*** empty log message ***
[bpt/emacs.git] / src / alloc.c
CommitLineData
7146af97 1/* Storage allocation and gc for GNU Emacs Lisp interpreter.
126f9c02 2 Copyright (C) 1985, 1986, 1988, 1993, 1994, 1995, 1997, 1998, 1999,
f501ccb4 3 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
7146af97
JB
4
5This file is part of GNU Emacs.
6
7GNU Emacs is free software; you can redistribute it and/or modify
8it under the terms of the GNU General Public License as published by
7c299e7a 9the Free Software Foundation; either version 2, or (at your option)
7146af97
JB
10any later version.
11
12GNU Emacs is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15GNU General Public License for more details.
16
17You should have received a copy of the GNU General Public License
18along with GNU Emacs; see the file COPYING. If not, write to
4fc5845f
LK
19the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
20Boston, MA 02110-1301, USA. */
7146af97 21
18160b98 22#include <config.h>
e9b309ac 23#include <stdio.h>
ab6780cd 24#include <limits.h> /* For CHAR_BIT. */
92939d31 25
4455ad75
RS
26#ifdef ALLOC_DEBUG
27#undef INLINE
28#endif
29
68c45bf0 30/* Note that this declares bzero on OSF/1. How dumb. */
2e471eb5 31
68c45bf0 32#include <signal.h>
92939d31 33
aa477689
JD
34#ifdef HAVE_GTK_AND_PTHREAD
35#include <pthread.h>
36#endif
37
7539e11f
KR
38/* This file is part of the core Lisp implementation, and thus must
39 deal with the real data structures. If the Lisp implementation is
40 replaced, this file likely will not be used. */
2e471eb5 41
7539e11f 42#undef HIDE_LISP_IMPLEMENTATION
7146af97 43#include "lisp.h"
ece93c02 44#include "process.h"
d5e35230 45#include "intervals.h"
4c0be5f4 46#include "puresize.h"
7146af97
JB
47#include "buffer.h"
48#include "window.h"
2538fae4 49#include "keyboard.h"
502b9b64 50#include "frame.h"
9ac0d9e0 51#include "blockinput.h"
e54daa22 52#include "charset.h"
e065a56e 53#include "syssignal.h"
34400008 54#include <setjmp.h>
e065a56e 55
ad5f3636
DL
56/* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
57 memory. Can do this only if using gmalloc.c. */
58
59#if defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC
60#undef GC_MALLOC_CHECK
61#endif
62
bf952fb6
DL
63#ifdef HAVE_UNISTD_H
64#include <unistd.h>
65#else
66extern POINTER_TYPE *sbrk ();
67#endif
ee1eea5c 68
de7124a7
KS
69#ifdef HAVE_FCNTL_H
70#define INCLUDED_FCNTL
71#include <fcntl.h>
72#endif
73#ifndef O_WRONLY
74#define O_WRONLY 1
75#endif
76
d1658221 77#ifdef DOUG_LEA_MALLOC
2e471eb5 78
d1658221 79#include <malloc.h>
3e60b029
DL
80/* malloc.h #defines this as size_t, at least in glibc2. */
81#ifndef __malloc_size_t
d1658221 82#define __malloc_size_t int
3e60b029 83#endif
81d492d5 84
2e471eb5
GM
85/* Specify maximum number of areas to mmap. It would be nice to use a
86 value that explicitly means "no limit". */
87
81d492d5
RS
88#define MMAP_MAX_AREAS 100000000
89
2e471eb5
GM
90#else /* not DOUG_LEA_MALLOC */
91
276cbe5a
RS
92/* The following come from gmalloc.c. */
93
276cbe5a 94#define __malloc_size_t size_t
276cbe5a 95extern __malloc_size_t _bytes_used;
3e60b029 96extern __malloc_size_t __malloc_extra_blocks;
2e471eb5
GM
97
98#endif /* not DOUG_LEA_MALLOC */
276cbe5a 99
aa477689
JD
100#if ! defined (SYSTEM_MALLOC) && defined (HAVE_GTK_AND_PTHREAD)
101
f415cacd
JD
102/* When GTK uses the file chooser dialog, different backends can be loaded
103 dynamically. One such a backend is the Gnome VFS backend that gets loaded
104 if you run Gnome. That backend creates several threads and also allocates
105 memory with malloc.
106
107 If Emacs sets malloc hooks (! SYSTEM_MALLOC) and the emacs_blocked_*
108 functions below are called from malloc, there is a chance that one
109 of these threads preempts the Emacs main thread and the hook variables
333f1b6f 110 end up in an inconsistent state. So we have a mutex to prevent that (note
f415cacd
JD
111 that the backend handles concurrent access to malloc within its own threads
112 but Emacs code running in the main thread is not included in that control).
113
026cdede 114 When UNBLOCK_INPUT is called, reinvoke_input_signal may be called. If this
f415cacd
JD
115 happens in one of the backend threads we will have two threads that tries
116 to run Emacs code at once, and the code is not prepared for that.
117 To prevent that, we only call BLOCK/UNBLOCK from the main thread. */
118
aa477689 119static pthread_mutex_t alloc_mutex;
aa477689
JD
120
121#define BLOCK_INPUT_ALLOC \
122 do \
123 { \
124 pthread_mutex_lock (&alloc_mutex); \
125 if (pthread_self () == main_thread) \
126 BLOCK_INPUT; \
127 } \
128 while (0)
129#define UNBLOCK_INPUT_ALLOC \
130 do \
131 { \
132 if (pthread_self () == main_thread) \
133 UNBLOCK_INPUT; \
134 pthread_mutex_unlock (&alloc_mutex); \
135 } \
136 while (0)
137
138#else /* SYSTEM_MALLOC || not HAVE_GTK_AND_PTHREAD */
139
140#define BLOCK_INPUT_ALLOC BLOCK_INPUT
141#define UNBLOCK_INPUT_ALLOC UNBLOCK_INPUT
142
143#endif /* SYSTEM_MALLOC || not HAVE_GTK_AND_PTHREAD */
144
276cbe5a 145/* Value of _bytes_used, when spare_memory was freed. */
2e471eb5 146
276cbe5a
RS
147static __malloc_size_t bytes_used_when_full;
148
4d74a5fc
RS
149static __malloc_size_t bytes_used_when_reconsidered;
150
2e471eb5
GM
151/* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
152 to a struct Lisp_String. */
153
7cdee936
SM
154#define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
155#define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
b059de99 156#define STRING_MARKED_P(S) (((S)->size & ARRAY_MARK_FLAG) != 0)
2e471eb5 157
3ef06d12
SM
158#define VECTOR_MARK(V) ((V)->size |= ARRAY_MARK_FLAG)
159#define VECTOR_UNMARK(V) ((V)->size &= ~ARRAY_MARK_FLAG)
b059de99 160#define VECTOR_MARKED_P(V) (((V)->size & ARRAY_MARK_FLAG) != 0)
3ef06d12 161
2e471eb5
GM
162/* Value is the number of bytes/chars of S, a pointer to a struct
163 Lisp_String. This must be used instead of STRING_BYTES (S) or
164 S->size during GC, because S->size contains the mark bit for
165 strings. */
166
3ef06d12 167#define GC_STRING_BYTES(S) (STRING_BYTES (S))
7cdee936 168#define GC_STRING_CHARS(S) ((S)->size & ~ARRAY_MARK_FLAG)
2e471eb5
GM
169
170/* Number of bytes of consing done since the last gc. */
171
7146af97
JB
172int consing_since_gc;
173
310ea200 174/* Count the amount of consing of various sorts of space. */
2e471eb5 175
31ade731
SM
176EMACS_INT cons_cells_consed;
177EMACS_INT floats_consed;
178EMACS_INT vector_cells_consed;
179EMACS_INT symbols_consed;
180EMACS_INT string_chars_consed;
181EMACS_INT misc_objects_consed;
182EMACS_INT intervals_consed;
183EMACS_INT strings_consed;
2e471eb5 184
974aae61
RS
185/* Minimum number of bytes of consing since GC before next GC. */
186
187EMACS_INT gc_cons_threshold;
188
189/* Similar minimum, computed from Vgc_cons_percentage. */
190
191EMACS_INT gc_relative_threshold;
310ea200 192
96f077ad 193static Lisp_Object Vgc_cons_percentage;
7146af97 194
24d8a105
RS
195/* Minimum number of bytes of consing since GC before next GC,
196 when memory is full. */
197
198EMACS_INT memory_full_cons_threshold;
199
2e471eb5
GM
200/* Nonzero during GC. */
201
7146af97
JB
202int gc_in_progress;
203
3de0effb
RS
204/* Nonzero means abort if try to GC.
205 This is for code which is written on the assumption that
206 no GC will happen, so as to verify that assumption. */
207
208int abort_on_gc;
209
299585ee 210/* Nonzero means display messages at beginning and end of GC. */
2e471eb5 211
299585ee
RS
212int garbage_collection_messages;
213
7146af97
JB
214#ifndef VIRT_ADDR_VARIES
215extern
216#endif /* VIRT_ADDR_VARIES */
2e471eb5 217int malloc_sbrk_used;
7146af97
JB
218
219#ifndef VIRT_ADDR_VARIES
220extern
221#endif /* VIRT_ADDR_VARIES */
2e471eb5 222int malloc_sbrk_unused;
7146af97 223
34400008
GM
224/* Number of live and free conses etc. */
225
226static int total_conses, total_markers, total_symbols, total_vector_size;
227static int total_free_conses, total_free_markers, total_free_symbols;
228static int total_free_floats, total_floats;
fd27a537 229
2e471eb5 230/* Points to memory space allocated as "spare", to be freed if we run
24d8a105
RS
231 out of memory. We keep one large block, four cons-blocks, and
232 two string blocks. */
2e471eb5 233
24d8a105 234char *spare_memory[7];
276cbe5a 235
24d8a105 236/* Amount of spare memory to keep in large reserve block. */
2e471eb5 237
276cbe5a
RS
238#define SPARE_MEMORY (1 << 14)
239
240/* Number of extra blocks malloc should get when it needs more core. */
2e471eb5 241
276cbe5a
RS
242static int malloc_hysteresis;
243
2e471eb5
GM
244/* Non-nil means defun should do purecopy on the function definition. */
245
7146af97
JB
246Lisp_Object Vpurify_flag;
247
74a54b04
RS
248/* Non-nil means we are handling a memory-full error. */
249
250Lisp_Object Vmemory_full;
251
7146af97 252#ifndef HAVE_SHM
2e471eb5 253
1b8950e5
RS
254/* Initialize it to a nonzero value to force it into data space
255 (rather than bss space). That way unexec will remap it into text
256 space (pure), on some systems. We have not implemented the
257 remapping on more recent systems because this is less important
258 nowadays than in the days of small memories and timesharing. */
2e471eb5 259
379b98b1 260EMACS_INT pure[PURESIZE / sizeof (EMACS_INT)] = {1,};
7146af97 261#define PUREBEG (char *) pure
2e471eb5 262
9e713715 263#else /* HAVE_SHM */
2e471eb5 264
7146af97
JB
265#define pure PURE_SEG_BITS /* Use shared memory segment */
266#define PUREBEG (char *)PURE_SEG_BITS
4c0be5f4 267
9e713715 268#endif /* HAVE_SHM */
2e471eb5 269
9e713715 270/* Pointer to the pure area, and its size. */
2e471eb5 271
9e713715
GM
272static char *purebeg;
273static size_t pure_size;
274
275/* Number of bytes of pure storage used before pure storage overflowed.
276 If this is non-zero, this implies that an overflow occurred. */
277
278static size_t pure_bytes_used_before_overflow;
7146af97 279
34400008
GM
280/* Value is non-zero if P points into pure space. */
281
282#define PURE_POINTER_P(P) \
283 (((PNTR_COMPARISON_TYPE) (P) \
9e713715 284 < (PNTR_COMPARISON_TYPE) ((char *) purebeg + pure_size)) \
34400008 285 && ((PNTR_COMPARISON_TYPE) (P) \
9e713715 286 >= (PNTR_COMPARISON_TYPE) purebeg))
34400008 287
2e471eb5
GM
288/* Index in pure at which next pure object will be allocated.. */
289
31ade731 290EMACS_INT pure_bytes_used;
7146af97 291
2e471eb5
GM
292/* If nonzero, this is a warning delivered by malloc and not yet
293 displayed. */
294
7146af97
JB
295char *pending_malloc_warning;
296
bcb61d60 297/* Pre-computed signal argument for use when memory is exhausted. */
2e471eb5 298
74a54b04 299Lisp_Object Vmemory_signal_data;
bcb61d60 300
7146af97
JB
301/* Maximum amount of C stack to save when a GC happens. */
302
303#ifndef MAX_SAVE_STACK
304#define MAX_SAVE_STACK 16000
305#endif
306
307/* Buffer in which we save a copy of the C stack at each GC. */
308
309char *stack_copy;
310int stack_copy_size;
311
2e471eb5
GM
312/* Non-zero means ignore malloc warnings. Set during initialization.
313 Currently not used. */
314
7146af97 315int ignore_warnings;
350273a4 316
a59de17b 317Lisp_Object Qgc_cons_threshold, Qchar_table_extra_slots;
e8197642 318
9e713715
GM
319/* Hook run after GC has finished. */
320
321Lisp_Object Vpost_gc_hook, Qpost_gc_hook;
322
2c5bd608
DL
323Lisp_Object Vgc_elapsed; /* accumulated elapsed time in GC */
324EMACS_INT gcs_done; /* accumulated GCs */
325
2e471eb5 326static void mark_buffer P_ ((Lisp_Object));
6793bc63 327extern void mark_kboards P_ ((void));
b40ea20a 328extern void mark_backtrace P_ ((void));
2e471eb5 329static void gc_sweep P_ ((void));
41c28a37
GM
330static void mark_glyph_matrix P_ ((struct glyph_matrix *));
331static void mark_face_cache P_ ((struct face_cache *));
332
333#ifdef HAVE_WINDOW_SYSTEM
454d7973 334extern void mark_fringe_data P_ ((void));
41c28a37
GM
335static void mark_image P_ ((struct image *));
336static void mark_image_cache P_ ((struct frame *));
337#endif /* HAVE_WINDOW_SYSTEM */
338
2e471eb5
GM
339static struct Lisp_String *allocate_string P_ ((void));
340static void compact_small_strings P_ ((void));
341static void free_large_strings P_ ((void));
342static void sweep_strings P_ ((void));
7da0b0d3
RS
343
344extern int message_enable_multibyte;
34400008 345
34400008
GM
346/* When scanning the C stack for live Lisp objects, Emacs keeps track
347 of what memory allocated via lisp_malloc is intended for what
348 purpose. This enumeration specifies the type of memory. */
349
350enum mem_type
351{
352 MEM_TYPE_NON_LISP,
353 MEM_TYPE_BUFFER,
354 MEM_TYPE_CONS,
355 MEM_TYPE_STRING,
356 MEM_TYPE_MISC,
357 MEM_TYPE_SYMBOL,
358 MEM_TYPE_FLOAT,
ece93c02
GM
359 /* Keep the following vector-like types together, with
360 MEM_TYPE_WINDOW being the last, and MEM_TYPE_VECTOR the
361 first. Or change the code of live_vector_p, for instance. */
362 MEM_TYPE_VECTOR,
363 MEM_TYPE_PROCESS,
364 MEM_TYPE_HASH_TABLE,
365 MEM_TYPE_FRAME,
366 MEM_TYPE_WINDOW
34400008
GM
367};
368
24d8a105
RS
369static POINTER_TYPE *lisp_align_malloc P_ ((size_t, enum mem_type));
370static POINTER_TYPE *lisp_malloc P_ ((size_t, enum mem_type));
225ccad6
RS
371void refill_memory_reserve ();
372
24d8a105 373
877935b1 374#if GC_MARK_STACK || defined GC_MALLOC_CHECK
0b378936
GM
375
376#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
377#include <stdio.h> /* For fprintf. */
378#endif
379
380/* A unique object in pure space used to make some Lisp objects
381 on free lists recognizable in O(1). */
382
383Lisp_Object Vdead;
384
877935b1
GM
385#ifdef GC_MALLOC_CHECK
386
387enum mem_type allocated_mem_type;
388int dont_register_blocks;
389
390#endif /* GC_MALLOC_CHECK */
391
392/* A node in the red-black tree describing allocated memory containing
393 Lisp data. Each such block is recorded with its start and end
394 address when it is allocated, and removed from the tree when it
395 is freed.
396
397 A red-black tree is a balanced binary tree with the following
398 properties:
399
400 1. Every node is either red or black.
401 2. Every leaf is black.
402 3. If a node is red, then both of its children are black.
403 4. Every simple path from a node to a descendant leaf contains
404 the same number of black nodes.
405 5. The root is always black.
406
407 When nodes are inserted into the tree, or deleted from the tree,
408 the tree is "fixed" so that these properties are always true.
409
410 A red-black tree with N internal nodes has height at most 2
411 log(N+1). Searches, insertions and deletions are done in O(log N).
412 Please see a text book about data structures for a detailed
413 description of red-black trees. Any book worth its salt should
414 describe them. */
415
416struct mem_node
417{
9f7d9210
RS
418 /* Children of this node. These pointers are never NULL. When there
419 is no child, the value is MEM_NIL, which points to a dummy node. */
420 struct mem_node *left, *right;
421
422 /* The parent of this node. In the root node, this is NULL. */
423 struct mem_node *parent;
877935b1
GM
424
425 /* Start and end of allocated region. */
426 void *start, *end;
427
428 /* Node color. */
429 enum {MEM_BLACK, MEM_RED} color;
177c0ea7 430
877935b1
GM
431 /* Memory type. */
432 enum mem_type type;
433};
434
435/* Base address of stack. Set in main. */
436
437Lisp_Object *stack_base;
438
439/* Root of the tree describing allocated Lisp memory. */
440
441static struct mem_node *mem_root;
442
ece93c02
GM
443/* Lowest and highest known address in the heap. */
444
445static void *min_heap_address, *max_heap_address;
446
877935b1
GM
447/* Sentinel node of the tree. */
448
449static struct mem_node mem_z;
450#define MEM_NIL &mem_z
451
b3303f74 452static POINTER_TYPE *lisp_malloc P_ ((size_t, enum mem_type));
ece93c02 453static struct Lisp_Vector *allocate_vectorlike P_ ((EMACS_INT, enum mem_type));
bf952fb6 454static void lisp_free P_ ((POINTER_TYPE *));
34400008 455static void mark_stack P_ ((void));
34400008
GM
456static int live_vector_p P_ ((struct mem_node *, void *));
457static int live_buffer_p P_ ((struct mem_node *, void *));
458static int live_string_p P_ ((struct mem_node *, void *));
459static int live_cons_p P_ ((struct mem_node *, void *));
460static int live_symbol_p P_ ((struct mem_node *, void *));
461static int live_float_p P_ ((struct mem_node *, void *));
462static int live_misc_p P_ ((struct mem_node *, void *));
182ff242 463static void mark_maybe_object P_ ((Lisp_Object));
34400008
GM
464static void mark_memory P_ ((void *, void *));
465static void mem_init P_ ((void));
466static struct mem_node *mem_insert P_ ((void *, void *, enum mem_type));
467static void mem_insert_fixup P_ ((struct mem_node *));
468static void mem_rotate_left P_ ((struct mem_node *));
469static void mem_rotate_right P_ ((struct mem_node *));
470static void mem_delete P_ ((struct mem_node *));
471static void mem_delete_fixup P_ ((struct mem_node *));
472static INLINE struct mem_node *mem_find P_ ((void *));
24d8a105 473
34400008
GM
474
475#if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
476static void check_gcpros P_ ((void));
477#endif
478
877935b1 479#endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
34400008 480
1f0b3fd2
GM
481/* Recording what needs to be marked for gc. */
482
483struct gcpro *gcprolist;
484
379b98b1
PE
485/* Addresses of staticpro'd variables. Initialize it to a nonzero
486 value; otherwise some compilers put it into BSS. */
1f0b3fd2 487
382d38fa 488#define NSTATICS 1280
379b98b1 489Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
1f0b3fd2
GM
490
491/* Index of next unused slot in staticvec. */
492
493int staticidx = 0;
494
495static POINTER_TYPE *pure_alloc P_ ((size_t, int));
496
497
498/* Value is SZ rounded up to the next multiple of ALIGNMENT.
499 ALIGNMENT must be a power of 2. */
500
ab6780cd
SM
501#define ALIGN(ptr, ALIGNMENT) \
502 ((POINTER_TYPE *) ((((EMACS_UINT)(ptr)) + (ALIGNMENT) - 1) \
503 & ~((ALIGNMENT) - 1)))
1f0b3fd2 504
ece93c02 505
7146af97 506\f
34400008
GM
507/************************************************************************
508 Malloc
509 ************************************************************************/
510
4455ad75 511/* Function malloc calls this if it finds we are near exhausting storage. */
d457598b
AS
512
513void
7146af97
JB
514malloc_warning (str)
515 char *str;
516{
517 pending_malloc_warning = str;
518}
519
34400008 520
4455ad75 521/* Display an already-pending malloc warning. */
34400008 522
d457598b 523void
7146af97
JB
524display_malloc_warning ()
525{
4455ad75
RS
526 call3 (intern ("display-warning"),
527 intern ("alloc"),
528 build_string (pending_malloc_warning),
529 intern ("emergency"));
7146af97 530 pending_malloc_warning = 0;
7146af97
JB
531}
532
34400008 533
d1658221 534#ifdef DOUG_LEA_MALLOC
4d74a5fc 535# define BYTES_USED (mallinfo ().uordblks)
d1658221 536#else
1177ecf6 537# define BYTES_USED _bytes_used
d1658221 538#endif
49efed3a 539\f
276cbe5a
RS
540/* Called if we can't allocate relocatable space for a buffer. */
541
542void
543buffer_memory_full ()
544{
2e471eb5
GM
545 /* If buffers use the relocating allocator, no need to free
546 spare_memory, because we may have plenty of malloc space left
547 that we could get, and if we don't, the malloc that fails will
548 itself cause spare_memory to be freed. If buffers don't use the
549 relocating allocator, treat this like any other failing
550 malloc. */
276cbe5a
RS
551
552#ifndef REL_ALLOC
553 memory_full ();
554#endif
555
2e471eb5
GM
556 /* This used to call error, but if we've run out of memory, we could
557 get infinite recursion trying to build the string. */
bcb61d60 558 while (1)
74a54b04 559 Fsignal (Qnil, Vmemory_signal_data);
7146af97
JB
560}
561
34400008 562
212f33f1
KS
563#ifdef XMALLOC_OVERRUN_CHECK
564
bdbed949
KS
565/* Check for overrun in malloc'ed buffers by wrapping a 16 byte header
566 and a 16 byte trailer around each block.
567
568 The header consists of 12 fixed bytes + a 4 byte integer contaning the
569 original block size, while the trailer consists of 16 fixed bytes.
570
571 The header is used to detect whether this block has been allocated
572 through these functions -- as it seems that some low-level libc
573 functions may bypass the malloc hooks.
574*/
575
576
212f33f1 577#define XMALLOC_OVERRUN_CHECK_SIZE 16
bdbed949 578
212f33f1
KS
579static char xmalloc_overrun_check_header[XMALLOC_OVERRUN_CHECK_SIZE-4] =
580 { 0x9a, 0x9b, 0xae, 0xaf,
581 0xbf, 0xbe, 0xce, 0xcf,
582 0xea, 0xeb, 0xec, 0xed };
583
584static char xmalloc_overrun_check_trailer[XMALLOC_OVERRUN_CHECK_SIZE] =
585 { 0xaa, 0xab, 0xac, 0xad,
586 0xba, 0xbb, 0xbc, 0xbd,
587 0xca, 0xcb, 0xcc, 0xcd,
588 0xda, 0xdb, 0xdc, 0xdd };
589
bdbed949
KS
590/* Macros to insert and extract the block size in the header. */
591
592#define XMALLOC_PUT_SIZE(ptr, size) \
593 (ptr[-1] = (size & 0xff), \
594 ptr[-2] = ((size >> 8) & 0xff), \
595 ptr[-3] = ((size >> 16) & 0xff), \
596 ptr[-4] = ((size >> 24) & 0xff))
597
598#define XMALLOC_GET_SIZE(ptr) \
599 (size_t)((unsigned)(ptr[-1]) | \
600 ((unsigned)(ptr[-2]) << 8) | \
601 ((unsigned)(ptr[-3]) << 16) | \
602 ((unsigned)(ptr[-4]) << 24))
603
604
d8f165a8
JD
605/* The call depth in overrun_check functions. For example, this might happen:
606 xmalloc()
607 overrun_check_malloc()
608 -> malloc -> (via hook)_-> emacs_blocked_malloc
609 -> overrun_check_malloc
610 call malloc (hooks are NULL, so real malloc is called).
611 malloc returns 10000.
612 add overhead, return 10016.
613 <- (back in overrun_check_malloc)
857ae68b 614 add overhead again, return 10032
d8f165a8 615 xmalloc returns 10032.
857ae68b
JD
616
617 (time passes).
618
d8f165a8
JD
619 xfree(10032)
620 overrun_check_free(10032)
621 decrease overhed
622 free(10016) <- crash, because 10000 is the original pointer. */
857ae68b
JD
623
624static int check_depth;
625
bdbed949
KS
626/* Like malloc, but wraps allocated block with header and trailer. */
627
212f33f1
KS
628POINTER_TYPE *
629overrun_check_malloc (size)
630 size_t size;
631{
bdbed949 632 register unsigned char *val;
857ae68b 633 size_t overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_SIZE*2 : 0;
212f33f1 634
857ae68b
JD
635 val = (unsigned char *) malloc (size + overhead);
636 if (val && check_depth == 1)
212f33f1
KS
637 {
638 bcopy (xmalloc_overrun_check_header, val, XMALLOC_OVERRUN_CHECK_SIZE - 4);
212f33f1 639 val += XMALLOC_OVERRUN_CHECK_SIZE;
bdbed949 640 XMALLOC_PUT_SIZE(val, size);
212f33f1
KS
641 bcopy (xmalloc_overrun_check_trailer, val + size, XMALLOC_OVERRUN_CHECK_SIZE);
642 }
857ae68b 643 --check_depth;
212f33f1
KS
644 return (POINTER_TYPE *)val;
645}
646
bdbed949
KS
647
648/* Like realloc, but checks old block for overrun, and wraps new block
649 with header and trailer. */
650
212f33f1
KS
651POINTER_TYPE *
652overrun_check_realloc (block, size)
653 POINTER_TYPE *block;
654 size_t size;
655{
bdbed949 656 register unsigned char *val = (unsigned char *)block;
857ae68b 657 size_t overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_SIZE*2 : 0;
212f33f1
KS
658
659 if (val
857ae68b 660 && check_depth == 1
212f33f1
KS
661 && bcmp (xmalloc_overrun_check_header,
662 val - XMALLOC_OVERRUN_CHECK_SIZE,
663 XMALLOC_OVERRUN_CHECK_SIZE - 4) == 0)
664 {
bdbed949 665 size_t osize = XMALLOC_GET_SIZE (val);
212f33f1
KS
666 if (bcmp (xmalloc_overrun_check_trailer,
667 val + osize,
668 XMALLOC_OVERRUN_CHECK_SIZE))
669 abort ();
bdbed949 670 bzero (val + osize, XMALLOC_OVERRUN_CHECK_SIZE);
212f33f1 671 val -= XMALLOC_OVERRUN_CHECK_SIZE;
bdbed949 672 bzero (val, XMALLOC_OVERRUN_CHECK_SIZE);
212f33f1
KS
673 }
674
857ae68b 675 val = (unsigned char *) realloc ((POINTER_TYPE *)val, size + overhead);
212f33f1 676
857ae68b 677 if (val && check_depth == 1)
212f33f1
KS
678 {
679 bcopy (xmalloc_overrun_check_header, val, XMALLOC_OVERRUN_CHECK_SIZE - 4);
212f33f1 680 val += XMALLOC_OVERRUN_CHECK_SIZE;
bdbed949 681 XMALLOC_PUT_SIZE(val, size);
212f33f1
KS
682 bcopy (xmalloc_overrun_check_trailer, val + size, XMALLOC_OVERRUN_CHECK_SIZE);
683 }
857ae68b 684 --check_depth;
212f33f1
KS
685 return (POINTER_TYPE *)val;
686}
687
bdbed949
KS
688/* Like free, but checks block for overrun. */
689
212f33f1
KS
690void
691overrun_check_free (block)
692 POINTER_TYPE *block;
693{
bdbed949 694 unsigned char *val = (unsigned char *)block;
212f33f1 695
857ae68b 696 ++check_depth;
212f33f1 697 if (val
857ae68b 698 && check_depth == 1
212f33f1
KS
699 && bcmp (xmalloc_overrun_check_header,
700 val - XMALLOC_OVERRUN_CHECK_SIZE,
701 XMALLOC_OVERRUN_CHECK_SIZE - 4) == 0)
702 {
bdbed949 703 size_t osize = XMALLOC_GET_SIZE (val);
212f33f1
KS
704 if (bcmp (xmalloc_overrun_check_trailer,
705 val + osize,
706 XMALLOC_OVERRUN_CHECK_SIZE))
707 abort ();
454d7973
KS
708#ifdef XMALLOC_CLEAR_FREE_MEMORY
709 val -= XMALLOC_OVERRUN_CHECK_SIZE;
710 memset (val, 0xff, osize + XMALLOC_OVERRUN_CHECK_SIZE*2);
711#else
bdbed949 712 bzero (val + osize, XMALLOC_OVERRUN_CHECK_SIZE);
212f33f1 713 val -= XMALLOC_OVERRUN_CHECK_SIZE;
bdbed949 714 bzero (val, XMALLOC_OVERRUN_CHECK_SIZE);
454d7973 715#endif
212f33f1
KS
716 }
717
718 free (val);
857ae68b 719 --check_depth;
212f33f1
KS
720}
721
722#undef malloc
723#undef realloc
724#undef free
725#define malloc overrun_check_malloc
726#define realloc overrun_check_realloc
727#define free overrun_check_free
728#endif
729
bdbed949
KS
730
731/* Like malloc but check for no memory and block interrupt input.. */
732
c971ff9a 733POINTER_TYPE *
7146af97 734xmalloc (size)
675d5130 735 size_t size;
7146af97 736{
c971ff9a 737 register POINTER_TYPE *val;
7146af97 738
9ac0d9e0 739 BLOCK_INPUT;
c971ff9a 740 val = (POINTER_TYPE *) malloc (size);
9ac0d9e0 741 UNBLOCK_INPUT;
7146af97 742
2e471eb5
GM
743 if (!val && size)
744 memory_full ();
7146af97
JB
745 return val;
746}
747
34400008
GM
748
749/* Like realloc but check for no memory and block interrupt input.. */
750
c971ff9a 751POINTER_TYPE *
7146af97 752xrealloc (block, size)
c971ff9a 753 POINTER_TYPE *block;
675d5130 754 size_t size;
7146af97 755{
c971ff9a 756 register POINTER_TYPE *val;
7146af97 757
9ac0d9e0 758 BLOCK_INPUT;
56d2031b
JB
759 /* We must call malloc explicitly when BLOCK is 0, since some
760 reallocs don't do this. */
761 if (! block)
c971ff9a 762 val = (POINTER_TYPE *) malloc (size);
f048679d 763 else
c971ff9a 764 val = (POINTER_TYPE *) realloc (block, size);
9ac0d9e0 765 UNBLOCK_INPUT;
7146af97
JB
766
767 if (!val && size) memory_full ();
768 return val;
769}
9ac0d9e0 770
34400008 771
d7489312 772/* Like free but block interrupt input. */
34400008 773
9ac0d9e0
JB
774void
775xfree (block)
c971ff9a 776 POINTER_TYPE *block;
9ac0d9e0
JB
777{
778 BLOCK_INPUT;
779 free (block);
780 UNBLOCK_INPUT;
24d8a105
RS
781 /* We don't call refill_memory_reserve here
782 because that duplicates doing so in emacs_blocked_free
783 and the criterion should go there. */
9ac0d9e0
JB
784}
785
c8099634 786
dca7c6a8
GM
787/* Like strdup, but uses xmalloc. */
788
789char *
790xstrdup (s)
943b873e 791 const char *s;
dca7c6a8 792{
675d5130 793 size_t len = strlen (s) + 1;
dca7c6a8
GM
794 char *p = (char *) xmalloc (len);
795 bcopy (s, p, len);
796 return p;
797}
798
799
f61bef8b
KS
800/* Unwind for SAFE_ALLOCA */
801
802Lisp_Object
803safe_alloca_unwind (arg)
804 Lisp_Object arg;
805{
b766f870
KS
806 register struct Lisp_Save_Value *p = XSAVE_VALUE (arg);
807
808 p->dogc = 0;
809 xfree (p->pointer);
810 p->pointer = 0;
7b7990cc 811 free_misc (arg);
f61bef8b
KS
812 return Qnil;
813}
814
815
34400008
GM
816/* Like malloc but used for allocating Lisp data. NBYTES is the
817 number of bytes to allocate, TYPE describes the intended use of the
818 allcated memory block (for strings, for conses, ...). */
819
212f33f1 820#ifndef USE_LSB_TAG
918a23a7 821static void *lisp_malloc_loser;
212f33f1 822#endif
918a23a7 823
675d5130 824static POINTER_TYPE *
34400008 825lisp_malloc (nbytes, type)
675d5130 826 size_t nbytes;
34400008 827 enum mem_type type;
c8099634 828{
34400008 829 register void *val;
c8099634
RS
830
831 BLOCK_INPUT;
877935b1
GM
832
833#ifdef GC_MALLOC_CHECK
834 allocated_mem_type = type;
835#endif
177c0ea7 836
34400008 837 val = (void *) malloc (nbytes);
c8099634 838
831b476c 839#ifndef USE_LSB_TAG
918a23a7
RS
840 /* If the memory just allocated cannot be addressed thru a Lisp
841 object's pointer, and it needs to be,
842 that's equivalent to running out of memory. */
843 if (val && type != MEM_TYPE_NON_LISP)
844 {
845 Lisp_Object tem;
846 XSETCONS (tem, (char *) val + nbytes - 1);
847 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
848 {
849 lisp_malloc_loser = val;
850 free (val);
851 val = 0;
852 }
853 }
831b476c 854#endif
918a23a7 855
877935b1 856#if GC_MARK_STACK && !defined GC_MALLOC_CHECK
dca7c6a8 857 if (val && type != MEM_TYPE_NON_LISP)
34400008
GM
858 mem_insert (val, (char *) val + nbytes, type);
859#endif
177c0ea7 860
dca7c6a8
GM
861 UNBLOCK_INPUT;
862 if (!val && nbytes)
863 memory_full ();
c8099634
RS
864 return val;
865}
866
34400008
GM
867/* Free BLOCK. This must be called to free memory allocated with a
868 call to lisp_malloc. */
869
bf952fb6 870static void
c8099634 871lisp_free (block)
675d5130 872 POINTER_TYPE *block;
c8099634
RS
873{
874 BLOCK_INPUT;
c8099634 875 free (block);
877935b1 876#if GC_MARK_STACK && !defined GC_MALLOC_CHECK
34400008
GM
877 mem_delete (mem_find (block));
878#endif
c8099634
RS
879 UNBLOCK_INPUT;
880}
34400008 881
ab6780cd
SM
882/* Allocation of aligned blocks of memory to store Lisp data. */
883/* The entry point is lisp_align_malloc which returns blocks of at most */
884/* BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
885
886
887/* BLOCK_ALIGN has to be a power of 2. */
888#define BLOCK_ALIGN (1 << 10)
ab6780cd
SM
889
890/* Padding to leave at the end of a malloc'd block. This is to give
891 malloc a chance to minimize the amount of memory wasted to alignment.
892 It should be tuned to the particular malloc library used.
19bcad1f
SM
893 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
894 posix_memalign on the other hand would ideally prefer a value of 4
895 because otherwise, there's 1020 bytes wasted between each ablocks.
f501ccb4
SM
896 In Emacs, testing shows that those 1020 can most of the time be
897 efficiently used by malloc to place other objects, so a value of 0 can
898 still preferable unless you have a lot of aligned blocks and virtually
899 nothing else. */
19bcad1f
SM
900#define BLOCK_PADDING 0
901#define BLOCK_BYTES \
f501ccb4 902 (BLOCK_ALIGN - sizeof (struct ablock *) - BLOCK_PADDING)
19bcad1f
SM
903
904/* Internal data structures and constants. */
905
ab6780cd
SM
906#define ABLOCKS_SIZE 16
907
908/* An aligned block of memory. */
909struct ablock
910{
911 union
912 {
913 char payload[BLOCK_BYTES];
914 struct ablock *next_free;
915 } x;
916 /* `abase' is the aligned base of the ablocks. */
917 /* It is overloaded to hold the virtual `busy' field that counts
918 the number of used ablock in the parent ablocks.
919 The first ablock has the `busy' field, the others have the `abase'
920 field. To tell the difference, we assume that pointers will have
921 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
922 is used to tell whether the real base of the parent ablocks is `abase'
923 (if not, the word before the first ablock holds a pointer to the
924 real base). */
925 struct ablocks *abase;
926 /* The padding of all but the last ablock is unused. The padding of
927 the last ablock in an ablocks is not allocated. */
19bcad1f
SM
928#if BLOCK_PADDING
929 char padding[BLOCK_PADDING];
ebb8d410 930#endif
ab6780cd
SM
931};
932
933/* A bunch of consecutive aligned blocks. */
934struct ablocks
935{
936 struct ablock blocks[ABLOCKS_SIZE];
937};
938
939/* Size of the block requested from malloc or memalign. */
19bcad1f 940#define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
ab6780cd
SM
941
942#define ABLOCK_ABASE(block) \
943 (((unsigned long) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
944 ? (struct ablocks *)(block) \
945 : (block)->abase)
946
947/* Virtual `busy' field. */
948#define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
949
950/* Pointer to the (not necessarily aligned) malloc block. */
19bcad1f
SM
951#ifdef HAVE_POSIX_MEMALIGN
952#define ABLOCKS_BASE(abase) (abase)
953#else
ab6780cd 954#define ABLOCKS_BASE(abase) \
03bb6a06 955 (1 & (long) ABLOCKS_BUSY (abase) ? abase : ((void**)abase)[-1])
19bcad1f 956#endif
ab6780cd
SM
957
958/* The list of free ablock. */
959static struct ablock *free_ablock;
960
961/* Allocate an aligned block of nbytes.
962 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
963 smaller or equal to BLOCK_BYTES. */
964static POINTER_TYPE *
965lisp_align_malloc (nbytes, type)
966 size_t nbytes;
967 enum mem_type type;
968{
969 void *base, *val;
970 struct ablocks *abase;
971
972 eassert (nbytes <= BLOCK_BYTES);
973
974 BLOCK_INPUT;
975
976#ifdef GC_MALLOC_CHECK
977 allocated_mem_type = type;
978#endif
979
980 if (!free_ablock)
981 {
d7489312
DL
982 int i;
983 EMACS_INT aligned; /* int gets warning casting to 64-bit pointer. */
ab6780cd
SM
984
985#ifdef DOUG_LEA_MALLOC
986 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
987 because mapped region contents are not preserved in
988 a dumped Emacs. */
989 mallopt (M_MMAP_MAX, 0);
990#endif
991
19bcad1f
SM
992#ifdef HAVE_POSIX_MEMALIGN
993 {
994 int err = posix_memalign (&base, BLOCK_ALIGN, ABLOCKS_BYTES);
ab349c19
RS
995 if (err)
996 base = NULL;
997 abase = base;
19bcad1f
SM
998 }
999#else
ab6780cd
SM
1000 base = malloc (ABLOCKS_BYTES);
1001 abase = ALIGN (base, BLOCK_ALIGN);
ab349c19
RS
1002#endif
1003
4532fdde
RS
1004 if (base == 0)
1005 {
1006 UNBLOCK_INPUT;
1007 memory_full ();
1008 }
ab6780cd
SM
1009
1010 aligned = (base == abase);
1011 if (!aligned)
1012 ((void**)abase)[-1] = base;
1013
1014#ifdef DOUG_LEA_MALLOC
1015 /* Back to a reasonable maximum of mmap'ed areas. */
1016 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1017#endif
1018
831b476c 1019#ifndef USE_LSB_TAG
f4446bbf
GM
1020 /* If the memory just allocated cannot be addressed thru a Lisp
1021 object's pointer, and it needs to be, that's equivalent to
1022 running out of memory. */
1023 if (type != MEM_TYPE_NON_LISP)
1024 {
1025 Lisp_Object tem;
1026 char *end = (char *) base + ABLOCKS_BYTES - 1;
1027 XSETCONS (tem, end);
1028 if ((char *) XCONS (tem) != end)
1029 {
1030 lisp_malloc_loser = base;
1031 free (base);
1032 UNBLOCK_INPUT;
1033 memory_full ();
1034 }
1035 }
831b476c 1036#endif
f4446bbf 1037
ab6780cd
SM
1038 /* Initialize the blocks and put them on the free list.
1039 Is `base' was not properly aligned, we can't use the last block. */
1040 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
1041 {
1042 abase->blocks[i].abase = abase;
1043 abase->blocks[i].x.next_free = free_ablock;
1044 free_ablock = &abase->blocks[i];
1045 }
03bb6a06 1046 ABLOCKS_BUSY (abase) = (struct ablocks *) (long) aligned;
ab6780cd 1047
19bcad1f 1048 eassert (0 == ((EMACS_UINT)abase) % BLOCK_ALIGN);
ab6780cd
SM
1049 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
1050 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
1051 eassert (ABLOCKS_BASE (abase) == base);
03bb6a06 1052 eassert (aligned == (long) ABLOCKS_BUSY (abase));
ab6780cd
SM
1053 }
1054
1055 abase = ABLOCK_ABASE (free_ablock);
03bb6a06 1056 ABLOCKS_BUSY (abase) = (struct ablocks *) (2 + (long) ABLOCKS_BUSY (abase));
ab6780cd
SM
1057 val = free_ablock;
1058 free_ablock = free_ablock->x.next_free;
1059
ab6780cd
SM
1060#if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1061 if (val && type != MEM_TYPE_NON_LISP)
1062 mem_insert (val, (char *) val + nbytes, type);
1063#endif
1064
1065 UNBLOCK_INPUT;
1066 if (!val && nbytes)
1067 memory_full ();
1068
1069 eassert (0 == ((EMACS_UINT)val) % BLOCK_ALIGN);
1070 return val;
1071}
1072
1073static void
1074lisp_align_free (block)
1075 POINTER_TYPE *block;
1076{
1077 struct ablock *ablock = block;
1078 struct ablocks *abase = ABLOCK_ABASE (ablock);
1079
1080 BLOCK_INPUT;
1081#if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1082 mem_delete (mem_find (block));
1083#endif
1084 /* Put on free list. */
1085 ablock->x.next_free = free_ablock;
1086 free_ablock = ablock;
1087 /* Update busy count. */
03bb6a06 1088 ABLOCKS_BUSY (abase) = (struct ablocks *) (-2 + (long) ABLOCKS_BUSY (abase));
d2db1c32 1089
03bb6a06 1090 if (2 > (long) ABLOCKS_BUSY (abase))
ab6780cd 1091 { /* All the blocks are free. */
03bb6a06 1092 int i = 0, aligned = (long) ABLOCKS_BUSY (abase);
ab6780cd
SM
1093 struct ablock **tem = &free_ablock;
1094 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
1095
1096 while (*tem)
1097 {
1098 if (*tem >= (struct ablock *) abase && *tem < atop)
1099 {
1100 i++;
1101 *tem = (*tem)->x.next_free;
1102 }
1103 else
1104 tem = &(*tem)->x.next_free;
1105 }
1106 eassert ((aligned & 1) == aligned);
1107 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
1108 free (ABLOCKS_BASE (abase));
1109 }
1110 UNBLOCK_INPUT;
1111}
3ef06d12
SM
1112
1113/* Return a new buffer structure allocated from the heap with
1114 a call to lisp_malloc. */
1115
1116struct buffer *
1117allocate_buffer ()
1118{
1119 struct buffer *b
1120 = (struct buffer *) lisp_malloc (sizeof (struct buffer),
1121 MEM_TYPE_BUFFER);
1122 return b;
1123}
1124
9ac0d9e0 1125\f
026cdede
SM
1126#ifndef SYSTEM_MALLOC
1127
9ac0d9e0
JB
1128/* Arranging to disable input signals while we're in malloc.
1129
1130 This only works with GNU malloc. To help out systems which can't
1131 use GNU malloc, all the calls to malloc, realloc, and free
1132 elsewhere in the code should be inside a BLOCK_INPUT/UNBLOCK_INPUT
026cdede 1133 pair; unfortunately, we have no idea what C library functions
9ac0d9e0 1134 might call malloc, so we can't really protect them unless you're
2c5bd608
DL
1135 using GNU malloc. Fortunately, most of the major operating systems
1136 can use GNU malloc. */
9ac0d9e0 1137
026cdede
SM
1138#ifndef SYNC_INPUT
1139
b3303f74 1140#ifndef DOUG_LEA_MALLOC
fa8459a3
DN
1141extern void * (*__malloc_hook) P_ ((size_t, const void *));
1142extern void * (*__realloc_hook) P_ ((void *, size_t, const void *));
1143extern void (*__free_hook) P_ ((void *, const void *));
b3303f74
DL
1144/* Else declared in malloc.h, perhaps with an extra arg. */
1145#endif /* DOUG_LEA_MALLOC */
fa8459a3
DN
1146static void * (*old_malloc_hook) P_ ((size_t, const void *));
1147static void * (*old_realloc_hook) P_ ((void *, size_t, const void*));
1148static void (*old_free_hook) P_ ((void*, const void*));
9ac0d9e0 1149
276cbe5a
RS
1150/* This function is used as the hook for free to call. */
1151
9ac0d9e0 1152static void
fa8459a3 1153emacs_blocked_free (ptr, ptr2)
9ac0d9e0 1154 void *ptr;
fa8459a3 1155 const void *ptr2;
9ac0d9e0 1156{
24d8a105
RS
1157 EMACS_INT bytes_used_now;
1158
aa477689 1159 BLOCK_INPUT_ALLOC;
877935b1
GM
1160
1161#ifdef GC_MALLOC_CHECK
a83fee2c
GM
1162 if (ptr)
1163 {
1164 struct mem_node *m;
177c0ea7 1165
a83fee2c
GM
1166 m = mem_find (ptr);
1167 if (m == MEM_NIL || m->start != ptr)
1168 {
1169 fprintf (stderr,
1170 "Freeing `%p' which wasn't allocated with malloc\n", ptr);
1171 abort ();
1172 }
1173 else
1174 {
1175 /* fprintf (stderr, "free %p...%p (%p)\n", m->start, m->end, ptr); */
1176 mem_delete (m);
1177 }
1178 }
877935b1 1179#endif /* GC_MALLOC_CHECK */
177c0ea7 1180
9ac0d9e0
JB
1181 __free_hook = old_free_hook;
1182 free (ptr);
177c0ea7 1183
276cbe5a
RS
1184 /* If we released our reserve (due to running out of memory),
1185 and we have a fair amount free once again,
1186 try to set aside another reserve in case we run out once more. */
24d8a105 1187 if (! NILP (Vmemory_full)
276cbe5a
RS
1188 /* Verify there is enough space that even with the malloc
1189 hysteresis this call won't run out again.
1190 The code here is correct as long as SPARE_MEMORY
1191 is substantially larger than the block size malloc uses. */
1192 && (bytes_used_when_full
4d74a5fc 1193 > ((bytes_used_when_reconsidered = BYTES_USED)
bccfb310 1194 + max (malloc_hysteresis, 4) * SPARE_MEMORY)))
24d8a105 1195 refill_memory_reserve ();
276cbe5a 1196
b0846f52 1197 __free_hook = emacs_blocked_free;
aa477689 1198 UNBLOCK_INPUT_ALLOC;
9ac0d9e0
JB
1199}
1200
34400008 1201
276cbe5a
RS
1202/* This function is the malloc hook that Emacs uses. */
1203
9ac0d9e0 1204static void *
fa8459a3 1205emacs_blocked_malloc (size, ptr)
675d5130 1206 size_t size;
fa8459a3 1207 const void *ptr;
9ac0d9e0
JB
1208{
1209 void *value;
1210
aa477689 1211 BLOCK_INPUT_ALLOC;
9ac0d9e0 1212 __malloc_hook = old_malloc_hook;
1177ecf6 1213#ifdef DOUG_LEA_MALLOC
d1658221 1214 mallopt (M_TOP_PAD, malloc_hysteresis * 4096);
1177ecf6 1215#else
d1658221 1216 __malloc_extra_blocks = malloc_hysteresis;
1177ecf6 1217#endif
877935b1 1218
2756d8ee 1219 value = (void *) malloc (size);
877935b1
GM
1220
1221#ifdef GC_MALLOC_CHECK
1222 {
1223 struct mem_node *m = mem_find (value);
1224 if (m != MEM_NIL)
1225 {
1226 fprintf (stderr, "Malloc returned %p which is already in use\n",
1227 value);
1228 fprintf (stderr, "Region in use is %p...%p, %u bytes, type %d\n",
1229 m->start, m->end, (char *) m->end - (char *) m->start,
1230 m->type);
1231 abort ();
1232 }
1233
1234 if (!dont_register_blocks)
1235 {
1236 mem_insert (value, (char *) value + max (1, size), allocated_mem_type);
1237 allocated_mem_type = MEM_TYPE_NON_LISP;
1238 }
1239 }
1240#endif /* GC_MALLOC_CHECK */
177c0ea7 1241
b0846f52 1242 __malloc_hook = emacs_blocked_malloc;
aa477689 1243 UNBLOCK_INPUT_ALLOC;
9ac0d9e0 1244
877935b1 1245 /* fprintf (stderr, "%p malloc\n", value); */
9ac0d9e0
JB
1246 return value;
1247}
1248
34400008
GM
1249
1250/* This function is the realloc hook that Emacs uses. */
1251
9ac0d9e0 1252static void *
fa8459a3 1253emacs_blocked_realloc (ptr, size, ptr2)
9ac0d9e0 1254 void *ptr;
675d5130 1255 size_t size;
fa8459a3 1256 const void *ptr2;
9ac0d9e0
JB
1257{
1258 void *value;
1259
aa477689 1260 BLOCK_INPUT_ALLOC;
9ac0d9e0 1261 __realloc_hook = old_realloc_hook;
877935b1
GM
1262
1263#ifdef GC_MALLOC_CHECK
1264 if (ptr)
1265 {
1266 struct mem_node *m = mem_find (ptr);
1267 if (m == MEM_NIL || m->start != ptr)
1268 {
1269 fprintf (stderr,
1270 "Realloc of %p which wasn't allocated with malloc\n",
1271 ptr);
1272 abort ();
1273 }
1274
1275 mem_delete (m);
1276 }
177c0ea7 1277
877935b1 1278 /* fprintf (stderr, "%p -> realloc\n", ptr); */
177c0ea7 1279
877935b1
GM
1280 /* Prevent malloc from registering blocks. */
1281 dont_register_blocks = 1;
1282#endif /* GC_MALLOC_CHECK */
1283
2756d8ee 1284 value = (void *) realloc (ptr, size);
877935b1
GM
1285
1286#ifdef GC_MALLOC_CHECK
1287 dont_register_blocks = 0;
1288
1289 {
1290 struct mem_node *m = mem_find (value);
1291 if (m != MEM_NIL)
1292 {
1293 fprintf (stderr, "Realloc returns memory that is already in use\n");
1294 abort ();
1295 }
1296
1297 /* Can't handle zero size regions in the red-black tree. */
1298 mem_insert (value, (char *) value + max (size, 1), MEM_TYPE_NON_LISP);
1299 }
177c0ea7 1300
877935b1
GM
1301 /* fprintf (stderr, "%p <- realloc\n", value); */
1302#endif /* GC_MALLOC_CHECK */
177c0ea7 1303
b0846f52 1304 __realloc_hook = emacs_blocked_realloc;
aa477689 1305 UNBLOCK_INPUT_ALLOC;
9ac0d9e0
JB
1306
1307 return value;
1308}
1309
34400008 1310
aa477689
JD
1311#ifdef HAVE_GTK_AND_PTHREAD
1312/* Called from Fdump_emacs so that when the dumped Emacs starts, it has a
1313 normal malloc. Some thread implementations need this as they call
1314 malloc before main. The pthread_self call in BLOCK_INPUT_ALLOC then
1315 calls malloc because it is the first call, and we have an endless loop. */
1316
1317void
1318reset_malloc_hooks ()
1319{
1320 __free_hook = 0;
1321 __malloc_hook = 0;
1322 __realloc_hook = 0;
1323}
1324#endif /* HAVE_GTK_AND_PTHREAD */
1325
1326
34400008
GM
1327/* Called from main to set up malloc to use our hooks. */
1328
9ac0d9e0
JB
1329void
1330uninterrupt_malloc ()
1331{
aa477689
JD
1332#ifdef HAVE_GTK_AND_PTHREAD
1333 pthread_mutexattr_t attr;
1334
1335 /* GLIBC has a faster way to do this, but lets keep it portable.
1336 This is according to the Single UNIX Specification. */
1337 pthread_mutexattr_init (&attr);
1338 pthread_mutexattr_settype (&attr, PTHREAD_MUTEX_RECURSIVE);
1339 pthread_mutex_init (&alloc_mutex, &attr);
aa477689
JD
1340#endif /* HAVE_GTK_AND_PTHREAD */
1341
c8099634
RS
1342 if (__free_hook != emacs_blocked_free)
1343 old_free_hook = __free_hook;
b0846f52 1344 __free_hook = emacs_blocked_free;
9ac0d9e0 1345
c8099634
RS
1346 if (__malloc_hook != emacs_blocked_malloc)
1347 old_malloc_hook = __malloc_hook;
b0846f52 1348 __malloc_hook = emacs_blocked_malloc;
9ac0d9e0 1349
c8099634
RS
1350 if (__realloc_hook != emacs_blocked_realloc)
1351 old_realloc_hook = __realloc_hook;
b0846f52 1352 __realloc_hook = emacs_blocked_realloc;
9ac0d9e0 1353}
2e471eb5 1354
026cdede 1355#endif /* not SYNC_INPUT */
2e471eb5
GM
1356#endif /* not SYSTEM_MALLOC */
1357
1358
7146af97 1359\f
2e471eb5
GM
1360/***********************************************************************
1361 Interval Allocation
1362 ***********************************************************************/
1a4f1e2c 1363
34400008
GM
1364/* Number of intervals allocated in an interval_block structure.
1365 The 1020 is 1024 minus malloc overhead. */
1366
d5e35230
JA
1367#define INTERVAL_BLOCK_SIZE \
1368 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1369
34400008
GM
1370/* Intervals are allocated in chunks in form of an interval_block
1371 structure. */
1372
d5e35230 1373struct interval_block
2e471eb5 1374{
d05b383a 1375 /* Place `intervals' first, to preserve alignment. */
2e471eb5 1376 struct interval intervals[INTERVAL_BLOCK_SIZE];
d05b383a 1377 struct interval_block *next;
2e471eb5 1378};
d5e35230 1379
34400008
GM
1380/* Current interval block. Its `next' pointer points to older
1381 blocks. */
1382
d5e35230 1383struct interval_block *interval_block;
34400008
GM
1384
1385/* Index in interval_block above of the next unused interval
1386 structure. */
1387
d5e35230 1388static int interval_block_index;
34400008
GM
1389
1390/* Number of free and live intervals. */
1391
2e471eb5 1392static int total_free_intervals, total_intervals;
d5e35230 1393
34400008
GM
1394/* List of free intervals. */
1395
d5e35230
JA
1396INTERVAL interval_free_list;
1397
c8099634 1398/* Total number of interval blocks now in use. */
2e471eb5 1399
c8099634
RS
1400int n_interval_blocks;
1401
34400008
GM
1402
1403/* Initialize interval allocation. */
1404
d5e35230
JA
1405static void
1406init_intervals ()
1407{
0930c1a1
SM
1408 interval_block = NULL;
1409 interval_block_index = INTERVAL_BLOCK_SIZE;
d5e35230 1410 interval_free_list = 0;
0930c1a1 1411 n_interval_blocks = 0;
d5e35230
JA
1412}
1413
34400008
GM
1414
1415/* Return a new interval. */
d5e35230
JA
1416
1417INTERVAL
1418make_interval ()
1419{
1420 INTERVAL val;
1421
1422 if (interval_free_list)
1423 {
1424 val = interval_free_list;
439d5cb4 1425 interval_free_list = INTERVAL_PARENT (interval_free_list);
d5e35230
JA
1426 }
1427 else
1428 {
1429 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1430 {
3c06d205
KH
1431 register struct interval_block *newi;
1432
34400008
GM
1433 newi = (struct interval_block *) lisp_malloc (sizeof *newi,
1434 MEM_TYPE_NON_LISP);
d5e35230 1435
d5e35230
JA
1436 newi->next = interval_block;
1437 interval_block = newi;
1438 interval_block_index = 0;
c8099634 1439 n_interval_blocks++;
d5e35230
JA
1440 }
1441 val = &interval_block->intervals[interval_block_index++];
1442 }
1443 consing_since_gc += sizeof (struct interval);
310ea200 1444 intervals_consed++;
d5e35230 1445 RESET_INTERVAL (val);
2336fe58 1446 val->gcmarkbit = 0;
d5e35230
JA
1447 return val;
1448}
1449
34400008
GM
1450
1451/* Mark Lisp objects in interval I. */
d5e35230
JA
1452
1453static void
d393c068 1454mark_interval (i, dummy)
d5e35230 1455 register INTERVAL i;
d393c068 1456 Lisp_Object dummy;
d5e35230 1457{
2336fe58
SM
1458 eassert (!i->gcmarkbit); /* Intervals are never shared. */
1459 i->gcmarkbit = 1;
49723c04 1460 mark_object (i->plist);
d5e35230
JA
1461}
1462
34400008
GM
1463
1464/* Mark the interval tree rooted in TREE. Don't call this directly;
1465 use the macro MARK_INTERVAL_TREE instead. */
1466
d5e35230
JA
1467static void
1468mark_interval_tree (tree)
1469 register INTERVAL tree;
1470{
e8720644
JB
1471 /* No need to test if this tree has been marked already; this
1472 function is always called through the MARK_INTERVAL_TREE macro,
1473 which takes care of that. */
1474
1e934989 1475 traverse_intervals_noorder (tree, mark_interval, Qnil);
d5e35230
JA
1476}
1477
34400008
GM
1478
1479/* Mark the interval tree rooted in I. */
1480
e8720644
JB
1481#define MARK_INTERVAL_TREE(i) \
1482 do { \
2336fe58 1483 if (!NULL_INTERVAL_P (i) && !i->gcmarkbit) \
e8720644
JB
1484 mark_interval_tree (i); \
1485 } while (0)
d5e35230 1486
34400008 1487
2e471eb5
GM
1488#define UNMARK_BALANCE_INTERVALS(i) \
1489 do { \
1490 if (! NULL_INTERVAL_P (i)) \
2336fe58 1491 (i) = balance_intervals (i); \
2e471eb5 1492 } while (0)
d5e35230 1493
cc2d8c6b
KR
1494\f
1495/* Number support. If NO_UNION_TYPE isn't in effect, we
1496 can't create number objects in macros. */
1497#ifndef make_number
1498Lisp_Object
1499make_number (n)
217604da 1500 EMACS_INT n;
cc2d8c6b
KR
1501{
1502 Lisp_Object obj;
1503 obj.s.val = n;
1504 obj.s.type = Lisp_Int;
1505 return obj;
1506}
1507#endif
d5e35230 1508\f
2e471eb5
GM
1509/***********************************************************************
1510 String Allocation
1511 ***********************************************************************/
1a4f1e2c 1512
2e471eb5
GM
1513/* Lisp_Strings are allocated in string_block structures. When a new
1514 string_block is allocated, all the Lisp_Strings it contains are
e0fead5d 1515 added to a free-list string_free_list. When a new Lisp_String is
2e471eb5
GM
1516 needed, it is taken from that list. During the sweep phase of GC,
1517 string_blocks that are entirely free are freed, except two which
1518 we keep.
7146af97 1519
2e471eb5
GM
1520 String data is allocated from sblock structures. Strings larger
1521 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1522 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
7146af97 1523
2e471eb5
GM
1524 Sblocks consist internally of sdata structures, one for each
1525 Lisp_String. The sdata structure points to the Lisp_String it
1526 belongs to. The Lisp_String points back to the `u.data' member of
1527 its sdata structure.
7146af97 1528
2e471eb5
GM
1529 When a Lisp_String is freed during GC, it is put back on
1530 string_free_list, and its `data' member and its sdata's `string'
1531 pointer is set to null. The size of the string is recorded in the
1532 `u.nbytes' member of the sdata. So, sdata structures that are no
1533 longer used, can be easily recognized, and it's easy to compact the
1534 sblocks of small strings which we do in compact_small_strings. */
7146af97 1535
2e471eb5
GM
1536/* Size in bytes of an sblock structure used for small strings. This
1537 is 8192 minus malloc overhead. */
7146af97 1538
2e471eb5 1539#define SBLOCK_SIZE 8188
c8099634 1540
2e471eb5
GM
1541/* Strings larger than this are considered large strings. String data
1542 for large strings is allocated from individual sblocks. */
7146af97 1543
2e471eb5
GM
1544#define LARGE_STRING_BYTES 1024
1545
1546/* Structure describing string memory sub-allocated from an sblock.
1547 This is where the contents of Lisp strings are stored. */
1548
1549struct sdata
7146af97 1550{
2e471eb5
GM
1551 /* Back-pointer to the string this sdata belongs to. If null, this
1552 structure is free, and the NBYTES member of the union below
34400008 1553 contains the string's byte size (the same value that STRING_BYTES
2e471eb5
GM
1554 would return if STRING were non-null). If non-null, STRING_BYTES
1555 (STRING) is the size of the data, and DATA contains the string's
1556 contents. */
1557 struct Lisp_String *string;
7146af97 1558
31d929e5 1559#ifdef GC_CHECK_STRING_BYTES
177c0ea7 1560
31d929e5
GM
1561 EMACS_INT nbytes;
1562 unsigned char data[1];
177c0ea7 1563
31d929e5
GM
1564#define SDATA_NBYTES(S) (S)->nbytes
1565#define SDATA_DATA(S) (S)->data
177c0ea7 1566
31d929e5
GM
1567#else /* not GC_CHECK_STRING_BYTES */
1568
2e471eb5
GM
1569 union
1570 {
1571 /* When STRING in non-null. */
1572 unsigned char data[1];
1573
1574 /* When STRING is null. */
1575 EMACS_INT nbytes;
1576 } u;
177c0ea7 1577
31d929e5
GM
1578
1579#define SDATA_NBYTES(S) (S)->u.nbytes
1580#define SDATA_DATA(S) (S)->u.data
1581
1582#endif /* not GC_CHECK_STRING_BYTES */
2e471eb5
GM
1583};
1584
31d929e5 1585
2e471eb5
GM
1586/* Structure describing a block of memory which is sub-allocated to
1587 obtain string data memory for strings. Blocks for small strings
1588 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1589 as large as needed. */
1590
1591struct sblock
7146af97 1592{
2e471eb5
GM
1593 /* Next in list. */
1594 struct sblock *next;
7146af97 1595
2e471eb5
GM
1596 /* Pointer to the next free sdata block. This points past the end
1597 of the sblock if there isn't any space left in this block. */
1598 struct sdata *next_free;
1599
1600 /* Start of data. */
1601 struct sdata first_data;
1602};
1603
1604/* Number of Lisp strings in a string_block structure. The 1020 is
1605 1024 minus malloc overhead. */
1606
19bcad1f 1607#define STRING_BLOCK_SIZE \
2e471eb5
GM
1608 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1609
1610/* Structure describing a block from which Lisp_String structures
1611 are allocated. */
1612
1613struct string_block
7146af97 1614{
d05b383a 1615 /* Place `strings' first, to preserve alignment. */
19bcad1f 1616 struct Lisp_String strings[STRING_BLOCK_SIZE];
d05b383a 1617 struct string_block *next;
2e471eb5 1618};
7146af97 1619
2e471eb5
GM
1620/* Head and tail of the list of sblock structures holding Lisp string
1621 data. We always allocate from current_sblock. The NEXT pointers
1622 in the sblock structures go from oldest_sblock to current_sblock. */
3c06d205 1623
2e471eb5 1624static struct sblock *oldest_sblock, *current_sblock;
7146af97 1625
2e471eb5 1626/* List of sblocks for large strings. */
7146af97 1627
2e471eb5 1628static struct sblock *large_sblocks;
7146af97 1629
2e471eb5 1630/* List of string_block structures, and how many there are. */
7146af97 1631
2e471eb5
GM
1632static struct string_block *string_blocks;
1633static int n_string_blocks;
7146af97 1634
2e471eb5 1635/* Free-list of Lisp_Strings. */
7146af97 1636
2e471eb5 1637static struct Lisp_String *string_free_list;
7146af97 1638
2e471eb5 1639/* Number of live and free Lisp_Strings. */
c8099634 1640
2e471eb5 1641static int total_strings, total_free_strings;
7146af97 1642
2e471eb5
GM
1643/* Number of bytes used by live strings. */
1644
1645static int total_string_size;
1646
1647/* Given a pointer to a Lisp_String S which is on the free-list
1648 string_free_list, return a pointer to its successor in the
1649 free-list. */
1650
1651#define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1652
1653/* Return a pointer to the sdata structure belonging to Lisp string S.
1654 S must be live, i.e. S->data must not be null. S->data is actually
1655 a pointer to the `u.data' member of its sdata structure; the
1656 structure starts at a constant offset in front of that. */
177c0ea7 1657
31d929e5
GM
1658#ifdef GC_CHECK_STRING_BYTES
1659
1660#define SDATA_OF_STRING(S) \
1661 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *) \
1662 - sizeof (EMACS_INT)))
1663
1664#else /* not GC_CHECK_STRING_BYTES */
1665
2e471eb5
GM
1666#define SDATA_OF_STRING(S) \
1667 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *)))
1668
31d929e5
GM
1669#endif /* not GC_CHECK_STRING_BYTES */
1670
212f33f1
KS
1671
1672#ifdef GC_CHECK_STRING_OVERRUN
bdbed949
KS
1673
1674/* We check for overrun in string data blocks by appending a small
1675 "cookie" after each allocated string data block, and check for the
8349069c 1676 presence of this cookie during GC. */
bdbed949
KS
1677
1678#define GC_STRING_OVERRUN_COOKIE_SIZE 4
1679static char string_overrun_cookie[GC_STRING_OVERRUN_COOKIE_SIZE] =
1680 { 0xde, 0xad, 0xbe, 0xef };
1681
212f33f1 1682#else
bdbed949 1683#define GC_STRING_OVERRUN_COOKIE_SIZE 0
212f33f1
KS
1684#endif
1685
2e471eb5
GM
1686/* Value is the size of an sdata structure large enough to hold NBYTES
1687 bytes of string data. The value returned includes a terminating
1688 NUL byte, the size of the sdata structure, and padding. */
1689
31d929e5
GM
1690#ifdef GC_CHECK_STRING_BYTES
1691
2e471eb5
GM
1692#define SDATA_SIZE(NBYTES) \
1693 ((sizeof (struct Lisp_String *) \
1694 + (NBYTES) + 1 \
31d929e5 1695 + sizeof (EMACS_INT) \
2e471eb5
GM
1696 + sizeof (EMACS_INT) - 1) \
1697 & ~(sizeof (EMACS_INT) - 1))
1698
31d929e5
GM
1699#else /* not GC_CHECK_STRING_BYTES */
1700
1701#define SDATA_SIZE(NBYTES) \
1702 ((sizeof (struct Lisp_String *) \
1703 + (NBYTES) + 1 \
1704 + sizeof (EMACS_INT) - 1) \
1705 & ~(sizeof (EMACS_INT) - 1))
1706
1707#endif /* not GC_CHECK_STRING_BYTES */
2e471eb5 1708
bdbed949
KS
1709/* Extra bytes to allocate for each string. */
1710
1711#define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1712
2e471eb5 1713/* Initialize string allocation. Called from init_alloc_once. */
d457598b
AS
1714
1715void
2e471eb5 1716init_strings ()
7146af97 1717{
2e471eb5
GM
1718 total_strings = total_free_strings = total_string_size = 0;
1719 oldest_sblock = current_sblock = large_sblocks = NULL;
1720 string_blocks = NULL;
1721 n_string_blocks = 0;
1722 string_free_list = NULL;
7146af97
JB
1723}
1724
2e471eb5 1725
361b097f
GM
1726#ifdef GC_CHECK_STRING_BYTES
1727
361b097f
GM
1728static int check_string_bytes_count;
1729
676a7251
GM
1730void check_string_bytes P_ ((int));
1731void check_sblock P_ ((struct sblock *));
1732
1733#define CHECK_STRING_BYTES(S) STRING_BYTES (S)
1734
1735
1736/* Like GC_STRING_BYTES, but with debugging check. */
1737
1738int
1739string_bytes (s)
1740 struct Lisp_String *s;
1741{
7cdee936 1742 int nbytes = (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
676a7251
GM
1743 if (!PURE_POINTER_P (s)
1744 && s->data
1745 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1746 abort ();
1747 return nbytes;
1748}
177c0ea7 1749
2c5bd608 1750/* Check validity of Lisp strings' string_bytes member in B. */
676a7251 1751
361b097f 1752void
676a7251
GM
1753check_sblock (b)
1754 struct sblock *b;
361b097f 1755{
676a7251 1756 struct sdata *from, *end, *from_end;
177c0ea7 1757
676a7251 1758 end = b->next_free;
177c0ea7 1759
676a7251 1760 for (from = &b->first_data; from < end; from = from_end)
361b097f 1761 {
676a7251
GM
1762 /* Compute the next FROM here because copying below may
1763 overwrite data we need to compute it. */
1764 int nbytes;
177c0ea7 1765
676a7251
GM
1766 /* Check that the string size recorded in the string is the
1767 same as the one recorded in the sdata structure. */
1768 if (from->string)
1769 CHECK_STRING_BYTES (from->string);
177c0ea7 1770
676a7251
GM
1771 if (from->string)
1772 nbytes = GC_STRING_BYTES (from->string);
1773 else
1774 nbytes = SDATA_NBYTES (from);
177c0ea7 1775
676a7251 1776 nbytes = SDATA_SIZE (nbytes);
212f33f1 1777 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
676a7251
GM
1778 }
1779}
361b097f 1780
676a7251
GM
1781
1782/* Check validity of Lisp strings' string_bytes member. ALL_P
1783 non-zero means check all strings, otherwise check only most
1784 recently allocated strings. Used for hunting a bug. */
1785
1786void
1787check_string_bytes (all_p)
1788 int all_p;
1789{
1790 if (all_p)
1791 {
1792 struct sblock *b;
1793
1794 for (b = large_sblocks; b; b = b->next)
1795 {
1796 struct Lisp_String *s = b->first_data.string;
1797 if (s)
1798 CHECK_STRING_BYTES (s);
361b097f 1799 }
177c0ea7 1800
676a7251
GM
1801 for (b = oldest_sblock; b; b = b->next)
1802 check_sblock (b);
361b097f 1803 }
676a7251
GM
1804 else
1805 check_sblock (current_sblock);
361b097f
GM
1806}
1807
1808#endif /* GC_CHECK_STRING_BYTES */
1809
212f33f1
KS
1810#ifdef GC_CHECK_STRING_FREE_LIST
1811
bdbed949
KS
1812/* Walk through the string free list looking for bogus next pointers.
1813 This may catch buffer overrun from a previous string. */
1814
212f33f1
KS
1815static void
1816check_string_free_list ()
1817{
1818 struct Lisp_String *s;
1819
1820 /* Pop a Lisp_String off the free-list. */
1821 s = string_free_list;
1822 while (s != NULL)
1823 {
1824 if ((unsigned)s < 1024)
1825 abort();
1826 s = NEXT_FREE_LISP_STRING (s);
1827 }
1828}
1829#else
1830#define check_string_free_list()
1831#endif
361b097f 1832
2e471eb5
GM
1833/* Return a new Lisp_String. */
1834
1835static struct Lisp_String *
1836allocate_string ()
7146af97 1837{
2e471eb5 1838 struct Lisp_String *s;
7146af97 1839
2e471eb5
GM
1840 /* If the free-list is empty, allocate a new string_block, and
1841 add all the Lisp_Strings in it to the free-list. */
1842 if (string_free_list == NULL)
7146af97 1843 {
2e471eb5
GM
1844 struct string_block *b;
1845 int i;
1846
34400008 1847 b = (struct string_block *) lisp_malloc (sizeof *b, MEM_TYPE_STRING);
2e471eb5
GM
1848 bzero (b, sizeof *b);
1849 b->next = string_blocks;
1850 string_blocks = b;
1851 ++n_string_blocks;
1852
19bcad1f 1853 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
7146af97 1854 {
2e471eb5
GM
1855 s = b->strings + i;
1856 NEXT_FREE_LISP_STRING (s) = string_free_list;
1857 string_free_list = s;
7146af97 1858 }
2e471eb5 1859
19bcad1f 1860 total_free_strings += STRING_BLOCK_SIZE;
7146af97 1861 }
c0f51373 1862
bdbed949 1863 check_string_free_list ();
212f33f1 1864
2e471eb5
GM
1865 /* Pop a Lisp_String off the free-list. */
1866 s = string_free_list;
1867 string_free_list = NEXT_FREE_LISP_STRING (s);
c0f51373 1868
2e471eb5
GM
1869 /* Probably not strictly necessary, but play it safe. */
1870 bzero (s, sizeof *s);
c0f51373 1871
2e471eb5
GM
1872 --total_free_strings;
1873 ++total_strings;
1874 ++strings_consed;
1875 consing_since_gc += sizeof *s;
c0f51373 1876
361b097f 1877#ifdef GC_CHECK_STRING_BYTES
83a96b4d 1878 if (!noninteractive
e0f712ba 1879#ifdef MAC_OS8
83a96b4d
AC
1880 && current_sblock
1881#endif
1882 )
361b097f 1883 {
676a7251
GM
1884 if (++check_string_bytes_count == 200)
1885 {
1886 check_string_bytes_count = 0;
1887 check_string_bytes (1);
1888 }
1889 else
1890 check_string_bytes (0);
361b097f 1891 }
676a7251 1892#endif /* GC_CHECK_STRING_BYTES */
361b097f 1893
2e471eb5 1894 return s;
c0f51373 1895}
7146af97 1896
7146af97 1897
2e471eb5
GM
1898/* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1899 plus a NUL byte at the end. Allocate an sdata structure for S, and
1900 set S->data to its `u.data' member. Store a NUL byte at the end of
1901 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1902 S->data if it was initially non-null. */
7146af97 1903
2e471eb5
GM
1904void
1905allocate_string_data (s, nchars, nbytes)
1906 struct Lisp_String *s;
1907 int nchars, nbytes;
7146af97 1908{
5c5fecb3 1909 struct sdata *data, *old_data;
2e471eb5 1910 struct sblock *b;
5c5fecb3 1911 int needed, old_nbytes;
7146af97 1912
2e471eb5
GM
1913 /* Determine the number of bytes needed to store NBYTES bytes
1914 of string data. */
1915 needed = SDATA_SIZE (nbytes);
7146af97 1916
2e471eb5
GM
1917 if (nbytes > LARGE_STRING_BYTES)
1918 {
675d5130 1919 size_t size = sizeof *b - sizeof (struct sdata) + needed;
2e471eb5
GM
1920
1921#ifdef DOUG_LEA_MALLOC
f8608968
GM
1922 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1923 because mapped region contents are not preserved in
d36b182f
DL
1924 a dumped Emacs.
1925
1926 In case you think of allowing it in a dumped Emacs at the
1927 cost of not being able to re-dump, there's another reason:
1928 mmap'ed data typically have an address towards the top of the
1929 address space, which won't fit into an EMACS_INT (at least on
1930 32-bit systems with the current tagging scheme). --fx */
1673df2e 1931 BLOCK_INPUT;
2e471eb5 1932 mallopt (M_MMAP_MAX, 0);
1673df2e 1933 UNBLOCK_INPUT;
2e471eb5
GM
1934#endif
1935
212f33f1 1936 b = (struct sblock *) lisp_malloc (size + GC_STRING_EXTRA, MEM_TYPE_NON_LISP);
177c0ea7 1937
2e471eb5
GM
1938#ifdef DOUG_LEA_MALLOC
1939 /* Back to a reasonable maximum of mmap'ed areas. */
1673df2e 1940 BLOCK_INPUT;
2e471eb5 1941 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1673df2e 1942 UNBLOCK_INPUT;
2e471eb5 1943#endif
177c0ea7 1944
2e471eb5
GM
1945 b->next_free = &b->first_data;
1946 b->first_data.string = NULL;
1947 b->next = large_sblocks;
1948 large_sblocks = b;
1949 }
1950 else if (current_sblock == NULL
1951 || (((char *) current_sblock + SBLOCK_SIZE
1952 - (char *) current_sblock->next_free)
212f33f1 1953 < (needed + GC_STRING_EXTRA)))
2e471eb5
GM
1954 {
1955 /* Not enough room in the current sblock. */
34400008 1956 b = (struct sblock *) lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
2e471eb5
GM
1957 b->next_free = &b->first_data;
1958 b->first_data.string = NULL;
1959 b->next = NULL;
1960
1961 if (current_sblock)
1962 current_sblock->next = b;
1963 else
1964 oldest_sblock = b;
1965 current_sblock = b;
1966 }
1967 else
1968 b = current_sblock;
5c5fecb3
GM
1969
1970 old_data = s->data ? SDATA_OF_STRING (s) : NULL;
1971 old_nbytes = GC_STRING_BYTES (s);
177c0ea7 1972
2e471eb5
GM
1973 data = b->next_free;
1974 data->string = s;
31d929e5
GM
1975 s->data = SDATA_DATA (data);
1976#ifdef GC_CHECK_STRING_BYTES
1977 SDATA_NBYTES (data) = nbytes;
1978#endif
2e471eb5
GM
1979 s->size = nchars;
1980 s->size_byte = nbytes;
1981 s->data[nbytes] = '\0';
212f33f1 1982#ifdef GC_CHECK_STRING_OVERRUN
bdbed949
KS
1983 bcopy (string_overrun_cookie, (char *) data + needed,
1984 GC_STRING_OVERRUN_COOKIE_SIZE);
212f33f1
KS
1985#endif
1986 b->next_free = (struct sdata *) ((char *) data + needed + GC_STRING_EXTRA);
177c0ea7 1987
5c5fecb3
GM
1988 /* If S had already data assigned, mark that as free by setting its
1989 string back-pointer to null, and recording the size of the data
00c9c33c 1990 in it. */
5c5fecb3
GM
1991 if (old_data)
1992 {
31d929e5 1993 SDATA_NBYTES (old_data) = old_nbytes;
5c5fecb3
GM
1994 old_data->string = NULL;
1995 }
1996
2e471eb5
GM
1997 consing_since_gc += needed;
1998}
1999
2000
2001/* Sweep and compact strings. */
2002
2003static void
2004sweep_strings ()
2005{
2006 struct string_block *b, *next;
2007 struct string_block *live_blocks = NULL;
177c0ea7 2008
2e471eb5
GM
2009 string_free_list = NULL;
2010 total_strings = total_free_strings = 0;
2011 total_string_size = 0;
2012
2013 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
2014 for (b = string_blocks; b; b = next)
2015 {
2016 int i, nfree = 0;
2017 struct Lisp_String *free_list_before = string_free_list;
2018
2019 next = b->next;
2020
19bcad1f 2021 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
2e471eb5
GM
2022 {
2023 struct Lisp_String *s = b->strings + i;
2024
2025 if (s->data)
2026 {
2027 /* String was not on free-list before. */
2028 if (STRING_MARKED_P (s))
2029 {
2030 /* String is live; unmark it and its intervals. */
2031 UNMARK_STRING (s);
177c0ea7 2032
2e471eb5
GM
2033 if (!NULL_INTERVAL_P (s->intervals))
2034 UNMARK_BALANCE_INTERVALS (s->intervals);
2035
2036 ++total_strings;
2037 total_string_size += STRING_BYTES (s);
2038 }
2039 else
2040 {
2041 /* String is dead. Put it on the free-list. */
2042 struct sdata *data = SDATA_OF_STRING (s);
2043
2044 /* Save the size of S in its sdata so that we know
2045 how large that is. Reset the sdata's string
2046 back-pointer so that we know it's free. */
31d929e5
GM
2047#ifdef GC_CHECK_STRING_BYTES
2048 if (GC_STRING_BYTES (s) != SDATA_NBYTES (data))
2049 abort ();
2050#else
2e471eb5 2051 data->u.nbytes = GC_STRING_BYTES (s);
31d929e5 2052#endif
2e471eb5
GM
2053 data->string = NULL;
2054
2055 /* Reset the strings's `data' member so that we
2056 know it's free. */
2057 s->data = NULL;
2058
2059 /* Put the string on the free-list. */
2060 NEXT_FREE_LISP_STRING (s) = string_free_list;
2061 string_free_list = s;
2062 ++nfree;
2063 }
2064 }
2065 else
2066 {
2067 /* S was on the free-list before. Put it there again. */
2068 NEXT_FREE_LISP_STRING (s) = string_free_list;
2069 string_free_list = s;
2070 ++nfree;
2071 }
2072 }
2073
34400008 2074 /* Free blocks that contain free Lisp_Strings only, except
2e471eb5 2075 the first two of them. */
19bcad1f
SM
2076 if (nfree == STRING_BLOCK_SIZE
2077 && total_free_strings > STRING_BLOCK_SIZE)
2e471eb5
GM
2078 {
2079 lisp_free (b);
2080 --n_string_blocks;
2081 string_free_list = free_list_before;
2082 }
2083 else
2084 {
2085 total_free_strings += nfree;
2086 b->next = live_blocks;
2087 live_blocks = b;
2088 }
2089 }
2090
bdbed949 2091 check_string_free_list ();
212f33f1 2092
2e471eb5
GM
2093 string_blocks = live_blocks;
2094 free_large_strings ();
2095 compact_small_strings ();
212f33f1 2096
bdbed949 2097 check_string_free_list ();
2e471eb5
GM
2098}
2099
2100
2101/* Free dead large strings. */
2102
2103static void
2104free_large_strings ()
2105{
2106 struct sblock *b, *next;
2107 struct sblock *live_blocks = NULL;
177c0ea7 2108
2e471eb5
GM
2109 for (b = large_sblocks; b; b = next)
2110 {
2111 next = b->next;
2112
2113 if (b->first_data.string == NULL)
2114 lisp_free (b);
2115 else
2116 {
2117 b->next = live_blocks;
2118 live_blocks = b;
2119 }
2120 }
2121
2122 large_sblocks = live_blocks;
2123}
2124
2125
2126/* Compact data of small strings. Free sblocks that don't contain
2127 data of live strings after compaction. */
2128
2129static void
2130compact_small_strings ()
2131{
2132 struct sblock *b, *tb, *next;
2133 struct sdata *from, *to, *end, *tb_end;
2134 struct sdata *to_end, *from_end;
2135
2136 /* TB is the sblock we copy to, TO is the sdata within TB we copy
2137 to, and TB_END is the end of TB. */
2138 tb = oldest_sblock;
2139 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2140 to = &tb->first_data;
2141
2142 /* Step through the blocks from the oldest to the youngest. We
2143 expect that old blocks will stabilize over time, so that less
2144 copying will happen this way. */
2145 for (b = oldest_sblock; b; b = b->next)
2146 {
2147 end = b->next_free;
2148 xassert ((char *) end <= (char *) b + SBLOCK_SIZE);
177c0ea7 2149
2e471eb5
GM
2150 for (from = &b->first_data; from < end; from = from_end)
2151 {
2152 /* Compute the next FROM here because copying below may
2153 overwrite data we need to compute it. */
2154 int nbytes;
2155
31d929e5
GM
2156#ifdef GC_CHECK_STRING_BYTES
2157 /* Check that the string size recorded in the string is the
2158 same as the one recorded in the sdata structure. */
2159 if (from->string
2160 && GC_STRING_BYTES (from->string) != SDATA_NBYTES (from))
2161 abort ();
2162#endif /* GC_CHECK_STRING_BYTES */
177c0ea7 2163
2e471eb5
GM
2164 if (from->string)
2165 nbytes = GC_STRING_BYTES (from->string);
2166 else
31d929e5 2167 nbytes = SDATA_NBYTES (from);
177c0ea7 2168
212f33f1
KS
2169 if (nbytes > LARGE_STRING_BYTES)
2170 abort ();
212f33f1 2171
2e471eb5 2172 nbytes = SDATA_SIZE (nbytes);
212f33f1
KS
2173 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
2174
2175#ifdef GC_CHECK_STRING_OVERRUN
bdbed949
KS
2176 if (bcmp (string_overrun_cookie,
2177 ((char *) from_end) - GC_STRING_OVERRUN_COOKIE_SIZE,
2178 GC_STRING_OVERRUN_COOKIE_SIZE))
212f33f1
KS
2179 abort ();
2180#endif
177c0ea7 2181
2e471eb5
GM
2182 /* FROM->string non-null means it's alive. Copy its data. */
2183 if (from->string)
2184 {
2185 /* If TB is full, proceed with the next sblock. */
212f33f1 2186 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2e471eb5
GM
2187 if (to_end > tb_end)
2188 {
2189 tb->next_free = to;
2190 tb = tb->next;
2191 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2192 to = &tb->first_data;
212f33f1 2193 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2e471eb5 2194 }
177c0ea7 2195
2e471eb5
GM
2196 /* Copy, and update the string's `data' pointer. */
2197 if (from != to)
2198 {
a2407477 2199 xassert (tb != b || to <= from);
212f33f1 2200 safe_bcopy ((char *) from, (char *) to, nbytes + GC_STRING_EXTRA);
31d929e5 2201 to->string->data = SDATA_DATA (to);
2e471eb5
GM
2202 }
2203
2204 /* Advance past the sdata we copied to. */
2205 to = to_end;
2206 }
2207 }
2208 }
2209
2210 /* The rest of the sblocks following TB don't contain live data, so
2211 we can free them. */
2212 for (b = tb->next; b; b = next)
2213 {
2214 next = b->next;
2215 lisp_free (b);
2216 }
2217
2218 tb->next_free = to;
2219 tb->next = NULL;
2220 current_sblock = tb;
2221}
2222
2223
2224DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
69623621
RS
2225 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
2226LENGTH must be an integer.
2227INIT must be an integer that represents a character. */)
7ee72033 2228 (length, init)
2e471eb5
GM
2229 Lisp_Object length, init;
2230{
2231 register Lisp_Object val;
2232 register unsigned char *p, *end;
2233 int c, nbytes;
2234
b7826503
PJ
2235 CHECK_NATNUM (length);
2236 CHECK_NUMBER (init);
2e471eb5
GM
2237
2238 c = XINT (init);
2239 if (SINGLE_BYTE_CHAR_P (c))
2240 {
2241 nbytes = XINT (length);
2242 val = make_uninit_string (nbytes);
d5db4077
KR
2243 p = SDATA (val);
2244 end = p + SCHARS (val);
2e471eb5
GM
2245 while (p != end)
2246 *p++ = c;
2247 }
2248 else
2249 {
d942b71c 2250 unsigned char str[MAX_MULTIBYTE_LENGTH];
2e471eb5
GM
2251 int len = CHAR_STRING (c, str);
2252
2253 nbytes = len * XINT (length);
2254 val = make_uninit_multibyte_string (XINT (length), nbytes);
d5db4077 2255 p = SDATA (val);
2e471eb5
GM
2256 end = p + nbytes;
2257 while (p != end)
2258 {
2259 bcopy (str, p, len);
2260 p += len;
2261 }
2262 }
177c0ea7 2263
2e471eb5
GM
2264 *p = 0;
2265 return val;
2266}
2267
2268
2269DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
a6266d23 2270 doc: /* Return a new bool-vector of length LENGTH, using INIT for as each element.
7ee72033
MB
2271LENGTH must be a number. INIT matters only in whether it is t or nil. */)
2272 (length, init)
2e471eb5
GM
2273 Lisp_Object length, init;
2274{
2275 register Lisp_Object val;
2276 struct Lisp_Bool_Vector *p;
2277 int real_init, i;
2278 int length_in_chars, length_in_elts, bits_per_value;
2279
b7826503 2280 CHECK_NATNUM (length);
2e471eb5 2281
a097329f 2282 bits_per_value = sizeof (EMACS_INT) * BOOL_VECTOR_BITS_PER_CHAR;
2e471eb5
GM
2283
2284 length_in_elts = (XFASTINT (length) + bits_per_value - 1) / bits_per_value;
a097329f
AS
2285 length_in_chars = ((XFASTINT (length) + BOOL_VECTOR_BITS_PER_CHAR - 1)
2286 / BOOL_VECTOR_BITS_PER_CHAR);
2e471eb5
GM
2287
2288 /* We must allocate one more elements than LENGTH_IN_ELTS for the
2289 slot `size' of the struct Lisp_Bool_Vector. */
2290 val = Fmake_vector (make_number (length_in_elts + 1), Qnil);
2291 p = XBOOL_VECTOR (val);
177c0ea7 2292
2e471eb5
GM
2293 /* Get rid of any bits that would cause confusion. */
2294 p->vector_size = 0;
2295 XSETBOOL_VECTOR (val, p);
2296 p->size = XFASTINT (length);
177c0ea7 2297
2e471eb5
GM
2298 real_init = (NILP (init) ? 0 : -1);
2299 for (i = 0; i < length_in_chars ; i++)
2300 p->data[i] = real_init;
177c0ea7 2301
2e471eb5 2302 /* Clear the extraneous bits in the last byte. */
a097329f 2303 if (XINT (length) != length_in_chars * BOOL_VECTOR_BITS_PER_CHAR)
2e471eb5 2304 XBOOL_VECTOR (val)->data[length_in_chars - 1]
a097329f 2305 &= (1 << (XINT (length) % BOOL_VECTOR_BITS_PER_CHAR)) - 1;
2e471eb5
GM
2306
2307 return val;
2308}
2309
2310
2311/* Make a string from NBYTES bytes at CONTENTS, and compute the number
2312 of characters from the contents. This string may be unibyte or
2313 multibyte, depending on the contents. */
2314
2315Lisp_Object
2316make_string (contents, nbytes)
943b873e 2317 const char *contents;
2e471eb5
GM
2318 int nbytes;
2319{
2320 register Lisp_Object val;
9eac9d59
KH
2321 int nchars, multibyte_nbytes;
2322
2323 parse_str_as_multibyte (contents, nbytes, &nchars, &multibyte_nbytes);
9eac9d59
KH
2324 if (nbytes == nchars || nbytes != multibyte_nbytes)
2325 /* CONTENTS contains no multibyte sequences or contains an invalid
2326 multibyte sequence. We must make unibyte string. */
495a6df3
KH
2327 val = make_unibyte_string (contents, nbytes);
2328 else
2329 val = make_multibyte_string (contents, nchars, nbytes);
2e471eb5
GM
2330 return val;
2331}
2332
2333
2334/* Make an unibyte string from LENGTH bytes at CONTENTS. */
2335
2336Lisp_Object
2337make_unibyte_string (contents, length)
943b873e 2338 const char *contents;
2e471eb5
GM
2339 int length;
2340{
2341 register Lisp_Object val;
2342 val = make_uninit_string (length);
d5db4077
KR
2343 bcopy (contents, SDATA (val), length);
2344 STRING_SET_UNIBYTE (val);
2e471eb5
GM
2345 return val;
2346}
2347
2348
2349/* Make a multibyte string from NCHARS characters occupying NBYTES
2350 bytes at CONTENTS. */
2351
2352Lisp_Object
2353make_multibyte_string (contents, nchars, nbytes)
943b873e 2354 const char *contents;
2e471eb5
GM
2355 int nchars, nbytes;
2356{
2357 register Lisp_Object val;
2358 val = make_uninit_multibyte_string (nchars, nbytes);
d5db4077 2359 bcopy (contents, SDATA (val), nbytes);
2e471eb5
GM
2360 return val;
2361}
2362
2363
2364/* Make a string from NCHARS characters occupying NBYTES bytes at
2365 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2366
2367Lisp_Object
2368make_string_from_bytes (contents, nchars, nbytes)
fcbb914b 2369 const char *contents;
2e471eb5
GM
2370 int nchars, nbytes;
2371{
2372 register Lisp_Object val;
2373 val = make_uninit_multibyte_string (nchars, nbytes);
d5db4077
KR
2374 bcopy (contents, SDATA (val), nbytes);
2375 if (SBYTES (val) == SCHARS (val))
2376 STRING_SET_UNIBYTE (val);
2e471eb5
GM
2377 return val;
2378}
2379
2380
2381/* Make a string from NCHARS characters occupying NBYTES bytes at
2382 CONTENTS. The argument MULTIBYTE controls whether to label the
229b28c4
KH
2383 string as multibyte. If NCHARS is negative, it counts the number of
2384 characters by itself. */
2e471eb5
GM
2385
2386Lisp_Object
2387make_specified_string (contents, nchars, nbytes, multibyte)
fcbb914b 2388 const char *contents;
2e471eb5
GM
2389 int nchars, nbytes;
2390 int multibyte;
2391{
2392 register Lisp_Object val;
229b28c4
KH
2393
2394 if (nchars < 0)
2395 {
2396 if (multibyte)
2397 nchars = multibyte_chars_in_text (contents, nbytes);
2398 else
2399 nchars = nbytes;
2400 }
2e471eb5 2401 val = make_uninit_multibyte_string (nchars, nbytes);
d5db4077 2402 bcopy (contents, SDATA (val), nbytes);
2e471eb5 2403 if (!multibyte)
d5db4077 2404 STRING_SET_UNIBYTE (val);
2e471eb5
GM
2405 return val;
2406}
2407
2408
2409/* Make a string from the data at STR, treating it as multibyte if the
2410 data warrants. */
2411
2412Lisp_Object
2413build_string (str)
943b873e 2414 const char *str;
2e471eb5
GM
2415{
2416 return make_string (str, strlen (str));
2417}
2418
2419
2420/* Return an unibyte Lisp_String set up to hold LENGTH characters
2421 occupying LENGTH bytes. */
2422
2423Lisp_Object
2424make_uninit_string (length)
2425 int length;
2426{
2427 Lisp_Object val;
2428 val = make_uninit_multibyte_string (length, length);
d5db4077 2429 STRING_SET_UNIBYTE (val);
2e471eb5
GM
2430 return val;
2431}
2432
2433
2434/* Return a multibyte Lisp_String set up to hold NCHARS characters
2435 which occupy NBYTES bytes. */
2436
2437Lisp_Object
2438make_uninit_multibyte_string (nchars, nbytes)
2439 int nchars, nbytes;
2440{
2441 Lisp_Object string;
2442 struct Lisp_String *s;
2443
2444 if (nchars < 0)
2445 abort ();
2446
2447 s = allocate_string ();
2448 allocate_string_data (s, nchars, nbytes);
2449 XSETSTRING (string, s);
2450 string_chars_consed += nbytes;
2451 return string;
2452}
2453
2454
2455\f
2456/***********************************************************************
2457 Float Allocation
2458 ***********************************************************************/
2459
2e471eb5
GM
2460/* We store float cells inside of float_blocks, allocating a new
2461 float_block with malloc whenever necessary. Float cells reclaimed
2462 by GC are put on a free list to be reallocated before allocating
ab6780cd 2463 any new float cells from the latest float_block. */
2e471eb5 2464
d05b383a
SM
2465#define FLOAT_BLOCK_SIZE \
2466 (((BLOCK_BYTES - sizeof (struct float_block *) \
2467 /* The compiler might add padding at the end. */ \
2468 - (sizeof (struct Lisp_Float) - sizeof (int))) * CHAR_BIT) \
ab6780cd
SM
2469 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2470
2471#define GETMARKBIT(block,n) \
2472 (((block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2473 >> ((n) % (sizeof(int) * CHAR_BIT))) \
2474 & 1)
2475
2476#define SETMARKBIT(block,n) \
2477 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2478 |= 1 << ((n) % (sizeof(int) * CHAR_BIT))
2479
2480#define UNSETMARKBIT(block,n) \
2481 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2482 &= ~(1 << ((n) % (sizeof(int) * CHAR_BIT)))
2483
2484#define FLOAT_BLOCK(fptr) \
2485 ((struct float_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2486
2487#define FLOAT_INDEX(fptr) \
2488 ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2e471eb5
GM
2489
2490struct float_block
2491{
ab6780cd 2492 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2e471eb5 2493 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
ab6780cd
SM
2494 int gcmarkbits[1 + FLOAT_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2495 struct float_block *next;
2e471eb5
GM
2496};
2497
ab6780cd
SM
2498#define FLOAT_MARKED_P(fptr) \
2499 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2500
2501#define FLOAT_MARK(fptr) \
2502 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2503
2504#define FLOAT_UNMARK(fptr) \
2505 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2506
34400008
GM
2507/* Current float_block. */
2508
2e471eb5 2509struct float_block *float_block;
34400008
GM
2510
2511/* Index of first unused Lisp_Float in the current float_block. */
2512
2e471eb5
GM
2513int float_block_index;
2514
2515/* Total number of float blocks now in use. */
2516
2517int n_float_blocks;
2518
34400008
GM
2519/* Free-list of Lisp_Floats. */
2520
2e471eb5
GM
2521struct Lisp_Float *float_free_list;
2522
34400008 2523
966533c9 2524/* Initialize float allocation. */
34400008 2525
2e471eb5
GM
2526void
2527init_float ()
2528{
08b7c2cb
SM
2529 float_block = NULL;
2530 float_block_index = FLOAT_BLOCK_SIZE; /* Force alloc of new float_block. */
2e471eb5 2531 float_free_list = 0;
08b7c2cb 2532 n_float_blocks = 0;
2e471eb5
GM
2533}
2534
34400008
GM
2535
2536/* Explicitly free a float cell by putting it on the free-list. */
2e471eb5
GM
2537
2538void
2539free_float (ptr)
2540 struct Lisp_Float *ptr;
2541{
28a099a4 2542 ptr->u.chain = float_free_list;
2e471eb5
GM
2543 float_free_list = ptr;
2544}
2545
34400008
GM
2546
2547/* Return a new float object with value FLOAT_VALUE. */
2548
2e471eb5
GM
2549Lisp_Object
2550make_float (float_value)
2551 double float_value;
2552{
2553 register Lisp_Object val;
2554
2555 if (float_free_list)
2556 {
2557 /* We use the data field for chaining the free list
2558 so that we won't use the same field that has the mark bit. */
2559 XSETFLOAT (val, float_free_list);
28a099a4 2560 float_free_list = float_free_list->u.chain;
2e471eb5
GM
2561 }
2562 else
2563 {
2564 if (float_block_index == FLOAT_BLOCK_SIZE)
2565 {
2566 register struct float_block *new;
2567
ab6780cd
SM
2568 new = (struct float_block *) lisp_align_malloc (sizeof *new,
2569 MEM_TYPE_FLOAT);
2e471eb5 2570 new->next = float_block;
a0668126 2571 bzero ((char *) new->gcmarkbits, sizeof new->gcmarkbits);
2e471eb5
GM
2572 float_block = new;
2573 float_block_index = 0;
2574 n_float_blocks++;
2575 }
a0668126
SM
2576 XSETFLOAT (val, &float_block->floats[float_block_index]);
2577 float_block_index++;
2e471eb5 2578 }
177c0ea7 2579
2e471eb5 2580 XFLOAT_DATA (val) = float_value;
a0668126 2581 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2e471eb5
GM
2582 consing_since_gc += sizeof (struct Lisp_Float);
2583 floats_consed++;
2584 return val;
2585}
2586
2e471eb5
GM
2587
2588\f
2589/***********************************************************************
2590 Cons Allocation
2591 ***********************************************************************/
2592
2593/* We store cons cells inside of cons_blocks, allocating a new
2594 cons_block with malloc whenever necessary. Cons cells reclaimed by
2595 GC are put on a free list to be reallocated before allocating
08b7c2cb 2596 any new cons cells from the latest cons_block. */
2e471eb5
GM
2597
2598#define CONS_BLOCK_SIZE \
08b7c2cb
SM
2599 (((BLOCK_BYTES - sizeof (struct cons_block *)) * CHAR_BIT) \
2600 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2601
2602#define CONS_BLOCK(fptr) \
2603 ((struct cons_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2604
2605#define CONS_INDEX(fptr) \
2606 ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2e471eb5
GM
2607
2608struct cons_block
2609{
08b7c2cb 2610 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2e471eb5 2611 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
08b7c2cb
SM
2612 int gcmarkbits[1 + CONS_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2613 struct cons_block *next;
2e471eb5
GM
2614};
2615
08b7c2cb
SM
2616#define CONS_MARKED_P(fptr) \
2617 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2618
2619#define CONS_MARK(fptr) \
2620 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2621
2622#define CONS_UNMARK(fptr) \
2623 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2624
34400008
GM
2625/* Current cons_block. */
2626
2e471eb5 2627struct cons_block *cons_block;
34400008
GM
2628
2629/* Index of first unused Lisp_Cons in the current block. */
2630
2e471eb5
GM
2631int cons_block_index;
2632
34400008
GM
2633/* Free-list of Lisp_Cons structures. */
2634
2e471eb5
GM
2635struct Lisp_Cons *cons_free_list;
2636
2637/* Total number of cons blocks now in use. */
2638
2639int n_cons_blocks;
2640
34400008
GM
2641
2642/* Initialize cons allocation. */
2643
2e471eb5
GM
2644void
2645init_cons ()
2646{
08b7c2cb
SM
2647 cons_block = NULL;
2648 cons_block_index = CONS_BLOCK_SIZE; /* Force alloc of new cons_block. */
2e471eb5 2649 cons_free_list = 0;
08b7c2cb 2650 n_cons_blocks = 0;
2e471eb5
GM
2651}
2652
34400008
GM
2653
2654/* Explicitly free a cons cell by putting it on the free-list. */
2e471eb5
GM
2655
2656void
2657free_cons (ptr)
2658 struct Lisp_Cons *ptr;
2659{
28a099a4 2660 ptr->u.chain = cons_free_list;
34400008
GM
2661#if GC_MARK_STACK
2662 ptr->car = Vdead;
2663#endif
2e471eb5
GM
2664 cons_free_list = ptr;
2665}
2666
2667DEFUN ("cons", Fcons, Scons, 2, 2, 0,
a6266d23 2668 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
7ee72033 2669 (car, cdr)
2e471eb5
GM
2670 Lisp_Object car, cdr;
2671{
2672 register Lisp_Object val;
2673
2674 if (cons_free_list)
2675 {
2676 /* We use the cdr for chaining the free list
2677 so that we won't use the same field that has the mark bit. */
2678 XSETCONS (val, cons_free_list);
28a099a4 2679 cons_free_list = cons_free_list->u.chain;
2e471eb5
GM
2680 }
2681 else
2682 {
2683 if (cons_block_index == CONS_BLOCK_SIZE)
2684 {
2685 register struct cons_block *new;
08b7c2cb
SM
2686 new = (struct cons_block *) lisp_align_malloc (sizeof *new,
2687 MEM_TYPE_CONS);
a0668126 2688 bzero ((char *) new->gcmarkbits, sizeof new->gcmarkbits);
2e471eb5
GM
2689 new->next = cons_block;
2690 cons_block = new;
2691 cons_block_index = 0;
2692 n_cons_blocks++;
2693 }
a0668126
SM
2694 XSETCONS (val, &cons_block->conses[cons_block_index]);
2695 cons_block_index++;
2e471eb5 2696 }
177c0ea7 2697
f3fbd155
KR
2698 XSETCAR (val, car);
2699 XSETCDR (val, cdr);
a0668126 2700 eassert (!CONS_MARKED_P (XCONS (val)));
2e471eb5
GM
2701 consing_since_gc += sizeof (struct Lisp_Cons);
2702 cons_cells_consed++;
2703 return val;
2704}
2705
e3e56238
RS
2706/* Get an error now if there's any junk in the cons free list. */
2707void
2708check_cons_list ()
2709{
212f33f1 2710#ifdef GC_CHECK_CONS_LIST
e3e56238
RS
2711 struct Lisp_Cons *tail = cons_free_list;
2712
e3e56238 2713 while (tail)
28a099a4 2714 tail = tail->u.chain;
e3e56238
RS
2715#endif
2716}
34400008 2717
2e471eb5
GM
2718/* Make a list of 2, 3, 4 or 5 specified objects. */
2719
2720Lisp_Object
2721list2 (arg1, arg2)
2722 Lisp_Object arg1, arg2;
2723{
2724 return Fcons (arg1, Fcons (arg2, Qnil));
2725}
2726
34400008 2727
2e471eb5
GM
2728Lisp_Object
2729list3 (arg1, arg2, arg3)
2730 Lisp_Object arg1, arg2, arg3;
2731{
2732 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2733}
2734
34400008 2735
2e471eb5
GM
2736Lisp_Object
2737list4 (arg1, arg2, arg3, arg4)
2738 Lisp_Object arg1, arg2, arg3, arg4;
2739{
2740 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2741}
2742
34400008 2743
2e471eb5
GM
2744Lisp_Object
2745list5 (arg1, arg2, arg3, arg4, arg5)
2746 Lisp_Object arg1, arg2, arg3, arg4, arg5;
2747{
2748 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2749 Fcons (arg5, Qnil)))));
2750}
2751
34400008 2752
2e471eb5 2753DEFUN ("list", Flist, Slist, 0, MANY, 0,
eae936e2 2754 doc: /* Return a newly created list with specified arguments as elements.
ae8e8122
MB
2755Any number of arguments, even zero arguments, are allowed.
2756usage: (list &rest OBJECTS) */)
7ee72033 2757 (nargs, args)
2e471eb5
GM
2758 int nargs;
2759 register Lisp_Object *args;
2760{
2761 register Lisp_Object val;
2762 val = Qnil;
2763
2764 while (nargs > 0)
2765 {
2766 nargs--;
2767 val = Fcons (args[nargs], val);
2768 }
2769 return val;
2770}
2771
34400008 2772
2e471eb5 2773DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
a6266d23 2774 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
7ee72033 2775 (length, init)
2e471eb5
GM
2776 register Lisp_Object length, init;
2777{
2778 register Lisp_Object val;
2779 register int size;
2780
b7826503 2781 CHECK_NATNUM (length);
2e471eb5
GM
2782 size = XFASTINT (length);
2783
2784 val = Qnil;
ce070307
GM
2785 while (size > 0)
2786 {
2787 val = Fcons (init, val);
2788 --size;
2789
2790 if (size > 0)
2791 {
2792 val = Fcons (init, val);
2793 --size;
177c0ea7 2794
ce070307
GM
2795 if (size > 0)
2796 {
2797 val = Fcons (init, val);
2798 --size;
177c0ea7 2799
ce070307
GM
2800 if (size > 0)
2801 {
2802 val = Fcons (init, val);
2803 --size;
177c0ea7 2804
ce070307
GM
2805 if (size > 0)
2806 {
2807 val = Fcons (init, val);
2808 --size;
2809 }
2810 }
2811 }
2812 }
2813
2814 QUIT;
2815 }
177c0ea7 2816
7146af97
JB
2817 return val;
2818}
2e471eb5
GM
2819
2820
7146af97 2821\f
2e471eb5
GM
2822/***********************************************************************
2823 Vector Allocation
2824 ***********************************************************************/
7146af97 2825
34400008
GM
2826/* Singly-linked list of all vectors. */
2827
7146af97
JB
2828struct Lisp_Vector *all_vectors;
2829
2e471eb5
GM
2830/* Total number of vector-like objects now in use. */
2831
c8099634
RS
2832int n_vectors;
2833
34400008
GM
2834
2835/* Value is a pointer to a newly allocated Lisp_Vector structure
2836 with room for LEN Lisp_Objects. */
2837
ece93c02
GM
2838static struct Lisp_Vector *
2839allocate_vectorlike (len, type)
1825c68d 2840 EMACS_INT len;
ece93c02 2841 enum mem_type type;
1825c68d
KH
2842{
2843 struct Lisp_Vector *p;
675d5130 2844 size_t nbytes;
1825c68d 2845
d1658221 2846#ifdef DOUG_LEA_MALLOC
f8608968
GM
2847 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
2848 because mapped region contents are not preserved in
2849 a dumped Emacs. */
de7515d6 2850 BLOCK_INPUT;
d1658221 2851 mallopt (M_MMAP_MAX, 0);
de7515d6 2852 UNBLOCK_INPUT;
d1658221 2853#endif
177c0ea7 2854
34400008 2855 nbytes = sizeof *p + (len - 1) * sizeof p->contents[0];
ece93c02 2856 p = (struct Lisp_Vector *) lisp_malloc (nbytes, type);
177c0ea7 2857
d1658221 2858#ifdef DOUG_LEA_MALLOC
34400008 2859 /* Back to a reasonable maximum of mmap'ed areas. */
de7515d6 2860 BLOCK_INPUT;
81d492d5 2861 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
de7515d6 2862 UNBLOCK_INPUT;
d1658221 2863#endif
177c0ea7 2864
34400008 2865 consing_since_gc += nbytes;
310ea200 2866 vector_cells_consed += len;
1825c68d
KH
2867
2868 p->next = all_vectors;
2869 all_vectors = p;
34400008 2870 ++n_vectors;
1825c68d
KH
2871 return p;
2872}
2873
34400008 2874
ece93c02
GM
2875/* Allocate a vector with NSLOTS slots. */
2876
2877struct Lisp_Vector *
2878allocate_vector (nslots)
2879 EMACS_INT nslots;
2880{
2881 struct Lisp_Vector *v = allocate_vectorlike (nslots, MEM_TYPE_VECTOR);
2882 v->size = nslots;
2883 return v;
2884}
2885
2886
2887/* Allocate other vector-like structures. */
2888
2889struct Lisp_Hash_Table *
2890allocate_hash_table ()
2891{
2892 EMACS_INT len = VECSIZE (struct Lisp_Hash_Table);
2893 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_HASH_TABLE);
2894 EMACS_INT i;
177c0ea7 2895
ece93c02
GM
2896 v->size = len;
2897 for (i = 0; i < len; ++i)
2898 v->contents[i] = Qnil;
177c0ea7 2899
ece93c02
GM
2900 return (struct Lisp_Hash_Table *) v;
2901}
2902
2903
2904struct window *
2905allocate_window ()
2906{
2907 EMACS_INT len = VECSIZE (struct window);
2908 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_WINDOW);
2909 EMACS_INT i;
177c0ea7 2910
ece93c02
GM
2911 for (i = 0; i < len; ++i)
2912 v->contents[i] = Qnil;
2913 v->size = len;
177c0ea7 2914
ece93c02
GM
2915 return (struct window *) v;
2916}
2917
2918
2919struct frame *
2920allocate_frame ()
2921{
2922 EMACS_INT len = VECSIZE (struct frame);
2923 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_FRAME);
2924 EMACS_INT i;
177c0ea7 2925
ece93c02
GM
2926 for (i = 0; i < len; ++i)
2927 v->contents[i] = make_number (0);
2928 v->size = len;
2929 return (struct frame *) v;
2930}
2931
2932
2933struct Lisp_Process *
2934allocate_process ()
2935{
2936 EMACS_INT len = VECSIZE (struct Lisp_Process);
2937 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_PROCESS);
2938 EMACS_INT i;
177c0ea7 2939
ece93c02
GM
2940 for (i = 0; i < len; ++i)
2941 v->contents[i] = Qnil;
2942 v->size = len;
177c0ea7 2943
ece93c02
GM
2944 return (struct Lisp_Process *) v;
2945}
2946
2947
2948struct Lisp_Vector *
2949allocate_other_vector (len)
2950 EMACS_INT len;
2951{
2952 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_VECTOR);
2953 EMACS_INT i;
177c0ea7 2954
ece93c02
GM
2955 for (i = 0; i < len; ++i)
2956 v->contents[i] = Qnil;
2957 v->size = len;
177c0ea7 2958
ece93c02
GM
2959 return v;
2960}
2961
2962
7146af97 2963DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
a6266d23 2964 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
7ee72033
MB
2965See also the function `vector'. */)
2966 (length, init)
7146af97
JB
2967 register Lisp_Object length, init;
2968{
1825c68d
KH
2969 Lisp_Object vector;
2970 register EMACS_INT sizei;
2971 register int index;
7146af97
JB
2972 register struct Lisp_Vector *p;
2973
b7826503 2974 CHECK_NATNUM (length);
c9dad5ed 2975 sizei = XFASTINT (length);
7146af97 2976
ece93c02 2977 p = allocate_vector (sizei);
7146af97
JB
2978 for (index = 0; index < sizei; index++)
2979 p->contents[index] = init;
2980
1825c68d 2981 XSETVECTOR (vector, p);
7146af97
JB
2982 return vector;
2983}
2984
34400008 2985
a59de17b 2986DEFUN ("make-char-table", Fmake_char_table, Smake_char_table, 1, 2, 0,
a6266d23 2987 doc: /* Return a newly created char-table, with purpose PURPOSE.
228299fa
GM
2988Each element is initialized to INIT, which defaults to nil.
2989PURPOSE should be a symbol which has a `char-table-extra-slots' property.
7ee72033
MB
2990The property's value should be an integer between 0 and 10. */)
2991 (purpose, init)
a59de17b 2992 register Lisp_Object purpose, init;
7b07587b
RS
2993{
2994 Lisp_Object vector;
a59de17b 2995 Lisp_Object n;
b7826503 2996 CHECK_SYMBOL (purpose);
0551bde3 2997 n = Fget (purpose, Qchar_table_extra_slots);
b7826503 2998 CHECK_NUMBER (n);
7b07587b
RS
2999 if (XINT (n) < 0 || XINT (n) > 10)
3000 args_out_of_range (n, Qnil);
3001 /* Add 2 to the size for the defalt and parent slots. */
3002 vector = Fmake_vector (make_number (CHAR_TABLE_STANDARD_SLOTS + XINT (n)),
3003 init);
0551bde3 3004 XCHAR_TABLE (vector)->top = Qt;
c96a008c 3005 XCHAR_TABLE (vector)->parent = Qnil;
a59de17b 3006 XCHAR_TABLE (vector)->purpose = purpose;
7b07587b
RS
3007 XSETCHAR_TABLE (vector, XCHAR_TABLE (vector));
3008 return vector;
3009}
3010
34400008 3011
2a7a8e99 3012/* Return a newly created sub char table with slots initialized by INIT.
0551bde3
KH
3013 Since a sub char table does not appear as a top level Emacs Lisp
3014 object, we don't need a Lisp interface to make it. */
3015
3016Lisp_Object
2a7a8e99
KH
3017make_sub_char_table (init)
3018 Lisp_Object init;
0551bde3
KH
3019{
3020 Lisp_Object vector
2a7a8e99 3021 = Fmake_vector (make_number (SUB_CHAR_TABLE_STANDARD_SLOTS), init);
0551bde3 3022 XCHAR_TABLE (vector)->top = Qnil;
2a7a8e99 3023 XCHAR_TABLE (vector)->defalt = Qnil;
0551bde3
KH
3024 XSETCHAR_TABLE (vector, XCHAR_TABLE (vector));
3025 return vector;
3026}
3027
34400008 3028
7146af97 3029DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
eae936e2 3030 doc: /* Return a newly created vector with specified arguments as elements.
ae8e8122
MB
3031Any number of arguments, even zero arguments, are allowed.
3032usage: (vector &rest OBJECTS) */)
7ee72033 3033 (nargs, args)
7146af97
JB
3034 register int nargs;
3035 Lisp_Object *args;
3036{
3037 register Lisp_Object len, val;
3038 register int index;
3039 register struct Lisp_Vector *p;
3040
67ba9986 3041 XSETFASTINT (len, nargs);
7146af97
JB
3042 val = Fmake_vector (len, Qnil);
3043 p = XVECTOR (val);
3044 for (index = 0; index < nargs; index++)
3045 p->contents[index] = args[index];
3046 return val;
3047}
3048
34400008 3049
7146af97 3050DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
a6266d23 3051 doc: /* Create a byte-code object with specified arguments as elements.
228299fa
GM
3052The arguments should be the arglist, bytecode-string, constant vector,
3053stack size, (optional) doc string, and (optional) interactive spec.
3054The first four arguments are required; at most six have any
ae8e8122 3055significance.
92cc28b2 3056usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
7ee72033 3057 (nargs, args)
7146af97
JB
3058 register int nargs;
3059 Lisp_Object *args;
3060{
3061 register Lisp_Object len, val;
3062 register int index;
3063 register struct Lisp_Vector *p;
3064
67ba9986 3065 XSETFASTINT (len, nargs);
265a9e55 3066 if (!NILP (Vpurify_flag))
5a053ea9 3067 val = make_pure_vector ((EMACS_INT) nargs);
7146af97
JB
3068 else
3069 val = Fmake_vector (len, Qnil);
9eac9d59
KH
3070
3071 if (STRINGP (args[1]) && STRING_MULTIBYTE (args[1]))
3072 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
3073 earlier because they produced a raw 8-bit string for byte-code
3074 and now such a byte-code string is loaded as multibyte while
3075 raw 8-bit characters converted to multibyte form. Thus, now we
3076 must convert them back to the original unibyte form. */
3077 args[1] = Fstring_as_unibyte (args[1]);
3078
7146af97
JB
3079 p = XVECTOR (val);
3080 for (index = 0; index < nargs; index++)
3081 {
265a9e55 3082 if (!NILP (Vpurify_flag))
7146af97
JB
3083 args[index] = Fpurecopy (args[index]);
3084 p->contents[index] = args[index];
3085 }
50aee051 3086 XSETCOMPILED (val, p);
7146af97
JB
3087 return val;
3088}
2e471eb5 3089
34400008 3090
7146af97 3091\f
2e471eb5
GM
3092/***********************************************************************
3093 Symbol Allocation
3094 ***********************************************************************/
7146af97 3095
2e471eb5
GM
3096/* Each symbol_block is just under 1020 bytes long, since malloc
3097 really allocates in units of powers of two and uses 4 bytes for its
3098 own overhead. */
7146af97
JB
3099
3100#define SYMBOL_BLOCK_SIZE \
3101 ((1020 - sizeof (struct symbol_block *)) / sizeof (struct Lisp_Symbol))
3102
3103struct symbol_block
2e471eb5 3104{
d05b383a 3105 /* Place `symbols' first, to preserve alignment. */
2e471eb5 3106 struct Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
d05b383a 3107 struct symbol_block *next;
2e471eb5 3108};
7146af97 3109
34400008
GM
3110/* Current symbol block and index of first unused Lisp_Symbol
3111 structure in it. */
3112
7146af97
JB
3113struct symbol_block *symbol_block;
3114int symbol_block_index;
3115
34400008
GM
3116/* List of free symbols. */
3117
7146af97
JB
3118struct Lisp_Symbol *symbol_free_list;
3119
c8099634 3120/* Total number of symbol blocks now in use. */
2e471eb5 3121
c8099634
RS
3122int n_symbol_blocks;
3123
34400008
GM
3124
3125/* Initialize symbol allocation. */
3126
7146af97
JB
3127void
3128init_symbol ()
3129{
0930c1a1
SM
3130 symbol_block = NULL;
3131 symbol_block_index = SYMBOL_BLOCK_SIZE;
7146af97 3132 symbol_free_list = 0;
0930c1a1 3133 n_symbol_blocks = 0;
7146af97
JB
3134}
3135
34400008 3136
7146af97 3137DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
a6266d23 3138 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
7ee72033
MB
3139Its value and function definition are void, and its property list is nil. */)
3140 (name)
54ee42dd 3141 Lisp_Object name;
7146af97
JB
3142{
3143 register Lisp_Object val;
3144 register struct Lisp_Symbol *p;
3145
b7826503 3146 CHECK_STRING (name);
7146af97
JB
3147
3148 if (symbol_free_list)
3149 {
45d12a89 3150 XSETSYMBOL (val, symbol_free_list);
28a099a4 3151 symbol_free_list = symbol_free_list->next;
7146af97
JB
3152 }
3153 else
3154 {
3155 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
3156 {
3c06d205 3157 struct symbol_block *new;
34400008
GM
3158 new = (struct symbol_block *) lisp_malloc (sizeof *new,
3159 MEM_TYPE_SYMBOL);
7146af97
JB
3160 new->next = symbol_block;
3161 symbol_block = new;
3162 symbol_block_index = 0;
c8099634 3163 n_symbol_blocks++;
7146af97 3164 }
a0668126
SM
3165 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index]);
3166 symbol_block_index++;
7146af97 3167 }
177c0ea7 3168
7146af97 3169 p = XSYMBOL (val);
8fe5665d 3170 p->xname = name;
7146af97 3171 p->plist = Qnil;
2e471eb5
GM
3172 p->value = Qunbound;
3173 p->function = Qunbound;
9e713715 3174 p->next = NULL;
2336fe58 3175 p->gcmarkbit = 0;
9e713715
GM
3176 p->interned = SYMBOL_UNINTERNED;
3177 p->constant = 0;
3178 p->indirect_variable = 0;
2e471eb5
GM
3179 consing_since_gc += sizeof (struct Lisp_Symbol);
3180 symbols_consed++;
7146af97
JB
3181 return val;
3182}
3183
3f25e183 3184
2e471eb5
GM
3185\f
3186/***********************************************************************
34400008 3187 Marker (Misc) Allocation
2e471eb5 3188 ***********************************************************************/
3f25e183 3189
2e471eb5
GM
3190/* Allocation of markers and other objects that share that structure.
3191 Works like allocation of conses. */
c0696668 3192
2e471eb5
GM
3193#define MARKER_BLOCK_SIZE \
3194 ((1020 - sizeof (struct marker_block *)) / sizeof (union Lisp_Misc))
3195
3196struct marker_block
c0696668 3197{
d05b383a 3198 /* Place `markers' first, to preserve alignment. */
2e471eb5 3199 union Lisp_Misc markers[MARKER_BLOCK_SIZE];
d05b383a 3200 struct marker_block *next;
2e471eb5 3201};
c0696668 3202
2e471eb5
GM
3203struct marker_block *marker_block;
3204int marker_block_index;
c0696668 3205
2e471eb5 3206union Lisp_Misc *marker_free_list;
c0696668 3207
2e471eb5 3208/* Total number of marker blocks now in use. */
3f25e183 3209
2e471eb5
GM
3210int n_marker_blocks;
3211
3212void
3213init_marker ()
3f25e183 3214{
0930c1a1
SM
3215 marker_block = NULL;
3216 marker_block_index = MARKER_BLOCK_SIZE;
2e471eb5 3217 marker_free_list = 0;
0930c1a1 3218 n_marker_blocks = 0;
3f25e183
RS
3219}
3220
2e471eb5
GM
3221/* Return a newly allocated Lisp_Misc object, with no substructure. */
3222
3f25e183 3223Lisp_Object
2e471eb5 3224allocate_misc ()
7146af97 3225{
2e471eb5 3226 Lisp_Object val;
7146af97 3227
2e471eb5 3228 if (marker_free_list)
7146af97 3229 {
2e471eb5
GM
3230 XSETMISC (val, marker_free_list);
3231 marker_free_list = marker_free_list->u_free.chain;
7146af97
JB
3232 }
3233 else
7146af97 3234 {
2e471eb5
GM
3235 if (marker_block_index == MARKER_BLOCK_SIZE)
3236 {
3237 struct marker_block *new;
34400008
GM
3238 new = (struct marker_block *) lisp_malloc (sizeof *new,
3239 MEM_TYPE_MISC);
2e471eb5
GM
3240 new->next = marker_block;
3241 marker_block = new;
3242 marker_block_index = 0;
3243 n_marker_blocks++;
7b7990cc 3244 total_free_markers += MARKER_BLOCK_SIZE;
2e471eb5 3245 }
a0668126
SM
3246 XSETMISC (val, &marker_block->markers[marker_block_index]);
3247 marker_block_index++;
7146af97 3248 }
177c0ea7 3249
7b7990cc 3250 --total_free_markers;
2e471eb5
GM
3251 consing_since_gc += sizeof (union Lisp_Misc);
3252 misc_objects_consed++;
2336fe58 3253 XMARKER (val)->gcmarkbit = 0;
2e471eb5
GM
3254 return val;
3255}
3256
7b7990cc
KS
3257/* Free a Lisp_Misc object */
3258
3259void
3260free_misc (misc)
3261 Lisp_Object misc;
3262{
3263 XMISC (misc)->u_marker.type = Lisp_Misc_Free;
3264 XMISC (misc)->u_free.chain = marker_free_list;
3265 marker_free_list = XMISC (misc);
3266
3267 total_free_markers++;
3268}
3269
42172a6b
RS
3270/* Return a Lisp_Misc_Save_Value object containing POINTER and
3271 INTEGER. This is used to package C values to call record_unwind_protect.
3272 The unwind function can get the C values back using XSAVE_VALUE. */
3273
3274Lisp_Object
3275make_save_value (pointer, integer)
3276 void *pointer;
3277 int integer;
3278{
3279 register Lisp_Object val;
3280 register struct Lisp_Save_Value *p;
3281
3282 val = allocate_misc ();
3283 XMISCTYPE (val) = Lisp_Misc_Save_Value;
3284 p = XSAVE_VALUE (val);
3285 p->pointer = pointer;
3286 p->integer = integer;
b766f870 3287 p->dogc = 0;
42172a6b
RS
3288 return val;
3289}
3290
2e471eb5 3291DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
a6266d23 3292 doc: /* Return a newly allocated marker which does not point at any place. */)
7ee72033 3293 ()
2e471eb5
GM
3294{
3295 register Lisp_Object val;
3296 register struct Lisp_Marker *p;
7146af97 3297
2e471eb5
GM
3298 val = allocate_misc ();
3299 XMISCTYPE (val) = Lisp_Misc_Marker;
3300 p = XMARKER (val);
3301 p->buffer = 0;
3302 p->bytepos = 0;
3303 p->charpos = 0;
ef89c2ce 3304 p->next = NULL;
2e471eb5 3305 p->insertion_type = 0;
7146af97
JB
3306 return val;
3307}
2e471eb5
GM
3308
3309/* Put MARKER back on the free list after using it temporarily. */
3310
3311void
3312free_marker (marker)
3313 Lisp_Object marker;
3314{
ef89c2ce 3315 unchain_marker (XMARKER (marker));
7b7990cc 3316 free_misc (marker);
2e471eb5
GM
3317}
3318
c0696668 3319\f
7146af97 3320/* Return a newly created vector or string with specified arguments as
736471d1
RS
3321 elements. If all the arguments are characters that can fit
3322 in a string of events, make a string; otherwise, make a vector.
3323
3324 Any number of arguments, even zero arguments, are allowed. */
7146af97
JB
3325
3326Lisp_Object
736471d1 3327make_event_array (nargs, args)
7146af97
JB
3328 register int nargs;
3329 Lisp_Object *args;
3330{
3331 int i;
3332
3333 for (i = 0; i < nargs; i++)
736471d1 3334 /* The things that fit in a string
c9ca4659
RS
3335 are characters that are in 0...127,
3336 after discarding the meta bit and all the bits above it. */
e687453f 3337 if (!INTEGERP (args[i])
c9ca4659 3338 || (XUINT (args[i]) & ~(-CHAR_META)) >= 0200)
7146af97
JB
3339 return Fvector (nargs, args);
3340
3341 /* Since the loop exited, we know that all the things in it are
3342 characters, so we can make a string. */
3343 {
c13ccad2 3344 Lisp_Object result;
177c0ea7 3345
50aee051 3346 result = Fmake_string (make_number (nargs), make_number (0));
7146af97 3347 for (i = 0; i < nargs; i++)
736471d1 3348 {
46e7e6b0 3349 SSET (result, i, XINT (args[i]));
736471d1
RS
3350 /* Move the meta bit to the right place for a string char. */
3351 if (XINT (args[i]) & CHAR_META)
46e7e6b0 3352 SSET (result, i, SREF (result, i) | 0x80);
736471d1 3353 }
177c0ea7 3354
7146af97
JB
3355 return result;
3356 }
3357}
2e471eb5
GM
3358
3359
7146af97 3360\f
24d8a105
RS
3361/************************************************************************
3362 Memory Full Handling
3363 ************************************************************************/
3364
3365
3366/* Called if malloc returns zero. */
3367
3368void
3369memory_full ()
3370{
3371 int i;
3372
3373 Vmemory_full = Qt;
3374
3375 memory_full_cons_threshold = sizeof (struct cons_block);
3376
3377 /* The first time we get here, free the spare memory. */
3378 for (i = 0; i < sizeof (spare_memory) / sizeof (char *); i++)
3379 if (spare_memory[i])
3380 {
3381 if (i == 0)
3382 free (spare_memory[i]);
3383 else if (i >= 1 && i <= 4)
3384 lisp_align_free (spare_memory[i]);
3385 else
3386 lisp_free (spare_memory[i]);
3387 spare_memory[i] = 0;
3388 }
3389
3390 /* Record the space now used. When it decreases substantially,
3391 we can refill the memory reserve. */
3392#ifndef SYSTEM_MALLOC
3393 bytes_used_when_full = BYTES_USED;
3394#endif
3395
3396 /* This used to call error, but if we've run out of memory, we could
3397 get infinite recursion trying to build the string. */
3398 while (1)
3399 Fsignal (Qnil, Vmemory_signal_data);
3400}
3401
3402/* If we released our reserve (due to running out of memory),
3403 and we have a fair amount free once again,
3404 try to set aside another reserve in case we run out once more.
3405
3406 This is called when a relocatable block is freed in ralloc.c,
3407 and also directly from this file, in case we're not using ralloc.c. */
3408
3409void
3410refill_memory_reserve ()
3411{
3412#ifndef SYSTEM_MALLOC
3413 if (spare_memory[0] == 0)
3414 spare_memory[0] = (char *) malloc ((size_t) SPARE_MEMORY);
3415 if (spare_memory[1] == 0)
3416 spare_memory[1] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3417 MEM_TYPE_CONS);
3418 if (spare_memory[2] == 0)
3419 spare_memory[2] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3420 MEM_TYPE_CONS);
3421 if (spare_memory[3] == 0)
3422 spare_memory[3] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3423 MEM_TYPE_CONS);
3424 if (spare_memory[4] == 0)
3425 spare_memory[4] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3426 MEM_TYPE_CONS);
3427 if (spare_memory[5] == 0)
3428 spare_memory[5] = (char *) lisp_malloc (sizeof (struct string_block),
3429 MEM_TYPE_STRING);
3430 if (spare_memory[6] == 0)
3431 spare_memory[6] = (char *) lisp_malloc (sizeof (struct string_block),
3432 MEM_TYPE_STRING);
3433 if (spare_memory[0] && spare_memory[1] && spare_memory[5])
3434 Vmemory_full = Qnil;
3435#endif
3436}
3437\f
34400008
GM
3438/************************************************************************
3439 C Stack Marking
3440 ************************************************************************/
3441
13c844fb
GM
3442#if GC_MARK_STACK || defined GC_MALLOC_CHECK
3443
71cf5fa0
GM
3444/* Conservative C stack marking requires a method to identify possibly
3445 live Lisp objects given a pointer value. We do this by keeping
3446 track of blocks of Lisp data that are allocated in a red-black tree
3447 (see also the comment of mem_node which is the type of nodes in
3448 that tree). Function lisp_malloc adds information for an allocated
3449 block to the red-black tree with calls to mem_insert, and function
3450 lisp_free removes it with mem_delete. Functions live_string_p etc
3451 call mem_find to lookup information about a given pointer in the
3452 tree, and use that to determine if the pointer points to a Lisp
3453 object or not. */
3454
34400008
GM
3455/* Initialize this part of alloc.c. */
3456
3457static void
3458mem_init ()
3459{
3460 mem_z.left = mem_z.right = MEM_NIL;
3461 mem_z.parent = NULL;
3462 mem_z.color = MEM_BLACK;
3463 mem_z.start = mem_z.end = NULL;
3464 mem_root = MEM_NIL;
3465}
3466
3467
3468/* Value is a pointer to the mem_node containing START. Value is
3469 MEM_NIL if there is no node in the tree containing START. */
3470
3471static INLINE struct mem_node *
3472mem_find (start)
3473 void *start;
3474{
3475 struct mem_node *p;
3476
ece93c02
GM
3477 if (start < min_heap_address || start > max_heap_address)
3478 return MEM_NIL;
3479
34400008
GM
3480 /* Make the search always successful to speed up the loop below. */
3481 mem_z.start = start;
3482 mem_z.end = (char *) start + 1;
3483
3484 p = mem_root;
3485 while (start < p->start || start >= p->end)
3486 p = start < p->start ? p->left : p->right;
3487 return p;
3488}
3489
3490
3491/* Insert a new node into the tree for a block of memory with start
3492 address START, end address END, and type TYPE. Value is a
3493 pointer to the node that was inserted. */
3494
3495static struct mem_node *
3496mem_insert (start, end, type)
3497 void *start, *end;
3498 enum mem_type type;
3499{
3500 struct mem_node *c, *parent, *x;
3501
ece93c02
GM
3502 if (start < min_heap_address)
3503 min_heap_address = start;
3504 if (end > max_heap_address)
3505 max_heap_address = end;
3506
34400008
GM
3507 /* See where in the tree a node for START belongs. In this
3508 particular application, it shouldn't happen that a node is already
3509 present. For debugging purposes, let's check that. */
3510 c = mem_root;
3511 parent = NULL;
3512
3513#if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
177c0ea7 3514
34400008
GM
3515 while (c != MEM_NIL)
3516 {
3517 if (start >= c->start && start < c->end)
3518 abort ();
3519 parent = c;
3520 c = start < c->start ? c->left : c->right;
3521 }
177c0ea7 3522
34400008 3523#else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
177c0ea7 3524
34400008
GM
3525 while (c != MEM_NIL)
3526 {
3527 parent = c;
3528 c = start < c->start ? c->left : c->right;
3529 }
177c0ea7 3530
34400008
GM
3531#endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3532
3533 /* Create a new node. */
877935b1
GM
3534#ifdef GC_MALLOC_CHECK
3535 x = (struct mem_node *) _malloc_internal (sizeof *x);
3536 if (x == NULL)
3537 abort ();
3538#else
34400008 3539 x = (struct mem_node *) xmalloc (sizeof *x);
877935b1 3540#endif
34400008
GM
3541 x->start = start;
3542 x->end = end;
3543 x->type = type;
3544 x->parent = parent;
3545 x->left = x->right = MEM_NIL;
3546 x->color = MEM_RED;
3547
3548 /* Insert it as child of PARENT or install it as root. */
3549 if (parent)
3550 {
3551 if (start < parent->start)
3552 parent->left = x;
3553 else
3554 parent->right = x;
3555 }
177c0ea7 3556 else
34400008
GM
3557 mem_root = x;
3558
3559 /* Re-establish red-black tree properties. */
3560 mem_insert_fixup (x);
877935b1 3561
34400008
GM
3562 return x;
3563}
3564
3565
3566/* Re-establish the red-black properties of the tree, and thereby
3567 balance the tree, after node X has been inserted; X is always red. */
3568
3569static void
3570mem_insert_fixup (x)
3571 struct mem_node *x;
3572{
3573 while (x != mem_root && x->parent->color == MEM_RED)
3574 {
3575 /* X is red and its parent is red. This is a violation of
3576 red-black tree property #3. */
177c0ea7 3577
34400008
GM
3578 if (x->parent == x->parent->parent->left)
3579 {
3580 /* We're on the left side of our grandparent, and Y is our
3581 "uncle". */
3582 struct mem_node *y = x->parent->parent->right;
177c0ea7 3583
34400008
GM
3584 if (y->color == MEM_RED)
3585 {
3586 /* Uncle and parent are red but should be black because
3587 X is red. Change the colors accordingly and proceed
3588 with the grandparent. */
3589 x->parent->color = MEM_BLACK;
3590 y->color = MEM_BLACK;
3591 x->parent->parent->color = MEM_RED;
3592 x = x->parent->parent;
3593 }
3594 else
3595 {
3596 /* Parent and uncle have different colors; parent is
3597 red, uncle is black. */
3598 if (x == x->parent->right)
3599 {
3600 x = x->parent;
3601 mem_rotate_left (x);
3602 }
3603
3604 x->parent->color = MEM_BLACK;
3605 x->parent->parent->color = MEM_RED;
3606 mem_rotate_right (x->parent->parent);
3607 }
3608 }
3609 else
3610 {
3611 /* This is the symmetrical case of above. */
3612 struct mem_node *y = x->parent->parent->left;
177c0ea7 3613
34400008
GM
3614 if (y->color == MEM_RED)
3615 {
3616 x->parent->color = MEM_BLACK;
3617 y->color = MEM_BLACK;
3618 x->parent->parent->color = MEM_RED;
3619 x = x->parent->parent;
3620 }
3621 else
3622 {
3623 if (x == x->parent->left)
3624 {
3625 x = x->parent;
3626 mem_rotate_right (x);
3627 }
177c0ea7 3628
34400008
GM
3629 x->parent->color = MEM_BLACK;
3630 x->parent->parent->color = MEM_RED;
3631 mem_rotate_left (x->parent->parent);
3632 }
3633 }
3634 }
3635
3636 /* The root may have been changed to red due to the algorithm. Set
3637 it to black so that property #5 is satisfied. */
3638 mem_root->color = MEM_BLACK;
3639}
3640
3641
177c0ea7
JB
3642/* (x) (y)
3643 / \ / \
34400008
GM
3644 a (y) ===> (x) c
3645 / \ / \
3646 b c a b */
3647
3648static void
3649mem_rotate_left (x)
3650 struct mem_node *x;
3651{
3652 struct mem_node *y;
3653
3654 /* Turn y's left sub-tree into x's right sub-tree. */
3655 y = x->right;
3656 x->right = y->left;
3657 if (y->left != MEM_NIL)
3658 y->left->parent = x;
3659
3660 /* Y's parent was x's parent. */
3661 if (y != MEM_NIL)
3662 y->parent = x->parent;
3663
3664 /* Get the parent to point to y instead of x. */
3665 if (x->parent)
3666 {
3667 if (x == x->parent->left)
3668 x->parent->left = y;
3669 else
3670 x->parent->right = y;
3671 }
3672 else
3673 mem_root = y;
3674
3675 /* Put x on y's left. */
3676 y->left = x;
3677 if (x != MEM_NIL)
3678 x->parent = y;
3679}
3680
3681
177c0ea7
JB
3682/* (x) (Y)
3683 / \ / \
3684 (y) c ===> a (x)
3685 / \ / \
34400008
GM
3686 a b b c */
3687
3688static void
3689mem_rotate_right (x)
3690 struct mem_node *x;
3691{
3692 struct mem_node *y = x->left;
3693
3694 x->left = y->right;
3695 if (y->right != MEM_NIL)
3696 y->right->parent = x;
177c0ea7 3697
34400008
GM
3698 if (y != MEM_NIL)
3699 y->parent = x->parent;
3700 if (x->parent)
3701 {
3702 if (x == x->parent->right)
3703 x->parent->right = y;
3704 else
3705 x->parent->left = y;
3706 }
3707 else
3708 mem_root = y;
177c0ea7 3709
34400008
GM
3710 y->right = x;
3711 if (x != MEM_NIL)
3712 x->parent = y;
3713}
3714
3715
3716/* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
3717
3718static void
3719mem_delete (z)
3720 struct mem_node *z;
3721{
3722 struct mem_node *x, *y;
3723
3724 if (!z || z == MEM_NIL)
3725 return;
3726
3727 if (z->left == MEM_NIL || z->right == MEM_NIL)
3728 y = z;
3729 else
3730 {
3731 y = z->right;
3732 while (y->left != MEM_NIL)
3733 y = y->left;
3734 }
3735
3736 if (y->left != MEM_NIL)
3737 x = y->left;
3738 else
3739 x = y->right;
3740
3741 x->parent = y->parent;
3742 if (y->parent)
3743 {
3744 if (y == y->parent->left)
3745 y->parent->left = x;
3746 else
3747 y->parent->right = x;
3748 }
3749 else
3750 mem_root = x;
3751
3752 if (y != z)
3753 {
3754 z->start = y->start;
3755 z->end = y->end;
3756 z->type = y->type;
3757 }
177c0ea7 3758
34400008
GM
3759 if (y->color == MEM_BLACK)
3760 mem_delete_fixup (x);
877935b1
GM
3761
3762#ifdef GC_MALLOC_CHECK
3763 _free_internal (y);
3764#else
34400008 3765 xfree (y);
877935b1 3766#endif
34400008
GM
3767}
3768
3769
3770/* Re-establish the red-black properties of the tree, after a
3771 deletion. */
3772
3773static void
3774mem_delete_fixup (x)
3775 struct mem_node *x;
3776{
3777 while (x != mem_root && x->color == MEM_BLACK)
3778 {
3779 if (x == x->parent->left)
3780 {
3781 struct mem_node *w = x->parent->right;
177c0ea7 3782
34400008
GM
3783 if (w->color == MEM_RED)
3784 {
3785 w->color = MEM_BLACK;
3786 x->parent->color = MEM_RED;
3787 mem_rotate_left (x->parent);
3788 w = x->parent->right;
3789 }
177c0ea7 3790
34400008
GM
3791 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
3792 {
3793 w->color = MEM_RED;
3794 x = x->parent;
3795 }
3796 else
3797 {
3798 if (w->right->color == MEM_BLACK)
3799 {
3800 w->left->color = MEM_BLACK;
3801 w->color = MEM_RED;
3802 mem_rotate_right (w);
3803 w = x->parent->right;
3804 }
3805 w->color = x->parent->color;
3806 x->parent->color = MEM_BLACK;
3807 w->right->color = MEM_BLACK;
3808 mem_rotate_left (x->parent);
3809 x = mem_root;
3810 }
3811 }
3812 else
3813 {
3814 struct mem_node *w = x->parent->left;
177c0ea7 3815
34400008
GM
3816 if (w->color == MEM_RED)
3817 {
3818 w->color = MEM_BLACK;
3819 x->parent->color = MEM_RED;
3820 mem_rotate_right (x->parent);
3821 w = x->parent->left;
3822 }
177c0ea7 3823
34400008
GM
3824 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
3825 {
3826 w->color = MEM_RED;
3827 x = x->parent;
3828 }
3829 else
3830 {
3831 if (w->left->color == MEM_BLACK)
3832 {
3833 w->right->color = MEM_BLACK;
3834 w->color = MEM_RED;
3835 mem_rotate_left (w);
3836 w = x->parent->left;
3837 }
177c0ea7 3838
34400008
GM
3839 w->color = x->parent->color;
3840 x->parent->color = MEM_BLACK;
3841 w->left->color = MEM_BLACK;
3842 mem_rotate_right (x->parent);
3843 x = mem_root;
3844 }
3845 }
3846 }
177c0ea7 3847
34400008
GM
3848 x->color = MEM_BLACK;
3849}
3850
3851
3852/* Value is non-zero if P is a pointer to a live Lisp string on
3853 the heap. M is a pointer to the mem_block for P. */
3854
3855static INLINE int
3856live_string_p (m, p)
3857 struct mem_node *m;
3858 void *p;
3859{
3860 if (m->type == MEM_TYPE_STRING)
3861 {
3862 struct string_block *b = (struct string_block *) m->start;
3863 int offset = (char *) p - (char *) &b->strings[0];
3864
3865 /* P must point to the start of a Lisp_String structure, and it
3866 must not be on the free-list. */
176bc847
GM
3867 return (offset >= 0
3868 && offset % sizeof b->strings[0] == 0
d05b383a 3869 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
34400008
GM
3870 && ((struct Lisp_String *) p)->data != NULL);
3871 }
3872 else
3873 return 0;
3874}
3875
3876
3877/* Value is non-zero if P is a pointer to a live Lisp cons on
3878 the heap. M is a pointer to the mem_block for P. */
3879
3880static INLINE int
3881live_cons_p (m, p)
3882 struct mem_node *m;
3883 void *p;
3884{
3885 if (m->type == MEM_TYPE_CONS)
3886 {
3887 struct cons_block *b = (struct cons_block *) m->start;
3888 int offset = (char *) p - (char *) &b->conses[0];
3889
3890 /* P must point to the start of a Lisp_Cons, not be
3891 one of the unused cells in the current cons block,
3892 and not be on the free-list. */
176bc847
GM
3893 return (offset >= 0
3894 && offset % sizeof b->conses[0] == 0
d05b383a 3895 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
34400008
GM
3896 && (b != cons_block
3897 || offset / sizeof b->conses[0] < cons_block_index)
3898 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
3899 }
3900 else
3901 return 0;
3902}
3903
3904
3905/* Value is non-zero if P is a pointer to a live Lisp symbol on
3906 the heap. M is a pointer to the mem_block for P. */
3907
3908static INLINE int
3909live_symbol_p (m, p)
3910 struct mem_node *m;
3911 void *p;
3912{
3913 if (m->type == MEM_TYPE_SYMBOL)
3914 {
3915 struct symbol_block *b = (struct symbol_block *) m->start;
3916 int offset = (char *) p - (char *) &b->symbols[0];
177c0ea7 3917
34400008
GM
3918 /* P must point to the start of a Lisp_Symbol, not be
3919 one of the unused cells in the current symbol block,
3920 and not be on the free-list. */
176bc847
GM
3921 return (offset >= 0
3922 && offset % sizeof b->symbols[0] == 0
d05b383a 3923 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
34400008
GM
3924 && (b != symbol_block
3925 || offset / sizeof b->symbols[0] < symbol_block_index)
3926 && !EQ (((struct Lisp_Symbol *) p)->function, Vdead));
3927 }
3928 else
3929 return 0;
3930}
3931
3932
3933/* Value is non-zero if P is a pointer to a live Lisp float on
3934 the heap. M is a pointer to the mem_block for P. */
3935
3936static INLINE int
3937live_float_p (m, p)
3938 struct mem_node *m;
3939 void *p;
3940{
3941 if (m->type == MEM_TYPE_FLOAT)
3942 {
3943 struct float_block *b = (struct float_block *) m->start;
3944 int offset = (char *) p - (char *) &b->floats[0];
177c0ea7 3945
ab6780cd
SM
3946 /* P must point to the start of a Lisp_Float and not be
3947 one of the unused cells in the current float block. */
176bc847
GM
3948 return (offset >= 0
3949 && offset % sizeof b->floats[0] == 0
d05b383a 3950 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
34400008 3951 && (b != float_block
ab6780cd 3952 || offset / sizeof b->floats[0] < float_block_index));
34400008
GM
3953 }
3954 else
3955 return 0;
3956}
3957
3958
3959/* Value is non-zero if P is a pointer to a live Lisp Misc on
3960 the heap. M is a pointer to the mem_block for P. */
3961
3962static INLINE int
3963live_misc_p (m, p)
3964 struct mem_node *m;
3965 void *p;
3966{
3967 if (m->type == MEM_TYPE_MISC)
3968 {
3969 struct marker_block *b = (struct marker_block *) m->start;
3970 int offset = (char *) p - (char *) &b->markers[0];
177c0ea7 3971
34400008
GM
3972 /* P must point to the start of a Lisp_Misc, not be
3973 one of the unused cells in the current misc block,
3974 and not be on the free-list. */
176bc847
GM
3975 return (offset >= 0
3976 && offset % sizeof b->markers[0] == 0
d05b383a 3977 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
34400008
GM
3978 && (b != marker_block
3979 || offset / sizeof b->markers[0] < marker_block_index)
3980 && ((union Lisp_Misc *) p)->u_marker.type != Lisp_Misc_Free);
3981 }
3982 else
3983 return 0;
3984}
3985
3986
3987/* Value is non-zero if P is a pointer to a live vector-like object.
3988 M is a pointer to the mem_block for P. */
3989
3990static INLINE int
3991live_vector_p (m, p)
3992 struct mem_node *m;
3993 void *p;
3994{
ece93c02
GM
3995 return (p == m->start
3996 && m->type >= MEM_TYPE_VECTOR
3997 && m->type <= MEM_TYPE_WINDOW);
34400008
GM
3998}
3999
4000
2336fe58 4001/* Value is non-zero if P is a pointer to a live buffer. M is a
34400008
GM
4002 pointer to the mem_block for P. */
4003
4004static INLINE int
4005live_buffer_p (m, p)
4006 struct mem_node *m;
4007 void *p;
4008{
4009 /* P must point to the start of the block, and the buffer
4010 must not have been killed. */
4011 return (m->type == MEM_TYPE_BUFFER
4012 && p == m->start
4013 && !NILP (((struct buffer *) p)->name));
4014}
4015
13c844fb
GM
4016#endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
4017
4018#if GC_MARK_STACK
4019
34400008
GM
4020#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4021
4022/* Array of objects that are kept alive because the C stack contains
4023 a pattern that looks like a reference to them . */
4024
4025#define MAX_ZOMBIES 10
4026static Lisp_Object zombies[MAX_ZOMBIES];
4027
4028/* Number of zombie objects. */
4029
4030static int nzombies;
4031
4032/* Number of garbage collections. */
4033
4034static int ngcs;
4035
4036/* Average percentage of zombies per collection. */
4037
4038static double avg_zombies;
4039
4040/* Max. number of live and zombie objects. */
4041
4042static int max_live, max_zombies;
4043
4044/* Average number of live objects per GC. */
4045
4046static double avg_live;
4047
4048DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
7ee72033
MB
4049 doc: /* Show information about live and zombie objects. */)
4050 ()
34400008 4051{
83fc9c63
DL
4052 Lisp_Object args[8], zombie_list = Qnil;
4053 int i;
4054 for (i = 0; i < nzombies; i++)
4055 zombie_list = Fcons (zombies[i], zombie_list);
4056 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
34400008
GM
4057 args[1] = make_number (ngcs);
4058 args[2] = make_float (avg_live);
4059 args[3] = make_float (avg_zombies);
4060 args[4] = make_float (avg_zombies / avg_live / 100);
4061 args[5] = make_number (max_live);
4062 args[6] = make_number (max_zombies);
83fc9c63
DL
4063 args[7] = zombie_list;
4064 return Fmessage (8, args);
34400008
GM
4065}
4066
4067#endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4068
4069
182ff242
GM
4070/* Mark OBJ if we can prove it's a Lisp_Object. */
4071
4072static INLINE void
4073mark_maybe_object (obj)
4074 Lisp_Object obj;
4075{
4076 void *po = (void *) XPNTR (obj);
4077 struct mem_node *m = mem_find (po);
177c0ea7 4078
182ff242
GM
4079 if (m != MEM_NIL)
4080 {
4081 int mark_p = 0;
4082
4083 switch (XGCTYPE (obj))
4084 {
4085 case Lisp_String:
4086 mark_p = (live_string_p (m, po)
4087 && !STRING_MARKED_P ((struct Lisp_String *) po));
4088 break;
4089
4090 case Lisp_Cons:
08b7c2cb 4091 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
182ff242
GM
4092 break;
4093
4094 case Lisp_Symbol:
2336fe58 4095 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
182ff242
GM
4096 break;
4097
4098 case Lisp_Float:
ab6780cd 4099 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
182ff242
GM
4100 break;
4101
4102 case Lisp_Vectorlike:
4103 /* Note: can't check GC_BUFFERP before we know it's a
4104 buffer because checking that dereferences the pointer
4105 PO which might point anywhere. */
4106 if (live_vector_p (m, po))
3ef06d12 4107 mark_p = !GC_SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
182ff242 4108 else if (live_buffer_p (m, po))
3ef06d12 4109 mark_p = GC_BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
182ff242
GM
4110 break;
4111
4112 case Lisp_Misc:
2336fe58 4113 mark_p = (live_misc_p (m, po) && !XMARKER (obj)->gcmarkbit);
182ff242 4114 break;
6bbd7a29
GM
4115
4116 case Lisp_Int:
31d929e5 4117 case Lisp_Type_Limit:
6bbd7a29 4118 break;
182ff242
GM
4119 }
4120
4121 if (mark_p)
4122 {
4123#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4124 if (nzombies < MAX_ZOMBIES)
83fc9c63 4125 zombies[nzombies] = obj;
182ff242
GM
4126 ++nzombies;
4127#endif
49723c04 4128 mark_object (obj);
182ff242
GM
4129 }
4130 }
4131}
ece93c02
GM
4132
4133
4134/* If P points to Lisp data, mark that as live if it isn't already
4135 marked. */
4136
4137static INLINE void
4138mark_maybe_pointer (p)
4139 void *p;
4140{
4141 struct mem_node *m;
4142
4143 /* Quickly rule out some values which can't point to Lisp data. We
4144 assume that Lisp data is aligned on even addresses. */
4145 if ((EMACS_INT) p & 1)
4146 return;
177c0ea7 4147
ece93c02
GM
4148 m = mem_find (p);
4149 if (m != MEM_NIL)
4150 {
4151 Lisp_Object obj = Qnil;
177c0ea7 4152
ece93c02
GM
4153 switch (m->type)
4154 {
4155 case MEM_TYPE_NON_LISP:
2fe50224 4156 /* Nothing to do; not a pointer to Lisp memory. */
ece93c02 4157 break;
177c0ea7 4158
ece93c02 4159 case MEM_TYPE_BUFFER:
3ef06d12 4160 if (live_buffer_p (m, p) && !VECTOR_MARKED_P((struct buffer *)p))
ece93c02
GM
4161 XSETVECTOR (obj, p);
4162 break;
177c0ea7 4163
ece93c02 4164 case MEM_TYPE_CONS:
08b7c2cb 4165 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
ece93c02
GM
4166 XSETCONS (obj, p);
4167 break;
177c0ea7 4168
ece93c02
GM
4169 case MEM_TYPE_STRING:
4170 if (live_string_p (m, p)
4171 && !STRING_MARKED_P ((struct Lisp_String *) p))
4172 XSETSTRING (obj, p);
4173 break;
4174
4175 case MEM_TYPE_MISC:
2336fe58
SM
4176 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
4177 XSETMISC (obj, p);
ece93c02 4178 break;
177c0ea7 4179
ece93c02 4180 case MEM_TYPE_SYMBOL:
2336fe58 4181 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
ece93c02
GM
4182 XSETSYMBOL (obj, p);
4183 break;
177c0ea7 4184
ece93c02 4185 case MEM_TYPE_FLOAT:
ab6780cd 4186 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
ece93c02
GM
4187 XSETFLOAT (obj, p);
4188 break;
177c0ea7 4189
ece93c02
GM
4190 case MEM_TYPE_VECTOR:
4191 case MEM_TYPE_PROCESS:
4192 case MEM_TYPE_HASH_TABLE:
4193 case MEM_TYPE_FRAME:
4194 case MEM_TYPE_WINDOW:
4195 if (live_vector_p (m, p))
4196 {
4197 Lisp_Object tem;
4198 XSETVECTOR (tem, p);
3ef06d12 4199 if (!GC_SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
ece93c02
GM
4200 obj = tem;
4201 }
4202 break;
4203
4204 default:
4205 abort ();
4206 }
4207
4208 if (!GC_NILP (obj))
49723c04 4209 mark_object (obj);
ece93c02
GM
4210 }
4211}
4212
4213
4214/* Mark Lisp objects referenced from the address range START..END. */
34400008 4215
177c0ea7 4216static void
34400008
GM
4217mark_memory (start, end)
4218 void *start, *end;
4219{
4220 Lisp_Object *p;
ece93c02 4221 void **pp;
34400008
GM
4222
4223#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4224 nzombies = 0;
4225#endif
4226
4227 /* Make START the pointer to the start of the memory region,
4228 if it isn't already. */
4229 if (end < start)
4230 {
4231 void *tem = start;
4232 start = end;
4233 end = tem;
4234 }
ece93c02
GM
4235
4236 /* Mark Lisp_Objects. */
34400008 4237 for (p = (Lisp_Object *) start; (void *) p < end; ++p)
182ff242 4238 mark_maybe_object (*p);
ece93c02
GM
4239
4240 /* Mark Lisp data pointed to. This is necessary because, in some
4241 situations, the C compiler optimizes Lisp objects away, so that
4242 only a pointer to them remains. Example:
4243
4244 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
7ee72033 4245 ()
ece93c02
GM
4246 {
4247 Lisp_Object obj = build_string ("test");
4248 struct Lisp_String *s = XSTRING (obj);
4249 Fgarbage_collect ();
4250 fprintf (stderr, "test `%s'\n", s->data);
4251 return Qnil;
4252 }
4253
4254 Here, `obj' isn't really used, and the compiler optimizes it
4255 away. The only reference to the life string is through the
4256 pointer `s'. */
177c0ea7 4257
ece93c02
GM
4258 for (pp = (void **) start; (void *) pp < end; ++pp)
4259 mark_maybe_pointer (*pp);
182ff242
GM
4260}
4261
30f637f8
DL
4262/* setjmp will work with GCC unless NON_SAVING_SETJMP is defined in
4263 the GCC system configuration. In gcc 3.2, the only systems for
4264 which this is so are i386-sco5 non-ELF, i386-sysv3 (maybe included
4265 by others?) and ns32k-pc532-min. */
182ff242
GM
4266
4267#if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4268
4269static int setjmp_tested_p, longjmps_done;
4270
4271#define SETJMP_WILL_LIKELY_WORK "\
4272\n\
4273Emacs garbage collector has been changed to use conservative stack\n\
4274marking. Emacs has determined that the method it uses to do the\n\
4275marking will likely work on your system, but this isn't sure.\n\
4276\n\
4277If you are a system-programmer, or can get the help of a local wizard\n\
4278who is, please take a look at the function mark_stack in alloc.c, and\n\
4279verify that the methods used are appropriate for your system.\n\
4280\n\
d191623b 4281Please mail the result to <emacs-devel@gnu.org>.\n\
182ff242
GM
4282"
4283
4284#define SETJMP_WILL_NOT_WORK "\
4285\n\
4286Emacs garbage collector has been changed to use conservative stack\n\
4287marking. Emacs has determined that the default method it uses to do the\n\
4288marking will not work on your system. We will need a system-dependent\n\
4289solution for your system.\n\
4290\n\
4291Please take a look at the function mark_stack in alloc.c, and\n\
4292try to find a way to make it work on your system.\n\
30f637f8
DL
4293\n\
4294Note that you may get false negatives, depending on the compiler.\n\
4295In particular, you need to use -O with GCC for this test.\n\
4296\n\
d191623b 4297Please mail the result to <emacs-devel@gnu.org>.\n\
182ff242
GM
4298"
4299
4300
4301/* Perform a quick check if it looks like setjmp saves registers in a
4302 jmp_buf. Print a message to stderr saying so. When this test
4303 succeeds, this is _not_ a proof that setjmp is sufficient for
4304 conservative stack marking. Only the sources or a disassembly
4305 can prove that. */
4306
4307static void
4308test_setjmp ()
4309{
4310 char buf[10];
4311 register int x;
4312 jmp_buf jbuf;
4313 int result = 0;
4314
4315 /* Arrange for X to be put in a register. */
4316 sprintf (buf, "1");
4317 x = strlen (buf);
4318 x = 2 * x - 1;
4319
4320 setjmp (jbuf);
4321 if (longjmps_done == 1)
34400008 4322 {
182ff242 4323 /* Came here after the longjmp at the end of the function.
34400008 4324
182ff242
GM
4325 If x == 1, the longjmp has restored the register to its
4326 value before the setjmp, and we can hope that setjmp
4327 saves all such registers in the jmp_buf, although that
4328 isn't sure.
34400008 4329
182ff242
GM
4330 For other values of X, either something really strange is
4331 taking place, or the setjmp just didn't save the register. */
4332
4333 if (x == 1)
4334 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
4335 else
4336 {
4337 fprintf (stderr, SETJMP_WILL_NOT_WORK);
4338 exit (1);
34400008
GM
4339 }
4340 }
182ff242
GM
4341
4342 ++longjmps_done;
4343 x = 2;
4344 if (longjmps_done == 1)
4345 longjmp (jbuf, 1);
34400008
GM
4346}
4347
182ff242
GM
4348#endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
4349
34400008
GM
4350
4351#if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4352
4353/* Abort if anything GCPRO'd doesn't survive the GC. */
4354
4355static void
4356check_gcpros ()
4357{
4358 struct gcpro *p;
4359 int i;
4360
4361 for (p = gcprolist; p; p = p->next)
4362 for (i = 0; i < p->nvars; ++i)
4363 if (!survives_gc_p (p->var[i]))
92cc28b2
SM
4364 /* FIXME: It's not necessarily a bug. It might just be that the
4365 GCPRO is unnecessary or should release the object sooner. */
34400008
GM
4366 abort ();
4367}
4368
4369#elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4370
4371static void
4372dump_zombies ()
4373{
4374 int i;
4375
4376 fprintf (stderr, "\nZombies kept alive = %d:\n", nzombies);
4377 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
4378 {
4379 fprintf (stderr, " %d = ", i);
4380 debug_print (zombies[i]);
4381 }
4382}
4383
4384#endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4385
4386
182ff242
GM
4387/* Mark live Lisp objects on the C stack.
4388
4389 There are several system-dependent problems to consider when
4390 porting this to new architectures:
4391
4392 Processor Registers
4393
4394 We have to mark Lisp objects in CPU registers that can hold local
4395 variables or are used to pass parameters.
4396
4397 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4398 something that either saves relevant registers on the stack, or
4399 calls mark_maybe_object passing it each register's contents.
4400
4401 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4402 implementation assumes that calling setjmp saves registers we need
4403 to see in a jmp_buf which itself lies on the stack. This doesn't
4404 have to be true! It must be verified for each system, possibly
4405 by taking a look at the source code of setjmp.
4406
4407 Stack Layout
4408
4409 Architectures differ in the way their processor stack is organized.
4410 For example, the stack might look like this
4411
4412 +----------------+
4413 | Lisp_Object | size = 4
4414 +----------------+
4415 | something else | size = 2
4416 +----------------+
4417 | Lisp_Object | size = 4
4418 +----------------+
4419 | ... |
4420
4421 In such a case, not every Lisp_Object will be aligned equally. To
4422 find all Lisp_Object on the stack it won't be sufficient to walk
4423 the stack in steps of 4 bytes. Instead, two passes will be
4424 necessary, one starting at the start of the stack, and a second
4425 pass starting at the start of the stack + 2. Likewise, if the
4426 minimal alignment of Lisp_Objects on the stack is 1, four passes
4427 would be necessary, each one starting with one byte more offset
4428 from the stack start.
4429
4430 The current code assumes by default that Lisp_Objects are aligned
4431 equally on the stack. */
34400008
GM
4432
4433static void
4434mark_stack ()
4435{
630909a5 4436 int i;
34400008 4437 jmp_buf j;
6bbd7a29 4438 volatile int stack_grows_down_p = (char *) &j > (char *) stack_base;
34400008
GM
4439 void *end;
4440
4441 /* This trick flushes the register windows so that all the state of
4442 the process is contained in the stack. */
ab6780cd 4443 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
422eec7e
DL
4444 needed on ia64 too. See mach_dep.c, where it also says inline
4445 assembler doesn't work with relevant proprietary compilers. */
34400008
GM
4446#ifdef sparc
4447 asm ("ta 3");
4448#endif
177c0ea7 4449
34400008
GM
4450 /* Save registers that we need to see on the stack. We need to see
4451 registers used to hold register variables and registers used to
4452 pass parameters. */
4453#ifdef GC_SAVE_REGISTERS_ON_STACK
4454 GC_SAVE_REGISTERS_ON_STACK (end);
182ff242 4455#else /* not GC_SAVE_REGISTERS_ON_STACK */
177c0ea7 4456
182ff242
GM
4457#ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
4458 setjmp will definitely work, test it
4459 and print a message with the result
4460 of the test. */
4461 if (!setjmp_tested_p)
4462 {
4463 setjmp_tested_p = 1;
4464 test_setjmp ();
4465 }
4466#endif /* GC_SETJMP_WORKS */
177c0ea7 4467
34400008
GM
4468 setjmp (j);
4469 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
182ff242 4470#endif /* not GC_SAVE_REGISTERS_ON_STACK */
34400008
GM
4471
4472 /* This assumes that the stack is a contiguous region in memory. If
182ff242
GM
4473 that's not the case, something has to be done here to iterate
4474 over the stack segments. */
630909a5 4475#ifndef GC_LISP_OBJECT_ALIGNMENT
422eec7e
DL
4476#ifdef __GNUC__
4477#define GC_LISP_OBJECT_ALIGNMENT __alignof__ (Lisp_Object)
4478#else
630909a5 4479#define GC_LISP_OBJECT_ALIGNMENT sizeof (Lisp_Object)
422eec7e 4480#endif
182ff242 4481#endif
24452cd5 4482 for (i = 0; i < sizeof (Lisp_Object); i += GC_LISP_OBJECT_ALIGNMENT)
630909a5 4483 mark_memory ((char *) stack_base + i, end);
4dec23ff
AS
4484 /* Allow for marking a secondary stack, like the register stack on the
4485 ia64. */
4486#ifdef GC_MARK_SECONDARY_STACK
4487 GC_MARK_SECONDARY_STACK ();
4488#endif
34400008
GM
4489
4490#if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4491 check_gcpros ();
4492#endif
4493}
4494
34400008
GM
4495#endif /* GC_MARK_STACK != 0 */
4496
4497
3cd55735
KS
4498
4499/* Return 1 if OBJ is a valid lisp object.
4500 Return 0 if OBJ is NOT a valid lisp object.
4501 Return -1 if we cannot validate OBJ.
7c0ab7d9
RS
4502 This function can be quite slow,
4503 so it should only be used in code for manual debugging. */
3cd55735
KS
4504
4505int
4506valid_lisp_object_p (obj)
4507 Lisp_Object obj;
4508{
de7124a7 4509 void *p;
3cd55735 4510#if !GC_MARK_STACK
de7124a7 4511 int fd;
3cd55735 4512#else
3cd55735 4513 struct mem_node *m;
de7124a7 4514#endif
3cd55735
KS
4515
4516 if (INTEGERP (obj))
4517 return 1;
4518
4519 p = (void *) XPNTR (obj);
3cd55735
KS
4520 if (PURE_POINTER_P (p))
4521 return 1;
4522
de7124a7
KS
4523#if !GC_MARK_STACK
4524 /* We need to determine whether it is safe to access memory at
4525 address P. Obviously, we cannot just access it (we would SEGV
4526 trying), so we trick the o/s to tell us whether p is a valid
4527 pointer. Unfortunately, we cannot use NULL_DEVICE here, as
4528 emacs_write may not validate p in that case. */
7c0ab7d9 4529 if ((fd = emacs_open ("__Valid__Lisp__Object__", O_CREAT | O_WRONLY | O_TRUNC, 0666)) >= 0)
de7124a7 4530 {
7c0ab7d9
RS
4531 int valid = (emacs_write (fd, (char *)p, 16) == 16);
4532 emacs_close (fd);
4533 unlink ("__Valid__Lisp__Object__");
de7124a7
KS
4534 return valid;
4535 }
4536
4537 return -1;
4538#else
4539
3cd55735
KS
4540 m = mem_find (p);
4541
4542 if (m == MEM_NIL)
4543 return 0;
4544
4545 switch (m->type)
4546 {
4547 case MEM_TYPE_NON_LISP:
4548 return 0;
4549
4550 case MEM_TYPE_BUFFER:
4551 return live_buffer_p (m, p);
4552
4553 case MEM_TYPE_CONS:
4554 return live_cons_p (m, p);
4555
4556 case MEM_TYPE_STRING:
4557 return live_string_p (m, p);
4558
4559 case MEM_TYPE_MISC:
4560 return live_misc_p (m, p);
4561
4562 case MEM_TYPE_SYMBOL:
4563 return live_symbol_p (m, p);
4564
4565 case MEM_TYPE_FLOAT:
4566 return live_float_p (m, p);
4567
4568 case MEM_TYPE_VECTOR:
4569 case MEM_TYPE_PROCESS:
4570 case MEM_TYPE_HASH_TABLE:
4571 case MEM_TYPE_FRAME:
4572 case MEM_TYPE_WINDOW:
4573 return live_vector_p (m, p);
4574
4575 default:
4576 break;
4577 }
4578
4579 return 0;
4580#endif
4581}
4582
4583
4584
34400008 4585\f
2e471eb5
GM
4586/***********************************************************************
4587 Pure Storage Management
4588 ***********************************************************************/
4589
1f0b3fd2
GM
4590/* Allocate room for SIZE bytes from pure Lisp storage and return a
4591 pointer to it. TYPE is the Lisp type for which the memory is
4592 allocated. TYPE < 0 means it's not used for a Lisp object.
4593
4594 If store_pure_type_info is set and TYPE is >= 0, the type of
4595 the allocated object is recorded in pure_types. */
4596
4597static POINTER_TYPE *
4598pure_alloc (size, type)
4599 size_t size;
4600 int type;
4601{
1f0b3fd2 4602 POINTER_TYPE *result;
831b476c
SM
4603#ifdef USE_LSB_TAG
4604 size_t alignment = (1 << GCTYPEBITS);
4605#else
44117420 4606 size_t alignment = sizeof (EMACS_INT);
1f0b3fd2
GM
4607
4608 /* Give Lisp_Floats an extra alignment. */
4609 if (type == Lisp_Float)
4610 {
1f0b3fd2
GM
4611#if defined __GNUC__ && __GNUC__ >= 2
4612 alignment = __alignof (struct Lisp_Float);
4613#else
4614 alignment = sizeof (struct Lisp_Float);
4615#endif
9e713715 4616 }
831b476c 4617#endif
1f0b3fd2 4618
44117420 4619 again:
ab6780cd 4620 result = ALIGN (purebeg + pure_bytes_used, alignment);
44117420
KS
4621 pure_bytes_used = ((char *)result - (char *)purebeg) + size;
4622
4623 if (pure_bytes_used <= pure_size)
4624 return result;
4625
4626 /* Don't allocate a large amount here,
4627 because it might get mmap'd and then its address
4628 might not be usable. */
4629 purebeg = (char *) xmalloc (10000);
4630 pure_size = 10000;
4631 pure_bytes_used_before_overflow += pure_bytes_used - size;
4632 pure_bytes_used = 0;
4633 goto again;
1f0b3fd2
GM
4634}
4635
4636
852f8cdc 4637/* Print a warning if PURESIZE is too small. */
9e713715
GM
4638
4639void
4640check_pure_size ()
4641{
4642 if (pure_bytes_used_before_overflow)
a4d35afd
SM
4643 message ("Pure Lisp storage overflow (approx. %d bytes needed)",
4644 (int) (pure_bytes_used + pure_bytes_used_before_overflow));
9e713715
GM
4645}
4646
4647
2e471eb5
GM
4648/* Return a string allocated in pure space. DATA is a buffer holding
4649 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
4650 non-zero means make the result string multibyte.
1a4f1e2c 4651
2e471eb5
GM
4652 Must get an error if pure storage is full, since if it cannot hold
4653 a large string it may be able to hold conses that point to that
4654 string; then the string is not protected from gc. */
7146af97
JB
4655
4656Lisp_Object
2e471eb5 4657make_pure_string (data, nchars, nbytes, multibyte)
7146af97 4658 char *data;
2e471eb5 4659 int nchars, nbytes;
c0696668 4660 int multibyte;
7146af97 4661{
2e471eb5
GM
4662 Lisp_Object string;
4663 struct Lisp_String *s;
c0696668 4664
1f0b3fd2
GM
4665 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
4666 s->data = (unsigned char *) pure_alloc (nbytes + 1, -1);
2e471eb5
GM
4667 s->size = nchars;
4668 s->size_byte = multibyte ? nbytes : -1;
4669 bcopy (data, s->data, nbytes);
4670 s->data[nbytes] = '\0';
4671 s->intervals = NULL_INTERVAL;
2e471eb5
GM
4672 XSETSTRING (string, s);
4673 return string;
7146af97
JB
4674}
4675
2e471eb5 4676
34400008
GM
4677/* Return a cons allocated from pure space. Give it pure copies
4678 of CAR as car and CDR as cdr. */
4679
7146af97
JB
4680Lisp_Object
4681pure_cons (car, cdr)
4682 Lisp_Object car, cdr;
4683{
4684 register Lisp_Object new;
1f0b3fd2 4685 struct Lisp_Cons *p;
7146af97 4686
1f0b3fd2
GM
4687 p = (struct Lisp_Cons *) pure_alloc (sizeof *p, Lisp_Cons);
4688 XSETCONS (new, p);
f3fbd155
KR
4689 XSETCAR (new, Fpurecopy (car));
4690 XSETCDR (new, Fpurecopy (cdr));
7146af97
JB
4691 return new;
4692}
4693
7146af97 4694
34400008
GM
4695/* Value is a float object with value NUM allocated from pure space. */
4696
7146af97
JB
4697Lisp_Object
4698make_pure_float (num)
4699 double num;
4700{
4701 register Lisp_Object new;
1f0b3fd2 4702 struct Lisp_Float *p;
7146af97 4703
1f0b3fd2
GM
4704 p = (struct Lisp_Float *) pure_alloc (sizeof *p, Lisp_Float);
4705 XSETFLOAT (new, p);
70949dac 4706 XFLOAT_DATA (new) = num;
7146af97
JB
4707 return new;
4708}
4709
34400008
GM
4710
4711/* Return a vector with room for LEN Lisp_Objects allocated from
4712 pure space. */
4713
7146af97
JB
4714Lisp_Object
4715make_pure_vector (len)
42607681 4716 EMACS_INT len;
7146af97 4717{
1f0b3fd2
GM
4718 Lisp_Object new;
4719 struct Lisp_Vector *p;
4720 size_t size = sizeof *p + (len - 1) * sizeof (Lisp_Object);
7146af97 4721
1f0b3fd2
GM
4722 p = (struct Lisp_Vector *) pure_alloc (size, Lisp_Vectorlike);
4723 XSETVECTOR (new, p);
7146af97
JB
4724 XVECTOR (new)->size = len;
4725 return new;
4726}
4727
34400008 4728
7146af97 4729DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
7ee72033 4730 doc: /* Make a copy of OBJECT in pure storage.
228299fa 4731Recursively copies contents of vectors and cons cells.
7ee72033
MB
4732Does not copy symbols. Copies strings without text properties. */)
4733 (obj)
7146af97
JB
4734 register Lisp_Object obj;
4735{
265a9e55 4736 if (NILP (Vpurify_flag))
7146af97
JB
4737 return obj;
4738
1f0b3fd2 4739 if (PURE_POINTER_P (XPNTR (obj)))
7146af97
JB
4740 return obj;
4741
d6dd74bb 4742 if (CONSP (obj))
70949dac 4743 return pure_cons (XCAR (obj), XCDR (obj));
d6dd74bb 4744 else if (FLOATP (obj))
70949dac 4745 return make_pure_float (XFLOAT_DATA (obj));
d6dd74bb 4746 else if (STRINGP (obj))
d5db4077
KR
4747 return make_pure_string (SDATA (obj), SCHARS (obj),
4748 SBYTES (obj),
c0696668 4749 STRING_MULTIBYTE (obj));
d6dd74bb
KH
4750 else if (COMPILEDP (obj) || VECTORP (obj))
4751 {
4752 register struct Lisp_Vector *vec;
41b867ea
AS
4753 register int i;
4754 EMACS_INT size;
d6dd74bb
KH
4755
4756 size = XVECTOR (obj)->size;
7d535c68
KH
4757 if (size & PSEUDOVECTOR_FLAG)
4758 size &= PSEUDOVECTOR_SIZE_MASK;
41b867ea 4759 vec = XVECTOR (make_pure_vector (size));
d6dd74bb
KH
4760 for (i = 0; i < size; i++)
4761 vec->contents[i] = Fpurecopy (XVECTOR (obj)->contents[i]);
4762 if (COMPILEDP (obj))
4763 XSETCOMPILED (obj, vec);
4764 else
4765 XSETVECTOR (obj, vec);
7146af97
JB
4766 return obj;
4767 }
d6dd74bb
KH
4768 else if (MARKERP (obj))
4769 error ("Attempt to copy a marker to pure storage");
6bbd7a29
GM
4770
4771 return obj;
7146af97 4772}
2e471eb5 4773
34400008 4774
7146af97 4775\f
34400008
GM
4776/***********************************************************************
4777 Protection from GC
4778 ***********************************************************************/
4779
2e471eb5
GM
4780/* Put an entry in staticvec, pointing at the variable with address
4781 VARADDRESS. */
7146af97
JB
4782
4783void
4784staticpro (varaddress)
4785 Lisp_Object *varaddress;
4786{
4787 staticvec[staticidx++] = varaddress;
4788 if (staticidx >= NSTATICS)
4789 abort ();
4790}
4791
4792struct catchtag
2e471eb5 4793{
7146af97
JB
4794 Lisp_Object tag;
4795 Lisp_Object val;
4796 struct catchtag *next;
2e471eb5 4797};
7146af97 4798
7146af97 4799\f
34400008
GM
4800/***********************************************************************
4801 Protection from GC
4802 ***********************************************************************/
1a4f1e2c 4803
e8197642
RS
4804/* Temporarily prevent garbage collection. */
4805
4806int
4807inhibit_garbage_collection ()
4808{
aed13378 4809 int count = SPECPDL_INDEX ();
54defd0d
AS
4810 int nbits = min (VALBITS, BITS_PER_INT);
4811
4812 specbind (Qgc_cons_threshold, make_number (((EMACS_INT) 1 << (nbits - 1)) - 1));
e8197642
RS
4813 return count;
4814}
4815
34400008 4816
7146af97 4817DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
7ee72033 4818 doc: /* Reclaim storage for Lisp objects no longer needed.
e1e37596
RS
4819Garbage collection happens automatically if you cons more than
4820`gc-cons-threshold' bytes of Lisp data since previous garbage collection.
4821`garbage-collect' normally returns a list with info on amount of space in use:
228299fa
GM
4822 ((USED-CONSES . FREE-CONSES) (USED-SYMS . FREE-SYMS)
4823 (USED-MARKERS . FREE-MARKERS) USED-STRING-CHARS USED-VECTOR-SLOTS
4824 (USED-FLOATS . FREE-FLOATS) (USED-INTERVALS . FREE-INTERVALS)
4825 (USED-STRINGS . FREE-STRINGS))
e1e37596
RS
4826However, if there was overflow in pure space, `garbage-collect'
4827returns nil, because real GC can't be done. */)
7ee72033 4828 ()
7146af97 4829{
7146af97
JB
4830 register struct specbinding *bind;
4831 struct catchtag *catch;
4832 struct handler *handler;
7146af97
JB
4833 char stack_top_variable;
4834 register int i;
6efc7df7 4835 int message_p;
96117bc7 4836 Lisp_Object total[8];
331379bf 4837 int count = SPECPDL_INDEX ();
2c5bd608
DL
4838 EMACS_TIME t1, t2, t3;
4839
3de0effb
RS
4840 if (abort_on_gc)
4841 abort ();
4842
9e713715
GM
4843 /* Can't GC if pure storage overflowed because we can't determine
4844 if something is a pure object or not. */
4845 if (pure_bytes_used_before_overflow)
4846 return Qnil;
4847
bbc012e0
KS
4848 CHECK_CONS_LIST ();
4849
3c7e66a8
RS
4850 /* Don't keep undo information around forever.
4851 Do this early on, so it is no problem if the user quits. */
4852 {
4853 register struct buffer *nextb = all_buffers;
4854
4855 while (nextb)
4856 {
4857 /* If a buffer's undo list is Qt, that means that undo is
4858 turned off in that buffer. Calling truncate_undo_list on
4859 Qt tends to return NULL, which effectively turns undo back on.
4860 So don't call truncate_undo_list if undo_list is Qt. */
303b0412 4861 if (! NILP (nextb->name) && ! EQ (nextb->undo_list, Qt))
3c7e66a8
RS
4862 truncate_undo_list (nextb);
4863
4864 /* Shrink buffer gaps, but skip indirect and dead buffers. */
4865 if (nextb->base_buffer == 0 && !NILP (nextb->name))
4866 {
4867 /* If a buffer's gap size is more than 10% of the buffer
4868 size, or larger than 2000 bytes, then shrink it
4869 accordingly. Keep a minimum size of 20 bytes. */
4870 int size = min (2000, max (20, (nextb->text->z_byte / 10)));
4871
4872 if (nextb->text->gap_size > size)
4873 {
4874 struct buffer *save_current = current_buffer;
4875 current_buffer = nextb;
4876 make_gap (-(nextb->text->gap_size - size));
4877 current_buffer = save_current;
4878 }
4879 }
4880
4881 nextb = nextb->next;
4882 }
4883 }
4884
4885 EMACS_GET_TIME (t1);
4886
58595309
KH
4887 /* In case user calls debug_print during GC,
4888 don't let that cause a recursive GC. */
4889 consing_since_gc = 0;
4890
6efc7df7
GM
4891 /* Save what's currently displayed in the echo area. */
4892 message_p = push_message ();
c55b0da6 4893 record_unwind_protect (pop_message_unwind, Qnil);
41c28a37 4894
7146af97
JB
4895 /* Save a copy of the contents of the stack, for debugging. */
4896#if MAX_SAVE_STACK > 0
265a9e55 4897 if (NILP (Vpurify_flag))
7146af97
JB
4898 {
4899 i = &stack_top_variable - stack_bottom;
4900 if (i < 0) i = -i;
4901 if (i < MAX_SAVE_STACK)
4902 {
4903 if (stack_copy == 0)
9ac0d9e0 4904 stack_copy = (char *) xmalloc (stack_copy_size = i);
7146af97 4905 else if (stack_copy_size < i)
9ac0d9e0 4906 stack_copy = (char *) xrealloc (stack_copy, (stack_copy_size = i));
7146af97
JB
4907 if (stack_copy)
4908 {
42607681 4909 if ((EMACS_INT) (&stack_top_variable - stack_bottom) > 0)
7146af97
JB
4910 bcopy (stack_bottom, stack_copy, i);
4911 else
4912 bcopy (&stack_top_variable, stack_copy, i);
4913 }
4914 }
4915 }
4916#endif /* MAX_SAVE_STACK > 0 */
4917
299585ee 4918 if (garbage_collection_messages)
691c4285 4919 message1_nolog ("Garbage collecting...");
7146af97 4920
6e0fca1d
RS
4921 BLOCK_INPUT;
4922
eec7b73d
RS
4923 shrink_regexp_cache ();
4924
7146af97
JB
4925 gc_in_progress = 1;
4926
c23baf9f 4927 /* clear_marks (); */
7146af97 4928
0930c1a1 4929 /* Mark all the special slots that serve as the roots of accessibility. */
7146af97
JB
4930
4931 for (i = 0; i < staticidx; i++)
49723c04 4932 mark_object (*staticvec[i]);
34400008 4933
126f9c02
SM
4934 for (bind = specpdl; bind != specpdl_ptr; bind++)
4935 {
4936 mark_object (bind->symbol);
4937 mark_object (bind->old_value);
4938 }
4939 mark_kboards ();
4940
4941#ifdef USE_GTK
4942 {
4943 extern void xg_mark_data ();
4944 xg_mark_data ();
4945 }
4946#endif
4947
34400008
GM
4948#if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
4949 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
4950 mark_stack ();
4951#else
acf5f7d3
SM
4952 {
4953 register struct gcpro *tail;
4954 for (tail = gcprolist; tail; tail = tail->next)
4955 for (i = 0; i < tail->nvars; i++)
0930c1a1 4956 mark_object (tail->var[i]);
acf5f7d3 4957 }
34400008 4958#endif
177c0ea7 4959
630686c8 4960 mark_byte_stack ();
7146af97
JB
4961 for (catch = catchlist; catch; catch = catch->next)
4962 {
49723c04
SM
4963 mark_object (catch->tag);
4964 mark_object (catch->val);
177c0ea7 4965 }
7146af97
JB
4966 for (handler = handlerlist; handler; handler = handler->next)
4967 {
49723c04
SM
4968 mark_object (handler->handler);
4969 mark_object (handler->var);
177c0ea7 4970 }
b40ea20a 4971 mark_backtrace ();
7146af97 4972
454d7973
KS
4973#ifdef HAVE_WINDOW_SYSTEM
4974 mark_fringe_data ();
4975#endif
4976
74c35a48
SM
4977#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4978 mark_stack ();
4979#endif
4980
c37adf23
SM
4981 /* Everything is now marked, except for the things that require special
4982 finalization, i.e. the undo_list.
4983 Look thru every buffer's undo list
4984 for elements that update markers that were not marked,
4985 and delete them. */
4c315bda
RS
4986 {
4987 register struct buffer *nextb = all_buffers;
4988
4989 while (nextb)
4990 {
4991 /* If a buffer's undo list is Qt, that means that undo is
c37adf23
SM
4992 turned off in that buffer. Calling truncate_undo_list on
4993 Qt tends to return NULL, which effectively turns undo back on.
4994 So don't call truncate_undo_list if undo_list is Qt. */
4c315bda
RS
4995 if (! EQ (nextb->undo_list, Qt))
4996 {
c37adf23 4997 Lisp_Object tail, prev;
4c315bda
RS
4998 tail = nextb->undo_list;
4999 prev = Qnil;
5000 while (CONSP (tail))
5001 {
c37adf23
SM
5002 if (GC_CONSP (XCAR (tail))
5003 && GC_MARKERP (XCAR (XCAR (tail)))
5004 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
4c315bda
RS
5005 {
5006 if (NILP (prev))
c37adf23 5007 nextb->undo_list = tail = XCDR (tail);
4c315bda 5008 else
f3fbd155 5009 {
c37adf23 5010 tail = XCDR (tail);
f3fbd155
KR
5011 XSETCDR (prev, tail);
5012 }
4c315bda
RS
5013 }
5014 else
5015 {
5016 prev = tail;
70949dac 5017 tail = XCDR (tail);
4c315bda
RS
5018 }
5019 }
5020 }
c37adf23
SM
5021 /* Now that we have stripped the elements that need not be in the
5022 undo_list any more, we can finally mark the list. */
5023 mark_object (nextb->undo_list);
4c315bda
RS
5024
5025 nextb = nextb->next;
5026 }
5027 }
5028
c37adf23 5029 gc_sweep ();
6b67a518 5030
7146af97
JB
5031 /* Clear the mark bits that we set in certain root slots. */
5032
033a5fa3 5033 unmark_byte_stack ();
3ef06d12
SM
5034 VECTOR_UNMARK (&buffer_defaults);
5035 VECTOR_UNMARK (&buffer_local_symbols);
7146af97 5036
34400008
GM
5037#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
5038 dump_zombies ();
5039#endif
5040
6e0fca1d
RS
5041 UNBLOCK_INPUT;
5042
bbc012e0
KS
5043 CHECK_CONS_LIST ();
5044
c23baf9f 5045 /* clear_marks (); */
7146af97
JB
5046 gc_in_progress = 0;
5047
5048 consing_since_gc = 0;
5049 if (gc_cons_threshold < 10000)
5050 gc_cons_threshold = 10000;
5051
96f077ad
SM
5052 if (FLOATP (Vgc_cons_percentage))
5053 { /* Set gc_cons_combined_threshold. */
5054 EMACS_INT total = 0;
974aae61 5055
96f077ad
SM
5056 total += total_conses * sizeof (struct Lisp_Cons);
5057 total += total_symbols * sizeof (struct Lisp_Symbol);
5058 total += total_markers * sizeof (union Lisp_Misc);
5059 total += total_string_size;
5060 total += total_vector_size * sizeof (Lisp_Object);
5061 total += total_floats * sizeof (struct Lisp_Float);
5062 total += total_intervals * sizeof (struct interval);
5063 total += total_strings * sizeof (struct Lisp_String);
3cd55735 5064
974aae61 5065 gc_relative_threshold = total * XFLOAT_DATA (Vgc_cons_percentage);
96f077ad 5066 }
974aae61
RS
5067 else
5068 gc_relative_threshold = 0;
96f077ad 5069
299585ee
RS
5070 if (garbage_collection_messages)
5071 {
6efc7df7
GM
5072 if (message_p || minibuf_level > 0)
5073 restore_message ();
299585ee
RS
5074 else
5075 message1_nolog ("Garbage collecting...done");
5076 }
7146af97 5077
98edb5ff 5078 unbind_to (count, Qnil);
2e471eb5
GM
5079
5080 total[0] = Fcons (make_number (total_conses),
5081 make_number (total_free_conses));
5082 total[1] = Fcons (make_number (total_symbols),
5083 make_number (total_free_symbols));
5084 total[2] = Fcons (make_number (total_markers),
5085 make_number (total_free_markers));
96117bc7
GM
5086 total[3] = make_number (total_string_size);
5087 total[4] = make_number (total_vector_size);
5088 total[5] = Fcons (make_number (total_floats),
2e471eb5 5089 make_number (total_free_floats));
96117bc7 5090 total[6] = Fcons (make_number (total_intervals),
2e471eb5 5091 make_number (total_free_intervals));
96117bc7 5092 total[7] = Fcons (make_number (total_strings),
2e471eb5
GM
5093 make_number (total_free_strings));
5094
34400008 5095#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
7146af97 5096 {
34400008
GM
5097 /* Compute average percentage of zombies. */
5098 double nlive = 0;
177c0ea7 5099
34400008 5100 for (i = 0; i < 7; ++i)
83fc9c63
DL
5101 if (CONSP (total[i]))
5102 nlive += XFASTINT (XCAR (total[i]));
34400008
GM
5103
5104 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
5105 max_live = max (nlive, max_live);
5106 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
5107 max_zombies = max (nzombies, max_zombies);
5108 ++ngcs;
5109 }
5110#endif
7146af97 5111
9e713715
GM
5112 if (!NILP (Vpost_gc_hook))
5113 {
5114 int count = inhibit_garbage_collection ();
5115 safe_run_hooks (Qpost_gc_hook);
5116 unbind_to (count, Qnil);
5117 }
2c5bd608
DL
5118
5119 /* Accumulate statistics. */
5120 EMACS_GET_TIME (t2);
5121 EMACS_SUB_TIME (t3, t2, t1);
5122 if (FLOATP (Vgc_elapsed))
69ab9f85
SM
5123 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed) +
5124 EMACS_SECS (t3) +
5125 EMACS_USECS (t3) * 1.0e-6);
2c5bd608
DL
5126 gcs_done++;
5127
96117bc7 5128 return Flist (sizeof total / sizeof *total, total);
7146af97 5129}
34400008 5130
41c28a37 5131
3770920e
GM
5132/* Mark Lisp objects in glyph matrix MATRIX. Currently the
5133 only interesting objects referenced from glyphs are strings. */
41c28a37
GM
5134
5135static void
5136mark_glyph_matrix (matrix)
5137 struct glyph_matrix *matrix;
5138{
5139 struct glyph_row *row = matrix->rows;
5140 struct glyph_row *end = row + matrix->nrows;
5141
2e471eb5
GM
5142 for (; row < end; ++row)
5143 if (row->enabled_p)
5144 {
5145 int area;
5146 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
5147 {
5148 struct glyph *glyph = row->glyphs[area];
5149 struct glyph *end_glyph = glyph + row->used[area];
177c0ea7 5150
2e471eb5
GM
5151 for (; glyph < end_glyph; ++glyph)
5152 if (GC_STRINGP (glyph->object)
5153 && !STRING_MARKED_P (XSTRING (glyph->object)))
49723c04 5154 mark_object (glyph->object);
2e471eb5
GM
5155 }
5156 }
41c28a37
GM
5157}
5158
34400008 5159
41c28a37
GM
5160/* Mark Lisp faces in the face cache C. */
5161
5162static void
5163mark_face_cache (c)
5164 struct face_cache *c;
5165{
5166 if (c)
5167 {
5168 int i, j;
5169 for (i = 0; i < c->used; ++i)
5170 {
5171 struct face *face = FACE_FROM_ID (c->f, i);
5172
5173 if (face)
5174 {
5175 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
49723c04 5176 mark_object (face->lface[j]);
41c28a37
GM
5177 }
5178 }
5179 }
5180}
5181
5182
5183#ifdef HAVE_WINDOW_SYSTEM
5184
5185/* Mark Lisp objects in image IMG. */
5186
5187static void
5188mark_image (img)
5189 struct image *img;
5190{
49723c04 5191 mark_object (img->spec);
177c0ea7 5192
3e60b029 5193 if (!NILP (img->data.lisp_val))
49723c04 5194 mark_object (img->data.lisp_val);
41c28a37
GM
5195}
5196
5197
5198/* Mark Lisp objects in image cache of frame F. It's done this way so
5199 that we don't have to include xterm.h here. */
5200
5201static void
5202mark_image_cache (f)
5203 struct frame *f;
5204{
5205 forall_images_in_image_cache (f, mark_image);
5206}
5207
5208#endif /* HAVE_X_WINDOWS */
5209
5210
7146af97 5211\f
1a4f1e2c 5212/* Mark reference to a Lisp_Object.
2e471eb5
GM
5213 If the object referred to has not been seen yet, recursively mark
5214 all the references contained in it. */
7146af97 5215
785cd37f 5216#define LAST_MARKED_SIZE 500
49723c04 5217Lisp_Object last_marked[LAST_MARKED_SIZE];
785cd37f
RS
5218int last_marked_index;
5219
1342fc6f
RS
5220/* For debugging--call abort when we cdr down this many
5221 links of a list, in mark_object. In debugging,
5222 the call to abort will hit a breakpoint.
5223 Normally this is zero and the check never goes off. */
5224int mark_object_loop_halt;
5225
41c28a37 5226void
49723c04
SM
5227mark_object (arg)
5228 Lisp_Object arg;
7146af97 5229{
49723c04 5230 register Lisp_Object obj = arg;
4f5c1376
GM
5231#ifdef GC_CHECK_MARKED_OBJECTS
5232 void *po;
5233 struct mem_node *m;
5234#endif
1342fc6f 5235 int cdr_count = 0;
7146af97 5236
9149e743 5237 loop:
7146af97 5238
1f0b3fd2 5239 if (PURE_POINTER_P (XPNTR (obj)))
7146af97
JB
5240 return;
5241
49723c04 5242 last_marked[last_marked_index++] = obj;
785cd37f
RS
5243 if (last_marked_index == LAST_MARKED_SIZE)
5244 last_marked_index = 0;
5245
4f5c1376
GM
5246 /* Perform some sanity checks on the objects marked here. Abort if
5247 we encounter an object we know is bogus. This increases GC time
5248 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
5249#ifdef GC_CHECK_MARKED_OBJECTS
5250
5251 po = (void *) XPNTR (obj);
5252
5253 /* Check that the object pointed to by PO is known to be a Lisp
5254 structure allocated from the heap. */
5255#define CHECK_ALLOCATED() \
5256 do { \
5257 m = mem_find (po); \
5258 if (m == MEM_NIL) \
5259 abort (); \
5260 } while (0)
5261
5262 /* Check that the object pointed to by PO is live, using predicate
5263 function LIVEP. */
5264#define CHECK_LIVE(LIVEP) \
5265 do { \
5266 if (!LIVEP (m, po)) \
5267 abort (); \
5268 } while (0)
5269
5270 /* Check both of the above conditions. */
5271#define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
5272 do { \
5273 CHECK_ALLOCATED (); \
5274 CHECK_LIVE (LIVEP); \
5275 } while (0) \
177c0ea7 5276
4f5c1376 5277#else /* not GC_CHECK_MARKED_OBJECTS */
177c0ea7 5278
4f5c1376
GM
5279#define CHECK_ALLOCATED() (void) 0
5280#define CHECK_LIVE(LIVEP) (void) 0
5281#define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
177c0ea7 5282
4f5c1376
GM
5283#endif /* not GC_CHECK_MARKED_OBJECTS */
5284
0220c518 5285 switch (SWITCH_ENUM_CAST (XGCTYPE (obj)))
7146af97
JB
5286 {
5287 case Lisp_String:
5288 {
5289 register struct Lisp_String *ptr = XSTRING (obj);
4f5c1376 5290 CHECK_ALLOCATED_AND_LIVE (live_string_p);
d5e35230 5291 MARK_INTERVAL_TREE (ptr->intervals);
2e471eb5 5292 MARK_STRING (ptr);
361b097f 5293#ifdef GC_CHECK_STRING_BYTES
676a7251
GM
5294 /* Check that the string size recorded in the string is the
5295 same as the one recorded in the sdata structure. */
5296 CHECK_STRING_BYTES (ptr);
361b097f 5297#endif /* GC_CHECK_STRING_BYTES */
7146af97
JB
5298 }
5299 break;
5300
76437631 5301 case Lisp_Vectorlike:
4f5c1376
GM
5302#ifdef GC_CHECK_MARKED_OBJECTS
5303 m = mem_find (po);
5304 if (m == MEM_NIL && !GC_SUBRP (obj)
5305 && po != &buffer_defaults
5306 && po != &buffer_local_symbols)
5307 abort ();
5308#endif /* GC_CHECK_MARKED_OBJECTS */
177c0ea7 5309
30e3190a 5310 if (GC_BUFFERP (obj))
6b552283 5311 {
3ef06d12 5312 if (!VECTOR_MARKED_P (XBUFFER (obj)))
4f5c1376
GM
5313 {
5314#ifdef GC_CHECK_MARKED_OBJECTS
5315 if (po != &buffer_defaults && po != &buffer_local_symbols)
5316 {
5317 struct buffer *b;
5318 for (b = all_buffers; b && b != po; b = b->next)
5319 ;
5320 if (b == NULL)
5321 abort ();
5322 }
5323#endif /* GC_CHECK_MARKED_OBJECTS */
5324 mark_buffer (obj);
5325 }
6b552283 5326 }
30e3190a 5327 else if (GC_SUBRP (obj))
169ee243
RS
5328 break;
5329 else if (GC_COMPILEDP (obj))
2e471eb5
GM
5330 /* We could treat this just like a vector, but it is better to
5331 save the COMPILED_CONSTANTS element for last and avoid
5332 recursion there. */
169ee243
RS
5333 {
5334 register struct Lisp_Vector *ptr = XVECTOR (obj);
5335 register EMACS_INT size = ptr->size;
169ee243
RS
5336 register int i;
5337
3ef06d12 5338 if (VECTOR_MARKED_P (ptr))
169ee243 5339 break; /* Already marked */
177c0ea7 5340
4f5c1376 5341 CHECK_LIVE (live_vector_p);
3ef06d12 5342 VECTOR_MARK (ptr); /* Else mark it */
76437631 5343 size &= PSEUDOVECTOR_SIZE_MASK;
169ee243
RS
5344 for (i = 0; i < size; i++) /* and then mark its elements */
5345 {
5346 if (i != COMPILED_CONSTANTS)
49723c04 5347 mark_object (ptr->contents[i]);
169ee243 5348 }
49723c04 5349 obj = ptr->contents[COMPILED_CONSTANTS];
169ee243
RS
5350 goto loop;
5351 }
169ee243
RS
5352 else if (GC_FRAMEP (obj))
5353 {
c70bbf06 5354 register struct frame *ptr = XFRAME (obj);
169ee243 5355
3ef06d12
SM
5356 if (VECTOR_MARKED_P (ptr)) break; /* Already marked */
5357 VECTOR_MARK (ptr); /* Else mark it */
169ee243 5358
4f5c1376 5359 CHECK_LIVE (live_vector_p);
49723c04
SM
5360 mark_object (ptr->name);
5361 mark_object (ptr->icon_name);
5362 mark_object (ptr->title);
5363 mark_object (ptr->focus_frame);
5364 mark_object (ptr->selected_window);
5365 mark_object (ptr->minibuffer_window);
5366 mark_object (ptr->param_alist);
5367 mark_object (ptr->scroll_bars);
5368 mark_object (ptr->condemned_scroll_bars);
5369 mark_object (ptr->menu_bar_items);
5370 mark_object (ptr->face_alist);
5371 mark_object (ptr->menu_bar_vector);
5372 mark_object (ptr->buffer_predicate);
5373 mark_object (ptr->buffer_list);
5374 mark_object (ptr->menu_bar_window);
5375 mark_object (ptr->tool_bar_window);
41c28a37
GM
5376 mark_face_cache (ptr->face_cache);
5377#ifdef HAVE_WINDOW_SYSTEM
5378 mark_image_cache (ptr);
49723c04
SM
5379 mark_object (ptr->tool_bar_items);
5380 mark_object (ptr->desired_tool_bar_string);
5381 mark_object (ptr->current_tool_bar_string);
41c28a37 5382#endif /* HAVE_WINDOW_SYSTEM */
169ee243 5383 }
7b07587b 5384 else if (GC_BOOL_VECTOR_P (obj))
707788bd
RS
5385 {
5386 register struct Lisp_Vector *ptr = XVECTOR (obj);
5387
3ef06d12 5388 if (VECTOR_MARKED_P (ptr))
707788bd 5389 break; /* Already marked */
4f5c1376 5390 CHECK_LIVE (live_vector_p);
3ef06d12 5391 VECTOR_MARK (ptr); /* Else mark it */
707788bd 5392 }
41c28a37
GM
5393 else if (GC_WINDOWP (obj))
5394 {
5395 register struct Lisp_Vector *ptr = XVECTOR (obj);
5396 struct window *w = XWINDOW (obj);
41c28a37
GM
5397 register int i;
5398
5399 /* Stop if already marked. */
3ef06d12 5400 if (VECTOR_MARKED_P (ptr))
41c28a37
GM
5401 break;
5402
5403 /* Mark it. */
4f5c1376 5404 CHECK_LIVE (live_vector_p);
3ef06d12 5405 VECTOR_MARK (ptr);
41c28a37
GM
5406
5407 /* There is no Lisp data above The member CURRENT_MATRIX in
5408 struct WINDOW. Stop marking when that slot is reached. */
5409 for (i = 0;
c70bbf06 5410 (char *) &ptr->contents[i] < (char *) &w->current_matrix;
41c28a37 5411 i++)
49723c04 5412 mark_object (ptr->contents[i]);
41c28a37
GM
5413
5414 /* Mark glyphs for leaf windows. Marking window matrices is
5415 sufficient because frame matrices use the same glyph
5416 memory. */
5417 if (NILP (w->hchild)
5418 && NILP (w->vchild)
5419 && w->current_matrix)
5420 {
5421 mark_glyph_matrix (w->current_matrix);
5422 mark_glyph_matrix (w->desired_matrix);
5423 }
5424 }
5425 else if (GC_HASH_TABLE_P (obj))
5426 {
5427 struct Lisp_Hash_Table *h = XHASH_TABLE (obj);
177c0ea7 5428
41c28a37 5429 /* Stop if already marked. */
3ef06d12 5430 if (VECTOR_MARKED_P (h))
41c28a37 5431 break;
177c0ea7 5432
41c28a37 5433 /* Mark it. */
4f5c1376 5434 CHECK_LIVE (live_vector_p);
3ef06d12 5435 VECTOR_MARK (h);
41c28a37
GM
5436
5437 /* Mark contents. */
94a877ef 5438 /* Do not mark next_free or next_weak.
177c0ea7 5439 Being in the next_weak chain
94a877ef
RS
5440 should not keep the hash table alive.
5441 No need to mark `count' since it is an integer. */
49723c04
SM
5442 mark_object (h->test);
5443 mark_object (h->weak);
5444 mark_object (h->rehash_size);
5445 mark_object (h->rehash_threshold);
5446 mark_object (h->hash);
5447 mark_object (h->next);
5448 mark_object (h->index);
5449 mark_object (h->user_hash_function);
5450 mark_object (h->user_cmp_function);
41c28a37
GM
5451
5452 /* If hash table is not weak, mark all keys and values.
5453 For weak tables, mark only the vector. */
5454 if (GC_NILP (h->weak))
49723c04 5455 mark_object (h->key_and_value);
41c28a37 5456 else
3ef06d12 5457 VECTOR_MARK (XVECTOR (h->key_and_value));
41c28a37 5458 }
04ff9756 5459 else
169ee243
RS
5460 {
5461 register struct Lisp_Vector *ptr = XVECTOR (obj);
5462 register EMACS_INT size = ptr->size;
169ee243
RS
5463 register int i;
5464
3ef06d12 5465 if (VECTOR_MARKED_P (ptr)) break; /* Already marked */
4f5c1376 5466 CHECK_LIVE (live_vector_p);
3ef06d12 5467 VECTOR_MARK (ptr); /* Else mark it */
169ee243
RS
5468 if (size & PSEUDOVECTOR_FLAG)
5469 size &= PSEUDOVECTOR_SIZE_MASK;
41c28a37 5470
169ee243 5471 for (i = 0; i < size; i++) /* and then mark its elements */
49723c04 5472 mark_object (ptr->contents[i]);
169ee243
RS
5473 }
5474 break;
7146af97 5475
7146af97
JB
5476 case Lisp_Symbol:
5477 {
c70bbf06 5478 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
7146af97
JB
5479 struct Lisp_Symbol *ptrx;
5480
2336fe58 5481 if (ptr->gcmarkbit) break;
4f5c1376 5482 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
2336fe58 5483 ptr->gcmarkbit = 1;
49723c04
SM
5484 mark_object (ptr->value);
5485 mark_object (ptr->function);
5486 mark_object (ptr->plist);
34400008 5487
8fe5665d
KR
5488 if (!PURE_POINTER_P (XSTRING (ptr->xname)))
5489 MARK_STRING (XSTRING (ptr->xname));
d5db4077 5490 MARK_INTERVAL_TREE (STRING_INTERVALS (ptr->xname));
177c0ea7 5491
1c6bb482
RS
5492 /* Note that we do not mark the obarray of the symbol.
5493 It is safe not to do so because nothing accesses that
5494 slot except to check whether it is nil. */
7146af97
JB
5495 ptr = ptr->next;
5496 if (ptr)
5497 {
b0846f52 5498 ptrx = ptr; /* Use of ptrx avoids compiler bug on Sun */
7146af97 5499 XSETSYMBOL (obj, ptrx);
49723c04 5500 goto loop;
7146af97
JB
5501 }
5502 }
5503 break;
5504
a0a38eb7 5505 case Lisp_Misc:
4f5c1376 5506 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
2336fe58
SM
5507 if (XMARKER (obj)->gcmarkbit)
5508 break;
5509 XMARKER (obj)->gcmarkbit = 1;
b766f870 5510
a5da44fe 5511 switch (XMISCTYPE (obj))
a0a38eb7 5512 {
465edf35
KH
5513 case Lisp_Misc_Buffer_Local_Value:
5514 case Lisp_Misc_Some_Buffer_Local_Value:
5515 {
5516 register struct Lisp_Buffer_Local_Value *ptr
5517 = XBUFFER_LOCAL_VALUE (obj);
465edf35
KH
5518 /* If the cdr is nil, avoid recursion for the car. */
5519 if (EQ (ptr->cdr, Qnil))
5520 {
49723c04 5521 obj = ptr->realvalue;
465edf35
KH
5522 goto loop;
5523 }
49723c04
SM
5524 mark_object (ptr->realvalue);
5525 mark_object (ptr->buffer);
5526 mark_object (ptr->frame);
5527 obj = ptr->cdr;
465edf35
KH
5528 goto loop;
5529 }
5530
2336fe58
SM
5531 case Lisp_Misc_Marker:
5532 /* DO NOT mark thru the marker's chain.
5533 The buffer's markers chain does not preserve markers from gc;
5534 instead, markers are removed from the chain when freed by gc. */
b766f870
KS
5535 break;
5536
c8616056
KH
5537 case Lisp_Misc_Intfwd:
5538 case Lisp_Misc_Boolfwd:
5539 case Lisp_Misc_Objfwd:
5540 case Lisp_Misc_Buffer_Objfwd:
b875d3f7 5541 case Lisp_Misc_Kboard_Objfwd:
c8616056
KH
5542 /* Don't bother with Lisp_Buffer_Objfwd,
5543 since all markable slots in current buffer marked anyway. */
5544 /* Don't need to do Lisp_Objfwd, since the places they point
5545 are protected with staticpro. */
b766f870
KS
5546 break;
5547
f29181dc 5548 case Lisp_Misc_Save_Value:
9ea306d1 5549#if GC_MARK_STACK
b766f870
KS
5550 {
5551 register struct Lisp_Save_Value *ptr = XSAVE_VALUE (obj);
5552 /* If DOGC is set, POINTER is the address of a memory
5553 area containing INTEGER potential Lisp_Objects. */
5554 if (ptr->dogc)
5555 {
5556 Lisp_Object *p = (Lisp_Object *) ptr->pointer;
5557 int nelt;
5558 for (nelt = ptr->integer; nelt > 0; nelt--, p++)
5559 mark_maybe_object (*p);
5560 }
5561 }
9ea306d1 5562#endif
c8616056
KH
5563 break;
5564
e202fa34
KH
5565 case Lisp_Misc_Overlay:
5566 {
5567 struct Lisp_Overlay *ptr = XOVERLAY (obj);
49723c04
SM
5568 mark_object (ptr->start);
5569 mark_object (ptr->end);
f54253ec
SM
5570 mark_object (ptr->plist);
5571 if (ptr->next)
5572 {
5573 XSETMISC (obj, ptr->next);
5574 goto loop;
5575 }
e202fa34
KH
5576 }
5577 break;
5578
a0a38eb7
KH
5579 default:
5580 abort ();
5581 }
7146af97
JB
5582 break;
5583
5584 case Lisp_Cons:
7146af97
JB
5585 {
5586 register struct Lisp_Cons *ptr = XCONS (obj);
08b7c2cb 5587 if (CONS_MARKED_P (ptr)) break;
4f5c1376 5588 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
08b7c2cb 5589 CONS_MARK (ptr);
c54ca951 5590 /* If the cdr is nil, avoid recursion for the car. */
28a099a4 5591 if (EQ (ptr->u.cdr, Qnil))
c54ca951 5592 {
49723c04 5593 obj = ptr->car;
1342fc6f 5594 cdr_count = 0;
c54ca951
RS
5595 goto loop;
5596 }
49723c04 5597 mark_object (ptr->car);
28a099a4 5598 obj = ptr->u.cdr;
1342fc6f
RS
5599 cdr_count++;
5600 if (cdr_count == mark_object_loop_halt)
5601 abort ();
7146af97
JB
5602 goto loop;
5603 }
5604
7146af97 5605 case Lisp_Float:
4f5c1376 5606 CHECK_ALLOCATED_AND_LIVE (live_float_p);
ab6780cd 5607 FLOAT_MARK (XFLOAT (obj));
7146af97 5608 break;
7146af97 5609
7146af97 5610 case Lisp_Int:
7146af97
JB
5611 break;
5612
5613 default:
5614 abort ();
5615 }
4f5c1376
GM
5616
5617#undef CHECK_LIVE
5618#undef CHECK_ALLOCATED
5619#undef CHECK_ALLOCATED_AND_LIVE
7146af97
JB
5620}
5621
5622/* Mark the pointers in a buffer structure. */
5623
5624static void
5625mark_buffer (buf)
5626 Lisp_Object buf;
5627{
7146af97 5628 register struct buffer *buffer = XBUFFER (buf);
f54253ec 5629 register Lisp_Object *ptr, tmp;
30e3190a 5630 Lisp_Object base_buffer;
7146af97 5631
3ef06d12 5632 VECTOR_MARK (buffer);
7146af97 5633
30e3190a 5634 MARK_INTERVAL_TREE (BUF_INTERVALS (buffer));
d5e35230 5635
c37adf23
SM
5636 /* For now, we just don't mark the undo_list. It's done later in
5637 a special way just before the sweep phase, and after stripping
5638 some of its elements that are not needed any more. */
4c315bda 5639
f54253ec
SM
5640 if (buffer->overlays_before)
5641 {
5642 XSETMISC (tmp, buffer->overlays_before);
5643 mark_object (tmp);
5644 }
5645 if (buffer->overlays_after)
5646 {
5647 XSETMISC (tmp, buffer->overlays_after);
5648 mark_object (tmp);
5649 }
5650
3ef06d12 5651 for (ptr = &buffer->name;
7146af97
JB
5652 (char *)ptr < (char *)buffer + sizeof (struct buffer);
5653 ptr++)
49723c04 5654 mark_object (*ptr);
30e3190a
RS
5655
5656 /* If this is an indirect buffer, mark its base buffer. */
349bd9ed 5657 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
30e3190a 5658 {
177c0ea7 5659 XSETBUFFER (base_buffer, buffer->base_buffer);
30e3190a
RS
5660 mark_buffer (base_buffer);
5661 }
7146af97 5662}
084b1a0c
KH
5663
5664
41c28a37
GM
5665/* Value is non-zero if OBJ will survive the current GC because it's
5666 either marked or does not need to be marked to survive. */
5667
5668int
5669survives_gc_p (obj)
5670 Lisp_Object obj;
5671{
5672 int survives_p;
177c0ea7 5673
41c28a37
GM
5674 switch (XGCTYPE (obj))
5675 {
5676 case Lisp_Int:
5677 survives_p = 1;
5678 break;
5679
5680 case Lisp_Symbol:
2336fe58 5681 survives_p = XSYMBOL (obj)->gcmarkbit;
41c28a37
GM
5682 break;
5683
5684 case Lisp_Misc:
ef89c2ce 5685 survives_p = XMARKER (obj)->gcmarkbit;
41c28a37
GM
5686 break;
5687
5688 case Lisp_String:
08b7c2cb 5689 survives_p = STRING_MARKED_P (XSTRING (obj));
41c28a37
GM
5690 break;
5691
5692 case Lisp_Vectorlike:
08b7c2cb 5693 survives_p = GC_SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
41c28a37
GM
5694 break;
5695
5696 case Lisp_Cons:
08b7c2cb 5697 survives_p = CONS_MARKED_P (XCONS (obj));
41c28a37
GM
5698 break;
5699
41c28a37 5700 case Lisp_Float:
ab6780cd 5701 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
41c28a37 5702 break;
41c28a37
GM
5703
5704 default:
5705 abort ();
5706 }
5707
34400008 5708 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
41c28a37
GM
5709}
5710
5711
7146af97 5712\f
1a4f1e2c 5713/* Sweep: find all structures not marked, and free them. */
7146af97
JB
5714
5715static void
5716gc_sweep ()
5717{
c37adf23
SM
5718 /* Remove or mark entries in weak hash tables.
5719 This must be done before any object is unmarked. */
5720 sweep_weak_hash_tables ();
5721
5722 sweep_strings ();
5723#ifdef GC_CHECK_STRING_BYTES
5724 if (!noninteractive)
5725 check_string_bytes (1);
5726#endif
5727
7146af97
JB
5728 /* Put all unmarked conses on free list */
5729 {
5730 register struct cons_block *cblk;
6ca94ac9 5731 struct cons_block **cprev = &cons_block;
7146af97
JB
5732 register int lim = cons_block_index;
5733 register int num_free = 0, num_used = 0;
5734
5735 cons_free_list = 0;
177c0ea7 5736
6ca94ac9 5737 for (cblk = cons_block; cblk; cblk = *cprev)
7146af97
JB
5738 {
5739 register int i;
6ca94ac9 5740 int this_free = 0;
7146af97 5741 for (i = 0; i < lim; i++)
08b7c2cb 5742 if (!CONS_MARKED_P (&cblk->conses[i]))
7146af97 5743 {
6ca94ac9 5744 this_free++;
28a099a4 5745 cblk->conses[i].u.chain = cons_free_list;
7146af97 5746 cons_free_list = &cblk->conses[i];
34400008
GM
5747#if GC_MARK_STACK
5748 cons_free_list->car = Vdead;
5749#endif
7146af97
JB
5750 }
5751 else
5752 {
5753 num_used++;
08b7c2cb 5754 CONS_UNMARK (&cblk->conses[i]);
7146af97
JB
5755 }
5756 lim = CONS_BLOCK_SIZE;
6ca94ac9
KH
5757 /* If this block contains only free conses and we have already
5758 seen more than two blocks worth of free conses then deallocate
5759 this block. */
6feef451 5760 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
6ca94ac9 5761 {
6ca94ac9
KH
5762 *cprev = cblk->next;
5763 /* Unhook from the free list. */
28a099a4 5764 cons_free_list = cblk->conses[0].u.chain;
08b7c2cb 5765 lisp_align_free (cblk);
c8099634 5766 n_cons_blocks--;
6ca94ac9
KH
5767 }
5768 else
6feef451
AS
5769 {
5770 num_free += this_free;
5771 cprev = &cblk->next;
5772 }
7146af97
JB
5773 }
5774 total_conses = num_used;
5775 total_free_conses = num_free;
5776 }
5777
7146af97
JB
5778 /* Put all unmarked floats on free list */
5779 {
5780 register struct float_block *fblk;
6ca94ac9 5781 struct float_block **fprev = &float_block;
7146af97
JB
5782 register int lim = float_block_index;
5783 register int num_free = 0, num_used = 0;
5784
5785 float_free_list = 0;
177c0ea7 5786
6ca94ac9 5787 for (fblk = float_block; fblk; fblk = *fprev)
7146af97
JB
5788 {
5789 register int i;
6ca94ac9 5790 int this_free = 0;
7146af97 5791 for (i = 0; i < lim; i++)
ab6780cd 5792 if (!FLOAT_MARKED_P (&fblk->floats[i]))
7146af97 5793 {
6ca94ac9 5794 this_free++;
28a099a4 5795 fblk->floats[i].u.chain = float_free_list;
7146af97
JB
5796 float_free_list = &fblk->floats[i];
5797 }
5798 else
5799 {
5800 num_used++;
ab6780cd 5801 FLOAT_UNMARK (&fblk->floats[i]);
7146af97
JB
5802 }
5803 lim = FLOAT_BLOCK_SIZE;
6ca94ac9
KH
5804 /* If this block contains only free floats and we have already
5805 seen more than two blocks worth of free floats then deallocate
5806 this block. */
6feef451 5807 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
6ca94ac9 5808 {
6ca94ac9
KH
5809 *fprev = fblk->next;
5810 /* Unhook from the free list. */
28a099a4 5811 float_free_list = fblk->floats[0].u.chain;
ab6780cd 5812 lisp_align_free (fblk);
c8099634 5813 n_float_blocks--;
6ca94ac9
KH
5814 }
5815 else
6feef451
AS
5816 {
5817 num_free += this_free;
5818 fprev = &fblk->next;
5819 }
7146af97
JB
5820 }
5821 total_floats = num_used;
5822 total_free_floats = num_free;
5823 }
7146af97 5824
d5e35230
JA
5825 /* Put all unmarked intervals on free list */
5826 {
5827 register struct interval_block *iblk;
6ca94ac9 5828 struct interval_block **iprev = &interval_block;
d5e35230
JA
5829 register int lim = interval_block_index;
5830 register int num_free = 0, num_used = 0;
5831
5832 interval_free_list = 0;
5833
6ca94ac9 5834 for (iblk = interval_block; iblk; iblk = *iprev)
d5e35230
JA
5835 {
5836 register int i;
6ca94ac9 5837 int this_free = 0;
d5e35230
JA
5838
5839 for (i = 0; i < lim; i++)
5840 {
2336fe58 5841 if (!iblk->intervals[i].gcmarkbit)
d5e35230 5842 {
439d5cb4 5843 SET_INTERVAL_PARENT (&iblk->intervals[i], interval_free_list);
d5e35230 5844 interval_free_list = &iblk->intervals[i];
6ca94ac9 5845 this_free++;
d5e35230
JA
5846 }
5847 else
5848 {
5849 num_used++;
2336fe58 5850 iblk->intervals[i].gcmarkbit = 0;
d5e35230
JA
5851 }
5852 }
5853 lim = INTERVAL_BLOCK_SIZE;
6ca94ac9
KH
5854 /* If this block contains only free intervals and we have already
5855 seen more than two blocks worth of free intervals then
5856 deallocate this block. */
6feef451 5857 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
6ca94ac9 5858 {
6ca94ac9
KH
5859 *iprev = iblk->next;
5860 /* Unhook from the free list. */
439d5cb4 5861 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
c8099634
RS
5862 lisp_free (iblk);
5863 n_interval_blocks--;
6ca94ac9
KH
5864 }
5865 else
6feef451
AS
5866 {
5867 num_free += this_free;
5868 iprev = &iblk->next;
5869 }
d5e35230
JA
5870 }
5871 total_intervals = num_used;
5872 total_free_intervals = num_free;
5873 }
d5e35230 5874
7146af97
JB
5875 /* Put all unmarked symbols on free list */
5876 {
5877 register struct symbol_block *sblk;
6ca94ac9 5878 struct symbol_block **sprev = &symbol_block;
7146af97
JB
5879 register int lim = symbol_block_index;
5880 register int num_free = 0, num_used = 0;
5881
d285b373 5882 symbol_free_list = NULL;
177c0ea7 5883
6ca94ac9 5884 for (sblk = symbol_block; sblk; sblk = *sprev)
7146af97 5885 {
6ca94ac9 5886 int this_free = 0;
d285b373
GM
5887 struct Lisp_Symbol *sym = sblk->symbols;
5888 struct Lisp_Symbol *end = sym + lim;
5889
5890 for (; sym < end; ++sym)
5891 {
20035321
SM
5892 /* Check if the symbol was created during loadup. In such a case
5893 it might be pointed to by pure bytecode which we don't trace,
5894 so we conservatively assume that it is live. */
8fe5665d 5895 int pure_p = PURE_POINTER_P (XSTRING (sym->xname));
177c0ea7 5896
2336fe58 5897 if (!sym->gcmarkbit && !pure_p)
d285b373 5898 {
28a099a4 5899 sym->next = symbol_free_list;
d285b373 5900 symbol_free_list = sym;
34400008 5901#if GC_MARK_STACK
d285b373 5902 symbol_free_list->function = Vdead;
34400008 5903#endif
d285b373
GM
5904 ++this_free;
5905 }
5906 else
5907 {
5908 ++num_used;
5909 if (!pure_p)
8fe5665d 5910 UNMARK_STRING (XSTRING (sym->xname));
2336fe58 5911 sym->gcmarkbit = 0;
d285b373
GM
5912 }
5913 }
177c0ea7 5914
7146af97 5915 lim = SYMBOL_BLOCK_SIZE;
6ca94ac9
KH
5916 /* If this block contains only free symbols and we have already
5917 seen more than two blocks worth of free symbols then deallocate
5918 this block. */
6feef451 5919 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
6ca94ac9 5920 {
6ca94ac9
KH
5921 *sprev = sblk->next;
5922 /* Unhook from the free list. */
28a099a4 5923 symbol_free_list = sblk->symbols[0].next;
c8099634
RS
5924 lisp_free (sblk);
5925 n_symbol_blocks--;
6ca94ac9
KH
5926 }
5927 else
6feef451
AS
5928 {
5929 num_free += this_free;
5930 sprev = &sblk->next;
5931 }
7146af97
JB
5932 }
5933 total_symbols = num_used;
5934 total_free_symbols = num_free;
5935 }
5936
a9faeabe
RS
5937 /* Put all unmarked misc's on free list.
5938 For a marker, first unchain it from the buffer it points into. */
7146af97
JB
5939 {
5940 register struct marker_block *mblk;
6ca94ac9 5941 struct marker_block **mprev = &marker_block;
7146af97
JB
5942 register int lim = marker_block_index;
5943 register int num_free = 0, num_used = 0;
5944
5945 marker_free_list = 0;
177c0ea7 5946
6ca94ac9 5947 for (mblk = marker_block; mblk; mblk = *mprev)
7146af97
JB
5948 {
5949 register int i;
6ca94ac9 5950 int this_free = 0;
fa05e253 5951
7146af97 5952 for (i = 0; i < lim; i++)
465edf35 5953 {
2336fe58 5954 if (!mblk->markers[i].u_marker.gcmarkbit)
465edf35 5955 {
a5da44fe 5956 if (mblk->markers[i].u_marker.type == Lisp_Misc_Marker)
ef89c2ce 5957 unchain_marker (&mblk->markers[i].u_marker);
fa05e253
RS
5958 /* Set the type of the freed object to Lisp_Misc_Free.
5959 We could leave the type alone, since nobody checks it,
465edf35 5960 but this might catch bugs faster. */
a5da44fe 5961 mblk->markers[i].u_marker.type = Lisp_Misc_Free;
465edf35
KH
5962 mblk->markers[i].u_free.chain = marker_free_list;
5963 marker_free_list = &mblk->markers[i];
6ca94ac9 5964 this_free++;
465edf35
KH
5965 }
5966 else
5967 {
5968 num_used++;
2336fe58 5969 mblk->markers[i].u_marker.gcmarkbit = 0;
465edf35
KH
5970 }
5971 }
7146af97 5972 lim = MARKER_BLOCK_SIZE;
6ca94ac9
KH
5973 /* If this block contains only free markers and we have already
5974 seen more than two blocks worth of free markers then deallocate
5975 this block. */
6feef451 5976 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
6ca94ac9 5977 {
6ca94ac9
KH
5978 *mprev = mblk->next;
5979 /* Unhook from the free list. */
5980 marker_free_list = mblk->markers[0].u_free.chain;
c37adf23 5981 lisp_free (mblk);
c8099634 5982 n_marker_blocks--;
6ca94ac9
KH
5983 }
5984 else
6feef451
AS
5985 {
5986 num_free += this_free;
5987 mprev = &mblk->next;
5988 }
7146af97
JB
5989 }
5990
5991 total_markers = num_used;
5992 total_free_markers = num_free;
5993 }
5994
5995 /* Free all unmarked buffers */
5996 {
5997 register struct buffer *buffer = all_buffers, *prev = 0, *next;
5998
5999 while (buffer)
3ef06d12 6000 if (!VECTOR_MARKED_P (buffer))
7146af97
JB
6001 {
6002 if (prev)
6003 prev->next = buffer->next;
6004 else
6005 all_buffers = buffer->next;
6006 next = buffer->next;
34400008 6007 lisp_free (buffer);
7146af97
JB
6008 buffer = next;
6009 }
6010 else
6011 {
3ef06d12 6012 VECTOR_UNMARK (buffer);
30e3190a 6013 UNMARK_BALANCE_INTERVALS (BUF_INTERVALS (buffer));
7146af97
JB
6014 prev = buffer, buffer = buffer->next;
6015 }
6016 }
6017
7146af97
JB
6018 /* Free all unmarked vectors */
6019 {
6020 register struct Lisp_Vector *vector = all_vectors, *prev = 0, *next;
6021 total_vector_size = 0;
6022
6023 while (vector)
3ef06d12 6024 if (!VECTOR_MARKED_P (vector))
7146af97
JB
6025 {
6026 if (prev)
6027 prev->next = vector->next;
6028 else
6029 all_vectors = vector->next;
6030 next = vector->next;
c8099634
RS
6031 lisp_free (vector);
6032 n_vectors--;
7146af97 6033 vector = next;
41c28a37 6034
7146af97
JB
6035 }
6036 else
6037 {
3ef06d12 6038 VECTOR_UNMARK (vector);
fa05e253
RS
6039 if (vector->size & PSEUDOVECTOR_FLAG)
6040 total_vector_size += (PSEUDOVECTOR_SIZE_MASK & vector->size);
6041 else
6042 total_vector_size += vector->size;
7146af97
JB
6043 prev = vector, vector = vector->next;
6044 }
6045 }
177c0ea7 6046
676a7251
GM
6047#ifdef GC_CHECK_STRING_BYTES
6048 if (!noninteractive)
6049 check_string_bytes (1);
6050#endif
7146af97 6051}
7146af97 6052
7146af97 6053
7146af97 6054
7146af97 6055\f
20d24714
JB
6056/* Debugging aids. */
6057
31ce1c91 6058DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
a6266d23 6059 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
228299fa 6060This may be helpful in debugging Emacs's memory usage.
7ee72033
MB
6061We divide the value by 1024 to make sure it fits in a Lisp integer. */)
6062 ()
20d24714
JB
6063{
6064 Lisp_Object end;
6065
45d12a89 6066 XSETINT (end, (EMACS_INT) sbrk (0) / 1024);
20d24714
JB
6067
6068 return end;
6069}
6070
310ea200 6071DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
a6266d23 6072 doc: /* Return a list of counters that measure how much consing there has been.
228299fa
GM
6073Each of these counters increments for a certain kind of object.
6074The counters wrap around from the largest positive integer to zero.
6075Garbage collection does not decrease them.
6076The elements of the value are as follows:
6077 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
6078All are in units of 1 = one object consed
6079except for VECTOR-CELLS and STRING-CHARS, which count the total length of
6080objects consed.
6081MISCS include overlays, markers, and some internal types.
6082Frames, windows, buffers, and subprocesses count as vectors
7ee72033
MB
6083 (but the contents of a buffer's text do not count here). */)
6084 ()
310ea200 6085{
2e471eb5 6086 Lisp_Object consed[8];
310ea200 6087
78e985eb
GM
6088 consed[0] = make_number (min (MOST_POSITIVE_FIXNUM, cons_cells_consed));
6089 consed[1] = make_number (min (MOST_POSITIVE_FIXNUM, floats_consed));
6090 consed[2] = make_number (min (MOST_POSITIVE_FIXNUM, vector_cells_consed));
6091 consed[3] = make_number (min (MOST_POSITIVE_FIXNUM, symbols_consed));
6092 consed[4] = make_number (min (MOST_POSITIVE_FIXNUM, string_chars_consed));
6093 consed[5] = make_number (min (MOST_POSITIVE_FIXNUM, misc_objects_consed));
6094 consed[6] = make_number (min (MOST_POSITIVE_FIXNUM, intervals_consed));
6095 consed[7] = make_number (min (MOST_POSITIVE_FIXNUM, strings_consed));
310ea200 6096
2e471eb5 6097 return Flist (8, consed);
310ea200 6098}
e0b8c689
KR
6099
6100int suppress_checking;
6101void
6102die (msg, file, line)
6103 const char *msg;
6104 const char *file;
6105 int line;
6106{
6107 fprintf (stderr, "\r\nEmacs fatal error: %s:%d: %s\r\n",
6108 file, line, msg);
6109 abort ();
6110}
20d24714 6111\f
7146af97
JB
6112/* Initialization */
6113
dfcf069d 6114void
7146af97
JB
6115init_alloc_once ()
6116{
6117 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
9e713715
GM
6118 purebeg = PUREBEG;
6119 pure_size = PURESIZE;
1f0b3fd2 6120 pure_bytes_used = 0;
9e713715
GM
6121 pure_bytes_used_before_overflow = 0;
6122
ab6780cd
SM
6123 /* Initialize the list of free aligned blocks. */
6124 free_ablock = NULL;
6125
877935b1 6126#if GC_MARK_STACK || defined GC_MALLOC_CHECK
34400008
GM
6127 mem_init ();
6128 Vdead = make_pure_string ("DEAD", 4, 4, 0);
6129#endif
9e713715 6130
7146af97
JB
6131 all_vectors = 0;
6132 ignore_warnings = 1;
d1658221
RS
6133#ifdef DOUG_LEA_MALLOC
6134 mallopt (M_TRIM_THRESHOLD, 128*1024); /* trim threshold */
6135 mallopt (M_MMAP_THRESHOLD, 64*1024); /* mmap threshold */
81d492d5 6136 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* max. number of mmap'ed areas */
d1658221 6137#endif
7146af97
JB
6138 init_strings ();
6139 init_cons ();
6140 init_symbol ();
6141 init_marker ();
7146af97 6142 init_float ();
34400008 6143 init_intervals ();
d5e35230 6144
276cbe5a
RS
6145#ifdef REL_ALLOC
6146 malloc_hysteresis = 32;
6147#else
6148 malloc_hysteresis = 0;
6149#endif
6150
24d8a105 6151 refill_memory_reserve ();
276cbe5a 6152
7146af97
JB
6153 ignore_warnings = 0;
6154 gcprolist = 0;
630686c8 6155 byte_stack_list = 0;
7146af97
JB
6156 staticidx = 0;
6157 consing_since_gc = 0;
7d179cea 6158 gc_cons_threshold = 100000 * sizeof (Lisp_Object);
974aae61
RS
6159 gc_relative_threshold = 0;
6160
7146af97
JB
6161#ifdef VIRT_ADDR_VARIES
6162 malloc_sbrk_unused = 1<<22; /* A large number */
6163 malloc_sbrk_used = 100000; /* as reasonable as any number */
6164#endif /* VIRT_ADDR_VARIES */
6165}
6166
dfcf069d 6167void
7146af97
JB
6168init_alloc ()
6169{
6170 gcprolist = 0;
630686c8 6171 byte_stack_list = 0;
182ff242
GM
6172#if GC_MARK_STACK
6173#if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
6174 setjmp_tested_p = longjmps_done = 0;
6175#endif
6176#endif
2c5bd608
DL
6177 Vgc_elapsed = make_float (0.0);
6178 gcs_done = 0;
7146af97
JB
6179}
6180
6181void
6182syms_of_alloc ()
6183{
7ee72033 6184 DEFVAR_INT ("gc-cons-threshold", &gc_cons_threshold,
a6266d23 6185 doc: /* *Number of bytes of consing between garbage collections.
228299fa
GM
6186Garbage collection can happen automatically once this many bytes have been
6187allocated since the last garbage collection. All data types count.
7146af97 6188
228299fa 6189Garbage collection happens automatically only when `eval' is called.
7146af97 6190
228299fa 6191By binding this temporarily to a large number, you can effectively
96f077ad
SM
6192prevent garbage collection during a part of the program.
6193See also `gc-cons-percentage'. */);
6194
6195 DEFVAR_LISP ("gc-cons-percentage", &Vgc_cons_percentage,
6196 doc: /* *Portion of the heap used for allocation.
6197Garbage collection can happen automatically once this portion of the heap
6198has been allocated since the last garbage collection.
6199If this portion is smaller than `gc-cons-threshold', this is ignored. */);
6200 Vgc_cons_percentage = make_float (0.1);
0819585c 6201
7ee72033 6202 DEFVAR_INT ("pure-bytes-used", &pure_bytes_used,
a6266d23 6203 doc: /* Number of bytes of sharable Lisp data allocated so far. */);
0819585c 6204
7ee72033 6205 DEFVAR_INT ("cons-cells-consed", &cons_cells_consed,
a6266d23 6206 doc: /* Number of cons cells that have been consed so far. */);
0819585c 6207
7ee72033 6208 DEFVAR_INT ("floats-consed", &floats_consed,
a6266d23 6209 doc: /* Number of floats that have been consed so far. */);
0819585c 6210
7ee72033 6211 DEFVAR_INT ("vector-cells-consed", &vector_cells_consed,
a6266d23 6212 doc: /* Number of vector cells that have been consed so far. */);
0819585c 6213
7ee72033 6214 DEFVAR_INT ("symbols-consed", &symbols_consed,
a6266d23 6215 doc: /* Number of symbols that have been consed so far. */);
0819585c 6216
7ee72033 6217 DEFVAR_INT ("string-chars-consed", &string_chars_consed,
a6266d23 6218 doc: /* Number of string characters that have been consed so far. */);
0819585c 6219
7ee72033 6220 DEFVAR_INT ("misc-objects-consed", &misc_objects_consed,
a6266d23 6221 doc: /* Number of miscellaneous objects that have been consed so far. */);
2e471eb5 6222
7ee72033 6223 DEFVAR_INT ("intervals-consed", &intervals_consed,
a6266d23 6224 doc: /* Number of intervals that have been consed so far. */);
7146af97 6225
7ee72033 6226 DEFVAR_INT ("strings-consed", &strings_consed,
a6266d23 6227 doc: /* Number of strings that have been consed so far. */);
228299fa 6228
7ee72033 6229 DEFVAR_LISP ("purify-flag", &Vpurify_flag,
a6266d23 6230 doc: /* Non-nil means loading Lisp code in order to dump an executable.
228299fa
GM
6231This means that certain objects should be allocated in shared (pure) space. */);
6232
7ee72033 6233 DEFVAR_BOOL ("garbage-collection-messages", &garbage_collection_messages,
a6266d23 6234 doc: /* Non-nil means display messages at start and end of garbage collection. */);
299585ee
RS
6235 garbage_collection_messages = 0;
6236
7ee72033 6237 DEFVAR_LISP ("post-gc-hook", &Vpost_gc_hook,
a6266d23 6238 doc: /* Hook run after garbage collection has finished. */);
9e713715
GM
6239 Vpost_gc_hook = Qnil;
6240 Qpost_gc_hook = intern ("post-gc-hook");
6241 staticpro (&Qpost_gc_hook);
6242
74a54b04
RS
6243 DEFVAR_LISP ("memory-signal-data", &Vmemory_signal_data,
6244 doc: /* Precomputed `signal' argument for memory-full error. */);
bcb61d60
KH
6245 /* We build this in advance because if we wait until we need it, we might
6246 not be able to allocate the memory to hold it. */
74a54b04
RS
6247 Vmemory_signal_data
6248 = list2 (Qerror,
6249 build_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"));
6250
6251 DEFVAR_LISP ("memory-full", &Vmemory_full,
24d8a105 6252 doc: /* Non-nil means Emacs cannot get much more Lisp memory. */);
74a54b04 6253 Vmemory_full = Qnil;
bcb61d60 6254
e8197642
RS
6255 staticpro (&Qgc_cons_threshold);
6256 Qgc_cons_threshold = intern ("gc-cons-threshold");
6257
a59de17b
RS
6258 staticpro (&Qchar_table_extra_slots);
6259 Qchar_table_extra_slots = intern ("char-table-extra-slots");
6260
2c5bd608
DL
6261 DEFVAR_LISP ("gc-elapsed", &Vgc_elapsed,
6262 doc: /* Accumulated time elapsed in garbage collections.
e7415487 6263The time is in seconds as a floating point value. */);
2c5bd608 6264 DEFVAR_INT ("gcs-done", &gcs_done,
e7415487 6265 doc: /* Accumulated number of garbage collections done. */);
2c5bd608 6266
7146af97
JB
6267 defsubr (&Scons);
6268 defsubr (&Slist);
6269 defsubr (&Svector);
6270 defsubr (&Smake_byte_code);
6271 defsubr (&Smake_list);
6272 defsubr (&Smake_vector);
7b07587b 6273 defsubr (&Smake_char_table);
7146af97 6274 defsubr (&Smake_string);
7b07587b 6275 defsubr (&Smake_bool_vector);
7146af97
JB
6276 defsubr (&Smake_symbol);
6277 defsubr (&Smake_marker);
6278 defsubr (&Spurecopy);
6279 defsubr (&Sgarbage_collect);
20d24714 6280 defsubr (&Smemory_limit);
310ea200 6281 defsubr (&Smemory_use_counts);
34400008
GM
6282
6283#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
6284 defsubr (&Sgc_status);
6285#endif
7146af97 6286}
ab5796a9
MB
6287
6288/* arch-tag: 6695ca10-e3c5-4c2c-8bc3-ed26a7dda857
6289 (do not change this comment) */