*** empty log message ***
[bpt/emacs.git] / src / regex.c
CommitLineData
e318085a
RS
1/* Extended regular expression matching and search library, version
2 0.12. (Implements POSIX draft P10003.2/D11.2, except for
bc78d348
KB
3 internationalization features.)
4
505bde11 5 Copyright (C) 1993,94,95,96,97,98,2000 Free Software Foundation, Inc.
bc78d348 6
fa9a63c5
RM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
25fe55af 14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
fa9a63c5
RM
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
ba4a8e51 19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307,
25fe55af 20 USA. */
fa9a63c5 21
505bde11 22/* TODO:
505bde11 23 - structure the opcode space into opcode+flag.
f6a3f532
SM
24 - merge with glibc's regex.[ch]
25 */
505bde11 26
fa9a63c5
RM
27/* AIX requires this to be the first thing in the file. */
28#if defined (_AIX) && !defined (REGEX_MALLOC)
29 #pragma alloca
30#endif
31
68d96f02 32#undef _GNU_SOURCE
fa9a63c5
RM
33#define _GNU_SOURCE
34
51352796 35#ifdef emacs
25fe55af 36/* Converts the pointer to the char to BEG-based offset from the start. */
99633e97 37#define PTR_TO_OFFSET(d) POS_AS_IN_BUFFER (POINTER_TO_OFFSET (d))
7e95234e 38#define POS_AS_IN_BUFFER(p) ((p) + (NILP (re_match_object) || BUFFERP (re_match_object)))
51352796 39#endif
b18215fc 40
fa9a63c5
RM
41#ifdef HAVE_CONFIG_H
42#include <config.h>
43#endif
44
25fe55af 45/* We need this for `regex.h', and perhaps for the Emacs include files. */
fa9a63c5
RM
46#include <sys/types.h>
47
25fe55af 48/* This is for other GNU distributions with internationalized messages. */
fa9a63c5
RM
49#if HAVE_LIBINTL_H || defined (_LIBC)
50# include <libintl.h>
51#else
52# define gettext(msgid) (msgid)
53#endif
54
5e69f11e
RM
55#ifndef gettext_noop
56/* This define is so xgettext can find the internationalizable
57 strings. */
58#define gettext_noop(String) String
59#endif
60
fa9a63c5
RM
61/* The `emacs' switch turns on certain matching commands
62 that make sense only in Emacs. */
63#ifdef emacs
64
65#include "lisp.h"
66#include "buffer.h"
b18215fc
RS
67
68/* Make syntax table lookup grant data in gl_state. */
69#define SYNTAX_ENTRY_VIA_PROPERTY
70
fa9a63c5 71#include "syntax.h"
b18215fc
RS
72#include "charset.h"
73#include "category.h"
fa9a63c5 74
9abbd165 75#define malloc xmalloc
64e3c718 76#define realloc xrealloc
9abbd165
RS
77#define free xfree
78
2d1675e4 79#define RE_MULTIBYTE_P(bufp) ((bufp)->multibyte)
4e8a9132
SM
80#define RE_STRING_CHAR(p, s) \
81 (multibyte ? (STRING_CHAR (p, s)) : (*(p)))
2d1675e4
SM
82#define RE_STRING_CHAR_AND_LENGTH(p, s, len) \
83 (multibyte ? (STRING_CHAR_AND_LENGTH (p, s, len)) : ((len) = 1, *(p)))
84
85/* Set C a (possibly multibyte) character before P. P points into a
86 string which is the virtual concatenation of STR1 (which ends at
87 END1) or STR2 (which ends at END2). */
88#define GET_CHAR_BEFORE_2(c, p, str1, end1, str2, end2) \
89 do { \
90 if (multibyte) \
91 { \
92 re_char *dtemp = (p) == (str2) ? (end1) : (p); \
93 re_char *dlimit = ((p) > (str2) && (p) <= (end2)) ? (str2) : (str1); \
94 while (dtemp-- > dlimit && !CHAR_HEAD_P (*dtemp)); \
95 c = STRING_CHAR (dtemp, (p) - dtemp); \
96 } \
97 else \
98 (c = ((p) == (str2) ? (end1) : (p))[-1]); \
99 } while (0)
100
4e8a9132 101
fa9a63c5
RM
102#else /* not emacs */
103
104/* If we are not linking with Emacs proper,
105 we can't use the relocating allocator
106 even if config.h says that we can. */
107#undef REL_ALLOC
108
109#if defined (STDC_HEADERS) || defined (_LIBC)
110#include <stdlib.h>
111#else
112char *malloc ();
113char *realloc ();
114#endif
115
9e4ecb26 116/* When used in Emacs's lib-src, we need to get bzero and bcopy somehow.
25fe55af 117 If nothing else has been done, use the method below. */
9e4ecb26
KH
118#ifdef INHIBIT_STRING_HEADER
119#if !(defined (HAVE_BZERO) && defined (HAVE_BCOPY))
120#if !defined (bzero) && !defined (bcopy)
121#undef INHIBIT_STRING_HEADER
122#endif
123#endif
124#endif
125
126/* This is the normal way of making sure we have a bcopy and a bzero.
127 This is used in most programs--a few other programs avoid this
128 by defining INHIBIT_STRING_HEADER. */
fa9a63c5 129#ifndef INHIBIT_STRING_HEADER
7f998252 130#if defined (HAVE_STRING_H) || defined (STDC_HEADERS) || defined (_LIBC)
fa9a63c5
RM
131#include <string.h>
132#ifndef bcmp
133#define bcmp(s1, s2, n) memcmp ((s1), (s2), (n))
134#endif
135#ifndef bcopy
136#define bcopy(s, d, n) memcpy ((d), (s), (n))
137#endif
138#ifndef bzero
139#define bzero(s, n) memset ((s), 0, (n))
140#endif
141#else
142#include <strings.h>
143#endif
144#endif
145
146/* Define the syntax stuff for \<, \>, etc. */
147
990b2375
SM
148/* Sword must be nonzero for the wordchar pattern commands in re_match_2. */
149enum syntaxcode { Swhitespace = 0, Sword = 1 };
fa9a63c5
RM
150
151#ifdef SWITCH_ENUM_BUG
152#define SWITCH_ENUM_CAST(x) ((int)(x))
153#else
154#define SWITCH_ENUM_CAST(x) (x)
155#endif
156
157#ifdef SYNTAX_TABLE
158
159extern char *re_syntax_table;
160
161#else /* not SYNTAX_TABLE */
162
163/* How many characters in the character set. */
164#define CHAR_SET_SIZE 256
165
166static char re_syntax_table[CHAR_SET_SIZE];
167
168static void
169init_syntax_once ()
170{
171 register int c;
172 static int done = 0;
173
174 if (done)
175 return;
176
177 bzero (re_syntax_table, sizeof re_syntax_table);
178
179 for (c = 'a'; c <= 'z'; c++)
180 re_syntax_table[c] = Sword;
181
182 for (c = 'A'; c <= 'Z'; c++)
183 re_syntax_table[c] = Sword;
184
185 for (c = '0'; c <= '9'; c++)
186 re_syntax_table[c] = Sword;
187
188 re_syntax_table['_'] = Sword;
189
190 done = 1;
191}
192
193#endif /* not SYNTAX_TABLE */
194
195#define SYNTAX(c) re_syntax_table[c]
196
e934739e 197/* Dummy macros for non-Emacs environments. */
b18215fc 198#define BASE_LEADING_CODE_P(c) (0)
1fb352e0
SM
199#define CHAR_CHARSET(c) 0
200#define CHARSET_LEADING_CODE_BASE(c) 0
2d1675e4
SM
201#define MAX_MULTIBYTE_LENGTH 1
202#define RE_MULTIBYTE_P(x) 0
b18215fc
RS
203#define WORD_BOUNDARY_P(c1, c2) (0)
204#define CHAR_HEAD_P(p) (1)
205#define SINGLE_BYTE_CHAR_P(c) (1)
206#define SAME_CHARSET_P(c1, c2) (1)
207#define MULTIBYTE_FORM_LENGTH(p, s) (1)
208#define STRING_CHAR(p, s) (*(p))
4e8a9132 209#define RE_STRING_CHAR STRING_CHAR
2d1675e4 210#define CHAR_STRING(c, s) (*(s) = (c), 1)
b18215fc 211#define STRING_CHAR_AND_LENGTH(p, s, actual_len) ((actual_len) = 1, *(p))
2d1675e4 212#define RE_STRING_CHAR_AND_LENGTH STRING_CHAR_AND_LENGTH
b18215fc
RS
213#define GET_CHAR_BEFORE_2(c, p, str1, end1, str2, end2) \
214 (c = ((p) == (str2) ? *((end1) - 1) : *((p) - 1)))
fa9a63c5 215#endif /* not emacs */
4e8a9132
SM
216
217#ifndef RE_TRANSLATE
218#define RE_TRANSLATE(TBL, C) ((unsigned char)(TBL)[C])
219#define RE_TRANSLATE_P(TBL) (TBL)
220#endif
fa9a63c5
RM
221\f
222/* Get the interface, including the syntax bits. */
223#include "regex.h"
224
f71b19b6
DL
225/* isalpha etc. are used for the character classes. */
226#include <ctype.h>
fa9a63c5 227
f71b19b6 228#ifdef emacs
fa9a63c5 229
f71b19b6
DL
230/* 1 if C is an ASCII character. */
231#define IS_REAL_ASCII(c) ((c) < 0200)
fa9a63c5 232
f71b19b6
DL
233/* 1 if C is a unibyte character. */
234#define ISUNIBYTE(c) (SINGLE_BYTE_CHAR_P ((c)))
96cc36cc 235
f71b19b6 236/* The Emacs definitions should not be directly affected by locales. */
96cc36cc 237
f71b19b6
DL
238/* In Emacs, these are only used for single-byte characters. */
239#define ISDIGIT(c) ((c) >= '0' && (c) <= '9')
240#define ISCNTRL(c) ((c) < ' ')
241#define ISXDIGIT(c) (((c) >= '0' && (c) <= '9') \
242 || ((c) >= 'a' && (c) <= 'f') \
243 || ((c) >= 'A' && (c) <= 'F'))
96cc36cc
RS
244
245/* This is only used for single-byte characters. */
246#define ISBLANK(c) ((c) == ' ' || (c) == '\t')
247
248/* The rest must handle multibyte characters. */
249
250#define ISGRAPH(c) (SINGLE_BYTE_CHAR_P (c) \
f71b19b6 251 ? (c) > ' ' && !((c) >= 0177 && (c) <= 0237) \
96cc36cc
RS
252 : 1)
253
254#define ISPRINT(c) (SINGLE_BYTE_CHAR_P (c) \
f71b19b6 255 ? (c) >= ' ' && !((c) >= 0177 && (c) <= 0237) \
96cc36cc
RS
256 : 1)
257
f71b19b6
DL
258#define ISALNUM(c) (IS_REAL_ASCII (c) \
259 ? (((c) >= 'a' && (c) <= 'z') \
260 || ((c) >= 'A' && (c) <= 'Z') \
261 || ((c) >= '0' && (c) <= '9')) \
96cc36cc
RS
262 : SYNTAX (c) == Sword)
263
f71b19b6
DL
264#define ISALPHA(c) (IS_REAL_ASCII (c) \
265 ? (((c) >= 'a' && (c) <= 'z') \
266 || ((c) >= 'A' && (c) <= 'Z')) \
96cc36cc
RS
267 : SYNTAX (c) == Sword)
268
269#define ISLOWER(c) (LOWERCASEP (c))
270
f71b19b6
DL
271#define ISPUNCT(c) (IS_REAL_ASCII (c) \
272 ? ((c) > ' ' && (c) < 0177 \
273 && !(((c) >= 'a' && (c) <= 'z') \
274 || ((c) >= 'A' && (c) <= 'Z') \
275 || ((c) >= '0' && (c) <= '9'))) \
96cc36cc
RS
276 : SYNTAX (c) != Sword)
277
278#define ISSPACE(c) (SYNTAX (c) == Swhitespace)
279
280#define ISUPPER(c) (UPPERCASEP (c))
281
282#define ISWORD(c) (SYNTAX (c) == Sword)
283
284#else /* not emacs */
285
f71b19b6
DL
286/* Jim Meyering writes:
287
288 "... Some ctype macros are valid only for character codes that
289 isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when
290 using /bin/cc or gcc but without giving an ansi option). So, all
291 ctype uses should be through macros like ISPRINT... If
292 STDC_HEADERS is defined, then autoconf has verified that the ctype
293 macros don't need to be guarded with references to isascii. ...
294 Defining isascii to 1 should let any compiler worth its salt
295 eliminate the && through constant folding." */
296
297#if defined (STDC_HEADERS) || (!defined (isascii) && !defined (HAVE_ISASCII))
298#define ISASCII(c) 1
299#else
300#define ISASCII(c) isascii(c)
301#endif
302
303/* 1 if C is an ASCII character. */
304#define IS_REAL_ASCII(c) ((c) < 0200)
305
306/* This distinction is not meaningful, except in Emacs. */
307#define ISUNIBYTE(c) 1
308
309#define ISDIGIT(c) (ISASCII (c) && isdigit (c))
310#define ISCNTRL(c) (ISASCII (c) && iscntrl (c))
311#define ISXDIGIT(c) (ISASCII (c) && isxdigit (c))
312
fa9a63c5
RM
313#ifdef isblank
314#define ISBLANK(c) (ISASCII (c) && isblank (c))
315#else
316#define ISBLANK(c) ((c) == ' ' || (c) == '\t')
317#endif
318#ifdef isgraph
319#define ISGRAPH(c) (ISASCII (c) && isgraph (c))
320#else
321#define ISGRAPH(c) (ISASCII (c) && isprint (c) && !isspace (c))
322#endif
323
324#define ISPRINT(c) (ISASCII (c) && isprint (c))
325#define ISDIGIT(c) (ISASCII (c) && isdigit (c))
326#define ISALNUM(c) (ISASCII (c) && isalnum (c))
327#define ISALPHA(c) (ISASCII (c) && isalpha (c))
328#define ISCNTRL(c) (ISASCII (c) && iscntrl (c))
329#define ISLOWER(c) (ISASCII (c) && islower (c))
330#define ISPUNCT(c) (ISASCII (c) && ispunct (c))
331#define ISSPACE(c) (ISASCII (c) && isspace (c))
332#define ISUPPER(c) (ISASCII (c) && isupper (c))
333#define ISXDIGIT(c) (ISASCII (c) && isxdigit (c))
334
96cc36cc
RS
335#define ISWORD(c) ISALPHA(c)
336
337#endif /* not emacs */
338\f
fa9a63c5 339#ifndef NULL
075f06ec 340#define NULL (void *)0
fa9a63c5
RM
341#endif
342
343/* We remove any previous definition of `SIGN_EXTEND_CHAR',
344 since ours (we hope) works properly with all combinations of
345 machines, compilers, `char' and `unsigned char' argument types.
25fe55af 346 (Per Bothner suggested the basic approach.) */
fa9a63c5
RM
347#undef SIGN_EXTEND_CHAR
348#if __STDC__
349#define SIGN_EXTEND_CHAR(c) ((signed char) (c))
350#else /* not __STDC__ */
351/* As in Harbison and Steele. */
352#define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
353#endif
354\f
355/* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we
356 use `alloca' instead of `malloc'. This is because using malloc in
357 re_search* or re_match* could cause memory leaks when C-g is used in
358 Emacs; also, malloc is slower and causes storage fragmentation. On
5e69f11e
RM
359 the other hand, malloc is more portable, and easier to debug.
360
fa9a63c5
RM
361 Because we sometimes use alloca, some routines have to be macros,
362 not functions -- `alloca'-allocated space disappears at the end of the
363 function it is called in. */
364
365#ifdef REGEX_MALLOC
366
367#define REGEX_ALLOCATE malloc
368#define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
369#define REGEX_FREE free
370
371#else /* not REGEX_MALLOC */
372
373/* Emacs already defines alloca, sometimes. */
374#ifndef alloca
375
376/* Make alloca work the best possible way. */
377#ifdef __GNUC__
378#define alloca __builtin_alloca
379#else /* not __GNUC__ */
380#if HAVE_ALLOCA_H
381#include <alloca.h>
382#else /* not __GNUC__ or HAVE_ALLOCA_H */
f3c4387f 383#if 0 /* It is a bad idea to declare alloca. We always cast the result. */
25fe55af 384#ifndef _AIX /* Already did AIX, up at the top. */
fa9a63c5
RM
385char *alloca ();
386#endif /* not _AIX */
f3c4387f 387#endif
5e69f11e 388#endif /* not HAVE_ALLOCA_H */
fa9a63c5
RM
389#endif /* not __GNUC__ */
390
391#endif /* not alloca */
392
393#define REGEX_ALLOCATE alloca
394
395/* Assumes a `char *destination' variable. */
396#define REGEX_REALLOCATE(source, osize, nsize) \
397 (destination = (char *) alloca (nsize), \
398 bcopy (source, destination, osize), \
399 destination)
400
401/* No need to do anything to free, after alloca. */
c2e1680a 402#define REGEX_FREE(arg) ((void)0) /* Do nothing! But inhibit gcc warning. */
fa9a63c5
RM
403
404#endif /* not REGEX_MALLOC */
405
406/* Define how to allocate the failure stack. */
407
33487cc8 408#if defined (REL_ALLOC) && defined (REGEX_MALLOC)
4297555e 409
fa9a63c5
RM
410#define REGEX_ALLOCATE_STACK(size) \
411 r_alloc (&failure_stack_ptr, (size))
412#define REGEX_REALLOCATE_STACK(source, osize, nsize) \
413 r_re_alloc (&failure_stack_ptr, (nsize))
414#define REGEX_FREE_STACK(ptr) \
415 r_alloc_free (&failure_stack_ptr)
416
4297555e 417#else /* not using relocating allocator */
fa9a63c5
RM
418
419#ifdef REGEX_MALLOC
420
421#define REGEX_ALLOCATE_STACK malloc
422#define REGEX_REALLOCATE_STACK(source, osize, nsize) realloc (source, nsize)
423#define REGEX_FREE_STACK free
424
425#else /* not REGEX_MALLOC */
426
427#define REGEX_ALLOCATE_STACK alloca
428
429#define REGEX_REALLOCATE_STACK(source, osize, nsize) \
430 REGEX_REALLOCATE (source, osize, nsize)
25fe55af 431/* No need to explicitly free anything. */
ed0767d8 432#define REGEX_FREE_STACK(arg) ((void)0)
fa9a63c5
RM
433
434#endif /* not REGEX_MALLOC */
4297555e 435#endif /* not using relocating allocator */
fa9a63c5
RM
436
437
438/* True if `size1' is non-NULL and PTR is pointing anywhere inside
439 `string1' or just past its end. This works if PTR is NULL, which is
440 a good thing. */
25fe55af 441#define FIRST_STRING_P(ptr) \
fa9a63c5
RM
442 (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
443
444/* (Re)Allocate N items of type T using malloc, or fail. */
445#define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
446#define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
447#define RETALLOC_IF(addr, n, t) \
448 if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t)
449#define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
450
25fe55af 451#define BYTEWIDTH 8 /* In bits. */
fa9a63c5
RM
452
453#define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
454
455#undef MAX
456#undef MIN
457#define MAX(a, b) ((a) > (b) ? (a) : (b))
458#define MIN(a, b) ((a) < (b) ? (a) : (b))
459
66f0296e
SM
460/* Type of source-pattern and string chars. */
461typedef const unsigned char re_char;
462
fa9a63c5
RM
463typedef char boolean;
464#define false 0
465#define true 1
466
467static int re_match_2_internal ();
468\f
469/* These are the command codes that appear in compiled regular
25fe55af 470 expressions. Some opcodes are followed by argument bytes. A
fa9a63c5
RM
471 command code can specify any interpretation whatsoever for its
472 arguments. Zero bytes may appear in the compiled regular expression. */
473
474typedef enum
475{
476 no_op = 0,
477
25fe55af 478 /* Succeed right away--no more backtracking. */
fa9a63c5
RM
479 succeed,
480
25fe55af 481 /* Followed by one byte giving n, then by n literal bytes. */
fa9a63c5
RM
482 exactn,
483
25fe55af 484 /* Matches any (more or less) character. */
fa9a63c5
RM
485 anychar,
486
25fe55af
RS
487 /* Matches any one char belonging to specified set. First
488 following byte is number of bitmap bytes. Then come bytes
489 for a bitmap saying which chars are in. Bits in each byte
490 are ordered low-bit-first. A character is in the set if its
491 bit is 1. A character too large to have a bit in the map is
96cc36cc
RS
492 automatically not in the set.
493
494 If the length byte has the 0x80 bit set, then that stuff
495 is followed by a range table:
496 2 bytes of flags for character sets (low 8 bits, high 8 bits)
497 See RANGE_TABLE_WORK_BITS below.
498 2 bytes, the number of pairs that follow
499 pairs, each 2 multibyte characters,
500 each multibyte character represented as 3 bytes. */
fa9a63c5
RM
501 charset,
502
25fe55af
RS
503 /* Same parameters as charset, but match any character that is
504 not one of those specified. */
fa9a63c5
RM
505 charset_not,
506
25fe55af
RS
507 /* Start remembering the text that is matched, for storing in a
508 register. Followed by one byte with the register number, in
509 the range 0 to one less than the pattern buffer's re_nsub
505bde11 510 field. */
fa9a63c5
RM
511 start_memory,
512
25fe55af
RS
513 /* Stop remembering the text that is matched and store it in a
514 memory register. Followed by one byte with the register
515 number, in the range 0 to one less than `re_nsub' in the
505bde11 516 pattern buffer. */
fa9a63c5
RM
517 stop_memory,
518
25fe55af
RS
519 /* Match a duplicate of something remembered. Followed by one
520 byte containing the register number. */
fa9a63c5
RM
521 duplicate,
522
25fe55af 523 /* Fail unless at beginning of line. */
fa9a63c5
RM
524 begline,
525
25fe55af 526 /* Fail unless at end of line. */
fa9a63c5
RM
527 endline,
528
25fe55af
RS
529 /* Succeeds if at beginning of buffer (if emacs) or at beginning
530 of string to be matched (if not). */
fa9a63c5
RM
531 begbuf,
532
25fe55af 533 /* Analogously, for end of buffer/string. */
fa9a63c5 534 endbuf,
5e69f11e 535
25fe55af 536 /* Followed by two byte relative address to which to jump. */
5e69f11e 537 jump,
fa9a63c5 538
25fe55af
RS
539 /* Followed by two-byte relative address of place to resume at
540 in case of failure. */
fa9a63c5 541 on_failure_jump,
5e69f11e 542
25fe55af
RS
543 /* Like on_failure_jump, but pushes a placeholder instead of the
544 current string position when executed. */
fa9a63c5 545 on_failure_keep_string_jump,
5e69f11e 546
505bde11
SM
547 /* Just like `on_failure_jump', except that it checks that we
548 don't get stuck in an infinite loop (matching an empty string
549 indefinitely). */
550 on_failure_jump_loop,
551
0683b6fa
SM
552 /* Just like `on_failure_jump_loop', except that it checks for
553 a different kind of loop (the kind that shows up with non-greedy
554 operators). This operation has to be immediately preceded
555 by a `no_op'. */
556 on_failure_jump_nastyloop,
557
505bde11
SM
558 /* A smart `on_failure_jump' used for greedy * and + operators.
559 It analyses the loop before which it is put and if the
560 loop does not require backtracking, it changes itself to
4e8a9132
SM
561 `on_failure_keep_string_jump' and short-circuits the loop,
562 else it just defaults to changing itself into `on_failure_jump'.
563 It assumes that it is pointing to just past a `jump'. */
505bde11 564 on_failure_jump_smart,
fa9a63c5 565
25fe55af 566 /* Followed by two-byte relative address and two-byte number n.
ed0767d8
SM
567 After matching N times, jump to the address upon failure.
568 Does not work if N starts at 0: use on_failure_jump_loop
569 instead. */
fa9a63c5
RM
570 succeed_n,
571
25fe55af
RS
572 /* Followed by two-byte relative address, and two-byte number n.
573 Jump to the address N times, then fail. */
fa9a63c5
RM
574 jump_n,
575
25fe55af
RS
576 /* Set the following two-byte relative address to the
577 subsequent two-byte number. The address *includes* the two
578 bytes of number. */
fa9a63c5
RM
579 set_number_at,
580
fa9a63c5
RM
581 wordbeg, /* Succeeds if at word beginning. */
582 wordend, /* Succeeds if at word end. */
583
584 wordbound, /* Succeeds if at a word boundary. */
1fb352e0 585 notwordbound, /* Succeeds if not at a word boundary. */
fa9a63c5
RM
586
587 /* Matches any character whose syntax is specified. Followed by
25fe55af 588 a byte which contains a syntax code, e.g., Sword. */
fa9a63c5
RM
589 syntaxspec,
590
591 /* Matches any character whose syntax is not that specified. */
1fb352e0
SM
592 notsyntaxspec
593
594#ifdef emacs
595 ,before_dot, /* Succeeds if before point. */
596 at_dot, /* Succeeds if at point. */
597 after_dot, /* Succeeds if after point. */
b18215fc
RS
598
599 /* Matches any character whose category-set contains the specified
25fe55af
RS
600 category. The operator is followed by a byte which contains a
601 category code (mnemonic ASCII character). */
b18215fc
RS
602 categoryspec,
603
604 /* Matches any character whose category-set does not contain the
605 specified category. The operator is followed by a byte which
606 contains the category code (mnemonic ASCII character). */
607 notcategoryspec
fa9a63c5
RM
608#endif /* emacs */
609} re_opcode_t;
610\f
611/* Common operations on the compiled pattern. */
612
613/* Store NUMBER in two contiguous bytes starting at DESTINATION. */
614
615#define STORE_NUMBER(destination, number) \
616 do { \
617 (destination)[0] = (number) & 0377; \
618 (destination)[1] = (number) >> 8; \
619 } while (0)
620
621/* Same as STORE_NUMBER, except increment DESTINATION to
622 the byte after where the number is stored. Therefore, DESTINATION
623 must be an lvalue. */
624
625#define STORE_NUMBER_AND_INCR(destination, number) \
626 do { \
627 STORE_NUMBER (destination, number); \
628 (destination) += 2; \
629 } while (0)
630
631/* Put into DESTINATION a number stored in two contiguous bytes starting
632 at SOURCE. */
633
634#define EXTRACT_NUMBER(destination, source) \
635 do { \
636 (destination) = *(source) & 0377; \
637 (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8; \
638 } while (0)
639
640#ifdef DEBUG
641static void
642extract_number (dest, source)
643 int *dest;
644 unsigned char *source;
645{
5e69f11e 646 int temp = SIGN_EXTEND_CHAR (*(source + 1));
fa9a63c5
RM
647 *dest = *source & 0377;
648 *dest += temp << 8;
649}
650
25fe55af 651#ifndef EXTRACT_MACROS /* To debug the macros. */
fa9a63c5
RM
652#undef EXTRACT_NUMBER
653#define EXTRACT_NUMBER(dest, src) extract_number (&dest, src)
654#endif /* not EXTRACT_MACROS */
655
656#endif /* DEBUG */
657
658/* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
659 SOURCE must be an lvalue. */
660
661#define EXTRACT_NUMBER_AND_INCR(destination, source) \
662 do { \
663 EXTRACT_NUMBER (destination, source); \
25fe55af 664 (source) += 2; \
fa9a63c5
RM
665 } while (0)
666
667#ifdef DEBUG
668static void
669extract_number_and_incr (destination, source)
670 int *destination;
671 unsigned char **source;
5e69f11e 672{
fa9a63c5
RM
673 extract_number (destination, *source);
674 *source += 2;
675}
676
677#ifndef EXTRACT_MACROS
678#undef EXTRACT_NUMBER_AND_INCR
679#define EXTRACT_NUMBER_AND_INCR(dest, src) \
680 extract_number_and_incr (&dest, &src)
681#endif /* not EXTRACT_MACROS */
682
683#endif /* DEBUG */
684\f
b18215fc
RS
685/* Store a multibyte character in three contiguous bytes starting
686 DESTINATION, and increment DESTINATION to the byte after where the
25fe55af 687 character is stored. Therefore, DESTINATION must be an lvalue. */
b18215fc
RS
688
689#define STORE_CHARACTER_AND_INCR(destination, character) \
690 do { \
691 (destination)[0] = (character) & 0377; \
692 (destination)[1] = ((character) >> 8) & 0377; \
693 (destination)[2] = (character) >> 16; \
694 (destination) += 3; \
695 } while (0)
696
697/* Put into DESTINATION a character stored in three contiguous bytes
25fe55af 698 starting at SOURCE. */
b18215fc
RS
699
700#define EXTRACT_CHARACTER(destination, source) \
701 do { \
702 (destination) = ((source)[0] \
703 | ((source)[1] << 8) \
704 | ((source)[2] << 16)); \
705 } while (0)
706
707
708/* Macros for charset. */
709
710/* Size of bitmap of charset P in bytes. P is a start of charset,
711 i.e. *P is (re_opcode_t) charset or (re_opcode_t) charset_not. */
712#define CHARSET_BITMAP_SIZE(p) ((p)[1] & 0x7F)
713
714/* Nonzero if charset P has range table. */
25fe55af 715#define CHARSET_RANGE_TABLE_EXISTS_P(p) ((p)[1] & 0x80)
b18215fc
RS
716
717/* Return the address of range table of charset P. But not the start
718 of table itself, but the before where the number of ranges is
96cc36cc
RS
719 stored. `2 +' means to skip re_opcode_t and size of bitmap,
720 and the 2 bytes of flags at the start of the range table. */
721#define CHARSET_RANGE_TABLE(p) (&(p)[4 + CHARSET_BITMAP_SIZE (p)])
722
723/* Extract the bit flags that start a range table. */
724#define CHARSET_RANGE_TABLE_BITS(p) \
725 ((p)[2 + CHARSET_BITMAP_SIZE (p)] \
726 + (p)[3 + CHARSET_BITMAP_SIZE (p)] * 0x100)
b18215fc
RS
727
728/* Test if C is listed in the bitmap of charset P. */
729#define CHARSET_LOOKUP_BITMAP(p, c) \
730 ((c) < CHARSET_BITMAP_SIZE (p) * BYTEWIDTH \
731 && (p)[2 + (c) / BYTEWIDTH] & (1 << ((c) % BYTEWIDTH)))
732
733/* Return the address of end of RANGE_TABLE. COUNT is number of
25fe55af
RS
734 ranges (which is a pair of (start, end)) in the RANGE_TABLE. `* 2'
735 is start of range and end of range. `* 3' is size of each start
b18215fc
RS
736 and end. */
737#define CHARSET_RANGE_TABLE_END(range_table, count) \
738 ((range_table) + (count) * 2 * 3)
739
25fe55af 740/* Test if C is in RANGE_TABLE. A flag NOT is negated if C is in.
b18215fc
RS
741 COUNT is number of ranges in RANGE_TABLE. */
742#define CHARSET_LOOKUP_RANGE_TABLE_RAW(not, c, range_table, count) \
743 do \
744 { \
745 int range_start, range_end; \
746 unsigned char *p; \
747 unsigned char *range_table_end \
748 = CHARSET_RANGE_TABLE_END ((range_table), (count)); \
749 \
750 for (p = (range_table); p < range_table_end; p += 2 * 3) \
751 { \
752 EXTRACT_CHARACTER (range_start, p); \
753 EXTRACT_CHARACTER (range_end, p + 3); \
754 \
755 if (range_start <= (c) && (c) <= range_end) \
756 { \
757 (not) = !(not); \
758 break; \
759 } \
760 } \
761 } \
762 while (0)
763
764/* Test if C is in range table of CHARSET. The flag NOT is negated if
765 C is listed in it. */
766#define CHARSET_LOOKUP_RANGE_TABLE(not, c, charset) \
767 do \
768 { \
769 /* Number of ranges in range table. */ \
770 int count; \
771 unsigned char *range_table = CHARSET_RANGE_TABLE (charset); \
772 \
773 EXTRACT_NUMBER_AND_INCR (count, range_table); \
774 CHARSET_LOOKUP_RANGE_TABLE_RAW ((not), (c), range_table, count); \
775 } \
776 while (0)
777\f
fa9a63c5
RM
778/* If DEBUG is defined, Regex prints many voluminous messages about what
779 it is doing (if the variable `debug' is nonzero). If linked with the
780 main program in `iregex.c', you can enter patterns and strings
781 interactively. And if linked with the main program in `main.c' and
25fe55af 782 the other test files, you can run the already-written tests. */
fa9a63c5
RM
783
784#ifdef DEBUG
785
786/* We use standard I/O for debugging. */
787#include <stdio.h>
788
789/* It is useful to test things that ``must'' be true when debugging. */
790#include <assert.h>
791
99633e97 792static int debug = -100000;
fa9a63c5
RM
793
794#define DEBUG_STATEMENT(e) e
99633e97
SM
795#define DEBUG_PRINT1(x) if (debug > 0) printf (x)
796#define DEBUG_PRINT2(x1, x2) if (debug > 0) printf (x1, x2)
797#define DEBUG_PRINT3(x1, x2, x3) if (debug > 0) printf (x1, x2, x3)
798#define DEBUG_PRINT4(x1, x2, x3, x4) if (debug > 0) printf (x1, x2, x3, x4)
25fe55af 799#define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \
99633e97 800 if (debug > 0) print_partial_compiled_pattern (s, e)
fa9a63c5 801#define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \
99633e97 802 if (debug > 0) print_double_string (w, s1, sz1, s2, sz2)
fa9a63c5
RM
803
804
805/* Print the fastmap in human-readable form. */
806
807void
808print_fastmap (fastmap)
809 char *fastmap;
810{
811 unsigned was_a_range = 0;
5e69f11e
RM
812 unsigned i = 0;
813
fa9a63c5
RM
814 while (i < (1 << BYTEWIDTH))
815 {
816 if (fastmap[i++])
817 {
818 was_a_range = 0;
25fe55af
RS
819 putchar (i - 1);
820 while (i < (1 << BYTEWIDTH) && fastmap[i])
821 {
822 was_a_range = 1;
823 i++;
824 }
fa9a63c5 825 if (was_a_range)
25fe55af
RS
826 {
827 printf ("-");
828 putchar (i - 1);
829 }
830 }
fa9a63c5 831 }
5e69f11e 832 putchar ('\n');
fa9a63c5
RM
833}
834
835
836/* Print a compiled pattern string in human-readable form, starting at
837 the START pointer into it and ending just before the pointer END. */
838
839void
840print_partial_compiled_pattern (start, end)
841 unsigned char *start;
842 unsigned char *end;
843{
844 int mcnt, mcnt2;
845 unsigned char *p = start;
846 unsigned char *pend = end;
847
848 if (start == NULL)
849 {
850 printf ("(null)\n");
851 return;
852 }
5e69f11e 853
fa9a63c5
RM
854 /* Loop over pattern commands. */
855 while (p < pend)
856 {
857 printf ("%d:\t", p - start);
858
859 switch ((re_opcode_t) *p++)
860 {
25fe55af
RS
861 case no_op:
862 printf ("/no_op");
863 break;
fa9a63c5 864
99633e97
SM
865 case succeed:
866 printf ("/succeed");
867 break;
868
fa9a63c5
RM
869 case exactn:
870 mcnt = *p++;
25fe55af
RS
871 printf ("/exactn/%d", mcnt);
872 do
fa9a63c5 873 {
25fe55af 874 putchar ('/');
fa9a63c5 875 putchar (*p++);
25fe55af
RS
876 }
877 while (--mcnt);
878 break;
fa9a63c5
RM
879
880 case start_memory:
505bde11 881 printf ("/start_memory/%d", *p++);
25fe55af 882 break;
fa9a63c5
RM
883
884 case stop_memory:
505bde11 885 printf ("/stop_memory/%d", *p++);
25fe55af 886 break;
fa9a63c5
RM
887
888 case duplicate:
889 printf ("/duplicate/%d", *p++);
890 break;
891
892 case anychar:
893 printf ("/anychar");
894 break;
895
896 case charset:
25fe55af
RS
897 case charset_not:
898 {
899 register int c, last = -100;
fa9a63c5 900 register int in_range = 0;
99633e97
SM
901 int length = CHARSET_BITMAP_SIZE (p - 1);
902 int has_range_table = CHARSET_RANGE_TABLE_EXISTS_P (p - 1);
fa9a63c5
RM
903
904 printf ("/charset [%s",
25fe55af 905 (re_opcode_t) *(p - 1) == charset_not ? "^" : "");
5e69f11e 906
25fe55af 907 assert (p + *p < pend);
fa9a63c5 908
25fe55af 909 for (c = 0; c < 256; c++)
96cc36cc 910 if (c / 8 < length
fa9a63c5
RM
911 && (p[1 + (c/8)] & (1 << (c % 8))))
912 {
913 /* Are we starting a range? */
914 if (last + 1 == c && ! in_range)
915 {
916 putchar ('-');
917 in_range = 1;
918 }
919 /* Have we broken a range? */
920 else if (last + 1 != c && in_range)
96cc36cc 921 {
fa9a63c5
RM
922 putchar (last);
923 in_range = 0;
924 }
5e69f11e 925
fa9a63c5
RM
926 if (! in_range)
927 putchar (c);
928
929 last = c;
25fe55af 930 }
fa9a63c5
RM
931
932 if (in_range)
933 putchar (last);
934
935 putchar (']');
936
99633e97 937 p += 1 + length;
96cc36cc 938
96cc36cc 939 if (has_range_table)
99633e97
SM
940 {
941 int count;
942 printf ("has-range-table");
943
944 /* ??? Should print the range table; for now, just skip it. */
945 p += 2; /* skip range table bits */
946 EXTRACT_NUMBER_AND_INCR (count, p);
947 p = CHARSET_RANGE_TABLE_END (p, count);
948 }
fa9a63c5
RM
949 }
950 break;
951
952 case begline:
953 printf ("/begline");
25fe55af 954 break;
fa9a63c5
RM
955
956 case endline:
25fe55af
RS
957 printf ("/endline");
958 break;
fa9a63c5
RM
959
960 case on_failure_jump:
25fe55af
RS
961 extract_number_and_incr (&mcnt, &p);
962 printf ("/on_failure_jump to %d", p + mcnt - start);
963 break;
fa9a63c5
RM
964
965 case on_failure_keep_string_jump:
25fe55af
RS
966 extract_number_and_incr (&mcnt, &p);
967 printf ("/on_failure_keep_string_jump to %d", p + mcnt - start);
968 break;
fa9a63c5 969
0683b6fa
SM
970 case on_failure_jump_nastyloop:
971 extract_number_and_incr (&mcnt, &p);
972 printf ("/on_failure_jump_nastyloop to %d", p + mcnt - start);
973 break;
974
505bde11 975 case on_failure_jump_loop:
fa9a63c5 976 extract_number_and_incr (&mcnt, &p);
505bde11 977 printf ("/on_failure_jump_loop to %d", p + mcnt - start);
5e69f11e
RM
978 break;
979
505bde11 980 case on_failure_jump_smart:
fa9a63c5 981 extract_number_and_incr (&mcnt, &p);
505bde11 982 printf ("/on_failure_jump_smart to %d", p + mcnt - start);
5e69f11e
RM
983 break;
984
25fe55af 985 case jump:
fa9a63c5 986 extract_number_and_incr (&mcnt, &p);
25fe55af 987 printf ("/jump to %d", p + mcnt - start);
fa9a63c5
RM
988 break;
989
25fe55af
RS
990 case succeed_n:
991 extract_number_and_incr (&mcnt, &p);
992 extract_number_and_incr (&mcnt2, &p);
99633e97 993 printf ("/succeed_n to %d, %d times", p - 2 + mcnt - start, mcnt2);
25fe55af 994 break;
5e69f11e 995
25fe55af
RS
996 case jump_n:
997 extract_number_and_incr (&mcnt, &p);
998 extract_number_and_incr (&mcnt2, &p);
99633e97 999 printf ("/jump_n to %d, %d times", p - 2 + mcnt - start, mcnt2);
25fe55af 1000 break;
5e69f11e 1001
25fe55af
RS
1002 case set_number_at:
1003 extract_number_and_incr (&mcnt, &p);
1004 extract_number_and_incr (&mcnt2, &p);
99633e97 1005 printf ("/set_number_at location %d to %d", p - 2 + mcnt - start, mcnt2);
25fe55af 1006 break;
5e69f11e 1007
25fe55af 1008 case wordbound:
fa9a63c5
RM
1009 printf ("/wordbound");
1010 break;
1011
1012 case notwordbound:
1013 printf ("/notwordbound");
25fe55af 1014 break;
fa9a63c5
RM
1015
1016 case wordbeg:
1017 printf ("/wordbeg");
1018 break;
5e69f11e 1019
fa9a63c5
RM
1020 case wordend:
1021 printf ("/wordend");
5e69f11e 1022
1fb352e0
SM
1023 case syntaxspec:
1024 printf ("/syntaxspec");
1025 mcnt = *p++;
1026 printf ("/%d", mcnt);
1027 break;
1028
1029 case notsyntaxspec:
1030 printf ("/notsyntaxspec");
1031 mcnt = *p++;
1032 printf ("/%d", mcnt);
1033 break;
1034
fa9a63c5
RM
1035#ifdef emacs
1036 case before_dot:
1037 printf ("/before_dot");
25fe55af 1038 break;
fa9a63c5
RM
1039
1040 case at_dot:
1041 printf ("/at_dot");
25fe55af 1042 break;
fa9a63c5
RM
1043
1044 case after_dot:
1045 printf ("/after_dot");
25fe55af 1046 break;
fa9a63c5 1047
1fb352e0
SM
1048 case categoryspec:
1049 printf ("/categoryspec");
fa9a63c5
RM
1050 mcnt = *p++;
1051 printf ("/%d", mcnt);
25fe55af 1052 break;
5e69f11e 1053
1fb352e0
SM
1054 case notcategoryspec:
1055 printf ("/notcategoryspec");
fa9a63c5
RM
1056 mcnt = *p++;
1057 printf ("/%d", mcnt);
1058 break;
1059#endif /* emacs */
1060
fa9a63c5
RM
1061 case begbuf:
1062 printf ("/begbuf");
25fe55af 1063 break;
fa9a63c5
RM
1064
1065 case endbuf:
1066 printf ("/endbuf");
25fe55af 1067 break;
fa9a63c5 1068
25fe55af
RS
1069 default:
1070 printf ("?%d", *(p-1));
fa9a63c5
RM
1071 }
1072
1073 putchar ('\n');
1074 }
1075
1076 printf ("%d:\tend of pattern.\n", p - start);
1077}
1078
1079
1080void
1081print_compiled_pattern (bufp)
1082 struct re_pattern_buffer *bufp;
1083{
1084 unsigned char *buffer = bufp->buffer;
1085
1086 print_partial_compiled_pattern (buffer, buffer + bufp->used);
505bde11 1087 printf ("%ld bytes used/%ld bytes allocated.\n", bufp->used, bufp->allocated);
fa9a63c5
RM
1088
1089 if (bufp->fastmap_accurate && bufp->fastmap)
1090 {
1091 printf ("fastmap: ");
1092 print_fastmap (bufp->fastmap);
1093 }
1094
1095 printf ("re_nsub: %d\t", bufp->re_nsub);
1096 printf ("regs_alloc: %d\t", bufp->regs_allocated);
1097 printf ("can_be_null: %d\t", bufp->can_be_null);
1098 printf ("newline_anchor: %d\n", bufp->newline_anchor);
1099 printf ("no_sub: %d\t", bufp->no_sub);
1100 printf ("not_bol: %d\t", bufp->not_bol);
1101 printf ("not_eol: %d\t", bufp->not_eol);
1102 printf ("syntax: %d\n", bufp->syntax);
505bde11 1103 fflush (stdout);
fa9a63c5
RM
1104 /* Perhaps we should print the translate table? */
1105}
1106
1107
1108void
1109print_double_string (where, string1, size1, string2, size2)
66f0296e
SM
1110 re_char *where;
1111 re_char *string1;
1112 re_char *string2;
fa9a63c5
RM
1113 int size1;
1114 int size2;
1115{
1116 unsigned this_char;
5e69f11e 1117
fa9a63c5
RM
1118 if (where == NULL)
1119 printf ("(null)");
1120 else
1121 {
1122 if (FIRST_STRING_P (where))
25fe55af
RS
1123 {
1124 for (this_char = where - string1; this_char < size1; this_char++)
1125 putchar (string1[this_char]);
fa9a63c5 1126
25fe55af
RS
1127 where = string2;
1128 }
fa9a63c5
RM
1129
1130 for (this_char = where - string2; this_char < size2; this_char++)
25fe55af 1131 putchar (string2[this_char]);
fa9a63c5
RM
1132 }
1133}
1134
1135#else /* not DEBUG */
1136
1137#undef assert
1138#define assert(e)
1139
1140#define DEBUG_STATEMENT(e)
1141#define DEBUG_PRINT1(x)
1142#define DEBUG_PRINT2(x1, x2)
1143#define DEBUG_PRINT3(x1, x2, x3)
1144#define DEBUG_PRINT4(x1, x2, x3, x4)
1145#define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
1146#define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
1147
1148#endif /* not DEBUG */
1149\f
1150/* Set by `re_set_syntax' to the current regexp syntax to recognize. Can
1151 also be assigned to arbitrarily: each pattern buffer stores its own
1152 syntax, so it can be changed between regex compilations. */
1153/* This has no initializer because initialized variables in Emacs
1154 become read-only after dumping. */
1155reg_syntax_t re_syntax_options;
1156
1157
1158/* Specify the precise syntax of regexps for compilation. This provides
1159 for compatibility for various utilities which historically have
1160 different, incompatible syntaxes.
1161
1162 The argument SYNTAX is a bit mask comprised of the various bits
25fe55af 1163 defined in regex.h. We return the old syntax. */
fa9a63c5
RM
1164
1165reg_syntax_t
1166re_set_syntax (syntax)
1167 reg_syntax_t syntax;
1168{
1169 reg_syntax_t ret = re_syntax_options;
5e69f11e 1170
fa9a63c5
RM
1171 re_syntax_options = syntax;
1172 return ret;
1173}
1174\f
1175/* This table gives an error message for each of the error codes listed
25fe55af 1176 in regex.h. Obviously the order here has to be same as there.
fa9a63c5 1177 POSIX doesn't require that we do anything for REG_NOERROR,
25fe55af 1178 but why not be nice? */
fa9a63c5
RM
1179
1180static const char *re_error_msgid[] =
5e69f11e
RM
1181 {
1182 gettext_noop ("Success"), /* REG_NOERROR */
1183 gettext_noop ("No match"), /* REG_NOMATCH */
1184 gettext_noop ("Invalid regular expression"), /* REG_BADPAT */
1185 gettext_noop ("Invalid collation character"), /* REG_ECOLLATE */
1186 gettext_noop ("Invalid character class name"), /* REG_ECTYPE */
1187 gettext_noop ("Trailing backslash"), /* REG_EESCAPE */
1188 gettext_noop ("Invalid back reference"), /* REG_ESUBREG */
1189 gettext_noop ("Unmatched [ or [^"), /* REG_EBRACK */
1190 gettext_noop ("Unmatched ( or \\("), /* REG_EPAREN */
1191 gettext_noop ("Unmatched \\{"), /* REG_EBRACE */
1192 gettext_noop ("Invalid content of \\{\\}"), /* REG_BADBR */
1193 gettext_noop ("Invalid range end"), /* REG_ERANGE */
1194 gettext_noop ("Memory exhausted"), /* REG_ESPACE */
1195 gettext_noop ("Invalid preceding regular expression"), /* REG_BADRPT */
1196 gettext_noop ("Premature end of regular expression"), /* REG_EEND */
1197 gettext_noop ("Regular expression too big"), /* REG_ESIZE */
1198 gettext_noop ("Unmatched ) or \\)"), /* REG_ERPAREN */
fa9a63c5
RM
1199 };
1200\f
25fe55af 1201/* Avoiding alloca during matching, to placate r_alloc. */
fa9a63c5
RM
1202
1203/* Define MATCH_MAY_ALLOCATE unless we need to make sure that the
1204 searching and matching functions should not call alloca. On some
1205 systems, alloca is implemented in terms of malloc, and if we're
1206 using the relocating allocator routines, then malloc could cause a
1207 relocation, which might (if the strings being searched are in the
1208 ralloc heap) shift the data out from underneath the regexp
1209 routines.
1210
5e69f11e 1211 Here's another reason to avoid allocation: Emacs
fa9a63c5
RM
1212 processes input from X in a signal handler; processing X input may
1213 call malloc; if input arrives while a matching routine is calling
1214 malloc, then we're scrod. But Emacs can't just block input while
1215 calling matching routines; then we don't notice interrupts when
1216 they come in. So, Emacs blocks input around all regexp calls
1217 except the matching calls, which it leaves unprotected, in the
1218 faith that they will not malloc. */
1219
1220/* Normally, this is fine. */
1221#define MATCH_MAY_ALLOCATE
1222
1223/* When using GNU C, we are not REALLY using the C alloca, no matter
1224 what config.h may say. So don't take precautions for it. */
1225#ifdef __GNUC__
1226#undef C_ALLOCA
1227#endif
1228
1229/* The match routines may not allocate if (1) they would do it with malloc
1230 and (2) it's not safe for them to use malloc.
1231 Note that if REL_ALLOC is defined, matching would not use malloc for the
1232 failure stack, but we would still use it for the register vectors;
25fe55af 1233 so REL_ALLOC should not affect this. */
fa9a63c5
RM
1234#if (defined (C_ALLOCA) || defined (REGEX_MALLOC)) && defined (emacs)
1235#undef MATCH_MAY_ALLOCATE
1236#endif
1237
1238\f
1239/* Failure stack declarations and macros; both re_compile_fastmap and
1240 re_match_2 use a failure stack. These have to be macros because of
1241 REGEX_ALLOCATE_STACK. */
5e69f11e 1242
fa9a63c5 1243
320a2a73 1244/* Approximate number of failure points for which to initially allocate space
fa9a63c5
RM
1245 when matching. If this number is exceeded, we allocate more
1246 space, so it is not a hard limit. */
1247#ifndef INIT_FAILURE_ALLOC
320a2a73 1248#define INIT_FAILURE_ALLOC 20
fa9a63c5
RM
1249#endif
1250
1251/* Roughly the maximum number of failure points on the stack. Would be
320a2a73 1252 exactly that if always used TYPICAL_FAILURE_SIZE items each time we failed.
fa9a63c5 1253 This is a variable only so users of regex can assign to it; we never
25fe55af 1254 change it ourselves. */
fa9a63c5 1255#if defined (MATCH_MAY_ALLOCATE)
320a2a73
KH
1256/* Note that 4400 is enough to cause a crash on Alpha OSF/1,
1257 whose default stack limit is 2mb. In order for a larger
1258 value to work reliably, you have to try to make it accord
1259 with the process stack limit. */
1260int re_max_failures = 40000;
fa9a63c5 1261#else
320a2a73 1262int re_max_failures = 4000;
fa9a63c5
RM
1263#endif
1264
1265union fail_stack_elt
1266{
66f0296e 1267 const unsigned char *pointer;
505bde11 1268 unsigned int integer;
fa9a63c5
RM
1269};
1270
1271typedef union fail_stack_elt fail_stack_elt_t;
1272
1273typedef struct
1274{
1275 fail_stack_elt_t *stack;
1276 unsigned size;
505bde11
SM
1277 unsigned avail; /* Offset of next open position. */
1278 unsigned frame; /* Offset of the cur constructed frame. */
fa9a63c5
RM
1279} fail_stack_type;
1280
505bde11
SM
1281#define PATTERN_STACK_EMPTY() (fail_stack.avail == 0)
1282#define FAIL_STACK_EMPTY() (fail_stack.frame == 0)
fa9a63c5
RM
1283#define FAIL_STACK_FULL() (fail_stack.avail == fail_stack.size)
1284
1285
1286/* Define macros to initialize and free the failure stack.
1287 Do `return -2' if the alloc fails. */
1288
1289#ifdef MATCH_MAY_ALLOCATE
1290#define INIT_FAIL_STACK() \
1291 do { \
1292 fail_stack.stack = (fail_stack_elt_t *) \
320a2a73
KH
1293 REGEX_ALLOCATE_STACK (INIT_FAILURE_ALLOC * TYPICAL_FAILURE_SIZE \
1294 * sizeof (fail_stack_elt_t)); \
fa9a63c5
RM
1295 \
1296 if (fail_stack.stack == NULL) \
1297 return -2; \
1298 \
1299 fail_stack.size = INIT_FAILURE_ALLOC; \
1300 fail_stack.avail = 0; \
505bde11 1301 fail_stack.frame = 0; \
fa9a63c5
RM
1302 } while (0)
1303
1304#define RESET_FAIL_STACK() REGEX_FREE_STACK (fail_stack.stack)
1305#else
1306#define INIT_FAIL_STACK() \
1307 do { \
1308 fail_stack.avail = 0; \
505bde11 1309 fail_stack.frame = 0; \
fa9a63c5
RM
1310 } while (0)
1311
ed0767d8 1312#define RESET_FAIL_STACK() ((void)0)
fa9a63c5
RM
1313#endif
1314
1315
320a2a73
KH
1316/* Double the size of FAIL_STACK, up to a limit
1317 which allows approximately `re_max_failures' items.
fa9a63c5
RM
1318
1319 Return 1 if succeeds, and 0 if either ran out of memory
5e69f11e
RM
1320 allocating space for it or it was already too large.
1321
25fe55af 1322 REGEX_REALLOCATE_STACK requires `destination' be declared. */
fa9a63c5 1323
320a2a73
KH
1324/* Factor to increase the failure stack size by
1325 when we increase it.
1326 This used to be 2, but 2 was too wasteful
1327 because the old discarded stacks added up to as much space
1328 were as ultimate, maximum-size stack. */
1329#define FAIL_STACK_GROWTH_FACTOR 4
1330
1331#define GROW_FAIL_STACK(fail_stack) \
eead07d6
KH
1332 (((fail_stack).size * sizeof (fail_stack_elt_t) \
1333 >= re_max_failures * TYPICAL_FAILURE_SIZE) \
fa9a63c5 1334 ? 0 \
320a2a73
KH
1335 : ((fail_stack).stack \
1336 = (fail_stack_elt_t *) \
25fe55af
RS
1337 REGEX_REALLOCATE_STACK ((fail_stack).stack, \
1338 (fail_stack).size * sizeof (fail_stack_elt_t), \
320a2a73
KH
1339 MIN (re_max_failures * TYPICAL_FAILURE_SIZE, \
1340 ((fail_stack).size * sizeof (fail_stack_elt_t) \
1341 * FAIL_STACK_GROWTH_FACTOR))), \
fa9a63c5
RM
1342 \
1343 (fail_stack).stack == NULL \
1344 ? 0 \
6453db45
KH
1345 : ((fail_stack).size \
1346 = (MIN (re_max_failures * TYPICAL_FAILURE_SIZE, \
1347 ((fail_stack).size * sizeof (fail_stack_elt_t) \
1348 * FAIL_STACK_GROWTH_FACTOR)) \
1349 / sizeof (fail_stack_elt_t)), \
25fe55af 1350 1)))
fa9a63c5
RM
1351
1352
5e69f11e 1353/* Push pointer POINTER on FAIL_STACK.
fa9a63c5
RM
1354 Return 1 if was able to do so and 0 if ran out of memory allocating
1355 space to do so. */
1356#define PUSH_PATTERN_OP(POINTER, FAIL_STACK) \
1357 ((FAIL_STACK_FULL () \
320a2a73 1358 && !GROW_FAIL_STACK (FAIL_STACK)) \
fa9a63c5
RM
1359 ? 0 \
1360 : ((FAIL_STACK).stack[(FAIL_STACK).avail++].pointer = POINTER, \
1361 1))
505bde11 1362#define POP_PATTERN_OP() POP_FAILURE_POINTER ()
fa9a63c5
RM
1363
1364/* Push a pointer value onto the failure stack.
1365 Assumes the variable `fail_stack'. Probably should only
25fe55af 1366 be called from within `PUSH_FAILURE_POINT'. */
fa9a63c5
RM
1367#define PUSH_FAILURE_POINTER(item) \
1368 fail_stack.stack[fail_stack.avail++].pointer = (unsigned char *) (item)
1369
1370/* This pushes an integer-valued item onto the failure stack.
1371 Assumes the variable `fail_stack'. Probably should only
25fe55af 1372 be called from within `PUSH_FAILURE_POINT'. */
fa9a63c5
RM
1373#define PUSH_FAILURE_INT(item) \
1374 fail_stack.stack[fail_stack.avail++].integer = (item)
1375
1376/* Push a fail_stack_elt_t value onto the failure stack.
1377 Assumes the variable `fail_stack'. Probably should only
25fe55af 1378 be called from within `PUSH_FAILURE_POINT'. */
fa9a63c5
RM
1379#define PUSH_FAILURE_ELT(item) \
1380 fail_stack.stack[fail_stack.avail++] = (item)
1381
1382/* These three POP... operations complement the three PUSH... operations.
1383 All assume that `fail_stack' is nonempty. */
1384#define POP_FAILURE_POINTER() fail_stack.stack[--fail_stack.avail].pointer
1385#define POP_FAILURE_INT() fail_stack.stack[--fail_stack.avail].integer
1386#define POP_FAILURE_ELT() fail_stack.stack[--fail_stack.avail]
1387
505bde11
SM
1388/* Individual items aside from the registers. */
1389#define NUM_NONREG_ITEMS 3
1390
1391/* Used to examine the stack (to detect infinite loops). */
1392#define FAILURE_PAT(h) fail_stack.stack[(h) - 1].pointer
66f0296e 1393#define FAILURE_STR(h) (fail_stack.stack[(h) - 2].pointer)
505bde11
SM
1394#define NEXT_FAILURE_HANDLE(h) fail_stack.stack[(h) - 3].integer
1395#define TOP_FAILURE_HANDLE() fail_stack.frame
fa9a63c5
RM
1396
1397
505bde11
SM
1398#define ENSURE_FAIL_STACK(space) \
1399while (REMAINING_AVAIL_SLOTS <= space) { \
1400 if (!GROW_FAIL_STACK (fail_stack)) \
1401 return -2; \
1402 DEBUG_PRINT2 ("\n Doubled stack; size now: %d\n", (fail_stack).size);\
1403 DEBUG_PRINT2 (" slots available: %d\n", REMAINING_AVAIL_SLOTS);\
1404}
1405
1406/* Push register NUM onto the stack. */
1407#define PUSH_FAILURE_REG(num) \
1408do { \
1409 char *destination; \
1410 ENSURE_FAIL_STACK(3); \
1411 DEBUG_PRINT4 (" Push reg %d (spanning %p -> %p)\n", \
1412 num, regstart[num], regend[num]); \
1413 PUSH_FAILURE_POINTER (regstart[num]); \
1414 PUSH_FAILURE_POINTER (regend[num]); \
1415 PUSH_FAILURE_INT (num); \
1416} while (0)
1417
1418/* Pop a saved register off the stack. */
1419#define POP_FAILURE_REG() \
1420do { \
1421 int reg = POP_FAILURE_INT (); \
1422 regend[reg] = POP_FAILURE_POINTER (); \
1423 regstart[reg] = POP_FAILURE_POINTER (); \
1424 DEBUG_PRINT4 (" Pop reg %d (spanning %p -> %p)\n", \
1425 reg, regstart[reg], regend[reg]); \
1426} while (0)
1427
1428/* Check that we are not stuck in an infinite loop. */
1429#define CHECK_INFINITE_LOOP(pat_cur, string_place) \
1430do { \
1431 int failure = TOP_FAILURE_HANDLE(); \
1432 /* Check for infinite matching loops */ \
1433 while (failure > 0 && \
1434 (FAILURE_STR (failure) == string_place \
1435 || FAILURE_STR (failure) == NULL)) \
1436 { \
1437 assert (FAILURE_PAT (failure) >= bufp->buffer \
66f0296e 1438 && FAILURE_PAT (failure) <= bufp->buffer + bufp->used); \
505bde11
SM
1439 if (FAILURE_PAT (failure) == pat_cur) \
1440 goto fail; \
66f0296e 1441 DEBUG_PRINT2 (" Other pattern: %p\n", FAILURE_PAT (failure)); \
505bde11
SM
1442 failure = NEXT_FAILURE_HANDLE(failure); \
1443 } \
1444 DEBUG_PRINT2 (" Other string: %p\n", FAILURE_STR (failure)); \
1445} while (0)
1446
fa9a63c5 1447/* Push the information about the state we will need
5e69f11e
RM
1448 if we ever fail back to it.
1449
505bde11 1450 Requires variables fail_stack, regstart, regend and
320a2a73 1451 num_regs be declared. GROW_FAIL_STACK requires `destination' be
fa9a63c5 1452 declared.
5e69f11e 1453
fa9a63c5
RM
1454 Does `return FAILURE_CODE' if runs out of memory. */
1455
505bde11
SM
1456#define PUSH_FAILURE_POINT(pattern, string_place) \
1457do { \
1458 char *destination; \
1459 /* Must be int, so when we don't save any registers, the arithmetic \
1460 of 0 + -1 isn't done as unsigned. */ \
1461 \
1462 DEBUG_STATEMENT (failure_id++); \
1463 DEBUG_STATEMENT (nfailure_points_pushed++); \
1464 DEBUG_PRINT2 ("\nPUSH_FAILURE_POINT #%u:\n", failure_id); \
1465 DEBUG_PRINT2 (" Before push, next avail: %d\n", (fail_stack).avail); \
1466 DEBUG_PRINT2 (" size: %d\n", (fail_stack).size);\
1467 \
1468 ENSURE_FAIL_STACK (NUM_NONREG_ITEMS); \
1469 \
1470 DEBUG_PRINT1 ("\n"); \
1471 \
1472 DEBUG_PRINT2 (" Push frame index: %d\n", fail_stack.frame); \
1473 PUSH_FAILURE_INT (fail_stack.frame); \
1474 \
1475 DEBUG_PRINT2 (" Push string %p: `", string_place); \
1476 DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, size2);\
1477 DEBUG_PRINT1 ("'\n"); \
1478 PUSH_FAILURE_POINTER (string_place); \
1479 \
1480 DEBUG_PRINT2 (" Push pattern %p: ", pattern); \
1481 DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern, pend); \
1482 PUSH_FAILURE_POINTER (pattern); \
1483 \
1484 /* Close the frame by moving the frame pointer past it. */ \
1485 fail_stack.frame = fail_stack.avail; \
1486} while (0)
fa9a63c5 1487
320a2a73
KH
1488/* Estimate the size of data pushed by a typical failure stack entry.
1489 An estimate is all we need, because all we use this for
1490 is to choose a limit for how big to make the failure stack. */
1491
1492#define TYPICAL_FAILURE_SIZE 20
fa9a63c5 1493
fa9a63c5
RM
1494/* How many items can still be added to the stack without overflowing it. */
1495#define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
1496
1497
1498/* Pops what PUSH_FAIL_STACK pushes.
1499
1500 We restore into the parameters, all of which should be lvalues:
1501 STR -- the saved data position.
1502 PAT -- the saved pattern position.
fa9a63c5 1503 REGSTART, REGEND -- arrays of string positions.
5e69f11e 1504
fa9a63c5 1505 Also assumes the variables `fail_stack' and (if debugging), `bufp',
25fe55af 1506 `pend', `string1', `size1', `string2', and `size2'. */
fa9a63c5 1507
505bde11
SM
1508#define POP_FAILURE_POINT(str, pat) \
1509do { \
fa9a63c5
RM
1510 assert (!FAIL_STACK_EMPTY ()); \
1511 \
1512 /* Remove failure points and point to how many regs pushed. */ \
1513 DEBUG_PRINT1 ("POP_FAILURE_POINT:\n"); \
1514 DEBUG_PRINT2 (" Before pop, next avail: %d\n", fail_stack.avail); \
25fe55af 1515 DEBUG_PRINT2 (" size: %d\n", fail_stack.size); \
fa9a63c5 1516 \
505bde11
SM
1517 /* Pop the saved registers. */ \
1518 while (fail_stack.frame < fail_stack.avail) \
1519 POP_FAILURE_REG (); \
fa9a63c5 1520 \
505bde11
SM
1521 pat = (unsigned char *) POP_FAILURE_POINTER (); \
1522 DEBUG_PRINT2 (" Popping pattern %p: ", pat); \
1523 DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend); \
fa9a63c5
RM
1524 \
1525 /* If the saved string location is NULL, it came from an \
1526 on_failure_keep_string_jump opcode, and we want to throw away the \
1527 saved NULL, thus retaining our current position in the string. */ \
66f0296e 1528 str = (re_char *) POP_FAILURE_POINTER (); \
505bde11 1529 DEBUG_PRINT2 (" Popping string %p: `", str); \
fa9a63c5
RM
1530 DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2); \
1531 DEBUG_PRINT1 ("'\n"); \
1532 \
505bde11
SM
1533 fail_stack.frame = POP_FAILURE_INT (); \
1534 DEBUG_PRINT2 (" Popping frame index: %d\n", fail_stack.frame); \
fa9a63c5 1535 \
505bde11
SM
1536 assert (fail_stack.avail >= 0); \
1537 assert (fail_stack.frame <= fail_stack.avail); \
fa9a63c5 1538 \
fa9a63c5 1539 DEBUG_STATEMENT (nfailure_points_popped++); \
505bde11 1540} while (0) /* POP_FAILURE_POINT */
fa9a63c5
RM
1541
1542
1543\f
fa9a63c5 1544/* Registers are set to a sentinel when they haven't yet matched. */
505bde11 1545#define REG_UNSET_VALUE NULL
fa9a63c5
RM
1546#define REG_UNSET(e) ((e) == REG_UNSET_VALUE)
1547\f
1548/* Subroutine declarations and macros for regex_compile. */
1549
99633e97
SM
1550static void store_op1 _RE_ARGS((re_opcode_t op, unsigned char *loc, int arg));
1551static void store_op2 _RE_ARGS((re_opcode_t op, unsigned char *loc,
1552 int arg1, int arg2));
1553static void insert_op1 _RE_ARGS((re_opcode_t op, unsigned char *loc,
1554 int arg, unsigned char *end));
1555static void insert_op2 _RE_ARGS((re_opcode_t op, unsigned char *loc,
1556 int arg1, int arg2, unsigned char *end));
1557static boolean at_begline_loc_p _RE_ARGS((const unsigned char *pattern,
1558 const unsigned char *p,
1559 reg_syntax_t syntax));
1560static boolean at_endline_loc_p _RE_ARGS((const unsigned char *p,
1561 const unsigned char *pend,
1562 reg_syntax_t syntax));
4e8a9132 1563static unsigned char *skip_one_char _RE_ARGS((unsigned char *p));
f6a3f532
SM
1564static int analyse_first _RE_ARGS((unsigned char *p, unsigned char *pend,
1565 char *fastmap, const int multibyte));
fa9a63c5 1566
5e69f11e 1567/* Fetch the next character in the uncompiled pattern---translating it
fa9a63c5
RM
1568 if necessary. Also cast from a signed character in the constant
1569 string passed to us by the user to an unsigned char that we can use
1570 as an array index (in, e.g., `translate'). */
1571#define PATFETCH(c) \
99633e97
SM
1572 do { \
1573 PATFETCH_RAW (c); \
2d1675e4 1574 c = TRANSLATE (c); \
fa9a63c5
RM
1575 } while (0)
1576
1577/* Fetch the next character in the uncompiled pattern, with no
25fe55af 1578 translation. */
fa9a63c5 1579#define PATFETCH_RAW(c) \
2d1675e4
SM
1580 do { \
1581 int len; \
1582 if (p == pend) return REG_EEND; \
1583 c = RE_STRING_CHAR_AND_LENGTH (p, pend - p, len); \
1584 p += len; \
fa9a63c5
RM
1585 } while (0)
1586
fa9a63c5
RM
1587
1588/* If `translate' is non-null, return translate[D], else just D. We
1589 cast the subscript to translate because some data is declared as
1590 `char *', to avoid warnings when a string constant is passed. But
1591 when we use a character as a subscript we must make it unsigned. */
6676cb1c
RS
1592#ifndef TRANSLATE
1593#define TRANSLATE(d) \
66f0296e 1594 (RE_TRANSLATE_P (translate) ? RE_TRANSLATE (translate, (d)) : (d))
6676cb1c 1595#endif
fa9a63c5
RM
1596
1597
1598/* Macros for outputting the compiled pattern into `buffer'. */
1599
1600/* If the buffer isn't allocated when it comes in, use this. */
1601#define INIT_BUF_SIZE 32
1602
25fe55af 1603/* Make sure we have at least N more bytes of space in buffer. */
fa9a63c5
RM
1604#define GET_BUFFER_SPACE(n) \
1605 while (b - bufp->buffer + (n) > bufp->allocated) \
1606 EXTEND_BUFFER ()
1607
1608/* Make sure we have one more byte of buffer space and then add C to it. */
1609#define BUF_PUSH(c) \
1610 do { \
1611 GET_BUFFER_SPACE (1); \
1612 *b++ = (unsigned char) (c); \
1613 } while (0)
1614
1615
1616/* Ensure we have two more bytes of buffer space and then append C1 and C2. */
1617#define BUF_PUSH_2(c1, c2) \
1618 do { \
1619 GET_BUFFER_SPACE (2); \
1620 *b++ = (unsigned char) (c1); \
1621 *b++ = (unsigned char) (c2); \
1622 } while (0)
1623
1624
25fe55af 1625/* As with BUF_PUSH_2, except for three bytes. */
fa9a63c5
RM
1626#define BUF_PUSH_3(c1, c2, c3) \
1627 do { \
1628 GET_BUFFER_SPACE (3); \
1629 *b++ = (unsigned char) (c1); \
1630 *b++ = (unsigned char) (c2); \
1631 *b++ = (unsigned char) (c3); \
1632 } while (0)
1633
1634
1635/* Store a jump with opcode OP at LOC to location TO. We store a
25fe55af 1636 relative address offset by the three bytes the jump itself occupies. */
fa9a63c5
RM
1637#define STORE_JUMP(op, loc, to) \
1638 store_op1 (op, loc, (to) - (loc) - 3)
1639
1640/* Likewise, for a two-argument jump. */
1641#define STORE_JUMP2(op, loc, to, arg) \
1642 store_op2 (op, loc, (to) - (loc) - 3, arg)
1643
25fe55af 1644/* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */
fa9a63c5
RM
1645#define INSERT_JUMP(op, loc, to) \
1646 insert_op1 (op, loc, (to) - (loc) - 3, b)
1647
1648/* Like `STORE_JUMP2', but for inserting. Assume `b' is the buffer end. */
1649#define INSERT_JUMP2(op, loc, to, arg) \
1650 insert_op2 (op, loc, (to) - (loc) - 3, arg, b)
1651
1652
1653/* This is not an arbitrary limit: the arguments which represent offsets
25fe55af 1654 into the pattern are two bytes long. So if 2^16 bytes turns out to
fa9a63c5
RM
1655 be too small, many things would have to change. */
1656#define MAX_BUF_SIZE (1L << 16)
1657
1658
1659/* Extend the buffer by twice its current size via realloc and
1660 reset the pointers that pointed into the old block to point to the
1661 correct places in the new one. If extending the buffer results in it
25fe55af 1662 being larger than MAX_BUF_SIZE, then flag memory exhausted. */
fa9a63c5 1663#define EXTEND_BUFFER() \
25fe55af 1664 do { \
fa9a63c5 1665 unsigned char *old_buffer = bufp->buffer; \
25fe55af 1666 if (bufp->allocated == MAX_BUF_SIZE) \
fa9a63c5
RM
1667 return REG_ESIZE; \
1668 bufp->allocated <<= 1; \
1669 if (bufp->allocated > MAX_BUF_SIZE) \
25fe55af 1670 bufp->allocated = MAX_BUF_SIZE; \
fa9a63c5
RM
1671 bufp->buffer = (unsigned char *) realloc (bufp->buffer, bufp->allocated);\
1672 if (bufp->buffer == NULL) \
1673 return REG_ESPACE; \
1674 /* If the buffer moved, move all the pointers into it. */ \
1675 if (old_buffer != bufp->buffer) \
1676 { \
25fe55af
RS
1677 b = (b - old_buffer) + bufp->buffer; \
1678 begalt = (begalt - old_buffer) + bufp->buffer; \
1679 if (fixup_alt_jump) \
1680 fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer;\
1681 if (laststart) \
1682 laststart = (laststart - old_buffer) + bufp->buffer; \
1683 if (pending_exact) \
1684 pending_exact = (pending_exact - old_buffer) + bufp->buffer; \
fa9a63c5
RM
1685 } \
1686 } while (0)
1687
1688
1689/* Since we have one byte reserved for the register number argument to
1690 {start,stop}_memory, the maximum number of groups we can report
1691 things about is what fits in that byte. */
1692#define MAX_REGNUM 255
1693
1694/* But patterns can have more than `MAX_REGNUM' registers. We just
1695 ignore the excess. */
1696typedef unsigned regnum_t;
1697
1698
1699/* Macros for the compile stack. */
1700
1701/* Since offsets can go either forwards or backwards, this type needs to
25fe55af 1702 be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */
fa9a63c5
RM
1703typedef int pattern_offset_t;
1704
1705typedef struct
1706{
1707 pattern_offset_t begalt_offset;
1708 pattern_offset_t fixup_alt_jump;
5e69f11e 1709 pattern_offset_t laststart_offset;
fa9a63c5
RM
1710 regnum_t regnum;
1711} compile_stack_elt_t;
1712
1713
1714typedef struct
1715{
1716 compile_stack_elt_t *stack;
1717 unsigned size;
1718 unsigned avail; /* Offset of next open position. */
1719} compile_stack_type;
1720
1721
1722#define INIT_COMPILE_STACK_SIZE 32
1723
1724#define COMPILE_STACK_EMPTY (compile_stack.avail == 0)
1725#define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size)
1726
25fe55af 1727/* The next available element. */
fa9a63c5
RM
1728#define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
1729
1730
b18215fc
RS
1731/* Structure to manage work area for range table. */
1732struct range_table_work_area
1733{
1734 int *table; /* actual work area. */
1735 int allocated; /* allocated size for work area in bytes. */
25fe55af 1736 int used; /* actually used size in words. */
96cc36cc 1737 int bits; /* flag to record character classes */
b18215fc
RS
1738};
1739
1740/* Make sure that WORK_AREA can hold more N multibyte characters. */
1741#define EXTEND_RANGE_TABLE_WORK_AREA(work_area, n) \
1742 do { \
1743 if (((work_area).used + (n)) * sizeof (int) > (work_area).allocated) \
1744 { \
1745 (work_area).allocated += 16 * sizeof (int); \
1746 if ((work_area).table) \
1747 (work_area).table \
1748 = (int *) realloc ((work_area).table, (work_area).allocated); \
1749 else \
1750 (work_area).table \
1751 = (int *) malloc ((work_area).allocated); \
1752 if ((work_area).table == 0) \
1753 FREE_STACK_RETURN (REG_ESPACE); \
1754 } \
1755 } while (0)
1756
96cc36cc
RS
1757#define SET_RANGE_TABLE_WORK_AREA_BIT(work_area, bit) \
1758 (work_area).bits |= (bit)
1759
1760/* These bits represent the various character classes such as [:alnum:]
1761 in a charset's range table. */
1762#define BIT_ALNUM 0x1
1763#define BIT_ALPHA 0x2
1764#define BIT_WORD 0x4
f71b19b6
DL
1765#define BIT_ASCII 0x8
1766#define BIT_NONASCII 0x10
96cc36cc
RS
1767#define BIT_GRAPH 0x20
1768#define BIT_LOWER 0x40
1769#define BIT_PRINT 0x80
1770#define BIT_PUNCT 0x100
1771#define BIT_SPACE 0x200
1772#define BIT_UPPER 0x400
f71b19b6
DL
1773#define BIT_UNIBYTE 0x800
1774#define BIT_MULTIBYTE 0x1000
96cc36cc 1775
b18215fc
RS
1776/* Set a range (RANGE_START, RANGE_END) to WORK_AREA. */
1777#define SET_RANGE_TABLE_WORK_AREA(work_area, range_start, range_end) \
1778 do { \
1779 EXTEND_RANGE_TABLE_WORK_AREA ((work_area), 2); \
1780 (work_area).table[(work_area).used++] = (range_start); \
1781 (work_area).table[(work_area).used++] = (range_end); \
1782 } while (0)
1783
25fe55af 1784/* Free allocated memory for WORK_AREA. */
b18215fc
RS
1785#define FREE_RANGE_TABLE_WORK_AREA(work_area) \
1786 do { \
1787 if ((work_area).table) \
1788 free ((work_area).table); \
1789 } while (0)
1790
96cc36cc 1791#define CLEAR_RANGE_TABLE_WORK_USED(work_area) ((work_area).used = 0, (work_area).bits = 0)
b18215fc 1792#define RANGE_TABLE_WORK_USED(work_area) ((work_area).used)
96cc36cc 1793#define RANGE_TABLE_WORK_BITS(work_area) ((work_area).bits)
b18215fc
RS
1794#define RANGE_TABLE_WORK_ELT(work_area, i) ((work_area).table[i])
1795
1796
fa9a63c5 1797/* Set the bit for character C in a list. */
25fe55af
RS
1798#define SET_LIST_BIT(c) \
1799 (b[((unsigned char) (c)) / BYTEWIDTH] \
fa9a63c5
RM
1800 |= 1 << (((unsigned char) c) % BYTEWIDTH))
1801
1802
1803/* Get the next unsigned number in the uncompiled pattern. */
25fe55af 1804#define GET_UNSIGNED_NUMBER(num) \
99633e97 1805 do { if (p != pend) \
fa9a63c5 1806 { \
25fe55af
RS
1807 PATFETCH (c); \
1808 while (ISDIGIT (c)) \
1809 { \
1810 if (num < 0) \
1811 num = 0; \
1812 num = num * 10 + c - '0'; \
1813 if (p == pend) \
1814 break; \
1815 PATFETCH (c); \
1816 } \
1817 } \
99633e97 1818 } while (0)
fa9a63c5
RM
1819
1820#define CHAR_CLASS_MAX_LENGTH 6 /* Namely, `xdigit'. */
1821
1822#define IS_CHAR_CLASS(string) \
1823 (STREQ (string, "alpha") || STREQ (string, "upper") \
1824 || STREQ (string, "lower") || STREQ (string, "digit") \
1825 || STREQ (string, "alnum") || STREQ (string, "xdigit") \
1826 || STREQ (string, "space") || STREQ (string, "print") \
1827 || STREQ (string, "punct") || STREQ (string, "graph") \
96cc36cc 1828 || STREQ (string, "cntrl") || STREQ (string, "blank") \
f71b19b6
DL
1829 || STREQ (string, "word") \
1830 || STREQ (string, "ascii") || STREQ (string, "nonascii") \
1831 || STREQ (string, "unibyte") || STREQ (string, "multibyte"))
99633e97
SM
1832
1833/* QUIT is only used on NTemacs. */
1834#if !defined (WINDOWSNT) || !defined (emacs)
1835#undef QUIT
1836#define QUIT
1837#endif
fa9a63c5
RM
1838\f
1839#ifndef MATCH_MAY_ALLOCATE
1840
1841/* If we cannot allocate large objects within re_match_2_internal,
1842 we make the fail stack and register vectors global.
1843 The fail stack, we grow to the maximum size when a regexp
1844 is compiled.
1845 The register vectors, we adjust in size each time we
1846 compile a regexp, according to the number of registers it needs. */
1847
1848static fail_stack_type fail_stack;
1849
1850/* Size with which the following vectors are currently allocated.
1851 That is so we can make them bigger as needed,
25fe55af 1852 but never make them smaller. */
fa9a63c5
RM
1853static int regs_allocated_size;
1854
66f0296e
SM
1855static re_char ** regstart, ** regend;
1856static re_char **best_regstart, **best_regend;
fa9a63c5
RM
1857
1858/* Make the register vectors big enough for NUM_REGS registers,
25fe55af 1859 but don't make them smaller. */
fa9a63c5
RM
1860
1861static
1862regex_grow_registers (num_regs)
1863 int num_regs;
1864{
1865 if (num_regs > regs_allocated_size)
1866 {
66f0296e
SM
1867 RETALLOC_IF (regstart, num_regs, re_char *);
1868 RETALLOC_IF (regend, num_regs, re_char *);
1869 RETALLOC_IF (best_regstart, num_regs, re_char *);
1870 RETALLOC_IF (best_regend, num_regs, re_char *);
fa9a63c5
RM
1871
1872 regs_allocated_size = num_regs;
1873 }
1874}
1875
1876#endif /* not MATCH_MAY_ALLOCATE */
1877\f
99633e97
SM
1878static boolean group_in_compile_stack _RE_ARGS ((compile_stack_type
1879 compile_stack,
1880 regnum_t regnum));
1881
fa9a63c5
RM
1882/* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
1883 Returns one of error codes defined in `regex.h', or zero for success.
1884
1885 Assumes the `allocated' (and perhaps `buffer') and `translate'
1886 fields are set in BUFP on entry.
1887
1888 If it succeeds, results are put in BUFP (if it returns an error, the
1889 contents of BUFP are undefined):
1890 `buffer' is the compiled pattern;
1891 `syntax' is set to SYNTAX;
1892 `used' is set to the length of the compiled pattern;
1893 `fastmap_accurate' is zero;
1894 `re_nsub' is the number of subexpressions in PATTERN;
1895 `not_bol' and `not_eol' are zero;
5e69f11e 1896
fa9a63c5
RM
1897 The `fastmap' and `newline_anchor' fields are neither
1898 examined nor set. */
1899
505bde11
SM
1900/* Insert the `jump' from the end of last alternative to "here".
1901 The space for the jump has already been allocated. */
1902#define FIXUP_ALT_JUMP() \
1903do { \
1904 if (fixup_alt_jump) \
1905 STORE_JUMP (jump, fixup_alt_jump, b); \
1906} while (0)
1907
1908
fa9a63c5
RM
1909/* Return, freeing storage we allocated. */
1910#define FREE_STACK_RETURN(value) \
b18215fc
RS
1911 do { \
1912 FREE_RANGE_TABLE_WORK_AREA (range_table_work); \
1913 free (compile_stack.stack); \
1914 return value; \
1915 } while (0)
fa9a63c5
RM
1916
1917static reg_errcode_t
1918regex_compile (pattern, size, syntax, bufp)
66f0296e 1919 re_char *pattern;
fa9a63c5
RM
1920 int size;
1921 reg_syntax_t syntax;
1922 struct re_pattern_buffer *bufp;
1923{
1924 /* We fetch characters from PATTERN here. Even though PATTERN is
1925 `char *' (i.e., signed), we declare these variables as unsigned, so
1926 they can be reliably used as array indices. */
b18215fc 1927 register unsigned int c, c1;
5e69f11e 1928
fa9a63c5 1929 /* A random temporary spot in PATTERN. */
66f0296e 1930 re_char *p1;
fa9a63c5
RM
1931
1932 /* Points to the end of the buffer, where we should append. */
1933 register unsigned char *b;
5e69f11e 1934
fa9a63c5
RM
1935 /* Keeps track of unclosed groups. */
1936 compile_stack_type compile_stack;
1937
1938 /* Points to the current (ending) position in the pattern. */
22336245
RS
1939#ifdef AIX
1940 /* `const' makes AIX compiler fail. */
66f0296e 1941 unsigned char *p = pattern;
22336245 1942#else
66f0296e 1943 re_char *p = pattern;
22336245 1944#endif
66f0296e 1945 re_char *pend = pattern + size;
5e69f11e 1946
fa9a63c5 1947 /* How to translate the characters in the pattern. */
6676cb1c 1948 RE_TRANSLATE_TYPE translate = bufp->translate;
fa9a63c5
RM
1949
1950 /* Address of the count-byte of the most recently inserted `exactn'
1951 command. This makes it possible to tell if a new exact-match
1952 character can be added to that command or if the character requires
1953 a new `exactn' command. */
1954 unsigned char *pending_exact = 0;
1955
1956 /* Address of start of the most recently finished expression.
1957 This tells, e.g., postfix * where to find the start of its
1958 operand. Reset at the beginning of groups and alternatives. */
1959 unsigned char *laststart = 0;
1960
1961 /* Address of beginning of regexp, or inside of last group. */
1962 unsigned char *begalt;
1963
1964 /* Place in the uncompiled pattern (i.e., the {) to
1965 which to go back if the interval is invalid. */
66f0296e 1966 re_char *beg_interval;
5e69f11e 1967
fa9a63c5 1968 /* Address of the place where a forward jump should go to the end of
25fe55af 1969 the containing expression. Each alternative of an `or' -- except the
fa9a63c5
RM
1970 last -- ends with a forward jump of this sort. */
1971 unsigned char *fixup_alt_jump = 0;
1972
1973 /* Counts open-groups as they are encountered. Remembered for the
1974 matching close-group on the compile stack, so the same register
1975 number is put in the stop_memory as the start_memory. */
1976 regnum_t regnum = 0;
1977
b18215fc
RS
1978 /* Work area for range table of charset. */
1979 struct range_table_work_area range_table_work;
1980
2d1675e4
SM
1981 /* If the object matched can contain multibyte characters. */
1982 const boolean multibyte = RE_MULTIBYTE_P (bufp);
1983
fa9a63c5 1984#ifdef DEBUG
99633e97 1985 debug++;
fa9a63c5 1986 DEBUG_PRINT1 ("\nCompiling pattern: ");
99633e97 1987 if (debug > 0)
fa9a63c5
RM
1988 {
1989 unsigned debug_count;
5e69f11e 1990
fa9a63c5 1991 for (debug_count = 0; debug_count < size; debug_count++)
25fe55af 1992 putchar (pattern[debug_count]);
fa9a63c5
RM
1993 putchar ('\n');
1994 }
1995#endif /* DEBUG */
1996
1997 /* Initialize the compile stack. */
1998 compile_stack.stack = TALLOC (INIT_COMPILE_STACK_SIZE, compile_stack_elt_t);
1999 if (compile_stack.stack == NULL)
2000 return REG_ESPACE;
2001
2002 compile_stack.size = INIT_COMPILE_STACK_SIZE;
2003 compile_stack.avail = 0;
2004
b18215fc
RS
2005 range_table_work.table = 0;
2006 range_table_work.allocated = 0;
2007
fa9a63c5
RM
2008 /* Initialize the pattern buffer. */
2009 bufp->syntax = syntax;
2010 bufp->fastmap_accurate = 0;
2011 bufp->not_bol = bufp->not_eol = 0;
2012
2013 /* Set `used' to zero, so that if we return an error, the pattern
2014 printer (for debugging) will think there's no pattern. We reset it
2015 at the end. */
2016 bufp->used = 0;
5e69f11e 2017
fa9a63c5 2018 /* Always count groups, whether or not bufp->no_sub is set. */
5e69f11e 2019 bufp->re_nsub = 0;
fa9a63c5
RM
2020
2021#if !defined (emacs) && !defined (SYNTAX_TABLE)
2022 /* Initialize the syntax table. */
2023 init_syntax_once ();
2024#endif
2025
2026 if (bufp->allocated == 0)
2027 {
2028 if (bufp->buffer)
2029 { /* If zero allocated, but buffer is non-null, try to realloc
25fe55af
RS
2030 enough space. This loses if buffer's address is bogus, but
2031 that is the user's responsibility. */
2032 RETALLOC (bufp->buffer, INIT_BUF_SIZE, unsigned char);
2033 }
fa9a63c5 2034 else
25fe55af
RS
2035 { /* Caller did not allocate a buffer. Do it for them. */
2036 bufp->buffer = TALLOC (INIT_BUF_SIZE, unsigned char);
2037 }
fa9a63c5
RM
2038 if (!bufp->buffer) FREE_STACK_RETURN (REG_ESPACE);
2039
2040 bufp->allocated = INIT_BUF_SIZE;
2041 }
2042
2043 begalt = b = bufp->buffer;
2044
2045 /* Loop through the uncompiled pattern until we're at the end. */
2046 while (p != pend)
2047 {
2048 PATFETCH (c);
2049
2050 switch (c)
25fe55af
RS
2051 {
2052 case '^':
2053 {
2054 if ( /* If at start of pattern, it's an operator. */
2055 p == pattern + 1
2056 /* If context independent, it's an operator. */
2057 || syntax & RE_CONTEXT_INDEP_ANCHORS
2058 /* Otherwise, depends on what's come before. */
2059 || at_begline_loc_p (pattern, p, syntax))
2060 BUF_PUSH (begline);
2061 else
2062 goto normal_char;
2063 }
2064 break;
2065
2066
2067 case '$':
2068 {
2069 if ( /* If at end of pattern, it's an operator. */
2070 p == pend
2071 /* If context independent, it's an operator. */
2072 || syntax & RE_CONTEXT_INDEP_ANCHORS
2073 /* Otherwise, depends on what's next. */
2074 || at_endline_loc_p (p, pend, syntax))
2075 BUF_PUSH (endline);
2076 else
2077 goto normal_char;
2078 }
2079 break;
fa9a63c5
RM
2080
2081
2082 case '+':
25fe55af
RS
2083 case '?':
2084 if ((syntax & RE_BK_PLUS_QM)
2085 || (syntax & RE_LIMITED_OPS))
2086 goto normal_char;
2087 handle_plus:
2088 case '*':
2089 /* If there is no previous pattern... */
2090 if (!laststart)
2091 {
2092 if (syntax & RE_CONTEXT_INVALID_OPS)
2093 FREE_STACK_RETURN (REG_BADRPT);
2094 else if (!(syntax & RE_CONTEXT_INDEP_OPS))
2095 goto normal_char;
2096 }
2097
2098 {
25fe55af 2099 /* 1 means zero (many) matches is allowed. */
66f0296e
SM
2100 boolean zero_times_ok = 0, many_times_ok = 0;
2101 boolean greedy = 1;
25fe55af
RS
2102
2103 /* If there is a sequence of repetition chars, collapse it
2104 down to just one (the right one). We can't combine
2105 interval operators with these because of, e.g., `a{2}*',
2106 which should only match an even number of `a's. */
2107
2108 for (;;)
2109 {
1c8c6d39
DL
2110 if (!(syntax & RE_ALL_GREEDY)
2111 && c == '?' && (zero_times_ok || many_times_ok))
2112 greedy = 0;
2113 else
2114 {
2115 zero_times_ok |= c != '+';
2116 many_times_ok |= c != '?';
2117 }
25fe55af
RS
2118
2119 if (p == pend)
2120 break;
ed0767d8
SM
2121 else if (*p == '*'
2122 || (!(syntax & RE_BK_PLUS_QM)
2123 && (*p == '+' || *p == '?')))
25fe55af 2124 ;
ed0767d8 2125 else if (syntax & RE_BK_PLUS_QM && *p == '\\')
25fe55af 2126 {
ed0767d8
SM
2127 if (p+1 == pend)
2128 FREE_STACK_RETURN (REG_EESCAPE);
2129 if (p[1] == '+' || p[1] == '?')
2130 PATFETCH (c); /* Gobble up the backslash. */
2131 else
2132 break;
25fe55af
RS
2133 }
2134 else
ed0767d8 2135 break;
25fe55af 2136 /* If we get here, we found another repeat character. */
ed0767d8
SM
2137 PATFETCH (c);
2138 }
25fe55af
RS
2139
2140 /* Star, etc. applied to an empty pattern is equivalent
2141 to an empty pattern. */
4e8a9132 2142 if (!laststart || laststart == b)
25fe55af
RS
2143 break;
2144
2145 /* Now we know whether or not zero matches is allowed
2146 and also whether or not two or more matches is allowed. */
1c8c6d39
DL
2147 if (greedy)
2148 {
99633e97 2149 if (many_times_ok)
4e8a9132
SM
2150 {
2151 boolean simple = skip_one_char (laststart) == b;
2152 unsigned int startoffset = 0;
f6a3f532
SM
2153 re_opcode_t ofj =
2154 (simple || !analyse_first (laststart, b, NULL, 0)) ?
2155 on_failure_jump : on_failure_jump_loop;
4e8a9132
SM
2156 assert (skip_one_char (laststart) <= b);
2157
2158 if (!zero_times_ok && simple)
2159 { /* Since simple * loops can be made faster by using
2160 on_failure_keep_string_jump, we turn simple P+
2161 into PP* if P is simple. */
2162 unsigned char *p1, *p2;
2163 startoffset = b - laststart;
2164 GET_BUFFER_SPACE (startoffset);
2165 p1 = b; p2 = laststart;
2166 while (p2 < p1)
2167 *b++ = *p2++;
2168 zero_times_ok = 1;
99633e97 2169 }
4e8a9132
SM
2170
2171 GET_BUFFER_SPACE (6);
2172 if (!zero_times_ok)
2173 /* A + loop. */
f6a3f532 2174 STORE_JUMP (ofj, b, b + 6);
99633e97 2175 else
4e8a9132
SM
2176 /* Simple * loops can use on_failure_keep_string_jump
2177 depending on what follows. But since we don't know
2178 that yet, we leave the decision up to
2179 on_failure_jump_smart. */
f6a3f532 2180 INSERT_JUMP (simple ? on_failure_jump_smart : ofj,
4e8a9132 2181 laststart + startoffset, b + 6);
99633e97 2182 b += 3;
4e8a9132 2183 STORE_JUMP (jump, b, laststart + startoffset);
99633e97
SM
2184 b += 3;
2185 }
2186 else
2187 {
4e8a9132
SM
2188 /* A simple ? pattern. */
2189 assert (zero_times_ok);
2190 GET_BUFFER_SPACE (3);
2191 INSERT_JUMP (on_failure_jump, laststart, b + 3);
99633e97
SM
2192 b += 3;
2193 }
1c8c6d39
DL
2194 }
2195 else /* not greedy */
2196 { /* I wish the greedy and non-greedy cases could be merged. */
2197
0683b6fa 2198 GET_BUFFER_SPACE (7); /* We might use less. */
1c8c6d39
DL
2199 if (many_times_ok)
2200 {
f6a3f532
SM
2201 boolean emptyp = analyse_first (laststart, b, NULL, 0);
2202
505bde11 2203 /* The non-greedy multiple match looks like a repeat..until:
1c8c6d39 2204 we only need a conditional jump at the end of the loop */
f6a3f532
SM
2205 if (emptyp) BUF_PUSH (no_op);
2206 STORE_JUMP (emptyp ? on_failure_jump_nastyloop
2207 : on_failure_jump, b, laststart);
1c8c6d39
DL
2208 b += 3;
2209 if (zero_times_ok)
2210 {
2211 /* The repeat...until naturally matches one or more.
2212 To also match zero times, we need to first jump to
2213 the end of the loop (its conditional jump). */
1c8c6d39
DL
2214 INSERT_JUMP (jump, laststart, b);
2215 b += 3;
2216 }
2217 }
2218 else
2219 {
2220 /* non-greedy a?? */
1c8c6d39
DL
2221 INSERT_JUMP (jump, laststart, b + 3);
2222 b += 3;
2223 INSERT_JUMP (on_failure_jump, laststart, laststart + 6);
2224 b += 3;
2225 }
2226 }
2227 }
4e8a9132 2228 pending_exact = 0;
fa9a63c5
RM
2229 break;
2230
2231
2232 case '.':
25fe55af
RS
2233 laststart = b;
2234 BUF_PUSH (anychar);
2235 break;
fa9a63c5
RM
2236
2237
25fe55af
RS
2238 case '[':
2239 {
b18215fc 2240 CLEAR_RANGE_TABLE_WORK_USED (range_table_work);
fa9a63c5 2241
25fe55af 2242 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
fa9a63c5 2243
25fe55af
RS
2244 /* Ensure that we have enough space to push a charset: the
2245 opcode, the length count, and the bitset; 34 bytes in all. */
fa9a63c5
RM
2246 GET_BUFFER_SPACE (34);
2247
25fe55af 2248 laststart = b;
e318085a 2249
25fe55af
RS
2250 /* We test `*p == '^' twice, instead of using an if
2251 statement, so we only need one BUF_PUSH. */
2252 BUF_PUSH (*p == '^' ? charset_not : charset);
2253 if (*p == '^')
2254 p++;
e318085a 2255
25fe55af
RS
2256 /* Remember the first position in the bracket expression. */
2257 p1 = p;
e318085a 2258
25fe55af
RS
2259 /* Push the number of bytes in the bitmap. */
2260 BUF_PUSH ((1 << BYTEWIDTH) / BYTEWIDTH);
e318085a 2261
25fe55af
RS
2262 /* Clear the whole map. */
2263 bzero (b, (1 << BYTEWIDTH) / BYTEWIDTH);
e318085a 2264
25fe55af
RS
2265 /* charset_not matches newline according to a syntax bit. */
2266 if ((re_opcode_t) b[-2] == charset_not
2267 && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
2268 SET_LIST_BIT ('\n');
fa9a63c5 2269
25fe55af
RS
2270 /* Read in characters and ranges, setting map bits. */
2271 for (;;)
2272 {
b18215fc 2273 boolean escaped_char = false;
2d1675e4 2274 const unsigned char *p2 = p;
e318085a 2275
25fe55af 2276 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
e318085a 2277
25fe55af 2278 PATFETCH (c);
e318085a 2279
25fe55af
RS
2280 /* \ might escape characters inside [...] and [^...]. */
2281 if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
2282 {
2283 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
e318085a
RS
2284
2285 PATFETCH (c);
b18215fc 2286 escaped_char = true;
25fe55af 2287 }
b18215fc
RS
2288 else
2289 {
657fcfbd
RS
2290 /* Could be the end of the bracket expression. If it's
2291 not (i.e., when the bracket expression is `[]' so
2292 far), the ']' character bit gets set way below. */
2d1675e4 2293 if (c == ']' && p2 != p1)
657fcfbd 2294 break;
25fe55af 2295 }
b18215fc 2296
b18215fc
RS
2297 /* What should we do for the character which is
2298 greater than 0x7F, but not BASE_LEADING_CODE_P?
2299 XXX */
2300
25fe55af
RS
2301 /* See if we're at the beginning of a possible character
2302 class. */
b18215fc 2303
2d1675e4
SM
2304 if (!escaped_char &&
2305 syntax & RE_CHAR_CLASSES && c == '[' && *p == ':')
657fcfbd
RS
2306 {
2307 /* Leave room for the null. */
25fe55af 2308 char str[CHAR_CLASS_MAX_LENGTH + 1];
ed0767d8 2309 const unsigned char *class_beg;
b18215fc 2310
25fe55af
RS
2311 PATFETCH (c);
2312 c1 = 0;
ed0767d8 2313 class_beg = p;
b18215fc 2314
25fe55af
RS
2315 /* If pattern is `[[:'. */
2316 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
b18215fc 2317
25fe55af
RS
2318 for (;;)
2319 {
2320 PATFETCH (c);
2321 if (c == ':' || c == ']' || p == pend
2322 || c1 == CHAR_CLASS_MAX_LENGTH)
2323 break;
2324 str[c1++] = c;
2325 }
2326 str[c1] = '\0';
b18215fc
RS
2327
2328 /* If isn't a word bracketed by `[:' and `:]':
2329 undo the ending character, the letters, and
2330 leave the leading `:' and `[' (but set bits for
2331 them). */
25fe55af
RS
2332 if (c == ':' && *p == ']')
2333 {
2334 int ch;
2335 boolean is_alnum = STREQ (str, "alnum");
2336 boolean is_alpha = STREQ (str, "alpha");
f71b19b6 2337 boolean is_ascii = STREQ (str, "ascii");
25fe55af
RS
2338 boolean is_blank = STREQ (str, "blank");
2339 boolean is_cntrl = STREQ (str, "cntrl");
2340 boolean is_digit = STREQ (str, "digit");
2341 boolean is_graph = STREQ (str, "graph");
2342 boolean is_lower = STREQ (str, "lower");
f71b19b6
DL
2343 boolean is_multibyte = STREQ (str, "multibyte");
2344 boolean is_nonascii = STREQ (str, "nonascii");
25fe55af
RS
2345 boolean is_print = STREQ (str, "print");
2346 boolean is_punct = STREQ (str, "punct");
2347 boolean is_space = STREQ (str, "space");
f71b19b6 2348 boolean is_unibyte = STREQ (str, "unibyte");
25fe55af 2349 boolean is_upper = STREQ (str, "upper");
96cc36cc 2350 boolean is_word = STREQ (str, "word");
f71b19b6 2351 boolean is_xdigit = STREQ (str, "xdigit");
25fe55af
RS
2352
2353 if (!IS_CHAR_CLASS (str))
fa9a63c5
RM
2354 FREE_STACK_RETURN (REG_ECTYPE);
2355
25fe55af
RS
2356 /* Throw away the ] at the end of the character
2357 class. */
2358 PATFETCH (c);
fa9a63c5 2359
25fe55af 2360 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
fa9a63c5 2361
96cc36cc
RS
2362 /* Most character classes in a multibyte match
2363 just set a flag. Exceptions are is_blank,
2364 is_digit, is_cntrl, and is_xdigit, since
2365 they can only match ASCII characters. We
2366 don't need to handle them for multibyte. */
2367
2d1675e4 2368 if (multibyte)
96cc36cc
RS
2369 {
2370 int bit = 0;
2371
2372 if (is_alnum) bit = BIT_ALNUM;
2373 if (is_alpha) bit = BIT_ALPHA;
f71b19b6 2374 if (is_ascii) bit = BIT_ASCII;
96cc36cc
RS
2375 if (is_graph) bit = BIT_GRAPH;
2376 if (is_lower) bit = BIT_LOWER;
f71b19b6
DL
2377 if (is_multibyte) bit = BIT_MULTIBYTE;
2378 if (is_nonascii) bit = BIT_NONASCII;
96cc36cc
RS
2379 if (is_print) bit = BIT_PRINT;
2380 if (is_punct) bit = BIT_PUNCT;
2381 if (is_space) bit = BIT_SPACE;
f71b19b6 2382 if (is_unibyte) bit = BIT_UNIBYTE;
96cc36cc
RS
2383 if (is_upper) bit = BIT_UPPER;
2384 if (is_word) bit = BIT_WORD;
2385 if (bit)
2386 SET_RANGE_TABLE_WORK_AREA_BIT (range_table_work,
2387 bit);
2388 }
2389
2390 /* Handle character classes for ASCII characters. */
25fe55af
RS
2391 for (ch = 0; ch < 1 << BYTEWIDTH; ch++)
2392 {
7ae68633 2393 int translated = TRANSLATE (ch);
fa9a63c5
RM
2394 /* This was split into 3 if's to
2395 avoid an arbitrary limit in some compiler. */
25fe55af
RS
2396 if ( (is_alnum && ISALNUM (ch))
2397 || (is_alpha && ISALPHA (ch))
2398 || (is_blank && ISBLANK (ch))
2399 || (is_cntrl && ISCNTRL (ch)))
7ae68633 2400 SET_LIST_BIT (translated);
fa9a63c5 2401 if ( (is_digit && ISDIGIT (ch))
25fe55af
RS
2402 || (is_graph && ISGRAPH (ch))
2403 || (is_lower && ISLOWER (ch))
2404 || (is_print && ISPRINT (ch)))
7ae68633 2405 SET_LIST_BIT (translated);
fa9a63c5 2406 if ( (is_punct && ISPUNCT (ch))
25fe55af
RS
2407 || (is_space && ISSPACE (ch))
2408 || (is_upper && ISUPPER (ch))
2409 || (is_xdigit && ISXDIGIT (ch)))
7ae68633 2410 SET_LIST_BIT (translated);
f71b19b6
DL
2411 if ( (is_ascii && IS_REAL_ASCII (ch))
2412 || (is_nonascii && !IS_REAL_ASCII (ch))
2413 || (is_unibyte && ISUNIBYTE (ch))
2414 || (is_multibyte && !ISUNIBYTE (ch)))
2415 SET_LIST_BIT (translated);
2416
96cc36cc
RS
2417 if ( (is_word && ISWORD (ch)))
2418 SET_LIST_BIT (translated);
25fe55af 2419 }
b18215fc
RS
2420
2421 /* Repeat the loop. */
2422 continue;
25fe55af
RS
2423 }
2424 else
2425 {
ed0767d8
SM
2426 /* Go back to right after the "[:". */
2427 p = class_beg;
25fe55af 2428 SET_LIST_BIT ('[');
b18215fc
RS
2429
2430 /* Because the `:' may starts the range, we
2431 can't simply set bit and repeat the loop.
25fe55af 2432 Instead, just set it to C and handle below. */
b18215fc 2433 c = ':';
25fe55af
RS
2434 }
2435 }
b18215fc
RS
2436
2437 if (p < pend && p[0] == '-' && p[1] != ']')
2438 {
2439
2440 /* Discard the `-'. */
2441 PATFETCH (c1);
2442
2443 /* Fetch the character which ends the range. */
2444 PATFETCH (c1);
b18215fc 2445
e934739e
RS
2446 if (SINGLE_BYTE_CHAR_P (c)
2447 && ! SINGLE_BYTE_CHAR_P (c1))
2448 {
2449 /* Handle a range such as \177-\377 in multibyte mode.
2450 Split that into two ranges,,
2451 the low one ending at 0237, and the high one
2452 starting at ...040. */
505bde11
SM
2453 /* Unless I'm missing something,
2454 this line is useless. -sm
2455 int c1_base = (c1 & ~0177) | 040; */
e934739e
RS
2456 SET_RANGE_TABLE_WORK_AREA (range_table_work, c, c1);
2457 c1 = 0237;
2458 }
2459 else if (!SAME_CHARSET_P (c, c1))
b18215fc 2460 FREE_STACK_RETURN (REG_ERANGE);
e318085a 2461 }
25fe55af 2462 else
b18215fc
RS
2463 /* Range from C to C. */
2464 c1 = c;
2465
2466 /* Set the range ... */
2467 if (SINGLE_BYTE_CHAR_P (c))
2468 /* ... into bitmap. */
25fe55af 2469 {
b18215fc
RS
2470 unsigned this_char;
2471 int range_start = c, range_end = c1;
2472
2473 /* If the start is after the end, the range is empty. */
2474 if (range_start > range_end)
2475 {
2476 if (syntax & RE_NO_EMPTY_RANGES)
2477 FREE_STACK_RETURN (REG_ERANGE);
2478 /* Else, repeat the loop. */
2479 }
2480 else
2481 {
2482 for (this_char = range_start; this_char <= range_end;
2483 this_char++)
2484 SET_LIST_BIT (TRANSLATE (this_char));
e934739e 2485 }
25fe55af 2486 }
e318085a 2487 else
b18215fc
RS
2488 /* ... into range table. */
2489 SET_RANGE_TABLE_WORK_AREA (range_table_work, c, c1);
e318085a
RS
2490 }
2491
25fe55af
RS
2492 /* Discard any (non)matching list bytes that are all 0 at the
2493 end of the map. Decrease the map-length byte too. */
2494 while ((int) b[-1] > 0 && b[b[-1] - 1] == 0)
2495 b[-1]--;
2496 b += b[-1];
fa9a63c5 2497
96cc36cc
RS
2498 /* Build real range table from work area. */
2499 if (RANGE_TABLE_WORK_USED (range_table_work)
2500 || RANGE_TABLE_WORK_BITS (range_table_work))
b18215fc
RS
2501 {
2502 int i;
2503 int used = RANGE_TABLE_WORK_USED (range_table_work);
fa9a63c5 2504
b18215fc 2505 /* Allocate space for COUNT + RANGE_TABLE. Needs two
96cc36cc
RS
2506 bytes for flags, two for COUNT, and three bytes for
2507 each character. */
2508 GET_BUFFER_SPACE (4 + used * 3);
fa9a63c5 2509
b18215fc
RS
2510 /* Indicate the existence of range table. */
2511 laststart[1] |= 0x80;
fa9a63c5 2512
96cc36cc
RS
2513 /* Store the character class flag bits into the range table.
2514 If not in emacs, these flag bits are always 0. */
2515 *b++ = RANGE_TABLE_WORK_BITS (range_table_work) & 0xff;
2516 *b++ = RANGE_TABLE_WORK_BITS (range_table_work) >> 8;
2517
b18215fc
RS
2518 STORE_NUMBER_AND_INCR (b, used / 2);
2519 for (i = 0; i < used; i++)
2520 STORE_CHARACTER_AND_INCR
2521 (b, RANGE_TABLE_WORK_ELT (range_table_work, i));
2522 }
25fe55af
RS
2523 }
2524 break;
fa9a63c5
RM
2525
2526
b18215fc 2527 case '(':
25fe55af
RS
2528 if (syntax & RE_NO_BK_PARENS)
2529 goto handle_open;
2530 else
2531 goto normal_char;
fa9a63c5
RM
2532
2533
25fe55af
RS
2534 case ')':
2535 if (syntax & RE_NO_BK_PARENS)
2536 goto handle_close;
2537 else
2538 goto normal_char;
e318085a
RS
2539
2540
25fe55af
RS
2541 case '\n':
2542 if (syntax & RE_NEWLINE_ALT)
2543 goto handle_alt;
2544 else
2545 goto normal_char;
e318085a
RS
2546
2547
b18215fc 2548 case '|':
25fe55af
RS
2549 if (syntax & RE_NO_BK_VBAR)
2550 goto handle_alt;
2551 else
2552 goto normal_char;
2553
2554
2555 case '{':
2556 if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES)
2557 goto handle_interval;
2558 else
2559 goto normal_char;
2560
2561
2562 case '\\':
2563 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2564
2565 /* Do not translate the character after the \, so that we can
2566 distinguish, e.g., \B from \b, even if we normally would
2567 translate, e.g., B to b. */
2568 PATFETCH_RAW (c);
2569
2570 switch (c)
2571 {
2572 case '(':
2573 if (syntax & RE_NO_BK_PARENS)
2574 goto normal_backslash;
2575
2576 handle_open:
505bde11
SM
2577 {
2578 int shy = 0;
2579 if (p+1 < pend)
2580 {
2581 /* Look for a special (?...) construct */
ed0767d8 2582 if ((syntax & RE_SHY_GROUPS) && *p == '?')
505bde11 2583 {
ed0767d8 2584 PATFETCH (c); /* Gobble up the '?'. */
505bde11
SM
2585 PATFETCH (c);
2586 switch (c)
2587 {
2588 case ':': shy = 1; break;
2589 default:
2590 /* Only (?:...) is supported right now. */
2591 FREE_STACK_RETURN (REG_BADPAT);
2592 }
2593 }
505bde11
SM
2594 }
2595
2596 if (!shy)
2597 {
2598 bufp->re_nsub++;
2599 regnum++;
2600 }
25fe55af 2601
99633e97
SM
2602 if (COMPILE_STACK_FULL)
2603 {
2604 RETALLOC (compile_stack.stack, compile_stack.size << 1,
2605 compile_stack_elt_t);
2606 if (compile_stack.stack == NULL) return REG_ESPACE;
25fe55af 2607
99633e97
SM
2608 compile_stack.size <<= 1;
2609 }
25fe55af 2610
99633e97
SM
2611 /* These are the values to restore when we hit end of this
2612 group. They are all relative offsets, so that if the
2613 whole pattern moves because of realloc, they will still
2614 be valid. */
2615 COMPILE_STACK_TOP.begalt_offset = begalt - bufp->buffer;
2616 COMPILE_STACK_TOP.fixup_alt_jump
2617 = fixup_alt_jump ? fixup_alt_jump - bufp->buffer + 1 : 0;
2618 COMPILE_STACK_TOP.laststart_offset = b - bufp->buffer;
2619 COMPILE_STACK_TOP.regnum = shy ? -regnum : regnum;
2620
2621 /* Do not push a
2622 start_memory for groups beyond the last one we can
2623 represent in the compiled pattern. */
2624 if (regnum <= MAX_REGNUM && !shy)
2625 BUF_PUSH_2 (start_memory, regnum);
2626
2627 compile_stack.avail++;
2628
2629 fixup_alt_jump = 0;
2630 laststart = 0;
2631 begalt = b;
2632 /* If we've reached MAX_REGNUM groups, then this open
2633 won't actually generate any code, so we'll have to
2634 clear pending_exact explicitly. */
2635 pending_exact = 0;
2636 break;
505bde11 2637 }
25fe55af
RS
2638
2639 case ')':
2640 if (syntax & RE_NO_BK_PARENS) goto normal_backslash;
2641
2642 if (COMPILE_STACK_EMPTY)
505bde11
SM
2643 {
2644 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
2645 goto normal_backslash;
2646 else
2647 FREE_STACK_RETURN (REG_ERPAREN);
2648 }
25fe55af
RS
2649
2650 handle_close:
505bde11 2651 FIXUP_ALT_JUMP ();
25fe55af
RS
2652
2653 /* See similar code for backslashed left paren above. */
2654 if (COMPILE_STACK_EMPTY)
505bde11
SM
2655 {
2656 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
2657 goto normal_char;
2658 else
2659 FREE_STACK_RETURN (REG_ERPAREN);
2660 }
25fe55af
RS
2661
2662 /* Since we just checked for an empty stack above, this
2663 ``can't happen''. */
2664 assert (compile_stack.avail != 0);
2665 {
2666 /* We don't just want to restore into `regnum', because
2667 later groups should continue to be numbered higher,
2668 as in `(ab)c(de)' -- the second group is #2. */
2669 regnum_t this_group_regnum;
2670
2671 compile_stack.avail--;
2672 begalt = bufp->buffer + COMPILE_STACK_TOP.begalt_offset;
2673 fixup_alt_jump
2674 = COMPILE_STACK_TOP.fixup_alt_jump
2675 ? bufp->buffer + COMPILE_STACK_TOP.fixup_alt_jump - 1
2676 : 0;
2677 laststart = bufp->buffer + COMPILE_STACK_TOP.laststart_offset;
2678 this_group_regnum = COMPILE_STACK_TOP.regnum;
b18215fc
RS
2679 /* If we've reached MAX_REGNUM groups, then this open
2680 won't actually generate any code, so we'll have to
2681 clear pending_exact explicitly. */
2682 pending_exact = 0;
e318085a 2683
25fe55af
RS
2684 /* We're at the end of the group, so now we know how many
2685 groups were inside this one. */
505bde11
SM
2686 if (this_group_regnum <= MAX_REGNUM && this_group_regnum > 0)
2687 BUF_PUSH_2 (stop_memory, this_group_regnum);
25fe55af
RS
2688 }
2689 break;
2690
2691
2692 case '|': /* `\|'. */
2693 if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR)
2694 goto normal_backslash;
2695 handle_alt:
2696 if (syntax & RE_LIMITED_OPS)
2697 goto normal_char;
2698
2699 /* Insert before the previous alternative a jump which
2700 jumps to this alternative if the former fails. */
2701 GET_BUFFER_SPACE (3);
2702 INSERT_JUMP (on_failure_jump, begalt, b + 6);
2703 pending_exact = 0;
2704 b += 3;
2705
2706 /* The alternative before this one has a jump after it
2707 which gets executed if it gets matched. Adjust that
2708 jump so it will jump to this alternative's analogous
2709 jump (put in below, which in turn will jump to the next
2710 (if any) alternative's such jump, etc.). The last such
2711 jump jumps to the correct final destination. A picture:
2712 _____ _____
2713 | | | |
2714 | v | v
2715 a | b | c
2716
2717 If we are at `b', then fixup_alt_jump right now points to a
2718 three-byte space after `a'. We'll put in the jump, set
2719 fixup_alt_jump to right after `b', and leave behind three
2720 bytes which we'll fill in when we get to after `c'. */
2721
505bde11 2722 FIXUP_ALT_JUMP ();
25fe55af
RS
2723
2724 /* Mark and leave space for a jump after this alternative,
2725 to be filled in later either by next alternative or
2726 when know we're at the end of a series of alternatives. */
2727 fixup_alt_jump = b;
2728 GET_BUFFER_SPACE (3);
2729 b += 3;
2730
2731 laststart = 0;
2732 begalt = b;
2733 break;
2734
2735
2736 case '{':
2737 /* If \{ is a literal. */
2738 if (!(syntax & RE_INTERVALS)
2739 /* If we're at `\{' and it's not the open-interval
2740 operator. */
ed0767d8
SM
2741 || (syntax & RE_NO_BK_BRACES)
2742 /* What is that? -sm */
2743 /* || (p - 2 == pattern && p == pend) */)
25fe55af
RS
2744 goto normal_backslash;
2745
2746 handle_interval:
2747 {
2748 /* If got here, then the syntax allows intervals. */
2749
2750 /* At least (most) this many matches must be made. */
99633e97 2751 int lower_bound = 0, upper_bound = -1;
25fe55af 2752
ed0767d8 2753 beg_interval = p;
25fe55af
RS
2754
2755 if (p == pend)
2756 {
2757 if (syntax & RE_NO_BK_BRACES)
2758 goto unfetch_interval;
2759 else
2760 FREE_STACK_RETURN (REG_EBRACE);
2761 }
2762
2763 GET_UNSIGNED_NUMBER (lower_bound);
2764
2765 if (c == ',')
ed0767d8 2766 GET_UNSIGNED_NUMBER (upper_bound);
25fe55af
RS
2767 else
2768 /* Interval such as `{1}' => match exactly once. */
2769 upper_bound = lower_bound;
2770
2771 if (lower_bound < 0 || upper_bound > RE_DUP_MAX
ed0767d8 2772 || (upper_bound >= 0 && lower_bound > upper_bound))
25fe55af
RS
2773 {
2774 if (syntax & RE_NO_BK_BRACES)
2775 goto unfetch_interval;
2776 else
2777 FREE_STACK_RETURN (REG_BADBR);
2778 }
2779
2780 if (!(syntax & RE_NO_BK_BRACES))
2781 {
2782 if (c != '\\') FREE_STACK_RETURN (REG_EBRACE);
2783
2784 PATFETCH (c);
2785 }
2786
2787 if (c != '}')
2788 {
2789 if (syntax & RE_NO_BK_BRACES)
2790 goto unfetch_interval;
2791 else
2792 FREE_STACK_RETURN (REG_BADBR);
2793 }
2794
2795 /* We just parsed a valid interval. */
2796
2797 /* If it's invalid to have no preceding re. */
2798 if (!laststart)
2799 {
2800 if (syntax & RE_CONTEXT_INVALID_OPS)
2801 FREE_STACK_RETURN (REG_BADRPT);
2802 else if (syntax & RE_CONTEXT_INDEP_OPS)
2803 laststart = b;
2804 else
2805 goto unfetch_interval;
2806 }
2807
25fe55af 2808 if (upper_bound == 0)
ed0767d8
SM
2809 /* If the upper bound is zero, just drop the sub pattern
2810 altogether. */
2811 b = laststart;
2812 else if (lower_bound == 1 && upper_bound == 1)
2813 /* Just match it once: nothing to do here. */
2814 ;
25fe55af
RS
2815
2816 /* Otherwise, we have a nontrivial interval. When
2817 we're all done, the pattern will look like:
2818 set_number_at <jump count> <upper bound>
2819 set_number_at <succeed_n count> <lower bound>
2820 succeed_n <after jump addr> <succeed_n count>
2821 <body of loop>
2822 jump_n <succeed_n addr> <jump count>
2823 (The upper bound and `jump_n' are omitted if
2824 `upper_bound' is 1, though.) */
2825 else
2826 { /* If the upper bound is > 1, we need to insert
2827 more at the end of the loop. */
ed0767d8
SM
2828 unsigned int nbytes = (upper_bound < 0 ? 3
2829 : upper_bound > 1 ? 5 : 0);
2830 unsigned int startoffset = 0;
2831
2832 GET_BUFFER_SPACE (20); /* We might use less. */
2833
2834 if (lower_bound == 0)
2835 {
2836 /* A succeed_n that starts with 0 is really a
2837 a simple on_failure_jump_loop. */
2838 INSERT_JUMP (on_failure_jump_loop, laststart,
2839 b + 3 + nbytes);
2840 b += 3;
2841 }
2842 else
2843 {
2844 /* Initialize lower bound of the `succeed_n', even
2845 though it will be set during matching by its
2846 attendant `set_number_at' (inserted next),
2847 because `re_compile_fastmap' needs to know.
2848 Jump to the `jump_n' we might insert below. */
2849 INSERT_JUMP2 (succeed_n, laststart,
2850 b + 5 + nbytes,
2851 lower_bound);
2852 b += 5;
2853
2854 /* Code to initialize the lower bound. Insert
2855 before the `succeed_n'. The `5' is the last two
2856 bytes of this `set_number_at', plus 3 bytes of
2857 the following `succeed_n'. */
2858 insert_op2 (set_number_at, laststart, 5, lower_bound, b);
2859 b += 5;
2860 startoffset += 5;
2861 }
2862
2863 if (upper_bound < 0)
2864 {
2865 /* A negative upper bound stands for infinity,
2866 in which case it degenerates to a plain jump. */
2867 STORE_JUMP (jump, b, laststart + startoffset);
2868 b += 3;
2869 }
2870 else if (upper_bound > 1)
25fe55af
RS
2871 { /* More than one repetition is allowed, so
2872 append a backward jump to the `succeed_n'
2873 that starts this interval.
2874
2875 When we've reached this during matching,
2876 we'll have matched the interval once, so
2877 jump back only `upper_bound - 1' times. */
ed0767d8 2878 STORE_JUMP2 (jump_n, b, laststart + startoffset,
25fe55af
RS
2879 upper_bound - 1);
2880 b += 5;
2881
2882 /* The location we want to set is the second
2883 parameter of the `jump_n'; that is `b-2' as
2884 an absolute address. `laststart' will be
2885 the `set_number_at' we're about to insert;
2886 `laststart+3' the number to set, the source
2887 for the relative address. But we are
2888 inserting into the middle of the pattern --
2889 so everything is getting moved up by 5.
2890 Conclusion: (b - 2) - (laststart + 3) + 5,
2891 i.e., b - laststart.
2892
2893 We insert this at the beginning of the loop
2894 so that if we fail during matching, we'll
2895 reinitialize the bounds. */
2896 insert_op2 (set_number_at, laststart, b - laststart,
2897 upper_bound - 1, b);
2898 b += 5;
2899 }
2900 }
2901 pending_exact = 0;
2902 beg_interval = NULL;
2903 }
2904 break;
2905
2906 unfetch_interval:
2907 /* If an invalid interval, match the characters as literals. */
2908 assert (beg_interval);
2909 p = beg_interval;
2910 beg_interval = NULL;
2911
2912 /* normal_char and normal_backslash need `c'. */
ed0767d8 2913 c = '{';
25fe55af
RS
2914
2915 if (!(syntax & RE_NO_BK_BRACES))
2916 {
ed0767d8
SM
2917 assert (p > pattern && p[-1] == '\\');
2918 goto normal_backslash;
25fe55af 2919 }
ed0767d8
SM
2920 else
2921 goto normal_char;
e318085a 2922
b18215fc 2923#ifdef emacs
25fe55af
RS
2924 /* There is no way to specify the before_dot and after_dot
2925 operators. rms says this is ok. --karl */
2926 case '=':
2927 BUF_PUSH (at_dot);
2928 break;
2929
2930 case 's':
2931 laststart = b;
2932 PATFETCH (c);
2933 BUF_PUSH_2 (syntaxspec, syntax_spec_code[c]);
2934 break;
2935
2936 case 'S':
2937 laststart = b;
2938 PATFETCH (c);
2939 BUF_PUSH_2 (notsyntaxspec, syntax_spec_code[c]);
2940 break;
b18215fc
RS
2941
2942 case 'c':
2943 laststart = b;
2944 PATFETCH_RAW (c);
2945 BUF_PUSH_2 (categoryspec, c);
2946 break;
e318085a 2947
b18215fc
RS
2948 case 'C':
2949 laststart = b;
2950 PATFETCH_RAW (c);
2951 BUF_PUSH_2 (notcategoryspec, c);
2952 break;
2953#endif /* emacs */
e318085a 2954
e318085a 2955
25fe55af
RS
2956 case 'w':
2957 laststart = b;
1fb352e0 2958 BUF_PUSH_2 (syntaxspec, Sword);
25fe55af 2959 break;
e318085a 2960
e318085a 2961
25fe55af
RS
2962 case 'W':
2963 laststart = b;
1fb352e0 2964 BUF_PUSH_2 (notsyntaxspec, Sword);
25fe55af 2965 break;
e318085a
RS
2966
2967
25fe55af
RS
2968 case '<':
2969 BUF_PUSH (wordbeg);
2970 break;
e318085a 2971
25fe55af
RS
2972 case '>':
2973 BUF_PUSH (wordend);
2974 break;
e318085a 2975
25fe55af
RS
2976 case 'b':
2977 BUF_PUSH (wordbound);
2978 break;
e318085a 2979
25fe55af
RS
2980 case 'B':
2981 BUF_PUSH (notwordbound);
2982 break;
fa9a63c5 2983
25fe55af
RS
2984 case '`':
2985 BUF_PUSH (begbuf);
2986 break;
e318085a 2987
25fe55af
RS
2988 case '\'':
2989 BUF_PUSH (endbuf);
2990 break;
e318085a 2991
25fe55af
RS
2992 case '1': case '2': case '3': case '4': case '5':
2993 case '6': case '7': case '8': case '9':
2994 if (syntax & RE_NO_BK_REFS)
2995 goto normal_char;
e318085a 2996
25fe55af 2997 c1 = c - '0';
e318085a 2998
25fe55af
RS
2999 if (c1 > regnum)
3000 FREE_STACK_RETURN (REG_ESUBREG);
e318085a 3001
25fe55af
RS
3002 /* Can't back reference to a subexpression if inside of it. */
3003 if (group_in_compile_stack (compile_stack, c1))
3004 goto normal_char;
e318085a 3005
25fe55af
RS
3006 laststart = b;
3007 BUF_PUSH_2 (duplicate, c1);
3008 break;
e318085a 3009
e318085a 3010
25fe55af
RS
3011 case '+':
3012 case '?':
3013 if (syntax & RE_BK_PLUS_QM)
3014 goto handle_plus;
3015 else
3016 goto normal_backslash;
3017
3018 default:
3019 normal_backslash:
3020 /* You might think it would be useful for \ to mean
3021 not to translate; but if we don't translate it
3022 it will never match anything. */
3023 c = TRANSLATE (c);
3024 goto normal_char;
3025 }
3026 break;
fa9a63c5
RM
3027
3028
3029 default:
25fe55af 3030 /* Expects the character in `c'. */
fa9a63c5
RM
3031 normal_char:
3032 /* If no exactn currently being built. */
25fe55af 3033 if (!pending_exact
fa9a63c5 3034
25fe55af
RS
3035 /* If last exactn not at current position. */
3036 || pending_exact + *pending_exact + 1 != b
5e69f11e 3037
25fe55af 3038 /* We have only one byte following the exactn for the count. */
2d1675e4 3039 || *pending_exact >= (1 << BYTEWIDTH) - MAX_MULTIBYTE_LENGTH
fa9a63c5 3040
25fe55af 3041 /* If followed by a repetition operator. */
9d99031f 3042 || (p != pend && (*p == '*' || *p == '^'))
fa9a63c5 3043 || ((syntax & RE_BK_PLUS_QM)
9d99031f
RS
3044 ? p + 1 < pend && *p == '\\' && (p[1] == '+' || p[1] == '?')
3045 : p != pend && (*p == '+' || *p == '?'))
fa9a63c5 3046 || ((syntax & RE_INTERVALS)
25fe55af 3047 && ((syntax & RE_NO_BK_BRACES)
9d99031f
RS
3048 ? p != pend && *p == '{'
3049 : p + 1 < pend && p[0] == '\\' && p[1] == '{')))
fa9a63c5
RM
3050 {
3051 /* Start building a new exactn. */
5e69f11e 3052
25fe55af 3053 laststart = b;
fa9a63c5
RM
3054
3055 BUF_PUSH_2 (exactn, 0);
3056 pending_exact = b - 1;
25fe55af 3057 }
5e69f11e 3058
2d1675e4
SM
3059 GET_BUFFER_SPACE (MAX_MULTIBYTE_LENGTH);
3060 {
3061 int len = CHAR_STRING (c, b);
3062 b += len;
3063 (*pending_exact) += len;
3064 }
3065
fa9a63c5 3066 break;
25fe55af 3067 } /* switch (c) */
fa9a63c5
RM
3068 } /* while p != pend */
3069
5e69f11e 3070
fa9a63c5 3071 /* Through the pattern now. */
5e69f11e 3072
505bde11 3073 FIXUP_ALT_JUMP ();
fa9a63c5 3074
5e69f11e 3075 if (!COMPILE_STACK_EMPTY)
fa9a63c5
RM
3076 FREE_STACK_RETURN (REG_EPAREN);
3077
3078 /* If we don't want backtracking, force success
3079 the first time we reach the end of the compiled pattern. */
3080 if (syntax & RE_NO_POSIX_BACKTRACKING)
3081 BUF_PUSH (succeed);
3082
3083 free (compile_stack.stack);
3084
3085 /* We have succeeded; set the length of the buffer. */
3086 bufp->used = b - bufp->buffer;
3087
3088#ifdef DEBUG
99633e97 3089 if (debug > 0)
fa9a63c5 3090 {
505bde11 3091 re_compile_fastmap (bufp);
fa9a63c5
RM
3092 DEBUG_PRINT1 ("\nCompiled pattern: \n");
3093 print_compiled_pattern (bufp);
3094 }
99633e97 3095 debug--;
fa9a63c5
RM
3096#endif /* DEBUG */
3097
3098#ifndef MATCH_MAY_ALLOCATE
3099 /* Initialize the failure stack to the largest possible stack. This
3100 isn't necessary unless we're trying to avoid calling alloca in
3101 the search and match routines. */
3102 {
3103 int num_regs = bufp->re_nsub + 1;
3104
320a2a73 3105 if (fail_stack.size < re_max_failures * TYPICAL_FAILURE_SIZE)
fa9a63c5 3106 {
a26f4ccd 3107 fail_stack.size = re_max_failures * TYPICAL_FAILURE_SIZE;
fa9a63c5 3108
fa9a63c5
RM
3109 if (! fail_stack.stack)
3110 fail_stack.stack
5e69f11e 3111 = (fail_stack_elt_t *) malloc (fail_stack.size
fa9a63c5
RM
3112 * sizeof (fail_stack_elt_t));
3113 else
3114 fail_stack.stack
3115 = (fail_stack_elt_t *) realloc (fail_stack.stack,
3116 (fail_stack.size
3117 * sizeof (fail_stack_elt_t)));
fa9a63c5
RM
3118 }
3119
3120 regex_grow_registers (num_regs);
3121 }
3122#endif /* not MATCH_MAY_ALLOCATE */
3123
3124 return REG_NOERROR;
3125} /* regex_compile */
3126\f
3127/* Subroutines for `regex_compile'. */
3128
25fe55af 3129/* Store OP at LOC followed by two-byte integer parameter ARG. */
fa9a63c5
RM
3130
3131static void
3132store_op1 (op, loc, arg)
3133 re_opcode_t op;
3134 unsigned char *loc;
3135 int arg;
3136{
3137 *loc = (unsigned char) op;
3138 STORE_NUMBER (loc + 1, arg);
3139}
3140
3141
3142/* Like `store_op1', but for two two-byte parameters ARG1 and ARG2. */
3143
3144static void
3145store_op2 (op, loc, arg1, arg2)
3146 re_opcode_t op;
3147 unsigned char *loc;
3148 int arg1, arg2;
3149{
3150 *loc = (unsigned char) op;
3151 STORE_NUMBER (loc + 1, arg1);
3152 STORE_NUMBER (loc + 3, arg2);
3153}
3154
3155
3156/* Copy the bytes from LOC to END to open up three bytes of space at LOC
3157 for OP followed by two-byte integer parameter ARG. */
3158
3159static void
3160insert_op1 (op, loc, arg, end)
3161 re_opcode_t op;
3162 unsigned char *loc;
3163 int arg;
5e69f11e 3164 unsigned char *end;
fa9a63c5
RM
3165{
3166 register unsigned char *pfrom = end;
3167 register unsigned char *pto = end + 3;
3168
3169 while (pfrom != loc)
3170 *--pto = *--pfrom;
5e69f11e 3171
fa9a63c5
RM
3172 store_op1 (op, loc, arg);
3173}
3174
3175
3176/* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2. */
3177
3178static void
3179insert_op2 (op, loc, arg1, arg2, end)
3180 re_opcode_t op;
3181 unsigned char *loc;
3182 int arg1, arg2;
5e69f11e 3183 unsigned char *end;
fa9a63c5
RM
3184{
3185 register unsigned char *pfrom = end;
3186 register unsigned char *pto = end + 5;
3187
3188 while (pfrom != loc)
3189 *--pto = *--pfrom;
5e69f11e 3190
fa9a63c5
RM
3191 store_op2 (op, loc, arg1, arg2);
3192}
3193
3194
3195/* P points to just after a ^ in PATTERN. Return true if that ^ comes
3196 after an alternative or a begin-subexpression. We assume there is at
3197 least one character before the ^. */
3198
3199static boolean
3200at_begline_loc_p (pattern, p, syntax)
99633e97 3201 const unsigned char *pattern, *p;
fa9a63c5
RM
3202 reg_syntax_t syntax;
3203{
4e8a9132 3204 const unsigned char *prev = p - 2;
fa9a63c5 3205 boolean prev_prev_backslash = prev > pattern && prev[-1] == '\\';
5e69f11e 3206
fa9a63c5
RM
3207 return
3208 /* After a subexpression? */
3209 (*prev == '(' && (syntax & RE_NO_BK_PARENS || prev_prev_backslash))
25fe55af 3210 /* After an alternative? */
d2af47df
SM
3211 || (*prev == '|' && (syntax & RE_NO_BK_VBAR || prev_prev_backslash))
3212 /* After a shy subexpression? */
3213 || ((syntax & RE_SHY_GROUPS) && prev - 2 >= pattern
3214 && prev[-1] == '?' && prev[-2] == '('
3215 && (syntax & RE_NO_BK_PARENS
3216 || (prev - 3 >= pattern && prev[-3] == '\\')));
fa9a63c5
RM
3217}
3218
3219
3220/* The dual of at_begline_loc_p. This one is for $. We assume there is
3221 at least one character after the $, i.e., `P < PEND'. */
3222
3223static boolean
3224at_endline_loc_p (p, pend, syntax)
99633e97
SM
3225 const unsigned char *p, *pend;
3226 reg_syntax_t syntax;
fa9a63c5 3227{
4e8a9132 3228 const unsigned char *next = p;
fa9a63c5 3229 boolean next_backslash = *next == '\\';
4e8a9132 3230 const unsigned char *next_next = p + 1 < pend ? p + 1 : 0;
5e69f11e 3231
fa9a63c5
RM
3232 return
3233 /* Before a subexpression? */
3234 (syntax & RE_NO_BK_PARENS ? *next == ')'
25fe55af 3235 : next_backslash && next_next && *next_next == ')')
fa9a63c5
RM
3236 /* Before an alternative? */
3237 || (syntax & RE_NO_BK_VBAR ? *next == '|'
25fe55af 3238 : next_backslash && next_next && *next_next == '|');
fa9a63c5
RM
3239}
3240
3241
5e69f11e 3242/* Returns true if REGNUM is in one of COMPILE_STACK's elements and
fa9a63c5
RM
3243 false if it's not. */
3244
3245static boolean
3246group_in_compile_stack (compile_stack, regnum)
3247 compile_stack_type compile_stack;
3248 regnum_t regnum;
3249{
3250 int this_element;
3251
5e69f11e
RM
3252 for (this_element = compile_stack.avail - 1;
3253 this_element >= 0;
fa9a63c5
RM
3254 this_element--)
3255 if (compile_stack.stack[this_element].regnum == regnum)
3256 return true;
3257
3258 return false;
3259}
fa9a63c5 3260\f
f6a3f532
SM
3261/* analyse_first.
3262 If fastmap is non-NULL, go through the pattern and fill fastmap
3263 with all the possible leading chars. If fastmap is NULL, don't
3264 bother filling it up (obviously) and only return whether the
3265 pattern could potentially match the empty string.
3266
3267 Return 1 if p..pend might match the empty string.
3268 Return 0 if p..pend matches at least one char.
3269 Return -1 if p..pend matches at least one char, but fastmap was not
3270 updated accurately.
3271 Return -2 if an error occurred. */
3272
3273static int
3274analyse_first (p, pend, fastmap, multibyte)
3275 unsigned char *p, *pend;
3276 char *fastmap;
3277 const int multibyte;
fa9a63c5 3278{
505bde11 3279 int j, k;
1fb352e0 3280 boolean not;
fa9a63c5
RM
3281#ifdef MATCH_MAY_ALLOCATE
3282 fail_stack_type fail_stack;
3283#endif
3284#ifndef REGEX_MALLOC
3285 char *destination;
3286#endif
5e69f11e 3287
99633e97 3288#if defined (REL_ALLOC) && defined (REGEX_MALLOC)
fa9a63c5
RM
3289 /* This holds the pointer to the failure stack, when
3290 it is allocated relocatably. */
3291 fail_stack_elt_t *failure_stack_ptr;
99633e97 3292#endif
fa9a63c5
RM
3293
3294 /* Assume that each path through the pattern can be null until
25fe55af 3295 proven otherwise. We set this false at the bottom of switch
fa9a63c5
RM
3296 statement, to which we get only if a particular path doesn't
3297 match the empty string. */
3298 boolean path_can_be_null = true;
3299
b18215fc 3300 /* If all elements for base leading-codes in fastmap is set, this
25fe55af 3301 flag is set true. */
b18215fc
RS
3302 boolean match_any_multibyte_characters = false;
3303
f6a3f532 3304 assert (p);
5e69f11e 3305
fa9a63c5 3306 INIT_FAIL_STACK ();
5e69f11e 3307
505bde11
SM
3308 /* The loop below works as follows:
3309 - It has a working-list kept in the PATTERN_STACK and which basically
3310 starts by only containing a pointer to the first operation.
3311 - If the opcode we're looking at is a match against some set of
3312 chars, then we add those chars to the fastmap and go on to the
3313 next work element from the worklist (done via `break').
3314 - If the opcode is a control operator on the other hand, we either
3315 ignore it (if it's meaningless at this point, such as `start_memory')
3316 or execute it (if it's a jump). If the jump has several destinations
3317 (i.e. `on_failure_jump'), then we push the other destination onto the
3318 worklist.
3319 We guarantee termination by ignoring backward jumps (more or less),
3320 so that `p' is monotonically increasing. More to the point, we
3321 never set `p' (or push) anything `<= p1'. */
3322
3323 /* If can_be_null is set, then the fastmap will not be used anyway. */
f6a3f532 3324 while (1)
fa9a63c5 3325 {
505bde11
SM
3326 /* `p1' is used as a marker of how far back a `on_failure_jump'
3327 can go without being ignored. It is normally equal to `p'
3328 (which prevents any backward `on_failure_jump') except right
3329 after a plain `jump', to allow patterns such as:
3330 0: jump 10
3331 3..9: <body>
3332 10: on_failure_jump 3
3333 as used for the *? operator. */
3334 unsigned char *p1 = p;
3335
f6a3f532 3336 if (p >= pend)
fa9a63c5 3337 {
f6a3f532
SM
3338 if (path_can_be_null)
3339 return (RESET_FAIL_STACK (), 1);
fa9a63c5 3340
f6a3f532
SM
3341 /* We have reached the (effective) end of pattern. */
3342 if (PATTERN_STACK_EMPTY ())
3343 return (RESET_FAIL_STACK (), 0);
fa9a63c5 3344
f6a3f532
SM
3345 p = (unsigned char*) POP_PATTERN_OP ();
3346 path_can_be_null = true;
3347 continue;
fa9a63c5
RM
3348 }
3349
25fe55af 3350 /* We should never be about to go beyond the end of the pattern. */
fa9a63c5 3351 assert (p < pend);
5e69f11e 3352
fa9a63c5
RM
3353 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
3354 {
f6a3f532
SM
3355 case succeed:
3356 p = pend;
3357 continue;
fa9a63c5 3358
fa9a63c5 3359 case duplicate:
505bde11
SM
3360 /* If the first character has to match a backreference, that means
3361 that the group was empty (since it already matched). Since this
3362 is the only case that interests us here, we can assume that the
3363 backreference must match the empty string. */
3364 p++;
3365 continue;
fa9a63c5
RM
3366
3367
3368 /* Following are the cases which match a character. These end
25fe55af 3369 with `break'. */
fa9a63c5
RM
3370
3371 case exactn:
f6a3f532 3372 if (fastmap) fastmap[p[1]] = 1;
fa9a63c5
RM
3373 break;
3374
3375
1fb352e0
SM
3376 case anychar:
3377 /* We could put all the chars except for \n (and maybe \0)
3378 but we don't bother since it is generally not worth it. */
f6a3f532
SM
3379 if (!fastmap) break;
3380 return (RESET_FAIL_STACK (), -1);
fa9a63c5
RM
3381
3382
b18215fc 3383 case charset_not:
ba5c004d
RS
3384 /* Chars beyond end of bitmap are possible matches.
3385 All the single-byte codes can occur in multibyte buffers.
3386 So any that are not listed in the charset
3387 are possible matches, even in multibyte buffers. */
1fb352e0 3388 if (!fastmap) break;
b18215fc 3389 for (j = CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH;
1fb352e0 3390 j < (1 << BYTEWIDTH); j++)
b18215fc 3391 fastmap[j] = 1;
1fb352e0
SM
3392 /* Fallthrough */
3393 case charset:
3394 if (!fastmap) break;
3395 not = (re_opcode_t) *(p - 1) == charset_not;
b18215fc
RS
3396 for (j = CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH - 1, p++;
3397 j >= 0; j--)
1fb352e0 3398 if (!!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))) ^ not)
b18215fc
RS
3399 fastmap[j] = 1;
3400
1fb352e0
SM
3401 if ((not && multibyte)
3402 /* Any character set can possibly contain a character
3403 which doesn't match the specified set of characters. */
3404 || (CHARSET_RANGE_TABLE_EXISTS_P (&p[-2])
3405 && CHARSET_RANGE_TABLE_BITS (&p[-2]) != 0))
3406 /* If we can match a character class, we can match
3407 any character set. */
b18215fc
RS
3408 {
3409 set_fastmap_for_multibyte_characters:
3410 if (match_any_multibyte_characters == false)
3411 {
3412 for (j = 0x80; j < 0xA0; j++) /* XXX */
3413 if (BASE_LEADING_CODE_P (j))
3414 fastmap[j] = 1;
3415 match_any_multibyte_characters = true;
3416 }
3417 }
b18215fc 3418
1fb352e0
SM
3419 else if (!not && CHARSET_RANGE_TABLE_EXISTS_P (&p[-2])
3420 && match_any_multibyte_characters == false)
3421 {
3422 /* Set fastmap[I] 1 where I is a base leading code of each
3423 multibyte character in the range table. */
3424 int c, count;
b18215fc 3425
1fb352e0
SM
3426 /* Make P points the range table. `+ 2' is to skip flag
3427 bits for a character class. */
3428 p += CHARSET_BITMAP_SIZE (&p[-2]) + 2;
b18215fc 3429
1fb352e0
SM
3430 /* Extract the number of ranges in range table into COUNT. */
3431 EXTRACT_NUMBER_AND_INCR (count, p);
3432 for (; count > 0; count--, p += 2 * 3) /* XXX */
3433 {
3434 /* Extract the start of each range. */
3435 EXTRACT_CHARACTER (c, p);
3436 j = CHAR_CHARSET (c);
3437 fastmap[CHARSET_LEADING_CODE_BASE (j)] = 1;
3438 }
3439 }
b18215fc
RS
3440 break;
3441
1fb352e0
SM
3442 case syntaxspec:
3443 case notsyntaxspec:
3444 if (!fastmap) break;
3445#ifndef emacs
3446 not = (re_opcode_t)p[-1] == notsyntaxspec;
3447 k = *p++;
3448 for (j = 0; j < (1 << BYTEWIDTH); j++)
990b2375 3449 if ((SYNTAX (j) == (enum syntaxcode) k) ^ not)
b18215fc 3450 fastmap[j] = 1;
b18215fc 3451 break;
1fb352e0 3452#else /* emacs */
b18215fc
RS
3453 /* This match depends on text properties. These end with
3454 aborting optimizations. */
f6a3f532 3455 return (RESET_FAIL_STACK (), -1);
b18215fc
RS
3456
3457 case categoryspec:
b18215fc 3458 case notcategoryspec:
1fb352e0
SM
3459 if (!fastmap) break;
3460 not = (re_opcode_t)p[-1] == notcategoryspec;
b18215fc 3461 k = *p++;
1fb352e0
SM
3462 for (j = 0; j < (1 << BYTEWIDTH); j++)
3463 if ((CHAR_HAS_CATEGORY (j, k)) ^ not)
b18215fc
RS
3464 fastmap[j] = 1;
3465
1fb352e0 3466 if (multibyte)
b18215fc 3467 /* Any character set can possibly contain a character
1fb352e0 3468 whose category is K (or not). */
b18215fc
RS
3469 goto set_fastmap_for_multibyte_characters;
3470 break;
3471
fa9a63c5 3472 /* All cases after this match the empty string. These end with
25fe55af 3473 `continue'. */
fa9a63c5 3474
fa9a63c5
RM
3475 case before_dot:
3476 case at_dot:
3477 case after_dot:
1fb352e0 3478#endif /* !emacs */
25fe55af
RS
3479 case no_op:
3480 case begline:
3481 case endline:
fa9a63c5
RM
3482 case begbuf:
3483 case endbuf:
3484 case wordbound:
3485 case notwordbound:
3486 case wordbeg:
3487 case wordend:
25fe55af 3488 continue;
fa9a63c5
RM
3489
3490
fa9a63c5 3491 case jump:
25fe55af 3492 EXTRACT_NUMBER_AND_INCR (j, p);
505bde11
SM
3493 if (j < 0)
3494 /* Backward jumps can only go back to code that we've already
3495 visited. `re_compile' should make sure this is true. */
3496 break;
25fe55af 3497 p += j;
505bde11
SM
3498 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p))
3499 {
3500 case on_failure_jump:
3501 case on_failure_keep_string_jump:
505bde11 3502 case on_failure_jump_loop:
0683b6fa 3503 case on_failure_jump_nastyloop:
505bde11
SM
3504 case on_failure_jump_smart:
3505 p++;
3506 break;
3507 default:
3508 continue;
3509 };
3510 /* Keep `p1' to allow the `on_failure_jump' we are jumping to
3511 to jump back to "just after here". */
3512 /* Fallthrough */
fa9a63c5 3513
25fe55af
RS
3514 case on_failure_jump:
3515 case on_failure_keep_string_jump:
0683b6fa 3516 case on_failure_jump_nastyloop:
505bde11
SM
3517 case on_failure_jump_loop:
3518 case on_failure_jump_smart:
25fe55af 3519 EXTRACT_NUMBER_AND_INCR (j, p);
505bde11 3520 if (p + j <= p1)
ed0767d8
SM
3521 ; /* Backward jump to be ignored. */
3522 else if (!PUSH_PATTERN_OP (p + j, fail_stack))
3523 return (RESET_FAIL_STACK (), -2);
25fe55af 3524 continue;
fa9a63c5
RM
3525
3526
ed0767d8
SM
3527 case jump_n:
3528 /* This code simply does not properly handle forward jump_n. */
3529 DEBUG_STATEMENT (EXTRACT_NUMBER (j, p); assert (j < 0));
3530 p += 4;
3531 /* jump_n can either jump or fall through. The (backward) jump
3532 case has already been handled, so we only need to look at the
3533 fallthrough case. */
3534 continue;
3535
fa9a63c5 3536 case succeed_n:
ed0767d8
SM
3537 /* If N == 0, it should be an on_failure_jump_loop instead. */
3538 DEBUG_STATEMENT (EXTRACT_NUMBER (j, p + 2); assert (j > 0));
3539 p += 4;
3540 /* We only care about one iteration of the loop, so we don't
3541 need to consider the case where this behaves like an
3542 on_failure_jump. */
25fe55af 3543 continue;
fa9a63c5
RM
3544
3545
3546 case set_number_at:
25fe55af
RS
3547 p += 4;
3548 continue;
fa9a63c5
RM
3549
3550
3551 case start_memory:
25fe55af 3552 case stop_memory:
505bde11 3553 p += 1;
fa9a63c5
RM
3554 continue;
3555
3556
3557 default:
25fe55af
RS
3558 abort (); /* We have listed all the cases. */
3559 } /* switch *p++ */
fa9a63c5
RM
3560
3561 /* Getting here means we have found the possible starting
25fe55af
RS
3562 characters for one path of the pattern -- and that the empty
3563 string does not match. We need not follow this path further.
3564 Instead, look at the next alternative (remembered on the
3565 stack), or quit if no more. The test at the top of the loop
3566 does these things. */
fa9a63c5
RM
3567 path_can_be_null = false;
3568 p = pend;
3569 } /* while p */
3570
f6a3f532
SM
3571 return (RESET_FAIL_STACK (), 0);
3572} /* analyse_first */
3573\f
3574/* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
3575 BUFP. A fastmap records which of the (1 << BYTEWIDTH) possible
3576 characters can start a string that matches the pattern. This fastmap
3577 is used by re_search to skip quickly over impossible starting points.
3578
3579 Character codes above (1 << BYTEWIDTH) are not represented in the
3580 fastmap, but the leading codes are represented. Thus, the fastmap
3581 indicates which character sets could start a match.
3582
3583 The caller must supply the address of a (1 << BYTEWIDTH)-byte data
3584 area as BUFP->fastmap.
3585
3586 We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
3587 the pattern buffer.
3588
3589 Returns 0 if we succeed, -2 if an internal error. */
3590
3591int
3592re_compile_fastmap (bufp)
3593 struct re_pattern_buffer *bufp;
3594{
3595 char *fastmap = bufp->fastmap;
3596 int analysis;
3597
3598 assert (fastmap && bufp->buffer);
3599
3600 bzero (fastmap, 1 << BYTEWIDTH); /* Assume nothing's valid. */
3601 bufp->fastmap_accurate = 1; /* It will be when we're done. */
3602
3603 analysis = analyse_first (bufp->buffer, bufp->buffer + bufp->used,
2d1675e4 3604 fastmap, RE_MULTIBYTE_P (bufp));
f6a3f532
SM
3605 if (analysis < -1)
3606 return analysis;
3607 bufp->can_be_null = (analysis != 0);
fa9a63c5
RM
3608 return 0;
3609} /* re_compile_fastmap */
3610\f
3611/* Set REGS to hold NUM_REGS registers, storing them in STARTS and
3612 ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use
3613 this memory for recording register information. STARTS and ENDS
3614 must be allocated using the malloc library routine, and must each
3615 be at least NUM_REGS * sizeof (regoff_t) bytes long.
3616
3617 If NUM_REGS == 0, then subsequent matches should allocate their own
3618 register data.
3619
3620 Unless this function is called, the first search or match using
3621 PATTERN_BUFFER will allocate its own register data, without
3622 freeing the old data. */
3623
3624void
3625re_set_registers (bufp, regs, num_regs, starts, ends)
3626 struct re_pattern_buffer *bufp;
3627 struct re_registers *regs;
3628 unsigned num_regs;
3629 regoff_t *starts, *ends;
3630{
3631 if (num_regs)
3632 {
3633 bufp->regs_allocated = REGS_REALLOCATE;
3634 regs->num_regs = num_regs;
3635 regs->start = starts;
3636 regs->end = ends;
3637 }
3638 else
3639 {
3640 bufp->regs_allocated = REGS_UNALLOCATED;
3641 regs->num_regs = 0;
3642 regs->start = regs->end = (regoff_t *) 0;
3643 }
3644}
3645\f
25fe55af 3646/* Searching routines. */
fa9a63c5
RM
3647
3648/* Like re_search_2, below, but only one string is specified, and
3649 doesn't let you say where to stop matching. */
3650
3651int
3652re_search (bufp, string, size, startpos, range, regs)
3653 struct re_pattern_buffer *bufp;
3654 const char *string;
3655 int size, startpos, range;
3656 struct re_registers *regs;
3657{
5e69f11e 3658 return re_search_2 (bufp, NULL, 0, string, size, startpos, range,
fa9a63c5
RM
3659 regs, size);
3660}
3661
b18215fc
RS
3662/* End address of virtual concatenation of string. */
3663#define STOP_ADDR_VSTRING(P) \
3664 (((P) >= size1 ? string2 + size2 : string1 + size1))
3665
3666/* Address of POS in the concatenation of virtual string. */
3667#define POS_ADDR_VSTRING(POS) \
3668 (((POS) >= size1 ? string2 - size1 : string1) + (POS))
fa9a63c5
RM
3669
3670/* Using the compiled pattern in BUFP->buffer, first tries to match the
3671 virtual concatenation of STRING1 and STRING2, starting first at index
3672 STARTPOS, then at STARTPOS + 1, and so on.
5e69f11e 3673
fa9a63c5 3674 STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
5e69f11e 3675
fa9a63c5
RM
3676 RANGE is how far to scan while trying to match. RANGE = 0 means try
3677 only at STARTPOS; in general, the last start tried is STARTPOS +
3678 RANGE.
5e69f11e 3679
fa9a63c5
RM
3680 In REGS, return the indices of the virtual concatenation of STRING1
3681 and STRING2 that matched the entire BUFP->buffer and its contained
3682 subexpressions.
5e69f11e 3683
fa9a63c5
RM
3684 Do not consider matching one past the index STOP in the virtual
3685 concatenation of STRING1 and STRING2.
3686
3687 We return either the position in the strings at which the match was
3688 found, -1 if no match, or -2 if error (such as failure
3689 stack overflow). */
3690
3691int
66f0296e 3692re_search_2 (bufp, str1, size1, str2, size2, startpos, range, regs, stop)
fa9a63c5 3693 struct re_pattern_buffer *bufp;
66f0296e 3694 const char *str1, *str2;
fa9a63c5
RM
3695 int size1, size2;
3696 int startpos;
3697 int range;
3698 struct re_registers *regs;
3699 int stop;
3700{
3701 int val;
66f0296e
SM
3702 re_char *string1 = (re_char*) str1;
3703 re_char *string2 = (re_char*) str2;
fa9a63c5 3704 register char *fastmap = bufp->fastmap;
6676cb1c 3705 register RE_TRANSLATE_TYPE translate = bufp->translate;
fa9a63c5
RM
3706 int total_size = size1 + size2;
3707 int endpos = startpos + range;
c8499ba5 3708 int anchored_start = 0;
fa9a63c5 3709
25fe55af 3710 /* Nonzero if we have to concern multibyte character. */
2d1675e4 3711 const boolean multibyte = RE_MULTIBYTE_P (bufp);
b18215fc 3712
fa9a63c5
RM
3713 /* Check for out-of-range STARTPOS. */
3714 if (startpos < 0 || startpos > total_size)
3715 return -1;
5e69f11e 3716
fa9a63c5 3717 /* Fix up RANGE if it might eventually take us outside
34597fa9 3718 the virtual concatenation of STRING1 and STRING2.
5e69f11e 3719 Make sure we won't move STARTPOS below 0 or above TOTAL_SIZE. */
34597fa9
RS
3720 if (endpos < 0)
3721 range = 0 - startpos;
fa9a63c5
RM
3722 else if (endpos > total_size)
3723 range = total_size - startpos;
3724
3725 /* If the search isn't to be a backwards one, don't waste time in a
7b140fd7 3726 search for a pattern anchored at beginning of buffer. */
fa9a63c5
RM
3727 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == begbuf && range > 0)
3728 {
3729 if (startpos > 0)
3730 return -1;
3731 else
7b140fd7 3732 range = 0;
fa9a63c5
RM
3733 }
3734
ae4788a8
RS
3735#ifdef emacs
3736 /* In a forward search for something that starts with \=.
3737 don't keep searching past point. */
3738 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == at_dot && range > 0)
3739 {
7b140fd7
RS
3740 range = PT_BYTE - BEGV_BYTE - startpos;
3741 if (range < 0)
ae4788a8
RS
3742 return -1;
3743 }
3744#endif /* emacs */
3745
fa9a63c5
RM
3746 /* Update the fastmap now if not correct already. */
3747 if (fastmap && !bufp->fastmap_accurate)
3748 if (re_compile_fastmap (bufp) == -2)
3749 return -2;
5e69f11e 3750
c8499ba5
RS
3751 /* See whether the pattern is anchored. */
3752 if (bufp->buffer[0] == begline)
3753 anchored_start = 1;
3754
b18215fc 3755#ifdef emacs
cc9b4df2
KH
3756 gl_state.object = re_match_object;
3757 {
99633e97 3758 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (POS_AS_IN_BUFFER (startpos));
cc9b4df2
KH
3759
3760 SETUP_SYNTAX_TABLE_FOR_OBJECT (re_match_object, charpos, 1);
3761 }
b18215fc
RS
3762#endif
3763
fa9a63c5
RM
3764 /* Loop through the string, looking for a place to start matching. */
3765 for (;;)
5e69f11e 3766 {
c8499ba5
RS
3767 /* If the pattern is anchored,
3768 skip quickly past places we cannot match.
3769 We don't bother to treat startpos == 0 specially
3770 because that case doesn't repeat. */
3771 if (anchored_start && startpos > 0)
3772 {
3773 if (! (bufp->newline_anchor
3774 && ((startpos <= size1 ? string1[startpos - 1]
3775 : string2[startpos - size1 - 1])
3776 == '\n')))
3777 goto advance;
3778 }
3779
fa9a63c5 3780 /* If a fastmap is supplied, skip quickly over characters that
25fe55af
RS
3781 cannot be the start of a match. If the pattern can match the
3782 null string, however, we don't need to skip characters; we want
3783 the first null string. */
fa9a63c5
RM
3784 if (fastmap && startpos < total_size && !bufp->can_be_null)
3785 {
66f0296e 3786 register re_char *d;
e934739e
RS
3787 register unsigned int buf_ch;
3788
3789 d = POS_ADDR_VSTRING (startpos);
3790
25fe55af 3791 if (range > 0) /* Searching forwards. */
fa9a63c5 3792 {
fa9a63c5
RM
3793 register int lim = 0;
3794 int irange = range;
3795
25fe55af
RS
3796 if (startpos < size1 && startpos + range >= size1)
3797 lim = range - (size1 - startpos);
fa9a63c5 3798
25fe55af
RS
3799 /* Written out as an if-else to avoid testing `translate'
3800 inside the loop. */
28ae27ae
AS
3801 if (RE_TRANSLATE_P (translate))
3802 {
e934739e
RS
3803 if (multibyte)
3804 while (range > lim)
3805 {
3806 int buf_charlen;
3807
3808 buf_ch = STRING_CHAR_AND_LENGTH (d, range - lim,
3809 buf_charlen);
3810
3811 buf_ch = RE_TRANSLATE (translate, buf_ch);
3812 if (buf_ch >= 0400
3813 || fastmap[buf_ch])
3814 break;
3815
3816 range -= buf_charlen;
3817 d += buf_charlen;
3818 }
3819 else
3820 while (range > lim
66f0296e 3821 && !fastmap[RE_TRANSLATE (translate, *d)])
33c46939
RS
3822 {
3823 d++;
3824 range--;
3825 }
e934739e 3826 }
fa9a63c5 3827 else
66f0296e 3828 while (range > lim && !fastmap[*d])
33c46939
RS
3829 {
3830 d++;
3831 range--;
3832 }
fa9a63c5
RM
3833
3834 startpos += irange - range;
3835 }
25fe55af 3836 else /* Searching backwards. */
fa9a63c5 3837 {
2d1675e4
SM
3838 int room = (startpos >= size1
3839 ? size2 + size1 - startpos
3840 : size1 - startpos);
3841 buf_ch = RE_STRING_CHAR (d, room);
3842 buf_ch = TRANSLATE (buf_ch);
fa9a63c5 3843
e934739e
RS
3844 if (! (buf_ch >= 0400
3845 || fastmap[buf_ch]))
fa9a63c5
RM
3846 goto advance;
3847 }
3848 }
3849
3850 /* If can't match the null string, and that's all we have left, fail. */
3851 if (range >= 0 && startpos == total_size && fastmap
25fe55af 3852 && !bufp->can_be_null)
fa9a63c5
RM
3853 return -1;
3854
3855 val = re_match_2_internal (bufp, string1, size1, string2, size2,
3856 startpos, regs, stop);
3857#ifndef REGEX_MALLOC
3858#ifdef C_ALLOCA
3859 alloca (0);
3860#endif
3861#endif
3862
3863 if (val >= 0)
3864 return startpos;
5e69f11e 3865
fa9a63c5
RM
3866 if (val == -2)
3867 return -2;
3868
3869 advance:
5e69f11e 3870 if (!range)
25fe55af 3871 break;
5e69f11e 3872 else if (range > 0)
25fe55af 3873 {
b18215fc
RS
3874 /* Update STARTPOS to the next character boundary. */
3875 if (multibyte)
3876 {
66f0296e
SM
3877 re_char *p = POS_ADDR_VSTRING (startpos);
3878 re_char *pend = STOP_ADDR_VSTRING (startpos);
b18215fc
RS
3879 int len = MULTIBYTE_FORM_LENGTH (p, pend - p);
3880
3881 range -= len;
3882 if (range < 0)
3883 break;
3884 startpos += len;
3885 }
3886 else
3887 {
b560c397
RS
3888 range--;
3889 startpos++;
3890 }
e318085a 3891 }
fa9a63c5 3892 else
25fe55af
RS
3893 {
3894 range++;
3895 startpos--;
b18215fc
RS
3896
3897 /* Update STARTPOS to the previous character boundary. */
3898 if (multibyte)
3899 {
66f0296e 3900 re_char *p = POS_ADDR_VSTRING (startpos);
b18215fc
RS
3901 int len = 0;
3902
3903 /* Find the head of multibyte form. */
5d967c7a 3904 while (!CHAR_HEAD_P (*p))
b18215fc
RS
3905 p--, len++;
3906
3907 /* Adjust it. */
3908#if 0 /* XXX */
3909 if (MULTIBYTE_FORM_LENGTH (p, len + 1) != (len + 1))
3910 ;
3911 else
3912#endif
3913 {
3914 range += len;
3915 if (range > 0)
3916 break;
3917
3918 startpos -= len;
3919 }
3920 }
25fe55af 3921 }
fa9a63c5
RM
3922 }
3923 return -1;
3924} /* re_search_2 */
3925\f
3926/* Declarations and macros for re_match_2. */
3927
2d1675e4
SM
3928static int bcmp_translate _RE_ARGS((re_char *s1, re_char *s2,
3929 register int len,
3930 RE_TRANSLATE_TYPE translate,
3931 const int multibyte));
fa9a63c5
RM
3932
3933/* This converts PTR, a pointer into one of the search strings `string1'
3934 and `string2' into an offset from the beginning of that string. */
3935#define POINTER_TO_OFFSET(ptr) \
3936 (FIRST_STRING_P (ptr) \
3937 ? ((regoff_t) ((ptr) - string1)) \
3938 : ((regoff_t) ((ptr) - string2 + size1)))
3939
fa9a63c5 3940/* Call before fetching a character with *d. This switches over to
419d1c74
SM
3941 string2 if necessary.
3942 Check re_match_2_internal for a discussion of why end_match_2 might
3943 not be within string2 (but be equal to end_match_1 instead). */
fa9a63c5 3944#define PREFETCH() \
25fe55af 3945 while (d == dend) \
fa9a63c5
RM
3946 { \
3947 /* End of string2 => fail. */ \
25fe55af
RS
3948 if (dend == end_match_2) \
3949 goto fail; \
3950 /* End of string1 => advance to string2. */ \
3951 d = string2; \
fa9a63c5
RM
3952 dend = end_match_2; \
3953 }
3954
3955
3956/* Test if at very beginning or at very end of the virtual concatenation
25fe55af 3957 of `string1' and `string2'. If only one string, it's `string2'. */
fa9a63c5 3958#define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
5e69f11e 3959#define AT_STRINGS_END(d) ((d) == end2)
fa9a63c5
RM
3960
3961
3962/* Test if D points to a character which is word-constituent. We have
3963 two special cases to check for: if past the end of string1, look at
3964 the first character in string2; and if before the beginning of
3965 string2, look at the last character in string1. */
3966#define WORDCHAR_P(d) \
3967 (SYNTAX ((d) == end1 ? *string2 \
25fe55af 3968 : (d) == string2 - 1 ? *(end1 - 1) : *(d)) \
fa9a63c5
RM
3969 == Sword)
3970
9121ca40 3971/* Disabled due to a compiler bug -- see comment at case wordbound */
b18215fc
RS
3972
3973/* The comment at case wordbound is following one, but we don't use
3974 AT_WORD_BOUNDARY anymore to support multibyte form.
3975
3976 The DEC Alpha C compiler 3.x generates incorrect code for the
25fe55af
RS
3977 test WORDCHAR_P (d - 1) != WORDCHAR_P (d) in the expansion of
3978 AT_WORD_BOUNDARY, so this code is disabled. Expanding the
b18215fc
RS
3979 macro and introducing temporary variables works around the bug. */
3980
9121ca40 3981#if 0
fa9a63c5
RM
3982/* Test if the character before D and the one at D differ with respect
3983 to being word-constituent. */
3984#define AT_WORD_BOUNDARY(d) \
3985 (AT_STRINGS_BEG (d) || AT_STRINGS_END (d) \
3986 || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
9121ca40 3987#endif
fa9a63c5
RM
3988
3989/* Free everything we malloc. */
3990#ifdef MATCH_MAY_ALLOCATE
00049484 3991#define FREE_VAR(var) if (var) { REGEX_FREE (var); var = NULL; } else
fa9a63c5
RM
3992#define FREE_VARIABLES() \
3993 do { \
3994 REGEX_FREE_STACK (fail_stack.stack); \
3995 FREE_VAR (regstart); \
3996 FREE_VAR (regend); \
fa9a63c5
RM
3997 FREE_VAR (best_regstart); \
3998 FREE_VAR (best_regend); \
fa9a63c5
RM
3999 } while (0)
4000#else
4001#define FREE_VARIABLES() ((void)0) /* Do nothing! But inhibit gcc warning. */
4002#endif /* not MATCH_MAY_ALLOCATE */
4003
505bde11
SM
4004\f
4005/* Optimization routines. */
4006
4e8a9132
SM
4007/* If the operation is a match against one or more chars,
4008 return a pointer to the next operation, else return NULL. */
4009static unsigned char *
4010skip_one_char (p)
4011 unsigned char *p;
4012{
4013 switch (SWITCH_ENUM_CAST (*p++))
4014 {
4015 case anychar:
4016 break;
4017
4018 case exactn:
4019 p += *p + 1;
4020 break;
4021
4022 case charset_not:
4023 case charset:
4024 if (CHARSET_RANGE_TABLE_EXISTS_P (p - 1))
4025 {
4026 int mcnt;
4027 p = CHARSET_RANGE_TABLE (p - 1);
4028 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4029 p = CHARSET_RANGE_TABLE_END (p, mcnt);
4030 }
4031 else
4032 p += 1 + CHARSET_BITMAP_SIZE (p - 1);
4033 break;
4034
4e8a9132
SM
4035 case syntaxspec:
4036 case notsyntaxspec:
1fb352e0 4037#ifdef emacs
4e8a9132
SM
4038 case categoryspec:
4039 case notcategoryspec:
4040#endif /* emacs */
4041 p++;
4042 break;
4043
4044 default:
4045 p = NULL;
4046 }
4047 return p;
4048}
4049
4050
505bde11
SM
4051/* Jump over non-matching operations. */
4052static unsigned char *
4e8a9132 4053skip_noops (p, pend)
505bde11 4054 unsigned char *p, *pend;
505bde11
SM
4055{
4056 int mcnt;
4057 while (p < pend)
4058 {
4059 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p))
4060 {
4061 case start_memory:
505bde11
SM
4062 case stop_memory:
4063 p += 2; break;
4064 case no_op:
4065 p += 1; break;
4066 case jump:
4067 p += 1;
4068 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4069 p += mcnt;
4070 break;
4071 default:
4072 return p;
4073 }
4074 }
4075 assert (p == pend);
4076 return p;
4077}
4078
4079/* Non-zero if "p1 matches something" implies "p2 fails". */
4080static int
4081mutually_exclusive_p (bufp, p1, p2)
4082 struct re_pattern_buffer *bufp;
4083 unsigned char *p1, *p2;
4084{
4e8a9132 4085 re_opcode_t op2;
2d1675e4 4086 const boolean multibyte = RE_MULTIBYTE_P (bufp);
505bde11
SM
4087 unsigned char *pend = bufp->buffer + bufp->used;
4088
4e8a9132 4089 assert (p1 >= bufp->buffer && p1 < pend
505bde11
SM
4090 && p2 >= bufp->buffer && p2 <= pend);
4091
4092 /* Skip over open/close-group commands.
4093 If what follows this loop is a ...+ construct,
4094 look at what begins its body, since we will have to
4095 match at least one of that. */
4e8a9132
SM
4096 p2 = skip_noops (p2, pend);
4097 /* The same skip can be done for p1, except that this function
4098 is only used in the case where p1 is a simple match operator. */
4099 /* p1 = skip_noops (p1, pend); */
4100
4101 assert (p1 >= bufp->buffer && p1 < pend
4102 && p2 >= bufp->buffer && p2 <= pend);
4103
4104 op2 = p2 == pend ? succeed : *p2;
4105
4106 switch (SWITCH_ENUM_CAST (op2))
505bde11 4107 {
4e8a9132
SM
4108 case succeed:
4109 case endbuf:
4110 /* If we're at the end of the pattern, we can change. */
4111 if (skip_one_char (p1))
505bde11 4112 {
505bde11
SM
4113 DEBUG_PRINT1 (" End of pattern: fast loop.\n");
4114 return 1;
505bde11 4115 }
4e8a9132
SM
4116 break;
4117
4118 case endline:
4119 if (!bufp->newline_anchor)
4120 break;
4121 /* Fallthrough */
4122 case exactn:
4123 {
4124 register unsigned int c
4125 = (re_opcode_t) *p2 == endline ? '\n'
4126 : RE_STRING_CHAR(p2 + 2, pend - p2 - 2);
505bde11 4127
4e8a9132
SM
4128 if ((re_opcode_t) *p1 == exactn)
4129 {
4130 if (c != RE_STRING_CHAR (p1 + 2, pend - p1 - 2))
4131 {
4132 DEBUG_PRINT3 (" '%c' != '%c' => fast loop.\n", c, p1[2]);
4133 return 1;
4134 }
4135 }
505bde11 4136
4e8a9132
SM
4137 else if ((re_opcode_t) *p1 == charset
4138 || (re_opcode_t) *p1 == charset_not)
4139 {
4140 int not = (re_opcode_t) *p1 == charset_not;
505bde11 4141
4e8a9132
SM
4142 /* Test if C is listed in charset (or charset_not)
4143 at `p1'. */
4144 if (SINGLE_BYTE_CHAR_P (c))
4145 {
4146 if (c < CHARSET_BITMAP_SIZE (p1) * BYTEWIDTH
4147 && p1[2 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
4148 not = !not;
4149 }
4150 else if (CHARSET_RANGE_TABLE_EXISTS_P (p1))
4151 CHARSET_LOOKUP_RANGE_TABLE (not, c, p1);
505bde11 4152
4e8a9132
SM
4153 /* `not' is equal to 1 if c would match, which means
4154 that we can't change to pop_failure_jump. */
4155 if (!not)
4156 {
4157 DEBUG_PRINT1 (" No match => fast loop.\n");
4158 return 1;
4159 }
4160 }
4161 else if ((re_opcode_t) *p1 == anychar
4162 && c == '\n')
4163 {
4164 DEBUG_PRINT1 (" . != \\n => fast loop.\n");
4165 return 1;
4166 }
4167 }
4168 break;
505bde11 4169
4e8a9132
SM
4170 case charset:
4171 case charset_not:
4172 {
4173 if ((re_opcode_t) *p1 == exactn)
4174 /* Reuse the code above. */
4175 return mutually_exclusive_p (bufp, p2, p1);
505bde11
SM
4176
4177
4178 /* It is hard to list up all the character in charset
4179 P2 if it includes multibyte character. Give up in
4180 such case. */
4181 else if (!multibyte || !CHARSET_RANGE_TABLE_EXISTS_P (p2))
4182 {
4183 /* Now, we are sure that P2 has no range table.
4184 So, for the size of bitmap in P2, `p2[1]' is
4185 enough. But P1 may have range table, so the
4186 size of bitmap table of P1 is extracted by
4187 using macro `CHARSET_BITMAP_SIZE'.
4188
4189 Since we know that all the character listed in
4190 P2 is ASCII, it is enough to test only bitmap
4191 table of P1. */
4192
4193 if (*p1 == *p2)
4194 {
4195 int idx;
4196 /* We win if the charset inside the loop
4197 has no overlap with the one after the loop. */
4198 for (idx = 0;
4199 (idx < (int) p2[1]
4200 && idx < CHARSET_BITMAP_SIZE (p1));
4201 idx++)
4202 if ((p2[2 + idx] & p1[2 + idx]) != 0)
4203 break;
4204
4205 if (idx == p2[1]
4206 || idx == CHARSET_BITMAP_SIZE (p1))
4207 {
4208 DEBUG_PRINT1 (" No match => fast loop.\n");
4209 return 1;
4210 }
4211 }
4212 else if ((re_opcode_t) *p1 == charset
4213 || (re_opcode_t) *p1 == charset_not)
4214 {
4215 int idx;
4216 /* We win if the charset_not inside the loop lists
4217 every character listed in the charset after. */
4218 for (idx = 0; idx < (int) p2[1]; idx++)
4219 if (! (p2[2 + idx] == 0
4220 || (idx < CHARSET_BITMAP_SIZE (p1)
4221 && ((p2[2 + idx] & ~ p1[2 + idx]) == 0))))
4222 break;
4223
4e8a9132
SM
4224 if (idx == p2[1])
4225 {
4226 DEBUG_PRINT1 (" No match => fast loop.\n");
4227 return 1;
4228 }
4229 }
4230 }
4231 }
4232
4e8a9132
SM
4233 case wordend:
4234 case notsyntaxspec:
4235 return ((re_opcode_t) *p1 == syntaxspec
4236 && p1[1] == (op2 == wordend ? Sword : p2[1]));
4237
4238 case wordbeg:
4239 case syntaxspec:
4240 return ((re_opcode_t) *p1 == notsyntaxspec
4241 && p1[1] == (op2 == wordend ? Sword : p2[1]));
4242
4243 case wordbound:
4244 return (((re_opcode_t) *p1 == notsyntaxspec
4245 || (re_opcode_t) *p1 == syntaxspec)
4246 && p1[1] == Sword);
4247
1fb352e0 4248#ifdef emacs
4e8a9132
SM
4249 case categoryspec:
4250 return ((re_opcode_t) *p1 == notcategoryspec && p1[1] == p2[1]);
4251 case notcategoryspec:
4252 return ((re_opcode_t) *p1 == categoryspec && p1[1] == p2[1]);
4253#endif /* emacs */
4254
4255 default:
4256 ;
505bde11
SM
4257 }
4258
4259 /* Safe default. */
4260 return 0;
4261}
4262
fa9a63c5
RM
4263\f
4264/* Matching routines. */
4265
25fe55af 4266#ifndef emacs /* Emacs never uses this. */
fa9a63c5
RM
4267/* re_match is like re_match_2 except it takes only a single string. */
4268
4269int
4270re_match (bufp, string, size, pos, regs)
4271 struct re_pattern_buffer *bufp;
4272 const char *string;
4273 int size, pos;
4274 struct re_registers *regs;
4275{
4276 int result = re_match_2_internal (bufp, NULL, 0, string, size,
4277 pos, regs, size);
4278 alloca (0);
4279 return result;
4280}
4281#endif /* not emacs */
4282
b18215fc
RS
4283#ifdef emacs
4284/* In Emacs, this is the string or buffer in which we
25fe55af 4285 are matching. It is used for looking up syntax properties. */
b18215fc
RS
4286Lisp_Object re_match_object;
4287#endif
fa9a63c5
RM
4288
4289/* re_match_2 matches the compiled pattern in BUFP against the
4290 the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
4291 and SIZE2, respectively). We start matching at POS, and stop
4292 matching at STOP.
5e69f11e 4293
fa9a63c5 4294 If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
25fe55af 4295 store offsets for the substring each group matched in REGS. See the
fa9a63c5
RM
4296 documentation for exactly how many groups we fill.
4297
4298 We return -1 if no match, -2 if an internal error (such as the
25fe55af 4299 failure stack overflowing). Otherwise, we return the length of the
fa9a63c5
RM
4300 matched substring. */
4301
4302int
4303re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
4304 struct re_pattern_buffer *bufp;
4305 const char *string1, *string2;
4306 int size1, size2;
4307 int pos;
4308 struct re_registers *regs;
4309 int stop;
4310{
b18215fc 4311 int result;
25fe55af 4312
b18215fc 4313#ifdef emacs
cc9b4df2
KH
4314 int charpos;
4315 gl_state.object = re_match_object;
99633e97 4316 charpos = SYNTAX_TABLE_BYTE_TO_CHAR (POS_AS_IN_BUFFER (pos));
cc9b4df2 4317 SETUP_SYNTAX_TABLE_FOR_OBJECT (re_match_object, charpos, 1);
b18215fc
RS
4318#endif
4319
4320 result = re_match_2_internal (bufp, string1, size1, string2, size2,
cc9b4df2 4321 pos, regs, stop);
fa9a63c5
RM
4322 alloca (0);
4323 return result;
4324}
4325
4326/* This is a separate function so that we can force an alloca cleanup
25fe55af 4327 afterwards. */
fa9a63c5
RM
4328static int
4329re_match_2_internal (bufp, string1, size1, string2, size2, pos, regs, stop)
4330 struct re_pattern_buffer *bufp;
66f0296e 4331 re_char *string1, *string2;
fa9a63c5
RM
4332 int size1, size2;
4333 int pos;
4334 struct re_registers *regs;
4335 int stop;
4336{
4337 /* General temporaries. */
4338 int mcnt;
66f0296e 4339 boolean not;
fa9a63c5
RM
4340 unsigned char *p1;
4341
4342 /* Just past the end of the corresponding string. */
66f0296e 4343 re_char *end1, *end2;
fa9a63c5
RM
4344
4345 /* Pointers into string1 and string2, just past the last characters in
25fe55af 4346 each to consider matching. */
66f0296e 4347 re_char *end_match_1, *end_match_2;
fa9a63c5
RM
4348
4349 /* Where we are in the data, and the end of the current string. */
66f0296e 4350 re_char *d, *dend;
5e69f11e 4351
99633e97
SM
4352 /* Used sometimes to remember where we were before starting matching
4353 an operator so that we can go back in case of failure. This "atomic"
4354 behavior of matching opcodes is indispensable to the correctness
4355 of the on_failure_keep_string_jump optimization. */
4356 re_char *dfail;
4357
fa9a63c5
RM
4358 /* Where we are in the pattern, and the end of the pattern. */
4359 unsigned char *p = bufp->buffer;
4360 register unsigned char *pend = p + bufp->used;
4361
25fe55af 4362 /* We use this to map every character in the string. */
6676cb1c 4363 RE_TRANSLATE_TYPE translate = bufp->translate;
fa9a63c5 4364
25fe55af 4365 /* Nonzero if we have to concern multibyte character. */
2d1675e4 4366 const boolean multibyte = RE_MULTIBYTE_P (bufp);
b18215fc 4367
fa9a63c5
RM
4368 /* Failure point stack. Each place that can handle a failure further
4369 down the line pushes a failure point on this stack. It consists of
505bde11 4370 regstart, and regend for all registers corresponding to
fa9a63c5
RM
4371 the subexpressions we're currently inside, plus the number of such
4372 registers, and, finally, two char *'s. The first char * is where
4373 to resume scanning the pattern; the second one is where to resume
505bde11 4374 scanning the strings. */
25fe55af 4375#ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
fa9a63c5
RM
4376 fail_stack_type fail_stack;
4377#endif
4378#ifdef DEBUG
4379 static unsigned failure_id = 0;
4380 unsigned nfailure_points_pushed = 0, nfailure_points_popped = 0;
4381#endif
4382
99633e97 4383#if defined (REL_ALLOC) && defined (REGEX_MALLOC)
fa9a63c5
RM
4384 /* This holds the pointer to the failure stack, when
4385 it is allocated relocatably. */
4386 fail_stack_elt_t *failure_stack_ptr;
99633e97 4387#endif
fa9a63c5
RM
4388
4389 /* We fill all the registers internally, independent of what we
25fe55af 4390 return, for use in backreferences. The number here includes
fa9a63c5
RM
4391 an element for register zero. */
4392 unsigned num_regs = bufp->re_nsub + 1;
5e69f11e 4393
fa9a63c5
RM
4394 /* Information on the contents of registers. These are pointers into
4395 the input strings; they record just what was matched (on this
4396 attempt) by a subexpression part of the pattern, that is, the
4397 regnum-th regstart pointer points to where in the pattern we began
4398 matching and the regnum-th regend points to right after where we
4399 stopped matching the regnum-th subexpression. (The zeroth register
4400 keeps track of what the whole pattern matches.) */
4401#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
66f0296e 4402 re_char **regstart, **regend;
fa9a63c5
RM
4403#endif
4404
fa9a63c5 4405 /* The following record the register info as found in the above
5e69f11e 4406 variables when we find a match better than any we've seen before.
fa9a63c5
RM
4407 This happens as we backtrack through the failure points, which in
4408 turn happens only if we have not yet matched the entire string. */
4409 unsigned best_regs_set = false;
4410#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
66f0296e 4411 re_char **best_regstart, **best_regend;
fa9a63c5 4412#endif
5e69f11e 4413
fa9a63c5
RM
4414 /* Logically, this is `best_regend[0]'. But we don't want to have to
4415 allocate space for that if we're not allocating space for anything
25fe55af 4416 else (see below). Also, we never need info about register 0 for
fa9a63c5
RM
4417 any of the other register vectors, and it seems rather a kludge to
4418 treat `best_regend' differently than the rest. So we keep track of
4419 the end of the best match so far in a separate variable. We
4420 initialize this to NULL so that when we backtrack the first time
4421 and need to test it, it's not garbage. */
66f0296e 4422 re_char *match_end = NULL;
fa9a63c5 4423
fa9a63c5
RM
4424#ifdef DEBUG
4425 /* Counts the total number of registers pushed. */
5e69f11e 4426 unsigned num_regs_pushed = 0;
fa9a63c5
RM
4427#endif
4428
4429 DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
5e69f11e 4430
fa9a63c5 4431 INIT_FAIL_STACK ();
5e69f11e 4432
fa9a63c5
RM
4433#ifdef MATCH_MAY_ALLOCATE
4434 /* Do not bother to initialize all the register variables if there are
4435 no groups in the pattern, as it takes a fair amount of time. If
4436 there are groups, we include space for register 0 (the whole
4437 pattern), even though we never use it, since it simplifies the
4438 array indexing. We should fix this. */
4439 if (bufp->re_nsub)
4440 {
66f0296e
SM
4441 regstart = REGEX_TALLOC (num_regs, re_char *);
4442 regend = REGEX_TALLOC (num_regs, re_char *);
4443 best_regstart = REGEX_TALLOC (num_regs, re_char *);
4444 best_regend = REGEX_TALLOC (num_regs, re_char *);
fa9a63c5 4445
505bde11 4446 if (!(regstart && regend && best_regstart && best_regend))
25fe55af
RS
4447 {
4448 FREE_VARIABLES ();
4449 return -2;
4450 }
fa9a63c5
RM
4451 }
4452 else
4453 {
4454 /* We must initialize all our variables to NULL, so that
25fe55af 4455 `FREE_VARIABLES' doesn't try to free them. */
505bde11 4456 regstart = regend = best_regstart = best_regend = NULL;
fa9a63c5
RM
4457 }
4458#endif /* MATCH_MAY_ALLOCATE */
4459
4460 /* The starting position is bogus. */
4461 if (pos < 0 || pos > size1 + size2)
4462 {
4463 FREE_VARIABLES ();
4464 return -1;
4465 }
5e69f11e 4466
fa9a63c5
RM
4467 /* Initialize subexpression text positions to -1 to mark ones that no
4468 start_memory/stop_memory has been seen for. Also initialize the
4469 register information struct. */
4470 for (mcnt = 1; mcnt < num_regs; mcnt++)
99633e97
SM
4471 regstart[mcnt] = regend[mcnt] = REG_UNSET_VALUE;
4472
fa9a63c5 4473 /* We move `string1' into `string2' if the latter's empty -- but not if
25fe55af 4474 `string1' is null. */
fa9a63c5
RM
4475 if (size2 == 0 && string1 != NULL)
4476 {
4477 string2 = string1;
4478 size2 = size1;
4479 string1 = 0;
4480 size1 = 0;
4481 }
4482 end1 = string1 + size1;
4483 end2 = string2 + size2;
4484
5e69f11e 4485 /* `p' scans through the pattern as `d' scans through the data.
fa9a63c5
RM
4486 `dend' is the end of the input string that `d' points within. `d'
4487 is advanced into the following input string whenever necessary, but
4488 this happens before fetching; therefore, at the beginning of the
4489 loop, `d' can be pointing at the end of a string, but it cannot
4490 equal `string2'. */
419d1c74 4491 if (pos >= size1)
fa9a63c5 4492 {
419d1c74
SM
4493 /* Only match within string2. */
4494 d = string2 + pos - size1;
4495 dend = end_match_2 = string2 + stop - size1;
4496 end_match_1 = end1; /* Just to give it a value. */
fa9a63c5
RM
4497 }
4498 else
4499 {
419d1c74
SM
4500 if (stop <= size1)
4501 {
4502 /* Only match within string1. */
4503 end_match_1 = string1 + stop;
4504 /* BEWARE!
4505 When we reach end_match_1, PREFETCH normally switches to string2.
4506 But in the present case, this means that just doing a PREFETCH
4507 makes us jump from `stop' to `gap' within the string.
4508 What we really want here is for the search to stop as
4509 soon as we hit end_match_1. That's why we set end_match_2
4510 to end_match_1 (since PREFETCH fails as soon as we hit
4511 end_match_2). */
4512 end_match_2 = end_match_1;
4513 }
4514 else
4515 {
4516 end_match_1 = end1;
4517 end_match_2 = string2 + stop - size1;
4518 }
4519 d = string1 + pos;
4520 dend = end_match_1;
fa9a63c5
RM
4521 }
4522
4523 DEBUG_PRINT1 ("The compiled pattern is: ");
4524 DEBUG_PRINT_COMPILED_PATTERN (bufp, p, pend);
4525 DEBUG_PRINT1 ("The string to match is: `");
4526 DEBUG_PRINT_DOUBLE_STRING (d, string1, size1, string2, size2);
4527 DEBUG_PRINT1 ("'\n");
5e69f11e 4528
25fe55af 4529 /* This loops over pattern commands. It exits by returning from the
fa9a63c5
RM
4530 function if the match is complete, or it drops through if the match
4531 fails at this starting point in the input data. */
4532 for (;;)
4533 {
505bde11 4534 DEBUG_PRINT2 ("\n%p: ", p);
fa9a63c5
RM
4535
4536 if (p == pend)
4537 { /* End of pattern means we might have succeeded. */
25fe55af 4538 DEBUG_PRINT1 ("end of pattern ... ");
5e69f11e 4539
fa9a63c5 4540 /* If we haven't matched the entire string, and we want the
25fe55af
RS
4541 longest match, try backtracking. */
4542 if (d != end_match_2)
fa9a63c5
RM
4543 {
4544 /* 1 if this match ends in the same string (string1 or string2)
4545 as the best previous match. */
5e69f11e 4546 boolean same_str_p = (FIRST_STRING_P (match_end)
99633e97 4547 == FIRST_STRING_P (d));
fa9a63c5
RM
4548 /* 1 if this match is the best seen so far. */
4549 boolean best_match_p;
4550
4551 /* AIX compiler got confused when this was combined
25fe55af 4552 with the previous declaration. */
fa9a63c5
RM
4553 if (same_str_p)
4554 best_match_p = d > match_end;
4555 else
99633e97 4556 best_match_p = !FIRST_STRING_P (d);
fa9a63c5 4557
25fe55af
RS
4558 DEBUG_PRINT1 ("backtracking.\n");
4559
4560 if (!FAIL_STACK_EMPTY ())
4561 { /* More failure points to try. */
4562
4563 /* If exceeds best match so far, save it. */
4564 if (!best_regs_set || best_match_p)
4565 {
4566 best_regs_set = true;
4567 match_end = d;
4568
4569 DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
4570
4571 for (mcnt = 1; mcnt < num_regs; mcnt++)
4572 {
4573 best_regstart[mcnt] = regstart[mcnt];
4574 best_regend[mcnt] = regend[mcnt];
4575 }
4576 }
4577 goto fail;
4578 }
4579
4580 /* If no failure points, don't restore garbage. And if
4581 last match is real best match, don't restore second
4582 best one. */
4583 else if (best_regs_set && !best_match_p)
4584 {
4585 restore_best_regs:
4586 /* Restore best match. It may happen that `dend ==
4587 end_match_1' while the restored d is in string2.
4588 For example, the pattern `x.*y.*z' against the
4589 strings `x-' and `y-z-', if the two strings are
4590 not consecutive in memory. */
4591 DEBUG_PRINT1 ("Restoring best registers.\n");
4592
4593 d = match_end;
4594 dend = ((d >= string1 && d <= end1)
4595 ? end_match_1 : end_match_2);
fa9a63c5
RM
4596
4597 for (mcnt = 1; mcnt < num_regs; mcnt++)
4598 {
4599 regstart[mcnt] = best_regstart[mcnt];
4600 regend[mcnt] = best_regend[mcnt];
4601 }
25fe55af
RS
4602 }
4603 } /* d != end_match_2 */
fa9a63c5
RM
4604
4605 succeed_label:
25fe55af 4606 DEBUG_PRINT1 ("Accepting match.\n");
fa9a63c5 4607
25fe55af
RS
4608 /* If caller wants register contents data back, do it. */
4609 if (regs && !bufp->no_sub)
fa9a63c5 4610 {
25fe55af
RS
4611 /* Have the register data arrays been allocated? */
4612 if (bufp->regs_allocated == REGS_UNALLOCATED)
4613 { /* No. So allocate them with malloc. We need one
4614 extra element beyond `num_regs' for the `-1' marker
4615 GNU code uses. */
4616 regs->num_regs = MAX (RE_NREGS, num_regs + 1);
4617 regs->start = TALLOC (regs->num_regs, regoff_t);
4618 regs->end = TALLOC (regs->num_regs, regoff_t);
4619 if (regs->start == NULL || regs->end == NULL)
fa9a63c5
RM
4620 {
4621 FREE_VARIABLES ();
4622 return -2;
4623 }
25fe55af
RS
4624 bufp->regs_allocated = REGS_REALLOCATE;
4625 }
4626 else if (bufp->regs_allocated == REGS_REALLOCATE)
4627 { /* Yes. If we need more elements than were already
4628 allocated, reallocate them. If we need fewer, just
4629 leave it alone. */
4630 if (regs->num_regs < num_regs + 1)
4631 {
4632 regs->num_regs = num_regs + 1;
4633 RETALLOC (regs->start, regs->num_regs, regoff_t);
4634 RETALLOC (regs->end, regs->num_regs, regoff_t);
4635 if (regs->start == NULL || regs->end == NULL)
fa9a63c5
RM
4636 {
4637 FREE_VARIABLES ();
4638 return -2;
4639 }
25fe55af
RS
4640 }
4641 }
4642 else
fa9a63c5
RM
4643 {
4644 /* These braces fend off a "empty body in an else-statement"
25fe55af 4645 warning under GCC when assert expands to nothing. */
fa9a63c5
RM
4646 assert (bufp->regs_allocated == REGS_FIXED);
4647 }
4648
25fe55af
RS
4649 /* Convert the pointer data in `regstart' and `regend' to
4650 indices. Register zero has to be set differently,
4651 since we haven't kept track of any info for it. */
4652 if (regs->num_regs > 0)
4653 {
4654 regs->start[0] = pos;
99633e97 4655 regs->end[0] = POINTER_TO_OFFSET (d);
25fe55af 4656 }
5e69f11e 4657
25fe55af
RS
4658 /* Go through the first `min (num_regs, regs->num_regs)'
4659 registers, since that is all we initialized. */
fa9a63c5
RM
4660 for (mcnt = 1; mcnt < MIN (num_regs, regs->num_regs); mcnt++)
4661 {
25fe55af
RS
4662 if (REG_UNSET (regstart[mcnt]) || REG_UNSET (regend[mcnt]))
4663 regs->start[mcnt] = regs->end[mcnt] = -1;
4664 else
4665 {
fa9a63c5
RM
4666 regs->start[mcnt]
4667 = (regoff_t) POINTER_TO_OFFSET (regstart[mcnt]);
25fe55af 4668 regs->end[mcnt]
fa9a63c5 4669 = (regoff_t) POINTER_TO_OFFSET (regend[mcnt]);
25fe55af 4670 }
fa9a63c5 4671 }
5e69f11e 4672
25fe55af
RS
4673 /* If the regs structure we return has more elements than
4674 were in the pattern, set the extra elements to -1. If
4675 we (re)allocated the registers, this is the case,
4676 because we always allocate enough to have at least one
4677 -1 at the end. */
4678 for (mcnt = num_regs; mcnt < regs->num_regs; mcnt++)
4679 regs->start[mcnt] = regs->end[mcnt] = -1;
fa9a63c5
RM
4680 } /* regs && !bufp->no_sub */
4681
25fe55af
RS
4682 DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
4683 nfailure_points_pushed, nfailure_points_popped,
4684 nfailure_points_pushed - nfailure_points_popped);
4685 DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed);
fa9a63c5 4686
99633e97 4687 mcnt = POINTER_TO_OFFSET (d) - pos;
fa9a63c5 4688
25fe55af 4689 DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt);
fa9a63c5 4690
25fe55af
RS
4691 FREE_VARIABLES ();
4692 return mcnt;
4693 }
fa9a63c5 4694
25fe55af 4695 /* Otherwise match next pattern command. */
fa9a63c5
RM
4696 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
4697 {
25fe55af
RS
4698 /* Ignore these. Used to ignore the n of succeed_n's which
4699 currently have n == 0. */
4700 case no_op:
4701 DEBUG_PRINT1 ("EXECUTING no_op.\n");
4702 break;
fa9a63c5
RM
4703
4704 case succeed:
25fe55af 4705 DEBUG_PRINT1 ("EXECUTING succeed.\n");
fa9a63c5
RM
4706 goto succeed_label;
4707
25fe55af
RS
4708 /* Match the next n pattern characters exactly. The following
4709 byte in the pattern defines n, and the n bytes after that
4710 are the characters to match. */
fa9a63c5
RM
4711 case exactn:
4712 mcnt = *p++;
25fe55af 4713 DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt);
fa9a63c5 4714
99633e97
SM
4715 /* Remember the start point to rollback upon failure. */
4716 dfail = d;
4717
25fe55af
RS
4718 /* This is written out as an if-else so we don't waste time
4719 testing `translate' inside the loop. */
28703c16 4720 if (RE_TRANSLATE_P (translate))
fa9a63c5 4721 {
e934739e
RS
4722 if (multibyte)
4723 do
4724 {
4725 int pat_charlen, buf_charlen;
e71b1971 4726 unsigned int pat_ch, buf_ch;
e934739e
RS
4727
4728 PREFETCH ();
4729 pat_ch = STRING_CHAR_AND_LENGTH (p, pend - p, pat_charlen);
4730 buf_ch = STRING_CHAR_AND_LENGTH (d, dend - d, buf_charlen);
4731
4732 if (RE_TRANSLATE (translate, buf_ch)
4733 != pat_ch)
99633e97
SM
4734 {
4735 d = dfail;
4736 goto fail;
4737 }
e934739e
RS
4738
4739 p += pat_charlen;
4740 d += buf_charlen;
4741 mcnt -= pat_charlen;
4742 }
4743 while (mcnt > 0);
4744 else
e934739e
RS
4745 do
4746 {
4747 PREFETCH ();
66f0296e 4748 if (RE_TRANSLATE (translate, *d) != *p++)
99633e97
SM
4749 {
4750 d = dfail;
4751 goto fail;
4752 }
33c46939 4753 d++;
e934739e
RS
4754 }
4755 while (--mcnt);
fa9a63c5
RM
4756 }
4757 else
4758 {
4759 do
4760 {
4761 PREFETCH ();
99633e97
SM
4762 if (*d++ != *p++)
4763 {
4764 d = dfail;
4765 goto fail;
4766 }
fa9a63c5
RM
4767 }
4768 while (--mcnt);
4769 }
25fe55af 4770 break;
fa9a63c5
RM
4771
4772
25fe55af 4773 /* Match any character except possibly a newline or a null. */
fa9a63c5 4774 case anychar:
e934739e
RS
4775 {
4776 int buf_charlen;
e71b1971 4777 unsigned int buf_ch;
fa9a63c5 4778
e934739e 4779 DEBUG_PRINT1 ("EXECUTING anychar.\n");
fa9a63c5 4780
e934739e 4781 PREFETCH ();
2d1675e4 4782 buf_ch = RE_STRING_CHAR_AND_LENGTH (d, dend - d, buf_charlen);
e934739e
RS
4783 buf_ch = TRANSLATE (buf_ch);
4784
4785 if ((!(bufp->syntax & RE_DOT_NEWLINE)
4786 && buf_ch == '\n')
4787 || ((bufp->syntax & RE_DOT_NOT_NULL)
4788 && buf_ch == '\000'))
4789 goto fail;
4790
e934739e
RS
4791 DEBUG_PRINT2 (" Matched `%d'.\n", *d);
4792 d += buf_charlen;
4793 }
fa9a63c5
RM
4794 break;
4795
4796
4797 case charset:
4798 case charset_not:
4799 {
b18215fc 4800 register unsigned int c;
fa9a63c5 4801 boolean not = (re_opcode_t) *(p - 1) == charset_not;
b18215fc
RS
4802 int len;
4803
4804 /* Start of actual range_table, or end of bitmap if there is no
4805 range table. */
4806 unsigned char *range_table;
4807
96cc36cc 4808 /* Nonzero if there is a range table. */
b18215fc
RS
4809 int range_table_exists;
4810
96cc36cc
RS
4811 /* Number of ranges of range table. This is not included
4812 in the initial byte-length of the command. */
4813 int count = 0;
fa9a63c5 4814
25fe55af 4815 DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : "");
fa9a63c5 4816
b18215fc 4817 range_table_exists = CHARSET_RANGE_TABLE_EXISTS_P (&p[-1]);
96cc36cc 4818
b18215fc 4819 if (range_table_exists)
96cc36cc
RS
4820 {
4821 range_table = CHARSET_RANGE_TABLE (&p[-1]); /* Past the bitmap. */
4822 EXTRACT_NUMBER_AND_INCR (count, range_table);
4823 }
b18215fc 4824
2d1675e4
SM
4825 PREFETCH ();
4826 c = RE_STRING_CHAR_AND_LENGTH (d, dend - d, len);
4827 c = TRANSLATE (c); /* The character to match. */
b18215fc
RS
4828
4829 if (SINGLE_BYTE_CHAR_P (c))
4830 { /* Lookup bitmap. */
b18215fc
RS
4831 /* Cast to `unsigned' instead of `unsigned char' in
4832 case the bit list is a full 32 bytes long. */
4833 if (c < (unsigned) (CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH)
96cc36cc
RS
4834 && p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
4835 not = !not;
b18215fc 4836 }
96cc36cc 4837#ifdef emacs
b18215fc 4838 else if (range_table_exists)
96cc36cc
RS
4839 {
4840 int class_bits = CHARSET_RANGE_TABLE_BITS (&p[-1]);
4841
4842 if ( (class_bits & BIT_ALNUM && ISALNUM (c))
4843 | (class_bits & BIT_ALPHA && ISALPHA (c))
f71b19b6 4844 | (class_bits & BIT_ASCII && IS_REAL_ASCII (c))
96cc36cc
RS
4845 | (class_bits & BIT_GRAPH && ISGRAPH (c))
4846 | (class_bits & BIT_LOWER && ISLOWER (c))
f71b19b6
DL
4847 | (class_bits & BIT_MULTIBYTE && !ISUNIBYTE (c))
4848 | (class_bits & BIT_NONASCII && !IS_REAL_ASCII (c))
96cc36cc
RS
4849 | (class_bits & BIT_PRINT && ISPRINT (c))
4850 | (class_bits & BIT_PUNCT && ISPUNCT (c))
4851 | (class_bits & BIT_SPACE && ISSPACE (c))
f71b19b6 4852 | (class_bits & BIT_UNIBYTE && ISUNIBYTE (c))
96cc36cc
RS
4853 | (class_bits & BIT_UPPER && ISUPPER (c))
4854 | (class_bits & BIT_WORD && ISWORD (c)))
4855 not = !not;
4856 else
4857 CHARSET_LOOKUP_RANGE_TABLE_RAW (not, c, range_table, count);
4858 }
4859#endif /* emacs */
fa9a63c5 4860
96cc36cc
RS
4861 if (range_table_exists)
4862 p = CHARSET_RANGE_TABLE_END (range_table, count);
4863 else
4864 p += CHARSET_BITMAP_SIZE (&p[-1]) + 1;
fa9a63c5
RM
4865
4866 if (!not) goto fail;
5e69f11e 4867
b18215fc 4868 d += len;
fa9a63c5
RM
4869 break;
4870 }
4871
4872
25fe55af 4873 /* The beginning of a group is represented by start_memory.
505bde11 4874 The argument is the register number. The text
25fe55af
RS
4875 matched within the group is recorded (in the internal
4876 registers data structure) under the register number. */
4877 case start_memory:
505bde11
SM
4878 DEBUG_PRINT2 ("EXECUTING start_memory %d:\n", *p);
4879
4880 /* In case we need to undo this operation (via backtracking). */
4881 PUSH_FAILURE_REG ((unsigned int)*p);
fa9a63c5 4882
25fe55af 4883 regstart[*p] = d;
505bde11 4884 regend[*p] = REG_UNSET_VALUE; /* probably unnecessary. -sm */
fa9a63c5
RM
4885 DEBUG_PRINT2 (" regstart: %d\n", POINTER_TO_OFFSET (regstart[*p]));
4886
25fe55af 4887 /* Move past the register number and inner group count. */
505bde11 4888 p += 1;
25fe55af 4889 break;
fa9a63c5
RM
4890
4891
25fe55af 4892 /* The stop_memory opcode represents the end of a group. Its
505bde11 4893 argument is the same as start_memory's: the register number. */
fa9a63c5 4894 case stop_memory:
505bde11
SM
4895 DEBUG_PRINT2 ("EXECUTING stop_memory %d:\n", *p);
4896
4897 assert (!REG_UNSET (regstart[*p]));
4898 /* Strictly speaking, there should be code such as:
4899
4900 assert (REG_UNSET (regend[*p]));
4901 PUSH_FAILURE_REGSTOP ((unsigned int)*p);
4902
4903 But the only info to be pushed is regend[*p] and it is known to
4904 be UNSET, so there really isn't anything to push.
4905 Not pushing anything, on the other hand deprives us from the
4906 guarantee that regend[*p] is UNSET since undoing this operation
4907 will not reset its value properly. This is not important since
4908 the value will only be read on the next start_memory or at
4909 the very end and both events can only happen if this stop_memory
4910 is *not* undone. */
fa9a63c5 4911
25fe55af 4912 regend[*p] = d;
fa9a63c5
RM
4913 DEBUG_PRINT2 (" regend: %d\n", POINTER_TO_OFFSET (regend[*p]));
4914
25fe55af 4915 /* Move past the register number and the inner group count. */
505bde11 4916 p += 1;
25fe55af 4917 break;
fa9a63c5
RM
4918
4919
4920 /* \<digit> has been turned into a `duplicate' command which is
25fe55af
RS
4921 followed by the numeric value of <digit> as the register number. */
4922 case duplicate:
fa9a63c5 4923 {
66f0296e 4924 register re_char *d2, *dend2;
25fe55af 4925 int regno = *p++; /* Get which register to match against. */
fa9a63c5
RM
4926 DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno);
4927
25fe55af
RS
4928 /* Can't back reference a group which we've never matched. */
4929 if (REG_UNSET (regstart[regno]) || REG_UNSET (regend[regno]))
4930 goto fail;
5e69f11e 4931
25fe55af
RS
4932 /* Where in input to try to start matching. */
4933 d2 = regstart[regno];
5e69f11e 4934
99633e97
SM
4935 /* Remember the start point to rollback upon failure. */
4936 dfail = d;
4937
25fe55af
RS
4938 /* Where to stop matching; if both the place to start and
4939 the place to stop matching are in the same string, then
4940 set to the place to stop, otherwise, for now have to use
4941 the end of the first string. */
fa9a63c5 4942
25fe55af 4943 dend2 = ((FIRST_STRING_P (regstart[regno])
fa9a63c5
RM
4944 == FIRST_STRING_P (regend[regno]))
4945 ? regend[regno] : end_match_1);
4946 for (;;)
4947 {
4948 /* If necessary, advance to next segment in register
25fe55af 4949 contents. */
fa9a63c5
RM
4950 while (d2 == dend2)
4951 {
4952 if (dend2 == end_match_2) break;
4953 if (dend2 == regend[regno]) break;
4954
25fe55af
RS
4955 /* End of string1 => advance to string2. */
4956 d2 = string2;
4957 dend2 = regend[regno];
fa9a63c5
RM
4958 }
4959 /* At end of register contents => success */
4960 if (d2 == dend2) break;
4961
4962 /* If necessary, advance to next segment in data. */
4963 PREFETCH ();
4964
4965 /* How many characters left in this segment to match. */
4966 mcnt = dend - d;
5e69f11e 4967
fa9a63c5 4968 /* Want how many consecutive characters we can match in
25fe55af
RS
4969 one shot, so, if necessary, adjust the count. */
4970 if (mcnt > dend2 - d2)
fa9a63c5 4971 mcnt = dend2 - d2;
5e69f11e 4972
fa9a63c5 4973 /* Compare that many; failure if mismatch, else move
25fe55af 4974 past them. */
28703c16 4975 if (RE_TRANSLATE_P (translate)
2d1675e4 4976 ? bcmp_translate (d, d2, mcnt, translate, multibyte)
25fe55af 4977 : bcmp (d, d2, mcnt))
99633e97
SM
4978 {
4979 d = dfail;
4980 goto fail;
4981 }
fa9a63c5 4982 d += mcnt, d2 += mcnt;
fa9a63c5
RM
4983 }
4984 }
4985 break;
4986
4987
25fe55af
RS
4988 /* begline matches the empty string at the beginning of the string
4989 (unless `not_bol' is set in `bufp'), and, if
4990 `newline_anchor' is set, after newlines. */
fa9a63c5 4991 case begline:
25fe55af 4992 DEBUG_PRINT1 ("EXECUTING begline.\n");
5e69f11e 4993
25fe55af
RS
4994 if (AT_STRINGS_BEG (d))
4995 {
4996 if (!bufp->not_bol) break;
4997 }
419d1c74 4998 else
25fe55af 4999 {
419d1c74
SM
5000 unsigned char c;
5001 GET_CHAR_BEFORE_2 (c, d, string1, end1, string2, end2);
5002 if (c == '\n' && bufp->newline_anchor)
5003 break;
25fe55af
RS
5004 }
5005 /* In all other cases, we fail. */
5006 goto fail;
fa9a63c5
RM
5007
5008
25fe55af 5009 /* endline is the dual of begline. */
fa9a63c5 5010 case endline:
25fe55af 5011 DEBUG_PRINT1 ("EXECUTING endline.\n");
fa9a63c5 5012
25fe55af
RS
5013 if (AT_STRINGS_END (d))
5014 {
5015 if (!bufp->not_eol) break;
5016 }
5e69f11e 5017
25fe55af
RS
5018 /* We have to ``prefetch'' the next character. */
5019 else if ((d == end1 ? *string2 : *d) == '\n'
5020 && bufp->newline_anchor)
5021 {
5022 break;
5023 }
5024 goto fail;
fa9a63c5
RM
5025
5026
5027 /* Match at the very beginning of the data. */
25fe55af
RS
5028 case begbuf:
5029 DEBUG_PRINT1 ("EXECUTING begbuf.\n");
5030 if (AT_STRINGS_BEG (d))
5031 break;
5032 goto fail;
fa9a63c5
RM
5033
5034
5035 /* Match at the very end of the data. */
25fe55af
RS
5036 case endbuf:
5037 DEBUG_PRINT1 ("EXECUTING endbuf.\n");
fa9a63c5
RM
5038 if (AT_STRINGS_END (d))
5039 break;
25fe55af 5040 goto fail;
5e69f11e 5041
5e69f11e 5042
25fe55af
RS
5043 /* on_failure_keep_string_jump is used to optimize `.*\n'. It
5044 pushes NULL as the value for the string on the stack. Then
505bde11 5045 `POP_FAILURE_POINT' will keep the current value for the
25fe55af
RS
5046 string, instead of restoring it. To see why, consider
5047 matching `foo\nbar' against `.*\n'. The .* matches the foo;
5048 then the . fails against the \n. But the next thing we want
5049 to do is match the \n against the \n; if we restored the
5050 string value, we would be back at the foo.
5051
5052 Because this is used only in specific cases, we don't need to
5053 check all the things that `on_failure_jump' does, to make
5054 sure the right things get saved on the stack. Hence we don't
5055 share its code. The only reason to push anything on the
5056 stack at all is that otherwise we would have to change
5057 `anychar's code to do something besides goto fail in this
5058 case; that seems worse than this. */
5059 case on_failure_keep_string_jump:
505bde11
SM
5060 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5061 DEBUG_PRINT3 ("EXECUTING on_failure_keep_string_jump %d (to %p):\n",
5062 mcnt, p + mcnt);
fa9a63c5 5063
505bde11
SM
5064 PUSH_FAILURE_POINT (p - 3, NULL);
5065 break;
5066
0683b6fa
SM
5067 /* A nasty loop is introduced by the non-greedy *? and +?.
5068 With such loops, the stack only ever contains one failure point
5069 at a time, so that a plain on_failure_jump_loop kind of
5070 cycle detection cannot work. Worse yet, such a detection
5071 can not only fail to detect a cycle, but it can also wrongly
5072 detect a cycle (between different instantiations of the same
5073 loop.
5074 So the method used for those nasty loops is a little different:
5075 We use a special cycle-detection-stack-frame which is pushed
5076 when the on_failure_jump_nastyloop failure-point is *popped*.
5077 This special frame thus marks the beginning of one iteration
5078 through the loop and we can hence easily check right here
5079 whether something matched between the beginning and the end of
5080 the loop. */
5081 case on_failure_jump_nastyloop:
5082 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5083 DEBUG_PRINT3 ("EXECUTING on_failure_jump_nastyloop %d (to %p):\n",
5084 mcnt, p + mcnt);
5085
5086 assert ((re_opcode_t)p[-4] == no_op);
5087 CHECK_INFINITE_LOOP (p - 4, d);
5088 PUSH_FAILURE_POINT (p - 3, d);
5089 break;
5090
505bde11 5091
4e8a9132
SM
5092 /* Simple loop detecting on_failure_jump: just check on the
5093 failure stack if the same spot was already hit earlier. */
505bde11
SM
5094 case on_failure_jump_loop:
5095 on_failure:
5096 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5097 DEBUG_PRINT3 ("EXECUTING on_failure_jump_loop %d (to %p):\n",
5098 mcnt, p + mcnt);
5099
5100 CHECK_INFINITE_LOOP (p - 3, d);
5101 PUSH_FAILURE_POINT (p - 3, d);
25fe55af 5102 break;
fa9a63c5
RM
5103
5104
5105 /* Uses of on_failure_jump:
5e69f11e 5106
25fe55af
RS
5107 Each alternative starts with an on_failure_jump that points
5108 to the beginning of the next alternative. Each alternative
5109 except the last ends with a jump that in effect jumps past
5110 the rest of the alternatives. (They really jump to the
5111 ending jump of the following alternative, because tensioning
5112 these jumps is a hassle.)
fa9a63c5 5113
25fe55af
RS
5114 Repeats start with an on_failure_jump that points past both
5115 the repetition text and either the following jump or
5116 pop_failure_jump back to this on_failure_jump. */
fa9a63c5 5117 case on_failure_jump:
27c3b45d 5118 QUIT;
25fe55af 5119 EXTRACT_NUMBER_AND_INCR (mcnt, p);
505bde11
SM
5120 DEBUG_PRINT3 ("EXECUTING on_failure_jump %d (to %p):\n",
5121 mcnt, p + mcnt);
25fe55af 5122
505bde11 5123 PUSH_FAILURE_POINT (p -3, d);
25fe55af
RS
5124 break;
5125
4e8a9132 5126 /* This operation is used for greedy *.
505bde11
SM
5127 Compare the beginning of the repeat with what in the
5128 pattern follows its end. If we can establish that there
5129 is nothing that they would both match, i.e., that we
5130 would have to backtrack because of (as in, e.g., `a*a')
5131 then we can use a non-backtracking loop based on
4e8a9132 5132 on_failure_keep_string_jump instead of on_failure_jump. */
505bde11 5133 case on_failure_jump_smart:
27c3b45d 5134 QUIT;
25fe55af 5135 EXTRACT_NUMBER_AND_INCR (mcnt, p);
505bde11
SM
5136 DEBUG_PRINT3 ("EXECUTING on_failure_jump_smart %d (to %p).\n",
5137 mcnt, p + mcnt);
25fe55af 5138 {
505bde11
SM
5139 unsigned char *p1 = p; /* Next operation. */
5140 unsigned char *p2 = p + mcnt; /* Destination of the jump. */
fa9a63c5 5141
505bde11
SM
5142 p -= 3; /* Reset so that we will re-execute the
5143 instruction once it's been changed. */
fa9a63c5 5144
4e8a9132
SM
5145 EXTRACT_NUMBER (mcnt, p2 - 2);
5146
5147 /* Ensure this is a indeed the trivial kind of loop
5148 we are expecting. */
5149 assert (skip_one_char (p1) == p2 - 3);
5150 assert ((re_opcode_t) p2[-3] == jump && p2 + mcnt == p);
99633e97 5151 DEBUG_STATEMENT (debug += 2);
505bde11 5152 if (mutually_exclusive_p (bufp, p1, p2))
fa9a63c5 5153 {
505bde11 5154 /* Use a fast `on_failure_keep_string_jump' loop. */
4e8a9132
SM
5155 DEBUG_PRINT1 (" smart exclusive => fast loop.\n");
5156 *p = (unsigned char) on_failure_keep_string_jump;
5157 STORE_NUMBER (p2 - 2, mcnt + 3);
25fe55af 5158 }
505bde11 5159 else
fa9a63c5 5160 {
505bde11
SM
5161 /* Default to a safe `on_failure_jump' loop. */
5162 DEBUG_PRINT1 (" smart default => slow loop.\n");
4e8a9132 5163 *p = (unsigned char) on_failure_jump;
fa9a63c5 5164 }
99633e97 5165 DEBUG_STATEMENT (debug -= 2);
25fe55af 5166 }
505bde11 5167 break;
25fe55af
RS
5168
5169 /* Unconditionally jump (without popping any failure points). */
5170 case jump:
fa9a63c5 5171 unconditional_jump:
27c3b45d 5172 QUIT;
fa9a63c5 5173 EXTRACT_NUMBER_AND_INCR (mcnt, p); /* Get the amount to jump. */
25fe55af
RS
5174 DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt);
5175 p += mcnt; /* Do the jump. */
505bde11 5176 DEBUG_PRINT2 ("(to %p).\n", p);
25fe55af
RS
5177 break;
5178
5179
25fe55af
RS
5180 /* Have to succeed matching what follows at least n times.
5181 After that, handle like `on_failure_jump'. */
5182 case succeed_n:
5183 EXTRACT_NUMBER (mcnt, p + 2);
5184 DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt);
5e69f11e 5185
25fe55af
RS
5186 assert (mcnt >= 0);
5187 /* Originally, this is how many times we HAVE to succeed. */
5188 if (mcnt > 0)
5189 {
5190 mcnt--;
fa9a63c5 5191 p += 2;
25fe55af 5192 STORE_NUMBER_AND_INCR (p, mcnt);
505bde11 5193 DEBUG_PRINT3 (" Setting %p to %d.\n", p, mcnt);
25fe55af 5194 }
fa9a63c5 5195 else if (mcnt == 0)
25fe55af 5196 {
505bde11 5197 DEBUG_PRINT2 (" Setting two bytes from %p to no_op.\n", p+2);
fa9a63c5 5198 p[2] = (unsigned char) no_op;
25fe55af
RS
5199 p[3] = (unsigned char) no_op;
5200 goto on_failure;
5201 }
5202 break;
5203
5204 case jump_n:
5205 EXTRACT_NUMBER (mcnt, p + 2);
5206 DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt);
5207
5208 /* Originally, this is how many times we CAN jump. */
5209 if (mcnt)
5210 {
5211 mcnt--;
5212 STORE_NUMBER (p + 2, mcnt);
5e69f11e 5213 goto unconditional_jump;
25fe55af
RS
5214 }
5215 /* If don't have to jump any more, skip over the rest of command. */
5e69f11e
RM
5216 else
5217 p += 4;
25fe55af 5218 break;
5e69f11e 5219
fa9a63c5
RM
5220 case set_number_at:
5221 {
25fe55af 5222 DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
fa9a63c5 5223
25fe55af
RS
5224 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5225 p1 = p + mcnt;
5226 EXTRACT_NUMBER_AND_INCR (mcnt, p);
505bde11 5227 DEBUG_PRINT3 (" Setting %p to %d.\n", p1, mcnt);
fa9a63c5 5228 STORE_NUMBER (p1, mcnt);
25fe55af
RS
5229 break;
5230 }
9121ca40
KH
5231
5232 case wordbound:
66f0296e
SM
5233 case notwordbound:
5234 not = (re_opcode_t) *(p - 1) == notwordbound;
5235 DEBUG_PRINT2 ("EXECUTING %swordbound.\n", not?"not":"");
fa9a63c5 5236
99633e97 5237 /* We SUCCEED (or FAIL) in one of the following cases: */
9121ca40 5238
b18215fc 5239 /* Case 1: D is at the beginning or the end of string. */
9121ca40 5240 if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
66f0296e 5241 not = !not;
b18215fc
RS
5242 else
5243 {
5244 /* C1 is the character before D, S1 is the syntax of C1, C2
5245 is the character at D, and S2 is the syntax of C2. */
5246 int c1, c2, s1, s2;
b18215fc 5247#ifdef emacs
2d1675e4
SM
5248 int offset = PTR_TO_OFFSET (d - 1);
5249 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
5d967c7a 5250 UPDATE_SYNTAX_TABLE (charpos);
25fe55af 5251#endif
66f0296e 5252 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
b18215fc
RS
5253 s1 = SYNTAX (c1);
5254#ifdef emacs
5d967c7a 5255 UPDATE_SYNTAX_TABLE_FORWARD (charpos + 1);
25fe55af 5256#endif
66f0296e 5257 PREFETCH ();
2d1675e4 5258 c2 = RE_STRING_CHAR (d, dend - d);
b18215fc
RS
5259 s2 = SYNTAX (c2);
5260
5261 if (/* Case 2: Only one of S1 and S2 is Sword. */
5262 ((s1 == Sword) != (s2 == Sword))
5263 /* Case 3: Both of S1 and S2 are Sword, and macro
25fe55af 5264 WORD_BOUNDARY_P (C1, C2) returns nonzero. */
b18215fc 5265 || ((s1 == Sword) && WORD_BOUNDARY_P (c1, c2)))
66f0296e
SM
5266 not = !not;
5267 }
5268 if (not)
9121ca40 5269 break;
b18215fc 5270 else
9121ca40 5271 goto fail;
fa9a63c5
RM
5272
5273 case wordbeg:
25fe55af 5274 DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
fa9a63c5 5275
b18215fc
RS
5276 /* We FAIL in one of the following cases: */
5277
25fe55af 5278 /* Case 1: D is at the end of string. */
b18215fc 5279 if (AT_STRINGS_END (d))
99633e97 5280 goto fail;
b18215fc
RS
5281 else
5282 {
5283 /* C1 is the character before D, S1 is the syntax of C1, C2
5284 is the character at D, and S2 is the syntax of C2. */
5285 int c1, c2, s1, s2;
fa9a63c5 5286#ifdef emacs
2d1675e4
SM
5287 int offset = PTR_TO_OFFSET (d);
5288 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
92432794 5289 UPDATE_SYNTAX_TABLE (charpos);
25fe55af 5290#endif
99633e97 5291 PREFETCH ();
2d1675e4 5292 c2 = RE_STRING_CHAR (d, dend - d);
b18215fc 5293 s2 = SYNTAX (c2);
25fe55af 5294
b18215fc
RS
5295 /* Case 2: S2 is not Sword. */
5296 if (s2 != Sword)
5297 goto fail;
5298
5299 /* Case 3: D is not at the beginning of string ... */
5300 if (!AT_STRINGS_BEG (d))
5301 {
5302 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
5303#ifdef emacs
5d967c7a 5304 UPDATE_SYNTAX_TABLE_BACKWARD (charpos - 1);
25fe55af 5305#endif
b18215fc
RS
5306 s1 = SYNTAX (c1);
5307
5308 /* ... and S1 is Sword, and WORD_BOUNDARY_P (C1, C2)
25fe55af 5309 returns 0. */
b18215fc
RS
5310 if ((s1 == Sword) && !WORD_BOUNDARY_P (c1, c2))
5311 goto fail;
5312 }
5313 }
e318085a
RS
5314 break;
5315
b18215fc 5316 case wordend:
25fe55af 5317 DEBUG_PRINT1 ("EXECUTING wordend.\n");
b18215fc
RS
5318
5319 /* We FAIL in one of the following cases: */
5320
5321 /* Case 1: D is at the beginning of string. */
5322 if (AT_STRINGS_BEG (d))
e318085a 5323 goto fail;
b18215fc
RS
5324 else
5325 {
5326 /* C1 is the character before D, S1 is the syntax of C1, C2
5327 is the character at D, and S2 is the syntax of C2. */
5328 int c1, c2, s1, s2;
5d967c7a 5329#ifdef emacs
2d1675e4
SM
5330 int offset = PTR_TO_OFFSET (d) - 1;
5331 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
92432794 5332 UPDATE_SYNTAX_TABLE (charpos);
5d967c7a 5333#endif
99633e97 5334 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
b18215fc
RS
5335 s1 = SYNTAX (c1);
5336
5337 /* Case 2: S1 is not Sword. */
5338 if (s1 != Sword)
5339 goto fail;
5340
5341 /* Case 3: D is not at the end of string ... */
5342 if (!AT_STRINGS_END (d))
5343 {
66f0296e 5344 PREFETCH ();
2d1675e4 5345 c2 = RE_STRING_CHAR (d, dend - d);
5d967c7a
RS
5346#ifdef emacs
5347 UPDATE_SYNTAX_TABLE_FORWARD (charpos);
5348#endif
b18215fc
RS
5349 s2 = SYNTAX (c2);
5350
5351 /* ... and S2 is Sword, and WORD_BOUNDARY_P (C1, C2)
25fe55af 5352 returns 0. */
b18215fc 5353 if ((s2 == Sword) && !WORD_BOUNDARY_P (c1, c2))
25fe55af 5354 goto fail;
b18215fc
RS
5355 }
5356 }
e318085a
RS
5357 break;
5358
fa9a63c5 5359 case syntaxspec:
1fb352e0
SM
5360 case notsyntaxspec:
5361 not = (re_opcode_t) *(p - 1) == notsyntaxspec;
fa9a63c5 5362 mcnt = *p++;
1fb352e0 5363 DEBUG_PRINT3 ("EXECUTING %ssyntaxspec %d.\n", not?"not":"", mcnt);
fa9a63c5 5364 PREFETCH ();
b18215fc
RS
5365#ifdef emacs
5366 {
2d1675e4
SM
5367 int offset = PTR_TO_OFFSET (d);
5368 int pos1 = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
b18215fc
RS
5369 UPDATE_SYNTAX_TABLE (pos1);
5370 }
25fe55af 5371#endif
b18215fc
RS
5372 {
5373 int c, len;
5374
2d1675e4 5375 c = RE_STRING_CHAR_AND_LENGTH (d, dend - d, len);
b18215fc 5376
990b2375 5377 if ((SYNTAX (c) != (enum syntaxcode) mcnt) ^ not)
1fb352e0 5378 goto fail;
b18215fc
RS
5379 d += len;
5380 }
fa9a63c5
RM
5381 break;
5382
b18215fc 5383#ifdef emacs
1fb352e0
SM
5384 case before_dot:
5385 DEBUG_PRINT1 ("EXECUTING before_dot.\n");
5386 if (PTR_BYTE_POS (d) >= PT_BYTE)
fa9a63c5 5387 goto fail;
b18215fc
RS
5388 break;
5389
1fb352e0
SM
5390 case at_dot:
5391 DEBUG_PRINT1 ("EXECUTING at_dot.\n");
5392 if (PTR_BYTE_POS (d) != PT_BYTE)
5393 goto fail;
5394 break;
b18215fc 5395
1fb352e0
SM
5396 case after_dot:
5397 DEBUG_PRINT1 ("EXECUTING after_dot.\n");
5398 if (PTR_BYTE_POS (d) <= PT_BYTE)
5399 goto fail;
e318085a 5400 break;
fa9a63c5 5401
1fb352e0 5402 case categoryspec:
b18215fc 5403 case notcategoryspec:
1fb352e0 5404 not = (re_opcode_t) *(p - 1) == notcategoryspec;
b18215fc 5405 mcnt = *p++;
1fb352e0 5406 DEBUG_PRINT3 ("EXECUTING %scategoryspec %d.\n", not?"not":"", mcnt);
b18215fc
RS
5407 PREFETCH ();
5408 {
5409 int c, len;
2d1675e4 5410 c = RE_STRING_CHAR_AND_LENGTH (d, dend - d, len);
b18215fc 5411
1fb352e0 5412 if ((!CHAR_HAS_CATEGORY (c, mcnt)) ^ not)
b18215fc
RS
5413 goto fail;
5414 d += len;
5415 }
fa9a63c5 5416 break;
5e69f11e 5417
1fb352e0 5418#endif /* emacs */
5e69f11e 5419
b18215fc
RS
5420 default:
5421 abort ();
fa9a63c5 5422 }
b18215fc 5423 continue; /* Successfully executed one pattern command; keep going. */
fa9a63c5
RM
5424
5425
5426 /* We goto here if a matching operation fails. */
5427 fail:
27c3b45d 5428 QUIT;
fa9a63c5 5429 if (!FAIL_STACK_EMPTY ())
505bde11 5430 {
66f0296e 5431 re_char *str;
505bde11
SM
5432 unsigned char *pat;
5433 /* A restart point is known. Restore to that state. */
b18215fc 5434 DEBUG_PRINT1 ("\nFAIL:\n");
505bde11
SM
5435 POP_FAILURE_POINT (str, pat);
5436 switch (SWITCH_ENUM_CAST ((re_opcode_t) *pat++))
5437 {
5438 case on_failure_keep_string_jump:
5439 assert (str == NULL);
5440 goto continue_failure_jump;
5441
0683b6fa
SM
5442 case on_failure_jump_nastyloop:
5443 assert ((re_opcode_t)pat[-2] == no_op);
5444 PUSH_FAILURE_POINT (pat - 2, str);
5445 /* Fallthrough */
5446
505bde11
SM
5447 case on_failure_jump_loop:
5448 case on_failure_jump:
5449 case succeed_n:
5450 d = str;
5451 continue_failure_jump:
5452 EXTRACT_NUMBER_AND_INCR (mcnt, pat);
5453 p = pat + mcnt;
5454 break;
b18215fc 5455
0683b6fa
SM
5456 case no_op:
5457 /* A special frame used for nastyloops. */
5458 goto fail;
5459
505bde11
SM
5460 default:
5461 abort();
5462 }
fa9a63c5 5463
505bde11 5464 assert (p >= bufp->buffer && p <= pend);
b18215fc
RS
5465
5466 if (d >= string1 && d <= end1)
fa9a63c5 5467 dend = end_match_1;
b18215fc 5468 }
fa9a63c5 5469 else
b18215fc 5470 break; /* Matching at this starting point really fails. */
fa9a63c5
RM
5471 } /* for (;;) */
5472
5473 if (best_regs_set)
5474 goto restore_best_regs;
5475
5476 FREE_VARIABLES ();
5477
b18215fc 5478 return -1; /* Failure to match. */
fa9a63c5
RM
5479} /* re_match_2 */
5480\f
5481/* Subroutine definitions for re_match_2. */
5482
fa9a63c5
RM
5483/* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
5484 bytes; nonzero otherwise. */
5e69f11e 5485
fa9a63c5 5486static int
2d1675e4
SM
5487bcmp_translate (s1, s2, len, translate, multibyte)
5488 re_char *s1, *s2;
fa9a63c5 5489 register int len;
6676cb1c 5490 RE_TRANSLATE_TYPE translate;
2d1675e4 5491 const int multibyte;
fa9a63c5 5492{
2d1675e4
SM
5493 register re_char *p1 = s1, *p2 = s2;
5494 re_char *p1_end = s1 + len;
5495 re_char *p2_end = s2 + len;
e934739e
RS
5496
5497 while (p1 != p1_end && p2 != p2_end)
fa9a63c5 5498 {
e934739e
RS
5499 int p1_charlen, p2_charlen;
5500 int p1_ch, p2_ch;
5501
2d1675e4
SM
5502 p1_ch = RE_STRING_CHAR_AND_LENGTH (p1, p1_end - p1, p1_charlen);
5503 p2_ch = RE_STRING_CHAR_AND_LENGTH (p2, p2_end - p2, p2_charlen);
e934739e
RS
5504
5505 if (RE_TRANSLATE (translate, p1_ch)
5506 != RE_TRANSLATE (translate, p2_ch))
bc192b5b 5507 return 1;
e934739e
RS
5508
5509 p1 += p1_charlen, p2 += p2_charlen;
fa9a63c5 5510 }
e934739e
RS
5511
5512 if (p1 != p1_end || p2 != p2_end)
5513 return 1;
5514
fa9a63c5
RM
5515 return 0;
5516}
5517\f
5518/* Entry points for GNU code. */
5519
5520/* re_compile_pattern is the GNU regular expression compiler: it
5521 compiles PATTERN (of length SIZE) and puts the result in BUFP.
5522 Returns 0 if the pattern was valid, otherwise an error string.
5e69f11e 5523
fa9a63c5
RM
5524 Assumes the `allocated' (and perhaps `buffer') and `translate' fields
5525 are set in BUFP on entry.
5e69f11e 5526
b18215fc 5527 We call regex_compile to do the actual compilation. */
fa9a63c5
RM
5528
5529const char *
5530re_compile_pattern (pattern, length, bufp)
5531 const char *pattern;
5532 int length;
5533 struct re_pattern_buffer *bufp;
5534{
5535 reg_errcode_t ret;
5e69f11e 5536
fa9a63c5
RM
5537 /* GNU code is written to assume at least RE_NREGS registers will be set
5538 (and at least one extra will be -1). */
5539 bufp->regs_allocated = REGS_UNALLOCATED;
5e69f11e 5540
fa9a63c5
RM
5541 /* And GNU code determines whether or not to get register information
5542 by passing null for the REGS argument to re_match, etc., not by
5543 setting no_sub. */
5544 bufp->no_sub = 0;
5e69f11e 5545
b18215fc 5546 /* Match anchors at newline. */
fa9a63c5 5547 bufp->newline_anchor = 1;
5e69f11e 5548
fa9a63c5
RM
5549 ret = regex_compile (pattern, length, re_syntax_options, bufp);
5550
5551 if (!ret)
5552 return NULL;
5553 return gettext (re_error_msgid[(int) ret]);
5e69f11e 5554}
fa9a63c5 5555\f
b18215fc
RS
5556/* Entry points compatible with 4.2 BSD regex library. We don't define
5557 them unless specifically requested. */
fa9a63c5 5558
0c085854 5559#if defined (_REGEX_RE_COMP) || defined (_LIBC)
fa9a63c5
RM
5560
5561/* BSD has one and only one pattern buffer. */
5562static struct re_pattern_buffer re_comp_buf;
5563
5564char *
48afdd44
RM
5565#ifdef _LIBC
5566/* Make these definitions weak in libc, so POSIX programs can redefine
5567 these names if they don't use our functions, and still use
5568 regcomp/regexec below without link errors. */
5569weak_function
5570#endif
fa9a63c5
RM
5571re_comp (s)
5572 const char *s;
5573{
5574 reg_errcode_t ret;
5e69f11e 5575
fa9a63c5
RM
5576 if (!s)
5577 {
5578 if (!re_comp_buf.buffer)
5579 return gettext ("No previous regular expression");
5580 return 0;
5581 }
5582
5583 if (!re_comp_buf.buffer)
5584 {
5585 re_comp_buf.buffer = (unsigned char *) malloc (200);
5586 if (re_comp_buf.buffer == NULL)
b18215fc 5587 return gettext (re_error_msgid[(int) REG_ESPACE]);
fa9a63c5
RM
5588 re_comp_buf.allocated = 200;
5589
5590 re_comp_buf.fastmap = (char *) malloc (1 << BYTEWIDTH);
5591 if (re_comp_buf.fastmap == NULL)
5592 return gettext (re_error_msgid[(int) REG_ESPACE]);
5593 }
5594
5595 /* Since `re_exec' always passes NULL for the `regs' argument, we
5596 don't need to initialize the pattern buffer fields which affect it. */
5597
b18215fc 5598 /* Match anchors at newlines. */
fa9a63c5
RM
5599 re_comp_buf.newline_anchor = 1;
5600
5601 ret = regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf);
5e69f11e 5602
fa9a63c5
RM
5603 if (!ret)
5604 return NULL;
5605
5606 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
5607 return (char *) gettext (re_error_msgid[(int) ret]);
5608}
5609
5610
5611int
48afdd44
RM
5612#ifdef _LIBC
5613weak_function
5614#endif
fa9a63c5
RM
5615re_exec (s)
5616 const char *s;
5617{
5618 const int len = strlen (s);
5619 return
5620 0 <= re_search (&re_comp_buf, s, len, 0, len, (struct re_registers *) 0);
5621}
5622#endif /* _REGEX_RE_COMP */
5623\f
5624/* POSIX.2 functions. Don't define these for Emacs. */
5625
5626#ifndef emacs
5627
5628/* regcomp takes a regular expression as a string and compiles it.
5629
b18215fc 5630 PREG is a regex_t *. We do not expect any fields to be initialized,
fa9a63c5
RM
5631 since POSIX says we shouldn't. Thus, we set
5632
5633 `buffer' to the compiled pattern;
5634 `used' to the length of the compiled pattern;
5635 `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
5636 REG_EXTENDED bit in CFLAGS is set; otherwise, to
5637 RE_SYNTAX_POSIX_BASIC;
5638 `newline_anchor' to REG_NEWLINE being set in CFLAGS;
5639 `fastmap' and `fastmap_accurate' to zero;
5640 `re_nsub' to the number of subexpressions in PATTERN.
5641
5642 PATTERN is the address of the pattern string.
5643
5644 CFLAGS is a series of bits which affect compilation.
5645
5646 If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
5647 use POSIX basic syntax.
5648
5649 If REG_NEWLINE is set, then . and [^...] don't match newline.
5650 Also, regexec will try a match beginning after every newline.
5651
5652 If REG_ICASE is set, then we considers upper- and lowercase
5653 versions of letters to be equivalent when matching.
5654
5655 If REG_NOSUB is set, then when PREG is passed to regexec, that
5656 routine will report only success or failure, and nothing about the
5657 registers.
5658
b18215fc 5659 It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for
fa9a63c5
RM
5660 the return codes and their meanings.) */
5661
5662int
5663regcomp (preg, pattern, cflags)
5664 regex_t *preg;
5e69f11e 5665 const char *pattern;
fa9a63c5
RM
5666 int cflags;
5667{
5668 reg_errcode_t ret;
5669 unsigned syntax
5670 = (cflags & REG_EXTENDED) ?
5671 RE_SYNTAX_POSIX_EXTENDED : RE_SYNTAX_POSIX_BASIC;
5672
5673 /* regex_compile will allocate the space for the compiled pattern. */
5674 preg->buffer = 0;
5675 preg->allocated = 0;
5676 preg->used = 0;
5e69f11e 5677
fa9a63c5
RM
5678 /* Don't bother to use a fastmap when searching. This simplifies the
5679 REG_NEWLINE case: if we used a fastmap, we'd have to put all the
5680 characters after newlines into the fastmap. This way, we just try
5681 every character. */
5682 preg->fastmap = 0;
5e69f11e 5683
fa9a63c5
RM
5684 if (cflags & REG_ICASE)
5685 {
5686 unsigned i;
5e69f11e 5687
6676cb1c
RS
5688 preg->translate
5689 = (RE_TRANSLATE_TYPE) malloc (CHAR_SET_SIZE
5690 * sizeof (*(RE_TRANSLATE_TYPE)0));
fa9a63c5 5691 if (preg->translate == NULL)
b18215fc 5692 return (int) REG_ESPACE;
fa9a63c5
RM
5693
5694 /* Map uppercase characters to corresponding lowercase ones. */
5695 for (i = 0; i < CHAR_SET_SIZE; i++)
b18215fc 5696 preg->translate[i] = ISUPPER (i) ? tolower (i) : i;
fa9a63c5
RM
5697 }
5698 else
5699 preg->translate = NULL;
5700
5701 /* If REG_NEWLINE is set, newlines are treated differently. */
5702 if (cflags & REG_NEWLINE)
5703 { /* REG_NEWLINE implies neither . nor [^...] match newline. */
5704 syntax &= ~RE_DOT_NEWLINE;
5705 syntax |= RE_HAT_LISTS_NOT_NEWLINE;
b18215fc 5706 /* It also changes the matching behavior. */
fa9a63c5
RM
5707 preg->newline_anchor = 1;
5708 }
5709 else
5710 preg->newline_anchor = 0;
5711
5712 preg->no_sub = !!(cflags & REG_NOSUB);
5713
5e69f11e 5714 /* POSIX says a null character in the pattern terminates it, so we
fa9a63c5
RM
5715 can use strlen here in compiling the pattern. */
5716 ret = regex_compile (pattern, strlen (pattern), syntax, preg);
5e69f11e 5717
fa9a63c5
RM
5718 /* POSIX doesn't distinguish between an unmatched open-group and an
5719 unmatched close-group: both are REG_EPAREN. */
5720 if (ret == REG_ERPAREN) ret = REG_EPAREN;
5e69f11e 5721
fa9a63c5
RM
5722 return (int) ret;
5723}
5724
5725
5726/* regexec searches for a given pattern, specified by PREG, in the
5727 string STRING.
5e69f11e 5728
fa9a63c5 5729 If NMATCH is zero or REG_NOSUB was set in the cflags argument to
b18215fc 5730 `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at
fa9a63c5
RM
5731 least NMATCH elements, and we set them to the offsets of the
5732 corresponding matched substrings.
5e69f11e 5733
fa9a63c5
RM
5734 EFLAGS specifies `execution flags' which affect matching: if
5735 REG_NOTBOL is set, then ^ does not match at the beginning of the
5736 string; if REG_NOTEOL is set, then $ does not match at the end.
5e69f11e 5737
fa9a63c5
RM
5738 We return 0 if we find a match and REG_NOMATCH if not. */
5739
5740int
5741regexec (preg, string, nmatch, pmatch, eflags)
5742 const regex_t *preg;
5e69f11e
RM
5743 const char *string;
5744 size_t nmatch;
5745 regmatch_t pmatch[];
fa9a63c5
RM
5746 int eflags;
5747{
5748 int ret;
5749 struct re_registers regs;
5750 regex_t private_preg;
5751 int len = strlen (string);
5752 boolean want_reg_info = !preg->no_sub && nmatch > 0;
5753
5754 private_preg = *preg;
5e69f11e 5755
fa9a63c5
RM
5756 private_preg.not_bol = !!(eflags & REG_NOTBOL);
5757 private_preg.not_eol = !!(eflags & REG_NOTEOL);
5e69f11e 5758
fa9a63c5
RM
5759 /* The user has told us exactly how many registers to return
5760 information about, via `nmatch'. We have to pass that on to the
b18215fc 5761 matching routines. */
fa9a63c5 5762 private_preg.regs_allocated = REGS_FIXED;
5e69f11e 5763
fa9a63c5
RM
5764 if (want_reg_info)
5765 {
5766 regs.num_regs = nmatch;
5767 regs.start = TALLOC (nmatch, regoff_t);
5768 regs.end = TALLOC (nmatch, regoff_t);
5769 if (regs.start == NULL || regs.end == NULL)
b18215fc 5770 return (int) REG_NOMATCH;
fa9a63c5
RM
5771 }
5772
5773 /* Perform the searching operation. */
5774 ret = re_search (&private_preg, string, len,
b18215fc
RS
5775 /* start: */ 0, /* range: */ len,
5776 want_reg_info ? &regs : (struct re_registers *) 0);
5e69f11e 5777
fa9a63c5
RM
5778 /* Copy the register information to the POSIX structure. */
5779 if (want_reg_info)
5780 {
5781 if (ret >= 0)
b18215fc
RS
5782 {
5783 unsigned r;
fa9a63c5 5784
b18215fc
RS
5785 for (r = 0; r < nmatch; r++)
5786 {
5787 pmatch[r].rm_so = regs.start[r];
5788 pmatch[r].rm_eo = regs.end[r];
5789 }
5790 }
fa9a63c5 5791
b18215fc 5792 /* If we needed the temporary register info, free the space now. */
fa9a63c5
RM
5793 free (regs.start);
5794 free (regs.end);
5795 }
5796
5797 /* We want zero return to mean success, unlike `re_search'. */
5798 return ret >= 0 ? (int) REG_NOERROR : (int) REG_NOMATCH;
5799}
5800
5801
5802/* Returns a message corresponding to an error code, ERRCODE, returned
5803 from either regcomp or regexec. We don't use PREG here. */
5804
5805size_t
5806regerror (errcode, preg, errbuf, errbuf_size)
5807 int errcode;
5808 const regex_t *preg;
5809 char *errbuf;
5810 size_t errbuf_size;
5811{
5812 const char *msg;
5813 size_t msg_size;
5814
5815 if (errcode < 0
5816 || errcode >= (sizeof (re_error_msgid) / sizeof (re_error_msgid[0])))
5e69f11e 5817 /* Only error codes returned by the rest of the code should be passed
b18215fc 5818 to this routine. If we are given anything else, or if other regex
fa9a63c5
RM
5819 code generates an invalid error code, then the program has a bug.
5820 Dump core so we can fix it. */
5821 abort ();
5822
5823 msg = gettext (re_error_msgid[errcode]);
5824
5825 msg_size = strlen (msg) + 1; /* Includes the null. */
5e69f11e 5826
fa9a63c5
RM
5827 if (errbuf_size != 0)
5828 {
5829 if (msg_size > errbuf_size)
b18215fc
RS
5830 {
5831 strncpy (errbuf, msg, errbuf_size - 1);
5832 errbuf[errbuf_size - 1] = 0;
5833 }
fa9a63c5 5834 else
b18215fc 5835 strcpy (errbuf, msg);
fa9a63c5
RM
5836 }
5837
5838 return msg_size;
5839}
5840
5841
5842/* Free dynamically allocated space used by PREG. */
5843
5844void
5845regfree (preg)
5846 regex_t *preg;
5847{
5848 if (preg->buffer != NULL)
5849 free (preg->buffer);
5850 preg->buffer = NULL;
5e69f11e 5851
fa9a63c5
RM
5852 preg->allocated = 0;
5853 preg->used = 0;
5854
5855 if (preg->fastmap != NULL)
5856 free (preg->fastmap);
5857 preg->fastmap = NULL;
5858 preg->fastmap_accurate = 0;
5859
5860 if (preg->translate != NULL)
5861 free (preg->translate);
5862 preg->translate = NULL;
5863}
5864
5865#endif /* not emacs */