(Fexpand_file_name): Fix previous change.
[bpt/emacs.git] / src / regex.c
CommitLineData
e318085a 1/* Extended regular expression matching and search library, version
0b32bf0e 2 0.12. (Implements POSIX draft P1003.2/D11.2, except for some of the
bc78d348
KB
3 internationalization features.)
4
4bb91c68 5 Copyright (C) 1993,94,95,96,97,98,99,2000 Free Software Foundation, Inc.
bc78d348 6
fa9a63c5
RM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
25fe55af 14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
fa9a63c5
RM
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
ba4a8e51 19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307,
25fe55af 20 USA. */
fa9a63c5 21
6df42991 22/* TODO:
505bde11 23 - structure the opcode space into opcode+flag.
dc1e502d 24 - merge with glibc's regex.[ch].
01618498 25 - replace (succeed_n + jump_n + set_number_at) with something that doesn't
6dcf2d0e
SM
26 need to modify the compiled regexp so that re_match can be reentrant.
27 - get rid of on_failure_jump_smart by doing the optimization in re_comp
28 rather than at run-time, so that re_match can be reentrant.
01618498 29*/
505bde11 30
fa9a63c5 31/* AIX requires this to be the first thing in the file. */
0b32bf0e 32#if defined _AIX && !defined REGEX_MALLOC
fa9a63c5
RM
33 #pragma alloca
34#endif
35
fa9a63c5 36#ifdef HAVE_CONFIG_H
0b32bf0e 37# include <config.h>
fa9a63c5
RM
38#endif
39
4bb91c68
SM
40#if defined STDC_HEADERS && !defined emacs
41# include <stddef.h>
42#else
43/* We need this for `regex.h', and perhaps for the Emacs include files. */
44# include <sys/types.h>
45#endif
fa9a63c5 46
14473664
SM
47/* Whether to use ISO C Amendment 1 wide char functions.
48 Those should not be used for Emacs since it uses its own. */
5e5388f6
GM
49#if defined _LIBC
50#define WIDE_CHAR_SUPPORT 1
51#else
14473664 52#define WIDE_CHAR_SUPPORT \
5e5388f6
GM
53 (HAVE_WCTYPE_H && HAVE_WCHAR_H && HAVE_BTOWC && !emacs)
54#endif
14473664
SM
55
56/* For platform which support the ISO C amendement 1 functionality we
57 support user defined character classes. */
a0ad02f7 58#if WIDE_CHAR_SUPPORT
14473664
SM
59/* Solaris 2.5 has a bug: <wchar.h> must be included before <wctype.h>. */
60# include <wchar.h>
61# include <wctype.h>
62#endif
63
c0f9ea08
SM
64#ifdef _LIBC
65/* We have to keep the namespace clean. */
66# define regfree(preg) __regfree (preg)
67# define regexec(pr, st, nm, pm, ef) __regexec (pr, st, nm, pm, ef)
68# define regcomp(preg, pattern, cflags) __regcomp (preg, pattern, cflags)
69# define regerror(errcode, preg, errbuf, errbuf_size) \
70 __regerror(errcode, preg, errbuf, errbuf_size)
71# define re_set_registers(bu, re, nu, st, en) \
72 __re_set_registers (bu, re, nu, st, en)
73# define re_match_2(bufp, string1, size1, string2, size2, pos, regs, stop) \
74 __re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
75# define re_match(bufp, string, size, pos, regs) \
76 __re_match (bufp, string, size, pos, regs)
77# define re_search(bufp, string, size, startpos, range, regs) \
78 __re_search (bufp, string, size, startpos, range, regs)
79# define re_compile_pattern(pattern, length, bufp) \
80 __re_compile_pattern (pattern, length, bufp)
81# define re_set_syntax(syntax) __re_set_syntax (syntax)
82# define re_search_2(bufp, st1, s1, st2, s2, startpos, range, regs, stop) \
83 __re_search_2 (bufp, st1, s1, st2, s2, startpos, range, regs, stop)
84# define re_compile_fastmap(bufp) __re_compile_fastmap (bufp)
85
14473664
SM
86/* Make sure we call libc's function even if the user overrides them. */
87# define btowc __btowc
88# define iswctype __iswctype
89# define wctype __wctype
90
c0f9ea08
SM
91# define WEAK_ALIAS(a,b) weak_alias (a, b)
92
93/* We are also using some library internals. */
94# include <locale/localeinfo.h>
95# include <locale/elem-hash.h>
96# include <langinfo.h>
97#else
98# define WEAK_ALIAS(a,b)
99#endif
100
4bb91c68 101/* This is for other GNU distributions with internationalized messages. */
0b32bf0e 102#if HAVE_LIBINTL_H || defined _LIBC
fa9a63c5
RM
103# include <libintl.h>
104#else
105# define gettext(msgid) (msgid)
106#endif
107
5e69f11e
RM
108#ifndef gettext_noop
109/* This define is so xgettext can find the internationalizable
110 strings. */
0b32bf0e 111# define gettext_noop(String) String
5e69f11e
RM
112#endif
113
fa9a63c5
RM
114/* The `emacs' switch turns on certain matching commands
115 that make sense only in Emacs. */
116#ifdef emacs
117
0b32bf0e
SM
118# include "lisp.h"
119# include "buffer.h"
b18215fc
RS
120
121/* Make syntax table lookup grant data in gl_state. */
0b32bf0e 122# define SYNTAX_ENTRY_VIA_PROPERTY
b18215fc 123
0b32bf0e
SM
124# include "syntax.h"
125# include "charset.h"
126# include "category.h"
fa9a63c5 127
7689ef0b
EZ
128# ifdef malloc
129# undef malloc
130# endif
0b32bf0e 131# define malloc xmalloc
7689ef0b
EZ
132# ifdef realloc
133# undef realloc
134# endif
0b32bf0e 135# define realloc xrealloc
7689ef0b
EZ
136# ifdef free
137# undef free
138# endif
0b32bf0e 139# define free xfree
9abbd165 140
0b32bf0e
SM
141/* Converts the pointer to the char to BEG-based offset from the start. */
142# define PTR_TO_OFFSET(d) POS_AS_IN_BUFFER (POINTER_TO_OFFSET (d))
143# define POS_AS_IN_BUFFER(p) ((p) + (NILP (re_match_object) || BUFFERP (re_match_object)))
144
145# define RE_MULTIBYTE_P(bufp) ((bufp)->multibyte)
146# define RE_STRING_CHAR(p, s) \
4e8a9132 147 (multibyte ? (STRING_CHAR (p, s)) : (*(p)))
0b32bf0e 148# define RE_STRING_CHAR_AND_LENGTH(p, s, len) \
2d1675e4
SM
149 (multibyte ? (STRING_CHAR_AND_LENGTH (p, s, len)) : ((len) = 1, *(p)))
150
151/* Set C a (possibly multibyte) character before P. P points into a
152 string which is the virtual concatenation of STR1 (which ends at
153 END1) or STR2 (which ends at END2). */
0b32bf0e 154# define GET_CHAR_BEFORE_2(c, p, str1, end1, str2, end2) \
2d1675e4
SM
155 do { \
156 if (multibyte) \
157 { \
0b32bf0e
SM
158 re_char *dtemp = (p) == (str2) ? (end1) : (p); \
159 re_char *dlimit = ((p) > (str2) && (p) <= (end2)) ? (str2) : (str1); \
70806df6
KH
160 re_char *d0 = dtemp; \
161 PREV_CHAR_BOUNDARY (d0, dlimit); \
162 c = STRING_CHAR (d0, dtemp - d0); \
2d1675e4
SM
163 } \
164 else \
165 (c = ((p) == (str2) ? (end1) : (p))[-1]); \
166 } while (0)
167
4e8a9132 168
fa9a63c5
RM
169#else /* not emacs */
170
171/* If we are not linking with Emacs proper,
172 we can't use the relocating allocator
173 even if config.h says that we can. */
0b32bf0e 174# undef REL_ALLOC
fa9a63c5 175
0b32bf0e
SM
176# if defined STDC_HEADERS || defined _LIBC
177# include <stdlib.h>
178# else
fa9a63c5
RM
179char *malloc ();
180char *realloc ();
0b32bf0e 181# endif
fa9a63c5 182
9e4ecb26 183/* When used in Emacs's lib-src, we need to get bzero and bcopy somehow.
4bb91c68 184 If nothing else has been done, use the method below. */
0b32bf0e
SM
185# ifdef INHIBIT_STRING_HEADER
186# if !(defined HAVE_BZERO && defined HAVE_BCOPY)
187# if !defined bzero && !defined bcopy
188# undef INHIBIT_STRING_HEADER
189# endif
190# endif
191# endif
9e4ecb26 192
4bb91c68 193/* This is the normal way of making sure we have memcpy, memcmp and bzero.
9e4ecb26
KH
194 This is used in most programs--a few other programs avoid this
195 by defining INHIBIT_STRING_HEADER. */
0b32bf0e
SM
196# ifndef INHIBIT_STRING_HEADER
197# if defined HAVE_STRING_H || defined STDC_HEADERS || defined _LIBC
198# include <string.h>
0b32bf0e 199# ifndef bzero
4bb91c68
SM
200# ifndef _LIBC
201# define bzero(s, n) (memset (s, '\0', n), (s))
202# else
203# define bzero(s, n) __bzero (s, n)
204# endif
0b32bf0e
SM
205# endif
206# else
207# include <strings.h>
4bb91c68
SM
208# ifndef memcmp
209# define memcmp(s1, s2, n) bcmp (s1, s2, n)
210# endif
211# ifndef memcpy
212# define memcpy(d, s, n) (bcopy (s, d, n), (d))
213# endif
0b32bf0e
SM
214# endif
215# endif
fa9a63c5
RM
216
217/* Define the syntax stuff for \<, \>, etc. */
218
990b2375
SM
219/* Sword must be nonzero for the wordchar pattern commands in re_match_2. */
220enum syntaxcode { Swhitespace = 0, Sword = 1 };
fa9a63c5 221
0b32bf0e
SM
222# ifdef SWITCH_ENUM_BUG
223# define SWITCH_ENUM_CAST(x) ((int)(x))
224# else
225# define SWITCH_ENUM_CAST(x) (x)
226# endif
fa9a63c5 227
e934739e 228/* Dummy macros for non-Emacs environments. */
0b32bf0e
SM
229# define BASE_LEADING_CODE_P(c) (0)
230# define CHAR_CHARSET(c) 0
231# define CHARSET_LEADING_CODE_BASE(c) 0
232# define MAX_MULTIBYTE_LENGTH 1
233# define RE_MULTIBYTE_P(x) 0
234# define WORD_BOUNDARY_P(c1, c2) (0)
235# define CHAR_HEAD_P(p) (1)
236# define SINGLE_BYTE_CHAR_P(c) (1)
237# define SAME_CHARSET_P(c1, c2) (1)
238# define MULTIBYTE_FORM_LENGTH(p, s) (1)
70806df6 239# define PREV_CHAR_BOUNDARY(p, limit) ((p)--)
0b32bf0e
SM
240# define STRING_CHAR(p, s) (*(p))
241# define RE_STRING_CHAR STRING_CHAR
242# define CHAR_STRING(c, s) (*(s) = (c), 1)
243# define STRING_CHAR_AND_LENGTH(p, s, actual_len) ((actual_len) = 1, *(p))
244# define RE_STRING_CHAR_AND_LENGTH STRING_CHAR_AND_LENGTH
245# define GET_CHAR_BEFORE_2(c, p, str1, end1, str2, end2) \
b18215fc 246 (c = ((p) == (str2) ? *((end1) - 1) : *((p) - 1)))
0b32bf0e 247# define MAKE_CHAR(charset, c1, c2) (c1)
fa9a63c5 248#endif /* not emacs */
4e8a9132
SM
249
250#ifndef RE_TRANSLATE
0b32bf0e
SM
251# define RE_TRANSLATE(TBL, C) ((unsigned char)(TBL)[C])
252# define RE_TRANSLATE_P(TBL) (TBL)
4e8a9132 253#endif
fa9a63c5
RM
254\f
255/* Get the interface, including the syntax bits. */
256#include "regex.h"
257
f71b19b6
DL
258/* isalpha etc. are used for the character classes. */
259#include <ctype.h>
fa9a63c5 260
f71b19b6 261#ifdef emacs
fa9a63c5 262
f71b19b6 263/* 1 if C is an ASCII character. */
0b32bf0e 264# define IS_REAL_ASCII(c) ((c) < 0200)
fa9a63c5 265
f71b19b6 266/* 1 if C is a unibyte character. */
0b32bf0e 267# define ISUNIBYTE(c) (SINGLE_BYTE_CHAR_P ((c)))
96cc36cc 268
f71b19b6 269/* The Emacs definitions should not be directly affected by locales. */
96cc36cc 270
f71b19b6 271/* In Emacs, these are only used for single-byte characters. */
0b32bf0e
SM
272# define ISDIGIT(c) ((c) >= '0' && (c) <= '9')
273# define ISCNTRL(c) ((c) < ' ')
274# define ISXDIGIT(c) (((c) >= '0' && (c) <= '9') \
f71b19b6
DL
275 || ((c) >= 'a' && (c) <= 'f') \
276 || ((c) >= 'A' && (c) <= 'F'))
96cc36cc
RS
277
278/* This is only used for single-byte characters. */
0b32bf0e 279# define ISBLANK(c) ((c) == ' ' || (c) == '\t')
96cc36cc
RS
280
281/* The rest must handle multibyte characters. */
282
0b32bf0e 283# define ISGRAPH(c) (SINGLE_BYTE_CHAR_P (c) \
f71b19b6 284 ? (c) > ' ' && !((c) >= 0177 && (c) <= 0237) \
96cc36cc
RS
285 : 1)
286
14473664 287# define ISPRINT(c) (SINGLE_BYTE_CHAR_P (c) \
f71b19b6 288 ? (c) >= ' ' && !((c) >= 0177 && (c) <= 0237) \
96cc36cc
RS
289 : 1)
290
0b32bf0e 291# define ISALNUM(c) (IS_REAL_ASCII (c) \
f71b19b6
DL
292 ? (((c) >= 'a' && (c) <= 'z') \
293 || ((c) >= 'A' && (c) <= 'Z') \
294 || ((c) >= '0' && (c) <= '9')) \
96cc36cc
RS
295 : SYNTAX (c) == Sword)
296
0b32bf0e 297# define ISALPHA(c) (IS_REAL_ASCII (c) \
f71b19b6
DL
298 ? (((c) >= 'a' && (c) <= 'z') \
299 || ((c) >= 'A' && (c) <= 'Z')) \
96cc36cc
RS
300 : SYNTAX (c) == Sword)
301
0b32bf0e 302# define ISLOWER(c) (LOWERCASEP (c))
96cc36cc 303
0b32bf0e 304# define ISPUNCT(c) (IS_REAL_ASCII (c) \
f71b19b6
DL
305 ? ((c) > ' ' && (c) < 0177 \
306 && !(((c) >= 'a' && (c) <= 'z') \
4bb91c68
SM
307 || ((c) >= 'A' && (c) <= 'Z') \
308 || ((c) >= '0' && (c) <= '9'))) \
96cc36cc
RS
309 : SYNTAX (c) != Sword)
310
0b32bf0e 311# define ISSPACE(c) (SYNTAX (c) == Swhitespace)
96cc36cc 312
0b32bf0e 313# define ISUPPER(c) (UPPERCASEP (c))
96cc36cc 314
0b32bf0e 315# define ISWORD(c) (SYNTAX (c) == Sword)
96cc36cc
RS
316
317#else /* not emacs */
318
f71b19b6
DL
319/* Jim Meyering writes:
320
321 "... Some ctype macros are valid only for character codes that
322 isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when
323 using /bin/cc or gcc but without giving an ansi option). So, all
4bb91c68 324 ctype uses should be through macros like ISPRINT... If
f71b19b6
DL
325 STDC_HEADERS is defined, then autoconf has verified that the ctype
326 macros don't need to be guarded with references to isascii. ...
327 Defining isascii to 1 should let any compiler worth its salt
4bb91c68
SM
328 eliminate the && through constant folding."
329 Solaris defines some of these symbols so we must undefine them first. */
f71b19b6 330
4bb91c68 331# undef ISASCII
0b32bf0e
SM
332# if defined STDC_HEADERS || (!defined isascii && !defined HAVE_ISASCII)
333# define ISASCII(c) 1
334# else
335# define ISASCII(c) isascii(c)
336# endif
f71b19b6
DL
337
338/* 1 if C is an ASCII character. */
0b32bf0e 339# define IS_REAL_ASCII(c) ((c) < 0200)
f71b19b6
DL
340
341/* This distinction is not meaningful, except in Emacs. */
0b32bf0e
SM
342# define ISUNIBYTE(c) 1
343
344# ifdef isblank
345# define ISBLANK(c) (ISASCII (c) && isblank (c))
346# else
347# define ISBLANK(c) ((c) == ' ' || (c) == '\t')
348# endif
349# ifdef isgraph
350# define ISGRAPH(c) (ISASCII (c) && isgraph (c))
351# else
352# define ISGRAPH(c) (ISASCII (c) && isprint (c) && !isspace (c))
353# endif
354
4bb91c68 355# undef ISPRINT
0b32bf0e
SM
356# define ISPRINT(c) (ISASCII (c) && isprint (c))
357# define ISDIGIT(c) (ISASCII (c) && isdigit (c))
358# define ISALNUM(c) (ISASCII (c) && isalnum (c))
359# define ISALPHA(c) (ISASCII (c) && isalpha (c))
360# define ISCNTRL(c) (ISASCII (c) && iscntrl (c))
361# define ISLOWER(c) (ISASCII (c) && islower (c))
362# define ISPUNCT(c) (ISASCII (c) && ispunct (c))
363# define ISSPACE(c) (ISASCII (c) && isspace (c))
364# define ISUPPER(c) (ISASCII (c) && isupper (c))
365# define ISXDIGIT(c) (ISASCII (c) && isxdigit (c))
366
367# define ISWORD(c) ISALPHA(c)
368
4bb91c68
SM
369# ifdef _tolower
370# define TOLOWER(c) _tolower(c)
371# else
372# define TOLOWER(c) tolower(c)
373# endif
374
375/* How many characters in the character set. */
376# define CHAR_SET_SIZE 256
377
0b32bf0e 378# ifdef SYNTAX_TABLE
f71b19b6 379
0b32bf0e 380extern char *re_syntax_table;
f71b19b6 381
0b32bf0e
SM
382# else /* not SYNTAX_TABLE */
383
0b32bf0e
SM
384static char re_syntax_table[CHAR_SET_SIZE];
385
386static void
387init_syntax_once ()
388{
389 register int c;
390 static int done = 0;
391
392 if (done)
393 return;
394
395 bzero (re_syntax_table, sizeof re_syntax_table);
396
4bb91c68
SM
397 for (c = 0; c < CHAR_SET_SIZE; ++c)
398 if (ISALNUM (c))
399 re_syntax_table[c] = Sword;
fa9a63c5 400
0b32bf0e 401 re_syntax_table['_'] = Sword;
fa9a63c5 402
0b32bf0e
SM
403 done = 1;
404}
405
406# endif /* not SYNTAX_TABLE */
96cc36cc 407
4bb91c68
SM
408# define SYNTAX(c) re_syntax_table[(c)]
409
96cc36cc
RS
410#endif /* not emacs */
411\f
fa9a63c5 412#ifndef NULL
0b32bf0e 413# define NULL (void *)0
fa9a63c5
RM
414#endif
415
416/* We remove any previous definition of `SIGN_EXTEND_CHAR',
417 since ours (we hope) works properly with all combinations of
418 machines, compilers, `char' and `unsigned char' argument types.
4bb91c68 419 (Per Bothner suggested the basic approach.) */
fa9a63c5
RM
420#undef SIGN_EXTEND_CHAR
421#if __STDC__
0b32bf0e 422# define SIGN_EXTEND_CHAR(c) ((signed char) (c))
fa9a63c5
RM
423#else /* not __STDC__ */
424/* As in Harbison and Steele. */
0b32bf0e 425# define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
fa9a63c5
RM
426#endif
427\f
428/* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we
429 use `alloca' instead of `malloc'. This is because using malloc in
430 re_search* or re_match* could cause memory leaks when C-g is used in
431 Emacs; also, malloc is slower and causes storage fragmentation. On
5e69f11e
RM
432 the other hand, malloc is more portable, and easier to debug.
433
fa9a63c5
RM
434 Because we sometimes use alloca, some routines have to be macros,
435 not functions -- `alloca'-allocated space disappears at the end of the
436 function it is called in. */
437
438#ifdef REGEX_MALLOC
439
0b32bf0e
SM
440# define REGEX_ALLOCATE malloc
441# define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
442# define REGEX_FREE free
fa9a63c5
RM
443
444#else /* not REGEX_MALLOC */
445
446/* Emacs already defines alloca, sometimes. */
0b32bf0e 447# ifndef alloca
fa9a63c5
RM
448
449/* Make alloca work the best possible way. */
0b32bf0e
SM
450# ifdef __GNUC__
451# define alloca __builtin_alloca
452# else /* not __GNUC__ */
453# if HAVE_ALLOCA_H
454# include <alloca.h>
455# endif /* HAVE_ALLOCA_H */
456# endif /* not __GNUC__ */
fa9a63c5 457
0b32bf0e 458# endif /* not alloca */
fa9a63c5 459
0b32bf0e 460# define REGEX_ALLOCATE alloca
fa9a63c5
RM
461
462/* Assumes a `char *destination' variable. */
0b32bf0e 463# define REGEX_REALLOCATE(source, osize, nsize) \
fa9a63c5 464 (destination = (char *) alloca (nsize), \
4bb91c68 465 memcpy (destination, source, osize))
fa9a63c5
RM
466
467/* No need to do anything to free, after alloca. */
0b32bf0e 468# define REGEX_FREE(arg) ((void)0) /* Do nothing! But inhibit gcc warning. */
fa9a63c5
RM
469
470#endif /* not REGEX_MALLOC */
471
472/* Define how to allocate the failure stack. */
473
0b32bf0e 474#if defined REL_ALLOC && defined REGEX_MALLOC
4297555e 475
0b32bf0e 476# define REGEX_ALLOCATE_STACK(size) \
fa9a63c5 477 r_alloc (&failure_stack_ptr, (size))
0b32bf0e 478# define REGEX_REALLOCATE_STACK(source, osize, nsize) \
fa9a63c5 479 r_re_alloc (&failure_stack_ptr, (nsize))
0b32bf0e 480# define REGEX_FREE_STACK(ptr) \
fa9a63c5
RM
481 r_alloc_free (&failure_stack_ptr)
482
4297555e 483#else /* not using relocating allocator */
fa9a63c5 484
0b32bf0e 485# ifdef REGEX_MALLOC
fa9a63c5 486
0b32bf0e
SM
487# define REGEX_ALLOCATE_STACK malloc
488# define REGEX_REALLOCATE_STACK(source, osize, nsize) realloc (source, nsize)
489# define REGEX_FREE_STACK free
fa9a63c5 490
0b32bf0e 491# else /* not REGEX_MALLOC */
fa9a63c5 492
0b32bf0e 493# define REGEX_ALLOCATE_STACK alloca
fa9a63c5 494
0b32bf0e 495# define REGEX_REALLOCATE_STACK(source, osize, nsize) \
fa9a63c5 496 REGEX_REALLOCATE (source, osize, nsize)
25fe55af 497/* No need to explicitly free anything. */
0b32bf0e 498# define REGEX_FREE_STACK(arg) ((void)0)
fa9a63c5 499
0b32bf0e 500# endif /* not REGEX_MALLOC */
4297555e 501#endif /* not using relocating allocator */
fa9a63c5
RM
502
503
504/* True if `size1' is non-NULL and PTR is pointing anywhere inside
505 `string1' or just past its end. This works if PTR is NULL, which is
506 a good thing. */
25fe55af 507#define FIRST_STRING_P(ptr) \
fa9a63c5
RM
508 (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
509
510/* (Re)Allocate N items of type T using malloc, or fail. */
511#define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
512#define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
513#define RETALLOC_IF(addr, n, t) \
514 if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t)
515#define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
516
4bb91c68 517#define BYTEWIDTH 8 /* In bits. */
fa9a63c5
RM
518
519#define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
520
521#undef MAX
522#undef MIN
523#define MAX(a, b) ((a) > (b) ? (a) : (b))
524#define MIN(a, b) ((a) < (b) ? (a) : (b))
525
66f0296e
SM
526/* Type of source-pattern and string chars. */
527typedef const unsigned char re_char;
528
fa9a63c5
RM
529typedef char boolean;
530#define false 0
531#define true 1
532
4bb91c68
SM
533static int re_match_2_internal _RE_ARGS ((struct re_pattern_buffer *bufp,
534 re_char *string1, int size1,
535 re_char *string2, int size2,
536 int pos,
537 struct re_registers *regs,
538 int stop));
fa9a63c5
RM
539\f
540/* These are the command codes that appear in compiled regular
4bb91c68 541 expressions. Some opcodes are followed by argument bytes. A
fa9a63c5
RM
542 command code can specify any interpretation whatsoever for its
543 arguments. Zero bytes may appear in the compiled regular expression. */
544
545typedef enum
546{
547 no_op = 0,
548
4bb91c68 549 /* Succeed right away--no more backtracking. */
fa9a63c5
RM
550 succeed,
551
25fe55af 552 /* Followed by one byte giving n, then by n literal bytes. */
fa9a63c5
RM
553 exactn,
554
25fe55af 555 /* Matches any (more or less) character. */
fa9a63c5
RM
556 anychar,
557
25fe55af
RS
558 /* Matches any one char belonging to specified set. First
559 following byte is number of bitmap bytes. Then come bytes
560 for a bitmap saying which chars are in. Bits in each byte
561 are ordered low-bit-first. A character is in the set if its
562 bit is 1. A character too large to have a bit in the map is
96cc36cc
RS
563 automatically not in the set.
564
565 If the length byte has the 0x80 bit set, then that stuff
566 is followed by a range table:
567 2 bytes of flags for character sets (low 8 bits, high 8 bits)
0b32bf0e 568 See RANGE_TABLE_WORK_BITS below.
01618498 569 2 bytes, the number of pairs that follow (upto 32767)
96cc36cc 570 pairs, each 2 multibyte characters,
0b32bf0e 571 each multibyte character represented as 3 bytes. */
fa9a63c5
RM
572 charset,
573
25fe55af 574 /* Same parameters as charset, but match any character that is
4bb91c68 575 not one of those specified. */
fa9a63c5
RM
576 charset_not,
577
25fe55af
RS
578 /* Start remembering the text that is matched, for storing in a
579 register. Followed by one byte with the register number, in
580 the range 0 to one less than the pattern buffer's re_nsub
505bde11 581 field. */
fa9a63c5
RM
582 start_memory,
583
25fe55af
RS
584 /* Stop remembering the text that is matched and store it in a
585 memory register. Followed by one byte with the register
586 number, in the range 0 to one less than `re_nsub' in the
505bde11 587 pattern buffer. */
fa9a63c5
RM
588 stop_memory,
589
25fe55af 590 /* Match a duplicate of something remembered. Followed by one
4bb91c68 591 byte containing the register number. */
fa9a63c5
RM
592 duplicate,
593
25fe55af 594 /* Fail unless at beginning of line. */
fa9a63c5
RM
595 begline,
596
4bb91c68 597 /* Fail unless at end of line. */
fa9a63c5
RM
598 endline,
599
25fe55af
RS
600 /* Succeeds if at beginning of buffer (if emacs) or at beginning
601 of string to be matched (if not). */
fa9a63c5
RM
602 begbuf,
603
25fe55af 604 /* Analogously, for end of buffer/string. */
fa9a63c5 605 endbuf,
5e69f11e 606
25fe55af 607 /* Followed by two byte relative address to which to jump. */
5e69f11e 608 jump,
fa9a63c5 609
25fe55af
RS
610 /* Followed by two-byte relative address of place to resume at
611 in case of failure. */
fa9a63c5 612 on_failure_jump,
5e69f11e 613
25fe55af
RS
614 /* Like on_failure_jump, but pushes a placeholder instead of the
615 current string position when executed. */
fa9a63c5 616 on_failure_keep_string_jump,
5e69f11e 617
505bde11
SM
618 /* Just like `on_failure_jump', except that it checks that we
619 don't get stuck in an infinite loop (matching an empty string
620 indefinitely). */
621 on_failure_jump_loop,
622
0683b6fa
SM
623 /* Just like `on_failure_jump_loop', except that it checks for
624 a different kind of loop (the kind that shows up with non-greedy
625 operators). This operation has to be immediately preceded
626 by a `no_op'. */
627 on_failure_jump_nastyloop,
628
0b32bf0e 629 /* A smart `on_failure_jump' used for greedy * and + operators.
505bde11
SM
630 It analyses the loop before which it is put and if the
631 loop does not require backtracking, it changes itself to
4e8a9132
SM
632 `on_failure_keep_string_jump' and short-circuits the loop,
633 else it just defaults to changing itself into `on_failure_jump'.
634 It assumes that it is pointing to just past a `jump'. */
505bde11 635 on_failure_jump_smart,
fa9a63c5 636
25fe55af 637 /* Followed by two-byte relative address and two-byte number n.
ed0767d8
SM
638 After matching N times, jump to the address upon failure.
639 Does not work if N starts at 0: use on_failure_jump_loop
640 instead. */
fa9a63c5
RM
641 succeed_n,
642
25fe55af
RS
643 /* Followed by two-byte relative address, and two-byte number n.
644 Jump to the address N times, then fail. */
fa9a63c5
RM
645 jump_n,
646
25fe55af
RS
647 /* Set the following two-byte relative address to the
648 subsequent two-byte number. The address *includes* the two
649 bytes of number. */
fa9a63c5
RM
650 set_number_at,
651
fa9a63c5
RM
652 wordbeg, /* Succeeds if at word beginning. */
653 wordend, /* Succeeds if at word end. */
654
655 wordbound, /* Succeeds if at a word boundary. */
1fb352e0 656 notwordbound, /* Succeeds if not at a word boundary. */
fa9a63c5
RM
657
658 /* Matches any character whose syntax is specified. Followed by
25fe55af 659 a byte which contains a syntax code, e.g., Sword. */
fa9a63c5
RM
660 syntaxspec,
661
662 /* Matches any character whose syntax is not that specified. */
1fb352e0
SM
663 notsyntaxspec
664
665#ifdef emacs
666 ,before_dot, /* Succeeds if before point. */
667 at_dot, /* Succeeds if at point. */
668 after_dot, /* Succeeds if after point. */
b18215fc
RS
669
670 /* Matches any character whose category-set contains the specified
25fe55af
RS
671 category. The operator is followed by a byte which contains a
672 category code (mnemonic ASCII character). */
b18215fc
RS
673 categoryspec,
674
675 /* Matches any character whose category-set does not contain the
676 specified category. The operator is followed by a byte which
677 contains the category code (mnemonic ASCII character). */
678 notcategoryspec
fa9a63c5
RM
679#endif /* emacs */
680} re_opcode_t;
681\f
682/* Common operations on the compiled pattern. */
683
684/* Store NUMBER in two contiguous bytes starting at DESTINATION. */
685
686#define STORE_NUMBER(destination, number) \
687 do { \
688 (destination)[0] = (number) & 0377; \
689 (destination)[1] = (number) >> 8; \
690 } while (0)
691
692/* Same as STORE_NUMBER, except increment DESTINATION to
693 the byte after where the number is stored. Therefore, DESTINATION
694 must be an lvalue. */
695
696#define STORE_NUMBER_AND_INCR(destination, number) \
697 do { \
698 STORE_NUMBER (destination, number); \
699 (destination) += 2; \
700 } while (0)
701
702/* Put into DESTINATION a number stored in two contiguous bytes starting
703 at SOURCE. */
704
705#define EXTRACT_NUMBER(destination, source) \
706 do { \
707 (destination) = *(source) & 0377; \
708 (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8; \
709 } while (0)
710
711#ifdef DEBUG
4bb91c68 712static void extract_number _RE_ARGS ((int *dest, re_char *source));
fa9a63c5
RM
713static void
714extract_number (dest, source)
715 int *dest;
01618498 716 re_char *source;
fa9a63c5 717{
5e69f11e 718 int temp = SIGN_EXTEND_CHAR (*(source + 1));
fa9a63c5
RM
719 *dest = *source & 0377;
720 *dest += temp << 8;
721}
722
4bb91c68 723# ifndef EXTRACT_MACROS /* To debug the macros. */
0b32bf0e
SM
724# undef EXTRACT_NUMBER
725# define EXTRACT_NUMBER(dest, src) extract_number (&dest, src)
726# endif /* not EXTRACT_MACROS */
fa9a63c5
RM
727
728#endif /* DEBUG */
729
730/* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
731 SOURCE must be an lvalue. */
732
733#define EXTRACT_NUMBER_AND_INCR(destination, source) \
734 do { \
735 EXTRACT_NUMBER (destination, source); \
25fe55af 736 (source) += 2; \
fa9a63c5
RM
737 } while (0)
738
739#ifdef DEBUG
4bb91c68
SM
740static void extract_number_and_incr _RE_ARGS ((int *destination,
741 re_char **source));
fa9a63c5
RM
742static void
743extract_number_and_incr (destination, source)
744 int *destination;
01618498 745 re_char **source;
5e69f11e 746{
fa9a63c5
RM
747 extract_number (destination, *source);
748 *source += 2;
749}
750
0b32bf0e
SM
751# ifndef EXTRACT_MACROS
752# undef EXTRACT_NUMBER_AND_INCR
753# define EXTRACT_NUMBER_AND_INCR(dest, src) \
fa9a63c5 754 extract_number_and_incr (&dest, &src)
0b32bf0e 755# endif /* not EXTRACT_MACROS */
fa9a63c5
RM
756
757#endif /* DEBUG */
758\f
b18215fc
RS
759/* Store a multibyte character in three contiguous bytes starting
760 DESTINATION, and increment DESTINATION to the byte after where the
25fe55af 761 character is stored. Therefore, DESTINATION must be an lvalue. */
b18215fc
RS
762
763#define STORE_CHARACTER_AND_INCR(destination, character) \
764 do { \
765 (destination)[0] = (character) & 0377; \
766 (destination)[1] = ((character) >> 8) & 0377; \
767 (destination)[2] = (character) >> 16; \
768 (destination) += 3; \
769 } while (0)
770
771/* Put into DESTINATION a character stored in three contiguous bytes
25fe55af 772 starting at SOURCE. */
b18215fc
RS
773
774#define EXTRACT_CHARACTER(destination, source) \
775 do { \
776 (destination) = ((source)[0] \
777 | ((source)[1] << 8) \
778 | ((source)[2] << 16)); \
779 } while (0)
780
781
782/* Macros for charset. */
783
784/* Size of bitmap of charset P in bytes. P is a start of charset,
785 i.e. *P is (re_opcode_t) charset or (re_opcode_t) charset_not. */
786#define CHARSET_BITMAP_SIZE(p) ((p)[1] & 0x7F)
787
788/* Nonzero if charset P has range table. */
25fe55af 789#define CHARSET_RANGE_TABLE_EXISTS_P(p) ((p)[1] & 0x80)
b18215fc
RS
790
791/* Return the address of range table of charset P. But not the start
792 of table itself, but the before where the number of ranges is
96cc36cc
RS
793 stored. `2 +' means to skip re_opcode_t and size of bitmap,
794 and the 2 bytes of flags at the start of the range table. */
795#define CHARSET_RANGE_TABLE(p) (&(p)[4 + CHARSET_BITMAP_SIZE (p)])
796
797/* Extract the bit flags that start a range table. */
798#define CHARSET_RANGE_TABLE_BITS(p) \
799 ((p)[2 + CHARSET_BITMAP_SIZE (p)] \
800 + (p)[3 + CHARSET_BITMAP_SIZE (p)] * 0x100)
b18215fc
RS
801
802/* Test if C is listed in the bitmap of charset P. */
803#define CHARSET_LOOKUP_BITMAP(p, c) \
804 ((c) < CHARSET_BITMAP_SIZE (p) * BYTEWIDTH \
805 && (p)[2 + (c) / BYTEWIDTH] & (1 << ((c) % BYTEWIDTH)))
806
807/* Return the address of end of RANGE_TABLE. COUNT is number of
25fe55af
RS
808 ranges (which is a pair of (start, end)) in the RANGE_TABLE. `* 2'
809 is start of range and end of range. `* 3' is size of each start
b18215fc
RS
810 and end. */
811#define CHARSET_RANGE_TABLE_END(range_table, count) \
812 ((range_table) + (count) * 2 * 3)
813
25fe55af 814/* Test if C is in RANGE_TABLE. A flag NOT is negated if C is in.
b18215fc
RS
815 COUNT is number of ranges in RANGE_TABLE. */
816#define CHARSET_LOOKUP_RANGE_TABLE_RAW(not, c, range_table, count) \
817 do \
818 { \
01618498
SM
819 re_wchar_t range_start, range_end; \
820 re_char *p; \
821 re_char *range_table_end \
b18215fc
RS
822 = CHARSET_RANGE_TABLE_END ((range_table), (count)); \
823 \
824 for (p = (range_table); p < range_table_end; p += 2 * 3) \
825 { \
826 EXTRACT_CHARACTER (range_start, p); \
827 EXTRACT_CHARACTER (range_end, p + 3); \
828 \
829 if (range_start <= (c) && (c) <= range_end) \
830 { \
831 (not) = !(not); \
832 break; \
833 } \
834 } \
835 } \
836 while (0)
837
838/* Test if C is in range table of CHARSET. The flag NOT is negated if
839 C is listed in it. */
840#define CHARSET_LOOKUP_RANGE_TABLE(not, c, charset) \
841 do \
842 { \
843 /* Number of ranges in range table. */ \
844 int count; \
01618498
SM
845 re_char *range_table = CHARSET_RANGE_TABLE (charset); \
846 \
b18215fc
RS
847 EXTRACT_NUMBER_AND_INCR (count, range_table); \
848 CHARSET_LOOKUP_RANGE_TABLE_RAW ((not), (c), range_table, count); \
849 } \
850 while (0)
851\f
fa9a63c5
RM
852/* If DEBUG is defined, Regex prints many voluminous messages about what
853 it is doing (if the variable `debug' is nonzero). If linked with the
854 main program in `iregex.c', you can enter patterns and strings
855 interactively. And if linked with the main program in `main.c' and
4bb91c68 856 the other test files, you can run the already-written tests. */
fa9a63c5
RM
857
858#ifdef DEBUG
859
860/* We use standard I/O for debugging. */
0b32bf0e 861# include <stdio.h>
fa9a63c5
RM
862
863/* It is useful to test things that ``must'' be true when debugging. */
0b32bf0e 864# include <assert.h>
fa9a63c5 865
99633e97 866static int debug = -100000;
fa9a63c5 867
0b32bf0e
SM
868# define DEBUG_STATEMENT(e) e
869# define DEBUG_PRINT1(x) if (debug > 0) printf (x)
870# define DEBUG_PRINT2(x1, x2) if (debug > 0) printf (x1, x2)
871# define DEBUG_PRINT3(x1, x2, x3) if (debug > 0) printf (x1, x2, x3)
872# define DEBUG_PRINT4(x1, x2, x3, x4) if (debug > 0) printf (x1, x2, x3, x4)
873# define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \
99633e97 874 if (debug > 0) print_partial_compiled_pattern (s, e)
0b32bf0e 875# define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \
99633e97 876 if (debug > 0) print_double_string (w, s1, sz1, s2, sz2)
fa9a63c5
RM
877
878
879/* Print the fastmap in human-readable form. */
880
881void
882print_fastmap (fastmap)
883 char *fastmap;
884{
885 unsigned was_a_range = 0;
5e69f11e
RM
886 unsigned i = 0;
887
fa9a63c5
RM
888 while (i < (1 << BYTEWIDTH))
889 {
890 if (fastmap[i++])
891 {
892 was_a_range = 0;
25fe55af
RS
893 putchar (i - 1);
894 while (i < (1 << BYTEWIDTH) && fastmap[i])
895 {
896 was_a_range = 1;
897 i++;
898 }
fa9a63c5 899 if (was_a_range)
25fe55af
RS
900 {
901 printf ("-");
902 putchar (i - 1);
903 }
904 }
fa9a63c5 905 }
5e69f11e 906 putchar ('\n');
fa9a63c5
RM
907}
908
909
910/* Print a compiled pattern string in human-readable form, starting at
911 the START pointer into it and ending just before the pointer END. */
912
913void
914print_partial_compiled_pattern (start, end)
01618498
SM
915 re_char *start;
916 re_char *end;
fa9a63c5
RM
917{
918 int mcnt, mcnt2;
01618498
SM
919 re_char *p = start;
920 re_char *pend = end;
fa9a63c5
RM
921
922 if (start == NULL)
923 {
a1a052df 924 fprintf (stderr, "(null)\n");
fa9a63c5
RM
925 return;
926 }
5e69f11e 927
fa9a63c5
RM
928 /* Loop over pattern commands. */
929 while (p < pend)
930 {
a1a052df 931 fprintf (stderr, "%d:\t", p - start);
fa9a63c5
RM
932
933 switch ((re_opcode_t) *p++)
934 {
25fe55af 935 case no_op:
a1a052df 936 fprintf (stderr, "/no_op");
25fe55af 937 break;
fa9a63c5 938
99633e97 939 case succeed:
a1a052df 940 fprintf (stderr, "/succeed");
99633e97
SM
941 break;
942
fa9a63c5
RM
943 case exactn:
944 mcnt = *p++;
a1a052df 945 fprintf (stderr, "/exactn/%d", mcnt);
25fe55af 946 do
fa9a63c5 947 {
a1a052df 948 fprintf (stderr, "/%c", *p++);
25fe55af
RS
949 }
950 while (--mcnt);
951 break;
fa9a63c5
RM
952
953 case start_memory:
a1a052df 954 fprintf (stderr, "/start_memory/%d", *p++);
25fe55af 955 break;
fa9a63c5
RM
956
957 case stop_memory:
a1a052df 958 fprintf (stderr, "/stop_memory/%d", *p++);
25fe55af 959 break;
fa9a63c5
RM
960
961 case duplicate:
a1a052df 962 fprintf (stderr, "/duplicate/%d", *p++);
fa9a63c5
RM
963 break;
964
965 case anychar:
a1a052df 966 fprintf (stderr, "/anychar");
fa9a63c5
RM
967 break;
968
969 case charset:
25fe55af
RS
970 case charset_not:
971 {
972 register int c, last = -100;
fa9a63c5 973 register int in_range = 0;
99633e97
SM
974 int length = CHARSET_BITMAP_SIZE (p - 1);
975 int has_range_table = CHARSET_RANGE_TABLE_EXISTS_P (p - 1);
fa9a63c5 976
a1a052df 977 fprintf (stderr, "/charset [%s",
25fe55af 978 (re_opcode_t) *(p - 1) == charset_not ? "^" : "");
5e69f11e 979
25fe55af 980 assert (p + *p < pend);
fa9a63c5 981
25fe55af 982 for (c = 0; c < 256; c++)
96cc36cc 983 if (c / 8 < length
fa9a63c5
RM
984 && (p[1 + (c/8)] & (1 << (c % 8))))
985 {
986 /* Are we starting a range? */
987 if (last + 1 == c && ! in_range)
988 {
a1a052df 989 fprintf (stderr, "-");
fa9a63c5
RM
990 in_range = 1;
991 }
992 /* Have we broken a range? */
993 else if (last + 1 != c && in_range)
96cc36cc 994 {
a1a052df 995 fprintf (stderr, "%c", last);
fa9a63c5
RM
996 in_range = 0;
997 }
5e69f11e 998
fa9a63c5 999 if (! in_range)
a1a052df 1000 fprintf (stderr, "%c", c);
fa9a63c5
RM
1001
1002 last = c;
25fe55af 1003 }
fa9a63c5
RM
1004
1005 if (in_range)
a1a052df 1006 fprintf (stderr, "%c", last);
fa9a63c5 1007
a1a052df 1008 fprintf (stderr, "]");
fa9a63c5 1009
99633e97 1010 p += 1 + length;
96cc36cc 1011
96cc36cc 1012 if (has_range_table)
99633e97
SM
1013 {
1014 int count;
a1a052df 1015 fprintf (stderr, "has-range-table");
99633e97
SM
1016
1017 /* ??? Should print the range table; for now, just skip it. */
1018 p += 2; /* skip range table bits */
1019 EXTRACT_NUMBER_AND_INCR (count, p);
1020 p = CHARSET_RANGE_TABLE_END (p, count);
1021 }
fa9a63c5
RM
1022 }
1023 break;
1024
1025 case begline:
a1a052df 1026 fprintf (stderr, "/begline");
25fe55af 1027 break;
fa9a63c5
RM
1028
1029 case endline:
a1a052df 1030 fprintf (stderr, "/endline");
25fe55af 1031 break;
fa9a63c5
RM
1032
1033 case on_failure_jump:
25fe55af 1034 extract_number_and_incr (&mcnt, &p);
a1a052df 1035 fprintf (stderr, "/on_failure_jump to %d", p + mcnt - start);
25fe55af 1036 break;
fa9a63c5
RM
1037
1038 case on_failure_keep_string_jump:
25fe55af 1039 extract_number_and_incr (&mcnt, &p);
a1a052df 1040 fprintf (stderr, "/on_failure_keep_string_jump to %d", p + mcnt - start);
25fe55af 1041 break;
fa9a63c5 1042
0683b6fa
SM
1043 case on_failure_jump_nastyloop:
1044 extract_number_and_incr (&mcnt, &p);
a1a052df 1045 fprintf (stderr, "/on_failure_jump_nastyloop to %d", p + mcnt - start);
0683b6fa
SM
1046 break;
1047
505bde11 1048 case on_failure_jump_loop:
fa9a63c5 1049 extract_number_and_incr (&mcnt, &p);
a1a052df 1050 fprintf (stderr, "/on_failure_jump_loop to %d", p + mcnt - start);
5e69f11e
RM
1051 break;
1052
505bde11 1053 case on_failure_jump_smart:
fa9a63c5 1054 extract_number_and_incr (&mcnt, &p);
a1a052df 1055 fprintf (stderr, "/on_failure_jump_smart to %d", p + mcnt - start);
5e69f11e
RM
1056 break;
1057
25fe55af 1058 case jump:
fa9a63c5 1059 extract_number_and_incr (&mcnt, &p);
a1a052df 1060 fprintf (stderr, "/jump to %d", p + mcnt - start);
fa9a63c5
RM
1061 break;
1062
25fe55af
RS
1063 case succeed_n:
1064 extract_number_and_incr (&mcnt, &p);
1065 extract_number_and_incr (&mcnt2, &p);
a1a052df 1066 fprintf (stderr, "/succeed_n to %d, %d times", p - 2 + mcnt - start, mcnt2);
25fe55af 1067 break;
5e69f11e 1068
25fe55af
RS
1069 case jump_n:
1070 extract_number_and_incr (&mcnt, &p);
1071 extract_number_and_incr (&mcnt2, &p);
a1a052df 1072 fprintf (stderr, "/jump_n to %d, %d times", p - 2 + mcnt - start, mcnt2);
25fe55af 1073 break;
5e69f11e 1074
25fe55af
RS
1075 case set_number_at:
1076 extract_number_and_incr (&mcnt, &p);
1077 extract_number_and_incr (&mcnt2, &p);
a1a052df 1078 fprintf (stderr, "/set_number_at location %d to %d", p - 2 + mcnt - start, mcnt2);
25fe55af 1079 break;
5e69f11e 1080
25fe55af 1081 case wordbound:
a1a052df 1082 fprintf (stderr, "/wordbound");
fa9a63c5
RM
1083 break;
1084
1085 case notwordbound:
a1a052df 1086 fprintf (stderr, "/notwordbound");
25fe55af 1087 break;
fa9a63c5
RM
1088
1089 case wordbeg:
a1a052df 1090 fprintf (stderr, "/wordbeg");
fa9a63c5 1091 break;
5e69f11e 1092
fa9a63c5 1093 case wordend:
a1a052df 1094 fprintf (stderr, "/wordend");
5e69f11e 1095
1fb352e0 1096 case syntaxspec:
a1a052df 1097 fprintf (stderr, "/syntaxspec");
1fb352e0 1098 mcnt = *p++;
a1a052df 1099 fprintf (stderr, "/%d", mcnt);
1fb352e0
SM
1100 break;
1101
1102 case notsyntaxspec:
a1a052df 1103 fprintf (stderr, "/notsyntaxspec");
1fb352e0 1104 mcnt = *p++;
a1a052df 1105 fprintf (stderr, "/%d", mcnt);
1fb352e0
SM
1106 break;
1107
0b32bf0e 1108# ifdef emacs
fa9a63c5 1109 case before_dot:
a1a052df 1110 fprintf (stderr, "/before_dot");
25fe55af 1111 break;
fa9a63c5
RM
1112
1113 case at_dot:
a1a052df 1114 fprintf (stderr, "/at_dot");
25fe55af 1115 break;
fa9a63c5
RM
1116
1117 case after_dot:
a1a052df 1118 fprintf (stderr, "/after_dot");
25fe55af 1119 break;
fa9a63c5 1120
1fb352e0 1121 case categoryspec:
a1a052df 1122 fprintf (stderr, "/categoryspec");
fa9a63c5 1123 mcnt = *p++;
a1a052df 1124 fprintf (stderr, "/%d", mcnt);
25fe55af 1125 break;
5e69f11e 1126
1fb352e0 1127 case notcategoryspec:
a1a052df 1128 fprintf (stderr, "/notcategoryspec");
fa9a63c5 1129 mcnt = *p++;
a1a052df 1130 fprintf (stderr, "/%d", mcnt);
fa9a63c5 1131 break;
0b32bf0e 1132# endif /* emacs */
fa9a63c5 1133
fa9a63c5 1134 case begbuf:
a1a052df 1135 fprintf (stderr, "/begbuf");
25fe55af 1136 break;
fa9a63c5
RM
1137
1138 case endbuf:
a1a052df 1139 fprintf (stderr, "/endbuf");
25fe55af 1140 break;
fa9a63c5 1141
25fe55af 1142 default:
a1a052df 1143 fprintf (stderr, "?%d", *(p-1));
fa9a63c5
RM
1144 }
1145
a1a052df 1146 fprintf (stderr, "\n");
fa9a63c5
RM
1147 }
1148
a1a052df 1149 fprintf (stderr, "%d:\tend of pattern.\n", p - start);
fa9a63c5
RM
1150}
1151
1152
1153void
1154print_compiled_pattern (bufp)
1155 struct re_pattern_buffer *bufp;
1156{
01618498 1157 re_char *buffer = bufp->buffer;
fa9a63c5
RM
1158
1159 print_partial_compiled_pattern (buffer, buffer + bufp->used);
4bb91c68
SM
1160 printf ("%ld bytes used/%ld bytes allocated.\n",
1161 bufp->used, bufp->allocated);
fa9a63c5
RM
1162
1163 if (bufp->fastmap_accurate && bufp->fastmap)
1164 {
1165 printf ("fastmap: ");
1166 print_fastmap (bufp->fastmap);
1167 }
1168
1169 printf ("re_nsub: %d\t", bufp->re_nsub);
1170 printf ("regs_alloc: %d\t", bufp->regs_allocated);
1171 printf ("can_be_null: %d\t", bufp->can_be_null);
fa9a63c5
RM
1172 printf ("no_sub: %d\t", bufp->no_sub);
1173 printf ("not_bol: %d\t", bufp->not_bol);
1174 printf ("not_eol: %d\t", bufp->not_eol);
4bb91c68 1175 printf ("syntax: %lx\n", bufp->syntax);
505bde11 1176 fflush (stdout);
fa9a63c5
RM
1177 /* Perhaps we should print the translate table? */
1178}
1179
1180
1181void
1182print_double_string (where, string1, size1, string2, size2)
66f0296e
SM
1183 re_char *where;
1184 re_char *string1;
1185 re_char *string2;
fa9a63c5
RM
1186 int size1;
1187 int size2;
1188{
4bb91c68 1189 int this_char;
5e69f11e 1190
fa9a63c5
RM
1191 if (where == NULL)
1192 printf ("(null)");
1193 else
1194 {
1195 if (FIRST_STRING_P (where))
25fe55af
RS
1196 {
1197 for (this_char = where - string1; this_char < size1; this_char++)
1198 putchar (string1[this_char]);
fa9a63c5 1199
25fe55af
RS
1200 where = string2;
1201 }
fa9a63c5
RM
1202
1203 for (this_char = where - string2; this_char < size2; this_char++)
25fe55af 1204 putchar (string2[this_char]);
fa9a63c5
RM
1205 }
1206}
1207
1208#else /* not DEBUG */
1209
0b32bf0e
SM
1210# undef assert
1211# define assert(e)
fa9a63c5 1212
0b32bf0e
SM
1213# define DEBUG_STATEMENT(e)
1214# define DEBUG_PRINT1(x)
1215# define DEBUG_PRINT2(x1, x2)
1216# define DEBUG_PRINT3(x1, x2, x3)
1217# define DEBUG_PRINT4(x1, x2, x3, x4)
1218# define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
1219# define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
fa9a63c5
RM
1220
1221#endif /* not DEBUG */
1222\f
1223/* Set by `re_set_syntax' to the current regexp syntax to recognize. Can
1224 also be assigned to arbitrarily: each pattern buffer stores its own
1225 syntax, so it can be changed between regex compilations. */
1226/* This has no initializer because initialized variables in Emacs
1227 become read-only after dumping. */
1228reg_syntax_t re_syntax_options;
1229
1230
1231/* Specify the precise syntax of regexps for compilation. This provides
1232 for compatibility for various utilities which historically have
1233 different, incompatible syntaxes.
1234
1235 The argument SYNTAX is a bit mask comprised of the various bits
4bb91c68 1236 defined in regex.h. We return the old syntax. */
fa9a63c5
RM
1237
1238reg_syntax_t
1239re_set_syntax (syntax)
1240 reg_syntax_t syntax;
1241{
1242 reg_syntax_t ret = re_syntax_options;
5e69f11e 1243
fa9a63c5
RM
1244 re_syntax_options = syntax;
1245 return ret;
1246}
c0f9ea08 1247WEAK_ALIAS (__re_set_syntax, re_set_syntax)
fa9a63c5
RM
1248\f
1249/* This table gives an error message for each of the error codes listed
4bb91c68 1250 in regex.h. Obviously the order here has to be same as there.
fa9a63c5 1251 POSIX doesn't require that we do anything for REG_NOERROR,
4bb91c68 1252 but why not be nice? */
fa9a63c5
RM
1253
1254static const char *re_error_msgid[] =
5e69f11e
RM
1255 {
1256 gettext_noop ("Success"), /* REG_NOERROR */
1257 gettext_noop ("No match"), /* REG_NOMATCH */
1258 gettext_noop ("Invalid regular expression"), /* REG_BADPAT */
1259 gettext_noop ("Invalid collation character"), /* REG_ECOLLATE */
1260 gettext_noop ("Invalid character class name"), /* REG_ECTYPE */
1261 gettext_noop ("Trailing backslash"), /* REG_EESCAPE */
1262 gettext_noop ("Invalid back reference"), /* REG_ESUBREG */
1263 gettext_noop ("Unmatched [ or [^"), /* REG_EBRACK */
1264 gettext_noop ("Unmatched ( or \\("), /* REG_EPAREN */
1265 gettext_noop ("Unmatched \\{"), /* REG_EBRACE */
1266 gettext_noop ("Invalid content of \\{\\}"), /* REG_BADBR */
1267 gettext_noop ("Invalid range end"), /* REG_ERANGE */
1268 gettext_noop ("Memory exhausted"), /* REG_ESPACE */
1269 gettext_noop ("Invalid preceding regular expression"), /* REG_BADRPT */
1270 gettext_noop ("Premature end of regular expression"), /* REG_EEND */
1271 gettext_noop ("Regular expression too big"), /* REG_ESIZE */
1272 gettext_noop ("Unmatched ) or \\)"), /* REG_ERPAREN */
fa9a63c5
RM
1273 };
1274\f
4bb91c68 1275/* Avoiding alloca during matching, to placate r_alloc. */
fa9a63c5
RM
1276
1277/* Define MATCH_MAY_ALLOCATE unless we need to make sure that the
1278 searching and matching functions should not call alloca. On some
1279 systems, alloca is implemented in terms of malloc, and if we're
1280 using the relocating allocator routines, then malloc could cause a
1281 relocation, which might (if the strings being searched are in the
1282 ralloc heap) shift the data out from underneath the regexp
1283 routines.
1284
5e69f11e 1285 Here's another reason to avoid allocation: Emacs
fa9a63c5
RM
1286 processes input from X in a signal handler; processing X input may
1287 call malloc; if input arrives while a matching routine is calling
1288 malloc, then we're scrod. But Emacs can't just block input while
1289 calling matching routines; then we don't notice interrupts when
1290 they come in. So, Emacs blocks input around all regexp calls
1291 except the matching calls, which it leaves unprotected, in the
1292 faith that they will not malloc. */
1293
1294/* Normally, this is fine. */
1295#define MATCH_MAY_ALLOCATE
1296
1297/* When using GNU C, we are not REALLY using the C alloca, no matter
1298 what config.h may say. So don't take precautions for it. */
1299#ifdef __GNUC__
0b32bf0e 1300# undef C_ALLOCA
fa9a63c5
RM
1301#endif
1302
1303/* The match routines may not allocate if (1) they would do it with malloc
1304 and (2) it's not safe for them to use malloc.
1305 Note that if REL_ALLOC is defined, matching would not use malloc for the
1306 failure stack, but we would still use it for the register vectors;
4bb91c68 1307 so REL_ALLOC should not affect this. */
0b32bf0e
SM
1308#if (defined C_ALLOCA || defined REGEX_MALLOC) && defined emacs
1309# undef MATCH_MAY_ALLOCATE
fa9a63c5
RM
1310#endif
1311
1312\f
1313/* Failure stack declarations and macros; both re_compile_fastmap and
1314 re_match_2 use a failure stack. These have to be macros because of
1315 REGEX_ALLOCATE_STACK. */
5e69f11e 1316
fa9a63c5 1317
320a2a73 1318/* Approximate number of failure points for which to initially allocate space
fa9a63c5
RM
1319 when matching. If this number is exceeded, we allocate more
1320 space, so it is not a hard limit. */
1321#ifndef INIT_FAILURE_ALLOC
0b32bf0e 1322# define INIT_FAILURE_ALLOC 20
fa9a63c5
RM
1323#endif
1324
1325/* Roughly the maximum number of failure points on the stack. Would be
320a2a73 1326 exactly that if always used TYPICAL_FAILURE_SIZE items each time we failed.
fa9a63c5 1327 This is a variable only so users of regex can assign to it; we never
ada30c0e
SM
1328 change it ourselves. We always multiply it by TYPICAL_FAILURE_SIZE
1329 before using it, so it should probably be a byte-count instead. */
c0f9ea08
SM
1330# if defined MATCH_MAY_ALLOCATE
1331/* Note that 4400 was enough to cause a crash on Alpha OSF/1,
320a2a73
KH
1332 whose default stack limit is 2mb. In order for a larger
1333 value to work reliably, you have to try to make it accord
1334 with the process stack limit. */
c0f9ea08
SM
1335size_t re_max_failures = 40000;
1336# else
1337size_t re_max_failures = 4000;
1338# endif
fa9a63c5
RM
1339
1340union fail_stack_elt
1341{
01618498 1342 re_char *pointer;
c0f9ea08
SM
1343 /* This should be the biggest `int' that's no bigger than a pointer. */
1344 long integer;
fa9a63c5
RM
1345};
1346
1347typedef union fail_stack_elt fail_stack_elt_t;
1348
1349typedef struct
1350{
1351 fail_stack_elt_t *stack;
c0f9ea08
SM
1352 size_t size;
1353 size_t avail; /* Offset of next open position. */
1354 size_t frame; /* Offset of the cur constructed frame. */
fa9a63c5
RM
1355} fail_stack_type;
1356
505bde11 1357#define FAIL_STACK_EMPTY() (fail_stack.frame == 0)
fa9a63c5
RM
1358#define FAIL_STACK_FULL() (fail_stack.avail == fail_stack.size)
1359
1360
1361/* Define macros to initialize and free the failure stack.
1362 Do `return -2' if the alloc fails. */
1363
1364#ifdef MATCH_MAY_ALLOCATE
0b32bf0e 1365# define INIT_FAIL_STACK() \
fa9a63c5
RM
1366 do { \
1367 fail_stack.stack = (fail_stack_elt_t *) \
320a2a73
KH
1368 REGEX_ALLOCATE_STACK (INIT_FAILURE_ALLOC * TYPICAL_FAILURE_SIZE \
1369 * sizeof (fail_stack_elt_t)); \
fa9a63c5
RM
1370 \
1371 if (fail_stack.stack == NULL) \
1372 return -2; \
1373 \
1374 fail_stack.size = INIT_FAILURE_ALLOC; \
1375 fail_stack.avail = 0; \
505bde11 1376 fail_stack.frame = 0; \
fa9a63c5
RM
1377 } while (0)
1378
0b32bf0e 1379# define RESET_FAIL_STACK() REGEX_FREE_STACK (fail_stack.stack)
fa9a63c5 1380#else
0b32bf0e 1381# define INIT_FAIL_STACK() \
fa9a63c5
RM
1382 do { \
1383 fail_stack.avail = 0; \
505bde11 1384 fail_stack.frame = 0; \
fa9a63c5
RM
1385 } while (0)
1386
0b32bf0e 1387# define RESET_FAIL_STACK() ((void)0)
fa9a63c5
RM
1388#endif
1389
1390
320a2a73
KH
1391/* Double the size of FAIL_STACK, up to a limit
1392 which allows approximately `re_max_failures' items.
fa9a63c5
RM
1393
1394 Return 1 if succeeds, and 0 if either ran out of memory
5e69f11e
RM
1395 allocating space for it or it was already too large.
1396
4bb91c68 1397 REGEX_REALLOCATE_STACK requires `destination' be declared. */
fa9a63c5 1398
320a2a73
KH
1399/* Factor to increase the failure stack size by
1400 when we increase it.
1401 This used to be 2, but 2 was too wasteful
1402 because the old discarded stacks added up to as much space
1403 were as ultimate, maximum-size stack. */
1404#define FAIL_STACK_GROWTH_FACTOR 4
1405
1406#define GROW_FAIL_STACK(fail_stack) \
eead07d6
KH
1407 (((fail_stack).size * sizeof (fail_stack_elt_t) \
1408 >= re_max_failures * TYPICAL_FAILURE_SIZE) \
fa9a63c5 1409 ? 0 \
320a2a73
KH
1410 : ((fail_stack).stack \
1411 = (fail_stack_elt_t *) \
25fe55af
RS
1412 REGEX_REALLOCATE_STACK ((fail_stack).stack, \
1413 (fail_stack).size * sizeof (fail_stack_elt_t), \
320a2a73
KH
1414 MIN (re_max_failures * TYPICAL_FAILURE_SIZE, \
1415 ((fail_stack).size * sizeof (fail_stack_elt_t) \
1416 * FAIL_STACK_GROWTH_FACTOR))), \
fa9a63c5
RM
1417 \
1418 (fail_stack).stack == NULL \
1419 ? 0 \
6453db45
KH
1420 : ((fail_stack).size \
1421 = (MIN (re_max_failures * TYPICAL_FAILURE_SIZE, \
1422 ((fail_stack).size * sizeof (fail_stack_elt_t) \
1423 * FAIL_STACK_GROWTH_FACTOR)) \
1424 / sizeof (fail_stack_elt_t)), \
25fe55af 1425 1)))
fa9a63c5
RM
1426
1427
fa9a63c5
RM
1428/* Push a pointer value onto the failure stack.
1429 Assumes the variable `fail_stack'. Probably should only
4bb91c68 1430 be called from within `PUSH_FAILURE_POINT'. */
fa9a63c5 1431#define PUSH_FAILURE_POINTER(item) \
01618498 1432 fail_stack.stack[fail_stack.avail++].pointer = (item)
fa9a63c5
RM
1433
1434/* This pushes an integer-valued item onto the failure stack.
1435 Assumes the variable `fail_stack'. Probably should only
4bb91c68 1436 be called from within `PUSH_FAILURE_POINT'. */
fa9a63c5
RM
1437#define PUSH_FAILURE_INT(item) \
1438 fail_stack.stack[fail_stack.avail++].integer = (item)
1439
1440/* Push a fail_stack_elt_t value onto the failure stack.
1441 Assumes the variable `fail_stack'. Probably should only
4bb91c68 1442 be called from within `PUSH_FAILURE_POINT'. */
fa9a63c5
RM
1443#define PUSH_FAILURE_ELT(item) \
1444 fail_stack.stack[fail_stack.avail++] = (item)
1445
1446/* These three POP... operations complement the three PUSH... operations.
1447 All assume that `fail_stack' is nonempty. */
1448#define POP_FAILURE_POINTER() fail_stack.stack[--fail_stack.avail].pointer
1449#define POP_FAILURE_INT() fail_stack.stack[--fail_stack.avail].integer
1450#define POP_FAILURE_ELT() fail_stack.stack[--fail_stack.avail]
1451
505bde11
SM
1452/* Individual items aside from the registers. */
1453#define NUM_NONREG_ITEMS 3
1454
1455/* Used to examine the stack (to detect infinite loops). */
1456#define FAILURE_PAT(h) fail_stack.stack[(h) - 1].pointer
66f0296e 1457#define FAILURE_STR(h) (fail_stack.stack[(h) - 2].pointer)
505bde11
SM
1458#define NEXT_FAILURE_HANDLE(h) fail_stack.stack[(h) - 3].integer
1459#define TOP_FAILURE_HANDLE() fail_stack.frame
fa9a63c5
RM
1460
1461
505bde11
SM
1462#define ENSURE_FAIL_STACK(space) \
1463while (REMAINING_AVAIL_SLOTS <= space) { \
1464 if (!GROW_FAIL_STACK (fail_stack)) \
1465 return -2; \
1466 DEBUG_PRINT2 ("\n Doubled stack; size now: %d\n", (fail_stack).size);\
1467 DEBUG_PRINT2 (" slots available: %d\n", REMAINING_AVAIL_SLOTS);\
1468}
1469
1470/* Push register NUM onto the stack. */
1471#define PUSH_FAILURE_REG(num) \
1472do { \
1473 char *destination; \
1474 ENSURE_FAIL_STACK(3); \
1475 DEBUG_PRINT4 (" Push reg %d (spanning %p -> %p)\n", \
1476 num, regstart[num], regend[num]); \
1477 PUSH_FAILURE_POINTER (regstart[num]); \
1478 PUSH_FAILURE_POINTER (regend[num]); \
1479 PUSH_FAILURE_INT (num); \
1480} while (0)
1481
01618498
SM
1482/* Change the counter's value to VAL, but make sure that it will
1483 be reset when backtracking. */
1484#define PUSH_NUMBER(ptr,val) \
dc1e502d
SM
1485do { \
1486 char *destination; \
1487 int c; \
1488 ENSURE_FAIL_STACK(3); \
1489 EXTRACT_NUMBER (c, ptr); \
01618498 1490 DEBUG_PRINT4 (" Push number %p = %d -> %d\n", ptr, c, val); \
dc1e502d
SM
1491 PUSH_FAILURE_INT (c); \
1492 PUSH_FAILURE_POINTER (ptr); \
1493 PUSH_FAILURE_INT (-1); \
01618498 1494 STORE_NUMBER (ptr, val); \
dc1e502d
SM
1495} while (0)
1496
505bde11 1497/* Pop a saved register off the stack. */
dc1e502d 1498#define POP_FAILURE_REG_OR_COUNT() \
505bde11
SM
1499do { \
1500 int reg = POP_FAILURE_INT (); \
dc1e502d
SM
1501 if (reg == -1) \
1502 { \
1503 /* It's a counter. */ \
6dcf2d0e
SM
1504 /* Here, we discard `const', making re_match non-reentrant. */ \
1505 unsigned char *ptr = (unsigned char*) POP_FAILURE_POINTER (); \
dc1e502d
SM
1506 reg = POP_FAILURE_INT (); \
1507 STORE_NUMBER (ptr, reg); \
1508 DEBUG_PRINT3 (" Pop counter %p = %d\n", ptr, reg); \
1509 } \
1510 else \
1511 { \
1512 regend[reg] = POP_FAILURE_POINTER (); \
1513 regstart[reg] = POP_FAILURE_POINTER (); \
1514 DEBUG_PRINT4 (" Pop reg %d (spanning %p -> %p)\n", \
1515 reg, regstart[reg], regend[reg]); \
1516 } \
505bde11
SM
1517} while (0)
1518
1519/* Check that we are not stuck in an infinite loop. */
1520#define CHECK_INFINITE_LOOP(pat_cur, string_place) \
1521do { \
f6df485f 1522 int failure = TOP_FAILURE_HANDLE (); \
505bde11 1523 /* Check for infinite matching loops */ \
f6df485f
RS
1524 while (failure > 0 \
1525 && (FAILURE_STR (failure) == string_place \
1526 || FAILURE_STR (failure) == NULL)) \
505bde11
SM
1527 { \
1528 assert (FAILURE_PAT (failure) >= bufp->buffer \
66f0296e 1529 && FAILURE_PAT (failure) <= bufp->buffer + bufp->used); \
505bde11 1530 if (FAILURE_PAT (failure) == pat_cur) \
f6df485f 1531 { \
6df42991
SM
1532 cycle = 1; \
1533 break; \
f6df485f 1534 } \
66f0296e 1535 DEBUG_PRINT2 (" Other pattern: %p\n", FAILURE_PAT (failure)); \
505bde11
SM
1536 failure = NEXT_FAILURE_HANDLE(failure); \
1537 } \
1538 DEBUG_PRINT2 (" Other string: %p\n", FAILURE_STR (failure)); \
1539} while (0)
6df42991 1540
fa9a63c5 1541/* Push the information about the state we will need
5e69f11e
RM
1542 if we ever fail back to it.
1543
505bde11 1544 Requires variables fail_stack, regstart, regend and
320a2a73 1545 num_regs be declared. GROW_FAIL_STACK requires `destination' be
fa9a63c5 1546 declared.
5e69f11e 1547
fa9a63c5
RM
1548 Does `return FAILURE_CODE' if runs out of memory. */
1549
505bde11
SM
1550#define PUSH_FAILURE_POINT(pattern, string_place) \
1551do { \
1552 char *destination; \
1553 /* Must be int, so when we don't save any registers, the arithmetic \
1554 of 0 + -1 isn't done as unsigned. */ \
1555 \
505bde11 1556 DEBUG_STATEMENT (nfailure_points_pushed++); \
4bb91c68 1557 DEBUG_PRINT1 ("\nPUSH_FAILURE_POINT:\n"); \
505bde11
SM
1558 DEBUG_PRINT2 (" Before push, next avail: %d\n", (fail_stack).avail); \
1559 DEBUG_PRINT2 (" size: %d\n", (fail_stack).size);\
1560 \
1561 ENSURE_FAIL_STACK (NUM_NONREG_ITEMS); \
1562 \
1563 DEBUG_PRINT1 ("\n"); \
1564 \
1565 DEBUG_PRINT2 (" Push frame index: %d\n", fail_stack.frame); \
1566 PUSH_FAILURE_INT (fail_stack.frame); \
1567 \
1568 DEBUG_PRINT2 (" Push string %p: `", string_place); \
1569 DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, size2);\
1570 DEBUG_PRINT1 ("'\n"); \
1571 PUSH_FAILURE_POINTER (string_place); \
1572 \
1573 DEBUG_PRINT2 (" Push pattern %p: ", pattern); \
1574 DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern, pend); \
1575 PUSH_FAILURE_POINTER (pattern); \
1576 \
1577 /* Close the frame by moving the frame pointer past it. */ \
1578 fail_stack.frame = fail_stack.avail; \
1579} while (0)
fa9a63c5 1580
320a2a73
KH
1581/* Estimate the size of data pushed by a typical failure stack entry.
1582 An estimate is all we need, because all we use this for
1583 is to choose a limit for how big to make the failure stack. */
ada30c0e 1584/* BEWARE, the value `20' is hard-coded in emacs.c:main(). */
320a2a73 1585#define TYPICAL_FAILURE_SIZE 20
fa9a63c5 1586
fa9a63c5
RM
1587/* How many items can still be added to the stack without overflowing it. */
1588#define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
1589
1590
1591/* Pops what PUSH_FAIL_STACK pushes.
1592
1593 We restore into the parameters, all of which should be lvalues:
1594 STR -- the saved data position.
1595 PAT -- the saved pattern position.
fa9a63c5 1596 REGSTART, REGEND -- arrays of string positions.
5e69f11e 1597
fa9a63c5 1598 Also assumes the variables `fail_stack' and (if debugging), `bufp',
25fe55af 1599 `pend', `string1', `size1', `string2', and `size2'. */
fa9a63c5 1600
505bde11
SM
1601#define POP_FAILURE_POINT(str, pat) \
1602do { \
fa9a63c5
RM
1603 assert (!FAIL_STACK_EMPTY ()); \
1604 \
1605 /* Remove failure points and point to how many regs pushed. */ \
1606 DEBUG_PRINT1 ("POP_FAILURE_POINT:\n"); \
1607 DEBUG_PRINT2 (" Before pop, next avail: %d\n", fail_stack.avail); \
25fe55af 1608 DEBUG_PRINT2 (" size: %d\n", fail_stack.size); \
fa9a63c5 1609 \
505bde11
SM
1610 /* Pop the saved registers. */ \
1611 while (fail_stack.frame < fail_stack.avail) \
dc1e502d 1612 POP_FAILURE_REG_OR_COUNT (); \
fa9a63c5 1613 \
01618498 1614 pat = POP_FAILURE_POINTER (); \
505bde11
SM
1615 DEBUG_PRINT2 (" Popping pattern %p: ", pat); \
1616 DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend); \
fa9a63c5
RM
1617 \
1618 /* If the saved string location is NULL, it came from an \
1619 on_failure_keep_string_jump opcode, and we want to throw away the \
1620 saved NULL, thus retaining our current position in the string. */ \
01618498 1621 str = POP_FAILURE_POINTER (); \
505bde11 1622 DEBUG_PRINT2 (" Popping string %p: `", str); \
fa9a63c5
RM
1623 DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2); \
1624 DEBUG_PRINT1 ("'\n"); \
1625 \
505bde11
SM
1626 fail_stack.frame = POP_FAILURE_INT (); \
1627 DEBUG_PRINT2 (" Popping frame index: %d\n", fail_stack.frame); \
fa9a63c5 1628 \
505bde11
SM
1629 assert (fail_stack.avail >= 0); \
1630 assert (fail_stack.frame <= fail_stack.avail); \
fa9a63c5 1631 \
fa9a63c5 1632 DEBUG_STATEMENT (nfailure_points_popped++); \
505bde11 1633} while (0) /* POP_FAILURE_POINT */
fa9a63c5
RM
1634
1635
1636\f
fa9a63c5 1637/* Registers are set to a sentinel when they haven't yet matched. */
4bb91c68 1638#define REG_UNSET(e) ((e) == NULL)
fa9a63c5
RM
1639\f
1640/* Subroutine declarations and macros for regex_compile. */
1641
4bb91c68
SM
1642static reg_errcode_t regex_compile _RE_ARGS ((re_char *pattern, size_t size,
1643 reg_syntax_t syntax,
1644 struct re_pattern_buffer *bufp));
1645static void store_op1 _RE_ARGS ((re_opcode_t op, unsigned char *loc, int arg));
1646static void store_op2 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
1647 int arg1, int arg2));
1648static void insert_op1 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
1649 int arg, unsigned char *end));
1650static void insert_op2 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
1651 int arg1, int arg2, unsigned char *end));
01618498
SM
1652static boolean at_begline_loc_p _RE_ARGS ((re_char *pattern,
1653 re_char *p,
4bb91c68 1654 reg_syntax_t syntax));
01618498
SM
1655static boolean at_endline_loc_p _RE_ARGS ((re_char *p,
1656 re_char *pend,
4bb91c68 1657 reg_syntax_t syntax));
01618498
SM
1658static re_char *skip_one_char _RE_ARGS ((re_char *p));
1659static int analyse_first _RE_ARGS ((re_char *p, re_char *pend,
4bb91c68 1660 char *fastmap, const int multibyte));
fa9a63c5 1661
fa9a63c5 1662/* Fetch the next character in the uncompiled pattern, with no
4bb91c68 1663 translation. */
36595814 1664#define PATFETCH(c) \
2d1675e4
SM
1665 do { \
1666 int len; \
1667 if (p == pend) return REG_EEND; \
1668 c = RE_STRING_CHAR_AND_LENGTH (p, pend - p, len); \
1669 p += len; \
fa9a63c5
RM
1670 } while (0)
1671
fa9a63c5
RM
1672
1673/* If `translate' is non-null, return translate[D], else just D. We
1674 cast the subscript to translate because some data is declared as
1675 `char *', to avoid warnings when a string constant is passed. But
1676 when we use a character as a subscript we must make it unsigned. */
6676cb1c 1677#ifndef TRANSLATE
0b32bf0e 1678# define TRANSLATE(d) \
66f0296e 1679 (RE_TRANSLATE_P (translate) ? RE_TRANSLATE (translate, (d)) : (d))
6676cb1c 1680#endif
fa9a63c5
RM
1681
1682
1683/* Macros for outputting the compiled pattern into `buffer'. */
1684
1685/* If the buffer isn't allocated when it comes in, use this. */
1686#define INIT_BUF_SIZE 32
1687
4bb91c68 1688/* Make sure we have at least N more bytes of space in buffer. */
fa9a63c5 1689#define GET_BUFFER_SPACE(n) \
01618498 1690 while ((size_t) (b - bufp->buffer + (n)) > bufp->allocated) \
fa9a63c5
RM
1691 EXTEND_BUFFER ()
1692
1693/* Make sure we have one more byte of buffer space and then add C to it. */
1694#define BUF_PUSH(c) \
1695 do { \
1696 GET_BUFFER_SPACE (1); \
1697 *b++ = (unsigned char) (c); \
1698 } while (0)
1699
1700
1701/* Ensure we have two more bytes of buffer space and then append C1 and C2. */
1702#define BUF_PUSH_2(c1, c2) \
1703 do { \
1704 GET_BUFFER_SPACE (2); \
1705 *b++ = (unsigned char) (c1); \
1706 *b++ = (unsigned char) (c2); \
1707 } while (0)
1708
1709
4bb91c68 1710/* As with BUF_PUSH_2, except for three bytes. */
fa9a63c5
RM
1711#define BUF_PUSH_3(c1, c2, c3) \
1712 do { \
1713 GET_BUFFER_SPACE (3); \
1714 *b++ = (unsigned char) (c1); \
1715 *b++ = (unsigned char) (c2); \
1716 *b++ = (unsigned char) (c3); \
1717 } while (0)
1718
1719
1720/* Store a jump with opcode OP at LOC to location TO. We store a
4bb91c68 1721 relative address offset by the three bytes the jump itself occupies. */
fa9a63c5
RM
1722#define STORE_JUMP(op, loc, to) \
1723 store_op1 (op, loc, (to) - (loc) - 3)
1724
1725/* Likewise, for a two-argument jump. */
1726#define STORE_JUMP2(op, loc, to, arg) \
1727 store_op2 (op, loc, (to) - (loc) - 3, arg)
1728
4bb91c68 1729/* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */
fa9a63c5
RM
1730#define INSERT_JUMP(op, loc, to) \
1731 insert_op1 (op, loc, (to) - (loc) - 3, b)
1732
1733/* Like `STORE_JUMP2', but for inserting. Assume `b' is the buffer end. */
1734#define INSERT_JUMP2(op, loc, to, arg) \
1735 insert_op2 (op, loc, (to) - (loc) - 3, arg, b)
1736
1737
1738/* This is not an arbitrary limit: the arguments which represent offsets
4bb91c68 1739 into the pattern are two bytes long. So if 2^16 bytes turns out to
fa9a63c5 1740 be too small, many things would have to change. */
4bb91c68
SM
1741/* Any other compiler which, like MSC, has allocation limit below 2^16
1742 bytes will have to use approach similar to what was done below for
1743 MSC and drop MAX_BUF_SIZE a bit. Otherwise you may end up
1744 reallocating to 0 bytes. Such thing is not going to work too well.
1745 You have been warned!! */
1746#if defined _MSC_VER && !defined WIN32
1747/* Microsoft C 16-bit versions limit malloc to approx 65512 bytes. */
1748# define MAX_BUF_SIZE 65500L
1749#else
1750# define MAX_BUF_SIZE (1L << 16)
1751#endif
fa9a63c5
RM
1752
1753/* Extend the buffer by twice its current size via realloc and
1754 reset the pointers that pointed into the old block to point to the
1755 correct places in the new one. If extending the buffer results in it
4bb91c68
SM
1756 being larger than MAX_BUF_SIZE, then flag memory exhausted. */
1757#if __BOUNDED_POINTERS__
1758# define SET_HIGH_BOUND(P) (__ptrhigh (P) = __ptrlow (P) + bufp->allocated)
1759# define MOVE_BUFFER_POINTER(P) \
1760 (__ptrlow (P) += incr, SET_HIGH_BOUND (P), __ptrvalue (P) += incr)
1761# define ELSE_EXTEND_BUFFER_HIGH_BOUND \
1762 else \
1763 { \
1764 SET_HIGH_BOUND (b); \
1765 SET_HIGH_BOUND (begalt); \
1766 if (fixup_alt_jump) \
1767 SET_HIGH_BOUND (fixup_alt_jump); \
1768 if (laststart) \
1769 SET_HIGH_BOUND (laststart); \
1770 if (pending_exact) \
1771 SET_HIGH_BOUND (pending_exact); \
1772 }
1773#else
1774# define MOVE_BUFFER_POINTER(P) (P) += incr
1775# define ELSE_EXTEND_BUFFER_HIGH_BOUND
1776#endif
fa9a63c5 1777#define EXTEND_BUFFER() \
25fe55af 1778 do { \
01618498 1779 re_char *old_buffer = bufp->buffer; \
25fe55af 1780 if (bufp->allocated == MAX_BUF_SIZE) \
fa9a63c5
RM
1781 return REG_ESIZE; \
1782 bufp->allocated <<= 1; \
1783 if (bufp->allocated > MAX_BUF_SIZE) \
25fe55af 1784 bufp->allocated = MAX_BUF_SIZE; \
01618498 1785 RETALLOC (bufp->buffer, bufp->allocated, unsigned char); \
fa9a63c5
RM
1786 if (bufp->buffer == NULL) \
1787 return REG_ESPACE; \
1788 /* If the buffer moved, move all the pointers into it. */ \
1789 if (old_buffer != bufp->buffer) \
1790 { \
4bb91c68
SM
1791 int incr = bufp->buffer - old_buffer; \
1792 MOVE_BUFFER_POINTER (b); \
1793 MOVE_BUFFER_POINTER (begalt); \
25fe55af 1794 if (fixup_alt_jump) \
4bb91c68 1795 MOVE_BUFFER_POINTER (fixup_alt_jump); \
25fe55af 1796 if (laststart) \
4bb91c68 1797 MOVE_BUFFER_POINTER (laststart); \
25fe55af 1798 if (pending_exact) \
4bb91c68 1799 MOVE_BUFFER_POINTER (pending_exact); \
fa9a63c5 1800 } \
4bb91c68 1801 ELSE_EXTEND_BUFFER_HIGH_BOUND \
fa9a63c5
RM
1802 } while (0)
1803
1804
1805/* Since we have one byte reserved for the register number argument to
1806 {start,stop}_memory, the maximum number of groups we can report
1807 things about is what fits in that byte. */
1808#define MAX_REGNUM 255
1809
1810/* But patterns can have more than `MAX_REGNUM' registers. We just
1811 ignore the excess. */
098d42af 1812typedef int regnum_t;
fa9a63c5
RM
1813
1814
1815/* Macros for the compile stack. */
1816
1817/* Since offsets can go either forwards or backwards, this type needs to
4bb91c68
SM
1818 be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */
1819/* int may be not enough when sizeof(int) == 2. */
1820typedef long pattern_offset_t;
fa9a63c5
RM
1821
1822typedef struct
1823{
1824 pattern_offset_t begalt_offset;
1825 pattern_offset_t fixup_alt_jump;
5e69f11e 1826 pattern_offset_t laststart_offset;
fa9a63c5
RM
1827 regnum_t regnum;
1828} compile_stack_elt_t;
1829
1830
1831typedef struct
1832{
1833 compile_stack_elt_t *stack;
1834 unsigned size;
1835 unsigned avail; /* Offset of next open position. */
1836} compile_stack_type;
1837
1838
1839#define INIT_COMPILE_STACK_SIZE 32
1840
1841#define COMPILE_STACK_EMPTY (compile_stack.avail == 0)
1842#define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size)
1843
4bb91c68 1844/* The next available element. */
fa9a63c5
RM
1845#define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
1846
77d11aec
RS
1847/* Explicit quit checking is only used on NTemacs. */
1848#if defined WINDOWSNT && defined emacs && defined QUIT
1849extern int immediate_quit;
1850# define IMMEDIATE_QUIT_CHECK \
1851 do { \
1852 if (immediate_quit) QUIT; \
1853 } while (0)
1854#else
1855# define IMMEDIATE_QUIT_CHECK ((void)0)
1856#endif
1857\f
b18215fc
RS
1858/* Structure to manage work area for range table. */
1859struct range_table_work_area
1860{
1861 int *table; /* actual work area. */
1862 int allocated; /* allocated size for work area in bytes. */
25fe55af 1863 int used; /* actually used size in words. */
96cc36cc 1864 int bits; /* flag to record character classes */
b18215fc
RS
1865};
1866
77d11aec
RS
1867/* Make sure that WORK_AREA can hold more N multibyte characters.
1868 This is used only in set_image_of_range and set_image_of_range_1.
1869 It expects WORK_AREA to be a pointer.
1870 If it can't get the space, it returns from the surrounding function. */
1871
1872#define EXTEND_RANGE_TABLE(work_area, n) \
1873 do { \
1874 if (((work_area)->used + (n)) * sizeof (int) > (work_area)->allocated) \
1875 { \
1876 extend_range_table_work_area (work_area); \
1877 if ((work_area)->table == 0) \
1878 return (REG_ESPACE); \
1879 } \
b18215fc
RS
1880 } while (0)
1881
96cc36cc
RS
1882#define SET_RANGE_TABLE_WORK_AREA_BIT(work_area, bit) \
1883 (work_area).bits |= (bit)
1884
14473664
SM
1885/* Bits used to implement the multibyte-part of the various character classes
1886 such as [:alnum:] in a charset's range table. */
1887#define BIT_WORD 0x1
1888#define BIT_LOWER 0x2
1889#define BIT_PUNCT 0x4
1890#define BIT_SPACE 0x8
1891#define BIT_UPPER 0x10
1892#define BIT_MULTIBYTE 0x20
96cc36cc 1893
36595814
SM
1894/* Set a range START..END to WORK_AREA.
1895 The range is passed through TRANSLATE, so START and END
1896 should be untranslated. */
77d11aec
RS
1897#define SET_RANGE_TABLE_WORK_AREA(work_area, start, end) \
1898 do { \
1899 int tem; \
1900 tem = set_image_of_range (&work_area, start, end, translate); \
1901 if (tem > 0) \
1902 FREE_STACK_RETURN (tem); \
b18215fc
RS
1903 } while (0)
1904
25fe55af 1905/* Free allocated memory for WORK_AREA. */
b18215fc
RS
1906#define FREE_RANGE_TABLE_WORK_AREA(work_area) \
1907 do { \
1908 if ((work_area).table) \
1909 free ((work_area).table); \
1910 } while (0)
1911
96cc36cc 1912#define CLEAR_RANGE_TABLE_WORK_USED(work_area) ((work_area).used = 0, (work_area).bits = 0)
b18215fc 1913#define RANGE_TABLE_WORK_USED(work_area) ((work_area).used)
96cc36cc 1914#define RANGE_TABLE_WORK_BITS(work_area) ((work_area).bits)
b18215fc 1915#define RANGE_TABLE_WORK_ELT(work_area, i) ((work_area).table[i])
77d11aec 1916\f
b18215fc 1917
fa9a63c5 1918/* Set the bit for character C in a list. */
01618498 1919#define SET_LIST_BIT(c) (b[((c)) / BYTEWIDTH] |= 1 << ((c) % BYTEWIDTH))
fa9a63c5
RM
1920
1921
1922/* Get the next unsigned number in the uncompiled pattern. */
25fe55af 1923#define GET_UNSIGNED_NUMBER(num) \
99633e97 1924 do { if (p != pend) \
fa9a63c5 1925 { \
25fe55af 1926 PATFETCH (c); \
060cc8ff
RS
1927 if (c == ' ') \
1928 FREE_STACK_RETURN (REG_BADBR); \
4bb91c68 1929 while ('0' <= c && c <= '9') \
25fe55af 1930 { \
f6df485f 1931 int prev; \
25fe55af 1932 if (num < 0) \
f6df485f
RS
1933 num = 0; \
1934 prev = num; \
25fe55af 1935 num = num * 10 + c - '0'; \
f6df485f
RS
1936 if (num / 10 != prev) \
1937 FREE_STACK_RETURN (REG_BADBR); \
25fe55af 1938 if (p == pend) \
f6df485f 1939 break; \
25fe55af
RS
1940 PATFETCH (c); \
1941 } \
060cc8ff
RS
1942 if (c == ' ') \
1943 FREE_STACK_RETURN (REG_BADBR); \
25fe55af 1944 } \
99633e97 1945 } while (0)
77d11aec 1946\f
a0ad02f7 1947#if WIDE_CHAR_SUPPORT
14473664
SM
1948/* The GNU C library provides support for user-defined character classes
1949 and the functions from ISO C amendement 1. */
1950# ifdef CHARCLASS_NAME_MAX
1951# define CHAR_CLASS_MAX_LENGTH CHARCLASS_NAME_MAX
1952# else
1953/* This shouldn't happen but some implementation might still have this
1954 problem. Use a reasonable default value. */
1955# define CHAR_CLASS_MAX_LENGTH 256
1956# endif
1957typedef wctype_t re_wctype_t;
01618498 1958typedef wchar_t re_wchar_t;
14473664
SM
1959# define re_wctype wctype
1960# define re_iswctype iswctype
1961# define re_wctype_to_bit(cc) 0
1962#else
1963# define CHAR_CLASS_MAX_LENGTH 9 /* Namely, `multibyte'. */
1964# define btowc(c) c
1965
01618498 1966/* Character classes. */
14473664
SM
1967typedef enum { RECC_ERROR = 0,
1968 RECC_ALNUM, RECC_ALPHA, RECC_WORD,
1969 RECC_GRAPH, RECC_PRINT,
1970 RECC_LOWER, RECC_UPPER,
1971 RECC_PUNCT, RECC_CNTRL,
1972 RECC_DIGIT, RECC_XDIGIT,
1973 RECC_BLANK, RECC_SPACE,
1974 RECC_MULTIBYTE, RECC_NONASCII,
1975 RECC_ASCII, RECC_UNIBYTE
1976} re_wctype_t;
1977
01618498
SM
1978typedef int re_wchar_t;
1979
14473664
SM
1980/* Map a string to the char class it names (if any). */
1981static re_wctype_t
ada30c0e
SM
1982re_wctype (str)
1983 re_char *str;
14473664 1984{
ada30c0e 1985 const char *string = str;
14473664
SM
1986 if (STREQ (string, "alnum")) return RECC_ALNUM;
1987 else if (STREQ (string, "alpha")) return RECC_ALPHA;
1988 else if (STREQ (string, "word")) return RECC_WORD;
1989 else if (STREQ (string, "ascii")) return RECC_ASCII;
1990 else if (STREQ (string, "nonascii")) return RECC_NONASCII;
1991 else if (STREQ (string, "graph")) return RECC_GRAPH;
1992 else if (STREQ (string, "lower")) return RECC_LOWER;
1993 else if (STREQ (string, "print")) return RECC_PRINT;
1994 else if (STREQ (string, "punct")) return RECC_PUNCT;
1995 else if (STREQ (string, "space")) return RECC_SPACE;
1996 else if (STREQ (string, "upper")) return RECC_UPPER;
1997 else if (STREQ (string, "unibyte")) return RECC_UNIBYTE;
1998 else if (STREQ (string, "multibyte")) return RECC_MULTIBYTE;
1999 else if (STREQ (string, "digit")) return RECC_DIGIT;
2000 else if (STREQ (string, "xdigit")) return RECC_XDIGIT;
2001 else if (STREQ (string, "cntrl")) return RECC_CNTRL;
2002 else if (STREQ (string, "blank")) return RECC_BLANK;
2003 else return 0;
2004}
2005
2006/* True iff CH is in the char class CC. */
2007static boolean
2008re_iswctype (ch, cc)
2009 int ch;
2010 re_wctype_t cc;
2011{
2012 switch (cc)
2013 {
0cdd06f8
SM
2014 case RECC_ALNUM: return ISALNUM (ch);
2015 case RECC_ALPHA: return ISALPHA (ch);
2016 case RECC_BLANK: return ISBLANK (ch);
2017 case RECC_CNTRL: return ISCNTRL (ch);
2018 case RECC_DIGIT: return ISDIGIT (ch);
2019 case RECC_GRAPH: return ISGRAPH (ch);
2020 case RECC_LOWER: return ISLOWER (ch);
2021 case RECC_PRINT: return ISPRINT (ch);
2022 case RECC_PUNCT: return ISPUNCT (ch);
2023 case RECC_SPACE: return ISSPACE (ch);
2024 case RECC_UPPER: return ISUPPER (ch);
2025 case RECC_XDIGIT: return ISXDIGIT (ch);
2026 case RECC_ASCII: return IS_REAL_ASCII (ch);
2027 case RECC_NONASCII: return !IS_REAL_ASCII (ch);
2028 case RECC_UNIBYTE: return ISUNIBYTE (ch);
2029 case RECC_MULTIBYTE: return !ISUNIBYTE (ch);
2030 case RECC_WORD: return ISWORD (ch);
2031 case RECC_ERROR: return false;
2032 default:
2033 abort();
14473664
SM
2034 }
2035}
fa9a63c5 2036
14473664
SM
2037/* Return a bit-pattern to use in the range-table bits to match multibyte
2038 chars of class CC. */
2039static int
2040re_wctype_to_bit (cc)
2041 re_wctype_t cc;
2042{
2043 switch (cc)
2044 {
2045 case RECC_NONASCII: case RECC_PRINT: case RECC_GRAPH:
0cdd06f8
SM
2046 case RECC_MULTIBYTE: return BIT_MULTIBYTE;
2047 case RECC_ALPHA: case RECC_ALNUM: case RECC_WORD: return BIT_WORD;
2048 case RECC_LOWER: return BIT_LOWER;
2049 case RECC_UPPER: return BIT_UPPER;
2050 case RECC_PUNCT: return BIT_PUNCT;
2051 case RECC_SPACE: return BIT_SPACE;
14473664 2052 case RECC_ASCII: case RECC_DIGIT: case RECC_XDIGIT: case RECC_CNTRL:
0cdd06f8
SM
2053 case RECC_BLANK: case RECC_UNIBYTE: case RECC_ERROR: return 0;
2054 default:
2055 abort();
14473664
SM
2056 }
2057}
2058#endif
77d11aec
RS
2059\f
2060/* Filling in the work area of a range. */
2061
2062/* Actually extend the space in WORK_AREA. */
2063
2064static void
2065extend_range_table_work_area (work_area)
2066 struct range_table_work_area *work_area;
177c0ea7 2067{
77d11aec
RS
2068 work_area->allocated += 16 * sizeof (int);
2069 if (work_area->table)
2070 work_area->table
2071 = (int *) realloc (work_area->table, work_area->allocated);
2072 else
2073 work_area->table
2074 = (int *) malloc (work_area->allocated);
2075}
2076
2077#ifdef emacs
2078
2079/* Carefully find the ranges of codes that are equivalent
2080 under case conversion to the range start..end when passed through
2081 TRANSLATE. Handle the case where non-letters can come in between
2082 two upper-case letters (which happens in Latin-1).
2083 Also handle the case of groups of more than 2 case-equivalent chars.
2084
2085 The basic method is to look at consecutive characters and see
2086 if they can form a run that can be handled as one.
2087
2088 Returns -1 if successful, REG_ESPACE if ran out of space. */
2089
2090static int
2091set_image_of_range_1 (work_area, start, end, translate)
2092 RE_TRANSLATE_TYPE translate;
2093 struct range_table_work_area *work_area;
2094 re_wchar_t start, end;
2095{
2096 /* `one_case' indicates a character, or a run of characters,
2097 each of which is an isolate (no case-equivalents).
2098 This includes all ASCII non-letters.
2099
2100 `two_case' indicates a character, or a run of characters,
2101 each of which has two case-equivalent forms.
2102 This includes all ASCII letters.
2103
2104 `strange' indicates a character that has more than one
2105 case-equivalent. */
177c0ea7 2106
77d11aec
RS
2107 enum case_type {one_case, two_case, strange};
2108
2109 /* Describe the run that is in progress,
2110 which the next character can try to extend.
2111 If run_type is strange, that means there really is no run.
2112 If run_type is one_case, then run_start...run_end is the run.
2113 If run_type is two_case, then the run is run_start...run_end,
2114 and the case-equivalents end at run_eqv_end. */
2115
2116 enum case_type run_type = strange;
2117 int run_start, run_end, run_eqv_end;
2118
2119 Lisp_Object eqv_table;
2120
2121 if (!RE_TRANSLATE_P (translate))
2122 {
b7c12565 2123 EXTEND_RANGE_TABLE (work_area, 2);
77d11aec
RS
2124 work_area->table[work_area->used++] = (start);
2125 work_area->table[work_area->used++] = (end);
b7c12565 2126 return -1;
77d11aec
RS
2127 }
2128
2129 eqv_table = XCHAR_TABLE (translate)->extras[2];
99633e97 2130
77d11aec
RS
2131 for (; start <= end; start++)
2132 {
2133 enum case_type this_type;
2134 int eqv = RE_TRANSLATE (eqv_table, start);
2135 int minchar, maxchar;
2136
2137 /* Classify this character */
2138 if (eqv == start)
2139 this_type = one_case;
2140 else if (RE_TRANSLATE (eqv_table, eqv) == start)
2141 this_type = two_case;
2142 else
2143 this_type = strange;
2144
2145 if (start < eqv)
2146 minchar = start, maxchar = eqv;
2147 else
2148 minchar = eqv, maxchar = start;
2149
2150 /* Can this character extend the run in progress? */
2151 if (this_type == strange || this_type != run_type
2152 || !(minchar == run_end + 1
2153 && (run_type == two_case
2154 ? maxchar == run_eqv_end + 1 : 1)))
2155 {
2156 /* No, end the run.
2157 Record each of its equivalent ranges. */
2158 if (run_type == one_case)
2159 {
2160 EXTEND_RANGE_TABLE (work_area, 2);
2161 work_area->table[work_area->used++] = run_start;
2162 work_area->table[work_area->used++] = run_end;
2163 }
2164 else if (run_type == two_case)
2165 {
2166 EXTEND_RANGE_TABLE (work_area, 4);
2167 work_area->table[work_area->used++] = run_start;
2168 work_area->table[work_area->used++] = run_end;
2169 work_area->table[work_area->used++]
2170 = RE_TRANSLATE (eqv_table, run_start);
2171 work_area->table[work_area->used++]
2172 = RE_TRANSLATE (eqv_table, run_end);
2173 }
2174 run_type = strange;
2175 }
177c0ea7 2176
77d11aec
RS
2177 if (this_type == strange)
2178 {
2179 /* For a strange character, add each of its equivalents, one
2180 by one. Don't start a range. */
2181 do
2182 {
2183 EXTEND_RANGE_TABLE (work_area, 2);
2184 work_area->table[work_area->used++] = eqv;
2185 work_area->table[work_area->used++] = eqv;
2186 eqv = RE_TRANSLATE (eqv_table, eqv);
2187 }
2188 while (eqv != start);
2189 }
2190
2191 /* Add this char to the run, or start a new run. */
2192 else if (run_type == strange)
2193 {
2194 /* Initialize a new range. */
2195 run_type = this_type;
2196 run_start = start;
2197 run_end = start;
2198 run_eqv_end = RE_TRANSLATE (eqv_table, run_end);
2199 }
2200 else
2201 {
2202 /* Extend a running range. */
2203 run_end = minchar;
2204 run_eqv_end = RE_TRANSLATE (eqv_table, run_end);
2205 }
2206 }
2207
2208 /* If a run is still in progress at the end, finish it now
2209 by recording its equivalent ranges. */
2210 if (run_type == one_case)
2211 {
2212 EXTEND_RANGE_TABLE (work_area, 2);
2213 work_area->table[work_area->used++] = run_start;
2214 work_area->table[work_area->used++] = run_end;
2215 }
2216 else if (run_type == two_case)
2217 {
2218 EXTEND_RANGE_TABLE (work_area, 4);
2219 work_area->table[work_area->used++] = run_start;
2220 work_area->table[work_area->used++] = run_end;
2221 work_area->table[work_area->used++]
2222 = RE_TRANSLATE (eqv_table, run_start);
2223 work_area->table[work_area->used++]
2224 = RE_TRANSLATE (eqv_table, run_end);
2225 }
2226
2227 return -1;
2228}
36595814 2229
77d11aec 2230#endif /* emacs */
36595814 2231
b7c12565 2232/* Record the the image of the range start..end when passed through
36595814
SM
2233 TRANSLATE. This is not necessarily TRANSLATE(start)..TRANSLATE(end)
2234 and is not even necessarily contiguous.
b7c12565
RS
2235 Normally we approximate it with the smallest contiguous range that contains
2236 all the chars we need. However, for Latin-1 we go to extra effort
2237 to do a better job.
2238
2239 This function is not called for ASCII ranges.
77d11aec
RS
2240
2241 Returns -1 if successful, REG_ESPACE if ran out of space. */
2242
2243static int
36595814
SM
2244set_image_of_range (work_area, start, end, translate)
2245 RE_TRANSLATE_TYPE translate;
2246 struct range_table_work_area *work_area;
2247 re_wchar_t start, end;
2248{
77d11aec
RS
2249 re_wchar_t cmin, cmax;
2250
2251#ifdef emacs
2252 /* For Latin-1 ranges, use set_image_of_range_1
2253 to get proper handling of ranges that include letters and nonletters.
b7c12565 2254 For a range that includes the whole of Latin-1, this is not necessary.
77d11aec 2255 For other character sets, we don't bother to get this right. */
b7c12565
RS
2256 if (RE_TRANSLATE_P (translate) && start < 04400
2257 && !(start < 04200 && end >= 04377))
77d11aec 2258 {
b7c12565 2259 int newend;
77d11aec 2260 int tem;
b7c12565
RS
2261 newend = end;
2262 if (newend > 04377)
2263 newend = 04377;
2264 tem = set_image_of_range_1 (work_area, start, newend, translate);
77d11aec
RS
2265 if (tem > 0)
2266 return tem;
2267
2268 start = 04400;
2269 if (end < 04400)
2270 return -1;
2271 }
2272#endif
2273
b7c12565
RS
2274 EXTEND_RANGE_TABLE (work_area, 2);
2275 work_area->table[work_area->used++] = (start);
2276 work_area->table[work_area->used++] = (end);
2277
2278 cmin = -1, cmax = -1;
77d11aec 2279
36595814 2280 if (RE_TRANSLATE_P (translate))
b7c12565
RS
2281 {
2282 int ch;
77d11aec 2283
b7c12565
RS
2284 for (ch = start; ch <= end; ch++)
2285 {
2286 re_wchar_t c = TRANSLATE (ch);
2287 if (! (start <= c && c <= end))
2288 {
2289 if (cmin == -1)
2290 cmin = c, cmax = c;
2291 else
2292 {
2293 cmin = MIN (cmin, c);
2294 cmax = MAX (cmax, c);
2295 }
2296 }
2297 }
2298
2299 if (cmin != -1)
2300 {
2301 EXTEND_RANGE_TABLE (work_area, 2);
2302 work_area->table[work_area->used++] = (cmin);
2303 work_area->table[work_area->used++] = (cmax);
2304 }
2305 }
36595814 2306
77d11aec
RS
2307 return -1;
2308}
fa9a63c5
RM
2309\f
2310#ifndef MATCH_MAY_ALLOCATE
2311
2312/* If we cannot allocate large objects within re_match_2_internal,
2313 we make the fail stack and register vectors global.
2314 The fail stack, we grow to the maximum size when a regexp
2315 is compiled.
2316 The register vectors, we adjust in size each time we
2317 compile a regexp, according to the number of registers it needs. */
2318
2319static fail_stack_type fail_stack;
2320
2321/* Size with which the following vectors are currently allocated.
2322 That is so we can make them bigger as needed,
4bb91c68 2323 but never make them smaller. */
fa9a63c5
RM
2324static int regs_allocated_size;
2325
66f0296e
SM
2326static re_char ** regstart, ** regend;
2327static re_char **best_regstart, **best_regend;
fa9a63c5
RM
2328
2329/* Make the register vectors big enough for NUM_REGS registers,
4bb91c68 2330 but don't make them smaller. */
fa9a63c5
RM
2331
2332static
2333regex_grow_registers (num_regs)
2334 int num_regs;
2335{
2336 if (num_regs > regs_allocated_size)
2337 {
66f0296e
SM
2338 RETALLOC_IF (regstart, num_regs, re_char *);
2339 RETALLOC_IF (regend, num_regs, re_char *);
2340 RETALLOC_IF (best_regstart, num_regs, re_char *);
2341 RETALLOC_IF (best_regend, num_regs, re_char *);
fa9a63c5
RM
2342
2343 regs_allocated_size = num_regs;
2344 }
2345}
2346
2347#endif /* not MATCH_MAY_ALLOCATE */
2348\f
99633e97
SM
2349static boolean group_in_compile_stack _RE_ARGS ((compile_stack_type
2350 compile_stack,
2351 regnum_t regnum));
2352
fa9a63c5
RM
2353/* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
2354 Returns one of error codes defined in `regex.h', or zero for success.
2355
2356 Assumes the `allocated' (and perhaps `buffer') and `translate'
2357 fields are set in BUFP on entry.
2358
2359 If it succeeds, results are put in BUFP (if it returns an error, the
2360 contents of BUFP are undefined):
2361 `buffer' is the compiled pattern;
2362 `syntax' is set to SYNTAX;
2363 `used' is set to the length of the compiled pattern;
2364 `fastmap_accurate' is zero;
2365 `re_nsub' is the number of subexpressions in PATTERN;
2366 `not_bol' and `not_eol' are zero;
5e69f11e 2367
c0f9ea08 2368 The `fastmap' field is neither examined nor set. */
fa9a63c5 2369
505bde11
SM
2370/* Insert the `jump' from the end of last alternative to "here".
2371 The space for the jump has already been allocated. */
2372#define FIXUP_ALT_JUMP() \
2373do { \
2374 if (fixup_alt_jump) \
2375 STORE_JUMP (jump, fixup_alt_jump, b); \
2376} while (0)
2377
2378
fa9a63c5
RM
2379/* Return, freeing storage we allocated. */
2380#define FREE_STACK_RETURN(value) \
b18215fc
RS
2381 do { \
2382 FREE_RANGE_TABLE_WORK_AREA (range_table_work); \
2383 free (compile_stack.stack); \
2384 return value; \
2385 } while (0)
fa9a63c5
RM
2386
2387static reg_errcode_t
2388regex_compile (pattern, size, syntax, bufp)
66f0296e 2389 re_char *pattern;
4bb91c68 2390 size_t size;
fa9a63c5
RM
2391 reg_syntax_t syntax;
2392 struct re_pattern_buffer *bufp;
2393{
01618498
SM
2394 /* We fetch characters from PATTERN here. */
2395 register re_wchar_t c, c1;
5e69f11e 2396
fa9a63c5 2397 /* A random temporary spot in PATTERN. */
66f0296e 2398 re_char *p1;
fa9a63c5
RM
2399
2400 /* Points to the end of the buffer, where we should append. */
2401 register unsigned char *b;
5e69f11e 2402
fa9a63c5
RM
2403 /* Keeps track of unclosed groups. */
2404 compile_stack_type compile_stack;
2405
2406 /* Points to the current (ending) position in the pattern. */
22336245
RS
2407#ifdef AIX
2408 /* `const' makes AIX compiler fail. */
66f0296e 2409 unsigned char *p = pattern;
22336245 2410#else
66f0296e 2411 re_char *p = pattern;
22336245 2412#endif
66f0296e 2413 re_char *pend = pattern + size;
5e69f11e 2414
fa9a63c5 2415 /* How to translate the characters in the pattern. */
6676cb1c 2416 RE_TRANSLATE_TYPE translate = bufp->translate;
fa9a63c5
RM
2417
2418 /* Address of the count-byte of the most recently inserted `exactn'
2419 command. This makes it possible to tell if a new exact-match
2420 character can be added to that command or if the character requires
2421 a new `exactn' command. */
2422 unsigned char *pending_exact = 0;
2423
2424 /* Address of start of the most recently finished expression.
2425 This tells, e.g., postfix * where to find the start of its
2426 operand. Reset at the beginning of groups and alternatives. */
2427 unsigned char *laststart = 0;
2428
2429 /* Address of beginning of regexp, or inside of last group. */
2430 unsigned char *begalt;
2431
2432 /* Place in the uncompiled pattern (i.e., the {) to
2433 which to go back if the interval is invalid. */
66f0296e 2434 re_char *beg_interval;
5e69f11e 2435
fa9a63c5 2436 /* Address of the place where a forward jump should go to the end of
25fe55af 2437 the containing expression. Each alternative of an `or' -- except the
fa9a63c5
RM
2438 last -- ends with a forward jump of this sort. */
2439 unsigned char *fixup_alt_jump = 0;
2440
2441 /* Counts open-groups as they are encountered. Remembered for the
2442 matching close-group on the compile stack, so the same register
2443 number is put in the stop_memory as the start_memory. */
2444 regnum_t regnum = 0;
2445
b18215fc
RS
2446 /* Work area for range table of charset. */
2447 struct range_table_work_area range_table_work;
2448
2d1675e4
SM
2449 /* If the object matched can contain multibyte characters. */
2450 const boolean multibyte = RE_MULTIBYTE_P (bufp);
2451
fa9a63c5 2452#ifdef DEBUG
99633e97 2453 debug++;
fa9a63c5 2454 DEBUG_PRINT1 ("\nCompiling pattern: ");
99633e97 2455 if (debug > 0)
fa9a63c5
RM
2456 {
2457 unsigned debug_count;
5e69f11e 2458
fa9a63c5 2459 for (debug_count = 0; debug_count < size; debug_count++)
25fe55af 2460 putchar (pattern[debug_count]);
fa9a63c5
RM
2461 putchar ('\n');
2462 }
2463#endif /* DEBUG */
2464
2465 /* Initialize the compile stack. */
2466 compile_stack.stack = TALLOC (INIT_COMPILE_STACK_SIZE, compile_stack_elt_t);
2467 if (compile_stack.stack == NULL)
2468 return REG_ESPACE;
2469
2470 compile_stack.size = INIT_COMPILE_STACK_SIZE;
2471 compile_stack.avail = 0;
2472
b18215fc
RS
2473 range_table_work.table = 0;
2474 range_table_work.allocated = 0;
2475
fa9a63c5
RM
2476 /* Initialize the pattern buffer. */
2477 bufp->syntax = syntax;
2478 bufp->fastmap_accurate = 0;
2479 bufp->not_bol = bufp->not_eol = 0;
2480
2481 /* Set `used' to zero, so that if we return an error, the pattern
2482 printer (for debugging) will think there's no pattern. We reset it
2483 at the end. */
2484 bufp->used = 0;
5e69f11e 2485
fa9a63c5 2486 /* Always count groups, whether or not bufp->no_sub is set. */
5e69f11e 2487 bufp->re_nsub = 0;
fa9a63c5 2488
0b32bf0e 2489#if !defined emacs && !defined SYNTAX_TABLE
fa9a63c5
RM
2490 /* Initialize the syntax table. */
2491 init_syntax_once ();
2492#endif
2493
2494 if (bufp->allocated == 0)
2495 {
2496 if (bufp->buffer)
2497 { /* If zero allocated, but buffer is non-null, try to realloc
25fe55af
RS
2498 enough space. This loses if buffer's address is bogus, but
2499 that is the user's responsibility. */
2500 RETALLOC (bufp->buffer, INIT_BUF_SIZE, unsigned char);
2501 }
fa9a63c5 2502 else
25fe55af
RS
2503 { /* Caller did not allocate a buffer. Do it for them. */
2504 bufp->buffer = TALLOC (INIT_BUF_SIZE, unsigned char);
2505 }
fa9a63c5
RM
2506 if (!bufp->buffer) FREE_STACK_RETURN (REG_ESPACE);
2507
2508 bufp->allocated = INIT_BUF_SIZE;
2509 }
2510
2511 begalt = b = bufp->buffer;
2512
2513 /* Loop through the uncompiled pattern until we're at the end. */
2514 while (p != pend)
2515 {
2516 PATFETCH (c);
2517
2518 switch (c)
25fe55af
RS
2519 {
2520 case '^':
2521 {
2522 if ( /* If at start of pattern, it's an operator. */
2523 p == pattern + 1
2524 /* If context independent, it's an operator. */
2525 || syntax & RE_CONTEXT_INDEP_ANCHORS
2526 /* Otherwise, depends on what's come before. */
2527 || at_begline_loc_p (pattern, p, syntax))
c0f9ea08 2528 BUF_PUSH ((syntax & RE_NO_NEWLINE_ANCHOR) ? begbuf : begline);
25fe55af
RS
2529 else
2530 goto normal_char;
2531 }
2532 break;
2533
2534
2535 case '$':
2536 {
2537 if ( /* If at end of pattern, it's an operator. */
2538 p == pend
2539 /* If context independent, it's an operator. */
2540 || syntax & RE_CONTEXT_INDEP_ANCHORS
2541 /* Otherwise, depends on what's next. */
2542 || at_endline_loc_p (p, pend, syntax))
c0f9ea08 2543 BUF_PUSH ((syntax & RE_NO_NEWLINE_ANCHOR) ? endbuf : endline);
25fe55af
RS
2544 else
2545 goto normal_char;
2546 }
2547 break;
fa9a63c5
RM
2548
2549
2550 case '+':
25fe55af
RS
2551 case '?':
2552 if ((syntax & RE_BK_PLUS_QM)
2553 || (syntax & RE_LIMITED_OPS))
2554 goto normal_char;
2555 handle_plus:
2556 case '*':
2557 /* If there is no previous pattern... */
2558 if (!laststart)
2559 {
2560 if (syntax & RE_CONTEXT_INVALID_OPS)
2561 FREE_STACK_RETURN (REG_BADRPT);
2562 else if (!(syntax & RE_CONTEXT_INDEP_OPS))
2563 goto normal_char;
2564 }
2565
2566 {
25fe55af 2567 /* 1 means zero (many) matches is allowed. */
66f0296e
SM
2568 boolean zero_times_ok = 0, many_times_ok = 0;
2569 boolean greedy = 1;
25fe55af
RS
2570
2571 /* If there is a sequence of repetition chars, collapse it
2572 down to just one (the right one). We can't combine
2573 interval operators with these because of, e.g., `a{2}*',
2574 which should only match an even number of `a's. */
2575
2576 for (;;)
2577 {
0b32bf0e 2578 if ((syntax & RE_FRUGAL)
1c8c6d39
DL
2579 && c == '?' && (zero_times_ok || many_times_ok))
2580 greedy = 0;
2581 else
2582 {
2583 zero_times_ok |= c != '+';
2584 many_times_ok |= c != '?';
2585 }
25fe55af
RS
2586
2587 if (p == pend)
2588 break;
ed0767d8
SM
2589 else if (*p == '*'
2590 || (!(syntax & RE_BK_PLUS_QM)
2591 && (*p == '+' || *p == '?')))
25fe55af 2592 ;
ed0767d8 2593 else if (syntax & RE_BK_PLUS_QM && *p == '\\')
25fe55af 2594 {
ed0767d8
SM
2595 if (p+1 == pend)
2596 FREE_STACK_RETURN (REG_EESCAPE);
2597 if (p[1] == '+' || p[1] == '?')
2598 PATFETCH (c); /* Gobble up the backslash. */
2599 else
2600 break;
25fe55af
RS
2601 }
2602 else
ed0767d8 2603 break;
25fe55af 2604 /* If we get here, we found another repeat character. */
ed0767d8
SM
2605 PATFETCH (c);
2606 }
25fe55af
RS
2607
2608 /* Star, etc. applied to an empty pattern is equivalent
2609 to an empty pattern. */
4e8a9132 2610 if (!laststart || laststart == b)
25fe55af
RS
2611 break;
2612
2613 /* Now we know whether or not zero matches is allowed
2614 and also whether or not two or more matches is allowed. */
1c8c6d39
DL
2615 if (greedy)
2616 {
99633e97 2617 if (many_times_ok)
4e8a9132
SM
2618 {
2619 boolean simple = skip_one_char (laststart) == b;
2620 unsigned int startoffset = 0;
f6a3f532 2621 re_opcode_t ofj =
01618498 2622 /* Check if the loop can match the empty string. */
6df42991
SM
2623 (simple || !analyse_first (laststart, b, NULL, 0))
2624 ? on_failure_jump : on_failure_jump_loop;
4e8a9132 2625 assert (skip_one_char (laststart) <= b);
177c0ea7 2626
4e8a9132
SM
2627 if (!zero_times_ok && simple)
2628 { /* Since simple * loops can be made faster by using
2629 on_failure_keep_string_jump, we turn simple P+
2630 into PP* if P is simple. */
2631 unsigned char *p1, *p2;
2632 startoffset = b - laststart;
2633 GET_BUFFER_SPACE (startoffset);
2634 p1 = b; p2 = laststart;
2635 while (p2 < p1)
2636 *b++ = *p2++;
2637 zero_times_ok = 1;
99633e97 2638 }
4e8a9132
SM
2639
2640 GET_BUFFER_SPACE (6);
2641 if (!zero_times_ok)
2642 /* A + loop. */
f6a3f532 2643 STORE_JUMP (ofj, b, b + 6);
99633e97 2644 else
4e8a9132
SM
2645 /* Simple * loops can use on_failure_keep_string_jump
2646 depending on what follows. But since we don't know
2647 that yet, we leave the decision up to
2648 on_failure_jump_smart. */
f6a3f532 2649 INSERT_JUMP (simple ? on_failure_jump_smart : ofj,
4e8a9132 2650 laststart + startoffset, b + 6);
99633e97 2651 b += 3;
4e8a9132 2652 STORE_JUMP (jump, b, laststart + startoffset);
99633e97
SM
2653 b += 3;
2654 }
2655 else
2656 {
4e8a9132
SM
2657 /* A simple ? pattern. */
2658 assert (zero_times_ok);
2659 GET_BUFFER_SPACE (3);
2660 INSERT_JUMP (on_failure_jump, laststart, b + 3);
99633e97
SM
2661 b += 3;
2662 }
1c8c6d39
DL
2663 }
2664 else /* not greedy */
2665 { /* I wish the greedy and non-greedy cases could be merged. */
2666
0683b6fa 2667 GET_BUFFER_SPACE (7); /* We might use less. */
1c8c6d39
DL
2668 if (many_times_ok)
2669 {
f6a3f532
SM
2670 boolean emptyp = analyse_first (laststart, b, NULL, 0);
2671
6df42991
SM
2672 /* The non-greedy multiple match looks like
2673 a repeat..until: we only need a conditional jump
2674 at the end of the loop. */
f6a3f532
SM
2675 if (emptyp) BUF_PUSH (no_op);
2676 STORE_JUMP (emptyp ? on_failure_jump_nastyloop
2677 : on_failure_jump, b, laststart);
1c8c6d39
DL
2678 b += 3;
2679 if (zero_times_ok)
2680 {
2681 /* The repeat...until naturally matches one or more.
2682 To also match zero times, we need to first jump to
6df42991 2683 the end of the loop (its conditional jump). */
1c8c6d39
DL
2684 INSERT_JUMP (jump, laststart, b);
2685 b += 3;
2686 }
2687 }
2688 else
2689 {
2690 /* non-greedy a?? */
1c8c6d39
DL
2691 INSERT_JUMP (jump, laststart, b + 3);
2692 b += 3;
2693 INSERT_JUMP (on_failure_jump, laststart, laststart + 6);
2694 b += 3;
2695 }
2696 }
2697 }
4e8a9132 2698 pending_exact = 0;
fa9a63c5
RM
2699 break;
2700
2701
2702 case '.':
25fe55af
RS
2703 laststart = b;
2704 BUF_PUSH (anychar);
2705 break;
fa9a63c5
RM
2706
2707
25fe55af
RS
2708 case '[':
2709 {
b18215fc 2710 CLEAR_RANGE_TABLE_WORK_USED (range_table_work);
fa9a63c5 2711
25fe55af 2712 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
fa9a63c5 2713
25fe55af
RS
2714 /* Ensure that we have enough space to push a charset: the
2715 opcode, the length count, and the bitset; 34 bytes in all. */
fa9a63c5
RM
2716 GET_BUFFER_SPACE (34);
2717
25fe55af 2718 laststart = b;
e318085a 2719
25fe55af
RS
2720 /* We test `*p == '^' twice, instead of using an if
2721 statement, so we only need one BUF_PUSH. */
2722 BUF_PUSH (*p == '^' ? charset_not : charset);
2723 if (*p == '^')
2724 p++;
e318085a 2725
25fe55af
RS
2726 /* Remember the first position in the bracket expression. */
2727 p1 = p;
e318085a 2728
25fe55af
RS
2729 /* Push the number of bytes in the bitmap. */
2730 BUF_PUSH ((1 << BYTEWIDTH) / BYTEWIDTH);
e318085a 2731
25fe55af
RS
2732 /* Clear the whole map. */
2733 bzero (b, (1 << BYTEWIDTH) / BYTEWIDTH);
e318085a 2734
25fe55af
RS
2735 /* charset_not matches newline according to a syntax bit. */
2736 if ((re_opcode_t) b[-2] == charset_not
2737 && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
2738 SET_LIST_BIT ('\n');
fa9a63c5 2739
25fe55af
RS
2740 /* Read in characters and ranges, setting map bits. */
2741 for (;;)
2742 {
b18215fc 2743 boolean escaped_char = false;
2d1675e4 2744 const unsigned char *p2 = p;
e318085a 2745
25fe55af 2746 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
e318085a 2747
36595814
SM
2748 /* Don't translate yet. The range TRANSLATE(X..Y) cannot
2749 always be determined from TRANSLATE(X) and TRANSLATE(Y)
2750 So the translation is done later in a loop. Example:
2751 (let ((case-fold-search t)) (string-match "[A-_]" "A")) */
25fe55af 2752 PATFETCH (c);
e318085a 2753
25fe55af
RS
2754 /* \ might escape characters inside [...] and [^...]. */
2755 if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
2756 {
2757 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
e318085a
RS
2758
2759 PATFETCH (c);
b18215fc 2760 escaped_char = true;
25fe55af 2761 }
b18215fc
RS
2762 else
2763 {
657fcfbd
RS
2764 /* Could be the end of the bracket expression. If it's
2765 not (i.e., when the bracket expression is `[]' so
2766 far), the ']' character bit gets set way below. */
2d1675e4 2767 if (c == ']' && p2 != p1)
657fcfbd 2768 break;
25fe55af 2769 }
b18215fc 2770
b18215fc
RS
2771 /* What should we do for the character which is
2772 greater than 0x7F, but not BASE_LEADING_CODE_P?
2773 XXX */
2774
25fe55af
RS
2775 /* See if we're at the beginning of a possible character
2776 class. */
b18215fc 2777
2d1675e4
SM
2778 if (!escaped_char &&
2779 syntax & RE_CHAR_CLASSES && c == '[' && *p == ':')
657fcfbd
RS
2780 {
2781 /* Leave room for the null. */
14473664 2782 unsigned char str[CHAR_CLASS_MAX_LENGTH + 1];
ed0767d8 2783 const unsigned char *class_beg;
b18215fc 2784
25fe55af
RS
2785 PATFETCH (c);
2786 c1 = 0;
ed0767d8 2787 class_beg = p;
b18215fc 2788
25fe55af
RS
2789 /* If pattern is `[[:'. */
2790 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
b18215fc 2791
25fe55af
RS
2792 for (;;)
2793 {
14473664
SM
2794 PATFETCH (c);
2795 if ((c == ':' && *p == ']') || p == pend)
2796 break;
2797 if (c1 < CHAR_CLASS_MAX_LENGTH)
2798 str[c1++] = c;
2799 else
2800 /* This is in any case an invalid class name. */
2801 str[0] = '\0';
25fe55af
RS
2802 }
2803 str[c1] = '\0';
b18215fc
RS
2804
2805 /* If isn't a word bracketed by `[:' and `:]':
2806 undo the ending character, the letters, and
2807 leave the leading `:' and `[' (but set bits for
2808 them). */
25fe55af
RS
2809 if (c == ':' && *p == ']')
2810 {
36595814 2811 re_wchar_t ch;
14473664
SM
2812 re_wctype_t cc;
2813
2814 cc = re_wctype (str);
2815
2816 if (cc == 0)
fa9a63c5
RM
2817 FREE_STACK_RETURN (REG_ECTYPE);
2818
14473664
SM
2819 /* Throw away the ] at the end of the character
2820 class. */
2821 PATFETCH (c);
fa9a63c5 2822
14473664 2823 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
fa9a63c5 2824
96cc36cc
RS
2825 /* Most character classes in a multibyte match
2826 just set a flag. Exceptions are is_blank,
2827 is_digit, is_cntrl, and is_xdigit, since
2828 they can only match ASCII characters. We
14473664
SM
2829 don't need to handle them for multibyte.
2830 They are distinguished by a negative wctype. */
96cc36cc 2831
2d1675e4 2832 if (multibyte)
14473664
SM
2833 SET_RANGE_TABLE_WORK_AREA_BIT (range_table_work,
2834 re_wctype_to_bit (cc));
96cc36cc 2835
14473664 2836 for (ch = 0; ch < 1 << BYTEWIDTH; ++ch)
25fe55af 2837 {
7ae68633 2838 int translated = TRANSLATE (ch);
14473664 2839 if (re_iswctype (btowc (ch), cc))
96cc36cc 2840 SET_LIST_BIT (translated);
25fe55af 2841 }
b18215fc
RS
2842
2843 /* Repeat the loop. */
2844 continue;
25fe55af
RS
2845 }
2846 else
2847 {
ed0767d8
SM
2848 /* Go back to right after the "[:". */
2849 p = class_beg;
25fe55af 2850 SET_LIST_BIT ('[');
b18215fc
RS
2851
2852 /* Because the `:' may starts the range, we
2853 can't simply set bit and repeat the loop.
25fe55af 2854 Instead, just set it to C and handle below. */
b18215fc 2855 c = ':';
25fe55af
RS
2856 }
2857 }
b18215fc
RS
2858
2859 if (p < pend && p[0] == '-' && p[1] != ']')
2860 {
2861
2862 /* Discard the `-'. */
2863 PATFETCH (c1);
2864
2865 /* Fetch the character which ends the range. */
2866 PATFETCH (c1);
b18215fc 2867
b54f61ed 2868 if (SINGLE_BYTE_CHAR_P (c))
e934739e 2869 {
b54f61ed
KH
2870 if (! SINGLE_BYTE_CHAR_P (c1))
2871 {
3ff2446d
KH
2872 /* Handle a range starting with a
2873 character of less than 256, and ending
2874 with a character of not less than 256.
2875 Split that into two ranges, the low one
2876 ending at 0377, and the high one
2877 starting at the smallest character in
2878 the charset of C1 and ending at C1. */
b54f61ed 2879 int charset = CHAR_CHARSET (c1);
36595814
SM
2880 re_wchar_t c2 = MAKE_CHAR (charset, 0, 0);
2881
b54f61ed
KH
2882 SET_RANGE_TABLE_WORK_AREA (range_table_work,
2883 c2, c1);
333526e0 2884 c1 = 0377;
b54f61ed 2885 }
e934739e
RS
2886 }
2887 else if (!SAME_CHARSET_P (c, c1))
b18215fc 2888 FREE_STACK_RETURN (REG_ERANGE);
e318085a 2889 }
25fe55af 2890 else
b18215fc
RS
2891 /* Range from C to C. */
2892 c1 = c;
2893
2894 /* Set the range ... */
2895 if (SINGLE_BYTE_CHAR_P (c))
2896 /* ... into bitmap. */
25fe55af 2897 {
01618498 2898 re_wchar_t this_char;
36595814 2899 re_wchar_t range_start = c, range_end = c1;
b18215fc
RS
2900
2901 /* If the start is after the end, the range is empty. */
2902 if (range_start > range_end)
2903 {
2904 if (syntax & RE_NO_EMPTY_RANGES)
2905 FREE_STACK_RETURN (REG_ERANGE);
2906 /* Else, repeat the loop. */
2907 }
2908 else
2909 {
2910 for (this_char = range_start; this_char <= range_end;
2911 this_char++)
2912 SET_LIST_BIT (TRANSLATE (this_char));
e934739e 2913 }
25fe55af 2914 }
e318085a 2915 else
b18215fc
RS
2916 /* ... into range table. */
2917 SET_RANGE_TABLE_WORK_AREA (range_table_work, c, c1);
e318085a
RS
2918 }
2919
25fe55af
RS
2920 /* Discard any (non)matching list bytes that are all 0 at the
2921 end of the map. Decrease the map-length byte too. */
2922 while ((int) b[-1] > 0 && b[b[-1] - 1] == 0)
2923 b[-1]--;
2924 b += b[-1];
fa9a63c5 2925
96cc36cc
RS
2926 /* Build real range table from work area. */
2927 if (RANGE_TABLE_WORK_USED (range_table_work)
2928 || RANGE_TABLE_WORK_BITS (range_table_work))
b18215fc
RS
2929 {
2930 int i;
2931 int used = RANGE_TABLE_WORK_USED (range_table_work);
fa9a63c5 2932
b18215fc 2933 /* Allocate space for COUNT + RANGE_TABLE. Needs two
96cc36cc
RS
2934 bytes for flags, two for COUNT, and three bytes for
2935 each character. */
2936 GET_BUFFER_SPACE (4 + used * 3);
fa9a63c5 2937
b18215fc
RS
2938 /* Indicate the existence of range table. */
2939 laststart[1] |= 0x80;
fa9a63c5 2940
96cc36cc
RS
2941 /* Store the character class flag bits into the range table.
2942 If not in emacs, these flag bits are always 0. */
2943 *b++ = RANGE_TABLE_WORK_BITS (range_table_work) & 0xff;
2944 *b++ = RANGE_TABLE_WORK_BITS (range_table_work) >> 8;
2945
b18215fc
RS
2946 STORE_NUMBER_AND_INCR (b, used / 2);
2947 for (i = 0; i < used; i++)
2948 STORE_CHARACTER_AND_INCR
2949 (b, RANGE_TABLE_WORK_ELT (range_table_work, i));
2950 }
25fe55af
RS
2951 }
2952 break;
fa9a63c5
RM
2953
2954
b18215fc 2955 case '(':
25fe55af
RS
2956 if (syntax & RE_NO_BK_PARENS)
2957 goto handle_open;
2958 else
2959 goto normal_char;
fa9a63c5
RM
2960
2961
25fe55af
RS
2962 case ')':
2963 if (syntax & RE_NO_BK_PARENS)
2964 goto handle_close;
2965 else
2966 goto normal_char;
e318085a
RS
2967
2968
25fe55af
RS
2969 case '\n':
2970 if (syntax & RE_NEWLINE_ALT)
2971 goto handle_alt;
2972 else
2973 goto normal_char;
e318085a
RS
2974
2975
b18215fc 2976 case '|':
25fe55af
RS
2977 if (syntax & RE_NO_BK_VBAR)
2978 goto handle_alt;
2979 else
2980 goto normal_char;
2981
2982
2983 case '{':
2984 if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES)
2985 goto handle_interval;
2986 else
2987 goto normal_char;
2988
2989
2990 case '\\':
2991 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2992
2993 /* Do not translate the character after the \, so that we can
2994 distinguish, e.g., \B from \b, even if we normally would
2995 translate, e.g., B to b. */
36595814 2996 PATFETCH (c);
25fe55af
RS
2997
2998 switch (c)
2999 {
3000 case '(':
3001 if (syntax & RE_NO_BK_PARENS)
3002 goto normal_backslash;
3003
3004 handle_open:
505bde11
SM
3005 {
3006 int shy = 0;
3007 if (p+1 < pend)
3008 {
3009 /* Look for a special (?...) construct */
ed0767d8 3010 if ((syntax & RE_SHY_GROUPS) && *p == '?')
505bde11 3011 {
ed0767d8 3012 PATFETCH (c); /* Gobble up the '?'. */
505bde11
SM
3013 PATFETCH (c);
3014 switch (c)
3015 {
3016 case ':': shy = 1; break;
3017 default:
3018 /* Only (?:...) is supported right now. */
3019 FREE_STACK_RETURN (REG_BADPAT);
3020 }
3021 }
505bde11
SM
3022 }
3023
3024 if (!shy)
3025 {
3026 bufp->re_nsub++;
3027 regnum++;
3028 }
25fe55af 3029
99633e97
SM
3030 if (COMPILE_STACK_FULL)
3031 {
3032 RETALLOC (compile_stack.stack, compile_stack.size << 1,
3033 compile_stack_elt_t);
3034 if (compile_stack.stack == NULL) return REG_ESPACE;
25fe55af 3035
99633e97
SM
3036 compile_stack.size <<= 1;
3037 }
25fe55af 3038
99633e97
SM
3039 /* These are the values to restore when we hit end of this
3040 group. They are all relative offsets, so that if the
3041 whole pattern moves because of realloc, they will still
3042 be valid. */
3043 COMPILE_STACK_TOP.begalt_offset = begalt - bufp->buffer;
3044 COMPILE_STACK_TOP.fixup_alt_jump
3045 = fixup_alt_jump ? fixup_alt_jump - bufp->buffer + 1 : 0;
3046 COMPILE_STACK_TOP.laststart_offset = b - bufp->buffer;
3047 COMPILE_STACK_TOP.regnum = shy ? -regnum : regnum;
3048
3049 /* Do not push a
3050 start_memory for groups beyond the last one we can
3051 represent in the compiled pattern. */
3052 if (regnum <= MAX_REGNUM && !shy)
3053 BUF_PUSH_2 (start_memory, regnum);
3054
3055 compile_stack.avail++;
3056
3057 fixup_alt_jump = 0;
3058 laststart = 0;
3059 begalt = b;
3060 /* If we've reached MAX_REGNUM groups, then this open
3061 won't actually generate any code, so we'll have to
3062 clear pending_exact explicitly. */
3063 pending_exact = 0;
3064 break;
505bde11 3065 }
25fe55af
RS
3066
3067 case ')':
3068 if (syntax & RE_NO_BK_PARENS) goto normal_backslash;
3069
3070 if (COMPILE_STACK_EMPTY)
505bde11
SM
3071 {
3072 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
3073 goto normal_backslash;
3074 else
3075 FREE_STACK_RETURN (REG_ERPAREN);
3076 }
25fe55af
RS
3077
3078 handle_close:
505bde11 3079 FIXUP_ALT_JUMP ();
25fe55af
RS
3080
3081 /* See similar code for backslashed left paren above. */
3082 if (COMPILE_STACK_EMPTY)
505bde11
SM
3083 {
3084 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
3085 goto normal_char;
3086 else
3087 FREE_STACK_RETURN (REG_ERPAREN);
3088 }
25fe55af
RS
3089
3090 /* Since we just checked for an empty stack above, this
3091 ``can't happen''. */
3092 assert (compile_stack.avail != 0);
3093 {
3094 /* We don't just want to restore into `regnum', because
3095 later groups should continue to be numbered higher,
3096 as in `(ab)c(de)' -- the second group is #2. */
3097 regnum_t this_group_regnum;
3098
3099 compile_stack.avail--;
3100 begalt = bufp->buffer + COMPILE_STACK_TOP.begalt_offset;
3101 fixup_alt_jump
3102 = COMPILE_STACK_TOP.fixup_alt_jump
3103 ? bufp->buffer + COMPILE_STACK_TOP.fixup_alt_jump - 1
3104 : 0;
3105 laststart = bufp->buffer + COMPILE_STACK_TOP.laststart_offset;
3106 this_group_regnum = COMPILE_STACK_TOP.regnum;
b18215fc
RS
3107 /* If we've reached MAX_REGNUM groups, then this open
3108 won't actually generate any code, so we'll have to
3109 clear pending_exact explicitly. */
3110 pending_exact = 0;
e318085a 3111
25fe55af
RS
3112 /* We're at the end of the group, so now we know how many
3113 groups were inside this one. */
505bde11
SM
3114 if (this_group_regnum <= MAX_REGNUM && this_group_regnum > 0)
3115 BUF_PUSH_2 (stop_memory, this_group_regnum);
25fe55af
RS
3116 }
3117 break;
3118
3119
3120 case '|': /* `\|'. */
3121 if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR)
3122 goto normal_backslash;
3123 handle_alt:
3124 if (syntax & RE_LIMITED_OPS)
3125 goto normal_char;
3126
3127 /* Insert before the previous alternative a jump which
3128 jumps to this alternative if the former fails. */
3129 GET_BUFFER_SPACE (3);
3130 INSERT_JUMP (on_failure_jump, begalt, b + 6);
3131 pending_exact = 0;
3132 b += 3;
3133
3134 /* The alternative before this one has a jump after it
3135 which gets executed if it gets matched. Adjust that
3136 jump so it will jump to this alternative's analogous
3137 jump (put in below, which in turn will jump to the next
3138 (if any) alternative's such jump, etc.). The last such
3139 jump jumps to the correct final destination. A picture:
3140 _____ _____
3141 | | | |
3142 | v | v
3143 a | b | c
3144
3145 If we are at `b', then fixup_alt_jump right now points to a
3146 three-byte space after `a'. We'll put in the jump, set
3147 fixup_alt_jump to right after `b', and leave behind three
3148 bytes which we'll fill in when we get to after `c'. */
3149
505bde11 3150 FIXUP_ALT_JUMP ();
25fe55af
RS
3151
3152 /* Mark and leave space for a jump after this alternative,
3153 to be filled in later either by next alternative or
3154 when know we're at the end of a series of alternatives. */
3155 fixup_alt_jump = b;
3156 GET_BUFFER_SPACE (3);
3157 b += 3;
3158
3159 laststart = 0;
3160 begalt = b;
3161 break;
3162
3163
3164 case '{':
3165 /* If \{ is a literal. */
3166 if (!(syntax & RE_INTERVALS)
3167 /* If we're at `\{' and it's not the open-interval
3168 operator. */
4bb91c68 3169 || (syntax & RE_NO_BK_BRACES))
25fe55af
RS
3170 goto normal_backslash;
3171
3172 handle_interval:
3173 {
3174 /* If got here, then the syntax allows intervals. */
3175
3176 /* At least (most) this many matches must be made. */
99633e97 3177 int lower_bound = 0, upper_bound = -1;
25fe55af 3178
ed0767d8 3179 beg_interval = p;
25fe55af
RS
3180
3181 if (p == pend)
4bb91c68 3182 FREE_STACK_RETURN (REG_EBRACE);
25fe55af
RS
3183
3184 GET_UNSIGNED_NUMBER (lower_bound);
3185
3186 if (c == ',')
ed0767d8 3187 GET_UNSIGNED_NUMBER (upper_bound);
25fe55af
RS
3188 else
3189 /* Interval such as `{1}' => match exactly once. */
3190 upper_bound = lower_bound;
3191
3192 if (lower_bound < 0 || upper_bound > RE_DUP_MAX
ed0767d8 3193 || (upper_bound >= 0 && lower_bound > upper_bound))
4bb91c68 3194 FREE_STACK_RETURN (REG_BADBR);
25fe55af
RS
3195
3196 if (!(syntax & RE_NO_BK_BRACES))
3197 {
4bb91c68
SM
3198 if (c != '\\')
3199 FREE_STACK_RETURN (REG_BADBR);
25fe55af
RS
3200
3201 PATFETCH (c);
3202 }
3203
3204 if (c != '}')
4bb91c68 3205 FREE_STACK_RETURN (REG_BADBR);
25fe55af
RS
3206
3207 /* We just parsed a valid interval. */
3208
3209 /* If it's invalid to have no preceding re. */
3210 if (!laststart)
3211 {
3212 if (syntax & RE_CONTEXT_INVALID_OPS)
3213 FREE_STACK_RETURN (REG_BADRPT);
3214 else if (syntax & RE_CONTEXT_INDEP_OPS)
3215 laststart = b;
3216 else
3217 goto unfetch_interval;
3218 }
3219
6df42991
SM
3220 if (upper_bound == 0)
3221 /* If the upper bound is zero, just drop the sub pattern
3222 altogether. */
3223 b = laststart;
3224 else if (lower_bound == 1 && upper_bound == 1)
3225 /* Just match it once: nothing to do here. */
3226 ;
3227
3228 /* Otherwise, we have a nontrivial interval. When
3229 we're all done, the pattern will look like:
3230 set_number_at <jump count> <upper bound>
3231 set_number_at <succeed_n count> <lower bound>
3232 succeed_n <after jump addr> <succeed_n count>
3233 <body of loop>
3234 jump_n <succeed_n addr> <jump count>
3235 (The upper bound and `jump_n' are omitted if
3236 `upper_bound' is 1, though.) */
3237 else
3238 { /* If the upper bound is > 1, we need to insert
3239 more at the end of the loop. */
3240 unsigned int nbytes = (upper_bound < 0 ? 3
3241 : upper_bound > 1 ? 5 : 0);
3242 unsigned int startoffset = 0;
3243
3244 GET_BUFFER_SPACE (20); /* We might use less. */
3245
3246 if (lower_bound == 0)
3247 {
3248 /* A succeed_n that starts with 0 is really a
3249 a simple on_failure_jump_loop. */
3250 INSERT_JUMP (on_failure_jump_loop, laststart,
3251 b + 3 + nbytes);
3252 b += 3;
3253 }
3254 else
3255 {
3256 /* Initialize lower bound of the `succeed_n', even
3257 though it will be set during matching by its
3258 attendant `set_number_at' (inserted next),
3259 because `re_compile_fastmap' needs to know.
3260 Jump to the `jump_n' we might insert below. */
3261 INSERT_JUMP2 (succeed_n, laststart,
3262 b + 5 + nbytes,
3263 lower_bound);
3264 b += 5;
3265
3266 /* Code to initialize the lower bound. Insert
3267 before the `succeed_n'. The `5' is the last two
3268 bytes of this `set_number_at', plus 3 bytes of
3269 the following `succeed_n'. */
3270 insert_op2 (set_number_at, laststart, 5, lower_bound, b);
3271 b += 5;
3272 startoffset += 5;
3273 }
3274
3275 if (upper_bound < 0)
3276 {
3277 /* A negative upper bound stands for infinity,
3278 in which case it degenerates to a plain jump. */
3279 STORE_JUMP (jump, b, laststart + startoffset);
3280 b += 3;
3281 }
3282 else if (upper_bound > 1)
3283 { /* More than one repetition is allowed, so
3284 append a backward jump to the `succeed_n'
3285 that starts this interval.
3286
3287 When we've reached this during matching,
3288 we'll have matched the interval once, so
3289 jump back only `upper_bound - 1' times. */
3290 STORE_JUMP2 (jump_n, b, laststart + startoffset,
3291 upper_bound - 1);
3292 b += 5;
3293
3294 /* The location we want to set is the second
3295 parameter of the `jump_n'; that is `b-2' as
3296 an absolute address. `laststart' will be
3297 the `set_number_at' we're about to insert;
3298 `laststart+3' the number to set, the source
3299 for the relative address. But we are
3300 inserting into the middle of the pattern --
3301 so everything is getting moved up by 5.
3302 Conclusion: (b - 2) - (laststart + 3) + 5,
3303 i.e., b - laststart.
3304
3305 We insert this at the beginning of the loop
3306 so that if we fail during matching, we'll
3307 reinitialize the bounds. */
3308 insert_op2 (set_number_at, laststart, b - laststart,
3309 upper_bound - 1, b);
3310 b += 5;
3311 }
3312 }
25fe55af
RS
3313 pending_exact = 0;
3314 beg_interval = NULL;
3315 }
3316 break;
3317
3318 unfetch_interval:
3319 /* If an invalid interval, match the characters as literals. */
3320 assert (beg_interval);
3321 p = beg_interval;
3322 beg_interval = NULL;
3323
3324 /* normal_char and normal_backslash need `c'. */
ed0767d8 3325 c = '{';
25fe55af
RS
3326
3327 if (!(syntax & RE_NO_BK_BRACES))
3328 {
ed0767d8
SM
3329 assert (p > pattern && p[-1] == '\\');
3330 goto normal_backslash;
25fe55af 3331 }
ed0767d8
SM
3332 else
3333 goto normal_char;
e318085a 3334
b18215fc 3335#ifdef emacs
25fe55af
RS
3336 /* There is no way to specify the before_dot and after_dot
3337 operators. rms says this is ok. --karl */
3338 case '=':
3339 BUF_PUSH (at_dot);
3340 break;
3341
3342 case 's':
3343 laststart = b;
3344 PATFETCH (c);
3345 BUF_PUSH_2 (syntaxspec, syntax_spec_code[c]);
3346 break;
3347
3348 case 'S':
3349 laststart = b;
3350 PATFETCH (c);
3351 BUF_PUSH_2 (notsyntaxspec, syntax_spec_code[c]);
3352 break;
b18215fc
RS
3353
3354 case 'c':
3355 laststart = b;
36595814 3356 PATFETCH (c);
b18215fc
RS
3357 BUF_PUSH_2 (categoryspec, c);
3358 break;
e318085a 3359
b18215fc
RS
3360 case 'C':
3361 laststart = b;
36595814 3362 PATFETCH (c);
b18215fc
RS
3363 BUF_PUSH_2 (notcategoryspec, c);
3364 break;
3365#endif /* emacs */
e318085a 3366
e318085a 3367
25fe55af 3368 case 'w':
4bb91c68
SM
3369 if (syntax & RE_NO_GNU_OPS)
3370 goto normal_char;
25fe55af 3371 laststart = b;
1fb352e0 3372 BUF_PUSH_2 (syntaxspec, Sword);
25fe55af 3373 break;
e318085a 3374
e318085a 3375
25fe55af 3376 case 'W':
4bb91c68
SM
3377 if (syntax & RE_NO_GNU_OPS)
3378 goto normal_char;
25fe55af 3379 laststart = b;
1fb352e0 3380 BUF_PUSH_2 (notsyntaxspec, Sword);
25fe55af 3381 break;
e318085a
RS
3382
3383
25fe55af 3384 case '<':
4bb91c68
SM
3385 if (syntax & RE_NO_GNU_OPS)
3386 goto normal_char;
25fe55af
RS
3387 BUF_PUSH (wordbeg);
3388 break;
e318085a 3389
25fe55af 3390 case '>':
4bb91c68
SM
3391 if (syntax & RE_NO_GNU_OPS)
3392 goto normal_char;
25fe55af
RS
3393 BUF_PUSH (wordend);
3394 break;
e318085a 3395
25fe55af 3396 case 'b':
4bb91c68
SM
3397 if (syntax & RE_NO_GNU_OPS)
3398 goto normal_char;
25fe55af
RS
3399 BUF_PUSH (wordbound);
3400 break;
e318085a 3401
25fe55af 3402 case 'B':
4bb91c68
SM
3403 if (syntax & RE_NO_GNU_OPS)
3404 goto normal_char;
25fe55af
RS
3405 BUF_PUSH (notwordbound);
3406 break;
fa9a63c5 3407
25fe55af 3408 case '`':
4bb91c68
SM
3409 if (syntax & RE_NO_GNU_OPS)
3410 goto normal_char;
25fe55af
RS
3411 BUF_PUSH (begbuf);
3412 break;
e318085a 3413
25fe55af 3414 case '\'':
4bb91c68
SM
3415 if (syntax & RE_NO_GNU_OPS)
3416 goto normal_char;
25fe55af
RS
3417 BUF_PUSH (endbuf);
3418 break;
e318085a 3419
25fe55af
RS
3420 case '1': case '2': case '3': case '4': case '5':
3421 case '6': case '7': case '8': case '9':
0cdd06f8
SM
3422 {
3423 regnum_t reg;
e318085a 3424
0cdd06f8
SM
3425 if (syntax & RE_NO_BK_REFS)
3426 goto normal_backslash;
e318085a 3427
0cdd06f8 3428 reg = c - '0';
e318085a 3429
0cdd06f8
SM
3430 /* Can't back reference to a subexpression before its end. */
3431 if (reg > regnum || group_in_compile_stack (compile_stack, reg))
3432 FREE_STACK_RETURN (REG_ESUBREG);
e318085a 3433
0cdd06f8
SM
3434 laststart = b;
3435 BUF_PUSH_2 (duplicate, reg);
3436 }
25fe55af 3437 break;
e318085a 3438
e318085a 3439
25fe55af
RS
3440 case '+':
3441 case '?':
3442 if (syntax & RE_BK_PLUS_QM)
3443 goto handle_plus;
3444 else
3445 goto normal_backslash;
3446
3447 default:
3448 normal_backslash:
3449 /* You might think it would be useful for \ to mean
3450 not to translate; but if we don't translate it
4bb91c68 3451 it will never match anything. */
25fe55af
RS
3452 goto normal_char;
3453 }
3454 break;
fa9a63c5
RM
3455
3456
3457 default:
25fe55af 3458 /* Expects the character in `c'. */
fa9a63c5 3459 normal_char:
36595814 3460 /* If no exactn currently being built. */
25fe55af 3461 if (!pending_exact
fa9a63c5 3462
25fe55af
RS
3463 /* If last exactn not at current position. */
3464 || pending_exact + *pending_exact + 1 != b
5e69f11e 3465
25fe55af 3466 /* We have only one byte following the exactn for the count. */
2d1675e4 3467 || *pending_exact >= (1 << BYTEWIDTH) - MAX_MULTIBYTE_LENGTH
fa9a63c5 3468
25fe55af 3469 /* If followed by a repetition operator. */
9d99031f 3470 || (p != pend && (*p == '*' || *p == '^'))
fa9a63c5 3471 || ((syntax & RE_BK_PLUS_QM)
9d99031f
RS
3472 ? p + 1 < pend && *p == '\\' && (p[1] == '+' || p[1] == '?')
3473 : p != pend && (*p == '+' || *p == '?'))
fa9a63c5 3474 || ((syntax & RE_INTERVALS)
25fe55af 3475 && ((syntax & RE_NO_BK_BRACES)
9d99031f
RS
3476 ? p != pend && *p == '{'
3477 : p + 1 < pend && p[0] == '\\' && p[1] == '{')))
fa9a63c5
RM
3478 {
3479 /* Start building a new exactn. */
5e69f11e 3480
25fe55af 3481 laststart = b;
fa9a63c5
RM
3482
3483 BUF_PUSH_2 (exactn, 0);
3484 pending_exact = b - 1;
25fe55af 3485 }
5e69f11e 3486
2d1675e4
SM
3487 GET_BUFFER_SPACE (MAX_MULTIBYTE_LENGTH);
3488 {
e0277a47
KH
3489 int len;
3490
36595814 3491 c = TRANSLATE (c);
e0277a47
KH
3492 if (multibyte)
3493 len = CHAR_STRING (c, b);
3494 else
3495 *b = c, len = 1;
2d1675e4
SM
3496 b += len;
3497 (*pending_exact) += len;
3498 }
3499
fa9a63c5 3500 break;
25fe55af 3501 } /* switch (c) */
fa9a63c5
RM
3502 } /* while p != pend */
3503
5e69f11e 3504
fa9a63c5 3505 /* Through the pattern now. */
5e69f11e 3506
505bde11 3507 FIXUP_ALT_JUMP ();
fa9a63c5 3508
5e69f11e 3509 if (!COMPILE_STACK_EMPTY)
fa9a63c5
RM
3510 FREE_STACK_RETURN (REG_EPAREN);
3511
3512 /* If we don't want backtracking, force success
3513 the first time we reach the end of the compiled pattern. */
3514 if (syntax & RE_NO_POSIX_BACKTRACKING)
3515 BUF_PUSH (succeed);
3516
3517 free (compile_stack.stack);
3518
3519 /* We have succeeded; set the length of the buffer. */
3520 bufp->used = b - bufp->buffer;
3521
3522#ifdef DEBUG
99633e97 3523 if (debug > 0)
fa9a63c5 3524 {
505bde11 3525 re_compile_fastmap (bufp);
fa9a63c5
RM
3526 DEBUG_PRINT1 ("\nCompiled pattern: \n");
3527 print_compiled_pattern (bufp);
3528 }
99633e97 3529 debug--;
fa9a63c5
RM
3530#endif /* DEBUG */
3531
3532#ifndef MATCH_MAY_ALLOCATE
3533 /* Initialize the failure stack to the largest possible stack. This
3534 isn't necessary unless we're trying to avoid calling alloca in
3535 the search and match routines. */
3536 {
3537 int num_regs = bufp->re_nsub + 1;
3538
320a2a73 3539 if (fail_stack.size < re_max_failures * TYPICAL_FAILURE_SIZE)
fa9a63c5 3540 {
a26f4ccd 3541 fail_stack.size = re_max_failures * TYPICAL_FAILURE_SIZE;
fa9a63c5 3542
fa9a63c5
RM
3543 if (! fail_stack.stack)
3544 fail_stack.stack
5e69f11e 3545 = (fail_stack_elt_t *) malloc (fail_stack.size
fa9a63c5
RM
3546 * sizeof (fail_stack_elt_t));
3547 else
3548 fail_stack.stack
3549 = (fail_stack_elt_t *) realloc (fail_stack.stack,
3550 (fail_stack.size
3551 * sizeof (fail_stack_elt_t)));
fa9a63c5
RM
3552 }
3553
3554 regex_grow_registers (num_regs);
3555 }
3556#endif /* not MATCH_MAY_ALLOCATE */
3557
3558 return REG_NOERROR;
3559} /* regex_compile */
3560\f
3561/* Subroutines for `regex_compile'. */
3562
25fe55af 3563/* Store OP at LOC followed by two-byte integer parameter ARG. */
fa9a63c5
RM
3564
3565static void
3566store_op1 (op, loc, arg)
3567 re_opcode_t op;
3568 unsigned char *loc;
3569 int arg;
3570{
3571 *loc = (unsigned char) op;
3572 STORE_NUMBER (loc + 1, arg);
3573}
3574
3575
3576/* Like `store_op1', but for two two-byte parameters ARG1 and ARG2. */
3577
3578static void
3579store_op2 (op, loc, arg1, arg2)
3580 re_opcode_t op;
3581 unsigned char *loc;
3582 int arg1, arg2;
3583{
3584 *loc = (unsigned char) op;
3585 STORE_NUMBER (loc + 1, arg1);
3586 STORE_NUMBER (loc + 3, arg2);
3587}
3588
3589
3590/* Copy the bytes from LOC to END to open up three bytes of space at LOC
3591 for OP followed by two-byte integer parameter ARG. */
3592
3593static void
3594insert_op1 (op, loc, arg, end)
3595 re_opcode_t op;
3596 unsigned char *loc;
3597 int arg;
5e69f11e 3598 unsigned char *end;
fa9a63c5
RM
3599{
3600 register unsigned char *pfrom = end;
3601 register unsigned char *pto = end + 3;
3602
3603 while (pfrom != loc)
3604 *--pto = *--pfrom;
5e69f11e 3605
fa9a63c5
RM
3606 store_op1 (op, loc, arg);
3607}
3608
3609
3610/* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2. */
3611
3612static void
3613insert_op2 (op, loc, arg1, arg2, end)
3614 re_opcode_t op;
3615 unsigned char *loc;
3616 int arg1, arg2;
5e69f11e 3617 unsigned char *end;
fa9a63c5
RM
3618{
3619 register unsigned char *pfrom = end;
3620 register unsigned char *pto = end + 5;
3621
3622 while (pfrom != loc)
3623 *--pto = *--pfrom;
5e69f11e 3624
fa9a63c5
RM
3625 store_op2 (op, loc, arg1, arg2);
3626}
3627
3628
3629/* P points to just after a ^ in PATTERN. Return true if that ^ comes
3630 after an alternative or a begin-subexpression. We assume there is at
3631 least one character before the ^. */
3632
3633static boolean
3634at_begline_loc_p (pattern, p, syntax)
01618498 3635 re_char *pattern, *p;
fa9a63c5
RM
3636 reg_syntax_t syntax;
3637{
01618498 3638 re_char *prev = p - 2;
fa9a63c5 3639 boolean prev_prev_backslash = prev > pattern && prev[-1] == '\\';
5e69f11e 3640
fa9a63c5
RM
3641 return
3642 /* After a subexpression? */
3643 (*prev == '(' && (syntax & RE_NO_BK_PARENS || prev_prev_backslash))
25fe55af 3644 /* After an alternative? */
d2af47df
SM
3645 || (*prev == '|' && (syntax & RE_NO_BK_VBAR || prev_prev_backslash))
3646 /* After a shy subexpression? */
3647 || ((syntax & RE_SHY_GROUPS) && prev - 2 >= pattern
3648 && prev[-1] == '?' && prev[-2] == '('
3649 && (syntax & RE_NO_BK_PARENS
3650 || (prev - 3 >= pattern && prev[-3] == '\\')));
fa9a63c5
RM
3651}
3652
3653
3654/* The dual of at_begline_loc_p. This one is for $. We assume there is
3655 at least one character after the $, i.e., `P < PEND'. */
3656
3657static boolean
3658at_endline_loc_p (p, pend, syntax)
01618498 3659 re_char *p, *pend;
99633e97 3660 reg_syntax_t syntax;
fa9a63c5 3661{
01618498 3662 re_char *next = p;
fa9a63c5 3663 boolean next_backslash = *next == '\\';
01618498 3664 re_char *next_next = p + 1 < pend ? p + 1 : 0;
5e69f11e 3665
fa9a63c5
RM
3666 return
3667 /* Before a subexpression? */
3668 (syntax & RE_NO_BK_PARENS ? *next == ')'
25fe55af 3669 : next_backslash && next_next && *next_next == ')')
fa9a63c5
RM
3670 /* Before an alternative? */
3671 || (syntax & RE_NO_BK_VBAR ? *next == '|'
25fe55af 3672 : next_backslash && next_next && *next_next == '|');
fa9a63c5
RM
3673}
3674
3675
5e69f11e 3676/* Returns true if REGNUM is in one of COMPILE_STACK's elements and
fa9a63c5
RM
3677 false if it's not. */
3678
3679static boolean
3680group_in_compile_stack (compile_stack, regnum)
3681 compile_stack_type compile_stack;
3682 regnum_t regnum;
3683{
3684 int this_element;
3685
5e69f11e
RM
3686 for (this_element = compile_stack.avail - 1;
3687 this_element >= 0;
fa9a63c5
RM
3688 this_element--)
3689 if (compile_stack.stack[this_element].regnum == regnum)
3690 return true;
3691
3692 return false;
3693}
fa9a63c5 3694\f
f6a3f532
SM
3695/* analyse_first.
3696 If fastmap is non-NULL, go through the pattern and fill fastmap
3697 with all the possible leading chars. If fastmap is NULL, don't
3698 bother filling it up (obviously) and only return whether the
3699 pattern could potentially match the empty string.
3700
3701 Return 1 if p..pend might match the empty string.
3702 Return 0 if p..pend matches at least one char.
01618498 3703 Return -1 if fastmap was not updated accurately. */
f6a3f532
SM
3704
3705static int
3706analyse_first (p, pend, fastmap, multibyte)
01618498 3707 re_char *p, *pend;
f6a3f532
SM
3708 char *fastmap;
3709 const int multibyte;
fa9a63c5 3710{
505bde11 3711 int j, k;
1fb352e0 3712 boolean not;
fa9a63c5 3713
b18215fc 3714 /* If all elements for base leading-codes in fastmap is set, this
25fe55af 3715 flag is set true. */
b18215fc
RS
3716 boolean match_any_multibyte_characters = false;
3717
f6a3f532 3718 assert (p);
5e69f11e 3719
505bde11
SM
3720 /* The loop below works as follows:
3721 - It has a working-list kept in the PATTERN_STACK and which basically
3722 starts by only containing a pointer to the first operation.
3723 - If the opcode we're looking at is a match against some set of
3724 chars, then we add those chars to the fastmap and go on to the
3725 next work element from the worklist (done via `break').
3726 - If the opcode is a control operator on the other hand, we either
3727 ignore it (if it's meaningless at this point, such as `start_memory')
3728 or execute it (if it's a jump). If the jump has several destinations
3729 (i.e. `on_failure_jump'), then we push the other destination onto the
3730 worklist.
3731 We guarantee termination by ignoring backward jumps (more or less),
3732 so that `p' is monotonically increasing. More to the point, we
3733 never set `p' (or push) anything `<= p1'. */
3734
01618498 3735 while (p < pend)
fa9a63c5 3736 {
505bde11
SM
3737 /* `p1' is used as a marker of how far back a `on_failure_jump'
3738 can go without being ignored. It is normally equal to `p'
3739 (which prevents any backward `on_failure_jump') except right
3740 after a plain `jump', to allow patterns such as:
3741 0: jump 10
3742 3..9: <body>
3743 10: on_failure_jump 3
3744 as used for the *? operator. */
01618498 3745 re_char *p1 = p;
5e69f11e 3746
fa9a63c5
RM
3747 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
3748 {
f6a3f532 3749 case succeed:
01618498 3750 return 1;
f6a3f532 3751 continue;
fa9a63c5 3752
fa9a63c5 3753 case duplicate:
505bde11
SM
3754 /* If the first character has to match a backreference, that means
3755 that the group was empty (since it already matched). Since this
3756 is the only case that interests us here, we can assume that the
3757 backreference must match the empty string. */
3758 p++;
3759 continue;
fa9a63c5
RM
3760
3761
3762 /* Following are the cases which match a character. These end
25fe55af 3763 with `break'. */
fa9a63c5
RM
3764
3765 case exactn:
e0277a47
KH
3766 if (fastmap)
3767 {
3768 int c = RE_STRING_CHAR (p + 1, pend - p);
3769
3770 if (SINGLE_BYTE_CHAR_P (c))
3771 fastmap[c] = 1;
3772 else
3773 fastmap[p[1]] = 1;
3774 }
fa9a63c5
RM
3775 break;
3776
3777
1fb352e0
SM
3778 case anychar:
3779 /* We could put all the chars except for \n (and maybe \0)
3780 but we don't bother since it is generally not worth it. */
f6a3f532 3781 if (!fastmap) break;
01618498 3782 return -1;
fa9a63c5
RM
3783
3784
b18215fc 3785 case charset_not:
ba5c004d
RS
3786 /* Chars beyond end of bitmap are possible matches.
3787 All the single-byte codes can occur in multibyte buffers.
3788 So any that are not listed in the charset
3789 are possible matches, even in multibyte buffers. */
1fb352e0 3790 if (!fastmap) break;
b18215fc 3791 for (j = CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH;
1fb352e0 3792 j < (1 << BYTEWIDTH); j++)
b18215fc 3793 fastmap[j] = 1;
1fb352e0
SM
3794 /* Fallthrough */
3795 case charset:
3796 if (!fastmap) break;
3797 not = (re_opcode_t) *(p - 1) == charset_not;
b18215fc
RS
3798 for (j = CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH - 1, p++;
3799 j >= 0; j--)
1fb352e0 3800 if (!!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))) ^ not)
b18215fc
RS
3801 fastmap[j] = 1;
3802
1fb352e0
SM
3803 if ((not && multibyte)
3804 /* Any character set can possibly contain a character
3805 which doesn't match the specified set of characters. */
3806 || (CHARSET_RANGE_TABLE_EXISTS_P (&p[-2])
3807 && CHARSET_RANGE_TABLE_BITS (&p[-2]) != 0))
3808 /* If we can match a character class, we can match
3809 any character set. */
b18215fc
RS
3810 {
3811 set_fastmap_for_multibyte_characters:
3812 if (match_any_multibyte_characters == false)
3813 {
3814 for (j = 0x80; j < 0xA0; j++) /* XXX */
3815 if (BASE_LEADING_CODE_P (j))
3816 fastmap[j] = 1;
3817 match_any_multibyte_characters = true;
3818 }
3819 }
b18215fc 3820
1fb352e0
SM
3821 else if (!not && CHARSET_RANGE_TABLE_EXISTS_P (&p[-2])
3822 && match_any_multibyte_characters == false)
3823 {
3824 /* Set fastmap[I] 1 where I is a base leading code of each
3825 multibyte character in the range table. */
3826 int c, count;
b18215fc 3827
1fb352e0 3828 /* Make P points the range table. `+ 2' is to skip flag
0b32bf0e 3829 bits for a character class. */
1fb352e0 3830 p += CHARSET_BITMAP_SIZE (&p[-2]) + 2;
b18215fc 3831
1fb352e0
SM
3832 /* Extract the number of ranges in range table into COUNT. */
3833 EXTRACT_NUMBER_AND_INCR (count, p);
3834 for (; count > 0; count--, p += 2 * 3) /* XXX */
3835 {
3836 /* Extract the start of each range. */
3837 EXTRACT_CHARACTER (c, p);
3838 j = CHAR_CHARSET (c);
3839 fastmap[CHARSET_LEADING_CODE_BASE (j)] = 1;
3840 }
3841 }
b18215fc
RS
3842 break;
3843
1fb352e0
SM
3844 case syntaxspec:
3845 case notsyntaxspec:
3846 if (!fastmap) break;
3847#ifndef emacs
3848 not = (re_opcode_t)p[-1] == notsyntaxspec;
3849 k = *p++;
3850 for (j = 0; j < (1 << BYTEWIDTH); j++)
990b2375 3851 if ((SYNTAX (j) == (enum syntaxcode) k) ^ not)
b18215fc 3852 fastmap[j] = 1;
b18215fc 3853 break;
1fb352e0 3854#else /* emacs */
b18215fc
RS
3855 /* This match depends on text properties. These end with
3856 aborting optimizations. */
01618498 3857 return -1;
b18215fc
RS
3858
3859 case categoryspec:
b18215fc 3860 case notcategoryspec:
1fb352e0
SM
3861 if (!fastmap) break;
3862 not = (re_opcode_t)p[-1] == notcategoryspec;
b18215fc 3863 k = *p++;
1fb352e0
SM
3864 for (j = 0; j < (1 << BYTEWIDTH); j++)
3865 if ((CHAR_HAS_CATEGORY (j, k)) ^ not)
b18215fc
RS
3866 fastmap[j] = 1;
3867
1fb352e0 3868 if (multibyte)
b18215fc 3869 /* Any character set can possibly contain a character
1fb352e0 3870 whose category is K (or not). */
b18215fc
RS
3871 goto set_fastmap_for_multibyte_characters;
3872 break;
3873
fa9a63c5 3874 /* All cases after this match the empty string. These end with
25fe55af 3875 `continue'. */
fa9a63c5 3876
fa9a63c5
RM
3877 case before_dot:
3878 case at_dot:
3879 case after_dot:
1fb352e0 3880#endif /* !emacs */
25fe55af
RS
3881 case no_op:
3882 case begline:
3883 case endline:
fa9a63c5
RM
3884 case begbuf:
3885 case endbuf:
3886 case wordbound:
3887 case notwordbound:
3888 case wordbeg:
3889 case wordend:
25fe55af 3890 continue;
fa9a63c5
RM
3891
3892
fa9a63c5 3893 case jump:
25fe55af 3894 EXTRACT_NUMBER_AND_INCR (j, p);
505bde11
SM
3895 if (j < 0)
3896 /* Backward jumps can only go back to code that we've already
3897 visited. `re_compile' should make sure this is true. */
3898 break;
25fe55af 3899 p += j;
505bde11
SM
3900 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p))
3901 {
3902 case on_failure_jump:
3903 case on_failure_keep_string_jump:
505bde11 3904 case on_failure_jump_loop:
0683b6fa 3905 case on_failure_jump_nastyloop:
505bde11
SM
3906 case on_failure_jump_smart:
3907 p++;
3908 break;
3909 default:
3910 continue;
3911 };
3912 /* Keep `p1' to allow the `on_failure_jump' we are jumping to
3913 to jump back to "just after here". */
3914 /* Fallthrough */
fa9a63c5 3915
25fe55af
RS
3916 case on_failure_jump:
3917 case on_failure_keep_string_jump:
0683b6fa 3918 case on_failure_jump_nastyloop:
505bde11
SM
3919 case on_failure_jump_loop:
3920 case on_failure_jump_smart:
25fe55af 3921 EXTRACT_NUMBER_AND_INCR (j, p);
505bde11 3922 if (p + j <= p1)
ed0767d8 3923 ; /* Backward jump to be ignored. */
01618498
SM
3924 else
3925 { /* We have to look down both arms.
3926 We first go down the "straight" path so as to minimize
3927 stack usage when going through alternatives. */
3928 int r = analyse_first (p, pend, fastmap, multibyte);
3929 if (r) return r;
3930 p += j;
3931 }
25fe55af 3932 continue;
fa9a63c5
RM
3933
3934
ed0767d8
SM
3935 case jump_n:
3936 /* This code simply does not properly handle forward jump_n. */
3937 DEBUG_STATEMENT (EXTRACT_NUMBER (j, p); assert (j < 0));
3938 p += 4;
3939 /* jump_n can either jump or fall through. The (backward) jump
3940 case has already been handled, so we only need to look at the
3941 fallthrough case. */
3942 continue;
177c0ea7 3943
fa9a63c5 3944 case succeed_n:
ed0767d8
SM
3945 /* If N == 0, it should be an on_failure_jump_loop instead. */
3946 DEBUG_STATEMENT (EXTRACT_NUMBER (j, p + 2); assert (j > 0));
3947 p += 4;
3948 /* We only care about one iteration of the loop, so we don't
3949 need to consider the case where this behaves like an
3950 on_failure_jump. */
25fe55af 3951 continue;
fa9a63c5
RM
3952
3953
3954 case set_number_at:
25fe55af
RS
3955 p += 4;
3956 continue;
fa9a63c5
RM
3957
3958
3959 case start_memory:
25fe55af 3960 case stop_memory:
505bde11 3961 p += 1;
fa9a63c5
RM
3962 continue;
3963
3964
3965 default:
25fe55af
RS
3966 abort (); /* We have listed all the cases. */
3967 } /* switch *p++ */
fa9a63c5
RM
3968
3969 /* Getting here means we have found the possible starting
25fe55af 3970 characters for one path of the pattern -- and that the empty
01618498
SM
3971 string does not match. We need not follow this path further. */
3972 return 0;
fa9a63c5
RM
3973 } /* while p */
3974
01618498
SM
3975 /* We reached the end without matching anything. */
3976 return 1;
3977
f6a3f532
SM
3978} /* analyse_first */
3979\f
3980/* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
3981 BUFP. A fastmap records which of the (1 << BYTEWIDTH) possible
3982 characters can start a string that matches the pattern. This fastmap
3983 is used by re_search to skip quickly over impossible starting points.
3984
3985 Character codes above (1 << BYTEWIDTH) are not represented in the
3986 fastmap, but the leading codes are represented. Thus, the fastmap
3987 indicates which character sets could start a match.
3988
3989 The caller must supply the address of a (1 << BYTEWIDTH)-byte data
3990 area as BUFP->fastmap.
3991
3992 We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
3993 the pattern buffer.
3994
3995 Returns 0 if we succeed, -2 if an internal error. */
3996
3997int
3998re_compile_fastmap (bufp)
3999 struct re_pattern_buffer *bufp;
4000{
4001 char *fastmap = bufp->fastmap;
4002 int analysis;
4003
4004 assert (fastmap && bufp->buffer);
4005
4006 bzero (fastmap, 1 << BYTEWIDTH); /* Assume nothing's valid. */
4007 bufp->fastmap_accurate = 1; /* It will be when we're done. */
4008
4009 analysis = analyse_first (bufp->buffer, bufp->buffer + bufp->used,
2d1675e4 4010 fastmap, RE_MULTIBYTE_P (bufp));
c0f9ea08 4011 bufp->can_be_null = (analysis != 0);
fa9a63c5
RM
4012 return 0;
4013} /* re_compile_fastmap */
4014\f
4015/* Set REGS to hold NUM_REGS registers, storing them in STARTS and
4016 ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use
4017 this memory for recording register information. STARTS and ENDS
4018 must be allocated using the malloc library routine, and must each
4019 be at least NUM_REGS * sizeof (regoff_t) bytes long.
4020
4021 If NUM_REGS == 0, then subsequent matches should allocate their own
4022 register data.
4023
4024 Unless this function is called, the first search or match using
4025 PATTERN_BUFFER will allocate its own register data, without
4026 freeing the old data. */
4027
4028void
4029re_set_registers (bufp, regs, num_regs, starts, ends)
4030 struct re_pattern_buffer *bufp;
4031 struct re_registers *regs;
4032 unsigned num_regs;
4033 regoff_t *starts, *ends;
4034{
4035 if (num_regs)
4036 {
4037 bufp->regs_allocated = REGS_REALLOCATE;
4038 regs->num_regs = num_regs;
4039 regs->start = starts;
4040 regs->end = ends;
4041 }
4042 else
4043 {
4044 bufp->regs_allocated = REGS_UNALLOCATED;
4045 regs->num_regs = 0;
4046 regs->start = regs->end = (regoff_t *) 0;
4047 }
4048}
c0f9ea08 4049WEAK_ALIAS (__re_set_registers, re_set_registers)
fa9a63c5 4050\f
25fe55af 4051/* Searching routines. */
fa9a63c5
RM
4052
4053/* Like re_search_2, below, but only one string is specified, and
4054 doesn't let you say where to stop matching. */
4055
4056int
4057re_search (bufp, string, size, startpos, range, regs)
4058 struct re_pattern_buffer *bufp;
4059 const char *string;
4060 int size, startpos, range;
4061 struct re_registers *regs;
4062{
5e69f11e 4063 return re_search_2 (bufp, NULL, 0, string, size, startpos, range,
fa9a63c5
RM
4064 regs, size);
4065}
c0f9ea08 4066WEAK_ALIAS (__re_search, re_search)
fa9a63c5 4067
70806df6
KH
4068/* Head address of virtual concatenation of string. */
4069#define HEAD_ADDR_VSTRING(P) \
4070 (((P) >= size1 ? string2 : string1))
4071
b18215fc
RS
4072/* End address of virtual concatenation of string. */
4073#define STOP_ADDR_VSTRING(P) \
4074 (((P) >= size1 ? string2 + size2 : string1 + size1))
4075
4076/* Address of POS in the concatenation of virtual string. */
4077#define POS_ADDR_VSTRING(POS) \
4078 (((POS) >= size1 ? string2 - size1 : string1) + (POS))
fa9a63c5
RM
4079
4080/* Using the compiled pattern in BUFP->buffer, first tries to match the
4081 virtual concatenation of STRING1 and STRING2, starting first at index
4082 STARTPOS, then at STARTPOS + 1, and so on.
5e69f11e 4083
fa9a63c5 4084 STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
5e69f11e 4085
fa9a63c5
RM
4086 RANGE is how far to scan while trying to match. RANGE = 0 means try
4087 only at STARTPOS; in general, the last start tried is STARTPOS +
4088 RANGE.
5e69f11e 4089
fa9a63c5
RM
4090 In REGS, return the indices of the virtual concatenation of STRING1
4091 and STRING2 that matched the entire BUFP->buffer and its contained
4092 subexpressions.
5e69f11e 4093
fa9a63c5
RM
4094 Do not consider matching one past the index STOP in the virtual
4095 concatenation of STRING1 and STRING2.
4096
4097 We return either the position in the strings at which the match was
4098 found, -1 if no match, or -2 if error (such as failure
4099 stack overflow). */
4100
4101int
66f0296e 4102re_search_2 (bufp, str1, size1, str2, size2, startpos, range, regs, stop)
fa9a63c5 4103 struct re_pattern_buffer *bufp;
66f0296e 4104 const char *str1, *str2;
fa9a63c5
RM
4105 int size1, size2;
4106 int startpos;
4107 int range;
4108 struct re_registers *regs;
4109 int stop;
4110{
4111 int val;
66f0296e
SM
4112 re_char *string1 = (re_char*) str1;
4113 re_char *string2 = (re_char*) str2;
fa9a63c5 4114 register char *fastmap = bufp->fastmap;
6676cb1c 4115 register RE_TRANSLATE_TYPE translate = bufp->translate;
fa9a63c5
RM
4116 int total_size = size1 + size2;
4117 int endpos = startpos + range;
c0f9ea08 4118 boolean anchored_start;
fa9a63c5 4119
25fe55af 4120 /* Nonzero if we have to concern multibyte character. */
2d1675e4 4121 const boolean multibyte = RE_MULTIBYTE_P (bufp);
b18215fc 4122
fa9a63c5
RM
4123 /* Check for out-of-range STARTPOS. */
4124 if (startpos < 0 || startpos > total_size)
4125 return -1;
5e69f11e 4126
fa9a63c5 4127 /* Fix up RANGE if it might eventually take us outside
34597fa9 4128 the virtual concatenation of STRING1 and STRING2.
5e69f11e 4129 Make sure we won't move STARTPOS below 0 or above TOTAL_SIZE. */
34597fa9
RS
4130 if (endpos < 0)
4131 range = 0 - startpos;
fa9a63c5
RM
4132 else if (endpos > total_size)
4133 range = total_size - startpos;
4134
4135 /* If the search isn't to be a backwards one, don't waste time in a
7b140fd7 4136 search for a pattern anchored at beginning of buffer. */
fa9a63c5
RM
4137 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == begbuf && range > 0)
4138 {
4139 if (startpos > 0)
4140 return -1;
4141 else
7b140fd7 4142 range = 0;
fa9a63c5
RM
4143 }
4144
ae4788a8
RS
4145#ifdef emacs
4146 /* In a forward search for something that starts with \=.
4147 don't keep searching past point. */
4148 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == at_dot && range > 0)
4149 {
7b140fd7
RS
4150 range = PT_BYTE - BEGV_BYTE - startpos;
4151 if (range < 0)
ae4788a8
RS
4152 return -1;
4153 }
4154#endif /* emacs */
4155
fa9a63c5
RM
4156 /* Update the fastmap now if not correct already. */
4157 if (fastmap && !bufp->fastmap_accurate)
01618498 4158 re_compile_fastmap (bufp);
5e69f11e 4159
c8499ba5 4160 /* See whether the pattern is anchored. */
c0f9ea08 4161 anchored_start = (bufp->buffer[0] == begline);
c8499ba5 4162
b18215fc 4163#ifdef emacs
cc9b4df2
KH
4164 gl_state.object = re_match_object;
4165 {
99633e97 4166 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (POS_AS_IN_BUFFER (startpos));
cc9b4df2
KH
4167
4168 SETUP_SYNTAX_TABLE_FOR_OBJECT (re_match_object, charpos, 1);
4169 }
b18215fc
RS
4170#endif
4171
fa9a63c5
RM
4172 /* Loop through the string, looking for a place to start matching. */
4173 for (;;)
5e69f11e 4174 {
c8499ba5
RS
4175 /* If the pattern is anchored,
4176 skip quickly past places we cannot match.
4177 We don't bother to treat startpos == 0 specially
4178 because that case doesn't repeat. */
4179 if (anchored_start && startpos > 0)
4180 {
c0f9ea08
SM
4181 if (! ((startpos <= size1 ? string1[startpos - 1]
4182 : string2[startpos - size1 - 1])
4183 == '\n'))
c8499ba5
RS
4184 goto advance;
4185 }
4186
fa9a63c5 4187 /* If a fastmap is supplied, skip quickly over characters that
25fe55af
RS
4188 cannot be the start of a match. If the pattern can match the
4189 null string, however, we don't need to skip characters; we want
4190 the first null string. */
fa9a63c5
RM
4191 if (fastmap && startpos < total_size && !bufp->can_be_null)
4192 {
66f0296e 4193 register re_char *d;
01618498 4194 register re_wchar_t buf_ch;
e934739e
RS
4195
4196 d = POS_ADDR_VSTRING (startpos);
4197
25fe55af 4198 if (range > 0) /* Searching forwards. */
fa9a63c5 4199 {
fa9a63c5
RM
4200 register int lim = 0;
4201 int irange = range;
4202
25fe55af
RS
4203 if (startpos < size1 && startpos + range >= size1)
4204 lim = range - (size1 - startpos);
fa9a63c5 4205
25fe55af
RS
4206 /* Written out as an if-else to avoid testing `translate'
4207 inside the loop. */
28ae27ae
AS
4208 if (RE_TRANSLATE_P (translate))
4209 {
e934739e
RS
4210 if (multibyte)
4211 while (range > lim)
4212 {
4213 int buf_charlen;
4214
4215 buf_ch = STRING_CHAR_AND_LENGTH (d, range - lim,
4216 buf_charlen);
4217
4218 buf_ch = RE_TRANSLATE (translate, buf_ch);
4219 if (buf_ch >= 0400
4220 || fastmap[buf_ch])
4221 break;
4222
4223 range -= buf_charlen;
4224 d += buf_charlen;
4225 }
4226 else
4227 while (range > lim
66f0296e 4228 && !fastmap[RE_TRANSLATE (translate, *d)])
33c46939
RS
4229 {
4230 d++;
4231 range--;
4232 }
e934739e 4233 }
fa9a63c5 4234 else
66f0296e 4235 while (range > lim && !fastmap[*d])
33c46939
RS
4236 {
4237 d++;
4238 range--;
4239 }
fa9a63c5
RM
4240
4241 startpos += irange - range;
4242 }
25fe55af 4243 else /* Searching backwards. */
fa9a63c5 4244 {
2d1675e4
SM
4245 int room = (startpos >= size1
4246 ? size2 + size1 - startpos
4247 : size1 - startpos);
4248 buf_ch = RE_STRING_CHAR (d, room);
4249 buf_ch = TRANSLATE (buf_ch);
fa9a63c5 4250
e934739e
RS
4251 if (! (buf_ch >= 0400
4252 || fastmap[buf_ch]))
fa9a63c5
RM
4253 goto advance;
4254 }
4255 }
4256
4257 /* If can't match the null string, and that's all we have left, fail. */
4258 if (range >= 0 && startpos == total_size && fastmap
25fe55af 4259 && !bufp->can_be_null)
fa9a63c5
RM
4260 return -1;
4261
4262 val = re_match_2_internal (bufp, string1, size1, string2, size2,
4263 startpos, regs, stop);
4264#ifndef REGEX_MALLOC
0b32bf0e 4265# ifdef C_ALLOCA
fa9a63c5 4266 alloca (0);
0b32bf0e 4267# endif
fa9a63c5
RM
4268#endif
4269
4270 if (val >= 0)
4271 return startpos;
5e69f11e 4272
fa9a63c5
RM
4273 if (val == -2)
4274 return -2;
4275
4276 advance:
5e69f11e 4277 if (!range)
25fe55af 4278 break;
5e69f11e 4279 else if (range > 0)
25fe55af 4280 {
b18215fc
RS
4281 /* Update STARTPOS to the next character boundary. */
4282 if (multibyte)
4283 {
66f0296e
SM
4284 re_char *p = POS_ADDR_VSTRING (startpos);
4285 re_char *pend = STOP_ADDR_VSTRING (startpos);
b18215fc
RS
4286 int len = MULTIBYTE_FORM_LENGTH (p, pend - p);
4287
4288 range -= len;
4289 if (range < 0)
4290 break;
4291 startpos += len;
4292 }
4293 else
4294 {
b560c397
RS
4295 range--;
4296 startpos++;
4297 }
e318085a 4298 }
fa9a63c5 4299 else
25fe55af
RS
4300 {
4301 range++;
4302 startpos--;
b18215fc
RS
4303
4304 /* Update STARTPOS to the previous character boundary. */
4305 if (multibyte)
4306 {
70806df6
KH
4307 re_char *p = POS_ADDR_VSTRING (startpos) + 1;
4308 re_char *p0 = p;
4309 re_char *phead = HEAD_ADDR_VSTRING (startpos);
b18215fc
RS
4310
4311 /* Find the head of multibyte form. */
70806df6
KH
4312 PREV_CHAR_BOUNDARY (p, phead);
4313 range += p0 - 1 - p;
4314 if (range > 0)
4315 break;
b18215fc 4316
70806df6 4317 startpos -= p0 - 1 - p;
b18215fc 4318 }
25fe55af 4319 }
fa9a63c5
RM
4320 }
4321 return -1;
4322} /* re_search_2 */
c0f9ea08 4323WEAK_ALIAS (__re_search_2, re_search_2)
fa9a63c5
RM
4324\f
4325/* Declarations and macros for re_match_2. */
4326
2d1675e4
SM
4327static int bcmp_translate _RE_ARGS((re_char *s1, re_char *s2,
4328 register int len,
4329 RE_TRANSLATE_TYPE translate,
4330 const int multibyte));
fa9a63c5
RM
4331
4332/* This converts PTR, a pointer into one of the search strings `string1'
4333 and `string2' into an offset from the beginning of that string. */
4334#define POINTER_TO_OFFSET(ptr) \
4335 (FIRST_STRING_P (ptr) \
4336 ? ((regoff_t) ((ptr) - string1)) \
4337 : ((regoff_t) ((ptr) - string2 + size1)))
4338
fa9a63c5 4339/* Call before fetching a character with *d. This switches over to
419d1c74
SM
4340 string2 if necessary.
4341 Check re_match_2_internal for a discussion of why end_match_2 might
4342 not be within string2 (but be equal to end_match_1 instead). */
fa9a63c5 4343#define PREFETCH() \
25fe55af 4344 while (d == dend) \
fa9a63c5
RM
4345 { \
4346 /* End of string2 => fail. */ \
25fe55af
RS
4347 if (dend == end_match_2) \
4348 goto fail; \
4bb91c68 4349 /* End of string1 => advance to string2. */ \
25fe55af 4350 d = string2; \
fa9a63c5
RM
4351 dend = end_match_2; \
4352 }
4353
f1ad044f
SM
4354/* Call before fetching a char with *d if you already checked other limits.
4355 This is meant for use in lookahead operations like wordend, etc..
4356 where we might need to look at parts of the string that might be
4357 outside of the LIMITs (i.e past `stop'). */
4358#define PREFETCH_NOLIMIT() \
4359 if (d == end1) \
4360 { \
4361 d = string2; \
4362 dend = end_match_2; \
4363 } \
fa9a63c5
RM
4364
4365/* Test if at very beginning or at very end of the virtual concatenation
25fe55af 4366 of `string1' and `string2'. If only one string, it's `string2'. */
fa9a63c5 4367#define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
5e69f11e 4368#define AT_STRINGS_END(d) ((d) == end2)
fa9a63c5
RM
4369
4370
4371/* Test if D points to a character which is word-constituent. We have
4372 two special cases to check for: if past the end of string1, look at
4373 the first character in string2; and if before the beginning of
4374 string2, look at the last character in string1. */
4375#define WORDCHAR_P(d) \
4376 (SYNTAX ((d) == end1 ? *string2 \
25fe55af 4377 : (d) == string2 - 1 ? *(end1 - 1) : *(d)) \
fa9a63c5
RM
4378 == Sword)
4379
9121ca40 4380/* Disabled due to a compiler bug -- see comment at case wordbound */
b18215fc
RS
4381
4382/* The comment at case wordbound is following one, but we don't use
4383 AT_WORD_BOUNDARY anymore to support multibyte form.
4384
4385 The DEC Alpha C compiler 3.x generates incorrect code for the
25fe55af
RS
4386 test WORDCHAR_P (d - 1) != WORDCHAR_P (d) in the expansion of
4387 AT_WORD_BOUNDARY, so this code is disabled. Expanding the
b18215fc
RS
4388 macro and introducing temporary variables works around the bug. */
4389
9121ca40 4390#if 0
fa9a63c5
RM
4391/* Test if the character before D and the one at D differ with respect
4392 to being word-constituent. */
4393#define AT_WORD_BOUNDARY(d) \
4394 (AT_STRINGS_BEG (d) || AT_STRINGS_END (d) \
4395 || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
9121ca40 4396#endif
fa9a63c5
RM
4397
4398/* Free everything we malloc. */
4399#ifdef MATCH_MAY_ALLOCATE
0b32bf0e
SM
4400# define FREE_VAR(var) if (var) { REGEX_FREE (var); var = NULL; } else
4401# define FREE_VARIABLES() \
fa9a63c5
RM
4402 do { \
4403 REGEX_FREE_STACK (fail_stack.stack); \
4404 FREE_VAR (regstart); \
4405 FREE_VAR (regend); \
fa9a63c5
RM
4406 FREE_VAR (best_regstart); \
4407 FREE_VAR (best_regend); \
fa9a63c5
RM
4408 } while (0)
4409#else
0b32bf0e 4410# define FREE_VARIABLES() ((void)0) /* Do nothing! But inhibit gcc warning. */
fa9a63c5
RM
4411#endif /* not MATCH_MAY_ALLOCATE */
4412
505bde11
SM
4413\f
4414/* Optimization routines. */
4415
4e8a9132
SM
4416/* If the operation is a match against one or more chars,
4417 return a pointer to the next operation, else return NULL. */
01618498 4418static re_char *
4e8a9132 4419skip_one_char (p)
01618498 4420 re_char *p;
4e8a9132
SM
4421{
4422 switch (SWITCH_ENUM_CAST (*p++))
4423 {
4424 case anychar:
4425 break;
177c0ea7 4426
4e8a9132
SM
4427 case exactn:
4428 p += *p + 1;
4429 break;
4430
4431 case charset_not:
4432 case charset:
4433 if (CHARSET_RANGE_TABLE_EXISTS_P (p - 1))
4434 {
4435 int mcnt;
4436 p = CHARSET_RANGE_TABLE (p - 1);
4437 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4438 p = CHARSET_RANGE_TABLE_END (p, mcnt);
4439 }
4440 else
4441 p += 1 + CHARSET_BITMAP_SIZE (p - 1);
4442 break;
177c0ea7 4443
4e8a9132
SM
4444 case syntaxspec:
4445 case notsyntaxspec:
1fb352e0 4446#ifdef emacs
4e8a9132
SM
4447 case categoryspec:
4448 case notcategoryspec:
4449#endif /* emacs */
4450 p++;
4451 break;
4452
4453 default:
4454 p = NULL;
4455 }
4456 return p;
4457}
4458
4459
505bde11
SM
4460/* Jump over non-matching operations. */
4461static unsigned char *
4e8a9132 4462skip_noops (p, pend)
505bde11 4463 unsigned char *p, *pend;
505bde11
SM
4464{
4465 int mcnt;
4466 while (p < pend)
4467 {
4468 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p))
4469 {
4470 case start_memory:
505bde11
SM
4471 case stop_memory:
4472 p += 2; break;
4473 case no_op:
4474 p += 1; break;
4475 case jump:
4476 p += 1;
4477 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4478 p += mcnt;
4479 break;
4480 default:
4481 return p;
4482 }
4483 }
4484 assert (p == pend);
4485 return p;
4486}
4487
4488/* Non-zero if "p1 matches something" implies "p2 fails". */
4489static int
4490mutually_exclusive_p (bufp, p1, p2)
4491 struct re_pattern_buffer *bufp;
4492 unsigned char *p1, *p2;
4493{
4e8a9132 4494 re_opcode_t op2;
2d1675e4 4495 const boolean multibyte = RE_MULTIBYTE_P (bufp);
505bde11
SM
4496 unsigned char *pend = bufp->buffer + bufp->used;
4497
4e8a9132 4498 assert (p1 >= bufp->buffer && p1 < pend
505bde11
SM
4499 && p2 >= bufp->buffer && p2 <= pend);
4500
4501 /* Skip over open/close-group commands.
4502 If what follows this loop is a ...+ construct,
4503 look at what begins its body, since we will have to
4504 match at least one of that. */
4e8a9132
SM
4505 p2 = skip_noops (p2, pend);
4506 /* The same skip can be done for p1, except that this function
4507 is only used in the case where p1 is a simple match operator. */
4508 /* p1 = skip_noops (p1, pend); */
4509
4510 assert (p1 >= bufp->buffer && p1 < pend
4511 && p2 >= bufp->buffer && p2 <= pend);
4512
4513 op2 = p2 == pend ? succeed : *p2;
4514
4515 switch (SWITCH_ENUM_CAST (op2))
505bde11 4516 {
4e8a9132
SM
4517 case succeed:
4518 case endbuf:
4519 /* If we're at the end of the pattern, we can change. */
4520 if (skip_one_char (p1))
505bde11 4521 {
505bde11
SM
4522 DEBUG_PRINT1 (" End of pattern: fast loop.\n");
4523 return 1;
505bde11 4524 }
4e8a9132 4525 break;
177c0ea7 4526
4e8a9132 4527 case endline:
4e8a9132
SM
4528 case exactn:
4529 {
01618498 4530 register re_wchar_t c
4e8a9132 4531 = (re_opcode_t) *p2 == endline ? '\n'
411e4203 4532 : RE_STRING_CHAR (p2 + 2, pend - p2 - 2);
505bde11 4533
4e8a9132
SM
4534 if ((re_opcode_t) *p1 == exactn)
4535 {
4536 if (c != RE_STRING_CHAR (p1 + 2, pend - p1 - 2))
4537 {
4538 DEBUG_PRINT3 (" '%c' != '%c' => fast loop.\n", c, p1[2]);
4539 return 1;
4540 }
4541 }
505bde11 4542
4e8a9132
SM
4543 else if ((re_opcode_t) *p1 == charset
4544 || (re_opcode_t) *p1 == charset_not)
4545 {
4546 int not = (re_opcode_t) *p1 == charset_not;
505bde11 4547
4e8a9132
SM
4548 /* Test if C is listed in charset (or charset_not)
4549 at `p1'. */
4550 if (SINGLE_BYTE_CHAR_P (c))
4551 {
4552 if (c < CHARSET_BITMAP_SIZE (p1) * BYTEWIDTH
4553 && p1[2 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
4554 not = !not;
4555 }
4556 else if (CHARSET_RANGE_TABLE_EXISTS_P (p1))
4557 CHARSET_LOOKUP_RANGE_TABLE (not, c, p1);
505bde11 4558
4e8a9132
SM
4559 /* `not' is equal to 1 if c would match, which means
4560 that we can't change to pop_failure_jump. */
4561 if (!not)
4562 {
4563 DEBUG_PRINT1 (" No match => fast loop.\n");
4564 return 1;
4565 }
4566 }
4567 else if ((re_opcode_t) *p1 == anychar
4568 && c == '\n')
4569 {
4570 DEBUG_PRINT1 (" . != \\n => fast loop.\n");
4571 return 1;
4572 }
4573 }
4574 break;
505bde11 4575
4e8a9132 4576 case charset:
4e8a9132
SM
4577 {
4578 if ((re_opcode_t) *p1 == exactn)
4579 /* Reuse the code above. */
4580 return mutually_exclusive_p (bufp, p2, p1);
505bde11 4581
505bde11
SM
4582 /* It is hard to list up all the character in charset
4583 P2 if it includes multibyte character. Give up in
4584 such case. */
4585 else if (!multibyte || !CHARSET_RANGE_TABLE_EXISTS_P (p2))
4586 {
4587 /* Now, we are sure that P2 has no range table.
4588 So, for the size of bitmap in P2, `p2[1]' is
4589 enough. But P1 may have range table, so the
4590 size of bitmap table of P1 is extracted by
4591 using macro `CHARSET_BITMAP_SIZE'.
4592
4593 Since we know that all the character listed in
4594 P2 is ASCII, it is enough to test only bitmap
4595 table of P1. */
4596
411e4203 4597 if ((re_opcode_t) *p1 == charset)
505bde11
SM
4598 {
4599 int idx;
4600 /* We win if the charset inside the loop
4601 has no overlap with the one after the loop. */
4602 for (idx = 0;
4603 (idx < (int) p2[1]
4604 && idx < CHARSET_BITMAP_SIZE (p1));
4605 idx++)
4606 if ((p2[2 + idx] & p1[2 + idx]) != 0)
4607 break;
4608
4609 if (idx == p2[1]
4610 || idx == CHARSET_BITMAP_SIZE (p1))
4611 {
4612 DEBUG_PRINT1 (" No match => fast loop.\n");
4613 return 1;
4614 }
4615 }
411e4203 4616 else if ((re_opcode_t) *p1 == charset_not)
505bde11
SM
4617 {
4618 int idx;
4619 /* We win if the charset_not inside the loop lists
4620 every character listed in the charset after. */
4621 for (idx = 0; idx < (int) p2[1]; idx++)
4622 if (! (p2[2 + idx] == 0
4623 || (idx < CHARSET_BITMAP_SIZE (p1)
4624 && ((p2[2 + idx] & ~ p1[2 + idx]) == 0))))
4625 break;
4626
4e8a9132
SM
4627 if (idx == p2[1])
4628 {
4629 DEBUG_PRINT1 (" No match => fast loop.\n");
4630 return 1;
4631 }
4632 }
4633 }
4634 }
609b757a 4635 break;
177c0ea7 4636
411e4203
SM
4637 case charset_not:
4638 switch (SWITCH_ENUM_CAST (*p1))
4639 {
4640 case exactn:
4641 case charset:
4642 /* Reuse the code above. */
4643 return mutually_exclusive_p (bufp, p2, p1);
4644 case charset_not:
4645 /* When we have two charset_not, it's very unlikely that
4646 they don't overlap. The union of the two sets of excluded
4647 chars should cover all possible chars, which, as a matter of
4648 fact, is virtually impossible in multibyte buffers. */
36595814 4649 break;
411e4203
SM
4650 }
4651 break;
4652
4e8a9132
SM
4653 case wordend:
4654 case notsyntaxspec:
4655 return ((re_opcode_t) *p1 == syntaxspec
4656 && p1[1] == (op2 == wordend ? Sword : p2[1]));
4657
4658 case wordbeg:
4659 case syntaxspec:
4660 return ((re_opcode_t) *p1 == notsyntaxspec
4661 && p1[1] == (op2 == wordend ? Sword : p2[1]));
4662
4663 case wordbound:
4664 return (((re_opcode_t) *p1 == notsyntaxspec
4665 || (re_opcode_t) *p1 == syntaxspec)
4666 && p1[1] == Sword);
4667
1fb352e0 4668#ifdef emacs
4e8a9132
SM
4669 case categoryspec:
4670 return ((re_opcode_t) *p1 == notcategoryspec && p1[1] == p2[1]);
4671 case notcategoryspec:
4672 return ((re_opcode_t) *p1 == categoryspec && p1[1] == p2[1]);
4673#endif /* emacs */
4674
4675 default:
4676 ;
505bde11
SM
4677 }
4678
4679 /* Safe default. */
4680 return 0;
4681}
4682
fa9a63c5
RM
4683\f
4684/* Matching routines. */
4685
25fe55af 4686#ifndef emacs /* Emacs never uses this. */
fa9a63c5
RM
4687/* re_match is like re_match_2 except it takes only a single string. */
4688
4689int
4690re_match (bufp, string, size, pos, regs)
4691 struct re_pattern_buffer *bufp;
4692 const char *string;
4693 int size, pos;
4694 struct re_registers *regs;
4695{
4bb91c68 4696 int result = re_match_2_internal (bufp, NULL, 0, (re_char*) string, size,
fa9a63c5 4697 pos, regs, size);
0b32bf0e 4698# if defined C_ALLOCA && !defined REGEX_MALLOC
fa9a63c5 4699 alloca (0);
0b32bf0e 4700# endif
fa9a63c5
RM
4701 return result;
4702}
c0f9ea08 4703WEAK_ALIAS (__re_match, re_match)
fa9a63c5
RM
4704#endif /* not emacs */
4705
b18215fc
RS
4706#ifdef emacs
4707/* In Emacs, this is the string or buffer in which we
25fe55af 4708 are matching. It is used for looking up syntax properties. */
b18215fc
RS
4709Lisp_Object re_match_object;
4710#endif
fa9a63c5
RM
4711
4712/* re_match_2 matches the compiled pattern in BUFP against the
4713 the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
4714 and SIZE2, respectively). We start matching at POS, and stop
4715 matching at STOP.
5e69f11e 4716
fa9a63c5 4717 If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
25fe55af 4718 store offsets for the substring each group matched in REGS. See the
fa9a63c5
RM
4719 documentation for exactly how many groups we fill.
4720
4721 We return -1 if no match, -2 if an internal error (such as the
25fe55af 4722 failure stack overflowing). Otherwise, we return the length of the
fa9a63c5
RM
4723 matched substring. */
4724
4725int
4726re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
4727 struct re_pattern_buffer *bufp;
4728 const char *string1, *string2;
4729 int size1, size2;
4730 int pos;
4731 struct re_registers *regs;
4732 int stop;
4733{
b18215fc 4734 int result;
25fe55af 4735
b18215fc 4736#ifdef emacs
cc9b4df2
KH
4737 int charpos;
4738 gl_state.object = re_match_object;
99633e97 4739 charpos = SYNTAX_TABLE_BYTE_TO_CHAR (POS_AS_IN_BUFFER (pos));
cc9b4df2 4740 SETUP_SYNTAX_TABLE_FOR_OBJECT (re_match_object, charpos, 1);
b18215fc
RS
4741#endif
4742
4bb91c68
SM
4743 result = re_match_2_internal (bufp, (re_char*) string1, size1,
4744 (re_char*) string2, size2,
cc9b4df2 4745 pos, regs, stop);
0b32bf0e 4746#if defined C_ALLOCA && !defined REGEX_MALLOC
fa9a63c5 4747 alloca (0);
a60198e5 4748#endif
fa9a63c5
RM
4749 return result;
4750}
c0f9ea08 4751WEAK_ALIAS (__re_match_2, re_match_2)
fa9a63c5
RM
4752
4753/* This is a separate function so that we can force an alloca cleanup
25fe55af 4754 afterwards. */
fa9a63c5
RM
4755static int
4756re_match_2_internal (bufp, string1, size1, string2, size2, pos, regs, stop)
4757 struct re_pattern_buffer *bufp;
66f0296e 4758 re_char *string1, *string2;
fa9a63c5
RM
4759 int size1, size2;
4760 int pos;
4761 struct re_registers *regs;
4762 int stop;
4763{
4764 /* General temporaries. */
4765 int mcnt;
01618498 4766 size_t reg;
66f0296e 4767 boolean not;
fa9a63c5
RM
4768
4769 /* Just past the end of the corresponding string. */
66f0296e 4770 re_char *end1, *end2;
fa9a63c5
RM
4771
4772 /* Pointers into string1 and string2, just past the last characters in
25fe55af 4773 each to consider matching. */
66f0296e 4774 re_char *end_match_1, *end_match_2;
fa9a63c5
RM
4775
4776 /* Where we are in the data, and the end of the current string. */
66f0296e 4777 re_char *d, *dend;
5e69f11e 4778
99633e97
SM
4779 /* Used sometimes to remember where we were before starting matching
4780 an operator so that we can go back in case of failure. This "atomic"
4781 behavior of matching opcodes is indispensable to the correctness
4782 of the on_failure_keep_string_jump optimization. */
4783 re_char *dfail;
4784
fa9a63c5 4785 /* Where we are in the pattern, and the end of the pattern. */
01618498
SM
4786 re_char *p = bufp->buffer;
4787 re_char *pend = p + bufp->used;
fa9a63c5 4788
25fe55af 4789 /* We use this to map every character in the string. */
6676cb1c 4790 RE_TRANSLATE_TYPE translate = bufp->translate;
fa9a63c5 4791
25fe55af 4792 /* Nonzero if we have to concern multibyte character. */
2d1675e4 4793 const boolean multibyte = RE_MULTIBYTE_P (bufp);
b18215fc 4794
fa9a63c5
RM
4795 /* Failure point stack. Each place that can handle a failure further
4796 down the line pushes a failure point on this stack. It consists of
505bde11 4797 regstart, and regend for all registers corresponding to
fa9a63c5
RM
4798 the subexpressions we're currently inside, plus the number of such
4799 registers, and, finally, two char *'s. The first char * is where
4800 to resume scanning the pattern; the second one is where to resume
505bde11 4801 scanning the strings. */
25fe55af 4802#ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
fa9a63c5
RM
4803 fail_stack_type fail_stack;
4804#endif
4805#ifdef DEBUG
fa9a63c5
RM
4806 unsigned nfailure_points_pushed = 0, nfailure_points_popped = 0;
4807#endif
4808
0b32bf0e 4809#if defined REL_ALLOC && defined REGEX_MALLOC
fa9a63c5
RM
4810 /* This holds the pointer to the failure stack, when
4811 it is allocated relocatably. */
4812 fail_stack_elt_t *failure_stack_ptr;
99633e97 4813#endif
fa9a63c5
RM
4814
4815 /* We fill all the registers internally, independent of what we
25fe55af 4816 return, for use in backreferences. The number here includes
fa9a63c5 4817 an element for register zero. */
4bb91c68 4818 size_t num_regs = bufp->re_nsub + 1;
5e69f11e 4819
fa9a63c5
RM
4820 /* Information on the contents of registers. These are pointers into
4821 the input strings; they record just what was matched (on this
4822 attempt) by a subexpression part of the pattern, that is, the
4823 regnum-th regstart pointer points to where in the pattern we began
4824 matching and the regnum-th regend points to right after where we
4825 stopped matching the regnum-th subexpression. (The zeroth register
4826 keeps track of what the whole pattern matches.) */
4827#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
66f0296e 4828 re_char **regstart, **regend;
fa9a63c5
RM
4829#endif
4830
fa9a63c5 4831 /* The following record the register info as found in the above
5e69f11e 4832 variables when we find a match better than any we've seen before.
fa9a63c5
RM
4833 This happens as we backtrack through the failure points, which in
4834 turn happens only if we have not yet matched the entire string. */
4835 unsigned best_regs_set = false;
4836#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
66f0296e 4837 re_char **best_regstart, **best_regend;
fa9a63c5 4838#endif
5e69f11e 4839
fa9a63c5
RM
4840 /* Logically, this is `best_regend[0]'. But we don't want to have to
4841 allocate space for that if we're not allocating space for anything
25fe55af 4842 else (see below). Also, we never need info about register 0 for
fa9a63c5
RM
4843 any of the other register vectors, and it seems rather a kludge to
4844 treat `best_regend' differently than the rest. So we keep track of
4845 the end of the best match so far in a separate variable. We
4846 initialize this to NULL so that when we backtrack the first time
4847 and need to test it, it's not garbage. */
66f0296e 4848 re_char *match_end = NULL;
fa9a63c5 4849
fa9a63c5
RM
4850#ifdef DEBUG
4851 /* Counts the total number of registers pushed. */
5e69f11e 4852 unsigned num_regs_pushed = 0;
fa9a63c5
RM
4853#endif
4854
4855 DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
5e69f11e 4856
fa9a63c5 4857 INIT_FAIL_STACK ();
5e69f11e 4858
fa9a63c5
RM
4859#ifdef MATCH_MAY_ALLOCATE
4860 /* Do not bother to initialize all the register variables if there are
4861 no groups in the pattern, as it takes a fair amount of time. If
4862 there are groups, we include space for register 0 (the whole
4863 pattern), even though we never use it, since it simplifies the
4864 array indexing. We should fix this. */
4865 if (bufp->re_nsub)
4866 {
66f0296e
SM
4867 regstart = REGEX_TALLOC (num_regs, re_char *);
4868 regend = REGEX_TALLOC (num_regs, re_char *);
4869 best_regstart = REGEX_TALLOC (num_regs, re_char *);
4870 best_regend = REGEX_TALLOC (num_regs, re_char *);
fa9a63c5 4871
505bde11 4872 if (!(regstart && regend && best_regstart && best_regend))
25fe55af
RS
4873 {
4874 FREE_VARIABLES ();
4875 return -2;
4876 }
fa9a63c5
RM
4877 }
4878 else
4879 {
4880 /* We must initialize all our variables to NULL, so that
25fe55af 4881 `FREE_VARIABLES' doesn't try to free them. */
505bde11 4882 regstart = regend = best_regstart = best_regend = NULL;
fa9a63c5
RM
4883 }
4884#endif /* MATCH_MAY_ALLOCATE */
4885
4886 /* The starting position is bogus. */
4887 if (pos < 0 || pos > size1 + size2)
4888 {
4889 FREE_VARIABLES ();
4890 return -1;
4891 }
5e69f11e 4892
fa9a63c5
RM
4893 /* Initialize subexpression text positions to -1 to mark ones that no
4894 start_memory/stop_memory has been seen for. Also initialize the
4895 register information struct. */
01618498
SM
4896 for (reg = 1; reg < num_regs; reg++)
4897 regstart[reg] = regend[reg] = NULL;
99633e97 4898
fa9a63c5 4899 /* We move `string1' into `string2' if the latter's empty -- but not if
25fe55af 4900 `string1' is null. */
fa9a63c5
RM
4901 if (size2 == 0 && string1 != NULL)
4902 {
4903 string2 = string1;
4904 size2 = size1;
4905 string1 = 0;
4906 size1 = 0;
4907 }
4908 end1 = string1 + size1;
4909 end2 = string2 + size2;
4910
5e69f11e 4911 /* `p' scans through the pattern as `d' scans through the data.
fa9a63c5
RM
4912 `dend' is the end of the input string that `d' points within. `d'
4913 is advanced into the following input string whenever necessary, but
4914 this happens before fetching; therefore, at the beginning of the
4915 loop, `d' can be pointing at the end of a string, but it cannot
4916 equal `string2'. */
419d1c74 4917 if (pos >= size1)
fa9a63c5 4918 {
419d1c74
SM
4919 /* Only match within string2. */
4920 d = string2 + pos - size1;
4921 dend = end_match_2 = string2 + stop - size1;
4922 end_match_1 = end1; /* Just to give it a value. */
fa9a63c5
RM
4923 }
4924 else
4925 {
f1ad044f 4926 if (stop < size1)
419d1c74
SM
4927 {
4928 /* Only match within string1. */
4929 end_match_1 = string1 + stop;
4930 /* BEWARE!
4931 When we reach end_match_1, PREFETCH normally switches to string2.
4932 But in the present case, this means that just doing a PREFETCH
4933 makes us jump from `stop' to `gap' within the string.
4934 What we really want here is for the search to stop as
4935 soon as we hit end_match_1. That's why we set end_match_2
4936 to end_match_1 (since PREFETCH fails as soon as we hit
4937 end_match_2). */
4938 end_match_2 = end_match_1;
4939 }
4940 else
f1ad044f
SM
4941 { /* It's important to use this code when stop == size so that
4942 moving `d' from end1 to string2 will not prevent the d == dend
4943 check from catching the end of string. */
419d1c74
SM
4944 end_match_1 = end1;
4945 end_match_2 = string2 + stop - size1;
4946 }
4947 d = string1 + pos;
4948 dend = end_match_1;
fa9a63c5
RM
4949 }
4950
4951 DEBUG_PRINT1 ("The compiled pattern is: ");
4952 DEBUG_PRINT_COMPILED_PATTERN (bufp, p, pend);
4953 DEBUG_PRINT1 ("The string to match is: `");
4954 DEBUG_PRINT_DOUBLE_STRING (d, string1, size1, string2, size2);
4955 DEBUG_PRINT1 ("'\n");
5e69f11e 4956
25fe55af 4957 /* This loops over pattern commands. It exits by returning from the
fa9a63c5
RM
4958 function if the match is complete, or it drops through if the match
4959 fails at this starting point in the input data. */
4960 for (;;)
4961 {
505bde11 4962 DEBUG_PRINT2 ("\n%p: ", p);
fa9a63c5
RM
4963
4964 if (p == pend)
4965 { /* End of pattern means we might have succeeded. */
25fe55af 4966 DEBUG_PRINT1 ("end of pattern ... ");
5e69f11e 4967
fa9a63c5 4968 /* If we haven't matched the entire string, and we want the
25fe55af
RS
4969 longest match, try backtracking. */
4970 if (d != end_match_2)
fa9a63c5
RM
4971 {
4972 /* 1 if this match ends in the same string (string1 or string2)
4973 as the best previous match. */
5e69f11e 4974 boolean same_str_p = (FIRST_STRING_P (match_end)
99633e97 4975 == FIRST_STRING_P (d));
fa9a63c5
RM
4976 /* 1 if this match is the best seen so far. */
4977 boolean best_match_p;
4978
4979 /* AIX compiler got confused when this was combined
25fe55af 4980 with the previous declaration. */
fa9a63c5
RM
4981 if (same_str_p)
4982 best_match_p = d > match_end;
4983 else
99633e97 4984 best_match_p = !FIRST_STRING_P (d);
fa9a63c5 4985
25fe55af
RS
4986 DEBUG_PRINT1 ("backtracking.\n");
4987
4988 if (!FAIL_STACK_EMPTY ())
4989 { /* More failure points to try. */
4990
4991 /* If exceeds best match so far, save it. */
4992 if (!best_regs_set || best_match_p)
4993 {
4994 best_regs_set = true;
4995 match_end = d;
4996
4997 DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
4998
01618498 4999 for (reg = 1; reg < num_regs; reg++)
25fe55af 5000 {
01618498
SM
5001 best_regstart[reg] = regstart[reg];
5002 best_regend[reg] = regend[reg];
25fe55af
RS
5003 }
5004 }
5005 goto fail;
5006 }
5007
5008 /* If no failure points, don't restore garbage. And if
5009 last match is real best match, don't restore second
5010 best one. */
5011 else if (best_regs_set && !best_match_p)
5012 {
5013 restore_best_regs:
5014 /* Restore best match. It may happen that `dend ==
5015 end_match_1' while the restored d is in string2.
5016 For example, the pattern `x.*y.*z' against the
5017 strings `x-' and `y-z-', if the two strings are
5018 not consecutive in memory. */
5019 DEBUG_PRINT1 ("Restoring best registers.\n");
5020
5021 d = match_end;
5022 dend = ((d >= string1 && d <= end1)
5023 ? end_match_1 : end_match_2);
fa9a63c5 5024
01618498 5025 for (reg = 1; reg < num_regs; reg++)
fa9a63c5 5026 {
01618498
SM
5027 regstart[reg] = best_regstart[reg];
5028 regend[reg] = best_regend[reg];
fa9a63c5 5029 }
25fe55af
RS
5030 }
5031 } /* d != end_match_2 */
fa9a63c5
RM
5032
5033 succeed_label:
25fe55af 5034 DEBUG_PRINT1 ("Accepting match.\n");
fa9a63c5 5035
25fe55af
RS
5036 /* If caller wants register contents data back, do it. */
5037 if (regs && !bufp->no_sub)
fa9a63c5 5038 {
25fe55af
RS
5039 /* Have the register data arrays been allocated? */
5040 if (bufp->regs_allocated == REGS_UNALLOCATED)
5041 { /* No. So allocate them with malloc. We need one
5042 extra element beyond `num_regs' for the `-1' marker
5043 GNU code uses. */
5044 regs->num_regs = MAX (RE_NREGS, num_regs + 1);
5045 regs->start = TALLOC (regs->num_regs, regoff_t);
5046 regs->end = TALLOC (regs->num_regs, regoff_t);
5047 if (regs->start == NULL || regs->end == NULL)
fa9a63c5
RM
5048 {
5049 FREE_VARIABLES ();
5050 return -2;
5051 }
25fe55af
RS
5052 bufp->regs_allocated = REGS_REALLOCATE;
5053 }
5054 else if (bufp->regs_allocated == REGS_REALLOCATE)
5055 { /* Yes. If we need more elements than were already
5056 allocated, reallocate them. If we need fewer, just
5057 leave it alone. */
5058 if (regs->num_regs < num_regs + 1)
5059 {
5060 regs->num_regs = num_regs + 1;
5061 RETALLOC (regs->start, regs->num_regs, regoff_t);
5062 RETALLOC (regs->end, regs->num_regs, regoff_t);
5063 if (regs->start == NULL || regs->end == NULL)
fa9a63c5
RM
5064 {
5065 FREE_VARIABLES ();
5066 return -2;
5067 }
25fe55af
RS
5068 }
5069 }
5070 else
fa9a63c5
RM
5071 {
5072 /* These braces fend off a "empty body in an else-statement"
25fe55af 5073 warning under GCC when assert expands to nothing. */
fa9a63c5
RM
5074 assert (bufp->regs_allocated == REGS_FIXED);
5075 }
5076
25fe55af
RS
5077 /* Convert the pointer data in `regstart' and `regend' to
5078 indices. Register zero has to be set differently,
5079 since we haven't kept track of any info for it. */
5080 if (regs->num_regs > 0)
5081 {
5082 regs->start[0] = pos;
99633e97 5083 regs->end[0] = POINTER_TO_OFFSET (d);
25fe55af 5084 }
5e69f11e 5085
25fe55af
RS
5086 /* Go through the first `min (num_regs, regs->num_regs)'
5087 registers, since that is all we initialized. */
01618498 5088 for (reg = 1; reg < MIN (num_regs, regs->num_regs); reg++)
fa9a63c5 5089 {
01618498
SM
5090 if (REG_UNSET (regstart[reg]) || REG_UNSET (regend[reg]))
5091 regs->start[reg] = regs->end[reg] = -1;
25fe55af
RS
5092 else
5093 {
01618498
SM
5094 regs->start[reg]
5095 = (regoff_t) POINTER_TO_OFFSET (regstart[reg]);
5096 regs->end[reg]
5097 = (regoff_t) POINTER_TO_OFFSET (regend[reg]);
25fe55af 5098 }
fa9a63c5 5099 }
5e69f11e 5100
25fe55af
RS
5101 /* If the regs structure we return has more elements than
5102 were in the pattern, set the extra elements to -1. If
5103 we (re)allocated the registers, this is the case,
5104 because we always allocate enough to have at least one
5105 -1 at the end. */
01618498
SM
5106 for (reg = num_regs; reg < regs->num_regs; reg++)
5107 regs->start[reg] = regs->end[reg] = -1;
fa9a63c5
RM
5108 } /* regs && !bufp->no_sub */
5109
25fe55af
RS
5110 DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
5111 nfailure_points_pushed, nfailure_points_popped,
5112 nfailure_points_pushed - nfailure_points_popped);
5113 DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed);
fa9a63c5 5114
99633e97 5115 mcnt = POINTER_TO_OFFSET (d) - pos;
fa9a63c5 5116
25fe55af 5117 DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt);
fa9a63c5 5118
25fe55af
RS
5119 FREE_VARIABLES ();
5120 return mcnt;
5121 }
fa9a63c5 5122
25fe55af 5123 /* Otherwise match next pattern command. */
fa9a63c5
RM
5124 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
5125 {
25fe55af
RS
5126 /* Ignore these. Used to ignore the n of succeed_n's which
5127 currently have n == 0. */
5128 case no_op:
5129 DEBUG_PRINT1 ("EXECUTING no_op.\n");
5130 break;
fa9a63c5
RM
5131
5132 case succeed:
25fe55af 5133 DEBUG_PRINT1 ("EXECUTING succeed.\n");
fa9a63c5
RM
5134 goto succeed_label;
5135
25fe55af
RS
5136 /* Match the next n pattern characters exactly. The following
5137 byte in the pattern defines n, and the n bytes after that
5138 are the characters to match. */
fa9a63c5
RM
5139 case exactn:
5140 mcnt = *p++;
25fe55af 5141 DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt);
fa9a63c5 5142
99633e97
SM
5143 /* Remember the start point to rollback upon failure. */
5144 dfail = d;
5145
25fe55af
RS
5146 /* This is written out as an if-else so we don't waste time
5147 testing `translate' inside the loop. */
28703c16 5148 if (RE_TRANSLATE_P (translate))
fa9a63c5 5149 {
e934739e
RS
5150 if (multibyte)
5151 do
5152 {
5153 int pat_charlen, buf_charlen;
e71b1971 5154 unsigned int pat_ch, buf_ch;
e934739e
RS
5155
5156 PREFETCH ();
5157 pat_ch = STRING_CHAR_AND_LENGTH (p, pend - p, pat_charlen);
5158 buf_ch = STRING_CHAR_AND_LENGTH (d, dend - d, buf_charlen);
5159
5160 if (RE_TRANSLATE (translate, buf_ch)
5161 != pat_ch)
99633e97
SM
5162 {
5163 d = dfail;
5164 goto fail;
5165 }
e934739e
RS
5166
5167 p += pat_charlen;
5168 d += buf_charlen;
5169 mcnt -= pat_charlen;
5170 }
5171 while (mcnt > 0);
5172 else
e934739e
RS
5173 do
5174 {
5175 PREFETCH ();
66f0296e 5176 if (RE_TRANSLATE (translate, *d) != *p++)
99633e97
SM
5177 {
5178 d = dfail;
5179 goto fail;
5180 }
33c46939 5181 d++;
e934739e
RS
5182 }
5183 while (--mcnt);
fa9a63c5
RM
5184 }
5185 else
5186 {
5187 do
5188 {
5189 PREFETCH ();
99633e97
SM
5190 if (*d++ != *p++)
5191 {
5192 d = dfail;
5193 goto fail;
5194 }
fa9a63c5
RM
5195 }
5196 while (--mcnt);
5197 }
25fe55af 5198 break;
fa9a63c5
RM
5199
5200
25fe55af 5201 /* Match any character except possibly a newline or a null. */
fa9a63c5 5202 case anychar:
e934739e
RS
5203 {
5204 int buf_charlen;
01618498 5205 re_wchar_t buf_ch;
fa9a63c5 5206
e934739e 5207 DEBUG_PRINT1 ("EXECUTING anychar.\n");
fa9a63c5 5208
e934739e 5209 PREFETCH ();
2d1675e4 5210 buf_ch = RE_STRING_CHAR_AND_LENGTH (d, dend - d, buf_charlen);
e934739e
RS
5211 buf_ch = TRANSLATE (buf_ch);
5212
5213 if ((!(bufp->syntax & RE_DOT_NEWLINE)
5214 && buf_ch == '\n')
5215 || ((bufp->syntax & RE_DOT_NOT_NULL)
5216 && buf_ch == '\000'))
5217 goto fail;
5218
e934739e
RS
5219 DEBUG_PRINT2 (" Matched `%d'.\n", *d);
5220 d += buf_charlen;
5221 }
fa9a63c5
RM
5222 break;
5223
5224
5225 case charset:
5226 case charset_not:
5227 {
b18215fc 5228 register unsigned int c;
fa9a63c5 5229 boolean not = (re_opcode_t) *(p - 1) == charset_not;
b18215fc
RS
5230 int len;
5231
5232 /* Start of actual range_table, or end of bitmap if there is no
5233 range table. */
01618498 5234 re_char *range_table;
b18215fc 5235
96cc36cc 5236 /* Nonzero if there is a range table. */
b18215fc
RS
5237 int range_table_exists;
5238
96cc36cc
RS
5239 /* Number of ranges of range table. This is not included
5240 in the initial byte-length of the command. */
5241 int count = 0;
fa9a63c5 5242
25fe55af 5243 DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : "");
fa9a63c5 5244
b18215fc 5245 range_table_exists = CHARSET_RANGE_TABLE_EXISTS_P (&p[-1]);
96cc36cc 5246
b18215fc 5247 if (range_table_exists)
96cc36cc
RS
5248 {
5249 range_table = CHARSET_RANGE_TABLE (&p[-1]); /* Past the bitmap. */
5250 EXTRACT_NUMBER_AND_INCR (count, range_table);
5251 }
b18215fc 5252
2d1675e4
SM
5253 PREFETCH ();
5254 c = RE_STRING_CHAR_AND_LENGTH (d, dend - d, len);
5255 c = TRANSLATE (c); /* The character to match. */
b18215fc
RS
5256
5257 if (SINGLE_BYTE_CHAR_P (c))
5258 { /* Lookup bitmap. */
b18215fc
RS
5259 /* Cast to `unsigned' instead of `unsigned char' in
5260 case the bit list is a full 32 bytes long. */
5261 if (c < (unsigned) (CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH)
96cc36cc
RS
5262 && p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
5263 not = !not;
b18215fc 5264 }
96cc36cc 5265#ifdef emacs
b18215fc 5266 else if (range_table_exists)
96cc36cc
RS
5267 {
5268 int class_bits = CHARSET_RANGE_TABLE_BITS (&p[-1]);
5269
14473664
SM
5270 if ( (class_bits & BIT_LOWER && ISLOWER (c))
5271 | (class_bits & BIT_MULTIBYTE)
96cc36cc
RS
5272 | (class_bits & BIT_PUNCT && ISPUNCT (c))
5273 | (class_bits & BIT_SPACE && ISSPACE (c))
5274 | (class_bits & BIT_UPPER && ISUPPER (c))
5275 | (class_bits & BIT_WORD && ISWORD (c)))
5276 not = !not;
5277 else
5278 CHARSET_LOOKUP_RANGE_TABLE_RAW (not, c, range_table, count);
5279 }
5280#endif /* emacs */
fa9a63c5 5281
96cc36cc
RS
5282 if (range_table_exists)
5283 p = CHARSET_RANGE_TABLE_END (range_table, count);
5284 else
5285 p += CHARSET_BITMAP_SIZE (&p[-1]) + 1;
fa9a63c5
RM
5286
5287 if (!not) goto fail;
5e69f11e 5288
b18215fc 5289 d += len;
fa9a63c5
RM
5290 break;
5291 }
5292
5293
25fe55af 5294 /* The beginning of a group is represented by start_memory.
505bde11 5295 The argument is the register number. The text
25fe55af
RS
5296 matched within the group is recorded (in the internal
5297 registers data structure) under the register number. */
5298 case start_memory:
505bde11
SM
5299 DEBUG_PRINT2 ("EXECUTING start_memory %d:\n", *p);
5300
5301 /* In case we need to undo this operation (via backtracking). */
5302 PUSH_FAILURE_REG ((unsigned int)*p);
fa9a63c5 5303
25fe55af 5304 regstart[*p] = d;
4bb91c68 5305 regend[*p] = NULL; /* probably unnecessary. -sm */
fa9a63c5
RM
5306 DEBUG_PRINT2 (" regstart: %d\n", POINTER_TO_OFFSET (regstart[*p]));
5307
25fe55af 5308 /* Move past the register number and inner group count. */
505bde11 5309 p += 1;
25fe55af 5310 break;
fa9a63c5
RM
5311
5312
25fe55af 5313 /* The stop_memory opcode represents the end of a group. Its
505bde11 5314 argument is the same as start_memory's: the register number. */
fa9a63c5 5315 case stop_memory:
505bde11
SM
5316 DEBUG_PRINT2 ("EXECUTING stop_memory %d:\n", *p);
5317
5318 assert (!REG_UNSET (regstart[*p]));
5319 /* Strictly speaking, there should be code such as:
177c0ea7 5320
0b32bf0e 5321 assert (REG_UNSET (regend[*p]));
505bde11
SM
5322 PUSH_FAILURE_REGSTOP ((unsigned int)*p);
5323
5324 But the only info to be pushed is regend[*p] and it is known to
5325 be UNSET, so there really isn't anything to push.
5326 Not pushing anything, on the other hand deprives us from the
5327 guarantee that regend[*p] is UNSET since undoing this operation
5328 will not reset its value properly. This is not important since
5329 the value will only be read on the next start_memory or at
5330 the very end and both events can only happen if this stop_memory
5331 is *not* undone. */
fa9a63c5 5332
25fe55af 5333 regend[*p] = d;
fa9a63c5
RM
5334 DEBUG_PRINT2 (" regend: %d\n", POINTER_TO_OFFSET (regend[*p]));
5335
25fe55af 5336 /* Move past the register number and the inner group count. */
505bde11 5337 p += 1;
25fe55af 5338 break;
fa9a63c5
RM
5339
5340
5341 /* \<digit> has been turned into a `duplicate' command which is
25fe55af
RS
5342 followed by the numeric value of <digit> as the register number. */
5343 case duplicate:
fa9a63c5 5344 {
66f0296e 5345 register re_char *d2, *dend2;
25fe55af 5346 int regno = *p++; /* Get which register to match against. */
fa9a63c5
RM
5347 DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno);
5348
25fe55af
RS
5349 /* Can't back reference a group which we've never matched. */
5350 if (REG_UNSET (regstart[regno]) || REG_UNSET (regend[regno]))
5351 goto fail;
5e69f11e 5352
25fe55af
RS
5353 /* Where in input to try to start matching. */
5354 d2 = regstart[regno];
5e69f11e 5355
99633e97
SM
5356 /* Remember the start point to rollback upon failure. */
5357 dfail = d;
5358
25fe55af
RS
5359 /* Where to stop matching; if both the place to start and
5360 the place to stop matching are in the same string, then
5361 set to the place to stop, otherwise, for now have to use
5362 the end of the first string. */
fa9a63c5 5363
25fe55af 5364 dend2 = ((FIRST_STRING_P (regstart[regno])
fa9a63c5
RM
5365 == FIRST_STRING_P (regend[regno]))
5366 ? regend[regno] : end_match_1);
5367 for (;;)
5368 {
5369 /* If necessary, advance to next segment in register
25fe55af 5370 contents. */
fa9a63c5
RM
5371 while (d2 == dend2)
5372 {
5373 if (dend2 == end_match_2) break;
5374 if (dend2 == regend[regno]) break;
5375
25fe55af
RS
5376 /* End of string1 => advance to string2. */
5377 d2 = string2;
5378 dend2 = regend[regno];
fa9a63c5
RM
5379 }
5380 /* At end of register contents => success */
5381 if (d2 == dend2) break;
5382
5383 /* If necessary, advance to next segment in data. */
5384 PREFETCH ();
5385
5386 /* How many characters left in this segment to match. */
5387 mcnt = dend - d;
5e69f11e 5388
fa9a63c5 5389 /* Want how many consecutive characters we can match in
25fe55af
RS
5390 one shot, so, if necessary, adjust the count. */
5391 if (mcnt > dend2 - d2)
fa9a63c5 5392 mcnt = dend2 - d2;
5e69f11e 5393
fa9a63c5 5394 /* Compare that many; failure if mismatch, else move
25fe55af 5395 past them. */
28703c16 5396 if (RE_TRANSLATE_P (translate)
2d1675e4 5397 ? bcmp_translate (d, d2, mcnt, translate, multibyte)
4bb91c68 5398 : memcmp (d, d2, mcnt))
99633e97
SM
5399 {
5400 d = dfail;
5401 goto fail;
5402 }
fa9a63c5 5403 d += mcnt, d2 += mcnt;
fa9a63c5
RM
5404 }
5405 }
5406 break;
5407
5408
25fe55af 5409 /* begline matches the empty string at the beginning of the string
c0f9ea08 5410 (unless `not_bol' is set in `bufp'), and after newlines. */
fa9a63c5 5411 case begline:
25fe55af 5412 DEBUG_PRINT1 ("EXECUTING begline.\n");
5e69f11e 5413
25fe55af
RS
5414 if (AT_STRINGS_BEG (d))
5415 {
5416 if (!bufp->not_bol) break;
5417 }
419d1c74 5418 else
25fe55af 5419 {
419d1c74
SM
5420 unsigned char c;
5421 GET_CHAR_BEFORE_2 (c, d, string1, end1, string2, end2);
c0f9ea08 5422 if (c == '\n')
419d1c74 5423 break;
25fe55af
RS
5424 }
5425 /* In all other cases, we fail. */
5426 goto fail;
fa9a63c5
RM
5427
5428
25fe55af 5429 /* endline is the dual of begline. */
fa9a63c5 5430 case endline:
25fe55af 5431 DEBUG_PRINT1 ("EXECUTING endline.\n");
fa9a63c5 5432
25fe55af
RS
5433 if (AT_STRINGS_END (d))
5434 {
5435 if (!bufp->not_eol) break;
5436 }
f1ad044f 5437 else
25fe55af 5438 {
f1ad044f 5439 PREFETCH_NOLIMIT ();
c0f9ea08 5440 if (*d == '\n')
f1ad044f 5441 break;
25fe55af
RS
5442 }
5443 goto fail;
fa9a63c5
RM
5444
5445
5446 /* Match at the very beginning of the data. */
25fe55af
RS
5447 case begbuf:
5448 DEBUG_PRINT1 ("EXECUTING begbuf.\n");
5449 if (AT_STRINGS_BEG (d))
5450 break;
5451 goto fail;
fa9a63c5
RM
5452
5453
5454 /* Match at the very end of the data. */
25fe55af
RS
5455 case endbuf:
5456 DEBUG_PRINT1 ("EXECUTING endbuf.\n");
fa9a63c5
RM
5457 if (AT_STRINGS_END (d))
5458 break;
25fe55af 5459 goto fail;
5e69f11e 5460
5e69f11e 5461
25fe55af
RS
5462 /* on_failure_keep_string_jump is used to optimize `.*\n'. It
5463 pushes NULL as the value for the string on the stack. Then
505bde11 5464 `POP_FAILURE_POINT' will keep the current value for the
25fe55af
RS
5465 string, instead of restoring it. To see why, consider
5466 matching `foo\nbar' against `.*\n'. The .* matches the foo;
5467 then the . fails against the \n. But the next thing we want
5468 to do is match the \n against the \n; if we restored the
5469 string value, we would be back at the foo.
5470
5471 Because this is used only in specific cases, we don't need to
5472 check all the things that `on_failure_jump' does, to make
5473 sure the right things get saved on the stack. Hence we don't
5474 share its code. The only reason to push anything on the
5475 stack at all is that otherwise we would have to change
5476 `anychar's code to do something besides goto fail in this
5477 case; that seems worse than this. */
5478 case on_failure_keep_string_jump:
505bde11
SM
5479 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5480 DEBUG_PRINT3 ("EXECUTING on_failure_keep_string_jump %d (to %p):\n",
5481 mcnt, p + mcnt);
fa9a63c5 5482
505bde11
SM
5483 PUSH_FAILURE_POINT (p - 3, NULL);
5484 break;
5485
0683b6fa
SM
5486 /* A nasty loop is introduced by the non-greedy *? and +?.
5487 With such loops, the stack only ever contains one failure point
5488 at a time, so that a plain on_failure_jump_loop kind of
5489 cycle detection cannot work. Worse yet, such a detection
5490 can not only fail to detect a cycle, but it can also wrongly
5491 detect a cycle (between different instantiations of the same
6df42991 5492 loop).
0683b6fa
SM
5493 So the method used for those nasty loops is a little different:
5494 We use a special cycle-detection-stack-frame which is pushed
5495 when the on_failure_jump_nastyloop failure-point is *popped*.
5496 This special frame thus marks the beginning of one iteration
5497 through the loop and we can hence easily check right here
5498 whether something matched between the beginning and the end of
5499 the loop. */
5500 case on_failure_jump_nastyloop:
5501 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5502 DEBUG_PRINT3 ("EXECUTING on_failure_jump_nastyloop %d (to %p):\n",
5503 mcnt, p + mcnt);
5504
5505 assert ((re_opcode_t)p[-4] == no_op);
6df42991
SM
5506 {
5507 int cycle = 0;
5508 CHECK_INFINITE_LOOP (p - 4, d);
5509 if (!cycle)
5510 /* If there's a cycle, just continue without pushing
5511 this failure point. The failure point is the "try again"
5512 option, which shouldn't be tried.
5513 We want (x?)*?y\1z to match both xxyz and xxyxz. */
5514 PUSH_FAILURE_POINT (p - 3, d);
5515 }
0683b6fa
SM
5516 break;
5517
4e8a9132
SM
5518 /* Simple loop detecting on_failure_jump: just check on the
5519 failure stack if the same spot was already hit earlier. */
505bde11
SM
5520 case on_failure_jump_loop:
5521 on_failure:
5522 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5523 DEBUG_PRINT3 ("EXECUTING on_failure_jump_loop %d (to %p):\n",
5524 mcnt, p + mcnt);
6df42991
SM
5525 {
5526 int cycle = 0;
5527 CHECK_INFINITE_LOOP (p - 3, d);
5528 if (cycle)
5529 /* If there's a cycle, get out of the loop, as if the matching
5530 had failed. We used to just `goto fail' here, but that was
5531 aborting the search a bit too early: we want to keep the
5532 empty-loop-match and keep matching after the loop.
5533 We want (x?)*y\1z to match both xxyz and xxyxz. */
5534 p += mcnt;
5535 else
5536 PUSH_FAILURE_POINT (p - 3, d);
5537 }
25fe55af 5538 break;
fa9a63c5
RM
5539
5540
5541 /* Uses of on_failure_jump:
5e69f11e 5542
25fe55af
RS
5543 Each alternative starts with an on_failure_jump that points
5544 to the beginning of the next alternative. Each alternative
5545 except the last ends with a jump that in effect jumps past
5546 the rest of the alternatives. (They really jump to the
5547 ending jump of the following alternative, because tensioning
5548 these jumps is a hassle.)
fa9a63c5 5549
25fe55af
RS
5550 Repeats start with an on_failure_jump that points past both
5551 the repetition text and either the following jump or
5552 pop_failure_jump back to this on_failure_jump. */
fa9a63c5 5553 case on_failure_jump:
5b370c2b 5554 IMMEDIATE_QUIT_CHECK;
25fe55af 5555 EXTRACT_NUMBER_AND_INCR (mcnt, p);
505bde11
SM
5556 DEBUG_PRINT3 ("EXECUTING on_failure_jump %d (to %p):\n",
5557 mcnt, p + mcnt);
25fe55af 5558
505bde11 5559 PUSH_FAILURE_POINT (p -3, d);
25fe55af
RS
5560 break;
5561
4e8a9132 5562 /* This operation is used for greedy *.
505bde11
SM
5563 Compare the beginning of the repeat with what in the
5564 pattern follows its end. If we can establish that there
5565 is nothing that they would both match, i.e., that we
5566 would have to backtrack because of (as in, e.g., `a*a')
5567 then we can use a non-backtracking loop based on
4e8a9132 5568 on_failure_keep_string_jump instead of on_failure_jump. */
505bde11 5569 case on_failure_jump_smart:
5b370c2b 5570 IMMEDIATE_QUIT_CHECK;
25fe55af 5571 EXTRACT_NUMBER_AND_INCR (mcnt, p);
505bde11
SM
5572 DEBUG_PRINT3 ("EXECUTING on_failure_jump_smart %d (to %p).\n",
5573 mcnt, p + mcnt);
25fe55af 5574 {
01618498 5575 re_char *p1 = p; /* Next operation. */
6dcf2d0e
SM
5576 /* Here, we discard `const', making re_match non-reentrant. */
5577 unsigned char *p2 = (unsigned char*) p + mcnt; /* Jump dest. */
5578 unsigned char *p3 = (unsigned char*) p - 3; /* opcode location. */
fa9a63c5 5579
505bde11
SM
5580 p -= 3; /* Reset so that we will re-execute the
5581 instruction once it's been changed. */
fa9a63c5 5582
4e8a9132
SM
5583 EXTRACT_NUMBER (mcnt, p2 - 2);
5584
5585 /* Ensure this is a indeed the trivial kind of loop
5586 we are expecting. */
5587 assert (skip_one_char (p1) == p2 - 3);
5588 assert ((re_opcode_t) p2[-3] == jump && p2 + mcnt == p);
99633e97 5589 DEBUG_STATEMENT (debug += 2);
505bde11 5590 if (mutually_exclusive_p (bufp, p1, p2))
fa9a63c5 5591 {
505bde11 5592 /* Use a fast `on_failure_keep_string_jump' loop. */
4e8a9132 5593 DEBUG_PRINT1 (" smart exclusive => fast loop.\n");
01618498 5594 *p3 = (unsigned char) on_failure_keep_string_jump;
4e8a9132 5595 STORE_NUMBER (p2 - 2, mcnt + 3);
25fe55af 5596 }
505bde11 5597 else
fa9a63c5 5598 {
505bde11
SM
5599 /* Default to a safe `on_failure_jump' loop. */
5600 DEBUG_PRINT1 (" smart default => slow loop.\n");
01618498 5601 *p3 = (unsigned char) on_failure_jump;
fa9a63c5 5602 }
99633e97 5603 DEBUG_STATEMENT (debug -= 2);
25fe55af 5604 }
505bde11 5605 break;
25fe55af
RS
5606
5607 /* Unconditionally jump (without popping any failure points). */
5608 case jump:
fa9a63c5 5609 unconditional_jump:
5b370c2b 5610 IMMEDIATE_QUIT_CHECK;
fa9a63c5 5611 EXTRACT_NUMBER_AND_INCR (mcnt, p); /* Get the amount to jump. */
25fe55af
RS
5612 DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt);
5613 p += mcnt; /* Do the jump. */
505bde11 5614 DEBUG_PRINT2 ("(to %p).\n", p);
25fe55af
RS
5615 break;
5616
5617
25fe55af
RS
5618 /* Have to succeed matching what follows at least n times.
5619 After that, handle like `on_failure_jump'. */
5620 case succeed_n:
01618498 5621 /* Signedness doesn't matter since we only compare MCNT to 0. */
25fe55af
RS
5622 EXTRACT_NUMBER (mcnt, p + 2);
5623 DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt);
5e69f11e 5624
dc1e502d
SM
5625 /* Originally, mcnt is how many times we HAVE to succeed. */
5626 if (mcnt != 0)
25fe55af 5627 {
6dcf2d0e
SM
5628 /* Here, we discard `const', making re_match non-reentrant. */
5629 unsigned char *p2 = (unsigned char*) p + 2; /* counter loc. */
dc1e502d 5630 mcnt--;
01618498
SM
5631 p += 4;
5632 PUSH_NUMBER (p2, mcnt);
25fe55af 5633 }
dc1e502d
SM
5634 else
5635 /* The two bytes encoding mcnt == 0 are two no_op opcodes. */
5636 goto on_failure;
25fe55af
RS
5637 break;
5638
5639 case jump_n:
01618498 5640 /* Signedness doesn't matter since we only compare MCNT to 0. */
25fe55af
RS
5641 EXTRACT_NUMBER (mcnt, p + 2);
5642 DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt);
5643
5644 /* Originally, this is how many times we CAN jump. */
dc1e502d 5645 if (mcnt != 0)
25fe55af 5646 {
6dcf2d0e
SM
5647 /* Here, we discard `const', making re_match non-reentrant. */
5648 unsigned char *p2 = (unsigned char*) p + 2; /* counter loc. */
dc1e502d 5649 mcnt--;
01618498 5650 PUSH_NUMBER (p2, mcnt);
dc1e502d 5651 goto unconditional_jump;
25fe55af
RS
5652 }
5653 /* If don't have to jump any more, skip over the rest of command. */
5e69f11e
RM
5654 else
5655 p += 4;
25fe55af 5656 break;
5e69f11e 5657
fa9a63c5
RM
5658 case set_number_at:
5659 {
01618498 5660 unsigned char *p2; /* Location of the counter. */
25fe55af 5661 DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
fa9a63c5 5662
25fe55af 5663 EXTRACT_NUMBER_AND_INCR (mcnt, p);
6dcf2d0e
SM
5664 /* Here, we discard `const', making re_match non-reentrant. */
5665 p2 = (unsigned char*) p + mcnt;
01618498 5666 /* Signedness doesn't matter since we only copy MCNT's bits . */
25fe55af 5667 EXTRACT_NUMBER_AND_INCR (mcnt, p);
01618498
SM
5668 DEBUG_PRINT3 (" Setting %p to %d.\n", p2, mcnt);
5669 PUSH_NUMBER (p2, mcnt);
25fe55af
RS
5670 break;
5671 }
9121ca40
KH
5672
5673 case wordbound:
66f0296e
SM
5674 case notwordbound:
5675 not = (re_opcode_t) *(p - 1) == notwordbound;
5676 DEBUG_PRINT2 ("EXECUTING %swordbound.\n", not?"not":"");
fa9a63c5 5677
99633e97 5678 /* We SUCCEED (or FAIL) in one of the following cases: */
9121ca40 5679
b18215fc 5680 /* Case 1: D is at the beginning or the end of string. */
9121ca40 5681 if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
66f0296e 5682 not = !not;
b18215fc
RS
5683 else
5684 {
5685 /* C1 is the character before D, S1 is the syntax of C1, C2
5686 is the character at D, and S2 is the syntax of C2. */
01618498
SM
5687 re_wchar_t c1, c2;
5688 int s1, s2;
b18215fc 5689#ifdef emacs
2d1675e4
SM
5690 int offset = PTR_TO_OFFSET (d - 1);
5691 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
5d967c7a 5692 UPDATE_SYNTAX_TABLE (charpos);
25fe55af 5693#endif
66f0296e 5694 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
b18215fc
RS
5695 s1 = SYNTAX (c1);
5696#ifdef emacs
5d967c7a 5697 UPDATE_SYNTAX_TABLE_FORWARD (charpos + 1);
25fe55af 5698#endif
f1ad044f 5699 PREFETCH_NOLIMIT ();
2d1675e4 5700 c2 = RE_STRING_CHAR (d, dend - d);
b18215fc
RS
5701 s2 = SYNTAX (c2);
5702
5703 if (/* Case 2: Only one of S1 and S2 is Sword. */
5704 ((s1 == Sword) != (s2 == Sword))
5705 /* Case 3: Both of S1 and S2 are Sword, and macro
25fe55af 5706 WORD_BOUNDARY_P (C1, C2) returns nonzero. */
b18215fc 5707 || ((s1 == Sword) && WORD_BOUNDARY_P (c1, c2)))
66f0296e
SM
5708 not = !not;
5709 }
5710 if (not)
9121ca40 5711 break;
b18215fc 5712 else
9121ca40 5713 goto fail;
fa9a63c5
RM
5714
5715 case wordbeg:
25fe55af 5716 DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
fa9a63c5 5717
b18215fc
RS
5718 /* We FAIL in one of the following cases: */
5719
25fe55af 5720 /* Case 1: D is at the end of string. */
b18215fc 5721 if (AT_STRINGS_END (d))
99633e97 5722 goto fail;
b18215fc
RS
5723 else
5724 {
5725 /* C1 is the character before D, S1 is the syntax of C1, C2
5726 is the character at D, and S2 is the syntax of C2. */
01618498
SM
5727 re_wchar_t c1, c2;
5728 int s1, s2;
fa9a63c5 5729#ifdef emacs
2d1675e4
SM
5730 int offset = PTR_TO_OFFSET (d);
5731 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
92432794 5732 UPDATE_SYNTAX_TABLE (charpos);
25fe55af 5733#endif
99633e97 5734 PREFETCH ();
2d1675e4 5735 c2 = RE_STRING_CHAR (d, dend - d);
b18215fc 5736 s2 = SYNTAX (c2);
177c0ea7 5737
b18215fc
RS
5738 /* Case 2: S2 is not Sword. */
5739 if (s2 != Sword)
5740 goto fail;
5741
5742 /* Case 3: D is not at the beginning of string ... */
5743 if (!AT_STRINGS_BEG (d))
5744 {
5745 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
5746#ifdef emacs
5d967c7a 5747 UPDATE_SYNTAX_TABLE_BACKWARD (charpos - 1);
25fe55af 5748#endif
b18215fc
RS
5749 s1 = SYNTAX (c1);
5750
5751 /* ... and S1 is Sword, and WORD_BOUNDARY_P (C1, C2)
25fe55af 5752 returns 0. */
b18215fc
RS
5753 if ((s1 == Sword) && !WORD_BOUNDARY_P (c1, c2))
5754 goto fail;
5755 }
5756 }
e318085a
RS
5757 break;
5758
b18215fc 5759 case wordend:
25fe55af 5760 DEBUG_PRINT1 ("EXECUTING wordend.\n");
b18215fc
RS
5761
5762 /* We FAIL in one of the following cases: */
5763
5764 /* Case 1: D is at the beginning of string. */
5765 if (AT_STRINGS_BEG (d))
e318085a 5766 goto fail;
b18215fc
RS
5767 else
5768 {
5769 /* C1 is the character before D, S1 is the syntax of C1, C2
5770 is the character at D, and S2 is the syntax of C2. */
01618498
SM
5771 re_wchar_t c1, c2;
5772 int s1, s2;
5d967c7a 5773#ifdef emacs
2d1675e4
SM
5774 int offset = PTR_TO_OFFSET (d) - 1;
5775 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
92432794 5776 UPDATE_SYNTAX_TABLE (charpos);
5d967c7a 5777#endif
99633e97 5778 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
b18215fc
RS
5779 s1 = SYNTAX (c1);
5780
5781 /* Case 2: S1 is not Sword. */
5782 if (s1 != Sword)
5783 goto fail;
5784
5785 /* Case 3: D is not at the end of string ... */
5786 if (!AT_STRINGS_END (d))
5787 {
f1ad044f 5788 PREFETCH_NOLIMIT ();
2d1675e4 5789 c2 = RE_STRING_CHAR (d, dend - d);
5d967c7a
RS
5790#ifdef emacs
5791 UPDATE_SYNTAX_TABLE_FORWARD (charpos);
5792#endif
b18215fc
RS
5793 s2 = SYNTAX (c2);
5794
5795 /* ... and S2 is Sword, and WORD_BOUNDARY_P (C1, C2)
25fe55af 5796 returns 0. */
b18215fc 5797 if ((s2 == Sword) && !WORD_BOUNDARY_P (c1, c2))
25fe55af 5798 goto fail;
b18215fc
RS
5799 }
5800 }
e318085a
RS
5801 break;
5802
fa9a63c5 5803 case syntaxspec:
1fb352e0
SM
5804 case notsyntaxspec:
5805 not = (re_opcode_t) *(p - 1) == notsyntaxspec;
fa9a63c5 5806 mcnt = *p++;
1fb352e0 5807 DEBUG_PRINT3 ("EXECUTING %ssyntaxspec %d.\n", not?"not":"", mcnt);
fa9a63c5 5808 PREFETCH ();
b18215fc
RS
5809#ifdef emacs
5810 {
2d1675e4
SM
5811 int offset = PTR_TO_OFFSET (d);
5812 int pos1 = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
b18215fc
RS
5813 UPDATE_SYNTAX_TABLE (pos1);
5814 }
25fe55af 5815#endif
b18215fc 5816 {
01618498
SM
5817 int len;
5818 re_wchar_t c;
b18215fc 5819
2d1675e4 5820 c = RE_STRING_CHAR_AND_LENGTH (d, dend - d, len);
b18215fc 5821
990b2375 5822 if ((SYNTAX (c) != (enum syntaxcode) mcnt) ^ not)
1fb352e0 5823 goto fail;
b18215fc
RS
5824 d += len;
5825 }
fa9a63c5
RM
5826 break;
5827
b18215fc 5828#ifdef emacs
1fb352e0
SM
5829 case before_dot:
5830 DEBUG_PRINT1 ("EXECUTING before_dot.\n");
5831 if (PTR_BYTE_POS (d) >= PT_BYTE)
fa9a63c5 5832 goto fail;
b18215fc
RS
5833 break;
5834
1fb352e0
SM
5835 case at_dot:
5836 DEBUG_PRINT1 ("EXECUTING at_dot.\n");
5837 if (PTR_BYTE_POS (d) != PT_BYTE)
5838 goto fail;
5839 break;
b18215fc 5840
1fb352e0
SM
5841 case after_dot:
5842 DEBUG_PRINT1 ("EXECUTING after_dot.\n");
5843 if (PTR_BYTE_POS (d) <= PT_BYTE)
5844 goto fail;
e318085a 5845 break;
fa9a63c5 5846
1fb352e0 5847 case categoryspec:
b18215fc 5848 case notcategoryspec:
1fb352e0 5849 not = (re_opcode_t) *(p - 1) == notcategoryspec;
b18215fc 5850 mcnt = *p++;
1fb352e0 5851 DEBUG_PRINT3 ("EXECUTING %scategoryspec %d.\n", not?"not":"", mcnt);
b18215fc
RS
5852 PREFETCH ();
5853 {
01618498
SM
5854 int len;
5855 re_wchar_t c;
5856
2d1675e4 5857 c = RE_STRING_CHAR_AND_LENGTH (d, dend - d, len);
b18215fc 5858
1fb352e0 5859 if ((!CHAR_HAS_CATEGORY (c, mcnt)) ^ not)
b18215fc
RS
5860 goto fail;
5861 d += len;
5862 }
fa9a63c5 5863 break;
5e69f11e 5864
1fb352e0 5865#endif /* emacs */
5e69f11e 5866
0b32bf0e
SM
5867 default:
5868 abort ();
fa9a63c5 5869 }
b18215fc 5870 continue; /* Successfully executed one pattern command; keep going. */
fa9a63c5
RM
5871
5872
5873 /* We goto here if a matching operation fails. */
5874 fail:
5b370c2b 5875 IMMEDIATE_QUIT_CHECK;
fa9a63c5 5876 if (!FAIL_STACK_EMPTY ())
505bde11 5877 {
01618498 5878 re_char *str, *pat;
505bde11 5879 /* A restart point is known. Restore to that state. */
0b32bf0e
SM
5880 DEBUG_PRINT1 ("\nFAIL:\n");
5881 POP_FAILURE_POINT (str, pat);
505bde11
SM
5882 switch (SWITCH_ENUM_CAST ((re_opcode_t) *pat++))
5883 {
5884 case on_failure_keep_string_jump:
5885 assert (str == NULL);
5886 goto continue_failure_jump;
5887
0683b6fa
SM
5888 case on_failure_jump_nastyloop:
5889 assert ((re_opcode_t)pat[-2] == no_op);
5890 PUSH_FAILURE_POINT (pat - 2, str);
5891 /* Fallthrough */
5892
505bde11
SM
5893 case on_failure_jump_loop:
5894 case on_failure_jump:
5895 case succeed_n:
5896 d = str;
5897 continue_failure_jump:
5898 EXTRACT_NUMBER_AND_INCR (mcnt, pat);
5899 p = pat + mcnt;
5900 break;
b18215fc 5901
0683b6fa
SM
5902 case no_op:
5903 /* A special frame used for nastyloops. */
5904 goto fail;
5905
505bde11
SM
5906 default:
5907 abort();
5908 }
fa9a63c5 5909
505bde11 5910 assert (p >= bufp->buffer && p <= pend);
b18215fc 5911
0b32bf0e 5912 if (d >= string1 && d <= end1)
fa9a63c5 5913 dend = end_match_1;
0b32bf0e 5914 }
fa9a63c5 5915 else
0b32bf0e 5916 break; /* Matching at this starting point really fails. */
fa9a63c5
RM
5917 } /* for (;;) */
5918
5919 if (best_regs_set)
5920 goto restore_best_regs;
5921
5922 FREE_VARIABLES ();
5923
b18215fc 5924 return -1; /* Failure to match. */
fa9a63c5
RM
5925} /* re_match_2 */
5926\f
5927/* Subroutine definitions for re_match_2. */
5928
fa9a63c5
RM
5929/* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
5930 bytes; nonzero otherwise. */
5e69f11e 5931
fa9a63c5 5932static int
2d1675e4
SM
5933bcmp_translate (s1, s2, len, translate, multibyte)
5934 re_char *s1, *s2;
fa9a63c5 5935 register int len;
6676cb1c 5936 RE_TRANSLATE_TYPE translate;
2d1675e4 5937 const int multibyte;
fa9a63c5 5938{
2d1675e4
SM
5939 register re_char *p1 = s1, *p2 = s2;
5940 re_char *p1_end = s1 + len;
5941 re_char *p2_end = s2 + len;
e934739e 5942
4bb91c68
SM
5943 /* FIXME: Checking both p1 and p2 presumes that the two strings might have
5944 different lengths, but relying on a single `len' would break this. -sm */
5945 while (p1 < p1_end && p2 < p2_end)
fa9a63c5 5946 {
e934739e 5947 int p1_charlen, p2_charlen;
01618498 5948 re_wchar_t p1_ch, p2_ch;
e934739e 5949
2d1675e4
SM
5950 p1_ch = RE_STRING_CHAR_AND_LENGTH (p1, p1_end - p1, p1_charlen);
5951 p2_ch = RE_STRING_CHAR_AND_LENGTH (p2, p2_end - p2, p2_charlen);
e934739e
RS
5952
5953 if (RE_TRANSLATE (translate, p1_ch)
5954 != RE_TRANSLATE (translate, p2_ch))
bc192b5b 5955 return 1;
e934739e
RS
5956
5957 p1 += p1_charlen, p2 += p2_charlen;
fa9a63c5 5958 }
e934739e
RS
5959
5960 if (p1 != p1_end || p2 != p2_end)
5961 return 1;
5962
fa9a63c5
RM
5963 return 0;
5964}
5965\f
5966/* Entry points for GNU code. */
5967
5968/* re_compile_pattern is the GNU regular expression compiler: it
5969 compiles PATTERN (of length SIZE) and puts the result in BUFP.
5970 Returns 0 if the pattern was valid, otherwise an error string.
5e69f11e 5971
fa9a63c5
RM
5972 Assumes the `allocated' (and perhaps `buffer') and `translate' fields
5973 are set in BUFP on entry.
5e69f11e 5974
b18215fc 5975 We call regex_compile to do the actual compilation. */
fa9a63c5
RM
5976
5977const char *
5978re_compile_pattern (pattern, length, bufp)
5979 const char *pattern;
0b32bf0e 5980 size_t length;
fa9a63c5
RM
5981 struct re_pattern_buffer *bufp;
5982{
5983 reg_errcode_t ret;
5e69f11e 5984
fa9a63c5
RM
5985 /* GNU code is written to assume at least RE_NREGS registers will be set
5986 (and at least one extra will be -1). */
5987 bufp->regs_allocated = REGS_UNALLOCATED;
5e69f11e 5988
fa9a63c5
RM
5989 /* And GNU code determines whether or not to get register information
5990 by passing null for the REGS argument to re_match, etc., not by
5991 setting no_sub. */
5992 bufp->no_sub = 0;
5e69f11e 5993
4bb91c68 5994 ret = regex_compile ((re_char*) pattern, length, re_syntax_options, bufp);
fa9a63c5
RM
5995
5996 if (!ret)
5997 return NULL;
5998 return gettext (re_error_msgid[(int) ret]);
5e69f11e 5999}
c0f9ea08 6000WEAK_ALIAS (__re_compile_pattern, re_compile_pattern)
fa9a63c5 6001\f
b18215fc
RS
6002/* Entry points compatible with 4.2 BSD regex library. We don't define
6003 them unless specifically requested. */
fa9a63c5 6004
0b32bf0e 6005#if defined _REGEX_RE_COMP || defined _LIBC
fa9a63c5
RM
6006
6007/* BSD has one and only one pattern buffer. */
6008static struct re_pattern_buffer re_comp_buf;
6009
6010char *
0b32bf0e 6011# ifdef _LIBC
48afdd44
RM
6012/* Make these definitions weak in libc, so POSIX programs can redefine
6013 these names if they don't use our functions, and still use
6014 regcomp/regexec below without link errors. */
6015weak_function
0b32bf0e 6016# endif
fa9a63c5
RM
6017re_comp (s)
6018 const char *s;
6019{
6020 reg_errcode_t ret;
5e69f11e 6021
fa9a63c5
RM
6022 if (!s)
6023 {
6024 if (!re_comp_buf.buffer)
0b32bf0e 6025 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
a60198e5 6026 return (char *) gettext ("No previous regular expression");
fa9a63c5
RM
6027 return 0;
6028 }
6029
6030 if (!re_comp_buf.buffer)
6031 {
6032 re_comp_buf.buffer = (unsigned char *) malloc (200);
6033 if (re_comp_buf.buffer == NULL)
0b32bf0e
SM
6034 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
6035 return (char *) gettext (re_error_msgid[(int) REG_ESPACE]);
fa9a63c5
RM
6036 re_comp_buf.allocated = 200;
6037
6038 re_comp_buf.fastmap = (char *) malloc (1 << BYTEWIDTH);
6039 if (re_comp_buf.fastmap == NULL)
a60198e5
SM
6040 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
6041 return (char *) gettext (re_error_msgid[(int) REG_ESPACE]);
fa9a63c5
RM
6042 }
6043
6044 /* Since `re_exec' always passes NULL for the `regs' argument, we
6045 don't need to initialize the pattern buffer fields which affect it. */
6046
fa9a63c5 6047 ret = regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf);
5e69f11e 6048
fa9a63c5
RM
6049 if (!ret)
6050 return NULL;
6051
6052 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
6053 return (char *) gettext (re_error_msgid[(int) ret]);
6054}
6055
6056
6057int
0b32bf0e 6058# ifdef _LIBC
48afdd44 6059weak_function
0b32bf0e 6060# endif
fa9a63c5
RM
6061re_exec (s)
6062 const char *s;
6063{
6064 const int len = strlen (s);
6065 return
6066 0 <= re_search (&re_comp_buf, s, len, 0, len, (struct re_registers *) 0);
6067}
6068#endif /* _REGEX_RE_COMP */
6069\f
6070/* POSIX.2 functions. Don't define these for Emacs. */
6071
6072#ifndef emacs
6073
6074/* regcomp takes a regular expression as a string and compiles it.
6075
b18215fc 6076 PREG is a regex_t *. We do not expect any fields to be initialized,
fa9a63c5
RM
6077 since POSIX says we shouldn't. Thus, we set
6078
6079 `buffer' to the compiled pattern;
6080 `used' to the length of the compiled pattern;
6081 `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
6082 REG_EXTENDED bit in CFLAGS is set; otherwise, to
6083 RE_SYNTAX_POSIX_BASIC;
c0f9ea08
SM
6084 `fastmap' to an allocated space for the fastmap;
6085 `fastmap_accurate' to zero;
fa9a63c5
RM
6086 `re_nsub' to the number of subexpressions in PATTERN.
6087
6088 PATTERN is the address of the pattern string.
6089
6090 CFLAGS is a series of bits which affect compilation.
6091
6092 If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
6093 use POSIX basic syntax.
6094
6095 If REG_NEWLINE is set, then . and [^...] don't match newline.
6096 Also, regexec will try a match beginning after every newline.
6097
6098 If REG_ICASE is set, then we considers upper- and lowercase
6099 versions of letters to be equivalent when matching.
6100
6101 If REG_NOSUB is set, then when PREG is passed to regexec, that
6102 routine will report only success or failure, and nothing about the
6103 registers.
6104
b18215fc 6105 It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for
fa9a63c5
RM
6106 the return codes and their meanings.) */
6107
6108int
6109regcomp (preg, pattern, cflags)
ada30c0e
SM
6110 regex_t *__restrict preg;
6111 const char *__restrict pattern;
fa9a63c5
RM
6112 int cflags;
6113{
6114 reg_errcode_t ret;
4bb91c68 6115 reg_syntax_t syntax
fa9a63c5
RM
6116 = (cflags & REG_EXTENDED) ?
6117 RE_SYNTAX_POSIX_EXTENDED : RE_SYNTAX_POSIX_BASIC;
6118
6119 /* regex_compile will allocate the space for the compiled pattern. */
6120 preg->buffer = 0;
6121 preg->allocated = 0;
6122 preg->used = 0;
5e69f11e 6123
c0f9ea08
SM
6124 /* Try to allocate space for the fastmap. */
6125 preg->fastmap = (char *) malloc (1 << BYTEWIDTH);
5e69f11e 6126
fa9a63c5
RM
6127 if (cflags & REG_ICASE)
6128 {
6129 unsigned i;
5e69f11e 6130
6676cb1c
RS
6131 preg->translate
6132 = (RE_TRANSLATE_TYPE) malloc (CHAR_SET_SIZE
6133 * sizeof (*(RE_TRANSLATE_TYPE)0));
fa9a63c5 6134 if (preg->translate == NULL)
0b32bf0e 6135 return (int) REG_ESPACE;
fa9a63c5
RM
6136
6137 /* Map uppercase characters to corresponding lowercase ones. */
6138 for (i = 0; i < CHAR_SET_SIZE; i++)
4bb91c68 6139 preg->translate[i] = ISUPPER (i) ? TOLOWER (i) : i;
fa9a63c5
RM
6140 }
6141 else
6142 preg->translate = NULL;
6143
6144 /* If REG_NEWLINE is set, newlines are treated differently. */
6145 if (cflags & REG_NEWLINE)
6146 { /* REG_NEWLINE implies neither . nor [^...] match newline. */
6147 syntax &= ~RE_DOT_NEWLINE;
6148 syntax |= RE_HAT_LISTS_NOT_NEWLINE;
fa9a63c5
RM
6149 }
6150 else
c0f9ea08 6151 syntax |= RE_NO_NEWLINE_ANCHOR;
fa9a63c5
RM
6152
6153 preg->no_sub = !!(cflags & REG_NOSUB);
6154
5e69f11e 6155 /* POSIX says a null character in the pattern terminates it, so we
fa9a63c5 6156 can use strlen here in compiling the pattern. */
4bb91c68 6157 ret = regex_compile ((re_char*) pattern, strlen (pattern), syntax, preg);
5e69f11e 6158
fa9a63c5
RM
6159 /* POSIX doesn't distinguish between an unmatched open-group and an
6160 unmatched close-group: both are REG_EPAREN. */
c0f9ea08
SM
6161 if (ret == REG_ERPAREN)
6162 ret = REG_EPAREN;
6163
6164 if (ret == REG_NOERROR && preg->fastmap)
6165 { /* Compute the fastmap now, since regexec cannot modify the pattern
6166 buffer. */
6167 re_compile_fastmap (preg);
6168 if (preg->can_be_null)
6169 { /* The fastmap can't be used anyway. */
6170 free (preg->fastmap);
6171 preg->fastmap = NULL;
6172 }
6173 }
fa9a63c5
RM
6174 return (int) ret;
6175}
c0f9ea08 6176WEAK_ALIAS (__regcomp, regcomp)
fa9a63c5
RM
6177
6178
6179/* regexec searches for a given pattern, specified by PREG, in the
6180 string STRING.
5e69f11e 6181
fa9a63c5 6182 If NMATCH is zero or REG_NOSUB was set in the cflags argument to
b18215fc 6183 `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at
fa9a63c5
RM
6184 least NMATCH elements, and we set them to the offsets of the
6185 corresponding matched substrings.
5e69f11e 6186
fa9a63c5
RM
6187 EFLAGS specifies `execution flags' which affect matching: if
6188 REG_NOTBOL is set, then ^ does not match at the beginning of the
6189 string; if REG_NOTEOL is set, then $ does not match at the end.
5e69f11e 6190
fa9a63c5
RM
6191 We return 0 if we find a match and REG_NOMATCH if not. */
6192
6193int
6194regexec (preg, string, nmatch, pmatch, eflags)
ada30c0e
SM
6195 const regex_t *__restrict preg;
6196 const char *__restrict string;
5e69f11e 6197 size_t nmatch;
9f2dbe01 6198 regmatch_t pmatch[__restrict_arr];
fa9a63c5
RM
6199 int eflags;
6200{
6201 int ret;
6202 struct re_registers regs;
6203 regex_t private_preg;
6204 int len = strlen (string);
c0f9ea08 6205 boolean want_reg_info = !preg->no_sub && nmatch > 0 && pmatch;
fa9a63c5
RM
6206
6207 private_preg = *preg;
5e69f11e 6208
fa9a63c5
RM
6209 private_preg.not_bol = !!(eflags & REG_NOTBOL);
6210 private_preg.not_eol = !!(eflags & REG_NOTEOL);
5e69f11e 6211
fa9a63c5
RM
6212 /* The user has told us exactly how many registers to return
6213 information about, via `nmatch'. We have to pass that on to the
b18215fc 6214 matching routines. */
fa9a63c5 6215 private_preg.regs_allocated = REGS_FIXED;
5e69f11e 6216
fa9a63c5
RM
6217 if (want_reg_info)
6218 {
6219 regs.num_regs = nmatch;
4bb91c68
SM
6220 regs.start = TALLOC (nmatch * 2, regoff_t);
6221 if (regs.start == NULL)
0b32bf0e 6222 return (int) REG_NOMATCH;
4bb91c68 6223 regs.end = regs.start + nmatch;
fa9a63c5
RM
6224 }
6225
c0f9ea08
SM
6226 /* Instead of using not_eol to implement REG_NOTEOL, we could simply
6227 pass (&private_preg, string, len + 1, 0, len, ...) pretending the string
6228 was a little bit longer but still only matching the real part.
6229 This works because the `endline' will check for a '\n' and will find a
6230 '\0', correctly deciding that this is not the end of a line.
6231 But it doesn't work out so nicely for REG_NOTBOL, since we don't have
6232 a convenient '\0' there. For all we know, the string could be preceded
6233 by '\n' which would throw things off. */
6234
fa9a63c5
RM
6235 /* Perform the searching operation. */
6236 ret = re_search (&private_preg, string, len,
0b32bf0e
SM
6237 /* start: */ 0, /* range: */ len,
6238 want_reg_info ? &regs : (struct re_registers *) 0);
5e69f11e 6239
fa9a63c5
RM
6240 /* Copy the register information to the POSIX structure. */
6241 if (want_reg_info)
6242 {
6243 if (ret >= 0)
0b32bf0e
SM
6244 {
6245 unsigned r;
fa9a63c5 6246
0b32bf0e
SM
6247 for (r = 0; r < nmatch; r++)
6248 {
6249 pmatch[r].rm_so = regs.start[r];
6250 pmatch[r].rm_eo = regs.end[r];
6251 }
6252 }
fa9a63c5 6253
b18215fc 6254 /* If we needed the temporary register info, free the space now. */
fa9a63c5 6255 free (regs.start);
fa9a63c5
RM
6256 }
6257
6258 /* We want zero return to mean success, unlike `re_search'. */
6259 return ret >= 0 ? (int) REG_NOERROR : (int) REG_NOMATCH;
6260}
c0f9ea08 6261WEAK_ALIAS (__regexec, regexec)
fa9a63c5
RM
6262
6263
6264/* Returns a message corresponding to an error code, ERRCODE, returned
6265 from either regcomp or regexec. We don't use PREG here. */
6266
6267size_t
6268regerror (errcode, preg, errbuf, errbuf_size)
6269 int errcode;
6270 const regex_t *preg;
6271 char *errbuf;
6272 size_t errbuf_size;
6273{
6274 const char *msg;
6275 size_t msg_size;
6276
6277 if (errcode < 0
6278 || errcode >= (sizeof (re_error_msgid) / sizeof (re_error_msgid[0])))
5e69f11e 6279 /* Only error codes returned by the rest of the code should be passed
b18215fc 6280 to this routine. If we are given anything else, or if other regex
fa9a63c5
RM
6281 code generates an invalid error code, then the program has a bug.
6282 Dump core so we can fix it. */
6283 abort ();
6284
6285 msg = gettext (re_error_msgid[errcode]);
6286
6287 msg_size = strlen (msg) + 1; /* Includes the null. */
5e69f11e 6288
fa9a63c5
RM
6289 if (errbuf_size != 0)
6290 {
6291 if (msg_size > errbuf_size)
0b32bf0e
SM
6292 {
6293 strncpy (errbuf, msg, errbuf_size - 1);
6294 errbuf[errbuf_size - 1] = 0;
6295 }
fa9a63c5 6296 else
0b32bf0e 6297 strcpy (errbuf, msg);
fa9a63c5
RM
6298 }
6299
6300 return msg_size;
6301}
c0f9ea08 6302WEAK_ALIAS (__regerror, regerror)
fa9a63c5
RM
6303
6304
6305/* Free dynamically allocated space used by PREG. */
6306
6307void
6308regfree (preg)
6309 regex_t *preg;
6310{
6311 if (preg->buffer != NULL)
6312 free (preg->buffer);
6313 preg->buffer = NULL;
5e69f11e 6314
fa9a63c5
RM
6315 preg->allocated = 0;
6316 preg->used = 0;
6317
6318 if (preg->fastmap != NULL)
6319 free (preg->fastmap);
6320 preg->fastmap = NULL;
6321 preg->fastmap_accurate = 0;
6322
6323 if (preg->translate != NULL)
6324 free (preg->translate);
6325 preg->translate = NULL;
6326}
c0f9ea08 6327WEAK_ALIAS (__regfree, regfree)
fa9a63c5
RM
6328
6329#endif /* not emacs */