* gtkutil.c (xg_get_file_with_chooser): Handle local files only.
[bpt/emacs.git] / src / alloc.c
CommitLineData
7146af97 1/* Storage allocation and gc for GNU Emacs Lisp interpreter.
126f9c02
SM
2 Copyright (C) 1985, 1986, 1988, 1993, 1994, 1995, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
7146af97
JB
4
5This file is part of GNU Emacs.
6
7GNU Emacs is free software; you can redistribute it and/or modify
8it under the terms of the GNU General Public License as published by
7c299e7a 9the Free Software Foundation; either version 2, or (at your option)
7146af97
JB
10any later version.
11
12GNU Emacs is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15GNU General Public License for more details.
16
17You should have received a copy of the GNU General Public License
18along with GNU Emacs; see the file COPYING. If not, write to
3b7ad313
EN
19the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
20Boston, MA 02111-1307, USA. */
7146af97 21
18160b98 22#include <config.h>
e9b309ac 23#include <stdio.h>
ab6780cd 24#include <limits.h> /* For CHAR_BIT. */
92939d31 25
4455ad75
RS
26#ifdef ALLOC_DEBUG
27#undef INLINE
28#endif
29
68c45bf0 30/* Note that this declares bzero on OSF/1. How dumb. */
2e471eb5 31
68c45bf0 32#include <signal.h>
92939d31 33
7539e11f
KR
34/* This file is part of the core Lisp implementation, and thus must
35 deal with the real data structures. If the Lisp implementation is
36 replaced, this file likely will not be used. */
2e471eb5 37
7539e11f 38#undef HIDE_LISP_IMPLEMENTATION
7146af97 39#include "lisp.h"
ece93c02 40#include "process.h"
d5e35230 41#include "intervals.h"
4c0be5f4 42#include "puresize.h"
7146af97
JB
43#include "buffer.h"
44#include "window.h"
2538fae4 45#include "keyboard.h"
502b9b64 46#include "frame.h"
9ac0d9e0 47#include "blockinput.h"
e54daa22 48#include "charset.h"
e065a56e 49#include "syssignal.h"
34400008 50#include <setjmp.h>
e065a56e 51
ad5f3636
DL
52/* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
53 memory. Can do this only if using gmalloc.c. */
54
55#if defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC
56#undef GC_MALLOC_CHECK
57#endif
58
bf952fb6
DL
59#ifdef HAVE_UNISTD_H
60#include <unistd.h>
61#else
62extern POINTER_TYPE *sbrk ();
63#endif
ee1eea5c 64
d1658221 65#ifdef DOUG_LEA_MALLOC
2e471eb5 66
d1658221 67#include <malloc.h>
3e60b029
DL
68/* malloc.h #defines this as size_t, at least in glibc2. */
69#ifndef __malloc_size_t
d1658221 70#define __malloc_size_t int
3e60b029 71#endif
81d492d5 72
2e471eb5
GM
73/* Specify maximum number of areas to mmap. It would be nice to use a
74 value that explicitly means "no limit". */
75
81d492d5
RS
76#define MMAP_MAX_AREAS 100000000
77
2e471eb5
GM
78#else /* not DOUG_LEA_MALLOC */
79
276cbe5a
RS
80/* The following come from gmalloc.c. */
81
276cbe5a 82#define __malloc_size_t size_t
276cbe5a 83extern __malloc_size_t _bytes_used;
3e60b029 84extern __malloc_size_t __malloc_extra_blocks;
2e471eb5
GM
85
86#endif /* not DOUG_LEA_MALLOC */
276cbe5a 87
276cbe5a 88/* Value of _bytes_used, when spare_memory was freed. */
2e471eb5 89
276cbe5a
RS
90static __malloc_size_t bytes_used_when_full;
91
2e471eb5
GM
92/* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
93 to a struct Lisp_String. */
94
7cdee936
SM
95#define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
96#define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
97#define STRING_MARKED_P(S) ((S)->size & ARRAY_MARK_FLAG)
2e471eb5 98
3ef06d12
SM
99#define VECTOR_MARK(V) ((V)->size |= ARRAY_MARK_FLAG)
100#define VECTOR_UNMARK(V) ((V)->size &= ~ARRAY_MARK_FLAG)
101#define VECTOR_MARKED_P(V) ((V)->size & ARRAY_MARK_FLAG)
102
2e471eb5
GM
103/* Value is the number of bytes/chars of S, a pointer to a struct
104 Lisp_String. This must be used instead of STRING_BYTES (S) or
105 S->size during GC, because S->size contains the mark bit for
106 strings. */
107
3ef06d12 108#define GC_STRING_BYTES(S) (STRING_BYTES (S))
7cdee936 109#define GC_STRING_CHARS(S) ((S)->size & ~ARRAY_MARK_FLAG)
2e471eb5
GM
110
111/* Number of bytes of consing done since the last gc. */
112
7146af97
JB
113int consing_since_gc;
114
310ea200 115/* Count the amount of consing of various sorts of space. */
2e471eb5 116
31ade731
SM
117EMACS_INT cons_cells_consed;
118EMACS_INT floats_consed;
119EMACS_INT vector_cells_consed;
120EMACS_INT symbols_consed;
121EMACS_INT string_chars_consed;
122EMACS_INT misc_objects_consed;
123EMACS_INT intervals_consed;
124EMACS_INT strings_consed;
2e471eb5
GM
125
126/* Number of bytes of consing since GC before another GC should be done. */
310ea200 127
31ade731 128EMACS_INT gc_cons_threshold;
7146af97 129
2e471eb5
GM
130/* Nonzero during GC. */
131
7146af97
JB
132int gc_in_progress;
133
3de0effb
RS
134/* Nonzero means abort if try to GC.
135 This is for code which is written on the assumption that
136 no GC will happen, so as to verify that assumption. */
137
138int abort_on_gc;
139
299585ee 140/* Nonzero means display messages at beginning and end of GC. */
2e471eb5 141
299585ee
RS
142int garbage_collection_messages;
143
7146af97
JB
144#ifndef VIRT_ADDR_VARIES
145extern
146#endif /* VIRT_ADDR_VARIES */
2e471eb5 147int malloc_sbrk_used;
7146af97
JB
148
149#ifndef VIRT_ADDR_VARIES
150extern
151#endif /* VIRT_ADDR_VARIES */
2e471eb5 152int malloc_sbrk_unused;
7146af97 153
502b9b64 154/* Two limits controlling how much undo information to keep. */
2e471eb5 155
31ade731
SM
156EMACS_INT undo_limit;
157EMACS_INT undo_strong_limit;
ae6a9bfe 158EMACS_INT undo_outer_limit;
7146af97 159
34400008
GM
160/* Number of live and free conses etc. */
161
162static int total_conses, total_markers, total_symbols, total_vector_size;
163static int total_free_conses, total_free_markers, total_free_symbols;
164static int total_free_floats, total_floats;
fd27a537 165
2e471eb5
GM
166/* Points to memory space allocated as "spare", to be freed if we run
167 out of memory. */
168
276cbe5a
RS
169static char *spare_memory;
170
171/* Amount of spare memory to keep in reserve. */
2e471eb5 172
276cbe5a
RS
173#define SPARE_MEMORY (1 << 14)
174
175/* Number of extra blocks malloc should get when it needs more core. */
2e471eb5 176
276cbe5a
RS
177static int malloc_hysteresis;
178
2e471eb5
GM
179/* Non-nil means defun should do purecopy on the function definition. */
180
7146af97
JB
181Lisp_Object Vpurify_flag;
182
74a54b04
RS
183/* Non-nil means we are handling a memory-full error. */
184
185Lisp_Object Vmemory_full;
186
7146af97 187#ifndef HAVE_SHM
2e471eb5 188
1b8950e5
RS
189/* Initialize it to a nonzero value to force it into data space
190 (rather than bss space). That way unexec will remap it into text
191 space (pure), on some systems. We have not implemented the
192 remapping on more recent systems because this is less important
193 nowadays than in the days of small memories and timesharing. */
2e471eb5 194
379b98b1 195EMACS_INT pure[PURESIZE / sizeof (EMACS_INT)] = {1,};
7146af97 196#define PUREBEG (char *) pure
2e471eb5 197
9e713715 198#else /* HAVE_SHM */
2e471eb5 199
7146af97
JB
200#define pure PURE_SEG_BITS /* Use shared memory segment */
201#define PUREBEG (char *)PURE_SEG_BITS
4c0be5f4 202
9e713715 203#endif /* HAVE_SHM */
2e471eb5 204
9e713715 205/* Pointer to the pure area, and its size. */
2e471eb5 206
9e713715
GM
207static char *purebeg;
208static size_t pure_size;
209
210/* Number of bytes of pure storage used before pure storage overflowed.
211 If this is non-zero, this implies that an overflow occurred. */
212
213static size_t pure_bytes_used_before_overflow;
7146af97 214
34400008
GM
215/* Value is non-zero if P points into pure space. */
216
217#define PURE_POINTER_P(P) \
218 (((PNTR_COMPARISON_TYPE) (P) \
9e713715 219 < (PNTR_COMPARISON_TYPE) ((char *) purebeg + pure_size)) \
34400008 220 && ((PNTR_COMPARISON_TYPE) (P) \
9e713715 221 >= (PNTR_COMPARISON_TYPE) purebeg))
34400008 222
2e471eb5
GM
223/* Index in pure at which next pure object will be allocated.. */
224
31ade731 225EMACS_INT pure_bytes_used;
7146af97 226
2e471eb5
GM
227/* If nonzero, this is a warning delivered by malloc and not yet
228 displayed. */
229
7146af97
JB
230char *pending_malloc_warning;
231
bcb61d60 232/* Pre-computed signal argument for use when memory is exhausted. */
2e471eb5 233
74a54b04 234Lisp_Object Vmemory_signal_data;
bcb61d60 235
7146af97
JB
236/* Maximum amount of C stack to save when a GC happens. */
237
238#ifndef MAX_SAVE_STACK
239#define MAX_SAVE_STACK 16000
240#endif
241
242/* Buffer in which we save a copy of the C stack at each GC. */
243
244char *stack_copy;
245int stack_copy_size;
246
2e471eb5
GM
247/* Non-zero means ignore malloc warnings. Set during initialization.
248 Currently not used. */
249
7146af97 250int ignore_warnings;
350273a4 251
a59de17b 252Lisp_Object Qgc_cons_threshold, Qchar_table_extra_slots;
e8197642 253
9e713715
GM
254/* Hook run after GC has finished. */
255
256Lisp_Object Vpost_gc_hook, Qpost_gc_hook;
257
2c5bd608
DL
258Lisp_Object Vgc_elapsed; /* accumulated elapsed time in GC */
259EMACS_INT gcs_done; /* accumulated GCs */
260
2e471eb5 261static void mark_buffer P_ ((Lisp_Object));
6793bc63 262extern void mark_kboards P_ ((void));
b40ea20a 263extern void mark_backtrace P_ ((void));
2e471eb5 264static void gc_sweep P_ ((void));
41c28a37
GM
265static void mark_glyph_matrix P_ ((struct glyph_matrix *));
266static void mark_face_cache P_ ((struct face_cache *));
267
268#ifdef HAVE_WINDOW_SYSTEM
269static void mark_image P_ ((struct image *));
270static void mark_image_cache P_ ((struct frame *));
271#endif /* HAVE_WINDOW_SYSTEM */
272
2e471eb5
GM
273static struct Lisp_String *allocate_string P_ ((void));
274static void compact_small_strings P_ ((void));
275static void free_large_strings P_ ((void));
276static void sweep_strings P_ ((void));
7da0b0d3
RS
277
278extern int message_enable_multibyte;
34400008 279
34400008
GM
280/* When scanning the C stack for live Lisp objects, Emacs keeps track
281 of what memory allocated via lisp_malloc is intended for what
282 purpose. This enumeration specifies the type of memory. */
283
284enum mem_type
285{
286 MEM_TYPE_NON_LISP,
287 MEM_TYPE_BUFFER,
288 MEM_TYPE_CONS,
289 MEM_TYPE_STRING,
290 MEM_TYPE_MISC,
291 MEM_TYPE_SYMBOL,
292 MEM_TYPE_FLOAT,
ece93c02
GM
293 /* Keep the following vector-like types together, with
294 MEM_TYPE_WINDOW being the last, and MEM_TYPE_VECTOR the
295 first. Or change the code of live_vector_p, for instance. */
296 MEM_TYPE_VECTOR,
297 MEM_TYPE_PROCESS,
298 MEM_TYPE_HASH_TABLE,
299 MEM_TYPE_FRAME,
300 MEM_TYPE_WINDOW
34400008
GM
301};
302
877935b1 303#if GC_MARK_STACK || defined GC_MALLOC_CHECK
0b378936
GM
304
305#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
306#include <stdio.h> /* For fprintf. */
307#endif
308
309/* A unique object in pure space used to make some Lisp objects
310 on free lists recognizable in O(1). */
311
312Lisp_Object Vdead;
313
877935b1
GM
314#ifdef GC_MALLOC_CHECK
315
316enum mem_type allocated_mem_type;
317int dont_register_blocks;
318
319#endif /* GC_MALLOC_CHECK */
320
321/* A node in the red-black tree describing allocated memory containing
322 Lisp data. Each such block is recorded with its start and end
323 address when it is allocated, and removed from the tree when it
324 is freed.
325
326 A red-black tree is a balanced binary tree with the following
327 properties:
328
329 1. Every node is either red or black.
330 2. Every leaf is black.
331 3. If a node is red, then both of its children are black.
332 4. Every simple path from a node to a descendant leaf contains
333 the same number of black nodes.
334 5. The root is always black.
335
336 When nodes are inserted into the tree, or deleted from the tree,
337 the tree is "fixed" so that these properties are always true.
338
339 A red-black tree with N internal nodes has height at most 2
340 log(N+1). Searches, insertions and deletions are done in O(log N).
341 Please see a text book about data structures for a detailed
342 description of red-black trees. Any book worth its salt should
343 describe them. */
344
345struct mem_node
346{
9f7d9210
RS
347 /* Children of this node. These pointers are never NULL. When there
348 is no child, the value is MEM_NIL, which points to a dummy node. */
349 struct mem_node *left, *right;
350
351 /* The parent of this node. In the root node, this is NULL. */
352 struct mem_node *parent;
877935b1
GM
353
354 /* Start and end of allocated region. */
355 void *start, *end;
356
357 /* Node color. */
358 enum {MEM_BLACK, MEM_RED} color;
177c0ea7 359
877935b1
GM
360 /* Memory type. */
361 enum mem_type type;
362};
363
364/* Base address of stack. Set in main. */
365
366Lisp_Object *stack_base;
367
368/* Root of the tree describing allocated Lisp memory. */
369
370static struct mem_node *mem_root;
371
ece93c02
GM
372/* Lowest and highest known address in the heap. */
373
374static void *min_heap_address, *max_heap_address;
375
877935b1
GM
376/* Sentinel node of the tree. */
377
378static struct mem_node mem_z;
379#define MEM_NIL &mem_z
380
b3303f74 381static POINTER_TYPE *lisp_malloc P_ ((size_t, enum mem_type));
ece93c02 382static struct Lisp_Vector *allocate_vectorlike P_ ((EMACS_INT, enum mem_type));
bf952fb6 383static void lisp_free P_ ((POINTER_TYPE *));
34400008 384static void mark_stack P_ ((void));
34400008
GM
385static int live_vector_p P_ ((struct mem_node *, void *));
386static int live_buffer_p P_ ((struct mem_node *, void *));
387static int live_string_p P_ ((struct mem_node *, void *));
388static int live_cons_p P_ ((struct mem_node *, void *));
389static int live_symbol_p P_ ((struct mem_node *, void *));
390static int live_float_p P_ ((struct mem_node *, void *));
391static int live_misc_p P_ ((struct mem_node *, void *));
182ff242 392static void mark_maybe_object P_ ((Lisp_Object));
34400008
GM
393static void mark_memory P_ ((void *, void *));
394static void mem_init P_ ((void));
395static struct mem_node *mem_insert P_ ((void *, void *, enum mem_type));
396static void mem_insert_fixup P_ ((struct mem_node *));
397static void mem_rotate_left P_ ((struct mem_node *));
398static void mem_rotate_right P_ ((struct mem_node *));
399static void mem_delete P_ ((struct mem_node *));
400static void mem_delete_fixup P_ ((struct mem_node *));
401static INLINE struct mem_node *mem_find P_ ((void *));
402
403#if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
404static void check_gcpros P_ ((void));
405#endif
406
877935b1 407#endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
34400008 408
1f0b3fd2
GM
409/* Recording what needs to be marked for gc. */
410
411struct gcpro *gcprolist;
412
379b98b1
PE
413/* Addresses of staticpro'd variables. Initialize it to a nonzero
414 value; otherwise some compilers put it into BSS. */
1f0b3fd2 415
382d38fa 416#define NSTATICS 1280
379b98b1 417Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
1f0b3fd2
GM
418
419/* Index of next unused slot in staticvec. */
420
421int staticidx = 0;
422
423static POINTER_TYPE *pure_alloc P_ ((size_t, int));
424
425
426/* Value is SZ rounded up to the next multiple of ALIGNMENT.
427 ALIGNMENT must be a power of 2. */
428
ab6780cd
SM
429#define ALIGN(ptr, ALIGNMENT) \
430 ((POINTER_TYPE *) ((((EMACS_UINT)(ptr)) + (ALIGNMENT) - 1) \
431 & ~((ALIGNMENT) - 1)))
1f0b3fd2 432
ece93c02 433
7146af97 434\f
34400008
GM
435/************************************************************************
436 Malloc
437 ************************************************************************/
438
4455ad75 439/* Function malloc calls this if it finds we are near exhausting storage. */
d457598b
AS
440
441void
7146af97
JB
442malloc_warning (str)
443 char *str;
444{
445 pending_malloc_warning = str;
446}
447
34400008 448
4455ad75 449/* Display an already-pending malloc warning. */
34400008 450
d457598b 451void
7146af97
JB
452display_malloc_warning ()
453{
4455ad75
RS
454 call3 (intern ("display-warning"),
455 intern ("alloc"),
456 build_string (pending_malloc_warning),
457 intern ("emergency"));
7146af97 458 pending_malloc_warning = 0;
7146af97
JB
459}
460
34400008 461
d1658221 462#ifdef DOUG_LEA_MALLOC
1177ecf6 463# define BYTES_USED (mallinfo ().arena)
d1658221 464#else
1177ecf6 465# define BYTES_USED _bytes_used
d1658221
RS
466#endif
467
34400008 468
2e471eb5 469/* Called if malloc returns zero. */
276cbe5a 470
d457598b 471void
7146af97
JB
472memory_full ()
473{
74a54b04
RS
474 Vmemory_full = Qt;
475
276cbe5a 476#ifndef SYSTEM_MALLOC
d1658221 477 bytes_used_when_full = BYTES_USED;
276cbe5a
RS
478#endif
479
480 /* The first time we get here, free the spare memory. */
481 if (spare_memory)
482 {
483 free (spare_memory);
484 spare_memory = 0;
485 }
486
2e471eb5
GM
487 /* This used to call error, but if we've run out of memory, we could
488 get infinite recursion trying to build the string. */
276cbe5a 489 while (1)
74a54b04 490 Fsignal (Qnil, Vmemory_signal_data);
276cbe5a
RS
491}
492
34400008 493
276cbe5a
RS
494/* Called if we can't allocate relocatable space for a buffer. */
495
496void
497buffer_memory_full ()
498{
2e471eb5
GM
499 /* If buffers use the relocating allocator, no need to free
500 spare_memory, because we may have plenty of malloc space left
501 that we could get, and if we don't, the malloc that fails will
502 itself cause spare_memory to be freed. If buffers don't use the
503 relocating allocator, treat this like any other failing
504 malloc. */
276cbe5a
RS
505
506#ifndef REL_ALLOC
507 memory_full ();
508#endif
509
74a54b04
RS
510 Vmemory_full = Qt;
511
2e471eb5
GM
512 /* This used to call error, but if we've run out of memory, we could
513 get infinite recursion trying to build the string. */
bcb61d60 514 while (1)
74a54b04 515 Fsignal (Qnil, Vmemory_signal_data);
7146af97
JB
516}
517
34400008 518
212f33f1
KS
519#ifdef XMALLOC_OVERRUN_CHECK
520
bdbed949
KS
521/* Check for overrun in malloc'ed buffers by wrapping a 16 byte header
522 and a 16 byte trailer around each block.
523
524 The header consists of 12 fixed bytes + a 4 byte integer contaning the
525 original block size, while the trailer consists of 16 fixed bytes.
526
527 The header is used to detect whether this block has been allocated
528 through these functions -- as it seems that some low-level libc
529 functions may bypass the malloc hooks.
530*/
531
532
212f33f1 533#define XMALLOC_OVERRUN_CHECK_SIZE 16
bdbed949 534
212f33f1
KS
535static char xmalloc_overrun_check_header[XMALLOC_OVERRUN_CHECK_SIZE-4] =
536 { 0x9a, 0x9b, 0xae, 0xaf,
537 0xbf, 0xbe, 0xce, 0xcf,
538 0xea, 0xeb, 0xec, 0xed };
539
540static char xmalloc_overrun_check_trailer[XMALLOC_OVERRUN_CHECK_SIZE] =
541 { 0xaa, 0xab, 0xac, 0xad,
542 0xba, 0xbb, 0xbc, 0xbd,
543 0xca, 0xcb, 0xcc, 0xcd,
544 0xda, 0xdb, 0xdc, 0xdd };
545
bdbed949
KS
546/* Macros to insert and extract the block size in the header. */
547
548#define XMALLOC_PUT_SIZE(ptr, size) \
549 (ptr[-1] = (size & 0xff), \
550 ptr[-2] = ((size >> 8) & 0xff), \
551 ptr[-3] = ((size >> 16) & 0xff), \
552 ptr[-4] = ((size >> 24) & 0xff))
553
554#define XMALLOC_GET_SIZE(ptr) \
555 (size_t)((unsigned)(ptr[-1]) | \
556 ((unsigned)(ptr[-2]) << 8) | \
557 ((unsigned)(ptr[-3]) << 16) | \
558 ((unsigned)(ptr[-4]) << 24))
559
560
561/* Like malloc, but wraps allocated block with header and trailer. */
562
212f33f1
KS
563POINTER_TYPE *
564overrun_check_malloc (size)
565 size_t size;
566{
bdbed949 567 register unsigned char *val;
212f33f1 568
bdbed949 569 val = (unsigned char *) malloc (size + XMALLOC_OVERRUN_CHECK_SIZE*2);
212f33f1
KS
570 if (val)
571 {
572 bcopy (xmalloc_overrun_check_header, val, XMALLOC_OVERRUN_CHECK_SIZE - 4);
212f33f1 573 val += XMALLOC_OVERRUN_CHECK_SIZE;
bdbed949 574 XMALLOC_PUT_SIZE(val, size);
212f33f1
KS
575 bcopy (xmalloc_overrun_check_trailer, val + size, XMALLOC_OVERRUN_CHECK_SIZE);
576 }
577 return (POINTER_TYPE *)val;
578}
579
bdbed949
KS
580
581/* Like realloc, but checks old block for overrun, and wraps new block
582 with header and trailer. */
583
212f33f1
KS
584POINTER_TYPE *
585overrun_check_realloc (block, size)
586 POINTER_TYPE *block;
587 size_t size;
588{
bdbed949 589 register unsigned char *val = (unsigned char *)block;
212f33f1
KS
590
591 if (val
592 && bcmp (xmalloc_overrun_check_header,
593 val - XMALLOC_OVERRUN_CHECK_SIZE,
594 XMALLOC_OVERRUN_CHECK_SIZE - 4) == 0)
595 {
bdbed949 596 size_t osize = XMALLOC_GET_SIZE (val);
212f33f1
KS
597 if (bcmp (xmalloc_overrun_check_trailer,
598 val + osize,
599 XMALLOC_OVERRUN_CHECK_SIZE))
600 abort ();
bdbed949 601 bzero (val + osize, XMALLOC_OVERRUN_CHECK_SIZE);
212f33f1 602 val -= XMALLOC_OVERRUN_CHECK_SIZE;
bdbed949 603 bzero (val, XMALLOC_OVERRUN_CHECK_SIZE);
212f33f1
KS
604 }
605
bdbed949 606 val = (unsigned char *) realloc ((POINTER_TYPE *)val, size + XMALLOC_OVERRUN_CHECK_SIZE*2);
212f33f1
KS
607
608 if (val)
609 {
610 bcopy (xmalloc_overrun_check_header, val, XMALLOC_OVERRUN_CHECK_SIZE - 4);
212f33f1 611 val += XMALLOC_OVERRUN_CHECK_SIZE;
bdbed949 612 XMALLOC_PUT_SIZE(val, size);
212f33f1
KS
613 bcopy (xmalloc_overrun_check_trailer, val + size, XMALLOC_OVERRUN_CHECK_SIZE);
614 }
615 return (POINTER_TYPE *)val;
616}
617
bdbed949
KS
618/* Like free, but checks block for overrun. */
619
212f33f1
KS
620void
621overrun_check_free (block)
622 POINTER_TYPE *block;
623{
bdbed949 624 unsigned char *val = (unsigned char *)block;
212f33f1
KS
625
626 if (val
627 && bcmp (xmalloc_overrun_check_header,
628 val - XMALLOC_OVERRUN_CHECK_SIZE,
629 XMALLOC_OVERRUN_CHECK_SIZE - 4) == 0)
630 {
bdbed949 631 size_t osize = XMALLOC_GET_SIZE (val);
212f33f1
KS
632 if (bcmp (xmalloc_overrun_check_trailer,
633 val + osize,
634 XMALLOC_OVERRUN_CHECK_SIZE))
635 abort ();
bdbed949 636 bzero (val + osize, XMALLOC_OVERRUN_CHECK_SIZE);
212f33f1 637 val -= XMALLOC_OVERRUN_CHECK_SIZE;
bdbed949 638 bzero (val, XMALLOC_OVERRUN_CHECK_SIZE);
212f33f1
KS
639 }
640
641 free (val);
642}
643
644#undef malloc
645#undef realloc
646#undef free
647#define malloc overrun_check_malloc
648#define realloc overrun_check_realloc
649#define free overrun_check_free
650#endif
651
bdbed949
KS
652
653/* Like malloc but check for no memory and block interrupt input.. */
654
c971ff9a 655POINTER_TYPE *
7146af97 656xmalloc (size)
675d5130 657 size_t size;
7146af97 658{
c971ff9a 659 register POINTER_TYPE *val;
7146af97 660
9ac0d9e0 661 BLOCK_INPUT;
c971ff9a 662 val = (POINTER_TYPE *) malloc (size);
9ac0d9e0 663 UNBLOCK_INPUT;
7146af97 664
2e471eb5
GM
665 if (!val && size)
666 memory_full ();
7146af97
JB
667 return val;
668}
669
34400008
GM
670
671/* Like realloc but check for no memory and block interrupt input.. */
672
c971ff9a 673POINTER_TYPE *
7146af97 674xrealloc (block, size)
c971ff9a 675 POINTER_TYPE *block;
675d5130 676 size_t size;
7146af97 677{
c971ff9a 678 register POINTER_TYPE *val;
7146af97 679
9ac0d9e0 680 BLOCK_INPUT;
56d2031b
JB
681 /* We must call malloc explicitly when BLOCK is 0, since some
682 reallocs don't do this. */
683 if (! block)
c971ff9a 684 val = (POINTER_TYPE *) malloc (size);
f048679d 685 else
c971ff9a 686 val = (POINTER_TYPE *) realloc (block, size);
9ac0d9e0 687 UNBLOCK_INPUT;
7146af97
JB
688
689 if (!val && size) memory_full ();
690 return val;
691}
9ac0d9e0 692
34400008 693
d7489312 694/* Like free but block interrupt input. */
34400008 695
9ac0d9e0
JB
696void
697xfree (block)
c971ff9a 698 POINTER_TYPE *block;
9ac0d9e0
JB
699{
700 BLOCK_INPUT;
701 free (block);
702 UNBLOCK_INPUT;
703}
704
c8099634 705
dca7c6a8
GM
706/* Like strdup, but uses xmalloc. */
707
708char *
709xstrdup (s)
943b873e 710 const char *s;
dca7c6a8 711{
675d5130 712 size_t len = strlen (s) + 1;
dca7c6a8
GM
713 char *p = (char *) xmalloc (len);
714 bcopy (s, p, len);
715 return p;
716}
717
718
f61bef8b
KS
719/* Unwind for SAFE_ALLOCA */
720
721Lisp_Object
722safe_alloca_unwind (arg)
723 Lisp_Object arg;
724{
b766f870
KS
725 register struct Lisp_Save_Value *p = XSAVE_VALUE (arg);
726
727 p->dogc = 0;
728 xfree (p->pointer);
729 p->pointer = 0;
7b7990cc 730 free_misc (arg);
f61bef8b
KS
731 return Qnil;
732}
733
734
34400008
GM
735/* Like malloc but used for allocating Lisp data. NBYTES is the
736 number of bytes to allocate, TYPE describes the intended use of the
737 allcated memory block (for strings, for conses, ...). */
738
212f33f1 739#ifndef USE_LSB_TAG
918a23a7 740static void *lisp_malloc_loser;
212f33f1 741#endif
918a23a7 742
675d5130 743static POINTER_TYPE *
34400008 744lisp_malloc (nbytes, type)
675d5130 745 size_t nbytes;
34400008 746 enum mem_type type;
c8099634 747{
34400008 748 register void *val;
c8099634
RS
749
750 BLOCK_INPUT;
877935b1
GM
751
752#ifdef GC_MALLOC_CHECK
753 allocated_mem_type = type;
754#endif
177c0ea7 755
34400008 756 val = (void *) malloc (nbytes);
c8099634 757
831b476c 758#ifndef USE_LSB_TAG
918a23a7
RS
759 /* If the memory just allocated cannot be addressed thru a Lisp
760 object's pointer, and it needs to be,
761 that's equivalent to running out of memory. */
762 if (val && type != MEM_TYPE_NON_LISP)
763 {
764 Lisp_Object tem;
765 XSETCONS (tem, (char *) val + nbytes - 1);
766 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
767 {
768 lisp_malloc_loser = val;
769 free (val);
770 val = 0;
771 }
772 }
831b476c 773#endif
918a23a7 774
877935b1 775#if GC_MARK_STACK && !defined GC_MALLOC_CHECK
dca7c6a8 776 if (val && type != MEM_TYPE_NON_LISP)
34400008
GM
777 mem_insert (val, (char *) val + nbytes, type);
778#endif
177c0ea7 779
dca7c6a8
GM
780 UNBLOCK_INPUT;
781 if (!val && nbytes)
782 memory_full ();
c8099634
RS
783 return val;
784}
785
34400008
GM
786/* Free BLOCK. This must be called to free memory allocated with a
787 call to lisp_malloc. */
788
bf952fb6 789static void
c8099634 790lisp_free (block)
675d5130 791 POINTER_TYPE *block;
c8099634
RS
792{
793 BLOCK_INPUT;
c8099634 794 free (block);
877935b1 795#if GC_MARK_STACK && !defined GC_MALLOC_CHECK
34400008
GM
796 mem_delete (mem_find (block));
797#endif
c8099634
RS
798 UNBLOCK_INPUT;
799}
34400008 800
ab6780cd
SM
801/* Allocation of aligned blocks of memory to store Lisp data. */
802/* The entry point is lisp_align_malloc which returns blocks of at most */
803/* BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
804
805
806/* BLOCK_ALIGN has to be a power of 2. */
807#define BLOCK_ALIGN (1 << 10)
ab6780cd
SM
808
809/* Padding to leave at the end of a malloc'd block. This is to give
810 malloc a chance to minimize the amount of memory wasted to alignment.
811 It should be tuned to the particular malloc library used.
19bcad1f
SM
812 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
813 posix_memalign on the other hand would ideally prefer a value of 4
814 because otherwise, there's 1020 bytes wasted between each ablocks.
815 But testing shows that those 1020 will most of the time be efficiently
816 used by malloc to place other objects, so a value of 0 is still preferable
817 unless you have a lot of cons&floats and virtually nothing else. */
818#define BLOCK_PADDING 0
819#define BLOCK_BYTES \
820 (BLOCK_ALIGN - sizeof (struct aligned_block *) - BLOCK_PADDING)
821
822/* Internal data structures and constants. */
823
ab6780cd
SM
824#define ABLOCKS_SIZE 16
825
826/* An aligned block of memory. */
827struct ablock
828{
829 union
830 {
831 char payload[BLOCK_BYTES];
832 struct ablock *next_free;
833 } x;
834 /* `abase' is the aligned base of the ablocks. */
835 /* It is overloaded to hold the virtual `busy' field that counts
836 the number of used ablock in the parent ablocks.
837 The first ablock has the `busy' field, the others have the `abase'
838 field. To tell the difference, we assume that pointers will have
839 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
840 is used to tell whether the real base of the parent ablocks is `abase'
841 (if not, the word before the first ablock holds a pointer to the
842 real base). */
843 struct ablocks *abase;
844 /* The padding of all but the last ablock is unused. The padding of
845 the last ablock in an ablocks is not allocated. */
19bcad1f
SM
846#if BLOCK_PADDING
847 char padding[BLOCK_PADDING];
ebb8d410 848#endif
ab6780cd
SM
849};
850
851/* A bunch of consecutive aligned blocks. */
852struct ablocks
853{
854 struct ablock blocks[ABLOCKS_SIZE];
855};
856
857/* Size of the block requested from malloc or memalign. */
19bcad1f 858#define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
ab6780cd
SM
859
860#define ABLOCK_ABASE(block) \
861 (((unsigned long) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
862 ? (struct ablocks *)(block) \
863 : (block)->abase)
864
865/* Virtual `busy' field. */
866#define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
867
868/* Pointer to the (not necessarily aligned) malloc block. */
19bcad1f
SM
869#ifdef HAVE_POSIX_MEMALIGN
870#define ABLOCKS_BASE(abase) (abase)
871#else
ab6780cd 872#define ABLOCKS_BASE(abase) \
03bb6a06 873 (1 & (long) ABLOCKS_BUSY (abase) ? abase : ((void**)abase)[-1])
19bcad1f 874#endif
ab6780cd
SM
875
876/* The list of free ablock. */
877static struct ablock *free_ablock;
878
879/* Allocate an aligned block of nbytes.
880 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
881 smaller or equal to BLOCK_BYTES. */
882static POINTER_TYPE *
883lisp_align_malloc (nbytes, type)
884 size_t nbytes;
885 enum mem_type type;
886{
887 void *base, *val;
888 struct ablocks *abase;
889
890 eassert (nbytes <= BLOCK_BYTES);
891
892 BLOCK_INPUT;
893
894#ifdef GC_MALLOC_CHECK
895 allocated_mem_type = type;
896#endif
897
898 if (!free_ablock)
899 {
d7489312
DL
900 int i;
901 EMACS_INT aligned; /* int gets warning casting to 64-bit pointer. */
ab6780cd
SM
902
903#ifdef DOUG_LEA_MALLOC
904 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
905 because mapped region contents are not preserved in
906 a dumped Emacs. */
907 mallopt (M_MMAP_MAX, 0);
908#endif
909
19bcad1f
SM
910#ifdef HAVE_POSIX_MEMALIGN
911 {
912 int err = posix_memalign (&base, BLOCK_ALIGN, ABLOCKS_BYTES);
ab349c19
RS
913 if (err)
914 base = NULL;
915 abase = base;
19bcad1f
SM
916 }
917#else
ab6780cd
SM
918 base = malloc (ABLOCKS_BYTES);
919 abase = ALIGN (base, BLOCK_ALIGN);
ab349c19
RS
920#endif
921
4532fdde
RS
922 if (base == 0)
923 {
924 UNBLOCK_INPUT;
925 memory_full ();
926 }
ab6780cd
SM
927
928 aligned = (base == abase);
929 if (!aligned)
930 ((void**)abase)[-1] = base;
931
932#ifdef DOUG_LEA_MALLOC
933 /* Back to a reasonable maximum of mmap'ed areas. */
934 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
935#endif
936
831b476c 937#ifndef USE_LSB_TAG
f4446bbf
GM
938 /* If the memory just allocated cannot be addressed thru a Lisp
939 object's pointer, and it needs to be, that's equivalent to
940 running out of memory. */
941 if (type != MEM_TYPE_NON_LISP)
942 {
943 Lisp_Object tem;
944 char *end = (char *) base + ABLOCKS_BYTES - 1;
945 XSETCONS (tem, end);
946 if ((char *) XCONS (tem) != end)
947 {
948 lisp_malloc_loser = base;
949 free (base);
950 UNBLOCK_INPUT;
951 memory_full ();
952 }
953 }
831b476c 954#endif
f4446bbf 955
ab6780cd
SM
956 /* Initialize the blocks and put them on the free list.
957 Is `base' was not properly aligned, we can't use the last block. */
958 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
959 {
960 abase->blocks[i].abase = abase;
961 abase->blocks[i].x.next_free = free_ablock;
962 free_ablock = &abase->blocks[i];
963 }
03bb6a06 964 ABLOCKS_BUSY (abase) = (struct ablocks *) (long) aligned;
ab6780cd 965
19bcad1f 966 eassert (0 == ((EMACS_UINT)abase) % BLOCK_ALIGN);
ab6780cd
SM
967 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
968 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
969 eassert (ABLOCKS_BASE (abase) == base);
03bb6a06 970 eassert (aligned == (long) ABLOCKS_BUSY (abase));
ab6780cd
SM
971 }
972
973 abase = ABLOCK_ABASE (free_ablock);
03bb6a06 974 ABLOCKS_BUSY (abase) = (struct ablocks *) (2 + (long) ABLOCKS_BUSY (abase));
ab6780cd
SM
975 val = free_ablock;
976 free_ablock = free_ablock->x.next_free;
977
ab6780cd
SM
978#if GC_MARK_STACK && !defined GC_MALLOC_CHECK
979 if (val && type != MEM_TYPE_NON_LISP)
980 mem_insert (val, (char *) val + nbytes, type);
981#endif
982
983 UNBLOCK_INPUT;
984 if (!val && nbytes)
985 memory_full ();
986
987 eassert (0 == ((EMACS_UINT)val) % BLOCK_ALIGN);
988 return val;
989}
990
991static void
992lisp_align_free (block)
993 POINTER_TYPE *block;
994{
995 struct ablock *ablock = block;
996 struct ablocks *abase = ABLOCK_ABASE (ablock);
997
998 BLOCK_INPUT;
999#if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1000 mem_delete (mem_find (block));
1001#endif
1002 /* Put on free list. */
1003 ablock->x.next_free = free_ablock;
1004 free_ablock = ablock;
1005 /* Update busy count. */
03bb6a06 1006 ABLOCKS_BUSY (abase) = (struct ablocks *) (-2 + (long) ABLOCKS_BUSY (abase));
d2db1c32 1007
03bb6a06 1008 if (2 > (long) ABLOCKS_BUSY (abase))
ab6780cd 1009 { /* All the blocks are free. */
03bb6a06 1010 int i = 0, aligned = (long) ABLOCKS_BUSY (abase);
ab6780cd
SM
1011 struct ablock **tem = &free_ablock;
1012 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
1013
1014 while (*tem)
1015 {
1016 if (*tem >= (struct ablock *) abase && *tem < atop)
1017 {
1018 i++;
1019 *tem = (*tem)->x.next_free;
1020 }
1021 else
1022 tem = &(*tem)->x.next_free;
1023 }
1024 eassert ((aligned & 1) == aligned);
1025 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
1026 free (ABLOCKS_BASE (abase));
1027 }
1028 UNBLOCK_INPUT;
1029}
3ef06d12
SM
1030
1031/* Return a new buffer structure allocated from the heap with
1032 a call to lisp_malloc. */
1033
1034struct buffer *
1035allocate_buffer ()
1036{
1037 struct buffer *b
1038 = (struct buffer *) lisp_malloc (sizeof (struct buffer),
1039 MEM_TYPE_BUFFER);
1040 return b;
1041}
1042
9ac0d9e0
JB
1043\f
1044/* Arranging to disable input signals while we're in malloc.
1045
1046 This only works with GNU malloc. To help out systems which can't
1047 use GNU malloc, all the calls to malloc, realloc, and free
1048 elsewhere in the code should be inside a BLOCK_INPUT/UNBLOCK_INPUT
1049 pairs; unfortunately, we have no idea what C library functions
1050 might call malloc, so we can't really protect them unless you're
2c5bd608
DL
1051 using GNU malloc. Fortunately, most of the major operating systems
1052 can use GNU malloc. */
9ac0d9e0
JB
1053
1054#ifndef SYSTEM_MALLOC
b3303f74
DL
1055#ifndef DOUG_LEA_MALLOC
1056extern void * (*__malloc_hook) P_ ((size_t));
1057extern void * (*__realloc_hook) P_ ((void *, size_t));
1058extern void (*__free_hook) P_ ((void *));
1059/* Else declared in malloc.h, perhaps with an extra arg. */
1060#endif /* DOUG_LEA_MALLOC */
b0846f52 1061static void * (*old_malloc_hook) ();
b0846f52 1062static void * (*old_realloc_hook) ();
b0846f52 1063static void (*old_free_hook) ();
9ac0d9e0 1064
276cbe5a
RS
1065/* This function is used as the hook for free to call. */
1066
9ac0d9e0
JB
1067static void
1068emacs_blocked_free (ptr)
1069 void *ptr;
1070{
1071 BLOCK_INPUT;
877935b1
GM
1072
1073#ifdef GC_MALLOC_CHECK
a83fee2c
GM
1074 if (ptr)
1075 {
1076 struct mem_node *m;
177c0ea7 1077
a83fee2c
GM
1078 m = mem_find (ptr);
1079 if (m == MEM_NIL || m->start != ptr)
1080 {
1081 fprintf (stderr,
1082 "Freeing `%p' which wasn't allocated with malloc\n", ptr);
1083 abort ();
1084 }
1085 else
1086 {
1087 /* fprintf (stderr, "free %p...%p (%p)\n", m->start, m->end, ptr); */
1088 mem_delete (m);
1089 }
1090 }
877935b1 1091#endif /* GC_MALLOC_CHECK */
177c0ea7 1092
9ac0d9e0
JB
1093 __free_hook = old_free_hook;
1094 free (ptr);
177c0ea7 1095
276cbe5a
RS
1096 /* If we released our reserve (due to running out of memory),
1097 and we have a fair amount free once again,
1098 try to set aside another reserve in case we run out once more. */
1099 if (spare_memory == 0
1100 /* Verify there is enough space that even with the malloc
1101 hysteresis this call won't run out again.
1102 The code here is correct as long as SPARE_MEMORY
1103 is substantially larger than the block size malloc uses. */
1104 && (bytes_used_when_full
d1658221 1105 > BYTES_USED + max (malloc_hysteresis, 4) * SPARE_MEMORY))
675d5130 1106 spare_memory = (char *) malloc ((size_t) SPARE_MEMORY);
276cbe5a 1107
b0846f52 1108 __free_hook = emacs_blocked_free;
9ac0d9e0
JB
1109 UNBLOCK_INPUT;
1110}
1111
34400008 1112
276cbe5a
RS
1113/* If we released our reserve (due to running out of memory),
1114 and we have a fair amount free once again,
1115 try to set aside another reserve in case we run out once more.
1116
1117 This is called when a relocatable block is freed in ralloc.c. */
1118
1119void
1120refill_memory_reserve ()
1121{
1122 if (spare_memory == 0)
675d5130 1123 spare_memory = (char *) malloc ((size_t) SPARE_MEMORY);
276cbe5a
RS
1124}
1125
34400008 1126
276cbe5a
RS
1127/* This function is the malloc hook that Emacs uses. */
1128
9ac0d9e0
JB
1129static void *
1130emacs_blocked_malloc (size)
675d5130 1131 size_t size;
9ac0d9e0
JB
1132{
1133 void *value;
1134
1135 BLOCK_INPUT;
1136 __malloc_hook = old_malloc_hook;
1177ecf6 1137#ifdef DOUG_LEA_MALLOC
d1658221 1138 mallopt (M_TOP_PAD, malloc_hysteresis * 4096);
1177ecf6 1139#else
d1658221 1140 __malloc_extra_blocks = malloc_hysteresis;
1177ecf6 1141#endif
877935b1 1142
2756d8ee 1143 value = (void *) malloc (size);
877935b1
GM
1144
1145#ifdef GC_MALLOC_CHECK
1146 {
1147 struct mem_node *m = mem_find (value);
1148 if (m != MEM_NIL)
1149 {
1150 fprintf (stderr, "Malloc returned %p which is already in use\n",
1151 value);
1152 fprintf (stderr, "Region in use is %p...%p, %u bytes, type %d\n",
1153 m->start, m->end, (char *) m->end - (char *) m->start,
1154 m->type);
1155 abort ();
1156 }
1157
1158 if (!dont_register_blocks)
1159 {
1160 mem_insert (value, (char *) value + max (1, size), allocated_mem_type);
1161 allocated_mem_type = MEM_TYPE_NON_LISP;
1162 }
1163 }
1164#endif /* GC_MALLOC_CHECK */
177c0ea7 1165
b0846f52 1166 __malloc_hook = emacs_blocked_malloc;
9ac0d9e0
JB
1167 UNBLOCK_INPUT;
1168
877935b1 1169 /* fprintf (stderr, "%p malloc\n", value); */
9ac0d9e0
JB
1170 return value;
1171}
1172
34400008
GM
1173
1174/* This function is the realloc hook that Emacs uses. */
1175
9ac0d9e0
JB
1176static void *
1177emacs_blocked_realloc (ptr, size)
1178 void *ptr;
675d5130 1179 size_t size;
9ac0d9e0
JB
1180{
1181 void *value;
1182
1183 BLOCK_INPUT;
1184 __realloc_hook = old_realloc_hook;
877935b1
GM
1185
1186#ifdef GC_MALLOC_CHECK
1187 if (ptr)
1188 {
1189 struct mem_node *m = mem_find (ptr);
1190 if (m == MEM_NIL || m->start != ptr)
1191 {
1192 fprintf (stderr,
1193 "Realloc of %p which wasn't allocated with malloc\n",
1194 ptr);
1195 abort ();
1196 }
1197
1198 mem_delete (m);
1199 }
177c0ea7 1200
877935b1 1201 /* fprintf (stderr, "%p -> realloc\n", ptr); */
177c0ea7 1202
877935b1
GM
1203 /* Prevent malloc from registering blocks. */
1204 dont_register_blocks = 1;
1205#endif /* GC_MALLOC_CHECK */
1206
2756d8ee 1207 value = (void *) realloc (ptr, size);
877935b1
GM
1208
1209#ifdef GC_MALLOC_CHECK
1210 dont_register_blocks = 0;
1211
1212 {
1213 struct mem_node *m = mem_find (value);
1214 if (m != MEM_NIL)
1215 {
1216 fprintf (stderr, "Realloc returns memory that is already in use\n");
1217 abort ();
1218 }
1219
1220 /* Can't handle zero size regions in the red-black tree. */
1221 mem_insert (value, (char *) value + max (size, 1), MEM_TYPE_NON_LISP);
1222 }
177c0ea7 1223
877935b1
GM
1224 /* fprintf (stderr, "%p <- realloc\n", value); */
1225#endif /* GC_MALLOC_CHECK */
177c0ea7 1226
b0846f52 1227 __realloc_hook = emacs_blocked_realloc;
9ac0d9e0
JB
1228 UNBLOCK_INPUT;
1229
1230 return value;
1231}
1232
34400008
GM
1233
1234/* Called from main to set up malloc to use our hooks. */
1235
9ac0d9e0
JB
1236void
1237uninterrupt_malloc ()
1238{
c8099634
RS
1239 if (__free_hook != emacs_blocked_free)
1240 old_free_hook = __free_hook;
b0846f52 1241 __free_hook = emacs_blocked_free;
9ac0d9e0 1242
c8099634
RS
1243 if (__malloc_hook != emacs_blocked_malloc)
1244 old_malloc_hook = __malloc_hook;
b0846f52 1245 __malloc_hook = emacs_blocked_malloc;
9ac0d9e0 1246
c8099634
RS
1247 if (__realloc_hook != emacs_blocked_realloc)
1248 old_realloc_hook = __realloc_hook;
b0846f52 1249 __realloc_hook = emacs_blocked_realloc;
9ac0d9e0 1250}
2e471eb5
GM
1251
1252#endif /* not SYSTEM_MALLOC */
1253
1254
7146af97 1255\f
2e471eb5
GM
1256/***********************************************************************
1257 Interval Allocation
1258 ***********************************************************************/
1a4f1e2c 1259
34400008
GM
1260/* Number of intervals allocated in an interval_block structure.
1261 The 1020 is 1024 minus malloc overhead. */
1262
d5e35230
JA
1263#define INTERVAL_BLOCK_SIZE \
1264 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1265
34400008
GM
1266/* Intervals are allocated in chunks in form of an interval_block
1267 structure. */
1268
d5e35230 1269struct interval_block
2e471eb5 1270{
d05b383a 1271 /* Place `intervals' first, to preserve alignment. */
2e471eb5 1272 struct interval intervals[INTERVAL_BLOCK_SIZE];
d05b383a 1273 struct interval_block *next;
2e471eb5 1274};
d5e35230 1275
34400008
GM
1276/* Current interval block. Its `next' pointer points to older
1277 blocks. */
1278
d5e35230 1279struct interval_block *interval_block;
34400008
GM
1280
1281/* Index in interval_block above of the next unused interval
1282 structure. */
1283
d5e35230 1284static int interval_block_index;
34400008
GM
1285
1286/* Number of free and live intervals. */
1287
2e471eb5 1288static int total_free_intervals, total_intervals;
d5e35230 1289
34400008
GM
1290/* List of free intervals. */
1291
d5e35230
JA
1292INTERVAL interval_free_list;
1293
c8099634 1294/* Total number of interval blocks now in use. */
2e471eb5 1295
c8099634
RS
1296int n_interval_blocks;
1297
34400008
GM
1298
1299/* Initialize interval allocation. */
1300
d5e35230
JA
1301static void
1302init_intervals ()
1303{
0930c1a1
SM
1304 interval_block = NULL;
1305 interval_block_index = INTERVAL_BLOCK_SIZE;
d5e35230 1306 interval_free_list = 0;
0930c1a1 1307 n_interval_blocks = 0;
d5e35230
JA
1308}
1309
34400008
GM
1310
1311/* Return a new interval. */
d5e35230
JA
1312
1313INTERVAL
1314make_interval ()
1315{
1316 INTERVAL val;
1317
1318 if (interval_free_list)
1319 {
1320 val = interval_free_list;
439d5cb4 1321 interval_free_list = INTERVAL_PARENT (interval_free_list);
d5e35230
JA
1322 }
1323 else
1324 {
1325 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1326 {
3c06d205
KH
1327 register struct interval_block *newi;
1328
34400008
GM
1329 newi = (struct interval_block *) lisp_malloc (sizeof *newi,
1330 MEM_TYPE_NON_LISP);
d5e35230 1331
d5e35230
JA
1332 newi->next = interval_block;
1333 interval_block = newi;
1334 interval_block_index = 0;
c8099634 1335 n_interval_blocks++;
d5e35230
JA
1336 }
1337 val = &interval_block->intervals[interval_block_index++];
1338 }
1339 consing_since_gc += sizeof (struct interval);
310ea200 1340 intervals_consed++;
d5e35230 1341 RESET_INTERVAL (val);
2336fe58 1342 val->gcmarkbit = 0;
d5e35230
JA
1343 return val;
1344}
1345
34400008
GM
1346
1347/* Mark Lisp objects in interval I. */
d5e35230
JA
1348
1349static void
d393c068 1350mark_interval (i, dummy)
d5e35230 1351 register INTERVAL i;
d393c068 1352 Lisp_Object dummy;
d5e35230 1353{
2336fe58
SM
1354 eassert (!i->gcmarkbit); /* Intervals are never shared. */
1355 i->gcmarkbit = 1;
49723c04 1356 mark_object (i->plist);
d5e35230
JA
1357}
1358
34400008
GM
1359
1360/* Mark the interval tree rooted in TREE. Don't call this directly;
1361 use the macro MARK_INTERVAL_TREE instead. */
1362
d5e35230
JA
1363static void
1364mark_interval_tree (tree)
1365 register INTERVAL tree;
1366{
e8720644
JB
1367 /* No need to test if this tree has been marked already; this
1368 function is always called through the MARK_INTERVAL_TREE macro,
1369 which takes care of that. */
1370
1e934989 1371 traverse_intervals_noorder (tree, mark_interval, Qnil);
d5e35230
JA
1372}
1373
34400008
GM
1374
1375/* Mark the interval tree rooted in I. */
1376
e8720644
JB
1377#define MARK_INTERVAL_TREE(i) \
1378 do { \
2336fe58 1379 if (!NULL_INTERVAL_P (i) && !i->gcmarkbit) \
e8720644
JB
1380 mark_interval_tree (i); \
1381 } while (0)
d5e35230 1382
34400008 1383
2e471eb5
GM
1384#define UNMARK_BALANCE_INTERVALS(i) \
1385 do { \
1386 if (! NULL_INTERVAL_P (i)) \
2336fe58 1387 (i) = balance_intervals (i); \
2e471eb5 1388 } while (0)
d5e35230 1389
cc2d8c6b
KR
1390\f
1391/* Number support. If NO_UNION_TYPE isn't in effect, we
1392 can't create number objects in macros. */
1393#ifndef make_number
1394Lisp_Object
1395make_number (n)
1396 int n;
1397{
1398 Lisp_Object obj;
1399 obj.s.val = n;
1400 obj.s.type = Lisp_Int;
1401 return obj;
1402}
1403#endif
d5e35230 1404\f
2e471eb5
GM
1405/***********************************************************************
1406 String Allocation
1407 ***********************************************************************/
1a4f1e2c 1408
2e471eb5
GM
1409/* Lisp_Strings are allocated in string_block structures. When a new
1410 string_block is allocated, all the Lisp_Strings it contains are
e0fead5d 1411 added to a free-list string_free_list. When a new Lisp_String is
2e471eb5
GM
1412 needed, it is taken from that list. During the sweep phase of GC,
1413 string_blocks that are entirely free are freed, except two which
1414 we keep.
7146af97 1415
2e471eb5
GM
1416 String data is allocated from sblock structures. Strings larger
1417 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1418 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
7146af97 1419
2e471eb5
GM
1420 Sblocks consist internally of sdata structures, one for each
1421 Lisp_String. The sdata structure points to the Lisp_String it
1422 belongs to. The Lisp_String points back to the `u.data' member of
1423 its sdata structure.
7146af97 1424
2e471eb5
GM
1425 When a Lisp_String is freed during GC, it is put back on
1426 string_free_list, and its `data' member and its sdata's `string'
1427 pointer is set to null. The size of the string is recorded in the
1428 `u.nbytes' member of the sdata. So, sdata structures that are no
1429 longer used, can be easily recognized, and it's easy to compact the
1430 sblocks of small strings which we do in compact_small_strings. */
7146af97 1431
2e471eb5
GM
1432/* Size in bytes of an sblock structure used for small strings. This
1433 is 8192 minus malloc overhead. */
7146af97 1434
2e471eb5 1435#define SBLOCK_SIZE 8188
c8099634 1436
2e471eb5
GM
1437/* Strings larger than this are considered large strings. String data
1438 for large strings is allocated from individual sblocks. */
7146af97 1439
2e471eb5
GM
1440#define LARGE_STRING_BYTES 1024
1441
1442/* Structure describing string memory sub-allocated from an sblock.
1443 This is where the contents of Lisp strings are stored. */
1444
1445struct sdata
7146af97 1446{
2e471eb5
GM
1447 /* Back-pointer to the string this sdata belongs to. If null, this
1448 structure is free, and the NBYTES member of the union below
34400008 1449 contains the string's byte size (the same value that STRING_BYTES
2e471eb5
GM
1450 would return if STRING were non-null). If non-null, STRING_BYTES
1451 (STRING) is the size of the data, and DATA contains the string's
1452 contents. */
1453 struct Lisp_String *string;
7146af97 1454
31d929e5 1455#ifdef GC_CHECK_STRING_BYTES
177c0ea7 1456
31d929e5
GM
1457 EMACS_INT nbytes;
1458 unsigned char data[1];
177c0ea7 1459
31d929e5
GM
1460#define SDATA_NBYTES(S) (S)->nbytes
1461#define SDATA_DATA(S) (S)->data
177c0ea7 1462
31d929e5
GM
1463#else /* not GC_CHECK_STRING_BYTES */
1464
2e471eb5
GM
1465 union
1466 {
1467 /* When STRING in non-null. */
1468 unsigned char data[1];
1469
1470 /* When STRING is null. */
1471 EMACS_INT nbytes;
1472 } u;
177c0ea7 1473
31d929e5
GM
1474
1475#define SDATA_NBYTES(S) (S)->u.nbytes
1476#define SDATA_DATA(S) (S)->u.data
1477
1478#endif /* not GC_CHECK_STRING_BYTES */
2e471eb5
GM
1479};
1480
31d929e5 1481
2e471eb5
GM
1482/* Structure describing a block of memory which is sub-allocated to
1483 obtain string data memory for strings. Blocks for small strings
1484 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1485 as large as needed. */
1486
1487struct sblock
7146af97 1488{
2e471eb5
GM
1489 /* Next in list. */
1490 struct sblock *next;
7146af97 1491
2e471eb5
GM
1492 /* Pointer to the next free sdata block. This points past the end
1493 of the sblock if there isn't any space left in this block. */
1494 struct sdata *next_free;
1495
1496 /* Start of data. */
1497 struct sdata first_data;
1498};
1499
1500/* Number of Lisp strings in a string_block structure. The 1020 is
1501 1024 minus malloc overhead. */
1502
19bcad1f 1503#define STRING_BLOCK_SIZE \
2e471eb5
GM
1504 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1505
1506/* Structure describing a block from which Lisp_String structures
1507 are allocated. */
1508
1509struct string_block
7146af97 1510{
d05b383a 1511 /* Place `strings' first, to preserve alignment. */
19bcad1f 1512 struct Lisp_String strings[STRING_BLOCK_SIZE];
d05b383a 1513 struct string_block *next;
2e471eb5 1514};
7146af97 1515
2e471eb5
GM
1516/* Head and tail of the list of sblock structures holding Lisp string
1517 data. We always allocate from current_sblock. The NEXT pointers
1518 in the sblock structures go from oldest_sblock to current_sblock. */
3c06d205 1519
2e471eb5 1520static struct sblock *oldest_sblock, *current_sblock;
7146af97 1521
2e471eb5 1522/* List of sblocks for large strings. */
7146af97 1523
2e471eb5 1524static struct sblock *large_sblocks;
7146af97 1525
2e471eb5 1526/* List of string_block structures, and how many there are. */
7146af97 1527
2e471eb5
GM
1528static struct string_block *string_blocks;
1529static int n_string_blocks;
7146af97 1530
2e471eb5 1531/* Free-list of Lisp_Strings. */
7146af97 1532
2e471eb5 1533static struct Lisp_String *string_free_list;
7146af97 1534
2e471eb5 1535/* Number of live and free Lisp_Strings. */
c8099634 1536
2e471eb5 1537static int total_strings, total_free_strings;
7146af97 1538
2e471eb5
GM
1539/* Number of bytes used by live strings. */
1540
1541static int total_string_size;
1542
1543/* Given a pointer to a Lisp_String S which is on the free-list
1544 string_free_list, return a pointer to its successor in the
1545 free-list. */
1546
1547#define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1548
1549/* Return a pointer to the sdata structure belonging to Lisp string S.
1550 S must be live, i.e. S->data must not be null. S->data is actually
1551 a pointer to the `u.data' member of its sdata structure; the
1552 structure starts at a constant offset in front of that. */
177c0ea7 1553
31d929e5
GM
1554#ifdef GC_CHECK_STRING_BYTES
1555
1556#define SDATA_OF_STRING(S) \
1557 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *) \
1558 - sizeof (EMACS_INT)))
1559
1560#else /* not GC_CHECK_STRING_BYTES */
1561
2e471eb5
GM
1562#define SDATA_OF_STRING(S) \
1563 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *)))
1564
31d929e5
GM
1565#endif /* not GC_CHECK_STRING_BYTES */
1566
212f33f1
KS
1567
1568#ifdef GC_CHECK_STRING_OVERRUN
bdbed949
KS
1569
1570/* We check for overrun in string data blocks by appending a small
1571 "cookie" after each allocated string data block, and check for the
1572 presense of this cookie during GC. */
1573
1574#define GC_STRING_OVERRUN_COOKIE_SIZE 4
1575static char string_overrun_cookie[GC_STRING_OVERRUN_COOKIE_SIZE] =
1576 { 0xde, 0xad, 0xbe, 0xef };
1577
212f33f1 1578#else
bdbed949 1579#define GC_STRING_OVERRUN_COOKIE_SIZE 0
212f33f1
KS
1580#endif
1581
2e471eb5
GM
1582/* Value is the size of an sdata structure large enough to hold NBYTES
1583 bytes of string data. The value returned includes a terminating
1584 NUL byte, the size of the sdata structure, and padding. */
1585
31d929e5
GM
1586#ifdef GC_CHECK_STRING_BYTES
1587
2e471eb5
GM
1588#define SDATA_SIZE(NBYTES) \
1589 ((sizeof (struct Lisp_String *) \
1590 + (NBYTES) + 1 \
31d929e5 1591 + sizeof (EMACS_INT) \
2e471eb5
GM
1592 + sizeof (EMACS_INT) - 1) \
1593 & ~(sizeof (EMACS_INT) - 1))
1594
31d929e5
GM
1595#else /* not GC_CHECK_STRING_BYTES */
1596
1597#define SDATA_SIZE(NBYTES) \
1598 ((sizeof (struct Lisp_String *) \
1599 + (NBYTES) + 1 \
1600 + sizeof (EMACS_INT) - 1) \
1601 & ~(sizeof (EMACS_INT) - 1))
1602
1603#endif /* not GC_CHECK_STRING_BYTES */
2e471eb5 1604
bdbed949
KS
1605/* Extra bytes to allocate for each string. */
1606
1607#define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1608
2e471eb5 1609/* Initialize string allocation. Called from init_alloc_once. */
d457598b
AS
1610
1611void
2e471eb5 1612init_strings ()
7146af97 1613{
2e471eb5
GM
1614 total_strings = total_free_strings = total_string_size = 0;
1615 oldest_sblock = current_sblock = large_sblocks = NULL;
1616 string_blocks = NULL;
1617 n_string_blocks = 0;
1618 string_free_list = NULL;
7146af97
JB
1619}
1620
2e471eb5 1621
361b097f
GM
1622#ifdef GC_CHECK_STRING_BYTES
1623
361b097f
GM
1624static int check_string_bytes_count;
1625
676a7251
GM
1626void check_string_bytes P_ ((int));
1627void check_sblock P_ ((struct sblock *));
1628
1629#define CHECK_STRING_BYTES(S) STRING_BYTES (S)
1630
1631
1632/* Like GC_STRING_BYTES, but with debugging check. */
1633
1634int
1635string_bytes (s)
1636 struct Lisp_String *s;
1637{
7cdee936 1638 int nbytes = (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
676a7251
GM
1639 if (!PURE_POINTER_P (s)
1640 && s->data
1641 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1642 abort ();
1643 return nbytes;
1644}
177c0ea7 1645
2c5bd608 1646/* Check validity of Lisp strings' string_bytes member in B. */
676a7251 1647
361b097f 1648void
676a7251
GM
1649check_sblock (b)
1650 struct sblock *b;
361b097f 1651{
676a7251 1652 struct sdata *from, *end, *from_end;
177c0ea7 1653
676a7251 1654 end = b->next_free;
177c0ea7 1655
676a7251 1656 for (from = &b->first_data; from < end; from = from_end)
361b097f 1657 {
676a7251
GM
1658 /* Compute the next FROM here because copying below may
1659 overwrite data we need to compute it. */
1660 int nbytes;
177c0ea7 1661
676a7251
GM
1662 /* Check that the string size recorded in the string is the
1663 same as the one recorded in the sdata structure. */
1664 if (from->string)
1665 CHECK_STRING_BYTES (from->string);
177c0ea7 1666
676a7251
GM
1667 if (from->string)
1668 nbytes = GC_STRING_BYTES (from->string);
1669 else
1670 nbytes = SDATA_NBYTES (from);
177c0ea7 1671
676a7251 1672 nbytes = SDATA_SIZE (nbytes);
212f33f1 1673 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
676a7251
GM
1674 }
1675}
361b097f 1676
676a7251
GM
1677
1678/* Check validity of Lisp strings' string_bytes member. ALL_P
1679 non-zero means check all strings, otherwise check only most
1680 recently allocated strings. Used for hunting a bug. */
1681
1682void
1683check_string_bytes (all_p)
1684 int all_p;
1685{
1686 if (all_p)
1687 {
1688 struct sblock *b;
1689
1690 for (b = large_sblocks; b; b = b->next)
1691 {
1692 struct Lisp_String *s = b->first_data.string;
1693 if (s)
1694 CHECK_STRING_BYTES (s);
361b097f 1695 }
177c0ea7 1696
676a7251
GM
1697 for (b = oldest_sblock; b; b = b->next)
1698 check_sblock (b);
361b097f 1699 }
676a7251
GM
1700 else
1701 check_sblock (current_sblock);
361b097f
GM
1702}
1703
1704#endif /* GC_CHECK_STRING_BYTES */
1705
212f33f1
KS
1706#ifdef GC_CHECK_STRING_FREE_LIST
1707
bdbed949
KS
1708/* Walk through the string free list looking for bogus next pointers.
1709 This may catch buffer overrun from a previous string. */
1710
212f33f1
KS
1711static void
1712check_string_free_list ()
1713{
1714 struct Lisp_String *s;
1715
1716 /* Pop a Lisp_String off the free-list. */
1717 s = string_free_list;
1718 while (s != NULL)
1719 {
1720 if ((unsigned)s < 1024)
1721 abort();
1722 s = NEXT_FREE_LISP_STRING (s);
1723 }
1724}
1725#else
1726#define check_string_free_list()
1727#endif
361b097f 1728
2e471eb5
GM
1729/* Return a new Lisp_String. */
1730
1731static struct Lisp_String *
1732allocate_string ()
7146af97 1733{
2e471eb5 1734 struct Lisp_String *s;
7146af97 1735
2e471eb5
GM
1736 /* If the free-list is empty, allocate a new string_block, and
1737 add all the Lisp_Strings in it to the free-list. */
1738 if (string_free_list == NULL)
7146af97 1739 {
2e471eb5
GM
1740 struct string_block *b;
1741 int i;
1742
34400008 1743 b = (struct string_block *) lisp_malloc (sizeof *b, MEM_TYPE_STRING);
2e471eb5
GM
1744 bzero (b, sizeof *b);
1745 b->next = string_blocks;
1746 string_blocks = b;
1747 ++n_string_blocks;
1748
19bcad1f 1749 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
7146af97 1750 {
2e471eb5
GM
1751 s = b->strings + i;
1752 NEXT_FREE_LISP_STRING (s) = string_free_list;
1753 string_free_list = s;
7146af97 1754 }
2e471eb5 1755
19bcad1f 1756 total_free_strings += STRING_BLOCK_SIZE;
7146af97 1757 }
c0f51373 1758
bdbed949 1759 check_string_free_list ();
212f33f1 1760
2e471eb5
GM
1761 /* Pop a Lisp_String off the free-list. */
1762 s = string_free_list;
1763 string_free_list = NEXT_FREE_LISP_STRING (s);
c0f51373 1764
2e471eb5
GM
1765 /* Probably not strictly necessary, but play it safe. */
1766 bzero (s, sizeof *s);
c0f51373 1767
2e471eb5
GM
1768 --total_free_strings;
1769 ++total_strings;
1770 ++strings_consed;
1771 consing_since_gc += sizeof *s;
c0f51373 1772
361b097f 1773#ifdef GC_CHECK_STRING_BYTES
83a96b4d 1774 if (!noninteractive
e0f712ba 1775#ifdef MAC_OS8
83a96b4d
AC
1776 && current_sblock
1777#endif
1778 )
361b097f 1779 {
676a7251
GM
1780 if (++check_string_bytes_count == 200)
1781 {
1782 check_string_bytes_count = 0;
1783 check_string_bytes (1);
1784 }
1785 else
1786 check_string_bytes (0);
361b097f 1787 }
676a7251 1788#endif /* GC_CHECK_STRING_BYTES */
361b097f 1789
2e471eb5 1790 return s;
c0f51373 1791}
7146af97 1792
7146af97 1793
2e471eb5
GM
1794/* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1795 plus a NUL byte at the end. Allocate an sdata structure for S, and
1796 set S->data to its `u.data' member. Store a NUL byte at the end of
1797 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1798 S->data if it was initially non-null. */
7146af97 1799
2e471eb5
GM
1800void
1801allocate_string_data (s, nchars, nbytes)
1802 struct Lisp_String *s;
1803 int nchars, nbytes;
7146af97 1804{
5c5fecb3 1805 struct sdata *data, *old_data;
2e471eb5 1806 struct sblock *b;
5c5fecb3 1807 int needed, old_nbytes;
7146af97 1808
2e471eb5
GM
1809 /* Determine the number of bytes needed to store NBYTES bytes
1810 of string data. */
1811 needed = SDATA_SIZE (nbytes);
7146af97 1812
2e471eb5
GM
1813 if (nbytes > LARGE_STRING_BYTES)
1814 {
675d5130 1815 size_t size = sizeof *b - sizeof (struct sdata) + needed;
2e471eb5
GM
1816
1817#ifdef DOUG_LEA_MALLOC
f8608968
GM
1818 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1819 because mapped region contents are not preserved in
d36b182f
DL
1820 a dumped Emacs.
1821
1822 In case you think of allowing it in a dumped Emacs at the
1823 cost of not being able to re-dump, there's another reason:
1824 mmap'ed data typically have an address towards the top of the
1825 address space, which won't fit into an EMACS_INT (at least on
1826 32-bit systems with the current tagging scheme). --fx */
2e471eb5
GM
1827 mallopt (M_MMAP_MAX, 0);
1828#endif
1829
212f33f1 1830 b = (struct sblock *) lisp_malloc (size + GC_STRING_EXTRA, MEM_TYPE_NON_LISP);
177c0ea7 1831
2e471eb5
GM
1832#ifdef DOUG_LEA_MALLOC
1833 /* Back to a reasonable maximum of mmap'ed areas. */
1834 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1835#endif
177c0ea7 1836
2e471eb5
GM
1837 b->next_free = &b->first_data;
1838 b->first_data.string = NULL;
1839 b->next = large_sblocks;
1840 large_sblocks = b;
1841 }
1842 else if (current_sblock == NULL
1843 || (((char *) current_sblock + SBLOCK_SIZE
1844 - (char *) current_sblock->next_free)
212f33f1 1845 < (needed + GC_STRING_EXTRA)))
2e471eb5
GM
1846 {
1847 /* Not enough room in the current sblock. */
34400008 1848 b = (struct sblock *) lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
2e471eb5
GM
1849 b->next_free = &b->first_data;
1850 b->first_data.string = NULL;
1851 b->next = NULL;
1852
1853 if (current_sblock)
1854 current_sblock->next = b;
1855 else
1856 oldest_sblock = b;
1857 current_sblock = b;
1858 }
1859 else
1860 b = current_sblock;
5c5fecb3
GM
1861
1862 old_data = s->data ? SDATA_OF_STRING (s) : NULL;
1863 old_nbytes = GC_STRING_BYTES (s);
177c0ea7 1864
2e471eb5
GM
1865 data = b->next_free;
1866 data->string = s;
31d929e5
GM
1867 s->data = SDATA_DATA (data);
1868#ifdef GC_CHECK_STRING_BYTES
1869 SDATA_NBYTES (data) = nbytes;
1870#endif
2e471eb5
GM
1871 s->size = nchars;
1872 s->size_byte = nbytes;
1873 s->data[nbytes] = '\0';
212f33f1 1874#ifdef GC_CHECK_STRING_OVERRUN
bdbed949
KS
1875 bcopy (string_overrun_cookie, (char *) data + needed,
1876 GC_STRING_OVERRUN_COOKIE_SIZE);
212f33f1
KS
1877#endif
1878 b->next_free = (struct sdata *) ((char *) data + needed + GC_STRING_EXTRA);
177c0ea7 1879
5c5fecb3
GM
1880 /* If S had already data assigned, mark that as free by setting its
1881 string back-pointer to null, and recording the size of the data
00c9c33c 1882 in it. */
5c5fecb3
GM
1883 if (old_data)
1884 {
31d929e5 1885 SDATA_NBYTES (old_data) = old_nbytes;
5c5fecb3
GM
1886 old_data->string = NULL;
1887 }
1888
2e471eb5
GM
1889 consing_since_gc += needed;
1890}
1891
1892
1893/* Sweep and compact strings. */
1894
1895static void
1896sweep_strings ()
1897{
1898 struct string_block *b, *next;
1899 struct string_block *live_blocks = NULL;
177c0ea7 1900
2e471eb5
GM
1901 string_free_list = NULL;
1902 total_strings = total_free_strings = 0;
1903 total_string_size = 0;
1904
1905 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
1906 for (b = string_blocks; b; b = next)
1907 {
1908 int i, nfree = 0;
1909 struct Lisp_String *free_list_before = string_free_list;
1910
1911 next = b->next;
1912
19bcad1f 1913 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
2e471eb5
GM
1914 {
1915 struct Lisp_String *s = b->strings + i;
1916
1917 if (s->data)
1918 {
1919 /* String was not on free-list before. */
1920 if (STRING_MARKED_P (s))
1921 {
1922 /* String is live; unmark it and its intervals. */
1923 UNMARK_STRING (s);
177c0ea7 1924
2e471eb5
GM
1925 if (!NULL_INTERVAL_P (s->intervals))
1926 UNMARK_BALANCE_INTERVALS (s->intervals);
1927
1928 ++total_strings;
1929 total_string_size += STRING_BYTES (s);
1930 }
1931 else
1932 {
1933 /* String is dead. Put it on the free-list. */
1934 struct sdata *data = SDATA_OF_STRING (s);
1935
1936 /* Save the size of S in its sdata so that we know
1937 how large that is. Reset the sdata's string
1938 back-pointer so that we know it's free. */
31d929e5
GM
1939#ifdef GC_CHECK_STRING_BYTES
1940 if (GC_STRING_BYTES (s) != SDATA_NBYTES (data))
1941 abort ();
1942#else
2e471eb5 1943 data->u.nbytes = GC_STRING_BYTES (s);
31d929e5 1944#endif
2e471eb5
GM
1945 data->string = NULL;
1946
1947 /* Reset the strings's `data' member so that we
1948 know it's free. */
1949 s->data = NULL;
1950
1951 /* Put the string on the free-list. */
1952 NEXT_FREE_LISP_STRING (s) = string_free_list;
1953 string_free_list = s;
1954 ++nfree;
1955 }
1956 }
1957 else
1958 {
1959 /* S was on the free-list before. Put it there again. */
1960 NEXT_FREE_LISP_STRING (s) = string_free_list;
1961 string_free_list = s;
1962 ++nfree;
1963 }
1964 }
1965
34400008 1966 /* Free blocks that contain free Lisp_Strings only, except
2e471eb5 1967 the first two of them. */
19bcad1f
SM
1968 if (nfree == STRING_BLOCK_SIZE
1969 && total_free_strings > STRING_BLOCK_SIZE)
2e471eb5
GM
1970 {
1971 lisp_free (b);
1972 --n_string_blocks;
1973 string_free_list = free_list_before;
1974 }
1975 else
1976 {
1977 total_free_strings += nfree;
1978 b->next = live_blocks;
1979 live_blocks = b;
1980 }
1981 }
1982
bdbed949 1983 check_string_free_list ();
212f33f1 1984
2e471eb5
GM
1985 string_blocks = live_blocks;
1986 free_large_strings ();
1987 compact_small_strings ();
212f33f1 1988
bdbed949 1989 check_string_free_list ();
2e471eb5
GM
1990}
1991
1992
1993/* Free dead large strings. */
1994
1995static void
1996free_large_strings ()
1997{
1998 struct sblock *b, *next;
1999 struct sblock *live_blocks = NULL;
177c0ea7 2000
2e471eb5
GM
2001 for (b = large_sblocks; b; b = next)
2002 {
2003 next = b->next;
2004
2005 if (b->first_data.string == NULL)
2006 lisp_free (b);
2007 else
2008 {
2009 b->next = live_blocks;
2010 live_blocks = b;
2011 }
2012 }
2013
2014 large_sblocks = live_blocks;
2015}
2016
2017
2018/* Compact data of small strings. Free sblocks that don't contain
2019 data of live strings after compaction. */
2020
2021static void
2022compact_small_strings ()
2023{
2024 struct sblock *b, *tb, *next;
2025 struct sdata *from, *to, *end, *tb_end;
2026 struct sdata *to_end, *from_end;
2027
2028 /* TB is the sblock we copy to, TO is the sdata within TB we copy
2029 to, and TB_END is the end of TB. */
2030 tb = oldest_sblock;
2031 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2032 to = &tb->first_data;
2033
2034 /* Step through the blocks from the oldest to the youngest. We
2035 expect that old blocks will stabilize over time, so that less
2036 copying will happen this way. */
2037 for (b = oldest_sblock; b; b = b->next)
2038 {
2039 end = b->next_free;
2040 xassert ((char *) end <= (char *) b + SBLOCK_SIZE);
177c0ea7 2041
2e471eb5
GM
2042 for (from = &b->first_data; from < end; from = from_end)
2043 {
2044 /* Compute the next FROM here because copying below may
2045 overwrite data we need to compute it. */
2046 int nbytes;
2047
31d929e5
GM
2048#ifdef GC_CHECK_STRING_BYTES
2049 /* Check that the string size recorded in the string is the
2050 same as the one recorded in the sdata structure. */
2051 if (from->string
2052 && GC_STRING_BYTES (from->string) != SDATA_NBYTES (from))
2053 abort ();
2054#endif /* GC_CHECK_STRING_BYTES */
177c0ea7 2055
2e471eb5
GM
2056 if (from->string)
2057 nbytes = GC_STRING_BYTES (from->string);
2058 else
31d929e5 2059 nbytes = SDATA_NBYTES (from);
177c0ea7 2060
212f33f1
KS
2061 if (nbytes > LARGE_STRING_BYTES)
2062 abort ();
212f33f1 2063
2e471eb5 2064 nbytes = SDATA_SIZE (nbytes);
212f33f1
KS
2065 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
2066
2067#ifdef GC_CHECK_STRING_OVERRUN
bdbed949
KS
2068 if (bcmp (string_overrun_cookie,
2069 ((char *) from_end) - GC_STRING_OVERRUN_COOKIE_SIZE,
2070 GC_STRING_OVERRUN_COOKIE_SIZE))
212f33f1
KS
2071 abort ();
2072#endif
177c0ea7 2073
2e471eb5
GM
2074 /* FROM->string non-null means it's alive. Copy its data. */
2075 if (from->string)
2076 {
2077 /* If TB is full, proceed with the next sblock. */
212f33f1 2078 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2e471eb5
GM
2079 if (to_end > tb_end)
2080 {
2081 tb->next_free = to;
2082 tb = tb->next;
2083 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2084 to = &tb->first_data;
212f33f1 2085 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2e471eb5 2086 }
177c0ea7 2087
2e471eb5
GM
2088 /* Copy, and update the string's `data' pointer. */
2089 if (from != to)
2090 {
a2407477 2091 xassert (tb != b || to <= from);
212f33f1 2092 safe_bcopy ((char *) from, (char *) to, nbytes + GC_STRING_EXTRA);
31d929e5 2093 to->string->data = SDATA_DATA (to);
2e471eb5
GM
2094 }
2095
2096 /* Advance past the sdata we copied to. */
2097 to = to_end;
2098 }
2099 }
2100 }
2101
2102 /* The rest of the sblocks following TB don't contain live data, so
2103 we can free them. */
2104 for (b = tb->next; b; b = next)
2105 {
2106 next = b->next;
2107 lisp_free (b);
2108 }
2109
2110 tb->next_free = to;
2111 tb->next = NULL;
2112 current_sblock = tb;
2113}
2114
2115
2116DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
69623621
RS
2117 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
2118LENGTH must be an integer.
2119INIT must be an integer that represents a character. */)
7ee72033 2120 (length, init)
2e471eb5
GM
2121 Lisp_Object length, init;
2122{
2123 register Lisp_Object val;
2124 register unsigned char *p, *end;
2125 int c, nbytes;
2126
b7826503
PJ
2127 CHECK_NATNUM (length);
2128 CHECK_NUMBER (init);
2e471eb5
GM
2129
2130 c = XINT (init);
2131 if (SINGLE_BYTE_CHAR_P (c))
2132 {
2133 nbytes = XINT (length);
2134 val = make_uninit_string (nbytes);
d5db4077
KR
2135 p = SDATA (val);
2136 end = p + SCHARS (val);
2e471eb5
GM
2137 while (p != end)
2138 *p++ = c;
2139 }
2140 else
2141 {
d942b71c 2142 unsigned char str[MAX_MULTIBYTE_LENGTH];
2e471eb5
GM
2143 int len = CHAR_STRING (c, str);
2144
2145 nbytes = len * XINT (length);
2146 val = make_uninit_multibyte_string (XINT (length), nbytes);
d5db4077 2147 p = SDATA (val);
2e471eb5
GM
2148 end = p + nbytes;
2149 while (p != end)
2150 {
2151 bcopy (str, p, len);
2152 p += len;
2153 }
2154 }
177c0ea7 2155
2e471eb5
GM
2156 *p = 0;
2157 return val;
2158}
2159
2160
2161DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
a6266d23 2162 doc: /* Return a new bool-vector of length LENGTH, using INIT for as each element.
7ee72033
MB
2163LENGTH must be a number. INIT matters only in whether it is t or nil. */)
2164 (length, init)
2e471eb5
GM
2165 Lisp_Object length, init;
2166{
2167 register Lisp_Object val;
2168 struct Lisp_Bool_Vector *p;
2169 int real_init, i;
2170 int length_in_chars, length_in_elts, bits_per_value;
2171
b7826503 2172 CHECK_NATNUM (length);
2e471eb5 2173
a097329f 2174 bits_per_value = sizeof (EMACS_INT) * BOOL_VECTOR_BITS_PER_CHAR;
2e471eb5
GM
2175
2176 length_in_elts = (XFASTINT (length) + bits_per_value - 1) / bits_per_value;
a097329f
AS
2177 length_in_chars = ((XFASTINT (length) + BOOL_VECTOR_BITS_PER_CHAR - 1)
2178 / BOOL_VECTOR_BITS_PER_CHAR);
2e471eb5
GM
2179
2180 /* We must allocate one more elements than LENGTH_IN_ELTS for the
2181 slot `size' of the struct Lisp_Bool_Vector. */
2182 val = Fmake_vector (make_number (length_in_elts + 1), Qnil);
2183 p = XBOOL_VECTOR (val);
177c0ea7 2184
2e471eb5
GM
2185 /* Get rid of any bits that would cause confusion. */
2186 p->vector_size = 0;
2187 XSETBOOL_VECTOR (val, p);
2188 p->size = XFASTINT (length);
177c0ea7 2189
2e471eb5
GM
2190 real_init = (NILP (init) ? 0 : -1);
2191 for (i = 0; i < length_in_chars ; i++)
2192 p->data[i] = real_init;
177c0ea7 2193
2e471eb5 2194 /* Clear the extraneous bits in the last byte. */
a097329f 2195 if (XINT (length) != length_in_chars * BOOL_VECTOR_BITS_PER_CHAR)
2e471eb5 2196 XBOOL_VECTOR (val)->data[length_in_chars - 1]
a097329f 2197 &= (1 << (XINT (length) % BOOL_VECTOR_BITS_PER_CHAR)) - 1;
2e471eb5
GM
2198
2199 return val;
2200}
2201
2202
2203/* Make a string from NBYTES bytes at CONTENTS, and compute the number
2204 of characters from the contents. This string may be unibyte or
2205 multibyte, depending on the contents. */
2206
2207Lisp_Object
2208make_string (contents, nbytes)
943b873e 2209 const char *contents;
2e471eb5
GM
2210 int nbytes;
2211{
2212 register Lisp_Object val;
9eac9d59
KH
2213 int nchars, multibyte_nbytes;
2214
2215 parse_str_as_multibyte (contents, nbytes, &nchars, &multibyte_nbytes);
9eac9d59
KH
2216 if (nbytes == nchars || nbytes != multibyte_nbytes)
2217 /* CONTENTS contains no multibyte sequences or contains an invalid
2218 multibyte sequence. We must make unibyte string. */
495a6df3
KH
2219 val = make_unibyte_string (contents, nbytes);
2220 else
2221 val = make_multibyte_string (contents, nchars, nbytes);
2e471eb5
GM
2222 return val;
2223}
2224
2225
2226/* Make an unibyte string from LENGTH bytes at CONTENTS. */
2227
2228Lisp_Object
2229make_unibyte_string (contents, length)
943b873e 2230 const char *contents;
2e471eb5
GM
2231 int length;
2232{
2233 register Lisp_Object val;
2234 val = make_uninit_string (length);
d5db4077
KR
2235 bcopy (contents, SDATA (val), length);
2236 STRING_SET_UNIBYTE (val);
2e471eb5
GM
2237 return val;
2238}
2239
2240
2241/* Make a multibyte string from NCHARS characters occupying NBYTES
2242 bytes at CONTENTS. */
2243
2244Lisp_Object
2245make_multibyte_string (contents, nchars, nbytes)
943b873e 2246 const char *contents;
2e471eb5
GM
2247 int nchars, nbytes;
2248{
2249 register Lisp_Object val;
2250 val = make_uninit_multibyte_string (nchars, nbytes);
d5db4077 2251 bcopy (contents, SDATA (val), nbytes);
2e471eb5
GM
2252 return val;
2253}
2254
2255
2256/* Make a string from NCHARS characters occupying NBYTES bytes at
2257 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2258
2259Lisp_Object
2260make_string_from_bytes (contents, nchars, nbytes)
fcbb914b 2261 const char *contents;
2e471eb5
GM
2262 int nchars, nbytes;
2263{
2264 register Lisp_Object val;
2265 val = make_uninit_multibyte_string (nchars, nbytes);
d5db4077
KR
2266 bcopy (contents, SDATA (val), nbytes);
2267 if (SBYTES (val) == SCHARS (val))
2268 STRING_SET_UNIBYTE (val);
2e471eb5
GM
2269 return val;
2270}
2271
2272
2273/* Make a string from NCHARS characters occupying NBYTES bytes at
2274 CONTENTS. The argument MULTIBYTE controls whether to label the
229b28c4
KH
2275 string as multibyte. If NCHARS is negative, it counts the number of
2276 characters by itself. */
2e471eb5
GM
2277
2278Lisp_Object
2279make_specified_string (contents, nchars, nbytes, multibyte)
fcbb914b 2280 const char *contents;
2e471eb5
GM
2281 int nchars, nbytes;
2282 int multibyte;
2283{
2284 register Lisp_Object val;
229b28c4
KH
2285
2286 if (nchars < 0)
2287 {
2288 if (multibyte)
2289 nchars = multibyte_chars_in_text (contents, nbytes);
2290 else
2291 nchars = nbytes;
2292 }
2e471eb5 2293 val = make_uninit_multibyte_string (nchars, nbytes);
d5db4077 2294 bcopy (contents, SDATA (val), nbytes);
2e471eb5 2295 if (!multibyte)
d5db4077 2296 STRING_SET_UNIBYTE (val);
2e471eb5
GM
2297 return val;
2298}
2299
2300
2301/* Make a string from the data at STR, treating it as multibyte if the
2302 data warrants. */
2303
2304Lisp_Object
2305build_string (str)
943b873e 2306 const char *str;
2e471eb5
GM
2307{
2308 return make_string (str, strlen (str));
2309}
2310
2311
2312/* Return an unibyte Lisp_String set up to hold LENGTH characters
2313 occupying LENGTH bytes. */
2314
2315Lisp_Object
2316make_uninit_string (length)
2317 int length;
2318{
2319 Lisp_Object val;
2320 val = make_uninit_multibyte_string (length, length);
d5db4077 2321 STRING_SET_UNIBYTE (val);
2e471eb5
GM
2322 return val;
2323}
2324
2325
2326/* Return a multibyte Lisp_String set up to hold NCHARS characters
2327 which occupy NBYTES bytes. */
2328
2329Lisp_Object
2330make_uninit_multibyte_string (nchars, nbytes)
2331 int nchars, nbytes;
2332{
2333 Lisp_Object string;
2334 struct Lisp_String *s;
2335
2336 if (nchars < 0)
2337 abort ();
2338
2339 s = allocate_string ();
2340 allocate_string_data (s, nchars, nbytes);
2341 XSETSTRING (string, s);
2342 string_chars_consed += nbytes;
2343 return string;
2344}
2345
2346
2347\f
2348/***********************************************************************
2349 Float Allocation
2350 ***********************************************************************/
2351
2e471eb5
GM
2352/* We store float cells inside of float_blocks, allocating a new
2353 float_block with malloc whenever necessary. Float cells reclaimed
2354 by GC are put on a free list to be reallocated before allocating
ab6780cd 2355 any new float cells from the latest float_block. */
2e471eb5 2356
d05b383a
SM
2357#define FLOAT_BLOCK_SIZE \
2358 (((BLOCK_BYTES - sizeof (struct float_block *) \
2359 /* The compiler might add padding at the end. */ \
2360 - (sizeof (struct Lisp_Float) - sizeof (int))) * CHAR_BIT) \
ab6780cd
SM
2361 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2362
2363#define GETMARKBIT(block,n) \
2364 (((block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2365 >> ((n) % (sizeof(int) * CHAR_BIT))) \
2366 & 1)
2367
2368#define SETMARKBIT(block,n) \
2369 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2370 |= 1 << ((n) % (sizeof(int) * CHAR_BIT))
2371
2372#define UNSETMARKBIT(block,n) \
2373 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2374 &= ~(1 << ((n) % (sizeof(int) * CHAR_BIT)))
2375
2376#define FLOAT_BLOCK(fptr) \
2377 ((struct float_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2378
2379#define FLOAT_INDEX(fptr) \
2380 ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2e471eb5
GM
2381
2382struct float_block
2383{
ab6780cd 2384 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2e471eb5 2385 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
ab6780cd
SM
2386 int gcmarkbits[1 + FLOAT_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2387 struct float_block *next;
2e471eb5
GM
2388};
2389
ab6780cd
SM
2390#define FLOAT_MARKED_P(fptr) \
2391 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2392
2393#define FLOAT_MARK(fptr) \
2394 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2395
2396#define FLOAT_UNMARK(fptr) \
2397 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2398
34400008
GM
2399/* Current float_block. */
2400
2e471eb5 2401struct float_block *float_block;
34400008
GM
2402
2403/* Index of first unused Lisp_Float in the current float_block. */
2404
2e471eb5
GM
2405int float_block_index;
2406
2407/* Total number of float blocks now in use. */
2408
2409int n_float_blocks;
2410
34400008
GM
2411/* Free-list of Lisp_Floats. */
2412
2e471eb5
GM
2413struct Lisp_Float *float_free_list;
2414
34400008 2415
966533c9 2416/* Initialize float allocation. */
34400008 2417
2e471eb5
GM
2418void
2419init_float ()
2420{
08b7c2cb
SM
2421 float_block = NULL;
2422 float_block_index = FLOAT_BLOCK_SIZE; /* Force alloc of new float_block. */
2e471eb5 2423 float_free_list = 0;
08b7c2cb 2424 n_float_blocks = 0;
2e471eb5
GM
2425}
2426
34400008
GM
2427
2428/* Explicitly free a float cell by putting it on the free-list. */
2e471eb5
GM
2429
2430void
2431free_float (ptr)
2432 struct Lisp_Float *ptr;
2433{
2434 *(struct Lisp_Float **)&ptr->data = float_free_list;
2435 float_free_list = ptr;
2436}
2437
34400008
GM
2438
2439/* Return a new float object with value FLOAT_VALUE. */
2440
2e471eb5
GM
2441Lisp_Object
2442make_float (float_value)
2443 double float_value;
2444{
2445 register Lisp_Object val;
2446
2447 if (float_free_list)
2448 {
2449 /* We use the data field for chaining the free list
2450 so that we won't use the same field that has the mark bit. */
2451 XSETFLOAT (val, float_free_list);
2452 float_free_list = *(struct Lisp_Float **)&float_free_list->data;
2453 }
2454 else
2455 {
2456 if (float_block_index == FLOAT_BLOCK_SIZE)
2457 {
2458 register struct float_block *new;
2459
ab6780cd
SM
2460 new = (struct float_block *) lisp_align_malloc (sizeof *new,
2461 MEM_TYPE_FLOAT);
2e471eb5 2462 new->next = float_block;
a0668126 2463 bzero ((char *) new->gcmarkbits, sizeof new->gcmarkbits);
2e471eb5
GM
2464 float_block = new;
2465 float_block_index = 0;
2466 n_float_blocks++;
2467 }
a0668126
SM
2468 XSETFLOAT (val, &float_block->floats[float_block_index]);
2469 float_block_index++;
2e471eb5 2470 }
177c0ea7 2471
2e471eb5 2472 XFLOAT_DATA (val) = float_value;
a0668126 2473 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2e471eb5
GM
2474 consing_since_gc += sizeof (struct Lisp_Float);
2475 floats_consed++;
2476 return val;
2477}
2478
2e471eb5
GM
2479
2480\f
2481/***********************************************************************
2482 Cons Allocation
2483 ***********************************************************************/
2484
2485/* We store cons cells inside of cons_blocks, allocating a new
2486 cons_block with malloc whenever necessary. Cons cells reclaimed by
2487 GC are put on a free list to be reallocated before allocating
08b7c2cb 2488 any new cons cells from the latest cons_block. */
2e471eb5
GM
2489
2490#define CONS_BLOCK_SIZE \
08b7c2cb
SM
2491 (((BLOCK_BYTES - sizeof (struct cons_block *)) * CHAR_BIT) \
2492 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2493
2494#define CONS_BLOCK(fptr) \
2495 ((struct cons_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2496
2497#define CONS_INDEX(fptr) \
2498 ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2e471eb5
GM
2499
2500struct cons_block
2501{
08b7c2cb 2502 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2e471eb5 2503 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
08b7c2cb
SM
2504 int gcmarkbits[1 + CONS_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2505 struct cons_block *next;
2e471eb5
GM
2506};
2507
08b7c2cb
SM
2508#define CONS_MARKED_P(fptr) \
2509 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2510
2511#define CONS_MARK(fptr) \
2512 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2513
2514#define CONS_UNMARK(fptr) \
2515 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2516
34400008
GM
2517/* Current cons_block. */
2518
2e471eb5 2519struct cons_block *cons_block;
34400008
GM
2520
2521/* Index of first unused Lisp_Cons in the current block. */
2522
2e471eb5
GM
2523int cons_block_index;
2524
34400008
GM
2525/* Free-list of Lisp_Cons structures. */
2526
2e471eb5
GM
2527struct Lisp_Cons *cons_free_list;
2528
2529/* Total number of cons blocks now in use. */
2530
2531int n_cons_blocks;
2532
34400008
GM
2533
2534/* Initialize cons allocation. */
2535
2e471eb5
GM
2536void
2537init_cons ()
2538{
08b7c2cb
SM
2539 cons_block = NULL;
2540 cons_block_index = CONS_BLOCK_SIZE; /* Force alloc of new cons_block. */
2e471eb5 2541 cons_free_list = 0;
08b7c2cb 2542 n_cons_blocks = 0;
2e471eb5
GM
2543}
2544
34400008
GM
2545
2546/* Explicitly free a cons cell by putting it on the free-list. */
2e471eb5
GM
2547
2548void
2549free_cons (ptr)
2550 struct Lisp_Cons *ptr;
2551{
2552 *(struct Lisp_Cons **)&ptr->cdr = cons_free_list;
34400008
GM
2553#if GC_MARK_STACK
2554 ptr->car = Vdead;
2555#endif
2e471eb5
GM
2556 cons_free_list = ptr;
2557}
2558
2559DEFUN ("cons", Fcons, Scons, 2, 2, 0,
a6266d23 2560 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
7ee72033 2561 (car, cdr)
2e471eb5
GM
2562 Lisp_Object car, cdr;
2563{
2564 register Lisp_Object val;
2565
2566 if (cons_free_list)
2567 {
2568 /* We use the cdr for chaining the free list
2569 so that we won't use the same field that has the mark bit. */
2570 XSETCONS (val, cons_free_list);
2571 cons_free_list = *(struct Lisp_Cons **)&cons_free_list->cdr;
2572 }
2573 else
2574 {
2575 if (cons_block_index == CONS_BLOCK_SIZE)
2576 {
2577 register struct cons_block *new;
08b7c2cb
SM
2578 new = (struct cons_block *) lisp_align_malloc (sizeof *new,
2579 MEM_TYPE_CONS);
a0668126 2580 bzero ((char *) new->gcmarkbits, sizeof new->gcmarkbits);
2e471eb5
GM
2581 new->next = cons_block;
2582 cons_block = new;
2583 cons_block_index = 0;
2584 n_cons_blocks++;
2585 }
a0668126
SM
2586 XSETCONS (val, &cons_block->conses[cons_block_index]);
2587 cons_block_index++;
2e471eb5 2588 }
177c0ea7 2589
f3fbd155
KR
2590 XSETCAR (val, car);
2591 XSETCDR (val, cdr);
a0668126 2592 eassert (!CONS_MARKED_P (XCONS (val)));
2e471eb5
GM
2593 consing_since_gc += sizeof (struct Lisp_Cons);
2594 cons_cells_consed++;
2595 return val;
2596}
2597
e3e56238
RS
2598/* Get an error now if there's any junk in the cons free list. */
2599void
2600check_cons_list ()
2601{
212f33f1 2602#ifdef GC_CHECK_CONS_LIST
e3e56238
RS
2603 struct Lisp_Cons *tail = cons_free_list;
2604
e3e56238
RS
2605 while (tail)
2606 tail = *(struct Lisp_Cons **)&tail->cdr;
2607#endif
2608}
34400008 2609
2e471eb5
GM
2610/* Make a list of 2, 3, 4 or 5 specified objects. */
2611
2612Lisp_Object
2613list2 (arg1, arg2)
2614 Lisp_Object arg1, arg2;
2615{
2616 return Fcons (arg1, Fcons (arg2, Qnil));
2617}
2618
34400008 2619
2e471eb5
GM
2620Lisp_Object
2621list3 (arg1, arg2, arg3)
2622 Lisp_Object arg1, arg2, arg3;
2623{
2624 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2625}
2626
34400008 2627
2e471eb5
GM
2628Lisp_Object
2629list4 (arg1, arg2, arg3, arg4)
2630 Lisp_Object arg1, arg2, arg3, arg4;
2631{
2632 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2633}
2634
34400008 2635
2e471eb5
GM
2636Lisp_Object
2637list5 (arg1, arg2, arg3, arg4, arg5)
2638 Lisp_Object arg1, arg2, arg3, arg4, arg5;
2639{
2640 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2641 Fcons (arg5, Qnil)))));
2642}
2643
34400008 2644
2e471eb5 2645DEFUN ("list", Flist, Slist, 0, MANY, 0,
eae936e2 2646 doc: /* Return a newly created list with specified arguments as elements.
ae8e8122
MB
2647Any number of arguments, even zero arguments, are allowed.
2648usage: (list &rest OBJECTS) */)
7ee72033 2649 (nargs, args)
2e471eb5
GM
2650 int nargs;
2651 register Lisp_Object *args;
2652{
2653 register Lisp_Object val;
2654 val = Qnil;
2655
2656 while (nargs > 0)
2657 {
2658 nargs--;
2659 val = Fcons (args[nargs], val);
2660 }
2661 return val;
2662}
2663
34400008 2664
2e471eb5 2665DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
a6266d23 2666 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
7ee72033 2667 (length, init)
2e471eb5
GM
2668 register Lisp_Object length, init;
2669{
2670 register Lisp_Object val;
2671 register int size;
2672
b7826503 2673 CHECK_NATNUM (length);
2e471eb5
GM
2674 size = XFASTINT (length);
2675
2676 val = Qnil;
ce070307
GM
2677 while (size > 0)
2678 {
2679 val = Fcons (init, val);
2680 --size;
2681
2682 if (size > 0)
2683 {
2684 val = Fcons (init, val);
2685 --size;
177c0ea7 2686
ce070307
GM
2687 if (size > 0)
2688 {
2689 val = Fcons (init, val);
2690 --size;
177c0ea7 2691
ce070307
GM
2692 if (size > 0)
2693 {
2694 val = Fcons (init, val);
2695 --size;
177c0ea7 2696
ce070307
GM
2697 if (size > 0)
2698 {
2699 val = Fcons (init, val);
2700 --size;
2701 }
2702 }
2703 }
2704 }
2705
2706 QUIT;
2707 }
177c0ea7 2708
7146af97
JB
2709 return val;
2710}
2e471eb5
GM
2711
2712
7146af97 2713\f
2e471eb5
GM
2714/***********************************************************************
2715 Vector Allocation
2716 ***********************************************************************/
7146af97 2717
34400008
GM
2718/* Singly-linked list of all vectors. */
2719
7146af97
JB
2720struct Lisp_Vector *all_vectors;
2721
2e471eb5
GM
2722/* Total number of vector-like objects now in use. */
2723
c8099634
RS
2724int n_vectors;
2725
34400008
GM
2726
2727/* Value is a pointer to a newly allocated Lisp_Vector structure
2728 with room for LEN Lisp_Objects. */
2729
ece93c02
GM
2730static struct Lisp_Vector *
2731allocate_vectorlike (len, type)
1825c68d 2732 EMACS_INT len;
ece93c02 2733 enum mem_type type;
1825c68d
KH
2734{
2735 struct Lisp_Vector *p;
675d5130 2736 size_t nbytes;
1825c68d 2737
d1658221 2738#ifdef DOUG_LEA_MALLOC
f8608968
GM
2739 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
2740 because mapped region contents are not preserved in
2741 a dumped Emacs. */
de7515d6 2742 BLOCK_INPUT;
d1658221 2743 mallopt (M_MMAP_MAX, 0);
de7515d6 2744 UNBLOCK_INPUT;
d1658221 2745#endif
177c0ea7 2746
34400008 2747 nbytes = sizeof *p + (len - 1) * sizeof p->contents[0];
ece93c02 2748 p = (struct Lisp_Vector *) lisp_malloc (nbytes, type);
177c0ea7 2749
d1658221 2750#ifdef DOUG_LEA_MALLOC
34400008 2751 /* Back to a reasonable maximum of mmap'ed areas. */
de7515d6 2752 BLOCK_INPUT;
81d492d5 2753 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
de7515d6 2754 UNBLOCK_INPUT;
d1658221 2755#endif
177c0ea7 2756
34400008 2757 consing_since_gc += nbytes;
310ea200 2758 vector_cells_consed += len;
1825c68d
KH
2759
2760 p->next = all_vectors;
2761 all_vectors = p;
34400008 2762 ++n_vectors;
1825c68d
KH
2763 return p;
2764}
2765
34400008 2766
ece93c02
GM
2767/* Allocate a vector with NSLOTS slots. */
2768
2769struct Lisp_Vector *
2770allocate_vector (nslots)
2771 EMACS_INT nslots;
2772{
2773 struct Lisp_Vector *v = allocate_vectorlike (nslots, MEM_TYPE_VECTOR);
2774 v->size = nslots;
2775 return v;
2776}
2777
2778
2779/* Allocate other vector-like structures. */
2780
2781struct Lisp_Hash_Table *
2782allocate_hash_table ()
2783{
2784 EMACS_INT len = VECSIZE (struct Lisp_Hash_Table);
2785 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_HASH_TABLE);
2786 EMACS_INT i;
177c0ea7 2787
ece93c02
GM
2788 v->size = len;
2789 for (i = 0; i < len; ++i)
2790 v->contents[i] = Qnil;
177c0ea7 2791
ece93c02
GM
2792 return (struct Lisp_Hash_Table *) v;
2793}
2794
2795
2796struct window *
2797allocate_window ()
2798{
2799 EMACS_INT len = VECSIZE (struct window);
2800 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_WINDOW);
2801 EMACS_INT i;
177c0ea7 2802
ece93c02
GM
2803 for (i = 0; i < len; ++i)
2804 v->contents[i] = Qnil;
2805 v->size = len;
177c0ea7 2806
ece93c02
GM
2807 return (struct window *) v;
2808}
2809
2810
2811struct frame *
2812allocate_frame ()
2813{
2814 EMACS_INT len = VECSIZE (struct frame);
2815 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_FRAME);
2816 EMACS_INT i;
177c0ea7 2817
ece93c02
GM
2818 for (i = 0; i < len; ++i)
2819 v->contents[i] = make_number (0);
2820 v->size = len;
2821 return (struct frame *) v;
2822}
2823
2824
2825struct Lisp_Process *
2826allocate_process ()
2827{
2828 EMACS_INT len = VECSIZE (struct Lisp_Process);
2829 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_PROCESS);
2830 EMACS_INT i;
177c0ea7 2831
ece93c02
GM
2832 for (i = 0; i < len; ++i)
2833 v->contents[i] = Qnil;
2834 v->size = len;
177c0ea7 2835
ece93c02
GM
2836 return (struct Lisp_Process *) v;
2837}
2838
2839
2840struct Lisp_Vector *
2841allocate_other_vector (len)
2842 EMACS_INT len;
2843{
2844 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_VECTOR);
2845 EMACS_INT i;
177c0ea7 2846
ece93c02
GM
2847 for (i = 0; i < len; ++i)
2848 v->contents[i] = Qnil;
2849 v->size = len;
177c0ea7 2850
ece93c02
GM
2851 return v;
2852}
2853
2854
7146af97 2855DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
a6266d23 2856 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
7ee72033
MB
2857See also the function `vector'. */)
2858 (length, init)
7146af97
JB
2859 register Lisp_Object length, init;
2860{
1825c68d
KH
2861 Lisp_Object vector;
2862 register EMACS_INT sizei;
2863 register int index;
7146af97
JB
2864 register struct Lisp_Vector *p;
2865
b7826503 2866 CHECK_NATNUM (length);
c9dad5ed 2867 sizei = XFASTINT (length);
7146af97 2868
ece93c02 2869 p = allocate_vector (sizei);
7146af97
JB
2870 for (index = 0; index < sizei; index++)
2871 p->contents[index] = init;
2872
1825c68d 2873 XSETVECTOR (vector, p);
7146af97
JB
2874 return vector;
2875}
2876
34400008 2877
a59de17b 2878DEFUN ("make-char-table", Fmake_char_table, Smake_char_table, 1, 2, 0,
a6266d23 2879 doc: /* Return a newly created char-table, with purpose PURPOSE.
228299fa
GM
2880Each element is initialized to INIT, which defaults to nil.
2881PURPOSE should be a symbol which has a `char-table-extra-slots' property.
7ee72033
MB
2882The property's value should be an integer between 0 and 10. */)
2883 (purpose, init)
a59de17b 2884 register Lisp_Object purpose, init;
7b07587b
RS
2885{
2886 Lisp_Object vector;
a59de17b 2887 Lisp_Object n;
b7826503 2888 CHECK_SYMBOL (purpose);
0551bde3 2889 n = Fget (purpose, Qchar_table_extra_slots);
b7826503 2890 CHECK_NUMBER (n);
7b07587b
RS
2891 if (XINT (n) < 0 || XINT (n) > 10)
2892 args_out_of_range (n, Qnil);
2893 /* Add 2 to the size for the defalt and parent slots. */
2894 vector = Fmake_vector (make_number (CHAR_TABLE_STANDARD_SLOTS + XINT (n)),
2895 init);
0551bde3 2896 XCHAR_TABLE (vector)->top = Qt;
c96a008c 2897 XCHAR_TABLE (vector)->parent = Qnil;
a59de17b 2898 XCHAR_TABLE (vector)->purpose = purpose;
7b07587b
RS
2899 XSETCHAR_TABLE (vector, XCHAR_TABLE (vector));
2900 return vector;
2901}
2902
34400008 2903
0551bde3
KH
2904/* Return a newly created sub char table with default value DEFALT.
2905 Since a sub char table does not appear as a top level Emacs Lisp
2906 object, we don't need a Lisp interface to make it. */
2907
2908Lisp_Object
2909make_sub_char_table (defalt)
2910 Lisp_Object defalt;
2911{
2912 Lisp_Object vector
2913 = Fmake_vector (make_number (SUB_CHAR_TABLE_STANDARD_SLOTS), Qnil);
2914 XCHAR_TABLE (vector)->top = Qnil;
2915 XCHAR_TABLE (vector)->defalt = defalt;
2916 XSETCHAR_TABLE (vector, XCHAR_TABLE (vector));
2917 return vector;
2918}
2919
34400008 2920
7146af97 2921DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
eae936e2 2922 doc: /* Return a newly created vector with specified arguments as elements.
ae8e8122
MB
2923Any number of arguments, even zero arguments, are allowed.
2924usage: (vector &rest OBJECTS) */)
7ee72033 2925 (nargs, args)
7146af97
JB
2926 register int nargs;
2927 Lisp_Object *args;
2928{
2929 register Lisp_Object len, val;
2930 register int index;
2931 register struct Lisp_Vector *p;
2932
67ba9986 2933 XSETFASTINT (len, nargs);
7146af97
JB
2934 val = Fmake_vector (len, Qnil);
2935 p = XVECTOR (val);
2936 for (index = 0; index < nargs; index++)
2937 p->contents[index] = args[index];
2938 return val;
2939}
2940
34400008 2941
7146af97 2942DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
a6266d23 2943 doc: /* Create a byte-code object with specified arguments as elements.
228299fa
GM
2944The arguments should be the arglist, bytecode-string, constant vector,
2945stack size, (optional) doc string, and (optional) interactive spec.
2946The first four arguments are required; at most six have any
ae8e8122 2947significance.
92cc28b2 2948usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
7ee72033 2949 (nargs, args)
7146af97
JB
2950 register int nargs;
2951 Lisp_Object *args;
2952{
2953 register Lisp_Object len, val;
2954 register int index;
2955 register struct Lisp_Vector *p;
2956
67ba9986 2957 XSETFASTINT (len, nargs);
265a9e55 2958 if (!NILP (Vpurify_flag))
5a053ea9 2959 val = make_pure_vector ((EMACS_INT) nargs);
7146af97
JB
2960 else
2961 val = Fmake_vector (len, Qnil);
9eac9d59
KH
2962
2963 if (STRINGP (args[1]) && STRING_MULTIBYTE (args[1]))
2964 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
2965 earlier because they produced a raw 8-bit string for byte-code
2966 and now such a byte-code string is loaded as multibyte while
2967 raw 8-bit characters converted to multibyte form. Thus, now we
2968 must convert them back to the original unibyte form. */
2969 args[1] = Fstring_as_unibyte (args[1]);
2970
7146af97
JB
2971 p = XVECTOR (val);
2972 for (index = 0; index < nargs; index++)
2973 {
265a9e55 2974 if (!NILP (Vpurify_flag))
7146af97
JB
2975 args[index] = Fpurecopy (args[index]);
2976 p->contents[index] = args[index];
2977 }
50aee051 2978 XSETCOMPILED (val, p);
7146af97
JB
2979 return val;
2980}
2e471eb5 2981
34400008 2982
7146af97 2983\f
2e471eb5
GM
2984/***********************************************************************
2985 Symbol Allocation
2986 ***********************************************************************/
7146af97 2987
2e471eb5
GM
2988/* Each symbol_block is just under 1020 bytes long, since malloc
2989 really allocates in units of powers of two and uses 4 bytes for its
2990 own overhead. */
7146af97
JB
2991
2992#define SYMBOL_BLOCK_SIZE \
2993 ((1020 - sizeof (struct symbol_block *)) / sizeof (struct Lisp_Symbol))
2994
2995struct symbol_block
2e471eb5 2996{
d05b383a 2997 /* Place `symbols' first, to preserve alignment. */
2e471eb5 2998 struct Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
d05b383a 2999 struct symbol_block *next;
2e471eb5 3000};
7146af97 3001
34400008
GM
3002/* Current symbol block and index of first unused Lisp_Symbol
3003 structure in it. */
3004
7146af97
JB
3005struct symbol_block *symbol_block;
3006int symbol_block_index;
3007
34400008
GM
3008/* List of free symbols. */
3009
7146af97
JB
3010struct Lisp_Symbol *symbol_free_list;
3011
c8099634 3012/* Total number of symbol blocks now in use. */
2e471eb5 3013
c8099634
RS
3014int n_symbol_blocks;
3015
34400008
GM
3016
3017/* Initialize symbol allocation. */
3018
7146af97
JB
3019void
3020init_symbol ()
3021{
0930c1a1
SM
3022 symbol_block = NULL;
3023 symbol_block_index = SYMBOL_BLOCK_SIZE;
7146af97 3024 symbol_free_list = 0;
0930c1a1 3025 n_symbol_blocks = 0;
7146af97
JB
3026}
3027
34400008 3028
7146af97 3029DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
a6266d23 3030 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
7ee72033
MB
3031Its value and function definition are void, and its property list is nil. */)
3032 (name)
54ee42dd 3033 Lisp_Object name;
7146af97
JB
3034{
3035 register Lisp_Object val;
3036 register struct Lisp_Symbol *p;
3037
b7826503 3038 CHECK_STRING (name);
7146af97
JB
3039
3040 if (symbol_free_list)
3041 {
45d12a89 3042 XSETSYMBOL (val, symbol_free_list);
85481507 3043 symbol_free_list = *(struct Lisp_Symbol **)&symbol_free_list->value;
7146af97
JB
3044 }
3045 else
3046 {
3047 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
3048 {
3c06d205 3049 struct symbol_block *new;
34400008
GM
3050 new = (struct symbol_block *) lisp_malloc (sizeof *new,
3051 MEM_TYPE_SYMBOL);
7146af97
JB
3052 new->next = symbol_block;
3053 symbol_block = new;
3054 symbol_block_index = 0;
c8099634 3055 n_symbol_blocks++;
7146af97 3056 }
a0668126
SM
3057 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index]);
3058 symbol_block_index++;
7146af97 3059 }
177c0ea7 3060
7146af97 3061 p = XSYMBOL (val);
8fe5665d 3062 p->xname = name;
7146af97 3063 p->plist = Qnil;
2e471eb5
GM
3064 p->value = Qunbound;
3065 p->function = Qunbound;
9e713715 3066 p->next = NULL;
2336fe58 3067 p->gcmarkbit = 0;
9e713715
GM
3068 p->interned = SYMBOL_UNINTERNED;
3069 p->constant = 0;
3070 p->indirect_variable = 0;
2e471eb5
GM
3071 consing_since_gc += sizeof (struct Lisp_Symbol);
3072 symbols_consed++;
7146af97
JB
3073 return val;
3074}
3075
3f25e183 3076
2e471eb5
GM
3077\f
3078/***********************************************************************
34400008 3079 Marker (Misc) Allocation
2e471eb5 3080 ***********************************************************************/
3f25e183 3081
2e471eb5
GM
3082/* Allocation of markers and other objects that share that structure.
3083 Works like allocation of conses. */
c0696668 3084
2e471eb5
GM
3085#define MARKER_BLOCK_SIZE \
3086 ((1020 - sizeof (struct marker_block *)) / sizeof (union Lisp_Misc))
3087
3088struct marker_block
c0696668 3089{
d05b383a 3090 /* Place `markers' first, to preserve alignment. */
2e471eb5 3091 union Lisp_Misc markers[MARKER_BLOCK_SIZE];
d05b383a 3092 struct marker_block *next;
2e471eb5 3093};
c0696668 3094
2e471eb5
GM
3095struct marker_block *marker_block;
3096int marker_block_index;
c0696668 3097
2e471eb5 3098union Lisp_Misc *marker_free_list;
c0696668 3099
2e471eb5 3100/* Total number of marker blocks now in use. */
3f25e183 3101
2e471eb5
GM
3102int n_marker_blocks;
3103
3104void
3105init_marker ()
3f25e183 3106{
0930c1a1
SM
3107 marker_block = NULL;
3108 marker_block_index = MARKER_BLOCK_SIZE;
2e471eb5 3109 marker_free_list = 0;
0930c1a1 3110 n_marker_blocks = 0;
3f25e183
RS
3111}
3112
2e471eb5
GM
3113/* Return a newly allocated Lisp_Misc object, with no substructure. */
3114
3f25e183 3115Lisp_Object
2e471eb5 3116allocate_misc ()
7146af97 3117{
2e471eb5 3118 Lisp_Object val;
7146af97 3119
2e471eb5 3120 if (marker_free_list)
7146af97 3121 {
2e471eb5
GM
3122 XSETMISC (val, marker_free_list);
3123 marker_free_list = marker_free_list->u_free.chain;
7146af97
JB
3124 }
3125 else
7146af97 3126 {
2e471eb5
GM
3127 if (marker_block_index == MARKER_BLOCK_SIZE)
3128 {
3129 struct marker_block *new;
34400008
GM
3130 new = (struct marker_block *) lisp_malloc (sizeof *new,
3131 MEM_TYPE_MISC);
2e471eb5
GM
3132 new->next = marker_block;
3133 marker_block = new;
3134 marker_block_index = 0;
3135 n_marker_blocks++;
7b7990cc 3136 total_free_markers += MARKER_BLOCK_SIZE;
2e471eb5 3137 }
a0668126
SM
3138 XSETMISC (val, &marker_block->markers[marker_block_index]);
3139 marker_block_index++;
7146af97 3140 }
177c0ea7 3141
7b7990cc 3142 --total_free_markers;
2e471eb5
GM
3143 consing_since_gc += sizeof (union Lisp_Misc);
3144 misc_objects_consed++;
2336fe58 3145 XMARKER (val)->gcmarkbit = 0;
2e471eb5
GM
3146 return val;
3147}
3148
7b7990cc
KS
3149/* Free a Lisp_Misc object */
3150
3151void
3152free_misc (misc)
3153 Lisp_Object misc;
3154{
3155 XMISC (misc)->u_marker.type = Lisp_Misc_Free;
3156 XMISC (misc)->u_free.chain = marker_free_list;
3157 marker_free_list = XMISC (misc);
3158
3159 total_free_markers++;
3160}
3161
42172a6b
RS
3162/* Return a Lisp_Misc_Save_Value object containing POINTER and
3163 INTEGER. This is used to package C values to call record_unwind_protect.
3164 The unwind function can get the C values back using XSAVE_VALUE. */
3165
3166Lisp_Object
3167make_save_value (pointer, integer)
3168 void *pointer;
3169 int integer;
3170{
3171 register Lisp_Object val;
3172 register struct Lisp_Save_Value *p;
3173
3174 val = allocate_misc ();
3175 XMISCTYPE (val) = Lisp_Misc_Save_Value;
3176 p = XSAVE_VALUE (val);
3177 p->pointer = pointer;
3178 p->integer = integer;
b766f870 3179 p->dogc = 0;
42172a6b
RS
3180 return val;
3181}
3182
2e471eb5 3183DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
a6266d23 3184 doc: /* Return a newly allocated marker which does not point at any place. */)
7ee72033 3185 ()
2e471eb5
GM
3186{
3187 register Lisp_Object val;
3188 register struct Lisp_Marker *p;
7146af97 3189
2e471eb5
GM
3190 val = allocate_misc ();
3191 XMISCTYPE (val) = Lisp_Misc_Marker;
3192 p = XMARKER (val);
3193 p->buffer = 0;
3194 p->bytepos = 0;
3195 p->charpos = 0;
ef89c2ce 3196 p->next = NULL;
2e471eb5 3197 p->insertion_type = 0;
7146af97
JB
3198 return val;
3199}
2e471eb5
GM
3200
3201/* Put MARKER back on the free list after using it temporarily. */
3202
3203void
3204free_marker (marker)
3205 Lisp_Object marker;
3206{
ef89c2ce 3207 unchain_marker (XMARKER (marker));
7b7990cc 3208 free_misc (marker);
2e471eb5
GM
3209}
3210
c0696668 3211\f
7146af97 3212/* Return a newly created vector or string with specified arguments as
736471d1
RS
3213 elements. If all the arguments are characters that can fit
3214 in a string of events, make a string; otherwise, make a vector.
3215
3216 Any number of arguments, even zero arguments, are allowed. */
7146af97
JB
3217
3218Lisp_Object
736471d1 3219make_event_array (nargs, args)
7146af97
JB
3220 register int nargs;
3221 Lisp_Object *args;
3222{
3223 int i;
3224
3225 for (i = 0; i < nargs; i++)
736471d1 3226 /* The things that fit in a string
c9ca4659
RS
3227 are characters that are in 0...127,
3228 after discarding the meta bit and all the bits above it. */
e687453f 3229 if (!INTEGERP (args[i])
c9ca4659 3230 || (XUINT (args[i]) & ~(-CHAR_META)) >= 0200)
7146af97
JB
3231 return Fvector (nargs, args);
3232
3233 /* Since the loop exited, we know that all the things in it are
3234 characters, so we can make a string. */
3235 {
c13ccad2 3236 Lisp_Object result;
177c0ea7 3237
50aee051 3238 result = Fmake_string (make_number (nargs), make_number (0));
7146af97 3239 for (i = 0; i < nargs; i++)
736471d1 3240 {
46e7e6b0 3241 SSET (result, i, XINT (args[i]));
736471d1
RS
3242 /* Move the meta bit to the right place for a string char. */
3243 if (XINT (args[i]) & CHAR_META)
46e7e6b0 3244 SSET (result, i, SREF (result, i) | 0x80);
736471d1 3245 }
177c0ea7 3246
7146af97
JB
3247 return result;
3248 }
3249}
2e471eb5
GM
3250
3251
7146af97 3252\f
34400008
GM
3253/************************************************************************
3254 C Stack Marking
3255 ************************************************************************/
3256
13c844fb
GM
3257#if GC_MARK_STACK || defined GC_MALLOC_CHECK
3258
71cf5fa0
GM
3259/* Conservative C stack marking requires a method to identify possibly
3260 live Lisp objects given a pointer value. We do this by keeping
3261 track of blocks of Lisp data that are allocated in a red-black tree
3262 (see also the comment of mem_node which is the type of nodes in
3263 that tree). Function lisp_malloc adds information for an allocated
3264 block to the red-black tree with calls to mem_insert, and function
3265 lisp_free removes it with mem_delete. Functions live_string_p etc
3266 call mem_find to lookup information about a given pointer in the
3267 tree, and use that to determine if the pointer points to a Lisp
3268 object or not. */
3269
34400008
GM
3270/* Initialize this part of alloc.c. */
3271
3272static void
3273mem_init ()
3274{
3275 mem_z.left = mem_z.right = MEM_NIL;
3276 mem_z.parent = NULL;
3277 mem_z.color = MEM_BLACK;
3278 mem_z.start = mem_z.end = NULL;
3279 mem_root = MEM_NIL;
3280}
3281
3282
3283/* Value is a pointer to the mem_node containing START. Value is
3284 MEM_NIL if there is no node in the tree containing START. */
3285
3286static INLINE struct mem_node *
3287mem_find (start)
3288 void *start;
3289{
3290 struct mem_node *p;
3291
ece93c02
GM
3292 if (start < min_heap_address || start > max_heap_address)
3293 return MEM_NIL;
3294
34400008
GM
3295 /* Make the search always successful to speed up the loop below. */
3296 mem_z.start = start;
3297 mem_z.end = (char *) start + 1;
3298
3299 p = mem_root;
3300 while (start < p->start || start >= p->end)
3301 p = start < p->start ? p->left : p->right;
3302 return p;
3303}
3304
3305
3306/* Insert a new node into the tree for a block of memory with start
3307 address START, end address END, and type TYPE. Value is a
3308 pointer to the node that was inserted. */
3309
3310static struct mem_node *
3311mem_insert (start, end, type)
3312 void *start, *end;
3313 enum mem_type type;
3314{
3315 struct mem_node *c, *parent, *x;
3316
ece93c02
GM
3317 if (start < min_heap_address)
3318 min_heap_address = start;
3319 if (end > max_heap_address)
3320 max_heap_address = end;
3321
34400008
GM
3322 /* See where in the tree a node for START belongs. In this
3323 particular application, it shouldn't happen that a node is already
3324 present. For debugging purposes, let's check that. */
3325 c = mem_root;
3326 parent = NULL;
3327
3328#if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
177c0ea7 3329
34400008
GM
3330 while (c != MEM_NIL)
3331 {
3332 if (start >= c->start && start < c->end)
3333 abort ();
3334 parent = c;
3335 c = start < c->start ? c->left : c->right;
3336 }
177c0ea7 3337
34400008 3338#else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
177c0ea7 3339
34400008
GM
3340 while (c != MEM_NIL)
3341 {
3342 parent = c;
3343 c = start < c->start ? c->left : c->right;
3344 }
177c0ea7 3345
34400008
GM
3346#endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3347
3348 /* Create a new node. */
877935b1
GM
3349#ifdef GC_MALLOC_CHECK
3350 x = (struct mem_node *) _malloc_internal (sizeof *x);
3351 if (x == NULL)
3352 abort ();
3353#else
34400008 3354 x = (struct mem_node *) xmalloc (sizeof *x);
877935b1 3355#endif
34400008
GM
3356 x->start = start;
3357 x->end = end;
3358 x->type = type;
3359 x->parent = parent;
3360 x->left = x->right = MEM_NIL;
3361 x->color = MEM_RED;
3362
3363 /* Insert it as child of PARENT or install it as root. */
3364 if (parent)
3365 {
3366 if (start < parent->start)
3367 parent->left = x;
3368 else
3369 parent->right = x;
3370 }
177c0ea7 3371 else
34400008
GM
3372 mem_root = x;
3373
3374 /* Re-establish red-black tree properties. */
3375 mem_insert_fixup (x);
877935b1 3376
34400008
GM
3377 return x;
3378}
3379
3380
3381/* Re-establish the red-black properties of the tree, and thereby
3382 balance the tree, after node X has been inserted; X is always red. */
3383
3384static void
3385mem_insert_fixup (x)
3386 struct mem_node *x;
3387{
3388 while (x != mem_root && x->parent->color == MEM_RED)
3389 {
3390 /* X is red and its parent is red. This is a violation of
3391 red-black tree property #3. */
177c0ea7 3392
34400008
GM
3393 if (x->parent == x->parent->parent->left)
3394 {
3395 /* We're on the left side of our grandparent, and Y is our
3396 "uncle". */
3397 struct mem_node *y = x->parent->parent->right;
177c0ea7 3398
34400008
GM
3399 if (y->color == MEM_RED)
3400 {
3401 /* Uncle and parent are red but should be black because
3402 X is red. Change the colors accordingly and proceed
3403 with the grandparent. */
3404 x->parent->color = MEM_BLACK;
3405 y->color = MEM_BLACK;
3406 x->parent->parent->color = MEM_RED;
3407 x = x->parent->parent;
3408 }
3409 else
3410 {
3411 /* Parent and uncle have different colors; parent is
3412 red, uncle is black. */
3413 if (x == x->parent->right)
3414 {
3415 x = x->parent;
3416 mem_rotate_left (x);
3417 }
3418
3419 x->parent->color = MEM_BLACK;
3420 x->parent->parent->color = MEM_RED;
3421 mem_rotate_right (x->parent->parent);
3422 }
3423 }
3424 else
3425 {
3426 /* This is the symmetrical case of above. */
3427 struct mem_node *y = x->parent->parent->left;
177c0ea7 3428
34400008
GM
3429 if (y->color == MEM_RED)
3430 {
3431 x->parent->color = MEM_BLACK;
3432 y->color = MEM_BLACK;
3433 x->parent->parent->color = MEM_RED;
3434 x = x->parent->parent;
3435 }
3436 else
3437 {
3438 if (x == x->parent->left)
3439 {
3440 x = x->parent;
3441 mem_rotate_right (x);
3442 }
177c0ea7 3443
34400008
GM
3444 x->parent->color = MEM_BLACK;
3445 x->parent->parent->color = MEM_RED;
3446 mem_rotate_left (x->parent->parent);
3447 }
3448 }
3449 }
3450
3451 /* The root may have been changed to red due to the algorithm. Set
3452 it to black so that property #5 is satisfied. */
3453 mem_root->color = MEM_BLACK;
3454}
3455
3456
177c0ea7
JB
3457/* (x) (y)
3458 / \ / \
34400008
GM
3459 a (y) ===> (x) c
3460 / \ / \
3461 b c a b */
3462
3463static void
3464mem_rotate_left (x)
3465 struct mem_node *x;
3466{
3467 struct mem_node *y;
3468
3469 /* Turn y's left sub-tree into x's right sub-tree. */
3470 y = x->right;
3471 x->right = y->left;
3472 if (y->left != MEM_NIL)
3473 y->left->parent = x;
3474
3475 /* Y's parent was x's parent. */
3476 if (y != MEM_NIL)
3477 y->parent = x->parent;
3478
3479 /* Get the parent to point to y instead of x. */
3480 if (x->parent)
3481 {
3482 if (x == x->parent->left)
3483 x->parent->left = y;
3484 else
3485 x->parent->right = y;
3486 }
3487 else
3488 mem_root = y;
3489
3490 /* Put x on y's left. */
3491 y->left = x;
3492 if (x != MEM_NIL)
3493 x->parent = y;
3494}
3495
3496
177c0ea7
JB
3497/* (x) (Y)
3498 / \ / \
3499 (y) c ===> a (x)
3500 / \ / \
34400008
GM
3501 a b b c */
3502
3503static void
3504mem_rotate_right (x)
3505 struct mem_node *x;
3506{
3507 struct mem_node *y = x->left;
3508
3509 x->left = y->right;
3510 if (y->right != MEM_NIL)
3511 y->right->parent = x;
177c0ea7 3512
34400008
GM
3513 if (y != MEM_NIL)
3514 y->parent = x->parent;
3515 if (x->parent)
3516 {
3517 if (x == x->parent->right)
3518 x->parent->right = y;
3519 else
3520 x->parent->left = y;
3521 }
3522 else
3523 mem_root = y;
177c0ea7 3524
34400008
GM
3525 y->right = x;
3526 if (x != MEM_NIL)
3527 x->parent = y;
3528}
3529
3530
3531/* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
3532
3533static void
3534mem_delete (z)
3535 struct mem_node *z;
3536{
3537 struct mem_node *x, *y;
3538
3539 if (!z || z == MEM_NIL)
3540 return;
3541
3542 if (z->left == MEM_NIL || z->right == MEM_NIL)
3543 y = z;
3544 else
3545 {
3546 y = z->right;
3547 while (y->left != MEM_NIL)
3548 y = y->left;
3549 }
3550
3551 if (y->left != MEM_NIL)
3552 x = y->left;
3553 else
3554 x = y->right;
3555
3556 x->parent = y->parent;
3557 if (y->parent)
3558 {
3559 if (y == y->parent->left)
3560 y->parent->left = x;
3561 else
3562 y->parent->right = x;
3563 }
3564 else
3565 mem_root = x;
3566
3567 if (y != z)
3568 {
3569 z->start = y->start;
3570 z->end = y->end;
3571 z->type = y->type;
3572 }
177c0ea7 3573
34400008
GM
3574 if (y->color == MEM_BLACK)
3575 mem_delete_fixup (x);
877935b1
GM
3576
3577#ifdef GC_MALLOC_CHECK
3578 _free_internal (y);
3579#else
34400008 3580 xfree (y);
877935b1 3581#endif
34400008
GM
3582}
3583
3584
3585/* Re-establish the red-black properties of the tree, after a
3586 deletion. */
3587
3588static void
3589mem_delete_fixup (x)
3590 struct mem_node *x;
3591{
3592 while (x != mem_root && x->color == MEM_BLACK)
3593 {
3594 if (x == x->parent->left)
3595 {
3596 struct mem_node *w = x->parent->right;
177c0ea7 3597
34400008
GM
3598 if (w->color == MEM_RED)
3599 {
3600 w->color = MEM_BLACK;
3601 x->parent->color = MEM_RED;
3602 mem_rotate_left (x->parent);
3603 w = x->parent->right;
3604 }
177c0ea7 3605
34400008
GM
3606 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
3607 {
3608 w->color = MEM_RED;
3609 x = x->parent;
3610 }
3611 else
3612 {
3613 if (w->right->color == MEM_BLACK)
3614 {
3615 w->left->color = MEM_BLACK;
3616 w->color = MEM_RED;
3617 mem_rotate_right (w);
3618 w = x->parent->right;
3619 }
3620 w->color = x->parent->color;
3621 x->parent->color = MEM_BLACK;
3622 w->right->color = MEM_BLACK;
3623 mem_rotate_left (x->parent);
3624 x = mem_root;
3625 }
3626 }
3627 else
3628 {
3629 struct mem_node *w = x->parent->left;
177c0ea7 3630
34400008
GM
3631 if (w->color == MEM_RED)
3632 {
3633 w->color = MEM_BLACK;
3634 x->parent->color = MEM_RED;
3635 mem_rotate_right (x->parent);
3636 w = x->parent->left;
3637 }
177c0ea7 3638
34400008
GM
3639 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
3640 {
3641 w->color = MEM_RED;
3642 x = x->parent;
3643 }
3644 else
3645 {
3646 if (w->left->color == MEM_BLACK)
3647 {
3648 w->right->color = MEM_BLACK;
3649 w->color = MEM_RED;
3650 mem_rotate_left (w);
3651 w = x->parent->left;
3652 }
177c0ea7 3653
34400008
GM
3654 w->color = x->parent->color;
3655 x->parent->color = MEM_BLACK;
3656 w->left->color = MEM_BLACK;
3657 mem_rotate_right (x->parent);
3658 x = mem_root;
3659 }
3660 }
3661 }
177c0ea7 3662
34400008
GM
3663 x->color = MEM_BLACK;
3664}
3665
3666
3667/* Value is non-zero if P is a pointer to a live Lisp string on
3668 the heap. M is a pointer to the mem_block for P. */
3669
3670static INLINE int
3671live_string_p (m, p)
3672 struct mem_node *m;
3673 void *p;
3674{
3675 if (m->type == MEM_TYPE_STRING)
3676 {
3677 struct string_block *b = (struct string_block *) m->start;
3678 int offset = (char *) p - (char *) &b->strings[0];
3679
3680 /* P must point to the start of a Lisp_String structure, and it
3681 must not be on the free-list. */
176bc847
GM
3682 return (offset >= 0
3683 && offset % sizeof b->strings[0] == 0
d05b383a 3684 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
34400008
GM
3685 && ((struct Lisp_String *) p)->data != NULL);
3686 }
3687 else
3688 return 0;
3689}
3690
3691
3692/* Value is non-zero if P is a pointer to a live Lisp cons on
3693 the heap. M is a pointer to the mem_block for P. */
3694
3695static INLINE int
3696live_cons_p (m, p)
3697 struct mem_node *m;
3698 void *p;
3699{
3700 if (m->type == MEM_TYPE_CONS)
3701 {
3702 struct cons_block *b = (struct cons_block *) m->start;
3703 int offset = (char *) p - (char *) &b->conses[0];
3704
3705 /* P must point to the start of a Lisp_Cons, not be
3706 one of the unused cells in the current cons block,
3707 and not be on the free-list. */
176bc847
GM
3708 return (offset >= 0
3709 && offset % sizeof b->conses[0] == 0
d05b383a 3710 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
34400008
GM
3711 && (b != cons_block
3712 || offset / sizeof b->conses[0] < cons_block_index)
3713 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
3714 }
3715 else
3716 return 0;
3717}
3718
3719
3720/* Value is non-zero if P is a pointer to a live Lisp symbol on
3721 the heap. M is a pointer to the mem_block for P. */
3722
3723static INLINE int
3724live_symbol_p (m, p)
3725 struct mem_node *m;
3726 void *p;
3727{
3728 if (m->type == MEM_TYPE_SYMBOL)
3729 {
3730 struct symbol_block *b = (struct symbol_block *) m->start;
3731 int offset = (char *) p - (char *) &b->symbols[0];
177c0ea7 3732
34400008
GM
3733 /* P must point to the start of a Lisp_Symbol, not be
3734 one of the unused cells in the current symbol block,
3735 and not be on the free-list. */
176bc847
GM
3736 return (offset >= 0
3737 && offset % sizeof b->symbols[0] == 0
d05b383a 3738 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
34400008
GM
3739 && (b != symbol_block
3740 || offset / sizeof b->symbols[0] < symbol_block_index)
3741 && !EQ (((struct Lisp_Symbol *) p)->function, Vdead));
3742 }
3743 else
3744 return 0;
3745}
3746
3747
3748/* Value is non-zero if P is a pointer to a live Lisp float on
3749 the heap. M is a pointer to the mem_block for P. */
3750
3751static INLINE int
3752live_float_p (m, p)
3753 struct mem_node *m;
3754 void *p;
3755{
3756 if (m->type == MEM_TYPE_FLOAT)
3757 {
3758 struct float_block *b = (struct float_block *) m->start;
3759 int offset = (char *) p - (char *) &b->floats[0];
177c0ea7 3760
ab6780cd
SM
3761 /* P must point to the start of a Lisp_Float and not be
3762 one of the unused cells in the current float block. */
176bc847
GM
3763 return (offset >= 0
3764 && offset % sizeof b->floats[0] == 0
d05b383a 3765 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
34400008 3766 && (b != float_block
ab6780cd 3767 || offset / sizeof b->floats[0] < float_block_index));
34400008
GM
3768 }
3769 else
3770 return 0;
3771}
3772
3773
3774/* Value is non-zero if P is a pointer to a live Lisp Misc on
3775 the heap. M is a pointer to the mem_block for P. */
3776
3777static INLINE int
3778live_misc_p (m, p)
3779 struct mem_node *m;
3780 void *p;
3781{
3782 if (m->type == MEM_TYPE_MISC)
3783 {
3784 struct marker_block *b = (struct marker_block *) m->start;
3785 int offset = (char *) p - (char *) &b->markers[0];
177c0ea7 3786
34400008
GM
3787 /* P must point to the start of a Lisp_Misc, not be
3788 one of the unused cells in the current misc block,
3789 and not be on the free-list. */
176bc847
GM
3790 return (offset >= 0
3791 && offset % sizeof b->markers[0] == 0
d05b383a 3792 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
34400008
GM
3793 && (b != marker_block
3794 || offset / sizeof b->markers[0] < marker_block_index)
3795 && ((union Lisp_Misc *) p)->u_marker.type != Lisp_Misc_Free);
3796 }
3797 else
3798 return 0;
3799}
3800
3801
3802/* Value is non-zero if P is a pointer to a live vector-like object.
3803 M is a pointer to the mem_block for P. */
3804
3805static INLINE int
3806live_vector_p (m, p)
3807 struct mem_node *m;
3808 void *p;
3809{
ece93c02
GM
3810 return (p == m->start
3811 && m->type >= MEM_TYPE_VECTOR
3812 && m->type <= MEM_TYPE_WINDOW);
34400008
GM
3813}
3814
3815
2336fe58 3816/* Value is non-zero if P is a pointer to a live buffer. M is a
34400008
GM
3817 pointer to the mem_block for P. */
3818
3819static INLINE int
3820live_buffer_p (m, p)
3821 struct mem_node *m;
3822 void *p;
3823{
3824 /* P must point to the start of the block, and the buffer
3825 must not have been killed. */
3826 return (m->type == MEM_TYPE_BUFFER
3827 && p == m->start
3828 && !NILP (((struct buffer *) p)->name));
3829}
3830
13c844fb
GM
3831#endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
3832
3833#if GC_MARK_STACK
3834
34400008
GM
3835#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3836
3837/* Array of objects that are kept alive because the C stack contains
3838 a pattern that looks like a reference to them . */
3839
3840#define MAX_ZOMBIES 10
3841static Lisp_Object zombies[MAX_ZOMBIES];
3842
3843/* Number of zombie objects. */
3844
3845static int nzombies;
3846
3847/* Number of garbage collections. */
3848
3849static int ngcs;
3850
3851/* Average percentage of zombies per collection. */
3852
3853static double avg_zombies;
3854
3855/* Max. number of live and zombie objects. */
3856
3857static int max_live, max_zombies;
3858
3859/* Average number of live objects per GC. */
3860
3861static double avg_live;
3862
3863DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
7ee72033
MB
3864 doc: /* Show information about live and zombie objects. */)
3865 ()
34400008 3866{
83fc9c63
DL
3867 Lisp_Object args[8], zombie_list = Qnil;
3868 int i;
3869 for (i = 0; i < nzombies; i++)
3870 zombie_list = Fcons (zombies[i], zombie_list);
3871 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
34400008
GM
3872 args[1] = make_number (ngcs);
3873 args[2] = make_float (avg_live);
3874 args[3] = make_float (avg_zombies);
3875 args[4] = make_float (avg_zombies / avg_live / 100);
3876 args[5] = make_number (max_live);
3877 args[6] = make_number (max_zombies);
83fc9c63
DL
3878 args[7] = zombie_list;
3879 return Fmessage (8, args);
34400008
GM
3880}
3881
3882#endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
3883
3884
182ff242
GM
3885/* Mark OBJ if we can prove it's a Lisp_Object. */
3886
3887static INLINE void
3888mark_maybe_object (obj)
3889 Lisp_Object obj;
3890{
3891 void *po = (void *) XPNTR (obj);
3892 struct mem_node *m = mem_find (po);
177c0ea7 3893
182ff242
GM
3894 if (m != MEM_NIL)
3895 {
3896 int mark_p = 0;
3897
3898 switch (XGCTYPE (obj))
3899 {
3900 case Lisp_String:
3901 mark_p = (live_string_p (m, po)
3902 && !STRING_MARKED_P ((struct Lisp_String *) po));
3903 break;
3904
3905 case Lisp_Cons:
08b7c2cb 3906 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
182ff242
GM
3907 break;
3908
3909 case Lisp_Symbol:
2336fe58 3910 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
182ff242
GM
3911 break;
3912
3913 case Lisp_Float:
ab6780cd 3914 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
182ff242
GM
3915 break;
3916
3917 case Lisp_Vectorlike:
3918 /* Note: can't check GC_BUFFERP before we know it's a
3919 buffer because checking that dereferences the pointer
3920 PO which might point anywhere. */
3921 if (live_vector_p (m, po))
3ef06d12 3922 mark_p = !GC_SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
182ff242 3923 else if (live_buffer_p (m, po))
3ef06d12 3924 mark_p = GC_BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
182ff242
GM
3925 break;
3926
3927 case Lisp_Misc:
2336fe58 3928 mark_p = (live_misc_p (m, po) && !XMARKER (obj)->gcmarkbit);
182ff242 3929 break;
6bbd7a29
GM
3930
3931 case Lisp_Int:
31d929e5 3932 case Lisp_Type_Limit:
6bbd7a29 3933 break;
182ff242
GM
3934 }
3935
3936 if (mark_p)
3937 {
3938#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3939 if (nzombies < MAX_ZOMBIES)
83fc9c63 3940 zombies[nzombies] = obj;
182ff242
GM
3941 ++nzombies;
3942#endif
49723c04 3943 mark_object (obj);
182ff242
GM
3944 }
3945 }
3946}
ece93c02
GM
3947
3948
3949/* If P points to Lisp data, mark that as live if it isn't already
3950 marked. */
3951
3952static INLINE void
3953mark_maybe_pointer (p)
3954 void *p;
3955{
3956 struct mem_node *m;
3957
3958 /* Quickly rule out some values which can't point to Lisp data. We
3959 assume that Lisp data is aligned on even addresses. */
3960 if ((EMACS_INT) p & 1)
3961 return;
177c0ea7 3962
ece93c02
GM
3963 m = mem_find (p);
3964 if (m != MEM_NIL)
3965 {
3966 Lisp_Object obj = Qnil;
177c0ea7 3967
ece93c02
GM
3968 switch (m->type)
3969 {
3970 case MEM_TYPE_NON_LISP:
2fe50224 3971 /* Nothing to do; not a pointer to Lisp memory. */
ece93c02 3972 break;
177c0ea7 3973
ece93c02 3974 case MEM_TYPE_BUFFER:
3ef06d12 3975 if (live_buffer_p (m, p) && !VECTOR_MARKED_P((struct buffer *)p))
ece93c02
GM
3976 XSETVECTOR (obj, p);
3977 break;
177c0ea7 3978
ece93c02 3979 case MEM_TYPE_CONS:
08b7c2cb 3980 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
ece93c02
GM
3981 XSETCONS (obj, p);
3982 break;
177c0ea7 3983
ece93c02
GM
3984 case MEM_TYPE_STRING:
3985 if (live_string_p (m, p)
3986 && !STRING_MARKED_P ((struct Lisp_String *) p))
3987 XSETSTRING (obj, p);
3988 break;
3989
3990 case MEM_TYPE_MISC:
2336fe58
SM
3991 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
3992 XSETMISC (obj, p);
ece93c02 3993 break;
177c0ea7 3994
ece93c02 3995 case MEM_TYPE_SYMBOL:
2336fe58 3996 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
ece93c02
GM
3997 XSETSYMBOL (obj, p);
3998 break;
177c0ea7 3999
ece93c02 4000 case MEM_TYPE_FLOAT:
ab6780cd 4001 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
ece93c02
GM
4002 XSETFLOAT (obj, p);
4003 break;
177c0ea7 4004
ece93c02
GM
4005 case MEM_TYPE_VECTOR:
4006 case MEM_TYPE_PROCESS:
4007 case MEM_TYPE_HASH_TABLE:
4008 case MEM_TYPE_FRAME:
4009 case MEM_TYPE_WINDOW:
4010 if (live_vector_p (m, p))
4011 {
4012 Lisp_Object tem;
4013 XSETVECTOR (tem, p);
3ef06d12 4014 if (!GC_SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
ece93c02
GM
4015 obj = tem;
4016 }
4017 break;
4018
4019 default:
4020 abort ();
4021 }
4022
4023 if (!GC_NILP (obj))
49723c04 4024 mark_object (obj);
ece93c02
GM
4025 }
4026}
4027
4028
4029/* Mark Lisp objects referenced from the address range START..END. */
34400008 4030
177c0ea7 4031static void
34400008
GM
4032mark_memory (start, end)
4033 void *start, *end;
4034{
4035 Lisp_Object *p;
ece93c02 4036 void **pp;
34400008
GM
4037
4038#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4039 nzombies = 0;
4040#endif
4041
4042 /* Make START the pointer to the start of the memory region,
4043 if it isn't already. */
4044 if (end < start)
4045 {
4046 void *tem = start;
4047 start = end;
4048 end = tem;
4049 }
ece93c02
GM
4050
4051 /* Mark Lisp_Objects. */
34400008 4052 for (p = (Lisp_Object *) start; (void *) p < end; ++p)
182ff242 4053 mark_maybe_object (*p);
ece93c02
GM
4054
4055 /* Mark Lisp data pointed to. This is necessary because, in some
4056 situations, the C compiler optimizes Lisp objects away, so that
4057 only a pointer to them remains. Example:
4058
4059 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
7ee72033 4060 ()
ece93c02
GM
4061 {
4062 Lisp_Object obj = build_string ("test");
4063 struct Lisp_String *s = XSTRING (obj);
4064 Fgarbage_collect ();
4065 fprintf (stderr, "test `%s'\n", s->data);
4066 return Qnil;
4067 }
4068
4069 Here, `obj' isn't really used, and the compiler optimizes it
4070 away. The only reference to the life string is through the
4071 pointer `s'. */
177c0ea7 4072
ece93c02
GM
4073 for (pp = (void **) start; (void *) pp < end; ++pp)
4074 mark_maybe_pointer (*pp);
182ff242
GM
4075}
4076
30f637f8
DL
4077/* setjmp will work with GCC unless NON_SAVING_SETJMP is defined in
4078 the GCC system configuration. In gcc 3.2, the only systems for
4079 which this is so are i386-sco5 non-ELF, i386-sysv3 (maybe included
4080 by others?) and ns32k-pc532-min. */
182ff242
GM
4081
4082#if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4083
4084static int setjmp_tested_p, longjmps_done;
4085
4086#define SETJMP_WILL_LIKELY_WORK "\
4087\n\
4088Emacs garbage collector has been changed to use conservative stack\n\
4089marking. Emacs has determined that the method it uses to do the\n\
4090marking will likely work on your system, but this isn't sure.\n\
4091\n\
4092If you are a system-programmer, or can get the help of a local wizard\n\
4093who is, please take a look at the function mark_stack in alloc.c, and\n\
4094verify that the methods used are appropriate for your system.\n\
4095\n\
d191623b 4096Please mail the result to <emacs-devel@gnu.org>.\n\
182ff242
GM
4097"
4098
4099#define SETJMP_WILL_NOT_WORK "\
4100\n\
4101Emacs garbage collector has been changed to use conservative stack\n\
4102marking. Emacs has determined that the default method it uses to do the\n\
4103marking will not work on your system. We will need a system-dependent\n\
4104solution for your system.\n\
4105\n\
4106Please take a look at the function mark_stack in alloc.c, and\n\
4107try to find a way to make it work on your system.\n\
30f637f8
DL
4108\n\
4109Note that you may get false negatives, depending on the compiler.\n\
4110In particular, you need to use -O with GCC for this test.\n\
4111\n\
d191623b 4112Please mail the result to <emacs-devel@gnu.org>.\n\
182ff242
GM
4113"
4114
4115
4116/* Perform a quick check if it looks like setjmp saves registers in a
4117 jmp_buf. Print a message to stderr saying so. When this test
4118 succeeds, this is _not_ a proof that setjmp is sufficient for
4119 conservative stack marking. Only the sources or a disassembly
4120 can prove that. */
4121
4122static void
4123test_setjmp ()
4124{
4125 char buf[10];
4126 register int x;
4127 jmp_buf jbuf;
4128 int result = 0;
4129
4130 /* Arrange for X to be put in a register. */
4131 sprintf (buf, "1");
4132 x = strlen (buf);
4133 x = 2 * x - 1;
4134
4135 setjmp (jbuf);
4136 if (longjmps_done == 1)
34400008 4137 {
182ff242 4138 /* Came here after the longjmp at the end of the function.
34400008 4139
182ff242
GM
4140 If x == 1, the longjmp has restored the register to its
4141 value before the setjmp, and we can hope that setjmp
4142 saves all such registers in the jmp_buf, although that
4143 isn't sure.
34400008 4144
182ff242
GM
4145 For other values of X, either something really strange is
4146 taking place, or the setjmp just didn't save the register. */
4147
4148 if (x == 1)
4149 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
4150 else
4151 {
4152 fprintf (stderr, SETJMP_WILL_NOT_WORK);
4153 exit (1);
34400008
GM
4154 }
4155 }
182ff242
GM
4156
4157 ++longjmps_done;
4158 x = 2;
4159 if (longjmps_done == 1)
4160 longjmp (jbuf, 1);
34400008
GM
4161}
4162
182ff242
GM
4163#endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
4164
34400008
GM
4165
4166#if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4167
4168/* Abort if anything GCPRO'd doesn't survive the GC. */
4169
4170static void
4171check_gcpros ()
4172{
4173 struct gcpro *p;
4174 int i;
4175
4176 for (p = gcprolist; p; p = p->next)
4177 for (i = 0; i < p->nvars; ++i)
4178 if (!survives_gc_p (p->var[i]))
92cc28b2
SM
4179 /* FIXME: It's not necessarily a bug. It might just be that the
4180 GCPRO is unnecessary or should release the object sooner. */
34400008
GM
4181 abort ();
4182}
4183
4184#elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4185
4186static void
4187dump_zombies ()
4188{
4189 int i;
4190
4191 fprintf (stderr, "\nZombies kept alive = %d:\n", nzombies);
4192 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
4193 {
4194 fprintf (stderr, " %d = ", i);
4195 debug_print (zombies[i]);
4196 }
4197}
4198
4199#endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4200
4201
182ff242
GM
4202/* Mark live Lisp objects on the C stack.
4203
4204 There are several system-dependent problems to consider when
4205 porting this to new architectures:
4206
4207 Processor Registers
4208
4209 We have to mark Lisp objects in CPU registers that can hold local
4210 variables or are used to pass parameters.
4211
4212 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4213 something that either saves relevant registers on the stack, or
4214 calls mark_maybe_object passing it each register's contents.
4215
4216 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4217 implementation assumes that calling setjmp saves registers we need
4218 to see in a jmp_buf which itself lies on the stack. This doesn't
4219 have to be true! It must be verified for each system, possibly
4220 by taking a look at the source code of setjmp.
4221
4222 Stack Layout
4223
4224 Architectures differ in the way their processor stack is organized.
4225 For example, the stack might look like this
4226
4227 +----------------+
4228 | Lisp_Object | size = 4
4229 +----------------+
4230 | something else | size = 2
4231 +----------------+
4232 | Lisp_Object | size = 4
4233 +----------------+
4234 | ... |
4235
4236 In such a case, not every Lisp_Object will be aligned equally. To
4237 find all Lisp_Object on the stack it won't be sufficient to walk
4238 the stack in steps of 4 bytes. Instead, two passes will be
4239 necessary, one starting at the start of the stack, and a second
4240 pass starting at the start of the stack + 2. Likewise, if the
4241 minimal alignment of Lisp_Objects on the stack is 1, four passes
4242 would be necessary, each one starting with one byte more offset
4243 from the stack start.
4244
4245 The current code assumes by default that Lisp_Objects are aligned
4246 equally on the stack. */
34400008
GM
4247
4248static void
4249mark_stack ()
4250{
630909a5 4251 int i;
34400008 4252 jmp_buf j;
6bbd7a29 4253 volatile int stack_grows_down_p = (char *) &j > (char *) stack_base;
34400008
GM
4254 void *end;
4255
4256 /* This trick flushes the register windows so that all the state of
4257 the process is contained in the stack. */
ab6780cd 4258 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
422eec7e
DL
4259 needed on ia64 too. See mach_dep.c, where it also says inline
4260 assembler doesn't work with relevant proprietary compilers. */
34400008
GM
4261#ifdef sparc
4262 asm ("ta 3");
4263#endif
177c0ea7 4264
34400008
GM
4265 /* Save registers that we need to see on the stack. We need to see
4266 registers used to hold register variables and registers used to
4267 pass parameters. */
4268#ifdef GC_SAVE_REGISTERS_ON_STACK
4269 GC_SAVE_REGISTERS_ON_STACK (end);
182ff242 4270#else /* not GC_SAVE_REGISTERS_ON_STACK */
177c0ea7 4271
182ff242
GM
4272#ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
4273 setjmp will definitely work, test it
4274 and print a message with the result
4275 of the test. */
4276 if (!setjmp_tested_p)
4277 {
4278 setjmp_tested_p = 1;
4279 test_setjmp ();
4280 }
4281#endif /* GC_SETJMP_WORKS */
177c0ea7 4282
34400008
GM
4283 setjmp (j);
4284 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
182ff242 4285#endif /* not GC_SAVE_REGISTERS_ON_STACK */
34400008
GM
4286
4287 /* This assumes that the stack is a contiguous region in memory. If
182ff242
GM
4288 that's not the case, something has to be done here to iterate
4289 over the stack segments. */
630909a5 4290#ifndef GC_LISP_OBJECT_ALIGNMENT
422eec7e
DL
4291#ifdef __GNUC__
4292#define GC_LISP_OBJECT_ALIGNMENT __alignof__ (Lisp_Object)
4293#else
630909a5 4294#define GC_LISP_OBJECT_ALIGNMENT sizeof (Lisp_Object)
422eec7e 4295#endif
182ff242 4296#endif
24452cd5 4297 for (i = 0; i < sizeof (Lisp_Object); i += GC_LISP_OBJECT_ALIGNMENT)
630909a5 4298 mark_memory ((char *) stack_base + i, end);
4dec23ff
AS
4299 /* Allow for marking a secondary stack, like the register stack on the
4300 ia64. */
4301#ifdef GC_MARK_SECONDARY_STACK
4302 GC_MARK_SECONDARY_STACK ();
4303#endif
34400008
GM
4304
4305#if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4306 check_gcpros ();
4307#endif
4308}
4309
4310
4311#endif /* GC_MARK_STACK != 0 */
4312
4313
4314\f
2e471eb5
GM
4315/***********************************************************************
4316 Pure Storage Management
4317 ***********************************************************************/
4318
1f0b3fd2
GM
4319/* Allocate room for SIZE bytes from pure Lisp storage and return a
4320 pointer to it. TYPE is the Lisp type for which the memory is
4321 allocated. TYPE < 0 means it's not used for a Lisp object.
4322
4323 If store_pure_type_info is set and TYPE is >= 0, the type of
4324 the allocated object is recorded in pure_types. */
4325
4326static POINTER_TYPE *
4327pure_alloc (size, type)
4328 size_t size;
4329 int type;
4330{
1f0b3fd2 4331 POINTER_TYPE *result;
831b476c
SM
4332#ifdef USE_LSB_TAG
4333 size_t alignment = (1 << GCTYPEBITS);
4334#else
44117420 4335 size_t alignment = sizeof (EMACS_INT);
1f0b3fd2
GM
4336
4337 /* Give Lisp_Floats an extra alignment. */
4338 if (type == Lisp_Float)
4339 {
1f0b3fd2
GM
4340#if defined __GNUC__ && __GNUC__ >= 2
4341 alignment = __alignof (struct Lisp_Float);
4342#else
4343 alignment = sizeof (struct Lisp_Float);
4344#endif
9e713715 4345 }
831b476c 4346#endif
1f0b3fd2 4347
44117420 4348 again:
ab6780cd 4349 result = ALIGN (purebeg + pure_bytes_used, alignment);
44117420
KS
4350 pure_bytes_used = ((char *)result - (char *)purebeg) + size;
4351
4352 if (pure_bytes_used <= pure_size)
4353 return result;
4354
4355 /* Don't allocate a large amount here,
4356 because it might get mmap'd and then its address
4357 might not be usable. */
4358 purebeg = (char *) xmalloc (10000);
4359 pure_size = 10000;
4360 pure_bytes_used_before_overflow += pure_bytes_used - size;
4361 pure_bytes_used = 0;
4362 goto again;
1f0b3fd2
GM
4363}
4364
4365
852f8cdc 4366/* Print a warning if PURESIZE is too small. */
9e713715
GM
4367
4368void
4369check_pure_size ()
4370{
4371 if (pure_bytes_used_before_overflow)
a4d35afd
SM
4372 message ("Pure Lisp storage overflow (approx. %d bytes needed)",
4373 (int) (pure_bytes_used + pure_bytes_used_before_overflow));
9e713715
GM
4374}
4375
4376
2e471eb5
GM
4377/* Return a string allocated in pure space. DATA is a buffer holding
4378 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
4379 non-zero means make the result string multibyte.
1a4f1e2c 4380
2e471eb5
GM
4381 Must get an error if pure storage is full, since if it cannot hold
4382 a large string it may be able to hold conses that point to that
4383 string; then the string is not protected from gc. */
7146af97
JB
4384
4385Lisp_Object
2e471eb5 4386make_pure_string (data, nchars, nbytes, multibyte)
7146af97 4387 char *data;
2e471eb5 4388 int nchars, nbytes;
c0696668 4389 int multibyte;
7146af97 4390{
2e471eb5
GM
4391 Lisp_Object string;
4392 struct Lisp_String *s;
c0696668 4393
1f0b3fd2
GM
4394 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
4395 s->data = (unsigned char *) pure_alloc (nbytes + 1, -1);
2e471eb5
GM
4396 s->size = nchars;
4397 s->size_byte = multibyte ? nbytes : -1;
4398 bcopy (data, s->data, nbytes);
4399 s->data[nbytes] = '\0';
4400 s->intervals = NULL_INTERVAL;
2e471eb5
GM
4401 XSETSTRING (string, s);
4402 return string;
7146af97
JB
4403}
4404
2e471eb5 4405
34400008
GM
4406/* Return a cons allocated from pure space. Give it pure copies
4407 of CAR as car and CDR as cdr. */
4408
7146af97
JB
4409Lisp_Object
4410pure_cons (car, cdr)
4411 Lisp_Object car, cdr;
4412{
4413 register Lisp_Object new;
1f0b3fd2 4414 struct Lisp_Cons *p;
7146af97 4415
1f0b3fd2
GM
4416 p = (struct Lisp_Cons *) pure_alloc (sizeof *p, Lisp_Cons);
4417 XSETCONS (new, p);
f3fbd155
KR
4418 XSETCAR (new, Fpurecopy (car));
4419 XSETCDR (new, Fpurecopy (cdr));
7146af97
JB
4420 return new;
4421}
4422
7146af97 4423
34400008
GM
4424/* Value is a float object with value NUM allocated from pure space. */
4425
7146af97
JB
4426Lisp_Object
4427make_pure_float (num)
4428 double num;
4429{
4430 register Lisp_Object new;
1f0b3fd2 4431 struct Lisp_Float *p;
7146af97 4432
1f0b3fd2
GM
4433 p = (struct Lisp_Float *) pure_alloc (sizeof *p, Lisp_Float);
4434 XSETFLOAT (new, p);
70949dac 4435 XFLOAT_DATA (new) = num;
7146af97
JB
4436 return new;
4437}
4438
34400008
GM
4439
4440/* Return a vector with room for LEN Lisp_Objects allocated from
4441 pure space. */
4442
7146af97
JB
4443Lisp_Object
4444make_pure_vector (len)
42607681 4445 EMACS_INT len;
7146af97 4446{
1f0b3fd2
GM
4447 Lisp_Object new;
4448 struct Lisp_Vector *p;
4449 size_t size = sizeof *p + (len - 1) * sizeof (Lisp_Object);
7146af97 4450
1f0b3fd2
GM
4451 p = (struct Lisp_Vector *) pure_alloc (size, Lisp_Vectorlike);
4452 XSETVECTOR (new, p);
7146af97
JB
4453 XVECTOR (new)->size = len;
4454 return new;
4455}
4456
34400008 4457
7146af97 4458DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
7ee72033 4459 doc: /* Make a copy of OBJECT in pure storage.
228299fa 4460Recursively copies contents of vectors and cons cells.
7ee72033
MB
4461Does not copy symbols. Copies strings without text properties. */)
4462 (obj)
7146af97
JB
4463 register Lisp_Object obj;
4464{
265a9e55 4465 if (NILP (Vpurify_flag))
7146af97
JB
4466 return obj;
4467
1f0b3fd2 4468 if (PURE_POINTER_P (XPNTR (obj)))
7146af97
JB
4469 return obj;
4470
d6dd74bb 4471 if (CONSP (obj))
70949dac 4472 return pure_cons (XCAR (obj), XCDR (obj));
d6dd74bb 4473 else if (FLOATP (obj))
70949dac 4474 return make_pure_float (XFLOAT_DATA (obj));
d6dd74bb 4475 else if (STRINGP (obj))
d5db4077
KR
4476 return make_pure_string (SDATA (obj), SCHARS (obj),
4477 SBYTES (obj),
c0696668 4478 STRING_MULTIBYTE (obj));
d6dd74bb
KH
4479 else if (COMPILEDP (obj) || VECTORP (obj))
4480 {
4481 register struct Lisp_Vector *vec;
41b867ea
AS
4482 register int i;
4483 EMACS_INT size;
d6dd74bb
KH
4484
4485 size = XVECTOR (obj)->size;
7d535c68
KH
4486 if (size & PSEUDOVECTOR_FLAG)
4487 size &= PSEUDOVECTOR_SIZE_MASK;
41b867ea 4488 vec = XVECTOR (make_pure_vector (size));
d6dd74bb
KH
4489 for (i = 0; i < size; i++)
4490 vec->contents[i] = Fpurecopy (XVECTOR (obj)->contents[i]);
4491 if (COMPILEDP (obj))
4492 XSETCOMPILED (obj, vec);
4493 else
4494 XSETVECTOR (obj, vec);
7146af97
JB
4495 return obj;
4496 }
d6dd74bb
KH
4497 else if (MARKERP (obj))
4498 error ("Attempt to copy a marker to pure storage");
6bbd7a29
GM
4499
4500 return obj;
7146af97 4501}
2e471eb5 4502
34400008 4503
7146af97 4504\f
34400008
GM
4505/***********************************************************************
4506 Protection from GC
4507 ***********************************************************************/
4508
2e471eb5
GM
4509/* Put an entry in staticvec, pointing at the variable with address
4510 VARADDRESS. */
7146af97
JB
4511
4512void
4513staticpro (varaddress)
4514 Lisp_Object *varaddress;
4515{
4516 staticvec[staticidx++] = varaddress;
4517 if (staticidx >= NSTATICS)
4518 abort ();
4519}
4520
4521struct catchtag
2e471eb5 4522{
7146af97
JB
4523 Lisp_Object tag;
4524 Lisp_Object val;
4525 struct catchtag *next;
2e471eb5 4526};
7146af97 4527
7146af97 4528\f
34400008
GM
4529/***********************************************************************
4530 Protection from GC
4531 ***********************************************************************/
1a4f1e2c 4532
e8197642
RS
4533/* Temporarily prevent garbage collection. */
4534
4535int
4536inhibit_garbage_collection ()
4537{
aed13378 4538 int count = SPECPDL_INDEX ();
54defd0d
AS
4539 int nbits = min (VALBITS, BITS_PER_INT);
4540
4541 specbind (Qgc_cons_threshold, make_number (((EMACS_INT) 1 << (nbits - 1)) - 1));
e8197642
RS
4542 return count;
4543}
4544
34400008 4545
7146af97 4546DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
7ee72033 4547 doc: /* Reclaim storage for Lisp objects no longer needed.
e1e37596
RS
4548Garbage collection happens automatically if you cons more than
4549`gc-cons-threshold' bytes of Lisp data since previous garbage collection.
4550`garbage-collect' normally returns a list with info on amount of space in use:
228299fa
GM
4551 ((USED-CONSES . FREE-CONSES) (USED-SYMS . FREE-SYMS)
4552 (USED-MARKERS . FREE-MARKERS) USED-STRING-CHARS USED-VECTOR-SLOTS
4553 (USED-FLOATS . FREE-FLOATS) (USED-INTERVALS . FREE-INTERVALS)
4554 (USED-STRINGS . FREE-STRINGS))
e1e37596
RS
4555However, if there was overflow in pure space, `garbage-collect'
4556returns nil, because real GC can't be done. */)
7ee72033 4557 ()
7146af97 4558{
7146af97
JB
4559 register struct specbinding *bind;
4560 struct catchtag *catch;
4561 struct handler *handler;
7146af97
JB
4562 char stack_top_variable;
4563 register int i;
6efc7df7 4564 int message_p;
96117bc7 4565 Lisp_Object total[8];
331379bf 4566 int count = SPECPDL_INDEX ();
2c5bd608
DL
4567 EMACS_TIME t1, t2, t3;
4568
3de0effb
RS
4569 if (abort_on_gc)
4570 abort ();
4571
2c5bd608 4572 EMACS_GET_TIME (t1);
7146af97 4573
9e713715
GM
4574 /* Can't GC if pure storage overflowed because we can't determine
4575 if something is a pure object or not. */
4576 if (pure_bytes_used_before_overflow)
4577 return Qnil;
4578
58595309
KH
4579 /* In case user calls debug_print during GC,
4580 don't let that cause a recursive GC. */
4581 consing_since_gc = 0;
4582
6efc7df7
GM
4583 /* Save what's currently displayed in the echo area. */
4584 message_p = push_message ();
c55b0da6 4585 record_unwind_protect (pop_message_unwind, Qnil);
41c28a37 4586
7146af97
JB
4587 /* Save a copy of the contents of the stack, for debugging. */
4588#if MAX_SAVE_STACK > 0
265a9e55 4589 if (NILP (Vpurify_flag))
7146af97
JB
4590 {
4591 i = &stack_top_variable - stack_bottom;
4592 if (i < 0) i = -i;
4593 if (i < MAX_SAVE_STACK)
4594 {
4595 if (stack_copy == 0)
9ac0d9e0 4596 stack_copy = (char *) xmalloc (stack_copy_size = i);
7146af97 4597 else if (stack_copy_size < i)
9ac0d9e0 4598 stack_copy = (char *) xrealloc (stack_copy, (stack_copy_size = i));
7146af97
JB
4599 if (stack_copy)
4600 {
42607681 4601 if ((EMACS_INT) (&stack_top_variable - stack_bottom) > 0)
7146af97
JB
4602 bcopy (stack_bottom, stack_copy, i);
4603 else
4604 bcopy (&stack_top_variable, stack_copy, i);
4605 }
4606 }
4607 }
4608#endif /* MAX_SAVE_STACK > 0 */
4609
299585ee 4610 if (garbage_collection_messages)
691c4285 4611 message1_nolog ("Garbage collecting...");
7146af97 4612
6e0fca1d
RS
4613 BLOCK_INPUT;
4614
eec7b73d
RS
4615 shrink_regexp_cache ();
4616
4929a878 4617 /* Don't keep undo information around forever. */
7146af97
JB
4618 {
4619 register struct buffer *nextb = all_buffers;
4620
4621 while (nextb)
4622 {
ffd56f97
JB
4623 /* If a buffer's undo list is Qt, that means that undo is
4624 turned off in that buffer. Calling truncate_undo_list on
4625 Qt tends to return NULL, which effectively turns undo back on.
4626 So don't call truncate_undo_list if undo_list is Qt. */
4627 if (! EQ (nextb->undo_list, Qt))
177c0ea7 4628 nextb->undo_list
502b9b64 4629 = truncate_undo_list (nextb->undo_list, undo_limit,
ae6a9bfe 4630 undo_strong_limit, undo_outer_limit);
e0fead5d
AI
4631
4632 /* Shrink buffer gaps, but skip indirect and dead buffers. */
4633 if (nextb->base_buffer == 0 && !NILP (nextb->name))
4634 {
4635 /* If a buffer's gap size is more than 10% of the buffer
4636 size, or larger than 2000 bytes, then shrink it
4637 accordingly. Keep a minimum size of 20 bytes. */
4638 int size = min (2000, max (20, (nextb->text->z_byte / 10)));
4639
4640 if (nextb->text->gap_size > size)
4641 {
4642 struct buffer *save_current = current_buffer;
4643 current_buffer = nextb;
4644 make_gap (-(nextb->text->gap_size - size));
4645 current_buffer = save_current;
4646 }
4647 }
4648
7146af97
JB
4649 nextb = nextb->next;
4650 }
4651 }
4652
4653 gc_in_progress = 1;
4654
c23baf9f 4655 /* clear_marks (); */
7146af97 4656
0930c1a1 4657 /* Mark all the special slots that serve as the roots of accessibility. */
7146af97
JB
4658
4659 for (i = 0; i < staticidx; i++)
49723c04 4660 mark_object (*staticvec[i]);
34400008 4661
126f9c02
SM
4662 for (bind = specpdl; bind != specpdl_ptr; bind++)
4663 {
4664 mark_object (bind->symbol);
4665 mark_object (bind->old_value);
4666 }
4667 mark_kboards ();
4668
4669#ifdef USE_GTK
4670 {
4671 extern void xg_mark_data ();
4672 xg_mark_data ();
4673 }
4674#endif
4675
34400008
GM
4676#if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
4677 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
4678 mark_stack ();
4679#else
acf5f7d3
SM
4680 {
4681 register struct gcpro *tail;
4682 for (tail = gcprolist; tail; tail = tail->next)
4683 for (i = 0; i < tail->nvars; i++)
0930c1a1 4684 mark_object (tail->var[i]);
acf5f7d3 4685 }
34400008 4686#endif
177c0ea7 4687
630686c8 4688 mark_byte_stack ();
7146af97
JB
4689 for (catch = catchlist; catch; catch = catch->next)
4690 {
49723c04
SM
4691 mark_object (catch->tag);
4692 mark_object (catch->val);
177c0ea7 4693 }
7146af97
JB
4694 for (handler = handlerlist; handler; handler = handler->next)
4695 {
49723c04
SM
4696 mark_object (handler->handler);
4697 mark_object (handler->var);
177c0ea7 4698 }
b40ea20a 4699 mark_backtrace ();
7146af97 4700
74c35a48
SM
4701#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4702 mark_stack ();
4703#endif
4704
c37adf23
SM
4705 /* Everything is now marked, except for the things that require special
4706 finalization, i.e. the undo_list.
4707 Look thru every buffer's undo list
4708 for elements that update markers that were not marked,
4709 and delete them. */
4c315bda
RS
4710 {
4711 register struct buffer *nextb = all_buffers;
4712
4713 while (nextb)
4714 {
4715 /* If a buffer's undo list is Qt, that means that undo is
c37adf23
SM
4716 turned off in that buffer. Calling truncate_undo_list on
4717 Qt tends to return NULL, which effectively turns undo back on.
4718 So don't call truncate_undo_list if undo_list is Qt. */
4c315bda
RS
4719 if (! EQ (nextb->undo_list, Qt))
4720 {
c37adf23 4721 Lisp_Object tail, prev;
4c315bda
RS
4722 tail = nextb->undo_list;
4723 prev = Qnil;
4724 while (CONSP (tail))
4725 {
c37adf23
SM
4726 if (GC_CONSP (XCAR (tail))
4727 && GC_MARKERP (XCAR (XCAR (tail)))
4728 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
4c315bda
RS
4729 {
4730 if (NILP (prev))
c37adf23 4731 nextb->undo_list = tail = XCDR (tail);
4c315bda 4732 else
f3fbd155 4733 {
c37adf23 4734 tail = XCDR (tail);
f3fbd155
KR
4735 XSETCDR (prev, tail);
4736 }
4c315bda
RS
4737 }
4738 else
4739 {
4740 prev = tail;
70949dac 4741 tail = XCDR (tail);
4c315bda
RS
4742 }
4743 }
4744 }
c37adf23
SM
4745 /* Now that we have stripped the elements that need not be in the
4746 undo_list any more, we can finally mark the list. */
4747 mark_object (nextb->undo_list);
4c315bda
RS
4748
4749 nextb = nextb->next;
4750 }
4751 }
4752
c37adf23 4753 gc_sweep ();
6b67a518 4754
7146af97
JB
4755 /* Clear the mark bits that we set in certain root slots. */
4756
033a5fa3 4757 unmark_byte_stack ();
3ef06d12
SM
4758 VECTOR_UNMARK (&buffer_defaults);
4759 VECTOR_UNMARK (&buffer_local_symbols);
7146af97 4760
34400008
GM
4761#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
4762 dump_zombies ();
4763#endif
4764
6e0fca1d
RS
4765 UNBLOCK_INPUT;
4766
c23baf9f 4767 /* clear_marks (); */
7146af97
JB
4768 gc_in_progress = 0;
4769
4770 consing_since_gc = 0;
4771 if (gc_cons_threshold < 10000)
4772 gc_cons_threshold = 10000;
4773
299585ee
RS
4774 if (garbage_collection_messages)
4775 {
6efc7df7
GM
4776 if (message_p || minibuf_level > 0)
4777 restore_message ();
299585ee
RS
4778 else
4779 message1_nolog ("Garbage collecting...done");
4780 }
7146af97 4781
98edb5ff 4782 unbind_to (count, Qnil);
2e471eb5
GM
4783
4784 total[0] = Fcons (make_number (total_conses),
4785 make_number (total_free_conses));
4786 total[1] = Fcons (make_number (total_symbols),
4787 make_number (total_free_symbols));
4788 total[2] = Fcons (make_number (total_markers),
4789 make_number (total_free_markers));
96117bc7
GM
4790 total[3] = make_number (total_string_size);
4791 total[4] = make_number (total_vector_size);
4792 total[5] = Fcons (make_number (total_floats),
2e471eb5 4793 make_number (total_free_floats));
96117bc7 4794 total[6] = Fcons (make_number (total_intervals),
2e471eb5 4795 make_number (total_free_intervals));
96117bc7 4796 total[7] = Fcons (make_number (total_strings),
2e471eb5
GM
4797 make_number (total_free_strings));
4798
34400008 4799#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
7146af97 4800 {
34400008
GM
4801 /* Compute average percentage of zombies. */
4802 double nlive = 0;
177c0ea7 4803
34400008 4804 for (i = 0; i < 7; ++i)
83fc9c63
DL
4805 if (CONSP (total[i]))
4806 nlive += XFASTINT (XCAR (total[i]));
34400008
GM
4807
4808 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
4809 max_live = max (nlive, max_live);
4810 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
4811 max_zombies = max (nzombies, max_zombies);
4812 ++ngcs;
4813 }
4814#endif
7146af97 4815
9e713715
GM
4816 if (!NILP (Vpost_gc_hook))
4817 {
4818 int count = inhibit_garbage_collection ();
4819 safe_run_hooks (Qpost_gc_hook);
4820 unbind_to (count, Qnil);
4821 }
2c5bd608
DL
4822
4823 /* Accumulate statistics. */
4824 EMACS_GET_TIME (t2);
4825 EMACS_SUB_TIME (t3, t2, t1);
4826 if (FLOATP (Vgc_elapsed))
69ab9f85
SM
4827 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed) +
4828 EMACS_SECS (t3) +
4829 EMACS_USECS (t3) * 1.0e-6);
2c5bd608
DL
4830 gcs_done++;
4831
96117bc7 4832 return Flist (sizeof total / sizeof *total, total);
7146af97 4833}
34400008 4834
41c28a37 4835
3770920e
GM
4836/* Mark Lisp objects in glyph matrix MATRIX. Currently the
4837 only interesting objects referenced from glyphs are strings. */
41c28a37
GM
4838
4839static void
4840mark_glyph_matrix (matrix)
4841 struct glyph_matrix *matrix;
4842{
4843 struct glyph_row *row = matrix->rows;
4844 struct glyph_row *end = row + matrix->nrows;
4845
2e471eb5
GM
4846 for (; row < end; ++row)
4847 if (row->enabled_p)
4848 {
4849 int area;
4850 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
4851 {
4852 struct glyph *glyph = row->glyphs[area];
4853 struct glyph *end_glyph = glyph + row->used[area];
177c0ea7 4854
2e471eb5
GM
4855 for (; glyph < end_glyph; ++glyph)
4856 if (GC_STRINGP (glyph->object)
4857 && !STRING_MARKED_P (XSTRING (glyph->object)))
49723c04 4858 mark_object (glyph->object);
2e471eb5
GM
4859 }
4860 }
41c28a37
GM
4861}
4862
34400008 4863
41c28a37
GM
4864/* Mark Lisp faces in the face cache C. */
4865
4866static void
4867mark_face_cache (c)
4868 struct face_cache *c;
4869{
4870 if (c)
4871 {
4872 int i, j;
4873 for (i = 0; i < c->used; ++i)
4874 {
4875 struct face *face = FACE_FROM_ID (c->f, i);
4876
4877 if (face)
4878 {
4879 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
49723c04 4880 mark_object (face->lface[j]);
41c28a37
GM
4881 }
4882 }
4883 }
4884}
4885
4886
4887#ifdef HAVE_WINDOW_SYSTEM
4888
4889/* Mark Lisp objects in image IMG. */
4890
4891static void
4892mark_image (img)
4893 struct image *img;
4894{
49723c04 4895 mark_object (img->spec);
177c0ea7 4896
3e60b029 4897 if (!NILP (img->data.lisp_val))
49723c04 4898 mark_object (img->data.lisp_val);
41c28a37
GM
4899}
4900
4901
4902/* Mark Lisp objects in image cache of frame F. It's done this way so
4903 that we don't have to include xterm.h here. */
4904
4905static void
4906mark_image_cache (f)
4907 struct frame *f;
4908{
4909 forall_images_in_image_cache (f, mark_image);
4910}
4911
4912#endif /* HAVE_X_WINDOWS */
4913
4914
7146af97 4915\f
1a4f1e2c 4916/* Mark reference to a Lisp_Object.
2e471eb5
GM
4917 If the object referred to has not been seen yet, recursively mark
4918 all the references contained in it. */
7146af97 4919
785cd37f 4920#define LAST_MARKED_SIZE 500
49723c04 4921Lisp_Object last_marked[LAST_MARKED_SIZE];
785cd37f
RS
4922int last_marked_index;
4923
1342fc6f
RS
4924/* For debugging--call abort when we cdr down this many
4925 links of a list, in mark_object. In debugging,
4926 the call to abort will hit a breakpoint.
4927 Normally this is zero and the check never goes off. */
4928int mark_object_loop_halt;
4929
41c28a37 4930void
49723c04
SM
4931mark_object (arg)
4932 Lisp_Object arg;
7146af97 4933{
49723c04 4934 register Lisp_Object obj = arg;
4f5c1376
GM
4935#ifdef GC_CHECK_MARKED_OBJECTS
4936 void *po;
4937 struct mem_node *m;
4938#endif
1342fc6f 4939 int cdr_count = 0;
7146af97 4940
9149e743 4941 loop:
7146af97 4942
1f0b3fd2 4943 if (PURE_POINTER_P (XPNTR (obj)))
7146af97
JB
4944 return;
4945
49723c04 4946 last_marked[last_marked_index++] = obj;
785cd37f
RS
4947 if (last_marked_index == LAST_MARKED_SIZE)
4948 last_marked_index = 0;
4949
4f5c1376
GM
4950 /* Perform some sanity checks on the objects marked here. Abort if
4951 we encounter an object we know is bogus. This increases GC time
4952 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
4953#ifdef GC_CHECK_MARKED_OBJECTS
4954
4955 po = (void *) XPNTR (obj);
4956
4957 /* Check that the object pointed to by PO is known to be a Lisp
4958 structure allocated from the heap. */
4959#define CHECK_ALLOCATED() \
4960 do { \
4961 m = mem_find (po); \
4962 if (m == MEM_NIL) \
4963 abort (); \
4964 } while (0)
4965
4966 /* Check that the object pointed to by PO is live, using predicate
4967 function LIVEP. */
4968#define CHECK_LIVE(LIVEP) \
4969 do { \
4970 if (!LIVEP (m, po)) \
4971 abort (); \
4972 } while (0)
4973
4974 /* Check both of the above conditions. */
4975#define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
4976 do { \
4977 CHECK_ALLOCATED (); \
4978 CHECK_LIVE (LIVEP); \
4979 } while (0) \
177c0ea7 4980
4f5c1376 4981#else /* not GC_CHECK_MARKED_OBJECTS */
177c0ea7 4982
4f5c1376
GM
4983#define CHECK_ALLOCATED() (void) 0
4984#define CHECK_LIVE(LIVEP) (void) 0
4985#define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
177c0ea7 4986
4f5c1376
GM
4987#endif /* not GC_CHECK_MARKED_OBJECTS */
4988
0220c518 4989 switch (SWITCH_ENUM_CAST (XGCTYPE (obj)))
7146af97
JB
4990 {
4991 case Lisp_String:
4992 {
4993 register struct Lisp_String *ptr = XSTRING (obj);
4f5c1376 4994 CHECK_ALLOCATED_AND_LIVE (live_string_p);
d5e35230 4995 MARK_INTERVAL_TREE (ptr->intervals);
2e471eb5 4996 MARK_STRING (ptr);
361b097f 4997#ifdef GC_CHECK_STRING_BYTES
676a7251
GM
4998 /* Check that the string size recorded in the string is the
4999 same as the one recorded in the sdata structure. */
5000 CHECK_STRING_BYTES (ptr);
361b097f 5001#endif /* GC_CHECK_STRING_BYTES */
7146af97
JB
5002 }
5003 break;
5004
76437631 5005 case Lisp_Vectorlike:
4f5c1376
GM
5006#ifdef GC_CHECK_MARKED_OBJECTS
5007 m = mem_find (po);
5008 if (m == MEM_NIL && !GC_SUBRP (obj)
5009 && po != &buffer_defaults
5010 && po != &buffer_local_symbols)
5011 abort ();
5012#endif /* GC_CHECK_MARKED_OBJECTS */
177c0ea7 5013
30e3190a 5014 if (GC_BUFFERP (obj))
6b552283 5015 {
3ef06d12 5016 if (!VECTOR_MARKED_P (XBUFFER (obj)))
4f5c1376
GM
5017 {
5018#ifdef GC_CHECK_MARKED_OBJECTS
5019 if (po != &buffer_defaults && po != &buffer_local_symbols)
5020 {
5021 struct buffer *b;
5022 for (b = all_buffers; b && b != po; b = b->next)
5023 ;
5024 if (b == NULL)
5025 abort ();
5026 }
5027#endif /* GC_CHECK_MARKED_OBJECTS */
5028 mark_buffer (obj);
5029 }
6b552283 5030 }
30e3190a 5031 else if (GC_SUBRP (obj))
169ee243
RS
5032 break;
5033 else if (GC_COMPILEDP (obj))
2e471eb5
GM
5034 /* We could treat this just like a vector, but it is better to
5035 save the COMPILED_CONSTANTS element for last and avoid
5036 recursion there. */
169ee243
RS
5037 {
5038 register struct Lisp_Vector *ptr = XVECTOR (obj);
5039 register EMACS_INT size = ptr->size;
169ee243
RS
5040 register int i;
5041
3ef06d12 5042 if (VECTOR_MARKED_P (ptr))
169ee243 5043 break; /* Already marked */
177c0ea7 5044
4f5c1376 5045 CHECK_LIVE (live_vector_p);
3ef06d12 5046 VECTOR_MARK (ptr); /* Else mark it */
76437631 5047 size &= PSEUDOVECTOR_SIZE_MASK;
169ee243
RS
5048 for (i = 0; i < size; i++) /* and then mark its elements */
5049 {
5050 if (i != COMPILED_CONSTANTS)
49723c04 5051 mark_object (ptr->contents[i]);
169ee243 5052 }
49723c04 5053 obj = ptr->contents[COMPILED_CONSTANTS];
169ee243
RS
5054 goto loop;
5055 }
169ee243
RS
5056 else if (GC_FRAMEP (obj))
5057 {
c70bbf06 5058 register struct frame *ptr = XFRAME (obj);
169ee243 5059
3ef06d12
SM
5060 if (VECTOR_MARKED_P (ptr)) break; /* Already marked */
5061 VECTOR_MARK (ptr); /* Else mark it */
169ee243 5062
4f5c1376 5063 CHECK_LIVE (live_vector_p);
49723c04
SM
5064 mark_object (ptr->name);
5065 mark_object (ptr->icon_name);
5066 mark_object (ptr->title);
5067 mark_object (ptr->focus_frame);
5068 mark_object (ptr->selected_window);
5069 mark_object (ptr->minibuffer_window);
5070 mark_object (ptr->param_alist);
5071 mark_object (ptr->scroll_bars);
5072 mark_object (ptr->condemned_scroll_bars);
5073 mark_object (ptr->menu_bar_items);
5074 mark_object (ptr->face_alist);
5075 mark_object (ptr->menu_bar_vector);
5076 mark_object (ptr->buffer_predicate);
5077 mark_object (ptr->buffer_list);
5078 mark_object (ptr->menu_bar_window);
5079 mark_object (ptr->tool_bar_window);
41c28a37
GM
5080 mark_face_cache (ptr->face_cache);
5081#ifdef HAVE_WINDOW_SYSTEM
5082 mark_image_cache (ptr);
49723c04
SM
5083 mark_object (ptr->tool_bar_items);
5084 mark_object (ptr->desired_tool_bar_string);
5085 mark_object (ptr->current_tool_bar_string);
41c28a37 5086#endif /* HAVE_WINDOW_SYSTEM */
169ee243 5087 }
7b07587b 5088 else if (GC_BOOL_VECTOR_P (obj))
707788bd
RS
5089 {
5090 register struct Lisp_Vector *ptr = XVECTOR (obj);
5091
3ef06d12 5092 if (VECTOR_MARKED_P (ptr))
707788bd 5093 break; /* Already marked */
4f5c1376 5094 CHECK_LIVE (live_vector_p);
3ef06d12 5095 VECTOR_MARK (ptr); /* Else mark it */
707788bd 5096 }
41c28a37
GM
5097 else if (GC_WINDOWP (obj))
5098 {
5099 register struct Lisp_Vector *ptr = XVECTOR (obj);
5100 struct window *w = XWINDOW (obj);
41c28a37
GM
5101 register int i;
5102
5103 /* Stop if already marked. */
3ef06d12 5104 if (VECTOR_MARKED_P (ptr))
41c28a37
GM
5105 break;
5106
5107 /* Mark it. */
4f5c1376 5108 CHECK_LIVE (live_vector_p);
3ef06d12 5109 VECTOR_MARK (ptr);
41c28a37
GM
5110
5111 /* There is no Lisp data above The member CURRENT_MATRIX in
5112 struct WINDOW. Stop marking when that slot is reached. */
5113 for (i = 0;
c70bbf06 5114 (char *) &ptr->contents[i] < (char *) &w->current_matrix;
41c28a37 5115 i++)
49723c04 5116 mark_object (ptr->contents[i]);
41c28a37
GM
5117
5118 /* Mark glyphs for leaf windows. Marking window matrices is
5119 sufficient because frame matrices use the same glyph
5120 memory. */
5121 if (NILP (w->hchild)
5122 && NILP (w->vchild)
5123 && w->current_matrix)
5124 {
5125 mark_glyph_matrix (w->current_matrix);
5126 mark_glyph_matrix (w->desired_matrix);
5127 }
5128 }
5129 else if (GC_HASH_TABLE_P (obj))
5130 {
5131 struct Lisp_Hash_Table *h = XHASH_TABLE (obj);
177c0ea7 5132
41c28a37 5133 /* Stop if already marked. */
3ef06d12 5134 if (VECTOR_MARKED_P (h))
41c28a37 5135 break;
177c0ea7 5136
41c28a37 5137 /* Mark it. */
4f5c1376 5138 CHECK_LIVE (live_vector_p);
3ef06d12 5139 VECTOR_MARK (h);
41c28a37
GM
5140
5141 /* Mark contents. */
94a877ef 5142 /* Do not mark next_free or next_weak.
177c0ea7 5143 Being in the next_weak chain
94a877ef
RS
5144 should not keep the hash table alive.
5145 No need to mark `count' since it is an integer. */
49723c04
SM
5146 mark_object (h->test);
5147 mark_object (h->weak);
5148 mark_object (h->rehash_size);
5149 mark_object (h->rehash_threshold);
5150 mark_object (h->hash);
5151 mark_object (h->next);
5152 mark_object (h->index);
5153 mark_object (h->user_hash_function);
5154 mark_object (h->user_cmp_function);
41c28a37
GM
5155
5156 /* If hash table is not weak, mark all keys and values.
5157 For weak tables, mark only the vector. */
5158 if (GC_NILP (h->weak))
49723c04 5159 mark_object (h->key_and_value);
41c28a37 5160 else
3ef06d12 5161 VECTOR_MARK (XVECTOR (h->key_and_value));
41c28a37 5162 }
04ff9756 5163 else
169ee243
RS
5164 {
5165 register struct Lisp_Vector *ptr = XVECTOR (obj);
5166 register EMACS_INT size = ptr->size;
169ee243
RS
5167 register int i;
5168
3ef06d12 5169 if (VECTOR_MARKED_P (ptr)) break; /* Already marked */
4f5c1376 5170 CHECK_LIVE (live_vector_p);
3ef06d12 5171 VECTOR_MARK (ptr); /* Else mark it */
169ee243
RS
5172 if (size & PSEUDOVECTOR_FLAG)
5173 size &= PSEUDOVECTOR_SIZE_MASK;
41c28a37 5174
169ee243 5175 for (i = 0; i < size; i++) /* and then mark its elements */
49723c04 5176 mark_object (ptr->contents[i]);
169ee243
RS
5177 }
5178 break;
7146af97 5179
7146af97
JB
5180 case Lisp_Symbol:
5181 {
c70bbf06 5182 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
7146af97
JB
5183 struct Lisp_Symbol *ptrx;
5184
2336fe58 5185 if (ptr->gcmarkbit) break;
4f5c1376 5186 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
2336fe58 5187 ptr->gcmarkbit = 1;
49723c04
SM
5188 mark_object (ptr->value);
5189 mark_object (ptr->function);
5190 mark_object (ptr->plist);
34400008 5191
8fe5665d
KR
5192 if (!PURE_POINTER_P (XSTRING (ptr->xname)))
5193 MARK_STRING (XSTRING (ptr->xname));
d5db4077 5194 MARK_INTERVAL_TREE (STRING_INTERVALS (ptr->xname));
177c0ea7 5195
1c6bb482
RS
5196 /* Note that we do not mark the obarray of the symbol.
5197 It is safe not to do so because nothing accesses that
5198 slot except to check whether it is nil. */
7146af97
JB
5199 ptr = ptr->next;
5200 if (ptr)
5201 {
b0846f52 5202 ptrx = ptr; /* Use of ptrx avoids compiler bug on Sun */
7146af97 5203 XSETSYMBOL (obj, ptrx);
49723c04 5204 goto loop;
7146af97
JB
5205 }
5206 }
5207 break;
5208
a0a38eb7 5209 case Lisp_Misc:
4f5c1376 5210 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
2336fe58
SM
5211 if (XMARKER (obj)->gcmarkbit)
5212 break;
5213 XMARKER (obj)->gcmarkbit = 1;
b766f870 5214
a5da44fe 5215 switch (XMISCTYPE (obj))
a0a38eb7 5216 {
465edf35
KH
5217 case Lisp_Misc_Buffer_Local_Value:
5218 case Lisp_Misc_Some_Buffer_Local_Value:
5219 {
5220 register struct Lisp_Buffer_Local_Value *ptr
5221 = XBUFFER_LOCAL_VALUE (obj);
465edf35
KH
5222 /* If the cdr is nil, avoid recursion for the car. */
5223 if (EQ (ptr->cdr, Qnil))
5224 {
49723c04 5225 obj = ptr->realvalue;
465edf35
KH
5226 goto loop;
5227 }
49723c04
SM
5228 mark_object (ptr->realvalue);
5229 mark_object (ptr->buffer);
5230 mark_object (ptr->frame);
5231 obj = ptr->cdr;
465edf35
KH
5232 goto loop;
5233 }
5234
2336fe58
SM
5235 case Lisp_Misc_Marker:
5236 /* DO NOT mark thru the marker's chain.
5237 The buffer's markers chain does not preserve markers from gc;
5238 instead, markers are removed from the chain when freed by gc. */
b766f870
KS
5239 break;
5240
c8616056
KH
5241 case Lisp_Misc_Intfwd:
5242 case Lisp_Misc_Boolfwd:
5243 case Lisp_Misc_Objfwd:
5244 case Lisp_Misc_Buffer_Objfwd:
b875d3f7 5245 case Lisp_Misc_Kboard_Objfwd:
c8616056
KH
5246 /* Don't bother with Lisp_Buffer_Objfwd,
5247 since all markable slots in current buffer marked anyway. */
5248 /* Don't need to do Lisp_Objfwd, since the places they point
5249 are protected with staticpro. */
b766f870
KS
5250 break;
5251
f29181dc 5252 case Lisp_Misc_Save_Value:
9ea306d1 5253#if GC_MARK_STACK
b766f870
KS
5254 {
5255 register struct Lisp_Save_Value *ptr = XSAVE_VALUE (obj);
5256 /* If DOGC is set, POINTER is the address of a memory
5257 area containing INTEGER potential Lisp_Objects. */
5258 if (ptr->dogc)
5259 {
5260 Lisp_Object *p = (Lisp_Object *) ptr->pointer;
5261 int nelt;
5262 for (nelt = ptr->integer; nelt > 0; nelt--, p++)
5263 mark_maybe_object (*p);
5264 }
5265 }
9ea306d1 5266#endif
c8616056
KH
5267 break;
5268
e202fa34
KH
5269 case Lisp_Misc_Overlay:
5270 {
5271 struct Lisp_Overlay *ptr = XOVERLAY (obj);
49723c04
SM
5272 mark_object (ptr->start);
5273 mark_object (ptr->end);
f54253ec
SM
5274 mark_object (ptr->plist);
5275 if (ptr->next)
5276 {
5277 XSETMISC (obj, ptr->next);
5278 goto loop;
5279 }
e202fa34
KH
5280 }
5281 break;
5282
a0a38eb7
KH
5283 default:
5284 abort ();
5285 }
7146af97
JB
5286 break;
5287
5288 case Lisp_Cons:
7146af97
JB
5289 {
5290 register struct Lisp_Cons *ptr = XCONS (obj);
08b7c2cb 5291 if (CONS_MARKED_P (ptr)) break;
4f5c1376 5292 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
08b7c2cb 5293 CONS_MARK (ptr);
c54ca951
RS
5294 /* If the cdr is nil, avoid recursion for the car. */
5295 if (EQ (ptr->cdr, Qnil))
5296 {
49723c04 5297 obj = ptr->car;
1342fc6f 5298 cdr_count = 0;
c54ca951
RS
5299 goto loop;
5300 }
49723c04
SM
5301 mark_object (ptr->car);
5302 obj = ptr->cdr;
1342fc6f
RS
5303 cdr_count++;
5304 if (cdr_count == mark_object_loop_halt)
5305 abort ();
7146af97
JB
5306 goto loop;
5307 }
5308
7146af97 5309 case Lisp_Float:
4f5c1376 5310 CHECK_ALLOCATED_AND_LIVE (live_float_p);
ab6780cd 5311 FLOAT_MARK (XFLOAT (obj));
7146af97 5312 break;
7146af97 5313
7146af97 5314 case Lisp_Int:
7146af97
JB
5315 break;
5316
5317 default:
5318 abort ();
5319 }
4f5c1376
GM
5320
5321#undef CHECK_LIVE
5322#undef CHECK_ALLOCATED
5323#undef CHECK_ALLOCATED_AND_LIVE
7146af97
JB
5324}
5325
5326/* Mark the pointers in a buffer structure. */
5327
5328static void
5329mark_buffer (buf)
5330 Lisp_Object buf;
5331{
7146af97 5332 register struct buffer *buffer = XBUFFER (buf);
f54253ec 5333 register Lisp_Object *ptr, tmp;
30e3190a 5334 Lisp_Object base_buffer;
7146af97 5335
3ef06d12 5336 VECTOR_MARK (buffer);
7146af97 5337
30e3190a 5338 MARK_INTERVAL_TREE (BUF_INTERVALS (buffer));
d5e35230 5339
c37adf23
SM
5340 /* For now, we just don't mark the undo_list. It's done later in
5341 a special way just before the sweep phase, and after stripping
5342 some of its elements that are not needed any more. */
4c315bda 5343
f54253ec
SM
5344 if (buffer->overlays_before)
5345 {
5346 XSETMISC (tmp, buffer->overlays_before);
5347 mark_object (tmp);
5348 }
5349 if (buffer->overlays_after)
5350 {
5351 XSETMISC (tmp, buffer->overlays_after);
5352 mark_object (tmp);
5353 }
5354
3ef06d12 5355 for (ptr = &buffer->name;
7146af97
JB
5356 (char *)ptr < (char *)buffer + sizeof (struct buffer);
5357 ptr++)
49723c04 5358 mark_object (*ptr);
30e3190a
RS
5359
5360 /* If this is an indirect buffer, mark its base buffer. */
349bd9ed 5361 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
30e3190a 5362 {
177c0ea7 5363 XSETBUFFER (base_buffer, buffer->base_buffer);
30e3190a
RS
5364 mark_buffer (base_buffer);
5365 }
7146af97 5366}
084b1a0c
KH
5367
5368
41c28a37
GM
5369/* Value is non-zero if OBJ will survive the current GC because it's
5370 either marked or does not need to be marked to survive. */
5371
5372int
5373survives_gc_p (obj)
5374 Lisp_Object obj;
5375{
5376 int survives_p;
177c0ea7 5377
41c28a37
GM
5378 switch (XGCTYPE (obj))
5379 {
5380 case Lisp_Int:
5381 survives_p = 1;
5382 break;
5383
5384 case Lisp_Symbol:
2336fe58 5385 survives_p = XSYMBOL (obj)->gcmarkbit;
41c28a37
GM
5386 break;
5387
5388 case Lisp_Misc:
ef89c2ce 5389 survives_p = XMARKER (obj)->gcmarkbit;
41c28a37
GM
5390 break;
5391
5392 case Lisp_String:
08b7c2cb 5393 survives_p = STRING_MARKED_P (XSTRING (obj));
41c28a37
GM
5394 break;
5395
5396 case Lisp_Vectorlike:
08b7c2cb 5397 survives_p = GC_SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
41c28a37
GM
5398 break;
5399
5400 case Lisp_Cons:
08b7c2cb 5401 survives_p = CONS_MARKED_P (XCONS (obj));
41c28a37
GM
5402 break;
5403
41c28a37 5404 case Lisp_Float:
ab6780cd 5405 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
41c28a37 5406 break;
41c28a37
GM
5407
5408 default:
5409 abort ();
5410 }
5411
34400008 5412 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
41c28a37
GM
5413}
5414
5415
7146af97 5416\f
1a4f1e2c 5417/* Sweep: find all structures not marked, and free them. */
7146af97
JB
5418
5419static void
5420gc_sweep ()
5421{
c37adf23
SM
5422 /* Remove or mark entries in weak hash tables.
5423 This must be done before any object is unmarked. */
5424 sweep_weak_hash_tables ();
5425
5426 sweep_strings ();
5427#ifdef GC_CHECK_STRING_BYTES
5428 if (!noninteractive)
5429 check_string_bytes (1);
5430#endif
5431
7146af97
JB
5432 /* Put all unmarked conses on free list */
5433 {
5434 register struct cons_block *cblk;
6ca94ac9 5435 struct cons_block **cprev = &cons_block;
7146af97
JB
5436 register int lim = cons_block_index;
5437 register int num_free = 0, num_used = 0;
5438
5439 cons_free_list = 0;
177c0ea7 5440
6ca94ac9 5441 for (cblk = cons_block; cblk; cblk = *cprev)
7146af97
JB
5442 {
5443 register int i;
6ca94ac9 5444 int this_free = 0;
7146af97 5445 for (i = 0; i < lim; i++)
08b7c2cb 5446 if (!CONS_MARKED_P (&cblk->conses[i]))
7146af97 5447 {
6ca94ac9 5448 this_free++;
1cd5fe6a 5449 *(struct Lisp_Cons **)&cblk->conses[i].cdr = cons_free_list;
7146af97 5450 cons_free_list = &cblk->conses[i];
34400008
GM
5451#if GC_MARK_STACK
5452 cons_free_list->car = Vdead;
5453#endif
7146af97
JB
5454 }
5455 else
5456 {
5457 num_used++;
08b7c2cb 5458 CONS_UNMARK (&cblk->conses[i]);
7146af97
JB
5459 }
5460 lim = CONS_BLOCK_SIZE;
6ca94ac9
KH
5461 /* If this block contains only free conses and we have already
5462 seen more than two blocks worth of free conses then deallocate
5463 this block. */
6feef451 5464 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
6ca94ac9 5465 {
6ca94ac9
KH
5466 *cprev = cblk->next;
5467 /* Unhook from the free list. */
5468 cons_free_list = *(struct Lisp_Cons **) &cblk->conses[0].cdr;
08b7c2cb 5469 lisp_align_free (cblk);
c8099634 5470 n_cons_blocks--;
6ca94ac9
KH
5471 }
5472 else
6feef451
AS
5473 {
5474 num_free += this_free;
5475 cprev = &cblk->next;
5476 }
7146af97
JB
5477 }
5478 total_conses = num_used;
5479 total_free_conses = num_free;
5480 }
5481
7146af97
JB
5482 /* Put all unmarked floats on free list */
5483 {
5484 register struct float_block *fblk;
6ca94ac9 5485 struct float_block **fprev = &float_block;
7146af97
JB
5486 register int lim = float_block_index;
5487 register int num_free = 0, num_used = 0;
5488
5489 float_free_list = 0;
177c0ea7 5490
6ca94ac9 5491 for (fblk = float_block; fblk; fblk = *fprev)
7146af97
JB
5492 {
5493 register int i;
6ca94ac9 5494 int this_free = 0;
7146af97 5495 for (i = 0; i < lim; i++)
ab6780cd 5496 if (!FLOAT_MARKED_P (&fblk->floats[i]))
7146af97 5497 {
6ca94ac9 5498 this_free++;
1cd5fe6a 5499 *(struct Lisp_Float **)&fblk->floats[i].data = float_free_list;
7146af97
JB
5500 float_free_list = &fblk->floats[i];
5501 }
5502 else
5503 {
5504 num_used++;
ab6780cd 5505 FLOAT_UNMARK (&fblk->floats[i]);
7146af97
JB
5506 }
5507 lim = FLOAT_BLOCK_SIZE;
6ca94ac9
KH
5508 /* If this block contains only free floats and we have already
5509 seen more than two blocks worth of free floats then deallocate
5510 this block. */
6feef451 5511 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
6ca94ac9 5512 {
6ca94ac9
KH
5513 *fprev = fblk->next;
5514 /* Unhook from the free list. */
5515 float_free_list = *(struct Lisp_Float **) &fblk->floats[0].data;
ab6780cd 5516 lisp_align_free (fblk);
c8099634 5517 n_float_blocks--;
6ca94ac9
KH
5518 }
5519 else
6feef451
AS
5520 {
5521 num_free += this_free;
5522 fprev = &fblk->next;
5523 }
7146af97
JB
5524 }
5525 total_floats = num_used;
5526 total_free_floats = num_free;
5527 }
7146af97 5528
d5e35230
JA
5529 /* Put all unmarked intervals on free list */
5530 {
5531 register struct interval_block *iblk;
6ca94ac9 5532 struct interval_block **iprev = &interval_block;
d5e35230
JA
5533 register int lim = interval_block_index;
5534 register int num_free = 0, num_used = 0;
5535
5536 interval_free_list = 0;
5537
6ca94ac9 5538 for (iblk = interval_block; iblk; iblk = *iprev)
d5e35230
JA
5539 {
5540 register int i;
6ca94ac9 5541 int this_free = 0;
d5e35230
JA
5542
5543 for (i = 0; i < lim; i++)
5544 {
2336fe58 5545 if (!iblk->intervals[i].gcmarkbit)
d5e35230 5546 {
439d5cb4 5547 SET_INTERVAL_PARENT (&iblk->intervals[i], interval_free_list);
d5e35230 5548 interval_free_list = &iblk->intervals[i];
6ca94ac9 5549 this_free++;
d5e35230
JA
5550 }
5551 else
5552 {
5553 num_used++;
2336fe58 5554 iblk->intervals[i].gcmarkbit = 0;
d5e35230
JA
5555 }
5556 }
5557 lim = INTERVAL_BLOCK_SIZE;
6ca94ac9
KH
5558 /* If this block contains only free intervals and we have already
5559 seen more than two blocks worth of free intervals then
5560 deallocate this block. */
6feef451 5561 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
6ca94ac9 5562 {
6ca94ac9
KH
5563 *iprev = iblk->next;
5564 /* Unhook from the free list. */
439d5cb4 5565 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
c8099634
RS
5566 lisp_free (iblk);
5567 n_interval_blocks--;
6ca94ac9
KH
5568 }
5569 else
6feef451
AS
5570 {
5571 num_free += this_free;
5572 iprev = &iblk->next;
5573 }
d5e35230
JA
5574 }
5575 total_intervals = num_used;
5576 total_free_intervals = num_free;
5577 }
d5e35230 5578
7146af97
JB
5579 /* Put all unmarked symbols on free list */
5580 {
5581 register struct symbol_block *sblk;
6ca94ac9 5582 struct symbol_block **sprev = &symbol_block;
7146af97
JB
5583 register int lim = symbol_block_index;
5584 register int num_free = 0, num_used = 0;
5585
d285b373 5586 symbol_free_list = NULL;
177c0ea7 5587
6ca94ac9 5588 for (sblk = symbol_block; sblk; sblk = *sprev)
7146af97 5589 {
6ca94ac9 5590 int this_free = 0;
d285b373
GM
5591 struct Lisp_Symbol *sym = sblk->symbols;
5592 struct Lisp_Symbol *end = sym + lim;
5593
5594 for (; sym < end; ++sym)
5595 {
20035321
SM
5596 /* Check if the symbol was created during loadup. In such a case
5597 it might be pointed to by pure bytecode which we don't trace,
5598 so we conservatively assume that it is live. */
8fe5665d 5599 int pure_p = PURE_POINTER_P (XSTRING (sym->xname));
177c0ea7 5600
2336fe58 5601 if (!sym->gcmarkbit && !pure_p)
d285b373
GM
5602 {
5603 *(struct Lisp_Symbol **) &sym->value = symbol_free_list;
5604 symbol_free_list = sym;
34400008 5605#if GC_MARK_STACK
d285b373 5606 symbol_free_list->function = Vdead;
34400008 5607#endif
d285b373
GM
5608 ++this_free;
5609 }
5610 else
5611 {
5612 ++num_used;
5613 if (!pure_p)
8fe5665d 5614 UNMARK_STRING (XSTRING (sym->xname));
2336fe58 5615 sym->gcmarkbit = 0;
d285b373
GM
5616 }
5617 }
177c0ea7 5618
7146af97 5619 lim = SYMBOL_BLOCK_SIZE;
6ca94ac9
KH
5620 /* If this block contains only free symbols and we have already
5621 seen more than two blocks worth of free symbols then deallocate
5622 this block. */
6feef451 5623 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
6ca94ac9 5624 {
6ca94ac9
KH
5625 *sprev = sblk->next;
5626 /* Unhook from the free list. */
5627 symbol_free_list = *(struct Lisp_Symbol **)&sblk->symbols[0].value;
c8099634
RS
5628 lisp_free (sblk);
5629 n_symbol_blocks--;
6ca94ac9
KH
5630 }
5631 else
6feef451
AS
5632 {
5633 num_free += this_free;
5634 sprev = &sblk->next;
5635 }
7146af97
JB
5636 }
5637 total_symbols = num_used;
5638 total_free_symbols = num_free;
5639 }
5640
a9faeabe
RS
5641 /* Put all unmarked misc's on free list.
5642 For a marker, first unchain it from the buffer it points into. */
7146af97
JB
5643 {
5644 register struct marker_block *mblk;
6ca94ac9 5645 struct marker_block **mprev = &marker_block;
7146af97
JB
5646 register int lim = marker_block_index;
5647 register int num_free = 0, num_used = 0;
5648
5649 marker_free_list = 0;
177c0ea7 5650
6ca94ac9 5651 for (mblk = marker_block; mblk; mblk = *mprev)
7146af97
JB
5652 {
5653 register int i;
6ca94ac9 5654 int this_free = 0;
fa05e253 5655
7146af97 5656 for (i = 0; i < lim; i++)
465edf35 5657 {
2336fe58 5658 if (!mblk->markers[i].u_marker.gcmarkbit)
465edf35 5659 {
a5da44fe 5660 if (mblk->markers[i].u_marker.type == Lisp_Misc_Marker)
ef89c2ce 5661 unchain_marker (&mblk->markers[i].u_marker);
fa05e253
RS
5662 /* Set the type of the freed object to Lisp_Misc_Free.
5663 We could leave the type alone, since nobody checks it,
465edf35 5664 but this might catch bugs faster. */
a5da44fe 5665 mblk->markers[i].u_marker.type = Lisp_Misc_Free;
465edf35
KH
5666 mblk->markers[i].u_free.chain = marker_free_list;
5667 marker_free_list = &mblk->markers[i];
6ca94ac9 5668 this_free++;
465edf35
KH
5669 }
5670 else
5671 {
5672 num_used++;
2336fe58 5673 mblk->markers[i].u_marker.gcmarkbit = 0;
465edf35
KH
5674 }
5675 }
7146af97 5676 lim = MARKER_BLOCK_SIZE;
6ca94ac9
KH
5677 /* If this block contains only free markers and we have already
5678 seen more than two blocks worth of free markers then deallocate
5679 this block. */
6feef451 5680 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
6ca94ac9 5681 {
6ca94ac9
KH
5682 *mprev = mblk->next;
5683 /* Unhook from the free list. */
5684 marker_free_list = mblk->markers[0].u_free.chain;
c37adf23 5685 lisp_free (mblk);
c8099634 5686 n_marker_blocks--;
6ca94ac9
KH
5687 }
5688 else
6feef451
AS
5689 {
5690 num_free += this_free;
5691 mprev = &mblk->next;
5692 }
7146af97
JB
5693 }
5694
5695 total_markers = num_used;
5696 total_free_markers = num_free;
5697 }
5698
5699 /* Free all unmarked buffers */
5700 {
5701 register struct buffer *buffer = all_buffers, *prev = 0, *next;
5702
5703 while (buffer)
3ef06d12 5704 if (!VECTOR_MARKED_P (buffer))
7146af97
JB
5705 {
5706 if (prev)
5707 prev->next = buffer->next;
5708 else
5709 all_buffers = buffer->next;
5710 next = buffer->next;
34400008 5711 lisp_free (buffer);
7146af97
JB
5712 buffer = next;
5713 }
5714 else
5715 {
3ef06d12 5716 VECTOR_UNMARK (buffer);
30e3190a 5717 UNMARK_BALANCE_INTERVALS (BUF_INTERVALS (buffer));
7146af97
JB
5718 prev = buffer, buffer = buffer->next;
5719 }
5720 }
5721
7146af97
JB
5722 /* Free all unmarked vectors */
5723 {
5724 register struct Lisp_Vector *vector = all_vectors, *prev = 0, *next;
5725 total_vector_size = 0;
5726
5727 while (vector)
3ef06d12 5728 if (!VECTOR_MARKED_P (vector))
7146af97
JB
5729 {
5730 if (prev)
5731 prev->next = vector->next;
5732 else
5733 all_vectors = vector->next;
5734 next = vector->next;
c8099634
RS
5735 lisp_free (vector);
5736 n_vectors--;
7146af97 5737 vector = next;
41c28a37 5738
7146af97
JB
5739 }
5740 else
5741 {
3ef06d12 5742 VECTOR_UNMARK (vector);
fa05e253
RS
5743 if (vector->size & PSEUDOVECTOR_FLAG)
5744 total_vector_size += (PSEUDOVECTOR_SIZE_MASK & vector->size);
5745 else
5746 total_vector_size += vector->size;
7146af97
JB
5747 prev = vector, vector = vector->next;
5748 }
5749 }
177c0ea7 5750
676a7251
GM
5751#ifdef GC_CHECK_STRING_BYTES
5752 if (!noninteractive)
5753 check_string_bytes (1);
5754#endif
7146af97 5755}
7146af97 5756
7146af97 5757
7146af97 5758
7146af97 5759\f
20d24714
JB
5760/* Debugging aids. */
5761
31ce1c91 5762DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
a6266d23 5763 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
228299fa 5764This may be helpful in debugging Emacs's memory usage.
7ee72033
MB
5765We divide the value by 1024 to make sure it fits in a Lisp integer. */)
5766 ()
20d24714
JB
5767{
5768 Lisp_Object end;
5769
45d12a89 5770 XSETINT (end, (EMACS_INT) sbrk (0) / 1024);
20d24714
JB
5771
5772 return end;
5773}
5774
310ea200 5775DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
a6266d23 5776 doc: /* Return a list of counters that measure how much consing there has been.
228299fa
GM
5777Each of these counters increments for a certain kind of object.
5778The counters wrap around from the largest positive integer to zero.
5779Garbage collection does not decrease them.
5780The elements of the value are as follows:
5781 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
5782All are in units of 1 = one object consed
5783except for VECTOR-CELLS and STRING-CHARS, which count the total length of
5784objects consed.
5785MISCS include overlays, markers, and some internal types.
5786Frames, windows, buffers, and subprocesses count as vectors
7ee72033
MB
5787 (but the contents of a buffer's text do not count here). */)
5788 ()
310ea200 5789{
2e471eb5 5790 Lisp_Object consed[8];
310ea200 5791
78e985eb
GM
5792 consed[0] = make_number (min (MOST_POSITIVE_FIXNUM, cons_cells_consed));
5793 consed[1] = make_number (min (MOST_POSITIVE_FIXNUM, floats_consed));
5794 consed[2] = make_number (min (MOST_POSITIVE_FIXNUM, vector_cells_consed));
5795 consed[3] = make_number (min (MOST_POSITIVE_FIXNUM, symbols_consed));
5796 consed[4] = make_number (min (MOST_POSITIVE_FIXNUM, string_chars_consed));
5797 consed[5] = make_number (min (MOST_POSITIVE_FIXNUM, misc_objects_consed));
5798 consed[6] = make_number (min (MOST_POSITIVE_FIXNUM, intervals_consed));
5799 consed[7] = make_number (min (MOST_POSITIVE_FIXNUM, strings_consed));
310ea200 5800
2e471eb5 5801 return Flist (8, consed);
310ea200 5802}
e0b8c689
KR
5803
5804int suppress_checking;
5805void
5806die (msg, file, line)
5807 const char *msg;
5808 const char *file;
5809 int line;
5810{
5811 fprintf (stderr, "\r\nEmacs fatal error: %s:%d: %s\r\n",
5812 file, line, msg);
5813 abort ();
5814}
20d24714 5815\f
7146af97
JB
5816/* Initialization */
5817
dfcf069d 5818void
7146af97
JB
5819init_alloc_once ()
5820{
5821 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
9e713715
GM
5822 purebeg = PUREBEG;
5823 pure_size = PURESIZE;
1f0b3fd2 5824 pure_bytes_used = 0;
9e713715
GM
5825 pure_bytes_used_before_overflow = 0;
5826
ab6780cd
SM
5827 /* Initialize the list of free aligned blocks. */
5828 free_ablock = NULL;
5829
877935b1 5830#if GC_MARK_STACK || defined GC_MALLOC_CHECK
34400008
GM
5831 mem_init ();
5832 Vdead = make_pure_string ("DEAD", 4, 4, 0);
5833#endif
9e713715 5834
7146af97
JB
5835 all_vectors = 0;
5836 ignore_warnings = 1;
d1658221
RS
5837#ifdef DOUG_LEA_MALLOC
5838 mallopt (M_TRIM_THRESHOLD, 128*1024); /* trim threshold */
5839 mallopt (M_MMAP_THRESHOLD, 64*1024); /* mmap threshold */
81d492d5 5840 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* max. number of mmap'ed areas */
d1658221 5841#endif
7146af97
JB
5842 init_strings ();
5843 init_cons ();
5844 init_symbol ();
5845 init_marker ();
7146af97 5846 init_float ();
34400008 5847 init_intervals ();
d5e35230 5848
276cbe5a
RS
5849#ifdef REL_ALLOC
5850 malloc_hysteresis = 32;
5851#else
5852 malloc_hysteresis = 0;
5853#endif
5854
5855 spare_memory = (char *) malloc (SPARE_MEMORY);
5856
7146af97
JB
5857 ignore_warnings = 0;
5858 gcprolist = 0;
630686c8 5859 byte_stack_list = 0;
7146af97
JB
5860 staticidx = 0;
5861 consing_since_gc = 0;
7d179cea 5862 gc_cons_threshold = 100000 * sizeof (Lisp_Object);
7146af97
JB
5863#ifdef VIRT_ADDR_VARIES
5864 malloc_sbrk_unused = 1<<22; /* A large number */
5865 malloc_sbrk_used = 100000; /* as reasonable as any number */
5866#endif /* VIRT_ADDR_VARIES */
5867}
5868
dfcf069d 5869void
7146af97
JB
5870init_alloc ()
5871{
5872 gcprolist = 0;
630686c8 5873 byte_stack_list = 0;
182ff242
GM
5874#if GC_MARK_STACK
5875#if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
5876 setjmp_tested_p = longjmps_done = 0;
5877#endif
5878#endif
2c5bd608
DL
5879 Vgc_elapsed = make_float (0.0);
5880 gcs_done = 0;
7146af97
JB
5881}
5882
5883void
5884syms_of_alloc ()
5885{
7ee72033 5886 DEFVAR_INT ("gc-cons-threshold", &gc_cons_threshold,
a6266d23 5887 doc: /* *Number of bytes of consing between garbage collections.
228299fa
GM
5888Garbage collection can happen automatically once this many bytes have been
5889allocated since the last garbage collection. All data types count.
7146af97 5890
228299fa 5891Garbage collection happens automatically only when `eval' is called.
7146af97 5892
228299fa
GM
5893By binding this temporarily to a large number, you can effectively
5894prevent garbage collection during a part of the program. */);
0819585c 5895
7ee72033 5896 DEFVAR_INT ("pure-bytes-used", &pure_bytes_used,
a6266d23 5897 doc: /* Number of bytes of sharable Lisp data allocated so far. */);
0819585c 5898
7ee72033 5899 DEFVAR_INT ("cons-cells-consed", &cons_cells_consed,
a6266d23 5900 doc: /* Number of cons cells that have been consed so far. */);
0819585c 5901
7ee72033 5902 DEFVAR_INT ("floats-consed", &floats_consed,
a6266d23 5903 doc: /* Number of floats that have been consed so far. */);
0819585c 5904
7ee72033 5905 DEFVAR_INT ("vector-cells-consed", &vector_cells_consed,
a6266d23 5906 doc: /* Number of vector cells that have been consed so far. */);
0819585c 5907
7ee72033 5908 DEFVAR_INT ("symbols-consed", &symbols_consed,
a6266d23 5909 doc: /* Number of symbols that have been consed so far. */);
0819585c 5910
7ee72033 5911 DEFVAR_INT ("string-chars-consed", &string_chars_consed,
a6266d23 5912 doc: /* Number of string characters that have been consed so far. */);
0819585c 5913
7ee72033 5914 DEFVAR_INT ("misc-objects-consed", &misc_objects_consed,
a6266d23 5915 doc: /* Number of miscellaneous objects that have been consed so far. */);
2e471eb5 5916
7ee72033 5917 DEFVAR_INT ("intervals-consed", &intervals_consed,
a6266d23 5918 doc: /* Number of intervals that have been consed so far. */);
7146af97 5919
7ee72033 5920 DEFVAR_INT ("strings-consed", &strings_consed,
a6266d23 5921 doc: /* Number of strings that have been consed so far. */);
228299fa 5922
7ee72033 5923 DEFVAR_LISP ("purify-flag", &Vpurify_flag,
a6266d23 5924 doc: /* Non-nil means loading Lisp code in order to dump an executable.
228299fa
GM
5925This means that certain objects should be allocated in shared (pure) space. */);
5926
7ee72033 5927 DEFVAR_INT ("undo-limit", &undo_limit,
a6266d23 5928 doc: /* Keep no more undo information once it exceeds this size.
228299fa
GM
5929This limit is applied when garbage collection happens.
5930The size is counted as the number of bytes occupied,
5931which includes both saved text and other data. */);
502b9b64 5932 undo_limit = 20000;
7146af97 5933
7ee72033 5934 DEFVAR_INT ("undo-strong-limit", &undo_strong_limit,
a6266d23 5935 doc: /* Don't keep more than this much size of undo information.
ae6a9bfe
RS
5936A previous command which pushes the undo list past this size
5937is entirely forgotten when GC happens.
228299fa
GM
5938The size is counted as the number of bytes occupied,
5939which includes both saved text and other data. */);
502b9b64 5940 undo_strong_limit = 30000;
7146af97 5941
ae6a9bfe
RS
5942 DEFVAR_INT ("undo-outer-limit", &undo_outer_limit,
5943 doc: /* Don't keep more than this much size of undo information.
5944If the current command has produced more than this much undo information,
5945GC discards it. This is a last-ditch limit to prevent memory overflow.
5946The size is counted as the number of bytes occupied,
5947which includes both saved text and other data. */);
5948 undo_outer_limit = 300000;
5949
7ee72033 5950 DEFVAR_BOOL ("garbage-collection-messages", &garbage_collection_messages,
a6266d23 5951 doc: /* Non-nil means display messages at start and end of garbage collection. */);
299585ee
RS
5952 garbage_collection_messages = 0;
5953
7ee72033 5954 DEFVAR_LISP ("post-gc-hook", &Vpost_gc_hook,
a6266d23 5955 doc: /* Hook run after garbage collection has finished. */);
9e713715
GM
5956 Vpost_gc_hook = Qnil;
5957 Qpost_gc_hook = intern ("post-gc-hook");
5958 staticpro (&Qpost_gc_hook);
5959
74a54b04
RS
5960 DEFVAR_LISP ("memory-signal-data", &Vmemory_signal_data,
5961 doc: /* Precomputed `signal' argument for memory-full error. */);
bcb61d60
KH
5962 /* We build this in advance because if we wait until we need it, we might
5963 not be able to allocate the memory to hold it. */
74a54b04
RS
5964 Vmemory_signal_data
5965 = list2 (Qerror,
5966 build_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"));
5967
5968 DEFVAR_LISP ("memory-full", &Vmemory_full,
5969 doc: /* Non-nil means we are handling a memory-full error. */);
5970 Vmemory_full = Qnil;
bcb61d60 5971
e8197642
RS
5972 staticpro (&Qgc_cons_threshold);
5973 Qgc_cons_threshold = intern ("gc-cons-threshold");
5974
a59de17b
RS
5975 staticpro (&Qchar_table_extra_slots);
5976 Qchar_table_extra_slots = intern ("char-table-extra-slots");
5977
2c5bd608
DL
5978 DEFVAR_LISP ("gc-elapsed", &Vgc_elapsed,
5979 doc: /* Accumulated time elapsed in garbage collections.
e7415487 5980The time is in seconds as a floating point value. */);
2c5bd608 5981 DEFVAR_INT ("gcs-done", &gcs_done,
e7415487 5982 doc: /* Accumulated number of garbage collections done. */);
2c5bd608 5983
7146af97
JB
5984 defsubr (&Scons);
5985 defsubr (&Slist);
5986 defsubr (&Svector);
5987 defsubr (&Smake_byte_code);
5988 defsubr (&Smake_list);
5989 defsubr (&Smake_vector);
7b07587b 5990 defsubr (&Smake_char_table);
7146af97 5991 defsubr (&Smake_string);
7b07587b 5992 defsubr (&Smake_bool_vector);
7146af97
JB
5993 defsubr (&Smake_symbol);
5994 defsubr (&Smake_marker);
5995 defsubr (&Spurecopy);
5996 defsubr (&Sgarbage_collect);
20d24714 5997 defsubr (&Smemory_limit);
310ea200 5998 defsubr (&Smemory_use_counts);
34400008
GM
5999
6000#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
6001 defsubr (&Sgc_status);
6002#endif
7146af97 6003}
ab5796a9
MB
6004
6005/* arch-tag: 6695ca10-e3c5-4c2c-8bc3-ed26a7dda857
6006 (do not change this comment) */