* doc/lispref/variables.texi (Scope): Mention the availability of lexbind.
[bpt/emacs.git] / src / alloc.c
CommitLineData
7146af97 1/* Storage allocation and gc for GNU Emacs Lisp interpreter.
73b0cd50 2 Copyright (C) 1985-1986, 1988, 1993-1995, 1997-2011
8cabe764 3 Free Software Foundation, Inc.
7146af97
JB
4
5This file is part of GNU Emacs.
6
9ec0b715 7GNU Emacs is free software: you can redistribute it and/or modify
7146af97 8it under the terms of the GNU General Public License as published by
9ec0b715
GM
9the Free Software Foundation, either version 3 of the License, or
10(at your option) any later version.
7146af97
JB
11
12GNU Emacs is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15GNU General Public License for more details.
16
17You should have received a copy of the GNU General Public License
9ec0b715 18along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
7146af97 19
18160b98 20#include <config.h>
e9b309ac 21#include <stdio.h>
ab6780cd 22#include <limits.h> /* For CHAR_BIT. */
d7306fe6 23#include <setjmp.h>
92939d31 24
4455ad75
RS
25#ifdef ALLOC_DEBUG
26#undef INLINE
27#endif
28
68c45bf0 29#include <signal.h>
92939d31 30
aa477689
JD
31#ifdef HAVE_GTK_AND_PTHREAD
32#include <pthread.h>
33#endif
34
7539e11f
KR
35/* This file is part of the core Lisp implementation, and thus must
36 deal with the real data structures. If the Lisp implementation is
37 replaced, this file likely will not be used. */
2e471eb5 38
7539e11f 39#undef HIDE_LISP_IMPLEMENTATION
7146af97 40#include "lisp.h"
ece93c02 41#include "process.h"
d5e35230 42#include "intervals.h"
4c0be5f4 43#include "puresize.h"
7146af97
JB
44#include "buffer.h"
45#include "window.h"
2538fae4 46#include "keyboard.h"
502b9b64 47#include "frame.h"
9ac0d9e0 48#include "blockinput.h"
9d80e883 49#include "character.h"
e065a56e 50#include "syssignal.h"
4a729fd8 51#include "termhooks.h" /* For struct terminal. */
34400008 52#include <setjmp.h>
e065a56e 53
6b61353c
KH
54/* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
55 memory. Can do this only if using gmalloc.c. */
56
57#if defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC
58#undef GC_MALLOC_CHECK
59#endif
60
bf952fb6 61#include <unistd.h>
4004364e 62#ifndef HAVE_UNISTD_H
bf952fb6
DL
63extern POINTER_TYPE *sbrk ();
64#endif
ee1eea5c 65
de7124a7 66#include <fcntl.h>
de7124a7 67
69666f77 68#ifdef WINDOWSNT
f892cf9c 69#include "w32.h"
69666f77
EZ
70#endif
71
d1658221 72#ifdef DOUG_LEA_MALLOC
2e471eb5 73
d1658221 74#include <malloc.h>
3e60b029
DL
75/* malloc.h #defines this as size_t, at least in glibc2. */
76#ifndef __malloc_size_t
d1658221 77#define __malloc_size_t int
3e60b029 78#endif
81d492d5 79
2e471eb5
GM
80/* Specify maximum number of areas to mmap. It would be nice to use a
81 value that explicitly means "no limit". */
82
81d492d5
RS
83#define MMAP_MAX_AREAS 100000000
84
2e471eb5
GM
85#else /* not DOUG_LEA_MALLOC */
86
276cbe5a
RS
87/* The following come from gmalloc.c. */
88
276cbe5a 89#define __malloc_size_t size_t
276cbe5a 90extern __malloc_size_t _bytes_used;
3e60b029 91extern __malloc_size_t __malloc_extra_blocks;
2e471eb5
GM
92
93#endif /* not DOUG_LEA_MALLOC */
276cbe5a 94
aa477689
JD
95#if ! defined (SYSTEM_MALLOC) && defined (HAVE_GTK_AND_PTHREAD)
96
f415cacd
JD
97/* When GTK uses the file chooser dialog, different backends can be loaded
98 dynamically. One such a backend is the Gnome VFS backend that gets loaded
99 if you run Gnome. That backend creates several threads and also allocates
100 memory with malloc.
101
102 If Emacs sets malloc hooks (! SYSTEM_MALLOC) and the emacs_blocked_*
103 functions below are called from malloc, there is a chance that one
104 of these threads preempts the Emacs main thread and the hook variables
333f1b6f 105 end up in an inconsistent state. So we have a mutex to prevent that (note
f415cacd
JD
106 that the backend handles concurrent access to malloc within its own threads
107 but Emacs code running in the main thread is not included in that control).
108
026cdede 109 When UNBLOCK_INPUT is called, reinvoke_input_signal may be called. If this
f415cacd
JD
110 happens in one of the backend threads we will have two threads that tries
111 to run Emacs code at once, and the code is not prepared for that.
112 To prevent that, we only call BLOCK/UNBLOCK from the main thread. */
113
aa477689 114static pthread_mutex_t alloc_mutex;
aa477689 115
959dc601
JD
116#define BLOCK_INPUT_ALLOC \
117 do \
118 { \
119 if (pthread_equal (pthread_self (), main_thread)) \
86302e37 120 BLOCK_INPUT; \
959dc601
JD
121 pthread_mutex_lock (&alloc_mutex); \
122 } \
aa477689 123 while (0)
959dc601
JD
124#define UNBLOCK_INPUT_ALLOC \
125 do \
126 { \
127 pthread_mutex_unlock (&alloc_mutex); \
128 if (pthread_equal (pthread_self (), main_thread)) \
86302e37 129 UNBLOCK_INPUT; \
959dc601 130 } \
aa477689
JD
131 while (0)
132
133#else /* SYSTEM_MALLOC || not HAVE_GTK_AND_PTHREAD */
134
135#define BLOCK_INPUT_ALLOC BLOCK_INPUT
136#define UNBLOCK_INPUT_ALLOC UNBLOCK_INPUT
137
138#endif /* SYSTEM_MALLOC || not HAVE_GTK_AND_PTHREAD */
139
276cbe5a 140/* Value of _bytes_used, when spare_memory was freed. */
2e471eb5 141
276cbe5a
RS
142static __malloc_size_t bytes_used_when_full;
143
2e471eb5
GM
144/* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
145 to a struct Lisp_String. */
146
7cdee936
SM
147#define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
148#define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
b059de99 149#define STRING_MARKED_P(S) (((S)->size & ARRAY_MARK_FLAG) != 0)
2e471eb5 150
3ef06d12
SM
151#define VECTOR_MARK(V) ((V)->size |= ARRAY_MARK_FLAG)
152#define VECTOR_UNMARK(V) ((V)->size &= ~ARRAY_MARK_FLAG)
b059de99 153#define VECTOR_MARKED_P(V) (((V)->size & ARRAY_MARK_FLAG) != 0)
3ef06d12 154
2e471eb5
GM
155/* Value is the number of bytes/chars of S, a pointer to a struct
156 Lisp_String. This must be used instead of STRING_BYTES (S) or
157 S->size during GC, because S->size contains the mark bit for
158 strings. */
159
3ef06d12 160#define GC_STRING_BYTES(S) (STRING_BYTES (S))
7cdee936 161#define GC_STRING_CHARS(S) ((S)->size & ~ARRAY_MARK_FLAG)
2e471eb5 162
29208e82
TT
163/* Global variables. */
164struct emacs_globals globals;
165
2e471eb5
GM
166/* Number of bytes of consing done since the last gc. */
167
7146af97
JB
168int consing_since_gc;
169
974aae61
RS
170/* Similar minimum, computed from Vgc_cons_percentage. */
171
172EMACS_INT gc_relative_threshold;
310ea200 173
24d8a105
RS
174/* Minimum number of bytes of consing since GC before next GC,
175 when memory is full. */
176
177EMACS_INT memory_full_cons_threshold;
178
2e471eb5
GM
179/* Nonzero during GC. */
180
7146af97
JB
181int gc_in_progress;
182
3de0effb
RS
183/* Nonzero means abort if try to GC.
184 This is for code which is written on the assumption that
185 no GC will happen, so as to verify that assumption. */
186
187int abort_on_gc;
188
34400008
GM
189/* Number of live and free conses etc. */
190
191static int total_conses, total_markers, total_symbols, total_vector_size;
192static int total_free_conses, total_free_markers, total_free_symbols;
193static int total_free_floats, total_floats;
fd27a537 194
2e471eb5 195/* Points to memory space allocated as "spare", to be freed if we run
24d8a105
RS
196 out of memory. We keep one large block, four cons-blocks, and
197 two string blocks. */
2e471eb5 198
d3d47262 199static char *spare_memory[7];
276cbe5a 200
24d8a105 201/* Amount of spare memory to keep in large reserve block. */
2e471eb5 202
276cbe5a
RS
203#define SPARE_MEMORY (1 << 14)
204
205/* Number of extra blocks malloc should get when it needs more core. */
2e471eb5 206
276cbe5a
RS
207static int malloc_hysteresis;
208
1b8950e5
RS
209/* Initialize it to a nonzero value to force it into data space
210 (rather than bss space). That way unexec will remap it into text
211 space (pure), on some systems. We have not implemented the
212 remapping on more recent systems because this is less important
213 nowadays than in the days of small memories and timesharing. */
2e471eb5 214
2c4685ee 215EMACS_INT pure[(PURESIZE + sizeof (EMACS_INT) - 1) / sizeof (EMACS_INT)] = {1,};
7146af97 216#define PUREBEG (char *) pure
2e471eb5 217
9e713715 218/* Pointer to the pure area, and its size. */
2e471eb5 219
9e713715
GM
220static char *purebeg;
221static size_t pure_size;
222
223/* Number of bytes of pure storage used before pure storage overflowed.
224 If this is non-zero, this implies that an overflow occurred. */
225
226static size_t pure_bytes_used_before_overflow;
7146af97 227
34400008
GM
228/* Value is non-zero if P points into pure space. */
229
230#define PURE_POINTER_P(P) \
231 (((PNTR_COMPARISON_TYPE) (P) \
9e713715 232 < (PNTR_COMPARISON_TYPE) ((char *) purebeg + pure_size)) \
34400008 233 && ((PNTR_COMPARISON_TYPE) (P) \
9e713715 234 >= (PNTR_COMPARISON_TYPE) purebeg))
34400008 235
e5bc14d4
YM
236/* Index in pure at which next pure Lisp object will be allocated.. */
237
238static EMACS_INT pure_bytes_used_lisp;
239
240/* Number of bytes allocated for non-Lisp objects in pure storage. */
241
242static EMACS_INT pure_bytes_used_non_lisp;
243
2e471eb5
GM
244/* If nonzero, this is a warning delivered by malloc and not yet
245 displayed. */
246
a8fe7202 247const char *pending_malloc_warning;
7146af97
JB
248
249/* Maximum amount of C stack to save when a GC happens. */
250
251#ifndef MAX_SAVE_STACK
252#define MAX_SAVE_STACK 16000
253#endif
254
255/* Buffer in which we save a copy of the C stack at each GC. */
256
d3d47262
JB
257static char *stack_copy;
258static int stack_copy_size;
7146af97 259
2e471eb5
GM
260/* Non-zero means ignore malloc warnings. Set during initialization.
261 Currently not used. */
262
d3d47262 263static int ignore_warnings;
350273a4 264
a59de17b 265Lisp_Object Qgc_cons_threshold, Qchar_table_extra_slots;
e8197642 266
9e713715
GM
267/* Hook run after GC has finished. */
268
29208e82 269Lisp_Object Qpost_gc_hook;
2c5bd608 270
f57e2426
J
271static void mark_buffer (Lisp_Object);
272static void mark_terminals (void);
273extern void mark_kboards (void);
274extern void mark_ttys (void);
275extern void mark_backtrace (void);
276static void gc_sweep (void);
277static void mark_glyph_matrix (struct glyph_matrix *);
278static void mark_face_cache (struct face_cache *);
41c28a37
GM
279
280#ifdef HAVE_WINDOW_SYSTEM
f57e2426 281extern void mark_fringe_data (void);
41c28a37
GM
282#endif /* HAVE_WINDOW_SYSTEM */
283
f57e2426
J
284static struct Lisp_String *allocate_string (void);
285static void compact_small_strings (void);
286static void free_large_strings (void);
287static void sweep_strings (void);
7da0b0d3
RS
288
289extern int message_enable_multibyte;
34400008 290
34400008
GM
291/* When scanning the C stack for live Lisp objects, Emacs keeps track
292 of what memory allocated via lisp_malloc is intended for what
293 purpose. This enumeration specifies the type of memory. */
294
295enum mem_type
296{
297 MEM_TYPE_NON_LISP,
298 MEM_TYPE_BUFFER,
299 MEM_TYPE_CONS,
300 MEM_TYPE_STRING,
301 MEM_TYPE_MISC,
302 MEM_TYPE_SYMBOL,
303 MEM_TYPE_FLOAT,
9c545a55
SM
304 /* We used to keep separate mem_types for subtypes of vectors such as
305 process, hash_table, frame, terminal, and window, but we never made
306 use of the distinction, so it only caused source-code complexity
307 and runtime slowdown. Minor but pointless. */
308 MEM_TYPE_VECTORLIKE
34400008
GM
309};
310
f57e2426
J
311static POINTER_TYPE *lisp_align_malloc (size_t, enum mem_type);
312static POINTER_TYPE *lisp_malloc (size_t, enum mem_type);
225ccad6 313
24d8a105 314
877935b1 315#if GC_MARK_STACK || defined GC_MALLOC_CHECK
0b378936
GM
316
317#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
318#include <stdio.h> /* For fprintf. */
319#endif
320
321/* A unique object in pure space used to make some Lisp objects
322 on free lists recognizable in O(1). */
323
d3d47262 324static Lisp_Object Vdead;
0b378936 325
877935b1
GM
326#ifdef GC_MALLOC_CHECK
327
328enum mem_type allocated_mem_type;
d3d47262 329static int dont_register_blocks;
877935b1
GM
330
331#endif /* GC_MALLOC_CHECK */
332
333/* A node in the red-black tree describing allocated memory containing
334 Lisp data. Each such block is recorded with its start and end
335 address when it is allocated, and removed from the tree when it
336 is freed.
337
338 A red-black tree is a balanced binary tree with the following
339 properties:
340
341 1. Every node is either red or black.
342 2. Every leaf is black.
343 3. If a node is red, then both of its children are black.
344 4. Every simple path from a node to a descendant leaf contains
345 the same number of black nodes.
346 5. The root is always black.
347
348 When nodes are inserted into the tree, or deleted from the tree,
349 the tree is "fixed" so that these properties are always true.
350
351 A red-black tree with N internal nodes has height at most 2
352 log(N+1). Searches, insertions and deletions are done in O(log N).
353 Please see a text book about data structures for a detailed
354 description of red-black trees. Any book worth its salt should
355 describe them. */
356
357struct mem_node
358{
9f7d9210
RS
359 /* Children of this node. These pointers are never NULL. When there
360 is no child, the value is MEM_NIL, which points to a dummy node. */
361 struct mem_node *left, *right;
362
363 /* The parent of this node. In the root node, this is NULL. */
364 struct mem_node *parent;
877935b1
GM
365
366 /* Start and end of allocated region. */
367 void *start, *end;
368
369 /* Node color. */
370 enum {MEM_BLACK, MEM_RED} color;
177c0ea7 371
877935b1
GM
372 /* Memory type. */
373 enum mem_type type;
374};
375
376/* Base address of stack. Set in main. */
377
378Lisp_Object *stack_base;
379
380/* Root of the tree describing allocated Lisp memory. */
381
382static struct mem_node *mem_root;
383
ece93c02
GM
384/* Lowest and highest known address in the heap. */
385
386static void *min_heap_address, *max_heap_address;
387
877935b1
GM
388/* Sentinel node of the tree. */
389
390static struct mem_node mem_z;
391#define MEM_NIL &mem_z
392
f57e2426
J
393static struct Lisp_Vector *allocate_vectorlike (EMACS_INT);
394static void lisp_free (POINTER_TYPE *);
395static void mark_stack (void);
396static int live_vector_p (struct mem_node *, void *);
397static int live_buffer_p (struct mem_node *, void *);
398static int live_string_p (struct mem_node *, void *);
399static int live_cons_p (struct mem_node *, void *);
400static int live_symbol_p (struct mem_node *, void *);
401static int live_float_p (struct mem_node *, void *);
402static int live_misc_p (struct mem_node *, void *);
403static void mark_maybe_object (Lisp_Object);
404static void mark_memory (void *, void *, int);
405static void mem_init (void);
406static struct mem_node *mem_insert (void *, void *, enum mem_type);
407static void mem_insert_fixup (struct mem_node *);
408static void mem_rotate_left (struct mem_node *);
409static void mem_rotate_right (struct mem_node *);
410static void mem_delete (struct mem_node *);
411static void mem_delete_fixup (struct mem_node *);
412static INLINE struct mem_node *mem_find (void *);
34400008 413
34400008
GM
414
415#if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
f57e2426 416static void check_gcpros (void);
34400008
GM
417#endif
418
877935b1 419#endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
34400008 420
1f0b3fd2
GM
421/* Recording what needs to be marked for gc. */
422
423struct gcpro *gcprolist;
424
379b98b1
PE
425/* Addresses of staticpro'd variables. Initialize it to a nonzero
426 value; otherwise some compilers put it into BSS. */
1f0b3fd2 427
0078170f 428#define NSTATICS 0x640
d3d47262 429static Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
1f0b3fd2
GM
430
431/* Index of next unused slot in staticvec. */
432
d3d47262 433static int staticidx = 0;
1f0b3fd2 434
f57e2426 435static POINTER_TYPE *pure_alloc (size_t, int);
1f0b3fd2
GM
436
437
438/* Value is SZ rounded up to the next multiple of ALIGNMENT.
439 ALIGNMENT must be a power of 2. */
440
ab6780cd
SM
441#define ALIGN(ptr, ALIGNMENT) \
442 ((POINTER_TYPE *) ((((EMACS_UINT)(ptr)) + (ALIGNMENT) - 1) \
443 & ~((ALIGNMENT) - 1)))
1f0b3fd2 444
ece93c02 445
7146af97 446\f
34400008
GM
447/************************************************************************
448 Malloc
449 ************************************************************************/
450
4455ad75 451/* Function malloc calls this if it finds we are near exhausting storage. */
d457598b
AS
452
453void
a8fe7202 454malloc_warning (const char *str)
7146af97
JB
455{
456 pending_malloc_warning = str;
457}
458
34400008 459
4455ad75 460/* Display an already-pending malloc warning. */
34400008 461
d457598b 462void
971de7fb 463display_malloc_warning (void)
7146af97 464{
4455ad75
RS
465 call3 (intern ("display-warning"),
466 intern ("alloc"),
467 build_string (pending_malloc_warning),
468 intern ("emergency"));
7146af97 469 pending_malloc_warning = 0;
7146af97
JB
470}
471
34400008 472
d1658221 473#ifdef DOUG_LEA_MALLOC
4d74a5fc 474# define BYTES_USED (mallinfo ().uordblks)
d1658221 475#else
1177ecf6 476# define BYTES_USED _bytes_used
d1658221 477#endif
49efed3a 478\f
276cbe5a
RS
479/* Called if we can't allocate relocatable space for a buffer. */
480
481void
971de7fb 482buffer_memory_full (void)
276cbe5a 483{
2e471eb5
GM
484 /* If buffers use the relocating allocator, no need to free
485 spare_memory, because we may have plenty of malloc space left
486 that we could get, and if we don't, the malloc that fails will
487 itself cause spare_memory to be freed. If buffers don't use the
488 relocating allocator, treat this like any other failing
489 malloc. */
276cbe5a
RS
490
491#ifndef REL_ALLOC
492 memory_full ();
493#endif
494
2e471eb5
GM
495 /* This used to call error, but if we've run out of memory, we could
496 get infinite recursion trying to build the string. */
9b306d37 497 xsignal (Qnil, Vmemory_signal_data);
7146af97
JB
498}
499
34400008 500
212f33f1
KS
501#ifdef XMALLOC_OVERRUN_CHECK
502
bdbed949
KS
503/* Check for overrun in malloc'ed buffers by wrapping a 16 byte header
504 and a 16 byte trailer around each block.
505
506 The header consists of 12 fixed bytes + a 4 byte integer contaning the
507 original block size, while the trailer consists of 16 fixed bytes.
508
509 The header is used to detect whether this block has been allocated
510 through these functions -- as it seems that some low-level libc
511 functions may bypass the malloc hooks.
512*/
513
514
212f33f1 515#define XMALLOC_OVERRUN_CHECK_SIZE 16
bdbed949 516
212f33f1
KS
517static char xmalloc_overrun_check_header[XMALLOC_OVERRUN_CHECK_SIZE-4] =
518 { 0x9a, 0x9b, 0xae, 0xaf,
519 0xbf, 0xbe, 0xce, 0xcf,
520 0xea, 0xeb, 0xec, 0xed };
521
522static char xmalloc_overrun_check_trailer[XMALLOC_OVERRUN_CHECK_SIZE] =
523 { 0xaa, 0xab, 0xac, 0xad,
524 0xba, 0xbb, 0xbc, 0xbd,
525 0xca, 0xcb, 0xcc, 0xcd,
526 0xda, 0xdb, 0xdc, 0xdd };
527
bdbed949
KS
528/* Macros to insert and extract the block size in the header. */
529
530#define XMALLOC_PUT_SIZE(ptr, size) \
531 (ptr[-1] = (size & 0xff), \
532 ptr[-2] = ((size >> 8) & 0xff), \
533 ptr[-3] = ((size >> 16) & 0xff), \
534 ptr[-4] = ((size >> 24) & 0xff))
535
536#define XMALLOC_GET_SIZE(ptr) \
537 (size_t)((unsigned)(ptr[-1]) | \
538 ((unsigned)(ptr[-2]) << 8) | \
539 ((unsigned)(ptr[-3]) << 16) | \
540 ((unsigned)(ptr[-4]) << 24))
541
542
d8f165a8
JD
543/* The call depth in overrun_check functions. For example, this might happen:
544 xmalloc()
545 overrun_check_malloc()
546 -> malloc -> (via hook)_-> emacs_blocked_malloc
547 -> overrun_check_malloc
548 call malloc (hooks are NULL, so real malloc is called).
549 malloc returns 10000.
550 add overhead, return 10016.
551 <- (back in overrun_check_malloc)
857ae68b 552 add overhead again, return 10032
d8f165a8 553 xmalloc returns 10032.
857ae68b
JD
554
555 (time passes).
556
d8f165a8
JD
557 xfree(10032)
558 overrun_check_free(10032)
559 decrease overhed
560 free(10016) <- crash, because 10000 is the original pointer. */
857ae68b
JD
561
562static int check_depth;
563
bdbed949
KS
564/* Like malloc, but wraps allocated block with header and trailer. */
565
212f33f1
KS
566POINTER_TYPE *
567overrun_check_malloc (size)
568 size_t size;
569{
bdbed949 570 register unsigned char *val;
857ae68b 571 size_t overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_SIZE*2 : 0;
212f33f1 572
857ae68b
JD
573 val = (unsigned char *) malloc (size + overhead);
574 if (val && check_depth == 1)
212f33f1 575 {
72af86bd
AS
576 memcpy (val, xmalloc_overrun_check_header,
577 XMALLOC_OVERRUN_CHECK_SIZE - 4);
212f33f1 578 val += XMALLOC_OVERRUN_CHECK_SIZE;
bdbed949 579 XMALLOC_PUT_SIZE(val, size);
72af86bd
AS
580 memcpy (val + size, xmalloc_overrun_check_trailer,
581 XMALLOC_OVERRUN_CHECK_SIZE);
212f33f1 582 }
857ae68b 583 --check_depth;
212f33f1
KS
584 return (POINTER_TYPE *)val;
585}
586
bdbed949
KS
587
588/* Like realloc, but checks old block for overrun, and wraps new block
589 with header and trailer. */
590
212f33f1
KS
591POINTER_TYPE *
592overrun_check_realloc (block, size)
593 POINTER_TYPE *block;
594 size_t size;
595{
bdbed949 596 register unsigned char *val = (unsigned char *)block;
857ae68b 597 size_t overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_SIZE*2 : 0;
212f33f1
KS
598
599 if (val
857ae68b 600 && check_depth == 1
72af86bd
AS
601 && memcmp (xmalloc_overrun_check_header,
602 val - XMALLOC_OVERRUN_CHECK_SIZE,
603 XMALLOC_OVERRUN_CHECK_SIZE - 4) == 0)
212f33f1 604 {
bdbed949 605 size_t osize = XMALLOC_GET_SIZE (val);
72af86bd
AS
606 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
607 XMALLOC_OVERRUN_CHECK_SIZE))
212f33f1 608 abort ();
72af86bd 609 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
212f33f1 610 val -= XMALLOC_OVERRUN_CHECK_SIZE;
72af86bd 611 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE);
212f33f1
KS
612 }
613
857ae68b 614 val = (unsigned char *) realloc ((POINTER_TYPE *)val, size + overhead);
212f33f1 615
857ae68b 616 if (val && check_depth == 1)
212f33f1 617 {
72af86bd
AS
618 memcpy (val, xmalloc_overrun_check_header,
619 XMALLOC_OVERRUN_CHECK_SIZE - 4);
212f33f1 620 val += XMALLOC_OVERRUN_CHECK_SIZE;
bdbed949 621 XMALLOC_PUT_SIZE(val, size);
72af86bd
AS
622 memcpy (val + size, xmalloc_overrun_check_trailer,
623 XMALLOC_OVERRUN_CHECK_SIZE);
212f33f1 624 }
857ae68b 625 --check_depth;
212f33f1
KS
626 return (POINTER_TYPE *)val;
627}
628
bdbed949
KS
629/* Like free, but checks block for overrun. */
630
212f33f1
KS
631void
632overrun_check_free (block)
633 POINTER_TYPE *block;
634{
bdbed949 635 unsigned char *val = (unsigned char *)block;
212f33f1 636
857ae68b 637 ++check_depth;
212f33f1 638 if (val
857ae68b 639 && check_depth == 1
72af86bd
AS
640 && memcmp (xmalloc_overrun_check_header,
641 val - XMALLOC_OVERRUN_CHECK_SIZE,
642 XMALLOC_OVERRUN_CHECK_SIZE - 4) == 0)
212f33f1 643 {
bdbed949 644 size_t osize = XMALLOC_GET_SIZE (val);
72af86bd
AS
645 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
646 XMALLOC_OVERRUN_CHECK_SIZE))
212f33f1 647 abort ();
454d7973
KS
648#ifdef XMALLOC_CLEAR_FREE_MEMORY
649 val -= XMALLOC_OVERRUN_CHECK_SIZE;
650 memset (val, 0xff, osize + XMALLOC_OVERRUN_CHECK_SIZE*2);
651#else
72af86bd 652 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
212f33f1 653 val -= XMALLOC_OVERRUN_CHECK_SIZE;
72af86bd 654 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE);
454d7973 655#endif
212f33f1
KS
656 }
657
658 free (val);
857ae68b 659 --check_depth;
212f33f1
KS
660}
661
662#undef malloc
663#undef realloc
664#undef free
665#define malloc overrun_check_malloc
666#define realloc overrun_check_realloc
667#define free overrun_check_free
668#endif
669
dafc79fa
SM
670#ifdef SYNC_INPUT
671/* When using SYNC_INPUT, we don't call malloc from a signal handler, so
672 there's no need to block input around malloc. */
673#define MALLOC_BLOCK_INPUT ((void)0)
674#define MALLOC_UNBLOCK_INPUT ((void)0)
675#else
676#define MALLOC_BLOCK_INPUT BLOCK_INPUT
677#define MALLOC_UNBLOCK_INPUT UNBLOCK_INPUT
678#endif
bdbed949 679
34400008 680/* Like malloc but check for no memory and block interrupt input.. */
7146af97 681
c971ff9a 682POINTER_TYPE *
971de7fb 683xmalloc (size_t size)
7146af97 684{
c971ff9a 685 register POINTER_TYPE *val;
7146af97 686
dafc79fa 687 MALLOC_BLOCK_INPUT;
c971ff9a 688 val = (POINTER_TYPE *) malloc (size);
dafc79fa 689 MALLOC_UNBLOCK_INPUT;
7146af97 690
2e471eb5
GM
691 if (!val && size)
692 memory_full ();
7146af97
JB
693 return val;
694}
695
34400008
GM
696
697/* Like realloc but check for no memory and block interrupt input.. */
698
c971ff9a 699POINTER_TYPE *
971de7fb 700xrealloc (POINTER_TYPE *block, size_t size)
7146af97 701{
c971ff9a 702 register POINTER_TYPE *val;
7146af97 703
dafc79fa 704 MALLOC_BLOCK_INPUT;
56d2031b
JB
705 /* We must call malloc explicitly when BLOCK is 0, since some
706 reallocs don't do this. */
707 if (! block)
c971ff9a 708 val = (POINTER_TYPE *) malloc (size);
f048679d 709 else
c971ff9a 710 val = (POINTER_TYPE *) realloc (block, size);
dafc79fa 711 MALLOC_UNBLOCK_INPUT;
7146af97
JB
712
713 if (!val && size) memory_full ();
714 return val;
715}
9ac0d9e0 716
34400008 717
005ca5c7 718/* Like free but block interrupt input. */
34400008 719
9ac0d9e0 720void
971de7fb 721xfree (POINTER_TYPE *block)
9ac0d9e0 722{
70fdbb46
JM
723 if (!block)
724 return;
dafc79fa 725 MALLOC_BLOCK_INPUT;
9ac0d9e0 726 free (block);
dafc79fa 727 MALLOC_UNBLOCK_INPUT;
24d8a105
RS
728 /* We don't call refill_memory_reserve here
729 because that duplicates doing so in emacs_blocked_free
730 and the criterion should go there. */
9ac0d9e0
JB
731}
732
c8099634 733
dca7c6a8
GM
734/* Like strdup, but uses xmalloc. */
735
736char *
971de7fb 737xstrdup (const char *s)
dca7c6a8 738{
675d5130 739 size_t len = strlen (s) + 1;
dca7c6a8 740 char *p = (char *) xmalloc (len);
72af86bd 741 memcpy (p, s, len);
dca7c6a8
GM
742 return p;
743}
744
745
f61bef8b
KS
746/* Unwind for SAFE_ALLOCA */
747
748Lisp_Object
971de7fb 749safe_alloca_unwind (Lisp_Object arg)
f61bef8b 750{
b766f870
KS
751 register struct Lisp_Save_Value *p = XSAVE_VALUE (arg);
752
753 p->dogc = 0;
754 xfree (p->pointer);
755 p->pointer = 0;
7b7990cc 756 free_misc (arg);
f61bef8b
KS
757 return Qnil;
758}
759
760
34400008
GM
761/* Like malloc but used for allocating Lisp data. NBYTES is the
762 number of bytes to allocate, TYPE describes the intended use of the
763 allcated memory block (for strings, for conses, ...). */
764
212f33f1 765#ifndef USE_LSB_TAG
918a23a7 766static void *lisp_malloc_loser;
212f33f1 767#endif
918a23a7 768
675d5130 769static POINTER_TYPE *
971de7fb 770lisp_malloc (size_t nbytes, enum mem_type type)
c8099634 771{
34400008 772 register void *val;
c8099634 773
dafc79fa 774 MALLOC_BLOCK_INPUT;
877935b1
GM
775
776#ifdef GC_MALLOC_CHECK
777 allocated_mem_type = type;
778#endif
177c0ea7 779
34400008 780 val = (void *) malloc (nbytes);
c8099634 781
6b61353c 782#ifndef USE_LSB_TAG
918a23a7
RS
783 /* If the memory just allocated cannot be addressed thru a Lisp
784 object's pointer, and it needs to be,
785 that's equivalent to running out of memory. */
786 if (val && type != MEM_TYPE_NON_LISP)
787 {
788 Lisp_Object tem;
789 XSETCONS (tem, (char *) val + nbytes - 1);
790 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
791 {
792 lisp_malloc_loser = val;
793 free (val);
794 val = 0;
795 }
796 }
6b61353c 797#endif
918a23a7 798
877935b1 799#if GC_MARK_STACK && !defined GC_MALLOC_CHECK
dca7c6a8 800 if (val && type != MEM_TYPE_NON_LISP)
34400008
GM
801 mem_insert (val, (char *) val + nbytes, type);
802#endif
177c0ea7 803
dafc79fa 804 MALLOC_UNBLOCK_INPUT;
dca7c6a8
GM
805 if (!val && nbytes)
806 memory_full ();
c8099634
RS
807 return val;
808}
809
34400008
GM
810/* Free BLOCK. This must be called to free memory allocated with a
811 call to lisp_malloc. */
812
bf952fb6 813static void
971de7fb 814lisp_free (POINTER_TYPE *block)
c8099634 815{
dafc79fa 816 MALLOC_BLOCK_INPUT;
c8099634 817 free (block);
877935b1 818#if GC_MARK_STACK && !defined GC_MALLOC_CHECK
34400008
GM
819 mem_delete (mem_find (block));
820#endif
dafc79fa 821 MALLOC_UNBLOCK_INPUT;
c8099634 822}
34400008 823
ab6780cd
SM
824/* Allocation of aligned blocks of memory to store Lisp data. */
825/* The entry point is lisp_align_malloc which returns blocks of at most */
826/* BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
827
349a4500
SM
828/* Use posix_memalloc if the system has it and we're using the system's
829 malloc (because our gmalloc.c routines don't have posix_memalign although
830 its memalloc could be used). */
b4181b01
KS
831#if defined (HAVE_POSIX_MEMALIGN) && defined (SYSTEM_MALLOC)
832#define USE_POSIX_MEMALIGN 1
833#endif
ab6780cd
SM
834
835/* BLOCK_ALIGN has to be a power of 2. */
836#define BLOCK_ALIGN (1 << 10)
ab6780cd
SM
837
838/* Padding to leave at the end of a malloc'd block. This is to give
839 malloc a chance to minimize the amount of memory wasted to alignment.
840 It should be tuned to the particular malloc library used.
19bcad1f
SM
841 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
842 posix_memalign on the other hand would ideally prefer a value of 4
843 because otherwise, there's 1020 bytes wasted between each ablocks.
f501ccb4
SM
844 In Emacs, testing shows that those 1020 can most of the time be
845 efficiently used by malloc to place other objects, so a value of 0 can
846 still preferable unless you have a lot of aligned blocks and virtually
847 nothing else. */
19bcad1f
SM
848#define BLOCK_PADDING 0
849#define BLOCK_BYTES \
f501ccb4 850 (BLOCK_ALIGN - sizeof (struct ablock *) - BLOCK_PADDING)
19bcad1f
SM
851
852/* Internal data structures and constants. */
853
ab6780cd
SM
854#define ABLOCKS_SIZE 16
855
856/* An aligned block of memory. */
857struct ablock
858{
859 union
860 {
861 char payload[BLOCK_BYTES];
862 struct ablock *next_free;
863 } x;
864 /* `abase' is the aligned base of the ablocks. */
865 /* It is overloaded to hold the virtual `busy' field that counts
866 the number of used ablock in the parent ablocks.
867 The first ablock has the `busy' field, the others have the `abase'
868 field. To tell the difference, we assume that pointers will have
869 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
870 is used to tell whether the real base of the parent ablocks is `abase'
871 (if not, the word before the first ablock holds a pointer to the
872 real base). */
873 struct ablocks *abase;
874 /* The padding of all but the last ablock is unused. The padding of
875 the last ablock in an ablocks is not allocated. */
19bcad1f
SM
876#if BLOCK_PADDING
877 char padding[BLOCK_PADDING];
ebb8d410 878#endif
ab6780cd
SM
879};
880
881/* A bunch of consecutive aligned blocks. */
882struct ablocks
883{
884 struct ablock blocks[ABLOCKS_SIZE];
885};
886
887/* Size of the block requested from malloc or memalign. */
19bcad1f 888#define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
ab6780cd
SM
889
890#define ABLOCK_ABASE(block) \
891 (((unsigned long) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
892 ? (struct ablocks *)(block) \
893 : (block)->abase)
894
895/* Virtual `busy' field. */
896#define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
897
898/* Pointer to the (not necessarily aligned) malloc block. */
349a4500 899#ifdef USE_POSIX_MEMALIGN
19bcad1f
SM
900#define ABLOCKS_BASE(abase) (abase)
901#else
ab6780cd 902#define ABLOCKS_BASE(abase) \
005ca5c7 903 (1 & (long) ABLOCKS_BUSY (abase) ? abase : ((void**)abase)[-1])
19bcad1f 904#endif
ab6780cd
SM
905
906/* The list of free ablock. */
907static struct ablock *free_ablock;
908
909/* Allocate an aligned block of nbytes.
910 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
911 smaller or equal to BLOCK_BYTES. */
912static POINTER_TYPE *
971de7fb 913lisp_align_malloc (size_t nbytes, enum mem_type type)
ab6780cd
SM
914{
915 void *base, *val;
916 struct ablocks *abase;
917
918 eassert (nbytes <= BLOCK_BYTES);
919
dafc79fa 920 MALLOC_BLOCK_INPUT;
ab6780cd
SM
921
922#ifdef GC_MALLOC_CHECK
923 allocated_mem_type = type;
924#endif
925
926 if (!free_ablock)
927 {
005ca5c7
DL
928 int i;
929 EMACS_INT aligned; /* int gets warning casting to 64-bit pointer. */
ab6780cd
SM
930
931#ifdef DOUG_LEA_MALLOC
932 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
933 because mapped region contents are not preserved in
934 a dumped Emacs. */
935 mallopt (M_MMAP_MAX, 0);
936#endif
937
349a4500 938#ifdef USE_POSIX_MEMALIGN
19bcad1f
SM
939 {
940 int err = posix_memalign (&base, BLOCK_ALIGN, ABLOCKS_BYTES);
ab349c19
RS
941 if (err)
942 base = NULL;
943 abase = base;
19bcad1f
SM
944 }
945#else
ab6780cd
SM
946 base = malloc (ABLOCKS_BYTES);
947 abase = ALIGN (base, BLOCK_ALIGN);
ab349c19
RS
948#endif
949
6b61353c
KH
950 if (base == 0)
951 {
dafc79fa 952 MALLOC_UNBLOCK_INPUT;
6b61353c
KH
953 memory_full ();
954 }
ab6780cd
SM
955
956 aligned = (base == abase);
957 if (!aligned)
958 ((void**)abase)[-1] = base;
959
960#ifdef DOUG_LEA_MALLOC
961 /* Back to a reasonable maximum of mmap'ed areas. */
962 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
963#endif
964
6b61353c 965#ifndef USE_LSB_TAG
8f924df7
KH
966 /* If the memory just allocated cannot be addressed thru a Lisp
967 object's pointer, and it needs to be, that's equivalent to
968 running out of memory. */
969 if (type != MEM_TYPE_NON_LISP)
970 {
971 Lisp_Object tem;
972 char *end = (char *) base + ABLOCKS_BYTES - 1;
973 XSETCONS (tem, end);
974 if ((char *) XCONS (tem) != end)
975 {
976 lisp_malloc_loser = base;
977 free (base);
dafc79fa 978 MALLOC_UNBLOCK_INPUT;
8f924df7
KH
979 memory_full ();
980 }
981 }
6b61353c 982#endif
8f924df7 983
ab6780cd
SM
984 /* Initialize the blocks and put them on the free list.
985 Is `base' was not properly aligned, we can't use the last block. */
986 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
987 {
988 abase->blocks[i].abase = abase;
989 abase->blocks[i].x.next_free = free_ablock;
990 free_ablock = &abase->blocks[i];
991 }
005ca5c7 992 ABLOCKS_BUSY (abase) = (struct ablocks *) (long) aligned;
ab6780cd 993
19bcad1f 994 eassert (0 == ((EMACS_UINT)abase) % BLOCK_ALIGN);
ab6780cd
SM
995 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
996 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
997 eassert (ABLOCKS_BASE (abase) == base);
005ca5c7 998 eassert (aligned == (long) ABLOCKS_BUSY (abase));
ab6780cd
SM
999 }
1000
1001 abase = ABLOCK_ABASE (free_ablock);
005ca5c7 1002 ABLOCKS_BUSY (abase) = (struct ablocks *) (2 + (long) ABLOCKS_BUSY (abase));
ab6780cd
SM
1003 val = free_ablock;
1004 free_ablock = free_ablock->x.next_free;
1005
ab6780cd
SM
1006#if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1007 if (val && type != MEM_TYPE_NON_LISP)
1008 mem_insert (val, (char *) val + nbytes, type);
1009#endif
1010
dafc79fa 1011 MALLOC_UNBLOCK_INPUT;
ab6780cd
SM
1012 if (!val && nbytes)
1013 memory_full ();
1014
1015 eassert (0 == ((EMACS_UINT)val) % BLOCK_ALIGN);
1016 return val;
1017}
1018
1019static void
971de7fb 1020lisp_align_free (POINTER_TYPE *block)
ab6780cd
SM
1021{
1022 struct ablock *ablock = block;
1023 struct ablocks *abase = ABLOCK_ABASE (ablock);
1024
dafc79fa 1025 MALLOC_BLOCK_INPUT;
ab6780cd
SM
1026#if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1027 mem_delete (mem_find (block));
1028#endif
1029 /* Put on free list. */
1030 ablock->x.next_free = free_ablock;
1031 free_ablock = ablock;
1032 /* Update busy count. */
005ca5c7 1033 ABLOCKS_BUSY (abase) = (struct ablocks *) (-2 + (long) ABLOCKS_BUSY (abase));
d2db1c32 1034
005ca5c7 1035 if (2 > (long) ABLOCKS_BUSY (abase))
ab6780cd 1036 { /* All the blocks are free. */
005ca5c7 1037 int i = 0, aligned = (long) ABLOCKS_BUSY (abase);
ab6780cd
SM
1038 struct ablock **tem = &free_ablock;
1039 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
1040
1041 while (*tem)
1042 {
1043 if (*tem >= (struct ablock *) abase && *tem < atop)
1044 {
1045 i++;
1046 *tem = (*tem)->x.next_free;
1047 }
1048 else
1049 tem = &(*tem)->x.next_free;
1050 }
1051 eassert ((aligned & 1) == aligned);
1052 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
349a4500 1053#ifdef USE_POSIX_MEMALIGN
cfb2f32e
SM
1054 eassert ((unsigned long)ABLOCKS_BASE (abase) % BLOCK_ALIGN == 0);
1055#endif
ab6780cd
SM
1056 free (ABLOCKS_BASE (abase));
1057 }
dafc79fa 1058 MALLOC_UNBLOCK_INPUT;
ab6780cd 1059}
3ef06d12
SM
1060
1061/* Return a new buffer structure allocated from the heap with
1062 a call to lisp_malloc. */
1063
1064struct buffer *
971de7fb 1065allocate_buffer (void)
3ef06d12
SM
1066{
1067 struct buffer *b
1068 = (struct buffer *) lisp_malloc (sizeof (struct buffer),
1069 MEM_TYPE_BUFFER);
67ee9f6e
SM
1070 b->size = sizeof (struct buffer) / sizeof (EMACS_INT);
1071 XSETPVECTYPE (b, PVEC_BUFFER);
3ef06d12
SM
1072 return b;
1073}
1074
9ac0d9e0 1075\f
026cdede
SM
1076#ifndef SYSTEM_MALLOC
1077
9ac0d9e0
JB
1078/* Arranging to disable input signals while we're in malloc.
1079
1080 This only works with GNU malloc. To help out systems which can't
1081 use GNU malloc, all the calls to malloc, realloc, and free
1082 elsewhere in the code should be inside a BLOCK_INPUT/UNBLOCK_INPUT
026cdede 1083 pair; unfortunately, we have no idea what C library functions
9ac0d9e0 1084 might call malloc, so we can't really protect them unless you're
2c5bd608
DL
1085 using GNU malloc. Fortunately, most of the major operating systems
1086 can use GNU malloc. */
9ac0d9e0 1087
026cdede 1088#ifndef SYNC_INPUT
dafc79fa
SM
1089/* When using SYNC_INPUT, we don't call malloc from a signal handler, so
1090 there's no need to block input around malloc. */
026cdede 1091
b3303f74 1092#ifndef DOUG_LEA_MALLOC
f57e2426
J
1093extern void * (*__malloc_hook) (size_t, const void *);
1094extern void * (*__realloc_hook) (void *, size_t, const void *);
1095extern void (*__free_hook) (void *, const void *);
b3303f74
DL
1096/* Else declared in malloc.h, perhaps with an extra arg. */
1097#endif /* DOUG_LEA_MALLOC */
f57e2426
J
1098static void * (*old_malloc_hook) (size_t, const void *);
1099static void * (*old_realloc_hook) (void *, size_t, const void*);
1100static void (*old_free_hook) (void*, const void*);
9ac0d9e0 1101
ef1b0ba7
SM
1102static __malloc_size_t bytes_used_when_reconsidered;
1103
276cbe5a
RS
1104/* This function is used as the hook for free to call. */
1105
9ac0d9e0 1106static void
7c3320d8 1107emacs_blocked_free (void *ptr, const void *ptr2)
9ac0d9e0 1108{
aa477689 1109 BLOCK_INPUT_ALLOC;
877935b1
GM
1110
1111#ifdef GC_MALLOC_CHECK
a83fee2c
GM
1112 if (ptr)
1113 {
1114 struct mem_node *m;
177c0ea7 1115
a83fee2c
GM
1116 m = mem_find (ptr);
1117 if (m == MEM_NIL || m->start != ptr)
1118 {
1119 fprintf (stderr,
1120 "Freeing `%p' which wasn't allocated with malloc\n", ptr);
1121 abort ();
1122 }
1123 else
1124 {
1125 /* fprintf (stderr, "free %p...%p (%p)\n", m->start, m->end, ptr); */
1126 mem_delete (m);
1127 }
1128 }
877935b1 1129#endif /* GC_MALLOC_CHECK */
177c0ea7 1130
9ac0d9e0
JB
1131 __free_hook = old_free_hook;
1132 free (ptr);
177c0ea7 1133
276cbe5a
RS
1134 /* If we released our reserve (due to running out of memory),
1135 and we have a fair amount free once again,
1136 try to set aside another reserve in case we run out once more. */
24d8a105 1137 if (! NILP (Vmemory_full)
276cbe5a
RS
1138 /* Verify there is enough space that even with the malloc
1139 hysteresis this call won't run out again.
1140 The code here is correct as long as SPARE_MEMORY
1141 is substantially larger than the block size malloc uses. */
1142 && (bytes_used_when_full
4d74a5fc 1143 > ((bytes_used_when_reconsidered = BYTES_USED)
bccfb310 1144 + max (malloc_hysteresis, 4) * SPARE_MEMORY)))
24d8a105 1145 refill_memory_reserve ();
276cbe5a 1146
b0846f52 1147 __free_hook = emacs_blocked_free;
aa477689 1148 UNBLOCK_INPUT_ALLOC;
9ac0d9e0
JB
1149}
1150
34400008 1151
276cbe5a
RS
1152/* This function is the malloc hook that Emacs uses. */
1153
9ac0d9e0 1154static void *
7c3320d8 1155emacs_blocked_malloc (size_t size, const void *ptr)
9ac0d9e0
JB
1156{
1157 void *value;
1158
aa477689 1159 BLOCK_INPUT_ALLOC;
9ac0d9e0 1160 __malloc_hook = old_malloc_hook;
1177ecf6 1161#ifdef DOUG_LEA_MALLOC
5665a02f
KL
1162 /* Segfaults on my system. --lorentey */
1163 /* mallopt (M_TOP_PAD, malloc_hysteresis * 4096); */
1177ecf6 1164#else
d1658221 1165 __malloc_extra_blocks = malloc_hysteresis;
1177ecf6 1166#endif
877935b1 1167
2756d8ee 1168 value = (void *) malloc (size);
877935b1
GM
1169
1170#ifdef GC_MALLOC_CHECK
1171 {
1172 struct mem_node *m = mem_find (value);
1173 if (m != MEM_NIL)
1174 {
1175 fprintf (stderr, "Malloc returned %p which is already in use\n",
1176 value);
1177 fprintf (stderr, "Region in use is %p...%p, %u bytes, type %d\n",
1178 m->start, m->end, (char *) m->end - (char *) m->start,
1179 m->type);
1180 abort ();
1181 }
1182
1183 if (!dont_register_blocks)
1184 {
1185 mem_insert (value, (char *) value + max (1, size), allocated_mem_type);
1186 allocated_mem_type = MEM_TYPE_NON_LISP;
1187 }
1188 }
1189#endif /* GC_MALLOC_CHECK */
177c0ea7 1190
b0846f52 1191 __malloc_hook = emacs_blocked_malloc;
aa477689 1192 UNBLOCK_INPUT_ALLOC;
9ac0d9e0 1193
877935b1 1194 /* fprintf (stderr, "%p malloc\n", value); */
9ac0d9e0
JB
1195 return value;
1196}
1197
34400008
GM
1198
1199/* This function is the realloc hook that Emacs uses. */
1200
9ac0d9e0 1201static void *
7c3320d8 1202emacs_blocked_realloc (void *ptr, size_t size, const void *ptr2)
9ac0d9e0
JB
1203{
1204 void *value;
1205
aa477689 1206 BLOCK_INPUT_ALLOC;
9ac0d9e0 1207 __realloc_hook = old_realloc_hook;
877935b1
GM
1208
1209#ifdef GC_MALLOC_CHECK
1210 if (ptr)
1211 {
1212 struct mem_node *m = mem_find (ptr);
1213 if (m == MEM_NIL || m->start != ptr)
1214 {
1215 fprintf (stderr,
1216 "Realloc of %p which wasn't allocated with malloc\n",
1217 ptr);
1218 abort ();
1219 }
1220
1221 mem_delete (m);
1222 }
177c0ea7 1223
877935b1 1224 /* fprintf (stderr, "%p -> realloc\n", ptr); */
177c0ea7 1225
877935b1
GM
1226 /* Prevent malloc from registering blocks. */
1227 dont_register_blocks = 1;
1228#endif /* GC_MALLOC_CHECK */
1229
2756d8ee 1230 value = (void *) realloc (ptr, size);
877935b1
GM
1231
1232#ifdef GC_MALLOC_CHECK
1233 dont_register_blocks = 0;
1234
1235 {
1236 struct mem_node *m = mem_find (value);
1237 if (m != MEM_NIL)
1238 {
1239 fprintf (stderr, "Realloc returns memory that is already in use\n");
1240 abort ();
1241 }
1242
1243 /* Can't handle zero size regions in the red-black tree. */
1244 mem_insert (value, (char *) value + max (size, 1), MEM_TYPE_NON_LISP);
1245 }
177c0ea7 1246
877935b1
GM
1247 /* fprintf (stderr, "%p <- realloc\n", value); */
1248#endif /* GC_MALLOC_CHECK */
177c0ea7 1249
b0846f52 1250 __realloc_hook = emacs_blocked_realloc;
aa477689 1251 UNBLOCK_INPUT_ALLOC;
9ac0d9e0
JB
1252
1253 return value;
1254}
1255
34400008 1256
aa477689
JD
1257#ifdef HAVE_GTK_AND_PTHREAD
1258/* Called from Fdump_emacs so that when the dumped Emacs starts, it has a
1259 normal malloc. Some thread implementations need this as they call
1260 malloc before main. The pthread_self call in BLOCK_INPUT_ALLOC then
1261 calls malloc because it is the first call, and we have an endless loop. */
1262
1263void
1264reset_malloc_hooks ()
1265{
4d580af2
AS
1266 __free_hook = old_free_hook;
1267 __malloc_hook = old_malloc_hook;
1268 __realloc_hook = old_realloc_hook;
aa477689
JD
1269}
1270#endif /* HAVE_GTK_AND_PTHREAD */
1271
1272
34400008
GM
1273/* Called from main to set up malloc to use our hooks. */
1274
9ac0d9e0 1275void
7c3320d8 1276uninterrupt_malloc (void)
9ac0d9e0 1277{
aa477689 1278#ifdef HAVE_GTK_AND_PTHREAD
a1b41389 1279#ifdef DOUG_LEA_MALLOC
aa477689
JD
1280 pthread_mutexattr_t attr;
1281
1282 /* GLIBC has a faster way to do this, but lets keep it portable.
1283 This is according to the Single UNIX Specification. */
1284 pthread_mutexattr_init (&attr);
1285 pthread_mutexattr_settype (&attr, PTHREAD_MUTEX_RECURSIVE);
1286 pthread_mutex_init (&alloc_mutex, &attr);
a1b41389 1287#else /* !DOUG_LEA_MALLOC */
ce5b453a 1288 /* Some systems such as Solaris 2.6 don't have a recursive mutex,
a1b41389
YM
1289 and the bundled gmalloc.c doesn't require it. */
1290 pthread_mutex_init (&alloc_mutex, NULL);
1291#endif /* !DOUG_LEA_MALLOC */
aa477689
JD
1292#endif /* HAVE_GTK_AND_PTHREAD */
1293
c8099634
RS
1294 if (__free_hook != emacs_blocked_free)
1295 old_free_hook = __free_hook;
b0846f52 1296 __free_hook = emacs_blocked_free;
9ac0d9e0 1297
c8099634
RS
1298 if (__malloc_hook != emacs_blocked_malloc)
1299 old_malloc_hook = __malloc_hook;
b0846f52 1300 __malloc_hook = emacs_blocked_malloc;
9ac0d9e0 1301
c8099634
RS
1302 if (__realloc_hook != emacs_blocked_realloc)
1303 old_realloc_hook = __realloc_hook;
b0846f52 1304 __realloc_hook = emacs_blocked_realloc;
9ac0d9e0 1305}
2e471eb5 1306
026cdede 1307#endif /* not SYNC_INPUT */
2e471eb5
GM
1308#endif /* not SYSTEM_MALLOC */
1309
1310
7146af97 1311\f
2e471eb5
GM
1312/***********************************************************************
1313 Interval Allocation
1314 ***********************************************************************/
1a4f1e2c 1315
34400008
GM
1316/* Number of intervals allocated in an interval_block structure.
1317 The 1020 is 1024 minus malloc overhead. */
1318
d5e35230
JA
1319#define INTERVAL_BLOCK_SIZE \
1320 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1321
34400008
GM
1322/* Intervals are allocated in chunks in form of an interval_block
1323 structure. */
1324
d5e35230 1325struct interval_block
2e471eb5 1326{
6b61353c 1327 /* Place `intervals' first, to preserve alignment. */
2e471eb5 1328 struct interval intervals[INTERVAL_BLOCK_SIZE];
6b61353c 1329 struct interval_block *next;
2e471eb5 1330};
d5e35230 1331
34400008
GM
1332/* Current interval block. Its `next' pointer points to older
1333 blocks. */
1334
d3d47262 1335static struct interval_block *interval_block;
34400008
GM
1336
1337/* Index in interval_block above of the next unused interval
1338 structure. */
1339
d5e35230 1340static int interval_block_index;
34400008
GM
1341
1342/* Number of free and live intervals. */
1343
2e471eb5 1344static int total_free_intervals, total_intervals;
d5e35230 1345
34400008
GM
1346/* List of free intervals. */
1347
d5e35230
JA
1348INTERVAL interval_free_list;
1349
c8099634 1350/* Total number of interval blocks now in use. */
2e471eb5 1351
d3d47262 1352static int n_interval_blocks;
c8099634 1353
34400008
GM
1354
1355/* Initialize interval allocation. */
1356
d5e35230 1357static void
971de7fb 1358init_intervals (void)
d5e35230 1359{
005ca5c7
DL
1360 interval_block = NULL;
1361 interval_block_index = INTERVAL_BLOCK_SIZE;
d5e35230 1362 interval_free_list = 0;
005ca5c7 1363 n_interval_blocks = 0;
d5e35230
JA
1364}
1365
34400008
GM
1366
1367/* Return a new interval. */
d5e35230
JA
1368
1369INTERVAL
971de7fb 1370make_interval (void)
d5e35230
JA
1371{
1372 INTERVAL val;
1373
e2984df0
CY
1374 /* eassert (!handling_signal); */
1375
dafc79fa 1376 MALLOC_BLOCK_INPUT;
cfb2f32e 1377
d5e35230
JA
1378 if (interval_free_list)
1379 {
1380 val = interval_free_list;
439d5cb4 1381 interval_free_list = INTERVAL_PARENT (interval_free_list);
d5e35230
JA
1382 }
1383 else
1384 {
1385 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1386 {
3c06d205
KH
1387 register struct interval_block *newi;
1388
34400008
GM
1389 newi = (struct interval_block *) lisp_malloc (sizeof *newi,
1390 MEM_TYPE_NON_LISP);
d5e35230 1391
d5e35230
JA
1392 newi->next = interval_block;
1393 interval_block = newi;
1394 interval_block_index = 0;
c8099634 1395 n_interval_blocks++;
d5e35230
JA
1396 }
1397 val = &interval_block->intervals[interval_block_index++];
1398 }
e2984df0 1399
dafc79fa 1400 MALLOC_UNBLOCK_INPUT;
e2984df0 1401
d5e35230 1402 consing_since_gc += sizeof (struct interval);
310ea200 1403 intervals_consed++;
d5e35230 1404 RESET_INTERVAL (val);
2336fe58 1405 val->gcmarkbit = 0;
d5e35230
JA
1406 return val;
1407}
1408
34400008
GM
1409
1410/* Mark Lisp objects in interval I. */
d5e35230
JA
1411
1412static void
971de7fb 1413mark_interval (register INTERVAL i, Lisp_Object dummy)
d5e35230 1414{
2336fe58
SM
1415 eassert (!i->gcmarkbit); /* Intervals are never shared. */
1416 i->gcmarkbit = 1;
49723c04 1417 mark_object (i->plist);
d5e35230
JA
1418}
1419
34400008
GM
1420
1421/* Mark the interval tree rooted in TREE. Don't call this directly;
1422 use the macro MARK_INTERVAL_TREE instead. */
1423
d5e35230 1424static void
971de7fb 1425mark_interval_tree (register INTERVAL tree)
d5e35230 1426{
e8720644
JB
1427 /* No need to test if this tree has been marked already; this
1428 function is always called through the MARK_INTERVAL_TREE macro,
1429 which takes care of that. */
1430
1e934989 1431 traverse_intervals_noorder (tree, mark_interval, Qnil);
d5e35230
JA
1432}
1433
34400008
GM
1434
1435/* Mark the interval tree rooted in I. */
1436
e8720644
JB
1437#define MARK_INTERVAL_TREE(i) \
1438 do { \
2336fe58 1439 if (!NULL_INTERVAL_P (i) && !i->gcmarkbit) \
e8720644
JB
1440 mark_interval_tree (i); \
1441 } while (0)
d5e35230 1442
34400008 1443
2e471eb5
GM
1444#define UNMARK_BALANCE_INTERVALS(i) \
1445 do { \
1446 if (! NULL_INTERVAL_P (i)) \
2336fe58 1447 (i) = balance_intervals (i); \
2e471eb5 1448 } while (0)
d5e35230 1449
cc2d8c6b 1450\f
6e5cb96f 1451/* Number support. If USE_LISP_UNION_TYPE is in effect, we
cc2d8c6b
KR
1452 can't create number objects in macros. */
1453#ifndef make_number
1454Lisp_Object
c566235d 1455make_number (EMACS_INT n)
cc2d8c6b
KR
1456{
1457 Lisp_Object obj;
1458 obj.s.val = n;
1459 obj.s.type = Lisp_Int;
1460 return obj;
1461}
1462#endif
d5e35230 1463\f
2e471eb5
GM
1464/***********************************************************************
1465 String Allocation
1466 ***********************************************************************/
1a4f1e2c 1467
2e471eb5
GM
1468/* Lisp_Strings are allocated in string_block structures. When a new
1469 string_block is allocated, all the Lisp_Strings it contains are
e0fead5d 1470 added to a free-list string_free_list. When a new Lisp_String is
2e471eb5
GM
1471 needed, it is taken from that list. During the sweep phase of GC,
1472 string_blocks that are entirely free are freed, except two which
1473 we keep.
7146af97 1474
2e471eb5
GM
1475 String data is allocated from sblock structures. Strings larger
1476 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1477 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
7146af97 1478
2e471eb5
GM
1479 Sblocks consist internally of sdata structures, one for each
1480 Lisp_String. The sdata structure points to the Lisp_String it
1481 belongs to. The Lisp_String points back to the `u.data' member of
1482 its sdata structure.
7146af97 1483
2e471eb5
GM
1484 When a Lisp_String is freed during GC, it is put back on
1485 string_free_list, and its `data' member and its sdata's `string'
1486 pointer is set to null. The size of the string is recorded in the
1487 `u.nbytes' member of the sdata. So, sdata structures that are no
1488 longer used, can be easily recognized, and it's easy to compact the
1489 sblocks of small strings which we do in compact_small_strings. */
7146af97 1490
2e471eb5
GM
1491/* Size in bytes of an sblock structure used for small strings. This
1492 is 8192 minus malloc overhead. */
7146af97 1493
2e471eb5 1494#define SBLOCK_SIZE 8188
c8099634 1495
2e471eb5
GM
1496/* Strings larger than this are considered large strings. String data
1497 for large strings is allocated from individual sblocks. */
7146af97 1498
2e471eb5
GM
1499#define LARGE_STRING_BYTES 1024
1500
1501/* Structure describing string memory sub-allocated from an sblock.
1502 This is where the contents of Lisp strings are stored. */
1503
1504struct sdata
7146af97 1505{
2e471eb5
GM
1506 /* Back-pointer to the string this sdata belongs to. If null, this
1507 structure is free, and the NBYTES member of the union below
34400008 1508 contains the string's byte size (the same value that STRING_BYTES
2e471eb5
GM
1509 would return if STRING were non-null). If non-null, STRING_BYTES
1510 (STRING) is the size of the data, and DATA contains the string's
1511 contents. */
1512 struct Lisp_String *string;
7146af97 1513
31d929e5 1514#ifdef GC_CHECK_STRING_BYTES
177c0ea7 1515
31d929e5
GM
1516 EMACS_INT nbytes;
1517 unsigned char data[1];
177c0ea7 1518
31d929e5
GM
1519#define SDATA_NBYTES(S) (S)->nbytes
1520#define SDATA_DATA(S) (S)->data
177c0ea7 1521
31d929e5
GM
1522#else /* not GC_CHECK_STRING_BYTES */
1523
2e471eb5
GM
1524 union
1525 {
1526 /* When STRING in non-null. */
1527 unsigned char data[1];
1528
1529 /* When STRING is null. */
1530 EMACS_INT nbytes;
1531 } u;
177c0ea7 1532
31d929e5
GM
1533
1534#define SDATA_NBYTES(S) (S)->u.nbytes
1535#define SDATA_DATA(S) (S)->u.data
1536
1537#endif /* not GC_CHECK_STRING_BYTES */
2e471eb5
GM
1538};
1539
31d929e5 1540
2e471eb5
GM
1541/* Structure describing a block of memory which is sub-allocated to
1542 obtain string data memory for strings. Blocks for small strings
1543 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1544 as large as needed. */
1545
1546struct sblock
7146af97 1547{
2e471eb5
GM
1548 /* Next in list. */
1549 struct sblock *next;
7146af97 1550
2e471eb5
GM
1551 /* Pointer to the next free sdata block. This points past the end
1552 of the sblock if there isn't any space left in this block. */
1553 struct sdata *next_free;
1554
1555 /* Start of data. */
1556 struct sdata first_data;
1557};
1558
1559/* Number of Lisp strings in a string_block structure. The 1020 is
1560 1024 minus malloc overhead. */
1561
19bcad1f 1562#define STRING_BLOCK_SIZE \
2e471eb5
GM
1563 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1564
1565/* Structure describing a block from which Lisp_String structures
1566 are allocated. */
1567
1568struct string_block
7146af97 1569{
6b61353c 1570 /* Place `strings' first, to preserve alignment. */
19bcad1f 1571 struct Lisp_String strings[STRING_BLOCK_SIZE];
6b61353c 1572 struct string_block *next;
2e471eb5 1573};
7146af97 1574
2e471eb5
GM
1575/* Head and tail of the list of sblock structures holding Lisp string
1576 data. We always allocate from current_sblock. The NEXT pointers
1577 in the sblock structures go from oldest_sblock to current_sblock. */
3c06d205 1578
2e471eb5 1579static struct sblock *oldest_sblock, *current_sblock;
7146af97 1580
2e471eb5 1581/* List of sblocks for large strings. */
7146af97 1582
2e471eb5 1583static struct sblock *large_sblocks;
7146af97 1584
2e471eb5 1585/* List of string_block structures, and how many there are. */
7146af97 1586
2e471eb5
GM
1587static struct string_block *string_blocks;
1588static int n_string_blocks;
7146af97 1589
2e471eb5 1590/* Free-list of Lisp_Strings. */
7146af97 1591
2e471eb5 1592static struct Lisp_String *string_free_list;
7146af97 1593
2e471eb5 1594/* Number of live and free Lisp_Strings. */
c8099634 1595
2e471eb5 1596static int total_strings, total_free_strings;
7146af97 1597
2e471eb5
GM
1598/* Number of bytes used by live strings. */
1599
14162469 1600static EMACS_INT total_string_size;
2e471eb5
GM
1601
1602/* Given a pointer to a Lisp_String S which is on the free-list
1603 string_free_list, return a pointer to its successor in the
1604 free-list. */
1605
1606#define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1607
1608/* Return a pointer to the sdata structure belonging to Lisp string S.
1609 S must be live, i.e. S->data must not be null. S->data is actually
1610 a pointer to the `u.data' member of its sdata structure; the
1611 structure starts at a constant offset in front of that. */
177c0ea7 1612
31d929e5
GM
1613#ifdef GC_CHECK_STRING_BYTES
1614
1615#define SDATA_OF_STRING(S) \
1616 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *) \
1617 - sizeof (EMACS_INT)))
1618
1619#else /* not GC_CHECK_STRING_BYTES */
1620
2e471eb5
GM
1621#define SDATA_OF_STRING(S) \
1622 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *)))
1623
31d929e5
GM
1624#endif /* not GC_CHECK_STRING_BYTES */
1625
212f33f1
KS
1626
1627#ifdef GC_CHECK_STRING_OVERRUN
bdbed949
KS
1628
1629/* We check for overrun in string data blocks by appending a small
1630 "cookie" after each allocated string data block, and check for the
8349069c 1631 presence of this cookie during GC. */
bdbed949
KS
1632
1633#define GC_STRING_OVERRUN_COOKIE_SIZE 4
1634static char string_overrun_cookie[GC_STRING_OVERRUN_COOKIE_SIZE] =
1635 { 0xde, 0xad, 0xbe, 0xef };
1636
212f33f1 1637#else
bdbed949 1638#define GC_STRING_OVERRUN_COOKIE_SIZE 0
212f33f1
KS
1639#endif
1640
2e471eb5
GM
1641/* Value is the size of an sdata structure large enough to hold NBYTES
1642 bytes of string data. The value returned includes a terminating
1643 NUL byte, the size of the sdata structure, and padding. */
1644
31d929e5
GM
1645#ifdef GC_CHECK_STRING_BYTES
1646
2e471eb5
GM
1647#define SDATA_SIZE(NBYTES) \
1648 ((sizeof (struct Lisp_String *) \
1649 + (NBYTES) + 1 \
31d929e5 1650 + sizeof (EMACS_INT) \
2e471eb5
GM
1651 + sizeof (EMACS_INT) - 1) \
1652 & ~(sizeof (EMACS_INT) - 1))
1653
31d929e5
GM
1654#else /* not GC_CHECK_STRING_BYTES */
1655
1656#define SDATA_SIZE(NBYTES) \
1657 ((sizeof (struct Lisp_String *) \
1658 + (NBYTES) + 1 \
1659 + sizeof (EMACS_INT) - 1) \
1660 & ~(sizeof (EMACS_INT) - 1))
1661
1662#endif /* not GC_CHECK_STRING_BYTES */
2e471eb5 1663
bdbed949
KS
1664/* Extra bytes to allocate for each string. */
1665
1666#define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1667
2e471eb5 1668/* Initialize string allocation. Called from init_alloc_once. */
d457598b 1669
d3d47262 1670static void
971de7fb 1671init_strings (void)
7146af97 1672{
2e471eb5
GM
1673 total_strings = total_free_strings = total_string_size = 0;
1674 oldest_sblock = current_sblock = large_sblocks = NULL;
1675 string_blocks = NULL;
1676 n_string_blocks = 0;
1677 string_free_list = NULL;
4d774b0f
JB
1678 empty_unibyte_string = make_pure_string ("", 0, 0, 0);
1679 empty_multibyte_string = make_pure_string ("", 0, 0, 1);
7146af97
JB
1680}
1681
2e471eb5 1682
361b097f
GM
1683#ifdef GC_CHECK_STRING_BYTES
1684
361b097f
GM
1685static int check_string_bytes_count;
1686
f57e2426
J
1687static void check_string_bytes (int);
1688static void check_sblock (struct sblock *);
676a7251
GM
1689
1690#define CHECK_STRING_BYTES(S) STRING_BYTES (S)
1691
1692
1693/* Like GC_STRING_BYTES, but with debugging check. */
1694
14162469
EZ
1695EMACS_INT
1696string_bytes (struct Lisp_String *s)
676a7251 1697{
14162469
EZ
1698 EMACS_INT nbytes =
1699 (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1700
676a7251
GM
1701 if (!PURE_POINTER_P (s)
1702 && s->data
1703 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1704 abort ();
1705 return nbytes;
1706}
177c0ea7 1707
2c5bd608 1708/* Check validity of Lisp strings' string_bytes member in B. */
676a7251 1709
d3d47262 1710static void
676a7251
GM
1711check_sblock (b)
1712 struct sblock *b;
361b097f 1713{
676a7251 1714 struct sdata *from, *end, *from_end;
177c0ea7 1715
676a7251 1716 end = b->next_free;
177c0ea7 1717
676a7251 1718 for (from = &b->first_data; from < end; from = from_end)
361b097f 1719 {
676a7251
GM
1720 /* Compute the next FROM here because copying below may
1721 overwrite data we need to compute it. */
14162469 1722 EMACS_INT nbytes;
177c0ea7 1723
676a7251
GM
1724 /* Check that the string size recorded in the string is the
1725 same as the one recorded in the sdata structure. */
1726 if (from->string)
1727 CHECK_STRING_BYTES (from->string);
177c0ea7 1728
676a7251
GM
1729 if (from->string)
1730 nbytes = GC_STRING_BYTES (from->string);
1731 else
1732 nbytes = SDATA_NBYTES (from);
177c0ea7 1733
676a7251 1734 nbytes = SDATA_SIZE (nbytes);
212f33f1 1735 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
676a7251
GM
1736 }
1737}
361b097f 1738
676a7251
GM
1739
1740/* Check validity of Lisp strings' string_bytes member. ALL_P
1741 non-zero means check all strings, otherwise check only most
1742 recently allocated strings. Used for hunting a bug. */
1743
d3d47262 1744static void
676a7251
GM
1745check_string_bytes (all_p)
1746 int all_p;
1747{
1748 if (all_p)
1749 {
1750 struct sblock *b;
1751
1752 for (b = large_sblocks; b; b = b->next)
1753 {
1754 struct Lisp_String *s = b->first_data.string;
1755 if (s)
1756 CHECK_STRING_BYTES (s);
361b097f 1757 }
177c0ea7 1758
676a7251
GM
1759 for (b = oldest_sblock; b; b = b->next)
1760 check_sblock (b);
361b097f 1761 }
676a7251
GM
1762 else
1763 check_sblock (current_sblock);
361b097f
GM
1764}
1765
1766#endif /* GC_CHECK_STRING_BYTES */
1767
212f33f1
KS
1768#ifdef GC_CHECK_STRING_FREE_LIST
1769
bdbed949
KS
1770/* Walk through the string free list looking for bogus next pointers.
1771 This may catch buffer overrun from a previous string. */
1772
212f33f1
KS
1773static void
1774check_string_free_list ()
1775{
1776 struct Lisp_String *s;
1777
1778 /* Pop a Lisp_String off the free-list. */
1779 s = string_free_list;
1780 while (s != NULL)
1781 {
14162469 1782 if ((unsigned long)s < 1024)
212f33f1
KS
1783 abort();
1784 s = NEXT_FREE_LISP_STRING (s);
1785 }
1786}
1787#else
1788#define check_string_free_list()
1789#endif
361b097f 1790
2e471eb5
GM
1791/* Return a new Lisp_String. */
1792
1793static struct Lisp_String *
971de7fb 1794allocate_string (void)
7146af97 1795{
2e471eb5 1796 struct Lisp_String *s;
7146af97 1797
e2984df0
CY
1798 /* eassert (!handling_signal); */
1799
dafc79fa 1800 MALLOC_BLOCK_INPUT;
cfb2f32e 1801
2e471eb5
GM
1802 /* If the free-list is empty, allocate a new string_block, and
1803 add all the Lisp_Strings in it to the free-list. */
1804 if (string_free_list == NULL)
7146af97 1805 {
2e471eb5
GM
1806 struct string_block *b;
1807 int i;
1808
34400008 1809 b = (struct string_block *) lisp_malloc (sizeof *b, MEM_TYPE_STRING);
72af86bd 1810 memset (b, 0, sizeof *b);
2e471eb5
GM
1811 b->next = string_blocks;
1812 string_blocks = b;
1813 ++n_string_blocks;
1814
19bcad1f 1815 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
7146af97 1816 {
2e471eb5
GM
1817 s = b->strings + i;
1818 NEXT_FREE_LISP_STRING (s) = string_free_list;
1819 string_free_list = s;
7146af97 1820 }
2e471eb5 1821
19bcad1f 1822 total_free_strings += STRING_BLOCK_SIZE;
7146af97 1823 }
c0f51373 1824
bdbed949 1825 check_string_free_list ();
212f33f1 1826
2e471eb5
GM
1827 /* Pop a Lisp_String off the free-list. */
1828 s = string_free_list;
1829 string_free_list = NEXT_FREE_LISP_STRING (s);
c0f51373 1830
dafc79fa 1831 MALLOC_UNBLOCK_INPUT;
e2984df0 1832
2e471eb5 1833 /* Probably not strictly necessary, but play it safe. */
72af86bd 1834 memset (s, 0, sizeof *s);
c0f51373 1835
2e471eb5
GM
1836 --total_free_strings;
1837 ++total_strings;
1838 ++strings_consed;
1839 consing_since_gc += sizeof *s;
c0f51373 1840
361b097f 1841#ifdef GC_CHECK_STRING_BYTES
e39a993c 1842 if (!noninteractive)
361b097f 1843 {
676a7251
GM
1844 if (++check_string_bytes_count == 200)
1845 {
1846 check_string_bytes_count = 0;
1847 check_string_bytes (1);
1848 }
1849 else
1850 check_string_bytes (0);
361b097f 1851 }
676a7251 1852#endif /* GC_CHECK_STRING_BYTES */
361b097f 1853
2e471eb5 1854 return s;
c0f51373 1855}
7146af97 1856
7146af97 1857
2e471eb5
GM
1858/* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1859 plus a NUL byte at the end. Allocate an sdata structure for S, and
1860 set S->data to its `u.data' member. Store a NUL byte at the end of
1861 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1862 S->data if it was initially non-null. */
7146af97 1863
2e471eb5 1864void
413d18e7
EZ
1865allocate_string_data (struct Lisp_String *s,
1866 EMACS_INT nchars, EMACS_INT nbytes)
7146af97 1867{
5c5fecb3 1868 struct sdata *data, *old_data;
2e471eb5 1869 struct sblock *b;
14162469 1870 EMACS_INT needed, old_nbytes;
7146af97 1871
2e471eb5
GM
1872 /* Determine the number of bytes needed to store NBYTES bytes
1873 of string data. */
1874 needed = SDATA_SIZE (nbytes);
e2984df0
CY
1875 old_data = s->data ? SDATA_OF_STRING (s) : NULL;
1876 old_nbytes = GC_STRING_BYTES (s);
1877
dafc79fa 1878 MALLOC_BLOCK_INPUT;
7146af97 1879
2e471eb5
GM
1880 if (nbytes > LARGE_STRING_BYTES)
1881 {
675d5130 1882 size_t size = sizeof *b - sizeof (struct sdata) + needed;
2e471eb5
GM
1883
1884#ifdef DOUG_LEA_MALLOC
f8608968
GM
1885 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1886 because mapped region contents are not preserved in
d36b182f
DL
1887 a dumped Emacs.
1888
1889 In case you think of allowing it in a dumped Emacs at the
1890 cost of not being able to re-dump, there's another reason:
1891 mmap'ed data typically have an address towards the top of the
1892 address space, which won't fit into an EMACS_INT (at least on
1893 32-bit systems with the current tagging scheme). --fx */
2e471eb5
GM
1894 mallopt (M_MMAP_MAX, 0);
1895#endif
1896
212f33f1 1897 b = (struct sblock *) lisp_malloc (size + GC_STRING_EXTRA, MEM_TYPE_NON_LISP);
177c0ea7 1898
2e471eb5
GM
1899#ifdef DOUG_LEA_MALLOC
1900 /* Back to a reasonable maximum of mmap'ed areas. */
1901 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1902#endif
177c0ea7 1903
2e471eb5
GM
1904 b->next_free = &b->first_data;
1905 b->first_data.string = NULL;
1906 b->next = large_sblocks;
1907 large_sblocks = b;
1908 }
1909 else if (current_sblock == NULL
1910 || (((char *) current_sblock + SBLOCK_SIZE
1911 - (char *) current_sblock->next_free)
212f33f1 1912 < (needed + GC_STRING_EXTRA)))
2e471eb5
GM
1913 {
1914 /* Not enough room in the current sblock. */
34400008 1915 b = (struct sblock *) lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
2e471eb5
GM
1916 b->next_free = &b->first_data;
1917 b->first_data.string = NULL;
1918 b->next = NULL;
1919
1920 if (current_sblock)
1921 current_sblock->next = b;
1922 else
1923 oldest_sblock = b;
1924 current_sblock = b;
1925 }
1926 else
1927 b = current_sblock;
5c5fecb3 1928
2e471eb5 1929 data = b->next_free;
a0b08700
CY
1930 b->next_free = (struct sdata *) ((char *) data + needed + GC_STRING_EXTRA);
1931
dafc79fa 1932 MALLOC_UNBLOCK_INPUT;
e2984df0 1933
2e471eb5 1934 data->string = s;
31d929e5
GM
1935 s->data = SDATA_DATA (data);
1936#ifdef GC_CHECK_STRING_BYTES
1937 SDATA_NBYTES (data) = nbytes;
1938#endif
2e471eb5
GM
1939 s->size = nchars;
1940 s->size_byte = nbytes;
1941 s->data[nbytes] = '\0';
212f33f1 1942#ifdef GC_CHECK_STRING_OVERRUN
72af86bd 1943 memcpy (data + needed, string_overrun_cookie, GC_STRING_OVERRUN_COOKIE_SIZE);
212f33f1 1944#endif
177c0ea7 1945
5c5fecb3
GM
1946 /* If S had already data assigned, mark that as free by setting its
1947 string back-pointer to null, and recording the size of the data
00c9c33c 1948 in it. */
5c5fecb3
GM
1949 if (old_data)
1950 {
31d929e5 1951 SDATA_NBYTES (old_data) = old_nbytes;
5c5fecb3
GM
1952 old_data->string = NULL;
1953 }
1954
2e471eb5
GM
1955 consing_since_gc += needed;
1956}
1957
1958
1959/* Sweep and compact strings. */
1960
1961static void
971de7fb 1962sweep_strings (void)
2e471eb5
GM
1963{
1964 struct string_block *b, *next;
1965 struct string_block *live_blocks = NULL;
177c0ea7 1966
2e471eb5
GM
1967 string_free_list = NULL;
1968 total_strings = total_free_strings = 0;
1969 total_string_size = 0;
1970
1971 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
1972 for (b = string_blocks; b; b = next)
1973 {
1974 int i, nfree = 0;
1975 struct Lisp_String *free_list_before = string_free_list;
1976
1977 next = b->next;
1978
19bcad1f 1979 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
2e471eb5
GM
1980 {
1981 struct Lisp_String *s = b->strings + i;
1982
1983 if (s->data)
1984 {
1985 /* String was not on free-list before. */
1986 if (STRING_MARKED_P (s))
1987 {
1988 /* String is live; unmark it and its intervals. */
1989 UNMARK_STRING (s);
177c0ea7 1990
2e471eb5
GM
1991 if (!NULL_INTERVAL_P (s->intervals))
1992 UNMARK_BALANCE_INTERVALS (s->intervals);
1993
1994 ++total_strings;
1995 total_string_size += STRING_BYTES (s);
1996 }
1997 else
1998 {
1999 /* String is dead. Put it on the free-list. */
2000 struct sdata *data = SDATA_OF_STRING (s);
2001
2002 /* Save the size of S in its sdata so that we know
2003 how large that is. Reset the sdata's string
2004 back-pointer so that we know it's free. */
31d929e5
GM
2005#ifdef GC_CHECK_STRING_BYTES
2006 if (GC_STRING_BYTES (s) != SDATA_NBYTES (data))
2007 abort ();
2008#else
2e471eb5 2009 data->u.nbytes = GC_STRING_BYTES (s);
31d929e5 2010#endif
2e471eb5
GM
2011 data->string = NULL;
2012
2013 /* Reset the strings's `data' member so that we
2014 know it's free. */
2015 s->data = NULL;
2016
2017 /* Put the string on the free-list. */
2018 NEXT_FREE_LISP_STRING (s) = string_free_list;
2019 string_free_list = s;
2020 ++nfree;
2021 }
2022 }
2023 else
2024 {
2025 /* S was on the free-list before. Put it there again. */
2026 NEXT_FREE_LISP_STRING (s) = string_free_list;
2027 string_free_list = s;
2028 ++nfree;
2029 }
2030 }
2031
34400008 2032 /* Free blocks that contain free Lisp_Strings only, except
2e471eb5 2033 the first two of them. */
19bcad1f
SM
2034 if (nfree == STRING_BLOCK_SIZE
2035 && total_free_strings > STRING_BLOCK_SIZE)
2e471eb5
GM
2036 {
2037 lisp_free (b);
2038 --n_string_blocks;
2039 string_free_list = free_list_before;
2040 }
2041 else
2042 {
2043 total_free_strings += nfree;
2044 b->next = live_blocks;
2045 live_blocks = b;
2046 }
2047 }
2048
bdbed949 2049 check_string_free_list ();
212f33f1 2050
2e471eb5
GM
2051 string_blocks = live_blocks;
2052 free_large_strings ();
2053 compact_small_strings ();
212f33f1 2054
bdbed949 2055 check_string_free_list ();
2e471eb5
GM
2056}
2057
2058
2059/* Free dead large strings. */
2060
2061static void
971de7fb 2062free_large_strings (void)
2e471eb5
GM
2063{
2064 struct sblock *b, *next;
2065 struct sblock *live_blocks = NULL;
177c0ea7 2066
2e471eb5
GM
2067 for (b = large_sblocks; b; b = next)
2068 {
2069 next = b->next;
2070
2071 if (b->first_data.string == NULL)
2072 lisp_free (b);
2073 else
2074 {
2075 b->next = live_blocks;
2076 live_blocks = b;
2077 }
2078 }
2079
2080 large_sblocks = live_blocks;
2081}
2082
2083
2084/* Compact data of small strings. Free sblocks that don't contain
2085 data of live strings after compaction. */
2086
2087static void
971de7fb 2088compact_small_strings (void)
2e471eb5
GM
2089{
2090 struct sblock *b, *tb, *next;
2091 struct sdata *from, *to, *end, *tb_end;
2092 struct sdata *to_end, *from_end;
2093
2094 /* TB is the sblock we copy to, TO is the sdata within TB we copy
2095 to, and TB_END is the end of TB. */
2096 tb = oldest_sblock;
2097 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2098 to = &tb->first_data;
2099
2100 /* Step through the blocks from the oldest to the youngest. We
2101 expect that old blocks will stabilize over time, so that less
2102 copying will happen this way. */
2103 for (b = oldest_sblock; b; b = b->next)
2104 {
2105 end = b->next_free;
2106 xassert ((char *) end <= (char *) b + SBLOCK_SIZE);
177c0ea7 2107
2e471eb5
GM
2108 for (from = &b->first_data; from < end; from = from_end)
2109 {
2110 /* Compute the next FROM here because copying below may
2111 overwrite data we need to compute it. */
14162469 2112 EMACS_INT nbytes;
2e471eb5 2113
31d929e5
GM
2114#ifdef GC_CHECK_STRING_BYTES
2115 /* Check that the string size recorded in the string is the
2116 same as the one recorded in the sdata structure. */
2117 if (from->string
2118 && GC_STRING_BYTES (from->string) != SDATA_NBYTES (from))
2119 abort ();
2120#endif /* GC_CHECK_STRING_BYTES */
177c0ea7 2121
2e471eb5
GM
2122 if (from->string)
2123 nbytes = GC_STRING_BYTES (from->string);
2124 else
31d929e5 2125 nbytes = SDATA_NBYTES (from);
177c0ea7 2126
212f33f1
KS
2127 if (nbytes > LARGE_STRING_BYTES)
2128 abort ();
212f33f1 2129
2e471eb5 2130 nbytes = SDATA_SIZE (nbytes);
212f33f1
KS
2131 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
2132
2133#ifdef GC_CHECK_STRING_OVERRUN
72af86bd
AS
2134 if (memcmp (string_overrun_cookie,
2135 (char *) from_end - GC_STRING_OVERRUN_COOKIE_SIZE,
2136 GC_STRING_OVERRUN_COOKIE_SIZE))
212f33f1
KS
2137 abort ();
2138#endif
177c0ea7 2139
2e471eb5
GM
2140 /* FROM->string non-null means it's alive. Copy its data. */
2141 if (from->string)
2142 {
2143 /* If TB is full, proceed with the next sblock. */
212f33f1 2144 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2e471eb5
GM
2145 if (to_end > tb_end)
2146 {
2147 tb->next_free = to;
2148 tb = tb->next;
2149 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2150 to = &tb->first_data;
212f33f1 2151 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2e471eb5 2152 }
177c0ea7 2153
2e471eb5
GM
2154 /* Copy, and update the string's `data' pointer. */
2155 if (from != to)
2156 {
a2407477 2157 xassert (tb != b || to <= from);
72af86bd 2158 memmove (to, from, nbytes + GC_STRING_EXTRA);
31d929e5 2159 to->string->data = SDATA_DATA (to);
2e471eb5
GM
2160 }
2161
2162 /* Advance past the sdata we copied to. */
2163 to = to_end;
2164 }
2165 }
2166 }
2167
2168 /* The rest of the sblocks following TB don't contain live data, so
2169 we can free them. */
2170 for (b = tb->next; b; b = next)
2171 {
2172 next = b->next;
2173 lisp_free (b);
2174 }
2175
2176 tb->next_free = to;
2177 tb->next = NULL;
2178 current_sblock = tb;
2179}
2180
2181
2182DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
69623621
RS
2183 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
2184LENGTH must be an integer.
2185INIT must be an integer that represents a character. */)
5842a27b 2186 (Lisp_Object length, Lisp_Object init)
2e471eb5
GM
2187{
2188 register Lisp_Object val;
2189 register unsigned char *p, *end;
14162469
EZ
2190 int c;
2191 EMACS_INT nbytes;
2e471eb5 2192
b7826503
PJ
2193 CHECK_NATNUM (length);
2194 CHECK_NUMBER (init);
2e471eb5
GM
2195
2196 c = XINT (init);
830ff83b 2197 if (ASCII_CHAR_P (c))
2e471eb5
GM
2198 {
2199 nbytes = XINT (length);
2200 val = make_uninit_string (nbytes);
d5db4077
KR
2201 p = SDATA (val);
2202 end = p + SCHARS (val);
2e471eb5
GM
2203 while (p != end)
2204 *p++ = c;
2205 }
2206 else
2207 {
d942b71c 2208 unsigned char str[MAX_MULTIBYTE_LENGTH];
2e471eb5 2209 int len = CHAR_STRING (c, str);
14162469 2210 EMACS_INT string_len = XINT (length);
2e471eb5 2211
14162469
EZ
2212 if (string_len > MOST_POSITIVE_FIXNUM / len)
2213 error ("Maximum string size exceeded");
2214 nbytes = len * string_len;
2215 val = make_uninit_multibyte_string (string_len, nbytes);
d5db4077 2216 p = SDATA (val);
2e471eb5
GM
2217 end = p + nbytes;
2218 while (p != end)
2219 {
72af86bd 2220 memcpy (p, str, len);
2e471eb5
GM
2221 p += len;
2222 }
2223 }
177c0ea7 2224
2e471eb5
GM
2225 *p = 0;
2226 return val;
2227}
2228
2229
2230DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
909e3b33 2231 doc: /* Return a new bool-vector of length LENGTH, using INIT for each element.
7ee72033 2232LENGTH must be a number. INIT matters only in whether it is t or nil. */)
5842a27b 2233 (Lisp_Object length, Lisp_Object init)
2e471eb5
GM
2234{
2235 register Lisp_Object val;
2236 struct Lisp_Bool_Vector *p;
2237 int real_init, i;
14162469
EZ
2238 EMACS_INT length_in_chars, length_in_elts;
2239 int bits_per_value;
2e471eb5 2240
b7826503 2241 CHECK_NATNUM (length);
2e471eb5 2242
a097329f 2243 bits_per_value = sizeof (EMACS_INT) * BOOL_VECTOR_BITS_PER_CHAR;
2e471eb5
GM
2244
2245 length_in_elts = (XFASTINT (length) + bits_per_value - 1) / bits_per_value;
a097329f
AS
2246 length_in_chars = ((XFASTINT (length) + BOOL_VECTOR_BITS_PER_CHAR - 1)
2247 / BOOL_VECTOR_BITS_PER_CHAR);
2e471eb5
GM
2248
2249 /* We must allocate one more elements than LENGTH_IN_ELTS for the
2250 slot `size' of the struct Lisp_Bool_Vector. */
2251 val = Fmake_vector (make_number (length_in_elts + 1), Qnil);
177c0ea7 2252
2e471eb5 2253 /* Get rid of any bits that would cause confusion. */
d2029e5b 2254 XVECTOR (val)->size = 0; /* No Lisp_Object to trace in there. */
d0fdb6da 2255 /* Use XVECTOR (val) rather than `p' because p->size is not TRT. */
d2029e5b
SM
2256 XSETPVECTYPE (XVECTOR (val), PVEC_BOOL_VECTOR);
2257
2258 p = XBOOL_VECTOR (val);
2e471eb5 2259 p->size = XFASTINT (length);
177c0ea7 2260
2e471eb5
GM
2261 real_init = (NILP (init) ? 0 : -1);
2262 for (i = 0; i < length_in_chars ; i++)
2263 p->data[i] = real_init;
177c0ea7 2264
2e471eb5 2265 /* Clear the extraneous bits in the last byte. */
a097329f 2266 if (XINT (length) != length_in_chars * BOOL_VECTOR_BITS_PER_CHAR)
d2029e5b 2267 p->data[length_in_chars - 1]
a097329f 2268 &= (1 << (XINT (length) % BOOL_VECTOR_BITS_PER_CHAR)) - 1;
2e471eb5
GM
2269
2270 return val;
2271}
2272
2273
2274/* Make a string from NBYTES bytes at CONTENTS, and compute the number
2275 of characters from the contents. This string may be unibyte or
2276 multibyte, depending on the contents. */
2277
2278Lisp_Object
14162469 2279make_string (const char *contents, EMACS_INT nbytes)
2e471eb5
GM
2280{
2281 register Lisp_Object val;
14162469 2282 EMACS_INT nchars, multibyte_nbytes;
9eac9d59 2283
90256841
PE
2284 parse_str_as_multibyte ((const unsigned char *) contents, nbytes,
2285 &nchars, &multibyte_nbytes);
9eac9d59
KH
2286 if (nbytes == nchars || nbytes != multibyte_nbytes)
2287 /* CONTENTS contains no multibyte sequences or contains an invalid
2288 multibyte sequence. We must make unibyte string. */
495a6df3
KH
2289 val = make_unibyte_string (contents, nbytes);
2290 else
2291 val = make_multibyte_string (contents, nchars, nbytes);
2e471eb5
GM
2292 return val;
2293}
2294
2295
2296/* Make an unibyte string from LENGTH bytes at CONTENTS. */
2297
2298Lisp_Object
14162469 2299make_unibyte_string (const char *contents, EMACS_INT length)
2e471eb5
GM
2300{
2301 register Lisp_Object val;
2302 val = make_uninit_string (length);
72af86bd 2303 memcpy (SDATA (val), contents, length);
2e471eb5
GM
2304 return val;
2305}
2306
2307
2308/* Make a multibyte string from NCHARS characters occupying NBYTES
2309 bytes at CONTENTS. */
2310
2311Lisp_Object
14162469
EZ
2312make_multibyte_string (const char *contents,
2313 EMACS_INT nchars, EMACS_INT nbytes)
2e471eb5
GM
2314{
2315 register Lisp_Object val;
2316 val = make_uninit_multibyte_string (nchars, nbytes);
72af86bd 2317 memcpy (SDATA (val), contents, nbytes);
2e471eb5
GM
2318 return val;
2319}
2320
2321
2322/* Make a string from NCHARS characters occupying NBYTES bytes at
2323 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2324
2325Lisp_Object
14162469
EZ
2326make_string_from_bytes (const char *contents,
2327 EMACS_INT nchars, EMACS_INT nbytes)
2e471eb5
GM
2328{
2329 register Lisp_Object val;
2330 val = make_uninit_multibyte_string (nchars, nbytes);
72af86bd 2331 memcpy (SDATA (val), contents, nbytes);
d5db4077
KR
2332 if (SBYTES (val) == SCHARS (val))
2333 STRING_SET_UNIBYTE (val);
2e471eb5
GM
2334 return val;
2335}
2336
2337
2338/* Make a string from NCHARS characters occupying NBYTES bytes at
2339 CONTENTS. The argument MULTIBYTE controls whether to label the
229b28c4
KH
2340 string as multibyte. If NCHARS is negative, it counts the number of
2341 characters by itself. */
2e471eb5
GM
2342
2343Lisp_Object
14162469
EZ
2344make_specified_string (const char *contents,
2345 EMACS_INT nchars, EMACS_INT nbytes, int multibyte)
2e471eb5
GM
2346{
2347 register Lisp_Object val;
229b28c4
KH
2348
2349 if (nchars < 0)
2350 {
2351 if (multibyte)
90256841
PE
2352 nchars = multibyte_chars_in_text ((const unsigned char *) contents,
2353 nbytes);
229b28c4
KH
2354 else
2355 nchars = nbytes;
2356 }
2e471eb5 2357 val = make_uninit_multibyte_string (nchars, nbytes);
72af86bd 2358 memcpy (SDATA (val), contents, nbytes);
2e471eb5 2359 if (!multibyte)
d5db4077 2360 STRING_SET_UNIBYTE (val);
2e471eb5
GM
2361 return val;
2362}
2363
2364
2365/* Make a string from the data at STR, treating it as multibyte if the
2366 data warrants. */
2367
2368Lisp_Object
971de7fb 2369build_string (const char *str)
2e471eb5
GM
2370{
2371 return make_string (str, strlen (str));
2372}
2373
2374
2375/* Return an unibyte Lisp_String set up to hold LENGTH characters
2376 occupying LENGTH bytes. */
2377
2378Lisp_Object
413d18e7 2379make_uninit_string (EMACS_INT length)
2e471eb5
GM
2380{
2381 Lisp_Object val;
4d774b0f
JB
2382
2383 if (!length)
2384 return empty_unibyte_string;
2e471eb5 2385 val = make_uninit_multibyte_string (length, length);
d5db4077 2386 STRING_SET_UNIBYTE (val);
2e471eb5
GM
2387 return val;
2388}
2389
2390
2391/* Return a multibyte Lisp_String set up to hold NCHARS characters
2392 which occupy NBYTES bytes. */
2393
2394Lisp_Object
413d18e7 2395make_uninit_multibyte_string (EMACS_INT nchars, EMACS_INT nbytes)
2e471eb5
GM
2396{
2397 Lisp_Object string;
2398 struct Lisp_String *s;
2399
2400 if (nchars < 0)
2401 abort ();
4d774b0f
JB
2402 if (!nbytes)
2403 return empty_multibyte_string;
2e471eb5
GM
2404
2405 s = allocate_string ();
2406 allocate_string_data (s, nchars, nbytes);
2407 XSETSTRING (string, s);
2408 string_chars_consed += nbytes;
2409 return string;
2410}
2411
2412
2413\f
2414/***********************************************************************
2415 Float Allocation
2416 ***********************************************************************/
2417
2e471eb5
GM
2418/* We store float cells inside of float_blocks, allocating a new
2419 float_block with malloc whenever necessary. Float cells reclaimed
2420 by GC are put on a free list to be reallocated before allocating
ab6780cd 2421 any new float cells from the latest float_block. */
2e471eb5 2422
6b61353c
KH
2423#define FLOAT_BLOCK_SIZE \
2424 (((BLOCK_BYTES - sizeof (struct float_block *) \
2425 /* The compiler might add padding at the end. */ \
2426 - (sizeof (struct Lisp_Float) - sizeof (int))) * CHAR_BIT) \
ab6780cd
SM
2427 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2428
2429#define GETMARKBIT(block,n) \
2430 (((block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2431 >> ((n) % (sizeof(int) * CHAR_BIT))) \
2432 & 1)
2433
2434#define SETMARKBIT(block,n) \
2435 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2436 |= 1 << ((n) % (sizeof(int) * CHAR_BIT))
2437
2438#define UNSETMARKBIT(block,n) \
2439 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2440 &= ~(1 << ((n) % (sizeof(int) * CHAR_BIT)))
2441
2442#define FLOAT_BLOCK(fptr) \
2443 ((struct float_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2444
2445#define FLOAT_INDEX(fptr) \
2446 ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2e471eb5
GM
2447
2448struct float_block
2449{
ab6780cd 2450 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2e471eb5 2451 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
ab6780cd
SM
2452 int gcmarkbits[1 + FLOAT_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2453 struct float_block *next;
2e471eb5
GM
2454};
2455
ab6780cd
SM
2456#define FLOAT_MARKED_P(fptr) \
2457 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2458
2459#define FLOAT_MARK(fptr) \
2460 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2461
2462#define FLOAT_UNMARK(fptr) \
2463 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2464
34400008
GM
2465/* Current float_block. */
2466
2e471eb5 2467struct float_block *float_block;
34400008
GM
2468
2469/* Index of first unused Lisp_Float in the current float_block. */
2470
2e471eb5
GM
2471int float_block_index;
2472
2473/* Total number of float blocks now in use. */
2474
2475int n_float_blocks;
2476
34400008
GM
2477/* Free-list of Lisp_Floats. */
2478
2e471eb5
GM
2479struct Lisp_Float *float_free_list;
2480
34400008 2481
966533c9 2482/* Initialize float allocation. */
34400008 2483
d3d47262 2484static void
971de7fb 2485init_float (void)
2e471eb5 2486{
08b7c2cb
SM
2487 float_block = NULL;
2488 float_block_index = FLOAT_BLOCK_SIZE; /* Force alloc of new float_block. */
2e471eb5 2489 float_free_list = 0;
08b7c2cb 2490 n_float_blocks = 0;
2e471eb5
GM
2491}
2492
34400008 2493
34400008
GM
2494/* Return a new float object with value FLOAT_VALUE. */
2495
2e471eb5 2496Lisp_Object
971de7fb 2497make_float (double float_value)
2e471eb5
GM
2498{
2499 register Lisp_Object val;
2500
e2984df0
CY
2501 /* eassert (!handling_signal); */
2502
dafc79fa 2503 MALLOC_BLOCK_INPUT;
cfb2f32e 2504
2e471eb5
GM
2505 if (float_free_list)
2506 {
2507 /* We use the data field for chaining the free list
2508 so that we won't use the same field that has the mark bit. */
2509 XSETFLOAT (val, float_free_list);
28a099a4 2510 float_free_list = float_free_list->u.chain;
2e471eb5
GM
2511 }
2512 else
2513 {
2514 if (float_block_index == FLOAT_BLOCK_SIZE)
2515 {
2516 register struct float_block *new;
2517
ab6780cd
SM
2518 new = (struct float_block *) lisp_align_malloc (sizeof *new,
2519 MEM_TYPE_FLOAT);
2e471eb5 2520 new->next = float_block;
72af86bd 2521 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2e471eb5
GM
2522 float_block = new;
2523 float_block_index = 0;
2524 n_float_blocks++;
2525 }
6b61353c
KH
2526 XSETFLOAT (val, &float_block->floats[float_block_index]);
2527 float_block_index++;
2e471eb5 2528 }
177c0ea7 2529
dafc79fa 2530 MALLOC_UNBLOCK_INPUT;
e2984df0 2531
f601cdf3 2532 XFLOAT_INIT (val, float_value);
6b61353c 2533 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2e471eb5
GM
2534 consing_since_gc += sizeof (struct Lisp_Float);
2535 floats_consed++;
2536 return val;
2537}
2538
2e471eb5
GM
2539
2540\f
2541/***********************************************************************
2542 Cons Allocation
2543 ***********************************************************************/
2544
2545/* We store cons cells inside of cons_blocks, allocating a new
2546 cons_block with malloc whenever necessary. Cons cells reclaimed by
2547 GC are put on a free list to be reallocated before allocating
08b7c2cb 2548 any new cons cells from the latest cons_block. */
2e471eb5
GM
2549
2550#define CONS_BLOCK_SIZE \
08b7c2cb
SM
2551 (((BLOCK_BYTES - sizeof (struct cons_block *)) * CHAR_BIT) \
2552 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2553
2554#define CONS_BLOCK(fptr) \
2555 ((struct cons_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2556
2557#define CONS_INDEX(fptr) \
2558 ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2e471eb5
GM
2559
2560struct cons_block
2561{
08b7c2cb 2562 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2e471eb5 2563 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
08b7c2cb
SM
2564 int gcmarkbits[1 + CONS_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2565 struct cons_block *next;
2e471eb5
GM
2566};
2567
08b7c2cb
SM
2568#define CONS_MARKED_P(fptr) \
2569 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2570
2571#define CONS_MARK(fptr) \
2572 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2573
2574#define CONS_UNMARK(fptr) \
2575 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2576
34400008
GM
2577/* Current cons_block. */
2578
2e471eb5 2579struct cons_block *cons_block;
34400008
GM
2580
2581/* Index of first unused Lisp_Cons in the current block. */
2582
2e471eb5
GM
2583int cons_block_index;
2584
34400008
GM
2585/* Free-list of Lisp_Cons structures. */
2586
2e471eb5
GM
2587struct Lisp_Cons *cons_free_list;
2588
2589/* Total number of cons blocks now in use. */
2590
d3d47262 2591static int n_cons_blocks;
2e471eb5 2592
34400008
GM
2593
2594/* Initialize cons allocation. */
2595
d3d47262 2596static void
971de7fb 2597init_cons (void)
2e471eb5 2598{
08b7c2cb
SM
2599 cons_block = NULL;
2600 cons_block_index = CONS_BLOCK_SIZE; /* Force alloc of new cons_block. */
2e471eb5 2601 cons_free_list = 0;
08b7c2cb 2602 n_cons_blocks = 0;
2e471eb5
GM
2603}
2604
34400008
GM
2605
2606/* Explicitly free a cons cell by putting it on the free-list. */
2e471eb5
GM
2607
2608void
971de7fb 2609free_cons (struct Lisp_Cons *ptr)
2e471eb5 2610{
28a099a4 2611 ptr->u.chain = cons_free_list;
34400008
GM
2612#if GC_MARK_STACK
2613 ptr->car = Vdead;
2614#endif
2e471eb5
GM
2615 cons_free_list = ptr;
2616}
2617
2618DEFUN ("cons", Fcons, Scons, 2, 2, 0,
a6266d23 2619 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
5842a27b 2620 (Lisp_Object car, Lisp_Object cdr)
2e471eb5
GM
2621{
2622 register Lisp_Object val;
2623
e2984df0
CY
2624 /* eassert (!handling_signal); */
2625
dafc79fa 2626 MALLOC_BLOCK_INPUT;
cfb2f32e 2627
2e471eb5
GM
2628 if (cons_free_list)
2629 {
2630 /* We use the cdr for chaining the free list
2631 so that we won't use the same field that has the mark bit. */
2632 XSETCONS (val, cons_free_list);
28a099a4 2633 cons_free_list = cons_free_list->u.chain;
2e471eb5
GM
2634 }
2635 else
2636 {
2637 if (cons_block_index == CONS_BLOCK_SIZE)
2638 {
2639 register struct cons_block *new;
08b7c2cb
SM
2640 new = (struct cons_block *) lisp_align_malloc (sizeof *new,
2641 MEM_TYPE_CONS);
72af86bd 2642 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2e471eb5
GM
2643 new->next = cons_block;
2644 cons_block = new;
2645 cons_block_index = 0;
2646 n_cons_blocks++;
2647 }
6b61353c
KH
2648 XSETCONS (val, &cons_block->conses[cons_block_index]);
2649 cons_block_index++;
2e471eb5 2650 }
177c0ea7 2651
dafc79fa 2652 MALLOC_UNBLOCK_INPUT;
e2984df0 2653
f3fbd155
KR
2654 XSETCAR (val, car);
2655 XSETCDR (val, cdr);
6b61353c 2656 eassert (!CONS_MARKED_P (XCONS (val)));
2e471eb5
GM
2657 consing_since_gc += sizeof (struct Lisp_Cons);
2658 cons_cells_consed++;
2659 return val;
2660}
2661
e3e56238
RS
2662/* Get an error now if there's any junk in the cons free list. */
2663void
971de7fb 2664check_cons_list (void)
e3e56238 2665{
212f33f1 2666#ifdef GC_CHECK_CONS_LIST
e3e56238
RS
2667 struct Lisp_Cons *tail = cons_free_list;
2668
e3e56238 2669 while (tail)
28a099a4 2670 tail = tail->u.chain;
e3e56238
RS
2671#endif
2672}
34400008 2673
9b306d37
KS
2674/* Make a list of 1, 2, 3, 4 or 5 specified objects. */
2675
2676Lisp_Object
971de7fb 2677list1 (Lisp_Object arg1)
9b306d37
KS
2678{
2679 return Fcons (arg1, Qnil);
2680}
2e471eb5
GM
2681
2682Lisp_Object
971de7fb 2683list2 (Lisp_Object arg1, Lisp_Object arg2)
2e471eb5
GM
2684{
2685 return Fcons (arg1, Fcons (arg2, Qnil));
2686}
2687
34400008 2688
2e471eb5 2689Lisp_Object
971de7fb 2690list3 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3)
2e471eb5
GM
2691{
2692 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2693}
2694
34400008 2695
2e471eb5 2696Lisp_Object
971de7fb 2697list4 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4)
2e471eb5
GM
2698{
2699 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2700}
2701
34400008 2702
2e471eb5 2703Lisp_Object
971de7fb 2704list5 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4, Lisp_Object arg5)
2e471eb5
GM
2705{
2706 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2707 Fcons (arg5, Qnil)))));
2708}
2709
34400008 2710
2e471eb5 2711DEFUN ("list", Flist, Slist, 0, MANY, 0,
eae936e2 2712 doc: /* Return a newly created list with specified arguments as elements.
ae8e8122
MB
2713Any number of arguments, even zero arguments, are allowed.
2714usage: (list &rest OBJECTS) */)
5842a27b 2715 (int nargs, register Lisp_Object *args)
2e471eb5
GM
2716{
2717 register Lisp_Object val;
2718 val = Qnil;
2719
2720 while (nargs > 0)
2721 {
2722 nargs--;
2723 val = Fcons (args[nargs], val);
2724 }
2725 return val;
2726}
2727
34400008 2728
2e471eb5 2729DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
a6266d23 2730 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
5842a27b 2731 (register Lisp_Object length, Lisp_Object init)
2e471eb5
GM
2732{
2733 register Lisp_Object val;
14162469 2734 register EMACS_INT size;
2e471eb5 2735
b7826503 2736 CHECK_NATNUM (length);
2e471eb5
GM
2737 size = XFASTINT (length);
2738
2739 val = Qnil;
ce070307
GM
2740 while (size > 0)
2741 {
2742 val = Fcons (init, val);
2743 --size;
2744
2745 if (size > 0)
2746 {
2747 val = Fcons (init, val);
2748 --size;
177c0ea7 2749
ce070307
GM
2750 if (size > 0)
2751 {
2752 val = Fcons (init, val);
2753 --size;
177c0ea7 2754
ce070307
GM
2755 if (size > 0)
2756 {
2757 val = Fcons (init, val);
2758 --size;
177c0ea7 2759
ce070307
GM
2760 if (size > 0)
2761 {
2762 val = Fcons (init, val);
2763 --size;
2764 }
2765 }
2766 }
2767 }
2768
2769 QUIT;
2770 }
177c0ea7 2771
7146af97
JB
2772 return val;
2773}
2e471eb5
GM
2774
2775
7146af97 2776\f
2e471eb5
GM
2777/***********************************************************************
2778 Vector Allocation
2779 ***********************************************************************/
7146af97 2780
34400008
GM
2781/* Singly-linked list of all vectors. */
2782
d3d47262 2783static struct Lisp_Vector *all_vectors;
7146af97 2784
2e471eb5
GM
2785/* Total number of vector-like objects now in use. */
2786
d3d47262 2787static int n_vectors;
c8099634 2788
34400008
GM
2789
2790/* Value is a pointer to a newly allocated Lisp_Vector structure
2791 with room for LEN Lisp_Objects. */
2792
ece93c02 2793static struct Lisp_Vector *
971de7fb 2794allocate_vectorlike (EMACS_INT len)
1825c68d
KH
2795{
2796 struct Lisp_Vector *p;
675d5130 2797 size_t nbytes;
1825c68d 2798
dafc79fa
SM
2799 MALLOC_BLOCK_INPUT;
2800
d1658221 2801#ifdef DOUG_LEA_MALLOC
f8608968
GM
2802 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
2803 because mapped region contents are not preserved in
2804 a dumped Emacs. */
d1658221
RS
2805 mallopt (M_MMAP_MAX, 0);
2806#endif
177c0ea7 2807
cfb2f32e
SM
2808 /* This gets triggered by code which I haven't bothered to fix. --Stef */
2809 /* eassert (!handling_signal); */
2810
34400008 2811 nbytes = sizeof *p + (len - 1) * sizeof p->contents[0];
9c545a55 2812 p = (struct Lisp_Vector *) lisp_malloc (nbytes, MEM_TYPE_VECTORLIKE);
177c0ea7 2813
d1658221 2814#ifdef DOUG_LEA_MALLOC
34400008 2815 /* Back to a reasonable maximum of mmap'ed areas. */
81d492d5 2816 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
d1658221 2817#endif
177c0ea7 2818
34400008 2819 consing_since_gc += nbytes;
310ea200 2820 vector_cells_consed += len;
1825c68d
KH
2821
2822 p->next = all_vectors;
2823 all_vectors = p;
e2984df0 2824
dafc79fa 2825 MALLOC_UNBLOCK_INPUT;
e2984df0 2826
34400008 2827 ++n_vectors;
1825c68d
KH
2828 return p;
2829}
2830
34400008 2831
ece93c02
GM
2832/* Allocate a vector with NSLOTS slots. */
2833
2834struct Lisp_Vector *
971de7fb 2835allocate_vector (EMACS_INT nslots)
ece93c02 2836{
9c545a55 2837 struct Lisp_Vector *v = allocate_vectorlike (nslots);
ece93c02
GM
2838 v->size = nslots;
2839 return v;
2840}
2841
2842
2843/* Allocate other vector-like structures. */
2844
30f95089 2845struct Lisp_Vector *
971de7fb 2846allocate_pseudovector (int memlen, int lisplen, EMACS_INT tag)
ece93c02 2847{
d2029e5b 2848 struct Lisp_Vector *v = allocate_vectorlike (memlen);
ece93c02 2849 EMACS_INT i;
177c0ea7 2850
d2029e5b
SM
2851 /* Only the first lisplen slots will be traced normally by the GC. */
2852 v->size = lisplen;
2853 for (i = 0; i < lisplen; ++i)
ece93c02 2854 v->contents[i] = Qnil;
177c0ea7 2855
d2029e5b
SM
2856 XSETPVECTYPE (v, tag); /* Add the appropriate tag. */
2857 return v;
2858}
d2029e5b 2859
ece93c02 2860struct Lisp_Hash_Table *
878f97ff 2861allocate_hash_table (void)
ece93c02 2862{
878f97ff 2863 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Hash_Table, count, PVEC_HASH_TABLE);
ece93c02
GM
2864}
2865
2866
2867struct window *
971de7fb 2868allocate_window (void)
ece93c02 2869{
d2029e5b 2870 return ALLOCATE_PSEUDOVECTOR(struct window, current_matrix, PVEC_WINDOW);
ece93c02 2871}
177c0ea7 2872
177c0ea7 2873
4a729fd8 2874struct terminal *
971de7fb 2875allocate_terminal (void)
4a729fd8 2876{
d2029e5b
SM
2877 struct terminal *t = ALLOCATE_PSEUDOVECTOR (struct terminal,
2878 next_terminal, PVEC_TERMINAL);
2879 /* Zero out the non-GC'd fields. FIXME: This should be made unnecessary. */
72af86bd
AS
2880 memset (&t->next_terminal, 0,
2881 (char*) (t + 1) - (char*) &t->next_terminal);
ece93c02 2882
d2029e5b 2883 return t;
4a729fd8 2884}
ece93c02
GM
2885
2886struct frame *
971de7fb 2887allocate_frame (void)
ece93c02 2888{
d2029e5b
SM
2889 struct frame *f = ALLOCATE_PSEUDOVECTOR (struct frame,
2890 face_cache, PVEC_FRAME);
2891 /* Zero out the non-GC'd fields. FIXME: This should be made unnecessary. */
72af86bd
AS
2892 memset (&f->face_cache, 0,
2893 (char *) (f + 1) - (char *) &f->face_cache);
d2029e5b 2894 return f;
ece93c02
GM
2895}
2896
2897
2898struct Lisp_Process *
971de7fb 2899allocate_process (void)
ece93c02 2900{
d2029e5b 2901 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Process, pid, PVEC_PROCESS);
ece93c02
GM
2902}
2903
2904
7146af97 2905DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
a6266d23 2906 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
7ee72033 2907See also the function `vector'. */)
5842a27b 2908 (register Lisp_Object length, Lisp_Object init)
7146af97 2909{
1825c68d
KH
2910 Lisp_Object vector;
2911 register EMACS_INT sizei;
14162469 2912 register EMACS_INT index;
7146af97
JB
2913 register struct Lisp_Vector *p;
2914
b7826503 2915 CHECK_NATNUM (length);
c9dad5ed 2916 sizei = XFASTINT (length);
7146af97 2917
ece93c02 2918 p = allocate_vector (sizei);
7146af97
JB
2919 for (index = 0; index < sizei; index++)
2920 p->contents[index] = init;
2921
1825c68d 2922 XSETVECTOR (vector, p);
7146af97
JB
2923 return vector;
2924}
2925
34400008 2926
7146af97 2927DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
eae936e2 2928 doc: /* Return a newly created vector with specified arguments as elements.
ae8e8122
MB
2929Any number of arguments, even zero arguments, are allowed.
2930usage: (vector &rest OBJECTS) */)
5842a27b 2931 (register int nargs, Lisp_Object *args)
7146af97
JB
2932{
2933 register Lisp_Object len, val;
2934 register int index;
2935 register struct Lisp_Vector *p;
2936
67ba9986 2937 XSETFASTINT (len, nargs);
7146af97
JB
2938 val = Fmake_vector (len, Qnil);
2939 p = XVECTOR (val);
2940 for (index = 0; index < nargs; index++)
2941 p->contents[index] = args[index];
2942 return val;
2943}
2944
34400008 2945
7146af97 2946DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
a6266d23 2947 doc: /* Create a byte-code object with specified arguments as elements.
228299fa
GM
2948The arguments should be the arglist, bytecode-string, constant vector,
2949stack size, (optional) doc string, and (optional) interactive spec.
2950The first four arguments are required; at most six have any
ae8e8122 2951significance.
92cc28b2 2952usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
5842a27b 2953 (register int nargs, Lisp_Object *args)
7146af97
JB
2954{
2955 register Lisp_Object len, val;
2956 register int index;
2957 register struct Lisp_Vector *p;
2958
67ba9986 2959 XSETFASTINT (len, nargs);
265a9e55 2960 if (!NILP (Vpurify_flag))
5a053ea9 2961 val = make_pure_vector ((EMACS_INT) nargs);
7146af97
JB
2962 else
2963 val = Fmake_vector (len, Qnil);
9eac9d59 2964
b1feb9b4 2965 if (nargs > 1 && STRINGP (args[1]) && STRING_MULTIBYTE (args[1]))
9eac9d59
KH
2966 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
2967 earlier because they produced a raw 8-bit string for byte-code
2968 and now such a byte-code string is loaded as multibyte while
2969 raw 8-bit characters converted to multibyte form. Thus, now we
2970 must convert them back to the original unibyte form. */
2971 args[1] = Fstring_as_unibyte (args[1]);
2972
7146af97
JB
2973 p = XVECTOR (val);
2974 for (index = 0; index < nargs; index++)
2975 {
265a9e55 2976 if (!NILP (Vpurify_flag))
7146af97
JB
2977 args[index] = Fpurecopy (args[index]);
2978 p->contents[index] = args[index];
2979 }
876c194c
SM
2980 XSETPVECTYPE (p, PVEC_COMPILED);
2981 XSETCOMPILED (val, p);
7146af97
JB
2982 return val;
2983}
2e471eb5 2984
34400008 2985
7146af97 2986\f
2e471eb5
GM
2987/***********************************************************************
2988 Symbol Allocation
2989 ***********************************************************************/
7146af97 2990
2e471eb5
GM
2991/* Each symbol_block is just under 1020 bytes long, since malloc
2992 really allocates in units of powers of two and uses 4 bytes for its
2993 own overhead. */
7146af97
JB
2994
2995#define SYMBOL_BLOCK_SIZE \
2996 ((1020 - sizeof (struct symbol_block *)) / sizeof (struct Lisp_Symbol))
2997
2998struct symbol_block
2e471eb5 2999{
6b61353c 3000 /* Place `symbols' first, to preserve alignment. */
2e471eb5 3001 struct Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
6b61353c 3002 struct symbol_block *next;
2e471eb5 3003};
7146af97 3004
34400008
GM
3005/* Current symbol block and index of first unused Lisp_Symbol
3006 structure in it. */
3007
d3d47262
JB
3008static struct symbol_block *symbol_block;
3009static int symbol_block_index;
7146af97 3010
34400008
GM
3011/* List of free symbols. */
3012
d3d47262 3013static struct Lisp_Symbol *symbol_free_list;
7146af97 3014
c8099634 3015/* Total number of symbol blocks now in use. */
2e471eb5 3016
d3d47262 3017static int n_symbol_blocks;
c8099634 3018
34400008
GM
3019
3020/* Initialize symbol allocation. */
3021
d3d47262 3022static void
971de7fb 3023init_symbol (void)
7146af97 3024{
005ca5c7
DL
3025 symbol_block = NULL;
3026 symbol_block_index = SYMBOL_BLOCK_SIZE;
7146af97 3027 symbol_free_list = 0;
005ca5c7 3028 n_symbol_blocks = 0;
7146af97
JB
3029}
3030
34400008 3031
7146af97 3032DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
a6266d23 3033 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
7ee72033 3034Its value and function definition are void, and its property list is nil. */)
5842a27b 3035 (Lisp_Object name)
7146af97
JB
3036{
3037 register Lisp_Object val;
3038 register struct Lisp_Symbol *p;
3039
b7826503 3040 CHECK_STRING (name);
7146af97 3041
537407f0 3042 /* eassert (!handling_signal); */
cfb2f32e 3043
dafc79fa 3044 MALLOC_BLOCK_INPUT;
e2984df0 3045
7146af97
JB
3046 if (symbol_free_list)
3047 {
45d12a89 3048 XSETSYMBOL (val, symbol_free_list);
28a099a4 3049 symbol_free_list = symbol_free_list->next;
7146af97
JB
3050 }
3051 else
3052 {
3053 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
3054 {
3c06d205 3055 struct symbol_block *new;
34400008
GM
3056 new = (struct symbol_block *) lisp_malloc (sizeof *new,
3057 MEM_TYPE_SYMBOL);
7146af97
JB
3058 new->next = symbol_block;
3059 symbol_block = new;
3060 symbol_block_index = 0;
c8099634 3061 n_symbol_blocks++;
7146af97 3062 }
6b61353c
KH
3063 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index]);
3064 symbol_block_index++;
7146af97 3065 }
177c0ea7 3066
dafc79fa 3067 MALLOC_UNBLOCK_INPUT;
e2984df0 3068
7146af97 3069 p = XSYMBOL (val);
8fe5665d 3070 p->xname = name;
7146af97 3071 p->plist = Qnil;
ce5b453a
SM
3072 p->redirect = SYMBOL_PLAINVAL;
3073 SET_SYMBOL_VAL (p, Qunbound);
2e471eb5 3074 p->function = Qunbound;
9e713715 3075 p->next = NULL;
2336fe58 3076 p->gcmarkbit = 0;
9e713715
GM
3077 p->interned = SYMBOL_UNINTERNED;
3078 p->constant = 0;
b9598260 3079 p->declared_special = 0;
2e471eb5
GM
3080 consing_since_gc += sizeof (struct Lisp_Symbol);
3081 symbols_consed++;
7146af97
JB
3082 return val;
3083}
3084
3f25e183 3085
2e471eb5
GM
3086\f
3087/***********************************************************************
34400008 3088 Marker (Misc) Allocation
2e471eb5 3089 ***********************************************************************/
3f25e183 3090
2e471eb5
GM
3091/* Allocation of markers and other objects that share that structure.
3092 Works like allocation of conses. */
c0696668 3093
2e471eb5
GM
3094#define MARKER_BLOCK_SIZE \
3095 ((1020 - sizeof (struct marker_block *)) / sizeof (union Lisp_Misc))
3096
3097struct marker_block
c0696668 3098{
6b61353c 3099 /* Place `markers' first, to preserve alignment. */
2e471eb5 3100 union Lisp_Misc markers[MARKER_BLOCK_SIZE];
6b61353c 3101 struct marker_block *next;
2e471eb5 3102};
c0696668 3103
d3d47262
JB
3104static struct marker_block *marker_block;
3105static int marker_block_index;
c0696668 3106
d3d47262 3107static union Lisp_Misc *marker_free_list;
c0696668 3108
2e471eb5 3109/* Total number of marker blocks now in use. */
3f25e183 3110
d3d47262 3111static int n_marker_blocks;
2e471eb5 3112
d3d47262 3113static void
971de7fb 3114init_marker (void)
3f25e183 3115{
005ca5c7
DL
3116 marker_block = NULL;
3117 marker_block_index = MARKER_BLOCK_SIZE;
2e471eb5 3118 marker_free_list = 0;
005ca5c7 3119 n_marker_blocks = 0;
3f25e183
RS
3120}
3121
2e471eb5
GM
3122/* Return a newly allocated Lisp_Misc object, with no substructure. */
3123
3f25e183 3124Lisp_Object
971de7fb 3125allocate_misc (void)
7146af97 3126{
2e471eb5 3127 Lisp_Object val;
7146af97 3128
e2984df0
CY
3129 /* eassert (!handling_signal); */
3130
dafc79fa 3131 MALLOC_BLOCK_INPUT;
cfb2f32e 3132
2e471eb5 3133 if (marker_free_list)
7146af97 3134 {
2e471eb5
GM
3135 XSETMISC (val, marker_free_list);
3136 marker_free_list = marker_free_list->u_free.chain;
7146af97
JB
3137 }
3138 else
7146af97 3139 {
2e471eb5
GM
3140 if (marker_block_index == MARKER_BLOCK_SIZE)
3141 {
3142 struct marker_block *new;
34400008
GM
3143 new = (struct marker_block *) lisp_malloc (sizeof *new,
3144 MEM_TYPE_MISC);
2e471eb5
GM
3145 new->next = marker_block;
3146 marker_block = new;
3147 marker_block_index = 0;
3148 n_marker_blocks++;
7b7990cc 3149 total_free_markers += MARKER_BLOCK_SIZE;
2e471eb5 3150 }
6b61353c
KH
3151 XSETMISC (val, &marker_block->markers[marker_block_index]);
3152 marker_block_index++;
7146af97 3153 }
177c0ea7 3154
dafc79fa 3155 MALLOC_UNBLOCK_INPUT;
e2984df0 3156
7b7990cc 3157 --total_free_markers;
2e471eb5
GM
3158 consing_since_gc += sizeof (union Lisp_Misc);
3159 misc_objects_consed++;
67ee9f6e 3160 XMISCANY (val)->gcmarkbit = 0;
2e471eb5
GM
3161 return val;
3162}
3163
7b7990cc
KS
3164/* Free a Lisp_Misc object */
3165
3166void
971de7fb 3167free_misc (Lisp_Object misc)
7b7990cc 3168{
d314756e 3169 XMISCTYPE (misc) = Lisp_Misc_Free;
7b7990cc
KS
3170 XMISC (misc)->u_free.chain = marker_free_list;
3171 marker_free_list = XMISC (misc);
3172
3173 total_free_markers++;
3174}
3175
42172a6b
RS
3176/* Return a Lisp_Misc_Save_Value object containing POINTER and
3177 INTEGER. This is used to package C values to call record_unwind_protect.
3178 The unwind function can get the C values back using XSAVE_VALUE. */
3179
3180Lisp_Object
971de7fb 3181make_save_value (void *pointer, int integer)
42172a6b
RS
3182{
3183 register Lisp_Object val;
3184 register struct Lisp_Save_Value *p;
3185
3186 val = allocate_misc ();
3187 XMISCTYPE (val) = Lisp_Misc_Save_Value;
3188 p = XSAVE_VALUE (val);
3189 p->pointer = pointer;
3190 p->integer = integer;
b766f870 3191 p->dogc = 0;
42172a6b
RS
3192 return val;
3193}
3194
2e471eb5 3195DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
a6266d23 3196 doc: /* Return a newly allocated marker which does not point at any place. */)
5842a27b 3197 (void)
2e471eb5
GM
3198{
3199 register Lisp_Object val;
3200 register struct Lisp_Marker *p;
7146af97 3201
2e471eb5
GM
3202 val = allocate_misc ();
3203 XMISCTYPE (val) = Lisp_Misc_Marker;
3204 p = XMARKER (val);
3205 p->buffer = 0;
3206 p->bytepos = 0;
3207 p->charpos = 0;
ef89c2ce 3208 p->next = NULL;
2e471eb5 3209 p->insertion_type = 0;
7146af97
JB
3210 return val;
3211}
2e471eb5
GM
3212
3213/* Put MARKER back on the free list after using it temporarily. */
3214
3215void
971de7fb 3216free_marker (Lisp_Object marker)
2e471eb5 3217{
ef89c2ce 3218 unchain_marker (XMARKER (marker));
7b7990cc 3219 free_misc (marker);
2e471eb5
GM
3220}
3221
c0696668 3222\f
7146af97 3223/* Return a newly created vector or string with specified arguments as
736471d1
RS
3224 elements. If all the arguments are characters that can fit
3225 in a string of events, make a string; otherwise, make a vector.
3226
3227 Any number of arguments, even zero arguments, are allowed. */
7146af97
JB
3228
3229Lisp_Object
971de7fb 3230make_event_array (register int nargs, Lisp_Object *args)
7146af97
JB
3231{
3232 int i;
3233
3234 for (i = 0; i < nargs; i++)
736471d1 3235 /* The things that fit in a string
c9ca4659
RS
3236 are characters that are in 0...127,
3237 after discarding the meta bit and all the bits above it. */
e687453f 3238 if (!INTEGERP (args[i])
c9ca4659 3239 || (XUINT (args[i]) & ~(-CHAR_META)) >= 0200)
7146af97
JB
3240 return Fvector (nargs, args);
3241
3242 /* Since the loop exited, we know that all the things in it are
3243 characters, so we can make a string. */
3244 {
c13ccad2 3245 Lisp_Object result;
177c0ea7 3246
50aee051 3247 result = Fmake_string (make_number (nargs), make_number (0));
7146af97 3248 for (i = 0; i < nargs; i++)
736471d1 3249 {
46e7e6b0 3250 SSET (result, i, XINT (args[i]));
736471d1
RS
3251 /* Move the meta bit to the right place for a string char. */
3252 if (XINT (args[i]) & CHAR_META)
46e7e6b0 3253 SSET (result, i, SREF (result, i) | 0x80);
736471d1 3254 }
177c0ea7 3255
7146af97
JB
3256 return result;
3257 }
3258}
2e471eb5
GM
3259
3260
7146af97 3261\f
24d8a105
RS
3262/************************************************************************
3263 Memory Full Handling
3264 ************************************************************************/
3265
3266
3267/* Called if malloc returns zero. */
3268
3269void
971de7fb 3270memory_full (void)
24d8a105
RS
3271{
3272 int i;
3273
3274 Vmemory_full = Qt;
3275
3276 memory_full_cons_threshold = sizeof (struct cons_block);
3277
3278 /* The first time we get here, free the spare memory. */
3279 for (i = 0; i < sizeof (spare_memory) / sizeof (char *); i++)
3280 if (spare_memory[i])
3281 {
3282 if (i == 0)
3283 free (spare_memory[i]);
3284 else if (i >= 1 && i <= 4)
3285 lisp_align_free (spare_memory[i]);
3286 else
3287 lisp_free (spare_memory[i]);
3288 spare_memory[i] = 0;
3289 }
3290
3291 /* Record the space now used. When it decreases substantially,
3292 we can refill the memory reserve. */
3293#ifndef SYSTEM_MALLOC
3294 bytes_used_when_full = BYTES_USED;
3295#endif
3296
3297 /* This used to call error, but if we've run out of memory, we could
3298 get infinite recursion trying to build the string. */
9b306d37 3299 xsignal (Qnil, Vmemory_signal_data);
24d8a105
RS
3300}
3301
3302/* If we released our reserve (due to running out of memory),
3303 and we have a fair amount free once again,
3304 try to set aside another reserve in case we run out once more.
3305
3306 This is called when a relocatable block is freed in ralloc.c,
3307 and also directly from this file, in case we're not using ralloc.c. */
3308
3309void
971de7fb 3310refill_memory_reserve (void)
24d8a105
RS
3311{
3312#ifndef SYSTEM_MALLOC
3313 if (spare_memory[0] == 0)
3314 spare_memory[0] = (char *) malloc ((size_t) SPARE_MEMORY);
3315 if (spare_memory[1] == 0)
3316 spare_memory[1] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3317 MEM_TYPE_CONS);
3318 if (spare_memory[2] == 0)
3319 spare_memory[2] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3320 MEM_TYPE_CONS);
3321 if (spare_memory[3] == 0)
3322 spare_memory[3] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3323 MEM_TYPE_CONS);
3324 if (spare_memory[4] == 0)
3325 spare_memory[4] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3326 MEM_TYPE_CONS);
3327 if (spare_memory[5] == 0)
3328 spare_memory[5] = (char *) lisp_malloc (sizeof (struct string_block),
3329 MEM_TYPE_STRING);
3330 if (spare_memory[6] == 0)
3331 spare_memory[6] = (char *) lisp_malloc (sizeof (struct string_block),
3332 MEM_TYPE_STRING);
3333 if (spare_memory[0] && spare_memory[1] && spare_memory[5])
3334 Vmemory_full = Qnil;
3335#endif
3336}
3337\f
34400008
GM
3338/************************************************************************
3339 C Stack Marking
3340 ************************************************************************/
3341
13c844fb
GM
3342#if GC_MARK_STACK || defined GC_MALLOC_CHECK
3343
71cf5fa0
GM
3344/* Conservative C stack marking requires a method to identify possibly
3345 live Lisp objects given a pointer value. We do this by keeping
3346 track of blocks of Lisp data that are allocated in a red-black tree
3347 (see also the comment of mem_node which is the type of nodes in
3348 that tree). Function lisp_malloc adds information for an allocated
3349 block to the red-black tree with calls to mem_insert, and function
3350 lisp_free removes it with mem_delete. Functions live_string_p etc
3351 call mem_find to lookup information about a given pointer in the
3352 tree, and use that to determine if the pointer points to a Lisp
3353 object or not. */
3354
34400008
GM
3355/* Initialize this part of alloc.c. */
3356
3357static void
971de7fb 3358mem_init (void)
34400008
GM
3359{
3360 mem_z.left = mem_z.right = MEM_NIL;
3361 mem_z.parent = NULL;
3362 mem_z.color = MEM_BLACK;
3363 mem_z.start = mem_z.end = NULL;
3364 mem_root = MEM_NIL;
3365}
3366
3367
3368/* Value is a pointer to the mem_node containing START. Value is
3369 MEM_NIL if there is no node in the tree containing START. */
3370
3371static INLINE struct mem_node *
971de7fb 3372mem_find (void *start)
34400008
GM
3373{
3374 struct mem_node *p;
3375
ece93c02
GM
3376 if (start < min_heap_address || start > max_heap_address)
3377 return MEM_NIL;
3378
34400008
GM
3379 /* Make the search always successful to speed up the loop below. */
3380 mem_z.start = start;
3381 mem_z.end = (char *) start + 1;
3382
3383 p = mem_root;
3384 while (start < p->start || start >= p->end)
3385 p = start < p->start ? p->left : p->right;
3386 return p;
3387}
3388
3389
3390/* Insert a new node into the tree for a block of memory with start
3391 address START, end address END, and type TYPE. Value is a
3392 pointer to the node that was inserted. */
3393
3394static struct mem_node *
971de7fb 3395mem_insert (void *start, void *end, enum mem_type type)
34400008
GM
3396{
3397 struct mem_node *c, *parent, *x;
3398
add3c3ea 3399 if (min_heap_address == NULL || start < min_heap_address)
ece93c02 3400 min_heap_address = start;
add3c3ea 3401 if (max_heap_address == NULL || end > max_heap_address)
ece93c02
GM
3402 max_heap_address = end;
3403
34400008
GM
3404 /* See where in the tree a node for START belongs. In this
3405 particular application, it shouldn't happen that a node is already
3406 present. For debugging purposes, let's check that. */
3407 c = mem_root;
3408 parent = NULL;
3409
3410#if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
177c0ea7 3411
34400008
GM
3412 while (c != MEM_NIL)
3413 {
3414 if (start >= c->start && start < c->end)
3415 abort ();
3416 parent = c;
3417 c = start < c->start ? c->left : c->right;
3418 }
177c0ea7 3419
34400008 3420#else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
177c0ea7 3421
34400008
GM
3422 while (c != MEM_NIL)
3423 {
3424 parent = c;
3425 c = start < c->start ? c->left : c->right;
3426 }
177c0ea7 3427
34400008
GM
3428#endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3429
3430 /* Create a new node. */
877935b1
GM
3431#ifdef GC_MALLOC_CHECK
3432 x = (struct mem_node *) _malloc_internal (sizeof *x);
3433 if (x == NULL)
3434 abort ();
3435#else
34400008 3436 x = (struct mem_node *) xmalloc (sizeof *x);
877935b1 3437#endif
34400008
GM
3438 x->start = start;
3439 x->end = end;
3440 x->type = type;
3441 x->parent = parent;
3442 x->left = x->right = MEM_NIL;
3443 x->color = MEM_RED;
3444
3445 /* Insert it as child of PARENT or install it as root. */
3446 if (parent)
3447 {
3448 if (start < parent->start)
3449 parent->left = x;
3450 else
3451 parent->right = x;
3452 }
177c0ea7 3453 else
34400008
GM
3454 mem_root = x;
3455
3456 /* Re-establish red-black tree properties. */
3457 mem_insert_fixup (x);
877935b1 3458
34400008
GM
3459 return x;
3460}
3461
3462
3463/* Re-establish the red-black properties of the tree, and thereby
3464 balance the tree, after node X has been inserted; X is always red. */
3465
3466static void
971de7fb 3467mem_insert_fixup (struct mem_node *x)
34400008
GM
3468{
3469 while (x != mem_root && x->parent->color == MEM_RED)
3470 {
3471 /* X is red and its parent is red. This is a violation of
3472 red-black tree property #3. */
177c0ea7 3473
34400008
GM
3474 if (x->parent == x->parent->parent->left)
3475 {
3476 /* We're on the left side of our grandparent, and Y is our
3477 "uncle". */
3478 struct mem_node *y = x->parent->parent->right;
177c0ea7 3479
34400008
GM
3480 if (y->color == MEM_RED)
3481 {
3482 /* Uncle and parent are red but should be black because
3483 X is red. Change the colors accordingly and proceed
3484 with the grandparent. */
3485 x->parent->color = MEM_BLACK;
3486 y->color = MEM_BLACK;
3487 x->parent->parent->color = MEM_RED;
3488 x = x->parent->parent;
3489 }
3490 else
3491 {
3492 /* Parent and uncle have different colors; parent is
3493 red, uncle is black. */
3494 if (x == x->parent->right)
3495 {
3496 x = x->parent;
3497 mem_rotate_left (x);
3498 }
3499
3500 x->parent->color = MEM_BLACK;
3501 x->parent->parent->color = MEM_RED;
3502 mem_rotate_right (x->parent->parent);
3503 }
3504 }
3505 else
3506 {
3507 /* This is the symmetrical case of above. */
3508 struct mem_node *y = x->parent->parent->left;
177c0ea7 3509
34400008
GM
3510 if (y->color == MEM_RED)
3511 {
3512 x->parent->color = MEM_BLACK;
3513 y->color = MEM_BLACK;
3514 x->parent->parent->color = MEM_RED;
3515 x = x->parent->parent;
3516 }
3517 else
3518 {
3519 if (x == x->parent->left)
3520 {
3521 x = x->parent;
3522 mem_rotate_right (x);
3523 }
177c0ea7 3524
34400008
GM
3525 x->parent->color = MEM_BLACK;
3526 x->parent->parent->color = MEM_RED;
3527 mem_rotate_left (x->parent->parent);
3528 }
3529 }
3530 }
3531
3532 /* The root may have been changed to red due to the algorithm. Set
3533 it to black so that property #5 is satisfied. */
3534 mem_root->color = MEM_BLACK;
3535}
3536
3537
177c0ea7
JB
3538/* (x) (y)
3539 / \ / \
34400008
GM
3540 a (y) ===> (x) c
3541 / \ / \
3542 b c a b */
3543
3544static void
971de7fb 3545mem_rotate_left (struct mem_node *x)
34400008
GM
3546{
3547 struct mem_node *y;
3548
3549 /* Turn y's left sub-tree into x's right sub-tree. */
3550 y = x->right;
3551 x->right = y->left;
3552 if (y->left != MEM_NIL)
3553 y->left->parent = x;
3554
3555 /* Y's parent was x's parent. */
3556 if (y != MEM_NIL)
3557 y->parent = x->parent;
3558
3559 /* Get the parent to point to y instead of x. */
3560 if (x->parent)
3561 {
3562 if (x == x->parent->left)
3563 x->parent->left = y;
3564 else
3565 x->parent->right = y;
3566 }
3567 else
3568 mem_root = y;
3569
3570 /* Put x on y's left. */
3571 y->left = x;
3572 if (x != MEM_NIL)
3573 x->parent = y;
3574}
3575
3576
177c0ea7
JB
3577/* (x) (Y)
3578 / \ / \
3579 (y) c ===> a (x)
3580 / \ / \
34400008
GM
3581 a b b c */
3582
3583static void
971de7fb 3584mem_rotate_right (struct mem_node *x)
34400008
GM
3585{
3586 struct mem_node *y = x->left;
3587
3588 x->left = y->right;
3589 if (y->right != MEM_NIL)
3590 y->right->parent = x;
177c0ea7 3591
34400008
GM
3592 if (y != MEM_NIL)
3593 y->parent = x->parent;
3594 if (x->parent)
3595 {
3596 if (x == x->parent->right)
3597 x->parent->right = y;
3598 else
3599 x->parent->left = y;
3600 }
3601 else
3602 mem_root = y;
177c0ea7 3603
34400008
GM
3604 y->right = x;
3605 if (x != MEM_NIL)
3606 x->parent = y;
3607}
3608
3609
3610/* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
3611
3612static void
971de7fb 3613mem_delete (struct mem_node *z)
34400008
GM
3614{
3615 struct mem_node *x, *y;
3616
3617 if (!z || z == MEM_NIL)
3618 return;
3619
3620 if (z->left == MEM_NIL || z->right == MEM_NIL)
3621 y = z;
3622 else
3623 {
3624 y = z->right;
3625 while (y->left != MEM_NIL)
3626 y = y->left;
3627 }
3628
3629 if (y->left != MEM_NIL)
3630 x = y->left;
3631 else
3632 x = y->right;
3633
3634 x->parent = y->parent;
3635 if (y->parent)
3636 {
3637 if (y == y->parent->left)
3638 y->parent->left = x;
3639 else
3640 y->parent->right = x;
3641 }
3642 else
3643 mem_root = x;
3644
3645 if (y != z)
3646 {
3647 z->start = y->start;
3648 z->end = y->end;
3649 z->type = y->type;
3650 }
177c0ea7 3651
34400008
GM
3652 if (y->color == MEM_BLACK)
3653 mem_delete_fixup (x);
877935b1
GM
3654
3655#ifdef GC_MALLOC_CHECK
3656 _free_internal (y);
3657#else
34400008 3658 xfree (y);
877935b1 3659#endif
34400008
GM
3660}
3661
3662
3663/* Re-establish the red-black properties of the tree, after a
3664 deletion. */
3665
3666static void
971de7fb 3667mem_delete_fixup (struct mem_node *x)
34400008
GM
3668{
3669 while (x != mem_root && x->color == MEM_BLACK)
3670 {
3671 if (x == x->parent->left)
3672 {
3673 struct mem_node *w = x->parent->right;
177c0ea7 3674
34400008
GM
3675 if (w->color == MEM_RED)
3676 {
3677 w->color = MEM_BLACK;
3678 x->parent->color = MEM_RED;
3679 mem_rotate_left (x->parent);
3680 w = x->parent->right;
3681 }
177c0ea7 3682
34400008
GM
3683 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
3684 {
3685 w->color = MEM_RED;
3686 x = x->parent;
3687 }
3688 else
3689 {
3690 if (w->right->color == MEM_BLACK)
3691 {
3692 w->left->color = MEM_BLACK;
3693 w->color = MEM_RED;
3694 mem_rotate_right (w);
3695 w = x->parent->right;
3696 }
3697 w->color = x->parent->color;
3698 x->parent->color = MEM_BLACK;
3699 w->right->color = MEM_BLACK;
3700 mem_rotate_left (x->parent);
3701 x = mem_root;
3702 }
3703 }
3704 else
3705 {
3706 struct mem_node *w = x->parent->left;
177c0ea7 3707
34400008
GM
3708 if (w->color == MEM_RED)
3709 {
3710 w->color = MEM_BLACK;
3711 x->parent->color = MEM_RED;
3712 mem_rotate_right (x->parent);
3713 w = x->parent->left;
3714 }
177c0ea7 3715
34400008
GM
3716 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
3717 {
3718 w->color = MEM_RED;
3719 x = x->parent;
3720 }
3721 else
3722 {
3723 if (w->left->color == MEM_BLACK)
3724 {
3725 w->right->color = MEM_BLACK;
3726 w->color = MEM_RED;
3727 mem_rotate_left (w);
3728 w = x->parent->left;
3729 }
177c0ea7 3730
34400008
GM
3731 w->color = x->parent->color;
3732 x->parent->color = MEM_BLACK;
3733 w->left->color = MEM_BLACK;
3734 mem_rotate_right (x->parent);
3735 x = mem_root;
3736 }
3737 }
3738 }
177c0ea7 3739
34400008
GM
3740 x->color = MEM_BLACK;
3741}
3742
3743
3744/* Value is non-zero if P is a pointer to a live Lisp string on
3745 the heap. M is a pointer to the mem_block for P. */
3746
3747static INLINE int
971de7fb 3748live_string_p (struct mem_node *m, void *p)
34400008
GM
3749{
3750 if (m->type == MEM_TYPE_STRING)
3751 {
3752 struct string_block *b = (struct string_block *) m->start;
14162469 3753 ptrdiff_t offset = (char *) p - (char *) &b->strings[0];
34400008
GM
3754
3755 /* P must point to the start of a Lisp_String structure, and it
3756 must not be on the free-list. */
176bc847
GM
3757 return (offset >= 0
3758 && offset % sizeof b->strings[0] == 0
6b61353c 3759 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
34400008
GM
3760 && ((struct Lisp_String *) p)->data != NULL);
3761 }
3762 else
3763 return 0;
3764}
3765
3766
3767/* Value is non-zero if P is a pointer to a live Lisp cons on
3768 the heap. M is a pointer to the mem_block for P. */
3769
3770static INLINE int
971de7fb 3771live_cons_p (struct mem_node *m, void *p)
34400008
GM
3772{
3773 if (m->type == MEM_TYPE_CONS)
3774 {
3775 struct cons_block *b = (struct cons_block *) m->start;
14162469 3776 ptrdiff_t offset = (char *) p - (char *) &b->conses[0];
34400008
GM
3777
3778 /* P must point to the start of a Lisp_Cons, not be
3779 one of the unused cells in the current cons block,
3780 and not be on the free-list. */
176bc847
GM
3781 return (offset >= 0
3782 && offset % sizeof b->conses[0] == 0
6b61353c 3783 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
34400008
GM
3784 && (b != cons_block
3785 || offset / sizeof b->conses[0] < cons_block_index)
3786 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
3787 }
3788 else
3789 return 0;
3790}
3791
3792
3793/* Value is non-zero if P is a pointer to a live Lisp symbol on
3794 the heap. M is a pointer to the mem_block for P. */
3795
3796static INLINE int
971de7fb 3797live_symbol_p (struct mem_node *m, void *p)
34400008
GM
3798{
3799 if (m->type == MEM_TYPE_SYMBOL)
3800 {
3801 struct symbol_block *b = (struct symbol_block *) m->start;
14162469 3802 ptrdiff_t offset = (char *) p - (char *) &b->symbols[0];
177c0ea7 3803
34400008
GM
3804 /* P must point to the start of a Lisp_Symbol, not be
3805 one of the unused cells in the current symbol block,
3806 and not be on the free-list. */
176bc847
GM
3807 return (offset >= 0
3808 && offset % sizeof b->symbols[0] == 0
6b61353c 3809 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
34400008
GM
3810 && (b != symbol_block
3811 || offset / sizeof b->symbols[0] < symbol_block_index)
3812 && !EQ (((struct Lisp_Symbol *) p)->function, Vdead));
3813 }
3814 else
3815 return 0;
3816}
3817
3818
3819/* Value is non-zero if P is a pointer to a live Lisp float on
3820 the heap. M is a pointer to the mem_block for P. */
3821
3822static INLINE int
971de7fb 3823live_float_p (struct mem_node *m, void *p)
34400008
GM
3824{
3825 if (m->type == MEM_TYPE_FLOAT)
3826 {
3827 struct float_block *b = (struct float_block *) m->start;
14162469 3828 ptrdiff_t offset = (char *) p - (char *) &b->floats[0];
177c0ea7 3829
ab6780cd
SM
3830 /* P must point to the start of a Lisp_Float and not be
3831 one of the unused cells in the current float block. */
176bc847
GM
3832 return (offset >= 0
3833 && offset % sizeof b->floats[0] == 0
6b61353c 3834 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
34400008 3835 && (b != float_block
ab6780cd 3836 || offset / sizeof b->floats[0] < float_block_index));
34400008
GM
3837 }
3838 else
3839 return 0;
3840}
3841
3842
3843/* Value is non-zero if P is a pointer to a live Lisp Misc on
3844 the heap. M is a pointer to the mem_block for P. */
3845
3846static INLINE int
971de7fb 3847live_misc_p (struct mem_node *m, void *p)
34400008
GM
3848{
3849 if (m->type == MEM_TYPE_MISC)
3850 {
3851 struct marker_block *b = (struct marker_block *) m->start;
14162469 3852 ptrdiff_t offset = (char *) p - (char *) &b->markers[0];
177c0ea7 3853
34400008
GM
3854 /* P must point to the start of a Lisp_Misc, not be
3855 one of the unused cells in the current misc block,
3856 and not be on the free-list. */
176bc847
GM
3857 return (offset >= 0
3858 && offset % sizeof b->markers[0] == 0
6b61353c 3859 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
34400008
GM
3860 && (b != marker_block
3861 || offset / sizeof b->markers[0] < marker_block_index)
d314756e 3862 && ((union Lisp_Misc *) p)->u_any.type != Lisp_Misc_Free);
34400008
GM
3863 }
3864 else
3865 return 0;
3866}
3867
3868
3869/* Value is non-zero if P is a pointer to a live vector-like object.
3870 M is a pointer to the mem_block for P. */
3871
3872static INLINE int
971de7fb 3873live_vector_p (struct mem_node *m, void *p)
34400008 3874{
9c545a55 3875 return (p == m->start && m->type == MEM_TYPE_VECTORLIKE);
34400008
GM
3876}
3877
3878
2336fe58 3879/* Value is non-zero if P is a pointer to a live buffer. M is a
34400008
GM
3880 pointer to the mem_block for P. */
3881
3882static INLINE int
971de7fb 3883live_buffer_p (struct mem_node *m, void *p)
34400008
GM
3884{
3885 /* P must point to the start of the block, and the buffer
3886 must not have been killed. */
3887 return (m->type == MEM_TYPE_BUFFER
3888 && p == m->start
5d8ea120 3889 && !NILP (((struct buffer *) p)->BUFFER_INTERNAL_FIELD (name)));
34400008
GM
3890}
3891
13c844fb
GM
3892#endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
3893
3894#if GC_MARK_STACK
3895
34400008
GM
3896#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3897
3898/* Array of objects that are kept alive because the C stack contains
3899 a pattern that looks like a reference to them . */
3900
3901#define MAX_ZOMBIES 10
3902static Lisp_Object zombies[MAX_ZOMBIES];
3903
3904/* Number of zombie objects. */
3905
3906static int nzombies;
3907
3908/* Number of garbage collections. */
3909
3910static int ngcs;
3911
3912/* Average percentage of zombies per collection. */
3913
3914static double avg_zombies;
3915
3916/* Max. number of live and zombie objects. */
3917
3918static int max_live, max_zombies;
3919
3920/* Average number of live objects per GC. */
3921
3922static double avg_live;
3923
3924DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
7ee72033 3925 doc: /* Show information about live and zombie objects. */)
5842a27b 3926 (void)
34400008 3927{
83fc9c63
DL
3928 Lisp_Object args[8], zombie_list = Qnil;
3929 int i;
3930 for (i = 0; i < nzombies; i++)
3931 zombie_list = Fcons (zombies[i], zombie_list);
3932 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
34400008
GM
3933 args[1] = make_number (ngcs);
3934 args[2] = make_float (avg_live);
3935 args[3] = make_float (avg_zombies);
3936 args[4] = make_float (avg_zombies / avg_live / 100);
3937 args[5] = make_number (max_live);
3938 args[6] = make_number (max_zombies);
83fc9c63
DL
3939 args[7] = zombie_list;
3940 return Fmessage (8, args);
34400008
GM
3941}
3942
3943#endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
3944
3945
182ff242
GM
3946/* Mark OBJ if we can prove it's a Lisp_Object. */
3947
3948static INLINE void
971de7fb 3949mark_maybe_object (Lisp_Object obj)
182ff242 3950{
b609f591
YM
3951 void *po;
3952 struct mem_node *m;
3953
3954 if (INTEGERP (obj))
3955 return;
3956
3957 po = (void *) XPNTR (obj);
3958 m = mem_find (po);
177c0ea7 3959
182ff242
GM
3960 if (m != MEM_NIL)
3961 {
3962 int mark_p = 0;
3963
8e50cc2d 3964 switch (XTYPE (obj))
182ff242
GM
3965 {
3966 case Lisp_String:
3967 mark_p = (live_string_p (m, po)
3968 && !STRING_MARKED_P ((struct Lisp_String *) po));
3969 break;
3970
3971 case Lisp_Cons:
08b7c2cb 3972 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
182ff242
GM
3973 break;
3974
3975 case Lisp_Symbol:
2336fe58 3976 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
182ff242
GM
3977 break;
3978
3979 case Lisp_Float:
ab6780cd 3980 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
182ff242
GM
3981 break;
3982
3983 case Lisp_Vectorlike:
8e50cc2d 3984 /* Note: can't check BUFFERP before we know it's a
182ff242
GM
3985 buffer because checking that dereferences the pointer
3986 PO which might point anywhere. */
3987 if (live_vector_p (m, po))
8e50cc2d 3988 mark_p = !SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
182ff242 3989 else if (live_buffer_p (m, po))
8e50cc2d 3990 mark_p = BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
182ff242
GM
3991 break;
3992
3993 case Lisp_Misc:
67ee9f6e 3994 mark_p = (live_misc_p (m, po) && !XMISCANY (obj)->gcmarkbit);
182ff242 3995 break;
6bbd7a29 3996
2de9f71c 3997 default:
6bbd7a29 3998 break;
182ff242
GM
3999 }
4000
4001 if (mark_p)
4002 {
4003#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4004 if (nzombies < MAX_ZOMBIES)
83fc9c63 4005 zombies[nzombies] = obj;
182ff242
GM
4006 ++nzombies;
4007#endif
49723c04 4008 mark_object (obj);
182ff242
GM
4009 }
4010 }
4011}
ece93c02
GM
4012
4013
4014/* If P points to Lisp data, mark that as live if it isn't already
4015 marked. */
4016
4017static INLINE void
971de7fb 4018mark_maybe_pointer (void *p)
ece93c02
GM
4019{
4020 struct mem_node *m;
4021
5045e68e
SM
4022 /* Quickly rule out some values which can't point to Lisp data. */
4023 if ((EMACS_INT) p %
4024#ifdef USE_LSB_TAG
4025 8 /* USE_LSB_TAG needs Lisp data to be aligned on multiples of 8. */
4026#else
4027 2 /* We assume that Lisp data is aligned on even addresses. */
4028#endif
4029 )
ece93c02 4030 return;
177c0ea7 4031
ece93c02
GM
4032 m = mem_find (p);
4033 if (m != MEM_NIL)
4034 {
4035 Lisp_Object obj = Qnil;
177c0ea7 4036
ece93c02
GM
4037 switch (m->type)
4038 {
4039 case MEM_TYPE_NON_LISP:
2fe50224 4040 /* Nothing to do; not a pointer to Lisp memory. */
ece93c02 4041 break;
177c0ea7 4042
ece93c02 4043 case MEM_TYPE_BUFFER:
3ef06d12 4044 if (live_buffer_p (m, p) && !VECTOR_MARKED_P((struct buffer *)p))
ece93c02
GM
4045 XSETVECTOR (obj, p);
4046 break;
177c0ea7 4047
ece93c02 4048 case MEM_TYPE_CONS:
08b7c2cb 4049 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
ece93c02
GM
4050 XSETCONS (obj, p);
4051 break;
177c0ea7 4052
ece93c02
GM
4053 case MEM_TYPE_STRING:
4054 if (live_string_p (m, p)
4055 && !STRING_MARKED_P ((struct Lisp_String *) p))
4056 XSETSTRING (obj, p);
4057 break;
4058
4059 case MEM_TYPE_MISC:
2336fe58
SM
4060 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
4061 XSETMISC (obj, p);
ece93c02 4062 break;
177c0ea7 4063
ece93c02 4064 case MEM_TYPE_SYMBOL:
2336fe58 4065 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
ece93c02
GM
4066 XSETSYMBOL (obj, p);
4067 break;
177c0ea7 4068
ece93c02 4069 case MEM_TYPE_FLOAT:
ab6780cd 4070 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
ece93c02
GM
4071 XSETFLOAT (obj, p);
4072 break;
177c0ea7 4073
9c545a55 4074 case MEM_TYPE_VECTORLIKE:
ece93c02
GM
4075 if (live_vector_p (m, p))
4076 {
4077 Lisp_Object tem;
4078 XSETVECTOR (tem, p);
8e50cc2d 4079 if (!SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
ece93c02
GM
4080 obj = tem;
4081 }
4082 break;
4083
4084 default:
4085 abort ();
4086 }
4087
8e50cc2d 4088 if (!NILP (obj))
49723c04 4089 mark_object (obj);
ece93c02
GM
4090 }
4091}
4092
4093
55a314a5
YM
4094/* Mark Lisp objects referenced from the address range START+OFFSET..END
4095 or END+OFFSET..START. */
34400008 4096
177c0ea7 4097static void
971de7fb 4098mark_memory (void *start, void *end, int offset)
34400008
GM
4099{
4100 Lisp_Object *p;
ece93c02 4101 void **pp;
34400008
GM
4102
4103#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4104 nzombies = 0;
4105#endif
4106
4107 /* Make START the pointer to the start of the memory region,
4108 if it isn't already. */
4109 if (end < start)
4110 {
4111 void *tem = start;
4112 start = end;
4113 end = tem;
4114 }
ece93c02
GM
4115
4116 /* Mark Lisp_Objects. */
55a314a5 4117 for (p = (Lisp_Object *) ((char *) start + offset); (void *) p < end; ++p)
182ff242 4118 mark_maybe_object (*p);
ece93c02
GM
4119
4120 /* Mark Lisp data pointed to. This is necessary because, in some
4121 situations, the C compiler optimizes Lisp objects away, so that
4122 only a pointer to them remains. Example:
4123
4124 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
7ee72033 4125 ()
ece93c02
GM
4126 {
4127 Lisp_Object obj = build_string ("test");
4128 struct Lisp_String *s = XSTRING (obj);
4129 Fgarbage_collect ();
4130 fprintf (stderr, "test `%s'\n", s->data);
4131 return Qnil;
4132 }
4133
4134 Here, `obj' isn't really used, and the compiler optimizes it
4135 away. The only reference to the life string is through the
4136 pointer `s'. */
177c0ea7 4137
55a314a5 4138 for (pp = (void **) ((char *) start + offset); (void *) pp < end; ++pp)
ece93c02 4139 mark_maybe_pointer (*pp);
182ff242
GM
4140}
4141
30f637f8
DL
4142/* setjmp will work with GCC unless NON_SAVING_SETJMP is defined in
4143 the GCC system configuration. In gcc 3.2, the only systems for
4144 which this is so are i386-sco5 non-ELF, i386-sysv3 (maybe included
4145 by others?) and ns32k-pc532-min. */
182ff242
GM
4146
4147#if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4148
4149static int setjmp_tested_p, longjmps_done;
4150
4151#define SETJMP_WILL_LIKELY_WORK "\
4152\n\
4153Emacs garbage collector has been changed to use conservative stack\n\
4154marking. Emacs has determined that the method it uses to do the\n\
4155marking will likely work on your system, but this isn't sure.\n\
4156\n\
4157If you are a system-programmer, or can get the help of a local wizard\n\
4158who is, please take a look at the function mark_stack in alloc.c, and\n\
4159verify that the methods used are appropriate for your system.\n\
4160\n\
d191623b 4161Please mail the result to <emacs-devel@gnu.org>.\n\
182ff242
GM
4162"
4163
4164#define SETJMP_WILL_NOT_WORK "\
4165\n\
4166Emacs garbage collector has been changed to use conservative stack\n\
4167marking. Emacs has determined that the default method it uses to do the\n\
4168marking will not work on your system. We will need a system-dependent\n\
4169solution for your system.\n\
4170\n\
4171Please take a look at the function mark_stack in alloc.c, and\n\
4172try to find a way to make it work on your system.\n\
30f637f8
DL
4173\n\
4174Note that you may get false negatives, depending on the compiler.\n\
4175In particular, you need to use -O with GCC for this test.\n\
4176\n\
d191623b 4177Please mail the result to <emacs-devel@gnu.org>.\n\
182ff242
GM
4178"
4179
4180
4181/* Perform a quick check if it looks like setjmp saves registers in a
4182 jmp_buf. Print a message to stderr saying so. When this test
4183 succeeds, this is _not_ a proof that setjmp is sufficient for
4184 conservative stack marking. Only the sources or a disassembly
4185 can prove that. */
4186
4187static void
2018939f 4188test_setjmp (void)
182ff242
GM
4189{
4190 char buf[10];
4191 register int x;
4192 jmp_buf jbuf;
4193 int result = 0;
4194
4195 /* Arrange for X to be put in a register. */
4196 sprintf (buf, "1");
4197 x = strlen (buf);
4198 x = 2 * x - 1;
4199
4200 setjmp (jbuf);
4201 if (longjmps_done == 1)
34400008 4202 {
182ff242 4203 /* Came here after the longjmp at the end of the function.
34400008 4204
182ff242
GM
4205 If x == 1, the longjmp has restored the register to its
4206 value before the setjmp, and we can hope that setjmp
4207 saves all such registers in the jmp_buf, although that
4208 isn't sure.
34400008 4209
182ff242
GM
4210 For other values of X, either something really strange is
4211 taking place, or the setjmp just didn't save the register. */
4212
4213 if (x == 1)
4214 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
4215 else
4216 {
4217 fprintf (stderr, SETJMP_WILL_NOT_WORK);
4218 exit (1);
34400008
GM
4219 }
4220 }
182ff242
GM
4221
4222 ++longjmps_done;
4223 x = 2;
4224 if (longjmps_done == 1)
4225 longjmp (jbuf, 1);
34400008
GM
4226}
4227
182ff242
GM
4228#endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
4229
34400008
GM
4230
4231#if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4232
4233/* Abort if anything GCPRO'd doesn't survive the GC. */
4234
4235static void
2018939f 4236check_gcpros (void)
34400008
GM
4237{
4238 struct gcpro *p;
4239 int i;
4240
4241 for (p = gcprolist; p; p = p->next)
4242 for (i = 0; i < p->nvars; ++i)
4243 if (!survives_gc_p (p->var[i]))
92cc28b2
SM
4244 /* FIXME: It's not necessarily a bug. It might just be that the
4245 GCPRO is unnecessary or should release the object sooner. */
34400008
GM
4246 abort ();
4247}
4248
4249#elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4250
4251static void
2018939f 4252dump_zombies (void)
34400008
GM
4253{
4254 int i;
4255
4256 fprintf (stderr, "\nZombies kept alive = %d:\n", nzombies);
4257 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
4258 {
4259 fprintf (stderr, " %d = ", i);
4260 debug_print (zombies[i]);
4261 }
4262}
4263
4264#endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4265
4266
182ff242
GM
4267/* Mark live Lisp objects on the C stack.
4268
4269 There are several system-dependent problems to consider when
4270 porting this to new architectures:
4271
4272 Processor Registers
4273
4274 We have to mark Lisp objects in CPU registers that can hold local
4275 variables or are used to pass parameters.
4276
4277 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4278 something that either saves relevant registers on the stack, or
4279 calls mark_maybe_object passing it each register's contents.
4280
4281 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4282 implementation assumes that calling setjmp saves registers we need
4283 to see in a jmp_buf which itself lies on the stack. This doesn't
4284 have to be true! It must be verified for each system, possibly
4285 by taking a look at the source code of setjmp.
4286
2018939f
AS
4287 If __builtin_unwind_init is available (defined by GCC >= 2.8) we
4288 can use it as a machine independent method to store all registers
4289 to the stack. In this case the macros described in the previous
4290 two paragraphs are not used.
4291
182ff242
GM
4292 Stack Layout
4293
4294 Architectures differ in the way their processor stack is organized.
4295 For example, the stack might look like this
4296
4297 +----------------+
4298 | Lisp_Object | size = 4
4299 +----------------+
4300 | something else | size = 2
4301 +----------------+
4302 | Lisp_Object | size = 4
4303 +----------------+
4304 | ... |
4305
4306 In such a case, not every Lisp_Object will be aligned equally. To
4307 find all Lisp_Object on the stack it won't be sufficient to walk
4308 the stack in steps of 4 bytes. Instead, two passes will be
4309 necessary, one starting at the start of the stack, and a second
4310 pass starting at the start of the stack + 2. Likewise, if the
4311 minimal alignment of Lisp_Objects on the stack is 1, four passes
4312 would be necessary, each one starting with one byte more offset
4313 from the stack start.
4314
4315 The current code assumes by default that Lisp_Objects are aligned
4316 equally on the stack. */
34400008
GM
4317
4318static void
971de7fb 4319mark_stack (void)
34400008 4320{
630909a5 4321 int i;
55a314a5
YM
4322 /* jmp_buf may not be aligned enough on darwin-ppc64 */
4323 union aligned_jmpbuf {
4324 Lisp_Object o;
4325 jmp_buf j;
4326 } j;
6bbd7a29 4327 volatile int stack_grows_down_p = (char *) &j > (char *) stack_base;
34400008
GM
4328 void *end;
4329
2018939f
AS
4330#ifdef HAVE___BUILTIN_UNWIND_INIT
4331 /* Force callee-saved registers and register windows onto the stack.
4332 This is the preferred method if available, obviating the need for
4333 machine dependent methods. */
4334 __builtin_unwind_init ();
4335 end = &end;
4336#else /* not HAVE___BUILTIN_UNWIND_INIT */
34400008
GM
4337 /* This trick flushes the register windows so that all the state of
4338 the process is contained in the stack. */
ab6780cd 4339 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
422eec7e
DL
4340 needed on ia64 too. See mach_dep.c, where it also says inline
4341 assembler doesn't work with relevant proprietary compilers. */
4a00783e 4342#ifdef __sparc__
4d18a7a2
DN
4343#if defined (__sparc64__) && defined (__FreeBSD__)
4344 /* FreeBSD does not have a ta 3 handler. */
4c1616be
CY
4345 asm ("flushw");
4346#else
34400008 4347 asm ("ta 3");
4c1616be 4348#endif
34400008 4349#endif
177c0ea7 4350
34400008
GM
4351 /* Save registers that we need to see on the stack. We need to see
4352 registers used to hold register variables and registers used to
4353 pass parameters. */
4354#ifdef GC_SAVE_REGISTERS_ON_STACK
4355 GC_SAVE_REGISTERS_ON_STACK (end);
182ff242 4356#else /* not GC_SAVE_REGISTERS_ON_STACK */
177c0ea7 4357
182ff242
GM
4358#ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
4359 setjmp will definitely work, test it
4360 and print a message with the result
4361 of the test. */
4362 if (!setjmp_tested_p)
4363 {
4364 setjmp_tested_p = 1;
4365 test_setjmp ();
4366 }
4367#endif /* GC_SETJMP_WORKS */
177c0ea7 4368
55a314a5 4369 setjmp (j.j);
34400008 4370 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
182ff242 4371#endif /* not GC_SAVE_REGISTERS_ON_STACK */
2018939f 4372#endif /* not HAVE___BUILTIN_UNWIND_INIT */
34400008
GM
4373
4374 /* This assumes that the stack is a contiguous region in memory. If
182ff242
GM
4375 that's not the case, something has to be done here to iterate
4376 over the stack segments. */
630909a5 4377#ifndef GC_LISP_OBJECT_ALIGNMENT
422eec7e
DL
4378#ifdef __GNUC__
4379#define GC_LISP_OBJECT_ALIGNMENT __alignof__ (Lisp_Object)
4380#else
630909a5 4381#define GC_LISP_OBJECT_ALIGNMENT sizeof (Lisp_Object)
422eec7e 4382#endif
182ff242 4383#endif
24452cd5 4384 for (i = 0; i < sizeof (Lisp_Object); i += GC_LISP_OBJECT_ALIGNMENT)
55a314a5 4385 mark_memory (stack_base, end, i);
4dec23ff
AS
4386 /* Allow for marking a secondary stack, like the register stack on the
4387 ia64. */
4388#ifdef GC_MARK_SECONDARY_STACK
4389 GC_MARK_SECONDARY_STACK ();
4390#endif
34400008
GM
4391
4392#if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4393 check_gcpros ();
4394#endif
4395}
4396
34400008
GM
4397#endif /* GC_MARK_STACK != 0 */
4398
4399
7ffb6955 4400/* Determine whether it is safe to access memory at address P. */
d3d47262 4401static int
971de7fb 4402valid_pointer_p (void *p)
7ffb6955 4403{
f892cf9c
EZ
4404#ifdef WINDOWSNT
4405 return w32_valid_pointer_p (p, 16);
4406#else
7ffb6955
KS
4407 int fd;
4408
4409 /* Obviously, we cannot just access it (we would SEGV trying), so we
4410 trick the o/s to tell us whether p is a valid pointer.
4411 Unfortunately, we cannot use NULL_DEVICE here, as emacs_write may
4412 not validate p in that case. */
4413
4414 if ((fd = emacs_open ("__Valid__Lisp__Object__", O_CREAT | O_WRONLY | O_TRUNC, 0666)) >= 0)
4415 {
4416 int valid = (emacs_write (fd, (char *)p, 16) == 16);
4417 emacs_close (fd);
4418 unlink ("__Valid__Lisp__Object__");
4419 return valid;
4420 }
4421
4422 return -1;
f892cf9c 4423#endif
7ffb6955 4424}
3cd55735
KS
4425
4426/* Return 1 if OBJ is a valid lisp object.
4427 Return 0 if OBJ is NOT a valid lisp object.
4428 Return -1 if we cannot validate OBJ.
7c0ab7d9
RS
4429 This function can be quite slow,
4430 so it should only be used in code for manual debugging. */
3cd55735
KS
4431
4432int
971de7fb 4433valid_lisp_object_p (Lisp_Object obj)
3cd55735 4434{
de7124a7 4435 void *p;
7ffb6955 4436#if GC_MARK_STACK
3cd55735 4437 struct mem_node *m;
de7124a7 4438#endif
3cd55735
KS
4439
4440 if (INTEGERP (obj))
4441 return 1;
4442
4443 p = (void *) XPNTR (obj);
3cd55735
KS
4444 if (PURE_POINTER_P (p))
4445 return 1;
4446
de7124a7 4447#if !GC_MARK_STACK
7ffb6955 4448 return valid_pointer_p (p);
de7124a7
KS
4449#else
4450
3cd55735
KS
4451 m = mem_find (p);
4452
4453 if (m == MEM_NIL)
7ffb6955
KS
4454 {
4455 int valid = valid_pointer_p (p);
4456 if (valid <= 0)
4457 return valid;
4458
4459 if (SUBRP (obj))
4460 return 1;
4461
4462 return 0;
4463 }
3cd55735
KS
4464
4465 switch (m->type)
4466 {
4467 case MEM_TYPE_NON_LISP:
4468 return 0;
4469
4470 case MEM_TYPE_BUFFER:
4471 return live_buffer_p (m, p);
4472
4473 case MEM_TYPE_CONS:
4474 return live_cons_p (m, p);
4475
4476 case MEM_TYPE_STRING:
4477 return live_string_p (m, p);
4478
4479 case MEM_TYPE_MISC:
4480 return live_misc_p (m, p);
4481
4482 case MEM_TYPE_SYMBOL:
4483 return live_symbol_p (m, p);
4484
4485 case MEM_TYPE_FLOAT:
4486 return live_float_p (m, p);
4487
9c545a55 4488 case MEM_TYPE_VECTORLIKE:
3cd55735
KS
4489 return live_vector_p (m, p);
4490
4491 default:
4492 break;
4493 }
4494
4495 return 0;
4496#endif
4497}
4498
4499
4500
34400008 4501\f
2e471eb5
GM
4502/***********************************************************************
4503 Pure Storage Management
4504 ***********************************************************************/
4505
1f0b3fd2
GM
4506/* Allocate room for SIZE bytes from pure Lisp storage and return a
4507 pointer to it. TYPE is the Lisp type for which the memory is
e5bc14d4 4508 allocated. TYPE < 0 means it's not used for a Lisp object. */
1f0b3fd2
GM
4509
4510static POINTER_TYPE *
971de7fb 4511pure_alloc (size_t size, int type)
1f0b3fd2 4512{
1f0b3fd2 4513 POINTER_TYPE *result;
6b61353c
KH
4514#ifdef USE_LSB_TAG
4515 size_t alignment = (1 << GCTYPEBITS);
4516#else
44117420 4517 size_t alignment = sizeof (EMACS_INT);
1f0b3fd2
GM
4518
4519 /* Give Lisp_Floats an extra alignment. */
4520 if (type == Lisp_Float)
4521 {
1f0b3fd2
GM
4522#if defined __GNUC__ && __GNUC__ >= 2
4523 alignment = __alignof (struct Lisp_Float);
4524#else
4525 alignment = sizeof (struct Lisp_Float);
4526#endif
9e713715 4527 }
6b61353c 4528#endif
1f0b3fd2 4529
44117420 4530 again:
e5bc14d4
YM
4531 if (type >= 0)
4532 {
4533 /* Allocate space for a Lisp object from the beginning of the free
4534 space with taking account of alignment. */
4535 result = ALIGN (purebeg + pure_bytes_used_lisp, alignment);
4536 pure_bytes_used_lisp = ((char *)result - (char *)purebeg) + size;
4537 }
4538 else
4539 {
4540 /* Allocate space for a non-Lisp object from the end of the free
4541 space. */
4542 pure_bytes_used_non_lisp += size;
4543 result = purebeg + pure_size - pure_bytes_used_non_lisp;
4544 }
4545 pure_bytes_used = pure_bytes_used_lisp + pure_bytes_used_non_lisp;
44117420
KS
4546
4547 if (pure_bytes_used <= pure_size)
4548 return result;
4549
4550 /* Don't allocate a large amount here,
4551 because it might get mmap'd and then its address
4552 might not be usable. */
4553 purebeg = (char *) xmalloc (10000);
4554 pure_size = 10000;
4555 pure_bytes_used_before_overflow += pure_bytes_used - size;
4556 pure_bytes_used = 0;
e5bc14d4 4557 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
44117420 4558 goto again;
1f0b3fd2
GM
4559}
4560
4561
852f8cdc 4562/* Print a warning if PURESIZE is too small. */
9e713715
GM
4563
4564void
971de7fb 4565check_pure_size (void)
9e713715
GM
4566{
4567 if (pure_bytes_used_before_overflow)
2aee5ca3 4568 message ("emacs:0:Pure Lisp storage overflow (approx. %d bytes needed)",
a4d35afd 4569 (int) (pure_bytes_used + pure_bytes_used_before_overflow));
9e713715
GM
4570}
4571
4572
79fd0489
YM
4573/* Find the byte sequence {DATA[0], ..., DATA[NBYTES-1], '\0'} from
4574 the non-Lisp data pool of the pure storage, and return its start
4575 address. Return NULL if not found. */
4576
4577static char *
14162469 4578find_string_data_in_pure (const char *data, EMACS_INT nbytes)
79fd0489 4579{
14162469
EZ
4580 int i;
4581 EMACS_INT skip, bm_skip[256], last_char_skip, infinity, start, start_max;
2aff7c53 4582 const unsigned char *p;
79fd0489
YM
4583 char *non_lisp_beg;
4584
4585 if (pure_bytes_used_non_lisp < nbytes + 1)
4586 return NULL;
4587
4588 /* Set up the Boyer-Moore table. */
4589 skip = nbytes + 1;
4590 for (i = 0; i < 256; i++)
4591 bm_skip[i] = skip;
4592
2aff7c53 4593 p = (const unsigned char *) data;
79fd0489
YM
4594 while (--skip > 0)
4595 bm_skip[*p++] = skip;
4596
4597 last_char_skip = bm_skip['\0'];
4598
4599 non_lisp_beg = purebeg + pure_size - pure_bytes_used_non_lisp;
4600 start_max = pure_bytes_used_non_lisp - (nbytes + 1);
4601
4602 /* See the comments in the function `boyer_moore' (search.c) for the
4603 use of `infinity'. */
4604 infinity = pure_bytes_used_non_lisp + 1;
4605 bm_skip['\0'] = infinity;
4606
2aff7c53 4607 p = (const unsigned char *) non_lisp_beg + nbytes;
79fd0489
YM
4608 start = 0;
4609 do
4610 {
4611 /* Check the last character (== '\0'). */
4612 do
4613 {
4614 start += bm_skip[*(p + start)];
4615 }
4616 while (start <= start_max);
4617
4618 if (start < infinity)
4619 /* Couldn't find the last character. */
4620 return NULL;
4621
4622 /* No less than `infinity' means we could find the last
4623 character at `p[start - infinity]'. */
4624 start -= infinity;
4625
4626 /* Check the remaining characters. */
4627 if (memcmp (data, non_lisp_beg + start, nbytes) == 0)
4628 /* Found. */
4629 return non_lisp_beg + start;
4630
4631 start += last_char_skip;
4632 }
4633 while (start <= start_max);
4634
4635 return NULL;
4636}
4637
4638
2e471eb5
GM
4639/* Return a string allocated in pure space. DATA is a buffer holding
4640 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
4641 non-zero means make the result string multibyte.
1a4f1e2c 4642
2e471eb5
GM
4643 Must get an error if pure storage is full, since if it cannot hold
4644 a large string it may be able to hold conses that point to that
4645 string; then the string is not protected from gc. */
7146af97
JB
4646
4647Lisp_Object
14162469
EZ
4648make_pure_string (const char *data,
4649 EMACS_INT nchars, EMACS_INT nbytes, int multibyte)
7146af97 4650{
2e471eb5
GM
4651 Lisp_Object string;
4652 struct Lisp_String *s;
c0696668 4653
1f0b3fd2 4654 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
90256841 4655 s->data = (unsigned char *) find_string_data_in_pure (data, nbytes);
79fd0489
YM
4656 if (s->data == NULL)
4657 {
4658 s->data = (unsigned char *) pure_alloc (nbytes + 1, -1);
72af86bd 4659 memcpy (s->data, data, nbytes);
79fd0489
YM
4660 s->data[nbytes] = '\0';
4661 }
2e471eb5
GM
4662 s->size = nchars;
4663 s->size_byte = multibyte ? nbytes : -1;
2e471eb5 4664 s->intervals = NULL_INTERVAL;
2e471eb5
GM
4665 XSETSTRING (string, s);
4666 return string;
7146af97
JB
4667}
4668
a56eaaef
DN
4669/* Return a string a string allocated in pure space. Do not allocate
4670 the string data, just point to DATA. */
4671
4672Lisp_Object
4673make_pure_c_string (const char *data)
4674{
4675 Lisp_Object string;
4676 struct Lisp_String *s;
14162469 4677 EMACS_INT nchars = strlen (data);
a56eaaef
DN
4678
4679 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
4680 s->size = nchars;
4681 s->size_byte = -1;
323637a2 4682 s->data = (unsigned char *) data;
a56eaaef
DN
4683 s->intervals = NULL_INTERVAL;
4684 XSETSTRING (string, s);
4685 return string;
4686}
2e471eb5 4687
34400008
GM
4688/* Return a cons allocated from pure space. Give it pure copies
4689 of CAR as car and CDR as cdr. */
4690
7146af97 4691Lisp_Object
971de7fb 4692pure_cons (Lisp_Object car, Lisp_Object cdr)
7146af97
JB
4693{
4694 register Lisp_Object new;
1f0b3fd2 4695 struct Lisp_Cons *p;
7146af97 4696
1f0b3fd2
GM
4697 p = (struct Lisp_Cons *) pure_alloc (sizeof *p, Lisp_Cons);
4698 XSETCONS (new, p);
f3fbd155
KR
4699 XSETCAR (new, Fpurecopy (car));
4700 XSETCDR (new, Fpurecopy (cdr));
7146af97
JB
4701 return new;
4702}
4703
7146af97 4704
34400008
GM
4705/* Value is a float object with value NUM allocated from pure space. */
4706
d3d47262 4707static Lisp_Object
971de7fb 4708make_pure_float (double num)
7146af97
JB
4709{
4710 register Lisp_Object new;
1f0b3fd2 4711 struct Lisp_Float *p;
7146af97 4712
1f0b3fd2
GM
4713 p = (struct Lisp_Float *) pure_alloc (sizeof *p, Lisp_Float);
4714 XSETFLOAT (new, p);
f601cdf3 4715 XFLOAT_INIT (new, num);
7146af97
JB
4716 return new;
4717}
4718
34400008
GM
4719
4720/* Return a vector with room for LEN Lisp_Objects allocated from
4721 pure space. */
4722
7146af97 4723Lisp_Object
971de7fb 4724make_pure_vector (EMACS_INT len)
7146af97 4725{
1f0b3fd2
GM
4726 Lisp_Object new;
4727 struct Lisp_Vector *p;
4728 size_t size = sizeof *p + (len - 1) * sizeof (Lisp_Object);
7146af97 4729
1f0b3fd2
GM
4730 p = (struct Lisp_Vector *) pure_alloc (size, Lisp_Vectorlike);
4731 XSETVECTOR (new, p);
7146af97
JB
4732 XVECTOR (new)->size = len;
4733 return new;
4734}
4735
34400008 4736
7146af97 4737DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
909e3b33 4738 doc: /* Make a copy of object OBJ in pure storage.
228299fa 4739Recursively copies contents of vectors and cons cells.
7ee72033 4740Does not copy symbols. Copies strings without text properties. */)
5842a27b 4741 (register Lisp_Object obj)
7146af97 4742{
265a9e55 4743 if (NILP (Vpurify_flag))
7146af97
JB
4744 return obj;
4745
1f0b3fd2 4746 if (PURE_POINTER_P (XPNTR (obj)))
7146af97
JB
4747 return obj;
4748
e9515805
SM
4749 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
4750 {
4751 Lisp_Object tmp = Fgethash (obj, Vpurify_flag, Qnil);
4752 if (!NILP (tmp))
4753 return tmp;
4754 }
4755
d6dd74bb 4756 if (CONSP (obj))
e9515805 4757 obj = pure_cons (XCAR (obj), XCDR (obj));
d6dd74bb 4758 else if (FLOATP (obj))
e9515805 4759 obj = make_pure_float (XFLOAT_DATA (obj));
d6dd74bb 4760 else if (STRINGP (obj))
42a5b22f 4761 obj = make_pure_string (SSDATA (obj), SCHARS (obj),
e9515805
SM
4762 SBYTES (obj),
4763 STRING_MULTIBYTE (obj));
876c194c 4764 else if (COMPILEDP (obj) || VECTORP (obj))
d6dd74bb
KH
4765 {
4766 register struct Lisp_Vector *vec;
14162469 4767 register EMACS_INT i;
6b61353c 4768 EMACS_INT size;
d6dd74bb
KH
4769
4770 size = XVECTOR (obj)->size;
7d535c68
KH
4771 if (size & PSEUDOVECTOR_FLAG)
4772 size &= PSEUDOVECTOR_SIZE_MASK;
6b61353c 4773 vec = XVECTOR (make_pure_vector (size));
d6dd74bb
KH
4774 for (i = 0; i < size; i++)
4775 vec->contents[i] = Fpurecopy (XVECTOR (obj)->contents[i]);
876c194c 4776 if (COMPILEDP (obj))
985773c9 4777 {
876c194c
SM
4778 XSETPVECTYPE (vec, PVEC_COMPILED);
4779 XSETCOMPILED (obj, vec);
985773c9 4780 }
d6dd74bb
KH
4781 else
4782 XSETVECTOR (obj, vec);
7146af97 4783 }
d6dd74bb
KH
4784 else if (MARKERP (obj))
4785 error ("Attempt to copy a marker to pure storage");
e9515805
SM
4786 else
4787 /* Not purified, don't hash-cons. */
4788 return obj;
4789
4790 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
4791 Fputhash (obj, obj, Vpurify_flag);
6bbd7a29
GM
4792
4793 return obj;
7146af97 4794}
2e471eb5 4795
34400008 4796
7146af97 4797\f
34400008
GM
4798/***********************************************************************
4799 Protection from GC
4800 ***********************************************************************/
4801
2e471eb5
GM
4802/* Put an entry in staticvec, pointing at the variable with address
4803 VARADDRESS. */
7146af97
JB
4804
4805void
971de7fb 4806staticpro (Lisp_Object *varaddress)
7146af97
JB
4807{
4808 staticvec[staticidx++] = varaddress;
4809 if (staticidx >= NSTATICS)
4810 abort ();
4811}
4812
7146af97 4813\f
34400008
GM
4814/***********************************************************************
4815 Protection from GC
4816 ***********************************************************************/
1a4f1e2c 4817
e8197642
RS
4818/* Temporarily prevent garbage collection. */
4819
4820int
971de7fb 4821inhibit_garbage_collection (void)
e8197642 4822{
aed13378 4823 int count = SPECPDL_INDEX ();
54defd0d
AS
4824 int nbits = min (VALBITS, BITS_PER_INT);
4825
4826 specbind (Qgc_cons_threshold, make_number (((EMACS_INT) 1 << (nbits - 1)) - 1));
e8197642
RS
4827 return count;
4828}
4829
34400008 4830
7146af97 4831DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
7ee72033 4832 doc: /* Reclaim storage for Lisp objects no longer needed.
e1e37596
RS
4833Garbage collection happens automatically if you cons more than
4834`gc-cons-threshold' bytes of Lisp data since previous garbage collection.
4835`garbage-collect' normally returns a list with info on amount of space in use:
228299fa
GM
4836 ((USED-CONSES . FREE-CONSES) (USED-SYMS . FREE-SYMS)
4837 (USED-MARKERS . FREE-MARKERS) USED-STRING-CHARS USED-VECTOR-SLOTS
4838 (USED-FLOATS . FREE-FLOATS) (USED-INTERVALS . FREE-INTERVALS)
4839 (USED-STRINGS . FREE-STRINGS))
e1e37596
RS
4840However, if there was overflow in pure space, `garbage-collect'
4841returns nil, because real GC can't be done. */)
5842a27b 4842 (void)
7146af97 4843{
7146af97 4844 register struct specbinding *bind;
7146af97
JB
4845 char stack_top_variable;
4846 register int i;
6efc7df7 4847 int message_p;
96117bc7 4848 Lisp_Object total[8];
331379bf 4849 int count = SPECPDL_INDEX ();
2c5bd608
DL
4850 EMACS_TIME t1, t2, t3;
4851
3de0effb
RS
4852 if (abort_on_gc)
4853 abort ();
4854
9e713715
GM
4855 /* Can't GC if pure storage overflowed because we can't determine
4856 if something is a pure object or not. */
4857 if (pure_bytes_used_before_overflow)
4858 return Qnil;
4859
bbc012e0
KS
4860 CHECK_CONS_LIST ();
4861
3c7e66a8
RS
4862 /* Don't keep undo information around forever.
4863 Do this early on, so it is no problem if the user quits. */
4864 {
4865 register struct buffer *nextb = all_buffers;
4866
4867 while (nextb)
4868 {
4869 /* If a buffer's undo list is Qt, that means that undo is
4870 turned off in that buffer. Calling truncate_undo_list on
4871 Qt tends to return NULL, which effectively turns undo back on.
4872 So don't call truncate_undo_list if undo_list is Qt. */
5d8ea120 4873 if (! NILP (nextb->BUFFER_INTERNAL_FIELD (name)) && ! EQ (nextb->BUFFER_INTERNAL_FIELD (undo_list), Qt))
3c7e66a8
RS
4874 truncate_undo_list (nextb);
4875
4876 /* Shrink buffer gaps, but skip indirect and dead buffers. */
5d8ea120 4877 if (nextb->base_buffer == 0 && !NILP (nextb->BUFFER_INTERNAL_FIELD (name))
dc7b4525 4878 && ! nextb->text->inhibit_shrinking)
3c7e66a8
RS
4879 {
4880 /* If a buffer's gap size is more than 10% of the buffer
4881 size, or larger than 2000 bytes, then shrink it
4882 accordingly. Keep a minimum size of 20 bytes. */
4883 int size = min (2000, max (20, (nextb->text->z_byte / 10)));
4884
4885 if (nextb->text->gap_size > size)
4886 {
4887 struct buffer *save_current = current_buffer;
4888 current_buffer = nextb;
4889 make_gap (-(nextb->text->gap_size - size));
4890 current_buffer = save_current;
4891 }
4892 }
4893
4894 nextb = nextb->next;
4895 }
4896 }
4897
4898 EMACS_GET_TIME (t1);
4899
58595309
KH
4900 /* In case user calls debug_print during GC,
4901 don't let that cause a recursive GC. */
4902 consing_since_gc = 0;
4903
6efc7df7
GM
4904 /* Save what's currently displayed in the echo area. */
4905 message_p = push_message ();
c55b0da6 4906 record_unwind_protect (pop_message_unwind, Qnil);
41c28a37 4907
7146af97
JB
4908 /* Save a copy of the contents of the stack, for debugging. */
4909#if MAX_SAVE_STACK > 0
265a9e55 4910 if (NILP (Vpurify_flag))
7146af97
JB
4911 {
4912 i = &stack_top_variable - stack_bottom;
4913 if (i < 0) i = -i;
4914 if (i < MAX_SAVE_STACK)
4915 {
4916 if (stack_copy == 0)
9ac0d9e0 4917 stack_copy = (char *) xmalloc (stack_copy_size = i);
7146af97 4918 else if (stack_copy_size < i)
9ac0d9e0 4919 stack_copy = (char *) xrealloc (stack_copy, (stack_copy_size = i));
7146af97
JB
4920 if (stack_copy)
4921 {
42607681 4922 if ((EMACS_INT) (&stack_top_variable - stack_bottom) > 0)
72af86bd 4923 memcpy (stack_copy, stack_bottom, i);
7146af97 4924 else
72af86bd 4925 memcpy (stack_copy, &stack_top_variable, i);
7146af97
JB
4926 }
4927 }
4928 }
4929#endif /* MAX_SAVE_STACK > 0 */
4930
299585ee 4931 if (garbage_collection_messages)
691c4285 4932 message1_nolog ("Garbage collecting...");
7146af97 4933
6e0fca1d
RS
4934 BLOCK_INPUT;
4935
eec7b73d
RS
4936 shrink_regexp_cache ();
4937
7146af97
JB
4938 gc_in_progress = 1;
4939
c23baf9f 4940 /* clear_marks (); */
7146af97 4941
005ca5c7 4942 /* Mark all the special slots that serve as the roots of accessibility. */
7146af97
JB
4943
4944 for (i = 0; i < staticidx; i++)
49723c04 4945 mark_object (*staticvec[i]);
34400008 4946
126f9c02
SM
4947 for (bind = specpdl; bind != specpdl_ptr; bind++)
4948 {
4949 mark_object (bind->symbol);
4950 mark_object (bind->old_value);
4951 }
6ed8eeff 4952 mark_terminals ();
126f9c02 4953 mark_kboards ();
98a92e2d 4954 mark_ttys ();
126f9c02
SM
4955
4956#ifdef USE_GTK
4957 {
dd4c5104 4958 extern void xg_mark_data (void);
126f9c02
SM
4959 xg_mark_data ();
4960 }
4961#endif
4962
34400008
GM
4963#if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
4964 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
4965 mark_stack ();
4966#else
acf5f7d3
SM
4967 {
4968 register struct gcpro *tail;
4969 for (tail = gcprolist; tail; tail = tail->next)
4970 for (i = 0; i < tail->nvars; i++)
005ca5c7 4971 mark_object (tail->var[i]);
acf5f7d3 4972 }
3e21b6a7 4973 mark_byte_stack ();
b286858c
SM
4974 {
4975 struct catchtag *catch;
4976 struct handler *handler;
177c0ea7 4977
7146af97
JB
4978 for (catch = catchlist; catch; catch = catch->next)
4979 {
49723c04
SM
4980 mark_object (catch->tag);
4981 mark_object (catch->val);
177c0ea7 4982 }
7146af97
JB
4983 for (handler = handlerlist; handler; handler = handler->next)
4984 {
49723c04
SM
4985 mark_object (handler->handler);
4986 mark_object (handler->var);
177c0ea7 4987 }
b286858c 4988 }
b40ea20a 4989 mark_backtrace ();
b286858c 4990#endif
7146af97 4991
454d7973
KS
4992#ifdef HAVE_WINDOW_SYSTEM
4993 mark_fringe_data ();
4994#endif
4995
74c35a48
SM
4996#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4997 mark_stack ();
4998#endif
4999
c37adf23
SM
5000 /* Everything is now marked, except for the things that require special
5001 finalization, i.e. the undo_list.
5002 Look thru every buffer's undo list
4c315bda
RS
5003 for elements that update markers that were not marked,
5004 and delete them. */
5005 {
5006 register struct buffer *nextb = all_buffers;
5007
5008 while (nextb)
5009 {
5010 /* If a buffer's undo list is Qt, that means that undo is
5011 turned off in that buffer. Calling truncate_undo_list on
5012 Qt tends to return NULL, which effectively turns undo back on.
5013 So don't call truncate_undo_list if undo_list is Qt. */
5d8ea120 5014 if (! EQ (nextb->BUFFER_INTERNAL_FIELD (undo_list), Qt))
4c315bda
RS
5015 {
5016 Lisp_Object tail, prev;
5d8ea120 5017 tail = nextb->BUFFER_INTERNAL_FIELD (undo_list);
4c315bda
RS
5018 prev = Qnil;
5019 while (CONSP (tail))
5020 {
8e50cc2d
SM
5021 if (CONSP (XCAR (tail))
5022 && MARKERP (XCAR (XCAR (tail)))
2336fe58 5023 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
4c315bda
RS
5024 {
5025 if (NILP (prev))
5d8ea120 5026 nextb->BUFFER_INTERNAL_FIELD (undo_list) = tail = XCDR (tail);
4c315bda 5027 else
f3fbd155
KR
5028 {
5029 tail = XCDR (tail);
5030 XSETCDR (prev, tail);
5031 }
4c315bda
RS
5032 }
5033 else
5034 {
5035 prev = tail;
70949dac 5036 tail = XCDR (tail);
4c315bda
RS
5037 }
5038 }
5039 }
c37adf23
SM
5040 /* Now that we have stripped the elements that need not be in the
5041 undo_list any more, we can finally mark the list. */
5d8ea120 5042 mark_object (nextb->BUFFER_INTERNAL_FIELD (undo_list));
4c315bda
RS
5043
5044 nextb = nextb->next;
5045 }
5046 }
5047
7146af97
JB
5048 gc_sweep ();
5049
5050 /* Clear the mark bits that we set in certain root slots. */
5051
033a5fa3 5052 unmark_byte_stack ();
3ef06d12
SM
5053 VECTOR_UNMARK (&buffer_defaults);
5054 VECTOR_UNMARK (&buffer_local_symbols);
7146af97 5055
34400008
GM
5056#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
5057 dump_zombies ();
5058#endif
5059
6e0fca1d
RS
5060 UNBLOCK_INPUT;
5061
bbc012e0
KS
5062 CHECK_CONS_LIST ();
5063
c23baf9f 5064 /* clear_marks (); */
7146af97
JB
5065 gc_in_progress = 0;
5066
5067 consing_since_gc = 0;
5068 if (gc_cons_threshold < 10000)
5069 gc_cons_threshold = 10000;
5070
96f077ad
SM
5071 if (FLOATP (Vgc_cons_percentage))
5072 { /* Set gc_cons_combined_threshold. */
5073 EMACS_INT total = 0;
974aae61 5074
96f077ad
SM
5075 total += total_conses * sizeof (struct Lisp_Cons);
5076 total += total_symbols * sizeof (struct Lisp_Symbol);
5077 total += total_markers * sizeof (union Lisp_Misc);
5078 total += total_string_size;
5079 total += total_vector_size * sizeof (Lisp_Object);
5080 total += total_floats * sizeof (struct Lisp_Float);
5081 total += total_intervals * sizeof (struct interval);
5082 total += total_strings * sizeof (struct Lisp_String);
3cd55735 5083
974aae61 5084 gc_relative_threshold = total * XFLOAT_DATA (Vgc_cons_percentage);
96f077ad 5085 }
974aae61
RS
5086 else
5087 gc_relative_threshold = 0;
96f077ad 5088
299585ee
RS
5089 if (garbage_collection_messages)
5090 {
6efc7df7
GM
5091 if (message_p || minibuf_level > 0)
5092 restore_message ();
299585ee
RS
5093 else
5094 message1_nolog ("Garbage collecting...done");
5095 }
7146af97 5096
98edb5ff 5097 unbind_to (count, Qnil);
2e471eb5
GM
5098
5099 total[0] = Fcons (make_number (total_conses),
5100 make_number (total_free_conses));
5101 total[1] = Fcons (make_number (total_symbols),
5102 make_number (total_free_symbols));
5103 total[2] = Fcons (make_number (total_markers),
5104 make_number (total_free_markers));
96117bc7
GM
5105 total[3] = make_number (total_string_size);
5106 total[4] = make_number (total_vector_size);
5107 total[5] = Fcons (make_number (total_floats),
2e471eb5 5108 make_number (total_free_floats));
96117bc7 5109 total[6] = Fcons (make_number (total_intervals),
2e471eb5 5110 make_number (total_free_intervals));
96117bc7 5111 total[7] = Fcons (make_number (total_strings),
2e471eb5
GM
5112 make_number (total_free_strings));
5113
34400008 5114#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
7146af97 5115 {
34400008
GM
5116 /* Compute average percentage of zombies. */
5117 double nlive = 0;
177c0ea7 5118
34400008 5119 for (i = 0; i < 7; ++i)
83fc9c63
DL
5120 if (CONSP (total[i]))
5121 nlive += XFASTINT (XCAR (total[i]));
34400008
GM
5122
5123 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
5124 max_live = max (nlive, max_live);
5125 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
5126 max_zombies = max (nzombies, max_zombies);
5127 ++ngcs;
5128 }
5129#endif
7146af97 5130
9e713715
GM
5131 if (!NILP (Vpost_gc_hook))
5132 {
5133 int count = inhibit_garbage_collection ();
5134 safe_run_hooks (Qpost_gc_hook);
5135 unbind_to (count, Qnil);
5136 }
2c5bd608
DL
5137
5138 /* Accumulate statistics. */
5139 EMACS_GET_TIME (t2);
5140 EMACS_SUB_TIME (t3, t2, t1);
5141 if (FLOATP (Vgc_elapsed))
69ab9f85
SM
5142 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed) +
5143 EMACS_SECS (t3) +
5144 EMACS_USECS (t3) * 1.0e-6);
2c5bd608
DL
5145 gcs_done++;
5146
96117bc7 5147 return Flist (sizeof total / sizeof *total, total);
7146af97 5148}
34400008 5149
41c28a37 5150
3770920e
GM
5151/* Mark Lisp objects in glyph matrix MATRIX. Currently the
5152 only interesting objects referenced from glyphs are strings. */
41c28a37
GM
5153
5154static void
971de7fb 5155mark_glyph_matrix (struct glyph_matrix *matrix)
41c28a37
GM
5156{
5157 struct glyph_row *row = matrix->rows;
5158 struct glyph_row *end = row + matrix->nrows;
5159
2e471eb5
GM
5160 for (; row < end; ++row)
5161 if (row->enabled_p)
5162 {
5163 int area;
5164 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
5165 {
5166 struct glyph *glyph = row->glyphs[area];
5167 struct glyph *end_glyph = glyph + row->used[area];
177c0ea7 5168
2e471eb5 5169 for (; glyph < end_glyph; ++glyph)
8e50cc2d 5170 if (STRINGP (glyph->object)
2e471eb5 5171 && !STRING_MARKED_P (XSTRING (glyph->object)))
49723c04 5172 mark_object (glyph->object);
2e471eb5
GM
5173 }
5174 }
41c28a37
GM
5175}
5176
34400008 5177
41c28a37
GM
5178/* Mark Lisp faces in the face cache C. */
5179
5180static void
971de7fb 5181mark_face_cache (struct face_cache *c)
41c28a37
GM
5182{
5183 if (c)
5184 {
5185 int i, j;
5186 for (i = 0; i < c->used; ++i)
5187 {
5188 struct face *face = FACE_FROM_ID (c->f, i);
5189
5190 if (face)
5191 {
5192 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
49723c04 5193 mark_object (face->lface[j]);
41c28a37
GM
5194 }
5195 }
5196 }
5197}
5198
5199
7146af97 5200\f
1a4f1e2c 5201/* Mark reference to a Lisp_Object.
2e471eb5
GM
5202 If the object referred to has not been seen yet, recursively mark
5203 all the references contained in it. */
7146af97 5204
785cd37f 5205#define LAST_MARKED_SIZE 500
d3d47262 5206static Lisp_Object last_marked[LAST_MARKED_SIZE];
785cd37f
RS
5207int last_marked_index;
5208
1342fc6f
RS
5209/* For debugging--call abort when we cdr down this many
5210 links of a list, in mark_object. In debugging,
5211 the call to abort will hit a breakpoint.
5212 Normally this is zero and the check never goes off. */
d3d47262 5213static int mark_object_loop_halt;
1342fc6f 5214
8f11f7ec 5215static void
971de7fb 5216mark_vectorlike (struct Lisp_Vector *ptr)
d2029e5b 5217{
14162469
EZ
5218 register EMACS_UINT size = ptr->size;
5219 register EMACS_UINT i;
d2029e5b 5220
8f11f7ec 5221 eassert (!VECTOR_MARKED_P (ptr));
d2029e5b
SM
5222 VECTOR_MARK (ptr); /* Else mark it */
5223 if (size & PSEUDOVECTOR_FLAG)
5224 size &= PSEUDOVECTOR_SIZE_MASK;
d3d47262 5225
d2029e5b
SM
5226 /* Note that this size is not the memory-footprint size, but only
5227 the number of Lisp_Object fields that we should trace.
5228 The distinction is used e.g. by Lisp_Process which places extra
5229 non-Lisp_Object fields at the end of the structure. */
5230 for (i = 0; i < size; i++) /* and then mark its elements */
5231 mark_object (ptr->contents[i]);
d2029e5b
SM
5232}
5233
58026347
KH
5234/* Like mark_vectorlike but optimized for char-tables (and
5235 sub-char-tables) assuming that the contents are mostly integers or
5236 symbols. */
5237
5238static void
971de7fb 5239mark_char_table (struct Lisp_Vector *ptr)
58026347 5240{
14162469
EZ
5241 register EMACS_UINT size = ptr->size & PSEUDOVECTOR_SIZE_MASK;
5242 register EMACS_UINT i;
58026347 5243
8f11f7ec 5244 eassert (!VECTOR_MARKED_P (ptr));
58026347
KH
5245 VECTOR_MARK (ptr);
5246 for (i = 0; i < size; i++)
5247 {
5248 Lisp_Object val = ptr->contents[i];
5249
ef1b0ba7 5250 if (INTEGERP (val) || (SYMBOLP (val) && XSYMBOL (val)->gcmarkbit))
58026347
KH
5251 continue;
5252 if (SUB_CHAR_TABLE_P (val))
5253 {
5254 if (! VECTOR_MARKED_P (XVECTOR (val)))
5255 mark_char_table (XVECTOR (val));
5256 }
5257 else
5258 mark_object (val);
5259 }
5260}
5261
41c28a37 5262void
971de7fb 5263mark_object (Lisp_Object arg)
7146af97 5264{
49723c04 5265 register Lisp_Object obj = arg;
4f5c1376
GM
5266#ifdef GC_CHECK_MARKED_OBJECTS
5267 void *po;
5268 struct mem_node *m;
5269#endif
1342fc6f 5270 int cdr_count = 0;
7146af97 5271
9149e743 5272 loop:
7146af97 5273
1f0b3fd2 5274 if (PURE_POINTER_P (XPNTR (obj)))
7146af97
JB
5275 return;
5276
49723c04 5277 last_marked[last_marked_index++] = obj;
785cd37f
RS
5278 if (last_marked_index == LAST_MARKED_SIZE)
5279 last_marked_index = 0;
5280
4f5c1376
GM
5281 /* Perform some sanity checks on the objects marked here. Abort if
5282 we encounter an object we know is bogus. This increases GC time
5283 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
5284#ifdef GC_CHECK_MARKED_OBJECTS
5285
5286 po = (void *) XPNTR (obj);
5287
5288 /* Check that the object pointed to by PO is known to be a Lisp
5289 structure allocated from the heap. */
5290#define CHECK_ALLOCATED() \
5291 do { \
5292 m = mem_find (po); \
5293 if (m == MEM_NIL) \
5294 abort (); \
5295 } while (0)
5296
5297 /* Check that the object pointed to by PO is live, using predicate
5298 function LIVEP. */
5299#define CHECK_LIVE(LIVEP) \
5300 do { \
5301 if (!LIVEP (m, po)) \
5302 abort (); \
5303 } while (0)
5304
5305 /* Check both of the above conditions. */
5306#define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
5307 do { \
5308 CHECK_ALLOCATED (); \
5309 CHECK_LIVE (LIVEP); \
5310 } while (0) \
177c0ea7 5311
4f5c1376 5312#else /* not GC_CHECK_MARKED_OBJECTS */
177c0ea7 5313
4f5c1376
GM
5314#define CHECK_ALLOCATED() (void) 0
5315#define CHECK_LIVE(LIVEP) (void) 0
5316#define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
177c0ea7 5317
4f5c1376
GM
5318#endif /* not GC_CHECK_MARKED_OBJECTS */
5319
8e50cc2d 5320 switch (SWITCH_ENUM_CAST (XTYPE (obj)))
7146af97
JB
5321 {
5322 case Lisp_String:
5323 {
5324 register struct Lisp_String *ptr = XSTRING (obj);
8f11f7ec
SM
5325 if (STRING_MARKED_P (ptr))
5326 break;
4f5c1376 5327 CHECK_ALLOCATED_AND_LIVE (live_string_p);
d5e35230 5328 MARK_INTERVAL_TREE (ptr->intervals);
2e471eb5 5329 MARK_STRING (ptr);
361b097f 5330#ifdef GC_CHECK_STRING_BYTES
676a7251
GM
5331 /* Check that the string size recorded in the string is the
5332 same as the one recorded in the sdata structure. */
5333 CHECK_STRING_BYTES (ptr);
361b097f 5334#endif /* GC_CHECK_STRING_BYTES */
7146af97
JB
5335 }
5336 break;
5337
76437631 5338 case Lisp_Vectorlike:
8f11f7ec
SM
5339 if (VECTOR_MARKED_P (XVECTOR (obj)))
5340 break;
4f5c1376
GM
5341#ifdef GC_CHECK_MARKED_OBJECTS
5342 m = mem_find (po);
8e50cc2d 5343 if (m == MEM_NIL && !SUBRP (obj)
4f5c1376
GM
5344 && po != &buffer_defaults
5345 && po != &buffer_local_symbols)
5346 abort ();
5347#endif /* GC_CHECK_MARKED_OBJECTS */
177c0ea7 5348
8e50cc2d 5349 if (BUFFERP (obj))
6b552283 5350 {
4f5c1376 5351#ifdef GC_CHECK_MARKED_OBJECTS
8f11f7ec
SM
5352 if (po != &buffer_defaults && po != &buffer_local_symbols)
5353 {
5354 struct buffer *b;
5355 for (b = all_buffers; b && b != po; b = b->next)
5356 ;
5357 if (b == NULL)
5358 abort ();
4f5c1376 5359 }
8f11f7ec
SM
5360#endif /* GC_CHECK_MARKED_OBJECTS */
5361 mark_buffer (obj);
6b552283 5362 }
8e50cc2d 5363 else if (SUBRP (obj))
169ee243 5364 break;
876c194c 5365 else if (COMPILEDP (obj))
2e471eb5
GM
5366 /* We could treat this just like a vector, but it is better to
5367 save the COMPILED_CONSTANTS element for last and avoid
5368 recursion there. */
169ee243
RS
5369 {
5370 register struct Lisp_Vector *ptr = XVECTOR (obj);
14162469
EZ
5371 register EMACS_UINT size = ptr->size;
5372 register EMACS_UINT i;
169ee243 5373
4f5c1376 5374 CHECK_LIVE (live_vector_p);
3ef06d12 5375 VECTOR_MARK (ptr); /* Else mark it */
76437631 5376 size &= PSEUDOVECTOR_SIZE_MASK;
169ee243
RS
5377 for (i = 0; i < size; i++) /* and then mark its elements */
5378 {
5379 if (i != COMPILED_CONSTANTS)
49723c04 5380 mark_object (ptr->contents[i]);
169ee243 5381 }
49723c04 5382 obj = ptr->contents[COMPILED_CONSTANTS];
169ee243
RS
5383 goto loop;
5384 }
8e50cc2d 5385 else if (FRAMEP (obj))
169ee243 5386 {
c70bbf06 5387 register struct frame *ptr = XFRAME (obj);
8f11f7ec
SM
5388 mark_vectorlike (XVECTOR (obj));
5389 mark_face_cache (ptr->face_cache);
707788bd 5390 }
8e50cc2d 5391 else if (WINDOWP (obj))
41c28a37
GM
5392 {
5393 register struct Lisp_Vector *ptr = XVECTOR (obj);
5394 struct window *w = XWINDOW (obj);
8f11f7ec
SM
5395 mark_vectorlike (ptr);
5396 /* Mark glyphs for leaf windows. Marking window matrices is
5397 sufficient because frame matrices use the same glyph
5398 memory. */
5399 if (NILP (w->hchild)
5400 && NILP (w->vchild)
5401 && w->current_matrix)
41c28a37 5402 {
8f11f7ec
SM
5403 mark_glyph_matrix (w->current_matrix);
5404 mark_glyph_matrix (w->desired_matrix);
41c28a37
GM
5405 }
5406 }
8e50cc2d 5407 else if (HASH_TABLE_P (obj))
41c28a37
GM
5408 {
5409 struct Lisp_Hash_Table *h = XHASH_TABLE (obj);
8f11f7ec
SM
5410 mark_vectorlike ((struct Lisp_Vector *)h);
5411 /* If hash table is not weak, mark all keys and values.
5412 For weak tables, mark only the vector. */
5413 if (NILP (h->weak))
5414 mark_object (h->key_and_value);
5415 else
5416 VECTOR_MARK (XVECTOR (h->key_and_value));
41c28a37 5417 }
58026347 5418 else if (CHAR_TABLE_P (obj))
8f11f7ec 5419 mark_char_table (XVECTOR (obj));
04ff9756 5420 else
d2029e5b 5421 mark_vectorlike (XVECTOR (obj));
169ee243 5422 break;
7146af97 5423
7146af97
JB
5424 case Lisp_Symbol:
5425 {
c70bbf06 5426 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
7146af97
JB
5427 struct Lisp_Symbol *ptrx;
5428
8f11f7ec
SM
5429 if (ptr->gcmarkbit)
5430 break;
4f5c1376 5431 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
2336fe58 5432 ptr->gcmarkbit = 1;
49723c04
SM
5433 mark_object (ptr->function);
5434 mark_object (ptr->plist);
ce5b453a
SM
5435 switch (ptr->redirect)
5436 {
5437 case SYMBOL_PLAINVAL: mark_object (SYMBOL_VAL (ptr)); break;
5438 case SYMBOL_VARALIAS:
5439 {
5440 Lisp_Object tem;
5441 XSETSYMBOL (tem, SYMBOL_ALIAS (ptr));
5442 mark_object (tem);
5443 break;
5444 }
5445 case SYMBOL_LOCALIZED:
5446 {
5447 struct Lisp_Buffer_Local_Value *blv = SYMBOL_BLV (ptr);
5448 /* If the value is forwarded to a buffer or keyboard field,
5449 these are marked when we see the corresponding object.
5450 And if it's forwarded to a C variable, either it's not
5451 a Lisp_Object var, or it's staticpro'd already. */
5452 mark_object (blv->where);
5453 mark_object (blv->valcell);
5454 mark_object (blv->defcell);
5455 break;
5456 }
5457 case SYMBOL_FORWARDED:
5458 /* If the value is forwarded to a buffer or keyboard field,
5459 these are marked when we see the corresponding object.
5460 And if it's forwarded to a C variable, either it's not
5461 a Lisp_Object var, or it's staticpro'd already. */
5462 break;
5463 default: abort ();
5464 }
8fe5665d
KR
5465 if (!PURE_POINTER_P (XSTRING (ptr->xname)))
5466 MARK_STRING (XSTRING (ptr->xname));
d5db4077 5467 MARK_INTERVAL_TREE (STRING_INTERVALS (ptr->xname));
177c0ea7 5468
7146af97
JB
5469 ptr = ptr->next;
5470 if (ptr)
5471 {
b0846f52 5472 ptrx = ptr; /* Use of ptrx avoids compiler bug on Sun */
7146af97 5473 XSETSYMBOL (obj, ptrx);
49723c04 5474 goto loop;
7146af97
JB
5475 }
5476 }
5477 break;
5478
a0a38eb7 5479 case Lisp_Misc:
4f5c1376 5480 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
67ee9f6e 5481 if (XMISCANY (obj)->gcmarkbit)
2336fe58 5482 break;
67ee9f6e 5483 XMISCANY (obj)->gcmarkbit = 1;
b766f870 5484
a5da44fe 5485 switch (XMISCTYPE (obj))
a0a38eb7 5486 {
465edf35 5487
2336fe58
SM
5488 case Lisp_Misc_Marker:
5489 /* DO NOT mark thru the marker's chain.
5490 The buffer's markers chain does not preserve markers from gc;
5491 instead, markers are removed from the chain when freed by gc. */
b766f870
KS
5492 break;
5493
8f924df7 5494 case Lisp_Misc_Save_Value:
9ea306d1 5495#if GC_MARK_STACK
b766f870
KS
5496 {
5497 register struct Lisp_Save_Value *ptr = XSAVE_VALUE (obj);
5498 /* If DOGC is set, POINTER is the address of a memory
5499 area containing INTEGER potential Lisp_Objects. */
5500 if (ptr->dogc)
5501 {
5502 Lisp_Object *p = (Lisp_Object *) ptr->pointer;
5503 int nelt;
5504 for (nelt = ptr->integer; nelt > 0; nelt--, p++)
5505 mark_maybe_object (*p);
5506 }
5507 }
9ea306d1 5508#endif
c8616056
KH
5509 break;
5510
e202fa34
KH
5511 case Lisp_Misc_Overlay:
5512 {
5513 struct Lisp_Overlay *ptr = XOVERLAY (obj);
49723c04
SM
5514 mark_object (ptr->start);
5515 mark_object (ptr->end);
f54253ec
SM
5516 mark_object (ptr->plist);
5517 if (ptr->next)
5518 {
5519 XSETMISC (obj, ptr->next);
5520 goto loop;
5521 }
e202fa34
KH
5522 }
5523 break;
5524
a0a38eb7
KH
5525 default:
5526 abort ();
5527 }
7146af97
JB
5528 break;
5529
5530 case Lisp_Cons:
7146af97
JB
5531 {
5532 register struct Lisp_Cons *ptr = XCONS (obj);
8f11f7ec
SM
5533 if (CONS_MARKED_P (ptr))
5534 break;
4f5c1376 5535 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
08b7c2cb 5536 CONS_MARK (ptr);
c54ca951 5537 /* If the cdr is nil, avoid recursion for the car. */
28a099a4 5538 if (EQ (ptr->u.cdr, Qnil))
c54ca951 5539 {
49723c04 5540 obj = ptr->car;
1342fc6f 5541 cdr_count = 0;
c54ca951
RS
5542 goto loop;
5543 }
49723c04 5544 mark_object (ptr->car);
28a099a4 5545 obj = ptr->u.cdr;
1342fc6f
RS
5546 cdr_count++;
5547 if (cdr_count == mark_object_loop_halt)
5548 abort ();
7146af97
JB
5549 goto loop;
5550 }
5551
7146af97 5552 case Lisp_Float:
4f5c1376 5553 CHECK_ALLOCATED_AND_LIVE (live_float_p);
ab6780cd 5554 FLOAT_MARK (XFLOAT (obj));
7146af97 5555 break;
7146af97 5556
2de9f71c 5557 case_Lisp_Int:
7146af97
JB
5558 break;
5559
5560 default:
5561 abort ();
5562 }
4f5c1376
GM
5563
5564#undef CHECK_LIVE
5565#undef CHECK_ALLOCATED
5566#undef CHECK_ALLOCATED_AND_LIVE
7146af97
JB
5567}
5568
5569/* Mark the pointers in a buffer structure. */
5570
5571static void
971de7fb 5572mark_buffer (Lisp_Object buf)
7146af97 5573{
7146af97 5574 register struct buffer *buffer = XBUFFER (buf);
f54253ec 5575 register Lisp_Object *ptr, tmp;
30e3190a 5576 Lisp_Object base_buffer;
7146af97 5577
8f11f7ec 5578 eassert (!VECTOR_MARKED_P (buffer));
3ef06d12 5579 VECTOR_MARK (buffer);
7146af97 5580
30e3190a 5581 MARK_INTERVAL_TREE (BUF_INTERVALS (buffer));
d5e35230 5582
c37adf23
SM
5583 /* For now, we just don't mark the undo_list. It's done later in
5584 a special way just before the sweep phase, and after stripping
5585 some of its elements that are not needed any more. */
4c315bda 5586
f54253ec
SM
5587 if (buffer->overlays_before)
5588 {
5589 XSETMISC (tmp, buffer->overlays_before);
5590 mark_object (tmp);
5591 }
5592 if (buffer->overlays_after)
5593 {
5594 XSETMISC (tmp, buffer->overlays_after);
5595 mark_object (tmp);
5596 }
5597
9ce376f9
SM
5598 /* buffer-local Lisp variables start at `undo_list',
5599 tho only the ones from `name' on are GC'd normally. */
5d8ea120 5600 for (ptr = &buffer->BUFFER_INTERNAL_FIELD (name);
7146af97
JB
5601 (char *)ptr < (char *)buffer + sizeof (struct buffer);
5602 ptr++)
49723c04 5603 mark_object (*ptr);
30e3190a
RS
5604
5605 /* If this is an indirect buffer, mark its base buffer. */
349bd9ed 5606 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
30e3190a 5607 {
177c0ea7 5608 XSETBUFFER (base_buffer, buffer->base_buffer);
30e3190a
RS
5609 mark_buffer (base_buffer);
5610 }
7146af97 5611}
084b1a0c 5612
4a729fd8
SM
5613/* Mark the Lisp pointers in the terminal objects.
5614 Called by the Fgarbage_collector. */
5615
4a729fd8
SM
5616static void
5617mark_terminals (void)
5618{
5619 struct terminal *t;
5620 for (t = terminal_list; t; t = t->next_terminal)
5621 {
5622 eassert (t->name != NULL);
354884c4 5623#ifdef HAVE_WINDOW_SYSTEM
96ad0af7
YM
5624 /* If a terminal object is reachable from a stacpro'ed object,
5625 it might have been marked already. Make sure the image cache
5626 gets marked. */
5627 mark_image_cache (t->image_cache);
354884c4 5628#endif /* HAVE_WINDOW_SYSTEM */
96ad0af7
YM
5629 if (!VECTOR_MARKED_P (t))
5630 mark_vectorlike ((struct Lisp_Vector *)t);
4a729fd8
SM
5631 }
5632}
5633
5634
084b1a0c 5635
41c28a37
GM
5636/* Value is non-zero if OBJ will survive the current GC because it's
5637 either marked or does not need to be marked to survive. */
5638
5639int
971de7fb 5640survives_gc_p (Lisp_Object obj)
41c28a37
GM
5641{
5642 int survives_p;
177c0ea7 5643
8e50cc2d 5644 switch (XTYPE (obj))
41c28a37 5645 {
2de9f71c 5646 case_Lisp_Int:
41c28a37
GM
5647 survives_p = 1;
5648 break;
5649
5650 case Lisp_Symbol:
2336fe58 5651 survives_p = XSYMBOL (obj)->gcmarkbit;
41c28a37
GM
5652 break;
5653
5654 case Lisp_Misc:
67ee9f6e 5655 survives_p = XMISCANY (obj)->gcmarkbit;
41c28a37
GM
5656 break;
5657
5658 case Lisp_String:
08b7c2cb 5659 survives_p = STRING_MARKED_P (XSTRING (obj));
41c28a37
GM
5660 break;
5661
5662 case Lisp_Vectorlike:
8e50cc2d 5663 survives_p = SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
41c28a37
GM
5664 break;
5665
5666 case Lisp_Cons:
08b7c2cb 5667 survives_p = CONS_MARKED_P (XCONS (obj));
41c28a37
GM
5668 break;
5669
41c28a37 5670 case Lisp_Float:
ab6780cd 5671 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
41c28a37 5672 break;
41c28a37
GM
5673
5674 default:
5675 abort ();
5676 }
5677
34400008 5678 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
41c28a37
GM
5679}
5680
5681
7146af97 5682\f
1a4f1e2c 5683/* Sweep: find all structures not marked, and free them. */
7146af97
JB
5684
5685static void
971de7fb 5686gc_sweep (void)
7146af97 5687{
41c28a37
GM
5688 /* Remove or mark entries in weak hash tables.
5689 This must be done before any object is unmarked. */
5690 sweep_weak_hash_tables ();
5691
2e471eb5 5692 sweep_strings ();
676a7251
GM
5693#ifdef GC_CHECK_STRING_BYTES
5694 if (!noninteractive)
5695 check_string_bytes (1);
5696#endif
7146af97
JB
5697
5698 /* Put all unmarked conses on free list */
5699 {
5700 register struct cons_block *cblk;
6ca94ac9 5701 struct cons_block **cprev = &cons_block;
7146af97
JB
5702 register int lim = cons_block_index;
5703 register int num_free = 0, num_used = 0;
5704
5705 cons_free_list = 0;
177c0ea7 5706
6ca94ac9 5707 for (cblk = cons_block; cblk; cblk = *cprev)
7146af97 5708 {
3ae2e3a3 5709 register int i = 0;
6ca94ac9 5710 int this_free = 0;
3ae2e3a3
RS
5711 int ilim = (lim + BITS_PER_INT - 1) / BITS_PER_INT;
5712
5713 /* Scan the mark bits an int at a time. */
5714 for (i = 0; i <= ilim; i++)
5715 {
5716 if (cblk->gcmarkbits[i] == -1)
5717 {
5718 /* Fast path - all cons cells for this int are marked. */
5719 cblk->gcmarkbits[i] = 0;
5720 num_used += BITS_PER_INT;
5721 }
5722 else
5723 {
5724 /* Some cons cells for this int are not marked.
5725 Find which ones, and free them. */
5726 int start, pos, stop;
5727
5728 start = i * BITS_PER_INT;
5729 stop = lim - start;
5730 if (stop > BITS_PER_INT)
5731 stop = BITS_PER_INT;
5732 stop += start;
5733
5734 for (pos = start; pos < stop; pos++)
5735 {
5736 if (!CONS_MARKED_P (&cblk->conses[pos]))
5737 {
5738 this_free++;
5739 cblk->conses[pos].u.chain = cons_free_list;
5740 cons_free_list = &cblk->conses[pos];
34400008 5741#if GC_MARK_STACK
3ae2e3a3 5742 cons_free_list->car = Vdead;
34400008 5743#endif
3ae2e3a3
RS
5744 }
5745 else
5746 {
5747 num_used++;
5748 CONS_UNMARK (&cblk->conses[pos]);
5749 }
5750 }
5751 }
5752 }
5753
7146af97 5754 lim = CONS_BLOCK_SIZE;
6ca94ac9
KH
5755 /* If this block contains only free conses and we have already
5756 seen more than two blocks worth of free conses then deallocate
5757 this block. */
6feef451 5758 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
6ca94ac9 5759 {
6ca94ac9
KH
5760 *cprev = cblk->next;
5761 /* Unhook from the free list. */
28a099a4 5762 cons_free_list = cblk->conses[0].u.chain;
08b7c2cb 5763 lisp_align_free (cblk);
c8099634 5764 n_cons_blocks--;
6ca94ac9
KH
5765 }
5766 else
6feef451
AS
5767 {
5768 num_free += this_free;
5769 cprev = &cblk->next;
5770 }
7146af97
JB
5771 }
5772 total_conses = num_used;
5773 total_free_conses = num_free;
5774 }
5775
7146af97
JB
5776 /* Put all unmarked floats on free list */
5777 {
5778 register struct float_block *fblk;
6ca94ac9 5779 struct float_block **fprev = &float_block;
7146af97
JB
5780 register int lim = float_block_index;
5781 register int num_free = 0, num_used = 0;
5782
5783 float_free_list = 0;
177c0ea7 5784
6ca94ac9 5785 for (fblk = float_block; fblk; fblk = *fprev)
7146af97
JB
5786 {
5787 register int i;
6ca94ac9 5788 int this_free = 0;
7146af97 5789 for (i = 0; i < lim; i++)
ab6780cd 5790 if (!FLOAT_MARKED_P (&fblk->floats[i]))
7146af97 5791 {
6ca94ac9 5792 this_free++;
28a099a4 5793 fblk->floats[i].u.chain = float_free_list;
7146af97
JB
5794 float_free_list = &fblk->floats[i];
5795 }
5796 else
5797 {
5798 num_used++;
ab6780cd 5799 FLOAT_UNMARK (&fblk->floats[i]);
7146af97
JB
5800 }
5801 lim = FLOAT_BLOCK_SIZE;
6ca94ac9
KH
5802 /* If this block contains only free floats and we have already
5803 seen more than two blocks worth of free floats then deallocate
5804 this block. */
6feef451 5805 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
6ca94ac9 5806 {
6ca94ac9
KH
5807 *fprev = fblk->next;
5808 /* Unhook from the free list. */
28a099a4 5809 float_free_list = fblk->floats[0].u.chain;
ab6780cd 5810 lisp_align_free (fblk);
c8099634 5811 n_float_blocks--;
6ca94ac9
KH
5812 }
5813 else
6feef451
AS
5814 {
5815 num_free += this_free;
5816 fprev = &fblk->next;
5817 }
7146af97
JB
5818 }
5819 total_floats = num_used;
5820 total_free_floats = num_free;
5821 }
7146af97 5822
d5e35230
JA
5823 /* Put all unmarked intervals on free list */
5824 {
5825 register struct interval_block *iblk;
6ca94ac9 5826 struct interval_block **iprev = &interval_block;
d5e35230
JA
5827 register int lim = interval_block_index;
5828 register int num_free = 0, num_used = 0;
5829
5830 interval_free_list = 0;
5831
6ca94ac9 5832 for (iblk = interval_block; iblk; iblk = *iprev)
d5e35230
JA
5833 {
5834 register int i;
6ca94ac9 5835 int this_free = 0;
d5e35230
JA
5836
5837 for (i = 0; i < lim; i++)
5838 {
2336fe58 5839 if (!iblk->intervals[i].gcmarkbit)
d5e35230 5840 {
439d5cb4 5841 SET_INTERVAL_PARENT (&iblk->intervals[i], interval_free_list);
d5e35230 5842 interval_free_list = &iblk->intervals[i];
6ca94ac9 5843 this_free++;
d5e35230
JA
5844 }
5845 else
5846 {
5847 num_used++;
2336fe58 5848 iblk->intervals[i].gcmarkbit = 0;
d5e35230
JA
5849 }
5850 }
5851 lim = INTERVAL_BLOCK_SIZE;
6ca94ac9
KH
5852 /* If this block contains only free intervals and we have already
5853 seen more than two blocks worth of free intervals then
5854 deallocate this block. */
6feef451 5855 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
6ca94ac9 5856 {
6ca94ac9
KH
5857 *iprev = iblk->next;
5858 /* Unhook from the free list. */
439d5cb4 5859 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
c8099634
RS
5860 lisp_free (iblk);
5861 n_interval_blocks--;
6ca94ac9
KH
5862 }
5863 else
6feef451
AS
5864 {
5865 num_free += this_free;
5866 iprev = &iblk->next;
5867 }
d5e35230
JA
5868 }
5869 total_intervals = num_used;
5870 total_free_intervals = num_free;
5871 }
d5e35230 5872
7146af97
JB
5873 /* Put all unmarked symbols on free list */
5874 {
5875 register struct symbol_block *sblk;
6ca94ac9 5876 struct symbol_block **sprev = &symbol_block;
7146af97
JB
5877 register int lim = symbol_block_index;
5878 register int num_free = 0, num_used = 0;
5879
d285b373 5880 symbol_free_list = NULL;
177c0ea7 5881
6ca94ac9 5882 for (sblk = symbol_block; sblk; sblk = *sprev)
7146af97 5883 {
6ca94ac9 5884 int this_free = 0;
d285b373
GM
5885 struct Lisp_Symbol *sym = sblk->symbols;
5886 struct Lisp_Symbol *end = sym + lim;
5887
5888 for (; sym < end; ++sym)
5889 {
20035321
SM
5890 /* Check if the symbol was created during loadup. In such a case
5891 it might be pointed to by pure bytecode which we don't trace,
5892 so we conservatively assume that it is live. */
8fe5665d 5893 int pure_p = PURE_POINTER_P (XSTRING (sym->xname));
177c0ea7 5894
2336fe58 5895 if (!sym->gcmarkbit && !pure_p)
d285b373 5896 {
ce5b453a
SM
5897 if (sym->redirect == SYMBOL_LOCALIZED)
5898 xfree (SYMBOL_BLV (sym));
28a099a4 5899 sym->next = symbol_free_list;
d285b373 5900 symbol_free_list = sym;
34400008 5901#if GC_MARK_STACK
d285b373 5902 symbol_free_list->function = Vdead;
34400008 5903#endif
d285b373
GM
5904 ++this_free;
5905 }
5906 else
5907 {
5908 ++num_used;
5909 if (!pure_p)
8fe5665d 5910 UNMARK_STRING (XSTRING (sym->xname));
2336fe58 5911 sym->gcmarkbit = 0;
d285b373
GM
5912 }
5913 }
177c0ea7 5914
7146af97 5915 lim = SYMBOL_BLOCK_SIZE;
6ca94ac9
KH
5916 /* If this block contains only free symbols and we have already
5917 seen more than two blocks worth of free symbols then deallocate
5918 this block. */
6feef451 5919 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
6ca94ac9 5920 {
6ca94ac9
KH
5921 *sprev = sblk->next;
5922 /* Unhook from the free list. */
28a099a4 5923 symbol_free_list = sblk->symbols[0].next;
c8099634
RS
5924 lisp_free (sblk);
5925 n_symbol_blocks--;
6ca94ac9
KH
5926 }
5927 else
6feef451
AS
5928 {
5929 num_free += this_free;
5930 sprev = &sblk->next;
5931 }
7146af97
JB
5932 }
5933 total_symbols = num_used;
5934 total_free_symbols = num_free;
5935 }
5936
a9faeabe
RS
5937 /* Put all unmarked misc's on free list.
5938 For a marker, first unchain it from the buffer it points into. */
7146af97
JB
5939 {
5940 register struct marker_block *mblk;
6ca94ac9 5941 struct marker_block **mprev = &marker_block;
7146af97
JB
5942 register int lim = marker_block_index;
5943 register int num_free = 0, num_used = 0;
5944
5945 marker_free_list = 0;
177c0ea7 5946
6ca94ac9 5947 for (mblk = marker_block; mblk; mblk = *mprev)
7146af97
JB
5948 {
5949 register int i;
6ca94ac9 5950 int this_free = 0;
fa05e253 5951
7146af97 5952 for (i = 0; i < lim; i++)
465edf35 5953 {
d314756e 5954 if (!mblk->markers[i].u_any.gcmarkbit)
465edf35 5955 {
d314756e 5956 if (mblk->markers[i].u_any.type == Lisp_Misc_Marker)
ef89c2ce 5957 unchain_marker (&mblk->markers[i].u_marker);
fa05e253
RS
5958 /* Set the type of the freed object to Lisp_Misc_Free.
5959 We could leave the type alone, since nobody checks it,
465edf35 5960 but this might catch bugs faster. */
a5da44fe 5961 mblk->markers[i].u_marker.type = Lisp_Misc_Free;
465edf35
KH
5962 mblk->markers[i].u_free.chain = marker_free_list;
5963 marker_free_list = &mblk->markers[i];
6ca94ac9 5964 this_free++;
465edf35
KH
5965 }
5966 else
5967 {
5968 num_used++;
d314756e 5969 mblk->markers[i].u_any.gcmarkbit = 0;
465edf35
KH
5970 }
5971 }
7146af97 5972 lim = MARKER_BLOCK_SIZE;
6ca94ac9
KH
5973 /* If this block contains only free markers and we have already
5974 seen more than two blocks worth of free markers then deallocate
5975 this block. */
6feef451 5976 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
6ca94ac9 5977 {
6ca94ac9
KH
5978 *mprev = mblk->next;
5979 /* Unhook from the free list. */
5980 marker_free_list = mblk->markers[0].u_free.chain;
c8099634
RS
5981 lisp_free (mblk);
5982 n_marker_blocks--;
6ca94ac9
KH
5983 }
5984 else
6feef451
AS
5985 {
5986 num_free += this_free;
5987 mprev = &mblk->next;
5988 }
7146af97
JB
5989 }
5990
5991 total_markers = num_used;
5992 total_free_markers = num_free;
5993 }
5994
5995 /* Free all unmarked buffers */
5996 {
5997 register struct buffer *buffer = all_buffers, *prev = 0, *next;
5998
5999 while (buffer)
3ef06d12 6000 if (!VECTOR_MARKED_P (buffer))
7146af97
JB
6001 {
6002 if (prev)
6003 prev->next = buffer->next;
6004 else
6005 all_buffers = buffer->next;
6006 next = buffer->next;
34400008 6007 lisp_free (buffer);
7146af97
JB
6008 buffer = next;
6009 }
6010 else
6011 {
3ef06d12 6012 VECTOR_UNMARK (buffer);
30e3190a 6013 UNMARK_BALANCE_INTERVALS (BUF_INTERVALS (buffer));
7146af97
JB
6014 prev = buffer, buffer = buffer->next;
6015 }
6016 }
6017
7146af97
JB
6018 /* Free all unmarked vectors */
6019 {
6020 register struct Lisp_Vector *vector = all_vectors, *prev = 0, *next;
6021 total_vector_size = 0;
6022
6023 while (vector)
3ef06d12 6024 if (!VECTOR_MARKED_P (vector))
7146af97
JB
6025 {
6026 if (prev)
6027 prev->next = vector->next;
6028 else
6029 all_vectors = vector->next;
6030 next = vector->next;
c8099634
RS
6031 lisp_free (vector);
6032 n_vectors--;
7146af97 6033 vector = next;
41c28a37 6034
7146af97
JB
6035 }
6036 else
6037 {
3ef06d12 6038 VECTOR_UNMARK (vector);
fa05e253
RS
6039 if (vector->size & PSEUDOVECTOR_FLAG)
6040 total_vector_size += (PSEUDOVECTOR_SIZE_MASK & vector->size);
6041 else
6042 total_vector_size += vector->size;
7146af97
JB
6043 prev = vector, vector = vector->next;
6044 }
6045 }
177c0ea7 6046
676a7251
GM
6047#ifdef GC_CHECK_STRING_BYTES
6048 if (!noninteractive)
6049 check_string_bytes (1);
6050#endif
7146af97 6051}
7146af97 6052
7146af97 6053
7146af97 6054
7146af97 6055\f
20d24714
JB
6056/* Debugging aids. */
6057
31ce1c91 6058DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
a6266d23 6059 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
228299fa 6060This may be helpful in debugging Emacs's memory usage.
7ee72033 6061We divide the value by 1024 to make sure it fits in a Lisp integer. */)
5842a27b 6062 (void)
20d24714
JB
6063{
6064 Lisp_Object end;
6065
45d12a89 6066 XSETINT (end, (EMACS_INT) sbrk (0) / 1024);
20d24714
JB
6067
6068 return end;
6069}
6070
310ea200 6071DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
a6266d23 6072 doc: /* Return a list of counters that measure how much consing there has been.
228299fa
GM
6073Each of these counters increments for a certain kind of object.
6074The counters wrap around from the largest positive integer to zero.
6075Garbage collection does not decrease them.
6076The elements of the value are as follows:
6077 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
6078All are in units of 1 = one object consed
6079except for VECTOR-CELLS and STRING-CHARS, which count the total length of
6080objects consed.
6081MISCS include overlays, markers, and some internal types.
6082Frames, windows, buffers, and subprocesses count as vectors
7ee72033 6083 (but the contents of a buffer's text do not count here). */)
5842a27b 6084 (void)
310ea200 6085{
2e471eb5 6086 Lisp_Object consed[8];
310ea200 6087
78e985eb
GM
6088 consed[0] = make_number (min (MOST_POSITIVE_FIXNUM, cons_cells_consed));
6089 consed[1] = make_number (min (MOST_POSITIVE_FIXNUM, floats_consed));
6090 consed[2] = make_number (min (MOST_POSITIVE_FIXNUM, vector_cells_consed));
6091 consed[3] = make_number (min (MOST_POSITIVE_FIXNUM, symbols_consed));
6092 consed[4] = make_number (min (MOST_POSITIVE_FIXNUM, string_chars_consed));
6093 consed[5] = make_number (min (MOST_POSITIVE_FIXNUM, misc_objects_consed));
6094 consed[6] = make_number (min (MOST_POSITIVE_FIXNUM, intervals_consed));
6095 consed[7] = make_number (min (MOST_POSITIVE_FIXNUM, strings_consed));
310ea200 6096
2e471eb5 6097 return Flist (8, consed);
310ea200 6098}
e0b8c689
KR
6099
6100int suppress_checking;
d3d47262 6101
e0b8c689 6102void
971de7fb 6103die (const char *msg, const char *file, int line)
e0b8c689 6104{
67ee9f6e 6105 fprintf (stderr, "\r\n%s:%d: Emacs fatal error: %s\r\n",
e0b8c689
KR
6106 file, line, msg);
6107 abort ();
6108}
20d24714 6109\f
7146af97
JB
6110/* Initialization */
6111
dfcf069d 6112void
971de7fb 6113init_alloc_once (void)
7146af97
JB
6114{
6115 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
9e713715
GM
6116 purebeg = PUREBEG;
6117 pure_size = PURESIZE;
1f0b3fd2 6118 pure_bytes_used = 0;
e5bc14d4 6119 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
9e713715
GM
6120 pure_bytes_used_before_overflow = 0;
6121
ab6780cd
SM
6122 /* Initialize the list of free aligned blocks. */
6123 free_ablock = NULL;
6124
877935b1 6125#if GC_MARK_STACK || defined GC_MALLOC_CHECK
34400008
GM
6126 mem_init ();
6127 Vdead = make_pure_string ("DEAD", 4, 4, 0);
6128#endif
9e713715 6129
7146af97
JB
6130 all_vectors = 0;
6131 ignore_warnings = 1;
d1658221
RS
6132#ifdef DOUG_LEA_MALLOC
6133 mallopt (M_TRIM_THRESHOLD, 128*1024); /* trim threshold */
6134 mallopt (M_MMAP_THRESHOLD, 64*1024); /* mmap threshold */
81d492d5 6135 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* max. number of mmap'ed areas */
d1658221 6136#endif
7146af97
JB
6137 init_strings ();
6138 init_cons ();
6139 init_symbol ();
6140 init_marker ();
7146af97 6141 init_float ();
34400008 6142 init_intervals ();
5ac58e4c 6143 init_weak_hash_tables ();
d5e35230 6144
276cbe5a
RS
6145#ifdef REL_ALLOC
6146 malloc_hysteresis = 32;
6147#else
6148 malloc_hysteresis = 0;
6149#endif
6150
24d8a105 6151 refill_memory_reserve ();
276cbe5a 6152
7146af97
JB
6153 ignore_warnings = 0;
6154 gcprolist = 0;
630686c8 6155 byte_stack_list = 0;
7146af97
JB
6156 staticidx = 0;
6157 consing_since_gc = 0;
7d179cea 6158 gc_cons_threshold = 100000 * sizeof (Lisp_Object);
974aae61 6159 gc_relative_threshold = 0;
7146af97
JB
6160}
6161
dfcf069d 6162void
971de7fb 6163init_alloc (void)
7146af97
JB
6164{
6165 gcprolist = 0;
630686c8 6166 byte_stack_list = 0;
182ff242
GM
6167#if GC_MARK_STACK
6168#if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
6169 setjmp_tested_p = longjmps_done = 0;
6170#endif
6171#endif
2c5bd608
DL
6172 Vgc_elapsed = make_float (0.0);
6173 gcs_done = 0;
7146af97
JB
6174}
6175
6176void
971de7fb 6177syms_of_alloc (void)
7146af97 6178{
29208e82 6179 DEFVAR_INT ("gc-cons-threshold", gc_cons_threshold,
a6266d23 6180 doc: /* *Number of bytes of consing between garbage collections.
228299fa
GM
6181Garbage collection can happen automatically once this many bytes have been
6182allocated since the last garbage collection. All data types count.
7146af97 6183
228299fa 6184Garbage collection happens automatically only when `eval' is called.
7146af97 6185
228299fa 6186By binding this temporarily to a large number, you can effectively
96f077ad
SM
6187prevent garbage collection during a part of the program.
6188See also `gc-cons-percentage'. */);
6189
29208e82 6190 DEFVAR_LISP ("gc-cons-percentage", Vgc_cons_percentage,
96f077ad
SM
6191 doc: /* *Portion of the heap used for allocation.
6192Garbage collection can happen automatically once this portion of the heap
6193has been allocated since the last garbage collection.
6194If this portion is smaller than `gc-cons-threshold', this is ignored. */);
6195 Vgc_cons_percentage = make_float (0.1);
0819585c 6196
29208e82 6197 DEFVAR_INT ("pure-bytes-used", pure_bytes_used,
a6266d23 6198 doc: /* Number of bytes of sharable Lisp data allocated so far. */);
0819585c 6199
29208e82 6200 DEFVAR_INT ("cons-cells-consed", cons_cells_consed,
a6266d23 6201 doc: /* Number of cons cells that have been consed so far. */);
0819585c 6202
29208e82 6203 DEFVAR_INT ("floats-consed", floats_consed,
a6266d23 6204 doc: /* Number of floats that have been consed so far. */);
0819585c 6205
29208e82 6206 DEFVAR_INT ("vector-cells-consed", vector_cells_consed,
a6266d23 6207 doc: /* Number of vector cells that have been consed so far. */);
0819585c 6208
29208e82 6209 DEFVAR_INT ("symbols-consed", symbols_consed,
a6266d23 6210 doc: /* Number of symbols that have been consed so far. */);
0819585c 6211
29208e82 6212 DEFVAR_INT ("string-chars-consed", string_chars_consed,
a6266d23 6213 doc: /* Number of string characters that have been consed so far. */);
0819585c 6214
29208e82 6215 DEFVAR_INT ("misc-objects-consed", misc_objects_consed,
a6266d23 6216 doc: /* Number of miscellaneous objects that have been consed so far. */);
2e471eb5 6217
29208e82 6218 DEFVAR_INT ("intervals-consed", intervals_consed,
a6266d23 6219 doc: /* Number of intervals that have been consed so far. */);
7146af97 6220
29208e82 6221 DEFVAR_INT ("strings-consed", strings_consed,
a6266d23 6222 doc: /* Number of strings that have been consed so far. */);
228299fa 6223
29208e82 6224 DEFVAR_LISP ("purify-flag", Vpurify_flag,
a6266d23 6225 doc: /* Non-nil means loading Lisp code in order to dump an executable.
e9515805
SM
6226This means that certain objects should be allocated in shared (pure) space.
6227It can also be set to a hash-table, in which case this table is used to
6228do hash-consing of the objects allocated to pure space. */);
228299fa 6229
29208e82 6230 DEFVAR_BOOL ("garbage-collection-messages", garbage_collection_messages,
a6266d23 6231 doc: /* Non-nil means display messages at start and end of garbage collection. */);
299585ee
RS
6232 garbage_collection_messages = 0;
6233
29208e82 6234 DEFVAR_LISP ("post-gc-hook", Vpost_gc_hook,
a6266d23 6235 doc: /* Hook run after garbage collection has finished. */);
9e713715 6236 Vpost_gc_hook = Qnil;
d67b4f80 6237 Qpost_gc_hook = intern_c_string ("post-gc-hook");
9e713715
GM
6238 staticpro (&Qpost_gc_hook);
6239
29208e82 6240 DEFVAR_LISP ("memory-signal-data", Vmemory_signal_data,
74a54b04 6241 doc: /* Precomputed `signal' argument for memory-full error. */);
bcb61d60
KH
6242 /* We build this in advance because if we wait until we need it, we might
6243 not be able to allocate the memory to hold it. */
74a54b04 6244 Vmemory_signal_data
f4265f6c
DN
6245 = pure_cons (Qerror,
6246 pure_cons (make_pure_c_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"), Qnil));
74a54b04 6247
29208e82 6248 DEFVAR_LISP ("memory-full", Vmemory_full,
24d8a105 6249 doc: /* Non-nil means Emacs cannot get much more Lisp memory. */);
74a54b04 6250 Vmemory_full = Qnil;
bcb61d60 6251
e8197642 6252 staticpro (&Qgc_cons_threshold);
d67b4f80 6253 Qgc_cons_threshold = intern_c_string ("gc-cons-threshold");
e8197642 6254
a59de17b 6255 staticpro (&Qchar_table_extra_slots);
d67b4f80 6256 Qchar_table_extra_slots = intern_c_string ("char-table-extra-slots");
a59de17b 6257
29208e82 6258 DEFVAR_LISP ("gc-elapsed", Vgc_elapsed,
2c5bd608 6259 doc: /* Accumulated time elapsed in garbage collections.
e7415487 6260The time is in seconds as a floating point value. */);
29208e82 6261 DEFVAR_INT ("gcs-done", gcs_done,
e7415487 6262 doc: /* Accumulated number of garbage collections done. */);
2c5bd608 6263
7146af97
JB
6264 defsubr (&Scons);
6265 defsubr (&Slist);
6266 defsubr (&Svector);
6267 defsubr (&Smake_byte_code);
6268 defsubr (&Smake_list);
6269 defsubr (&Smake_vector);
6270 defsubr (&Smake_string);
7b07587b 6271 defsubr (&Smake_bool_vector);
7146af97
JB
6272 defsubr (&Smake_symbol);
6273 defsubr (&Smake_marker);
6274 defsubr (&Spurecopy);
6275 defsubr (&Sgarbage_collect);
20d24714 6276 defsubr (&Smemory_limit);
310ea200 6277 defsubr (&Smemory_use_counts);
34400008
GM
6278
6279#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
6280 defsubr (&Sgc_status);
6281#endif
7146af97 6282}