Implement token threading
[bpt/emacs.git] / src / regex.c
CommitLineData
e318085a 1/* Extended regular expression matching and search library, version
0b32bf0e 2 0.12. (Implements POSIX draft P1003.2/D11.2, except for some of the
bc78d348
KB
3 internationalization features.)
4
acaf905b 5 Copyright (C) 1993-2012 Free Software Foundation, Inc.
bc78d348 6
fa9a63c5
RM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
e468b87f 9 the Free Software Foundation; either version 3, or (at your option)
fa9a63c5
RM
10 any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
7814e705 14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
fa9a63c5
RM
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
4fc5845f 19 Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
7814e705 20 USA. */
fa9a63c5 21
6df42991 22/* TODO:
505bde11 23 - structure the opcode space into opcode+flag.
dc1e502d 24 - merge with glibc's regex.[ch].
01618498 25 - replace (succeed_n + jump_n + set_number_at) with something that doesn't
6dcf2d0e
SM
26 need to modify the compiled regexp so that re_match can be reentrant.
27 - get rid of on_failure_jump_smart by doing the optimization in re_comp
28 rather than at run-time, so that re_match can be reentrant.
01618498 29*/
505bde11 30
fa9a63c5 31/* AIX requires this to be the first thing in the file. */
0b32bf0e 32#if defined _AIX && !defined REGEX_MALLOC
fa9a63c5
RM
33 #pragma alloca
34#endif
35
b8df54ff
PE
36/* Ignore some GCC warnings for now. This section should go away
37 once the Emacs and Gnulib regex code is merged. */
63807d47 38#if (__GNUC__ == 4 && 5 <= __GNUC_MINOR__) || 4 < __GNUC__
b8df54ff
PE
39# pragma GCC diagnostic ignored "-Wstrict-overflow"
40# ifndef emacs
41# pragma GCC diagnostic ignored "-Wunused-but-set-variable"
42# pragma GCC diagnostic ignored "-Wunused-function"
43# pragma GCC diagnostic ignored "-Wunused-macros"
44# pragma GCC diagnostic ignored "-Wunused-result"
45# pragma GCC diagnostic ignored "-Wunused-variable"
46# endif
47#endif
48
cf38a720 49#include <config.h>
fa9a63c5 50
0e926e56
PE
51#include <stddef.h>
52
53#ifdef emacs
4bb91c68
SM
54/* We need this for `regex.h', and perhaps for the Emacs include files. */
55# include <sys/types.h>
56#endif
fa9a63c5 57
14473664
SM
58/* Whether to use ISO C Amendment 1 wide char functions.
59 Those should not be used for Emacs since it uses its own. */
5e5388f6
GM
60#if defined _LIBC
61#define WIDE_CHAR_SUPPORT 1
62#else
14473664 63#define WIDE_CHAR_SUPPORT \
5e5388f6
GM
64 (HAVE_WCTYPE_H && HAVE_WCHAR_H && HAVE_BTOWC && !emacs)
65#endif
14473664 66
fa463103 67/* For platform which support the ISO C amendment 1 functionality we
14473664 68 support user defined character classes. */
a0ad02f7 69#if WIDE_CHAR_SUPPORT
14473664
SM
70/* Solaris 2.5 has a bug: <wchar.h> must be included before <wctype.h>. */
71# include <wchar.h>
72# include <wctype.h>
73#endif
74
c0f9ea08
SM
75#ifdef _LIBC
76/* We have to keep the namespace clean. */
77# define regfree(preg) __regfree (preg)
78# define regexec(pr, st, nm, pm, ef) __regexec (pr, st, nm, pm, ef)
79# define regcomp(preg, pattern, cflags) __regcomp (preg, pattern, cflags)
ec869672 80# define regerror(err_code, preg, errbuf, errbuf_size) \
5e617bc2 81 __regerror (err_code, preg, errbuf, errbuf_size)
c0f9ea08
SM
82# define re_set_registers(bu, re, nu, st, en) \
83 __re_set_registers (bu, re, nu, st, en)
84# define re_match_2(bufp, string1, size1, string2, size2, pos, regs, stop) \
85 __re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
86# define re_match(bufp, string, size, pos, regs) \
87 __re_match (bufp, string, size, pos, regs)
88# define re_search(bufp, string, size, startpos, range, regs) \
89 __re_search (bufp, string, size, startpos, range, regs)
90# define re_compile_pattern(pattern, length, bufp) \
91 __re_compile_pattern (pattern, length, bufp)
92# define re_set_syntax(syntax) __re_set_syntax (syntax)
93# define re_search_2(bufp, st1, s1, st2, s2, startpos, range, regs, stop) \
94 __re_search_2 (bufp, st1, s1, st2, s2, startpos, range, regs, stop)
95# define re_compile_fastmap(bufp) __re_compile_fastmap (bufp)
96
14473664
SM
97/* Make sure we call libc's function even if the user overrides them. */
98# define btowc __btowc
99# define iswctype __iswctype
100# define wctype __wctype
101
c0f9ea08
SM
102# define WEAK_ALIAS(a,b) weak_alias (a, b)
103
104/* We are also using some library internals. */
105# include <locale/localeinfo.h>
106# include <locale/elem-hash.h>
107# include <langinfo.h>
108#else
109# define WEAK_ALIAS(a,b)
110#endif
111
4bb91c68 112/* This is for other GNU distributions with internationalized messages. */
0b32bf0e 113#if HAVE_LIBINTL_H || defined _LIBC
fa9a63c5
RM
114# include <libintl.h>
115#else
116# define gettext(msgid) (msgid)
117#endif
118
5e69f11e
RM
119#ifndef gettext_noop
120/* This define is so xgettext can find the internationalizable
121 strings. */
0b32bf0e 122# define gettext_noop(String) String
5e69f11e
RM
123#endif
124
fa9a63c5
RM
125/* The `emacs' switch turns on certain matching commands
126 that make sense only in Emacs. */
127#ifdef emacs
128
d7306fe6 129# include <setjmp.h>
0b32bf0e 130# include "lisp.h"
e5560ff7 131# include "character.h"
0b32bf0e 132# include "buffer.h"
b18215fc
RS
133
134/* Make syntax table lookup grant data in gl_state. */
0b32bf0e 135# define SYNTAX_ENTRY_VIA_PROPERTY
b18215fc 136
0b32bf0e 137# include "syntax.h"
0b32bf0e 138# include "category.h"
fa9a63c5 139
7689ef0b
EZ
140# ifdef malloc
141# undef malloc
142# endif
0b32bf0e 143# define malloc xmalloc
7689ef0b
EZ
144# ifdef realloc
145# undef realloc
146# endif
0b32bf0e 147# define realloc xrealloc
7689ef0b
EZ
148# ifdef free
149# undef free
150# endif
0b32bf0e 151# define free xfree
9abbd165 152
7814e705 153/* Converts the pointer to the char to BEG-based offset from the start. */
0b32bf0e
SM
154# define PTR_TO_OFFSET(d) POS_AS_IN_BUFFER (POINTER_TO_OFFSET (d))
155# define POS_AS_IN_BUFFER(p) ((p) + (NILP (re_match_object) || BUFFERP (re_match_object)))
156
157# define RE_MULTIBYTE_P(bufp) ((bufp)->multibyte)
bf216479 158# define RE_TARGET_MULTIBYTE_P(bufp) ((bufp)->target_multibyte)
62a6e103
AS
159# define RE_STRING_CHAR(p, multibyte) \
160 (multibyte ? (STRING_CHAR (p)) : (*(p)))
161# define RE_STRING_CHAR_AND_LENGTH(p, len, multibyte) \
162 (multibyte ? (STRING_CHAR_AND_LENGTH (p, len)) : ((len) = 1, *(p)))
2d1675e4 163
4c0354d7 164# define RE_CHAR_TO_MULTIBYTE(c) UNIBYTE_TO_CHAR (c)
cf9c99bc 165
2afc21f5 166# define RE_CHAR_TO_UNIBYTE(c) CHAR_TO_BYTE_SAFE (c)
cf9c99bc 167
6fdd04b0
KH
168/* Set C a (possibly converted to multibyte) character before P. P
169 points into a string which is the virtual concatenation of STR1
170 (which ends at END1) or STR2 (which ends at END2). */
bf216479
KH
171# define GET_CHAR_BEFORE_2(c, p, str1, end1, str2, end2) \
172 do { \
02cb78b5 173 if (target_multibyte) \
bf216479
KH
174 { \
175 re_char *dtemp = (p) == (str2) ? (end1) : (p); \
176 re_char *dlimit = ((p) > (str2) && (p) <= (end2)) ? (str2) : (str1); \
177 while (dtemp-- > dlimit && !CHAR_HEAD_P (*dtemp)); \
62a6e103 178 c = STRING_CHAR (dtemp); \
bf216479
KH
179 } \
180 else \
181 { \
182 (c = ((p) == (str2) ? (end1) : (p))[-1]); \
cf9c99bc 183 (c) = RE_CHAR_TO_MULTIBYTE (c); \
bf216479 184 } \
2d1675e4
SM
185 } while (0)
186
6fdd04b0
KH
187/* Set C a (possibly converted to multibyte) character at P, and set
188 LEN to the byte length of that character. */
189# define GET_CHAR_AFTER(c, p, len) \
190 do { \
02cb78b5 191 if (target_multibyte) \
62a6e103 192 (c) = STRING_CHAR_AND_LENGTH (p, len); \
6fdd04b0
KH
193 else \
194 { \
cf9c99bc 195 (c) = *p; \
6fdd04b0 196 len = 1; \
cf9c99bc 197 (c) = RE_CHAR_TO_MULTIBYTE (c); \
6fdd04b0 198 } \
8f924df7 199 } while (0)
4e8a9132 200
fa9a63c5
RM
201#else /* not emacs */
202
203/* If we are not linking with Emacs proper,
204 we can't use the relocating allocator
205 even if config.h says that we can. */
0b32bf0e 206# undef REL_ALLOC
fa9a63c5 207
4004364e 208# include <unistd.h>
fa9a63c5 209
a77f947b
CY
210/* When used in Emacs's lib-src, we need xmalloc and xrealloc. */
211
b8df54ff 212static void *
d2762c86 213xmalloc (size_t size)
a77f947b 214{
38182d90 215 void *val = malloc (size);
a77f947b
CY
216 if (!val && size)
217 {
218 write (2, "virtual memory exhausted\n", 25);
219 exit (1);
220 }
221 return val;
222}
223
b8df54ff 224static void *
d2762c86 225xrealloc (void *block, size_t size)
a77f947b 226{
38182d90 227 void *val;
a77f947b
CY
228 /* We must call malloc explicitly when BLOCK is 0, since some
229 reallocs don't do this. */
230 if (! block)
38182d90 231 val = malloc (size);
a77f947b 232 else
38182d90 233 val = realloc (block, size);
a77f947b
CY
234 if (!val && size)
235 {
236 write (2, "virtual memory exhausted\n", 25);
237 exit (1);
238 }
239 return val;
240}
241
a073faa6
CY
242# ifdef malloc
243# undef malloc
244# endif
245# define malloc xmalloc
246# ifdef realloc
247# undef realloc
248# endif
249# define realloc xrealloc
250
9cfdb3ec 251# include <string.h>
fa9a63c5
RM
252
253/* Define the syntax stuff for \<, \>, etc. */
254
990b2375 255/* Sword must be nonzero for the wordchar pattern commands in re_match_2. */
669fa600 256enum syntaxcode { Swhitespace = 0, Sword = 1, Ssymbol = 2 };
fa9a63c5 257
0b32bf0e 258# define SWITCH_ENUM_CAST(x) (x)
fa9a63c5 259
e934739e 260/* Dummy macros for non-Emacs environments. */
0b32bf0e
SM
261# define CHAR_CHARSET(c) 0
262# define CHARSET_LEADING_CODE_BASE(c) 0
263# define MAX_MULTIBYTE_LENGTH 1
264# define RE_MULTIBYTE_P(x) 0
bf216479 265# define RE_TARGET_MULTIBYTE_P(x) 0
0b32bf0e
SM
266# define WORD_BOUNDARY_P(c1, c2) (0)
267# define CHAR_HEAD_P(p) (1)
268# define SINGLE_BYTE_CHAR_P(c) (1)
269# define SAME_CHARSET_P(c1, c2) (1)
aa3830c4 270# define BYTES_BY_CHAR_HEAD(p) (1)
70806df6 271# define PREV_CHAR_BOUNDARY(p, limit) ((p)--)
62a6e103
AS
272# define STRING_CHAR(p) (*(p))
273# define RE_STRING_CHAR(p, multibyte) STRING_CHAR (p)
0b32bf0e 274# define CHAR_STRING(c, s) (*(s) = (c), 1)
62a6e103
AS
275# define STRING_CHAR_AND_LENGTH(p, actual_len) ((actual_len) = 1, *(p))
276# define RE_STRING_CHAR_AND_LENGTH(p, len, multibyte) STRING_CHAR_AND_LENGTH (p, len)
cf9c99bc
KH
277# define RE_CHAR_TO_MULTIBYTE(c) (c)
278# define RE_CHAR_TO_UNIBYTE(c) (c)
0b32bf0e 279# define GET_CHAR_BEFORE_2(c, p, str1, end1, str2, end2) \
b18215fc 280 (c = ((p) == (str2) ? *((end1) - 1) : *((p) - 1)))
6fdd04b0
KH
281# define GET_CHAR_AFTER(c, p, len) \
282 (c = *p, len = 1)
0b32bf0e 283# define MAKE_CHAR(charset, c1, c2) (c1)
9117d724
KH
284# define BYTE8_TO_CHAR(c) (c)
285# define CHAR_BYTE8_P(c) (0)
bf216479 286# define CHAR_LEADING_CODE(c) (c)
8f924df7 287
fa9a63c5 288#endif /* not emacs */
4e8a9132
SM
289
290#ifndef RE_TRANSLATE
0b32bf0e
SM
291# define RE_TRANSLATE(TBL, C) ((unsigned char)(TBL)[C])
292# define RE_TRANSLATE_P(TBL) (TBL)
4e8a9132 293#endif
fa9a63c5
RM
294\f
295/* Get the interface, including the syntax bits. */
296#include "regex.h"
297
f71b19b6
DL
298/* isalpha etc. are used for the character classes. */
299#include <ctype.h>
fa9a63c5 300
f71b19b6 301#ifdef emacs
fa9a63c5 302
f71b19b6 303/* 1 if C is an ASCII character. */
0b32bf0e 304# define IS_REAL_ASCII(c) ((c) < 0200)
fa9a63c5 305
f71b19b6 306/* 1 if C is a unibyte character. */
0b32bf0e 307# define ISUNIBYTE(c) (SINGLE_BYTE_CHAR_P ((c)))
96cc36cc 308
f71b19b6 309/* The Emacs definitions should not be directly affected by locales. */
96cc36cc 310
f71b19b6 311/* In Emacs, these are only used for single-byte characters. */
0b32bf0e
SM
312# define ISDIGIT(c) ((c) >= '0' && (c) <= '9')
313# define ISCNTRL(c) ((c) < ' ')
314# define ISXDIGIT(c) (((c) >= '0' && (c) <= '9') \
f71b19b6
DL
315 || ((c) >= 'a' && (c) <= 'f') \
316 || ((c) >= 'A' && (c) <= 'F'))
96cc36cc
RS
317
318/* This is only used for single-byte characters. */
0b32bf0e 319# define ISBLANK(c) ((c) == ' ' || (c) == '\t')
96cc36cc
RS
320
321/* The rest must handle multibyte characters. */
322
0b32bf0e 323# define ISGRAPH(c) (SINGLE_BYTE_CHAR_P (c) \
f71b19b6 324 ? (c) > ' ' && !((c) >= 0177 && (c) <= 0237) \
96cc36cc
RS
325 : 1)
326
14473664 327# define ISPRINT(c) (SINGLE_BYTE_CHAR_P (c) \
f71b19b6 328 ? (c) >= ' ' && !((c) >= 0177 && (c) <= 0237) \
96cc36cc
RS
329 : 1)
330
0b32bf0e 331# define ISALNUM(c) (IS_REAL_ASCII (c) \
f71b19b6
DL
332 ? (((c) >= 'a' && (c) <= 'z') \
333 || ((c) >= 'A' && (c) <= 'Z') \
334 || ((c) >= '0' && (c) <= '9')) \
96cc36cc
RS
335 : SYNTAX (c) == Sword)
336
0b32bf0e 337# define ISALPHA(c) (IS_REAL_ASCII (c) \
f71b19b6
DL
338 ? (((c) >= 'a' && (c) <= 'z') \
339 || ((c) >= 'A' && (c) <= 'Z')) \
96cc36cc
RS
340 : SYNTAX (c) == Sword)
341
5da9919f 342# define ISLOWER(c) lowercasep (c)
96cc36cc 343
0b32bf0e 344# define ISPUNCT(c) (IS_REAL_ASCII (c) \
f71b19b6
DL
345 ? ((c) > ' ' && (c) < 0177 \
346 && !(((c) >= 'a' && (c) <= 'z') \
4bb91c68
SM
347 || ((c) >= 'A' && (c) <= 'Z') \
348 || ((c) >= '0' && (c) <= '9'))) \
96cc36cc
RS
349 : SYNTAX (c) != Sword)
350
0b32bf0e 351# define ISSPACE(c) (SYNTAX (c) == Swhitespace)
96cc36cc 352
5da9919f 353# define ISUPPER(c) uppercasep (c)
96cc36cc 354
0b32bf0e 355# define ISWORD(c) (SYNTAX (c) == Sword)
96cc36cc
RS
356
357#else /* not emacs */
358
f71b19b6 359/* 1 if C is an ASCII character. */
0b32bf0e 360# define IS_REAL_ASCII(c) ((c) < 0200)
f71b19b6
DL
361
362/* This distinction is not meaningful, except in Emacs. */
0b32bf0e
SM
363# define ISUNIBYTE(c) 1
364
365# ifdef isblank
0e926e56 366# define ISBLANK(c) isblank (c)
0b32bf0e
SM
367# else
368# define ISBLANK(c) ((c) == ' ' || (c) == '\t')
369# endif
370# ifdef isgraph
0e926e56 371# define ISGRAPH(c) isgraph (c)
0b32bf0e 372# else
0e926e56 373# define ISGRAPH(c) (isprint (c) && !isspace (c))
0b32bf0e
SM
374# endif
375
0e926e56 376/* Solaris defines ISPRINT so we must undefine it first. */
4bb91c68 377# undef ISPRINT
0e926e56
PE
378# define ISPRINT(c) isprint (c)
379# define ISDIGIT(c) isdigit (c)
380# define ISALNUM(c) isalnum (c)
381# define ISALPHA(c) isalpha (c)
382# define ISCNTRL(c) iscntrl (c)
383# define ISLOWER(c) islower (c)
384# define ISPUNCT(c) ispunct (c)
385# define ISSPACE(c) isspace (c)
386# define ISUPPER(c) isupper (c)
387# define ISXDIGIT(c) isxdigit (c)
0b32bf0e 388
5e617bc2 389# define ISWORD(c) ISALPHA (c)
0b32bf0e 390
4bb91c68 391# ifdef _tolower
5e617bc2 392# define TOLOWER(c) _tolower (c)
4bb91c68 393# else
5e617bc2 394# define TOLOWER(c) tolower (c)
4bb91c68
SM
395# endif
396
397/* How many characters in the character set. */
398# define CHAR_SET_SIZE 256
399
0b32bf0e 400# ifdef SYNTAX_TABLE
f71b19b6 401
0b32bf0e 402extern char *re_syntax_table;
f71b19b6 403
0b32bf0e
SM
404# else /* not SYNTAX_TABLE */
405
0b32bf0e
SM
406static char re_syntax_table[CHAR_SET_SIZE];
407
408static void
d2762c86 409init_syntax_once (void)
0b32bf0e
SM
410{
411 register int c;
412 static int done = 0;
413
414 if (done)
415 return;
416
72af86bd 417 memset (re_syntax_table, 0, sizeof re_syntax_table);
0b32bf0e 418
4bb91c68
SM
419 for (c = 0; c < CHAR_SET_SIZE; ++c)
420 if (ISALNUM (c))
421 re_syntax_table[c] = Sword;
fa9a63c5 422
669fa600 423 re_syntax_table['_'] = Ssymbol;
fa9a63c5 424
0b32bf0e
SM
425 done = 1;
426}
427
428# endif /* not SYNTAX_TABLE */
96cc36cc 429
4bb91c68
SM
430# define SYNTAX(c) re_syntax_table[(c)]
431
96cc36cc
RS
432#endif /* not emacs */
433\f
261cb4bb 434#define SIGN_EXTEND_CHAR(c) ((signed char) (c))
fa9a63c5
RM
435\f
436/* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we
437 use `alloca' instead of `malloc'. This is because using malloc in
438 re_search* or re_match* could cause memory leaks when C-g is used in
439 Emacs; also, malloc is slower and causes storage fragmentation. On
5e69f11e
RM
440 the other hand, malloc is more portable, and easier to debug.
441
fa9a63c5
RM
442 Because we sometimes use alloca, some routines have to be macros,
443 not functions -- `alloca'-allocated space disappears at the end of the
444 function it is called in. */
445
446#ifdef REGEX_MALLOC
447
0b32bf0e
SM
448# define REGEX_ALLOCATE malloc
449# define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
450# define REGEX_FREE free
fa9a63c5
RM
451
452#else /* not REGEX_MALLOC */
453
454/* Emacs already defines alloca, sometimes. */
0b32bf0e 455# ifndef alloca
fa9a63c5
RM
456
457/* Make alloca work the best possible way. */
0b32bf0e
SM
458# ifdef __GNUC__
459# define alloca __builtin_alloca
460# else /* not __GNUC__ */
7f585e7a 461# ifdef HAVE_ALLOCA_H
0b32bf0e
SM
462# include <alloca.h>
463# endif /* HAVE_ALLOCA_H */
464# endif /* not __GNUC__ */
fa9a63c5 465
0b32bf0e 466# endif /* not alloca */
fa9a63c5 467
0b32bf0e 468# define REGEX_ALLOCATE alloca
fa9a63c5
RM
469
470/* Assumes a `char *destination' variable. */
0b32bf0e 471# define REGEX_REALLOCATE(source, osize, nsize) \
fa9a63c5 472 (destination = (char *) alloca (nsize), \
4bb91c68 473 memcpy (destination, source, osize))
fa9a63c5
RM
474
475/* No need to do anything to free, after alloca. */
0b32bf0e 476# define REGEX_FREE(arg) ((void)0) /* Do nothing! But inhibit gcc warning. */
fa9a63c5
RM
477
478#endif /* not REGEX_MALLOC */
479
480/* Define how to allocate the failure stack. */
481
0b32bf0e 482#if defined REL_ALLOC && defined REGEX_MALLOC
4297555e 483
0b32bf0e 484# define REGEX_ALLOCATE_STACK(size) \
fa9a63c5 485 r_alloc (&failure_stack_ptr, (size))
0b32bf0e 486# define REGEX_REALLOCATE_STACK(source, osize, nsize) \
fa9a63c5 487 r_re_alloc (&failure_stack_ptr, (nsize))
0b32bf0e 488# define REGEX_FREE_STACK(ptr) \
fa9a63c5
RM
489 r_alloc_free (&failure_stack_ptr)
490
4297555e 491#else /* not using relocating allocator */
fa9a63c5 492
0b32bf0e 493# ifdef REGEX_MALLOC
fa9a63c5 494
0b32bf0e
SM
495# define REGEX_ALLOCATE_STACK malloc
496# define REGEX_REALLOCATE_STACK(source, osize, nsize) realloc (source, nsize)
497# define REGEX_FREE_STACK free
fa9a63c5 498
0b32bf0e 499# else /* not REGEX_MALLOC */
fa9a63c5 500
0b32bf0e 501# define REGEX_ALLOCATE_STACK alloca
fa9a63c5 502
0b32bf0e 503# define REGEX_REALLOCATE_STACK(source, osize, nsize) \
fa9a63c5 504 REGEX_REALLOCATE (source, osize, nsize)
7814e705 505/* No need to explicitly free anything. */
0b32bf0e 506# define REGEX_FREE_STACK(arg) ((void)0)
fa9a63c5 507
0b32bf0e 508# endif /* not REGEX_MALLOC */
4297555e 509#endif /* not using relocating allocator */
fa9a63c5
RM
510
511
512/* True if `size1' is non-NULL and PTR is pointing anywhere inside
513 `string1' or just past its end. This works if PTR is NULL, which is
514 a good thing. */
25fe55af 515#define FIRST_STRING_P(ptr) \
fa9a63c5
RM
516 (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
517
518/* (Re)Allocate N items of type T using malloc, or fail. */
519#define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
520#define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
fa9a63c5
RM
521#define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
522
4bb91c68 523#define BYTEWIDTH 8 /* In bits. */
fa9a63c5
RM
524
525#define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
526
527#undef MAX
528#undef MIN
529#define MAX(a, b) ((a) > (b) ? (a) : (b))
530#define MIN(a, b) ((a) < (b) ? (a) : (b))
531
66f0296e 532/* Type of source-pattern and string chars. */
a6fc3b5c
EZ
533#ifdef _MSC_VER
534typedef unsigned char re_char;
535#else
66f0296e 536typedef const unsigned char re_char;
a6fc3b5c 537#endif
66f0296e 538
fa9a63c5
RM
539typedef char boolean;
540#define false 0
541#define true 1
542
261cb4bb
PE
543static regoff_t re_match_2_internal (struct re_pattern_buffer *bufp,
544 re_char *string1, size_t size1,
545 re_char *string2, size_t size2,
546 ssize_t pos,
547 struct re_registers *regs,
548 ssize_t stop);
fa9a63c5
RM
549\f
550/* These are the command codes that appear in compiled regular
4bb91c68 551 expressions. Some opcodes are followed by argument bytes. A
fa9a63c5
RM
552 command code can specify any interpretation whatsoever for its
553 arguments. Zero bytes may appear in the compiled regular expression. */
554
555typedef enum
556{
557 no_op = 0,
558
4bb91c68 559 /* Succeed right away--no more backtracking. */
fa9a63c5
RM
560 succeed,
561
25fe55af 562 /* Followed by one byte giving n, then by n literal bytes. */
fa9a63c5
RM
563 exactn,
564
25fe55af 565 /* Matches any (more or less) character. */
fa9a63c5
RM
566 anychar,
567
25fe55af
RS
568 /* Matches any one char belonging to specified set. First
569 following byte is number of bitmap bytes. Then come bytes
570 for a bitmap saying which chars are in. Bits in each byte
571 are ordered low-bit-first. A character is in the set if its
572 bit is 1. A character too large to have a bit in the map is
96cc36cc
RS
573 automatically not in the set.
574
575 If the length byte has the 0x80 bit set, then that stuff
576 is followed by a range table:
577 2 bytes of flags for character sets (low 8 bits, high 8 bits)
0b32bf0e 578 See RANGE_TABLE_WORK_BITS below.
01618498 579 2 bytes, the number of pairs that follow (upto 32767)
96cc36cc 580 pairs, each 2 multibyte characters,
0b32bf0e 581 each multibyte character represented as 3 bytes. */
fa9a63c5
RM
582 charset,
583
25fe55af 584 /* Same parameters as charset, but match any character that is
4bb91c68 585 not one of those specified. */
fa9a63c5
RM
586 charset_not,
587
25fe55af
RS
588 /* Start remembering the text that is matched, for storing in a
589 register. Followed by one byte with the register number, in
590 the range 0 to one less than the pattern buffer's re_nsub
505bde11 591 field. */
fa9a63c5
RM
592 start_memory,
593
25fe55af
RS
594 /* Stop remembering the text that is matched and store it in a
595 memory register. Followed by one byte with the register
596 number, in the range 0 to one less than `re_nsub' in the
505bde11 597 pattern buffer. */
fa9a63c5
RM
598 stop_memory,
599
25fe55af 600 /* Match a duplicate of something remembered. Followed by one
4bb91c68 601 byte containing the register number. */
fa9a63c5
RM
602 duplicate,
603
25fe55af 604 /* Fail unless at beginning of line. */
fa9a63c5
RM
605 begline,
606
4bb91c68 607 /* Fail unless at end of line. */
fa9a63c5
RM
608 endline,
609
25fe55af
RS
610 /* Succeeds if at beginning of buffer (if emacs) or at beginning
611 of string to be matched (if not). */
fa9a63c5
RM
612 begbuf,
613
25fe55af 614 /* Analogously, for end of buffer/string. */
fa9a63c5 615 endbuf,
5e69f11e 616
25fe55af 617 /* Followed by two byte relative address to which to jump. */
5e69f11e 618 jump,
fa9a63c5 619
25fe55af 620 /* Followed by two-byte relative address of place to resume at
7814e705 621 in case of failure. */
fa9a63c5 622 on_failure_jump,
5e69f11e 623
25fe55af
RS
624 /* Like on_failure_jump, but pushes a placeholder instead of the
625 current string position when executed. */
fa9a63c5 626 on_failure_keep_string_jump,
5e69f11e 627
505bde11
SM
628 /* Just like `on_failure_jump', except that it checks that we
629 don't get stuck in an infinite loop (matching an empty string
630 indefinitely). */
631 on_failure_jump_loop,
632
0683b6fa
SM
633 /* Just like `on_failure_jump_loop', except that it checks for
634 a different kind of loop (the kind that shows up with non-greedy
635 operators). This operation has to be immediately preceded
636 by a `no_op'. */
637 on_failure_jump_nastyloop,
638
0b32bf0e 639 /* A smart `on_failure_jump' used for greedy * and + operators.
c7015153 640 It analyzes the loop before which it is put and if the
505bde11 641 loop does not require backtracking, it changes itself to
4e8a9132
SM
642 `on_failure_keep_string_jump' and short-circuits the loop,
643 else it just defaults to changing itself into `on_failure_jump'.
644 It assumes that it is pointing to just past a `jump'. */
505bde11 645 on_failure_jump_smart,
fa9a63c5 646
25fe55af 647 /* Followed by two-byte relative address and two-byte number n.
ed0767d8
SM
648 After matching N times, jump to the address upon failure.
649 Does not work if N starts at 0: use on_failure_jump_loop
650 instead. */
fa9a63c5
RM
651 succeed_n,
652
25fe55af
RS
653 /* Followed by two-byte relative address, and two-byte number n.
654 Jump to the address N times, then fail. */
fa9a63c5
RM
655 jump_n,
656
25fe55af 657 /* Set the following two-byte relative address to the
7814e705 658 subsequent two-byte number. The address *includes* the two
25fe55af 659 bytes of number. */
fa9a63c5
RM
660 set_number_at,
661
fa9a63c5
RM
662 wordbeg, /* Succeeds if at word beginning. */
663 wordend, /* Succeeds if at word end. */
664
665 wordbound, /* Succeeds if at a word boundary. */
7814e705 666 notwordbound, /* Succeeds if not at a word boundary. */
fa9a63c5 667
669fa600
SM
668 symbeg, /* Succeeds if at symbol beginning. */
669 symend, /* Succeeds if at symbol end. */
670
fa9a63c5 671 /* Matches any character whose syntax is specified. Followed by
25fe55af 672 a byte which contains a syntax code, e.g., Sword. */
fa9a63c5
RM
673 syntaxspec,
674
675 /* Matches any character whose syntax is not that specified. */
1fb352e0
SM
676 notsyntaxspec
677
678#ifdef emacs
679 ,before_dot, /* Succeeds if before point. */
680 at_dot, /* Succeeds if at point. */
681 after_dot, /* Succeeds if after point. */
b18215fc
RS
682
683 /* Matches any character whose category-set contains the specified
7814e705
JB
684 category. The operator is followed by a byte which contains a
685 category code (mnemonic ASCII character). */
b18215fc
RS
686 categoryspec,
687
688 /* Matches any character whose category-set does not contain the
689 specified category. The operator is followed by a byte which
690 contains the category code (mnemonic ASCII character). */
691 notcategoryspec
fa9a63c5
RM
692#endif /* emacs */
693} re_opcode_t;
694\f
695/* Common operations on the compiled pattern. */
696
697/* Store NUMBER in two contiguous bytes starting at DESTINATION. */
698
699#define STORE_NUMBER(destination, number) \
700 do { \
701 (destination)[0] = (number) & 0377; \
702 (destination)[1] = (number) >> 8; \
703 } while (0)
704
705/* Same as STORE_NUMBER, except increment DESTINATION to
706 the byte after where the number is stored. Therefore, DESTINATION
707 must be an lvalue. */
708
709#define STORE_NUMBER_AND_INCR(destination, number) \
710 do { \
711 STORE_NUMBER (destination, number); \
712 (destination) += 2; \
713 } while (0)
714
715/* Put into DESTINATION a number stored in two contiguous bytes starting
716 at SOURCE. */
717
718#define EXTRACT_NUMBER(destination, source) \
719 do { \
720 (destination) = *(source) & 0377; \
721 (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8; \
722 } while (0)
723
724#ifdef DEBUG
725static void
261cb4bb 726extract_number (int *dest, re_char *source)
fa9a63c5 727{
5e69f11e 728 int temp = SIGN_EXTEND_CHAR (*(source + 1));
fa9a63c5
RM
729 *dest = *source & 0377;
730 *dest += temp << 8;
731}
732
4bb91c68 733# ifndef EXTRACT_MACROS /* To debug the macros. */
0b32bf0e
SM
734# undef EXTRACT_NUMBER
735# define EXTRACT_NUMBER(dest, src) extract_number (&dest, src)
736# endif /* not EXTRACT_MACROS */
fa9a63c5
RM
737
738#endif /* DEBUG */
739
740/* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
741 SOURCE must be an lvalue. */
742
743#define EXTRACT_NUMBER_AND_INCR(destination, source) \
744 do { \
745 EXTRACT_NUMBER (destination, source); \
25fe55af 746 (source) += 2; \
fa9a63c5
RM
747 } while (0)
748
749#ifdef DEBUG
750static void
261cb4bb 751extract_number_and_incr (int *destination, re_char **source)
5e69f11e 752{
fa9a63c5
RM
753 extract_number (destination, *source);
754 *source += 2;
755}
756
0b32bf0e
SM
757# ifndef EXTRACT_MACROS
758# undef EXTRACT_NUMBER_AND_INCR
759# define EXTRACT_NUMBER_AND_INCR(dest, src) \
fa9a63c5 760 extract_number_and_incr (&dest, &src)
0b32bf0e 761# endif /* not EXTRACT_MACROS */
fa9a63c5
RM
762
763#endif /* DEBUG */
764\f
b18215fc
RS
765/* Store a multibyte character in three contiguous bytes starting
766 DESTINATION, and increment DESTINATION to the byte after where the
7814e705 767 character is stored. Therefore, DESTINATION must be an lvalue. */
b18215fc
RS
768
769#define STORE_CHARACTER_AND_INCR(destination, character) \
770 do { \
771 (destination)[0] = (character) & 0377; \
772 (destination)[1] = ((character) >> 8) & 0377; \
773 (destination)[2] = (character) >> 16; \
774 (destination) += 3; \
775 } while (0)
776
777/* Put into DESTINATION a character stored in three contiguous bytes
7814e705 778 starting at SOURCE. */
b18215fc
RS
779
780#define EXTRACT_CHARACTER(destination, source) \
781 do { \
782 (destination) = ((source)[0] \
783 | ((source)[1] << 8) \
784 | ((source)[2] << 16)); \
785 } while (0)
786
787
788/* Macros for charset. */
789
790/* Size of bitmap of charset P in bytes. P is a start of charset,
791 i.e. *P is (re_opcode_t) charset or (re_opcode_t) charset_not. */
792#define CHARSET_BITMAP_SIZE(p) ((p)[1] & 0x7F)
793
794/* Nonzero if charset P has range table. */
25fe55af 795#define CHARSET_RANGE_TABLE_EXISTS_P(p) ((p)[1] & 0x80)
b18215fc
RS
796
797/* Return the address of range table of charset P. But not the start
798 of table itself, but the before where the number of ranges is
96cc36cc
RS
799 stored. `2 +' means to skip re_opcode_t and size of bitmap,
800 and the 2 bytes of flags at the start of the range table. */
801#define CHARSET_RANGE_TABLE(p) (&(p)[4 + CHARSET_BITMAP_SIZE (p)])
802
803/* Extract the bit flags that start a range table. */
804#define CHARSET_RANGE_TABLE_BITS(p) \
805 ((p)[2 + CHARSET_BITMAP_SIZE (p)] \
806 + (p)[3 + CHARSET_BITMAP_SIZE (p)] * 0x100)
b18215fc 807
b18215fc 808/* Return the address of end of RANGE_TABLE. COUNT is number of
7814e705
JB
809 ranges (which is a pair of (start, end)) in the RANGE_TABLE. `* 2'
810 is start of range and end of range. `* 3' is size of each start
b18215fc
RS
811 and end. */
812#define CHARSET_RANGE_TABLE_END(range_table, count) \
813 ((range_table) + (count) * 2 * 3)
814
7814e705 815/* Test if C is in RANGE_TABLE. A flag NOT is negated if C is in.
b18215fc
RS
816 COUNT is number of ranges in RANGE_TABLE. */
817#define CHARSET_LOOKUP_RANGE_TABLE_RAW(not, c, range_table, count) \
818 do \
819 { \
01618498 820 re_wchar_t range_start, range_end; \
19ed5445 821 re_char *rtp; \
01618498 822 re_char *range_table_end \
b18215fc
RS
823 = CHARSET_RANGE_TABLE_END ((range_table), (count)); \
824 \
19ed5445 825 for (rtp = (range_table); rtp < range_table_end; rtp += 2 * 3) \
b18215fc 826 { \
19ed5445
PE
827 EXTRACT_CHARACTER (range_start, rtp); \
828 EXTRACT_CHARACTER (range_end, rtp + 3); \
b18215fc
RS
829 \
830 if (range_start <= (c) && (c) <= range_end) \
831 { \
832 (not) = !(not); \
833 break; \
834 } \
835 } \
836 } \
837 while (0)
838
839/* Test if C is in range table of CHARSET. The flag NOT is negated if
840 C is listed in it. */
841#define CHARSET_LOOKUP_RANGE_TABLE(not, c, charset) \
842 do \
843 { \
844 /* Number of ranges in range table. */ \
845 int count; \
01618498
SM
846 re_char *range_table = CHARSET_RANGE_TABLE (charset); \
847 \
b18215fc
RS
848 EXTRACT_NUMBER_AND_INCR (count, range_table); \
849 CHARSET_LOOKUP_RANGE_TABLE_RAW ((not), (c), range_table, count); \
850 } \
851 while (0)
852\f
fa9a63c5
RM
853/* If DEBUG is defined, Regex prints many voluminous messages about what
854 it is doing (if the variable `debug' is nonzero). If linked with the
855 main program in `iregex.c', you can enter patterns and strings
856 interactively. And if linked with the main program in `main.c' and
4bb91c68 857 the other test files, you can run the already-written tests. */
fa9a63c5
RM
858
859#ifdef DEBUG
860
861/* We use standard I/O for debugging. */
0b32bf0e 862# include <stdio.h>
fa9a63c5
RM
863
864/* It is useful to test things that ``must'' be true when debugging. */
0b32bf0e 865# include <assert.h>
fa9a63c5 866
99633e97 867static int debug = -100000;
fa9a63c5 868
0b32bf0e
SM
869# define DEBUG_STATEMENT(e) e
870# define DEBUG_PRINT1(x) if (debug > 0) printf (x)
871# define DEBUG_PRINT2(x1, x2) if (debug > 0) printf (x1, x2)
872# define DEBUG_PRINT3(x1, x2, x3) if (debug > 0) printf (x1, x2, x3)
873# define DEBUG_PRINT4(x1, x2, x3, x4) if (debug > 0) printf (x1, x2, x3, x4)
874# define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \
99633e97 875 if (debug > 0) print_partial_compiled_pattern (s, e)
0b32bf0e 876# define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \
99633e97 877 if (debug > 0) print_double_string (w, s1, sz1, s2, sz2)
fa9a63c5
RM
878
879
880/* Print the fastmap in human-readable form. */
881
882void
883print_fastmap (fastmap)
884 char *fastmap;
885{
886 unsigned was_a_range = 0;
5e69f11e
RM
887 unsigned i = 0;
888
fa9a63c5
RM
889 while (i < (1 << BYTEWIDTH))
890 {
891 if (fastmap[i++])
892 {
893 was_a_range = 0;
25fe55af
RS
894 putchar (i - 1);
895 while (i < (1 << BYTEWIDTH) && fastmap[i])
896 {
897 was_a_range = 1;
898 i++;
899 }
fa9a63c5 900 if (was_a_range)
25fe55af
RS
901 {
902 printf ("-");
903 putchar (i - 1);
904 }
905 }
fa9a63c5 906 }
5e69f11e 907 putchar ('\n');
fa9a63c5
RM
908}
909
910
911/* Print a compiled pattern string in human-readable form, starting at
912 the START pointer into it and ending just before the pointer END. */
913
914void
915print_partial_compiled_pattern (start, end)
01618498
SM
916 re_char *start;
917 re_char *end;
fa9a63c5
RM
918{
919 int mcnt, mcnt2;
01618498
SM
920 re_char *p = start;
921 re_char *pend = end;
fa9a63c5
RM
922
923 if (start == NULL)
924 {
a1a052df 925 fprintf (stderr, "(null)\n");
fa9a63c5
RM
926 return;
927 }
5e69f11e 928
fa9a63c5
RM
929 /* Loop over pattern commands. */
930 while (p < pend)
931 {
a1a052df 932 fprintf (stderr, "%d:\t", p - start);
fa9a63c5
RM
933
934 switch ((re_opcode_t) *p++)
935 {
25fe55af 936 case no_op:
a1a052df 937 fprintf (stderr, "/no_op");
25fe55af 938 break;
fa9a63c5 939
99633e97 940 case succeed:
a1a052df 941 fprintf (stderr, "/succeed");
99633e97
SM
942 break;
943
fa9a63c5
RM
944 case exactn:
945 mcnt = *p++;
a1a052df 946 fprintf (stderr, "/exactn/%d", mcnt);
25fe55af 947 do
fa9a63c5 948 {
a1a052df 949 fprintf (stderr, "/%c", *p++);
25fe55af
RS
950 }
951 while (--mcnt);
952 break;
fa9a63c5
RM
953
954 case start_memory:
a1a052df 955 fprintf (stderr, "/start_memory/%d", *p++);
25fe55af 956 break;
fa9a63c5
RM
957
958 case stop_memory:
a1a052df 959 fprintf (stderr, "/stop_memory/%d", *p++);
25fe55af 960 break;
fa9a63c5
RM
961
962 case duplicate:
a1a052df 963 fprintf (stderr, "/duplicate/%d", *p++);
fa9a63c5
RM
964 break;
965
966 case anychar:
a1a052df 967 fprintf (stderr, "/anychar");
fa9a63c5
RM
968 break;
969
970 case charset:
25fe55af
RS
971 case charset_not:
972 {
973 register int c, last = -100;
fa9a63c5 974 register int in_range = 0;
99633e97
SM
975 int length = CHARSET_BITMAP_SIZE (p - 1);
976 int has_range_table = CHARSET_RANGE_TABLE_EXISTS_P (p - 1);
fa9a63c5 977
a1a052df 978 fprintf (stderr, "/charset [%s",
839966f3 979 (re_opcode_t) *(p - 1) == charset_not ? "^" : "");
5e69f11e 980
839966f3
KH
981 if (p + *p >= pend)
982 fprintf (stderr, " !extends past end of pattern! ");
fa9a63c5 983
25fe55af 984 for (c = 0; c < 256; c++)
96cc36cc 985 if (c / 8 < length
fa9a63c5
RM
986 && (p[1 + (c/8)] & (1 << (c % 8))))
987 {
988 /* Are we starting a range? */
989 if (last + 1 == c && ! in_range)
990 {
a1a052df 991 fprintf (stderr, "-");
fa9a63c5
RM
992 in_range = 1;
993 }
994 /* Have we broken a range? */
995 else if (last + 1 != c && in_range)
96cc36cc 996 {
a1a052df 997 fprintf (stderr, "%c", last);
fa9a63c5
RM
998 in_range = 0;
999 }
5e69f11e 1000
fa9a63c5 1001 if (! in_range)
a1a052df 1002 fprintf (stderr, "%c", c);
fa9a63c5
RM
1003
1004 last = c;
25fe55af 1005 }
fa9a63c5
RM
1006
1007 if (in_range)
a1a052df 1008 fprintf (stderr, "%c", last);
fa9a63c5 1009
a1a052df 1010 fprintf (stderr, "]");
fa9a63c5 1011
99633e97 1012 p += 1 + length;
96cc36cc 1013
96cc36cc 1014 if (has_range_table)
99633e97
SM
1015 {
1016 int count;
a1a052df 1017 fprintf (stderr, "has-range-table");
99633e97
SM
1018
1019 /* ??? Should print the range table; for now, just skip it. */
1020 p += 2; /* skip range table bits */
1021 EXTRACT_NUMBER_AND_INCR (count, p);
1022 p = CHARSET_RANGE_TABLE_END (p, count);
1023 }
fa9a63c5
RM
1024 }
1025 break;
1026
1027 case begline:
a1a052df 1028 fprintf (stderr, "/begline");
25fe55af 1029 break;
fa9a63c5
RM
1030
1031 case endline:
a1a052df 1032 fprintf (stderr, "/endline");
25fe55af 1033 break;
fa9a63c5
RM
1034
1035 case on_failure_jump:
25fe55af 1036 extract_number_and_incr (&mcnt, &p);
a1a052df 1037 fprintf (stderr, "/on_failure_jump to %d", p + mcnt - start);
25fe55af 1038 break;
fa9a63c5
RM
1039
1040 case on_failure_keep_string_jump:
25fe55af 1041 extract_number_and_incr (&mcnt, &p);
a1a052df 1042 fprintf (stderr, "/on_failure_keep_string_jump to %d", p + mcnt - start);
25fe55af 1043 break;
fa9a63c5 1044
0683b6fa
SM
1045 case on_failure_jump_nastyloop:
1046 extract_number_and_incr (&mcnt, &p);
a1a052df 1047 fprintf (stderr, "/on_failure_jump_nastyloop to %d", p + mcnt - start);
0683b6fa
SM
1048 break;
1049
505bde11 1050 case on_failure_jump_loop:
fa9a63c5 1051 extract_number_and_incr (&mcnt, &p);
a1a052df 1052 fprintf (stderr, "/on_failure_jump_loop to %d", p + mcnt - start);
5e69f11e
RM
1053 break;
1054
505bde11 1055 case on_failure_jump_smart:
fa9a63c5 1056 extract_number_and_incr (&mcnt, &p);
a1a052df 1057 fprintf (stderr, "/on_failure_jump_smart to %d", p + mcnt - start);
5e69f11e
RM
1058 break;
1059
25fe55af 1060 case jump:
fa9a63c5 1061 extract_number_and_incr (&mcnt, &p);
a1a052df 1062 fprintf (stderr, "/jump to %d", p + mcnt - start);
fa9a63c5
RM
1063 break;
1064
25fe55af
RS
1065 case succeed_n:
1066 extract_number_and_incr (&mcnt, &p);
1067 extract_number_and_incr (&mcnt2, &p);
a1a052df 1068 fprintf (stderr, "/succeed_n to %d, %d times", p - 2 + mcnt - start, mcnt2);
25fe55af 1069 break;
5e69f11e 1070
25fe55af
RS
1071 case jump_n:
1072 extract_number_and_incr (&mcnt, &p);
1073 extract_number_and_incr (&mcnt2, &p);
a1a052df 1074 fprintf (stderr, "/jump_n to %d, %d times", p - 2 + mcnt - start, mcnt2);
25fe55af 1075 break;
5e69f11e 1076
25fe55af
RS
1077 case set_number_at:
1078 extract_number_and_incr (&mcnt, &p);
1079 extract_number_and_incr (&mcnt2, &p);
a1a052df 1080 fprintf (stderr, "/set_number_at location %d to %d", p - 2 + mcnt - start, mcnt2);
25fe55af 1081 break;
5e69f11e 1082
25fe55af 1083 case wordbound:
a1a052df 1084 fprintf (stderr, "/wordbound");
fa9a63c5
RM
1085 break;
1086
1087 case notwordbound:
a1a052df 1088 fprintf (stderr, "/notwordbound");
25fe55af 1089 break;
fa9a63c5
RM
1090
1091 case wordbeg:
a1a052df 1092 fprintf (stderr, "/wordbeg");
fa9a63c5 1093 break;
5e69f11e 1094
fa9a63c5 1095 case wordend:
a1a052df 1096 fprintf (stderr, "/wordend");
e2543b02 1097 break;
5e69f11e 1098
669fa600 1099 case symbeg:
e2543b02 1100 fprintf (stderr, "/symbeg");
669fa600
SM
1101 break;
1102
1103 case symend:
e2543b02 1104 fprintf (stderr, "/symend");
669fa600 1105 break;
5e69f11e 1106
1fb352e0 1107 case syntaxspec:
a1a052df 1108 fprintf (stderr, "/syntaxspec");
1fb352e0 1109 mcnt = *p++;
a1a052df 1110 fprintf (stderr, "/%d", mcnt);
1fb352e0
SM
1111 break;
1112
1113 case notsyntaxspec:
a1a052df 1114 fprintf (stderr, "/notsyntaxspec");
1fb352e0 1115 mcnt = *p++;
a1a052df 1116 fprintf (stderr, "/%d", mcnt);
1fb352e0
SM
1117 break;
1118
0b32bf0e 1119# ifdef emacs
fa9a63c5 1120 case before_dot:
a1a052df 1121 fprintf (stderr, "/before_dot");
25fe55af 1122 break;
fa9a63c5
RM
1123
1124 case at_dot:
a1a052df 1125 fprintf (stderr, "/at_dot");
25fe55af 1126 break;
fa9a63c5
RM
1127
1128 case after_dot:
a1a052df 1129 fprintf (stderr, "/after_dot");
25fe55af 1130 break;
fa9a63c5 1131
1fb352e0 1132 case categoryspec:
a1a052df 1133 fprintf (stderr, "/categoryspec");
fa9a63c5 1134 mcnt = *p++;
a1a052df 1135 fprintf (stderr, "/%d", mcnt);
25fe55af 1136 break;
5e69f11e 1137
1fb352e0 1138 case notcategoryspec:
a1a052df 1139 fprintf (stderr, "/notcategoryspec");
fa9a63c5 1140 mcnt = *p++;
a1a052df 1141 fprintf (stderr, "/%d", mcnt);
fa9a63c5 1142 break;
0b32bf0e 1143# endif /* emacs */
fa9a63c5 1144
fa9a63c5 1145 case begbuf:
a1a052df 1146 fprintf (stderr, "/begbuf");
25fe55af 1147 break;
fa9a63c5
RM
1148
1149 case endbuf:
a1a052df 1150 fprintf (stderr, "/endbuf");
25fe55af 1151 break;
fa9a63c5 1152
25fe55af 1153 default:
a1a052df 1154 fprintf (stderr, "?%d", *(p-1));
fa9a63c5
RM
1155 }
1156
a1a052df 1157 fprintf (stderr, "\n");
fa9a63c5
RM
1158 }
1159
a1a052df 1160 fprintf (stderr, "%d:\tend of pattern.\n", p - start);
fa9a63c5
RM
1161}
1162
1163
1164void
1165print_compiled_pattern (bufp)
1166 struct re_pattern_buffer *bufp;
1167{
01618498 1168 re_char *buffer = bufp->buffer;
fa9a63c5
RM
1169
1170 print_partial_compiled_pattern (buffer, buffer + bufp->used);
4bb91c68
SM
1171 printf ("%ld bytes used/%ld bytes allocated.\n",
1172 bufp->used, bufp->allocated);
fa9a63c5
RM
1173
1174 if (bufp->fastmap_accurate && bufp->fastmap)
1175 {
1176 printf ("fastmap: ");
1177 print_fastmap (bufp->fastmap);
1178 }
1179
1180 printf ("re_nsub: %d\t", bufp->re_nsub);
1181 printf ("regs_alloc: %d\t", bufp->regs_allocated);
1182 printf ("can_be_null: %d\t", bufp->can_be_null);
fa9a63c5
RM
1183 printf ("no_sub: %d\t", bufp->no_sub);
1184 printf ("not_bol: %d\t", bufp->not_bol);
1185 printf ("not_eol: %d\t", bufp->not_eol);
4bb91c68 1186 printf ("syntax: %lx\n", bufp->syntax);
505bde11 1187 fflush (stdout);
fa9a63c5
RM
1188 /* Perhaps we should print the translate table? */
1189}
1190
1191
1192void
1193print_double_string (where, string1, size1, string2, size2)
66f0296e
SM
1194 re_char *where;
1195 re_char *string1;
1196 re_char *string2;
d1dfb56c
EZ
1197 ssize_t size1;
1198 ssize_t size2;
fa9a63c5 1199{
d1dfb56c 1200 ssize_t this_char;
5e69f11e 1201
fa9a63c5
RM
1202 if (where == NULL)
1203 printf ("(null)");
1204 else
1205 {
1206 if (FIRST_STRING_P (where))
25fe55af
RS
1207 {
1208 for (this_char = where - string1; this_char < size1; this_char++)
1209 putchar (string1[this_char]);
fa9a63c5 1210
25fe55af
RS
1211 where = string2;
1212 }
fa9a63c5
RM
1213
1214 for (this_char = where - string2; this_char < size2; this_char++)
25fe55af 1215 putchar (string2[this_char]);
fa9a63c5
RM
1216 }
1217}
1218
1219#else /* not DEBUG */
1220
0b32bf0e
SM
1221# undef assert
1222# define assert(e)
fa9a63c5 1223
0b32bf0e
SM
1224# define DEBUG_STATEMENT(e)
1225# define DEBUG_PRINT1(x)
1226# define DEBUG_PRINT2(x1, x2)
1227# define DEBUG_PRINT3(x1, x2, x3)
1228# define DEBUG_PRINT4(x1, x2, x3, x4)
1229# define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
1230# define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
fa9a63c5
RM
1231
1232#endif /* not DEBUG */
1233\f
4da60324
PE
1234/* Use this to suppress gcc's `...may be used before initialized' warnings. */
1235#ifdef lint
1236# define IF_LINT(Code) Code
1237#else
1238# define IF_LINT(Code) /* empty */
1239#endif
1240\f
fa9a63c5
RM
1241/* Set by `re_set_syntax' to the current regexp syntax to recognize. Can
1242 also be assigned to arbitrarily: each pattern buffer stores its own
1243 syntax, so it can be changed between regex compilations. */
1244/* This has no initializer because initialized variables in Emacs
1245 become read-only after dumping. */
1246reg_syntax_t re_syntax_options;
1247
1248
1249/* Specify the precise syntax of regexps for compilation. This provides
1250 for compatibility for various utilities which historically have
1251 different, incompatible syntaxes.
1252
1253 The argument SYNTAX is a bit mask comprised of the various bits
4bb91c68 1254 defined in regex.h. We return the old syntax. */
fa9a63c5
RM
1255
1256reg_syntax_t
971de7fb 1257re_set_syntax (reg_syntax_t syntax)
fa9a63c5
RM
1258{
1259 reg_syntax_t ret = re_syntax_options;
5e69f11e 1260
fa9a63c5
RM
1261 re_syntax_options = syntax;
1262 return ret;
1263}
c0f9ea08 1264WEAK_ALIAS (__re_set_syntax, re_set_syntax)
f9b0fd99
RS
1265
1266/* Regexp to use to replace spaces, or NULL meaning don't. */
1267static re_char *whitespace_regexp;
1268
1269void
971de7fb 1270re_set_whitespace_regexp (const char *regexp)
f9b0fd99 1271{
6470ea05 1272 whitespace_regexp = (re_char *) regexp;
f9b0fd99
RS
1273}
1274WEAK_ALIAS (__re_set_syntax, re_set_syntax)
fa9a63c5
RM
1275\f
1276/* This table gives an error message for each of the error codes listed
4bb91c68 1277 in regex.h. Obviously the order here has to be same as there.
fa9a63c5 1278 POSIX doesn't require that we do anything for REG_NOERROR,
4bb91c68 1279 but why not be nice? */
fa9a63c5
RM
1280
1281static const char *re_error_msgid[] =
5e69f11e
RM
1282 {
1283 gettext_noop ("Success"), /* REG_NOERROR */
1284 gettext_noop ("No match"), /* REG_NOMATCH */
1285 gettext_noop ("Invalid regular expression"), /* REG_BADPAT */
1286 gettext_noop ("Invalid collation character"), /* REG_ECOLLATE */
1287 gettext_noop ("Invalid character class name"), /* REG_ECTYPE */
1288 gettext_noop ("Trailing backslash"), /* REG_EESCAPE */
1289 gettext_noop ("Invalid back reference"), /* REG_ESUBREG */
1290 gettext_noop ("Unmatched [ or [^"), /* REG_EBRACK */
1291 gettext_noop ("Unmatched ( or \\("), /* REG_EPAREN */
1292 gettext_noop ("Unmatched \\{"), /* REG_EBRACE */
1293 gettext_noop ("Invalid content of \\{\\}"), /* REG_BADBR */
1294 gettext_noop ("Invalid range end"), /* REG_ERANGE */
1295 gettext_noop ("Memory exhausted"), /* REG_ESPACE */
1296 gettext_noop ("Invalid preceding regular expression"), /* REG_BADRPT */
1297 gettext_noop ("Premature end of regular expression"), /* REG_EEND */
1298 gettext_noop ("Regular expression too big"), /* REG_ESIZE */
1299 gettext_noop ("Unmatched ) or \\)"), /* REG_ERPAREN */
b3e4c897 1300 gettext_noop ("Range striding over charsets") /* REG_ERANGEX */
fa9a63c5
RM
1301 };
1302\f
4bb91c68 1303/* Avoiding alloca during matching, to placate r_alloc. */
fa9a63c5
RM
1304
1305/* Define MATCH_MAY_ALLOCATE unless we need to make sure that the
1306 searching and matching functions should not call alloca. On some
1307 systems, alloca is implemented in terms of malloc, and if we're
1308 using the relocating allocator routines, then malloc could cause a
1309 relocation, which might (if the strings being searched are in the
1310 ralloc heap) shift the data out from underneath the regexp
1311 routines.
1312
5e69f11e 1313 Here's another reason to avoid allocation: Emacs
fa9a63c5
RM
1314 processes input from X in a signal handler; processing X input may
1315 call malloc; if input arrives while a matching routine is calling
1316 malloc, then we're scrod. But Emacs can't just block input while
1317 calling matching routines; then we don't notice interrupts when
1318 they come in. So, Emacs blocks input around all regexp calls
1319 except the matching calls, which it leaves unprotected, in the
1320 faith that they will not malloc. */
1321
1322/* Normally, this is fine. */
1323#define MATCH_MAY_ALLOCATE
1324
fa9a63c5
RM
1325/* The match routines may not allocate if (1) they would do it with malloc
1326 and (2) it's not safe for them to use malloc.
1327 Note that if REL_ALLOC is defined, matching would not use malloc for the
1328 failure stack, but we would still use it for the register vectors;
4bb91c68 1329 so REL_ALLOC should not affect this. */
b588157e 1330#if defined REGEX_MALLOC && defined emacs
0b32bf0e 1331# undef MATCH_MAY_ALLOCATE
fa9a63c5
RM
1332#endif
1333
1334\f
1335/* Failure stack declarations and macros; both re_compile_fastmap and
1336 re_match_2 use a failure stack. These have to be macros because of
1337 REGEX_ALLOCATE_STACK. */
5e69f11e 1338
fa9a63c5 1339
320a2a73 1340/* Approximate number of failure points for which to initially allocate space
fa9a63c5
RM
1341 when matching. If this number is exceeded, we allocate more
1342 space, so it is not a hard limit. */
1343#ifndef INIT_FAILURE_ALLOC
0b32bf0e 1344# define INIT_FAILURE_ALLOC 20
fa9a63c5
RM
1345#endif
1346
1347/* Roughly the maximum number of failure points on the stack. Would be
320a2a73 1348 exactly that if always used TYPICAL_FAILURE_SIZE items each time we failed.
fa9a63c5 1349 This is a variable only so users of regex can assign to it; we never
ada30c0e
SM
1350 change it ourselves. We always multiply it by TYPICAL_FAILURE_SIZE
1351 before using it, so it should probably be a byte-count instead. */
c0f9ea08
SM
1352# if defined MATCH_MAY_ALLOCATE
1353/* Note that 4400 was enough to cause a crash on Alpha OSF/1,
320a2a73
KH
1354 whose default stack limit is 2mb. In order for a larger
1355 value to work reliably, you have to try to make it accord
1356 with the process stack limit. */
c0f9ea08
SM
1357size_t re_max_failures = 40000;
1358# else
1359size_t re_max_failures = 4000;
1360# endif
fa9a63c5
RM
1361
1362union fail_stack_elt
1363{
01618498 1364 re_char *pointer;
c0f9ea08
SM
1365 /* This should be the biggest `int' that's no bigger than a pointer. */
1366 long integer;
fa9a63c5
RM
1367};
1368
1369typedef union fail_stack_elt fail_stack_elt_t;
1370
1371typedef struct
1372{
1373 fail_stack_elt_t *stack;
c0f9ea08
SM
1374 size_t size;
1375 size_t avail; /* Offset of next open position. */
1376 size_t frame; /* Offset of the cur constructed frame. */
fa9a63c5
RM
1377} fail_stack_type;
1378
505bde11 1379#define FAIL_STACK_EMPTY() (fail_stack.frame == 0)
fa9a63c5
RM
1380
1381
1382/* Define macros to initialize and free the failure stack.
1383 Do `return -2' if the alloc fails. */
1384
1385#ifdef MATCH_MAY_ALLOCATE
0b32bf0e 1386# define INIT_FAIL_STACK() \
fa9a63c5 1387 do { \
38182d90 1388 fail_stack.stack = \
320a2a73
KH
1389 REGEX_ALLOCATE_STACK (INIT_FAILURE_ALLOC * TYPICAL_FAILURE_SIZE \
1390 * sizeof (fail_stack_elt_t)); \
fa9a63c5
RM
1391 \
1392 if (fail_stack.stack == NULL) \
1393 return -2; \
1394 \
1395 fail_stack.size = INIT_FAILURE_ALLOC; \
1396 fail_stack.avail = 0; \
505bde11 1397 fail_stack.frame = 0; \
fa9a63c5 1398 } while (0)
fa9a63c5 1399#else
0b32bf0e 1400# define INIT_FAIL_STACK() \
fa9a63c5
RM
1401 do { \
1402 fail_stack.avail = 0; \
505bde11 1403 fail_stack.frame = 0; \
fa9a63c5
RM
1404 } while (0)
1405
b313f9d8
PE
1406# define RETALLOC_IF(addr, n, t) \
1407 if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t)
fa9a63c5
RM
1408#endif
1409
1410
320a2a73
KH
1411/* Double the size of FAIL_STACK, up to a limit
1412 which allows approximately `re_max_failures' items.
fa9a63c5
RM
1413
1414 Return 1 if succeeds, and 0 if either ran out of memory
5e69f11e
RM
1415 allocating space for it or it was already too large.
1416
4bb91c68 1417 REGEX_REALLOCATE_STACK requires `destination' be declared. */
fa9a63c5 1418
320a2a73
KH
1419/* Factor to increase the failure stack size by
1420 when we increase it.
1421 This used to be 2, but 2 was too wasteful
1422 because the old discarded stacks added up to as much space
1423 were as ultimate, maximum-size stack. */
1424#define FAIL_STACK_GROWTH_FACTOR 4
1425
1426#define GROW_FAIL_STACK(fail_stack) \
eead07d6
KH
1427 (((fail_stack).size * sizeof (fail_stack_elt_t) \
1428 >= re_max_failures * TYPICAL_FAILURE_SIZE) \
fa9a63c5 1429 ? 0 \
320a2a73 1430 : ((fail_stack).stack \
38182d90 1431 = REGEX_REALLOCATE_STACK ((fail_stack).stack, \
25fe55af 1432 (fail_stack).size * sizeof (fail_stack_elt_t), \
320a2a73
KH
1433 MIN (re_max_failures * TYPICAL_FAILURE_SIZE, \
1434 ((fail_stack).size * sizeof (fail_stack_elt_t) \
1435 * FAIL_STACK_GROWTH_FACTOR))), \
fa9a63c5
RM
1436 \
1437 (fail_stack).stack == NULL \
1438 ? 0 \
6453db45
KH
1439 : ((fail_stack).size \
1440 = (MIN (re_max_failures * TYPICAL_FAILURE_SIZE, \
1441 ((fail_stack).size * sizeof (fail_stack_elt_t) \
1442 * FAIL_STACK_GROWTH_FACTOR)) \
1443 / sizeof (fail_stack_elt_t)), \
25fe55af 1444 1)))
fa9a63c5
RM
1445
1446
fa9a63c5
RM
1447/* Push a pointer value onto the failure stack.
1448 Assumes the variable `fail_stack'. Probably should only
4bb91c68 1449 be called from within `PUSH_FAILURE_POINT'. */
fa9a63c5 1450#define PUSH_FAILURE_POINTER(item) \
01618498 1451 fail_stack.stack[fail_stack.avail++].pointer = (item)
fa9a63c5
RM
1452
1453/* This pushes an integer-valued item onto the failure stack.
1454 Assumes the variable `fail_stack'. Probably should only
4bb91c68 1455 be called from within `PUSH_FAILURE_POINT'. */
fa9a63c5
RM
1456#define PUSH_FAILURE_INT(item) \
1457 fail_stack.stack[fail_stack.avail++].integer = (item)
1458
b313f9d8 1459/* These POP... operations complement the PUSH... operations.
fa9a63c5
RM
1460 All assume that `fail_stack' is nonempty. */
1461#define POP_FAILURE_POINTER() fail_stack.stack[--fail_stack.avail].pointer
1462#define POP_FAILURE_INT() fail_stack.stack[--fail_stack.avail].integer
fa9a63c5 1463
505bde11
SM
1464/* Individual items aside from the registers. */
1465#define NUM_NONREG_ITEMS 3
1466
1467/* Used to examine the stack (to detect infinite loops). */
1468#define FAILURE_PAT(h) fail_stack.stack[(h) - 1].pointer
66f0296e 1469#define FAILURE_STR(h) (fail_stack.stack[(h) - 2].pointer)
505bde11
SM
1470#define NEXT_FAILURE_HANDLE(h) fail_stack.stack[(h) - 3].integer
1471#define TOP_FAILURE_HANDLE() fail_stack.frame
fa9a63c5
RM
1472
1473
505bde11
SM
1474#define ENSURE_FAIL_STACK(space) \
1475while (REMAINING_AVAIL_SLOTS <= space) { \
1476 if (!GROW_FAIL_STACK (fail_stack)) \
1477 return -2; \
1478 DEBUG_PRINT2 ("\n Doubled stack; size now: %d\n", (fail_stack).size);\
1479 DEBUG_PRINT2 (" slots available: %d\n", REMAINING_AVAIL_SLOTS);\
1480}
1481
1482/* Push register NUM onto the stack. */
1483#define PUSH_FAILURE_REG(num) \
1484do { \
1485 char *destination; \
1486 ENSURE_FAIL_STACK(3); \
1487 DEBUG_PRINT4 (" Push reg %d (spanning %p -> %p)\n", \
1488 num, regstart[num], regend[num]); \
1489 PUSH_FAILURE_POINTER (regstart[num]); \
1490 PUSH_FAILURE_POINTER (regend[num]); \
1491 PUSH_FAILURE_INT (num); \
1492} while (0)
1493
01618498
SM
1494/* Change the counter's value to VAL, but make sure that it will
1495 be reset when backtracking. */
1496#define PUSH_NUMBER(ptr,val) \
dc1e502d
SM
1497do { \
1498 char *destination; \
1499 int c; \
1500 ENSURE_FAIL_STACK(3); \
1501 EXTRACT_NUMBER (c, ptr); \
01618498 1502 DEBUG_PRINT4 (" Push number %p = %d -> %d\n", ptr, c, val); \
dc1e502d
SM
1503 PUSH_FAILURE_INT (c); \
1504 PUSH_FAILURE_POINTER (ptr); \
1505 PUSH_FAILURE_INT (-1); \
01618498 1506 STORE_NUMBER (ptr, val); \
dc1e502d
SM
1507} while (0)
1508
505bde11 1509/* Pop a saved register off the stack. */
dc1e502d 1510#define POP_FAILURE_REG_OR_COUNT() \
505bde11 1511do { \
d1dfb56c 1512 long pfreg = POP_FAILURE_INT (); \
19ed5445 1513 if (pfreg == -1) \
dc1e502d
SM
1514 { \
1515 /* It's a counter. */ \
6dcf2d0e
SM
1516 /* Here, we discard `const', making re_match non-reentrant. */ \
1517 unsigned char *ptr = (unsigned char*) POP_FAILURE_POINTER (); \
19ed5445
PE
1518 pfreg = POP_FAILURE_INT (); \
1519 STORE_NUMBER (ptr, pfreg); \
1520 DEBUG_PRINT3 (" Pop counter %p = %d\n", ptr, pfreg); \
dc1e502d
SM
1521 } \
1522 else \
1523 { \
19ed5445
PE
1524 regend[pfreg] = POP_FAILURE_POINTER (); \
1525 regstart[pfreg] = POP_FAILURE_POINTER (); \
dc1e502d 1526 DEBUG_PRINT4 (" Pop reg %d (spanning %p -> %p)\n", \
19ed5445 1527 pfreg, regstart[pfreg], regend[pfreg]); \
dc1e502d 1528 } \
505bde11
SM
1529} while (0)
1530
1531/* Check that we are not stuck in an infinite loop. */
1532#define CHECK_INFINITE_LOOP(pat_cur, string_place) \
1533do { \
d1dfb56c 1534 ssize_t failure = TOP_FAILURE_HANDLE (); \
505bde11 1535 /* Check for infinite matching loops */ \
f6df485f
RS
1536 while (failure > 0 \
1537 && (FAILURE_STR (failure) == string_place \
1538 || FAILURE_STR (failure) == NULL)) \
505bde11
SM
1539 { \
1540 assert (FAILURE_PAT (failure) >= bufp->buffer \
66f0296e 1541 && FAILURE_PAT (failure) <= bufp->buffer + bufp->used); \
505bde11 1542 if (FAILURE_PAT (failure) == pat_cur) \
f6df485f 1543 { \
6df42991
SM
1544 cycle = 1; \
1545 break; \
f6df485f 1546 } \
66f0296e 1547 DEBUG_PRINT2 (" Other pattern: %p\n", FAILURE_PAT (failure)); \
505bde11
SM
1548 failure = NEXT_FAILURE_HANDLE(failure); \
1549 } \
1550 DEBUG_PRINT2 (" Other string: %p\n", FAILURE_STR (failure)); \
1551} while (0)
6df42991 1552
fa9a63c5 1553/* Push the information about the state we will need
5e69f11e
RM
1554 if we ever fail back to it.
1555
505bde11 1556 Requires variables fail_stack, regstart, regend and
320a2a73 1557 num_regs be declared. GROW_FAIL_STACK requires `destination' be
fa9a63c5 1558 declared.
5e69f11e 1559
fa9a63c5
RM
1560 Does `return FAILURE_CODE' if runs out of memory. */
1561
505bde11
SM
1562#define PUSH_FAILURE_POINT(pattern, string_place) \
1563do { \
1564 char *destination; \
1565 /* Must be int, so when we don't save any registers, the arithmetic \
1566 of 0 + -1 isn't done as unsigned. */ \
1567 \
505bde11 1568 DEBUG_STATEMENT (nfailure_points_pushed++); \
4bb91c68 1569 DEBUG_PRINT1 ("\nPUSH_FAILURE_POINT:\n"); \
505bde11
SM
1570 DEBUG_PRINT2 (" Before push, next avail: %d\n", (fail_stack).avail); \
1571 DEBUG_PRINT2 (" size: %d\n", (fail_stack).size);\
1572 \
1573 ENSURE_FAIL_STACK (NUM_NONREG_ITEMS); \
1574 \
1575 DEBUG_PRINT1 ("\n"); \
1576 \
1577 DEBUG_PRINT2 (" Push frame index: %d\n", fail_stack.frame); \
1578 PUSH_FAILURE_INT (fail_stack.frame); \
1579 \
1580 DEBUG_PRINT2 (" Push string %p: `", string_place); \
1581 DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, size2);\
1582 DEBUG_PRINT1 ("'\n"); \
1583 PUSH_FAILURE_POINTER (string_place); \
1584 \
1585 DEBUG_PRINT2 (" Push pattern %p: ", pattern); \
1586 DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern, pend); \
1587 PUSH_FAILURE_POINTER (pattern); \
1588 \
1589 /* Close the frame by moving the frame pointer past it. */ \
1590 fail_stack.frame = fail_stack.avail; \
1591} while (0)
fa9a63c5 1592
320a2a73
KH
1593/* Estimate the size of data pushed by a typical failure stack entry.
1594 An estimate is all we need, because all we use this for
1595 is to choose a limit for how big to make the failure stack. */
ada30c0e 1596/* BEWARE, the value `20' is hard-coded in emacs.c:main(). */
320a2a73 1597#define TYPICAL_FAILURE_SIZE 20
fa9a63c5 1598
fa9a63c5
RM
1599/* How many items can still be added to the stack without overflowing it. */
1600#define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
1601
1602
1603/* Pops what PUSH_FAIL_STACK pushes.
1604
1605 We restore into the parameters, all of which should be lvalues:
1606 STR -- the saved data position.
1607 PAT -- the saved pattern position.
fa9a63c5 1608 REGSTART, REGEND -- arrays of string positions.
5e69f11e 1609
fa9a63c5 1610 Also assumes the variables `fail_stack' and (if debugging), `bufp',
7814e705 1611 `pend', `string1', `size1', `string2', and `size2'. */
fa9a63c5 1612
505bde11
SM
1613#define POP_FAILURE_POINT(str, pat) \
1614do { \
fa9a63c5
RM
1615 assert (!FAIL_STACK_EMPTY ()); \
1616 \
1617 /* Remove failure points and point to how many regs pushed. */ \
1618 DEBUG_PRINT1 ("POP_FAILURE_POINT:\n"); \
1619 DEBUG_PRINT2 (" Before pop, next avail: %d\n", fail_stack.avail); \
25fe55af 1620 DEBUG_PRINT2 (" size: %d\n", fail_stack.size); \
fa9a63c5 1621 \
505bde11
SM
1622 /* Pop the saved registers. */ \
1623 while (fail_stack.frame < fail_stack.avail) \
dc1e502d 1624 POP_FAILURE_REG_OR_COUNT (); \
fa9a63c5 1625 \
01618498 1626 pat = POP_FAILURE_POINTER (); \
505bde11
SM
1627 DEBUG_PRINT2 (" Popping pattern %p: ", pat); \
1628 DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend); \
fa9a63c5
RM
1629 \
1630 /* If the saved string location is NULL, it came from an \
1631 on_failure_keep_string_jump opcode, and we want to throw away the \
1632 saved NULL, thus retaining our current position in the string. */ \
01618498 1633 str = POP_FAILURE_POINTER (); \
505bde11 1634 DEBUG_PRINT2 (" Popping string %p: `", str); \
fa9a63c5
RM
1635 DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2); \
1636 DEBUG_PRINT1 ("'\n"); \
1637 \
505bde11
SM
1638 fail_stack.frame = POP_FAILURE_INT (); \
1639 DEBUG_PRINT2 (" Popping frame index: %d\n", fail_stack.frame); \
fa9a63c5 1640 \
505bde11
SM
1641 assert (fail_stack.avail >= 0); \
1642 assert (fail_stack.frame <= fail_stack.avail); \
fa9a63c5 1643 \
fa9a63c5 1644 DEBUG_STATEMENT (nfailure_points_popped++); \
505bde11 1645} while (0) /* POP_FAILURE_POINT */
fa9a63c5
RM
1646
1647
1648\f
fa9a63c5 1649/* Registers are set to a sentinel when they haven't yet matched. */
4bb91c68 1650#define REG_UNSET(e) ((e) == NULL)
fa9a63c5
RM
1651\f
1652/* Subroutine declarations and macros for regex_compile. */
1653
261cb4bb
PE
1654static reg_errcode_t regex_compile (re_char *pattern, size_t size,
1655 reg_syntax_t syntax,
1656 struct re_pattern_buffer *bufp);
1657static void store_op1 (re_opcode_t op, unsigned char *loc, int arg);
1658static void store_op2 (re_opcode_t op, unsigned char *loc, int arg1, int arg2);
1659static void insert_op1 (re_opcode_t op, unsigned char *loc,
1660 int arg, unsigned char *end);
1661static void insert_op2 (re_opcode_t op, unsigned char *loc,
1662 int arg1, int arg2, unsigned char *end);
1663static boolean at_begline_loc_p (re_char *pattern, re_char *p,
1664 reg_syntax_t syntax);
1665static boolean at_endline_loc_p (re_char *p, re_char *pend,
1666 reg_syntax_t syntax);
1667static re_char *skip_one_char (re_char *p);
1668static int analyse_first (re_char *p, re_char *pend,
1669 char *fastmap, const int multibyte);
fa9a63c5 1670
fa9a63c5 1671/* Fetch the next character in the uncompiled pattern, with no
4bb91c68 1672 translation. */
36595814 1673#define PATFETCH(c) \
2d1675e4
SM
1674 do { \
1675 int len; \
1676 if (p == pend) return REG_EEND; \
62a6e103 1677 c = RE_STRING_CHAR_AND_LENGTH (p, len, multibyte); \
2d1675e4 1678 p += len; \
fa9a63c5
RM
1679 } while (0)
1680
fa9a63c5
RM
1681
1682/* If `translate' is non-null, return translate[D], else just D. We
1683 cast the subscript to translate because some data is declared as
1684 `char *', to avoid warnings when a string constant is passed. But
1685 when we use a character as a subscript we must make it unsigned. */
6676cb1c 1686#ifndef TRANSLATE
0b32bf0e 1687# define TRANSLATE(d) \
66f0296e 1688 (RE_TRANSLATE_P (translate) ? RE_TRANSLATE (translate, (d)) : (d))
6676cb1c 1689#endif
fa9a63c5
RM
1690
1691
1692/* Macros for outputting the compiled pattern into `buffer'. */
1693
1694/* If the buffer isn't allocated when it comes in, use this. */
1695#define INIT_BUF_SIZE 32
1696
4bb91c68 1697/* Make sure we have at least N more bytes of space in buffer. */
fa9a63c5 1698#define GET_BUFFER_SPACE(n) \
01618498 1699 while ((size_t) (b - bufp->buffer + (n)) > bufp->allocated) \
fa9a63c5
RM
1700 EXTEND_BUFFER ()
1701
1702/* Make sure we have one more byte of buffer space and then add C to it. */
1703#define BUF_PUSH(c) \
1704 do { \
1705 GET_BUFFER_SPACE (1); \
1706 *b++ = (unsigned char) (c); \
1707 } while (0)
1708
1709
1710/* Ensure we have two more bytes of buffer space and then append C1 and C2. */
1711#define BUF_PUSH_2(c1, c2) \
1712 do { \
1713 GET_BUFFER_SPACE (2); \
1714 *b++ = (unsigned char) (c1); \
1715 *b++ = (unsigned char) (c2); \
1716 } while (0)
1717
1718
fa9a63c5 1719/* Store a jump with opcode OP at LOC to location TO. We store a
4bb91c68 1720 relative address offset by the three bytes the jump itself occupies. */
fa9a63c5
RM
1721#define STORE_JUMP(op, loc, to) \
1722 store_op1 (op, loc, (to) - (loc) - 3)
1723
1724/* Likewise, for a two-argument jump. */
1725#define STORE_JUMP2(op, loc, to, arg) \
1726 store_op2 (op, loc, (to) - (loc) - 3, arg)
1727
4bb91c68 1728/* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */
fa9a63c5
RM
1729#define INSERT_JUMP(op, loc, to) \
1730 insert_op1 (op, loc, (to) - (loc) - 3, b)
1731
1732/* Like `STORE_JUMP2', but for inserting. Assume `b' is the buffer end. */
1733#define INSERT_JUMP2(op, loc, to, arg) \
1734 insert_op2 (op, loc, (to) - (loc) - 3, arg, b)
1735
1736
1737/* This is not an arbitrary limit: the arguments which represent offsets
839966f3 1738 into the pattern are two bytes long. So if 2^15 bytes turns out to
fa9a63c5 1739 be too small, many things would have to change. */
839966f3
KH
1740# define MAX_BUF_SIZE (1L << 15)
1741
1742#if 0 /* This is when we thought it could be 2^16 bytes. */
4bb91c68
SM
1743/* Any other compiler which, like MSC, has allocation limit below 2^16
1744 bytes will have to use approach similar to what was done below for
1745 MSC and drop MAX_BUF_SIZE a bit. Otherwise you may end up
1746 reallocating to 0 bytes. Such thing is not going to work too well.
1747 You have been warned!! */
1748#if defined _MSC_VER && !defined WIN32
1749/* Microsoft C 16-bit versions limit malloc to approx 65512 bytes. */
1750# define MAX_BUF_SIZE 65500L
1751#else
1752# define MAX_BUF_SIZE (1L << 16)
1753#endif
839966f3 1754#endif /* 0 */
fa9a63c5
RM
1755
1756/* Extend the buffer by twice its current size via realloc and
1757 reset the pointers that pointed into the old block to point to the
1758 correct places in the new one. If extending the buffer results in it
4bb91c68
SM
1759 being larger than MAX_BUF_SIZE, then flag memory exhausted. */
1760#if __BOUNDED_POINTERS__
1761# define SET_HIGH_BOUND(P) (__ptrhigh (P) = __ptrlow (P) + bufp->allocated)
381880b0
CY
1762# define MOVE_BUFFER_POINTER(P) \
1763 (__ptrlow (P) = new_buffer + (__ptrlow (P) - old_buffer), \
1764 SET_HIGH_BOUND (P), \
1765 __ptrvalue (P) = new_buffer + (__ptrvalue (P) - old_buffer))
4bb91c68
SM
1766# define ELSE_EXTEND_BUFFER_HIGH_BOUND \
1767 else \
1768 { \
1769 SET_HIGH_BOUND (b); \
1770 SET_HIGH_BOUND (begalt); \
1771 if (fixup_alt_jump) \
1772 SET_HIGH_BOUND (fixup_alt_jump); \
1773 if (laststart) \
1774 SET_HIGH_BOUND (laststart); \
1775 if (pending_exact) \
1776 SET_HIGH_BOUND (pending_exact); \
1777 }
1778#else
381880b0 1779# define MOVE_BUFFER_POINTER(P) ((P) = new_buffer + ((P) - old_buffer))
4bb91c68
SM
1780# define ELSE_EXTEND_BUFFER_HIGH_BOUND
1781#endif
fa9a63c5 1782#define EXTEND_BUFFER() \
25fe55af 1783 do { \
381880b0 1784 unsigned char *old_buffer = bufp->buffer; \
25fe55af 1785 if (bufp->allocated == MAX_BUF_SIZE) \
fa9a63c5
RM
1786 return REG_ESIZE; \
1787 bufp->allocated <<= 1; \
1788 if (bufp->allocated > MAX_BUF_SIZE) \
25fe55af 1789 bufp->allocated = MAX_BUF_SIZE; \
01618498 1790 RETALLOC (bufp->buffer, bufp->allocated, unsigned char); \
fa9a63c5
RM
1791 if (bufp->buffer == NULL) \
1792 return REG_ESPACE; \
1793 /* If the buffer moved, move all the pointers into it. */ \
1794 if (old_buffer != bufp->buffer) \
1795 { \
381880b0 1796 unsigned char *new_buffer = bufp->buffer; \
4bb91c68
SM
1797 MOVE_BUFFER_POINTER (b); \
1798 MOVE_BUFFER_POINTER (begalt); \
25fe55af 1799 if (fixup_alt_jump) \
4bb91c68 1800 MOVE_BUFFER_POINTER (fixup_alt_jump); \
25fe55af 1801 if (laststart) \
4bb91c68 1802 MOVE_BUFFER_POINTER (laststart); \
25fe55af 1803 if (pending_exact) \
4bb91c68 1804 MOVE_BUFFER_POINTER (pending_exact); \
fa9a63c5 1805 } \
4bb91c68 1806 ELSE_EXTEND_BUFFER_HIGH_BOUND \
fa9a63c5
RM
1807 } while (0)
1808
1809
1810/* Since we have one byte reserved for the register number argument to
1811 {start,stop}_memory, the maximum number of groups we can report
1812 things about is what fits in that byte. */
1813#define MAX_REGNUM 255
1814
1815/* But patterns can have more than `MAX_REGNUM' registers. We just
1816 ignore the excess. */
098d42af 1817typedef int regnum_t;
fa9a63c5
RM
1818
1819
1820/* Macros for the compile stack. */
1821
1822/* Since offsets can go either forwards or backwards, this type needs to
4bb91c68
SM
1823 be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */
1824/* int may be not enough when sizeof(int) == 2. */
1825typedef long pattern_offset_t;
fa9a63c5
RM
1826
1827typedef struct
1828{
1829 pattern_offset_t begalt_offset;
1830 pattern_offset_t fixup_alt_jump;
5e69f11e 1831 pattern_offset_t laststart_offset;
fa9a63c5
RM
1832 regnum_t regnum;
1833} compile_stack_elt_t;
1834
1835
1836typedef struct
1837{
1838 compile_stack_elt_t *stack;
d1dfb56c
EZ
1839 size_t size;
1840 size_t avail; /* Offset of next open position. */
fa9a63c5
RM
1841} compile_stack_type;
1842
1843
1844#define INIT_COMPILE_STACK_SIZE 32
1845
1846#define COMPILE_STACK_EMPTY (compile_stack.avail == 0)
1847#define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size)
1848
4bb91c68 1849/* The next available element. */
fa9a63c5
RM
1850#define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
1851
1cee1e27
SM
1852/* Explicit quit checking is only used on NTemacs and whenever we
1853 use polling to process input events. */
1854#if defined emacs && (defined WINDOWSNT || defined SYNC_INPUT) && defined QUIT
77d11aec
RS
1855extern int immediate_quit;
1856# define IMMEDIATE_QUIT_CHECK \
1857 do { \
1858 if (immediate_quit) QUIT; \
1859 } while (0)
1860#else
1861# define IMMEDIATE_QUIT_CHECK ((void)0)
1862#endif
1863\f
b18215fc
RS
1864/* Structure to manage work area for range table. */
1865struct range_table_work_area
1866{
1867 int *table; /* actual work area. */
1868 int allocated; /* allocated size for work area in bytes. */
7814e705 1869 int used; /* actually used size in words. */
96cc36cc 1870 int bits; /* flag to record character classes */
b18215fc
RS
1871};
1872
77d11aec
RS
1873/* Make sure that WORK_AREA can hold more N multibyte characters.
1874 This is used only in set_image_of_range and set_image_of_range_1.
1875 It expects WORK_AREA to be a pointer.
1876 If it can't get the space, it returns from the surrounding function. */
1877
1878#define EXTEND_RANGE_TABLE(work_area, n) \
1879 do { \
8f924df7 1880 if (((work_area).used + (n)) * sizeof (int) > (work_area).allocated) \
77d11aec 1881 { \
8f924df7
KH
1882 extend_range_table_work_area (&work_area); \
1883 if ((work_area).table == 0) \
77d11aec
RS
1884 return (REG_ESPACE); \
1885 } \
b18215fc
RS
1886 } while (0)
1887
96cc36cc
RS
1888#define SET_RANGE_TABLE_WORK_AREA_BIT(work_area, bit) \
1889 (work_area).bits |= (bit)
1890
14473664
SM
1891/* Bits used to implement the multibyte-part of the various character classes
1892 such as [:alnum:] in a charset's range table. */
1893#define BIT_WORD 0x1
1894#define BIT_LOWER 0x2
1895#define BIT_PUNCT 0x4
1896#define BIT_SPACE 0x8
1897#define BIT_UPPER 0x10
1898#define BIT_MULTIBYTE 0x20
96cc36cc 1899
b18215fc
RS
1900/* Set a range (RANGE_START, RANGE_END) to WORK_AREA. */
1901#define SET_RANGE_TABLE_WORK_AREA(work_area, range_start, range_end) \
77d11aec 1902 do { \
8f924df7 1903 EXTEND_RANGE_TABLE ((work_area), 2); \
b18215fc
RS
1904 (work_area).table[(work_area).used++] = (range_start); \
1905 (work_area).table[(work_area).used++] = (range_end); \
1906 } while (0)
1907
7814e705 1908/* Free allocated memory for WORK_AREA. */
b18215fc
RS
1909#define FREE_RANGE_TABLE_WORK_AREA(work_area) \
1910 do { \
1911 if ((work_area).table) \
1912 free ((work_area).table); \
1913 } while (0)
1914
96cc36cc 1915#define CLEAR_RANGE_TABLE_WORK_USED(work_area) ((work_area).used = 0, (work_area).bits = 0)
b18215fc 1916#define RANGE_TABLE_WORK_USED(work_area) ((work_area).used)
96cc36cc 1917#define RANGE_TABLE_WORK_BITS(work_area) ((work_area).bits)
b18215fc 1918#define RANGE_TABLE_WORK_ELT(work_area, i) ((work_area).table[i])
77d11aec 1919\f
b18215fc 1920
fa9a63c5 1921/* Set the bit for character C in a list. */
01618498 1922#define SET_LIST_BIT(c) (b[((c)) / BYTEWIDTH] |= 1 << ((c) % BYTEWIDTH))
fa9a63c5
RM
1923
1924
bf216479
KH
1925#ifdef emacs
1926
cf9c99bc
KH
1927/* Store characters in the range FROM to TO in the bitmap at B (for
1928 ASCII and unibyte characters) and WORK_AREA (for multibyte
1929 characters) while translating them and paying attention to the
1930 continuity of translated characters.
8f924df7 1931
cf9c99bc
KH
1932 Implementation note: It is better to implement these fairly big
1933 macros by a function, but it's not that easy because macros called
8f924df7 1934 in this macro assume various local variables already declared. */
bf216479 1935
cf9c99bc
KH
1936/* Both FROM and TO are ASCII characters. */
1937
1938#define SETUP_ASCII_RANGE(work_area, FROM, TO) \
1939 do { \
1940 int C0, C1; \
1941 \
1942 for (C0 = (FROM); C0 <= (TO); C0++) \
1943 { \
1944 C1 = TRANSLATE (C0); \
1945 if (! ASCII_CHAR_P (C1)) \
1946 { \
1947 SET_RANGE_TABLE_WORK_AREA ((work_area), C1, C1); \
1948 if ((C1 = RE_CHAR_TO_UNIBYTE (C1)) < 0) \
1949 C1 = C0; \
1950 } \
1951 SET_LIST_BIT (C1); \
1952 } \
1953 } while (0)
1954
1955
1956/* Both FROM and TO are unibyte characters (0x80..0xFF). */
1957
1958#define SETUP_UNIBYTE_RANGE(work_area, FROM, TO) \
1959 do { \
1960 int C0, C1, C2, I; \
1961 int USED = RANGE_TABLE_WORK_USED (work_area); \
1962 \
1963 for (C0 = (FROM); C0 <= (TO); C0++) \
1964 { \
1965 C1 = RE_CHAR_TO_MULTIBYTE (C0); \
1966 if (CHAR_BYTE8_P (C1)) \
1967 SET_LIST_BIT (C0); \
1968 else \
1969 { \
1970 C2 = TRANSLATE (C1); \
1971 if (C2 == C1 \
1972 || (C1 = RE_CHAR_TO_UNIBYTE (C2)) < 0) \
1973 C1 = C0; \
1974 SET_LIST_BIT (C1); \
1975 for (I = RANGE_TABLE_WORK_USED (work_area) - 2; I >= USED; I -= 2) \
1976 { \
1977 int from = RANGE_TABLE_WORK_ELT (work_area, I); \
1978 int to = RANGE_TABLE_WORK_ELT (work_area, I + 1); \
1979 \
1980 if (C2 >= from - 1 && C2 <= to + 1) \
1981 { \
1982 if (C2 == from - 1) \
1983 RANGE_TABLE_WORK_ELT (work_area, I)--; \
1984 else if (C2 == to + 1) \
1985 RANGE_TABLE_WORK_ELT (work_area, I + 1)++; \
1986 break; \
1987 } \
1988 } \
1989 if (I < USED) \
1990 SET_RANGE_TABLE_WORK_AREA ((work_area), C2, C2); \
1991 } \
1992 } \
1993 } while (0)
1994
1995
78edd3b7 1996/* Both FROM and TO are multibyte characters. */
cf9c99bc
KH
1997
1998#define SETUP_MULTIBYTE_RANGE(work_area, FROM, TO) \
1999 do { \
2000 int C0, C1, C2, I, USED = RANGE_TABLE_WORK_USED (work_area); \
2001 \
2002 SET_RANGE_TABLE_WORK_AREA ((work_area), (FROM), (TO)); \
2003 for (C0 = (FROM); C0 <= (TO); C0++) \
2004 { \
2005 C1 = TRANSLATE (C0); \
2006 if ((C2 = RE_CHAR_TO_UNIBYTE (C1)) >= 0 \
2007 || (C1 != C0 && (C2 = RE_CHAR_TO_UNIBYTE (C0)) >= 0)) \
2008 SET_LIST_BIT (C2); \
2009 if (C1 >= (FROM) && C1 <= (TO)) \
2010 continue; \
2011 for (I = RANGE_TABLE_WORK_USED (work_area) - 2; I >= USED; I -= 2) \
2012 { \
2013 int from = RANGE_TABLE_WORK_ELT (work_area, I); \
2014 int to = RANGE_TABLE_WORK_ELT (work_area, I + 1); \
2015 \
2016 if (C1 >= from - 1 && C1 <= to + 1) \
2017 { \
2018 if (C1 == from - 1) \
2019 RANGE_TABLE_WORK_ELT (work_area, I)--; \
2020 else if (C1 == to + 1) \
2021 RANGE_TABLE_WORK_ELT (work_area, I + 1)++; \
2022 break; \
2023 } \
2024 } \
2025 if (I < USED) \
2026 SET_RANGE_TABLE_WORK_AREA ((work_area), C1, C1); \
2027 } \
bf216479
KH
2028 } while (0)
2029
2030#endif /* emacs */
2031
fa9a63c5 2032/* Get the next unsigned number in the uncompiled pattern. */
25fe55af 2033#define GET_UNSIGNED_NUMBER(num) \
c72b0edd
SM
2034 do { \
2035 if (p == pend) \
2036 FREE_STACK_RETURN (REG_EBRACE); \
2037 else \
2038 { \
2039 PATFETCH (c); \
2040 while ('0' <= c && c <= '9') \
2041 { \
2042 int prev; \
2043 if (num < 0) \
2044 num = 0; \
2045 prev = num; \
2046 num = num * 10 + c - '0'; \
2047 if (num / 10 != prev) \
2048 FREE_STACK_RETURN (REG_BADBR); \
2049 if (p == pend) \
2050 FREE_STACK_RETURN (REG_EBRACE); \
2051 PATFETCH (c); \
2052 } \
2053 } \
2054 } while (0)
77d11aec 2055\f
1fdab503 2056#if ! WIDE_CHAR_SUPPORT
01618498 2057
14473664 2058/* Map a string to the char class it names (if any). */
1fdab503 2059re_wctype_t
971de7fb 2060re_wctype (const re_char *str)
14473664 2061{
5b0534c8 2062 const char *string = (const char *) str;
14473664
SM
2063 if (STREQ (string, "alnum")) return RECC_ALNUM;
2064 else if (STREQ (string, "alpha")) return RECC_ALPHA;
2065 else if (STREQ (string, "word")) return RECC_WORD;
2066 else if (STREQ (string, "ascii")) return RECC_ASCII;
2067 else if (STREQ (string, "nonascii")) return RECC_NONASCII;
2068 else if (STREQ (string, "graph")) return RECC_GRAPH;
2069 else if (STREQ (string, "lower")) return RECC_LOWER;
2070 else if (STREQ (string, "print")) return RECC_PRINT;
2071 else if (STREQ (string, "punct")) return RECC_PUNCT;
2072 else if (STREQ (string, "space")) return RECC_SPACE;
2073 else if (STREQ (string, "upper")) return RECC_UPPER;
2074 else if (STREQ (string, "unibyte")) return RECC_UNIBYTE;
2075 else if (STREQ (string, "multibyte")) return RECC_MULTIBYTE;
2076 else if (STREQ (string, "digit")) return RECC_DIGIT;
2077 else if (STREQ (string, "xdigit")) return RECC_XDIGIT;
2078 else if (STREQ (string, "cntrl")) return RECC_CNTRL;
2079 else if (STREQ (string, "blank")) return RECC_BLANK;
2080 else return 0;
2081}
2082
e0f24100 2083/* True if CH is in the char class CC. */
1fdab503 2084boolean
971de7fb 2085re_iswctype (int ch, re_wctype_t cc)
14473664
SM
2086{
2087 switch (cc)
2088 {
f3fcc40d
AS
2089 case RECC_ALNUM: return ISALNUM (ch) != 0;
2090 case RECC_ALPHA: return ISALPHA (ch) != 0;
2091 case RECC_BLANK: return ISBLANK (ch) != 0;
2092 case RECC_CNTRL: return ISCNTRL (ch) != 0;
2093 case RECC_DIGIT: return ISDIGIT (ch) != 0;
2094 case RECC_GRAPH: return ISGRAPH (ch) != 0;
2095 case RECC_LOWER: return ISLOWER (ch) != 0;
2096 case RECC_PRINT: return ISPRINT (ch) != 0;
2097 case RECC_PUNCT: return ISPUNCT (ch) != 0;
2098 case RECC_SPACE: return ISSPACE (ch) != 0;
2099 case RECC_UPPER: return ISUPPER (ch) != 0;
2100 case RECC_XDIGIT: return ISXDIGIT (ch) != 0;
2101 case RECC_ASCII: return IS_REAL_ASCII (ch) != 0;
213bd7f2 2102 case RECC_NONASCII: return !IS_REAL_ASCII (ch);
f3fcc40d 2103 case RECC_UNIBYTE: return ISUNIBYTE (ch) != 0;
213bd7f2 2104 case RECC_MULTIBYTE: return !ISUNIBYTE (ch);
f3fcc40d 2105 case RECC_WORD: return ISWORD (ch) != 0;
0cdd06f8
SM
2106 case RECC_ERROR: return false;
2107 default:
5e617bc2 2108 abort ();
14473664
SM
2109 }
2110}
fa9a63c5 2111
14473664
SM
2112/* Return a bit-pattern to use in the range-table bits to match multibyte
2113 chars of class CC. */
2114static int
971de7fb 2115re_wctype_to_bit (re_wctype_t cc)
14473664
SM
2116{
2117 switch (cc)
2118 {
2119 case RECC_NONASCII: case RECC_PRINT: case RECC_GRAPH:
0cdd06f8
SM
2120 case RECC_MULTIBYTE: return BIT_MULTIBYTE;
2121 case RECC_ALPHA: case RECC_ALNUM: case RECC_WORD: return BIT_WORD;
2122 case RECC_LOWER: return BIT_LOWER;
2123 case RECC_UPPER: return BIT_UPPER;
2124 case RECC_PUNCT: return BIT_PUNCT;
2125 case RECC_SPACE: return BIT_SPACE;
14473664 2126 case RECC_ASCII: case RECC_DIGIT: case RECC_XDIGIT: case RECC_CNTRL:
0cdd06f8
SM
2127 case RECC_BLANK: case RECC_UNIBYTE: case RECC_ERROR: return 0;
2128 default:
5e617bc2 2129 abort ();
14473664
SM
2130 }
2131}
2132#endif
77d11aec
RS
2133\f
2134/* Filling in the work area of a range. */
2135
2136/* Actually extend the space in WORK_AREA. */
2137
2138static void
971de7fb 2139extend_range_table_work_area (struct range_table_work_area *work_area)
177c0ea7 2140{
77d11aec 2141 work_area->allocated += 16 * sizeof (int);
38182d90 2142 work_area->table = realloc (work_area->table, work_area->allocated);
77d11aec
RS
2143}
2144
8f924df7 2145#if 0
77d11aec
RS
2146#ifdef emacs
2147
2148/* Carefully find the ranges of codes that are equivalent
2149 under case conversion to the range start..end when passed through
2150 TRANSLATE. Handle the case where non-letters can come in between
2151 two upper-case letters (which happens in Latin-1).
2152 Also handle the case of groups of more than 2 case-equivalent chars.
2153
2154 The basic method is to look at consecutive characters and see
2155 if they can form a run that can be handled as one.
2156
2157 Returns -1 if successful, REG_ESPACE if ran out of space. */
2158
2159static int
1dae0f0a
AS
2160set_image_of_range_1 (struct range_table_work_area *work_area,
2161 re_wchar_t start, re_wchar_t end,
2162 RE_TRANSLATE_TYPE translate)
77d11aec
RS
2163{
2164 /* `one_case' indicates a character, or a run of characters,
2165 each of which is an isolate (no case-equivalents).
2166 This includes all ASCII non-letters.
2167
2168 `two_case' indicates a character, or a run of characters,
2169 each of which has two case-equivalent forms.
2170 This includes all ASCII letters.
2171
2172 `strange' indicates a character that has more than one
2173 case-equivalent. */
177c0ea7 2174
77d11aec
RS
2175 enum case_type {one_case, two_case, strange};
2176
2177 /* Describe the run that is in progress,
2178 which the next character can try to extend.
2179 If run_type is strange, that means there really is no run.
2180 If run_type is one_case, then run_start...run_end is the run.
2181 If run_type is two_case, then the run is run_start...run_end,
2182 and the case-equivalents end at run_eqv_end. */
2183
2184 enum case_type run_type = strange;
2185 int run_start, run_end, run_eqv_end;
2186
2187 Lisp_Object eqv_table;
2188
2189 if (!RE_TRANSLATE_P (translate))
2190 {
b7c12565 2191 EXTEND_RANGE_TABLE (work_area, 2);
77d11aec
RS
2192 work_area->table[work_area->used++] = (start);
2193 work_area->table[work_area->used++] = (end);
b7c12565 2194 return -1;
77d11aec
RS
2195 }
2196
2197 eqv_table = XCHAR_TABLE (translate)->extras[2];
99633e97 2198
77d11aec
RS
2199 for (; start <= end; start++)
2200 {
2201 enum case_type this_type;
2202 int eqv = RE_TRANSLATE (eqv_table, start);
2203 int minchar, maxchar;
2204
2205 /* Classify this character */
2206 if (eqv == start)
2207 this_type = one_case;
2208 else if (RE_TRANSLATE (eqv_table, eqv) == start)
2209 this_type = two_case;
2210 else
2211 this_type = strange;
2212
2213 if (start < eqv)
2214 minchar = start, maxchar = eqv;
2215 else
2216 minchar = eqv, maxchar = start;
2217
2218 /* Can this character extend the run in progress? */
2219 if (this_type == strange || this_type != run_type
2220 || !(minchar == run_end + 1
2221 && (run_type == two_case
2222 ? maxchar == run_eqv_end + 1 : 1)))
2223 {
2224 /* No, end the run.
2225 Record each of its equivalent ranges. */
2226 if (run_type == one_case)
2227 {
2228 EXTEND_RANGE_TABLE (work_area, 2);
2229 work_area->table[work_area->used++] = run_start;
2230 work_area->table[work_area->used++] = run_end;
2231 }
2232 else if (run_type == two_case)
2233 {
2234 EXTEND_RANGE_TABLE (work_area, 4);
2235 work_area->table[work_area->used++] = run_start;
2236 work_area->table[work_area->used++] = run_end;
2237 work_area->table[work_area->used++]
2238 = RE_TRANSLATE (eqv_table, run_start);
2239 work_area->table[work_area->used++]
2240 = RE_TRANSLATE (eqv_table, run_end);
2241 }
2242 run_type = strange;
2243 }
177c0ea7 2244
77d11aec
RS
2245 if (this_type == strange)
2246 {
2247 /* For a strange character, add each of its equivalents, one
2248 by one. Don't start a range. */
2249 do
2250 {
2251 EXTEND_RANGE_TABLE (work_area, 2);
2252 work_area->table[work_area->used++] = eqv;
2253 work_area->table[work_area->used++] = eqv;
2254 eqv = RE_TRANSLATE (eqv_table, eqv);
2255 }
2256 while (eqv != start);
2257 }
2258
2259 /* Add this char to the run, or start a new run. */
2260 else if (run_type == strange)
2261 {
2262 /* Initialize a new range. */
2263 run_type = this_type;
2264 run_start = start;
2265 run_end = start;
2266 run_eqv_end = RE_TRANSLATE (eqv_table, run_end);
2267 }
2268 else
2269 {
2270 /* Extend a running range. */
2271 run_end = minchar;
2272 run_eqv_end = RE_TRANSLATE (eqv_table, run_end);
2273 }
2274 }
2275
2276 /* If a run is still in progress at the end, finish it now
2277 by recording its equivalent ranges. */
2278 if (run_type == one_case)
2279 {
2280 EXTEND_RANGE_TABLE (work_area, 2);
2281 work_area->table[work_area->used++] = run_start;
2282 work_area->table[work_area->used++] = run_end;
2283 }
2284 else if (run_type == two_case)
2285 {
2286 EXTEND_RANGE_TABLE (work_area, 4);
2287 work_area->table[work_area->used++] = run_start;
2288 work_area->table[work_area->used++] = run_end;
2289 work_area->table[work_area->used++]
2290 = RE_TRANSLATE (eqv_table, run_start);
2291 work_area->table[work_area->used++]
2292 = RE_TRANSLATE (eqv_table, run_end);
2293 }
2294
2295 return -1;
2296}
36595814 2297
77d11aec 2298#endif /* emacs */
36595814 2299
2b34df4e 2300/* Record the image of the range start..end when passed through
36595814
SM
2301 TRANSLATE. This is not necessarily TRANSLATE(start)..TRANSLATE(end)
2302 and is not even necessarily contiguous.
b7c12565
RS
2303 Normally we approximate it with the smallest contiguous range that contains
2304 all the chars we need. However, for Latin-1 we go to extra effort
2305 to do a better job.
2306
2307 This function is not called for ASCII ranges.
77d11aec
RS
2308
2309 Returns -1 if successful, REG_ESPACE if ran out of space. */
2310
2311static int
1dae0f0a
AS
2312set_image_of_range (struct range_table_work_area *work_area,
2313 re_wchar_t start, re_wchar_t end,
2314 RE_TRANSLATE_TYPE translate)
36595814 2315{
77d11aec
RS
2316 re_wchar_t cmin, cmax;
2317
2318#ifdef emacs
2319 /* For Latin-1 ranges, use set_image_of_range_1
2320 to get proper handling of ranges that include letters and nonletters.
b7c12565 2321 For a range that includes the whole of Latin-1, this is not necessary.
77d11aec 2322 For other character sets, we don't bother to get this right. */
b7c12565
RS
2323 if (RE_TRANSLATE_P (translate) && start < 04400
2324 && !(start < 04200 && end >= 04377))
77d11aec 2325 {
b7c12565 2326 int newend;
77d11aec 2327 int tem;
b7c12565
RS
2328 newend = end;
2329 if (newend > 04377)
2330 newend = 04377;
2331 tem = set_image_of_range_1 (work_area, start, newend, translate);
77d11aec
RS
2332 if (tem > 0)
2333 return tem;
2334
2335 start = 04400;
2336 if (end < 04400)
2337 return -1;
2338 }
2339#endif
2340
b7c12565
RS
2341 EXTEND_RANGE_TABLE (work_area, 2);
2342 work_area->table[work_area->used++] = (start);
2343 work_area->table[work_area->used++] = (end);
2344
2345 cmin = -1, cmax = -1;
77d11aec 2346
36595814 2347 if (RE_TRANSLATE_P (translate))
b7c12565
RS
2348 {
2349 int ch;
77d11aec 2350
b7c12565
RS
2351 for (ch = start; ch <= end; ch++)
2352 {
2353 re_wchar_t c = TRANSLATE (ch);
2354 if (! (start <= c && c <= end))
2355 {
2356 if (cmin == -1)
2357 cmin = c, cmax = c;
2358 else
2359 {
2360 cmin = MIN (cmin, c);
2361 cmax = MAX (cmax, c);
2362 }
2363 }
2364 }
2365
2366 if (cmin != -1)
2367 {
2368 EXTEND_RANGE_TABLE (work_area, 2);
2369 work_area->table[work_area->used++] = (cmin);
2370 work_area->table[work_area->used++] = (cmax);
2371 }
2372 }
36595814 2373
77d11aec
RS
2374 return -1;
2375}
8f924df7 2376#endif /* 0 */
fa9a63c5
RM
2377\f
2378#ifndef MATCH_MAY_ALLOCATE
2379
2380/* If we cannot allocate large objects within re_match_2_internal,
2381 we make the fail stack and register vectors global.
2382 The fail stack, we grow to the maximum size when a regexp
2383 is compiled.
2384 The register vectors, we adjust in size each time we
2385 compile a regexp, according to the number of registers it needs. */
2386
2387static fail_stack_type fail_stack;
2388
2389/* Size with which the following vectors are currently allocated.
2390 That is so we can make them bigger as needed,
4bb91c68 2391 but never make them smaller. */
fa9a63c5
RM
2392static int regs_allocated_size;
2393
66f0296e
SM
2394static re_char ** regstart, ** regend;
2395static re_char **best_regstart, **best_regend;
fa9a63c5
RM
2396
2397/* Make the register vectors big enough for NUM_REGS registers,
4bb91c68 2398 but don't make them smaller. */
fa9a63c5
RM
2399
2400static
1dae0f0a 2401regex_grow_registers (int num_regs)
fa9a63c5
RM
2402{
2403 if (num_regs > regs_allocated_size)
2404 {
66f0296e
SM
2405 RETALLOC_IF (regstart, num_regs, re_char *);
2406 RETALLOC_IF (regend, num_regs, re_char *);
2407 RETALLOC_IF (best_regstart, num_regs, re_char *);
2408 RETALLOC_IF (best_regend, num_regs, re_char *);
fa9a63c5
RM
2409
2410 regs_allocated_size = num_regs;
2411 }
2412}
2413
2414#endif /* not MATCH_MAY_ALLOCATE */
2415\f
261cb4bb
PE
2416static boolean group_in_compile_stack (compile_stack_type compile_stack,
2417 regnum_t regnum);
99633e97 2418
fa9a63c5
RM
2419/* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
2420 Returns one of error codes defined in `regex.h', or zero for success.
2421
2422 Assumes the `allocated' (and perhaps `buffer') and `translate'
2423 fields are set in BUFP on entry.
2424
2425 If it succeeds, results are put in BUFP (if it returns an error, the
2426 contents of BUFP are undefined):
2427 `buffer' is the compiled pattern;
2428 `syntax' is set to SYNTAX;
2429 `used' is set to the length of the compiled pattern;
2430 `fastmap_accurate' is zero;
2431 `re_nsub' is the number of subexpressions in PATTERN;
2432 `not_bol' and `not_eol' are zero;
5e69f11e 2433
c0f9ea08 2434 The `fastmap' field is neither examined nor set. */
fa9a63c5 2435
505bde11
SM
2436/* Insert the `jump' from the end of last alternative to "here".
2437 The space for the jump has already been allocated. */
2438#define FIXUP_ALT_JUMP() \
2439do { \
2440 if (fixup_alt_jump) \
2441 STORE_JUMP (jump, fixup_alt_jump, b); \
2442} while (0)
2443
2444
fa9a63c5
RM
2445/* Return, freeing storage we allocated. */
2446#define FREE_STACK_RETURN(value) \
b18215fc
RS
2447 do { \
2448 FREE_RANGE_TABLE_WORK_AREA (range_table_work); \
2449 free (compile_stack.stack); \
2450 return value; \
2451 } while (0)
fa9a63c5
RM
2452
2453static reg_errcode_t
971de7fb 2454regex_compile (const re_char *pattern, size_t size, reg_syntax_t syntax, struct re_pattern_buffer *bufp)
fa9a63c5 2455{
01618498
SM
2456 /* We fetch characters from PATTERN here. */
2457 register re_wchar_t c, c1;
5e69f11e 2458
fa9a63c5
RM
2459 /* Points to the end of the buffer, where we should append. */
2460 register unsigned char *b;
5e69f11e 2461
fa9a63c5
RM
2462 /* Keeps track of unclosed groups. */
2463 compile_stack_type compile_stack;
2464
2465 /* Points to the current (ending) position in the pattern. */
22336245
RS
2466#ifdef AIX
2467 /* `const' makes AIX compiler fail. */
66f0296e 2468 unsigned char *p = pattern;
22336245 2469#else
66f0296e 2470 re_char *p = pattern;
22336245 2471#endif
66f0296e 2472 re_char *pend = pattern + size;
5e69f11e 2473
fa9a63c5 2474 /* How to translate the characters in the pattern. */
6676cb1c 2475 RE_TRANSLATE_TYPE translate = bufp->translate;
fa9a63c5
RM
2476
2477 /* Address of the count-byte of the most recently inserted `exactn'
2478 command. This makes it possible to tell if a new exact-match
2479 character can be added to that command or if the character requires
2480 a new `exactn' command. */
2481 unsigned char *pending_exact = 0;
2482
2483 /* Address of start of the most recently finished expression.
2484 This tells, e.g., postfix * where to find the start of its
2485 operand. Reset at the beginning of groups and alternatives. */
2486 unsigned char *laststart = 0;
2487
2488 /* Address of beginning of regexp, or inside of last group. */
2489 unsigned char *begalt;
2490
2491 /* Place in the uncompiled pattern (i.e., the {) to
2492 which to go back if the interval is invalid. */
66f0296e 2493 re_char *beg_interval;
5e69f11e 2494
fa9a63c5 2495 /* Address of the place where a forward jump should go to the end of
7814e705 2496 the containing expression. Each alternative of an `or' -- except the
fa9a63c5
RM
2497 last -- ends with a forward jump of this sort. */
2498 unsigned char *fixup_alt_jump = 0;
2499
b18215fc
RS
2500 /* Work area for range table of charset. */
2501 struct range_table_work_area range_table_work;
2502
2d1675e4
SM
2503 /* If the object matched can contain multibyte characters. */
2504 const boolean multibyte = RE_MULTIBYTE_P (bufp);
2505
f9b0fd99
RS
2506 /* Nonzero if we have pushed down into a subpattern. */
2507 int in_subpattern = 0;
2508
2509 /* These hold the values of p, pattern, and pend from the main
2510 pattern when we have pushed into a subpattern. */
da053e48
PE
2511 re_char *main_p IF_LINT (= NULL);
2512 re_char *main_pattern IF_LINT (= NULL);
2513 re_char *main_pend IF_LINT (= NULL);
f9b0fd99 2514
fa9a63c5 2515#ifdef DEBUG
99633e97 2516 debug++;
fa9a63c5 2517 DEBUG_PRINT1 ("\nCompiling pattern: ");
99633e97 2518 if (debug > 0)
fa9a63c5
RM
2519 {
2520 unsigned debug_count;
5e69f11e 2521
fa9a63c5 2522 for (debug_count = 0; debug_count < size; debug_count++)
25fe55af 2523 putchar (pattern[debug_count]);
fa9a63c5
RM
2524 putchar ('\n');
2525 }
2526#endif /* DEBUG */
2527
2528 /* Initialize the compile stack. */
2529 compile_stack.stack = TALLOC (INIT_COMPILE_STACK_SIZE, compile_stack_elt_t);
2530 if (compile_stack.stack == NULL)
2531 return REG_ESPACE;
2532
2533 compile_stack.size = INIT_COMPILE_STACK_SIZE;
2534 compile_stack.avail = 0;
2535
b18215fc
RS
2536 range_table_work.table = 0;
2537 range_table_work.allocated = 0;
2538
fa9a63c5
RM
2539 /* Initialize the pattern buffer. */
2540 bufp->syntax = syntax;
2541 bufp->fastmap_accurate = 0;
2542 bufp->not_bol = bufp->not_eol = 0;
6224b623 2543 bufp->used_syntax = 0;
fa9a63c5
RM
2544
2545 /* Set `used' to zero, so that if we return an error, the pattern
2546 printer (for debugging) will think there's no pattern. We reset it
2547 at the end. */
2548 bufp->used = 0;
5e69f11e 2549
fa9a63c5 2550 /* Always count groups, whether or not bufp->no_sub is set. */
5e69f11e 2551 bufp->re_nsub = 0;
fa9a63c5 2552
0b32bf0e 2553#if !defined emacs && !defined SYNTAX_TABLE
fa9a63c5
RM
2554 /* Initialize the syntax table. */
2555 init_syntax_once ();
2556#endif
2557
2558 if (bufp->allocated == 0)
2559 {
2560 if (bufp->buffer)
2561 { /* If zero allocated, but buffer is non-null, try to realloc
25fe55af 2562 enough space. This loses if buffer's address is bogus, but
7814e705 2563 that is the user's responsibility. */
25fe55af
RS
2564 RETALLOC (bufp->buffer, INIT_BUF_SIZE, unsigned char);
2565 }
fa9a63c5 2566 else
7814e705 2567 { /* Caller did not allocate a buffer. Do it for them. */
25fe55af
RS
2568 bufp->buffer = TALLOC (INIT_BUF_SIZE, unsigned char);
2569 }
fa9a63c5
RM
2570 if (!bufp->buffer) FREE_STACK_RETURN (REG_ESPACE);
2571
2572 bufp->allocated = INIT_BUF_SIZE;
2573 }
2574
2575 begalt = b = bufp->buffer;
2576
2577 /* Loop through the uncompiled pattern until we're at the end. */
f9b0fd99 2578 while (1)
fa9a63c5 2579 {
f9b0fd99
RS
2580 if (p == pend)
2581 {
2582 /* If this is the end of an included regexp,
2583 pop back to the main regexp and try again. */
2584 if (in_subpattern)
2585 {
2586 in_subpattern = 0;
2587 pattern = main_pattern;
2588 p = main_p;
2589 pend = main_pend;
2590 continue;
2591 }
2592 /* If this is the end of the main regexp, we are done. */
2593 break;
2594 }
2595
fa9a63c5
RM
2596 PATFETCH (c);
2597
2598 switch (c)
25fe55af 2599 {
f9b0fd99
RS
2600 case ' ':
2601 {
2602 re_char *p1 = p;
2603
2604 /* If there's no special whitespace regexp, treat
4fb680cd
RS
2605 spaces normally. And don't try to do this recursively. */
2606 if (!whitespace_regexp || in_subpattern)
f9b0fd99
RS
2607 goto normal_char;
2608
2609 /* Peek past following spaces. */
2610 while (p1 != pend)
2611 {
2612 if (*p1 != ' ')
2613 break;
2614 p1++;
2615 }
2616 /* If the spaces are followed by a repetition op,
2617 treat them normally. */
c721eee5
RS
2618 if (p1 != pend
2619 && (*p1 == '*' || *p1 == '+' || *p1 == '?'
f9b0fd99
RS
2620 || (*p1 == '\\' && p1 + 1 != pend && p1[1] == '{')))
2621 goto normal_char;
2622
2623 /* Replace the spaces with the whitespace regexp. */
2624 in_subpattern = 1;
2625 main_p = p1;
2626 main_pend = pend;
2627 main_pattern = pattern;
2628 p = pattern = whitespace_regexp;
5b0534c8 2629 pend = p + strlen ((const char *) p);
f9b0fd99 2630 break;
7814e705 2631 }
f9b0fd99 2632
25fe55af
RS
2633 case '^':
2634 {
7814e705 2635 if ( /* If at start of pattern, it's an operator. */
25fe55af 2636 p == pattern + 1
7814e705 2637 /* If context independent, it's an operator. */
25fe55af 2638 || syntax & RE_CONTEXT_INDEP_ANCHORS
7814e705 2639 /* Otherwise, depends on what's come before. */
25fe55af 2640 || at_begline_loc_p (pattern, p, syntax))
c0f9ea08 2641 BUF_PUSH ((syntax & RE_NO_NEWLINE_ANCHOR) ? begbuf : begline);
25fe55af
RS
2642 else
2643 goto normal_char;
2644 }
2645 break;
2646
2647
2648 case '$':
2649 {
2650 if ( /* If at end of pattern, it's an operator. */
2651 p == pend
7814e705 2652 /* If context independent, it's an operator. */
25fe55af
RS
2653 || syntax & RE_CONTEXT_INDEP_ANCHORS
2654 /* Otherwise, depends on what's next. */
2655 || at_endline_loc_p (p, pend, syntax))
c0f9ea08 2656 BUF_PUSH ((syntax & RE_NO_NEWLINE_ANCHOR) ? endbuf : endline);
25fe55af
RS
2657 else
2658 goto normal_char;
2659 }
2660 break;
fa9a63c5
RM
2661
2662
2663 case '+':
25fe55af
RS
2664 case '?':
2665 if ((syntax & RE_BK_PLUS_QM)
2666 || (syntax & RE_LIMITED_OPS))
2667 goto normal_char;
2668 handle_plus:
2669 case '*':
2670 /* If there is no previous pattern... */
2671 if (!laststart)
2672 {
2673 if (syntax & RE_CONTEXT_INVALID_OPS)
2674 FREE_STACK_RETURN (REG_BADRPT);
2675 else if (!(syntax & RE_CONTEXT_INDEP_OPS))
2676 goto normal_char;
2677 }
2678
2679 {
7814e705 2680 /* 1 means zero (many) matches is allowed. */
66f0296e
SM
2681 boolean zero_times_ok = 0, many_times_ok = 0;
2682 boolean greedy = 1;
25fe55af
RS
2683
2684 /* If there is a sequence of repetition chars, collapse it
2685 down to just one (the right one). We can't combine
2686 interval operators with these because of, e.g., `a{2}*',
7814e705 2687 which should only match an even number of `a's. */
25fe55af
RS
2688
2689 for (;;)
2690 {
0b32bf0e 2691 if ((syntax & RE_FRUGAL)
1c8c6d39
DL
2692 && c == '?' && (zero_times_ok || many_times_ok))
2693 greedy = 0;
2694 else
2695 {
2696 zero_times_ok |= c != '+';
2697 many_times_ok |= c != '?';
2698 }
25fe55af
RS
2699
2700 if (p == pend)
2701 break;
ed0767d8
SM
2702 else if (*p == '*'
2703 || (!(syntax & RE_BK_PLUS_QM)
2704 && (*p == '+' || *p == '?')))
25fe55af 2705 ;
ed0767d8 2706 else if (syntax & RE_BK_PLUS_QM && *p == '\\')
25fe55af 2707 {
ed0767d8
SM
2708 if (p+1 == pend)
2709 FREE_STACK_RETURN (REG_EESCAPE);
2710 if (p[1] == '+' || p[1] == '?')
2711 PATFETCH (c); /* Gobble up the backslash. */
2712 else
2713 break;
25fe55af
RS
2714 }
2715 else
ed0767d8 2716 break;
25fe55af 2717 /* If we get here, we found another repeat character. */
ed0767d8
SM
2718 PATFETCH (c);
2719 }
25fe55af
RS
2720
2721 /* Star, etc. applied to an empty pattern is equivalent
2722 to an empty pattern. */
4e8a9132 2723 if (!laststart || laststart == b)
25fe55af
RS
2724 break;
2725
2726 /* Now we know whether or not zero matches is allowed
7814e705 2727 and also whether or not two or more matches is allowed. */
1c8c6d39
DL
2728 if (greedy)
2729 {
99633e97 2730 if (many_times_ok)
4e8a9132
SM
2731 {
2732 boolean simple = skip_one_char (laststart) == b;
d1dfb56c 2733 size_t startoffset = 0;
f6a3f532 2734 re_opcode_t ofj =
01618498 2735 /* Check if the loop can match the empty string. */
6df42991
SM
2736 (simple || !analyse_first (laststart, b, NULL, 0))
2737 ? on_failure_jump : on_failure_jump_loop;
4e8a9132 2738 assert (skip_one_char (laststart) <= b);
177c0ea7 2739
4e8a9132
SM
2740 if (!zero_times_ok && simple)
2741 { /* Since simple * loops can be made faster by using
2742 on_failure_keep_string_jump, we turn simple P+
2743 into PP* if P is simple. */
2744 unsigned char *p1, *p2;
2745 startoffset = b - laststart;
2746 GET_BUFFER_SPACE (startoffset);
2747 p1 = b; p2 = laststart;
2748 while (p2 < p1)
2749 *b++ = *p2++;
2750 zero_times_ok = 1;
99633e97 2751 }
4e8a9132
SM
2752
2753 GET_BUFFER_SPACE (6);
2754 if (!zero_times_ok)
2755 /* A + loop. */
f6a3f532 2756 STORE_JUMP (ofj, b, b + 6);
99633e97 2757 else
4e8a9132
SM
2758 /* Simple * loops can use on_failure_keep_string_jump
2759 depending on what follows. But since we don't know
2760 that yet, we leave the decision up to
2761 on_failure_jump_smart. */
f6a3f532 2762 INSERT_JUMP (simple ? on_failure_jump_smart : ofj,
4e8a9132 2763 laststart + startoffset, b + 6);
99633e97 2764 b += 3;
4e8a9132 2765 STORE_JUMP (jump, b, laststart + startoffset);
99633e97
SM
2766 b += 3;
2767 }
2768 else
2769 {
4e8a9132
SM
2770 /* A simple ? pattern. */
2771 assert (zero_times_ok);
2772 GET_BUFFER_SPACE (3);
2773 INSERT_JUMP (on_failure_jump, laststart, b + 3);
99633e97
SM
2774 b += 3;
2775 }
1c8c6d39
DL
2776 }
2777 else /* not greedy */
2778 { /* I wish the greedy and non-greedy cases could be merged. */
2779
0683b6fa 2780 GET_BUFFER_SPACE (7); /* We might use less. */
1c8c6d39
DL
2781 if (many_times_ok)
2782 {
f6a3f532
SM
2783 boolean emptyp = analyse_first (laststart, b, NULL, 0);
2784
6df42991
SM
2785 /* The non-greedy multiple match looks like
2786 a repeat..until: we only need a conditional jump
2787 at the end of the loop. */
f6a3f532
SM
2788 if (emptyp) BUF_PUSH (no_op);
2789 STORE_JUMP (emptyp ? on_failure_jump_nastyloop
2790 : on_failure_jump, b, laststart);
1c8c6d39
DL
2791 b += 3;
2792 if (zero_times_ok)
2793 {
2794 /* The repeat...until naturally matches one or more.
2795 To also match zero times, we need to first jump to
6df42991 2796 the end of the loop (its conditional jump). */
1c8c6d39
DL
2797 INSERT_JUMP (jump, laststart, b);
2798 b += 3;
2799 }
2800 }
2801 else
2802 {
2803 /* non-greedy a?? */
1c8c6d39
DL
2804 INSERT_JUMP (jump, laststart, b + 3);
2805 b += 3;
2806 INSERT_JUMP (on_failure_jump, laststart, laststart + 6);
2807 b += 3;
2808 }
2809 }
2810 }
4e8a9132 2811 pending_exact = 0;
fa9a63c5
RM
2812 break;
2813
2814
2815 case '.':
25fe55af
RS
2816 laststart = b;
2817 BUF_PUSH (anychar);
2818 break;
fa9a63c5
RM
2819
2820
25fe55af
RS
2821 case '[':
2822 {
19ed5445
PE
2823 re_char *p1;
2824
b18215fc 2825 CLEAR_RANGE_TABLE_WORK_USED (range_table_work);
fa9a63c5 2826
25fe55af 2827 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
fa9a63c5 2828
25fe55af
RS
2829 /* Ensure that we have enough space to push a charset: the
2830 opcode, the length count, and the bitset; 34 bytes in all. */
fa9a63c5
RM
2831 GET_BUFFER_SPACE (34);
2832
25fe55af 2833 laststart = b;
e318085a 2834
25fe55af 2835 /* We test `*p == '^' twice, instead of using an if
7814e705 2836 statement, so we only need one BUF_PUSH. */
25fe55af
RS
2837 BUF_PUSH (*p == '^' ? charset_not : charset);
2838 if (*p == '^')
2839 p++;
e318085a 2840
25fe55af
RS
2841 /* Remember the first position in the bracket expression. */
2842 p1 = p;
e318085a 2843
7814e705 2844 /* Push the number of bytes in the bitmap. */
25fe55af 2845 BUF_PUSH ((1 << BYTEWIDTH) / BYTEWIDTH);
e318085a 2846
25fe55af 2847 /* Clear the whole map. */
72af86bd 2848 memset (b, 0, (1 << BYTEWIDTH) / BYTEWIDTH);
e318085a 2849
25fe55af
RS
2850 /* charset_not matches newline according to a syntax bit. */
2851 if ((re_opcode_t) b[-2] == charset_not
2852 && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
2853 SET_LIST_BIT ('\n');
fa9a63c5 2854
7814e705 2855 /* Read in characters and ranges, setting map bits. */
25fe55af
RS
2856 for (;;)
2857 {
b18215fc 2858 boolean escaped_char = false;
2d1675e4 2859 const unsigned char *p2 = p;
abbd1bcf 2860 re_wchar_t ch;
e318085a 2861
25fe55af 2862 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
e318085a 2863
36595814
SM
2864 /* Don't translate yet. The range TRANSLATE(X..Y) cannot
2865 always be determined from TRANSLATE(X) and TRANSLATE(Y)
2866 So the translation is done later in a loop. Example:
2867 (let ((case-fold-search t)) (string-match "[A-_]" "A")) */
25fe55af 2868 PATFETCH (c);
e318085a 2869
25fe55af
RS
2870 /* \ might escape characters inside [...] and [^...]. */
2871 if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
2872 {
2873 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
e318085a
RS
2874
2875 PATFETCH (c);
b18215fc 2876 escaped_char = true;
25fe55af 2877 }
b18215fc
RS
2878 else
2879 {
7814e705 2880 /* Could be the end of the bracket expression. If it's
657fcfbd
RS
2881 not (i.e., when the bracket expression is `[]' so
2882 far), the ']' character bit gets set way below. */
2d1675e4 2883 if (c == ']' && p2 != p1)
657fcfbd 2884 break;
25fe55af 2885 }
b18215fc 2886
25fe55af
RS
2887 /* See if we're at the beginning of a possible character
2888 class. */
b18215fc 2889
2d1675e4
SM
2890 if (!escaped_char &&
2891 syntax & RE_CHAR_CLASSES && c == '[' && *p == ':')
657fcfbd 2892 {
7814e705 2893 /* Leave room for the null. */
14473664 2894 unsigned char str[CHAR_CLASS_MAX_LENGTH + 1];
ed0767d8 2895 const unsigned char *class_beg;
b18215fc 2896
25fe55af
RS
2897 PATFETCH (c);
2898 c1 = 0;
ed0767d8 2899 class_beg = p;
b18215fc 2900
25fe55af
RS
2901 /* If pattern is `[[:'. */
2902 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
b18215fc 2903
25fe55af
RS
2904 for (;;)
2905 {
14473664
SM
2906 PATFETCH (c);
2907 if ((c == ':' && *p == ']') || p == pend)
2908 break;
2909 if (c1 < CHAR_CLASS_MAX_LENGTH)
2910 str[c1++] = c;
2911 else
2912 /* This is in any case an invalid class name. */
2913 str[0] = '\0';
25fe55af
RS
2914 }
2915 str[c1] = '\0';
b18215fc
RS
2916
2917 /* If isn't a word bracketed by `[:' and `:]':
2918 undo the ending character, the letters, and
2919 leave the leading `:' and `[' (but set bits for
2920 them). */
25fe55af
RS
2921 if (c == ':' && *p == ']')
2922 {
abbd1bcf 2923 re_wctype_t cc = re_wctype (str);
14473664
SM
2924
2925 if (cc == 0)
fa9a63c5
RM
2926 FREE_STACK_RETURN (REG_ECTYPE);
2927
14473664
SM
2928 /* Throw away the ] at the end of the character
2929 class. */
2930 PATFETCH (c);
fa9a63c5 2931
14473664 2932 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
fa9a63c5 2933
cf9c99bc
KH
2934#ifndef emacs
2935 for (ch = 0; ch < (1 << BYTEWIDTH); ++ch)
8f924df7
KH
2936 if (re_iswctype (btowc (ch), cc))
2937 {
2938 c = TRANSLATE (ch);
ed00c2ac
KH
2939 if (c < (1 << BYTEWIDTH))
2940 SET_LIST_BIT (c);
8f924df7 2941 }
cf9c99bc
KH
2942#else /* emacs */
2943 /* Most character classes in a multibyte match
2944 just set a flag. Exceptions are is_blank,
2945 is_digit, is_cntrl, and is_xdigit, since
2946 they can only match ASCII characters. We
2947 don't need to handle them for multibyte.
2948 They are distinguished by a negative wctype. */
96cc36cc 2949
254c06a8
SM
2950 /* Setup the gl_state object to its buffer-defined
2951 value. This hardcodes the buffer-global
2952 syntax-table for ASCII chars, while the other chars
2953 will obey syntax-table properties. It's not ideal,
2954 but it's the way it's been done until now. */
d48cd3f4 2955 SETUP_BUFFER_SYNTAX_TABLE ();
254c06a8 2956
cf9c99bc 2957 for (ch = 0; ch < 256; ++ch)
25fe55af 2958 {
cf9c99bc
KH
2959 c = RE_CHAR_TO_MULTIBYTE (ch);
2960 if (! CHAR_BYTE8_P (c)
2961 && re_iswctype (c, cc))
8f924df7 2962 {
cf9c99bc
KH
2963 SET_LIST_BIT (ch);
2964 c1 = TRANSLATE (c);
2965 if (c1 == c)
2966 continue;
2967 if (ASCII_CHAR_P (c1))
2968 SET_LIST_BIT (c1);
2969 else if ((c1 = RE_CHAR_TO_UNIBYTE (c1)) >= 0)
2970 SET_LIST_BIT (c1);
8f924df7 2971 }
25fe55af 2972 }
cf9c99bc
KH
2973 SET_RANGE_TABLE_WORK_AREA_BIT
2974 (range_table_work, re_wctype_to_bit (cc));
2975#endif /* emacs */
6224b623
SM
2976 /* In most cases the matching rule for char classes
2977 only uses the syntax table for multibyte chars,
2978 so that the content of the syntax-table it is not
2979 hardcoded in the range_table. SPACE and WORD are
2980 the two exceptions. */
2981 if ((1 << cc) & ((1 << RECC_SPACE) | (1 << RECC_WORD)))
2982 bufp->used_syntax = 1;
2983
b18215fc
RS
2984 /* Repeat the loop. */
2985 continue;
25fe55af
RS
2986 }
2987 else
2988 {
ed0767d8
SM
2989 /* Go back to right after the "[:". */
2990 p = class_beg;
25fe55af 2991 SET_LIST_BIT ('[');
b18215fc
RS
2992
2993 /* Because the `:' may starts the range, we
2994 can't simply set bit and repeat the loop.
7814e705 2995 Instead, just set it to C and handle below. */
b18215fc 2996 c = ':';
25fe55af
RS
2997 }
2998 }
b18215fc
RS
2999
3000 if (p < pend && p[0] == '-' && p[1] != ']')
3001 {
3002
3003 /* Discard the `-'. */
3004 PATFETCH (c1);
3005
3006 /* Fetch the character which ends the range. */
3007 PATFETCH (c1);
cf9c99bc
KH
3008#ifdef emacs
3009 if (CHAR_BYTE8_P (c1)
3010 && ! ASCII_CHAR_P (c) && ! CHAR_BYTE8_P (c))
3011 /* Treat the range from a multibyte character to
3012 raw-byte character as empty. */
3013 c = c1 + 1;
3014#endif /* emacs */
e318085a 3015 }
25fe55af 3016 else
b18215fc
RS
3017 /* Range from C to C. */
3018 c1 = c;
3019
cf9c99bc 3020 if (c > c1)
25fe55af 3021 {
cf9c99bc
KH
3022 if (syntax & RE_NO_EMPTY_RANGES)
3023 FREE_STACK_RETURN (REG_ERANGEX);
3024 /* Else, repeat the loop. */
bf216479 3025 }
6fdd04b0 3026 else
25fe55af 3027 {
cf9c99bc
KH
3028#ifndef emacs
3029 /* Set the range into bitmap */
8f924df7 3030 for (; c <= c1; c++)
b18215fc 3031 {
cf9c99bc
KH
3032 ch = TRANSLATE (c);
3033 if (ch < (1 << BYTEWIDTH))
3034 SET_LIST_BIT (ch);
3035 }
3036#else /* emacs */
3037 if (c < 128)
3038 {
3039 ch = MIN (127, c1);
3040 SETUP_ASCII_RANGE (range_table_work, c, ch);
3041 c = ch + 1;
3042 if (CHAR_BYTE8_P (c1))
3043 c = BYTE8_TO_CHAR (128);
3044 }
3045 if (c <= c1)
3046 {
3047 if (CHAR_BYTE8_P (c))
3048 {
3049 c = CHAR_TO_BYTE8 (c);
3050 c1 = CHAR_TO_BYTE8 (c1);
3051 for (; c <= c1; c++)
3052 SET_LIST_BIT (c);
3053 }
3054 else if (multibyte)
3055 {
3056 SETUP_MULTIBYTE_RANGE (range_table_work, c, c1);
3057 }
3058 else
3059 {
3060 SETUP_UNIBYTE_RANGE (range_table_work, c, c1);
3061 }
e934739e 3062 }
cf9c99bc 3063#endif /* emacs */
25fe55af 3064 }
e318085a
RS
3065 }
3066
25fe55af 3067 /* Discard any (non)matching list bytes that are all 0 at the
7814e705 3068 end of the map. Decrease the map-length byte too. */
25fe55af
RS
3069 while ((int) b[-1] > 0 && b[b[-1] - 1] == 0)
3070 b[-1]--;
3071 b += b[-1];
fa9a63c5 3072
96cc36cc
RS
3073 /* Build real range table from work area. */
3074 if (RANGE_TABLE_WORK_USED (range_table_work)
3075 || RANGE_TABLE_WORK_BITS (range_table_work))
b18215fc
RS
3076 {
3077 int i;
3078 int used = RANGE_TABLE_WORK_USED (range_table_work);
fa9a63c5 3079
b18215fc 3080 /* Allocate space for COUNT + RANGE_TABLE. Needs two
96cc36cc
RS
3081 bytes for flags, two for COUNT, and three bytes for
3082 each character. */
3083 GET_BUFFER_SPACE (4 + used * 3);
fa9a63c5 3084
b18215fc
RS
3085 /* Indicate the existence of range table. */
3086 laststart[1] |= 0x80;
fa9a63c5 3087
96cc36cc
RS
3088 /* Store the character class flag bits into the range table.
3089 If not in emacs, these flag bits are always 0. */
3090 *b++ = RANGE_TABLE_WORK_BITS (range_table_work) & 0xff;
3091 *b++ = RANGE_TABLE_WORK_BITS (range_table_work) >> 8;
3092
b18215fc
RS
3093 STORE_NUMBER_AND_INCR (b, used / 2);
3094 for (i = 0; i < used; i++)
3095 STORE_CHARACTER_AND_INCR
3096 (b, RANGE_TABLE_WORK_ELT (range_table_work, i));
3097 }
25fe55af
RS
3098 }
3099 break;
fa9a63c5
RM
3100
3101
b18215fc 3102 case '(':
25fe55af
RS
3103 if (syntax & RE_NO_BK_PARENS)
3104 goto handle_open;
3105 else
3106 goto normal_char;
fa9a63c5
RM
3107
3108
25fe55af
RS
3109 case ')':
3110 if (syntax & RE_NO_BK_PARENS)
3111 goto handle_close;
3112 else
3113 goto normal_char;
e318085a
RS
3114
3115
25fe55af
RS
3116 case '\n':
3117 if (syntax & RE_NEWLINE_ALT)
3118 goto handle_alt;
3119 else
3120 goto normal_char;
e318085a
RS
3121
3122
b18215fc 3123 case '|':
25fe55af
RS
3124 if (syntax & RE_NO_BK_VBAR)
3125 goto handle_alt;
3126 else
3127 goto normal_char;
3128
3129
3130 case '{':
3131 if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES)
3132 goto handle_interval;
3133 else
3134 goto normal_char;
3135
3136
3137 case '\\':
3138 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
3139
3140 /* Do not translate the character after the \, so that we can
3141 distinguish, e.g., \B from \b, even if we normally would
3142 translate, e.g., B to b. */
36595814 3143 PATFETCH (c);
25fe55af
RS
3144
3145 switch (c)
3146 {
3147 case '(':
3148 if (syntax & RE_NO_BK_PARENS)
3149 goto normal_backslash;
3150
3151 handle_open:
505bde11
SM
3152 {
3153 int shy = 0;
c69b0314 3154 regnum_t regnum = 0;
505bde11
SM
3155 if (p+1 < pend)
3156 {
3157 /* Look for a special (?...) construct */
ed0767d8 3158 if ((syntax & RE_SHY_GROUPS) && *p == '?')
505bde11 3159 {
ed0767d8 3160 PATFETCH (c); /* Gobble up the '?'. */
c69b0314 3161 while (!shy)
505bde11 3162 {
c69b0314
SM
3163 PATFETCH (c);
3164 switch (c)
3165 {
3166 case ':': shy = 1; break;
3167 case '0':
3168 /* An explicitly specified regnum must start
3169 with non-0. */
3170 if (regnum == 0)
3171 FREE_STACK_RETURN (REG_BADPAT);
3172 case '1': case '2': case '3': case '4':
3173 case '5': case '6': case '7': case '8': case '9':
3174 regnum = 10*regnum + (c - '0'); break;
3175 default:
3176 /* Only (?:...) is supported right now. */
3177 FREE_STACK_RETURN (REG_BADPAT);
3178 }
505bde11
SM
3179 }
3180 }
505bde11
SM
3181 }
3182
3183 if (!shy)
c69b0314
SM
3184 regnum = ++bufp->re_nsub;
3185 else if (regnum)
3186 { /* It's actually not shy, but explicitly numbered. */
3187 shy = 0;
3188 if (regnum > bufp->re_nsub)
3189 bufp->re_nsub = regnum;
3190 else if (regnum > bufp->re_nsub
3191 /* Ideally, we'd want to check that the specified
3192 group can't have matched (i.e. all subgroups
3193 using the same regnum are in other branches of
3194 OR patterns), but we don't currently keep track
3195 of enough info to do that easily. */
3196 || group_in_compile_stack (compile_stack, regnum))
3197 FREE_STACK_RETURN (REG_BADPAT);
505bde11 3198 }
c69b0314
SM
3199 else
3200 /* It's really shy. */
3201 regnum = - bufp->re_nsub;
25fe55af 3202
99633e97
SM
3203 if (COMPILE_STACK_FULL)
3204 {
3205 RETALLOC (compile_stack.stack, compile_stack.size << 1,
3206 compile_stack_elt_t);
3207 if (compile_stack.stack == NULL) return REG_ESPACE;
25fe55af 3208
99633e97
SM
3209 compile_stack.size <<= 1;
3210 }
25fe55af 3211
99633e97 3212 /* These are the values to restore when we hit end of this
7814e705 3213 group. They are all relative offsets, so that if the
99633e97
SM
3214 whole pattern moves because of realloc, they will still
3215 be valid. */
3216 COMPILE_STACK_TOP.begalt_offset = begalt - bufp->buffer;
3217 COMPILE_STACK_TOP.fixup_alt_jump
3218 = fixup_alt_jump ? fixup_alt_jump - bufp->buffer + 1 : 0;
3219 COMPILE_STACK_TOP.laststart_offset = b - bufp->buffer;
c69b0314 3220 COMPILE_STACK_TOP.regnum = regnum;
99633e97 3221
c69b0314
SM
3222 /* Do not push a start_memory for groups beyond the last one
3223 we can represent in the compiled pattern. */
3224 if (regnum <= MAX_REGNUM && regnum > 0)
99633e97
SM
3225 BUF_PUSH_2 (start_memory, regnum);
3226
3227 compile_stack.avail++;
3228
3229 fixup_alt_jump = 0;
3230 laststart = 0;
3231 begalt = b;
3232 /* If we've reached MAX_REGNUM groups, then this open
3233 won't actually generate any code, so we'll have to
3234 clear pending_exact explicitly. */
3235 pending_exact = 0;
3236 break;
505bde11 3237 }
25fe55af
RS
3238
3239 case ')':
3240 if (syntax & RE_NO_BK_PARENS) goto normal_backslash;
3241
3242 if (COMPILE_STACK_EMPTY)
505bde11
SM
3243 {
3244 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
3245 goto normal_backslash;
3246 else
3247 FREE_STACK_RETURN (REG_ERPAREN);
3248 }
25fe55af
RS
3249
3250 handle_close:
505bde11 3251 FIXUP_ALT_JUMP ();
25fe55af
RS
3252
3253 /* See similar code for backslashed left paren above. */
3254 if (COMPILE_STACK_EMPTY)
505bde11
SM
3255 {
3256 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
3257 goto normal_char;
3258 else
3259 FREE_STACK_RETURN (REG_ERPAREN);
3260 }
25fe55af
RS
3261
3262 /* Since we just checked for an empty stack above, this
3263 ``can't happen''. */
3264 assert (compile_stack.avail != 0);
3265 {
3266 /* We don't just want to restore into `regnum', because
3267 later groups should continue to be numbered higher,
7814e705 3268 as in `(ab)c(de)' -- the second group is #2. */
c69b0314 3269 regnum_t regnum;
25fe55af
RS
3270
3271 compile_stack.avail--;
3272 begalt = bufp->buffer + COMPILE_STACK_TOP.begalt_offset;
3273 fixup_alt_jump
3274 = COMPILE_STACK_TOP.fixup_alt_jump
3275 ? bufp->buffer + COMPILE_STACK_TOP.fixup_alt_jump - 1
3276 : 0;
3277 laststart = bufp->buffer + COMPILE_STACK_TOP.laststart_offset;
c69b0314 3278 regnum = COMPILE_STACK_TOP.regnum;
b18215fc
RS
3279 /* If we've reached MAX_REGNUM groups, then this open
3280 won't actually generate any code, so we'll have to
3281 clear pending_exact explicitly. */
3282 pending_exact = 0;
e318085a 3283
25fe55af 3284 /* We're at the end of the group, so now we know how many
7814e705 3285 groups were inside this one. */
c69b0314
SM
3286 if (regnum <= MAX_REGNUM && regnum > 0)
3287 BUF_PUSH_2 (stop_memory, regnum);
25fe55af
RS
3288 }
3289 break;
3290
3291
3292 case '|': /* `\|'. */
3293 if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR)
3294 goto normal_backslash;
3295 handle_alt:
3296 if (syntax & RE_LIMITED_OPS)
3297 goto normal_char;
3298
3299 /* Insert before the previous alternative a jump which
7814e705 3300 jumps to this alternative if the former fails. */
25fe55af
RS
3301 GET_BUFFER_SPACE (3);
3302 INSERT_JUMP (on_failure_jump, begalt, b + 6);
3303 pending_exact = 0;
3304 b += 3;
3305
3306 /* The alternative before this one has a jump after it
3307 which gets executed if it gets matched. Adjust that
3308 jump so it will jump to this alternative's analogous
3309 jump (put in below, which in turn will jump to the next
3310 (if any) alternative's such jump, etc.). The last such
3311 jump jumps to the correct final destination. A picture:
3312 _____ _____
3313 | | | |
3314 | v | v
d1dfb56c 3315 a | b | c
25fe55af
RS
3316
3317 If we are at `b', then fixup_alt_jump right now points to a
3318 three-byte space after `a'. We'll put in the jump, set
3319 fixup_alt_jump to right after `b', and leave behind three
3320 bytes which we'll fill in when we get to after `c'. */
3321
505bde11 3322 FIXUP_ALT_JUMP ();
25fe55af
RS
3323
3324 /* Mark and leave space for a jump after this alternative,
3325 to be filled in later either by next alternative or
3326 when know we're at the end of a series of alternatives. */
3327 fixup_alt_jump = b;
3328 GET_BUFFER_SPACE (3);
3329 b += 3;
3330
3331 laststart = 0;
3332 begalt = b;
3333 break;
3334
3335
3336 case '{':
3337 /* If \{ is a literal. */
3338 if (!(syntax & RE_INTERVALS)
3339 /* If we're at `\{' and it's not the open-interval
3340 operator. */
4bb91c68 3341 || (syntax & RE_NO_BK_BRACES))
25fe55af
RS
3342 goto normal_backslash;
3343
3344 handle_interval:
3345 {
3346 /* If got here, then the syntax allows intervals. */
3347
3348 /* At least (most) this many matches must be made. */
99633e97 3349 int lower_bound = 0, upper_bound = -1;
25fe55af 3350
ed0767d8 3351 beg_interval = p;
25fe55af 3352
25fe55af
RS
3353 GET_UNSIGNED_NUMBER (lower_bound);
3354
3355 if (c == ',')
ed0767d8 3356 GET_UNSIGNED_NUMBER (upper_bound);
25fe55af
RS
3357 else
3358 /* Interval such as `{1}' => match exactly once. */
3359 upper_bound = lower_bound;
3360
3361 if (lower_bound < 0 || upper_bound > RE_DUP_MAX
ed0767d8 3362 || (upper_bound >= 0 && lower_bound > upper_bound))
4bb91c68 3363 FREE_STACK_RETURN (REG_BADBR);
25fe55af
RS
3364
3365 if (!(syntax & RE_NO_BK_BRACES))
3366 {
4bb91c68
SM
3367 if (c != '\\')
3368 FREE_STACK_RETURN (REG_BADBR);
c72b0edd
SM
3369 if (p == pend)
3370 FREE_STACK_RETURN (REG_EESCAPE);
25fe55af
RS
3371 PATFETCH (c);
3372 }
3373
3374 if (c != '}')
4bb91c68 3375 FREE_STACK_RETURN (REG_BADBR);
25fe55af
RS
3376
3377 /* We just parsed a valid interval. */
3378
3379 /* If it's invalid to have no preceding re. */
3380 if (!laststart)
3381 {
3382 if (syntax & RE_CONTEXT_INVALID_OPS)
3383 FREE_STACK_RETURN (REG_BADRPT);
3384 else if (syntax & RE_CONTEXT_INDEP_OPS)
3385 laststart = b;
3386 else
3387 goto unfetch_interval;
3388 }
3389
6df42991
SM
3390 if (upper_bound == 0)
3391 /* If the upper bound is zero, just drop the sub pattern
3392 altogether. */
3393 b = laststart;
3394 else if (lower_bound == 1 && upper_bound == 1)
3395 /* Just match it once: nothing to do here. */
3396 ;
3397
3398 /* Otherwise, we have a nontrivial interval. When
3399 we're all done, the pattern will look like:
3400 set_number_at <jump count> <upper bound>
3401 set_number_at <succeed_n count> <lower bound>
3402 succeed_n <after jump addr> <succeed_n count>
3403 <body of loop>
3404 jump_n <succeed_n addr> <jump count>
3405 (The upper bound and `jump_n' are omitted if
3406 `upper_bound' is 1, though.) */
3407 else
3408 { /* If the upper bound is > 1, we need to insert
3409 more at the end of the loop. */
3410 unsigned int nbytes = (upper_bound < 0 ? 3
3411 : upper_bound > 1 ? 5 : 0);
3412 unsigned int startoffset = 0;
3413
3414 GET_BUFFER_SPACE (20); /* We might use less. */
3415
3416 if (lower_bound == 0)
3417 {
3418 /* A succeed_n that starts with 0 is really a
3419 a simple on_failure_jump_loop. */
3420 INSERT_JUMP (on_failure_jump_loop, laststart,
3421 b + 3 + nbytes);
3422 b += 3;
3423 }
3424 else
3425 {
3426 /* Initialize lower bound of the `succeed_n', even
3427 though it will be set during matching by its
3428 attendant `set_number_at' (inserted next),
3429 because `re_compile_fastmap' needs to know.
3430 Jump to the `jump_n' we might insert below. */
3431 INSERT_JUMP2 (succeed_n, laststart,
3432 b + 5 + nbytes,
3433 lower_bound);
3434 b += 5;
3435
3436 /* Code to initialize the lower bound. Insert
7814e705 3437 before the `succeed_n'. The `5' is the last two
6df42991
SM
3438 bytes of this `set_number_at', plus 3 bytes of
3439 the following `succeed_n'. */
3440 insert_op2 (set_number_at, laststart, 5, lower_bound, b);
3441 b += 5;
3442 startoffset += 5;
3443 }
3444
3445 if (upper_bound < 0)
3446 {
3447 /* A negative upper bound stands for infinity,
3448 in which case it degenerates to a plain jump. */
3449 STORE_JUMP (jump, b, laststart + startoffset);
3450 b += 3;
3451 }
3452 else if (upper_bound > 1)
3453 { /* More than one repetition is allowed, so
3454 append a backward jump to the `succeed_n'
3455 that starts this interval.
3456
3457 When we've reached this during matching,
3458 we'll have matched the interval once, so
3459 jump back only `upper_bound - 1' times. */
3460 STORE_JUMP2 (jump_n, b, laststart + startoffset,
3461 upper_bound - 1);
3462 b += 5;
3463
3464 /* The location we want to set is the second
3465 parameter of the `jump_n'; that is `b-2' as
3466 an absolute address. `laststart' will be
3467 the `set_number_at' we're about to insert;
3468 `laststart+3' the number to set, the source
3469 for the relative address. But we are
3470 inserting into the middle of the pattern --
3471 so everything is getting moved up by 5.
3472 Conclusion: (b - 2) - (laststart + 3) + 5,
3473 i.e., b - laststart.
3474
3475 We insert this at the beginning of the loop
3476 so that if we fail during matching, we'll
3477 reinitialize the bounds. */
3478 insert_op2 (set_number_at, laststart, b - laststart,
3479 upper_bound - 1, b);
3480 b += 5;
3481 }
3482 }
25fe55af
RS
3483 pending_exact = 0;
3484 beg_interval = NULL;
3485 }
3486 break;
3487
3488 unfetch_interval:
3489 /* If an invalid interval, match the characters as literals. */
3490 assert (beg_interval);
3491 p = beg_interval;
3492 beg_interval = NULL;
3493
3494 /* normal_char and normal_backslash need `c'. */
ed0767d8 3495 c = '{';
25fe55af
RS
3496
3497 if (!(syntax & RE_NO_BK_BRACES))
3498 {
ed0767d8
SM
3499 assert (p > pattern && p[-1] == '\\');
3500 goto normal_backslash;
25fe55af 3501 }
ed0767d8
SM
3502 else
3503 goto normal_char;
e318085a 3504
b18215fc 3505#ifdef emacs
25fe55af 3506 /* There is no way to specify the before_dot and after_dot
7814e705 3507 operators. rms says this is ok. --karl */
25fe55af
RS
3508 case '=':
3509 BUF_PUSH (at_dot);
3510 break;
3511
3512 case 's':
3513 laststart = b;
3514 PATFETCH (c);
3515 BUF_PUSH_2 (syntaxspec, syntax_spec_code[c]);
3516 break;
3517
3518 case 'S':
3519 laststart = b;
3520 PATFETCH (c);
3521 BUF_PUSH_2 (notsyntaxspec, syntax_spec_code[c]);
3522 break;
b18215fc
RS
3523
3524 case 'c':
3525 laststart = b;
36595814 3526 PATFETCH (c);
b18215fc
RS
3527 BUF_PUSH_2 (categoryspec, c);
3528 break;
e318085a 3529
b18215fc
RS
3530 case 'C':
3531 laststart = b;
36595814 3532 PATFETCH (c);
b18215fc
RS
3533 BUF_PUSH_2 (notcategoryspec, c);
3534 break;
3535#endif /* emacs */
e318085a 3536
e318085a 3537
25fe55af 3538 case 'w':
4bb91c68
SM
3539 if (syntax & RE_NO_GNU_OPS)
3540 goto normal_char;
25fe55af 3541 laststart = b;
1fb352e0 3542 BUF_PUSH_2 (syntaxspec, Sword);
25fe55af 3543 break;
e318085a 3544
e318085a 3545
25fe55af 3546 case 'W':
4bb91c68
SM
3547 if (syntax & RE_NO_GNU_OPS)
3548 goto normal_char;
25fe55af 3549 laststart = b;
1fb352e0 3550 BUF_PUSH_2 (notsyntaxspec, Sword);
25fe55af 3551 break;
e318085a
RS
3552
3553
25fe55af 3554 case '<':
4bb91c68
SM
3555 if (syntax & RE_NO_GNU_OPS)
3556 goto normal_char;
25fe55af
RS
3557 BUF_PUSH (wordbeg);
3558 break;
e318085a 3559
25fe55af 3560 case '>':
4bb91c68
SM
3561 if (syntax & RE_NO_GNU_OPS)
3562 goto normal_char;
25fe55af
RS
3563 BUF_PUSH (wordend);
3564 break;
e318085a 3565
669fa600
SM
3566 case '_':
3567 if (syntax & RE_NO_GNU_OPS)
3568 goto normal_char;
3569 laststart = b;
3570 PATFETCH (c);
3571 if (c == '<')
3572 BUF_PUSH (symbeg);
3573 else if (c == '>')
3574 BUF_PUSH (symend);
3575 else
3576 FREE_STACK_RETURN (REG_BADPAT);
3577 break;
3578
25fe55af 3579 case 'b':
4bb91c68
SM
3580 if (syntax & RE_NO_GNU_OPS)
3581 goto normal_char;
25fe55af
RS
3582 BUF_PUSH (wordbound);
3583 break;
e318085a 3584
25fe55af 3585 case 'B':
4bb91c68
SM
3586 if (syntax & RE_NO_GNU_OPS)
3587 goto normal_char;
25fe55af
RS
3588 BUF_PUSH (notwordbound);
3589 break;
fa9a63c5 3590
25fe55af 3591 case '`':
4bb91c68
SM
3592 if (syntax & RE_NO_GNU_OPS)
3593 goto normal_char;
25fe55af
RS
3594 BUF_PUSH (begbuf);
3595 break;
e318085a 3596
25fe55af 3597 case '\'':
4bb91c68
SM
3598 if (syntax & RE_NO_GNU_OPS)
3599 goto normal_char;
25fe55af
RS
3600 BUF_PUSH (endbuf);
3601 break;
e318085a 3602
25fe55af
RS
3603 case '1': case '2': case '3': case '4': case '5':
3604 case '6': case '7': case '8': case '9':
0cdd06f8
SM
3605 {
3606 regnum_t reg;
e318085a 3607
0cdd06f8
SM
3608 if (syntax & RE_NO_BK_REFS)
3609 goto normal_backslash;
e318085a 3610
0cdd06f8 3611 reg = c - '0';
e318085a 3612
c69b0314
SM
3613 if (reg > bufp->re_nsub || reg < 1
3614 /* Can't back reference to a subexp before its end. */
3615 || group_in_compile_stack (compile_stack, reg))
0cdd06f8 3616 FREE_STACK_RETURN (REG_ESUBREG);
e318085a 3617
0cdd06f8
SM
3618 laststart = b;
3619 BUF_PUSH_2 (duplicate, reg);
3620 }
25fe55af 3621 break;
e318085a 3622
e318085a 3623
25fe55af
RS
3624 case '+':
3625 case '?':
3626 if (syntax & RE_BK_PLUS_QM)
3627 goto handle_plus;
3628 else
3629 goto normal_backslash;
3630
3631 default:
3632 normal_backslash:
3633 /* You might think it would be useful for \ to mean
3634 not to translate; but if we don't translate it
4bb91c68 3635 it will never match anything. */
25fe55af
RS
3636 goto normal_char;
3637 }
3638 break;
fa9a63c5
RM
3639
3640
3641 default:
25fe55af 3642 /* Expects the character in `c'. */
fa9a63c5 3643 normal_char:
36595814 3644 /* If no exactn currently being built. */
25fe55af 3645 if (!pending_exact
fa9a63c5 3646
25fe55af
RS
3647 /* If last exactn not at current position. */
3648 || pending_exact + *pending_exact + 1 != b
5e69f11e 3649
25fe55af 3650 /* We have only one byte following the exactn for the count. */
2d1675e4 3651 || *pending_exact >= (1 << BYTEWIDTH) - MAX_MULTIBYTE_LENGTH
fa9a63c5 3652
7814e705 3653 /* If followed by a repetition operator. */
9d99031f 3654 || (p != pend && (*p == '*' || *p == '^'))
fa9a63c5 3655 || ((syntax & RE_BK_PLUS_QM)
9d99031f
RS
3656 ? p + 1 < pend && *p == '\\' && (p[1] == '+' || p[1] == '?')
3657 : p != pend && (*p == '+' || *p == '?'))
fa9a63c5 3658 || ((syntax & RE_INTERVALS)
25fe55af 3659 && ((syntax & RE_NO_BK_BRACES)
9d99031f
RS
3660 ? p != pend && *p == '{'
3661 : p + 1 < pend && p[0] == '\\' && p[1] == '{')))
fa9a63c5
RM
3662 {
3663 /* Start building a new exactn. */
5e69f11e 3664
25fe55af 3665 laststart = b;
fa9a63c5
RM
3666
3667 BUF_PUSH_2 (exactn, 0);
3668 pending_exact = b - 1;
25fe55af 3669 }
5e69f11e 3670
2d1675e4
SM
3671 GET_BUFFER_SPACE (MAX_MULTIBYTE_LENGTH);
3672 {
e0277a47
KH
3673 int len;
3674
cf9c99bc 3675 if (multibyte)
6fdd04b0 3676 {
cf9c99bc 3677 c = TRANSLATE (c);
6fdd04b0
KH
3678 len = CHAR_STRING (c, b);
3679 b += len;
3680 }
e0277a47 3681 else
6fdd04b0 3682 {
cf9c99bc
KH
3683 c1 = RE_CHAR_TO_MULTIBYTE (c);
3684 if (! CHAR_BYTE8_P (c1))
3685 {
3686 re_wchar_t c2 = TRANSLATE (c1);
3687
3688 if (c1 != c2 && (c1 = RE_CHAR_TO_UNIBYTE (c2)) >= 0)
3689 c = c1;
409f2919 3690 }
6fdd04b0
KH
3691 *b++ = c;
3692 len = 1;
3693 }
2d1675e4
SM
3694 (*pending_exact) += len;
3695 }
3696
fa9a63c5 3697 break;
25fe55af 3698 } /* switch (c) */
fa9a63c5
RM
3699 } /* while p != pend */
3700
5e69f11e 3701
fa9a63c5 3702 /* Through the pattern now. */
5e69f11e 3703
505bde11 3704 FIXUP_ALT_JUMP ();
fa9a63c5 3705
5e69f11e 3706 if (!COMPILE_STACK_EMPTY)
fa9a63c5
RM
3707 FREE_STACK_RETURN (REG_EPAREN);
3708
3709 /* If we don't want backtracking, force success
3710 the first time we reach the end of the compiled pattern. */
3711 if (syntax & RE_NO_POSIX_BACKTRACKING)
3712 BUF_PUSH (succeed);
3713
fa9a63c5
RM
3714 /* We have succeeded; set the length of the buffer. */
3715 bufp->used = b - bufp->buffer;
3716
3717#ifdef DEBUG
99633e97 3718 if (debug > 0)
fa9a63c5 3719 {
505bde11 3720 re_compile_fastmap (bufp);
fa9a63c5
RM
3721 DEBUG_PRINT1 ("\nCompiled pattern: \n");
3722 print_compiled_pattern (bufp);
3723 }
99633e97 3724 debug--;
fa9a63c5
RM
3725#endif /* DEBUG */
3726
3727#ifndef MATCH_MAY_ALLOCATE
3728 /* Initialize the failure stack to the largest possible stack. This
3729 isn't necessary unless we're trying to avoid calling alloca in
3730 the search and match routines. */
3731 {
3732 int num_regs = bufp->re_nsub + 1;
3733
320a2a73 3734 if (fail_stack.size < re_max_failures * TYPICAL_FAILURE_SIZE)
fa9a63c5 3735 {
a26f4ccd 3736 fail_stack.size = re_max_failures * TYPICAL_FAILURE_SIZE;
38182d90
PE
3737 falk_stack.stack = realloc (fail_stack.stack,
3738 fail_stack.size * sizeof *falk_stack.stack);
fa9a63c5
RM
3739 }
3740
3741 regex_grow_registers (num_regs);
3742 }
3743#endif /* not MATCH_MAY_ALLOCATE */
3744
839966f3 3745 FREE_STACK_RETURN (REG_NOERROR);
fa9a63c5
RM
3746} /* regex_compile */
3747\f
3748/* Subroutines for `regex_compile'. */
3749
7814e705 3750/* Store OP at LOC followed by two-byte integer parameter ARG. */
fa9a63c5
RM
3751
3752static void
971de7fb 3753store_op1 (re_opcode_t op, unsigned char *loc, int arg)
fa9a63c5
RM
3754{
3755 *loc = (unsigned char) op;
3756 STORE_NUMBER (loc + 1, arg);
3757}
3758
3759
3760/* Like `store_op1', but for two two-byte parameters ARG1 and ARG2. */
3761
3762static void
971de7fb 3763store_op2 (re_opcode_t op, unsigned char *loc, int arg1, int arg2)
fa9a63c5
RM
3764{
3765 *loc = (unsigned char) op;
3766 STORE_NUMBER (loc + 1, arg1);
3767 STORE_NUMBER (loc + 3, arg2);
3768}
3769
3770
3771/* Copy the bytes from LOC to END to open up three bytes of space at LOC
3772 for OP followed by two-byte integer parameter ARG. */
3773
3774static void
971de7fb 3775insert_op1 (re_opcode_t op, unsigned char *loc, int arg, unsigned char *end)
fa9a63c5
RM
3776{
3777 register unsigned char *pfrom = end;
3778 register unsigned char *pto = end + 3;
3779
3780 while (pfrom != loc)
3781 *--pto = *--pfrom;
5e69f11e 3782
fa9a63c5
RM
3783 store_op1 (op, loc, arg);
3784}
3785
3786
3787/* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2. */
3788
3789static void
971de7fb 3790insert_op2 (re_opcode_t op, unsigned char *loc, int arg1, int arg2, unsigned char *end)
fa9a63c5
RM
3791{
3792 register unsigned char *pfrom = end;
3793 register unsigned char *pto = end + 5;
3794
3795 while (pfrom != loc)
3796 *--pto = *--pfrom;
5e69f11e 3797
fa9a63c5
RM
3798 store_op2 (op, loc, arg1, arg2);
3799}
3800
3801
3802/* P points to just after a ^ in PATTERN. Return true if that ^ comes
3803 after an alternative or a begin-subexpression. We assume there is at
3804 least one character before the ^. */
3805
3806static boolean
971de7fb 3807at_begline_loc_p (const re_char *pattern, const re_char *p, reg_syntax_t syntax)
fa9a63c5 3808{
01618498 3809 re_char *prev = p - 2;
95988fcf 3810 boolean odd_backslashes;
5e69f11e 3811
95988fcf
AS
3812 /* After a subexpression? */
3813 if (*prev == '(')
3814 odd_backslashes = (syntax & RE_NO_BK_PARENS) == 0;
3815
3816 /* After an alternative? */
3817 else if (*prev == '|')
3818 odd_backslashes = (syntax & RE_NO_BK_VBAR) == 0;
3819
3820 /* After a shy subexpression? */
3821 else if (*prev == ':' && (syntax & RE_SHY_GROUPS))
3822 {
3823 /* Skip over optional regnum. */
3824 while (prev - 1 >= pattern && prev[-1] >= '0' && prev[-1] <= '9')
3825 --prev;
3826
3827 if (!(prev - 2 >= pattern
3828 && prev[-1] == '?' && prev[-2] == '('))
3829 return false;
3830 prev -= 2;
3831 odd_backslashes = (syntax & RE_NO_BK_PARENS) == 0;
3832 }
3833 else
3834 return false;
3835
3836 /* Count the number of preceding backslashes. */
3837 p = prev;
3838 while (prev - 1 >= pattern && prev[-1] == '\\')
3839 --prev;
3840 return (p - prev) & odd_backslashes;
fa9a63c5
RM
3841}
3842
3843
3844/* The dual of at_begline_loc_p. This one is for $. We assume there is
3845 at least one character after the $, i.e., `P < PEND'. */
3846
3847static boolean
971de7fb 3848at_endline_loc_p (const re_char *p, const re_char *pend, reg_syntax_t syntax)
fa9a63c5 3849{
01618498 3850 re_char *next = p;
fa9a63c5 3851 boolean next_backslash = *next == '\\';
01618498 3852 re_char *next_next = p + 1 < pend ? p + 1 : 0;
5e69f11e 3853
fa9a63c5
RM
3854 return
3855 /* Before a subexpression? */
3856 (syntax & RE_NO_BK_PARENS ? *next == ')'
25fe55af 3857 : next_backslash && next_next && *next_next == ')')
fa9a63c5
RM
3858 /* Before an alternative? */
3859 || (syntax & RE_NO_BK_VBAR ? *next == '|'
25fe55af 3860 : next_backslash && next_next && *next_next == '|');
fa9a63c5
RM
3861}
3862
3863
5e69f11e 3864/* Returns true if REGNUM is in one of COMPILE_STACK's elements and
fa9a63c5
RM
3865 false if it's not. */
3866
3867static boolean
971de7fb 3868group_in_compile_stack (compile_stack_type compile_stack, regnum_t regnum)
fa9a63c5 3869{
d1dfb56c 3870 ssize_t this_element;
fa9a63c5 3871
5e69f11e
RM
3872 for (this_element = compile_stack.avail - 1;
3873 this_element >= 0;
fa9a63c5
RM
3874 this_element--)
3875 if (compile_stack.stack[this_element].regnum == regnum)
3876 return true;
3877
3878 return false;
3879}
fa9a63c5 3880\f
f6a3f532
SM
3881/* analyse_first.
3882 If fastmap is non-NULL, go through the pattern and fill fastmap
3883 with all the possible leading chars. If fastmap is NULL, don't
3884 bother filling it up (obviously) and only return whether the
3885 pattern could potentially match the empty string.
3886
3887 Return 1 if p..pend might match the empty string.
3888 Return 0 if p..pend matches at least one char.
01618498 3889 Return -1 if fastmap was not updated accurately. */
f6a3f532
SM
3890
3891static int
438105ed 3892analyse_first (const re_char *p, const re_char *pend, char *fastmap, const int multibyte)
fa9a63c5 3893{
505bde11 3894 int j, k;
1fb352e0 3895 boolean not;
fa9a63c5 3896
b18215fc 3897 /* If all elements for base leading-codes in fastmap is set, this
7814e705 3898 flag is set true. */
b18215fc
RS
3899 boolean match_any_multibyte_characters = false;
3900
f6a3f532 3901 assert (p);
5e69f11e 3902
505bde11
SM
3903 /* The loop below works as follows:
3904 - It has a working-list kept in the PATTERN_STACK and which basically
3905 starts by only containing a pointer to the first operation.
3906 - If the opcode we're looking at is a match against some set of
3907 chars, then we add those chars to the fastmap and go on to the
3908 next work element from the worklist (done via `break').
3909 - If the opcode is a control operator on the other hand, we either
3910 ignore it (if it's meaningless at this point, such as `start_memory')
3911 or execute it (if it's a jump). If the jump has several destinations
3912 (i.e. `on_failure_jump'), then we push the other destination onto the
3913 worklist.
3914 We guarantee termination by ignoring backward jumps (more or less),
3915 so that `p' is monotonically increasing. More to the point, we
3916 never set `p' (or push) anything `<= p1'. */
3917
01618498 3918 while (p < pend)
fa9a63c5 3919 {
505bde11
SM
3920 /* `p1' is used as a marker of how far back a `on_failure_jump'
3921 can go without being ignored. It is normally equal to `p'
3922 (which prevents any backward `on_failure_jump') except right
3923 after a plain `jump', to allow patterns such as:
3924 0: jump 10
3925 3..9: <body>
3926 10: on_failure_jump 3
3927 as used for the *? operator. */
01618498 3928 re_char *p1 = p;
5e69f11e 3929
fa9a63c5
RM
3930 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
3931 {
f6a3f532 3932 case succeed:
01618498 3933 return 1;
fa9a63c5 3934
fa9a63c5 3935 case duplicate:
505bde11
SM
3936 /* If the first character has to match a backreference, that means
3937 that the group was empty (since it already matched). Since this
3938 is the only case that interests us here, we can assume that the
3939 backreference must match the empty string. */
3940 p++;
3941 continue;
fa9a63c5
RM
3942
3943
3944 /* Following are the cases which match a character. These end
7814e705 3945 with `break'. */
fa9a63c5
RM
3946
3947 case exactn:
e0277a47 3948 if (fastmap)
cf9c99bc
KH
3949 {
3950 /* If multibyte is nonzero, the first byte of each
3951 character is an ASCII or a leading code. Otherwise,
3952 each byte is a character. Thus, this works in both
3953 cases. */
3954 fastmap[p[1]] = 1;
3955 if (! multibyte)
3956 {
3957 /* For the case of matching this unibyte regex
3958 against multibyte, we must set a leading code of
3959 the corresponding multibyte character. */
3960 int c = RE_CHAR_TO_MULTIBYTE (p[1]);
3961
86e893e3 3962 fastmap[CHAR_LEADING_CODE (c)] = 1;
cf9c99bc
KH
3963 }
3964 }
fa9a63c5
RM
3965 break;
3966
3967
1fb352e0
SM
3968 case anychar:
3969 /* We could put all the chars except for \n (and maybe \0)
3970 but we don't bother since it is generally not worth it. */
f6a3f532 3971 if (!fastmap) break;
01618498 3972 return -1;
fa9a63c5
RM
3973
3974
b18215fc 3975 case charset_not:
1fb352e0 3976 if (!fastmap) break;
bf216479
KH
3977 {
3978 /* Chars beyond end of bitmap are possible matches. */
bf216479 3979 for (j = CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH;
cf9c99bc 3980 j < (1 << BYTEWIDTH); j++)
bf216479
KH
3981 fastmap[j] = 1;
3982 }
3983
1fb352e0
SM
3984 /* Fallthrough */
3985 case charset:
3986 if (!fastmap) break;
3987 not = (re_opcode_t) *(p - 1) == charset_not;
b18215fc
RS
3988 for (j = CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH - 1, p++;
3989 j >= 0; j--)
1fb352e0 3990 if (!!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))) ^ not)
49da453b 3991 fastmap[j] = 1;
b18215fc 3992
6482db2e
KH
3993#ifdef emacs
3994 if (/* Any leading code can possibly start a character
1fb352e0 3995 which doesn't match the specified set of characters. */
6482db2e 3996 not
409f2919 3997 ||
6482db2e
KH
3998 /* If we can match a character class, we can match any
3999 multibyte characters. */
4000 (CHARSET_RANGE_TABLE_EXISTS_P (&p[-2])
4001 && CHARSET_RANGE_TABLE_BITS (&p[-2]) != 0))
4002
b18215fc 4003 {
b18215fc
RS
4004 if (match_any_multibyte_characters == false)
4005 {
6482db2e
KH
4006 for (j = MIN_MULTIBYTE_LEADING_CODE;
4007 j <= MAX_MULTIBYTE_LEADING_CODE; j++)
6fdd04b0 4008 fastmap[j] = 1;
b18215fc
RS
4009 match_any_multibyte_characters = true;
4010 }
4011 }
b18215fc 4012
1fb352e0
SM
4013 else if (!not && CHARSET_RANGE_TABLE_EXISTS_P (&p[-2])
4014 && match_any_multibyte_characters == false)
4015 {
bf216479 4016 /* Set fastmap[I] to 1 where I is a leading code of each
51e4f4a8 4017 multibyte character in the range table. */
1fb352e0 4018 int c, count;
bf216479 4019 unsigned char lc1, lc2;
b18215fc 4020
1fb352e0 4021 /* Make P points the range table. `+ 2' is to skip flag
0b32bf0e 4022 bits for a character class. */
1fb352e0 4023 p += CHARSET_BITMAP_SIZE (&p[-2]) + 2;
b18215fc 4024
1fb352e0
SM
4025 /* Extract the number of ranges in range table into COUNT. */
4026 EXTRACT_NUMBER_AND_INCR (count, p);
cf9c99bc 4027 for (; count > 0; count--, p += 3)
1fb352e0 4028 {
9117d724
KH
4029 /* Extract the start and end of each range. */
4030 EXTRACT_CHARACTER (c, p);
bf216479 4031 lc1 = CHAR_LEADING_CODE (c);
9117d724 4032 p += 3;
1fb352e0 4033 EXTRACT_CHARACTER (c, p);
bf216479
KH
4034 lc2 = CHAR_LEADING_CODE (c);
4035 for (j = lc1; j <= lc2; j++)
9117d724 4036 fastmap[j] = 1;
1fb352e0
SM
4037 }
4038 }
6482db2e 4039#endif
b18215fc
RS
4040 break;
4041
1fb352e0
SM
4042 case syntaxspec:
4043 case notsyntaxspec:
4044 if (!fastmap) break;
4045#ifndef emacs
4046 not = (re_opcode_t)p[-1] == notsyntaxspec;
4047 k = *p++;
4048 for (j = 0; j < (1 << BYTEWIDTH); j++)
990b2375 4049 if ((SYNTAX (j) == (enum syntaxcode) k) ^ not)
b18215fc 4050 fastmap[j] = 1;
b18215fc 4051 break;
1fb352e0 4052#else /* emacs */
b18215fc
RS
4053 /* This match depends on text properties. These end with
4054 aborting optimizations. */
01618498 4055 return -1;
b18215fc
RS
4056
4057 case categoryspec:
b18215fc 4058 case notcategoryspec:
1fb352e0
SM
4059 if (!fastmap) break;
4060 not = (re_opcode_t)p[-1] == notcategoryspec;
b18215fc 4061 k = *p++;
6482db2e 4062 for (j = (1 << BYTEWIDTH); j >= 0; j--)
1fb352e0 4063 if ((CHAR_HAS_CATEGORY (j, k)) ^ not)
b18215fc
RS
4064 fastmap[j] = 1;
4065
6482db2e
KH
4066 /* Any leading code can possibly start a character which
4067 has or doesn't has the specified category. */
4068 if (match_any_multibyte_characters == false)
6fdd04b0 4069 {
6482db2e
KH
4070 for (j = MIN_MULTIBYTE_LEADING_CODE;
4071 j <= MAX_MULTIBYTE_LEADING_CODE; j++)
4072 fastmap[j] = 1;
4073 match_any_multibyte_characters = true;
6fdd04b0 4074 }
b18215fc
RS
4075 break;
4076
fa9a63c5 4077 /* All cases after this match the empty string. These end with
25fe55af 4078 `continue'. */
fa9a63c5 4079
fa9a63c5
RM
4080 case before_dot:
4081 case at_dot:
4082 case after_dot:
1fb352e0 4083#endif /* !emacs */
25fe55af
RS
4084 case no_op:
4085 case begline:
4086 case endline:
fa9a63c5
RM
4087 case begbuf:
4088 case endbuf:
4089 case wordbound:
4090 case notwordbound:
4091 case wordbeg:
4092 case wordend:
669fa600
SM
4093 case symbeg:
4094 case symend:
25fe55af 4095 continue;
fa9a63c5
RM
4096
4097
fa9a63c5 4098 case jump:
25fe55af 4099 EXTRACT_NUMBER_AND_INCR (j, p);
505bde11
SM
4100 if (j < 0)
4101 /* Backward jumps can only go back to code that we've already
4102 visited. `re_compile' should make sure this is true. */
4103 break;
25fe55af 4104 p += j;
505bde11
SM
4105 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p))
4106 {
4107 case on_failure_jump:
4108 case on_failure_keep_string_jump:
505bde11 4109 case on_failure_jump_loop:
0683b6fa 4110 case on_failure_jump_nastyloop:
505bde11
SM
4111 case on_failure_jump_smart:
4112 p++;
4113 break;
4114 default:
4115 continue;
4116 };
4117 /* Keep `p1' to allow the `on_failure_jump' we are jumping to
4118 to jump back to "just after here". */
4119 /* Fallthrough */
fa9a63c5 4120
25fe55af
RS
4121 case on_failure_jump:
4122 case on_failure_keep_string_jump:
0683b6fa 4123 case on_failure_jump_nastyloop:
505bde11
SM
4124 case on_failure_jump_loop:
4125 case on_failure_jump_smart:
25fe55af 4126 EXTRACT_NUMBER_AND_INCR (j, p);
505bde11 4127 if (p + j <= p1)
ed0767d8 4128 ; /* Backward jump to be ignored. */
01618498
SM
4129 else
4130 { /* We have to look down both arms.
4131 We first go down the "straight" path so as to minimize
4132 stack usage when going through alternatives. */
4133 int r = analyse_first (p, pend, fastmap, multibyte);
4134 if (r) return r;
4135 p += j;
4136 }
25fe55af 4137 continue;
fa9a63c5
RM
4138
4139
ed0767d8
SM
4140 case jump_n:
4141 /* This code simply does not properly handle forward jump_n. */
4142 DEBUG_STATEMENT (EXTRACT_NUMBER (j, p); assert (j < 0));
4143 p += 4;
4144 /* jump_n can either jump or fall through. The (backward) jump
4145 case has already been handled, so we only need to look at the
4146 fallthrough case. */
4147 continue;
177c0ea7 4148
fa9a63c5 4149 case succeed_n:
ed0767d8
SM
4150 /* If N == 0, it should be an on_failure_jump_loop instead. */
4151 DEBUG_STATEMENT (EXTRACT_NUMBER (j, p + 2); assert (j > 0));
4152 p += 4;
4153 /* We only care about one iteration of the loop, so we don't
4154 need to consider the case where this behaves like an
4155 on_failure_jump. */
25fe55af 4156 continue;
fa9a63c5
RM
4157
4158
4159 case set_number_at:
25fe55af
RS
4160 p += 4;
4161 continue;
fa9a63c5
RM
4162
4163
4164 case start_memory:
25fe55af 4165 case stop_memory:
505bde11 4166 p += 1;
fa9a63c5
RM
4167 continue;
4168
4169
4170 default:
25fe55af
RS
4171 abort (); /* We have listed all the cases. */
4172 } /* switch *p++ */
fa9a63c5
RM
4173
4174 /* Getting here means we have found the possible starting
25fe55af 4175 characters for one path of the pattern -- and that the empty
7814e705 4176 string does not match. We need not follow this path further. */
01618498 4177 return 0;
fa9a63c5
RM
4178 } /* while p */
4179
01618498
SM
4180 /* We reached the end without matching anything. */
4181 return 1;
4182
f6a3f532
SM
4183} /* analyse_first */
4184\f
4185/* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
4186 BUFP. A fastmap records which of the (1 << BYTEWIDTH) possible
4187 characters can start a string that matches the pattern. This fastmap
4188 is used by re_search to skip quickly over impossible starting points.
4189
4190 Character codes above (1 << BYTEWIDTH) are not represented in the
4191 fastmap, but the leading codes are represented. Thus, the fastmap
4192 indicates which character sets could start a match.
4193
4194 The caller must supply the address of a (1 << BYTEWIDTH)-byte data
4195 area as BUFP->fastmap.
4196
4197 We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
4198 the pattern buffer.
4199
4200 Returns 0 if we succeed, -2 if an internal error. */
4201
4202int
971de7fb 4203re_compile_fastmap (struct re_pattern_buffer *bufp)
f6a3f532
SM
4204{
4205 char *fastmap = bufp->fastmap;
4206 int analysis;
4207
4208 assert (fastmap && bufp->buffer);
4209
72af86bd 4210 memset (fastmap, 0, 1 << BYTEWIDTH); /* Assume nothing's valid. */
f6a3f532
SM
4211 bufp->fastmap_accurate = 1; /* It will be when we're done. */
4212
4213 analysis = analyse_first (bufp->buffer, bufp->buffer + bufp->used,
2d1675e4 4214 fastmap, RE_MULTIBYTE_P (bufp));
c0f9ea08 4215 bufp->can_be_null = (analysis != 0);
fa9a63c5
RM
4216 return 0;
4217} /* re_compile_fastmap */
4218\f
4219/* Set REGS to hold NUM_REGS registers, storing them in STARTS and
4220 ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use
4221 this memory for recording register information. STARTS and ENDS
4222 must be allocated using the malloc library routine, and must each
4223 be at least NUM_REGS * sizeof (regoff_t) bytes long.
4224
4225 If NUM_REGS == 0, then subsequent matches should allocate their own
4226 register data.
4227
4228 Unless this function is called, the first search or match using
4229 PATTERN_BUFFER will allocate its own register data, without
4230 freeing the old data. */
4231
4232void
971de7fb 4233re_set_registers (struct re_pattern_buffer *bufp, struct re_registers *regs, unsigned int num_regs, regoff_t *starts, regoff_t *ends)
fa9a63c5
RM
4234{
4235 if (num_regs)
4236 {
4237 bufp->regs_allocated = REGS_REALLOCATE;
4238 regs->num_regs = num_regs;
4239 regs->start = starts;
4240 regs->end = ends;
4241 }
4242 else
4243 {
4244 bufp->regs_allocated = REGS_UNALLOCATED;
4245 regs->num_regs = 0;
4246 regs->start = regs->end = (regoff_t *) 0;
4247 }
4248}
c0f9ea08 4249WEAK_ALIAS (__re_set_registers, re_set_registers)
fa9a63c5 4250\f
7814e705 4251/* Searching routines. */
fa9a63c5
RM
4252
4253/* Like re_search_2, below, but only one string is specified, and
4254 doesn't let you say where to stop matching. */
4255
d1dfb56c
EZ
4256regoff_t
4257re_search (struct re_pattern_buffer *bufp, const char *string, size_t size,
4258 ssize_t startpos, ssize_t range, struct re_registers *regs)
fa9a63c5 4259{
5e69f11e 4260 return re_search_2 (bufp, NULL, 0, string, size, startpos, range,
fa9a63c5
RM
4261 regs, size);
4262}
c0f9ea08 4263WEAK_ALIAS (__re_search, re_search)
fa9a63c5 4264
70806df6
KH
4265/* Head address of virtual concatenation of string. */
4266#define HEAD_ADDR_VSTRING(P) \
4267 (((P) >= size1 ? string2 : string1))
4268
b18215fc
RS
4269/* Address of POS in the concatenation of virtual string. */
4270#define POS_ADDR_VSTRING(POS) \
4271 (((POS) >= size1 ? string2 - size1 : string1) + (POS))
fa9a63c5
RM
4272
4273/* Using the compiled pattern in BUFP->buffer, first tries to match the
4274 virtual concatenation of STRING1 and STRING2, starting first at index
4275 STARTPOS, then at STARTPOS + 1, and so on.
5e69f11e 4276
fa9a63c5 4277 STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
5e69f11e 4278
fa9a63c5
RM
4279 RANGE is how far to scan while trying to match. RANGE = 0 means try
4280 only at STARTPOS; in general, the last start tried is STARTPOS +
4281 RANGE.
5e69f11e 4282
fa9a63c5
RM
4283 In REGS, return the indices of the virtual concatenation of STRING1
4284 and STRING2 that matched the entire BUFP->buffer and its contained
4285 subexpressions.
5e69f11e 4286
fa9a63c5
RM
4287 Do not consider matching one past the index STOP in the virtual
4288 concatenation of STRING1 and STRING2.
4289
4290 We return either the position in the strings at which the match was
4291 found, -1 if no match, or -2 if error (such as failure
4292 stack overflow). */
4293
d1dfb56c
EZ
4294regoff_t
4295re_search_2 (struct re_pattern_buffer *bufp, const char *str1, size_t size1,
4296 const char *str2, size_t size2, ssize_t startpos, ssize_t range,
4297 struct re_registers *regs, ssize_t stop)
fa9a63c5 4298{
d1dfb56c 4299 regoff_t val;
66f0296e
SM
4300 re_char *string1 = (re_char*) str1;
4301 re_char *string2 = (re_char*) str2;
fa9a63c5 4302 register char *fastmap = bufp->fastmap;
6676cb1c 4303 register RE_TRANSLATE_TYPE translate = bufp->translate;
d1dfb56c
EZ
4304 size_t total_size = size1 + size2;
4305 ssize_t endpos = startpos + range;
c0f9ea08 4306 boolean anchored_start;
cf9c99bc
KH
4307 /* Nonzero if we are searching multibyte string. */
4308 const boolean multibyte = RE_TARGET_MULTIBYTE_P (bufp);
b18215fc 4309
fa9a63c5
RM
4310 /* Check for out-of-range STARTPOS. */
4311 if (startpos < 0 || startpos > total_size)
4312 return -1;
5e69f11e 4313
fa9a63c5 4314 /* Fix up RANGE if it might eventually take us outside
34597fa9 4315 the virtual concatenation of STRING1 and STRING2.
5e69f11e 4316 Make sure we won't move STARTPOS below 0 or above TOTAL_SIZE. */
34597fa9
RS
4317 if (endpos < 0)
4318 range = 0 - startpos;
fa9a63c5
RM
4319 else if (endpos > total_size)
4320 range = total_size - startpos;
4321
4322 /* If the search isn't to be a backwards one, don't waste time in a
7b140fd7 4323 search for a pattern anchored at beginning of buffer. */
fa9a63c5
RM
4324 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == begbuf && range > 0)
4325 {
4326 if (startpos > 0)
4327 return -1;
4328 else
7b140fd7 4329 range = 0;
fa9a63c5
RM
4330 }
4331
ae4788a8
RS
4332#ifdef emacs
4333 /* In a forward search for something that starts with \=.
4334 don't keep searching past point. */
4335 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == at_dot && range > 0)
4336 {
7b140fd7
RS
4337 range = PT_BYTE - BEGV_BYTE - startpos;
4338 if (range < 0)
ae4788a8
RS
4339 return -1;
4340 }
4341#endif /* emacs */
4342
fa9a63c5
RM
4343 /* Update the fastmap now if not correct already. */
4344 if (fastmap && !bufp->fastmap_accurate)
01618498 4345 re_compile_fastmap (bufp);
5e69f11e 4346
c8499ba5 4347 /* See whether the pattern is anchored. */
c0f9ea08 4348 anchored_start = (bufp->buffer[0] == begline);
c8499ba5 4349
b18215fc 4350#ifdef emacs
d48cd3f4 4351 gl_state.object = re_match_object; /* Used by SYNTAX_TABLE_BYTE_TO_CHAR. */
cc9b4df2 4352 {
d1dfb56c 4353 ssize_t charpos = SYNTAX_TABLE_BYTE_TO_CHAR (POS_AS_IN_BUFFER (startpos));
cc9b4df2
KH
4354
4355 SETUP_SYNTAX_TABLE_FOR_OBJECT (re_match_object, charpos, 1);
4356 }
b18215fc
RS
4357#endif
4358
fa9a63c5
RM
4359 /* Loop through the string, looking for a place to start matching. */
4360 for (;;)
5e69f11e 4361 {
c8499ba5
RS
4362 /* If the pattern is anchored,
4363 skip quickly past places we cannot match.
4364 We don't bother to treat startpos == 0 specially
4365 because that case doesn't repeat. */
4366 if (anchored_start && startpos > 0)
4367 {
c0f9ea08
SM
4368 if (! ((startpos <= size1 ? string1[startpos - 1]
4369 : string2[startpos - size1 - 1])
4370 == '\n'))
c8499ba5
RS
4371 goto advance;
4372 }
4373
fa9a63c5 4374 /* If a fastmap is supplied, skip quickly over characters that
25fe55af
RS
4375 cannot be the start of a match. If the pattern can match the
4376 null string, however, we don't need to skip characters; we want
7814e705 4377 the first null string. */
fa9a63c5
RM
4378 if (fastmap && startpos < total_size && !bufp->can_be_null)
4379 {
66f0296e 4380 register re_char *d;
01618498 4381 register re_wchar_t buf_ch;
e934739e
RS
4382
4383 d = POS_ADDR_VSTRING (startpos);
4384
7814e705 4385 if (range > 0) /* Searching forwards. */
fa9a63c5 4386 {
fa9a63c5 4387 register int lim = 0;
d1dfb56c 4388 ssize_t irange = range;
fa9a63c5 4389
25fe55af
RS
4390 if (startpos < size1 && startpos + range >= size1)
4391 lim = range - (size1 - startpos);
fa9a63c5 4392
25fe55af
RS
4393 /* Written out as an if-else to avoid testing `translate'
4394 inside the loop. */
28ae27ae
AS
4395 if (RE_TRANSLATE_P (translate))
4396 {
e934739e
RS
4397 if (multibyte)
4398 while (range > lim)
4399 {
4400 int buf_charlen;
4401
62a6e103 4402 buf_ch = STRING_CHAR_AND_LENGTH (d, buf_charlen);
e934739e 4403 buf_ch = RE_TRANSLATE (translate, buf_ch);
bf216479 4404 if (fastmap[CHAR_LEADING_CODE (buf_ch)])
e934739e
RS
4405 break;
4406
4407 range -= buf_charlen;
4408 d += buf_charlen;
4409 }
4410 else
bf216479 4411 while (range > lim)
33c46939 4412 {
cf9c99bc
KH
4413 register re_wchar_t ch, translated;
4414
bf216479 4415 buf_ch = *d;
cf9c99bc
KH
4416 ch = RE_CHAR_TO_MULTIBYTE (buf_ch);
4417 translated = RE_TRANSLATE (translate, ch);
4418 if (translated != ch
4419 && (ch = RE_CHAR_TO_UNIBYTE (translated)) >= 0)
4420 buf_ch = ch;
6fdd04b0 4421 if (fastmap[buf_ch])
bf216479 4422 break;
33c46939
RS
4423 d++;
4424 range--;
4425 }
e934739e 4426 }
fa9a63c5 4427 else
6fdd04b0
KH
4428 {
4429 if (multibyte)
4430 while (range > lim)
4431 {
4432 int buf_charlen;
fa9a63c5 4433
62a6e103 4434 buf_ch = STRING_CHAR_AND_LENGTH (d, buf_charlen);
6fdd04b0
KH
4435 if (fastmap[CHAR_LEADING_CODE (buf_ch)])
4436 break;
4437 range -= buf_charlen;
4438 d += buf_charlen;
4439 }
e934739e 4440 else
6fdd04b0 4441 while (range > lim && !fastmap[*d])
33c46939
RS
4442 {
4443 d++;
4444 range--;
4445 }
e934739e 4446 }
fa9a63c5
RM
4447 startpos += irange - range;
4448 }
7814e705 4449 else /* Searching backwards. */
fa9a63c5 4450 {
ba5e343c
KH
4451 if (multibyte)
4452 {
62a6e103 4453 buf_ch = STRING_CHAR (d);
ba5e343c
KH
4454 buf_ch = TRANSLATE (buf_ch);
4455 if (! fastmap[CHAR_LEADING_CODE (buf_ch)])
4456 goto advance;
4457 }
4458 else
4459 {
cf9c99bc
KH
4460 register re_wchar_t ch, translated;
4461
4462 buf_ch = *d;
4463 ch = RE_CHAR_TO_MULTIBYTE (buf_ch);
4464 translated = TRANSLATE (ch);
4465 if (translated != ch
4466 && (ch = RE_CHAR_TO_UNIBYTE (translated)) >= 0)
4467 buf_ch = ch;
4468 if (! fastmap[TRANSLATE (buf_ch)])
ba5e343c
KH
4469 goto advance;
4470 }
fa9a63c5
RM
4471 }
4472 }
4473
4474 /* If can't match the null string, and that's all we have left, fail. */
4475 if (range >= 0 && startpos == total_size && fastmap
25fe55af 4476 && !bufp->can_be_null)
fa9a63c5
RM
4477 return -1;
4478
4479 val = re_match_2_internal (bufp, string1, size1, string2, size2,
4480 startpos, regs, stop);
fa9a63c5
RM
4481
4482 if (val >= 0)
4483 return startpos;
5e69f11e 4484
fa9a63c5
RM
4485 if (val == -2)
4486 return -2;
4487
4488 advance:
5e69f11e 4489 if (!range)
25fe55af 4490 break;
5e69f11e 4491 else if (range > 0)
25fe55af 4492 {
b18215fc
RS
4493 /* Update STARTPOS to the next character boundary. */
4494 if (multibyte)
4495 {
66f0296e 4496 re_char *p = POS_ADDR_VSTRING (startpos);
aa3830c4 4497 int len = BYTES_BY_CHAR_HEAD (*p);
b18215fc
RS
4498
4499 range -= len;
4500 if (range < 0)
4501 break;
4502 startpos += len;
4503 }
4504 else
4505 {
b560c397
RS
4506 range--;
4507 startpos++;
4508 }
e318085a 4509 }
fa9a63c5 4510 else
25fe55af
RS
4511 {
4512 range++;
4513 startpos--;
b18215fc
RS
4514
4515 /* Update STARTPOS to the previous character boundary. */
4516 if (multibyte)
4517 {
70806df6
KH
4518 re_char *p = POS_ADDR_VSTRING (startpos) + 1;
4519 re_char *p0 = p;
4520 re_char *phead = HEAD_ADDR_VSTRING (startpos);
b18215fc
RS
4521
4522 /* Find the head of multibyte form. */
70806df6
KH
4523 PREV_CHAR_BOUNDARY (p, phead);
4524 range += p0 - 1 - p;
4525 if (range > 0)
4526 break;
b18215fc 4527
70806df6 4528 startpos -= p0 - 1 - p;
b18215fc 4529 }
25fe55af 4530 }
fa9a63c5
RM
4531 }
4532 return -1;
4533} /* re_search_2 */
c0f9ea08 4534WEAK_ALIAS (__re_search_2, re_search_2)
fa9a63c5
RM
4535\f
4536/* Declarations and macros for re_match_2. */
4537
261cb4bb
PE
4538static int bcmp_translate (re_char *s1, re_char *s2,
4539 register ssize_t len,
4540 RE_TRANSLATE_TYPE translate,
4541 const int multibyte);
fa9a63c5
RM
4542
4543/* This converts PTR, a pointer into one of the search strings `string1'
4544 and `string2' into an offset from the beginning of that string. */
4545#define POINTER_TO_OFFSET(ptr) \
4546 (FIRST_STRING_P (ptr) \
4547 ? ((regoff_t) ((ptr) - string1)) \
4548 : ((regoff_t) ((ptr) - string2 + size1)))
4549
fa9a63c5 4550/* Call before fetching a character with *d. This switches over to
419d1c74
SM
4551 string2 if necessary.
4552 Check re_match_2_internal for a discussion of why end_match_2 might
4553 not be within string2 (but be equal to end_match_1 instead). */
fa9a63c5 4554#define PREFETCH() \
25fe55af 4555 while (d == dend) \
fa9a63c5
RM
4556 { \
4557 /* End of string2 => fail. */ \
25fe55af
RS
4558 if (dend == end_match_2) \
4559 goto fail; \
4bb91c68 4560 /* End of string1 => advance to string2. */ \
25fe55af 4561 d = string2; \
fa9a63c5
RM
4562 dend = end_match_2; \
4563 }
4564
f1ad044f
SM
4565/* Call before fetching a char with *d if you already checked other limits.
4566 This is meant for use in lookahead operations like wordend, etc..
4567 where we might need to look at parts of the string that might be
4568 outside of the LIMITs (i.e past `stop'). */
4569#define PREFETCH_NOLIMIT() \
4570 if (d == end1) \
4571 { \
4572 d = string2; \
4573 dend = end_match_2; \
4574 } \
fa9a63c5
RM
4575
4576/* Test if at very beginning or at very end of the virtual concatenation
7814e705 4577 of `string1' and `string2'. If only one string, it's `string2'. */
fa9a63c5 4578#define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
5e69f11e 4579#define AT_STRINGS_END(d) ((d) == end2)
fa9a63c5 4580
9121ca40 4581/* Disabled due to a compiler bug -- see comment at case wordbound */
b18215fc
RS
4582
4583/* The comment at case wordbound is following one, but we don't use
4584 AT_WORD_BOUNDARY anymore to support multibyte form.
4585
4586 The DEC Alpha C compiler 3.x generates incorrect code for the
25fe55af 4587 test WORDCHAR_P (d - 1) != WORDCHAR_P (d) in the expansion of
7814e705 4588 AT_WORD_BOUNDARY, so this code is disabled. Expanding the
b18215fc
RS
4589 macro and introducing temporary variables works around the bug. */
4590
9121ca40 4591#if 0
b313f9d8
PE
4592/* Test if D points to a character which is word-constituent. We have
4593 two special cases to check for: if past the end of string1, look at
4594 the first character in string2; and if before the beginning of
4595 string2, look at the last character in string1. */
4596#define WORDCHAR_P(d) \
4597 (SYNTAX ((d) == end1 ? *string2 \
4598 : (d) == string2 - 1 ? *(end1 - 1) : *(d)) \
4599 == Sword)
4600
fa9a63c5
RM
4601/* Test if the character before D and the one at D differ with respect
4602 to being word-constituent. */
4603#define AT_WORD_BOUNDARY(d) \
4604 (AT_STRINGS_BEG (d) || AT_STRINGS_END (d) \
4605 || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
9121ca40 4606#endif
fa9a63c5
RM
4607
4608/* Free everything we malloc. */
4609#ifdef MATCH_MAY_ALLOCATE
952db0d7
PE
4610# define FREE_VAR(var) \
4611 do { \
4612 if (var) \
4613 { \
4614 REGEX_FREE (var); \
4615 var = NULL; \
4616 } \
4617 } while (0)
0b32bf0e 4618# define FREE_VARIABLES() \
fa9a63c5
RM
4619 do { \
4620 REGEX_FREE_STACK (fail_stack.stack); \
4621 FREE_VAR (regstart); \
4622 FREE_VAR (regend); \
fa9a63c5
RM
4623 FREE_VAR (best_regstart); \
4624 FREE_VAR (best_regend); \
fa9a63c5
RM
4625 } while (0)
4626#else
0b32bf0e 4627# define FREE_VARIABLES() ((void)0) /* Do nothing! But inhibit gcc warning. */
fa9a63c5
RM
4628#endif /* not MATCH_MAY_ALLOCATE */
4629
505bde11
SM
4630\f
4631/* Optimization routines. */
4632
4e8a9132
SM
4633/* If the operation is a match against one or more chars,
4634 return a pointer to the next operation, else return NULL. */
01618498 4635static re_char *
971de7fb 4636skip_one_char (const re_char *p)
4e8a9132
SM
4637{
4638 switch (SWITCH_ENUM_CAST (*p++))
4639 {
4640 case anychar:
4641 break;
177c0ea7 4642
4e8a9132
SM
4643 case exactn:
4644 p += *p + 1;
4645 break;
4646
4647 case charset_not:
4648 case charset:
4649 if (CHARSET_RANGE_TABLE_EXISTS_P (p - 1))
4650 {
4651 int mcnt;
4652 p = CHARSET_RANGE_TABLE (p - 1);
4653 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4654 p = CHARSET_RANGE_TABLE_END (p, mcnt);
4655 }
4656 else
4657 p += 1 + CHARSET_BITMAP_SIZE (p - 1);
4658 break;
177c0ea7 4659
4e8a9132
SM
4660 case syntaxspec:
4661 case notsyntaxspec:
1fb352e0 4662#ifdef emacs
4e8a9132
SM
4663 case categoryspec:
4664 case notcategoryspec:
4665#endif /* emacs */
4666 p++;
4667 break;
4668
4669 default:
4670 p = NULL;
4671 }
4672 return p;
4673}
4674
4675
505bde11 4676/* Jump over non-matching operations. */
839966f3 4677static re_char *
971de7fb 4678skip_noops (const re_char *p, const re_char *pend)
505bde11
SM
4679{
4680 int mcnt;
4681 while (p < pend)
4682 {
4683 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p))
4684 {
4685 case start_memory:
505bde11
SM
4686 case stop_memory:
4687 p += 2; break;
4688 case no_op:
4689 p += 1; break;
4690 case jump:
4691 p += 1;
4692 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4693 p += mcnt;
4694 break;
4695 default:
4696 return p;
4697 }
4698 }
4699 assert (p == pend);
4700 return p;
4701}
4702
4703/* Non-zero if "p1 matches something" implies "p2 fails". */
4704static int
971de7fb 4705mutually_exclusive_p (struct re_pattern_buffer *bufp, const re_char *p1, const re_char *p2)
505bde11 4706{
4e8a9132 4707 re_opcode_t op2;
2d1675e4 4708 const boolean multibyte = RE_MULTIBYTE_P (bufp);
505bde11
SM
4709 unsigned char *pend = bufp->buffer + bufp->used;
4710
4e8a9132 4711 assert (p1 >= bufp->buffer && p1 < pend
505bde11
SM
4712 && p2 >= bufp->buffer && p2 <= pend);
4713
4714 /* Skip over open/close-group commands.
4715 If what follows this loop is a ...+ construct,
4716 look at what begins its body, since we will have to
4717 match at least one of that. */
4e8a9132
SM
4718 p2 = skip_noops (p2, pend);
4719 /* The same skip can be done for p1, except that this function
4720 is only used in the case where p1 is a simple match operator. */
4721 /* p1 = skip_noops (p1, pend); */
4722
4723 assert (p1 >= bufp->buffer && p1 < pend
4724 && p2 >= bufp->buffer && p2 <= pend);
4725
4726 op2 = p2 == pend ? succeed : *p2;
4727
4728 switch (SWITCH_ENUM_CAST (op2))
505bde11 4729 {
4e8a9132
SM
4730 case succeed:
4731 case endbuf:
4732 /* If we're at the end of the pattern, we can change. */
4733 if (skip_one_char (p1))
505bde11 4734 {
505bde11
SM
4735 DEBUG_PRINT1 (" End of pattern: fast loop.\n");
4736 return 1;
505bde11 4737 }
4e8a9132 4738 break;
177c0ea7 4739
4e8a9132 4740 case endline:
4e8a9132
SM
4741 case exactn:
4742 {
01618498 4743 register re_wchar_t c
4e8a9132 4744 = (re_opcode_t) *p2 == endline ? '\n'
62a6e103 4745 : RE_STRING_CHAR (p2 + 2, multibyte);
505bde11 4746
4e8a9132
SM
4747 if ((re_opcode_t) *p1 == exactn)
4748 {
62a6e103 4749 if (c != RE_STRING_CHAR (p1 + 2, multibyte))
4e8a9132
SM
4750 {
4751 DEBUG_PRINT3 (" '%c' != '%c' => fast loop.\n", c, p1[2]);
4752 return 1;
4753 }
4754 }
505bde11 4755
4e8a9132
SM
4756 else if ((re_opcode_t) *p1 == charset
4757 || (re_opcode_t) *p1 == charset_not)
4758 {
4759 int not = (re_opcode_t) *p1 == charset_not;
505bde11 4760
4e8a9132
SM
4761 /* Test if C is listed in charset (or charset_not)
4762 at `p1'. */
6fdd04b0 4763 if (! multibyte || IS_REAL_ASCII (c))
4e8a9132
SM
4764 {
4765 if (c < CHARSET_BITMAP_SIZE (p1) * BYTEWIDTH
4766 && p1[2 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
4767 not = !not;
4768 }
4769 else if (CHARSET_RANGE_TABLE_EXISTS_P (p1))
4770 CHARSET_LOOKUP_RANGE_TABLE (not, c, p1);
505bde11 4771
4e8a9132
SM
4772 /* `not' is equal to 1 if c would match, which means
4773 that we can't change to pop_failure_jump. */
4774 if (!not)
4775 {
4776 DEBUG_PRINT1 (" No match => fast loop.\n");
4777 return 1;
4778 }
4779 }
4780 else if ((re_opcode_t) *p1 == anychar
4781 && c == '\n')
4782 {
4783 DEBUG_PRINT1 (" . != \\n => fast loop.\n");
4784 return 1;
4785 }
4786 }
4787 break;
505bde11 4788
4e8a9132 4789 case charset:
4e8a9132
SM
4790 {
4791 if ((re_opcode_t) *p1 == exactn)
4792 /* Reuse the code above. */
4793 return mutually_exclusive_p (bufp, p2, p1);
505bde11 4794
505bde11
SM
4795 /* It is hard to list up all the character in charset
4796 P2 if it includes multibyte character. Give up in
4797 such case. */
4798 else if (!multibyte || !CHARSET_RANGE_TABLE_EXISTS_P (p2))
4799 {
4800 /* Now, we are sure that P2 has no range table.
4801 So, for the size of bitmap in P2, `p2[1]' is
7814e705 4802 enough. But P1 may have range table, so the
505bde11
SM
4803 size of bitmap table of P1 is extracted by
4804 using macro `CHARSET_BITMAP_SIZE'.
4805
6fdd04b0
KH
4806 In a multibyte case, we know that all the character
4807 listed in P2 is ASCII. In a unibyte case, P1 has only a
4808 bitmap table. So, in both cases, it is enough to test
4809 only the bitmap table of P1. */
505bde11 4810
411e4203 4811 if ((re_opcode_t) *p1 == charset)
505bde11
SM
4812 {
4813 int idx;
4814 /* We win if the charset inside the loop
4815 has no overlap with the one after the loop. */
4816 for (idx = 0;
4817 (idx < (int) p2[1]
4818 && idx < CHARSET_BITMAP_SIZE (p1));
4819 idx++)
4820 if ((p2[2 + idx] & p1[2 + idx]) != 0)
4821 break;
4822
4823 if (idx == p2[1]
4824 || idx == CHARSET_BITMAP_SIZE (p1))
4825 {
4826 DEBUG_PRINT1 (" No match => fast loop.\n");
4827 return 1;
4828 }
4829 }
411e4203 4830 else if ((re_opcode_t) *p1 == charset_not)
505bde11
SM
4831 {
4832 int idx;
4833 /* We win if the charset_not inside the loop lists
7814e705 4834 every character listed in the charset after. */
505bde11
SM
4835 for (idx = 0; idx < (int) p2[1]; idx++)
4836 if (! (p2[2 + idx] == 0
4837 || (idx < CHARSET_BITMAP_SIZE (p1)
4838 && ((p2[2 + idx] & ~ p1[2 + idx]) == 0))))
4839 break;
4840
d1dfb56c
EZ
4841 if (idx == p2[1])
4842 {
4843 DEBUG_PRINT1 (" No match => fast loop.\n");
4844 return 1;
4845 }
4e8a9132
SM
4846 }
4847 }
4848 }
609b757a 4849 break;
177c0ea7 4850
411e4203
SM
4851 case charset_not:
4852 switch (SWITCH_ENUM_CAST (*p1))
4853 {
4854 case exactn:
4855 case charset:
4856 /* Reuse the code above. */
4857 return mutually_exclusive_p (bufp, p2, p1);
4858 case charset_not:
4859 /* When we have two charset_not, it's very unlikely that
4860 they don't overlap. The union of the two sets of excluded
4861 chars should cover all possible chars, which, as a matter of
4862 fact, is virtually impossible in multibyte buffers. */
36595814 4863 break;
411e4203
SM
4864 }
4865 break;
4866
4e8a9132 4867 case wordend:
669fa600
SM
4868 return ((re_opcode_t) *p1 == syntaxspec && p1[1] == Sword);
4869 case symend:
4e8a9132 4870 return ((re_opcode_t) *p1 == syntaxspec
669fa600
SM
4871 && (p1[1] == Ssymbol || p1[1] == Sword));
4872 case notsyntaxspec:
4873 return ((re_opcode_t) *p1 == syntaxspec && p1[1] == p2[1]);
4e8a9132
SM
4874
4875 case wordbeg:
669fa600
SM
4876 return ((re_opcode_t) *p1 == notsyntaxspec && p1[1] == Sword);
4877 case symbeg:
4e8a9132 4878 return ((re_opcode_t) *p1 == notsyntaxspec
669fa600
SM
4879 && (p1[1] == Ssymbol || p1[1] == Sword));
4880 case syntaxspec:
4881 return ((re_opcode_t) *p1 == notsyntaxspec && p1[1] == p2[1]);
4e8a9132
SM
4882
4883 case wordbound:
4884 return (((re_opcode_t) *p1 == notsyntaxspec
4885 || (re_opcode_t) *p1 == syntaxspec)
4886 && p1[1] == Sword);
4887
1fb352e0 4888#ifdef emacs
4e8a9132
SM
4889 case categoryspec:
4890 return ((re_opcode_t) *p1 == notcategoryspec && p1[1] == p2[1]);
4891 case notcategoryspec:
4892 return ((re_opcode_t) *p1 == categoryspec && p1[1] == p2[1]);
4893#endif /* emacs */
4894
4895 default:
4896 ;
505bde11
SM
4897 }
4898
4899 /* Safe default. */
4900 return 0;
4901}
4902
fa9a63c5
RM
4903\f
4904/* Matching routines. */
4905
25fe55af 4906#ifndef emacs /* Emacs never uses this. */
fa9a63c5
RM
4907/* re_match is like re_match_2 except it takes only a single string. */
4908
d1dfb56c 4909regoff_t
d2762c86 4910re_match (struct re_pattern_buffer *bufp, const char *string,
d1dfb56c 4911 size_t size, ssize_t pos, struct re_registers *regs)
fa9a63c5 4912{
d1dfb56c
EZ
4913 regoff_t result = re_match_2_internal (bufp, NULL, 0, (re_char*) string,
4914 size, pos, regs, size);
fa9a63c5
RM
4915 return result;
4916}
c0f9ea08 4917WEAK_ALIAS (__re_match, re_match)
fa9a63c5
RM
4918#endif /* not emacs */
4919
b18215fc
RS
4920#ifdef emacs
4921/* In Emacs, this is the string or buffer in which we
7814e705 4922 are matching. It is used for looking up syntax properties. */
b18215fc
RS
4923Lisp_Object re_match_object;
4924#endif
fa9a63c5
RM
4925
4926/* re_match_2 matches the compiled pattern in BUFP against the
4927 the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
4928 and SIZE2, respectively). We start matching at POS, and stop
4929 matching at STOP.
5e69f11e 4930
fa9a63c5 4931 If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
7814e705 4932 store offsets for the substring each group matched in REGS. See the
fa9a63c5
RM
4933 documentation for exactly how many groups we fill.
4934
4935 We return -1 if no match, -2 if an internal error (such as the
7814e705 4936 failure stack overflowing). Otherwise, we return the length of the
fa9a63c5
RM
4937 matched substring. */
4938
d1dfb56c
EZ
4939regoff_t
4940re_match_2 (struct re_pattern_buffer *bufp, const char *string1,
4941 size_t size1, const char *string2, size_t size2, ssize_t pos,
4942 struct re_registers *regs, ssize_t stop)
fa9a63c5 4943{
d1dfb56c 4944 regoff_t result;
25fe55af 4945
b18215fc 4946#ifdef emacs
d1dfb56c 4947 ssize_t charpos;
d48cd3f4 4948 gl_state.object = re_match_object; /* Used by SYNTAX_TABLE_BYTE_TO_CHAR. */
99633e97 4949 charpos = SYNTAX_TABLE_BYTE_TO_CHAR (POS_AS_IN_BUFFER (pos));
cc9b4df2 4950 SETUP_SYNTAX_TABLE_FOR_OBJECT (re_match_object, charpos, 1);
b18215fc
RS
4951#endif
4952
4bb91c68
SM
4953 result = re_match_2_internal (bufp, (re_char*) string1, size1,
4954 (re_char*) string2, size2,
cc9b4df2 4955 pos, regs, stop);
fa9a63c5
RM
4956 return result;
4957}
c0f9ea08 4958WEAK_ALIAS (__re_match_2, re_match_2)
fa9a63c5 4959
bf216479 4960
fa9a63c5 4961/* This is a separate function so that we can force an alloca cleanup
7814e705 4962 afterwards. */
d1dfb56c
EZ
4963static regoff_t
4964re_match_2_internal (struct re_pattern_buffer *bufp, const re_char *string1,
4965 size_t size1, const re_char *string2, size_t size2,
4966 ssize_t pos, struct re_registers *regs, ssize_t stop)
fa9a63c5
RM
4967{
4968 /* General temporaries. */
d1dfb56c 4969 ssize_t mcnt;
01618498 4970 size_t reg;
fa9a63c5
RM
4971
4972 /* Just past the end of the corresponding string. */
66f0296e 4973 re_char *end1, *end2;
fa9a63c5
RM
4974
4975 /* Pointers into string1 and string2, just past the last characters in
7814e705 4976 each to consider matching. */
66f0296e 4977 re_char *end_match_1, *end_match_2;
fa9a63c5
RM
4978
4979 /* Where we are in the data, and the end of the current string. */
66f0296e 4980 re_char *d, *dend;
5e69f11e 4981
99633e97
SM
4982 /* Used sometimes to remember where we were before starting matching
4983 an operator so that we can go back in case of failure. This "atomic"
4984 behavior of matching opcodes is indispensable to the correctness
4985 of the on_failure_keep_string_jump optimization. */
4986 re_char *dfail;
4987
fa9a63c5 4988 /* Where we are in the pattern, and the end of the pattern. */
01618498
SM
4989 re_char *p = bufp->buffer;
4990 re_char *pend = p + bufp->used;
fa9a63c5 4991
25fe55af 4992 /* We use this to map every character in the string. */
6676cb1c 4993 RE_TRANSLATE_TYPE translate = bufp->translate;
fa9a63c5 4994
cf9c99bc 4995 /* Nonzero if BUFP is setup from a multibyte regex. */
2d1675e4 4996 const boolean multibyte = RE_MULTIBYTE_P (bufp);
b18215fc 4997
cf9c99bc
KH
4998 /* Nonzero if STRING1/STRING2 are multibyte. */
4999 const boolean target_multibyte = RE_TARGET_MULTIBYTE_P (bufp);
5000
fa9a63c5
RM
5001 /* Failure point stack. Each place that can handle a failure further
5002 down the line pushes a failure point on this stack. It consists of
505bde11 5003 regstart, and regend for all registers corresponding to
fa9a63c5
RM
5004 the subexpressions we're currently inside, plus the number of such
5005 registers, and, finally, two char *'s. The first char * is where
5006 to resume scanning the pattern; the second one is where to resume
7814e705
JB
5007 scanning the strings. */
5008#ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
fa9a63c5
RM
5009 fail_stack_type fail_stack;
5010#endif
5011#ifdef DEBUG
fa9a63c5
RM
5012 unsigned nfailure_points_pushed = 0, nfailure_points_popped = 0;
5013#endif
5014
0b32bf0e 5015#if defined REL_ALLOC && defined REGEX_MALLOC
fa9a63c5
RM
5016 /* This holds the pointer to the failure stack, when
5017 it is allocated relocatably. */
5018 fail_stack_elt_t *failure_stack_ptr;
99633e97 5019#endif
fa9a63c5
RM
5020
5021 /* We fill all the registers internally, independent of what we
7814e705 5022 return, for use in backreferences. The number here includes
fa9a63c5 5023 an element for register zero. */
4bb91c68 5024 size_t num_regs = bufp->re_nsub + 1;
5e69f11e 5025
fa9a63c5
RM
5026 /* Information on the contents of registers. These are pointers into
5027 the input strings; they record just what was matched (on this
5028 attempt) by a subexpression part of the pattern, that is, the
5029 regnum-th regstart pointer points to where in the pattern we began
5030 matching and the regnum-th regend points to right after where we
5031 stopped matching the regnum-th subexpression. (The zeroth register
5032 keeps track of what the whole pattern matches.) */
5033#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
66f0296e 5034 re_char **regstart, **regend;
fa9a63c5
RM
5035#endif
5036
fa9a63c5 5037 /* The following record the register info as found in the above
5e69f11e 5038 variables when we find a match better than any we've seen before.
fa9a63c5
RM
5039 This happens as we backtrack through the failure points, which in
5040 turn happens only if we have not yet matched the entire string. */
5041 unsigned best_regs_set = false;
5042#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
66f0296e 5043 re_char **best_regstart, **best_regend;
fa9a63c5 5044#endif
5e69f11e 5045
fa9a63c5
RM
5046 /* Logically, this is `best_regend[0]'. But we don't want to have to
5047 allocate space for that if we're not allocating space for anything
7814e705 5048 else (see below). Also, we never need info about register 0 for
fa9a63c5
RM
5049 any of the other register vectors, and it seems rather a kludge to
5050 treat `best_regend' differently than the rest. So we keep track of
5051 the end of the best match so far in a separate variable. We
5052 initialize this to NULL so that when we backtrack the first time
5053 and need to test it, it's not garbage. */
66f0296e 5054 re_char *match_end = NULL;
fa9a63c5 5055
fa9a63c5
RM
5056#ifdef DEBUG
5057 /* Counts the total number of registers pushed. */
5e69f11e 5058 unsigned num_regs_pushed = 0;
fa9a63c5
RM
5059#endif
5060
5061 DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
5e69f11e 5062
fa9a63c5 5063 INIT_FAIL_STACK ();
5e69f11e 5064
fa9a63c5
RM
5065#ifdef MATCH_MAY_ALLOCATE
5066 /* Do not bother to initialize all the register variables if there are
5067 no groups in the pattern, as it takes a fair amount of time. If
5068 there are groups, we include space for register 0 (the whole
5069 pattern), even though we never use it, since it simplifies the
5070 array indexing. We should fix this. */
5071 if (bufp->re_nsub)
5072 {
66f0296e
SM
5073 regstart = REGEX_TALLOC (num_regs, re_char *);
5074 regend = REGEX_TALLOC (num_regs, re_char *);
5075 best_regstart = REGEX_TALLOC (num_regs, re_char *);
5076 best_regend = REGEX_TALLOC (num_regs, re_char *);
fa9a63c5 5077
505bde11 5078 if (!(regstart && regend && best_regstart && best_regend))
25fe55af
RS
5079 {
5080 FREE_VARIABLES ();
5081 return -2;
5082 }
fa9a63c5
RM
5083 }
5084 else
5085 {
5086 /* We must initialize all our variables to NULL, so that
25fe55af 5087 `FREE_VARIABLES' doesn't try to free them. */
505bde11 5088 regstart = regend = best_regstart = best_regend = NULL;
fa9a63c5
RM
5089 }
5090#endif /* MATCH_MAY_ALLOCATE */
5091
5092 /* The starting position is bogus. */
5093 if (pos < 0 || pos > size1 + size2)
5094 {
5095 FREE_VARIABLES ();
5096 return -1;
5097 }
5e69f11e 5098
fa9a63c5
RM
5099 /* Initialize subexpression text positions to -1 to mark ones that no
5100 start_memory/stop_memory has been seen for. Also initialize the
5101 register information struct. */
01618498
SM
5102 for (reg = 1; reg < num_regs; reg++)
5103 regstart[reg] = regend[reg] = NULL;
99633e97 5104
fa9a63c5 5105 /* We move `string1' into `string2' if the latter's empty -- but not if
7814e705 5106 `string1' is null. */
fa9a63c5
RM
5107 if (size2 == 0 && string1 != NULL)
5108 {
5109 string2 = string1;
5110 size2 = size1;
5111 string1 = 0;
5112 size1 = 0;
5113 }
5114 end1 = string1 + size1;
5115 end2 = string2 + size2;
5116
5e69f11e 5117 /* `p' scans through the pattern as `d' scans through the data.
fa9a63c5
RM
5118 `dend' is the end of the input string that `d' points within. `d'
5119 is advanced into the following input string whenever necessary, but
5120 this happens before fetching; therefore, at the beginning of the
5121 loop, `d' can be pointing at the end of a string, but it cannot
5122 equal `string2'. */
419d1c74 5123 if (pos >= size1)
fa9a63c5 5124 {
419d1c74
SM
5125 /* Only match within string2. */
5126 d = string2 + pos - size1;
5127 dend = end_match_2 = string2 + stop - size1;
5128 end_match_1 = end1; /* Just to give it a value. */
fa9a63c5
RM
5129 }
5130 else
5131 {
f1ad044f 5132 if (stop < size1)
419d1c74
SM
5133 {
5134 /* Only match within string1. */
5135 end_match_1 = string1 + stop;
5136 /* BEWARE!
5137 When we reach end_match_1, PREFETCH normally switches to string2.
5138 But in the present case, this means that just doing a PREFETCH
5139 makes us jump from `stop' to `gap' within the string.
5140 What we really want here is for the search to stop as
5141 soon as we hit end_match_1. That's why we set end_match_2
5142 to end_match_1 (since PREFETCH fails as soon as we hit
5143 end_match_2). */
5144 end_match_2 = end_match_1;
5145 }
5146 else
f1ad044f
SM
5147 { /* It's important to use this code when stop == size so that
5148 moving `d' from end1 to string2 will not prevent the d == dend
5149 check from catching the end of string. */
419d1c74
SM
5150 end_match_1 = end1;
5151 end_match_2 = string2 + stop - size1;
5152 }
5153 d = string1 + pos;
5154 dend = end_match_1;
fa9a63c5
RM
5155 }
5156
5157 DEBUG_PRINT1 ("The compiled pattern is: ");
5158 DEBUG_PRINT_COMPILED_PATTERN (bufp, p, pend);
5159 DEBUG_PRINT1 ("The string to match is: `");
5160 DEBUG_PRINT_DOUBLE_STRING (d, string1, size1, string2, size2);
5161 DEBUG_PRINT1 ("'\n");
5e69f11e 5162
7814e705 5163 /* This loops over pattern commands. It exits by returning from the
fa9a63c5
RM
5164 function if the match is complete, or it drops through if the match
5165 fails at this starting point in the input data. */
5166 for (;;)
5167 {
505bde11 5168 DEBUG_PRINT2 ("\n%p: ", p);
fa9a63c5
RM
5169
5170 if (p == pend)
5171 { /* End of pattern means we might have succeeded. */
25fe55af 5172 DEBUG_PRINT1 ("end of pattern ... ");
5e69f11e 5173
fa9a63c5 5174 /* If we haven't matched the entire string, and we want the
25fe55af
RS
5175 longest match, try backtracking. */
5176 if (d != end_match_2)
fa9a63c5
RM
5177 {
5178 /* 1 if this match ends in the same string (string1 or string2)
5179 as the best previous match. */
5e69f11e 5180 boolean same_str_p = (FIRST_STRING_P (match_end)
99633e97 5181 == FIRST_STRING_P (d));
fa9a63c5
RM
5182 /* 1 if this match is the best seen so far. */
5183 boolean best_match_p;
5184
5185 /* AIX compiler got confused when this was combined
7814e705 5186 with the previous declaration. */
fa9a63c5
RM
5187 if (same_str_p)
5188 best_match_p = d > match_end;
5189 else
99633e97 5190 best_match_p = !FIRST_STRING_P (d);
fa9a63c5 5191
25fe55af
RS
5192 DEBUG_PRINT1 ("backtracking.\n");
5193
5194 if (!FAIL_STACK_EMPTY ())
5195 { /* More failure points to try. */
5196
5197 /* If exceeds best match so far, save it. */
5198 if (!best_regs_set || best_match_p)
5199 {
5200 best_regs_set = true;
5201 match_end = d;
5202
5203 DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
5204
01618498 5205 for (reg = 1; reg < num_regs; reg++)
25fe55af 5206 {
01618498
SM
5207 best_regstart[reg] = regstart[reg];
5208 best_regend[reg] = regend[reg];
25fe55af
RS
5209 }
5210 }
5211 goto fail;
5212 }
5213
5214 /* If no failure points, don't restore garbage. And if
5215 last match is real best match, don't restore second
5216 best one. */
5217 else if (best_regs_set && !best_match_p)
5218 {
5219 restore_best_regs:
5220 /* Restore best match. It may happen that `dend ==
5221 end_match_1' while the restored d is in string2.
5222 For example, the pattern `x.*y.*z' against the
5223 strings `x-' and `y-z-', if the two strings are
7814e705 5224 not consecutive in memory. */
25fe55af
RS
5225 DEBUG_PRINT1 ("Restoring best registers.\n");
5226
5227 d = match_end;
5228 dend = ((d >= string1 && d <= end1)
5229 ? end_match_1 : end_match_2);
fa9a63c5 5230
01618498 5231 for (reg = 1; reg < num_regs; reg++)
fa9a63c5 5232 {
01618498
SM
5233 regstart[reg] = best_regstart[reg];
5234 regend[reg] = best_regend[reg];
fa9a63c5 5235 }
25fe55af
RS
5236 }
5237 } /* d != end_match_2 */
fa9a63c5
RM
5238
5239 succeed_label:
25fe55af 5240 DEBUG_PRINT1 ("Accepting match.\n");
fa9a63c5 5241
25fe55af
RS
5242 /* If caller wants register contents data back, do it. */
5243 if (regs && !bufp->no_sub)
fa9a63c5 5244 {
25fe55af
RS
5245 /* Have the register data arrays been allocated? */
5246 if (bufp->regs_allocated == REGS_UNALLOCATED)
7814e705 5247 { /* No. So allocate them with malloc. We need one
25fe55af
RS
5248 extra element beyond `num_regs' for the `-1' marker
5249 GNU code uses. */
5250 regs->num_regs = MAX (RE_NREGS, num_regs + 1);
5251 regs->start = TALLOC (regs->num_regs, regoff_t);
5252 regs->end = TALLOC (regs->num_regs, regoff_t);
5253 if (regs->start == NULL || regs->end == NULL)
fa9a63c5
RM
5254 {
5255 FREE_VARIABLES ();
5256 return -2;
5257 }
25fe55af
RS
5258 bufp->regs_allocated = REGS_REALLOCATE;
5259 }
5260 else if (bufp->regs_allocated == REGS_REALLOCATE)
5261 { /* Yes. If we need more elements than were already
5262 allocated, reallocate them. If we need fewer, just
5263 leave it alone. */
5264 if (regs->num_regs < num_regs + 1)
5265 {
5266 regs->num_regs = num_regs + 1;
5267 RETALLOC (regs->start, regs->num_regs, regoff_t);
5268 RETALLOC (regs->end, regs->num_regs, regoff_t);
5269 if (regs->start == NULL || regs->end == NULL)
fa9a63c5
RM
5270 {
5271 FREE_VARIABLES ();
5272 return -2;
5273 }
25fe55af
RS
5274 }
5275 }
5276 else
fa9a63c5
RM
5277 {
5278 /* These braces fend off a "empty body in an else-statement"
7814e705 5279 warning under GCC when assert expands to nothing. */
fa9a63c5
RM
5280 assert (bufp->regs_allocated == REGS_FIXED);
5281 }
5282
25fe55af
RS
5283 /* Convert the pointer data in `regstart' and `regend' to
5284 indices. Register zero has to be set differently,
5285 since we haven't kept track of any info for it. */
5286 if (regs->num_regs > 0)
5287 {
5288 regs->start[0] = pos;
99633e97 5289 regs->end[0] = POINTER_TO_OFFSET (d);
25fe55af 5290 }
5e69f11e 5291
25fe55af
RS
5292 /* Go through the first `min (num_regs, regs->num_regs)'
5293 registers, since that is all we initialized. */
01618498 5294 for (reg = 1; reg < MIN (num_regs, regs->num_regs); reg++)
fa9a63c5 5295 {
01618498
SM
5296 if (REG_UNSET (regstart[reg]) || REG_UNSET (regend[reg]))
5297 regs->start[reg] = regs->end[reg] = -1;
25fe55af
RS
5298 else
5299 {
01618498
SM
5300 regs->start[reg]
5301 = (regoff_t) POINTER_TO_OFFSET (regstart[reg]);
5302 regs->end[reg]
5303 = (regoff_t) POINTER_TO_OFFSET (regend[reg]);
25fe55af 5304 }
fa9a63c5 5305 }
5e69f11e 5306
25fe55af
RS
5307 /* If the regs structure we return has more elements than
5308 were in the pattern, set the extra elements to -1. If
5309 we (re)allocated the registers, this is the case,
5310 because we always allocate enough to have at least one
7814e705 5311 -1 at the end. */
01618498
SM
5312 for (reg = num_regs; reg < regs->num_regs; reg++)
5313 regs->start[reg] = regs->end[reg] = -1;
fa9a63c5
RM
5314 } /* regs && !bufp->no_sub */
5315
25fe55af
RS
5316 DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
5317 nfailure_points_pushed, nfailure_points_popped,
5318 nfailure_points_pushed - nfailure_points_popped);
5319 DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed);
fa9a63c5 5320
99633e97 5321 mcnt = POINTER_TO_OFFSET (d) - pos;
fa9a63c5 5322
25fe55af 5323 DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt);
fa9a63c5 5324
25fe55af
RS
5325 FREE_VARIABLES ();
5326 return mcnt;
5327 }
fa9a63c5 5328
7814e705 5329 /* Otherwise match next pattern command. */
fa9a63c5
RM
5330 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
5331 {
25fe55af
RS
5332 /* Ignore these. Used to ignore the n of succeed_n's which
5333 currently have n == 0. */
5334 case no_op:
5335 DEBUG_PRINT1 ("EXECUTING no_op.\n");
5336 break;
fa9a63c5
RM
5337
5338 case succeed:
25fe55af 5339 DEBUG_PRINT1 ("EXECUTING succeed.\n");
fa9a63c5
RM
5340 goto succeed_label;
5341
7814e705 5342 /* Match the next n pattern characters exactly. The following
25fe55af 5343 byte in the pattern defines n, and the n bytes after that
7814e705 5344 are the characters to match. */
fa9a63c5
RM
5345 case exactn:
5346 mcnt = *p++;
25fe55af 5347 DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt);
fa9a63c5 5348
99633e97
SM
5349 /* Remember the start point to rollback upon failure. */
5350 dfail = d;
5351
6fdd04b0 5352#ifndef emacs
25fe55af
RS
5353 /* This is written out as an if-else so we don't waste time
5354 testing `translate' inside the loop. */
28703c16 5355 if (RE_TRANSLATE_P (translate))
6fdd04b0
KH
5356 do
5357 {
5358 PREFETCH ();
5359 if (RE_TRANSLATE (translate, *d) != *p++)
e934739e 5360 {
6fdd04b0
KH
5361 d = dfail;
5362 goto fail;
e934739e 5363 }
6fdd04b0
KH
5364 d++;
5365 }
5366 while (--mcnt);
fa9a63c5 5367 else
6fdd04b0
KH
5368 do
5369 {
5370 PREFETCH ();
5371 if (*d++ != *p++)
bf216479 5372 {
6fdd04b0
KH
5373 d = dfail;
5374 goto fail;
bf216479 5375 }
6fdd04b0
KH
5376 }
5377 while (--mcnt);
5378#else /* emacs */
5379 /* The cost of testing `translate' is comparatively small. */
cf9c99bc 5380 if (target_multibyte)
6fdd04b0
KH
5381 do
5382 {
5383 int pat_charlen, buf_charlen;
cf9c99bc 5384 int pat_ch, buf_ch;
e934739e 5385
6fdd04b0 5386 PREFETCH ();
cf9c99bc 5387 if (multibyte)
62a6e103 5388 pat_ch = STRING_CHAR_AND_LENGTH (p, pat_charlen);
cf9c99bc
KH
5389 else
5390 {
5391 pat_ch = RE_CHAR_TO_MULTIBYTE (*p);
5392 pat_charlen = 1;
5393 }
62a6e103 5394 buf_ch = STRING_CHAR_AND_LENGTH (d, buf_charlen);
e934739e 5395
6fdd04b0 5396 if (TRANSLATE (buf_ch) != pat_ch)
e934739e 5397 {
6fdd04b0
KH
5398 d = dfail;
5399 goto fail;
e934739e 5400 }
bf216479 5401
6fdd04b0
KH
5402 p += pat_charlen;
5403 d += buf_charlen;
5404 mcnt -= pat_charlen;
5405 }
5406 while (mcnt > 0);
fa9a63c5 5407 else
6fdd04b0
KH
5408 do
5409 {
abbd1bcf 5410 int pat_charlen;
cf9c99bc 5411 int pat_ch, buf_ch;
bf216479 5412
6fdd04b0 5413 PREFETCH ();
cf9c99bc
KH
5414 if (multibyte)
5415 {
62a6e103 5416 pat_ch = STRING_CHAR_AND_LENGTH (p, pat_charlen);
2afc21f5 5417 pat_ch = RE_CHAR_TO_UNIBYTE (pat_ch);
cf9c99bc
KH
5418 }
5419 else
5420 {
5421 pat_ch = *p;
5422 pat_charlen = 1;
5423 }
5424 buf_ch = RE_CHAR_TO_MULTIBYTE (*d);
5425 if (! CHAR_BYTE8_P (buf_ch))
5426 {
5427 buf_ch = TRANSLATE (buf_ch);
5428 buf_ch = RE_CHAR_TO_UNIBYTE (buf_ch);
5429 if (buf_ch < 0)
5430 buf_ch = *d;
5431 }
0e2501ed
AS
5432 else
5433 buf_ch = *d;
cf9c99bc 5434 if (buf_ch != pat_ch)
6fdd04b0
KH
5435 {
5436 d = dfail;
5437 goto fail;
bf216479 5438 }
cf9c99bc
KH
5439 p += pat_charlen;
5440 d++;
6fdd04b0
KH
5441 }
5442 while (--mcnt);
5443#endif
25fe55af 5444 break;
fa9a63c5
RM
5445
5446
25fe55af 5447 /* Match any character except possibly a newline or a null. */
fa9a63c5 5448 case anychar:
e934739e
RS
5449 {
5450 int buf_charlen;
01618498 5451 re_wchar_t buf_ch;
fa9a63c5 5452
e934739e 5453 DEBUG_PRINT1 ("EXECUTING anychar.\n");
fa9a63c5 5454
e934739e 5455 PREFETCH ();
62a6e103 5456 buf_ch = RE_STRING_CHAR_AND_LENGTH (d, buf_charlen,
cf9c99bc 5457 target_multibyte);
e934739e
RS
5458 buf_ch = TRANSLATE (buf_ch);
5459
5460 if ((!(bufp->syntax & RE_DOT_NEWLINE)
5461 && buf_ch == '\n')
5462 || ((bufp->syntax & RE_DOT_NOT_NULL)
5463 && buf_ch == '\000'))
5464 goto fail;
5465
e934739e
RS
5466 DEBUG_PRINT2 (" Matched `%d'.\n", *d);
5467 d += buf_charlen;
5468 }
fa9a63c5
RM
5469 break;
5470
5471
5472 case charset:
5473 case charset_not:
5474 {
b18215fc 5475 register unsigned int c;
fa9a63c5 5476 boolean not = (re_opcode_t) *(p - 1) == charset_not;
b18215fc
RS
5477 int len;
5478
5479 /* Start of actual range_table, or end of bitmap if there is no
5480 range table. */
da053e48 5481 re_char *range_table IF_LINT (= NULL);
b18215fc 5482
96cc36cc 5483 /* Nonzero if there is a range table. */
b18215fc
RS
5484 int range_table_exists;
5485
96cc36cc
RS
5486 /* Number of ranges of range table. This is not included
5487 in the initial byte-length of the command. */
5488 int count = 0;
fa9a63c5 5489
f5020181
AS
5490 /* Whether matching against a unibyte character. */
5491 boolean unibyte_char = false;
5492
25fe55af 5493 DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : "");
fa9a63c5 5494
b18215fc 5495 range_table_exists = CHARSET_RANGE_TABLE_EXISTS_P (&p[-1]);
96cc36cc 5496
b18215fc 5497 if (range_table_exists)
96cc36cc
RS
5498 {
5499 range_table = CHARSET_RANGE_TABLE (&p[-1]); /* Past the bitmap. */
5500 EXTRACT_NUMBER_AND_INCR (count, range_table);
5501 }
b18215fc 5502
2d1675e4 5503 PREFETCH ();
62a6e103 5504 c = RE_STRING_CHAR_AND_LENGTH (d, len, target_multibyte);
cf9c99bc
KH
5505 if (target_multibyte)
5506 {
5507 int c1;
b18215fc 5508
cf9c99bc
KH
5509 c = TRANSLATE (c);
5510 c1 = RE_CHAR_TO_UNIBYTE (c);
5511 if (c1 >= 0)
f5020181
AS
5512 {
5513 unibyte_char = true;
5514 c = c1;
5515 }
cf9c99bc
KH
5516 }
5517 else
5518 {
5519 int c1 = RE_CHAR_TO_MULTIBYTE (c);
5520
5521 if (! CHAR_BYTE8_P (c1))
5522 {
5523 c1 = TRANSLATE (c1);
5524 c1 = RE_CHAR_TO_UNIBYTE (c1);
5525 if (c1 >= 0)
f5020181
AS
5526 {
5527 unibyte_char = true;
5528 c = c1;
5529 }
cf9c99bc 5530 }
0b8be006
AS
5531 else
5532 unibyte_char = true;
cf9c99bc
KH
5533 }
5534
f5020181 5535 if (unibyte_char && c < (1 << BYTEWIDTH))
b18215fc 5536 { /* Lookup bitmap. */
b18215fc
RS
5537 /* Cast to `unsigned' instead of `unsigned char' in
5538 case the bit list is a full 32 bytes long. */
5539 if (c < (unsigned) (CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH)
96cc36cc
RS
5540 && p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
5541 not = !not;
b18215fc 5542 }
96cc36cc 5543#ifdef emacs
b18215fc 5544 else if (range_table_exists)
96cc36cc
RS
5545 {
5546 int class_bits = CHARSET_RANGE_TABLE_BITS (&p[-1]);
5547
14473664
SM
5548 if ( (class_bits & BIT_LOWER && ISLOWER (c))
5549 | (class_bits & BIT_MULTIBYTE)
96cc36cc
RS
5550 | (class_bits & BIT_PUNCT && ISPUNCT (c))
5551 | (class_bits & BIT_SPACE && ISSPACE (c))
5552 | (class_bits & BIT_UPPER && ISUPPER (c))
5553 | (class_bits & BIT_WORD && ISWORD (c)))
5554 not = !not;
5555 else
5556 CHARSET_LOOKUP_RANGE_TABLE_RAW (not, c, range_table, count);
5557 }
5558#endif /* emacs */
fa9a63c5 5559
96cc36cc
RS
5560 if (range_table_exists)
5561 p = CHARSET_RANGE_TABLE_END (range_table, count);
5562 else
5563 p += CHARSET_BITMAP_SIZE (&p[-1]) + 1;
fa9a63c5
RM
5564
5565 if (!not) goto fail;
5e69f11e 5566
b18215fc 5567 d += len;
fa9a63c5 5568 }
8fb31792 5569 break;
fa9a63c5
RM
5570
5571
25fe55af 5572 /* The beginning of a group is represented by start_memory.
505bde11 5573 The argument is the register number. The text
25fe55af 5574 matched within the group is recorded (in the internal
7814e705 5575 registers data structure) under the register number. */
25fe55af 5576 case start_memory:
505bde11
SM
5577 DEBUG_PRINT2 ("EXECUTING start_memory %d:\n", *p);
5578
5579 /* In case we need to undo this operation (via backtracking). */
5580 PUSH_FAILURE_REG ((unsigned int)*p);
fa9a63c5 5581
25fe55af 5582 regstart[*p] = d;
4bb91c68 5583 regend[*p] = NULL; /* probably unnecessary. -sm */
fa9a63c5
RM
5584 DEBUG_PRINT2 (" regstart: %d\n", POINTER_TO_OFFSET (regstart[*p]));
5585
25fe55af 5586 /* Move past the register number and inner group count. */
505bde11 5587 p += 1;
25fe55af 5588 break;
fa9a63c5
RM
5589
5590
25fe55af 5591 /* The stop_memory opcode represents the end of a group. Its
505bde11 5592 argument is the same as start_memory's: the register number. */
fa9a63c5 5593 case stop_memory:
505bde11
SM
5594 DEBUG_PRINT2 ("EXECUTING stop_memory %d:\n", *p);
5595
5596 assert (!REG_UNSET (regstart[*p]));
5597 /* Strictly speaking, there should be code such as:
177c0ea7 5598
0b32bf0e 5599 assert (REG_UNSET (regend[*p]));
505bde11
SM
5600 PUSH_FAILURE_REGSTOP ((unsigned int)*p);
5601
5602 But the only info to be pushed is regend[*p] and it is known to
5603 be UNSET, so there really isn't anything to push.
5604 Not pushing anything, on the other hand deprives us from the
5605 guarantee that regend[*p] is UNSET since undoing this operation
5606 will not reset its value properly. This is not important since
5607 the value will only be read on the next start_memory or at
5608 the very end and both events can only happen if this stop_memory
5609 is *not* undone. */
fa9a63c5 5610
25fe55af 5611 regend[*p] = d;
fa9a63c5
RM
5612 DEBUG_PRINT2 (" regend: %d\n", POINTER_TO_OFFSET (regend[*p]));
5613
25fe55af 5614 /* Move past the register number and the inner group count. */
505bde11 5615 p += 1;
25fe55af 5616 break;
fa9a63c5
RM
5617
5618
5619 /* \<digit> has been turned into a `duplicate' command which is
25fe55af
RS
5620 followed by the numeric value of <digit> as the register number. */
5621 case duplicate:
fa9a63c5 5622 {
66f0296e 5623 register re_char *d2, *dend2;
7814e705 5624 int regno = *p++; /* Get which register to match against. */
fa9a63c5
RM
5625 DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno);
5626
7814e705 5627 /* Can't back reference a group which we've never matched. */
25fe55af
RS
5628 if (REG_UNSET (regstart[regno]) || REG_UNSET (regend[regno]))
5629 goto fail;
5e69f11e 5630
7814e705 5631 /* Where in input to try to start matching. */
25fe55af 5632 d2 = regstart[regno];
5e69f11e 5633
99633e97
SM
5634 /* Remember the start point to rollback upon failure. */
5635 dfail = d;
5636
25fe55af
RS
5637 /* Where to stop matching; if both the place to start and
5638 the place to stop matching are in the same string, then
5639 set to the place to stop, otherwise, for now have to use
5640 the end of the first string. */
fa9a63c5 5641
25fe55af 5642 dend2 = ((FIRST_STRING_P (regstart[regno])
fa9a63c5
RM
5643 == FIRST_STRING_P (regend[regno]))
5644 ? regend[regno] : end_match_1);
5645 for (;;)
5646 {
5647 /* If necessary, advance to next segment in register
25fe55af 5648 contents. */
fa9a63c5
RM
5649 while (d2 == dend2)
5650 {
5651 if (dend2 == end_match_2) break;
5652 if (dend2 == regend[regno]) break;
5653
25fe55af
RS
5654 /* End of string1 => advance to string2. */
5655 d2 = string2;
5656 dend2 = regend[regno];
fa9a63c5
RM
5657 }
5658 /* At end of register contents => success */
5659 if (d2 == dend2) break;
5660
5661 /* If necessary, advance to next segment in data. */
5662 PREFETCH ();
5663
5664 /* How many characters left in this segment to match. */
5665 mcnt = dend - d;
5e69f11e 5666
fa9a63c5 5667 /* Want how many consecutive characters we can match in
25fe55af
RS
5668 one shot, so, if necessary, adjust the count. */
5669 if (mcnt > dend2 - d2)
fa9a63c5 5670 mcnt = dend2 - d2;
5e69f11e 5671
fa9a63c5 5672 /* Compare that many; failure if mismatch, else move
25fe55af 5673 past them. */
28703c16 5674 if (RE_TRANSLATE_P (translate)
02cb78b5 5675 ? bcmp_translate (d, d2, mcnt, translate, target_multibyte)
4bb91c68 5676 : memcmp (d, d2, mcnt))
99633e97
SM
5677 {
5678 d = dfail;
5679 goto fail;
5680 }
fa9a63c5 5681 d += mcnt, d2 += mcnt;
fa9a63c5
RM
5682 }
5683 }
5684 break;
5685
5686
25fe55af 5687 /* begline matches the empty string at the beginning of the string
c0f9ea08 5688 (unless `not_bol' is set in `bufp'), and after newlines. */
fa9a63c5 5689 case begline:
25fe55af 5690 DEBUG_PRINT1 ("EXECUTING begline.\n");
5e69f11e 5691
25fe55af
RS
5692 if (AT_STRINGS_BEG (d))
5693 {
5694 if (!bufp->not_bol) break;
5695 }
419d1c74 5696 else
25fe55af 5697 {
bf216479 5698 unsigned c;
419d1c74 5699 GET_CHAR_BEFORE_2 (c, d, string1, end1, string2, end2);
c0f9ea08 5700 if (c == '\n')
419d1c74 5701 break;
25fe55af
RS
5702 }
5703 /* In all other cases, we fail. */
5704 goto fail;
fa9a63c5
RM
5705
5706
25fe55af 5707 /* endline is the dual of begline. */
fa9a63c5 5708 case endline:
25fe55af 5709 DEBUG_PRINT1 ("EXECUTING endline.\n");
fa9a63c5 5710
25fe55af
RS
5711 if (AT_STRINGS_END (d))
5712 {
5713 if (!bufp->not_eol) break;
5714 }
f1ad044f 5715 else
25fe55af 5716 {
f1ad044f 5717 PREFETCH_NOLIMIT ();
c0f9ea08 5718 if (*d == '\n')
f1ad044f 5719 break;
25fe55af
RS
5720 }
5721 goto fail;
fa9a63c5
RM
5722
5723
5724 /* Match at the very beginning of the data. */
25fe55af
RS
5725 case begbuf:
5726 DEBUG_PRINT1 ("EXECUTING begbuf.\n");
5727 if (AT_STRINGS_BEG (d))
5728 break;
5729 goto fail;
fa9a63c5
RM
5730
5731
5732 /* Match at the very end of the data. */
25fe55af
RS
5733 case endbuf:
5734 DEBUG_PRINT1 ("EXECUTING endbuf.\n");
fa9a63c5
RM
5735 if (AT_STRINGS_END (d))
5736 break;
25fe55af 5737 goto fail;
5e69f11e 5738
5e69f11e 5739
25fe55af
RS
5740 /* on_failure_keep_string_jump is used to optimize `.*\n'. It
5741 pushes NULL as the value for the string on the stack. Then
505bde11 5742 `POP_FAILURE_POINT' will keep the current value for the
25fe55af 5743 string, instead of restoring it. To see why, consider
7814e705 5744 matching `foo\nbar' against `.*\n'. The .* matches the foo;
25fe55af
RS
5745 then the . fails against the \n. But the next thing we want
5746 to do is match the \n against the \n; if we restored the
5747 string value, we would be back at the foo.
5748
5749 Because this is used only in specific cases, we don't need to
5750 check all the things that `on_failure_jump' does, to make
5751 sure the right things get saved on the stack. Hence we don't
5752 share its code. The only reason to push anything on the
5753 stack at all is that otherwise we would have to change
5754 `anychar's code to do something besides goto fail in this
5755 case; that seems worse than this. */
5756 case on_failure_keep_string_jump:
505bde11
SM
5757 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5758 DEBUG_PRINT3 ("EXECUTING on_failure_keep_string_jump %d (to %p):\n",
5759 mcnt, p + mcnt);
fa9a63c5 5760
505bde11
SM
5761 PUSH_FAILURE_POINT (p - 3, NULL);
5762 break;
5763
0683b6fa
SM
5764 /* A nasty loop is introduced by the non-greedy *? and +?.
5765 With such loops, the stack only ever contains one failure point
5766 at a time, so that a plain on_failure_jump_loop kind of
5767 cycle detection cannot work. Worse yet, such a detection
5768 can not only fail to detect a cycle, but it can also wrongly
5769 detect a cycle (between different instantiations of the same
6df42991 5770 loop).
0683b6fa
SM
5771 So the method used for those nasty loops is a little different:
5772 We use a special cycle-detection-stack-frame which is pushed
5773 when the on_failure_jump_nastyloop failure-point is *popped*.
5774 This special frame thus marks the beginning of one iteration
5775 through the loop and we can hence easily check right here
5776 whether something matched between the beginning and the end of
5777 the loop. */
5778 case on_failure_jump_nastyloop:
5779 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5780 DEBUG_PRINT3 ("EXECUTING on_failure_jump_nastyloop %d (to %p):\n",
5781 mcnt, p + mcnt);
5782
5783 assert ((re_opcode_t)p[-4] == no_op);
6df42991
SM
5784 {
5785 int cycle = 0;
5786 CHECK_INFINITE_LOOP (p - 4, d);
5787 if (!cycle)
5788 /* If there's a cycle, just continue without pushing
5789 this failure point. The failure point is the "try again"
5790 option, which shouldn't be tried.
5791 We want (x?)*?y\1z to match both xxyz and xxyxz. */
5792 PUSH_FAILURE_POINT (p - 3, d);
5793 }
0683b6fa
SM
5794 break;
5795
4e8a9132
SM
5796 /* Simple loop detecting on_failure_jump: just check on the
5797 failure stack if the same spot was already hit earlier. */
505bde11
SM
5798 case on_failure_jump_loop:
5799 on_failure:
5800 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5801 DEBUG_PRINT3 ("EXECUTING on_failure_jump_loop %d (to %p):\n",
5802 mcnt, p + mcnt);
6df42991
SM
5803 {
5804 int cycle = 0;
5805 CHECK_INFINITE_LOOP (p - 3, d);
5806 if (cycle)
5807 /* If there's a cycle, get out of the loop, as if the matching
5808 had failed. We used to just `goto fail' here, but that was
5809 aborting the search a bit too early: we want to keep the
5810 empty-loop-match and keep matching after the loop.
5811 We want (x?)*y\1z to match both xxyz and xxyxz. */
5812 p += mcnt;
5813 else
5814 PUSH_FAILURE_POINT (p - 3, d);
5815 }
25fe55af 5816 break;
fa9a63c5
RM
5817
5818
5819 /* Uses of on_failure_jump:
5e69f11e 5820
25fe55af
RS
5821 Each alternative starts with an on_failure_jump that points
5822 to the beginning of the next alternative. Each alternative
5823 except the last ends with a jump that in effect jumps past
5824 the rest of the alternatives. (They really jump to the
5825 ending jump of the following alternative, because tensioning
5826 these jumps is a hassle.)
fa9a63c5 5827
25fe55af
RS
5828 Repeats start with an on_failure_jump that points past both
5829 the repetition text and either the following jump or
5830 pop_failure_jump back to this on_failure_jump. */
fa9a63c5 5831 case on_failure_jump:
25fe55af 5832 EXTRACT_NUMBER_AND_INCR (mcnt, p);
505bde11
SM
5833 DEBUG_PRINT3 ("EXECUTING on_failure_jump %d (to %p):\n",
5834 mcnt, p + mcnt);
25fe55af 5835
505bde11 5836 PUSH_FAILURE_POINT (p -3, d);
25fe55af
RS
5837 break;
5838
4e8a9132 5839 /* This operation is used for greedy *.
505bde11
SM
5840 Compare the beginning of the repeat with what in the
5841 pattern follows its end. If we can establish that there
5842 is nothing that they would both match, i.e., that we
5843 would have to backtrack because of (as in, e.g., `a*a')
5844 then we can use a non-backtracking loop based on
4e8a9132 5845 on_failure_keep_string_jump instead of on_failure_jump. */
505bde11 5846 case on_failure_jump_smart:
25fe55af 5847 EXTRACT_NUMBER_AND_INCR (mcnt, p);
505bde11
SM
5848 DEBUG_PRINT3 ("EXECUTING on_failure_jump_smart %d (to %p).\n",
5849 mcnt, p + mcnt);
25fe55af 5850 {
01618498 5851 re_char *p1 = p; /* Next operation. */
6dcf2d0e
SM
5852 /* Here, we discard `const', making re_match non-reentrant. */
5853 unsigned char *p2 = (unsigned char*) p + mcnt; /* Jump dest. */
5854 unsigned char *p3 = (unsigned char*) p - 3; /* opcode location. */
fa9a63c5 5855
505bde11
SM
5856 p -= 3; /* Reset so that we will re-execute the
5857 instruction once it's been changed. */
fa9a63c5 5858
4e8a9132
SM
5859 EXTRACT_NUMBER (mcnt, p2 - 2);
5860
5861 /* Ensure this is a indeed the trivial kind of loop
5862 we are expecting. */
5863 assert (skip_one_char (p1) == p2 - 3);
5864 assert ((re_opcode_t) p2[-3] == jump && p2 + mcnt == p);
99633e97 5865 DEBUG_STATEMENT (debug += 2);
505bde11 5866 if (mutually_exclusive_p (bufp, p1, p2))
fa9a63c5 5867 {
505bde11 5868 /* Use a fast `on_failure_keep_string_jump' loop. */
4e8a9132 5869 DEBUG_PRINT1 (" smart exclusive => fast loop.\n");
01618498 5870 *p3 = (unsigned char) on_failure_keep_string_jump;
4e8a9132 5871 STORE_NUMBER (p2 - 2, mcnt + 3);
25fe55af 5872 }
505bde11 5873 else
fa9a63c5 5874 {
505bde11
SM
5875 /* Default to a safe `on_failure_jump' loop. */
5876 DEBUG_PRINT1 (" smart default => slow loop.\n");
01618498 5877 *p3 = (unsigned char) on_failure_jump;
fa9a63c5 5878 }
99633e97 5879 DEBUG_STATEMENT (debug -= 2);
25fe55af 5880 }
505bde11 5881 break;
25fe55af
RS
5882
5883 /* Unconditionally jump (without popping any failure points). */
5884 case jump:
fa9a63c5 5885 unconditional_jump:
5b370c2b 5886 IMMEDIATE_QUIT_CHECK;
fa9a63c5 5887 EXTRACT_NUMBER_AND_INCR (mcnt, p); /* Get the amount to jump. */
25fe55af 5888 DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt);
7814e705 5889 p += mcnt; /* Do the jump. */
505bde11 5890 DEBUG_PRINT2 ("(to %p).\n", p);
25fe55af
RS
5891 break;
5892
5893
25fe55af
RS
5894 /* Have to succeed matching what follows at least n times.
5895 After that, handle like `on_failure_jump'. */
5896 case succeed_n:
01618498 5897 /* Signedness doesn't matter since we only compare MCNT to 0. */
25fe55af
RS
5898 EXTRACT_NUMBER (mcnt, p + 2);
5899 DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt);
5e69f11e 5900
dc1e502d
SM
5901 /* Originally, mcnt is how many times we HAVE to succeed. */
5902 if (mcnt != 0)
25fe55af 5903 {
6dcf2d0e
SM
5904 /* Here, we discard `const', making re_match non-reentrant. */
5905 unsigned char *p2 = (unsigned char*) p + 2; /* counter loc. */
dc1e502d 5906 mcnt--;
01618498
SM
5907 p += 4;
5908 PUSH_NUMBER (p2, mcnt);
25fe55af 5909 }
dc1e502d
SM
5910 else
5911 /* The two bytes encoding mcnt == 0 are two no_op opcodes. */
5912 goto on_failure;
25fe55af
RS
5913 break;
5914
5915 case jump_n:
01618498 5916 /* Signedness doesn't matter since we only compare MCNT to 0. */
25fe55af
RS
5917 EXTRACT_NUMBER (mcnt, p + 2);
5918 DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt);
5919
5920 /* Originally, this is how many times we CAN jump. */
dc1e502d 5921 if (mcnt != 0)
25fe55af 5922 {
6dcf2d0e
SM
5923 /* Here, we discard `const', making re_match non-reentrant. */
5924 unsigned char *p2 = (unsigned char*) p + 2; /* counter loc. */
dc1e502d 5925 mcnt--;
01618498 5926 PUSH_NUMBER (p2, mcnt);
dc1e502d 5927 goto unconditional_jump;
25fe55af
RS
5928 }
5929 /* If don't have to jump any more, skip over the rest of command. */
5e69f11e
RM
5930 else
5931 p += 4;
25fe55af 5932 break;
5e69f11e 5933
fa9a63c5
RM
5934 case set_number_at:
5935 {
01618498 5936 unsigned char *p2; /* Location of the counter. */
25fe55af 5937 DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
fa9a63c5 5938
25fe55af 5939 EXTRACT_NUMBER_AND_INCR (mcnt, p);
6dcf2d0e
SM
5940 /* Here, we discard `const', making re_match non-reentrant. */
5941 p2 = (unsigned char*) p + mcnt;
01618498 5942 /* Signedness doesn't matter since we only copy MCNT's bits . */
25fe55af 5943 EXTRACT_NUMBER_AND_INCR (mcnt, p);
01618498
SM
5944 DEBUG_PRINT3 (" Setting %p to %d.\n", p2, mcnt);
5945 PUSH_NUMBER (p2, mcnt);
25fe55af
RS
5946 break;
5947 }
9121ca40
KH
5948
5949 case wordbound:
66f0296e 5950 case notwordbound:
19ed5445
PE
5951 {
5952 boolean not = (re_opcode_t) *(p - 1) == notwordbound;
5953 DEBUG_PRINT2 ("EXECUTING %swordbound.\n", not?"not":"");
fa9a63c5 5954
19ed5445 5955 /* We SUCCEED (or FAIL) in one of the following cases: */
9121ca40 5956
19ed5445
PE
5957 /* Case 1: D is at the beginning or the end of string. */
5958 if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
5959 not = !not;
5960 else
5961 {
5962 /* C1 is the character before D, S1 is the syntax of C1, C2
5963 is the character at D, and S2 is the syntax of C2. */
5964 re_wchar_t c1, c2;
5965 int s1, s2;
5966 int dummy;
b18215fc 5967#ifdef emacs
d1dfb56c
EZ
5968 ssize_t offset = PTR_TO_OFFSET (d - 1);
5969 ssize_t charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
19ed5445 5970 UPDATE_SYNTAX_TABLE (charpos);
25fe55af 5971#endif
19ed5445
PE
5972 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
5973 s1 = SYNTAX (c1);
b18215fc 5974#ifdef emacs
19ed5445 5975 UPDATE_SYNTAX_TABLE_FORWARD (charpos + 1);
25fe55af 5976#endif
19ed5445
PE
5977 PREFETCH_NOLIMIT ();
5978 GET_CHAR_AFTER (c2, d, dummy);
5979 s2 = SYNTAX (c2);
5980
5981 if (/* Case 2: Only one of S1 and S2 is Sword. */
5982 ((s1 == Sword) != (s2 == Sword))
5983 /* Case 3: Both of S1 and S2 are Sword, and macro
5984 WORD_BOUNDARY_P (C1, C2) returns nonzero. */
5985 || ((s1 == Sword) && WORD_BOUNDARY_P (c1, c2)))
5986 not = !not;
5987 }
5988 if (not)
5989 break;
5990 else
5991 goto fail;
5992 }
fa9a63c5
RM
5993
5994 case wordbeg:
25fe55af 5995 DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
fa9a63c5 5996
b18215fc
RS
5997 /* We FAIL in one of the following cases: */
5998
7814e705 5999 /* Case 1: D is at the end of string. */
b18215fc 6000 if (AT_STRINGS_END (d))
99633e97 6001 goto fail;
b18215fc
RS
6002 else
6003 {
6004 /* C1 is the character before D, S1 is the syntax of C1, C2
6005 is the character at D, and S2 is the syntax of C2. */
01618498
SM
6006 re_wchar_t c1, c2;
6007 int s1, s2;
bf216479 6008 int dummy;
fa9a63c5 6009#ifdef emacs
d1dfb56c
EZ
6010 ssize_t offset = PTR_TO_OFFSET (d);
6011 ssize_t charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
92432794 6012 UPDATE_SYNTAX_TABLE (charpos);
25fe55af 6013#endif
99633e97 6014 PREFETCH ();
6fdd04b0 6015 GET_CHAR_AFTER (c2, d, dummy);
b18215fc 6016 s2 = SYNTAX (c2);
177c0ea7 6017
b18215fc
RS
6018 /* Case 2: S2 is not Sword. */
6019 if (s2 != Sword)
6020 goto fail;
6021
6022 /* Case 3: D is not at the beginning of string ... */
6023 if (!AT_STRINGS_BEG (d))
6024 {
6025 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
6026#ifdef emacs
5d967c7a 6027 UPDATE_SYNTAX_TABLE_BACKWARD (charpos - 1);
25fe55af 6028#endif
b18215fc
RS
6029 s1 = SYNTAX (c1);
6030
6031 /* ... and S1 is Sword, and WORD_BOUNDARY_P (C1, C2)
7814e705 6032 returns 0. */
b18215fc
RS
6033 if ((s1 == Sword) && !WORD_BOUNDARY_P (c1, c2))
6034 goto fail;
6035 }
6036 }
e318085a
RS
6037 break;
6038
b18215fc 6039 case wordend:
25fe55af 6040 DEBUG_PRINT1 ("EXECUTING wordend.\n");
b18215fc
RS
6041
6042 /* We FAIL in one of the following cases: */
6043
6044 /* Case 1: D is at the beginning of string. */
6045 if (AT_STRINGS_BEG (d))
e318085a 6046 goto fail;
b18215fc
RS
6047 else
6048 {
6049 /* C1 is the character before D, S1 is the syntax of C1, C2
6050 is the character at D, and S2 is the syntax of C2. */
01618498
SM
6051 re_wchar_t c1, c2;
6052 int s1, s2;
bf216479 6053 int dummy;
5d967c7a 6054#ifdef emacs
d1dfb56c
EZ
6055 ssize_t offset = PTR_TO_OFFSET (d) - 1;
6056 ssize_t charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
92432794 6057 UPDATE_SYNTAX_TABLE (charpos);
5d967c7a 6058#endif
99633e97 6059 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
b18215fc
RS
6060 s1 = SYNTAX (c1);
6061
6062 /* Case 2: S1 is not Sword. */
6063 if (s1 != Sword)
6064 goto fail;
6065
6066 /* Case 3: D is not at the end of string ... */
6067 if (!AT_STRINGS_END (d))
6068 {
f1ad044f 6069 PREFETCH_NOLIMIT ();
6fdd04b0 6070 GET_CHAR_AFTER (c2, d, dummy);
5d967c7a
RS
6071#ifdef emacs
6072 UPDATE_SYNTAX_TABLE_FORWARD (charpos);
6073#endif
b18215fc
RS
6074 s2 = SYNTAX (c2);
6075
6076 /* ... and S2 is Sword, and WORD_BOUNDARY_P (C1, C2)
7814e705 6077 returns 0. */
b18215fc 6078 if ((s2 == Sword) && !WORD_BOUNDARY_P (c1, c2))
25fe55af 6079 goto fail;
b18215fc
RS
6080 }
6081 }
e318085a
RS
6082 break;
6083
669fa600
SM
6084 case symbeg:
6085 DEBUG_PRINT1 ("EXECUTING symbeg.\n");
6086
6087 /* We FAIL in one of the following cases: */
6088
7814e705 6089 /* Case 1: D is at the end of string. */
669fa600
SM
6090 if (AT_STRINGS_END (d))
6091 goto fail;
6092 else
6093 {
6094 /* C1 is the character before D, S1 is the syntax of C1, C2
6095 is the character at D, and S2 is the syntax of C2. */
6096 re_wchar_t c1, c2;
6097 int s1, s2;
6098#ifdef emacs
d1dfb56c
EZ
6099 ssize_t offset = PTR_TO_OFFSET (d);
6100 ssize_t charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
669fa600
SM
6101 UPDATE_SYNTAX_TABLE (charpos);
6102#endif
6103 PREFETCH ();
62a6e103 6104 c2 = RE_STRING_CHAR (d, target_multibyte);
669fa600 6105 s2 = SYNTAX (c2);
7814e705 6106
669fa600
SM
6107 /* Case 2: S2 is neither Sword nor Ssymbol. */
6108 if (s2 != Sword && s2 != Ssymbol)
6109 goto fail;
6110
6111 /* Case 3: D is not at the beginning of string ... */
6112 if (!AT_STRINGS_BEG (d))
6113 {
6114 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
6115#ifdef emacs
6116 UPDATE_SYNTAX_TABLE_BACKWARD (charpos - 1);
6117#endif
6118 s1 = SYNTAX (c1);
6119
6120 /* ... and S1 is Sword or Ssymbol. */
6121 if (s1 == Sword || s1 == Ssymbol)
6122 goto fail;
6123 }
6124 }
6125 break;
6126
6127 case symend:
6128 DEBUG_PRINT1 ("EXECUTING symend.\n");
6129
6130 /* We FAIL in one of the following cases: */
6131
6132 /* Case 1: D is at the beginning of string. */
6133 if (AT_STRINGS_BEG (d))
6134 goto fail;
6135 else
6136 {
6137 /* C1 is the character before D, S1 is the syntax of C1, C2
6138 is the character at D, and S2 is the syntax of C2. */
6139 re_wchar_t c1, c2;
6140 int s1, s2;
6141#ifdef emacs
d1dfb56c
EZ
6142 ssize_t offset = PTR_TO_OFFSET (d) - 1;
6143 ssize_t charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
669fa600
SM
6144 UPDATE_SYNTAX_TABLE (charpos);
6145#endif
6146 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
6147 s1 = SYNTAX (c1);
6148
6149 /* Case 2: S1 is neither Ssymbol nor Sword. */
6150 if (s1 != Sword && s1 != Ssymbol)
6151 goto fail;
6152
6153 /* Case 3: D is not at the end of string ... */
6154 if (!AT_STRINGS_END (d))
6155 {
6156 PREFETCH_NOLIMIT ();
62a6e103 6157 c2 = RE_STRING_CHAR (d, target_multibyte);
669fa600 6158#ifdef emacs
134579f2 6159 UPDATE_SYNTAX_TABLE_FORWARD (charpos + 1);
669fa600
SM
6160#endif
6161 s2 = SYNTAX (c2);
6162
6163 /* ... and S2 is Sword or Ssymbol. */
6164 if (s2 == Sword || s2 == Ssymbol)
6165 goto fail;
b18215fc
RS
6166 }
6167 }
e318085a
RS
6168 break;
6169
fa9a63c5 6170 case syntaxspec:
1fb352e0 6171 case notsyntaxspec:
b18215fc 6172 {
19ed5445
PE
6173 boolean not = (re_opcode_t) *(p - 1) == notsyntaxspec;
6174 mcnt = *p++;
6175 DEBUG_PRINT3 ("EXECUTING %ssyntaxspec %d.\n", not?"not":"", mcnt);
6176 PREFETCH ();
6177#ifdef emacs
6178 {
d1dfb56c
EZ
6179 ssize_t offset = PTR_TO_OFFSET (d);
6180 ssize_t pos1 = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
19ed5445
PE
6181 UPDATE_SYNTAX_TABLE (pos1);
6182 }
25fe55af 6183#endif
19ed5445
PE
6184 {
6185 int len;
6186 re_wchar_t c;
b18215fc 6187
19ed5445
PE
6188 GET_CHAR_AFTER (c, d, len);
6189 if ((SYNTAX (c) != (enum syntaxcode) mcnt) ^ not)
6190 goto fail;
6191 d += len;
6192 }
b18215fc 6193 }
8fb31792 6194 break;
fa9a63c5 6195
b18215fc 6196#ifdef emacs
1fb352e0
SM
6197 case before_dot:
6198 DEBUG_PRINT1 ("EXECUTING before_dot.\n");
6199 if (PTR_BYTE_POS (d) >= PT_BYTE)
fa9a63c5 6200 goto fail;
b18215fc
RS
6201 break;
6202
1fb352e0
SM
6203 case at_dot:
6204 DEBUG_PRINT1 ("EXECUTING at_dot.\n");
6205 if (PTR_BYTE_POS (d) != PT_BYTE)
6206 goto fail;
6207 break;
b18215fc 6208
1fb352e0
SM
6209 case after_dot:
6210 DEBUG_PRINT1 ("EXECUTING after_dot.\n");
6211 if (PTR_BYTE_POS (d) <= PT_BYTE)
6212 goto fail;
e318085a 6213 break;
fa9a63c5 6214
1fb352e0 6215 case categoryspec:
b18215fc 6216 case notcategoryspec:
b18215fc 6217 {
8fb31792
PE
6218 boolean not = (re_opcode_t) *(p - 1) == notcategoryspec;
6219 mcnt = *p++;
6220 DEBUG_PRINT3 ("EXECUTING %scategoryspec %d.\n",
6221 not?"not":"", mcnt);
6222 PREFETCH ();
01618498 6223
8fb31792
PE
6224 {
6225 int len;
6226 re_wchar_t c;
6227 GET_CHAR_AFTER (c, d, len);
6228 if ((!CHAR_HAS_CATEGORY (c, mcnt)) ^ not)
6229 goto fail;
6230 d += len;
6231 }
b18215fc 6232 }
fa9a63c5 6233 break;
5e69f11e 6234
1fb352e0 6235#endif /* emacs */
5e69f11e 6236
0b32bf0e
SM
6237 default:
6238 abort ();
fa9a63c5 6239 }
b18215fc 6240 continue; /* Successfully executed one pattern command; keep going. */
fa9a63c5
RM
6241
6242
6243 /* We goto here if a matching operation fails. */
6244 fail:
5b370c2b 6245 IMMEDIATE_QUIT_CHECK;
fa9a63c5 6246 if (!FAIL_STACK_EMPTY ())
505bde11 6247 {
01618498 6248 re_char *str, *pat;
505bde11 6249 /* A restart point is known. Restore to that state. */
0b32bf0e
SM
6250 DEBUG_PRINT1 ("\nFAIL:\n");
6251 POP_FAILURE_POINT (str, pat);
505bde11
SM
6252 switch (SWITCH_ENUM_CAST ((re_opcode_t) *pat++))
6253 {
6254 case on_failure_keep_string_jump:
6255 assert (str == NULL);
6256 goto continue_failure_jump;
6257
0683b6fa
SM
6258 case on_failure_jump_nastyloop:
6259 assert ((re_opcode_t)pat[-2] == no_op);
6260 PUSH_FAILURE_POINT (pat - 2, str);
6261 /* Fallthrough */
6262
505bde11
SM
6263 case on_failure_jump_loop:
6264 case on_failure_jump:
6265 case succeed_n:
6266 d = str;
6267 continue_failure_jump:
6268 EXTRACT_NUMBER_AND_INCR (mcnt, pat);
6269 p = pat + mcnt;
6270 break;
b18215fc 6271
0683b6fa
SM
6272 case no_op:
6273 /* A special frame used for nastyloops. */
6274 goto fail;
6275
505bde11 6276 default:
5e617bc2 6277 abort ();
505bde11 6278 }
fa9a63c5 6279
505bde11 6280 assert (p >= bufp->buffer && p <= pend);
b18215fc 6281
0b32bf0e 6282 if (d >= string1 && d <= end1)
fa9a63c5 6283 dend = end_match_1;
0b32bf0e 6284 }
fa9a63c5 6285 else
0b32bf0e 6286 break; /* Matching at this starting point really fails. */
fa9a63c5
RM
6287 } /* for (;;) */
6288
6289 if (best_regs_set)
6290 goto restore_best_regs;
6291
6292 FREE_VARIABLES ();
6293
b18215fc 6294 return -1; /* Failure to match. */
fa9a63c5
RM
6295} /* re_match_2 */
6296\f
6297/* Subroutine definitions for re_match_2. */
6298
fa9a63c5
RM
6299/* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
6300 bytes; nonzero otherwise. */
5e69f11e 6301
fa9a63c5 6302static int
d1dfb56c 6303bcmp_translate (const re_char *s1, const re_char *s2, register ssize_t len,
438105ed 6304 RE_TRANSLATE_TYPE translate, const int target_multibyte)
fa9a63c5 6305{
2d1675e4
SM
6306 register re_char *p1 = s1, *p2 = s2;
6307 re_char *p1_end = s1 + len;
6308 re_char *p2_end = s2 + len;
e934739e 6309
4bb91c68
SM
6310 /* FIXME: Checking both p1 and p2 presumes that the two strings might have
6311 different lengths, but relying on a single `len' would break this. -sm */
6312 while (p1 < p1_end && p2 < p2_end)
fa9a63c5 6313 {
e934739e 6314 int p1_charlen, p2_charlen;
01618498 6315 re_wchar_t p1_ch, p2_ch;
e934739e 6316
6fdd04b0
KH
6317 GET_CHAR_AFTER (p1_ch, p1, p1_charlen);
6318 GET_CHAR_AFTER (p2_ch, p2, p2_charlen);
e934739e
RS
6319
6320 if (RE_TRANSLATE (translate, p1_ch)
6321 != RE_TRANSLATE (translate, p2_ch))
bc192b5b 6322 return 1;
e934739e
RS
6323
6324 p1 += p1_charlen, p2 += p2_charlen;
fa9a63c5 6325 }
e934739e
RS
6326
6327 if (p1 != p1_end || p2 != p2_end)
6328 return 1;
6329
fa9a63c5
RM
6330 return 0;
6331}
6332\f
6333/* Entry points for GNU code. */
6334
6335/* re_compile_pattern is the GNU regular expression compiler: it
6336 compiles PATTERN (of length SIZE) and puts the result in BUFP.
6337 Returns 0 if the pattern was valid, otherwise an error string.
5e69f11e 6338
fa9a63c5
RM
6339 Assumes the `allocated' (and perhaps `buffer') and `translate' fields
6340 are set in BUFP on entry.
5e69f11e 6341
b18215fc 6342 We call regex_compile to do the actual compilation. */
fa9a63c5
RM
6343
6344const char *
d1dfb56c
EZ
6345re_compile_pattern (const char *pattern, size_t length,
6346 struct re_pattern_buffer *bufp)
fa9a63c5
RM
6347{
6348 reg_errcode_t ret;
5e69f11e 6349
fa9a63c5
RM
6350 /* GNU code is written to assume at least RE_NREGS registers will be set
6351 (and at least one extra will be -1). */
6352 bufp->regs_allocated = REGS_UNALLOCATED;
5e69f11e 6353
fa9a63c5
RM
6354 /* And GNU code determines whether or not to get register information
6355 by passing null for the REGS argument to re_match, etc., not by
6356 setting no_sub. */
6357 bufp->no_sub = 0;
5e69f11e 6358
4bb91c68 6359 ret = regex_compile ((re_char*) pattern, length, re_syntax_options, bufp);
fa9a63c5
RM
6360
6361 if (!ret)
6362 return NULL;
6363 return gettext (re_error_msgid[(int) ret]);
5e69f11e 6364}
c0f9ea08 6365WEAK_ALIAS (__re_compile_pattern, re_compile_pattern)
fa9a63c5 6366\f
b18215fc
RS
6367/* Entry points compatible with 4.2 BSD regex library. We don't define
6368 them unless specifically requested. */
fa9a63c5 6369
0b32bf0e 6370#if defined _REGEX_RE_COMP || defined _LIBC
fa9a63c5
RM
6371
6372/* BSD has one and only one pattern buffer. */
6373static struct re_pattern_buffer re_comp_buf;
6374
6375char *
0b32bf0e 6376# ifdef _LIBC
48afdd44
RM
6377/* Make these definitions weak in libc, so POSIX programs can redefine
6378 these names if they don't use our functions, and still use
6379 regcomp/regexec below without link errors. */
6380weak_function
0b32bf0e 6381# endif
31011111 6382re_comp (const char *s)
fa9a63c5
RM
6383{
6384 reg_errcode_t ret;
5e69f11e 6385
fa9a63c5
RM
6386 if (!s)
6387 {
6388 if (!re_comp_buf.buffer)
0b32bf0e 6389 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
a60198e5 6390 return (char *) gettext ("No previous regular expression");
fa9a63c5
RM
6391 return 0;
6392 }
6393
6394 if (!re_comp_buf.buffer)
6395 {
38182d90 6396 re_comp_buf.buffer = malloc (200);
fa9a63c5 6397 if (re_comp_buf.buffer == NULL)
0b32bf0e
SM
6398 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
6399 return (char *) gettext (re_error_msgid[(int) REG_ESPACE]);
fa9a63c5
RM
6400 re_comp_buf.allocated = 200;
6401
38182d90 6402 re_comp_buf.fastmap = malloc (1 << BYTEWIDTH);
fa9a63c5 6403 if (re_comp_buf.fastmap == NULL)
a60198e5
SM
6404 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
6405 return (char *) gettext (re_error_msgid[(int) REG_ESPACE]);
fa9a63c5
RM
6406 }
6407
6408 /* Since `re_exec' always passes NULL for the `regs' argument, we
6409 don't need to initialize the pattern buffer fields which affect it. */
6410
fa9a63c5 6411 ret = regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf);
5e69f11e 6412
fa9a63c5
RM
6413 if (!ret)
6414 return NULL;
6415
6416 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
6417 return (char *) gettext (re_error_msgid[(int) ret]);
6418}
6419
6420
31011111 6421int
0b32bf0e 6422# ifdef _LIBC
48afdd44 6423weak_function
0b32bf0e 6424# endif
d1dfb56c 6425re_exec (const char *s)
fa9a63c5 6426{
d1dfb56c 6427 const size_t len = strlen (s);
fa9a63c5
RM
6428 return
6429 0 <= re_search (&re_comp_buf, s, len, 0, len, (struct re_registers *) 0);
6430}
6431#endif /* _REGEX_RE_COMP */
6432\f
6433/* POSIX.2 functions. Don't define these for Emacs. */
6434
6435#ifndef emacs
6436
6437/* regcomp takes a regular expression as a string and compiles it.
6438
b18215fc 6439 PREG is a regex_t *. We do not expect any fields to be initialized,
fa9a63c5
RM
6440 since POSIX says we shouldn't. Thus, we set
6441
6442 `buffer' to the compiled pattern;
6443 `used' to the length of the compiled pattern;
6444 `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
6445 REG_EXTENDED bit in CFLAGS is set; otherwise, to
6446 RE_SYNTAX_POSIX_BASIC;
c0f9ea08
SM
6447 `fastmap' to an allocated space for the fastmap;
6448 `fastmap_accurate' to zero;
fa9a63c5
RM
6449 `re_nsub' to the number of subexpressions in PATTERN.
6450
6451 PATTERN is the address of the pattern string.
6452
6453 CFLAGS is a series of bits which affect compilation.
6454
6455 If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
6456 use POSIX basic syntax.
6457
6458 If REG_NEWLINE is set, then . and [^...] don't match newline.
6459 Also, regexec will try a match beginning after every newline.
6460
6461 If REG_ICASE is set, then we considers upper- and lowercase
6462 versions of letters to be equivalent when matching.
6463
6464 If REG_NOSUB is set, then when PREG is passed to regexec, that
6465 routine will report only success or failure, and nothing about the
6466 registers.
6467
b18215fc 6468 It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for
fa9a63c5
RM
6469 the return codes and their meanings.) */
6470
d1dfb56c 6471reg_errcode_t
d2762c86
DN
6472regcomp (regex_t *__restrict preg, const char *__restrict pattern,
6473 int cflags)
fa9a63c5
RM
6474{
6475 reg_errcode_t ret;
4bb91c68 6476 reg_syntax_t syntax
fa9a63c5
RM
6477 = (cflags & REG_EXTENDED) ?
6478 RE_SYNTAX_POSIX_EXTENDED : RE_SYNTAX_POSIX_BASIC;
6479
6480 /* regex_compile will allocate the space for the compiled pattern. */
6481 preg->buffer = 0;
6482 preg->allocated = 0;
6483 preg->used = 0;
5e69f11e 6484
c0f9ea08 6485 /* Try to allocate space for the fastmap. */
38182d90 6486 preg->fastmap = malloc (1 << BYTEWIDTH);
5e69f11e 6487
fa9a63c5
RM
6488 if (cflags & REG_ICASE)
6489 {
6490 unsigned i;
5e69f11e 6491
38182d90 6492 preg->translate = malloc (CHAR_SET_SIZE * sizeof *preg->translate);
fa9a63c5 6493 if (preg->translate == NULL)
0b32bf0e 6494 return (int) REG_ESPACE;
fa9a63c5
RM
6495
6496 /* Map uppercase characters to corresponding lowercase ones. */
6497 for (i = 0; i < CHAR_SET_SIZE; i++)
4bb91c68 6498 preg->translate[i] = ISUPPER (i) ? TOLOWER (i) : i;
fa9a63c5
RM
6499 }
6500 else
6501 preg->translate = NULL;
6502
6503 /* If REG_NEWLINE is set, newlines are treated differently. */
6504 if (cflags & REG_NEWLINE)
6505 { /* REG_NEWLINE implies neither . nor [^...] match newline. */
6506 syntax &= ~RE_DOT_NEWLINE;
6507 syntax |= RE_HAT_LISTS_NOT_NEWLINE;
fa9a63c5
RM
6508 }
6509 else
c0f9ea08 6510 syntax |= RE_NO_NEWLINE_ANCHOR;
fa9a63c5
RM
6511
6512 preg->no_sub = !!(cflags & REG_NOSUB);
6513
5e69f11e 6514 /* POSIX says a null character in the pattern terminates it, so we
fa9a63c5 6515 can use strlen here in compiling the pattern. */
4bb91c68 6516 ret = regex_compile ((re_char*) pattern, strlen (pattern), syntax, preg);
5e69f11e 6517
fa9a63c5
RM
6518 /* POSIX doesn't distinguish between an unmatched open-group and an
6519 unmatched close-group: both are REG_EPAREN. */
c0f9ea08
SM
6520 if (ret == REG_ERPAREN)
6521 ret = REG_EPAREN;
6522
6523 if (ret == REG_NOERROR && preg->fastmap)
6524 { /* Compute the fastmap now, since regexec cannot modify the pattern
6525 buffer. */
6526 re_compile_fastmap (preg);
6527 if (preg->can_be_null)
6528 { /* The fastmap can't be used anyway. */
6529 free (preg->fastmap);
6530 preg->fastmap = NULL;
6531 }
6532 }
d1dfb56c 6533 return ret;
fa9a63c5 6534}
c0f9ea08 6535WEAK_ALIAS (__regcomp, regcomp)
fa9a63c5
RM
6536
6537
6538/* regexec searches for a given pattern, specified by PREG, in the
6539 string STRING.
5e69f11e 6540
fa9a63c5 6541 If NMATCH is zero or REG_NOSUB was set in the cflags argument to
b18215fc 6542 `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at
fa9a63c5
RM
6543 least NMATCH elements, and we set them to the offsets of the
6544 corresponding matched substrings.
5e69f11e 6545
fa9a63c5
RM
6546 EFLAGS specifies `execution flags' which affect matching: if
6547 REG_NOTBOL is set, then ^ does not match at the beginning of the
6548 string; if REG_NOTEOL is set, then $ does not match at the end.
5e69f11e 6549
fa9a63c5
RM
6550 We return 0 if we find a match and REG_NOMATCH if not. */
6551
d1dfb56c 6552reg_errcode_t
d2762c86
DN
6553regexec (const regex_t *__restrict preg, const char *__restrict string,
6554 size_t nmatch, regmatch_t pmatch[__restrict_arr], int eflags)
fa9a63c5 6555{
31011111 6556 regoff_t ret;
fa9a63c5
RM
6557 struct re_registers regs;
6558 regex_t private_preg;
d1dfb56c 6559 size_t len = strlen (string);
c0f9ea08 6560 boolean want_reg_info = !preg->no_sub && nmatch > 0 && pmatch;
fa9a63c5
RM
6561
6562 private_preg = *preg;
5e69f11e 6563
fa9a63c5
RM
6564 private_preg.not_bol = !!(eflags & REG_NOTBOL);
6565 private_preg.not_eol = !!(eflags & REG_NOTEOL);
5e69f11e 6566
fa9a63c5
RM
6567 /* The user has told us exactly how many registers to return
6568 information about, via `nmatch'. We have to pass that on to the
b18215fc 6569 matching routines. */
fa9a63c5 6570 private_preg.regs_allocated = REGS_FIXED;
5e69f11e 6571
fa9a63c5
RM
6572 if (want_reg_info)
6573 {
6574 regs.num_regs = nmatch;
4bb91c68
SM
6575 regs.start = TALLOC (nmatch * 2, regoff_t);
6576 if (regs.start == NULL)
d1dfb56c 6577 return REG_NOMATCH;
4bb91c68 6578 regs.end = regs.start + nmatch;
fa9a63c5
RM
6579 }
6580
c0f9ea08
SM
6581 /* Instead of using not_eol to implement REG_NOTEOL, we could simply
6582 pass (&private_preg, string, len + 1, 0, len, ...) pretending the string
6583 was a little bit longer but still only matching the real part.
6584 This works because the `endline' will check for a '\n' and will find a
6585 '\0', correctly deciding that this is not the end of a line.
6586 But it doesn't work out so nicely for REG_NOTBOL, since we don't have
6587 a convenient '\0' there. For all we know, the string could be preceded
6588 by '\n' which would throw things off. */
6589
fa9a63c5
RM
6590 /* Perform the searching operation. */
6591 ret = re_search (&private_preg, string, len,
0b32bf0e
SM
6592 /* start: */ 0, /* range: */ len,
6593 want_reg_info ? &regs : (struct re_registers *) 0);
5e69f11e 6594
fa9a63c5
RM
6595 /* Copy the register information to the POSIX structure. */
6596 if (want_reg_info)
6597 {
6598 if (ret >= 0)
0b32bf0e
SM
6599 {
6600 unsigned r;
fa9a63c5 6601
0b32bf0e
SM
6602 for (r = 0; r < nmatch; r++)
6603 {
6604 pmatch[r].rm_so = regs.start[r];
6605 pmatch[r].rm_eo = regs.end[r];
6606 }
6607 }
fa9a63c5 6608
b18215fc 6609 /* If we needed the temporary register info, free the space now. */
fa9a63c5 6610 free (regs.start);
fa9a63c5
RM
6611 }
6612
6613 /* We want zero return to mean success, unlike `re_search'. */
d1dfb56c 6614 return ret >= 0 ? REG_NOERROR : REG_NOMATCH;
fa9a63c5 6615}
c0f9ea08 6616WEAK_ALIAS (__regexec, regexec)
fa9a63c5
RM
6617
6618
ec869672
JR
6619/* Returns a message corresponding to an error code, ERR_CODE, returned
6620 from either regcomp or regexec. We don't use PREG here.
6621
6622 ERR_CODE was previously called ERRCODE, but that name causes an
6623 error with msvc8 compiler. */
fa9a63c5
RM
6624
6625size_t
d2762c86 6626regerror (int err_code, const regex_t *preg, char *errbuf, size_t errbuf_size)
fa9a63c5
RM
6627{
6628 const char *msg;
6629 size_t msg_size;
6630
ec869672
JR
6631 if (err_code < 0
6632 || err_code >= (sizeof (re_error_msgid) / sizeof (re_error_msgid[0])))
5e69f11e 6633 /* Only error codes returned by the rest of the code should be passed
b18215fc 6634 to this routine. If we are given anything else, or if other regex
fa9a63c5
RM
6635 code generates an invalid error code, then the program has a bug.
6636 Dump core so we can fix it. */
6637 abort ();
6638
ec869672 6639 msg = gettext (re_error_msgid[err_code]);
fa9a63c5
RM
6640
6641 msg_size = strlen (msg) + 1; /* Includes the null. */
5e69f11e 6642
fa9a63c5
RM
6643 if (errbuf_size != 0)
6644 {
6645 if (msg_size > errbuf_size)
0b32bf0e
SM
6646 {
6647 strncpy (errbuf, msg, errbuf_size - 1);
6648 errbuf[errbuf_size - 1] = 0;
6649 }
fa9a63c5 6650 else
0b32bf0e 6651 strcpy (errbuf, msg);
fa9a63c5
RM
6652 }
6653
6654 return msg_size;
6655}
c0f9ea08 6656WEAK_ALIAS (__regerror, regerror)
fa9a63c5
RM
6657
6658
6659/* Free dynamically allocated space used by PREG. */
6660
6661void
d2762c86 6662regfree (regex_t *preg)
fa9a63c5 6663{
c2cd06e6 6664 free (preg->buffer);
fa9a63c5 6665 preg->buffer = NULL;
5e69f11e 6666
fa9a63c5
RM
6667 preg->allocated = 0;
6668 preg->used = 0;
6669
c2cd06e6 6670 free (preg->fastmap);
fa9a63c5
RM
6671 preg->fastmap = NULL;
6672 preg->fastmap_accurate = 0;
6673
c2cd06e6 6674 free (preg->translate);
fa9a63c5
RM
6675 preg->translate = NULL;
6676}
c0f9ea08 6677WEAK_ALIAS (__regfree, regfree)
fa9a63c5
RM
6678
6679#endif /* not emacs */