204static int
2205set_image_of_range_1 (work_area, start, end, translate)
2206 RE_TRANSLATE_TYPE translate;
2207 struct range_table_work_area *work_area;
2208 re_wchar_t start, end;
2209{
2210 /* `one_case' indicates a character, or a run of characters,
2211 each of which is an isolate (no case-equivalents).
2212 This includes all ASCII non-letters.
2213
2214 `two_case' indicates a character, or a run of characters,
2215 each of which has two case-equivalent forms.
2216 This includes all ASCII letters.
2217
2218 `strange' indicates a character that has more than one
2219 case-equivalent. */
177c0ea7 2220
77d11aec
RS
2221 enum case_type {one_case, two_case, strange};
2222
2223 /* Describe the run that is in progress,
2224 which the next character can try to extend.
2225 If run_type is strange, that means there really is no run.
2226 If run_type is one_case, then run_start...run_end is the run.
2227 If run_type is two_case, then the run is run_start...run_end,
2228 and the case-equivalents end at run_eqv_end. */
2229
2230 enum case_type run_type = strange;
2231 int run_start, run_end, run_eqv_end;
2232
2233 Lisp_Object eqv_table;
2234
2235 if (!RE_TRANSLATE_P (translate))
2236 {
b7c12565 2237 EXTEND_RANGE_TABLE (work_area, 2);
77d11aec
RS
2238 work_area->table[work_area->used++] = (start);
2239 work_area->table[work_area->used++] = (end);
b7c12565 2240 return -1;
77d11aec
RS
2241 }
2242
2243 eqv_table = XCHAR_TABLE (translate)->extras[2];
99633e97 2244
77d11aec
RS
2245 for (; start <= end; start++)
2246 {
2247 enum case_type this_type;
2248 int eqv = RE_TRANSLATE (eqv_table, start);
2249 int minchar, maxchar;
2250
2251 /* Classify this character */
2252 if (eqv == start)
2253 this_type = one_case;
2254 else if (RE_TRANSLATE (eqv_table, eqv) == start)
2255 this_type = two_case;
2256 else
2257 this_type = strange;
2258
2259 if (start < eqv)
2260 minchar = start, maxchar = eqv;
2261 else
2262 minchar = eqv, maxchar = start;
2263
2264 /* Can this character extend the run in progress? */
2265 if (this_type == strange || this_type != run_type
2266 || !(minchar == run_end + 1
2267 && (run_type == two_case
2268 ? maxchar == run_eqv_end + 1 : 1)))
2269 {
2270 /* No, end the run.
2271 Record each of its equivalent ranges. */
2272 if (run_type == one_case)
2273 {
2274 EXTEND_RANGE_TABLE (work_area, 2);
2275 work_area->table[work_area->used++] = run_start;
2276 work_area->table[work_area->used++] = run_end;
2277 }
2278 else if (run_type == two_case)
2279 {
2280 EXTEND_RANGE_TABLE (work_area, 4);
2281 work_area->table[work_area->used++] = run_start;
2282 work_area->table[work_area->used++] = run_end;
2283 work_area->table[work_area->used++]
2284 = RE_TRANSLATE (eqv_table, run_start);
2285 work_area->table[work_area->used++]
2286 = RE_TRANSLATE (eqv_table, run_end);
2287 }
2288 run_type = strange;
2289 }
177c0ea7 2290
77d11aec
RS
2291 if (this_type == strange)
2292 {
2293 /* For a strange character, add each of its equivalents, one
2294 by one. Don't start a range. */
2295 do
2296 {
2297 EXTEND_RANGE_TABLE (work_area, 2);
2298 work_area->table[work_area->used++] = eqv;
2299 work_area->table[work_area->used++] = eqv;
2300 eqv = RE_TRANSLATE (eqv_table, eqv);
2301 }
2302 while (eqv != start);
2303 }
2304
2305 /* Add this char to the run, or start a new run. */
2306 else if (run_type == strange)
2307 {
2308 /* Initialize a new range. */
2309 run_type = this_type;
2310 run_start = start;
2311 run_end = start;
2312 run_eqv_end = RE_TRANSLATE (eqv_table, run_end);
2313 }
2314 else
2315 {
2316 /* Extend a running range. */
2317 run_end = minchar;
2318 run_eqv_end = RE_TRANSLATE (eqv_table, run_end);
2319 }
2320 }
2321
2322 /* If a run is still in progress at the end, finish it now
2323 by recording its equivalent ranges. */
2324 if (run_type == one_case)
2325 {
2326 EXTEND_RANGE_TABLE (work_area, 2);
2327 work_area->table[work_area->used++] = run_start;
2328 work_area->table[work_area->used++] = run_end;
2329 }
2330 else if (run_type == two_case)
2331 {
2332 EXTEND_RANGE_TABLE (work_area, 4);
2333 work_area->table[work_area->used++] = run_start;
2334 work_area->table[work_area->used++] = run_end;
2335 work_area->table[work_area->used++]
2336 = RE_TRANSLATE (eqv_table, run_start);
2337 work_area->table[work_area->used++]
2338 = RE_TRANSLATE (eqv_table, run_end);
2339 }
2340
2341 return -1;
2342}
36595814 2343
77d11aec 2344#endif /* emacs */
36595814 2345
2b34df4e 2346/* Record the image of the range start..end when passed through
36595814
SM
2347 TRANSLATE. This is not necessarily TRANSLATE(start)..TRANSLATE(end)
2348 and is not even necessarily contiguous.
b7c12565
RS
2349 Normally we approximate it with the smallest contiguous range that contains
2350 all the chars we need. However, for Latin-1 we go to extra effort
2351 to do a better job.
2352
2353 This function is not called for ASCII ranges.
77d11aec
RS
2354
2355 Returns -1 if successful, REG_ESPACE if ran out of space. */
2356
2357static int
36595814
SM
2358set_image_of_range (work_area, start, end, translate)
2359 RE_TRANSLATE_TYPE translate;
2360 struct range_table_work_area *work_area;
2361 re_wchar_t start, end;
2362{
77d11aec
RS
2363 re_wchar_t cmin, cmax;
2364
2365#ifdef emacs
2366 /* For Latin-1 ranges, use set_image_of_range_1
2367 to get proper handling of ranges that include letters and nonletters.
b7c12565 2368 For a range that includes the whole of Latin-1, this is not necessary.
77d11aec 2369 For other character sets, we don't bother to get this right. */
b7c12565
RS
2370 if (RE_TRANSLATE_P (translate) && start < 04400
2371 && !(start < 04200 && end >= 04377))
77d11aec 2372 {
b7c12565 2373 int newend;
77d11aec 2374 int tem;
b7c12565
RS
2375 newend = end;
2376 if (newend > 04377)
2377 newend = 04377;
2378 tem = set_image_of_range_1 (work_area, start, newend, translate);
77d11aec
RS
2379 if (tem > 0)
2380 return tem;
2381
2382 start = 04400;
2383 if (end < 04400)
2384 return -1;
2385 }
2386#endif
2387
b7c12565
RS
2388 EXTEND_RANGE_TABLE (work_area, 2);
2389 work_area->table[work_area->used++] = (start);
2390 work_area->table[work_area->used++] = (end);
2391
2392 cmin = -1, cmax = -1;
77d11aec 2393
36595814 2394 if (RE_TRANSLATE_P (translate))
b7c12565
RS
2395 {
2396 int ch;
77d11aec 2397
b7c12565
RS
2398 for (ch = start; ch <= end; ch++)
2399 {
2400 re_wchar_t c = TRANSLATE (ch);
2401 if (! (start <= c && c <= end))
2402 {
2403 if (cmin == -1)
2404 cmin = c, cmax = c;
2405 else
2406 {
2407 cmin = MIN (cmin, c);
2408 cmax = MAX (cmax, c);
2409 }
2410 }
2411 }
2412
2413 if (cmin != -1)
2414 {
2415 EXTEND_RANGE_TABLE (work_area, 2);
2416 work_area->table[work_area->used++] = (cmin);
2417 work_area->table[work_area->used++] = (cmax);
2418 }
2419 }
36595814 2420
77d11aec
RS
2421 return -1;
2422}
8f924df7 2423#endif /* 0 */
fa9a63c5
RM
2424\f
2425#ifndef MATCH_MAY_ALLOCATE
2426
2427/* If we cannot allocate large objects within re_match_2_internal,
2428 we make the fail stack and register vectors global.
2429 The fail stack, we grow to the maximum size when a regexp
2430 is compiled.
2431 The register vectors, we adjust in size each time we
2432 compile a regexp, according to the number of registers it needs. */
2433
2434static fail_stack_type fail_stack;
2435
2436/* Size with which the following vectors are currently allocated.
2437 That is so we can make them bigger as needed,
4bb91c68 2438 but never make them smaller. */
fa9a63c5
RM
2439static int regs_allocated_size;
2440
66f0296e
SM
2441static re_char ** regstart, ** regend;
2442static re_char **best_regstart, **best_regend;
fa9a63c5
RM
2443
2444/* Make the register vectors big enough for NUM_REGS registers,
4bb91c68 2445 but don't make them smaller. */
fa9a63c5
RM
2446
2447static
2448regex_grow_registers (num_regs)
2449 int num_regs;
2450{
2451 if (num_regs > regs_allocated_size)
2452 {
66f0296e
SM
2453 RETALLOC_IF (regstart, num_regs, re_char *);
2454 RETALLOC_IF (regend, num_regs, re_char *);
2455 RETALLOC_IF (best_regstart, num_regs, re_char *);
2456 RETALLOC_IF (best_regend, num_regs, re_char *);
fa9a63c5
RM
2457
2458 regs_allocated_size = num_regs;
2459 }
2460}
2461
2462#endif /* not MATCH_MAY_ALLOCATE */
2463\f
99633e97
SM
2464static boolean group_in_compile_stack _RE_ARGS ((compile_stack_type
2465 compile_stack,
2466 regnum_t regnum));
2467
fa9a63c5
RM
2468/* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
2469 Returns one of error codes defined in `regex.h', or zero for success.
2470
2471 Assumes the `allocated' (and perhaps `buffer') and `translate'
2472 fields are set in BUFP on entry.
2473
2474 If it succeeds, results are put in BUFP (if it returns an error, the
2475 contents of BUFP are undefined):
2476 `buffer' is the compiled pattern;
2477 `syntax' is set to SYNTAX;
2478 `used' is set to the length of the compiled pattern;
2479 `fastmap_accurate' is zero;
2480 `re_nsub' is the number of subexpressions in PATTERN;
2481 `not_bol' and `not_eol' are zero;
5e69f11e 2482
c0f9ea08 2483 The `fastmap' field is neither examined nor set. */
fa9a63c5 2484
505bde11
SM
2485/* Insert the `jump' from the end of last alternative to "here".
2486 The space for the jump has already been allocated. */
2487#define FIXUP_ALT_JUMP() \
2488do { \
2489 if (fixup_alt_jump) \
2490 STORE_JUMP (jump, fixup_alt_jump, b); \
2491} while (0)
2492
2493
fa9a63c5
RM
2494/* Return, freeing storage we allocated. */
2495#define FREE_STACK_RETURN(value) \
b18215fc
RS
2496 do { \
2497 FREE_RANGE_TABLE_WORK_AREA (range_table_work); \
2498 free (compile_stack.stack); \
2499 return value; \
2500 } while (0)
fa9a63c5
RM
2501
2502static reg_errcode_t
971de7fb 2503regex_compile (const re_char *pattern, size_t size, reg_syntax_t syntax, struct re_pattern_buffer *bufp)
fa9a63c5 2504{
01618498
SM
2505 /* We fetch characters from PATTERN here. */
2506 register re_wchar_t c, c1;
5e69f11e 2507
fa9a63c5
RM
2508 /* Points to the end of the buffer, where we should append. */
2509 register unsigned char *b;
5e69f11e 2510
fa9a63c5
RM
2511 /* Keeps track of unclosed groups. */
2512 compile_stack_type compile_stack;
2513
2514 /* Points to the current (ending) position in the pattern. */
22336245
RS
2515#ifdef AIX
2516 /* `const' makes AIX compiler fail. */
66f0296e 2517 unsigned char *p = pattern;
22336245 2518#else
66f0296e 2519 re_char *p = pattern;
22336245 2520#endif
66f0296e 2521 re_char *pend = pattern + size;
5e69f11e 2522
fa9a63c5 2523 /* How to translate the characters in the pattern. */
6676cb1c 2524 RE_TRANSLATE_TYPE translate = bufp->translate;
fa9a63c5
RM
2525
2526 /* Address of the count-byte of the most recently inserted `exactn'
2527 command. This makes it possible to tell if a new exact-match
2528 character can be added to that command or if the character requires
2529 a new `exactn' command. */
2530 unsigned char *pending_exact = 0;
2531
2532 /* Address of start of the most recently finished expression.
2533 This tells, e.g., postfix * where to find the start of its
2534 operand. Reset at the beginning of groups and alternatives. */
2535 unsigned char *laststart = 0;
2536
2537 /* Address of beginning of regexp, or inside of last group. */
2538 unsigned char *begalt;
2539
2540 /* Place in the uncompiled pattern (i.e., the {) to
2541 which to go back if the interval is invalid. */
66f0296e 2542 re_char *beg_interval;
5e69f11e 2543
fa9a63c5 2544 /* Address of the place where a forward jump should go to the end of
7814e705 2545 the containing expression. Each alternative of an `or' -- except the
fa9a63c5
RM
2546 last -- ends with a forward jump of this sort. */
2547 unsigned char *fixup_alt_jump = 0;
2548
b18215fc
RS
2549 /* Work area for range table of charset. */
2550 struct range_table_work_area range_table_work;
2551
2d1675e4
SM
2552 /* If the object matched can contain multibyte characters. */
2553 const boolean multibyte = RE_MULTIBYTE_P (bufp);
2554
f9b0fd99
RS
2555 /* Nonzero if we have pushed down into a subpattern. */
2556 int in_subpattern = 0;
2557
2558 /* These hold the values of p, pattern, and pend from the main
2559 pattern when we have pushed into a subpattern. */
da053e48
PE
2560 re_char *main_p IF_LINT (= NULL);
2561 re_char *main_pattern IF_LINT (= NULL);
2562 re_char *main_pend IF_LINT (= NULL);
f9b0fd99 2563
fa9a63c5 2564#ifdef DEBUG
99633e97 2565 debug++;
fa9a63c5 2566 DEBUG_PRINT1 ("\nCompiling pattern: ");
99633e97 2567 if (debug > 0)
fa9a63c5
RM
2568 {
2569 unsigned debug_count;
5e69f11e 2570
fa9a63c5 2571 for (debug_count = 0; debug_count < size; debug_count++)
25fe55af 2572 putchar (pattern[debug_count]);
fa9a63c5
RM
2573 putchar ('\n');
2574 }
2575#endif /* DEBUG */
2576
2577 /* Initialize the compile stack. */
2578 compile_stack.stack = TALLOC (INIT_COMPILE_STACK_SIZE, compile_stack_elt_t);
2579 if (compile_stack.stack == NULL)
2580 return REG_ESPACE;
2581
2582 compile_stack.size = INIT_COMPILE_STACK_SIZE;
2583 compile_stack.avail = 0;
2584
b18215fc
RS
2585 range_table_work.table = 0;
2586 range_table_work.allocated = 0;
2587
fa9a63c5
RM
2588 /* Initialize the pattern buffer. */
2589 bufp->syntax = syntax;
2590 bufp->fastmap_accurate = 0;
2591 bufp->not_bol = bufp->not_eol = 0;
6224b623 2592 bufp->used_syntax = 0;
fa9a63c5
RM
2593
2594 /* Set `used' to zero, so that if we return an error, the pattern
2595 printer (for debugging) will think there's no pattern. We reset it
2596 at the end. */
2597 bufp->used = 0;
5e69f11e 2598
fa9a63c5 2599 /* Always count groups, whether or not bufp->no_sub is set. */
5e69f11e 2600 bufp->re_nsub = 0;
fa9a63c5 2601
0b32bf0e 2602#if !defined emacs && !defined SYNTAX_TABLE
fa9a63c5
RM
2603 /* Initialize the syntax table. */
2604 init_syntax_once ();
2605#endif
2606
2607 if (bufp->allocated == 0)
2608 {
2609 if (bufp->buffer)
2610 { /* If zero allocated, but buffer is non-null, try to realloc
25fe55af 2611 enough space. This loses if buffer's address is bogus, but
7814e705 2612 that is the user's responsibility. */
25fe55af
RS
2613 RETALLOC (bufp->buffer, INIT_BUF_SIZE, unsigned char);
2614 }
fa9a63c5 2615 else
7814e705 2616 { /* Caller did not allocate a buffer. Do it for them. */
25fe55af
RS
2617 bufp->buffer = TALLOC (INIT_BUF_SIZE, unsigned char);
2618 }
fa9a63c5
RM
2619 if (!bufp->buffer) FREE_STACK_RETURN (REG_ESPACE);
2620
2621 bufp->allocated = INIT_BUF_SIZE;
2622 }
2623
2624 begalt = b = bufp->buffer;
2625
2626 /* Loop through the uncompiled pattern until we're at the end. */
f9b0fd99 2627 while (1)
fa9a63c5 2628 {
f9b0fd99
RS
2629 if (p == pend)
2630 {
2631 /* If this is the end of an included regexp,
2632 pop back to the main regexp and try again. */
2633 if (in_subpattern)
2634 {
2635 in_subpattern = 0;
2636 pattern = main_pattern;
2637 p = main_p;
2638 pend = main_pend;
2639 continue;
2640 }
2641 /* If this is the end of the main regexp, we are done. */
2642 break;
2643 }
2644
fa9a63c5
RM
2645 PATFETCH (c);
2646
2647 switch (c)
25fe55af 2648 {
f9b0fd99
RS
2649 case ' ':
2650 {
2651 re_char *p1 = p;
2652
2653 /* If there's no special whitespace regexp, treat
4fb680cd
RS
2654 spaces normally. And don't try to do this recursively. */
2655 if (!whitespace_regexp || in_subpattern)
f9b0fd99
RS
2656 goto normal_char;
2657
2658 /* Peek past following spaces. */
2659 while (p1 != pend)
2660 {
2661 if (*p1 != ' ')
2662 break;
2663 p1++;
2664 }
2665 /* If the spaces are followed by a repetition op,
2666 treat them normally. */
c721eee5
RS
2667 if (p1 != pend
2668 && (*p1 == '*' || *p1 == '+' || *p1 == '?'
f9b0fd99
RS
2669 || (*p1 == '\\' && p1 + 1 != pend && p1[1] == '{')))
2670 goto normal_char;
2671
2672 /* Replace the spaces with the whitespace regexp. */
2673 in_subpattern = 1;
2674 main_p = p1;
2675 main_pend = pend;
2676 main_pattern = pattern;
2677 p = pattern = whitespace_regexp;
5b0534c8 2678 pend = p + strlen ((const char *) p);
f9b0fd99 2679 break;
7814e705 2680 }
f9b0fd99 2681
25fe55af
RS
2682 case '^':
2683 {
7814e705 2684 if ( /* If at start of pattern, it's an operator. */
25fe55af 2685 p == pattern + 1
7814e705 2686 /* If context independent, it's an operator. */
25fe55af 2687 || syntax & RE_CONTEXT_INDEP_ANCHORS
7814e705 2688 /* Otherwise, depends on what's come before. */
25fe55af 2689 || at_begline_loc_p (pattern, p, syntax))
c0f9ea08 2690 BUF_PUSH ((syntax & RE_NO_NEWLINE_ANCHOR) ? begbuf : begline);
25fe55af
RS
2691 else
2692 goto normal_char;
2693 }
2694 break;
2695
2696
2697 case '$':
2698 {
2699 if ( /* If at end of pattern, it's an operator. */
2700 p == pend
7814e705 2701 /* If context independent, it's an operator. */
25fe55af
RS
2702 || syntax & RE_CONTEXT_INDEP_ANCHORS
2703 /* Otherwise, depends on what's next. */
2704 || at_endline_loc_p (p, pend, syntax))
c0f9ea08 2705 BUF_PUSH ((syntax & RE_NO_NEWLINE_ANCHOR) ? endbuf : endline);
25fe55af
RS
2706 else
2707 goto normal_char;
2708 }
2709 break;
fa9a63c5
RM
2710
2711
2712 case '+':
25fe55af
RS
2713 case '?':
2714 if ((syntax & RE_BK_PLUS_QM)
2715 || (syntax & RE_LIMITED_OPS))
2716 goto normal_char;
2717 handle_plus:
2718 case '*':
2719 /* If there is no previous pattern... */
2720 if (!laststart)
2721 {
2722 if (syntax & RE_CONTEXT_INVALID_OPS)
2723 FREE_STACK_RETURN (REG_BADRPT);
2724 else if (!(syntax & RE_CONTEXT_INDEP_OPS))
2725 goto normal_char;
2726 }
2727
2728 {
7814e705 2729 /* 1 means zero (many) matches is allowed. */
66f0296e
SM
2730 boolean zero_times_ok = 0, many_times_ok = 0;
2731 boolean greedy = 1;
25fe55af
RS
2732
2733 /* If there is a sequence of repetition chars, collapse it
2734 down to just one (the right one). We can't combine
2735 interval operators with these because of, e.g., `a{2}*',
7814e705 2736 which should only match an even number of `a's. */
25fe55af
RS
2737
2738 for (;;)
2739 {
0b32bf0e 2740 if ((syntax & RE_FRUGAL)
1c8c6d39
DL
2741 && c == '?' && (zero_times_ok || many_times_ok))
2742 greedy = 0;
2743 else
2744 {
2745 zero_times_ok |= c != '+';
2746 many_times_ok |= c != '?';
2747 }
25fe55af
RS
2748
2749 if (p == pend)
2750 break;
ed0767d8
SM
2751 else if (*p == '*'
2752 || (!(syntax & RE_BK_PLUS_QM)
2753 && (*p == '+' || *p == '?')))
25fe55af 2754 ;
ed0767d8 2755 else if (syntax & RE_BK_PLUS_QM && *p == '\\')
25fe55af 2756 {
ed0767d8
SM
2757 if (p+1 == pend)
2758 FREE_STACK_RETURN (REG_EESCAPE);
2759 if (p[1] == '+' || p[1] == '?')
2760 PATFETCH (c); /* Gobble up the backslash. */
2761 else
2762 break;
25fe55af
RS
2763 }
2764 else
ed0767d8 2765 break;
25fe55af 2766 /* If we get here, we found another repeat character. */
ed0767d8
SM
2767 PATFETCH (c);
2768 }
25fe55af
RS
2769
2770 /* Star, etc. applied to an empty pattern is equivalent
2771 to an empty pattern. */
4e8a9132 2772 if (!laststart || laststart == b)
25fe55af
RS
2773 break;
2774
2775 /* Now we know whether or not zero matches is allowed
7814e705 2776 and also whether or not two or more matches is allowed. */
1c8c6d39
DL
2777 if (greedy)
2778 {
99633e97 2779 if (many_times_ok)
4e8a9132
SM
2780 {
2781 boolean simple = skip_one_char (laststart) == b;
d1dfb56c 2782 size_t startoffset = 0;
f6a3f532 2783 re_opcode_t ofj =
01618498 2784 /* Check if the loop can match the empty string. */
6df42991
SM
2785 (simple || !analyse_first (laststart, b, NULL, 0))
2786 ? on_failure_jump : on_failure_jump_loop;
4e8a9132 2787 assert (skip_one_char (laststart) <= b);
177c0ea7 2788
4e8a9132
SM
2789 if (!zero_times_ok && simple)
2790 { /* Since simple * loops can be made faster by using
2791 on_failure_keep_string_jump, we turn simple P+
2792 into PP* if P is simple. */
2793 unsigned char *p1, *p2;
2794 startoffset = b - laststart;
2795 GET_BUFFER_SPACE (startoffset);
2796 p1 = b; p2 = laststart;
2797 while (p2 < p1)
2798 *b++ = *p2++;
2799 zero_times_ok = 1;
99633e97 2800 }
4e8a9132
SM
2801
2802 GET_BUFFER_SPACE (6);
2803 if (!zero_times_ok)
2804 /* A + loop. */
f6a3f532 2805 STORE_JUMP (ofj, b, b + 6);
99633e97 2806 else
4e8a9132
SM
2807 /* Simple * loops can use on_failure_keep_string_jump
2808 depending on what follows. But since we don't know
2809 that yet, we leave the decision up to
2810 on_failure_jump_smart. */
f6a3f532 2811 INSERT_JUMP (simple ? on_failure_jump_smart : ofj,
4e8a9132 2812 laststart + startoffset, b + 6);
99633e97 2813 b += 3;
4e8a9132 2814 STORE_JUMP (jump, b, laststart + startoffset);
99633e97
SM
2815 b += 3;
2816 }
2817 else
2818 {
4e8a9132
SM
2819 /* A simple ? pattern. */
2820 assert (zero_times_ok);
2821 GET_BUFFER_SPACE (3);
2822 INSERT_JUMP (on_failure_jump, laststart, b + 3);
99633e97
SM
2823 b += 3;
2824 }
1c8c6d39
DL
2825 }
2826 else /* not greedy */
2827 { /* I wish the greedy and non-greedy cases could be merged. */
2828
0683b6fa 2829 GET_BUFFER_SPACE (7); /* We might use less. */
1c8c6d39
DL
2830 if (many_times_ok)
2831 {
f6a3f532
SM
2832 boolean emptyp = analyse_first (laststart, b, NULL, 0);
2833
6df42991
SM
2834 /* The non-greedy multiple match looks like
2835 a repeat..until: we only need a conditional jump
2836 at the end of the loop. */
f6a3f532
SM
2837 if (emptyp) BUF_PUSH (no_op);
2838 STORE_JUMP (emptyp ? on_failure_jump_nastyloop
2839 : on_failure_jump, b, laststart);
1c8c6d39
DL
2840 b += 3;
2841 if (zero_times_ok)
2842 {
2843 /* The repeat...until naturally matches one or more.
2844 To also match zero times, we need to first jump to
6df42991 2845 the end of the loop (its conditional jump). */
1c8c6d39
DL
2846 INSERT_JUMP (jump, laststart, b);
2847 b += 3;
2848 }
2849 }
2850 else
2851 {
2852 /* non-greedy a?? */
1c8c6d39
DL
2853 INSERT_JUMP (jump, laststart, b + 3);
2854 b += 3;
2855 INSERT_JUMP (on_failure_jump, laststart, laststart + 6);
2856 b += 3;
2857 }
2858 }
2859 }
4e8a9132 2860 pending_exact = 0;
fa9a63c5
RM
2861 break;
2862
2863
2864 case '.':
25fe55af
RS
2865 laststart = b;
2866 BUF_PUSH (anychar);
2867 break;
fa9a63c5
RM
2868
2869
25fe55af
RS
2870 case '[':
2871 {
19ed5445
PE
2872 re_char *p1;
2873
b18215fc 2874 CLEAR_RANGE_TABLE_WORK_USED (range_table_work);
fa9a63c5 2875
25fe55af 2876 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
fa9a63c5 2877
25fe55af
RS
2878 /* Ensure that we have enough space to push a charset: the
2879 opcode, the length count, and the bitset; 34 bytes in all. */
fa9a63c5
RM
2880 GET_BUFFER_SPACE (34);
2881
25fe55af 2882 laststart = b;
e318085a 2883
25fe55af 2884 /* We test `*p == '^' twice, instead of using an if
7814e705 2885 statement, so we only need one BUF_PUSH. */
25fe55af
RS
2886 BUF_PUSH (*p == '^' ? charset_not : charset);
2887 if (*p == '^')
2888 p++;
e318085a 2889
25fe55af
RS
2890 /* Remember the first position in the bracket expression. */
2891 p1 = p;
e318085a 2892
7814e705 2893 /* Push the number of bytes in the bitmap. */
25fe55af 2894 BUF_PUSH ((1 << BYTEWIDTH) / BYTEWIDTH);
e318085a 2895
25fe55af 2896 /* Clear the whole map. */
72af86bd 2897 memset (b, 0, (1 << BYTEWIDTH) / BYTEWIDTH);
e318085a 2898
25fe55af
RS
2899 /* charset_not matches newline according to a syntax bit. */
2900 if ((re_opcode_t) b[-2] == charset_not
2901 && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
2902 SET_LIST_BIT ('\n');
fa9a63c5 2903
7814e705 2904 /* Read in characters and ranges, setting map bits. */
25fe55af
RS
2905 for (;;)
2906 {
b18215fc 2907 boolean escaped_char = false;
2d1675e4 2908 const unsigned char *p2 = p;
abbd1bcf 2909 re_wchar_t ch;
e318085a 2910
25fe55af 2911 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
e318085a 2912
36595814
SM
2913 /* Don't translate yet. The range TRANSLATE(X..Y) cannot
2914 always be determined from TRANSLATE(X) and TRANSLATE(Y)
2915 So the translation is done later in a loop. Example:
2916 (let ((case-fold-search t)) (string-match "[A-_]" "A")) */
25fe55af 2917 PATFETCH (c);
e318085a 2918
25fe55af
RS
2919 /* \ might escape characters inside [...] and [^...]. */
2920 if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
2921 {
2922 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
e318085a
RS
2923
2924 PATFETCH (c);
b18215fc 2925 escaped_char = true;
25fe55af 2926 }
b18215fc
RS
2927 else
2928 {
7814e705 2929 /* Could be the end of the bracket expression. If it's
657fcfbd
RS
2930 not (i.e., when the bracket expression is `[]' so
2931 far), the ']' character bit gets set way below. */
2d1675e4 2932 if (c == ']' && p2 != p1)
657fcfbd 2933 break;
25fe55af 2934 }
b18215fc 2935
25fe55af
RS
2936 /* See if we're at the beginning of a possible character
2937 class. */
b18215fc 2938
2d1675e4
SM
2939 if (!escaped_char &&
2940 syntax & RE_CHAR_CLASSES && c == '[' && *p == ':')
657fcfbd 2941 {
7814e705 2942 /* Leave room for the null. */
14473664 2943 unsigned char str[CHAR_CLASS_MAX_LENGTH + 1];
ed0767d8 2944 const unsigned char *class_beg;
b18215fc 2945
25fe55af
RS
2946 PATFETCH (c);
2947 c1 = 0;
ed0767d8 2948 class_beg = p;
b18215fc 2949
25fe55af
RS
2950 /* If pattern is `[[:'. */
2951 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
b18215fc 2952
25fe55af
RS
2953 for (;;)
2954 {
14473664
SM
2955 PATFETCH (c);
2956 if ((c == ':' && *p == ']') || p == pend)
2957 break;
2958 if (c1 < CHAR_CLASS_MAX_LENGTH)
2959 str[c1++] = c;
2960 else
2961 /* This is in any case an invalid class name. */
2962 str[0] = '\0';
25fe55af
RS
2963 }
2964 str[c1] = '\0';
b18215fc
RS
2965
2966 /* If isn't a word bracketed by `[:' and `:]':
2967 undo the ending character, the letters, and
2968 leave the leading `:' and `[' (but set bits for
2969 them). */
25fe55af
RS
2970 if (c == ':' && *p == ']')
2971 {
abbd1bcf 2972 re_wctype_t cc = re_wctype (str);
14473664
SM
2973
2974 if (cc == 0)
fa9a63c5
RM
2975 FREE_STACK_RETURN (REG_ECTYPE);
2976
14473664
SM
2977 /* Throw away the ] at the end of the character
2978 class. */
2979 PATFETCH (c);
fa9a63c5 2980
14473664 2981 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
fa9a63c5 2982
cf9c99bc
KH
2983#ifndef emacs
2984 for (ch = 0; ch < (1 << BYTEWIDTH); ++ch)
8f924df7
KH
2985 if (re_iswctype (btowc (ch), cc))
2986 {
2987 c = TRANSLATE (ch);
ed00c2ac
KH
2988 if (c < (1 << BYTEWIDTH))
2989 SET_LIST_BIT (c);
8f924df7 2990 }
cf9c99bc
KH
2991#else /* emacs */
2992 /* Most character classes in a multibyte match
2993 just set a flag. Exceptions are is_blank,
2994 is_digit, is_cntrl, and is_xdigit, since
2995 they can only match ASCII characters. We
2996 don't need to handle them for multibyte.
2997 They are distinguished by a negative wctype. */
96cc36cc 2998
254c06a8
SM
2999 /* Setup the gl_state object to its buffer-defined
3000 value. This hardcodes the buffer-global
3001 syntax-table for ASCII chars, while the other chars
3002 will obey syntax-table properties. It's not ideal,
3003 but it's the way it's been done until now. */
d48cd3f4 3004 SETUP_BUFFER_SYNTAX_TABLE ();
254c06a8 3005
cf9c99bc 3006 for (ch = 0; ch < 256; ++ch)
25fe55af 3007 {
cf9c99bc
KH
3008 c = RE_CHAR_TO_MULTIBYTE (ch);
3009 if (! CHAR_BYTE8_P (c)
3010 && re_iswctype (c, cc))
8f924df7 3011 {
cf9c99bc
KH
3012 SET_LIST_BIT (ch);
3013 c1 = TRANSLATE (c);
3014 if (c1 == c)
3015 continue;
3016 if (ASCII_CHAR_P (c1))
3017 SET_LIST_BIT (c1);
3018 else if ((c1 = RE_CHAR_TO_UNIBYTE (c1)) >= 0)
3019 SET_LIST_BIT (c1);
8f924df7 3020 }
25fe55af 3021 }
cf9c99bc
KH
3022 SET_RANGE_TABLE_WORK_AREA_BIT
3023 (range_table_work, re_wctype_to_bit (cc));
3024#endif /* emacs */
6224b623
SM
3025 /* In most cases the matching rule for char classes
3026 only uses the syntax table for multibyte chars,
3027 so that the content of the syntax-table it is not
3028 hardcoded in the range_table. SPACE and WORD are
3029 the two exceptions. */
3030 if ((1 << cc) & ((1 << RECC_SPACE) | (1 << RECC_WORD)))
3031 bufp->used_syntax = 1;
3032
b18215fc
RS
3033 /* Repeat the loop. */
3034 continue;
25fe55af
RS
3035 }
3036 else
3037 {
ed0767d8
SM
3038 /* Go back to right after the "[:". */
3039 p = class_beg;
25fe55af 3040 SET_LIST_BIT ('[');
b18215fc
RS
3041
3042 /* Because the `:' may starts the range, we
3043 can't simply set bit and repeat the loop.
7814e705 3044 Instead, just set it to C and handle below. */
b18215fc 3045 c = ':';
25fe55af
RS
3046 }
3047 }
b18215fc
RS
3048
3049 if (p < pend && p[0] == '-' && p[1] != ']')
3050 {
3051
3052 /* Discard the `-'. */
3053 PATFETCH (c1);
3054
3055 /* Fetch the character which ends the range. */
3056 PATFETCH (c1);
cf9c99bc
KH
3057#ifdef emacs
3058 if (CHAR_BYTE8_P (c1)
3059 && ! ASCII_CHAR_P (c) && ! CHAR_BYTE8_P (c))
3060 /* Treat the range from a multibyte character to
3061 raw-byte character as empty. */
3062 c = c1 + 1;
3063#endif /* emacs */
e318085a 3064 }
25fe55af 3065 else
b18215fc
RS
3066 /* Range from C to C. */
3067 c1 = c;
3068
cf9c99bc 3069 if (c > c1)
25fe55af 3070 {
cf9c99bc
KH
3071 if (syntax & RE_NO_EMPTY_RANGES)
3072 FREE_STACK_RETURN (REG_ERANGEX);
3073 /* Else, repeat the loop. */
bf216479 3074 }
6fdd04b0 3075 else
25fe55af 3076 {
cf9c99bc
KH
3077#ifndef emacs
3078 /* Set the range into bitmap */
8f924df7 3079 for (; c <= c1; c++)
b18215fc 3080 {
cf9c99bc
KH
3081 ch = TRANSLATE (c);
3082 if (ch < (1 << BYTEWIDTH))
3083 SET_LIST_BIT (ch);
3084 }
3085#else /* emacs */
3086 if (c < 128)
3087 {
3088 ch = MIN (127, c1);
3089 SETUP_ASCII_RANGE (range_table_work, c, ch);
3090 c = ch + 1;
3091 if (CHAR_BYTE8_P (c1))
3092 c = BYTE8_TO_CHAR (128);
3093 }
3094 if (c <= c1)
3095 {
3096 if (CHAR_BYTE8_P (c))
3097 {
3098 c = CHAR_TO_BYTE8 (c);
3099 c1 = CHAR_TO_BYTE8 (c1);
3100 for (; c <= c1; c++)
3101 SET_LIST_BIT (c);
3102 }
3103 else if (multibyte)
3104 {
3105 SETUP_MULTIBYTE_RANGE (range_table_work, c, c1);
3106 }
3107 else
3108 {
3109 SETUP_UNIBYTE_RANGE (range_table_work, c, c1);
3110 }
e934739e 3111 }
cf9c99bc 3112#endif /* emacs */
25fe55af 3113 }
e318085a
RS
3114 }
3115
25fe55af 3116 /* Discard any (non)matching list bytes that are all 0 at the
7814e705 3117 end of the map. Decrease the map-length byte too. */
25fe55af
RS
3118 while ((int) b[-1] > 0 && b[b[-1] - 1] == 0)
3119 b[-1]--;
3120 b += b[-1];
fa9a63c5 3121
96cc36cc
RS
3122 /* Build real range table from work area. */
3123 if (RANGE_TABLE_WORK_USED (range_table_work)
3124 || RANGE_TABLE_WORK_BITS (range_table_work))
b18215fc
RS
3125 {
3126 int i;
3127 int used = RANGE_TABLE_WORK_USED (range_table_work);
fa9a63c5 3128
b18215fc 3129 /* Allocate space for COUNT + RANGE_TABLE. Needs two
96cc36cc
RS
3130 bytes for flags, two for COUNT, and three bytes for
3131 each character. */
3132 GET_BUFFER_SPACE (4 + used * 3);
fa9a63c5 3133
b18215fc
RS
3134 /* Indicate the existence of range table. */
3135 laststart[1] |= 0x80;
fa9a63c5 3136
96cc36cc
RS
3137 /* Store the character class flag bits into the range table.
3138 If not in emacs, these flag bits are always 0. */
3139 *b++ = RANGE_TABLE_WORK_BITS (range_table_work) & 0xff;
3140 *b++ = RANGE_TABLE_WORK_BITS (range_table_work) >> 8;
3141
b18215fc
RS
3142 STORE_NUMBER_AND_INCR (b, used / 2);
3143 for (i = 0; i < used; i++)
3144 STORE_CHARACTER_AND_INCR
3145 (b, RANGE_TABLE_WORK_ELT (range_table_work, i));
3146 }
25fe55af
RS
3147 }
3148 break;
fa9a63c5
RM
3149
3150
b18215fc 3151 case '(':
25fe55af
RS
3152 if (syntax & RE_NO_BK_PARENS)
3153 goto handle_open;
3154 else
3155 goto normal_char;
fa9a63c5
RM
3156
3157
25fe55af
RS
3158 case ')':
3159 if (syntax & RE_NO_BK_PARENS)
3160 goto handle_close;
3161 else
3162 goto normal_char;
e318085a
RS
3163
3164
25fe55af
RS
3165 case '\n':
3166 if (syntax & RE_NEWLINE_ALT)
3167 goto handle_alt;
3168 else
3169 goto normal_char;
e318085a
RS
3170
3171
b18215fc 3172 case '|':
25fe55af
RS
3173 if (syntax & RE_NO_BK_VBAR)
3174 goto handle_alt;
3175 else
3176 goto normal_char;
3177
3178
3179 case '{':
3180 if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES)
3181 goto handle_interval;
3182 else
3183 goto normal_char;
3184
3185
3186 case '\\':
3187 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
3188
3189 /* Do not translate the character after the \, so that we can
3190 distinguish, e.g., \B from \b, even if we normally would
3191 translate, e.g., B to b. */
36595814 3192 PATFETCH (c);
25fe55af
RS
3193
3194 switch (c)
3195 {
3196 case '(':
3197 if (syntax & RE_NO_BK_PARENS)
3198 goto normal_backslash;
3199
3200 handle_open:
505bde11
SM
3201 {
3202 int shy = 0;
c69b0314 3203 regnum_t regnum = 0;
505bde11
SM
3204 if (p+1 < pend)
3205 {
3206 /* Look for a special (?...) construct */
ed0767d8 3207 if ((syntax & RE_SHY_GROUPS) && *p == '?')
505bde11 3208 {
ed0767d8 3209 PATFETCH (c); /* Gobble up the '?'. */
c69b0314 3210 while (!shy)
505bde11 3211 {
c69b0314
SM
3212 PATFETCH (c);
3213 switch (c)
3214 {
3215 case ':': shy = 1; break;
3216 case '0':
3217 /* An explicitly specified regnum must start
3218 with non-0. */
3219 if (regnum == 0)
3220 FREE_STACK_RETURN (REG_BADPAT);
3221 case '1': case '2': case '3': case '4':
3222 case '5': case '6': case '7': case '8': case '9':
3223 regnum = 10*regnum + (c - '0'); break;
3224 default:
3225 /* Only (?:...) is supported right now. */
3226 FREE_STACK_RETURN (REG_BADPAT);
3227 }
505bde11
SM
3228 }
3229 }
505bde11
SM
3230 }
3231
3232 if (!shy)
c69b0314
SM
3233 regnum = ++bufp->re_nsub;
3234 else if (regnum)
3235 { /* It's actually not shy, but explicitly numbered. */
3236 shy = 0;
3237 if (regnum > bufp->re_nsub)
3238 bufp->re_nsub = regnum;
3239 else if (regnum > bufp->re_nsub
3240 /* Ideally, we'd want to check that the specified
3241 group can't have matched (i.e. all subgroups
3242 using the same regnum are in other branches of
3243 OR patterns), but we don't currently keep track
3244 of enough info to do that easily. */
3245 || group_in_compile_stack (compile_stack, regnum))
3246 FREE_STACK_RETURN (REG_BADPAT);
505bde11 3247 }
c69b0314
SM
3248 else
3249 /* It's really shy. */
3250 regnum = - bufp->re_nsub;
25fe55af 3251
99633e97
SM
3252 if (COMPILE_STACK_FULL)
3253 {
3254 RETALLOC (compile_stack.stack, compile_stack.size << 1,
3255 compile_stack_elt_t);
3256 if (compile_stack.stack == NULL) return REG_ESPACE;
25fe55af 3257
99633e97
SM
3258 compile_stack.size <<= 1;
3259 }
25fe55af 3260
99633e97 3261 /* These are the values to restore when we hit end of this
7814e705 3262 group. They are all relative offsets, so that if the
99633e97
SM
3263 whole pattern moves because of realloc, they will still
3264 be valid. */
3265 COMPILE_STACK_TOP.begalt_offset = begalt - bufp->buffer;
3266 COMPILE_STACK_TOP.fixup_alt_jump
3267 = fixup_alt_jump ? fixup_alt_jump - bufp->buffer + 1 : 0;
3268 COMPILE_STACK_TOP.laststart_offset = b - bufp->buffer;
c69b0314 3269 COMPILE_STACK_TOP.regnum = regnum;
99633e97 3270
c69b0314
SM
3271 /* Do not push a start_memory for groups beyond the last one
3272 we can represent in the compiled pattern. */
3273 if (regnum <= MAX_REGNUM && regnum > 0)
99633e97
SM
3274 BUF_PUSH_2 (start_memory, regnum);
3275
3276 compile_stack.avail++;
3277
3278 fixup_alt_jump = 0;
3279 laststart = 0;
3280 begalt = b;
3281 /* If we've reached MAX_REGNUM groups, then this open
3282 won't actually generate any code, so we'll have to
3283 clear pending_exact explicitly. */
3284 pending_exact = 0;
3285 break;
505bde11 3286 }
25fe55af
RS
3287
3288 case ')':
3289 if (syntax & RE_NO_BK_PARENS) goto normal_backslash;
3290
3291 if (COMPILE_STACK_EMPTY)
505bde11
SM
3292 {
3293 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
3294 goto normal_backslash;
3295 else
3296 FREE_STACK_RETURN (REG_ERPAREN);
3297 }
25fe55af
RS
3298
3299 handle_close:
505bde11 3300 FIXUP_ALT_JUMP ();
25fe55af
RS
3301
3302 /* See similar code for backslashed left paren above. */
3303 if (COMPILE_STACK_EMPTY)
505bde11
SM
3304 {
3305 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
3306 goto normal_char;
3307 else
3308 FREE_STACK_RETURN (REG_ERPAREN);
3309 }
25fe55af
RS
3310
3311 /* Since we just checked for an empty stack above, this
3312 ``can't happen''. */
3313 assert (compile_stack.avail != 0);
3314 {
3315 /* We don't just want to restore into `regnum', because
3316 later groups should continue to be numbered higher,
7814e705 3317 as in `(ab)c(de)' -- the second group is #2. */
c69b0314 3318 regnum_t regnum;
25fe55af
RS
3319
3320 compile_stack.avail--;
3321 begalt = bufp->buffer + COMPILE_STACK_TOP.begalt_offset;
3322 fixup_alt_jump
3323 = COMPILE_STACK_TOP.fixup_alt_jump
3324 ? bufp->buffer + COMPILE_STACK_TOP.fixup_alt_jump - 1
3325 : 0;
3326 laststart = bufp->buffer + COMPILE_STACK_TOP.laststart_offset;
c69b0314 3327 regnum = COMPILE_STACK_TOP.regnum;
b18215fc
RS
3328 /* If we've reached MAX_REGNUM groups, then this open
3329 won't actually generate any code, so we'll have to
3330 clear pending_exact explicitly. */
3331 pending_exact = 0;
e318085a 3332
25fe55af 3333 /* We're at the end of the group, so now we know how many
7814e705 3334 groups were inside this one. */
c69b0314
SM
3335 if (regnum <= MAX_REGNUM && regnum > 0)
3336 BUF_PUSH_2 (stop_memory, regnum);
25fe55af
RS
3337 }
3338 break;
3339
3340
3341 case '|': /* `\|'. */
3342 if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR)
3343 goto normal_backslash;
3344 handle_alt:
3345 if (syntax & RE_LIMITED_OPS)
3346 goto normal_char;
3347
3348 /* Insert before the previous alternative a jump which
7814e705 3349 jumps to this alternative if the former fails. */
25fe55af
RS
3350 GET_BUFFER_SPACE (3);
3351 INSERT_JUMP (on_failure_jump, begalt, b + 6);
3352 pending_exact = 0;
3353 b += 3;
3354
3355 /* The alternative before this one has a jump after it
3356 which gets executed if it gets matched. Adjust that
3357 jump so it will jump to this alternative's analogous
3358 jump (put in below, which in turn will jump to the next
3359 (if any) alternative's such jump, etc.). The last such
3360 jump jumps to the correct final destination. A picture:
3361 _____ _____
3362 | | | |
3363 | v | v
d1dfb56c 3364 a | b | c
25fe55af
RS
3365
3366 If we are at `b', then fixup_alt_jump right now points to a
3367 three-byte space after `a'. We'll put in the jump, set
3368 fixup_alt_jump to right after `b', and leave behind three
3369 bytes which we'll fill in when we get to after `c'. */
3370
505bde11 3371 FIXUP_ALT_JUMP ();
25fe55af
RS
3372
3373 /* Mark and leave space for a jump after this alternative,
3374 to be filled in later either by next alternative or
3375 when know we're at the end of a series of alternatives. */
3376 fixup_alt_jump = b;
3377 GET_BUFFER_SPACE (3);
3378 b += 3;
3379
3380 laststart = 0;
3381 begalt = b;
3382 break;
3383
3384
3385 case '{':
3386 /* If \{ is a literal. */
3387 if (!(syntax & RE_INTERVALS)
3388 /* If we're at `\{' and it's not the open-interval
3389 operator. */
4bb91c68 3390 || (syntax & RE_NO_BK_BRACES))
25fe55af
RS
3391 goto normal_backslash;
3392
3393 handle_interval:
3394 {
3395 /* If got here, then the syntax allows intervals. */
3396
3397 /* At least (most) this many matches must be made. */
99633e97 3398 int lower_bound = 0, upper_bound = -1;
25fe55af 3399
ed0767d8 3400 beg_interval = p;
25fe55af 3401
25fe55af
RS
3402 GET_UNSIGNED_NUMBER (lower_bound);
3403
3404 if (c == ',')
ed0767d8 3405 GET_UNSIGNED_NUMBER (upper_bound);
25fe55af
RS
3406 else
3407 /* Interval such as `{1}' => match exactly once. */
3408 upper_bound = lower_bound;
3409
3410 if (lower_bound < 0 || upper_bound > RE_DUP_MAX
ed0767d8 3411 || (upper_bound >= 0 && lower_bound > upper_bound))
4bb91c68 3412 FREE_STACK_RETURN (REG_BADBR);
25fe55af
RS
3413
3414 if (!(syntax & RE_NO_BK_BRACES))
3415 {
4bb91c68
SM
3416 if (c != '\\')
3417 FREE_STACK_RETURN (REG_BADBR);
c72b0edd
SM
3418 if (p == pend)
3419 FREE_STACK_RETURN (REG_EESCAPE);
25fe55af
RS
3420 PATFETCH (c);
3421 }
3422
3423 if (c != '}')
4bb91c68 3424 FREE_STACK_RETURN (REG_BADBR);
25fe55af
RS
3425
3426 /* We just parsed a valid interval. */
3427
3428 /* If it's invalid to have no preceding re. */
3429 if (!laststart)
3430 {
3431 if (syntax & RE_CONTEXT_INVALID_OPS)
3432 FREE_STACK_RETURN (REG_BADRPT);
3433 else if (syntax & RE_CONTEXT_INDEP_OPS)
3434 laststart = b;
3435 else
3436 goto unfetch_interval;
3437 }
3438
6df42991
SM
3439 if (upper_bound == 0)
3440 /* If the upper bound is zero, just drop the sub pattern
3441 altogether. */
3442 b = laststart;
3443 else if (lower_bound == 1 && upper_bound == 1)
3444 /* Just match it once: nothing to do here. */
3445 ;
3446
3447 /* Otherwise, we have a nontrivial interval. When
3448 we're all done, the pattern will look like:
3449 set_number_at <jump count> <upper bound>
3450 set_number_at <succeed_n count> <lower bound>
3451 succeed_n <after jump addr> <succeed_n count>
3452 <body of loop>
3453 jump_n <succeed_n addr> <jump count>
3454 (The upper bound and `jump_n' are omitted if
3455 `upper_bound' is 1, though.) */
3456 else
3457 { /* If the upper bound is > 1, we need to insert
3458 more at the end of the loop. */
3459 unsigned int nbytes = (upper_bound < 0 ? 3
3460 : upper_bound > 1 ? 5 : 0);
3461 unsigned int startoffset = 0;
3462
3463 GET_BUFFER_SPACE (20); /* We might use less. */
3464
3465 if (lower_bound == 0)
3466 {
3467 /* A succeed_n that starts with 0 is really a
3468 a simple on_failure_jump_loop. */
3469 INSERT_JUMP (on_failure_jump_loop, laststart,
3470 b + 3 + nbytes);
3471 b += 3;
3472 }
3473 else
3474 {
3475 /* Initialize lower bound of the `succeed_n', even
3476 though it will be set during matching by its
3477 attendant `set_number_at' (inserted next),
3478 because `re_compile_fastmap' needs to know.
3479 Jump to the `jump_n' we might insert below. */
3480 INSERT_JUMP2 (succeed_n, laststart,
3481 b + 5 + nbytes,
3482 lower_bound);
3483 b += 5;
3484
3485 /* Code to initialize the lower bound. Insert
7814e705 3486 before the `succeed_n'. The `5' is the last two
6df42991
SM
3487 bytes of this `set_number_at', plus 3 bytes of
3488 the following `succeed_n'. */
3489 insert_op2 (set_number_at, laststart, 5, lower_bound, b);
3490 b += 5;
3491 startoffset += 5;
3492 }
3493
3494 if (upper_bound < 0)
3495 {
3496 /* A negative upper bound stands for infinity,
3497 in which case it degenerates to a plain jump. */
3498 STORE_JUMP (jump, b, laststart + startoffset);
3499 b += 3;
3500 }
3501 else if (upper_bound > 1)
3502 { /* More than one repetition is allowed, so
3503 append a backward jump to the `succeed_n'
3504 that starts this interval.
3505
3506 When we've reached this during matching,
3507 we'll have matched the interval once, so
3508 jump back only `upper_bound - 1' times. */
3509 STORE_JUMP2 (jump_n, b, laststart + startoffset,
3510 upper_bound - 1);
3511 b += 5;
3512
3513 /* The location we want to set is the second
3514 parameter of the `jump_n'; that is `b-2' as
3515 an absolute address. `laststart' will be
3516 the `set_number_at' we're about to insert;
3517 `laststart+3' the number to set, the source
3518 for the relative address. But we are
3519 inserting into the middle of the pattern --
3520 so everything is getting moved up by 5.
3521 Conclusion: (b - 2) - (laststart + 3) + 5,
3522 i.e., b - laststart.
3523
3524 We insert this at the beginning of the loop
3525 so that if we fail during matching, we'll
3526 reinitialize the bounds. */
3527 insert_op2 (set_number_at, laststart, b - laststart,
3528 upper_bound - 1, b);
3529 b += 5;
3530 }
3531 }
25fe55af
RS
3532 pending_exact = 0;
3533 beg_interval = NULL;
3534 }
3535 break;
3536
3537 unfetch_interval:
3538 /* If an invalid interval, match the characters as literals. */
3539 assert (beg_interval);
3540 p = beg_interval;
3541 beg_interval = NULL;
3542
3543 /* normal_char and normal_backslash need `c'. */
ed0767d8 3544 c = '{';
25fe55af
RS
3545
3546 if (!(syntax & RE_NO_BK_BRACES))
3547 {
ed0767d8
SM
3548 assert (p > pattern && p[-1] == '\\');
3549 goto normal_backslash;
25fe55af 3550 }
ed0767d8
SM
3551 else
3552 goto normal_char;
e318085a 3553
b18215fc 3554#ifdef emacs
25fe55af 3555 /* There is no way to specify the before_dot and after_dot
7814e705 3556 operators. rms says this is ok. --karl */
25fe55af
RS
3557 case '=':
3558 BUF_PUSH (at_dot);
3559 break;
3560
3561 case 's':
3562 laststart = b;
3563 PATFETCH (c);
3564 BUF_PUSH_2 (syntaxspec, syntax_spec_code[c]);
3565 break;
3566
3567 case 'S':
3568 laststart = b;
3569 PATFETCH (c);
3570 BUF_PUSH_2 (notsyntaxspec, syntax_spec_code[c]);
3571 break;
b18215fc
RS
3572
3573 case 'c':
3574 laststart = b;
36595814 3575 PATFETCH (c);
b18215fc
RS
3576 BUF_PUSH_2 (categoryspec, c);
3577 break;
e318085a 3578
b18215fc
RS
3579 case 'C':
3580 laststart = b;
36595814 3581 PATFETCH (c);
b18215fc
RS
3582 BUF_PUSH_2 (notcategoryspec, c);
3583 break;
3584#endif /* emacs */
e318085a 3585
e318085a 3586
25fe55af 3587 case 'w':
4bb91c68
SM
3588 if (syntax & RE_NO_GNU_OPS)
3589 goto normal_char;
25fe55af 3590 laststart = b;
1fb352e0 3591 BUF_PUSH_2 (syntaxspec, Sword);
25fe55af 3592 break;
e318085a 3593
e318085a 3594
25fe55af 3595 case 'W':
4bb91c68
SM
3596 if (syntax & RE_NO_GNU_OPS)
3597 goto normal_char;
25fe55af 3598 laststart = b;
1fb352e0 3599 BUF_PUSH_2 (notsyntaxspec, Sword);
25fe55af 3600 break;
e318085a
RS
3601
3602
25fe55af 3603 case '<':
4bb91c68
SM
3604 if (syntax & RE_NO_GNU_OPS)
3605 goto normal_char;
25fe55af
RS
3606 BUF_PUSH (wordbeg);
3607 break;
e318085a 3608
25fe55af 3609 case '>':
4bb91c68
SM
3610 if (syntax & RE_NO_GNU_OPS)
3611 goto normal_char;
25fe55af
RS
3612 BUF_PUSH (wordend);
3613 break;
e318085a 3614
669fa600
SM
3615 case '_':
3616 if (syntax & RE_NO_GNU_OPS)
3617 goto normal_char;
3618 laststart = b;
3619 PATFETCH (c);
3620 if (c == '<')
3621 BUF_PUSH (symbeg);
3622 else if (c == '>')
3623 BUF_PUSH (symend);
3624 else
3625 FREE_STACK_RETURN (REG_BADPAT);
3626 break;
3627
25fe55af 3628 case 'b':
4bb91c68
SM
3629 if (syntax & RE_NO_GNU_OPS)
3630 goto normal_char;
25fe55af
RS
3631 BUF_PUSH (wordbound);
3632 break;
e318085a 3633
25fe55af 3634 case 'B':
4bb91c68
SM
3635 if (syntax & RE_NO_GNU_OPS)
3636 goto normal_char;
25fe55af
RS
3637 BUF_PUSH (notwordbound);
3638 break;
fa9a63c5 3639
25fe55af 3640 case '`':
4bb91c68
SM
3641 if (syntax & RE_NO_GNU_OPS)
3642 goto normal_char;
25fe55af
RS
3643 BUF_PUSH (begbuf);
3644 break;
e318085a 3645
25fe55af 3646 case '\'':
4bb91c68
SM
3647 if (syntax & RE_NO_GNU_OPS)
3648 goto normal_char;
25fe55af
RS
3649 BUF_PUSH (endbuf);
3650 break;
e318085a 3651
25fe55af
RS
3652 case '1': case '2': case '3': case '4': case '5':
3653 case '6': case '7': case '8': case '9':
0cdd06f8
SM
3654 {
3655 regnum_t reg;
e318085a 3656
0cdd06f8
SM
3657 if (syntax & RE_NO_BK_REFS)
3658 goto normal_backslash;
e318085a 3659
0cdd06f8 3660 reg = c - '0';
e318085a 3661
c69b0314
SM
3662 if (reg > bufp->re_nsub || reg < 1
3663 /* Can't back reference to a subexp before its end. */
3664 || group_in_compile_stack (compile_stack, reg))
0cdd06f8 3665 FREE_STACK_RETURN (REG_ESUBREG);
e318085a 3666
0cdd06f8
SM
3667 laststart = b;
3668 BUF_PUSH_2 (duplicate, reg);
3669 }
25fe55af 3670 break;
e318085a 3671
e318085a 3672
25fe55af
RS
3673 case '+':
3674 case '?':
3675 if (syntax & RE_BK_PLUS_QM)
3676 goto handle_plus;
3677 else
3678 goto normal_backslash;
3679
3680 default:
3681 normal_backslash:
3682 /* You might think it would be useful for \ to mean
3683 not to translate; but if we don't translate it
4bb91c68 3684 it will never match anything. */
25fe55af
RS
3685 goto normal_char;
3686 }
3687 break;
fa9a63c5
RM
3688
3689
3690 default:
25fe55af 3691 /* Expects the character in `c'. */
fa9a63c5 3692 normal_char:
36595814 3693 /* If no exactn currently being built. */
25fe55af 3694 if (!pending_exact
fa9a63c5 3695
25fe55af
RS
3696 /* If last exactn not at current position. */
3697 || pending_exact + *pending_exact + 1 != b
5e69f11e 3698
25fe55af 3699 /* We have only one byte following the exactn for the count. */
2d1675e4 3700 || *pending_exact >= (1 << BYTEWIDTH) - MAX_MULTIBYTE_LENGTH
fa9a63c5 3701
7814e705 3702 /* If followed by a repetition operator. */
9d99031f 3703 || (p != pend && (*p == '*' || *p == '^'))
fa9a63c5 3704 || ((syntax & RE_BK_PLUS_QM)
9d99031f
RS
3705 ? p + 1 < pend && *p == '\\' && (p[1] == '+' || p[1] == '?')
3706 : p != pend && (*p == '+' || *p == '?'))
fa9a63c5 3707 || ((syntax & RE_INTERVALS)
25fe55af 3708 && ((syntax & RE_NO_BK_BRACES)
9d99031f
RS
3709 ? p != pend && *p == '{'
3710 : p + 1 < pend && p[0] == '\\' && p[1] == '{')))
fa9a63c5
RM
3711 {
3712 /* Start building a new exactn. */
5e69f11e 3713
25fe55af 3714 laststart = b;
fa9a63c5
RM
3715
3716 BUF_PUSH_2 (exactn, 0);
3717 pending_exact = b - 1;
25fe55af 3718 }
5e69f11e 3719
2d1675e4
SM
3720 GET_BUFFER_SPACE (MAX_MULTIBYTE_LENGTH);
3721 {
e0277a47
KH
3722 int len;
3723
cf9c99bc 3724 if (multibyte)
6fdd04b0 3725 {
cf9c99bc 3726 c = TRANSLATE (c);
6fdd04b0
KH
3727 len = CHAR_STRING (c, b);
3728 b += len;
3729 }
e0277a47 3730 else
6fdd04b0 3731 {
cf9c99bc
KH
3732 c1 = RE_CHAR_TO_MULTIBYTE (c);
3733 if (! CHAR_BYTE8_P (c1))
3734 {
3735 re_wchar_t c2 = TRANSLATE (c1);
3736
3737 if (c1 != c2 && (c1 = RE_CHAR_TO_UNIBYTE (c2)) >= 0)
3738 c = c1;
409f2919 3739 }
6fdd04b0
KH
3740 *b++ = c;
3741 len = 1;
3742 }
2d1675e4
SM
3743 (*pending_exact) += len;
3744 }
3745
fa9a63c5 3746 break;
25fe55af 3747 } /* switch (c) */
fa9a63c5
RM
3748 } /* while p != pend */
3749
5e69f11e 3750
fa9a63c5 3751 /* Through the pattern now. */
5e69f11e 3752
505bde11 3753 FIXUP_ALT_JUMP ();
fa9a63c5 3754
5e69f11e 3755 if (!COMPILE_STACK_EMPTY)
fa9a63c5
RM
3756 FREE_STACK_RETURN (REG_EPAREN);
3757
3758 /* If we don't want backtracking, force success
3759 the first time we reach the end of the compiled pattern. */
3760 if (syntax & RE_NO_POSIX_BACKTRACKING)
3761 BUF_PUSH (succeed);
3762
fa9a63c5
RM
3763 /* We have succeeded; set the length of the buffer. */
3764 bufp->used = b - bufp->buffer;
3765
3766#ifdef DEBUG
99633e97 3767 if (debug > 0)
fa9a63c5 3768 {
505bde11 3769 re_compile_fastmap (bufp);
fa9a63c5
RM
3770 DEBUG_PRINT1 ("\nCompiled pattern: \n");
3771 print_compiled_pattern (bufp);
3772 }
99633e97 3773 debug--;
fa9a63c5
RM
3774#endif /* DEBUG */
3775
3776#ifndef MATCH_MAY_ALLOCATE
3777 /* Initialize the failure stack to the largest possible stack. This
3778 isn't necessary unless we're trying to avoid calling alloca in
3779 the search and match routines. */
3780 {
3781 int num_regs = bufp->re_nsub + 1;
3782
320a2a73 3783 if (fail_stack.size < re_max_failures * TYPICAL_FAILURE_SIZE)
fa9a63c5 3784 {
a26f4ccd 3785 fail_stack.size = re_max_failures * TYPICAL_FAILURE_SIZE;
fa9a63c5 3786
fa9a63c5
RM
3787 if (! fail_stack.stack)
3788 fail_stack.stack
5e69f11e 3789 = (fail_stack_elt_t *) malloc (fail_stack.size
fa9a63c5
RM
3790 * sizeof (fail_stack_elt_t));
3791 else
3792 fail_stack.stack
3793 = (fail_stack_elt_t *) realloc (fail_stack.stack,
3794 (fail_stack.size
3795 * sizeof (fail_stack_elt_t)));
fa9a63c5
RM
3796 }
3797
3798 regex_grow_registers (num_regs);
3799 }
3800#endif /* not MATCH_MAY_ALLOCATE */
3801
839966f3 3802 FREE_STACK_RETURN (REG_NOERROR);
fa9a63c5
RM
3803} /* regex_compile */
3804\f
3805/* Subroutines for `regex_compile'. */
3806
7814e705 3807/* Store OP at LOC followed by two-byte integer parameter ARG. */
fa9a63c5
RM
3808
3809static void
971de7fb 3810store_op1 (re_opcode_t op, unsigned char *loc, int arg)
fa9a63c5
RM
3811{
3812 *loc = (unsigned char) op;
3813 STORE_NUMBER (loc + 1, arg);
3814}
3815
3816
3817/* Like `store_op1', but for two two-byte parameters ARG1 and ARG2. */
3818
3819static void
971de7fb 3820store_op2 (re_opcode_t op, unsigned char *loc, int arg1, int arg2)
fa9a63c5
RM
3821{
3822 *loc = (unsigned char) op;
3823 STORE_NUMBER (loc + 1, arg1);
3824 STORE_NUMBER (loc + 3, arg2);
3825}
3826
3827
3828/* Copy the bytes from LOC to END to open up three bytes of space at LOC
3829 for OP followed by two-byte integer parameter ARG. */
3830
3831static void
971de7fb 3832insert_op1 (re_opcode_t op, unsigned char *loc, int arg, unsigned char *end)
fa9a63c5
RM
3833{
3834 register unsigned char *pfrom = end;
3835 register unsigned char *pto = end + 3;
3836
3837 while (pfrom != loc)
3838 *--pto = *--pfrom;
5e69f11e 3839
fa9a63c5
RM
3840 store_op1 (op, loc, arg);
3841}
3842
3843
3844/* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2. */
3845
3846static void
971de7fb 3847insert_op2 (re_opcode_t op, unsigned char *loc, int arg1, int arg2, unsigned char *end)
fa9a63c5
RM
3848{
3849 register unsigned char *pfrom = end;
3850 register unsigned char *pto = end + 5;
3851
3852 while (pfrom != loc)
3853 *--pto = *--pfrom;
5e69f11e 3854
fa9a63c5
RM
3855 store_op2 (op, loc, arg1, arg2);
3856}
3857
3858
3859/* P points to just after a ^ in PATTERN. Return true if that ^ comes
3860 after an alternative or a begin-subexpression. We assume there is at
3861 least one character before the ^. */
3862
3863static boolean
971de7fb 3864at_begline_loc_p (const re_char *pattern, const re_char *p, reg_syntax_t syntax)
fa9a63c5 3865{
01618498 3866 re_char *prev = p - 2;
fa9a63c5 3867 boolean prev_prev_backslash = prev > pattern && prev[-1] == '\\';
5e69f11e 3868
fa9a63c5
RM
3869 return
3870 /* After a subexpression? */
3871 (*prev == '(' && (syntax & RE_NO_BK_PARENS || prev_prev_backslash))
25fe55af 3872 /* After an alternative? */
d2af47df
SM
3873 || (*prev == '|' && (syntax & RE_NO_BK_VBAR || prev_prev_backslash))
3874 /* After a shy subexpression? */
3875 || ((syntax & RE_SHY_GROUPS) && prev - 2 >= pattern
3876 && prev[-1] == '?' && prev[-2] == '('
3877 && (syntax & RE_NO_BK_PARENS
3878 || (prev - 3 >= pattern && prev[-3] == '\\')));
fa9a63c5
RM
3879}
3880
3881
3882/* The dual of at_begline_loc_p. This one is for $. We assume there is
3883 at least one character after the $, i.e., `P < PEND'. */
3884
3885static boolean
971de7fb 3886at_endline_loc_p (const re_char *p, const re_char *pend, reg_syntax_t syntax)
fa9a63c5 3887{
01618498 3888 re_char *next = p;
fa9a63c5 3889 boolean next_backslash = *next == '\\';
01618498 3890 re_char *next_next = p + 1 < pend ? p + 1 : 0;
5e69f11e 3891
fa9a63c5
RM
3892 return
3893 /* Before a subexpression? */
3894 (syntax & RE_NO_BK_PARENS ? *next == ')'
25fe55af 3895 : next_backslash && next_next && *next_next == ')')
fa9a63c5
RM
3896 /* Before an alternative? */
3897 || (syntax & RE_NO_BK_VBAR ? *next == '|'
25fe55af 3898 : next_backslash && next_next && *next_next == '|');
fa9a63c5
RM
3899}
3900
3901
5e69f11e 3902/* Returns true if REGNUM is in one of COMPILE_STACK's elements and
fa9a63c5
RM
3903 false if it's not. */
3904
3905static boolean
971de7fb 3906group_in_compile_stack (compile_stack_type compile_stack, regnum_t regnum)
fa9a63c5 3907{
d1dfb56c 3908 ssize_t this_element;
fa9a63c5 3909
5e69f11e
RM
3910 for (this_element = compile_stack.avail - 1;
3911 this_element >= 0;
fa9a63c5
RM
3912 this_element--)
3913 if (compile_stack.stack[this_element].regnum == regnum)
3914 return true;
3915
3916 return false;
3917}
fa9a63c5 3918\f
f6a3f532
SM
3919/* analyse_first.
3920 If fastmap is non-NULL, go through the pattern and fill fastmap
3921 with all the possible leading chars. If fastmap is NULL, don't
3922 bother filling it up (obviously) and only return whether the
3923 pattern could potentially match the empty string.
3924
3925 Return 1 if p..pend might match the empty string.
3926 Return 0 if p..pend matches at least one char.
01618498 3927 Return -1 if fastmap was not updated accurately. */
f6a3f532
SM
3928
3929static int
438105ed 3930analyse_first (const re_char *p, const re_char *pend, char *fastmap, const int multibyte)
fa9a63c5 3931{
505bde11 3932 int j, k;
1fb352e0 3933 boolean not;
fa9a63c5 3934
b18215fc 3935 /* If all elements for base leading-codes in fastmap is set, this
7814e705 3936 flag is set true. */
b18215fc
RS
3937 boolean match_any_multibyte_characters = false;
3938
f6a3f532 3939 assert (p);
5e69f11e 3940
505bde11
SM
3941 /* The loop below works as follows:
3942 - It has a working-list kept in the PATTERN_STACK and which basically
3943 starts by only containing a pointer to the first operation.
3944 - If the opcode we're looking at is a match against some set of
3945 chars, then we add those chars to the fastmap and go on to the
3946 next work element from the worklist (done via `break').
3947 - If the opcode is a control operator on the other hand, we either
3948 ignore it (if it's meaningless at this point, such as `start_memory')
3949 or execute it (if it's a jump). If the jump has several destinations
3950 (i.e. `on_failure_jump'), then we push the other destination onto the
3951 worklist.
3952 We guarantee termination by ignoring backward jumps (more or less),
3953 so that `p' is monotonically increasing. More to the point, we
3954 never set `p' (or push) anything `<= p1'. */
3955
01618498 3956 while (p < pend)
fa9a63c5 3957 {
505bde11
SM
3958 /* `p1' is used as a marker of how far back a `on_failure_jump'
3959 can go without being ignored. It is normally equal to `p'
3960 (which prevents any backward `on_failure_jump') except right
3961 after a plain `jump', to allow patterns such as:
3962 0: jump 10
3963 3..9: <body>
3964 10: on_failure_jump 3
3965 as used for the *? operator. */
01618498 3966 re_char *p1 = p;
5e69f11e 3967
fa9a63c5
RM
3968 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
3969 {
f6a3f532 3970 case succeed:
01618498 3971 return 1;
fa9a63c5 3972
fa9a63c5 3973 case duplicate:
505bde11
SM
3974 /* If the first character has to match a backreference, that means
3975 that the group was empty (since it already matched). Since this
3976 is the only case that interests us here, we can assume that the
3977 backreference must match the empty string. */
3978 p++;
3979 continue;
fa9a63c5
RM
3980
3981
3982 /* Following are the cases which match a character. These end
7814e705 3983 with `break'. */
fa9a63c5
RM
3984
3985 case exactn:
e0277a47 3986 if (fastmap)
cf9c99bc
KH
3987 {
3988 /* If multibyte is nonzero, the first byte of each
3989 character is an ASCII or a leading code. Otherwise,
3990 each byte is a character. Thus, this works in both
3991 cases. */
3992 fastmap[p[1]] = 1;
3993 if (! multibyte)
3994 {
3995 /* For the case of matching this unibyte regex
3996 against multibyte, we must set a leading code of
3997 the corresponding multibyte character. */
3998 int c = RE_CHAR_TO_MULTIBYTE (p[1]);
3999
86e893e3 4000 fastmap[CHAR_LEADING_CODE (c)] = 1;
cf9c99bc
KH
4001 }
4002 }
fa9a63c5
RM
4003 break;
4004
4005
1fb352e0
SM
4006 case anychar:
4007 /* We could put all the chars except for \n (and maybe \0)
4008 but we don't bother since it is generally not worth it. */
f6a3f532 4009 if (!fastmap) break;
01618498 4010 return -1;
fa9a63c5
RM
4011
4012
b18215fc 4013 case charset_not:
1fb352e0 4014 if (!fastmap) break;
bf216479
KH
4015 {
4016 /* Chars beyond end of bitmap are possible matches. */
bf216479 4017 for (j = CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH;
cf9c99bc 4018 j < (1 << BYTEWIDTH); j++)
bf216479
KH
4019 fastmap[j] = 1;
4020 }
4021
1fb352e0
SM
4022 /* Fallthrough */
4023 case charset:
4024 if (!fastmap) break;
4025 not = (re_opcode_t) *(p - 1) == charset_not;
b18215fc
RS
4026 for (j = CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH - 1, p++;
4027 j >= 0; j--)
1fb352e0 4028 if (!!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))) ^ not)
49da453b 4029 fastmap[j] = 1;
b18215fc 4030
6482db2e
KH
4031#ifdef emacs
4032 if (/* Any leading code can possibly start a character
1fb352e0 4033 which doesn't match the specified set of characters. */
6482db2e 4034 not
409f2919 4035 ||
6482db2e
KH
4036 /* If we can match a character class, we can match any
4037 multibyte characters. */
4038 (CHARSET_RANGE_TABLE_EXISTS_P (&p[-2])
4039 && CHARSET_RANGE_TABLE_BITS (&p[-2]) != 0))
4040
b18215fc 4041 {
b18215fc
RS
4042 if (match_any_multibyte_characters == false)
4043 {
6482db2e
KH
4044 for (j = MIN_MULTIBYTE_LEADING_CODE;
4045 j <= MAX_MULTIBYTE_LEADING_CODE; j++)
6fdd04b0 4046 fastmap[j] = 1;
b18215fc
RS
4047 match_any_multibyte_characters = true;
4048 }
4049 }
b18215fc 4050
1fb352e0
SM
4051 else if (!not && CHARSET_RANGE_TABLE_EXISTS_P (&p[-2])
4052 && match_any_multibyte_characters == false)
4053 {
bf216479 4054 /* Set fastmap[I] to 1 where I is a leading code of each
51e4f4a8 4055 multibyte character in the range table. */
1fb352e0 4056 int c, count;
bf216479 4057 unsigned char lc1, lc2;
b18215fc 4058
1fb352e0 4059 /* Make P points the range table. `+ 2' is to skip flag
0b32bf0e 4060 bits for a character class. */
1fb352e0 4061 p += CHARSET_BITMAP_SIZE (&p[-2]) + 2;
b18215fc 4062
1fb352e0
SM
4063 /* Extract the number of ranges in range table into COUNT. */
4064 EXTRACT_NUMBER_AND_INCR (count, p);
cf9c99bc 4065 for (; count > 0; count--, p += 3)
1fb352e0 4066 {
9117d724
KH
4067 /* Extract the start and end of each range. */
4068 EXTRACT_CHARACTER (c, p);
bf216479 4069 lc1 = CHAR_LEADING_CODE (c);
9117d724 4070 p += 3;
1fb352e0 4071 EXTRACT_CHARACTER (c, p);
bf216479
KH
4072 lc2 = CHAR_LEADING_CODE (c);
4073 for (j = lc1; j <= lc2; j++)
9117d724 4074 fastmap[j] = 1;
1fb352e0
SM
4075 }
4076 }
6482db2e 4077#endif
b18215fc
RS
4078 break;
4079
1fb352e0
SM
4080 case syntaxspec:
4081 case notsyntaxspec:
4082 if (!fastmap) break;
4083#ifndef emacs
4084 not = (re_opcode_t)p[-1] == notsyntaxspec;
4085 k = *p++;
4086 for (j = 0; j < (1 << BYTEWIDTH); j++)
990b2375 4087 if ((SYNTAX (j) == (enum syntaxcode) k) ^ not)
b18215fc 4088 fastmap[j] = 1;
b18215fc 4089 break;
1fb352e0 4090#else /* emacs */
b18215fc
RS
4091 /* This match depends on text properties. These end with
4092 aborting optimizations. */
01618498 4093 return -1;
b18215fc
RS
4094
4095 case categoryspec:
b18215fc 4096 case notcategoryspec:
1fb352e0
SM
4097 if (!fastmap) break;
4098 not = (re_opcode_t)p[-1] == notcategoryspec;
b18215fc 4099 k = *p++;
6482db2e 4100 for (j = (1 << BYTEWIDTH); j >= 0; j--)
1fb352e0 4101 if ((CHAR_HAS_CATEGORY (j, k)) ^ not)
b18215fc
RS
4102 fastmap[j] = 1;
4103
6482db2e
KH
4104 /* Any leading code can possibly start a character which
4105 has or doesn't has the specified category. */
4106 if (match_any_multibyte_characters == false)
6fdd04b0 4107 {
6482db2e
KH
4108 for (j = MIN_MULTIBYTE_LEADING_CODE;
4109 j <= MAX_MULTIBYTE_LEADING_CODE; j++)
4110 fastmap[j] = 1;
4111 match_any_multibyte_characters = true;
6fdd04b0 4112 }
b18215fc
RS
4113 break;
4114
fa9a63c5 4115 /* All cases after this match the empty string. These end with
25fe55af 4116 `continue'. */
fa9a63c5 4117
fa9a63c5
RM
4118 case before_dot:
4119 case at_dot:
4120 case after_dot:
1fb352e0 4121#endif /* !emacs */
25fe55af
RS
4122 case no_op:
4123 case begline:
4124 case endline:
fa9a63c5
RM
4125 case begbuf:
4126 case endbuf:
4127 case wordbound:
4128 case notwordbound:
4129 case wordbeg:
4130 case wordend:
669fa600
SM
4131 case symbeg:
4132 case symend:
25fe55af 4133 continue;
fa9a63c5
RM
4134
4135
fa9a63c5 4136 case jump:
25fe55af 4137 EXTRACT_NUMBER_AND_INCR (j, p);
505bde11
SM
4138 if (j < 0)
4139 /* Backward jumps can only go back to code that we've already
4140 visited. `re_compile' should make sure this is true. */
4141 break;
25fe55af 4142 p += j;
505bde11
SM
4143 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p))
4144 {
4145 case on_failure_jump:
4146 case on_failure_keep_string_jump:
505bde11 4147 case on_failure_jump_loop:
0683b6fa 4148 case on_failure_jump_nastyloop:
505bde11
SM
4149 case on_failure_jump_smart:
4150 p++;
4151 break;
4152 default:
4153 continue;
4154 };
4155 /* Keep `p1' to allow the `on_failure_jump' we are jumping to
4156 to jump back to "just after here". */
4157 /* Fallthrough */
fa9a63c5 4158
25fe55af
RS
4159 case on_failure_jump:
4160 case on_failure_keep_string_jump:
0683b6fa 4161 case on_failure_jump_nastyloop:
505bde11
SM
4162 case on_failure_jump_loop:
4163 case on_failure_jump_smart:
25fe55af 4164 EXTRACT_NUMBER_AND_INCR (j, p);
505bde11 4165 if (p + j <= p1)
ed0767d8 4166 ; /* Backward jump to be ignored. */
01618498
SM
4167 else
4168 { /* We have to look down both arms.
4169 We first go down the "straight" path so as to minimize
4170 stack usage when going through alternatives. */
4171 int r = analyse_first (p, pend, fastmap, multibyte);
4172 if (r) return r;
4173 p += j;
4174 }
25fe55af 4175 continue;
fa9a63c5
RM
4176
4177
ed0767d8
SM
4178 case jump_n:
4179 /* This code simply does not properly handle forward jump_n. */
4180 DEBUG_STATEMENT (EXTRACT_NUMBER (j, p); assert (j < 0));
4181 p += 4;
4182 /* jump_n can either jump or fall through. The (backward) jump
4183 case has already been handled, so we only need to look at the
4184 fallthrough case. */
4185 continue;
177c0ea7 4186
fa9a63c5 4187 case succeed_n:
ed0767d8
SM
4188 /* If N == 0, it should be an on_failure_jump_loop instead. */
4189 DEBUG_STATEMENT (EXTRACT_NUMBER (j, p + 2); assert (j > 0));
4190 p += 4;
4191 /* We only care about one iteration of the loop, so we don't
4192 need to consider the case where this behaves like an
4193 on_failure_jump. */
25fe55af 4194 continue;
fa9a63c5
RM
4195
4196
4197 case set_number_at:
25fe55af
RS
4198 p += 4;
4199 continue;
fa9a63c5
RM
4200
4201
4202 case start_memory:
25fe55af 4203 case stop_memory:
505bde11 4204 p += 1;
fa9a63c5
RM
4205 continue;
4206
4207
4208 default:
25fe55af
RS
4209 abort (); /* We have listed all the cases. */
4210 } /* switch *p++ */
fa9a63c5
RM
4211
4212 /* Getting here means we have found the possible starting
25fe55af 4213 characters for one path of the pattern -- and that the empty
7814e705 4214 string does not match. We need not follow this path further. */
01618498 4215 return 0;
fa9a63c5
RM
4216 } /* while p */
4217
01618498
SM
4218 /* We reached the end without matching anything. */
4219 return 1;
4220
f6a3f532
SM
4221} /* analyse_first */
4222\f
4223/* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
4224 BUFP. A fastmap records which of the (1 << BYTEWIDTH) possible
4225 characters can start a string that matches the pattern. This fastmap
4226 is used by re_search to skip quickly over impossible starting points.
4227
4228 Character codes above (1 << BYTEWIDTH) are not represented in the
4229 fastmap, but the leading codes are represented. Thus, the fastmap
4230 indicates which character sets could start a match.
4231
4232 The caller must supply the address of a (1 << BYTEWIDTH)-byte data
4233 area as BUFP->fastmap.
4234
4235 We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
4236 the pattern buffer.
4237
4238 Returns 0 if we succeed, -2 if an internal error. */
4239
4240int
971de7fb 4241re_compile_fastmap (struct re_pattern_buffer *bufp)
f6a3f532
SM
4242{
4243 char *fastmap = bufp->fastmap;
4244 int analysis;
4245
4246 assert (fastmap && bufp->buffer);
4247
72af86bd 4248 memset (fastmap, 0, 1 << BYTEWIDTH); /* Assume nothing's valid. */
f6a3f532
SM
4249 bufp->fastmap_accurate = 1; /* It will be when we're done. */
4250
4251 analysis = analyse_first (bufp->buffer, bufp->buffer + bufp->used,
2d1675e4 4252 fastmap, RE_MULTIBYTE_P (bufp));
c0f9ea08 4253 bufp->can_be_null = (analysis != 0);
fa9a63c5
RM
4254 return 0;
4255} /* re_compile_fastmap */
4256\f
4257/* Set REGS to hold NUM_REGS registers, storing them in STARTS and
4258 ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use
4259 this memory for recording register information. STARTS and ENDS
4260 must be allocated using the malloc library routine, and must each
4261 be at least NUM_REGS * sizeof (regoff_t) bytes long.
4262
4263 If NUM_REGS == 0, then subsequent matches should allocate their own
4264 register data.
4265
4266 Unless this function is called, the first search or match using
4267 PATTERN_BUFFER will allocate its own register data, without
4268 freeing the old data. */
4269
4270void
971de7fb 4271re_set_registers (struct re_pattern_buffer *bufp, struct re_registers *regs, unsigned int num_regs, regoff_t *starts, regoff_t *ends)
fa9a63c5
RM
4272{
4273 if (num_regs)
4274 {
4275 bufp->regs_allocated = REGS_REALLOCATE;
4276 regs->num_regs = num_regs;
4277 regs->start = starts;
4278 regs->end = ends;
4279 }
4280 else
4281 {
4282 bufp->regs_allocated = REGS_UNALLOCATED;
4283 regs->num_regs = 0;
4284 regs->start = regs->end = (regoff_t *) 0;
4285 }
4286}
c0f9ea08 4287WEAK_ALIAS (__re_set_registers, re_set_registers)
fa9a63c5 4288\f
7814e705 4289/* Searching routines. */
fa9a63c5
RM
4290
4291/* Like re_search_2, below, but only one string is specified, and
4292 doesn't let you say where to stop matching. */
4293
d1dfb56c
EZ
4294regoff_t
4295re_search (struct re_pattern_buffer *bufp, const char *string, size_t size,
4296 ssize_t startpos, ssize_t range, struct re_registers *regs)
fa9a63c5 4297{
5e69f11e 4298 return re_search_2 (bufp, NULL, 0, string, size, startpos, range,
fa9a63c5
RM
4299 regs, size);
4300}
c0f9ea08 4301WEAK_ALIAS (__re_search, re_search)
fa9a63c5 4302
70806df6
KH
4303/* Head address of virtual concatenation of string. */
4304#define HEAD_ADDR_VSTRING(P) \
4305 (((P) >= size1 ? string2 : string1))
4306
b18215fc
RS
4307/* Address of POS in the concatenation of virtual string. */
4308#define POS_ADDR_VSTRING(POS) \
4309 (((POS) >= size1 ? string2 - size1 : string1) + (POS))
fa9a63c5
RM
4310
4311/* Using the compiled pattern in BUFP->buffer, first tries to match the
4312 virtual concatenation of STRING1 and STRING2, starting first at index
4313 STARTPOS, then at STARTPOS + 1, and so on.
5e69f11e 4314
fa9a63c5 4315 STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
5e69f11e 4316
fa9a63c5
RM
4317 RANGE is how far to scan while trying to match. RANGE = 0 means try
4318 only at STARTPOS; in general, the last start tried is STARTPOS +
4319 RANGE.
5e69f11e 4320
fa9a63c5
RM
4321 In REGS, return the indices of the virtual concatenation of STRING1
4322 and STRING2 that matched the entire BUFP->buffer and its contained
4323 subexpressions.
5e69f11e 4324
fa9a63c5
RM
4325 Do not consider matching one past the index STOP in the virtual
4326 concatenation of STRING1 and STRING2.
4327
4328 We return either the position in the strings at which the match was
4329 found, -1 if no match, or -2 if error (such as failure
4330 stack overflow). */
4331
d1dfb56c
EZ
4332regoff_t
4333re_search_2 (struct re_pattern_buffer *bufp, const char *str1, size_t size1,
4334 const char *str2, size_t size2, ssize_t startpos, ssize_t range,
4335 struct re_registers *regs, ssize_t stop)
fa9a63c5 4336{
d1dfb56c 4337 regoff_t val;
66f0296e
SM
4338 re_char *string1 = (re_char*) str1;
4339 re_char *string2 = (re_char*) str2;
fa9a63c5 4340 register char *fastmap = bufp->fastmap;
6676cb1c 4341 register RE_TRANSLATE_TYPE translate = bufp->translate;
d1dfb56c
EZ
4342 size_t total_size = size1 + size2;
4343 ssize_t endpos = startpos + range;
c0f9ea08 4344 boolean anchored_start;
cf9c99bc
KH
4345 /* Nonzero if we are searching multibyte string. */
4346 const boolean multibyte = RE_TARGET_MULTIBYTE_P (bufp);
b18215fc 4347
fa9a63c5
RM
4348 /* Check for out-of-range STARTPOS. */
4349 if (startpos < 0 || startpos > total_size)
4350 return -1;
5e69f11e 4351
fa9a63c5 4352 /* Fix up RANGE if it might eventually take us outside
34597fa9 4353 the virtual concatenation of STRING1 and STRING2.
5e69f11e 4354 Make sure we won't move STARTPOS below 0 or above TOTAL_SIZE. */
34597fa9
RS
4355 if (endpos < 0)
4356 range = 0 - startpos;
fa9a63c5
RM
4357 else if (endpos > total_size)
4358 range = total_size - startpos;
4359
4360 /* If the search isn't to be a backwards one, don't waste time in a
7b140fd7 4361 search for a pattern anchored at beginning of buffer. */
fa9a63c5
RM
4362 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == begbuf && range > 0)
4363 {
4364 if (startpos > 0)
4365 return -1;
4366 else
7b140fd7 4367 range = 0;
fa9a63c5
RM
4368 }
4369
ae4788a8
RS
4370#ifdef emacs
4371 /* In a forward search for something that starts with \=.
4372 don't keep searching past point. */
4373 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == at_dot && range > 0)
4374 {
7b140fd7
RS
4375 range = PT_BYTE - BEGV_BYTE - startpos;
4376 if (range < 0)
ae4788a8
RS
4377 return -1;
4378 }
4379#endif /* emacs */
4380
fa9a63c5
RM
4381 /* Update the fastmap now if not correct already. */
4382 if (fastmap && !bufp->fastmap_accurate)
01618498 4383 re_compile_fastmap (bufp);
5e69f11e 4384
c8499ba5 4385 /* See whether the pattern is anchored. */
c0f9ea08 4386 anchored_start = (bufp->buffer[0] == begline);
c8499ba5 4387
b18215fc 4388#ifdef emacs
d48cd3f4 4389 gl_state.object = re_match_object; /* Used by SYNTAX_TABLE_BYTE_TO_CHAR. */
cc9b4df2 4390 {
d1dfb56c 4391 ssize_t charpos = SYNTAX_TABLE_BYTE_TO_CHAR (POS_AS_IN_BUFFER (startpos));
cc9b4df2
KH
4392
4393 SETUP_SYNTAX_TABLE_FOR_OBJECT (re_match_object, charpos, 1);
4394 }
b18215fc
RS
4395#endif
4396
fa9a63c5
RM
4397 /* Loop through the string, looking for a place to start matching. */
4398 for (;;)
5e69f11e 4399 {
c8499ba5
RS
4400 /* If the pattern is anchored,
4401 skip quickly past places we cannot match.
4402 We don't bother to treat startpos == 0 specially
4403 because that case doesn't repeat. */
4404 if (anchored_start && startpos > 0)
4405 {
c0f9ea08
SM
4406 if (! ((startpos <= size1 ? string1[startpos - 1]
4407 : string2[startpos - size1 - 1])
4408 == '\n'))
c8499ba5
RS
4409 goto advance;
4410 }
4411
fa9a63c5 4412 /* If a fastmap is supplied, skip quickly over characters that
25fe55af
RS
4413 cannot be the start of a match. If the pattern can match the
4414 null string, however, we don't need to skip characters; we want
7814e705 4415 the first null string. */
fa9a63c5
RM
4416 if (fastmap && startpos < total_size && !bufp->can_be_null)
4417 {
66f0296e 4418 register re_char *d;
01618498 4419 register re_wchar_t buf_ch;
e934739e
RS
4420
4421 d = POS_ADDR_VSTRING (startpos);
4422
7814e705 4423 if (range > 0) /* Searching forwards. */
fa9a63c5 4424 {
fa9a63c5 4425 register int lim = 0;
d1dfb56c 4426 ssize_t irange = range;
fa9a63c5 4427
25fe55af
RS
4428 if (startpos < size1 && startpos + range >= size1)
4429 lim = range - (size1 - startpos);
fa9a63c5 4430
25fe55af
RS
4431 /* Written out as an if-else to avoid testing `translate'
4432 inside the loop. */
28ae27ae
AS
4433 if (RE_TRANSLATE_P (translate))
4434 {
e934739e
RS
4435 if (multibyte)
4436 while (range > lim)
4437 {
4438 int buf_charlen;
4439
62a6e103 4440 buf_ch = STRING_CHAR_AND_LENGTH (d, buf_charlen);
e934739e 4441 buf_ch = RE_TRANSLATE (translate, buf_ch);
bf216479 4442 if (fastmap[CHAR_LEADING_CODE (buf_ch)])
e934739e
RS
4443 break;
4444
4445 range -= buf_charlen;
4446 d += buf_charlen;
4447 }
4448 else
bf216479 4449 while (range > lim)
33c46939 4450 {
cf9c99bc
KH
4451 register re_wchar_t ch, translated;
4452
bf216479 4453 buf_ch = *d;
cf9c99bc
KH
4454 ch = RE_CHAR_TO_MULTIBYTE (buf_ch);
4455 translated = RE_TRANSLATE (translate, ch);
4456 if (translated != ch
4457 && (ch = RE_CHAR_TO_UNIBYTE (translated)) >= 0)
4458 buf_ch = ch;
6fdd04b0 4459 if (fastmap[buf_ch])
bf216479 4460 break;
33c46939
RS
4461 d++;
4462 range--;
4463 }
e934739e 4464 }
fa9a63c5 4465 else
6fdd04b0
KH
4466 {
4467 if (multibyte)
4468 while (range > lim)
4469 {
4470 int buf_charlen;
fa9a63c5 4471
62a6e103 4472 buf_ch = STRING_CHAR_AND_LENGTH (d, buf_charlen);
6fdd04b0
KH
4473 if (fastmap[CHAR_LEADING_CODE (buf_ch)])
4474 break;
4475 range -= buf_charlen;
4476 d += buf_charlen;
4477 }
e934739e 4478 else
6fdd04b0 4479 while (range > lim && !fastmap[*d])
33c46939
RS
4480 {
4481 d++;
4482 range--;
4483 }
e934739e 4484 }
fa9a63c5
RM
4485 startpos += irange - range;
4486 }
7814e705 4487 else /* Searching backwards. */
fa9a63c5 4488 {
ba5e343c
KH
4489 if (multibyte)
4490 {
62a6e103 4491 buf_ch = STRING_CHAR (d);
ba5e343c
KH
4492 buf_ch = TRANSLATE (buf_ch);
4493 if (! fastmap[CHAR_LEADING_CODE (buf_ch)])
4494 goto advance;
4495 }
4496 else
4497 {
cf9c99bc
KH
4498 register re_wchar_t ch, translated;
4499
4500 buf_ch = *d;
4501 ch = RE_CHAR_TO_MULTIBYTE (buf_ch);
4502 translated = TRANSLATE (ch);
4503 if (translated != ch
4504 && (ch = RE_CHAR_TO_UNIBYTE (translated)) >= 0)
4505 buf_ch = ch;
4506 if (! fastmap[TRANSLATE (buf_ch)])
ba5e343c
KH
4507 goto advance;
4508 }
fa9a63c5
RM
4509 }
4510 }
4511
4512 /* If can't match the null string, and that's all we have left, fail. */
4513 if (range >= 0 && startpos == total_size && fastmap
25fe55af 4514 && !bufp->can_be_null)
fa9a63c5
RM
4515 return -1;
4516
4517 val = re_match_2_internal (bufp, string1, size1, string2, size2,
4518 startpos, regs, stop);
fa9a63c5
RM
4519
4520 if (val >= 0)
4521 return startpos;
5e69f11e 4522
fa9a63c5
RM
4523 if (val == -2)
4524 return -2;
4525
4526 advance:
5e69f11e 4527 if (!range)
25fe55af 4528 break;
5e69f11e 4529 else if (range > 0)
25fe55af 4530 {
b18215fc
RS
4531 /* Update STARTPOS to the next character boundary. */
4532 if (multibyte)
4533 {
66f0296e 4534 re_char *p = POS_ADDR_VSTRING (startpos);
aa3830c4 4535 int len = BYTES_BY_CHAR_HEAD (*p);
b18215fc
RS
4536
4537 range -= len;
4538 if (range < 0)
4539 break;
4540 startpos += len;
4541 }
4542 else
4543 {
b560c397
RS
4544 range--;
4545 startpos++;
4546 }
e318085a 4547 }
fa9a63c5 4548 else
25fe55af
RS
4549 {
4550 range++;
4551 startpos--;
b18215fc
RS
4552
4553 /* Update STARTPOS to the previous character boundary. */
4554 if (multibyte)
4555 {
70806df6
KH
4556 re_char *p = POS_ADDR_VSTRING (startpos) + 1;
4557 re_char *p0 = p;
4558 re_char *phead = HEAD_ADDR_VSTRING (startpos);
b18215fc
RS
4559
4560 /* Find the head of multibyte form. */
70806df6
KH
4561 PREV_CHAR_BOUNDARY (p, phead);
4562 range += p0 - 1 - p;
4563 if (range > 0)
4564 break;
b18215fc 4565
70806df6 4566 startpos -= p0 - 1 - p;
b18215fc 4567 }
25fe55af 4568 }
fa9a63c5
RM
4569 }
4570 return -1;
4571} /* re_search_2 */
c0f9ea08 4572WEAK_ALIAS (__re_search_2, re_search_2)
fa9a63c5
RM
4573\f
4574/* Declarations and macros for re_match_2. */
4575
2d1675e4 4576static int bcmp_translate _RE_ARGS((re_char *s1, re_char *s2,
d1dfb56c 4577 register ssize_t len,
2d1675e4
SM
4578 RE_TRANSLATE_TYPE translate,
4579 const int multibyte));
fa9a63c5
RM
4580
4581/* This converts PTR, a pointer into one of the search strings `string1'
4582 and `string2' into an offset from the beginning of that string. */
4583#define POINTER_TO_OFFSET(ptr) \
4584 (FIRST_STRING_P (ptr) \
4585 ? ((regoff_t) ((ptr) - string1)) \
4586 : ((regoff_t) ((ptr) - string2 + size1)))
4587
fa9a63c5 4588/* Call before fetching a character with *d. This switches over to
419d1c74
SM
4589 string2 if necessary.
4590 Check re_match_2_internal for a discussion of why end_match_2 might
4591 not be within string2 (but be equal to end_match_1 instead). */
fa9a63c5 4592#define PREFETCH() \
25fe55af 4593 while (d == dend) \
fa9a63c5
RM
4594 { \
4595 /* End of string2 => fail. */ \
25fe55af
RS
4596 if (dend == end_match_2) \
4597 goto fail; \
4bb91c68 4598 /* End of string1 => advance to string2. */ \
25fe55af 4599 d = string2; \
fa9a63c5
RM
4600 dend = end_match_2; \
4601 }
4602
f1ad044f
SM
4603/* Call before fetching a char with *d if you already checked other limits.
4604 This is meant for use in lookahead operations like wordend, etc..
4605 where we might need to look at parts of the string that might be
4606 outside of the LIMITs (i.e past `stop'). */
4607#define PREFETCH_NOLIMIT() \
4608 if (d == end1) \
4609 { \
4610 d = string2; \
4611 dend = end_match_2; \
4612 } \
fa9a63c5
RM
4613
4614/* Test if at very beginning or at very end of the virtual concatenation
7814e705 4615 of `string1' and `string2'. If only one string, it's `string2'. */
fa9a63c5 4616#define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
5e69f11e 4617#define AT_STRINGS_END(d) ((d) == end2)
fa9a63c5 4618
9121ca40 4619/* Disabled due to a compiler bug -- see comment at case wordbound */
b18215fc
RS
4620
4621/* The comment at case wordbound is following one, but we don't use
4622 AT_WORD_BOUNDARY anymore to support multibyte form.
4623
4624 The DEC Alpha C compiler 3.x generates incorrect code for the
25fe55af 4625 test WORDCHAR_P (d - 1) != WORDCHAR_P (d) in the expansion of
7814e705 4626 AT_WORD_BOUNDARY, so this code is disabled. Expanding the
b18215fc
RS
4627 macro and introducing temporary variables works around the bug. */
4628
9121ca40 4629#if 0
b313f9d8
PE
4630/* Test if D points to a character which is word-constituent. We have
4631 two special cases to check for: if past the end of string1, look at
4632 the first character in string2; and if before the beginning of
4633 string2, look at the last character in string1. */
4634#define WORDCHAR_P(d) \
4635 (SYNTAX ((d) == end1 ? *string2 \
4636 : (d) == string2 - 1 ? *(end1 - 1) : *(d)) \
4637 == Sword)
4638
fa9a63c5
RM
4639/* Test if the character before D and the one at D differ with respect
4640 to being word-constituent. */
4641#define AT_WORD_BOUNDARY(d) \
4642 (AT_STRINGS_BEG (d) || AT_STRINGS_END (d) \
4643 || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
9121ca40 4644#endif
fa9a63c5
RM
4645
4646/* Free everything we malloc. */
4647#ifdef MATCH_MAY_ALLOCATE
952db0d7
PE
4648# define FREE_VAR(var) \
4649 do { \
4650 if (var) \
4651 { \
4652 REGEX_FREE (var); \
4653 var = NULL; \
4654 } \
4655 } while (0)
0b32bf0e 4656# define FREE_VARIABLES() \
fa9a63c5
RM
4657 do { \
4658 REGEX_FREE_STACK (fail_stack.stack); \
4659 FREE_VAR (regstart); \
4660 FREE_VAR (regend); \
fa9a63c5
RM
4661 FREE_VAR (best_regstart); \
4662 FREE_VAR (best_regend); \
fa9a63c5
RM
4663 } while (0)
4664#else
0b32bf0e 4665# define FREE_VARIABLES() ((void)0) /* Do nothing! But inhibit gcc warning. */
fa9a63c5
RM
4666#endif /* not MATCH_MAY_ALLOCATE */
4667
505bde11
SM
4668\f
4669/* Optimization routines. */
4670
4e8a9132
SM
4671/* If the operation is a match against one or more chars,
4672 return a pointer to the next operation, else return NULL. */
01618498 4673static re_char *
971de7fb 4674skip_one_char (const re_char *p)
4e8a9132
SM
4675{
4676 switch (SWITCH_ENUM_CAST (*p++))
4677 {
4678 case anychar:
4679 break;
177c0ea7 4680
4e8a9132
SM
4681 case exactn:
4682 p += *p + 1;
4683 break;
4684
4685 case charset_not:
4686 case charset:
4687 if (CHARSET_RANGE_TABLE_EXISTS_P (p - 1))
4688 {
4689 int mcnt;
4690 p = CHARSET_RANGE_TABLE (p - 1);
4691 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4692 p = CHARSET_RANGE_TABLE_END (p, mcnt);
4693 }
4694 else
4695 p += 1 + CHARSET_BITMAP_SIZE (p - 1);
4696 break;
177c0ea7 4697
4e8a9132
SM
4698 case syntaxspec:
4699 case notsyntaxspec:
1fb352e0 4700#ifdef emacs
4e8a9132
SM
4701 case categoryspec:
4702 case notcategoryspec:
4703#endif /* emacs */
4704 p++;
4705 break;
4706
4707 default:
4708 p = NULL;
4709 }
4710 return p;
4711}
4712
4713
505bde11 4714/* Jump over non-matching operations. */
839966f3 4715static re_char *
971de7fb 4716skip_noops (const re_char *p, const re_char *pend)
505bde11
SM
4717{
4718 int mcnt;
4719 while (p < pend)
4720 {
4721 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p))
4722 {
4723 case start_memory:
505bde11
SM
4724 case stop_memory:
4725 p += 2; break;
4726 case no_op:
4727 p += 1; break;
4728 case jump:
4729 p += 1;
4730 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4731 p += mcnt;
4732 break;
4733 default:
4734 return p;
4735 }
4736 }
4737 assert (p == pend);
4738 return p;
4739}
4740
4741/* Non-zero if "p1 matches something" implies "p2 fails". */
4742static int
971de7fb 4743mutually_exclusive_p (struct re_pattern_buffer *bufp, const re_char *p1, const re_char *p2)
505bde11 4744{
4e8a9132 4745 re_opcode_t op2;
2d1675e4 4746 const boolean multibyte = RE_MULTIBYTE_P (bufp);
505bde11
SM
4747 unsigned char *pend = bufp->buffer + bufp->used;
4748
4e8a9132 4749 assert (p1 >= bufp->buffer && p1 < pend
505bde11
SM
4750 && p2 >= bufp->buffer && p2 <= pend);
4751
4752 /* Skip over open/close-group commands.
4753 If what follows this loop is a ...+ construct,
4754 look at what begins its body, since we will have to
4755 match at least one of that. */
4e8a9132
SM
4756 p2 = skip_noops (p2, pend);
4757 /* The same skip can be done for p1, except that this function
4758 is only used in the case where p1 is a simple match operator. */
4759 /* p1 = skip_noops (p1, pend); */
4760
4761 assert (p1 >= bufp->buffer && p1 < pend
4762 && p2 >= bufp->buffer && p2 <= pend);
4763
4764 op2 = p2 == pend ? succeed : *p2;
4765
4766 switch (SWITCH_ENUM_CAST (op2))
505bde11 4767 {
4e8a9132
SM
4768 case succeed:
4769 case endbuf:
4770 /* If we're at the end of the pattern, we can change. */
4771 if (skip_one_char (p1))
505bde11 4772 {
505bde11
SM
4773 DEBUG_PRINT1 (" End of pattern: fast loop.\n");
4774 return 1;
505bde11 4775 }
4e8a9132 4776 break;
177c0ea7 4777
4e8a9132 4778 case endline:
4e8a9132
SM
4779 case exactn:
4780 {
01618498 4781 register re_wchar_t c
4e8a9132 4782 = (re_opcode_t) *p2 == endline ? '\n'
62a6e103 4783 : RE_STRING_CHAR (p2 + 2, multibyte);
505bde11 4784
4e8a9132
SM
4785 if ((re_opcode_t) *p1 == exactn)
4786 {
62a6e103 4787 if (c != RE_STRING_CHAR (p1 + 2, multibyte))
4e8a9132
SM
4788 {
4789 DEBUG_PRINT3 (" '%c' != '%c' => fast loop.\n", c, p1[2]);
4790 return 1;
4791 }
4792 }
505bde11 4793
4e8a9132
SM
4794 else if ((re_opcode_t) *p1 == charset
4795 || (re_opcode_t) *p1 == charset_not)
4796 {
4797 int not = (re_opcode_t) *p1 == charset_not;
505bde11 4798
4e8a9132
SM
4799 /* Test if C is listed in charset (or charset_not)
4800 at `p1'. */
6fdd04b0 4801 if (! multibyte || IS_REAL_ASCII (c))
4e8a9132
SM
4802 {
4803 if (c < CHARSET_BITMAP_SIZE (p1) * BYTEWIDTH
4804 && p1[2 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
4805 not = !not;
4806 }
4807 else if (CHARSET_RANGE_TABLE_EXISTS_P (p1))
4808 CHARSET_LOOKUP_RANGE_TABLE (not, c, p1);
505bde11 4809
4e8a9132
SM
4810 /* `not' is equal to 1 if c would match, which means
4811 that we can't change to pop_failure_jump. */
4812 if (!not)
4813 {
4814 DEBUG_PRINT1 (" No match => fast loop.\n");
4815 return 1;
4816 }
4817 }
4818 else if ((re_opcode_t) *p1 == anychar
4819 && c == '\n')
4820 {
4821 DEBUG_PRINT1 (" . != \\n => fast loop.\n");
4822 return 1;
4823 }
4824 }
4825 break;
505bde11 4826
4e8a9132 4827 case charset:
4e8a9132
SM
4828 {
4829 if ((re_opcode_t) *p1 == exactn)
4830 /* Reuse the code above. */
4831 return mutually_exclusive_p (bufp, p2, p1);
505bde11 4832
505bde11
SM
4833 /* It is hard to list up all the character in charset
4834 P2 if it includes multibyte character. Give up in
4835 such case. */
4836 else if (!multibyte || !CHARSET_RANGE_TABLE_EXISTS_P (p2))
4837 {
4838 /* Now, we are sure that P2 has no range table.
4839 So, for the size of bitmap in P2, `p2[1]' is
7814e705 4840 enough. But P1 may have range table, so the
505bde11
SM
4841 size of bitmap table of P1 is extracted by
4842 using macro `CHARSET_BITMAP_SIZE'.
4843
6fdd04b0
KH
4844 In a multibyte case, we know that all the character
4845 listed in P2 is ASCII. In a unibyte case, P1 has only a
4846 bitmap table. So, in both cases, it is enough to test
4847 only the bitmap table of P1. */
505bde11 4848
411e4203 4849 if ((re_opcode_t) *p1 == charset)
505bde11
SM
4850 {
4851 int idx;
4852 /* We win if the charset inside the loop
4853 has no overlap with the one after the loop. */
4854 for (idx = 0;
4855 (idx < (int) p2[1]
4856 && idx < CHARSET_BITMAP_SIZE (p1));
4857 idx++)
4858 if ((p2[2 + idx] & p1[2 + idx]) != 0)
4859 break;
4860
4861 if (idx == p2[1]
4862 || idx == CHARSET_BITMAP_SIZE (p1))
4863 {
4864 DEBUG_PRINT1 (" No match => fast loop.\n");
4865 return 1;
4866 }
4867 }
411e4203 4868 else if ((re_opcode_t) *p1 == charset_not)
505bde11
SM
4869 {
4870 int idx;
4871 /* We win if the charset_not inside the loop lists
7814e705 4872 every character listed in the charset after. */
505bde11
SM
4873 for (idx = 0; idx < (int) p2[1]; idx++)
4874 if (! (p2[2 + idx] == 0
4875 || (idx < CHARSET_BITMAP_SIZE (p1)
4876 && ((p2[2 + idx] & ~ p1[2 + idx]) == 0))))
4877 break;
4878
d1dfb56c
EZ
4879 if (idx == p2[1])
4880 {
4881 DEBUG_PRINT1 (" No match => fast loop.\n");
4882 return 1;
4883 }
4e8a9132
SM
4884 }
4885 }
4886 }
609b757a 4887 break;
177c0ea7 4888
411e4203
SM
4889 case charset_not:
4890 switch (SWITCH_ENUM_CAST (*p1))
4891 {
4892 case exactn:
4893 case charset:
4894 /* Reuse the code above. */
4895 return mutually_exclusive_p (bufp, p2, p1);
4896 case charset_not:
4897 /* When we have two charset_not, it's very unlikely that
4898 they don't overlap. The union of the two sets of excluded
4899 chars should cover all possible chars, which, as a matter of
4900 fact, is virtually impossible in multibyte buffers. */
36595814 4901 break;
411e4203
SM
4902 }
4903 break;
4904
4e8a9132 4905 case wordend:
669fa600
SM
4906 return ((re_opcode_t) *p1 == syntaxspec && p1[1] == Sword);
4907 case symend:
4e8a9132 4908 return ((re_opcode_t) *p1 == syntaxspec
669fa600
SM
4909 && (p1[1] == Ssymbol || p1[1] == Sword));
4910 case notsyntaxspec:
4911 return ((re_opcode_t) *p1 == syntaxspec && p1[1] == p2[1]);
4e8a9132
SM
4912
4913 case wordbeg:
669fa600
SM
4914 return ((re_opcode_t) *p1 == notsyntaxspec && p1[1] == Sword);
4915 case symbeg:
4e8a9132 4916 return ((re_opcode_t) *p1 == notsyntaxspec
669fa600
SM
4917 && (p1[1] == Ssymbol || p1[1] == Sword));
4918 case syntaxspec:
4919 return ((re_opcode_t) *p1 == notsyntaxspec && p1[1] == p2[1]);
4e8a9132
SM
4920
4921 case wordbound:
4922 return (((re_opcode_t) *p1 == notsyntaxspec
4923 || (re_opcode_t) *p1 == syntaxspec)
4924 && p1[1] == Sword);
4925
1fb352e0 4926#ifdef emacs
4e8a9132
SM
4927 case categoryspec:
4928 return ((re_opcode_t) *p1 == notcategoryspec && p1[1] == p2[1]);
4929 case notcategoryspec:
4930 return ((re_opcode_t) *p1 == categoryspec && p1[1] == p2[1]);
4931#endif /* emacs */
4932
4933 default:
4934 ;
505bde11
SM
4935 }
4936
4937 /* Safe default. */
4938 return 0;
4939}
4940
fa9a63c5
RM
4941\f
4942/* Matching routines. */
4943
25fe55af 4944#ifndef emacs /* Emacs never uses this. */
fa9a63c5
RM
4945/* re_match is like re_match_2 except it takes only a single string. */
4946
d1dfb56c 4947regoff_t
d2762c86 4948re_match (struct re_pattern_buffer *bufp, const char *string,
d1dfb56c 4949 size_t size, ssize_t pos, struct re_registers *regs)
fa9a63c5 4950{
d1dfb56c
EZ
4951 regoff_t result = re_match_2_internal (bufp, NULL, 0, (re_char*) string,
4952 size, pos, regs, size);
fa9a63c5
RM
4953 return result;
4954}
c0f9ea08 4955WEAK_ALIAS (__re_match, re_match)
fa9a63c5
RM
4956#endif /* not emacs */
4957
b18215fc
RS
4958#ifdef emacs
4959/* In Emacs, this is the string or buffer in which we
7814e705 4960 are matching. It is used for looking up syntax properties. */
b18215fc
RS
4961Lisp_Object re_match_object;
4962#endif
fa9a63c5
RM
4963
4964/* re_match_2 matches the compiled pattern in BUFP against the
4965 the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
4966 and SIZE2, respectively). We start matching at POS, and stop
4967 matching at STOP.
5e69f11e 4968
fa9a63c5 4969 If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
7814e705 4970 store offsets for the substring each group matched in REGS. See the
fa9a63c5
RM
4971 documentation for exactly how many groups we fill.
4972
4973 We return -1 if no match, -2 if an internal error (such as the
7814e705 4974 failure stack overflowing). Otherwise, we return the length of the
fa9a63c5
RM
4975 matched substring. */
4976
d1dfb56c
EZ
4977regoff_t
4978re_match_2 (struct re_pattern_buffer *bufp, const char *string1,
4979 size_t size1, const char *string2, size_t size2, ssize_t pos,
4980 struct re_registers *regs, ssize_t stop)
fa9a63c5 4981{
d1dfb56c 4982 regoff_t result;
25fe55af 4983
b18215fc 4984#ifdef emacs
d1dfb56c 4985 ssize_t charpos;
d48cd3f4 4986 gl_state.object = re_match_object; /* Used by SYNTAX_TABLE_BYTE_TO_CHAR. */
99633e97 4987 charpos = SYNTAX_TABLE_BYTE_TO_CHAR (POS_AS_IN_BUFFER (pos));
cc9b4df2 4988 SETUP_SYNTAX_TABLE_FOR_OBJECT (re_match_object, charpos, 1);
b18215fc
RS
4989#endif
4990
4bb91c68
SM
4991 result = re_match_2_internal (bufp, (re_char*) string1, size1,
4992 (re_char*) string2, size2,
cc9b4df2 4993 pos, regs, stop);
fa9a63c5
RM
4994 return result;
4995}
c0f9ea08 4996WEAK_ALIAS (__re_match_2, re_match_2)
fa9a63c5 4997
bf216479 4998
fa9a63c5 4999/* This is a separate function so that we can force an alloca cleanup
7814e705 5000 afterwards. */
d1dfb56c
EZ
5001static regoff_t
5002re_match_2_internal (struct re_pattern_buffer *bufp, const re_char *string1,
5003 size_t size1, const re_char *string2, size_t size2,
5004 ssize_t pos, struct re_registers *regs, ssize_t stop)
fa9a63c5
RM
5005{
5006 /* General temporaries. */
d1dfb56c 5007 ssize_t mcnt;
01618498 5008 size_t reg;
fa9a63c5
RM
5009
5010 /* Just past the end of the corresponding string. */
66f0296e 5011 re_char *end1, *end2;
fa9a63c5
RM
5012
5013 /* Pointers into string1 and string2, just past the last characters in
7814e705 5014 each to consider matching. */
66f0296e 5015 re_char *end_match_1, *end_match_2;
fa9a63c5
RM
5016
5017 /* Where we are in the data, and the end of the current string. */
66f0296e 5018 re_char *d, *dend;
5e69f11e 5019
99633e97
SM
5020 /* Used sometimes to remember where we were before starting matching
5021 an operator so that we can go back in case of failure. This "atomic"
5022 behavior of matching opcodes is indispensable to the correctness
5023 of the on_failure_keep_string_jump optimization. */
5024 re_char *dfail;
5025
fa9a63c5 5026 /* Where we are in the pattern, and the end of the pattern. */
01618498
SM
5027 re_char *p = bufp->buffer;
5028 re_char *pend = p + bufp->used;
fa9a63c5 5029
25fe55af 5030 /* We use this to map every character in the string. */
6676cb1c 5031 RE_TRANSLATE_TYPE translate = bufp->translate;
fa9a63c5 5032
cf9c99bc 5033 /* Nonzero if BUFP is setup from a multibyte regex. */
2d1675e4 5034 const boolean multibyte = RE_MULTIBYTE_P (bufp);
b18215fc 5035
cf9c99bc
KH
5036 /* Nonzero if STRING1/STRING2 are multibyte. */
5037 const boolean target_multibyte = RE_TARGET_MULTIBYTE_P (bufp);
5038
fa9a63c5
RM
5039 /* Failure point stack. Each place that can handle a failure further
5040 down the line pushes a failure point on this stack. It consists of
505bde11 5041 regstart, and regend for all registers corresponding to
fa9a63c5
RM
5042 the subexpressions we're currently inside, plus the number of such
5043 registers, and, finally, two char *'s. The first char * is where
5044 to resume scanning the pattern; the second one is where to resume
7814e705
JB
5045 scanning the strings. */
5046#ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
fa9a63c5
RM
5047 fail_stack_type fail_stack;
5048#endif
5049#ifdef DEBUG
fa9a63c5
RM
5050 unsigned nfailure_points_pushed = 0, nfailure_points_popped = 0;
5051#endif
5052
0b32bf0e 5053#if defined REL_ALLOC && defined REGEX_MALLOC
fa9a63c5
RM
5054 /* This holds the pointer to the failure stack, when
5055 it is allocated relocatably. */
5056 fail_stack_elt_t *failure_stack_ptr;
99633e97 5057#endif
fa9a63c5
RM
5058
5059 /* We fill all the registers internally, independent of what we
7814e705 5060 return, for use in backreferences. The number here includes
fa9a63c5 5061 an element for register zero. */
4bb91c68 5062 size_t num_regs = bufp->re_nsub + 1;
5e69f11e 5063
fa9a63c5
RM
5064 /* Information on the contents of registers. These are pointers into
5065 the input strings; they record just what was matched (on this
5066 attempt) by a subexpression part of the pattern, that is, the
5067 regnum-th regstart pointer points to where in the pattern we began
5068 matching and the regnum-th regend points to right after where we
5069 stopped matching the regnum-th subexpression. (The zeroth register
5070 keeps track of what the whole pattern matches.) */
5071#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
66f0296e 5072 re_char **regstart, **regend;
fa9a63c5
RM
5073#endif
5074
fa9a63c5 5075 /* The following record the register info as found in the above
5e69f11e 5076 variables when we find a match better than any we've seen before.
fa9a63c5
RM
5077 This happens as we backtrack through the failure points, which in
5078 turn happens only if we have not yet matched the entire string. */
5079 unsigned best_regs_set = false;
5080#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
66f0296e 5081 re_char **best_regstart, **best_regend;
fa9a63c5 5082#endif
5e69f11e 5083
fa9a63c5
RM
5084 /* Logically, this is `best_regend[0]'. But we don't want to have to
5085 allocate space for that if we're not allocating space for anything
7814e705 5086 else (see below). Also, we never need info about register 0 for
fa9a63c5
RM
5087 any of the other register vectors, and it seems rather a kludge to
5088 treat `best_regend' differently than the rest. So we keep track of
5089 the end of the best match so far in a separate variable. We
5090 initialize this to NULL so that when we backtrack the first time
5091 and need to test it, it's not garbage. */
66f0296e 5092 re_char *match_end = NULL;
fa9a63c5 5093
fa9a63c5
RM
5094#ifdef DEBUG
5095 /* Counts the total number of registers pushed. */
5e69f11e 5096 unsigned num_regs_pushed = 0;
fa9a63c5
RM
5097#endif
5098
5099 DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
5e69f11e 5100
fa9a63c5 5101 INIT_FAIL_STACK ();
5e69f11e 5102
fa9a63c5
RM
5103#ifdef MATCH_MAY_ALLOCATE
5104 /* Do not bother to initialize all the register variables if there are
5105 no groups in the pattern, as it takes a fair amount of time. If
5106 there are groups, we include space for register 0 (the whole
5107 pattern), even though we never use it, since it simplifies the
5108 array indexing. We should fix this. */
5109 if (bufp->re_nsub)
5110 {
66f0296e
SM
5111 regstart = REGEX_TALLOC (num_regs, re_char *);
5112 regend = REGEX_TALLOC (num_regs, re_char *);
5113 best_regstart = REGEX_TALLOC (num_regs, re_char *);
5114 best_regend = REGEX_TALLOC (num_regs, re_char *);
fa9a63c5 5115
505bde11 5116 if (!(regstart && regend && best_regstart && best_regend))
25fe55af
RS
5117 {
5118 FREE_VARIABLES ();
5119 return -2;
5120 }
fa9a63c5
RM
5121 }
5122 else
5123 {
5124 /* We must initialize all our variables to NULL, so that
25fe55af 5125 `FREE_VARIABLES' doesn't try to free them. */
505bde11 5126 regstart = regend = best_regstart = best_regend = NULL;
fa9a63c5
RM
5127 }
5128#endif /* MATCH_MAY_ALLOCATE */
5129
5130 /* The starting position is bogus. */
5131 if (pos < 0 || pos > size1 + size2)
5132 {
5133 FREE_VARIABLES ();
5134 return -1;
5135 }
5e69f11e 5136
fa9a63c5
RM
5137 /* Initialize subexpression text positions to -1 to mark ones that no
5138 start_memory/stop_memory has been seen for. Also initialize the
5139 register information struct. */
01618498
SM
5140 for (reg = 1; reg < num_regs; reg++)
5141 regstart[reg] = regend[reg] = NULL;
99633e97 5142
fa9a63c5 5143 /* We move `string1' into `string2' if the latter's empty -- but not if
7814e705 5144 `string1' is null. */
fa9a63c5
RM
5145 if (size2 == 0 && string1 != NULL)
5146 {
5147 string2 = string1;
5148 size2 = size1;
5149 string1 = 0;
5150 size1 = 0;
5151 }
5152 end1 = string1 + size1;
5153 end2 = string2 + size2;
5154
5e69f11e 5155 /* `p' scans through the pattern as `d' scans through the data.
fa9a63c5
RM
5156 `dend' is the end of the input string that `d' points within. `d'
5157 is advanced into the following input string whenever necessary, but
5158 this happens before fetching; therefore, at the beginning of the
5159 loop, `d' can be pointing at the end of a string, but it cannot
5160 equal `string2'. */
419d1c74 5161 if (pos >= size1)
fa9a63c5 5162 {
419d1c74
SM
5163 /* Only match within string2. */
5164 d = string2 + pos - size1;
5165 dend = end_match_2 = string2 + stop - size1;
5166 end_match_1 = end1; /* Just to give it a value. */
fa9a63c5
RM
5167 }
5168 else
5169 {
f1ad044f 5170 if (stop < size1)
419d1c74
SM
5171 {
5172 /* Only match within string1. */
5173 end_match_1 = string1 + stop;
5174 /* BEWARE!
5175 When we reach end_match_1, PREFETCH normally switches to string2.
5176 But in the present case, this means that just doing a PREFETCH
5177 makes us jump from `stop' to `gap' within the string.
5178 What we really want here is for the search to stop as
5179 soon as we hit end_match_1. That's why we set end_match_2
5180 to end_match_1 (since PREFETCH fails as soon as we hit
5181 end_match_2). */
5182 end_match_2 = end_match_1;
5183 }
5184 else
f1ad044f
SM
5185 { /* It's important to use this code when stop == size so that
5186 moving `d' from end1 to string2 will not prevent the d == dend
5187 check from catching the end of string. */
419d1c74
SM
5188 end_match_1 = end1;
5189 end_match_2 = string2 + stop - size1;
5190 }
5191 d = string1 + pos;
5192 dend = end_match_1;
fa9a63c5
RM
5193 }
5194
5195 DEBUG_PRINT1 ("The compiled pattern is: ");
5196 DEBUG_PRINT_COMPILED_PATTERN (bufp, p, pend);
5197 DEBUG_PRINT1 ("The string to match is: `");
5198 DEBUG_PRINT_DOUBLE_STRING (d, string1, size1, string2, size2);
5199 DEBUG_PRINT1 ("'\n");
5e69f11e 5200
7814e705 5201 /* This loops over pattern commands. It exits by returning from the
fa9a63c5
RM
5202 function if the match is complete, or it drops through if the match
5203 fails at this starting point in the input data. */
5204 for (;;)
5205 {
505bde11 5206 DEBUG_PRINT2 ("\n%p: ", p);
fa9a63c5
RM
5207
5208 if (p == pend)
5209 { /* End of pattern means we might have succeeded. */
25fe55af 5210 DEBUG_PRINT1 ("end of pattern ... ");
5e69f11e 5211
fa9a63c5 5212 /* If we haven't matched the entire string, and we want the
25fe55af
RS
5213 longest match, try backtracking. */
5214 if (d != end_match_2)
fa9a63c5
RM
5215 {
5216 /* 1 if this match ends in the same string (string1 or string2)
5217 as the best previous match. */
5e69f11e 5218 boolean same_str_p = (FIRST_STRING_P (match_end)
99633e97 5219 == FIRST_STRING_P (d));
fa9a63c5
RM
5220 /* 1 if this match is the best seen so far. */
5221 boolean best_match_p;
5222
5223 /* AIX compiler got confused when this was combined
7814e705 5224 with the previous declaration. */
fa9a63c5
RM
5225 if (same_str_p)
5226 best_match_p = d > match_end;
5227 else
99633e97 5228 best_match_p = !FIRST_STRING_P (d);
fa9a63c5 5229
25fe55af
RS
5230 DEBUG_PRINT1 ("backtracking.\n");
5231
5232 if (!FAIL_STACK_EMPTY ())
5233 { /* More failure points to try. */
5234
5235 /* If exceeds best match so far, save it. */
5236 if (!best_regs_set || best_match_p)
5237 {
5238 best_regs_set = true;
5239 match_end = d;
5240
5241 DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
5242
01618498 5243 for (reg = 1; reg < num_regs; reg++)
25fe55af 5244 {
01618498
SM
5245 best_regstart[reg] = regstart[reg];
5246 best_regend[reg] = regend[reg];
25fe55af
RS
5247 }
5248 }
5249 goto fail;
5250 }
5251
5252 /* If no failure points, don't restore garbage. And if
5253 last match is real best match, don't restore second
5254 best one. */
5255 else if (best_regs_set && !best_match_p)
5256 {
5257 restore_best_regs:
5258 /* Restore best match. It may happen that `dend ==
5259 end_match_1' while the restored d is in string2.
5260 For example, the pattern `x.*y.*z' against the
5261 strings `x-' and `y-z-', if the two strings are
7814e705 5262 not consecutive in memory. */
25fe55af
RS
5263 DEBUG_PRINT1 ("Restoring best registers.\n");
5264
5265 d = match_end;
5266 dend = ((d >= string1 && d <= end1)
5267 ? end_match_1 : end_match_2);
fa9a63c5 5268
01618498 5269 for (reg = 1; reg < num_regs; reg++)
fa9a63c5 5270 {
01618498
SM
5271 regstart[reg] = best_regstart[reg];
5272 regend[reg] = best_regend[reg];
fa9a63c5 5273 }
25fe55af
RS
5274 }
5275 } /* d != end_match_2 */
fa9a63c5
RM
5276
5277 succeed_label:
25fe55af 5278 DEBUG_PRINT1 ("Accepting match.\n");
fa9a63c5 5279
25fe55af
RS
5280 /* If caller wants register contents data back, do it. */
5281 if (regs && !bufp->no_sub)
fa9a63c5 5282 {
25fe55af
RS
5283 /* Have the register data arrays been allocated? */
5284 if (bufp->regs_allocated == REGS_UNALLOCATED)
7814e705 5285 { /* No. So allocate them with malloc. We need one
25fe55af
RS
5286 extra element beyond `num_regs' for the `-1' marker
5287 GNU code uses. */
5288 regs->num_regs = MAX (RE_NREGS, num_regs + 1);
5289 regs->start = TALLOC (regs->num_regs, regoff_t);
5290 regs->end = TALLOC (regs->num_regs, regoff_t);
5291 if (regs->start == NULL || regs->end == NULL)
fa9a63c5
RM
5292 {
5293 FREE_VARIABLES ();
5294 return -2;
5295 }
25fe55af
RS
5296 bufp->regs_allocated = REGS_REALLOCATE;
5297 }
5298 else if (bufp->regs_allocated == REGS_REALLOCATE)
5299 { /* Yes. If we need more elements than were already
5300 allocated, reallocate them. If we need fewer, just
5301 leave it alone. */
5302 if (regs->num_regs < num_regs + 1)
5303 {
5304 regs->num_regs = num_regs + 1;
5305 RETALLOC (regs->start, regs->num_regs, regoff_t);
5306 RETALLOC (regs->end, regs->num_regs, regoff_t);
5307 if (regs->start == NULL || regs->end == NULL)
fa9a63c5
RM
5308 {
5309 FREE_VARIABLES ();
5310 return -2;
5311 }
25fe55af
RS
5312 }
5313 }
5314 else
fa9a63c5
RM
5315 {
5316 /* These braces fend off a "empty body in an else-statement"
7814e705 5317 warning under GCC when assert expands to nothing. */
fa9a63c5
RM
5318 assert (bufp->regs_allocated == REGS_FIXED);
5319 }
5320
25fe55af
RS
5321 /* Convert the pointer data in `regstart' and `regend' to
5322 indices. Register zero has to be set differently,
5323 since we haven't kept track of any info for it. */
5324 if (regs->num_regs > 0)
5325 {
5326 regs->start[0] = pos;
99633e97 5327 regs->end[0] = POINTER_TO_OFFSET (d);
25fe55af 5328 }
5e69f11e 5329
25fe55af
RS
5330 /* Go through the first `min (num_regs, regs->num_regs)'
5331 registers, since that is all we initialized. */
01618498 5332 for (reg = 1; reg < MIN (num_regs, regs->num_regs); reg++)
fa9a63c5 5333 {
01618498
SM
5334 if (REG_UNSET (regstart[reg]) || REG_UNSET (regend[reg]))
5335 regs->start[reg] = regs->end[reg] = -1;
25fe55af
RS
5336 else
5337 {
01618498
SM
5338 regs->start[reg]
5339 = (regoff_t) POINTER_TO_OFFSET (regstart[reg]);
5340 regs->end[reg]
5341 = (regoff_t) POINTER_TO_OFFSET (regend[reg]);
25fe55af 5342 }
fa9a63c5 5343 }
5e69f11e 5344
25fe55af
RS
5345 /* If the regs structure we return has more elements than
5346 were in the pattern, set the extra elements to -1. If
5347 we (re)allocated the registers, this is the case,
5348 because we always allocate enough to have at least one
7814e705 5349 -1 at the end. */
01618498
SM
5350 for (reg = num_regs; reg < regs->num_regs; reg++)
5351 regs->start[reg] = regs->end[reg] = -1;
fa9a63c5
RM
5352 } /* regs && !bufp->no_sub */
5353
25fe55af
RS
5354 DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
5355 nfailure_points_pushed, nfailure_points_popped,
5356 nfailure_points_pushed - nfailure_points_popped);
5357 DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed);
fa9a63c5 5358
99633e97 5359 mcnt = POINTER_TO_OFFSET (d) - pos;
fa9a63c5 5360
25fe55af 5361 DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt);
fa9a63c5 5362
25fe55af
RS
5363 FREE_VARIABLES ();
5364 return mcnt;
5365 }
fa9a63c5 5366
7814e705 5367 /* Otherwise match next pattern command. */
fa9a63c5
RM
5368 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
5369 {
25fe55af
RS
5370 /* Ignore these. Used to ignore the n of succeed_n's which
5371 currently have n == 0. */
5372 case no_op:
5373 DEBUG_PRINT1 ("EXECUTING no_op.\n");
5374 break;
fa9a63c5
RM
5375
5376 case succeed:
25fe55af 5377 DEBUG_PRINT1 ("EXECUTING succeed.\n");
fa9a63c5
RM
5378 goto succeed_label;
5379
7814e705 5380 /* Match the next n pattern characters exactly. The following
25fe55af 5381 byte in the pattern defines n, and the n bytes after that
7814e705 5382 are the characters to match. */
fa9a63c5
RM
5383 case exactn:
5384 mcnt = *p++;
25fe55af 5385 DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt);
fa9a63c5 5386
99633e97
SM
5387 /* Remember the start point to rollback upon failure. */
5388 dfail = d;
5389
6fdd04b0 5390#ifndef emacs
25fe55af
RS
5391 /* This is written out as an if-else so we don't waste time
5392 testing `translate' inside the loop. */
28703c16 5393 if (RE_TRANSLATE_P (translate))
6fdd04b0
KH
5394 do
5395 {
5396 PREFETCH ();
5397 if (RE_TRANSLATE (translate, *d) != *p++)
e934739e 5398 {
6fdd04b0
KH
5399 d = dfail;
5400 goto fail;
e934739e 5401 }
6fdd04b0
KH
5402 d++;
5403 }
5404 while (--mcnt);
fa9a63c5 5405 else
6fdd04b0
KH
5406 do
5407 {
5408 PREFETCH ();
5409 if (*d++ != *p++)
bf216479 5410 {
6fdd04b0
KH
5411 d = dfail;
5412 goto fail;
bf216479 5413 }
6fdd04b0
KH
5414 }
5415 while (--mcnt);
5416#else /* emacs */
5417 /* The cost of testing `translate' is comparatively small. */
cf9c99bc 5418 if (target_multibyte)
6fdd04b0
KH
5419 do
5420 {
5421 int pat_charlen, buf_charlen;
cf9c99bc 5422 int pat_ch, buf_ch;
e934739e 5423
6fdd04b0 5424 PREFETCH ();
cf9c99bc 5425 if (multibyte)
62a6e103 5426 pat_ch = STRING_CHAR_AND_LENGTH (p, pat_charlen);
cf9c99bc
KH
5427 else
5428 {
5429 pat_ch = RE_CHAR_TO_MULTIBYTE (*p);
5430 pat_charlen = 1;
5431 }
62a6e103 5432 buf_ch = STRING_CHAR_AND_LENGTH (d, buf_charlen);
e934739e 5433
6fdd04b0 5434 if (TRANSLATE (buf_ch) != pat_ch)
e934739e 5435 {
6fdd04b0
KH
5436 d = dfail;
5437 goto fail;
e934739e 5438 }
bf216479 5439
6fdd04b0
KH
5440 p += pat_charlen;
5441 d += buf_charlen;
5442 mcnt -= pat_charlen;
5443 }
5444 while (mcnt > 0);
fa9a63c5 5445 else
6fdd04b0
KH
5446 do
5447 {
abbd1bcf 5448 int pat_charlen;
cf9c99bc 5449 int pat_ch, buf_ch;
bf216479 5450
6fdd04b0 5451 PREFETCH ();
cf9c99bc
KH
5452 if (multibyte)
5453 {
62a6e103 5454 pat_ch = STRING_CHAR_AND_LENGTH (p, pat_charlen);
2afc21f5 5455 pat_ch = RE_CHAR_TO_UNIBYTE (pat_ch);
cf9c99bc
KH
5456 }
5457 else
5458 {
5459 pat_ch = *p;
5460 pat_charlen = 1;
5461 }
5462 buf_ch = RE_CHAR_TO_MULTIBYTE (*d);
5463 if (! CHAR_BYTE8_P (buf_ch))
5464 {
5465 buf_ch = TRANSLATE (buf_ch);
5466 buf_ch = RE_CHAR_TO_UNIBYTE (buf_ch);
5467 if (buf_ch < 0)
5468 buf_ch = *d;
5469 }
0e2501ed
AS
5470 else
5471 buf_ch = *d;
cf9c99bc 5472 if (buf_ch != pat_ch)
6fdd04b0
KH
5473 {
5474 d = dfail;
5475 goto fail;
bf216479 5476 }
cf9c99bc
KH
5477 p += pat_charlen;
5478 d++;
6fdd04b0
KH
5479 }
5480 while (--mcnt);
5481#endif
25fe55af 5482 break;
fa9a63c5
RM
5483
5484
25fe55af 5485 /* Match any character except possibly a newline or a null. */
fa9a63c5 5486 case anychar:
e934739e
RS
5487 {
5488 int buf_charlen;
01618498 5489 re_wchar_t buf_ch;
fa9a63c5 5490
e934739e 5491 DEBUG_PRINT1 ("EXECUTING anychar.\n");
fa9a63c5 5492
e934739e 5493 PREFETCH ();
62a6e103 5494 buf_ch = RE_STRING_CHAR_AND_LENGTH (d, buf_charlen,
cf9c99bc 5495 target_multibyte);
e934739e
RS
5496 buf_ch = TRANSLATE (buf_ch);
5497
5498 if ((!(bufp->syntax & RE_DOT_NEWLINE)
5499 && buf_ch == '\n')
5500 || ((bufp->syntax & RE_DOT_NOT_NULL)
5501 && buf_ch == '\000'))
5502 goto fail;
5503
e934739e
RS
5504 DEBUG_PRINT2 (" Matched `%d'.\n", *d);
5505 d += buf_charlen;
5506 }
fa9a63c5
RM
5507 break;
5508
5509
5510 case charset:
5511 case charset_not:
5512 {
b18215fc 5513 register unsigned int c;
fa9a63c5 5514 boolean not = (re_opcode_t) *(p - 1) == charset_not;
b18215fc
RS
5515 int len;
5516
5517 /* Start of actual range_table, or end of bitmap if there is no
5518 range table. */
da053e48 5519 re_char *range_table IF_LINT (= NULL);
b18215fc 5520
96cc36cc 5521 /* Nonzero if there is a range table. */
b18215fc
RS
5522 int range_table_exists;
5523
96cc36cc
RS
5524 /* Number of ranges of range table. This is not included
5525 in the initial byte-length of the command. */
5526 int count = 0;
fa9a63c5 5527
f5020181
AS
5528 /* Whether matching against a unibyte character. */
5529 boolean unibyte_char = false;
5530
25fe55af 5531 DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : "");
fa9a63c5 5532
b18215fc 5533 range_table_exists = CHARSET_RANGE_TABLE_EXISTS_P (&p[-1]);
96cc36cc 5534
b18215fc 5535 if (range_table_exists)
96cc36cc
RS
5536 {
5537 range_table = CHARSET_RANGE_TABLE (&p[-1]); /* Past the bitmap. */
5538 EXTRACT_NUMBER_AND_INCR (count, range_table);
5539 }
b18215fc 5540
2d1675e4 5541 PREFETCH ();
62a6e103 5542 c = RE_STRING_CHAR_AND_LENGTH (d, len, target_multibyte);
cf9c99bc
KH
5543 if (target_multibyte)
5544 {
5545 int c1;
b18215fc 5546
cf9c99bc
KH
5547 c = TRANSLATE (c);
5548 c1 = RE_CHAR_TO_UNIBYTE (c);
5549 if (c1 >= 0)
f5020181
AS
5550 {
5551 unibyte_char = true;
5552 c = c1;
5553 }
cf9c99bc
KH
5554 }
5555 else
5556 {
5557 int c1 = RE_CHAR_TO_MULTIBYTE (c);
5558
5559 if (! CHAR_BYTE8_P (c1))
5560 {
5561 c1 = TRANSLATE (c1);
5562 c1 = RE_CHAR_TO_UNIBYTE (c1);
5563 if (c1 >= 0)
f5020181
AS
5564 {
5565 unibyte_char = true;
5566 c = c1;
5567 }
cf9c99bc 5568 }
0b8be006
AS
5569 else
5570 unibyte_char = true;
cf9c99bc
KH
5571 }
5572
f5020181 5573 if (unibyte_char && c < (1 << BYTEWIDTH))
b18215fc 5574 { /* Lookup bitmap. */
b18215fc
RS
5575 /* Cast to `unsigned' instead of `unsigned char' in
5576 case the bit list is a full 32 bytes long. */
5577 if (c < (unsigned) (CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH)
96cc36cc
RS
5578 && p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
5579 not = !not;
b18215fc 5580 }
96cc36cc 5581#ifdef emacs
b18215fc 5582 else if (range_table_exists)
96cc36cc
RS
5583 {
5584 int class_bits = CHARSET_RANGE_TABLE_BITS (&p[-1]);
5585
14473664
SM
5586 if ( (class_bits & BIT_LOWER && ISLOWER (c))
5587 | (class_bits & BIT_MULTIBYTE)
96cc36cc
RS
5588 | (class_bits & BIT_PUNCT && ISPUNCT (c))
5589 | (class_bits & BIT_SPACE && ISSPACE (c))
5590 | (class_bits & BIT_UPPER && ISUPPER (c))
5591 | (class_bits & BIT_WORD && ISWORD (c)))
5592 not = !not;
5593 else
5594 CHARSET_LOOKUP_RANGE_TABLE_RAW (not, c, range_table, count);
5595 }
5596#endif /* emacs */
fa9a63c5 5597
96cc36cc
RS
5598 if (range_table_exists)
5599 p = CHARSET_RANGE_TABLE_END (range_table, count);
5600 else
5601 p += CHARSET_BITMAP_SIZE (&p[-1]) + 1;
fa9a63c5
RM
5602
5603 if (!not) goto fail;
5e69f11e 5604
b18215fc 5605 d += len;
fa9a63c5 5606 }
8fb31792 5607 break;
fa9a63c5
RM
5608
5609
25fe55af 5610 /* The beginning of a group is represented by start_memory.
505bde11 5611 The argument is the register number. The text
25fe55af 5612 matched within the group is recorded (in the internal
7814e705 5613 registers data structure) under the register number. */
25fe55af 5614 case start_memory:
505bde11
SM
5615 DEBUG_PRINT2 ("EXECUTING start_memory %d:\n", *p);
5616
5617 /* In case we need to undo this operation (via backtracking). */
5618 PUSH_FAILURE_REG ((unsigned int)*p);
fa9a63c5 5619
25fe55af 5620 regstart[*p] = d;
4bb91c68 5621 regend[*p] = NULL; /* probably unnecessary. -sm */
fa9a63c5
RM
5622 DEBUG_PRINT2 (" regstart: %d\n", POINTER_TO_OFFSET (regstart[*p]));
5623
25fe55af 5624 /* Move past the register number and inner group count. */
505bde11 5625 p += 1;
25fe55af 5626 break;
fa9a63c5
RM
5627
5628
25fe55af 5629 /* The stop_memory opcode represents the end of a group. Its
505bde11 5630 argument is the same as start_memory's: the register number. */
fa9a63c5 5631 case stop_memory:
505bde11
SM
5632 DEBUG_PRINT2 ("EXECUTING stop_memory %d:\n", *p);
5633
5634 assert (!REG_UNSET (regstart[*p]));
5635 /* Strictly speaking, there should be code such as:
177c0ea7 5636
0b32bf0e 5637 assert (REG_UNSET (regend[*p]));
505bde11
SM
5638 PUSH_FAILURE_REGSTOP ((unsigned int)*p);
5639
5640 But the only info to be pushed is regend[*p] and it is known to
5641 be UNSET, so there really isn't anything to push.
5642 Not pushing anything, on the other hand deprives us from the
5643 guarantee that regend[*p] is UNSET since undoing this operation
5644 will not reset its value properly. This is not important since
5645 the value will only be read on the next start_memory or at
5646 the very end and both events can only happen if this stop_memory
5647 is *not* undone. */
fa9a63c5 5648
25fe55af 5649 regend[*p] = d;
fa9a63c5
RM
5650 DEBUG_PRINT2 (" regend: %d\n", POINTER_TO_OFFSET (regend[*p]));
5651
25fe55af 5652 /* Move past the register number and the inner group count. */
505bde11 5653 p += 1;
25fe55af 5654 break;
fa9a63c5
RM
5655
5656
5657 /* \<digit> has been turned into a `duplicate' command which is
25fe55af
RS
5658 followed by the numeric value of <digit> as the register number. */
5659 case duplicate:
fa9a63c5 5660 {
66f0296e 5661 register re_char *d2, *dend2;
7814e705 5662 int regno = *p++; /* Get which register to match against. */
fa9a63c5
RM
5663 DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno);
5664
7814e705 5665 /* Can't back reference a group which we've never matched. */
25fe55af
RS
5666 if (REG_UNSET (regstart[regno]) || REG_UNSET (regend[regno]))
5667 goto fail;
5e69f11e 5668
7814e705 5669 /* Where in input to try to start matching. */
25fe55af 5670 d2 = regstart[regno];
5e69f11e 5671
99633e97
SM
5672 /* Remember the start point to rollback upon failure. */
5673 dfail = d;
5674
25fe55af
RS
5675 /* Where to stop matching; if both the place to start and
5676 the place to stop matching are in the same string, then
5677 set to the place to stop, otherwise, for now have to use
5678 the end of the first string. */
fa9a63c5 5679
25fe55af 5680 dend2 = ((FIRST_STRING_P (regstart[regno])
fa9a63c5
RM
5681 == FIRST_STRING_P (regend[regno]))
5682 ? regend[regno] : end_match_1);
5683 for (;;)
5684 {
5685 /* If necessary, advance to next segment in register
25fe55af 5686 contents. */
fa9a63c5
RM
5687 while (d2 == dend2)
5688 {
5689 if (dend2 == end_match_2) break;
5690 if (dend2 == regend[regno]) break;
5691
25fe55af
RS
5692 /* End of string1 => advance to string2. */
5693 d2 = string2;
5694 dend2 = regend[regno];
fa9a63c5
RM
5695 }
5696 /* At end of register contents => success */
5697 if (d2 == dend2) break;
5698
5699 /* If necessary, advance to next segment in data. */
5700 PREFETCH ();
5701
5702 /* How many characters left in this segment to match. */
5703 mcnt = dend - d;
5e69f11e 5704
fa9a63c5 5705 /* Want how many consecutive characters we can match in
25fe55af
RS
5706 one shot, so, if necessary, adjust the count. */
5707 if (mcnt > dend2 - d2)
fa9a63c5 5708 mcnt = dend2 - d2;
5e69f11e 5709
fa9a63c5 5710 /* Compare that many; failure if mismatch, else move
25fe55af 5711 past them. */
28703c16 5712 if (RE_TRANSLATE_P (translate)
02cb78b5 5713 ? bcmp_translate (d, d2, mcnt, translate, target_multibyte)
4bb91c68 5714 : memcmp (d, d2, mcnt))
99633e97
SM
5715 {
5716 d = dfail;
5717 goto fail;
5718 }
fa9a63c5 5719 d += mcnt, d2 += mcnt;
fa9a63c5
RM
5720 }
5721 }
5722 break;
5723
5724
25fe55af 5725 /* begline matches the empty string at the beginning of the string
c0f9ea08 5726 (unless `not_bol' is set in `bufp'), and after newlines. */
fa9a63c5 5727 case begline:
25fe55af 5728 DEBUG_PRINT1 ("EXECUTING begline.\n");
5e69f11e 5729
25fe55af
RS
5730 if (AT_STRINGS_BEG (d))
5731 {
5732 if (!bufp->not_bol) break;
5733 }
419d1c74 5734 else
25fe55af 5735 {
bf216479 5736 unsigned c;
419d1c74 5737 GET_CHAR_BEFORE_2 (c, d, string1, end1, string2, end2);
c0f9ea08 5738 if (c == '\n')
419d1c74 5739 break;
25fe55af
RS
5740 }
5741 /* In all other cases, we fail. */
5742 goto fail;
fa9a63c5
RM
5743
5744
25fe55af 5745 /* endline is the dual of begline. */
fa9a63c5 5746 case endline:
25fe55af 5747 DEBUG_PRINT1 ("EXECUTING endline.\n");
fa9a63c5 5748
25fe55af
RS
5749 if (AT_STRINGS_END (d))
5750 {
5751 if (!bufp->not_eol) break;
5752 }
f1ad044f 5753 else
25fe55af 5754 {
f1ad044f 5755 PREFETCH_NOLIMIT ();
c0f9ea08 5756 if (*d == '\n')
f1ad044f 5757 break;
25fe55af
RS
5758 }
5759 goto fail;
fa9a63c5
RM
5760
5761
5762 /* Match at the very beginning of the data. */
25fe55af
RS
5763 case begbuf:
5764 DEBUG_PRINT1 ("EXECUTING begbuf.\n");
5765 if (AT_STRINGS_BEG (d))
5766 break;
5767 goto fail;
fa9a63c5
RM
5768
5769
5770 /* Match at the very end of the data. */
25fe55af
RS
5771 case endbuf:
5772 DEBUG_PRINT1 ("EXECUTING endbuf.\n");
fa9a63c5
RM
5773 if (AT_STRINGS_END (d))
5774 break;
25fe55af 5775 goto fail;
5e69f11e 5776
5e69f11e 5777
25fe55af
RS
5778 /* on_failure_keep_string_jump is used to optimize `.*\n'. It
5779 pushes NULL as the value for the string on the stack. Then
505bde11 5780 `POP_FAILURE_POINT' will keep the current value for the
25fe55af 5781 string, instead of restoring it. To see why, consider
7814e705 5782 matching `foo\nbar' against `.*\n'. The .* matches the foo;
25fe55af
RS
5783 then the . fails against the \n. But the next thing we want
5784 to do is match the \n against the \n; if we restored the
5785 string value, we would be back at the foo.
5786
5787 Because this is used only in specific cases, we don't need to
5788 check all the things that `on_failure_jump' does, to make
5789 sure the right things get saved on the stack. Hence we don't
5790 share its code. The only reason to push anything on the
5791 stack at all is that otherwise we would have to change
5792 `anychar's code to do something besides goto fail in this
5793 case; that seems worse than this. */
5794 case on_failure_keep_string_jump:
505bde11
SM
5795 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5796 DEBUG_PRINT3 ("EXECUTING on_failure_keep_string_jump %d (to %p):\n",
5797 mcnt, p + mcnt);
fa9a63c5 5798
505bde11
SM
5799 PUSH_FAILURE_POINT (p - 3, NULL);
5800 break;
5801
0683b6fa
SM
5802 /* A nasty loop is introduced by the non-greedy *? and +?.
5803 With such loops, the stack only ever contains one failure point
5804 at a time, so that a plain on_failure_jump_loop kind of
5805 cycle detection cannot work. Worse yet, such a detection
5806 can not only fail to detect a cycle, but it can also wrongly
5807 detect a cycle (between different instantiations of the same
6df42991 5808 loop).
0683b6fa
SM
5809 So the method used for those nasty loops is a little different:
5810 We use a special cycle-detection-stack-frame which is pushed
5811 when the on_failure_jump_nastyloop failure-point is *popped*.
5812 This special frame thus marks the beginning of one iteration
5813 through the loop and we can hence easily check right here
5814 whether something matched between the beginning and the end of
5815 the loop. */
5816 case on_failure_jump_nastyloop:
5817 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5818 DEBUG_PRINT3 ("EXECUTING on_failure_jump_nastyloop %d (to %p):\n",
5819 mcnt, p + mcnt);
5820
5821 assert ((re_opcode_t)p[-4] == no_op);
6df42991
SM
5822 {
5823 int cycle = 0;
5824 CHECK_INFINITE_LOOP (p - 4, d);
5825 if (!cycle)
5826 /* If there's a cycle, just continue without pushing
5827 this failure point. The failure point is the "try again"
5828 option, which shouldn't be tried.
5829 We want (x?)*?y\1z to match both xxyz and xxyxz. */
5830 PUSH_FAILURE_POINT (p - 3, d);
5831 }
0683b6fa
SM
5832 break;
5833
4e8a9132
SM
5834 /* Simple loop detecting on_failure_jump: just check on the
5835 failure stack if the same spot was already hit earlier. */
505bde11
SM
5836 case on_failure_jump_loop:
5837 on_failure:
5838 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5839 DEBUG_PRINT3 ("EXECUTING on_failure_jump_loop %d (to %p):\n",
5840 mcnt, p + mcnt);
6df42991
SM
5841 {
5842 int cycle = 0;
5843 CHECK_INFINITE_LOOP (p - 3, d);
5844 if (cycle)
5845 /* If there's a cycle, get out of the loop, as if the matching
5846 had failed. We used to just `goto fail' here, but that was
5847 aborting the search a bit too early: we want to keep the
5848 empty-loop-match and keep matching after the loop.
5849 We want (x?)*y\1z to match both xxyz and xxyxz. */
5850 p += mcnt;
5851 else
5852 PUSH_FAILURE_POINT (p - 3, d);
5853 }
25fe55af 5854 break;
fa9a63c5
RM
5855
5856
5857 /* Uses of on_failure_jump:
5e69f11e 5858
25fe55af
RS
5859 Each alternative starts with an on_failure_jump that points
5860 to the beginning of the next alternative. Each alternative
5861 except the last ends with a jump that in effect jumps past
5862 the rest of the alternatives. (They really jump to the
5863 ending jump of the following alternative, because tensioning
5864 these jumps is a hassle.)
fa9a63c5 5865
25fe55af
RS
5866 Repeats start with an on_failure_jump that points past both
5867 the repetition text and either the following jump or
5868 pop_failure_jump back to this on_failure_jump. */
fa9a63c5 5869 case on_failure_jump:
25fe55af 5870 EXTRACT_NUMBER_AND_INCR (mcnt, p);
505bde11
SM
5871 DEBUG_PRINT3 ("EXECUTING on_failure_jump %d (to %p):\n",
5872 mcnt, p + mcnt);
25fe55af 5873
505bde11 5874 PUSH_FAILURE_POINT (p -3, d);
25fe55af
RS
5875 break;
5876
4e8a9132 5877 /* This operation is used for greedy *.
505bde11
SM
5878 Compare the beginning of the repeat with what in the
5879 pattern follows its end. If we can establish that there
5880 is nothing that they would both match, i.e., that we
5881 would have to backtrack because of (as in, e.g., `a*a')
5882 then we can use a non-backtracking loop based on
4e8a9132 5883 on_failure_keep_string_jump instead of on_failure_jump. */
505bde11 5884 case on_failure_jump_smart:
25fe55af 5885 EXTRACT_NUMBER_AND_INCR (mcnt, p);
505bde11
SM
5886 DEBUG_PRINT3 ("EXECUTING on_failure_jump_smart %d (to %p).\n",
5887 mcnt, p + mcnt);
25fe55af 5888 {
01618498 5889 re_char *p1 = p; /* Next operation. */
6dcf2d0e
SM
5890 /* Here, we discard `const', making re_match non-reentrant. */
5891 unsigned char *p2 = (unsigned char*) p + mcnt; /* Jump dest. */
5892 unsigned char *p3 = (unsigned char*) p - 3; /* opcode location. */
fa9a63c5 5893
505bde11
SM
5894 p -= 3; /* Reset so that we will re-execute the
5895 instruction once it's been changed. */
fa9a63c5 5896
4e8a9132
SM
5897 EXTRACT_NUMBER (mcnt, p2 - 2);
5898
5899 /* Ensure this is a indeed the trivial kind of loop
5900 we are expecting. */
5901 assert (skip_one_char (p1) == p2 - 3);
5902 assert ((re_opcode_t) p2[-3] == jump && p2 + mcnt == p);
99633e97 5903 DEBUG_STATEMENT (debug += 2);
505bde11 5904 if (mutually_exclusive_p (bufp, p1, p2))
fa9a63c5 5905 {
505bde11 5906 /* Use a fast `on_failure_keep_string_jump' loop. */
4e8a9132 5907 DEBUG_PRINT1 (" smart exclusive => fast loop.\n");
01618498 5908 *p3 = (unsigned char) on_failure_keep_string_jump;
4e8a9132 5909 STORE_NUMBER (p2 - 2, mcnt + 3);
25fe55af 5910 }
505bde11 5911 else
fa9a63c5 5912 {
505bde11
SM
5913 /* Default to a safe `on_failure_jump' loop. */
5914 DEBUG_PRINT1 (" smart default => slow loop.\n");
01618498 5915 *p3 = (unsigned char) on_failure_jump;
fa9a63c5 5916 }
99633e97 5917 DEBUG_STATEMENT (debug -= 2);
25fe55af 5918 }
505bde11 5919 break;
25fe55af
RS
5920
5921 /* Unconditionally jump (without popping any failure points). */
5922 case jump:
fa9a63c5 5923 unconditional_jump:
5b370c2b 5924 IMMEDIATE_QUIT_CHECK;
fa9a63c5 5925 EXTRACT_NUMBER_AND_INCR (mcnt, p); /* Get the amount to jump. */
25fe55af 5926 DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt);
7814e705 5927 p += mcnt; /* Do the jump. */
505bde11 5928 DEBUG_PRINT2 ("(to %p).\n", p);
25fe55af
RS
5929 break;
5930
5931
25fe55af
RS
5932 /* Have to succeed matching what follows at least n times.
5933 After that, handle like `on_failure_jump'. */
5934 case succeed_n:
01618498 5935 /* Signedness doesn't matter since we only compare MCNT to 0. */
25fe55af
RS
5936 EXTRACT_NUMBER (mcnt, p + 2);
5937 DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt);
5e69f11e 5938
dc1e502d
SM
5939 /* Originally, mcnt is how many times we HAVE to succeed. */
5940 if (mcnt != 0)
25fe55af 5941 {
6dcf2d0e
SM
5942 /* Here, we discard `const', making re_match non-reentrant. */
5943 unsigned char *p2 = (unsigned char*) p + 2; /* counter loc. */
dc1e502d 5944 mcnt--;
01618498
SM
5945 p += 4;
5946 PUSH_NUMBER (p2, mcnt);
25fe55af 5947 }
dc1e502d
SM
5948 else
5949 /* The two bytes encoding mcnt == 0 are two no_op opcodes. */
5950 goto on_failure;
25fe55af
RS
5951 break;
5952
5953 case jump_n:
01618498 5954 /* Signedness doesn't matter since we only compare MCNT to 0. */
25fe55af
RS
5955 EXTRACT_NUMBER (mcnt, p + 2);
5956 DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt);
5957
5958 /* Originally, this is how many times we CAN jump. */
dc1e502d 5959 if (mcnt != 0)
25fe55af 5960 {
6dcf2d0e
SM
5961 /* Here, we discard `const', making re_match non-reentrant. */
5962 unsigned char *p2 = (unsigned char*) p + 2; /* counter loc. */
dc1e502d 5963 mcnt--;
01618498 5964 PUSH_NUMBER (p2, mcnt);
dc1e502d 5965 goto unconditional_jump;
25fe55af
RS
5966 }
5967 /* If don't have to jump any more, skip over the rest of command. */
5e69f11e
RM
5968 else
5969 p += 4;
25fe55af 5970 break;
5e69f11e 5971
fa9a63c5
RM
5972 case set_number_at:
5973 {
01618498 5974 unsigned char *p2; /* Location of the counter. */
25fe55af 5975 DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
fa9a63c5 5976
25fe55af 5977 EXTRACT_NUMBER_AND_INCR (mcnt, p);
6dcf2d0e
SM
5978 /* Here, we discard `const', making re_match non-reentrant. */
5979 p2 = (unsigned char*) p + mcnt;
01618498 5980 /* Signedness doesn't matter since we only copy MCNT's bits . */
25fe55af 5981 EXTRACT_NUMBER_AND_INCR (mcnt, p);
01618498
SM
5982 DEBUG_PRINT3 (" Setting %p to %d.\n", p2, mcnt);
5983 PUSH_NUMBER (p2, mcnt);
25fe55af
RS
5984 break;
5985 }
9121ca40
KH
5986
5987 case wordbound:
66f0296e 5988 case notwordbound:
19ed5445
PE
5989 {
5990 boolean not = (re_opcode_t) *(p - 1) == notwordbound;
5991 DEBUG_PRINT2 ("EXECUTING %swordbound.\n", not?"not":"");
fa9a63c5 5992
19ed5445 5993 /* We SUCCEED (or FAIL) in one of the following cases: */
9121ca40 5994
19ed5445
PE
5995 /* Case 1: D is at the beginning or the end of string. */
5996 if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
5997 not = !not;
5998 else
5999 {
6000 /* C1 is the character before D, S1 is the syntax of C1, C2
6001 is the character at D, and S2 is the syntax of C2. */
6002 re_wchar_t c1, c2;
6003 int s1, s2;
6004 int dummy;
b18215fc 6005#ifdef emacs
d1dfb56c
EZ
6006 ssize_t offset = PTR_TO_OFFSET (d - 1);
6007 ssize_t charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
19ed5445 6008 UPDATE_SYNTAX_TABLE (charpos);
25fe55af 6009#endif
19ed5445
PE
6010 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
6011 s1 = SYNTAX (c1);
b18215fc 6012#ifdef emacs
19ed5445 6013 UPDATE_SYNTAX_TABLE_FORWARD (charpos + 1);
25fe55af 6014#endif
19ed5445
PE
6015 PREFETCH_NOLIMIT ();
6016 GET_CHAR_AFTER (c2, d, dummy);
6017 s2 = SYNTAX (c2);
6018
6019 if (/* Case 2: Only one of S1 and S2 is Sword. */
6020 ((s1 == Sword) != (s2 == Sword))
6021 /* Case 3: Both of S1 and S2 are Sword, and macro
6022 WORD_BOUNDARY_P (C1, C2) returns nonzero. */
6023 || ((s1 == Sword) && WORD_BOUNDARY_P (c1, c2)))
6024 not = !not;
6025 }
6026 if (not)
6027 break;
6028 else
6029 goto fail;
6030 }
fa9a63c5
RM
6031
6032 case wordbeg:
25fe55af 6033 DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
fa9a63c5 6034
b18215fc
RS
6035 /* We FAIL in one of the following cases: */
6036
7814e705 6037 /* Case 1: D is at the end of string. */
b18215fc 6038 if (AT_STRINGS_END (d))
99633e97 6039 goto fail;
b18215fc
RS
6040 else
6041 {
6042 /* C1 is the character before D, S1 is the syntax of C1, C2
6043 is the character at D, and S2 is the syntax of C2. */
01618498
SM
6044 re_wchar_t c1, c2;
6045 int s1, s2;
bf216479 6046 int dummy;
fa9a63c5 6047#ifdef emacs
d1dfb56c
EZ
6048 ssize_t offset = PTR_TO_OFFSET (d);
6049 ssize_t charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
92432794 6050 UPDATE_SYNTAX_TABLE (charpos);
25fe55af 6051#endif
99633e97 6052 PREFETCH ();
6fdd04b0 6053 GET_CHAR_AFTER (c2, d, dummy);
b18215fc 6054 s2 = SYNTAX (c2);
177c0ea7 6055
b18215fc
RS
6056 /* Case 2: S2 is not Sword. */
6057 if (s2 != Sword)
6058 goto fail;
6059
6060 /* Case 3: D is not at the beginning of string ... */
6061 if (!AT_STRINGS_BEG (d))
6062 {
6063 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
6064#ifdef emacs
5d967c7a 6065 UPDATE_SYNTAX_TABLE_BACKWARD (charpos - 1);
25fe55af 6066#endif
b18215fc
RS
6067 s1 = SYNTAX (c1);
6068
6069 /* ... and S1 is Sword, and WORD_BOUNDARY_P (C1, C2)
7814e705 6070 returns 0. */
b18215fc
RS
6071 if ((s1 == Sword) && !WORD_BOUNDARY_P (c1, c2))
6072 goto fail;
6073 }
6074 }
e318085a
RS
6075 break;
6076
b18215fc 6077 case wordend:
25fe55af 6078 DEBUG_PRINT1 ("EXECUTING wordend.\n");
b18215fc
RS
6079
6080 /* We FAIL in one of the following cases: */
6081
6082 /* Case 1: D is at the beginning of string. */
6083 if (AT_STRINGS_BEG (d))
e318085a 6084 goto fail;
b18215fc
RS
6085 else
6086 {
6087 /* C1 is the character before D, S1 is the syntax of C1, C2
6088 is the character at D, and S2 is the syntax of C2. */
01618498
SM
6089 re_wchar_t c1, c2;
6090 int s1, s2;
bf216479 6091 int dummy;
5d967c7a 6092#ifdef emacs
d1dfb56c
EZ
6093 ssize_t offset = PTR_TO_OFFSET (d) - 1;
6094 ssize_t charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
92432794 6095 UPDATE_SYNTAX_TABLE (charpos);
5d967c7a 6096#endif
99633e97 6097 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
b18215fc
RS
6098 s1 = SYNTAX (c1);
6099
6100 /* Case 2: S1 is not Sword. */
6101 if (s1 != Sword)
6102 goto fail;
6103
6104 /* Case 3: D is not at the end of string ... */
6105 if (!AT_STRINGS_END (d))
6106 {
f1ad044f 6107 PREFETCH_NOLIMIT ();
6fdd04b0 6108 GET_CHAR_AFTER (c2, d, dummy);
5d967c7a
RS
6109#ifdef emacs
6110 UPDATE_SYNTAX_TABLE_FORWARD (charpos);
6111#endif
b18215fc
RS
6112 s2 = SYNTAX (c2);
6113
6114 /* ... and S2 is Sword, and WORD_BOUNDARY_P (C1, C2)
7814e705 6115 returns 0. */
b18215fc 6116 if ((s2 == Sword) && !WORD_BOUNDARY_P (c1, c2))
25fe55af 6117 goto fail;
b18215fc
RS
6118 }
6119 }
e318085a
RS
6120 break;
6121
669fa600
SM
6122 case symbeg:
6123 DEBUG_PRINT1 ("EXECUTING symbeg.\n");
6124
6125 /* We FAIL in one of the following cases: */
6126
7814e705 6127 /* Case 1: D is at the end of string. */
669fa600
SM
6128 if (AT_STRINGS_END (d))
6129 goto fail;
6130 else
6131 {
6132 /* C1 is the character before D, S1 is the syntax of C1, C2
6133 is the character at D, and S2 is the syntax of C2. */
6134 re_wchar_t c1, c2;
6135 int s1, s2;
6136#ifdef emacs
d1dfb56c
EZ
6137 ssize_t offset = PTR_TO_OFFSET (d);
6138 ssize_t charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
669fa600
SM
6139 UPDATE_SYNTAX_TABLE (charpos);
6140#endif
6141 PREFETCH ();
62a6e103 6142 c2 = RE_STRING_CHAR (d, target_multibyte);
669fa600 6143 s2 = SYNTAX (c2);
7814e705 6144
669fa600
SM
6145 /* Case 2: S2 is neither Sword nor Ssymbol. */
6146 if (s2 != Sword && s2 != Ssymbol)
6147 goto fail;
6148
6149 /* Case 3: D is not at the beginning of string ... */
6150 if (!AT_STRINGS_BEG (d))
6151 {
6152 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
6153#ifdef emacs
6154 UPDATE_SYNTAX_TABLE_BACKWARD (charpos - 1);
6155#endif
6156 s1 = SYNTAX (c1);
6157
6158 /* ... and S1 is Sword or Ssymbol. */
6159 if (s1 == Sword || s1 == Ssymbol)
6160 goto fail;
6161 }
6162 }
6163 break;
6164
6165 case symend:
6166 DEBUG_PRINT1 ("EXECUTING symend.\n");
6167
6168 /* We FAIL in one of the following cases: */
6169
6170 /* Case 1: D is at the beginning of string. */
6171 if (AT_STRINGS_BEG (d))
6172 goto fail;
6173 else
6174 {
6175 /* C1 is the character before D, S1 is the syntax of C1, C2
6176 is the character at D, and S2 is the syntax of C2. */
6177 re_wchar_t c1, c2;
6178 int s1, s2;
6179#ifdef emacs
d1dfb56c
EZ
6180 ssize_t offset = PTR_TO_OFFSET (d) - 1;
6181 ssize_t charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
669fa600
SM
6182 UPDATE_SYNTAX_TABLE (charpos);
6183#endif
6184 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
6185 s1 = SYNTAX (c1);
6186
6187 /* Case 2: S1 is neither Ssymbol nor Sword. */
6188 if (s1 != Sword && s1 != Ssymbol)
6189 goto fail;
6190
6191 /* Case 3: D is not at the end of string ... */
6192 if (!AT_STRINGS_END (d))
6193 {
6194 PREFETCH_NOLIMIT ();
62a6e103 6195 c2 = RE_STRING_CHAR (d, target_multibyte);
669fa600 6196#ifdef emacs
134579f2 6197 UPDATE_SYNTAX_TABLE_FORWARD (charpos + 1);
669fa600
SM
6198#endif
6199 s2 = SYNTAX (c2);
6200
6201 /* ... and S2 is Sword or Ssymbol. */
6202 if (s2 == Sword || s2 == Ssymbol)
6203 goto fail;
b18215fc
RS
6204 }
6205 }
e318085a
RS
6206 break;
6207
fa9a63c5 6208 case syntaxspec:
1fb352e0 6209 case notsyntaxspec:
b18215fc 6210 {
19ed5445
PE
6211 boolean not = (re_opcode_t) *(p - 1) == notsyntaxspec;
6212 mcnt = *p++;
6213 DEBUG_PRINT3 ("EXECUTING %ssyntaxspec %d.\n", not?"not":"", mcnt);
6214 PREFETCH ();
6215#ifdef emacs
6216 {
d1dfb56c
EZ
6217 ssize_t offset = PTR_TO_OFFSET (d);
6218 ssize_t pos1 = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
19ed5445
PE
6219 UPDATE_SYNTAX_TABLE (pos1);
6220 }
25fe55af 6221#endif
19ed5445
PE
6222 {
6223 int len;
6224 re_wchar_t c;
b18215fc 6225
19ed5445
PE
6226 GET_CHAR_AFTER (c, d, len);
6227 if ((SYNTAX (c) != (enum syntaxcode) mcnt) ^ not)
6228 goto fail;
6229 d += len;
6230 }
b18215fc 6231 }
8fb31792 6232 break;
fa9a63c5 6233
b18215fc 6234#ifdef emacs
1fb352e0
SM
6235 case before_dot:
6236 DEBUG_PRINT1 ("EXECUTING before_dot.\n");
6237 if (PTR_BYTE_POS (d) >= PT_BYTE)
fa9a63c5 6238 goto fail;
b18215fc
RS
6239 break;
6240
1fb352e0
SM
6241 case at_dot:
6242 DEBUG_PRINT1 ("EXECUTING at_dot.\n");
6243 if (PTR_BYTE_POS (d) != PT_BYTE)
6244 goto fail;
6245 break;
b18215fc 6246
1fb352e0
SM
6247 case after_dot:
6248 DEBUG_PRINT1 ("EXECUTING after_dot.\n");
6249 if (PTR_BYTE_POS (d) <= PT_BYTE)
6250 goto fail;
e318085a 6251 break;
fa9a63c5 6252
1fb352e0 6253 case categoryspec:
b18215fc 6254 case notcategoryspec:
b18215fc 6255 {
8fb31792
PE
6256 boolean not = (re_opcode_t) *(p - 1) == notcategoryspec;
6257 mcnt = *p++;
6258 DEBUG_PRINT3 ("EXECUTING %scategoryspec %d.\n",
6259 not?"not":"", mcnt);
6260 PREFETCH ();
01618498 6261
8fb31792
PE
6262 {
6263 int len;
6264 re_wchar_t c;
6265 GET_CHAR_AFTER (c, d, len);
6266 if ((!CHAR_HAS_CATEGORY (c, mcnt)) ^ not)
6267 goto fail;
6268 d += len;
6269 }
b18215fc 6270 }
fa9a63c5 6271 break;
5e69f11e 6272
1fb352e0 6273#endif /* emacs */
5e69f11e 6274
0b32bf0e
SM
6275 default:
6276 abort ();
fa9a63c5 6277 }
b18215fc 6278 continue; /* Successfully executed one pattern command; keep going. */
fa9a63c5
RM
6279
6280
6281 /* We goto here if a matching operation fails. */
6282 fail:
5b370c2b 6283 IMMEDIATE_QUIT_CHECK;
fa9a63c5 6284 if (!FAIL_STACK_EMPTY ())
505bde11 6285 {
01618498 6286 re_char *str, *pat;
505bde11 6287 /* A restart point is known. Restore to that state. */
0b32bf0e
SM
6288 DEBUG_PRINT1 ("\nFAIL:\n");
6289 POP_FAILURE_POINT (str, pat);
505bde11
SM
6290 switch (SWITCH_ENUM_CAST ((re_opcode_t) *pat++))
6291 {
6292 case on_failure_keep_string_jump:
6293 assert (str == NULL);
6294 goto continue_failure_jump;
6295
0683b6fa
SM
6296 case on_failure_jump_nastyloop:
6297 assert ((re_opcode_t)pat[-2] == no_op);
6298 PUSH_FAILURE_POINT (pat - 2, str);
6299 /* Fallthrough */
6300
505bde11
SM
6301 case on_failure_jump_loop:
6302 case on_failure_jump:
6303 case succeed_n:
6304 d = str;
6305 continue_failure_jump:
6306 EXTRACT_NUMBER_AND_INCR (mcnt, pat);
6307 p = pat + mcnt;
6308 break;
b18215fc 6309
0683b6fa
SM
6310 case no_op:
6311 /* A special frame used for nastyloops. */
6312 goto fail;
6313
505bde11
SM
6314 default:
6315 abort();
6316 }
fa9a63c5 6317
505bde11 6318 assert (p >= bufp->buffer && p <= pend);
b18215fc 6319
0b32bf0e 6320 if (d >= string1 && d <= end1)
fa9a63c5 6321 dend = end_match_1;
0b32bf0e 6322 }
fa9a63c5 6323 else
0b32bf0e 6324 break; /* Matching at this starting point really fails. */
fa9a63c5
RM
6325 } /* for (;;) */
6326
6327 if (best_regs_set)
6328 goto restore_best_regs;
6329
6330 FREE_VARIABLES ();
6331
b18215fc 6332 return -1; /* Failure to match. */
fa9a63c5
RM
6333} /* re_match_2 */
6334\f
6335/* Subroutine definitions for re_match_2. */
6336
fa9a63c5
RM
6337/* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
6338 bytes; nonzero otherwise. */
5e69f11e 6339
fa9a63c5 6340static int
d1dfb56c 6341bcmp_translate (const re_char *s1, const re_char *s2, register ssize_t len,
438105ed 6342 RE_TRANSLATE_TYPE translate, const int target_multibyte)
fa9a63c5 6343{
2d1675e4
SM
6344 register re_char *p1 = s1, *p2 = s2;
6345 re_char *p1_end = s1 + len;
6346 re_char *p2_end = s2 + len;
e934739e 6347
4bb91c68
SM
6348 /* FIXME: Checking both p1 and p2 presumes that the two strings might have
6349 different lengths, but relying on a single `len' would break this. -sm */
6350 while (p1 < p1_end && p2 < p2_end)
fa9a63c5 6351 {
e934739e 6352 int p1_charlen, p2_charlen;
01618498 6353 re_wchar_t p1_ch, p2_ch;
e934739e 6354
6fdd04b0
KH
6355 GET_CHAR_AFTER (p1_ch, p1, p1_charlen);
6356 GET_CHAR_AFTER (p2_ch, p2, p2_charlen);
e934739e
RS
6357
6358 if (RE_TRANSLATE (translate, p1_ch)
6359 != RE_TRANSLATE (translate, p2_ch))
bc192b5b 6360 return 1;
e934739e
RS
6361
6362 p1 += p1_charlen, p2 += p2_charlen;
fa9a63c5 6363 }
e934739e
RS
6364
6365 if (p1 != p1_end || p2 != p2_end)
6366 return 1;
6367
fa9a63c5
RM
6368 return 0;
6369}
6370\f
6371/* Entry points for GNU code. */
6372
6373/* re_compile_pattern is the GNU regular expression compiler: it
6374 compiles PATTERN (of length SIZE) and puts the result in BUFP.
6375 Returns 0 if the pattern was valid, otherwise an error string.
5e69f11e 6376
fa9a63c5
RM
6377 Assumes the `allocated' (and perhaps `buffer') and `translate' fields
6378 are set in BUFP on entry.
5e69f11e 6379
b18215fc 6380 We call regex_compile to do the actual compilation. */
fa9a63c5
RM
6381
6382const char *
d1dfb56c
EZ
6383re_compile_pattern (const char *pattern, size_t length,
6384 struct re_pattern_buffer *bufp)
fa9a63c5
RM
6385{
6386 reg_errcode_t ret;
5e69f11e 6387
fa9a63c5
RM
6388 /* GNU code is written to assume at least RE_NREGS registers will be set
6389 (and at least one extra will be -1). */
6390 bufp->regs_allocated = REGS_UNALLOCATED;
5e69f11e 6391
fa9a63c5
RM
6392 /* And GNU code determines whether or not to get register information
6393 by passing null for the REGS argument to re_match, etc., not by
6394 setting no_sub. */
6395 bufp->no_sub = 0;
5e69f11e 6396
4bb91c68 6397 ret = regex_compile ((re_char*) pattern, length, re_syntax_options, bufp);
fa9a63c5
RM
6398
6399 if (!ret)
6400 return NULL;
6401 return gettext (re_error_msgid[(int) ret]);
5e69f11e 6402}
c0f9ea08 6403WEAK_ALIAS (__re_compile_pattern, re_compile_pattern)
fa9a63c5 6404\f
b18215fc
RS
6405/* Entry points compatible with 4.2 BSD regex library. We don't define
6406 them unless specifically requested. */
fa9a63c5 6407
0b32bf0e 6408#if defined _REGEX_RE_COMP || defined _LIBC
fa9a63c5
RM
6409
6410/* BSD has one and only one pattern buffer. */
6411static struct re_pattern_buffer re_comp_buf;
6412
6413char *
0b32bf0e 6414# ifdef _LIBC
48afdd44
RM
6415/* Make these definitions weak in libc, so POSIX programs can redefine
6416 these names if they don't use our functions, and still use
6417 regcomp/regexec below without link errors. */
6418weak_function
0b32bf0e 6419# endif
fa9a63c5
RM
6420re_comp (s)
6421 const char *s;
6422{
6423 reg_errcode_t ret;
5e69f11e 6424
fa9a63c5
RM
6425 if (!s)
6426 {
6427 if (!re_comp_buf.buffer)
0b32bf0e 6428 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
a60198e5 6429 return (char *) gettext ("No previous regular expression");
fa9a63c5
RM
6430 return 0;
6431 }
6432
6433 if (!re_comp_buf.buffer)
6434 {
6435 re_comp_buf.buffer = (unsigned char *) malloc (200);
6436 if (re_comp_buf.buffer == NULL)
0b32bf0e
SM
6437 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
6438 return (char *) gettext (re_error_msgid[(int) REG_ESPACE]);
fa9a63c5
RM
6439 re_comp_buf.allocated = 200;
6440
6441 re_comp_buf.fastmap = (char *) malloc (1 << BYTEWIDTH);
6442 if (re_comp_buf.fastmap == NULL)
a60198e5
SM
6443 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
6444 return (char *) gettext (re_error_msgid[(int) REG_ESPACE]);
fa9a63c5
RM
6445 }
6446
6447 /* Since `re_exec' always passes NULL for the `regs' argument, we
6448 don't need to initialize the pattern buffer fields which affect it. */
6449
fa9a63c5 6450 ret = regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf);
5e69f11e 6451
fa9a63c5
RM
6452 if (!ret)
6453 return NULL;
6454
6455 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
6456 return (char *) gettext (re_error_msgid[(int) ret]);
6457}
6458
6459
d1dfb56c 6460regoff_t
0b32bf0e 6461# ifdef _LIBC
48afdd44 6462weak_function
0b32bf0e 6463# endif
d1dfb56c 6464re_exec (const char *s)
fa9a63c5 6465{
d1dfb56c 6466 const size_t len = strlen (s);
fa9a63c5
RM
6467 return
6468 0 <= re_search (&re_comp_buf, s, len, 0, len, (struct re_registers *) 0);
6469}
6470#endif /* _REGEX_RE_COMP */
6471\f
6472/* POSIX.2 functions. Don't define these for Emacs. */
6473
6474#ifndef emacs
6475
6476/* regcomp takes a regular expression as a string and compiles it.
6477
b18215fc 6478 PREG is a regex_t *. We do not expect any fields to be initialized,
fa9a63c5
RM
6479 since POSIX says we shouldn't. Thus, we set
6480
6481 `buffer' to the compiled pattern;
6482 `used' to the length of the compiled pattern;
6483 `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
6484 REG_EXTENDED bit in CFLAGS is set; otherwise, to
6485 RE_SYNTAX_POSIX_BASIC;
c0f9ea08
SM
6486 `fastmap' to an allocated space for the fastmap;
6487 `fastmap_accurate' to zero;
fa9a63c5
RM
6488 `re_nsub' to the number of subexpressions in PATTERN.
6489
6490 PATTERN is the address of the pattern string.
6491
6492 CFLAGS is a series of bits which affect compilation.
6493
6494 If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
6495 use POSIX basic syntax.
6496
6497 If REG_NEWLINE is set, then . and [^...] don't match newline.
6498 Also, regexec will try a match beginning after every newline.
6499
6500 If REG_ICASE is set, then we considers upper- and lowercase
6501 versions of letters to be equivalent when matching.
6502
6503 If REG_NOSUB is set, then when PREG is passed to regexec, that
6504 routine will report only success or failure, and nothing about the
6505 registers.
6506
b18215fc 6507 It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for
fa9a63c5
RM
6508 the return codes and their meanings.) */
6509
d1dfb56c 6510reg_errcode_t
d2762c86
DN
6511regcomp (regex_t *__restrict preg, const char *__restrict pattern,
6512 int cflags)
fa9a63c5
RM
6513{
6514 reg_errcode_t ret;
4bb91c68 6515 reg_syntax_t syntax
fa9a63c5
RM
6516 = (cflags & REG_EXTENDED) ?
6517 RE_SYNTAX_POSIX_EXTENDED : RE_SYNTAX_POSIX_BASIC;
6518
6519 /* regex_compile will allocate the space for the compiled pattern. */
6520 preg->buffer = 0;
6521 preg->allocated = 0;
6522 preg->used = 0;
5e69f11e 6523
c0f9ea08
SM
6524 /* Try to allocate space for the fastmap. */
6525 preg->fastmap = (char *) malloc (1 << BYTEWIDTH);
5e69f11e 6526
fa9a63c5
RM
6527 if (cflags & REG_ICASE)
6528 {
6529 unsigned i;
5e69f11e 6530
6676cb1c
RS
6531 preg->translate
6532 = (RE_TRANSLATE_TYPE) malloc (CHAR_SET_SIZE
6533 * sizeof (*(RE_TRANSLATE_TYPE)0));
fa9a63c5 6534 if (preg->translate == NULL)
0b32bf0e 6535 return (int) REG_ESPACE;
fa9a63c5
RM
6536
6537 /* Map uppercase characters to corresponding lowercase ones. */
6538 for (i = 0; i < CHAR_SET_SIZE; i++)
4bb91c68 6539 preg->translate[i] = ISUPPER (i) ? TOLOWER (i) : i;
fa9a63c5
RM
6540 }
6541 else
6542 preg->translate = NULL;
6543
6544 /* If REG_NEWLINE is set, newlines are treated differently. */
6545 if (cflags & REG_NEWLINE)
6546 { /* REG_NEWLINE implies neither . nor [^...] match newline. */
6547 syntax &= ~RE_DOT_NEWLINE;
6548 syntax |= RE_HAT_LISTS_NOT_NEWLINE;
fa9a63c5
RM
6549 }
6550 else
c0f9ea08 6551 syntax |= RE_NO_NEWLINE_ANCHOR;
fa9a63c5
RM
6552
6553 preg->no_sub = !!(cflags & REG_NOSUB);
6554
5e69f11e 6555 /* POSIX says a null character in the pattern terminates it, so we
fa9a63c5 6556 can use strlen here in compiling the pattern. */
4bb91c68 6557 ret = regex_compile ((re_char*) pattern, strlen (pattern), syntax, preg);
5e69f11e 6558
fa9a63c5
RM
6559 /* POSIX doesn't distinguish between an unmatched open-group and an
6560 unmatched close-group: both are REG_EPAREN. */
c0f9ea08
SM
6561 if (ret == REG_ERPAREN)
6562 ret = REG_EPAREN;
6563
6564 if (ret == REG_NOERROR && preg->fastmap)
6565 { /* Compute the fastmap now, since regexec cannot modify the pattern
6566 buffer. */
6567 re_compile_fastmap (preg);
6568 if (preg->can_be_null)
6569 { /* The fastmap can't be used anyway. */
6570 free (preg->fastmap);
6571 preg->fastmap = NULL;
6572 }
6573 }
d1dfb56c 6574 return ret;
fa9a63c5 6575}
c0f9ea08 6576WEAK_ALIAS (__regcomp, regcomp)
fa9a63c5
RM
6577
6578
6579/* regexec searches for a given pattern, specified by PREG, in the
6580 string STRING.
5e69f11e 6581
fa9a63c5 6582 If NMATCH is zero or REG_NOSUB was set in the cflags argument to
b18215fc 6583 `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at
fa9a63c5
RM
6584 least NMATCH elements, and we set them to the offsets of the
6585 corresponding matched substrings.
5e69f11e 6586
fa9a63c5
RM
6587 EFLAGS specifies `execution flags' which affect matching: if
6588 REG_NOTBOL is set, then ^ does not match at the beginning of the
6589 string; if REG_NOTEOL is set, then $ does not match at the end.
5e69f11e 6590
fa9a63c5
RM
6591 We return 0 if we find a match and REG_NOMATCH if not. */
6592
d1dfb56c 6593reg_errcode_t
d2762c86
DN
6594regexec (const regex_t *__restrict preg, const char *__restrict string,
6595 size_t nmatch, regmatch_t pmatch[__restrict_arr], int eflags)
fa9a63c5 6596{
d1dfb56c 6597 reg_errcode_t ret;
fa9a63c5
RM
6598 struct re_registers regs;
6599 regex_t private_preg;
d1dfb56c 6600 size_t len = strlen (string);
c0f9ea08 6601 boolean want_reg_info = !preg->no_sub && nmatch > 0 && pmatch;
fa9a63c5
RM
6602
6603 private_preg = *preg;
5e69f11e 6604
fa9a63c5
RM
6605 private_preg.not_bol = !!(eflags & REG_NOTBOL);
6606 private_preg.not_eol = !!(eflags & REG_NOTEOL);
5e69f11e 6607
fa9a63c5
RM
6608 /* The user has told us exactly how many registers to return
6609 information about, via `nmatch'. We have to pass that on to the
b18215fc 6610 matching routines. */
fa9a63c5 6611 private_preg.regs_allocated = REGS_FIXED;
5e69f11e 6612
fa9a63c5
RM
6613 if (want_reg_info)
6614 {
6615 regs.num_regs = nmatch;
4bb91c68
SM
6616 regs.start = TALLOC (nmatch * 2, regoff_t);
6617 if (regs.start == NULL)
d1dfb56c 6618 return REG_NOMATCH;
4bb91c68 6619 regs.end = regs.start + nmatch;
fa9a63c5
RM
6620 }
6621
c0f9ea08
SM
6622 /* Instead of using not_eol to implement REG_NOTEOL, we could simply
6623 pass (&private_preg, string, len + 1, 0, len, ...) pretending the string
6624 was a little bit longer but still only matching the real part.
6625 This works because the `endline' will check for a '\n' and will find a
6626 '\0', correctly deciding that this is not the end of a line.
6627 But it doesn't work out so nicely for REG_NOTBOL, since we don't have
6628 a convenient '\0' there. For all we know, the string could be preceded
6629 by '\n' which would throw things off. */
6630
fa9a63c5
RM
6631 /* Perform the searching operation. */
6632 ret = re_search (&private_preg, string, len,
0b32bf0e
SM
6633 /* start: */ 0, /* range: */ len,
6634 want_reg_info ? &regs : (struct re_registers *) 0);
5e69f11e 6635
fa9a63c5
RM
6636 /* Copy the register information to the POSIX structure. */
6637 if (want_reg_info)
6638 {
6639 if (ret >= 0)
0b32bf0e
SM
6640 {
6641 unsigned r;
fa9a63c5 6642
0b32bf0e
SM
6643 for (r = 0; r < nmatch; r++)
6644 {
6645 pmatch[r].rm_so = regs.start[r];
6646 pmatch[r].rm_eo = regs.end[r];
6647 }
6648 }
fa9a63c5 6649
b18215fc 6650 /* If we needed the temporary register info, free the space now. */
fa9a63c5 6651 free (regs.start);
fa9a63c5
RM
6652 }
6653
6654 /* We want zero return to mean success, unlike `re_search'. */
d1dfb56c 6655 return ret >= 0 ? REG_NOERROR : REG_NOMATCH;
fa9a63c5 6656}
c0f9ea08 6657WEAK_ALIAS (__regexec, regexec)
fa9a63c5
RM
6658
6659
ec869672
JR
6660/* Returns a message corresponding to an error code, ERR_CODE, returned
6661 from either regcomp or regexec. We don't use PREG here.
6662
6663 ERR_CODE was previously called ERRCODE, but that name causes an
6664 error with msvc8 compiler. */
fa9a63c5
RM
6665
6666size_t
d2762c86 6667regerror (int err_code, const regex_t *preg, char *errbuf, size_t errbuf_size)
fa9a63c5
RM
6668{
6669 const char *msg;
6670 size_t msg_size;
6671
ec869672
JR
6672 if (err_code < 0
6673 || err_code >= (sizeof (re_error_msgid) / sizeof (re_error_msgid[0])))
5e69f11e 6674 /* Only error codes returned by the rest of the code should be passed
b18215fc 6675 to this routine. If we are given anything else, or if other regex
fa9a63c5
RM
6676 code generates an invalid error code, then the program has a bug.
6677 Dump core so we can fix it. */
6678 abort ();
6679
ec869672 6680 msg = gettext (re_error_msgid[err_code]);
fa9a63c5
RM
6681
6682 msg_size = strlen (msg) + 1; /* Includes the null. */
5e69f11e 6683
fa9a63c5
RM
6684 if (errbuf_size != 0)
6685 {
6686 if (msg_size > errbuf_size)
0b32bf0e
SM
6687 {
6688 strncpy (errbuf, msg, errbuf_size - 1);
6689 errbuf[errbuf_size - 1] = 0;
6690 }
fa9a63c5 6691 else
0b32bf0e 6692 strcpy (errbuf, msg);
fa9a63c5
RM
6693 }
6694
6695 return msg_size;
6696}
c0f9ea08 6697WEAK_ALIAS (__regerror, regerror)
fa9a63c5
RM
6698
6699
6700/* Free dynamically allocated space used by PREG. */
6701
6702void
d2762c86 6703regfree (regex_t *preg)
fa9a63c5 6704{
c2cd06e6 6705 free (preg->buffer);
fa9a63c5 6706 preg->buffer = NULL;
5e69f11e 6707
fa9a63c5
RM
6708 preg->allocated = 0;
6709 preg->used = 0;
6710
c2cd06e6 6711 free (preg->fastmap);
fa9a63c5
RM
6712 preg->fastmap = NULL;
6713 preg->fastmap_accurate = 0;
6714
c2cd06e6 6715 free (preg->translate);
fa9a63c5
RM
6716 preg->translate = NULL;
6717}
c0f9ea08 6718WEAK_ALIAS (__regfree, regfree)
fa9a63c5
RM
6719
6720#endif /* not emacs */