(with-selected-window): Add closing paren.
[bpt/emacs.git] / src / alloc.c
CommitLineData
7146af97 1/* Storage allocation and gc for GNU Emacs Lisp interpreter.
3a8d0899 2 Copyright (C) 1985, 86, 88, 93, 94, 95, 97, 98, 1999, 2000, 2001, 2002, 2003
4a2f9c6a 3 Free Software Foundation, Inc.
7146af97
JB
4
5This file is part of GNU Emacs.
6
7GNU Emacs is free software; you can redistribute it and/or modify
8it under the terms of the GNU General Public License as published by
7c299e7a 9the Free Software Foundation; either version 2, or (at your option)
7146af97
JB
10any later version.
11
12GNU Emacs is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15GNU General Public License for more details.
16
17You should have received a copy of the GNU General Public License
18along with GNU Emacs; see the file COPYING. If not, write to
3b7ad313
EN
19the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
20Boston, MA 02111-1307, USA. */
7146af97 21
18160b98 22#include <config.h>
e9b309ac 23#include <stdio.h>
ab6780cd 24#include <limits.h> /* For CHAR_BIT. */
92939d31 25
4455ad75
RS
26#ifdef ALLOC_DEBUG
27#undef INLINE
28#endif
29
68c45bf0 30/* Note that this declares bzero on OSF/1. How dumb. */
2e471eb5 31
68c45bf0 32#include <signal.h>
92939d31 33
877935b1
GM
34/* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
35 memory. Can do this only if using gmalloc.c. */
36
37#if defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC
38#undef GC_MALLOC_CHECK
39#endif
40
7539e11f
KR
41/* This file is part of the core Lisp implementation, and thus must
42 deal with the real data structures. If the Lisp implementation is
43 replaced, this file likely will not be used. */
2e471eb5 44
7539e11f 45#undef HIDE_LISP_IMPLEMENTATION
7146af97 46#include "lisp.h"
ece93c02 47#include "process.h"
d5e35230 48#include "intervals.h"
4c0be5f4 49#include "puresize.h"
7146af97
JB
50#include "buffer.h"
51#include "window.h"
2538fae4 52#include "keyboard.h"
502b9b64 53#include "frame.h"
9ac0d9e0 54#include "blockinput.h"
e54daa22 55#include "charset.h"
e065a56e 56#include "syssignal.h"
34400008 57#include <setjmp.h>
e065a56e 58
bf952fb6
DL
59#ifdef HAVE_UNISTD_H
60#include <unistd.h>
61#else
62extern POINTER_TYPE *sbrk ();
63#endif
ee1eea5c 64
d1658221 65#ifdef DOUG_LEA_MALLOC
2e471eb5 66
d1658221 67#include <malloc.h>
3e60b029
DL
68/* malloc.h #defines this as size_t, at least in glibc2. */
69#ifndef __malloc_size_t
d1658221 70#define __malloc_size_t int
3e60b029 71#endif
81d492d5 72
2e471eb5
GM
73/* Specify maximum number of areas to mmap. It would be nice to use a
74 value that explicitly means "no limit". */
75
81d492d5
RS
76#define MMAP_MAX_AREAS 100000000
77
2e471eb5
GM
78#else /* not DOUG_LEA_MALLOC */
79
276cbe5a
RS
80/* The following come from gmalloc.c. */
81
276cbe5a 82#define __malloc_size_t size_t
276cbe5a 83extern __malloc_size_t _bytes_used;
3e60b029 84extern __malloc_size_t __malloc_extra_blocks;
2e471eb5
GM
85
86#endif /* not DOUG_LEA_MALLOC */
276cbe5a 87
276cbe5a 88/* Value of _bytes_used, when spare_memory was freed. */
2e471eb5 89
276cbe5a
RS
90static __malloc_size_t bytes_used_when_full;
91
2e471eb5
GM
92/* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
93 to a struct Lisp_String. */
94
cc2d8c6b
KR
95#define MARK_STRING(S) ((S)->size |= MARKBIT)
96#define UNMARK_STRING(S) ((S)->size &= ~MARKBIT)
97#define STRING_MARKED_P(S) ((S)->size & MARKBIT)
2e471eb5 98
3ef06d12
SM
99#define VECTOR_MARK(V) ((V)->size |= ARRAY_MARK_FLAG)
100#define VECTOR_UNMARK(V) ((V)->size &= ~ARRAY_MARK_FLAG)
101#define VECTOR_MARKED_P(V) ((V)->size & ARRAY_MARK_FLAG)
102
2e471eb5
GM
103/* Value is the number of bytes/chars of S, a pointer to a struct
104 Lisp_String. This must be used instead of STRING_BYTES (S) or
105 S->size during GC, because S->size contains the mark bit for
106 strings. */
107
3ef06d12 108#define GC_STRING_BYTES(S) (STRING_BYTES (S))
2e471eb5
GM
109#define GC_STRING_CHARS(S) ((S)->size & ~MARKBIT)
110
111/* Number of bytes of consing done since the last gc. */
112
7146af97
JB
113int consing_since_gc;
114
310ea200 115/* Count the amount of consing of various sorts of space. */
2e471eb5 116
31ade731
SM
117EMACS_INT cons_cells_consed;
118EMACS_INT floats_consed;
119EMACS_INT vector_cells_consed;
120EMACS_INT symbols_consed;
121EMACS_INT string_chars_consed;
122EMACS_INT misc_objects_consed;
123EMACS_INT intervals_consed;
124EMACS_INT strings_consed;
2e471eb5
GM
125
126/* Number of bytes of consing since GC before another GC should be done. */
310ea200 127
31ade731 128EMACS_INT gc_cons_threshold;
7146af97 129
2e471eb5
GM
130/* Nonzero during GC. */
131
7146af97
JB
132int gc_in_progress;
133
3de0effb
RS
134/* Nonzero means abort if try to GC.
135 This is for code which is written on the assumption that
136 no GC will happen, so as to verify that assumption. */
137
138int abort_on_gc;
139
299585ee 140/* Nonzero means display messages at beginning and end of GC. */
2e471eb5 141
299585ee
RS
142int garbage_collection_messages;
143
7146af97
JB
144#ifndef VIRT_ADDR_VARIES
145extern
146#endif /* VIRT_ADDR_VARIES */
2e471eb5 147int malloc_sbrk_used;
7146af97
JB
148
149#ifndef VIRT_ADDR_VARIES
150extern
151#endif /* VIRT_ADDR_VARIES */
2e471eb5 152int malloc_sbrk_unused;
7146af97 153
502b9b64 154/* Two limits controlling how much undo information to keep. */
2e471eb5 155
31ade731
SM
156EMACS_INT undo_limit;
157EMACS_INT undo_strong_limit;
7146af97 158
34400008
GM
159/* Number of live and free conses etc. */
160
161static int total_conses, total_markers, total_symbols, total_vector_size;
162static int total_free_conses, total_free_markers, total_free_symbols;
163static int total_free_floats, total_floats;
fd27a537 164
2e471eb5
GM
165/* Points to memory space allocated as "spare", to be freed if we run
166 out of memory. */
167
276cbe5a
RS
168static char *spare_memory;
169
170/* Amount of spare memory to keep in reserve. */
2e471eb5 171
276cbe5a
RS
172#define SPARE_MEMORY (1 << 14)
173
174/* Number of extra blocks malloc should get when it needs more core. */
2e471eb5 175
276cbe5a
RS
176static int malloc_hysteresis;
177
2e471eb5
GM
178/* Non-nil means defun should do purecopy on the function definition. */
179
7146af97
JB
180Lisp_Object Vpurify_flag;
181
74a54b04
RS
182/* Non-nil means we are handling a memory-full error. */
183
184Lisp_Object Vmemory_full;
185
7146af97 186#ifndef HAVE_SHM
2e471eb5 187
379b98b1
PE
188/* Force it into data space! Initialize it to a nonzero value;
189 otherwise some compilers put it into BSS. */
2e471eb5 190
379b98b1 191EMACS_INT pure[PURESIZE / sizeof (EMACS_INT)] = {1,};
7146af97 192#define PUREBEG (char *) pure
2e471eb5 193
9e713715 194#else /* HAVE_SHM */
2e471eb5 195
7146af97
JB
196#define pure PURE_SEG_BITS /* Use shared memory segment */
197#define PUREBEG (char *)PURE_SEG_BITS
4c0be5f4 198
9e713715 199#endif /* HAVE_SHM */
2e471eb5 200
9e713715 201/* Pointer to the pure area, and its size. */
2e471eb5 202
9e713715
GM
203static char *purebeg;
204static size_t pure_size;
205
206/* Number of bytes of pure storage used before pure storage overflowed.
207 If this is non-zero, this implies that an overflow occurred. */
208
209static size_t pure_bytes_used_before_overflow;
7146af97 210
34400008
GM
211/* Value is non-zero if P points into pure space. */
212
213#define PURE_POINTER_P(P) \
214 (((PNTR_COMPARISON_TYPE) (P) \
9e713715 215 < (PNTR_COMPARISON_TYPE) ((char *) purebeg + pure_size)) \
34400008 216 && ((PNTR_COMPARISON_TYPE) (P) \
9e713715 217 >= (PNTR_COMPARISON_TYPE) purebeg))
34400008 218
2e471eb5
GM
219/* Index in pure at which next pure object will be allocated.. */
220
31ade731 221EMACS_INT pure_bytes_used;
7146af97 222
2e471eb5
GM
223/* If nonzero, this is a warning delivered by malloc and not yet
224 displayed. */
225
7146af97
JB
226char *pending_malloc_warning;
227
bcb61d60 228/* Pre-computed signal argument for use when memory is exhausted. */
2e471eb5 229
74a54b04 230Lisp_Object Vmemory_signal_data;
bcb61d60 231
7146af97
JB
232/* Maximum amount of C stack to save when a GC happens. */
233
234#ifndef MAX_SAVE_STACK
235#define MAX_SAVE_STACK 16000
236#endif
237
238/* Buffer in which we save a copy of the C stack at each GC. */
239
240char *stack_copy;
241int stack_copy_size;
242
2e471eb5
GM
243/* Non-zero means ignore malloc warnings. Set during initialization.
244 Currently not used. */
245
7146af97 246int ignore_warnings;
350273a4 247
a59de17b 248Lisp_Object Qgc_cons_threshold, Qchar_table_extra_slots;
e8197642 249
9e713715
GM
250/* Hook run after GC has finished. */
251
252Lisp_Object Vpost_gc_hook, Qpost_gc_hook;
253
2c5bd608
DL
254Lisp_Object Vgc_elapsed; /* accumulated elapsed time in GC */
255EMACS_INT gcs_done; /* accumulated GCs */
256
2e471eb5 257static void mark_buffer P_ ((Lisp_Object));
6793bc63 258extern void mark_kboards P_ ((void));
2e471eb5 259static void gc_sweep P_ ((void));
41c28a37
GM
260static void mark_glyph_matrix P_ ((struct glyph_matrix *));
261static void mark_face_cache P_ ((struct face_cache *));
262
263#ifdef HAVE_WINDOW_SYSTEM
264static void mark_image P_ ((struct image *));
265static void mark_image_cache P_ ((struct frame *));
266#endif /* HAVE_WINDOW_SYSTEM */
267
2e471eb5
GM
268static struct Lisp_String *allocate_string P_ ((void));
269static void compact_small_strings P_ ((void));
270static void free_large_strings P_ ((void));
271static void sweep_strings P_ ((void));
7da0b0d3
RS
272
273extern int message_enable_multibyte;
34400008 274
34400008
GM
275/* When scanning the C stack for live Lisp objects, Emacs keeps track
276 of what memory allocated via lisp_malloc is intended for what
277 purpose. This enumeration specifies the type of memory. */
278
279enum mem_type
280{
281 MEM_TYPE_NON_LISP,
282 MEM_TYPE_BUFFER,
283 MEM_TYPE_CONS,
284 MEM_TYPE_STRING,
285 MEM_TYPE_MISC,
286 MEM_TYPE_SYMBOL,
287 MEM_TYPE_FLOAT,
ece93c02
GM
288 /* Keep the following vector-like types together, with
289 MEM_TYPE_WINDOW being the last, and MEM_TYPE_VECTOR the
290 first. Or change the code of live_vector_p, for instance. */
291 MEM_TYPE_VECTOR,
292 MEM_TYPE_PROCESS,
293 MEM_TYPE_HASH_TABLE,
294 MEM_TYPE_FRAME,
295 MEM_TYPE_WINDOW
34400008
GM
296};
297
877935b1 298#if GC_MARK_STACK || defined GC_MALLOC_CHECK
0b378936
GM
299
300#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
301#include <stdio.h> /* For fprintf. */
302#endif
303
304/* A unique object in pure space used to make some Lisp objects
305 on free lists recognizable in O(1). */
306
307Lisp_Object Vdead;
308
877935b1
GM
309#ifdef GC_MALLOC_CHECK
310
311enum mem_type allocated_mem_type;
312int dont_register_blocks;
313
314#endif /* GC_MALLOC_CHECK */
315
316/* A node in the red-black tree describing allocated memory containing
317 Lisp data. Each such block is recorded with its start and end
318 address when it is allocated, and removed from the tree when it
319 is freed.
320
321 A red-black tree is a balanced binary tree with the following
322 properties:
323
324 1. Every node is either red or black.
325 2. Every leaf is black.
326 3. If a node is red, then both of its children are black.
327 4. Every simple path from a node to a descendant leaf contains
328 the same number of black nodes.
329 5. The root is always black.
330
331 When nodes are inserted into the tree, or deleted from the tree,
332 the tree is "fixed" so that these properties are always true.
333
334 A red-black tree with N internal nodes has height at most 2
335 log(N+1). Searches, insertions and deletions are done in O(log N).
336 Please see a text book about data structures for a detailed
337 description of red-black trees. Any book worth its salt should
338 describe them. */
339
340struct mem_node
341{
9f7d9210
RS
342 /* Children of this node. These pointers are never NULL. When there
343 is no child, the value is MEM_NIL, which points to a dummy node. */
344 struct mem_node *left, *right;
345
346 /* The parent of this node. In the root node, this is NULL. */
347 struct mem_node *parent;
877935b1
GM
348
349 /* Start and end of allocated region. */
350 void *start, *end;
351
352 /* Node color. */
353 enum {MEM_BLACK, MEM_RED} color;
177c0ea7 354
877935b1
GM
355 /* Memory type. */
356 enum mem_type type;
357};
358
359/* Base address of stack. Set in main. */
360
361Lisp_Object *stack_base;
362
363/* Root of the tree describing allocated Lisp memory. */
364
365static struct mem_node *mem_root;
366
ece93c02
GM
367/* Lowest and highest known address in the heap. */
368
369static void *min_heap_address, *max_heap_address;
370
877935b1
GM
371/* Sentinel node of the tree. */
372
373static struct mem_node mem_z;
374#define MEM_NIL &mem_z
375
b3303f74 376static POINTER_TYPE *lisp_malloc P_ ((size_t, enum mem_type));
ece93c02 377static struct Lisp_Vector *allocate_vectorlike P_ ((EMACS_INT, enum mem_type));
bf952fb6 378static void lisp_free P_ ((POINTER_TYPE *));
34400008 379static void mark_stack P_ ((void));
34400008
GM
380static int live_vector_p P_ ((struct mem_node *, void *));
381static int live_buffer_p P_ ((struct mem_node *, void *));
382static int live_string_p P_ ((struct mem_node *, void *));
383static int live_cons_p P_ ((struct mem_node *, void *));
384static int live_symbol_p P_ ((struct mem_node *, void *));
385static int live_float_p P_ ((struct mem_node *, void *));
386static int live_misc_p P_ ((struct mem_node *, void *));
182ff242 387static void mark_maybe_object P_ ((Lisp_Object));
34400008
GM
388static void mark_memory P_ ((void *, void *));
389static void mem_init P_ ((void));
390static struct mem_node *mem_insert P_ ((void *, void *, enum mem_type));
391static void mem_insert_fixup P_ ((struct mem_node *));
392static void mem_rotate_left P_ ((struct mem_node *));
393static void mem_rotate_right P_ ((struct mem_node *));
394static void mem_delete P_ ((struct mem_node *));
395static void mem_delete_fixup P_ ((struct mem_node *));
396static INLINE struct mem_node *mem_find P_ ((void *));
397
398#if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
399static void check_gcpros P_ ((void));
400#endif
401
877935b1 402#endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
34400008 403
1f0b3fd2
GM
404/* Recording what needs to be marked for gc. */
405
406struct gcpro *gcprolist;
407
379b98b1
PE
408/* Addresses of staticpro'd variables. Initialize it to a nonzero
409 value; otherwise some compilers put it into BSS. */
1f0b3fd2 410
382d38fa 411#define NSTATICS 1280
379b98b1 412Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
1f0b3fd2
GM
413
414/* Index of next unused slot in staticvec. */
415
416int staticidx = 0;
417
418static POINTER_TYPE *pure_alloc P_ ((size_t, int));
419
420
421/* Value is SZ rounded up to the next multiple of ALIGNMENT.
422 ALIGNMENT must be a power of 2. */
423
ab6780cd
SM
424#define ALIGN(ptr, ALIGNMENT) \
425 ((POINTER_TYPE *) ((((EMACS_UINT)(ptr)) + (ALIGNMENT) - 1) \
426 & ~((ALIGNMENT) - 1)))
1f0b3fd2 427
ece93c02 428
7146af97 429\f
34400008
GM
430/************************************************************************
431 Malloc
432 ************************************************************************/
433
4455ad75 434/* Function malloc calls this if it finds we are near exhausting storage. */
d457598b
AS
435
436void
7146af97
JB
437malloc_warning (str)
438 char *str;
439{
440 pending_malloc_warning = str;
441}
442
34400008 443
4455ad75 444/* Display an already-pending malloc warning. */
34400008 445
d457598b 446void
7146af97
JB
447display_malloc_warning ()
448{
4455ad75
RS
449 call3 (intern ("display-warning"),
450 intern ("alloc"),
451 build_string (pending_malloc_warning),
452 intern ("emergency"));
7146af97 453 pending_malloc_warning = 0;
7146af97
JB
454}
455
34400008 456
d1658221 457#ifdef DOUG_LEA_MALLOC
1177ecf6 458# define BYTES_USED (mallinfo ().arena)
d1658221 459#else
1177ecf6 460# define BYTES_USED _bytes_used
d1658221
RS
461#endif
462
34400008 463
2e471eb5 464/* Called if malloc returns zero. */
276cbe5a 465
d457598b 466void
7146af97
JB
467memory_full ()
468{
74a54b04
RS
469 Vmemory_full = Qt;
470
276cbe5a 471#ifndef SYSTEM_MALLOC
d1658221 472 bytes_used_when_full = BYTES_USED;
276cbe5a
RS
473#endif
474
475 /* The first time we get here, free the spare memory. */
476 if (spare_memory)
477 {
478 free (spare_memory);
479 spare_memory = 0;
480 }
481
2e471eb5
GM
482 /* This used to call error, but if we've run out of memory, we could
483 get infinite recursion trying to build the string. */
276cbe5a 484 while (1)
74a54b04 485 Fsignal (Qnil, Vmemory_signal_data);
276cbe5a
RS
486}
487
34400008 488
276cbe5a
RS
489/* Called if we can't allocate relocatable space for a buffer. */
490
491void
492buffer_memory_full ()
493{
2e471eb5
GM
494 /* If buffers use the relocating allocator, no need to free
495 spare_memory, because we may have plenty of malloc space left
496 that we could get, and if we don't, the malloc that fails will
497 itself cause spare_memory to be freed. If buffers don't use the
498 relocating allocator, treat this like any other failing
499 malloc. */
276cbe5a
RS
500
501#ifndef REL_ALLOC
502 memory_full ();
503#endif
504
74a54b04
RS
505 Vmemory_full = Qt;
506
2e471eb5
GM
507 /* This used to call error, but if we've run out of memory, we could
508 get infinite recursion trying to build the string. */
bcb61d60 509 while (1)
74a54b04 510 Fsignal (Qnil, Vmemory_signal_data);
7146af97
JB
511}
512
34400008
GM
513
514/* Like malloc but check for no memory and block interrupt input.. */
7146af97 515
c971ff9a 516POINTER_TYPE *
7146af97 517xmalloc (size)
675d5130 518 size_t size;
7146af97 519{
c971ff9a 520 register POINTER_TYPE *val;
7146af97 521
9ac0d9e0 522 BLOCK_INPUT;
c971ff9a 523 val = (POINTER_TYPE *) malloc (size);
9ac0d9e0 524 UNBLOCK_INPUT;
7146af97 525
2e471eb5
GM
526 if (!val && size)
527 memory_full ();
7146af97
JB
528 return val;
529}
530
34400008
GM
531
532/* Like realloc but check for no memory and block interrupt input.. */
533
c971ff9a 534POINTER_TYPE *
7146af97 535xrealloc (block, size)
c971ff9a 536 POINTER_TYPE *block;
675d5130 537 size_t size;
7146af97 538{
c971ff9a 539 register POINTER_TYPE *val;
7146af97 540
9ac0d9e0 541 BLOCK_INPUT;
56d2031b
JB
542 /* We must call malloc explicitly when BLOCK is 0, since some
543 reallocs don't do this. */
544 if (! block)
c971ff9a 545 val = (POINTER_TYPE *) malloc (size);
f048679d 546 else
c971ff9a 547 val = (POINTER_TYPE *) realloc (block, size);
9ac0d9e0 548 UNBLOCK_INPUT;
7146af97
JB
549
550 if (!val && size) memory_full ();
551 return val;
552}
9ac0d9e0 553
34400008
GM
554
555/* Like free but block interrupt input.. */
556
9ac0d9e0
JB
557void
558xfree (block)
c971ff9a 559 POINTER_TYPE *block;
9ac0d9e0
JB
560{
561 BLOCK_INPUT;
562 free (block);
563 UNBLOCK_INPUT;
564}
565
c8099634 566
dca7c6a8
GM
567/* Like strdup, but uses xmalloc. */
568
569char *
570xstrdup (s)
943b873e 571 const char *s;
dca7c6a8 572{
675d5130 573 size_t len = strlen (s) + 1;
dca7c6a8
GM
574 char *p = (char *) xmalloc (len);
575 bcopy (s, p, len);
576 return p;
577}
578
579
34400008
GM
580/* Like malloc but used for allocating Lisp data. NBYTES is the
581 number of bytes to allocate, TYPE describes the intended use of the
582 allcated memory block (for strings, for conses, ...). */
583
918a23a7
RS
584static void *lisp_malloc_loser;
585
675d5130 586static POINTER_TYPE *
34400008 587lisp_malloc (nbytes, type)
675d5130 588 size_t nbytes;
34400008 589 enum mem_type type;
c8099634 590{
34400008 591 register void *val;
c8099634
RS
592
593 BLOCK_INPUT;
877935b1
GM
594
595#ifdef GC_MALLOC_CHECK
596 allocated_mem_type = type;
597#endif
177c0ea7 598
34400008 599 val = (void *) malloc (nbytes);
c8099634 600
918a23a7
RS
601 /* If the memory just allocated cannot be addressed thru a Lisp
602 object's pointer, and it needs to be,
603 that's equivalent to running out of memory. */
604 if (val && type != MEM_TYPE_NON_LISP)
605 {
606 Lisp_Object tem;
607 XSETCONS (tem, (char *) val + nbytes - 1);
608 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
609 {
610 lisp_malloc_loser = val;
611 free (val);
612 val = 0;
613 }
614 }
615
877935b1 616#if GC_MARK_STACK && !defined GC_MALLOC_CHECK
dca7c6a8 617 if (val && type != MEM_TYPE_NON_LISP)
34400008
GM
618 mem_insert (val, (char *) val + nbytes, type);
619#endif
177c0ea7 620
dca7c6a8
GM
621 UNBLOCK_INPUT;
622 if (!val && nbytes)
623 memory_full ();
c8099634
RS
624 return val;
625}
626
34400008
GM
627/* Free BLOCK. This must be called to free memory allocated with a
628 call to lisp_malloc. */
629
bf952fb6 630static void
c8099634 631lisp_free (block)
675d5130 632 POINTER_TYPE *block;
c8099634
RS
633{
634 BLOCK_INPUT;
c8099634 635 free (block);
877935b1 636#if GC_MARK_STACK && !defined GC_MALLOC_CHECK
34400008
GM
637 mem_delete (mem_find (block));
638#endif
c8099634
RS
639 UNBLOCK_INPUT;
640}
34400008 641
ab6780cd
SM
642/* Allocation of aligned blocks of memory to store Lisp data. */
643/* The entry point is lisp_align_malloc which returns blocks of at most */
644/* BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
645
646
647/* BLOCK_ALIGN has to be a power of 2. */
648#define BLOCK_ALIGN (1 << 10)
ab6780cd
SM
649
650/* Padding to leave at the end of a malloc'd block. This is to give
651 malloc a chance to minimize the amount of memory wasted to alignment.
652 It should be tuned to the particular malloc library used.
19bcad1f
SM
653 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
654 posix_memalign on the other hand would ideally prefer a value of 4
655 because otherwise, there's 1020 bytes wasted between each ablocks.
656 But testing shows that those 1020 will most of the time be efficiently
657 used by malloc to place other objects, so a value of 0 is still preferable
658 unless you have a lot of cons&floats and virtually nothing else. */
659#define BLOCK_PADDING 0
660#define BLOCK_BYTES \
661 (BLOCK_ALIGN - sizeof (struct aligned_block *) - BLOCK_PADDING)
662
663/* Internal data structures and constants. */
664
ab6780cd
SM
665#define ABLOCKS_SIZE 16
666
667/* An aligned block of memory. */
668struct ablock
669{
670 union
671 {
672 char payload[BLOCK_BYTES];
673 struct ablock *next_free;
674 } x;
675 /* `abase' is the aligned base of the ablocks. */
676 /* It is overloaded to hold the virtual `busy' field that counts
677 the number of used ablock in the parent ablocks.
678 The first ablock has the `busy' field, the others have the `abase'
679 field. To tell the difference, we assume that pointers will have
680 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
681 is used to tell whether the real base of the parent ablocks is `abase'
682 (if not, the word before the first ablock holds a pointer to the
683 real base). */
684 struct ablocks *abase;
685 /* The padding of all but the last ablock is unused. The padding of
686 the last ablock in an ablocks is not allocated. */
19bcad1f
SM
687#if BLOCK_PADDING
688 char padding[BLOCK_PADDING];
ebb8d410 689#endif
ab6780cd
SM
690};
691
692/* A bunch of consecutive aligned blocks. */
693struct ablocks
694{
695 struct ablock blocks[ABLOCKS_SIZE];
696};
697
698/* Size of the block requested from malloc or memalign. */
19bcad1f 699#define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
ab6780cd
SM
700
701#define ABLOCK_ABASE(block) \
702 (((unsigned long) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
703 ? (struct ablocks *)(block) \
704 : (block)->abase)
705
706/* Virtual `busy' field. */
707#define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
708
709/* Pointer to the (not necessarily aligned) malloc block. */
19bcad1f
SM
710#ifdef HAVE_POSIX_MEMALIGN
711#define ABLOCKS_BASE(abase) (abase)
712#else
ab6780cd
SM
713#define ABLOCKS_BASE(abase) \
714 (1 & (int) ABLOCKS_BUSY (abase) ? abase : ((void**)abase)[-1])
19bcad1f 715#endif
ab6780cd
SM
716
717/* The list of free ablock. */
718static struct ablock *free_ablock;
719
720/* Allocate an aligned block of nbytes.
721 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
722 smaller or equal to BLOCK_BYTES. */
723static POINTER_TYPE *
724lisp_align_malloc (nbytes, type)
725 size_t nbytes;
726 enum mem_type type;
727{
728 void *base, *val;
729 struct ablocks *abase;
730
731 eassert (nbytes <= BLOCK_BYTES);
732
733 BLOCK_INPUT;
734
735#ifdef GC_MALLOC_CHECK
736 allocated_mem_type = type;
737#endif
738
739 if (!free_ablock)
740 {
741 int i, aligned;
742
743#ifdef DOUG_LEA_MALLOC
744 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
745 because mapped region contents are not preserved in
746 a dumped Emacs. */
747 mallopt (M_MMAP_MAX, 0);
748#endif
749
19bcad1f
SM
750#ifdef HAVE_POSIX_MEMALIGN
751 {
752 int err = posix_memalign (&base, BLOCK_ALIGN, ABLOCKS_BYTES);
753 abase = err ? (base = NULL) : base;
754 }
755#else
ab6780cd
SM
756 base = malloc (ABLOCKS_BYTES);
757 abase = ALIGN (base, BLOCK_ALIGN);
19bcad1f 758#endif
ab6780cd
SM
759
760 aligned = (base == abase);
761 if (!aligned)
762 ((void**)abase)[-1] = base;
763
764#ifdef DOUG_LEA_MALLOC
765 /* Back to a reasonable maximum of mmap'ed areas. */
766 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
767#endif
768
769 /* Initialize the blocks and put them on the free list.
770 Is `base' was not properly aligned, we can't use the last block. */
771 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
772 {
773 abase->blocks[i].abase = abase;
774 abase->blocks[i].x.next_free = free_ablock;
775 free_ablock = &abase->blocks[i];
776 }
777 ABLOCKS_BUSY (abase) = (struct ablocks *) aligned;
778
19bcad1f 779 eassert (0 == ((EMACS_UINT)abase) % BLOCK_ALIGN);
ab6780cd
SM
780 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
781 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
782 eassert (ABLOCKS_BASE (abase) == base);
783 eassert (aligned == (int)ABLOCKS_BUSY (abase));
784 }
785
786 abase = ABLOCK_ABASE (free_ablock);
787 ABLOCKS_BUSY (abase) = (struct ablocks *) (2 + (int) ABLOCKS_BUSY (abase));
788 val = free_ablock;
789 free_ablock = free_ablock->x.next_free;
790
791 /* If the memory just allocated cannot be addressed thru a Lisp
792 object's pointer, and it needs to be,
793 that's equivalent to running out of memory. */
794 if (val && type != MEM_TYPE_NON_LISP)
795 {
796 Lisp_Object tem;
797 XSETCONS (tem, (char *) val + nbytes - 1);
798 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
799 {
800 lisp_malloc_loser = val;
801 free (val);
802 val = 0;
803 }
804 }
805
806#if GC_MARK_STACK && !defined GC_MALLOC_CHECK
807 if (val && type != MEM_TYPE_NON_LISP)
808 mem_insert (val, (char *) val + nbytes, type);
809#endif
810
811 UNBLOCK_INPUT;
812 if (!val && nbytes)
813 memory_full ();
814
815 eassert (0 == ((EMACS_UINT)val) % BLOCK_ALIGN);
816 return val;
817}
818
819static void
820lisp_align_free (block)
821 POINTER_TYPE *block;
822{
823 struct ablock *ablock = block;
824 struct ablocks *abase = ABLOCK_ABASE (ablock);
825
826 BLOCK_INPUT;
827#if GC_MARK_STACK && !defined GC_MALLOC_CHECK
828 mem_delete (mem_find (block));
829#endif
830 /* Put on free list. */
831 ablock->x.next_free = free_ablock;
832 free_ablock = ablock;
833 /* Update busy count. */
834 ABLOCKS_BUSY (abase) = (struct ablocks *) (-2 + (int) ABLOCKS_BUSY (abase));
835
836 if (2 > (int) ABLOCKS_BUSY (abase))
837 { /* All the blocks are free. */
838 int i = 0, aligned = (int) ABLOCKS_BUSY (abase);
839 struct ablock **tem = &free_ablock;
840 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
841
842 while (*tem)
843 {
844 if (*tem >= (struct ablock *) abase && *tem < atop)
845 {
846 i++;
847 *tem = (*tem)->x.next_free;
848 }
849 else
850 tem = &(*tem)->x.next_free;
851 }
852 eassert ((aligned & 1) == aligned);
853 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
854 free (ABLOCKS_BASE (abase));
855 }
856 UNBLOCK_INPUT;
857}
3ef06d12
SM
858
859/* Return a new buffer structure allocated from the heap with
860 a call to lisp_malloc. */
861
862struct buffer *
863allocate_buffer ()
864{
865 struct buffer *b
866 = (struct buffer *) lisp_malloc (sizeof (struct buffer),
867 MEM_TYPE_BUFFER);
868 return b;
869}
870
9ac0d9e0
JB
871\f
872/* Arranging to disable input signals while we're in malloc.
873
874 This only works with GNU malloc. To help out systems which can't
875 use GNU malloc, all the calls to malloc, realloc, and free
876 elsewhere in the code should be inside a BLOCK_INPUT/UNBLOCK_INPUT
877 pairs; unfortunately, we have no idea what C library functions
878 might call malloc, so we can't really protect them unless you're
2c5bd608
DL
879 using GNU malloc. Fortunately, most of the major operating systems
880 can use GNU malloc. */
9ac0d9e0
JB
881
882#ifndef SYSTEM_MALLOC
b3303f74
DL
883#ifndef DOUG_LEA_MALLOC
884extern void * (*__malloc_hook) P_ ((size_t));
885extern void * (*__realloc_hook) P_ ((void *, size_t));
886extern void (*__free_hook) P_ ((void *));
887/* Else declared in malloc.h, perhaps with an extra arg. */
888#endif /* DOUG_LEA_MALLOC */
b0846f52 889static void * (*old_malloc_hook) ();
b0846f52 890static void * (*old_realloc_hook) ();
b0846f52 891static void (*old_free_hook) ();
9ac0d9e0 892
276cbe5a
RS
893/* This function is used as the hook for free to call. */
894
9ac0d9e0
JB
895static void
896emacs_blocked_free (ptr)
897 void *ptr;
898{
899 BLOCK_INPUT;
877935b1
GM
900
901#ifdef GC_MALLOC_CHECK
a83fee2c
GM
902 if (ptr)
903 {
904 struct mem_node *m;
177c0ea7 905
a83fee2c
GM
906 m = mem_find (ptr);
907 if (m == MEM_NIL || m->start != ptr)
908 {
909 fprintf (stderr,
910 "Freeing `%p' which wasn't allocated with malloc\n", ptr);
911 abort ();
912 }
913 else
914 {
915 /* fprintf (stderr, "free %p...%p (%p)\n", m->start, m->end, ptr); */
916 mem_delete (m);
917 }
918 }
877935b1 919#endif /* GC_MALLOC_CHECK */
177c0ea7 920
9ac0d9e0
JB
921 __free_hook = old_free_hook;
922 free (ptr);
177c0ea7 923
276cbe5a
RS
924 /* If we released our reserve (due to running out of memory),
925 and we have a fair amount free once again,
926 try to set aside another reserve in case we run out once more. */
927 if (spare_memory == 0
928 /* Verify there is enough space that even with the malloc
929 hysteresis this call won't run out again.
930 The code here is correct as long as SPARE_MEMORY
931 is substantially larger than the block size malloc uses. */
932 && (bytes_used_when_full
d1658221 933 > BYTES_USED + max (malloc_hysteresis, 4) * SPARE_MEMORY))
675d5130 934 spare_memory = (char *) malloc ((size_t) SPARE_MEMORY);
276cbe5a 935
b0846f52 936 __free_hook = emacs_blocked_free;
9ac0d9e0
JB
937 UNBLOCK_INPUT;
938}
939
34400008 940
276cbe5a
RS
941/* If we released our reserve (due to running out of memory),
942 and we have a fair amount free once again,
943 try to set aside another reserve in case we run out once more.
944
945 This is called when a relocatable block is freed in ralloc.c. */
946
947void
948refill_memory_reserve ()
949{
950 if (spare_memory == 0)
675d5130 951 spare_memory = (char *) malloc ((size_t) SPARE_MEMORY);
276cbe5a
RS
952}
953
34400008 954
276cbe5a
RS
955/* This function is the malloc hook that Emacs uses. */
956
9ac0d9e0
JB
957static void *
958emacs_blocked_malloc (size)
675d5130 959 size_t size;
9ac0d9e0
JB
960{
961 void *value;
962
963 BLOCK_INPUT;
964 __malloc_hook = old_malloc_hook;
1177ecf6 965#ifdef DOUG_LEA_MALLOC
d1658221 966 mallopt (M_TOP_PAD, malloc_hysteresis * 4096);
1177ecf6 967#else
d1658221 968 __malloc_extra_blocks = malloc_hysteresis;
1177ecf6 969#endif
877935b1 970
2756d8ee 971 value = (void *) malloc (size);
877935b1
GM
972
973#ifdef GC_MALLOC_CHECK
974 {
975 struct mem_node *m = mem_find (value);
976 if (m != MEM_NIL)
977 {
978 fprintf (stderr, "Malloc returned %p which is already in use\n",
979 value);
980 fprintf (stderr, "Region in use is %p...%p, %u bytes, type %d\n",
981 m->start, m->end, (char *) m->end - (char *) m->start,
982 m->type);
983 abort ();
984 }
985
986 if (!dont_register_blocks)
987 {
988 mem_insert (value, (char *) value + max (1, size), allocated_mem_type);
989 allocated_mem_type = MEM_TYPE_NON_LISP;
990 }
991 }
992#endif /* GC_MALLOC_CHECK */
177c0ea7 993
b0846f52 994 __malloc_hook = emacs_blocked_malloc;
9ac0d9e0
JB
995 UNBLOCK_INPUT;
996
877935b1 997 /* fprintf (stderr, "%p malloc\n", value); */
9ac0d9e0
JB
998 return value;
999}
1000
34400008
GM
1001
1002/* This function is the realloc hook that Emacs uses. */
1003
9ac0d9e0
JB
1004static void *
1005emacs_blocked_realloc (ptr, size)
1006 void *ptr;
675d5130 1007 size_t size;
9ac0d9e0
JB
1008{
1009 void *value;
1010
1011 BLOCK_INPUT;
1012 __realloc_hook = old_realloc_hook;
877935b1
GM
1013
1014#ifdef GC_MALLOC_CHECK
1015 if (ptr)
1016 {
1017 struct mem_node *m = mem_find (ptr);
1018 if (m == MEM_NIL || m->start != ptr)
1019 {
1020 fprintf (stderr,
1021 "Realloc of %p which wasn't allocated with malloc\n",
1022 ptr);
1023 abort ();
1024 }
1025
1026 mem_delete (m);
1027 }
177c0ea7 1028
877935b1 1029 /* fprintf (stderr, "%p -> realloc\n", ptr); */
177c0ea7 1030
877935b1
GM
1031 /* Prevent malloc from registering blocks. */
1032 dont_register_blocks = 1;
1033#endif /* GC_MALLOC_CHECK */
1034
2756d8ee 1035 value = (void *) realloc (ptr, size);
877935b1
GM
1036
1037#ifdef GC_MALLOC_CHECK
1038 dont_register_blocks = 0;
1039
1040 {
1041 struct mem_node *m = mem_find (value);
1042 if (m != MEM_NIL)
1043 {
1044 fprintf (stderr, "Realloc returns memory that is already in use\n");
1045 abort ();
1046 }
1047
1048 /* Can't handle zero size regions in the red-black tree. */
1049 mem_insert (value, (char *) value + max (size, 1), MEM_TYPE_NON_LISP);
1050 }
177c0ea7 1051
877935b1
GM
1052 /* fprintf (stderr, "%p <- realloc\n", value); */
1053#endif /* GC_MALLOC_CHECK */
177c0ea7 1054
b0846f52 1055 __realloc_hook = emacs_blocked_realloc;
9ac0d9e0
JB
1056 UNBLOCK_INPUT;
1057
1058 return value;
1059}
1060
34400008
GM
1061
1062/* Called from main to set up malloc to use our hooks. */
1063
9ac0d9e0
JB
1064void
1065uninterrupt_malloc ()
1066{
c8099634
RS
1067 if (__free_hook != emacs_blocked_free)
1068 old_free_hook = __free_hook;
b0846f52 1069 __free_hook = emacs_blocked_free;
9ac0d9e0 1070
c8099634
RS
1071 if (__malloc_hook != emacs_blocked_malloc)
1072 old_malloc_hook = __malloc_hook;
b0846f52 1073 __malloc_hook = emacs_blocked_malloc;
9ac0d9e0 1074
c8099634
RS
1075 if (__realloc_hook != emacs_blocked_realloc)
1076 old_realloc_hook = __realloc_hook;
b0846f52 1077 __realloc_hook = emacs_blocked_realloc;
9ac0d9e0 1078}
2e471eb5
GM
1079
1080#endif /* not SYSTEM_MALLOC */
1081
1082
7146af97 1083\f
2e471eb5
GM
1084/***********************************************************************
1085 Interval Allocation
1086 ***********************************************************************/
1a4f1e2c 1087
34400008
GM
1088/* Number of intervals allocated in an interval_block structure.
1089 The 1020 is 1024 minus malloc overhead. */
1090
d5e35230
JA
1091#define INTERVAL_BLOCK_SIZE \
1092 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1093
34400008
GM
1094/* Intervals are allocated in chunks in form of an interval_block
1095 structure. */
1096
d5e35230 1097struct interval_block
2e471eb5
GM
1098{
1099 struct interval_block *next;
1100 struct interval intervals[INTERVAL_BLOCK_SIZE];
1101};
d5e35230 1102
34400008
GM
1103/* Current interval block. Its `next' pointer points to older
1104 blocks. */
1105
d5e35230 1106struct interval_block *interval_block;
34400008
GM
1107
1108/* Index in interval_block above of the next unused interval
1109 structure. */
1110
d5e35230 1111static int interval_block_index;
34400008
GM
1112
1113/* Number of free and live intervals. */
1114
2e471eb5 1115static int total_free_intervals, total_intervals;
d5e35230 1116
34400008
GM
1117/* List of free intervals. */
1118
d5e35230
JA
1119INTERVAL interval_free_list;
1120
c8099634 1121/* Total number of interval blocks now in use. */
2e471eb5 1122
c8099634
RS
1123int n_interval_blocks;
1124
34400008
GM
1125
1126/* Initialize interval allocation. */
1127
d5e35230
JA
1128static void
1129init_intervals ()
1130{
1131 interval_block
34400008
GM
1132 = (struct interval_block *) lisp_malloc (sizeof *interval_block,
1133 MEM_TYPE_NON_LISP);
d5e35230 1134 interval_block->next = 0;
290c8f1e 1135 bzero ((char *) interval_block->intervals, sizeof interval_block->intervals);
d5e35230
JA
1136 interval_block_index = 0;
1137 interval_free_list = 0;
c8099634 1138 n_interval_blocks = 1;
d5e35230
JA
1139}
1140
34400008
GM
1141
1142/* Return a new interval. */
d5e35230
JA
1143
1144INTERVAL
1145make_interval ()
1146{
1147 INTERVAL val;
1148
1149 if (interval_free_list)
1150 {
1151 val = interval_free_list;
439d5cb4 1152 interval_free_list = INTERVAL_PARENT (interval_free_list);
d5e35230
JA
1153 }
1154 else
1155 {
1156 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1157 {
3c06d205
KH
1158 register struct interval_block *newi;
1159
34400008
GM
1160 newi = (struct interval_block *) lisp_malloc (sizeof *newi,
1161 MEM_TYPE_NON_LISP);
d5e35230 1162
d5e35230
JA
1163 newi->next = interval_block;
1164 interval_block = newi;
1165 interval_block_index = 0;
c8099634 1166 n_interval_blocks++;
d5e35230
JA
1167 }
1168 val = &interval_block->intervals[interval_block_index++];
1169 }
1170 consing_since_gc += sizeof (struct interval);
310ea200 1171 intervals_consed++;
d5e35230 1172 RESET_INTERVAL (val);
2336fe58 1173 val->gcmarkbit = 0;
d5e35230
JA
1174 return val;
1175}
1176
34400008
GM
1177
1178/* Mark Lisp objects in interval I. */
d5e35230
JA
1179
1180static void
d393c068 1181mark_interval (i, dummy)
d5e35230 1182 register INTERVAL i;
d393c068 1183 Lisp_Object dummy;
d5e35230 1184{
2336fe58
SM
1185 eassert (!i->gcmarkbit); /* Intervals are never shared. */
1186 i->gcmarkbit = 1;
49723c04 1187 mark_object (i->plist);
d5e35230
JA
1188}
1189
34400008
GM
1190
1191/* Mark the interval tree rooted in TREE. Don't call this directly;
1192 use the macro MARK_INTERVAL_TREE instead. */
1193
d5e35230
JA
1194static void
1195mark_interval_tree (tree)
1196 register INTERVAL tree;
1197{
e8720644
JB
1198 /* No need to test if this tree has been marked already; this
1199 function is always called through the MARK_INTERVAL_TREE macro,
1200 which takes care of that. */
1201
1e934989 1202 traverse_intervals_noorder (tree, mark_interval, Qnil);
d5e35230
JA
1203}
1204
34400008
GM
1205
1206/* Mark the interval tree rooted in I. */
1207
e8720644
JB
1208#define MARK_INTERVAL_TREE(i) \
1209 do { \
2336fe58 1210 if (!NULL_INTERVAL_P (i) && !i->gcmarkbit) \
e8720644
JB
1211 mark_interval_tree (i); \
1212 } while (0)
d5e35230 1213
34400008 1214
2e471eb5
GM
1215#define UNMARK_BALANCE_INTERVALS(i) \
1216 do { \
1217 if (! NULL_INTERVAL_P (i)) \
2336fe58 1218 (i) = balance_intervals (i); \
2e471eb5 1219 } while (0)
d5e35230 1220
cc2d8c6b
KR
1221\f
1222/* Number support. If NO_UNION_TYPE isn't in effect, we
1223 can't create number objects in macros. */
1224#ifndef make_number
1225Lisp_Object
1226make_number (n)
1227 int n;
1228{
1229 Lisp_Object obj;
1230 obj.s.val = n;
1231 obj.s.type = Lisp_Int;
1232 return obj;
1233}
1234#endif
d5e35230 1235\f
2e471eb5
GM
1236/***********************************************************************
1237 String Allocation
1238 ***********************************************************************/
1a4f1e2c 1239
2e471eb5
GM
1240/* Lisp_Strings are allocated in string_block structures. When a new
1241 string_block is allocated, all the Lisp_Strings it contains are
e0fead5d 1242 added to a free-list string_free_list. When a new Lisp_String is
2e471eb5
GM
1243 needed, it is taken from that list. During the sweep phase of GC,
1244 string_blocks that are entirely free are freed, except two which
1245 we keep.
7146af97 1246
2e471eb5
GM
1247 String data is allocated from sblock structures. Strings larger
1248 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1249 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
7146af97 1250
2e471eb5
GM
1251 Sblocks consist internally of sdata structures, one for each
1252 Lisp_String. The sdata structure points to the Lisp_String it
1253 belongs to. The Lisp_String points back to the `u.data' member of
1254 its sdata structure.
7146af97 1255
2e471eb5
GM
1256 When a Lisp_String is freed during GC, it is put back on
1257 string_free_list, and its `data' member and its sdata's `string'
1258 pointer is set to null. The size of the string is recorded in the
1259 `u.nbytes' member of the sdata. So, sdata structures that are no
1260 longer used, can be easily recognized, and it's easy to compact the
1261 sblocks of small strings which we do in compact_small_strings. */
7146af97 1262
2e471eb5
GM
1263/* Size in bytes of an sblock structure used for small strings. This
1264 is 8192 minus malloc overhead. */
7146af97 1265
2e471eb5 1266#define SBLOCK_SIZE 8188
c8099634 1267
2e471eb5
GM
1268/* Strings larger than this are considered large strings. String data
1269 for large strings is allocated from individual sblocks. */
7146af97 1270
2e471eb5
GM
1271#define LARGE_STRING_BYTES 1024
1272
1273/* Structure describing string memory sub-allocated from an sblock.
1274 This is where the contents of Lisp strings are stored. */
1275
1276struct sdata
7146af97 1277{
2e471eb5
GM
1278 /* Back-pointer to the string this sdata belongs to. If null, this
1279 structure is free, and the NBYTES member of the union below
34400008 1280 contains the string's byte size (the same value that STRING_BYTES
2e471eb5
GM
1281 would return if STRING were non-null). If non-null, STRING_BYTES
1282 (STRING) is the size of the data, and DATA contains the string's
1283 contents. */
1284 struct Lisp_String *string;
7146af97 1285
31d929e5 1286#ifdef GC_CHECK_STRING_BYTES
177c0ea7 1287
31d929e5
GM
1288 EMACS_INT nbytes;
1289 unsigned char data[1];
177c0ea7 1290
31d929e5
GM
1291#define SDATA_NBYTES(S) (S)->nbytes
1292#define SDATA_DATA(S) (S)->data
177c0ea7 1293
31d929e5
GM
1294#else /* not GC_CHECK_STRING_BYTES */
1295
2e471eb5
GM
1296 union
1297 {
1298 /* When STRING in non-null. */
1299 unsigned char data[1];
1300
1301 /* When STRING is null. */
1302 EMACS_INT nbytes;
1303 } u;
177c0ea7 1304
31d929e5
GM
1305
1306#define SDATA_NBYTES(S) (S)->u.nbytes
1307#define SDATA_DATA(S) (S)->u.data
1308
1309#endif /* not GC_CHECK_STRING_BYTES */
2e471eb5
GM
1310};
1311
31d929e5 1312
2e471eb5
GM
1313/* Structure describing a block of memory which is sub-allocated to
1314 obtain string data memory for strings. Blocks for small strings
1315 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1316 as large as needed. */
1317
1318struct sblock
7146af97 1319{
2e471eb5
GM
1320 /* Next in list. */
1321 struct sblock *next;
7146af97 1322
2e471eb5
GM
1323 /* Pointer to the next free sdata block. This points past the end
1324 of the sblock if there isn't any space left in this block. */
1325 struct sdata *next_free;
1326
1327 /* Start of data. */
1328 struct sdata first_data;
1329};
1330
1331/* Number of Lisp strings in a string_block structure. The 1020 is
1332 1024 minus malloc overhead. */
1333
19bcad1f 1334#define STRING_BLOCK_SIZE \
2e471eb5
GM
1335 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1336
1337/* Structure describing a block from which Lisp_String structures
1338 are allocated. */
1339
1340struct string_block
7146af97 1341{
2e471eb5 1342 struct string_block *next;
19bcad1f 1343 struct Lisp_String strings[STRING_BLOCK_SIZE];
2e471eb5 1344};
7146af97 1345
2e471eb5
GM
1346/* Head and tail of the list of sblock structures holding Lisp string
1347 data. We always allocate from current_sblock. The NEXT pointers
1348 in the sblock structures go from oldest_sblock to current_sblock. */
3c06d205 1349
2e471eb5 1350static struct sblock *oldest_sblock, *current_sblock;
7146af97 1351
2e471eb5 1352/* List of sblocks for large strings. */
7146af97 1353
2e471eb5 1354static struct sblock *large_sblocks;
7146af97 1355
2e471eb5 1356/* List of string_block structures, and how many there are. */
7146af97 1357
2e471eb5
GM
1358static struct string_block *string_blocks;
1359static int n_string_blocks;
7146af97 1360
2e471eb5 1361/* Free-list of Lisp_Strings. */
7146af97 1362
2e471eb5 1363static struct Lisp_String *string_free_list;
7146af97 1364
2e471eb5 1365/* Number of live and free Lisp_Strings. */
c8099634 1366
2e471eb5 1367static int total_strings, total_free_strings;
7146af97 1368
2e471eb5
GM
1369/* Number of bytes used by live strings. */
1370
1371static int total_string_size;
1372
1373/* Given a pointer to a Lisp_String S which is on the free-list
1374 string_free_list, return a pointer to its successor in the
1375 free-list. */
1376
1377#define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1378
1379/* Return a pointer to the sdata structure belonging to Lisp string S.
1380 S must be live, i.e. S->data must not be null. S->data is actually
1381 a pointer to the `u.data' member of its sdata structure; the
1382 structure starts at a constant offset in front of that. */
177c0ea7 1383
31d929e5
GM
1384#ifdef GC_CHECK_STRING_BYTES
1385
1386#define SDATA_OF_STRING(S) \
1387 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *) \
1388 - sizeof (EMACS_INT)))
1389
1390#else /* not GC_CHECK_STRING_BYTES */
1391
2e471eb5
GM
1392#define SDATA_OF_STRING(S) \
1393 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *)))
1394
31d929e5
GM
1395#endif /* not GC_CHECK_STRING_BYTES */
1396
2e471eb5
GM
1397/* Value is the size of an sdata structure large enough to hold NBYTES
1398 bytes of string data. The value returned includes a terminating
1399 NUL byte, the size of the sdata structure, and padding. */
1400
31d929e5
GM
1401#ifdef GC_CHECK_STRING_BYTES
1402
2e471eb5
GM
1403#define SDATA_SIZE(NBYTES) \
1404 ((sizeof (struct Lisp_String *) \
1405 + (NBYTES) + 1 \
31d929e5 1406 + sizeof (EMACS_INT) \
2e471eb5
GM
1407 + sizeof (EMACS_INT) - 1) \
1408 & ~(sizeof (EMACS_INT) - 1))
1409
31d929e5
GM
1410#else /* not GC_CHECK_STRING_BYTES */
1411
1412#define SDATA_SIZE(NBYTES) \
1413 ((sizeof (struct Lisp_String *) \
1414 + (NBYTES) + 1 \
1415 + sizeof (EMACS_INT) - 1) \
1416 & ~(sizeof (EMACS_INT) - 1))
1417
1418#endif /* not GC_CHECK_STRING_BYTES */
2e471eb5
GM
1419
1420/* Initialize string allocation. Called from init_alloc_once. */
d457598b
AS
1421
1422void
2e471eb5 1423init_strings ()
7146af97 1424{
2e471eb5
GM
1425 total_strings = total_free_strings = total_string_size = 0;
1426 oldest_sblock = current_sblock = large_sblocks = NULL;
1427 string_blocks = NULL;
1428 n_string_blocks = 0;
1429 string_free_list = NULL;
7146af97
JB
1430}
1431
2e471eb5 1432
361b097f
GM
1433#ifdef GC_CHECK_STRING_BYTES
1434
361b097f
GM
1435static int check_string_bytes_count;
1436
676a7251
GM
1437void check_string_bytes P_ ((int));
1438void check_sblock P_ ((struct sblock *));
1439
1440#define CHECK_STRING_BYTES(S) STRING_BYTES (S)
1441
1442
1443/* Like GC_STRING_BYTES, but with debugging check. */
1444
1445int
1446string_bytes (s)
1447 struct Lisp_String *s;
1448{
3ef06d12 1449 int nbytes = (s->size_byte < 0 ? s->size & ~MARKBIT : s->size_byte);
676a7251
GM
1450 if (!PURE_POINTER_P (s)
1451 && s->data
1452 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1453 abort ();
1454 return nbytes;
1455}
177c0ea7 1456
2c5bd608 1457/* Check validity of Lisp strings' string_bytes member in B. */
676a7251 1458
361b097f 1459void
676a7251
GM
1460check_sblock (b)
1461 struct sblock *b;
361b097f 1462{
676a7251 1463 struct sdata *from, *end, *from_end;
177c0ea7 1464
676a7251 1465 end = b->next_free;
177c0ea7 1466
676a7251 1467 for (from = &b->first_data; from < end; from = from_end)
361b097f 1468 {
676a7251
GM
1469 /* Compute the next FROM here because copying below may
1470 overwrite data we need to compute it. */
1471 int nbytes;
177c0ea7 1472
676a7251
GM
1473 /* Check that the string size recorded in the string is the
1474 same as the one recorded in the sdata structure. */
1475 if (from->string)
1476 CHECK_STRING_BYTES (from->string);
177c0ea7 1477
676a7251
GM
1478 if (from->string)
1479 nbytes = GC_STRING_BYTES (from->string);
1480 else
1481 nbytes = SDATA_NBYTES (from);
177c0ea7 1482
676a7251
GM
1483 nbytes = SDATA_SIZE (nbytes);
1484 from_end = (struct sdata *) ((char *) from + nbytes);
1485 }
1486}
361b097f 1487
676a7251
GM
1488
1489/* Check validity of Lisp strings' string_bytes member. ALL_P
1490 non-zero means check all strings, otherwise check only most
1491 recently allocated strings. Used for hunting a bug. */
1492
1493void
1494check_string_bytes (all_p)
1495 int all_p;
1496{
1497 if (all_p)
1498 {
1499 struct sblock *b;
1500
1501 for (b = large_sblocks; b; b = b->next)
1502 {
1503 struct Lisp_String *s = b->first_data.string;
1504 if (s)
1505 CHECK_STRING_BYTES (s);
361b097f 1506 }
177c0ea7 1507
676a7251
GM
1508 for (b = oldest_sblock; b; b = b->next)
1509 check_sblock (b);
361b097f 1510 }
676a7251
GM
1511 else
1512 check_sblock (current_sblock);
361b097f
GM
1513}
1514
1515#endif /* GC_CHECK_STRING_BYTES */
1516
1517
2e471eb5
GM
1518/* Return a new Lisp_String. */
1519
1520static struct Lisp_String *
1521allocate_string ()
7146af97 1522{
2e471eb5 1523 struct Lisp_String *s;
7146af97 1524
2e471eb5
GM
1525 /* If the free-list is empty, allocate a new string_block, and
1526 add all the Lisp_Strings in it to the free-list. */
1527 if (string_free_list == NULL)
7146af97 1528 {
2e471eb5
GM
1529 struct string_block *b;
1530 int i;
1531
34400008 1532 b = (struct string_block *) lisp_malloc (sizeof *b, MEM_TYPE_STRING);
2e471eb5
GM
1533 bzero (b, sizeof *b);
1534 b->next = string_blocks;
1535 string_blocks = b;
1536 ++n_string_blocks;
1537
19bcad1f 1538 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
7146af97 1539 {
2e471eb5
GM
1540 s = b->strings + i;
1541 NEXT_FREE_LISP_STRING (s) = string_free_list;
1542 string_free_list = s;
7146af97 1543 }
2e471eb5 1544
19bcad1f 1545 total_free_strings += STRING_BLOCK_SIZE;
7146af97 1546 }
c0f51373 1547
2e471eb5
GM
1548 /* Pop a Lisp_String off the free-list. */
1549 s = string_free_list;
1550 string_free_list = NEXT_FREE_LISP_STRING (s);
c0f51373 1551
2e471eb5
GM
1552 /* Probably not strictly necessary, but play it safe. */
1553 bzero (s, sizeof *s);
c0f51373 1554
2e471eb5
GM
1555 --total_free_strings;
1556 ++total_strings;
1557 ++strings_consed;
1558 consing_since_gc += sizeof *s;
c0f51373 1559
361b097f 1560#ifdef GC_CHECK_STRING_BYTES
83a96b4d 1561 if (!noninteractive
e0f712ba 1562#ifdef MAC_OS8
83a96b4d
AC
1563 && current_sblock
1564#endif
1565 )
361b097f 1566 {
676a7251
GM
1567 if (++check_string_bytes_count == 200)
1568 {
1569 check_string_bytes_count = 0;
1570 check_string_bytes (1);
1571 }
1572 else
1573 check_string_bytes (0);
361b097f 1574 }
676a7251 1575#endif /* GC_CHECK_STRING_BYTES */
361b097f 1576
2e471eb5 1577 return s;
c0f51373 1578}
7146af97 1579
7146af97 1580
2e471eb5
GM
1581/* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1582 plus a NUL byte at the end. Allocate an sdata structure for S, and
1583 set S->data to its `u.data' member. Store a NUL byte at the end of
1584 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1585 S->data if it was initially non-null. */
7146af97 1586
2e471eb5
GM
1587void
1588allocate_string_data (s, nchars, nbytes)
1589 struct Lisp_String *s;
1590 int nchars, nbytes;
7146af97 1591{
5c5fecb3 1592 struct sdata *data, *old_data;
2e471eb5 1593 struct sblock *b;
5c5fecb3 1594 int needed, old_nbytes;
7146af97 1595
2e471eb5
GM
1596 /* Determine the number of bytes needed to store NBYTES bytes
1597 of string data. */
1598 needed = SDATA_SIZE (nbytes);
7146af97 1599
2e471eb5
GM
1600 if (nbytes > LARGE_STRING_BYTES)
1601 {
675d5130 1602 size_t size = sizeof *b - sizeof (struct sdata) + needed;
2e471eb5
GM
1603
1604#ifdef DOUG_LEA_MALLOC
f8608968
GM
1605 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1606 because mapped region contents are not preserved in
d36b182f
DL
1607 a dumped Emacs.
1608
1609 In case you think of allowing it in a dumped Emacs at the
1610 cost of not being able to re-dump, there's another reason:
1611 mmap'ed data typically have an address towards the top of the
1612 address space, which won't fit into an EMACS_INT (at least on
1613 32-bit systems with the current tagging scheme). --fx */
2e471eb5
GM
1614 mallopt (M_MMAP_MAX, 0);
1615#endif
1616
34400008 1617 b = (struct sblock *) lisp_malloc (size, MEM_TYPE_NON_LISP);
177c0ea7 1618
2e471eb5
GM
1619#ifdef DOUG_LEA_MALLOC
1620 /* Back to a reasonable maximum of mmap'ed areas. */
1621 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1622#endif
177c0ea7 1623
2e471eb5
GM
1624 b->next_free = &b->first_data;
1625 b->first_data.string = NULL;
1626 b->next = large_sblocks;
1627 large_sblocks = b;
1628 }
1629 else if (current_sblock == NULL
1630 || (((char *) current_sblock + SBLOCK_SIZE
1631 - (char *) current_sblock->next_free)
1632 < needed))
1633 {
1634 /* Not enough room in the current sblock. */
34400008 1635 b = (struct sblock *) lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
2e471eb5
GM
1636 b->next_free = &b->first_data;
1637 b->first_data.string = NULL;
1638 b->next = NULL;
1639
1640 if (current_sblock)
1641 current_sblock->next = b;
1642 else
1643 oldest_sblock = b;
1644 current_sblock = b;
1645 }
1646 else
1647 b = current_sblock;
5c5fecb3
GM
1648
1649 old_data = s->data ? SDATA_OF_STRING (s) : NULL;
1650 old_nbytes = GC_STRING_BYTES (s);
177c0ea7 1651
2e471eb5
GM
1652 data = b->next_free;
1653 data->string = s;
31d929e5
GM
1654 s->data = SDATA_DATA (data);
1655#ifdef GC_CHECK_STRING_BYTES
1656 SDATA_NBYTES (data) = nbytes;
1657#endif
2e471eb5
GM
1658 s->size = nchars;
1659 s->size_byte = nbytes;
1660 s->data[nbytes] = '\0';
1661 b->next_free = (struct sdata *) ((char *) data + needed);
177c0ea7 1662
5c5fecb3
GM
1663 /* If S had already data assigned, mark that as free by setting its
1664 string back-pointer to null, and recording the size of the data
00c9c33c 1665 in it. */
5c5fecb3
GM
1666 if (old_data)
1667 {
31d929e5 1668 SDATA_NBYTES (old_data) = old_nbytes;
5c5fecb3
GM
1669 old_data->string = NULL;
1670 }
1671
2e471eb5
GM
1672 consing_since_gc += needed;
1673}
1674
1675
1676/* Sweep and compact strings. */
1677
1678static void
1679sweep_strings ()
1680{
1681 struct string_block *b, *next;
1682 struct string_block *live_blocks = NULL;
177c0ea7 1683
2e471eb5
GM
1684 string_free_list = NULL;
1685 total_strings = total_free_strings = 0;
1686 total_string_size = 0;
1687
1688 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
1689 for (b = string_blocks; b; b = next)
1690 {
1691 int i, nfree = 0;
1692 struct Lisp_String *free_list_before = string_free_list;
1693
1694 next = b->next;
1695
19bcad1f 1696 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
2e471eb5
GM
1697 {
1698 struct Lisp_String *s = b->strings + i;
1699
1700 if (s->data)
1701 {
1702 /* String was not on free-list before. */
1703 if (STRING_MARKED_P (s))
1704 {
1705 /* String is live; unmark it and its intervals. */
1706 UNMARK_STRING (s);
177c0ea7 1707
2e471eb5
GM
1708 if (!NULL_INTERVAL_P (s->intervals))
1709 UNMARK_BALANCE_INTERVALS (s->intervals);
1710
1711 ++total_strings;
1712 total_string_size += STRING_BYTES (s);
1713 }
1714 else
1715 {
1716 /* String is dead. Put it on the free-list. */
1717 struct sdata *data = SDATA_OF_STRING (s);
1718
1719 /* Save the size of S in its sdata so that we know
1720 how large that is. Reset the sdata's string
1721 back-pointer so that we know it's free. */
31d929e5
GM
1722#ifdef GC_CHECK_STRING_BYTES
1723 if (GC_STRING_BYTES (s) != SDATA_NBYTES (data))
1724 abort ();
1725#else
2e471eb5 1726 data->u.nbytes = GC_STRING_BYTES (s);
31d929e5 1727#endif
2e471eb5
GM
1728 data->string = NULL;
1729
1730 /* Reset the strings's `data' member so that we
1731 know it's free. */
1732 s->data = NULL;
1733
1734 /* Put the string on the free-list. */
1735 NEXT_FREE_LISP_STRING (s) = string_free_list;
1736 string_free_list = s;
1737 ++nfree;
1738 }
1739 }
1740 else
1741 {
1742 /* S was on the free-list before. Put it there again. */
1743 NEXT_FREE_LISP_STRING (s) = string_free_list;
1744 string_free_list = s;
1745 ++nfree;
1746 }
1747 }
1748
34400008 1749 /* Free blocks that contain free Lisp_Strings only, except
2e471eb5 1750 the first two of them. */
19bcad1f
SM
1751 if (nfree == STRING_BLOCK_SIZE
1752 && total_free_strings > STRING_BLOCK_SIZE)
2e471eb5
GM
1753 {
1754 lisp_free (b);
1755 --n_string_blocks;
1756 string_free_list = free_list_before;
1757 }
1758 else
1759 {
1760 total_free_strings += nfree;
1761 b->next = live_blocks;
1762 live_blocks = b;
1763 }
1764 }
1765
1766 string_blocks = live_blocks;
1767 free_large_strings ();
1768 compact_small_strings ();
1769}
1770
1771
1772/* Free dead large strings. */
1773
1774static void
1775free_large_strings ()
1776{
1777 struct sblock *b, *next;
1778 struct sblock *live_blocks = NULL;
177c0ea7 1779
2e471eb5
GM
1780 for (b = large_sblocks; b; b = next)
1781 {
1782 next = b->next;
1783
1784 if (b->first_data.string == NULL)
1785 lisp_free (b);
1786 else
1787 {
1788 b->next = live_blocks;
1789 live_blocks = b;
1790 }
1791 }
1792
1793 large_sblocks = live_blocks;
1794}
1795
1796
1797/* Compact data of small strings. Free sblocks that don't contain
1798 data of live strings after compaction. */
1799
1800static void
1801compact_small_strings ()
1802{
1803 struct sblock *b, *tb, *next;
1804 struct sdata *from, *to, *end, *tb_end;
1805 struct sdata *to_end, *from_end;
1806
1807 /* TB is the sblock we copy to, TO is the sdata within TB we copy
1808 to, and TB_END is the end of TB. */
1809 tb = oldest_sblock;
1810 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
1811 to = &tb->first_data;
1812
1813 /* Step through the blocks from the oldest to the youngest. We
1814 expect that old blocks will stabilize over time, so that less
1815 copying will happen this way. */
1816 for (b = oldest_sblock; b; b = b->next)
1817 {
1818 end = b->next_free;
1819 xassert ((char *) end <= (char *) b + SBLOCK_SIZE);
177c0ea7 1820
2e471eb5
GM
1821 for (from = &b->first_data; from < end; from = from_end)
1822 {
1823 /* Compute the next FROM here because copying below may
1824 overwrite data we need to compute it. */
1825 int nbytes;
1826
31d929e5
GM
1827#ifdef GC_CHECK_STRING_BYTES
1828 /* Check that the string size recorded in the string is the
1829 same as the one recorded in the sdata structure. */
1830 if (from->string
1831 && GC_STRING_BYTES (from->string) != SDATA_NBYTES (from))
1832 abort ();
1833#endif /* GC_CHECK_STRING_BYTES */
177c0ea7 1834
2e471eb5
GM
1835 if (from->string)
1836 nbytes = GC_STRING_BYTES (from->string);
1837 else
31d929e5 1838 nbytes = SDATA_NBYTES (from);
177c0ea7 1839
2e471eb5
GM
1840 nbytes = SDATA_SIZE (nbytes);
1841 from_end = (struct sdata *) ((char *) from + nbytes);
177c0ea7 1842
2e471eb5
GM
1843 /* FROM->string non-null means it's alive. Copy its data. */
1844 if (from->string)
1845 {
1846 /* If TB is full, proceed with the next sblock. */
1847 to_end = (struct sdata *) ((char *) to + nbytes);
1848 if (to_end > tb_end)
1849 {
1850 tb->next_free = to;
1851 tb = tb->next;
1852 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
1853 to = &tb->first_data;
1854 to_end = (struct sdata *) ((char *) to + nbytes);
1855 }
177c0ea7 1856
2e471eb5
GM
1857 /* Copy, and update the string's `data' pointer. */
1858 if (from != to)
1859 {
a2407477
GM
1860 xassert (tb != b || to <= from);
1861 safe_bcopy ((char *) from, (char *) to, nbytes);
31d929e5 1862 to->string->data = SDATA_DATA (to);
2e471eb5
GM
1863 }
1864
1865 /* Advance past the sdata we copied to. */
1866 to = to_end;
1867 }
1868 }
1869 }
1870
1871 /* The rest of the sblocks following TB don't contain live data, so
1872 we can free them. */
1873 for (b = tb->next; b; b = next)
1874 {
1875 next = b->next;
1876 lisp_free (b);
1877 }
1878
1879 tb->next_free = to;
1880 tb->next = NULL;
1881 current_sblock = tb;
1882}
1883
1884
1885DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
a6266d23 1886 doc: /* Return a newly created string of length LENGTH, with each element being INIT.
7ee72033
MB
1887Both LENGTH and INIT must be numbers. */)
1888 (length, init)
2e471eb5
GM
1889 Lisp_Object length, init;
1890{
1891 register Lisp_Object val;
1892 register unsigned char *p, *end;
1893 int c, nbytes;
1894
b7826503
PJ
1895 CHECK_NATNUM (length);
1896 CHECK_NUMBER (init);
2e471eb5
GM
1897
1898 c = XINT (init);
1899 if (SINGLE_BYTE_CHAR_P (c))
1900 {
1901 nbytes = XINT (length);
1902 val = make_uninit_string (nbytes);
d5db4077
KR
1903 p = SDATA (val);
1904 end = p + SCHARS (val);
2e471eb5
GM
1905 while (p != end)
1906 *p++ = c;
1907 }
1908 else
1909 {
d942b71c 1910 unsigned char str[MAX_MULTIBYTE_LENGTH];
2e471eb5
GM
1911 int len = CHAR_STRING (c, str);
1912
1913 nbytes = len * XINT (length);
1914 val = make_uninit_multibyte_string (XINT (length), nbytes);
d5db4077 1915 p = SDATA (val);
2e471eb5
GM
1916 end = p + nbytes;
1917 while (p != end)
1918 {
1919 bcopy (str, p, len);
1920 p += len;
1921 }
1922 }
177c0ea7 1923
2e471eb5
GM
1924 *p = 0;
1925 return val;
1926}
1927
1928
1929DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
a6266d23 1930 doc: /* Return a new bool-vector of length LENGTH, using INIT for as each element.
7ee72033
MB
1931LENGTH must be a number. INIT matters only in whether it is t or nil. */)
1932 (length, init)
2e471eb5
GM
1933 Lisp_Object length, init;
1934{
1935 register Lisp_Object val;
1936 struct Lisp_Bool_Vector *p;
1937 int real_init, i;
1938 int length_in_chars, length_in_elts, bits_per_value;
1939
b7826503 1940 CHECK_NATNUM (length);
2e471eb5
GM
1941
1942 bits_per_value = sizeof (EMACS_INT) * BITS_PER_CHAR;
1943
1944 length_in_elts = (XFASTINT (length) + bits_per_value - 1) / bits_per_value;
1945 length_in_chars = ((XFASTINT (length) + BITS_PER_CHAR - 1) / BITS_PER_CHAR);
1946
1947 /* We must allocate one more elements than LENGTH_IN_ELTS for the
1948 slot `size' of the struct Lisp_Bool_Vector. */
1949 val = Fmake_vector (make_number (length_in_elts + 1), Qnil);
1950 p = XBOOL_VECTOR (val);
177c0ea7 1951
2e471eb5
GM
1952 /* Get rid of any bits that would cause confusion. */
1953 p->vector_size = 0;
1954 XSETBOOL_VECTOR (val, p);
1955 p->size = XFASTINT (length);
177c0ea7 1956
2e471eb5
GM
1957 real_init = (NILP (init) ? 0 : -1);
1958 for (i = 0; i < length_in_chars ; i++)
1959 p->data[i] = real_init;
177c0ea7 1960
2e471eb5
GM
1961 /* Clear the extraneous bits in the last byte. */
1962 if (XINT (length) != length_in_chars * BITS_PER_CHAR)
1963 XBOOL_VECTOR (val)->data[length_in_chars - 1]
1964 &= (1 << (XINT (length) % BITS_PER_CHAR)) - 1;
1965
1966 return val;
1967}
1968
1969
1970/* Make a string from NBYTES bytes at CONTENTS, and compute the number
1971 of characters from the contents. This string may be unibyte or
1972 multibyte, depending on the contents. */
1973
1974Lisp_Object
1975make_string (contents, nbytes)
943b873e 1976 const char *contents;
2e471eb5
GM
1977 int nbytes;
1978{
1979 register Lisp_Object val;
9eac9d59
KH
1980 int nchars, multibyte_nbytes;
1981
1982 parse_str_as_multibyte (contents, nbytes, &nchars, &multibyte_nbytes);
9eac9d59
KH
1983 if (nbytes == nchars || nbytes != multibyte_nbytes)
1984 /* CONTENTS contains no multibyte sequences or contains an invalid
1985 multibyte sequence. We must make unibyte string. */
495a6df3
KH
1986 val = make_unibyte_string (contents, nbytes);
1987 else
1988 val = make_multibyte_string (contents, nchars, nbytes);
2e471eb5
GM
1989 return val;
1990}
1991
1992
1993/* Make an unibyte string from LENGTH bytes at CONTENTS. */
1994
1995Lisp_Object
1996make_unibyte_string (contents, length)
943b873e 1997 const char *contents;
2e471eb5
GM
1998 int length;
1999{
2000 register Lisp_Object val;
2001 val = make_uninit_string (length);
d5db4077
KR
2002 bcopy (contents, SDATA (val), length);
2003 STRING_SET_UNIBYTE (val);
2e471eb5
GM
2004 return val;
2005}
2006
2007
2008/* Make a multibyte string from NCHARS characters occupying NBYTES
2009 bytes at CONTENTS. */
2010
2011Lisp_Object
2012make_multibyte_string (contents, nchars, nbytes)
943b873e 2013 const char *contents;
2e471eb5
GM
2014 int nchars, nbytes;
2015{
2016 register Lisp_Object val;
2017 val = make_uninit_multibyte_string (nchars, nbytes);
d5db4077 2018 bcopy (contents, SDATA (val), nbytes);
2e471eb5
GM
2019 return val;
2020}
2021
2022
2023/* Make a string from NCHARS characters occupying NBYTES bytes at
2024 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2025
2026Lisp_Object
2027make_string_from_bytes (contents, nchars, nbytes)
fcbb914b 2028 const char *contents;
2e471eb5
GM
2029 int nchars, nbytes;
2030{
2031 register Lisp_Object val;
2032 val = make_uninit_multibyte_string (nchars, nbytes);
d5db4077
KR
2033 bcopy (contents, SDATA (val), nbytes);
2034 if (SBYTES (val) == SCHARS (val))
2035 STRING_SET_UNIBYTE (val);
2e471eb5
GM
2036 return val;
2037}
2038
2039
2040/* Make a string from NCHARS characters occupying NBYTES bytes at
2041 CONTENTS. The argument MULTIBYTE controls whether to label the
229b28c4
KH
2042 string as multibyte. If NCHARS is negative, it counts the number of
2043 characters by itself. */
2e471eb5
GM
2044
2045Lisp_Object
2046make_specified_string (contents, nchars, nbytes, multibyte)
fcbb914b 2047 const char *contents;
2e471eb5
GM
2048 int nchars, nbytes;
2049 int multibyte;
2050{
2051 register Lisp_Object val;
229b28c4
KH
2052
2053 if (nchars < 0)
2054 {
2055 if (multibyte)
2056 nchars = multibyte_chars_in_text (contents, nbytes);
2057 else
2058 nchars = nbytes;
2059 }
2e471eb5 2060 val = make_uninit_multibyte_string (nchars, nbytes);
d5db4077 2061 bcopy (contents, SDATA (val), nbytes);
2e471eb5 2062 if (!multibyte)
d5db4077 2063 STRING_SET_UNIBYTE (val);
2e471eb5
GM
2064 return val;
2065}
2066
2067
2068/* Make a string from the data at STR, treating it as multibyte if the
2069 data warrants. */
2070
2071Lisp_Object
2072build_string (str)
943b873e 2073 const char *str;
2e471eb5
GM
2074{
2075 return make_string (str, strlen (str));
2076}
2077
2078
2079/* Return an unibyte Lisp_String set up to hold LENGTH characters
2080 occupying LENGTH bytes. */
2081
2082Lisp_Object
2083make_uninit_string (length)
2084 int length;
2085{
2086 Lisp_Object val;
2087 val = make_uninit_multibyte_string (length, length);
d5db4077 2088 STRING_SET_UNIBYTE (val);
2e471eb5
GM
2089 return val;
2090}
2091
2092
2093/* Return a multibyte Lisp_String set up to hold NCHARS characters
2094 which occupy NBYTES bytes. */
2095
2096Lisp_Object
2097make_uninit_multibyte_string (nchars, nbytes)
2098 int nchars, nbytes;
2099{
2100 Lisp_Object string;
2101 struct Lisp_String *s;
2102
2103 if (nchars < 0)
2104 abort ();
2105
2106 s = allocate_string ();
2107 allocate_string_data (s, nchars, nbytes);
2108 XSETSTRING (string, s);
2109 string_chars_consed += nbytes;
2110 return string;
2111}
2112
2113
2114\f
2115/***********************************************************************
2116 Float Allocation
2117 ***********************************************************************/
2118
2e471eb5
GM
2119/* We store float cells inside of float_blocks, allocating a new
2120 float_block with malloc whenever necessary. Float cells reclaimed
2121 by GC are put on a free list to be reallocated before allocating
ab6780cd 2122 any new float cells from the latest float_block. */
2e471eb5
GM
2123
2124#define FLOAT_BLOCK_SIZE \
ab6780cd
SM
2125 (((BLOCK_BYTES - sizeof (struct float_block *)) * CHAR_BIT) \
2126 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2127
2128#define GETMARKBIT(block,n) \
2129 (((block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2130 >> ((n) % (sizeof(int) * CHAR_BIT))) \
2131 & 1)
2132
2133#define SETMARKBIT(block,n) \
2134 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2135 |= 1 << ((n) % (sizeof(int) * CHAR_BIT))
2136
2137#define UNSETMARKBIT(block,n) \
2138 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2139 &= ~(1 << ((n) % (sizeof(int) * CHAR_BIT)))
2140
2141#define FLOAT_BLOCK(fptr) \
2142 ((struct float_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2143
2144#define FLOAT_INDEX(fptr) \
2145 ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2e471eb5
GM
2146
2147struct float_block
2148{
ab6780cd 2149 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2e471eb5 2150 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
ab6780cd
SM
2151 int gcmarkbits[1 + FLOAT_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2152 struct float_block *next;
2e471eb5
GM
2153};
2154
ab6780cd
SM
2155#define FLOAT_MARKED_P(fptr) \
2156 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2157
2158#define FLOAT_MARK(fptr) \
2159 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2160
2161#define FLOAT_UNMARK(fptr) \
2162 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2163
34400008
GM
2164/* Current float_block. */
2165
2e471eb5 2166struct float_block *float_block;
34400008
GM
2167
2168/* Index of first unused Lisp_Float in the current float_block. */
2169
2e471eb5
GM
2170int float_block_index;
2171
2172/* Total number of float blocks now in use. */
2173
2174int n_float_blocks;
2175
34400008
GM
2176/* Free-list of Lisp_Floats. */
2177
2e471eb5
GM
2178struct Lisp_Float *float_free_list;
2179
34400008 2180
966533c9 2181/* Initialize float allocation. */
34400008 2182
2e471eb5
GM
2183void
2184init_float ()
2185{
08b7c2cb
SM
2186 float_block = NULL;
2187 float_block_index = FLOAT_BLOCK_SIZE; /* Force alloc of new float_block. */
2e471eb5 2188 float_free_list = 0;
08b7c2cb 2189 n_float_blocks = 0;
2e471eb5
GM
2190}
2191
34400008
GM
2192
2193/* Explicitly free a float cell by putting it on the free-list. */
2e471eb5
GM
2194
2195void
2196free_float (ptr)
2197 struct Lisp_Float *ptr;
2198{
2199 *(struct Lisp_Float **)&ptr->data = float_free_list;
2200 float_free_list = ptr;
2201}
2202
34400008
GM
2203
2204/* Return a new float object with value FLOAT_VALUE. */
2205
2e471eb5
GM
2206Lisp_Object
2207make_float (float_value)
2208 double float_value;
2209{
2210 register Lisp_Object val;
2211
2212 if (float_free_list)
2213 {
2214 /* We use the data field for chaining the free list
2215 so that we won't use the same field that has the mark bit. */
2216 XSETFLOAT (val, float_free_list);
2217 float_free_list = *(struct Lisp_Float **)&float_free_list->data;
2218 }
2219 else
2220 {
2221 if (float_block_index == FLOAT_BLOCK_SIZE)
2222 {
2223 register struct float_block *new;
2224
ab6780cd
SM
2225 new = (struct float_block *) lisp_align_malloc (sizeof *new,
2226 MEM_TYPE_FLOAT);
2e471eb5
GM
2227 new->next = float_block;
2228 float_block = new;
2229 float_block_index = 0;
2230 n_float_blocks++;
2231 }
2232 XSETFLOAT (val, &float_block->floats[float_block_index++]);
2233 }
177c0ea7 2234
2e471eb5 2235 XFLOAT_DATA (val) = float_value;
ab6780cd 2236 FLOAT_UNMARK (XFLOAT (val));
2e471eb5
GM
2237 consing_since_gc += sizeof (struct Lisp_Float);
2238 floats_consed++;
2239 return val;
2240}
2241
2e471eb5
GM
2242
2243\f
2244/***********************************************************************
2245 Cons Allocation
2246 ***********************************************************************/
2247
2248/* We store cons cells inside of cons_blocks, allocating a new
2249 cons_block with malloc whenever necessary. Cons cells reclaimed by
2250 GC are put on a free list to be reallocated before allocating
08b7c2cb 2251 any new cons cells from the latest cons_block. */
2e471eb5
GM
2252
2253#define CONS_BLOCK_SIZE \
08b7c2cb
SM
2254 (((BLOCK_BYTES - sizeof (struct cons_block *)) * CHAR_BIT) \
2255 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2256
2257#define CONS_BLOCK(fptr) \
2258 ((struct cons_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2259
2260#define CONS_INDEX(fptr) \
2261 ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2e471eb5
GM
2262
2263struct cons_block
2264{
08b7c2cb 2265 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2e471eb5 2266 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
08b7c2cb
SM
2267 int gcmarkbits[1 + CONS_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2268 struct cons_block *next;
2e471eb5
GM
2269};
2270
08b7c2cb
SM
2271#define CONS_MARKED_P(fptr) \
2272 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2273
2274#define CONS_MARK(fptr) \
2275 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2276
2277#define CONS_UNMARK(fptr) \
2278 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2279
34400008
GM
2280/* Current cons_block. */
2281
2e471eb5 2282struct cons_block *cons_block;
34400008
GM
2283
2284/* Index of first unused Lisp_Cons in the current block. */
2285
2e471eb5
GM
2286int cons_block_index;
2287
34400008
GM
2288/* Free-list of Lisp_Cons structures. */
2289
2e471eb5
GM
2290struct Lisp_Cons *cons_free_list;
2291
2292/* Total number of cons blocks now in use. */
2293
2294int n_cons_blocks;
2295
34400008
GM
2296
2297/* Initialize cons allocation. */
2298
2e471eb5
GM
2299void
2300init_cons ()
2301{
08b7c2cb
SM
2302 cons_block = NULL;
2303 cons_block_index = CONS_BLOCK_SIZE; /* Force alloc of new cons_block. */
2e471eb5 2304 cons_free_list = 0;
08b7c2cb 2305 n_cons_blocks = 0;
2e471eb5
GM
2306}
2307
34400008
GM
2308
2309/* Explicitly free a cons cell by putting it on the free-list. */
2e471eb5
GM
2310
2311void
2312free_cons (ptr)
2313 struct Lisp_Cons *ptr;
2314{
2315 *(struct Lisp_Cons **)&ptr->cdr = cons_free_list;
34400008
GM
2316#if GC_MARK_STACK
2317 ptr->car = Vdead;
2318#endif
2e471eb5
GM
2319 cons_free_list = ptr;
2320}
2321
34400008 2322
2e471eb5 2323DEFUN ("cons", Fcons, Scons, 2, 2, 0,
a6266d23 2324 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
7ee72033 2325 (car, cdr)
2e471eb5
GM
2326 Lisp_Object car, cdr;
2327{
2328 register Lisp_Object val;
2329
2330 if (cons_free_list)
2331 {
2332 /* We use the cdr for chaining the free list
2333 so that we won't use the same field that has the mark bit. */
2334 XSETCONS (val, cons_free_list);
2335 cons_free_list = *(struct Lisp_Cons **)&cons_free_list->cdr;
2336 }
2337 else
2338 {
2339 if (cons_block_index == CONS_BLOCK_SIZE)
2340 {
2341 register struct cons_block *new;
08b7c2cb
SM
2342 new = (struct cons_block *) lisp_align_malloc (sizeof *new,
2343 MEM_TYPE_CONS);
2e471eb5
GM
2344 new->next = cons_block;
2345 cons_block = new;
2346 cons_block_index = 0;
2347 n_cons_blocks++;
2348 }
2349 XSETCONS (val, &cons_block->conses[cons_block_index++]);
2350 }
177c0ea7 2351
f3fbd155
KR
2352 XSETCAR (val, car);
2353 XSETCDR (val, cdr);
08b7c2cb 2354 CONS_UNMARK (XCONS (val));
2e471eb5
GM
2355 consing_since_gc += sizeof (struct Lisp_Cons);
2356 cons_cells_consed++;
2357 return val;
2358}
2359
34400008 2360
2e471eb5
GM
2361/* Make a list of 2, 3, 4 or 5 specified objects. */
2362
2363Lisp_Object
2364list2 (arg1, arg2)
2365 Lisp_Object arg1, arg2;
2366{
2367 return Fcons (arg1, Fcons (arg2, Qnil));
2368}
2369
34400008 2370
2e471eb5
GM
2371Lisp_Object
2372list3 (arg1, arg2, arg3)
2373 Lisp_Object arg1, arg2, arg3;
2374{
2375 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2376}
2377
34400008 2378
2e471eb5
GM
2379Lisp_Object
2380list4 (arg1, arg2, arg3, arg4)
2381 Lisp_Object arg1, arg2, arg3, arg4;
2382{
2383 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2384}
2385
34400008 2386
2e471eb5
GM
2387Lisp_Object
2388list5 (arg1, arg2, arg3, arg4, arg5)
2389 Lisp_Object arg1, arg2, arg3, arg4, arg5;
2390{
2391 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2392 Fcons (arg5, Qnil)))));
2393}
2394
34400008 2395
2e471eb5 2396DEFUN ("list", Flist, Slist, 0, MANY, 0,
eae936e2 2397 doc: /* Return a newly created list with specified arguments as elements.
ae8e8122
MB
2398Any number of arguments, even zero arguments, are allowed.
2399usage: (list &rest OBJECTS) */)
7ee72033 2400 (nargs, args)
2e471eb5
GM
2401 int nargs;
2402 register Lisp_Object *args;
2403{
2404 register Lisp_Object val;
2405 val = Qnil;
2406
2407 while (nargs > 0)
2408 {
2409 nargs--;
2410 val = Fcons (args[nargs], val);
2411 }
2412 return val;
2413}
2414
34400008 2415
2e471eb5 2416DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
a6266d23 2417 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
7ee72033 2418 (length, init)
2e471eb5
GM
2419 register Lisp_Object length, init;
2420{
2421 register Lisp_Object val;
2422 register int size;
2423
b7826503 2424 CHECK_NATNUM (length);
2e471eb5
GM
2425 size = XFASTINT (length);
2426
2427 val = Qnil;
ce070307
GM
2428 while (size > 0)
2429 {
2430 val = Fcons (init, val);
2431 --size;
2432
2433 if (size > 0)
2434 {
2435 val = Fcons (init, val);
2436 --size;
177c0ea7 2437
ce070307
GM
2438 if (size > 0)
2439 {
2440 val = Fcons (init, val);
2441 --size;
177c0ea7 2442
ce070307
GM
2443 if (size > 0)
2444 {
2445 val = Fcons (init, val);
2446 --size;
177c0ea7 2447
ce070307
GM
2448 if (size > 0)
2449 {
2450 val = Fcons (init, val);
2451 --size;
2452 }
2453 }
2454 }
2455 }
2456
2457 QUIT;
2458 }
177c0ea7 2459
7146af97
JB
2460 return val;
2461}
2e471eb5
GM
2462
2463
7146af97 2464\f
2e471eb5
GM
2465/***********************************************************************
2466 Vector Allocation
2467 ***********************************************************************/
7146af97 2468
34400008
GM
2469/* Singly-linked list of all vectors. */
2470
7146af97
JB
2471struct Lisp_Vector *all_vectors;
2472
2e471eb5
GM
2473/* Total number of vector-like objects now in use. */
2474
c8099634
RS
2475int n_vectors;
2476
34400008
GM
2477
2478/* Value is a pointer to a newly allocated Lisp_Vector structure
2479 with room for LEN Lisp_Objects. */
2480
ece93c02
GM
2481static struct Lisp_Vector *
2482allocate_vectorlike (len, type)
1825c68d 2483 EMACS_INT len;
ece93c02 2484 enum mem_type type;
1825c68d
KH
2485{
2486 struct Lisp_Vector *p;
675d5130 2487 size_t nbytes;
1825c68d 2488
d1658221 2489#ifdef DOUG_LEA_MALLOC
f8608968
GM
2490 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
2491 because mapped region contents are not preserved in
2492 a dumped Emacs. */
d1658221
RS
2493 mallopt (M_MMAP_MAX, 0);
2494#endif
177c0ea7 2495
34400008 2496 nbytes = sizeof *p + (len - 1) * sizeof p->contents[0];
ece93c02 2497 p = (struct Lisp_Vector *) lisp_malloc (nbytes, type);
177c0ea7 2498
d1658221 2499#ifdef DOUG_LEA_MALLOC
34400008 2500 /* Back to a reasonable maximum of mmap'ed areas. */
81d492d5 2501 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
d1658221 2502#endif
177c0ea7 2503
34400008 2504 consing_since_gc += nbytes;
310ea200 2505 vector_cells_consed += len;
1825c68d
KH
2506
2507 p->next = all_vectors;
2508 all_vectors = p;
34400008 2509 ++n_vectors;
1825c68d
KH
2510 return p;
2511}
2512
34400008 2513
ece93c02
GM
2514/* Allocate a vector with NSLOTS slots. */
2515
2516struct Lisp_Vector *
2517allocate_vector (nslots)
2518 EMACS_INT nslots;
2519{
2520 struct Lisp_Vector *v = allocate_vectorlike (nslots, MEM_TYPE_VECTOR);
2521 v->size = nslots;
2522 return v;
2523}
2524
2525
2526/* Allocate other vector-like structures. */
2527
2528struct Lisp_Hash_Table *
2529allocate_hash_table ()
2530{
2531 EMACS_INT len = VECSIZE (struct Lisp_Hash_Table);
2532 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_HASH_TABLE);
2533 EMACS_INT i;
177c0ea7 2534
ece93c02
GM
2535 v->size = len;
2536 for (i = 0; i < len; ++i)
2537 v->contents[i] = Qnil;
177c0ea7 2538
ece93c02
GM
2539 return (struct Lisp_Hash_Table *) v;
2540}
2541
2542
2543struct window *
2544allocate_window ()
2545{
2546 EMACS_INT len = VECSIZE (struct window);
2547 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_WINDOW);
2548 EMACS_INT i;
177c0ea7 2549
ece93c02
GM
2550 for (i = 0; i < len; ++i)
2551 v->contents[i] = Qnil;
2552 v->size = len;
177c0ea7 2553
ece93c02
GM
2554 return (struct window *) v;
2555}
2556
2557
2558struct frame *
2559allocate_frame ()
2560{
2561 EMACS_INT len = VECSIZE (struct frame);
2562 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_FRAME);
2563 EMACS_INT i;
177c0ea7 2564
ece93c02
GM
2565 for (i = 0; i < len; ++i)
2566 v->contents[i] = make_number (0);
2567 v->size = len;
2568 return (struct frame *) v;
2569}
2570
2571
2572struct Lisp_Process *
2573allocate_process ()
2574{
2575 EMACS_INT len = VECSIZE (struct Lisp_Process);
2576 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_PROCESS);
2577 EMACS_INT i;
177c0ea7 2578
ece93c02
GM
2579 for (i = 0; i < len; ++i)
2580 v->contents[i] = Qnil;
2581 v->size = len;
177c0ea7 2582
ece93c02
GM
2583 return (struct Lisp_Process *) v;
2584}
2585
2586
2587struct Lisp_Vector *
2588allocate_other_vector (len)
2589 EMACS_INT len;
2590{
2591 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_VECTOR);
2592 EMACS_INT i;
177c0ea7 2593
ece93c02
GM
2594 for (i = 0; i < len; ++i)
2595 v->contents[i] = Qnil;
2596 v->size = len;
177c0ea7 2597
ece93c02
GM
2598 return v;
2599}
2600
2601
7146af97 2602DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
a6266d23 2603 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
7ee72033
MB
2604See also the function `vector'. */)
2605 (length, init)
7146af97
JB
2606 register Lisp_Object length, init;
2607{
1825c68d
KH
2608 Lisp_Object vector;
2609 register EMACS_INT sizei;
2610 register int index;
7146af97
JB
2611 register struct Lisp_Vector *p;
2612
b7826503 2613 CHECK_NATNUM (length);
c9dad5ed 2614 sizei = XFASTINT (length);
7146af97 2615
ece93c02 2616 p = allocate_vector (sizei);
7146af97
JB
2617 for (index = 0; index < sizei; index++)
2618 p->contents[index] = init;
2619
1825c68d 2620 XSETVECTOR (vector, p);
7146af97
JB
2621 return vector;
2622}
2623
34400008 2624
a59de17b 2625DEFUN ("make-char-table", Fmake_char_table, Smake_char_table, 1, 2, 0,
a6266d23 2626 doc: /* Return a newly created char-table, with purpose PURPOSE.
228299fa
GM
2627Each element is initialized to INIT, which defaults to nil.
2628PURPOSE should be a symbol which has a `char-table-extra-slots' property.
7ee72033
MB
2629The property's value should be an integer between 0 and 10. */)
2630 (purpose, init)
a59de17b 2631 register Lisp_Object purpose, init;
7b07587b
RS
2632{
2633 Lisp_Object vector;
a59de17b 2634 Lisp_Object n;
b7826503 2635 CHECK_SYMBOL (purpose);
0551bde3 2636 n = Fget (purpose, Qchar_table_extra_slots);
b7826503 2637 CHECK_NUMBER (n);
7b07587b
RS
2638 if (XINT (n) < 0 || XINT (n) > 10)
2639 args_out_of_range (n, Qnil);
2640 /* Add 2 to the size for the defalt and parent slots. */
2641 vector = Fmake_vector (make_number (CHAR_TABLE_STANDARD_SLOTS + XINT (n)),
2642 init);
0551bde3 2643 XCHAR_TABLE (vector)->top = Qt;
c96a008c 2644 XCHAR_TABLE (vector)->parent = Qnil;
a59de17b 2645 XCHAR_TABLE (vector)->purpose = purpose;
7b07587b
RS
2646 XSETCHAR_TABLE (vector, XCHAR_TABLE (vector));
2647 return vector;
2648}
2649
34400008 2650
0551bde3
KH
2651/* Return a newly created sub char table with default value DEFALT.
2652 Since a sub char table does not appear as a top level Emacs Lisp
2653 object, we don't need a Lisp interface to make it. */
2654
2655Lisp_Object
2656make_sub_char_table (defalt)
2657 Lisp_Object defalt;
2658{
2659 Lisp_Object vector
2660 = Fmake_vector (make_number (SUB_CHAR_TABLE_STANDARD_SLOTS), Qnil);
2661 XCHAR_TABLE (vector)->top = Qnil;
2662 XCHAR_TABLE (vector)->defalt = defalt;
2663 XSETCHAR_TABLE (vector, XCHAR_TABLE (vector));
2664 return vector;
2665}
2666
34400008 2667
7146af97 2668DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
eae936e2 2669 doc: /* Return a newly created vector with specified arguments as elements.
ae8e8122
MB
2670Any number of arguments, even zero arguments, are allowed.
2671usage: (vector &rest OBJECTS) */)
7ee72033 2672 (nargs, args)
7146af97
JB
2673 register int nargs;
2674 Lisp_Object *args;
2675{
2676 register Lisp_Object len, val;
2677 register int index;
2678 register struct Lisp_Vector *p;
2679
67ba9986 2680 XSETFASTINT (len, nargs);
7146af97
JB
2681 val = Fmake_vector (len, Qnil);
2682 p = XVECTOR (val);
2683 for (index = 0; index < nargs; index++)
2684 p->contents[index] = args[index];
2685 return val;
2686}
2687
34400008 2688
7146af97 2689DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
a6266d23 2690 doc: /* Create a byte-code object with specified arguments as elements.
228299fa
GM
2691The arguments should be the arglist, bytecode-string, constant vector,
2692stack size, (optional) doc string, and (optional) interactive spec.
2693The first four arguments are required; at most six have any
ae8e8122 2694significance.
92cc28b2 2695usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
7ee72033 2696 (nargs, args)
7146af97
JB
2697 register int nargs;
2698 Lisp_Object *args;
2699{
2700 register Lisp_Object len, val;
2701 register int index;
2702 register struct Lisp_Vector *p;
2703
67ba9986 2704 XSETFASTINT (len, nargs);
265a9e55 2705 if (!NILP (Vpurify_flag))
5a053ea9 2706 val = make_pure_vector ((EMACS_INT) nargs);
7146af97
JB
2707 else
2708 val = Fmake_vector (len, Qnil);
9eac9d59
KH
2709
2710 if (STRINGP (args[1]) && STRING_MULTIBYTE (args[1]))
2711 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
2712 earlier because they produced a raw 8-bit string for byte-code
2713 and now such a byte-code string is loaded as multibyte while
2714 raw 8-bit characters converted to multibyte form. Thus, now we
2715 must convert them back to the original unibyte form. */
2716 args[1] = Fstring_as_unibyte (args[1]);
2717
7146af97
JB
2718 p = XVECTOR (val);
2719 for (index = 0; index < nargs; index++)
2720 {
265a9e55 2721 if (!NILP (Vpurify_flag))
7146af97
JB
2722 args[index] = Fpurecopy (args[index]);
2723 p->contents[index] = args[index];
2724 }
50aee051 2725 XSETCOMPILED (val, p);
7146af97
JB
2726 return val;
2727}
2e471eb5 2728
34400008 2729
7146af97 2730\f
2e471eb5
GM
2731/***********************************************************************
2732 Symbol Allocation
2733 ***********************************************************************/
7146af97 2734
2e471eb5
GM
2735/* Each symbol_block is just under 1020 bytes long, since malloc
2736 really allocates in units of powers of two and uses 4 bytes for its
2737 own overhead. */
7146af97
JB
2738
2739#define SYMBOL_BLOCK_SIZE \
2740 ((1020 - sizeof (struct symbol_block *)) / sizeof (struct Lisp_Symbol))
2741
2742struct symbol_block
2e471eb5
GM
2743{
2744 struct symbol_block *next;
2745 struct Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
2746};
7146af97 2747
34400008
GM
2748/* Current symbol block and index of first unused Lisp_Symbol
2749 structure in it. */
2750
7146af97
JB
2751struct symbol_block *symbol_block;
2752int symbol_block_index;
2753
34400008
GM
2754/* List of free symbols. */
2755
7146af97
JB
2756struct Lisp_Symbol *symbol_free_list;
2757
c8099634 2758/* Total number of symbol blocks now in use. */
2e471eb5 2759
c8099634
RS
2760int n_symbol_blocks;
2761
34400008
GM
2762
2763/* Initialize symbol allocation. */
2764
7146af97
JB
2765void
2766init_symbol ()
2767{
34400008
GM
2768 symbol_block = (struct symbol_block *) lisp_malloc (sizeof *symbol_block,
2769 MEM_TYPE_SYMBOL);
7146af97 2770 symbol_block->next = 0;
290c8f1e 2771 bzero ((char *) symbol_block->symbols, sizeof symbol_block->symbols);
7146af97
JB
2772 symbol_block_index = 0;
2773 symbol_free_list = 0;
c8099634 2774 n_symbol_blocks = 1;
7146af97
JB
2775}
2776
34400008 2777
7146af97 2778DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
a6266d23 2779 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
7ee72033
MB
2780Its value and function definition are void, and its property list is nil. */)
2781 (name)
54ee42dd 2782 Lisp_Object name;
7146af97
JB
2783{
2784 register Lisp_Object val;
2785 register struct Lisp_Symbol *p;
2786
b7826503 2787 CHECK_STRING (name);
7146af97
JB
2788
2789 if (symbol_free_list)
2790 {
45d12a89 2791 XSETSYMBOL (val, symbol_free_list);
85481507 2792 symbol_free_list = *(struct Lisp_Symbol **)&symbol_free_list->value;
7146af97
JB
2793 }
2794 else
2795 {
2796 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
2797 {
3c06d205 2798 struct symbol_block *new;
34400008
GM
2799 new = (struct symbol_block *) lisp_malloc (sizeof *new,
2800 MEM_TYPE_SYMBOL);
7146af97
JB
2801 new->next = symbol_block;
2802 symbol_block = new;
2803 symbol_block_index = 0;
c8099634 2804 n_symbol_blocks++;
7146af97 2805 }
45d12a89 2806 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index++]);
7146af97 2807 }
177c0ea7 2808
7146af97 2809 p = XSYMBOL (val);
8fe5665d 2810 p->xname = name;
7146af97 2811 p->plist = Qnil;
2e471eb5
GM
2812 p->value = Qunbound;
2813 p->function = Qunbound;
9e713715 2814 p->next = NULL;
2336fe58 2815 p->gcmarkbit = 0;
9e713715
GM
2816 p->interned = SYMBOL_UNINTERNED;
2817 p->constant = 0;
2818 p->indirect_variable = 0;
2e471eb5
GM
2819 consing_since_gc += sizeof (struct Lisp_Symbol);
2820 symbols_consed++;
7146af97
JB
2821 return val;
2822}
2823
3f25e183 2824
2e471eb5
GM
2825\f
2826/***********************************************************************
34400008 2827 Marker (Misc) Allocation
2e471eb5 2828 ***********************************************************************/
3f25e183 2829
2e471eb5
GM
2830/* Allocation of markers and other objects that share that structure.
2831 Works like allocation of conses. */
c0696668 2832
2e471eb5
GM
2833#define MARKER_BLOCK_SIZE \
2834 ((1020 - sizeof (struct marker_block *)) / sizeof (union Lisp_Misc))
2835
2836struct marker_block
c0696668 2837{
2e471eb5
GM
2838 struct marker_block *next;
2839 union Lisp_Misc markers[MARKER_BLOCK_SIZE];
2840};
c0696668 2841
2e471eb5
GM
2842struct marker_block *marker_block;
2843int marker_block_index;
c0696668 2844
2e471eb5 2845union Lisp_Misc *marker_free_list;
c0696668 2846
2e471eb5 2847/* Total number of marker blocks now in use. */
3f25e183 2848
2e471eb5
GM
2849int n_marker_blocks;
2850
2851void
2852init_marker ()
3f25e183 2853{
34400008
GM
2854 marker_block = (struct marker_block *) lisp_malloc (sizeof *marker_block,
2855 MEM_TYPE_MISC);
2e471eb5
GM
2856 marker_block->next = 0;
2857 bzero ((char *) marker_block->markers, sizeof marker_block->markers);
2858 marker_block_index = 0;
2859 marker_free_list = 0;
2860 n_marker_blocks = 1;
3f25e183
RS
2861}
2862
2e471eb5
GM
2863/* Return a newly allocated Lisp_Misc object, with no substructure. */
2864
3f25e183 2865Lisp_Object
2e471eb5 2866allocate_misc ()
7146af97 2867{
2e471eb5 2868 Lisp_Object val;
7146af97 2869
2e471eb5 2870 if (marker_free_list)
7146af97 2871 {
2e471eb5
GM
2872 XSETMISC (val, marker_free_list);
2873 marker_free_list = marker_free_list->u_free.chain;
7146af97
JB
2874 }
2875 else
7146af97 2876 {
2e471eb5
GM
2877 if (marker_block_index == MARKER_BLOCK_SIZE)
2878 {
2879 struct marker_block *new;
34400008
GM
2880 new = (struct marker_block *) lisp_malloc (sizeof *new,
2881 MEM_TYPE_MISC);
2e471eb5
GM
2882 new->next = marker_block;
2883 marker_block = new;
2884 marker_block_index = 0;
2885 n_marker_blocks++;
2886 }
2887 XSETMISC (val, &marker_block->markers[marker_block_index++]);
7146af97 2888 }
177c0ea7 2889
2e471eb5
GM
2890 consing_since_gc += sizeof (union Lisp_Misc);
2891 misc_objects_consed++;
2336fe58 2892 XMARKER (val)->gcmarkbit = 0;
2e471eb5
GM
2893 return val;
2894}
2895
42172a6b
RS
2896/* Return a Lisp_Misc_Save_Value object containing POINTER and
2897 INTEGER. This is used to package C values to call record_unwind_protect.
2898 The unwind function can get the C values back using XSAVE_VALUE. */
2899
2900Lisp_Object
2901make_save_value (pointer, integer)
2902 void *pointer;
2903 int integer;
2904{
2905 register Lisp_Object val;
2906 register struct Lisp_Save_Value *p;
2907
2908 val = allocate_misc ();
2909 XMISCTYPE (val) = Lisp_Misc_Save_Value;
2910 p = XSAVE_VALUE (val);
2911 p->pointer = pointer;
2912 p->integer = integer;
2913 return val;
2914}
2915
2e471eb5 2916DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
a6266d23 2917 doc: /* Return a newly allocated marker which does not point at any place. */)
7ee72033 2918 ()
2e471eb5
GM
2919{
2920 register Lisp_Object val;
2921 register struct Lisp_Marker *p;
7146af97 2922
2e471eb5
GM
2923 val = allocate_misc ();
2924 XMISCTYPE (val) = Lisp_Misc_Marker;
2925 p = XMARKER (val);
2926 p->buffer = 0;
2927 p->bytepos = 0;
2928 p->charpos = 0;
ef89c2ce 2929 p->next = NULL;
2e471eb5 2930 p->insertion_type = 0;
7146af97
JB
2931 return val;
2932}
2e471eb5
GM
2933
2934/* Put MARKER back on the free list after using it temporarily. */
2935
2936void
2937free_marker (marker)
2938 Lisp_Object marker;
2939{
ef89c2ce 2940 unchain_marker (XMARKER (marker));
2e471eb5
GM
2941
2942 XMISC (marker)->u_marker.type = Lisp_Misc_Free;
2943 XMISC (marker)->u_free.chain = marker_free_list;
2944 marker_free_list = XMISC (marker);
2945
2946 total_free_markers++;
2947}
2948
c0696668 2949\f
7146af97 2950/* Return a newly created vector or string with specified arguments as
736471d1
RS
2951 elements. If all the arguments are characters that can fit
2952 in a string of events, make a string; otherwise, make a vector.
2953
2954 Any number of arguments, even zero arguments, are allowed. */
7146af97
JB
2955
2956Lisp_Object
736471d1 2957make_event_array (nargs, args)
7146af97
JB
2958 register int nargs;
2959 Lisp_Object *args;
2960{
2961 int i;
2962
2963 for (i = 0; i < nargs; i++)
736471d1 2964 /* The things that fit in a string
c9ca4659
RS
2965 are characters that are in 0...127,
2966 after discarding the meta bit and all the bits above it. */
e687453f 2967 if (!INTEGERP (args[i])
c9ca4659 2968 || (XUINT (args[i]) & ~(-CHAR_META)) >= 0200)
7146af97
JB
2969 return Fvector (nargs, args);
2970
2971 /* Since the loop exited, we know that all the things in it are
2972 characters, so we can make a string. */
2973 {
c13ccad2 2974 Lisp_Object result;
177c0ea7 2975
50aee051 2976 result = Fmake_string (make_number (nargs), make_number (0));
7146af97 2977 for (i = 0; i < nargs; i++)
736471d1 2978 {
46e7e6b0 2979 SSET (result, i, XINT (args[i]));
736471d1
RS
2980 /* Move the meta bit to the right place for a string char. */
2981 if (XINT (args[i]) & CHAR_META)
46e7e6b0 2982 SSET (result, i, SREF (result, i) | 0x80);
736471d1 2983 }
177c0ea7 2984
7146af97
JB
2985 return result;
2986 }
2987}
2e471eb5
GM
2988
2989
7146af97 2990\f
34400008
GM
2991/************************************************************************
2992 C Stack Marking
2993 ************************************************************************/
2994
13c844fb
GM
2995#if GC_MARK_STACK || defined GC_MALLOC_CHECK
2996
71cf5fa0
GM
2997/* Conservative C stack marking requires a method to identify possibly
2998 live Lisp objects given a pointer value. We do this by keeping
2999 track of blocks of Lisp data that are allocated in a red-black tree
3000 (see also the comment of mem_node which is the type of nodes in
3001 that tree). Function lisp_malloc adds information for an allocated
3002 block to the red-black tree with calls to mem_insert, and function
3003 lisp_free removes it with mem_delete. Functions live_string_p etc
3004 call mem_find to lookup information about a given pointer in the
3005 tree, and use that to determine if the pointer points to a Lisp
3006 object or not. */
3007
34400008
GM
3008/* Initialize this part of alloc.c. */
3009
3010static void
3011mem_init ()
3012{
3013 mem_z.left = mem_z.right = MEM_NIL;
3014 mem_z.parent = NULL;
3015 mem_z.color = MEM_BLACK;
3016 mem_z.start = mem_z.end = NULL;
3017 mem_root = MEM_NIL;
3018}
3019
3020
3021/* Value is a pointer to the mem_node containing START. Value is
3022 MEM_NIL if there is no node in the tree containing START. */
3023
3024static INLINE struct mem_node *
3025mem_find (start)
3026 void *start;
3027{
3028 struct mem_node *p;
3029
ece93c02
GM
3030 if (start < min_heap_address || start > max_heap_address)
3031 return MEM_NIL;
3032
34400008
GM
3033 /* Make the search always successful to speed up the loop below. */
3034 mem_z.start = start;
3035 mem_z.end = (char *) start + 1;
3036
3037 p = mem_root;
3038 while (start < p->start || start >= p->end)
3039 p = start < p->start ? p->left : p->right;
3040 return p;
3041}
3042
3043
3044/* Insert a new node into the tree for a block of memory with start
3045 address START, end address END, and type TYPE. Value is a
3046 pointer to the node that was inserted. */
3047
3048static struct mem_node *
3049mem_insert (start, end, type)
3050 void *start, *end;
3051 enum mem_type type;
3052{
3053 struct mem_node *c, *parent, *x;
3054
ece93c02
GM
3055 if (start < min_heap_address)
3056 min_heap_address = start;
3057 if (end > max_heap_address)
3058 max_heap_address = end;
3059
34400008
GM
3060 /* See where in the tree a node for START belongs. In this
3061 particular application, it shouldn't happen that a node is already
3062 present. For debugging purposes, let's check that. */
3063 c = mem_root;
3064 parent = NULL;
3065
3066#if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
177c0ea7 3067
34400008
GM
3068 while (c != MEM_NIL)
3069 {
3070 if (start >= c->start && start < c->end)
3071 abort ();
3072 parent = c;
3073 c = start < c->start ? c->left : c->right;
3074 }
177c0ea7 3075
34400008 3076#else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
177c0ea7 3077
34400008
GM
3078 while (c != MEM_NIL)
3079 {
3080 parent = c;
3081 c = start < c->start ? c->left : c->right;
3082 }
177c0ea7 3083
34400008
GM
3084#endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3085
3086 /* Create a new node. */
877935b1
GM
3087#ifdef GC_MALLOC_CHECK
3088 x = (struct mem_node *) _malloc_internal (sizeof *x);
3089 if (x == NULL)
3090 abort ();
3091#else
34400008 3092 x = (struct mem_node *) xmalloc (sizeof *x);
877935b1 3093#endif
34400008
GM
3094 x->start = start;
3095 x->end = end;
3096 x->type = type;
3097 x->parent = parent;
3098 x->left = x->right = MEM_NIL;
3099 x->color = MEM_RED;
3100
3101 /* Insert it as child of PARENT or install it as root. */
3102 if (parent)
3103 {
3104 if (start < parent->start)
3105 parent->left = x;
3106 else
3107 parent->right = x;
3108 }
177c0ea7 3109 else
34400008
GM
3110 mem_root = x;
3111
3112 /* Re-establish red-black tree properties. */
3113 mem_insert_fixup (x);
877935b1 3114
34400008
GM
3115 return x;
3116}
3117
3118
3119/* Re-establish the red-black properties of the tree, and thereby
3120 balance the tree, after node X has been inserted; X is always red. */
3121
3122static void
3123mem_insert_fixup (x)
3124 struct mem_node *x;
3125{
3126 while (x != mem_root && x->parent->color == MEM_RED)
3127 {
3128 /* X is red and its parent is red. This is a violation of
3129 red-black tree property #3. */
177c0ea7 3130
34400008
GM
3131 if (x->parent == x->parent->parent->left)
3132 {
3133 /* We're on the left side of our grandparent, and Y is our
3134 "uncle". */
3135 struct mem_node *y = x->parent->parent->right;
177c0ea7 3136
34400008
GM
3137 if (y->color == MEM_RED)
3138 {
3139 /* Uncle and parent are red but should be black because
3140 X is red. Change the colors accordingly and proceed
3141 with the grandparent. */
3142 x->parent->color = MEM_BLACK;
3143 y->color = MEM_BLACK;
3144 x->parent->parent->color = MEM_RED;
3145 x = x->parent->parent;
3146 }
3147 else
3148 {
3149 /* Parent and uncle have different colors; parent is
3150 red, uncle is black. */
3151 if (x == x->parent->right)
3152 {
3153 x = x->parent;
3154 mem_rotate_left (x);
3155 }
3156
3157 x->parent->color = MEM_BLACK;
3158 x->parent->parent->color = MEM_RED;
3159 mem_rotate_right (x->parent->parent);
3160 }
3161 }
3162 else
3163 {
3164 /* This is the symmetrical case of above. */
3165 struct mem_node *y = x->parent->parent->left;
177c0ea7 3166
34400008
GM
3167 if (y->color == MEM_RED)
3168 {
3169 x->parent->color = MEM_BLACK;
3170 y->color = MEM_BLACK;
3171 x->parent->parent->color = MEM_RED;
3172 x = x->parent->parent;
3173 }
3174 else
3175 {
3176 if (x == x->parent->left)
3177 {
3178 x = x->parent;
3179 mem_rotate_right (x);
3180 }
177c0ea7 3181
34400008
GM
3182 x->parent->color = MEM_BLACK;
3183 x->parent->parent->color = MEM_RED;
3184 mem_rotate_left (x->parent->parent);
3185 }
3186 }
3187 }
3188
3189 /* The root may have been changed to red due to the algorithm. Set
3190 it to black so that property #5 is satisfied. */
3191 mem_root->color = MEM_BLACK;
3192}
3193
3194
177c0ea7
JB
3195/* (x) (y)
3196 / \ / \
34400008
GM
3197 a (y) ===> (x) c
3198 / \ / \
3199 b c a b */
3200
3201static void
3202mem_rotate_left (x)
3203 struct mem_node *x;
3204{
3205 struct mem_node *y;
3206
3207 /* Turn y's left sub-tree into x's right sub-tree. */
3208 y = x->right;
3209 x->right = y->left;
3210 if (y->left != MEM_NIL)
3211 y->left->parent = x;
3212
3213 /* Y's parent was x's parent. */
3214 if (y != MEM_NIL)
3215 y->parent = x->parent;
3216
3217 /* Get the parent to point to y instead of x. */
3218 if (x->parent)
3219 {
3220 if (x == x->parent->left)
3221 x->parent->left = y;
3222 else
3223 x->parent->right = y;
3224 }
3225 else
3226 mem_root = y;
3227
3228 /* Put x on y's left. */
3229 y->left = x;
3230 if (x != MEM_NIL)
3231 x->parent = y;
3232}
3233
3234
177c0ea7
JB
3235/* (x) (Y)
3236 / \ / \
3237 (y) c ===> a (x)
3238 / \ / \
34400008
GM
3239 a b b c */
3240
3241static void
3242mem_rotate_right (x)
3243 struct mem_node *x;
3244{
3245 struct mem_node *y = x->left;
3246
3247 x->left = y->right;
3248 if (y->right != MEM_NIL)
3249 y->right->parent = x;
177c0ea7 3250
34400008
GM
3251 if (y != MEM_NIL)
3252 y->parent = x->parent;
3253 if (x->parent)
3254 {
3255 if (x == x->parent->right)
3256 x->parent->right = y;
3257 else
3258 x->parent->left = y;
3259 }
3260 else
3261 mem_root = y;
177c0ea7 3262
34400008
GM
3263 y->right = x;
3264 if (x != MEM_NIL)
3265 x->parent = y;
3266}
3267
3268
3269/* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
3270
3271static void
3272mem_delete (z)
3273 struct mem_node *z;
3274{
3275 struct mem_node *x, *y;
3276
3277 if (!z || z == MEM_NIL)
3278 return;
3279
3280 if (z->left == MEM_NIL || z->right == MEM_NIL)
3281 y = z;
3282 else
3283 {
3284 y = z->right;
3285 while (y->left != MEM_NIL)
3286 y = y->left;
3287 }
3288
3289 if (y->left != MEM_NIL)
3290 x = y->left;
3291 else
3292 x = y->right;
3293
3294 x->parent = y->parent;
3295 if (y->parent)
3296 {
3297 if (y == y->parent->left)
3298 y->parent->left = x;
3299 else
3300 y->parent->right = x;
3301 }
3302 else
3303 mem_root = x;
3304
3305 if (y != z)
3306 {
3307 z->start = y->start;
3308 z->end = y->end;
3309 z->type = y->type;
3310 }
177c0ea7 3311
34400008
GM
3312 if (y->color == MEM_BLACK)
3313 mem_delete_fixup (x);
877935b1
GM
3314
3315#ifdef GC_MALLOC_CHECK
3316 _free_internal (y);
3317#else
34400008 3318 xfree (y);
877935b1 3319#endif
34400008
GM
3320}
3321
3322
3323/* Re-establish the red-black properties of the tree, after a
3324 deletion. */
3325
3326static void
3327mem_delete_fixup (x)
3328 struct mem_node *x;
3329{
3330 while (x != mem_root && x->color == MEM_BLACK)
3331 {
3332 if (x == x->parent->left)
3333 {
3334 struct mem_node *w = x->parent->right;
177c0ea7 3335
34400008
GM
3336 if (w->color == MEM_RED)
3337 {
3338 w->color = MEM_BLACK;
3339 x->parent->color = MEM_RED;
3340 mem_rotate_left (x->parent);
3341 w = x->parent->right;
3342 }
177c0ea7 3343
34400008
GM
3344 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
3345 {
3346 w->color = MEM_RED;
3347 x = x->parent;
3348 }
3349 else
3350 {
3351 if (w->right->color == MEM_BLACK)
3352 {
3353 w->left->color = MEM_BLACK;
3354 w->color = MEM_RED;
3355 mem_rotate_right (w);
3356 w = x->parent->right;
3357 }
3358 w->color = x->parent->color;
3359 x->parent->color = MEM_BLACK;
3360 w->right->color = MEM_BLACK;
3361 mem_rotate_left (x->parent);
3362 x = mem_root;
3363 }
3364 }
3365 else
3366 {
3367 struct mem_node *w = x->parent->left;
177c0ea7 3368
34400008
GM
3369 if (w->color == MEM_RED)
3370 {
3371 w->color = MEM_BLACK;
3372 x->parent->color = MEM_RED;
3373 mem_rotate_right (x->parent);
3374 w = x->parent->left;
3375 }
177c0ea7 3376
34400008
GM
3377 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
3378 {
3379 w->color = MEM_RED;
3380 x = x->parent;
3381 }
3382 else
3383 {
3384 if (w->left->color == MEM_BLACK)
3385 {
3386 w->right->color = MEM_BLACK;
3387 w->color = MEM_RED;
3388 mem_rotate_left (w);
3389 w = x->parent->left;
3390 }
177c0ea7 3391
34400008
GM
3392 w->color = x->parent->color;
3393 x->parent->color = MEM_BLACK;
3394 w->left->color = MEM_BLACK;
3395 mem_rotate_right (x->parent);
3396 x = mem_root;
3397 }
3398 }
3399 }
177c0ea7 3400
34400008
GM
3401 x->color = MEM_BLACK;
3402}
3403
3404
3405/* Value is non-zero if P is a pointer to a live Lisp string on
3406 the heap. M is a pointer to the mem_block for P. */
3407
3408static INLINE int
3409live_string_p (m, p)
3410 struct mem_node *m;
3411 void *p;
3412{
3413 if (m->type == MEM_TYPE_STRING)
3414 {
3415 struct string_block *b = (struct string_block *) m->start;
3416 int offset = (char *) p - (char *) &b->strings[0];
3417
3418 /* P must point to the start of a Lisp_String structure, and it
3419 must not be on the free-list. */
176bc847
GM
3420 return (offset >= 0
3421 && offset % sizeof b->strings[0] == 0
34400008
GM
3422 && ((struct Lisp_String *) p)->data != NULL);
3423 }
3424 else
3425 return 0;
3426}
3427
3428
3429/* Value is non-zero if P is a pointer to a live Lisp cons on
3430 the heap. M is a pointer to the mem_block for P. */
3431
3432static INLINE int
3433live_cons_p (m, p)
3434 struct mem_node *m;
3435 void *p;
3436{
3437 if (m->type == MEM_TYPE_CONS)
3438 {
3439 struct cons_block *b = (struct cons_block *) m->start;
3440 int offset = (char *) p - (char *) &b->conses[0];
3441
3442 /* P must point to the start of a Lisp_Cons, not be
3443 one of the unused cells in the current cons block,
3444 and not be on the free-list. */
176bc847 3445 return (offset >= 0
08b7c2cb 3446 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
176bc847 3447 && offset % sizeof b->conses[0] == 0
34400008
GM
3448 && (b != cons_block
3449 || offset / sizeof b->conses[0] < cons_block_index)
3450 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
3451 }
3452 else
3453 return 0;
3454}
3455
3456
3457/* Value is non-zero if P is a pointer to a live Lisp symbol on
3458 the heap. M is a pointer to the mem_block for P. */
3459
3460static INLINE int
3461live_symbol_p (m, p)
3462 struct mem_node *m;
3463 void *p;
3464{
3465 if (m->type == MEM_TYPE_SYMBOL)
3466 {
3467 struct symbol_block *b = (struct symbol_block *) m->start;
3468 int offset = (char *) p - (char *) &b->symbols[0];
177c0ea7 3469
34400008
GM
3470 /* P must point to the start of a Lisp_Symbol, not be
3471 one of the unused cells in the current symbol block,
3472 and not be on the free-list. */
176bc847
GM
3473 return (offset >= 0
3474 && offset % sizeof b->symbols[0] == 0
34400008
GM
3475 && (b != symbol_block
3476 || offset / sizeof b->symbols[0] < symbol_block_index)
3477 && !EQ (((struct Lisp_Symbol *) p)->function, Vdead));
3478 }
3479 else
3480 return 0;
3481}
3482
3483
3484/* Value is non-zero if P is a pointer to a live Lisp float on
3485 the heap. M is a pointer to the mem_block for P. */
3486
3487static INLINE int
3488live_float_p (m, p)
3489 struct mem_node *m;
3490 void *p;
3491{
3492 if (m->type == MEM_TYPE_FLOAT)
3493 {
3494 struct float_block *b = (struct float_block *) m->start;
3495 int offset = (char *) p - (char *) &b->floats[0];
177c0ea7 3496
ab6780cd
SM
3497 /* P must point to the start of a Lisp_Float and not be
3498 one of the unused cells in the current float block. */
176bc847 3499 return (offset >= 0
bfe1a3f7 3500 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
176bc847 3501 && offset % sizeof b->floats[0] == 0
34400008 3502 && (b != float_block
ab6780cd 3503 || offset / sizeof b->floats[0] < float_block_index));
34400008
GM
3504 }
3505 else
3506 return 0;
3507}
3508
3509
3510/* Value is non-zero if P is a pointer to a live Lisp Misc on
3511 the heap. M is a pointer to the mem_block for P. */
3512
3513static INLINE int
3514live_misc_p (m, p)
3515 struct mem_node *m;
3516 void *p;
3517{
3518 if (m->type == MEM_TYPE_MISC)
3519 {
3520 struct marker_block *b = (struct marker_block *) m->start;
3521 int offset = (char *) p - (char *) &b->markers[0];
177c0ea7 3522
34400008
GM
3523 /* P must point to the start of a Lisp_Misc, not be
3524 one of the unused cells in the current misc block,
3525 and not be on the free-list. */
176bc847
GM
3526 return (offset >= 0
3527 && offset % sizeof b->markers[0] == 0
34400008
GM
3528 && (b != marker_block
3529 || offset / sizeof b->markers[0] < marker_block_index)
3530 && ((union Lisp_Misc *) p)->u_marker.type != Lisp_Misc_Free);
3531 }
3532 else
3533 return 0;
3534}
3535
3536
3537/* Value is non-zero if P is a pointer to a live vector-like object.
3538 M is a pointer to the mem_block for P. */
3539
3540static INLINE int
3541live_vector_p (m, p)
3542 struct mem_node *m;
3543 void *p;
3544{
ece93c02
GM
3545 return (p == m->start
3546 && m->type >= MEM_TYPE_VECTOR
3547 && m->type <= MEM_TYPE_WINDOW);
34400008
GM
3548}
3549
3550
2336fe58 3551/* Value is non-zero if P is a pointer to a live buffer. M is a
34400008
GM
3552 pointer to the mem_block for P. */
3553
3554static INLINE int
3555live_buffer_p (m, p)
3556 struct mem_node *m;
3557 void *p;
3558{
3559 /* P must point to the start of the block, and the buffer
3560 must not have been killed. */
3561 return (m->type == MEM_TYPE_BUFFER
3562 && p == m->start
3563 && !NILP (((struct buffer *) p)->name));
3564}
3565
13c844fb
GM
3566#endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
3567
3568#if GC_MARK_STACK
3569
34400008
GM
3570#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3571
3572/* Array of objects that are kept alive because the C stack contains
3573 a pattern that looks like a reference to them . */
3574
3575#define MAX_ZOMBIES 10
3576static Lisp_Object zombies[MAX_ZOMBIES];
3577
3578/* Number of zombie objects. */
3579
3580static int nzombies;
3581
3582/* Number of garbage collections. */
3583
3584static int ngcs;
3585
3586/* Average percentage of zombies per collection. */
3587
3588static double avg_zombies;
3589
3590/* Max. number of live and zombie objects. */
3591
3592static int max_live, max_zombies;
3593
3594/* Average number of live objects per GC. */
3595
3596static double avg_live;
3597
3598DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
7ee72033
MB
3599 doc: /* Show information about live and zombie objects. */)
3600 ()
34400008 3601{
83fc9c63
DL
3602 Lisp_Object args[8], zombie_list = Qnil;
3603 int i;
3604 for (i = 0; i < nzombies; i++)
3605 zombie_list = Fcons (zombies[i], zombie_list);
3606 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
34400008
GM
3607 args[1] = make_number (ngcs);
3608 args[2] = make_float (avg_live);
3609 args[3] = make_float (avg_zombies);
3610 args[4] = make_float (avg_zombies / avg_live / 100);
3611 args[5] = make_number (max_live);
3612 args[6] = make_number (max_zombies);
83fc9c63
DL
3613 args[7] = zombie_list;
3614 return Fmessage (8, args);
34400008
GM
3615}
3616
3617#endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
3618
3619
182ff242
GM
3620/* Mark OBJ if we can prove it's a Lisp_Object. */
3621
3622static INLINE void
3623mark_maybe_object (obj)
3624 Lisp_Object obj;
3625{
3626 void *po = (void *) XPNTR (obj);
3627 struct mem_node *m = mem_find (po);
177c0ea7 3628
182ff242
GM
3629 if (m != MEM_NIL)
3630 {
3631 int mark_p = 0;
3632
3633 switch (XGCTYPE (obj))
3634 {
3635 case Lisp_String:
3636 mark_p = (live_string_p (m, po)
3637 && !STRING_MARKED_P ((struct Lisp_String *) po));
3638 break;
3639
3640 case Lisp_Cons:
08b7c2cb 3641 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
182ff242
GM
3642 break;
3643
3644 case Lisp_Symbol:
2336fe58 3645 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
182ff242
GM
3646 break;
3647
3648 case Lisp_Float:
ab6780cd 3649 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
182ff242
GM
3650 break;
3651
3652 case Lisp_Vectorlike:
3653 /* Note: can't check GC_BUFFERP before we know it's a
3654 buffer because checking that dereferences the pointer
3655 PO which might point anywhere. */
3656 if (live_vector_p (m, po))
3ef06d12 3657 mark_p = !GC_SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
182ff242 3658 else if (live_buffer_p (m, po))
3ef06d12 3659 mark_p = GC_BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
182ff242
GM
3660 break;
3661
3662 case Lisp_Misc:
2336fe58 3663 mark_p = (live_misc_p (m, po) && !XMARKER (obj)->gcmarkbit);
182ff242 3664 break;
6bbd7a29
GM
3665
3666 case Lisp_Int:
31d929e5 3667 case Lisp_Type_Limit:
6bbd7a29 3668 break;
182ff242
GM
3669 }
3670
3671 if (mark_p)
3672 {
3673#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3674 if (nzombies < MAX_ZOMBIES)
83fc9c63 3675 zombies[nzombies] = obj;
182ff242
GM
3676 ++nzombies;
3677#endif
49723c04 3678 mark_object (obj);
182ff242
GM
3679 }
3680 }
3681}
ece93c02
GM
3682
3683
3684/* If P points to Lisp data, mark that as live if it isn't already
3685 marked. */
3686
3687static INLINE void
3688mark_maybe_pointer (p)
3689 void *p;
3690{
3691 struct mem_node *m;
3692
3693 /* Quickly rule out some values which can't point to Lisp data. We
3694 assume that Lisp data is aligned on even addresses. */
3695 if ((EMACS_INT) p & 1)
3696 return;
177c0ea7 3697
ece93c02
GM
3698 m = mem_find (p);
3699 if (m != MEM_NIL)
3700 {
3701 Lisp_Object obj = Qnil;
177c0ea7 3702
ece93c02
GM
3703 switch (m->type)
3704 {
3705 case MEM_TYPE_NON_LISP:
2fe50224 3706 /* Nothing to do; not a pointer to Lisp memory. */
ece93c02 3707 break;
177c0ea7 3708
ece93c02 3709 case MEM_TYPE_BUFFER:
3ef06d12 3710 if (live_buffer_p (m, p) && !VECTOR_MARKED_P((struct buffer *)p))
ece93c02
GM
3711 XSETVECTOR (obj, p);
3712 break;
177c0ea7 3713
ece93c02 3714 case MEM_TYPE_CONS:
08b7c2cb 3715 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
ece93c02
GM
3716 XSETCONS (obj, p);
3717 break;
177c0ea7 3718
ece93c02
GM
3719 case MEM_TYPE_STRING:
3720 if (live_string_p (m, p)
3721 && !STRING_MARKED_P ((struct Lisp_String *) p))
3722 XSETSTRING (obj, p);
3723 break;
3724
3725 case MEM_TYPE_MISC:
2336fe58
SM
3726 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
3727 XSETMISC (obj, p);
ece93c02 3728 break;
177c0ea7 3729
ece93c02 3730 case MEM_TYPE_SYMBOL:
2336fe58 3731 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
ece93c02
GM
3732 XSETSYMBOL (obj, p);
3733 break;
177c0ea7 3734
ece93c02 3735 case MEM_TYPE_FLOAT:
ab6780cd 3736 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
ece93c02
GM
3737 XSETFLOAT (obj, p);
3738 break;
177c0ea7 3739
ece93c02
GM
3740 case MEM_TYPE_VECTOR:
3741 case MEM_TYPE_PROCESS:
3742 case MEM_TYPE_HASH_TABLE:
3743 case MEM_TYPE_FRAME:
3744 case MEM_TYPE_WINDOW:
3745 if (live_vector_p (m, p))
3746 {
3747 Lisp_Object tem;
3748 XSETVECTOR (tem, p);
3ef06d12 3749 if (!GC_SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
ece93c02
GM
3750 obj = tem;
3751 }
3752 break;
3753
3754 default:
3755 abort ();
3756 }
3757
3758 if (!GC_NILP (obj))
49723c04 3759 mark_object (obj);
ece93c02
GM
3760 }
3761}
3762
3763
3764/* Mark Lisp objects referenced from the address range START..END. */
34400008 3765
177c0ea7 3766static void
34400008
GM
3767mark_memory (start, end)
3768 void *start, *end;
3769{
3770 Lisp_Object *p;
ece93c02 3771 void **pp;
34400008
GM
3772
3773#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3774 nzombies = 0;
3775#endif
3776
3777 /* Make START the pointer to the start of the memory region,
3778 if it isn't already. */
3779 if (end < start)
3780 {
3781 void *tem = start;
3782 start = end;
3783 end = tem;
3784 }
ece93c02
GM
3785
3786 /* Mark Lisp_Objects. */
34400008 3787 for (p = (Lisp_Object *) start; (void *) p < end; ++p)
182ff242 3788 mark_maybe_object (*p);
ece93c02
GM
3789
3790 /* Mark Lisp data pointed to. This is necessary because, in some
3791 situations, the C compiler optimizes Lisp objects away, so that
3792 only a pointer to them remains. Example:
3793
3794 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
7ee72033 3795 ()
ece93c02
GM
3796 {
3797 Lisp_Object obj = build_string ("test");
3798 struct Lisp_String *s = XSTRING (obj);
3799 Fgarbage_collect ();
3800 fprintf (stderr, "test `%s'\n", s->data);
3801 return Qnil;
3802 }
3803
3804 Here, `obj' isn't really used, and the compiler optimizes it
3805 away. The only reference to the life string is through the
3806 pointer `s'. */
177c0ea7 3807
ece93c02
GM
3808 for (pp = (void **) start; (void *) pp < end; ++pp)
3809 mark_maybe_pointer (*pp);
182ff242
GM
3810}
3811
30f637f8
DL
3812/* setjmp will work with GCC unless NON_SAVING_SETJMP is defined in
3813 the GCC system configuration. In gcc 3.2, the only systems for
3814 which this is so are i386-sco5 non-ELF, i386-sysv3 (maybe included
3815 by others?) and ns32k-pc532-min. */
182ff242
GM
3816
3817#if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
3818
3819static int setjmp_tested_p, longjmps_done;
3820
3821#define SETJMP_WILL_LIKELY_WORK "\
3822\n\
3823Emacs garbage collector has been changed to use conservative stack\n\
3824marking. Emacs has determined that the method it uses to do the\n\
3825marking will likely work on your system, but this isn't sure.\n\
3826\n\
3827If you are a system-programmer, or can get the help of a local wizard\n\
3828who is, please take a look at the function mark_stack in alloc.c, and\n\
3829verify that the methods used are appropriate for your system.\n\
3830\n\
d191623b 3831Please mail the result to <emacs-devel@gnu.org>.\n\
182ff242
GM
3832"
3833
3834#define SETJMP_WILL_NOT_WORK "\
3835\n\
3836Emacs garbage collector has been changed to use conservative stack\n\
3837marking. Emacs has determined that the default method it uses to do the\n\
3838marking will not work on your system. We will need a system-dependent\n\
3839solution for your system.\n\
3840\n\
3841Please take a look at the function mark_stack in alloc.c, and\n\
3842try to find a way to make it work on your system.\n\
30f637f8
DL
3843\n\
3844Note that you may get false negatives, depending on the compiler.\n\
3845In particular, you need to use -O with GCC for this test.\n\
3846\n\
d191623b 3847Please mail the result to <emacs-devel@gnu.org>.\n\
182ff242
GM
3848"
3849
3850
3851/* Perform a quick check if it looks like setjmp saves registers in a
3852 jmp_buf. Print a message to stderr saying so. When this test
3853 succeeds, this is _not_ a proof that setjmp is sufficient for
3854 conservative stack marking. Only the sources or a disassembly
3855 can prove that. */
3856
3857static void
3858test_setjmp ()
3859{
3860 char buf[10];
3861 register int x;
3862 jmp_buf jbuf;
3863 int result = 0;
3864
3865 /* Arrange for X to be put in a register. */
3866 sprintf (buf, "1");
3867 x = strlen (buf);
3868 x = 2 * x - 1;
3869
3870 setjmp (jbuf);
3871 if (longjmps_done == 1)
34400008 3872 {
182ff242 3873 /* Came here after the longjmp at the end of the function.
34400008 3874
182ff242
GM
3875 If x == 1, the longjmp has restored the register to its
3876 value before the setjmp, and we can hope that setjmp
3877 saves all such registers in the jmp_buf, although that
3878 isn't sure.
34400008 3879
182ff242
GM
3880 For other values of X, either something really strange is
3881 taking place, or the setjmp just didn't save the register. */
3882
3883 if (x == 1)
3884 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
3885 else
3886 {
3887 fprintf (stderr, SETJMP_WILL_NOT_WORK);
3888 exit (1);
34400008
GM
3889 }
3890 }
182ff242
GM
3891
3892 ++longjmps_done;
3893 x = 2;
3894 if (longjmps_done == 1)
3895 longjmp (jbuf, 1);
34400008
GM
3896}
3897
182ff242
GM
3898#endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
3899
34400008
GM
3900
3901#if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
3902
3903/* Abort if anything GCPRO'd doesn't survive the GC. */
3904
3905static void
3906check_gcpros ()
3907{
3908 struct gcpro *p;
3909 int i;
3910
3911 for (p = gcprolist; p; p = p->next)
3912 for (i = 0; i < p->nvars; ++i)
3913 if (!survives_gc_p (p->var[i]))
92cc28b2
SM
3914 /* FIXME: It's not necessarily a bug. It might just be that the
3915 GCPRO is unnecessary or should release the object sooner. */
34400008
GM
3916 abort ();
3917}
3918
3919#elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3920
3921static void
3922dump_zombies ()
3923{
3924 int i;
3925
3926 fprintf (stderr, "\nZombies kept alive = %d:\n", nzombies);
3927 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
3928 {
3929 fprintf (stderr, " %d = ", i);
3930 debug_print (zombies[i]);
3931 }
3932}
3933
3934#endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
3935
3936
182ff242
GM
3937/* Mark live Lisp objects on the C stack.
3938
3939 There are several system-dependent problems to consider when
3940 porting this to new architectures:
3941
3942 Processor Registers
3943
3944 We have to mark Lisp objects in CPU registers that can hold local
3945 variables or are used to pass parameters.
3946
3947 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
3948 something that either saves relevant registers on the stack, or
3949 calls mark_maybe_object passing it each register's contents.
3950
3951 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
3952 implementation assumes that calling setjmp saves registers we need
3953 to see in a jmp_buf which itself lies on the stack. This doesn't
3954 have to be true! It must be verified for each system, possibly
3955 by taking a look at the source code of setjmp.
3956
3957 Stack Layout
3958
3959 Architectures differ in the way their processor stack is organized.
3960 For example, the stack might look like this
3961
3962 +----------------+
3963 | Lisp_Object | size = 4
3964 +----------------+
3965 | something else | size = 2
3966 +----------------+
3967 | Lisp_Object | size = 4
3968 +----------------+
3969 | ... |
3970
3971 In such a case, not every Lisp_Object will be aligned equally. To
3972 find all Lisp_Object on the stack it won't be sufficient to walk
3973 the stack in steps of 4 bytes. Instead, two passes will be
3974 necessary, one starting at the start of the stack, and a second
3975 pass starting at the start of the stack + 2. Likewise, if the
3976 minimal alignment of Lisp_Objects on the stack is 1, four passes
3977 would be necessary, each one starting with one byte more offset
3978 from the stack start.
3979
3980 The current code assumes by default that Lisp_Objects are aligned
3981 equally on the stack. */
34400008
GM
3982
3983static void
3984mark_stack ()
3985{
630909a5 3986 int i;
34400008 3987 jmp_buf j;
6bbd7a29 3988 volatile int stack_grows_down_p = (char *) &j > (char *) stack_base;
34400008
GM
3989 void *end;
3990
3991 /* This trick flushes the register windows so that all the state of
3992 the process is contained in the stack. */
ab6780cd 3993 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
422eec7e
DL
3994 needed on ia64 too. See mach_dep.c, where it also says inline
3995 assembler doesn't work with relevant proprietary compilers. */
34400008
GM
3996#ifdef sparc
3997 asm ("ta 3");
3998#endif
177c0ea7 3999
34400008
GM
4000 /* Save registers that we need to see on the stack. We need to see
4001 registers used to hold register variables and registers used to
4002 pass parameters. */
4003#ifdef GC_SAVE_REGISTERS_ON_STACK
4004 GC_SAVE_REGISTERS_ON_STACK (end);
182ff242 4005#else /* not GC_SAVE_REGISTERS_ON_STACK */
177c0ea7 4006
182ff242
GM
4007#ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
4008 setjmp will definitely work, test it
4009 and print a message with the result
4010 of the test. */
4011 if (!setjmp_tested_p)
4012 {
4013 setjmp_tested_p = 1;
4014 test_setjmp ();
4015 }
4016#endif /* GC_SETJMP_WORKS */
177c0ea7 4017
34400008
GM
4018 setjmp (j);
4019 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
182ff242 4020#endif /* not GC_SAVE_REGISTERS_ON_STACK */
34400008
GM
4021
4022 /* This assumes that the stack is a contiguous region in memory. If
182ff242
GM
4023 that's not the case, something has to be done here to iterate
4024 over the stack segments. */
630909a5 4025#ifndef GC_LISP_OBJECT_ALIGNMENT
422eec7e
DL
4026#ifdef __GNUC__
4027#define GC_LISP_OBJECT_ALIGNMENT __alignof__ (Lisp_Object)
4028#else
630909a5 4029#define GC_LISP_OBJECT_ALIGNMENT sizeof (Lisp_Object)
422eec7e 4030#endif
182ff242 4031#endif
24452cd5 4032 for (i = 0; i < sizeof (Lisp_Object); i += GC_LISP_OBJECT_ALIGNMENT)
630909a5 4033 mark_memory ((char *) stack_base + i, end);
34400008
GM
4034
4035#if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4036 check_gcpros ();
4037#endif
4038}
4039
4040
4041#endif /* GC_MARK_STACK != 0 */
4042
4043
4044\f
2e471eb5
GM
4045/***********************************************************************
4046 Pure Storage Management
4047 ***********************************************************************/
4048
1f0b3fd2
GM
4049/* Allocate room for SIZE bytes from pure Lisp storage and return a
4050 pointer to it. TYPE is the Lisp type for which the memory is
4051 allocated. TYPE < 0 means it's not used for a Lisp object.
4052
4053 If store_pure_type_info is set and TYPE is >= 0, the type of
4054 the allocated object is recorded in pure_types. */
4055
4056static POINTER_TYPE *
4057pure_alloc (size, type)
4058 size_t size;
4059 int type;
4060{
1f0b3fd2 4061 POINTER_TYPE *result;
44117420 4062 size_t alignment = sizeof (EMACS_INT);
1f0b3fd2
GM
4063
4064 /* Give Lisp_Floats an extra alignment. */
4065 if (type == Lisp_Float)
4066 {
1f0b3fd2
GM
4067#if defined __GNUC__ && __GNUC__ >= 2
4068 alignment = __alignof (struct Lisp_Float);
4069#else
4070 alignment = sizeof (struct Lisp_Float);
4071#endif
9e713715 4072 }
1f0b3fd2 4073
44117420 4074 again:
ab6780cd 4075 result = ALIGN (purebeg + pure_bytes_used, alignment);
44117420
KS
4076 pure_bytes_used = ((char *)result - (char *)purebeg) + size;
4077
4078 if (pure_bytes_used <= pure_size)
4079 return result;
4080
4081 /* Don't allocate a large amount here,
4082 because it might get mmap'd and then its address
4083 might not be usable. */
4084 purebeg = (char *) xmalloc (10000);
4085 pure_size = 10000;
4086 pure_bytes_used_before_overflow += pure_bytes_used - size;
4087 pure_bytes_used = 0;
4088 goto again;
1f0b3fd2
GM
4089}
4090
4091
852f8cdc 4092/* Print a warning if PURESIZE is too small. */
9e713715
GM
4093
4094void
4095check_pure_size ()
4096{
4097 if (pure_bytes_used_before_overflow)
a4d35afd
SM
4098 message ("Pure Lisp storage overflow (approx. %d bytes needed)",
4099 (int) (pure_bytes_used + pure_bytes_used_before_overflow));
9e713715
GM
4100}
4101
4102
2e471eb5
GM
4103/* Return a string allocated in pure space. DATA is a buffer holding
4104 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
4105 non-zero means make the result string multibyte.
1a4f1e2c 4106
2e471eb5
GM
4107 Must get an error if pure storage is full, since if it cannot hold
4108 a large string it may be able to hold conses that point to that
4109 string; then the string is not protected from gc. */
7146af97
JB
4110
4111Lisp_Object
2e471eb5 4112make_pure_string (data, nchars, nbytes, multibyte)
7146af97 4113 char *data;
2e471eb5 4114 int nchars, nbytes;
c0696668 4115 int multibyte;
7146af97 4116{
2e471eb5
GM
4117 Lisp_Object string;
4118 struct Lisp_String *s;
c0696668 4119
1f0b3fd2
GM
4120 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
4121 s->data = (unsigned char *) pure_alloc (nbytes + 1, -1);
2e471eb5
GM
4122 s->size = nchars;
4123 s->size_byte = multibyte ? nbytes : -1;
4124 bcopy (data, s->data, nbytes);
4125 s->data[nbytes] = '\0';
4126 s->intervals = NULL_INTERVAL;
2e471eb5
GM
4127 XSETSTRING (string, s);
4128 return string;
7146af97
JB
4129}
4130
2e471eb5 4131
34400008
GM
4132/* Return a cons allocated from pure space. Give it pure copies
4133 of CAR as car and CDR as cdr. */
4134
7146af97
JB
4135Lisp_Object
4136pure_cons (car, cdr)
4137 Lisp_Object car, cdr;
4138{
4139 register Lisp_Object new;
1f0b3fd2 4140 struct Lisp_Cons *p;
7146af97 4141
1f0b3fd2
GM
4142 p = (struct Lisp_Cons *) pure_alloc (sizeof *p, Lisp_Cons);
4143 XSETCONS (new, p);
f3fbd155
KR
4144 XSETCAR (new, Fpurecopy (car));
4145 XSETCDR (new, Fpurecopy (cdr));
7146af97
JB
4146 return new;
4147}
4148
7146af97 4149
34400008
GM
4150/* Value is a float object with value NUM allocated from pure space. */
4151
7146af97
JB
4152Lisp_Object
4153make_pure_float (num)
4154 double num;
4155{
4156 register Lisp_Object new;
1f0b3fd2 4157 struct Lisp_Float *p;
7146af97 4158
1f0b3fd2
GM
4159 p = (struct Lisp_Float *) pure_alloc (sizeof *p, Lisp_Float);
4160 XSETFLOAT (new, p);
70949dac 4161 XFLOAT_DATA (new) = num;
7146af97
JB
4162 return new;
4163}
4164
34400008
GM
4165
4166/* Return a vector with room for LEN Lisp_Objects allocated from
4167 pure space. */
4168
7146af97
JB
4169Lisp_Object
4170make_pure_vector (len)
42607681 4171 EMACS_INT len;
7146af97 4172{
1f0b3fd2
GM
4173 Lisp_Object new;
4174 struct Lisp_Vector *p;
4175 size_t size = sizeof *p + (len - 1) * sizeof (Lisp_Object);
7146af97 4176
1f0b3fd2
GM
4177 p = (struct Lisp_Vector *) pure_alloc (size, Lisp_Vectorlike);
4178 XSETVECTOR (new, p);
7146af97
JB
4179 XVECTOR (new)->size = len;
4180 return new;
4181}
4182
34400008 4183
7146af97 4184DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
7ee72033 4185 doc: /* Make a copy of OBJECT in pure storage.
228299fa 4186Recursively copies contents of vectors and cons cells.
7ee72033
MB
4187Does not copy symbols. Copies strings without text properties. */)
4188 (obj)
7146af97
JB
4189 register Lisp_Object obj;
4190{
265a9e55 4191 if (NILP (Vpurify_flag))
7146af97
JB
4192 return obj;
4193
1f0b3fd2 4194 if (PURE_POINTER_P (XPNTR (obj)))
7146af97
JB
4195 return obj;
4196
d6dd74bb 4197 if (CONSP (obj))
70949dac 4198 return pure_cons (XCAR (obj), XCDR (obj));
d6dd74bb 4199 else if (FLOATP (obj))
70949dac 4200 return make_pure_float (XFLOAT_DATA (obj));
d6dd74bb 4201 else if (STRINGP (obj))
d5db4077
KR
4202 return make_pure_string (SDATA (obj), SCHARS (obj),
4203 SBYTES (obj),
c0696668 4204 STRING_MULTIBYTE (obj));
d6dd74bb
KH
4205 else if (COMPILEDP (obj) || VECTORP (obj))
4206 {
4207 register struct Lisp_Vector *vec;
4208 register int i, size;
4209
4210 size = XVECTOR (obj)->size;
7d535c68
KH
4211 if (size & PSEUDOVECTOR_FLAG)
4212 size &= PSEUDOVECTOR_SIZE_MASK;
01a4d290 4213 vec = XVECTOR (make_pure_vector ((EMACS_INT) size));
d6dd74bb
KH
4214 for (i = 0; i < size; i++)
4215 vec->contents[i] = Fpurecopy (XVECTOR (obj)->contents[i]);
4216 if (COMPILEDP (obj))
4217 XSETCOMPILED (obj, vec);
4218 else
4219 XSETVECTOR (obj, vec);
7146af97
JB
4220 return obj;
4221 }
d6dd74bb
KH
4222 else if (MARKERP (obj))
4223 error ("Attempt to copy a marker to pure storage");
6bbd7a29
GM
4224
4225 return obj;
7146af97 4226}
2e471eb5 4227
34400008 4228
7146af97 4229\f
34400008
GM
4230/***********************************************************************
4231 Protection from GC
4232 ***********************************************************************/
4233
2e471eb5
GM
4234/* Put an entry in staticvec, pointing at the variable with address
4235 VARADDRESS. */
7146af97
JB
4236
4237void
4238staticpro (varaddress)
4239 Lisp_Object *varaddress;
4240{
4241 staticvec[staticidx++] = varaddress;
4242 if (staticidx >= NSTATICS)
4243 abort ();
4244}
4245
4246struct catchtag
2e471eb5 4247{
7146af97
JB
4248 Lisp_Object tag;
4249 Lisp_Object val;
4250 struct catchtag *next;
2e471eb5 4251};
7146af97
JB
4252
4253struct backtrace
2e471eb5
GM
4254{
4255 struct backtrace *next;
4256 Lisp_Object *function;
4257 Lisp_Object *args; /* Points to vector of args. */
4258 int nargs; /* Length of vector. */
4259 /* If nargs is UNEVALLED, args points to slot holding list of
4260 unevalled args. */
4261 char evalargs;
4262};
4263
34400008 4264
7146af97 4265\f
34400008
GM
4266/***********************************************************************
4267 Protection from GC
4268 ***********************************************************************/
1a4f1e2c 4269
e8197642
RS
4270/* Temporarily prevent garbage collection. */
4271
4272int
4273inhibit_garbage_collection ()
4274{
aed13378 4275 int count = SPECPDL_INDEX ();
54defd0d
AS
4276 int nbits = min (VALBITS, BITS_PER_INT);
4277
4278 specbind (Qgc_cons_threshold, make_number (((EMACS_INT) 1 << (nbits - 1)) - 1));
e8197642
RS
4279 return count;
4280}
4281
34400008 4282
7146af97 4283DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
7ee72033 4284 doc: /* Reclaim storage for Lisp objects no longer needed.
e1e37596
RS
4285Garbage collection happens automatically if you cons more than
4286`gc-cons-threshold' bytes of Lisp data since previous garbage collection.
4287`garbage-collect' normally returns a list with info on amount of space in use:
228299fa
GM
4288 ((USED-CONSES . FREE-CONSES) (USED-SYMS . FREE-SYMS)
4289 (USED-MARKERS . FREE-MARKERS) USED-STRING-CHARS USED-VECTOR-SLOTS
4290 (USED-FLOATS . FREE-FLOATS) (USED-INTERVALS . FREE-INTERVALS)
4291 (USED-STRINGS . FREE-STRINGS))
e1e37596
RS
4292However, if there was overflow in pure space, `garbage-collect'
4293returns nil, because real GC can't be done. */)
7ee72033 4294 ()
7146af97 4295{
7146af97
JB
4296 register struct specbinding *bind;
4297 struct catchtag *catch;
4298 struct handler *handler;
4299 register struct backtrace *backlist;
7146af97
JB
4300 char stack_top_variable;
4301 register int i;
6efc7df7 4302 int message_p;
96117bc7 4303 Lisp_Object total[8];
331379bf 4304 int count = SPECPDL_INDEX ();
2c5bd608
DL
4305 EMACS_TIME t1, t2, t3;
4306
3de0effb
RS
4307 if (abort_on_gc)
4308 abort ();
4309
2c5bd608 4310 EMACS_GET_TIME (t1);
7146af97 4311
9e713715
GM
4312 /* Can't GC if pure storage overflowed because we can't determine
4313 if something is a pure object or not. */
4314 if (pure_bytes_used_before_overflow)
4315 return Qnil;
4316
58595309
KH
4317 /* In case user calls debug_print during GC,
4318 don't let that cause a recursive GC. */
4319 consing_since_gc = 0;
4320
6efc7df7
GM
4321 /* Save what's currently displayed in the echo area. */
4322 message_p = push_message ();
c55b0da6 4323 record_unwind_protect (pop_message_unwind, Qnil);
41c28a37 4324
7146af97
JB
4325 /* Save a copy of the contents of the stack, for debugging. */
4326#if MAX_SAVE_STACK > 0
265a9e55 4327 if (NILP (Vpurify_flag))
7146af97
JB
4328 {
4329 i = &stack_top_variable - stack_bottom;
4330 if (i < 0) i = -i;
4331 if (i < MAX_SAVE_STACK)
4332 {
4333 if (stack_copy == 0)
9ac0d9e0 4334 stack_copy = (char *) xmalloc (stack_copy_size = i);
7146af97 4335 else if (stack_copy_size < i)
9ac0d9e0 4336 stack_copy = (char *) xrealloc (stack_copy, (stack_copy_size = i));
7146af97
JB
4337 if (stack_copy)
4338 {
42607681 4339 if ((EMACS_INT) (&stack_top_variable - stack_bottom) > 0)
7146af97
JB
4340 bcopy (stack_bottom, stack_copy, i);
4341 else
4342 bcopy (&stack_top_variable, stack_copy, i);
4343 }
4344 }
4345 }
4346#endif /* MAX_SAVE_STACK > 0 */
4347
299585ee 4348 if (garbage_collection_messages)
691c4285 4349 message1_nolog ("Garbage collecting...");
7146af97 4350
6e0fca1d
RS
4351 BLOCK_INPUT;
4352
eec7b73d
RS
4353 shrink_regexp_cache ();
4354
4929a878 4355 /* Don't keep undo information around forever. */
7146af97
JB
4356 {
4357 register struct buffer *nextb = all_buffers;
4358
4359 while (nextb)
4360 {
ffd56f97
JB
4361 /* If a buffer's undo list is Qt, that means that undo is
4362 turned off in that buffer. Calling truncate_undo_list on
4363 Qt tends to return NULL, which effectively turns undo back on.
4364 So don't call truncate_undo_list if undo_list is Qt. */
4365 if (! EQ (nextb->undo_list, Qt))
177c0ea7 4366 nextb->undo_list
502b9b64
JB
4367 = truncate_undo_list (nextb->undo_list, undo_limit,
4368 undo_strong_limit);
e0fead5d
AI
4369
4370 /* Shrink buffer gaps, but skip indirect and dead buffers. */
4371 if (nextb->base_buffer == 0 && !NILP (nextb->name))
4372 {
4373 /* If a buffer's gap size is more than 10% of the buffer
4374 size, or larger than 2000 bytes, then shrink it
4375 accordingly. Keep a minimum size of 20 bytes. */
4376 int size = min (2000, max (20, (nextb->text->z_byte / 10)));
4377
4378 if (nextb->text->gap_size > size)
4379 {
4380 struct buffer *save_current = current_buffer;
4381 current_buffer = nextb;
4382 make_gap (-(nextb->text->gap_size - size));
4383 current_buffer = save_current;
4384 }
4385 }
4386
7146af97
JB
4387 nextb = nextb->next;
4388 }
4389 }
4390
4391 gc_in_progress = 1;
4392
c23baf9f 4393 /* clear_marks (); */
7146af97 4394
7146af97
JB
4395 /* Mark all the special slots that serve as the roots of accessibility.
4396
4397 Usually the special slots to mark are contained in particular structures.
4398 Then we know no slot is marked twice because the structures don't overlap.
4399 In some cases, the structures point to the slots to be marked.
4400 For these, we use MARKBIT to avoid double marking of the slot. */
4401
4402 for (i = 0; i < staticidx; i++)
49723c04 4403 mark_object (*staticvec[i]);
34400008
GM
4404
4405#if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
4406 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
4407 mark_stack ();
4408#else
acf5f7d3
SM
4409 {
4410 register struct gcpro *tail;
4411 for (tail = gcprolist; tail; tail = tail->next)
4412 for (i = 0; i < tail->nvars; i++)
4413 if (!XMARKBIT (tail->var[i]))
4414 {
49723c04 4415 mark_object (tail->var[i]);
acf5f7d3
SM
4416 XMARK (tail->var[i]);
4417 }
4418 }
34400008 4419#endif
177c0ea7 4420
630686c8 4421 mark_byte_stack ();
7146af97
JB
4422 for (bind = specpdl; bind != specpdl_ptr; bind++)
4423 {
49723c04
SM
4424 mark_object (bind->symbol);
4425 mark_object (bind->old_value);
7146af97
JB
4426 }
4427 for (catch = catchlist; catch; catch = catch->next)
4428 {
49723c04
SM
4429 mark_object (catch->tag);
4430 mark_object (catch->val);
177c0ea7 4431 }
7146af97
JB
4432 for (handler = handlerlist; handler; handler = handler->next)
4433 {
49723c04
SM
4434 mark_object (handler->handler);
4435 mark_object (handler->var);
177c0ea7 4436 }
7146af97
JB
4437 for (backlist = backtrace_list; backlist; backlist = backlist->next)
4438 {
4439 if (!XMARKBIT (*backlist->function))
4440 {
49723c04 4441 mark_object (*backlist->function);
7146af97
JB
4442 XMARK (*backlist->function);
4443 }
4444 if (backlist->nargs == UNEVALLED || backlist->nargs == MANY)
4445 i = 0;
4446 else
4447 i = backlist->nargs - 1;
4448 for (; i >= 0; i--)
4449 if (!XMARKBIT (backlist->args[i]))
4450 {
49723c04 4451 mark_object (backlist->args[i]);
7146af97
JB
4452 XMARK (backlist->args[i]);
4453 }
177c0ea7 4454 }
b875d3f7 4455 mark_kboards ();
7146af97 4456
4c315bda
RS
4457 /* Look thru every buffer's undo list
4458 for elements that update markers that were not marked,
4459 and delete them. */
4460 {
4461 register struct buffer *nextb = all_buffers;
4462
4463 while (nextb)
4464 {
4465 /* If a buffer's undo list is Qt, that means that undo is
4466 turned off in that buffer. Calling truncate_undo_list on
4467 Qt tends to return NULL, which effectively turns undo back on.
4468 So don't call truncate_undo_list if undo_list is Qt. */
4469 if (! EQ (nextb->undo_list, Qt))
4470 {
4471 Lisp_Object tail, prev;
4472 tail = nextb->undo_list;
4473 prev = Qnil;
4474 while (CONSP (tail))
4475 {
70949dac
KR
4476 if (GC_CONSP (XCAR (tail))
4477 && GC_MARKERP (XCAR (XCAR (tail)))
2336fe58 4478 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
4c315bda
RS
4479 {
4480 if (NILP (prev))
70949dac 4481 nextb->undo_list = tail = XCDR (tail);
4c315bda 4482 else
f3fbd155
KR
4483 {
4484 tail = XCDR (tail);
4485 XSETCDR (prev, tail);
4486 }
4c315bda
RS
4487 }
4488 else
4489 {
4490 prev = tail;
70949dac 4491 tail = XCDR (tail);
4c315bda
RS
4492 }
4493 }
4494 }
4495
4496 nextb = nextb->next;
4497 }
4498 }
4499
34400008
GM
4500#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4501 mark_stack ();
4502#endif
4503
488dd4c4
JD
4504#ifdef USE_GTK
4505 {
4506 extern void xg_mark_data ();
4507 xg_mark_data ();
4508 }
4509#endif
4510
7146af97
JB
4511 gc_sweep ();
4512
4513 /* Clear the mark bits that we set in certain root slots. */
4514
34400008
GM
4515#if (GC_MARK_STACK == GC_USE_GCPROS_AS_BEFORE \
4516 || GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES)
d22be14d
AS
4517 {
4518 register struct gcpro *tail;
4519
4520 for (tail = gcprolist; tail; tail = tail->next)
4521 for (i = 0; i < tail->nvars; i++)
4522 XUNMARK (tail->var[i]);
4523 }
34400008 4524#endif
177c0ea7 4525
033a5fa3 4526 unmark_byte_stack ();
7146af97
JB
4527 for (backlist = backtrace_list; backlist; backlist = backlist->next)
4528 {
4529 XUNMARK (*backlist->function);
4530 if (backlist->nargs == UNEVALLED || backlist->nargs == MANY)
4531 i = 0;
4532 else
4533 i = backlist->nargs - 1;
4534 for (; i >= 0; i--)
4535 XUNMARK (backlist->args[i]);
177c0ea7 4536 }
3ef06d12
SM
4537 VECTOR_UNMARK (&buffer_defaults);
4538 VECTOR_UNMARK (&buffer_local_symbols);
7146af97 4539
34400008
GM
4540#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
4541 dump_zombies ();
4542#endif
4543
6e0fca1d
RS
4544 UNBLOCK_INPUT;
4545
c23baf9f 4546 /* clear_marks (); */
7146af97
JB
4547 gc_in_progress = 0;
4548
4549 consing_since_gc = 0;
4550 if (gc_cons_threshold < 10000)
4551 gc_cons_threshold = 10000;
4552
299585ee
RS
4553 if (garbage_collection_messages)
4554 {
6efc7df7
GM
4555 if (message_p || minibuf_level > 0)
4556 restore_message ();
299585ee
RS
4557 else
4558 message1_nolog ("Garbage collecting...done");
4559 }
7146af97 4560
98edb5ff 4561 unbind_to (count, Qnil);
2e471eb5
GM
4562
4563 total[0] = Fcons (make_number (total_conses),
4564 make_number (total_free_conses));
4565 total[1] = Fcons (make_number (total_symbols),
4566 make_number (total_free_symbols));
4567 total[2] = Fcons (make_number (total_markers),
4568 make_number (total_free_markers));
96117bc7
GM
4569 total[3] = make_number (total_string_size);
4570 total[4] = make_number (total_vector_size);
4571 total[5] = Fcons (make_number (total_floats),
2e471eb5 4572 make_number (total_free_floats));
96117bc7 4573 total[6] = Fcons (make_number (total_intervals),
2e471eb5 4574 make_number (total_free_intervals));
96117bc7 4575 total[7] = Fcons (make_number (total_strings),
2e471eb5
GM
4576 make_number (total_free_strings));
4577
34400008 4578#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
7146af97 4579 {
34400008
GM
4580 /* Compute average percentage of zombies. */
4581 double nlive = 0;
177c0ea7 4582
34400008 4583 for (i = 0; i < 7; ++i)
83fc9c63
DL
4584 if (CONSP (total[i]))
4585 nlive += XFASTINT (XCAR (total[i]));
34400008
GM
4586
4587 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
4588 max_live = max (nlive, max_live);
4589 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
4590 max_zombies = max (nzombies, max_zombies);
4591 ++ngcs;
4592 }
4593#endif
7146af97 4594
9e713715
GM
4595 if (!NILP (Vpost_gc_hook))
4596 {
4597 int count = inhibit_garbage_collection ();
4598 safe_run_hooks (Qpost_gc_hook);
4599 unbind_to (count, Qnil);
4600 }
2c5bd608
DL
4601
4602 /* Accumulate statistics. */
4603 EMACS_GET_TIME (t2);
4604 EMACS_SUB_TIME (t3, t2, t1);
4605 if (FLOATP (Vgc_elapsed))
69ab9f85
SM
4606 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed) +
4607 EMACS_SECS (t3) +
4608 EMACS_USECS (t3) * 1.0e-6);
2c5bd608
DL
4609 gcs_done++;
4610
96117bc7 4611 return Flist (sizeof total / sizeof *total, total);
7146af97 4612}
34400008 4613
41c28a37 4614
3770920e
GM
4615/* Mark Lisp objects in glyph matrix MATRIX. Currently the
4616 only interesting objects referenced from glyphs are strings. */
41c28a37
GM
4617
4618static void
4619mark_glyph_matrix (matrix)
4620 struct glyph_matrix *matrix;
4621{
4622 struct glyph_row *row = matrix->rows;
4623 struct glyph_row *end = row + matrix->nrows;
4624
2e471eb5
GM
4625 for (; row < end; ++row)
4626 if (row->enabled_p)
4627 {
4628 int area;
4629 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
4630 {
4631 struct glyph *glyph = row->glyphs[area];
4632 struct glyph *end_glyph = glyph + row->used[area];
177c0ea7 4633
2e471eb5
GM
4634 for (; glyph < end_glyph; ++glyph)
4635 if (GC_STRINGP (glyph->object)
4636 && !STRING_MARKED_P (XSTRING (glyph->object)))
49723c04 4637 mark_object (glyph->object);
2e471eb5
GM
4638 }
4639 }
41c28a37
GM
4640}
4641
34400008 4642
41c28a37
GM
4643/* Mark Lisp faces in the face cache C. */
4644
4645static void
4646mark_face_cache (c)
4647 struct face_cache *c;
4648{
4649 if (c)
4650 {
4651 int i, j;
4652 for (i = 0; i < c->used; ++i)
4653 {
4654 struct face *face = FACE_FROM_ID (c->f, i);
4655
4656 if (face)
4657 {
4658 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
49723c04 4659 mark_object (face->lface[j]);
41c28a37
GM
4660 }
4661 }
4662 }
4663}
4664
4665
4666#ifdef HAVE_WINDOW_SYSTEM
4667
4668/* Mark Lisp objects in image IMG. */
4669
4670static void
4671mark_image (img)
4672 struct image *img;
4673{
49723c04 4674 mark_object (img->spec);
177c0ea7 4675
3e60b029 4676 if (!NILP (img->data.lisp_val))
49723c04 4677 mark_object (img->data.lisp_val);
41c28a37
GM
4678}
4679
4680
4681/* Mark Lisp objects in image cache of frame F. It's done this way so
4682 that we don't have to include xterm.h here. */
4683
4684static void
4685mark_image_cache (f)
4686 struct frame *f;
4687{
4688 forall_images_in_image_cache (f, mark_image);
4689}
4690
4691#endif /* HAVE_X_WINDOWS */
4692
4693
7146af97 4694\f
1a4f1e2c 4695/* Mark reference to a Lisp_Object.
2e471eb5
GM
4696 If the object referred to has not been seen yet, recursively mark
4697 all the references contained in it. */
7146af97 4698
785cd37f 4699#define LAST_MARKED_SIZE 500
49723c04 4700Lisp_Object last_marked[LAST_MARKED_SIZE];
785cd37f
RS
4701int last_marked_index;
4702
1342fc6f
RS
4703/* For debugging--call abort when we cdr down this many
4704 links of a list, in mark_object. In debugging,
4705 the call to abort will hit a breakpoint.
4706 Normally this is zero and the check never goes off. */
4707int mark_object_loop_halt;
4708
41c28a37 4709void
49723c04
SM
4710mark_object (arg)
4711 Lisp_Object arg;
7146af97 4712{
49723c04 4713 register Lisp_Object obj = arg;
4f5c1376
GM
4714#ifdef GC_CHECK_MARKED_OBJECTS
4715 void *po;
4716 struct mem_node *m;
4717#endif
1342fc6f 4718 int cdr_count = 0;
7146af97 4719
9149e743 4720 loop:
7146af97
JB
4721 XUNMARK (obj);
4722
1f0b3fd2 4723 if (PURE_POINTER_P (XPNTR (obj)))
7146af97
JB
4724 return;
4725
49723c04 4726 last_marked[last_marked_index++] = obj;
785cd37f
RS
4727 if (last_marked_index == LAST_MARKED_SIZE)
4728 last_marked_index = 0;
4729
4f5c1376
GM
4730 /* Perform some sanity checks on the objects marked here. Abort if
4731 we encounter an object we know is bogus. This increases GC time
4732 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
4733#ifdef GC_CHECK_MARKED_OBJECTS
4734
4735 po = (void *) XPNTR (obj);
4736
4737 /* Check that the object pointed to by PO is known to be a Lisp
4738 structure allocated from the heap. */
4739#define CHECK_ALLOCATED() \
4740 do { \
4741 m = mem_find (po); \
4742 if (m == MEM_NIL) \
4743 abort (); \
4744 } while (0)
4745
4746 /* Check that the object pointed to by PO is live, using predicate
4747 function LIVEP. */
4748#define CHECK_LIVE(LIVEP) \
4749 do { \
4750 if (!LIVEP (m, po)) \
4751 abort (); \
4752 } while (0)
4753
4754 /* Check both of the above conditions. */
4755#define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
4756 do { \
4757 CHECK_ALLOCATED (); \
4758 CHECK_LIVE (LIVEP); \
4759 } while (0) \
177c0ea7 4760
4f5c1376 4761#else /* not GC_CHECK_MARKED_OBJECTS */
177c0ea7 4762
4f5c1376
GM
4763#define CHECK_ALLOCATED() (void) 0
4764#define CHECK_LIVE(LIVEP) (void) 0
4765#define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
177c0ea7 4766
4f5c1376
GM
4767#endif /* not GC_CHECK_MARKED_OBJECTS */
4768
0220c518 4769 switch (SWITCH_ENUM_CAST (XGCTYPE (obj)))
7146af97
JB
4770 {
4771 case Lisp_String:
4772 {
4773 register struct Lisp_String *ptr = XSTRING (obj);
4f5c1376 4774 CHECK_ALLOCATED_AND_LIVE (live_string_p);
d5e35230 4775 MARK_INTERVAL_TREE (ptr->intervals);
2e471eb5 4776 MARK_STRING (ptr);
361b097f 4777#ifdef GC_CHECK_STRING_BYTES
676a7251
GM
4778 /* Check that the string size recorded in the string is the
4779 same as the one recorded in the sdata structure. */
4780 CHECK_STRING_BYTES (ptr);
361b097f 4781#endif /* GC_CHECK_STRING_BYTES */
7146af97
JB
4782 }
4783 break;
4784
76437631 4785 case Lisp_Vectorlike:
4f5c1376
GM
4786#ifdef GC_CHECK_MARKED_OBJECTS
4787 m = mem_find (po);
4788 if (m == MEM_NIL && !GC_SUBRP (obj)
4789 && po != &buffer_defaults
4790 && po != &buffer_local_symbols)
4791 abort ();
4792#endif /* GC_CHECK_MARKED_OBJECTS */
177c0ea7 4793
30e3190a 4794 if (GC_BUFFERP (obj))
6b552283 4795 {
3ef06d12 4796 if (!VECTOR_MARKED_P (XBUFFER (obj)))
4f5c1376
GM
4797 {
4798#ifdef GC_CHECK_MARKED_OBJECTS
4799 if (po != &buffer_defaults && po != &buffer_local_symbols)
4800 {
4801 struct buffer *b;
4802 for (b = all_buffers; b && b != po; b = b->next)
4803 ;
4804 if (b == NULL)
4805 abort ();
4806 }
4807#endif /* GC_CHECK_MARKED_OBJECTS */
4808 mark_buffer (obj);
4809 }
6b552283 4810 }
30e3190a 4811 else if (GC_SUBRP (obj))
169ee243
RS
4812 break;
4813 else if (GC_COMPILEDP (obj))
2e471eb5
GM
4814 /* We could treat this just like a vector, but it is better to
4815 save the COMPILED_CONSTANTS element for last and avoid
4816 recursion there. */
169ee243
RS
4817 {
4818 register struct Lisp_Vector *ptr = XVECTOR (obj);
4819 register EMACS_INT size = ptr->size;
169ee243
RS
4820 register int i;
4821
3ef06d12 4822 if (VECTOR_MARKED_P (ptr))
169ee243 4823 break; /* Already marked */
177c0ea7 4824
4f5c1376 4825 CHECK_LIVE (live_vector_p);
3ef06d12 4826 VECTOR_MARK (ptr); /* Else mark it */
76437631 4827 size &= PSEUDOVECTOR_SIZE_MASK;
169ee243
RS
4828 for (i = 0; i < size; i++) /* and then mark its elements */
4829 {
4830 if (i != COMPILED_CONSTANTS)
49723c04 4831 mark_object (ptr->contents[i]);
169ee243 4832 }
49723c04 4833 obj = ptr->contents[COMPILED_CONSTANTS];
169ee243
RS
4834 goto loop;
4835 }
169ee243
RS
4836 else if (GC_FRAMEP (obj))
4837 {
c70bbf06 4838 register struct frame *ptr = XFRAME (obj);
169ee243 4839
3ef06d12
SM
4840 if (VECTOR_MARKED_P (ptr)) break; /* Already marked */
4841 VECTOR_MARK (ptr); /* Else mark it */
169ee243 4842
4f5c1376 4843 CHECK_LIVE (live_vector_p);
49723c04
SM
4844 mark_object (ptr->name);
4845 mark_object (ptr->icon_name);
4846 mark_object (ptr->title);
4847 mark_object (ptr->focus_frame);
4848 mark_object (ptr->selected_window);
4849 mark_object (ptr->minibuffer_window);
4850 mark_object (ptr->param_alist);
4851 mark_object (ptr->scroll_bars);
4852 mark_object (ptr->condemned_scroll_bars);
4853 mark_object (ptr->menu_bar_items);
4854 mark_object (ptr->face_alist);
4855 mark_object (ptr->menu_bar_vector);
4856 mark_object (ptr->buffer_predicate);
4857 mark_object (ptr->buffer_list);
4858 mark_object (ptr->menu_bar_window);
4859 mark_object (ptr->tool_bar_window);
41c28a37
GM
4860 mark_face_cache (ptr->face_cache);
4861#ifdef HAVE_WINDOW_SYSTEM
4862 mark_image_cache (ptr);
49723c04
SM
4863 mark_object (ptr->tool_bar_items);
4864 mark_object (ptr->desired_tool_bar_string);
4865 mark_object (ptr->current_tool_bar_string);
41c28a37 4866#endif /* HAVE_WINDOW_SYSTEM */
169ee243 4867 }
7b07587b 4868 else if (GC_BOOL_VECTOR_P (obj))
707788bd
RS
4869 {
4870 register struct Lisp_Vector *ptr = XVECTOR (obj);
4871
3ef06d12 4872 if (VECTOR_MARKED_P (ptr))
707788bd 4873 break; /* Already marked */
4f5c1376 4874 CHECK_LIVE (live_vector_p);
3ef06d12 4875 VECTOR_MARK (ptr); /* Else mark it */
707788bd 4876 }
41c28a37
GM
4877 else if (GC_WINDOWP (obj))
4878 {
4879 register struct Lisp_Vector *ptr = XVECTOR (obj);
4880 struct window *w = XWINDOW (obj);
41c28a37
GM
4881 register int i;
4882
4883 /* Stop if already marked. */
3ef06d12 4884 if (VECTOR_MARKED_P (ptr))
41c28a37
GM
4885 break;
4886
4887 /* Mark it. */
4f5c1376 4888 CHECK_LIVE (live_vector_p);
3ef06d12 4889 VECTOR_MARK (ptr);
41c28a37
GM
4890
4891 /* There is no Lisp data above The member CURRENT_MATRIX in
4892 struct WINDOW. Stop marking when that slot is reached. */
4893 for (i = 0;
c70bbf06 4894 (char *) &ptr->contents[i] < (char *) &w->current_matrix;
41c28a37 4895 i++)
49723c04 4896 mark_object (ptr->contents[i]);
41c28a37
GM
4897
4898 /* Mark glyphs for leaf windows. Marking window matrices is
4899 sufficient because frame matrices use the same glyph
4900 memory. */
4901 if (NILP (w->hchild)
4902 && NILP (w->vchild)
4903 && w->current_matrix)
4904 {
4905 mark_glyph_matrix (w->current_matrix);
4906 mark_glyph_matrix (w->desired_matrix);
4907 }
4908 }
4909 else if (GC_HASH_TABLE_P (obj))
4910 {
4911 struct Lisp_Hash_Table *h = XHASH_TABLE (obj);
177c0ea7 4912
41c28a37 4913 /* Stop if already marked. */
3ef06d12 4914 if (VECTOR_MARKED_P (h))
41c28a37 4915 break;
177c0ea7 4916
41c28a37 4917 /* Mark it. */
4f5c1376 4918 CHECK_LIVE (live_vector_p);
3ef06d12 4919 VECTOR_MARK (h);
41c28a37
GM
4920
4921 /* Mark contents. */
94a877ef 4922 /* Do not mark next_free or next_weak.
177c0ea7 4923 Being in the next_weak chain
94a877ef
RS
4924 should not keep the hash table alive.
4925 No need to mark `count' since it is an integer. */
49723c04
SM
4926 mark_object (h->test);
4927 mark_object (h->weak);
4928 mark_object (h->rehash_size);
4929 mark_object (h->rehash_threshold);
4930 mark_object (h->hash);
4931 mark_object (h->next);
4932 mark_object (h->index);
4933 mark_object (h->user_hash_function);
4934 mark_object (h->user_cmp_function);
41c28a37
GM
4935
4936 /* If hash table is not weak, mark all keys and values.
4937 For weak tables, mark only the vector. */
4938 if (GC_NILP (h->weak))
49723c04 4939 mark_object (h->key_and_value);
41c28a37 4940 else
3ef06d12 4941 VECTOR_MARK (XVECTOR (h->key_and_value));
41c28a37 4942 }
04ff9756 4943 else
169ee243
RS
4944 {
4945 register struct Lisp_Vector *ptr = XVECTOR (obj);
4946 register EMACS_INT size = ptr->size;
169ee243
RS
4947 register int i;
4948
3ef06d12 4949 if (VECTOR_MARKED_P (ptr)) break; /* Already marked */
4f5c1376 4950 CHECK_LIVE (live_vector_p);
3ef06d12 4951 VECTOR_MARK (ptr); /* Else mark it */
169ee243
RS
4952 if (size & PSEUDOVECTOR_FLAG)
4953 size &= PSEUDOVECTOR_SIZE_MASK;
41c28a37 4954
169ee243 4955 for (i = 0; i < size; i++) /* and then mark its elements */
49723c04 4956 mark_object (ptr->contents[i]);
169ee243
RS
4957 }
4958 break;
7146af97 4959
7146af97
JB
4960 case Lisp_Symbol:
4961 {
c70bbf06 4962 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
7146af97
JB
4963 struct Lisp_Symbol *ptrx;
4964
2336fe58 4965 if (ptr->gcmarkbit) break;
4f5c1376 4966 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
2336fe58 4967 ptr->gcmarkbit = 1;
49723c04
SM
4968 mark_object (ptr->value);
4969 mark_object (ptr->function);
4970 mark_object (ptr->plist);
34400008 4971
8fe5665d
KR
4972 if (!PURE_POINTER_P (XSTRING (ptr->xname)))
4973 MARK_STRING (XSTRING (ptr->xname));
d5db4077 4974 MARK_INTERVAL_TREE (STRING_INTERVALS (ptr->xname));
177c0ea7 4975
1c6bb482
RS
4976 /* Note that we do not mark the obarray of the symbol.
4977 It is safe not to do so because nothing accesses that
4978 slot except to check whether it is nil. */
7146af97
JB
4979 ptr = ptr->next;
4980 if (ptr)
4981 {
b0846f52 4982 ptrx = ptr; /* Use of ptrx avoids compiler bug on Sun */
7146af97 4983 XSETSYMBOL (obj, ptrx);
49723c04 4984 goto loop;
7146af97
JB
4985 }
4986 }
4987 break;
4988
a0a38eb7 4989 case Lisp_Misc:
4f5c1376 4990 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
2336fe58
SM
4991 if (XMARKER (obj)->gcmarkbit)
4992 break;
4993 XMARKER (obj)->gcmarkbit = 1;
a5da44fe 4994 switch (XMISCTYPE (obj))
a0a38eb7 4995 {
465edf35
KH
4996 case Lisp_Misc_Buffer_Local_Value:
4997 case Lisp_Misc_Some_Buffer_Local_Value:
4998 {
4999 register struct Lisp_Buffer_Local_Value *ptr
5000 = XBUFFER_LOCAL_VALUE (obj);
465edf35
KH
5001 /* If the cdr is nil, avoid recursion for the car. */
5002 if (EQ (ptr->cdr, Qnil))
5003 {
49723c04 5004 obj = ptr->realvalue;
465edf35
KH
5005 goto loop;
5006 }
49723c04
SM
5007 mark_object (ptr->realvalue);
5008 mark_object (ptr->buffer);
5009 mark_object (ptr->frame);
5010 obj = ptr->cdr;
465edf35
KH
5011 goto loop;
5012 }
5013
2336fe58
SM
5014 case Lisp_Misc_Marker:
5015 /* DO NOT mark thru the marker's chain.
5016 The buffer's markers chain does not preserve markers from gc;
5017 instead, markers are removed from the chain when freed by gc. */
c8616056
KH
5018 case Lisp_Misc_Intfwd:
5019 case Lisp_Misc_Boolfwd:
5020 case Lisp_Misc_Objfwd:
5021 case Lisp_Misc_Buffer_Objfwd:
b875d3f7 5022 case Lisp_Misc_Kboard_Objfwd:
c8616056
KH
5023 /* Don't bother with Lisp_Buffer_Objfwd,
5024 since all markable slots in current buffer marked anyway. */
5025 /* Don't need to do Lisp_Objfwd, since the places they point
5026 are protected with staticpro. */
5027 break;
5028
e202fa34
KH
5029 case Lisp_Misc_Overlay:
5030 {
5031 struct Lisp_Overlay *ptr = XOVERLAY (obj);
49723c04
SM
5032 mark_object (ptr->start);
5033 mark_object (ptr->end);
f54253ec
SM
5034 mark_object (ptr->plist);
5035 if (ptr->next)
5036 {
5037 XSETMISC (obj, ptr->next);
5038 goto loop;
5039 }
e202fa34
KH
5040 }
5041 break;
5042
a0a38eb7
KH
5043 default:
5044 abort ();
5045 }
7146af97
JB
5046 break;
5047
5048 case Lisp_Cons:
7146af97
JB
5049 {
5050 register struct Lisp_Cons *ptr = XCONS (obj);
08b7c2cb 5051 if (CONS_MARKED_P (ptr)) break;
4f5c1376 5052 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
08b7c2cb 5053 CONS_MARK (ptr);
c54ca951
RS
5054 /* If the cdr is nil, avoid recursion for the car. */
5055 if (EQ (ptr->cdr, Qnil))
5056 {
49723c04 5057 obj = ptr->car;
1342fc6f 5058 cdr_count = 0;
c54ca951
RS
5059 goto loop;
5060 }
49723c04
SM
5061 mark_object (ptr->car);
5062 obj = ptr->cdr;
1342fc6f
RS
5063 cdr_count++;
5064 if (cdr_count == mark_object_loop_halt)
5065 abort ();
7146af97
JB
5066 goto loop;
5067 }
5068
7146af97 5069 case Lisp_Float:
4f5c1376 5070 CHECK_ALLOCATED_AND_LIVE (live_float_p);
ab6780cd 5071 FLOAT_MARK (XFLOAT (obj));
7146af97 5072 break;
7146af97 5073
7146af97 5074 case Lisp_Int:
7146af97
JB
5075 break;
5076
5077 default:
5078 abort ();
5079 }
4f5c1376
GM
5080
5081#undef CHECK_LIVE
5082#undef CHECK_ALLOCATED
5083#undef CHECK_ALLOCATED_AND_LIVE
7146af97
JB
5084}
5085
5086/* Mark the pointers in a buffer structure. */
5087
5088static void
5089mark_buffer (buf)
5090 Lisp_Object buf;
5091{
7146af97 5092 register struct buffer *buffer = XBUFFER (buf);
f54253ec 5093 register Lisp_Object *ptr, tmp;
30e3190a 5094 Lisp_Object base_buffer;
7146af97 5095
3ef06d12 5096 VECTOR_MARK (buffer);
7146af97 5097
30e3190a 5098 MARK_INTERVAL_TREE (BUF_INTERVALS (buffer));
d5e35230 5099
4c315bda
RS
5100 if (CONSP (buffer->undo_list))
5101 {
5102 Lisp_Object tail;
5103 tail = buffer->undo_list;
5104
2336fe58
SM
5105 /* We mark the undo list specially because
5106 its pointers to markers should be weak. */
5107
4c315bda
RS
5108 while (CONSP (tail))
5109 {
5110 register struct Lisp_Cons *ptr = XCONS (tail);
5111
08b7c2cb 5112 if (CONS_MARKED_P (ptr))
4c315bda 5113 break;
08b7c2cb 5114 CONS_MARK (ptr);
4c315bda 5115 if (GC_CONSP (ptr->car)
08b7c2cb 5116 && !CONS_MARKED_P (XCONS (ptr->car))
70949dac 5117 && GC_MARKERP (XCAR (ptr->car)))
4c315bda 5118 {
08b7c2cb 5119 CONS_MARK (XCONS (ptr->car));
49723c04 5120 mark_object (XCDR (ptr->car));
4c315bda
RS
5121 }
5122 else
49723c04 5123 mark_object (ptr->car);
4c315bda
RS
5124
5125 if (CONSP (ptr->cdr))
5126 tail = ptr->cdr;
5127 else
5128 break;
5129 }
5130
49723c04 5131 mark_object (XCDR (tail));
4c315bda
RS
5132 }
5133 else
49723c04 5134 mark_object (buffer->undo_list);
4c315bda 5135
f54253ec
SM
5136 if (buffer->overlays_before)
5137 {
5138 XSETMISC (tmp, buffer->overlays_before);
5139 mark_object (tmp);
5140 }
5141 if (buffer->overlays_after)
5142 {
5143 XSETMISC (tmp, buffer->overlays_after);
5144 mark_object (tmp);
5145 }
5146
3ef06d12 5147 for (ptr = &buffer->name;
7146af97
JB
5148 (char *)ptr < (char *)buffer + sizeof (struct buffer);
5149 ptr++)
49723c04 5150 mark_object (*ptr);
30e3190a
RS
5151
5152 /* If this is an indirect buffer, mark its base buffer. */
349bd9ed 5153 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
30e3190a 5154 {
177c0ea7 5155 XSETBUFFER (base_buffer, buffer->base_buffer);
30e3190a
RS
5156 mark_buffer (base_buffer);
5157 }
7146af97 5158}
084b1a0c
KH
5159
5160
41c28a37
GM
5161/* Value is non-zero if OBJ will survive the current GC because it's
5162 either marked or does not need to be marked to survive. */
5163
5164int
5165survives_gc_p (obj)
5166 Lisp_Object obj;
5167{
5168 int survives_p;
177c0ea7 5169
41c28a37
GM
5170 switch (XGCTYPE (obj))
5171 {
5172 case Lisp_Int:
5173 survives_p = 1;
5174 break;
5175
5176 case Lisp_Symbol:
2336fe58 5177 survives_p = XSYMBOL (obj)->gcmarkbit;
41c28a37
GM
5178 break;
5179
5180 case Lisp_Misc:
ef89c2ce 5181 survives_p = XMARKER (obj)->gcmarkbit;
41c28a37
GM
5182 break;
5183
5184 case Lisp_String:
08b7c2cb 5185 survives_p = STRING_MARKED_P (XSTRING (obj));
41c28a37
GM
5186 break;
5187
5188 case Lisp_Vectorlike:
08b7c2cb 5189 survives_p = GC_SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
41c28a37
GM
5190 break;
5191
5192 case Lisp_Cons:
08b7c2cb 5193 survives_p = CONS_MARKED_P (XCONS (obj));
41c28a37
GM
5194 break;
5195
41c28a37 5196 case Lisp_Float:
ab6780cd 5197 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
41c28a37 5198 break;
41c28a37
GM
5199
5200 default:
5201 abort ();
5202 }
5203
34400008 5204 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
41c28a37
GM
5205}
5206
5207
7146af97 5208\f
1a4f1e2c 5209/* Sweep: find all structures not marked, and free them. */
7146af97
JB
5210
5211static void
5212gc_sweep ()
5213{
41c28a37
GM
5214 /* Remove or mark entries in weak hash tables.
5215 This must be done before any object is unmarked. */
5216 sweep_weak_hash_tables ();
5217
2e471eb5 5218 sweep_strings ();
676a7251
GM
5219#ifdef GC_CHECK_STRING_BYTES
5220 if (!noninteractive)
5221 check_string_bytes (1);
5222#endif
7146af97
JB
5223
5224 /* Put all unmarked conses on free list */
5225 {
5226 register struct cons_block *cblk;
6ca94ac9 5227 struct cons_block **cprev = &cons_block;
7146af97
JB
5228 register int lim = cons_block_index;
5229 register int num_free = 0, num_used = 0;
5230
5231 cons_free_list = 0;
177c0ea7 5232
6ca94ac9 5233 for (cblk = cons_block; cblk; cblk = *cprev)
7146af97
JB
5234 {
5235 register int i;
6ca94ac9 5236 int this_free = 0;
7146af97 5237 for (i = 0; i < lim; i++)
08b7c2cb 5238 if (!CONS_MARKED_P (&cblk->conses[i]))
7146af97 5239 {
6ca94ac9 5240 this_free++;
1cd5fe6a 5241 *(struct Lisp_Cons **)&cblk->conses[i].cdr = cons_free_list;
7146af97 5242 cons_free_list = &cblk->conses[i];
34400008
GM
5243#if GC_MARK_STACK
5244 cons_free_list->car = Vdead;
5245#endif
7146af97
JB
5246 }
5247 else
5248 {
5249 num_used++;
08b7c2cb 5250 CONS_UNMARK (&cblk->conses[i]);
7146af97
JB
5251 }
5252 lim = CONS_BLOCK_SIZE;
6ca94ac9
KH
5253 /* If this block contains only free conses and we have already
5254 seen more than two blocks worth of free conses then deallocate
5255 this block. */
6feef451 5256 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
6ca94ac9 5257 {
6ca94ac9
KH
5258 *cprev = cblk->next;
5259 /* Unhook from the free list. */
5260 cons_free_list = *(struct Lisp_Cons **) &cblk->conses[0].cdr;
08b7c2cb 5261 lisp_align_free (cblk);
c8099634 5262 n_cons_blocks--;
6ca94ac9
KH
5263 }
5264 else
6feef451
AS
5265 {
5266 num_free += this_free;
5267 cprev = &cblk->next;
5268 }
7146af97
JB
5269 }
5270 total_conses = num_used;
5271 total_free_conses = num_free;
5272 }
5273
7146af97
JB
5274 /* Put all unmarked floats on free list */
5275 {
5276 register struct float_block *fblk;
6ca94ac9 5277 struct float_block **fprev = &float_block;
7146af97
JB
5278 register int lim = float_block_index;
5279 register int num_free = 0, num_used = 0;
5280
5281 float_free_list = 0;
177c0ea7 5282
6ca94ac9 5283 for (fblk = float_block; fblk; fblk = *fprev)
7146af97
JB
5284 {
5285 register int i;
6ca94ac9 5286 int this_free = 0;
7146af97 5287 for (i = 0; i < lim; i++)
ab6780cd 5288 if (!FLOAT_MARKED_P (&fblk->floats[i]))
7146af97 5289 {
6ca94ac9 5290 this_free++;
1cd5fe6a 5291 *(struct Lisp_Float **)&fblk->floats[i].data = float_free_list;
7146af97
JB
5292 float_free_list = &fblk->floats[i];
5293 }
5294 else
5295 {
5296 num_used++;
ab6780cd 5297 FLOAT_UNMARK (&fblk->floats[i]);
7146af97
JB
5298 }
5299 lim = FLOAT_BLOCK_SIZE;
6ca94ac9
KH
5300 /* If this block contains only free floats and we have already
5301 seen more than two blocks worth of free floats then deallocate
5302 this block. */
6feef451 5303 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
6ca94ac9 5304 {
6ca94ac9
KH
5305 *fprev = fblk->next;
5306 /* Unhook from the free list. */
5307 float_free_list = *(struct Lisp_Float **) &fblk->floats[0].data;
ab6780cd 5308 lisp_align_free (fblk);
c8099634 5309 n_float_blocks--;
6ca94ac9
KH
5310 }
5311 else
6feef451
AS
5312 {
5313 num_free += this_free;
5314 fprev = &fblk->next;
5315 }
7146af97
JB
5316 }
5317 total_floats = num_used;
5318 total_free_floats = num_free;
5319 }
7146af97 5320
d5e35230
JA
5321 /* Put all unmarked intervals on free list */
5322 {
5323 register struct interval_block *iblk;
6ca94ac9 5324 struct interval_block **iprev = &interval_block;
d5e35230
JA
5325 register int lim = interval_block_index;
5326 register int num_free = 0, num_used = 0;
5327
5328 interval_free_list = 0;
5329
6ca94ac9 5330 for (iblk = interval_block; iblk; iblk = *iprev)
d5e35230
JA
5331 {
5332 register int i;
6ca94ac9 5333 int this_free = 0;
d5e35230
JA
5334
5335 for (i = 0; i < lim; i++)
5336 {
2336fe58 5337 if (!iblk->intervals[i].gcmarkbit)
d5e35230 5338 {
439d5cb4 5339 SET_INTERVAL_PARENT (&iblk->intervals[i], interval_free_list);
d5e35230 5340 interval_free_list = &iblk->intervals[i];
6ca94ac9 5341 this_free++;
d5e35230
JA
5342 }
5343 else
5344 {
5345 num_used++;
2336fe58 5346 iblk->intervals[i].gcmarkbit = 0;
d5e35230
JA
5347 }
5348 }
5349 lim = INTERVAL_BLOCK_SIZE;
6ca94ac9
KH
5350 /* If this block contains only free intervals and we have already
5351 seen more than two blocks worth of free intervals then
5352 deallocate this block. */
6feef451 5353 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
6ca94ac9 5354 {
6ca94ac9
KH
5355 *iprev = iblk->next;
5356 /* Unhook from the free list. */
439d5cb4 5357 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
c8099634
RS
5358 lisp_free (iblk);
5359 n_interval_blocks--;
6ca94ac9
KH
5360 }
5361 else
6feef451
AS
5362 {
5363 num_free += this_free;
5364 iprev = &iblk->next;
5365 }
d5e35230
JA
5366 }
5367 total_intervals = num_used;
5368 total_free_intervals = num_free;
5369 }
d5e35230 5370
7146af97
JB
5371 /* Put all unmarked symbols on free list */
5372 {
5373 register struct symbol_block *sblk;
6ca94ac9 5374 struct symbol_block **sprev = &symbol_block;
7146af97
JB
5375 register int lim = symbol_block_index;
5376 register int num_free = 0, num_used = 0;
5377
d285b373 5378 symbol_free_list = NULL;
177c0ea7 5379
6ca94ac9 5380 for (sblk = symbol_block; sblk; sblk = *sprev)
7146af97 5381 {
6ca94ac9 5382 int this_free = 0;
d285b373
GM
5383 struct Lisp_Symbol *sym = sblk->symbols;
5384 struct Lisp_Symbol *end = sym + lim;
5385
5386 for (; sym < end; ++sym)
5387 {
20035321
SM
5388 /* Check if the symbol was created during loadup. In such a case
5389 it might be pointed to by pure bytecode which we don't trace,
5390 so we conservatively assume that it is live. */
8fe5665d 5391 int pure_p = PURE_POINTER_P (XSTRING (sym->xname));
177c0ea7 5392
2336fe58 5393 if (!sym->gcmarkbit && !pure_p)
d285b373
GM
5394 {
5395 *(struct Lisp_Symbol **) &sym->value = symbol_free_list;
5396 symbol_free_list = sym;
34400008 5397#if GC_MARK_STACK
d285b373 5398 symbol_free_list->function = Vdead;
34400008 5399#endif
d285b373
GM
5400 ++this_free;
5401 }
5402 else
5403 {
5404 ++num_used;
5405 if (!pure_p)
8fe5665d 5406 UNMARK_STRING (XSTRING (sym->xname));
2336fe58 5407 sym->gcmarkbit = 0;
d285b373
GM
5408 }
5409 }
177c0ea7 5410
7146af97 5411 lim = SYMBOL_BLOCK_SIZE;
6ca94ac9
KH
5412 /* If this block contains only free symbols and we have already
5413 seen more than two blocks worth of free symbols then deallocate
5414 this block. */
6feef451 5415 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
6ca94ac9 5416 {
6ca94ac9
KH
5417 *sprev = sblk->next;
5418 /* Unhook from the free list. */
5419 symbol_free_list = *(struct Lisp_Symbol **)&sblk->symbols[0].value;
c8099634
RS
5420 lisp_free (sblk);
5421 n_symbol_blocks--;
6ca94ac9
KH
5422 }
5423 else
6feef451
AS
5424 {
5425 num_free += this_free;
5426 sprev = &sblk->next;
5427 }
7146af97
JB
5428 }
5429 total_symbols = num_used;
5430 total_free_symbols = num_free;
5431 }
5432
a9faeabe
RS
5433 /* Put all unmarked misc's on free list.
5434 For a marker, first unchain it from the buffer it points into. */
7146af97
JB
5435 {
5436 register struct marker_block *mblk;
6ca94ac9 5437 struct marker_block **mprev = &marker_block;
7146af97
JB
5438 register int lim = marker_block_index;
5439 register int num_free = 0, num_used = 0;
5440
5441 marker_free_list = 0;
177c0ea7 5442
6ca94ac9 5443 for (mblk = marker_block; mblk; mblk = *mprev)
7146af97
JB
5444 {
5445 register int i;
6ca94ac9 5446 int this_free = 0;
fa05e253 5447
7146af97 5448 for (i = 0; i < lim; i++)
465edf35 5449 {
2336fe58 5450 if (!mblk->markers[i].u_marker.gcmarkbit)
465edf35 5451 {
a5da44fe 5452 if (mblk->markers[i].u_marker.type == Lisp_Misc_Marker)
ef89c2ce 5453 unchain_marker (&mblk->markers[i].u_marker);
fa05e253
RS
5454 /* Set the type of the freed object to Lisp_Misc_Free.
5455 We could leave the type alone, since nobody checks it,
465edf35 5456 but this might catch bugs faster. */
a5da44fe 5457 mblk->markers[i].u_marker.type = Lisp_Misc_Free;
465edf35
KH
5458 mblk->markers[i].u_free.chain = marker_free_list;
5459 marker_free_list = &mblk->markers[i];
6ca94ac9 5460 this_free++;
465edf35
KH
5461 }
5462 else
5463 {
5464 num_used++;
2336fe58 5465 mblk->markers[i].u_marker.gcmarkbit = 0;
465edf35
KH
5466 }
5467 }
7146af97 5468 lim = MARKER_BLOCK_SIZE;
6ca94ac9
KH
5469 /* If this block contains only free markers and we have already
5470 seen more than two blocks worth of free markers then deallocate
5471 this block. */
6feef451 5472 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
6ca94ac9 5473 {
6ca94ac9
KH
5474 *mprev = mblk->next;
5475 /* Unhook from the free list. */
5476 marker_free_list = mblk->markers[0].u_free.chain;
c8099634
RS
5477 lisp_free (mblk);
5478 n_marker_blocks--;
6ca94ac9
KH
5479 }
5480 else
6feef451
AS
5481 {
5482 num_free += this_free;
5483 mprev = &mblk->next;
5484 }
7146af97
JB
5485 }
5486
5487 total_markers = num_used;
5488 total_free_markers = num_free;
5489 }
5490
5491 /* Free all unmarked buffers */
5492 {
5493 register struct buffer *buffer = all_buffers, *prev = 0, *next;
5494
5495 while (buffer)
3ef06d12 5496 if (!VECTOR_MARKED_P (buffer))
7146af97
JB
5497 {
5498 if (prev)
5499 prev->next = buffer->next;
5500 else
5501 all_buffers = buffer->next;
5502 next = buffer->next;
34400008 5503 lisp_free (buffer);
7146af97
JB
5504 buffer = next;
5505 }
5506 else
5507 {
3ef06d12 5508 VECTOR_UNMARK (buffer);
30e3190a 5509 UNMARK_BALANCE_INTERVALS (BUF_INTERVALS (buffer));
7146af97
JB
5510 prev = buffer, buffer = buffer->next;
5511 }
5512 }
5513
7146af97
JB
5514 /* Free all unmarked vectors */
5515 {
5516 register struct Lisp_Vector *vector = all_vectors, *prev = 0, *next;
5517 total_vector_size = 0;
5518
5519 while (vector)
3ef06d12 5520 if (!VECTOR_MARKED_P (vector))
7146af97
JB
5521 {
5522 if (prev)
5523 prev->next = vector->next;
5524 else
5525 all_vectors = vector->next;
5526 next = vector->next;
c8099634
RS
5527 lisp_free (vector);
5528 n_vectors--;
7146af97 5529 vector = next;
41c28a37 5530
7146af97
JB
5531 }
5532 else
5533 {
3ef06d12 5534 VECTOR_UNMARK (vector);
fa05e253
RS
5535 if (vector->size & PSEUDOVECTOR_FLAG)
5536 total_vector_size += (PSEUDOVECTOR_SIZE_MASK & vector->size);
5537 else
5538 total_vector_size += vector->size;
7146af97
JB
5539 prev = vector, vector = vector->next;
5540 }
5541 }
177c0ea7 5542
676a7251
GM
5543#ifdef GC_CHECK_STRING_BYTES
5544 if (!noninteractive)
5545 check_string_bytes (1);
5546#endif
7146af97 5547}
7146af97 5548
7146af97 5549
7146af97 5550
7146af97 5551\f
20d24714
JB
5552/* Debugging aids. */
5553
31ce1c91 5554DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
a6266d23 5555 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
228299fa 5556This may be helpful in debugging Emacs's memory usage.
7ee72033
MB
5557We divide the value by 1024 to make sure it fits in a Lisp integer. */)
5558 ()
20d24714
JB
5559{
5560 Lisp_Object end;
5561
45d12a89 5562 XSETINT (end, (EMACS_INT) sbrk (0) / 1024);
20d24714
JB
5563
5564 return end;
5565}
5566
310ea200 5567DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
a6266d23 5568 doc: /* Return a list of counters that measure how much consing there has been.
228299fa
GM
5569Each of these counters increments for a certain kind of object.
5570The counters wrap around from the largest positive integer to zero.
5571Garbage collection does not decrease them.
5572The elements of the value are as follows:
5573 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
5574All are in units of 1 = one object consed
5575except for VECTOR-CELLS and STRING-CHARS, which count the total length of
5576objects consed.
5577MISCS include overlays, markers, and some internal types.
5578Frames, windows, buffers, and subprocesses count as vectors
7ee72033
MB
5579 (but the contents of a buffer's text do not count here). */)
5580 ()
310ea200 5581{
2e471eb5 5582 Lisp_Object consed[8];
310ea200 5583
78e985eb
GM
5584 consed[0] = make_number (min (MOST_POSITIVE_FIXNUM, cons_cells_consed));
5585 consed[1] = make_number (min (MOST_POSITIVE_FIXNUM, floats_consed));
5586 consed[2] = make_number (min (MOST_POSITIVE_FIXNUM, vector_cells_consed));
5587 consed[3] = make_number (min (MOST_POSITIVE_FIXNUM, symbols_consed));
5588 consed[4] = make_number (min (MOST_POSITIVE_FIXNUM, string_chars_consed));
5589 consed[5] = make_number (min (MOST_POSITIVE_FIXNUM, misc_objects_consed));
5590 consed[6] = make_number (min (MOST_POSITIVE_FIXNUM, intervals_consed));
5591 consed[7] = make_number (min (MOST_POSITIVE_FIXNUM, strings_consed));
310ea200 5592
2e471eb5 5593 return Flist (8, consed);
310ea200 5594}
e0b8c689
KR
5595
5596int suppress_checking;
5597void
5598die (msg, file, line)
5599 const char *msg;
5600 const char *file;
5601 int line;
5602{
5603 fprintf (stderr, "\r\nEmacs fatal error: %s:%d: %s\r\n",
5604 file, line, msg);
5605 abort ();
5606}
20d24714 5607\f
7146af97
JB
5608/* Initialization */
5609
dfcf069d 5610void
7146af97
JB
5611init_alloc_once ()
5612{
5613 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
9e713715
GM
5614 purebeg = PUREBEG;
5615 pure_size = PURESIZE;
1f0b3fd2 5616 pure_bytes_used = 0;
9e713715
GM
5617 pure_bytes_used_before_overflow = 0;
5618
ab6780cd
SM
5619 /* Initialize the list of free aligned blocks. */
5620 free_ablock = NULL;
5621
877935b1 5622#if GC_MARK_STACK || defined GC_MALLOC_CHECK
34400008
GM
5623 mem_init ();
5624 Vdead = make_pure_string ("DEAD", 4, 4, 0);
5625#endif
9e713715 5626
7146af97
JB
5627 all_vectors = 0;
5628 ignore_warnings = 1;
d1658221
RS
5629#ifdef DOUG_LEA_MALLOC
5630 mallopt (M_TRIM_THRESHOLD, 128*1024); /* trim threshold */
5631 mallopt (M_MMAP_THRESHOLD, 64*1024); /* mmap threshold */
81d492d5 5632 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* max. number of mmap'ed areas */
d1658221 5633#endif
7146af97
JB
5634 init_strings ();
5635 init_cons ();
5636 init_symbol ();
5637 init_marker ();
7146af97 5638 init_float ();
34400008 5639 init_intervals ();
d5e35230 5640
276cbe5a
RS
5641#ifdef REL_ALLOC
5642 malloc_hysteresis = 32;
5643#else
5644 malloc_hysteresis = 0;
5645#endif
5646
5647 spare_memory = (char *) malloc (SPARE_MEMORY);
5648
7146af97
JB
5649 ignore_warnings = 0;
5650 gcprolist = 0;
630686c8 5651 byte_stack_list = 0;
7146af97
JB
5652 staticidx = 0;
5653 consing_since_gc = 0;
7d179cea 5654 gc_cons_threshold = 100000 * sizeof (Lisp_Object);
7146af97
JB
5655#ifdef VIRT_ADDR_VARIES
5656 malloc_sbrk_unused = 1<<22; /* A large number */
5657 malloc_sbrk_used = 100000; /* as reasonable as any number */
5658#endif /* VIRT_ADDR_VARIES */
5659}
5660
dfcf069d 5661void
7146af97
JB
5662init_alloc ()
5663{
5664 gcprolist = 0;
630686c8 5665 byte_stack_list = 0;
182ff242
GM
5666#if GC_MARK_STACK
5667#if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
5668 setjmp_tested_p = longjmps_done = 0;
5669#endif
5670#endif
2c5bd608
DL
5671 Vgc_elapsed = make_float (0.0);
5672 gcs_done = 0;
7146af97
JB
5673}
5674
5675void
5676syms_of_alloc ()
5677{
7ee72033 5678 DEFVAR_INT ("gc-cons-threshold", &gc_cons_threshold,
a6266d23 5679 doc: /* *Number of bytes of consing between garbage collections.
228299fa
GM
5680Garbage collection can happen automatically once this many bytes have been
5681allocated since the last garbage collection. All data types count.
7146af97 5682
228299fa 5683Garbage collection happens automatically only when `eval' is called.
7146af97 5684
228299fa
GM
5685By binding this temporarily to a large number, you can effectively
5686prevent garbage collection during a part of the program. */);
0819585c 5687
7ee72033 5688 DEFVAR_INT ("pure-bytes-used", &pure_bytes_used,
a6266d23 5689 doc: /* Number of bytes of sharable Lisp data allocated so far. */);
0819585c 5690
7ee72033 5691 DEFVAR_INT ("cons-cells-consed", &cons_cells_consed,
a6266d23 5692 doc: /* Number of cons cells that have been consed so far. */);
0819585c 5693
7ee72033 5694 DEFVAR_INT ("floats-consed", &floats_consed,
a6266d23 5695 doc: /* Number of floats that have been consed so far. */);
0819585c 5696
7ee72033 5697 DEFVAR_INT ("vector-cells-consed", &vector_cells_consed,
a6266d23 5698 doc: /* Number of vector cells that have been consed so far. */);
0819585c 5699
7ee72033 5700 DEFVAR_INT ("symbols-consed", &symbols_consed,
a6266d23 5701 doc: /* Number of symbols that have been consed so far. */);
0819585c 5702
7ee72033 5703 DEFVAR_INT ("string-chars-consed", &string_chars_consed,
a6266d23 5704 doc: /* Number of string characters that have been consed so far. */);
0819585c 5705
7ee72033 5706 DEFVAR_INT ("misc-objects-consed", &misc_objects_consed,
a6266d23 5707 doc: /* Number of miscellaneous objects that have been consed so far. */);
2e471eb5 5708
7ee72033 5709 DEFVAR_INT ("intervals-consed", &intervals_consed,
a6266d23 5710 doc: /* Number of intervals that have been consed so far. */);
7146af97 5711
7ee72033 5712 DEFVAR_INT ("strings-consed", &strings_consed,
a6266d23 5713 doc: /* Number of strings that have been consed so far. */);
228299fa 5714
7ee72033 5715 DEFVAR_LISP ("purify-flag", &Vpurify_flag,
a6266d23 5716 doc: /* Non-nil means loading Lisp code in order to dump an executable.
228299fa
GM
5717This means that certain objects should be allocated in shared (pure) space. */);
5718
7ee72033 5719 DEFVAR_INT ("undo-limit", &undo_limit,
a6266d23 5720 doc: /* Keep no more undo information once it exceeds this size.
228299fa
GM
5721This limit is applied when garbage collection happens.
5722The size is counted as the number of bytes occupied,
5723which includes both saved text and other data. */);
502b9b64 5724 undo_limit = 20000;
7146af97 5725
7ee72033 5726 DEFVAR_INT ("undo-strong-limit", &undo_strong_limit,
a6266d23 5727 doc: /* Don't keep more than this much size of undo information.
228299fa
GM
5728A command which pushes past this size is itself forgotten.
5729This limit is applied when garbage collection happens.
5730The size is counted as the number of bytes occupied,
5731which includes both saved text and other data. */);
502b9b64 5732 undo_strong_limit = 30000;
7146af97 5733
7ee72033 5734 DEFVAR_BOOL ("garbage-collection-messages", &garbage_collection_messages,
a6266d23 5735 doc: /* Non-nil means display messages at start and end of garbage collection. */);
299585ee
RS
5736 garbage_collection_messages = 0;
5737
7ee72033 5738 DEFVAR_LISP ("post-gc-hook", &Vpost_gc_hook,
a6266d23 5739 doc: /* Hook run after garbage collection has finished. */);
9e713715
GM
5740 Vpost_gc_hook = Qnil;
5741 Qpost_gc_hook = intern ("post-gc-hook");
5742 staticpro (&Qpost_gc_hook);
5743
74a54b04
RS
5744 DEFVAR_LISP ("memory-signal-data", &Vmemory_signal_data,
5745 doc: /* Precomputed `signal' argument for memory-full error. */);
bcb61d60
KH
5746 /* We build this in advance because if we wait until we need it, we might
5747 not be able to allocate the memory to hold it. */
74a54b04
RS
5748 Vmemory_signal_data
5749 = list2 (Qerror,
5750 build_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"));
5751
5752 DEFVAR_LISP ("memory-full", &Vmemory_full,
5753 doc: /* Non-nil means we are handling a memory-full error. */);
5754 Vmemory_full = Qnil;
bcb61d60 5755
e8197642
RS
5756 staticpro (&Qgc_cons_threshold);
5757 Qgc_cons_threshold = intern ("gc-cons-threshold");
5758
a59de17b
RS
5759 staticpro (&Qchar_table_extra_slots);
5760 Qchar_table_extra_slots = intern ("char-table-extra-slots");
5761
2c5bd608
DL
5762 DEFVAR_LISP ("gc-elapsed", &Vgc_elapsed,
5763 doc: /* Accumulated time elapsed in garbage collections.
e7415487 5764The time is in seconds as a floating point value. */);
2c5bd608 5765 DEFVAR_INT ("gcs-done", &gcs_done,
e7415487 5766 doc: /* Accumulated number of garbage collections done. */);
2c5bd608 5767
7146af97
JB
5768 defsubr (&Scons);
5769 defsubr (&Slist);
5770 defsubr (&Svector);
5771 defsubr (&Smake_byte_code);
5772 defsubr (&Smake_list);
5773 defsubr (&Smake_vector);
7b07587b 5774 defsubr (&Smake_char_table);
7146af97 5775 defsubr (&Smake_string);
7b07587b 5776 defsubr (&Smake_bool_vector);
7146af97
JB
5777 defsubr (&Smake_symbol);
5778 defsubr (&Smake_marker);
5779 defsubr (&Spurecopy);
5780 defsubr (&Sgarbage_collect);
20d24714 5781 defsubr (&Smemory_limit);
310ea200 5782 defsubr (&Smemory_use_counts);
34400008
GM
5783
5784#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5785 defsubr (&Sgc_status);
5786#endif
7146af97 5787}