(mail-extr-all-letters-but-separators)
[bpt/emacs.git] / src / regex.c
CommitLineData
e318085a
RS
1/* Extended regular expression matching and search library, version
2 0.12. (Implements POSIX draft P10003.2/D11.2, except for
bc78d348
KB
3 internationalization features.)
4
9d99031f 5 Copyright (C) 1993, 1994, 1995, 1996, 1997, 1998 Free Software Foundation, Inc.
bc78d348 6
fa9a63c5
RM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
25fe55af 14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
fa9a63c5
RM
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
ba4a8e51 19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307,
25fe55af 20 USA. */
fa9a63c5
RM
21
22/* AIX requires this to be the first thing in the file. */
23#if defined (_AIX) && !defined (REGEX_MALLOC)
24 #pragma alloca
25#endif
26
68d96f02 27#undef _GNU_SOURCE
fa9a63c5
RM
28#define _GNU_SOURCE
29
51352796 30#ifdef emacs
25fe55af
RS
31/* Converts the pointer to the char to BEG-based offset from the start. */
32#define PTR_TO_OFFSET(d) \
b18215fc
RS
33 POS_AS_IN_BUFFER (MATCHING_IN_FIRST_STRING \
34 ? (d) - string1 : (d) - (string2 - size1))
7e95234e 35#define POS_AS_IN_BUFFER(p) ((p) + (NILP (re_match_object) || BUFFERP (re_match_object)))
51352796
RS
36#else
37#define PTR_TO_OFFSET(d) 0
38#endif
b18215fc 39
fa9a63c5
RM
40#ifdef HAVE_CONFIG_H
41#include <config.h>
42#endif
43
25fe55af 44/* We need this for `regex.h', and perhaps for the Emacs include files. */
fa9a63c5
RM
45#include <sys/types.h>
46
25fe55af 47/* This is for other GNU distributions with internationalized messages. */
fa9a63c5
RM
48#if HAVE_LIBINTL_H || defined (_LIBC)
49# include <libintl.h>
50#else
51# define gettext(msgid) (msgid)
52#endif
53
5e69f11e
RM
54#ifndef gettext_noop
55/* This define is so xgettext can find the internationalizable
56 strings. */
57#define gettext_noop(String) String
58#endif
59
fa9a63c5
RM
60/* The `emacs' switch turns on certain matching commands
61 that make sense only in Emacs. */
62#ifdef emacs
63
64#include "lisp.h"
65#include "buffer.h"
b18215fc
RS
66
67/* Make syntax table lookup grant data in gl_state. */
68#define SYNTAX_ENTRY_VIA_PROPERTY
69
fa9a63c5 70#include "syntax.h"
b18215fc
RS
71#include "charset.h"
72#include "category.h"
fa9a63c5 73
9abbd165 74#define malloc xmalloc
64e3c718 75#define realloc xrealloc
9abbd165
RS
76#define free xfree
77
fa9a63c5
RM
78#else /* not emacs */
79
80/* If we are not linking with Emacs proper,
81 we can't use the relocating allocator
82 even if config.h says that we can. */
83#undef REL_ALLOC
84
85#if defined (STDC_HEADERS) || defined (_LIBC)
86#include <stdlib.h>
87#else
88char *malloc ();
89char *realloc ();
90#endif
91
9e4ecb26 92/* When used in Emacs's lib-src, we need to get bzero and bcopy somehow.
25fe55af 93 If nothing else has been done, use the method below. */
9e4ecb26
KH
94#ifdef INHIBIT_STRING_HEADER
95#if !(defined (HAVE_BZERO) && defined (HAVE_BCOPY))
96#if !defined (bzero) && !defined (bcopy)
97#undef INHIBIT_STRING_HEADER
98#endif
99#endif
100#endif
101
102/* This is the normal way of making sure we have a bcopy and a bzero.
103 This is used in most programs--a few other programs avoid this
104 by defining INHIBIT_STRING_HEADER. */
fa9a63c5 105#ifndef INHIBIT_STRING_HEADER
7f998252 106#if defined (HAVE_STRING_H) || defined (STDC_HEADERS) || defined (_LIBC)
fa9a63c5
RM
107#include <string.h>
108#ifndef bcmp
109#define bcmp(s1, s2, n) memcmp ((s1), (s2), (n))
110#endif
111#ifndef bcopy
112#define bcopy(s, d, n) memcpy ((d), (s), (n))
113#endif
114#ifndef bzero
115#define bzero(s, n) memset ((s), 0, (n))
116#endif
117#else
118#include <strings.h>
119#endif
120#endif
121
122/* Define the syntax stuff for \<, \>, etc. */
123
124/* This must be nonzero for the wordchar and notwordchar pattern
125 commands in re_match_2. */
5e69f11e 126#ifndef Sword
fa9a63c5
RM
127#define Sword 1
128#endif
129
130#ifdef SWITCH_ENUM_BUG
131#define SWITCH_ENUM_CAST(x) ((int)(x))
132#else
133#define SWITCH_ENUM_CAST(x) (x)
134#endif
135
136#ifdef SYNTAX_TABLE
137
138extern char *re_syntax_table;
139
140#else /* not SYNTAX_TABLE */
141
142/* How many characters in the character set. */
143#define CHAR_SET_SIZE 256
144
145static char re_syntax_table[CHAR_SET_SIZE];
146
147static void
148init_syntax_once ()
149{
150 register int c;
151 static int done = 0;
152
153 if (done)
154 return;
155
156 bzero (re_syntax_table, sizeof re_syntax_table);
157
158 for (c = 'a'; c <= 'z'; c++)
159 re_syntax_table[c] = Sword;
160
161 for (c = 'A'; c <= 'Z'; c++)
162 re_syntax_table[c] = Sword;
163
164 for (c = '0'; c <= '9'; c++)
165 re_syntax_table[c] = Sword;
166
167 re_syntax_table['_'] = Sword;
168
169 done = 1;
170}
171
172#endif /* not SYNTAX_TABLE */
173
174#define SYNTAX(c) re_syntax_table[c]
175
e934739e 176/* Dummy macros for non-Emacs environments. */
b18215fc
RS
177#define BASE_LEADING_CODE_P(c) (0)
178#define WORD_BOUNDARY_P(c1, c2) (0)
179#define CHAR_HEAD_P(p) (1)
180#define SINGLE_BYTE_CHAR_P(c) (1)
181#define SAME_CHARSET_P(c1, c2) (1)
182#define MULTIBYTE_FORM_LENGTH(p, s) (1)
183#define STRING_CHAR(p, s) (*(p))
184#define STRING_CHAR_AND_LENGTH(p, s, actual_len) ((actual_len) = 1, *(p))
185#define GET_CHAR_AFTER_2(c, p, str1, end1, str2, end2) \
186 (c = ((p) == (end1) ? *(str2) : *(p)))
187#define GET_CHAR_BEFORE_2(c, p, str1, end1, str2, end2) \
188 (c = ((p) == (str2) ? *((end1) - 1) : *((p) - 1)))
fa9a63c5
RM
189#endif /* not emacs */
190\f
191/* Get the interface, including the syntax bits. */
192#include "regex.h"
193
194/* isalpha etc. are used for the character classes. */
195#include <ctype.h>
196
197/* Jim Meyering writes:
198
199 "... Some ctype macros are valid only for character codes that
200 isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when
201 using /bin/cc or gcc but without giving an ansi option). So, all
25fe55af 202 ctype uses should be through macros like ISPRINT... If
fa9a63c5
RM
203 STDC_HEADERS is defined, then autoconf has verified that the ctype
204 macros don't need to be guarded with references to isascii. ...
205 Defining isascii to 1 should let any compiler worth its salt
25fe55af 206 eliminate the && through constant folding." */
fa9a63c5
RM
207
208#if defined (STDC_HEADERS) || (!defined (isascii) && !defined (HAVE_ISASCII))
209#define ISASCII(c) 1
210#else
211#define ISASCII(c) isascii(c)
212#endif
213
214#ifdef isblank
215#define ISBLANK(c) (ISASCII (c) && isblank (c))
216#else
217#define ISBLANK(c) ((c) == ' ' || (c) == '\t')
218#endif
219#ifdef isgraph
220#define ISGRAPH(c) (ISASCII (c) && isgraph (c))
221#else
222#define ISGRAPH(c) (ISASCII (c) && isprint (c) && !isspace (c))
223#endif
224
225#define ISPRINT(c) (ISASCII (c) && isprint (c))
226#define ISDIGIT(c) (ISASCII (c) && isdigit (c))
227#define ISALNUM(c) (ISASCII (c) && isalnum (c))
228#define ISALPHA(c) (ISASCII (c) && isalpha (c))
229#define ISCNTRL(c) (ISASCII (c) && iscntrl (c))
230#define ISLOWER(c) (ISASCII (c) && islower (c))
231#define ISPUNCT(c) (ISASCII (c) && ispunct (c))
232#define ISSPACE(c) (ISASCII (c) && isspace (c))
233#define ISUPPER(c) (ISASCII (c) && isupper (c))
234#define ISXDIGIT(c) (ISASCII (c) && isxdigit (c))
235
236#ifndef NULL
075f06ec 237#define NULL (void *)0
fa9a63c5
RM
238#endif
239
240/* We remove any previous definition of `SIGN_EXTEND_CHAR',
241 since ours (we hope) works properly with all combinations of
242 machines, compilers, `char' and `unsigned char' argument types.
25fe55af 243 (Per Bothner suggested the basic approach.) */
fa9a63c5
RM
244#undef SIGN_EXTEND_CHAR
245#if __STDC__
246#define SIGN_EXTEND_CHAR(c) ((signed char) (c))
247#else /* not __STDC__ */
248/* As in Harbison and Steele. */
249#define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
250#endif
251\f
252/* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we
253 use `alloca' instead of `malloc'. This is because using malloc in
254 re_search* or re_match* could cause memory leaks when C-g is used in
255 Emacs; also, malloc is slower and causes storage fragmentation. On
5e69f11e
RM
256 the other hand, malloc is more portable, and easier to debug.
257
fa9a63c5
RM
258 Because we sometimes use alloca, some routines have to be macros,
259 not functions -- `alloca'-allocated space disappears at the end of the
260 function it is called in. */
261
262#ifdef REGEX_MALLOC
263
264#define REGEX_ALLOCATE malloc
265#define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
266#define REGEX_FREE free
267
268#else /* not REGEX_MALLOC */
269
270/* Emacs already defines alloca, sometimes. */
271#ifndef alloca
272
273/* Make alloca work the best possible way. */
274#ifdef __GNUC__
275#define alloca __builtin_alloca
276#else /* not __GNUC__ */
277#if HAVE_ALLOCA_H
278#include <alloca.h>
279#else /* not __GNUC__ or HAVE_ALLOCA_H */
f3c4387f 280#if 0 /* It is a bad idea to declare alloca. We always cast the result. */
25fe55af 281#ifndef _AIX /* Already did AIX, up at the top. */
fa9a63c5
RM
282char *alloca ();
283#endif /* not _AIX */
f3c4387f 284#endif
5e69f11e 285#endif /* not HAVE_ALLOCA_H */
fa9a63c5
RM
286#endif /* not __GNUC__ */
287
288#endif /* not alloca */
289
290#define REGEX_ALLOCATE alloca
291
292/* Assumes a `char *destination' variable. */
293#define REGEX_REALLOCATE(source, osize, nsize) \
294 (destination = (char *) alloca (nsize), \
295 bcopy (source, destination, osize), \
296 destination)
297
298/* No need to do anything to free, after alloca. */
c2e1680a 299#define REGEX_FREE(arg) ((void)0) /* Do nothing! But inhibit gcc warning. */
fa9a63c5
RM
300
301#endif /* not REGEX_MALLOC */
302
303/* Define how to allocate the failure stack. */
304
33487cc8 305#if defined (REL_ALLOC) && defined (REGEX_MALLOC)
4297555e 306
fa9a63c5
RM
307#define REGEX_ALLOCATE_STACK(size) \
308 r_alloc (&failure_stack_ptr, (size))
309#define REGEX_REALLOCATE_STACK(source, osize, nsize) \
310 r_re_alloc (&failure_stack_ptr, (nsize))
311#define REGEX_FREE_STACK(ptr) \
312 r_alloc_free (&failure_stack_ptr)
313
4297555e 314#else /* not using relocating allocator */
fa9a63c5
RM
315
316#ifdef REGEX_MALLOC
317
318#define REGEX_ALLOCATE_STACK malloc
319#define REGEX_REALLOCATE_STACK(source, osize, nsize) realloc (source, nsize)
320#define REGEX_FREE_STACK free
321
322#else /* not REGEX_MALLOC */
323
324#define REGEX_ALLOCATE_STACK alloca
325
326#define REGEX_REALLOCATE_STACK(source, osize, nsize) \
327 REGEX_REALLOCATE (source, osize, nsize)
25fe55af 328/* No need to explicitly free anything. */
fa9a63c5
RM
329#define REGEX_FREE_STACK(arg)
330
331#endif /* not REGEX_MALLOC */
4297555e 332#endif /* not using relocating allocator */
fa9a63c5
RM
333
334
335/* True if `size1' is non-NULL and PTR is pointing anywhere inside
336 `string1' or just past its end. This works if PTR is NULL, which is
337 a good thing. */
25fe55af 338#define FIRST_STRING_P(ptr) \
fa9a63c5
RM
339 (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
340
341/* (Re)Allocate N items of type T using malloc, or fail. */
342#define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
343#define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
344#define RETALLOC_IF(addr, n, t) \
345 if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t)
346#define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
347
25fe55af 348#define BYTEWIDTH 8 /* In bits. */
fa9a63c5
RM
349
350#define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
351
352#undef MAX
353#undef MIN
354#define MAX(a, b) ((a) > (b) ? (a) : (b))
355#define MIN(a, b) ((a) < (b) ? (a) : (b))
356
357typedef char boolean;
358#define false 0
359#define true 1
360
361static int re_match_2_internal ();
362\f
363/* These are the command codes that appear in compiled regular
25fe55af 364 expressions. Some opcodes are followed by argument bytes. A
fa9a63c5
RM
365 command code can specify any interpretation whatsoever for its
366 arguments. Zero bytes may appear in the compiled regular expression. */
367
368typedef enum
369{
370 no_op = 0,
371
25fe55af 372 /* Succeed right away--no more backtracking. */
fa9a63c5
RM
373 succeed,
374
25fe55af 375 /* Followed by one byte giving n, then by n literal bytes. */
fa9a63c5
RM
376 exactn,
377
25fe55af 378 /* Matches any (more or less) character. */
fa9a63c5
RM
379 anychar,
380
25fe55af
RS
381 /* Matches any one char belonging to specified set. First
382 following byte is number of bitmap bytes. Then come bytes
383 for a bitmap saying which chars are in. Bits in each byte
384 are ordered low-bit-first. A character is in the set if its
385 bit is 1. A character too large to have a bit in the map is
386 automatically not in the set. */
fa9a63c5
RM
387 charset,
388
25fe55af
RS
389 /* Same parameters as charset, but match any character that is
390 not one of those specified. */
fa9a63c5
RM
391 charset_not,
392
25fe55af
RS
393 /* Start remembering the text that is matched, for storing in a
394 register. Followed by one byte with the register number, in
395 the range 0 to one less than the pattern buffer's re_nsub
396 field. Then followed by one byte with the number of groups
397 inner to this one. (This last has to be part of the
398 start_memory only because we need it in the on_failure_jump
399 of re_match_2.) */
fa9a63c5
RM
400 start_memory,
401
25fe55af
RS
402 /* Stop remembering the text that is matched and store it in a
403 memory register. Followed by one byte with the register
404 number, in the range 0 to one less than `re_nsub' in the
405 pattern buffer, and one byte with the number of inner groups,
406 just like `start_memory'. (We need the number of inner
407 groups here because we don't have any easy way of finding the
408 corresponding start_memory when we're at a stop_memory.) */
fa9a63c5
RM
409 stop_memory,
410
25fe55af
RS
411 /* Match a duplicate of something remembered. Followed by one
412 byte containing the register number. */
fa9a63c5
RM
413 duplicate,
414
25fe55af 415 /* Fail unless at beginning of line. */
fa9a63c5
RM
416 begline,
417
25fe55af 418 /* Fail unless at end of line. */
fa9a63c5
RM
419 endline,
420
25fe55af
RS
421 /* Succeeds if at beginning of buffer (if emacs) or at beginning
422 of string to be matched (if not). */
fa9a63c5
RM
423 begbuf,
424
25fe55af 425 /* Analogously, for end of buffer/string. */
fa9a63c5 426 endbuf,
5e69f11e 427
25fe55af 428 /* Followed by two byte relative address to which to jump. */
5e69f11e 429 jump,
fa9a63c5
RM
430
431 /* Same as jump, but marks the end of an alternative. */
432 jump_past_alt,
433
25fe55af
RS
434 /* Followed by two-byte relative address of place to resume at
435 in case of failure. */
fa9a63c5 436 on_failure_jump,
5e69f11e 437
25fe55af
RS
438 /* Like on_failure_jump, but pushes a placeholder instead of the
439 current string position when executed. */
fa9a63c5 440 on_failure_keep_string_jump,
5e69f11e 441
25fe55af
RS
442 /* Throw away latest failure point and then jump to following
443 two-byte relative address. */
fa9a63c5
RM
444 pop_failure_jump,
445
25fe55af
RS
446 /* Change to pop_failure_jump if know won't have to backtrack to
447 match; otherwise change to jump. This is used to jump
448 back to the beginning of a repeat. If what follows this jump
449 clearly won't match what the repeat does, such that we can be
450 sure that there is no use backtracking out of repetitions
451 already matched, then we change it to a pop_failure_jump.
452 Followed by two-byte address. */
fa9a63c5
RM
453 maybe_pop_jump,
454
25fe55af
RS
455 /* Jump to following two-byte address, and push a dummy failure
456 point. This failure point will be thrown away if an attempt
457 is made to use it for a failure. A `+' construct makes this
458 before the first repeat. Also used as an intermediary kind
459 of jump when compiling an alternative. */
fa9a63c5
RM
460 dummy_failure_jump,
461
462 /* Push a dummy failure point and continue. Used at the end of
463 alternatives. */
464 push_dummy_failure,
465
25fe55af
RS
466 /* Followed by two-byte relative address and two-byte number n.
467 After matching N times, jump to the address upon failure. */
fa9a63c5
RM
468 succeed_n,
469
25fe55af
RS
470 /* Followed by two-byte relative address, and two-byte number n.
471 Jump to the address N times, then fail. */
fa9a63c5
RM
472 jump_n,
473
25fe55af
RS
474 /* Set the following two-byte relative address to the
475 subsequent two-byte number. The address *includes* the two
476 bytes of number. */
fa9a63c5
RM
477 set_number_at,
478
479 wordchar, /* Matches any word-constituent character. */
480 notwordchar, /* Matches any char that is not a word-constituent. */
481
482 wordbeg, /* Succeeds if at word beginning. */
483 wordend, /* Succeeds if at word end. */
484
485 wordbound, /* Succeeds if at a word boundary. */
25fe55af 486 notwordbound /* Succeeds if not at a word boundary. */
fa9a63c5
RM
487
488#ifdef emacs
489 ,before_dot, /* Succeeds if before point. */
490 at_dot, /* Succeeds if at point. */
491 after_dot, /* Succeeds if after point. */
492
493 /* Matches any character whose syntax is specified. Followed by
25fe55af 494 a byte which contains a syntax code, e.g., Sword. */
fa9a63c5
RM
495 syntaxspec,
496
497 /* Matches any character whose syntax is not that specified. */
b18215fc
RS
498 notsyntaxspec,
499
500 /* Matches any character whose category-set contains the specified
25fe55af
RS
501 category. The operator is followed by a byte which contains a
502 category code (mnemonic ASCII character). */
b18215fc
RS
503 categoryspec,
504
505 /* Matches any character whose category-set does not contain the
506 specified category. The operator is followed by a byte which
507 contains the category code (mnemonic ASCII character). */
508 notcategoryspec
fa9a63c5
RM
509#endif /* emacs */
510} re_opcode_t;
511\f
512/* Common operations on the compiled pattern. */
513
514/* Store NUMBER in two contiguous bytes starting at DESTINATION. */
515
516#define STORE_NUMBER(destination, number) \
517 do { \
518 (destination)[0] = (number) & 0377; \
519 (destination)[1] = (number) >> 8; \
520 } while (0)
521
522/* Same as STORE_NUMBER, except increment DESTINATION to
523 the byte after where the number is stored. Therefore, DESTINATION
524 must be an lvalue. */
525
526#define STORE_NUMBER_AND_INCR(destination, number) \
527 do { \
528 STORE_NUMBER (destination, number); \
529 (destination) += 2; \
530 } while (0)
531
532/* Put into DESTINATION a number stored in two contiguous bytes starting
533 at SOURCE. */
534
535#define EXTRACT_NUMBER(destination, source) \
536 do { \
537 (destination) = *(source) & 0377; \
538 (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8; \
539 } while (0)
540
541#ifdef DEBUG
542static void
543extract_number (dest, source)
544 int *dest;
545 unsigned char *source;
546{
5e69f11e 547 int temp = SIGN_EXTEND_CHAR (*(source + 1));
fa9a63c5
RM
548 *dest = *source & 0377;
549 *dest += temp << 8;
550}
551
25fe55af 552#ifndef EXTRACT_MACROS /* To debug the macros. */
fa9a63c5
RM
553#undef EXTRACT_NUMBER
554#define EXTRACT_NUMBER(dest, src) extract_number (&dest, src)
555#endif /* not EXTRACT_MACROS */
556
557#endif /* DEBUG */
558
559/* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
560 SOURCE must be an lvalue. */
561
562#define EXTRACT_NUMBER_AND_INCR(destination, source) \
563 do { \
564 EXTRACT_NUMBER (destination, source); \
25fe55af 565 (source) += 2; \
fa9a63c5
RM
566 } while (0)
567
568#ifdef DEBUG
569static void
570extract_number_and_incr (destination, source)
571 int *destination;
572 unsigned char **source;
5e69f11e 573{
fa9a63c5
RM
574 extract_number (destination, *source);
575 *source += 2;
576}
577
578#ifndef EXTRACT_MACROS
579#undef EXTRACT_NUMBER_AND_INCR
580#define EXTRACT_NUMBER_AND_INCR(dest, src) \
581 extract_number_and_incr (&dest, &src)
582#endif /* not EXTRACT_MACROS */
583
584#endif /* DEBUG */
585\f
b18215fc
RS
586/* Store a multibyte character in three contiguous bytes starting
587 DESTINATION, and increment DESTINATION to the byte after where the
25fe55af 588 character is stored. Therefore, DESTINATION must be an lvalue. */
b18215fc
RS
589
590#define STORE_CHARACTER_AND_INCR(destination, character) \
591 do { \
592 (destination)[0] = (character) & 0377; \
593 (destination)[1] = ((character) >> 8) & 0377; \
594 (destination)[2] = (character) >> 16; \
595 (destination) += 3; \
596 } while (0)
597
598/* Put into DESTINATION a character stored in three contiguous bytes
25fe55af 599 starting at SOURCE. */
b18215fc
RS
600
601#define EXTRACT_CHARACTER(destination, source) \
602 do { \
603 (destination) = ((source)[0] \
604 | ((source)[1] << 8) \
605 | ((source)[2] << 16)); \
606 } while (0)
607
608
609/* Macros for charset. */
610
611/* Size of bitmap of charset P in bytes. P is a start of charset,
612 i.e. *P is (re_opcode_t) charset or (re_opcode_t) charset_not. */
613#define CHARSET_BITMAP_SIZE(p) ((p)[1] & 0x7F)
614
615/* Nonzero if charset P has range table. */
25fe55af 616#define CHARSET_RANGE_TABLE_EXISTS_P(p) ((p)[1] & 0x80)
b18215fc
RS
617
618/* Return the address of range table of charset P. But not the start
619 of table itself, but the before where the number of ranges is
25fe55af 620 stored. `2 +' means to skip re_opcode_t and size of bitmap. */
b18215fc
RS
621#define CHARSET_RANGE_TABLE(p) (&(p)[2 + CHARSET_BITMAP_SIZE (p)])
622
623/* Test if C is listed in the bitmap of charset P. */
624#define CHARSET_LOOKUP_BITMAP(p, c) \
625 ((c) < CHARSET_BITMAP_SIZE (p) * BYTEWIDTH \
626 && (p)[2 + (c) / BYTEWIDTH] & (1 << ((c) % BYTEWIDTH)))
627
628/* Return the address of end of RANGE_TABLE. COUNT is number of
25fe55af
RS
629 ranges (which is a pair of (start, end)) in the RANGE_TABLE. `* 2'
630 is start of range and end of range. `* 3' is size of each start
b18215fc
RS
631 and end. */
632#define CHARSET_RANGE_TABLE_END(range_table, count) \
633 ((range_table) + (count) * 2 * 3)
634
25fe55af 635/* Test if C is in RANGE_TABLE. A flag NOT is negated if C is in.
b18215fc
RS
636 COUNT is number of ranges in RANGE_TABLE. */
637#define CHARSET_LOOKUP_RANGE_TABLE_RAW(not, c, range_table, count) \
638 do \
639 { \
640 int range_start, range_end; \
641 unsigned char *p; \
642 unsigned char *range_table_end \
643 = CHARSET_RANGE_TABLE_END ((range_table), (count)); \
644 \
645 for (p = (range_table); p < range_table_end; p += 2 * 3) \
646 { \
647 EXTRACT_CHARACTER (range_start, p); \
648 EXTRACT_CHARACTER (range_end, p + 3); \
649 \
650 if (range_start <= (c) && (c) <= range_end) \
651 { \
652 (not) = !(not); \
653 break; \
654 } \
655 } \
656 } \
657 while (0)
658
659/* Test if C is in range table of CHARSET. The flag NOT is negated if
660 C is listed in it. */
661#define CHARSET_LOOKUP_RANGE_TABLE(not, c, charset) \
662 do \
663 { \
664 /* Number of ranges in range table. */ \
665 int count; \
666 unsigned char *range_table = CHARSET_RANGE_TABLE (charset); \
667 \
668 EXTRACT_NUMBER_AND_INCR (count, range_table); \
669 CHARSET_LOOKUP_RANGE_TABLE_RAW ((not), (c), range_table, count); \
670 } \
671 while (0)
672\f
fa9a63c5
RM
673/* If DEBUG is defined, Regex prints many voluminous messages about what
674 it is doing (if the variable `debug' is nonzero). If linked with the
675 main program in `iregex.c', you can enter patterns and strings
676 interactively. And if linked with the main program in `main.c' and
25fe55af 677 the other test files, you can run the already-written tests. */
fa9a63c5
RM
678
679#ifdef DEBUG
680
681/* We use standard I/O for debugging. */
682#include <stdio.h>
683
684/* It is useful to test things that ``must'' be true when debugging. */
685#include <assert.h>
686
687static int debug = 0;
688
689#define DEBUG_STATEMENT(e) e
690#define DEBUG_PRINT1(x) if (debug) printf (x)
691#define DEBUG_PRINT2(x1, x2) if (debug) printf (x1, x2)
692#define DEBUG_PRINT3(x1, x2, x3) if (debug) printf (x1, x2, x3)
693#define DEBUG_PRINT4(x1, x2, x3, x4) if (debug) printf (x1, x2, x3, x4)
25fe55af 694#define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \
fa9a63c5
RM
695 if (debug) print_partial_compiled_pattern (s, e)
696#define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \
697 if (debug) print_double_string (w, s1, sz1, s2, sz2)
698
699
700/* Print the fastmap in human-readable form. */
701
702void
703print_fastmap (fastmap)
704 char *fastmap;
705{
706 unsigned was_a_range = 0;
5e69f11e
RM
707 unsigned i = 0;
708
fa9a63c5
RM
709 while (i < (1 << BYTEWIDTH))
710 {
711 if (fastmap[i++])
712 {
713 was_a_range = 0;
25fe55af
RS
714 putchar (i - 1);
715 while (i < (1 << BYTEWIDTH) && fastmap[i])
716 {
717 was_a_range = 1;
718 i++;
719 }
fa9a63c5 720 if (was_a_range)
25fe55af
RS
721 {
722 printf ("-");
723 putchar (i - 1);
724 }
725 }
fa9a63c5 726 }
5e69f11e 727 putchar ('\n');
fa9a63c5
RM
728}
729
730
731/* Print a compiled pattern string in human-readable form, starting at
732 the START pointer into it and ending just before the pointer END. */
733
734void
735print_partial_compiled_pattern (start, end)
736 unsigned char *start;
737 unsigned char *end;
738{
739 int mcnt, mcnt2;
740 unsigned char *p = start;
741 unsigned char *pend = end;
742
743 if (start == NULL)
744 {
745 printf ("(null)\n");
746 return;
747 }
5e69f11e 748
fa9a63c5
RM
749 /* Loop over pattern commands. */
750 while (p < pend)
751 {
752 printf ("%d:\t", p - start);
753
754 switch ((re_opcode_t) *p++)
755 {
25fe55af
RS
756 case no_op:
757 printf ("/no_op");
758 break;
fa9a63c5
RM
759
760 case exactn:
761 mcnt = *p++;
25fe55af
RS
762 printf ("/exactn/%d", mcnt);
763 do
fa9a63c5 764 {
25fe55af 765 putchar ('/');
fa9a63c5 766 putchar (*p++);
25fe55af
RS
767 }
768 while (--mcnt);
769 break;
fa9a63c5
RM
770
771 case start_memory:
25fe55af
RS
772 mcnt = *p++;
773 printf ("/start_memory/%d/%d", mcnt, *p++);
774 break;
fa9a63c5
RM
775
776 case stop_memory:
25fe55af 777 mcnt = *p++;
fa9a63c5 778 printf ("/stop_memory/%d/%d", mcnt, *p++);
25fe55af 779 break;
fa9a63c5
RM
780
781 case duplicate:
782 printf ("/duplicate/%d", *p++);
783 break;
784
785 case anychar:
786 printf ("/anychar");
787 break;
788
789 case charset:
25fe55af
RS
790 case charset_not:
791 {
792 register int c, last = -100;
fa9a63c5
RM
793 register int in_range = 0;
794
795 printf ("/charset [%s",
25fe55af 796 (re_opcode_t) *(p - 1) == charset_not ? "^" : "");
5e69f11e 797
25fe55af 798 assert (p + *p < pend);
fa9a63c5 799
25fe55af 800 for (c = 0; c < 256; c++)
fa9a63c5
RM
801 if (c / 8 < *p
802 && (p[1 + (c/8)] & (1 << (c % 8))))
803 {
804 /* Are we starting a range? */
805 if (last + 1 == c && ! in_range)
806 {
807 putchar ('-');
808 in_range = 1;
809 }
810 /* Have we broken a range? */
811 else if (last + 1 != c && in_range)
25fe55af 812 {
fa9a63c5
RM
813 putchar (last);
814 in_range = 0;
815 }
5e69f11e 816
fa9a63c5
RM
817 if (! in_range)
818 putchar (c);
819
820 last = c;
25fe55af 821 }
fa9a63c5
RM
822
823 if (in_range)
824 putchar (last);
825
826 putchar (']');
827
828 p += 1 + *p;
829 }
830 break;
831
832 case begline:
833 printf ("/begline");
25fe55af 834 break;
fa9a63c5
RM
835
836 case endline:
25fe55af
RS
837 printf ("/endline");
838 break;
fa9a63c5
RM
839
840 case on_failure_jump:
25fe55af
RS
841 extract_number_and_incr (&mcnt, &p);
842 printf ("/on_failure_jump to %d", p + mcnt - start);
843 break;
fa9a63c5
RM
844
845 case on_failure_keep_string_jump:
25fe55af
RS
846 extract_number_and_incr (&mcnt, &p);
847 printf ("/on_failure_keep_string_jump to %d", p + mcnt - start);
848 break;
fa9a63c5
RM
849
850 case dummy_failure_jump:
25fe55af
RS
851 extract_number_and_incr (&mcnt, &p);
852 printf ("/dummy_failure_jump to %d", p + mcnt - start);
853 break;
fa9a63c5
RM
854
855 case push_dummy_failure:
25fe55af
RS
856 printf ("/push_dummy_failure");
857 break;
5e69f11e 858
25fe55af
RS
859 case maybe_pop_jump:
860 extract_number_and_incr (&mcnt, &p);
861 printf ("/maybe_pop_jump to %d", p + mcnt - start);
fa9a63c5
RM
862 break;
863
25fe55af 864 case pop_failure_jump:
fa9a63c5 865 extract_number_and_incr (&mcnt, &p);
25fe55af 866 printf ("/pop_failure_jump to %d", p + mcnt - start);
5e69f11e
RM
867 break;
868
25fe55af 869 case jump_past_alt:
fa9a63c5 870 extract_number_and_incr (&mcnt, &p);
25fe55af 871 printf ("/jump_past_alt to %d", p + mcnt - start);
5e69f11e
RM
872 break;
873
25fe55af 874 case jump:
fa9a63c5 875 extract_number_and_incr (&mcnt, &p);
25fe55af 876 printf ("/jump to %d", p + mcnt - start);
fa9a63c5
RM
877 break;
878
25fe55af
RS
879 case succeed_n:
880 extract_number_and_incr (&mcnt, &p);
881 extract_number_and_incr (&mcnt2, &p);
fa9a63c5 882 printf ("/succeed_n to %d, %d times", p + mcnt - start, mcnt2);
25fe55af 883 break;
5e69f11e 884
25fe55af
RS
885 case jump_n:
886 extract_number_and_incr (&mcnt, &p);
887 extract_number_and_incr (&mcnt2, &p);
fa9a63c5 888 printf ("/jump_n to %d, %d times", p + mcnt - start, mcnt2);
25fe55af 889 break;
5e69f11e 890
25fe55af
RS
891 case set_number_at:
892 extract_number_and_incr (&mcnt, &p);
893 extract_number_and_incr (&mcnt2, &p);
fa9a63c5 894 printf ("/set_number_at location %d to %d", p + mcnt - start, mcnt2);
25fe55af 895 break;
5e69f11e 896
25fe55af 897 case wordbound:
fa9a63c5
RM
898 printf ("/wordbound");
899 break;
900
901 case notwordbound:
902 printf ("/notwordbound");
25fe55af 903 break;
fa9a63c5
RM
904
905 case wordbeg:
906 printf ("/wordbeg");
907 break;
5e69f11e 908
fa9a63c5
RM
909 case wordend:
910 printf ("/wordend");
5e69f11e 911
fa9a63c5
RM
912#ifdef emacs
913 case before_dot:
914 printf ("/before_dot");
25fe55af 915 break;
fa9a63c5
RM
916
917 case at_dot:
918 printf ("/at_dot");
25fe55af 919 break;
fa9a63c5
RM
920
921 case after_dot:
922 printf ("/after_dot");
25fe55af 923 break;
fa9a63c5
RM
924
925 case syntaxspec:
25fe55af 926 printf ("/syntaxspec");
fa9a63c5
RM
927 mcnt = *p++;
928 printf ("/%d", mcnt);
25fe55af 929 break;
5e69f11e 930
fa9a63c5 931 case notsyntaxspec:
25fe55af 932 printf ("/notsyntaxspec");
fa9a63c5
RM
933 mcnt = *p++;
934 printf ("/%d", mcnt);
935 break;
936#endif /* emacs */
937
938 case wordchar:
939 printf ("/wordchar");
25fe55af 940 break;
5e69f11e 941
fa9a63c5
RM
942 case notwordchar:
943 printf ("/notwordchar");
25fe55af 944 break;
fa9a63c5
RM
945
946 case begbuf:
947 printf ("/begbuf");
25fe55af 948 break;
fa9a63c5
RM
949
950 case endbuf:
951 printf ("/endbuf");
25fe55af 952 break;
fa9a63c5 953
25fe55af
RS
954 default:
955 printf ("?%d", *(p-1));
fa9a63c5
RM
956 }
957
958 putchar ('\n');
959 }
960
961 printf ("%d:\tend of pattern.\n", p - start);
962}
963
964
965void
966print_compiled_pattern (bufp)
967 struct re_pattern_buffer *bufp;
968{
969 unsigned char *buffer = bufp->buffer;
970
971 print_partial_compiled_pattern (buffer, buffer + bufp->used);
972 printf ("%d bytes used/%d bytes allocated.\n", bufp->used, bufp->allocated);
973
974 if (bufp->fastmap_accurate && bufp->fastmap)
975 {
976 printf ("fastmap: ");
977 print_fastmap (bufp->fastmap);
978 }
979
980 printf ("re_nsub: %d\t", bufp->re_nsub);
981 printf ("regs_alloc: %d\t", bufp->regs_allocated);
982 printf ("can_be_null: %d\t", bufp->can_be_null);
983 printf ("newline_anchor: %d\n", bufp->newline_anchor);
984 printf ("no_sub: %d\t", bufp->no_sub);
985 printf ("not_bol: %d\t", bufp->not_bol);
986 printf ("not_eol: %d\t", bufp->not_eol);
987 printf ("syntax: %d\n", bufp->syntax);
988 /* Perhaps we should print the translate table? */
989}
990
991
992void
993print_double_string (where, string1, size1, string2, size2)
994 const char *where;
995 const char *string1;
996 const char *string2;
997 int size1;
998 int size2;
999{
1000 unsigned this_char;
5e69f11e 1001
fa9a63c5
RM
1002 if (where == NULL)
1003 printf ("(null)");
1004 else
1005 {
1006 if (FIRST_STRING_P (where))
25fe55af
RS
1007 {
1008 for (this_char = where - string1; this_char < size1; this_char++)
1009 putchar (string1[this_char]);
fa9a63c5 1010
25fe55af
RS
1011 where = string2;
1012 }
fa9a63c5
RM
1013
1014 for (this_char = where - string2; this_char < size2; this_char++)
25fe55af 1015 putchar (string2[this_char]);
fa9a63c5
RM
1016 }
1017}
1018
1019#else /* not DEBUG */
1020
1021#undef assert
1022#define assert(e)
1023
1024#define DEBUG_STATEMENT(e)
1025#define DEBUG_PRINT1(x)
1026#define DEBUG_PRINT2(x1, x2)
1027#define DEBUG_PRINT3(x1, x2, x3)
1028#define DEBUG_PRINT4(x1, x2, x3, x4)
1029#define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
1030#define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
1031
1032#endif /* not DEBUG */
1033\f
1034/* Set by `re_set_syntax' to the current regexp syntax to recognize. Can
1035 also be assigned to arbitrarily: each pattern buffer stores its own
1036 syntax, so it can be changed between regex compilations. */
1037/* This has no initializer because initialized variables in Emacs
1038 become read-only after dumping. */
1039reg_syntax_t re_syntax_options;
1040
1041
1042/* Specify the precise syntax of regexps for compilation. This provides
1043 for compatibility for various utilities which historically have
1044 different, incompatible syntaxes.
1045
1046 The argument SYNTAX is a bit mask comprised of the various bits
25fe55af 1047 defined in regex.h. We return the old syntax. */
fa9a63c5
RM
1048
1049reg_syntax_t
1050re_set_syntax (syntax)
1051 reg_syntax_t syntax;
1052{
1053 reg_syntax_t ret = re_syntax_options;
5e69f11e 1054
fa9a63c5
RM
1055 re_syntax_options = syntax;
1056 return ret;
1057}
1058\f
1059/* This table gives an error message for each of the error codes listed
25fe55af 1060 in regex.h. Obviously the order here has to be same as there.
fa9a63c5 1061 POSIX doesn't require that we do anything for REG_NOERROR,
25fe55af 1062 but why not be nice? */
fa9a63c5
RM
1063
1064static const char *re_error_msgid[] =
5e69f11e
RM
1065 {
1066 gettext_noop ("Success"), /* REG_NOERROR */
1067 gettext_noop ("No match"), /* REG_NOMATCH */
1068 gettext_noop ("Invalid regular expression"), /* REG_BADPAT */
1069 gettext_noop ("Invalid collation character"), /* REG_ECOLLATE */
1070 gettext_noop ("Invalid character class name"), /* REG_ECTYPE */
1071 gettext_noop ("Trailing backslash"), /* REG_EESCAPE */
1072 gettext_noop ("Invalid back reference"), /* REG_ESUBREG */
1073 gettext_noop ("Unmatched [ or [^"), /* REG_EBRACK */
1074 gettext_noop ("Unmatched ( or \\("), /* REG_EPAREN */
1075 gettext_noop ("Unmatched \\{"), /* REG_EBRACE */
1076 gettext_noop ("Invalid content of \\{\\}"), /* REG_BADBR */
1077 gettext_noop ("Invalid range end"), /* REG_ERANGE */
1078 gettext_noop ("Memory exhausted"), /* REG_ESPACE */
1079 gettext_noop ("Invalid preceding regular expression"), /* REG_BADRPT */
1080 gettext_noop ("Premature end of regular expression"), /* REG_EEND */
1081 gettext_noop ("Regular expression too big"), /* REG_ESIZE */
1082 gettext_noop ("Unmatched ) or \\)"), /* REG_ERPAREN */
fa9a63c5
RM
1083 };
1084\f
25fe55af 1085/* Avoiding alloca during matching, to placate r_alloc. */
fa9a63c5
RM
1086
1087/* Define MATCH_MAY_ALLOCATE unless we need to make sure that the
1088 searching and matching functions should not call alloca. On some
1089 systems, alloca is implemented in terms of malloc, and if we're
1090 using the relocating allocator routines, then malloc could cause a
1091 relocation, which might (if the strings being searched are in the
1092 ralloc heap) shift the data out from underneath the regexp
1093 routines.
1094
5e69f11e 1095 Here's another reason to avoid allocation: Emacs
fa9a63c5
RM
1096 processes input from X in a signal handler; processing X input may
1097 call malloc; if input arrives while a matching routine is calling
1098 malloc, then we're scrod. But Emacs can't just block input while
1099 calling matching routines; then we don't notice interrupts when
1100 they come in. So, Emacs blocks input around all regexp calls
1101 except the matching calls, which it leaves unprotected, in the
1102 faith that they will not malloc. */
1103
1104/* Normally, this is fine. */
1105#define MATCH_MAY_ALLOCATE
1106
1107/* When using GNU C, we are not REALLY using the C alloca, no matter
1108 what config.h may say. So don't take precautions for it. */
1109#ifdef __GNUC__
1110#undef C_ALLOCA
1111#endif
1112
1113/* The match routines may not allocate if (1) they would do it with malloc
1114 and (2) it's not safe for them to use malloc.
1115 Note that if REL_ALLOC is defined, matching would not use malloc for the
1116 failure stack, but we would still use it for the register vectors;
25fe55af 1117 so REL_ALLOC should not affect this. */
fa9a63c5
RM
1118#if (defined (C_ALLOCA) || defined (REGEX_MALLOC)) && defined (emacs)
1119#undef MATCH_MAY_ALLOCATE
1120#endif
1121
1122\f
1123/* Failure stack declarations and macros; both re_compile_fastmap and
1124 re_match_2 use a failure stack. These have to be macros because of
1125 REGEX_ALLOCATE_STACK. */
5e69f11e 1126
fa9a63c5 1127
320a2a73 1128/* Approximate number of failure points for which to initially allocate space
fa9a63c5
RM
1129 when matching. If this number is exceeded, we allocate more
1130 space, so it is not a hard limit. */
1131#ifndef INIT_FAILURE_ALLOC
320a2a73 1132#define INIT_FAILURE_ALLOC 20
fa9a63c5
RM
1133#endif
1134
1135/* Roughly the maximum number of failure points on the stack. Would be
320a2a73 1136 exactly that if always used TYPICAL_FAILURE_SIZE items each time we failed.
fa9a63c5 1137 This is a variable only so users of regex can assign to it; we never
25fe55af 1138 change it ourselves. */
fa9a63c5 1139#if defined (MATCH_MAY_ALLOCATE)
320a2a73
KH
1140/* Note that 4400 is enough to cause a crash on Alpha OSF/1,
1141 whose default stack limit is 2mb. In order for a larger
1142 value to work reliably, you have to try to make it accord
1143 with the process stack limit. */
1144int re_max_failures = 40000;
fa9a63c5 1145#else
320a2a73 1146int re_max_failures = 4000;
fa9a63c5
RM
1147#endif
1148
1149union fail_stack_elt
1150{
1151 unsigned char *pointer;
1152 int integer;
1153};
1154
1155typedef union fail_stack_elt fail_stack_elt_t;
1156
1157typedef struct
1158{
1159 fail_stack_elt_t *stack;
1160 unsigned size;
1161 unsigned avail; /* Offset of next open position. */
1162} fail_stack_type;
1163
1164#define FAIL_STACK_EMPTY() (fail_stack.avail == 0)
1165#define FAIL_STACK_PTR_EMPTY() (fail_stack_ptr->avail == 0)
1166#define FAIL_STACK_FULL() (fail_stack.avail == fail_stack.size)
1167
1168
1169/* Define macros to initialize and free the failure stack.
1170 Do `return -2' if the alloc fails. */
1171
1172#ifdef MATCH_MAY_ALLOCATE
1173#define INIT_FAIL_STACK() \
1174 do { \
1175 fail_stack.stack = (fail_stack_elt_t *) \
320a2a73
KH
1176 REGEX_ALLOCATE_STACK (INIT_FAILURE_ALLOC * TYPICAL_FAILURE_SIZE \
1177 * sizeof (fail_stack_elt_t)); \
fa9a63c5
RM
1178 \
1179 if (fail_stack.stack == NULL) \
1180 return -2; \
1181 \
1182 fail_stack.size = INIT_FAILURE_ALLOC; \
1183 fail_stack.avail = 0; \
1184 } while (0)
1185
1186#define RESET_FAIL_STACK() REGEX_FREE_STACK (fail_stack.stack)
1187#else
1188#define INIT_FAIL_STACK() \
1189 do { \
1190 fail_stack.avail = 0; \
1191 } while (0)
1192
1193#define RESET_FAIL_STACK()
1194#endif
1195
1196
320a2a73
KH
1197/* Double the size of FAIL_STACK, up to a limit
1198 which allows approximately `re_max_failures' items.
fa9a63c5
RM
1199
1200 Return 1 if succeeds, and 0 if either ran out of memory
5e69f11e
RM
1201 allocating space for it or it was already too large.
1202
25fe55af 1203 REGEX_REALLOCATE_STACK requires `destination' be declared. */
fa9a63c5 1204
320a2a73
KH
1205/* Factor to increase the failure stack size by
1206 when we increase it.
1207 This used to be 2, but 2 was too wasteful
1208 because the old discarded stacks added up to as much space
1209 were as ultimate, maximum-size stack. */
1210#define FAIL_STACK_GROWTH_FACTOR 4
1211
1212#define GROW_FAIL_STACK(fail_stack) \
eead07d6
KH
1213 (((fail_stack).size * sizeof (fail_stack_elt_t) \
1214 >= re_max_failures * TYPICAL_FAILURE_SIZE) \
fa9a63c5 1215 ? 0 \
320a2a73
KH
1216 : ((fail_stack).stack \
1217 = (fail_stack_elt_t *) \
25fe55af
RS
1218 REGEX_REALLOCATE_STACK ((fail_stack).stack, \
1219 (fail_stack).size * sizeof (fail_stack_elt_t), \
320a2a73
KH
1220 MIN (re_max_failures * TYPICAL_FAILURE_SIZE, \
1221 ((fail_stack).size * sizeof (fail_stack_elt_t) \
1222 * FAIL_STACK_GROWTH_FACTOR))), \
fa9a63c5
RM
1223 \
1224 (fail_stack).stack == NULL \
1225 ? 0 \
6453db45
KH
1226 : ((fail_stack).size \
1227 = (MIN (re_max_failures * TYPICAL_FAILURE_SIZE, \
1228 ((fail_stack).size * sizeof (fail_stack_elt_t) \
1229 * FAIL_STACK_GROWTH_FACTOR)) \
1230 / sizeof (fail_stack_elt_t)), \
25fe55af 1231 1)))
fa9a63c5
RM
1232
1233
5e69f11e 1234/* Push pointer POINTER on FAIL_STACK.
fa9a63c5
RM
1235 Return 1 if was able to do so and 0 if ran out of memory allocating
1236 space to do so. */
1237#define PUSH_PATTERN_OP(POINTER, FAIL_STACK) \
1238 ((FAIL_STACK_FULL () \
320a2a73 1239 && !GROW_FAIL_STACK (FAIL_STACK)) \
fa9a63c5
RM
1240 ? 0 \
1241 : ((FAIL_STACK).stack[(FAIL_STACK).avail++].pointer = POINTER, \
1242 1))
1243
1244/* Push a pointer value onto the failure stack.
1245 Assumes the variable `fail_stack'. Probably should only
25fe55af 1246 be called from within `PUSH_FAILURE_POINT'. */
fa9a63c5
RM
1247#define PUSH_FAILURE_POINTER(item) \
1248 fail_stack.stack[fail_stack.avail++].pointer = (unsigned char *) (item)
1249
1250/* This pushes an integer-valued item onto the failure stack.
1251 Assumes the variable `fail_stack'. Probably should only
25fe55af 1252 be called from within `PUSH_FAILURE_POINT'. */
fa9a63c5
RM
1253#define PUSH_FAILURE_INT(item) \
1254 fail_stack.stack[fail_stack.avail++].integer = (item)
1255
1256/* Push a fail_stack_elt_t value onto the failure stack.
1257 Assumes the variable `fail_stack'. Probably should only
25fe55af 1258 be called from within `PUSH_FAILURE_POINT'. */
fa9a63c5
RM
1259#define PUSH_FAILURE_ELT(item) \
1260 fail_stack.stack[fail_stack.avail++] = (item)
1261
1262/* These three POP... operations complement the three PUSH... operations.
1263 All assume that `fail_stack' is nonempty. */
1264#define POP_FAILURE_POINTER() fail_stack.stack[--fail_stack.avail].pointer
1265#define POP_FAILURE_INT() fail_stack.stack[--fail_stack.avail].integer
1266#define POP_FAILURE_ELT() fail_stack.stack[--fail_stack.avail]
1267
1268/* Used to omit pushing failure point id's when we're not debugging. */
1269#ifdef DEBUG
1270#define DEBUG_PUSH PUSH_FAILURE_INT
1271#define DEBUG_POP(item_addr) *(item_addr) = POP_FAILURE_INT ()
1272#else
1273#define DEBUG_PUSH(item)
1274#define DEBUG_POP(item_addr)
1275#endif
1276
1277
1278/* Push the information about the state we will need
5e69f11e
RM
1279 if we ever fail back to it.
1280
fa9a63c5 1281 Requires variables fail_stack, regstart, regend, reg_info, and
320a2a73 1282 num_regs be declared. GROW_FAIL_STACK requires `destination' be
fa9a63c5 1283 declared.
5e69f11e 1284
fa9a63c5
RM
1285 Does `return FAILURE_CODE' if runs out of memory. */
1286
1287#define PUSH_FAILURE_POINT(pattern_place, string_place, failure_code) \
1288 do { \
1289 char *destination; \
1290 /* Must be int, so when we don't save any registers, the arithmetic \
1291 of 0 + -1 isn't done as unsigned. */ \
1292 int this_reg; \
25fe55af 1293 \
fa9a63c5
RM
1294 DEBUG_STATEMENT (failure_id++); \
1295 DEBUG_STATEMENT (nfailure_points_pushed++); \
1296 DEBUG_PRINT2 ("\nPUSH_FAILURE_POINT #%u:\n", failure_id); \
1297 DEBUG_PRINT2 (" Before push, next avail: %d\n", (fail_stack).avail);\
25fe55af 1298 DEBUG_PRINT2 (" size: %d\n", (fail_stack).size);\
fa9a63c5
RM
1299 \
1300 DEBUG_PRINT2 (" slots needed: %d\n", NUM_FAILURE_ITEMS); \
25fe55af 1301 DEBUG_PRINT2 (" available: %d\n", REMAINING_AVAIL_SLOTS); \
fa9a63c5
RM
1302 \
1303 /* Ensure we have enough space allocated for what we will push. */ \
1304 while (REMAINING_AVAIL_SLOTS < NUM_FAILURE_ITEMS) \
1305 { \
320a2a73 1306 if (!GROW_FAIL_STACK (fail_stack)) \
25fe55af 1307 return failure_code; \
fa9a63c5 1308 \
25fe55af 1309 DEBUG_PRINT2 ("\n Doubled stack; size now: %d\n", \
fa9a63c5 1310 (fail_stack).size); \
25fe55af 1311 DEBUG_PRINT2 (" slots available: %d\n", REMAINING_AVAIL_SLOTS);\
fa9a63c5
RM
1312 } \
1313 \
1314 /* Push the info, starting with the registers. */ \
1315 DEBUG_PRINT1 ("\n"); \
1316 \
68d96f02 1317 if (1) \
faec11db
RS
1318 for (this_reg = lowest_active_reg; this_reg <= highest_active_reg; \
1319 this_reg++) \
1320 { \
1321 DEBUG_PRINT2 (" Pushing reg: %d\n", this_reg); \
1322 DEBUG_STATEMENT (num_regs_pushed++); \
fa9a63c5 1323 \
faec11db
RS
1324 DEBUG_PRINT2 (" start: 0x%x\n", regstart[this_reg]); \
1325 PUSH_FAILURE_POINTER (regstart[this_reg]); \
fa9a63c5 1326 \
faec11db
RS
1327 DEBUG_PRINT2 (" end: 0x%x\n", regend[this_reg]); \
1328 PUSH_FAILURE_POINTER (regend[this_reg]); \
1329 \
1330 DEBUG_PRINT2 (" info: 0x%x\n ", reg_info[this_reg]); \
1331 DEBUG_PRINT2 (" match_null=%d", \
1332 REG_MATCH_NULL_STRING_P (reg_info[this_reg])); \
1333 DEBUG_PRINT2 (" active=%d", IS_ACTIVE (reg_info[this_reg])); \
1334 DEBUG_PRINT2 (" matched_something=%d", \
1335 MATCHED_SOMETHING (reg_info[this_reg])); \
1336 DEBUG_PRINT2 (" ever_matched=%d", \
1337 EVER_MATCHED_SOMETHING (reg_info[this_reg])); \
1338 DEBUG_PRINT1 ("\n"); \
1339 PUSH_FAILURE_ELT (reg_info[this_reg].word); \
1340 } \
fa9a63c5
RM
1341 \
1342 DEBUG_PRINT2 (" Pushing low active reg: %d\n", lowest_active_reg);\
1343 PUSH_FAILURE_INT (lowest_active_reg); \
1344 \
1345 DEBUG_PRINT2 (" Pushing high active reg: %d\n", highest_active_reg);\
1346 PUSH_FAILURE_INT (highest_active_reg); \
1347 \
1348 DEBUG_PRINT2 (" Pushing pattern 0x%x: ", pattern_place); \
1349 DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern_place, pend); \
1350 PUSH_FAILURE_POINTER (pattern_place); \
1351 \
1352 DEBUG_PRINT2 (" Pushing string 0x%x: `", string_place); \
25fe55af 1353 DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, \
fa9a63c5
RM
1354 size2); \
1355 DEBUG_PRINT1 ("'\n"); \
1356 PUSH_FAILURE_POINTER (string_place); \
1357 \
1358 DEBUG_PRINT2 (" Pushing failure id: %u\n", failure_id); \
1359 DEBUG_PUSH (failure_id); \
1360 } while (0)
1361
1362/* This is the number of items that are pushed and popped on the stack
1363 for each register. */
1364#define NUM_REG_ITEMS 3
1365
1366/* Individual items aside from the registers. */
1367#ifdef DEBUG
1368#define NUM_NONREG_ITEMS 5 /* Includes failure point id. */
1369#else
1370#define NUM_NONREG_ITEMS 4
1371#endif
1372
320a2a73
KH
1373/* Estimate the size of data pushed by a typical failure stack entry.
1374 An estimate is all we need, because all we use this for
1375 is to choose a limit for how big to make the failure stack. */
1376
1377#define TYPICAL_FAILURE_SIZE 20
fa9a63c5 1378
320a2a73
KH
1379/* This is how many items we actually use for a failure point.
1380 It depends on the regexp. */
faec11db 1381#define NUM_FAILURE_ITEMS \
68d96f02 1382 (((0 \
faec11db
RS
1383 ? 0 : highest_active_reg - lowest_active_reg + 1) \
1384 * NUM_REG_ITEMS) \
1385 + NUM_NONREG_ITEMS)
fa9a63c5
RM
1386
1387/* How many items can still be added to the stack without overflowing it. */
1388#define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
1389
1390
1391/* Pops what PUSH_FAIL_STACK pushes.
1392
1393 We restore into the parameters, all of which should be lvalues:
1394 STR -- the saved data position.
1395 PAT -- the saved pattern position.
1396 LOW_REG, HIGH_REG -- the highest and lowest active registers.
1397 REGSTART, REGEND -- arrays of string positions.
1398 REG_INFO -- array of information about each subexpression.
5e69f11e 1399
fa9a63c5 1400 Also assumes the variables `fail_stack' and (if debugging), `bufp',
25fe55af 1401 `pend', `string1', `size1', `string2', and `size2'. */
fa9a63c5
RM
1402
1403#define POP_FAILURE_POINT(str, pat, low_reg, high_reg, regstart, regend, reg_info)\
1404{ \
1405 DEBUG_STATEMENT (fail_stack_elt_t failure_id;) \
1406 int this_reg; \
1407 const unsigned char *string_temp; \
1408 \
1409 assert (!FAIL_STACK_EMPTY ()); \
1410 \
1411 /* Remove failure points and point to how many regs pushed. */ \
1412 DEBUG_PRINT1 ("POP_FAILURE_POINT:\n"); \
1413 DEBUG_PRINT2 (" Before pop, next avail: %d\n", fail_stack.avail); \
25fe55af 1414 DEBUG_PRINT2 (" size: %d\n", fail_stack.size); \
fa9a63c5
RM
1415 \
1416 assert (fail_stack.avail >= NUM_NONREG_ITEMS); \
1417 \
1418 DEBUG_POP (&failure_id); \
1419 DEBUG_PRINT2 (" Popping failure id: %u\n", failure_id); \
1420 \
1421 /* If the saved string location is NULL, it came from an \
1422 on_failure_keep_string_jump opcode, and we want to throw away the \
1423 saved NULL, thus retaining our current position in the string. */ \
1424 string_temp = POP_FAILURE_POINTER (); \
1425 if (string_temp != NULL) \
1426 str = (const char *) string_temp; \
1427 \
1428 DEBUG_PRINT2 (" Popping string 0x%x: `", str); \
1429 DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2); \
1430 DEBUG_PRINT1 ("'\n"); \
1431 \
1432 pat = (unsigned char *) POP_FAILURE_POINTER (); \
1433 DEBUG_PRINT2 (" Popping pattern 0x%x: ", pat); \
1434 DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend); \
1435 \
1436 /* Restore register info. */ \
1437 high_reg = (unsigned) POP_FAILURE_INT (); \
1438 DEBUG_PRINT2 (" Popping high active reg: %d\n", high_reg); \
1439 \
1440 low_reg = (unsigned) POP_FAILURE_INT (); \
1441 DEBUG_PRINT2 (" Popping low active reg: %d\n", low_reg); \
1442 \
68d96f02 1443 if (1) \
faec11db
RS
1444 for (this_reg = high_reg; this_reg >= low_reg; this_reg--) \
1445 { \
25fe55af 1446 DEBUG_PRINT2 (" Popping reg: %d\n", this_reg); \
fa9a63c5 1447 \
faec11db 1448 reg_info[this_reg].word = POP_FAILURE_ELT (); \
25fe55af 1449 DEBUG_PRINT2 (" info: 0x%x\n", reg_info[this_reg]); \
fa9a63c5 1450 \
faec11db 1451 regend[this_reg] = (const char *) POP_FAILURE_POINTER (); \
25fe55af 1452 DEBUG_PRINT2 (" end: 0x%x\n", regend[this_reg]); \
fa9a63c5 1453 \
faec11db 1454 regstart[this_reg] = (const char *) POP_FAILURE_POINTER (); \
25fe55af 1455 DEBUG_PRINT2 (" start: 0x%x\n", regstart[this_reg]); \
faec11db 1456 } \
6676cb1c
RS
1457 else \
1458 { \
1459 for (this_reg = highest_active_reg; this_reg > high_reg; this_reg--) \
1460 { \
4fcecab1 1461 reg_info[this_reg].word.integer = 0; \
6676cb1c
RS
1462 regend[this_reg] = 0; \
1463 regstart[this_reg] = 0; \
1464 } \
1465 highest_active_reg = high_reg; \
1466 } \
fa9a63c5
RM
1467 \
1468 set_regs_matched_done = 0; \
1469 DEBUG_STATEMENT (nfailure_points_popped++); \
1470} /* POP_FAILURE_POINT */
1471
1472
1473\f
1474/* Structure for per-register (a.k.a. per-group) information.
1475 Other register information, such as the
1476 starting and ending positions (which are addresses), and the list of
1477 inner groups (which is a bits list) are maintained in separate
5e69f11e
RM
1478 variables.
1479
fa9a63c5
RM
1480 We are making a (strictly speaking) nonportable assumption here: that
1481 the compiler will pack our bit fields into something that fits into
1482 the type of `word', i.e., is something that fits into one item on the
1483 failure stack. */
1484
1485typedef union
1486{
1487 fail_stack_elt_t word;
1488 struct
1489 {
1490 /* This field is one if this group can match the empty string,
25fe55af 1491 zero if not. If not yet determined, `MATCH_NULL_UNSET_VALUE'. */
fa9a63c5
RM
1492#define MATCH_NULL_UNSET_VALUE 3
1493 unsigned match_null_string_p : 2;
1494 unsigned is_active : 1;
1495 unsigned matched_something : 1;
1496 unsigned ever_matched_something : 1;
1497 } bits;
1498} register_info_type;
1499
1500#define REG_MATCH_NULL_STRING_P(R) ((R).bits.match_null_string_p)
1501#define IS_ACTIVE(R) ((R).bits.is_active)
1502#define MATCHED_SOMETHING(R) ((R).bits.matched_something)
1503#define EVER_MATCHED_SOMETHING(R) ((R).bits.ever_matched_something)
1504
1505
1506/* Call this when have matched a real character; it sets `matched' flags
1507 for the subexpressions which we are currently inside. Also records
1508 that those subexprs have matched. */
1509#define SET_REGS_MATCHED() \
1510 do \
1511 { \
1512 if (!set_regs_matched_done) \
1513 { \
1514 unsigned r; \
1515 set_regs_matched_done = 1; \
1516 for (r = lowest_active_reg; r <= highest_active_reg; r++) \
1517 { \
1518 MATCHED_SOMETHING (reg_info[r]) \
1519 = EVER_MATCHED_SOMETHING (reg_info[r]) \
1520 = 1; \
1521 } \
1522 } \
1523 } \
1524 while (0)
1525
1526/* Registers are set to a sentinel when they haven't yet matched. */
1527static char reg_unset_dummy;
1528#define REG_UNSET_VALUE (&reg_unset_dummy)
1529#define REG_UNSET(e) ((e) == REG_UNSET_VALUE)
1530\f
1531/* Subroutine declarations and macros for regex_compile. */
1532
1533static void store_op1 (), store_op2 ();
1534static void insert_op1 (), insert_op2 ();
1535static boolean at_begline_loc_p (), at_endline_loc_p ();
1536static boolean group_in_compile_stack ();
1537static reg_errcode_t compile_range ();
1538
5e69f11e 1539/* Fetch the next character in the uncompiled pattern---translating it
fa9a63c5
RM
1540 if necessary. Also cast from a signed character in the constant
1541 string passed to us by the user to an unsigned char that we can use
1542 as an array index (in, e.g., `translate'). */
6676cb1c 1543#ifndef PATFETCH
fa9a63c5
RM
1544#define PATFETCH(c) \
1545 do {if (p == pend) return REG_EEND; \
1546 c = (unsigned char) *p++; \
28703c16 1547 if (RE_TRANSLATE_P (translate)) c = RE_TRANSLATE (translate, c); \
fa9a63c5 1548 } while (0)
6676cb1c 1549#endif
fa9a63c5
RM
1550
1551/* Fetch the next character in the uncompiled pattern, with no
25fe55af 1552 translation. */
fa9a63c5
RM
1553#define PATFETCH_RAW(c) \
1554 do {if (p == pend) return REG_EEND; \
25fe55af 1555 c = (unsigned char) *p++; \
fa9a63c5
RM
1556 } while (0)
1557
1558/* Go backwards one character in the pattern. */
1559#define PATUNFETCH p--
1560
1561
1562/* If `translate' is non-null, return translate[D], else just D. We
1563 cast the subscript to translate because some data is declared as
1564 `char *', to avoid warnings when a string constant is passed. But
1565 when we use a character as a subscript we must make it unsigned. */
6676cb1c
RS
1566#ifndef TRANSLATE
1567#define TRANSLATE(d) \
28703c16
AS
1568 (RE_TRANSLATE_P (translate) \
1569 ? (unsigned) RE_TRANSLATE (translate, (unsigned) (d)) : (d))
6676cb1c 1570#endif
fa9a63c5
RM
1571
1572
1573/* Macros for outputting the compiled pattern into `buffer'. */
1574
1575/* If the buffer isn't allocated when it comes in, use this. */
1576#define INIT_BUF_SIZE 32
1577
25fe55af 1578/* Make sure we have at least N more bytes of space in buffer. */
fa9a63c5
RM
1579#define GET_BUFFER_SPACE(n) \
1580 while (b - bufp->buffer + (n) > bufp->allocated) \
1581 EXTEND_BUFFER ()
1582
1583/* Make sure we have one more byte of buffer space and then add C to it. */
1584#define BUF_PUSH(c) \
1585 do { \
1586 GET_BUFFER_SPACE (1); \
1587 *b++ = (unsigned char) (c); \
1588 } while (0)
1589
1590
1591/* Ensure we have two more bytes of buffer space and then append C1 and C2. */
1592#define BUF_PUSH_2(c1, c2) \
1593 do { \
1594 GET_BUFFER_SPACE (2); \
1595 *b++ = (unsigned char) (c1); \
1596 *b++ = (unsigned char) (c2); \
1597 } while (0)
1598
1599
25fe55af 1600/* As with BUF_PUSH_2, except for three bytes. */
fa9a63c5
RM
1601#define BUF_PUSH_3(c1, c2, c3) \
1602 do { \
1603 GET_BUFFER_SPACE (3); \
1604 *b++ = (unsigned char) (c1); \
1605 *b++ = (unsigned char) (c2); \
1606 *b++ = (unsigned char) (c3); \
1607 } while (0)
1608
1609
1610/* Store a jump with opcode OP at LOC to location TO. We store a
25fe55af 1611 relative address offset by the three bytes the jump itself occupies. */
fa9a63c5
RM
1612#define STORE_JUMP(op, loc, to) \
1613 store_op1 (op, loc, (to) - (loc) - 3)
1614
1615/* Likewise, for a two-argument jump. */
1616#define STORE_JUMP2(op, loc, to, arg) \
1617 store_op2 (op, loc, (to) - (loc) - 3, arg)
1618
25fe55af 1619/* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */
fa9a63c5
RM
1620#define INSERT_JUMP(op, loc, to) \
1621 insert_op1 (op, loc, (to) - (loc) - 3, b)
1622
1623/* Like `STORE_JUMP2', but for inserting. Assume `b' is the buffer end. */
1624#define INSERT_JUMP2(op, loc, to, arg) \
1625 insert_op2 (op, loc, (to) - (loc) - 3, arg, b)
1626
1627
1628/* This is not an arbitrary limit: the arguments which represent offsets
25fe55af 1629 into the pattern are two bytes long. So if 2^16 bytes turns out to
fa9a63c5
RM
1630 be too small, many things would have to change. */
1631#define MAX_BUF_SIZE (1L << 16)
1632
1633
1634/* Extend the buffer by twice its current size via realloc and
1635 reset the pointers that pointed into the old block to point to the
1636 correct places in the new one. If extending the buffer results in it
25fe55af 1637 being larger than MAX_BUF_SIZE, then flag memory exhausted. */
fa9a63c5 1638#define EXTEND_BUFFER() \
25fe55af 1639 do { \
fa9a63c5 1640 unsigned char *old_buffer = bufp->buffer; \
25fe55af 1641 if (bufp->allocated == MAX_BUF_SIZE) \
fa9a63c5
RM
1642 return REG_ESIZE; \
1643 bufp->allocated <<= 1; \
1644 if (bufp->allocated > MAX_BUF_SIZE) \
25fe55af 1645 bufp->allocated = MAX_BUF_SIZE; \
fa9a63c5
RM
1646 bufp->buffer = (unsigned char *) realloc (bufp->buffer, bufp->allocated);\
1647 if (bufp->buffer == NULL) \
1648 return REG_ESPACE; \
1649 /* If the buffer moved, move all the pointers into it. */ \
1650 if (old_buffer != bufp->buffer) \
1651 { \
25fe55af
RS
1652 b = (b - old_buffer) + bufp->buffer; \
1653 begalt = (begalt - old_buffer) + bufp->buffer; \
1654 if (fixup_alt_jump) \
1655 fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer;\
1656 if (laststart) \
1657 laststart = (laststart - old_buffer) + bufp->buffer; \
1658 if (pending_exact) \
1659 pending_exact = (pending_exact - old_buffer) + bufp->buffer; \
fa9a63c5
RM
1660 } \
1661 } while (0)
1662
1663
1664/* Since we have one byte reserved for the register number argument to
1665 {start,stop}_memory, the maximum number of groups we can report
1666 things about is what fits in that byte. */
1667#define MAX_REGNUM 255
1668
1669/* But patterns can have more than `MAX_REGNUM' registers. We just
1670 ignore the excess. */
1671typedef unsigned regnum_t;
1672
1673
1674/* Macros for the compile stack. */
1675
1676/* Since offsets can go either forwards or backwards, this type needs to
25fe55af 1677 be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */
fa9a63c5
RM
1678typedef int pattern_offset_t;
1679
1680typedef struct
1681{
1682 pattern_offset_t begalt_offset;
1683 pattern_offset_t fixup_alt_jump;
1684 pattern_offset_t inner_group_offset;
5e69f11e 1685 pattern_offset_t laststart_offset;
fa9a63c5
RM
1686 regnum_t regnum;
1687} compile_stack_elt_t;
1688
1689
1690typedef struct
1691{
1692 compile_stack_elt_t *stack;
1693 unsigned size;
1694 unsigned avail; /* Offset of next open position. */
1695} compile_stack_type;
1696
1697
1698#define INIT_COMPILE_STACK_SIZE 32
1699
1700#define COMPILE_STACK_EMPTY (compile_stack.avail == 0)
1701#define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size)
1702
25fe55af 1703/* The next available element. */
fa9a63c5
RM
1704#define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
1705
1706
b18215fc
RS
1707/* Structure to manage work area for range table. */
1708struct range_table_work_area
1709{
1710 int *table; /* actual work area. */
1711 int allocated; /* allocated size for work area in bytes. */
25fe55af 1712 int used; /* actually used size in words. */
b18215fc
RS
1713};
1714
1715/* Make sure that WORK_AREA can hold more N multibyte characters. */
1716#define EXTEND_RANGE_TABLE_WORK_AREA(work_area, n) \
1717 do { \
1718 if (((work_area).used + (n)) * sizeof (int) > (work_area).allocated) \
1719 { \
1720 (work_area).allocated += 16 * sizeof (int); \
1721 if ((work_area).table) \
1722 (work_area).table \
1723 = (int *) realloc ((work_area).table, (work_area).allocated); \
1724 else \
1725 (work_area).table \
1726 = (int *) malloc ((work_area).allocated); \
1727 if ((work_area).table == 0) \
1728 FREE_STACK_RETURN (REG_ESPACE); \
1729 } \
1730 } while (0)
1731
1732/* Set a range (RANGE_START, RANGE_END) to WORK_AREA. */
1733#define SET_RANGE_TABLE_WORK_AREA(work_area, range_start, range_end) \
1734 do { \
1735 EXTEND_RANGE_TABLE_WORK_AREA ((work_area), 2); \
1736 (work_area).table[(work_area).used++] = (range_start); \
1737 (work_area).table[(work_area).used++] = (range_end); \
1738 } while (0)
1739
25fe55af 1740/* Free allocated memory for WORK_AREA. */
b18215fc
RS
1741#define FREE_RANGE_TABLE_WORK_AREA(work_area) \
1742 do { \
1743 if ((work_area).table) \
1744 free ((work_area).table); \
1745 } while (0)
1746
1747#define CLEAR_RANGE_TABLE_WORK_USED(work_area) ((work_area).used = 0)
1748#define RANGE_TABLE_WORK_USED(work_area) ((work_area).used)
1749#define RANGE_TABLE_WORK_ELT(work_area, i) ((work_area).table[i])
1750
1751
fa9a63c5 1752/* Set the bit for character C in a list. */
25fe55af
RS
1753#define SET_LIST_BIT(c) \
1754 (b[((unsigned char) (c)) / BYTEWIDTH] \
fa9a63c5
RM
1755 |= 1 << (((unsigned char) c) % BYTEWIDTH))
1756
1757
1758/* Get the next unsigned number in the uncompiled pattern. */
25fe55af 1759#define GET_UNSIGNED_NUMBER(num) \
fa9a63c5
RM
1760 { if (p != pend) \
1761 { \
25fe55af
RS
1762 PATFETCH (c); \
1763 while (ISDIGIT (c)) \
1764 { \
1765 if (num < 0) \
1766 num = 0; \
1767 num = num * 10 + c - '0'; \
1768 if (p == pend) \
1769 break; \
1770 PATFETCH (c); \
1771 } \
1772 } \
5e69f11e 1773 }
fa9a63c5
RM
1774
1775#define CHAR_CLASS_MAX_LENGTH 6 /* Namely, `xdigit'. */
1776
1777#define IS_CHAR_CLASS(string) \
1778 (STREQ (string, "alpha") || STREQ (string, "upper") \
1779 || STREQ (string, "lower") || STREQ (string, "digit") \
1780 || STREQ (string, "alnum") || STREQ (string, "xdigit") \
1781 || STREQ (string, "space") || STREQ (string, "print") \
1782 || STREQ (string, "punct") || STREQ (string, "graph") \
1783 || STREQ (string, "cntrl") || STREQ (string, "blank"))
1784\f
1785#ifndef MATCH_MAY_ALLOCATE
1786
1787/* If we cannot allocate large objects within re_match_2_internal,
1788 we make the fail stack and register vectors global.
1789 The fail stack, we grow to the maximum size when a regexp
1790 is compiled.
1791 The register vectors, we adjust in size each time we
1792 compile a regexp, according to the number of registers it needs. */
1793
1794static fail_stack_type fail_stack;
1795
1796/* Size with which the following vectors are currently allocated.
1797 That is so we can make them bigger as needed,
25fe55af 1798 but never make them smaller. */
fa9a63c5
RM
1799static int regs_allocated_size;
1800
25fe55af 1801static const char ** regstart, ** regend;
fa9a63c5
RM
1802static const char ** old_regstart, ** old_regend;
1803static const char **best_regstart, **best_regend;
5e69f11e 1804static register_info_type *reg_info;
fa9a63c5
RM
1805static const char **reg_dummy;
1806static register_info_type *reg_info_dummy;
1807
1808/* Make the register vectors big enough for NUM_REGS registers,
25fe55af 1809 but don't make them smaller. */
fa9a63c5
RM
1810
1811static
1812regex_grow_registers (num_regs)
1813 int num_regs;
1814{
1815 if (num_regs > regs_allocated_size)
1816 {
1817 RETALLOC_IF (regstart, num_regs, const char *);
1818 RETALLOC_IF (regend, num_regs, const char *);
1819 RETALLOC_IF (old_regstart, num_regs, const char *);
1820 RETALLOC_IF (old_regend, num_regs, const char *);
1821 RETALLOC_IF (best_regstart, num_regs, const char *);
1822 RETALLOC_IF (best_regend, num_regs, const char *);
1823 RETALLOC_IF (reg_info, num_regs, register_info_type);
1824 RETALLOC_IF (reg_dummy, num_regs, const char *);
1825 RETALLOC_IF (reg_info_dummy, num_regs, register_info_type);
1826
1827 regs_allocated_size = num_regs;
1828 }
1829}
1830
1831#endif /* not MATCH_MAY_ALLOCATE */
1832\f
1833/* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
1834 Returns one of error codes defined in `regex.h', or zero for success.
1835
1836 Assumes the `allocated' (and perhaps `buffer') and `translate'
1837 fields are set in BUFP on entry.
1838
1839 If it succeeds, results are put in BUFP (if it returns an error, the
1840 contents of BUFP are undefined):
1841 `buffer' is the compiled pattern;
1842 `syntax' is set to SYNTAX;
1843 `used' is set to the length of the compiled pattern;
1844 `fastmap_accurate' is zero;
1845 `re_nsub' is the number of subexpressions in PATTERN;
1846 `not_bol' and `not_eol' are zero;
5e69f11e 1847
fa9a63c5
RM
1848 The `fastmap' and `newline_anchor' fields are neither
1849 examined nor set. */
1850
1851/* Return, freeing storage we allocated. */
1852#define FREE_STACK_RETURN(value) \
b18215fc
RS
1853 do { \
1854 FREE_RANGE_TABLE_WORK_AREA (range_table_work); \
1855 free (compile_stack.stack); \
1856 return value; \
1857 } while (0)
fa9a63c5
RM
1858
1859static reg_errcode_t
1860regex_compile (pattern, size, syntax, bufp)
1861 const char *pattern;
1862 int size;
1863 reg_syntax_t syntax;
1864 struct re_pattern_buffer *bufp;
1865{
1866 /* We fetch characters from PATTERN here. Even though PATTERN is
1867 `char *' (i.e., signed), we declare these variables as unsigned, so
1868 they can be reliably used as array indices. */
b18215fc 1869 register unsigned int c, c1;
5e69f11e 1870
fa9a63c5
RM
1871 /* A random temporary spot in PATTERN. */
1872 const char *p1;
1873
1874 /* Points to the end of the buffer, where we should append. */
1875 register unsigned char *b;
5e69f11e 1876
fa9a63c5
RM
1877 /* Keeps track of unclosed groups. */
1878 compile_stack_type compile_stack;
1879
1880 /* Points to the current (ending) position in the pattern. */
22336245
RS
1881#ifdef AIX
1882 /* `const' makes AIX compiler fail. */
1883 char *p = pattern;
1884#else
fa9a63c5 1885 const char *p = pattern;
22336245 1886#endif
fa9a63c5 1887 const char *pend = pattern + size;
5e69f11e 1888
fa9a63c5 1889 /* How to translate the characters in the pattern. */
6676cb1c 1890 RE_TRANSLATE_TYPE translate = bufp->translate;
fa9a63c5
RM
1891
1892 /* Address of the count-byte of the most recently inserted `exactn'
1893 command. This makes it possible to tell if a new exact-match
1894 character can be added to that command or if the character requires
1895 a new `exactn' command. */
1896 unsigned char *pending_exact = 0;
1897
1898 /* Address of start of the most recently finished expression.
1899 This tells, e.g., postfix * where to find the start of its
1900 operand. Reset at the beginning of groups and alternatives. */
1901 unsigned char *laststart = 0;
1902
1903 /* Address of beginning of regexp, or inside of last group. */
1904 unsigned char *begalt;
1905
1906 /* Place in the uncompiled pattern (i.e., the {) to
1907 which to go back if the interval is invalid. */
1908 const char *beg_interval;
5e69f11e 1909
fa9a63c5 1910 /* Address of the place where a forward jump should go to the end of
25fe55af 1911 the containing expression. Each alternative of an `or' -- except the
fa9a63c5
RM
1912 last -- ends with a forward jump of this sort. */
1913 unsigned char *fixup_alt_jump = 0;
1914
1915 /* Counts open-groups as they are encountered. Remembered for the
1916 matching close-group on the compile stack, so the same register
1917 number is put in the stop_memory as the start_memory. */
1918 regnum_t regnum = 0;
1919
b18215fc
RS
1920 /* Work area for range table of charset. */
1921 struct range_table_work_area range_table_work;
1922
fa9a63c5
RM
1923#ifdef DEBUG
1924 DEBUG_PRINT1 ("\nCompiling pattern: ");
1925 if (debug)
1926 {
1927 unsigned debug_count;
5e69f11e 1928
fa9a63c5 1929 for (debug_count = 0; debug_count < size; debug_count++)
25fe55af 1930 putchar (pattern[debug_count]);
fa9a63c5
RM
1931 putchar ('\n');
1932 }
1933#endif /* DEBUG */
1934
1935 /* Initialize the compile stack. */
1936 compile_stack.stack = TALLOC (INIT_COMPILE_STACK_SIZE, compile_stack_elt_t);
1937 if (compile_stack.stack == NULL)
1938 return REG_ESPACE;
1939
1940 compile_stack.size = INIT_COMPILE_STACK_SIZE;
1941 compile_stack.avail = 0;
1942
b18215fc
RS
1943 range_table_work.table = 0;
1944 range_table_work.allocated = 0;
1945
fa9a63c5
RM
1946 /* Initialize the pattern buffer. */
1947 bufp->syntax = syntax;
1948 bufp->fastmap_accurate = 0;
1949 bufp->not_bol = bufp->not_eol = 0;
1950
1951 /* Set `used' to zero, so that if we return an error, the pattern
1952 printer (for debugging) will think there's no pattern. We reset it
1953 at the end. */
1954 bufp->used = 0;
5e69f11e 1955
fa9a63c5 1956 /* Always count groups, whether or not bufp->no_sub is set. */
5e69f11e 1957 bufp->re_nsub = 0;
fa9a63c5 1958
b18215fc
RS
1959#ifdef emacs
1960 /* bufp->multibyte is set before regex_compile is called, so don't alter
1961 it. */
1962#else /* not emacs */
1963 /* Nothing is recognized as a multibyte character. */
1964 bufp->multibyte = 0;
1965#endif
1966
fa9a63c5
RM
1967#if !defined (emacs) && !defined (SYNTAX_TABLE)
1968 /* Initialize the syntax table. */
1969 init_syntax_once ();
1970#endif
1971
1972 if (bufp->allocated == 0)
1973 {
1974 if (bufp->buffer)
1975 { /* If zero allocated, but buffer is non-null, try to realloc
25fe55af
RS
1976 enough space. This loses if buffer's address is bogus, but
1977 that is the user's responsibility. */
1978 RETALLOC (bufp->buffer, INIT_BUF_SIZE, unsigned char);
1979 }
fa9a63c5 1980 else
25fe55af
RS
1981 { /* Caller did not allocate a buffer. Do it for them. */
1982 bufp->buffer = TALLOC (INIT_BUF_SIZE, unsigned char);
1983 }
fa9a63c5
RM
1984 if (!bufp->buffer) FREE_STACK_RETURN (REG_ESPACE);
1985
1986 bufp->allocated = INIT_BUF_SIZE;
1987 }
1988
1989 begalt = b = bufp->buffer;
1990
1991 /* Loop through the uncompiled pattern until we're at the end. */
1992 while (p != pend)
1993 {
1994 PATFETCH (c);
1995
1996 switch (c)
25fe55af
RS
1997 {
1998 case '^':
1999 {
2000 if ( /* If at start of pattern, it's an operator. */
2001 p == pattern + 1
2002 /* If context independent, it's an operator. */
2003 || syntax & RE_CONTEXT_INDEP_ANCHORS
2004 /* Otherwise, depends on what's come before. */
2005 || at_begline_loc_p (pattern, p, syntax))
2006 BUF_PUSH (begline);
2007 else
2008 goto normal_char;
2009 }
2010 break;
2011
2012
2013 case '$':
2014 {
2015 if ( /* If at end of pattern, it's an operator. */
2016 p == pend
2017 /* If context independent, it's an operator. */
2018 || syntax & RE_CONTEXT_INDEP_ANCHORS
2019 /* Otherwise, depends on what's next. */
2020 || at_endline_loc_p (p, pend, syntax))
2021 BUF_PUSH (endline);
2022 else
2023 goto normal_char;
2024 }
2025 break;
fa9a63c5
RM
2026
2027
2028 case '+':
25fe55af
RS
2029 case '?':
2030 if ((syntax & RE_BK_PLUS_QM)
2031 || (syntax & RE_LIMITED_OPS))
2032 goto normal_char;
2033 handle_plus:
2034 case '*':
2035 /* If there is no previous pattern... */
2036 if (!laststart)
2037 {
2038 if (syntax & RE_CONTEXT_INVALID_OPS)
2039 FREE_STACK_RETURN (REG_BADRPT);
2040 else if (!(syntax & RE_CONTEXT_INDEP_OPS))
2041 goto normal_char;
2042 }
2043
2044 {
2045 /* Are we optimizing this jump? */
2046 boolean keep_string_p = false;
2047
2048 /* 1 means zero (many) matches is allowed. */
2049 char zero_times_ok = 0, many_times_ok = 0;
2050
2051 /* If there is a sequence of repetition chars, collapse it
2052 down to just one (the right one). We can't combine
2053 interval operators with these because of, e.g., `a{2}*',
2054 which should only match an even number of `a's. */
2055
2056 for (;;)
2057 {
2058 zero_times_ok |= c != '+';
2059 many_times_ok |= c != '?';
2060
2061 if (p == pend)
2062 break;
2063
2064 PATFETCH (c);
2065
2066 if (c == '*'
2067 || (!(syntax & RE_BK_PLUS_QM) && (c == '+' || c == '?')))
2068 ;
2069
2070 else if (syntax & RE_BK_PLUS_QM && c == '\\')
2071 {
2072 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2073
2074 PATFETCH (c1);
2075 if (!(c1 == '+' || c1 == '?'))
2076 {
2077 PATUNFETCH;
2078 PATUNFETCH;
2079 break;
2080 }
2081
2082 c = c1;
2083 }
2084 else
2085 {
2086 PATUNFETCH;
2087 break;
2088 }
2089
2090 /* If we get here, we found another repeat character. */
2091 }
2092
2093 /* Star, etc. applied to an empty pattern is equivalent
2094 to an empty pattern. */
2095 if (!laststart)
2096 break;
2097
2098 /* Now we know whether or not zero matches is allowed
2099 and also whether or not two or more matches is allowed. */
2100 if (many_times_ok)
2101 { /* More than one repetition is allowed, so put in at the
2102 end a backward relative jump from `b' to before the next
2103 jump we're going to put in below (which jumps from
2104 laststart to after this jump).
2105
2106 But if we are at the `*' in the exact sequence `.*\n',
2107 insert an unconditional jump backwards to the .,
2108 instead of the beginning of the loop. This way we only
2109 push a failure point once, instead of every time
2110 through the loop. */
2111 assert (p - 1 > pattern);
2112
2113 /* Allocate the space for the jump. */
2114 GET_BUFFER_SPACE (3);
2115
2116 /* We know we are not at the first character of the pattern,
2117 because laststart was nonzero. And we've already
2118 incremented `p', by the way, to be the character after
2119 the `*'. Do we have to do something analogous here
2120 for null bytes, because of RE_DOT_NOT_NULL? */
e934739e 2121 if (TRANSLATE ((unsigned char)*(p - 2)) == TRANSLATE ('.')
fa9a63c5 2122 && zero_times_ok
e934739e
RS
2123 && p < pend
2124 && TRANSLATE ((unsigned char)*p) == TRANSLATE ('\n')
25fe55af
RS
2125 && !(syntax & RE_DOT_NEWLINE))
2126 { /* We have .*\n. */
2127 STORE_JUMP (jump, b, laststart);
2128 keep_string_p = true;
2129 }
2130 else
2131 /* Anything else. */
2132 STORE_JUMP (maybe_pop_jump, b, laststart - 3);
2133
2134 /* We've added more stuff to the buffer. */
2135 b += 3;
2136 }
2137
2138 /* On failure, jump from laststart to b + 3, which will be the
2139 end of the buffer after this jump is inserted. */
2140 GET_BUFFER_SPACE (3);
2141 INSERT_JUMP (keep_string_p ? on_failure_keep_string_jump
2142 : on_failure_jump,
2143 laststart, b + 3);
2144 pending_exact = 0;
2145 b += 3;
2146
2147 if (!zero_times_ok)
2148 {
2149 /* At least one repetition is required, so insert a
2150 `dummy_failure_jump' before the initial
2151 `on_failure_jump' instruction of the loop. This
2152 effects a skip over that instruction the first time
2153 we hit that loop. */
2154 GET_BUFFER_SPACE (3);
2155 INSERT_JUMP (dummy_failure_jump, laststart, laststart + 6);
2156 b += 3;
2157 }
2158 }
fa9a63c5
RM
2159 break;
2160
2161
2162 case '.':
25fe55af
RS
2163 laststart = b;
2164 BUF_PUSH (anychar);
2165 break;
fa9a63c5
RM
2166
2167
25fe55af
RS
2168 case '[':
2169 {
b18215fc 2170 CLEAR_RANGE_TABLE_WORK_USED (range_table_work);
fa9a63c5 2171
25fe55af 2172 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
fa9a63c5 2173
25fe55af
RS
2174 /* Ensure that we have enough space to push a charset: the
2175 opcode, the length count, and the bitset; 34 bytes in all. */
fa9a63c5
RM
2176 GET_BUFFER_SPACE (34);
2177
25fe55af 2178 laststart = b;
e318085a 2179
25fe55af
RS
2180 /* We test `*p == '^' twice, instead of using an if
2181 statement, so we only need one BUF_PUSH. */
2182 BUF_PUSH (*p == '^' ? charset_not : charset);
2183 if (*p == '^')
2184 p++;
e318085a 2185
25fe55af
RS
2186 /* Remember the first position in the bracket expression. */
2187 p1 = p;
e318085a 2188
25fe55af
RS
2189 /* Push the number of bytes in the bitmap. */
2190 BUF_PUSH ((1 << BYTEWIDTH) / BYTEWIDTH);
e318085a 2191
25fe55af
RS
2192 /* Clear the whole map. */
2193 bzero (b, (1 << BYTEWIDTH) / BYTEWIDTH);
e318085a 2194
25fe55af
RS
2195 /* charset_not matches newline according to a syntax bit. */
2196 if ((re_opcode_t) b[-2] == charset_not
2197 && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
2198 SET_LIST_BIT ('\n');
fa9a63c5 2199
25fe55af
RS
2200 /* Read in characters and ranges, setting map bits. */
2201 for (;;)
2202 {
b18215fc
RS
2203 int len;
2204 boolean escaped_char = false;
e318085a 2205
25fe55af 2206 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
e318085a 2207
25fe55af 2208 PATFETCH (c);
e318085a 2209
25fe55af
RS
2210 /* \ might escape characters inside [...] and [^...]. */
2211 if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
2212 {
2213 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
e318085a
RS
2214
2215 PATFETCH (c);
b18215fc 2216 escaped_char = true;
25fe55af 2217 }
b18215fc
RS
2218 else
2219 {
657fcfbd
RS
2220 /* Could be the end of the bracket expression. If it's
2221 not (i.e., when the bracket expression is `[]' so
2222 far), the ']' character bit gets set way below. */
2223 if (c == ']' && p != p1 + 1)
2224 break;
25fe55af 2225 }
b18215fc
RS
2226
2227 /* If C indicates start of multibyte char, get the
2228 actual character code in C, and set the pattern
2229 pointer P to the next character boundary. */
2230 if (bufp->multibyte && BASE_LEADING_CODE_P (c))
2231 {
2232 PATUNFETCH;
2233 c = STRING_CHAR_AND_LENGTH (p, pend - p, len);
2234 p += len;
25fe55af 2235 }
b18215fc
RS
2236 /* What should we do for the character which is
2237 greater than 0x7F, but not BASE_LEADING_CODE_P?
2238 XXX */
2239
25fe55af
RS
2240 /* See if we're at the beginning of a possible character
2241 class. */
b18215fc
RS
2242
2243 else if (!escaped_char &&
2244 syntax & RE_CHAR_CLASSES && c == '[' && *p == ':')
657fcfbd
RS
2245 {
2246 /* Leave room for the null. */
25fe55af 2247 char str[CHAR_CLASS_MAX_LENGTH + 1];
b18215fc 2248
25fe55af
RS
2249 PATFETCH (c);
2250 c1 = 0;
b18215fc 2251
25fe55af
RS
2252 /* If pattern is `[[:'. */
2253 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
b18215fc 2254
25fe55af
RS
2255 for (;;)
2256 {
2257 PATFETCH (c);
2258 if (c == ':' || c == ']' || p == pend
2259 || c1 == CHAR_CLASS_MAX_LENGTH)
2260 break;
2261 str[c1++] = c;
2262 }
2263 str[c1] = '\0';
b18215fc
RS
2264
2265 /* If isn't a word bracketed by `[:' and `:]':
2266 undo the ending character, the letters, and
2267 leave the leading `:' and `[' (but set bits for
2268 them). */
25fe55af
RS
2269 if (c == ':' && *p == ']')
2270 {
2271 int ch;
2272 boolean is_alnum = STREQ (str, "alnum");
2273 boolean is_alpha = STREQ (str, "alpha");
2274 boolean is_blank = STREQ (str, "blank");
2275 boolean is_cntrl = STREQ (str, "cntrl");
2276 boolean is_digit = STREQ (str, "digit");
2277 boolean is_graph = STREQ (str, "graph");
2278 boolean is_lower = STREQ (str, "lower");
2279 boolean is_print = STREQ (str, "print");
2280 boolean is_punct = STREQ (str, "punct");
2281 boolean is_space = STREQ (str, "space");
2282 boolean is_upper = STREQ (str, "upper");
2283 boolean is_xdigit = STREQ (str, "xdigit");
2284
2285 if (!IS_CHAR_CLASS (str))
fa9a63c5
RM
2286 FREE_STACK_RETURN (REG_ECTYPE);
2287
25fe55af
RS
2288 /* Throw away the ] at the end of the character
2289 class. */
2290 PATFETCH (c);
fa9a63c5 2291
25fe55af 2292 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
fa9a63c5 2293
25fe55af
RS
2294 for (ch = 0; ch < 1 << BYTEWIDTH; ch++)
2295 {
7ae68633 2296 int translated = TRANSLATE (ch);
fa9a63c5
RM
2297 /* This was split into 3 if's to
2298 avoid an arbitrary limit in some compiler. */
25fe55af
RS
2299 if ( (is_alnum && ISALNUM (ch))
2300 || (is_alpha && ISALPHA (ch))
2301 || (is_blank && ISBLANK (ch))
2302 || (is_cntrl && ISCNTRL (ch)))
7ae68633 2303 SET_LIST_BIT (translated);
fa9a63c5 2304 if ( (is_digit && ISDIGIT (ch))
25fe55af
RS
2305 || (is_graph && ISGRAPH (ch))
2306 || (is_lower && ISLOWER (ch))
2307 || (is_print && ISPRINT (ch)))
7ae68633 2308 SET_LIST_BIT (translated);
fa9a63c5 2309 if ( (is_punct && ISPUNCT (ch))
25fe55af
RS
2310 || (is_space && ISSPACE (ch))
2311 || (is_upper && ISUPPER (ch))
2312 || (is_xdigit && ISXDIGIT (ch)))
7ae68633 2313 SET_LIST_BIT (translated);
25fe55af 2314 }
b18215fc
RS
2315
2316 /* Repeat the loop. */
2317 continue;
25fe55af
RS
2318 }
2319 else
2320 {
2321 c1++;
2322 while (c1--)
2323 PATUNFETCH;
2324 SET_LIST_BIT ('[');
b18215fc
RS
2325
2326 /* Because the `:' may starts the range, we
2327 can't simply set bit and repeat the loop.
25fe55af 2328 Instead, just set it to C and handle below. */
b18215fc 2329 c = ':';
25fe55af
RS
2330 }
2331 }
b18215fc
RS
2332
2333 if (p < pend && p[0] == '-' && p[1] != ']')
2334 {
2335
2336 /* Discard the `-'. */
2337 PATFETCH (c1);
2338
2339 /* Fetch the character which ends the range. */
2340 PATFETCH (c1);
2341 if (bufp->multibyte && BASE_LEADING_CODE_P (c1))
e318085a 2342 {
b18215fc
RS
2343 PATUNFETCH;
2344 c1 = STRING_CHAR_AND_LENGTH (p, pend - p, len);
2345 p += len;
e318085a 2346 }
b18215fc 2347
e934739e
RS
2348 if (SINGLE_BYTE_CHAR_P (c)
2349 && ! SINGLE_BYTE_CHAR_P (c1))
2350 {
2351 /* Handle a range such as \177-\377 in multibyte mode.
2352 Split that into two ranges,,
2353 the low one ending at 0237, and the high one
2354 starting at ...040. */
2355 int c1_base = (c1 & ~0177) | 040;
2356 SET_RANGE_TABLE_WORK_AREA (range_table_work, c, c1);
2357 c1 = 0237;
2358 }
2359 else if (!SAME_CHARSET_P (c, c1))
b18215fc 2360 FREE_STACK_RETURN (REG_ERANGE);
e318085a 2361 }
25fe55af 2362 else
b18215fc
RS
2363 /* Range from C to C. */
2364 c1 = c;
2365
2366 /* Set the range ... */
2367 if (SINGLE_BYTE_CHAR_P (c))
2368 /* ... into bitmap. */
25fe55af 2369 {
b18215fc
RS
2370 unsigned this_char;
2371 int range_start = c, range_end = c1;
2372
2373 /* If the start is after the end, the range is empty. */
2374 if (range_start > range_end)
2375 {
2376 if (syntax & RE_NO_EMPTY_RANGES)
2377 FREE_STACK_RETURN (REG_ERANGE);
2378 /* Else, repeat the loop. */
2379 }
2380 else
2381 {
2382 for (this_char = range_start; this_char <= range_end;
2383 this_char++)
2384 SET_LIST_BIT (TRANSLATE (this_char));
e934739e 2385 }
25fe55af 2386 }
e318085a 2387 else
b18215fc
RS
2388 /* ... into range table. */
2389 SET_RANGE_TABLE_WORK_AREA (range_table_work, c, c1);
e318085a
RS
2390 }
2391
25fe55af
RS
2392 /* Discard any (non)matching list bytes that are all 0 at the
2393 end of the map. Decrease the map-length byte too. */
2394 while ((int) b[-1] > 0 && b[b[-1] - 1] == 0)
2395 b[-1]--;
2396 b += b[-1];
fa9a63c5 2397
b18215fc
RS
2398 /* Build real range table from work area. */
2399 if (RANGE_TABLE_WORK_USED (range_table_work))
2400 {
2401 int i;
2402 int used = RANGE_TABLE_WORK_USED (range_table_work);
fa9a63c5 2403
b18215fc 2404 /* Allocate space for COUNT + RANGE_TABLE. Needs two
25fe55af 2405 bytes for COUNT and three bytes for each character. */
b18215fc 2406 GET_BUFFER_SPACE (2 + used * 3);
fa9a63c5 2407
b18215fc
RS
2408 /* Indicate the existence of range table. */
2409 laststart[1] |= 0x80;
fa9a63c5 2410
b18215fc
RS
2411 STORE_NUMBER_AND_INCR (b, used / 2);
2412 for (i = 0; i < used; i++)
2413 STORE_CHARACTER_AND_INCR
2414 (b, RANGE_TABLE_WORK_ELT (range_table_work, i));
2415 }
25fe55af
RS
2416 }
2417 break;
fa9a63c5
RM
2418
2419
b18215fc 2420 case '(':
25fe55af
RS
2421 if (syntax & RE_NO_BK_PARENS)
2422 goto handle_open;
2423 else
2424 goto normal_char;
fa9a63c5
RM
2425
2426
25fe55af
RS
2427 case ')':
2428 if (syntax & RE_NO_BK_PARENS)
2429 goto handle_close;
2430 else
2431 goto normal_char;
e318085a
RS
2432
2433
25fe55af
RS
2434 case '\n':
2435 if (syntax & RE_NEWLINE_ALT)
2436 goto handle_alt;
2437 else
2438 goto normal_char;
e318085a
RS
2439
2440
b18215fc 2441 case '|':
25fe55af
RS
2442 if (syntax & RE_NO_BK_VBAR)
2443 goto handle_alt;
2444 else
2445 goto normal_char;
2446
2447
2448 case '{':
2449 if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES)
2450 goto handle_interval;
2451 else
2452 goto normal_char;
2453
2454
2455 case '\\':
2456 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2457
2458 /* Do not translate the character after the \, so that we can
2459 distinguish, e.g., \B from \b, even if we normally would
2460 translate, e.g., B to b. */
2461 PATFETCH_RAW (c);
2462
2463 switch (c)
2464 {
2465 case '(':
2466 if (syntax & RE_NO_BK_PARENS)
2467 goto normal_backslash;
2468
2469 handle_open:
2470 bufp->re_nsub++;
2471 regnum++;
2472
2473 if (COMPILE_STACK_FULL)
2474 {
2475 RETALLOC (compile_stack.stack, compile_stack.size << 1,
2476 compile_stack_elt_t);
2477 if (compile_stack.stack == NULL) return REG_ESPACE;
2478
2479 compile_stack.size <<= 1;
2480 }
2481
2482 /* These are the values to restore when we hit end of this
2483 group. They are all relative offsets, so that if the
2484 whole pattern moves because of realloc, they will still
2485 be valid. */
2486 COMPILE_STACK_TOP.begalt_offset = begalt - bufp->buffer;
2487 COMPILE_STACK_TOP.fixup_alt_jump
2488 = fixup_alt_jump ? fixup_alt_jump - bufp->buffer + 1 : 0;
2489 COMPILE_STACK_TOP.laststart_offset = b - bufp->buffer;
2490 COMPILE_STACK_TOP.regnum = regnum;
2491
2492 /* We will eventually replace the 0 with the number of
2493 groups inner to this one. But do not push a
2494 start_memory for groups beyond the last one we can
2495 represent in the compiled pattern. */
2496 if (regnum <= MAX_REGNUM)
2497 {
2498 COMPILE_STACK_TOP.inner_group_offset = b - bufp->buffer + 2;
2499 BUF_PUSH_3 (start_memory, regnum, 0);
2500 }
2501
2502 compile_stack.avail++;
2503
2504 fixup_alt_jump = 0;
2505 laststart = 0;
2506 begalt = b;
b18215fc
RS
2507 /* If we've reached MAX_REGNUM groups, then this open
2508 won't actually generate any code, so we'll have to
2509 clear pending_exact explicitly. */
2510 pending_exact = 0;
25fe55af
RS
2511 break;
2512
2513
2514 case ')':
2515 if (syntax & RE_NO_BK_PARENS) goto normal_backslash;
2516
2517 if (COMPILE_STACK_EMPTY)
2518 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
2519 goto normal_backslash;
2520 else
2521 FREE_STACK_RETURN (REG_ERPAREN);
2522
2523 handle_close:
2524 if (fixup_alt_jump)
2525 { /* Push a dummy failure point at the end of the
2526 alternative for a possible future
2527 `pop_failure_jump' to pop. See comments at
2528 `push_dummy_failure' in `re_match_2'. */
2529 BUF_PUSH (push_dummy_failure);
2530
2531 /* We allocated space for this jump when we assigned
2532 to `fixup_alt_jump', in the `handle_alt' case below. */
2533 STORE_JUMP (jump_past_alt, fixup_alt_jump, b - 1);
2534 }
2535
2536 /* See similar code for backslashed left paren above. */
2537 if (COMPILE_STACK_EMPTY)
2538 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
2539 goto normal_char;
2540 else
2541 FREE_STACK_RETURN (REG_ERPAREN);
2542
2543 /* Since we just checked for an empty stack above, this
2544 ``can't happen''. */
2545 assert (compile_stack.avail != 0);
2546 {
2547 /* We don't just want to restore into `regnum', because
2548 later groups should continue to be numbered higher,
2549 as in `(ab)c(de)' -- the second group is #2. */
2550 regnum_t this_group_regnum;
2551
2552 compile_stack.avail--;
2553 begalt = bufp->buffer + COMPILE_STACK_TOP.begalt_offset;
2554 fixup_alt_jump
2555 = COMPILE_STACK_TOP.fixup_alt_jump
2556 ? bufp->buffer + COMPILE_STACK_TOP.fixup_alt_jump - 1
2557 : 0;
2558 laststart = bufp->buffer + COMPILE_STACK_TOP.laststart_offset;
2559 this_group_regnum = COMPILE_STACK_TOP.regnum;
b18215fc
RS
2560 /* If we've reached MAX_REGNUM groups, then this open
2561 won't actually generate any code, so we'll have to
2562 clear pending_exact explicitly. */
2563 pending_exact = 0;
e318085a 2564
25fe55af
RS
2565 /* We're at the end of the group, so now we know how many
2566 groups were inside this one. */
2567 if (this_group_regnum <= MAX_REGNUM)
2568 {
2569 unsigned char *inner_group_loc
2570 = bufp->buffer + COMPILE_STACK_TOP.inner_group_offset;
2571
2572 *inner_group_loc = regnum - this_group_regnum;
2573 BUF_PUSH_3 (stop_memory, this_group_regnum,
2574 regnum - this_group_regnum);
2575 }
2576 }
2577 break;
2578
2579
2580 case '|': /* `\|'. */
2581 if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR)
2582 goto normal_backslash;
2583 handle_alt:
2584 if (syntax & RE_LIMITED_OPS)
2585 goto normal_char;
2586
2587 /* Insert before the previous alternative a jump which
2588 jumps to this alternative if the former fails. */
2589 GET_BUFFER_SPACE (3);
2590 INSERT_JUMP (on_failure_jump, begalt, b + 6);
2591 pending_exact = 0;
2592 b += 3;
2593
2594 /* The alternative before this one has a jump after it
2595 which gets executed if it gets matched. Adjust that
2596 jump so it will jump to this alternative's analogous
2597 jump (put in below, which in turn will jump to the next
2598 (if any) alternative's such jump, etc.). The last such
2599 jump jumps to the correct final destination. A picture:
2600 _____ _____
2601 | | | |
2602 | v | v
2603 a | b | c
2604
2605 If we are at `b', then fixup_alt_jump right now points to a
2606 three-byte space after `a'. We'll put in the jump, set
2607 fixup_alt_jump to right after `b', and leave behind three
2608 bytes which we'll fill in when we get to after `c'. */
2609
2610 if (fixup_alt_jump)
2611 STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
2612
2613 /* Mark and leave space for a jump after this alternative,
2614 to be filled in later either by next alternative or
2615 when know we're at the end of a series of alternatives. */
2616 fixup_alt_jump = b;
2617 GET_BUFFER_SPACE (3);
2618 b += 3;
2619
2620 laststart = 0;
2621 begalt = b;
2622 break;
2623
2624
2625 case '{':
2626 /* If \{ is a literal. */
2627 if (!(syntax & RE_INTERVALS)
2628 /* If we're at `\{' and it's not the open-interval
2629 operator. */
2630 || ((syntax & RE_INTERVALS) && (syntax & RE_NO_BK_BRACES))
2631 || (p - 2 == pattern && p == pend))
2632 goto normal_backslash;
2633
2634 handle_interval:
2635 {
2636 /* If got here, then the syntax allows intervals. */
2637
2638 /* At least (most) this many matches must be made. */
2639 int lower_bound = -1, upper_bound = -1;
2640
2641 beg_interval = p - 1;
2642
2643 if (p == pend)
2644 {
2645 if (syntax & RE_NO_BK_BRACES)
2646 goto unfetch_interval;
2647 else
2648 FREE_STACK_RETURN (REG_EBRACE);
2649 }
2650
2651 GET_UNSIGNED_NUMBER (lower_bound);
2652
2653 if (c == ',')
2654 {
2655 GET_UNSIGNED_NUMBER (upper_bound);
2656 if (upper_bound < 0) upper_bound = RE_DUP_MAX;
2657 }
2658 else
2659 /* Interval such as `{1}' => match exactly once. */
2660 upper_bound = lower_bound;
2661
2662 if (lower_bound < 0 || upper_bound > RE_DUP_MAX
2663 || lower_bound > upper_bound)
2664 {
2665 if (syntax & RE_NO_BK_BRACES)
2666 goto unfetch_interval;
2667 else
2668 FREE_STACK_RETURN (REG_BADBR);
2669 }
2670
2671 if (!(syntax & RE_NO_BK_BRACES))
2672 {
2673 if (c != '\\') FREE_STACK_RETURN (REG_EBRACE);
2674
2675 PATFETCH (c);
2676 }
2677
2678 if (c != '}')
2679 {
2680 if (syntax & RE_NO_BK_BRACES)
2681 goto unfetch_interval;
2682 else
2683 FREE_STACK_RETURN (REG_BADBR);
2684 }
2685
2686 /* We just parsed a valid interval. */
2687
2688 /* If it's invalid to have no preceding re. */
2689 if (!laststart)
2690 {
2691 if (syntax & RE_CONTEXT_INVALID_OPS)
2692 FREE_STACK_RETURN (REG_BADRPT);
2693 else if (syntax & RE_CONTEXT_INDEP_OPS)
2694 laststart = b;
2695 else
2696 goto unfetch_interval;
2697 }
2698
2699 /* If the upper bound is zero, don't want to succeed at
2700 all; jump from `laststart' to `b + 3', which will be
2701 the end of the buffer after we insert the jump. */
2702 if (upper_bound == 0)
2703 {
2704 GET_BUFFER_SPACE (3);
2705 INSERT_JUMP (jump, laststart, b + 3);
2706 b += 3;
2707 }
2708
2709 /* Otherwise, we have a nontrivial interval. When
2710 we're all done, the pattern will look like:
2711 set_number_at <jump count> <upper bound>
2712 set_number_at <succeed_n count> <lower bound>
2713 succeed_n <after jump addr> <succeed_n count>
2714 <body of loop>
2715 jump_n <succeed_n addr> <jump count>
2716 (The upper bound and `jump_n' are omitted if
2717 `upper_bound' is 1, though.) */
2718 else
2719 { /* If the upper bound is > 1, we need to insert
2720 more at the end of the loop. */
2721 unsigned nbytes = 10 + (upper_bound > 1) * 10;
2722
2723 GET_BUFFER_SPACE (nbytes);
2724
2725 /* Initialize lower bound of the `succeed_n', even
2726 though it will be set during matching by its
2727 attendant `set_number_at' (inserted next),
2728 because `re_compile_fastmap' needs to know.
2729 Jump to the `jump_n' we might insert below. */
2730 INSERT_JUMP2 (succeed_n, laststart,
2731 b + 5 + (upper_bound > 1) * 5,
2732 lower_bound);
2733 b += 5;
2734
2735 /* Code to initialize the lower bound. Insert
2736 before the `succeed_n'. The `5' is the last two
2737 bytes of this `set_number_at', plus 3 bytes of
2738 the following `succeed_n'. */
2739 insert_op2 (set_number_at, laststart, 5, lower_bound, b);
2740 b += 5;
2741
2742 if (upper_bound > 1)
2743 { /* More than one repetition is allowed, so
2744 append a backward jump to the `succeed_n'
2745 that starts this interval.
2746
2747 When we've reached this during matching,
2748 we'll have matched the interval once, so
2749 jump back only `upper_bound - 1' times. */
2750 STORE_JUMP2 (jump_n, b, laststart + 5,
2751 upper_bound - 1);
2752 b += 5;
2753
2754 /* The location we want to set is the second
2755 parameter of the `jump_n'; that is `b-2' as
2756 an absolute address. `laststart' will be
2757 the `set_number_at' we're about to insert;
2758 `laststart+3' the number to set, the source
2759 for the relative address. But we are
2760 inserting into the middle of the pattern --
2761 so everything is getting moved up by 5.
2762 Conclusion: (b - 2) - (laststart + 3) + 5,
2763 i.e., b - laststart.
2764
2765 We insert this at the beginning of the loop
2766 so that if we fail during matching, we'll
2767 reinitialize the bounds. */
2768 insert_op2 (set_number_at, laststart, b - laststart,
2769 upper_bound - 1, b);
2770 b += 5;
2771 }
2772 }
2773 pending_exact = 0;
2774 beg_interval = NULL;
2775 }
2776 break;
2777
2778 unfetch_interval:
2779 /* If an invalid interval, match the characters as literals. */
2780 assert (beg_interval);
2781 p = beg_interval;
2782 beg_interval = NULL;
2783
2784 /* normal_char and normal_backslash need `c'. */
2785 PATFETCH (c);
2786
2787 if (!(syntax & RE_NO_BK_BRACES))
2788 {
2789 if (p > pattern && p[-1] == '\\')
2790 goto normal_backslash;
2791 }
2792 goto normal_char;
e318085a 2793
b18215fc 2794#ifdef emacs
25fe55af
RS
2795 /* There is no way to specify the before_dot and after_dot
2796 operators. rms says this is ok. --karl */
2797 case '=':
2798 BUF_PUSH (at_dot);
2799 break;
2800
2801 case 's':
2802 laststart = b;
2803 PATFETCH (c);
2804 BUF_PUSH_2 (syntaxspec, syntax_spec_code[c]);
2805 break;
2806
2807 case 'S':
2808 laststart = b;
2809 PATFETCH (c);
2810 BUF_PUSH_2 (notsyntaxspec, syntax_spec_code[c]);
2811 break;
b18215fc
RS
2812
2813 case 'c':
2814 laststart = b;
2815 PATFETCH_RAW (c);
2816 BUF_PUSH_2 (categoryspec, c);
2817 break;
e318085a 2818
b18215fc
RS
2819 case 'C':
2820 laststart = b;
2821 PATFETCH_RAW (c);
2822 BUF_PUSH_2 (notcategoryspec, c);
2823 break;
2824#endif /* emacs */
e318085a 2825
e318085a 2826
25fe55af
RS
2827 case 'w':
2828 laststart = b;
2829 BUF_PUSH (wordchar);
2830 break;
e318085a 2831
e318085a 2832
25fe55af
RS
2833 case 'W':
2834 laststart = b;
2835 BUF_PUSH (notwordchar);
2836 break;
e318085a
RS
2837
2838
25fe55af
RS
2839 case '<':
2840 BUF_PUSH (wordbeg);
2841 break;
e318085a 2842
25fe55af
RS
2843 case '>':
2844 BUF_PUSH (wordend);
2845 break;
e318085a 2846
25fe55af
RS
2847 case 'b':
2848 BUF_PUSH (wordbound);
2849 break;
e318085a 2850
25fe55af
RS
2851 case 'B':
2852 BUF_PUSH (notwordbound);
2853 break;
fa9a63c5 2854
25fe55af
RS
2855 case '`':
2856 BUF_PUSH (begbuf);
2857 break;
e318085a 2858
25fe55af
RS
2859 case '\'':
2860 BUF_PUSH (endbuf);
2861 break;
e318085a 2862
25fe55af
RS
2863 case '1': case '2': case '3': case '4': case '5':
2864 case '6': case '7': case '8': case '9':
2865 if (syntax & RE_NO_BK_REFS)
2866 goto normal_char;
e318085a 2867
25fe55af 2868 c1 = c - '0';
e318085a 2869
25fe55af
RS
2870 if (c1 > regnum)
2871 FREE_STACK_RETURN (REG_ESUBREG);
e318085a 2872
25fe55af
RS
2873 /* Can't back reference to a subexpression if inside of it. */
2874 if (group_in_compile_stack (compile_stack, c1))
2875 goto normal_char;
e318085a 2876
25fe55af
RS
2877 laststart = b;
2878 BUF_PUSH_2 (duplicate, c1);
2879 break;
e318085a 2880
e318085a 2881
25fe55af
RS
2882 case '+':
2883 case '?':
2884 if (syntax & RE_BK_PLUS_QM)
2885 goto handle_plus;
2886 else
2887 goto normal_backslash;
2888
2889 default:
2890 normal_backslash:
2891 /* You might think it would be useful for \ to mean
2892 not to translate; but if we don't translate it
2893 it will never match anything. */
2894 c = TRANSLATE (c);
2895 goto normal_char;
2896 }
2897 break;
fa9a63c5
RM
2898
2899
2900 default:
25fe55af 2901 /* Expects the character in `c'. */
fa9a63c5 2902 normal_char:
b18215fc
RS
2903 p1 = p - 1; /* P1 points the head of C. */
2904#ifdef emacs
2905 if (bufp->multibyte)
3583e969
KH
2906 {
2907 c = STRING_CHAR (p1, pend - p1);
2908 c = TRANSLATE (c);
2909 /* Set P to the next character boundary. */
2910 p += MULTIBYTE_FORM_LENGTH (p1, pend - p1) - 1;
2911 }
b18215fc 2912#endif
fa9a63c5 2913 /* If no exactn currently being built. */
25fe55af 2914 if (!pending_exact
fa9a63c5 2915
25fe55af
RS
2916 /* If last exactn not at current position. */
2917 || pending_exact + *pending_exact + 1 != b
5e69f11e 2918
25fe55af 2919 /* We have only one byte following the exactn for the count. */
b18215fc 2920 || *pending_exact >= (1 << BYTEWIDTH) - (p - p1)
fa9a63c5 2921
25fe55af 2922 /* If followed by a repetition operator. */
9d99031f 2923 || (p != pend && (*p == '*' || *p == '^'))
fa9a63c5 2924 || ((syntax & RE_BK_PLUS_QM)
9d99031f
RS
2925 ? p + 1 < pend && *p == '\\' && (p[1] == '+' || p[1] == '?')
2926 : p != pend && (*p == '+' || *p == '?'))
fa9a63c5 2927 || ((syntax & RE_INTERVALS)
25fe55af 2928 && ((syntax & RE_NO_BK_BRACES)
9d99031f
RS
2929 ? p != pend && *p == '{'
2930 : p + 1 < pend && p[0] == '\\' && p[1] == '{')))
fa9a63c5
RM
2931 {
2932 /* Start building a new exactn. */
5e69f11e 2933
25fe55af 2934 laststart = b;
fa9a63c5
RM
2935
2936 BUF_PUSH_2 (exactn, 0);
2937 pending_exact = b - 1;
25fe55af 2938 }
5e69f11e 2939
3583e969
KH
2940#ifdef emacs
2941 if (! SINGLE_BYTE_CHAR_P (c))
2942 {
2943 unsigned char work[4], *str;
2944 int i = CHAR_STRING (c, work, str);
2945 int j;
2946 for (j = 0; j < i; j++)
2947 {
2948 BUF_PUSH (str[j]);
2949 (*pending_exact)++;
2950 }
2951 }
2952 else
2953#endif
b18215fc 2954 {
e934739e
RS
2955 BUF_PUSH (c);
2956 (*pending_exact)++;
b18215fc 2957 }
fa9a63c5 2958 break;
25fe55af 2959 } /* switch (c) */
fa9a63c5
RM
2960 } /* while p != pend */
2961
5e69f11e 2962
fa9a63c5 2963 /* Through the pattern now. */
5e69f11e 2964
fa9a63c5
RM
2965 if (fixup_alt_jump)
2966 STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
2967
5e69f11e 2968 if (!COMPILE_STACK_EMPTY)
fa9a63c5
RM
2969 FREE_STACK_RETURN (REG_EPAREN);
2970
2971 /* If we don't want backtracking, force success
2972 the first time we reach the end of the compiled pattern. */
2973 if (syntax & RE_NO_POSIX_BACKTRACKING)
2974 BUF_PUSH (succeed);
2975
2976 free (compile_stack.stack);
2977
2978 /* We have succeeded; set the length of the buffer. */
2979 bufp->used = b - bufp->buffer;
2980
2981#ifdef DEBUG
2982 if (debug)
2983 {
2984 DEBUG_PRINT1 ("\nCompiled pattern: \n");
2985 print_compiled_pattern (bufp);
2986 }
2987#endif /* DEBUG */
2988
2989#ifndef MATCH_MAY_ALLOCATE
2990 /* Initialize the failure stack to the largest possible stack. This
2991 isn't necessary unless we're trying to avoid calling alloca in
2992 the search and match routines. */
2993 {
2994 int num_regs = bufp->re_nsub + 1;
2995
320a2a73 2996 if (fail_stack.size < re_max_failures * TYPICAL_FAILURE_SIZE)
fa9a63c5 2997 {
a26f4ccd 2998 fail_stack.size = re_max_failures * TYPICAL_FAILURE_SIZE;
fa9a63c5
RM
2999
3000#ifdef emacs
3001 if (! fail_stack.stack)
3002 fail_stack.stack
5e69f11e 3003 = (fail_stack_elt_t *) xmalloc (fail_stack.size
fa9a63c5
RM
3004 * sizeof (fail_stack_elt_t));
3005 else
3006 fail_stack.stack
3007 = (fail_stack_elt_t *) xrealloc (fail_stack.stack,
3008 (fail_stack.size
3009 * sizeof (fail_stack_elt_t)));
3010#else /* not emacs */
3011 if (! fail_stack.stack)
3012 fail_stack.stack
5e69f11e 3013 = (fail_stack_elt_t *) malloc (fail_stack.size
fa9a63c5
RM
3014 * sizeof (fail_stack_elt_t));
3015 else
3016 fail_stack.stack
3017 = (fail_stack_elt_t *) realloc (fail_stack.stack,
3018 (fail_stack.size
3019 * sizeof (fail_stack_elt_t)));
3020#endif /* not emacs */
3021 }
3022
3023 regex_grow_registers (num_regs);
3024 }
3025#endif /* not MATCH_MAY_ALLOCATE */
3026
3027 return REG_NOERROR;
3028} /* regex_compile */
3029\f
3030/* Subroutines for `regex_compile'. */
3031
25fe55af 3032/* Store OP at LOC followed by two-byte integer parameter ARG. */
fa9a63c5
RM
3033
3034static void
3035store_op1 (op, loc, arg)
3036 re_opcode_t op;
3037 unsigned char *loc;
3038 int arg;
3039{
3040 *loc = (unsigned char) op;
3041 STORE_NUMBER (loc + 1, arg);
3042}
3043
3044
3045/* Like `store_op1', but for two two-byte parameters ARG1 and ARG2. */
3046
3047static void
3048store_op2 (op, loc, arg1, arg2)
3049 re_opcode_t op;
3050 unsigned char *loc;
3051 int arg1, arg2;
3052{
3053 *loc = (unsigned char) op;
3054 STORE_NUMBER (loc + 1, arg1);
3055 STORE_NUMBER (loc + 3, arg2);
3056}
3057
3058
3059/* Copy the bytes from LOC to END to open up three bytes of space at LOC
3060 for OP followed by two-byte integer parameter ARG. */
3061
3062static void
3063insert_op1 (op, loc, arg, end)
3064 re_opcode_t op;
3065 unsigned char *loc;
3066 int arg;
5e69f11e 3067 unsigned char *end;
fa9a63c5
RM
3068{
3069 register unsigned char *pfrom = end;
3070 register unsigned char *pto = end + 3;
3071
3072 while (pfrom != loc)
3073 *--pto = *--pfrom;
5e69f11e 3074
fa9a63c5
RM
3075 store_op1 (op, loc, arg);
3076}
3077
3078
3079/* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2. */
3080
3081static void
3082insert_op2 (op, loc, arg1, arg2, end)
3083 re_opcode_t op;
3084 unsigned char *loc;
3085 int arg1, arg2;
5e69f11e 3086 unsigned char *end;
fa9a63c5
RM
3087{
3088 register unsigned char *pfrom = end;
3089 register unsigned char *pto = end + 5;
3090
3091 while (pfrom != loc)
3092 *--pto = *--pfrom;
5e69f11e 3093
fa9a63c5
RM
3094 store_op2 (op, loc, arg1, arg2);
3095}
3096
3097
3098/* P points to just after a ^ in PATTERN. Return true if that ^ comes
3099 after an alternative or a begin-subexpression. We assume there is at
3100 least one character before the ^. */
3101
3102static boolean
3103at_begline_loc_p (pattern, p, syntax)
3104 const char *pattern, *p;
3105 reg_syntax_t syntax;
3106{
3107 const char *prev = p - 2;
3108 boolean prev_prev_backslash = prev > pattern && prev[-1] == '\\';
5e69f11e 3109
fa9a63c5
RM
3110 return
3111 /* After a subexpression? */
3112 (*prev == '(' && (syntax & RE_NO_BK_PARENS || prev_prev_backslash))
25fe55af 3113 /* After an alternative? */
fa9a63c5
RM
3114 || (*prev == '|' && (syntax & RE_NO_BK_VBAR || prev_prev_backslash));
3115}
3116
3117
3118/* The dual of at_begline_loc_p. This one is for $. We assume there is
3119 at least one character after the $, i.e., `P < PEND'. */
3120
3121static boolean
3122at_endline_loc_p (p, pend, syntax)
3123 const char *p, *pend;
3124 int syntax;
3125{
3126 const char *next = p;
3127 boolean next_backslash = *next == '\\';
5bb52971 3128 const char *next_next = p + 1 < pend ? p + 1 : 0;
5e69f11e 3129
fa9a63c5
RM
3130 return
3131 /* Before a subexpression? */
3132 (syntax & RE_NO_BK_PARENS ? *next == ')'
25fe55af 3133 : next_backslash && next_next && *next_next == ')')
fa9a63c5
RM
3134 /* Before an alternative? */
3135 || (syntax & RE_NO_BK_VBAR ? *next == '|'
25fe55af 3136 : next_backslash && next_next && *next_next == '|');
fa9a63c5
RM
3137}
3138
3139
5e69f11e 3140/* Returns true if REGNUM is in one of COMPILE_STACK's elements and
fa9a63c5
RM
3141 false if it's not. */
3142
3143static boolean
3144group_in_compile_stack (compile_stack, regnum)
3145 compile_stack_type compile_stack;
3146 regnum_t regnum;
3147{
3148 int this_element;
3149
5e69f11e
RM
3150 for (this_element = compile_stack.avail - 1;
3151 this_element >= 0;
fa9a63c5
RM
3152 this_element--)
3153 if (compile_stack.stack[this_element].regnum == regnum)
3154 return true;
3155
3156 return false;
3157}
fa9a63c5
RM
3158\f
3159/* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
3160 BUFP. A fastmap records which of the (1 << BYTEWIDTH) possible
3161 characters can start a string that matches the pattern. This fastmap
3162 is used by re_search to skip quickly over impossible starting points.
3163
3164 The caller must supply the address of a (1 << BYTEWIDTH)-byte data
3165 area as BUFP->fastmap.
5e69f11e 3166
fa9a63c5
RM
3167 We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
3168 the pattern buffer.
3169
3170 Returns 0 if we succeed, -2 if an internal error. */
3171
3172int
3173re_compile_fastmap (bufp)
3174 struct re_pattern_buffer *bufp;
3175{
b18215fc 3176 int i, j, k;
fa9a63c5
RM
3177#ifdef MATCH_MAY_ALLOCATE
3178 fail_stack_type fail_stack;
3179#endif
3180#ifndef REGEX_MALLOC
3181 char *destination;
3182#endif
3183 /* We don't push any register information onto the failure stack. */
3184 unsigned num_regs = 0;
5e69f11e 3185
fa9a63c5
RM
3186 register char *fastmap = bufp->fastmap;
3187 unsigned char *pattern = bufp->buffer;
3188 unsigned long size = bufp->used;
3189 unsigned char *p = pattern;
3190 register unsigned char *pend = pattern + size;
3191
3192 /* This holds the pointer to the failure stack, when
3193 it is allocated relocatably. */
3194 fail_stack_elt_t *failure_stack_ptr;
3195
3196 /* Assume that each path through the pattern can be null until
25fe55af 3197 proven otherwise. We set this false at the bottom of switch
fa9a63c5
RM
3198 statement, to which we get only if a particular path doesn't
3199 match the empty string. */
3200 boolean path_can_be_null = true;
3201
3202 /* We aren't doing a `succeed_n' to begin with. */
3203 boolean succeed_n_p = false;
3204
b18215fc 3205 /* If all elements for base leading-codes in fastmap is set, this
25fe55af 3206 flag is set true. */
b18215fc
RS
3207 boolean match_any_multibyte_characters = false;
3208
3209 /* Maximum code of simple (single byte) character. */
3210 int simple_char_max;
3211
fa9a63c5 3212 assert (fastmap != NULL && p != NULL);
5e69f11e 3213
fa9a63c5 3214 INIT_FAIL_STACK ();
25fe55af 3215 bzero (fastmap, 1 << BYTEWIDTH); /* Assume nothing's valid. */
fa9a63c5
RM
3216 bufp->fastmap_accurate = 1; /* It will be when we're done. */
3217 bufp->can_be_null = 0;
5e69f11e 3218
fa9a63c5
RM
3219 while (1)
3220 {
3221 if (p == pend || *p == succeed)
3222 {
3223 /* We have reached the (effective) end of pattern. */
3224 if (!FAIL_STACK_EMPTY ())
3225 {
3226 bufp->can_be_null |= path_can_be_null;
3227
3228 /* Reset for next path. */
3229 path_can_be_null = true;
3230
3231 p = fail_stack.stack[--fail_stack.avail].pointer;
3232
3233 continue;
3234 }
3235 else
3236 break;
3237 }
3238
25fe55af 3239 /* We should never be about to go beyond the end of the pattern. */
fa9a63c5 3240 assert (p < pend);
5e69f11e 3241
fa9a63c5
RM
3242 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
3243 {
3244
25fe55af
RS
3245 /* I guess the idea here is to simply not bother with a fastmap
3246 if a backreference is used, since it's too hard to figure out
3247 the fastmap for the corresponding group. Setting
3248 `can_be_null' stops `re_search_2' from using the fastmap, so
3249 that is all we do. */
fa9a63c5
RM
3250 case duplicate:
3251 bufp->can_be_null = 1;
25fe55af 3252 goto done;
fa9a63c5
RM
3253
3254
3255 /* Following are the cases which match a character. These end
25fe55af 3256 with `break'. */
fa9a63c5
RM
3257
3258 case exactn:
25fe55af 3259 fastmap[p[1]] = 1;
fa9a63c5
RM
3260 break;
3261
3262
b18215fc 3263#ifndef emacs
25fe55af
RS
3264 case charset:
3265 for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
fa9a63c5 3266 if (p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH)))
25fe55af 3267 fastmap[j] = 1;
fa9a63c5
RM
3268 break;
3269
3270
3271 case charset_not:
3272 /* Chars beyond end of map must be allowed. */
3273 for (j = *p * BYTEWIDTH; j < (1 << BYTEWIDTH); j++)
25fe55af 3274 fastmap[j] = 1;
fa9a63c5
RM
3275
3276 for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
3277 if (!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))))
25fe55af
RS
3278 fastmap[j] = 1;
3279 break;
fa9a63c5
RM
3280
3281
3282 case wordchar:
3283 for (j = 0; j < (1 << BYTEWIDTH); j++)
3284 if (SYNTAX (j) == Sword)
3285 fastmap[j] = 1;
3286 break;
3287
3288
3289 case notwordchar:
3290 for (j = 0; j < (1 << BYTEWIDTH); j++)
3291 if (SYNTAX (j) != Sword)
3292 fastmap[j] = 1;
3293 break;
b18215fc
RS
3294#else /* emacs */
3295 case charset:
3296 for (j = CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH - 1, p++;
3297 j >= 0; j--)
3298 if (p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH)))
3299 fastmap[j] = 1;
3300
3301 if (CHARSET_RANGE_TABLE_EXISTS_P (&p[-2])
3302 && match_any_multibyte_characters == false)
3303 {
3304 /* Set fastmap[I] 1 where I is a base leading code of each
3305 multibyte character in the range table. */
3306 int c, count;
3307
3308 /* Make P points the range table. */
3309 p += CHARSET_BITMAP_SIZE (&p[-2]);
3310
3311 /* Extract the number of ranges in range table into
25fe55af 3312 COUNT. */
b18215fc
RS
3313 EXTRACT_NUMBER_AND_INCR (count, p);
3314 for (; count > 0; count--, p += 2 * 3) /* XXX */
3315 {
3316 /* Extract the start of each range. */
3317 EXTRACT_CHARACTER (c, p);
3318 j = CHAR_CHARSET (c);
3319 fastmap[CHARSET_LEADING_CODE_BASE (j)] = 1;
3320 }
3321 }
3322 break;
fa9a63c5
RM
3323
3324
b18215fc 3325 case charset_not:
ba5c004d
RS
3326 /* Chars beyond end of bitmap are possible matches.
3327 All the single-byte codes can occur in multibyte buffers.
3328 So any that are not listed in the charset
3329 are possible matches, even in multibyte buffers. */
3330 simple_char_max = (1 << BYTEWIDTH);
b18215fc
RS
3331 for (j = CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH;
3332 j < simple_char_max; j++)
3333 fastmap[j] = 1;
3334
3335 for (j = CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH - 1, p++;
3336 j >= 0; j--)
3337 if (!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))))
3338 fastmap[j] = 1;
3339
3340 if (bufp->multibyte)
3341 /* Any character set can possibly contain a character
3342 which doesn't match the specified set of characters. */
3343 {
3344 set_fastmap_for_multibyte_characters:
3345 if (match_any_multibyte_characters == false)
3346 {
3347 for (j = 0x80; j < 0xA0; j++) /* XXX */
3348 if (BASE_LEADING_CODE_P (j))
3349 fastmap[j] = 1;
3350 match_any_multibyte_characters = true;
3351 }
3352 }
3353 break;
3354
3355
3356 case wordchar:
ba5c004d
RS
3357 /* All the single-byte codes can occur in multibyte buffers,
3358 and they may have word syntax. So do consider them. */
3359 simple_char_max = (1 << BYTEWIDTH);
b18215fc
RS
3360 for (j = 0; j < simple_char_max; j++)
3361 if (SYNTAX (j) == Sword)
3362 fastmap[j] = 1;
3363
3364 if (bufp->multibyte)
3365 /* Any character set can possibly contain a character
25fe55af 3366 whose syntax is `Sword'. */
b18215fc
RS
3367 goto set_fastmap_for_multibyte_characters;
3368 break;
3369
3370
3371 case notwordchar:
ba5c004d
RS
3372 /* All the single-byte codes can occur in multibyte buffers,
3373 and they may not have word syntax. So do consider them. */
3374 simple_char_max = (1 << BYTEWIDTH);
b18215fc
RS
3375 for (j = 0; j < simple_char_max; j++)
3376 if (SYNTAX (j) != Sword)
3377 fastmap[j] = 1;
3378
3379 if (bufp->multibyte)
3380 /* Any character set can possibly contain a character
3381 whose syntax is not `Sword'. */
3382 goto set_fastmap_for_multibyte_characters;
3383 break;
3384#endif
3385
25fe55af 3386 case anychar:
fa9a63c5
RM
3387 {
3388 int fastmap_newline = fastmap['\n'];
3389
d18b62f2
KH
3390 /* `.' matches anything, except perhaps newline.
3391 Even in a multibyte buffer, it should match any
3392 conceivable byte value for the fastmap. */
b18215fc 3393 if (bufp->multibyte)
d18b62f2 3394 match_any_multibyte_characters = true;
b18215fc 3395
d18b62f2 3396 simple_char_max = (1 << BYTEWIDTH);
b18215fc 3397 for (j = 0; j < simple_char_max; j++)
fa9a63c5
RM
3398 fastmap[j] = 1;
3399
3400 /* ... except perhaps newline. */
3401 if (!(bufp->syntax & RE_DOT_NEWLINE))
3402 fastmap['\n'] = fastmap_newline;
3403
3404 /* Return if we have already set `can_be_null'; if we have,
25fe55af 3405 then the fastmap is irrelevant. Something's wrong here. */
fa9a63c5
RM
3406 else if (bufp->can_be_null)
3407 goto done;
3408
3409 /* Otherwise, have to check alternative paths. */
3410 break;
3411 }
3412
3413#ifdef emacs
b18215fc
RS
3414 case wordbound:
3415 case notwordbound:
3416 case wordbeg:
3417 case wordend:
3418 case notsyntaxspec:
25fe55af 3419 case syntaxspec:
b18215fc
RS
3420 /* This match depends on text properties. These end with
3421 aborting optimizations. */
3422 bufp->can_be_null = 1;
25fe55af 3423 goto done;
b18215fc 3424#if 0
fa9a63c5 3425 k = *p++;
b18215fc
RS
3426 simple_char_max = bufp->multibyte ? 0x80 : (1 << BYTEWIDTH);
3427 for (j = 0; j < simple_char_max; j++)
fa9a63c5
RM
3428 if (SYNTAX (j) == (enum syntaxcode) k)
3429 fastmap[j] = 1;
fa9a63c5 3430
b18215fc
RS
3431 if (bufp->multibyte)
3432 /* Any character set can possibly contain a character
3433 whose syntax is K. */
3434 goto set_fastmap_for_multibyte_characters;
3435 break;
fa9a63c5
RM
3436
3437 case notsyntaxspec:
3438 k = *p++;
b18215fc
RS
3439 simple_char_max = bufp->multibyte ? 0x80 : (1 << BYTEWIDTH);
3440 for (j = 0; j < simple_char_max; j++)
fa9a63c5
RM
3441 if (SYNTAX (j) != (enum syntaxcode) k)
3442 fastmap[j] = 1;
b18215fc
RS
3443
3444 if (bufp->multibyte)
3445 /* Any character set can possibly contain a character
3446 whose syntax is not K. */
3447 goto set_fastmap_for_multibyte_characters;
3448 break;
3449#endif
3450
3451
3452 case categoryspec:
3453 k = *p++;
ba5c004d 3454 simple_char_max = (1 << BYTEWIDTH);
b18215fc
RS
3455 for (j = 0; j < simple_char_max; j++)
3456 if (CHAR_HAS_CATEGORY (j, k))
3457 fastmap[j] = 1;
3458
3459 if (bufp->multibyte)
3460 /* Any character set can possibly contain a character
3461 whose category is K. */
3462 goto set_fastmap_for_multibyte_characters;
fa9a63c5
RM
3463 break;
3464
3465
b18215fc
RS
3466 case notcategoryspec:
3467 k = *p++;
ba5c004d 3468 simple_char_max = (1 << BYTEWIDTH);
b18215fc
RS
3469 for (j = 0; j < simple_char_max; j++)
3470 if (!CHAR_HAS_CATEGORY (j, k))
3471 fastmap[j] = 1;
3472
3473 if (bufp->multibyte)
3474 /* Any character set can possibly contain a character
25fe55af 3475 whose category is not K. */
b18215fc
RS
3476 goto set_fastmap_for_multibyte_characters;
3477 break;
3478
fa9a63c5 3479 /* All cases after this match the empty string. These end with
25fe55af 3480 `continue'. */
fa9a63c5
RM
3481
3482
3483 case before_dot:
3484 case at_dot:
3485 case after_dot:
25fe55af 3486 continue;
ae4788a8 3487#endif /* emacs */
fa9a63c5
RM
3488
3489
25fe55af
RS
3490 case no_op:
3491 case begline:
3492 case endline:
fa9a63c5
RM
3493 case begbuf:
3494 case endbuf:
b18215fc 3495#ifndef emacs
fa9a63c5
RM
3496 case wordbound:
3497 case notwordbound:
3498 case wordbeg:
3499 case wordend:
25fe55af
RS
3500#endif
3501 case push_dummy_failure:
3502 continue;
fa9a63c5
RM
3503
3504
3505 case jump_n:
25fe55af 3506 case pop_failure_jump:
fa9a63c5
RM
3507 case maybe_pop_jump:
3508 case jump:
25fe55af 3509 case jump_past_alt:
fa9a63c5 3510 case dummy_failure_jump:
25fe55af 3511 EXTRACT_NUMBER_AND_INCR (j, p);
5e69f11e 3512 p += j;
fa9a63c5
RM
3513 if (j > 0)
3514 continue;
5e69f11e 3515
25fe55af
RS
3516 /* Jump backward implies we just went through the body of a
3517 loop and matched nothing. Opcode jumped to should be
3518 `on_failure_jump' or `succeed_n'. Just treat it like an
3519 ordinary jump. For a * loop, it has pushed its failure
3520 point already; if so, discard that as redundant. */
3521 if ((re_opcode_t) *p != on_failure_jump
fa9a63c5
RM
3522 && (re_opcode_t) *p != succeed_n)
3523 continue;
3524
25fe55af
RS
3525 p++;
3526 EXTRACT_NUMBER_AND_INCR (j, p);
3527 p += j;
5e69f11e 3528
25fe55af
RS
3529 /* If what's on the stack is where we are now, pop it. */
3530 if (!FAIL_STACK_EMPTY ()
fa9a63c5 3531 && fail_stack.stack[fail_stack.avail - 1].pointer == p)
25fe55af 3532 fail_stack.avail--;
fa9a63c5 3533
25fe55af 3534 continue;
fa9a63c5
RM
3535
3536
25fe55af
RS
3537 case on_failure_jump:
3538 case on_failure_keep_string_jump:
fa9a63c5 3539 handle_on_failure_jump:
25fe55af
RS
3540 EXTRACT_NUMBER_AND_INCR (j, p);
3541
3542 /* For some patterns, e.g., `(a?)?', `p+j' here points to the
3543 end of the pattern. We don't want to push such a point,
3544 since when we restore it above, entering the switch will
3545 increment `p' past the end of the pattern. We don't need
3546 to push such a point since we obviously won't find any more
3547 fastmap entries beyond `pend'. Such a pattern can match
3548 the null string, though. */
3549 if (p + j < pend)
3550 {
3551 if (!PUSH_PATTERN_OP (p + j, fail_stack))
fa9a63c5
RM
3552 {
3553 RESET_FAIL_STACK ();
3554 return -2;
3555 }
fa9a63c5 3556 }
25fe55af
RS
3557 else
3558 bufp->can_be_null = 1;
fa9a63c5 3559
25fe55af
RS
3560 if (succeed_n_p)
3561 {
3562 EXTRACT_NUMBER_AND_INCR (k, p); /* Skip the n. */
3563 succeed_n_p = false;
3564 }
3565
3566 continue;
fa9a63c5
RM
3567
3568
3569 case succeed_n:
25fe55af
RS
3570 /* Get to the number of times to succeed. */
3571 p += 2;
fa9a63c5 3572
25fe55af
RS
3573 /* Increment p past the n for when k != 0. */
3574 EXTRACT_NUMBER_AND_INCR (k, p);
3575 if (k == 0)
fa9a63c5 3576 {
25fe55af
RS
3577 p -= 4;
3578 succeed_n_p = true; /* Spaghetti code alert. */
3579 goto handle_on_failure_jump;
3580 }
3581 continue;
fa9a63c5
RM
3582
3583
3584 case set_number_at:
25fe55af
RS
3585 p += 4;
3586 continue;
fa9a63c5
RM
3587
3588
3589 case start_memory:
25fe55af 3590 case stop_memory:
fa9a63c5
RM
3591 p += 2;
3592 continue;
3593
3594
3595 default:
25fe55af
RS
3596 abort (); /* We have listed all the cases. */
3597 } /* switch *p++ */
fa9a63c5
RM
3598
3599 /* Getting here means we have found the possible starting
25fe55af
RS
3600 characters for one path of the pattern -- and that the empty
3601 string does not match. We need not follow this path further.
3602 Instead, look at the next alternative (remembered on the
3603 stack), or quit if no more. The test at the top of the loop
3604 does these things. */
fa9a63c5
RM
3605 path_can_be_null = false;
3606 p = pend;
3607 } /* while p */
3608
3609 /* Set `can_be_null' for the last path (also the first path, if the
25fe55af 3610 pattern is empty). */
fa9a63c5
RM
3611 bufp->can_be_null |= path_can_be_null;
3612
3613 done:
3614 RESET_FAIL_STACK ();
3615 return 0;
3616} /* re_compile_fastmap */
3617\f
3618/* Set REGS to hold NUM_REGS registers, storing them in STARTS and
3619 ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use
3620 this memory for recording register information. STARTS and ENDS
3621 must be allocated using the malloc library routine, and must each
3622 be at least NUM_REGS * sizeof (regoff_t) bytes long.
3623
3624 If NUM_REGS == 0, then subsequent matches should allocate their own
3625 register data.
3626
3627 Unless this function is called, the first search or match using
3628 PATTERN_BUFFER will allocate its own register data, without
3629 freeing the old data. */
3630
3631void
3632re_set_registers (bufp, regs, num_regs, starts, ends)
3633 struct re_pattern_buffer *bufp;
3634 struct re_registers *regs;
3635 unsigned num_regs;
3636 regoff_t *starts, *ends;
3637{
3638 if (num_regs)
3639 {
3640 bufp->regs_allocated = REGS_REALLOCATE;
3641 regs->num_regs = num_regs;
3642 regs->start = starts;
3643 regs->end = ends;
3644 }
3645 else
3646 {
3647 bufp->regs_allocated = REGS_UNALLOCATED;
3648 regs->num_regs = 0;
3649 regs->start = regs->end = (regoff_t *) 0;
3650 }
3651}
3652\f
25fe55af 3653/* Searching routines. */
fa9a63c5
RM
3654
3655/* Like re_search_2, below, but only one string is specified, and
3656 doesn't let you say where to stop matching. */
3657
3658int
3659re_search (bufp, string, size, startpos, range, regs)
3660 struct re_pattern_buffer *bufp;
3661 const char *string;
3662 int size, startpos, range;
3663 struct re_registers *regs;
3664{
5e69f11e 3665 return re_search_2 (bufp, NULL, 0, string, size, startpos, range,
fa9a63c5
RM
3666 regs, size);
3667}
3668
b18215fc
RS
3669/* End address of virtual concatenation of string. */
3670#define STOP_ADDR_VSTRING(P) \
3671 (((P) >= size1 ? string2 + size2 : string1 + size1))
3672
3673/* Address of POS in the concatenation of virtual string. */
3674#define POS_ADDR_VSTRING(POS) \
3675 (((POS) >= size1 ? string2 - size1 : string1) + (POS))
fa9a63c5
RM
3676
3677/* Using the compiled pattern in BUFP->buffer, first tries to match the
3678 virtual concatenation of STRING1 and STRING2, starting first at index
3679 STARTPOS, then at STARTPOS + 1, and so on.
5e69f11e 3680
fa9a63c5 3681 STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
5e69f11e 3682
fa9a63c5
RM
3683 RANGE is how far to scan while trying to match. RANGE = 0 means try
3684 only at STARTPOS; in general, the last start tried is STARTPOS +
3685 RANGE.
5e69f11e 3686
fa9a63c5
RM
3687 In REGS, return the indices of the virtual concatenation of STRING1
3688 and STRING2 that matched the entire BUFP->buffer and its contained
3689 subexpressions.
5e69f11e 3690
fa9a63c5
RM
3691 Do not consider matching one past the index STOP in the virtual
3692 concatenation of STRING1 and STRING2.
3693
3694 We return either the position in the strings at which the match was
3695 found, -1 if no match, or -2 if error (such as failure
3696 stack overflow). */
3697
3698int
3699re_search_2 (bufp, string1, size1, string2, size2, startpos, range, regs, stop)
3700 struct re_pattern_buffer *bufp;
3701 const char *string1, *string2;
3702 int size1, size2;
3703 int startpos;
3704 int range;
3705 struct re_registers *regs;
3706 int stop;
3707{
3708 int val;
3709 register char *fastmap = bufp->fastmap;
6676cb1c 3710 register RE_TRANSLATE_TYPE translate = bufp->translate;
fa9a63c5
RM
3711 int total_size = size1 + size2;
3712 int endpos = startpos + range;
c8499ba5 3713 int anchored_start = 0;
fa9a63c5 3714
25fe55af 3715 /* Nonzero if we have to concern multibyte character. */
b18215fc
RS
3716 int multibyte = bufp->multibyte;
3717
fa9a63c5
RM
3718 /* Check for out-of-range STARTPOS. */
3719 if (startpos < 0 || startpos > total_size)
3720 return -1;
5e69f11e 3721
fa9a63c5 3722 /* Fix up RANGE if it might eventually take us outside
34597fa9 3723 the virtual concatenation of STRING1 and STRING2.
5e69f11e 3724 Make sure we won't move STARTPOS below 0 or above TOTAL_SIZE. */
34597fa9
RS
3725 if (endpos < 0)
3726 range = 0 - startpos;
fa9a63c5
RM
3727 else if (endpos > total_size)
3728 range = total_size - startpos;
3729
3730 /* If the search isn't to be a backwards one, don't waste time in a
7b140fd7 3731 search for a pattern anchored at beginning of buffer. */
fa9a63c5
RM
3732 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == begbuf && range > 0)
3733 {
3734 if (startpos > 0)
3735 return -1;
3736 else
7b140fd7 3737 range = 0;
fa9a63c5
RM
3738 }
3739
ae4788a8
RS
3740#ifdef emacs
3741 /* In a forward search for something that starts with \=.
3742 don't keep searching past point. */
3743 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == at_dot && range > 0)
3744 {
7b140fd7
RS
3745 range = PT_BYTE - BEGV_BYTE - startpos;
3746 if (range < 0)
ae4788a8
RS
3747 return -1;
3748 }
3749#endif /* emacs */
3750
fa9a63c5
RM
3751 /* Update the fastmap now if not correct already. */
3752 if (fastmap && !bufp->fastmap_accurate)
3753 if (re_compile_fastmap (bufp) == -2)
3754 return -2;
5e69f11e 3755
c8499ba5
RS
3756 /* See whether the pattern is anchored. */
3757 if (bufp->buffer[0] == begline)
3758 anchored_start = 1;
3759
b18215fc 3760#ifdef emacs
cc9b4df2
KH
3761 gl_state.object = re_match_object;
3762 {
7e95234e
RS
3763 int adjpos = NILP (re_match_object) || BUFFERP (re_match_object);
3764 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (startpos + adjpos);
cc9b4df2
KH
3765
3766 SETUP_SYNTAX_TABLE_FOR_OBJECT (re_match_object, charpos, 1);
3767 }
b18215fc
RS
3768#endif
3769
fa9a63c5
RM
3770 /* Loop through the string, looking for a place to start matching. */
3771 for (;;)
5e69f11e 3772 {
c8499ba5
RS
3773 /* If the pattern is anchored,
3774 skip quickly past places we cannot match.
3775 We don't bother to treat startpos == 0 specially
3776 because that case doesn't repeat. */
3777 if (anchored_start && startpos > 0)
3778 {
3779 if (! (bufp->newline_anchor
3780 && ((startpos <= size1 ? string1[startpos - 1]
3781 : string2[startpos - size1 - 1])
3782 == '\n')))
3783 goto advance;
3784 }
3785
fa9a63c5 3786 /* If a fastmap is supplied, skip quickly over characters that
25fe55af
RS
3787 cannot be the start of a match. If the pattern can match the
3788 null string, however, we don't need to skip characters; we want
3789 the first null string. */
fa9a63c5
RM
3790 if (fastmap && startpos < total_size && !bufp->can_be_null)
3791 {
e934739e
RS
3792 register const char *d;
3793 register unsigned int buf_ch;
3794
3795 d = POS_ADDR_VSTRING (startpos);
3796
25fe55af 3797 if (range > 0) /* Searching forwards. */
fa9a63c5 3798 {
fa9a63c5
RM
3799 register int lim = 0;
3800 int irange = range;
3801
25fe55af
RS
3802 if (startpos < size1 && startpos + range >= size1)
3803 lim = range - (size1 - startpos);
fa9a63c5 3804
25fe55af
RS
3805 /* Written out as an if-else to avoid testing `translate'
3806 inside the loop. */
28ae27ae
AS
3807 if (RE_TRANSLATE_P (translate))
3808 {
e934739e
RS
3809 if (multibyte)
3810 while (range > lim)
3811 {
3812 int buf_charlen;
3813
3814 buf_ch = STRING_CHAR_AND_LENGTH (d, range - lim,
3815 buf_charlen);
3816
3817 buf_ch = RE_TRANSLATE (translate, buf_ch);
3818 if (buf_ch >= 0400
3819 || fastmap[buf_ch])
3820 break;
3821
3822 range -= buf_charlen;
3823 d += buf_charlen;
3824 }
3825 else
3826 while (range > lim
3827 && !fastmap[(unsigned char)
33c46939
RS
3828 RE_TRANSLATE (translate, (unsigned char) *d)])
3829 {
3830 d++;
3831 range--;
3832 }
e934739e 3833 }
fa9a63c5 3834 else
33c46939
RS
3835 while (range > lim && !fastmap[(unsigned char) *d])
3836 {
3837 d++;
3838 range--;
3839 }
fa9a63c5
RM
3840
3841 startpos += irange - range;
3842 }
25fe55af 3843 else /* Searching backwards. */
fa9a63c5 3844 {
e934739e
RS
3845 int room = (size1 == 0 || startpos >= size1
3846 ? size2 + size1 - startpos
3847 : size1 - startpos);
3848
3849 buf_ch = STRING_CHAR (d, room);
28703c16 3850 if (RE_TRANSLATE_P (translate))
e934739e 3851 buf_ch = RE_TRANSLATE (translate, buf_ch);
fa9a63c5 3852
e934739e
RS
3853 if (! (buf_ch >= 0400
3854 || fastmap[buf_ch]))
fa9a63c5
RM
3855 goto advance;
3856 }
3857 }
3858
3859 /* If can't match the null string, and that's all we have left, fail. */
3860 if (range >= 0 && startpos == total_size && fastmap
25fe55af 3861 && !bufp->can_be_null)
fa9a63c5
RM
3862 return -1;
3863
3864 val = re_match_2_internal (bufp, string1, size1, string2, size2,
3865 startpos, regs, stop);
3866#ifndef REGEX_MALLOC
3867#ifdef C_ALLOCA
3868 alloca (0);
3869#endif
3870#endif
3871
3872 if (val >= 0)
3873 return startpos;
5e69f11e 3874
fa9a63c5
RM
3875 if (val == -2)
3876 return -2;
3877
3878 advance:
5e69f11e 3879 if (!range)
25fe55af 3880 break;
5e69f11e 3881 else if (range > 0)
25fe55af 3882 {
b18215fc
RS
3883 /* Update STARTPOS to the next character boundary. */
3884 if (multibyte)
3885 {
b560c397
RS
3886 const unsigned char *p
3887 = (const unsigned char *) POS_ADDR_VSTRING (startpos);
3888 const unsigned char *pend
3889 = (const unsigned char *) STOP_ADDR_VSTRING (startpos);
b18215fc
RS
3890 int len = MULTIBYTE_FORM_LENGTH (p, pend - p);
3891
3892 range -= len;
3893 if (range < 0)
3894 break;
3895 startpos += len;
3896 }
3897 else
3898 {
b560c397
RS
3899 range--;
3900 startpos++;
3901 }
e318085a 3902 }
fa9a63c5 3903 else
25fe55af
RS
3904 {
3905 range++;
3906 startpos--;
b18215fc
RS
3907
3908 /* Update STARTPOS to the previous character boundary. */
3909 if (multibyte)
3910 {
b560c397
RS
3911 const unsigned char *p
3912 = (const unsigned char *) POS_ADDR_VSTRING (startpos);
b18215fc
RS
3913 int len = 0;
3914
3915 /* Find the head of multibyte form. */
5d967c7a 3916 while (!CHAR_HEAD_P (*p))
b18215fc
RS
3917 p--, len++;
3918
3919 /* Adjust it. */
3920#if 0 /* XXX */
3921 if (MULTIBYTE_FORM_LENGTH (p, len + 1) != (len + 1))
3922 ;
3923 else
3924#endif
3925 {
3926 range += len;
3927 if (range > 0)
3928 break;
3929
3930 startpos -= len;
3931 }
3932 }
25fe55af 3933 }
fa9a63c5
RM
3934 }
3935 return -1;
3936} /* re_search_2 */
3937\f
3938/* Declarations and macros for re_match_2. */
3939
3940static int bcmp_translate ();
3941static boolean alt_match_null_string_p (),
25fe55af
RS
3942 common_op_match_null_string_p (),
3943 group_match_null_string_p ();
fa9a63c5
RM
3944
3945/* This converts PTR, a pointer into one of the search strings `string1'
3946 and `string2' into an offset from the beginning of that string. */
3947#define POINTER_TO_OFFSET(ptr) \
3948 (FIRST_STRING_P (ptr) \
3949 ? ((regoff_t) ((ptr) - string1)) \
3950 : ((regoff_t) ((ptr) - string2 + size1)))
3951
3952/* Macros for dealing with the split strings in re_match_2. */
3953
3954#define MATCHING_IN_FIRST_STRING (dend == end_match_1)
3955
3956/* Call before fetching a character with *d. This switches over to
3957 string2 if necessary. */
3958#define PREFETCH() \
25fe55af 3959 while (d == dend) \
fa9a63c5
RM
3960 { \
3961 /* End of string2 => fail. */ \
25fe55af
RS
3962 if (dend == end_match_2) \
3963 goto fail; \
3964 /* End of string1 => advance to string2. */ \
3965 d = string2; \
fa9a63c5
RM
3966 dend = end_match_2; \
3967 }
3968
3969
3970/* Test if at very beginning or at very end of the virtual concatenation
25fe55af 3971 of `string1' and `string2'. If only one string, it's `string2'. */
fa9a63c5 3972#define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
5e69f11e 3973#define AT_STRINGS_END(d) ((d) == end2)
fa9a63c5
RM
3974
3975
3976/* Test if D points to a character which is word-constituent. We have
3977 two special cases to check for: if past the end of string1, look at
3978 the first character in string2; and if before the beginning of
3979 string2, look at the last character in string1. */
3980#define WORDCHAR_P(d) \
3981 (SYNTAX ((d) == end1 ? *string2 \
25fe55af 3982 : (d) == string2 - 1 ? *(end1 - 1) : *(d)) \
fa9a63c5
RM
3983 == Sword)
3984
9121ca40 3985/* Disabled due to a compiler bug -- see comment at case wordbound */
b18215fc
RS
3986
3987/* The comment at case wordbound is following one, but we don't use
3988 AT_WORD_BOUNDARY anymore to support multibyte form.
3989
3990 The DEC Alpha C compiler 3.x generates incorrect code for the
25fe55af
RS
3991 test WORDCHAR_P (d - 1) != WORDCHAR_P (d) in the expansion of
3992 AT_WORD_BOUNDARY, so this code is disabled. Expanding the
b18215fc
RS
3993 macro and introducing temporary variables works around the bug. */
3994
9121ca40 3995#if 0
fa9a63c5
RM
3996/* Test if the character before D and the one at D differ with respect
3997 to being word-constituent. */
3998#define AT_WORD_BOUNDARY(d) \
3999 (AT_STRINGS_BEG (d) || AT_STRINGS_END (d) \
4000 || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
9121ca40 4001#endif
fa9a63c5
RM
4002
4003/* Free everything we malloc. */
4004#ifdef MATCH_MAY_ALLOCATE
00049484 4005#define FREE_VAR(var) if (var) { REGEX_FREE (var); var = NULL; } else
fa9a63c5
RM
4006#define FREE_VARIABLES() \
4007 do { \
4008 REGEX_FREE_STACK (fail_stack.stack); \
4009 FREE_VAR (regstart); \
4010 FREE_VAR (regend); \
4011 FREE_VAR (old_regstart); \
4012 FREE_VAR (old_regend); \
4013 FREE_VAR (best_regstart); \
4014 FREE_VAR (best_regend); \
4015 FREE_VAR (reg_info); \
4016 FREE_VAR (reg_dummy); \
4017 FREE_VAR (reg_info_dummy); \
4018 } while (0)
4019#else
4020#define FREE_VARIABLES() ((void)0) /* Do nothing! But inhibit gcc warning. */
4021#endif /* not MATCH_MAY_ALLOCATE */
4022
25fe55af 4023/* These values must meet several constraints. They must not be valid
fa9a63c5
RM
4024 register values; since we have a limit of 255 registers (because
4025 we use only one byte in the pattern for the register number), we can
25fe55af 4026 use numbers larger than 255. They must differ by 1, because of
fa9a63c5
RM
4027 NUM_FAILURE_ITEMS above. And the value for the lowest register must
4028 be larger than the value for the highest register, so we do not try
25fe55af 4029 to actually save any registers when none are active. */
fa9a63c5
RM
4030#define NO_HIGHEST_ACTIVE_REG (1 << BYTEWIDTH)
4031#define NO_LOWEST_ACTIVE_REG (NO_HIGHEST_ACTIVE_REG + 1)
4032\f
4033/* Matching routines. */
4034
25fe55af 4035#ifndef emacs /* Emacs never uses this. */
fa9a63c5
RM
4036/* re_match is like re_match_2 except it takes only a single string. */
4037
4038int
4039re_match (bufp, string, size, pos, regs)
4040 struct re_pattern_buffer *bufp;
4041 const char *string;
4042 int size, pos;
4043 struct re_registers *regs;
4044{
4045 int result = re_match_2_internal (bufp, NULL, 0, string, size,
4046 pos, regs, size);
4047 alloca (0);
4048 return result;
4049}
4050#endif /* not emacs */
4051
b18215fc
RS
4052#ifdef emacs
4053/* In Emacs, this is the string or buffer in which we
25fe55af 4054 are matching. It is used for looking up syntax properties. */
b18215fc
RS
4055Lisp_Object re_match_object;
4056#endif
fa9a63c5
RM
4057
4058/* re_match_2 matches the compiled pattern in BUFP against the
4059 the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
4060 and SIZE2, respectively). We start matching at POS, and stop
4061 matching at STOP.
5e69f11e 4062
fa9a63c5 4063 If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
25fe55af 4064 store offsets for the substring each group matched in REGS. See the
fa9a63c5
RM
4065 documentation for exactly how many groups we fill.
4066
4067 We return -1 if no match, -2 if an internal error (such as the
25fe55af 4068 failure stack overflowing). Otherwise, we return the length of the
fa9a63c5
RM
4069 matched substring. */
4070
4071int
4072re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
4073 struct re_pattern_buffer *bufp;
4074 const char *string1, *string2;
4075 int size1, size2;
4076 int pos;
4077 struct re_registers *regs;
4078 int stop;
4079{
b18215fc 4080 int result;
25fe55af 4081
b18215fc 4082#ifdef emacs
cc9b4df2 4083 int charpos;
7e95234e 4084 int adjpos = NILP (re_match_object) || BUFFERP (re_match_object);
cc9b4df2 4085 gl_state.object = re_match_object;
7e95234e 4086 charpos = SYNTAX_TABLE_BYTE_TO_CHAR (pos + adjpos);
cc9b4df2 4087 SETUP_SYNTAX_TABLE_FOR_OBJECT (re_match_object, charpos, 1);
b18215fc
RS
4088#endif
4089
4090 result = re_match_2_internal (bufp, string1, size1, string2, size2,
cc9b4df2 4091 pos, regs, stop);
fa9a63c5
RM
4092 alloca (0);
4093 return result;
4094}
4095
4096/* This is a separate function so that we can force an alloca cleanup
25fe55af 4097 afterwards. */
fa9a63c5
RM
4098static int
4099re_match_2_internal (bufp, string1, size1, string2, size2, pos, regs, stop)
4100 struct re_pattern_buffer *bufp;
4101 const char *string1, *string2;
4102 int size1, size2;
4103 int pos;
4104 struct re_registers *regs;
4105 int stop;
4106{
4107 /* General temporaries. */
4108 int mcnt;
4109 unsigned char *p1;
4110
4111 /* Just past the end of the corresponding string. */
4112 const char *end1, *end2;
4113
4114 /* Pointers into string1 and string2, just past the last characters in
25fe55af 4115 each to consider matching. */
fa9a63c5
RM
4116 const char *end_match_1, *end_match_2;
4117
4118 /* Where we are in the data, and the end of the current string. */
4119 const char *d, *dend;
5e69f11e 4120
fa9a63c5
RM
4121 /* Where we are in the pattern, and the end of the pattern. */
4122 unsigned char *p = bufp->buffer;
4123 register unsigned char *pend = p + bufp->used;
4124
4125 /* Mark the opcode just after a start_memory, so we can test for an
4126 empty subpattern when we get to the stop_memory. */
4127 unsigned char *just_past_start_mem = 0;
4128
25fe55af 4129 /* We use this to map every character in the string. */
6676cb1c 4130 RE_TRANSLATE_TYPE translate = bufp->translate;
fa9a63c5 4131
25fe55af 4132 /* Nonzero if we have to concern multibyte character. */
b18215fc
RS
4133 int multibyte = bufp->multibyte;
4134
fa9a63c5
RM
4135 /* Failure point stack. Each place that can handle a failure further
4136 down the line pushes a failure point on this stack. It consists of
4137 restart, regend, and reg_info for all registers corresponding to
4138 the subexpressions we're currently inside, plus the number of such
4139 registers, and, finally, two char *'s. The first char * is where
4140 to resume scanning the pattern; the second one is where to resume
4141 scanning the strings. If the latter is zero, the failure point is
4142 a ``dummy''; if a failure happens and the failure point is a dummy,
25fe55af
RS
4143 it gets discarded and the next next one is tried. */
4144#ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
fa9a63c5
RM
4145 fail_stack_type fail_stack;
4146#endif
4147#ifdef DEBUG
4148 static unsigned failure_id = 0;
4149 unsigned nfailure_points_pushed = 0, nfailure_points_popped = 0;
4150#endif
4151
4152 /* This holds the pointer to the failure stack, when
4153 it is allocated relocatably. */
4154 fail_stack_elt_t *failure_stack_ptr;
4155
4156 /* We fill all the registers internally, independent of what we
25fe55af 4157 return, for use in backreferences. The number here includes
fa9a63c5
RM
4158 an element for register zero. */
4159 unsigned num_regs = bufp->re_nsub + 1;
5e69f11e 4160
fa9a63c5
RM
4161 /* The currently active registers. */
4162 unsigned lowest_active_reg = NO_LOWEST_ACTIVE_REG;
4163 unsigned highest_active_reg = NO_HIGHEST_ACTIVE_REG;
4164
4165 /* Information on the contents of registers. These are pointers into
4166 the input strings; they record just what was matched (on this
4167 attempt) by a subexpression part of the pattern, that is, the
4168 regnum-th regstart pointer points to where in the pattern we began
4169 matching and the regnum-th regend points to right after where we
4170 stopped matching the regnum-th subexpression. (The zeroth register
4171 keeps track of what the whole pattern matches.) */
4172#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
4173 const char **regstart, **regend;
4174#endif
4175
4176 /* If a group that's operated upon by a repetition operator fails to
4177 match anything, then the register for its start will need to be
4178 restored because it will have been set to wherever in the string we
4179 are when we last see its open-group operator. Similarly for a
4180 register's end. */
4181#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
4182 const char **old_regstart, **old_regend;
4183#endif
4184
4185 /* The is_active field of reg_info helps us keep track of which (possibly
4186 nested) subexpressions we are currently in. The matched_something
4187 field of reg_info[reg_num] helps us tell whether or not we have
4188 matched any of the pattern so far this time through the reg_num-th
4189 subexpression. These two fields get reset each time through any
25fe55af
RS
4190 loop their register is in. */
4191#ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
5e69f11e 4192 register_info_type *reg_info;
fa9a63c5
RM
4193#endif
4194
4195 /* The following record the register info as found in the above
5e69f11e 4196 variables when we find a match better than any we've seen before.
fa9a63c5
RM
4197 This happens as we backtrack through the failure points, which in
4198 turn happens only if we have not yet matched the entire string. */
4199 unsigned best_regs_set = false;
4200#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
4201 const char **best_regstart, **best_regend;
4202#endif
5e69f11e 4203
fa9a63c5
RM
4204 /* Logically, this is `best_regend[0]'. But we don't want to have to
4205 allocate space for that if we're not allocating space for anything
25fe55af 4206 else (see below). Also, we never need info about register 0 for
fa9a63c5
RM
4207 any of the other register vectors, and it seems rather a kludge to
4208 treat `best_regend' differently than the rest. So we keep track of
4209 the end of the best match so far in a separate variable. We
4210 initialize this to NULL so that when we backtrack the first time
4211 and need to test it, it's not garbage. */
4212 const char *match_end = NULL;
4213
4214 /* This helps SET_REGS_MATCHED avoid doing redundant work. */
4215 int set_regs_matched_done = 0;
4216
4217 /* Used when we pop values we don't care about. */
4218#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
4219 const char **reg_dummy;
4220 register_info_type *reg_info_dummy;
4221#endif
4222
4223#ifdef DEBUG
4224 /* Counts the total number of registers pushed. */
5e69f11e 4225 unsigned num_regs_pushed = 0;
fa9a63c5
RM
4226#endif
4227
4228 DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
5e69f11e 4229
fa9a63c5 4230 INIT_FAIL_STACK ();
5e69f11e 4231
fa9a63c5
RM
4232#ifdef MATCH_MAY_ALLOCATE
4233 /* Do not bother to initialize all the register variables if there are
4234 no groups in the pattern, as it takes a fair amount of time. If
4235 there are groups, we include space for register 0 (the whole
4236 pattern), even though we never use it, since it simplifies the
4237 array indexing. We should fix this. */
4238 if (bufp->re_nsub)
4239 {
4240 regstart = REGEX_TALLOC (num_regs, const char *);
4241 regend = REGEX_TALLOC (num_regs, const char *);
4242 old_regstart = REGEX_TALLOC (num_regs, const char *);
4243 old_regend = REGEX_TALLOC (num_regs, const char *);
4244 best_regstart = REGEX_TALLOC (num_regs, const char *);
4245 best_regend = REGEX_TALLOC (num_regs, const char *);
4246 reg_info = REGEX_TALLOC (num_regs, register_info_type);
4247 reg_dummy = REGEX_TALLOC (num_regs, const char *);
4248 reg_info_dummy = REGEX_TALLOC (num_regs, register_info_type);
4249
5e69f11e 4250 if (!(regstart && regend && old_regstart && old_regend && reg_info
25fe55af
RS
4251 && best_regstart && best_regend && reg_dummy && reg_info_dummy))
4252 {
4253 FREE_VARIABLES ();
4254 return -2;
4255 }
fa9a63c5
RM
4256 }
4257 else
4258 {
4259 /* We must initialize all our variables to NULL, so that
25fe55af 4260 `FREE_VARIABLES' doesn't try to free them. */
fa9a63c5 4261 regstart = regend = old_regstart = old_regend = best_regstart
25fe55af 4262 = best_regend = reg_dummy = NULL;
fa9a63c5
RM
4263 reg_info = reg_info_dummy = (register_info_type *) NULL;
4264 }
4265#endif /* MATCH_MAY_ALLOCATE */
4266
4267 /* The starting position is bogus. */
4268 if (pos < 0 || pos > size1 + size2)
4269 {
4270 FREE_VARIABLES ();
4271 return -1;
4272 }
5e69f11e 4273
fa9a63c5
RM
4274 /* Initialize subexpression text positions to -1 to mark ones that no
4275 start_memory/stop_memory has been seen for. Also initialize the
4276 register information struct. */
4277 for (mcnt = 1; mcnt < num_regs; mcnt++)
4278 {
5e69f11e 4279 regstart[mcnt] = regend[mcnt]
25fe55af 4280 = old_regstart[mcnt] = old_regend[mcnt] = REG_UNSET_VALUE;
5e69f11e 4281
fa9a63c5
RM
4282 REG_MATCH_NULL_STRING_P (reg_info[mcnt]) = MATCH_NULL_UNSET_VALUE;
4283 IS_ACTIVE (reg_info[mcnt]) = 0;
4284 MATCHED_SOMETHING (reg_info[mcnt]) = 0;
4285 EVER_MATCHED_SOMETHING (reg_info[mcnt]) = 0;
4286 }
5e69f11e 4287
fa9a63c5 4288 /* We move `string1' into `string2' if the latter's empty -- but not if
25fe55af 4289 `string1' is null. */
fa9a63c5
RM
4290 if (size2 == 0 && string1 != NULL)
4291 {
4292 string2 = string1;
4293 size2 = size1;
4294 string1 = 0;
4295 size1 = 0;
4296 }
4297 end1 = string1 + size1;
4298 end2 = string2 + size2;
4299
4300 /* Compute where to stop matching, within the two strings. */
4301 if (stop <= size1)
4302 {
4303 end_match_1 = string1 + stop;
4304 end_match_2 = string2;
4305 }
4306 else
4307 {
4308 end_match_1 = end1;
4309 end_match_2 = string2 + stop - size1;
4310 }
4311
5e69f11e 4312 /* `p' scans through the pattern as `d' scans through the data.
fa9a63c5
RM
4313 `dend' is the end of the input string that `d' points within. `d'
4314 is advanced into the following input string whenever necessary, but
4315 this happens before fetching; therefore, at the beginning of the
4316 loop, `d' can be pointing at the end of a string, but it cannot
4317 equal `string2'. */
4318 if (size1 > 0 && pos <= size1)
4319 {
4320 d = string1 + pos;
4321 dend = end_match_1;
4322 }
4323 else
4324 {
4325 d = string2 + pos - size1;
4326 dend = end_match_2;
4327 }
4328
4329 DEBUG_PRINT1 ("The compiled pattern is: ");
4330 DEBUG_PRINT_COMPILED_PATTERN (bufp, p, pend);
4331 DEBUG_PRINT1 ("The string to match is: `");
4332 DEBUG_PRINT_DOUBLE_STRING (d, string1, size1, string2, size2);
4333 DEBUG_PRINT1 ("'\n");
5e69f11e 4334
25fe55af 4335 /* This loops over pattern commands. It exits by returning from the
fa9a63c5
RM
4336 function if the match is complete, or it drops through if the match
4337 fails at this starting point in the input data. */
4338 for (;;)
4339 {
4340 DEBUG_PRINT2 ("\n0x%x: ", p);
4341
4342 if (p == pend)
4343 { /* End of pattern means we might have succeeded. */
25fe55af 4344 DEBUG_PRINT1 ("end of pattern ... ");
5e69f11e 4345
fa9a63c5 4346 /* If we haven't matched the entire string, and we want the
25fe55af
RS
4347 longest match, try backtracking. */
4348 if (d != end_match_2)
fa9a63c5
RM
4349 {
4350 /* 1 if this match ends in the same string (string1 or string2)
4351 as the best previous match. */
5e69f11e 4352 boolean same_str_p = (FIRST_STRING_P (match_end)
fa9a63c5
RM
4353 == MATCHING_IN_FIRST_STRING);
4354 /* 1 if this match is the best seen so far. */
4355 boolean best_match_p;
4356
4357 /* AIX compiler got confused when this was combined
25fe55af 4358 with the previous declaration. */
fa9a63c5
RM
4359 if (same_str_p)
4360 best_match_p = d > match_end;
4361 else
4362 best_match_p = !MATCHING_IN_FIRST_STRING;
4363
25fe55af
RS
4364 DEBUG_PRINT1 ("backtracking.\n");
4365
4366 if (!FAIL_STACK_EMPTY ())
4367 { /* More failure points to try. */
4368
4369 /* If exceeds best match so far, save it. */
4370 if (!best_regs_set || best_match_p)
4371 {
4372 best_regs_set = true;
4373 match_end = d;
4374
4375 DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
4376
4377 for (mcnt = 1; mcnt < num_regs; mcnt++)
4378 {
4379 best_regstart[mcnt] = regstart[mcnt];
4380 best_regend[mcnt] = regend[mcnt];
4381 }
4382 }
4383 goto fail;
4384 }
4385
4386 /* If no failure points, don't restore garbage. And if
4387 last match is real best match, don't restore second
4388 best one. */
4389 else if (best_regs_set && !best_match_p)
4390 {
4391 restore_best_regs:
4392 /* Restore best match. It may happen that `dend ==
4393 end_match_1' while the restored d is in string2.
4394 For example, the pattern `x.*y.*z' against the
4395 strings `x-' and `y-z-', if the two strings are
4396 not consecutive in memory. */
4397 DEBUG_PRINT1 ("Restoring best registers.\n");
4398
4399 d = match_end;
4400 dend = ((d >= string1 && d <= end1)
4401 ? end_match_1 : end_match_2);
fa9a63c5
RM
4402
4403 for (mcnt = 1; mcnt < num_regs; mcnt++)
4404 {
4405 regstart[mcnt] = best_regstart[mcnt];
4406 regend[mcnt] = best_regend[mcnt];
4407 }
25fe55af
RS
4408 }
4409 } /* d != end_match_2 */
fa9a63c5
RM
4410
4411 succeed_label:
25fe55af 4412 DEBUG_PRINT1 ("Accepting match.\n");
fa9a63c5 4413
25fe55af
RS
4414 /* If caller wants register contents data back, do it. */
4415 if (regs && !bufp->no_sub)
fa9a63c5 4416 {
25fe55af
RS
4417 /* Have the register data arrays been allocated? */
4418 if (bufp->regs_allocated == REGS_UNALLOCATED)
4419 { /* No. So allocate them with malloc. We need one
4420 extra element beyond `num_regs' for the `-1' marker
4421 GNU code uses. */
4422 regs->num_regs = MAX (RE_NREGS, num_regs + 1);
4423 regs->start = TALLOC (regs->num_regs, regoff_t);
4424 regs->end = TALLOC (regs->num_regs, regoff_t);
4425 if (regs->start == NULL || regs->end == NULL)
fa9a63c5
RM
4426 {
4427 FREE_VARIABLES ();
4428 return -2;
4429 }
25fe55af
RS
4430 bufp->regs_allocated = REGS_REALLOCATE;
4431 }
4432 else if (bufp->regs_allocated == REGS_REALLOCATE)
4433 { /* Yes. If we need more elements than were already
4434 allocated, reallocate them. If we need fewer, just
4435 leave it alone. */
4436 if (regs->num_regs < num_regs + 1)
4437 {
4438 regs->num_regs = num_regs + 1;
4439 RETALLOC (regs->start, regs->num_regs, regoff_t);
4440 RETALLOC (regs->end, regs->num_regs, regoff_t);
4441 if (regs->start == NULL || regs->end == NULL)
fa9a63c5
RM
4442 {
4443 FREE_VARIABLES ();
4444 return -2;
4445 }
25fe55af
RS
4446 }
4447 }
4448 else
fa9a63c5
RM
4449 {
4450 /* These braces fend off a "empty body in an else-statement"
25fe55af 4451 warning under GCC when assert expands to nothing. */
fa9a63c5
RM
4452 assert (bufp->regs_allocated == REGS_FIXED);
4453 }
4454
25fe55af
RS
4455 /* Convert the pointer data in `regstart' and `regend' to
4456 indices. Register zero has to be set differently,
4457 since we haven't kept track of any info for it. */
4458 if (regs->num_regs > 0)
4459 {
4460 regs->start[0] = pos;
4461 regs->end[0] = (MATCHING_IN_FIRST_STRING
fa9a63c5 4462 ? ((regoff_t) (d - string1))
25fe55af
RS
4463 : ((regoff_t) (d - string2 + size1)));
4464 }
5e69f11e 4465
25fe55af
RS
4466 /* Go through the first `min (num_regs, regs->num_regs)'
4467 registers, since that is all we initialized. */
fa9a63c5
RM
4468 for (mcnt = 1; mcnt < MIN (num_regs, regs->num_regs); mcnt++)
4469 {
25fe55af
RS
4470 if (REG_UNSET (regstart[mcnt]) || REG_UNSET (regend[mcnt]))
4471 regs->start[mcnt] = regs->end[mcnt] = -1;
4472 else
4473 {
fa9a63c5
RM
4474 regs->start[mcnt]
4475 = (regoff_t) POINTER_TO_OFFSET (regstart[mcnt]);
25fe55af 4476 regs->end[mcnt]
fa9a63c5 4477 = (regoff_t) POINTER_TO_OFFSET (regend[mcnt]);
25fe55af 4478 }
fa9a63c5 4479 }
5e69f11e 4480
25fe55af
RS
4481 /* If the regs structure we return has more elements than
4482 were in the pattern, set the extra elements to -1. If
4483 we (re)allocated the registers, this is the case,
4484 because we always allocate enough to have at least one
4485 -1 at the end. */
4486 for (mcnt = num_regs; mcnt < regs->num_regs; mcnt++)
4487 regs->start[mcnt] = regs->end[mcnt] = -1;
fa9a63c5
RM
4488 } /* regs && !bufp->no_sub */
4489
25fe55af
RS
4490 DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
4491 nfailure_points_pushed, nfailure_points_popped,
4492 nfailure_points_pushed - nfailure_points_popped);
4493 DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed);
fa9a63c5 4494
25fe55af 4495 mcnt = d - pos - (MATCHING_IN_FIRST_STRING
5e69f11e 4496 ? string1
fa9a63c5
RM
4497 : string2 - size1);
4498
25fe55af 4499 DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt);
fa9a63c5 4500
25fe55af
RS
4501 FREE_VARIABLES ();
4502 return mcnt;
4503 }
fa9a63c5 4504
25fe55af 4505 /* Otherwise match next pattern command. */
fa9a63c5
RM
4506 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
4507 {
25fe55af
RS
4508 /* Ignore these. Used to ignore the n of succeed_n's which
4509 currently have n == 0. */
4510 case no_op:
4511 DEBUG_PRINT1 ("EXECUTING no_op.\n");
4512 break;
fa9a63c5
RM
4513
4514 case succeed:
25fe55af 4515 DEBUG_PRINT1 ("EXECUTING succeed.\n");
fa9a63c5
RM
4516 goto succeed_label;
4517
25fe55af
RS
4518 /* Match the next n pattern characters exactly. The following
4519 byte in the pattern defines n, and the n bytes after that
4520 are the characters to match. */
fa9a63c5
RM
4521 case exactn:
4522 mcnt = *p++;
25fe55af 4523 DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt);
fa9a63c5 4524
25fe55af
RS
4525 /* This is written out as an if-else so we don't waste time
4526 testing `translate' inside the loop. */
28703c16 4527 if (RE_TRANSLATE_P (translate))
fa9a63c5 4528 {
e934739e
RS
4529#ifdef emacs
4530 if (multibyte)
4531 do
4532 {
4533 int pat_charlen, buf_charlen;
e71b1971 4534 unsigned int pat_ch, buf_ch;
e934739e
RS
4535
4536 PREFETCH ();
4537 pat_ch = STRING_CHAR_AND_LENGTH (p, pend - p, pat_charlen);
4538 buf_ch = STRING_CHAR_AND_LENGTH (d, dend - d, buf_charlen);
4539
4540 if (RE_TRANSLATE (translate, buf_ch)
4541 != pat_ch)
4542 goto fail;
4543
4544 p += pat_charlen;
4545 d += buf_charlen;
4546 mcnt -= pat_charlen;
4547 }
4548 while (mcnt > 0);
4549 else
4550#endif /* not emacs */
4551 do
4552 {
4553 PREFETCH ();
33c46939 4554 if ((unsigned char) RE_TRANSLATE (translate, (unsigned char) *d)
e934739e
RS
4555 != (unsigned char) *p++)
4556 goto fail;
33c46939 4557 d++;
e934739e
RS
4558 }
4559 while (--mcnt);
fa9a63c5
RM
4560 }
4561 else
4562 {
4563 do
4564 {
4565 PREFETCH ();
4566 if (*d++ != (char) *p++) goto fail;
4567 }
4568 while (--mcnt);
4569 }
4570 SET_REGS_MATCHED ();
25fe55af 4571 break;
fa9a63c5
RM
4572
4573
25fe55af 4574 /* Match any character except possibly a newline or a null. */
fa9a63c5 4575 case anychar:
e934739e
RS
4576 {
4577 int buf_charlen;
e71b1971 4578 unsigned int buf_ch;
fa9a63c5 4579
e934739e 4580 DEBUG_PRINT1 ("EXECUTING anychar.\n");
fa9a63c5 4581
e934739e 4582 PREFETCH ();
fa9a63c5 4583
e934739e
RS
4584#ifdef emacs
4585 if (multibyte)
4586 buf_ch = STRING_CHAR_AND_LENGTH (d, dend - d, buf_charlen);
4587 else
4588#endif /* not emacs */
4589 {
85bc1d4e 4590 buf_ch = (unsigned char) *d;
e934739e
RS
4591 buf_charlen = 1;
4592 }
4593
4594 buf_ch = TRANSLATE (buf_ch);
4595
4596 if ((!(bufp->syntax & RE_DOT_NEWLINE)
4597 && buf_ch == '\n')
4598 || ((bufp->syntax & RE_DOT_NOT_NULL)
4599 && buf_ch == '\000'))
4600 goto fail;
4601
4602 SET_REGS_MATCHED ();
4603 DEBUG_PRINT2 (" Matched `%d'.\n", *d);
4604 d += buf_charlen;
4605 }
fa9a63c5
RM
4606 break;
4607
4608
4609 case charset:
4610 case charset_not:
4611 {
b18215fc 4612 register unsigned int c;
fa9a63c5 4613 boolean not = (re_opcode_t) *(p - 1) == charset_not;
b18215fc
RS
4614 int len;
4615
4616 /* Start of actual range_table, or end of bitmap if there is no
4617 range table. */
4618 unsigned char *range_table;
4619
25fe55af 4620 /* Nonzero if there is range table. */
b18215fc
RS
4621 int range_table_exists;
4622
25fe55af 4623 /* Number of ranges of range table. Not in bytes. */
b18215fc 4624 int count;
fa9a63c5 4625
25fe55af 4626 DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : "");
fa9a63c5
RM
4627
4628 PREFETCH ();
b18215fc 4629 c = (unsigned char) *d;
fa9a63c5 4630
b18215fc
RS
4631 range_table = CHARSET_RANGE_TABLE (&p[-1]); /* Past the bitmap. */
4632 range_table_exists = CHARSET_RANGE_TABLE_EXISTS_P (&p[-1]);
4633 if (range_table_exists)
4634 EXTRACT_NUMBER_AND_INCR (count, range_table);
4635 else
4636 count = 0;
4637
4638 if (multibyte && BASE_LEADING_CODE_P (c))
4639 c = STRING_CHAR_AND_LENGTH (d, dend - d, len);
4640
4641 if (SINGLE_BYTE_CHAR_P (c))
4642 { /* Lookup bitmap. */
4643 c = TRANSLATE (c); /* The character to match. */
4644 len = 1;
4645
4646 /* Cast to `unsigned' instead of `unsigned char' in
4647 case the bit list is a full 32 bytes long. */
4648 if (c < (unsigned) (CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH)
fa9a63c5
RM
4649 && p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
4650 not = !not;
b18215fc
RS
4651 }
4652 else if (range_table_exists)
4653 CHARSET_LOOKUP_RANGE_TABLE_RAW (not, c, range_table, count);
fa9a63c5 4654
b18215fc 4655 p = CHARSET_RANGE_TABLE_END (range_table, count);
fa9a63c5
RM
4656
4657 if (!not) goto fail;
5e69f11e 4658
fa9a63c5 4659 SET_REGS_MATCHED ();
b18215fc 4660 d += len;
fa9a63c5
RM
4661 break;
4662 }
4663
4664
25fe55af
RS
4665 /* The beginning of a group is represented by start_memory.
4666 The arguments are the register number in the next byte, and the
4667 number of groups inner to this one in the next. The text
4668 matched within the group is recorded (in the internal
4669 registers data structure) under the register number. */
4670 case start_memory:
fa9a63c5
RM
4671 DEBUG_PRINT3 ("EXECUTING start_memory %d (%d):\n", *p, p[1]);
4672
25fe55af 4673 /* Find out if this group can match the empty string. */
fa9a63c5 4674 p1 = p; /* To send to group_match_null_string_p. */
5e69f11e 4675
25fe55af
RS
4676 if (REG_MATCH_NULL_STRING_P (reg_info[*p]) == MATCH_NULL_UNSET_VALUE)
4677 REG_MATCH_NULL_STRING_P (reg_info[*p])
4678 = group_match_null_string_p (&p1, pend, reg_info);
4679
4680 /* Save the position in the string where we were the last time
4681 we were at this open-group operator in case the group is
4682 operated upon by a repetition operator, e.g., with `(a*)*b'
4683 against `ab'; then we want to ignore where we are now in
4684 the string in case this attempt to match fails. */
4685 old_regstart[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
4686 ? REG_UNSET (regstart[*p]) ? d : regstart[*p]
4687 : regstart[*p];
5e69f11e 4688 DEBUG_PRINT2 (" old_regstart: %d\n",
fa9a63c5
RM
4689 POINTER_TO_OFFSET (old_regstart[*p]));
4690
25fe55af 4691 regstart[*p] = d;
fa9a63c5
RM
4692 DEBUG_PRINT2 (" regstart: %d\n", POINTER_TO_OFFSET (regstart[*p]));
4693
25fe55af
RS
4694 IS_ACTIVE (reg_info[*p]) = 1;
4695 MATCHED_SOMETHING (reg_info[*p]) = 0;
fa9a63c5
RM
4696
4697 /* Clear this whenever we change the register activity status. */
4698 set_regs_matched_done = 0;
5e69f11e 4699
25fe55af
RS
4700 /* This is the new highest active register. */
4701 highest_active_reg = *p;
5e69f11e 4702
25fe55af
RS
4703 /* If nothing was active before, this is the new lowest active
4704 register. */
4705 if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
4706 lowest_active_reg = *p;
fa9a63c5 4707
25fe55af
RS
4708 /* Move past the register number and inner group count. */
4709 p += 2;
fa9a63c5
RM
4710 just_past_start_mem = p;
4711
25fe55af 4712 break;
fa9a63c5
RM
4713
4714
25fe55af
RS
4715 /* The stop_memory opcode represents the end of a group. Its
4716 arguments are the same as start_memory's: the register
4717 number, and the number of inner groups. */
fa9a63c5
RM
4718 case stop_memory:
4719 DEBUG_PRINT3 ("EXECUTING stop_memory %d (%d):\n", *p, p[1]);
5e69f11e 4720
25fe55af
RS
4721 /* We need to save the string position the last time we were at
4722 this close-group operator in case the group is operated
4723 upon by a repetition operator, e.g., with `((a*)*(b*)*)*'
4724 against `aba'; then we want to ignore where we are now in
4725 the string in case this attempt to match fails. */
4726 old_regend[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
4727 ? REG_UNSET (regend[*p]) ? d : regend[*p]
fa9a63c5 4728 : regend[*p];
5e69f11e 4729 DEBUG_PRINT2 (" old_regend: %d\n",
fa9a63c5
RM
4730 POINTER_TO_OFFSET (old_regend[*p]));
4731
25fe55af 4732 regend[*p] = d;
fa9a63c5
RM
4733 DEBUG_PRINT2 (" regend: %d\n", POINTER_TO_OFFSET (regend[*p]));
4734
25fe55af
RS
4735 /* This register isn't active anymore. */
4736 IS_ACTIVE (reg_info[*p]) = 0;
fa9a63c5
RM
4737
4738 /* Clear this whenever we change the register activity status. */
4739 set_regs_matched_done = 0;
4740
25fe55af
RS
4741 /* If this was the only register active, nothing is active
4742 anymore. */
4743 if (lowest_active_reg == highest_active_reg)
4744 {
4745 lowest_active_reg = NO_LOWEST_ACTIVE_REG;
4746 highest_active_reg = NO_HIGHEST_ACTIVE_REG;
4747 }
4748 else
4749 { /* We must scan for the new highest active register, since
4750 it isn't necessarily one less than now: consider
4751 (a(b)c(d(e)f)g). When group 3 ends, after the f), the
4752 new highest active register is 1. */
4753 unsigned char r = *p - 1;
4754 while (r > 0 && !IS_ACTIVE (reg_info[r]))
4755 r--;
4756
4757 /* If we end up at register zero, that means that we saved
4758 the registers as the result of an `on_failure_jump', not
4759 a `start_memory', and we jumped to past the innermost
4760 `stop_memory'. For example, in ((.)*) we save
4761 registers 1 and 2 as a result of the *, but when we pop
4762 back to the second ), we are at the stop_memory 1.
4763 Thus, nothing is active. */
fa9a63c5 4764 if (r == 0)
25fe55af
RS
4765 {
4766 lowest_active_reg = NO_LOWEST_ACTIVE_REG;
4767 highest_active_reg = NO_HIGHEST_ACTIVE_REG;
4768 }
4769 else
4770 highest_active_reg = r;
4771 }
4772
4773 /* If just failed to match something this time around with a
4774 group that's operated on by a repetition operator, try to
4775 force exit from the ``loop'', and restore the register
4776 information for this group that we had before trying this
4777 last match. */
4778 if ((!MATCHED_SOMETHING (reg_info[*p])
4779 || just_past_start_mem == p - 1)
5e69f11e 4780 && (p + 2) < pend)
25fe55af
RS
4781 {
4782 boolean is_a_jump_n = false;
4783
4784 p1 = p + 2;
4785 mcnt = 0;
4786 switch ((re_opcode_t) *p1++)
4787 {
4788 case jump_n:
fa9a63c5 4789 is_a_jump_n = true;
25fe55af 4790 case pop_failure_jump:
fa9a63c5
RM
4791 case maybe_pop_jump:
4792 case jump:
4793 case dummy_failure_jump:
25fe55af 4794 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
fa9a63c5
RM
4795 if (is_a_jump_n)
4796 p1 += 2;
25fe55af 4797 break;
5e69f11e 4798
25fe55af
RS
4799 default:
4800 /* do nothing */ ;
4801 }
fa9a63c5 4802 p1 += mcnt;
5e69f11e 4803
25fe55af
RS
4804 /* If the next operation is a jump backwards in the pattern
4805 to an on_failure_jump right before the start_memory
4806 corresponding to this stop_memory, exit from the loop
4807 by forcing a failure after pushing on the stack the
4808 on_failure_jump's jump in the pattern, and d. */
4809 if (mcnt < 0 && (re_opcode_t) *p1 == on_failure_jump
4810 && (re_opcode_t) p1[3] == start_memory && p1[4] == *p)
fa9a63c5 4811 {
25fe55af
RS
4812 /* If this group ever matched anything, then restore
4813 what its registers were before trying this last
4814 failed match, e.g., with `(a*)*b' against `ab' for
4815 regstart[1], and, e.g., with `((a*)*(b*)*)*'
4816 against `aba' for regend[3].
5e69f11e 4817
25fe55af
RS
4818 Also restore the registers for inner groups for,
4819 e.g., `((a*)(b*))*' against `aba' (register 3 would
4820 otherwise get trashed). */
5e69f11e 4821
25fe55af 4822 if (EVER_MATCHED_SOMETHING (reg_info[*p]))
fa9a63c5 4823 {
5e69f11e
RM
4824 unsigned r;
4825
25fe55af 4826 EVER_MATCHED_SOMETHING (reg_info[*p]) = 0;
5e69f11e 4827
fa9a63c5 4828 /* Restore this and inner groups' (if any) registers. */
25fe55af
RS
4829 for (r = *p; r < *p + *(p + 1); r++)
4830 {
4831 regstart[r] = old_regstart[r];
4832
4833 /* xx why this test? */
4834 if (old_regend[r] >= regstart[r])
4835 regend[r] = old_regend[r];
4836 }
4837 }
fa9a63c5 4838 p1++;
25fe55af
RS
4839 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4840 PUSH_FAILURE_POINT (p1 + mcnt, d, -2);
fa9a63c5 4841
25fe55af
RS
4842 goto fail;
4843 }
4844 }
5e69f11e 4845
25fe55af
RS
4846 /* Move past the register number and the inner group count. */
4847 p += 2;
4848 break;
fa9a63c5
RM
4849
4850
4851 /* \<digit> has been turned into a `duplicate' command which is
25fe55af
RS
4852 followed by the numeric value of <digit> as the register number. */
4853 case duplicate:
fa9a63c5
RM
4854 {
4855 register const char *d2, *dend2;
25fe55af 4856 int regno = *p++; /* Get which register to match against. */
fa9a63c5
RM
4857 DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno);
4858
25fe55af
RS
4859 /* Can't back reference a group which we've never matched. */
4860 if (REG_UNSET (regstart[regno]) || REG_UNSET (regend[regno]))
4861 goto fail;
5e69f11e 4862
25fe55af
RS
4863 /* Where in input to try to start matching. */
4864 d2 = regstart[regno];
5e69f11e 4865
25fe55af
RS
4866 /* Where to stop matching; if both the place to start and
4867 the place to stop matching are in the same string, then
4868 set to the place to stop, otherwise, for now have to use
4869 the end of the first string. */
fa9a63c5 4870
25fe55af 4871 dend2 = ((FIRST_STRING_P (regstart[regno])
fa9a63c5
RM
4872 == FIRST_STRING_P (regend[regno]))
4873 ? regend[regno] : end_match_1);
4874 for (;;)
4875 {
4876 /* If necessary, advance to next segment in register
25fe55af 4877 contents. */
fa9a63c5
RM
4878 while (d2 == dend2)
4879 {
4880 if (dend2 == end_match_2) break;
4881 if (dend2 == regend[regno]) break;
4882
25fe55af
RS
4883 /* End of string1 => advance to string2. */
4884 d2 = string2;
4885 dend2 = regend[regno];
fa9a63c5
RM
4886 }
4887 /* At end of register contents => success */
4888 if (d2 == dend2) break;
4889
4890 /* If necessary, advance to next segment in data. */
4891 PREFETCH ();
4892
4893 /* How many characters left in this segment to match. */
4894 mcnt = dend - d;
5e69f11e 4895
fa9a63c5 4896 /* Want how many consecutive characters we can match in
25fe55af
RS
4897 one shot, so, if necessary, adjust the count. */
4898 if (mcnt > dend2 - d2)
fa9a63c5 4899 mcnt = dend2 - d2;
5e69f11e 4900
fa9a63c5 4901 /* Compare that many; failure if mismatch, else move
25fe55af 4902 past them. */
28703c16 4903 if (RE_TRANSLATE_P (translate)
25fe55af
RS
4904 ? bcmp_translate (d, d2, mcnt, translate)
4905 : bcmp (d, d2, mcnt))
fa9a63c5
RM
4906 goto fail;
4907 d += mcnt, d2 += mcnt;
4908
25fe55af 4909 /* Do this because we've match some characters. */
fa9a63c5
RM
4910 SET_REGS_MATCHED ();
4911 }
4912 }
4913 break;
4914
4915
25fe55af
RS
4916 /* begline matches the empty string at the beginning of the string
4917 (unless `not_bol' is set in `bufp'), and, if
4918 `newline_anchor' is set, after newlines. */
fa9a63c5 4919 case begline:
25fe55af 4920 DEBUG_PRINT1 ("EXECUTING begline.\n");
5e69f11e 4921
25fe55af
RS
4922 if (AT_STRINGS_BEG (d))
4923 {
4924 if (!bufp->not_bol) break;
4925 }
4926 else if (d[-1] == '\n' && bufp->newline_anchor)
4927 {
4928 break;
4929 }
4930 /* In all other cases, we fail. */
4931 goto fail;
fa9a63c5
RM
4932
4933
25fe55af 4934 /* endline is the dual of begline. */
fa9a63c5 4935 case endline:
25fe55af 4936 DEBUG_PRINT1 ("EXECUTING endline.\n");
fa9a63c5 4937
25fe55af
RS
4938 if (AT_STRINGS_END (d))
4939 {
4940 if (!bufp->not_eol) break;
4941 }
5e69f11e 4942
25fe55af
RS
4943 /* We have to ``prefetch'' the next character. */
4944 else if ((d == end1 ? *string2 : *d) == '\n'
4945 && bufp->newline_anchor)
4946 {
4947 break;
4948 }
4949 goto fail;
fa9a63c5
RM
4950
4951
4952 /* Match at the very beginning of the data. */
25fe55af
RS
4953 case begbuf:
4954 DEBUG_PRINT1 ("EXECUTING begbuf.\n");
4955 if (AT_STRINGS_BEG (d))
4956 break;
4957 goto fail;
fa9a63c5
RM
4958
4959
4960 /* Match at the very end of the data. */
25fe55af
RS
4961 case endbuf:
4962 DEBUG_PRINT1 ("EXECUTING endbuf.\n");
fa9a63c5
RM
4963 if (AT_STRINGS_END (d))
4964 break;
25fe55af 4965 goto fail;
5e69f11e 4966
5e69f11e 4967
25fe55af
RS
4968 /* on_failure_keep_string_jump is used to optimize `.*\n'. It
4969 pushes NULL as the value for the string on the stack. Then
4970 `pop_failure_point' will keep the current value for the
4971 string, instead of restoring it. To see why, consider
4972 matching `foo\nbar' against `.*\n'. The .* matches the foo;
4973 then the . fails against the \n. But the next thing we want
4974 to do is match the \n against the \n; if we restored the
4975 string value, we would be back at the foo.
4976
4977 Because this is used only in specific cases, we don't need to
4978 check all the things that `on_failure_jump' does, to make
4979 sure the right things get saved on the stack. Hence we don't
4980 share its code. The only reason to push anything on the
4981 stack at all is that otherwise we would have to change
4982 `anychar's code to do something besides goto fail in this
4983 case; that seems worse than this. */
4984 case on_failure_keep_string_jump:
4985 DEBUG_PRINT1 ("EXECUTING on_failure_keep_string_jump");
fa9a63c5 4986
25fe55af
RS
4987 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4988 DEBUG_PRINT3 (" %d (to 0x%x):\n", mcnt, p + mcnt);
b18215fc 4989
25fe55af
RS
4990 PUSH_FAILURE_POINT (p + mcnt, NULL, -2);
4991 break;
fa9a63c5
RM
4992
4993
4994 /* Uses of on_failure_jump:
5e69f11e 4995
25fe55af
RS
4996 Each alternative starts with an on_failure_jump that points
4997 to the beginning of the next alternative. Each alternative
4998 except the last ends with a jump that in effect jumps past
4999 the rest of the alternatives. (They really jump to the
5000 ending jump of the following alternative, because tensioning
5001 these jumps is a hassle.)
fa9a63c5 5002
25fe55af
RS
5003 Repeats start with an on_failure_jump that points past both
5004 the repetition text and either the following jump or
5005 pop_failure_jump back to this on_failure_jump. */
fa9a63c5 5006 case on_failure_jump:
25fe55af
RS
5007 on_failure:
5008 DEBUG_PRINT1 ("EXECUTING on_failure_jump");
5009
27c3b45d
RS
5010#if defined (WINDOWSNT) && defined (emacs)
5011 QUIT;
5012#endif
5013
25fe55af
RS
5014 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5015 DEBUG_PRINT3 (" %d (to 0x%x)", mcnt, p + mcnt);
5016
5017 /* If this on_failure_jump comes right before a group (i.e.,
5018 the original * applied to a group), save the information
5019 for that group and all inner ones, so that if we fail back
5020 to this point, the group's information will be correct.
5021 For example, in \(a*\)*\1, we need the preceding group,
5022 and in \(zz\(a*\)b*\)\2, we need the inner group. */
5023
5024 /* We can't use `p' to check ahead because we push
5025 a failure point to `p + mcnt' after we do this. */
5026 p1 = p;
5027
5028 /* We need to skip no_op's before we look for the
5029 start_memory in case this on_failure_jump is happening as
5030 the result of a completed succeed_n, as in \(a\)\{1,3\}b\1
5031 against aba. */
5032 while (p1 < pend && (re_opcode_t) *p1 == no_op)
5033 p1++;
5034
5035 if (p1 < pend && (re_opcode_t) *p1 == start_memory)
5036 {
5037 /* We have a new highest active register now. This will
5038 get reset at the start_memory we are about to get to,
5039 but we will have saved all the registers relevant to
5040 this repetition op, as described above. */
5041 highest_active_reg = *(p1 + 1) + *(p1 + 2);
5042 if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
5043 lowest_active_reg = *(p1 + 1);
5044 }
5045
5046 DEBUG_PRINT1 (":\n");
5047 PUSH_FAILURE_POINT (p + mcnt, d, -2);
5048 break;
5049
5050
5051 /* A smart repeat ends with `maybe_pop_jump'.
5052 We change it to either `pop_failure_jump' or `jump'. */
5053 case maybe_pop_jump:
27c3b45d
RS
5054#if defined (WINDOWSNT) && defined (emacs)
5055 QUIT;
5056#endif
25fe55af
RS
5057 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5058 DEBUG_PRINT2 ("EXECUTING maybe_pop_jump %d.\n", mcnt);
5059 {
fa9a63c5
RM
5060 register unsigned char *p2 = p;
5061
25fe55af
RS
5062 /* Compare the beginning of the repeat with what in the
5063 pattern follows its end. If we can establish that there
5064 is nothing that they would both match, i.e., that we
5065 would have to backtrack because of (as in, e.g., `a*a')
5066 then we can change to pop_failure_jump, because we'll
5067 never have to backtrack.
5e69f11e 5068
25fe55af
RS
5069 This is not true in the case of alternatives: in
5070 `(a|ab)*' we do need to backtrack to the `ab' alternative
5071 (e.g., if the string was `ab'). But instead of trying to
5072 detect that here, the alternative has put on a dummy
5073 failure point which is what we will end up popping. */
fa9a63c5
RM
5074
5075 /* Skip over open/close-group commands.
5076 If what follows this loop is a ...+ construct,
5077 look at what begins its body, since we will have to
5078 match at least one of that. */
5079 while (1)
5080 {
5081 if (p2 + 2 < pend
5082 && ((re_opcode_t) *p2 == stop_memory
5083 || (re_opcode_t) *p2 == start_memory))
5084 p2 += 3;
5085 else if (p2 + 6 < pend
5086 && (re_opcode_t) *p2 == dummy_failure_jump)
5087 p2 += 6;
5088 else
5089 break;
5090 }
5091
5092 p1 = p + mcnt;
5093 /* p1[0] ... p1[2] are the `on_failure_jump' corresponding
5e69f11e 5094 to the `maybe_finalize_jump' of this case. Examine what
25fe55af 5095 follows. */
fa9a63c5 5096
25fe55af
RS
5097 /* If we're at the end of the pattern, we can change. */
5098 if (p2 == pend)
fa9a63c5
RM
5099 {
5100 /* Consider what happens when matching ":\(.*\)"
5101 against ":/". I don't really understand this code
25fe55af
RS
5102 yet. */
5103 p[-3] = (unsigned char) pop_failure_jump;
5104 DEBUG_PRINT1
5105 (" End of pattern: change to `pop_failure_jump'.\n");
5106 }
fa9a63c5 5107
25fe55af 5108 else if ((re_opcode_t) *p2 == exactn
fa9a63c5
RM
5109 || (bufp->newline_anchor && (re_opcode_t) *p2 == endline))
5110 {
b18215fc 5111 register unsigned int c
25fe55af 5112 = *p2 == (unsigned char) endline ? '\n' : p2[2];
fa9a63c5 5113
b18215fc 5114 if ((re_opcode_t) p1[3] == exactn)
e318085a 5115 {
b18215fc
RS
5116 if (!(multibyte /* && (c != '\n') */
5117 && BASE_LEADING_CODE_P (c))
5118 ? c != p1[5]
5119 : (STRING_CHAR (&p2[2], pend - &p2[2])
5120 != STRING_CHAR (&p1[5], pend - &p1[5])))
25fe55af
RS
5121 {
5122 p[-3] = (unsigned char) pop_failure_jump;
5123 DEBUG_PRINT3 (" %c != %c => pop_failure_jump.\n",
5124 c, p1[5]);
5125 }
e318085a 5126 }
5e69f11e 5127
fa9a63c5
RM
5128 else if ((re_opcode_t) p1[3] == charset
5129 || (re_opcode_t) p1[3] == charset_not)
5130 {
5131 int not = (re_opcode_t) p1[3] == charset_not;
5e69f11e 5132
b18215fc
RS
5133 if (multibyte /* && (c != '\n') */
5134 && BASE_LEADING_CODE_P (c))
5135 c = STRING_CHAR (&p2[2], pend - &p2[2]);
5136
5137 /* Test if C is listed in charset (or charset_not)
5138 at `&p1[3]'. */
5139 if (SINGLE_BYTE_CHAR_P (c))
5140 {
5141 if (c < CHARSET_BITMAP_SIZE (&p1[3]) * BYTEWIDTH
fa9a63c5
RM
5142 && p1[5 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
5143 not = !not;
b18215fc
RS
5144 }
5145 else if (CHARSET_RANGE_TABLE_EXISTS_P (&p1[3]))
5146 CHARSET_LOOKUP_RANGE_TABLE (not, c, &p1[3]);
fa9a63c5 5147
25fe55af
RS
5148 /* `not' is equal to 1 if c would match, which means
5149 that we can't change to pop_failure_jump. */
fa9a63c5 5150 if (!not)
25fe55af
RS
5151 {
5152 p[-3] = (unsigned char) pop_failure_jump;
5153 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
5154 }
fa9a63c5
RM
5155 }
5156 }
25fe55af 5157 else if ((re_opcode_t) *p2 == charset)
fa9a63c5 5158 {
b18215fc 5159 if ((re_opcode_t) p1[3] == exactn)
e318085a 5160 {
b18215fc
RS
5161 register unsigned int c = p1[5];
5162 int not = 0;
5163
5164 if (multibyte && BASE_LEADING_CODE_P (c))
5165 c = STRING_CHAR (&p1[5], pend - &p1[5]);
5166
25fe55af 5167 /* Test if C is listed in charset at `p2'. */
b18215fc
RS
5168 if (SINGLE_BYTE_CHAR_P (c))
5169 {
5170 if (c < CHARSET_BITMAP_SIZE (p2) * BYTEWIDTH
5171 && (p2[2 + c / BYTEWIDTH]
5172 & (1 << (c % BYTEWIDTH))))
5173 not = !not;
5174 }
5175 else if (CHARSET_RANGE_TABLE_EXISTS_P (p2))
5176 CHARSET_LOOKUP_RANGE_TABLE (not, c, p2);
5177
5178 if (!not)
25fe55af
RS
5179 {
5180 p[-3] = (unsigned char) pop_failure_jump;
5181 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
b18215fc 5182 }
25fe55af 5183 }
5e69f11e 5184
b18215fc
RS
5185 /* It is hard to list up all the character in charset
5186 P2 if it includes multibyte character. Give up in
5187 such case. */
5188 else if (!multibyte || !CHARSET_RANGE_TABLE_EXISTS_P (p2))
5189 {
5190 /* Now, we are sure that P2 has no range table.
5191 So, for the size of bitmap in P2, `p2[1]' is
25fe55af 5192 enough. But P1 may have range table, so the
b18215fc
RS
5193 size of bitmap table of P1 is extracted by
5194 using macro `CHARSET_BITMAP_SIZE'.
5195
5196 Since we know that all the character listed in
5197 P2 is ASCII, it is enough to test only bitmap
5198 table of P1. */
25fe55af 5199
b18215fc 5200 if ((re_opcode_t) p1[3] == charset_not)
fa9a63c5
RM
5201 {
5202 int idx;
b18215fc 5203 /* We win if the charset_not inside the loop lists
25fe55af 5204 every character listed in the charset after. */
fa9a63c5
RM
5205 for (idx = 0; idx < (int) p2[1]; idx++)
5206 if (! (p2[2 + idx] == 0
b18215fc 5207 || (idx < CHARSET_BITMAP_SIZE (&p1[3])
fa9a63c5
RM
5208 && ((p2[2 + idx] & ~ p1[5 + idx]) == 0))))
5209 break;
5210
5211 if (idx == p2[1])
25fe55af
RS
5212 {
5213 p[-3] = (unsigned char) pop_failure_jump;
5214 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
5215 }
fa9a63c5
RM
5216 }
5217 else if ((re_opcode_t) p1[3] == charset)
5218 {
5219 int idx;
5220 /* We win if the charset inside the loop
5221 has no overlap with the one after the loop. */
5222 for (idx = 0;
b18215fc
RS
5223 (idx < (int) p2[1]
5224 && idx < CHARSET_BITMAP_SIZE (&p1[3]));
fa9a63c5
RM
5225 idx++)
5226 if ((p2[2 + idx] & p1[5 + idx]) != 0)
5227 break;
5228
b18215fc
RS
5229 if (idx == p2[1]
5230 || idx == CHARSET_BITMAP_SIZE (&p1[3]))
25fe55af
RS
5231 {
5232 p[-3] = (unsigned char) pop_failure_jump;
5233 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
5234 }
fa9a63c5
RM
5235 }
5236 }
5237 }
b18215fc 5238 }
fa9a63c5
RM
5239 p -= 2; /* Point at relative address again. */
5240 if ((re_opcode_t) p[-1] != pop_failure_jump)
5241 {
5242 p[-1] = (unsigned char) jump;
25fe55af 5243 DEBUG_PRINT1 (" Match => jump.\n");
fa9a63c5
RM
5244 goto unconditional_jump;
5245 }
25fe55af 5246 /* Note fall through. */
fa9a63c5
RM
5247
5248
5249 /* The end of a simple repeat has a pop_failure_jump back to
25fe55af
RS
5250 its matching on_failure_jump, where the latter will push a
5251 failure point. The pop_failure_jump takes off failure
5252 points put on by this pop_failure_jump's matching
5253 on_failure_jump; we got through the pattern to here from the
5254 matching on_failure_jump, so didn't fail. */
5255 case pop_failure_jump:
5256 {
5257 /* We need to pass separate storage for the lowest and
5258 highest registers, even though we don't care about the
5259 actual values. Otherwise, we will restore only one
5260 register from the stack, since lowest will == highest in
5261 `pop_failure_point'. */
5262 unsigned dummy_low_reg, dummy_high_reg;
5263 unsigned char *pdummy;
5264 const char *sdummy;
5265
5266 DEBUG_PRINT1 ("EXECUTING pop_failure_jump.\n");
5267 POP_FAILURE_POINT (sdummy, pdummy,
5268 dummy_low_reg, dummy_high_reg,
5269 reg_dummy, reg_dummy, reg_info_dummy);
5270 }
5271 /* Note fall through. */
5272
5273
5274 /* Unconditionally jump (without popping any failure points). */
5275 case jump:
fa9a63c5 5276 unconditional_jump:
27c3b45d
RS
5277#if defined (WINDOWSNT) && defined (emacs)
5278 QUIT;
5279#endif
fa9a63c5 5280 EXTRACT_NUMBER_AND_INCR (mcnt, p); /* Get the amount to jump. */
25fe55af
RS
5281 DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt);
5282 p += mcnt; /* Do the jump. */
5283 DEBUG_PRINT2 ("(to 0x%x).\n", p);
5284 break;
5285
5286
5287 /* We need this opcode so we can detect where alternatives end
5288 in `group_match_null_string_p' et al. */
5289 case jump_past_alt:
5290 DEBUG_PRINT1 ("EXECUTING jump_past_alt.\n");
5291 goto unconditional_jump;
5292
5293
5294 /* Normally, the on_failure_jump pushes a failure point, which
5295 then gets popped at pop_failure_jump. We will end up at
5296 pop_failure_jump, also, and with a pattern of, say, `a+', we
5297 are skipping over the on_failure_jump, so we have to push
5298 something meaningless for pop_failure_jump to pop. */
5299 case dummy_failure_jump:
5300 DEBUG_PRINT1 ("EXECUTING dummy_failure_jump.\n");
5301 /* It doesn't matter what we push for the string here. What
5302 the code at `fail' tests is the value for the pattern. */
5303 PUSH_FAILURE_POINT (0, 0, -2);
5304 goto unconditional_jump;
5305
5306
5307 /* At the end of an alternative, we need to push a dummy failure
5308 point in case we are followed by a `pop_failure_jump', because
5309 we don't want the failure point for the alternative to be
5310 popped. For example, matching `(a|ab)*' against `aab'
5311 requires that we match the `ab' alternative. */
5312 case push_dummy_failure:
5313 DEBUG_PRINT1 ("EXECUTING push_dummy_failure.\n");
5314 /* See comments just above at `dummy_failure_jump' about the
5315 two zeroes. */
5316 PUSH_FAILURE_POINT (0, 0, -2);
fa9a63c5
RM
5317 break;
5318
25fe55af
RS
5319 /* Have to succeed matching what follows at least n times.
5320 After that, handle like `on_failure_jump'. */
5321 case succeed_n:
5322 EXTRACT_NUMBER (mcnt, p + 2);
5323 DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt);
5e69f11e 5324
25fe55af
RS
5325 assert (mcnt >= 0);
5326 /* Originally, this is how many times we HAVE to succeed. */
5327 if (mcnt > 0)
5328 {
5329 mcnt--;
fa9a63c5 5330 p += 2;
25fe55af
RS
5331 STORE_NUMBER_AND_INCR (p, mcnt);
5332 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p, mcnt);
5333 }
fa9a63c5 5334 else if (mcnt == 0)
25fe55af
RS
5335 {
5336 DEBUG_PRINT2 (" Setting two bytes from 0x%x to no_op.\n", p+2);
fa9a63c5 5337 p[2] = (unsigned char) no_op;
25fe55af
RS
5338 p[3] = (unsigned char) no_op;
5339 goto on_failure;
5340 }
5341 break;
5342
5343 case jump_n:
5344 EXTRACT_NUMBER (mcnt, p + 2);
5345 DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt);
5346
5347 /* Originally, this is how many times we CAN jump. */
5348 if (mcnt)
5349 {
5350 mcnt--;
5351 STORE_NUMBER (p + 2, mcnt);
5e69f11e 5352 goto unconditional_jump;
25fe55af
RS
5353 }
5354 /* If don't have to jump any more, skip over the rest of command. */
5e69f11e
RM
5355 else
5356 p += 4;
25fe55af 5357 break;
5e69f11e 5358
fa9a63c5
RM
5359 case set_number_at:
5360 {
25fe55af 5361 DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
fa9a63c5 5362
25fe55af
RS
5363 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5364 p1 = p + mcnt;
5365 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5366 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p1, mcnt);
fa9a63c5 5367 STORE_NUMBER (p1, mcnt);
25fe55af
RS
5368 break;
5369 }
9121ca40
KH
5370
5371 case wordbound:
5372 DEBUG_PRINT1 ("EXECUTING wordbound.\n");
fa9a63c5 5373
b18215fc 5374 /* We SUCCEED in one of the following cases: */
9121ca40 5375
b18215fc 5376 /* Case 1: D is at the beginning or the end of string. */
9121ca40
KH
5377 if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
5378 break;
b18215fc
RS
5379 else
5380 {
5381 /* C1 is the character before D, S1 is the syntax of C1, C2
5382 is the character at D, and S2 is the syntax of C2. */
5383 int c1, c2, s1, s2;
5384 int pos1 = PTR_TO_OFFSET (d - 1);
5d967c7a 5385 int charpos;
9121ca40 5386
b18215fc
RS
5387 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
5388 GET_CHAR_AFTER_2 (c2, d, string1, end1, string2, end2);
5389#ifdef emacs
7e95234e 5390 charpos = SYNTAX_TABLE_BYTE_TO_CHAR (pos1);
5d967c7a 5391 UPDATE_SYNTAX_TABLE (charpos);
25fe55af 5392#endif
b18215fc
RS
5393 s1 = SYNTAX (c1);
5394#ifdef emacs
5d967c7a 5395 UPDATE_SYNTAX_TABLE_FORWARD (charpos + 1);
25fe55af 5396#endif
b18215fc
RS
5397 s2 = SYNTAX (c2);
5398
5399 if (/* Case 2: Only one of S1 and S2 is Sword. */
5400 ((s1 == Sword) != (s2 == Sword))
5401 /* Case 3: Both of S1 and S2 are Sword, and macro
25fe55af 5402 WORD_BOUNDARY_P (C1, C2) returns nonzero. */
b18215fc 5403 || ((s1 == Sword) && WORD_BOUNDARY_P (c1, c2)))
9121ca40 5404 break;
9121ca40 5405 }
b18215fc 5406 goto fail;
9121ca40
KH
5407
5408 case notwordbound:
9121ca40 5409 DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
b18215fc
RS
5410
5411 /* We FAIL in one of the following cases: */
5412
5413 /* Case 1: D is at the beginning or the end of string. */
9121ca40
KH
5414 if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
5415 goto fail;
b18215fc
RS
5416 else
5417 {
5418 /* C1 is the character before D, S1 is the syntax of C1, C2
5419 is the character at D, and S2 is the syntax of C2. */
5420 int c1, c2, s1, s2;
5421 int pos1 = PTR_TO_OFFSET (d - 1);
5d967c7a 5422 int charpos;
9121ca40 5423
b18215fc
RS
5424 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
5425 GET_CHAR_AFTER_2 (c2, d, string1, end1, string2, end2);
5426#ifdef emacs
92432794 5427 charpos = SYNTAX_TABLE_BYTE_TO_CHAR (pos1);
5d967c7a 5428 UPDATE_SYNTAX_TABLE (charpos);
25fe55af 5429#endif
b18215fc
RS
5430 s1 = SYNTAX (c1);
5431#ifdef emacs
5d967c7a 5432 UPDATE_SYNTAX_TABLE_FORWARD (charpos + 1);
25fe55af 5433#endif
b18215fc
RS
5434 s2 = SYNTAX (c2);
5435
5436 if (/* Case 2: Only one of S1 and S2 is Sword. */
5437 ((s1 == Sword) != (s2 == Sword))
5438 /* Case 3: Both of S1 and S2 are Sword, and macro
25fe55af 5439 WORD_BOUNDARY_P (C1, C2) returns nonzero. */
b18215fc 5440 || ((s1 == Sword) && WORD_BOUNDARY_P (c1, c2)))
9121ca40 5441 goto fail;
9121ca40 5442 }
b18215fc 5443 break;
fa9a63c5
RM
5444
5445 case wordbeg:
25fe55af 5446 DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
fa9a63c5 5447
b18215fc
RS
5448 /* We FAIL in one of the following cases: */
5449
25fe55af 5450 /* Case 1: D is at the end of string. */
b18215fc 5451 if (AT_STRINGS_END (d))
25fe55af 5452 goto fail;
b18215fc
RS
5453 else
5454 {
5455 /* C1 is the character before D, S1 is the syntax of C1, C2
5456 is the character at D, and S2 is the syntax of C2. */
5457 int c1, c2, s1, s2;
5458 int pos1 = PTR_TO_OFFSET (d);
5d967c7a 5459 int charpos;
fa9a63c5 5460
b18215fc 5461 GET_CHAR_AFTER_2 (c2, d, string1, end1, string2, end2);
fa9a63c5 5462#ifdef emacs
92432794
RS
5463 charpos = SYNTAX_TABLE_BYTE_TO_CHAR (pos1);
5464 UPDATE_SYNTAX_TABLE (charpos);
25fe55af 5465#endif
b18215fc 5466 s2 = SYNTAX (c2);
25fe55af 5467
b18215fc
RS
5468 /* Case 2: S2 is not Sword. */
5469 if (s2 != Sword)
5470 goto fail;
5471
5472 /* Case 3: D is not at the beginning of string ... */
5473 if (!AT_STRINGS_BEG (d))
5474 {
5475 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
5476#ifdef emacs
5d967c7a 5477 UPDATE_SYNTAX_TABLE_BACKWARD (charpos - 1);
25fe55af 5478#endif
b18215fc
RS
5479 s1 = SYNTAX (c1);
5480
5481 /* ... and S1 is Sword, and WORD_BOUNDARY_P (C1, C2)
25fe55af 5482 returns 0. */
b18215fc
RS
5483 if ((s1 == Sword) && !WORD_BOUNDARY_P (c1, c2))
5484 goto fail;
5485 }
5486 }
e318085a
RS
5487 break;
5488
b18215fc 5489 case wordend:
25fe55af 5490 DEBUG_PRINT1 ("EXECUTING wordend.\n");
b18215fc
RS
5491
5492 /* We FAIL in one of the following cases: */
5493
5494 /* Case 1: D is at the beginning of string. */
5495 if (AT_STRINGS_BEG (d))
e318085a 5496 goto fail;
b18215fc
RS
5497 else
5498 {
5499 /* C1 is the character before D, S1 is the syntax of C1, C2
5500 is the character at D, and S2 is the syntax of C2. */
5501 int c1, c2, s1, s2;
5d967c7a
RS
5502 int pos1 = PTR_TO_OFFSET (d);
5503 int charpos;
b18215fc
RS
5504
5505 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
5d967c7a 5506#ifdef emacs
92432794
RS
5507 charpos = SYNTAX_TABLE_BYTE_TO_CHAR (pos1 - 1);
5508 UPDATE_SYNTAX_TABLE (charpos);
5d967c7a 5509#endif
b18215fc
RS
5510 s1 = SYNTAX (c1);
5511
5512 /* Case 2: S1 is not Sword. */
5513 if (s1 != Sword)
5514 goto fail;
5515
5516 /* Case 3: D is not at the end of string ... */
5517 if (!AT_STRINGS_END (d))
5518 {
5519 GET_CHAR_AFTER_2 (c2, d, string1, end1, string2, end2);
5d967c7a
RS
5520#ifdef emacs
5521 UPDATE_SYNTAX_TABLE_FORWARD (charpos);
5522#endif
b18215fc
RS
5523 s2 = SYNTAX (c2);
5524
5525 /* ... and S2 is Sword, and WORD_BOUNDARY_P (C1, C2)
25fe55af 5526 returns 0. */
b18215fc 5527 if ((s2 == Sword) && !WORD_BOUNDARY_P (c1, c2))
25fe55af 5528 goto fail;
b18215fc
RS
5529 }
5530 }
e318085a
RS
5531 break;
5532
b18215fc 5533#ifdef emacs
25fe55af
RS
5534 case before_dot:
5535 DEBUG_PRINT1 ("EXECUTING before_dot.\n");
5d967c7a 5536 if (PTR_BYTE_POS ((unsigned char *) d) >= PT_BYTE)
25fe55af
RS
5537 goto fail;
5538 break;
b18215fc 5539
25fe55af
RS
5540 case at_dot:
5541 DEBUG_PRINT1 ("EXECUTING at_dot.\n");
5d967c7a 5542 if (PTR_BYTE_POS ((unsigned char *) d) != PT_BYTE)
25fe55af
RS
5543 goto fail;
5544 break;
b18215fc 5545
25fe55af
RS
5546 case after_dot:
5547 DEBUG_PRINT1 ("EXECUTING after_dot.\n");
5d967c7a 5548 if (PTR_BYTE_POS ((unsigned char *) d) <= PT_BYTE)
25fe55af
RS
5549 goto fail;
5550 break;
fa9a63c5
RM
5551
5552 case syntaxspec:
25fe55af 5553 DEBUG_PRINT2 ("EXECUTING syntaxspec %d.\n", mcnt);
fa9a63c5
RM
5554 mcnt = *p++;
5555 goto matchsyntax;
5556
25fe55af
RS
5557 case wordchar:
5558 DEBUG_PRINT1 ("EXECUTING Emacs wordchar.\n");
fa9a63c5 5559 mcnt = (int) Sword;
25fe55af 5560 matchsyntax:
fa9a63c5 5561 PREFETCH ();
b18215fc
RS
5562#ifdef emacs
5563 {
92432794 5564 int pos1 = SYNTAX_TABLE_BYTE_TO_CHAR (PTR_TO_OFFSET (d));
b18215fc
RS
5565 UPDATE_SYNTAX_TABLE (pos1);
5566 }
25fe55af 5567#endif
b18215fc
RS
5568 {
5569 int c, len;
5570
5571 if (multibyte)
5572 /* we must concern about multibyte form, ... */
5573 c = STRING_CHAR_AND_LENGTH (d, dend - d, len);
5574 else
5575 /* everything should be handled as ASCII, even though it
5576 looks like multibyte form. */
5577 c = *d, len = 1;
5578
5579 if (SYNTAX (c) != (enum syntaxcode) mcnt)
fa9a63c5 5580 goto fail;
b18215fc
RS
5581 d += len;
5582 }
25fe55af 5583 SET_REGS_MATCHED ();
fa9a63c5
RM
5584 break;
5585
5586 case notsyntaxspec:
25fe55af 5587 DEBUG_PRINT2 ("EXECUTING notsyntaxspec %d.\n", mcnt);
fa9a63c5
RM
5588 mcnt = *p++;
5589 goto matchnotsyntax;
5590
25fe55af
RS
5591 case notwordchar:
5592 DEBUG_PRINT1 ("EXECUTING Emacs notwordchar.\n");
fa9a63c5 5593 mcnt = (int) Sword;
25fe55af 5594 matchnotsyntax:
fa9a63c5 5595 PREFETCH ();
b18215fc
RS
5596#ifdef emacs
5597 {
92432794 5598 int pos1 = SYNTAX_TABLE_BYTE_TO_CHAR (PTR_TO_OFFSET (d));
b18215fc
RS
5599 UPDATE_SYNTAX_TABLE (pos1);
5600 }
25fe55af 5601#endif
b18215fc
RS
5602 {
5603 int c, len;
5604
5605 if (multibyte)
5606 c = STRING_CHAR_AND_LENGTH (d, dend - d, len);
5607 else
5608 c = *d, len = 1;
5609
5610 if (SYNTAX (c) == (enum syntaxcode) mcnt)
fa9a63c5 5611 goto fail;
b18215fc
RS
5612 d += len;
5613 }
5614 SET_REGS_MATCHED ();
5615 break;
5616
5617 case categoryspec:
5618 DEBUG_PRINT2 ("EXECUTING categoryspec %d.\n", *p);
5619 mcnt = *p++;
5620 PREFETCH ();
5621 {
5622 int c, len;
5623
5624 if (multibyte)
5625 c = STRING_CHAR_AND_LENGTH (d, dend - d, len);
5626 else
5627 c = *d, len = 1;
5628
5629 if (!CHAR_HAS_CATEGORY (c, mcnt))
5630 goto fail;
5631 d += len;
5632 }
fa9a63c5 5633 SET_REGS_MATCHED ();
e318085a 5634 break;
fa9a63c5 5635
b18215fc
RS
5636 case notcategoryspec:
5637 DEBUG_PRINT2 ("EXECUTING notcategoryspec %d.\n", *p);
5638 mcnt = *p++;
5639 PREFETCH ();
5640 {
5641 int c, len;
5642
5643 if (multibyte)
5644 c = STRING_CHAR_AND_LENGTH (d, dend - d, len);
5645 else
5646 c = *d, len = 1;
5647
5648 if (CHAR_HAS_CATEGORY (c, mcnt))
5649 goto fail;
5650 d += len;
5651 }
5652 SET_REGS_MATCHED ();
5653 break;
5654
fa9a63c5
RM
5655#else /* not emacs */
5656 case wordchar:
b18215fc 5657 DEBUG_PRINT1 ("EXECUTING non-Emacs wordchar.\n");
fa9a63c5 5658 PREFETCH ();
b18215fc
RS
5659 if (!WORDCHAR_P (d))
5660 goto fail;
fa9a63c5 5661 SET_REGS_MATCHED ();
b18215fc 5662 d++;
fa9a63c5 5663 break;
5e69f11e 5664
fa9a63c5 5665 case notwordchar:
b18215fc 5666 DEBUG_PRINT1 ("EXECUTING non-Emacs notwordchar.\n");
fa9a63c5
RM
5667 PREFETCH ();
5668 if (WORDCHAR_P (d))
b18215fc
RS
5669 goto fail;
5670 SET_REGS_MATCHED ();
5671 d++;
fa9a63c5
RM
5672 break;
5673#endif /* not emacs */
5e69f11e 5674
b18215fc
RS
5675 default:
5676 abort ();
fa9a63c5 5677 }
b18215fc 5678 continue; /* Successfully executed one pattern command; keep going. */
fa9a63c5
RM
5679
5680
5681 /* We goto here if a matching operation fails. */
5682 fail:
27c3b45d
RS
5683#if defined (WINDOWSNT) && defined (emacs)
5684 QUIT;
5685#endif
fa9a63c5 5686 if (!FAIL_STACK_EMPTY ())
b18215fc
RS
5687 { /* A restart point is known. Restore to that state. */
5688 DEBUG_PRINT1 ("\nFAIL:\n");
5689 POP_FAILURE_POINT (d, p,
5690 lowest_active_reg, highest_active_reg,
5691 regstart, regend, reg_info);
5692
5693 /* If this failure point is a dummy, try the next one. */
5694 if (!p)
fa9a63c5
RM
5695 goto fail;
5696
b18215fc 5697 /* If we failed to the end of the pattern, don't examine *p. */
fa9a63c5 5698 assert (p <= pend);
b18215fc
RS
5699 if (p < pend)
5700 {
5701 boolean is_a_jump_n = false;
5702
5703 /* If failed to a backwards jump that's part of a repetition
5704 loop, need to pop this failure point and use the next one. */
5705 switch ((re_opcode_t) *p)
5706 {
5707 case jump_n:
5708 is_a_jump_n = true;
5709 case maybe_pop_jump:
5710 case pop_failure_jump:
5711 case jump:
5712 p1 = p + 1;
5713 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5714 p1 += mcnt;
5715
5716 if ((is_a_jump_n && (re_opcode_t) *p1 == succeed_n)
5717 || (!is_a_jump_n
5718 && (re_opcode_t) *p1 == on_failure_jump))
5719 goto fail;
5720 break;
5721 default:
5722 /* do nothing */ ;
5723 }
5724 }
5725
5726 if (d >= string1 && d <= end1)
fa9a63c5 5727 dend = end_match_1;
b18215fc 5728 }
fa9a63c5 5729 else
b18215fc 5730 break; /* Matching at this starting point really fails. */
fa9a63c5
RM
5731 } /* for (;;) */
5732
5733 if (best_regs_set)
5734 goto restore_best_regs;
5735
5736 FREE_VARIABLES ();
5737
b18215fc 5738 return -1; /* Failure to match. */
fa9a63c5
RM
5739} /* re_match_2 */
5740\f
5741/* Subroutine definitions for re_match_2. */
5742
5743
5744/* We are passed P pointing to a register number after a start_memory.
5e69f11e 5745
fa9a63c5
RM
5746 Return true if the pattern up to the corresponding stop_memory can
5747 match the empty string, and false otherwise.
5e69f11e 5748
fa9a63c5
RM
5749 If we find the matching stop_memory, sets P to point to one past its number.
5750 Otherwise, sets P to an undefined byte less than or equal to END.
5751
5752 We don't handle duplicates properly (yet). */
5753
5754static boolean
5755group_match_null_string_p (p, end, reg_info)
5756 unsigned char **p, *end;
5757 register_info_type *reg_info;
5758{
5759 int mcnt;
5760 /* Point to after the args to the start_memory. */
5761 unsigned char *p1 = *p + 2;
5e69f11e 5762
fa9a63c5
RM
5763 while (p1 < end)
5764 {
5765 /* Skip over opcodes that can match nothing, and return true or
5766 false, as appropriate, when we get to one that can't, or to the
b18215fc 5767 matching stop_memory. */
5e69f11e 5768
fa9a63c5 5769 switch ((re_opcode_t) *p1)
b18215fc
RS
5770 {
5771 /* Could be either a loop or a series of alternatives. */
5772 case on_failure_jump:
5773 p1++;
5774 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5e69f11e 5775
b18215fc 5776 /* If the next operation is not a jump backwards in the
fa9a63c5
RM
5777 pattern. */
5778
5779 if (mcnt >= 0)
5780 {
b18215fc
RS
5781 /* Go through the on_failure_jumps of the alternatives,
5782 seeing if any of the alternatives cannot match nothing.
5783 The last alternative starts with only a jump,
5784 whereas the rest start with on_failure_jump and end
5785 with a jump, e.g., here is the pattern for `a|b|c':
fa9a63c5 5786
b18215fc
RS
5787 /on_failure_jump/0/6/exactn/1/a/jump_past_alt/0/6
5788 /on_failure_jump/0/6/exactn/1/b/jump_past_alt/0/3
5789 /exactn/1/c
fa9a63c5 5790
b18215fc
RS
5791 So, we have to first go through the first (n-1)
5792 alternatives and then deal with the last one separately. */
fa9a63c5
RM
5793
5794
b18215fc
RS
5795 /* Deal with the first (n-1) alternatives, which start
5796 with an on_failure_jump (see above) that jumps to right
5797 past a jump_past_alt. */
fa9a63c5 5798
b18215fc
RS
5799 while ((re_opcode_t) p1[mcnt-3] == jump_past_alt)
5800 {
5801 /* `mcnt' holds how many bytes long the alternative
5802 is, including the ending `jump_past_alt' and
5803 its number. */
fa9a63c5 5804
b18215fc
RS
5805 if (!alt_match_null_string_p (p1, p1 + mcnt - 3,
5806 reg_info))
5807 return false;
fa9a63c5 5808
b18215fc 5809 /* Move to right after this alternative, including the
fa9a63c5 5810 jump_past_alt. */
b18215fc 5811 p1 += mcnt;
fa9a63c5 5812
b18215fc
RS
5813 /* Break if it's the beginning of an n-th alternative
5814 that doesn't begin with an on_failure_jump. */
5815 if ((re_opcode_t) *p1 != on_failure_jump)
5816 break;
5e69f11e 5817
fa9a63c5
RM
5818 /* Still have to check that it's not an n-th
5819 alternative that starts with an on_failure_jump. */
5820 p1++;
b18215fc
RS
5821 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5822 if ((re_opcode_t) p1[mcnt-3] != jump_past_alt)
5823 {
5824 /* Get to the beginning of the n-th alternative. */
5825 p1 -= 3;
5826 break;
5827 }
5828 }
fa9a63c5 5829
b18215fc
RS
5830 /* Deal with the last alternative: go back and get number
5831 of the `jump_past_alt' just before it. `mcnt' contains
5832 the length of the alternative. */
5833 EXTRACT_NUMBER (mcnt, p1 - 2);
fa9a63c5 5834
b18215fc
RS
5835 if (!alt_match_null_string_p (p1, p1 + mcnt, reg_info))
5836 return false;
fa9a63c5 5837
b18215fc
RS
5838 p1 += mcnt; /* Get past the n-th alternative. */
5839 } /* if mcnt > 0 */
5840 break;
fa9a63c5 5841
5e69f11e 5842
b18215fc 5843 case stop_memory:
fa9a63c5 5844 assert (p1[1] == **p);
b18215fc
RS
5845 *p = p1 + 2;
5846 return true;
fa9a63c5 5847
5e69f11e 5848
b18215fc
RS
5849 default:
5850 if (!common_op_match_null_string_p (&p1, end, reg_info))
5851 return false;
5852 }
fa9a63c5
RM
5853 } /* while p1 < end */
5854
5855 return false;
5856} /* group_match_null_string_p */
5857
5858
5859/* Similar to group_match_null_string_p, but doesn't deal with alternatives:
5860 It expects P to be the first byte of a single alternative and END one
5861 byte past the last. The alternative can contain groups. */
5e69f11e 5862
fa9a63c5
RM
5863static boolean
5864alt_match_null_string_p (p, end, reg_info)
5865 unsigned char *p, *end;
5866 register_info_type *reg_info;
5867{
5868 int mcnt;
5869 unsigned char *p1 = p;
5e69f11e 5870
fa9a63c5
RM
5871 while (p1 < end)
5872 {
5e69f11e 5873 /* Skip over opcodes that can match nothing, and break when we get
b18215fc 5874 to one that can't. */
5e69f11e 5875
fa9a63c5 5876 switch ((re_opcode_t) *p1)
b18215fc
RS
5877 {
5878 /* It's a loop. */
5879 case on_failure_jump:
5880 p1++;
5881 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5882 p1 += mcnt;
5883 break;
5e69f11e
RM
5884
5885 default:
b18215fc
RS
5886 if (!common_op_match_null_string_p (&p1, end, reg_info))
5887 return false;
5888 }
fa9a63c5
RM
5889 } /* while p1 < end */
5890
5891 return true;
5892} /* alt_match_null_string_p */
5893
5894
5895/* Deals with the ops common to group_match_null_string_p and
5e69f11e
RM
5896 alt_match_null_string_p.
5897
fa9a63c5
RM
5898 Sets P to one after the op and its arguments, if any. */
5899
5900static boolean
5901common_op_match_null_string_p (p, end, reg_info)
5902 unsigned char **p, *end;
5903 register_info_type *reg_info;
5904{
5905 int mcnt;
5906 boolean ret;
5907 int reg_no;
5908 unsigned char *p1 = *p;
5909
5910 switch ((re_opcode_t) *p1++)
5911 {
5912 case no_op:
5913 case begline:
5914 case endline:
5915 case begbuf:
5916 case endbuf:
5917 case wordbeg:
5918 case wordend:
5919 case wordbound:
5920 case notwordbound:
5921#ifdef emacs
5922 case before_dot:
5923 case at_dot:
5924 case after_dot:
5925#endif
5926 break;
5927
5928 case start_memory:
5929 reg_no = *p1;
5930 assert (reg_no > 0 && reg_no <= MAX_REGNUM);
5931 ret = group_match_null_string_p (&p1, end, reg_info);
5e69f11e 5932
fa9a63c5 5933 /* Have to set this here in case we're checking a group which
b18215fc 5934 contains a group and a back reference to it. */
fa9a63c5
RM
5935
5936 if (REG_MATCH_NULL_STRING_P (reg_info[reg_no]) == MATCH_NULL_UNSET_VALUE)
b18215fc 5937 REG_MATCH_NULL_STRING_P (reg_info[reg_no]) = ret;
fa9a63c5
RM
5938
5939 if (!ret)
b18215fc 5940 return false;
fa9a63c5 5941 break;
5e69f11e 5942
b18215fc 5943 /* If this is an optimized succeed_n for zero times, make the jump. */
fa9a63c5
RM
5944 case jump:
5945 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5946 if (mcnt >= 0)
b18215fc 5947 p1 += mcnt;
fa9a63c5 5948 else
b18215fc 5949 return false;
fa9a63c5
RM
5950 break;
5951
5952 case succeed_n:
b18215fc 5953 /* Get to the number of times to succeed. */
5e69f11e 5954 p1 += 2;
fa9a63c5
RM
5955 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5956
5957 if (mcnt == 0)
b18215fc
RS
5958 {
5959 p1 -= 4;
5960 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5961 p1 += mcnt;
5962 }
fa9a63c5 5963 else
b18215fc 5964 return false;
fa9a63c5
RM
5965 break;
5966
5e69f11e 5967 case duplicate:
fa9a63c5 5968 if (!REG_MATCH_NULL_STRING_P (reg_info[*p1]))
b18215fc 5969 return false;
fa9a63c5
RM
5970 break;
5971
5972 case set_number_at:
5973 p1 += 4;
5974
5975 default:
5976 /* All other opcodes mean we cannot match the empty string. */
5977 return false;
5978 }
5979
5980 *p = p1;
5981 return true;
5982} /* common_op_match_null_string_p */
5983
5984
5985/* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
5986 bytes; nonzero otherwise. */
5e69f11e 5987
fa9a63c5
RM
5988static int
5989bcmp_translate (s1, s2, len, translate)
5990 unsigned char *s1, *s2;
5991 register int len;
6676cb1c 5992 RE_TRANSLATE_TYPE translate;
fa9a63c5
RM
5993{
5994 register unsigned char *p1 = s1, *p2 = s2;
e934739e
RS
5995 unsigned char *p1_end = s1 + len;
5996 unsigned char *p2_end = s2 + len;
5997
5998 while (p1 != p1_end && p2 != p2_end)
fa9a63c5 5999 {
e934739e
RS
6000 int p1_charlen, p2_charlen;
6001 int p1_ch, p2_ch;
6002
6003 p1_ch = STRING_CHAR_AND_LENGTH (p1, p1_end - p1, p1_charlen);
6004 p2_ch = STRING_CHAR_AND_LENGTH (p2, p2_end - p2, p2_charlen);
6005
6006 if (RE_TRANSLATE (translate, p1_ch)
6007 != RE_TRANSLATE (translate, p2_ch))
bc192b5b 6008 return 1;
e934739e
RS
6009
6010 p1 += p1_charlen, p2 += p2_charlen;
fa9a63c5 6011 }
e934739e
RS
6012
6013 if (p1 != p1_end || p2 != p2_end)
6014 return 1;
6015
fa9a63c5
RM
6016 return 0;
6017}
6018\f
6019/* Entry points for GNU code. */
6020
6021/* re_compile_pattern is the GNU regular expression compiler: it
6022 compiles PATTERN (of length SIZE) and puts the result in BUFP.
6023 Returns 0 if the pattern was valid, otherwise an error string.
5e69f11e 6024
fa9a63c5
RM
6025 Assumes the `allocated' (and perhaps `buffer') and `translate' fields
6026 are set in BUFP on entry.
5e69f11e 6027
b18215fc 6028 We call regex_compile to do the actual compilation. */
fa9a63c5
RM
6029
6030const char *
6031re_compile_pattern (pattern, length, bufp)
6032 const char *pattern;
6033 int length;
6034 struct re_pattern_buffer *bufp;
6035{
6036 reg_errcode_t ret;
5e69f11e 6037
fa9a63c5
RM
6038 /* GNU code is written to assume at least RE_NREGS registers will be set
6039 (and at least one extra will be -1). */
6040 bufp->regs_allocated = REGS_UNALLOCATED;
5e69f11e 6041
fa9a63c5
RM
6042 /* And GNU code determines whether or not to get register information
6043 by passing null for the REGS argument to re_match, etc., not by
6044 setting no_sub. */
6045 bufp->no_sub = 0;
5e69f11e 6046
b18215fc 6047 /* Match anchors at newline. */
fa9a63c5 6048 bufp->newline_anchor = 1;
5e69f11e 6049
fa9a63c5
RM
6050 ret = regex_compile (pattern, length, re_syntax_options, bufp);
6051
6052 if (!ret)
6053 return NULL;
6054 return gettext (re_error_msgid[(int) ret]);
5e69f11e 6055}
fa9a63c5 6056\f
b18215fc
RS
6057/* Entry points compatible with 4.2 BSD regex library. We don't define
6058 them unless specifically requested. */
fa9a63c5 6059
0c085854 6060#if defined (_REGEX_RE_COMP) || defined (_LIBC)
fa9a63c5
RM
6061
6062/* BSD has one and only one pattern buffer. */
6063static struct re_pattern_buffer re_comp_buf;
6064
6065char *
48afdd44
RM
6066#ifdef _LIBC
6067/* Make these definitions weak in libc, so POSIX programs can redefine
6068 these names if they don't use our functions, and still use
6069 regcomp/regexec below without link errors. */
6070weak_function
6071#endif
fa9a63c5
RM
6072re_comp (s)
6073 const char *s;
6074{
6075 reg_errcode_t ret;
5e69f11e 6076
fa9a63c5
RM
6077 if (!s)
6078 {
6079 if (!re_comp_buf.buffer)
6080 return gettext ("No previous regular expression");
6081 return 0;
6082 }
6083
6084 if (!re_comp_buf.buffer)
6085 {
6086 re_comp_buf.buffer = (unsigned char *) malloc (200);
6087 if (re_comp_buf.buffer == NULL)
b18215fc 6088 return gettext (re_error_msgid[(int) REG_ESPACE]);
fa9a63c5
RM
6089 re_comp_buf.allocated = 200;
6090
6091 re_comp_buf.fastmap = (char *) malloc (1 << BYTEWIDTH);
6092 if (re_comp_buf.fastmap == NULL)
6093 return gettext (re_error_msgid[(int) REG_ESPACE]);
6094 }
6095
6096 /* Since `re_exec' always passes NULL for the `regs' argument, we
6097 don't need to initialize the pattern buffer fields which affect it. */
6098
b18215fc 6099 /* Match anchors at newlines. */
fa9a63c5
RM
6100 re_comp_buf.newline_anchor = 1;
6101
6102 ret = regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf);
5e69f11e 6103
fa9a63c5
RM
6104 if (!ret)
6105 return NULL;
6106
6107 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
6108 return (char *) gettext (re_error_msgid[(int) ret]);
6109}
6110
6111
6112int
48afdd44
RM
6113#ifdef _LIBC
6114weak_function
6115#endif
fa9a63c5
RM
6116re_exec (s)
6117 const char *s;
6118{
6119 const int len = strlen (s);
6120 return
6121 0 <= re_search (&re_comp_buf, s, len, 0, len, (struct re_registers *) 0);
6122}
6123#endif /* _REGEX_RE_COMP */
6124\f
6125/* POSIX.2 functions. Don't define these for Emacs. */
6126
6127#ifndef emacs
6128
6129/* regcomp takes a regular expression as a string and compiles it.
6130
b18215fc 6131 PREG is a regex_t *. We do not expect any fields to be initialized,
fa9a63c5
RM
6132 since POSIX says we shouldn't. Thus, we set
6133
6134 `buffer' to the compiled pattern;
6135 `used' to the length of the compiled pattern;
6136 `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
6137 REG_EXTENDED bit in CFLAGS is set; otherwise, to
6138 RE_SYNTAX_POSIX_BASIC;
6139 `newline_anchor' to REG_NEWLINE being set in CFLAGS;
6140 `fastmap' and `fastmap_accurate' to zero;
6141 `re_nsub' to the number of subexpressions in PATTERN.
6142
6143 PATTERN is the address of the pattern string.
6144
6145 CFLAGS is a series of bits which affect compilation.
6146
6147 If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
6148 use POSIX basic syntax.
6149
6150 If REG_NEWLINE is set, then . and [^...] don't match newline.
6151 Also, regexec will try a match beginning after every newline.
6152
6153 If REG_ICASE is set, then we considers upper- and lowercase
6154 versions of letters to be equivalent when matching.
6155
6156 If REG_NOSUB is set, then when PREG is passed to regexec, that
6157 routine will report only success or failure, and nothing about the
6158 registers.
6159
b18215fc 6160 It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for
fa9a63c5
RM
6161 the return codes and their meanings.) */
6162
6163int
6164regcomp (preg, pattern, cflags)
6165 regex_t *preg;
5e69f11e 6166 const char *pattern;
fa9a63c5
RM
6167 int cflags;
6168{
6169 reg_errcode_t ret;
6170 unsigned syntax
6171 = (cflags & REG_EXTENDED) ?
6172 RE_SYNTAX_POSIX_EXTENDED : RE_SYNTAX_POSIX_BASIC;
6173
6174 /* regex_compile will allocate the space for the compiled pattern. */
6175 preg->buffer = 0;
6176 preg->allocated = 0;
6177 preg->used = 0;
5e69f11e 6178
fa9a63c5
RM
6179 /* Don't bother to use a fastmap when searching. This simplifies the
6180 REG_NEWLINE case: if we used a fastmap, we'd have to put all the
6181 characters after newlines into the fastmap. This way, we just try
6182 every character. */
6183 preg->fastmap = 0;
5e69f11e 6184
fa9a63c5
RM
6185 if (cflags & REG_ICASE)
6186 {
6187 unsigned i;
5e69f11e 6188
6676cb1c
RS
6189 preg->translate
6190 = (RE_TRANSLATE_TYPE) malloc (CHAR_SET_SIZE
6191 * sizeof (*(RE_TRANSLATE_TYPE)0));
fa9a63c5 6192 if (preg->translate == NULL)
b18215fc 6193 return (int) REG_ESPACE;
fa9a63c5
RM
6194
6195 /* Map uppercase characters to corresponding lowercase ones. */
6196 for (i = 0; i < CHAR_SET_SIZE; i++)
b18215fc 6197 preg->translate[i] = ISUPPER (i) ? tolower (i) : i;
fa9a63c5
RM
6198 }
6199 else
6200 preg->translate = NULL;
6201
6202 /* If REG_NEWLINE is set, newlines are treated differently. */
6203 if (cflags & REG_NEWLINE)
6204 { /* REG_NEWLINE implies neither . nor [^...] match newline. */
6205 syntax &= ~RE_DOT_NEWLINE;
6206 syntax |= RE_HAT_LISTS_NOT_NEWLINE;
b18215fc 6207 /* It also changes the matching behavior. */
fa9a63c5
RM
6208 preg->newline_anchor = 1;
6209 }
6210 else
6211 preg->newline_anchor = 0;
6212
6213 preg->no_sub = !!(cflags & REG_NOSUB);
6214
5e69f11e 6215 /* POSIX says a null character in the pattern terminates it, so we
fa9a63c5
RM
6216 can use strlen here in compiling the pattern. */
6217 ret = regex_compile (pattern, strlen (pattern), syntax, preg);
5e69f11e 6218
fa9a63c5
RM
6219 /* POSIX doesn't distinguish between an unmatched open-group and an
6220 unmatched close-group: both are REG_EPAREN. */
6221 if (ret == REG_ERPAREN) ret = REG_EPAREN;
5e69f11e 6222
fa9a63c5
RM
6223 return (int) ret;
6224}
6225
6226
6227/* regexec searches for a given pattern, specified by PREG, in the
6228 string STRING.
5e69f11e 6229
fa9a63c5 6230 If NMATCH is zero or REG_NOSUB was set in the cflags argument to
b18215fc 6231 `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at
fa9a63c5
RM
6232 least NMATCH elements, and we set them to the offsets of the
6233 corresponding matched substrings.
5e69f11e 6234
fa9a63c5
RM
6235 EFLAGS specifies `execution flags' which affect matching: if
6236 REG_NOTBOL is set, then ^ does not match at the beginning of the
6237 string; if REG_NOTEOL is set, then $ does not match at the end.
5e69f11e 6238
fa9a63c5
RM
6239 We return 0 if we find a match and REG_NOMATCH if not. */
6240
6241int
6242regexec (preg, string, nmatch, pmatch, eflags)
6243 const regex_t *preg;
5e69f11e
RM
6244 const char *string;
6245 size_t nmatch;
6246 regmatch_t pmatch[];
fa9a63c5
RM
6247 int eflags;
6248{
6249 int ret;
6250 struct re_registers regs;
6251 regex_t private_preg;
6252 int len = strlen (string);
6253 boolean want_reg_info = !preg->no_sub && nmatch > 0;
6254
6255 private_preg = *preg;
5e69f11e 6256
fa9a63c5
RM
6257 private_preg.not_bol = !!(eflags & REG_NOTBOL);
6258 private_preg.not_eol = !!(eflags & REG_NOTEOL);
5e69f11e 6259
fa9a63c5
RM
6260 /* The user has told us exactly how many registers to return
6261 information about, via `nmatch'. We have to pass that on to the
b18215fc 6262 matching routines. */
fa9a63c5 6263 private_preg.regs_allocated = REGS_FIXED;
5e69f11e 6264
fa9a63c5
RM
6265 if (want_reg_info)
6266 {
6267 regs.num_regs = nmatch;
6268 regs.start = TALLOC (nmatch, regoff_t);
6269 regs.end = TALLOC (nmatch, regoff_t);
6270 if (regs.start == NULL || regs.end == NULL)
b18215fc 6271 return (int) REG_NOMATCH;
fa9a63c5
RM
6272 }
6273
6274 /* Perform the searching operation. */
6275 ret = re_search (&private_preg, string, len,
b18215fc
RS
6276 /* start: */ 0, /* range: */ len,
6277 want_reg_info ? &regs : (struct re_registers *) 0);
5e69f11e 6278
fa9a63c5
RM
6279 /* Copy the register information to the POSIX structure. */
6280 if (want_reg_info)
6281 {
6282 if (ret >= 0)
b18215fc
RS
6283 {
6284 unsigned r;
fa9a63c5 6285
b18215fc
RS
6286 for (r = 0; r < nmatch; r++)
6287 {
6288 pmatch[r].rm_so = regs.start[r];
6289 pmatch[r].rm_eo = regs.end[r];
6290 }
6291 }
fa9a63c5 6292
b18215fc 6293 /* If we needed the temporary register info, free the space now. */
fa9a63c5
RM
6294 free (regs.start);
6295 free (regs.end);
6296 }
6297
6298 /* We want zero return to mean success, unlike `re_search'. */
6299 return ret >= 0 ? (int) REG_NOERROR : (int) REG_NOMATCH;
6300}
6301
6302
6303/* Returns a message corresponding to an error code, ERRCODE, returned
6304 from either regcomp or regexec. We don't use PREG here. */
6305
6306size_t
6307regerror (errcode, preg, errbuf, errbuf_size)
6308 int errcode;
6309 const regex_t *preg;
6310 char *errbuf;
6311 size_t errbuf_size;
6312{
6313 const char *msg;
6314 size_t msg_size;
6315
6316 if (errcode < 0
6317 || errcode >= (sizeof (re_error_msgid) / sizeof (re_error_msgid[0])))
5e69f11e 6318 /* Only error codes returned by the rest of the code should be passed
b18215fc 6319 to this routine. If we are given anything else, or if other regex
fa9a63c5
RM
6320 code generates an invalid error code, then the program has a bug.
6321 Dump core so we can fix it. */
6322 abort ();
6323
6324 msg = gettext (re_error_msgid[errcode]);
6325
6326 msg_size = strlen (msg) + 1; /* Includes the null. */
5e69f11e 6327
fa9a63c5
RM
6328 if (errbuf_size != 0)
6329 {
6330 if (msg_size > errbuf_size)
b18215fc
RS
6331 {
6332 strncpy (errbuf, msg, errbuf_size - 1);
6333 errbuf[errbuf_size - 1] = 0;
6334 }
fa9a63c5 6335 else
b18215fc 6336 strcpy (errbuf, msg);
fa9a63c5
RM
6337 }
6338
6339 return msg_size;
6340}
6341
6342
6343/* Free dynamically allocated space used by PREG. */
6344
6345void
6346regfree (preg)
6347 regex_t *preg;
6348{
6349 if (preg->buffer != NULL)
6350 free (preg->buffer);
6351 preg->buffer = NULL;
5e69f11e 6352
fa9a63c5
RM
6353 preg->allocated = 0;
6354 preg->used = 0;
6355
6356 if (preg->fastmap != NULL)
6357 free (preg->fastmap);
6358 preg->fastmap = NULL;
6359 preg->fastmap_accurate = 0;
6360
6361 if (preg->translate != NULL)
6362 free (preg->translate);
6363 preg->translate = NULL;
6364}
6365
6366#endif /* not emacs */