*** empty log message ***
[bpt/emacs.git] / src / alloc.c
CommitLineData
7146af97 1/* Storage allocation and gc for GNU Emacs Lisp interpreter.
d05b383a 2 Copyright (C) 1985,86,88,93,94,95,97,98,1999,2000,01,02,03,2004
4a2f9c6a 3 Free Software Foundation, Inc.
7146af97
JB
4
5This file is part of GNU Emacs.
6
7GNU Emacs is free software; you can redistribute it and/or modify
8it under the terms of the GNU General Public License as published by
7c299e7a 9the Free Software Foundation; either version 2, or (at your option)
7146af97
JB
10any later version.
11
12GNU Emacs is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15GNU General Public License for more details.
16
17You should have received a copy of the GNU General Public License
18along with GNU Emacs; see the file COPYING. If not, write to
3b7ad313
EN
19the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
20Boston, MA 02111-1307, USA. */
7146af97 21
18160b98 22#include <config.h>
e9b309ac 23#include <stdio.h>
ab6780cd 24#include <limits.h> /* For CHAR_BIT. */
92939d31 25
4455ad75
RS
26#ifdef ALLOC_DEBUG
27#undef INLINE
28#endif
29
68c45bf0 30/* Note that this declares bzero on OSF/1. How dumb. */
2e471eb5 31
68c45bf0 32#include <signal.h>
92939d31 33
7539e11f
KR
34/* This file is part of the core Lisp implementation, and thus must
35 deal with the real data structures. If the Lisp implementation is
36 replaced, this file likely will not be used. */
2e471eb5 37
7539e11f 38#undef HIDE_LISP_IMPLEMENTATION
7146af97 39#include "lisp.h"
ece93c02 40#include "process.h"
d5e35230 41#include "intervals.h"
4c0be5f4 42#include "puresize.h"
7146af97
JB
43#include "buffer.h"
44#include "window.h"
2538fae4 45#include "keyboard.h"
502b9b64 46#include "frame.h"
9ac0d9e0 47#include "blockinput.h"
e54daa22 48#include "charset.h"
e065a56e 49#include "syssignal.h"
34400008 50#include <setjmp.h>
e065a56e 51
ad5f3636
DL
52/* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
53 memory. Can do this only if using gmalloc.c. */
54
55#if defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC
56#undef GC_MALLOC_CHECK
57#endif
58
bf952fb6
DL
59#ifdef HAVE_UNISTD_H
60#include <unistd.h>
61#else
62extern POINTER_TYPE *sbrk ();
63#endif
ee1eea5c 64
d1658221 65#ifdef DOUG_LEA_MALLOC
2e471eb5 66
d1658221 67#include <malloc.h>
3e60b029
DL
68/* malloc.h #defines this as size_t, at least in glibc2. */
69#ifndef __malloc_size_t
d1658221 70#define __malloc_size_t int
3e60b029 71#endif
81d492d5 72
2e471eb5
GM
73/* Specify maximum number of areas to mmap. It would be nice to use a
74 value that explicitly means "no limit". */
75
81d492d5
RS
76#define MMAP_MAX_AREAS 100000000
77
2e471eb5
GM
78#else /* not DOUG_LEA_MALLOC */
79
276cbe5a
RS
80/* The following come from gmalloc.c. */
81
276cbe5a 82#define __malloc_size_t size_t
276cbe5a 83extern __malloc_size_t _bytes_used;
3e60b029 84extern __malloc_size_t __malloc_extra_blocks;
2e471eb5
GM
85
86#endif /* not DOUG_LEA_MALLOC */
276cbe5a 87
276cbe5a 88/* Value of _bytes_used, when spare_memory was freed. */
2e471eb5 89
276cbe5a
RS
90static __malloc_size_t bytes_used_when_full;
91
2e471eb5
GM
92/* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
93 to a struct Lisp_String. */
94
7cdee936
SM
95#define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
96#define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
97#define STRING_MARKED_P(S) ((S)->size & ARRAY_MARK_FLAG)
2e471eb5 98
3ef06d12
SM
99#define VECTOR_MARK(V) ((V)->size |= ARRAY_MARK_FLAG)
100#define VECTOR_UNMARK(V) ((V)->size &= ~ARRAY_MARK_FLAG)
101#define VECTOR_MARKED_P(V) ((V)->size & ARRAY_MARK_FLAG)
102
2e471eb5
GM
103/* Value is the number of bytes/chars of S, a pointer to a struct
104 Lisp_String. This must be used instead of STRING_BYTES (S) or
105 S->size during GC, because S->size contains the mark bit for
106 strings. */
107
3ef06d12 108#define GC_STRING_BYTES(S) (STRING_BYTES (S))
7cdee936 109#define GC_STRING_CHARS(S) ((S)->size & ~ARRAY_MARK_FLAG)
2e471eb5
GM
110
111/* Number of bytes of consing done since the last gc. */
112
7146af97
JB
113int consing_since_gc;
114
310ea200 115/* Count the amount of consing of various sorts of space. */
2e471eb5 116
31ade731
SM
117EMACS_INT cons_cells_consed;
118EMACS_INT floats_consed;
119EMACS_INT vector_cells_consed;
120EMACS_INT symbols_consed;
121EMACS_INT string_chars_consed;
122EMACS_INT misc_objects_consed;
123EMACS_INT intervals_consed;
124EMACS_INT strings_consed;
2e471eb5
GM
125
126/* Number of bytes of consing since GC before another GC should be done. */
310ea200 127
31ade731 128EMACS_INT gc_cons_threshold;
7146af97 129
2e471eb5
GM
130/* Nonzero during GC. */
131
7146af97
JB
132int gc_in_progress;
133
3de0effb
RS
134/* Nonzero means abort if try to GC.
135 This is for code which is written on the assumption that
136 no GC will happen, so as to verify that assumption. */
137
138int abort_on_gc;
139
299585ee 140/* Nonzero means display messages at beginning and end of GC. */
2e471eb5 141
299585ee
RS
142int garbage_collection_messages;
143
7146af97
JB
144#ifndef VIRT_ADDR_VARIES
145extern
146#endif /* VIRT_ADDR_VARIES */
2e471eb5 147int malloc_sbrk_used;
7146af97
JB
148
149#ifndef VIRT_ADDR_VARIES
150extern
151#endif /* VIRT_ADDR_VARIES */
2e471eb5 152int malloc_sbrk_unused;
7146af97 153
502b9b64 154/* Two limits controlling how much undo information to keep. */
2e471eb5 155
31ade731
SM
156EMACS_INT undo_limit;
157EMACS_INT undo_strong_limit;
ae6a9bfe 158EMACS_INT undo_outer_limit;
7146af97 159
34400008
GM
160/* Number of live and free conses etc. */
161
162static int total_conses, total_markers, total_symbols, total_vector_size;
163static int total_free_conses, total_free_markers, total_free_symbols;
164static int total_free_floats, total_floats;
fd27a537 165
2e471eb5
GM
166/* Points to memory space allocated as "spare", to be freed if we run
167 out of memory. */
168
276cbe5a
RS
169static char *spare_memory;
170
171/* Amount of spare memory to keep in reserve. */
2e471eb5 172
276cbe5a
RS
173#define SPARE_MEMORY (1 << 14)
174
175/* Number of extra blocks malloc should get when it needs more core. */
2e471eb5 176
276cbe5a
RS
177static int malloc_hysteresis;
178
2e471eb5
GM
179/* Non-nil means defun should do purecopy on the function definition. */
180
7146af97
JB
181Lisp_Object Vpurify_flag;
182
74a54b04
RS
183/* Non-nil means we are handling a memory-full error. */
184
185Lisp_Object Vmemory_full;
186
7146af97 187#ifndef HAVE_SHM
2e471eb5 188
379b98b1
PE
189/* Force it into data space! Initialize it to a nonzero value;
190 otherwise some compilers put it into BSS. */
2e471eb5 191
379b98b1 192EMACS_INT pure[PURESIZE / sizeof (EMACS_INT)] = {1,};
7146af97 193#define PUREBEG (char *) pure
2e471eb5 194
9e713715 195#else /* HAVE_SHM */
2e471eb5 196
7146af97
JB
197#define pure PURE_SEG_BITS /* Use shared memory segment */
198#define PUREBEG (char *)PURE_SEG_BITS
4c0be5f4 199
9e713715 200#endif /* HAVE_SHM */
2e471eb5 201
9e713715 202/* Pointer to the pure area, and its size. */
2e471eb5 203
9e713715
GM
204static char *purebeg;
205static size_t pure_size;
206
207/* Number of bytes of pure storage used before pure storage overflowed.
208 If this is non-zero, this implies that an overflow occurred. */
209
210static size_t pure_bytes_used_before_overflow;
7146af97 211
34400008
GM
212/* Value is non-zero if P points into pure space. */
213
214#define PURE_POINTER_P(P) \
215 (((PNTR_COMPARISON_TYPE) (P) \
9e713715 216 < (PNTR_COMPARISON_TYPE) ((char *) purebeg + pure_size)) \
34400008 217 && ((PNTR_COMPARISON_TYPE) (P) \
9e713715 218 >= (PNTR_COMPARISON_TYPE) purebeg))
34400008 219
2e471eb5
GM
220/* Index in pure at which next pure object will be allocated.. */
221
31ade731 222EMACS_INT pure_bytes_used;
7146af97 223
2e471eb5
GM
224/* If nonzero, this is a warning delivered by malloc and not yet
225 displayed. */
226
7146af97
JB
227char *pending_malloc_warning;
228
bcb61d60 229/* Pre-computed signal argument for use when memory is exhausted. */
2e471eb5 230
74a54b04 231Lisp_Object Vmemory_signal_data;
bcb61d60 232
7146af97
JB
233/* Maximum amount of C stack to save when a GC happens. */
234
235#ifndef MAX_SAVE_STACK
236#define MAX_SAVE_STACK 16000
237#endif
238
239/* Buffer in which we save a copy of the C stack at each GC. */
240
241char *stack_copy;
242int stack_copy_size;
243
2e471eb5
GM
244/* Non-zero means ignore malloc warnings. Set during initialization.
245 Currently not used. */
246
7146af97 247int ignore_warnings;
350273a4 248
a59de17b 249Lisp_Object Qgc_cons_threshold, Qchar_table_extra_slots;
e8197642 250
9e713715
GM
251/* Hook run after GC has finished. */
252
253Lisp_Object Vpost_gc_hook, Qpost_gc_hook;
254
2c5bd608
DL
255Lisp_Object Vgc_elapsed; /* accumulated elapsed time in GC */
256EMACS_INT gcs_done; /* accumulated GCs */
257
2e471eb5 258static void mark_buffer P_ ((Lisp_Object));
6793bc63 259extern void mark_kboards P_ ((void));
b40ea20a 260extern void mark_backtrace P_ ((void));
2e471eb5 261static void gc_sweep P_ ((void));
41c28a37
GM
262static void mark_glyph_matrix P_ ((struct glyph_matrix *));
263static void mark_face_cache P_ ((struct face_cache *));
264
265#ifdef HAVE_WINDOW_SYSTEM
266static void mark_image P_ ((struct image *));
267static void mark_image_cache P_ ((struct frame *));
268#endif /* HAVE_WINDOW_SYSTEM */
269
2e471eb5
GM
270static struct Lisp_String *allocate_string P_ ((void));
271static void compact_small_strings P_ ((void));
272static void free_large_strings P_ ((void));
273static void sweep_strings P_ ((void));
7da0b0d3
RS
274
275extern int message_enable_multibyte;
34400008 276
34400008
GM
277/* When scanning the C stack for live Lisp objects, Emacs keeps track
278 of what memory allocated via lisp_malloc is intended for what
279 purpose. This enumeration specifies the type of memory. */
280
281enum mem_type
282{
283 MEM_TYPE_NON_LISP,
284 MEM_TYPE_BUFFER,
285 MEM_TYPE_CONS,
286 MEM_TYPE_STRING,
287 MEM_TYPE_MISC,
288 MEM_TYPE_SYMBOL,
289 MEM_TYPE_FLOAT,
ece93c02
GM
290 /* Keep the following vector-like types together, with
291 MEM_TYPE_WINDOW being the last, and MEM_TYPE_VECTOR the
292 first. Or change the code of live_vector_p, for instance. */
293 MEM_TYPE_VECTOR,
294 MEM_TYPE_PROCESS,
295 MEM_TYPE_HASH_TABLE,
296 MEM_TYPE_FRAME,
297 MEM_TYPE_WINDOW
34400008
GM
298};
299
877935b1 300#if GC_MARK_STACK || defined GC_MALLOC_CHECK
0b378936
GM
301
302#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
303#include <stdio.h> /* For fprintf. */
304#endif
305
306/* A unique object in pure space used to make some Lisp objects
307 on free lists recognizable in O(1). */
308
309Lisp_Object Vdead;
310
877935b1
GM
311#ifdef GC_MALLOC_CHECK
312
313enum mem_type allocated_mem_type;
314int dont_register_blocks;
315
316#endif /* GC_MALLOC_CHECK */
317
318/* A node in the red-black tree describing allocated memory containing
319 Lisp data. Each such block is recorded with its start and end
320 address when it is allocated, and removed from the tree when it
321 is freed.
322
323 A red-black tree is a balanced binary tree with the following
324 properties:
325
326 1. Every node is either red or black.
327 2. Every leaf is black.
328 3. If a node is red, then both of its children are black.
329 4. Every simple path from a node to a descendant leaf contains
330 the same number of black nodes.
331 5. The root is always black.
332
333 When nodes are inserted into the tree, or deleted from the tree,
334 the tree is "fixed" so that these properties are always true.
335
336 A red-black tree with N internal nodes has height at most 2
337 log(N+1). Searches, insertions and deletions are done in O(log N).
338 Please see a text book about data structures for a detailed
339 description of red-black trees. Any book worth its salt should
340 describe them. */
341
342struct mem_node
343{
9f7d9210
RS
344 /* Children of this node. These pointers are never NULL. When there
345 is no child, the value is MEM_NIL, which points to a dummy node. */
346 struct mem_node *left, *right;
347
348 /* The parent of this node. In the root node, this is NULL. */
349 struct mem_node *parent;
877935b1
GM
350
351 /* Start and end of allocated region. */
352 void *start, *end;
353
354 /* Node color. */
355 enum {MEM_BLACK, MEM_RED} color;
177c0ea7 356
877935b1
GM
357 /* Memory type. */
358 enum mem_type type;
359};
360
361/* Base address of stack. Set in main. */
362
363Lisp_Object *stack_base;
364
365/* Root of the tree describing allocated Lisp memory. */
366
367static struct mem_node *mem_root;
368
ece93c02
GM
369/* Lowest and highest known address in the heap. */
370
371static void *min_heap_address, *max_heap_address;
372
877935b1
GM
373/* Sentinel node of the tree. */
374
375static struct mem_node mem_z;
376#define MEM_NIL &mem_z
377
b3303f74 378static POINTER_TYPE *lisp_malloc P_ ((size_t, enum mem_type));
ece93c02 379static struct Lisp_Vector *allocate_vectorlike P_ ((EMACS_INT, enum mem_type));
bf952fb6 380static void lisp_free P_ ((POINTER_TYPE *));
34400008 381static void mark_stack P_ ((void));
34400008
GM
382static int live_vector_p P_ ((struct mem_node *, void *));
383static int live_buffer_p P_ ((struct mem_node *, void *));
384static int live_string_p P_ ((struct mem_node *, void *));
385static int live_cons_p P_ ((struct mem_node *, void *));
386static int live_symbol_p P_ ((struct mem_node *, void *));
387static int live_float_p P_ ((struct mem_node *, void *));
388static int live_misc_p P_ ((struct mem_node *, void *));
182ff242 389static void mark_maybe_object P_ ((Lisp_Object));
34400008
GM
390static void mark_memory P_ ((void *, void *));
391static void mem_init P_ ((void));
392static struct mem_node *mem_insert P_ ((void *, void *, enum mem_type));
393static void mem_insert_fixup P_ ((struct mem_node *));
394static void mem_rotate_left P_ ((struct mem_node *));
395static void mem_rotate_right P_ ((struct mem_node *));
396static void mem_delete P_ ((struct mem_node *));
397static void mem_delete_fixup P_ ((struct mem_node *));
398static INLINE struct mem_node *mem_find P_ ((void *));
399
400#if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
401static void check_gcpros P_ ((void));
402#endif
403
877935b1 404#endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
34400008 405
1f0b3fd2
GM
406/* Recording what needs to be marked for gc. */
407
408struct gcpro *gcprolist;
409
379b98b1
PE
410/* Addresses of staticpro'd variables. Initialize it to a nonzero
411 value; otherwise some compilers put it into BSS. */
1f0b3fd2 412
382d38fa 413#define NSTATICS 1280
379b98b1 414Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
1f0b3fd2
GM
415
416/* Index of next unused slot in staticvec. */
417
418int staticidx = 0;
419
420static POINTER_TYPE *pure_alloc P_ ((size_t, int));
421
422
423/* Value is SZ rounded up to the next multiple of ALIGNMENT.
424 ALIGNMENT must be a power of 2. */
425
ab6780cd
SM
426#define ALIGN(ptr, ALIGNMENT) \
427 ((POINTER_TYPE *) ((((EMACS_UINT)(ptr)) + (ALIGNMENT) - 1) \
428 & ~((ALIGNMENT) - 1)))
1f0b3fd2 429
ece93c02 430
7146af97 431\f
34400008
GM
432/************************************************************************
433 Malloc
434 ************************************************************************/
435
4455ad75 436/* Function malloc calls this if it finds we are near exhausting storage. */
d457598b
AS
437
438void
7146af97
JB
439malloc_warning (str)
440 char *str;
441{
442 pending_malloc_warning = str;
443}
444
34400008 445
4455ad75 446/* Display an already-pending malloc warning. */
34400008 447
d457598b 448void
7146af97
JB
449display_malloc_warning ()
450{
4455ad75
RS
451 call3 (intern ("display-warning"),
452 intern ("alloc"),
453 build_string (pending_malloc_warning),
454 intern ("emergency"));
7146af97 455 pending_malloc_warning = 0;
7146af97
JB
456}
457
34400008 458
d1658221 459#ifdef DOUG_LEA_MALLOC
1177ecf6 460# define BYTES_USED (mallinfo ().arena)
d1658221 461#else
1177ecf6 462# define BYTES_USED _bytes_used
d1658221
RS
463#endif
464
34400008 465
2e471eb5 466/* Called if malloc returns zero. */
276cbe5a 467
d457598b 468void
7146af97
JB
469memory_full ()
470{
74a54b04
RS
471 Vmemory_full = Qt;
472
276cbe5a 473#ifndef SYSTEM_MALLOC
d1658221 474 bytes_used_when_full = BYTES_USED;
276cbe5a
RS
475#endif
476
477 /* The first time we get here, free the spare memory. */
478 if (spare_memory)
479 {
480 free (spare_memory);
481 spare_memory = 0;
482 }
483
2e471eb5
GM
484 /* This used to call error, but if we've run out of memory, we could
485 get infinite recursion trying to build the string. */
276cbe5a 486 while (1)
74a54b04 487 Fsignal (Qnil, Vmemory_signal_data);
276cbe5a
RS
488}
489
34400008 490
276cbe5a
RS
491/* Called if we can't allocate relocatable space for a buffer. */
492
493void
494buffer_memory_full ()
495{
2e471eb5
GM
496 /* If buffers use the relocating allocator, no need to free
497 spare_memory, because we may have plenty of malloc space left
498 that we could get, and if we don't, the malloc that fails will
499 itself cause spare_memory to be freed. If buffers don't use the
500 relocating allocator, treat this like any other failing
501 malloc. */
276cbe5a
RS
502
503#ifndef REL_ALLOC
504 memory_full ();
505#endif
506
74a54b04
RS
507 Vmemory_full = Qt;
508
2e471eb5
GM
509 /* This used to call error, but if we've run out of memory, we could
510 get infinite recursion trying to build the string. */
bcb61d60 511 while (1)
74a54b04 512 Fsignal (Qnil, Vmemory_signal_data);
7146af97
JB
513}
514
34400008
GM
515
516/* Like malloc but check for no memory and block interrupt input.. */
7146af97 517
c971ff9a 518POINTER_TYPE *
7146af97 519xmalloc (size)
675d5130 520 size_t size;
7146af97 521{
c971ff9a 522 register POINTER_TYPE *val;
7146af97 523
9ac0d9e0 524 BLOCK_INPUT;
c971ff9a 525 val = (POINTER_TYPE *) malloc (size);
9ac0d9e0 526 UNBLOCK_INPUT;
7146af97 527
2e471eb5
GM
528 if (!val && size)
529 memory_full ();
7146af97
JB
530 return val;
531}
532
34400008
GM
533
534/* Like realloc but check for no memory and block interrupt input.. */
535
c971ff9a 536POINTER_TYPE *
7146af97 537xrealloc (block, size)
c971ff9a 538 POINTER_TYPE *block;
675d5130 539 size_t size;
7146af97 540{
c971ff9a 541 register POINTER_TYPE *val;
7146af97 542
9ac0d9e0 543 BLOCK_INPUT;
56d2031b
JB
544 /* We must call malloc explicitly when BLOCK is 0, since some
545 reallocs don't do this. */
546 if (! block)
c971ff9a 547 val = (POINTER_TYPE *) malloc (size);
f048679d 548 else
c971ff9a 549 val = (POINTER_TYPE *) realloc (block, size);
9ac0d9e0 550 UNBLOCK_INPUT;
7146af97
JB
551
552 if (!val && size) memory_full ();
553 return val;
554}
9ac0d9e0 555
34400008 556
d7489312 557/* Like free but block interrupt input. */
34400008 558
9ac0d9e0
JB
559void
560xfree (block)
c971ff9a 561 POINTER_TYPE *block;
9ac0d9e0
JB
562{
563 BLOCK_INPUT;
564 free (block);
565 UNBLOCK_INPUT;
566}
567
c8099634 568
dca7c6a8
GM
569/* Like strdup, but uses xmalloc. */
570
571char *
572xstrdup (s)
943b873e 573 const char *s;
dca7c6a8 574{
675d5130 575 size_t len = strlen (s) + 1;
dca7c6a8
GM
576 char *p = (char *) xmalloc (len);
577 bcopy (s, p, len);
578 return p;
579}
580
581
f61bef8b
KS
582/* Unwind for SAFE_ALLOCA */
583
584Lisp_Object
585safe_alloca_unwind (arg)
586 Lisp_Object arg;
587{
588 xfree (XSAVE_VALUE (arg)->pointer);
589 return Qnil;
590}
591
592
34400008
GM
593/* Like malloc but used for allocating Lisp data. NBYTES is the
594 number of bytes to allocate, TYPE describes the intended use of the
595 allcated memory block (for strings, for conses, ...). */
596
918a23a7
RS
597static void *lisp_malloc_loser;
598
675d5130 599static POINTER_TYPE *
34400008 600lisp_malloc (nbytes, type)
675d5130 601 size_t nbytes;
34400008 602 enum mem_type type;
c8099634 603{
34400008 604 register void *val;
c8099634
RS
605
606 BLOCK_INPUT;
877935b1
GM
607
608#ifdef GC_MALLOC_CHECK
609 allocated_mem_type = type;
610#endif
177c0ea7 611
34400008 612 val = (void *) malloc (nbytes);
c8099634 613
831b476c 614#ifndef USE_LSB_TAG
918a23a7
RS
615 /* If the memory just allocated cannot be addressed thru a Lisp
616 object's pointer, and it needs to be,
617 that's equivalent to running out of memory. */
618 if (val && type != MEM_TYPE_NON_LISP)
619 {
620 Lisp_Object tem;
621 XSETCONS (tem, (char *) val + nbytes - 1);
622 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
623 {
624 lisp_malloc_loser = val;
625 free (val);
626 val = 0;
627 }
628 }
831b476c 629#endif
918a23a7 630
877935b1 631#if GC_MARK_STACK && !defined GC_MALLOC_CHECK
dca7c6a8 632 if (val && type != MEM_TYPE_NON_LISP)
34400008
GM
633 mem_insert (val, (char *) val + nbytes, type);
634#endif
177c0ea7 635
dca7c6a8
GM
636 UNBLOCK_INPUT;
637 if (!val && nbytes)
638 memory_full ();
c8099634
RS
639 return val;
640}
641
34400008
GM
642/* Free BLOCK. This must be called to free memory allocated with a
643 call to lisp_malloc. */
644
bf952fb6 645static void
c8099634 646lisp_free (block)
675d5130 647 POINTER_TYPE *block;
c8099634
RS
648{
649 BLOCK_INPUT;
c8099634 650 free (block);
877935b1 651#if GC_MARK_STACK && !defined GC_MALLOC_CHECK
34400008
GM
652 mem_delete (mem_find (block));
653#endif
c8099634
RS
654 UNBLOCK_INPUT;
655}
34400008 656
ab6780cd
SM
657/* Allocation of aligned blocks of memory to store Lisp data. */
658/* The entry point is lisp_align_malloc which returns blocks of at most */
659/* BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
660
661
662/* BLOCK_ALIGN has to be a power of 2. */
663#define BLOCK_ALIGN (1 << 10)
ab6780cd
SM
664
665/* Padding to leave at the end of a malloc'd block. This is to give
666 malloc a chance to minimize the amount of memory wasted to alignment.
667 It should be tuned to the particular malloc library used.
19bcad1f
SM
668 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
669 posix_memalign on the other hand would ideally prefer a value of 4
670 because otherwise, there's 1020 bytes wasted between each ablocks.
671 But testing shows that those 1020 will most of the time be efficiently
672 used by malloc to place other objects, so a value of 0 is still preferable
673 unless you have a lot of cons&floats and virtually nothing else. */
674#define BLOCK_PADDING 0
675#define BLOCK_BYTES \
676 (BLOCK_ALIGN - sizeof (struct aligned_block *) - BLOCK_PADDING)
677
678/* Internal data structures and constants. */
679
ab6780cd
SM
680#define ABLOCKS_SIZE 16
681
682/* An aligned block of memory. */
683struct ablock
684{
685 union
686 {
687 char payload[BLOCK_BYTES];
688 struct ablock *next_free;
689 } x;
690 /* `abase' is the aligned base of the ablocks. */
691 /* It is overloaded to hold the virtual `busy' field that counts
692 the number of used ablock in the parent ablocks.
693 The first ablock has the `busy' field, the others have the `abase'
694 field. To tell the difference, we assume that pointers will have
695 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
696 is used to tell whether the real base of the parent ablocks is `abase'
697 (if not, the word before the first ablock holds a pointer to the
698 real base). */
699 struct ablocks *abase;
700 /* The padding of all but the last ablock is unused. The padding of
701 the last ablock in an ablocks is not allocated. */
19bcad1f
SM
702#if BLOCK_PADDING
703 char padding[BLOCK_PADDING];
ebb8d410 704#endif
ab6780cd
SM
705};
706
707/* A bunch of consecutive aligned blocks. */
708struct ablocks
709{
710 struct ablock blocks[ABLOCKS_SIZE];
711};
712
713/* Size of the block requested from malloc or memalign. */
19bcad1f 714#define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
ab6780cd
SM
715
716#define ABLOCK_ABASE(block) \
717 (((unsigned long) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
718 ? (struct ablocks *)(block) \
719 : (block)->abase)
720
721/* Virtual `busy' field. */
722#define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
723
724/* Pointer to the (not necessarily aligned) malloc block. */
19bcad1f
SM
725#ifdef HAVE_POSIX_MEMALIGN
726#define ABLOCKS_BASE(abase) (abase)
727#else
ab6780cd 728#define ABLOCKS_BASE(abase) \
03bb6a06 729 (1 & (long) ABLOCKS_BUSY (abase) ? abase : ((void**)abase)[-1])
19bcad1f 730#endif
ab6780cd
SM
731
732/* The list of free ablock. */
733static struct ablock *free_ablock;
734
735/* Allocate an aligned block of nbytes.
736 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
737 smaller or equal to BLOCK_BYTES. */
738static POINTER_TYPE *
739lisp_align_malloc (nbytes, type)
740 size_t nbytes;
741 enum mem_type type;
742{
743 void *base, *val;
744 struct ablocks *abase;
745
746 eassert (nbytes <= BLOCK_BYTES);
747
748 BLOCK_INPUT;
749
750#ifdef GC_MALLOC_CHECK
751 allocated_mem_type = type;
752#endif
753
754 if (!free_ablock)
755 {
d7489312
DL
756 int i;
757 EMACS_INT aligned; /* int gets warning casting to 64-bit pointer. */
ab6780cd
SM
758
759#ifdef DOUG_LEA_MALLOC
760 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
761 because mapped region contents are not preserved in
762 a dumped Emacs. */
763 mallopt (M_MMAP_MAX, 0);
764#endif
765
19bcad1f
SM
766#ifdef HAVE_POSIX_MEMALIGN
767 {
768 int err = posix_memalign (&base, BLOCK_ALIGN, ABLOCKS_BYTES);
ab349c19
RS
769 if (err)
770 base = NULL;
771 abase = base;
19bcad1f
SM
772 }
773#else
ab6780cd
SM
774 base = malloc (ABLOCKS_BYTES);
775 abase = ALIGN (base, BLOCK_ALIGN);
ab349c19
RS
776#endif
777
4532fdde
RS
778 if (base == 0)
779 {
780 UNBLOCK_INPUT;
781 memory_full ();
782 }
ab6780cd
SM
783
784 aligned = (base == abase);
785 if (!aligned)
786 ((void**)abase)[-1] = base;
787
788#ifdef DOUG_LEA_MALLOC
789 /* Back to a reasonable maximum of mmap'ed areas. */
790 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
791#endif
792
831b476c 793#ifndef USE_LSB_TAG
f4446bbf
GM
794 /* If the memory just allocated cannot be addressed thru a Lisp
795 object's pointer, and it needs to be, that's equivalent to
796 running out of memory. */
797 if (type != MEM_TYPE_NON_LISP)
798 {
799 Lisp_Object tem;
800 char *end = (char *) base + ABLOCKS_BYTES - 1;
801 XSETCONS (tem, end);
802 if ((char *) XCONS (tem) != end)
803 {
804 lisp_malloc_loser = base;
805 free (base);
806 UNBLOCK_INPUT;
807 memory_full ();
808 }
809 }
831b476c 810#endif
f4446bbf 811
ab6780cd
SM
812 /* Initialize the blocks and put them on the free list.
813 Is `base' was not properly aligned, we can't use the last block. */
814 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
815 {
816 abase->blocks[i].abase = abase;
817 abase->blocks[i].x.next_free = free_ablock;
818 free_ablock = &abase->blocks[i];
819 }
03bb6a06 820 ABLOCKS_BUSY (abase) = (struct ablocks *) (long) aligned;
ab6780cd 821
19bcad1f 822 eassert (0 == ((EMACS_UINT)abase) % BLOCK_ALIGN);
ab6780cd
SM
823 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
824 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
825 eassert (ABLOCKS_BASE (abase) == base);
03bb6a06 826 eassert (aligned == (long) ABLOCKS_BUSY (abase));
ab6780cd
SM
827 }
828
829 abase = ABLOCK_ABASE (free_ablock);
03bb6a06 830 ABLOCKS_BUSY (abase) = (struct ablocks *) (2 + (long) ABLOCKS_BUSY (abase));
ab6780cd
SM
831 val = free_ablock;
832 free_ablock = free_ablock->x.next_free;
833
ab6780cd
SM
834#if GC_MARK_STACK && !defined GC_MALLOC_CHECK
835 if (val && type != MEM_TYPE_NON_LISP)
836 mem_insert (val, (char *) val + nbytes, type);
837#endif
838
839 UNBLOCK_INPUT;
840 if (!val && nbytes)
841 memory_full ();
842
843 eassert (0 == ((EMACS_UINT)val) % BLOCK_ALIGN);
844 return val;
845}
846
847static void
848lisp_align_free (block)
849 POINTER_TYPE *block;
850{
851 struct ablock *ablock = block;
852 struct ablocks *abase = ABLOCK_ABASE (ablock);
853
854 BLOCK_INPUT;
855#if GC_MARK_STACK && !defined GC_MALLOC_CHECK
856 mem_delete (mem_find (block));
857#endif
858 /* Put on free list. */
859 ablock->x.next_free = free_ablock;
860 free_ablock = ablock;
861 /* Update busy count. */
03bb6a06 862 ABLOCKS_BUSY (abase) = (struct ablocks *) (-2 + (long) ABLOCKS_BUSY (abase));
d2db1c32 863
03bb6a06 864 if (2 > (long) ABLOCKS_BUSY (abase))
ab6780cd 865 { /* All the blocks are free. */
03bb6a06 866 int i = 0, aligned = (long) ABLOCKS_BUSY (abase);
ab6780cd
SM
867 struct ablock **tem = &free_ablock;
868 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
869
870 while (*tem)
871 {
872 if (*tem >= (struct ablock *) abase && *tem < atop)
873 {
874 i++;
875 *tem = (*tem)->x.next_free;
876 }
877 else
878 tem = &(*tem)->x.next_free;
879 }
880 eassert ((aligned & 1) == aligned);
881 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
882 free (ABLOCKS_BASE (abase));
883 }
884 UNBLOCK_INPUT;
885}
3ef06d12
SM
886
887/* Return a new buffer structure allocated from the heap with
888 a call to lisp_malloc. */
889
890struct buffer *
891allocate_buffer ()
892{
893 struct buffer *b
894 = (struct buffer *) lisp_malloc (sizeof (struct buffer),
895 MEM_TYPE_BUFFER);
896 return b;
897}
898
9ac0d9e0
JB
899\f
900/* Arranging to disable input signals while we're in malloc.
901
902 This only works with GNU malloc. To help out systems which can't
903 use GNU malloc, all the calls to malloc, realloc, and free
904 elsewhere in the code should be inside a BLOCK_INPUT/UNBLOCK_INPUT
905 pairs; unfortunately, we have no idea what C library functions
906 might call malloc, so we can't really protect them unless you're
2c5bd608
DL
907 using GNU malloc. Fortunately, most of the major operating systems
908 can use GNU malloc. */
9ac0d9e0
JB
909
910#ifndef SYSTEM_MALLOC
b3303f74
DL
911#ifndef DOUG_LEA_MALLOC
912extern void * (*__malloc_hook) P_ ((size_t));
913extern void * (*__realloc_hook) P_ ((void *, size_t));
914extern void (*__free_hook) P_ ((void *));
915/* Else declared in malloc.h, perhaps with an extra arg. */
916#endif /* DOUG_LEA_MALLOC */
b0846f52 917static void * (*old_malloc_hook) ();
b0846f52 918static void * (*old_realloc_hook) ();
b0846f52 919static void (*old_free_hook) ();
9ac0d9e0 920
276cbe5a
RS
921/* This function is used as the hook for free to call. */
922
9ac0d9e0
JB
923static void
924emacs_blocked_free (ptr)
925 void *ptr;
926{
927 BLOCK_INPUT;
877935b1
GM
928
929#ifdef GC_MALLOC_CHECK
a83fee2c
GM
930 if (ptr)
931 {
932 struct mem_node *m;
177c0ea7 933
a83fee2c
GM
934 m = mem_find (ptr);
935 if (m == MEM_NIL || m->start != ptr)
936 {
937 fprintf (stderr,
938 "Freeing `%p' which wasn't allocated with malloc\n", ptr);
939 abort ();
940 }
941 else
942 {
943 /* fprintf (stderr, "free %p...%p (%p)\n", m->start, m->end, ptr); */
944 mem_delete (m);
945 }
946 }
877935b1 947#endif /* GC_MALLOC_CHECK */
177c0ea7 948
9ac0d9e0
JB
949 __free_hook = old_free_hook;
950 free (ptr);
177c0ea7 951
276cbe5a
RS
952 /* If we released our reserve (due to running out of memory),
953 and we have a fair amount free once again,
954 try to set aside another reserve in case we run out once more. */
955 if (spare_memory == 0
956 /* Verify there is enough space that even with the malloc
957 hysteresis this call won't run out again.
958 The code here is correct as long as SPARE_MEMORY
959 is substantially larger than the block size malloc uses. */
960 && (bytes_used_when_full
d1658221 961 > BYTES_USED + max (malloc_hysteresis, 4) * SPARE_MEMORY))
675d5130 962 spare_memory = (char *) malloc ((size_t) SPARE_MEMORY);
276cbe5a 963
b0846f52 964 __free_hook = emacs_blocked_free;
9ac0d9e0
JB
965 UNBLOCK_INPUT;
966}
967
34400008 968
276cbe5a
RS
969/* If we released our reserve (due to running out of memory),
970 and we have a fair amount free once again,
971 try to set aside another reserve in case we run out once more.
972
973 This is called when a relocatable block is freed in ralloc.c. */
974
975void
976refill_memory_reserve ()
977{
978 if (spare_memory == 0)
675d5130 979 spare_memory = (char *) malloc ((size_t) SPARE_MEMORY);
276cbe5a
RS
980}
981
34400008 982
276cbe5a
RS
983/* This function is the malloc hook that Emacs uses. */
984
9ac0d9e0
JB
985static void *
986emacs_blocked_malloc (size)
675d5130 987 size_t size;
9ac0d9e0
JB
988{
989 void *value;
990
991 BLOCK_INPUT;
992 __malloc_hook = old_malloc_hook;
1177ecf6 993#ifdef DOUG_LEA_MALLOC
d1658221 994 mallopt (M_TOP_PAD, malloc_hysteresis * 4096);
1177ecf6 995#else
d1658221 996 __malloc_extra_blocks = malloc_hysteresis;
1177ecf6 997#endif
877935b1 998
2756d8ee 999 value = (void *) malloc (size);
877935b1
GM
1000
1001#ifdef GC_MALLOC_CHECK
1002 {
1003 struct mem_node *m = mem_find (value);
1004 if (m != MEM_NIL)
1005 {
1006 fprintf (stderr, "Malloc returned %p which is already in use\n",
1007 value);
1008 fprintf (stderr, "Region in use is %p...%p, %u bytes, type %d\n",
1009 m->start, m->end, (char *) m->end - (char *) m->start,
1010 m->type);
1011 abort ();
1012 }
1013
1014 if (!dont_register_blocks)
1015 {
1016 mem_insert (value, (char *) value + max (1, size), allocated_mem_type);
1017 allocated_mem_type = MEM_TYPE_NON_LISP;
1018 }
1019 }
1020#endif /* GC_MALLOC_CHECK */
177c0ea7 1021
b0846f52 1022 __malloc_hook = emacs_blocked_malloc;
9ac0d9e0
JB
1023 UNBLOCK_INPUT;
1024
877935b1 1025 /* fprintf (stderr, "%p malloc\n", value); */
9ac0d9e0
JB
1026 return value;
1027}
1028
34400008
GM
1029
1030/* This function is the realloc hook that Emacs uses. */
1031
9ac0d9e0
JB
1032static void *
1033emacs_blocked_realloc (ptr, size)
1034 void *ptr;
675d5130 1035 size_t size;
9ac0d9e0
JB
1036{
1037 void *value;
1038
1039 BLOCK_INPUT;
1040 __realloc_hook = old_realloc_hook;
877935b1
GM
1041
1042#ifdef GC_MALLOC_CHECK
1043 if (ptr)
1044 {
1045 struct mem_node *m = mem_find (ptr);
1046 if (m == MEM_NIL || m->start != ptr)
1047 {
1048 fprintf (stderr,
1049 "Realloc of %p which wasn't allocated with malloc\n",
1050 ptr);
1051 abort ();
1052 }
1053
1054 mem_delete (m);
1055 }
177c0ea7 1056
877935b1 1057 /* fprintf (stderr, "%p -> realloc\n", ptr); */
177c0ea7 1058
877935b1
GM
1059 /* Prevent malloc from registering blocks. */
1060 dont_register_blocks = 1;
1061#endif /* GC_MALLOC_CHECK */
1062
2756d8ee 1063 value = (void *) realloc (ptr, size);
877935b1
GM
1064
1065#ifdef GC_MALLOC_CHECK
1066 dont_register_blocks = 0;
1067
1068 {
1069 struct mem_node *m = mem_find (value);
1070 if (m != MEM_NIL)
1071 {
1072 fprintf (stderr, "Realloc returns memory that is already in use\n");
1073 abort ();
1074 }
1075
1076 /* Can't handle zero size regions in the red-black tree. */
1077 mem_insert (value, (char *) value + max (size, 1), MEM_TYPE_NON_LISP);
1078 }
177c0ea7 1079
877935b1
GM
1080 /* fprintf (stderr, "%p <- realloc\n", value); */
1081#endif /* GC_MALLOC_CHECK */
177c0ea7 1082
b0846f52 1083 __realloc_hook = emacs_blocked_realloc;
9ac0d9e0
JB
1084 UNBLOCK_INPUT;
1085
1086 return value;
1087}
1088
34400008
GM
1089
1090/* Called from main to set up malloc to use our hooks. */
1091
9ac0d9e0
JB
1092void
1093uninterrupt_malloc ()
1094{
c8099634
RS
1095 if (__free_hook != emacs_blocked_free)
1096 old_free_hook = __free_hook;
b0846f52 1097 __free_hook = emacs_blocked_free;
9ac0d9e0 1098
c8099634
RS
1099 if (__malloc_hook != emacs_blocked_malloc)
1100 old_malloc_hook = __malloc_hook;
b0846f52 1101 __malloc_hook = emacs_blocked_malloc;
9ac0d9e0 1102
c8099634
RS
1103 if (__realloc_hook != emacs_blocked_realloc)
1104 old_realloc_hook = __realloc_hook;
b0846f52 1105 __realloc_hook = emacs_blocked_realloc;
9ac0d9e0 1106}
2e471eb5
GM
1107
1108#endif /* not SYSTEM_MALLOC */
1109
1110
7146af97 1111\f
2e471eb5
GM
1112/***********************************************************************
1113 Interval Allocation
1114 ***********************************************************************/
1a4f1e2c 1115
34400008
GM
1116/* Number of intervals allocated in an interval_block structure.
1117 The 1020 is 1024 minus malloc overhead. */
1118
d5e35230
JA
1119#define INTERVAL_BLOCK_SIZE \
1120 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1121
34400008
GM
1122/* Intervals are allocated in chunks in form of an interval_block
1123 structure. */
1124
d5e35230 1125struct interval_block
2e471eb5 1126{
d05b383a 1127 /* Place `intervals' first, to preserve alignment. */
2e471eb5 1128 struct interval intervals[INTERVAL_BLOCK_SIZE];
d05b383a 1129 struct interval_block *next;
2e471eb5 1130};
d5e35230 1131
34400008
GM
1132/* Current interval block. Its `next' pointer points to older
1133 blocks. */
1134
d5e35230 1135struct interval_block *interval_block;
34400008
GM
1136
1137/* Index in interval_block above of the next unused interval
1138 structure. */
1139
d5e35230 1140static int interval_block_index;
34400008
GM
1141
1142/* Number of free and live intervals. */
1143
2e471eb5 1144static int total_free_intervals, total_intervals;
d5e35230 1145
34400008
GM
1146/* List of free intervals. */
1147
d5e35230
JA
1148INTERVAL interval_free_list;
1149
c8099634 1150/* Total number of interval blocks now in use. */
2e471eb5 1151
c8099634
RS
1152int n_interval_blocks;
1153
34400008
GM
1154
1155/* Initialize interval allocation. */
1156
d5e35230
JA
1157static void
1158init_intervals ()
1159{
0930c1a1
SM
1160 interval_block = NULL;
1161 interval_block_index = INTERVAL_BLOCK_SIZE;
d5e35230 1162 interval_free_list = 0;
0930c1a1 1163 n_interval_blocks = 0;
d5e35230
JA
1164}
1165
34400008
GM
1166
1167/* Return a new interval. */
d5e35230
JA
1168
1169INTERVAL
1170make_interval ()
1171{
1172 INTERVAL val;
1173
1174 if (interval_free_list)
1175 {
1176 val = interval_free_list;
439d5cb4 1177 interval_free_list = INTERVAL_PARENT (interval_free_list);
d5e35230
JA
1178 }
1179 else
1180 {
1181 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1182 {
3c06d205
KH
1183 register struct interval_block *newi;
1184
34400008
GM
1185 newi = (struct interval_block *) lisp_malloc (sizeof *newi,
1186 MEM_TYPE_NON_LISP);
d5e35230 1187
d5e35230
JA
1188 newi->next = interval_block;
1189 interval_block = newi;
1190 interval_block_index = 0;
c8099634 1191 n_interval_blocks++;
d5e35230
JA
1192 }
1193 val = &interval_block->intervals[interval_block_index++];
1194 }
1195 consing_since_gc += sizeof (struct interval);
310ea200 1196 intervals_consed++;
d5e35230 1197 RESET_INTERVAL (val);
2336fe58 1198 val->gcmarkbit = 0;
d5e35230
JA
1199 return val;
1200}
1201
34400008
GM
1202
1203/* Mark Lisp objects in interval I. */
d5e35230
JA
1204
1205static void
d393c068 1206mark_interval (i, dummy)
d5e35230 1207 register INTERVAL i;
d393c068 1208 Lisp_Object dummy;
d5e35230 1209{
2336fe58
SM
1210 eassert (!i->gcmarkbit); /* Intervals are never shared. */
1211 i->gcmarkbit = 1;
49723c04 1212 mark_object (i->plist);
d5e35230
JA
1213}
1214
34400008
GM
1215
1216/* Mark the interval tree rooted in TREE. Don't call this directly;
1217 use the macro MARK_INTERVAL_TREE instead. */
1218
d5e35230
JA
1219static void
1220mark_interval_tree (tree)
1221 register INTERVAL tree;
1222{
e8720644
JB
1223 /* No need to test if this tree has been marked already; this
1224 function is always called through the MARK_INTERVAL_TREE macro,
1225 which takes care of that. */
1226
1e934989 1227 traverse_intervals_noorder (tree, mark_interval, Qnil);
d5e35230
JA
1228}
1229
34400008
GM
1230
1231/* Mark the interval tree rooted in I. */
1232
e8720644
JB
1233#define MARK_INTERVAL_TREE(i) \
1234 do { \
2336fe58 1235 if (!NULL_INTERVAL_P (i) && !i->gcmarkbit) \
e8720644
JB
1236 mark_interval_tree (i); \
1237 } while (0)
d5e35230 1238
34400008 1239
2e471eb5
GM
1240#define UNMARK_BALANCE_INTERVALS(i) \
1241 do { \
1242 if (! NULL_INTERVAL_P (i)) \
2336fe58 1243 (i) = balance_intervals (i); \
2e471eb5 1244 } while (0)
d5e35230 1245
cc2d8c6b
KR
1246\f
1247/* Number support. If NO_UNION_TYPE isn't in effect, we
1248 can't create number objects in macros. */
1249#ifndef make_number
1250Lisp_Object
1251make_number (n)
1252 int n;
1253{
1254 Lisp_Object obj;
1255 obj.s.val = n;
1256 obj.s.type = Lisp_Int;
1257 return obj;
1258}
1259#endif
d5e35230 1260\f
2e471eb5
GM
1261/***********************************************************************
1262 String Allocation
1263 ***********************************************************************/
1a4f1e2c 1264
2e471eb5
GM
1265/* Lisp_Strings are allocated in string_block structures. When a new
1266 string_block is allocated, all the Lisp_Strings it contains are
e0fead5d 1267 added to a free-list string_free_list. When a new Lisp_String is
2e471eb5
GM
1268 needed, it is taken from that list. During the sweep phase of GC,
1269 string_blocks that are entirely free are freed, except two which
1270 we keep.
7146af97 1271
2e471eb5
GM
1272 String data is allocated from sblock structures. Strings larger
1273 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1274 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
7146af97 1275
2e471eb5
GM
1276 Sblocks consist internally of sdata structures, one for each
1277 Lisp_String. The sdata structure points to the Lisp_String it
1278 belongs to. The Lisp_String points back to the `u.data' member of
1279 its sdata structure.
7146af97 1280
2e471eb5
GM
1281 When a Lisp_String is freed during GC, it is put back on
1282 string_free_list, and its `data' member and its sdata's `string'
1283 pointer is set to null. The size of the string is recorded in the
1284 `u.nbytes' member of the sdata. So, sdata structures that are no
1285 longer used, can be easily recognized, and it's easy to compact the
1286 sblocks of small strings which we do in compact_small_strings. */
7146af97 1287
2e471eb5
GM
1288/* Size in bytes of an sblock structure used for small strings. This
1289 is 8192 minus malloc overhead. */
7146af97 1290
2e471eb5 1291#define SBLOCK_SIZE 8188
c8099634 1292
2e471eb5
GM
1293/* Strings larger than this are considered large strings. String data
1294 for large strings is allocated from individual sblocks. */
7146af97 1295
2e471eb5
GM
1296#define LARGE_STRING_BYTES 1024
1297
1298/* Structure describing string memory sub-allocated from an sblock.
1299 This is where the contents of Lisp strings are stored. */
1300
1301struct sdata
7146af97 1302{
2e471eb5
GM
1303 /* Back-pointer to the string this sdata belongs to. If null, this
1304 structure is free, and the NBYTES member of the union below
34400008 1305 contains the string's byte size (the same value that STRING_BYTES
2e471eb5
GM
1306 would return if STRING were non-null). If non-null, STRING_BYTES
1307 (STRING) is the size of the data, and DATA contains the string's
1308 contents. */
1309 struct Lisp_String *string;
7146af97 1310
31d929e5 1311#ifdef GC_CHECK_STRING_BYTES
177c0ea7 1312
31d929e5
GM
1313 EMACS_INT nbytes;
1314 unsigned char data[1];
177c0ea7 1315
31d929e5
GM
1316#define SDATA_NBYTES(S) (S)->nbytes
1317#define SDATA_DATA(S) (S)->data
177c0ea7 1318
31d929e5
GM
1319#else /* not GC_CHECK_STRING_BYTES */
1320
2e471eb5
GM
1321 union
1322 {
1323 /* When STRING in non-null. */
1324 unsigned char data[1];
1325
1326 /* When STRING is null. */
1327 EMACS_INT nbytes;
1328 } u;
177c0ea7 1329
31d929e5
GM
1330
1331#define SDATA_NBYTES(S) (S)->u.nbytes
1332#define SDATA_DATA(S) (S)->u.data
1333
1334#endif /* not GC_CHECK_STRING_BYTES */
2e471eb5
GM
1335};
1336
31d929e5 1337
2e471eb5
GM
1338/* Structure describing a block of memory which is sub-allocated to
1339 obtain string data memory for strings. Blocks for small strings
1340 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1341 as large as needed. */
1342
1343struct sblock
7146af97 1344{
2e471eb5
GM
1345 /* Next in list. */
1346 struct sblock *next;
7146af97 1347
2e471eb5
GM
1348 /* Pointer to the next free sdata block. This points past the end
1349 of the sblock if there isn't any space left in this block. */
1350 struct sdata *next_free;
1351
1352 /* Start of data. */
1353 struct sdata first_data;
1354};
1355
1356/* Number of Lisp strings in a string_block structure. The 1020 is
1357 1024 minus malloc overhead. */
1358
19bcad1f 1359#define STRING_BLOCK_SIZE \
2e471eb5
GM
1360 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1361
1362/* Structure describing a block from which Lisp_String structures
1363 are allocated. */
1364
1365struct string_block
7146af97 1366{
d05b383a 1367 /* Place `strings' first, to preserve alignment. */
19bcad1f 1368 struct Lisp_String strings[STRING_BLOCK_SIZE];
d05b383a 1369 struct string_block *next;
2e471eb5 1370};
7146af97 1371
2e471eb5
GM
1372/* Head and tail of the list of sblock structures holding Lisp string
1373 data. We always allocate from current_sblock. The NEXT pointers
1374 in the sblock structures go from oldest_sblock to current_sblock. */
3c06d205 1375
2e471eb5 1376static struct sblock *oldest_sblock, *current_sblock;
7146af97 1377
2e471eb5 1378/* List of sblocks for large strings. */
7146af97 1379
2e471eb5 1380static struct sblock *large_sblocks;
7146af97 1381
2e471eb5 1382/* List of string_block structures, and how many there are. */
7146af97 1383
2e471eb5
GM
1384static struct string_block *string_blocks;
1385static int n_string_blocks;
7146af97 1386
2e471eb5 1387/* Free-list of Lisp_Strings. */
7146af97 1388
2e471eb5 1389static struct Lisp_String *string_free_list;
7146af97 1390
2e471eb5 1391/* Number of live and free Lisp_Strings. */
c8099634 1392
2e471eb5 1393static int total_strings, total_free_strings;
7146af97 1394
2e471eb5
GM
1395/* Number of bytes used by live strings. */
1396
1397static int total_string_size;
1398
1399/* Given a pointer to a Lisp_String S which is on the free-list
1400 string_free_list, return a pointer to its successor in the
1401 free-list. */
1402
1403#define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1404
1405/* Return a pointer to the sdata structure belonging to Lisp string S.
1406 S must be live, i.e. S->data must not be null. S->data is actually
1407 a pointer to the `u.data' member of its sdata structure; the
1408 structure starts at a constant offset in front of that. */
177c0ea7 1409
31d929e5
GM
1410#ifdef GC_CHECK_STRING_BYTES
1411
1412#define SDATA_OF_STRING(S) \
1413 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *) \
1414 - sizeof (EMACS_INT)))
1415
1416#else /* not GC_CHECK_STRING_BYTES */
1417
2e471eb5
GM
1418#define SDATA_OF_STRING(S) \
1419 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *)))
1420
31d929e5
GM
1421#endif /* not GC_CHECK_STRING_BYTES */
1422
2e471eb5
GM
1423/* Value is the size of an sdata structure large enough to hold NBYTES
1424 bytes of string data. The value returned includes a terminating
1425 NUL byte, the size of the sdata structure, and padding. */
1426
31d929e5
GM
1427#ifdef GC_CHECK_STRING_BYTES
1428
2e471eb5
GM
1429#define SDATA_SIZE(NBYTES) \
1430 ((sizeof (struct Lisp_String *) \
1431 + (NBYTES) + 1 \
31d929e5 1432 + sizeof (EMACS_INT) \
2e471eb5
GM
1433 + sizeof (EMACS_INT) - 1) \
1434 & ~(sizeof (EMACS_INT) - 1))
1435
31d929e5
GM
1436#else /* not GC_CHECK_STRING_BYTES */
1437
1438#define SDATA_SIZE(NBYTES) \
1439 ((sizeof (struct Lisp_String *) \
1440 + (NBYTES) + 1 \
1441 + sizeof (EMACS_INT) - 1) \
1442 & ~(sizeof (EMACS_INT) - 1))
1443
1444#endif /* not GC_CHECK_STRING_BYTES */
2e471eb5
GM
1445
1446/* Initialize string allocation. Called from init_alloc_once. */
d457598b
AS
1447
1448void
2e471eb5 1449init_strings ()
7146af97 1450{
2e471eb5
GM
1451 total_strings = total_free_strings = total_string_size = 0;
1452 oldest_sblock = current_sblock = large_sblocks = NULL;
1453 string_blocks = NULL;
1454 n_string_blocks = 0;
1455 string_free_list = NULL;
7146af97
JB
1456}
1457
2e471eb5 1458
361b097f
GM
1459#ifdef GC_CHECK_STRING_BYTES
1460
361b097f
GM
1461static int check_string_bytes_count;
1462
676a7251
GM
1463void check_string_bytes P_ ((int));
1464void check_sblock P_ ((struct sblock *));
1465
1466#define CHECK_STRING_BYTES(S) STRING_BYTES (S)
1467
1468
1469/* Like GC_STRING_BYTES, but with debugging check. */
1470
1471int
1472string_bytes (s)
1473 struct Lisp_String *s;
1474{
7cdee936 1475 int nbytes = (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
676a7251
GM
1476 if (!PURE_POINTER_P (s)
1477 && s->data
1478 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1479 abort ();
1480 return nbytes;
1481}
177c0ea7 1482
2c5bd608 1483/* Check validity of Lisp strings' string_bytes member in B. */
676a7251 1484
361b097f 1485void
676a7251
GM
1486check_sblock (b)
1487 struct sblock *b;
361b097f 1488{
676a7251 1489 struct sdata *from, *end, *from_end;
177c0ea7 1490
676a7251 1491 end = b->next_free;
177c0ea7 1492
676a7251 1493 for (from = &b->first_data; from < end; from = from_end)
361b097f 1494 {
676a7251
GM
1495 /* Compute the next FROM here because copying below may
1496 overwrite data we need to compute it. */
1497 int nbytes;
177c0ea7 1498
676a7251
GM
1499 /* Check that the string size recorded in the string is the
1500 same as the one recorded in the sdata structure. */
1501 if (from->string)
1502 CHECK_STRING_BYTES (from->string);
177c0ea7 1503
676a7251
GM
1504 if (from->string)
1505 nbytes = GC_STRING_BYTES (from->string);
1506 else
1507 nbytes = SDATA_NBYTES (from);
177c0ea7 1508
676a7251
GM
1509 nbytes = SDATA_SIZE (nbytes);
1510 from_end = (struct sdata *) ((char *) from + nbytes);
1511 }
1512}
361b097f 1513
676a7251
GM
1514
1515/* Check validity of Lisp strings' string_bytes member. ALL_P
1516 non-zero means check all strings, otherwise check only most
1517 recently allocated strings. Used for hunting a bug. */
1518
1519void
1520check_string_bytes (all_p)
1521 int all_p;
1522{
1523 if (all_p)
1524 {
1525 struct sblock *b;
1526
1527 for (b = large_sblocks; b; b = b->next)
1528 {
1529 struct Lisp_String *s = b->first_data.string;
1530 if (s)
1531 CHECK_STRING_BYTES (s);
361b097f 1532 }
177c0ea7 1533
676a7251
GM
1534 for (b = oldest_sblock; b; b = b->next)
1535 check_sblock (b);
361b097f 1536 }
676a7251
GM
1537 else
1538 check_sblock (current_sblock);
361b097f
GM
1539}
1540
1541#endif /* GC_CHECK_STRING_BYTES */
1542
1543
2e471eb5
GM
1544/* Return a new Lisp_String. */
1545
1546static struct Lisp_String *
1547allocate_string ()
7146af97 1548{
2e471eb5 1549 struct Lisp_String *s;
7146af97 1550
2e471eb5
GM
1551 /* If the free-list is empty, allocate a new string_block, and
1552 add all the Lisp_Strings in it to the free-list. */
1553 if (string_free_list == NULL)
7146af97 1554 {
2e471eb5
GM
1555 struct string_block *b;
1556 int i;
1557
34400008 1558 b = (struct string_block *) lisp_malloc (sizeof *b, MEM_TYPE_STRING);
2e471eb5
GM
1559 bzero (b, sizeof *b);
1560 b->next = string_blocks;
1561 string_blocks = b;
1562 ++n_string_blocks;
1563
19bcad1f 1564 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
7146af97 1565 {
2e471eb5
GM
1566 s = b->strings + i;
1567 NEXT_FREE_LISP_STRING (s) = string_free_list;
1568 string_free_list = s;
7146af97 1569 }
2e471eb5 1570
19bcad1f 1571 total_free_strings += STRING_BLOCK_SIZE;
7146af97 1572 }
c0f51373 1573
2e471eb5
GM
1574 /* Pop a Lisp_String off the free-list. */
1575 s = string_free_list;
1576 string_free_list = NEXT_FREE_LISP_STRING (s);
c0f51373 1577
2e471eb5
GM
1578 /* Probably not strictly necessary, but play it safe. */
1579 bzero (s, sizeof *s);
c0f51373 1580
2e471eb5
GM
1581 --total_free_strings;
1582 ++total_strings;
1583 ++strings_consed;
1584 consing_since_gc += sizeof *s;
c0f51373 1585
361b097f 1586#ifdef GC_CHECK_STRING_BYTES
83a96b4d 1587 if (!noninteractive
e0f712ba 1588#ifdef MAC_OS8
83a96b4d
AC
1589 && current_sblock
1590#endif
1591 )
361b097f 1592 {
676a7251
GM
1593 if (++check_string_bytes_count == 200)
1594 {
1595 check_string_bytes_count = 0;
1596 check_string_bytes (1);
1597 }
1598 else
1599 check_string_bytes (0);
361b097f 1600 }
676a7251 1601#endif /* GC_CHECK_STRING_BYTES */
361b097f 1602
2e471eb5 1603 return s;
c0f51373 1604}
7146af97 1605
7146af97 1606
2e471eb5
GM
1607/* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1608 plus a NUL byte at the end. Allocate an sdata structure for S, and
1609 set S->data to its `u.data' member. Store a NUL byte at the end of
1610 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1611 S->data if it was initially non-null. */
7146af97 1612
2e471eb5
GM
1613void
1614allocate_string_data (s, nchars, nbytes)
1615 struct Lisp_String *s;
1616 int nchars, nbytes;
7146af97 1617{
5c5fecb3 1618 struct sdata *data, *old_data;
2e471eb5 1619 struct sblock *b;
5c5fecb3 1620 int needed, old_nbytes;
7146af97 1621
2e471eb5
GM
1622 /* Determine the number of bytes needed to store NBYTES bytes
1623 of string data. */
1624 needed = SDATA_SIZE (nbytes);
7146af97 1625
2e471eb5
GM
1626 if (nbytes > LARGE_STRING_BYTES)
1627 {
675d5130 1628 size_t size = sizeof *b - sizeof (struct sdata) + needed;
2e471eb5
GM
1629
1630#ifdef DOUG_LEA_MALLOC
f8608968
GM
1631 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1632 because mapped region contents are not preserved in
d36b182f
DL
1633 a dumped Emacs.
1634
1635 In case you think of allowing it in a dumped Emacs at the
1636 cost of not being able to re-dump, there's another reason:
1637 mmap'ed data typically have an address towards the top of the
1638 address space, which won't fit into an EMACS_INT (at least on
1639 32-bit systems with the current tagging scheme). --fx */
2e471eb5
GM
1640 mallopt (M_MMAP_MAX, 0);
1641#endif
1642
34400008 1643 b = (struct sblock *) lisp_malloc (size, MEM_TYPE_NON_LISP);
177c0ea7 1644
2e471eb5
GM
1645#ifdef DOUG_LEA_MALLOC
1646 /* Back to a reasonable maximum of mmap'ed areas. */
1647 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1648#endif
177c0ea7 1649
2e471eb5
GM
1650 b->next_free = &b->first_data;
1651 b->first_data.string = NULL;
1652 b->next = large_sblocks;
1653 large_sblocks = b;
1654 }
1655 else if (current_sblock == NULL
1656 || (((char *) current_sblock + SBLOCK_SIZE
1657 - (char *) current_sblock->next_free)
1658 < needed))
1659 {
1660 /* Not enough room in the current sblock. */
34400008 1661 b = (struct sblock *) lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
2e471eb5
GM
1662 b->next_free = &b->first_data;
1663 b->first_data.string = NULL;
1664 b->next = NULL;
1665
1666 if (current_sblock)
1667 current_sblock->next = b;
1668 else
1669 oldest_sblock = b;
1670 current_sblock = b;
1671 }
1672 else
1673 b = current_sblock;
5c5fecb3
GM
1674
1675 old_data = s->data ? SDATA_OF_STRING (s) : NULL;
1676 old_nbytes = GC_STRING_BYTES (s);
177c0ea7 1677
2e471eb5
GM
1678 data = b->next_free;
1679 data->string = s;
31d929e5
GM
1680 s->data = SDATA_DATA (data);
1681#ifdef GC_CHECK_STRING_BYTES
1682 SDATA_NBYTES (data) = nbytes;
1683#endif
2e471eb5
GM
1684 s->size = nchars;
1685 s->size_byte = nbytes;
1686 s->data[nbytes] = '\0';
1687 b->next_free = (struct sdata *) ((char *) data + needed);
177c0ea7 1688
5c5fecb3
GM
1689 /* If S had already data assigned, mark that as free by setting its
1690 string back-pointer to null, and recording the size of the data
00c9c33c 1691 in it. */
5c5fecb3
GM
1692 if (old_data)
1693 {
31d929e5 1694 SDATA_NBYTES (old_data) = old_nbytes;
5c5fecb3
GM
1695 old_data->string = NULL;
1696 }
1697
2e471eb5
GM
1698 consing_since_gc += needed;
1699}
1700
1701
1702/* Sweep and compact strings. */
1703
1704static void
1705sweep_strings ()
1706{
1707 struct string_block *b, *next;
1708 struct string_block *live_blocks = NULL;
177c0ea7 1709
2e471eb5
GM
1710 string_free_list = NULL;
1711 total_strings = total_free_strings = 0;
1712 total_string_size = 0;
1713
1714 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
1715 for (b = string_blocks; b; b = next)
1716 {
1717 int i, nfree = 0;
1718 struct Lisp_String *free_list_before = string_free_list;
1719
1720 next = b->next;
1721
19bcad1f 1722 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
2e471eb5
GM
1723 {
1724 struct Lisp_String *s = b->strings + i;
1725
1726 if (s->data)
1727 {
1728 /* String was not on free-list before. */
1729 if (STRING_MARKED_P (s))
1730 {
1731 /* String is live; unmark it and its intervals. */
1732 UNMARK_STRING (s);
177c0ea7 1733
2e471eb5
GM
1734 if (!NULL_INTERVAL_P (s->intervals))
1735 UNMARK_BALANCE_INTERVALS (s->intervals);
1736
1737 ++total_strings;
1738 total_string_size += STRING_BYTES (s);
1739 }
1740 else
1741 {
1742 /* String is dead. Put it on the free-list. */
1743 struct sdata *data = SDATA_OF_STRING (s);
1744
1745 /* Save the size of S in its sdata so that we know
1746 how large that is. Reset the sdata's string
1747 back-pointer so that we know it's free. */
31d929e5
GM
1748#ifdef GC_CHECK_STRING_BYTES
1749 if (GC_STRING_BYTES (s) != SDATA_NBYTES (data))
1750 abort ();
1751#else
2e471eb5 1752 data->u.nbytes = GC_STRING_BYTES (s);
31d929e5 1753#endif
2e471eb5
GM
1754 data->string = NULL;
1755
1756 /* Reset the strings's `data' member so that we
1757 know it's free. */
1758 s->data = NULL;
1759
1760 /* Put the string on the free-list. */
1761 NEXT_FREE_LISP_STRING (s) = string_free_list;
1762 string_free_list = s;
1763 ++nfree;
1764 }
1765 }
1766 else
1767 {
1768 /* S was on the free-list before. Put it there again. */
1769 NEXT_FREE_LISP_STRING (s) = string_free_list;
1770 string_free_list = s;
1771 ++nfree;
1772 }
1773 }
1774
34400008 1775 /* Free blocks that contain free Lisp_Strings only, except
2e471eb5 1776 the first two of them. */
19bcad1f
SM
1777 if (nfree == STRING_BLOCK_SIZE
1778 && total_free_strings > STRING_BLOCK_SIZE)
2e471eb5
GM
1779 {
1780 lisp_free (b);
1781 --n_string_blocks;
1782 string_free_list = free_list_before;
1783 }
1784 else
1785 {
1786 total_free_strings += nfree;
1787 b->next = live_blocks;
1788 live_blocks = b;
1789 }
1790 }
1791
1792 string_blocks = live_blocks;
1793 free_large_strings ();
1794 compact_small_strings ();
1795}
1796
1797
1798/* Free dead large strings. */
1799
1800static void
1801free_large_strings ()
1802{
1803 struct sblock *b, *next;
1804 struct sblock *live_blocks = NULL;
177c0ea7 1805
2e471eb5
GM
1806 for (b = large_sblocks; b; b = next)
1807 {
1808 next = b->next;
1809
1810 if (b->first_data.string == NULL)
1811 lisp_free (b);
1812 else
1813 {
1814 b->next = live_blocks;
1815 live_blocks = b;
1816 }
1817 }
1818
1819 large_sblocks = live_blocks;
1820}
1821
1822
1823/* Compact data of small strings. Free sblocks that don't contain
1824 data of live strings after compaction. */
1825
1826static void
1827compact_small_strings ()
1828{
1829 struct sblock *b, *tb, *next;
1830 struct sdata *from, *to, *end, *tb_end;
1831 struct sdata *to_end, *from_end;
1832
1833 /* TB is the sblock we copy to, TO is the sdata within TB we copy
1834 to, and TB_END is the end of TB. */
1835 tb = oldest_sblock;
1836 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
1837 to = &tb->first_data;
1838
1839 /* Step through the blocks from the oldest to the youngest. We
1840 expect that old blocks will stabilize over time, so that less
1841 copying will happen this way. */
1842 for (b = oldest_sblock; b; b = b->next)
1843 {
1844 end = b->next_free;
1845 xassert ((char *) end <= (char *) b + SBLOCK_SIZE);
177c0ea7 1846
2e471eb5
GM
1847 for (from = &b->first_data; from < end; from = from_end)
1848 {
1849 /* Compute the next FROM here because copying below may
1850 overwrite data we need to compute it. */
1851 int nbytes;
1852
31d929e5
GM
1853#ifdef GC_CHECK_STRING_BYTES
1854 /* Check that the string size recorded in the string is the
1855 same as the one recorded in the sdata structure. */
1856 if (from->string
1857 && GC_STRING_BYTES (from->string) != SDATA_NBYTES (from))
1858 abort ();
1859#endif /* GC_CHECK_STRING_BYTES */
177c0ea7 1860
2e471eb5
GM
1861 if (from->string)
1862 nbytes = GC_STRING_BYTES (from->string);
1863 else
31d929e5 1864 nbytes = SDATA_NBYTES (from);
177c0ea7 1865
2e471eb5
GM
1866 nbytes = SDATA_SIZE (nbytes);
1867 from_end = (struct sdata *) ((char *) from + nbytes);
177c0ea7 1868
2e471eb5
GM
1869 /* FROM->string non-null means it's alive. Copy its data. */
1870 if (from->string)
1871 {
1872 /* If TB is full, proceed with the next sblock. */
1873 to_end = (struct sdata *) ((char *) to + nbytes);
1874 if (to_end > tb_end)
1875 {
1876 tb->next_free = to;
1877 tb = tb->next;
1878 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
1879 to = &tb->first_data;
1880 to_end = (struct sdata *) ((char *) to + nbytes);
1881 }
177c0ea7 1882
2e471eb5
GM
1883 /* Copy, and update the string's `data' pointer. */
1884 if (from != to)
1885 {
a2407477
GM
1886 xassert (tb != b || to <= from);
1887 safe_bcopy ((char *) from, (char *) to, nbytes);
31d929e5 1888 to->string->data = SDATA_DATA (to);
2e471eb5
GM
1889 }
1890
1891 /* Advance past the sdata we copied to. */
1892 to = to_end;
1893 }
1894 }
1895 }
1896
1897 /* The rest of the sblocks following TB don't contain live data, so
1898 we can free them. */
1899 for (b = tb->next; b; b = next)
1900 {
1901 next = b->next;
1902 lisp_free (b);
1903 }
1904
1905 tb->next_free = to;
1906 tb->next = NULL;
1907 current_sblock = tb;
1908}
1909
1910
1911DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
69623621
RS
1912 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
1913LENGTH must be an integer.
1914INIT must be an integer that represents a character. */)
7ee72033 1915 (length, init)
2e471eb5
GM
1916 Lisp_Object length, init;
1917{
1918 register Lisp_Object val;
1919 register unsigned char *p, *end;
1920 int c, nbytes;
1921
b7826503
PJ
1922 CHECK_NATNUM (length);
1923 CHECK_NUMBER (init);
2e471eb5
GM
1924
1925 c = XINT (init);
1926 if (SINGLE_BYTE_CHAR_P (c))
1927 {
1928 nbytes = XINT (length);
1929 val = make_uninit_string (nbytes);
d5db4077
KR
1930 p = SDATA (val);
1931 end = p + SCHARS (val);
2e471eb5
GM
1932 while (p != end)
1933 *p++ = c;
1934 }
1935 else
1936 {
d942b71c 1937 unsigned char str[MAX_MULTIBYTE_LENGTH];
2e471eb5
GM
1938 int len = CHAR_STRING (c, str);
1939
1940 nbytes = len * XINT (length);
1941 val = make_uninit_multibyte_string (XINT (length), nbytes);
d5db4077 1942 p = SDATA (val);
2e471eb5
GM
1943 end = p + nbytes;
1944 while (p != end)
1945 {
1946 bcopy (str, p, len);
1947 p += len;
1948 }
1949 }
177c0ea7 1950
2e471eb5
GM
1951 *p = 0;
1952 return val;
1953}
1954
1955
1956DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
a6266d23 1957 doc: /* Return a new bool-vector of length LENGTH, using INIT for as each element.
7ee72033
MB
1958LENGTH must be a number. INIT matters only in whether it is t or nil. */)
1959 (length, init)
2e471eb5
GM
1960 Lisp_Object length, init;
1961{
1962 register Lisp_Object val;
1963 struct Lisp_Bool_Vector *p;
1964 int real_init, i;
1965 int length_in_chars, length_in_elts, bits_per_value;
1966
b7826503 1967 CHECK_NATNUM (length);
2e471eb5 1968
a097329f 1969 bits_per_value = sizeof (EMACS_INT) * BOOL_VECTOR_BITS_PER_CHAR;
2e471eb5
GM
1970
1971 length_in_elts = (XFASTINT (length) + bits_per_value - 1) / bits_per_value;
a097329f
AS
1972 length_in_chars = ((XFASTINT (length) + BOOL_VECTOR_BITS_PER_CHAR - 1)
1973 / BOOL_VECTOR_BITS_PER_CHAR);
2e471eb5
GM
1974
1975 /* We must allocate one more elements than LENGTH_IN_ELTS for the
1976 slot `size' of the struct Lisp_Bool_Vector. */
1977 val = Fmake_vector (make_number (length_in_elts + 1), Qnil);
1978 p = XBOOL_VECTOR (val);
177c0ea7 1979
2e471eb5
GM
1980 /* Get rid of any bits that would cause confusion. */
1981 p->vector_size = 0;
1982 XSETBOOL_VECTOR (val, p);
1983 p->size = XFASTINT (length);
177c0ea7 1984
2e471eb5
GM
1985 real_init = (NILP (init) ? 0 : -1);
1986 for (i = 0; i < length_in_chars ; i++)
1987 p->data[i] = real_init;
177c0ea7 1988
2e471eb5 1989 /* Clear the extraneous bits in the last byte. */
a097329f 1990 if (XINT (length) != length_in_chars * BOOL_VECTOR_BITS_PER_CHAR)
2e471eb5 1991 XBOOL_VECTOR (val)->data[length_in_chars - 1]
a097329f 1992 &= (1 << (XINT (length) % BOOL_VECTOR_BITS_PER_CHAR)) - 1;
2e471eb5
GM
1993
1994 return val;
1995}
1996
1997
1998/* Make a string from NBYTES bytes at CONTENTS, and compute the number
1999 of characters from the contents. This string may be unibyte or
2000 multibyte, depending on the contents. */
2001
2002Lisp_Object
2003make_string (contents, nbytes)
943b873e 2004 const char *contents;
2e471eb5
GM
2005 int nbytes;
2006{
2007 register Lisp_Object val;
9eac9d59
KH
2008 int nchars, multibyte_nbytes;
2009
2010 parse_str_as_multibyte (contents, nbytes, &nchars, &multibyte_nbytes);
9eac9d59
KH
2011 if (nbytes == nchars || nbytes != multibyte_nbytes)
2012 /* CONTENTS contains no multibyte sequences or contains an invalid
2013 multibyte sequence. We must make unibyte string. */
495a6df3
KH
2014 val = make_unibyte_string (contents, nbytes);
2015 else
2016 val = make_multibyte_string (contents, nchars, nbytes);
2e471eb5
GM
2017 return val;
2018}
2019
2020
2021/* Make an unibyte string from LENGTH bytes at CONTENTS. */
2022
2023Lisp_Object
2024make_unibyte_string (contents, length)
943b873e 2025 const char *contents;
2e471eb5
GM
2026 int length;
2027{
2028 register Lisp_Object val;
2029 val = make_uninit_string (length);
d5db4077
KR
2030 bcopy (contents, SDATA (val), length);
2031 STRING_SET_UNIBYTE (val);
2e471eb5
GM
2032 return val;
2033}
2034
2035
2036/* Make a multibyte string from NCHARS characters occupying NBYTES
2037 bytes at CONTENTS. */
2038
2039Lisp_Object
2040make_multibyte_string (contents, nchars, nbytes)
943b873e 2041 const char *contents;
2e471eb5
GM
2042 int nchars, nbytes;
2043{
2044 register Lisp_Object val;
2045 val = make_uninit_multibyte_string (nchars, nbytes);
d5db4077 2046 bcopy (contents, SDATA (val), nbytes);
2e471eb5
GM
2047 return val;
2048}
2049
2050
2051/* Make a string from NCHARS characters occupying NBYTES bytes at
2052 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2053
2054Lisp_Object
2055make_string_from_bytes (contents, nchars, nbytes)
fcbb914b 2056 const char *contents;
2e471eb5
GM
2057 int nchars, nbytes;
2058{
2059 register Lisp_Object val;
2060 val = make_uninit_multibyte_string (nchars, nbytes);
d5db4077
KR
2061 bcopy (contents, SDATA (val), nbytes);
2062 if (SBYTES (val) == SCHARS (val))
2063 STRING_SET_UNIBYTE (val);
2e471eb5
GM
2064 return val;
2065}
2066
2067
2068/* Make a string from NCHARS characters occupying NBYTES bytes at
2069 CONTENTS. The argument MULTIBYTE controls whether to label the
229b28c4
KH
2070 string as multibyte. If NCHARS is negative, it counts the number of
2071 characters by itself. */
2e471eb5
GM
2072
2073Lisp_Object
2074make_specified_string (contents, nchars, nbytes, multibyte)
fcbb914b 2075 const char *contents;
2e471eb5
GM
2076 int nchars, nbytes;
2077 int multibyte;
2078{
2079 register Lisp_Object val;
229b28c4
KH
2080
2081 if (nchars < 0)
2082 {
2083 if (multibyte)
2084 nchars = multibyte_chars_in_text (contents, nbytes);
2085 else
2086 nchars = nbytes;
2087 }
2e471eb5 2088 val = make_uninit_multibyte_string (nchars, nbytes);
d5db4077 2089 bcopy (contents, SDATA (val), nbytes);
2e471eb5 2090 if (!multibyte)
d5db4077 2091 STRING_SET_UNIBYTE (val);
2e471eb5
GM
2092 return val;
2093}
2094
2095
2096/* Make a string from the data at STR, treating it as multibyte if the
2097 data warrants. */
2098
2099Lisp_Object
2100build_string (str)
943b873e 2101 const char *str;
2e471eb5
GM
2102{
2103 return make_string (str, strlen (str));
2104}
2105
2106
2107/* Return an unibyte Lisp_String set up to hold LENGTH characters
2108 occupying LENGTH bytes. */
2109
2110Lisp_Object
2111make_uninit_string (length)
2112 int length;
2113{
2114 Lisp_Object val;
2115 val = make_uninit_multibyte_string (length, length);
d5db4077 2116 STRING_SET_UNIBYTE (val);
2e471eb5
GM
2117 return val;
2118}
2119
2120
2121/* Return a multibyte Lisp_String set up to hold NCHARS characters
2122 which occupy NBYTES bytes. */
2123
2124Lisp_Object
2125make_uninit_multibyte_string (nchars, nbytes)
2126 int nchars, nbytes;
2127{
2128 Lisp_Object string;
2129 struct Lisp_String *s;
2130
2131 if (nchars < 0)
2132 abort ();
2133
2134 s = allocate_string ();
2135 allocate_string_data (s, nchars, nbytes);
2136 XSETSTRING (string, s);
2137 string_chars_consed += nbytes;
2138 return string;
2139}
2140
2141
2142\f
2143/***********************************************************************
2144 Float Allocation
2145 ***********************************************************************/
2146
2e471eb5
GM
2147/* We store float cells inside of float_blocks, allocating a new
2148 float_block with malloc whenever necessary. Float cells reclaimed
2149 by GC are put on a free list to be reallocated before allocating
ab6780cd 2150 any new float cells from the latest float_block. */
2e471eb5 2151
d05b383a
SM
2152#define FLOAT_BLOCK_SIZE \
2153 (((BLOCK_BYTES - sizeof (struct float_block *) \
2154 /* The compiler might add padding at the end. */ \
2155 - (sizeof (struct Lisp_Float) - sizeof (int))) * CHAR_BIT) \
ab6780cd
SM
2156 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2157
2158#define GETMARKBIT(block,n) \
2159 (((block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2160 >> ((n) % (sizeof(int) * CHAR_BIT))) \
2161 & 1)
2162
2163#define SETMARKBIT(block,n) \
2164 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2165 |= 1 << ((n) % (sizeof(int) * CHAR_BIT))
2166
2167#define UNSETMARKBIT(block,n) \
2168 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2169 &= ~(1 << ((n) % (sizeof(int) * CHAR_BIT)))
2170
2171#define FLOAT_BLOCK(fptr) \
2172 ((struct float_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2173
2174#define FLOAT_INDEX(fptr) \
2175 ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2e471eb5
GM
2176
2177struct float_block
2178{
ab6780cd 2179 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2e471eb5 2180 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
ab6780cd
SM
2181 int gcmarkbits[1 + FLOAT_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2182 struct float_block *next;
2e471eb5
GM
2183};
2184
ab6780cd
SM
2185#define FLOAT_MARKED_P(fptr) \
2186 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2187
2188#define FLOAT_MARK(fptr) \
2189 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2190
2191#define FLOAT_UNMARK(fptr) \
2192 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2193
34400008
GM
2194/* Current float_block. */
2195
2e471eb5 2196struct float_block *float_block;
34400008
GM
2197
2198/* Index of first unused Lisp_Float in the current float_block. */
2199
2e471eb5
GM
2200int float_block_index;
2201
2202/* Total number of float blocks now in use. */
2203
2204int n_float_blocks;
2205
34400008
GM
2206/* Free-list of Lisp_Floats. */
2207
2e471eb5
GM
2208struct Lisp_Float *float_free_list;
2209
34400008 2210
966533c9 2211/* Initialize float allocation. */
34400008 2212
2e471eb5
GM
2213void
2214init_float ()
2215{
08b7c2cb
SM
2216 float_block = NULL;
2217 float_block_index = FLOAT_BLOCK_SIZE; /* Force alloc of new float_block. */
2e471eb5 2218 float_free_list = 0;
08b7c2cb 2219 n_float_blocks = 0;
2e471eb5
GM
2220}
2221
34400008
GM
2222
2223/* Explicitly free a float cell by putting it on the free-list. */
2e471eb5
GM
2224
2225void
2226free_float (ptr)
2227 struct Lisp_Float *ptr;
2228{
2229 *(struct Lisp_Float **)&ptr->data = float_free_list;
2230 float_free_list = ptr;
2231}
2232
34400008
GM
2233
2234/* Return a new float object with value FLOAT_VALUE. */
2235
2e471eb5
GM
2236Lisp_Object
2237make_float (float_value)
2238 double float_value;
2239{
2240 register Lisp_Object val;
2241
2242 if (float_free_list)
2243 {
2244 /* We use the data field for chaining the free list
2245 so that we won't use the same field that has the mark bit. */
2246 XSETFLOAT (val, float_free_list);
2247 float_free_list = *(struct Lisp_Float **)&float_free_list->data;
2248 }
2249 else
2250 {
2251 if (float_block_index == FLOAT_BLOCK_SIZE)
2252 {
2253 register struct float_block *new;
2254
ab6780cd
SM
2255 new = (struct float_block *) lisp_align_malloc (sizeof *new,
2256 MEM_TYPE_FLOAT);
2e471eb5 2257 new->next = float_block;
a0668126 2258 bzero ((char *) new->gcmarkbits, sizeof new->gcmarkbits);
2e471eb5
GM
2259 float_block = new;
2260 float_block_index = 0;
2261 n_float_blocks++;
2262 }
a0668126
SM
2263 XSETFLOAT (val, &float_block->floats[float_block_index]);
2264 float_block_index++;
2e471eb5 2265 }
177c0ea7 2266
2e471eb5 2267 XFLOAT_DATA (val) = float_value;
a0668126 2268 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2e471eb5
GM
2269 consing_since_gc += sizeof (struct Lisp_Float);
2270 floats_consed++;
2271 return val;
2272}
2273
2e471eb5
GM
2274
2275\f
2276/***********************************************************************
2277 Cons Allocation
2278 ***********************************************************************/
2279
2280/* We store cons cells inside of cons_blocks, allocating a new
2281 cons_block with malloc whenever necessary. Cons cells reclaimed by
2282 GC are put on a free list to be reallocated before allocating
08b7c2cb 2283 any new cons cells from the latest cons_block. */
2e471eb5
GM
2284
2285#define CONS_BLOCK_SIZE \
08b7c2cb
SM
2286 (((BLOCK_BYTES - sizeof (struct cons_block *)) * CHAR_BIT) \
2287 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2288
2289#define CONS_BLOCK(fptr) \
2290 ((struct cons_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2291
2292#define CONS_INDEX(fptr) \
2293 ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2e471eb5
GM
2294
2295struct cons_block
2296{
08b7c2cb 2297 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2e471eb5 2298 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
08b7c2cb
SM
2299 int gcmarkbits[1 + CONS_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2300 struct cons_block *next;
2e471eb5
GM
2301};
2302
08b7c2cb
SM
2303#define CONS_MARKED_P(fptr) \
2304 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2305
2306#define CONS_MARK(fptr) \
2307 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2308
2309#define CONS_UNMARK(fptr) \
2310 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2311
34400008
GM
2312/* Current cons_block. */
2313
2e471eb5 2314struct cons_block *cons_block;
34400008
GM
2315
2316/* Index of first unused Lisp_Cons in the current block. */
2317
2e471eb5
GM
2318int cons_block_index;
2319
34400008
GM
2320/* Free-list of Lisp_Cons structures. */
2321
2e471eb5
GM
2322struct Lisp_Cons *cons_free_list;
2323
2324/* Total number of cons blocks now in use. */
2325
2326int n_cons_blocks;
2327
34400008
GM
2328
2329/* Initialize cons allocation. */
2330
2e471eb5
GM
2331void
2332init_cons ()
2333{
08b7c2cb
SM
2334 cons_block = NULL;
2335 cons_block_index = CONS_BLOCK_SIZE; /* Force alloc of new cons_block. */
2e471eb5 2336 cons_free_list = 0;
08b7c2cb 2337 n_cons_blocks = 0;
2e471eb5
GM
2338}
2339
34400008
GM
2340
2341/* Explicitly free a cons cell by putting it on the free-list. */
2e471eb5
GM
2342
2343void
2344free_cons (ptr)
2345 struct Lisp_Cons *ptr;
2346{
2347 *(struct Lisp_Cons **)&ptr->cdr = cons_free_list;
34400008
GM
2348#if GC_MARK_STACK
2349 ptr->car = Vdead;
2350#endif
2e471eb5
GM
2351 cons_free_list = ptr;
2352}
2353
2354DEFUN ("cons", Fcons, Scons, 2, 2, 0,
a6266d23 2355 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
7ee72033 2356 (car, cdr)
2e471eb5
GM
2357 Lisp_Object car, cdr;
2358{
2359 register Lisp_Object val;
2360
2361 if (cons_free_list)
2362 {
2363 /* We use the cdr for chaining the free list
2364 so that we won't use the same field that has the mark bit. */
2365 XSETCONS (val, cons_free_list);
2366 cons_free_list = *(struct Lisp_Cons **)&cons_free_list->cdr;
2367 }
2368 else
2369 {
2370 if (cons_block_index == CONS_BLOCK_SIZE)
2371 {
2372 register struct cons_block *new;
08b7c2cb
SM
2373 new = (struct cons_block *) lisp_align_malloc (sizeof *new,
2374 MEM_TYPE_CONS);
a0668126 2375 bzero ((char *) new->gcmarkbits, sizeof new->gcmarkbits);
2e471eb5
GM
2376 new->next = cons_block;
2377 cons_block = new;
2378 cons_block_index = 0;
2379 n_cons_blocks++;
2380 }
a0668126
SM
2381 XSETCONS (val, &cons_block->conses[cons_block_index]);
2382 cons_block_index++;
2e471eb5 2383 }
177c0ea7 2384
f3fbd155
KR
2385 XSETCAR (val, car);
2386 XSETCDR (val, cdr);
a0668126 2387 eassert (!CONS_MARKED_P (XCONS (val)));
2e471eb5
GM
2388 consing_since_gc += sizeof (struct Lisp_Cons);
2389 cons_cells_consed++;
2390 return val;
2391}
2392
34400008 2393
2e471eb5
GM
2394/* Make a list of 2, 3, 4 or 5 specified objects. */
2395
2396Lisp_Object
2397list2 (arg1, arg2)
2398 Lisp_Object arg1, arg2;
2399{
2400 return Fcons (arg1, Fcons (arg2, Qnil));
2401}
2402
34400008 2403
2e471eb5
GM
2404Lisp_Object
2405list3 (arg1, arg2, arg3)
2406 Lisp_Object arg1, arg2, arg3;
2407{
2408 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2409}
2410
34400008 2411
2e471eb5
GM
2412Lisp_Object
2413list4 (arg1, arg2, arg3, arg4)
2414 Lisp_Object arg1, arg2, arg3, arg4;
2415{
2416 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2417}
2418
34400008 2419
2e471eb5
GM
2420Lisp_Object
2421list5 (arg1, arg2, arg3, arg4, arg5)
2422 Lisp_Object arg1, arg2, arg3, arg4, arg5;
2423{
2424 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2425 Fcons (arg5, Qnil)))));
2426}
2427
34400008 2428
2e471eb5 2429DEFUN ("list", Flist, Slist, 0, MANY, 0,
eae936e2 2430 doc: /* Return a newly created list with specified arguments as elements.
ae8e8122
MB
2431Any number of arguments, even zero arguments, are allowed.
2432usage: (list &rest OBJECTS) */)
7ee72033 2433 (nargs, args)
2e471eb5
GM
2434 int nargs;
2435 register Lisp_Object *args;
2436{
2437 register Lisp_Object val;
2438 val = Qnil;
2439
2440 while (nargs > 0)
2441 {
2442 nargs--;
2443 val = Fcons (args[nargs], val);
2444 }
2445 return val;
2446}
2447
34400008 2448
2e471eb5 2449DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
a6266d23 2450 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
7ee72033 2451 (length, init)
2e471eb5
GM
2452 register Lisp_Object length, init;
2453{
2454 register Lisp_Object val;
2455 register int size;
2456
b7826503 2457 CHECK_NATNUM (length);
2e471eb5
GM
2458 size = XFASTINT (length);
2459
2460 val = Qnil;
ce070307
GM
2461 while (size > 0)
2462 {
2463 val = Fcons (init, val);
2464 --size;
2465
2466 if (size > 0)
2467 {
2468 val = Fcons (init, val);
2469 --size;
177c0ea7 2470
ce070307
GM
2471 if (size > 0)
2472 {
2473 val = Fcons (init, val);
2474 --size;
177c0ea7 2475
ce070307
GM
2476 if (size > 0)
2477 {
2478 val = Fcons (init, val);
2479 --size;
177c0ea7 2480
ce070307
GM
2481 if (size > 0)
2482 {
2483 val = Fcons (init, val);
2484 --size;
2485 }
2486 }
2487 }
2488 }
2489
2490 QUIT;
2491 }
177c0ea7 2492
7146af97
JB
2493 return val;
2494}
2e471eb5
GM
2495
2496
7146af97 2497\f
2e471eb5
GM
2498/***********************************************************************
2499 Vector Allocation
2500 ***********************************************************************/
7146af97 2501
34400008
GM
2502/* Singly-linked list of all vectors. */
2503
7146af97
JB
2504struct Lisp_Vector *all_vectors;
2505
2e471eb5
GM
2506/* Total number of vector-like objects now in use. */
2507
c8099634
RS
2508int n_vectors;
2509
34400008
GM
2510
2511/* Value is a pointer to a newly allocated Lisp_Vector structure
2512 with room for LEN Lisp_Objects. */
2513
ece93c02
GM
2514static struct Lisp_Vector *
2515allocate_vectorlike (len, type)
1825c68d 2516 EMACS_INT len;
ece93c02 2517 enum mem_type type;
1825c68d
KH
2518{
2519 struct Lisp_Vector *p;
675d5130 2520 size_t nbytes;
1825c68d 2521
d1658221 2522#ifdef DOUG_LEA_MALLOC
f8608968
GM
2523 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
2524 because mapped region contents are not preserved in
2525 a dumped Emacs. */
de7515d6 2526 BLOCK_INPUT;
d1658221 2527 mallopt (M_MMAP_MAX, 0);
de7515d6 2528 UNBLOCK_INPUT;
d1658221 2529#endif
177c0ea7 2530
34400008 2531 nbytes = sizeof *p + (len - 1) * sizeof p->contents[0];
ece93c02 2532 p = (struct Lisp_Vector *) lisp_malloc (nbytes, type);
177c0ea7 2533
d1658221 2534#ifdef DOUG_LEA_MALLOC
34400008 2535 /* Back to a reasonable maximum of mmap'ed areas. */
de7515d6 2536 BLOCK_INPUT;
81d492d5 2537 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
de7515d6 2538 UNBLOCK_INPUT;
d1658221 2539#endif
177c0ea7 2540
34400008 2541 consing_since_gc += nbytes;
310ea200 2542 vector_cells_consed += len;
1825c68d
KH
2543
2544 p->next = all_vectors;
2545 all_vectors = p;
34400008 2546 ++n_vectors;
1825c68d
KH
2547 return p;
2548}
2549
34400008 2550
ece93c02
GM
2551/* Allocate a vector with NSLOTS slots. */
2552
2553struct Lisp_Vector *
2554allocate_vector (nslots)
2555 EMACS_INT nslots;
2556{
2557 struct Lisp_Vector *v = allocate_vectorlike (nslots, MEM_TYPE_VECTOR);
2558 v->size = nslots;
2559 return v;
2560}
2561
2562
2563/* Allocate other vector-like structures. */
2564
2565struct Lisp_Hash_Table *
2566allocate_hash_table ()
2567{
2568 EMACS_INT len = VECSIZE (struct Lisp_Hash_Table);
2569 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_HASH_TABLE);
2570 EMACS_INT i;
177c0ea7 2571
ece93c02
GM
2572 v->size = len;
2573 for (i = 0; i < len; ++i)
2574 v->contents[i] = Qnil;
177c0ea7 2575
ece93c02
GM
2576 return (struct Lisp_Hash_Table *) v;
2577}
2578
2579
2580struct window *
2581allocate_window ()
2582{
2583 EMACS_INT len = VECSIZE (struct window);
2584 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_WINDOW);
2585 EMACS_INT i;
177c0ea7 2586
ece93c02
GM
2587 for (i = 0; i < len; ++i)
2588 v->contents[i] = Qnil;
2589 v->size = len;
177c0ea7 2590
ece93c02
GM
2591 return (struct window *) v;
2592}
2593
2594
2595struct frame *
2596allocate_frame ()
2597{
2598 EMACS_INT len = VECSIZE (struct frame);
2599 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_FRAME);
2600 EMACS_INT i;
177c0ea7 2601
ece93c02
GM
2602 for (i = 0; i < len; ++i)
2603 v->contents[i] = make_number (0);
2604 v->size = len;
2605 return (struct frame *) v;
2606}
2607
2608
2609struct Lisp_Process *
2610allocate_process ()
2611{
2612 EMACS_INT len = VECSIZE (struct Lisp_Process);
2613 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_PROCESS);
2614 EMACS_INT i;
177c0ea7 2615
ece93c02
GM
2616 for (i = 0; i < len; ++i)
2617 v->contents[i] = Qnil;
2618 v->size = len;
177c0ea7 2619
ece93c02
GM
2620 return (struct Lisp_Process *) v;
2621}
2622
2623
2624struct Lisp_Vector *
2625allocate_other_vector (len)
2626 EMACS_INT len;
2627{
2628 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_VECTOR);
2629 EMACS_INT i;
177c0ea7 2630
ece93c02
GM
2631 for (i = 0; i < len; ++i)
2632 v->contents[i] = Qnil;
2633 v->size = len;
177c0ea7 2634
ece93c02
GM
2635 return v;
2636}
2637
2638
7146af97 2639DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
a6266d23 2640 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
7ee72033
MB
2641See also the function `vector'. */)
2642 (length, init)
7146af97
JB
2643 register Lisp_Object length, init;
2644{
1825c68d
KH
2645 Lisp_Object vector;
2646 register EMACS_INT sizei;
2647 register int index;
7146af97
JB
2648 register struct Lisp_Vector *p;
2649
b7826503 2650 CHECK_NATNUM (length);
c9dad5ed 2651 sizei = XFASTINT (length);
7146af97 2652
ece93c02 2653 p = allocate_vector (sizei);
7146af97
JB
2654 for (index = 0; index < sizei; index++)
2655 p->contents[index] = init;
2656
1825c68d 2657 XSETVECTOR (vector, p);
7146af97
JB
2658 return vector;
2659}
2660
34400008 2661
a59de17b 2662DEFUN ("make-char-table", Fmake_char_table, Smake_char_table, 1, 2, 0,
a6266d23 2663 doc: /* Return a newly created char-table, with purpose PURPOSE.
228299fa
GM
2664Each element is initialized to INIT, which defaults to nil.
2665PURPOSE should be a symbol which has a `char-table-extra-slots' property.
7ee72033
MB
2666The property's value should be an integer between 0 and 10. */)
2667 (purpose, init)
a59de17b 2668 register Lisp_Object purpose, init;
7b07587b
RS
2669{
2670 Lisp_Object vector;
a59de17b 2671 Lisp_Object n;
b7826503 2672 CHECK_SYMBOL (purpose);
0551bde3 2673 n = Fget (purpose, Qchar_table_extra_slots);
b7826503 2674 CHECK_NUMBER (n);
7b07587b
RS
2675 if (XINT (n) < 0 || XINT (n) > 10)
2676 args_out_of_range (n, Qnil);
2677 /* Add 2 to the size for the defalt and parent slots. */
2678 vector = Fmake_vector (make_number (CHAR_TABLE_STANDARD_SLOTS + XINT (n)),
2679 init);
0551bde3 2680 XCHAR_TABLE (vector)->top = Qt;
c96a008c 2681 XCHAR_TABLE (vector)->parent = Qnil;
a59de17b 2682 XCHAR_TABLE (vector)->purpose = purpose;
7b07587b
RS
2683 XSETCHAR_TABLE (vector, XCHAR_TABLE (vector));
2684 return vector;
2685}
2686
34400008 2687
0551bde3
KH
2688/* Return a newly created sub char table with default value DEFALT.
2689 Since a sub char table does not appear as a top level Emacs Lisp
2690 object, we don't need a Lisp interface to make it. */
2691
2692Lisp_Object
2693make_sub_char_table (defalt)
2694 Lisp_Object defalt;
2695{
2696 Lisp_Object vector
2697 = Fmake_vector (make_number (SUB_CHAR_TABLE_STANDARD_SLOTS), Qnil);
2698 XCHAR_TABLE (vector)->top = Qnil;
2699 XCHAR_TABLE (vector)->defalt = defalt;
2700 XSETCHAR_TABLE (vector, XCHAR_TABLE (vector));
2701 return vector;
2702}
2703
34400008 2704
7146af97 2705DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
eae936e2 2706 doc: /* Return a newly created vector with specified arguments as elements.
ae8e8122
MB
2707Any number of arguments, even zero arguments, are allowed.
2708usage: (vector &rest OBJECTS) */)
7ee72033 2709 (nargs, args)
7146af97
JB
2710 register int nargs;
2711 Lisp_Object *args;
2712{
2713 register Lisp_Object len, val;
2714 register int index;
2715 register struct Lisp_Vector *p;
2716
67ba9986 2717 XSETFASTINT (len, nargs);
7146af97
JB
2718 val = Fmake_vector (len, Qnil);
2719 p = XVECTOR (val);
2720 for (index = 0; index < nargs; index++)
2721 p->contents[index] = args[index];
2722 return val;
2723}
2724
34400008 2725
7146af97 2726DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
a6266d23 2727 doc: /* Create a byte-code object with specified arguments as elements.
228299fa
GM
2728The arguments should be the arglist, bytecode-string, constant vector,
2729stack size, (optional) doc string, and (optional) interactive spec.
2730The first four arguments are required; at most six have any
ae8e8122 2731significance.
92cc28b2 2732usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
7ee72033 2733 (nargs, args)
7146af97
JB
2734 register int nargs;
2735 Lisp_Object *args;
2736{
2737 register Lisp_Object len, val;
2738 register int index;
2739 register struct Lisp_Vector *p;
2740
67ba9986 2741 XSETFASTINT (len, nargs);
265a9e55 2742 if (!NILP (Vpurify_flag))
5a053ea9 2743 val = make_pure_vector ((EMACS_INT) nargs);
7146af97
JB
2744 else
2745 val = Fmake_vector (len, Qnil);
9eac9d59
KH
2746
2747 if (STRINGP (args[1]) && STRING_MULTIBYTE (args[1]))
2748 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
2749 earlier because they produced a raw 8-bit string for byte-code
2750 and now such a byte-code string is loaded as multibyte while
2751 raw 8-bit characters converted to multibyte form. Thus, now we
2752 must convert them back to the original unibyte form. */
2753 args[1] = Fstring_as_unibyte (args[1]);
2754
7146af97
JB
2755 p = XVECTOR (val);
2756 for (index = 0; index < nargs; index++)
2757 {
265a9e55 2758 if (!NILP (Vpurify_flag))
7146af97
JB
2759 args[index] = Fpurecopy (args[index]);
2760 p->contents[index] = args[index];
2761 }
50aee051 2762 XSETCOMPILED (val, p);
7146af97
JB
2763 return val;
2764}
2e471eb5 2765
34400008 2766
7146af97 2767\f
2e471eb5
GM
2768/***********************************************************************
2769 Symbol Allocation
2770 ***********************************************************************/
7146af97 2771
2e471eb5
GM
2772/* Each symbol_block is just under 1020 bytes long, since malloc
2773 really allocates in units of powers of two and uses 4 bytes for its
2774 own overhead. */
7146af97
JB
2775
2776#define SYMBOL_BLOCK_SIZE \
2777 ((1020 - sizeof (struct symbol_block *)) / sizeof (struct Lisp_Symbol))
2778
2779struct symbol_block
2e471eb5 2780{
d05b383a 2781 /* Place `symbols' first, to preserve alignment. */
2e471eb5 2782 struct Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
d05b383a 2783 struct symbol_block *next;
2e471eb5 2784};
7146af97 2785
34400008
GM
2786/* Current symbol block and index of first unused Lisp_Symbol
2787 structure in it. */
2788
7146af97
JB
2789struct symbol_block *symbol_block;
2790int symbol_block_index;
2791
34400008
GM
2792/* List of free symbols. */
2793
7146af97
JB
2794struct Lisp_Symbol *symbol_free_list;
2795
c8099634 2796/* Total number of symbol blocks now in use. */
2e471eb5 2797
c8099634
RS
2798int n_symbol_blocks;
2799
34400008
GM
2800
2801/* Initialize symbol allocation. */
2802
7146af97
JB
2803void
2804init_symbol ()
2805{
0930c1a1
SM
2806 symbol_block = NULL;
2807 symbol_block_index = SYMBOL_BLOCK_SIZE;
7146af97 2808 symbol_free_list = 0;
0930c1a1 2809 n_symbol_blocks = 0;
7146af97
JB
2810}
2811
34400008 2812
7146af97 2813DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
a6266d23 2814 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
7ee72033
MB
2815Its value and function definition are void, and its property list is nil. */)
2816 (name)
54ee42dd 2817 Lisp_Object name;
7146af97
JB
2818{
2819 register Lisp_Object val;
2820 register struct Lisp_Symbol *p;
2821
b7826503 2822 CHECK_STRING (name);
7146af97
JB
2823
2824 if (symbol_free_list)
2825 {
45d12a89 2826 XSETSYMBOL (val, symbol_free_list);
85481507 2827 symbol_free_list = *(struct Lisp_Symbol **)&symbol_free_list->value;
7146af97
JB
2828 }
2829 else
2830 {
2831 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
2832 {
3c06d205 2833 struct symbol_block *new;
34400008
GM
2834 new = (struct symbol_block *) lisp_malloc (sizeof *new,
2835 MEM_TYPE_SYMBOL);
7146af97
JB
2836 new->next = symbol_block;
2837 symbol_block = new;
2838 symbol_block_index = 0;
c8099634 2839 n_symbol_blocks++;
7146af97 2840 }
a0668126
SM
2841 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index]);
2842 symbol_block_index++;
7146af97 2843 }
177c0ea7 2844
7146af97 2845 p = XSYMBOL (val);
8fe5665d 2846 p->xname = name;
7146af97 2847 p->plist = Qnil;
2e471eb5
GM
2848 p->value = Qunbound;
2849 p->function = Qunbound;
9e713715 2850 p->next = NULL;
2336fe58 2851 p->gcmarkbit = 0;
9e713715
GM
2852 p->interned = SYMBOL_UNINTERNED;
2853 p->constant = 0;
2854 p->indirect_variable = 0;
2e471eb5
GM
2855 consing_since_gc += sizeof (struct Lisp_Symbol);
2856 symbols_consed++;
7146af97
JB
2857 return val;
2858}
2859
3f25e183 2860
2e471eb5
GM
2861\f
2862/***********************************************************************
34400008 2863 Marker (Misc) Allocation
2e471eb5 2864 ***********************************************************************/
3f25e183 2865
2e471eb5
GM
2866/* Allocation of markers and other objects that share that structure.
2867 Works like allocation of conses. */
c0696668 2868
2e471eb5
GM
2869#define MARKER_BLOCK_SIZE \
2870 ((1020 - sizeof (struct marker_block *)) / sizeof (union Lisp_Misc))
2871
2872struct marker_block
c0696668 2873{
d05b383a 2874 /* Place `markers' first, to preserve alignment. */
2e471eb5 2875 union Lisp_Misc markers[MARKER_BLOCK_SIZE];
d05b383a 2876 struct marker_block *next;
2e471eb5 2877};
c0696668 2878
2e471eb5
GM
2879struct marker_block *marker_block;
2880int marker_block_index;
c0696668 2881
2e471eb5 2882union Lisp_Misc *marker_free_list;
c0696668 2883
2e471eb5 2884/* Total number of marker blocks now in use. */
3f25e183 2885
2e471eb5
GM
2886int n_marker_blocks;
2887
2888void
2889init_marker ()
3f25e183 2890{
0930c1a1
SM
2891 marker_block = NULL;
2892 marker_block_index = MARKER_BLOCK_SIZE;
2e471eb5 2893 marker_free_list = 0;
0930c1a1 2894 n_marker_blocks = 0;
3f25e183
RS
2895}
2896
2e471eb5
GM
2897/* Return a newly allocated Lisp_Misc object, with no substructure. */
2898
3f25e183 2899Lisp_Object
2e471eb5 2900allocate_misc ()
7146af97 2901{
2e471eb5 2902 Lisp_Object val;
7146af97 2903
2e471eb5 2904 if (marker_free_list)
7146af97 2905 {
2e471eb5
GM
2906 XSETMISC (val, marker_free_list);
2907 marker_free_list = marker_free_list->u_free.chain;
7146af97
JB
2908 }
2909 else
7146af97 2910 {
2e471eb5
GM
2911 if (marker_block_index == MARKER_BLOCK_SIZE)
2912 {
2913 struct marker_block *new;
34400008
GM
2914 new = (struct marker_block *) lisp_malloc (sizeof *new,
2915 MEM_TYPE_MISC);
2e471eb5
GM
2916 new->next = marker_block;
2917 marker_block = new;
2918 marker_block_index = 0;
2919 n_marker_blocks++;
2920 }
a0668126
SM
2921 XSETMISC (val, &marker_block->markers[marker_block_index]);
2922 marker_block_index++;
7146af97 2923 }
177c0ea7 2924
2e471eb5
GM
2925 consing_since_gc += sizeof (union Lisp_Misc);
2926 misc_objects_consed++;
2336fe58 2927 XMARKER (val)->gcmarkbit = 0;
2e471eb5
GM
2928 return val;
2929}
2930
42172a6b
RS
2931/* Return a Lisp_Misc_Save_Value object containing POINTER and
2932 INTEGER. This is used to package C values to call record_unwind_protect.
2933 The unwind function can get the C values back using XSAVE_VALUE. */
2934
2935Lisp_Object
2936make_save_value (pointer, integer)
2937 void *pointer;
2938 int integer;
2939{
2940 register Lisp_Object val;
2941 register struct Lisp_Save_Value *p;
2942
2943 val = allocate_misc ();
2944 XMISCTYPE (val) = Lisp_Misc_Save_Value;
2945 p = XSAVE_VALUE (val);
2946 p->pointer = pointer;
2947 p->integer = integer;
2948 return val;
2949}
2950
2e471eb5 2951DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
a6266d23 2952 doc: /* Return a newly allocated marker which does not point at any place. */)
7ee72033 2953 ()
2e471eb5
GM
2954{
2955 register Lisp_Object val;
2956 register struct Lisp_Marker *p;
7146af97 2957
2e471eb5
GM
2958 val = allocate_misc ();
2959 XMISCTYPE (val) = Lisp_Misc_Marker;
2960 p = XMARKER (val);
2961 p->buffer = 0;
2962 p->bytepos = 0;
2963 p->charpos = 0;
ef89c2ce 2964 p->next = NULL;
2e471eb5 2965 p->insertion_type = 0;
7146af97
JB
2966 return val;
2967}
2e471eb5
GM
2968
2969/* Put MARKER back on the free list after using it temporarily. */
2970
2971void
2972free_marker (marker)
2973 Lisp_Object marker;
2974{
ef89c2ce 2975 unchain_marker (XMARKER (marker));
2e471eb5
GM
2976
2977 XMISC (marker)->u_marker.type = Lisp_Misc_Free;
2978 XMISC (marker)->u_free.chain = marker_free_list;
2979 marker_free_list = XMISC (marker);
2980
2981 total_free_markers++;
2982}
2983
c0696668 2984\f
7146af97 2985/* Return a newly created vector or string with specified arguments as
736471d1
RS
2986 elements. If all the arguments are characters that can fit
2987 in a string of events, make a string; otherwise, make a vector.
2988
2989 Any number of arguments, even zero arguments, are allowed. */
7146af97
JB
2990
2991Lisp_Object
736471d1 2992make_event_array (nargs, args)
7146af97
JB
2993 register int nargs;
2994 Lisp_Object *args;
2995{
2996 int i;
2997
2998 for (i = 0; i < nargs; i++)
736471d1 2999 /* The things that fit in a string
c9ca4659
RS
3000 are characters that are in 0...127,
3001 after discarding the meta bit and all the bits above it. */
e687453f 3002 if (!INTEGERP (args[i])
c9ca4659 3003 || (XUINT (args[i]) & ~(-CHAR_META)) >= 0200)
7146af97
JB
3004 return Fvector (nargs, args);
3005
3006 /* Since the loop exited, we know that all the things in it are
3007 characters, so we can make a string. */
3008 {
c13ccad2 3009 Lisp_Object result;
177c0ea7 3010
50aee051 3011 result = Fmake_string (make_number (nargs), make_number (0));
7146af97 3012 for (i = 0; i < nargs; i++)
736471d1 3013 {
46e7e6b0 3014 SSET (result, i, XINT (args[i]));
736471d1
RS
3015 /* Move the meta bit to the right place for a string char. */
3016 if (XINT (args[i]) & CHAR_META)
46e7e6b0 3017 SSET (result, i, SREF (result, i) | 0x80);
736471d1 3018 }
177c0ea7 3019
7146af97
JB
3020 return result;
3021 }
3022}
2e471eb5
GM
3023
3024
7146af97 3025\f
34400008
GM
3026/************************************************************************
3027 C Stack Marking
3028 ************************************************************************/
3029
13c844fb
GM
3030#if GC_MARK_STACK || defined GC_MALLOC_CHECK
3031
71cf5fa0
GM
3032/* Conservative C stack marking requires a method to identify possibly
3033 live Lisp objects given a pointer value. We do this by keeping
3034 track of blocks of Lisp data that are allocated in a red-black tree
3035 (see also the comment of mem_node which is the type of nodes in
3036 that tree). Function lisp_malloc adds information for an allocated
3037 block to the red-black tree with calls to mem_insert, and function
3038 lisp_free removes it with mem_delete. Functions live_string_p etc
3039 call mem_find to lookup information about a given pointer in the
3040 tree, and use that to determine if the pointer points to a Lisp
3041 object or not. */
3042
34400008
GM
3043/* Initialize this part of alloc.c. */
3044
3045static void
3046mem_init ()
3047{
3048 mem_z.left = mem_z.right = MEM_NIL;
3049 mem_z.parent = NULL;
3050 mem_z.color = MEM_BLACK;
3051 mem_z.start = mem_z.end = NULL;
3052 mem_root = MEM_NIL;
3053}
3054
3055
3056/* Value is a pointer to the mem_node containing START. Value is
3057 MEM_NIL if there is no node in the tree containing START. */
3058
3059static INLINE struct mem_node *
3060mem_find (start)
3061 void *start;
3062{
3063 struct mem_node *p;
3064
ece93c02
GM
3065 if (start < min_heap_address || start > max_heap_address)
3066 return MEM_NIL;
3067
34400008
GM
3068 /* Make the search always successful to speed up the loop below. */
3069 mem_z.start = start;
3070 mem_z.end = (char *) start + 1;
3071
3072 p = mem_root;
3073 while (start < p->start || start >= p->end)
3074 p = start < p->start ? p->left : p->right;
3075 return p;
3076}
3077
3078
3079/* Insert a new node into the tree for a block of memory with start
3080 address START, end address END, and type TYPE. Value is a
3081 pointer to the node that was inserted. */
3082
3083static struct mem_node *
3084mem_insert (start, end, type)
3085 void *start, *end;
3086 enum mem_type type;
3087{
3088 struct mem_node *c, *parent, *x;
3089
ece93c02
GM
3090 if (start < min_heap_address)
3091 min_heap_address = start;
3092 if (end > max_heap_address)
3093 max_heap_address = end;
3094
34400008
GM
3095 /* See where in the tree a node for START belongs. In this
3096 particular application, it shouldn't happen that a node is already
3097 present. For debugging purposes, let's check that. */
3098 c = mem_root;
3099 parent = NULL;
3100
3101#if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
177c0ea7 3102
34400008
GM
3103 while (c != MEM_NIL)
3104 {
3105 if (start >= c->start && start < c->end)
3106 abort ();
3107 parent = c;
3108 c = start < c->start ? c->left : c->right;
3109 }
177c0ea7 3110
34400008 3111#else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
177c0ea7 3112
34400008
GM
3113 while (c != MEM_NIL)
3114 {
3115 parent = c;
3116 c = start < c->start ? c->left : c->right;
3117 }
177c0ea7 3118
34400008
GM
3119#endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3120
3121 /* Create a new node. */
877935b1
GM
3122#ifdef GC_MALLOC_CHECK
3123 x = (struct mem_node *) _malloc_internal (sizeof *x);
3124 if (x == NULL)
3125 abort ();
3126#else
34400008 3127 x = (struct mem_node *) xmalloc (sizeof *x);
877935b1 3128#endif
34400008
GM
3129 x->start = start;
3130 x->end = end;
3131 x->type = type;
3132 x->parent = parent;
3133 x->left = x->right = MEM_NIL;
3134 x->color = MEM_RED;
3135
3136 /* Insert it as child of PARENT or install it as root. */
3137 if (parent)
3138 {
3139 if (start < parent->start)
3140 parent->left = x;
3141 else
3142 parent->right = x;
3143 }
177c0ea7 3144 else
34400008
GM
3145 mem_root = x;
3146
3147 /* Re-establish red-black tree properties. */
3148 mem_insert_fixup (x);
877935b1 3149
34400008
GM
3150 return x;
3151}
3152
3153
3154/* Re-establish the red-black properties of the tree, and thereby
3155 balance the tree, after node X has been inserted; X is always red. */
3156
3157static void
3158mem_insert_fixup (x)
3159 struct mem_node *x;
3160{
3161 while (x != mem_root && x->parent->color == MEM_RED)
3162 {
3163 /* X is red and its parent is red. This is a violation of
3164 red-black tree property #3. */
177c0ea7 3165
34400008
GM
3166 if (x->parent == x->parent->parent->left)
3167 {
3168 /* We're on the left side of our grandparent, and Y is our
3169 "uncle". */
3170 struct mem_node *y = x->parent->parent->right;
177c0ea7 3171
34400008
GM
3172 if (y->color == MEM_RED)
3173 {
3174 /* Uncle and parent are red but should be black because
3175 X is red. Change the colors accordingly and proceed
3176 with the grandparent. */
3177 x->parent->color = MEM_BLACK;
3178 y->color = MEM_BLACK;
3179 x->parent->parent->color = MEM_RED;
3180 x = x->parent->parent;
3181 }
3182 else
3183 {
3184 /* Parent and uncle have different colors; parent is
3185 red, uncle is black. */
3186 if (x == x->parent->right)
3187 {
3188 x = x->parent;
3189 mem_rotate_left (x);
3190 }
3191
3192 x->parent->color = MEM_BLACK;
3193 x->parent->parent->color = MEM_RED;
3194 mem_rotate_right (x->parent->parent);
3195 }
3196 }
3197 else
3198 {
3199 /* This is the symmetrical case of above. */
3200 struct mem_node *y = x->parent->parent->left;
177c0ea7 3201
34400008
GM
3202 if (y->color == MEM_RED)
3203 {
3204 x->parent->color = MEM_BLACK;
3205 y->color = MEM_BLACK;
3206 x->parent->parent->color = MEM_RED;
3207 x = x->parent->parent;
3208 }
3209 else
3210 {
3211 if (x == x->parent->left)
3212 {
3213 x = x->parent;
3214 mem_rotate_right (x);
3215 }
177c0ea7 3216
34400008
GM
3217 x->parent->color = MEM_BLACK;
3218 x->parent->parent->color = MEM_RED;
3219 mem_rotate_left (x->parent->parent);
3220 }
3221 }
3222 }
3223
3224 /* The root may have been changed to red due to the algorithm. Set
3225 it to black so that property #5 is satisfied. */
3226 mem_root->color = MEM_BLACK;
3227}
3228
3229
177c0ea7
JB
3230/* (x) (y)
3231 / \ / \
34400008
GM
3232 a (y) ===> (x) c
3233 / \ / \
3234 b c a b */
3235
3236static void
3237mem_rotate_left (x)
3238 struct mem_node *x;
3239{
3240 struct mem_node *y;
3241
3242 /* Turn y's left sub-tree into x's right sub-tree. */
3243 y = x->right;
3244 x->right = y->left;
3245 if (y->left != MEM_NIL)
3246 y->left->parent = x;
3247
3248 /* Y's parent was x's parent. */
3249 if (y != MEM_NIL)
3250 y->parent = x->parent;
3251
3252 /* Get the parent to point to y instead of x. */
3253 if (x->parent)
3254 {
3255 if (x == x->parent->left)
3256 x->parent->left = y;
3257 else
3258 x->parent->right = y;
3259 }
3260 else
3261 mem_root = y;
3262
3263 /* Put x on y's left. */
3264 y->left = x;
3265 if (x != MEM_NIL)
3266 x->parent = y;
3267}
3268
3269
177c0ea7
JB
3270/* (x) (Y)
3271 / \ / \
3272 (y) c ===> a (x)
3273 / \ / \
34400008
GM
3274 a b b c */
3275
3276static void
3277mem_rotate_right (x)
3278 struct mem_node *x;
3279{
3280 struct mem_node *y = x->left;
3281
3282 x->left = y->right;
3283 if (y->right != MEM_NIL)
3284 y->right->parent = x;
177c0ea7 3285
34400008
GM
3286 if (y != MEM_NIL)
3287 y->parent = x->parent;
3288 if (x->parent)
3289 {
3290 if (x == x->parent->right)
3291 x->parent->right = y;
3292 else
3293 x->parent->left = y;
3294 }
3295 else
3296 mem_root = y;
177c0ea7 3297
34400008
GM
3298 y->right = x;
3299 if (x != MEM_NIL)
3300 x->parent = y;
3301}
3302
3303
3304/* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
3305
3306static void
3307mem_delete (z)
3308 struct mem_node *z;
3309{
3310 struct mem_node *x, *y;
3311
3312 if (!z || z == MEM_NIL)
3313 return;
3314
3315 if (z->left == MEM_NIL || z->right == MEM_NIL)
3316 y = z;
3317 else
3318 {
3319 y = z->right;
3320 while (y->left != MEM_NIL)
3321 y = y->left;
3322 }
3323
3324 if (y->left != MEM_NIL)
3325 x = y->left;
3326 else
3327 x = y->right;
3328
3329 x->parent = y->parent;
3330 if (y->parent)
3331 {
3332 if (y == y->parent->left)
3333 y->parent->left = x;
3334 else
3335 y->parent->right = x;
3336 }
3337 else
3338 mem_root = x;
3339
3340 if (y != z)
3341 {
3342 z->start = y->start;
3343 z->end = y->end;
3344 z->type = y->type;
3345 }
177c0ea7 3346
34400008
GM
3347 if (y->color == MEM_BLACK)
3348 mem_delete_fixup (x);
877935b1
GM
3349
3350#ifdef GC_MALLOC_CHECK
3351 _free_internal (y);
3352#else
34400008 3353 xfree (y);
877935b1 3354#endif
34400008
GM
3355}
3356
3357
3358/* Re-establish the red-black properties of the tree, after a
3359 deletion. */
3360
3361static void
3362mem_delete_fixup (x)
3363 struct mem_node *x;
3364{
3365 while (x != mem_root && x->color == MEM_BLACK)
3366 {
3367 if (x == x->parent->left)
3368 {
3369 struct mem_node *w = x->parent->right;
177c0ea7 3370
34400008
GM
3371 if (w->color == MEM_RED)
3372 {
3373 w->color = MEM_BLACK;
3374 x->parent->color = MEM_RED;
3375 mem_rotate_left (x->parent);
3376 w = x->parent->right;
3377 }
177c0ea7 3378
34400008
GM
3379 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
3380 {
3381 w->color = MEM_RED;
3382 x = x->parent;
3383 }
3384 else
3385 {
3386 if (w->right->color == MEM_BLACK)
3387 {
3388 w->left->color = MEM_BLACK;
3389 w->color = MEM_RED;
3390 mem_rotate_right (w);
3391 w = x->parent->right;
3392 }
3393 w->color = x->parent->color;
3394 x->parent->color = MEM_BLACK;
3395 w->right->color = MEM_BLACK;
3396 mem_rotate_left (x->parent);
3397 x = mem_root;
3398 }
3399 }
3400 else
3401 {
3402 struct mem_node *w = x->parent->left;
177c0ea7 3403
34400008
GM
3404 if (w->color == MEM_RED)
3405 {
3406 w->color = MEM_BLACK;
3407 x->parent->color = MEM_RED;
3408 mem_rotate_right (x->parent);
3409 w = x->parent->left;
3410 }
177c0ea7 3411
34400008
GM
3412 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
3413 {
3414 w->color = MEM_RED;
3415 x = x->parent;
3416 }
3417 else
3418 {
3419 if (w->left->color == MEM_BLACK)
3420 {
3421 w->right->color = MEM_BLACK;
3422 w->color = MEM_RED;
3423 mem_rotate_left (w);
3424 w = x->parent->left;
3425 }
177c0ea7 3426
34400008
GM
3427 w->color = x->parent->color;
3428 x->parent->color = MEM_BLACK;
3429 w->left->color = MEM_BLACK;
3430 mem_rotate_right (x->parent);
3431 x = mem_root;
3432 }
3433 }
3434 }
177c0ea7 3435
34400008
GM
3436 x->color = MEM_BLACK;
3437}
3438
3439
3440/* Value is non-zero if P is a pointer to a live Lisp string on
3441 the heap. M is a pointer to the mem_block for P. */
3442
3443static INLINE int
3444live_string_p (m, p)
3445 struct mem_node *m;
3446 void *p;
3447{
3448 if (m->type == MEM_TYPE_STRING)
3449 {
3450 struct string_block *b = (struct string_block *) m->start;
3451 int offset = (char *) p - (char *) &b->strings[0];
3452
3453 /* P must point to the start of a Lisp_String structure, and it
3454 must not be on the free-list. */
176bc847
GM
3455 return (offset >= 0
3456 && offset % sizeof b->strings[0] == 0
d05b383a 3457 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
34400008
GM
3458 && ((struct Lisp_String *) p)->data != NULL);
3459 }
3460 else
3461 return 0;
3462}
3463
3464
3465/* Value is non-zero if P is a pointer to a live Lisp cons on
3466 the heap. M is a pointer to the mem_block for P. */
3467
3468static INLINE int
3469live_cons_p (m, p)
3470 struct mem_node *m;
3471 void *p;
3472{
3473 if (m->type == MEM_TYPE_CONS)
3474 {
3475 struct cons_block *b = (struct cons_block *) m->start;
3476 int offset = (char *) p - (char *) &b->conses[0];
3477
3478 /* P must point to the start of a Lisp_Cons, not be
3479 one of the unused cells in the current cons block,
3480 and not be on the free-list. */
176bc847
GM
3481 return (offset >= 0
3482 && offset % sizeof b->conses[0] == 0
d05b383a 3483 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
34400008
GM
3484 && (b != cons_block
3485 || offset / sizeof b->conses[0] < cons_block_index)
3486 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
3487 }
3488 else
3489 return 0;
3490}
3491
3492
3493/* Value is non-zero if P is a pointer to a live Lisp symbol on
3494 the heap. M is a pointer to the mem_block for P. */
3495
3496static INLINE int
3497live_symbol_p (m, p)
3498 struct mem_node *m;
3499 void *p;
3500{
3501 if (m->type == MEM_TYPE_SYMBOL)
3502 {
3503 struct symbol_block *b = (struct symbol_block *) m->start;
3504 int offset = (char *) p - (char *) &b->symbols[0];
177c0ea7 3505
34400008
GM
3506 /* P must point to the start of a Lisp_Symbol, not be
3507 one of the unused cells in the current symbol block,
3508 and not be on the free-list. */
176bc847
GM
3509 return (offset >= 0
3510 && offset % sizeof b->symbols[0] == 0
d05b383a 3511 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
34400008
GM
3512 && (b != symbol_block
3513 || offset / sizeof b->symbols[0] < symbol_block_index)
3514 && !EQ (((struct Lisp_Symbol *) p)->function, Vdead));
3515 }
3516 else
3517 return 0;
3518}
3519
3520
3521/* Value is non-zero if P is a pointer to a live Lisp float on
3522 the heap. M is a pointer to the mem_block for P. */
3523
3524static INLINE int
3525live_float_p (m, p)
3526 struct mem_node *m;
3527 void *p;
3528{
3529 if (m->type == MEM_TYPE_FLOAT)
3530 {
3531 struct float_block *b = (struct float_block *) m->start;
3532 int offset = (char *) p - (char *) &b->floats[0];
177c0ea7 3533
ab6780cd
SM
3534 /* P must point to the start of a Lisp_Float and not be
3535 one of the unused cells in the current float block. */
176bc847
GM
3536 return (offset >= 0
3537 && offset % sizeof b->floats[0] == 0
d05b383a 3538 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
34400008 3539 && (b != float_block
ab6780cd 3540 || offset / sizeof b->floats[0] < float_block_index));
34400008
GM
3541 }
3542 else
3543 return 0;
3544}
3545
3546
3547/* Value is non-zero if P is a pointer to a live Lisp Misc on
3548 the heap. M is a pointer to the mem_block for P. */
3549
3550static INLINE int
3551live_misc_p (m, p)
3552 struct mem_node *m;
3553 void *p;
3554{
3555 if (m->type == MEM_TYPE_MISC)
3556 {
3557 struct marker_block *b = (struct marker_block *) m->start;
3558 int offset = (char *) p - (char *) &b->markers[0];
177c0ea7 3559
34400008
GM
3560 /* P must point to the start of a Lisp_Misc, not be
3561 one of the unused cells in the current misc block,
3562 and not be on the free-list. */
176bc847
GM
3563 return (offset >= 0
3564 && offset % sizeof b->markers[0] == 0
d05b383a 3565 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
34400008
GM
3566 && (b != marker_block
3567 || offset / sizeof b->markers[0] < marker_block_index)
3568 && ((union Lisp_Misc *) p)->u_marker.type != Lisp_Misc_Free);
3569 }
3570 else
3571 return 0;
3572}
3573
3574
3575/* Value is non-zero if P is a pointer to a live vector-like object.
3576 M is a pointer to the mem_block for P. */
3577
3578static INLINE int
3579live_vector_p (m, p)
3580 struct mem_node *m;
3581 void *p;
3582{
ece93c02
GM
3583 return (p == m->start
3584 && m->type >= MEM_TYPE_VECTOR
3585 && m->type <= MEM_TYPE_WINDOW);
34400008
GM
3586}
3587
3588
2336fe58 3589/* Value is non-zero if P is a pointer to a live buffer. M is a
34400008
GM
3590 pointer to the mem_block for P. */
3591
3592static INLINE int
3593live_buffer_p (m, p)
3594 struct mem_node *m;
3595 void *p;
3596{
3597 /* P must point to the start of the block, and the buffer
3598 must not have been killed. */
3599 return (m->type == MEM_TYPE_BUFFER
3600 && p == m->start
3601 && !NILP (((struct buffer *) p)->name));
3602}
3603
13c844fb
GM
3604#endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
3605
3606#if GC_MARK_STACK
3607
34400008
GM
3608#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3609
3610/* Array of objects that are kept alive because the C stack contains
3611 a pattern that looks like a reference to them . */
3612
3613#define MAX_ZOMBIES 10
3614static Lisp_Object zombies[MAX_ZOMBIES];
3615
3616/* Number of zombie objects. */
3617
3618static int nzombies;
3619
3620/* Number of garbage collections. */
3621
3622static int ngcs;
3623
3624/* Average percentage of zombies per collection. */
3625
3626static double avg_zombies;
3627
3628/* Max. number of live and zombie objects. */
3629
3630static int max_live, max_zombies;
3631
3632/* Average number of live objects per GC. */
3633
3634static double avg_live;
3635
3636DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
7ee72033
MB
3637 doc: /* Show information about live and zombie objects. */)
3638 ()
34400008 3639{
83fc9c63
DL
3640 Lisp_Object args[8], zombie_list = Qnil;
3641 int i;
3642 for (i = 0; i < nzombies; i++)
3643 zombie_list = Fcons (zombies[i], zombie_list);
3644 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
34400008
GM
3645 args[1] = make_number (ngcs);
3646 args[2] = make_float (avg_live);
3647 args[3] = make_float (avg_zombies);
3648 args[4] = make_float (avg_zombies / avg_live / 100);
3649 args[5] = make_number (max_live);
3650 args[6] = make_number (max_zombies);
83fc9c63
DL
3651 args[7] = zombie_list;
3652 return Fmessage (8, args);
34400008
GM
3653}
3654
3655#endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
3656
3657
182ff242
GM
3658/* Mark OBJ if we can prove it's a Lisp_Object. */
3659
3660static INLINE void
3661mark_maybe_object (obj)
3662 Lisp_Object obj;
3663{
3664 void *po = (void *) XPNTR (obj);
3665 struct mem_node *m = mem_find (po);
177c0ea7 3666
182ff242
GM
3667 if (m != MEM_NIL)
3668 {
3669 int mark_p = 0;
3670
3671 switch (XGCTYPE (obj))
3672 {
3673 case Lisp_String:
3674 mark_p = (live_string_p (m, po)
3675 && !STRING_MARKED_P ((struct Lisp_String *) po));
3676 break;
3677
3678 case Lisp_Cons:
08b7c2cb 3679 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
182ff242
GM
3680 break;
3681
3682 case Lisp_Symbol:
2336fe58 3683 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
182ff242
GM
3684 break;
3685
3686 case Lisp_Float:
ab6780cd 3687 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
182ff242
GM
3688 break;
3689
3690 case Lisp_Vectorlike:
3691 /* Note: can't check GC_BUFFERP before we know it's a
3692 buffer because checking that dereferences the pointer
3693 PO which might point anywhere. */
3694 if (live_vector_p (m, po))
3ef06d12 3695 mark_p = !GC_SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
182ff242 3696 else if (live_buffer_p (m, po))
3ef06d12 3697 mark_p = GC_BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
182ff242
GM
3698 break;
3699
3700 case Lisp_Misc:
2336fe58 3701 mark_p = (live_misc_p (m, po) && !XMARKER (obj)->gcmarkbit);
182ff242 3702 break;
6bbd7a29
GM
3703
3704 case Lisp_Int:
31d929e5 3705 case Lisp_Type_Limit:
6bbd7a29 3706 break;
182ff242
GM
3707 }
3708
3709 if (mark_p)
3710 {
3711#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3712 if (nzombies < MAX_ZOMBIES)
83fc9c63 3713 zombies[nzombies] = obj;
182ff242
GM
3714 ++nzombies;
3715#endif
49723c04 3716 mark_object (obj);
182ff242
GM
3717 }
3718 }
3719}
ece93c02
GM
3720
3721
3722/* If P points to Lisp data, mark that as live if it isn't already
3723 marked. */
3724
3725static INLINE void
3726mark_maybe_pointer (p)
3727 void *p;
3728{
3729 struct mem_node *m;
3730
3731 /* Quickly rule out some values which can't point to Lisp data. We
3732 assume that Lisp data is aligned on even addresses. */
3733 if ((EMACS_INT) p & 1)
3734 return;
177c0ea7 3735
ece93c02
GM
3736 m = mem_find (p);
3737 if (m != MEM_NIL)
3738 {
3739 Lisp_Object obj = Qnil;
177c0ea7 3740
ece93c02
GM
3741 switch (m->type)
3742 {
3743 case MEM_TYPE_NON_LISP:
2fe50224 3744 /* Nothing to do; not a pointer to Lisp memory. */
ece93c02 3745 break;
177c0ea7 3746
ece93c02 3747 case MEM_TYPE_BUFFER:
3ef06d12 3748 if (live_buffer_p (m, p) && !VECTOR_MARKED_P((struct buffer *)p))
ece93c02
GM
3749 XSETVECTOR (obj, p);
3750 break;
177c0ea7 3751
ece93c02 3752 case MEM_TYPE_CONS:
08b7c2cb 3753 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
ece93c02
GM
3754 XSETCONS (obj, p);
3755 break;
177c0ea7 3756
ece93c02
GM
3757 case MEM_TYPE_STRING:
3758 if (live_string_p (m, p)
3759 && !STRING_MARKED_P ((struct Lisp_String *) p))
3760 XSETSTRING (obj, p);
3761 break;
3762
3763 case MEM_TYPE_MISC:
2336fe58
SM
3764 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
3765 XSETMISC (obj, p);
ece93c02 3766 break;
177c0ea7 3767
ece93c02 3768 case MEM_TYPE_SYMBOL:
2336fe58 3769 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
ece93c02
GM
3770 XSETSYMBOL (obj, p);
3771 break;
177c0ea7 3772
ece93c02 3773 case MEM_TYPE_FLOAT:
ab6780cd 3774 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
ece93c02
GM
3775 XSETFLOAT (obj, p);
3776 break;
177c0ea7 3777
ece93c02
GM
3778 case MEM_TYPE_VECTOR:
3779 case MEM_TYPE_PROCESS:
3780 case MEM_TYPE_HASH_TABLE:
3781 case MEM_TYPE_FRAME:
3782 case MEM_TYPE_WINDOW:
3783 if (live_vector_p (m, p))
3784 {
3785 Lisp_Object tem;
3786 XSETVECTOR (tem, p);
3ef06d12 3787 if (!GC_SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
ece93c02
GM
3788 obj = tem;
3789 }
3790 break;
3791
3792 default:
3793 abort ();
3794 }
3795
3796 if (!GC_NILP (obj))
49723c04 3797 mark_object (obj);
ece93c02
GM
3798 }
3799}
3800
3801
3802/* Mark Lisp objects referenced from the address range START..END. */
34400008 3803
177c0ea7 3804static void
34400008
GM
3805mark_memory (start, end)
3806 void *start, *end;
3807{
3808 Lisp_Object *p;
ece93c02 3809 void **pp;
34400008
GM
3810
3811#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3812 nzombies = 0;
3813#endif
3814
3815 /* Make START the pointer to the start of the memory region,
3816 if it isn't already. */
3817 if (end < start)
3818 {
3819 void *tem = start;
3820 start = end;
3821 end = tem;
3822 }
ece93c02
GM
3823
3824 /* Mark Lisp_Objects. */
34400008 3825 for (p = (Lisp_Object *) start; (void *) p < end; ++p)
182ff242 3826 mark_maybe_object (*p);
ece93c02
GM
3827
3828 /* Mark Lisp data pointed to. This is necessary because, in some
3829 situations, the C compiler optimizes Lisp objects away, so that
3830 only a pointer to them remains. Example:
3831
3832 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
7ee72033 3833 ()
ece93c02
GM
3834 {
3835 Lisp_Object obj = build_string ("test");
3836 struct Lisp_String *s = XSTRING (obj);
3837 Fgarbage_collect ();
3838 fprintf (stderr, "test `%s'\n", s->data);
3839 return Qnil;
3840 }
3841
3842 Here, `obj' isn't really used, and the compiler optimizes it
3843 away. The only reference to the life string is through the
3844 pointer `s'. */
177c0ea7 3845
ece93c02
GM
3846 for (pp = (void **) start; (void *) pp < end; ++pp)
3847 mark_maybe_pointer (*pp);
182ff242
GM
3848}
3849
30f637f8
DL
3850/* setjmp will work with GCC unless NON_SAVING_SETJMP is defined in
3851 the GCC system configuration. In gcc 3.2, the only systems for
3852 which this is so are i386-sco5 non-ELF, i386-sysv3 (maybe included
3853 by others?) and ns32k-pc532-min. */
182ff242
GM
3854
3855#if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
3856
3857static int setjmp_tested_p, longjmps_done;
3858
3859#define SETJMP_WILL_LIKELY_WORK "\
3860\n\
3861Emacs garbage collector has been changed to use conservative stack\n\
3862marking. Emacs has determined that the method it uses to do the\n\
3863marking will likely work on your system, but this isn't sure.\n\
3864\n\
3865If you are a system-programmer, or can get the help of a local wizard\n\
3866who is, please take a look at the function mark_stack in alloc.c, and\n\
3867verify that the methods used are appropriate for your system.\n\
3868\n\
d191623b 3869Please mail the result to <emacs-devel@gnu.org>.\n\
182ff242
GM
3870"
3871
3872#define SETJMP_WILL_NOT_WORK "\
3873\n\
3874Emacs garbage collector has been changed to use conservative stack\n\
3875marking. Emacs has determined that the default method it uses to do the\n\
3876marking will not work on your system. We will need a system-dependent\n\
3877solution for your system.\n\
3878\n\
3879Please take a look at the function mark_stack in alloc.c, and\n\
3880try to find a way to make it work on your system.\n\
30f637f8
DL
3881\n\
3882Note that you may get false negatives, depending on the compiler.\n\
3883In particular, you need to use -O with GCC for this test.\n\
3884\n\
d191623b 3885Please mail the result to <emacs-devel@gnu.org>.\n\
182ff242
GM
3886"
3887
3888
3889/* Perform a quick check if it looks like setjmp saves registers in a
3890 jmp_buf. Print a message to stderr saying so. When this test
3891 succeeds, this is _not_ a proof that setjmp is sufficient for
3892 conservative stack marking. Only the sources or a disassembly
3893 can prove that. */
3894
3895static void
3896test_setjmp ()
3897{
3898 char buf[10];
3899 register int x;
3900 jmp_buf jbuf;
3901 int result = 0;
3902
3903 /* Arrange for X to be put in a register. */
3904 sprintf (buf, "1");
3905 x = strlen (buf);
3906 x = 2 * x - 1;
3907
3908 setjmp (jbuf);
3909 if (longjmps_done == 1)
34400008 3910 {
182ff242 3911 /* Came here after the longjmp at the end of the function.
34400008 3912
182ff242
GM
3913 If x == 1, the longjmp has restored the register to its
3914 value before the setjmp, and we can hope that setjmp
3915 saves all such registers in the jmp_buf, although that
3916 isn't sure.
34400008 3917
182ff242
GM
3918 For other values of X, either something really strange is
3919 taking place, or the setjmp just didn't save the register. */
3920
3921 if (x == 1)
3922 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
3923 else
3924 {
3925 fprintf (stderr, SETJMP_WILL_NOT_WORK);
3926 exit (1);
34400008
GM
3927 }
3928 }
182ff242
GM
3929
3930 ++longjmps_done;
3931 x = 2;
3932 if (longjmps_done == 1)
3933 longjmp (jbuf, 1);
34400008
GM
3934}
3935
182ff242
GM
3936#endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
3937
34400008
GM
3938
3939#if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
3940
3941/* Abort if anything GCPRO'd doesn't survive the GC. */
3942
3943static void
3944check_gcpros ()
3945{
3946 struct gcpro *p;
3947 int i;
3948
3949 for (p = gcprolist; p; p = p->next)
3950 for (i = 0; i < p->nvars; ++i)
3951 if (!survives_gc_p (p->var[i]))
92cc28b2
SM
3952 /* FIXME: It's not necessarily a bug. It might just be that the
3953 GCPRO is unnecessary or should release the object sooner. */
34400008
GM
3954 abort ();
3955}
3956
3957#elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3958
3959static void
3960dump_zombies ()
3961{
3962 int i;
3963
3964 fprintf (stderr, "\nZombies kept alive = %d:\n", nzombies);
3965 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
3966 {
3967 fprintf (stderr, " %d = ", i);
3968 debug_print (zombies[i]);
3969 }
3970}
3971
3972#endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
3973
3974
182ff242
GM
3975/* Mark live Lisp objects on the C stack.
3976
3977 There are several system-dependent problems to consider when
3978 porting this to new architectures:
3979
3980 Processor Registers
3981
3982 We have to mark Lisp objects in CPU registers that can hold local
3983 variables or are used to pass parameters.
3984
3985 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
3986 something that either saves relevant registers on the stack, or
3987 calls mark_maybe_object passing it each register's contents.
3988
3989 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
3990 implementation assumes that calling setjmp saves registers we need
3991 to see in a jmp_buf which itself lies on the stack. This doesn't
3992 have to be true! It must be verified for each system, possibly
3993 by taking a look at the source code of setjmp.
3994
3995 Stack Layout
3996
3997 Architectures differ in the way their processor stack is organized.
3998 For example, the stack might look like this
3999
4000 +----------------+
4001 | Lisp_Object | size = 4
4002 +----------------+
4003 | something else | size = 2
4004 +----------------+
4005 | Lisp_Object | size = 4
4006 +----------------+
4007 | ... |
4008
4009 In such a case, not every Lisp_Object will be aligned equally. To
4010 find all Lisp_Object on the stack it won't be sufficient to walk
4011 the stack in steps of 4 bytes. Instead, two passes will be
4012 necessary, one starting at the start of the stack, and a second
4013 pass starting at the start of the stack + 2. Likewise, if the
4014 minimal alignment of Lisp_Objects on the stack is 1, four passes
4015 would be necessary, each one starting with one byte more offset
4016 from the stack start.
4017
4018 The current code assumes by default that Lisp_Objects are aligned
4019 equally on the stack. */
34400008
GM
4020
4021static void
4022mark_stack ()
4023{
630909a5 4024 int i;
34400008 4025 jmp_buf j;
6bbd7a29 4026 volatile int stack_grows_down_p = (char *) &j > (char *) stack_base;
34400008
GM
4027 void *end;
4028
4029 /* This trick flushes the register windows so that all the state of
4030 the process is contained in the stack. */
ab6780cd 4031 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
422eec7e
DL
4032 needed on ia64 too. See mach_dep.c, where it also says inline
4033 assembler doesn't work with relevant proprietary compilers. */
34400008
GM
4034#ifdef sparc
4035 asm ("ta 3");
4036#endif
177c0ea7 4037
34400008
GM
4038 /* Save registers that we need to see on the stack. We need to see
4039 registers used to hold register variables and registers used to
4040 pass parameters. */
4041#ifdef GC_SAVE_REGISTERS_ON_STACK
4042 GC_SAVE_REGISTERS_ON_STACK (end);
182ff242 4043#else /* not GC_SAVE_REGISTERS_ON_STACK */
177c0ea7 4044
182ff242
GM
4045#ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
4046 setjmp will definitely work, test it
4047 and print a message with the result
4048 of the test. */
4049 if (!setjmp_tested_p)
4050 {
4051 setjmp_tested_p = 1;
4052 test_setjmp ();
4053 }
4054#endif /* GC_SETJMP_WORKS */
177c0ea7 4055
34400008
GM
4056 setjmp (j);
4057 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
182ff242 4058#endif /* not GC_SAVE_REGISTERS_ON_STACK */
34400008
GM
4059
4060 /* This assumes that the stack is a contiguous region in memory. If
182ff242
GM
4061 that's not the case, something has to be done here to iterate
4062 over the stack segments. */
630909a5 4063#ifndef GC_LISP_OBJECT_ALIGNMENT
422eec7e
DL
4064#ifdef __GNUC__
4065#define GC_LISP_OBJECT_ALIGNMENT __alignof__ (Lisp_Object)
4066#else
630909a5 4067#define GC_LISP_OBJECT_ALIGNMENT sizeof (Lisp_Object)
422eec7e 4068#endif
182ff242 4069#endif
24452cd5 4070 for (i = 0; i < sizeof (Lisp_Object); i += GC_LISP_OBJECT_ALIGNMENT)
630909a5 4071 mark_memory ((char *) stack_base + i, end);
34400008
GM
4072
4073#if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4074 check_gcpros ();
4075#endif
4076}
4077
4078
4079#endif /* GC_MARK_STACK != 0 */
4080
4081
4082\f
2e471eb5
GM
4083/***********************************************************************
4084 Pure Storage Management
4085 ***********************************************************************/
4086
1f0b3fd2
GM
4087/* Allocate room for SIZE bytes from pure Lisp storage and return a
4088 pointer to it. TYPE is the Lisp type for which the memory is
4089 allocated. TYPE < 0 means it's not used for a Lisp object.
4090
4091 If store_pure_type_info is set and TYPE is >= 0, the type of
4092 the allocated object is recorded in pure_types. */
4093
4094static POINTER_TYPE *
4095pure_alloc (size, type)
4096 size_t size;
4097 int type;
4098{
1f0b3fd2 4099 POINTER_TYPE *result;
831b476c
SM
4100#ifdef USE_LSB_TAG
4101 size_t alignment = (1 << GCTYPEBITS);
4102#else
44117420 4103 size_t alignment = sizeof (EMACS_INT);
1f0b3fd2
GM
4104
4105 /* Give Lisp_Floats an extra alignment. */
4106 if (type == Lisp_Float)
4107 {
1f0b3fd2
GM
4108#if defined __GNUC__ && __GNUC__ >= 2
4109 alignment = __alignof (struct Lisp_Float);
4110#else
4111 alignment = sizeof (struct Lisp_Float);
4112#endif
9e713715 4113 }
831b476c 4114#endif
1f0b3fd2 4115
44117420 4116 again:
ab6780cd 4117 result = ALIGN (purebeg + pure_bytes_used, alignment);
44117420
KS
4118 pure_bytes_used = ((char *)result - (char *)purebeg) + size;
4119
4120 if (pure_bytes_used <= pure_size)
4121 return result;
4122
4123 /* Don't allocate a large amount here,
4124 because it might get mmap'd and then its address
4125 might not be usable. */
4126 purebeg = (char *) xmalloc (10000);
4127 pure_size = 10000;
4128 pure_bytes_used_before_overflow += pure_bytes_used - size;
4129 pure_bytes_used = 0;
4130 goto again;
1f0b3fd2
GM
4131}
4132
4133
852f8cdc 4134/* Print a warning if PURESIZE is too small. */
9e713715
GM
4135
4136void
4137check_pure_size ()
4138{
4139 if (pure_bytes_used_before_overflow)
a4d35afd
SM
4140 message ("Pure Lisp storage overflow (approx. %d bytes needed)",
4141 (int) (pure_bytes_used + pure_bytes_used_before_overflow));
9e713715
GM
4142}
4143
4144
2e471eb5
GM
4145/* Return a string allocated in pure space. DATA is a buffer holding
4146 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
4147 non-zero means make the result string multibyte.
1a4f1e2c 4148
2e471eb5
GM
4149 Must get an error if pure storage is full, since if it cannot hold
4150 a large string it may be able to hold conses that point to that
4151 string; then the string is not protected from gc. */
7146af97
JB
4152
4153Lisp_Object
2e471eb5 4154make_pure_string (data, nchars, nbytes, multibyte)
7146af97 4155 char *data;
2e471eb5 4156 int nchars, nbytes;
c0696668 4157 int multibyte;
7146af97 4158{
2e471eb5
GM
4159 Lisp_Object string;
4160 struct Lisp_String *s;
c0696668 4161
1f0b3fd2
GM
4162 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
4163 s->data = (unsigned char *) pure_alloc (nbytes + 1, -1);
2e471eb5
GM
4164 s->size = nchars;
4165 s->size_byte = multibyte ? nbytes : -1;
4166 bcopy (data, s->data, nbytes);
4167 s->data[nbytes] = '\0';
4168 s->intervals = NULL_INTERVAL;
2e471eb5
GM
4169 XSETSTRING (string, s);
4170 return string;
7146af97
JB
4171}
4172
2e471eb5 4173
34400008
GM
4174/* Return a cons allocated from pure space. Give it pure copies
4175 of CAR as car and CDR as cdr. */
4176
7146af97
JB
4177Lisp_Object
4178pure_cons (car, cdr)
4179 Lisp_Object car, cdr;
4180{
4181 register Lisp_Object new;
1f0b3fd2 4182 struct Lisp_Cons *p;
7146af97 4183
1f0b3fd2
GM
4184 p = (struct Lisp_Cons *) pure_alloc (sizeof *p, Lisp_Cons);
4185 XSETCONS (new, p);
f3fbd155
KR
4186 XSETCAR (new, Fpurecopy (car));
4187 XSETCDR (new, Fpurecopy (cdr));
7146af97
JB
4188 return new;
4189}
4190
7146af97 4191
34400008
GM
4192/* Value is a float object with value NUM allocated from pure space. */
4193
7146af97
JB
4194Lisp_Object
4195make_pure_float (num)
4196 double num;
4197{
4198 register Lisp_Object new;
1f0b3fd2 4199 struct Lisp_Float *p;
7146af97 4200
1f0b3fd2
GM
4201 p = (struct Lisp_Float *) pure_alloc (sizeof *p, Lisp_Float);
4202 XSETFLOAT (new, p);
70949dac 4203 XFLOAT_DATA (new) = num;
7146af97
JB
4204 return new;
4205}
4206
34400008
GM
4207
4208/* Return a vector with room for LEN Lisp_Objects allocated from
4209 pure space. */
4210
7146af97
JB
4211Lisp_Object
4212make_pure_vector (len)
42607681 4213 EMACS_INT len;
7146af97 4214{
1f0b3fd2
GM
4215 Lisp_Object new;
4216 struct Lisp_Vector *p;
4217 size_t size = sizeof *p + (len - 1) * sizeof (Lisp_Object);
7146af97 4218
1f0b3fd2
GM
4219 p = (struct Lisp_Vector *) pure_alloc (size, Lisp_Vectorlike);
4220 XSETVECTOR (new, p);
7146af97
JB
4221 XVECTOR (new)->size = len;
4222 return new;
4223}
4224
34400008 4225
7146af97 4226DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
7ee72033 4227 doc: /* Make a copy of OBJECT in pure storage.
228299fa 4228Recursively copies contents of vectors and cons cells.
7ee72033
MB
4229Does not copy symbols. Copies strings without text properties. */)
4230 (obj)
7146af97
JB
4231 register Lisp_Object obj;
4232{
265a9e55 4233 if (NILP (Vpurify_flag))
7146af97
JB
4234 return obj;
4235
1f0b3fd2 4236 if (PURE_POINTER_P (XPNTR (obj)))
7146af97
JB
4237 return obj;
4238
d6dd74bb 4239 if (CONSP (obj))
70949dac 4240 return pure_cons (XCAR (obj), XCDR (obj));
d6dd74bb 4241 else if (FLOATP (obj))
70949dac 4242 return make_pure_float (XFLOAT_DATA (obj));
d6dd74bb 4243 else if (STRINGP (obj))
d5db4077
KR
4244 return make_pure_string (SDATA (obj), SCHARS (obj),
4245 SBYTES (obj),
c0696668 4246 STRING_MULTIBYTE (obj));
d6dd74bb
KH
4247 else if (COMPILEDP (obj) || VECTORP (obj))
4248 {
4249 register struct Lisp_Vector *vec;
41b867ea
AS
4250 register int i;
4251 EMACS_INT size;
d6dd74bb
KH
4252
4253 size = XVECTOR (obj)->size;
7d535c68
KH
4254 if (size & PSEUDOVECTOR_FLAG)
4255 size &= PSEUDOVECTOR_SIZE_MASK;
41b867ea 4256 vec = XVECTOR (make_pure_vector (size));
d6dd74bb
KH
4257 for (i = 0; i < size; i++)
4258 vec->contents[i] = Fpurecopy (XVECTOR (obj)->contents[i]);
4259 if (COMPILEDP (obj))
4260 XSETCOMPILED (obj, vec);
4261 else
4262 XSETVECTOR (obj, vec);
7146af97
JB
4263 return obj;
4264 }
d6dd74bb
KH
4265 else if (MARKERP (obj))
4266 error ("Attempt to copy a marker to pure storage");
6bbd7a29
GM
4267
4268 return obj;
7146af97 4269}
2e471eb5 4270
34400008 4271
7146af97 4272\f
34400008
GM
4273/***********************************************************************
4274 Protection from GC
4275 ***********************************************************************/
4276
2e471eb5
GM
4277/* Put an entry in staticvec, pointing at the variable with address
4278 VARADDRESS. */
7146af97
JB
4279
4280void
4281staticpro (varaddress)
4282 Lisp_Object *varaddress;
4283{
4284 staticvec[staticidx++] = varaddress;
4285 if (staticidx >= NSTATICS)
4286 abort ();
4287}
4288
4289struct catchtag
2e471eb5 4290{
7146af97
JB
4291 Lisp_Object tag;
4292 Lisp_Object val;
4293 struct catchtag *next;
2e471eb5 4294};
7146af97 4295
7146af97 4296\f
34400008
GM
4297/***********************************************************************
4298 Protection from GC
4299 ***********************************************************************/
1a4f1e2c 4300
e8197642
RS
4301/* Temporarily prevent garbage collection. */
4302
4303int
4304inhibit_garbage_collection ()
4305{
aed13378 4306 int count = SPECPDL_INDEX ();
54defd0d
AS
4307 int nbits = min (VALBITS, BITS_PER_INT);
4308
4309 specbind (Qgc_cons_threshold, make_number (((EMACS_INT) 1 << (nbits - 1)) - 1));
e8197642
RS
4310 return count;
4311}
4312
34400008 4313
7146af97 4314DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
7ee72033 4315 doc: /* Reclaim storage for Lisp objects no longer needed.
e1e37596
RS
4316Garbage collection happens automatically if you cons more than
4317`gc-cons-threshold' bytes of Lisp data since previous garbage collection.
4318`garbage-collect' normally returns a list with info on amount of space in use:
228299fa
GM
4319 ((USED-CONSES . FREE-CONSES) (USED-SYMS . FREE-SYMS)
4320 (USED-MARKERS . FREE-MARKERS) USED-STRING-CHARS USED-VECTOR-SLOTS
4321 (USED-FLOATS . FREE-FLOATS) (USED-INTERVALS . FREE-INTERVALS)
4322 (USED-STRINGS . FREE-STRINGS))
e1e37596
RS
4323However, if there was overflow in pure space, `garbage-collect'
4324returns nil, because real GC can't be done. */)
7ee72033 4325 ()
7146af97 4326{
7146af97
JB
4327 register struct specbinding *bind;
4328 struct catchtag *catch;
4329 struct handler *handler;
7146af97
JB
4330 char stack_top_variable;
4331 register int i;
6efc7df7 4332 int message_p;
96117bc7 4333 Lisp_Object total[8];
331379bf 4334 int count = SPECPDL_INDEX ();
2c5bd608
DL
4335 EMACS_TIME t1, t2, t3;
4336
3de0effb
RS
4337 if (abort_on_gc)
4338 abort ();
4339
2c5bd608 4340 EMACS_GET_TIME (t1);
7146af97 4341
9e713715
GM
4342 /* Can't GC if pure storage overflowed because we can't determine
4343 if something is a pure object or not. */
4344 if (pure_bytes_used_before_overflow)
4345 return Qnil;
4346
58595309
KH
4347 /* In case user calls debug_print during GC,
4348 don't let that cause a recursive GC. */
4349 consing_since_gc = 0;
4350
6efc7df7
GM
4351 /* Save what's currently displayed in the echo area. */
4352 message_p = push_message ();
c55b0da6 4353 record_unwind_protect (pop_message_unwind, Qnil);
41c28a37 4354
7146af97
JB
4355 /* Save a copy of the contents of the stack, for debugging. */
4356#if MAX_SAVE_STACK > 0
265a9e55 4357 if (NILP (Vpurify_flag))
7146af97
JB
4358 {
4359 i = &stack_top_variable - stack_bottom;
4360 if (i < 0) i = -i;
4361 if (i < MAX_SAVE_STACK)
4362 {
4363 if (stack_copy == 0)
9ac0d9e0 4364 stack_copy = (char *) xmalloc (stack_copy_size = i);
7146af97 4365 else if (stack_copy_size < i)
9ac0d9e0 4366 stack_copy = (char *) xrealloc (stack_copy, (stack_copy_size = i));
7146af97
JB
4367 if (stack_copy)
4368 {
42607681 4369 if ((EMACS_INT) (&stack_top_variable - stack_bottom) > 0)
7146af97
JB
4370 bcopy (stack_bottom, stack_copy, i);
4371 else
4372 bcopy (&stack_top_variable, stack_copy, i);
4373 }
4374 }
4375 }
4376#endif /* MAX_SAVE_STACK > 0 */
4377
299585ee 4378 if (garbage_collection_messages)
691c4285 4379 message1_nolog ("Garbage collecting...");
7146af97 4380
6e0fca1d
RS
4381 BLOCK_INPUT;
4382
eec7b73d
RS
4383 shrink_regexp_cache ();
4384
4929a878 4385 /* Don't keep undo information around forever. */
7146af97
JB
4386 {
4387 register struct buffer *nextb = all_buffers;
4388
4389 while (nextb)
4390 {
ffd56f97
JB
4391 /* If a buffer's undo list is Qt, that means that undo is
4392 turned off in that buffer. Calling truncate_undo_list on
4393 Qt tends to return NULL, which effectively turns undo back on.
4394 So don't call truncate_undo_list if undo_list is Qt. */
4395 if (! EQ (nextb->undo_list, Qt))
177c0ea7 4396 nextb->undo_list
502b9b64 4397 = truncate_undo_list (nextb->undo_list, undo_limit,
ae6a9bfe 4398 undo_strong_limit, undo_outer_limit);
e0fead5d
AI
4399
4400 /* Shrink buffer gaps, but skip indirect and dead buffers. */
4401 if (nextb->base_buffer == 0 && !NILP (nextb->name))
4402 {
4403 /* If a buffer's gap size is more than 10% of the buffer
4404 size, or larger than 2000 bytes, then shrink it
4405 accordingly. Keep a minimum size of 20 bytes. */
4406 int size = min (2000, max (20, (nextb->text->z_byte / 10)));
4407
4408 if (nextb->text->gap_size > size)
4409 {
4410 struct buffer *save_current = current_buffer;
4411 current_buffer = nextb;
4412 make_gap (-(nextb->text->gap_size - size));
4413 current_buffer = save_current;
4414 }
4415 }
4416
7146af97
JB
4417 nextb = nextb->next;
4418 }
4419 }
4420
4421 gc_in_progress = 1;
4422
c23baf9f 4423 /* clear_marks (); */
7146af97 4424
0930c1a1 4425 /* Mark all the special slots that serve as the roots of accessibility. */
7146af97
JB
4426
4427 for (i = 0; i < staticidx; i++)
49723c04 4428 mark_object (*staticvec[i]);
34400008
GM
4429
4430#if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
4431 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
4432 mark_stack ();
4433#else
acf5f7d3
SM
4434 {
4435 register struct gcpro *tail;
4436 for (tail = gcprolist; tail; tail = tail->next)
4437 for (i = 0; i < tail->nvars; i++)
0930c1a1 4438 mark_object (tail->var[i]);
acf5f7d3 4439 }
34400008 4440#endif
177c0ea7 4441
630686c8 4442 mark_byte_stack ();
7146af97
JB
4443 for (bind = specpdl; bind != specpdl_ptr; bind++)
4444 {
49723c04
SM
4445 mark_object (bind->symbol);
4446 mark_object (bind->old_value);
7146af97
JB
4447 }
4448 for (catch = catchlist; catch; catch = catch->next)
4449 {
49723c04
SM
4450 mark_object (catch->tag);
4451 mark_object (catch->val);
177c0ea7 4452 }
7146af97
JB
4453 for (handler = handlerlist; handler; handler = handler->next)
4454 {
49723c04
SM
4455 mark_object (handler->handler);
4456 mark_object (handler->var);
177c0ea7 4457 }
b40ea20a 4458 mark_backtrace ();
b875d3f7 4459 mark_kboards ();
7146af97 4460
74c35a48
SM
4461#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4462 mark_stack ();
4463#endif
4464
4465#ifdef USE_GTK
4466 {
4467 extern void xg_mark_data ();
4468 xg_mark_data ();
4469 }
4470#endif
4471
c37adf23
SM
4472 /* Everything is now marked, except for the things that require special
4473 finalization, i.e. the undo_list.
4474 Look thru every buffer's undo list
4475 for elements that update markers that were not marked,
4476 and delete them. */
4c315bda
RS
4477 {
4478 register struct buffer *nextb = all_buffers;
4479
4480 while (nextb)
4481 {
4482 /* If a buffer's undo list is Qt, that means that undo is
c37adf23
SM
4483 turned off in that buffer. Calling truncate_undo_list on
4484 Qt tends to return NULL, which effectively turns undo back on.
4485 So don't call truncate_undo_list if undo_list is Qt. */
4c315bda
RS
4486 if (! EQ (nextb->undo_list, Qt))
4487 {
c37adf23 4488 Lisp_Object tail, prev;
4c315bda
RS
4489 tail = nextb->undo_list;
4490 prev = Qnil;
4491 while (CONSP (tail))
4492 {
c37adf23
SM
4493 if (GC_CONSP (XCAR (tail))
4494 && GC_MARKERP (XCAR (XCAR (tail)))
4495 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
4c315bda
RS
4496 {
4497 if (NILP (prev))
c37adf23 4498 nextb->undo_list = tail = XCDR (tail);
4c315bda 4499 else
f3fbd155 4500 {
c37adf23 4501 tail = XCDR (tail);
f3fbd155
KR
4502 XSETCDR (prev, tail);
4503 }
4c315bda
RS
4504 }
4505 else
4506 {
4507 prev = tail;
70949dac 4508 tail = XCDR (tail);
4c315bda
RS
4509 }
4510 }
4511 }
c37adf23
SM
4512 /* Now that we have stripped the elements that need not be in the
4513 undo_list any more, we can finally mark the list. */
4514 mark_object (nextb->undo_list);
4c315bda
RS
4515
4516 nextb = nextb->next;
4517 }
4518 }
4519
c37adf23 4520 gc_sweep ();
6b67a518 4521
7146af97
JB
4522 /* Clear the mark bits that we set in certain root slots. */
4523
033a5fa3 4524 unmark_byte_stack ();
3ef06d12
SM
4525 VECTOR_UNMARK (&buffer_defaults);
4526 VECTOR_UNMARK (&buffer_local_symbols);
7146af97 4527
34400008
GM
4528#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
4529 dump_zombies ();
4530#endif
4531
6e0fca1d
RS
4532 UNBLOCK_INPUT;
4533
c23baf9f 4534 /* clear_marks (); */
7146af97
JB
4535 gc_in_progress = 0;
4536
4537 consing_since_gc = 0;
4538 if (gc_cons_threshold < 10000)
4539 gc_cons_threshold = 10000;
4540
299585ee
RS
4541 if (garbage_collection_messages)
4542 {
6efc7df7
GM
4543 if (message_p || minibuf_level > 0)
4544 restore_message ();
299585ee
RS
4545 else
4546 message1_nolog ("Garbage collecting...done");
4547 }
7146af97 4548
98edb5ff 4549 unbind_to (count, Qnil);
2e471eb5
GM
4550
4551 total[0] = Fcons (make_number (total_conses),
4552 make_number (total_free_conses));
4553 total[1] = Fcons (make_number (total_symbols),
4554 make_number (total_free_symbols));
4555 total[2] = Fcons (make_number (total_markers),
4556 make_number (total_free_markers));
96117bc7
GM
4557 total[3] = make_number (total_string_size);
4558 total[4] = make_number (total_vector_size);
4559 total[5] = Fcons (make_number (total_floats),
2e471eb5 4560 make_number (total_free_floats));
96117bc7 4561 total[6] = Fcons (make_number (total_intervals),
2e471eb5 4562 make_number (total_free_intervals));
96117bc7 4563 total[7] = Fcons (make_number (total_strings),
2e471eb5
GM
4564 make_number (total_free_strings));
4565
34400008 4566#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
7146af97 4567 {
34400008
GM
4568 /* Compute average percentage of zombies. */
4569 double nlive = 0;
177c0ea7 4570
34400008 4571 for (i = 0; i < 7; ++i)
83fc9c63
DL
4572 if (CONSP (total[i]))
4573 nlive += XFASTINT (XCAR (total[i]));
34400008
GM
4574
4575 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
4576 max_live = max (nlive, max_live);
4577 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
4578 max_zombies = max (nzombies, max_zombies);
4579 ++ngcs;
4580 }
4581#endif
7146af97 4582
9e713715
GM
4583 if (!NILP (Vpost_gc_hook))
4584 {
4585 int count = inhibit_garbage_collection ();
4586 safe_run_hooks (Qpost_gc_hook);
4587 unbind_to (count, Qnil);
4588 }
2c5bd608
DL
4589
4590 /* Accumulate statistics. */
4591 EMACS_GET_TIME (t2);
4592 EMACS_SUB_TIME (t3, t2, t1);
4593 if (FLOATP (Vgc_elapsed))
69ab9f85
SM
4594 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed) +
4595 EMACS_SECS (t3) +
4596 EMACS_USECS (t3) * 1.0e-6);
2c5bd608
DL
4597 gcs_done++;
4598
96117bc7 4599 return Flist (sizeof total / sizeof *total, total);
7146af97 4600}
34400008 4601
41c28a37 4602
3770920e
GM
4603/* Mark Lisp objects in glyph matrix MATRIX. Currently the
4604 only interesting objects referenced from glyphs are strings. */
41c28a37
GM
4605
4606static void
4607mark_glyph_matrix (matrix)
4608 struct glyph_matrix *matrix;
4609{
4610 struct glyph_row *row = matrix->rows;
4611 struct glyph_row *end = row + matrix->nrows;
4612
2e471eb5
GM
4613 for (; row < end; ++row)
4614 if (row->enabled_p)
4615 {
4616 int area;
4617 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
4618 {
4619 struct glyph *glyph = row->glyphs[area];
4620 struct glyph *end_glyph = glyph + row->used[area];
177c0ea7 4621
2e471eb5
GM
4622 for (; glyph < end_glyph; ++glyph)
4623 if (GC_STRINGP (glyph->object)
4624 && !STRING_MARKED_P (XSTRING (glyph->object)))
49723c04 4625 mark_object (glyph->object);
2e471eb5
GM
4626 }
4627 }
41c28a37
GM
4628}
4629
34400008 4630
41c28a37
GM
4631/* Mark Lisp faces in the face cache C. */
4632
4633static void
4634mark_face_cache (c)
4635 struct face_cache *c;
4636{
4637 if (c)
4638 {
4639 int i, j;
4640 for (i = 0; i < c->used; ++i)
4641 {
4642 struct face *face = FACE_FROM_ID (c->f, i);
4643
4644 if (face)
4645 {
4646 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
49723c04 4647 mark_object (face->lface[j]);
41c28a37
GM
4648 }
4649 }
4650 }
4651}
4652
4653
4654#ifdef HAVE_WINDOW_SYSTEM
4655
4656/* Mark Lisp objects in image IMG. */
4657
4658static void
4659mark_image (img)
4660 struct image *img;
4661{
49723c04 4662 mark_object (img->spec);
177c0ea7 4663
3e60b029 4664 if (!NILP (img->data.lisp_val))
49723c04 4665 mark_object (img->data.lisp_val);
41c28a37
GM
4666}
4667
4668
4669/* Mark Lisp objects in image cache of frame F. It's done this way so
4670 that we don't have to include xterm.h here. */
4671
4672static void
4673mark_image_cache (f)
4674 struct frame *f;
4675{
4676 forall_images_in_image_cache (f, mark_image);
4677}
4678
4679#endif /* HAVE_X_WINDOWS */
4680
4681
7146af97 4682\f
1a4f1e2c 4683/* Mark reference to a Lisp_Object.
2e471eb5
GM
4684 If the object referred to has not been seen yet, recursively mark
4685 all the references contained in it. */
7146af97 4686
785cd37f 4687#define LAST_MARKED_SIZE 500
49723c04 4688Lisp_Object last_marked[LAST_MARKED_SIZE];
785cd37f
RS
4689int last_marked_index;
4690
1342fc6f
RS
4691/* For debugging--call abort when we cdr down this many
4692 links of a list, in mark_object. In debugging,
4693 the call to abort will hit a breakpoint.
4694 Normally this is zero and the check never goes off. */
4695int mark_object_loop_halt;
4696
41c28a37 4697void
49723c04
SM
4698mark_object (arg)
4699 Lisp_Object arg;
7146af97 4700{
49723c04 4701 register Lisp_Object obj = arg;
4f5c1376
GM
4702#ifdef GC_CHECK_MARKED_OBJECTS
4703 void *po;
4704 struct mem_node *m;
4705#endif
1342fc6f 4706 int cdr_count = 0;
7146af97 4707
9149e743 4708 loop:
7146af97 4709
1f0b3fd2 4710 if (PURE_POINTER_P (XPNTR (obj)))
7146af97
JB
4711 return;
4712
49723c04 4713 last_marked[last_marked_index++] = obj;
785cd37f
RS
4714 if (last_marked_index == LAST_MARKED_SIZE)
4715 last_marked_index = 0;
4716
4f5c1376
GM
4717 /* Perform some sanity checks on the objects marked here. Abort if
4718 we encounter an object we know is bogus. This increases GC time
4719 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
4720#ifdef GC_CHECK_MARKED_OBJECTS
4721
4722 po = (void *) XPNTR (obj);
4723
4724 /* Check that the object pointed to by PO is known to be a Lisp
4725 structure allocated from the heap. */
4726#define CHECK_ALLOCATED() \
4727 do { \
4728 m = mem_find (po); \
4729 if (m == MEM_NIL) \
4730 abort (); \
4731 } while (0)
4732
4733 /* Check that the object pointed to by PO is live, using predicate
4734 function LIVEP. */
4735#define CHECK_LIVE(LIVEP) \
4736 do { \
4737 if (!LIVEP (m, po)) \
4738 abort (); \
4739 } while (0)
4740
4741 /* Check both of the above conditions. */
4742#define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
4743 do { \
4744 CHECK_ALLOCATED (); \
4745 CHECK_LIVE (LIVEP); \
4746 } while (0) \
177c0ea7 4747
4f5c1376 4748#else /* not GC_CHECK_MARKED_OBJECTS */
177c0ea7 4749
4f5c1376
GM
4750#define CHECK_ALLOCATED() (void) 0
4751#define CHECK_LIVE(LIVEP) (void) 0
4752#define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
177c0ea7 4753
4f5c1376
GM
4754#endif /* not GC_CHECK_MARKED_OBJECTS */
4755
0220c518 4756 switch (SWITCH_ENUM_CAST (XGCTYPE (obj)))
7146af97
JB
4757 {
4758 case Lisp_String:
4759 {
4760 register struct Lisp_String *ptr = XSTRING (obj);
4f5c1376 4761 CHECK_ALLOCATED_AND_LIVE (live_string_p);
d5e35230 4762 MARK_INTERVAL_TREE (ptr->intervals);
2e471eb5 4763 MARK_STRING (ptr);
361b097f 4764#ifdef GC_CHECK_STRING_BYTES
676a7251
GM
4765 /* Check that the string size recorded in the string is the
4766 same as the one recorded in the sdata structure. */
4767 CHECK_STRING_BYTES (ptr);
361b097f 4768#endif /* GC_CHECK_STRING_BYTES */
7146af97
JB
4769 }
4770 break;
4771
76437631 4772 case Lisp_Vectorlike:
4f5c1376
GM
4773#ifdef GC_CHECK_MARKED_OBJECTS
4774 m = mem_find (po);
4775 if (m == MEM_NIL && !GC_SUBRP (obj)
4776 && po != &buffer_defaults
4777 && po != &buffer_local_symbols)
4778 abort ();
4779#endif /* GC_CHECK_MARKED_OBJECTS */
177c0ea7 4780
30e3190a 4781 if (GC_BUFFERP (obj))
6b552283 4782 {
3ef06d12 4783 if (!VECTOR_MARKED_P (XBUFFER (obj)))
4f5c1376
GM
4784 {
4785#ifdef GC_CHECK_MARKED_OBJECTS
4786 if (po != &buffer_defaults && po != &buffer_local_symbols)
4787 {
4788 struct buffer *b;
4789 for (b = all_buffers; b && b != po; b = b->next)
4790 ;
4791 if (b == NULL)
4792 abort ();
4793 }
4794#endif /* GC_CHECK_MARKED_OBJECTS */
4795 mark_buffer (obj);
4796 }
6b552283 4797 }
30e3190a 4798 else if (GC_SUBRP (obj))
169ee243
RS
4799 break;
4800 else if (GC_COMPILEDP (obj))
2e471eb5
GM
4801 /* We could treat this just like a vector, but it is better to
4802 save the COMPILED_CONSTANTS element for last and avoid
4803 recursion there. */
169ee243
RS
4804 {
4805 register struct Lisp_Vector *ptr = XVECTOR (obj);
4806 register EMACS_INT size = ptr->size;
169ee243
RS
4807 register int i;
4808
3ef06d12 4809 if (VECTOR_MARKED_P (ptr))
169ee243 4810 break; /* Already marked */
177c0ea7 4811
4f5c1376 4812 CHECK_LIVE (live_vector_p);
3ef06d12 4813 VECTOR_MARK (ptr); /* Else mark it */
76437631 4814 size &= PSEUDOVECTOR_SIZE_MASK;
169ee243
RS
4815 for (i = 0; i < size; i++) /* and then mark its elements */
4816 {
4817 if (i != COMPILED_CONSTANTS)
49723c04 4818 mark_object (ptr->contents[i]);
169ee243 4819 }
49723c04 4820 obj = ptr->contents[COMPILED_CONSTANTS];
169ee243
RS
4821 goto loop;
4822 }
169ee243
RS
4823 else if (GC_FRAMEP (obj))
4824 {
c70bbf06 4825 register struct frame *ptr = XFRAME (obj);
169ee243 4826
3ef06d12
SM
4827 if (VECTOR_MARKED_P (ptr)) break; /* Already marked */
4828 VECTOR_MARK (ptr); /* Else mark it */
169ee243 4829
4f5c1376 4830 CHECK_LIVE (live_vector_p);
49723c04
SM
4831 mark_object (ptr->name);
4832 mark_object (ptr->icon_name);
4833 mark_object (ptr->title);
4834 mark_object (ptr->focus_frame);
4835 mark_object (ptr->selected_window);
4836 mark_object (ptr->minibuffer_window);
4837 mark_object (ptr->param_alist);
4838 mark_object (ptr->scroll_bars);
4839 mark_object (ptr->condemned_scroll_bars);
4840 mark_object (ptr->menu_bar_items);
4841 mark_object (ptr->face_alist);
4842 mark_object (ptr->menu_bar_vector);
4843 mark_object (ptr->buffer_predicate);
4844 mark_object (ptr->buffer_list);
4845 mark_object (ptr->menu_bar_window);
4846 mark_object (ptr->tool_bar_window);
41c28a37
GM
4847 mark_face_cache (ptr->face_cache);
4848#ifdef HAVE_WINDOW_SYSTEM
4849 mark_image_cache (ptr);
49723c04
SM
4850 mark_object (ptr->tool_bar_items);
4851 mark_object (ptr->desired_tool_bar_string);
4852 mark_object (ptr->current_tool_bar_string);
41c28a37 4853#endif /* HAVE_WINDOW_SYSTEM */
169ee243 4854 }
7b07587b 4855 else if (GC_BOOL_VECTOR_P (obj))
707788bd
RS
4856 {
4857 register struct Lisp_Vector *ptr = XVECTOR (obj);
4858
3ef06d12 4859 if (VECTOR_MARKED_P (ptr))
707788bd 4860 break; /* Already marked */
4f5c1376 4861 CHECK_LIVE (live_vector_p);
3ef06d12 4862 VECTOR_MARK (ptr); /* Else mark it */
707788bd 4863 }
41c28a37
GM
4864 else if (GC_WINDOWP (obj))
4865 {
4866 register struct Lisp_Vector *ptr = XVECTOR (obj);
4867 struct window *w = XWINDOW (obj);
41c28a37
GM
4868 register int i;
4869
4870 /* Stop if already marked. */
3ef06d12 4871 if (VECTOR_MARKED_P (ptr))
41c28a37
GM
4872 break;
4873
4874 /* Mark it. */
4f5c1376 4875 CHECK_LIVE (live_vector_p);
3ef06d12 4876 VECTOR_MARK (ptr);
41c28a37
GM
4877
4878 /* There is no Lisp data above The member CURRENT_MATRIX in
4879 struct WINDOW. Stop marking when that slot is reached. */
4880 for (i = 0;
c70bbf06 4881 (char *) &ptr->contents[i] < (char *) &w->current_matrix;
41c28a37 4882 i++)
49723c04 4883 mark_object (ptr->contents[i]);
41c28a37
GM
4884
4885 /* Mark glyphs for leaf windows. Marking window matrices is
4886 sufficient because frame matrices use the same glyph
4887 memory. */
4888 if (NILP (w->hchild)
4889 && NILP (w->vchild)
4890 && w->current_matrix)
4891 {
4892 mark_glyph_matrix (w->current_matrix);
4893 mark_glyph_matrix (w->desired_matrix);
4894 }
4895 }
4896 else if (GC_HASH_TABLE_P (obj))
4897 {
4898 struct Lisp_Hash_Table *h = XHASH_TABLE (obj);
177c0ea7 4899
41c28a37 4900 /* Stop if already marked. */
3ef06d12 4901 if (VECTOR_MARKED_P (h))
41c28a37 4902 break;
177c0ea7 4903
41c28a37 4904 /* Mark it. */
4f5c1376 4905 CHECK_LIVE (live_vector_p);
3ef06d12 4906 VECTOR_MARK (h);
41c28a37
GM
4907
4908 /* Mark contents. */
94a877ef 4909 /* Do not mark next_free or next_weak.
177c0ea7 4910 Being in the next_weak chain
94a877ef
RS
4911 should not keep the hash table alive.
4912 No need to mark `count' since it is an integer. */
49723c04
SM
4913 mark_object (h->test);
4914 mark_object (h->weak);
4915 mark_object (h->rehash_size);
4916 mark_object (h->rehash_threshold);
4917 mark_object (h->hash);
4918 mark_object (h->next);
4919 mark_object (h->index);
4920 mark_object (h->user_hash_function);
4921 mark_object (h->user_cmp_function);
41c28a37
GM
4922
4923 /* If hash table is not weak, mark all keys and values.
4924 For weak tables, mark only the vector. */
4925 if (GC_NILP (h->weak))
49723c04 4926 mark_object (h->key_and_value);
41c28a37 4927 else
3ef06d12 4928 VECTOR_MARK (XVECTOR (h->key_and_value));
41c28a37 4929 }
04ff9756 4930 else
169ee243
RS
4931 {
4932 register struct Lisp_Vector *ptr = XVECTOR (obj);
4933 register EMACS_INT size = ptr->size;
169ee243
RS
4934 register int i;
4935
3ef06d12 4936 if (VECTOR_MARKED_P (ptr)) break; /* Already marked */
4f5c1376 4937 CHECK_LIVE (live_vector_p);
3ef06d12 4938 VECTOR_MARK (ptr); /* Else mark it */
169ee243
RS
4939 if (size & PSEUDOVECTOR_FLAG)
4940 size &= PSEUDOVECTOR_SIZE_MASK;
41c28a37 4941
169ee243 4942 for (i = 0; i < size; i++) /* and then mark its elements */
49723c04 4943 mark_object (ptr->contents[i]);
169ee243
RS
4944 }
4945 break;
7146af97 4946
7146af97
JB
4947 case Lisp_Symbol:
4948 {
c70bbf06 4949 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
7146af97
JB
4950 struct Lisp_Symbol *ptrx;
4951
2336fe58 4952 if (ptr->gcmarkbit) break;
4f5c1376 4953 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
2336fe58 4954 ptr->gcmarkbit = 1;
49723c04
SM
4955 mark_object (ptr->value);
4956 mark_object (ptr->function);
4957 mark_object (ptr->plist);
34400008 4958
8fe5665d
KR
4959 if (!PURE_POINTER_P (XSTRING (ptr->xname)))
4960 MARK_STRING (XSTRING (ptr->xname));
d5db4077 4961 MARK_INTERVAL_TREE (STRING_INTERVALS (ptr->xname));
177c0ea7 4962
1c6bb482
RS
4963 /* Note that we do not mark the obarray of the symbol.
4964 It is safe not to do so because nothing accesses that
4965 slot except to check whether it is nil. */
7146af97
JB
4966 ptr = ptr->next;
4967 if (ptr)
4968 {
b0846f52 4969 ptrx = ptr; /* Use of ptrx avoids compiler bug on Sun */
7146af97 4970 XSETSYMBOL (obj, ptrx);
49723c04 4971 goto loop;
7146af97
JB
4972 }
4973 }
4974 break;
4975
a0a38eb7 4976 case Lisp_Misc:
4f5c1376 4977 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
2336fe58
SM
4978 if (XMARKER (obj)->gcmarkbit)
4979 break;
4980 XMARKER (obj)->gcmarkbit = 1;
a5da44fe 4981 switch (XMISCTYPE (obj))
a0a38eb7 4982 {
465edf35
KH
4983 case Lisp_Misc_Buffer_Local_Value:
4984 case Lisp_Misc_Some_Buffer_Local_Value:
4985 {
4986 register struct Lisp_Buffer_Local_Value *ptr
4987 = XBUFFER_LOCAL_VALUE (obj);
465edf35
KH
4988 /* If the cdr is nil, avoid recursion for the car. */
4989 if (EQ (ptr->cdr, Qnil))
4990 {
49723c04 4991 obj = ptr->realvalue;
465edf35
KH
4992 goto loop;
4993 }
49723c04
SM
4994 mark_object (ptr->realvalue);
4995 mark_object (ptr->buffer);
4996 mark_object (ptr->frame);
4997 obj = ptr->cdr;
465edf35
KH
4998 goto loop;
4999 }
5000
2336fe58
SM
5001 case Lisp_Misc_Marker:
5002 /* DO NOT mark thru the marker's chain.
5003 The buffer's markers chain does not preserve markers from gc;
5004 instead, markers are removed from the chain when freed by gc. */
c8616056
KH
5005 case Lisp_Misc_Intfwd:
5006 case Lisp_Misc_Boolfwd:
5007 case Lisp_Misc_Objfwd:
5008 case Lisp_Misc_Buffer_Objfwd:
b875d3f7 5009 case Lisp_Misc_Kboard_Objfwd:
c8616056
KH
5010 /* Don't bother with Lisp_Buffer_Objfwd,
5011 since all markable slots in current buffer marked anyway. */
5012 /* Don't need to do Lisp_Objfwd, since the places they point
5013 are protected with staticpro. */
f29181dc 5014 case Lisp_Misc_Save_Value:
c8616056
KH
5015 break;
5016
e202fa34
KH
5017 case Lisp_Misc_Overlay:
5018 {
5019 struct Lisp_Overlay *ptr = XOVERLAY (obj);
49723c04
SM
5020 mark_object (ptr->start);
5021 mark_object (ptr->end);
f54253ec
SM
5022 mark_object (ptr->plist);
5023 if (ptr->next)
5024 {
5025 XSETMISC (obj, ptr->next);
5026 goto loop;
5027 }
e202fa34
KH
5028 }
5029 break;
5030
a0a38eb7
KH
5031 default:
5032 abort ();
5033 }
7146af97
JB
5034 break;
5035
5036 case Lisp_Cons:
7146af97
JB
5037 {
5038 register struct Lisp_Cons *ptr = XCONS (obj);
08b7c2cb 5039 if (CONS_MARKED_P (ptr)) break;
4f5c1376 5040 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
08b7c2cb 5041 CONS_MARK (ptr);
c54ca951
RS
5042 /* If the cdr is nil, avoid recursion for the car. */
5043 if (EQ (ptr->cdr, Qnil))
5044 {
49723c04 5045 obj = ptr->car;
1342fc6f 5046 cdr_count = 0;
c54ca951
RS
5047 goto loop;
5048 }
49723c04
SM
5049 mark_object (ptr->car);
5050 obj = ptr->cdr;
1342fc6f
RS
5051 cdr_count++;
5052 if (cdr_count == mark_object_loop_halt)
5053 abort ();
7146af97
JB
5054 goto loop;
5055 }
5056
7146af97 5057 case Lisp_Float:
4f5c1376 5058 CHECK_ALLOCATED_AND_LIVE (live_float_p);
ab6780cd 5059 FLOAT_MARK (XFLOAT (obj));
7146af97 5060 break;
7146af97 5061
7146af97 5062 case Lisp_Int:
7146af97
JB
5063 break;
5064
5065 default:
5066 abort ();
5067 }
4f5c1376
GM
5068
5069#undef CHECK_LIVE
5070#undef CHECK_ALLOCATED
5071#undef CHECK_ALLOCATED_AND_LIVE
7146af97
JB
5072}
5073
5074/* Mark the pointers in a buffer structure. */
5075
5076static void
5077mark_buffer (buf)
5078 Lisp_Object buf;
5079{
7146af97 5080 register struct buffer *buffer = XBUFFER (buf);
f54253ec 5081 register Lisp_Object *ptr, tmp;
30e3190a 5082 Lisp_Object base_buffer;
7146af97 5083
3ef06d12 5084 VECTOR_MARK (buffer);
7146af97 5085
30e3190a 5086 MARK_INTERVAL_TREE (BUF_INTERVALS (buffer));
d5e35230 5087
c37adf23
SM
5088 /* For now, we just don't mark the undo_list. It's done later in
5089 a special way just before the sweep phase, and after stripping
5090 some of its elements that are not needed any more. */
4c315bda 5091
f54253ec
SM
5092 if (buffer->overlays_before)
5093 {
5094 XSETMISC (tmp, buffer->overlays_before);
5095 mark_object (tmp);
5096 }
5097 if (buffer->overlays_after)
5098 {
5099 XSETMISC (tmp, buffer->overlays_after);
5100 mark_object (tmp);
5101 }
5102
3ef06d12 5103 for (ptr = &buffer->name;
7146af97
JB
5104 (char *)ptr < (char *)buffer + sizeof (struct buffer);
5105 ptr++)
49723c04 5106 mark_object (*ptr);
30e3190a
RS
5107
5108 /* If this is an indirect buffer, mark its base buffer. */
349bd9ed 5109 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
30e3190a 5110 {
177c0ea7 5111 XSETBUFFER (base_buffer, buffer->base_buffer);
30e3190a
RS
5112 mark_buffer (base_buffer);
5113 }
7146af97 5114}
084b1a0c
KH
5115
5116
41c28a37
GM
5117/* Value is non-zero if OBJ will survive the current GC because it's
5118 either marked or does not need to be marked to survive. */
5119
5120int
5121survives_gc_p (obj)
5122 Lisp_Object obj;
5123{
5124 int survives_p;
177c0ea7 5125
41c28a37
GM
5126 switch (XGCTYPE (obj))
5127 {
5128 case Lisp_Int:
5129 survives_p = 1;
5130 break;
5131
5132 case Lisp_Symbol:
2336fe58 5133 survives_p = XSYMBOL (obj)->gcmarkbit;
41c28a37
GM
5134 break;
5135
5136 case Lisp_Misc:
ef89c2ce 5137 survives_p = XMARKER (obj)->gcmarkbit;
41c28a37
GM
5138 break;
5139
5140 case Lisp_String:
08b7c2cb 5141 survives_p = STRING_MARKED_P (XSTRING (obj));
41c28a37
GM
5142 break;
5143
5144 case Lisp_Vectorlike:
08b7c2cb 5145 survives_p = GC_SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
41c28a37
GM
5146 break;
5147
5148 case Lisp_Cons:
08b7c2cb 5149 survives_p = CONS_MARKED_P (XCONS (obj));
41c28a37
GM
5150 break;
5151
41c28a37 5152 case Lisp_Float:
ab6780cd 5153 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
41c28a37 5154 break;
41c28a37
GM
5155
5156 default:
5157 abort ();
5158 }
5159
34400008 5160 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
41c28a37
GM
5161}
5162
5163
7146af97 5164\f
1a4f1e2c 5165/* Sweep: find all structures not marked, and free them. */
7146af97
JB
5166
5167static void
5168gc_sweep ()
5169{
c37adf23
SM
5170 /* Remove or mark entries in weak hash tables.
5171 This must be done before any object is unmarked. */
5172 sweep_weak_hash_tables ();
5173
5174 sweep_strings ();
5175#ifdef GC_CHECK_STRING_BYTES
5176 if (!noninteractive)
5177 check_string_bytes (1);
5178#endif
5179
7146af97
JB
5180 /* Put all unmarked conses on free list */
5181 {
5182 register struct cons_block *cblk;
6ca94ac9 5183 struct cons_block **cprev = &cons_block;
7146af97
JB
5184 register int lim = cons_block_index;
5185 register int num_free = 0, num_used = 0;
5186
5187 cons_free_list = 0;
177c0ea7 5188
6ca94ac9 5189 for (cblk = cons_block; cblk; cblk = *cprev)
7146af97
JB
5190 {
5191 register int i;
6ca94ac9 5192 int this_free = 0;
7146af97 5193 for (i = 0; i < lim; i++)
08b7c2cb 5194 if (!CONS_MARKED_P (&cblk->conses[i]))
7146af97 5195 {
6ca94ac9 5196 this_free++;
1cd5fe6a 5197 *(struct Lisp_Cons **)&cblk->conses[i].cdr = cons_free_list;
7146af97 5198 cons_free_list = &cblk->conses[i];
34400008
GM
5199#if GC_MARK_STACK
5200 cons_free_list->car = Vdead;
5201#endif
7146af97
JB
5202 }
5203 else
5204 {
5205 num_used++;
08b7c2cb 5206 CONS_UNMARK (&cblk->conses[i]);
7146af97
JB
5207 }
5208 lim = CONS_BLOCK_SIZE;
6ca94ac9
KH
5209 /* If this block contains only free conses and we have already
5210 seen more than two blocks worth of free conses then deallocate
5211 this block. */
6feef451 5212 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
6ca94ac9 5213 {
6ca94ac9
KH
5214 *cprev = cblk->next;
5215 /* Unhook from the free list. */
5216 cons_free_list = *(struct Lisp_Cons **) &cblk->conses[0].cdr;
08b7c2cb 5217 lisp_align_free (cblk);
c8099634 5218 n_cons_blocks--;
6ca94ac9
KH
5219 }
5220 else
6feef451
AS
5221 {
5222 num_free += this_free;
5223 cprev = &cblk->next;
5224 }
7146af97
JB
5225 }
5226 total_conses = num_used;
5227 total_free_conses = num_free;
5228 }
5229
7146af97
JB
5230 /* Put all unmarked floats on free list */
5231 {
5232 register struct float_block *fblk;
6ca94ac9 5233 struct float_block **fprev = &float_block;
7146af97
JB
5234 register int lim = float_block_index;
5235 register int num_free = 0, num_used = 0;
5236
5237 float_free_list = 0;
177c0ea7 5238
6ca94ac9 5239 for (fblk = float_block; fblk; fblk = *fprev)
7146af97
JB
5240 {
5241 register int i;
6ca94ac9 5242 int this_free = 0;
7146af97 5243 for (i = 0; i < lim; i++)
ab6780cd 5244 if (!FLOAT_MARKED_P (&fblk->floats[i]))
7146af97 5245 {
6ca94ac9 5246 this_free++;
1cd5fe6a 5247 *(struct Lisp_Float **)&fblk->floats[i].data = float_free_list;
7146af97
JB
5248 float_free_list = &fblk->floats[i];
5249 }
5250 else
5251 {
5252 num_used++;
ab6780cd 5253 FLOAT_UNMARK (&fblk->floats[i]);
7146af97
JB
5254 }
5255 lim = FLOAT_BLOCK_SIZE;
6ca94ac9
KH
5256 /* If this block contains only free floats and we have already
5257 seen more than two blocks worth of free floats then deallocate
5258 this block. */
6feef451 5259 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
6ca94ac9 5260 {
6ca94ac9
KH
5261 *fprev = fblk->next;
5262 /* Unhook from the free list. */
5263 float_free_list = *(struct Lisp_Float **) &fblk->floats[0].data;
ab6780cd 5264 lisp_align_free (fblk);
c8099634 5265 n_float_blocks--;
6ca94ac9
KH
5266 }
5267 else
6feef451
AS
5268 {
5269 num_free += this_free;
5270 fprev = &fblk->next;
5271 }
7146af97
JB
5272 }
5273 total_floats = num_used;
5274 total_free_floats = num_free;
5275 }
7146af97 5276
d5e35230
JA
5277 /* Put all unmarked intervals on free list */
5278 {
5279 register struct interval_block *iblk;
6ca94ac9 5280 struct interval_block **iprev = &interval_block;
d5e35230
JA
5281 register int lim = interval_block_index;
5282 register int num_free = 0, num_used = 0;
5283
5284 interval_free_list = 0;
5285
6ca94ac9 5286 for (iblk = interval_block; iblk; iblk = *iprev)
d5e35230
JA
5287 {
5288 register int i;
6ca94ac9 5289 int this_free = 0;
d5e35230
JA
5290
5291 for (i = 0; i < lim; i++)
5292 {
2336fe58 5293 if (!iblk->intervals[i].gcmarkbit)
d5e35230 5294 {
439d5cb4 5295 SET_INTERVAL_PARENT (&iblk->intervals[i], interval_free_list);
d5e35230 5296 interval_free_list = &iblk->intervals[i];
6ca94ac9 5297 this_free++;
d5e35230
JA
5298 }
5299 else
5300 {
5301 num_used++;
2336fe58 5302 iblk->intervals[i].gcmarkbit = 0;
d5e35230
JA
5303 }
5304 }
5305 lim = INTERVAL_BLOCK_SIZE;
6ca94ac9
KH
5306 /* If this block contains only free intervals and we have already
5307 seen more than two blocks worth of free intervals then
5308 deallocate this block. */
6feef451 5309 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
6ca94ac9 5310 {
6ca94ac9
KH
5311 *iprev = iblk->next;
5312 /* Unhook from the free list. */
439d5cb4 5313 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
c8099634
RS
5314 lisp_free (iblk);
5315 n_interval_blocks--;
6ca94ac9
KH
5316 }
5317 else
6feef451
AS
5318 {
5319 num_free += this_free;
5320 iprev = &iblk->next;
5321 }
d5e35230
JA
5322 }
5323 total_intervals = num_used;
5324 total_free_intervals = num_free;
5325 }
d5e35230 5326
7146af97
JB
5327 /* Put all unmarked symbols on free list */
5328 {
5329 register struct symbol_block *sblk;
6ca94ac9 5330 struct symbol_block **sprev = &symbol_block;
7146af97
JB
5331 register int lim = symbol_block_index;
5332 register int num_free = 0, num_used = 0;
5333
d285b373 5334 symbol_free_list = NULL;
177c0ea7 5335
6ca94ac9 5336 for (sblk = symbol_block; sblk; sblk = *sprev)
7146af97 5337 {
6ca94ac9 5338 int this_free = 0;
d285b373
GM
5339 struct Lisp_Symbol *sym = sblk->symbols;
5340 struct Lisp_Symbol *end = sym + lim;
5341
5342 for (; sym < end; ++sym)
5343 {
20035321
SM
5344 /* Check if the symbol was created during loadup. In such a case
5345 it might be pointed to by pure bytecode which we don't trace,
5346 so we conservatively assume that it is live. */
8fe5665d 5347 int pure_p = PURE_POINTER_P (XSTRING (sym->xname));
177c0ea7 5348
2336fe58 5349 if (!sym->gcmarkbit && !pure_p)
d285b373
GM
5350 {
5351 *(struct Lisp_Symbol **) &sym->value = symbol_free_list;
5352 symbol_free_list = sym;
34400008 5353#if GC_MARK_STACK
d285b373 5354 symbol_free_list->function = Vdead;
34400008 5355#endif
d285b373
GM
5356 ++this_free;
5357 }
5358 else
5359 {
5360 ++num_used;
5361 if (!pure_p)
8fe5665d 5362 UNMARK_STRING (XSTRING (sym->xname));
2336fe58 5363 sym->gcmarkbit = 0;
d285b373
GM
5364 }
5365 }
177c0ea7 5366
7146af97 5367 lim = SYMBOL_BLOCK_SIZE;
6ca94ac9
KH
5368 /* If this block contains only free symbols and we have already
5369 seen more than two blocks worth of free symbols then deallocate
5370 this block. */
6feef451 5371 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
6ca94ac9 5372 {
6ca94ac9
KH
5373 *sprev = sblk->next;
5374 /* Unhook from the free list. */
5375 symbol_free_list = *(struct Lisp_Symbol **)&sblk->symbols[0].value;
c8099634
RS
5376 lisp_free (sblk);
5377 n_symbol_blocks--;
6ca94ac9
KH
5378 }
5379 else
6feef451
AS
5380 {
5381 num_free += this_free;
5382 sprev = &sblk->next;
5383 }
7146af97
JB
5384 }
5385 total_symbols = num_used;
5386 total_free_symbols = num_free;
5387 }
5388
a9faeabe
RS
5389 /* Put all unmarked misc's on free list.
5390 For a marker, first unchain it from the buffer it points into. */
7146af97
JB
5391 {
5392 register struct marker_block *mblk;
6ca94ac9 5393 struct marker_block **mprev = &marker_block;
7146af97
JB
5394 register int lim = marker_block_index;
5395 register int num_free = 0, num_used = 0;
5396
5397 marker_free_list = 0;
177c0ea7 5398
6ca94ac9 5399 for (mblk = marker_block; mblk; mblk = *mprev)
7146af97
JB
5400 {
5401 register int i;
6ca94ac9 5402 int this_free = 0;
fa05e253 5403
7146af97 5404 for (i = 0; i < lim; i++)
465edf35 5405 {
2336fe58 5406 if (!mblk->markers[i].u_marker.gcmarkbit)
465edf35 5407 {
a5da44fe 5408 if (mblk->markers[i].u_marker.type == Lisp_Misc_Marker)
ef89c2ce 5409 unchain_marker (&mblk->markers[i].u_marker);
fa05e253
RS
5410 /* Set the type of the freed object to Lisp_Misc_Free.
5411 We could leave the type alone, since nobody checks it,
465edf35 5412 but this might catch bugs faster. */
a5da44fe 5413 mblk->markers[i].u_marker.type = Lisp_Misc_Free;
465edf35
KH
5414 mblk->markers[i].u_free.chain = marker_free_list;
5415 marker_free_list = &mblk->markers[i];
6ca94ac9 5416 this_free++;
465edf35
KH
5417 }
5418 else
5419 {
5420 num_used++;
2336fe58 5421 mblk->markers[i].u_marker.gcmarkbit = 0;
465edf35
KH
5422 }
5423 }
7146af97 5424 lim = MARKER_BLOCK_SIZE;
6ca94ac9
KH
5425 /* If this block contains only free markers and we have already
5426 seen more than two blocks worth of free markers then deallocate
5427 this block. */
6feef451 5428 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
6ca94ac9 5429 {
6ca94ac9
KH
5430 *mprev = mblk->next;
5431 /* Unhook from the free list. */
5432 marker_free_list = mblk->markers[0].u_free.chain;
c37adf23 5433 lisp_free (mblk);
c8099634 5434 n_marker_blocks--;
6ca94ac9
KH
5435 }
5436 else
6feef451
AS
5437 {
5438 num_free += this_free;
5439 mprev = &mblk->next;
5440 }
7146af97
JB
5441 }
5442
5443 total_markers = num_used;
5444 total_free_markers = num_free;
5445 }
5446
5447 /* Free all unmarked buffers */
5448 {
5449 register struct buffer *buffer = all_buffers, *prev = 0, *next;
5450
5451 while (buffer)
3ef06d12 5452 if (!VECTOR_MARKED_P (buffer))
7146af97
JB
5453 {
5454 if (prev)
5455 prev->next = buffer->next;
5456 else
5457 all_buffers = buffer->next;
5458 next = buffer->next;
34400008 5459 lisp_free (buffer);
7146af97
JB
5460 buffer = next;
5461 }
5462 else
5463 {
3ef06d12 5464 VECTOR_UNMARK (buffer);
30e3190a 5465 UNMARK_BALANCE_INTERVALS (BUF_INTERVALS (buffer));
7146af97
JB
5466 prev = buffer, buffer = buffer->next;
5467 }
5468 }
5469
7146af97
JB
5470 /* Free all unmarked vectors */
5471 {
5472 register struct Lisp_Vector *vector = all_vectors, *prev = 0, *next;
5473 total_vector_size = 0;
5474
5475 while (vector)
3ef06d12 5476 if (!VECTOR_MARKED_P (vector))
7146af97
JB
5477 {
5478 if (prev)
5479 prev->next = vector->next;
5480 else
5481 all_vectors = vector->next;
5482 next = vector->next;
c8099634
RS
5483 lisp_free (vector);
5484 n_vectors--;
7146af97 5485 vector = next;
41c28a37 5486
7146af97
JB
5487 }
5488 else
5489 {
3ef06d12 5490 VECTOR_UNMARK (vector);
fa05e253
RS
5491 if (vector->size & PSEUDOVECTOR_FLAG)
5492 total_vector_size += (PSEUDOVECTOR_SIZE_MASK & vector->size);
5493 else
5494 total_vector_size += vector->size;
7146af97
JB
5495 prev = vector, vector = vector->next;
5496 }
5497 }
177c0ea7 5498
676a7251
GM
5499#ifdef GC_CHECK_STRING_BYTES
5500 if (!noninteractive)
5501 check_string_bytes (1);
5502#endif
7146af97 5503}
7146af97 5504
7146af97 5505
7146af97 5506
7146af97 5507\f
20d24714
JB
5508/* Debugging aids. */
5509
31ce1c91 5510DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
a6266d23 5511 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
228299fa 5512This may be helpful in debugging Emacs's memory usage.
7ee72033
MB
5513We divide the value by 1024 to make sure it fits in a Lisp integer. */)
5514 ()
20d24714
JB
5515{
5516 Lisp_Object end;
5517
45d12a89 5518 XSETINT (end, (EMACS_INT) sbrk (0) / 1024);
20d24714
JB
5519
5520 return end;
5521}
5522
310ea200 5523DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
a6266d23 5524 doc: /* Return a list of counters that measure how much consing there has been.
228299fa
GM
5525Each of these counters increments for a certain kind of object.
5526The counters wrap around from the largest positive integer to zero.
5527Garbage collection does not decrease them.
5528The elements of the value are as follows:
5529 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
5530All are in units of 1 = one object consed
5531except for VECTOR-CELLS and STRING-CHARS, which count the total length of
5532objects consed.
5533MISCS include overlays, markers, and some internal types.
5534Frames, windows, buffers, and subprocesses count as vectors
7ee72033
MB
5535 (but the contents of a buffer's text do not count here). */)
5536 ()
310ea200 5537{
2e471eb5 5538 Lisp_Object consed[8];
310ea200 5539
78e985eb
GM
5540 consed[0] = make_number (min (MOST_POSITIVE_FIXNUM, cons_cells_consed));
5541 consed[1] = make_number (min (MOST_POSITIVE_FIXNUM, floats_consed));
5542 consed[2] = make_number (min (MOST_POSITIVE_FIXNUM, vector_cells_consed));
5543 consed[3] = make_number (min (MOST_POSITIVE_FIXNUM, symbols_consed));
5544 consed[4] = make_number (min (MOST_POSITIVE_FIXNUM, string_chars_consed));
5545 consed[5] = make_number (min (MOST_POSITIVE_FIXNUM, misc_objects_consed));
5546 consed[6] = make_number (min (MOST_POSITIVE_FIXNUM, intervals_consed));
5547 consed[7] = make_number (min (MOST_POSITIVE_FIXNUM, strings_consed));
310ea200 5548
2e471eb5 5549 return Flist (8, consed);
310ea200 5550}
e0b8c689
KR
5551
5552int suppress_checking;
5553void
5554die (msg, file, line)
5555 const char *msg;
5556 const char *file;
5557 int line;
5558{
5559 fprintf (stderr, "\r\nEmacs fatal error: %s:%d: %s\r\n",
5560 file, line, msg);
5561 abort ();
5562}
20d24714 5563\f
7146af97
JB
5564/* Initialization */
5565
dfcf069d 5566void
7146af97
JB
5567init_alloc_once ()
5568{
5569 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
9e713715
GM
5570 purebeg = PUREBEG;
5571 pure_size = PURESIZE;
1f0b3fd2 5572 pure_bytes_used = 0;
9e713715
GM
5573 pure_bytes_used_before_overflow = 0;
5574
ab6780cd
SM
5575 /* Initialize the list of free aligned blocks. */
5576 free_ablock = NULL;
5577
877935b1 5578#if GC_MARK_STACK || defined GC_MALLOC_CHECK
34400008
GM
5579 mem_init ();
5580 Vdead = make_pure_string ("DEAD", 4, 4, 0);
5581#endif
9e713715 5582
7146af97
JB
5583 all_vectors = 0;
5584 ignore_warnings = 1;
d1658221
RS
5585#ifdef DOUG_LEA_MALLOC
5586 mallopt (M_TRIM_THRESHOLD, 128*1024); /* trim threshold */
5587 mallopt (M_MMAP_THRESHOLD, 64*1024); /* mmap threshold */
81d492d5 5588 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* max. number of mmap'ed areas */
d1658221 5589#endif
7146af97
JB
5590 init_strings ();
5591 init_cons ();
5592 init_symbol ();
5593 init_marker ();
7146af97 5594 init_float ();
34400008 5595 init_intervals ();
d5e35230 5596
276cbe5a
RS
5597#ifdef REL_ALLOC
5598 malloc_hysteresis = 32;
5599#else
5600 malloc_hysteresis = 0;
5601#endif
5602
5603 spare_memory = (char *) malloc (SPARE_MEMORY);
5604
7146af97
JB
5605 ignore_warnings = 0;
5606 gcprolist = 0;
630686c8 5607 byte_stack_list = 0;
7146af97
JB
5608 staticidx = 0;
5609 consing_since_gc = 0;
7d179cea 5610 gc_cons_threshold = 100000 * sizeof (Lisp_Object);
7146af97
JB
5611#ifdef VIRT_ADDR_VARIES
5612 malloc_sbrk_unused = 1<<22; /* A large number */
5613 malloc_sbrk_used = 100000; /* as reasonable as any number */
5614#endif /* VIRT_ADDR_VARIES */
5615}
5616
dfcf069d 5617void
7146af97
JB
5618init_alloc ()
5619{
5620 gcprolist = 0;
630686c8 5621 byte_stack_list = 0;
182ff242
GM
5622#if GC_MARK_STACK
5623#if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
5624 setjmp_tested_p = longjmps_done = 0;
5625#endif
5626#endif
2c5bd608
DL
5627 Vgc_elapsed = make_float (0.0);
5628 gcs_done = 0;
7146af97
JB
5629}
5630
5631void
5632syms_of_alloc ()
5633{
7ee72033 5634 DEFVAR_INT ("gc-cons-threshold", &gc_cons_threshold,
a6266d23 5635 doc: /* *Number of bytes of consing between garbage collections.
228299fa
GM
5636Garbage collection can happen automatically once this many bytes have been
5637allocated since the last garbage collection. All data types count.
7146af97 5638
228299fa 5639Garbage collection happens automatically only when `eval' is called.
7146af97 5640
228299fa
GM
5641By binding this temporarily to a large number, you can effectively
5642prevent garbage collection during a part of the program. */);
0819585c 5643
7ee72033 5644 DEFVAR_INT ("pure-bytes-used", &pure_bytes_used,
a6266d23 5645 doc: /* Number of bytes of sharable Lisp data allocated so far. */);
0819585c 5646
7ee72033 5647 DEFVAR_INT ("cons-cells-consed", &cons_cells_consed,
a6266d23 5648 doc: /* Number of cons cells that have been consed so far. */);
0819585c 5649
7ee72033 5650 DEFVAR_INT ("floats-consed", &floats_consed,
a6266d23 5651 doc: /* Number of floats that have been consed so far. */);
0819585c 5652
7ee72033 5653 DEFVAR_INT ("vector-cells-consed", &vector_cells_consed,
a6266d23 5654 doc: /* Number of vector cells that have been consed so far. */);
0819585c 5655
7ee72033 5656 DEFVAR_INT ("symbols-consed", &symbols_consed,
a6266d23 5657 doc: /* Number of symbols that have been consed so far. */);
0819585c 5658
7ee72033 5659 DEFVAR_INT ("string-chars-consed", &string_chars_consed,
a6266d23 5660 doc: /* Number of string characters that have been consed so far. */);
0819585c 5661
7ee72033 5662 DEFVAR_INT ("misc-objects-consed", &misc_objects_consed,
a6266d23 5663 doc: /* Number of miscellaneous objects that have been consed so far. */);
2e471eb5 5664
7ee72033 5665 DEFVAR_INT ("intervals-consed", &intervals_consed,
a6266d23 5666 doc: /* Number of intervals that have been consed so far. */);
7146af97 5667
7ee72033 5668 DEFVAR_INT ("strings-consed", &strings_consed,
a6266d23 5669 doc: /* Number of strings that have been consed so far. */);
228299fa 5670
7ee72033 5671 DEFVAR_LISP ("purify-flag", &Vpurify_flag,
a6266d23 5672 doc: /* Non-nil means loading Lisp code in order to dump an executable.
228299fa
GM
5673This means that certain objects should be allocated in shared (pure) space. */);
5674
7ee72033 5675 DEFVAR_INT ("undo-limit", &undo_limit,
a6266d23 5676 doc: /* Keep no more undo information once it exceeds this size.
228299fa
GM
5677This limit is applied when garbage collection happens.
5678The size is counted as the number of bytes occupied,
5679which includes both saved text and other data. */);
502b9b64 5680 undo_limit = 20000;
7146af97 5681
7ee72033 5682 DEFVAR_INT ("undo-strong-limit", &undo_strong_limit,
a6266d23 5683 doc: /* Don't keep more than this much size of undo information.
ae6a9bfe
RS
5684A previous command which pushes the undo list past this size
5685is entirely forgotten when GC happens.
228299fa
GM
5686The size is counted as the number of bytes occupied,
5687which includes both saved text and other data. */);
502b9b64 5688 undo_strong_limit = 30000;
7146af97 5689
ae6a9bfe
RS
5690 DEFVAR_INT ("undo-outer-limit", &undo_outer_limit,
5691 doc: /* Don't keep more than this much size of undo information.
5692If the current command has produced more than this much undo information,
5693GC discards it. This is a last-ditch limit to prevent memory overflow.
5694The size is counted as the number of bytes occupied,
5695which includes both saved text and other data. */);
5696 undo_outer_limit = 300000;
5697
7ee72033 5698 DEFVAR_BOOL ("garbage-collection-messages", &garbage_collection_messages,
a6266d23 5699 doc: /* Non-nil means display messages at start and end of garbage collection. */);
299585ee
RS
5700 garbage_collection_messages = 0;
5701
7ee72033 5702 DEFVAR_LISP ("post-gc-hook", &Vpost_gc_hook,
a6266d23 5703 doc: /* Hook run after garbage collection has finished. */);
9e713715
GM
5704 Vpost_gc_hook = Qnil;
5705 Qpost_gc_hook = intern ("post-gc-hook");
5706 staticpro (&Qpost_gc_hook);
5707
74a54b04
RS
5708 DEFVAR_LISP ("memory-signal-data", &Vmemory_signal_data,
5709 doc: /* Precomputed `signal' argument for memory-full error. */);
bcb61d60
KH
5710 /* We build this in advance because if we wait until we need it, we might
5711 not be able to allocate the memory to hold it. */
74a54b04
RS
5712 Vmemory_signal_data
5713 = list2 (Qerror,
5714 build_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"));
5715
5716 DEFVAR_LISP ("memory-full", &Vmemory_full,
5717 doc: /* Non-nil means we are handling a memory-full error. */);
5718 Vmemory_full = Qnil;
bcb61d60 5719
e8197642
RS
5720 staticpro (&Qgc_cons_threshold);
5721 Qgc_cons_threshold = intern ("gc-cons-threshold");
5722
a59de17b
RS
5723 staticpro (&Qchar_table_extra_slots);
5724 Qchar_table_extra_slots = intern ("char-table-extra-slots");
5725
2c5bd608
DL
5726 DEFVAR_LISP ("gc-elapsed", &Vgc_elapsed,
5727 doc: /* Accumulated time elapsed in garbage collections.
e7415487 5728The time is in seconds as a floating point value. */);
2c5bd608 5729 DEFVAR_INT ("gcs-done", &gcs_done,
e7415487 5730 doc: /* Accumulated number of garbage collections done. */);
2c5bd608 5731
7146af97
JB
5732 defsubr (&Scons);
5733 defsubr (&Slist);
5734 defsubr (&Svector);
5735 defsubr (&Smake_byte_code);
5736 defsubr (&Smake_list);
5737 defsubr (&Smake_vector);
7b07587b 5738 defsubr (&Smake_char_table);
7146af97 5739 defsubr (&Smake_string);
7b07587b 5740 defsubr (&Smake_bool_vector);
7146af97
JB
5741 defsubr (&Smake_symbol);
5742 defsubr (&Smake_marker);
5743 defsubr (&Spurecopy);
5744 defsubr (&Sgarbage_collect);
20d24714 5745 defsubr (&Smemory_limit);
310ea200 5746 defsubr (&Smemory_use_counts);
34400008
GM
5747
5748#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5749 defsubr (&Sgc_status);
5750#endif
7146af97 5751}
ab5796a9
MB
5752
5753/* arch-tag: 6695ca10-e3c5-4c2c-8bc3-ed26a7dda857
5754 (do not change this comment) */