* lisp/subr.el (decode-char, encode-char): Use advertised-calling-convention
[bpt/emacs.git] / src / alloc.c
CommitLineData
7146af97 1/* Storage allocation and gc for GNU Emacs Lisp interpreter.
999dd333 2
ab422c4d
PE
3Copyright (C) 1985-1986, 1988, 1993-1995, 1997-2013 Free Software
4Foundation, Inc.
7146af97
JB
5
6This file is part of GNU Emacs.
7
9ec0b715 8GNU Emacs is free software: you can redistribute it and/or modify
7146af97 9it under the terms of the GNU General Public License as published by
9ec0b715
GM
10the Free Software Foundation, either version 3 of the License, or
11(at your option) any later version.
7146af97
JB
12
13GNU Emacs is distributed in the hope that it will be useful,
14but WITHOUT ANY WARRANTY; without even the implied warranty of
15MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16GNU General Public License for more details.
17
18You should have received a copy of the GNU General Public License
9ec0b715 19along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
7146af97 20
18160b98 21#include <config.h>
f162bcc3 22
e9b309ac 23#include <stdio.h>
ab6780cd 24#include <limits.h> /* For CHAR_BIT. */
92939d31 25
bc8000ff 26#ifdef ENABLE_CHECKING
b09cca6a 27#include <signal.h> /* For SIGABRT. */
bc8000ff
EZ
28#endif
29
ae9e757a 30#ifdef HAVE_PTHREAD
aa477689
JD
31#include <pthread.h>
32#endif
33
7146af97 34#include "lisp.h"
ece93c02 35#include "process.h"
d5e35230 36#include "intervals.h"
4c0be5f4 37#include "puresize.h"
e5560ff7 38#include "character.h"
7146af97
JB
39#include "buffer.h"
40#include "window.h"
2538fae4 41#include "keyboard.h"
502b9b64 42#include "frame.h"
9ac0d9e0 43#include "blockinput.h"
4a729fd8 44#include "termhooks.h" /* For struct terminal. */
0328b6de 45
0065d054 46#include <verify.h>
e065a56e 47
d160dd0c
PE
48#if (defined ENABLE_CHECKING \
49 && defined HAVE_VALGRIND_VALGRIND_H \
50 && !defined USE_VALGRIND)
a84683fd
DC
51# define USE_VALGRIND 1
52#endif
53
54#if USE_VALGRIND
55#include <valgrind/valgrind.h>
56#include <valgrind/memcheck.h>
d160dd0c 57static bool valgrind_p;
a84683fd
DC
58#endif
59
52828e02
PE
60/* GC_CHECK_MARKED_OBJECTS means do sanity checks on allocated objects.
61 Doable only if GC_MARK_STACK. */
62#if ! GC_MARK_STACK
63# undef GC_CHECK_MARKED_OBJECTS
64#endif
65
6b61353c 66/* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
52828e02
PE
67 memory. Can do this only if using gmalloc.c and if not checking
68 marked objects. */
6b61353c 69
52828e02
PE
70#if (defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC \
71 || defined GC_CHECK_MARKED_OBJECTS)
6b61353c
KH
72#undef GC_MALLOC_CHECK
73#endif
74
bf952fb6 75#include <unistd.h>
de7124a7 76#include <fcntl.h>
de7124a7 77
a411ac43
PE
78#ifdef USE_GTK
79# include "gtkutil.h"
80#endif
69666f77 81#ifdef WINDOWSNT
f892cf9c 82#include "w32.h"
62aba0d4 83#include "w32heap.h" /* for sbrk */
69666f77
EZ
84#endif
85
d1658221 86#ifdef DOUG_LEA_MALLOC
2e471eb5 87
d1658221 88#include <malloc.h>
81d492d5 89
2e471eb5
GM
90/* Specify maximum number of areas to mmap. It would be nice to use a
91 value that explicitly means "no limit". */
92
81d492d5
RS
93#define MMAP_MAX_AREAS 100000000
94
2e471eb5 95#endif /* not DOUG_LEA_MALLOC */
276cbe5a 96
2e471eb5
GM
97/* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
98 to a struct Lisp_String. */
99
7cdee936
SM
100#define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
101#define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
b059de99 102#define STRING_MARKED_P(S) (((S)->size & ARRAY_MARK_FLAG) != 0)
2e471eb5 103
eab3844f
PE
104#define VECTOR_MARK(V) ((V)->header.size |= ARRAY_MARK_FLAG)
105#define VECTOR_UNMARK(V) ((V)->header.size &= ~ARRAY_MARK_FLAG)
106#define VECTOR_MARKED_P(V) (((V)->header.size & ARRAY_MARK_FLAG) != 0)
3ef06d12 107
0dd6d66d
DA
108/* Default value of gc_cons_threshold (see below). */
109
663e2b3f 110#define GC_DEFAULT_THRESHOLD (100000 * word_size)
0dd6d66d 111
29208e82
TT
112/* Global variables. */
113struct emacs_globals globals;
114
2e471eb5
GM
115/* Number of bytes of consing done since the last gc. */
116
dac616ff 117EMACS_INT consing_since_gc;
7146af97 118
974aae61
RS
119/* Similar minimum, computed from Vgc_cons_percentage. */
120
dac616ff 121EMACS_INT gc_relative_threshold;
310ea200 122
24d8a105
RS
123/* Minimum number of bytes of consing since GC before next GC,
124 when memory is full. */
125
dac616ff 126EMACS_INT memory_full_cons_threshold;
24d8a105 127
fce31d69 128/* True during GC. */
2e471eb5 129
fce31d69 130bool gc_in_progress;
7146af97 131
fce31d69 132/* True means abort if try to GC.
3de0effb
RS
133 This is for code which is written on the assumption that
134 no GC will happen, so as to verify that assumption. */
135
fce31d69 136bool abort_on_gc;
3de0effb 137
34400008
GM
138/* Number of live and free conses etc. */
139
3ab6e069 140static EMACS_INT total_conses, total_markers, total_symbols, total_buffers;
c0c5c8ae 141static EMACS_INT total_free_conses, total_free_markers, total_free_symbols;
3ab6e069 142static EMACS_INT total_free_floats, total_floats;
fd27a537 143
2e471eb5 144/* Points to memory space allocated as "spare", to be freed if we run
24d8a105
RS
145 out of memory. We keep one large block, four cons-blocks, and
146 two string blocks. */
2e471eb5 147
d3d47262 148static char *spare_memory[7];
276cbe5a 149
2b6148e4
PE
150/* Amount of spare memory to keep in large reserve block, or to see
151 whether this much is available when malloc fails on a larger request. */
2e471eb5 152
276cbe5a 153#define SPARE_MEMORY (1 << 14)
4d09bcf6 154
1b8950e5
RS
155/* Initialize it to a nonzero value to force it into data space
156 (rather than bss space). That way unexec will remap it into text
157 space (pure), on some systems. We have not implemented the
158 remapping on more recent systems because this is less important
159 nowadays than in the days of small memories and timesharing. */
2e471eb5 160
2c4685ee 161EMACS_INT pure[(PURESIZE + sizeof (EMACS_INT) - 1) / sizeof (EMACS_INT)] = {1,};
7146af97 162#define PUREBEG (char *) pure
2e471eb5 163
9e713715 164/* Pointer to the pure area, and its size. */
2e471eb5 165
9e713715 166static char *purebeg;
903fe15d 167static ptrdiff_t pure_size;
9e713715
GM
168
169/* Number of bytes of pure storage used before pure storage overflowed.
170 If this is non-zero, this implies that an overflow occurred. */
171
903fe15d 172static ptrdiff_t pure_bytes_used_before_overflow;
7146af97 173
fce31d69 174/* True if P points into pure space. */
34400008
GM
175
176#define PURE_POINTER_P(P) \
6a0bf43d 177 ((uintptr_t) (P) - (uintptr_t) purebeg <= pure_size)
34400008 178
fecbd8ff 179/* Index in pure at which next pure Lisp object will be allocated.. */
e5bc14d4 180
d311d28c 181static ptrdiff_t pure_bytes_used_lisp;
e5bc14d4
YM
182
183/* Number of bytes allocated for non-Lisp objects in pure storage. */
184
d311d28c 185static ptrdiff_t pure_bytes_used_non_lisp;
e5bc14d4 186
2e471eb5
GM
187/* If nonzero, this is a warning delivered by malloc and not yet
188 displayed. */
189
a8fe7202 190const char *pending_malloc_warning;
7146af97
JB
191
192/* Maximum amount of C stack to save when a GC happens. */
193
194#ifndef MAX_SAVE_STACK
195#define MAX_SAVE_STACK 16000
196#endif
197
198/* Buffer in which we save a copy of the C stack at each GC. */
199
dd3f25f7 200#if MAX_SAVE_STACK > 0
d3d47262 201static char *stack_copy;
903fe15d 202static ptrdiff_t stack_copy_size;
dd3f25f7 203#endif
7146af97 204
fecbd8ff
SM
205static Lisp_Object Qconses;
206static Lisp_Object Qsymbols;
207static Lisp_Object Qmiscs;
208static Lisp_Object Qstrings;
209static Lisp_Object Qvectors;
210static Lisp_Object Qfloats;
211static Lisp_Object Qintervals;
212static Lisp_Object Qbuffers;
f8643a6b 213static Lisp_Object Qstring_bytes, Qvector_slots, Qheap;
955cbe7b 214static Lisp_Object Qgc_cons_threshold;
3d80c99f 215Lisp_Object Qautomatic_gc;
955cbe7b 216Lisp_Object Qchar_table_extra_slots;
e8197642 217
9e713715
GM
218/* Hook run after GC has finished. */
219
955cbe7b 220static Lisp_Object Qpost_gc_hook;
2c5bd608 221
f57e2426 222static void mark_terminals (void);
f57e2426 223static void gc_sweep (void);
72cb32cf 224static Lisp_Object make_pure_vector (ptrdiff_t);
c752cfa9 225static void mark_buffer (struct buffer *);
41c28a37 226
69003fd8
PE
227#if !defined REL_ALLOC || defined SYSTEM_MALLOC
228static void refill_memory_reserve (void);
229#endif
f57e2426
J
230static void compact_small_strings (void);
231static void free_large_strings (void);
196e41e4 232extern Lisp_Object which_symbols (Lisp_Object, EMACS_INT) EXTERNALLY_VISIBLE;
34400008 233
914adc42
DA
234/* When scanning the C stack for live Lisp objects, Emacs keeps track of
235 what memory allocated via lisp_malloc and lisp_align_malloc is intended
236 for what purpose. This enumeration specifies the type of memory. */
34400008
GM
237
238enum mem_type
239{
240 MEM_TYPE_NON_LISP,
241 MEM_TYPE_BUFFER,
242 MEM_TYPE_CONS,
243 MEM_TYPE_STRING,
244 MEM_TYPE_MISC,
245 MEM_TYPE_SYMBOL,
246 MEM_TYPE_FLOAT,
914adc42
DA
247 /* Since all non-bool pseudovectors are small enough to be
248 allocated from vector blocks, this memory type denotes
249 large regular vectors and large bool pseudovectors. */
f3372c87
DA
250 MEM_TYPE_VECTORLIKE,
251 /* Special type to denote vector blocks. */
35aaa1ea
DA
252 MEM_TYPE_VECTOR_BLOCK,
253 /* Special type to denote reserved memory. */
254 MEM_TYPE_SPARE
34400008
GM
255};
256
877935b1 257#if GC_MARK_STACK || defined GC_MALLOC_CHECK
0b378936 258
0b378936
GM
259/* A unique object in pure space used to make some Lisp objects
260 on free lists recognizable in O(1). */
261
d3d47262 262static Lisp_Object Vdead;
ca78dc43 263#define DEADP(x) EQ (x, Vdead)
0b378936 264
877935b1
GM
265#ifdef GC_MALLOC_CHECK
266
267enum mem_type allocated_mem_type;
877935b1
GM
268
269#endif /* GC_MALLOC_CHECK */
270
271/* A node in the red-black tree describing allocated memory containing
272 Lisp data. Each such block is recorded with its start and end
273 address when it is allocated, and removed from the tree when it
274 is freed.
275
276 A red-black tree is a balanced binary tree with the following
277 properties:
278
279 1. Every node is either red or black.
280 2. Every leaf is black.
281 3. If a node is red, then both of its children are black.
282 4. Every simple path from a node to a descendant leaf contains
283 the same number of black nodes.
284 5. The root is always black.
285
286 When nodes are inserted into the tree, or deleted from the tree,
287 the tree is "fixed" so that these properties are always true.
288
289 A red-black tree with N internal nodes has height at most 2
290 log(N+1). Searches, insertions and deletions are done in O(log N).
291 Please see a text book about data structures for a detailed
292 description of red-black trees. Any book worth its salt should
293 describe them. */
294
295struct mem_node
296{
9f7d9210
RS
297 /* Children of this node. These pointers are never NULL. When there
298 is no child, the value is MEM_NIL, which points to a dummy node. */
299 struct mem_node *left, *right;
300
301 /* The parent of this node. In the root node, this is NULL. */
302 struct mem_node *parent;
877935b1
GM
303
304 /* Start and end of allocated region. */
305 void *start, *end;
306
307 /* Node color. */
308 enum {MEM_BLACK, MEM_RED} color;
177c0ea7 309
877935b1
GM
310 /* Memory type. */
311 enum mem_type type;
312};
313
314/* Base address of stack. Set in main. */
315
316Lisp_Object *stack_base;
317
318/* Root of the tree describing allocated Lisp memory. */
319
320static struct mem_node *mem_root;
321
ece93c02
GM
322/* Lowest and highest known address in the heap. */
323
324static void *min_heap_address, *max_heap_address;
325
877935b1
GM
326/* Sentinel node of the tree. */
327
328static struct mem_node mem_z;
329#define MEM_NIL &mem_z
330
f57e2426
J
331static struct mem_node *mem_insert (void *, void *, enum mem_type);
332static void mem_insert_fixup (struct mem_node *);
333static void mem_rotate_left (struct mem_node *);
334static void mem_rotate_right (struct mem_node *);
335static void mem_delete (struct mem_node *);
336static void mem_delete_fixup (struct mem_node *);
b0ab8123 337static struct mem_node *mem_find (void *);
34400008 338
877935b1 339#endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
34400008 340
ca78dc43
PE
341#ifndef DEADP
342# define DEADP(x) 0
343#endif
344
1f0b3fd2
GM
345/* Recording what needs to be marked for gc. */
346
347struct gcpro *gcprolist;
348
379b98b1
PE
349/* Addresses of staticpro'd variables. Initialize it to a nonzero
350 value; otherwise some compilers put it into BSS. */
1f0b3fd2 351
4195afc3 352enum { NSTATICS = 2048 };
d3d47262 353static Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
1f0b3fd2
GM
354
355/* Index of next unused slot in staticvec. */
356
fff62aa9 357static int staticidx;
1f0b3fd2 358
261cb4bb 359static void *pure_alloc (size_t, int);
1f0b3fd2
GM
360
361
362/* Value is SZ rounded up to the next multiple of ALIGNMENT.
363 ALIGNMENT must be a power of 2. */
364
ab6780cd 365#define ALIGN(ptr, ALIGNMENT) \
261cb4bb
PE
366 ((void *) (((uintptr_t) (ptr) + (ALIGNMENT) - 1) \
367 & ~ ((ALIGNMENT) - 1)))
1f0b3fd2 368
84575e67
PE
369static void
370XFLOAT_INIT (Lisp_Object f, double n)
371{
372 XFLOAT (f)->u.data = n;
373}
ece93c02 374
7146af97 375\f
34400008
GM
376/************************************************************************
377 Malloc
378 ************************************************************************/
379
4455ad75 380/* Function malloc calls this if it finds we are near exhausting storage. */
d457598b
AS
381
382void
a8fe7202 383malloc_warning (const char *str)
7146af97
JB
384{
385 pending_malloc_warning = str;
386}
387
34400008 388
4455ad75 389/* Display an already-pending malloc warning. */
34400008 390
d457598b 391void
971de7fb 392display_malloc_warning (void)
7146af97 393{
4455ad75
RS
394 call3 (intern ("display-warning"),
395 intern ("alloc"),
396 build_string (pending_malloc_warning),
397 intern ("emergency"));
7146af97 398 pending_malloc_warning = 0;
7146af97 399}
49efed3a 400\f
276cbe5a
RS
401/* Called if we can't allocate relocatable space for a buffer. */
402
403void
d311d28c 404buffer_memory_full (ptrdiff_t nbytes)
276cbe5a 405{
2e471eb5
GM
406 /* If buffers use the relocating allocator, no need to free
407 spare_memory, because we may have plenty of malloc space left
408 that we could get, and if we don't, the malloc that fails will
409 itself cause spare_memory to be freed. If buffers don't use the
410 relocating allocator, treat this like any other failing
411 malloc. */
276cbe5a
RS
412
413#ifndef REL_ALLOC
531b0165 414 memory_full (nbytes);
d9df6f40 415#else
2e471eb5
GM
416 /* This used to call error, but if we've run out of memory, we could
417 get infinite recursion trying to build the string. */
9b306d37 418 xsignal (Qnil, Vmemory_signal_data);
d9df6f40 419#endif
7146af97
JB
420}
421
f3372c87
DA
422/* A common multiple of the positive integers A and B. Ideally this
423 would be the least common multiple, but there's no way to do that
424 as a constant expression in C, so do the best that we can easily do. */
425#define COMMON_MULTIPLE(a, b) \
426 ((a) % (b) == 0 ? (a) : (b) % (a) == 0 ? (b) : (a) * (b))
34400008 427
c9d624c6 428#ifndef XMALLOC_OVERRUN_CHECK
903fe15d 429#define XMALLOC_OVERRUN_CHECK_OVERHEAD 0
c9d624c6 430#else
212f33f1 431
903fe15d
PE
432/* Check for overrun in malloc'ed buffers by wrapping a header and trailer
433 around each block.
bdbed949 434
f701dc2a
PE
435 The header consists of XMALLOC_OVERRUN_CHECK_SIZE fixed bytes
436 followed by XMALLOC_OVERRUN_SIZE_SIZE bytes containing the original
437 block size in little-endian order. The trailer consists of
438 XMALLOC_OVERRUN_CHECK_SIZE fixed bytes.
bdbed949
KS
439
440 The header is used to detect whether this block has been allocated
f701dc2a
PE
441 through these functions, as some low-level libc functions may
442 bypass the malloc hooks. */
bdbed949 443
212f33f1 444#define XMALLOC_OVERRUN_CHECK_SIZE 16
903fe15d 445#define XMALLOC_OVERRUN_CHECK_OVERHEAD \
38532ce6
PE
446 (2 * XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE)
447
448/* Define XMALLOC_OVERRUN_SIZE_SIZE so that (1) it's large enough to
f701dc2a
PE
449 hold a size_t value and (2) the header size is a multiple of the
450 alignment that Emacs needs for C types and for USE_LSB_TAG. */
451#define XMALLOC_BASE_ALIGNMENT \
e32a5799 452 alignof (union { long double d; intmax_t i; void *p; })
f3372c87 453
bfe3e0a2 454#if USE_LSB_TAG
f701dc2a 455# define XMALLOC_HEADER_ALIGNMENT \
2b90362b 456 COMMON_MULTIPLE (GCALIGNMENT, XMALLOC_BASE_ALIGNMENT)
38532ce6
PE
457#else
458# define XMALLOC_HEADER_ALIGNMENT XMALLOC_BASE_ALIGNMENT
459#endif
460#define XMALLOC_OVERRUN_SIZE_SIZE \
f701dc2a
PE
461 (((XMALLOC_OVERRUN_CHECK_SIZE + sizeof (size_t) \
462 + XMALLOC_HEADER_ALIGNMENT - 1) \
463 / XMALLOC_HEADER_ALIGNMENT * XMALLOC_HEADER_ALIGNMENT) \
464 - XMALLOC_OVERRUN_CHECK_SIZE)
bdbed949 465
903fe15d
PE
466static char const xmalloc_overrun_check_header[XMALLOC_OVERRUN_CHECK_SIZE] =
467 { '\x9a', '\x9b', '\xae', '\xaf',
468 '\xbf', '\xbe', '\xce', '\xcf',
469 '\xea', '\xeb', '\xec', '\xed',
470 '\xdf', '\xde', '\x9c', '\x9d' };
212f33f1 471
903fe15d
PE
472static char const xmalloc_overrun_check_trailer[XMALLOC_OVERRUN_CHECK_SIZE] =
473 { '\xaa', '\xab', '\xac', '\xad',
474 '\xba', '\xbb', '\xbc', '\xbd',
475 '\xca', '\xcb', '\xcc', '\xcd',
476 '\xda', '\xdb', '\xdc', '\xdd' };
212f33f1 477
903fe15d 478/* Insert and extract the block size in the header. */
bdbed949 479
903fe15d
PE
480static void
481xmalloc_put_size (unsigned char *ptr, size_t size)
482{
483 int i;
38532ce6 484 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
903fe15d 485 {
38532ce6 486 *--ptr = size & ((1 << CHAR_BIT) - 1);
903fe15d
PE
487 size >>= CHAR_BIT;
488 }
489}
bdbed949 490
903fe15d
PE
491static size_t
492xmalloc_get_size (unsigned char *ptr)
493{
494 size_t size = 0;
495 int i;
38532ce6
PE
496 ptr -= XMALLOC_OVERRUN_SIZE_SIZE;
497 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
903fe15d
PE
498 {
499 size <<= CHAR_BIT;
500 size += *ptr++;
501 }
502 return size;
503}
bdbed949
KS
504
505
506/* Like malloc, but wraps allocated block with header and trailer. */
507
261cb4bb 508static void *
e7974947 509overrun_check_malloc (size_t size)
212f33f1 510{
bdbed949 511 register unsigned char *val;
0caaedb1 512 if (SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD < size)
1088b922 513 emacs_abort ();
212f33f1 514
0caaedb1
PE
515 val = malloc (size + XMALLOC_OVERRUN_CHECK_OVERHEAD);
516 if (val)
212f33f1 517 {
903fe15d 518 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
38532ce6 519 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
903fe15d 520 xmalloc_put_size (val, size);
72af86bd
AS
521 memcpy (val + size, xmalloc_overrun_check_trailer,
522 XMALLOC_OVERRUN_CHECK_SIZE);
212f33f1 523 }
261cb4bb 524 return val;
212f33f1
KS
525}
526
bdbed949
KS
527
528/* Like realloc, but checks old block for overrun, and wraps new block
529 with header and trailer. */
530
261cb4bb
PE
531static void *
532overrun_check_realloc (void *block, size_t size)
212f33f1 533{
e7974947 534 register unsigned char *val = (unsigned char *) block;
0caaedb1 535 if (SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD < size)
1088b922 536 emacs_abort ();
212f33f1
KS
537
538 if (val
72af86bd 539 && memcmp (xmalloc_overrun_check_header,
38532ce6 540 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
903fe15d 541 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
212f33f1 542 {
903fe15d 543 size_t osize = xmalloc_get_size (val);
72af86bd
AS
544 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
545 XMALLOC_OVERRUN_CHECK_SIZE))
1088b922 546 emacs_abort ();
72af86bd 547 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
38532ce6
PE
548 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
549 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
212f33f1
KS
550 }
551
0caaedb1 552 val = realloc (val, size + XMALLOC_OVERRUN_CHECK_OVERHEAD);
212f33f1 553
0caaedb1 554 if (val)
212f33f1 555 {
903fe15d 556 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
38532ce6 557 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
903fe15d 558 xmalloc_put_size (val, size);
72af86bd
AS
559 memcpy (val + size, xmalloc_overrun_check_trailer,
560 XMALLOC_OVERRUN_CHECK_SIZE);
212f33f1 561 }
261cb4bb 562 return val;
212f33f1
KS
563}
564
bdbed949
KS
565/* Like free, but checks block for overrun. */
566
2538aa2f 567static void
261cb4bb 568overrun_check_free (void *block)
212f33f1 569{
e7974947 570 unsigned char *val = (unsigned char *) block;
212f33f1
KS
571
572 if (val
72af86bd 573 && memcmp (xmalloc_overrun_check_header,
38532ce6 574 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
903fe15d 575 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
212f33f1 576 {
903fe15d 577 size_t osize = xmalloc_get_size (val);
72af86bd
AS
578 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
579 XMALLOC_OVERRUN_CHECK_SIZE))
1088b922 580 emacs_abort ();
454d7973 581#ifdef XMALLOC_CLEAR_FREE_MEMORY
38532ce6 582 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
903fe15d 583 memset (val, 0xff, osize + XMALLOC_OVERRUN_CHECK_OVERHEAD);
454d7973 584#else
72af86bd 585 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
38532ce6
PE
586 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
587 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
454d7973 588#endif
212f33f1
KS
589 }
590
591 free (val);
592}
593
594#undef malloc
595#undef realloc
596#undef free
597#define malloc overrun_check_malloc
598#define realloc overrun_check_realloc
599#define free overrun_check_free
600#endif
601
0caaedb1
PE
602/* If compiled with XMALLOC_BLOCK_INPUT_CHECK, define a symbol
603 BLOCK_INPUT_IN_MEMORY_ALLOCATORS that is visible to the debugger.
604 If that variable is set, block input while in one of Emacs's memory
605 allocation functions. There should be no need for this debugging
606 option, since signal handlers do not allocate memory, but Emacs
607 formerly allocated memory in signal handlers and this compile-time
608 option remains as a way to help debug the issue should it rear its
609 ugly head again. */
610#ifdef XMALLOC_BLOCK_INPUT_CHECK
611bool block_input_in_memory_allocators EXTERNALLY_VISIBLE;
612static void
613malloc_block_input (void)
614{
615 if (block_input_in_memory_allocators)
4d7e6e51 616 block_input ();
0caaedb1
PE
617}
618static void
619malloc_unblock_input (void)
620{
621 if (block_input_in_memory_allocators)
4d7e6e51 622 unblock_input ();
0caaedb1
PE
623}
624# define MALLOC_BLOCK_INPUT malloc_block_input ()
625# define MALLOC_UNBLOCK_INPUT malloc_unblock_input ()
dafc79fa 626#else
0caaedb1
PE
627# define MALLOC_BLOCK_INPUT ((void) 0)
628# define MALLOC_UNBLOCK_INPUT ((void) 0)
dafc79fa 629#endif
bdbed949 630
3a880af4
SM
631#define MALLOC_PROBE(size) \
632 do { \
633 if (profiler_memory_running) \
634 malloc_probe (size); \
635 } while (0)
636
637
34400008 638/* Like malloc but check for no memory and block interrupt input.. */
7146af97 639
261cb4bb 640void *
971de7fb 641xmalloc (size_t size)
7146af97 642{
261cb4bb 643 void *val;
7146af97 644
dafc79fa 645 MALLOC_BLOCK_INPUT;
261cb4bb 646 val = malloc (size);
dafc79fa 647 MALLOC_UNBLOCK_INPUT;
7146af97 648
2e471eb5 649 if (!val && size)
531b0165 650 memory_full (size);
c2d7786e 651 MALLOC_PROBE (size);
7146af97
JB
652 return val;
653}
654
23f86fce
DA
655/* Like the above, but zeroes out the memory just allocated. */
656
657void *
658xzalloc (size_t size)
659{
660 void *val;
661
662 MALLOC_BLOCK_INPUT;
663 val = malloc (size);
664 MALLOC_UNBLOCK_INPUT;
665
666 if (!val && size)
667 memory_full (size);
668 memset (val, 0, size);
c2d7786e 669 MALLOC_PROBE (size);
23f86fce
DA
670 return val;
671}
34400008
GM
672
673/* Like realloc but check for no memory and block interrupt input.. */
674
261cb4bb
PE
675void *
676xrealloc (void *block, size_t size)
7146af97 677{
261cb4bb 678 void *val;
7146af97 679
dafc79fa 680 MALLOC_BLOCK_INPUT;
56d2031b
JB
681 /* We must call malloc explicitly when BLOCK is 0, since some
682 reallocs don't do this. */
683 if (! block)
261cb4bb 684 val = malloc (size);
f048679d 685 else
261cb4bb 686 val = realloc (block, size);
dafc79fa 687 MALLOC_UNBLOCK_INPUT;
7146af97 688
531b0165
PE
689 if (!val && size)
690 memory_full (size);
c2d7786e 691 MALLOC_PROBE (size);
7146af97
JB
692 return val;
693}
9ac0d9e0 694
34400008 695
005ca5c7 696/* Like free but block interrupt input. */
34400008 697
9ac0d9e0 698void
261cb4bb 699xfree (void *block)
9ac0d9e0 700{
70fdbb46
JM
701 if (!block)
702 return;
dafc79fa 703 MALLOC_BLOCK_INPUT;
9ac0d9e0 704 free (block);
dafc79fa 705 MALLOC_UNBLOCK_INPUT;
24d8a105 706 /* We don't call refill_memory_reserve here
0caaedb1 707 because in practice the call in r_alloc_free seems to suffice. */
9ac0d9e0
JB
708}
709
c8099634 710
0065d054
PE
711/* Other parts of Emacs pass large int values to allocator functions
712 expecting ptrdiff_t. This is portable in practice, but check it to
713 be safe. */
714verify (INT_MAX <= PTRDIFF_MAX);
715
716
717/* Allocate an array of NITEMS items, each of size ITEM_SIZE.
718 Signal an error on memory exhaustion, and block interrupt input. */
719
720void *
721xnmalloc (ptrdiff_t nitems, ptrdiff_t item_size)
722{
a54e2c05 723 eassert (0 <= nitems && 0 < item_size);
0065d054
PE
724 if (min (PTRDIFF_MAX, SIZE_MAX) / item_size < nitems)
725 memory_full (SIZE_MAX);
726 return xmalloc (nitems * item_size);
727}
728
729
730/* Reallocate an array PA to make it of NITEMS items, each of size ITEM_SIZE.
731 Signal an error on memory exhaustion, and block interrupt input. */
732
733void *
734xnrealloc (void *pa, ptrdiff_t nitems, ptrdiff_t item_size)
735{
a54e2c05 736 eassert (0 <= nitems && 0 < item_size);
0065d054
PE
737 if (min (PTRDIFF_MAX, SIZE_MAX) / item_size < nitems)
738 memory_full (SIZE_MAX);
739 return xrealloc (pa, nitems * item_size);
740}
741
742
743/* Grow PA, which points to an array of *NITEMS items, and return the
744 location of the reallocated array, updating *NITEMS to reflect its
745 new size. The new array will contain at least NITEMS_INCR_MIN more
746 items, but will not contain more than NITEMS_MAX items total.
747 ITEM_SIZE is the size of each item, in bytes.
748
749 ITEM_SIZE and NITEMS_INCR_MIN must be positive. *NITEMS must be
750 nonnegative. If NITEMS_MAX is -1, it is treated as if it were
751 infinity.
752
753 If PA is null, then allocate a new array instead of reallocating
2dd2e622 754 the old one.
0065d054
PE
755
756 Block interrupt input as needed. If memory exhaustion occurs, set
757 *NITEMS to zero if PA is null, and signal an error (i.e., do not
2dd2e622
PE
758 return).
759
760 Thus, to grow an array A without saving its old contents, do
761 { xfree (A); A = NULL; A = xpalloc (NULL, &AITEMS, ...); }.
762 The A = NULL avoids a dangling pointer if xpalloc exhausts memory
763 and signals an error, and later this code is reexecuted and
764 attempts to free A. */
0065d054
PE
765
766void *
767xpalloc (void *pa, ptrdiff_t *nitems, ptrdiff_t nitems_incr_min,
768 ptrdiff_t nitems_max, ptrdiff_t item_size)
769{
770 /* The approximate size to use for initial small allocation
771 requests. This is the largest "small" request for the GNU C
772 library malloc. */
773 enum { DEFAULT_MXFAST = 64 * sizeof (size_t) / 4 };
774
775 /* If the array is tiny, grow it to about (but no greater than)
776 DEFAULT_MXFAST bytes. Otherwise, grow it by about 50%. */
777 ptrdiff_t n = *nitems;
778 ptrdiff_t tiny_max = DEFAULT_MXFAST / item_size - n;
779 ptrdiff_t half_again = n >> 1;
780 ptrdiff_t incr_estimate = max (tiny_max, half_again);
781
782 /* Adjust the increment according to three constraints: NITEMS_INCR_MIN,
783 NITEMS_MAX, and what the C language can represent safely. */
784 ptrdiff_t C_language_max = min (PTRDIFF_MAX, SIZE_MAX) / item_size;
785 ptrdiff_t n_max = (0 <= nitems_max && nitems_max < C_language_max
786 ? nitems_max : C_language_max);
787 ptrdiff_t nitems_incr_max = n_max - n;
788 ptrdiff_t incr = max (nitems_incr_min, min (incr_estimate, nitems_incr_max));
789
7216e43b 790 eassert (0 < item_size && 0 < nitems_incr_min && 0 <= n && -1 <= nitems_max);
0065d054
PE
791 if (! pa)
792 *nitems = 0;
793 if (nitems_incr_max < incr)
794 memory_full (SIZE_MAX);
795 n += incr;
796 pa = xrealloc (pa, n * item_size);
797 *nitems = n;
798 return pa;
799}
800
801
dca7c6a8
GM
802/* Like strdup, but uses xmalloc. */
803
804char *
971de7fb 805xstrdup (const char *s)
dca7c6a8 806{
9acc1074 807 ptrdiff_t size;
309f24d1 808 eassert (s);
9acc1074
PE
809 size = strlen (s) + 1;
810 return memcpy (xmalloc (size), s, size);
dca7c6a8
GM
811}
812
5b71542d
DA
813/* Like above, but duplicates Lisp string to C string. */
814
815char *
816xlispstrdup (Lisp_Object string)
817{
818 ptrdiff_t size = SBYTES (string) + 1;
819 return memcpy (xmalloc (size), SSDATA (string), size);
820}
821
5745a7df
PE
822/* Like putenv, but (1) use the equivalent of xmalloc and (2) the
823 argument is a const pointer. */
824
825void
826xputenv (char const *string)
827{
828 if (putenv ((char *) string) != 0)
829 memory_full (0);
830}
dca7c6a8 831
98c6f1e3
PE
832/* Return a newly allocated memory block of SIZE bytes, remembering
833 to free it when unwinding. */
834void *
835record_xmalloc (size_t size)
836{
837 void *p = xmalloc (size);
27e498e6 838 record_unwind_protect_ptr (xfree, p);
98c6f1e3
PE
839 return p;
840}
841
f61bef8b 842
34400008
GM
843/* Like malloc but used for allocating Lisp data. NBYTES is the
844 number of bytes to allocate, TYPE describes the intended use of the
91af3942 845 allocated memory block (for strings, for conses, ...). */
34400008 846
bfe3e0a2
PE
847#if ! USE_LSB_TAG
848void *lisp_malloc_loser EXTERNALLY_VISIBLE;
212f33f1 849#endif
918a23a7 850
261cb4bb 851static void *
971de7fb 852lisp_malloc (size_t nbytes, enum mem_type type)
c8099634 853{
34400008 854 register void *val;
c8099634 855
dafc79fa 856 MALLOC_BLOCK_INPUT;
877935b1
GM
857
858#ifdef GC_MALLOC_CHECK
859 allocated_mem_type = type;
860#endif
177c0ea7 861
38182d90 862 val = malloc (nbytes);
c8099634 863
bfe3e0a2 864#if ! USE_LSB_TAG
918a23a7
RS
865 /* If the memory just allocated cannot be addressed thru a Lisp
866 object's pointer, and it needs to be,
867 that's equivalent to running out of memory. */
868 if (val && type != MEM_TYPE_NON_LISP)
869 {
870 Lisp_Object tem;
871 XSETCONS (tem, (char *) val + nbytes - 1);
872 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
873 {
874 lisp_malloc_loser = val;
875 free (val);
876 val = 0;
877 }
878 }
6b61353c 879#endif
918a23a7 880
877935b1 881#if GC_MARK_STACK && !defined GC_MALLOC_CHECK
dca7c6a8 882 if (val && type != MEM_TYPE_NON_LISP)
34400008
GM
883 mem_insert (val, (char *) val + nbytes, type);
884#endif
177c0ea7 885
dafc79fa 886 MALLOC_UNBLOCK_INPUT;
dca7c6a8 887 if (!val && nbytes)
531b0165 888 memory_full (nbytes);
c2d7786e 889 MALLOC_PROBE (nbytes);
c8099634
RS
890 return val;
891}
892
34400008
GM
893/* Free BLOCK. This must be called to free memory allocated with a
894 call to lisp_malloc. */
895
bf952fb6 896static void
261cb4bb 897lisp_free (void *block)
c8099634 898{
dafc79fa 899 MALLOC_BLOCK_INPUT;
c8099634 900 free (block);
877935b1 901#if GC_MARK_STACK && !defined GC_MALLOC_CHECK
34400008
GM
902 mem_delete (mem_find (block));
903#endif
dafc79fa 904 MALLOC_UNBLOCK_INPUT;
c8099634 905}
34400008 906
453b951e
SM
907/***** Allocation of aligned blocks of memory to store Lisp data. *****/
908
909/* The entry point is lisp_align_malloc which returns blocks of at most
910 BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
ab6780cd 911
b4181b01
KS
912#if defined (HAVE_POSIX_MEMALIGN) && defined (SYSTEM_MALLOC)
913#define USE_POSIX_MEMALIGN 1
914#endif
ab6780cd
SM
915
916/* BLOCK_ALIGN has to be a power of 2. */
917#define BLOCK_ALIGN (1 << 10)
ab6780cd
SM
918
919/* Padding to leave at the end of a malloc'd block. This is to give
920 malloc a chance to minimize the amount of memory wasted to alignment.
921 It should be tuned to the particular malloc library used.
19bcad1f
SM
922 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
923 posix_memalign on the other hand would ideally prefer a value of 4
924 because otherwise, there's 1020 bytes wasted between each ablocks.
f501ccb4
SM
925 In Emacs, testing shows that those 1020 can most of the time be
926 efficiently used by malloc to place other objects, so a value of 0 can
927 still preferable unless you have a lot of aligned blocks and virtually
928 nothing else. */
19bcad1f
SM
929#define BLOCK_PADDING 0
930#define BLOCK_BYTES \
0b432f21 931 (BLOCK_ALIGN - sizeof (struct ablocks *) - BLOCK_PADDING)
19bcad1f
SM
932
933/* Internal data structures and constants. */
934
ab6780cd
SM
935#define ABLOCKS_SIZE 16
936
937/* An aligned block of memory. */
938struct ablock
939{
940 union
941 {
942 char payload[BLOCK_BYTES];
943 struct ablock *next_free;
944 } x;
945 /* `abase' is the aligned base of the ablocks. */
946 /* It is overloaded to hold the virtual `busy' field that counts
947 the number of used ablock in the parent ablocks.
948 The first ablock has the `busy' field, the others have the `abase'
949 field. To tell the difference, we assume that pointers will have
950 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
951 is used to tell whether the real base of the parent ablocks is `abase'
952 (if not, the word before the first ablock holds a pointer to the
953 real base). */
954 struct ablocks *abase;
955 /* The padding of all but the last ablock is unused. The padding of
956 the last ablock in an ablocks is not allocated. */
19bcad1f
SM
957#if BLOCK_PADDING
958 char padding[BLOCK_PADDING];
ebb8d410 959#endif
ab6780cd
SM
960};
961
962/* A bunch of consecutive aligned blocks. */
963struct ablocks
964{
965 struct ablock blocks[ABLOCKS_SIZE];
966};
967
4b5afbb0 968/* Size of the block requested from malloc or posix_memalign. */
19bcad1f 969#define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
ab6780cd
SM
970
971#define ABLOCK_ABASE(block) \
d01a7826 972 (((uintptr_t) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
ab6780cd
SM
973 ? (struct ablocks *)(block) \
974 : (block)->abase)
975
976/* Virtual `busy' field. */
977#define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
978
979/* Pointer to the (not necessarily aligned) malloc block. */
349a4500 980#ifdef USE_POSIX_MEMALIGN
19bcad1f
SM
981#define ABLOCKS_BASE(abase) (abase)
982#else
ab6780cd 983#define ABLOCKS_BASE(abase) \
7be68de5 984 (1 & (intptr_t) ABLOCKS_BUSY (abase) ? abase : ((void **)abase)[-1])
19bcad1f 985#endif
ab6780cd
SM
986
987/* The list of free ablock. */
988static struct ablock *free_ablock;
989
990/* Allocate an aligned block of nbytes.
991 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
992 smaller or equal to BLOCK_BYTES. */
261cb4bb 993static void *
971de7fb 994lisp_align_malloc (size_t nbytes, enum mem_type type)
ab6780cd
SM
995{
996 void *base, *val;
997 struct ablocks *abase;
998
999 eassert (nbytes <= BLOCK_BYTES);
1000
dafc79fa 1001 MALLOC_BLOCK_INPUT;
ab6780cd
SM
1002
1003#ifdef GC_MALLOC_CHECK
1004 allocated_mem_type = type;
1005#endif
1006
1007 if (!free_ablock)
1008 {
005ca5c7 1009 int i;
d01a7826 1010 intptr_t aligned; /* int gets warning casting to 64-bit pointer. */
ab6780cd
SM
1011
1012#ifdef DOUG_LEA_MALLOC
1013 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1014 because mapped region contents are not preserved in
1015 a dumped Emacs. */
1016 mallopt (M_MMAP_MAX, 0);
1017#endif
1018
349a4500 1019#ifdef USE_POSIX_MEMALIGN
19bcad1f
SM
1020 {
1021 int err = posix_memalign (&base, BLOCK_ALIGN, ABLOCKS_BYTES);
ab349c19
RS
1022 if (err)
1023 base = NULL;
1024 abase = base;
19bcad1f
SM
1025 }
1026#else
ab6780cd
SM
1027 base = malloc (ABLOCKS_BYTES);
1028 abase = ALIGN (base, BLOCK_ALIGN);
ab349c19
RS
1029#endif
1030
6b61353c
KH
1031 if (base == 0)
1032 {
dafc79fa 1033 MALLOC_UNBLOCK_INPUT;
531b0165 1034 memory_full (ABLOCKS_BYTES);
6b61353c 1035 }
ab6780cd
SM
1036
1037 aligned = (base == abase);
1038 if (!aligned)
7be68de5 1039 ((void **) abase)[-1] = base;
ab6780cd
SM
1040
1041#ifdef DOUG_LEA_MALLOC
1042 /* Back to a reasonable maximum of mmap'ed areas. */
1043 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1044#endif
1045
bfe3e0a2 1046#if ! USE_LSB_TAG
8f924df7
KH
1047 /* If the memory just allocated cannot be addressed thru a Lisp
1048 object's pointer, and it needs to be, that's equivalent to
1049 running out of memory. */
1050 if (type != MEM_TYPE_NON_LISP)
1051 {
1052 Lisp_Object tem;
1053 char *end = (char *) base + ABLOCKS_BYTES - 1;
1054 XSETCONS (tem, end);
1055 if ((char *) XCONS (tem) != end)
1056 {
1057 lisp_malloc_loser = base;
1058 free (base);
dafc79fa 1059 MALLOC_UNBLOCK_INPUT;
531b0165 1060 memory_full (SIZE_MAX);
8f924df7
KH
1061 }
1062 }
6b61353c 1063#endif
8f924df7 1064
ab6780cd 1065 /* Initialize the blocks and put them on the free list.
453b951e 1066 If `base' was not properly aligned, we can't use the last block. */
ab6780cd
SM
1067 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
1068 {
1069 abase->blocks[i].abase = abase;
1070 abase->blocks[i].x.next_free = free_ablock;
1071 free_ablock = &abase->blocks[i];
1072 }
8ac068ac 1073 ABLOCKS_BUSY (abase) = (struct ablocks *) aligned;
ab6780cd 1074
d01a7826 1075 eassert (0 == ((uintptr_t) abase) % BLOCK_ALIGN);
ab6780cd
SM
1076 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
1077 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
1078 eassert (ABLOCKS_BASE (abase) == base);
d01a7826 1079 eassert (aligned == (intptr_t) ABLOCKS_BUSY (abase));
ab6780cd
SM
1080 }
1081
1082 abase = ABLOCK_ABASE (free_ablock);
8ac068ac 1083 ABLOCKS_BUSY (abase) =
d01a7826 1084 (struct ablocks *) (2 + (intptr_t) ABLOCKS_BUSY (abase));
ab6780cd
SM
1085 val = free_ablock;
1086 free_ablock = free_ablock->x.next_free;
1087
ab6780cd 1088#if GC_MARK_STACK && !defined GC_MALLOC_CHECK
3687c2ef 1089 if (type != MEM_TYPE_NON_LISP)
ab6780cd
SM
1090 mem_insert (val, (char *) val + nbytes, type);
1091#endif
1092
dafc79fa 1093 MALLOC_UNBLOCK_INPUT;
ab6780cd 1094
c2d7786e
TM
1095 MALLOC_PROBE (nbytes);
1096
d01a7826 1097 eassert (0 == ((uintptr_t) val) % BLOCK_ALIGN);
ab6780cd
SM
1098 return val;
1099}
1100
1101static void
261cb4bb 1102lisp_align_free (void *block)
ab6780cd
SM
1103{
1104 struct ablock *ablock = block;
1105 struct ablocks *abase = ABLOCK_ABASE (ablock);
1106
dafc79fa 1107 MALLOC_BLOCK_INPUT;
ab6780cd
SM
1108#if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1109 mem_delete (mem_find (block));
1110#endif
1111 /* Put on free list. */
1112 ablock->x.next_free = free_ablock;
1113 free_ablock = ablock;
1114 /* Update busy count. */
453b951e
SM
1115 ABLOCKS_BUSY (abase)
1116 = (struct ablocks *) (-2 + (intptr_t) ABLOCKS_BUSY (abase));
d2db1c32 1117
d01a7826 1118 if (2 > (intptr_t) ABLOCKS_BUSY (abase))
ab6780cd 1119 { /* All the blocks are free. */
d01a7826 1120 int i = 0, aligned = (intptr_t) ABLOCKS_BUSY (abase);
ab6780cd
SM
1121 struct ablock **tem = &free_ablock;
1122 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
1123
1124 while (*tem)
1125 {
1126 if (*tem >= (struct ablock *) abase && *tem < atop)
1127 {
1128 i++;
1129 *tem = (*tem)->x.next_free;
1130 }
1131 else
1132 tem = &(*tem)->x.next_free;
1133 }
1134 eassert ((aligned & 1) == aligned);
1135 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
349a4500 1136#ifdef USE_POSIX_MEMALIGN
d01a7826 1137 eassert ((uintptr_t) ABLOCKS_BASE (abase) % BLOCK_ALIGN == 0);
cfb2f32e 1138#endif
ab6780cd
SM
1139 free (ABLOCKS_BASE (abase));
1140 }
dafc79fa 1141 MALLOC_UNBLOCK_INPUT;
ab6780cd 1142}
3ef06d12 1143
9ac0d9e0 1144\f
2e471eb5
GM
1145/***********************************************************************
1146 Interval Allocation
1147 ***********************************************************************/
1a4f1e2c 1148
34400008
GM
1149/* Number of intervals allocated in an interval_block structure.
1150 The 1020 is 1024 minus malloc overhead. */
1151
d5e35230
JA
1152#define INTERVAL_BLOCK_SIZE \
1153 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1154
bad98418 1155/* Intervals are allocated in chunks in the form of an interval_block
34400008
GM
1156 structure. */
1157
d5e35230 1158struct interval_block
2e471eb5 1159{
6b61353c 1160 /* Place `intervals' first, to preserve alignment. */
2e471eb5 1161 struct interval intervals[INTERVAL_BLOCK_SIZE];
6b61353c 1162 struct interval_block *next;
2e471eb5 1163};
d5e35230 1164
34400008
GM
1165/* Current interval block. Its `next' pointer points to older
1166 blocks. */
1167
d3d47262 1168static struct interval_block *interval_block;
34400008
GM
1169
1170/* Index in interval_block above of the next unused interval
1171 structure. */
1172
fff62aa9 1173static int interval_block_index = INTERVAL_BLOCK_SIZE;
34400008
GM
1174
1175/* Number of free and live intervals. */
1176
c0c5c8ae 1177static EMACS_INT total_free_intervals, total_intervals;
d5e35230 1178
34400008
GM
1179/* List of free intervals. */
1180
244ed907 1181static INTERVAL interval_free_list;
d5e35230 1182
34400008 1183/* Return a new interval. */
d5e35230
JA
1184
1185INTERVAL
971de7fb 1186make_interval (void)
d5e35230
JA
1187{
1188 INTERVAL val;
1189
dafc79fa 1190 MALLOC_BLOCK_INPUT;
cfb2f32e 1191
d5e35230
JA
1192 if (interval_free_list)
1193 {
1194 val = interval_free_list;
439d5cb4 1195 interval_free_list = INTERVAL_PARENT (interval_free_list);
d5e35230
JA
1196 }
1197 else
1198 {
1199 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1200 {
38182d90
PE
1201 struct interval_block *newi
1202 = lisp_malloc (sizeof *newi, MEM_TYPE_NON_LISP);
d5e35230 1203
d5e35230
JA
1204 newi->next = interval_block;
1205 interval_block = newi;
1206 interval_block_index = 0;
3900d5de 1207 total_free_intervals += INTERVAL_BLOCK_SIZE;
d5e35230
JA
1208 }
1209 val = &interval_block->intervals[interval_block_index++];
1210 }
e2984df0 1211
dafc79fa 1212 MALLOC_UNBLOCK_INPUT;
e2984df0 1213
d5e35230 1214 consing_since_gc += sizeof (struct interval);
310ea200 1215 intervals_consed++;
3900d5de 1216 total_free_intervals--;
d5e35230 1217 RESET_INTERVAL (val);
2336fe58 1218 val->gcmarkbit = 0;
d5e35230
JA
1219 return val;
1220}
1221
34400008 1222
ee28be33 1223/* Mark Lisp objects in interval I. */
d5e35230
JA
1224
1225static void
971de7fb 1226mark_interval (register INTERVAL i, Lisp_Object dummy)
d5e35230 1227{
cce7fefc
DA
1228 /* Intervals should never be shared. So, if extra internal checking is
1229 enabled, GC aborts if it seems to have visited an interval twice. */
1230 eassert (!i->gcmarkbit);
2336fe58 1231 i->gcmarkbit = 1;
49723c04 1232 mark_object (i->plist);
d5e35230
JA
1233}
1234
34400008
GM
1235/* Mark the interval tree rooted in I. */
1236
8707c1e5
DA
1237#define MARK_INTERVAL_TREE(i) \
1238 do { \
1239 if (i && !i->gcmarkbit) \
1240 traverse_intervals_noorder (i, mark_interval, Qnil); \
2e471eb5 1241 } while (0)
77c7bcb1 1242
2e471eb5
GM
1243/***********************************************************************
1244 String Allocation
1245 ***********************************************************************/
1a4f1e2c 1246
2e471eb5
GM
1247/* Lisp_Strings are allocated in string_block structures. When a new
1248 string_block is allocated, all the Lisp_Strings it contains are
e0fead5d 1249 added to a free-list string_free_list. When a new Lisp_String is
2e471eb5
GM
1250 needed, it is taken from that list. During the sweep phase of GC,
1251 string_blocks that are entirely free are freed, except two which
1252 we keep.
7146af97 1253
2e471eb5
GM
1254 String data is allocated from sblock structures. Strings larger
1255 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1256 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
7146af97 1257
2e471eb5
GM
1258 Sblocks consist internally of sdata structures, one for each
1259 Lisp_String. The sdata structure points to the Lisp_String it
1260 belongs to. The Lisp_String points back to the `u.data' member of
1261 its sdata structure.
7146af97 1262
2e471eb5
GM
1263 When a Lisp_String is freed during GC, it is put back on
1264 string_free_list, and its `data' member and its sdata's `string'
1265 pointer is set to null. The size of the string is recorded in the
fbe9e0b9 1266 `n.nbytes' member of the sdata. So, sdata structures that are no
2e471eb5
GM
1267 longer used, can be easily recognized, and it's easy to compact the
1268 sblocks of small strings which we do in compact_small_strings. */
7146af97 1269
2e471eb5
GM
1270/* Size in bytes of an sblock structure used for small strings. This
1271 is 8192 minus malloc overhead. */
7146af97 1272
2e471eb5 1273#define SBLOCK_SIZE 8188
c8099634 1274
2e471eb5
GM
1275/* Strings larger than this are considered large strings. String data
1276 for large strings is allocated from individual sblocks. */
7146af97 1277
2e471eb5
GM
1278#define LARGE_STRING_BYTES 1024
1279
fbe9e0b9 1280/* Struct or union describing string memory sub-allocated from an sblock.
2e471eb5
GM
1281 This is where the contents of Lisp strings are stored. */
1282
fbe9e0b9
PE
1283#ifdef GC_CHECK_STRING_BYTES
1284
1285typedef struct
7146af97 1286{
2e471eb5
GM
1287 /* Back-pointer to the string this sdata belongs to. If null, this
1288 structure is free, and the NBYTES member of the union below
34400008 1289 contains the string's byte size (the same value that STRING_BYTES
2e471eb5
GM
1290 would return if STRING were non-null). If non-null, STRING_BYTES
1291 (STRING) is the size of the data, and DATA contains the string's
1292 contents. */
1293 struct Lisp_String *string;
7146af97 1294
d311d28c 1295 ptrdiff_t nbytes;
fbe9e0b9
PE
1296 unsigned char data[FLEXIBLE_ARRAY_MEMBER];
1297} sdata;
177c0ea7 1298
31d929e5
GM
1299#define SDATA_NBYTES(S) (S)->nbytes
1300#define SDATA_DATA(S) (S)->data
36372bf9 1301#define SDATA_SELECTOR(member) member
177c0ea7 1302
fbe9e0b9 1303#else
31d929e5 1304
fbe9e0b9
PE
1305typedef union
1306{
1307 struct Lisp_String *string;
1308
1309 /* When STRING is non-null. */
1310 struct
2e471eb5 1311 {
fbe9e0b9
PE
1312 struct Lisp_String *string;
1313 unsigned char data[FLEXIBLE_ARRAY_MEMBER];
1314 } u;
2e471eb5 1315
fbe9e0b9
PE
1316 /* When STRING is null. */
1317 struct
1318 {
1319 struct Lisp_String *string;
d311d28c 1320 ptrdiff_t nbytes;
fbe9e0b9
PE
1321 } n;
1322} sdata;
177c0ea7 1323
fbe9e0b9 1324#define SDATA_NBYTES(S) (S)->n.nbytes
31d929e5 1325#define SDATA_DATA(S) (S)->u.data
36372bf9 1326#define SDATA_SELECTOR(member) u.member
31d929e5
GM
1327
1328#endif /* not GC_CHECK_STRING_BYTES */
36372bf9 1329
fbe9e0b9 1330#define SDATA_DATA_OFFSET offsetof (sdata, SDATA_SELECTOR (data))
2e471eb5 1331
31d929e5 1332
2e471eb5
GM
1333/* Structure describing a block of memory which is sub-allocated to
1334 obtain string data memory for strings. Blocks for small strings
1335 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1336 as large as needed. */
1337
1338struct sblock
7146af97 1339{
2e471eb5
GM
1340 /* Next in list. */
1341 struct sblock *next;
7146af97 1342
2e471eb5
GM
1343 /* Pointer to the next free sdata block. This points past the end
1344 of the sblock if there isn't any space left in this block. */
fbe9e0b9 1345 sdata *next_free;
2e471eb5
GM
1346
1347 /* Start of data. */
fbe9e0b9 1348 sdata first_data;
2e471eb5
GM
1349};
1350
1351/* Number of Lisp strings in a string_block structure. The 1020 is
1352 1024 minus malloc overhead. */
1353
19bcad1f 1354#define STRING_BLOCK_SIZE \
2e471eb5
GM
1355 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1356
1357/* Structure describing a block from which Lisp_String structures
1358 are allocated. */
1359
1360struct string_block
7146af97 1361{
6b61353c 1362 /* Place `strings' first, to preserve alignment. */
19bcad1f 1363 struct Lisp_String strings[STRING_BLOCK_SIZE];
6b61353c 1364 struct string_block *next;
2e471eb5 1365};
7146af97 1366
2e471eb5
GM
1367/* Head and tail of the list of sblock structures holding Lisp string
1368 data. We always allocate from current_sblock. The NEXT pointers
1369 in the sblock structures go from oldest_sblock to current_sblock. */
3c06d205 1370
2e471eb5 1371static struct sblock *oldest_sblock, *current_sblock;
7146af97 1372
2e471eb5 1373/* List of sblocks for large strings. */
7146af97 1374
2e471eb5 1375static struct sblock *large_sblocks;
7146af97 1376
5a25e253 1377/* List of string_block structures. */
7146af97 1378
2e471eb5 1379static struct string_block *string_blocks;
7146af97 1380
2e471eb5 1381/* Free-list of Lisp_Strings. */
7146af97 1382
2e471eb5 1383static struct Lisp_String *string_free_list;
7146af97 1384
2e471eb5 1385/* Number of live and free Lisp_Strings. */
c8099634 1386
c0c5c8ae 1387static EMACS_INT total_strings, total_free_strings;
7146af97 1388
2e471eb5
GM
1389/* Number of bytes used by live strings. */
1390
3ab6e069 1391static EMACS_INT total_string_bytes;
2e471eb5
GM
1392
1393/* Given a pointer to a Lisp_String S which is on the free-list
1394 string_free_list, return a pointer to its successor in the
1395 free-list. */
1396
1397#define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1398
1399/* Return a pointer to the sdata structure belonging to Lisp string S.
1400 S must be live, i.e. S->data must not be null. S->data is actually
1401 a pointer to the `u.data' member of its sdata structure; the
1402 structure starts at a constant offset in front of that. */
177c0ea7 1403
fbe9e0b9 1404#define SDATA_OF_STRING(S) ((sdata *) ((S)->data - SDATA_DATA_OFFSET))
31d929e5 1405
212f33f1
KS
1406
1407#ifdef GC_CHECK_STRING_OVERRUN
bdbed949
KS
1408
1409/* We check for overrun in string data blocks by appending a small
1410 "cookie" after each allocated string data block, and check for the
8349069c 1411 presence of this cookie during GC. */
bdbed949
KS
1412
1413#define GC_STRING_OVERRUN_COOKIE_SIZE 4
bfd1c781
PE
1414static char const string_overrun_cookie[GC_STRING_OVERRUN_COOKIE_SIZE] =
1415 { '\xde', '\xad', '\xbe', '\xef' };
bdbed949 1416
212f33f1 1417#else
bdbed949 1418#define GC_STRING_OVERRUN_COOKIE_SIZE 0
212f33f1
KS
1419#endif
1420
2e471eb5
GM
1421/* Value is the size of an sdata structure large enough to hold NBYTES
1422 bytes of string data. The value returned includes a terminating
1423 NUL byte, the size of the sdata structure, and padding. */
1424
31d929e5
GM
1425#ifdef GC_CHECK_STRING_BYTES
1426
2e471eb5 1427#define SDATA_SIZE(NBYTES) \
36372bf9 1428 ((SDATA_DATA_OFFSET \
2e471eb5 1429 + (NBYTES) + 1 \
d311d28c
PE
1430 + sizeof (ptrdiff_t) - 1) \
1431 & ~(sizeof (ptrdiff_t) - 1))
2e471eb5 1432
31d929e5
GM
1433#else /* not GC_CHECK_STRING_BYTES */
1434
f2d3008d
PE
1435/* The 'max' reserves space for the nbytes union member even when NBYTES + 1 is
1436 less than the size of that member. The 'max' is not needed when
d311d28c 1437 SDATA_DATA_OFFSET is a multiple of sizeof (ptrdiff_t), because then the
f2d3008d
PE
1438 alignment code reserves enough space. */
1439
1440#define SDATA_SIZE(NBYTES) \
1441 ((SDATA_DATA_OFFSET \
d311d28c 1442 + (SDATA_DATA_OFFSET % sizeof (ptrdiff_t) == 0 \
f2d3008d 1443 ? NBYTES \
d311d28c 1444 : max (NBYTES, sizeof (ptrdiff_t) - 1)) \
f2d3008d 1445 + 1 \
d311d28c
PE
1446 + sizeof (ptrdiff_t) - 1) \
1447 & ~(sizeof (ptrdiff_t) - 1))
31d929e5
GM
1448
1449#endif /* not GC_CHECK_STRING_BYTES */
2e471eb5 1450
bdbed949
KS
1451/* Extra bytes to allocate for each string. */
1452
1453#define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1454
c9d624c6
PE
1455/* Exact bound on the number of bytes in a string, not counting the
1456 terminating null. A string cannot contain more bytes than
1457 STRING_BYTES_BOUND, nor can it be so long that the size_t
1458 arithmetic in allocate_string_data would overflow while it is
1459 calculating a value to be passed to malloc. */
03a660a6
PE
1460static ptrdiff_t const STRING_BYTES_MAX =
1461 min (STRING_BYTES_BOUND,
1462 ((SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD
1463 - GC_STRING_EXTRA
1464 - offsetof (struct sblock, first_data)
1465 - SDATA_DATA_OFFSET)
1466 & ~(sizeof (EMACS_INT) - 1)));
c9d624c6 1467
2e471eb5 1468/* Initialize string allocation. Called from init_alloc_once. */
d457598b 1469
d3d47262 1470static void
971de7fb 1471init_strings (void)
7146af97 1472{
4d774b0f
JB
1473 empty_unibyte_string = make_pure_string ("", 0, 0, 0);
1474 empty_multibyte_string = make_pure_string ("", 0, 0, 1);
7146af97
JB
1475}
1476
2e471eb5 1477
361b097f
GM
1478#ifdef GC_CHECK_STRING_BYTES
1479
361b097f
GM
1480static int check_string_bytes_count;
1481
e499d0ee
DA
1482/* Like STRING_BYTES, but with debugging check. Can be
1483 called during GC, so pay attention to the mark bit. */
676a7251 1484
d311d28c 1485ptrdiff_t
14162469 1486string_bytes (struct Lisp_String *s)
676a7251 1487{
d311d28c 1488 ptrdiff_t nbytes =
14162469
EZ
1489 (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1490
676a7251
GM
1491 if (!PURE_POINTER_P (s)
1492 && s->data
1493 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1088b922 1494 emacs_abort ();
676a7251
GM
1495 return nbytes;
1496}
177c0ea7 1497
2c5bd608 1498/* Check validity of Lisp strings' string_bytes member in B. */
676a7251 1499
d3d47262 1500static void
d0f4e1f5 1501check_sblock (struct sblock *b)
361b097f 1502{
fbe9e0b9 1503 sdata *from, *end, *from_end;
177c0ea7 1504
676a7251 1505 end = b->next_free;
177c0ea7 1506
676a7251 1507 for (from = &b->first_data; from < end; from = from_end)
361b097f 1508 {
676a7251
GM
1509 /* Compute the next FROM here because copying below may
1510 overwrite data we need to compute it. */
d311d28c 1511 ptrdiff_t nbytes;
177c0ea7 1512
676a7251 1513 /* Check that the string size recorded in the string is the
ee28be33 1514 same as the one recorded in the sdata structure. */
e499d0ee
DA
1515 nbytes = SDATA_SIZE (from->string ? string_bytes (from->string)
1516 : SDATA_NBYTES (from));
fbe9e0b9 1517 from_end = (sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
676a7251
GM
1518 }
1519}
361b097f 1520
676a7251
GM
1521
1522/* Check validity of Lisp strings' string_bytes member. ALL_P
fce31d69 1523 means check all strings, otherwise check only most
676a7251
GM
1524 recently allocated strings. Used for hunting a bug. */
1525
d3d47262 1526static void
fce31d69 1527check_string_bytes (bool all_p)
676a7251
GM
1528{
1529 if (all_p)
1530 {
1531 struct sblock *b;
1532
1533 for (b = large_sblocks; b; b = b->next)
1534 {
1535 struct Lisp_String *s = b->first_data.string;
1536 if (s)
e499d0ee 1537 string_bytes (s);
361b097f 1538 }
177c0ea7 1539
676a7251
GM
1540 for (b = oldest_sblock; b; b = b->next)
1541 check_sblock (b);
361b097f 1542 }
296094c3 1543 else if (current_sblock)
676a7251 1544 check_sblock (current_sblock);
361b097f
GM
1545}
1546
e499d0ee
DA
1547#else /* not GC_CHECK_STRING_BYTES */
1548
1549#define check_string_bytes(all) ((void) 0)
1550
361b097f
GM
1551#endif /* GC_CHECK_STRING_BYTES */
1552
212f33f1
KS
1553#ifdef GC_CHECK_STRING_FREE_LIST
1554
bdbed949
KS
1555/* Walk through the string free list looking for bogus next pointers.
1556 This may catch buffer overrun from a previous string. */
1557
212f33f1 1558static void
d0f4e1f5 1559check_string_free_list (void)
212f33f1
KS
1560{
1561 struct Lisp_String *s;
1562
1563 /* Pop a Lisp_String off the free-list. */
1564 s = string_free_list;
1565 while (s != NULL)
1566 {
d01a7826 1567 if ((uintptr_t) s < 1024)
1088b922 1568 emacs_abort ();
212f33f1
KS
1569 s = NEXT_FREE_LISP_STRING (s);
1570 }
1571}
1572#else
1573#define check_string_free_list()
1574#endif
361b097f 1575
2e471eb5
GM
1576/* Return a new Lisp_String. */
1577
1578static struct Lisp_String *
971de7fb 1579allocate_string (void)
7146af97 1580{
2e471eb5 1581 struct Lisp_String *s;
7146af97 1582
dafc79fa 1583 MALLOC_BLOCK_INPUT;
cfb2f32e 1584
2e471eb5
GM
1585 /* If the free-list is empty, allocate a new string_block, and
1586 add all the Lisp_Strings in it to the free-list. */
1587 if (string_free_list == NULL)
7146af97 1588 {
38182d90 1589 struct string_block *b = lisp_malloc (sizeof *b, MEM_TYPE_STRING);
2e471eb5
GM
1590 int i;
1591
2e471eb5
GM
1592 b->next = string_blocks;
1593 string_blocks = b;
2e471eb5 1594
19bcad1f 1595 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
7146af97 1596 {
2e471eb5 1597 s = b->strings + i;
3fe6dd74
DA
1598 /* Every string on a free list should have NULL data pointer. */
1599 s->data = NULL;
2e471eb5
GM
1600 NEXT_FREE_LISP_STRING (s) = string_free_list;
1601 string_free_list = s;
7146af97 1602 }
2e471eb5 1603
19bcad1f 1604 total_free_strings += STRING_BLOCK_SIZE;
7146af97 1605 }
c0f51373 1606
bdbed949 1607 check_string_free_list ();
212f33f1 1608
2e471eb5
GM
1609 /* Pop a Lisp_String off the free-list. */
1610 s = string_free_list;
1611 string_free_list = NEXT_FREE_LISP_STRING (s);
c0f51373 1612
dafc79fa 1613 MALLOC_UNBLOCK_INPUT;
e2984df0 1614
2e471eb5
GM
1615 --total_free_strings;
1616 ++total_strings;
1617 ++strings_consed;
1618 consing_since_gc += sizeof *s;
c0f51373 1619
361b097f 1620#ifdef GC_CHECK_STRING_BYTES
e39a993c 1621 if (!noninteractive)
361b097f 1622 {
676a7251
GM
1623 if (++check_string_bytes_count == 200)
1624 {
1625 check_string_bytes_count = 0;
1626 check_string_bytes (1);
1627 }
1628 else
1629 check_string_bytes (0);
361b097f 1630 }
676a7251 1631#endif /* GC_CHECK_STRING_BYTES */
361b097f 1632
2e471eb5 1633 return s;
c0f51373 1634}
7146af97 1635
7146af97 1636
2e471eb5
GM
1637/* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1638 plus a NUL byte at the end. Allocate an sdata structure for S, and
1639 set S->data to its `u.data' member. Store a NUL byte at the end of
1640 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1641 S->data if it was initially non-null. */
7146af97 1642
2e471eb5 1643void
413d18e7
EZ
1644allocate_string_data (struct Lisp_String *s,
1645 EMACS_INT nchars, EMACS_INT nbytes)
7146af97 1646{
fbe9e0b9 1647 sdata *data, *old_data;
2e471eb5 1648 struct sblock *b;
b7ffe040 1649 ptrdiff_t needed, old_nbytes;
7146af97 1650
c9d624c6
PE
1651 if (STRING_BYTES_MAX < nbytes)
1652 string_overflow ();
1653
2e471eb5
GM
1654 /* Determine the number of bytes needed to store NBYTES bytes
1655 of string data. */
1656 needed = SDATA_SIZE (nbytes);
b7ffe040
DA
1657 if (s->data)
1658 {
1659 old_data = SDATA_OF_STRING (s);
e499d0ee 1660 old_nbytes = STRING_BYTES (s);
b7ffe040
DA
1661 }
1662 else
1663 old_data = NULL;
e2984df0 1664
dafc79fa 1665 MALLOC_BLOCK_INPUT;
7146af97 1666
2e471eb5
GM
1667 if (nbytes > LARGE_STRING_BYTES)
1668 {
36372bf9 1669 size_t size = offsetof (struct sblock, first_data) + needed;
2e471eb5
GM
1670
1671#ifdef DOUG_LEA_MALLOC
f8608968
GM
1672 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1673 because mapped region contents are not preserved in
d36b182f
DL
1674 a dumped Emacs.
1675
1676 In case you think of allowing it in a dumped Emacs at the
1677 cost of not being able to re-dump, there's another reason:
1678 mmap'ed data typically have an address towards the top of the
1679 address space, which won't fit into an EMACS_INT (at least on
1680 32-bit systems with the current tagging scheme). --fx */
2e471eb5
GM
1681 mallopt (M_MMAP_MAX, 0);
1682#endif
1683
38182d90 1684 b = lisp_malloc (size + GC_STRING_EXTRA, MEM_TYPE_NON_LISP);
177c0ea7 1685
2e471eb5 1686#ifdef DOUG_LEA_MALLOC
b09cca6a 1687 /* Back to a reasonable maximum of mmap'ed areas. */
2e471eb5
GM
1688 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1689#endif
177c0ea7 1690
2e471eb5
GM
1691 b->next_free = &b->first_data;
1692 b->first_data.string = NULL;
1693 b->next = large_sblocks;
1694 large_sblocks = b;
1695 }
1696 else if (current_sblock == NULL
1697 || (((char *) current_sblock + SBLOCK_SIZE
1698 - (char *) current_sblock->next_free)
212f33f1 1699 < (needed + GC_STRING_EXTRA)))
2e471eb5
GM
1700 {
1701 /* Not enough room in the current sblock. */
38182d90 1702 b = lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
2e471eb5
GM
1703 b->next_free = &b->first_data;
1704 b->first_data.string = NULL;
1705 b->next = NULL;
1706
1707 if (current_sblock)
1708 current_sblock->next = b;
1709 else
1710 oldest_sblock = b;
1711 current_sblock = b;
1712 }
1713 else
1714 b = current_sblock;
5c5fecb3 1715
2e471eb5 1716 data = b->next_free;
fbe9e0b9 1717 b->next_free = (sdata *) ((char *) data + needed + GC_STRING_EXTRA);
a0b08700 1718
dafc79fa 1719 MALLOC_UNBLOCK_INPUT;
e2984df0 1720
2e471eb5 1721 data->string = s;
31d929e5
GM
1722 s->data = SDATA_DATA (data);
1723#ifdef GC_CHECK_STRING_BYTES
1724 SDATA_NBYTES (data) = nbytes;
1725#endif
2e471eb5
GM
1726 s->size = nchars;
1727 s->size_byte = nbytes;
1728 s->data[nbytes] = '\0';
212f33f1 1729#ifdef GC_CHECK_STRING_OVERRUN
000098c1
PE
1730 memcpy ((char *) data + needed, string_overrun_cookie,
1731 GC_STRING_OVERRUN_COOKIE_SIZE);
212f33f1 1732#endif
b7ffe040
DA
1733
1734 /* Note that Faset may call to this function when S has already data
1735 assigned. In this case, mark data as free by setting it's string
1736 back-pointer to null, and record the size of the data in it. */
1737 if (old_data)
1738 {
1739 SDATA_NBYTES (old_data) = old_nbytes;
1740 old_data->string = NULL;
1741 }
1742
2e471eb5
GM
1743 consing_since_gc += needed;
1744}
1745
1746
1747/* Sweep and compact strings. */
1748
1749static void
971de7fb 1750sweep_strings (void)
2e471eb5
GM
1751{
1752 struct string_block *b, *next;
1753 struct string_block *live_blocks = NULL;
177c0ea7 1754
2e471eb5
GM
1755 string_free_list = NULL;
1756 total_strings = total_free_strings = 0;
3ab6e069 1757 total_string_bytes = 0;
2e471eb5
GM
1758
1759 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
1760 for (b = string_blocks; b; b = next)
1761 {
1762 int i, nfree = 0;
1763 struct Lisp_String *free_list_before = string_free_list;
1764
1765 next = b->next;
1766
19bcad1f 1767 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
2e471eb5
GM
1768 {
1769 struct Lisp_String *s = b->strings + i;
1770
1771 if (s->data)
1772 {
1773 /* String was not on free-list before. */
1774 if (STRING_MARKED_P (s))
1775 {
1776 /* String is live; unmark it and its intervals. */
1777 UNMARK_STRING (s);
177c0ea7 1778
8707c1e5
DA
1779 /* Do not use string_(set|get)_intervals here. */
1780 s->intervals = balance_intervals (s->intervals);
2e471eb5
GM
1781
1782 ++total_strings;
3ab6e069 1783 total_string_bytes += STRING_BYTES (s);
2e471eb5
GM
1784 }
1785 else
1786 {
1787 /* String is dead. Put it on the free-list. */
fbe9e0b9 1788 sdata *data = SDATA_OF_STRING (s);
2e471eb5
GM
1789
1790 /* Save the size of S in its sdata so that we know
1791 how large that is. Reset the sdata's string
1792 back-pointer so that we know it's free. */
31d929e5 1793#ifdef GC_CHECK_STRING_BYTES
e499d0ee 1794 if (string_bytes (s) != SDATA_NBYTES (data))
1088b922 1795 emacs_abort ();
31d929e5 1796#else
fbe9e0b9 1797 data->n.nbytes = STRING_BYTES (s);
31d929e5 1798#endif
2e471eb5
GM
1799 data->string = NULL;
1800
1801 /* Reset the strings's `data' member so that we
1802 know it's free. */
1803 s->data = NULL;
1804
1805 /* Put the string on the free-list. */
1806 NEXT_FREE_LISP_STRING (s) = string_free_list;
1807 string_free_list = s;
1808 ++nfree;
1809 }
1810 }
1811 else
1812 {
1813 /* S was on the free-list before. Put it there again. */
1814 NEXT_FREE_LISP_STRING (s) = string_free_list;
1815 string_free_list = s;
1816 ++nfree;
1817 }
1818 }
1819
34400008 1820 /* Free blocks that contain free Lisp_Strings only, except
2e471eb5 1821 the first two of them. */
19bcad1f
SM
1822 if (nfree == STRING_BLOCK_SIZE
1823 && total_free_strings > STRING_BLOCK_SIZE)
2e471eb5
GM
1824 {
1825 lisp_free (b);
2e471eb5
GM
1826 string_free_list = free_list_before;
1827 }
1828 else
1829 {
1830 total_free_strings += nfree;
1831 b->next = live_blocks;
1832 live_blocks = b;
1833 }
1834 }
1835
bdbed949 1836 check_string_free_list ();
212f33f1 1837
2e471eb5
GM
1838 string_blocks = live_blocks;
1839 free_large_strings ();
1840 compact_small_strings ();
212f33f1 1841
bdbed949 1842 check_string_free_list ();
2e471eb5
GM
1843}
1844
1845
1846/* Free dead large strings. */
1847
1848static void
971de7fb 1849free_large_strings (void)
2e471eb5
GM
1850{
1851 struct sblock *b, *next;
1852 struct sblock *live_blocks = NULL;
177c0ea7 1853
2e471eb5
GM
1854 for (b = large_sblocks; b; b = next)
1855 {
1856 next = b->next;
1857
1858 if (b->first_data.string == NULL)
1859 lisp_free (b);
1860 else
1861 {
1862 b->next = live_blocks;
1863 live_blocks = b;
1864 }
1865 }
1866
1867 large_sblocks = live_blocks;
1868}
1869
1870
1871/* Compact data of small strings. Free sblocks that don't contain
1872 data of live strings after compaction. */
1873
1874static void
971de7fb 1875compact_small_strings (void)
2e471eb5
GM
1876{
1877 struct sblock *b, *tb, *next;
fbe9e0b9
PE
1878 sdata *from, *to, *end, *tb_end;
1879 sdata *to_end, *from_end;
2e471eb5
GM
1880
1881 /* TB is the sblock we copy to, TO is the sdata within TB we copy
1882 to, and TB_END is the end of TB. */
1883 tb = oldest_sblock;
fbe9e0b9 1884 tb_end = (sdata *) ((char *) tb + SBLOCK_SIZE);
2e471eb5
GM
1885 to = &tb->first_data;
1886
1887 /* Step through the blocks from the oldest to the youngest. We
1888 expect that old blocks will stabilize over time, so that less
1889 copying will happen this way. */
1890 for (b = oldest_sblock; b; b = b->next)
1891 {
1892 end = b->next_free;
a54e2c05 1893 eassert ((char *) end <= (char *) b + SBLOCK_SIZE);
177c0ea7 1894
2e471eb5
GM
1895 for (from = &b->first_data; from < end; from = from_end)
1896 {
1897 /* Compute the next FROM here because copying below may
1898 overwrite data we need to compute it. */
d311d28c 1899 ptrdiff_t nbytes;
e499d0ee 1900 struct Lisp_String *s = from->string;
2e471eb5 1901
31d929e5
GM
1902#ifdef GC_CHECK_STRING_BYTES
1903 /* Check that the string size recorded in the string is the
b09cca6a 1904 same as the one recorded in the sdata structure. */
e499d0ee 1905 if (s && string_bytes (s) != SDATA_NBYTES (from))
1088b922 1906 emacs_abort ();
31d929e5 1907#endif /* GC_CHECK_STRING_BYTES */
177c0ea7 1908
e499d0ee
DA
1909 nbytes = s ? STRING_BYTES (s) : SDATA_NBYTES (from);
1910 eassert (nbytes <= LARGE_STRING_BYTES);
212f33f1 1911
2e471eb5 1912 nbytes = SDATA_SIZE (nbytes);
fbe9e0b9 1913 from_end = (sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
212f33f1
KS
1914
1915#ifdef GC_CHECK_STRING_OVERRUN
72af86bd
AS
1916 if (memcmp (string_overrun_cookie,
1917 (char *) from_end - GC_STRING_OVERRUN_COOKIE_SIZE,
1918 GC_STRING_OVERRUN_COOKIE_SIZE))
1088b922 1919 emacs_abort ();
212f33f1 1920#endif
177c0ea7 1921
e499d0ee
DA
1922 /* Non-NULL S means it's alive. Copy its data. */
1923 if (s)
2e471eb5
GM
1924 {
1925 /* If TB is full, proceed with the next sblock. */
fbe9e0b9 1926 to_end = (sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2e471eb5
GM
1927 if (to_end > tb_end)
1928 {
1929 tb->next_free = to;
1930 tb = tb->next;
fbe9e0b9 1931 tb_end = (sdata *) ((char *) tb + SBLOCK_SIZE);
2e471eb5 1932 to = &tb->first_data;
fbe9e0b9 1933 to_end = (sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2e471eb5 1934 }
177c0ea7 1935
2e471eb5
GM
1936 /* Copy, and update the string's `data' pointer. */
1937 if (from != to)
1938 {
a54e2c05 1939 eassert (tb != b || to < from);
72af86bd 1940 memmove (to, from, nbytes + GC_STRING_EXTRA);
31d929e5 1941 to->string->data = SDATA_DATA (to);
2e471eb5
GM
1942 }
1943
1944 /* Advance past the sdata we copied to. */
1945 to = to_end;
1946 }
1947 }
1948 }
1949
1950 /* The rest of the sblocks following TB don't contain live data, so
1951 we can free them. */
1952 for (b = tb->next; b; b = next)
1953 {
1954 next = b->next;
1955 lisp_free (b);
1956 }
1957
1958 tb->next_free = to;
1959 tb->next = NULL;
1960 current_sblock = tb;
1961}
1962
cb93f9be
PE
1963void
1964string_overflow (void)
1965{
1966 error ("Maximum string size exceeded");
1967}
2e471eb5 1968
a7ca3326 1969DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
69623621
RS
1970 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
1971LENGTH must be an integer.
1972INIT must be an integer that represents a character. */)
5842a27b 1973 (Lisp_Object length, Lisp_Object init)
2e471eb5
GM
1974{
1975 register Lisp_Object val;
1976 register unsigned char *p, *end;
14162469
EZ
1977 int c;
1978 EMACS_INT nbytes;
2e471eb5 1979
b7826503 1980 CHECK_NATNUM (length);
2bccce07 1981 CHECK_CHARACTER (init);
2e471eb5 1982
2bccce07 1983 c = XFASTINT (init);
830ff83b 1984 if (ASCII_CHAR_P (c))
2e471eb5
GM
1985 {
1986 nbytes = XINT (length);
1987 val = make_uninit_string (nbytes);
d5db4077
KR
1988 p = SDATA (val);
1989 end = p + SCHARS (val);
2e471eb5
GM
1990 while (p != end)
1991 *p++ = c;
1992 }
1993 else
1994 {
d942b71c 1995 unsigned char str[MAX_MULTIBYTE_LENGTH];
2e471eb5 1996 int len = CHAR_STRING (c, str);
14162469 1997 EMACS_INT string_len = XINT (length);
2e471eb5 1998
d1f3d2af 1999 if (string_len > STRING_BYTES_MAX / len)
cb93f9be 2000 string_overflow ();
14162469
EZ
2001 nbytes = len * string_len;
2002 val = make_uninit_multibyte_string (string_len, nbytes);
d5db4077 2003 p = SDATA (val);
2e471eb5
GM
2004 end = p + nbytes;
2005 while (p != end)
2006 {
72af86bd 2007 memcpy (p, str, len);
2e471eb5
GM
2008 p += len;
2009 }
2010 }
177c0ea7 2011
2e471eb5
GM
2012 *p = 0;
2013 return val;
2014}
2015
3e0b94e7
DC
2016verify (sizeof (size_t) * CHAR_BIT == BITS_PER_SIZE_T);
2017verify ((BITS_PER_SIZE_T & (BITS_PER_SIZE_T - 1)) == 0);
2018
7be68de5 2019static ptrdiff_t
3e0b94e7 2020bool_vector_payload_bytes (ptrdiff_t nr_bits,
7be68de5 2021 ptrdiff_t *exact_needed_bytes_out)
3e0b94e7
DC
2022{
2023 ptrdiff_t exact_needed_bytes;
2024 ptrdiff_t needed_bytes;
2025
2026 eassert_and_assume (nr_bits >= 0);
2027
2028 exact_needed_bytes = ROUNDUP ((size_t) nr_bits, CHAR_BIT) / CHAR_BIT;
2029 needed_bytes = ROUNDUP ((size_t) nr_bits, BITS_PER_SIZE_T) / CHAR_BIT;
2030
2031 if (needed_bytes == 0)
2032 {
2033 /* Always allocate at least one machine word of payload so that
2034 bool-vector operations in data.c don't need a special case
2035 for empty vectors. */
2036 needed_bytes = sizeof (size_t);
2037 }
2038
2039 if (exact_needed_bytes_out != NULL)
2040 *exact_needed_bytes_out = exact_needed_bytes;
2041
2042 return needed_bytes;
2043}
2e471eb5 2044
a7ca3326 2045DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
909e3b33 2046 doc: /* Return a new bool-vector of length LENGTH, using INIT for each element.
7ee72033 2047LENGTH must be a number. INIT matters only in whether it is t or nil. */)
5842a27b 2048 (Lisp_Object length, Lisp_Object init)
2e471eb5
GM
2049{
2050 register Lisp_Object val;
2051 struct Lisp_Bool_Vector *p;
3e0b94e7
DC
2052 ptrdiff_t exact_payload_bytes;
2053 ptrdiff_t total_payload_bytes;
2054 ptrdiff_t needed_elements;
2e471eb5 2055
b7826503 2056 CHECK_NATNUM (length);
3e0b94e7
DC
2057 if (PTRDIFF_MAX < XFASTINT (length))
2058 memory_full (SIZE_MAX);
2e471eb5 2059
3e0b94e7
DC
2060 total_payload_bytes = bool_vector_payload_bytes
2061 (XFASTINT (length), &exact_payload_bytes);
2e471eb5 2062
3e0b94e7
DC
2063 eassert_and_assume (exact_payload_bytes <= total_payload_bytes);
2064 eassert_and_assume (0 <= exact_payload_bytes);
2e471eb5 2065
3e0b94e7
DC
2066 needed_elements = ROUNDUP ((size_t) ((bool_header_size - header_size)
2067 + total_payload_bytes),
2068 word_size) / word_size;
177c0ea7 2069
7be68de5 2070 p = (struct Lisp_Bool_Vector *) allocate_vector (needed_elements);
3e0b94e7 2071 XSETVECTOR (val, p);
914adc42 2072 XSETPVECTYPESIZE (XVECTOR (val), PVEC_BOOL_VECTOR, 0, 0);
d2029e5b 2073
2e471eb5 2074 p->size = XFASTINT (length);
3e0b94e7 2075 if (exact_payload_bytes)
c0c1ee9f 2076 {
3e0b94e7 2077 memset (p->data, ! NILP (init) ? -1 : 0, exact_payload_bytes);
177c0ea7 2078
c0c1ee9f 2079 /* Clear any extraneous bits in the last byte. */
3e0b94e7 2080 p->data[exact_payload_bytes - 1]
83713154 2081 &= (1 << ((XFASTINT (length) - 1) % BOOL_VECTOR_BITS_PER_CHAR + 1)) - 1;
c0c1ee9f 2082 }
2e471eb5 2083
3e0b94e7
DC
2084 /* Clear padding at the end. */
2085 memset (p->data + exact_payload_bytes,
2086 0,
2087 total_payload_bytes - exact_payload_bytes);
2088
2e471eb5
GM
2089 return val;
2090}
2091
2092
2093/* Make a string from NBYTES bytes at CONTENTS, and compute the number
2094 of characters from the contents. This string may be unibyte or
2095 multibyte, depending on the contents. */
2096
2097Lisp_Object
d311d28c 2098make_string (const char *contents, ptrdiff_t nbytes)
2e471eb5
GM
2099{
2100 register Lisp_Object val;
d311d28c 2101 ptrdiff_t nchars, multibyte_nbytes;
9eac9d59 2102
90256841
PE
2103 parse_str_as_multibyte ((const unsigned char *) contents, nbytes,
2104 &nchars, &multibyte_nbytes);
9eac9d59
KH
2105 if (nbytes == nchars || nbytes != multibyte_nbytes)
2106 /* CONTENTS contains no multibyte sequences or contains an invalid
2107 multibyte sequence. We must make unibyte string. */
495a6df3
KH
2108 val = make_unibyte_string (contents, nbytes);
2109 else
2110 val = make_multibyte_string (contents, nchars, nbytes);
2e471eb5
GM
2111 return val;
2112}
2113
2114
2115/* Make an unibyte string from LENGTH bytes at CONTENTS. */
2116
2117Lisp_Object
d311d28c 2118make_unibyte_string (const char *contents, ptrdiff_t length)
2e471eb5
GM
2119{
2120 register Lisp_Object val;
2121 val = make_uninit_string (length);
72af86bd 2122 memcpy (SDATA (val), contents, length);
2e471eb5
GM
2123 return val;
2124}
2125
2126
2127/* Make a multibyte string from NCHARS characters occupying NBYTES
2128 bytes at CONTENTS. */
2129
2130Lisp_Object
14162469 2131make_multibyte_string (const char *contents,
d311d28c 2132 ptrdiff_t nchars, ptrdiff_t nbytes)
2e471eb5
GM
2133{
2134 register Lisp_Object val;
2135 val = make_uninit_multibyte_string (nchars, nbytes);
72af86bd 2136 memcpy (SDATA (val), contents, nbytes);
2e471eb5
GM
2137 return val;
2138}
2139
2140
2141/* Make a string from NCHARS characters occupying NBYTES bytes at
2142 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2143
2144Lisp_Object
14162469 2145make_string_from_bytes (const char *contents,
d311d28c 2146 ptrdiff_t nchars, ptrdiff_t nbytes)
2e471eb5
GM
2147{
2148 register Lisp_Object val;
2149 val = make_uninit_multibyte_string (nchars, nbytes);
72af86bd 2150 memcpy (SDATA (val), contents, nbytes);
d5db4077
KR
2151 if (SBYTES (val) == SCHARS (val))
2152 STRING_SET_UNIBYTE (val);
2e471eb5
GM
2153 return val;
2154}
2155
2156
2157/* Make a string from NCHARS characters occupying NBYTES bytes at
2158 CONTENTS. The argument MULTIBYTE controls whether to label the
229b28c4
KH
2159 string as multibyte. If NCHARS is negative, it counts the number of
2160 characters by itself. */
2e471eb5
GM
2161
2162Lisp_Object
14162469 2163make_specified_string (const char *contents,
fce31d69 2164 ptrdiff_t nchars, ptrdiff_t nbytes, bool multibyte)
2e471eb5 2165{
fce31d69 2166 Lisp_Object val;
229b28c4
KH
2167
2168 if (nchars < 0)
2169 {
2170 if (multibyte)
90256841
PE
2171 nchars = multibyte_chars_in_text ((const unsigned char *) contents,
2172 nbytes);
229b28c4
KH
2173 else
2174 nchars = nbytes;
2175 }
2e471eb5 2176 val = make_uninit_multibyte_string (nchars, nbytes);
72af86bd 2177 memcpy (SDATA (val), contents, nbytes);
2e471eb5 2178 if (!multibyte)
d5db4077 2179 STRING_SET_UNIBYTE (val);
2e471eb5
GM
2180 return val;
2181}
2182
2183
2e471eb5
GM
2184/* Return an unibyte Lisp_String set up to hold LENGTH characters
2185 occupying LENGTH bytes. */
2186
2187Lisp_Object
413d18e7 2188make_uninit_string (EMACS_INT length)
2e471eb5
GM
2189{
2190 Lisp_Object val;
4d774b0f
JB
2191
2192 if (!length)
2193 return empty_unibyte_string;
2e471eb5 2194 val = make_uninit_multibyte_string (length, length);
d5db4077 2195 STRING_SET_UNIBYTE (val);
2e471eb5
GM
2196 return val;
2197}
2198
2199
2200/* Return a multibyte Lisp_String set up to hold NCHARS characters
2201 which occupy NBYTES bytes. */
2202
2203Lisp_Object
413d18e7 2204make_uninit_multibyte_string (EMACS_INT nchars, EMACS_INT nbytes)
2e471eb5
GM
2205{
2206 Lisp_Object string;
2207 struct Lisp_String *s;
2208
2209 if (nchars < 0)
1088b922 2210 emacs_abort ();
4d774b0f
JB
2211 if (!nbytes)
2212 return empty_multibyte_string;
2e471eb5
GM
2213
2214 s = allocate_string ();
77c7bcb1 2215 s->intervals = NULL;
2e471eb5
GM
2216 allocate_string_data (s, nchars, nbytes);
2217 XSETSTRING (string, s);
2218 string_chars_consed += nbytes;
2219 return string;
2220}
2221
a8290ec3
DA
2222/* Print arguments to BUF according to a FORMAT, then return
2223 a Lisp_String initialized with the data from BUF. */
2224
2225Lisp_Object
2226make_formatted_string (char *buf, const char *format, ...)
2227{
2228 va_list ap;
26bccfae 2229 int length;
a8290ec3
DA
2230
2231 va_start (ap, format);
2232 length = vsprintf (buf, format, ap);
2233 va_end (ap);
2234 return make_string (buf, length);
2235}
2e471eb5
GM
2236
2237\f
2238/***********************************************************************
2239 Float Allocation
2240 ***********************************************************************/
2241
2e471eb5
GM
2242/* We store float cells inside of float_blocks, allocating a new
2243 float_block with malloc whenever necessary. Float cells reclaimed
2244 by GC are put on a free list to be reallocated before allocating
ab6780cd 2245 any new float cells from the latest float_block. */
2e471eb5 2246
6b61353c
KH
2247#define FLOAT_BLOCK_SIZE \
2248 (((BLOCK_BYTES - sizeof (struct float_block *) \
2249 /* The compiler might add padding at the end. */ \
2250 - (sizeof (struct Lisp_Float) - sizeof (int))) * CHAR_BIT) \
ab6780cd
SM
2251 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2252
2253#define GETMARKBIT(block,n) \
5e617bc2
JB
2254 (((block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2255 >> ((n) % (sizeof (int) * CHAR_BIT))) \
ab6780cd
SM
2256 & 1)
2257
2258#define SETMARKBIT(block,n) \
5e617bc2
JB
2259 (block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2260 |= 1 << ((n) % (sizeof (int) * CHAR_BIT))
ab6780cd
SM
2261
2262#define UNSETMARKBIT(block,n) \
5e617bc2
JB
2263 (block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2264 &= ~(1 << ((n) % (sizeof (int) * CHAR_BIT)))
ab6780cd
SM
2265
2266#define FLOAT_BLOCK(fptr) \
d01a7826 2267 ((struct float_block *) (((uintptr_t) (fptr)) & ~(BLOCK_ALIGN - 1)))
ab6780cd
SM
2268
2269#define FLOAT_INDEX(fptr) \
d01a7826 2270 ((((uintptr_t) (fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2e471eb5
GM
2271
2272struct float_block
2273{
ab6780cd 2274 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2e471eb5 2275 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
5e617bc2 2276 int gcmarkbits[1 + FLOAT_BLOCK_SIZE / (sizeof (int) * CHAR_BIT)];
ab6780cd 2277 struct float_block *next;
2e471eb5
GM
2278};
2279
ab6780cd
SM
2280#define FLOAT_MARKED_P(fptr) \
2281 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2282
2283#define FLOAT_MARK(fptr) \
2284 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2285
2286#define FLOAT_UNMARK(fptr) \
2287 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2288
34400008
GM
2289/* Current float_block. */
2290
244ed907 2291static struct float_block *float_block;
34400008
GM
2292
2293/* Index of first unused Lisp_Float in the current float_block. */
2294
fff62aa9 2295static int float_block_index = FLOAT_BLOCK_SIZE;
2e471eb5 2296
34400008
GM
2297/* Free-list of Lisp_Floats. */
2298
244ed907 2299static struct Lisp_Float *float_free_list;
2e471eb5 2300
34400008
GM
2301/* Return a new float object with value FLOAT_VALUE. */
2302
2e471eb5 2303Lisp_Object
971de7fb 2304make_float (double float_value)
2e471eb5
GM
2305{
2306 register Lisp_Object val;
2307
dafc79fa 2308 MALLOC_BLOCK_INPUT;
cfb2f32e 2309
2e471eb5
GM
2310 if (float_free_list)
2311 {
2312 /* We use the data field for chaining the free list
2313 so that we won't use the same field that has the mark bit. */
2314 XSETFLOAT (val, float_free_list);
28a099a4 2315 float_free_list = float_free_list->u.chain;
2e471eb5
GM
2316 }
2317 else
2318 {
2319 if (float_block_index == FLOAT_BLOCK_SIZE)
2320 {
38182d90
PE
2321 struct float_block *new
2322 = lisp_align_malloc (sizeof *new, MEM_TYPE_FLOAT);
2e471eb5 2323 new->next = float_block;
72af86bd 2324 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2e471eb5
GM
2325 float_block = new;
2326 float_block_index = 0;
3900d5de 2327 total_free_floats += FLOAT_BLOCK_SIZE;
2e471eb5 2328 }
6b61353c
KH
2329 XSETFLOAT (val, &float_block->floats[float_block_index]);
2330 float_block_index++;
2e471eb5 2331 }
177c0ea7 2332
dafc79fa 2333 MALLOC_UNBLOCK_INPUT;
e2984df0 2334
f601cdf3 2335 XFLOAT_INIT (val, float_value);
6b61353c 2336 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2e471eb5
GM
2337 consing_since_gc += sizeof (struct Lisp_Float);
2338 floats_consed++;
3900d5de 2339 total_free_floats--;
2e471eb5
GM
2340 return val;
2341}
2342
2e471eb5
GM
2343
2344\f
2345/***********************************************************************
2346 Cons Allocation
2347 ***********************************************************************/
2348
2349/* We store cons cells inside of cons_blocks, allocating a new
2350 cons_block with malloc whenever necessary. Cons cells reclaimed by
2351 GC are put on a free list to be reallocated before allocating
08b7c2cb 2352 any new cons cells from the latest cons_block. */
2e471eb5 2353
a2821611
AS
2354#define CONS_BLOCK_SIZE \
2355 (((BLOCK_BYTES - sizeof (struct cons_block *) \
2356 /* The compiler might add padding at the end. */ \
2357 - (sizeof (struct Lisp_Cons) - sizeof (int))) * CHAR_BIT) \
08b7c2cb
SM
2358 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2359
2360#define CONS_BLOCK(fptr) \
d01a7826 2361 ((struct cons_block *) ((uintptr_t) (fptr) & ~(BLOCK_ALIGN - 1)))
08b7c2cb
SM
2362
2363#define CONS_INDEX(fptr) \
d01a7826 2364 (((uintptr_t) (fptr) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2e471eb5
GM
2365
2366struct cons_block
2367{
08b7c2cb 2368 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2e471eb5 2369 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
5e617bc2 2370 int gcmarkbits[1 + CONS_BLOCK_SIZE / (sizeof (int) * CHAR_BIT)];
08b7c2cb 2371 struct cons_block *next;
2e471eb5
GM
2372};
2373
08b7c2cb
SM
2374#define CONS_MARKED_P(fptr) \
2375 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2376
2377#define CONS_MARK(fptr) \
2378 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2379
2380#define CONS_UNMARK(fptr) \
2381 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2382
34400008
GM
2383/* Current cons_block. */
2384
244ed907 2385static struct cons_block *cons_block;
34400008
GM
2386
2387/* Index of first unused Lisp_Cons in the current block. */
2388
fff62aa9 2389static int cons_block_index = CONS_BLOCK_SIZE;
2e471eb5 2390
34400008
GM
2391/* Free-list of Lisp_Cons structures. */
2392
244ed907 2393static struct Lisp_Cons *cons_free_list;
2e471eb5 2394
34400008 2395/* Explicitly free a cons cell by putting it on the free-list. */
2e471eb5
GM
2396
2397void
971de7fb 2398free_cons (struct Lisp_Cons *ptr)
2e471eb5 2399{
28a099a4 2400 ptr->u.chain = cons_free_list;
34400008 2401#if GC_MARK_STACK
c644523b 2402 ptr->car = Vdead;
34400008 2403#endif
2e471eb5 2404 cons_free_list = ptr;
0dd6d66d 2405 consing_since_gc -= sizeof *ptr;
3900d5de 2406 total_free_conses++;
2e471eb5
GM
2407}
2408
a7ca3326 2409DEFUN ("cons", Fcons, Scons, 2, 2, 0,
a6266d23 2410 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
5842a27b 2411 (Lisp_Object car, Lisp_Object cdr)
2e471eb5
GM
2412{
2413 register Lisp_Object val;
2414
dafc79fa 2415 MALLOC_BLOCK_INPUT;
cfb2f32e 2416
2e471eb5
GM
2417 if (cons_free_list)
2418 {
2419 /* We use the cdr for chaining the free list
2420 so that we won't use the same field that has the mark bit. */
2421 XSETCONS (val, cons_free_list);
28a099a4 2422 cons_free_list = cons_free_list->u.chain;
2e471eb5
GM
2423 }
2424 else
2425 {
2426 if (cons_block_index == CONS_BLOCK_SIZE)
2427 {
38182d90
PE
2428 struct cons_block *new
2429 = lisp_align_malloc (sizeof *new, MEM_TYPE_CONS);
72af86bd 2430 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2e471eb5
GM
2431 new->next = cons_block;
2432 cons_block = new;
2433 cons_block_index = 0;
3900d5de 2434 total_free_conses += CONS_BLOCK_SIZE;
2e471eb5 2435 }
6b61353c
KH
2436 XSETCONS (val, &cons_block->conses[cons_block_index]);
2437 cons_block_index++;
2e471eb5 2438 }
177c0ea7 2439
dafc79fa 2440 MALLOC_UNBLOCK_INPUT;
e2984df0 2441
f3fbd155
KR
2442 XSETCAR (val, car);
2443 XSETCDR (val, cdr);
6b61353c 2444 eassert (!CONS_MARKED_P (XCONS (val)));
2e471eb5 2445 consing_since_gc += sizeof (struct Lisp_Cons);
3900d5de 2446 total_free_conses--;
2e471eb5
GM
2447 cons_cells_consed++;
2448 return val;
2449}
2450
e5aab7e7 2451#ifdef GC_CHECK_CONS_LIST
e3e56238
RS
2452/* Get an error now if there's any junk in the cons free list. */
2453void
971de7fb 2454check_cons_list (void)
e3e56238
RS
2455{
2456 struct Lisp_Cons *tail = cons_free_list;
2457
e3e56238 2458 while (tail)
28a099a4 2459 tail = tail->u.chain;
e3e56238 2460}
e5aab7e7 2461#endif
34400008 2462
9b306d37
KS
2463/* Make a list of 1, 2, 3, 4 or 5 specified objects. */
2464
2465Lisp_Object
971de7fb 2466list1 (Lisp_Object arg1)
9b306d37
KS
2467{
2468 return Fcons (arg1, Qnil);
2469}
2e471eb5
GM
2470
2471Lisp_Object
971de7fb 2472list2 (Lisp_Object arg1, Lisp_Object arg2)
2e471eb5
GM
2473{
2474 return Fcons (arg1, Fcons (arg2, Qnil));
2475}
2476
34400008 2477
2e471eb5 2478Lisp_Object
971de7fb 2479list3 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3)
2e471eb5
GM
2480{
2481 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2482}
2483
34400008 2484
2e471eb5 2485Lisp_Object
971de7fb 2486list4 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4)
2e471eb5
GM
2487{
2488 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2489}
2490
34400008 2491
2e471eb5 2492Lisp_Object
971de7fb 2493list5 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4, Lisp_Object arg5)
2e471eb5
GM
2494{
2495 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2496 Fcons (arg5, Qnil)))));
2497}
2498
694b6c97
DA
2499/* Make a list of COUNT Lisp_Objects, where ARG is the
2500 first one. Allocate conses from pure space if TYPE
3438fe21 2501 is CONSTYPE_PURE, or allocate as usual if type is CONSTYPE_HEAP. */
694b6c97
DA
2502
2503Lisp_Object
2504listn (enum constype type, ptrdiff_t count, Lisp_Object arg, ...)
2505{
2506 va_list ap;
2507 ptrdiff_t i;
2508 Lisp_Object val, *objp;
2509
2510 /* Change to SAFE_ALLOCA if you hit this eassert. */
663e2b3f 2511 eassert (count <= MAX_ALLOCA / word_size);
694b6c97 2512
663e2b3f 2513 objp = alloca (count * word_size);
694b6c97
DA
2514 objp[0] = arg;
2515 va_start (ap, arg);
2516 for (i = 1; i < count; i++)
2517 objp[i] = va_arg (ap, Lisp_Object);
2518 va_end (ap);
2519
bcfbc9de 2520 for (val = Qnil, i = count - 1; i >= 0; i--)
694b6c97 2521 {
3438fe21 2522 if (type == CONSTYPE_PURE)
694b6c97 2523 val = pure_cons (objp[i], val);
3438fe21 2524 else if (type == CONSTYPE_HEAP)
694b6c97
DA
2525 val = Fcons (objp[i], val);
2526 else
1088b922 2527 emacs_abort ();
694b6c97
DA
2528 }
2529 return val;
2530}
34400008 2531
a7ca3326 2532DEFUN ("list", Flist, Slist, 0, MANY, 0,
eae936e2 2533 doc: /* Return a newly created list with specified arguments as elements.
ae8e8122
MB
2534Any number of arguments, even zero arguments, are allowed.
2535usage: (list &rest OBJECTS) */)
f66c7cf8 2536 (ptrdiff_t nargs, Lisp_Object *args)
2e471eb5
GM
2537{
2538 register Lisp_Object val;
2539 val = Qnil;
2540
2541 while (nargs > 0)
2542 {
2543 nargs--;
2544 val = Fcons (args[nargs], val);
2545 }
2546 return val;
2547}
2548
34400008 2549
a7ca3326 2550DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
a6266d23 2551 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
5842a27b 2552 (register Lisp_Object length, Lisp_Object init)
2e471eb5
GM
2553{
2554 register Lisp_Object val;
14162469 2555 register EMACS_INT size;
2e471eb5 2556
b7826503 2557 CHECK_NATNUM (length);
2e471eb5
GM
2558 size = XFASTINT (length);
2559
2560 val = Qnil;
ce070307
GM
2561 while (size > 0)
2562 {
2563 val = Fcons (init, val);
2564 --size;
2565
2566 if (size > 0)
2567 {
2568 val = Fcons (init, val);
2569 --size;
177c0ea7 2570
ce070307
GM
2571 if (size > 0)
2572 {
2573 val = Fcons (init, val);
2574 --size;
177c0ea7 2575
ce070307
GM
2576 if (size > 0)
2577 {
2578 val = Fcons (init, val);
2579 --size;
177c0ea7 2580
ce070307
GM
2581 if (size > 0)
2582 {
2583 val = Fcons (init, val);
2584 --size;
2585 }
2586 }
2587 }
2588 }
2589
2590 QUIT;
2591 }
177c0ea7 2592
7146af97
JB
2593 return val;
2594}
2e471eb5
GM
2595
2596
7146af97 2597\f
2e471eb5
GM
2598/***********************************************************************
2599 Vector Allocation
2600 ***********************************************************************/
7146af97 2601
f3372c87
DA
2602/* This value is balanced well enough to avoid too much internal overhead
2603 for the most common cases; it's not required to be a power of two, but
2604 it's expected to be a mult-of-ROUNDUP_SIZE (see below). */
34400008 2605
f3372c87 2606#define VECTOR_BLOCK_SIZE 4096
7146af97 2607
d06714cb 2608/* Align allocation request sizes to be a multiple of ROUNDUP_SIZE. */
dd0b0efb
PE
2609enum
2610 {
2b90362b 2611 roundup_size = COMMON_MULTIPLE (word_size, USE_LSB_TAG ? GCALIGNMENT : 1)
dd0b0efb 2612 };
34400008 2613
ca95b3eb
DA
2614/* Verify assumptions described above. */
2615verify ((VECTOR_BLOCK_SIZE % roundup_size) == 0);
ee28be33 2616verify (VECTOR_BLOCK_SIZE <= (1 << PSEUDOVECTOR_SIZE_BITS));
ca95b3eb 2617
3e0b94e7 2618/* Round up X to nearest mult-of-ROUNDUP_SIZE --- use at compile time. */
7be68de5 2619#define vroundup_ct(x) ROUNDUP ((size_t) (x), roundup_size)
3e0b94e7 2620/* Round up X to nearest mult-of-ROUNDUP_SIZE --- use at runtime. */
7be68de5 2621#define vroundup(x) (assume ((x) >= 0), vroundup_ct (x))
f3372c87
DA
2622
2623/* Rounding helps to maintain alignment constraints if USE_LSB_TAG. */
2624
3e0b94e7 2625#define VECTOR_BLOCK_BYTES (VECTOR_BLOCK_SIZE - vroundup_ct (sizeof (void *)))
f3372c87
DA
2626
2627/* Size of the minimal vector allocated from block. */
2628
3e0b94e7 2629#define VBLOCK_BYTES_MIN vroundup_ct (header_size + sizeof (Lisp_Object))
f3372c87
DA
2630
2631/* Size of the largest vector allocated from block. */
2632
2633#define VBLOCK_BYTES_MAX \
d06714cb 2634 vroundup ((VECTOR_BLOCK_BYTES / 2) - word_size)
f3372c87
DA
2635
2636/* We maintain one free list for each possible block-allocated
2637 vector size, and this is the number of free lists we have. */
2638
2639#define VECTOR_MAX_FREE_LIST_INDEX \
2640 ((VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN) / roundup_size + 1)
2641
f3372c87
DA
2642/* Common shortcut to advance vector pointer over a block data. */
2643
2644#define ADVANCE(v, nbytes) ((struct Lisp_Vector *) ((char *) (v) + (nbytes)))
2645
2646/* Common shortcut to calculate NBYTES-vector index in VECTOR_FREE_LISTS. */
2647
2648#define VINDEX(nbytes) (((nbytes) - VBLOCK_BYTES_MIN) / roundup_size)
2649
2650/* Common shortcut to setup vector on a free list. */
2651
914adc42
DA
2652#define SETUP_ON_FREE_LIST(v, nbytes, tmp) \
2653 do { \
2654 (tmp) = ((nbytes - header_size) / word_size); \
2655 XSETPVECTYPESIZE (v, PVEC_FREE, 0, (tmp)); \
2656 eassert ((nbytes) % roundup_size == 0); \
2657 (tmp) = VINDEX (nbytes); \
2658 eassert ((tmp) < VECTOR_MAX_FREE_LIST_INDEX); \
d6d9cbc1 2659 v->u.next = vector_free_lists[tmp]; \
914adc42
DA
2660 vector_free_lists[tmp] = (v); \
2661 total_free_vector_slots += (nbytes) / word_size; \
f3372c87
DA
2662 } while (0)
2663
914adc42
DA
2664/* This internal type is used to maintain the list of large vectors
2665 which are allocated at their own, e.g. outside of vector blocks. */
2666
2667struct large_vector
2668{
2669 union {
2670 struct large_vector *vector;
2671#if USE_LSB_TAG
2672 /* We need to maintain ROUNDUP_SIZE alignment for the vector member. */
3e0b94e7 2673 unsigned char c[vroundup_ct (sizeof (struct large_vector *))];
914adc42
DA
2674#endif
2675 } next;
2676 struct Lisp_Vector v;
2677};
2678
2679/* This internal type is used to maintain an underlying storage
2680 for small vectors. */
2681
f3372c87
DA
2682struct vector_block
2683{
2684 char data[VECTOR_BLOCK_BYTES];
2685 struct vector_block *next;
2686};
2687
2688/* Chain of vector blocks. */
2689
2690static struct vector_block *vector_blocks;
2691
2692/* Vector free lists, where NTH item points to a chain of free
2693 vectors of the same NBYTES size, so NTH == VINDEX (NBYTES). */
2694
2695static struct Lisp_Vector *vector_free_lists[VECTOR_MAX_FREE_LIST_INDEX];
2696
2697/* Singly-linked list of large vectors. */
2698
914adc42 2699static struct large_vector *large_vectors;
f3372c87
DA
2700
2701/* The only vector with 0 slots, allocated from pure space. */
2702
9730daca 2703Lisp_Object zero_vector;
f3372c87 2704
3ab6e069
DA
2705/* Number of live vectors. */
2706
2707static EMACS_INT total_vectors;
2708
5b835e1d 2709/* Total size of live and free vectors, in Lisp_Object units. */
3ab6e069 2710
5b835e1d 2711static EMACS_INT total_vector_slots, total_free_vector_slots;
3ab6e069 2712
f3372c87
DA
2713/* Get a new vector block. */
2714
2715static struct vector_block *
2716allocate_vector_block (void)
2717{
38182d90 2718 struct vector_block *block = xmalloc (sizeof *block);
f3372c87
DA
2719
2720#if GC_MARK_STACK && !defined GC_MALLOC_CHECK
2721 mem_insert (block->data, block->data + VECTOR_BLOCK_BYTES,
2722 MEM_TYPE_VECTOR_BLOCK);
2723#endif
2724
2725 block->next = vector_blocks;
2726 vector_blocks = block;
2727 return block;
2728}
2729
2730/* Called once to initialize vector allocation. */
2731
2732static void
2733init_vectors (void)
2734{
9730daca 2735 zero_vector = make_pure_vector (0);
f3372c87
DA
2736}
2737
2738/* Allocate vector from a vector block. */
2739
2740static struct Lisp_Vector *
2741allocate_vector_from_block (size_t nbytes)
2742{
914adc42 2743 struct Lisp_Vector *vector;
f3372c87
DA
2744 struct vector_block *block;
2745 size_t index, restbytes;
2746
2747 eassert (VBLOCK_BYTES_MIN <= nbytes && nbytes <= VBLOCK_BYTES_MAX);
2748 eassert (nbytes % roundup_size == 0);
2749
2750 /* First, try to allocate from a free list
2751 containing vectors of the requested size. */
2752 index = VINDEX (nbytes);
2753 if (vector_free_lists[index])
2754 {
2755 vector = vector_free_lists[index];
d6d9cbc1 2756 vector_free_lists[index] = vector->u.next;
5b835e1d 2757 total_free_vector_slots -= nbytes / word_size;
f3372c87
DA
2758 return vector;
2759 }
2760
2761 /* Next, check free lists containing larger vectors. Since
2762 we will split the result, we should have remaining space
2763 large enough to use for one-slot vector at least. */
2764 for (index = VINDEX (nbytes + VBLOCK_BYTES_MIN);
2765 index < VECTOR_MAX_FREE_LIST_INDEX; index++)
2766 if (vector_free_lists[index])
2767 {
2768 /* This vector is larger than requested. */
2769 vector = vector_free_lists[index];
d6d9cbc1 2770 vector_free_lists[index] = vector->u.next;
5b835e1d 2771 total_free_vector_slots -= nbytes / word_size;
f3372c87
DA
2772
2773 /* Excess bytes are used for the smaller vector,
2774 which should be set on an appropriate free list. */
2775 restbytes = index * roundup_size + VBLOCK_BYTES_MIN - nbytes;
2776 eassert (restbytes % roundup_size == 0);
914adc42 2777 SETUP_ON_FREE_LIST (ADVANCE (vector, nbytes), restbytes, index);
f3372c87
DA
2778 return vector;
2779 }
2780
2781 /* Finally, need a new vector block. */
2782 block = allocate_vector_block ();
2783
2784 /* New vector will be at the beginning of this block. */
2785 vector = (struct Lisp_Vector *) block->data;
f3372c87
DA
2786
2787 /* If the rest of space from this block is large enough
2788 for one-slot vector at least, set up it on a free list. */
2789 restbytes = VECTOR_BLOCK_BYTES - nbytes;
2790 if (restbytes >= VBLOCK_BYTES_MIN)
2791 {
2792 eassert (restbytes % roundup_size == 0);
914adc42 2793 SETUP_ON_FREE_LIST (ADVANCE (vector, nbytes), restbytes, index);
f3372c87
DA
2794 }
2795 return vector;
914adc42 2796}
f3372c87 2797
f3372c87
DA
2798/* Nonzero if VECTOR pointer is valid pointer inside BLOCK. */
2799
2800#define VECTOR_IN_BLOCK(vector, block) \
2801 ((char *) (vector) <= (block)->data \
2802 + VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN)
2803
914adc42 2804/* Return the memory footprint of V in bytes. */
ee28be33 2805
914adc42
DA
2806static ptrdiff_t
2807vector_nbytes (struct Lisp_Vector *v)
2808{
2809 ptrdiff_t size = v->header.size & ~ARRAY_MARK_FLAG;
2810
2811 if (size & PSEUDOVECTOR_FLAG)
2812 {
2813 if (PSEUDOVECTOR_TYPEP (&v->header, PVEC_BOOL_VECTOR))
3e0b94e7
DC
2814 {
2815 struct Lisp_Bool_Vector *bv = (struct Lisp_Bool_Vector *) v;
2816 ptrdiff_t payload_bytes =
2817 bool_vector_payload_bytes (bv->size, NULL);
2818
2819 eassert_and_assume (payload_bytes >= 0);
2820 size = bool_header_size + ROUNDUP (payload_bytes, word_size);
2821 }
914adc42
DA
2822 else
2823 size = (header_size
2824 + ((size & PSEUDOVECTOR_SIZE_MASK)
2825 + ((size & PSEUDOVECTOR_REST_MASK)
2826 >> PSEUDOVECTOR_SIZE_BITS)) * word_size);
2827 }
2828 else
2829 size = header_size + size * word_size;
2830 return vroundup (size);
2831}
ee28be33 2832
f3372c87
DA
2833/* Reclaim space used by unmarked vectors. */
2834
2835static void
2836sweep_vectors (void)
2837{
1570ae92 2838 struct vector_block *block, **bprev = &vector_blocks;
914adc42
DA
2839 struct large_vector *lv, **lvprev = &large_vectors;
2840 struct Lisp_Vector *vector, *next;
f3372c87 2841
5b835e1d 2842 total_vectors = total_vector_slots = total_free_vector_slots = 0;
f3372c87
DA
2843 memset (vector_free_lists, 0, sizeof (vector_free_lists));
2844
2845 /* Looking through vector blocks. */
2846
2847 for (block = vector_blocks; block; block = *bprev)
2848 {
fce31d69 2849 bool free_this_block = 0;
914adc42 2850 ptrdiff_t nbytes;
f3372c87
DA
2851
2852 for (vector = (struct Lisp_Vector *) block->data;
2853 VECTOR_IN_BLOCK (vector, block); vector = next)
2854 {
2855 if (VECTOR_MARKED_P (vector))
2856 {
2857 VECTOR_UNMARK (vector);
3ab6e069 2858 total_vectors++;
914adc42
DA
2859 nbytes = vector_nbytes (vector);
2860 total_vector_slots += nbytes / word_size;
2861 next = ADVANCE (vector, nbytes);
f3372c87
DA
2862 }
2863 else
2864 {
914adc42 2865 ptrdiff_t total_bytes;
f3372c87 2866
914adc42
DA
2867 nbytes = vector_nbytes (vector);
2868 total_bytes = nbytes;
ee28be33 2869 next = ADVANCE (vector, nbytes);
f3372c87
DA
2870
2871 /* While NEXT is not marked, try to coalesce with VECTOR,
2872 thus making VECTOR of the largest possible size. */
2873
2874 while (VECTOR_IN_BLOCK (next, block))
2875 {
2876 if (VECTOR_MARKED_P (next))
2877 break;
914adc42 2878 nbytes = vector_nbytes (next);
ee28be33 2879 total_bytes += nbytes;
f3372c87
DA
2880 next = ADVANCE (next, nbytes);
2881 }
bfe3e0a2 2882
ee28be33 2883 eassert (total_bytes % roundup_size == 0);
f3372c87
DA
2884
2885 if (vector == (struct Lisp_Vector *) block->data
2886 && !VECTOR_IN_BLOCK (next, block))
2887 /* This block should be freed because all of it's
2888 space was coalesced into the only free vector. */
2889 free_this_block = 1;
2890 else
ee28be33 2891 {
ba355de0 2892 size_t tmp;
ee28be33
SM
2893 SETUP_ON_FREE_LIST (vector, total_bytes, tmp);
2894 }
f3372c87
DA
2895 }
2896 }
2897
2898 if (free_this_block)
2899 {
2900 *bprev = block->next;
2901#if GC_MARK_STACK && !defined GC_MALLOC_CHECK
2902 mem_delete (mem_find (block->data));
2903#endif
2904 xfree (block);
2905 }
2906 else
2907 bprev = &block->next;
2908 }
2909
2910 /* Sweep large vectors. */
2911
914adc42 2912 for (lv = large_vectors; lv; lv = *lvprev)
f3372c87 2913 {
914adc42 2914 vector = &lv->v;
f3372c87
DA
2915 if (VECTOR_MARKED_P (vector))
2916 {
2917 VECTOR_UNMARK (vector);
3ab6e069 2918 total_vectors++;
169925ec
DA
2919 if (vector->header.size & PSEUDOVECTOR_FLAG)
2920 {
d06714cb
PE
2921 /* All non-bool pseudovectors are small enough to be allocated
2922 from vector blocks. This code should be redesigned if some
2923 pseudovector type grows beyond VBLOCK_BYTES_MAX. */
2924 eassert (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_BOOL_VECTOR));
3e0b94e7 2925 total_vector_slots += vector_nbytes (vector) / word_size;
169925ec
DA
2926 }
2927 else
5b835e1d
DA
2928 total_vector_slots
2929 += header_size / word_size + vector->header.size;
914adc42 2930 lvprev = &lv->next.vector;
f3372c87
DA
2931 }
2932 else
2933 {
914adc42
DA
2934 *lvprev = lv->next.vector;
2935 lisp_free (lv);
f3372c87
DA
2936 }
2937 }
2938}
2939
34400008
GM
2940/* Value is a pointer to a newly allocated Lisp_Vector structure
2941 with room for LEN Lisp_Objects. */
2942
ece93c02 2943static struct Lisp_Vector *
d311d28c 2944allocate_vectorlike (ptrdiff_t len)
1825c68d
KH
2945{
2946 struct Lisp_Vector *p;
2947
dafc79fa
SM
2948 MALLOC_BLOCK_INPUT;
2949
f3372c87 2950 if (len == 0)
9730daca 2951 p = XVECTOR (zero_vector);
d12e8f5a 2952 else
8bbbc977 2953 {
d12e8f5a 2954 size_t nbytes = header_size + len * word_size;
f3372c87 2955
d12e8f5a
DA
2956#ifdef DOUG_LEA_MALLOC
2957 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
2958 because mapped region contents are not preserved in
2959 a dumped Emacs. */
2960 mallopt (M_MMAP_MAX, 0);
2961#endif
f3372c87 2962
d12e8f5a
DA
2963 if (nbytes <= VBLOCK_BYTES_MAX)
2964 p = allocate_vector_from_block (vroundup (nbytes));
2965 else
2966 {
914adc42 2967 struct large_vector *lv
d6d9cbc1 2968 = lisp_malloc ((offsetof (struct large_vector, v.u.contents)
fbe9e0b9 2969 + len * word_size),
914adc42
DA
2970 MEM_TYPE_VECTORLIKE);
2971 lv->next.vector = large_vectors;
2972 large_vectors = lv;
2973 p = &lv->v;
d12e8f5a 2974 }
177c0ea7 2975
d1658221 2976#ifdef DOUG_LEA_MALLOC
d12e8f5a
DA
2977 /* Back to a reasonable maximum of mmap'ed areas. */
2978 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
d1658221 2979#endif
177c0ea7 2980
d12e8f5a
DA
2981 consing_since_gc += nbytes;
2982 vector_cells_consed += len;
2983 }
1825c68d 2984
dafc79fa 2985 MALLOC_UNBLOCK_INPUT;
e2984df0 2986
1825c68d
KH
2987 return p;
2988}
2989
34400008 2990
dd0b0efb 2991/* Allocate a vector with LEN slots. */
ece93c02
GM
2992
2993struct Lisp_Vector *
dd0b0efb 2994allocate_vector (EMACS_INT len)
ece93c02 2995{
dd0b0efb
PE
2996 struct Lisp_Vector *v;
2997 ptrdiff_t nbytes_max = min (PTRDIFF_MAX, SIZE_MAX);
2998
2999 if (min ((nbytes_max - header_size) / word_size, MOST_POSITIVE_FIXNUM) < len)
3000 memory_full (SIZE_MAX);
3001 v = allocate_vectorlike (len);
3002 v->header.size = len;
ece93c02
GM
3003 return v;
3004}
3005
3006
3007/* Allocate other vector-like structures. */
3008
30f95089 3009struct Lisp_Vector *
914adc42 3010allocate_pseudovector (int memlen, int lisplen, enum pvec_type tag)
ece93c02 3011{
d2029e5b 3012 struct Lisp_Vector *v = allocate_vectorlike (memlen);
e46bb31a 3013 int i;
177c0ea7 3014
914adc42
DA
3015 /* Catch bogus values. */
3016 eassert (tag <= PVEC_FONT);
3017 eassert (memlen - lisplen <= (1 << PSEUDOVECTOR_REST_BITS) - 1);
3018 eassert (lisplen <= (1 << PSEUDOVECTOR_SIZE_BITS) - 1);
3019
d2029e5b 3020 /* Only the first lisplen slots will be traced normally by the GC. */
d2029e5b 3021 for (i = 0; i < lisplen; ++i)
d6d9cbc1 3022 v->u.contents[i] = Qnil;
177c0ea7 3023
914adc42 3024 XSETPVECTYPESIZE (v, tag, lisplen, memlen - lisplen);
d2029e5b
SM
3025 return v;
3026}
d2029e5b 3027
36429c89
DA
3028struct buffer *
3029allocate_buffer (void)
3030{
38182d90 3031 struct buffer *b = lisp_malloc (sizeof *b, MEM_TYPE_BUFFER);
36429c89 3032
914adc42 3033 BUFFER_PVEC_INIT (b);
c752cfa9 3034 /* Put B on the chain of all buffers including killed ones. */
914adc42 3035 b->next = all_buffers;
c752cfa9
DA
3036 all_buffers = b;
3037 /* Note that the rest fields of B are not initialized. */
36429c89
DA
3038 return b;
3039}
3040
ece93c02 3041struct Lisp_Hash_Table *
878f97ff 3042allocate_hash_table (void)
ece93c02 3043{
878f97ff 3044 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Hash_Table, count, PVEC_HASH_TABLE);
ece93c02
GM
3045}
3046
ece93c02 3047struct window *
971de7fb 3048allocate_window (void)
ece93c02 3049{
62efea5e 3050 struct window *w;
177c0ea7 3051
62efea5e
DA
3052 w = ALLOCATE_PSEUDOVECTOR (struct window, current_matrix, PVEC_WINDOW);
3053 /* Users assumes that non-Lisp data is zeroed. */
3054 memset (&w->current_matrix, 0,
3055 sizeof (*w) - offsetof (struct window, current_matrix));
3056 return w;
3057}
177c0ea7 3058
4a729fd8 3059struct terminal *
971de7fb 3060allocate_terminal (void)
4a729fd8 3061{
62efea5e 3062 struct terminal *t;
ece93c02 3063
62efea5e
DA
3064 t = ALLOCATE_PSEUDOVECTOR (struct terminal, next_terminal, PVEC_TERMINAL);
3065 /* Users assumes that non-Lisp data is zeroed. */
3066 memset (&t->next_terminal, 0,
3067 sizeof (*t) - offsetof (struct terminal, next_terminal));
d2029e5b 3068 return t;
4a729fd8 3069}
ece93c02
GM
3070
3071struct frame *
971de7fb 3072allocate_frame (void)
ece93c02 3073{
62efea5e
DA
3074 struct frame *f;
3075
3076 f = ALLOCATE_PSEUDOVECTOR (struct frame, face_cache, PVEC_FRAME);
3077 /* Users assumes that non-Lisp data is zeroed. */
72af86bd 3078 memset (&f->face_cache, 0,
62efea5e 3079 sizeof (*f) - offsetof (struct frame, face_cache));
d2029e5b 3080 return f;
ece93c02
GM
3081}
3082
ece93c02 3083struct Lisp_Process *
971de7fb 3084allocate_process (void)
ece93c02 3085{
62efea5e 3086 struct Lisp_Process *p;
ece93c02 3087
62efea5e
DA
3088 p = ALLOCATE_PSEUDOVECTOR (struct Lisp_Process, pid, PVEC_PROCESS);
3089 /* Users assumes that non-Lisp data is zeroed. */
3090 memset (&p->pid, 0,
3091 sizeof (*p) - offsetof (struct Lisp_Process, pid));
3092 return p;
3093}
ece93c02 3094
a7ca3326 3095DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
a6266d23 3096 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
7ee72033 3097See also the function `vector'. */)
5842a27b 3098 (register Lisp_Object length, Lisp_Object init)
7146af97 3099{
1825c68d 3100 Lisp_Object vector;
d311d28c
PE
3101 register ptrdiff_t sizei;
3102 register ptrdiff_t i;
7146af97
JB
3103 register struct Lisp_Vector *p;
3104
b7826503 3105 CHECK_NATNUM (length);
7146af97 3106
d311d28c
PE
3107 p = allocate_vector (XFASTINT (length));
3108 sizei = XFASTINT (length);
ae35e756 3109 for (i = 0; i < sizei; i++)
d6d9cbc1 3110 p->u.contents[i] = init;
7146af97 3111
1825c68d 3112 XSETVECTOR (vector, p);
7146af97
JB
3113 return vector;
3114}
3115
34400008 3116
a7ca3326 3117DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
eae936e2 3118 doc: /* Return a newly created vector with specified arguments as elements.
ae8e8122
MB
3119Any number of arguments, even zero arguments, are allowed.
3120usage: (vector &rest OBJECTS) */)
f66c7cf8 3121 (ptrdiff_t nargs, Lisp_Object *args)
7146af97 3122{
f66c7cf8 3123 ptrdiff_t i;
25721f5b
DA
3124 register Lisp_Object val = make_uninit_vector (nargs);
3125 register struct Lisp_Vector *p = XVECTOR (val);
7146af97 3126
ae35e756 3127 for (i = 0; i < nargs; i++)
d6d9cbc1 3128 p->u.contents[i] = args[i];
7146af97
JB
3129 return val;
3130}
3131
3017f87f
SM
3132void
3133make_byte_code (struct Lisp_Vector *v)
3134{
ba355de0
BR
3135 /* Don't allow the global zero_vector to become a byte code object. */
3136 eassert(0 < v->header.size);
d6d9cbc1
DA
3137 if (v->header.size > 1 && STRINGP (v->u.contents[1])
3138 && STRING_MULTIBYTE (v->u.contents[1]))
3017f87f
SM
3139 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
3140 earlier because they produced a raw 8-bit string for byte-code
3141 and now such a byte-code string is loaded as multibyte while
3142 raw 8-bit characters converted to multibyte form. Thus, now we
3143 must convert them back to the original unibyte form. */
d6d9cbc1 3144 v->u.contents[1] = Fstring_as_unibyte (v->u.contents[1]);
3017f87f
SM
3145 XSETPVECTYPE (v, PVEC_COMPILED);
3146}
34400008 3147
a7ca3326 3148DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
a6266d23 3149 doc: /* Create a byte-code object with specified arguments as elements.
e2abe5a1
SM
3150The arguments should be the ARGLIST, bytecode-string BYTE-CODE, constant
3151vector CONSTANTS, maximum stack size DEPTH, (optional) DOCSTRING,
3152and (optional) INTERACTIVE-SPEC.
228299fa 3153The first four arguments are required; at most six have any
ae8e8122 3154significance.
e2abe5a1
SM
3155The ARGLIST can be either like the one of `lambda', in which case the arguments
3156will be dynamically bound before executing the byte code, or it can be an
3157integer of the form NNNNNNNRMMMMMMM where the 7bit MMMMMMM specifies the
3158minimum number of arguments, the 7-bit NNNNNNN specifies the maximum number
3159of arguments (ignoring &rest) and the R bit specifies whether there is a &rest
3160argument to catch the left-over arguments. If such an integer is used, the
3161arguments will not be dynamically bound but will be instead pushed on the
3162stack before executing the byte-code.
92cc28b2 3163usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
f66c7cf8 3164 (ptrdiff_t nargs, Lisp_Object *args)
7146af97 3165{
f66c7cf8 3166 ptrdiff_t i;
25721f5b
DA
3167 register Lisp_Object val = make_uninit_vector (nargs);
3168 register struct Lisp_Vector *p = XVECTOR (val);
7146af97 3169
12fbe755 3170 /* We used to purecopy everything here, if purify-flag was set. This worked
3017f87f
SM
3171 OK for Emacs-23, but with Emacs-24's lexical binding code, it can be
3172 dangerous, since make-byte-code is used during execution to build
3173 closures, so any closure built during the preload phase would end up
3174 copied into pure space, including its free variables, which is sometimes
3175 just wasteful and other times plainly wrong (e.g. those free vars may want
3176 to be setcar'd). */
9eac9d59 3177
ae35e756 3178 for (i = 0; i < nargs; i++)
d6d9cbc1 3179 p->u.contents[i] = args[i];
3017f87f 3180 make_byte_code (p);
876c194c 3181 XSETCOMPILED (val, p);
7146af97
JB
3182 return val;
3183}
2e471eb5 3184
34400008 3185
7146af97 3186\f
2e471eb5
GM
3187/***********************************************************************
3188 Symbol Allocation
3189 ***********************************************************************/
7146af97 3190
d55c12ed
AS
3191/* Like struct Lisp_Symbol, but padded so that the size is a multiple
3192 of the required alignment if LSB tags are used. */
3193
3194union aligned_Lisp_Symbol
3195{
3196 struct Lisp_Symbol s;
bfe3e0a2 3197#if USE_LSB_TAG
2b90362b
DA
3198 unsigned char c[(sizeof (struct Lisp_Symbol) + GCALIGNMENT - 1)
3199 & -GCALIGNMENT];
d55c12ed
AS
3200#endif
3201};
3202
2e471eb5
GM
3203/* Each symbol_block is just under 1020 bytes long, since malloc
3204 really allocates in units of powers of two and uses 4 bytes for its
3017f87f 3205 own overhead. */
7146af97
JB
3206
3207#define SYMBOL_BLOCK_SIZE \
d55c12ed 3208 ((1020 - sizeof (struct symbol_block *)) / sizeof (union aligned_Lisp_Symbol))
7146af97
JB
3209
3210struct symbol_block
2e471eb5 3211{
6b61353c 3212 /* Place `symbols' first, to preserve alignment. */
d55c12ed 3213 union aligned_Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
6b61353c 3214 struct symbol_block *next;
2e471eb5 3215};
7146af97 3216
34400008
GM
3217/* Current symbol block and index of first unused Lisp_Symbol
3218 structure in it. */
3219
d3d47262 3220static struct symbol_block *symbol_block;
fff62aa9 3221static int symbol_block_index = SYMBOL_BLOCK_SIZE;
7146af97 3222
34400008
GM
3223/* List of free symbols. */
3224
d3d47262 3225static struct Lisp_Symbol *symbol_free_list;
7146af97 3226
84575e67
PE
3227static void
3228set_symbol_name (Lisp_Object sym, Lisp_Object name)
3229{
3230 XSYMBOL (sym)->name = name;
3231}
3232
a7ca3326 3233DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
a6266d23 3234 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
eadf1faa 3235Its value is void, and its function definition and property list are nil. */)
5842a27b 3236 (Lisp_Object name)
7146af97
JB
3237{
3238 register Lisp_Object val;
3239 register struct Lisp_Symbol *p;
3240
b7826503 3241 CHECK_STRING (name);
7146af97 3242
dafc79fa 3243 MALLOC_BLOCK_INPUT;
e2984df0 3244
7146af97
JB
3245 if (symbol_free_list)
3246 {
45d12a89 3247 XSETSYMBOL (val, symbol_free_list);
28a099a4 3248 symbol_free_list = symbol_free_list->next;
7146af97
JB
3249 }
3250 else
3251 {
3252 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
3253 {
38182d90
PE
3254 struct symbol_block *new
3255 = lisp_malloc (sizeof *new, MEM_TYPE_SYMBOL);
7146af97
JB
3256 new->next = symbol_block;
3257 symbol_block = new;
3258 symbol_block_index = 0;
3900d5de 3259 total_free_symbols += SYMBOL_BLOCK_SIZE;
7146af97 3260 }
d55c12ed 3261 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index].s);
6b61353c 3262 symbol_block_index++;
7146af97 3263 }
177c0ea7 3264
dafc79fa 3265 MALLOC_UNBLOCK_INPUT;
e2984df0 3266
7146af97 3267 p = XSYMBOL (val);
c644523b
DA
3268 set_symbol_name (val, name);
3269 set_symbol_plist (val, Qnil);
ce5b453a
SM
3270 p->redirect = SYMBOL_PLAINVAL;
3271 SET_SYMBOL_VAL (p, Qunbound);
eadf1faa 3272 set_symbol_function (val, Qnil);
c644523b 3273 set_symbol_next (val, NULL);
2336fe58 3274 p->gcmarkbit = 0;
9e713715
GM
3275 p->interned = SYMBOL_UNINTERNED;
3276 p->constant = 0;
b9598260 3277 p->declared_special = 0;
2e471eb5
GM
3278 consing_since_gc += sizeof (struct Lisp_Symbol);
3279 symbols_consed++;
3900d5de 3280 total_free_symbols--;
7146af97
JB
3281 return val;
3282}
3283
3f25e183 3284
2e471eb5
GM
3285\f
3286/***********************************************************************
34400008 3287 Marker (Misc) Allocation
2e471eb5 3288 ***********************************************************************/
3f25e183 3289
d55c12ed
AS
3290/* Like union Lisp_Misc, but padded so that its size is a multiple of
3291 the required alignment when LSB tags are used. */
3292
3293union aligned_Lisp_Misc
3294{
3295 union Lisp_Misc m;
bfe3e0a2 3296#if USE_LSB_TAG
2b90362b
DA
3297 unsigned char c[(sizeof (union Lisp_Misc) + GCALIGNMENT - 1)
3298 & -GCALIGNMENT];
d55c12ed
AS
3299#endif
3300};
3301
2e471eb5
GM
3302/* Allocation of markers and other objects that share that structure.
3303 Works like allocation of conses. */
c0696668 3304
2e471eb5 3305#define MARKER_BLOCK_SIZE \
d55c12ed 3306 ((1020 - sizeof (struct marker_block *)) / sizeof (union aligned_Lisp_Misc))
2e471eb5
GM
3307
3308struct marker_block
c0696668 3309{
6b61353c 3310 /* Place `markers' first, to preserve alignment. */
d55c12ed 3311 union aligned_Lisp_Misc markers[MARKER_BLOCK_SIZE];
6b61353c 3312 struct marker_block *next;
2e471eb5 3313};
c0696668 3314
d3d47262 3315static struct marker_block *marker_block;
fff62aa9 3316static int marker_block_index = MARKER_BLOCK_SIZE;
c0696668 3317
d3d47262 3318static union Lisp_Misc *marker_free_list;
c0696668 3319
d7a7fda3 3320/* Return a newly allocated Lisp_Misc object of specified TYPE. */
2e471eb5 3321
1b971ac1 3322static Lisp_Object
d7a7fda3 3323allocate_misc (enum Lisp_Misc_Type type)
7146af97 3324{
2e471eb5 3325 Lisp_Object val;
7146af97 3326
dafc79fa 3327 MALLOC_BLOCK_INPUT;
cfb2f32e 3328
2e471eb5 3329 if (marker_free_list)
7146af97 3330 {
2e471eb5
GM
3331 XSETMISC (val, marker_free_list);
3332 marker_free_list = marker_free_list->u_free.chain;
7146af97
JB
3333 }
3334 else
7146af97 3335 {
2e471eb5
GM
3336 if (marker_block_index == MARKER_BLOCK_SIZE)
3337 {
38182d90 3338 struct marker_block *new = lisp_malloc (sizeof *new, MEM_TYPE_MISC);
2e471eb5
GM
3339 new->next = marker_block;
3340 marker_block = new;
3341 marker_block_index = 0;
7b7990cc 3342 total_free_markers += MARKER_BLOCK_SIZE;
2e471eb5 3343 }
d55c12ed 3344 XSETMISC (val, &marker_block->markers[marker_block_index].m);
6b61353c 3345 marker_block_index++;
7146af97 3346 }
177c0ea7 3347
dafc79fa 3348 MALLOC_UNBLOCK_INPUT;
e2984df0 3349
7b7990cc 3350 --total_free_markers;
2e471eb5
GM
3351 consing_since_gc += sizeof (union Lisp_Misc);
3352 misc_objects_consed++;
84575e67 3353 XMISCANY (val)->type = type;
67ee9f6e 3354 XMISCANY (val)->gcmarkbit = 0;
2e471eb5
GM
3355 return val;
3356}
3357
73ebd38f 3358/* Free a Lisp_Misc object. */
7b7990cc 3359
73ebd38f 3360void
971de7fb 3361free_misc (Lisp_Object misc)
7b7990cc 3362{
84575e67 3363 XMISCANY (misc)->type = Lisp_Misc_Free;
7b7990cc
KS
3364 XMISC (misc)->u_free.chain = marker_free_list;
3365 marker_free_list = XMISC (misc);
0dd6d66d 3366 consing_since_gc -= sizeof (union Lisp_Misc);
7b7990cc
KS
3367 total_free_markers++;
3368}
3369
7b1123d8
PE
3370/* Verify properties of Lisp_Save_Value's representation
3371 that are assumed here and elsewhere. */
3372
3373verify (SAVE_UNUSED == 0);
52a9bcae
PE
3374verify (((SAVE_INTEGER | SAVE_POINTER | SAVE_FUNCPOINTER | SAVE_OBJECT)
3375 >> SAVE_SLOT_BITS)
3376 == 0);
7b1123d8 3377
1396ac86
PE
3378/* Return Lisp_Save_Value objects for the various combinations
3379 that callers need. */
1b971ac1
DA
3380
3381Lisp_Object
1396ac86 3382make_save_int_int_int (ptrdiff_t a, ptrdiff_t b, ptrdiff_t c)
1b971ac1 3383{
1b971ac1
DA
3384 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3385 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
1396ac86
PE
3386 p->save_type = SAVE_TYPE_INT_INT_INT;
3387 p->data[0].integer = a;
3388 p->data[1].integer = b;
3389 p->data[2].integer = c;
3390 return val;
3391}
1b971ac1 3392
1396ac86
PE
3393Lisp_Object
3394make_save_obj_obj_obj_obj (Lisp_Object a, Lisp_Object b, Lisp_Object c,
3395 Lisp_Object d)
3396{
3397 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3398 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3399 p->save_type = SAVE_TYPE_OBJ_OBJ_OBJ_OBJ;
3400 p->data[0].object = a;
3401 p->data[1].object = b;
3402 p->data[2].object = c;
3403 p->data[3].object = d;
3404 return val;
3405}
1b971ac1 3406
198fa217 3407#if defined HAVE_NS || defined HAVE_NTGUI
1396ac86
PE
3408Lisp_Object
3409make_save_ptr (void *a)
3410{
3411 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3412 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3413 p->save_type = SAVE_POINTER;
3414 p->data[0].pointer = a;
3415 return val;
3416}
3417#endif
7b1123d8 3418
1396ac86
PE
3419Lisp_Object
3420make_save_ptr_int (void *a, ptrdiff_t b)
3421{
3422 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3423 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3424 p->save_type = SAVE_TYPE_PTR_INT;
3425 p->data[0].pointer = a;
3426 p->data[1].integer = b;
3427 return val;
3428}
1b971ac1 3429
f4e891b5
PE
3430#if defined HAVE_MENUS && ! (defined USE_X_TOOLKIT || defined USE_GTK)
3431Lisp_Object
3432make_save_ptr_ptr (void *a, void *b)
3433{
3434 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3435 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3436 p->save_type = SAVE_TYPE_PTR_PTR;
3437 p->data[0].pointer = a;
3438 p->data[1].pointer = b;
3439 return val;
3440}
3441#endif
3442
1396ac86
PE
3443Lisp_Object
3444make_save_funcptr_ptr_obj (void (*a) (void), void *b, Lisp_Object c)
3445{
3446 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3447 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3448 p->save_type = SAVE_TYPE_FUNCPTR_PTR_OBJ;
3449 p->data[0].funcpointer = a;
3450 p->data[1].pointer = b;
3451 p->data[2].object = c;
1b971ac1
DA
3452 return val;
3453}
3454
1396ac86
PE
3455/* Return a Lisp_Save_Value object that represents an array A
3456 of N Lisp objects. */
42172a6b
RS
3457
3458Lisp_Object
1396ac86 3459make_save_memory (Lisp_Object *a, ptrdiff_t n)
42172a6b 3460{
468afbac
DA
3461 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3462 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
1396ac86
PE
3463 p->save_type = SAVE_TYPE_MEMORY;
3464 p->data[0].pointer = a;
3465 p->data[1].integer = n;
468afbac 3466 return val;
42172a6b
RS
3467}
3468
73ebd38f
DA
3469/* Free a Lisp_Save_Value object. Do not use this function
3470 if SAVE contains pointer other than returned by xmalloc. */
62c2e5ed 3471
27e498e6 3472void
62c2e5ed
DA
3473free_save_value (Lisp_Object save)
3474{
2b30549c 3475 xfree (XSAVE_POINTER (save, 0));
62c2e5ed
DA
3476 free_misc (save);
3477}
3478
d7a7fda3
DA
3479/* Return a Lisp_Misc_Overlay object with specified START, END and PLIST. */
3480
3481Lisp_Object
3482build_overlay (Lisp_Object start, Lisp_Object end, Lisp_Object plist)
3483{
3484 register Lisp_Object overlay;
3485
3486 overlay = allocate_misc (Lisp_Misc_Overlay);
3487 OVERLAY_START (overlay) = start;
3488 OVERLAY_END (overlay) = end;
c644523b 3489 set_overlay_plist (overlay, plist);
d7a7fda3
DA
3490 XOVERLAY (overlay)->next = NULL;
3491 return overlay;
3492}
3493
a7ca3326 3494DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
a6266d23 3495 doc: /* Return a newly allocated marker which does not point at any place. */)
5842a27b 3496 (void)
2e471eb5 3497{
eeaea515
DA
3498 register Lisp_Object val;
3499 register struct Lisp_Marker *p;
7146af97 3500
eeaea515
DA
3501 val = allocate_misc (Lisp_Misc_Marker);
3502 p = XMARKER (val);
3503 p->buffer = 0;
3504 p->bytepos = 0;
3505 p->charpos = 0;
3506 p->next = NULL;
3507 p->insertion_type = 0;
101ed2bb 3508 p->need_adjustment = 0;
eeaea515 3509 return val;
7146af97 3510}
2e471eb5 3511
657924ff
DA
3512/* Return a newly allocated marker which points into BUF
3513 at character position CHARPOS and byte position BYTEPOS. */
3514
3515Lisp_Object
3516build_marker (struct buffer *buf, ptrdiff_t charpos, ptrdiff_t bytepos)
3517{
eeaea515
DA
3518 Lisp_Object obj;
3519 struct Lisp_Marker *m;
657924ff
DA
3520
3521 /* No dead buffers here. */
e578f381 3522 eassert (BUFFER_LIVE_P (buf));
657924ff 3523
eeaea515
DA
3524 /* Every character is at least one byte. */
3525 eassert (charpos <= bytepos);
3526
3527 obj = allocate_misc (Lisp_Misc_Marker);
3528 m = XMARKER (obj);
3529 m->buffer = buf;
3530 m->charpos = charpos;
3531 m->bytepos = bytepos;
3532 m->insertion_type = 0;
101ed2bb 3533 m->need_adjustment = 0;
eeaea515
DA
3534 m->next = BUF_MARKERS (buf);
3535 BUF_MARKERS (buf) = m;
3536 return obj;
657924ff
DA
3537}
3538
2e471eb5
GM
3539/* Put MARKER back on the free list after using it temporarily. */
3540
3541void
971de7fb 3542free_marker (Lisp_Object marker)
2e471eb5 3543{
ef89c2ce 3544 unchain_marker (XMARKER (marker));
7b7990cc 3545 free_misc (marker);
2e471eb5
GM
3546}
3547
c0696668 3548\f
7146af97 3549/* Return a newly created vector or string with specified arguments as
736471d1
RS
3550 elements. If all the arguments are characters that can fit
3551 in a string of events, make a string; otherwise, make a vector.
3552
3553 Any number of arguments, even zero arguments, are allowed. */
7146af97
JB
3554
3555Lisp_Object
0c90b9ee 3556make_event_array (ptrdiff_t nargs, Lisp_Object *args)
7146af97 3557{
0c90b9ee 3558 ptrdiff_t i;
7146af97
JB
3559
3560 for (i = 0; i < nargs; i++)
736471d1 3561 /* The things that fit in a string
c9ca4659
RS
3562 are characters that are in 0...127,
3563 after discarding the meta bit and all the bits above it. */
e687453f 3564 if (!INTEGERP (args[i])
c11285dc 3565 || (XINT (args[i]) & ~(-CHAR_META)) >= 0200)
7146af97
JB
3566 return Fvector (nargs, args);
3567
3568 /* Since the loop exited, we know that all the things in it are
3569 characters, so we can make a string. */
3570 {
c13ccad2 3571 Lisp_Object result;
177c0ea7 3572
50aee051 3573 result = Fmake_string (make_number (nargs), make_number (0));
7146af97 3574 for (i = 0; i < nargs; i++)
736471d1 3575 {
46e7e6b0 3576 SSET (result, i, XINT (args[i]));
736471d1
RS
3577 /* Move the meta bit to the right place for a string char. */
3578 if (XINT (args[i]) & CHAR_META)
46e7e6b0 3579 SSET (result, i, SREF (result, i) | 0x80);
736471d1 3580 }
177c0ea7 3581
7146af97
JB
3582 return result;
3583 }
3584}
2e471eb5
GM
3585
3586
7146af97 3587\f
24d8a105
RS
3588/************************************************************************
3589 Memory Full Handling
3590 ************************************************************************/
3591
3592
531b0165
PE
3593/* Called if malloc (NBYTES) returns zero. If NBYTES == SIZE_MAX,
3594 there may have been size_t overflow so that malloc was never
3595 called, or perhaps malloc was invoked successfully but the
3596 resulting pointer had problems fitting into a tagged EMACS_INT. In
3597 either case this counts as memory being full even though malloc did
3598 not fail. */
24d8a105
RS
3599
3600void
531b0165 3601memory_full (size_t nbytes)
24d8a105 3602{
531b0165 3603 /* Do not go into hysterics merely because a large request failed. */
fce31d69 3604 bool enough_free_memory = 0;
2b6148e4 3605 if (SPARE_MEMORY < nbytes)
531b0165 3606 {
66606eea
PE
3607 void *p;
3608
3609 MALLOC_BLOCK_INPUT;
3610 p = malloc (SPARE_MEMORY);
531b0165
PE
3611 if (p)
3612 {
4d09bcf6 3613 free (p);
531b0165
PE
3614 enough_free_memory = 1;
3615 }
66606eea 3616 MALLOC_UNBLOCK_INPUT;
531b0165 3617 }
24d8a105 3618
531b0165
PE
3619 if (! enough_free_memory)
3620 {
3621 int i;
24d8a105 3622
531b0165
PE
3623 Vmemory_full = Qt;
3624
3625 memory_full_cons_threshold = sizeof (struct cons_block);
3626
3627 /* The first time we get here, free the spare memory. */
3628 for (i = 0; i < sizeof (spare_memory) / sizeof (char *); i++)
3629 if (spare_memory[i])
3630 {
3631 if (i == 0)
3632 free (spare_memory[i]);
3633 else if (i >= 1 && i <= 4)
3634 lisp_align_free (spare_memory[i]);
3635 else
3636 lisp_free (spare_memory[i]);
3637 spare_memory[i] = 0;
3638 }
531b0165 3639 }
24d8a105
RS
3640
3641 /* This used to call error, but if we've run out of memory, we could
3642 get infinite recursion trying to build the string. */
9b306d37 3643 xsignal (Qnil, Vmemory_signal_data);
24d8a105
RS
3644}
3645
3646/* If we released our reserve (due to running out of memory),
3647 and we have a fair amount free once again,
3648 try to set aside another reserve in case we run out once more.
3649
3650 This is called when a relocatable block is freed in ralloc.c,
3651 and also directly from this file, in case we're not using ralloc.c. */
3652
3653void
971de7fb 3654refill_memory_reserve (void)
24d8a105
RS
3655{
3656#ifndef SYSTEM_MALLOC
3657 if (spare_memory[0] == 0)
38182d90 3658 spare_memory[0] = malloc (SPARE_MEMORY);
24d8a105 3659 if (spare_memory[1] == 0)
38182d90 3660 spare_memory[1] = lisp_align_malloc (sizeof (struct cons_block),
35aaa1ea 3661 MEM_TYPE_SPARE);
24d8a105 3662 if (spare_memory[2] == 0)
38182d90 3663 spare_memory[2] = lisp_align_malloc (sizeof (struct cons_block),
35aaa1ea 3664 MEM_TYPE_SPARE);
24d8a105 3665 if (spare_memory[3] == 0)
38182d90 3666 spare_memory[3] = lisp_align_malloc (sizeof (struct cons_block),
35aaa1ea 3667 MEM_TYPE_SPARE);
24d8a105 3668 if (spare_memory[4] == 0)
38182d90 3669 spare_memory[4] = lisp_align_malloc (sizeof (struct cons_block),
35aaa1ea 3670 MEM_TYPE_SPARE);
24d8a105 3671 if (spare_memory[5] == 0)
38182d90 3672 spare_memory[5] = lisp_malloc (sizeof (struct string_block),
35aaa1ea 3673 MEM_TYPE_SPARE);
24d8a105 3674 if (spare_memory[6] == 0)
38182d90 3675 spare_memory[6] = lisp_malloc (sizeof (struct string_block),
35aaa1ea 3676 MEM_TYPE_SPARE);
24d8a105
RS
3677 if (spare_memory[0] && spare_memory[1] && spare_memory[5])
3678 Vmemory_full = Qnil;
3679#endif
3680}
3681\f
34400008
GM
3682/************************************************************************
3683 C Stack Marking
3684 ************************************************************************/
3685
13c844fb
GM
3686#if GC_MARK_STACK || defined GC_MALLOC_CHECK
3687
71cf5fa0
GM
3688/* Conservative C stack marking requires a method to identify possibly
3689 live Lisp objects given a pointer value. We do this by keeping
3690 track of blocks of Lisp data that are allocated in a red-black tree
3691 (see also the comment of mem_node which is the type of nodes in
3692 that tree). Function lisp_malloc adds information for an allocated
3693 block to the red-black tree with calls to mem_insert, and function
3694 lisp_free removes it with mem_delete. Functions live_string_p etc
3695 call mem_find to lookup information about a given pointer in the
3696 tree, and use that to determine if the pointer points to a Lisp
3697 object or not. */
3698
34400008
GM
3699/* Initialize this part of alloc.c. */
3700
3701static void
971de7fb 3702mem_init (void)
34400008
GM
3703{
3704 mem_z.left = mem_z.right = MEM_NIL;
3705 mem_z.parent = NULL;
3706 mem_z.color = MEM_BLACK;
3707 mem_z.start = mem_z.end = NULL;
3708 mem_root = MEM_NIL;
3709}
3710
3711
3712/* Value is a pointer to the mem_node containing START. Value is
3713 MEM_NIL if there is no node in the tree containing START. */
3714
b0ab8123 3715static struct mem_node *
971de7fb 3716mem_find (void *start)
34400008
GM
3717{
3718 struct mem_node *p;
3719
ece93c02
GM
3720 if (start < min_heap_address || start > max_heap_address)
3721 return MEM_NIL;
3722
34400008
GM
3723 /* Make the search always successful to speed up the loop below. */
3724 mem_z.start = start;
3725 mem_z.end = (char *) start + 1;
3726
3727 p = mem_root;
3728 while (start < p->start || start >= p->end)
3729 p = start < p->start ? p->left : p->right;
3730 return p;
3731}
3732
3733
3734/* Insert a new node into the tree for a block of memory with start
3735 address START, end address END, and type TYPE. Value is a
3736 pointer to the node that was inserted. */
3737
3738static struct mem_node *
971de7fb 3739mem_insert (void *start, void *end, enum mem_type type)
34400008
GM
3740{
3741 struct mem_node *c, *parent, *x;
3742
add3c3ea 3743 if (min_heap_address == NULL || start < min_heap_address)
ece93c02 3744 min_heap_address = start;
add3c3ea 3745 if (max_heap_address == NULL || end > max_heap_address)
ece93c02
GM
3746 max_heap_address = end;
3747
34400008
GM
3748 /* See where in the tree a node for START belongs. In this
3749 particular application, it shouldn't happen that a node is already
3750 present. For debugging purposes, let's check that. */
3751 c = mem_root;
3752 parent = NULL;
3753
3754#if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
177c0ea7 3755
34400008
GM
3756 while (c != MEM_NIL)
3757 {
3758 if (start >= c->start && start < c->end)
1088b922 3759 emacs_abort ();
34400008
GM
3760 parent = c;
3761 c = start < c->start ? c->left : c->right;
3762 }
177c0ea7 3763
34400008 3764#else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
177c0ea7 3765
34400008
GM
3766 while (c != MEM_NIL)
3767 {
3768 parent = c;
3769 c = start < c->start ? c->left : c->right;
3770 }
177c0ea7 3771
34400008
GM
3772#endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3773
3774 /* Create a new node. */
877935b1 3775#ifdef GC_MALLOC_CHECK
0caaedb1 3776 x = malloc (sizeof *x);
877935b1 3777 if (x == NULL)
1088b922 3778 emacs_abort ();
877935b1 3779#else
23f86fce 3780 x = xmalloc (sizeof *x);
877935b1 3781#endif
34400008
GM
3782 x->start = start;
3783 x->end = end;
3784 x->type = type;
3785 x->parent = parent;
3786 x->left = x->right = MEM_NIL;
3787 x->color = MEM_RED;
3788
3789 /* Insert it as child of PARENT or install it as root. */
3790 if (parent)
3791 {
3792 if (start < parent->start)
3793 parent->left = x;
3794 else
3795 parent->right = x;
3796 }
177c0ea7 3797 else
34400008
GM
3798 mem_root = x;
3799
3800 /* Re-establish red-black tree properties. */
3801 mem_insert_fixup (x);
877935b1 3802
34400008
GM
3803 return x;
3804}
3805
3806
3807/* Re-establish the red-black properties of the tree, and thereby
3808 balance the tree, after node X has been inserted; X is always red. */
3809
3810static void
971de7fb 3811mem_insert_fixup (struct mem_node *x)
34400008
GM
3812{
3813 while (x != mem_root && x->parent->color == MEM_RED)
3814 {
3815 /* X is red and its parent is red. This is a violation of
3816 red-black tree property #3. */
177c0ea7 3817
34400008
GM
3818 if (x->parent == x->parent->parent->left)
3819 {
3820 /* We're on the left side of our grandparent, and Y is our
3821 "uncle". */
3822 struct mem_node *y = x->parent->parent->right;
177c0ea7 3823
34400008
GM
3824 if (y->color == MEM_RED)
3825 {
3826 /* Uncle and parent are red but should be black because
3827 X is red. Change the colors accordingly and proceed
3828 with the grandparent. */
3829 x->parent->color = MEM_BLACK;
3830 y->color = MEM_BLACK;
3831 x->parent->parent->color = MEM_RED;
3832 x = x->parent->parent;
3833 }
3834 else
3835 {
3836 /* Parent and uncle have different colors; parent is
3837 red, uncle is black. */
3838 if (x == x->parent->right)
3839 {
3840 x = x->parent;
3841 mem_rotate_left (x);
3842 }
3843
3844 x->parent->color = MEM_BLACK;
3845 x->parent->parent->color = MEM_RED;
3846 mem_rotate_right (x->parent->parent);
3847 }
3848 }
3849 else
3850 {
3851 /* This is the symmetrical case of above. */
3852 struct mem_node *y = x->parent->parent->left;
177c0ea7 3853
34400008
GM
3854 if (y->color == MEM_RED)
3855 {
3856 x->parent->color = MEM_BLACK;
3857 y->color = MEM_BLACK;
3858 x->parent->parent->color = MEM_RED;
3859 x = x->parent->parent;
3860 }
3861 else
3862 {
3863 if (x == x->parent->left)
3864 {
3865 x = x->parent;
3866 mem_rotate_right (x);
3867 }
177c0ea7 3868
34400008
GM
3869 x->parent->color = MEM_BLACK;
3870 x->parent->parent->color = MEM_RED;
3871 mem_rotate_left (x->parent->parent);
3872 }
3873 }
3874 }
3875
3876 /* The root may have been changed to red due to the algorithm. Set
3877 it to black so that property #5 is satisfied. */
3878 mem_root->color = MEM_BLACK;
3879}
3880
3881
177c0ea7
JB
3882/* (x) (y)
3883 / \ / \
34400008
GM
3884 a (y) ===> (x) c
3885 / \ / \
3886 b c a b */
3887
3888static void
971de7fb 3889mem_rotate_left (struct mem_node *x)
34400008
GM
3890{
3891 struct mem_node *y;
3892
3893 /* Turn y's left sub-tree into x's right sub-tree. */
3894 y = x->right;
3895 x->right = y->left;
3896 if (y->left != MEM_NIL)
3897 y->left->parent = x;
3898
3899 /* Y's parent was x's parent. */
3900 if (y != MEM_NIL)
3901 y->parent = x->parent;
3902
3903 /* Get the parent to point to y instead of x. */
3904 if (x->parent)
3905 {
3906 if (x == x->parent->left)
3907 x->parent->left = y;
3908 else
3909 x->parent->right = y;
3910 }
3911 else
3912 mem_root = y;
3913
3914 /* Put x on y's left. */
3915 y->left = x;
3916 if (x != MEM_NIL)
3917 x->parent = y;
3918}
3919
3920
177c0ea7
JB
3921/* (x) (Y)
3922 / \ / \
3923 (y) c ===> a (x)
3924 / \ / \
34400008
GM
3925 a b b c */
3926
3927static void
971de7fb 3928mem_rotate_right (struct mem_node *x)
34400008
GM
3929{
3930 struct mem_node *y = x->left;
3931
3932 x->left = y->right;
3933 if (y->right != MEM_NIL)
3934 y->right->parent = x;
177c0ea7 3935
34400008
GM
3936 if (y != MEM_NIL)
3937 y->parent = x->parent;
3938 if (x->parent)
3939 {
3940 if (x == x->parent->right)
3941 x->parent->right = y;
3942 else
3943 x->parent->left = y;
3944 }
3945 else
3946 mem_root = y;
177c0ea7 3947
34400008
GM
3948 y->right = x;
3949 if (x != MEM_NIL)
3950 x->parent = y;
3951}
3952
3953
3954/* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
3955
3956static void
971de7fb 3957mem_delete (struct mem_node *z)
34400008
GM
3958{
3959 struct mem_node *x, *y;
3960
3961 if (!z || z == MEM_NIL)
3962 return;
3963
3964 if (z->left == MEM_NIL || z->right == MEM_NIL)
3965 y = z;
3966 else
3967 {
3968 y = z->right;
3969 while (y->left != MEM_NIL)
3970 y = y->left;
3971 }
3972
3973 if (y->left != MEM_NIL)
3974 x = y->left;
3975 else
3976 x = y->right;
3977
3978 x->parent = y->parent;
3979 if (y->parent)
3980 {
3981 if (y == y->parent->left)
3982 y->parent->left = x;
3983 else
3984 y->parent->right = x;
3985 }
3986 else
3987 mem_root = x;
3988
3989 if (y != z)
3990 {
3991 z->start = y->start;
3992 z->end = y->end;
3993 z->type = y->type;
3994 }
177c0ea7 3995
34400008
GM
3996 if (y->color == MEM_BLACK)
3997 mem_delete_fixup (x);
877935b1
GM
3998
3999#ifdef GC_MALLOC_CHECK
0caaedb1 4000 free (y);
877935b1 4001#else
34400008 4002 xfree (y);
877935b1 4003#endif
34400008
GM
4004}
4005
4006
4007/* Re-establish the red-black properties of the tree, after a
4008 deletion. */
4009
4010static void
971de7fb 4011mem_delete_fixup (struct mem_node *x)
34400008
GM
4012{
4013 while (x != mem_root && x->color == MEM_BLACK)
4014 {
4015 if (x == x->parent->left)
4016 {
4017 struct mem_node *w = x->parent->right;
177c0ea7 4018
34400008
GM
4019 if (w->color == MEM_RED)
4020 {
4021 w->color = MEM_BLACK;
4022 x->parent->color = MEM_RED;
4023 mem_rotate_left (x->parent);
4024 w = x->parent->right;
4025 }
177c0ea7 4026
34400008
GM
4027 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
4028 {
4029 w->color = MEM_RED;
4030 x = x->parent;
4031 }
4032 else
4033 {
4034 if (w->right->color == MEM_BLACK)
4035 {
4036 w->left->color = MEM_BLACK;
4037 w->color = MEM_RED;
4038 mem_rotate_right (w);
4039 w = x->parent->right;
4040 }
4041 w->color = x->parent->color;
4042 x->parent->color = MEM_BLACK;
4043 w->right->color = MEM_BLACK;
4044 mem_rotate_left (x->parent);
4045 x = mem_root;
4046 }
4047 }
4048 else
4049 {
4050 struct mem_node *w = x->parent->left;
177c0ea7 4051
34400008
GM
4052 if (w->color == MEM_RED)
4053 {
4054 w->color = MEM_BLACK;
4055 x->parent->color = MEM_RED;
4056 mem_rotate_right (x->parent);
4057 w = x->parent->left;
4058 }
177c0ea7 4059
34400008
GM
4060 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
4061 {
4062 w->color = MEM_RED;
4063 x = x->parent;
4064 }
4065 else
4066 {
4067 if (w->left->color == MEM_BLACK)
4068 {
4069 w->right->color = MEM_BLACK;
4070 w->color = MEM_RED;
4071 mem_rotate_left (w);
4072 w = x->parent->left;
4073 }
177c0ea7 4074
34400008
GM
4075 w->color = x->parent->color;
4076 x->parent->color = MEM_BLACK;
4077 w->left->color = MEM_BLACK;
4078 mem_rotate_right (x->parent);
4079 x = mem_root;
4080 }
4081 }
4082 }
177c0ea7 4083
34400008
GM
4084 x->color = MEM_BLACK;
4085}
4086
4087
4088/* Value is non-zero if P is a pointer to a live Lisp string on
4089 the heap. M is a pointer to the mem_block for P. */
4090
b0ab8123 4091static bool
971de7fb 4092live_string_p (struct mem_node *m, void *p)
34400008
GM
4093{
4094 if (m->type == MEM_TYPE_STRING)
4095 {
7d652d97 4096 struct string_block *b = m->start;
14162469 4097 ptrdiff_t offset = (char *) p - (char *) &b->strings[0];
34400008
GM
4098
4099 /* P must point to the start of a Lisp_String structure, and it
4100 must not be on the free-list. */
176bc847
GM
4101 return (offset >= 0
4102 && offset % sizeof b->strings[0] == 0
6b61353c 4103 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
34400008
GM
4104 && ((struct Lisp_String *) p)->data != NULL);
4105 }
4106 else
4107 return 0;
4108}
4109
4110
4111/* Value is non-zero if P is a pointer to a live Lisp cons on
4112 the heap. M is a pointer to the mem_block for P. */
4113
b0ab8123 4114static bool
971de7fb 4115live_cons_p (struct mem_node *m, void *p)
34400008
GM
4116{
4117 if (m->type == MEM_TYPE_CONS)
4118 {
7d652d97 4119 struct cons_block *b = m->start;
14162469 4120 ptrdiff_t offset = (char *) p - (char *) &b->conses[0];
34400008
GM
4121
4122 /* P must point to the start of a Lisp_Cons, not be
4123 one of the unused cells in the current cons block,
4124 and not be on the free-list. */
176bc847
GM
4125 return (offset >= 0
4126 && offset % sizeof b->conses[0] == 0
6b61353c 4127 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
34400008
GM
4128 && (b != cons_block
4129 || offset / sizeof b->conses[0] < cons_block_index)
c644523b 4130 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
34400008
GM
4131 }
4132 else
4133 return 0;
4134}
4135
4136
4137/* Value is non-zero if P is a pointer to a live Lisp symbol on
4138 the heap. M is a pointer to the mem_block for P. */
4139
b0ab8123 4140static bool
971de7fb 4141live_symbol_p (struct mem_node *m, void *p)
34400008
GM
4142{
4143 if (m->type == MEM_TYPE_SYMBOL)
4144 {
7d652d97 4145 struct symbol_block *b = m->start;
14162469 4146 ptrdiff_t offset = (char *) p - (char *) &b->symbols[0];
177c0ea7 4147
34400008
GM
4148 /* P must point to the start of a Lisp_Symbol, not be
4149 one of the unused cells in the current symbol block,
4150 and not be on the free-list. */
176bc847
GM
4151 return (offset >= 0
4152 && offset % sizeof b->symbols[0] == 0
6b61353c 4153 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
34400008
GM
4154 && (b != symbol_block
4155 || offset / sizeof b->symbols[0] < symbol_block_index)
c644523b 4156 && !EQ (((struct Lisp_Symbol *)p)->function, Vdead));
34400008
GM
4157 }
4158 else
4159 return 0;
4160}
4161
4162
4163/* Value is non-zero if P is a pointer to a live Lisp float on
4164 the heap. M is a pointer to the mem_block for P. */
4165
b0ab8123 4166static bool
971de7fb 4167live_float_p (struct mem_node *m, void *p)
34400008
GM
4168{
4169 if (m->type == MEM_TYPE_FLOAT)
4170 {
7d652d97 4171 struct float_block *b = m->start;
14162469 4172 ptrdiff_t offset = (char *) p - (char *) &b->floats[0];
177c0ea7 4173
ab6780cd
SM
4174 /* P must point to the start of a Lisp_Float and not be
4175 one of the unused cells in the current float block. */
176bc847
GM
4176 return (offset >= 0
4177 && offset % sizeof b->floats[0] == 0
6b61353c 4178 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
34400008 4179 && (b != float_block
ab6780cd 4180 || offset / sizeof b->floats[0] < float_block_index));
34400008
GM
4181 }
4182 else
4183 return 0;
4184}
4185
4186
4187/* Value is non-zero if P is a pointer to a live Lisp Misc on
4188 the heap. M is a pointer to the mem_block for P. */
4189
b0ab8123 4190static bool
971de7fb 4191live_misc_p (struct mem_node *m, void *p)
34400008
GM
4192{
4193 if (m->type == MEM_TYPE_MISC)
4194 {
7d652d97 4195 struct marker_block *b = m->start;
14162469 4196 ptrdiff_t offset = (char *) p - (char *) &b->markers[0];
177c0ea7 4197
34400008
GM
4198 /* P must point to the start of a Lisp_Misc, not be
4199 one of the unused cells in the current misc block,
4200 and not be on the free-list. */
176bc847
GM
4201 return (offset >= 0
4202 && offset % sizeof b->markers[0] == 0
6b61353c 4203 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
34400008
GM
4204 && (b != marker_block
4205 || offset / sizeof b->markers[0] < marker_block_index)
d314756e 4206 && ((union Lisp_Misc *) p)->u_any.type != Lisp_Misc_Free);
34400008
GM
4207 }
4208 else
4209 return 0;
4210}
4211
4212
4213/* Value is non-zero if P is a pointer to a live vector-like object.
4214 M is a pointer to the mem_block for P. */
4215
b0ab8123 4216static bool
971de7fb 4217live_vector_p (struct mem_node *m, void *p)
34400008 4218{
f3372c87
DA
4219 if (m->type == MEM_TYPE_VECTOR_BLOCK)
4220 {
4221 /* This memory node corresponds to a vector block. */
7d652d97 4222 struct vector_block *block = m->start;
f3372c87
DA
4223 struct Lisp_Vector *vector = (struct Lisp_Vector *) block->data;
4224
4225 /* P is in the block's allocation range. Scan the block
4226 up to P and see whether P points to the start of some
4227 vector which is not on a free list. FIXME: check whether
4228 some allocation patterns (probably a lot of short vectors)
4229 may cause a substantial overhead of this loop. */
4230 while (VECTOR_IN_BLOCK (vector, block)
4231 && vector <= (struct Lisp_Vector *) p)
4232 {
914adc42 4233 if (!PSEUDOVECTOR_TYPEP (&vector->header, PVEC_FREE) && vector == p)
f3372c87
DA
4234 return 1;
4235 else
914adc42 4236 vector = ADVANCE (vector, vector_nbytes (vector));
f3372c87
DA
4237 }
4238 }
914adc42
DA
4239 else if (m->type == MEM_TYPE_VECTORLIKE
4240 && (char *) p == ((char *) m->start
4241 + offsetof (struct large_vector, v)))
f3372c87
DA
4242 /* This memory node corresponds to a large vector. */
4243 return 1;
4244 return 0;
34400008
GM
4245}
4246
4247
2336fe58 4248/* Value is non-zero if P is a pointer to a live buffer. M is a
34400008
GM
4249 pointer to the mem_block for P. */
4250
b0ab8123 4251static bool
971de7fb 4252live_buffer_p (struct mem_node *m, void *p)
34400008
GM
4253{
4254 /* P must point to the start of the block, and the buffer
4255 must not have been killed. */
4256 return (m->type == MEM_TYPE_BUFFER
4257 && p == m->start
e34f7f79 4258 && !NILP (((struct buffer *) p)->INTERNAL_FIELD (name)));
34400008
GM
4259}
4260
13c844fb
GM
4261#endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
4262
4263#if GC_MARK_STACK
4264
34400008
GM
4265#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4266
0c5307b0
DA
4267/* Currently not used, but may be called from gdb. */
4268
4269void dump_zombies (void) EXTERNALLY_VISIBLE;
4270
34400008
GM
4271/* Array of objects that are kept alive because the C stack contains
4272 a pattern that looks like a reference to them . */
4273
4274#define MAX_ZOMBIES 10
4275static Lisp_Object zombies[MAX_ZOMBIES];
4276
4277/* Number of zombie objects. */
4278
211a0b2a 4279static EMACS_INT nzombies;
34400008
GM
4280
4281/* Number of garbage collections. */
4282
211a0b2a 4283static EMACS_INT ngcs;
34400008
GM
4284
4285/* Average percentage of zombies per collection. */
4286
4287static double avg_zombies;
4288
4289/* Max. number of live and zombie objects. */
4290
211a0b2a 4291static EMACS_INT max_live, max_zombies;
34400008
GM
4292
4293/* Average number of live objects per GC. */
4294
4295static double avg_live;
4296
a7ca3326 4297DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
7ee72033 4298 doc: /* Show information about live and zombie objects. */)
5842a27b 4299 (void)
34400008 4300{
83fc9c63 4301 Lisp_Object args[8], zombie_list = Qnil;
211a0b2a 4302 EMACS_INT i;
6e4b3fbe 4303 for (i = 0; i < min (MAX_ZOMBIES, nzombies); i++)
83fc9c63
DL
4304 zombie_list = Fcons (zombies[i], zombie_list);
4305 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
34400008
GM
4306 args[1] = make_number (ngcs);
4307 args[2] = make_float (avg_live);
4308 args[3] = make_float (avg_zombies);
4309 args[4] = make_float (avg_zombies / avg_live / 100);
4310 args[5] = make_number (max_live);
4311 args[6] = make_number (max_zombies);
83fc9c63
DL
4312 args[7] = zombie_list;
4313 return Fmessage (8, args);
34400008
GM
4314}
4315
4316#endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4317
4318
182ff242
GM
4319/* Mark OBJ if we can prove it's a Lisp_Object. */
4320
b0ab8123 4321static void
971de7fb 4322mark_maybe_object (Lisp_Object obj)
182ff242 4323{
b609f591
YM
4324 void *po;
4325 struct mem_node *m;
4326
a84683fd
DC
4327#if USE_VALGRIND
4328 if (valgrind_p)
4329 VALGRIND_MAKE_MEM_DEFINED (&obj, sizeof (obj));
4330#endif
4331
b609f591
YM
4332 if (INTEGERP (obj))
4333 return;
4334
4335 po = (void *) XPNTR (obj);
4336 m = mem_find (po);
177c0ea7 4337
182ff242
GM
4338 if (m != MEM_NIL)
4339 {
fce31d69 4340 bool mark_p = 0;
182ff242 4341
8e50cc2d 4342 switch (XTYPE (obj))
182ff242
GM
4343 {
4344 case Lisp_String:
4345 mark_p = (live_string_p (m, po)
4346 && !STRING_MARKED_P ((struct Lisp_String *) po));
4347 break;
4348
4349 case Lisp_Cons:
08b7c2cb 4350 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
182ff242
GM
4351 break;
4352
4353 case Lisp_Symbol:
2336fe58 4354 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
182ff242
GM
4355 break;
4356
4357 case Lisp_Float:
ab6780cd 4358 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
182ff242
GM
4359 break;
4360
4361 case Lisp_Vectorlike:
8e50cc2d 4362 /* Note: can't check BUFFERP before we know it's a
182ff242
GM
4363 buffer because checking that dereferences the pointer
4364 PO which might point anywhere. */
4365 if (live_vector_p (m, po))
8e50cc2d 4366 mark_p = !SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
182ff242 4367 else if (live_buffer_p (m, po))
8e50cc2d 4368 mark_p = BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
182ff242
GM
4369 break;
4370
4371 case Lisp_Misc:
67ee9f6e 4372 mark_p = (live_misc_p (m, po) && !XMISCANY (obj)->gcmarkbit);
182ff242 4373 break;
6bbd7a29 4374
2de9f71c 4375 default:
6bbd7a29 4376 break;
182ff242
GM
4377 }
4378
4379 if (mark_p)
4380 {
4381#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4382 if (nzombies < MAX_ZOMBIES)
83fc9c63 4383 zombies[nzombies] = obj;
182ff242
GM
4384 ++nzombies;
4385#endif
49723c04 4386 mark_object (obj);
182ff242
GM
4387 }
4388 }
4389}
ece93c02
GM
4390
4391
4392/* If P points to Lisp data, mark that as live if it isn't already
4393 marked. */
4394
b0ab8123 4395static void
971de7fb 4396mark_maybe_pointer (void *p)
ece93c02
GM
4397{
4398 struct mem_node *m;
4399
a84683fd
DC
4400#if USE_VALGRIND
4401 if (valgrind_p)
4402 VALGRIND_MAKE_MEM_DEFINED (&p, sizeof (p));
4403#endif
4404
bfe3e0a2 4405 /* Quickly rule out some values which can't point to Lisp data.
2b90362b 4406 USE_LSB_TAG needs Lisp data to be aligned on multiples of GCALIGNMENT.
bfe3e0a2 4407 Otherwise, assume that Lisp data is aligned on even addresses. */
2b90362b 4408 if ((intptr_t) p % (USE_LSB_TAG ? GCALIGNMENT : 2))
ece93c02 4409 return;
177c0ea7 4410
ece93c02
GM
4411 m = mem_find (p);
4412 if (m != MEM_NIL)
4413 {
4414 Lisp_Object obj = Qnil;
177c0ea7 4415
ece93c02
GM
4416 switch (m->type)
4417 {
4418 case MEM_TYPE_NON_LISP:
5474c384 4419 case MEM_TYPE_SPARE:
2fe50224 4420 /* Nothing to do; not a pointer to Lisp memory. */
ece93c02 4421 break;
177c0ea7 4422
ece93c02 4423 case MEM_TYPE_BUFFER:
5e617bc2 4424 if (live_buffer_p (m, p) && !VECTOR_MARKED_P ((struct buffer *)p))
ece93c02
GM
4425 XSETVECTOR (obj, p);
4426 break;
177c0ea7 4427
ece93c02 4428 case MEM_TYPE_CONS:
08b7c2cb 4429 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
ece93c02
GM
4430 XSETCONS (obj, p);
4431 break;
177c0ea7 4432
ece93c02
GM
4433 case MEM_TYPE_STRING:
4434 if (live_string_p (m, p)
4435 && !STRING_MARKED_P ((struct Lisp_String *) p))
4436 XSETSTRING (obj, p);
4437 break;
4438
4439 case MEM_TYPE_MISC:
2336fe58
SM
4440 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
4441 XSETMISC (obj, p);
ece93c02 4442 break;
177c0ea7 4443
ece93c02 4444 case MEM_TYPE_SYMBOL:
2336fe58 4445 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
ece93c02
GM
4446 XSETSYMBOL (obj, p);
4447 break;
177c0ea7 4448
ece93c02 4449 case MEM_TYPE_FLOAT:
ab6780cd 4450 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
ece93c02
GM
4451 XSETFLOAT (obj, p);
4452 break;
177c0ea7 4453
9c545a55 4454 case MEM_TYPE_VECTORLIKE:
f3372c87 4455 case MEM_TYPE_VECTOR_BLOCK:
ece93c02
GM
4456 if (live_vector_p (m, p))
4457 {
4458 Lisp_Object tem;
4459 XSETVECTOR (tem, p);
8e50cc2d 4460 if (!SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
ece93c02
GM
4461 obj = tem;
4462 }
4463 break;
4464
4465 default:
1088b922 4466 emacs_abort ();
ece93c02
GM
4467 }
4468
8e50cc2d 4469 if (!NILP (obj))
49723c04 4470 mark_object (obj);
ece93c02
GM
4471 }
4472}
4473
4474
e32a5799 4475/* Alignment of pointer values. Use alignof, as it sometimes returns
e3fb2efb
PE
4476 a smaller alignment than GCC's __alignof__ and mark_memory might
4477 miss objects if __alignof__ were used. */
e32a5799 4478#define GC_POINTER_ALIGNMENT alignof (void *)
3164aeac 4479
e3fb2efb
PE
4480/* Define POINTERS_MIGHT_HIDE_IN_OBJECTS to 1 if marking via C pointers does
4481 not suffice, which is the typical case. A host where a Lisp_Object is
4482 wider than a pointer might allocate a Lisp_Object in non-adjacent halves.
4483 If USE_LSB_TAG, the bottom half is not a valid pointer, but it should
4484 suffice to widen it to to a Lisp_Object and check it that way. */
bfe3e0a2
PE
4485#if USE_LSB_TAG || VAL_MAX < UINTPTR_MAX
4486# if !USE_LSB_TAG && VAL_MAX < UINTPTR_MAX >> GCTYPEBITS
e3fb2efb
PE
4487 /* If tag bits straddle pointer-word boundaries, neither mark_maybe_pointer
4488 nor mark_maybe_object can follow the pointers. This should not occur on
4489 any practical porting target. */
4490# error "MSB type bits straddle pointer-word boundaries"
4491# endif
4492 /* Marking via C pointers does not suffice, because Lisp_Objects contain
4493 pointer words that hold pointers ORed with type bits. */
4494# define POINTERS_MIGHT_HIDE_IN_OBJECTS 1
4495#else
4496 /* Marking via C pointers suffices, because Lisp_Objects contain pointer
4497 words that hold unmodified pointers. */
4498# define POINTERS_MIGHT_HIDE_IN_OBJECTS 0
4499#endif
4500
55a314a5
YM
4501/* Mark Lisp objects referenced from the address range START+OFFSET..END
4502 or END+OFFSET..START. */
34400008 4503
177c0ea7 4504static void
3164aeac 4505mark_memory (void *start, void *end)
b41253a3
JW
4506#if defined (__clang__) && defined (__has_feature)
4507#if __has_feature(address_sanitizer)
ed6b3510
JW
4508 /* Do not allow -faddress-sanitizer to check this function, since it
4509 crosses the function stack boundary, and thus would yield many
4510 false positives. */
4511 __attribute__((no_address_safety_analysis))
4512#endif
b41253a3 4513#endif
34400008 4514{
ece93c02 4515 void **pp;
3164aeac 4516 int i;
34400008
GM
4517
4518#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4519 nzombies = 0;
4520#endif
4521
4522 /* Make START the pointer to the start of the memory region,
4523 if it isn't already. */
4524 if (end < start)
4525 {
4526 void *tem = start;
4527 start = end;
4528 end = tem;
4529 }
ece93c02 4530
ece93c02
GM
4531 /* Mark Lisp data pointed to. This is necessary because, in some
4532 situations, the C compiler optimizes Lisp objects away, so that
4533 only a pointer to them remains. Example:
4534
4535 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
7ee72033 4536 ()
ece93c02
GM
4537 {
4538 Lisp_Object obj = build_string ("test");
4539 struct Lisp_String *s = XSTRING (obj);
4540 Fgarbage_collect ();
4541 fprintf (stderr, "test `%s'\n", s->data);
4542 return Qnil;
4543 }
4544
4545 Here, `obj' isn't really used, and the compiler optimizes it
4546 away. The only reference to the life string is through the
4547 pointer `s'. */
177c0ea7 4548
3164aeac
PE
4549 for (pp = start; (void *) pp < end; pp++)
4550 for (i = 0; i < sizeof *pp; i += GC_POINTER_ALIGNMENT)
27f3c637 4551 {
e3fb2efb
PE
4552 void *p = *(void **) ((char *) pp + i);
4553 mark_maybe_pointer (p);
4554 if (POINTERS_MIGHT_HIDE_IN_OBJECTS)
646b5f55 4555 mark_maybe_object (XIL ((intptr_t) p));
27f3c637 4556 }
182ff242
GM
4557}
4558
182ff242
GM
4559#if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4560
fce31d69
PE
4561static bool setjmp_tested_p;
4562static int longjmps_done;
182ff242
GM
4563
4564#define SETJMP_WILL_LIKELY_WORK "\
4565\n\
4566Emacs garbage collector has been changed to use conservative stack\n\
4567marking. Emacs has determined that the method it uses to do the\n\
4568marking will likely work on your system, but this isn't sure.\n\
4569\n\
4570If you are a system-programmer, or can get the help of a local wizard\n\
4571who is, please take a look at the function mark_stack in alloc.c, and\n\
4572verify that the methods used are appropriate for your system.\n\
4573\n\
d191623b 4574Please mail the result to <emacs-devel@gnu.org>.\n\
182ff242
GM
4575"
4576
4577#define SETJMP_WILL_NOT_WORK "\
4578\n\
4579Emacs garbage collector has been changed to use conservative stack\n\
4580marking. Emacs has determined that the default method it uses to do the\n\
4581marking will not work on your system. We will need a system-dependent\n\
4582solution for your system.\n\
4583\n\
4584Please take a look at the function mark_stack in alloc.c, and\n\
4585try to find a way to make it work on your system.\n\
30f637f8
DL
4586\n\
4587Note that you may get false negatives, depending on the compiler.\n\
4588In particular, you need to use -O with GCC for this test.\n\
4589\n\
d191623b 4590Please mail the result to <emacs-devel@gnu.org>.\n\
182ff242
GM
4591"
4592
4593
4594/* Perform a quick check if it looks like setjmp saves registers in a
4595 jmp_buf. Print a message to stderr saying so. When this test
4596 succeeds, this is _not_ a proof that setjmp is sufficient for
4597 conservative stack marking. Only the sources or a disassembly
4598 can prove that. */
4599
4600static void
2018939f 4601test_setjmp (void)
182ff242
GM
4602{
4603 char buf[10];
4604 register int x;
0328b6de 4605 sys_jmp_buf jbuf;
182ff242
GM
4606
4607 /* Arrange for X to be put in a register. */
4608 sprintf (buf, "1");
4609 x = strlen (buf);
4610 x = 2 * x - 1;
4611
0328b6de 4612 sys_setjmp (jbuf);
182ff242 4613 if (longjmps_done == 1)
34400008 4614 {
182ff242 4615 /* Came here after the longjmp at the end of the function.
34400008 4616
182ff242
GM
4617 If x == 1, the longjmp has restored the register to its
4618 value before the setjmp, and we can hope that setjmp
4619 saves all such registers in the jmp_buf, although that
4620 isn't sure.
34400008 4621
182ff242
GM
4622 For other values of X, either something really strange is
4623 taking place, or the setjmp just didn't save the register. */
4624
4625 if (x == 1)
4626 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
4627 else
4628 {
4629 fprintf (stderr, SETJMP_WILL_NOT_WORK);
4630 exit (1);
34400008
GM
4631 }
4632 }
182ff242
GM
4633
4634 ++longjmps_done;
4635 x = 2;
4636 if (longjmps_done == 1)
0328b6de 4637 sys_longjmp (jbuf, 1);
34400008
GM
4638}
4639
182ff242
GM
4640#endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
4641
34400008
GM
4642
4643#if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4644
4645/* Abort if anything GCPRO'd doesn't survive the GC. */
4646
4647static void
2018939f 4648check_gcpros (void)
34400008
GM
4649{
4650 struct gcpro *p;
f66c7cf8 4651 ptrdiff_t i;
34400008
GM
4652
4653 for (p = gcprolist; p; p = p->next)
4654 for (i = 0; i < p->nvars; ++i)
4655 if (!survives_gc_p (p->var[i]))
92cc28b2
SM
4656 /* FIXME: It's not necessarily a bug. It might just be that the
4657 GCPRO is unnecessary or should release the object sooner. */
1088b922 4658 emacs_abort ();
34400008
GM
4659}
4660
4661#elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4662
0c5307b0 4663void
2018939f 4664dump_zombies (void)
34400008
GM
4665{
4666 int i;
4667
6e4b3fbe 4668 fprintf (stderr, "\nZombies kept alive = %"pI"d:\n", nzombies);
34400008
GM
4669 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
4670 {
4671 fprintf (stderr, " %d = ", i);
4672 debug_print (zombies[i]);
4673 }
4674}
4675
4676#endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4677
4678
182ff242
GM
4679/* Mark live Lisp objects on the C stack.
4680
4681 There are several system-dependent problems to consider when
4682 porting this to new architectures:
4683
4684 Processor Registers
4685
4686 We have to mark Lisp objects in CPU registers that can hold local
4687 variables or are used to pass parameters.
4688
4689 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4690 something that either saves relevant registers on the stack, or
4691 calls mark_maybe_object passing it each register's contents.
4692
4693 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4694 implementation assumes that calling setjmp saves registers we need
4695 to see in a jmp_buf which itself lies on the stack. This doesn't
4696 have to be true! It must be verified for each system, possibly
4697 by taking a look at the source code of setjmp.
4698
2018939f
AS
4699 If __builtin_unwind_init is available (defined by GCC >= 2.8) we
4700 can use it as a machine independent method to store all registers
4701 to the stack. In this case the macros described in the previous
4702 two paragraphs are not used.
4703
182ff242
GM
4704 Stack Layout
4705
4706 Architectures differ in the way their processor stack is organized.
4707 For example, the stack might look like this
4708
4709 +----------------+
4710 | Lisp_Object | size = 4
4711 +----------------+
4712 | something else | size = 2
4713 +----------------+
4714 | Lisp_Object | size = 4
4715 +----------------+
4716 | ... |
4717
4718 In such a case, not every Lisp_Object will be aligned equally. To
4719 find all Lisp_Object on the stack it won't be sufficient to walk
4720 the stack in steps of 4 bytes. Instead, two passes will be
4721 necessary, one starting at the start of the stack, and a second
4722 pass starting at the start of the stack + 2. Likewise, if the
4723 minimal alignment of Lisp_Objects on the stack is 1, four passes
4724 would be necessary, each one starting with one byte more offset
c9af454e 4725 from the stack start. */
34400008
GM
4726
4727static void
971de7fb 4728mark_stack (void)
34400008 4729{
34400008
GM
4730 void *end;
4731
2018939f
AS
4732#ifdef HAVE___BUILTIN_UNWIND_INIT
4733 /* Force callee-saved registers and register windows onto the stack.
4734 This is the preferred method if available, obviating the need for
4735 machine dependent methods. */
4736 __builtin_unwind_init ();
4737 end = &end;
4738#else /* not HAVE___BUILTIN_UNWIND_INIT */
dff45157
PE
4739#ifndef GC_SAVE_REGISTERS_ON_STACK
4740 /* jmp_buf may not be aligned enough on darwin-ppc64 */
4741 union aligned_jmpbuf {
4742 Lisp_Object o;
0328b6de 4743 sys_jmp_buf j;
dff45157 4744 } j;
fce31d69 4745 volatile bool stack_grows_down_p = (char *) &j > (char *) stack_base;
dff45157 4746#endif
34400008
GM
4747 /* This trick flushes the register windows so that all the state of
4748 the process is contained in the stack. */
ab6780cd 4749 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
422eec7e
DL
4750 needed on ia64 too. See mach_dep.c, where it also says inline
4751 assembler doesn't work with relevant proprietary compilers. */
4a00783e 4752#ifdef __sparc__
4d18a7a2
DN
4753#if defined (__sparc64__) && defined (__FreeBSD__)
4754 /* FreeBSD does not have a ta 3 handler. */
4c1616be
CY
4755 asm ("flushw");
4756#else
34400008 4757 asm ("ta 3");
4c1616be 4758#endif
34400008 4759#endif
177c0ea7 4760
34400008
GM
4761 /* Save registers that we need to see on the stack. We need to see
4762 registers used to hold register variables and registers used to
4763 pass parameters. */
4764#ifdef GC_SAVE_REGISTERS_ON_STACK
4765 GC_SAVE_REGISTERS_ON_STACK (end);
182ff242 4766#else /* not GC_SAVE_REGISTERS_ON_STACK */
177c0ea7 4767
182ff242
GM
4768#ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
4769 setjmp will definitely work, test it
4770 and print a message with the result
4771 of the test. */
4772 if (!setjmp_tested_p)
4773 {
4774 setjmp_tested_p = 1;
4775 test_setjmp ();
4776 }
4777#endif /* GC_SETJMP_WORKS */
177c0ea7 4778
0328b6de 4779 sys_setjmp (j.j);
34400008 4780 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
182ff242 4781#endif /* not GC_SAVE_REGISTERS_ON_STACK */
2018939f 4782#endif /* not HAVE___BUILTIN_UNWIND_INIT */
34400008
GM
4783
4784 /* This assumes that the stack is a contiguous region in memory. If
182ff242
GM
4785 that's not the case, something has to be done here to iterate
4786 over the stack segments. */
3164aeac
PE
4787 mark_memory (stack_base, end);
4788
4dec23ff
AS
4789 /* Allow for marking a secondary stack, like the register stack on the
4790 ia64. */
4791#ifdef GC_MARK_SECONDARY_STACK
4792 GC_MARK_SECONDARY_STACK ();
4793#endif
34400008
GM
4794
4795#if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4796 check_gcpros ();
4797#endif
4798}
4799
0c5307b0
DA
4800#else /* GC_MARK_STACK == 0 */
4801
4802#define mark_maybe_object(obj) emacs_abort ()
4803
34400008
GM
4804#endif /* GC_MARK_STACK != 0 */
4805
4806
7ffb6955 4807/* Determine whether it is safe to access memory at address P. */
d3d47262 4808static int
971de7fb 4809valid_pointer_p (void *p)
7ffb6955 4810{
f892cf9c
EZ
4811#ifdef WINDOWSNT
4812 return w32_valid_pointer_p (p, 16);
4813#else
41bed37d 4814 int fd[2];
7ffb6955
KS
4815
4816 /* Obviously, we cannot just access it (we would SEGV trying), so we
4817 trick the o/s to tell us whether p is a valid pointer.
4818 Unfortunately, we cannot use NULL_DEVICE here, as emacs_write may
4819 not validate p in that case. */
4820
c7ddc792 4821 if (emacs_pipe (fd) == 0)
7ffb6955 4822 {
fce31d69 4823 bool valid = emacs_write (fd[1], (char *) p, 16) == 16;
41bed37d
PE
4824 emacs_close (fd[1]);
4825 emacs_close (fd[0]);
7ffb6955
KS
4826 return valid;
4827 }
4828
4829 return -1;
f892cf9c 4830#endif
7ffb6955 4831}
3cd55735 4832
6cda572a
DA
4833/* Return 2 if OBJ is a killed or special buffer object, 1 if OBJ is a
4834 valid lisp object, 0 if OBJ is NOT a valid lisp object, or -1 if we
4835 cannot validate OBJ. This function can be quite slow, so its primary
4836 use is the manual debugging. The only exception is print_object, where
4837 we use it to check whether the memory referenced by the pointer of
4838 Lisp_Save_Value object contains valid objects. */
3cd55735
KS
4839
4840int
971de7fb 4841valid_lisp_object_p (Lisp_Object obj)
3cd55735 4842{
de7124a7 4843 void *p;
7ffb6955 4844#if GC_MARK_STACK
3cd55735 4845 struct mem_node *m;
de7124a7 4846#endif
3cd55735
KS
4847
4848 if (INTEGERP (obj))
4849 return 1;
4850
4851 p = (void *) XPNTR (obj);
3cd55735
KS
4852 if (PURE_POINTER_P (p))
4853 return 1;
4854
c1ca42ca
DA
4855 if (p == &buffer_defaults || p == &buffer_local_symbols)
4856 return 2;
4857
de7124a7 4858#if !GC_MARK_STACK
7ffb6955 4859 return valid_pointer_p (p);
de7124a7
KS
4860#else
4861
3cd55735
KS
4862 m = mem_find (p);
4863
4864 if (m == MEM_NIL)
7ffb6955
KS
4865 {
4866 int valid = valid_pointer_p (p);
4867 if (valid <= 0)
4868 return valid;
4869
4870 if (SUBRP (obj))
4871 return 1;
4872
4873 return 0;
4874 }
3cd55735
KS
4875
4876 switch (m->type)
4877 {
4878 case MEM_TYPE_NON_LISP:
5474c384 4879 case MEM_TYPE_SPARE:
3cd55735
KS
4880 return 0;
4881
4882 case MEM_TYPE_BUFFER:
c1ca42ca 4883 return live_buffer_p (m, p) ? 1 : 2;
3cd55735
KS
4884
4885 case MEM_TYPE_CONS:
4886 return live_cons_p (m, p);
4887
4888 case MEM_TYPE_STRING:
4889 return live_string_p (m, p);
4890
4891 case MEM_TYPE_MISC:
4892 return live_misc_p (m, p);
4893
4894 case MEM_TYPE_SYMBOL:
4895 return live_symbol_p (m, p);
4896
4897 case MEM_TYPE_FLOAT:
4898 return live_float_p (m, p);
4899
9c545a55 4900 case MEM_TYPE_VECTORLIKE:
f3372c87 4901 case MEM_TYPE_VECTOR_BLOCK:
3cd55735
KS
4902 return live_vector_p (m, p);
4903
4904 default:
4905 break;
4906 }
4907
4908 return 0;
4909#endif
4910}
4911
4912
4913
34400008 4914\f
2e471eb5
GM
4915/***********************************************************************
4916 Pure Storage Management
4917 ***********************************************************************/
4918
1f0b3fd2
GM
4919/* Allocate room for SIZE bytes from pure Lisp storage and return a
4920 pointer to it. TYPE is the Lisp type for which the memory is
e5bc14d4 4921 allocated. TYPE < 0 means it's not used for a Lisp object. */
1f0b3fd2 4922
261cb4bb 4923static void *
971de7fb 4924pure_alloc (size_t size, int type)
1f0b3fd2 4925{
261cb4bb 4926 void *result;
bfe3e0a2 4927#if USE_LSB_TAG
2b90362b 4928 size_t alignment = GCALIGNMENT;
6b61353c 4929#else
e32a5799 4930 size_t alignment = alignof (EMACS_INT);
1f0b3fd2
GM
4931
4932 /* Give Lisp_Floats an extra alignment. */
4933 if (type == Lisp_Float)
e32a5799 4934 alignment = alignof (struct Lisp_Float);
6b61353c 4935#endif
1f0b3fd2 4936
44117420 4937 again:
e5bc14d4
YM
4938 if (type >= 0)
4939 {
4940 /* Allocate space for a Lisp object from the beginning of the free
4941 space with taking account of alignment. */
4942 result = ALIGN (purebeg + pure_bytes_used_lisp, alignment);
4943 pure_bytes_used_lisp = ((char *)result - (char *)purebeg) + size;
4944 }
4945 else
4946 {
4947 /* Allocate space for a non-Lisp object from the end of the free
4948 space. */
4949 pure_bytes_used_non_lisp += size;
4950 result = purebeg + pure_size - pure_bytes_used_non_lisp;
4951 }
4952 pure_bytes_used = pure_bytes_used_lisp + pure_bytes_used_non_lisp;
44117420
KS
4953
4954 if (pure_bytes_used <= pure_size)
4955 return result;
4956
4957 /* Don't allocate a large amount here,
4958 because it might get mmap'd and then its address
4959 might not be usable. */
23f86fce 4960 purebeg = xmalloc (10000);
44117420
KS
4961 pure_size = 10000;
4962 pure_bytes_used_before_overflow += pure_bytes_used - size;
4963 pure_bytes_used = 0;
e5bc14d4 4964 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
44117420 4965 goto again;
1f0b3fd2
GM
4966}
4967
4968
852f8cdc 4969/* Print a warning if PURESIZE is too small. */
9e713715
GM
4970
4971void
971de7fb 4972check_pure_size (void)
9e713715
GM
4973{
4974 if (pure_bytes_used_before_overflow)
c2982e87
PE
4975 message (("emacs:0:Pure Lisp storage overflow (approx. %"pI"d"
4976 " bytes needed)"),
4977 pure_bytes_used + pure_bytes_used_before_overflow);
9e713715
GM
4978}
4979
4980
79fd0489
YM
4981/* Find the byte sequence {DATA[0], ..., DATA[NBYTES-1], '\0'} from
4982 the non-Lisp data pool of the pure storage, and return its start
4983 address. Return NULL if not found. */
4984
4985static char *
d311d28c 4986find_string_data_in_pure (const char *data, ptrdiff_t nbytes)
79fd0489 4987{
14162469 4988 int i;
d311d28c 4989 ptrdiff_t skip, bm_skip[256], last_char_skip, infinity, start, start_max;
2aff7c53 4990 const unsigned char *p;
79fd0489
YM
4991 char *non_lisp_beg;
4992
d311d28c 4993 if (pure_bytes_used_non_lisp <= nbytes)
79fd0489
YM
4994 return NULL;
4995
4996 /* Set up the Boyer-Moore table. */
4997 skip = nbytes + 1;
4998 for (i = 0; i < 256; i++)
4999 bm_skip[i] = skip;
5000
2aff7c53 5001 p = (const unsigned char *) data;
79fd0489
YM
5002 while (--skip > 0)
5003 bm_skip[*p++] = skip;
5004
5005 last_char_skip = bm_skip['\0'];
5006
5007 non_lisp_beg = purebeg + pure_size - pure_bytes_used_non_lisp;
5008 start_max = pure_bytes_used_non_lisp - (nbytes + 1);
5009
5010 /* See the comments in the function `boyer_moore' (search.c) for the
5011 use of `infinity'. */
5012 infinity = pure_bytes_used_non_lisp + 1;
5013 bm_skip['\0'] = infinity;
5014
2aff7c53 5015 p = (const unsigned char *) non_lisp_beg + nbytes;
79fd0489
YM
5016 start = 0;
5017 do
5018 {
5019 /* Check the last character (== '\0'). */
5020 do
5021 {
5022 start += bm_skip[*(p + start)];
5023 }
5024 while (start <= start_max);
5025
5026 if (start < infinity)
5027 /* Couldn't find the last character. */
5028 return NULL;
5029
5030 /* No less than `infinity' means we could find the last
5031 character at `p[start - infinity]'. */
5032 start -= infinity;
5033
5034 /* Check the remaining characters. */
5035 if (memcmp (data, non_lisp_beg + start, nbytes) == 0)
5036 /* Found. */
5037 return non_lisp_beg + start;
5038
5039 start += last_char_skip;
5040 }
5041 while (start <= start_max);
5042
5043 return NULL;
5044}
5045
5046
2e471eb5
GM
5047/* Return a string allocated in pure space. DATA is a buffer holding
5048 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
fce31d69 5049 means make the result string multibyte.
1a4f1e2c 5050
2e471eb5
GM
5051 Must get an error if pure storage is full, since if it cannot hold
5052 a large string it may be able to hold conses that point to that
5053 string; then the string is not protected from gc. */
7146af97
JB
5054
5055Lisp_Object
14162469 5056make_pure_string (const char *data,
fce31d69 5057 ptrdiff_t nchars, ptrdiff_t nbytes, bool multibyte)
7146af97 5058{
2e471eb5 5059 Lisp_Object string;
98c6f1e3 5060 struct Lisp_String *s = pure_alloc (sizeof *s, Lisp_String);
90256841 5061 s->data = (unsigned char *) find_string_data_in_pure (data, nbytes);
79fd0489
YM
5062 if (s->data == NULL)
5063 {
98c6f1e3 5064 s->data = pure_alloc (nbytes + 1, -1);
72af86bd 5065 memcpy (s->data, data, nbytes);
79fd0489
YM
5066 s->data[nbytes] = '\0';
5067 }
2e471eb5
GM
5068 s->size = nchars;
5069 s->size_byte = multibyte ? nbytes : -1;
77c7bcb1 5070 s->intervals = NULL;
2e471eb5
GM
5071 XSETSTRING (string, s);
5072 return string;
7146af97
JB
5073}
5074
2a0213a6
DA
5075/* Return a string allocated in pure space. Do not
5076 allocate the string data, just point to DATA. */
a56eaaef
DN
5077
5078Lisp_Object
2a0213a6 5079make_pure_c_string (const char *data, ptrdiff_t nchars)
a56eaaef
DN
5080{
5081 Lisp_Object string;
98c6f1e3 5082 struct Lisp_String *s = pure_alloc (sizeof *s, Lisp_String);
a56eaaef
DN
5083 s->size = nchars;
5084 s->size_byte = -1;
323637a2 5085 s->data = (unsigned char *) data;
77c7bcb1 5086 s->intervals = NULL;
a56eaaef
DN
5087 XSETSTRING (string, s);
5088 return string;
5089}
2e471eb5 5090
34400008
GM
5091/* Return a cons allocated from pure space. Give it pure copies
5092 of CAR as car and CDR as cdr. */
5093
7146af97 5094Lisp_Object
971de7fb 5095pure_cons (Lisp_Object car, Lisp_Object cdr)
7146af97 5096{
98c6f1e3
PE
5097 Lisp_Object new;
5098 struct Lisp_Cons *p = pure_alloc (sizeof *p, Lisp_Cons);
1f0b3fd2 5099 XSETCONS (new, p);
f3fbd155
KR
5100 XSETCAR (new, Fpurecopy (car));
5101 XSETCDR (new, Fpurecopy (cdr));
7146af97
JB
5102 return new;
5103}
5104
7146af97 5105
34400008
GM
5106/* Value is a float object with value NUM allocated from pure space. */
5107
d3d47262 5108static Lisp_Object
971de7fb 5109make_pure_float (double num)
7146af97 5110{
98c6f1e3
PE
5111 Lisp_Object new;
5112 struct Lisp_Float *p = pure_alloc (sizeof *p, Lisp_Float);
1f0b3fd2 5113 XSETFLOAT (new, p);
f601cdf3 5114 XFLOAT_INIT (new, num);
7146af97
JB
5115 return new;
5116}
5117
34400008
GM
5118
5119/* Return a vector with room for LEN Lisp_Objects allocated from
5120 pure space. */
5121
72cb32cf 5122static Lisp_Object
d311d28c 5123make_pure_vector (ptrdiff_t len)
7146af97 5124{
1f0b3fd2 5125 Lisp_Object new;
d06714cb 5126 size_t size = header_size + len * word_size;
98c6f1e3 5127 struct Lisp_Vector *p = pure_alloc (size, Lisp_Vectorlike);
1f0b3fd2 5128 XSETVECTOR (new, p);
eab3844f 5129 XVECTOR (new)->header.size = len;
7146af97
JB
5130 return new;
5131}
5132
34400008 5133
a7ca3326 5134DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
909e3b33 5135 doc: /* Make a copy of object OBJ in pure storage.
228299fa 5136Recursively copies contents of vectors and cons cells.
7ee72033 5137Does not copy symbols. Copies strings without text properties. */)
5842a27b 5138 (register Lisp_Object obj)
7146af97 5139{
265a9e55 5140 if (NILP (Vpurify_flag))
7146af97
JB
5141 return obj;
5142
1f0b3fd2 5143 if (PURE_POINTER_P (XPNTR (obj)))
7146af97
JB
5144 return obj;
5145
e9515805
SM
5146 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5147 {
5148 Lisp_Object tmp = Fgethash (obj, Vpurify_flag, Qnil);
5149 if (!NILP (tmp))
5150 return tmp;
5151 }
5152
d6dd74bb 5153 if (CONSP (obj))
e9515805 5154 obj = pure_cons (XCAR (obj), XCDR (obj));
d6dd74bb 5155 else if (FLOATP (obj))
e9515805 5156 obj = make_pure_float (XFLOAT_DATA (obj));
d6dd74bb 5157 else if (STRINGP (obj))
42a5b22f 5158 obj = make_pure_string (SSDATA (obj), SCHARS (obj),
e9515805
SM
5159 SBYTES (obj),
5160 STRING_MULTIBYTE (obj));
876c194c 5161 else if (COMPILEDP (obj) || VECTORP (obj))
d6dd74bb
KH
5162 {
5163 register struct Lisp_Vector *vec;
d311d28c
PE
5164 register ptrdiff_t i;
5165 ptrdiff_t size;
d6dd74bb 5166
77b37c05 5167 size = ASIZE (obj);
7d535c68
KH
5168 if (size & PSEUDOVECTOR_FLAG)
5169 size &= PSEUDOVECTOR_SIZE_MASK;
6b61353c 5170 vec = XVECTOR (make_pure_vector (size));
d6dd74bb 5171 for (i = 0; i < size; i++)
d6d9cbc1 5172 vec->u.contents[i] = Fpurecopy (AREF (obj, i));
876c194c 5173 if (COMPILEDP (obj))
985773c9 5174 {
876c194c
SM
5175 XSETPVECTYPE (vec, PVEC_COMPILED);
5176 XSETCOMPILED (obj, vec);
985773c9 5177 }
d6dd74bb
KH
5178 else
5179 XSETVECTOR (obj, vec);
7146af97 5180 }
d6dd74bb
KH
5181 else if (MARKERP (obj))
5182 error ("Attempt to copy a marker to pure storage");
e9515805
SM
5183 else
5184 /* Not purified, don't hash-cons. */
5185 return obj;
5186
5187 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5188 Fputhash (obj, obj, Vpurify_flag);
6bbd7a29
GM
5189
5190 return obj;
7146af97 5191}
2e471eb5 5192
34400008 5193
7146af97 5194\f
34400008
GM
5195/***********************************************************************
5196 Protection from GC
5197 ***********************************************************************/
5198
2e471eb5
GM
5199/* Put an entry in staticvec, pointing at the variable with address
5200 VARADDRESS. */
7146af97
JB
5201
5202void
971de7fb 5203staticpro (Lisp_Object *varaddress)
7146af97 5204{
7146af97 5205 if (staticidx >= NSTATICS)
afb8aa24 5206 fatal ("NSTATICS too small; try increasing and recompiling Emacs.");
4195afc3 5207 staticvec[staticidx++] = varaddress;
7146af97
JB
5208}
5209
7146af97 5210\f
34400008
GM
5211/***********************************************************************
5212 Protection from GC
5213 ***********************************************************************/
1a4f1e2c 5214
e8197642
RS
5215/* Temporarily prevent garbage collection. */
5216
d311d28c 5217ptrdiff_t
971de7fb 5218inhibit_garbage_collection (void)
e8197642 5219{
d311d28c 5220 ptrdiff_t count = SPECPDL_INDEX ();
54defd0d 5221
6349ae4d 5222 specbind (Qgc_cons_threshold, make_number (MOST_POSITIVE_FIXNUM));
e8197642
RS
5223 return count;
5224}
5225
3ab6e069
DA
5226/* Used to avoid possible overflows when
5227 converting from C to Lisp integers. */
5228
b0ab8123 5229static Lisp_Object
3ab6e069
DA
5230bounded_number (EMACS_INT number)
5231{
5232 return make_number (min (MOST_POSITIVE_FIXNUM, number));
5233}
34400008 5234
12b3895d
TM
5235/* Calculate total bytes of live objects. */
5236
5237static size_t
5238total_bytes_of_live_objects (void)
5239{
5240 size_t tot = 0;
5241 tot += total_conses * sizeof (struct Lisp_Cons);
5242 tot += total_symbols * sizeof (struct Lisp_Symbol);
5243 tot += total_markers * sizeof (union Lisp_Misc);
5244 tot += total_string_bytes;
5245 tot += total_vector_slots * word_size;
5246 tot += total_floats * sizeof (struct Lisp_Float);
5247 tot += total_intervals * sizeof (struct interval);
5248 tot += total_strings * sizeof (struct Lisp_String);
5249 return tot;
5250}
5251
a7ca3326 5252DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
7ee72033 5253 doc: /* Reclaim storage for Lisp objects no longer needed.
e1e37596
RS
5254Garbage collection happens automatically if you cons more than
5255`gc-cons-threshold' bytes of Lisp data since previous garbage collection.
5db81e33
SM
5256`garbage-collect' normally returns a list with info on amount of space in use,
5257where each entry has the form (NAME SIZE USED FREE), where:
5258- NAME is a symbol describing the kind of objects this entry represents,
5259- SIZE is the number of bytes used by each one,
5260- USED is the number of those objects that were found live in the heap,
5261- FREE is the number of those objects that are not live but that Emacs
5262 keeps around for future allocations (maybe because it does not know how
5263 to return them to the OS).
e1e37596 5264However, if there was overflow in pure space, `garbage-collect'
999dd333
GM
5265returns nil, because real GC can't be done.
5266See Info node `(elisp)Garbage Collection'. */)
5842a27b 5267 (void)
7146af97 5268{
fce31d69 5269 struct buffer *nextb;
7146af97 5270 char stack_top_variable;
f66c7cf8 5271 ptrdiff_t i;
fce31d69 5272 bool message_p;
d311d28c 5273 ptrdiff_t count = SPECPDL_INDEX ();
43aac990 5274 struct timespec start;
fecbd8ff 5275 Lisp_Object retval = Qnil;
12b3895d 5276 size_t tot_before = 0;
2c5bd608 5277
3de0effb 5278 if (abort_on_gc)
1088b922 5279 emacs_abort ();
3de0effb 5280
9e713715
GM
5281 /* Can't GC if pure storage overflowed because we can't determine
5282 if something is a pure object or not. */
5283 if (pure_bytes_used_before_overflow)
5284 return Qnil;
5285
3d80c99f 5286 /* Record this function, so it appears on the profiler's backtraces. */
2f592f95 5287 record_in_backtrace (Qautomatic_gc, &Qnil, 0);
3d80c99f 5288
7e63e0c3 5289 check_cons_list ();
bbc012e0 5290
3c7e66a8
RS
5291 /* Don't keep undo information around forever.
5292 Do this early on, so it is no problem if the user quits. */
52b852c7 5293 FOR_EACH_BUFFER (nextb)
9cd47b72 5294 compact_buffer (nextb);
3c7e66a8 5295
6521894d 5296 if (profiler_memory_running)
12b3895d
TM
5297 tot_before = total_bytes_of_live_objects ();
5298
43aac990 5299 start = current_timespec ();
3c7e66a8 5300
58595309
KH
5301 /* In case user calls debug_print during GC,
5302 don't let that cause a recursive GC. */
5303 consing_since_gc = 0;
5304
6efc7df7
GM
5305 /* Save what's currently displayed in the echo area. */
5306 message_p = push_message ();
27e498e6 5307 record_unwind_protect_void (pop_message_unwind);
41c28a37 5308
7146af97
JB
5309 /* Save a copy of the contents of the stack, for debugging. */
5310#if MAX_SAVE_STACK > 0
265a9e55 5311 if (NILP (Vpurify_flag))
7146af97 5312 {
dd3f25f7 5313 char *stack;
903fe15d 5314 ptrdiff_t stack_size;
dd3f25f7 5315 if (&stack_top_variable < stack_bottom)
7146af97 5316 {
dd3f25f7
PE
5317 stack = &stack_top_variable;
5318 stack_size = stack_bottom - &stack_top_variable;
5319 }
5320 else
5321 {
5322 stack = stack_bottom;
5323 stack_size = &stack_top_variable - stack_bottom;
5324 }
5325 if (stack_size <= MAX_SAVE_STACK)
7146af97 5326 {
dd3f25f7 5327 if (stack_copy_size < stack_size)
7146af97 5328 {
38182d90 5329 stack_copy = xrealloc (stack_copy, stack_size);
dd3f25f7 5330 stack_copy_size = stack_size;
7146af97 5331 }
dd3f25f7 5332 memcpy (stack_copy, stack, stack_size);
7146af97
JB
5333 }
5334 }
5335#endif /* MAX_SAVE_STACK > 0 */
5336
299585ee 5337 if (garbage_collection_messages)
691c4285 5338 message1_nolog ("Garbage collecting...");
7146af97 5339
4d7e6e51 5340 block_input ();
6e0fca1d 5341
eec7b73d
RS
5342 shrink_regexp_cache ();
5343
7146af97
JB
5344 gc_in_progress = 1;
5345
005ca5c7 5346 /* Mark all the special slots that serve as the roots of accessibility. */
7146af97 5347
c752cfa9
DA
5348 mark_buffer (&buffer_defaults);
5349 mark_buffer (&buffer_local_symbols);
5350
7146af97 5351 for (i = 0; i < staticidx; i++)
49723c04 5352 mark_object (*staticvec[i]);
34400008 5353
2f592f95 5354 mark_specpdl ();
6ed8eeff 5355 mark_terminals ();
126f9c02
SM
5356 mark_kboards ();
5357
5358#ifdef USE_GTK
a411ac43 5359 xg_mark_data ();
126f9c02
SM
5360#endif
5361
34400008
GM
5362#if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
5363 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
5364 mark_stack ();
5365#else
acf5f7d3
SM
5366 {
5367 register struct gcpro *tail;
5368 for (tail = gcprolist; tail; tail = tail->next)
5369 for (i = 0; i < tail->nvars; i++)
005ca5c7 5370 mark_object (tail->var[i]);
acf5f7d3 5371 }
3e21b6a7 5372 mark_byte_stack ();
b286858c
SM
5373 {
5374 struct catchtag *catch;
5375 struct handler *handler;
177c0ea7 5376
7146af97
JB
5377 for (catch = catchlist; catch; catch = catch->next)
5378 {
49723c04
SM
5379 mark_object (catch->tag);
5380 mark_object (catch->val);
177c0ea7 5381 }
7146af97
JB
5382 for (handler = handlerlist; handler; handler = handler->next)
5383 {
49723c04
SM
5384 mark_object (handler->handler);
5385 mark_object (handler->var);
177c0ea7 5386 }
b286858c 5387 }
b286858c 5388#endif
7146af97 5389
454d7973
KS
5390#ifdef HAVE_WINDOW_SYSTEM
5391 mark_fringe_data ();
5392#endif
5393
74c35a48
SM
5394#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5395 mark_stack ();
5396#endif
5397
c37adf23
SM
5398 /* Everything is now marked, except for the things that require special
5399 finalization, i.e. the undo_list.
5400 Look thru every buffer's undo list
4c315bda
RS
5401 for elements that update markers that were not marked,
5402 and delete them. */
52b852c7 5403 FOR_EACH_BUFFER (nextb)
d17337e5
DA
5404 {
5405 /* If a buffer's undo list is Qt, that means that undo is
5406 turned off in that buffer. Calling truncate_undo_list on
5407 Qt tends to return NULL, which effectively turns undo back on.
5408 So don't call truncate_undo_list if undo_list is Qt. */
e34f7f79 5409 if (! EQ (nextb->INTERNAL_FIELD (undo_list), Qt))
d17337e5
DA
5410 {
5411 Lisp_Object tail, prev;
e34f7f79 5412 tail = nextb->INTERNAL_FIELD (undo_list);
d17337e5
DA
5413 prev = Qnil;
5414 while (CONSP (tail))
5415 {
5416 if (CONSP (XCAR (tail))
5417 && MARKERP (XCAR (XCAR (tail)))
5418 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
5419 {
5420 if (NILP (prev))
e34f7f79 5421 nextb->INTERNAL_FIELD (undo_list) = tail = XCDR (tail);
d17337e5
DA
5422 else
5423 {
5424 tail = XCDR (tail);
5425 XSETCDR (prev, tail);
5426 }
5427 }
5428 else
5429 {
5430 prev = tail;
5431 tail = XCDR (tail);
5432 }
5433 }
5434 }
5435 /* Now that we have stripped the elements that need not be in the
5436 undo_list any more, we can finally mark the list. */
e34f7f79 5437 mark_object (nextb->INTERNAL_FIELD (undo_list));
d17337e5 5438 }
4c315bda 5439
7146af97
JB
5440 gc_sweep ();
5441
5442 /* Clear the mark bits that we set in certain root slots. */
5443
033a5fa3 5444 unmark_byte_stack ();
3ef06d12
SM
5445 VECTOR_UNMARK (&buffer_defaults);
5446 VECTOR_UNMARK (&buffer_local_symbols);
7146af97 5447
34400008
GM
5448#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
5449 dump_zombies ();
5450#endif
5451
7e63e0c3 5452 check_cons_list ();
bbc012e0 5453
7146af97
JB
5454 gc_in_progress = 0;
5455
5c747675
DA
5456 unblock_input ();
5457
7146af97 5458 consing_since_gc = 0;
0dd6d66d
DA
5459 if (gc_cons_threshold < GC_DEFAULT_THRESHOLD / 10)
5460 gc_cons_threshold = GC_DEFAULT_THRESHOLD / 10;
7146af97 5461
c0c5c8ae 5462 gc_relative_threshold = 0;
96f077ad
SM
5463 if (FLOATP (Vgc_cons_percentage))
5464 { /* Set gc_cons_combined_threshold. */
12b3895d 5465 double tot = total_bytes_of_live_objects ();
ae35e756 5466
c0c5c8ae 5467 tot *= XFLOAT_DATA (Vgc_cons_percentage);
7216e43b 5468 if (0 < tot)
c0c5c8ae
PE
5469 {
5470 if (tot < TYPE_MAXIMUM (EMACS_INT))
5471 gc_relative_threshold = tot;
5472 else
5473 gc_relative_threshold = TYPE_MAXIMUM (EMACS_INT);
5474 }
96f077ad
SM
5475 }
5476
299585ee
RS
5477 if (garbage_collection_messages)
5478 {
6efc7df7
GM
5479 if (message_p || minibuf_level > 0)
5480 restore_message ();
299585ee
RS
5481 else
5482 message1_nolog ("Garbage collecting...done");
5483 }
7146af97 5484
98edb5ff 5485 unbind_to (count, Qnil);
fecbd8ff
SM
5486 {
5487 Lisp_Object total[11];
5488 int total_size = 10;
2e471eb5 5489
fecbd8ff
SM
5490 total[0] = list4 (Qconses, make_number (sizeof (struct Lisp_Cons)),
5491 bounded_number (total_conses),
5492 bounded_number (total_free_conses));
3ab6e069 5493
fecbd8ff
SM
5494 total[1] = list4 (Qsymbols, make_number (sizeof (struct Lisp_Symbol)),
5495 bounded_number (total_symbols),
5496 bounded_number (total_free_symbols));
3ab6e069 5497
fecbd8ff
SM
5498 total[2] = list4 (Qmiscs, make_number (sizeof (union Lisp_Misc)),
5499 bounded_number (total_markers),
5500 bounded_number (total_free_markers));
3ab6e069 5501
fecbd8ff
SM
5502 total[3] = list4 (Qstrings, make_number (sizeof (struct Lisp_String)),
5503 bounded_number (total_strings),
5504 bounded_number (total_free_strings));
3ab6e069 5505
fecbd8ff
SM
5506 total[4] = list3 (Qstring_bytes, make_number (1),
5507 bounded_number (total_string_bytes));
3ab6e069 5508
fbe9e0b9
PE
5509 total[5] = list3 (Qvectors,
5510 make_number (header_size + sizeof (Lisp_Object)),
fecbd8ff 5511 bounded_number (total_vectors));
5b835e1d 5512
fecbd8ff
SM
5513 total[6] = list4 (Qvector_slots, make_number (word_size),
5514 bounded_number (total_vector_slots),
5515 bounded_number (total_free_vector_slots));
5b835e1d 5516
fecbd8ff
SM
5517 total[7] = list4 (Qfloats, make_number (sizeof (struct Lisp_Float)),
5518 bounded_number (total_floats),
5519 bounded_number (total_free_floats));
3ab6e069 5520
fecbd8ff
SM
5521 total[8] = list4 (Qintervals, make_number (sizeof (struct interval)),
5522 bounded_number (total_intervals),
5523 bounded_number (total_free_intervals));
3ab6e069 5524
fecbd8ff
SM
5525 total[9] = list3 (Qbuffers, make_number (sizeof (struct buffer)),
5526 bounded_number (total_buffers));
2e471eb5 5527
f8643a6b 5528#ifdef DOUG_LEA_MALLOC
fecbd8ff
SM
5529 total_size++;
5530 total[10] = list4 (Qheap, make_number (1024),
5531 bounded_number ((mallinfo ().uordblks + 1023) >> 10),
5532 bounded_number ((mallinfo ().fordblks + 1023) >> 10));
f8643a6b 5533#endif
fecbd8ff
SM
5534 retval = Flist (total_size, total);
5535 }
f8643a6b 5536
34400008 5537#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
7146af97 5538 {
34400008 5539 /* Compute average percentage of zombies. */
fecbd8ff
SM
5540 double nlive
5541 = (total_conses + total_symbols + total_markers + total_strings
5542 + total_vectors + total_floats + total_intervals + total_buffers);
34400008
GM
5543
5544 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
5545 max_live = max (nlive, max_live);
5546 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
5547 max_zombies = max (nzombies, max_zombies);
5548 ++ngcs;
dbcf001c 5549 }
34400008 5550#endif
7146af97 5551
9e713715
GM
5552 if (!NILP (Vpost_gc_hook))
5553 {
d311d28c 5554 ptrdiff_t gc_count = inhibit_garbage_collection ();
9e713715 5555 safe_run_hooks (Qpost_gc_hook);
ae35e756 5556 unbind_to (gc_count, Qnil);
9e713715 5557 }
2c5bd608
DL
5558
5559 /* Accumulate statistics. */
2c5bd608 5560 if (FLOATP (Vgc_elapsed))
387d4d92 5561 {
43aac990 5562 struct timespec since_start = timespec_sub (current_timespec (), start);
387d4d92 5563 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed)
43aac990 5564 + timespectod (since_start));
387d4d92 5565 }
d35af63c 5566
2c5bd608
DL
5567 gcs_done++;
5568
12b3895d 5569 /* Collect profiling data. */
6521894d 5570 if (profiler_memory_running)
12b3895d
TM
5571 {
5572 size_t swept = 0;
6521894d
SM
5573 size_t tot_after = total_bytes_of_live_objects ();
5574 if (tot_before > tot_after)
5575 swept = tot_before - tot_after;
3d80c99f 5576 malloc_probe (swept);
12b3895d
TM
5577 }
5578
fecbd8ff 5579 return retval;
7146af97 5580}
34400008 5581
41c28a37 5582
3770920e
GM
5583/* Mark Lisp objects in glyph matrix MATRIX. Currently the
5584 only interesting objects referenced from glyphs are strings. */
41c28a37
GM
5585
5586static void
971de7fb 5587mark_glyph_matrix (struct glyph_matrix *matrix)
41c28a37
GM
5588{
5589 struct glyph_row *row = matrix->rows;
5590 struct glyph_row *end = row + matrix->nrows;
5591
2e471eb5
GM
5592 for (; row < end; ++row)
5593 if (row->enabled_p)
5594 {
5595 int area;
5596 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
5597 {
5598 struct glyph *glyph = row->glyphs[area];
5599 struct glyph *end_glyph = glyph + row->used[area];
177c0ea7 5600
2e471eb5 5601 for (; glyph < end_glyph; ++glyph)
8e50cc2d 5602 if (STRINGP (glyph->object)
2e471eb5 5603 && !STRING_MARKED_P (XSTRING (glyph->object)))
49723c04 5604 mark_object (glyph->object);
2e471eb5
GM
5605 }
5606 }
41c28a37
GM
5607}
5608
34400008 5609
41c28a37
GM
5610/* Mark Lisp faces in the face cache C. */
5611
5612static void
971de7fb 5613mark_face_cache (struct face_cache *c)
41c28a37
GM
5614{
5615 if (c)
5616 {
5617 int i, j;
5618 for (i = 0; i < c->used; ++i)
5619 {
5620 struct face *face = FACE_FROM_ID (c->f, i);
5621
5622 if (face)
5623 {
5624 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
49723c04 5625 mark_object (face->lface[j]);
41c28a37
GM
5626 }
5627 }
5628 }
5629}
5630
5631
7146af97 5632\f
1a4f1e2c 5633/* Mark reference to a Lisp_Object.
2e471eb5
GM
5634 If the object referred to has not been seen yet, recursively mark
5635 all the references contained in it. */
7146af97 5636
785cd37f 5637#define LAST_MARKED_SIZE 500
d3d47262 5638static Lisp_Object last_marked[LAST_MARKED_SIZE];
244ed907 5639static int last_marked_index;
785cd37f 5640
1342fc6f
RS
5641/* For debugging--call abort when we cdr down this many
5642 links of a list, in mark_object. In debugging,
5643 the call to abort will hit a breakpoint.
5644 Normally this is zero and the check never goes off. */
903fe15d 5645ptrdiff_t mark_object_loop_halt EXTERNALLY_VISIBLE;
1342fc6f 5646
8f11f7ec 5647static void
971de7fb 5648mark_vectorlike (struct Lisp_Vector *ptr)
d2029e5b 5649{
d311d28c
PE
5650 ptrdiff_t size = ptr->header.size;
5651 ptrdiff_t i;
d2029e5b 5652
8f11f7ec 5653 eassert (!VECTOR_MARKED_P (ptr));
7555c33f 5654 VECTOR_MARK (ptr); /* Else mark it. */
d2029e5b
SM
5655 if (size & PSEUDOVECTOR_FLAG)
5656 size &= PSEUDOVECTOR_SIZE_MASK;
d3d47262 5657
d2029e5b
SM
5658 /* Note that this size is not the memory-footprint size, but only
5659 the number of Lisp_Object fields that we should trace.
5660 The distinction is used e.g. by Lisp_Process which places extra
7555c33f
SM
5661 non-Lisp_Object fields at the end of the structure... */
5662 for (i = 0; i < size; i++) /* ...and then mark its elements. */
d6d9cbc1 5663 mark_object (ptr->u.contents[i]);
d2029e5b
SM
5664}
5665
58026347
KH
5666/* Like mark_vectorlike but optimized for char-tables (and
5667 sub-char-tables) assuming that the contents are mostly integers or
5668 symbols. */
5669
5670static void
971de7fb 5671mark_char_table (struct Lisp_Vector *ptr)
58026347 5672{
b6439961
PE
5673 int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
5674 int i;
58026347 5675
8f11f7ec 5676 eassert (!VECTOR_MARKED_P (ptr));
58026347
KH
5677 VECTOR_MARK (ptr);
5678 for (i = 0; i < size; i++)
5679 {
d6d9cbc1 5680 Lisp_Object val = ptr->u.contents[i];
58026347 5681
ef1b0ba7 5682 if (INTEGERP (val) || (SYMBOLP (val) && XSYMBOL (val)->gcmarkbit))
58026347
KH
5683 continue;
5684 if (SUB_CHAR_TABLE_P (val))
5685 {
5686 if (! VECTOR_MARKED_P (XVECTOR (val)))
5687 mark_char_table (XVECTOR (val));
5688 }
5689 else
5690 mark_object (val);
5691 }
5692}
5693
36429c89
DA
5694/* Mark the chain of overlays starting at PTR. */
5695
5696static void
5697mark_overlay (struct Lisp_Overlay *ptr)
5698{
5699 for (; ptr && !ptr->gcmarkbit; ptr = ptr->next)
5700 {
5701 ptr->gcmarkbit = 1;
c644523b
DA
5702 mark_object (ptr->start);
5703 mark_object (ptr->end);
5704 mark_object (ptr->plist);
36429c89
DA
5705 }
5706}
5707
5708/* Mark Lisp_Objects and special pointers in BUFFER. */
cf5c0175
DA
5709
5710static void
5711mark_buffer (struct buffer *buffer)
5712{
b4fa72f2
DA
5713 /* This is handled much like other pseudovectors... */
5714 mark_vectorlike ((struct Lisp_Vector *) buffer);
cf5c0175 5715
b4fa72f2 5716 /* ...but there are some buffer-specific things. */
cf5c0175 5717
b4fa72f2 5718 MARK_INTERVAL_TREE (buffer_intervals (buffer));
cf5c0175 5719
b4fa72f2
DA
5720 /* For now, we just don't mark the undo_list. It's done later in
5721 a special way just before the sweep phase, and after stripping
5722 some of its elements that are not needed any more. */
cf5c0175 5723
b4fa72f2
DA
5724 mark_overlay (buffer->overlays_before);
5725 mark_overlay (buffer->overlays_after);
cf5c0175 5726
b4fa72f2
DA
5727 /* If this is an indirect buffer, mark its base buffer. */
5728 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
5729 mark_buffer (buffer->base_buffer);
cf5c0175
DA
5730}
5731
d59a1afb 5732/* Remove killed buffers or items whose car is a killed buffer from
e99f70c8 5733 LIST, and mark other items. Return changed LIST, which is marked. */
d73e321c 5734
5779a1dc 5735static Lisp_Object
d59a1afb 5736mark_discard_killed_buffers (Lisp_Object list)
d73e321c 5737{
d59a1afb 5738 Lisp_Object tail, *prev = &list;
d73e321c 5739
d59a1afb
DA
5740 for (tail = list; CONSP (tail) && !CONS_MARKED_P (XCONS (tail));
5741 tail = XCDR (tail))
d73e321c 5742 {
5779a1dc 5743 Lisp_Object tem = XCAR (tail);
d73e321c
DA
5744 if (CONSP (tem))
5745 tem = XCAR (tem);
5746 if (BUFFERP (tem) && !BUFFER_LIVE_P (XBUFFER (tem)))
5779a1dc 5747 *prev = XCDR (tail);
d73e321c 5748 else
d59a1afb
DA
5749 {
5750 CONS_MARK (XCONS (tail));
5751 mark_object (XCAR (tail));
84575e67 5752 prev = xcdr_addr (tail);
d59a1afb 5753 }
d73e321c 5754 }
e99f70c8 5755 mark_object (tail);
d73e321c
DA
5756 return list;
5757}
5758
cf5c0175
DA
5759/* Determine type of generic Lisp_Object and mark it accordingly. */
5760
41c28a37 5761void
971de7fb 5762mark_object (Lisp_Object arg)
7146af97 5763{
49723c04 5764 register Lisp_Object obj = arg;
4f5c1376
GM
5765#ifdef GC_CHECK_MARKED_OBJECTS
5766 void *po;
5767 struct mem_node *m;
5768#endif
903fe15d 5769 ptrdiff_t cdr_count = 0;
7146af97 5770
9149e743 5771 loop:
7146af97 5772
1f0b3fd2 5773 if (PURE_POINTER_P (XPNTR (obj)))
7146af97
JB
5774 return;
5775
49723c04 5776 last_marked[last_marked_index++] = obj;
785cd37f
RS
5777 if (last_marked_index == LAST_MARKED_SIZE)
5778 last_marked_index = 0;
5779
4f5c1376
GM
5780 /* Perform some sanity checks on the objects marked here. Abort if
5781 we encounter an object we know is bogus. This increases GC time
5782 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
5783#ifdef GC_CHECK_MARKED_OBJECTS
5784
5785 po = (void *) XPNTR (obj);
5786
5787 /* Check that the object pointed to by PO is known to be a Lisp
5788 structure allocated from the heap. */
5789#define CHECK_ALLOCATED() \
5790 do { \
5791 m = mem_find (po); \
5792 if (m == MEM_NIL) \
1088b922 5793 emacs_abort (); \
4f5c1376
GM
5794 } while (0)
5795
5796 /* Check that the object pointed to by PO is live, using predicate
5797 function LIVEP. */
5798#define CHECK_LIVE(LIVEP) \
5799 do { \
5800 if (!LIVEP (m, po)) \
1088b922 5801 emacs_abort (); \
4f5c1376
GM
5802 } while (0)
5803
5804 /* Check both of the above conditions. */
5805#define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
5806 do { \
5807 CHECK_ALLOCATED (); \
5808 CHECK_LIVE (LIVEP); \
5809 } while (0) \
177c0ea7 5810
4f5c1376 5811#else /* not GC_CHECK_MARKED_OBJECTS */
177c0ea7 5812
4f5c1376
GM
5813#define CHECK_LIVE(LIVEP) (void) 0
5814#define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
177c0ea7 5815
4f5c1376
GM
5816#endif /* not GC_CHECK_MARKED_OBJECTS */
5817
7393bcbb 5818 switch (XTYPE (obj))
7146af97
JB
5819 {
5820 case Lisp_String:
5821 {
5822 register struct Lisp_String *ptr = XSTRING (obj);
8f11f7ec
SM
5823 if (STRING_MARKED_P (ptr))
5824 break;
4f5c1376 5825 CHECK_ALLOCATED_AND_LIVE (live_string_p);
2e471eb5 5826 MARK_STRING (ptr);
7555c33f 5827 MARK_INTERVAL_TREE (ptr->intervals);
361b097f 5828#ifdef GC_CHECK_STRING_BYTES
676a7251 5829 /* Check that the string size recorded in the string is the
7555c33f 5830 same as the one recorded in the sdata structure. */
e499d0ee 5831 string_bytes (ptr);
361b097f 5832#endif /* GC_CHECK_STRING_BYTES */
7146af97
JB
5833 }
5834 break;
5835
76437631 5836 case Lisp_Vectorlike:
cf5c0175
DA
5837 {
5838 register struct Lisp_Vector *ptr = XVECTOR (obj);
5839 register ptrdiff_t pvectype;
5840
5841 if (VECTOR_MARKED_P (ptr))
5842 break;
5843
4f5c1376 5844#ifdef GC_CHECK_MARKED_OBJECTS
cf5c0175 5845 m = mem_find (po);
c752cfa9 5846 if (m == MEM_NIL && !SUBRP (obj))
1088b922 5847 emacs_abort ();
4f5c1376 5848#endif /* GC_CHECK_MARKED_OBJECTS */
177c0ea7 5849
cf5c0175 5850 if (ptr->header.size & PSEUDOVECTOR_FLAG)
ee28be33 5851 pvectype = ((ptr->header.size & PVEC_TYPE_MASK)
914adc42 5852 >> PSEUDOVECTOR_AREA_BITS);
cf5c0175 5853 else
6aea7528 5854 pvectype = PVEC_NORMAL_VECTOR;
cf5c0175 5855
cf5c0175
DA
5856 if (pvectype != PVEC_SUBR && pvectype != PVEC_BUFFER)
5857 CHECK_LIVE (live_vector_p);
169ee243 5858
ee28be33 5859 switch (pvectype)
cf5c0175 5860 {
ee28be33 5861 case PVEC_BUFFER:
cf5c0175 5862#ifdef GC_CHECK_MARKED_OBJECTS
c752cfa9
DA
5863 {
5864 struct buffer *b;
5865 FOR_EACH_BUFFER (b)
5866 if (b == po)
5867 break;
5868 if (b == NULL)
5869 emacs_abort ();
5870 }
cf5c0175
DA
5871#endif /* GC_CHECK_MARKED_OBJECTS */
5872 mark_buffer ((struct buffer *) ptr);
ee28be33
SM
5873 break;
5874
5875 case PVEC_COMPILED:
5876 { /* We could treat this just like a vector, but it is better
5877 to save the COMPILED_CONSTANTS element for last and avoid
5878 recursion there. */
5879 int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
5880 int i;
5881
5882 VECTOR_MARK (ptr);
5883 for (i = 0; i < size; i++)
5884 if (i != COMPILED_CONSTANTS)
d6d9cbc1 5885 mark_object (ptr->u.contents[i]);
ee28be33
SM
5886 if (size > COMPILED_CONSTANTS)
5887 {
d6d9cbc1 5888 obj = ptr->u.contents[COMPILED_CONSTANTS];
ee28be33
SM
5889 goto loop;
5890 }
5891 }
5892 break;
cf5c0175 5893
ee28be33 5894 case PVEC_FRAME:
d59a1afb
DA
5895 mark_vectorlike (ptr);
5896 mark_face_cache (((struct frame *) ptr)->face_cache);
ee28be33 5897 break;
cf5c0175 5898
ee28be33
SM
5899 case PVEC_WINDOW:
5900 {
5901 struct window *w = (struct window *) ptr;
5779a1dc 5902
0699fc18 5903 mark_vectorlike (ptr);
e99f70c8 5904
e74aeda8 5905 /* Mark glyph matrices, if any. Marking window
0699fc18
DA
5906 matrices is sufficient because frame matrices
5907 use the same glyph memory. */
e74aeda8 5908 if (w->current_matrix)
ee28be33 5909 {
0699fc18
DA
5910 mark_glyph_matrix (w->current_matrix);
5911 mark_glyph_matrix (w->desired_matrix);
ee28be33 5912 }
e99f70c8
SM
5913
5914 /* Filter out killed buffers from both buffer lists
5915 in attempt to help GC to reclaim killed buffers faster.
5916 We can do it elsewhere for live windows, but this is the
5917 best place to do it for dead windows. */
5918 wset_prev_buffers
5919 (w, mark_discard_killed_buffers (w->prev_buffers));
5920 wset_next_buffers
5921 (w, mark_discard_killed_buffers (w->next_buffers));
ee28be33
SM
5922 }
5923 break;
cf5c0175 5924
ee28be33
SM
5925 case PVEC_HASH_TABLE:
5926 {
5927 struct Lisp_Hash_Table *h = (struct Lisp_Hash_Table *) ptr;
cf5c0175 5928
ee28be33 5929 mark_vectorlike (ptr);
b7432bb2
SM
5930 mark_object (h->test.name);
5931 mark_object (h->test.user_hash_function);
5932 mark_object (h->test.user_cmp_function);
ee28be33
SM
5933 /* If hash table is not weak, mark all keys and values.
5934 For weak tables, mark only the vector. */
5935 if (NILP (h->weak))
5936 mark_object (h->key_and_value);
5937 else
5938 VECTOR_MARK (XVECTOR (h->key_and_value));
5939 }
5940 break;
cf5c0175 5941
ee28be33
SM
5942 case PVEC_CHAR_TABLE:
5943 mark_char_table (ptr);
5944 break;
cf5c0175 5945
ee28be33
SM
5946 case PVEC_BOOL_VECTOR:
5947 /* No Lisp_Objects to mark in a bool vector. */
5948 VECTOR_MARK (ptr);
5949 break;
cf5c0175 5950
ee28be33
SM
5951 case PVEC_SUBR:
5952 break;
cf5c0175 5953
ee28be33 5954 case PVEC_FREE:
1088b922 5955 emacs_abort ();
cf5c0175 5956
ee28be33
SM
5957 default:
5958 mark_vectorlike (ptr);
5959 }
cf5c0175 5960 }
169ee243 5961 break;
7146af97 5962
7146af97
JB
5963 case Lisp_Symbol:
5964 {
c70bbf06 5965 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
7146af97
JB
5966 struct Lisp_Symbol *ptrx;
5967
8f11f7ec
SM
5968 if (ptr->gcmarkbit)
5969 break;
4f5c1376 5970 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
2336fe58 5971 ptr->gcmarkbit = 1;
c644523b
DA
5972 mark_object (ptr->function);
5973 mark_object (ptr->plist);
ce5b453a
SM
5974 switch (ptr->redirect)
5975 {
5976 case SYMBOL_PLAINVAL: mark_object (SYMBOL_VAL (ptr)); break;
5977 case SYMBOL_VARALIAS:
5978 {
5979 Lisp_Object tem;
5980 XSETSYMBOL (tem, SYMBOL_ALIAS (ptr));
5981 mark_object (tem);
5982 break;
5983 }
5984 case SYMBOL_LOCALIZED:
5985 {
5986 struct Lisp_Buffer_Local_Value *blv = SYMBOL_BLV (ptr);
d73e321c
DA
5987 Lisp_Object where = blv->where;
5988 /* If the value is set up for a killed buffer or deleted
5989 frame, restore it's global binding. If the value is
5990 forwarded to a C variable, either it's not a Lisp_Object
5991 var, or it's staticpro'd already. */
5992 if ((BUFFERP (where) && !BUFFER_LIVE_P (XBUFFER (where)))
5993 || (FRAMEP (where) && !FRAME_LIVE_P (XFRAME (where))))
5994 swap_in_global_binding (ptr);
ce5b453a
SM
5995 mark_object (blv->where);
5996 mark_object (blv->valcell);
5997 mark_object (blv->defcell);
5998 break;
5999 }
6000 case SYMBOL_FORWARDED:
6001 /* If the value is forwarded to a buffer or keyboard field,
6002 these are marked when we see the corresponding object.
6003 And if it's forwarded to a C variable, either it's not
6004 a Lisp_Object var, or it's staticpro'd already. */
6005 break;
1088b922 6006 default: emacs_abort ();
ce5b453a 6007 }
c644523b
DA
6008 if (!PURE_POINTER_P (XSTRING (ptr->name)))
6009 MARK_STRING (XSTRING (ptr->name));
0c94c8d6 6010 MARK_INTERVAL_TREE (string_intervals (ptr->name));
177c0ea7 6011
7146af97
JB
6012 ptr = ptr->next;
6013 if (ptr)
6014 {
7555c33f 6015 ptrx = ptr; /* Use of ptrx avoids compiler bug on Sun. */
7146af97 6016 XSETSYMBOL (obj, ptrx);
49723c04 6017 goto loop;
7146af97
JB
6018 }
6019 }
6020 break;
6021
a0a38eb7 6022 case Lisp_Misc:
4f5c1376 6023 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
b766f870 6024
7555c33f
SM
6025 if (XMISCANY (obj)->gcmarkbit)
6026 break;
6027
6028 switch (XMISCTYPE (obj))
a0a38eb7 6029 {
7555c33f
SM
6030 case Lisp_Misc_Marker:
6031 /* DO NOT mark thru the marker's chain.
6032 The buffer's markers chain does not preserve markers from gc;
6033 instead, markers are removed from the chain when freed by gc. */
36429c89 6034 XMISCANY (obj)->gcmarkbit = 1;
7555c33f 6035 break;
465edf35 6036
7555c33f
SM
6037 case Lisp_Misc_Save_Value:
6038 XMISCANY (obj)->gcmarkbit = 1;
7555c33f 6039 {
7b1123d8
PE
6040 struct Lisp_Save_Value *ptr = XSAVE_VALUE (obj);
6041 /* If `save_type' is zero, `data[0].pointer' is the address
73ebd38f
DA
6042 of a memory area containing `data[1].integer' potential
6043 Lisp_Objects. */
7b1123d8 6044 if (GC_MARK_STACK && ptr->save_type == SAVE_TYPE_MEMORY)
7555c33f 6045 {
c50cf2ea 6046 Lisp_Object *p = ptr->data[0].pointer;
7555c33f 6047 ptrdiff_t nelt;
73ebd38f 6048 for (nelt = ptr->data[1].integer; nelt > 0; nelt--, p++)
7555c33f
SM
6049 mark_maybe_object (*p);
6050 }
73ebd38f 6051 else
73ebd38f
DA
6052 {
6053 /* Find Lisp_Objects in `data[N]' slots and mark them. */
7b1123d8
PE
6054 int i;
6055 for (i = 0; i < SAVE_VALUE_SLOTS; i++)
6056 if (save_type (ptr, i) == SAVE_OBJECT)
6057 mark_object (ptr->data[i].object);
73ebd38f 6058 }
7555c33f 6059 }
7555c33f
SM
6060 break;
6061
6062 case Lisp_Misc_Overlay:
6063 mark_overlay (XOVERLAY (obj));
6064 break;
6065
6066 default:
1088b922 6067 emacs_abort ();
a0a38eb7 6068 }
7146af97
JB
6069 break;
6070
6071 case Lisp_Cons:
7146af97
JB
6072 {
6073 register struct Lisp_Cons *ptr = XCONS (obj);
8f11f7ec
SM
6074 if (CONS_MARKED_P (ptr))
6075 break;
4f5c1376 6076 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
08b7c2cb 6077 CONS_MARK (ptr);
c54ca951 6078 /* If the cdr is nil, avoid recursion for the car. */
c644523b 6079 if (EQ (ptr->u.cdr, Qnil))
c54ca951 6080 {
c644523b 6081 obj = ptr->car;
1342fc6f 6082 cdr_count = 0;
c54ca951
RS
6083 goto loop;
6084 }
c644523b
DA
6085 mark_object (ptr->car);
6086 obj = ptr->u.cdr;
1342fc6f
RS
6087 cdr_count++;
6088 if (cdr_count == mark_object_loop_halt)
1088b922 6089 emacs_abort ();
7146af97
JB
6090 goto loop;
6091 }
6092
7146af97 6093 case Lisp_Float:
4f5c1376 6094 CHECK_ALLOCATED_AND_LIVE (live_float_p);
ab6780cd 6095 FLOAT_MARK (XFLOAT (obj));
7146af97 6096 break;
7146af97 6097
2de9f71c 6098 case_Lisp_Int:
7146af97
JB
6099 break;
6100
6101 default:
1088b922 6102 emacs_abort ();
7146af97 6103 }
4f5c1376
GM
6104
6105#undef CHECK_LIVE
6106#undef CHECK_ALLOCATED
6107#undef CHECK_ALLOCATED_AND_LIVE
7146af97 6108}
4a729fd8 6109/* Mark the Lisp pointers in the terminal objects.
0ba2624f 6110 Called by Fgarbage_collect. */
4a729fd8 6111
4a729fd8
SM
6112static void
6113mark_terminals (void)
6114{
6115 struct terminal *t;
6116 for (t = terminal_list; t; t = t->next_terminal)
6117 {
6118 eassert (t->name != NULL);
354884c4 6119#ifdef HAVE_WINDOW_SYSTEM
96ad0af7
YM
6120 /* If a terminal object is reachable from a stacpro'ed object,
6121 it might have been marked already. Make sure the image cache
6122 gets marked. */
6123 mark_image_cache (t->image_cache);
354884c4 6124#endif /* HAVE_WINDOW_SYSTEM */
96ad0af7
YM
6125 if (!VECTOR_MARKED_P (t))
6126 mark_vectorlike ((struct Lisp_Vector *)t);
4a729fd8
SM
6127 }
6128}
6129
6130
084b1a0c 6131
41c28a37
GM
6132/* Value is non-zero if OBJ will survive the current GC because it's
6133 either marked or does not need to be marked to survive. */
6134
fce31d69 6135bool
971de7fb 6136survives_gc_p (Lisp_Object obj)
41c28a37 6137{
fce31d69 6138 bool survives_p;
177c0ea7 6139
8e50cc2d 6140 switch (XTYPE (obj))
41c28a37 6141 {
2de9f71c 6142 case_Lisp_Int:
41c28a37
GM
6143 survives_p = 1;
6144 break;
6145
6146 case Lisp_Symbol:
2336fe58 6147 survives_p = XSYMBOL (obj)->gcmarkbit;
41c28a37
GM
6148 break;
6149
6150 case Lisp_Misc:
67ee9f6e 6151 survives_p = XMISCANY (obj)->gcmarkbit;
41c28a37
GM
6152 break;
6153
6154 case Lisp_String:
08b7c2cb 6155 survives_p = STRING_MARKED_P (XSTRING (obj));
41c28a37
GM
6156 break;
6157
6158 case Lisp_Vectorlike:
8e50cc2d 6159 survives_p = SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
41c28a37
GM
6160 break;
6161
6162 case Lisp_Cons:
08b7c2cb 6163 survives_p = CONS_MARKED_P (XCONS (obj));
41c28a37
GM
6164 break;
6165
41c28a37 6166 case Lisp_Float:
ab6780cd 6167 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
41c28a37 6168 break;
41c28a37
GM
6169
6170 default:
1088b922 6171 emacs_abort ();
41c28a37
GM
6172 }
6173
34400008 6174 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
41c28a37
GM
6175}
6176
6177
7146af97 6178\f
1a4f1e2c 6179/* Sweep: find all structures not marked, and free them. */
7146af97
JB
6180
6181static void
971de7fb 6182gc_sweep (void)
7146af97 6183{
41c28a37
GM
6184 /* Remove or mark entries in weak hash tables.
6185 This must be done before any object is unmarked. */
6186 sweep_weak_hash_tables ();
6187
2e471eb5 6188 sweep_strings ();
e499d0ee 6189 check_string_bytes (!noninteractive);
7146af97
JB
6190
6191 /* Put all unmarked conses on free list */
6192 {
6193 register struct cons_block *cblk;
6ca94ac9 6194 struct cons_block **cprev = &cons_block;
7146af97 6195 register int lim = cons_block_index;
c0c5c8ae 6196 EMACS_INT num_free = 0, num_used = 0;
7146af97
JB
6197
6198 cons_free_list = 0;
177c0ea7 6199
6ca94ac9 6200 for (cblk = cons_block; cblk; cblk = *cprev)
7146af97 6201 {
3ae2e3a3 6202 register int i = 0;
6ca94ac9 6203 int this_free = 0;
3ae2e3a3
RS
6204 int ilim = (lim + BITS_PER_INT - 1) / BITS_PER_INT;
6205
6206 /* Scan the mark bits an int at a time. */
47ea7f44 6207 for (i = 0; i < ilim; i++)
3ae2e3a3
RS
6208 {
6209 if (cblk->gcmarkbits[i] == -1)
6210 {
6211 /* Fast path - all cons cells for this int are marked. */
6212 cblk->gcmarkbits[i] = 0;
6213 num_used += BITS_PER_INT;
6214 }
6215 else
6216 {
6217 /* Some cons cells for this int are not marked.
6218 Find which ones, and free them. */
6219 int start, pos, stop;
6220
6221 start = i * BITS_PER_INT;
6222 stop = lim - start;
6223 if (stop > BITS_PER_INT)
6224 stop = BITS_PER_INT;
6225 stop += start;
6226
6227 for (pos = start; pos < stop; pos++)
6228 {
6229 if (!CONS_MARKED_P (&cblk->conses[pos]))
6230 {
6231 this_free++;
6232 cblk->conses[pos].u.chain = cons_free_list;
6233 cons_free_list = &cblk->conses[pos];
34400008 6234#if GC_MARK_STACK
c644523b 6235 cons_free_list->car = Vdead;
34400008 6236#endif
3ae2e3a3
RS
6237 }
6238 else
6239 {
6240 num_used++;
6241 CONS_UNMARK (&cblk->conses[pos]);
6242 }
6243 }
6244 }
6245 }
6246
7146af97 6247 lim = CONS_BLOCK_SIZE;
6ca94ac9
KH
6248 /* If this block contains only free conses and we have already
6249 seen more than two blocks worth of free conses then deallocate
6250 this block. */
6feef451 6251 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
6ca94ac9 6252 {
6ca94ac9
KH
6253 *cprev = cblk->next;
6254 /* Unhook from the free list. */
28a099a4 6255 cons_free_list = cblk->conses[0].u.chain;
08b7c2cb 6256 lisp_align_free (cblk);
6ca94ac9
KH
6257 }
6258 else
6feef451
AS
6259 {
6260 num_free += this_free;
6261 cprev = &cblk->next;
6262 }
7146af97
JB
6263 }
6264 total_conses = num_used;
6265 total_free_conses = num_free;
6266 }
6267
7146af97
JB
6268 /* Put all unmarked floats on free list */
6269 {
6270 register struct float_block *fblk;
6ca94ac9 6271 struct float_block **fprev = &float_block;
7146af97 6272 register int lim = float_block_index;
c0c5c8ae 6273 EMACS_INT num_free = 0, num_used = 0;
7146af97
JB
6274
6275 float_free_list = 0;
177c0ea7 6276
6ca94ac9 6277 for (fblk = float_block; fblk; fblk = *fprev)
7146af97
JB
6278 {
6279 register int i;
6ca94ac9 6280 int this_free = 0;
7146af97 6281 for (i = 0; i < lim; i++)
ab6780cd 6282 if (!FLOAT_MARKED_P (&fblk->floats[i]))
7146af97 6283 {
6ca94ac9 6284 this_free++;
28a099a4 6285 fblk->floats[i].u.chain = float_free_list;
7146af97
JB
6286 float_free_list = &fblk->floats[i];
6287 }
6288 else
6289 {
6290 num_used++;
ab6780cd 6291 FLOAT_UNMARK (&fblk->floats[i]);
7146af97
JB
6292 }
6293 lim = FLOAT_BLOCK_SIZE;
6ca94ac9
KH
6294 /* If this block contains only free floats and we have already
6295 seen more than two blocks worth of free floats then deallocate
6296 this block. */
6feef451 6297 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
6ca94ac9 6298 {
6ca94ac9
KH
6299 *fprev = fblk->next;
6300 /* Unhook from the free list. */
28a099a4 6301 float_free_list = fblk->floats[0].u.chain;
ab6780cd 6302 lisp_align_free (fblk);
6ca94ac9
KH
6303 }
6304 else
6feef451
AS
6305 {
6306 num_free += this_free;
6307 fprev = &fblk->next;
6308 }
7146af97
JB
6309 }
6310 total_floats = num_used;
6311 total_free_floats = num_free;
6312 }
7146af97 6313
d5e35230
JA
6314 /* Put all unmarked intervals on free list */
6315 {
6316 register struct interval_block *iblk;
6ca94ac9 6317 struct interval_block **iprev = &interval_block;
d5e35230 6318 register int lim = interval_block_index;
c0c5c8ae 6319 EMACS_INT num_free = 0, num_used = 0;
d5e35230
JA
6320
6321 interval_free_list = 0;
6322
6ca94ac9 6323 for (iblk = interval_block; iblk; iblk = *iprev)
d5e35230
JA
6324 {
6325 register int i;
6ca94ac9 6326 int this_free = 0;
d5e35230
JA
6327
6328 for (i = 0; i < lim; i++)
6329 {
2336fe58 6330 if (!iblk->intervals[i].gcmarkbit)
d5e35230 6331 {
0c94c8d6 6332 set_interval_parent (&iblk->intervals[i], interval_free_list);
d5e35230 6333 interval_free_list = &iblk->intervals[i];
6ca94ac9 6334 this_free++;
d5e35230
JA
6335 }
6336 else
6337 {
6338 num_used++;
2336fe58 6339 iblk->intervals[i].gcmarkbit = 0;
d5e35230
JA
6340 }
6341 }
6342 lim = INTERVAL_BLOCK_SIZE;
6ca94ac9
KH
6343 /* If this block contains only free intervals and we have already
6344 seen more than two blocks worth of free intervals then
6345 deallocate this block. */
6feef451 6346 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
6ca94ac9 6347 {
6ca94ac9
KH
6348 *iprev = iblk->next;
6349 /* Unhook from the free list. */
439d5cb4 6350 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
c8099634 6351 lisp_free (iblk);
6ca94ac9
KH
6352 }
6353 else
6feef451
AS
6354 {
6355 num_free += this_free;
6356 iprev = &iblk->next;
6357 }
d5e35230
JA
6358 }
6359 total_intervals = num_used;
6360 total_free_intervals = num_free;
6361 }
d5e35230 6362
7146af97
JB
6363 /* Put all unmarked symbols on free list */
6364 {
6365 register struct symbol_block *sblk;
6ca94ac9 6366 struct symbol_block **sprev = &symbol_block;
7146af97 6367 register int lim = symbol_block_index;
c0c5c8ae 6368 EMACS_INT num_free = 0, num_used = 0;
7146af97 6369
d285b373 6370 symbol_free_list = NULL;
177c0ea7 6371
6ca94ac9 6372 for (sblk = symbol_block; sblk; sblk = *sprev)
7146af97 6373 {
6ca94ac9 6374 int this_free = 0;
d55c12ed
AS
6375 union aligned_Lisp_Symbol *sym = sblk->symbols;
6376 union aligned_Lisp_Symbol *end = sym + lim;
d285b373
GM
6377
6378 for (; sym < end; ++sym)
6379 {
20035321
SM
6380 /* Check if the symbol was created during loadup. In such a case
6381 it might be pointed to by pure bytecode which we don't trace,
6382 so we conservatively assume that it is live. */
fce31d69 6383 bool pure_p = PURE_POINTER_P (XSTRING (sym->s.name));
177c0ea7 6384
d55c12ed 6385 if (!sym->s.gcmarkbit && !pure_p)
d285b373 6386 {
d55c12ed
AS
6387 if (sym->s.redirect == SYMBOL_LOCALIZED)
6388 xfree (SYMBOL_BLV (&sym->s));
6389 sym->s.next = symbol_free_list;
6390 symbol_free_list = &sym->s;
34400008 6391#if GC_MARK_STACK
c644523b 6392 symbol_free_list->function = Vdead;
34400008 6393#endif
d285b373
GM
6394 ++this_free;
6395 }
6396 else
6397 {
6398 ++num_used;
6399 if (!pure_p)
c644523b 6400 UNMARK_STRING (XSTRING (sym->s.name));
d55c12ed 6401 sym->s.gcmarkbit = 0;
d285b373
GM
6402 }
6403 }
177c0ea7 6404
7146af97 6405 lim = SYMBOL_BLOCK_SIZE;
6ca94ac9
KH
6406 /* If this block contains only free symbols and we have already
6407 seen more than two blocks worth of free symbols then deallocate
6408 this block. */
6feef451 6409 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
6ca94ac9 6410 {
6ca94ac9
KH
6411 *sprev = sblk->next;
6412 /* Unhook from the free list. */
d55c12ed 6413 symbol_free_list = sblk->symbols[0].s.next;
c8099634 6414 lisp_free (sblk);
6ca94ac9
KH
6415 }
6416 else
6feef451
AS
6417 {
6418 num_free += this_free;
6419 sprev = &sblk->next;
6420 }
7146af97
JB
6421 }
6422 total_symbols = num_used;
6423 total_free_symbols = num_free;
6424 }
6425
a9faeabe
RS
6426 /* Put all unmarked misc's on free list.
6427 For a marker, first unchain it from the buffer it points into. */
7146af97
JB
6428 {
6429 register struct marker_block *mblk;
6ca94ac9 6430 struct marker_block **mprev = &marker_block;
7146af97 6431 register int lim = marker_block_index;
c0c5c8ae 6432 EMACS_INT num_free = 0, num_used = 0;
7146af97
JB
6433
6434 marker_free_list = 0;
177c0ea7 6435
6ca94ac9 6436 for (mblk = marker_block; mblk; mblk = *mprev)
7146af97
JB
6437 {
6438 register int i;
6ca94ac9 6439 int this_free = 0;
fa05e253 6440
7146af97 6441 for (i = 0; i < lim; i++)
465edf35 6442 {
d55c12ed 6443 if (!mblk->markers[i].m.u_any.gcmarkbit)
465edf35 6444 {
d55c12ed
AS
6445 if (mblk->markers[i].m.u_any.type == Lisp_Misc_Marker)
6446 unchain_marker (&mblk->markers[i].m.u_marker);
fa05e253
RS
6447 /* Set the type of the freed object to Lisp_Misc_Free.
6448 We could leave the type alone, since nobody checks it,
465edf35 6449 but this might catch bugs faster. */
d55c12ed
AS
6450 mblk->markers[i].m.u_marker.type = Lisp_Misc_Free;
6451 mblk->markers[i].m.u_free.chain = marker_free_list;
6452 marker_free_list = &mblk->markers[i].m;
6ca94ac9 6453 this_free++;
465edf35
KH
6454 }
6455 else
6456 {
6457 num_used++;
d55c12ed 6458 mblk->markers[i].m.u_any.gcmarkbit = 0;
465edf35
KH
6459 }
6460 }
7146af97 6461 lim = MARKER_BLOCK_SIZE;
6ca94ac9
KH
6462 /* If this block contains only free markers and we have already
6463 seen more than two blocks worth of free markers then deallocate
6464 this block. */
6feef451 6465 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
6ca94ac9 6466 {
6ca94ac9
KH
6467 *mprev = mblk->next;
6468 /* Unhook from the free list. */
d55c12ed 6469 marker_free_list = mblk->markers[0].m.u_free.chain;
c8099634 6470 lisp_free (mblk);
6ca94ac9
KH
6471 }
6472 else
6feef451
AS
6473 {
6474 num_free += this_free;
6475 mprev = &mblk->next;
6476 }
7146af97
JB
6477 }
6478
6479 total_markers = num_used;
6480 total_free_markers = num_free;
6481 }
6482
6483 /* Free all unmarked buffers */
6484 {
3e98c68e 6485 register struct buffer *buffer, **bprev = &all_buffers;
7146af97 6486
3ab6e069 6487 total_buffers = 0;
3e98c68e 6488 for (buffer = all_buffers; buffer; buffer = *bprev)
3ef06d12 6489 if (!VECTOR_MARKED_P (buffer))
7146af97 6490 {
914adc42 6491 *bprev = buffer->next;
34400008 6492 lisp_free (buffer);
7146af97
JB
6493 }
6494 else
6495 {
3ef06d12 6496 VECTOR_UNMARK (buffer);
8707c1e5
DA
6497 /* Do not use buffer_(set|get)_intervals here. */
6498 buffer->text->intervals = balance_intervals (buffer->text->intervals);
3ab6e069 6499 total_buffers++;
914adc42 6500 bprev = &buffer->next;
7146af97
JB
6501 }
6502 }
6503
f3372c87 6504 sweep_vectors ();
e499d0ee 6505 check_string_bytes (!noninteractive);
7146af97 6506}
7146af97 6507
7146af97 6508
7146af97 6509
7146af97 6510\f
20d24714
JB
6511/* Debugging aids. */
6512
31ce1c91 6513DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
a6266d23 6514 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
228299fa 6515This may be helpful in debugging Emacs's memory usage.
7ee72033 6516We divide the value by 1024 to make sure it fits in a Lisp integer. */)
5842a27b 6517 (void)
20d24714
JB
6518{
6519 Lisp_Object end;
6520
d01a7826 6521 XSETINT (end, (intptr_t) (char *) sbrk (0) / 1024);
20d24714
JB
6522
6523 return end;
6524}
6525
310ea200 6526DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
a6266d23 6527 doc: /* Return a list of counters that measure how much consing there has been.
228299fa
GM
6528Each of these counters increments for a certain kind of object.
6529The counters wrap around from the largest positive integer to zero.
6530Garbage collection does not decrease them.
6531The elements of the value are as follows:
6532 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
6533All are in units of 1 = one object consed
6534except for VECTOR-CELLS and STRING-CHARS, which count the total length of
6535objects consed.
6536MISCS include overlays, markers, and some internal types.
6537Frames, windows, buffers, and subprocesses count as vectors
7ee72033 6538 (but the contents of a buffer's text do not count here). */)
5842a27b 6539 (void)
310ea200 6540{
3438fe21 6541 return listn (CONSTYPE_HEAP, 8,
694b6c97
DA
6542 bounded_number (cons_cells_consed),
6543 bounded_number (floats_consed),
6544 bounded_number (vector_cells_consed),
6545 bounded_number (symbols_consed),
6546 bounded_number (string_chars_consed),
6547 bounded_number (misc_objects_consed),
6548 bounded_number (intervals_consed),
6549 bounded_number (strings_consed));
310ea200 6550}
e0b8c689 6551
8b058d44
EZ
6552/* Find at most FIND_MAX symbols which have OBJ as their value or
6553 function. This is used in gdbinit's `xwhichsymbols' command. */
6554
6555Lisp_Object
196e41e4 6556which_symbols (Lisp_Object obj, EMACS_INT find_max)
8b058d44
EZ
6557{
6558 struct symbol_block *sblk;
8d0eb4c2 6559 ptrdiff_t gc_count = inhibit_garbage_collection ();
8b058d44
EZ
6560 Lisp_Object found = Qnil;
6561
ca78dc43 6562 if (! DEADP (obj))
8b058d44
EZ
6563 {
6564 for (sblk = symbol_block; sblk; sblk = sblk->next)
6565 {
9426aba4 6566 union aligned_Lisp_Symbol *aligned_sym = sblk->symbols;
8b058d44
EZ
6567 int bn;
6568
9426aba4 6569 for (bn = 0; bn < SYMBOL_BLOCK_SIZE; bn++, aligned_sym++)
8b058d44 6570 {
9426aba4 6571 struct Lisp_Symbol *sym = &aligned_sym->s;
8b058d44
EZ
6572 Lisp_Object val;
6573 Lisp_Object tem;
6574
6575 if (sblk == symbol_block && bn >= symbol_block_index)
6576 break;
6577
6578 XSETSYMBOL (tem, sym);
6579 val = find_symbol_value (tem);
6580 if (EQ (val, obj)
c644523b
DA
6581 || EQ (sym->function, obj)
6582 || (!NILP (sym->function)
6583 && COMPILEDP (sym->function)
6584 && EQ (AREF (sym->function, COMPILED_BYTECODE), obj))
8b058d44
EZ
6585 || (!NILP (val)
6586 && COMPILEDP (val)
6587 && EQ (AREF (val, COMPILED_BYTECODE), obj)))
6588 {
6589 found = Fcons (tem, found);
6590 if (--find_max == 0)
6591 goto out;
6592 }
6593 }
6594 }
6595 }
6596
6597 out:
6598 unbind_to (gc_count, Qnil);
6599 return found;
6600}
6601
244ed907 6602#ifdef ENABLE_CHECKING
f4a681b0 6603
fce31d69 6604bool suppress_checking;
d3d47262 6605
e0b8c689 6606void
971de7fb 6607die (const char *msg, const char *file, int line)
e0b8c689 6608{
5013fc08 6609 fprintf (stderr, "\r\n%s:%d: Emacs fatal error: assertion failed: %s\r\n",
e0b8c689 6610 file, line, msg);
4d7e6e51 6611 terminate_due_to_signal (SIGABRT, INT_MAX);
e0b8c689 6612}
244ed907 6613#endif
20d24714 6614\f
b09cca6a 6615/* Initialization. */
7146af97 6616
dfcf069d 6617void
971de7fb 6618init_alloc_once (void)
7146af97
JB
6619{
6620 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
9e713715
GM
6621 purebeg = PUREBEG;
6622 pure_size = PURESIZE;
ab6780cd 6623
877935b1 6624#if GC_MARK_STACK || defined GC_MALLOC_CHECK
34400008
GM
6625 mem_init ();
6626 Vdead = make_pure_string ("DEAD", 4, 4, 0);
6627#endif
9e713715 6628
d1658221 6629#ifdef DOUG_LEA_MALLOC
b09cca6a
SM
6630 mallopt (M_TRIM_THRESHOLD, 128 * 1024); /* Trim threshold. */
6631 mallopt (M_MMAP_THRESHOLD, 64 * 1024); /* Mmap threshold. */
6632 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* Max. number of mmap'ed areas. */
d1658221 6633#endif
7146af97 6634 init_strings ();
f3372c87 6635 init_vectors ();
d5e35230 6636
24d8a105 6637 refill_memory_reserve ();
0dd6d66d 6638 gc_cons_threshold = GC_DEFAULT_THRESHOLD;
7146af97
JB
6639}
6640
dfcf069d 6641void
971de7fb 6642init_alloc (void)
7146af97
JB
6643{
6644 gcprolist = 0;
630686c8 6645 byte_stack_list = 0;
182ff242
GM
6646#if GC_MARK_STACK
6647#if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
6648 setjmp_tested_p = longjmps_done = 0;
6649#endif
6650#endif
2c5bd608
DL
6651 Vgc_elapsed = make_float (0.0);
6652 gcs_done = 0;
a84683fd
DC
6653
6654#if USE_VALGRIND
d160dd0c 6655 valgrind_p = RUNNING_ON_VALGRIND != 0;
a84683fd 6656#endif
7146af97
JB
6657}
6658
6659void
971de7fb 6660syms_of_alloc (void)
7146af97 6661{
29208e82 6662 DEFVAR_INT ("gc-cons-threshold", gc_cons_threshold,
fb7ada5f 6663 doc: /* Number of bytes of consing between garbage collections.
228299fa
GM
6664Garbage collection can happen automatically once this many bytes have been
6665allocated since the last garbage collection. All data types count.
7146af97 6666
228299fa 6667Garbage collection happens automatically only when `eval' is called.
7146af97 6668
228299fa 6669By binding this temporarily to a large number, you can effectively
96f077ad
SM
6670prevent garbage collection during a part of the program.
6671See also `gc-cons-percentage'. */);
6672
29208e82 6673 DEFVAR_LISP ("gc-cons-percentage", Vgc_cons_percentage,
fb7ada5f 6674 doc: /* Portion of the heap used for allocation.
96f077ad
SM
6675Garbage collection can happen automatically once this portion of the heap
6676has been allocated since the last garbage collection.
6677If this portion is smaller than `gc-cons-threshold', this is ignored. */);
6678 Vgc_cons_percentage = make_float (0.1);
0819585c 6679
29208e82 6680 DEFVAR_INT ("pure-bytes-used", pure_bytes_used,
333f9019 6681 doc: /* Number of bytes of shareable Lisp data allocated so far. */);
0819585c 6682
29208e82 6683 DEFVAR_INT ("cons-cells-consed", cons_cells_consed,
a6266d23 6684 doc: /* Number of cons cells that have been consed so far. */);
0819585c 6685
29208e82 6686 DEFVAR_INT ("floats-consed", floats_consed,
a6266d23 6687 doc: /* Number of floats that have been consed so far. */);
0819585c 6688
29208e82 6689 DEFVAR_INT ("vector-cells-consed", vector_cells_consed,
a6266d23 6690 doc: /* Number of vector cells that have been consed so far. */);
0819585c 6691
29208e82 6692 DEFVAR_INT ("symbols-consed", symbols_consed,
a6266d23 6693 doc: /* Number of symbols that have been consed so far. */);
0819585c 6694
29208e82 6695 DEFVAR_INT ("string-chars-consed", string_chars_consed,
a6266d23 6696 doc: /* Number of string characters that have been consed so far. */);
0819585c 6697
29208e82 6698 DEFVAR_INT ("misc-objects-consed", misc_objects_consed,
01a6dcc8
GM
6699 doc: /* Number of miscellaneous objects that have been consed so far.
6700These include markers and overlays, plus certain objects not visible
6701to users. */);
2e471eb5 6702
29208e82 6703 DEFVAR_INT ("intervals-consed", intervals_consed,
a6266d23 6704 doc: /* Number of intervals that have been consed so far. */);
7146af97 6705
29208e82 6706 DEFVAR_INT ("strings-consed", strings_consed,
a6266d23 6707 doc: /* Number of strings that have been consed so far. */);
228299fa 6708
29208e82 6709 DEFVAR_LISP ("purify-flag", Vpurify_flag,
a6266d23 6710 doc: /* Non-nil means loading Lisp code in order to dump an executable.
e9515805
SM
6711This means that certain objects should be allocated in shared (pure) space.
6712It can also be set to a hash-table, in which case this table is used to
6713do hash-consing of the objects allocated to pure space. */);
228299fa 6714
29208e82 6715 DEFVAR_BOOL ("garbage-collection-messages", garbage_collection_messages,
a6266d23 6716 doc: /* Non-nil means display messages at start and end of garbage collection. */);
299585ee
RS
6717 garbage_collection_messages = 0;
6718
29208e82 6719 DEFVAR_LISP ("post-gc-hook", Vpost_gc_hook,
a6266d23 6720 doc: /* Hook run after garbage collection has finished. */);
9e713715 6721 Vpost_gc_hook = Qnil;
cd3520a4 6722 DEFSYM (Qpost_gc_hook, "post-gc-hook");
9e713715 6723
29208e82 6724 DEFVAR_LISP ("memory-signal-data", Vmemory_signal_data,
74a54b04 6725 doc: /* Precomputed `signal' argument for memory-full error. */);
bcb61d60
KH
6726 /* We build this in advance because if we wait until we need it, we might
6727 not be able to allocate the memory to hold it. */
74a54b04 6728 Vmemory_signal_data
3438fe21 6729 = listn (CONSTYPE_PURE, 2, Qerror,
694b6c97 6730 build_pure_c_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"));
74a54b04 6731
29208e82 6732 DEFVAR_LISP ("memory-full", Vmemory_full,
24d8a105 6733 doc: /* Non-nil means Emacs cannot get much more Lisp memory. */);
74a54b04 6734 Vmemory_full = Qnil;
bcb61d60 6735
fecbd8ff
SM
6736 DEFSYM (Qconses, "conses");
6737 DEFSYM (Qsymbols, "symbols");
6738 DEFSYM (Qmiscs, "miscs");
6739 DEFSYM (Qstrings, "strings");
6740 DEFSYM (Qvectors, "vectors");
6741 DEFSYM (Qfloats, "floats");
6742 DEFSYM (Qintervals, "intervals");
6743 DEFSYM (Qbuffers, "buffers");
5b835e1d
DA
6744 DEFSYM (Qstring_bytes, "string-bytes");
6745 DEFSYM (Qvector_slots, "vector-slots");
f8643a6b 6746 DEFSYM (Qheap, "heap");
3d80c99f 6747 DEFSYM (Qautomatic_gc, "Automatic GC");
5b835e1d 6748
cd3520a4
JB
6749 DEFSYM (Qgc_cons_threshold, "gc-cons-threshold");
6750 DEFSYM (Qchar_table_extra_slots, "char-table-extra-slots");
a59de17b 6751
29208e82 6752 DEFVAR_LISP ("gc-elapsed", Vgc_elapsed,
2c5bd608 6753 doc: /* Accumulated time elapsed in garbage collections.
e7415487 6754The time is in seconds as a floating point value. */);
29208e82 6755 DEFVAR_INT ("gcs-done", gcs_done,
e7415487 6756 doc: /* Accumulated number of garbage collections done. */);
2c5bd608 6757
7146af97
JB
6758 defsubr (&Scons);
6759 defsubr (&Slist);
6760 defsubr (&Svector);
6761 defsubr (&Smake_byte_code);
6762 defsubr (&Smake_list);
6763 defsubr (&Smake_vector);
6764 defsubr (&Smake_string);
7b07587b 6765 defsubr (&Smake_bool_vector);
7146af97
JB
6766 defsubr (&Smake_symbol);
6767 defsubr (&Smake_marker);
6768 defsubr (&Spurecopy);
6769 defsubr (&Sgarbage_collect);
20d24714 6770 defsubr (&Smemory_limit);
310ea200 6771 defsubr (&Smemory_use_counts);
34400008
GM
6772
6773#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
6774 defsubr (&Sgc_status);
6775#endif
7146af97 6776}
5eceb8fb 6777
4706125e
PE
6778/* When compiled with GCC, GDB might say "No enum type named
6779 pvec_type" if we don't have at least one symbol with that type, and
6780 then xbacktrace could fail. Similarly for the other enums and
62aba0d4
FP
6781 their values. Some non-GCC compilers don't like these constructs. */
6782#ifdef __GNUC__
4706125e
PE
6783union
6784{
03a660a6
PE
6785 enum CHARTAB_SIZE_BITS CHARTAB_SIZE_BITS;
6786 enum CHAR_TABLE_STANDARD_SLOTS CHAR_TABLE_STANDARD_SLOTS;
6787 enum char_bits char_bits;
4706125e 6788 enum CHECK_LISP_OBJECT_TYPE CHECK_LISP_OBJECT_TYPE;
03a660a6 6789 enum DEFAULT_HASH_SIZE DEFAULT_HASH_SIZE;
4706125e 6790 enum enum_USE_LSB_TAG enum_USE_LSB_TAG;
03a660a6 6791 enum FLOAT_TO_STRING_BUFSIZE FLOAT_TO_STRING_BUFSIZE;
4706125e 6792 enum Lisp_Bits Lisp_Bits;
03a660a6
PE
6793 enum Lisp_Compiled Lisp_Compiled;
6794 enum maxargs maxargs;
6795 enum MAX_ALLOCA MAX_ALLOCA;
4706125e
PE
6796 enum More_Lisp_Bits More_Lisp_Bits;
6797 enum pvec_type pvec_type;
6798} const EXTERNALLY_VISIBLE gdb_make_enums_visible = {0};
62aba0d4 6799#endif /* __GNUC__ */