(rmail-mode-2): Locally set enable-local-variables
[bpt/emacs.git] / src / regex.c
CommitLineData
e318085a
RS
1/* Extended regular expression matching and search library, version
2 0.12. (Implements POSIX draft P10003.2/D11.2, except for
bc78d348
KB
3 internationalization features.)
4
b18215fc 5 Copyright (C) 1993, 1994, 1995, 1996, 1997 Free Software Foundation, Inc.
bc78d348 6
fa9a63c5
RM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
25fe55af 14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
fa9a63c5
RM
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
ba4a8e51 19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307,
25fe55af 20 USA. */
fa9a63c5
RM
21
22/* AIX requires this to be the first thing in the file. */
23#if defined (_AIX) && !defined (REGEX_MALLOC)
24 #pragma alloca
25#endif
26
68d96f02 27#undef _GNU_SOURCE
fa9a63c5
RM
28#define _GNU_SOURCE
29
25fe55af
RS
30/* Converts the pointer to the char to BEG-based offset from the start. */
31#define PTR_TO_OFFSET(d) \
b18215fc
RS
32 POS_AS_IN_BUFFER (MATCHING_IN_FIRST_STRING \
33 ? (d) - string1 : (d) - (string2 - size1))
34#define POS_AS_IN_BUFFER(p) ((p) + 1)
35
fa9a63c5
RM
36#ifdef HAVE_CONFIG_H
37#include <config.h>
38#endif
39
25fe55af 40/* We need this for `regex.h', and perhaps for the Emacs include files. */
fa9a63c5
RM
41#include <sys/types.h>
42
25fe55af 43/* This is for other GNU distributions with internationalized messages. */
fa9a63c5
RM
44#if HAVE_LIBINTL_H || defined (_LIBC)
45# include <libintl.h>
46#else
47# define gettext(msgid) (msgid)
48#endif
49
5e69f11e
RM
50#ifndef gettext_noop
51/* This define is so xgettext can find the internationalizable
52 strings. */
53#define gettext_noop(String) String
54#endif
55
fa9a63c5
RM
56/* The `emacs' switch turns on certain matching commands
57 that make sense only in Emacs. */
58#ifdef emacs
59
60#include "lisp.h"
61#include "buffer.h"
b18215fc
RS
62
63/* Make syntax table lookup grant data in gl_state. */
64#define SYNTAX_ENTRY_VIA_PROPERTY
65
fa9a63c5 66#include "syntax.h"
b18215fc
RS
67#include "charset.h"
68#include "category.h"
fa9a63c5 69
9abbd165
RS
70#define malloc xmalloc
71#define free xfree
72
fa9a63c5
RM
73#else /* not emacs */
74
75/* If we are not linking with Emacs proper,
76 we can't use the relocating allocator
77 even if config.h says that we can. */
78#undef REL_ALLOC
79
80#if defined (STDC_HEADERS) || defined (_LIBC)
81#include <stdlib.h>
82#else
83char *malloc ();
84char *realloc ();
85#endif
86
9e4ecb26 87/* When used in Emacs's lib-src, we need to get bzero and bcopy somehow.
25fe55af 88 If nothing else has been done, use the method below. */
9e4ecb26
KH
89#ifdef INHIBIT_STRING_HEADER
90#if !(defined (HAVE_BZERO) && defined (HAVE_BCOPY))
91#if !defined (bzero) && !defined (bcopy)
92#undef INHIBIT_STRING_HEADER
93#endif
94#endif
95#endif
96
97/* This is the normal way of making sure we have a bcopy and a bzero.
98 This is used in most programs--a few other programs avoid this
99 by defining INHIBIT_STRING_HEADER. */
fa9a63c5 100#ifndef INHIBIT_STRING_HEADER
7f998252 101#if defined (HAVE_STRING_H) || defined (STDC_HEADERS) || defined (_LIBC)
fa9a63c5
RM
102#include <string.h>
103#ifndef bcmp
104#define bcmp(s1, s2, n) memcmp ((s1), (s2), (n))
105#endif
106#ifndef bcopy
107#define bcopy(s, d, n) memcpy ((d), (s), (n))
108#endif
109#ifndef bzero
110#define bzero(s, n) memset ((s), 0, (n))
111#endif
112#else
113#include <strings.h>
114#endif
115#endif
116
117/* Define the syntax stuff for \<, \>, etc. */
118
119/* This must be nonzero for the wordchar and notwordchar pattern
120 commands in re_match_2. */
5e69f11e 121#ifndef Sword
fa9a63c5
RM
122#define Sword 1
123#endif
124
125#ifdef SWITCH_ENUM_BUG
126#define SWITCH_ENUM_CAST(x) ((int)(x))
127#else
128#define SWITCH_ENUM_CAST(x) (x)
129#endif
130
131#ifdef SYNTAX_TABLE
132
133extern char *re_syntax_table;
134
135#else /* not SYNTAX_TABLE */
136
137/* How many characters in the character set. */
138#define CHAR_SET_SIZE 256
139
140static char re_syntax_table[CHAR_SET_SIZE];
141
142static void
143init_syntax_once ()
144{
145 register int c;
146 static int done = 0;
147
148 if (done)
149 return;
150
151 bzero (re_syntax_table, sizeof re_syntax_table);
152
153 for (c = 'a'; c <= 'z'; c++)
154 re_syntax_table[c] = Sword;
155
156 for (c = 'A'; c <= 'Z'; c++)
157 re_syntax_table[c] = Sword;
158
159 for (c = '0'; c <= '9'; c++)
160 re_syntax_table[c] = Sword;
161
162 re_syntax_table['_'] = Sword;
163
164 done = 1;
165}
166
167#endif /* not SYNTAX_TABLE */
168
169#define SYNTAX(c) re_syntax_table[c]
170
b18215fc
RS
171/* Dummy macro for non emacs environments. */
172#define BASE_LEADING_CODE_P(c) (0)
173#define WORD_BOUNDARY_P(c1, c2) (0)
174#define CHAR_HEAD_P(p) (1)
175#define SINGLE_BYTE_CHAR_P(c) (1)
176#define SAME_CHARSET_P(c1, c2) (1)
177#define MULTIBYTE_FORM_LENGTH(p, s) (1)
178#define STRING_CHAR(p, s) (*(p))
179#define STRING_CHAR_AND_LENGTH(p, s, actual_len) ((actual_len) = 1, *(p))
180#define GET_CHAR_AFTER_2(c, p, str1, end1, str2, end2) \
181 (c = ((p) == (end1) ? *(str2) : *(p)))
182#define GET_CHAR_BEFORE_2(c, p, str1, end1, str2, end2) \
183 (c = ((p) == (str2) ? *((end1) - 1) : *((p) - 1)))
fa9a63c5
RM
184#endif /* not emacs */
185\f
186/* Get the interface, including the syntax bits. */
187#include "regex.h"
188
189/* isalpha etc. are used for the character classes. */
190#include <ctype.h>
191
192/* Jim Meyering writes:
193
194 "... Some ctype macros are valid only for character codes that
195 isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when
196 using /bin/cc or gcc but without giving an ansi option). So, all
25fe55af 197 ctype uses should be through macros like ISPRINT... If
fa9a63c5
RM
198 STDC_HEADERS is defined, then autoconf has verified that the ctype
199 macros don't need to be guarded with references to isascii. ...
200 Defining isascii to 1 should let any compiler worth its salt
25fe55af 201 eliminate the && through constant folding." */
fa9a63c5
RM
202
203#if defined (STDC_HEADERS) || (!defined (isascii) && !defined (HAVE_ISASCII))
204#define ISASCII(c) 1
205#else
206#define ISASCII(c) isascii(c)
207#endif
208
209#ifdef isblank
210#define ISBLANK(c) (ISASCII (c) && isblank (c))
211#else
212#define ISBLANK(c) ((c) == ' ' || (c) == '\t')
213#endif
214#ifdef isgraph
215#define ISGRAPH(c) (ISASCII (c) && isgraph (c))
216#else
217#define ISGRAPH(c) (ISASCII (c) && isprint (c) && !isspace (c))
218#endif
219
220#define ISPRINT(c) (ISASCII (c) && isprint (c))
221#define ISDIGIT(c) (ISASCII (c) && isdigit (c))
222#define ISALNUM(c) (ISASCII (c) && isalnum (c))
223#define ISALPHA(c) (ISASCII (c) && isalpha (c))
224#define ISCNTRL(c) (ISASCII (c) && iscntrl (c))
225#define ISLOWER(c) (ISASCII (c) && islower (c))
226#define ISPUNCT(c) (ISASCII (c) && ispunct (c))
227#define ISSPACE(c) (ISASCII (c) && isspace (c))
228#define ISUPPER(c) (ISASCII (c) && isupper (c))
229#define ISXDIGIT(c) (ISASCII (c) && isxdigit (c))
230
231#ifndef NULL
075f06ec 232#define NULL (void *)0
fa9a63c5
RM
233#endif
234
235/* We remove any previous definition of `SIGN_EXTEND_CHAR',
236 since ours (we hope) works properly with all combinations of
237 machines, compilers, `char' and `unsigned char' argument types.
25fe55af 238 (Per Bothner suggested the basic approach.) */
fa9a63c5
RM
239#undef SIGN_EXTEND_CHAR
240#if __STDC__
241#define SIGN_EXTEND_CHAR(c) ((signed char) (c))
242#else /* not __STDC__ */
243/* As in Harbison and Steele. */
244#define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
245#endif
246\f
247/* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we
248 use `alloca' instead of `malloc'. This is because using malloc in
249 re_search* or re_match* could cause memory leaks when C-g is used in
250 Emacs; also, malloc is slower and causes storage fragmentation. On
5e69f11e
RM
251 the other hand, malloc is more portable, and easier to debug.
252
fa9a63c5
RM
253 Because we sometimes use alloca, some routines have to be macros,
254 not functions -- `alloca'-allocated space disappears at the end of the
255 function it is called in. */
256
257#ifdef REGEX_MALLOC
258
259#define REGEX_ALLOCATE malloc
260#define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
261#define REGEX_FREE free
262
263#else /* not REGEX_MALLOC */
264
265/* Emacs already defines alloca, sometimes. */
266#ifndef alloca
267
268/* Make alloca work the best possible way. */
269#ifdef __GNUC__
270#define alloca __builtin_alloca
271#else /* not __GNUC__ */
272#if HAVE_ALLOCA_H
273#include <alloca.h>
274#else /* not __GNUC__ or HAVE_ALLOCA_H */
f3c4387f 275#if 0 /* It is a bad idea to declare alloca. We always cast the result. */
25fe55af 276#ifndef _AIX /* Already did AIX, up at the top. */
fa9a63c5
RM
277char *alloca ();
278#endif /* not _AIX */
f3c4387f 279#endif
5e69f11e 280#endif /* not HAVE_ALLOCA_H */
fa9a63c5
RM
281#endif /* not __GNUC__ */
282
283#endif /* not alloca */
284
285#define REGEX_ALLOCATE alloca
286
287/* Assumes a `char *destination' variable. */
288#define REGEX_REALLOCATE(source, osize, nsize) \
289 (destination = (char *) alloca (nsize), \
290 bcopy (source, destination, osize), \
291 destination)
292
293/* No need to do anything to free, after alloca. */
c2e1680a 294#define REGEX_FREE(arg) ((void)0) /* Do nothing! But inhibit gcc warning. */
fa9a63c5
RM
295
296#endif /* not REGEX_MALLOC */
297
298/* Define how to allocate the failure stack. */
299
33487cc8 300#if defined (REL_ALLOC) && defined (REGEX_MALLOC)
4297555e 301
fa9a63c5
RM
302#define REGEX_ALLOCATE_STACK(size) \
303 r_alloc (&failure_stack_ptr, (size))
304#define REGEX_REALLOCATE_STACK(source, osize, nsize) \
305 r_re_alloc (&failure_stack_ptr, (nsize))
306#define REGEX_FREE_STACK(ptr) \
307 r_alloc_free (&failure_stack_ptr)
308
4297555e 309#else /* not using relocating allocator */
fa9a63c5
RM
310
311#ifdef REGEX_MALLOC
312
313#define REGEX_ALLOCATE_STACK malloc
314#define REGEX_REALLOCATE_STACK(source, osize, nsize) realloc (source, nsize)
315#define REGEX_FREE_STACK free
316
317#else /* not REGEX_MALLOC */
318
319#define REGEX_ALLOCATE_STACK alloca
320
321#define REGEX_REALLOCATE_STACK(source, osize, nsize) \
322 REGEX_REALLOCATE (source, osize, nsize)
25fe55af 323/* No need to explicitly free anything. */
fa9a63c5
RM
324#define REGEX_FREE_STACK(arg)
325
326#endif /* not REGEX_MALLOC */
4297555e 327#endif /* not using relocating allocator */
fa9a63c5
RM
328
329
330/* True if `size1' is non-NULL and PTR is pointing anywhere inside
331 `string1' or just past its end. This works if PTR is NULL, which is
332 a good thing. */
25fe55af 333#define FIRST_STRING_P(ptr) \
fa9a63c5
RM
334 (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
335
336/* (Re)Allocate N items of type T using malloc, or fail. */
337#define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
338#define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
339#define RETALLOC_IF(addr, n, t) \
340 if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t)
341#define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
342
25fe55af 343#define BYTEWIDTH 8 /* In bits. */
fa9a63c5
RM
344
345#define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
346
347#undef MAX
348#undef MIN
349#define MAX(a, b) ((a) > (b) ? (a) : (b))
350#define MIN(a, b) ((a) < (b) ? (a) : (b))
351
352typedef char boolean;
353#define false 0
354#define true 1
355
356static int re_match_2_internal ();
357\f
358/* These are the command codes that appear in compiled regular
25fe55af 359 expressions. Some opcodes are followed by argument bytes. A
fa9a63c5
RM
360 command code can specify any interpretation whatsoever for its
361 arguments. Zero bytes may appear in the compiled regular expression. */
362
363typedef enum
364{
365 no_op = 0,
366
25fe55af 367 /* Succeed right away--no more backtracking. */
fa9a63c5
RM
368 succeed,
369
25fe55af 370 /* Followed by one byte giving n, then by n literal bytes. */
fa9a63c5
RM
371 exactn,
372
25fe55af 373 /* Matches any (more or less) character. */
fa9a63c5
RM
374 anychar,
375
25fe55af
RS
376 /* Matches any one char belonging to specified set. First
377 following byte is number of bitmap bytes. Then come bytes
378 for a bitmap saying which chars are in. Bits in each byte
379 are ordered low-bit-first. A character is in the set if its
380 bit is 1. A character too large to have a bit in the map is
381 automatically not in the set. */
fa9a63c5
RM
382 charset,
383
25fe55af
RS
384 /* Same parameters as charset, but match any character that is
385 not one of those specified. */
fa9a63c5
RM
386 charset_not,
387
25fe55af
RS
388 /* Start remembering the text that is matched, for storing in a
389 register. Followed by one byte with the register number, in
390 the range 0 to one less than the pattern buffer's re_nsub
391 field. Then followed by one byte with the number of groups
392 inner to this one. (This last has to be part of the
393 start_memory only because we need it in the on_failure_jump
394 of re_match_2.) */
fa9a63c5
RM
395 start_memory,
396
25fe55af
RS
397 /* Stop remembering the text that is matched and store it in a
398 memory register. Followed by one byte with the register
399 number, in the range 0 to one less than `re_nsub' in the
400 pattern buffer, and one byte with the number of inner groups,
401 just like `start_memory'. (We need the number of inner
402 groups here because we don't have any easy way of finding the
403 corresponding start_memory when we're at a stop_memory.) */
fa9a63c5
RM
404 stop_memory,
405
25fe55af
RS
406 /* Match a duplicate of something remembered. Followed by one
407 byte containing the register number. */
fa9a63c5
RM
408 duplicate,
409
25fe55af 410 /* Fail unless at beginning of line. */
fa9a63c5
RM
411 begline,
412
25fe55af 413 /* Fail unless at end of line. */
fa9a63c5
RM
414 endline,
415
25fe55af
RS
416 /* Succeeds if at beginning of buffer (if emacs) or at beginning
417 of string to be matched (if not). */
fa9a63c5
RM
418 begbuf,
419
25fe55af 420 /* Analogously, for end of buffer/string. */
fa9a63c5 421 endbuf,
5e69f11e 422
25fe55af 423 /* Followed by two byte relative address to which to jump. */
5e69f11e 424 jump,
fa9a63c5
RM
425
426 /* Same as jump, but marks the end of an alternative. */
427 jump_past_alt,
428
25fe55af
RS
429 /* Followed by two-byte relative address of place to resume at
430 in case of failure. */
fa9a63c5 431 on_failure_jump,
5e69f11e 432
25fe55af
RS
433 /* Like on_failure_jump, but pushes a placeholder instead of the
434 current string position when executed. */
fa9a63c5 435 on_failure_keep_string_jump,
5e69f11e 436
25fe55af
RS
437 /* Throw away latest failure point and then jump to following
438 two-byte relative address. */
fa9a63c5
RM
439 pop_failure_jump,
440
25fe55af
RS
441 /* Change to pop_failure_jump if know won't have to backtrack to
442 match; otherwise change to jump. This is used to jump
443 back to the beginning of a repeat. If what follows this jump
444 clearly won't match what the repeat does, such that we can be
445 sure that there is no use backtracking out of repetitions
446 already matched, then we change it to a pop_failure_jump.
447 Followed by two-byte address. */
fa9a63c5
RM
448 maybe_pop_jump,
449
25fe55af
RS
450 /* Jump to following two-byte address, and push a dummy failure
451 point. This failure point will be thrown away if an attempt
452 is made to use it for a failure. A `+' construct makes this
453 before the first repeat. Also used as an intermediary kind
454 of jump when compiling an alternative. */
fa9a63c5
RM
455 dummy_failure_jump,
456
457 /* Push a dummy failure point and continue. Used at the end of
458 alternatives. */
459 push_dummy_failure,
460
25fe55af
RS
461 /* Followed by two-byte relative address and two-byte number n.
462 After matching N times, jump to the address upon failure. */
fa9a63c5
RM
463 succeed_n,
464
25fe55af
RS
465 /* Followed by two-byte relative address, and two-byte number n.
466 Jump to the address N times, then fail. */
fa9a63c5
RM
467 jump_n,
468
25fe55af
RS
469 /* Set the following two-byte relative address to the
470 subsequent two-byte number. The address *includes* the two
471 bytes of number. */
fa9a63c5
RM
472 set_number_at,
473
474 wordchar, /* Matches any word-constituent character. */
475 notwordchar, /* Matches any char that is not a word-constituent. */
476
477 wordbeg, /* Succeeds if at word beginning. */
478 wordend, /* Succeeds if at word end. */
479
480 wordbound, /* Succeeds if at a word boundary. */
25fe55af 481 notwordbound /* Succeeds if not at a word boundary. */
fa9a63c5
RM
482
483#ifdef emacs
484 ,before_dot, /* Succeeds if before point. */
485 at_dot, /* Succeeds if at point. */
486 after_dot, /* Succeeds if after point. */
487
488 /* Matches any character whose syntax is specified. Followed by
25fe55af 489 a byte which contains a syntax code, e.g., Sword. */
fa9a63c5
RM
490 syntaxspec,
491
492 /* Matches any character whose syntax is not that specified. */
b18215fc
RS
493 notsyntaxspec,
494
495 /* Matches any character whose category-set contains the specified
25fe55af
RS
496 category. The operator is followed by a byte which contains a
497 category code (mnemonic ASCII character). */
b18215fc
RS
498 categoryspec,
499
500 /* Matches any character whose category-set does not contain the
501 specified category. The operator is followed by a byte which
502 contains the category code (mnemonic ASCII character). */
503 notcategoryspec
fa9a63c5
RM
504#endif /* emacs */
505} re_opcode_t;
506\f
507/* Common operations on the compiled pattern. */
508
509/* Store NUMBER in two contiguous bytes starting at DESTINATION. */
510
511#define STORE_NUMBER(destination, number) \
512 do { \
513 (destination)[0] = (number) & 0377; \
514 (destination)[1] = (number) >> 8; \
515 } while (0)
516
517/* Same as STORE_NUMBER, except increment DESTINATION to
518 the byte after where the number is stored. Therefore, DESTINATION
519 must be an lvalue. */
520
521#define STORE_NUMBER_AND_INCR(destination, number) \
522 do { \
523 STORE_NUMBER (destination, number); \
524 (destination) += 2; \
525 } while (0)
526
527/* Put into DESTINATION a number stored in two contiguous bytes starting
528 at SOURCE. */
529
530#define EXTRACT_NUMBER(destination, source) \
531 do { \
532 (destination) = *(source) & 0377; \
533 (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8; \
534 } while (0)
535
536#ifdef DEBUG
537static void
538extract_number (dest, source)
539 int *dest;
540 unsigned char *source;
541{
5e69f11e 542 int temp = SIGN_EXTEND_CHAR (*(source + 1));
fa9a63c5
RM
543 *dest = *source & 0377;
544 *dest += temp << 8;
545}
546
25fe55af 547#ifndef EXTRACT_MACROS /* To debug the macros. */
fa9a63c5
RM
548#undef EXTRACT_NUMBER
549#define EXTRACT_NUMBER(dest, src) extract_number (&dest, src)
550#endif /* not EXTRACT_MACROS */
551
552#endif /* DEBUG */
553
554/* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
555 SOURCE must be an lvalue. */
556
557#define EXTRACT_NUMBER_AND_INCR(destination, source) \
558 do { \
559 EXTRACT_NUMBER (destination, source); \
25fe55af 560 (source) += 2; \
fa9a63c5
RM
561 } while (0)
562
563#ifdef DEBUG
564static void
565extract_number_and_incr (destination, source)
566 int *destination;
567 unsigned char **source;
5e69f11e 568{
fa9a63c5
RM
569 extract_number (destination, *source);
570 *source += 2;
571}
572
573#ifndef EXTRACT_MACROS
574#undef EXTRACT_NUMBER_AND_INCR
575#define EXTRACT_NUMBER_AND_INCR(dest, src) \
576 extract_number_and_incr (&dest, &src)
577#endif /* not EXTRACT_MACROS */
578
579#endif /* DEBUG */
580\f
b18215fc
RS
581/* Store a multibyte character in three contiguous bytes starting
582 DESTINATION, and increment DESTINATION to the byte after where the
25fe55af 583 character is stored. Therefore, DESTINATION must be an lvalue. */
b18215fc
RS
584
585#define STORE_CHARACTER_AND_INCR(destination, character) \
586 do { \
587 (destination)[0] = (character) & 0377; \
588 (destination)[1] = ((character) >> 8) & 0377; \
589 (destination)[2] = (character) >> 16; \
590 (destination) += 3; \
591 } while (0)
592
593/* Put into DESTINATION a character stored in three contiguous bytes
25fe55af 594 starting at SOURCE. */
b18215fc
RS
595
596#define EXTRACT_CHARACTER(destination, source) \
597 do { \
598 (destination) = ((source)[0] \
599 | ((source)[1] << 8) \
600 | ((source)[2] << 16)); \
601 } while (0)
602
603
604/* Macros for charset. */
605
606/* Size of bitmap of charset P in bytes. P is a start of charset,
607 i.e. *P is (re_opcode_t) charset or (re_opcode_t) charset_not. */
608#define CHARSET_BITMAP_SIZE(p) ((p)[1] & 0x7F)
609
610/* Nonzero if charset P has range table. */
25fe55af 611#define CHARSET_RANGE_TABLE_EXISTS_P(p) ((p)[1] & 0x80)
b18215fc
RS
612
613/* Return the address of range table of charset P. But not the start
614 of table itself, but the before where the number of ranges is
25fe55af 615 stored. `2 +' means to skip re_opcode_t and size of bitmap. */
b18215fc
RS
616#define CHARSET_RANGE_TABLE(p) (&(p)[2 + CHARSET_BITMAP_SIZE (p)])
617
618/* Test if C is listed in the bitmap of charset P. */
619#define CHARSET_LOOKUP_BITMAP(p, c) \
620 ((c) < CHARSET_BITMAP_SIZE (p) * BYTEWIDTH \
621 && (p)[2 + (c) / BYTEWIDTH] & (1 << ((c) % BYTEWIDTH)))
622
623/* Return the address of end of RANGE_TABLE. COUNT is number of
25fe55af
RS
624 ranges (which is a pair of (start, end)) in the RANGE_TABLE. `* 2'
625 is start of range and end of range. `* 3' is size of each start
b18215fc
RS
626 and end. */
627#define CHARSET_RANGE_TABLE_END(range_table, count) \
628 ((range_table) + (count) * 2 * 3)
629
25fe55af 630/* Test if C is in RANGE_TABLE. A flag NOT is negated if C is in.
b18215fc
RS
631 COUNT is number of ranges in RANGE_TABLE. */
632#define CHARSET_LOOKUP_RANGE_TABLE_RAW(not, c, range_table, count) \
633 do \
634 { \
635 int range_start, range_end; \
636 unsigned char *p; \
637 unsigned char *range_table_end \
638 = CHARSET_RANGE_TABLE_END ((range_table), (count)); \
639 \
640 for (p = (range_table); p < range_table_end; p += 2 * 3) \
641 { \
642 EXTRACT_CHARACTER (range_start, p); \
643 EXTRACT_CHARACTER (range_end, p + 3); \
644 \
645 if (range_start <= (c) && (c) <= range_end) \
646 { \
647 (not) = !(not); \
648 break; \
649 } \
650 } \
651 } \
652 while (0)
653
654/* Test if C is in range table of CHARSET. The flag NOT is negated if
655 C is listed in it. */
656#define CHARSET_LOOKUP_RANGE_TABLE(not, c, charset) \
657 do \
658 { \
659 /* Number of ranges in range table. */ \
660 int count; \
661 unsigned char *range_table = CHARSET_RANGE_TABLE (charset); \
662 \
663 EXTRACT_NUMBER_AND_INCR (count, range_table); \
664 CHARSET_LOOKUP_RANGE_TABLE_RAW ((not), (c), range_table, count); \
665 } \
666 while (0)
667\f
fa9a63c5
RM
668/* If DEBUG is defined, Regex prints many voluminous messages about what
669 it is doing (if the variable `debug' is nonzero). If linked with the
670 main program in `iregex.c', you can enter patterns and strings
671 interactively. And if linked with the main program in `main.c' and
25fe55af 672 the other test files, you can run the already-written tests. */
fa9a63c5
RM
673
674#ifdef DEBUG
675
676/* We use standard I/O for debugging. */
677#include <stdio.h>
678
679/* It is useful to test things that ``must'' be true when debugging. */
680#include <assert.h>
681
682static int debug = 0;
683
684#define DEBUG_STATEMENT(e) e
685#define DEBUG_PRINT1(x) if (debug) printf (x)
686#define DEBUG_PRINT2(x1, x2) if (debug) printf (x1, x2)
687#define DEBUG_PRINT3(x1, x2, x3) if (debug) printf (x1, x2, x3)
688#define DEBUG_PRINT4(x1, x2, x3, x4) if (debug) printf (x1, x2, x3, x4)
25fe55af 689#define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \
fa9a63c5
RM
690 if (debug) print_partial_compiled_pattern (s, e)
691#define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \
692 if (debug) print_double_string (w, s1, sz1, s2, sz2)
693
694
695/* Print the fastmap in human-readable form. */
696
697void
698print_fastmap (fastmap)
699 char *fastmap;
700{
701 unsigned was_a_range = 0;
5e69f11e
RM
702 unsigned i = 0;
703
fa9a63c5
RM
704 while (i < (1 << BYTEWIDTH))
705 {
706 if (fastmap[i++])
707 {
708 was_a_range = 0;
25fe55af
RS
709 putchar (i - 1);
710 while (i < (1 << BYTEWIDTH) && fastmap[i])
711 {
712 was_a_range = 1;
713 i++;
714 }
fa9a63c5 715 if (was_a_range)
25fe55af
RS
716 {
717 printf ("-");
718 putchar (i - 1);
719 }
720 }
fa9a63c5 721 }
5e69f11e 722 putchar ('\n');
fa9a63c5
RM
723}
724
725
726/* Print a compiled pattern string in human-readable form, starting at
727 the START pointer into it and ending just before the pointer END. */
728
729void
730print_partial_compiled_pattern (start, end)
731 unsigned char *start;
732 unsigned char *end;
733{
734 int mcnt, mcnt2;
735 unsigned char *p = start;
736 unsigned char *pend = end;
737
738 if (start == NULL)
739 {
740 printf ("(null)\n");
741 return;
742 }
5e69f11e 743
fa9a63c5
RM
744 /* Loop over pattern commands. */
745 while (p < pend)
746 {
747 printf ("%d:\t", p - start);
748
749 switch ((re_opcode_t) *p++)
750 {
25fe55af
RS
751 case no_op:
752 printf ("/no_op");
753 break;
fa9a63c5
RM
754
755 case exactn:
756 mcnt = *p++;
25fe55af
RS
757 printf ("/exactn/%d", mcnt);
758 do
fa9a63c5 759 {
25fe55af 760 putchar ('/');
fa9a63c5 761 putchar (*p++);
25fe55af
RS
762 }
763 while (--mcnt);
764 break;
fa9a63c5
RM
765
766 case start_memory:
25fe55af
RS
767 mcnt = *p++;
768 printf ("/start_memory/%d/%d", mcnt, *p++);
769 break;
fa9a63c5
RM
770
771 case stop_memory:
25fe55af 772 mcnt = *p++;
fa9a63c5 773 printf ("/stop_memory/%d/%d", mcnt, *p++);
25fe55af 774 break;
fa9a63c5
RM
775
776 case duplicate:
777 printf ("/duplicate/%d", *p++);
778 break;
779
780 case anychar:
781 printf ("/anychar");
782 break;
783
784 case charset:
25fe55af
RS
785 case charset_not:
786 {
787 register int c, last = -100;
fa9a63c5
RM
788 register int in_range = 0;
789
790 printf ("/charset [%s",
25fe55af 791 (re_opcode_t) *(p - 1) == charset_not ? "^" : "");
5e69f11e 792
25fe55af 793 assert (p + *p < pend);
fa9a63c5 794
25fe55af 795 for (c = 0; c < 256; c++)
fa9a63c5
RM
796 if (c / 8 < *p
797 && (p[1 + (c/8)] & (1 << (c % 8))))
798 {
799 /* Are we starting a range? */
800 if (last + 1 == c && ! in_range)
801 {
802 putchar ('-');
803 in_range = 1;
804 }
805 /* Have we broken a range? */
806 else if (last + 1 != c && in_range)
25fe55af 807 {
fa9a63c5
RM
808 putchar (last);
809 in_range = 0;
810 }
5e69f11e 811
fa9a63c5
RM
812 if (! in_range)
813 putchar (c);
814
815 last = c;
25fe55af 816 }
fa9a63c5
RM
817
818 if (in_range)
819 putchar (last);
820
821 putchar (']');
822
823 p += 1 + *p;
824 }
825 break;
826
827 case begline:
828 printf ("/begline");
25fe55af 829 break;
fa9a63c5
RM
830
831 case endline:
25fe55af
RS
832 printf ("/endline");
833 break;
fa9a63c5
RM
834
835 case on_failure_jump:
25fe55af
RS
836 extract_number_and_incr (&mcnt, &p);
837 printf ("/on_failure_jump to %d", p + mcnt - start);
838 break;
fa9a63c5
RM
839
840 case on_failure_keep_string_jump:
25fe55af
RS
841 extract_number_and_incr (&mcnt, &p);
842 printf ("/on_failure_keep_string_jump to %d", p + mcnt - start);
843 break;
fa9a63c5
RM
844
845 case dummy_failure_jump:
25fe55af
RS
846 extract_number_and_incr (&mcnt, &p);
847 printf ("/dummy_failure_jump to %d", p + mcnt - start);
848 break;
fa9a63c5
RM
849
850 case push_dummy_failure:
25fe55af
RS
851 printf ("/push_dummy_failure");
852 break;
5e69f11e 853
25fe55af
RS
854 case maybe_pop_jump:
855 extract_number_and_incr (&mcnt, &p);
856 printf ("/maybe_pop_jump to %d", p + mcnt - start);
fa9a63c5
RM
857 break;
858
25fe55af 859 case pop_failure_jump:
fa9a63c5 860 extract_number_and_incr (&mcnt, &p);
25fe55af 861 printf ("/pop_failure_jump to %d", p + mcnt - start);
5e69f11e
RM
862 break;
863
25fe55af 864 case jump_past_alt:
fa9a63c5 865 extract_number_and_incr (&mcnt, &p);
25fe55af 866 printf ("/jump_past_alt to %d", p + mcnt - start);
5e69f11e
RM
867 break;
868
25fe55af 869 case jump:
fa9a63c5 870 extract_number_and_incr (&mcnt, &p);
25fe55af 871 printf ("/jump to %d", p + mcnt - start);
fa9a63c5
RM
872 break;
873
25fe55af
RS
874 case succeed_n:
875 extract_number_and_incr (&mcnt, &p);
876 extract_number_and_incr (&mcnt2, &p);
fa9a63c5 877 printf ("/succeed_n to %d, %d times", p + mcnt - start, mcnt2);
25fe55af 878 break;
5e69f11e 879
25fe55af
RS
880 case jump_n:
881 extract_number_and_incr (&mcnt, &p);
882 extract_number_and_incr (&mcnt2, &p);
fa9a63c5 883 printf ("/jump_n to %d, %d times", p + mcnt - start, mcnt2);
25fe55af 884 break;
5e69f11e 885
25fe55af
RS
886 case set_number_at:
887 extract_number_and_incr (&mcnt, &p);
888 extract_number_and_incr (&mcnt2, &p);
fa9a63c5 889 printf ("/set_number_at location %d to %d", p + mcnt - start, mcnt2);
25fe55af 890 break;
5e69f11e 891
25fe55af 892 case wordbound:
fa9a63c5
RM
893 printf ("/wordbound");
894 break;
895
896 case notwordbound:
897 printf ("/notwordbound");
25fe55af 898 break;
fa9a63c5
RM
899
900 case wordbeg:
901 printf ("/wordbeg");
902 break;
5e69f11e 903
fa9a63c5
RM
904 case wordend:
905 printf ("/wordend");
5e69f11e 906
fa9a63c5
RM
907#ifdef emacs
908 case before_dot:
909 printf ("/before_dot");
25fe55af 910 break;
fa9a63c5
RM
911
912 case at_dot:
913 printf ("/at_dot");
25fe55af 914 break;
fa9a63c5
RM
915
916 case after_dot:
917 printf ("/after_dot");
25fe55af 918 break;
fa9a63c5
RM
919
920 case syntaxspec:
25fe55af 921 printf ("/syntaxspec");
fa9a63c5
RM
922 mcnt = *p++;
923 printf ("/%d", mcnt);
25fe55af 924 break;
5e69f11e 925
fa9a63c5 926 case notsyntaxspec:
25fe55af 927 printf ("/notsyntaxspec");
fa9a63c5
RM
928 mcnt = *p++;
929 printf ("/%d", mcnt);
930 break;
931#endif /* emacs */
932
933 case wordchar:
934 printf ("/wordchar");
25fe55af 935 break;
5e69f11e 936
fa9a63c5
RM
937 case notwordchar:
938 printf ("/notwordchar");
25fe55af 939 break;
fa9a63c5
RM
940
941 case begbuf:
942 printf ("/begbuf");
25fe55af 943 break;
fa9a63c5
RM
944
945 case endbuf:
946 printf ("/endbuf");
25fe55af 947 break;
fa9a63c5 948
25fe55af
RS
949 default:
950 printf ("?%d", *(p-1));
fa9a63c5
RM
951 }
952
953 putchar ('\n');
954 }
955
956 printf ("%d:\tend of pattern.\n", p - start);
957}
958
959
960void
961print_compiled_pattern (bufp)
962 struct re_pattern_buffer *bufp;
963{
964 unsigned char *buffer = bufp->buffer;
965
966 print_partial_compiled_pattern (buffer, buffer + bufp->used);
967 printf ("%d bytes used/%d bytes allocated.\n", bufp->used, bufp->allocated);
968
969 if (bufp->fastmap_accurate && bufp->fastmap)
970 {
971 printf ("fastmap: ");
972 print_fastmap (bufp->fastmap);
973 }
974
975 printf ("re_nsub: %d\t", bufp->re_nsub);
976 printf ("regs_alloc: %d\t", bufp->regs_allocated);
977 printf ("can_be_null: %d\t", bufp->can_be_null);
978 printf ("newline_anchor: %d\n", bufp->newline_anchor);
979 printf ("no_sub: %d\t", bufp->no_sub);
980 printf ("not_bol: %d\t", bufp->not_bol);
981 printf ("not_eol: %d\t", bufp->not_eol);
982 printf ("syntax: %d\n", bufp->syntax);
983 /* Perhaps we should print the translate table? */
984}
985
986
987void
988print_double_string (where, string1, size1, string2, size2)
989 const char *where;
990 const char *string1;
991 const char *string2;
992 int size1;
993 int size2;
994{
995 unsigned this_char;
5e69f11e 996
fa9a63c5
RM
997 if (where == NULL)
998 printf ("(null)");
999 else
1000 {
1001 if (FIRST_STRING_P (where))
25fe55af
RS
1002 {
1003 for (this_char = where - string1; this_char < size1; this_char++)
1004 putchar (string1[this_char]);
fa9a63c5 1005
25fe55af
RS
1006 where = string2;
1007 }
fa9a63c5
RM
1008
1009 for (this_char = where - string2; this_char < size2; this_char++)
25fe55af 1010 putchar (string2[this_char]);
fa9a63c5
RM
1011 }
1012}
1013
1014#else /* not DEBUG */
1015
1016#undef assert
1017#define assert(e)
1018
1019#define DEBUG_STATEMENT(e)
1020#define DEBUG_PRINT1(x)
1021#define DEBUG_PRINT2(x1, x2)
1022#define DEBUG_PRINT3(x1, x2, x3)
1023#define DEBUG_PRINT4(x1, x2, x3, x4)
1024#define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
1025#define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
1026
1027#endif /* not DEBUG */
1028\f
1029/* Set by `re_set_syntax' to the current regexp syntax to recognize. Can
1030 also be assigned to arbitrarily: each pattern buffer stores its own
1031 syntax, so it can be changed between regex compilations. */
1032/* This has no initializer because initialized variables in Emacs
1033 become read-only after dumping. */
1034reg_syntax_t re_syntax_options;
1035
1036
1037/* Specify the precise syntax of regexps for compilation. This provides
1038 for compatibility for various utilities which historically have
1039 different, incompatible syntaxes.
1040
1041 The argument SYNTAX is a bit mask comprised of the various bits
25fe55af 1042 defined in regex.h. We return the old syntax. */
fa9a63c5
RM
1043
1044reg_syntax_t
1045re_set_syntax (syntax)
1046 reg_syntax_t syntax;
1047{
1048 reg_syntax_t ret = re_syntax_options;
5e69f11e 1049
fa9a63c5
RM
1050 re_syntax_options = syntax;
1051 return ret;
1052}
1053\f
1054/* This table gives an error message for each of the error codes listed
25fe55af 1055 in regex.h. Obviously the order here has to be same as there.
fa9a63c5 1056 POSIX doesn't require that we do anything for REG_NOERROR,
25fe55af 1057 but why not be nice? */
fa9a63c5
RM
1058
1059static const char *re_error_msgid[] =
5e69f11e
RM
1060 {
1061 gettext_noop ("Success"), /* REG_NOERROR */
1062 gettext_noop ("No match"), /* REG_NOMATCH */
1063 gettext_noop ("Invalid regular expression"), /* REG_BADPAT */
1064 gettext_noop ("Invalid collation character"), /* REG_ECOLLATE */
1065 gettext_noop ("Invalid character class name"), /* REG_ECTYPE */
1066 gettext_noop ("Trailing backslash"), /* REG_EESCAPE */
1067 gettext_noop ("Invalid back reference"), /* REG_ESUBREG */
1068 gettext_noop ("Unmatched [ or [^"), /* REG_EBRACK */
1069 gettext_noop ("Unmatched ( or \\("), /* REG_EPAREN */
1070 gettext_noop ("Unmatched \\{"), /* REG_EBRACE */
1071 gettext_noop ("Invalid content of \\{\\}"), /* REG_BADBR */
1072 gettext_noop ("Invalid range end"), /* REG_ERANGE */
1073 gettext_noop ("Memory exhausted"), /* REG_ESPACE */
1074 gettext_noop ("Invalid preceding regular expression"), /* REG_BADRPT */
1075 gettext_noop ("Premature end of regular expression"), /* REG_EEND */
1076 gettext_noop ("Regular expression too big"), /* REG_ESIZE */
1077 gettext_noop ("Unmatched ) or \\)"), /* REG_ERPAREN */
fa9a63c5
RM
1078 };
1079\f
25fe55af 1080/* Avoiding alloca during matching, to placate r_alloc. */
fa9a63c5
RM
1081
1082/* Define MATCH_MAY_ALLOCATE unless we need to make sure that the
1083 searching and matching functions should not call alloca. On some
1084 systems, alloca is implemented in terms of malloc, and if we're
1085 using the relocating allocator routines, then malloc could cause a
1086 relocation, which might (if the strings being searched are in the
1087 ralloc heap) shift the data out from underneath the regexp
1088 routines.
1089
5e69f11e 1090 Here's another reason to avoid allocation: Emacs
fa9a63c5
RM
1091 processes input from X in a signal handler; processing X input may
1092 call malloc; if input arrives while a matching routine is calling
1093 malloc, then we're scrod. But Emacs can't just block input while
1094 calling matching routines; then we don't notice interrupts when
1095 they come in. So, Emacs blocks input around all regexp calls
1096 except the matching calls, which it leaves unprotected, in the
1097 faith that they will not malloc. */
1098
1099/* Normally, this is fine. */
1100#define MATCH_MAY_ALLOCATE
1101
1102/* When using GNU C, we are not REALLY using the C alloca, no matter
1103 what config.h may say. So don't take precautions for it. */
1104#ifdef __GNUC__
1105#undef C_ALLOCA
1106#endif
1107
1108/* The match routines may not allocate if (1) they would do it with malloc
1109 and (2) it's not safe for them to use malloc.
1110 Note that if REL_ALLOC is defined, matching would not use malloc for the
1111 failure stack, but we would still use it for the register vectors;
25fe55af 1112 so REL_ALLOC should not affect this. */
fa9a63c5
RM
1113#if (defined (C_ALLOCA) || defined (REGEX_MALLOC)) && defined (emacs)
1114#undef MATCH_MAY_ALLOCATE
1115#endif
1116
1117\f
1118/* Failure stack declarations and macros; both re_compile_fastmap and
1119 re_match_2 use a failure stack. These have to be macros because of
1120 REGEX_ALLOCATE_STACK. */
5e69f11e 1121
fa9a63c5 1122
320a2a73 1123/* Approximate number of failure points for which to initially allocate space
fa9a63c5
RM
1124 when matching. If this number is exceeded, we allocate more
1125 space, so it is not a hard limit. */
1126#ifndef INIT_FAILURE_ALLOC
320a2a73 1127#define INIT_FAILURE_ALLOC 20
fa9a63c5
RM
1128#endif
1129
1130/* Roughly the maximum number of failure points on the stack. Would be
320a2a73 1131 exactly that if always used TYPICAL_FAILURE_SIZE items each time we failed.
fa9a63c5 1132 This is a variable only so users of regex can assign to it; we never
25fe55af 1133 change it ourselves. */
fa9a63c5 1134#if defined (MATCH_MAY_ALLOCATE)
320a2a73
KH
1135/* Note that 4400 is enough to cause a crash on Alpha OSF/1,
1136 whose default stack limit is 2mb. In order for a larger
1137 value to work reliably, you have to try to make it accord
1138 with the process stack limit. */
1139int re_max_failures = 40000;
fa9a63c5 1140#else
320a2a73 1141int re_max_failures = 4000;
fa9a63c5
RM
1142#endif
1143
1144union fail_stack_elt
1145{
1146 unsigned char *pointer;
1147 int integer;
1148};
1149
1150typedef union fail_stack_elt fail_stack_elt_t;
1151
1152typedef struct
1153{
1154 fail_stack_elt_t *stack;
1155 unsigned size;
1156 unsigned avail; /* Offset of next open position. */
1157} fail_stack_type;
1158
1159#define FAIL_STACK_EMPTY() (fail_stack.avail == 0)
1160#define FAIL_STACK_PTR_EMPTY() (fail_stack_ptr->avail == 0)
1161#define FAIL_STACK_FULL() (fail_stack.avail == fail_stack.size)
1162
1163
1164/* Define macros to initialize and free the failure stack.
1165 Do `return -2' if the alloc fails. */
1166
1167#ifdef MATCH_MAY_ALLOCATE
1168#define INIT_FAIL_STACK() \
1169 do { \
1170 fail_stack.stack = (fail_stack_elt_t *) \
320a2a73
KH
1171 REGEX_ALLOCATE_STACK (INIT_FAILURE_ALLOC * TYPICAL_FAILURE_SIZE \
1172 * sizeof (fail_stack_elt_t)); \
fa9a63c5
RM
1173 \
1174 if (fail_stack.stack == NULL) \
1175 return -2; \
1176 \
1177 fail_stack.size = INIT_FAILURE_ALLOC; \
1178 fail_stack.avail = 0; \
1179 } while (0)
1180
1181#define RESET_FAIL_STACK() REGEX_FREE_STACK (fail_stack.stack)
1182#else
1183#define INIT_FAIL_STACK() \
1184 do { \
1185 fail_stack.avail = 0; \
1186 } while (0)
1187
1188#define RESET_FAIL_STACK()
1189#endif
1190
1191
320a2a73
KH
1192/* Double the size of FAIL_STACK, up to a limit
1193 which allows approximately `re_max_failures' items.
fa9a63c5
RM
1194
1195 Return 1 if succeeds, and 0 if either ran out of memory
5e69f11e
RM
1196 allocating space for it or it was already too large.
1197
25fe55af 1198 REGEX_REALLOCATE_STACK requires `destination' be declared. */
fa9a63c5 1199
320a2a73
KH
1200/* Factor to increase the failure stack size by
1201 when we increase it.
1202 This used to be 2, but 2 was too wasteful
1203 because the old discarded stacks added up to as much space
1204 were as ultimate, maximum-size stack. */
1205#define FAIL_STACK_GROWTH_FACTOR 4
1206
1207#define GROW_FAIL_STACK(fail_stack) \
eead07d6
KH
1208 (((fail_stack).size * sizeof (fail_stack_elt_t) \
1209 >= re_max_failures * TYPICAL_FAILURE_SIZE) \
fa9a63c5 1210 ? 0 \
320a2a73
KH
1211 : ((fail_stack).stack \
1212 = (fail_stack_elt_t *) \
25fe55af
RS
1213 REGEX_REALLOCATE_STACK ((fail_stack).stack, \
1214 (fail_stack).size * sizeof (fail_stack_elt_t), \
320a2a73
KH
1215 MIN (re_max_failures * TYPICAL_FAILURE_SIZE, \
1216 ((fail_stack).size * sizeof (fail_stack_elt_t) \
1217 * FAIL_STACK_GROWTH_FACTOR))), \
fa9a63c5
RM
1218 \
1219 (fail_stack).stack == NULL \
1220 ? 0 \
6453db45
KH
1221 : ((fail_stack).size \
1222 = (MIN (re_max_failures * TYPICAL_FAILURE_SIZE, \
1223 ((fail_stack).size * sizeof (fail_stack_elt_t) \
1224 * FAIL_STACK_GROWTH_FACTOR)) \
1225 / sizeof (fail_stack_elt_t)), \
25fe55af 1226 1)))
fa9a63c5
RM
1227
1228
5e69f11e 1229/* Push pointer POINTER on FAIL_STACK.
fa9a63c5
RM
1230 Return 1 if was able to do so and 0 if ran out of memory allocating
1231 space to do so. */
1232#define PUSH_PATTERN_OP(POINTER, FAIL_STACK) \
1233 ((FAIL_STACK_FULL () \
320a2a73 1234 && !GROW_FAIL_STACK (FAIL_STACK)) \
fa9a63c5
RM
1235 ? 0 \
1236 : ((FAIL_STACK).stack[(FAIL_STACK).avail++].pointer = POINTER, \
1237 1))
1238
1239/* Push a pointer value onto the failure stack.
1240 Assumes the variable `fail_stack'. Probably should only
25fe55af 1241 be called from within `PUSH_FAILURE_POINT'. */
fa9a63c5
RM
1242#define PUSH_FAILURE_POINTER(item) \
1243 fail_stack.stack[fail_stack.avail++].pointer = (unsigned char *) (item)
1244
1245/* This pushes an integer-valued item onto the failure stack.
1246 Assumes the variable `fail_stack'. Probably should only
25fe55af 1247 be called from within `PUSH_FAILURE_POINT'. */
fa9a63c5
RM
1248#define PUSH_FAILURE_INT(item) \
1249 fail_stack.stack[fail_stack.avail++].integer = (item)
1250
1251/* Push a fail_stack_elt_t value onto the failure stack.
1252 Assumes the variable `fail_stack'. Probably should only
25fe55af 1253 be called from within `PUSH_FAILURE_POINT'. */
fa9a63c5
RM
1254#define PUSH_FAILURE_ELT(item) \
1255 fail_stack.stack[fail_stack.avail++] = (item)
1256
1257/* These three POP... operations complement the three PUSH... operations.
1258 All assume that `fail_stack' is nonempty. */
1259#define POP_FAILURE_POINTER() fail_stack.stack[--fail_stack.avail].pointer
1260#define POP_FAILURE_INT() fail_stack.stack[--fail_stack.avail].integer
1261#define POP_FAILURE_ELT() fail_stack.stack[--fail_stack.avail]
1262
1263/* Used to omit pushing failure point id's when we're not debugging. */
1264#ifdef DEBUG
1265#define DEBUG_PUSH PUSH_FAILURE_INT
1266#define DEBUG_POP(item_addr) *(item_addr) = POP_FAILURE_INT ()
1267#else
1268#define DEBUG_PUSH(item)
1269#define DEBUG_POP(item_addr)
1270#endif
1271
1272
1273/* Push the information about the state we will need
5e69f11e
RM
1274 if we ever fail back to it.
1275
fa9a63c5 1276 Requires variables fail_stack, regstart, regend, reg_info, and
320a2a73 1277 num_regs be declared. GROW_FAIL_STACK requires `destination' be
fa9a63c5 1278 declared.
5e69f11e 1279
fa9a63c5
RM
1280 Does `return FAILURE_CODE' if runs out of memory. */
1281
1282#define PUSH_FAILURE_POINT(pattern_place, string_place, failure_code) \
1283 do { \
1284 char *destination; \
1285 /* Must be int, so when we don't save any registers, the arithmetic \
1286 of 0 + -1 isn't done as unsigned. */ \
1287 int this_reg; \
25fe55af 1288 \
fa9a63c5
RM
1289 DEBUG_STATEMENT (failure_id++); \
1290 DEBUG_STATEMENT (nfailure_points_pushed++); \
1291 DEBUG_PRINT2 ("\nPUSH_FAILURE_POINT #%u:\n", failure_id); \
1292 DEBUG_PRINT2 (" Before push, next avail: %d\n", (fail_stack).avail);\
25fe55af 1293 DEBUG_PRINT2 (" size: %d\n", (fail_stack).size);\
fa9a63c5
RM
1294 \
1295 DEBUG_PRINT2 (" slots needed: %d\n", NUM_FAILURE_ITEMS); \
25fe55af 1296 DEBUG_PRINT2 (" available: %d\n", REMAINING_AVAIL_SLOTS); \
fa9a63c5
RM
1297 \
1298 /* Ensure we have enough space allocated for what we will push. */ \
1299 while (REMAINING_AVAIL_SLOTS < NUM_FAILURE_ITEMS) \
1300 { \
320a2a73 1301 if (!GROW_FAIL_STACK (fail_stack)) \
25fe55af 1302 return failure_code; \
fa9a63c5 1303 \
25fe55af 1304 DEBUG_PRINT2 ("\n Doubled stack; size now: %d\n", \
fa9a63c5 1305 (fail_stack).size); \
25fe55af 1306 DEBUG_PRINT2 (" slots available: %d\n", REMAINING_AVAIL_SLOTS);\
fa9a63c5
RM
1307 } \
1308 \
1309 /* Push the info, starting with the registers. */ \
1310 DEBUG_PRINT1 ("\n"); \
1311 \
68d96f02 1312 if (1) \
faec11db
RS
1313 for (this_reg = lowest_active_reg; this_reg <= highest_active_reg; \
1314 this_reg++) \
1315 { \
1316 DEBUG_PRINT2 (" Pushing reg: %d\n", this_reg); \
1317 DEBUG_STATEMENT (num_regs_pushed++); \
fa9a63c5 1318 \
faec11db
RS
1319 DEBUG_PRINT2 (" start: 0x%x\n", regstart[this_reg]); \
1320 PUSH_FAILURE_POINTER (regstart[this_reg]); \
fa9a63c5 1321 \
faec11db
RS
1322 DEBUG_PRINT2 (" end: 0x%x\n", regend[this_reg]); \
1323 PUSH_FAILURE_POINTER (regend[this_reg]); \
1324 \
1325 DEBUG_PRINT2 (" info: 0x%x\n ", reg_info[this_reg]); \
1326 DEBUG_PRINT2 (" match_null=%d", \
1327 REG_MATCH_NULL_STRING_P (reg_info[this_reg])); \
1328 DEBUG_PRINT2 (" active=%d", IS_ACTIVE (reg_info[this_reg])); \
1329 DEBUG_PRINT2 (" matched_something=%d", \
1330 MATCHED_SOMETHING (reg_info[this_reg])); \
1331 DEBUG_PRINT2 (" ever_matched=%d", \
1332 EVER_MATCHED_SOMETHING (reg_info[this_reg])); \
1333 DEBUG_PRINT1 ("\n"); \
1334 PUSH_FAILURE_ELT (reg_info[this_reg].word); \
1335 } \
fa9a63c5
RM
1336 \
1337 DEBUG_PRINT2 (" Pushing low active reg: %d\n", lowest_active_reg);\
1338 PUSH_FAILURE_INT (lowest_active_reg); \
1339 \
1340 DEBUG_PRINT2 (" Pushing high active reg: %d\n", highest_active_reg);\
1341 PUSH_FAILURE_INT (highest_active_reg); \
1342 \
1343 DEBUG_PRINT2 (" Pushing pattern 0x%x: ", pattern_place); \
1344 DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern_place, pend); \
1345 PUSH_FAILURE_POINTER (pattern_place); \
1346 \
1347 DEBUG_PRINT2 (" Pushing string 0x%x: `", string_place); \
25fe55af 1348 DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, \
fa9a63c5
RM
1349 size2); \
1350 DEBUG_PRINT1 ("'\n"); \
1351 PUSH_FAILURE_POINTER (string_place); \
1352 \
1353 DEBUG_PRINT2 (" Pushing failure id: %u\n", failure_id); \
1354 DEBUG_PUSH (failure_id); \
1355 } while (0)
1356
1357/* This is the number of items that are pushed and popped on the stack
1358 for each register. */
1359#define NUM_REG_ITEMS 3
1360
1361/* Individual items aside from the registers. */
1362#ifdef DEBUG
1363#define NUM_NONREG_ITEMS 5 /* Includes failure point id. */
1364#else
1365#define NUM_NONREG_ITEMS 4
1366#endif
1367
320a2a73
KH
1368/* Estimate the size of data pushed by a typical failure stack entry.
1369 An estimate is all we need, because all we use this for
1370 is to choose a limit for how big to make the failure stack. */
1371
1372#define TYPICAL_FAILURE_SIZE 20
fa9a63c5 1373
320a2a73
KH
1374/* This is how many items we actually use for a failure point.
1375 It depends on the regexp. */
faec11db 1376#define NUM_FAILURE_ITEMS \
68d96f02 1377 (((0 \
faec11db
RS
1378 ? 0 : highest_active_reg - lowest_active_reg + 1) \
1379 * NUM_REG_ITEMS) \
1380 + NUM_NONREG_ITEMS)
fa9a63c5
RM
1381
1382/* How many items can still be added to the stack without overflowing it. */
1383#define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
1384
1385
1386/* Pops what PUSH_FAIL_STACK pushes.
1387
1388 We restore into the parameters, all of which should be lvalues:
1389 STR -- the saved data position.
1390 PAT -- the saved pattern position.
1391 LOW_REG, HIGH_REG -- the highest and lowest active registers.
1392 REGSTART, REGEND -- arrays of string positions.
1393 REG_INFO -- array of information about each subexpression.
5e69f11e 1394
fa9a63c5 1395 Also assumes the variables `fail_stack' and (if debugging), `bufp',
25fe55af 1396 `pend', `string1', `size1', `string2', and `size2'. */
fa9a63c5
RM
1397
1398#define POP_FAILURE_POINT(str, pat, low_reg, high_reg, regstart, regend, reg_info)\
1399{ \
1400 DEBUG_STATEMENT (fail_stack_elt_t failure_id;) \
1401 int this_reg; \
1402 const unsigned char *string_temp; \
1403 \
1404 assert (!FAIL_STACK_EMPTY ()); \
1405 \
1406 /* Remove failure points and point to how many regs pushed. */ \
1407 DEBUG_PRINT1 ("POP_FAILURE_POINT:\n"); \
1408 DEBUG_PRINT2 (" Before pop, next avail: %d\n", fail_stack.avail); \
25fe55af 1409 DEBUG_PRINT2 (" size: %d\n", fail_stack.size); \
fa9a63c5
RM
1410 \
1411 assert (fail_stack.avail >= NUM_NONREG_ITEMS); \
1412 \
1413 DEBUG_POP (&failure_id); \
1414 DEBUG_PRINT2 (" Popping failure id: %u\n", failure_id); \
1415 \
1416 /* If the saved string location is NULL, it came from an \
1417 on_failure_keep_string_jump opcode, and we want to throw away the \
1418 saved NULL, thus retaining our current position in the string. */ \
1419 string_temp = POP_FAILURE_POINTER (); \
1420 if (string_temp != NULL) \
1421 str = (const char *) string_temp; \
1422 \
1423 DEBUG_PRINT2 (" Popping string 0x%x: `", str); \
1424 DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2); \
1425 DEBUG_PRINT1 ("'\n"); \
1426 \
1427 pat = (unsigned char *) POP_FAILURE_POINTER (); \
1428 DEBUG_PRINT2 (" Popping pattern 0x%x: ", pat); \
1429 DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend); \
1430 \
1431 /* Restore register info. */ \
1432 high_reg = (unsigned) POP_FAILURE_INT (); \
1433 DEBUG_PRINT2 (" Popping high active reg: %d\n", high_reg); \
1434 \
1435 low_reg = (unsigned) POP_FAILURE_INT (); \
1436 DEBUG_PRINT2 (" Popping low active reg: %d\n", low_reg); \
1437 \
68d96f02 1438 if (1) \
faec11db
RS
1439 for (this_reg = high_reg; this_reg >= low_reg; this_reg--) \
1440 { \
25fe55af 1441 DEBUG_PRINT2 (" Popping reg: %d\n", this_reg); \
fa9a63c5 1442 \
faec11db 1443 reg_info[this_reg].word = POP_FAILURE_ELT (); \
25fe55af 1444 DEBUG_PRINT2 (" info: 0x%x\n", reg_info[this_reg]); \
fa9a63c5 1445 \
faec11db 1446 regend[this_reg] = (const char *) POP_FAILURE_POINTER (); \
25fe55af 1447 DEBUG_PRINT2 (" end: 0x%x\n", regend[this_reg]); \
fa9a63c5 1448 \
faec11db 1449 regstart[this_reg] = (const char *) POP_FAILURE_POINTER (); \
25fe55af 1450 DEBUG_PRINT2 (" start: 0x%x\n", regstart[this_reg]); \
faec11db 1451 } \
6676cb1c
RS
1452 else \
1453 { \
1454 for (this_reg = highest_active_reg; this_reg > high_reg; this_reg--) \
1455 { \
4fcecab1 1456 reg_info[this_reg].word.integer = 0; \
6676cb1c
RS
1457 regend[this_reg] = 0; \
1458 regstart[this_reg] = 0; \
1459 } \
1460 highest_active_reg = high_reg; \
1461 } \
fa9a63c5
RM
1462 \
1463 set_regs_matched_done = 0; \
1464 DEBUG_STATEMENT (nfailure_points_popped++); \
1465} /* POP_FAILURE_POINT */
1466
1467
1468\f
1469/* Structure for per-register (a.k.a. per-group) information.
1470 Other register information, such as the
1471 starting and ending positions (which are addresses), and the list of
1472 inner groups (which is a bits list) are maintained in separate
5e69f11e
RM
1473 variables.
1474
fa9a63c5
RM
1475 We are making a (strictly speaking) nonportable assumption here: that
1476 the compiler will pack our bit fields into something that fits into
1477 the type of `word', i.e., is something that fits into one item on the
1478 failure stack. */
1479
1480typedef union
1481{
1482 fail_stack_elt_t word;
1483 struct
1484 {
1485 /* This field is one if this group can match the empty string,
25fe55af 1486 zero if not. If not yet determined, `MATCH_NULL_UNSET_VALUE'. */
fa9a63c5
RM
1487#define MATCH_NULL_UNSET_VALUE 3
1488 unsigned match_null_string_p : 2;
1489 unsigned is_active : 1;
1490 unsigned matched_something : 1;
1491 unsigned ever_matched_something : 1;
1492 } bits;
1493} register_info_type;
1494
1495#define REG_MATCH_NULL_STRING_P(R) ((R).bits.match_null_string_p)
1496#define IS_ACTIVE(R) ((R).bits.is_active)
1497#define MATCHED_SOMETHING(R) ((R).bits.matched_something)
1498#define EVER_MATCHED_SOMETHING(R) ((R).bits.ever_matched_something)
1499
1500
1501/* Call this when have matched a real character; it sets `matched' flags
1502 for the subexpressions which we are currently inside. Also records
1503 that those subexprs have matched. */
1504#define SET_REGS_MATCHED() \
1505 do \
1506 { \
1507 if (!set_regs_matched_done) \
1508 { \
1509 unsigned r; \
1510 set_regs_matched_done = 1; \
1511 for (r = lowest_active_reg; r <= highest_active_reg; r++) \
1512 { \
1513 MATCHED_SOMETHING (reg_info[r]) \
1514 = EVER_MATCHED_SOMETHING (reg_info[r]) \
1515 = 1; \
1516 } \
1517 } \
1518 } \
1519 while (0)
1520
1521/* Registers are set to a sentinel when they haven't yet matched. */
1522static char reg_unset_dummy;
1523#define REG_UNSET_VALUE (&reg_unset_dummy)
1524#define REG_UNSET(e) ((e) == REG_UNSET_VALUE)
1525\f
1526/* Subroutine declarations and macros for regex_compile. */
1527
1528static void store_op1 (), store_op2 ();
1529static void insert_op1 (), insert_op2 ();
1530static boolean at_begline_loc_p (), at_endline_loc_p ();
1531static boolean group_in_compile_stack ();
1532static reg_errcode_t compile_range ();
1533
5e69f11e 1534/* Fetch the next character in the uncompiled pattern---translating it
fa9a63c5
RM
1535 if necessary. Also cast from a signed character in the constant
1536 string passed to us by the user to an unsigned char that we can use
1537 as an array index (in, e.g., `translate'). */
6676cb1c 1538#ifndef PATFETCH
fa9a63c5
RM
1539#define PATFETCH(c) \
1540 do {if (p == pend) return REG_EEND; \
1541 c = (unsigned char) *p++; \
6676cb1c 1542 if (translate) c = (unsigned char) translate[c]; \
fa9a63c5 1543 } while (0)
6676cb1c 1544#endif
fa9a63c5
RM
1545
1546/* Fetch the next character in the uncompiled pattern, with no
25fe55af 1547 translation. */
fa9a63c5
RM
1548#define PATFETCH_RAW(c) \
1549 do {if (p == pend) return REG_EEND; \
25fe55af 1550 c = (unsigned char) *p++; \
fa9a63c5
RM
1551 } while (0)
1552
1553/* Go backwards one character in the pattern. */
1554#define PATUNFETCH p--
1555
1556
1557/* If `translate' is non-null, return translate[D], else just D. We
1558 cast the subscript to translate because some data is declared as
1559 `char *', to avoid warnings when a string constant is passed. But
1560 when we use a character as a subscript we must make it unsigned. */
6676cb1c
RS
1561#ifndef TRANSLATE
1562#define TRANSLATE(d) \
bc192b5b 1563 (translate ? (unsigned char) RE_TRANSLATE (translate, (unsigned char) (d)) : (d))
6676cb1c 1564#endif
fa9a63c5
RM
1565
1566
1567/* Macros for outputting the compiled pattern into `buffer'. */
1568
1569/* If the buffer isn't allocated when it comes in, use this. */
1570#define INIT_BUF_SIZE 32
1571
25fe55af 1572/* Make sure we have at least N more bytes of space in buffer. */
fa9a63c5
RM
1573#define GET_BUFFER_SPACE(n) \
1574 while (b - bufp->buffer + (n) > bufp->allocated) \
1575 EXTEND_BUFFER ()
1576
1577/* Make sure we have one more byte of buffer space and then add C to it. */
1578#define BUF_PUSH(c) \
1579 do { \
1580 GET_BUFFER_SPACE (1); \
1581 *b++ = (unsigned char) (c); \
1582 } while (0)
1583
1584
1585/* Ensure we have two more bytes of buffer space and then append C1 and C2. */
1586#define BUF_PUSH_2(c1, c2) \
1587 do { \
1588 GET_BUFFER_SPACE (2); \
1589 *b++ = (unsigned char) (c1); \
1590 *b++ = (unsigned char) (c2); \
1591 } while (0)
1592
1593
25fe55af 1594/* As with BUF_PUSH_2, except for three bytes. */
fa9a63c5
RM
1595#define BUF_PUSH_3(c1, c2, c3) \
1596 do { \
1597 GET_BUFFER_SPACE (3); \
1598 *b++ = (unsigned char) (c1); \
1599 *b++ = (unsigned char) (c2); \
1600 *b++ = (unsigned char) (c3); \
1601 } while (0)
1602
1603
1604/* Store a jump with opcode OP at LOC to location TO. We store a
25fe55af 1605 relative address offset by the three bytes the jump itself occupies. */
fa9a63c5
RM
1606#define STORE_JUMP(op, loc, to) \
1607 store_op1 (op, loc, (to) - (loc) - 3)
1608
1609/* Likewise, for a two-argument jump. */
1610#define STORE_JUMP2(op, loc, to, arg) \
1611 store_op2 (op, loc, (to) - (loc) - 3, arg)
1612
25fe55af 1613/* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */
fa9a63c5
RM
1614#define INSERT_JUMP(op, loc, to) \
1615 insert_op1 (op, loc, (to) - (loc) - 3, b)
1616
1617/* Like `STORE_JUMP2', but for inserting. Assume `b' is the buffer end. */
1618#define INSERT_JUMP2(op, loc, to, arg) \
1619 insert_op2 (op, loc, (to) - (loc) - 3, arg, b)
1620
1621
1622/* This is not an arbitrary limit: the arguments which represent offsets
25fe55af 1623 into the pattern are two bytes long. So if 2^16 bytes turns out to
fa9a63c5
RM
1624 be too small, many things would have to change. */
1625#define MAX_BUF_SIZE (1L << 16)
1626
1627
1628/* Extend the buffer by twice its current size via realloc and
1629 reset the pointers that pointed into the old block to point to the
1630 correct places in the new one. If extending the buffer results in it
25fe55af 1631 being larger than MAX_BUF_SIZE, then flag memory exhausted. */
fa9a63c5 1632#define EXTEND_BUFFER() \
25fe55af 1633 do { \
fa9a63c5 1634 unsigned char *old_buffer = bufp->buffer; \
25fe55af 1635 if (bufp->allocated == MAX_BUF_SIZE) \
fa9a63c5
RM
1636 return REG_ESIZE; \
1637 bufp->allocated <<= 1; \
1638 if (bufp->allocated > MAX_BUF_SIZE) \
25fe55af 1639 bufp->allocated = MAX_BUF_SIZE; \
fa9a63c5
RM
1640 bufp->buffer = (unsigned char *) realloc (bufp->buffer, bufp->allocated);\
1641 if (bufp->buffer == NULL) \
1642 return REG_ESPACE; \
1643 /* If the buffer moved, move all the pointers into it. */ \
1644 if (old_buffer != bufp->buffer) \
1645 { \
25fe55af
RS
1646 b = (b - old_buffer) + bufp->buffer; \
1647 begalt = (begalt - old_buffer) + bufp->buffer; \
1648 if (fixup_alt_jump) \
1649 fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer;\
1650 if (laststart) \
1651 laststart = (laststart - old_buffer) + bufp->buffer; \
1652 if (pending_exact) \
1653 pending_exact = (pending_exact - old_buffer) + bufp->buffer; \
fa9a63c5
RM
1654 } \
1655 } while (0)
1656
1657
1658/* Since we have one byte reserved for the register number argument to
1659 {start,stop}_memory, the maximum number of groups we can report
1660 things about is what fits in that byte. */
1661#define MAX_REGNUM 255
1662
1663/* But patterns can have more than `MAX_REGNUM' registers. We just
1664 ignore the excess. */
1665typedef unsigned regnum_t;
1666
1667
1668/* Macros for the compile stack. */
1669
1670/* Since offsets can go either forwards or backwards, this type needs to
25fe55af 1671 be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */
fa9a63c5
RM
1672typedef int pattern_offset_t;
1673
1674typedef struct
1675{
1676 pattern_offset_t begalt_offset;
1677 pattern_offset_t fixup_alt_jump;
1678 pattern_offset_t inner_group_offset;
5e69f11e 1679 pattern_offset_t laststart_offset;
fa9a63c5
RM
1680 regnum_t regnum;
1681} compile_stack_elt_t;
1682
1683
1684typedef struct
1685{
1686 compile_stack_elt_t *stack;
1687 unsigned size;
1688 unsigned avail; /* Offset of next open position. */
1689} compile_stack_type;
1690
1691
1692#define INIT_COMPILE_STACK_SIZE 32
1693
1694#define COMPILE_STACK_EMPTY (compile_stack.avail == 0)
1695#define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size)
1696
25fe55af 1697/* The next available element. */
fa9a63c5
RM
1698#define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
1699
1700
b18215fc
RS
1701/* Structure to manage work area for range table. */
1702struct range_table_work_area
1703{
1704 int *table; /* actual work area. */
1705 int allocated; /* allocated size for work area in bytes. */
25fe55af 1706 int used; /* actually used size in words. */
b18215fc
RS
1707};
1708
1709/* Make sure that WORK_AREA can hold more N multibyte characters. */
1710#define EXTEND_RANGE_TABLE_WORK_AREA(work_area, n) \
1711 do { \
1712 if (((work_area).used + (n)) * sizeof (int) > (work_area).allocated) \
1713 { \
1714 (work_area).allocated += 16 * sizeof (int); \
1715 if ((work_area).table) \
1716 (work_area).table \
1717 = (int *) realloc ((work_area).table, (work_area).allocated); \
1718 else \
1719 (work_area).table \
1720 = (int *) malloc ((work_area).allocated); \
1721 if ((work_area).table == 0) \
1722 FREE_STACK_RETURN (REG_ESPACE); \
1723 } \
1724 } while (0)
1725
1726/* Set a range (RANGE_START, RANGE_END) to WORK_AREA. */
1727#define SET_RANGE_TABLE_WORK_AREA(work_area, range_start, range_end) \
1728 do { \
1729 EXTEND_RANGE_TABLE_WORK_AREA ((work_area), 2); \
1730 (work_area).table[(work_area).used++] = (range_start); \
1731 (work_area).table[(work_area).used++] = (range_end); \
1732 } while (0)
1733
25fe55af 1734/* Free allocated memory for WORK_AREA. */
b18215fc
RS
1735#define FREE_RANGE_TABLE_WORK_AREA(work_area) \
1736 do { \
1737 if ((work_area).table) \
1738 free ((work_area).table); \
1739 } while (0)
1740
1741#define CLEAR_RANGE_TABLE_WORK_USED(work_area) ((work_area).used = 0)
1742#define RANGE_TABLE_WORK_USED(work_area) ((work_area).used)
1743#define RANGE_TABLE_WORK_ELT(work_area, i) ((work_area).table[i])
1744
1745
fa9a63c5 1746/* Set the bit for character C in a list. */
25fe55af
RS
1747#define SET_LIST_BIT(c) \
1748 (b[((unsigned char) (c)) / BYTEWIDTH] \
fa9a63c5
RM
1749 |= 1 << (((unsigned char) c) % BYTEWIDTH))
1750
1751
1752/* Get the next unsigned number in the uncompiled pattern. */
25fe55af 1753#define GET_UNSIGNED_NUMBER(num) \
fa9a63c5
RM
1754 { if (p != pend) \
1755 { \
25fe55af
RS
1756 PATFETCH (c); \
1757 while (ISDIGIT (c)) \
1758 { \
1759 if (num < 0) \
1760 num = 0; \
1761 num = num * 10 + c - '0'; \
1762 if (p == pend) \
1763 break; \
1764 PATFETCH (c); \
1765 } \
1766 } \
5e69f11e 1767 }
fa9a63c5
RM
1768
1769#define CHAR_CLASS_MAX_LENGTH 6 /* Namely, `xdigit'. */
1770
1771#define IS_CHAR_CLASS(string) \
1772 (STREQ (string, "alpha") || STREQ (string, "upper") \
1773 || STREQ (string, "lower") || STREQ (string, "digit") \
1774 || STREQ (string, "alnum") || STREQ (string, "xdigit") \
1775 || STREQ (string, "space") || STREQ (string, "print") \
1776 || STREQ (string, "punct") || STREQ (string, "graph") \
1777 || STREQ (string, "cntrl") || STREQ (string, "blank"))
1778\f
1779#ifndef MATCH_MAY_ALLOCATE
1780
1781/* If we cannot allocate large objects within re_match_2_internal,
1782 we make the fail stack and register vectors global.
1783 The fail stack, we grow to the maximum size when a regexp
1784 is compiled.
1785 The register vectors, we adjust in size each time we
1786 compile a regexp, according to the number of registers it needs. */
1787
1788static fail_stack_type fail_stack;
1789
1790/* Size with which the following vectors are currently allocated.
1791 That is so we can make them bigger as needed,
25fe55af 1792 but never make them smaller. */
fa9a63c5
RM
1793static int regs_allocated_size;
1794
25fe55af 1795static const char ** regstart, ** regend;
fa9a63c5
RM
1796static const char ** old_regstart, ** old_regend;
1797static const char **best_regstart, **best_regend;
5e69f11e 1798static register_info_type *reg_info;
fa9a63c5
RM
1799static const char **reg_dummy;
1800static register_info_type *reg_info_dummy;
1801
1802/* Make the register vectors big enough for NUM_REGS registers,
25fe55af 1803 but don't make them smaller. */
fa9a63c5
RM
1804
1805static
1806regex_grow_registers (num_regs)
1807 int num_regs;
1808{
1809 if (num_regs > regs_allocated_size)
1810 {
1811 RETALLOC_IF (regstart, num_regs, const char *);
1812 RETALLOC_IF (regend, num_regs, const char *);
1813 RETALLOC_IF (old_regstart, num_regs, const char *);
1814 RETALLOC_IF (old_regend, num_regs, const char *);
1815 RETALLOC_IF (best_regstart, num_regs, const char *);
1816 RETALLOC_IF (best_regend, num_regs, const char *);
1817 RETALLOC_IF (reg_info, num_regs, register_info_type);
1818 RETALLOC_IF (reg_dummy, num_regs, const char *);
1819 RETALLOC_IF (reg_info_dummy, num_regs, register_info_type);
1820
1821 regs_allocated_size = num_regs;
1822 }
1823}
1824
1825#endif /* not MATCH_MAY_ALLOCATE */
1826\f
1827/* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
1828 Returns one of error codes defined in `regex.h', or zero for success.
1829
1830 Assumes the `allocated' (and perhaps `buffer') and `translate'
1831 fields are set in BUFP on entry.
1832
1833 If it succeeds, results are put in BUFP (if it returns an error, the
1834 contents of BUFP are undefined):
1835 `buffer' is the compiled pattern;
1836 `syntax' is set to SYNTAX;
1837 `used' is set to the length of the compiled pattern;
1838 `fastmap_accurate' is zero;
1839 `re_nsub' is the number of subexpressions in PATTERN;
1840 `not_bol' and `not_eol' are zero;
5e69f11e 1841
fa9a63c5
RM
1842 The `fastmap' and `newline_anchor' fields are neither
1843 examined nor set. */
1844
1845/* Return, freeing storage we allocated. */
1846#define FREE_STACK_RETURN(value) \
b18215fc
RS
1847 do { \
1848 FREE_RANGE_TABLE_WORK_AREA (range_table_work); \
1849 free (compile_stack.stack); \
1850 return value; \
1851 } while (0)
fa9a63c5
RM
1852
1853static reg_errcode_t
1854regex_compile (pattern, size, syntax, bufp)
1855 const char *pattern;
1856 int size;
1857 reg_syntax_t syntax;
1858 struct re_pattern_buffer *bufp;
1859{
1860 /* We fetch characters from PATTERN here. Even though PATTERN is
1861 `char *' (i.e., signed), we declare these variables as unsigned, so
1862 they can be reliably used as array indices. */
b18215fc 1863 register unsigned int c, c1;
5e69f11e 1864
fa9a63c5
RM
1865 /* A random temporary spot in PATTERN. */
1866 const char *p1;
1867
1868 /* Points to the end of the buffer, where we should append. */
1869 register unsigned char *b;
5e69f11e 1870
fa9a63c5
RM
1871 /* Keeps track of unclosed groups. */
1872 compile_stack_type compile_stack;
1873
1874 /* Points to the current (ending) position in the pattern. */
1875 const char *p = pattern;
1876 const char *pend = pattern + size;
5e69f11e 1877
fa9a63c5 1878 /* How to translate the characters in the pattern. */
6676cb1c 1879 RE_TRANSLATE_TYPE translate = bufp->translate;
fa9a63c5
RM
1880
1881 /* Address of the count-byte of the most recently inserted `exactn'
1882 command. This makes it possible to tell if a new exact-match
1883 character can be added to that command or if the character requires
1884 a new `exactn' command. */
1885 unsigned char *pending_exact = 0;
1886
1887 /* Address of start of the most recently finished expression.
1888 This tells, e.g., postfix * where to find the start of its
1889 operand. Reset at the beginning of groups and alternatives. */
1890 unsigned char *laststart = 0;
1891
1892 /* Address of beginning of regexp, or inside of last group. */
1893 unsigned char *begalt;
1894
1895 /* Place in the uncompiled pattern (i.e., the {) to
1896 which to go back if the interval is invalid. */
1897 const char *beg_interval;
5e69f11e 1898
fa9a63c5 1899 /* Address of the place where a forward jump should go to the end of
25fe55af 1900 the containing expression. Each alternative of an `or' -- except the
fa9a63c5
RM
1901 last -- ends with a forward jump of this sort. */
1902 unsigned char *fixup_alt_jump = 0;
1903
1904 /* Counts open-groups as they are encountered. Remembered for the
1905 matching close-group on the compile stack, so the same register
1906 number is put in the stop_memory as the start_memory. */
1907 regnum_t regnum = 0;
1908
b18215fc
RS
1909 /* Work area for range table of charset. */
1910 struct range_table_work_area range_table_work;
1911
fa9a63c5
RM
1912#ifdef DEBUG
1913 DEBUG_PRINT1 ("\nCompiling pattern: ");
1914 if (debug)
1915 {
1916 unsigned debug_count;
5e69f11e 1917
fa9a63c5 1918 for (debug_count = 0; debug_count < size; debug_count++)
25fe55af 1919 putchar (pattern[debug_count]);
fa9a63c5
RM
1920 putchar ('\n');
1921 }
1922#endif /* DEBUG */
1923
1924 /* Initialize the compile stack. */
1925 compile_stack.stack = TALLOC (INIT_COMPILE_STACK_SIZE, compile_stack_elt_t);
1926 if (compile_stack.stack == NULL)
1927 return REG_ESPACE;
1928
1929 compile_stack.size = INIT_COMPILE_STACK_SIZE;
1930 compile_stack.avail = 0;
1931
b18215fc
RS
1932 range_table_work.table = 0;
1933 range_table_work.allocated = 0;
1934
fa9a63c5
RM
1935 /* Initialize the pattern buffer. */
1936 bufp->syntax = syntax;
1937 bufp->fastmap_accurate = 0;
1938 bufp->not_bol = bufp->not_eol = 0;
1939
1940 /* Set `used' to zero, so that if we return an error, the pattern
1941 printer (for debugging) will think there's no pattern. We reset it
1942 at the end. */
1943 bufp->used = 0;
5e69f11e 1944
fa9a63c5 1945 /* Always count groups, whether or not bufp->no_sub is set. */
5e69f11e 1946 bufp->re_nsub = 0;
fa9a63c5 1947
b18215fc
RS
1948#ifdef emacs
1949 /* bufp->multibyte is set before regex_compile is called, so don't alter
1950 it. */
1951#else /* not emacs */
1952 /* Nothing is recognized as a multibyte character. */
1953 bufp->multibyte = 0;
1954#endif
1955
fa9a63c5
RM
1956#if !defined (emacs) && !defined (SYNTAX_TABLE)
1957 /* Initialize the syntax table. */
1958 init_syntax_once ();
1959#endif
1960
1961 if (bufp->allocated == 0)
1962 {
1963 if (bufp->buffer)
1964 { /* If zero allocated, but buffer is non-null, try to realloc
25fe55af
RS
1965 enough space. This loses if buffer's address is bogus, but
1966 that is the user's responsibility. */
1967 RETALLOC (bufp->buffer, INIT_BUF_SIZE, unsigned char);
1968 }
fa9a63c5 1969 else
25fe55af
RS
1970 { /* Caller did not allocate a buffer. Do it for them. */
1971 bufp->buffer = TALLOC (INIT_BUF_SIZE, unsigned char);
1972 }
fa9a63c5
RM
1973 if (!bufp->buffer) FREE_STACK_RETURN (REG_ESPACE);
1974
1975 bufp->allocated = INIT_BUF_SIZE;
1976 }
1977
1978 begalt = b = bufp->buffer;
1979
1980 /* Loop through the uncompiled pattern until we're at the end. */
1981 while (p != pend)
1982 {
1983 PATFETCH (c);
1984
1985 switch (c)
25fe55af
RS
1986 {
1987 case '^':
1988 {
1989 if ( /* If at start of pattern, it's an operator. */
1990 p == pattern + 1
1991 /* If context independent, it's an operator. */
1992 || syntax & RE_CONTEXT_INDEP_ANCHORS
1993 /* Otherwise, depends on what's come before. */
1994 || at_begline_loc_p (pattern, p, syntax))
1995 BUF_PUSH (begline);
1996 else
1997 goto normal_char;
1998 }
1999 break;
2000
2001
2002 case '$':
2003 {
2004 if ( /* If at end of pattern, it's an operator. */
2005 p == pend
2006 /* If context independent, it's an operator. */
2007 || syntax & RE_CONTEXT_INDEP_ANCHORS
2008 /* Otherwise, depends on what's next. */
2009 || at_endline_loc_p (p, pend, syntax))
2010 BUF_PUSH (endline);
2011 else
2012 goto normal_char;
2013 }
2014 break;
fa9a63c5
RM
2015
2016
2017 case '+':
25fe55af
RS
2018 case '?':
2019 if ((syntax & RE_BK_PLUS_QM)
2020 || (syntax & RE_LIMITED_OPS))
2021 goto normal_char;
2022 handle_plus:
2023 case '*':
2024 /* If there is no previous pattern... */
2025 if (!laststart)
2026 {
2027 if (syntax & RE_CONTEXT_INVALID_OPS)
2028 FREE_STACK_RETURN (REG_BADRPT);
2029 else if (!(syntax & RE_CONTEXT_INDEP_OPS))
2030 goto normal_char;
2031 }
2032
2033 {
2034 /* Are we optimizing this jump? */
2035 boolean keep_string_p = false;
2036
2037 /* 1 means zero (many) matches is allowed. */
2038 char zero_times_ok = 0, many_times_ok = 0;
2039
2040 /* If there is a sequence of repetition chars, collapse it
2041 down to just one (the right one). We can't combine
2042 interval operators with these because of, e.g., `a{2}*',
2043 which should only match an even number of `a's. */
2044
2045 for (;;)
2046 {
2047 zero_times_ok |= c != '+';
2048 many_times_ok |= c != '?';
2049
2050 if (p == pend)
2051 break;
2052
2053 PATFETCH (c);
2054
2055 if (c == '*'
2056 || (!(syntax & RE_BK_PLUS_QM) && (c == '+' || c == '?')))
2057 ;
2058
2059 else if (syntax & RE_BK_PLUS_QM && c == '\\')
2060 {
2061 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2062
2063 PATFETCH (c1);
2064 if (!(c1 == '+' || c1 == '?'))
2065 {
2066 PATUNFETCH;
2067 PATUNFETCH;
2068 break;
2069 }
2070
2071 c = c1;
2072 }
2073 else
2074 {
2075 PATUNFETCH;
2076 break;
2077 }
2078
2079 /* If we get here, we found another repeat character. */
2080 }
2081
2082 /* Star, etc. applied to an empty pattern is equivalent
2083 to an empty pattern. */
2084 if (!laststart)
2085 break;
2086
2087 /* Now we know whether or not zero matches is allowed
2088 and also whether or not two or more matches is allowed. */
2089 if (many_times_ok)
2090 { /* More than one repetition is allowed, so put in at the
2091 end a backward relative jump from `b' to before the next
2092 jump we're going to put in below (which jumps from
2093 laststart to after this jump).
2094
2095 But if we are at the `*' in the exact sequence `.*\n',
2096 insert an unconditional jump backwards to the .,
2097 instead of the beginning of the loop. This way we only
2098 push a failure point once, instead of every time
2099 through the loop. */
2100 assert (p - 1 > pattern);
2101
2102 /* Allocate the space for the jump. */
2103 GET_BUFFER_SPACE (3);
2104
2105 /* We know we are not at the first character of the pattern,
2106 because laststart was nonzero. And we've already
2107 incremented `p', by the way, to be the character after
2108 the `*'. Do we have to do something analogous here
2109 for null bytes, because of RE_DOT_NOT_NULL? */
2110 if (TRANSLATE (*(p - 2)) == TRANSLATE ('.')
fa9a63c5 2111 && zero_times_ok
25fe55af
RS
2112 && p < pend && TRANSLATE (*p) == TRANSLATE ('\n')
2113 && !(syntax & RE_DOT_NEWLINE))
2114 { /* We have .*\n. */
2115 STORE_JUMP (jump, b, laststart);
2116 keep_string_p = true;
2117 }
2118 else
2119 /* Anything else. */
2120 STORE_JUMP (maybe_pop_jump, b, laststart - 3);
2121
2122 /* We've added more stuff to the buffer. */
2123 b += 3;
2124 }
2125
2126 /* On failure, jump from laststart to b + 3, which will be the
2127 end of the buffer after this jump is inserted. */
2128 GET_BUFFER_SPACE (3);
2129 INSERT_JUMP (keep_string_p ? on_failure_keep_string_jump
2130 : on_failure_jump,
2131 laststart, b + 3);
2132 pending_exact = 0;
2133 b += 3;
2134
2135 if (!zero_times_ok)
2136 {
2137 /* At least one repetition is required, so insert a
2138 `dummy_failure_jump' before the initial
2139 `on_failure_jump' instruction of the loop. This
2140 effects a skip over that instruction the first time
2141 we hit that loop. */
2142 GET_BUFFER_SPACE (3);
2143 INSERT_JUMP (dummy_failure_jump, laststart, laststart + 6);
2144 b += 3;
2145 }
2146 }
fa9a63c5
RM
2147 break;
2148
2149
2150 case '.':
25fe55af
RS
2151 laststart = b;
2152 BUF_PUSH (anychar);
2153 break;
fa9a63c5
RM
2154
2155
25fe55af
RS
2156 case '[':
2157 {
b18215fc 2158 CLEAR_RANGE_TABLE_WORK_USED (range_table_work);
fa9a63c5 2159
25fe55af 2160 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
fa9a63c5 2161
25fe55af
RS
2162 /* Ensure that we have enough space to push a charset: the
2163 opcode, the length count, and the bitset; 34 bytes in all. */
fa9a63c5
RM
2164 GET_BUFFER_SPACE (34);
2165
25fe55af 2166 laststart = b;
e318085a 2167
25fe55af
RS
2168 /* We test `*p == '^' twice, instead of using an if
2169 statement, so we only need one BUF_PUSH. */
2170 BUF_PUSH (*p == '^' ? charset_not : charset);
2171 if (*p == '^')
2172 p++;
e318085a 2173
25fe55af
RS
2174 /* Remember the first position in the bracket expression. */
2175 p1 = p;
e318085a 2176
25fe55af
RS
2177 /* Push the number of bytes in the bitmap. */
2178 BUF_PUSH ((1 << BYTEWIDTH) / BYTEWIDTH);
e318085a 2179
25fe55af
RS
2180 /* Clear the whole map. */
2181 bzero (b, (1 << BYTEWIDTH) / BYTEWIDTH);
e318085a 2182
25fe55af
RS
2183 /* charset_not matches newline according to a syntax bit. */
2184 if ((re_opcode_t) b[-2] == charset_not
2185 && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
2186 SET_LIST_BIT ('\n');
fa9a63c5 2187
25fe55af
RS
2188 /* Read in characters and ranges, setting map bits. */
2189 for (;;)
2190 {
b18215fc
RS
2191 int len;
2192 boolean escaped_char = false;
e318085a 2193
25fe55af 2194 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
e318085a 2195
25fe55af 2196 PATFETCH (c);
e318085a 2197
25fe55af
RS
2198 /* \ might escape characters inside [...] and [^...]. */
2199 if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
2200 {
2201 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
e318085a
RS
2202
2203 PATFETCH (c);
b18215fc 2204 escaped_char = true;
25fe55af 2205 }
b18215fc
RS
2206 else
2207 {
657fcfbd
RS
2208 /* Could be the end of the bracket expression. If it's
2209 not (i.e., when the bracket expression is `[]' so
2210 far), the ']' character bit gets set way below. */
2211 if (c == ']' && p != p1 + 1)
2212 break;
25fe55af 2213 }
b18215fc
RS
2214
2215 /* If C indicates start of multibyte char, get the
2216 actual character code in C, and set the pattern
2217 pointer P to the next character boundary. */
2218 if (bufp->multibyte && BASE_LEADING_CODE_P (c))
2219 {
2220 PATUNFETCH;
2221 c = STRING_CHAR_AND_LENGTH (p, pend - p, len);
2222 p += len;
25fe55af 2223 }
b18215fc
RS
2224 /* What should we do for the character which is
2225 greater than 0x7F, but not BASE_LEADING_CODE_P?
2226 XXX */
2227
25fe55af
RS
2228 /* See if we're at the beginning of a possible character
2229 class. */
b18215fc
RS
2230
2231 else if (!escaped_char &&
2232 syntax & RE_CHAR_CLASSES && c == '[' && *p == ':')
657fcfbd
RS
2233 {
2234 /* Leave room for the null. */
25fe55af 2235 char str[CHAR_CLASS_MAX_LENGTH + 1];
b18215fc 2236
25fe55af
RS
2237 PATFETCH (c);
2238 c1 = 0;
b18215fc 2239
25fe55af
RS
2240 /* If pattern is `[[:'. */
2241 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
b18215fc 2242
25fe55af
RS
2243 for (;;)
2244 {
2245 PATFETCH (c);
2246 if (c == ':' || c == ']' || p == pend
2247 || c1 == CHAR_CLASS_MAX_LENGTH)
2248 break;
2249 str[c1++] = c;
2250 }
2251 str[c1] = '\0';
b18215fc
RS
2252
2253 /* If isn't a word bracketed by `[:' and `:]':
2254 undo the ending character, the letters, and
2255 leave the leading `:' and `[' (but set bits for
2256 them). */
25fe55af
RS
2257 if (c == ':' && *p == ']')
2258 {
2259 int ch;
2260 boolean is_alnum = STREQ (str, "alnum");
2261 boolean is_alpha = STREQ (str, "alpha");
2262 boolean is_blank = STREQ (str, "blank");
2263 boolean is_cntrl = STREQ (str, "cntrl");
2264 boolean is_digit = STREQ (str, "digit");
2265 boolean is_graph = STREQ (str, "graph");
2266 boolean is_lower = STREQ (str, "lower");
2267 boolean is_print = STREQ (str, "print");
2268 boolean is_punct = STREQ (str, "punct");
2269 boolean is_space = STREQ (str, "space");
2270 boolean is_upper = STREQ (str, "upper");
2271 boolean is_xdigit = STREQ (str, "xdigit");
2272
2273 if (!IS_CHAR_CLASS (str))
fa9a63c5
RM
2274 FREE_STACK_RETURN (REG_ECTYPE);
2275
25fe55af
RS
2276 /* Throw away the ] at the end of the character
2277 class. */
2278 PATFETCH (c);
fa9a63c5 2279
25fe55af 2280 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
fa9a63c5 2281
25fe55af
RS
2282 for (ch = 0; ch < 1 << BYTEWIDTH; ch++)
2283 {
7ae68633 2284 int translated = TRANSLATE (ch);
fa9a63c5
RM
2285 /* This was split into 3 if's to
2286 avoid an arbitrary limit in some compiler. */
25fe55af
RS
2287 if ( (is_alnum && ISALNUM (ch))
2288 || (is_alpha && ISALPHA (ch))
2289 || (is_blank && ISBLANK (ch))
2290 || (is_cntrl && ISCNTRL (ch)))
7ae68633 2291 SET_LIST_BIT (translated);
fa9a63c5 2292 if ( (is_digit && ISDIGIT (ch))
25fe55af
RS
2293 || (is_graph && ISGRAPH (ch))
2294 || (is_lower && ISLOWER (ch))
2295 || (is_print && ISPRINT (ch)))
7ae68633 2296 SET_LIST_BIT (translated);
fa9a63c5 2297 if ( (is_punct && ISPUNCT (ch))
25fe55af
RS
2298 || (is_space && ISSPACE (ch))
2299 || (is_upper && ISUPPER (ch))
2300 || (is_xdigit && ISXDIGIT (ch)))
7ae68633 2301 SET_LIST_BIT (translated);
25fe55af 2302 }
b18215fc
RS
2303
2304 /* Repeat the loop. */
2305 continue;
25fe55af
RS
2306 }
2307 else
2308 {
2309 c1++;
2310 while (c1--)
2311 PATUNFETCH;
2312 SET_LIST_BIT ('[');
b18215fc
RS
2313
2314 /* Because the `:' may starts the range, we
2315 can't simply set bit and repeat the loop.
25fe55af 2316 Instead, just set it to C and handle below. */
b18215fc 2317 c = ':';
25fe55af
RS
2318 }
2319 }
b18215fc
RS
2320
2321 if (p < pend && p[0] == '-' && p[1] != ']')
2322 {
2323
2324 /* Discard the `-'. */
2325 PATFETCH (c1);
2326
2327 /* Fetch the character which ends the range. */
2328 PATFETCH (c1);
2329 if (bufp->multibyte && BASE_LEADING_CODE_P (c1))
e318085a 2330 {
b18215fc
RS
2331 PATUNFETCH;
2332 c1 = STRING_CHAR_AND_LENGTH (p, pend - p, len);
2333 p += len;
e318085a 2334 }
b18215fc
RS
2335
2336 if (!SAME_CHARSET_P (c, c1))
2337 FREE_STACK_RETURN (REG_ERANGE);
e318085a 2338 }
25fe55af 2339 else
b18215fc
RS
2340 /* Range from C to C. */
2341 c1 = c;
2342
2343 /* Set the range ... */
2344 if (SINGLE_BYTE_CHAR_P (c))
2345 /* ... into bitmap. */
25fe55af 2346 {
b18215fc
RS
2347 unsigned this_char;
2348 int range_start = c, range_end = c1;
2349
2350 /* If the start is after the end, the range is empty. */
2351 if (range_start > range_end)
2352 {
2353 if (syntax & RE_NO_EMPTY_RANGES)
2354 FREE_STACK_RETURN (REG_ERANGE);
2355 /* Else, repeat the loop. */
2356 }
2357 else
2358 {
2359 for (this_char = range_start; this_char <= range_end;
2360 this_char++)
2361 SET_LIST_BIT (TRANSLATE (this_char));
25fe55af
RS
2362 }
2363 }
e318085a 2364 else
b18215fc
RS
2365 /* ... into range table. */
2366 SET_RANGE_TABLE_WORK_AREA (range_table_work, c, c1);
e318085a
RS
2367 }
2368
25fe55af
RS
2369 /* Discard any (non)matching list bytes that are all 0 at the
2370 end of the map. Decrease the map-length byte too. */
2371 while ((int) b[-1] > 0 && b[b[-1] - 1] == 0)
2372 b[-1]--;
2373 b += b[-1];
fa9a63c5 2374
b18215fc
RS
2375 /* Build real range table from work area. */
2376 if (RANGE_TABLE_WORK_USED (range_table_work))
2377 {
2378 int i;
2379 int used = RANGE_TABLE_WORK_USED (range_table_work);
fa9a63c5 2380
b18215fc 2381 /* Allocate space for COUNT + RANGE_TABLE. Needs two
25fe55af 2382 bytes for COUNT and three bytes for each character. */
b18215fc 2383 GET_BUFFER_SPACE (2 + used * 3);
fa9a63c5 2384
b18215fc
RS
2385 /* Indicate the existence of range table. */
2386 laststart[1] |= 0x80;
fa9a63c5 2387
b18215fc
RS
2388 STORE_NUMBER_AND_INCR (b, used / 2);
2389 for (i = 0; i < used; i++)
2390 STORE_CHARACTER_AND_INCR
2391 (b, RANGE_TABLE_WORK_ELT (range_table_work, i));
2392 }
25fe55af
RS
2393 }
2394 break;
fa9a63c5
RM
2395
2396
b18215fc 2397 case '(':
25fe55af
RS
2398 if (syntax & RE_NO_BK_PARENS)
2399 goto handle_open;
2400 else
2401 goto normal_char;
fa9a63c5
RM
2402
2403
25fe55af
RS
2404 case ')':
2405 if (syntax & RE_NO_BK_PARENS)
2406 goto handle_close;
2407 else
2408 goto normal_char;
e318085a
RS
2409
2410
25fe55af
RS
2411 case '\n':
2412 if (syntax & RE_NEWLINE_ALT)
2413 goto handle_alt;
2414 else
2415 goto normal_char;
e318085a
RS
2416
2417
b18215fc 2418 case '|':
25fe55af
RS
2419 if (syntax & RE_NO_BK_VBAR)
2420 goto handle_alt;
2421 else
2422 goto normal_char;
2423
2424
2425 case '{':
2426 if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES)
2427 goto handle_interval;
2428 else
2429 goto normal_char;
2430
2431
2432 case '\\':
2433 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2434
2435 /* Do not translate the character after the \, so that we can
2436 distinguish, e.g., \B from \b, even if we normally would
2437 translate, e.g., B to b. */
2438 PATFETCH_RAW (c);
2439
2440 switch (c)
2441 {
2442 case '(':
2443 if (syntax & RE_NO_BK_PARENS)
2444 goto normal_backslash;
2445
2446 handle_open:
2447 bufp->re_nsub++;
2448 regnum++;
2449
2450 if (COMPILE_STACK_FULL)
2451 {
2452 RETALLOC (compile_stack.stack, compile_stack.size << 1,
2453 compile_stack_elt_t);
2454 if (compile_stack.stack == NULL) return REG_ESPACE;
2455
2456 compile_stack.size <<= 1;
2457 }
2458
2459 /* These are the values to restore when we hit end of this
2460 group. They are all relative offsets, so that if the
2461 whole pattern moves because of realloc, they will still
2462 be valid. */
2463 COMPILE_STACK_TOP.begalt_offset = begalt - bufp->buffer;
2464 COMPILE_STACK_TOP.fixup_alt_jump
2465 = fixup_alt_jump ? fixup_alt_jump - bufp->buffer + 1 : 0;
2466 COMPILE_STACK_TOP.laststart_offset = b - bufp->buffer;
2467 COMPILE_STACK_TOP.regnum = regnum;
2468
2469 /* We will eventually replace the 0 with the number of
2470 groups inner to this one. But do not push a
2471 start_memory for groups beyond the last one we can
2472 represent in the compiled pattern. */
2473 if (regnum <= MAX_REGNUM)
2474 {
2475 COMPILE_STACK_TOP.inner_group_offset = b - bufp->buffer + 2;
2476 BUF_PUSH_3 (start_memory, regnum, 0);
2477 }
2478
2479 compile_stack.avail++;
2480
2481 fixup_alt_jump = 0;
2482 laststart = 0;
2483 begalt = b;
b18215fc
RS
2484 /* If we've reached MAX_REGNUM groups, then this open
2485 won't actually generate any code, so we'll have to
2486 clear pending_exact explicitly. */
2487 pending_exact = 0;
25fe55af
RS
2488 break;
2489
2490
2491 case ')':
2492 if (syntax & RE_NO_BK_PARENS) goto normal_backslash;
2493
2494 if (COMPILE_STACK_EMPTY)
2495 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
2496 goto normal_backslash;
2497 else
2498 FREE_STACK_RETURN (REG_ERPAREN);
2499
2500 handle_close:
2501 if (fixup_alt_jump)
2502 { /* Push a dummy failure point at the end of the
2503 alternative for a possible future
2504 `pop_failure_jump' to pop. See comments at
2505 `push_dummy_failure' in `re_match_2'. */
2506 BUF_PUSH (push_dummy_failure);
2507
2508 /* We allocated space for this jump when we assigned
2509 to `fixup_alt_jump', in the `handle_alt' case below. */
2510 STORE_JUMP (jump_past_alt, fixup_alt_jump, b - 1);
2511 }
2512
2513 /* See similar code for backslashed left paren above. */
2514 if (COMPILE_STACK_EMPTY)
2515 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
2516 goto normal_char;
2517 else
2518 FREE_STACK_RETURN (REG_ERPAREN);
2519
2520 /* Since we just checked for an empty stack above, this
2521 ``can't happen''. */
2522 assert (compile_stack.avail != 0);
2523 {
2524 /* We don't just want to restore into `regnum', because
2525 later groups should continue to be numbered higher,
2526 as in `(ab)c(de)' -- the second group is #2. */
2527 regnum_t this_group_regnum;
2528
2529 compile_stack.avail--;
2530 begalt = bufp->buffer + COMPILE_STACK_TOP.begalt_offset;
2531 fixup_alt_jump
2532 = COMPILE_STACK_TOP.fixup_alt_jump
2533 ? bufp->buffer + COMPILE_STACK_TOP.fixup_alt_jump - 1
2534 : 0;
2535 laststart = bufp->buffer + COMPILE_STACK_TOP.laststart_offset;
2536 this_group_regnum = COMPILE_STACK_TOP.regnum;
b18215fc
RS
2537 /* If we've reached MAX_REGNUM groups, then this open
2538 won't actually generate any code, so we'll have to
2539 clear pending_exact explicitly. */
2540 pending_exact = 0;
e318085a 2541
25fe55af
RS
2542 /* We're at the end of the group, so now we know how many
2543 groups were inside this one. */
2544 if (this_group_regnum <= MAX_REGNUM)
2545 {
2546 unsigned char *inner_group_loc
2547 = bufp->buffer + COMPILE_STACK_TOP.inner_group_offset;
2548
2549 *inner_group_loc = regnum - this_group_regnum;
2550 BUF_PUSH_3 (stop_memory, this_group_regnum,
2551 regnum - this_group_regnum);
2552 }
2553 }
2554 break;
2555
2556
2557 case '|': /* `\|'. */
2558 if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR)
2559 goto normal_backslash;
2560 handle_alt:
2561 if (syntax & RE_LIMITED_OPS)
2562 goto normal_char;
2563
2564 /* Insert before the previous alternative a jump which
2565 jumps to this alternative if the former fails. */
2566 GET_BUFFER_SPACE (3);
2567 INSERT_JUMP (on_failure_jump, begalt, b + 6);
2568 pending_exact = 0;
2569 b += 3;
2570
2571 /* The alternative before this one has a jump after it
2572 which gets executed if it gets matched. Adjust that
2573 jump so it will jump to this alternative's analogous
2574 jump (put in below, which in turn will jump to the next
2575 (if any) alternative's such jump, etc.). The last such
2576 jump jumps to the correct final destination. A picture:
2577 _____ _____
2578 | | | |
2579 | v | v
2580 a | b | c
2581
2582 If we are at `b', then fixup_alt_jump right now points to a
2583 three-byte space after `a'. We'll put in the jump, set
2584 fixup_alt_jump to right after `b', and leave behind three
2585 bytes which we'll fill in when we get to after `c'. */
2586
2587 if (fixup_alt_jump)
2588 STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
2589
2590 /* Mark and leave space for a jump after this alternative,
2591 to be filled in later either by next alternative or
2592 when know we're at the end of a series of alternatives. */
2593 fixup_alt_jump = b;
2594 GET_BUFFER_SPACE (3);
2595 b += 3;
2596
2597 laststart = 0;
2598 begalt = b;
2599 break;
2600
2601
2602 case '{':
2603 /* If \{ is a literal. */
2604 if (!(syntax & RE_INTERVALS)
2605 /* If we're at `\{' and it's not the open-interval
2606 operator. */
2607 || ((syntax & RE_INTERVALS) && (syntax & RE_NO_BK_BRACES))
2608 || (p - 2 == pattern && p == pend))
2609 goto normal_backslash;
2610
2611 handle_interval:
2612 {
2613 /* If got here, then the syntax allows intervals. */
2614
2615 /* At least (most) this many matches must be made. */
2616 int lower_bound = -1, upper_bound = -1;
2617
2618 beg_interval = p - 1;
2619
2620 if (p == pend)
2621 {
2622 if (syntax & RE_NO_BK_BRACES)
2623 goto unfetch_interval;
2624 else
2625 FREE_STACK_RETURN (REG_EBRACE);
2626 }
2627
2628 GET_UNSIGNED_NUMBER (lower_bound);
2629
2630 if (c == ',')
2631 {
2632 GET_UNSIGNED_NUMBER (upper_bound);
2633 if (upper_bound < 0) upper_bound = RE_DUP_MAX;
2634 }
2635 else
2636 /* Interval such as `{1}' => match exactly once. */
2637 upper_bound = lower_bound;
2638
2639 if (lower_bound < 0 || upper_bound > RE_DUP_MAX
2640 || lower_bound > upper_bound)
2641 {
2642 if (syntax & RE_NO_BK_BRACES)
2643 goto unfetch_interval;
2644 else
2645 FREE_STACK_RETURN (REG_BADBR);
2646 }
2647
2648 if (!(syntax & RE_NO_BK_BRACES))
2649 {
2650 if (c != '\\') FREE_STACK_RETURN (REG_EBRACE);
2651
2652 PATFETCH (c);
2653 }
2654
2655 if (c != '}')
2656 {
2657 if (syntax & RE_NO_BK_BRACES)
2658 goto unfetch_interval;
2659 else
2660 FREE_STACK_RETURN (REG_BADBR);
2661 }
2662
2663 /* We just parsed a valid interval. */
2664
2665 /* If it's invalid to have no preceding re. */
2666 if (!laststart)
2667 {
2668 if (syntax & RE_CONTEXT_INVALID_OPS)
2669 FREE_STACK_RETURN (REG_BADRPT);
2670 else if (syntax & RE_CONTEXT_INDEP_OPS)
2671 laststart = b;
2672 else
2673 goto unfetch_interval;
2674 }
2675
2676 /* If the upper bound is zero, don't want to succeed at
2677 all; jump from `laststart' to `b + 3', which will be
2678 the end of the buffer after we insert the jump. */
2679 if (upper_bound == 0)
2680 {
2681 GET_BUFFER_SPACE (3);
2682 INSERT_JUMP (jump, laststart, b + 3);
2683 b += 3;
2684 }
2685
2686 /* Otherwise, we have a nontrivial interval. When
2687 we're all done, the pattern will look like:
2688 set_number_at <jump count> <upper bound>
2689 set_number_at <succeed_n count> <lower bound>
2690 succeed_n <after jump addr> <succeed_n count>
2691 <body of loop>
2692 jump_n <succeed_n addr> <jump count>
2693 (The upper bound and `jump_n' are omitted if
2694 `upper_bound' is 1, though.) */
2695 else
2696 { /* If the upper bound is > 1, we need to insert
2697 more at the end of the loop. */
2698 unsigned nbytes = 10 + (upper_bound > 1) * 10;
2699
2700 GET_BUFFER_SPACE (nbytes);
2701
2702 /* Initialize lower bound of the `succeed_n', even
2703 though it will be set during matching by its
2704 attendant `set_number_at' (inserted next),
2705 because `re_compile_fastmap' needs to know.
2706 Jump to the `jump_n' we might insert below. */
2707 INSERT_JUMP2 (succeed_n, laststart,
2708 b + 5 + (upper_bound > 1) * 5,
2709 lower_bound);
2710 b += 5;
2711
2712 /* Code to initialize the lower bound. Insert
2713 before the `succeed_n'. The `5' is the last two
2714 bytes of this `set_number_at', plus 3 bytes of
2715 the following `succeed_n'. */
2716 insert_op2 (set_number_at, laststart, 5, lower_bound, b);
2717 b += 5;
2718
2719 if (upper_bound > 1)
2720 { /* More than one repetition is allowed, so
2721 append a backward jump to the `succeed_n'
2722 that starts this interval.
2723
2724 When we've reached this during matching,
2725 we'll have matched the interval once, so
2726 jump back only `upper_bound - 1' times. */
2727 STORE_JUMP2 (jump_n, b, laststart + 5,
2728 upper_bound - 1);
2729 b += 5;
2730
2731 /* The location we want to set is the second
2732 parameter of the `jump_n'; that is `b-2' as
2733 an absolute address. `laststart' will be
2734 the `set_number_at' we're about to insert;
2735 `laststart+3' the number to set, the source
2736 for the relative address. But we are
2737 inserting into the middle of the pattern --
2738 so everything is getting moved up by 5.
2739 Conclusion: (b - 2) - (laststart + 3) + 5,
2740 i.e., b - laststart.
2741
2742 We insert this at the beginning of the loop
2743 so that if we fail during matching, we'll
2744 reinitialize the bounds. */
2745 insert_op2 (set_number_at, laststart, b - laststart,
2746 upper_bound - 1, b);
2747 b += 5;
2748 }
2749 }
2750 pending_exact = 0;
2751 beg_interval = NULL;
2752 }
2753 break;
2754
2755 unfetch_interval:
2756 /* If an invalid interval, match the characters as literals. */
2757 assert (beg_interval);
2758 p = beg_interval;
2759 beg_interval = NULL;
2760
2761 /* normal_char and normal_backslash need `c'. */
2762 PATFETCH (c);
2763
2764 if (!(syntax & RE_NO_BK_BRACES))
2765 {
2766 if (p > pattern && p[-1] == '\\')
2767 goto normal_backslash;
2768 }
2769 goto normal_char;
e318085a 2770
b18215fc 2771#ifdef emacs
25fe55af
RS
2772 /* There is no way to specify the before_dot and after_dot
2773 operators. rms says this is ok. --karl */
2774 case '=':
2775 BUF_PUSH (at_dot);
2776 break;
2777
2778 case 's':
2779 laststart = b;
2780 PATFETCH (c);
2781 BUF_PUSH_2 (syntaxspec, syntax_spec_code[c]);
2782 break;
2783
2784 case 'S':
2785 laststart = b;
2786 PATFETCH (c);
2787 BUF_PUSH_2 (notsyntaxspec, syntax_spec_code[c]);
2788 break;
b18215fc
RS
2789
2790 case 'c':
2791 laststart = b;
2792 PATFETCH_RAW (c);
2793 BUF_PUSH_2 (categoryspec, c);
2794 break;
e318085a 2795
b18215fc
RS
2796 case 'C':
2797 laststart = b;
2798 PATFETCH_RAW (c);
2799 BUF_PUSH_2 (notcategoryspec, c);
2800 break;
2801#endif /* emacs */
e318085a 2802
e318085a 2803
25fe55af
RS
2804 case 'w':
2805 laststart = b;
2806 BUF_PUSH (wordchar);
2807 break;
e318085a 2808
e318085a 2809
25fe55af
RS
2810 case 'W':
2811 laststart = b;
2812 BUF_PUSH (notwordchar);
2813 break;
e318085a
RS
2814
2815
25fe55af
RS
2816 case '<':
2817 BUF_PUSH (wordbeg);
2818 break;
e318085a 2819
25fe55af
RS
2820 case '>':
2821 BUF_PUSH (wordend);
2822 break;
e318085a 2823
25fe55af
RS
2824 case 'b':
2825 BUF_PUSH (wordbound);
2826 break;
e318085a 2827
25fe55af
RS
2828 case 'B':
2829 BUF_PUSH (notwordbound);
2830 break;
fa9a63c5 2831
25fe55af
RS
2832 case '`':
2833 BUF_PUSH (begbuf);
2834 break;
e318085a 2835
25fe55af
RS
2836 case '\'':
2837 BUF_PUSH (endbuf);
2838 break;
e318085a 2839
25fe55af
RS
2840 case '1': case '2': case '3': case '4': case '5':
2841 case '6': case '7': case '8': case '9':
2842 if (syntax & RE_NO_BK_REFS)
2843 goto normal_char;
e318085a 2844
25fe55af 2845 c1 = c - '0';
e318085a 2846
25fe55af
RS
2847 if (c1 > regnum)
2848 FREE_STACK_RETURN (REG_ESUBREG);
e318085a 2849
25fe55af
RS
2850 /* Can't back reference to a subexpression if inside of it. */
2851 if (group_in_compile_stack (compile_stack, c1))
2852 goto normal_char;
e318085a 2853
25fe55af
RS
2854 laststart = b;
2855 BUF_PUSH_2 (duplicate, c1);
2856 break;
e318085a 2857
e318085a 2858
25fe55af
RS
2859 case '+':
2860 case '?':
2861 if (syntax & RE_BK_PLUS_QM)
2862 goto handle_plus;
2863 else
2864 goto normal_backslash;
2865
2866 default:
2867 normal_backslash:
2868 /* You might think it would be useful for \ to mean
2869 not to translate; but if we don't translate it
2870 it will never match anything. */
2871 c = TRANSLATE (c);
2872 goto normal_char;
2873 }
2874 break;
fa9a63c5
RM
2875
2876
2877 default:
25fe55af 2878 /* Expects the character in `c'. */
fa9a63c5 2879 normal_char:
b18215fc
RS
2880 p1 = p - 1; /* P1 points the head of C. */
2881#ifdef emacs
2882 if (bufp->multibyte)
2883 /* Set P to the next character boundary. */
2884 p += MULTIBYTE_FORM_LENGTH (p1, pend - p1) - 1;
2885#endif
fa9a63c5 2886 /* If no exactn currently being built. */
25fe55af 2887 if (!pending_exact
fa9a63c5 2888
25fe55af
RS
2889 /* If last exactn not at current position. */
2890 || pending_exact + *pending_exact + 1 != b
5e69f11e 2891
25fe55af 2892 /* We have only one byte following the exactn for the count. */
b18215fc 2893 || *pending_exact >= (1 << BYTEWIDTH) - (p - p1)
fa9a63c5 2894
25fe55af
RS
2895 /* If followed by a repetition operator. */
2896 || *p == '*' || *p == '^'
fa9a63c5
RM
2897 || ((syntax & RE_BK_PLUS_QM)
2898 ? *p == '\\' && (p[1] == '+' || p[1] == '?')
2899 : (*p == '+' || *p == '?'))
2900 || ((syntax & RE_INTERVALS)
25fe55af 2901 && ((syntax & RE_NO_BK_BRACES)
fa9a63c5 2902 ? *p == '{'
25fe55af 2903 : (p[0] == '\\' && p[1] == '{'))))
fa9a63c5
RM
2904 {
2905 /* Start building a new exactn. */
5e69f11e 2906
25fe55af 2907 laststart = b;
fa9a63c5
RM
2908
2909 BUF_PUSH_2 (exactn, 0);
2910 pending_exact = b - 1;
25fe55af 2911 }
5e69f11e 2912
b18215fc
RS
2913 /* Here, C may translated, therefore C may not equal to *P1. */
2914 while (1)
2915 {
fa9a63c5 2916 BUF_PUSH (c);
25fe55af 2917 (*pending_exact)++;
b18215fc
RS
2918 if (++p1 == p)
2919 break;
2920
2921 /* Rest of multibyte form should be copied literally. */
2922 c = *(unsigned char *)p1;
2923 }
fa9a63c5 2924 break;
25fe55af 2925 } /* switch (c) */
fa9a63c5
RM
2926 } /* while p != pend */
2927
5e69f11e 2928
fa9a63c5 2929 /* Through the pattern now. */
5e69f11e 2930
fa9a63c5
RM
2931 if (fixup_alt_jump)
2932 STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
2933
5e69f11e 2934 if (!COMPILE_STACK_EMPTY)
fa9a63c5
RM
2935 FREE_STACK_RETURN (REG_EPAREN);
2936
2937 /* If we don't want backtracking, force success
2938 the first time we reach the end of the compiled pattern. */
2939 if (syntax & RE_NO_POSIX_BACKTRACKING)
2940 BUF_PUSH (succeed);
2941
2942 free (compile_stack.stack);
2943
2944 /* We have succeeded; set the length of the buffer. */
2945 bufp->used = b - bufp->buffer;
2946
2947#ifdef DEBUG
2948 if (debug)
2949 {
2950 DEBUG_PRINT1 ("\nCompiled pattern: \n");
2951 print_compiled_pattern (bufp);
2952 }
2953#endif /* DEBUG */
2954
2955#ifndef MATCH_MAY_ALLOCATE
2956 /* Initialize the failure stack to the largest possible stack. This
2957 isn't necessary unless we're trying to avoid calling alloca in
2958 the search and match routines. */
2959 {
2960 int num_regs = bufp->re_nsub + 1;
2961
320a2a73 2962 if (fail_stack.size < re_max_failures * TYPICAL_FAILURE_SIZE)
fa9a63c5 2963 {
320a2a73 2964 fail_stack.size = re_max_failures * TYPICAL_FAILURE_SIZE);
fa9a63c5
RM
2965
2966#ifdef emacs
2967 if (! fail_stack.stack)
2968 fail_stack.stack
5e69f11e 2969 = (fail_stack_elt_t *) xmalloc (fail_stack.size
fa9a63c5
RM
2970 * sizeof (fail_stack_elt_t));
2971 else
2972 fail_stack.stack
2973 = (fail_stack_elt_t *) xrealloc (fail_stack.stack,
2974 (fail_stack.size
2975 * sizeof (fail_stack_elt_t)));
2976#else /* not emacs */
2977 if (! fail_stack.stack)
2978 fail_stack.stack
5e69f11e 2979 = (fail_stack_elt_t *) malloc (fail_stack.size
fa9a63c5
RM
2980 * sizeof (fail_stack_elt_t));
2981 else
2982 fail_stack.stack
2983 = (fail_stack_elt_t *) realloc (fail_stack.stack,
2984 (fail_stack.size
2985 * sizeof (fail_stack_elt_t)));
2986#endif /* not emacs */
2987 }
2988
2989 regex_grow_registers (num_regs);
2990 }
2991#endif /* not MATCH_MAY_ALLOCATE */
2992
2993 return REG_NOERROR;
2994} /* regex_compile */
2995\f
2996/* Subroutines for `regex_compile'. */
2997
25fe55af 2998/* Store OP at LOC followed by two-byte integer parameter ARG. */
fa9a63c5
RM
2999
3000static void
3001store_op1 (op, loc, arg)
3002 re_opcode_t op;
3003 unsigned char *loc;
3004 int arg;
3005{
3006 *loc = (unsigned char) op;
3007 STORE_NUMBER (loc + 1, arg);
3008}
3009
3010
3011/* Like `store_op1', but for two two-byte parameters ARG1 and ARG2. */
3012
3013static void
3014store_op2 (op, loc, arg1, arg2)
3015 re_opcode_t op;
3016 unsigned char *loc;
3017 int arg1, arg2;
3018{
3019 *loc = (unsigned char) op;
3020 STORE_NUMBER (loc + 1, arg1);
3021 STORE_NUMBER (loc + 3, arg2);
3022}
3023
3024
3025/* Copy the bytes from LOC to END to open up three bytes of space at LOC
3026 for OP followed by two-byte integer parameter ARG. */
3027
3028static void
3029insert_op1 (op, loc, arg, end)
3030 re_opcode_t op;
3031 unsigned char *loc;
3032 int arg;
5e69f11e 3033 unsigned char *end;
fa9a63c5
RM
3034{
3035 register unsigned char *pfrom = end;
3036 register unsigned char *pto = end + 3;
3037
3038 while (pfrom != loc)
3039 *--pto = *--pfrom;
5e69f11e 3040
fa9a63c5
RM
3041 store_op1 (op, loc, arg);
3042}
3043
3044
3045/* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2. */
3046
3047static void
3048insert_op2 (op, loc, arg1, arg2, end)
3049 re_opcode_t op;
3050 unsigned char *loc;
3051 int arg1, arg2;
5e69f11e 3052 unsigned char *end;
fa9a63c5
RM
3053{
3054 register unsigned char *pfrom = end;
3055 register unsigned char *pto = end + 5;
3056
3057 while (pfrom != loc)
3058 *--pto = *--pfrom;
5e69f11e 3059
fa9a63c5
RM
3060 store_op2 (op, loc, arg1, arg2);
3061}
3062
3063
3064/* P points to just after a ^ in PATTERN. Return true if that ^ comes
3065 after an alternative or a begin-subexpression. We assume there is at
3066 least one character before the ^. */
3067
3068static boolean
3069at_begline_loc_p (pattern, p, syntax)
3070 const char *pattern, *p;
3071 reg_syntax_t syntax;
3072{
3073 const char *prev = p - 2;
3074 boolean prev_prev_backslash = prev > pattern && prev[-1] == '\\';
5e69f11e 3075
fa9a63c5
RM
3076 return
3077 /* After a subexpression? */
3078 (*prev == '(' && (syntax & RE_NO_BK_PARENS || prev_prev_backslash))
25fe55af 3079 /* After an alternative? */
fa9a63c5
RM
3080 || (*prev == '|' && (syntax & RE_NO_BK_VBAR || prev_prev_backslash));
3081}
3082
3083
3084/* The dual of at_begline_loc_p. This one is for $. We assume there is
3085 at least one character after the $, i.e., `P < PEND'. */
3086
3087static boolean
3088at_endline_loc_p (p, pend, syntax)
3089 const char *p, *pend;
3090 int syntax;
3091{
3092 const char *next = p;
3093 boolean next_backslash = *next == '\\';
5bb52971 3094 const char *next_next = p + 1 < pend ? p + 1 : 0;
5e69f11e 3095
fa9a63c5
RM
3096 return
3097 /* Before a subexpression? */
3098 (syntax & RE_NO_BK_PARENS ? *next == ')'
25fe55af 3099 : next_backslash && next_next && *next_next == ')')
fa9a63c5
RM
3100 /* Before an alternative? */
3101 || (syntax & RE_NO_BK_VBAR ? *next == '|'
25fe55af 3102 : next_backslash && next_next && *next_next == '|');
fa9a63c5
RM
3103}
3104
3105
5e69f11e 3106/* Returns true if REGNUM is in one of COMPILE_STACK's elements and
fa9a63c5
RM
3107 false if it's not. */
3108
3109static boolean
3110group_in_compile_stack (compile_stack, regnum)
3111 compile_stack_type compile_stack;
3112 regnum_t regnum;
3113{
3114 int this_element;
3115
5e69f11e
RM
3116 for (this_element = compile_stack.avail - 1;
3117 this_element >= 0;
fa9a63c5
RM
3118 this_element--)
3119 if (compile_stack.stack[this_element].regnum == regnum)
3120 return true;
3121
3122 return false;
3123}
3124
3125
3126/* Read the ending character of a range (in a bracket expression) from the
3127 uncompiled pattern *P_PTR (which ends at PEND). We assume the
3128 starting character is in `P[-2]'. (`P[-1]' is the character `-'.)
3129 Then we set the translation of all bits between the starting and
3130 ending characters (inclusive) in the compiled pattern B.
5e69f11e 3131
fa9a63c5 3132 Return an error code.
5e69f11e 3133
fa9a63c5
RM
3134 We use these short variable names so we can use the same macros as
3135 `regex_compile' itself. */
3136
3137static reg_errcode_t
3138compile_range (p_ptr, pend, translate, syntax, b)
3139 const char **p_ptr, *pend;
6676cb1c 3140 RE_TRANSLATE_TYPE translate;
fa9a63c5
RM
3141 reg_syntax_t syntax;
3142 unsigned char *b;
3143{
3144 unsigned this_char;
3145
3146 const char *p = *p_ptr;
3147 int range_start, range_end;
5e69f11e 3148
fa9a63c5
RM
3149 if (p == pend)
3150 return REG_ERANGE;
3151
3152 /* Even though the pattern is a signed `char *', we need to fetch
3153 with unsigned char *'s; if the high bit of the pattern character
3154 is set, the range endpoints will be negative if we fetch using a
3155 signed char *.
3156
5e69f11e 3157 We also want to fetch the endpoints without translating them; the
fa9a63c5
RM
3158 appropriate translation is done in the bit-setting loop below. */
3159 /* The SVR4 compiler on the 3B2 had trouble with unsigned const char *. */
3160 range_start = ((const unsigned char *) p)[-2];
3161 range_end = ((const unsigned char *) p)[0];
3162
3163 /* Have to increment the pointer into the pattern string, so the
3164 caller isn't still at the ending character. */
3165 (*p_ptr)++;
3166
25fe55af 3167 /* If the start is after the end, the range is empty. */
fa9a63c5
RM
3168 if (range_start > range_end)
3169 return syntax & RE_NO_EMPTY_RANGES ? REG_ERANGE : REG_NOERROR;
3170
3171 /* Here we see why `this_char' has to be larger than an `unsigned
3172 char' -- the range is inclusive, so if `range_end' == 0xff
3173 (assuming 8-bit characters), we would otherwise go into an infinite
3174 loop, since all characters <= 0xff. */
3175 for (this_char = range_start; this_char <= range_end; this_char++)
3176 {
3177 SET_LIST_BIT (TRANSLATE (this_char));
3178 }
5e69f11e 3179
fa9a63c5
RM
3180 return REG_NOERROR;
3181}
3182\f
3183/* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
3184 BUFP. A fastmap records which of the (1 << BYTEWIDTH) possible
3185 characters can start a string that matches the pattern. This fastmap
3186 is used by re_search to skip quickly over impossible starting points.
3187
3188 The caller must supply the address of a (1 << BYTEWIDTH)-byte data
3189 area as BUFP->fastmap.
5e69f11e 3190
fa9a63c5
RM
3191 We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
3192 the pattern buffer.
3193
3194 Returns 0 if we succeed, -2 if an internal error. */
3195
3196int
3197re_compile_fastmap (bufp)
3198 struct re_pattern_buffer *bufp;
3199{
b18215fc 3200 int i, j, k;
fa9a63c5
RM
3201#ifdef MATCH_MAY_ALLOCATE
3202 fail_stack_type fail_stack;
3203#endif
3204#ifndef REGEX_MALLOC
3205 char *destination;
3206#endif
3207 /* We don't push any register information onto the failure stack. */
3208 unsigned num_regs = 0;
5e69f11e 3209
fa9a63c5
RM
3210 register char *fastmap = bufp->fastmap;
3211 unsigned char *pattern = bufp->buffer;
3212 unsigned long size = bufp->used;
3213 unsigned char *p = pattern;
3214 register unsigned char *pend = pattern + size;
3215
3216 /* This holds the pointer to the failure stack, when
3217 it is allocated relocatably. */
3218 fail_stack_elt_t *failure_stack_ptr;
3219
3220 /* Assume that each path through the pattern can be null until
25fe55af 3221 proven otherwise. We set this false at the bottom of switch
fa9a63c5
RM
3222 statement, to which we get only if a particular path doesn't
3223 match the empty string. */
3224 boolean path_can_be_null = true;
3225
3226 /* We aren't doing a `succeed_n' to begin with. */
3227 boolean succeed_n_p = false;
3228
b18215fc 3229 /* If all elements for base leading-codes in fastmap is set, this
25fe55af 3230 flag is set true. */
b18215fc
RS
3231 boolean match_any_multibyte_characters = false;
3232
3233 /* Maximum code of simple (single byte) character. */
3234 int simple_char_max;
3235
fa9a63c5 3236 assert (fastmap != NULL && p != NULL);
5e69f11e 3237
fa9a63c5 3238 INIT_FAIL_STACK ();
25fe55af 3239 bzero (fastmap, 1 << BYTEWIDTH); /* Assume nothing's valid. */
fa9a63c5
RM
3240 bufp->fastmap_accurate = 1; /* It will be when we're done. */
3241 bufp->can_be_null = 0;
5e69f11e 3242
fa9a63c5
RM
3243 while (1)
3244 {
3245 if (p == pend || *p == succeed)
3246 {
3247 /* We have reached the (effective) end of pattern. */
3248 if (!FAIL_STACK_EMPTY ())
3249 {
3250 bufp->can_be_null |= path_can_be_null;
3251
3252 /* Reset for next path. */
3253 path_can_be_null = true;
3254
3255 p = fail_stack.stack[--fail_stack.avail].pointer;
3256
3257 continue;
3258 }
3259 else
3260 break;
3261 }
3262
25fe55af 3263 /* We should never be about to go beyond the end of the pattern. */
fa9a63c5 3264 assert (p < pend);
5e69f11e 3265
fa9a63c5
RM
3266 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
3267 {
3268
25fe55af
RS
3269 /* I guess the idea here is to simply not bother with a fastmap
3270 if a backreference is used, since it's too hard to figure out
3271 the fastmap for the corresponding group. Setting
3272 `can_be_null' stops `re_search_2' from using the fastmap, so
3273 that is all we do. */
fa9a63c5
RM
3274 case duplicate:
3275 bufp->can_be_null = 1;
25fe55af 3276 goto done;
fa9a63c5
RM
3277
3278
3279 /* Following are the cases which match a character. These end
25fe55af 3280 with `break'. */
fa9a63c5
RM
3281
3282 case exactn:
25fe55af 3283 fastmap[p[1]] = 1;
fa9a63c5
RM
3284 break;
3285
3286
b18215fc 3287#ifndef emacs
25fe55af
RS
3288 case charset:
3289 for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
fa9a63c5 3290 if (p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH)))
25fe55af 3291 fastmap[j] = 1;
fa9a63c5
RM
3292 break;
3293
3294
3295 case charset_not:
3296 /* Chars beyond end of map must be allowed. */
3297 for (j = *p * BYTEWIDTH; j < (1 << BYTEWIDTH); j++)
25fe55af 3298 fastmap[j] = 1;
fa9a63c5
RM
3299
3300 for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
3301 if (!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))))
25fe55af
RS
3302 fastmap[j] = 1;
3303 break;
fa9a63c5
RM
3304
3305
3306 case wordchar:
3307 for (j = 0; j < (1 << BYTEWIDTH); j++)
3308 if (SYNTAX (j) == Sword)
3309 fastmap[j] = 1;
3310 break;
3311
3312
3313 case notwordchar:
3314 for (j = 0; j < (1 << BYTEWIDTH); j++)
3315 if (SYNTAX (j) != Sword)
3316 fastmap[j] = 1;
3317 break;
b18215fc
RS
3318#else /* emacs */
3319 case charset:
3320 for (j = CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH - 1, p++;
3321 j >= 0; j--)
3322 if (p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH)))
3323 fastmap[j] = 1;
3324
3325 if (CHARSET_RANGE_TABLE_EXISTS_P (&p[-2])
3326 && match_any_multibyte_characters == false)
3327 {
3328 /* Set fastmap[I] 1 where I is a base leading code of each
3329 multibyte character in the range table. */
3330 int c, count;
3331
3332 /* Make P points the range table. */
3333 p += CHARSET_BITMAP_SIZE (&p[-2]);
3334
3335 /* Extract the number of ranges in range table into
25fe55af 3336 COUNT. */
b18215fc
RS
3337 EXTRACT_NUMBER_AND_INCR (count, p);
3338 for (; count > 0; count--, p += 2 * 3) /* XXX */
3339 {
3340 /* Extract the start of each range. */
3341 EXTRACT_CHARACTER (c, p);
3342 j = CHAR_CHARSET (c);
3343 fastmap[CHARSET_LEADING_CODE_BASE (j)] = 1;
3344 }
3345 }
3346 break;
fa9a63c5
RM
3347
3348
b18215fc
RS
3349 case charset_not:
3350 /* Chars beyond end of map must be allowed. End of map is
3351 `127' if bufp->multibyte is nonzero. */
3352 simple_char_max = bufp->multibyte ? 0x80 : (1 << BYTEWIDTH);
3353 for (j = CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH;
3354 j < simple_char_max; j++)
3355 fastmap[j] = 1;
3356
3357 for (j = CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH - 1, p++;
3358 j >= 0; j--)
3359 if (!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))))
3360 fastmap[j] = 1;
3361
3362 if (bufp->multibyte)
3363 /* Any character set can possibly contain a character
3364 which doesn't match the specified set of characters. */
3365 {
3366 set_fastmap_for_multibyte_characters:
3367 if (match_any_multibyte_characters == false)
3368 {
3369 for (j = 0x80; j < 0xA0; j++) /* XXX */
3370 if (BASE_LEADING_CODE_P (j))
3371 fastmap[j] = 1;
3372 match_any_multibyte_characters = true;
3373 }
3374 }
3375 break;
3376
3377
3378 case wordchar:
3379 simple_char_max = bufp->multibyte ? 0x80 : (1 << BYTEWIDTH);
3380 for (j = 0; j < simple_char_max; j++)
3381 if (SYNTAX (j) == Sword)
3382 fastmap[j] = 1;
3383
3384 if (bufp->multibyte)
3385 /* Any character set can possibly contain a character
25fe55af 3386 whose syntax is `Sword'. */
b18215fc
RS
3387 goto set_fastmap_for_multibyte_characters;
3388 break;
3389
3390
3391 case notwordchar:
3392 simple_char_max = bufp->multibyte ? 0x80 : (1 << BYTEWIDTH);
3393 for (j = 0; j < simple_char_max; j++)
3394 if (SYNTAX (j) != Sword)
3395 fastmap[j] = 1;
3396
3397 if (bufp->multibyte)
3398 /* Any character set can possibly contain a character
3399 whose syntax is not `Sword'. */
3400 goto set_fastmap_for_multibyte_characters;
3401 break;
3402#endif
3403
25fe55af 3404 case anychar:
fa9a63c5
RM
3405 {
3406 int fastmap_newline = fastmap['\n'];
3407
b18215fc
RS
3408 /* `.' matches anything (but if bufp->multibyte is
3409 nonzero, matches `\000' .. `\127' and possible multibyte
3410 character) ... */
3411 if (bufp->multibyte)
3412 {
3413 simple_char_max = 0x80;
3414
3415 for (j = 0x80; j < 0xA0; j++)
3416 if (BASE_LEADING_CODE_P (j))
3417 fastmap[j] = 1;
3418 match_any_multibyte_characters = true;
3419 }
3420 else
3421 simple_char_max = (1 << BYTEWIDTH);
3422
3423 for (j = 0; j < simple_char_max; j++)
fa9a63c5
RM
3424 fastmap[j] = 1;
3425
3426 /* ... except perhaps newline. */
3427 if (!(bufp->syntax & RE_DOT_NEWLINE))
3428 fastmap['\n'] = fastmap_newline;
3429
3430 /* Return if we have already set `can_be_null'; if we have,
25fe55af 3431 then the fastmap is irrelevant. Something's wrong here. */
fa9a63c5
RM
3432 else if (bufp->can_be_null)
3433 goto done;
3434
3435 /* Otherwise, have to check alternative paths. */
3436 break;
3437 }
3438
3439#ifdef emacs
b18215fc
RS
3440 case wordbound:
3441 case notwordbound:
3442 case wordbeg:
3443 case wordend:
3444 case notsyntaxspec:
25fe55af 3445 case syntaxspec:
b18215fc
RS
3446 /* This match depends on text properties. These end with
3447 aborting optimizations. */
3448 bufp->can_be_null = 1;
25fe55af 3449 goto done;
b18215fc 3450#if 0
fa9a63c5 3451 k = *p++;
b18215fc
RS
3452 simple_char_max = bufp->multibyte ? 0x80 : (1 << BYTEWIDTH);
3453 for (j = 0; j < simple_char_max; j++)
fa9a63c5
RM
3454 if (SYNTAX (j) == (enum syntaxcode) k)
3455 fastmap[j] = 1;
fa9a63c5 3456
b18215fc
RS
3457 if (bufp->multibyte)
3458 /* Any character set can possibly contain a character
3459 whose syntax is K. */
3460 goto set_fastmap_for_multibyte_characters;
3461 break;
fa9a63c5
RM
3462
3463 case notsyntaxspec:
3464 k = *p++;
b18215fc
RS
3465 simple_char_max = bufp->multibyte ? 0x80 : (1 << BYTEWIDTH);
3466 for (j = 0; j < simple_char_max; j++)
fa9a63c5
RM
3467 if (SYNTAX (j) != (enum syntaxcode) k)
3468 fastmap[j] = 1;
b18215fc
RS
3469
3470 if (bufp->multibyte)
3471 /* Any character set can possibly contain a character
3472 whose syntax is not K. */
3473 goto set_fastmap_for_multibyte_characters;
3474 break;
3475#endif
3476
3477
3478 case categoryspec:
3479 k = *p++;
3480 simple_char_max = bufp->multibyte ? 0x80 : (1 << BYTEWIDTH);
3481 for (j = 0; j < simple_char_max; j++)
3482 if (CHAR_HAS_CATEGORY (j, k))
3483 fastmap[j] = 1;
3484
3485 if (bufp->multibyte)
3486 /* Any character set can possibly contain a character
3487 whose category is K. */
3488 goto set_fastmap_for_multibyte_characters;
fa9a63c5
RM
3489 break;
3490
3491
b18215fc
RS
3492 case notcategoryspec:
3493 k = *p++;
3494 simple_char_max = bufp->multibyte ? 0x80 : (1 << BYTEWIDTH);
3495 for (j = 0; j < simple_char_max; j++)
3496 if (!CHAR_HAS_CATEGORY (j, k))
3497 fastmap[j] = 1;
3498
3499 if (bufp->multibyte)
3500 /* Any character set can possibly contain a character
25fe55af 3501 whose category is not K. */
b18215fc
RS
3502 goto set_fastmap_for_multibyte_characters;
3503 break;
3504
fa9a63c5 3505 /* All cases after this match the empty string. These end with
25fe55af 3506 `continue'. */
fa9a63c5
RM
3507
3508
3509 case before_dot:
3510 case at_dot:
3511 case after_dot:
25fe55af 3512 continue;
ae4788a8 3513#endif /* emacs */
fa9a63c5
RM
3514
3515
25fe55af
RS
3516 case no_op:
3517 case begline:
3518 case endline:
fa9a63c5
RM
3519 case begbuf:
3520 case endbuf:
b18215fc 3521#ifndef emacs
fa9a63c5
RM
3522 case wordbound:
3523 case notwordbound:
3524 case wordbeg:
3525 case wordend:
25fe55af
RS
3526#endif
3527 case push_dummy_failure:
3528 continue;
fa9a63c5
RM
3529
3530
3531 case jump_n:
25fe55af 3532 case pop_failure_jump:
fa9a63c5
RM
3533 case maybe_pop_jump:
3534 case jump:
25fe55af 3535 case jump_past_alt:
fa9a63c5 3536 case dummy_failure_jump:
25fe55af 3537 EXTRACT_NUMBER_AND_INCR (j, p);
5e69f11e 3538 p += j;
fa9a63c5
RM
3539 if (j > 0)
3540 continue;
5e69f11e 3541
25fe55af
RS
3542 /* Jump backward implies we just went through the body of a
3543 loop and matched nothing. Opcode jumped to should be
3544 `on_failure_jump' or `succeed_n'. Just treat it like an
3545 ordinary jump. For a * loop, it has pushed its failure
3546 point already; if so, discard that as redundant. */
3547 if ((re_opcode_t) *p != on_failure_jump
fa9a63c5
RM
3548 && (re_opcode_t) *p != succeed_n)
3549 continue;
3550
25fe55af
RS
3551 p++;
3552 EXTRACT_NUMBER_AND_INCR (j, p);
3553 p += j;
5e69f11e 3554
25fe55af
RS
3555 /* If what's on the stack is where we are now, pop it. */
3556 if (!FAIL_STACK_EMPTY ()
fa9a63c5 3557 && fail_stack.stack[fail_stack.avail - 1].pointer == p)
25fe55af 3558 fail_stack.avail--;
fa9a63c5 3559
25fe55af 3560 continue;
fa9a63c5
RM
3561
3562
25fe55af
RS
3563 case on_failure_jump:
3564 case on_failure_keep_string_jump:
fa9a63c5 3565 handle_on_failure_jump:
25fe55af
RS
3566 EXTRACT_NUMBER_AND_INCR (j, p);
3567
3568 /* For some patterns, e.g., `(a?)?', `p+j' here points to the
3569 end of the pattern. We don't want to push such a point,
3570 since when we restore it above, entering the switch will
3571 increment `p' past the end of the pattern. We don't need
3572 to push such a point since we obviously won't find any more
3573 fastmap entries beyond `pend'. Such a pattern can match
3574 the null string, though. */
3575 if (p + j < pend)
3576 {
3577 if (!PUSH_PATTERN_OP (p + j, fail_stack))
fa9a63c5
RM
3578 {
3579 RESET_FAIL_STACK ();
3580 return -2;
3581 }
fa9a63c5 3582 }
25fe55af
RS
3583 else
3584 bufp->can_be_null = 1;
fa9a63c5 3585
25fe55af
RS
3586 if (succeed_n_p)
3587 {
3588 EXTRACT_NUMBER_AND_INCR (k, p); /* Skip the n. */
3589 succeed_n_p = false;
3590 }
3591
3592 continue;
fa9a63c5
RM
3593
3594
3595 case succeed_n:
25fe55af
RS
3596 /* Get to the number of times to succeed. */
3597 p += 2;
fa9a63c5 3598
25fe55af
RS
3599 /* Increment p past the n for when k != 0. */
3600 EXTRACT_NUMBER_AND_INCR (k, p);
3601 if (k == 0)
fa9a63c5 3602 {
25fe55af
RS
3603 p -= 4;
3604 succeed_n_p = true; /* Spaghetti code alert. */
3605 goto handle_on_failure_jump;
3606 }
3607 continue;
fa9a63c5
RM
3608
3609
3610 case set_number_at:
25fe55af
RS
3611 p += 4;
3612 continue;
fa9a63c5
RM
3613
3614
3615 case start_memory:
25fe55af 3616 case stop_memory:
fa9a63c5
RM
3617 p += 2;
3618 continue;
3619
3620
3621 default:
25fe55af
RS
3622 abort (); /* We have listed all the cases. */
3623 } /* switch *p++ */
fa9a63c5
RM
3624
3625 /* Getting here means we have found the possible starting
25fe55af
RS
3626 characters for one path of the pattern -- and that the empty
3627 string does not match. We need not follow this path further.
3628 Instead, look at the next alternative (remembered on the
3629 stack), or quit if no more. The test at the top of the loop
3630 does these things. */
fa9a63c5
RM
3631 path_can_be_null = false;
3632 p = pend;
3633 } /* while p */
3634
3635 /* Set `can_be_null' for the last path (also the first path, if the
25fe55af 3636 pattern is empty). */
fa9a63c5
RM
3637 bufp->can_be_null |= path_can_be_null;
3638
3639 done:
3640 RESET_FAIL_STACK ();
3641 return 0;
3642} /* re_compile_fastmap */
3643\f
3644/* Set REGS to hold NUM_REGS registers, storing them in STARTS and
3645 ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use
3646 this memory for recording register information. STARTS and ENDS
3647 must be allocated using the malloc library routine, and must each
3648 be at least NUM_REGS * sizeof (regoff_t) bytes long.
3649
3650 If NUM_REGS == 0, then subsequent matches should allocate their own
3651 register data.
3652
3653 Unless this function is called, the first search or match using
3654 PATTERN_BUFFER will allocate its own register data, without
3655 freeing the old data. */
3656
3657void
3658re_set_registers (bufp, regs, num_regs, starts, ends)
3659 struct re_pattern_buffer *bufp;
3660 struct re_registers *regs;
3661 unsigned num_regs;
3662 regoff_t *starts, *ends;
3663{
3664 if (num_regs)
3665 {
3666 bufp->regs_allocated = REGS_REALLOCATE;
3667 regs->num_regs = num_regs;
3668 regs->start = starts;
3669 regs->end = ends;
3670 }
3671 else
3672 {
3673 bufp->regs_allocated = REGS_UNALLOCATED;
3674 regs->num_regs = 0;
3675 regs->start = regs->end = (regoff_t *) 0;
3676 }
3677}
3678\f
25fe55af 3679/* Searching routines. */
fa9a63c5
RM
3680
3681/* Like re_search_2, below, but only one string is specified, and
3682 doesn't let you say where to stop matching. */
3683
3684int
3685re_search (bufp, string, size, startpos, range, regs)
3686 struct re_pattern_buffer *bufp;
3687 const char *string;
3688 int size, startpos, range;
3689 struct re_registers *regs;
3690{
5e69f11e 3691 return re_search_2 (bufp, NULL, 0, string, size, startpos, range,
fa9a63c5
RM
3692 regs, size);
3693}
3694
b18215fc
RS
3695/* End address of virtual concatenation of string. */
3696#define STOP_ADDR_VSTRING(P) \
3697 (((P) >= size1 ? string2 + size2 : string1 + size1))
3698
3699/* Address of POS in the concatenation of virtual string. */
3700#define POS_ADDR_VSTRING(POS) \
3701 (((POS) >= size1 ? string2 - size1 : string1) + (POS))
fa9a63c5
RM
3702
3703/* Using the compiled pattern in BUFP->buffer, first tries to match the
3704 virtual concatenation of STRING1 and STRING2, starting first at index
3705 STARTPOS, then at STARTPOS + 1, and so on.
5e69f11e 3706
fa9a63c5 3707 STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
5e69f11e 3708
fa9a63c5
RM
3709 RANGE is how far to scan while trying to match. RANGE = 0 means try
3710 only at STARTPOS; in general, the last start tried is STARTPOS +
3711 RANGE.
5e69f11e 3712
fa9a63c5
RM
3713 In REGS, return the indices of the virtual concatenation of STRING1
3714 and STRING2 that matched the entire BUFP->buffer and its contained
3715 subexpressions.
5e69f11e 3716
fa9a63c5
RM
3717 Do not consider matching one past the index STOP in the virtual
3718 concatenation of STRING1 and STRING2.
3719
3720 We return either the position in the strings at which the match was
3721 found, -1 if no match, or -2 if error (such as failure
3722 stack overflow). */
3723
3724int
3725re_search_2 (bufp, string1, size1, string2, size2, startpos, range, regs, stop)
3726 struct re_pattern_buffer *bufp;
3727 const char *string1, *string2;
3728 int size1, size2;
3729 int startpos;
3730 int range;
3731 struct re_registers *regs;
3732 int stop;
3733{
3734 int val;
3735 register char *fastmap = bufp->fastmap;
6676cb1c 3736 register RE_TRANSLATE_TYPE translate = bufp->translate;
fa9a63c5
RM
3737 int total_size = size1 + size2;
3738 int endpos = startpos + range;
c8499ba5 3739 int anchored_start = 0;
fa9a63c5 3740
25fe55af 3741 /* Nonzero if we have to concern multibyte character. */
b18215fc
RS
3742 int multibyte = bufp->multibyte;
3743
fa9a63c5
RM
3744 /* Check for out-of-range STARTPOS. */
3745 if (startpos < 0 || startpos > total_size)
3746 return -1;
5e69f11e 3747
fa9a63c5 3748 /* Fix up RANGE if it might eventually take us outside
34597fa9 3749 the virtual concatenation of STRING1 and STRING2.
5e69f11e 3750 Make sure we won't move STARTPOS below 0 or above TOTAL_SIZE. */
34597fa9
RS
3751 if (endpos < 0)
3752 range = 0 - startpos;
fa9a63c5
RM
3753 else if (endpos > total_size)
3754 range = total_size - startpos;
3755
3756 /* If the search isn't to be a backwards one, don't waste time in a
3757 search for a pattern that must be anchored. */
3758 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == begbuf && range > 0)
3759 {
3760 if (startpos > 0)
3761 return -1;
3762 else
3763 range = 1;
3764 }
3765
ae4788a8
RS
3766#ifdef emacs
3767 /* In a forward search for something that starts with \=.
3768 don't keep searching past point. */
3769 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == at_dot && range > 0)
3770 {
3771 range = PT - startpos;
3772 if (range <= 0)
3773 return -1;
3774 }
3775#endif /* emacs */
3776
fa9a63c5
RM
3777 /* Update the fastmap now if not correct already. */
3778 if (fastmap && !bufp->fastmap_accurate)
3779 if (re_compile_fastmap (bufp) == -2)
3780 return -2;
5e69f11e 3781
c8499ba5
RS
3782 /* See whether the pattern is anchored. */
3783 if (bufp->buffer[0] == begline)
3784 anchored_start = 1;
3785
b18215fc
RS
3786#ifdef emacs
3787 SETUP_SYNTAX_TABLE_FOR_OBJECT (re_match_object,
25fe55af 3788 POS_AS_IN_BUFFER (startpos > 0
b18215fc
RS
3789 ? startpos - 1 : startpos),
3790 1);
3791#endif
3792
fa9a63c5
RM
3793 /* Loop through the string, looking for a place to start matching. */
3794 for (;;)
5e69f11e 3795 {
c8499ba5
RS
3796 /* If the pattern is anchored,
3797 skip quickly past places we cannot match.
3798 We don't bother to treat startpos == 0 specially
3799 because that case doesn't repeat. */
3800 if (anchored_start && startpos > 0)
3801 {
3802 if (! (bufp->newline_anchor
3803 && ((startpos <= size1 ? string1[startpos - 1]
3804 : string2[startpos - size1 - 1])
3805 == '\n')))
3806 goto advance;
3807 }
3808
fa9a63c5 3809 /* If a fastmap is supplied, skip quickly over characters that
25fe55af
RS
3810 cannot be the start of a match. If the pattern can match the
3811 null string, however, we don't need to skip characters; we want
3812 the first null string. */
fa9a63c5
RM
3813 if (fastmap && startpos < total_size && !bufp->can_be_null)
3814 {
25fe55af 3815 if (range > 0) /* Searching forwards. */
fa9a63c5
RM
3816 {
3817 register const char *d;
3818 register int lim = 0;
3819 int irange = range;
3820
25fe55af
RS
3821 if (startpos < size1 && startpos + range >= size1)
3822 lim = range - (size1 - startpos);
fa9a63c5 3823
b18215fc 3824 d = POS_ADDR_VSTRING (startpos);
5e69f11e 3825
25fe55af
RS
3826 /* Written out as an if-else to avoid testing `translate'
3827 inside the loop. */
fa9a63c5 3828 if (translate)
25fe55af
RS
3829 while (range > lim
3830 && !fastmap[(unsigned char)
bc192b5b 3831 RE_TRANSLATE (translate, (unsigned char) *d++)])
25fe55af 3832 range--;
fa9a63c5 3833 else
25fe55af
RS
3834 while (range > lim && !fastmap[(unsigned char) *d++])
3835 range--;
fa9a63c5
RM
3836
3837 startpos += irange - range;
3838 }
25fe55af 3839 else /* Searching backwards. */
fa9a63c5
RM
3840 {
3841 register char c = (size1 == 0 || startpos >= size1
25fe55af
RS
3842 ? string2[startpos - size1]
3843 : string1[startpos]);
fa9a63c5
RM
3844
3845 if (!fastmap[(unsigned char) TRANSLATE (c)])
3846 goto advance;
3847 }
3848 }
3849
3850 /* If can't match the null string, and that's all we have left, fail. */
3851 if (range >= 0 && startpos == total_size && fastmap
25fe55af 3852 && !bufp->can_be_null)
fa9a63c5
RM
3853 return -1;
3854
3855 val = re_match_2_internal (bufp, string1, size1, string2, size2,
3856 startpos, regs, stop);
3857#ifndef REGEX_MALLOC
3858#ifdef C_ALLOCA
3859 alloca (0);
3860#endif
3861#endif
3862
3863 if (val >= 0)
3864 return startpos;
5e69f11e 3865
fa9a63c5
RM
3866 if (val == -2)
3867 return -2;
3868
3869 advance:
5e69f11e 3870 if (!range)
25fe55af 3871 break;
5e69f11e 3872 else if (range > 0)
25fe55af 3873 {
b18215fc
RS
3874 /* Update STARTPOS to the next character boundary. */
3875 if (multibyte)
3876 {
b560c397
RS
3877 const unsigned char *p
3878 = (const unsigned char *) POS_ADDR_VSTRING (startpos);
3879 const unsigned char *pend
3880 = (const unsigned char *) STOP_ADDR_VSTRING (startpos);
b18215fc
RS
3881 int len = MULTIBYTE_FORM_LENGTH (p, pend - p);
3882
3883 range -= len;
3884 if (range < 0)
3885 break;
3886 startpos += len;
3887 }
3888 else
3889 {
b560c397
RS
3890 range--;
3891 startpos++;
3892 }
e318085a 3893 }
fa9a63c5 3894 else
25fe55af
RS
3895 {
3896 range++;
3897 startpos--;
b18215fc
RS
3898
3899 /* Update STARTPOS to the previous character boundary. */
3900 if (multibyte)
3901 {
b560c397
RS
3902 const unsigned char *p
3903 = (const unsigned char *) POS_ADDR_VSTRING (startpos);
b18215fc
RS
3904 int len = 0;
3905
3906 /* Find the head of multibyte form. */
5d967c7a 3907 while (!CHAR_HEAD_P (*p))
b18215fc
RS
3908 p--, len++;
3909
3910 /* Adjust it. */
3911#if 0 /* XXX */
3912 if (MULTIBYTE_FORM_LENGTH (p, len + 1) != (len + 1))
3913 ;
3914 else
3915#endif
3916 {
3917 range += len;
3918 if (range > 0)
3919 break;
3920
3921 startpos -= len;
3922 }
3923 }
25fe55af 3924 }
fa9a63c5
RM
3925 }
3926 return -1;
3927} /* re_search_2 */
3928\f
3929/* Declarations and macros for re_match_2. */
3930
3931static int bcmp_translate ();
3932static boolean alt_match_null_string_p (),
25fe55af
RS
3933 common_op_match_null_string_p (),
3934 group_match_null_string_p ();
fa9a63c5
RM
3935
3936/* This converts PTR, a pointer into one of the search strings `string1'
3937 and `string2' into an offset from the beginning of that string. */
3938#define POINTER_TO_OFFSET(ptr) \
3939 (FIRST_STRING_P (ptr) \
3940 ? ((regoff_t) ((ptr) - string1)) \
3941 : ((regoff_t) ((ptr) - string2 + size1)))
3942
3943/* Macros for dealing with the split strings in re_match_2. */
3944
3945#define MATCHING_IN_FIRST_STRING (dend == end_match_1)
3946
3947/* Call before fetching a character with *d. This switches over to
3948 string2 if necessary. */
3949#define PREFETCH() \
25fe55af 3950 while (d == dend) \
fa9a63c5
RM
3951 { \
3952 /* End of string2 => fail. */ \
25fe55af
RS
3953 if (dend == end_match_2) \
3954 goto fail; \
3955 /* End of string1 => advance to string2. */ \
3956 d = string2; \
fa9a63c5
RM
3957 dend = end_match_2; \
3958 }
3959
3960
3961/* Test if at very beginning or at very end of the virtual concatenation
25fe55af 3962 of `string1' and `string2'. If only one string, it's `string2'. */
fa9a63c5 3963#define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
5e69f11e 3964#define AT_STRINGS_END(d) ((d) == end2)
fa9a63c5
RM
3965
3966
3967/* Test if D points to a character which is word-constituent. We have
3968 two special cases to check for: if past the end of string1, look at
3969 the first character in string2; and if before the beginning of
3970 string2, look at the last character in string1. */
3971#define WORDCHAR_P(d) \
3972 (SYNTAX ((d) == end1 ? *string2 \
25fe55af 3973 : (d) == string2 - 1 ? *(end1 - 1) : *(d)) \
fa9a63c5
RM
3974 == Sword)
3975
9121ca40 3976/* Disabled due to a compiler bug -- see comment at case wordbound */
b18215fc
RS
3977
3978/* The comment at case wordbound is following one, but we don't use
3979 AT_WORD_BOUNDARY anymore to support multibyte form.
3980
3981 The DEC Alpha C compiler 3.x generates incorrect code for the
25fe55af
RS
3982 test WORDCHAR_P (d - 1) != WORDCHAR_P (d) in the expansion of
3983 AT_WORD_BOUNDARY, so this code is disabled. Expanding the
b18215fc
RS
3984 macro and introducing temporary variables works around the bug. */
3985
9121ca40 3986#if 0
fa9a63c5
RM
3987/* Test if the character before D and the one at D differ with respect
3988 to being word-constituent. */
3989#define AT_WORD_BOUNDARY(d) \
3990 (AT_STRINGS_BEG (d) || AT_STRINGS_END (d) \
3991 || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
9121ca40 3992#endif
fa9a63c5
RM
3993
3994/* Free everything we malloc. */
3995#ifdef MATCH_MAY_ALLOCATE
00049484 3996#define FREE_VAR(var) if (var) { REGEX_FREE (var); var = NULL; } else
fa9a63c5
RM
3997#define FREE_VARIABLES() \
3998 do { \
3999 REGEX_FREE_STACK (fail_stack.stack); \
4000 FREE_VAR (regstart); \
4001 FREE_VAR (regend); \
4002 FREE_VAR (old_regstart); \
4003 FREE_VAR (old_regend); \
4004 FREE_VAR (best_regstart); \
4005 FREE_VAR (best_regend); \
4006 FREE_VAR (reg_info); \
4007 FREE_VAR (reg_dummy); \
4008 FREE_VAR (reg_info_dummy); \
4009 } while (0)
4010#else
4011#define FREE_VARIABLES() ((void)0) /* Do nothing! But inhibit gcc warning. */
4012#endif /* not MATCH_MAY_ALLOCATE */
4013
25fe55af 4014/* These values must meet several constraints. They must not be valid
fa9a63c5
RM
4015 register values; since we have a limit of 255 registers (because
4016 we use only one byte in the pattern for the register number), we can
25fe55af 4017 use numbers larger than 255. They must differ by 1, because of
fa9a63c5
RM
4018 NUM_FAILURE_ITEMS above. And the value for the lowest register must
4019 be larger than the value for the highest register, so we do not try
25fe55af 4020 to actually save any registers when none are active. */
fa9a63c5
RM
4021#define NO_HIGHEST_ACTIVE_REG (1 << BYTEWIDTH)
4022#define NO_LOWEST_ACTIVE_REG (NO_HIGHEST_ACTIVE_REG + 1)
4023\f
4024/* Matching routines. */
4025
25fe55af 4026#ifndef emacs /* Emacs never uses this. */
fa9a63c5
RM
4027/* re_match is like re_match_2 except it takes only a single string. */
4028
4029int
4030re_match (bufp, string, size, pos, regs)
4031 struct re_pattern_buffer *bufp;
4032 const char *string;
4033 int size, pos;
4034 struct re_registers *regs;
4035{
4036 int result = re_match_2_internal (bufp, NULL, 0, string, size,
4037 pos, regs, size);
4038 alloca (0);
4039 return result;
4040}
4041#endif /* not emacs */
4042
b18215fc
RS
4043#ifdef emacs
4044/* In Emacs, this is the string or buffer in which we
25fe55af 4045 are matching. It is used for looking up syntax properties. */
b18215fc
RS
4046Lisp_Object re_match_object;
4047#endif
fa9a63c5
RM
4048
4049/* re_match_2 matches the compiled pattern in BUFP against the
4050 the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
4051 and SIZE2, respectively). We start matching at POS, and stop
4052 matching at STOP.
5e69f11e 4053
fa9a63c5 4054 If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
25fe55af 4055 store offsets for the substring each group matched in REGS. See the
fa9a63c5
RM
4056 documentation for exactly how many groups we fill.
4057
4058 We return -1 if no match, -2 if an internal error (such as the
25fe55af 4059 failure stack overflowing). Otherwise, we return the length of the
fa9a63c5
RM
4060 matched substring. */
4061
4062int
4063re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
4064 struct re_pattern_buffer *bufp;
4065 const char *string1, *string2;
4066 int size1, size2;
4067 int pos;
4068 struct re_registers *regs;
4069 int stop;
4070{
b18215fc 4071 int result;
25fe55af 4072
b18215fc 4073#ifdef emacs
25fe55af
RS
4074 SETUP_SYNTAX_TABLE_FOR_OBJECT (re_match_object,
4075 POS_AS_IN_BUFFER (pos > 0 ? pos - 1 : pos),
b18215fc
RS
4076 1);
4077#endif
4078
4079 result = re_match_2_internal (bufp, string1, size1, string2, size2,
fa9a63c5
RM
4080 pos, regs, stop);
4081 alloca (0);
4082 return result;
4083}
4084
4085/* This is a separate function so that we can force an alloca cleanup
25fe55af 4086 afterwards. */
fa9a63c5
RM
4087static int
4088re_match_2_internal (bufp, string1, size1, string2, size2, pos, regs, stop)
4089 struct re_pattern_buffer *bufp;
4090 const char *string1, *string2;
4091 int size1, size2;
4092 int pos;
4093 struct re_registers *regs;
4094 int stop;
4095{
4096 /* General temporaries. */
4097 int mcnt;
4098 unsigned char *p1;
4099
4100 /* Just past the end of the corresponding string. */
4101 const char *end1, *end2;
4102
4103 /* Pointers into string1 and string2, just past the last characters in
25fe55af 4104 each to consider matching. */
fa9a63c5
RM
4105 const char *end_match_1, *end_match_2;
4106
4107 /* Where we are in the data, and the end of the current string. */
4108 const char *d, *dend;
5e69f11e 4109
fa9a63c5
RM
4110 /* Where we are in the pattern, and the end of the pattern. */
4111 unsigned char *p = bufp->buffer;
4112 register unsigned char *pend = p + bufp->used;
4113
4114 /* Mark the opcode just after a start_memory, so we can test for an
4115 empty subpattern when we get to the stop_memory. */
4116 unsigned char *just_past_start_mem = 0;
4117
25fe55af 4118 /* We use this to map every character in the string. */
6676cb1c 4119 RE_TRANSLATE_TYPE translate = bufp->translate;
fa9a63c5 4120
25fe55af 4121 /* Nonzero if we have to concern multibyte character. */
b18215fc
RS
4122 int multibyte = bufp->multibyte;
4123
fa9a63c5
RM
4124 /* Failure point stack. Each place that can handle a failure further
4125 down the line pushes a failure point on this stack. It consists of
4126 restart, regend, and reg_info for all registers corresponding to
4127 the subexpressions we're currently inside, plus the number of such
4128 registers, and, finally, two char *'s. The first char * is where
4129 to resume scanning the pattern; the second one is where to resume
4130 scanning the strings. If the latter is zero, the failure point is
4131 a ``dummy''; if a failure happens and the failure point is a dummy,
25fe55af
RS
4132 it gets discarded and the next next one is tried. */
4133#ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
fa9a63c5
RM
4134 fail_stack_type fail_stack;
4135#endif
4136#ifdef DEBUG
4137 static unsigned failure_id = 0;
4138 unsigned nfailure_points_pushed = 0, nfailure_points_popped = 0;
4139#endif
4140
4141 /* This holds the pointer to the failure stack, when
4142 it is allocated relocatably. */
4143 fail_stack_elt_t *failure_stack_ptr;
4144
4145 /* We fill all the registers internally, independent of what we
25fe55af 4146 return, for use in backreferences. The number here includes
fa9a63c5
RM
4147 an element for register zero. */
4148 unsigned num_regs = bufp->re_nsub + 1;
5e69f11e 4149
fa9a63c5
RM
4150 /* The currently active registers. */
4151 unsigned lowest_active_reg = NO_LOWEST_ACTIVE_REG;
4152 unsigned highest_active_reg = NO_HIGHEST_ACTIVE_REG;
4153
4154 /* Information on the contents of registers. These are pointers into
4155 the input strings; they record just what was matched (on this
4156 attempt) by a subexpression part of the pattern, that is, the
4157 regnum-th regstart pointer points to where in the pattern we began
4158 matching and the regnum-th regend points to right after where we
4159 stopped matching the regnum-th subexpression. (The zeroth register
4160 keeps track of what the whole pattern matches.) */
4161#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
4162 const char **regstart, **regend;
4163#endif
4164
4165 /* If a group that's operated upon by a repetition operator fails to
4166 match anything, then the register for its start will need to be
4167 restored because it will have been set to wherever in the string we
4168 are when we last see its open-group operator. Similarly for a
4169 register's end. */
4170#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
4171 const char **old_regstart, **old_regend;
4172#endif
4173
4174 /* The is_active field of reg_info helps us keep track of which (possibly
4175 nested) subexpressions we are currently in. The matched_something
4176 field of reg_info[reg_num] helps us tell whether or not we have
4177 matched any of the pattern so far this time through the reg_num-th
4178 subexpression. These two fields get reset each time through any
25fe55af
RS
4179 loop their register is in. */
4180#ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
5e69f11e 4181 register_info_type *reg_info;
fa9a63c5
RM
4182#endif
4183
4184 /* The following record the register info as found in the above
5e69f11e 4185 variables when we find a match better than any we've seen before.
fa9a63c5
RM
4186 This happens as we backtrack through the failure points, which in
4187 turn happens only if we have not yet matched the entire string. */
4188 unsigned best_regs_set = false;
4189#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
4190 const char **best_regstart, **best_regend;
4191#endif
5e69f11e 4192
fa9a63c5
RM
4193 /* Logically, this is `best_regend[0]'. But we don't want to have to
4194 allocate space for that if we're not allocating space for anything
25fe55af 4195 else (see below). Also, we never need info about register 0 for
fa9a63c5
RM
4196 any of the other register vectors, and it seems rather a kludge to
4197 treat `best_regend' differently than the rest. So we keep track of
4198 the end of the best match so far in a separate variable. We
4199 initialize this to NULL so that when we backtrack the first time
4200 and need to test it, it's not garbage. */
4201 const char *match_end = NULL;
4202
4203 /* This helps SET_REGS_MATCHED avoid doing redundant work. */
4204 int set_regs_matched_done = 0;
4205
4206 /* Used when we pop values we don't care about. */
4207#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
4208 const char **reg_dummy;
4209 register_info_type *reg_info_dummy;
4210#endif
4211
4212#ifdef DEBUG
4213 /* Counts the total number of registers pushed. */
5e69f11e 4214 unsigned num_regs_pushed = 0;
fa9a63c5
RM
4215#endif
4216
4217 DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
5e69f11e 4218
fa9a63c5 4219 INIT_FAIL_STACK ();
5e69f11e 4220
fa9a63c5
RM
4221#ifdef MATCH_MAY_ALLOCATE
4222 /* Do not bother to initialize all the register variables if there are
4223 no groups in the pattern, as it takes a fair amount of time. If
4224 there are groups, we include space for register 0 (the whole
4225 pattern), even though we never use it, since it simplifies the
4226 array indexing. We should fix this. */
4227 if (bufp->re_nsub)
4228 {
4229 regstart = REGEX_TALLOC (num_regs, const char *);
4230 regend = REGEX_TALLOC (num_regs, const char *);
4231 old_regstart = REGEX_TALLOC (num_regs, const char *);
4232 old_regend = REGEX_TALLOC (num_regs, const char *);
4233 best_regstart = REGEX_TALLOC (num_regs, const char *);
4234 best_regend = REGEX_TALLOC (num_regs, const char *);
4235 reg_info = REGEX_TALLOC (num_regs, register_info_type);
4236 reg_dummy = REGEX_TALLOC (num_regs, const char *);
4237 reg_info_dummy = REGEX_TALLOC (num_regs, register_info_type);
4238
5e69f11e 4239 if (!(regstart && regend && old_regstart && old_regend && reg_info
25fe55af
RS
4240 && best_regstart && best_regend && reg_dummy && reg_info_dummy))
4241 {
4242 FREE_VARIABLES ();
4243 return -2;
4244 }
fa9a63c5
RM
4245 }
4246 else
4247 {
4248 /* We must initialize all our variables to NULL, so that
25fe55af 4249 `FREE_VARIABLES' doesn't try to free them. */
fa9a63c5 4250 regstart = regend = old_regstart = old_regend = best_regstart
25fe55af 4251 = best_regend = reg_dummy = NULL;
fa9a63c5
RM
4252 reg_info = reg_info_dummy = (register_info_type *) NULL;
4253 }
4254#endif /* MATCH_MAY_ALLOCATE */
4255
4256 /* The starting position is bogus. */
4257 if (pos < 0 || pos > size1 + size2)
4258 {
4259 FREE_VARIABLES ();
4260 return -1;
4261 }
5e69f11e 4262
fa9a63c5
RM
4263 /* Initialize subexpression text positions to -1 to mark ones that no
4264 start_memory/stop_memory has been seen for. Also initialize the
4265 register information struct. */
4266 for (mcnt = 1; mcnt < num_regs; mcnt++)
4267 {
5e69f11e 4268 regstart[mcnt] = regend[mcnt]
25fe55af 4269 = old_regstart[mcnt] = old_regend[mcnt] = REG_UNSET_VALUE;
5e69f11e 4270
fa9a63c5
RM
4271 REG_MATCH_NULL_STRING_P (reg_info[mcnt]) = MATCH_NULL_UNSET_VALUE;
4272 IS_ACTIVE (reg_info[mcnt]) = 0;
4273 MATCHED_SOMETHING (reg_info[mcnt]) = 0;
4274 EVER_MATCHED_SOMETHING (reg_info[mcnt]) = 0;
4275 }
5e69f11e 4276
fa9a63c5 4277 /* We move `string1' into `string2' if the latter's empty -- but not if
25fe55af 4278 `string1' is null. */
fa9a63c5
RM
4279 if (size2 == 0 && string1 != NULL)
4280 {
4281 string2 = string1;
4282 size2 = size1;
4283 string1 = 0;
4284 size1 = 0;
4285 }
4286 end1 = string1 + size1;
4287 end2 = string2 + size2;
4288
4289 /* Compute where to stop matching, within the two strings. */
4290 if (stop <= size1)
4291 {
4292 end_match_1 = string1 + stop;
4293 end_match_2 = string2;
4294 }
4295 else
4296 {
4297 end_match_1 = end1;
4298 end_match_2 = string2 + stop - size1;
4299 }
4300
5e69f11e 4301 /* `p' scans through the pattern as `d' scans through the data.
fa9a63c5
RM
4302 `dend' is the end of the input string that `d' points within. `d'
4303 is advanced into the following input string whenever necessary, but
4304 this happens before fetching; therefore, at the beginning of the
4305 loop, `d' can be pointing at the end of a string, but it cannot
4306 equal `string2'. */
4307 if (size1 > 0 && pos <= size1)
4308 {
4309 d = string1 + pos;
4310 dend = end_match_1;
4311 }
4312 else
4313 {
4314 d = string2 + pos - size1;
4315 dend = end_match_2;
4316 }
4317
4318 DEBUG_PRINT1 ("The compiled pattern is: ");
4319 DEBUG_PRINT_COMPILED_PATTERN (bufp, p, pend);
4320 DEBUG_PRINT1 ("The string to match is: `");
4321 DEBUG_PRINT_DOUBLE_STRING (d, string1, size1, string2, size2);
4322 DEBUG_PRINT1 ("'\n");
5e69f11e 4323
25fe55af 4324 /* This loops over pattern commands. It exits by returning from the
fa9a63c5
RM
4325 function if the match is complete, or it drops through if the match
4326 fails at this starting point in the input data. */
4327 for (;;)
4328 {
4329 DEBUG_PRINT2 ("\n0x%x: ", p);
4330
4331 if (p == pend)
4332 { /* End of pattern means we might have succeeded. */
25fe55af 4333 DEBUG_PRINT1 ("end of pattern ... ");
5e69f11e 4334
fa9a63c5 4335 /* If we haven't matched the entire string, and we want the
25fe55af
RS
4336 longest match, try backtracking. */
4337 if (d != end_match_2)
fa9a63c5
RM
4338 {
4339 /* 1 if this match ends in the same string (string1 or string2)
4340 as the best previous match. */
5e69f11e 4341 boolean same_str_p = (FIRST_STRING_P (match_end)
fa9a63c5
RM
4342 == MATCHING_IN_FIRST_STRING);
4343 /* 1 if this match is the best seen so far. */
4344 boolean best_match_p;
4345
4346 /* AIX compiler got confused when this was combined
25fe55af 4347 with the previous declaration. */
fa9a63c5
RM
4348 if (same_str_p)
4349 best_match_p = d > match_end;
4350 else
4351 best_match_p = !MATCHING_IN_FIRST_STRING;
4352
25fe55af
RS
4353 DEBUG_PRINT1 ("backtracking.\n");
4354
4355 if (!FAIL_STACK_EMPTY ())
4356 { /* More failure points to try. */
4357
4358 /* If exceeds best match so far, save it. */
4359 if (!best_regs_set || best_match_p)
4360 {
4361 best_regs_set = true;
4362 match_end = d;
4363
4364 DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
4365
4366 for (mcnt = 1; mcnt < num_regs; mcnt++)
4367 {
4368 best_regstart[mcnt] = regstart[mcnt];
4369 best_regend[mcnt] = regend[mcnt];
4370 }
4371 }
4372 goto fail;
4373 }
4374
4375 /* If no failure points, don't restore garbage. And if
4376 last match is real best match, don't restore second
4377 best one. */
4378 else if (best_regs_set && !best_match_p)
4379 {
4380 restore_best_regs:
4381 /* Restore best match. It may happen that `dend ==
4382 end_match_1' while the restored d is in string2.
4383 For example, the pattern `x.*y.*z' against the
4384 strings `x-' and `y-z-', if the two strings are
4385 not consecutive in memory. */
4386 DEBUG_PRINT1 ("Restoring best registers.\n");
4387
4388 d = match_end;
4389 dend = ((d >= string1 && d <= end1)
4390 ? end_match_1 : end_match_2);
fa9a63c5
RM
4391
4392 for (mcnt = 1; mcnt < num_regs; mcnt++)
4393 {
4394 regstart[mcnt] = best_regstart[mcnt];
4395 regend[mcnt] = best_regend[mcnt];
4396 }
25fe55af
RS
4397 }
4398 } /* d != end_match_2 */
fa9a63c5
RM
4399
4400 succeed_label:
25fe55af 4401 DEBUG_PRINT1 ("Accepting match.\n");
fa9a63c5 4402
25fe55af
RS
4403 /* If caller wants register contents data back, do it. */
4404 if (regs && !bufp->no_sub)
fa9a63c5 4405 {
25fe55af
RS
4406 /* Have the register data arrays been allocated? */
4407 if (bufp->regs_allocated == REGS_UNALLOCATED)
4408 { /* No. So allocate them with malloc. We need one
4409 extra element beyond `num_regs' for the `-1' marker
4410 GNU code uses. */
4411 regs->num_regs = MAX (RE_NREGS, num_regs + 1);
4412 regs->start = TALLOC (regs->num_regs, regoff_t);
4413 regs->end = TALLOC (regs->num_regs, regoff_t);
4414 if (regs->start == NULL || regs->end == NULL)
fa9a63c5
RM
4415 {
4416 FREE_VARIABLES ();
4417 return -2;
4418 }
25fe55af
RS
4419 bufp->regs_allocated = REGS_REALLOCATE;
4420 }
4421 else if (bufp->regs_allocated == REGS_REALLOCATE)
4422 { /* Yes. If we need more elements than were already
4423 allocated, reallocate them. If we need fewer, just
4424 leave it alone. */
4425 if (regs->num_regs < num_regs + 1)
4426 {
4427 regs->num_regs = num_regs + 1;
4428 RETALLOC (regs->start, regs->num_regs, regoff_t);
4429 RETALLOC (regs->end, regs->num_regs, regoff_t);
4430 if (regs->start == NULL || regs->end == NULL)
fa9a63c5
RM
4431 {
4432 FREE_VARIABLES ();
4433 return -2;
4434 }
25fe55af
RS
4435 }
4436 }
4437 else
fa9a63c5
RM
4438 {
4439 /* These braces fend off a "empty body in an else-statement"
25fe55af 4440 warning under GCC when assert expands to nothing. */
fa9a63c5
RM
4441 assert (bufp->regs_allocated == REGS_FIXED);
4442 }
4443
25fe55af
RS
4444 /* Convert the pointer data in `regstart' and `regend' to
4445 indices. Register zero has to be set differently,
4446 since we haven't kept track of any info for it. */
4447 if (regs->num_regs > 0)
4448 {
4449 regs->start[0] = pos;
4450 regs->end[0] = (MATCHING_IN_FIRST_STRING
fa9a63c5 4451 ? ((regoff_t) (d - string1))
25fe55af
RS
4452 : ((regoff_t) (d - string2 + size1)));
4453 }
5e69f11e 4454
25fe55af
RS
4455 /* Go through the first `min (num_regs, regs->num_regs)'
4456 registers, since that is all we initialized. */
fa9a63c5
RM
4457 for (mcnt = 1; mcnt < MIN (num_regs, regs->num_regs); mcnt++)
4458 {
25fe55af
RS
4459 if (REG_UNSET (regstart[mcnt]) || REG_UNSET (regend[mcnt]))
4460 regs->start[mcnt] = regs->end[mcnt] = -1;
4461 else
4462 {
fa9a63c5
RM
4463 regs->start[mcnt]
4464 = (regoff_t) POINTER_TO_OFFSET (regstart[mcnt]);
25fe55af 4465 regs->end[mcnt]
fa9a63c5 4466 = (regoff_t) POINTER_TO_OFFSET (regend[mcnt]);
25fe55af 4467 }
fa9a63c5 4468 }
5e69f11e 4469
25fe55af
RS
4470 /* If the regs structure we return has more elements than
4471 were in the pattern, set the extra elements to -1. If
4472 we (re)allocated the registers, this is the case,
4473 because we always allocate enough to have at least one
4474 -1 at the end. */
4475 for (mcnt = num_regs; mcnt < regs->num_regs; mcnt++)
4476 regs->start[mcnt] = regs->end[mcnt] = -1;
fa9a63c5
RM
4477 } /* regs && !bufp->no_sub */
4478
25fe55af
RS
4479 DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
4480 nfailure_points_pushed, nfailure_points_popped,
4481 nfailure_points_pushed - nfailure_points_popped);
4482 DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed);
fa9a63c5 4483
25fe55af 4484 mcnt = d - pos - (MATCHING_IN_FIRST_STRING
5e69f11e 4485 ? string1
fa9a63c5
RM
4486 : string2 - size1);
4487
25fe55af 4488 DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt);
fa9a63c5 4489
25fe55af
RS
4490 FREE_VARIABLES ();
4491 return mcnt;
4492 }
fa9a63c5 4493
25fe55af 4494 /* Otherwise match next pattern command. */
fa9a63c5
RM
4495 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
4496 {
25fe55af
RS
4497 /* Ignore these. Used to ignore the n of succeed_n's which
4498 currently have n == 0. */
4499 case no_op:
4500 DEBUG_PRINT1 ("EXECUTING no_op.\n");
4501 break;
fa9a63c5
RM
4502
4503 case succeed:
25fe55af 4504 DEBUG_PRINT1 ("EXECUTING succeed.\n");
fa9a63c5
RM
4505 goto succeed_label;
4506
25fe55af
RS
4507 /* Match the next n pattern characters exactly. The following
4508 byte in the pattern defines n, and the n bytes after that
4509 are the characters to match. */
fa9a63c5
RM
4510 case exactn:
4511 mcnt = *p++;
25fe55af 4512 DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt);
fa9a63c5 4513
25fe55af
RS
4514 /* This is written out as an if-else so we don't waste time
4515 testing `translate' inside the loop. */
4516 if (translate)
fa9a63c5
RM
4517 {
4518 do
4519 {
4520 PREFETCH ();
bc192b5b 4521 if ((unsigned char) RE_TRANSLATE (translate, (unsigned char) *d++)
6676cb1c 4522 != (unsigned char) *p++)
25fe55af 4523 goto fail;
fa9a63c5
RM
4524 }
4525 while (--mcnt);
4526 }
4527 else
4528 {
4529 do
4530 {
4531 PREFETCH ();
4532 if (*d++ != (char) *p++) goto fail;
4533 }
4534 while (--mcnt);
4535 }
4536 SET_REGS_MATCHED ();
25fe55af 4537 break;
fa9a63c5
RM
4538
4539
25fe55af 4540 /* Match any character except possibly a newline or a null. */
fa9a63c5 4541 case anychar:
25fe55af 4542 DEBUG_PRINT1 ("EXECUTING anychar.\n");
fa9a63c5 4543
25fe55af 4544 PREFETCH ();
fa9a63c5 4545
25fe55af
RS
4546 if ((!(bufp->syntax & RE_DOT_NEWLINE) && TRANSLATE (*d) == '\n')
4547 || (bufp->syntax & RE_DOT_NOT_NULL && TRANSLATE (*d) == '\000'))
fa9a63c5
RM
4548 goto fail;
4549
25fe55af
RS
4550 SET_REGS_MATCHED ();
4551 DEBUG_PRINT2 (" Matched `%d'.\n", *d);
b18215fc 4552 d += multibyte ? MULTIBYTE_FORM_LENGTH (d, dend - d) : 1;
fa9a63c5
RM
4553 break;
4554
4555
4556 case charset:
4557 case charset_not:
4558 {
b18215fc 4559 register unsigned int c;
fa9a63c5 4560 boolean not = (re_opcode_t) *(p - 1) == charset_not;
b18215fc
RS
4561 int len;
4562
4563 /* Start of actual range_table, or end of bitmap if there is no
4564 range table. */
4565 unsigned char *range_table;
4566
25fe55af 4567 /* Nonzero if there is range table. */
b18215fc
RS
4568 int range_table_exists;
4569
25fe55af 4570 /* Number of ranges of range table. Not in bytes. */
b18215fc 4571 int count;
fa9a63c5 4572
25fe55af 4573 DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : "");
fa9a63c5
RM
4574
4575 PREFETCH ();
b18215fc 4576 c = (unsigned char) *d;
fa9a63c5 4577
b18215fc
RS
4578 range_table = CHARSET_RANGE_TABLE (&p[-1]); /* Past the bitmap. */
4579 range_table_exists = CHARSET_RANGE_TABLE_EXISTS_P (&p[-1]);
4580 if (range_table_exists)
4581 EXTRACT_NUMBER_AND_INCR (count, range_table);
4582 else
4583 count = 0;
4584
4585 if (multibyte && BASE_LEADING_CODE_P (c))
4586 c = STRING_CHAR_AND_LENGTH (d, dend - d, len);
4587
4588 if (SINGLE_BYTE_CHAR_P (c))
4589 { /* Lookup bitmap. */
4590 c = TRANSLATE (c); /* The character to match. */
4591 len = 1;
4592
4593 /* Cast to `unsigned' instead of `unsigned char' in
4594 case the bit list is a full 32 bytes long. */
4595 if (c < (unsigned) (CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH)
fa9a63c5
RM
4596 && p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
4597 not = !not;
b18215fc
RS
4598 }
4599 else if (range_table_exists)
4600 CHARSET_LOOKUP_RANGE_TABLE_RAW (not, c, range_table, count);
fa9a63c5 4601
b18215fc 4602 p = CHARSET_RANGE_TABLE_END (range_table, count);
fa9a63c5
RM
4603
4604 if (!not) goto fail;
5e69f11e 4605
fa9a63c5 4606 SET_REGS_MATCHED ();
b18215fc 4607 d += len;
fa9a63c5
RM
4608 break;
4609 }
4610
4611
25fe55af
RS
4612 /* The beginning of a group is represented by start_memory.
4613 The arguments are the register number in the next byte, and the
4614 number of groups inner to this one in the next. The text
4615 matched within the group is recorded (in the internal
4616 registers data structure) under the register number. */
4617 case start_memory:
fa9a63c5
RM
4618 DEBUG_PRINT3 ("EXECUTING start_memory %d (%d):\n", *p, p[1]);
4619
25fe55af 4620 /* Find out if this group can match the empty string. */
fa9a63c5 4621 p1 = p; /* To send to group_match_null_string_p. */
5e69f11e 4622
25fe55af
RS
4623 if (REG_MATCH_NULL_STRING_P (reg_info[*p]) == MATCH_NULL_UNSET_VALUE)
4624 REG_MATCH_NULL_STRING_P (reg_info[*p])
4625 = group_match_null_string_p (&p1, pend, reg_info);
4626
4627 /* Save the position in the string where we were the last time
4628 we were at this open-group operator in case the group is
4629 operated upon by a repetition operator, e.g., with `(a*)*b'
4630 against `ab'; then we want to ignore where we are now in
4631 the string in case this attempt to match fails. */
4632 old_regstart[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
4633 ? REG_UNSET (regstart[*p]) ? d : regstart[*p]
4634 : regstart[*p];
5e69f11e 4635 DEBUG_PRINT2 (" old_regstart: %d\n",
fa9a63c5
RM
4636 POINTER_TO_OFFSET (old_regstart[*p]));
4637
25fe55af 4638 regstart[*p] = d;
fa9a63c5
RM
4639 DEBUG_PRINT2 (" regstart: %d\n", POINTER_TO_OFFSET (regstart[*p]));
4640
25fe55af
RS
4641 IS_ACTIVE (reg_info[*p]) = 1;
4642 MATCHED_SOMETHING (reg_info[*p]) = 0;
fa9a63c5
RM
4643
4644 /* Clear this whenever we change the register activity status. */
4645 set_regs_matched_done = 0;
5e69f11e 4646
25fe55af
RS
4647 /* This is the new highest active register. */
4648 highest_active_reg = *p;
5e69f11e 4649
25fe55af
RS
4650 /* If nothing was active before, this is the new lowest active
4651 register. */
4652 if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
4653 lowest_active_reg = *p;
fa9a63c5 4654
25fe55af
RS
4655 /* Move past the register number and inner group count. */
4656 p += 2;
fa9a63c5
RM
4657 just_past_start_mem = p;
4658
25fe55af 4659 break;
fa9a63c5
RM
4660
4661
25fe55af
RS
4662 /* The stop_memory opcode represents the end of a group. Its
4663 arguments are the same as start_memory's: the register
4664 number, and the number of inner groups. */
fa9a63c5
RM
4665 case stop_memory:
4666 DEBUG_PRINT3 ("EXECUTING stop_memory %d (%d):\n", *p, p[1]);
5e69f11e 4667
25fe55af
RS
4668 /* We need to save the string position the last time we were at
4669 this close-group operator in case the group is operated
4670 upon by a repetition operator, e.g., with `((a*)*(b*)*)*'
4671 against `aba'; then we want to ignore where we are now in
4672 the string in case this attempt to match fails. */
4673 old_regend[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
4674 ? REG_UNSET (regend[*p]) ? d : regend[*p]
fa9a63c5 4675 : regend[*p];
5e69f11e 4676 DEBUG_PRINT2 (" old_regend: %d\n",
fa9a63c5
RM
4677 POINTER_TO_OFFSET (old_regend[*p]));
4678
25fe55af 4679 regend[*p] = d;
fa9a63c5
RM
4680 DEBUG_PRINT2 (" regend: %d\n", POINTER_TO_OFFSET (regend[*p]));
4681
25fe55af
RS
4682 /* This register isn't active anymore. */
4683 IS_ACTIVE (reg_info[*p]) = 0;
fa9a63c5
RM
4684
4685 /* Clear this whenever we change the register activity status. */
4686 set_regs_matched_done = 0;
4687
25fe55af
RS
4688 /* If this was the only register active, nothing is active
4689 anymore. */
4690 if (lowest_active_reg == highest_active_reg)
4691 {
4692 lowest_active_reg = NO_LOWEST_ACTIVE_REG;
4693 highest_active_reg = NO_HIGHEST_ACTIVE_REG;
4694 }
4695 else
4696 { /* We must scan for the new highest active register, since
4697 it isn't necessarily one less than now: consider
4698 (a(b)c(d(e)f)g). When group 3 ends, after the f), the
4699 new highest active register is 1. */
4700 unsigned char r = *p - 1;
4701 while (r > 0 && !IS_ACTIVE (reg_info[r]))
4702 r--;
4703
4704 /* If we end up at register zero, that means that we saved
4705 the registers as the result of an `on_failure_jump', not
4706 a `start_memory', and we jumped to past the innermost
4707 `stop_memory'. For example, in ((.)*) we save
4708 registers 1 and 2 as a result of the *, but when we pop
4709 back to the second ), we are at the stop_memory 1.
4710 Thus, nothing is active. */
fa9a63c5 4711 if (r == 0)
25fe55af
RS
4712 {
4713 lowest_active_reg = NO_LOWEST_ACTIVE_REG;
4714 highest_active_reg = NO_HIGHEST_ACTIVE_REG;
4715 }
4716 else
4717 highest_active_reg = r;
4718 }
4719
4720 /* If just failed to match something this time around with a
4721 group that's operated on by a repetition operator, try to
4722 force exit from the ``loop'', and restore the register
4723 information for this group that we had before trying this
4724 last match. */
4725 if ((!MATCHED_SOMETHING (reg_info[*p])
4726 || just_past_start_mem == p - 1)
5e69f11e 4727 && (p + 2) < pend)
25fe55af
RS
4728 {
4729 boolean is_a_jump_n = false;
4730
4731 p1 = p + 2;
4732 mcnt = 0;
4733 switch ((re_opcode_t) *p1++)
4734 {
4735 case jump_n:
fa9a63c5 4736 is_a_jump_n = true;
25fe55af 4737 case pop_failure_jump:
fa9a63c5
RM
4738 case maybe_pop_jump:
4739 case jump:
4740 case dummy_failure_jump:
25fe55af 4741 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
fa9a63c5
RM
4742 if (is_a_jump_n)
4743 p1 += 2;
25fe55af 4744 break;
5e69f11e 4745
25fe55af
RS
4746 default:
4747 /* do nothing */ ;
4748 }
fa9a63c5 4749 p1 += mcnt;
5e69f11e 4750
25fe55af
RS
4751 /* If the next operation is a jump backwards in the pattern
4752 to an on_failure_jump right before the start_memory
4753 corresponding to this stop_memory, exit from the loop
4754 by forcing a failure after pushing on the stack the
4755 on_failure_jump's jump in the pattern, and d. */
4756 if (mcnt < 0 && (re_opcode_t) *p1 == on_failure_jump
4757 && (re_opcode_t) p1[3] == start_memory && p1[4] == *p)
fa9a63c5 4758 {
25fe55af
RS
4759 /* If this group ever matched anything, then restore
4760 what its registers were before trying this last
4761 failed match, e.g., with `(a*)*b' against `ab' for
4762 regstart[1], and, e.g., with `((a*)*(b*)*)*'
4763 against `aba' for regend[3].
5e69f11e 4764
25fe55af
RS
4765 Also restore the registers for inner groups for,
4766 e.g., `((a*)(b*))*' against `aba' (register 3 would
4767 otherwise get trashed). */
5e69f11e 4768
25fe55af 4769 if (EVER_MATCHED_SOMETHING (reg_info[*p]))
fa9a63c5 4770 {
5e69f11e
RM
4771 unsigned r;
4772
25fe55af 4773 EVER_MATCHED_SOMETHING (reg_info[*p]) = 0;
5e69f11e 4774
fa9a63c5 4775 /* Restore this and inner groups' (if any) registers. */
25fe55af
RS
4776 for (r = *p; r < *p + *(p + 1); r++)
4777 {
4778 regstart[r] = old_regstart[r];
4779
4780 /* xx why this test? */
4781 if (old_regend[r] >= regstart[r])
4782 regend[r] = old_regend[r];
4783 }
4784 }
fa9a63c5 4785 p1++;
25fe55af
RS
4786 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4787 PUSH_FAILURE_POINT (p1 + mcnt, d, -2);
fa9a63c5 4788
25fe55af
RS
4789 goto fail;
4790 }
4791 }
5e69f11e 4792
25fe55af
RS
4793 /* Move past the register number and the inner group count. */
4794 p += 2;
4795 break;
fa9a63c5
RM
4796
4797
4798 /* \<digit> has been turned into a `duplicate' command which is
25fe55af
RS
4799 followed by the numeric value of <digit> as the register number. */
4800 case duplicate:
fa9a63c5
RM
4801 {
4802 register const char *d2, *dend2;
25fe55af 4803 int regno = *p++; /* Get which register to match against. */
fa9a63c5
RM
4804 DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno);
4805
25fe55af
RS
4806 /* Can't back reference a group which we've never matched. */
4807 if (REG_UNSET (regstart[regno]) || REG_UNSET (regend[regno]))
4808 goto fail;
5e69f11e 4809
25fe55af
RS
4810 /* Where in input to try to start matching. */
4811 d2 = regstart[regno];
5e69f11e 4812
25fe55af
RS
4813 /* Where to stop matching; if both the place to start and
4814 the place to stop matching are in the same string, then
4815 set to the place to stop, otherwise, for now have to use
4816 the end of the first string. */
fa9a63c5 4817
25fe55af 4818 dend2 = ((FIRST_STRING_P (regstart[regno])
fa9a63c5
RM
4819 == FIRST_STRING_P (regend[regno]))
4820 ? regend[regno] : end_match_1);
4821 for (;;)
4822 {
4823 /* If necessary, advance to next segment in register
25fe55af 4824 contents. */
fa9a63c5
RM
4825 while (d2 == dend2)
4826 {
4827 if (dend2 == end_match_2) break;
4828 if (dend2 == regend[regno]) break;
4829
25fe55af
RS
4830 /* End of string1 => advance to string2. */
4831 d2 = string2;
4832 dend2 = regend[regno];
fa9a63c5
RM
4833 }
4834 /* At end of register contents => success */
4835 if (d2 == dend2) break;
4836
4837 /* If necessary, advance to next segment in data. */
4838 PREFETCH ();
4839
4840 /* How many characters left in this segment to match. */
4841 mcnt = dend - d;
5e69f11e 4842
fa9a63c5 4843 /* Want how many consecutive characters we can match in
25fe55af
RS
4844 one shot, so, if necessary, adjust the count. */
4845 if (mcnt > dend2 - d2)
fa9a63c5 4846 mcnt = dend2 - d2;
5e69f11e 4847
fa9a63c5 4848 /* Compare that many; failure if mismatch, else move
25fe55af 4849 past them. */
5e69f11e 4850 if (translate
25fe55af
RS
4851 ? bcmp_translate (d, d2, mcnt, translate)
4852 : bcmp (d, d2, mcnt))
fa9a63c5
RM
4853 goto fail;
4854 d += mcnt, d2 += mcnt;
4855
25fe55af 4856 /* Do this because we've match some characters. */
fa9a63c5
RM
4857 SET_REGS_MATCHED ();
4858 }
4859 }
4860 break;
4861
4862
25fe55af
RS
4863 /* begline matches the empty string at the beginning of the string
4864 (unless `not_bol' is set in `bufp'), and, if
4865 `newline_anchor' is set, after newlines. */
fa9a63c5 4866 case begline:
25fe55af 4867 DEBUG_PRINT1 ("EXECUTING begline.\n");
5e69f11e 4868
25fe55af
RS
4869 if (AT_STRINGS_BEG (d))
4870 {
4871 if (!bufp->not_bol) break;
4872 }
4873 else if (d[-1] == '\n' && bufp->newline_anchor)
4874 {
4875 break;
4876 }
4877 /* In all other cases, we fail. */
4878 goto fail;
fa9a63c5
RM
4879
4880
25fe55af 4881 /* endline is the dual of begline. */
fa9a63c5 4882 case endline:
25fe55af 4883 DEBUG_PRINT1 ("EXECUTING endline.\n");
fa9a63c5 4884
25fe55af
RS
4885 if (AT_STRINGS_END (d))
4886 {
4887 if (!bufp->not_eol) break;
4888 }
5e69f11e 4889
25fe55af
RS
4890 /* We have to ``prefetch'' the next character. */
4891 else if ((d == end1 ? *string2 : *d) == '\n'
4892 && bufp->newline_anchor)
4893 {
4894 break;
4895 }
4896 goto fail;
fa9a63c5
RM
4897
4898
4899 /* Match at the very beginning of the data. */
25fe55af
RS
4900 case begbuf:
4901 DEBUG_PRINT1 ("EXECUTING begbuf.\n");
4902 if (AT_STRINGS_BEG (d))
4903 break;
4904 goto fail;
fa9a63c5
RM
4905
4906
4907 /* Match at the very end of the data. */
25fe55af
RS
4908 case endbuf:
4909 DEBUG_PRINT1 ("EXECUTING endbuf.\n");
fa9a63c5
RM
4910 if (AT_STRINGS_END (d))
4911 break;
25fe55af 4912 goto fail;
5e69f11e 4913
5e69f11e 4914
25fe55af
RS
4915 /* on_failure_keep_string_jump is used to optimize `.*\n'. It
4916 pushes NULL as the value for the string on the stack. Then
4917 `pop_failure_point' will keep the current value for the
4918 string, instead of restoring it. To see why, consider
4919 matching `foo\nbar' against `.*\n'. The .* matches the foo;
4920 then the . fails against the \n. But the next thing we want
4921 to do is match the \n against the \n; if we restored the
4922 string value, we would be back at the foo.
4923
4924 Because this is used only in specific cases, we don't need to
4925 check all the things that `on_failure_jump' does, to make
4926 sure the right things get saved on the stack. Hence we don't
4927 share its code. The only reason to push anything on the
4928 stack at all is that otherwise we would have to change
4929 `anychar's code to do something besides goto fail in this
4930 case; that seems worse than this. */
4931 case on_failure_keep_string_jump:
4932 DEBUG_PRINT1 ("EXECUTING on_failure_keep_string_jump");
fa9a63c5 4933
25fe55af
RS
4934 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4935 DEBUG_PRINT3 (" %d (to 0x%x):\n", mcnt, p + mcnt);
b18215fc 4936
25fe55af
RS
4937 PUSH_FAILURE_POINT (p + mcnt, NULL, -2);
4938 break;
fa9a63c5
RM
4939
4940
4941 /* Uses of on_failure_jump:
5e69f11e 4942
25fe55af
RS
4943 Each alternative starts with an on_failure_jump that points
4944 to the beginning of the next alternative. Each alternative
4945 except the last ends with a jump that in effect jumps past
4946 the rest of the alternatives. (They really jump to the
4947 ending jump of the following alternative, because tensioning
4948 these jumps is a hassle.)
fa9a63c5 4949
25fe55af
RS
4950 Repeats start with an on_failure_jump that points past both
4951 the repetition text and either the following jump or
4952 pop_failure_jump back to this on_failure_jump. */
fa9a63c5 4953 case on_failure_jump:
25fe55af
RS
4954 on_failure:
4955 DEBUG_PRINT1 ("EXECUTING on_failure_jump");
4956
4957 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4958 DEBUG_PRINT3 (" %d (to 0x%x)", mcnt, p + mcnt);
4959
4960 /* If this on_failure_jump comes right before a group (i.e.,
4961 the original * applied to a group), save the information
4962 for that group and all inner ones, so that if we fail back
4963 to this point, the group's information will be correct.
4964 For example, in \(a*\)*\1, we need the preceding group,
4965 and in \(zz\(a*\)b*\)\2, we need the inner group. */
4966
4967 /* We can't use `p' to check ahead because we push
4968 a failure point to `p + mcnt' after we do this. */
4969 p1 = p;
4970
4971 /* We need to skip no_op's before we look for the
4972 start_memory in case this on_failure_jump is happening as
4973 the result of a completed succeed_n, as in \(a\)\{1,3\}b\1
4974 against aba. */
4975 while (p1 < pend && (re_opcode_t) *p1 == no_op)
4976 p1++;
4977
4978 if (p1 < pend && (re_opcode_t) *p1 == start_memory)
4979 {
4980 /* We have a new highest active register now. This will
4981 get reset at the start_memory we are about to get to,
4982 but we will have saved all the registers relevant to
4983 this repetition op, as described above. */
4984 highest_active_reg = *(p1 + 1) + *(p1 + 2);
4985 if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
4986 lowest_active_reg = *(p1 + 1);
4987 }
4988
4989 DEBUG_PRINT1 (":\n");
4990 PUSH_FAILURE_POINT (p + mcnt, d, -2);
4991 break;
4992
4993
4994 /* A smart repeat ends with `maybe_pop_jump'.
4995 We change it to either `pop_failure_jump' or `jump'. */
4996 case maybe_pop_jump:
4997 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4998 DEBUG_PRINT2 ("EXECUTING maybe_pop_jump %d.\n", mcnt);
4999 {
fa9a63c5
RM
5000 register unsigned char *p2 = p;
5001
25fe55af
RS
5002 /* Compare the beginning of the repeat with what in the
5003 pattern follows its end. If we can establish that there
5004 is nothing that they would both match, i.e., that we
5005 would have to backtrack because of (as in, e.g., `a*a')
5006 then we can change to pop_failure_jump, because we'll
5007 never have to backtrack.
5e69f11e 5008
25fe55af
RS
5009 This is not true in the case of alternatives: in
5010 `(a|ab)*' we do need to backtrack to the `ab' alternative
5011 (e.g., if the string was `ab'). But instead of trying to
5012 detect that here, the alternative has put on a dummy
5013 failure point which is what we will end up popping. */
fa9a63c5
RM
5014
5015 /* Skip over open/close-group commands.
5016 If what follows this loop is a ...+ construct,
5017 look at what begins its body, since we will have to
5018 match at least one of that. */
5019 while (1)
5020 {
5021 if (p2 + 2 < pend
5022 && ((re_opcode_t) *p2 == stop_memory
5023 || (re_opcode_t) *p2 == start_memory))
5024 p2 += 3;
5025 else if (p2 + 6 < pend
5026 && (re_opcode_t) *p2 == dummy_failure_jump)
5027 p2 += 6;
5028 else
5029 break;
5030 }
5031
5032 p1 = p + mcnt;
5033 /* p1[0] ... p1[2] are the `on_failure_jump' corresponding
5e69f11e 5034 to the `maybe_finalize_jump' of this case. Examine what
25fe55af 5035 follows. */
fa9a63c5 5036
25fe55af
RS
5037 /* If we're at the end of the pattern, we can change. */
5038 if (p2 == pend)
fa9a63c5
RM
5039 {
5040 /* Consider what happens when matching ":\(.*\)"
5041 against ":/". I don't really understand this code
25fe55af
RS
5042 yet. */
5043 p[-3] = (unsigned char) pop_failure_jump;
5044 DEBUG_PRINT1
5045 (" End of pattern: change to `pop_failure_jump'.\n");
5046 }
fa9a63c5 5047
25fe55af 5048 else if ((re_opcode_t) *p2 == exactn
fa9a63c5
RM
5049 || (bufp->newline_anchor && (re_opcode_t) *p2 == endline))
5050 {
b18215fc 5051 register unsigned int c
25fe55af 5052 = *p2 == (unsigned char) endline ? '\n' : p2[2];
fa9a63c5 5053
b18215fc 5054 if ((re_opcode_t) p1[3] == exactn)
e318085a 5055 {
b18215fc
RS
5056 if (!(multibyte /* && (c != '\n') */
5057 && BASE_LEADING_CODE_P (c))
5058 ? c != p1[5]
5059 : (STRING_CHAR (&p2[2], pend - &p2[2])
5060 != STRING_CHAR (&p1[5], pend - &p1[5])))
25fe55af
RS
5061 {
5062 p[-3] = (unsigned char) pop_failure_jump;
5063 DEBUG_PRINT3 (" %c != %c => pop_failure_jump.\n",
5064 c, p1[5]);
5065 }
e318085a 5066 }
5e69f11e 5067
fa9a63c5
RM
5068 else if ((re_opcode_t) p1[3] == charset
5069 || (re_opcode_t) p1[3] == charset_not)
5070 {
5071 int not = (re_opcode_t) p1[3] == charset_not;
5e69f11e 5072
b18215fc
RS
5073 if (multibyte /* && (c != '\n') */
5074 && BASE_LEADING_CODE_P (c))
5075 c = STRING_CHAR (&p2[2], pend - &p2[2]);
5076
5077 /* Test if C is listed in charset (or charset_not)
5078 at `&p1[3]'. */
5079 if (SINGLE_BYTE_CHAR_P (c))
5080 {
5081 if (c < CHARSET_BITMAP_SIZE (&p1[3]) * BYTEWIDTH
fa9a63c5
RM
5082 && p1[5 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
5083 not = !not;
b18215fc
RS
5084 }
5085 else if (CHARSET_RANGE_TABLE_EXISTS_P (&p1[3]))
5086 CHARSET_LOOKUP_RANGE_TABLE (not, c, &p1[3]);
fa9a63c5 5087
25fe55af
RS
5088 /* `not' is equal to 1 if c would match, which means
5089 that we can't change to pop_failure_jump. */
fa9a63c5 5090 if (!not)
25fe55af
RS
5091 {
5092 p[-3] = (unsigned char) pop_failure_jump;
5093 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
5094 }
fa9a63c5
RM
5095 }
5096 }
25fe55af 5097 else if ((re_opcode_t) *p2 == charset)
fa9a63c5 5098 {
b18215fc 5099 if ((re_opcode_t) p1[3] == exactn)
e318085a 5100 {
b18215fc
RS
5101 register unsigned int c = p1[5];
5102 int not = 0;
5103
5104 if (multibyte && BASE_LEADING_CODE_P (c))
5105 c = STRING_CHAR (&p1[5], pend - &p1[5]);
5106
25fe55af 5107 /* Test if C is listed in charset at `p2'. */
b18215fc
RS
5108 if (SINGLE_BYTE_CHAR_P (c))
5109 {
5110 if (c < CHARSET_BITMAP_SIZE (p2) * BYTEWIDTH
5111 && (p2[2 + c / BYTEWIDTH]
5112 & (1 << (c % BYTEWIDTH))))
5113 not = !not;
5114 }
5115 else if (CHARSET_RANGE_TABLE_EXISTS_P (p2))
5116 CHARSET_LOOKUP_RANGE_TABLE (not, c, p2);
5117
5118 if (!not)
25fe55af
RS
5119 {
5120 p[-3] = (unsigned char) pop_failure_jump;
5121 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
b18215fc 5122 }
25fe55af 5123 }
5e69f11e 5124
b18215fc
RS
5125 /* It is hard to list up all the character in charset
5126 P2 if it includes multibyte character. Give up in
5127 such case. */
5128 else if (!multibyte || !CHARSET_RANGE_TABLE_EXISTS_P (p2))
5129 {
5130 /* Now, we are sure that P2 has no range table.
5131 So, for the size of bitmap in P2, `p2[1]' is
25fe55af 5132 enough. But P1 may have range table, so the
b18215fc
RS
5133 size of bitmap table of P1 is extracted by
5134 using macro `CHARSET_BITMAP_SIZE'.
5135
5136 Since we know that all the character listed in
5137 P2 is ASCII, it is enough to test only bitmap
5138 table of P1. */
25fe55af 5139
b18215fc 5140 if ((re_opcode_t) p1[3] == charset_not)
fa9a63c5
RM
5141 {
5142 int idx;
b18215fc 5143 /* We win if the charset_not inside the loop lists
25fe55af 5144 every character listed in the charset after. */
fa9a63c5
RM
5145 for (idx = 0; idx < (int) p2[1]; idx++)
5146 if (! (p2[2 + idx] == 0
b18215fc 5147 || (idx < CHARSET_BITMAP_SIZE (&p1[3])
fa9a63c5
RM
5148 && ((p2[2 + idx] & ~ p1[5 + idx]) == 0))))
5149 break;
5150
5151 if (idx == p2[1])
25fe55af
RS
5152 {
5153 p[-3] = (unsigned char) pop_failure_jump;
5154 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
5155 }
fa9a63c5
RM
5156 }
5157 else if ((re_opcode_t) p1[3] == charset)
5158 {
5159 int idx;
5160 /* We win if the charset inside the loop
5161 has no overlap with the one after the loop. */
5162 for (idx = 0;
b18215fc
RS
5163 (idx < (int) p2[1]
5164 && idx < CHARSET_BITMAP_SIZE (&p1[3]));
fa9a63c5
RM
5165 idx++)
5166 if ((p2[2 + idx] & p1[5 + idx]) != 0)
5167 break;
5168
b18215fc
RS
5169 if (idx == p2[1]
5170 || idx == CHARSET_BITMAP_SIZE (&p1[3]))
25fe55af
RS
5171 {
5172 p[-3] = (unsigned char) pop_failure_jump;
5173 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
5174 }
fa9a63c5
RM
5175 }
5176 }
5177 }
b18215fc 5178 }
fa9a63c5
RM
5179 p -= 2; /* Point at relative address again. */
5180 if ((re_opcode_t) p[-1] != pop_failure_jump)
5181 {
5182 p[-1] = (unsigned char) jump;
25fe55af 5183 DEBUG_PRINT1 (" Match => jump.\n");
fa9a63c5
RM
5184 goto unconditional_jump;
5185 }
25fe55af 5186 /* Note fall through. */
fa9a63c5
RM
5187
5188
5189 /* The end of a simple repeat has a pop_failure_jump back to
25fe55af
RS
5190 its matching on_failure_jump, where the latter will push a
5191 failure point. The pop_failure_jump takes off failure
5192 points put on by this pop_failure_jump's matching
5193 on_failure_jump; we got through the pattern to here from the
5194 matching on_failure_jump, so didn't fail. */
5195 case pop_failure_jump:
5196 {
5197 /* We need to pass separate storage for the lowest and
5198 highest registers, even though we don't care about the
5199 actual values. Otherwise, we will restore only one
5200 register from the stack, since lowest will == highest in
5201 `pop_failure_point'. */
5202 unsigned dummy_low_reg, dummy_high_reg;
5203 unsigned char *pdummy;
5204 const char *sdummy;
5205
5206 DEBUG_PRINT1 ("EXECUTING pop_failure_jump.\n");
5207 POP_FAILURE_POINT (sdummy, pdummy,
5208 dummy_low_reg, dummy_high_reg,
5209 reg_dummy, reg_dummy, reg_info_dummy);
5210 }
5211 /* Note fall through. */
5212
5213
5214 /* Unconditionally jump (without popping any failure points). */
5215 case jump:
fa9a63c5
RM
5216 unconditional_jump:
5217 EXTRACT_NUMBER_AND_INCR (mcnt, p); /* Get the amount to jump. */
25fe55af
RS
5218 DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt);
5219 p += mcnt; /* Do the jump. */
5220 DEBUG_PRINT2 ("(to 0x%x).\n", p);
5221 break;
5222
5223
5224 /* We need this opcode so we can detect where alternatives end
5225 in `group_match_null_string_p' et al. */
5226 case jump_past_alt:
5227 DEBUG_PRINT1 ("EXECUTING jump_past_alt.\n");
5228 goto unconditional_jump;
5229
5230
5231 /* Normally, the on_failure_jump pushes a failure point, which
5232 then gets popped at pop_failure_jump. We will end up at
5233 pop_failure_jump, also, and with a pattern of, say, `a+', we
5234 are skipping over the on_failure_jump, so we have to push
5235 something meaningless for pop_failure_jump to pop. */
5236 case dummy_failure_jump:
5237 DEBUG_PRINT1 ("EXECUTING dummy_failure_jump.\n");
5238 /* It doesn't matter what we push for the string here. What
5239 the code at `fail' tests is the value for the pattern. */
5240 PUSH_FAILURE_POINT (0, 0, -2);
5241 goto unconditional_jump;
5242
5243
5244 /* At the end of an alternative, we need to push a dummy failure
5245 point in case we are followed by a `pop_failure_jump', because
5246 we don't want the failure point for the alternative to be
5247 popped. For example, matching `(a|ab)*' against `aab'
5248 requires that we match the `ab' alternative. */
5249 case push_dummy_failure:
5250 DEBUG_PRINT1 ("EXECUTING push_dummy_failure.\n");
5251 /* See comments just above at `dummy_failure_jump' about the
5252 two zeroes. */
5253 PUSH_FAILURE_POINT (0, 0, -2);
fa9a63c5
RM
5254 break;
5255
25fe55af
RS
5256 /* Have to succeed matching what follows at least n times.
5257 After that, handle like `on_failure_jump'. */
5258 case succeed_n:
5259 EXTRACT_NUMBER (mcnt, p + 2);
5260 DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt);
5e69f11e 5261
25fe55af
RS
5262 assert (mcnt >= 0);
5263 /* Originally, this is how many times we HAVE to succeed. */
5264 if (mcnt > 0)
5265 {
5266 mcnt--;
fa9a63c5 5267 p += 2;
25fe55af
RS
5268 STORE_NUMBER_AND_INCR (p, mcnt);
5269 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p, mcnt);
5270 }
fa9a63c5 5271 else if (mcnt == 0)
25fe55af
RS
5272 {
5273 DEBUG_PRINT2 (" Setting two bytes from 0x%x to no_op.\n", p+2);
fa9a63c5 5274 p[2] = (unsigned char) no_op;
25fe55af
RS
5275 p[3] = (unsigned char) no_op;
5276 goto on_failure;
5277 }
5278 break;
5279
5280 case jump_n:
5281 EXTRACT_NUMBER (mcnt, p + 2);
5282 DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt);
5283
5284 /* Originally, this is how many times we CAN jump. */
5285 if (mcnt)
5286 {
5287 mcnt--;
5288 STORE_NUMBER (p + 2, mcnt);
5e69f11e 5289 goto unconditional_jump;
25fe55af
RS
5290 }
5291 /* If don't have to jump any more, skip over the rest of command. */
5e69f11e
RM
5292 else
5293 p += 4;
25fe55af 5294 break;
5e69f11e 5295
fa9a63c5
RM
5296 case set_number_at:
5297 {
25fe55af 5298 DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
fa9a63c5 5299
25fe55af
RS
5300 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5301 p1 = p + mcnt;
5302 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5303 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p1, mcnt);
fa9a63c5 5304 STORE_NUMBER (p1, mcnt);
25fe55af
RS
5305 break;
5306 }
9121ca40
KH
5307
5308 case wordbound:
5309 DEBUG_PRINT1 ("EXECUTING wordbound.\n");
fa9a63c5 5310
b18215fc 5311 /* We SUCCEED in one of the following cases: */
9121ca40 5312
b18215fc 5313 /* Case 1: D is at the beginning or the end of string. */
9121ca40
KH
5314 if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
5315 break;
b18215fc
RS
5316 else
5317 {
5318 /* C1 is the character before D, S1 is the syntax of C1, C2
5319 is the character at D, and S2 is the syntax of C2. */
5320 int c1, c2, s1, s2;
5321 int pos1 = PTR_TO_OFFSET (d - 1);
5d967c7a 5322 int charpos;
9121ca40 5323
b18215fc
RS
5324 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
5325 GET_CHAR_AFTER_2 (c2, d, string1, end1, string2, end2);
5326#ifdef emacs
92432794 5327 charpos = SYNTAX_TABLE_BYTE_TO_CHAR (pos1 ? pos1 : 1);
5d967c7a 5328 UPDATE_SYNTAX_TABLE (charpos);
25fe55af 5329#endif
b18215fc
RS
5330 s1 = SYNTAX (c1);
5331#ifdef emacs
5d967c7a 5332 UPDATE_SYNTAX_TABLE_FORWARD (charpos + 1);
25fe55af 5333#endif
b18215fc
RS
5334 s2 = SYNTAX (c2);
5335
5336 if (/* Case 2: Only one of S1 and S2 is Sword. */
5337 ((s1 == Sword) != (s2 == Sword))
5338 /* Case 3: Both of S1 and S2 are Sword, and macro
25fe55af 5339 WORD_BOUNDARY_P (C1, C2) returns nonzero. */
b18215fc 5340 || ((s1 == Sword) && WORD_BOUNDARY_P (c1, c2)))
9121ca40 5341 break;
9121ca40 5342 }
b18215fc 5343 goto fail;
9121ca40
KH
5344
5345 case notwordbound:
9121ca40 5346 DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
b18215fc
RS
5347
5348 /* We FAIL in one of the following cases: */
5349
5350 /* Case 1: D is at the beginning or the end of string. */
9121ca40
KH
5351 if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
5352 goto fail;
b18215fc
RS
5353 else
5354 {
5355 /* C1 is the character before D, S1 is the syntax of C1, C2
5356 is the character at D, and S2 is the syntax of C2. */
5357 int c1, c2, s1, s2;
5358 int pos1 = PTR_TO_OFFSET (d - 1);
5d967c7a 5359 int charpos;
9121ca40 5360
b18215fc
RS
5361 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
5362 GET_CHAR_AFTER_2 (c2, d, string1, end1, string2, end2);
5363#ifdef emacs
92432794 5364 charpos = SYNTAX_TABLE_BYTE_TO_CHAR (pos1);
5d967c7a 5365 UPDATE_SYNTAX_TABLE (charpos);
25fe55af 5366#endif
b18215fc
RS
5367 s1 = SYNTAX (c1);
5368#ifdef emacs
5d967c7a 5369 UPDATE_SYNTAX_TABLE_FORWARD (charpos + 1);
25fe55af 5370#endif
b18215fc
RS
5371 s2 = SYNTAX (c2);
5372
5373 if (/* Case 2: Only one of S1 and S2 is Sword. */
5374 ((s1 == Sword) != (s2 == Sword))
5375 /* Case 3: Both of S1 and S2 are Sword, and macro
25fe55af 5376 WORD_BOUNDARY_P (C1, C2) returns nonzero. */
b18215fc 5377 || ((s1 == Sword) && WORD_BOUNDARY_P (c1, c2)))
9121ca40 5378 goto fail;
9121ca40 5379 }
b18215fc 5380 break;
fa9a63c5
RM
5381
5382 case wordbeg:
25fe55af 5383 DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
fa9a63c5 5384
b18215fc
RS
5385 /* We FAIL in one of the following cases: */
5386
25fe55af 5387 /* Case 1: D is at the end of string. */
b18215fc 5388 if (AT_STRINGS_END (d))
25fe55af 5389 goto fail;
b18215fc
RS
5390 else
5391 {
5392 /* C1 is the character before D, S1 is the syntax of C1, C2
5393 is the character at D, and S2 is the syntax of C2. */
5394 int c1, c2, s1, s2;
5395 int pos1 = PTR_TO_OFFSET (d);
5d967c7a 5396 int charpos;
fa9a63c5 5397
b18215fc 5398 GET_CHAR_AFTER_2 (c2, d, string1, end1, string2, end2);
fa9a63c5 5399#ifdef emacs
92432794
RS
5400 charpos = SYNTAX_TABLE_BYTE_TO_CHAR (pos1);
5401 UPDATE_SYNTAX_TABLE (charpos);
25fe55af 5402#endif
b18215fc 5403 s2 = SYNTAX (c2);
25fe55af 5404
b18215fc
RS
5405 /* Case 2: S2 is not Sword. */
5406 if (s2 != Sword)
5407 goto fail;
5408
5409 /* Case 3: D is not at the beginning of string ... */
5410 if (!AT_STRINGS_BEG (d))
5411 {
5412 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
5413#ifdef emacs
5d967c7a 5414 UPDATE_SYNTAX_TABLE_BACKWARD (charpos - 1);
25fe55af 5415#endif
b18215fc
RS
5416 s1 = SYNTAX (c1);
5417
5418 /* ... and S1 is Sword, and WORD_BOUNDARY_P (C1, C2)
25fe55af 5419 returns 0. */
b18215fc
RS
5420 if ((s1 == Sword) && !WORD_BOUNDARY_P (c1, c2))
5421 goto fail;
5422 }
5423 }
e318085a
RS
5424 break;
5425
b18215fc 5426 case wordend:
25fe55af 5427 DEBUG_PRINT1 ("EXECUTING wordend.\n");
b18215fc
RS
5428
5429 /* We FAIL in one of the following cases: */
5430
5431 /* Case 1: D is at the beginning of string. */
5432 if (AT_STRINGS_BEG (d))
e318085a 5433 goto fail;
b18215fc
RS
5434 else
5435 {
5436 /* C1 is the character before D, S1 is the syntax of C1, C2
5437 is the character at D, and S2 is the syntax of C2. */
5438 int c1, c2, s1, s2;
5d967c7a
RS
5439 int pos1 = PTR_TO_OFFSET (d);
5440 int charpos;
b18215fc
RS
5441
5442 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
5d967c7a 5443#ifdef emacs
92432794
RS
5444 charpos = SYNTAX_TABLE_BYTE_TO_CHAR (pos1 - 1);
5445 UPDATE_SYNTAX_TABLE (charpos);
5d967c7a 5446#endif
b18215fc
RS
5447 s1 = SYNTAX (c1);
5448
5449 /* Case 2: S1 is not Sword. */
5450 if (s1 != Sword)
5451 goto fail;
5452
5453 /* Case 3: D is not at the end of string ... */
5454 if (!AT_STRINGS_END (d))
5455 {
5456 GET_CHAR_AFTER_2 (c2, d, string1, end1, string2, end2);
5d967c7a
RS
5457#ifdef emacs
5458 UPDATE_SYNTAX_TABLE_FORWARD (charpos);
5459#endif
b18215fc
RS
5460 s2 = SYNTAX (c2);
5461
5462 /* ... and S2 is Sword, and WORD_BOUNDARY_P (C1, C2)
25fe55af 5463 returns 0. */
b18215fc 5464 if ((s2 == Sword) && !WORD_BOUNDARY_P (c1, c2))
25fe55af 5465 goto fail;
b18215fc
RS
5466 }
5467 }
e318085a
RS
5468 break;
5469
b18215fc 5470#ifdef emacs
25fe55af
RS
5471 case before_dot:
5472 DEBUG_PRINT1 ("EXECUTING before_dot.\n");
5d967c7a 5473 if (PTR_BYTE_POS ((unsigned char *) d) >= PT_BYTE)
25fe55af
RS
5474 goto fail;
5475 break;
b18215fc 5476
25fe55af
RS
5477 case at_dot:
5478 DEBUG_PRINT1 ("EXECUTING at_dot.\n");
5d967c7a 5479 if (PTR_BYTE_POS ((unsigned char *) d) != PT_BYTE)
25fe55af
RS
5480 goto fail;
5481 break;
b18215fc 5482
25fe55af
RS
5483 case after_dot:
5484 DEBUG_PRINT1 ("EXECUTING after_dot.\n");
5d967c7a 5485 if (PTR_BYTE_POS ((unsigned char *) d) <= PT_BYTE)
25fe55af
RS
5486 goto fail;
5487 break;
fa9a63c5
RM
5488
5489 case syntaxspec:
25fe55af 5490 DEBUG_PRINT2 ("EXECUTING syntaxspec %d.\n", mcnt);
fa9a63c5
RM
5491 mcnt = *p++;
5492 goto matchsyntax;
5493
25fe55af
RS
5494 case wordchar:
5495 DEBUG_PRINT1 ("EXECUTING Emacs wordchar.\n");
fa9a63c5 5496 mcnt = (int) Sword;
25fe55af 5497 matchsyntax:
fa9a63c5 5498 PREFETCH ();
b18215fc
RS
5499#ifdef emacs
5500 {
92432794 5501 int pos1 = SYNTAX_TABLE_BYTE_TO_CHAR (PTR_TO_OFFSET (d));
b18215fc
RS
5502 UPDATE_SYNTAX_TABLE (pos1);
5503 }
25fe55af 5504#endif
b18215fc
RS
5505 {
5506 int c, len;
5507
5508 if (multibyte)
5509 /* we must concern about multibyte form, ... */
5510 c = STRING_CHAR_AND_LENGTH (d, dend - d, len);
5511 else
5512 /* everything should be handled as ASCII, even though it
5513 looks like multibyte form. */
5514 c = *d, len = 1;
5515
5516 if (SYNTAX (c) != (enum syntaxcode) mcnt)
fa9a63c5 5517 goto fail;
b18215fc
RS
5518 d += len;
5519 }
25fe55af 5520 SET_REGS_MATCHED ();
fa9a63c5
RM
5521 break;
5522
5523 case notsyntaxspec:
25fe55af 5524 DEBUG_PRINT2 ("EXECUTING notsyntaxspec %d.\n", mcnt);
fa9a63c5
RM
5525 mcnt = *p++;
5526 goto matchnotsyntax;
5527
25fe55af
RS
5528 case notwordchar:
5529 DEBUG_PRINT1 ("EXECUTING Emacs notwordchar.\n");
fa9a63c5 5530 mcnt = (int) Sword;
25fe55af 5531 matchnotsyntax:
fa9a63c5 5532 PREFETCH ();
b18215fc
RS
5533#ifdef emacs
5534 {
92432794 5535 int pos1 = SYNTAX_TABLE_BYTE_TO_CHAR (PTR_TO_OFFSET (d));
b18215fc
RS
5536 UPDATE_SYNTAX_TABLE (pos1);
5537 }
25fe55af 5538#endif
b18215fc
RS
5539 {
5540 int c, len;
5541
5542 if (multibyte)
5543 c = STRING_CHAR_AND_LENGTH (d, dend - d, len);
5544 else
5545 c = *d, len = 1;
5546
5547 if (SYNTAX (c) == (enum syntaxcode) mcnt)
fa9a63c5 5548 goto fail;
b18215fc
RS
5549 d += len;
5550 }
5551 SET_REGS_MATCHED ();
5552 break;
5553
5554 case categoryspec:
5555 DEBUG_PRINT2 ("EXECUTING categoryspec %d.\n", *p);
5556 mcnt = *p++;
5557 PREFETCH ();
5558 {
5559 int c, len;
5560
5561 if (multibyte)
5562 c = STRING_CHAR_AND_LENGTH (d, dend - d, len);
5563 else
5564 c = *d, len = 1;
5565
5566 if (!CHAR_HAS_CATEGORY (c, mcnt))
5567 goto fail;
5568 d += len;
5569 }
fa9a63c5 5570 SET_REGS_MATCHED ();
e318085a 5571 break;
fa9a63c5 5572
b18215fc
RS
5573 case notcategoryspec:
5574 DEBUG_PRINT2 ("EXECUTING notcategoryspec %d.\n", *p);
5575 mcnt = *p++;
5576 PREFETCH ();
5577 {
5578 int c, len;
5579
5580 if (multibyte)
5581 c = STRING_CHAR_AND_LENGTH (d, dend - d, len);
5582 else
5583 c = *d, len = 1;
5584
5585 if (CHAR_HAS_CATEGORY (c, mcnt))
5586 goto fail;
5587 d += len;
5588 }
5589 SET_REGS_MATCHED ();
5590 break;
5591
fa9a63c5
RM
5592#else /* not emacs */
5593 case wordchar:
b18215fc 5594 DEBUG_PRINT1 ("EXECUTING non-Emacs wordchar.\n");
fa9a63c5 5595 PREFETCH ();
b18215fc
RS
5596 if (!WORDCHAR_P (d))
5597 goto fail;
fa9a63c5 5598 SET_REGS_MATCHED ();
b18215fc 5599 d++;
fa9a63c5 5600 break;
5e69f11e 5601
fa9a63c5 5602 case notwordchar:
b18215fc 5603 DEBUG_PRINT1 ("EXECUTING non-Emacs notwordchar.\n");
fa9a63c5
RM
5604 PREFETCH ();
5605 if (WORDCHAR_P (d))
b18215fc
RS
5606 goto fail;
5607 SET_REGS_MATCHED ();
5608 d++;
fa9a63c5
RM
5609 break;
5610#endif /* not emacs */
5e69f11e 5611
b18215fc
RS
5612 default:
5613 abort ();
fa9a63c5 5614 }
b18215fc 5615 continue; /* Successfully executed one pattern command; keep going. */
fa9a63c5
RM
5616
5617
5618 /* We goto here if a matching operation fails. */
5619 fail:
5620 if (!FAIL_STACK_EMPTY ())
b18215fc
RS
5621 { /* A restart point is known. Restore to that state. */
5622 DEBUG_PRINT1 ("\nFAIL:\n");
5623 POP_FAILURE_POINT (d, p,
5624 lowest_active_reg, highest_active_reg,
5625 regstart, regend, reg_info);
5626
5627 /* If this failure point is a dummy, try the next one. */
5628 if (!p)
fa9a63c5
RM
5629 goto fail;
5630
b18215fc 5631 /* If we failed to the end of the pattern, don't examine *p. */
fa9a63c5 5632 assert (p <= pend);
b18215fc
RS
5633 if (p < pend)
5634 {
5635 boolean is_a_jump_n = false;
5636
5637 /* If failed to a backwards jump that's part of a repetition
5638 loop, need to pop this failure point and use the next one. */
5639 switch ((re_opcode_t) *p)
5640 {
5641 case jump_n:
5642 is_a_jump_n = true;
5643 case maybe_pop_jump:
5644 case pop_failure_jump:
5645 case jump:
5646 p1 = p + 1;
5647 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5648 p1 += mcnt;
5649
5650 if ((is_a_jump_n && (re_opcode_t) *p1 == succeed_n)
5651 || (!is_a_jump_n
5652 && (re_opcode_t) *p1 == on_failure_jump))
5653 goto fail;
5654 break;
5655 default:
5656 /* do nothing */ ;
5657 }
5658 }
5659
5660 if (d >= string1 && d <= end1)
fa9a63c5 5661 dend = end_match_1;
b18215fc 5662 }
fa9a63c5 5663 else
b18215fc 5664 break; /* Matching at this starting point really fails. */
fa9a63c5
RM
5665 } /* for (;;) */
5666
5667 if (best_regs_set)
5668 goto restore_best_regs;
5669
5670 FREE_VARIABLES ();
5671
b18215fc 5672 return -1; /* Failure to match. */
fa9a63c5
RM
5673} /* re_match_2 */
5674\f
5675/* Subroutine definitions for re_match_2. */
5676
5677
5678/* We are passed P pointing to a register number after a start_memory.
5e69f11e 5679
fa9a63c5
RM
5680 Return true if the pattern up to the corresponding stop_memory can
5681 match the empty string, and false otherwise.
5e69f11e 5682
fa9a63c5
RM
5683 If we find the matching stop_memory, sets P to point to one past its number.
5684 Otherwise, sets P to an undefined byte less than or equal to END.
5685
5686 We don't handle duplicates properly (yet). */
5687
5688static boolean
5689group_match_null_string_p (p, end, reg_info)
5690 unsigned char **p, *end;
5691 register_info_type *reg_info;
5692{
5693 int mcnt;
5694 /* Point to after the args to the start_memory. */
5695 unsigned char *p1 = *p + 2;
5e69f11e 5696
fa9a63c5
RM
5697 while (p1 < end)
5698 {
5699 /* Skip over opcodes that can match nothing, and return true or
5700 false, as appropriate, when we get to one that can't, or to the
b18215fc 5701 matching stop_memory. */
5e69f11e 5702
fa9a63c5 5703 switch ((re_opcode_t) *p1)
b18215fc
RS
5704 {
5705 /* Could be either a loop or a series of alternatives. */
5706 case on_failure_jump:
5707 p1++;
5708 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5e69f11e 5709
b18215fc 5710 /* If the next operation is not a jump backwards in the
fa9a63c5
RM
5711 pattern. */
5712
5713 if (mcnt >= 0)
5714 {
b18215fc
RS
5715 /* Go through the on_failure_jumps of the alternatives,
5716 seeing if any of the alternatives cannot match nothing.
5717 The last alternative starts with only a jump,
5718 whereas the rest start with on_failure_jump and end
5719 with a jump, e.g., here is the pattern for `a|b|c':
fa9a63c5 5720
b18215fc
RS
5721 /on_failure_jump/0/6/exactn/1/a/jump_past_alt/0/6
5722 /on_failure_jump/0/6/exactn/1/b/jump_past_alt/0/3
5723 /exactn/1/c
fa9a63c5 5724
b18215fc
RS
5725 So, we have to first go through the first (n-1)
5726 alternatives and then deal with the last one separately. */
fa9a63c5
RM
5727
5728
b18215fc
RS
5729 /* Deal with the first (n-1) alternatives, which start
5730 with an on_failure_jump (see above) that jumps to right
5731 past a jump_past_alt. */
fa9a63c5 5732
b18215fc
RS
5733 while ((re_opcode_t) p1[mcnt-3] == jump_past_alt)
5734 {
5735 /* `mcnt' holds how many bytes long the alternative
5736 is, including the ending `jump_past_alt' and
5737 its number. */
fa9a63c5 5738
b18215fc
RS
5739 if (!alt_match_null_string_p (p1, p1 + mcnt - 3,
5740 reg_info))
5741 return false;
fa9a63c5 5742
b18215fc 5743 /* Move to right after this alternative, including the
fa9a63c5 5744 jump_past_alt. */
b18215fc 5745 p1 += mcnt;
fa9a63c5 5746
b18215fc
RS
5747 /* Break if it's the beginning of an n-th alternative
5748 that doesn't begin with an on_failure_jump. */
5749 if ((re_opcode_t) *p1 != on_failure_jump)
5750 break;
5e69f11e 5751
fa9a63c5
RM
5752 /* Still have to check that it's not an n-th
5753 alternative that starts with an on_failure_jump. */
5754 p1++;
b18215fc
RS
5755 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5756 if ((re_opcode_t) p1[mcnt-3] != jump_past_alt)
5757 {
5758 /* Get to the beginning of the n-th alternative. */
5759 p1 -= 3;
5760 break;
5761 }
5762 }
fa9a63c5 5763
b18215fc
RS
5764 /* Deal with the last alternative: go back and get number
5765 of the `jump_past_alt' just before it. `mcnt' contains
5766 the length of the alternative. */
5767 EXTRACT_NUMBER (mcnt, p1 - 2);
fa9a63c5 5768
b18215fc
RS
5769 if (!alt_match_null_string_p (p1, p1 + mcnt, reg_info))
5770 return false;
fa9a63c5 5771
b18215fc
RS
5772 p1 += mcnt; /* Get past the n-th alternative. */
5773 } /* if mcnt > 0 */
5774 break;
fa9a63c5 5775
5e69f11e 5776
b18215fc 5777 case stop_memory:
fa9a63c5 5778 assert (p1[1] == **p);
b18215fc
RS
5779 *p = p1 + 2;
5780 return true;
fa9a63c5 5781
5e69f11e 5782
b18215fc
RS
5783 default:
5784 if (!common_op_match_null_string_p (&p1, end, reg_info))
5785 return false;
5786 }
fa9a63c5
RM
5787 } /* while p1 < end */
5788
5789 return false;
5790} /* group_match_null_string_p */
5791
5792
5793/* Similar to group_match_null_string_p, but doesn't deal with alternatives:
5794 It expects P to be the first byte of a single alternative and END one
5795 byte past the last. The alternative can contain groups. */
5e69f11e 5796
fa9a63c5
RM
5797static boolean
5798alt_match_null_string_p (p, end, reg_info)
5799 unsigned char *p, *end;
5800 register_info_type *reg_info;
5801{
5802 int mcnt;
5803 unsigned char *p1 = p;
5e69f11e 5804
fa9a63c5
RM
5805 while (p1 < end)
5806 {
5e69f11e 5807 /* Skip over opcodes that can match nothing, and break when we get
b18215fc 5808 to one that can't. */
5e69f11e 5809
fa9a63c5 5810 switch ((re_opcode_t) *p1)
b18215fc
RS
5811 {
5812 /* It's a loop. */
5813 case on_failure_jump:
5814 p1++;
5815 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5816 p1 += mcnt;
5817 break;
5e69f11e
RM
5818
5819 default:
b18215fc
RS
5820 if (!common_op_match_null_string_p (&p1, end, reg_info))
5821 return false;
5822 }
fa9a63c5
RM
5823 } /* while p1 < end */
5824
5825 return true;
5826} /* alt_match_null_string_p */
5827
5828
5829/* Deals with the ops common to group_match_null_string_p and
5e69f11e
RM
5830 alt_match_null_string_p.
5831
fa9a63c5
RM
5832 Sets P to one after the op and its arguments, if any. */
5833
5834static boolean
5835common_op_match_null_string_p (p, end, reg_info)
5836 unsigned char **p, *end;
5837 register_info_type *reg_info;
5838{
5839 int mcnt;
5840 boolean ret;
5841 int reg_no;
5842 unsigned char *p1 = *p;
5843
5844 switch ((re_opcode_t) *p1++)
5845 {
5846 case no_op:
5847 case begline:
5848 case endline:
5849 case begbuf:
5850 case endbuf:
5851 case wordbeg:
5852 case wordend:
5853 case wordbound:
5854 case notwordbound:
5855#ifdef emacs
5856 case before_dot:
5857 case at_dot:
5858 case after_dot:
5859#endif
5860 break;
5861
5862 case start_memory:
5863 reg_no = *p1;
5864 assert (reg_no > 0 && reg_no <= MAX_REGNUM);
5865 ret = group_match_null_string_p (&p1, end, reg_info);
5e69f11e 5866
fa9a63c5 5867 /* Have to set this here in case we're checking a group which
b18215fc 5868 contains a group and a back reference to it. */
fa9a63c5
RM
5869
5870 if (REG_MATCH_NULL_STRING_P (reg_info[reg_no]) == MATCH_NULL_UNSET_VALUE)
b18215fc 5871 REG_MATCH_NULL_STRING_P (reg_info[reg_no]) = ret;
fa9a63c5
RM
5872
5873 if (!ret)
b18215fc 5874 return false;
fa9a63c5 5875 break;
5e69f11e 5876
b18215fc 5877 /* If this is an optimized succeed_n for zero times, make the jump. */
fa9a63c5
RM
5878 case jump:
5879 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5880 if (mcnt >= 0)
b18215fc 5881 p1 += mcnt;
fa9a63c5 5882 else
b18215fc 5883 return false;
fa9a63c5
RM
5884 break;
5885
5886 case succeed_n:
b18215fc 5887 /* Get to the number of times to succeed. */
5e69f11e 5888 p1 += 2;
fa9a63c5
RM
5889 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5890
5891 if (mcnt == 0)
b18215fc
RS
5892 {
5893 p1 -= 4;
5894 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5895 p1 += mcnt;
5896 }
fa9a63c5 5897 else
b18215fc 5898 return false;
fa9a63c5
RM
5899 break;
5900
5e69f11e 5901 case duplicate:
fa9a63c5 5902 if (!REG_MATCH_NULL_STRING_P (reg_info[*p1]))
b18215fc 5903 return false;
fa9a63c5
RM
5904 break;
5905
5906 case set_number_at:
5907 p1 += 4;
5908
5909 default:
5910 /* All other opcodes mean we cannot match the empty string. */
5911 return false;
5912 }
5913
5914 *p = p1;
5915 return true;
5916} /* common_op_match_null_string_p */
5917
5918
5919/* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
5920 bytes; nonzero otherwise. */
5e69f11e 5921
fa9a63c5
RM
5922static int
5923bcmp_translate (s1, s2, len, translate)
5924 unsigned char *s1, *s2;
5925 register int len;
6676cb1c 5926 RE_TRANSLATE_TYPE translate;
fa9a63c5
RM
5927{
5928 register unsigned char *p1 = s1, *p2 = s2;
5929 while (len)
5930 {
bc192b5b
RS
5931 if (RE_TRANSLATE (translate, *p1++) != RE_TRANSLATE (translate, *p2++))
5932 return 1;
fa9a63c5
RM
5933 len--;
5934 }
5935 return 0;
5936}
5937\f
5938/* Entry points for GNU code. */
5939
5940/* re_compile_pattern is the GNU regular expression compiler: it
5941 compiles PATTERN (of length SIZE) and puts the result in BUFP.
5942 Returns 0 if the pattern was valid, otherwise an error string.
5e69f11e 5943
fa9a63c5
RM
5944 Assumes the `allocated' (and perhaps `buffer') and `translate' fields
5945 are set in BUFP on entry.
5e69f11e 5946
b18215fc 5947 We call regex_compile to do the actual compilation. */
fa9a63c5
RM
5948
5949const char *
5950re_compile_pattern (pattern, length, bufp)
5951 const char *pattern;
5952 int length;
5953 struct re_pattern_buffer *bufp;
5954{
5955 reg_errcode_t ret;
5e69f11e 5956
fa9a63c5
RM
5957 /* GNU code is written to assume at least RE_NREGS registers will be set
5958 (and at least one extra will be -1). */
5959 bufp->regs_allocated = REGS_UNALLOCATED;
5e69f11e 5960
fa9a63c5
RM
5961 /* And GNU code determines whether or not to get register information
5962 by passing null for the REGS argument to re_match, etc., not by
5963 setting no_sub. */
5964 bufp->no_sub = 0;
5e69f11e 5965
b18215fc 5966 /* Match anchors at newline. */
fa9a63c5 5967 bufp->newline_anchor = 1;
5e69f11e 5968
fa9a63c5
RM
5969 ret = regex_compile (pattern, length, re_syntax_options, bufp);
5970
5971 if (!ret)
5972 return NULL;
5973 return gettext (re_error_msgid[(int) ret]);
5e69f11e 5974}
fa9a63c5 5975\f
b18215fc
RS
5976/* Entry points compatible with 4.2 BSD regex library. We don't define
5977 them unless specifically requested. */
fa9a63c5 5978
0c085854 5979#if defined (_REGEX_RE_COMP) || defined (_LIBC)
fa9a63c5
RM
5980
5981/* BSD has one and only one pattern buffer. */
5982static struct re_pattern_buffer re_comp_buf;
5983
5984char *
48afdd44
RM
5985#ifdef _LIBC
5986/* Make these definitions weak in libc, so POSIX programs can redefine
5987 these names if they don't use our functions, and still use
5988 regcomp/regexec below without link errors. */
5989weak_function
5990#endif
fa9a63c5
RM
5991re_comp (s)
5992 const char *s;
5993{
5994 reg_errcode_t ret;
5e69f11e 5995
fa9a63c5
RM
5996 if (!s)
5997 {
5998 if (!re_comp_buf.buffer)
5999 return gettext ("No previous regular expression");
6000 return 0;
6001 }
6002
6003 if (!re_comp_buf.buffer)
6004 {
6005 re_comp_buf.buffer = (unsigned char *) malloc (200);
6006 if (re_comp_buf.buffer == NULL)
b18215fc 6007 return gettext (re_error_msgid[(int) REG_ESPACE]);
fa9a63c5
RM
6008 re_comp_buf.allocated = 200;
6009
6010 re_comp_buf.fastmap = (char *) malloc (1 << BYTEWIDTH);
6011 if (re_comp_buf.fastmap == NULL)
6012 return gettext (re_error_msgid[(int) REG_ESPACE]);
6013 }
6014
6015 /* Since `re_exec' always passes NULL for the `regs' argument, we
6016 don't need to initialize the pattern buffer fields which affect it. */
6017
b18215fc 6018 /* Match anchors at newlines. */
fa9a63c5
RM
6019 re_comp_buf.newline_anchor = 1;
6020
6021 ret = regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf);
5e69f11e 6022
fa9a63c5
RM
6023 if (!ret)
6024 return NULL;
6025
6026 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
6027 return (char *) gettext (re_error_msgid[(int) ret]);
6028}
6029
6030
6031int
48afdd44
RM
6032#ifdef _LIBC
6033weak_function
6034#endif
fa9a63c5
RM
6035re_exec (s)
6036 const char *s;
6037{
6038 const int len = strlen (s);
6039 return
6040 0 <= re_search (&re_comp_buf, s, len, 0, len, (struct re_registers *) 0);
6041}
6042#endif /* _REGEX_RE_COMP */
6043\f
6044/* POSIX.2 functions. Don't define these for Emacs. */
6045
6046#ifndef emacs
6047
6048/* regcomp takes a regular expression as a string and compiles it.
6049
b18215fc 6050 PREG is a regex_t *. We do not expect any fields to be initialized,
fa9a63c5
RM
6051 since POSIX says we shouldn't. Thus, we set
6052
6053 `buffer' to the compiled pattern;
6054 `used' to the length of the compiled pattern;
6055 `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
6056 REG_EXTENDED bit in CFLAGS is set; otherwise, to
6057 RE_SYNTAX_POSIX_BASIC;
6058 `newline_anchor' to REG_NEWLINE being set in CFLAGS;
6059 `fastmap' and `fastmap_accurate' to zero;
6060 `re_nsub' to the number of subexpressions in PATTERN.
6061
6062 PATTERN is the address of the pattern string.
6063
6064 CFLAGS is a series of bits which affect compilation.
6065
6066 If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
6067 use POSIX basic syntax.
6068
6069 If REG_NEWLINE is set, then . and [^...] don't match newline.
6070 Also, regexec will try a match beginning after every newline.
6071
6072 If REG_ICASE is set, then we considers upper- and lowercase
6073 versions of letters to be equivalent when matching.
6074
6075 If REG_NOSUB is set, then when PREG is passed to regexec, that
6076 routine will report only success or failure, and nothing about the
6077 registers.
6078
b18215fc 6079 It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for
fa9a63c5
RM
6080 the return codes and their meanings.) */
6081
6082int
6083regcomp (preg, pattern, cflags)
6084 regex_t *preg;
5e69f11e 6085 const char *pattern;
fa9a63c5
RM
6086 int cflags;
6087{
6088 reg_errcode_t ret;
6089 unsigned syntax
6090 = (cflags & REG_EXTENDED) ?
6091 RE_SYNTAX_POSIX_EXTENDED : RE_SYNTAX_POSIX_BASIC;
6092
6093 /* regex_compile will allocate the space for the compiled pattern. */
6094 preg->buffer = 0;
6095 preg->allocated = 0;
6096 preg->used = 0;
5e69f11e 6097
fa9a63c5
RM
6098 /* Don't bother to use a fastmap when searching. This simplifies the
6099 REG_NEWLINE case: if we used a fastmap, we'd have to put all the
6100 characters after newlines into the fastmap. This way, we just try
6101 every character. */
6102 preg->fastmap = 0;
5e69f11e 6103
fa9a63c5
RM
6104 if (cflags & REG_ICASE)
6105 {
6106 unsigned i;
5e69f11e 6107
6676cb1c
RS
6108 preg->translate
6109 = (RE_TRANSLATE_TYPE) malloc (CHAR_SET_SIZE
6110 * sizeof (*(RE_TRANSLATE_TYPE)0));
fa9a63c5 6111 if (preg->translate == NULL)
b18215fc 6112 return (int) REG_ESPACE;
fa9a63c5
RM
6113
6114 /* Map uppercase characters to corresponding lowercase ones. */
6115 for (i = 0; i < CHAR_SET_SIZE; i++)
b18215fc 6116 preg->translate[i] = ISUPPER (i) ? tolower (i) : i;
fa9a63c5
RM
6117 }
6118 else
6119 preg->translate = NULL;
6120
6121 /* If REG_NEWLINE is set, newlines are treated differently. */
6122 if (cflags & REG_NEWLINE)
6123 { /* REG_NEWLINE implies neither . nor [^...] match newline. */
6124 syntax &= ~RE_DOT_NEWLINE;
6125 syntax |= RE_HAT_LISTS_NOT_NEWLINE;
b18215fc 6126 /* It also changes the matching behavior. */
fa9a63c5
RM
6127 preg->newline_anchor = 1;
6128 }
6129 else
6130 preg->newline_anchor = 0;
6131
6132 preg->no_sub = !!(cflags & REG_NOSUB);
6133
5e69f11e 6134 /* POSIX says a null character in the pattern terminates it, so we
fa9a63c5
RM
6135 can use strlen here in compiling the pattern. */
6136 ret = regex_compile (pattern, strlen (pattern), syntax, preg);
5e69f11e 6137
fa9a63c5
RM
6138 /* POSIX doesn't distinguish between an unmatched open-group and an
6139 unmatched close-group: both are REG_EPAREN. */
6140 if (ret == REG_ERPAREN) ret = REG_EPAREN;
5e69f11e 6141
fa9a63c5
RM
6142 return (int) ret;
6143}
6144
6145
6146/* regexec searches for a given pattern, specified by PREG, in the
6147 string STRING.
5e69f11e 6148
fa9a63c5 6149 If NMATCH is zero or REG_NOSUB was set in the cflags argument to
b18215fc 6150 `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at
fa9a63c5
RM
6151 least NMATCH elements, and we set them to the offsets of the
6152 corresponding matched substrings.
5e69f11e 6153
fa9a63c5
RM
6154 EFLAGS specifies `execution flags' which affect matching: if
6155 REG_NOTBOL is set, then ^ does not match at the beginning of the
6156 string; if REG_NOTEOL is set, then $ does not match at the end.
5e69f11e 6157
fa9a63c5
RM
6158 We return 0 if we find a match and REG_NOMATCH if not. */
6159
6160int
6161regexec (preg, string, nmatch, pmatch, eflags)
6162 const regex_t *preg;
5e69f11e
RM
6163 const char *string;
6164 size_t nmatch;
6165 regmatch_t pmatch[];
fa9a63c5
RM
6166 int eflags;
6167{
6168 int ret;
6169 struct re_registers regs;
6170 regex_t private_preg;
6171 int len = strlen (string);
6172 boolean want_reg_info = !preg->no_sub && nmatch > 0;
6173
6174 private_preg = *preg;
5e69f11e 6175
fa9a63c5
RM
6176 private_preg.not_bol = !!(eflags & REG_NOTBOL);
6177 private_preg.not_eol = !!(eflags & REG_NOTEOL);
5e69f11e 6178
fa9a63c5
RM
6179 /* The user has told us exactly how many registers to return
6180 information about, via `nmatch'. We have to pass that on to the
b18215fc 6181 matching routines. */
fa9a63c5 6182 private_preg.regs_allocated = REGS_FIXED;
5e69f11e 6183
fa9a63c5
RM
6184 if (want_reg_info)
6185 {
6186 regs.num_regs = nmatch;
6187 regs.start = TALLOC (nmatch, regoff_t);
6188 regs.end = TALLOC (nmatch, regoff_t);
6189 if (regs.start == NULL || regs.end == NULL)
b18215fc 6190 return (int) REG_NOMATCH;
fa9a63c5
RM
6191 }
6192
6193 /* Perform the searching operation. */
6194 ret = re_search (&private_preg, string, len,
b18215fc
RS
6195 /* start: */ 0, /* range: */ len,
6196 want_reg_info ? &regs : (struct re_registers *) 0);
5e69f11e 6197
fa9a63c5
RM
6198 /* Copy the register information to the POSIX structure. */
6199 if (want_reg_info)
6200 {
6201 if (ret >= 0)
b18215fc
RS
6202 {
6203 unsigned r;
fa9a63c5 6204
b18215fc
RS
6205 for (r = 0; r < nmatch; r++)
6206 {
6207 pmatch[r].rm_so = regs.start[r];
6208 pmatch[r].rm_eo = regs.end[r];
6209 }
6210 }
fa9a63c5 6211
b18215fc 6212 /* If we needed the temporary register info, free the space now. */
fa9a63c5
RM
6213 free (regs.start);
6214 free (regs.end);
6215 }
6216
6217 /* We want zero return to mean success, unlike `re_search'. */
6218 return ret >= 0 ? (int) REG_NOERROR : (int) REG_NOMATCH;
6219}
6220
6221
6222/* Returns a message corresponding to an error code, ERRCODE, returned
6223 from either regcomp or regexec. We don't use PREG here. */
6224
6225size_t
6226regerror (errcode, preg, errbuf, errbuf_size)
6227 int errcode;
6228 const regex_t *preg;
6229 char *errbuf;
6230 size_t errbuf_size;
6231{
6232 const char *msg;
6233 size_t msg_size;
6234
6235 if (errcode < 0
6236 || errcode >= (sizeof (re_error_msgid) / sizeof (re_error_msgid[0])))
5e69f11e 6237 /* Only error codes returned by the rest of the code should be passed
b18215fc 6238 to this routine. If we are given anything else, or if other regex
fa9a63c5
RM
6239 code generates an invalid error code, then the program has a bug.
6240 Dump core so we can fix it. */
6241 abort ();
6242
6243 msg = gettext (re_error_msgid[errcode]);
6244
6245 msg_size = strlen (msg) + 1; /* Includes the null. */
5e69f11e 6246
fa9a63c5
RM
6247 if (errbuf_size != 0)
6248 {
6249 if (msg_size > errbuf_size)
b18215fc
RS
6250 {
6251 strncpy (errbuf, msg, errbuf_size - 1);
6252 errbuf[errbuf_size - 1] = 0;
6253 }
fa9a63c5 6254 else
b18215fc 6255 strcpy (errbuf, msg);
fa9a63c5
RM
6256 }
6257
6258 return msg_size;
6259}
6260
6261
6262/* Free dynamically allocated space used by PREG. */
6263
6264void
6265regfree (preg)
6266 regex_t *preg;
6267{
6268 if (preg->buffer != NULL)
6269 free (preg->buffer);
6270 preg->buffer = NULL;
5e69f11e 6271
fa9a63c5
RM
6272 preg->allocated = 0;
6273 preg->used = 0;
6274
6275 if (preg->fastmap != NULL)
6276 free (preg->fastmap);
6277 preg->fastmap = NULL;
6278 preg->fastmap_accurate = 0;
6279
6280 if (preg->translate != NULL)
6281 free (preg->translate);
6282 preg->translate = NULL;
6283}
6284
6285#endif /* not emacs */