* vc/ediff-diff.el (ediff-same-file-contents): Fix it for remote
[bpt/emacs.git] / src / alloc.c
CommitLineData
7146af97 1/* Storage allocation and gc for GNU Emacs Lisp interpreter.
999dd333
GM
2
3Copyright (C) 1985-1986, 1988, 1993-1995, 1997-2012
4 Free Software Foundation, Inc.
7146af97
JB
5
6This file is part of GNU Emacs.
7
9ec0b715 8GNU Emacs is free software: you can redistribute it and/or modify
7146af97 9it under the terms of the GNU General Public License as published by
9ec0b715
GM
10the Free Software Foundation, either version 3 of the License, or
11(at your option) any later version.
7146af97
JB
12
13GNU Emacs is distributed in the hope that it will be useful,
14but WITHOUT ANY WARRANTY; without even the implied warranty of
15MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16GNU General Public License for more details.
17
18You should have received a copy of the GNU General Public License
9ec0b715 19along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
7146af97 20
18160b98 21#include <config.h>
e9b309ac 22#include <stdio.h>
ab6780cd 23#include <limits.h> /* For CHAR_BIT. */
d7306fe6 24#include <setjmp.h>
92939d31 25
68c45bf0 26#include <signal.h>
92939d31 27
ae9e757a 28#ifdef HAVE_PTHREAD
aa477689
JD
29#include <pthread.h>
30#endif
31
7539e11f
KR
32/* This file is part of the core Lisp implementation, and thus must
33 deal with the real data structures. If the Lisp implementation is
34 replaced, this file likely will not be used. */
2e471eb5 35
7539e11f 36#undef HIDE_LISP_IMPLEMENTATION
7146af97 37#include "lisp.h"
ece93c02 38#include "process.h"
d5e35230 39#include "intervals.h"
4c0be5f4 40#include "puresize.h"
e5560ff7 41#include "character.h"
7146af97
JB
42#include "buffer.h"
43#include "window.h"
2538fae4 44#include "keyboard.h"
502b9b64 45#include "frame.h"
9ac0d9e0 46#include "blockinput.h"
e065a56e 47#include "syssignal.h"
4a729fd8 48#include "termhooks.h" /* For struct terminal. */
34400008 49#include <setjmp.h>
0065d054 50#include <verify.h>
e065a56e 51
52828e02
PE
52/* GC_CHECK_MARKED_OBJECTS means do sanity checks on allocated objects.
53 Doable only if GC_MARK_STACK. */
54#if ! GC_MARK_STACK
55# undef GC_CHECK_MARKED_OBJECTS
56#endif
57
6b61353c 58/* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
52828e02
PE
59 memory. Can do this only if using gmalloc.c and if not checking
60 marked objects. */
6b61353c 61
52828e02
PE
62#if (defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC \
63 || defined GC_CHECK_MARKED_OBJECTS)
6b61353c
KH
64#undef GC_MALLOC_CHECK
65#endif
66
bf952fb6 67#include <unistd.h>
4004364e 68#ifndef HAVE_UNISTD_H
261cb4bb 69extern void *sbrk ();
bf952fb6 70#endif
ee1eea5c 71
de7124a7 72#include <fcntl.h>
de7124a7 73
69666f77 74#ifdef WINDOWSNT
f892cf9c 75#include "w32.h"
69666f77
EZ
76#endif
77
d1658221 78#ifdef DOUG_LEA_MALLOC
2e471eb5 79
d1658221 80#include <malloc.h>
81d492d5 81
2e471eb5
GM
82/* Specify maximum number of areas to mmap. It would be nice to use a
83 value that explicitly means "no limit". */
84
81d492d5
RS
85#define MMAP_MAX_AREAS 100000000
86
2e471eb5
GM
87#else /* not DOUG_LEA_MALLOC */
88
276cbe5a
RS
89/* The following come from gmalloc.c. */
90
5e927815
PE
91extern size_t _bytes_used;
92extern size_t __malloc_extra_blocks;
b62a57be
PE
93extern void *_malloc_internal (size_t);
94extern void _free_internal (void *);
2e471eb5
GM
95
96#endif /* not DOUG_LEA_MALLOC */
276cbe5a 97
7bc26fdb 98#if ! defined SYSTEM_MALLOC && ! defined SYNC_INPUT
ae9e757a 99#ifdef HAVE_PTHREAD
aa477689 100
f415cacd
JD
101/* When GTK uses the file chooser dialog, different backends can be loaded
102 dynamically. One such a backend is the Gnome VFS backend that gets loaded
103 if you run Gnome. That backend creates several threads and also allocates
104 memory with malloc.
105
ae9e757a
JD
106 Also, gconf and gsettings may create several threads.
107
f415cacd
JD
108 If Emacs sets malloc hooks (! SYSTEM_MALLOC) and the emacs_blocked_*
109 functions below are called from malloc, there is a chance that one
110 of these threads preempts the Emacs main thread and the hook variables
333f1b6f 111 end up in an inconsistent state. So we have a mutex to prevent that (note
f415cacd
JD
112 that the backend handles concurrent access to malloc within its own threads
113 but Emacs code running in the main thread is not included in that control).
114
026cdede 115 When UNBLOCK_INPUT is called, reinvoke_input_signal may be called. If this
f415cacd
JD
116 happens in one of the backend threads we will have two threads that tries
117 to run Emacs code at once, and the code is not prepared for that.
118 To prevent that, we only call BLOCK/UNBLOCK from the main thread. */
119
aa477689 120static pthread_mutex_t alloc_mutex;
aa477689 121
959dc601
JD
122#define BLOCK_INPUT_ALLOC \
123 do \
124 { \
125 if (pthread_equal (pthread_self (), main_thread)) \
86302e37 126 BLOCK_INPUT; \
959dc601
JD
127 pthread_mutex_lock (&alloc_mutex); \
128 } \
aa477689 129 while (0)
959dc601
JD
130#define UNBLOCK_INPUT_ALLOC \
131 do \
132 { \
133 pthread_mutex_unlock (&alloc_mutex); \
134 if (pthread_equal (pthread_self (), main_thread)) \
86302e37 135 UNBLOCK_INPUT; \
959dc601 136 } \
aa477689
JD
137 while (0)
138
ae9e757a 139#else /* ! defined HAVE_PTHREAD */
aa477689
JD
140
141#define BLOCK_INPUT_ALLOC BLOCK_INPUT
142#define UNBLOCK_INPUT_ALLOC UNBLOCK_INPUT
143
ae9e757a 144#endif /* ! defined HAVE_PTHREAD */
7bc26fdb 145#endif /* ! defined SYSTEM_MALLOC && ! defined SYNC_INPUT */
aa477689 146
2e471eb5
GM
147/* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
148 to a struct Lisp_String. */
149
7cdee936
SM
150#define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
151#define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
b059de99 152#define STRING_MARKED_P(S) (((S)->size & ARRAY_MARK_FLAG) != 0)
2e471eb5 153
eab3844f
PE
154#define VECTOR_MARK(V) ((V)->header.size |= ARRAY_MARK_FLAG)
155#define VECTOR_UNMARK(V) ((V)->header.size &= ~ARRAY_MARK_FLAG)
156#define VECTOR_MARKED_P(V) (((V)->header.size & ARRAY_MARK_FLAG) != 0)
3ef06d12 157
7bc26fdb
PE
158/* Value is the number of bytes of S, a pointer to a struct Lisp_String.
159 Be careful during GC, because S->size contains the mark bit for
2e471eb5
GM
160 strings. */
161
3ef06d12 162#define GC_STRING_BYTES(S) (STRING_BYTES (S))
2e471eb5 163
29208e82
TT
164/* Global variables. */
165struct emacs_globals globals;
166
2e471eb5
GM
167/* Number of bytes of consing done since the last gc. */
168
0de4bb68 169EMACS_INT consing_since_gc;
7146af97 170
974aae61
RS
171/* Similar minimum, computed from Vgc_cons_percentage. */
172
173EMACS_INT gc_relative_threshold;
310ea200 174
24d8a105
RS
175/* Minimum number of bytes of consing since GC before next GC,
176 when memory is full. */
177
178EMACS_INT memory_full_cons_threshold;
179
2e471eb5
GM
180/* Nonzero during GC. */
181
7146af97
JB
182int gc_in_progress;
183
3de0effb
RS
184/* Nonzero means abort if try to GC.
185 This is for code which is written on the assumption that
186 no GC will happen, so as to verify that assumption. */
187
188int abort_on_gc;
189
34400008
GM
190/* Number of live and free conses etc. */
191
c0c5c8ae
PE
192static EMACS_INT total_conses, total_markers, total_symbols, total_vector_size;
193static EMACS_INT total_free_conses, total_free_markers, total_free_symbols;
194static EMACS_INT total_free_floats, total_floats;
fd27a537 195
2e471eb5 196/* Points to memory space allocated as "spare", to be freed if we run
24d8a105
RS
197 out of memory. We keep one large block, four cons-blocks, and
198 two string blocks. */
2e471eb5 199
d3d47262 200static char *spare_memory[7];
276cbe5a 201
2b6148e4
PE
202/* Amount of spare memory to keep in large reserve block, or to see
203 whether this much is available when malloc fails on a larger request. */
2e471eb5 204
276cbe5a 205#define SPARE_MEMORY (1 << 14)
4d09bcf6 206
276cbe5a 207/* Number of extra blocks malloc should get when it needs more core. */
2e471eb5 208
276cbe5a
RS
209static int malloc_hysteresis;
210
1b8950e5
RS
211/* Initialize it to a nonzero value to force it into data space
212 (rather than bss space). That way unexec will remap it into text
213 space (pure), on some systems. We have not implemented the
214 remapping on more recent systems because this is less important
215 nowadays than in the days of small memories and timesharing. */
2e471eb5 216
2c4685ee 217EMACS_INT pure[(PURESIZE + sizeof (EMACS_INT) - 1) / sizeof (EMACS_INT)] = {1,};
7146af97 218#define PUREBEG (char *) pure
2e471eb5 219
9e713715 220/* Pointer to the pure area, and its size. */
2e471eb5 221
9e713715 222static char *purebeg;
903fe15d 223static ptrdiff_t pure_size;
9e713715
GM
224
225/* Number of bytes of pure storage used before pure storage overflowed.
226 If this is non-zero, this implies that an overflow occurred. */
227
903fe15d 228static ptrdiff_t pure_bytes_used_before_overflow;
7146af97 229
34400008
GM
230/* Value is non-zero if P points into pure space. */
231
232#define PURE_POINTER_P(P) \
6a0bf43d 233 ((uintptr_t) (P) - (uintptr_t) purebeg <= pure_size)
34400008 234
e5bc14d4
YM
235/* Index in pure at which next pure Lisp object will be allocated.. */
236
d311d28c 237static ptrdiff_t pure_bytes_used_lisp;
e5bc14d4
YM
238
239/* Number of bytes allocated for non-Lisp objects in pure storage. */
240
d311d28c 241static ptrdiff_t pure_bytes_used_non_lisp;
e5bc14d4 242
2e471eb5
GM
243/* If nonzero, this is a warning delivered by malloc and not yet
244 displayed. */
245
a8fe7202 246const char *pending_malloc_warning;
7146af97
JB
247
248/* Maximum amount of C stack to save when a GC happens. */
249
250#ifndef MAX_SAVE_STACK
251#define MAX_SAVE_STACK 16000
252#endif
253
254/* Buffer in which we save a copy of the C stack at each GC. */
255
dd3f25f7 256#if MAX_SAVE_STACK > 0
d3d47262 257static char *stack_copy;
903fe15d 258static ptrdiff_t stack_copy_size;
dd3f25f7 259#endif
7146af97 260
2e471eb5
GM
261/* Non-zero means ignore malloc warnings. Set during initialization.
262 Currently not used. */
263
d3d47262 264static int ignore_warnings;
350273a4 265
955cbe7b
PE
266static Lisp_Object Qgc_cons_threshold;
267Lisp_Object Qchar_table_extra_slots;
e8197642 268
9e713715
GM
269/* Hook run after GC has finished. */
270
955cbe7b 271static Lisp_Object Qpost_gc_hook;
2c5bd608 272
f57e2426 273static void mark_terminals (void);
f57e2426 274static void gc_sweep (void);
72cb32cf 275static Lisp_Object make_pure_vector (ptrdiff_t);
f57e2426
J
276static void mark_glyph_matrix (struct glyph_matrix *);
277static void mark_face_cache (struct face_cache *);
41c28a37 278
69003fd8
PE
279#if !defined REL_ALLOC || defined SYSTEM_MALLOC
280static void refill_memory_reserve (void);
281#endif
f57e2426
J
282static struct Lisp_String *allocate_string (void);
283static void compact_small_strings (void);
284static void free_large_strings (void);
285static void sweep_strings (void);
244ed907 286static void free_misc (Lisp_Object);
196e41e4 287extern Lisp_Object which_symbols (Lisp_Object, EMACS_INT) EXTERNALLY_VISIBLE;
34400008 288
34400008
GM
289/* When scanning the C stack for live Lisp objects, Emacs keeps track
290 of what memory allocated via lisp_malloc is intended for what
291 purpose. This enumeration specifies the type of memory. */
292
293enum mem_type
294{
295 MEM_TYPE_NON_LISP,
296 MEM_TYPE_BUFFER,
297 MEM_TYPE_CONS,
298 MEM_TYPE_STRING,
299 MEM_TYPE_MISC,
300 MEM_TYPE_SYMBOL,
301 MEM_TYPE_FLOAT,
9c545a55
SM
302 /* We used to keep separate mem_types for subtypes of vectors such as
303 process, hash_table, frame, terminal, and window, but we never made
304 use of the distinction, so it only caused source-code complexity
305 and runtime slowdown. Minor but pointless. */
f3372c87
DA
306 MEM_TYPE_VECTORLIKE,
307 /* Special type to denote vector blocks. */
308 MEM_TYPE_VECTOR_BLOCK
34400008
GM
309};
310
261cb4bb 311static void *lisp_malloc (size_t, enum mem_type);
225ccad6 312
24d8a105 313
877935b1 314#if GC_MARK_STACK || defined GC_MALLOC_CHECK
0b378936
GM
315
316#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
317#include <stdio.h> /* For fprintf. */
318#endif
319
320/* A unique object in pure space used to make some Lisp objects
321 on free lists recognizable in O(1). */
322
d3d47262 323static Lisp_Object Vdead;
ca78dc43 324#define DEADP(x) EQ (x, Vdead)
0b378936 325
877935b1
GM
326#ifdef GC_MALLOC_CHECK
327
328enum mem_type allocated_mem_type;
877935b1
GM
329
330#endif /* GC_MALLOC_CHECK */
331
332/* A node in the red-black tree describing allocated memory containing
333 Lisp data. Each such block is recorded with its start and end
334 address when it is allocated, and removed from the tree when it
335 is freed.
336
337 A red-black tree is a balanced binary tree with the following
338 properties:
339
340 1. Every node is either red or black.
341 2. Every leaf is black.
342 3. If a node is red, then both of its children are black.
343 4. Every simple path from a node to a descendant leaf contains
344 the same number of black nodes.
345 5. The root is always black.
346
347 When nodes are inserted into the tree, or deleted from the tree,
348 the tree is "fixed" so that these properties are always true.
349
350 A red-black tree with N internal nodes has height at most 2
351 log(N+1). Searches, insertions and deletions are done in O(log N).
352 Please see a text book about data structures for a detailed
353 description of red-black trees. Any book worth its salt should
354 describe them. */
355
356struct mem_node
357{
9f7d9210
RS
358 /* Children of this node. These pointers are never NULL. When there
359 is no child, the value is MEM_NIL, which points to a dummy node. */
360 struct mem_node *left, *right;
361
362 /* The parent of this node. In the root node, this is NULL. */
363 struct mem_node *parent;
877935b1
GM
364
365 /* Start and end of allocated region. */
366 void *start, *end;
367
368 /* Node color. */
369 enum {MEM_BLACK, MEM_RED} color;
177c0ea7 370
877935b1
GM
371 /* Memory type. */
372 enum mem_type type;
373};
374
375/* Base address of stack. Set in main. */
376
377Lisp_Object *stack_base;
378
379/* Root of the tree describing allocated Lisp memory. */
380
381static struct mem_node *mem_root;
382
ece93c02
GM
383/* Lowest and highest known address in the heap. */
384
385static void *min_heap_address, *max_heap_address;
386
877935b1
GM
387/* Sentinel node of the tree. */
388
389static struct mem_node mem_z;
390#define MEM_NIL &mem_z
391
d311d28c 392static struct Lisp_Vector *allocate_vectorlike (ptrdiff_t);
261cb4bb 393static void lisp_free (void *);
f57e2426
J
394static void mark_stack (void);
395static int live_vector_p (struct mem_node *, void *);
396static int live_buffer_p (struct mem_node *, void *);
397static int live_string_p (struct mem_node *, void *);
398static int live_cons_p (struct mem_node *, void *);
399static int live_symbol_p (struct mem_node *, void *);
400static int live_float_p (struct mem_node *, void *);
401static int live_misc_p (struct mem_node *, void *);
402static void mark_maybe_object (Lisp_Object);
3164aeac 403static void mark_memory (void *, void *);
52828e02 404#if GC_MARK_STACK || defined GC_MALLOC_CHECK
f57e2426
J
405static void mem_init (void);
406static struct mem_node *mem_insert (void *, void *, enum mem_type);
407static void mem_insert_fixup (struct mem_node *);
b62a57be 408#endif
f57e2426
J
409static void mem_rotate_left (struct mem_node *);
410static void mem_rotate_right (struct mem_node *);
411static void mem_delete (struct mem_node *);
412static void mem_delete_fixup (struct mem_node *);
55d4c1b2 413static inline struct mem_node *mem_find (void *);
34400008 414
34400008
GM
415
416#if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
f57e2426 417static void check_gcpros (void);
34400008
GM
418#endif
419
877935b1 420#endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
34400008 421
ca78dc43
PE
422#ifndef DEADP
423# define DEADP(x) 0
424#endif
425
1f0b3fd2
GM
426/* Recording what needs to be marked for gc. */
427
428struct gcpro *gcprolist;
429
379b98b1
PE
430/* Addresses of staticpro'd variables. Initialize it to a nonzero
431 value; otherwise some compilers put it into BSS. */
1f0b3fd2 432
d251c37c 433#define NSTATICS 0x650
d3d47262 434static Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
1f0b3fd2
GM
435
436/* Index of next unused slot in staticvec. */
437
d3d47262 438static int staticidx = 0;
1f0b3fd2 439
261cb4bb 440static void *pure_alloc (size_t, int);
1f0b3fd2
GM
441
442
443/* Value is SZ rounded up to the next multiple of ALIGNMENT.
444 ALIGNMENT must be a power of 2. */
445
ab6780cd 446#define ALIGN(ptr, ALIGNMENT) \
261cb4bb
PE
447 ((void *) (((uintptr_t) (ptr) + (ALIGNMENT) - 1) \
448 & ~ ((ALIGNMENT) - 1)))
1f0b3fd2 449
ece93c02 450
7146af97 451\f
34400008
GM
452/************************************************************************
453 Malloc
454 ************************************************************************/
455
4455ad75 456/* Function malloc calls this if it finds we are near exhausting storage. */
d457598b
AS
457
458void
a8fe7202 459malloc_warning (const char *str)
7146af97
JB
460{
461 pending_malloc_warning = str;
462}
463
34400008 464
4455ad75 465/* Display an already-pending malloc warning. */
34400008 466
d457598b 467void
971de7fb 468display_malloc_warning (void)
7146af97 469{
4455ad75
RS
470 call3 (intern ("display-warning"),
471 intern ("alloc"),
472 build_string (pending_malloc_warning),
473 intern ("emergency"));
7146af97 474 pending_malloc_warning = 0;
7146af97 475}
49efed3a 476\f
276cbe5a
RS
477/* Called if we can't allocate relocatable space for a buffer. */
478
479void
d311d28c 480buffer_memory_full (ptrdiff_t nbytes)
276cbe5a 481{
2e471eb5
GM
482 /* If buffers use the relocating allocator, no need to free
483 spare_memory, because we may have plenty of malloc space left
484 that we could get, and if we don't, the malloc that fails will
485 itself cause spare_memory to be freed. If buffers don't use the
486 relocating allocator, treat this like any other failing
487 malloc. */
276cbe5a
RS
488
489#ifndef REL_ALLOC
531b0165 490 memory_full (nbytes);
276cbe5a
RS
491#endif
492
2e471eb5
GM
493 /* This used to call error, but if we've run out of memory, we could
494 get infinite recursion trying to build the string. */
9b306d37 495 xsignal (Qnil, Vmemory_signal_data);
7146af97
JB
496}
497
f3372c87
DA
498/* A common multiple of the positive integers A and B. Ideally this
499 would be the least common multiple, but there's no way to do that
500 as a constant expression in C, so do the best that we can easily do. */
501#define COMMON_MULTIPLE(a, b) \
502 ((a) % (b) == 0 ? (a) : (b) % (a) == 0 ? (b) : (a) * (b))
34400008 503
c9d624c6 504#ifndef XMALLOC_OVERRUN_CHECK
903fe15d 505#define XMALLOC_OVERRUN_CHECK_OVERHEAD 0
c9d624c6 506#else
212f33f1 507
903fe15d
PE
508/* Check for overrun in malloc'ed buffers by wrapping a header and trailer
509 around each block.
bdbed949 510
f701dc2a
PE
511 The header consists of XMALLOC_OVERRUN_CHECK_SIZE fixed bytes
512 followed by XMALLOC_OVERRUN_SIZE_SIZE bytes containing the original
513 block size in little-endian order. The trailer consists of
514 XMALLOC_OVERRUN_CHECK_SIZE fixed bytes.
bdbed949
KS
515
516 The header is used to detect whether this block has been allocated
f701dc2a
PE
517 through these functions, as some low-level libc functions may
518 bypass the malloc hooks. */
bdbed949 519
212f33f1 520#define XMALLOC_OVERRUN_CHECK_SIZE 16
903fe15d 521#define XMALLOC_OVERRUN_CHECK_OVERHEAD \
38532ce6
PE
522 (2 * XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE)
523
524/* Define XMALLOC_OVERRUN_SIZE_SIZE so that (1) it's large enough to
f701dc2a
PE
525 hold a size_t value and (2) the header size is a multiple of the
526 alignment that Emacs needs for C types and for USE_LSB_TAG. */
527#define XMALLOC_BASE_ALIGNMENT \
528 offsetof ( \
529 struct { \
530 union { long double d; intmax_t i; void *p; } u; \
531 char c; \
532 }, \
533 c)
f3372c87 534
bfe3e0a2 535#if USE_LSB_TAG
f701dc2a
PE
536# define XMALLOC_HEADER_ALIGNMENT \
537 COMMON_MULTIPLE (1 << GCTYPEBITS, XMALLOC_BASE_ALIGNMENT)
38532ce6
PE
538#else
539# define XMALLOC_HEADER_ALIGNMENT XMALLOC_BASE_ALIGNMENT
540#endif
541#define XMALLOC_OVERRUN_SIZE_SIZE \
f701dc2a
PE
542 (((XMALLOC_OVERRUN_CHECK_SIZE + sizeof (size_t) \
543 + XMALLOC_HEADER_ALIGNMENT - 1) \
544 / XMALLOC_HEADER_ALIGNMENT * XMALLOC_HEADER_ALIGNMENT) \
545 - XMALLOC_OVERRUN_CHECK_SIZE)
bdbed949 546
903fe15d
PE
547static char const xmalloc_overrun_check_header[XMALLOC_OVERRUN_CHECK_SIZE] =
548 { '\x9a', '\x9b', '\xae', '\xaf',
549 '\xbf', '\xbe', '\xce', '\xcf',
550 '\xea', '\xeb', '\xec', '\xed',
551 '\xdf', '\xde', '\x9c', '\x9d' };
212f33f1 552
903fe15d
PE
553static char const xmalloc_overrun_check_trailer[XMALLOC_OVERRUN_CHECK_SIZE] =
554 { '\xaa', '\xab', '\xac', '\xad',
555 '\xba', '\xbb', '\xbc', '\xbd',
556 '\xca', '\xcb', '\xcc', '\xcd',
557 '\xda', '\xdb', '\xdc', '\xdd' };
212f33f1 558
903fe15d 559/* Insert and extract the block size in the header. */
bdbed949 560
903fe15d
PE
561static void
562xmalloc_put_size (unsigned char *ptr, size_t size)
563{
564 int i;
38532ce6 565 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
903fe15d 566 {
38532ce6 567 *--ptr = size & ((1 << CHAR_BIT) - 1);
903fe15d
PE
568 size >>= CHAR_BIT;
569 }
570}
bdbed949 571
903fe15d
PE
572static size_t
573xmalloc_get_size (unsigned char *ptr)
574{
575 size_t size = 0;
576 int i;
38532ce6
PE
577 ptr -= XMALLOC_OVERRUN_SIZE_SIZE;
578 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
903fe15d
PE
579 {
580 size <<= CHAR_BIT;
581 size += *ptr++;
582 }
583 return size;
584}
bdbed949
KS
585
586
d8f165a8
JD
587/* The call depth in overrun_check functions. For example, this might happen:
588 xmalloc()
589 overrun_check_malloc()
590 -> malloc -> (via hook)_-> emacs_blocked_malloc
591 -> overrun_check_malloc
592 call malloc (hooks are NULL, so real malloc is called).
593 malloc returns 10000.
594 add overhead, return 10016.
595 <- (back in overrun_check_malloc)
857ae68b 596 add overhead again, return 10032
d8f165a8 597 xmalloc returns 10032.
857ae68b
JD
598
599 (time passes).
600
d8f165a8
JD
601 xfree(10032)
602 overrun_check_free(10032)
903fe15d 603 decrease overhead
d8f165a8 604 free(10016) <- crash, because 10000 is the original pointer. */
857ae68b 605
903fe15d 606static ptrdiff_t check_depth;
857ae68b 607
bdbed949
KS
608/* Like malloc, but wraps allocated block with header and trailer. */
609
261cb4bb 610static void *
e7974947 611overrun_check_malloc (size_t size)
212f33f1 612{
bdbed949 613 register unsigned char *val;
903fe15d
PE
614 int overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_OVERHEAD : 0;
615 if (SIZE_MAX - overhead < size)
616 abort ();
212f33f1 617
857ae68b
JD
618 val = (unsigned char *) malloc (size + overhead);
619 if (val && check_depth == 1)
212f33f1 620 {
903fe15d 621 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
38532ce6 622 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
903fe15d 623 xmalloc_put_size (val, size);
72af86bd
AS
624 memcpy (val + size, xmalloc_overrun_check_trailer,
625 XMALLOC_OVERRUN_CHECK_SIZE);
212f33f1 626 }
857ae68b 627 --check_depth;
261cb4bb 628 return val;
212f33f1
KS
629}
630
bdbed949
KS
631
632/* Like realloc, but checks old block for overrun, and wraps new block
633 with header and trailer. */
634
261cb4bb
PE
635static void *
636overrun_check_realloc (void *block, size_t size)
212f33f1 637{
e7974947 638 register unsigned char *val = (unsigned char *) block;
903fe15d
PE
639 int overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_OVERHEAD : 0;
640 if (SIZE_MAX - overhead < size)
641 abort ();
212f33f1
KS
642
643 if (val
857ae68b 644 && check_depth == 1
72af86bd 645 && memcmp (xmalloc_overrun_check_header,
38532ce6 646 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
903fe15d 647 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
212f33f1 648 {
903fe15d 649 size_t osize = xmalloc_get_size (val);
72af86bd
AS
650 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
651 XMALLOC_OVERRUN_CHECK_SIZE))
212f33f1 652 abort ();
72af86bd 653 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
38532ce6
PE
654 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
655 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
212f33f1
KS
656 }
657
261cb4bb 658 val = realloc (val, size + overhead);
212f33f1 659
857ae68b 660 if (val && check_depth == 1)
212f33f1 661 {
903fe15d 662 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
38532ce6 663 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
903fe15d 664 xmalloc_put_size (val, size);
72af86bd
AS
665 memcpy (val + size, xmalloc_overrun_check_trailer,
666 XMALLOC_OVERRUN_CHECK_SIZE);
212f33f1 667 }
857ae68b 668 --check_depth;
261cb4bb 669 return val;
212f33f1
KS
670}
671
bdbed949
KS
672/* Like free, but checks block for overrun. */
673
2538aa2f 674static void
261cb4bb 675overrun_check_free (void *block)
212f33f1 676{
e7974947 677 unsigned char *val = (unsigned char *) block;
212f33f1 678
857ae68b 679 ++check_depth;
212f33f1 680 if (val
857ae68b 681 && check_depth == 1
72af86bd 682 && memcmp (xmalloc_overrun_check_header,
38532ce6 683 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
903fe15d 684 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
212f33f1 685 {
903fe15d 686 size_t osize = xmalloc_get_size (val);
72af86bd
AS
687 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
688 XMALLOC_OVERRUN_CHECK_SIZE))
212f33f1 689 abort ();
454d7973 690#ifdef XMALLOC_CLEAR_FREE_MEMORY
38532ce6 691 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
903fe15d 692 memset (val, 0xff, osize + XMALLOC_OVERRUN_CHECK_OVERHEAD);
454d7973 693#else
72af86bd 694 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
38532ce6
PE
695 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
696 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
454d7973 697#endif
212f33f1
KS
698 }
699
700 free (val);
857ae68b 701 --check_depth;
212f33f1
KS
702}
703
704#undef malloc
705#undef realloc
706#undef free
707#define malloc overrun_check_malloc
708#define realloc overrun_check_realloc
709#define free overrun_check_free
710#endif
711
dafc79fa
SM
712#ifdef SYNC_INPUT
713/* When using SYNC_INPUT, we don't call malloc from a signal handler, so
714 there's no need to block input around malloc. */
715#define MALLOC_BLOCK_INPUT ((void)0)
716#define MALLOC_UNBLOCK_INPUT ((void)0)
717#else
718#define MALLOC_BLOCK_INPUT BLOCK_INPUT
719#define MALLOC_UNBLOCK_INPUT UNBLOCK_INPUT
720#endif
bdbed949 721
34400008 722/* Like malloc but check for no memory and block interrupt input.. */
7146af97 723
261cb4bb 724void *
971de7fb 725xmalloc (size_t size)
7146af97 726{
261cb4bb 727 void *val;
7146af97 728
dafc79fa 729 MALLOC_BLOCK_INPUT;
261cb4bb 730 val = malloc (size);
dafc79fa 731 MALLOC_UNBLOCK_INPUT;
7146af97 732
2e471eb5 733 if (!val && size)
531b0165 734 memory_full (size);
7146af97
JB
735 return val;
736}
737
34400008
GM
738
739/* Like realloc but check for no memory and block interrupt input.. */
740
261cb4bb
PE
741void *
742xrealloc (void *block, size_t size)
7146af97 743{
261cb4bb 744 void *val;
7146af97 745
dafc79fa 746 MALLOC_BLOCK_INPUT;
56d2031b
JB
747 /* We must call malloc explicitly when BLOCK is 0, since some
748 reallocs don't do this. */
749 if (! block)
261cb4bb 750 val = malloc (size);
f048679d 751 else
261cb4bb 752 val = realloc (block, size);
dafc79fa 753 MALLOC_UNBLOCK_INPUT;
7146af97 754
531b0165
PE
755 if (!val && size)
756 memory_full (size);
7146af97
JB
757 return val;
758}
9ac0d9e0 759
34400008 760
005ca5c7 761/* Like free but block interrupt input. */
34400008 762
9ac0d9e0 763void
261cb4bb 764xfree (void *block)
9ac0d9e0 765{
70fdbb46
JM
766 if (!block)
767 return;
dafc79fa 768 MALLOC_BLOCK_INPUT;
9ac0d9e0 769 free (block);
dafc79fa 770 MALLOC_UNBLOCK_INPUT;
24d8a105
RS
771 /* We don't call refill_memory_reserve here
772 because that duplicates doing so in emacs_blocked_free
773 and the criterion should go there. */
9ac0d9e0
JB
774}
775
c8099634 776
0065d054
PE
777/* Other parts of Emacs pass large int values to allocator functions
778 expecting ptrdiff_t. This is portable in practice, but check it to
779 be safe. */
780verify (INT_MAX <= PTRDIFF_MAX);
781
782
783/* Allocate an array of NITEMS items, each of size ITEM_SIZE.
784 Signal an error on memory exhaustion, and block interrupt input. */
785
786void *
787xnmalloc (ptrdiff_t nitems, ptrdiff_t item_size)
788{
a54e2c05 789 eassert (0 <= nitems && 0 < item_size);
0065d054
PE
790 if (min (PTRDIFF_MAX, SIZE_MAX) / item_size < nitems)
791 memory_full (SIZE_MAX);
792 return xmalloc (nitems * item_size);
793}
794
795
796/* Reallocate an array PA to make it of NITEMS items, each of size ITEM_SIZE.
797 Signal an error on memory exhaustion, and block interrupt input. */
798
799void *
800xnrealloc (void *pa, ptrdiff_t nitems, ptrdiff_t item_size)
801{
a54e2c05 802 eassert (0 <= nitems && 0 < item_size);
0065d054
PE
803 if (min (PTRDIFF_MAX, SIZE_MAX) / item_size < nitems)
804 memory_full (SIZE_MAX);
805 return xrealloc (pa, nitems * item_size);
806}
807
808
809/* Grow PA, which points to an array of *NITEMS items, and return the
810 location of the reallocated array, updating *NITEMS to reflect its
811 new size. The new array will contain at least NITEMS_INCR_MIN more
812 items, but will not contain more than NITEMS_MAX items total.
813 ITEM_SIZE is the size of each item, in bytes.
814
815 ITEM_SIZE and NITEMS_INCR_MIN must be positive. *NITEMS must be
816 nonnegative. If NITEMS_MAX is -1, it is treated as if it were
817 infinity.
818
819 If PA is null, then allocate a new array instead of reallocating
820 the old one. Thus, to grow an array A without saving its old
821 contents, invoke xfree (A) immediately followed by xgrowalloc (0,
822 &NITEMS, ...).
823
824 Block interrupt input as needed. If memory exhaustion occurs, set
825 *NITEMS to zero if PA is null, and signal an error (i.e., do not
826 return). */
827
828void *
829xpalloc (void *pa, ptrdiff_t *nitems, ptrdiff_t nitems_incr_min,
830 ptrdiff_t nitems_max, ptrdiff_t item_size)
831{
832 /* The approximate size to use for initial small allocation
833 requests. This is the largest "small" request for the GNU C
834 library malloc. */
835 enum { DEFAULT_MXFAST = 64 * sizeof (size_t) / 4 };
836
837 /* If the array is tiny, grow it to about (but no greater than)
838 DEFAULT_MXFAST bytes. Otherwise, grow it by about 50%. */
839 ptrdiff_t n = *nitems;
840 ptrdiff_t tiny_max = DEFAULT_MXFAST / item_size - n;
841 ptrdiff_t half_again = n >> 1;
842 ptrdiff_t incr_estimate = max (tiny_max, half_again);
843
844 /* Adjust the increment according to three constraints: NITEMS_INCR_MIN,
845 NITEMS_MAX, and what the C language can represent safely. */
846 ptrdiff_t C_language_max = min (PTRDIFF_MAX, SIZE_MAX) / item_size;
847 ptrdiff_t n_max = (0 <= nitems_max && nitems_max < C_language_max
848 ? nitems_max : C_language_max);
849 ptrdiff_t nitems_incr_max = n_max - n;
850 ptrdiff_t incr = max (nitems_incr_min, min (incr_estimate, nitems_incr_max));
851
a54e2c05 852 eassert (0 < item_size && 0 < nitems_incr_min && 0 <= n && -1 <= nitems_max);
0065d054
PE
853 if (! pa)
854 *nitems = 0;
855 if (nitems_incr_max < incr)
856 memory_full (SIZE_MAX);
857 n += incr;
858 pa = xrealloc (pa, n * item_size);
859 *nitems = n;
860 return pa;
861}
862
863
dca7c6a8
GM
864/* Like strdup, but uses xmalloc. */
865
866char *
971de7fb 867xstrdup (const char *s)
dca7c6a8 868{
675d5130 869 size_t len = strlen (s) + 1;
dca7c6a8 870 char *p = (char *) xmalloc (len);
72af86bd 871 memcpy (p, s, len);
dca7c6a8
GM
872 return p;
873}
874
875
f61bef8b
KS
876/* Unwind for SAFE_ALLOCA */
877
878Lisp_Object
971de7fb 879safe_alloca_unwind (Lisp_Object arg)
f61bef8b 880{
b766f870
KS
881 register struct Lisp_Save_Value *p = XSAVE_VALUE (arg);
882
883 p->dogc = 0;
884 xfree (p->pointer);
885 p->pointer = 0;
7b7990cc 886 free_misc (arg);
f61bef8b
KS
887 return Qnil;
888}
889
890
34400008
GM
891/* Like malloc but used for allocating Lisp data. NBYTES is the
892 number of bytes to allocate, TYPE describes the intended use of the
91af3942 893 allocated memory block (for strings, for conses, ...). */
34400008 894
bfe3e0a2
PE
895#if ! USE_LSB_TAG
896void *lisp_malloc_loser EXTERNALLY_VISIBLE;
212f33f1 897#endif
918a23a7 898
261cb4bb 899static void *
971de7fb 900lisp_malloc (size_t nbytes, enum mem_type type)
c8099634 901{
34400008 902 register void *val;
c8099634 903
dafc79fa 904 MALLOC_BLOCK_INPUT;
877935b1
GM
905
906#ifdef GC_MALLOC_CHECK
907 allocated_mem_type = type;
908#endif
177c0ea7 909
34400008 910 val = (void *) malloc (nbytes);
c8099634 911
bfe3e0a2 912#if ! USE_LSB_TAG
918a23a7
RS
913 /* If the memory just allocated cannot be addressed thru a Lisp
914 object's pointer, and it needs to be,
915 that's equivalent to running out of memory. */
916 if (val && type != MEM_TYPE_NON_LISP)
917 {
918 Lisp_Object tem;
919 XSETCONS (tem, (char *) val + nbytes - 1);
920 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
921 {
922 lisp_malloc_loser = val;
923 free (val);
924 val = 0;
925 }
926 }
6b61353c 927#endif
918a23a7 928
877935b1 929#if GC_MARK_STACK && !defined GC_MALLOC_CHECK
dca7c6a8 930 if (val && type != MEM_TYPE_NON_LISP)
34400008
GM
931 mem_insert (val, (char *) val + nbytes, type);
932#endif
177c0ea7 933
dafc79fa 934 MALLOC_UNBLOCK_INPUT;
dca7c6a8 935 if (!val && nbytes)
531b0165 936 memory_full (nbytes);
c8099634
RS
937 return val;
938}
939
34400008
GM
940/* Free BLOCK. This must be called to free memory allocated with a
941 call to lisp_malloc. */
942
bf952fb6 943static void
261cb4bb 944lisp_free (void *block)
c8099634 945{
dafc79fa 946 MALLOC_BLOCK_INPUT;
c8099634 947 free (block);
877935b1 948#if GC_MARK_STACK && !defined GC_MALLOC_CHECK
34400008
GM
949 mem_delete (mem_find (block));
950#endif
dafc79fa 951 MALLOC_UNBLOCK_INPUT;
c8099634 952}
34400008 953
453b951e
SM
954/***** Allocation of aligned blocks of memory to store Lisp data. *****/
955
956/* The entry point is lisp_align_malloc which returns blocks of at most
957 BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
ab6780cd 958
b4181b01
KS
959#if defined (HAVE_POSIX_MEMALIGN) && defined (SYSTEM_MALLOC)
960#define USE_POSIX_MEMALIGN 1
961#endif
ab6780cd
SM
962
963/* BLOCK_ALIGN has to be a power of 2. */
964#define BLOCK_ALIGN (1 << 10)
ab6780cd
SM
965
966/* Padding to leave at the end of a malloc'd block. This is to give
967 malloc a chance to minimize the amount of memory wasted to alignment.
968 It should be tuned to the particular malloc library used.
19bcad1f
SM
969 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
970 posix_memalign on the other hand would ideally prefer a value of 4
971 because otherwise, there's 1020 bytes wasted between each ablocks.
f501ccb4
SM
972 In Emacs, testing shows that those 1020 can most of the time be
973 efficiently used by malloc to place other objects, so a value of 0 can
974 still preferable unless you have a lot of aligned blocks and virtually
975 nothing else. */
19bcad1f
SM
976#define BLOCK_PADDING 0
977#define BLOCK_BYTES \
0b432f21 978 (BLOCK_ALIGN - sizeof (struct ablocks *) - BLOCK_PADDING)
19bcad1f
SM
979
980/* Internal data structures and constants. */
981
ab6780cd
SM
982#define ABLOCKS_SIZE 16
983
984/* An aligned block of memory. */
985struct ablock
986{
987 union
988 {
989 char payload[BLOCK_BYTES];
990 struct ablock *next_free;
991 } x;
992 /* `abase' is the aligned base of the ablocks. */
993 /* It is overloaded to hold the virtual `busy' field that counts
994 the number of used ablock in the parent ablocks.
995 The first ablock has the `busy' field, the others have the `abase'
996 field. To tell the difference, we assume that pointers will have
997 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
998 is used to tell whether the real base of the parent ablocks is `abase'
999 (if not, the word before the first ablock holds a pointer to the
1000 real base). */
1001 struct ablocks *abase;
1002 /* The padding of all but the last ablock is unused. The padding of
1003 the last ablock in an ablocks is not allocated. */
19bcad1f
SM
1004#if BLOCK_PADDING
1005 char padding[BLOCK_PADDING];
ebb8d410 1006#endif
ab6780cd
SM
1007};
1008
1009/* A bunch of consecutive aligned blocks. */
1010struct ablocks
1011{
1012 struct ablock blocks[ABLOCKS_SIZE];
1013};
1014
4b5afbb0 1015/* Size of the block requested from malloc or posix_memalign. */
19bcad1f 1016#define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
ab6780cd
SM
1017
1018#define ABLOCK_ABASE(block) \
d01a7826 1019 (((uintptr_t) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
ab6780cd
SM
1020 ? (struct ablocks *)(block) \
1021 : (block)->abase)
1022
1023/* Virtual `busy' field. */
1024#define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
1025
1026/* Pointer to the (not necessarily aligned) malloc block. */
349a4500 1027#ifdef USE_POSIX_MEMALIGN
19bcad1f
SM
1028#define ABLOCKS_BASE(abase) (abase)
1029#else
ab6780cd 1030#define ABLOCKS_BASE(abase) \
d01a7826 1031 (1 & (intptr_t) ABLOCKS_BUSY (abase) ? abase : ((void**)abase)[-1])
19bcad1f 1032#endif
ab6780cd
SM
1033
1034/* The list of free ablock. */
1035static struct ablock *free_ablock;
1036
1037/* Allocate an aligned block of nbytes.
1038 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
1039 smaller or equal to BLOCK_BYTES. */
261cb4bb 1040static void *
971de7fb 1041lisp_align_malloc (size_t nbytes, enum mem_type type)
ab6780cd
SM
1042{
1043 void *base, *val;
1044 struct ablocks *abase;
1045
1046 eassert (nbytes <= BLOCK_BYTES);
1047
dafc79fa 1048 MALLOC_BLOCK_INPUT;
ab6780cd
SM
1049
1050#ifdef GC_MALLOC_CHECK
1051 allocated_mem_type = type;
1052#endif
1053
1054 if (!free_ablock)
1055 {
005ca5c7 1056 int i;
d01a7826 1057 intptr_t aligned; /* int gets warning casting to 64-bit pointer. */
ab6780cd
SM
1058
1059#ifdef DOUG_LEA_MALLOC
1060 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1061 because mapped region contents are not preserved in
1062 a dumped Emacs. */
1063 mallopt (M_MMAP_MAX, 0);
1064#endif
1065
349a4500 1066#ifdef USE_POSIX_MEMALIGN
19bcad1f
SM
1067 {
1068 int err = posix_memalign (&base, BLOCK_ALIGN, ABLOCKS_BYTES);
ab349c19
RS
1069 if (err)
1070 base = NULL;
1071 abase = base;
19bcad1f
SM
1072 }
1073#else
ab6780cd
SM
1074 base = malloc (ABLOCKS_BYTES);
1075 abase = ALIGN (base, BLOCK_ALIGN);
ab349c19
RS
1076#endif
1077
6b61353c
KH
1078 if (base == 0)
1079 {
dafc79fa 1080 MALLOC_UNBLOCK_INPUT;
531b0165 1081 memory_full (ABLOCKS_BYTES);
6b61353c 1082 }
ab6780cd
SM
1083
1084 aligned = (base == abase);
1085 if (!aligned)
1086 ((void**)abase)[-1] = base;
1087
1088#ifdef DOUG_LEA_MALLOC
1089 /* Back to a reasonable maximum of mmap'ed areas. */
1090 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1091#endif
1092
bfe3e0a2 1093#if ! USE_LSB_TAG
8f924df7
KH
1094 /* If the memory just allocated cannot be addressed thru a Lisp
1095 object's pointer, and it needs to be, that's equivalent to
1096 running out of memory. */
1097 if (type != MEM_TYPE_NON_LISP)
1098 {
1099 Lisp_Object tem;
1100 char *end = (char *) base + ABLOCKS_BYTES - 1;
1101 XSETCONS (tem, end);
1102 if ((char *) XCONS (tem) != end)
1103 {
1104 lisp_malloc_loser = base;
1105 free (base);
dafc79fa 1106 MALLOC_UNBLOCK_INPUT;
531b0165 1107 memory_full (SIZE_MAX);
8f924df7
KH
1108 }
1109 }
6b61353c 1110#endif
8f924df7 1111
ab6780cd 1112 /* Initialize the blocks and put them on the free list.
453b951e 1113 If `base' was not properly aligned, we can't use the last block. */
ab6780cd
SM
1114 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
1115 {
1116 abase->blocks[i].abase = abase;
1117 abase->blocks[i].x.next_free = free_ablock;
1118 free_ablock = &abase->blocks[i];
1119 }
8ac068ac 1120 ABLOCKS_BUSY (abase) = (struct ablocks *) aligned;
ab6780cd 1121
d01a7826 1122 eassert (0 == ((uintptr_t) abase) % BLOCK_ALIGN);
ab6780cd
SM
1123 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
1124 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
1125 eassert (ABLOCKS_BASE (abase) == base);
d01a7826 1126 eassert (aligned == (intptr_t) ABLOCKS_BUSY (abase));
ab6780cd
SM
1127 }
1128
1129 abase = ABLOCK_ABASE (free_ablock);
8ac068ac 1130 ABLOCKS_BUSY (abase) =
d01a7826 1131 (struct ablocks *) (2 + (intptr_t) ABLOCKS_BUSY (abase));
ab6780cd
SM
1132 val = free_ablock;
1133 free_ablock = free_ablock->x.next_free;
1134
ab6780cd 1135#if GC_MARK_STACK && !defined GC_MALLOC_CHECK
3687c2ef 1136 if (type != MEM_TYPE_NON_LISP)
ab6780cd
SM
1137 mem_insert (val, (char *) val + nbytes, type);
1138#endif
1139
dafc79fa 1140 MALLOC_UNBLOCK_INPUT;
ab6780cd 1141
d01a7826 1142 eassert (0 == ((uintptr_t) val) % BLOCK_ALIGN);
ab6780cd
SM
1143 return val;
1144}
1145
1146static void
261cb4bb 1147lisp_align_free (void *block)
ab6780cd
SM
1148{
1149 struct ablock *ablock = block;
1150 struct ablocks *abase = ABLOCK_ABASE (ablock);
1151
dafc79fa 1152 MALLOC_BLOCK_INPUT;
ab6780cd
SM
1153#if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1154 mem_delete (mem_find (block));
1155#endif
1156 /* Put on free list. */
1157 ablock->x.next_free = free_ablock;
1158 free_ablock = ablock;
1159 /* Update busy count. */
453b951e
SM
1160 ABLOCKS_BUSY (abase)
1161 = (struct ablocks *) (-2 + (intptr_t) ABLOCKS_BUSY (abase));
d2db1c32 1162
d01a7826 1163 if (2 > (intptr_t) ABLOCKS_BUSY (abase))
ab6780cd 1164 { /* All the blocks are free. */
d01a7826 1165 int i = 0, aligned = (intptr_t) ABLOCKS_BUSY (abase);
ab6780cd
SM
1166 struct ablock **tem = &free_ablock;
1167 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
1168
1169 while (*tem)
1170 {
1171 if (*tem >= (struct ablock *) abase && *tem < atop)
1172 {
1173 i++;
1174 *tem = (*tem)->x.next_free;
1175 }
1176 else
1177 tem = &(*tem)->x.next_free;
1178 }
1179 eassert ((aligned & 1) == aligned);
1180 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
349a4500 1181#ifdef USE_POSIX_MEMALIGN
d01a7826 1182 eassert ((uintptr_t) ABLOCKS_BASE (abase) % BLOCK_ALIGN == 0);
cfb2f32e 1183#endif
ab6780cd
SM
1184 free (ABLOCKS_BASE (abase));
1185 }
dafc79fa 1186 MALLOC_UNBLOCK_INPUT;
ab6780cd 1187}
3ef06d12 1188
9ac0d9e0 1189\f
026cdede
SM
1190#ifndef SYSTEM_MALLOC
1191
9ac0d9e0
JB
1192/* Arranging to disable input signals while we're in malloc.
1193
1194 This only works with GNU malloc. To help out systems which can't
1195 use GNU malloc, all the calls to malloc, realloc, and free
1196 elsewhere in the code should be inside a BLOCK_INPUT/UNBLOCK_INPUT
026cdede 1197 pair; unfortunately, we have no idea what C library functions
9ac0d9e0 1198 might call malloc, so we can't really protect them unless you're
2c5bd608
DL
1199 using GNU malloc. Fortunately, most of the major operating systems
1200 can use GNU malloc. */
9ac0d9e0 1201
026cdede 1202#ifndef SYNC_INPUT
dafc79fa
SM
1203/* When using SYNC_INPUT, we don't call malloc from a signal handler, so
1204 there's no need to block input around malloc. */
026cdede 1205
b3303f74 1206#ifndef DOUG_LEA_MALLOC
f57e2426
J
1207extern void * (*__malloc_hook) (size_t, const void *);
1208extern void * (*__realloc_hook) (void *, size_t, const void *);
1209extern void (*__free_hook) (void *, const void *);
b3303f74
DL
1210/* Else declared in malloc.h, perhaps with an extra arg. */
1211#endif /* DOUG_LEA_MALLOC */
f57e2426
J
1212static void * (*old_malloc_hook) (size_t, const void *);
1213static void * (*old_realloc_hook) (void *, size_t, const void*);
1214static void (*old_free_hook) (void*, const void*);
9ac0d9e0 1215
4e75f29d
PE
1216#ifdef DOUG_LEA_MALLOC
1217# define BYTES_USED (mallinfo ().uordblks)
1218#else
1219# define BYTES_USED _bytes_used
1220#endif
1221
b62a57be
PE
1222#ifdef GC_MALLOC_CHECK
1223static int dont_register_blocks;
1224#endif
1225
5e927815 1226static size_t bytes_used_when_reconsidered;
ef1b0ba7 1227
4e75f29d
PE
1228/* Value of _bytes_used, when spare_memory was freed. */
1229
5e927815 1230static size_t bytes_used_when_full;
4e75f29d 1231
276cbe5a
RS
1232/* This function is used as the hook for free to call. */
1233
9ac0d9e0 1234static void
7c3320d8 1235emacs_blocked_free (void *ptr, const void *ptr2)
9ac0d9e0 1236{
aa477689 1237 BLOCK_INPUT_ALLOC;
877935b1
GM
1238
1239#ifdef GC_MALLOC_CHECK
a83fee2c
GM
1240 if (ptr)
1241 {
1242 struct mem_node *m;
177c0ea7 1243
a83fee2c
GM
1244 m = mem_find (ptr);
1245 if (m == MEM_NIL || m->start != ptr)
1246 {
1247 fprintf (stderr,
1248 "Freeing `%p' which wasn't allocated with malloc\n", ptr);
1249 abort ();
1250 }
1251 else
1252 {
1253 /* fprintf (stderr, "free %p...%p (%p)\n", m->start, m->end, ptr); */
1254 mem_delete (m);
1255 }
1256 }
877935b1 1257#endif /* GC_MALLOC_CHECK */
177c0ea7 1258
9ac0d9e0
JB
1259 __free_hook = old_free_hook;
1260 free (ptr);
177c0ea7 1261
276cbe5a
RS
1262 /* If we released our reserve (due to running out of memory),
1263 and we have a fair amount free once again,
1264 try to set aside another reserve in case we run out once more. */
24d8a105 1265 if (! NILP (Vmemory_full)
276cbe5a
RS
1266 /* Verify there is enough space that even with the malloc
1267 hysteresis this call won't run out again.
1268 The code here is correct as long as SPARE_MEMORY
1269 is substantially larger than the block size malloc uses. */
1270 && (bytes_used_when_full
4d74a5fc 1271 > ((bytes_used_when_reconsidered = BYTES_USED)
bccfb310 1272 + max (malloc_hysteresis, 4) * SPARE_MEMORY)))
24d8a105 1273 refill_memory_reserve ();
276cbe5a 1274
b0846f52 1275 __free_hook = emacs_blocked_free;
aa477689 1276 UNBLOCK_INPUT_ALLOC;
9ac0d9e0
JB
1277}
1278
34400008 1279
276cbe5a
RS
1280/* This function is the malloc hook that Emacs uses. */
1281
9ac0d9e0 1282static void *
7c3320d8 1283emacs_blocked_malloc (size_t size, const void *ptr)
9ac0d9e0
JB
1284{
1285 void *value;
1286
aa477689 1287 BLOCK_INPUT_ALLOC;
9ac0d9e0 1288 __malloc_hook = old_malloc_hook;
1177ecf6 1289#ifdef DOUG_LEA_MALLOC
5665a02f
KL
1290 /* Segfaults on my system. --lorentey */
1291 /* mallopt (M_TOP_PAD, malloc_hysteresis * 4096); */
1177ecf6 1292#else
d1658221 1293 __malloc_extra_blocks = malloc_hysteresis;
1177ecf6 1294#endif
877935b1 1295
2756d8ee 1296 value = (void *) malloc (size);
877935b1
GM
1297
1298#ifdef GC_MALLOC_CHECK
1299 {
1300 struct mem_node *m = mem_find (value);
1301 if (m != MEM_NIL)
1302 {
1303 fprintf (stderr, "Malloc returned %p which is already in use\n",
1304 value);
da05bc4c 1305 fprintf (stderr, "Region in use is %p...%p, %td bytes, type %d\n",
877935b1
GM
1306 m->start, m->end, (char *) m->end - (char *) m->start,
1307 m->type);
1308 abort ();
1309 }
1310
1311 if (!dont_register_blocks)
1312 {
1313 mem_insert (value, (char *) value + max (1, size), allocated_mem_type);
1314 allocated_mem_type = MEM_TYPE_NON_LISP;
1315 }
1316 }
1317#endif /* GC_MALLOC_CHECK */
177c0ea7 1318
b0846f52 1319 __malloc_hook = emacs_blocked_malloc;
aa477689 1320 UNBLOCK_INPUT_ALLOC;
9ac0d9e0 1321
877935b1 1322 /* fprintf (stderr, "%p malloc\n", value); */
9ac0d9e0
JB
1323 return value;
1324}
1325
34400008
GM
1326
1327/* This function is the realloc hook that Emacs uses. */
1328
9ac0d9e0 1329static void *
7c3320d8 1330emacs_blocked_realloc (void *ptr, size_t size, const void *ptr2)
9ac0d9e0
JB
1331{
1332 void *value;
1333
aa477689 1334 BLOCK_INPUT_ALLOC;
9ac0d9e0 1335 __realloc_hook = old_realloc_hook;
877935b1
GM
1336
1337#ifdef GC_MALLOC_CHECK
1338 if (ptr)
1339 {
1340 struct mem_node *m = mem_find (ptr);
1341 if (m == MEM_NIL || m->start != ptr)
1342 {
1343 fprintf (stderr,
1344 "Realloc of %p which wasn't allocated with malloc\n",
1345 ptr);
1346 abort ();
1347 }
1348
1349 mem_delete (m);
1350 }
177c0ea7 1351
877935b1 1352 /* fprintf (stderr, "%p -> realloc\n", ptr); */
177c0ea7 1353
877935b1
GM
1354 /* Prevent malloc from registering blocks. */
1355 dont_register_blocks = 1;
1356#endif /* GC_MALLOC_CHECK */
1357
2756d8ee 1358 value = (void *) realloc (ptr, size);
877935b1
GM
1359
1360#ifdef GC_MALLOC_CHECK
1361 dont_register_blocks = 0;
1362
1363 {
1364 struct mem_node *m = mem_find (value);
1365 if (m != MEM_NIL)
1366 {
1367 fprintf (stderr, "Realloc returns memory that is already in use\n");
1368 abort ();
1369 }
1370
1371 /* Can't handle zero size regions in the red-black tree. */
1372 mem_insert (value, (char *) value + max (size, 1), MEM_TYPE_NON_LISP);
1373 }
177c0ea7 1374
877935b1
GM
1375 /* fprintf (stderr, "%p <- realloc\n", value); */
1376#endif /* GC_MALLOC_CHECK */
177c0ea7 1377
b0846f52 1378 __realloc_hook = emacs_blocked_realloc;
aa477689 1379 UNBLOCK_INPUT_ALLOC;
9ac0d9e0
JB
1380
1381 return value;
1382}
1383
34400008 1384
ae9e757a 1385#ifdef HAVE_PTHREAD
aa477689
JD
1386/* Called from Fdump_emacs so that when the dumped Emacs starts, it has a
1387 normal malloc. Some thread implementations need this as they call
1388 malloc before main. The pthread_self call in BLOCK_INPUT_ALLOC then
1389 calls malloc because it is the first call, and we have an endless loop. */
1390
1391void
268c2c36 1392reset_malloc_hooks (void)
aa477689 1393{
4d580af2
AS
1394 __free_hook = old_free_hook;
1395 __malloc_hook = old_malloc_hook;
1396 __realloc_hook = old_realloc_hook;
aa477689 1397}
ae9e757a 1398#endif /* HAVE_PTHREAD */
aa477689
JD
1399
1400
34400008
GM
1401/* Called from main to set up malloc to use our hooks. */
1402
9ac0d9e0 1403void
7c3320d8 1404uninterrupt_malloc (void)
9ac0d9e0 1405{
ae9e757a 1406#ifdef HAVE_PTHREAD
a1b41389 1407#ifdef DOUG_LEA_MALLOC
aa477689
JD
1408 pthread_mutexattr_t attr;
1409
c7015153 1410 /* GLIBC has a faster way to do this, but let's keep it portable.
aa477689
JD
1411 This is according to the Single UNIX Specification. */
1412 pthread_mutexattr_init (&attr);
1413 pthread_mutexattr_settype (&attr, PTHREAD_MUTEX_RECURSIVE);
1414 pthread_mutex_init (&alloc_mutex, &attr);
a1b41389 1415#else /* !DOUG_LEA_MALLOC */
ce5b453a 1416 /* Some systems such as Solaris 2.6 don't have a recursive mutex,
a1b41389
YM
1417 and the bundled gmalloc.c doesn't require it. */
1418 pthread_mutex_init (&alloc_mutex, NULL);
1419#endif /* !DOUG_LEA_MALLOC */
ae9e757a 1420#endif /* HAVE_PTHREAD */
aa477689 1421
c8099634
RS
1422 if (__free_hook != emacs_blocked_free)
1423 old_free_hook = __free_hook;
b0846f52 1424 __free_hook = emacs_blocked_free;
9ac0d9e0 1425
c8099634
RS
1426 if (__malloc_hook != emacs_blocked_malloc)
1427 old_malloc_hook = __malloc_hook;
b0846f52 1428 __malloc_hook = emacs_blocked_malloc;
9ac0d9e0 1429
c8099634
RS
1430 if (__realloc_hook != emacs_blocked_realloc)
1431 old_realloc_hook = __realloc_hook;
b0846f52 1432 __realloc_hook = emacs_blocked_realloc;
9ac0d9e0 1433}
2e471eb5 1434
026cdede 1435#endif /* not SYNC_INPUT */
2e471eb5
GM
1436#endif /* not SYSTEM_MALLOC */
1437
1438
7146af97 1439\f
2e471eb5
GM
1440/***********************************************************************
1441 Interval Allocation
1442 ***********************************************************************/
1a4f1e2c 1443
34400008
GM
1444/* Number of intervals allocated in an interval_block structure.
1445 The 1020 is 1024 minus malloc overhead. */
1446
d5e35230
JA
1447#define INTERVAL_BLOCK_SIZE \
1448 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1449
34400008
GM
1450/* Intervals are allocated in chunks in form of an interval_block
1451 structure. */
1452
d5e35230 1453struct interval_block
2e471eb5 1454{
6b61353c 1455 /* Place `intervals' first, to preserve alignment. */
2e471eb5 1456 struct interval intervals[INTERVAL_BLOCK_SIZE];
6b61353c 1457 struct interval_block *next;
2e471eb5 1458};
d5e35230 1459
34400008
GM
1460/* Current interval block. Its `next' pointer points to older
1461 blocks. */
1462
d3d47262 1463static struct interval_block *interval_block;
34400008
GM
1464
1465/* Index in interval_block above of the next unused interval
1466 structure. */
1467
d5e35230 1468static int interval_block_index;
34400008
GM
1469
1470/* Number of free and live intervals. */
1471
c0c5c8ae 1472static EMACS_INT total_free_intervals, total_intervals;
d5e35230 1473
34400008
GM
1474/* List of free intervals. */
1475
244ed907 1476static INTERVAL interval_free_list;
d5e35230 1477
34400008
GM
1478
1479/* Initialize interval allocation. */
1480
d5e35230 1481static void
971de7fb 1482init_intervals (void)
d5e35230 1483{
005ca5c7
DL
1484 interval_block = NULL;
1485 interval_block_index = INTERVAL_BLOCK_SIZE;
d5e35230
JA
1486 interval_free_list = 0;
1487}
1488
34400008
GM
1489
1490/* Return a new interval. */
d5e35230
JA
1491
1492INTERVAL
971de7fb 1493make_interval (void)
d5e35230
JA
1494{
1495 INTERVAL val;
1496
e2984df0
CY
1497 /* eassert (!handling_signal); */
1498
dafc79fa 1499 MALLOC_BLOCK_INPUT;
cfb2f32e 1500
d5e35230
JA
1501 if (interval_free_list)
1502 {
1503 val = interval_free_list;
439d5cb4 1504 interval_free_list = INTERVAL_PARENT (interval_free_list);
d5e35230
JA
1505 }
1506 else
1507 {
1508 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1509 {
3c06d205
KH
1510 register struct interval_block *newi;
1511
34400008
GM
1512 newi = (struct interval_block *) lisp_malloc (sizeof *newi,
1513 MEM_TYPE_NON_LISP);
d5e35230 1514
d5e35230
JA
1515 newi->next = interval_block;
1516 interval_block = newi;
1517 interval_block_index = 0;
1518 }
1519 val = &interval_block->intervals[interval_block_index++];
1520 }
e2984df0 1521
dafc79fa 1522 MALLOC_UNBLOCK_INPUT;
e2984df0 1523
d5e35230 1524 consing_since_gc += sizeof (struct interval);
310ea200 1525 intervals_consed++;
d5e35230 1526 RESET_INTERVAL (val);
2336fe58 1527 val->gcmarkbit = 0;
d5e35230
JA
1528 return val;
1529}
1530
34400008
GM
1531
1532/* Mark Lisp objects in interval I. */
d5e35230
JA
1533
1534static void
971de7fb 1535mark_interval (register INTERVAL i, Lisp_Object dummy)
d5e35230 1536{
2336fe58
SM
1537 eassert (!i->gcmarkbit); /* Intervals are never shared. */
1538 i->gcmarkbit = 1;
49723c04 1539 mark_object (i->plist);
d5e35230
JA
1540}
1541
34400008
GM
1542
1543/* Mark the interval tree rooted in TREE. Don't call this directly;
1544 use the macro MARK_INTERVAL_TREE instead. */
1545
d5e35230 1546static void
971de7fb 1547mark_interval_tree (register INTERVAL tree)
d5e35230 1548{
e8720644
JB
1549 /* No need to test if this tree has been marked already; this
1550 function is always called through the MARK_INTERVAL_TREE macro,
1551 which takes care of that. */
1552
1e934989 1553 traverse_intervals_noorder (tree, mark_interval, Qnil);
d5e35230
JA
1554}
1555
34400008
GM
1556
1557/* Mark the interval tree rooted in I. */
1558
e8720644
JB
1559#define MARK_INTERVAL_TREE(i) \
1560 do { \
2336fe58 1561 if (!NULL_INTERVAL_P (i) && !i->gcmarkbit) \
e8720644
JB
1562 mark_interval_tree (i); \
1563 } while (0)
d5e35230 1564
34400008 1565
2e471eb5
GM
1566#define UNMARK_BALANCE_INTERVALS(i) \
1567 do { \
1568 if (! NULL_INTERVAL_P (i)) \
2336fe58 1569 (i) = balance_intervals (i); \
2e471eb5 1570 } while (0)
d5e35230 1571\f
2e471eb5
GM
1572/***********************************************************************
1573 String Allocation
1574 ***********************************************************************/
1a4f1e2c 1575
2e471eb5
GM
1576/* Lisp_Strings are allocated in string_block structures. When a new
1577 string_block is allocated, all the Lisp_Strings it contains are
e0fead5d 1578 added to a free-list string_free_list. When a new Lisp_String is
2e471eb5
GM
1579 needed, it is taken from that list. During the sweep phase of GC,
1580 string_blocks that are entirely free are freed, except two which
1581 we keep.
7146af97 1582
2e471eb5
GM
1583 String data is allocated from sblock structures. Strings larger
1584 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1585 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
7146af97 1586
2e471eb5
GM
1587 Sblocks consist internally of sdata structures, one for each
1588 Lisp_String. The sdata structure points to the Lisp_String it
1589 belongs to. The Lisp_String points back to the `u.data' member of
1590 its sdata structure.
7146af97 1591
2e471eb5
GM
1592 When a Lisp_String is freed during GC, it is put back on
1593 string_free_list, and its `data' member and its sdata's `string'
1594 pointer is set to null. The size of the string is recorded in the
1595 `u.nbytes' member of the sdata. So, sdata structures that are no
1596 longer used, can be easily recognized, and it's easy to compact the
1597 sblocks of small strings which we do in compact_small_strings. */
7146af97 1598
2e471eb5
GM
1599/* Size in bytes of an sblock structure used for small strings. This
1600 is 8192 minus malloc overhead. */
7146af97 1601
2e471eb5 1602#define SBLOCK_SIZE 8188
c8099634 1603
2e471eb5
GM
1604/* Strings larger than this are considered large strings. String data
1605 for large strings is allocated from individual sblocks. */
7146af97 1606
2e471eb5
GM
1607#define LARGE_STRING_BYTES 1024
1608
1609/* Structure describing string memory sub-allocated from an sblock.
1610 This is where the contents of Lisp strings are stored. */
1611
1612struct sdata
7146af97 1613{
2e471eb5
GM
1614 /* Back-pointer to the string this sdata belongs to. If null, this
1615 structure is free, and the NBYTES member of the union below
34400008 1616 contains the string's byte size (the same value that STRING_BYTES
2e471eb5
GM
1617 would return if STRING were non-null). If non-null, STRING_BYTES
1618 (STRING) is the size of the data, and DATA contains the string's
1619 contents. */
1620 struct Lisp_String *string;
7146af97 1621
31d929e5 1622#ifdef GC_CHECK_STRING_BYTES
177c0ea7 1623
d311d28c 1624 ptrdiff_t nbytes;
31d929e5 1625 unsigned char data[1];
177c0ea7 1626
31d929e5
GM
1627#define SDATA_NBYTES(S) (S)->nbytes
1628#define SDATA_DATA(S) (S)->data
36372bf9 1629#define SDATA_SELECTOR(member) member
177c0ea7 1630
31d929e5
GM
1631#else /* not GC_CHECK_STRING_BYTES */
1632
2e471eb5
GM
1633 union
1634 {
83998b7a 1635 /* When STRING is non-null. */
2e471eb5
GM
1636 unsigned char data[1];
1637
1638 /* When STRING is null. */
d311d28c 1639 ptrdiff_t nbytes;
2e471eb5 1640 } u;
177c0ea7 1641
31d929e5
GM
1642#define SDATA_NBYTES(S) (S)->u.nbytes
1643#define SDATA_DATA(S) (S)->u.data
36372bf9 1644#define SDATA_SELECTOR(member) u.member
31d929e5
GM
1645
1646#endif /* not GC_CHECK_STRING_BYTES */
36372bf9
PE
1647
1648#define SDATA_DATA_OFFSET offsetof (struct sdata, SDATA_SELECTOR (data))
2e471eb5
GM
1649};
1650
31d929e5 1651
2e471eb5
GM
1652/* Structure describing a block of memory which is sub-allocated to
1653 obtain string data memory for strings. Blocks for small strings
1654 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1655 as large as needed. */
1656
1657struct sblock
7146af97 1658{
2e471eb5
GM
1659 /* Next in list. */
1660 struct sblock *next;
7146af97 1661
2e471eb5
GM
1662 /* Pointer to the next free sdata block. This points past the end
1663 of the sblock if there isn't any space left in this block. */
1664 struct sdata *next_free;
1665
1666 /* Start of data. */
1667 struct sdata first_data;
1668};
1669
1670/* Number of Lisp strings in a string_block structure. The 1020 is
1671 1024 minus malloc overhead. */
1672
19bcad1f 1673#define STRING_BLOCK_SIZE \
2e471eb5
GM
1674 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1675
1676/* Structure describing a block from which Lisp_String structures
1677 are allocated. */
1678
1679struct string_block
7146af97 1680{
6b61353c 1681 /* Place `strings' first, to preserve alignment. */
19bcad1f 1682 struct Lisp_String strings[STRING_BLOCK_SIZE];
6b61353c 1683 struct string_block *next;
2e471eb5 1684};
7146af97 1685
2e471eb5
GM
1686/* Head and tail of the list of sblock structures holding Lisp string
1687 data. We always allocate from current_sblock. The NEXT pointers
1688 in the sblock structures go from oldest_sblock to current_sblock. */
3c06d205 1689
2e471eb5 1690static struct sblock *oldest_sblock, *current_sblock;
7146af97 1691
2e471eb5 1692/* List of sblocks for large strings. */
7146af97 1693
2e471eb5 1694static struct sblock *large_sblocks;
7146af97 1695
5a25e253 1696/* List of string_block structures. */
7146af97 1697
2e471eb5 1698static struct string_block *string_blocks;
7146af97 1699
2e471eb5 1700/* Free-list of Lisp_Strings. */
7146af97 1701
2e471eb5 1702static struct Lisp_String *string_free_list;
7146af97 1703
2e471eb5 1704/* Number of live and free Lisp_Strings. */
c8099634 1705
c0c5c8ae 1706static EMACS_INT total_strings, total_free_strings;
7146af97 1707
2e471eb5
GM
1708/* Number of bytes used by live strings. */
1709
14162469 1710static EMACS_INT total_string_size;
2e471eb5
GM
1711
1712/* Given a pointer to a Lisp_String S which is on the free-list
1713 string_free_list, return a pointer to its successor in the
1714 free-list. */
1715
1716#define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1717
1718/* Return a pointer to the sdata structure belonging to Lisp string S.
1719 S must be live, i.e. S->data must not be null. S->data is actually
1720 a pointer to the `u.data' member of its sdata structure; the
1721 structure starts at a constant offset in front of that. */
177c0ea7 1722
36372bf9 1723#define SDATA_OF_STRING(S) ((struct sdata *) ((S)->data - SDATA_DATA_OFFSET))
31d929e5 1724
212f33f1
KS
1725
1726#ifdef GC_CHECK_STRING_OVERRUN
bdbed949
KS
1727
1728/* We check for overrun in string data blocks by appending a small
1729 "cookie" after each allocated string data block, and check for the
8349069c 1730 presence of this cookie during GC. */
bdbed949
KS
1731
1732#define GC_STRING_OVERRUN_COOKIE_SIZE 4
bfd1c781
PE
1733static char const string_overrun_cookie[GC_STRING_OVERRUN_COOKIE_SIZE] =
1734 { '\xde', '\xad', '\xbe', '\xef' };
bdbed949 1735
212f33f1 1736#else
bdbed949 1737#define GC_STRING_OVERRUN_COOKIE_SIZE 0
212f33f1
KS
1738#endif
1739
2e471eb5
GM
1740/* Value is the size of an sdata structure large enough to hold NBYTES
1741 bytes of string data. The value returned includes a terminating
1742 NUL byte, the size of the sdata structure, and padding. */
1743
31d929e5
GM
1744#ifdef GC_CHECK_STRING_BYTES
1745
2e471eb5 1746#define SDATA_SIZE(NBYTES) \
36372bf9 1747 ((SDATA_DATA_OFFSET \
2e471eb5 1748 + (NBYTES) + 1 \
d311d28c
PE
1749 + sizeof (ptrdiff_t) - 1) \
1750 & ~(sizeof (ptrdiff_t) - 1))
2e471eb5 1751
31d929e5
GM
1752#else /* not GC_CHECK_STRING_BYTES */
1753
f2d3008d
PE
1754/* The 'max' reserves space for the nbytes union member even when NBYTES + 1 is
1755 less than the size of that member. The 'max' is not needed when
d311d28c 1756 SDATA_DATA_OFFSET is a multiple of sizeof (ptrdiff_t), because then the
f2d3008d
PE
1757 alignment code reserves enough space. */
1758
1759#define SDATA_SIZE(NBYTES) \
1760 ((SDATA_DATA_OFFSET \
d311d28c 1761 + (SDATA_DATA_OFFSET % sizeof (ptrdiff_t) == 0 \
f2d3008d 1762 ? NBYTES \
d311d28c 1763 : max (NBYTES, sizeof (ptrdiff_t) - 1)) \
f2d3008d 1764 + 1 \
d311d28c
PE
1765 + sizeof (ptrdiff_t) - 1) \
1766 & ~(sizeof (ptrdiff_t) - 1))
31d929e5
GM
1767
1768#endif /* not GC_CHECK_STRING_BYTES */
2e471eb5 1769
bdbed949
KS
1770/* Extra bytes to allocate for each string. */
1771
1772#define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1773
c9d624c6
PE
1774/* Exact bound on the number of bytes in a string, not counting the
1775 terminating null. A string cannot contain more bytes than
1776 STRING_BYTES_BOUND, nor can it be so long that the size_t
1777 arithmetic in allocate_string_data would overflow while it is
1778 calculating a value to be passed to malloc. */
1779#define STRING_BYTES_MAX \
1780 min (STRING_BYTES_BOUND, \
903fe15d
PE
1781 ((SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD \
1782 - GC_STRING_EXTRA \
c9d624c6
PE
1783 - offsetof (struct sblock, first_data) \
1784 - SDATA_DATA_OFFSET) \
1785 & ~(sizeof (EMACS_INT) - 1)))
1786
2e471eb5 1787/* Initialize string allocation. Called from init_alloc_once. */
d457598b 1788
d3d47262 1789static void
971de7fb 1790init_strings (void)
7146af97 1791{
2e471eb5
GM
1792 total_strings = total_free_strings = total_string_size = 0;
1793 oldest_sblock = current_sblock = large_sblocks = NULL;
1794 string_blocks = NULL;
2e471eb5 1795 string_free_list = NULL;
4d774b0f
JB
1796 empty_unibyte_string = make_pure_string ("", 0, 0, 0);
1797 empty_multibyte_string = make_pure_string ("", 0, 0, 1);
7146af97
JB
1798}
1799
2e471eb5 1800
361b097f
GM
1801#ifdef GC_CHECK_STRING_BYTES
1802
361b097f
GM
1803static int check_string_bytes_count;
1804
676a7251
GM
1805#define CHECK_STRING_BYTES(S) STRING_BYTES (S)
1806
1807
1808/* Like GC_STRING_BYTES, but with debugging check. */
1809
d311d28c 1810ptrdiff_t
14162469 1811string_bytes (struct Lisp_String *s)
676a7251 1812{
d311d28c 1813 ptrdiff_t nbytes =
14162469
EZ
1814 (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1815
676a7251
GM
1816 if (!PURE_POINTER_P (s)
1817 && s->data
1818 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1819 abort ();
1820 return nbytes;
1821}
177c0ea7 1822
2c5bd608 1823/* Check validity of Lisp strings' string_bytes member in B. */
676a7251 1824
d3d47262 1825static void
d0f4e1f5 1826check_sblock (struct sblock *b)
361b097f 1827{
676a7251 1828 struct sdata *from, *end, *from_end;
177c0ea7 1829
676a7251 1830 end = b->next_free;
177c0ea7 1831
676a7251 1832 for (from = &b->first_data; from < end; from = from_end)
361b097f 1833 {
676a7251
GM
1834 /* Compute the next FROM here because copying below may
1835 overwrite data we need to compute it. */
d311d28c 1836 ptrdiff_t nbytes;
177c0ea7 1837
676a7251
GM
1838 /* Check that the string size recorded in the string is the
1839 same as the one recorded in the sdata structure. */
1840 if (from->string)
1841 CHECK_STRING_BYTES (from->string);
177c0ea7 1842
676a7251
GM
1843 if (from->string)
1844 nbytes = GC_STRING_BYTES (from->string);
1845 else
1846 nbytes = SDATA_NBYTES (from);
177c0ea7 1847
676a7251 1848 nbytes = SDATA_SIZE (nbytes);
212f33f1 1849 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
676a7251
GM
1850 }
1851}
361b097f 1852
676a7251
GM
1853
1854/* Check validity of Lisp strings' string_bytes member. ALL_P
1855 non-zero means check all strings, otherwise check only most
1856 recently allocated strings. Used for hunting a bug. */
1857
d3d47262 1858static void
d0f4e1f5 1859check_string_bytes (int all_p)
676a7251
GM
1860{
1861 if (all_p)
1862 {
1863 struct sblock *b;
1864
1865 for (b = large_sblocks; b; b = b->next)
1866 {
1867 struct Lisp_String *s = b->first_data.string;
1868 if (s)
1869 CHECK_STRING_BYTES (s);
361b097f 1870 }
177c0ea7 1871
676a7251
GM
1872 for (b = oldest_sblock; b; b = b->next)
1873 check_sblock (b);
361b097f 1874 }
676a7251
GM
1875 else
1876 check_sblock (current_sblock);
361b097f
GM
1877}
1878
1879#endif /* GC_CHECK_STRING_BYTES */
1880
212f33f1
KS
1881#ifdef GC_CHECK_STRING_FREE_LIST
1882
bdbed949
KS
1883/* Walk through the string free list looking for bogus next pointers.
1884 This may catch buffer overrun from a previous string. */
1885
212f33f1 1886static void
d0f4e1f5 1887check_string_free_list (void)
212f33f1
KS
1888{
1889 struct Lisp_String *s;
1890
1891 /* Pop a Lisp_String off the free-list. */
1892 s = string_free_list;
1893 while (s != NULL)
1894 {
d01a7826 1895 if ((uintptr_t) s < 1024)
5e617bc2 1896 abort ();
212f33f1
KS
1897 s = NEXT_FREE_LISP_STRING (s);
1898 }
1899}
1900#else
1901#define check_string_free_list()
1902#endif
361b097f 1903
2e471eb5
GM
1904/* Return a new Lisp_String. */
1905
1906static struct Lisp_String *
971de7fb 1907allocate_string (void)
7146af97 1908{
2e471eb5 1909 struct Lisp_String *s;
7146af97 1910
e2984df0
CY
1911 /* eassert (!handling_signal); */
1912
dafc79fa 1913 MALLOC_BLOCK_INPUT;
cfb2f32e 1914
2e471eb5
GM
1915 /* If the free-list is empty, allocate a new string_block, and
1916 add all the Lisp_Strings in it to the free-list. */
1917 if (string_free_list == NULL)
7146af97 1918 {
2e471eb5
GM
1919 struct string_block *b;
1920 int i;
1921
34400008 1922 b = (struct string_block *) lisp_malloc (sizeof *b, MEM_TYPE_STRING);
2e471eb5
GM
1923 b->next = string_blocks;
1924 string_blocks = b;
2e471eb5 1925
19bcad1f 1926 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
7146af97 1927 {
2e471eb5 1928 s = b->strings + i;
3fe6dd74
DA
1929 /* Every string on a free list should have NULL data pointer. */
1930 s->data = NULL;
2e471eb5
GM
1931 NEXT_FREE_LISP_STRING (s) = string_free_list;
1932 string_free_list = s;
7146af97 1933 }
2e471eb5 1934
19bcad1f 1935 total_free_strings += STRING_BLOCK_SIZE;
7146af97 1936 }
c0f51373 1937
bdbed949 1938 check_string_free_list ();
212f33f1 1939
2e471eb5
GM
1940 /* Pop a Lisp_String off the free-list. */
1941 s = string_free_list;
1942 string_free_list = NEXT_FREE_LISP_STRING (s);
c0f51373 1943
dafc79fa 1944 MALLOC_UNBLOCK_INPUT;
e2984df0 1945
2e471eb5
GM
1946 --total_free_strings;
1947 ++total_strings;
1948 ++strings_consed;
1949 consing_since_gc += sizeof *s;
c0f51373 1950
361b097f 1951#ifdef GC_CHECK_STRING_BYTES
e39a993c 1952 if (!noninteractive)
361b097f 1953 {
676a7251
GM
1954 if (++check_string_bytes_count == 200)
1955 {
1956 check_string_bytes_count = 0;
1957 check_string_bytes (1);
1958 }
1959 else
1960 check_string_bytes (0);
361b097f 1961 }
676a7251 1962#endif /* GC_CHECK_STRING_BYTES */
361b097f 1963
2e471eb5 1964 return s;
c0f51373 1965}
7146af97 1966
7146af97 1967
2e471eb5
GM
1968/* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1969 plus a NUL byte at the end. Allocate an sdata structure for S, and
1970 set S->data to its `u.data' member. Store a NUL byte at the end of
1971 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1972 S->data if it was initially non-null. */
7146af97 1973
2e471eb5 1974void
413d18e7
EZ
1975allocate_string_data (struct Lisp_String *s,
1976 EMACS_INT nchars, EMACS_INT nbytes)
7146af97 1977{
2014308a 1978 struct sdata *data;
2e471eb5 1979 struct sblock *b;
2014308a 1980 ptrdiff_t needed;
7146af97 1981
c9d624c6
PE
1982 if (STRING_BYTES_MAX < nbytes)
1983 string_overflow ();
1984
2e471eb5
GM
1985 /* Determine the number of bytes needed to store NBYTES bytes
1986 of string data. */
1987 needed = SDATA_SIZE (nbytes);
e2984df0 1988
dafc79fa 1989 MALLOC_BLOCK_INPUT;
7146af97 1990
2e471eb5
GM
1991 if (nbytes > LARGE_STRING_BYTES)
1992 {
36372bf9 1993 size_t size = offsetof (struct sblock, first_data) + needed;
2e471eb5
GM
1994
1995#ifdef DOUG_LEA_MALLOC
f8608968
GM
1996 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1997 because mapped region contents are not preserved in
d36b182f
DL
1998 a dumped Emacs.
1999
2000 In case you think of allowing it in a dumped Emacs at the
2001 cost of not being able to re-dump, there's another reason:
2002 mmap'ed data typically have an address towards the top of the
2003 address space, which won't fit into an EMACS_INT (at least on
2004 32-bit systems with the current tagging scheme). --fx */
2e471eb5
GM
2005 mallopt (M_MMAP_MAX, 0);
2006#endif
2007
212f33f1 2008 b = (struct sblock *) lisp_malloc (size + GC_STRING_EXTRA, MEM_TYPE_NON_LISP);
177c0ea7 2009
2e471eb5
GM
2010#ifdef DOUG_LEA_MALLOC
2011 /* Back to a reasonable maximum of mmap'ed areas. */
2012 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
2013#endif
177c0ea7 2014
2e471eb5
GM
2015 b->next_free = &b->first_data;
2016 b->first_data.string = NULL;
2017 b->next = large_sblocks;
2018 large_sblocks = b;
2019 }
2020 else if (current_sblock == NULL
2021 || (((char *) current_sblock + SBLOCK_SIZE
2022 - (char *) current_sblock->next_free)
212f33f1 2023 < (needed + GC_STRING_EXTRA)))
2e471eb5
GM
2024 {
2025 /* Not enough room in the current sblock. */
34400008 2026 b = (struct sblock *) lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
2e471eb5
GM
2027 b->next_free = &b->first_data;
2028 b->first_data.string = NULL;
2029 b->next = NULL;
2030
2031 if (current_sblock)
2032 current_sblock->next = b;
2033 else
2034 oldest_sblock = b;
2035 current_sblock = b;
2036 }
2037 else
2038 b = current_sblock;
5c5fecb3 2039
2e471eb5 2040 data = b->next_free;
a0b08700
CY
2041 b->next_free = (struct sdata *) ((char *) data + needed + GC_STRING_EXTRA);
2042
dafc79fa 2043 MALLOC_UNBLOCK_INPUT;
e2984df0 2044
2e471eb5 2045 data->string = s;
31d929e5
GM
2046 s->data = SDATA_DATA (data);
2047#ifdef GC_CHECK_STRING_BYTES
2048 SDATA_NBYTES (data) = nbytes;
2049#endif
2e471eb5
GM
2050 s->size = nchars;
2051 s->size_byte = nbytes;
2052 s->data[nbytes] = '\0';
212f33f1 2053#ifdef GC_CHECK_STRING_OVERRUN
000098c1
PE
2054 memcpy ((char *) data + needed, string_overrun_cookie,
2055 GC_STRING_OVERRUN_COOKIE_SIZE);
212f33f1 2056#endif
2e471eb5
GM
2057 consing_since_gc += needed;
2058}
2059
2060
2061/* Sweep and compact strings. */
2062
2063static void
971de7fb 2064sweep_strings (void)
2e471eb5
GM
2065{
2066 struct string_block *b, *next;
2067 struct string_block *live_blocks = NULL;
177c0ea7 2068
2e471eb5
GM
2069 string_free_list = NULL;
2070 total_strings = total_free_strings = 0;
2071 total_string_size = 0;
2072
2073 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
2074 for (b = string_blocks; b; b = next)
2075 {
2076 int i, nfree = 0;
2077 struct Lisp_String *free_list_before = string_free_list;
2078
2079 next = b->next;
2080
19bcad1f 2081 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
2e471eb5
GM
2082 {
2083 struct Lisp_String *s = b->strings + i;
2084
2085 if (s->data)
2086 {
2087 /* String was not on free-list before. */
2088 if (STRING_MARKED_P (s))
2089 {
2090 /* String is live; unmark it and its intervals. */
2091 UNMARK_STRING (s);
177c0ea7 2092
2e471eb5
GM
2093 if (!NULL_INTERVAL_P (s->intervals))
2094 UNMARK_BALANCE_INTERVALS (s->intervals);
2095
2096 ++total_strings;
2097 total_string_size += STRING_BYTES (s);
2098 }
2099 else
2100 {
2101 /* String is dead. Put it on the free-list. */
2102 struct sdata *data = SDATA_OF_STRING (s);
2103
2104 /* Save the size of S in its sdata so that we know
2105 how large that is. Reset the sdata's string
2106 back-pointer so that we know it's free. */
31d929e5
GM
2107#ifdef GC_CHECK_STRING_BYTES
2108 if (GC_STRING_BYTES (s) != SDATA_NBYTES (data))
2109 abort ();
2110#else
2e471eb5 2111 data->u.nbytes = GC_STRING_BYTES (s);
31d929e5 2112#endif
2e471eb5
GM
2113 data->string = NULL;
2114
2115 /* Reset the strings's `data' member so that we
2116 know it's free. */
2117 s->data = NULL;
2118
2119 /* Put the string on the free-list. */
2120 NEXT_FREE_LISP_STRING (s) = string_free_list;
2121 string_free_list = s;
2122 ++nfree;
2123 }
2124 }
2125 else
2126 {
2127 /* S was on the free-list before. Put it there again. */
2128 NEXT_FREE_LISP_STRING (s) = string_free_list;
2129 string_free_list = s;
2130 ++nfree;
2131 }
2132 }
2133
34400008 2134 /* Free blocks that contain free Lisp_Strings only, except
2e471eb5 2135 the first two of them. */
19bcad1f
SM
2136 if (nfree == STRING_BLOCK_SIZE
2137 && total_free_strings > STRING_BLOCK_SIZE)
2e471eb5
GM
2138 {
2139 lisp_free (b);
2e471eb5
GM
2140 string_free_list = free_list_before;
2141 }
2142 else
2143 {
2144 total_free_strings += nfree;
2145 b->next = live_blocks;
2146 live_blocks = b;
2147 }
2148 }
2149
bdbed949 2150 check_string_free_list ();
212f33f1 2151
2e471eb5
GM
2152 string_blocks = live_blocks;
2153 free_large_strings ();
2154 compact_small_strings ();
212f33f1 2155
bdbed949 2156 check_string_free_list ();
2e471eb5
GM
2157}
2158
2159
2160/* Free dead large strings. */
2161
2162static void
971de7fb 2163free_large_strings (void)
2e471eb5
GM
2164{
2165 struct sblock *b, *next;
2166 struct sblock *live_blocks = NULL;
177c0ea7 2167
2e471eb5
GM
2168 for (b = large_sblocks; b; b = next)
2169 {
2170 next = b->next;
2171
2172 if (b->first_data.string == NULL)
2173 lisp_free (b);
2174 else
2175 {
2176 b->next = live_blocks;
2177 live_blocks = b;
2178 }
2179 }
2180
2181 large_sblocks = live_blocks;
2182}
2183
2184
2185/* Compact data of small strings. Free sblocks that don't contain
2186 data of live strings after compaction. */
2187
2188static void
971de7fb 2189compact_small_strings (void)
2e471eb5
GM
2190{
2191 struct sblock *b, *tb, *next;
2192 struct sdata *from, *to, *end, *tb_end;
2193 struct sdata *to_end, *from_end;
2194
2195 /* TB is the sblock we copy to, TO is the sdata within TB we copy
2196 to, and TB_END is the end of TB. */
2197 tb = oldest_sblock;
2198 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2199 to = &tb->first_data;
2200
2201 /* Step through the blocks from the oldest to the youngest. We
2202 expect that old blocks will stabilize over time, so that less
2203 copying will happen this way. */
2204 for (b = oldest_sblock; b; b = b->next)
2205 {
2206 end = b->next_free;
a54e2c05 2207 eassert ((char *) end <= (char *) b + SBLOCK_SIZE);
177c0ea7 2208
2e471eb5
GM
2209 for (from = &b->first_data; from < end; from = from_end)
2210 {
2211 /* Compute the next FROM here because copying below may
2212 overwrite data we need to compute it. */
d311d28c 2213 ptrdiff_t nbytes;
2e471eb5 2214
31d929e5
GM
2215#ifdef GC_CHECK_STRING_BYTES
2216 /* Check that the string size recorded in the string is the
2217 same as the one recorded in the sdata structure. */
2218 if (from->string
2219 && GC_STRING_BYTES (from->string) != SDATA_NBYTES (from))
2220 abort ();
2221#endif /* GC_CHECK_STRING_BYTES */
177c0ea7 2222
2e471eb5
GM
2223 if (from->string)
2224 nbytes = GC_STRING_BYTES (from->string);
2225 else
31d929e5 2226 nbytes = SDATA_NBYTES (from);
177c0ea7 2227
212f33f1
KS
2228 if (nbytes > LARGE_STRING_BYTES)
2229 abort ();
212f33f1 2230
2e471eb5 2231 nbytes = SDATA_SIZE (nbytes);
212f33f1
KS
2232 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
2233
2234#ifdef GC_CHECK_STRING_OVERRUN
72af86bd
AS
2235 if (memcmp (string_overrun_cookie,
2236 (char *) from_end - GC_STRING_OVERRUN_COOKIE_SIZE,
2237 GC_STRING_OVERRUN_COOKIE_SIZE))
212f33f1
KS
2238 abort ();
2239#endif
177c0ea7 2240
2e471eb5
GM
2241 /* FROM->string non-null means it's alive. Copy its data. */
2242 if (from->string)
2243 {
2244 /* If TB is full, proceed with the next sblock. */
212f33f1 2245 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2e471eb5
GM
2246 if (to_end > tb_end)
2247 {
2248 tb->next_free = to;
2249 tb = tb->next;
2250 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2251 to = &tb->first_data;
212f33f1 2252 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2e471eb5 2253 }
177c0ea7 2254
2e471eb5
GM
2255 /* Copy, and update the string's `data' pointer. */
2256 if (from != to)
2257 {
a54e2c05 2258 eassert (tb != b || to < from);
72af86bd 2259 memmove (to, from, nbytes + GC_STRING_EXTRA);
31d929e5 2260 to->string->data = SDATA_DATA (to);
2e471eb5
GM
2261 }
2262
2263 /* Advance past the sdata we copied to. */
2264 to = to_end;
2265 }
2266 }
2267 }
2268
2269 /* The rest of the sblocks following TB don't contain live data, so
2270 we can free them. */
2271 for (b = tb->next; b; b = next)
2272 {
2273 next = b->next;
2274 lisp_free (b);
2275 }
2276
2277 tb->next_free = to;
2278 tb->next = NULL;
2279 current_sblock = tb;
2280}
2281
cb93f9be
PE
2282void
2283string_overflow (void)
2284{
2285 error ("Maximum string size exceeded");
2286}
2e471eb5 2287
a7ca3326 2288DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
69623621
RS
2289 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
2290LENGTH must be an integer.
2291INIT must be an integer that represents a character. */)
5842a27b 2292 (Lisp_Object length, Lisp_Object init)
2e471eb5
GM
2293{
2294 register Lisp_Object val;
2295 register unsigned char *p, *end;
14162469
EZ
2296 int c;
2297 EMACS_INT nbytes;
2e471eb5 2298
b7826503 2299 CHECK_NATNUM (length);
2bccce07 2300 CHECK_CHARACTER (init);
2e471eb5 2301
2bccce07 2302 c = XFASTINT (init);
830ff83b 2303 if (ASCII_CHAR_P (c))
2e471eb5
GM
2304 {
2305 nbytes = XINT (length);
2306 val = make_uninit_string (nbytes);
d5db4077
KR
2307 p = SDATA (val);
2308 end = p + SCHARS (val);
2e471eb5
GM
2309 while (p != end)
2310 *p++ = c;
2311 }
2312 else
2313 {
d942b71c 2314 unsigned char str[MAX_MULTIBYTE_LENGTH];
2e471eb5 2315 int len = CHAR_STRING (c, str);
14162469 2316 EMACS_INT string_len = XINT (length);
2e471eb5 2317
d1f3d2af 2318 if (string_len > STRING_BYTES_MAX / len)
cb93f9be 2319 string_overflow ();
14162469
EZ
2320 nbytes = len * string_len;
2321 val = make_uninit_multibyte_string (string_len, nbytes);
d5db4077 2322 p = SDATA (val);
2e471eb5
GM
2323 end = p + nbytes;
2324 while (p != end)
2325 {
72af86bd 2326 memcpy (p, str, len);
2e471eb5
GM
2327 p += len;
2328 }
2329 }
177c0ea7 2330
2e471eb5
GM
2331 *p = 0;
2332 return val;
2333}
2334
2335
a7ca3326 2336DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
909e3b33 2337 doc: /* Return a new bool-vector of length LENGTH, using INIT for each element.
7ee72033 2338LENGTH must be a number. INIT matters only in whether it is t or nil. */)
5842a27b 2339 (Lisp_Object length, Lisp_Object init)
2e471eb5
GM
2340{
2341 register Lisp_Object val;
2342 struct Lisp_Bool_Vector *p;
d311d28c
PE
2343 ptrdiff_t length_in_chars;
2344 EMACS_INT length_in_elts;
14162469 2345 int bits_per_value;
2e471eb5 2346
b7826503 2347 CHECK_NATNUM (length);
2e471eb5 2348
a097329f 2349 bits_per_value = sizeof (EMACS_INT) * BOOL_VECTOR_BITS_PER_CHAR;
2e471eb5
GM
2350
2351 length_in_elts = (XFASTINT (length) + bits_per_value - 1) / bits_per_value;
2e471eb5
GM
2352
2353 /* We must allocate one more elements than LENGTH_IN_ELTS for the
2354 slot `size' of the struct Lisp_Bool_Vector. */
2355 val = Fmake_vector (make_number (length_in_elts + 1), Qnil);
177c0ea7 2356
eab3844f
PE
2357 /* No Lisp_Object to trace in there. */
2358 XSETPVECTYPESIZE (XVECTOR (val), PVEC_BOOL_VECTOR, 0);
d2029e5b
SM
2359
2360 p = XBOOL_VECTOR (val);
2e471eb5 2361 p->size = XFASTINT (length);
177c0ea7 2362
d311d28c
PE
2363 length_in_chars = ((XFASTINT (length) + BOOL_VECTOR_BITS_PER_CHAR - 1)
2364 / BOOL_VECTOR_BITS_PER_CHAR);
c0c1ee9f
PE
2365 if (length_in_chars)
2366 {
2367 memset (p->data, ! NILP (init) ? -1 : 0, length_in_chars);
177c0ea7 2368
c0c1ee9f
PE
2369 /* Clear any extraneous bits in the last byte. */
2370 p->data[length_in_chars - 1]
2371 &= (1 << (XINT (length) % BOOL_VECTOR_BITS_PER_CHAR)) - 1;
2372 }
2e471eb5
GM
2373
2374 return val;
2375}
2376
2377
2378/* Make a string from NBYTES bytes at CONTENTS, and compute the number
2379 of characters from the contents. This string may be unibyte or
2380 multibyte, depending on the contents. */
2381
2382Lisp_Object
d311d28c 2383make_string (const char *contents, ptrdiff_t nbytes)
2e471eb5
GM
2384{
2385 register Lisp_Object val;
d311d28c 2386 ptrdiff_t nchars, multibyte_nbytes;
9eac9d59 2387
90256841
PE
2388 parse_str_as_multibyte ((const unsigned char *) contents, nbytes,
2389 &nchars, &multibyte_nbytes);
9eac9d59
KH
2390 if (nbytes == nchars || nbytes != multibyte_nbytes)
2391 /* CONTENTS contains no multibyte sequences or contains an invalid
2392 multibyte sequence. We must make unibyte string. */
495a6df3
KH
2393 val = make_unibyte_string (contents, nbytes);
2394 else
2395 val = make_multibyte_string (contents, nchars, nbytes);
2e471eb5
GM
2396 return val;
2397}
2398
2399
2400/* Make an unibyte string from LENGTH bytes at CONTENTS. */
2401
2402Lisp_Object
d311d28c 2403make_unibyte_string (const char *contents, ptrdiff_t length)
2e471eb5
GM
2404{
2405 register Lisp_Object val;
2406 val = make_uninit_string (length);
72af86bd 2407 memcpy (SDATA (val), contents, length);
2e471eb5
GM
2408 return val;
2409}
2410
2411
2412/* Make a multibyte string from NCHARS characters occupying NBYTES
2413 bytes at CONTENTS. */
2414
2415Lisp_Object
14162469 2416make_multibyte_string (const char *contents,
d311d28c 2417 ptrdiff_t nchars, ptrdiff_t nbytes)
2e471eb5
GM
2418{
2419 register Lisp_Object val;
2420 val = make_uninit_multibyte_string (nchars, nbytes);
72af86bd 2421 memcpy (SDATA (val), contents, nbytes);
2e471eb5
GM
2422 return val;
2423}
2424
2425
2426/* Make a string from NCHARS characters occupying NBYTES bytes at
2427 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2428
2429Lisp_Object
14162469 2430make_string_from_bytes (const char *contents,
d311d28c 2431 ptrdiff_t nchars, ptrdiff_t nbytes)
2e471eb5
GM
2432{
2433 register Lisp_Object val;
2434 val = make_uninit_multibyte_string (nchars, nbytes);
72af86bd 2435 memcpy (SDATA (val), contents, nbytes);
d5db4077
KR
2436 if (SBYTES (val) == SCHARS (val))
2437 STRING_SET_UNIBYTE (val);
2e471eb5
GM
2438 return val;
2439}
2440
2441
2442/* Make a string from NCHARS characters occupying NBYTES bytes at
2443 CONTENTS. The argument MULTIBYTE controls whether to label the
229b28c4
KH
2444 string as multibyte. If NCHARS is negative, it counts the number of
2445 characters by itself. */
2e471eb5
GM
2446
2447Lisp_Object
14162469 2448make_specified_string (const char *contents,
d311d28c 2449 ptrdiff_t nchars, ptrdiff_t nbytes, int multibyte)
2e471eb5
GM
2450{
2451 register Lisp_Object val;
229b28c4
KH
2452
2453 if (nchars < 0)
2454 {
2455 if (multibyte)
90256841
PE
2456 nchars = multibyte_chars_in_text ((const unsigned char *) contents,
2457 nbytes);
229b28c4
KH
2458 else
2459 nchars = nbytes;
2460 }
2e471eb5 2461 val = make_uninit_multibyte_string (nchars, nbytes);
72af86bd 2462 memcpy (SDATA (val), contents, nbytes);
2e471eb5 2463 if (!multibyte)
d5db4077 2464 STRING_SET_UNIBYTE (val);
2e471eb5
GM
2465 return val;
2466}
2467
2468
2e471eb5
GM
2469/* Return an unibyte Lisp_String set up to hold LENGTH characters
2470 occupying LENGTH bytes. */
2471
2472Lisp_Object
413d18e7 2473make_uninit_string (EMACS_INT length)
2e471eb5
GM
2474{
2475 Lisp_Object val;
4d774b0f
JB
2476
2477 if (!length)
2478 return empty_unibyte_string;
2e471eb5 2479 val = make_uninit_multibyte_string (length, length);
d5db4077 2480 STRING_SET_UNIBYTE (val);
2e471eb5
GM
2481 return val;
2482}
2483
2484
2485/* Return a multibyte Lisp_String set up to hold NCHARS characters
2486 which occupy NBYTES bytes. */
2487
2488Lisp_Object
413d18e7 2489make_uninit_multibyte_string (EMACS_INT nchars, EMACS_INT nbytes)
2e471eb5
GM
2490{
2491 Lisp_Object string;
2492 struct Lisp_String *s;
2493
2494 if (nchars < 0)
2495 abort ();
4d774b0f
JB
2496 if (!nbytes)
2497 return empty_multibyte_string;
2e471eb5
GM
2498
2499 s = allocate_string ();
246155eb 2500 s->intervals = NULL_INTERVAL;
2e471eb5
GM
2501 allocate_string_data (s, nchars, nbytes);
2502 XSETSTRING (string, s);
2503 string_chars_consed += nbytes;
2504 return string;
2505}
2506
2507
2508\f
2509/***********************************************************************
2510 Float Allocation
2511 ***********************************************************************/
2512
2e471eb5
GM
2513/* We store float cells inside of float_blocks, allocating a new
2514 float_block with malloc whenever necessary. Float cells reclaimed
2515 by GC are put on a free list to be reallocated before allocating
ab6780cd 2516 any new float cells from the latest float_block. */
2e471eb5 2517
6b61353c
KH
2518#define FLOAT_BLOCK_SIZE \
2519 (((BLOCK_BYTES - sizeof (struct float_block *) \
2520 /* The compiler might add padding at the end. */ \
2521 - (sizeof (struct Lisp_Float) - sizeof (int))) * CHAR_BIT) \
ab6780cd
SM
2522 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2523
2524#define GETMARKBIT(block,n) \
5e617bc2
JB
2525 (((block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2526 >> ((n) % (sizeof (int) * CHAR_BIT))) \
ab6780cd
SM
2527 & 1)
2528
2529#define SETMARKBIT(block,n) \
5e617bc2
JB
2530 (block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2531 |= 1 << ((n) % (sizeof (int) * CHAR_BIT))
ab6780cd
SM
2532
2533#define UNSETMARKBIT(block,n) \
5e617bc2
JB
2534 (block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2535 &= ~(1 << ((n) % (sizeof (int) * CHAR_BIT)))
ab6780cd
SM
2536
2537#define FLOAT_BLOCK(fptr) \
d01a7826 2538 ((struct float_block *) (((uintptr_t) (fptr)) & ~(BLOCK_ALIGN - 1)))
ab6780cd
SM
2539
2540#define FLOAT_INDEX(fptr) \
d01a7826 2541 ((((uintptr_t) (fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2e471eb5
GM
2542
2543struct float_block
2544{
ab6780cd 2545 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2e471eb5 2546 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
5e617bc2 2547 int gcmarkbits[1 + FLOAT_BLOCK_SIZE / (sizeof (int) * CHAR_BIT)];
ab6780cd 2548 struct float_block *next;
2e471eb5
GM
2549};
2550
ab6780cd
SM
2551#define FLOAT_MARKED_P(fptr) \
2552 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2553
2554#define FLOAT_MARK(fptr) \
2555 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2556
2557#define FLOAT_UNMARK(fptr) \
2558 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2559
34400008
GM
2560/* Current float_block. */
2561
244ed907 2562static struct float_block *float_block;
34400008
GM
2563
2564/* Index of first unused Lisp_Float in the current float_block. */
2565
244ed907 2566static int float_block_index;
2e471eb5 2567
34400008
GM
2568/* Free-list of Lisp_Floats. */
2569
244ed907 2570static struct Lisp_Float *float_free_list;
2e471eb5 2571
34400008 2572
966533c9 2573/* Initialize float allocation. */
34400008 2574
d3d47262 2575static void
971de7fb 2576init_float (void)
2e471eb5 2577{
08b7c2cb
SM
2578 float_block = NULL;
2579 float_block_index = FLOAT_BLOCK_SIZE; /* Force alloc of new float_block. */
2e471eb5 2580 float_free_list = 0;
2e471eb5
GM
2581}
2582
34400008 2583
34400008
GM
2584/* Return a new float object with value FLOAT_VALUE. */
2585
2e471eb5 2586Lisp_Object
971de7fb 2587make_float (double float_value)
2e471eb5
GM
2588{
2589 register Lisp_Object val;
2590
e2984df0
CY
2591 /* eassert (!handling_signal); */
2592
dafc79fa 2593 MALLOC_BLOCK_INPUT;
cfb2f32e 2594
2e471eb5
GM
2595 if (float_free_list)
2596 {
2597 /* We use the data field for chaining the free list
2598 so that we won't use the same field that has the mark bit. */
2599 XSETFLOAT (val, float_free_list);
28a099a4 2600 float_free_list = float_free_list->u.chain;
2e471eb5
GM
2601 }
2602 else
2603 {
2604 if (float_block_index == FLOAT_BLOCK_SIZE)
2605 {
2606 register struct float_block *new;
2607
ab6780cd
SM
2608 new = (struct float_block *) lisp_align_malloc (sizeof *new,
2609 MEM_TYPE_FLOAT);
2e471eb5 2610 new->next = float_block;
72af86bd 2611 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2e471eb5
GM
2612 float_block = new;
2613 float_block_index = 0;
2e471eb5 2614 }
6b61353c
KH
2615 XSETFLOAT (val, &float_block->floats[float_block_index]);
2616 float_block_index++;
2e471eb5 2617 }
177c0ea7 2618
dafc79fa 2619 MALLOC_UNBLOCK_INPUT;
e2984df0 2620
f601cdf3 2621 XFLOAT_INIT (val, float_value);
6b61353c 2622 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2e471eb5
GM
2623 consing_since_gc += sizeof (struct Lisp_Float);
2624 floats_consed++;
2625 return val;
2626}
2627
2e471eb5
GM
2628
2629\f
2630/***********************************************************************
2631 Cons Allocation
2632 ***********************************************************************/
2633
2634/* We store cons cells inside of cons_blocks, allocating a new
2635 cons_block with malloc whenever necessary. Cons cells reclaimed by
2636 GC are put on a free list to be reallocated before allocating
08b7c2cb 2637 any new cons cells from the latest cons_block. */
2e471eb5 2638
a2821611
AS
2639#define CONS_BLOCK_SIZE \
2640 (((BLOCK_BYTES - sizeof (struct cons_block *) \
2641 /* The compiler might add padding at the end. */ \
2642 - (sizeof (struct Lisp_Cons) - sizeof (int))) * CHAR_BIT) \
08b7c2cb
SM
2643 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2644
2645#define CONS_BLOCK(fptr) \
d01a7826 2646 ((struct cons_block *) ((uintptr_t) (fptr) & ~(BLOCK_ALIGN - 1)))
08b7c2cb
SM
2647
2648#define CONS_INDEX(fptr) \
d01a7826 2649 (((uintptr_t) (fptr) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2e471eb5
GM
2650
2651struct cons_block
2652{
08b7c2cb 2653 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2e471eb5 2654 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
5e617bc2 2655 int gcmarkbits[1 + CONS_BLOCK_SIZE / (sizeof (int) * CHAR_BIT)];
08b7c2cb 2656 struct cons_block *next;
2e471eb5
GM
2657};
2658
08b7c2cb
SM
2659#define CONS_MARKED_P(fptr) \
2660 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2661
2662#define CONS_MARK(fptr) \
2663 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2664
2665#define CONS_UNMARK(fptr) \
2666 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2667
34400008
GM
2668/* Current cons_block. */
2669
244ed907 2670static struct cons_block *cons_block;
34400008
GM
2671
2672/* Index of first unused Lisp_Cons in the current block. */
2673
244ed907 2674static int cons_block_index;
2e471eb5 2675
34400008
GM
2676/* Free-list of Lisp_Cons structures. */
2677
244ed907 2678static struct Lisp_Cons *cons_free_list;
2e471eb5 2679
34400008
GM
2680
2681/* Initialize cons allocation. */
2682
d3d47262 2683static void
971de7fb 2684init_cons (void)
2e471eb5 2685{
08b7c2cb
SM
2686 cons_block = NULL;
2687 cons_block_index = CONS_BLOCK_SIZE; /* Force alloc of new cons_block. */
2e471eb5 2688 cons_free_list = 0;
2e471eb5
GM
2689}
2690
34400008
GM
2691
2692/* Explicitly free a cons cell by putting it on the free-list. */
2e471eb5
GM
2693
2694void
971de7fb 2695free_cons (struct Lisp_Cons *ptr)
2e471eb5 2696{
28a099a4 2697 ptr->u.chain = cons_free_list;
34400008
GM
2698#if GC_MARK_STACK
2699 ptr->car = Vdead;
2700#endif
2e471eb5
GM
2701 cons_free_list = ptr;
2702}
2703
a7ca3326 2704DEFUN ("cons", Fcons, Scons, 2, 2, 0,
a6266d23 2705 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
5842a27b 2706 (Lisp_Object car, Lisp_Object cdr)
2e471eb5
GM
2707{
2708 register Lisp_Object val;
2709
e2984df0
CY
2710 /* eassert (!handling_signal); */
2711
dafc79fa 2712 MALLOC_BLOCK_INPUT;
cfb2f32e 2713
2e471eb5
GM
2714 if (cons_free_list)
2715 {
2716 /* We use the cdr for chaining the free list
2717 so that we won't use the same field that has the mark bit. */
2718 XSETCONS (val, cons_free_list);
28a099a4 2719 cons_free_list = cons_free_list->u.chain;
2e471eb5
GM
2720 }
2721 else
2722 {
2723 if (cons_block_index == CONS_BLOCK_SIZE)
2724 {
2725 register struct cons_block *new;
08b7c2cb
SM
2726 new = (struct cons_block *) lisp_align_malloc (sizeof *new,
2727 MEM_TYPE_CONS);
72af86bd 2728 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2e471eb5
GM
2729 new->next = cons_block;
2730 cons_block = new;
2731 cons_block_index = 0;
2e471eb5 2732 }
6b61353c
KH
2733 XSETCONS (val, &cons_block->conses[cons_block_index]);
2734 cons_block_index++;
2e471eb5 2735 }
177c0ea7 2736
dafc79fa 2737 MALLOC_UNBLOCK_INPUT;
e2984df0 2738
f3fbd155
KR
2739 XSETCAR (val, car);
2740 XSETCDR (val, cdr);
6b61353c 2741 eassert (!CONS_MARKED_P (XCONS (val)));
2e471eb5
GM
2742 consing_since_gc += sizeof (struct Lisp_Cons);
2743 cons_cells_consed++;
2744 return val;
2745}
2746
e5aab7e7 2747#ifdef GC_CHECK_CONS_LIST
e3e56238
RS
2748/* Get an error now if there's any junk in the cons free list. */
2749void
971de7fb 2750check_cons_list (void)
e3e56238
RS
2751{
2752 struct Lisp_Cons *tail = cons_free_list;
2753
e3e56238 2754 while (tail)
28a099a4 2755 tail = tail->u.chain;
e3e56238 2756}
e5aab7e7 2757#endif
34400008 2758
9b306d37
KS
2759/* Make a list of 1, 2, 3, 4 or 5 specified objects. */
2760
2761Lisp_Object
971de7fb 2762list1 (Lisp_Object arg1)
9b306d37
KS
2763{
2764 return Fcons (arg1, Qnil);
2765}
2e471eb5
GM
2766
2767Lisp_Object
971de7fb 2768list2 (Lisp_Object arg1, Lisp_Object arg2)
2e471eb5
GM
2769{
2770 return Fcons (arg1, Fcons (arg2, Qnil));
2771}
2772
34400008 2773
2e471eb5 2774Lisp_Object
971de7fb 2775list3 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3)
2e471eb5
GM
2776{
2777 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2778}
2779
34400008 2780
2e471eb5 2781Lisp_Object
971de7fb 2782list4 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4)
2e471eb5
GM
2783{
2784 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2785}
2786
34400008 2787
2e471eb5 2788Lisp_Object
971de7fb 2789list5 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4, Lisp_Object arg5)
2e471eb5
GM
2790{
2791 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2792 Fcons (arg5, Qnil)))));
2793}
2794
34400008 2795
a7ca3326 2796DEFUN ("list", Flist, Slist, 0, MANY, 0,
eae936e2 2797 doc: /* Return a newly created list with specified arguments as elements.
ae8e8122
MB
2798Any number of arguments, even zero arguments, are allowed.
2799usage: (list &rest OBJECTS) */)
f66c7cf8 2800 (ptrdiff_t nargs, Lisp_Object *args)
2e471eb5
GM
2801{
2802 register Lisp_Object val;
2803 val = Qnil;
2804
2805 while (nargs > 0)
2806 {
2807 nargs--;
2808 val = Fcons (args[nargs], val);
2809 }
2810 return val;
2811}
2812
34400008 2813
a7ca3326 2814DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
a6266d23 2815 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
5842a27b 2816 (register Lisp_Object length, Lisp_Object init)
2e471eb5
GM
2817{
2818 register Lisp_Object val;
14162469 2819 register EMACS_INT size;
2e471eb5 2820
b7826503 2821 CHECK_NATNUM (length);
2e471eb5
GM
2822 size = XFASTINT (length);
2823
2824 val = Qnil;
ce070307
GM
2825 while (size > 0)
2826 {
2827 val = Fcons (init, val);
2828 --size;
2829
2830 if (size > 0)
2831 {
2832 val = Fcons (init, val);
2833 --size;
177c0ea7 2834
ce070307
GM
2835 if (size > 0)
2836 {
2837 val = Fcons (init, val);
2838 --size;
177c0ea7 2839
ce070307
GM
2840 if (size > 0)
2841 {
2842 val = Fcons (init, val);
2843 --size;
177c0ea7 2844
ce070307
GM
2845 if (size > 0)
2846 {
2847 val = Fcons (init, val);
2848 --size;
2849 }
2850 }
2851 }
2852 }
2853
2854 QUIT;
2855 }
177c0ea7 2856
7146af97
JB
2857 return val;
2858}
2e471eb5
GM
2859
2860
7146af97 2861\f
2e471eb5
GM
2862/***********************************************************************
2863 Vector Allocation
2864 ***********************************************************************/
7146af97 2865
f3372c87
DA
2866/* This value is balanced well enough to avoid too much internal overhead
2867 for the most common cases; it's not required to be a power of two, but
2868 it's expected to be a mult-of-ROUNDUP_SIZE (see below). */
34400008 2869
f3372c87 2870#define VECTOR_BLOCK_SIZE 4096
7146af97 2871
dd0b0efb
PE
2872/* Handy constants for vectorlike objects. */
2873enum
2874 {
2875 header_size = offsetof (struct Lisp_Vector, contents),
f3372c87
DA
2876 word_size = sizeof (Lisp_Object),
2877 roundup_size = COMMON_MULTIPLE (sizeof (Lisp_Object),
bfe3e0a2 2878 USE_LSB_TAG ? 1 << GCTYPEBITS : 1)
dd0b0efb 2879 };
34400008 2880
bfe3e0a2
PE
2881/* ROUNDUP_SIZE must be a power of 2. */
2882verify ((roundup_size & (roundup_size - 1)) == 0);
2883
2884/* Round up X to nearest mult-of-ROUNDUP_SIZE. */
f3372c87
DA
2885
2886#define vroundup(x) (((x) + (roundup_size - 1)) & ~(roundup_size - 1))
2887
2888/* Rounding helps to maintain alignment constraints if USE_LSB_TAG. */
2889
2890#define VECTOR_BLOCK_BYTES (VECTOR_BLOCK_SIZE - vroundup (sizeof (void *)))
2891
2892/* Size of the minimal vector allocated from block. */
2893
2894#define VBLOCK_BYTES_MIN vroundup (sizeof (struct Lisp_Vector))
2895
2896/* Size of the largest vector allocated from block. */
2897
2898#define VBLOCK_BYTES_MAX \
2899 vroundup ((VECTOR_BLOCK_BYTES / 2) - sizeof (Lisp_Object))
2900
2901/* We maintain one free list for each possible block-allocated
2902 vector size, and this is the number of free lists we have. */
2903
2904#define VECTOR_MAX_FREE_LIST_INDEX \
2905 ((VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN) / roundup_size + 1)
2906
2907/* When the vector is on a free list, vectorlike_header.SIZE is set to
2908 this special value ORed with vector's memory footprint size. */
2909
2910#define VECTOR_FREE_LIST_FLAG (~(ARRAY_MARK_FLAG | PSEUDOVECTOR_FLAG \
2911 | (VECTOR_BLOCK_SIZE - 1)))
2912
2913/* Common shortcut to advance vector pointer over a block data. */
2914
2915#define ADVANCE(v, nbytes) ((struct Lisp_Vector *) ((char *) (v) + (nbytes)))
2916
2917/* Common shortcut to calculate NBYTES-vector index in VECTOR_FREE_LISTS. */
2918
2919#define VINDEX(nbytes) (((nbytes) - VBLOCK_BYTES_MIN) / roundup_size)
2920
2921/* Common shortcut to setup vector on a free list. */
2922
2923#define SETUP_ON_FREE_LIST(v, nbytes, index) \
2924 do { \
2925 (v)->header.size = VECTOR_FREE_LIST_FLAG | (nbytes); \
2926 eassert ((nbytes) % roundup_size == 0); \
2927 (index) = VINDEX (nbytes); \
2928 eassert ((index) < VECTOR_MAX_FREE_LIST_INDEX); \
2929 (v)->header.next.vector = vector_free_lists[index]; \
2930 vector_free_lists[index] = (v); \
2931 } while (0)
2932
2933struct vector_block
2934{
2935 char data[VECTOR_BLOCK_BYTES];
2936 struct vector_block *next;
2937};
2938
2939/* Chain of vector blocks. */
2940
2941static struct vector_block *vector_blocks;
2942
2943/* Vector free lists, where NTH item points to a chain of free
2944 vectors of the same NBYTES size, so NTH == VINDEX (NBYTES). */
2945
2946static struct Lisp_Vector *vector_free_lists[VECTOR_MAX_FREE_LIST_INDEX];
2947
2948/* Singly-linked list of large vectors. */
2949
2950static struct Lisp_Vector *large_vectors;
2951
2952/* The only vector with 0 slots, allocated from pure space. */
2953
2954static struct Lisp_Vector *zero_vector;
2955
2956/* Get a new vector block. */
2957
2958static struct vector_block *
2959allocate_vector_block (void)
2960{
2961 struct vector_block *block;
2962
2963#ifdef DOUG_LEA_MALLOC
2964 mallopt (M_MMAP_MAX, 0);
2965#endif
2966
2967 block = xmalloc (sizeof (struct vector_block));
2968
2969#ifdef DOUG_LEA_MALLOC
2970 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
2971#endif
2972
2973#if GC_MARK_STACK && !defined GC_MALLOC_CHECK
2974 mem_insert (block->data, block->data + VECTOR_BLOCK_BYTES,
2975 MEM_TYPE_VECTOR_BLOCK);
2976#endif
2977
2978 block->next = vector_blocks;
2979 vector_blocks = block;
2980 return block;
2981}
2982
2983/* Called once to initialize vector allocation. */
2984
2985static void
2986init_vectors (void)
2987{
2988 zero_vector = pure_alloc (header_size, Lisp_Vectorlike);
2989 zero_vector->header.size = 0;
2990}
2991
2992/* Allocate vector from a vector block. */
2993
2994static struct Lisp_Vector *
2995allocate_vector_from_block (size_t nbytes)
2996{
2997 struct Lisp_Vector *vector, *rest;
2998 struct vector_block *block;
2999 size_t index, restbytes;
3000
3001 eassert (VBLOCK_BYTES_MIN <= nbytes && nbytes <= VBLOCK_BYTES_MAX);
3002 eassert (nbytes % roundup_size == 0);
3003
3004 /* First, try to allocate from a free list
3005 containing vectors of the requested size. */
3006 index = VINDEX (nbytes);
3007 if (vector_free_lists[index])
3008 {
3009 vector = vector_free_lists[index];
3010 vector_free_lists[index] = vector->header.next.vector;
3011 vector->header.next.nbytes = nbytes;
3012 return vector;
3013 }
3014
3015 /* Next, check free lists containing larger vectors. Since
3016 we will split the result, we should have remaining space
3017 large enough to use for one-slot vector at least. */
3018 for (index = VINDEX (nbytes + VBLOCK_BYTES_MIN);
3019 index < VECTOR_MAX_FREE_LIST_INDEX; index++)
3020 if (vector_free_lists[index])
3021 {
3022 /* This vector is larger than requested. */
3023 vector = vector_free_lists[index];
3024 vector_free_lists[index] = vector->header.next.vector;
3025 vector->header.next.nbytes = nbytes;
3026
3027 /* Excess bytes are used for the smaller vector,
3028 which should be set on an appropriate free list. */
3029 restbytes = index * roundup_size + VBLOCK_BYTES_MIN - nbytes;
3030 eassert (restbytes % roundup_size == 0);
3031 rest = ADVANCE (vector, nbytes);
3032 SETUP_ON_FREE_LIST (rest, restbytes, index);
3033 return vector;
3034 }
3035
3036 /* Finally, need a new vector block. */
3037 block = allocate_vector_block ();
3038
3039 /* New vector will be at the beginning of this block. */
3040 vector = (struct Lisp_Vector *) block->data;
3041 vector->header.next.nbytes = nbytes;
3042
3043 /* If the rest of space from this block is large enough
3044 for one-slot vector at least, set up it on a free list. */
3045 restbytes = VECTOR_BLOCK_BYTES - nbytes;
3046 if (restbytes >= VBLOCK_BYTES_MIN)
3047 {
3048 eassert (restbytes % roundup_size == 0);
3049 rest = ADVANCE (vector, nbytes);
3050 SETUP_ON_FREE_LIST (rest, restbytes, index);
3051 }
3052 return vector;
3053 }
3054
3055/* Return how many Lisp_Objects can be stored in V. */
3056
3057#define VECTOR_SIZE(v) ((v)->header.size & PSEUDOVECTOR_FLAG ? \
3058 (PSEUDOVECTOR_SIZE_MASK & (v)->header.size) : \
3059 (v)->header.size)
3060
3061/* Nonzero if VECTOR pointer is valid pointer inside BLOCK. */
3062
3063#define VECTOR_IN_BLOCK(vector, block) \
3064 ((char *) (vector) <= (block)->data \
3065 + VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN)
3066
3067/* Reclaim space used by unmarked vectors. */
3068
3069static void
3070sweep_vectors (void)
3071{
3072 struct vector_block *block = vector_blocks, **bprev = &vector_blocks;
3073 struct Lisp_Vector *vector, *next, **vprev = &large_vectors;
3074
3075 total_vector_size = 0;
3076 memset (vector_free_lists, 0, sizeof (vector_free_lists));
3077
3078 /* Looking through vector blocks. */
3079
3080 for (block = vector_blocks; block; block = *bprev)
3081 {
3082 int free_this_block = 0;
3083
3084 for (vector = (struct Lisp_Vector *) block->data;
3085 VECTOR_IN_BLOCK (vector, block); vector = next)
3086 {
3087 if (VECTOR_MARKED_P (vector))
3088 {
3089 VECTOR_UNMARK (vector);
3090 total_vector_size += VECTOR_SIZE (vector);
3091 next = ADVANCE (vector, vector->header.next.nbytes);
3092 }
3093 else
3094 {
3095 ptrdiff_t nbytes;
3096
3097 if ((vector->header.size & VECTOR_FREE_LIST_FLAG)
3098 == VECTOR_FREE_LIST_FLAG)
3099 vector->header.next.nbytes =
3100 vector->header.size & (VECTOR_BLOCK_SIZE - 1);
bfe3e0a2 3101
f3372c87
DA
3102 next = ADVANCE (vector, vector->header.next.nbytes);
3103
3104 /* While NEXT is not marked, try to coalesce with VECTOR,
3105 thus making VECTOR of the largest possible size. */
3106
3107 while (VECTOR_IN_BLOCK (next, block))
3108 {
3109 if (VECTOR_MARKED_P (next))
3110 break;
3111 if ((next->header.size & VECTOR_FREE_LIST_FLAG)
3112 == VECTOR_FREE_LIST_FLAG)
3113 nbytes = next->header.size & (VECTOR_BLOCK_SIZE - 1);
3114 else
3115 nbytes = next->header.next.nbytes;
3116 vector->header.next.nbytes += nbytes;
3117 next = ADVANCE (next, nbytes);
3118 }
bfe3e0a2 3119
f3372c87
DA
3120 eassert (vector->header.next.nbytes % roundup_size == 0);
3121
3122 if (vector == (struct Lisp_Vector *) block->data
3123 && !VECTOR_IN_BLOCK (next, block))
3124 /* This block should be freed because all of it's
3125 space was coalesced into the only free vector. */
3126 free_this_block = 1;
3127 else
3128 SETUP_ON_FREE_LIST (vector, vector->header.next.nbytes, nbytes);
3129 }
3130 }
3131
3132 if (free_this_block)
3133 {
3134 *bprev = block->next;
3135#if GC_MARK_STACK && !defined GC_MALLOC_CHECK
3136 mem_delete (mem_find (block->data));
3137#endif
3138 xfree (block);
3139 }
3140 else
3141 bprev = &block->next;
3142 }
3143
3144 /* Sweep large vectors. */
3145
3146 for (vector = large_vectors; vector; vector = *vprev)
3147 {
3148 if (VECTOR_MARKED_P (vector))
3149 {
3150 VECTOR_UNMARK (vector);
3151 total_vector_size += VECTOR_SIZE (vector);
3152 vprev = &vector->header.next.vector;
3153 }
3154 else
3155 {
3156 *vprev = vector->header.next.vector;
3157 lisp_free (vector);
3158 }
3159 }
3160}
3161
34400008
GM
3162/* Value is a pointer to a newly allocated Lisp_Vector structure
3163 with room for LEN Lisp_Objects. */
3164
ece93c02 3165static struct Lisp_Vector *
d311d28c 3166allocate_vectorlike (ptrdiff_t len)
1825c68d
KH
3167{
3168 struct Lisp_Vector *p;
675d5130 3169 size_t nbytes;
1825c68d 3170
dafc79fa
SM
3171 MALLOC_BLOCK_INPUT;
3172
d1658221 3173#ifdef DOUG_LEA_MALLOC
f8608968
GM
3174 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
3175 because mapped region contents are not preserved in
3176 a dumped Emacs. */
d1658221
RS
3177 mallopt (M_MMAP_MAX, 0);
3178#endif
177c0ea7 3179
cfb2f32e
SM
3180 /* This gets triggered by code which I haven't bothered to fix. --Stef */
3181 /* eassert (!handling_signal); */
3182
f3372c87 3183 if (len == 0)
8bbbc977
EZ
3184 {
3185 MALLOC_UNBLOCK_INPUT;
3186 return zero_vector;
3187 }
f3372c87 3188
0de4bb68 3189 nbytes = header_size + len * word_size;
f3372c87
DA
3190
3191 if (nbytes <= VBLOCK_BYTES_MAX)
3192 p = allocate_vector_from_block (vroundup (nbytes));
3193 else
3194 {
3195 p = (struct Lisp_Vector *) lisp_malloc (nbytes, MEM_TYPE_VECTORLIKE);
3196 p->header.next.vector = large_vectors;
3197 large_vectors = p;
3198 }
177c0ea7 3199
d1658221 3200#ifdef DOUG_LEA_MALLOC
34400008 3201 /* Back to a reasonable maximum of mmap'ed areas. */
81d492d5 3202 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
d1658221 3203#endif
177c0ea7 3204
34400008 3205 consing_since_gc += nbytes;
310ea200 3206 vector_cells_consed += len;
1825c68d 3207
dafc79fa 3208 MALLOC_UNBLOCK_INPUT;
e2984df0 3209
1825c68d
KH
3210 return p;
3211}
3212
34400008 3213
dd0b0efb 3214/* Allocate a vector with LEN slots. */
ece93c02
GM
3215
3216struct Lisp_Vector *
dd0b0efb 3217allocate_vector (EMACS_INT len)
ece93c02 3218{
dd0b0efb
PE
3219 struct Lisp_Vector *v;
3220 ptrdiff_t nbytes_max = min (PTRDIFF_MAX, SIZE_MAX);
3221
3222 if (min ((nbytes_max - header_size) / word_size, MOST_POSITIVE_FIXNUM) < len)
3223 memory_full (SIZE_MAX);
3224 v = allocate_vectorlike (len);
3225 v->header.size = len;
ece93c02
GM
3226 return v;
3227}
3228
3229
3230/* Allocate other vector-like structures. */
3231
30f95089 3232struct Lisp_Vector *
d311d28c 3233allocate_pseudovector (int memlen, int lisplen, int tag)
ece93c02 3234{
d2029e5b 3235 struct Lisp_Vector *v = allocate_vectorlike (memlen);
e46bb31a 3236 int i;
177c0ea7 3237
d2029e5b 3238 /* Only the first lisplen slots will be traced normally by the GC. */
d2029e5b 3239 for (i = 0; i < lisplen; ++i)
ece93c02 3240 v->contents[i] = Qnil;
177c0ea7 3241
eab3844f 3242 XSETPVECTYPESIZE (v, tag, lisplen);
d2029e5b
SM
3243 return v;
3244}
d2029e5b 3245
36429c89
DA
3246struct buffer *
3247allocate_buffer (void)
3248{
3249 struct buffer *b = lisp_malloc (sizeof (struct buffer), MEM_TYPE_BUFFER);
3250
3251 XSETPVECTYPESIZE (b, PVEC_BUFFER, (offsetof (struct buffer, own_text)
3252 - header_size) / word_size);
3253 /* Note that the fields of B are not initialized. */
3254 return b;
3255}
3256
ece93c02 3257struct Lisp_Hash_Table *
878f97ff 3258allocate_hash_table (void)
ece93c02 3259{
878f97ff 3260 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Hash_Table, count, PVEC_HASH_TABLE);
ece93c02
GM
3261}
3262
ece93c02 3263struct window *
971de7fb 3264allocate_window (void)
ece93c02 3265{
62efea5e 3266 struct window *w;
177c0ea7 3267
62efea5e
DA
3268 w = ALLOCATE_PSEUDOVECTOR (struct window, current_matrix, PVEC_WINDOW);
3269 /* Users assumes that non-Lisp data is zeroed. */
3270 memset (&w->current_matrix, 0,
3271 sizeof (*w) - offsetof (struct window, current_matrix));
3272 return w;
3273}
177c0ea7 3274
4a729fd8 3275struct terminal *
971de7fb 3276allocate_terminal (void)
4a729fd8 3277{
62efea5e 3278 struct terminal *t;
ece93c02 3279
62efea5e
DA
3280 t = ALLOCATE_PSEUDOVECTOR (struct terminal, next_terminal, PVEC_TERMINAL);
3281 /* Users assumes that non-Lisp data is zeroed. */
3282 memset (&t->next_terminal, 0,
3283 sizeof (*t) - offsetof (struct terminal, next_terminal));
d2029e5b 3284 return t;
4a729fd8 3285}
ece93c02
GM
3286
3287struct frame *
971de7fb 3288allocate_frame (void)
ece93c02 3289{
62efea5e
DA
3290 struct frame *f;
3291
3292 f = ALLOCATE_PSEUDOVECTOR (struct frame, face_cache, PVEC_FRAME);
3293 /* Users assumes that non-Lisp data is zeroed. */
72af86bd 3294 memset (&f->face_cache, 0,
62efea5e 3295 sizeof (*f) - offsetof (struct frame, face_cache));
d2029e5b 3296 return f;
ece93c02
GM
3297}
3298
ece93c02 3299struct Lisp_Process *
971de7fb 3300allocate_process (void)
ece93c02 3301{
62efea5e 3302 struct Lisp_Process *p;
ece93c02 3303
62efea5e
DA
3304 p = ALLOCATE_PSEUDOVECTOR (struct Lisp_Process, pid, PVEC_PROCESS);
3305 /* Users assumes that non-Lisp data is zeroed. */
3306 memset (&p->pid, 0,
3307 sizeof (*p) - offsetof (struct Lisp_Process, pid));
3308 return p;
3309}
ece93c02 3310
a7ca3326 3311DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
a6266d23 3312 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
7ee72033 3313See also the function `vector'. */)
5842a27b 3314 (register Lisp_Object length, Lisp_Object init)
7146af97 3315{
1825c68d 3316 Lisp_Object vector;
d311d28c
PE
3317 register ptrdiff_t sizei;
3318 register ptrdiff_t i;
7146af97
JB
3319 register struct Lisp_Vector *p;
3320
b7826503 3321 CHECK_NATNUM (length);
7146af97 3322
d311d28c
PE
3323 p = allocate_vector (XFASTINT (length));
3324 sizei = XFASTINT (length);
ae35e756
PE
3325 for (i = 0; i < sizei; i++)
3326 p->contents[i] = init;
7146af97 3327
1825c68d 3328 XSETVECTOR (vector, p);
7146af97
JB
3329 return vector;
3330}
3331
34400008 3332
a7ca3326 3333DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
eae936e2 3334 doc: /* Return a newly created vector with specified arguments as elements.
ae8e8122
MB
3335Any number of arguments, even zero arguments, are allowed.
3336usage: (vector &rest OBJECTS) */)
f66c7cf8 3337 (ptrdiff_t nargs, Lisp_Object *args)
7146af97
JB
3338{
3339 register Lisp_Object len, val;
f66c7cf8 3340 ptrdiff_t i;
7146af97
JB
3341 register struct Lisp_Vector *p;
3342
67ba9986 3343 XSETFASTINT (len, nargs);
7146af97
JB
3344 val = Fmake_vector (len, Qnil);
3345 p = XVECTOR (val);
ae35e756
PE
3346 for (i = 0; i < nargs; i++)
3347 p->contents[i] = args[i];
7146af97
JB
3348 return val;
3349}
3350
3017f87f
SM
3351void
3352make_byte_code (struct Lisp_Vector *v)
3353{
3354 if (v->header.size > 1 && STRINGP (v->contents[1])
3355 && STRING_MULTIBYTE (v->contents[1]))
3356 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
3357 earlier because they produced a raw 8-bit string for byte-code
3358 and now such a byte-code string is loaded as multibyte while
3359 raw 8-bit characters converted to multibyte form. Thus, now we
3360 must convert them back to the original unibyte form. */
3361 v->contents[1] = Fstring_as_unibyte (v->contents[1]);
3362 XSETPVECTYPE (v, PVEC_COMPILED);
3363}
34400008 3364
a7ca3326 3365DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
a6266d23 3366 doc: /* Create a byte-code object with specified arguments as elements.
e2abe5a1
SM
3367The arguments should be the ARGLIST, bytecode-string BYTE-CODE, constant
3368vector CONSTANTS, maximum stack size DEPTH, (optional) DOCSTRING,
3369and (optional) INTERACTIVE-SPEC.
228299fa 3370The first four arguments are required; at most six have any
ae8e8122 3371significance.
e2abe5a1
SM
3372The ARGLIST can be either like the one of `lambda', in which case the arguments
3373will be dynamically bound before executing the byte code, or it can be an
3374integer of the form NNNNNNNRMMMMMMM where the 7bit MMMMMMM specifies the
3375minimum number of arguments, the 7-bit NNNNNNN specifies the maximum number
3376of arguments (ignoring &rest) and the R bit specifies whether there is a &rest
3377argument to catch the left-over arguments. If such an integer is used, the
3378arguments will not be dynamically bound but will be instead pushed on the
3379stack before executing the byte-code.
92cc28b2 3380usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
f66c7cf8 3381 (ptrdiff_t nargs, Lisp_Object *args)
7146af97
JB
3382{
3383 register Lisp_Object len, val;
f66c7cf8 3384 ptrdiff_t i;
7146af97
JB
3385 register struct Lisp_Vector *p;
3386
3017f87f
SM
3387 /* We used to purecopy everything here, if purify-flga was set. This worked
3388 OK for Emacs-23, but with Emacs-24's lexical binding code, it can be
3389 dangerous, since make-byte-code is used during execution to build
3390 closures, so any closure built during the preload phase would end up
3391 copied into pure space, including its free variables, which is sometimes
3392 just wasteful and other times plainly wrong (e.g. those free vars may want
3393 to be setcar'd). */
9eac9d59 3394
3017f87f
SM
3395 XSETFASTINT (len, nargs);
3396 val = Fmake_vector (len, Qnil);
9eac9d59 3397
7146af97 3398 p = XVECTOR (val);
ae35e756 3399 for (i = 0; i < nargs; i++)
3017f87f
SM
3400 p->contents[i] = args[i];
3401 make_byte_code (p);
876c194c 3402 XSETCOMPILED (val, p);
7146af97
JB
3403 return val;
3404}
2e471eb5 3405
34400008 3406
7146af97 3407\f
2e471eb5
GM
3408/***********************************************************************
3409 Symbol Allocation
3410 ***********************************************************************/
7146af97 3411
d55c12ed
AS
3412/* Like struct Lisp_Symbol, but padded so that the size is a multiple
3413 of the required alignment if LSB tags are used. */
3414
3415union aligned_Lisp_Symbol
3416{
3417 struct Lisp_Symbol s;
bfe3e0a2 3418#if USE_LSB_TAG
d55c12ed
AS
3419 unsigned char c[(sizeof (struct Lisp_Symbol) + (1 << GCTYPEBITS) - 1)
3420 & -(1 << GCTYPEBITS)];
3421#endif
3422};
3423
2e471eb5
GM
3424/* Each symbol_block is just under 1020 bytes long, since malloc
3425 really allocates in units of powers of two and uses 4 bytes for its
3017f87f 3426 own overhead. */
7146af97
JB
3427
3428#define SYMBOL_BLOCK_SIZE \
d55c12ed 3429 ((1020 - sizeof (struct symbol_block *)) / sizeof (union aligned_Lisp_Symbol))
7146af97
JB
3430
3431struct symbol_block
2e471eb5 3432{
6b61353c 3433 /* Place `symbols' first, to preserve alignment. */
d55c12ed 3434 union aligned_Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
6b61353c 3435 struct symbol_block *next;
2e471eb5 3436};
7146af97 3437
34400008
GM
3438/* Current symbol block and index of first unused Lisp_Symbol
3439 structure in it. */
3440
d3d47262
JB
3441static struct symbol_block *symbol_block;
3442static int symbol_block_index;
7146af97 3443
34400008
GM
3444/* List of free symbols. */
3445
d3d47262 3446static struct Lisp_Symbol *symbol_free_list;
7146af97 3447
34400008
GM
3448
3449/* Initialize symbol allocation. */
3450
d3d47262 3451static void
971de7fb 3452init_symbol (void)
7146af97 3453{
005ca5c7
DL
3454 symbol_block = NULL;
3455 symbol_block_index = SYMBOL_BLOCK_SIZE;
7146af97
JB
3456 symbol_free_list = 0;
3457}
3458
34400008 3459
a7ca3326 3460DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
a6266d23 3461 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
7ee72033 3462Its value and function definition are void, and its property list is nil. */)
5842a27b 3463 (Lisp_Object name)
7146af97
JB
3464{
3465 register Lisp_Object val;
3466 register struct Lisp_Symbol *p;
3467
b7826503 3468 CHECK_STRING (name);
7146af97 3469
537407f0 3470 /* eassert (!handling_signal); */
cfb2f32e 3471
dafc79fa 3472 MALLOC_BLOCK_INPUT;
e2984df0 3473
7146af97
JB
3474 if (symbol_free_list)
3475 {
45d12a89 3476 XSETSYMBOL (val, symbol_free_list);
28a099a4 3477 symbol_free_list = symbol_free_list->next;
7146af97
JB
3478 }
3479 else
3480 {
3481 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
3482 {
3c06d205 3483 struct symbol_block *new;
34400008
GM
3484 new = (struct symbol_block *) lisp_malloc (sizeof *new,
3485 MEM_TYPE_SYMBOL);
7146af97
JB
3486 new->next = symbol_block;
3487 symbol_block = new;
3488 symbol_block_index = 0;
3489 }
d55c12ed 3490 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index].s);
6b61353c 3491 symbol_block_index++;
7146af97 3492 }
177c0ea7 3493
dafc79fa 3494 MALLOC_UNBLOCK_INPUT;
e2984df0 3495
7146af97 3496 p = XSYMBOL (val);
8fe5665d 3497 p->xname = name;
7146af97 3498 p->plist = Qnil;
ce5b453a
SM
3499 p->redirect = SYMBOL_PLAINVAL;
3500 SET_SYMBOL_VAL (p, Qunbound);
2e471eb5 3501 p->function = Qunbound;
9e713715 3502 p->next = NULL;
2336fe58 3503 p->gcmarkbit = 0;
9e713715
GM
3504 p->interned = SYMBOL_UNINTERNED;
3505 p->constant = 0;
b9598260 3506 p->declared_special = 0;
2e471eb5
GM
3507 consing_since_gc += sizeof (struct Lisp_Symbol);
3508 symbols_consed++;
7146af97
JB
3509 return val;
3510}
3511
3f25e183 3512
2e471eb5
GM
3513\f
3514/***********************************************************************
34400008 3515 Marker (Misc) Allocation
2e471eb5 3516 ***********************************************************************/
3f25e183 3517
d55c12ed
AS
3518/* Like union Lisp_Misc, but padded so that its size is a multiple of
3519 the required alignment when LSB tags are used. */
3520
3521union aligned_Lisp_Misc
3522{
3523 union Lisp_Misc m;
bfe3e0a2 3524#if USE_LSB_TAG
d55c12ed
AS
3525 unsigned char c[(sizeof (union Lisp_Misc) + (1 << GCTYPEBITS) - 1)
3526 & -(1 << GCTYPEBITS)];
3527#endif
3528};
3529
2e471eb5
GM
3530/* Allocation of markers and other objects that share that structure.
3531 Works like allocation of conses. */
c0696668 3532
2e471eb5 3533#define MARKER_BLOCK_SIZE \
d55c12ed 3534 ((1020 - sizeof (struct marker_block *)) / sizeof (union aligned_Lisp_Misc))
2e471eb5
GM
3535
3536struct marker_block
c0696668 3537{
6b61353c 3538 /* Place `markers' first, to preserve alignment. */
d55c12ed 3539 union aligned_Lisp_Misc markers[MARKER_BLOCK_SIZE];
6b61353c 3540 struct marker_block *next;
2e471eb5 3541};
c0696668 3542
d3d47262
JB
3543static struct marker_block *marker_block;
3544static int marker_block_index;
c0696668 3545
d3d47262 3546static union Lisp_Misc *marker_free_list;
c0696668 3547
d3d47262 3548static void
971de7fb 3549init_marker (void)
3f25e183 3550{
005ca5c7
DL
3551 marker_block = NULL;
3552 marker_block_index = MARKER_BLOCK_SIZE;
2e471eb5 3553 marker_free_list = 0;
3f25e183
RS
3554}
3555
2e471eb5
GM
3556/* Return a newly allocated Lisp_Misc object, with no substructure. */
3557
3f25e183 3558Lisp_Object
971de7fb 3559allocate_misc (void)
7146af97 3560{
2e471eb5 3561 Lisp_Object val;
7146af97 3562
e2984df0
CY
3563 /* eassert (!handling_signal); */
3564
dafc79fa 3565 MALLOC_BLOCK_INPUT;
cfb2f32e 3566
2e471eb5 3567 if (marker_free_list)
7146af97 3568 {
2e471eb5
GM
3569 XSETMISC (val, marker_free_list);
3570 marker_free_list = marker_free_list->u_free.chain;
7146af97
JB
3571 }
3572 else
7146af97 3573 {
2e471eb5
GM
3574 if (marker_block_index == MARKER_BLOCK_SIZE)
3575 {
3576 struct marker_block *new;
34400008
GM
3577 new = (struct marker_block *) lisp_malloc (sizeof *new,
3578 MEM_TYPE_MISC);
2e471eb5
GM
3579 new->next = marker_block;
3580 marker_block = new;
3581 marker_block_index = 0;
7b7990cc 3582 total_free_markers += MARKER_BLOCK_SIZE;
2e471eb5 3583 }
d55c12ed 3584 XSETMISC (val, &marker_block->markers[marker_block_index].m);
6b61353c 3585 marker_block_index++;
7146af97 3586 }
177c0ea7 3587
dafc79fa 3588 MALLOC_UNBLOCK_INPUT;
e2984df0 3589
7b7990cc 3590 --total_free_markers;
2e471eb5
GM
3591 consing_since_gc += sizeof (union Lisp_Misc);
3592 misc_objects_consed++;
67ee9f6e 3593 XMISCANY (val)->gcmarkbit = 0;
2e471eb5
GM
3594 return val;
3595}
3596
7b7990cc
KS
3597/* Free a Lisp_Misc object */
3598
244ed907 3599static void
971de7fb 3600free_misc (Lisp_Object misc)
7b7990cc 3601{
d314756e 3602 XMISCTYPE (misc) = Lisp_Misc_Free;
7b7990cc
KS
3603 XMISC (misc)->u_free.chain = marker_free_list;
3604 marker_free_list = XMISC (misc);
3605
3606 total_free_markers++;
3607}
3608
42172a6b
RS
3609/* Return a Lisp_Misc_Save_Value object containing POINTER and
3610 INTEGER. This is used to package C values to call record_unwind_protect.
3611 The unwind function can get the C values back using XSAVE_VALUE. */
3612
3613Lisp_Object
9c4c5f81 3614make_save_value (void *pointer, ptrdiff_t integer)
42172a6b
RS
3615{
3616 register Lisp_Object val;
3617 register struct Lisp_Save_Value *p;
3618
3619 val = allocate_misc ();
3620 XMISCTYPE (val) = Lisp_Misc_Save_Value;
3621 p = XSAVE_VALUE (val);
3622 p->pointer = pointer;
3623 p->integer = integer;
b766f870 3624 p->dogc = 0;
42172a6b
RS
3625 return val;
3626}
3627
a7ca3326 3628DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
a6266d23 3629 doc: /* Return a newly allocated marker which does not point at any place. */)
5842a27b 3630 (void)
2e471eb5
GM
3631{
3632 register Lisp_Object val;
3633 register struct Lisp_Marker *p;
7146af97 3634
2e471eb5
GM
3635 val = allocate_misc ();
3636 XMISCTYPE (val) = Lisp_Misc_Marker;
3637 p = XMARKER (val);
3638 p->buffer = 0;
3639 p->bytepos = 0;
3640 p->charpos = 0;
ef89c2ce 3641 p->next = NULL;
2e471eb5 3642 p->insertion_type = 0;
7146af97
JB
3643 return val;
3644}
2e471eb5
GM
3645
3646/* Put MARKER back on the free list after using it temporarily. */
3647
3648void
971de7fb 3649free_marker (Lisp_Object marker)
2e471eb5 3650{
ef89c2ce 3651 unchain_marker (XMARKER (marker));
7b7990cc 3652 free_misc (marker);
2e471eb5
GM
3653}
3654
c0696668 3655\f
7146af97 3656/* Return a newly created vector or string with specified arguments as
736471d1
RS
3657 elements. If all the arguments are characters that can fit
3658 in a string of events, make a string; otherwise, make a vector.
3659
3660 Any number of arguments, even zero arguments, are allowed. */
7146af97
JB
3661
3662Lisp_Object
971de7fb 3663make_event_array (register int nargs, Lisp_Object *args)
7146af97
JB
3664{
3665 int i;
3666
3667 for (i = 0; i < nargs; i++)
736471d1 3668 /* The things that fit in a string
c9ca4659
RS
3669 are characters that are in 0...127,
3670 after discarding the meta bit and all the bits above it. */
e687453f 3671 if (!INTEGERP (args[i])
c11285dc 3672 || (XINT (args[i]) & ~(-CHAR_META)) >= 0200)
7146af97
JB
3673 return Fvector (nargs, args);
3674
3675 /* Since the loop exited, we know that all the things in it are
3676 characters, so we can make a string. */
3677 {
c13ccad2 3678 Lisp_Object result;
177c0ea7 3679
50aee051 3680 result = Fmake_string (make_number (nargs), make_number (0));
7146af97 3681 for (i = 0; i < nargs; i++)
736471d1 3682 {
46e7e6b0 3683 SSET (result, i, XINT (args[i]));
736471d1
RS
3684 /* Move the meta bit to the right place for a string char. */
3685 if (XINT (args[i]) & CHAR_META)
46e7e6b0 3686 SSET (result, i, SREF (result, i) | 0x80);
736471d1 3687 }
177c0ea7 3688
7146af97
JB
3689 return result;
3690 }
3691}
2e471eb5
GM
3692
3693
7146af97 3694\f
24d8a105
RS
3695/************************************************************************
3696 Memory Full Handling
3697 ************************************************************************/
3698
3699
531b0165
PE
3700/* Called if malloc (NBYTES) returns zero. If NBYTES == SIZE_MAX,
3701 there may have been size_t overflow so that malloc was never
3702 called, or perhaps malloc was invoked successfully but the
3703 resulting pointer had problems fitting into a tagged EMACS_INT. In
3704 either case this counts as memory being full even though malloc did
3705 not fail. */
24d8a105
RS
3706
3707void
531b0165 3708memory_full (size_t nbytes)
24d8a105 3709{
531b0165
PE
3710 /* Do not go into hysterics merely because a large request failed. */
3711 int enough_free_memory = 0;
2b6148e4 3712 if (SPARE_MEMORY < nbytes)
531b0165 3713 {
66606eea
PE
3714 void *p;
3715
3716 MALLOC_BLOCK_INPUT;
3717 p = malloc (SPARE_MEMORY);
531b0165
PE
3718 if (p)
3719 {
4d09bcf6 3720 free (p);
531b0165
PE
3721 enough_free_memory = 1;
3722 }
66606eea 3723 MALLOC_UNBLOCK_INPUT;
531b0165 3724 }
24d8a105 3725
531b0165
PE
3726 if (! enough_free_memory)
3727 {
3728 int i;
24d8a105 3729
531b0165
PE
3730 Vmemory_full = Qt;
3731
3732 memory_full_cons_threshold = sizeof (struct cons_block);
3733
3734 /* The first time we get here, free the spare memory. */
3735 for (i = 0; i < sizeof (spare_memory) / sizeof (char *); i++)
3736 if (spare_memory[i])
3737 {
3738 if (i == 0)
3739 free (spare_memory[i]);
3740 else if (i >= 1 && i <= 4)
3741 lisp_align_free (spare_memory[i]);
3742 else
3743 lisp_free (spare_memory[i]);
3744 spare_memory[i] = 0;
3745 }
3746
3747 /* Record the space now used. When it decreases substantially,
3748 we can refill the memory reserve. */
4e75f29d 3749#if !defined SYSTEM_MALLOC && !defined SYNC_INPUT
531b0165 3750 bytes_used_when_full = BYTES_USED;
24d8a105 3751#endif
531b0165 3752 }
24d8a105
RS
3753
3754 /* This used to call error, but if we've run out of memory, we could
3755 get infinite recursion trying to build the string. */
9b306d37 3756 xsignal (Qnil, Vmemory_signal_data);
24d8a105
RS
3757}
3758
3759/* If we released our reserve (due to running out of memory),
3760 and we have a fair amount free once again,
3761 try to set aside another reserve in case we run out once more.
3762
3763 This is called when a relocatable block is freed in ralloc.c,
3764 and also directly from this file, in case we're not using ralloc.c. */
3765
3766void
971de7fb 3767refill_memory_reserve (void)
24d8a105
RS
3768{
3769#ifndef SYSTEM_MALLOC
3770 if (spare_memory[0] == 0)
903fe15d 3771 spare_memory[0] = (char *) malloc (SPARE_MEMORY);
24d8a105
RS
3772 if (spare_memory[1] == 0)
3773 spare_memory[1] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3774 MEM_TYPE_CONS);
3775 if (spare_memory[2] == 0)
3776 spare_memory[2] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3777 MEM_TYPE_CONS);
3778 if (spare_memory[3] == 0)
3779 spare_memory[3] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3780 MEM_TYPE_CONS);
3781 if (spare_memory[4] == 0)
3782 spare_memory[4] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3783 MEM_TYPE_CONS);
3784 if (spare_memory[5] == 0)
3785 spare_memory[5] = (char *) lisp_malloc (sizeof (struct string_block),
3786 MEM_TYPE_STRING);
3787 if (spare_memory[6] == 0)
3788 spare_memory[6] = (char *) lisp_malloc (sizeof (struct string_block),
3789 MEM_TYPE_STRING);
3790 if (spare_memory[0] && spare_memory[1] && spare_memory[5])
3791 Vmemory_full = Qnil;
3792#endif
3793}
3794\f
34400008
GM
3795/************************************************************************
3796 C Stack Marking
3797 ************************************************************************/
3798
13c844fb
GM
3799#if GC_MARK_STACK || defined GC_MALLOC_CHECK
3800
71cf5fa0
GM
3801/* Conservative C stack marking requires a method to identify possibly
3802 live Lisp objects given a pointer value. We do this by keeping
3803 track of blocks of Lisp data that are allocated in a red-black tree
3804 (see also the comment of mem_node which is the type of nodes in
3805 that tree). Function lisp_malloc adds information for an allocated
3806 block to the red-black tree with calls to mem_insert, and function
3807 lisp_free removes it with mem_delete. Functions live_string_p etc
3808 call mem_find to lookup information about a given pointer in the
3809 tree, and use that to determine if the pointer points to a Lisp
3810 object or not. */
3811
34400008
GM
3812/* Initialize this part of alloc.c. */
3813
3814static void
971de7fb 3815mem_init (void)
34400008
GM
3816{
3817 mem_z.left = mem_z.right = MEM_NIL;
3818 mem_z.parent = NULL;
3819 mem_z.color = MEM_BLACK;
3820 mem_z.start = mem_z.end = NULL;
3821 mem_root = MEM_NIL;
3822}
3823
3824
3825/* Value is a pointer to the mem_node containing START. Value is
3826 MEM_NIL if there is no node in the tree containing START. */
3827
55d4c1b2 3828static inline struct mem_node *
971de7fb 3829mem_find (void *start)
34400008
GM
3830{
3831 struct mem_node *p;
3832
ece93c02
GM
3833 if (start < min_heap_address || start > max_heap_address)
3834 return MEM_NIL;
3835
34400008
GM
3836 /* Make the search always successful to speed up the loop below. */
3837 mem_z.start = start;
3838 mem_z.end = (char *) start + 1;
3839
3840 p = mem_root;
3841 while (start < p->start || start >= p->end)
3842 p = start < p->start ? p->left : p->right;
3843 return p;
3844}
3845
3846
3847/* Insert a new node into the tree for a block of memory with start
3848 address START, end address END, and type TYPE. Value is a
3849 pointer to the node that was inserted. */
3850
3851static struct mem_node *
971de7fb 3852mem_insert (void *start, void *end, enum mem_type type)
34400008
GM
3853{
3854 struct mem_node *c, *parent, *x;
3855
add3c3ea 3856 if (min_heap_address == NULL || start < min_heap_address)
ece93c02 3857 min_heap_address = start;
add3c3ea 3858 if (max_heap_address == NULL || end > max_heap_address)
ece93c02
GM
3859 max_heap_address = end;
3860
34400008
GM
3861 /* See where in the tree a node for START belongs. In this
3862 particular application, it shouldn't happen that a node is already
3863 present. For debugging purposes, let's check that. */
3864 c = mem_root;
3865 parent = NULL;
3866
3867#if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
177c0ea7 3868
34400008
GM
3869 while (c != MEM_NIL)
3870 {
3871 if (start >= c->start && start < c->end)
3872 abort ();
3873 parent = c;
3874 c = start < c->start ? c->left : c->right;
3875 }
177c0ea7 3876
34400008 3877#else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
177c0ea7 3878
34400008
GM
3879 while (c != MEM_NIL)
3880 {
3881 parent = c;
3882 c = start < c->start ? c->left : c->right;
3883 }
177c0ea7 3884
34400008
GM
3885#endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3886
3887 /* Create a new node. */
877935b1
GM
3888#ifdef GC_MALLOC_CHECK
3889 x = (struct mem_node *) _malloc_internal (sizeof *x);
3890 if (x == NULL)
3891 abort ();
3892#else
34400008 3893 x = (struct mem_node *) xmalloc (sizeof *x);
877935b1 3894#endif
34400008
GM
3895 x->start = start;
3896 x->end = end;
3897 x->type = type;
3898 x->parent = parent;
3899 x->left = x->right = MEM_NIL;
3900 x->color = MEM_RED;
3901
3902 /* Insert it as child of PARENT or install it as root. */
3903 if (parent)
3904 {
3905 if (start < parent->start)
3906 parent->left = x;
3907 else
3908 parent->right = x;
3909 }
177c0ea7 3910 else
34400008
GM
3911 mem_root = x;
3912
3913 /* Re-establish red-black tree properties. */
3914 mem_insert_fixup (x);
877935b1 3915
34400008
GM
3916 return x;
3917}
3918
3919
3920/* Re-establish the red-black properties of the tree, and thereby
3921 balance the tree, after node X has been inserted; X is always red. */
3922
3923static void
971de7fb 3924mem_insert_fixup (struct mem_node *x)
34400008
GM
3925{
3926 while (x != mem_root && x->parent->color == MEM_RED)
3927 {
3928 /* X is red and its parent is red. This is a violation of
3929 red-black tree property #3. */
177c0ea7 3930
34400008
GM
3931 if (x->parent == x->parent->parent->left)
3932 {
3933 /* We're on the left side of our grandparent, and Y is our
3934 "uncle". */
3935 struct mem_node *y = x->parent->parent->right;
177c0ea7 3936
34400008
GM
3937 if (y->color == MEM_RED)
3938 {
3939 /* Uncle and parent are red but should be black because
3940 X is red. Change the colors accordingly and proceed
3941 with the grandparent. */
3942 x->parent->color = MEM_BLACK;
3943 y->color = MEM_BLACK;
3944 x->parent->parent->color = MEM_RED;
3945 x = x->parent->parent;
3946 }
3947 else
3948 {
3949 /* Parent and uncle have different colors; parent is
3950 red, uncle is black. */
3951 if (x == x->parent->right)
3952 {
3953 x = x->parent;
3954 mem_rotate_left (x);
3955 }
3956
3957 x->parent->color = MEM_BLACK;
3958 x->parent->parent->color = MEM_RED;
3959 mem_rotate_right (x->parent->parent);
3960 }
3961 }
3962 else
3963 {
3964 /* This is the symmetrical case of above. */
3965 struct mem_node *y = x->parent->parent->left;
177c0ea7 3966
34400008
GM
3967 if (y->color == MEM_RED)
3968 {
3969 x->parent->color = MEM_BLACK;
3970 y->color = MEM_BLACK;
3971 x->parent->parent->color = MEM_RED;
3972 x = x->parent->parent;
3973 }
3974 else
3975 {
3976 if (x == x->parent->left)
3977 {
3978 x = x->parent;
3979 mem_rotate_right (x);
3980 }
177c0ea7 3981
34400008
GM
3982 x->parent->color = MEM_BLACK;
3983 x->parent->parent->color = MEM_RED;
3984 mem_rotate_left (x->parent->parent);
3985 }
3986 }
3987 }
3988
3989 /* The root may have been changed to red due to the algorithm. Set
3990 it to black so that property #5 is satisfied. */
3991 mem_root->color = MEM_BLACK;
3992}
3993
3994
177c0ea7
JB
3995/* (x) (y)
3996 / \ / \
34400008
GM
3997 a (y) ===> (x) c
3998 / \ / \
3999 b c a b */
4000
4001static void
971de7fb 4002mem_rotate_left (struct mem_node *x)
34400008
GM
4003{
4004 struct mem_node *y;
4005
4006 /* Turn y's left sub-tree into x's right sub-tree. */
4007 y = x->right;
4008 x->right = y->left;
4009 if (y->left != MEM_NIL)
4010 y->left->parent = x;
4011
4012 /* Y's parent was x's parent. */
4013 if (y != MEM_NIL)
4014 y->parent = x->parent;
4015
4016 /* Get the parent to point to y instead of x. */
4017 if (x->parent)
4018 {
4019 if (x == x->parent->left)
4020 x->parent->left = y;
4021 else
4022 x->parent->right = y;
4023 }
4024 else
4025 mem_root = y;
4026
4027 /* Put x on y's left. */
4028 y->left = x;
4029 if (x != MEM_NIL)
4030 x->parent = y;
4031}
4032
4033
177c0ea7
JB
4034/* (x) (Y)
4035 / \ / \
4036 (y) c ===> a (x)
4037 / \ / \
34400008
GM
4038 a b b c */
4039
4040static void
971de7fb 4041mem_rotate_right (struct mem_node *x)
34400008
GM
4042{
4043 struct mem_node *y = x->left;
4044
4045 x->left = y->right;
4046 if (y->right != MEM_NIL)
4047 y->right->parent = x;
177c0ea7 4048
34400008
GM
4049 if (y != MEM_NIL)
4050 y->parent = x->parent;
4051 if (x->parent)
4052 {
4053 if (x == x->parent->right)
4054 x->parent->right = y;
4055 else
4056 x->parent->left = y;
4057 }
4058 else
4059 mem_root = y;
177c0ea7 4060
34400008
GM
4061 y->right = x;
4062 if (x != MEM_NIL)
4063 x->parent = y;
4064}
4065
4066
4067/* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
4068
4069static void
971de7fb 4070mem_delete (struct mem_node *z)
34400008
GM
4071{
4072 struct mem_node *x, *y;
4073
4074 if (!z || z == MEM_NIL)
4075 return;
4076
4077 if (z->left == MEM_NIL || z->right == MEM_NIL)
4078 y = z;
4079 else
4080 {
4081 y = z->right;
4082 while (y->left != MEM_NIL)
4083 y = y->left;
4084 }
4085
4086 if (y->left != MEM_NIL)
4087 x = y->left;
4088 else
4089 x = y->right;
4090
4091 x->parent = y->parent;
4092 if (y->parent)
4093 {
4094 if (y == y->parent->left)
4095 y->parent->left = x;
4096 else
4097 y->parent->right = x;
4098 }
4099 else
4100 mem_root = x;
4101
4102 if (y != z)
4103 {
4104 z->start = y->start;
4105 z->end = y->end;
4106 z->type = y->type;
4107 }
177c0ea7 4108
34400008
GM
4109 if (y->color == MEM_BLACK)
4110 mem_delete_fixup (x);
877935b1
GM
4111
4112#ifdef GC_MALLOC_CHECK
4113 _free_internal (y);
4114#else
34400008 4115 xfree (y);
877935b1 4116#endif
34400008
GM
4117}
4118
4119
4120/* Re-establish the red-black properties of the tree, after a
4121 deletion. */
4122
4123static void
971de7fb 4124mem_delete_fixup (struct mem_node *x)
34400008
GM
4125{
4126 while (x != mem_root && x->color == MEM_BLACK)
4127 {
4128 if (x == x->parent->left)
4129 {
4130 struct mem_node *w = x->parent->right;
177c0ea7 4131
34400008
GM
4132 if (w->color == MEM_RED)
4133 {
4134 w->color = MEM_BLACK;
4135 x->parent->color = MEM_RED;
4136 mem_rotate_left (x->parent);
4137 w = x->parent->right;
4138 }
177c0ea7 4139
34400008
GM
4140 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
4141 {
4142 w->color = MEM_RED;
4143 x = x->parent;
4144 }
4145 else
4146 {
4147 if (w->right->color == MEM_BLACK)
4148 {
4149 w->left->color = MEM_BLACK;
4150 w->color = MEM_RED;
4151 mem_rotate_right (w);
4152 w = x->parent->right;
4153 }
4154 w->color = x->parent->color;
4155 x->parent->color = MEM_BLACK;
4156 w->right->color = MEM_BLACK;
4157 mem_rotate_left (x->parent);
4158 x = mem_root;
4159 }
4160 }
4161 else
4162 {
4163 struct mem_node *w = x->parent->left;
177c0ea7 4164
34400008
GM
4165 if (w->color == MEM_RED)
4166 {
4167 w->color = MEM_BLACK;
4168 x->parent->color = MEM_RED;
4169 mem_rotate_right (x->parent);
4170 w = x->parent->left;
4171 }
177c0ea7 4172
34400008
GM
4173 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
4174 {
4175 w->color = MEM_RED;
4176 x = x->parent;
4177 }
4178 else
4179 {
4180 if (w->left->color == MEM_BLACK)
4181 {
4182 w->right->color = MEM_BLACK;
4183 w->color = MEM_RED;
4184 mem_rotate_left (w);
4185 w = x->parent->left;
4186 }
177c0ea7 4187
34400008
GM
4188 w->color = x->parent->color;
4189 x->parent->color = MEM_BLACK;
4190 w->left->color = MEM_BLACK;
4191 mem_rotate_right (x->parent);
4192 x = mem_root;
4193 }
4194 }
4195 }
177c0ea7 4196
34400008
GM
4197 x->color = MEM_BLACK;
4198}
4199
4200
4201/* Value is non-zero if P is a pointer to a live Lisp string on
4202 the heap. M is a pointer to the mem_block for P. */
4203
55d4c1b2 4204static inline int
971de7fb 4205live_string_p (struct mem_node *m, void *p)
34400008
GM
4206{
4207 if (m->type == MEM_TYPE_STRING)
4208 {
4209 struct string_block *b = (struct string_block *) m->start;
14162469 4210 ptrdiff_t offset = (char *) p - (char *) &b->strings[0];
34400008
GM
4211
4212 /* P must point to the start of a Lisp_String structure, and it
4213 must not be on the free-list. */
176bc847
GM
4214 return (offset >= 0
4215 && offset % sizeof b->strings[0] == 0
6b61353c 4216 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
34400008
GM
4217 && ((struct Lisp_String *) p)->data != NULL);
4218 }
4219 else
4220 return 0;
4221}
4222
4223
4224/* Value is non-zero if P is a pointer to a live Lisp cons on
4225 the heap. M is a pointer to the mem_block for P. */
4226
55d4c1b2 4227static inline int
971de7fb 4228live_cons_p (struct mem_node *m, void *p)
34400008
GM
4229{
4230 if (m->type == MEM_TYPE_CONS)
4231 {
4232 struct cons_block *b = (struct cons_block *) m->start;
14162469 4233 ptrdiff_t offset = (char *) p - (char *) &b->conses[0];
34400008
GM
4234
4235 /* P must point to the start of a Lisp_Cons, not be
4236 one of the unused cells in the current cons block,
4237 and not be on the free-list. */
176bc847
GM
4238 return (offset >= 0
4239 && offset % sizeof b->conses[0] == 0
6b61353c 4240 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
34400008
GM
4241 && (b != cons_block
4242 || offset / sizeof b->conses[0] < cons_block_index)
4243 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
4244 }
4245 else
4246 return 0;
4247}
4248
4249
4250/* Value is non-zero if P is a pointer to a live Lisp symbol on
4251 the heap. M is a pointer to the mem_block for P. */
4252
55d4c1b2 4253static inline int
971de7fb 4254live_symbol_p (struct mem_node *m, void *p)
34400008
GM
4255{
4256 if (m->type == MEM_TYPE_SYMBOL)
4257 {
4258 struct symbol_block *b = (struct symbol_block *) m->start;
14162469 4259 ptrdiff_t offset = (char *) p - (char *) &b->symbols[0];
177c0ea7 4260
34400008
GM
4261 /* P must point to the start of a Lisp_Symbol, not be
4262 one of the unused cells in the current symbol block,
4263 and not be on the free-list. */
176bc847
GM
4264 return (offset >= 0
4265 && offset % sizeof b->symbols[0] == 0
6b61353c 4266 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
34400008
GM
4267 && (b != symbol_block
4268 || offset / sizeof b->symbols[0] < symbol_block_index)
4269 && !EQ (((struct Lisp_Symbol *) p)->function, Vdead));
4270 }
4271 else
4272 return 0;
4273}
4274
4275
4276/* Value is non-zero if P is a pointer to a live Lisp float on
4277 the heap. M is a pointer to the mem_block for P. */
4278
55d4c1b2 4279static inline int
971de7fb 4280live_float_p (struct mem_node *m, void *p)
34400008
GM
4281{
4282 if (m->type == MEM_TYPE_FLOAT)
4283 {
4284 struct float_block *b = (struct float_block *) m->start;
14162469 4285 ptrdiff_t offset = (char *) p - (char *) &b->floats[0];
177c0ea7 4286
ab6780cd
SM
4287 /* P must point to the start of a Lisp_Float and not be
4288 one of the unused cells in the current float block. */
176bc847
GM
4289 return (offset >= 0
4290 && offset % sizeof b->floats[0] == 0
6b61353c 4291 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
34400008 4292 && (b != float_block
ab6780cd 4293 || offset / sizeof b->floats[0] < float_block_index));
34400008
GM
4294 }
4295 else
4296 return 0;
4297}
4298
4299
4300/* Value is non-zero if P is a pointer to a live Lisp Misc on
4301 the heap. M is a pointer to the mem_block for P. */
4302
55d4c1b2 4303static inline int
971de7fb 4304live_misc_p (struct mem_node *m, void *p)
34400008
GM
4305{
4306 if (m->type == MEM_TYPE_MISC)
4307 {
4308 struct marker_block *b = (struct marker_block *) m->start;
14162469 4309 ptrdiff_t offset = (char *) p - (char *) &b->markers[0];
177c0ea7 4310
34400008
GM
4311 /* P must point to the start of a Lisp_Misc, not be
4312 one of the unused cells in the current misc block,
4313 and not be on the free-list. */
176bc847
GM
4314 return (offset >= 0
4315 && offset % sizeof b->markers[0] == 0
6b61353c 4316 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
34400008
GM
4317 && (b != marker_block
4318 || offset / sizeof b->markers[0] < marker_block_index)
d314756e 4319 && ((union Lisp_Misc *) p)->u_any.type != Lisp_Misc_Free);
34400008
GM
4320 }
4321 else
4322 return 0;
4323}
4324
4325
4326/* Value is non-zero if P is a pointer to a live vector-like object.
4327 M is a pointer to the mem_block for P. */
4328
55d4c1b2 4329static inline int
971de7fb 4330live_vector_p (struct mem_node *m, void *p)
34400008 4331{
f3372c87
DA
4332 if (m->type == MEM_TYPE_VECTOR_BLOCK)
4333 {
4334 /* This memory node corresponds to a vector block. */
4335 struct vector_block *block = (struct vector_block *) m->start;
4336 struct Lisp_Vector *vector = (struct Lisp_Vector *) block->data;
4337
4338 /* P is in the block's allocation range. Scan the block
4339 up to P and see whether P points to the start of some
4340 vector which is not on a free list. FIXME: check whether
4341 some allocation patterns (probably a lot of short vectors)
4342 may cause a substantial overhead of this loop. */
4343 while (VECTOR_IN_BLOCK (vector, block)
4344 && vector <= (struct Lisp_Vector *) p)
4345 {
4346 if ((vector->header.size & VECTOR_FREE_LIST_FLAG)
4347 == VECTOR_FREE_LIST_FLAG)
4348 vector = ADVANCE (vector, (vector->header.size
4349 & (VECTOR_BLOCK_SIZE - 1)));
4350 else if (vector == p)
4351 return 1;
4352 else
4353 vector = ADVANCE (vector, vector->header.next.nbytes);
4354 }
4355 }
4356 else if (m->type == MEM_TYPE_VECTORLIKE && p == m->start)
4357 /* This memory node corresponds to a large vector. */
4358 return 1;
4359 return 0;
34400008
GM
4360}
4361
4362
2336fe58 4363/* Value is non-zero if P is a pointer to a live buffer. M is a
34400008
GM
4364 pointer to the mem_block for P. */
4365
55d4c1b2 4366static inline int
971de7fb 4367live_buffer_p (struct mem_node *m, void *p)
34400008
GM
4368{
4369 /* P must point to the start of the block, and the buffer
4370 must not have been killed. */
4371 return (m->type == MEM_TYPE_BUFFER
4372 && p == m->start
5d8ea120 4373 && !NILP (((struct buffer *) p)->BUFFER_INTERNAL_FIELD (name)));
34400008
GM
4374}
4375
13c844fb
GM
4376#endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
4377
4378#if GC_MARK_STACK
4379
34400008
GM
4380#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4381
4382/* Array of objects that are kept alive because the C stack contains
4383 a pattern that looks like a reference to them . */
4384
4385#define MAX_ZOMBIES 10
4386static Lisp_Object zombies[MAX_ZOMBIES];
4387
4388/* Number of zombie objects. */
4389
211a0b2a 4390static EMACS_INT nzombies;
34400008
GM
4391
4392/* Number of garbage collections. */
4393
211a0b2a 4394static EMACS_INT ngcs;
34400008
GM
4395
4396/* Average percentage of zombies per collection. */
4397
4398static double avg_zombies;
4399
4400/* Max. number of live and zombie objects. */
4401
211a0b2a 4402static EMACS_INT max_live, max_zombies;
34400008
GM
4403
4404/* Average number of live objects per GC. */
4405
4406static double avg_live;
4407
a7ca3326 4408DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
7ee72033 4409 doc: /* Show information about live and zombie objects. */)
5842a27b 4410 (void)
34400008 4411{
83fc9c63 4412 Lisp_Object args[8], zombie_list = Qnil;
211a0b2a 4413 EMACS_INT i;
6e4b3fbe 4414 for (i = 0; i < min (MAX_ZOMBIES, nzombies); i++)
83fc9c63
DL
4415 zombie_list = Fcons (zombies[i], zombie_list);
4416 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
34400008
GM
4417 args[1] = make_number (ngcs);
4418 args[2] = make_float (avg_live);
4419 args[3] = make_float (avg_zombies);
4420 args[4] = make_float (avg_zombies / avg_live / 100);
4421 args[5] = make_number (max_live);
4422 args[6] = make_number (max_zombies);
83fc9c63
DL
4423 args[7] = zombie_list;
4424 return Fmessage (8, args);
34400008
GM
4425}
4426
4427#endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4428
4429
182ff242
GM
4430/* Mark OBJ if we can prove it's a Lisp_Object. */
4431
55d4c1b2 4432static inline void
971de7fb 4433mark_maybe_object (Lisp_Object obj)
182ff242 4434{
b609f591
YM
4435 void *po;
4436 struct mem_node *m;
4437
4438 if (INTEGERP (obj))
4439 return;
4440
4441 po = (void *) XPNTR (obj);
4442 m = mem_find (po);
177c0ea7 4443
182ff242
GM
4444 if (m != MEM_NIL)
4445 {
4446 int mark_p = 0;
4447
8e50cc2d 4448 switch (XTYPE (obj))
182ff242
GM
4449 {
4450 case Lisp_String:
4451 mark_p = (live_string_p (m, po)
4452 && !STRING_MARKED_P ((struct Lisp_String *) po));
4453 break;
4454
4455 case Lisp_Cons:
08b7c2cb 4456 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
182ff242
GM
4457 break;
4458
4459 case Lisp_Symbol:
2336fe58 4460 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
182ff242
GM
4461 break;
4462
4463 case Lisp_Float:
ab6780cd 4464 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
182ff242
GM
4465 break;
4466
4467 case Lisp_Vectorlike:
8e50cc2d 4468 /* Note: can't check BUFFERP before we know it's a
182ff242
GM
4469 buffer because checking that dereferences the pointer
4470 PO which might point anywhere. */
4471 if (live_vector_p (m, po))
8e50cc2d 4472 mark_p = !SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
182ff242 4473 else if (live_buffer_p (m, po))
8e50cc2d 4474 mark_p = BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
182ff242
GM
4475 break;
4476
4477 case Lisp_Misc:
67ee9f6e 4478 mark_p = (live_misc_p (m, po) && !XMISCANY (obj)->gcmarkbit);
182ff242 4479 break;
6bbd7a29 4480
2de9f71c 4481 default:
6bbd7a29 4482 break;
182ff242
GM
4483 }
4484
4485 if (mark_p)
4486 {
4487#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4488 if (nzombies < MAX_ZOMBIES)
83fc9c63 4489 zombies[nzombies] = obj;
182ff242
GM
4490 ++nzombies;
4491#endif
49723c04 4492 mark_object (obj);
182ff242
GM
4493 }
4494 }
4495}
ece93c02
GM
4496
4497
4498/* If P points to Lisp data, mark that as live if it isn't already
4499 marked. */
4500
55d4c1b2 4501static inline void
971de7fb 4502mark_maybe_pointer (void *p)
ece93c02
GM
4503{
4504 struct mem_node *m;
4505
bfe3e0a2
PE
4506 /* Quickly rule out some values which can't point to Lisp data.
4507 USE_LSB_TAG needs Lisp data to be aligned on multiples of 1 << GCTYPEBITS.
4508 Otherwise, assume that Lisp data is aligned on even addresses. */
4509 if ((intptr_t) p % (USE_LSB_TAG ? 1 << GCTYPEBITS : 2))
ece93c02 4510 return;
177c0ea7 4511
ece93c02
GM
4512 m = mem_find (p);
4513 if (m != MEM_NIL)
4514 {
4515 Lisp_Object obj = Qnil;
177c0ea7 4516
ece93c02
GM
4517 switch (m->type)
4518 {
4519 case MEM_TYPE_NON_LISP:
2fe50224 4520 /* Nothing to do; not a pointer to Lisp memory. */
ece93c02 4521 break;
177c0ea7 4522
ece93c02 4523 case MEM_TYPE_BUFFER:
5e617bc2 4524 if (live_buffer_p (m, p) && !VECTOR_MARKED_P ((struct buffer *)p))
ece93c02
GM
4525 XSETVECTOR (obj, p);
4526 break;
177c0ea7 4527
ece93c02 4528 case MEM_TYPE_CONS:
08b7c2cb 4529 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
ece93c02
GM
4530 XSETCONS (obj, p);
4531 break;
177c0ea7 4532
ece93c02
GM
4533 case MEM_TYPE_STRING:
4534 if (live_string_p (m, p)
4535 && !STRING_MARKED_P ((struct Lisp_String *) p))
4536 XSETSTRING (obj, p);
4537 break;
4538
4539 case MEM_TYPE_MISC:
2336fe58
SM
4540 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
4541 XSETMISC (obj, p);
ece93c02 4542 break;
177c0ea7 4543
ece93c02 4544 case MEM_TYPE_SYMBOL:
2336fe58 4545 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
ece93c02
GM
4546 XSETSYMBOL (obj, p);
4547 break;
177c0ea7 4548
ece93c02 4549 case MEM_TYPE_FLOAT:
ab6780cd 4550 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
ece93c02
GM
4551 XSETFLOAT (obj, p);
4552 break;
177c0ea7 4553
9c545a55 4554 case MEM_TYPE_VECTORLIKE:
f3372c87 4555 case MEM_TYPE_VECTOR_BLOCK:
ece93c02
GM
4556 if (live_vector_p (m, p))
4557 {
4558 Lisp_Object tem;
4559 XSETVECTOR (tem, p);
8e50cc2d 4560 if (!SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
ece93c02
GM
4561 obj = tem;
4562 }
4563 break;
4564
4565 default:
4566 abort ();
4567 }
4568
8e50cc2d 4569 if (!NILP (obj))
49723c04 4570 mark_object (obj);
ece93c02
GM
4571 }
4572}
4573
4574
e3fb2efb
PE
4575/* Alignment of pointer values. Use offsetof, as it sometimes returns
4576 a smaller alignment than GCC's __alignof__ and mark_memory might
4577 miss objects if __alignof__ were used. */
3164aeac
PE
4578#define GC_POINTER_ALIGNMENT offsetof (struct {char a; void *b;}, b)
4579
e3fb2efb
PE
4580/* Define POINTERS_MIGHT_HIDE_IN_OBJECTS to 1 if marking via C pointers does
4581 not suffice, which is the typical case. A host where a Lisp_Object is
4582 wider than a pointer might allocate a Lisp_Object in non-adjacent halves.
4583 If USE_LSB_TAG, the bottom half is not a valid pointer, but it should
4584 suffice to widen it to to a Lisp_Object and check it that way. */
bfe3e0a2
PE
4585#if USE_LSB_TAG || VAL_MAX < UINTPTR_MAX
4586# if !USE_LSB_TAG && VAL_MAX < UINTPTR_MAX >> GCTYPEBITS
e3fb2efb
PE
4587 /* If tag bits straddle pointer-word boundaries, neither mark_maybe_pointer
4588 nor mark_maybe_object can follow the pointers. This should not occur on
4589 any practical porting target. */
4590# error "MSB type bits straddle pointer-word boundaries"
4591# endif
4592 /* Marking via C pointers does not suffice, because Lisp_Objects contain
4593 pointer words that hold pointers ORed with type bits. */
4594# define POINTERS_MIGHT_HIDE_IN_OBJECTS 1
4595#else
4596 /* Marking via C pointers suffices, because Lisp_Objects contain pointer
4597 words that hold unmodified pointers. */
4598# define POINTERS_MIGHT_HIDE_IN_OBJECTS 0
4599#endif
4600
55a314a5
YM
4601/* Mark Lisp objects referenced from the address range START+OFFSET..END
4602 or END+OFFSET..START. */
34400008 4603
177c0ea7 4604static void
3164aeac 4605mark_memory (void *start, void *end)
ed6b3510
JW
4606#ifdef __clang__
4607 /* Do not allow -faddress-sanitizer to check this function, since it
4608 crosses the function stack boundary, and thus would yield many
4609 false positives. */
4610 __attribute__((no_address_safety_analysis))
4611#endif
34400008 4612{
ece93c02 4613 void **pp;
3164aeac 4614 int i;
34400008
GM
4615
4616#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4617 nzombies = 0;
4618#endif
4619
4620 /* Make START the pointer to the start of the memory region,
4621 if it isn't already. */
4622 if (end < start)
4623 {
4624 void *tem = start;
4625 start = end;
4626 end = tem;
4627 }
ece93c02 4628
ece93c02
GM
4629 /* Mark Lisp data pointed to. This is necessary because, in some
4630 situations, the C compiler optimizes Lisp objects away, so that
4631 only a pointer to them remains. Example:
4632
4633 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
7ee72033 4634 ()
ece93c02
GM
4635 {
4636 Lisp_Object obj = build_string ("test");
4637 struct Lisp_String *s = XSTRING (obj);
4638 Fgarbage_collect ();
4639 fprintf (stderr, "test `%s'\n", s->data);
4640 return Qnil;
4641 }
4642
4643 Here, `obj' isn't really used, and the compiler optimizes it
4644 away. The only reference to the life string is through the
4645 pointer `s'. */
177c0ea7 4646
3164aeac
PE
4647 for (pp = start; (void *) pp < end; pp++)
4648 for (i = 0; i < sizeof *pp; i += GC_POINTER_ALIGNMENT)
27f3c637 4649 {
e3fb2efb
PE
4650 void *p = *(void **) ((char *) pp + i);
4651 mark_maybe_pointer (p);
4652 if (POINTERS_MIGHT_HIDE_IN_OBJECTS)
646b5f55 4653 mark_maybe_object (XIL ((intptr_t) p));
27f3c637 4654 }
182ff242
GM
4655}
4656
30f637f8
DL
4657/* setjmp will work with GCC unless NON_SAVING_SETJMP is defined in
4658 the GCC system configuration. In gcc 3.2, the only systems for
4659 which this is so are i386-sco5 non-ELF, i386-sysv3 (maybe included
4660 by others?) and ns32k-pc532-min. */
182ff242
GM
4661
4662#if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4663
4664static int setjmp_tested_p, longjmps_done;
4665
4666#define SETJMP_WILL_LIKELY_WORK "\
4667\n\
4668Emacs garbage collector has been changed to use conservative stack\n\
4669marking. Emacs has determined that the method it uses to do the\n\
4670marking will likely work on your system, but this isn't sure.\n\
4671\n\
4672If you are a system-programmer, or can get the help of a local wizard\n\
4673who is, please take a look at the function mark_stack in alloc.c, and\n\
4674verify that the methods used are appropriate for your system.\n\
4675\n\
d191623b 4676Please mail the result to <emacs-devel@gnu.org>.\n\
182ff242
GM
4677"
4678
4679#define SETJMP_WILL_NOT_WORK "\
4680\n\
4681Emacs garbage collector has been changed to use conservative stack\n\
4682marking. Emacs has determined that the default method it uses to do the\n\
4683marking will not work on your system. We will need a system-dependent\n\
4684solution for your system.\n\
4685\n\
4686Please take a look at the function mark_stack in alloc.c, and\n\
4687try to find a way to make it work on your system.\n\
30f637f8
DL
4688\n\
4689Note that you may get false negatives, depending on the compiler.\n\
4690In particular, you need to use -O with GCC for this test.\n\
4691\n\
d191623b 4692Please mail the result to <emacs-devel@gnu.org>.\n\
182ff242
GM
4693"
4694
4695
4696/* Perform a quick check if it looks like setjmp saves registers in a
4697 jmp_buf. Print a message to stderr saying so. When this test
4698 succeeds, this is _not_ a proof that setjmp is sufficient for
4699 conservative stack marking. Only the sources or a disassembly
4700 can prove that. */
4701
4702static void
2018939f 4703test_setjmp (void)
182ff242
GM
4704{
4705 char buf[10];
4706 register int x;
4707 jmp_buf jbuf;
4708 int result = 0;
4709
4710 /* Arrange for X to be put in a register. */
4711 sprintf (buf, "1");
4712 x = strlen (buf);
4713 x = 2 * x - 1;
4714
4715 setjmp (jbuf);
4716 if (longjmps_done == 1)
34400008 4717 {
182ff242 4718 /* Came here after the longjmp at the end of the function.
34400008 4719
182ff242
GM
4720 If x == 1, the longjmp has restored the register to its
4721 value before the setjmp, and we can hope that setjmp
4722 saves all such registers in the jmp_buf, although that
4723 isn't sure.
34400008 4724
182ff242
GM
4725 For other values of X, either something really strange is
4726 taking place, or the setjmp just didn't save the register. */
4727
4728 if (x == 1)
4729 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
4730 else
4731 {
4732 fprintf (stderr, SETJMP_WILL_NOT_WORK);
4733 exit (1);
34400008
GM
4734 }
4735 }
182ff242
GM
4736
4737 ++longjmps_done;
4738 x = 2;
4739 if (longjmps_done == 1)
4740 longjmp (jbuf, 1);
34400008
GM
4741}
4742
182ff242
GM
4743#endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
4744
34400008
GM
4745
4746#if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4747
4748/* Abort if anything GCPRO'd doesn't survive the GC. */
4749
4750static void
2018939f 4751check_gcpros (void)
34400008
GM
4752{
4753 struct gcpro *p;
f66c7cf8 4754 ptrdiff_t i;
34400008
GM
4755
4756 for (p = gcprolist; p; p = p->next)
4757 for (i = 0; i < p->nvars; ++i)
4758 if (!survives_gc_p (p->var[i]))
92cc28b2
SM
4759 /* FIXME: It's not necessarily a bug. It might just be that the
4760 GCPRO is unnecessary or should release the object sooner. */
34400008
GM
4761 abort ();
4762}
4763
4764#elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4765
4766static void
2018939f 4767dump_zombies (void)
34400008
GM
4768{
4769 int i;
4770
6e4b3fbe 4771 fprintf (stderr, "\nZombies kept alive = %"pI"d:\n", nzombies);
34400008
GM
4772 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
4773 {
4774 fprintf (stderr, " %d = ", i);
4775 debug_print (zombies[i]);
4776 }
4777}
4778
4779#endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4780
4781
182ff242
GM
4782/* Mark live Lisp objects on the C stack.
4783
4784 There are several system-dependent problems to consider when
4785 porting this to new architectures:
4786
4787 Processor Registers
4788
4789 We have to mark Lisp objects in CPU registers that can hold local
4790 variables or are used to pass parameters.
4791
4792 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4793 something that either saves relevant registers on the stack, or
4794 calls mark_maybe_object passing it each register's contents.
4795
4796 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4797 implementation assumes that calling setjmp saves registers we need
4798 to see in a jmp_buf which itself lies on the stack. This doesn't
4799 have to be true! It must be verified for each system, possibly
4800 by taking a look at the source code of setjmp.
4801
2018939f
AS
4802 If __builtin_unwind_init is available (defined by GCC >= 2.8) we
4803 can use it as a machine independent method to store all registers
4804 to the stack. In this case the macros described in the previous
4805 two paragraphs are not used.
4806
182ff242
GM
4807 Stack Layout
4808
4809 Architectures differ in the way their processor stack is organized.
4810 For example, the stack might look like this
4811
4812 +----------------+
4813 | Lisp_Object | size = 4
4814 +----------------+
4815 | something else | size = 2
4816 +----------------+
4817 | Lisp_Object | size = 4
4818 +----------------+
4819 | ... |
4820
4821 In such a case, not every Lisp_Object will be aligned equally. To
4822 find all Lisp_Object on the stack it won't be sufficient to walk
4823 the stack in steps of 4 bytes. Instead, two passes will be
4824 necessary, one starting at the start of the stack, and a second
4825 pass starting at the start of the stack + 2. Likewise, if the
4826 minimal alignment of Lisp_Objects on the stack is 1, four passes
4827 would be necessary, each one starting with one byte more offset
c9af454e 4828 from the stack start. */
34400008
GM
4829
4830static void
971de7fb 4831mark_stack (void)
34400008 4832{
34400008
GM
4833 void *end;
4834
2018939f
AS
4835#ifdef HAVE___BUILTIN_UNWIND_INIT
4836 /* Force callee-saved registers and register windows onto the stack.
4837 This is the preferred method if available, obviating the need for
4838 machine dependent methods. */
4839 __builtin_unwind_init ();
4840 end = &end;
4841#else /* not HAVE___BUILTIN_UNWIND_INIT */
dff45157
PE
4842#ifndef GC_SAVE_REGISTERS_ON_STACK
4843 /* jmp_buf may not be aligned enough on darwin-ppc64 */
4844 union aligned_jmpbuf {
4845 Lisp_Object o;
4846 jmp_buf j;
4847 } j;
4848 volatile int stack_grows_down_p = (char *) &j > (char *) stack_base;
4849#endif
34400008
GM
4850 /* This trick flushes the register windows so that all the state of
4851 the process is contained in the stack. */
ab6780cd 4852 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
422eec7e
DL
4853 needed on ia64 too. See mach_dep.c, where it also says inline
4854 assembler doesn't work with relevant proprietary compilers. */
4a00783e 4855#ifdef __sparc__
4d18a7a2
DN
4856#if defined (__sparc64__) && defined (__FreeBSD__)
4857 /* FreeBSD does not have a ta 3 handler. */
4c1616be
CY
4858 asm ("flushw");
4859#else
34400008 4860 asm ("ta 3");
4c1616be 4861#endif
34400008 4862#endif
177c0ea7 4863
34400008
GM
4864 /* Save registers that we need to see on the stack. We need to see
4865 registers used to hold register variables and registers used to
4866 pass parameters. */
4867#ifdef GC_SAVE_REGISTERS_ON_STACK
4868 GC_SAVE_REGISTERS_ON_STACK (end);
182ff242 4869#else /* not GC_SAVE_REGISTERS_ON_STACK */
177c0ea7 4870
182ff242
GM
4871#ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
4872 setjmp will definitely work, test it
4873 and print a message with the result
4874 of the test. */
4875 if (!setjmp_tested_p)
4876 {
4877 setjmp_tested_p = 1;
4878 test_setjmp ();
4879 }
4880#endif /* GC_SETJMP_WORKS */
177c0ea7 4881
55a314a5 4882 setjmp (j.j);
34400008 4883 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
182ff242 4884#endif /* not GC_SAVE_REGISTERS_ON_STACK */
2018939f 4885#endif /* not HAVE___BUILTIN_UNWIND_INIT */
34400008
GM
4886
4887 /* This assumes that the stack is a contiguous region in memory. If
182ff242
GM
4888 that's not the case, something has to be done here to iterate
4889 over the stack segments. */
3164aeac
PE
4890 mark_memory (stack_base, end);
4891
4dec23ff
AS
4892 /* Allow for marking a secondary stack, like the register stack on the
4893 ia64. */
4894#ifdef GC_MARK_SECONDARY_STACK
4895 GC_MARK_SECONDARY_STACK ();
4896#endif
34400008
GM
4897
4898#if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4899 check_gcpros ();
4900#endif
4901}
4902
34400008
GM
4903#endif /* GC_MARK_STACK != 0 */
4904
4905
7ffb6955 4906/* Determine whether it is safe to access memory at address P. */
d3d47262 4907static int
971de7fb 4908valid_pointer_p (void *p)
7ffb6955 4909{
f892cf9c
EZ
4910#ifdef WINDOWSNT
4911 return w32_valid_pointer_p (p, 16);
4912#else
41bed37d 4913 int fd[2];
7ffb6955
KS
4914
4915 /* Obviously, we cannot just access it (we would SEGV trying), so we
4916 trick the o/s to tell us whether p is a valid pointer.
4917 Unfortunately, we cannot use NULL_DEVICE here, as emacs_write may
4918 not validate p in that case. */
4919
41bed37d 4920 if (pipe (fd) == 0)
7ffb6955 4921 {
41bed37d
PE
4922 int valid = (emacs_write (fd[1], (char *) p, 16) == 16);
4923 emacs_close (fd[1]);
4924 emacs_close (fd[0]);
7ffb6955
KS
4925 return valid;
4926 }
4927
4928 return -1;
f892cf9c 4929#endif
7ffb6955 4930}
3cd55735
KS
4931
4932/* Return 1 if OBJ is a valid lisp object.
4933 Return 0 if OBJ is NOT a valid lisp object.
4934 Return -1 if we cannot validate OBJ.
7c0ab7d9
RS
4935 This function can be quite slow,
4936 so it should only be used in code for manual debugging. */
3cd55735
KS
4937
4938int
971de7fb 4939valid_lisp_object_p (Lisp_Object obj)
3cd55735 4940{
de7124a7 4941 void *p;
7ffb6955 4942#if GC_MARK_STACK
3cd55735 4943 struct mem_node *m;
de7124a7 4944#endif
3cd55735
KS
4945
4946 if (INTEGERP (obj))
4947 return 1;
4948
4949 p = (void *) XPNTR (obj);
3cd55735
KS
4950 if (PURE_POINTER_P (p))
4951 return 1;
4952
de7124a7 4953#if !GC_MARK_STACK
7ffb6955 4954 return valid_pointer_p (p);
de7124a7
KS
4955#else
4956
3cd55735
KS
4957 m = mem_find (p);
4958
4959 if (m == MEM_NIL)
7ffb6955
KS
4960 {
4961 int valid = valid_pointer_p (p);
4962 if (valid <= 0)
4963 return valid;
4964
4965 if (SUBRP (obj))
4966 return 1;
4967
4968 return 0;
4969 }
3cd55735
KS
4970
4971 switch (m->type)
4972 {
4973 case MEM_TYPE_NON_LISP:
4974 return 0;
4975
4976 case MEM_TYPE_BUFFER:
4977 return live_buffer_p (m, p);
4978
4979 case MEM_TYPE_CONS:
4980 return live_cons_p (m, p);
4981
4982 case MEM_TYPE_STRING:
4983 return live_string_p (m, p);
4984
4985 case MEM_TYPE_MISC:
4986 return live_misc_p (m, p);
4987
4988 case MEM_TYPE_SYMBOL:
4989 return live_symbol_p (m, p);
4990
4991 case MEM_TYPE_FLOAT:
4992 return live_float_p (m, p);
4993
9c545a55 4994 case MEM_TYPE_VECTORLIKE:
f3372c87 4995 case MEM_TYPE_VECTOR_BLOCK:
3cd55735
KS
4996 return live_vector_p (m, p);
4997
4998 default:
4999 break;
5000 }
5001
5002 return 0;
5003#endif
5004}
5005
5006
5007
34400008 5008\f
2e471eb5
GM
5009/***********************************************************************
5010 Pure Storage Management
5011 ***********************************************************************/
5012
1f0b3fd2
GM
5013/* Allocate room for SIZE bytes from pure Lisp storage and return a
5014 pointer to it. TYPE is the Lisp type for which the memory is
e5bc14d4 5015 allocated. TYPE < 0 means it's not used for a Lisp object. */
1f0b3fd2 5016
261cb4bb 5017static void *
971de7fb 5018pure_alloc (size_t size, int type)
1f0b3fd2 5019{
261cb4bb 5020 void *result;
bfe3e0a2 5021#if USE_LSB_TAG
6b61353c
KH
5022 size_t alignment = (1 << GCTYPEBITS);
5023#else
44117420 5024 size_t alignment = sizeof (EMACS_INT);
1f0b3fd2
GM
5025
5026 /* Give Lisp_Floats an extra alignment. */
5027 if (type == Lisp_Float)
5028 {
1f0b3fd2
GM
5029#if defined __GNUC__ && __GNUC__ >= 2
5030 alignment = __alignof (struct Lisp_Float);
5031#else
5032 alignment = sizeof (struct Lisp_Float);
5033#endif
9e713715 5034 }
6b61353c 5035#endif
1f0b3fd2 5036
44117420 5037 again:
e5bc14d4
YM
5038 if (type >= 0)
5039 {
5040 /* Allocate space for a Lisp object from the beginning of the free
5041 space with taking account of alignment. */
5042 result = ALIGN (purebeg + pure_bytes_used_lisp, alignment);
5043 pure_bytes_used_lisp = ((char *)result - (char *)purebeg) + size;
5044 }
5045 else
5046 {
5047 /* Allocate space for a non-Lisp object from the end of the free
5048 space. */
5049 pure_bytes_used_non_lisp += size;
5050 result = purebeg + pure_size - pure_bytes_used_non_lisp;
5051 }
5052 pure_bytes_used = pure_bytes_used_lisp + pure_bytes_used_non_lisp;
44117420
KS
5053
5054 if (pure_bytes_used <= pure_size)
5055 return result;
5056
5057 /* Don't allocate a large amount here,
5058 because it might get mmap'd and then its address
5059 might not be usable. */
5060 purebeg = (char *) xmalloc (10000);
5061 pure_size = 10000;
5062 pure_bytes_used_before_overflow += pure_bytes_used - size;
5063 pure_bytes_used = 0;
e5bc14d4 5064 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
44117420 5065 goto again;
1f0b3fd2
GM
5066}
5067
5068
852f8cdc 5069/* Print a warning if PURESIZE is too small. */
9e713715
GM
5070
5071void
971de7fb 5072check_pure_size (void)
9e713715
GM
5073{
5074 if (pure_bytes_used_before_overflow)
c2982e87
PE
5075 message (("emacs:0:Pure Lisp storage overflow (approx. %"pI"d"
5076 " bytes needed)"),
5077 pure_bytes_used + pure_bytes_used_before_overflow);
9e713715
GM
5078}
5079
5080
79fd0489
YM
5081/* Find the byte sequence {DATA[0], ..., DATA[NBYTES-1], '\0'} from
5082 the non-Lisp data pool of the pure storage, and return its start
5083 address. Return NULL if not found. */
5084
5085static char *
d311d28c 5086find_string_data_in_pure (const char *data, ptrdiff_t nbytes)
79fd0489 5087{
14162469 5088 int i;
d311d28c 5089 ptrdiff_t skip, bm_skip[256], last_char_skip, infinity, start, start_max;
2aff7c53 5090 const unsigned char *p;
79fd0489
YM
5091 char *non_lisp_beg;
5092
d311d28c 5093 if (pure_bytes_used_non_lisp <= nbytes)
79fd0489
YM
5094 return NULL;
5095
5096 /* Set up the Boyer-Moore table. */
5097 skip = nbytes + 1;
5098 for (i = 0; i < 256; i++)
5099 bm_skip[i] = skip;
5100
2aff7c53 5101 p = (const unsigned char *) data;
79fd0489
YM
5102 while (--skip > 0)
5103 bm_skip[*p++] = skip;
5104
5105 last_char_skip = bm_skip['\0'];
5106
5107 non_lisp_beg = purebeg + pure_size - pure_bytes_used_non_lisp;
5108 start_max = pure_bytes_used_non_lisp - (nbytes + 1);
5109
5110 /* See the comments in the function `boyer_moore' (search.c) for the
5111 use of `infinity'. */
5112 infinity = pure_bytes_used_non_lisp + 1;
5113 bm_skip['\0'] = infinity;
5114
2aff7c53 5115 p = (const unsigned char *) non_lisp_beg + nbytes;
79fd0489
YM
5116 start = 0;
5117 do
5118 {
5119 /* Check the last character (== '\0'). */
5120 do
5121 {
5122 start += bm_skip[*(p + start)];
5123 }
5124 while (start <= start_max);
5125
5126 if (start < infinity)
5127 /* Couldn't find the last character. */
5128 return NULL;
5129
5130 /* No less than `infinity' means we could find the last
5131 character at `p[start - infinity]'. */
5132 start -= infinity;
5133
5134 /* Check the remaining characters. */
5135 if (memcmp (data, non_lisp_beg + start, nbytes) == 0)
5136 /* Found. */
5137 return non_lisp_beg + start;
5138
5139 start += last_char_skip;
5140 }
5141 while (start <= start_max);
5142
5143 return NULL;
5144}
5145
5146
2e471eb5
GM
5147/* Return a string allocated in pure space. DATA is a buffer holding
5148 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
5149 non-zero means make the result string multibyte.
1a4f1e2c 5150
2e471eb5
GM
5151 Must get an error if pure storage is full, since if it cannot hold
5152 a large string it may be able to hold conses that point to that
5153 string; then the string is not protected from gc. */
7146af97
JB
5154
5155Lisp_Object
14162469 5156make_pure_string (const char *data,
d311d28c 5157 ptrdiff_t nchars, ptrdiff_t nbytes, int multibyte)
7146af97 5158{
2e471eb5
GM
5159 Lisp_Object string;
5160 struct Lisp_String *s;
c0696668 5161
1f0b3fd2 5162 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
90256841 5163 s->data = (unsigned char *) find_string_data_in_pure (data, nbytes);
79fd0489
YM
5164 if (s->data == NULL)
5165 {
5166 s->data = (unsigned char *) pure_alloc (nbytes + 1, -1);
72af86bd 5167 memcpy (s->data, data, nbytes);
79fd0489
YM
5168 s->data[nbytes] = '\0';
5169 }
2e471eb5
GM
5170 s->size = nchars;
5171 s->size_byte = multibyte ? nbytes : -1;
2e471eb5 5172 s->intervals = NULL_INTERVAL;
2e471eb5
GM
5173 XSETSTRING (string, s);
5174 return string;
7146af97
JB
5175}
5176
a56eaaef
DN
5177/* Return a string a string allocated in pure space. Do not allocate
5178 the string data, just point to DATA. */
5179
5180Lisp_Object
5181make_pure_c_string (const char *data)
5182{
5183 Lisp_Object string;
5184 struct Lisp_String *s;
d311d28c 5185 ptrdiff_t nchars = strlen (data);
a56eaaef
DN
5186
5187 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
5188 s->size = nchars;
5189 s->size_byte = -1;
323637a2 5190 s->data = (unsigned char *) data;
a56eaaef
DN
5191 s->intervals = NULL_INTERVAL;
5192 XSETSTRING (string, s);
5193 return string;
5194}
2e471eb5 5195
34400008
GM
5196/* Return a cons allocated from pure space. Give it pure copies
5197 of CAR as car and CDR as cdr. */
5198
7146af97 5199Lisp_Object
971de7fb 5200pure_cons (Lisp_Object car, Lisp_Object cdr)
7146af97
JB
5201{
5202 register Lisp_Object new;
1f0b3fd2 5203 struct Lisp_Cons *p;
7146af97 5204
1f0b3fd2
GM
5205 p = (struct Lisp_Cons *) pure_alloc (sizeof *p, Lisp_Cons);
5206 XSETCONS (new, p);
f3fbd155
KR
5207 XSETCAR (new, Fpurecopy (car));
5208 XSETCDR (new, Fpurecopy (cdr));
7146af97
JB
5209 return new;
5210}
5211
7146af97 5212
34400008
GM
5213/* Value is a float object with value NUM allocated from pure space. */
5214
d3d47262 5215static Lisp_Object
971de7fb 5216make_pure_float (double num)
7146af97
JB
5217{
5218 register Lisp_Object new;
1f0b3fd2 5219 struct Lisp_Float *p;
7146af97 5220
1f0b3fd2
GM
5221 p = (struct Lisp_Float *) pure_alloc (sizeof *p, Lisp_Float);
5222 XSETFLOAT (new, p);
f601cdf3 5223 XFLOAT_INIT (new, num);
7146af97
JB
5224 return new;
5225}
5226
34400008
GM
5227
5228/* Return a vector with room for LEN Lisp_Objects allocated from
5229 pure space. */
5230
72cb32cf 5231static Lisp_Object
d311d28c 5232make_pure_vector (ptrdiff_t len)
7146af97 5233{
1f0b3fd2
GM
5234 Lisp_Object new;
5235 struct Lisp_Vector *p;
36372bf9
PE
5236 size_t size = (offsetof (struct Lisp_Vector, contents)
5237 + len * sizeof (Lisp_Object));
7146af97 5238
1f0b3fd2
GM
5239 p = (struct Lisp_Vector *) pure_alloc (size, Lisp_Vectorlike);
5240 XSETVECTOR (new, p);
eab3844f 5241 XVECTOR (new)->header.size = len;
7146af97
JB
5242 return new;
5243}
5244
34400008 5245
a7ca3326 5246DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
909e3b33 5247 doc: /* Make a copy of object OBJ in pure storage.
228299fa 5248Recursively copies contents of vectors and cons cells.
7ee72033 5249Does not copy symbols. Copies strings without text properties. */)
5842a27b 5250 (register Lisp_Object obj)
7146af97 5251{
265a9e55 5252 if (NILP (Vpurify_flag))
7146af97
JB
5253 return obj;
5254
1f0b3fd2 5255 if (PURE_POINTER_P (XPNTR (obj)))
7146af97
JB
5256 return obj;
5257
e9515805
SM
5258 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5259 {
5260 Lisp_Object tmp = Fgethash (obj, Vpurify_flag, Qnil);
5261 if (!NILP (tmp))
5262 return tmp;
5263 }
5264
d6dd74bb 5265 if (CONSP (obj))
e9515805 5266 obj = pure_cons (XCAR (obj), XCDR (obj));
d6dd74bb 5267 else if (FLOATP (obj))
e9515805 5268 obj = make_pure_float (XFLOAT_DATA (obj));
d6dd74bb 5269 else if (STRINGP (obj))
42a5b22f 5270 obj = make_pure_string (SSDATA (obj), SCHARS (obj),
e9515805
SM
5271 SBYTES (obj),
5272 STRING_MULTIBYTE (obj));
876c194c 5273 else if (COMPILEDP (obj) || VECTORP (obj))
d6dd74bb
KH
5274 {
5275 register struct Lisp_Vector *vec;
d311d28c
PE
5276 register ptrdiff_t i;
5277 ptrdiff_t size;
d6dd74bb 5278
77b37c05 5279 size = ASIZE (obj);
7d535c68
KH
5280 if (size & PSEUDOVECTOR_FLAG)
5281 size &= PSEUDOVECTOR_SIZE_MASK;
6b61353c 5282 vec = XVECTOR (make_pure_vector (size));
d6dd74bb 5283 for (i = 0; i < size; i++)
28be1ada 5284 vec->contents[i] = Fpurecopy (AREF (obj, i));
876c194c 5285 if (COMPILEDP (obj))
985773c9 5286 {
876c194c
SM
5287 XSETPVECTYPE (vec, PVEC_COMPILED);
5288 XSETCOMPILED (obj, vec);
985773c9 5289 }
d6dd74bb
KH
5290 else
5291 XSETVECTOR (obj, vec);
7146af97 5292 }
d6dd74bb
KH
5293 else if (MARKERP (obj))
5294 error ("Attempt to copy a marker to pure storage");
e9515805
SM
5295 else
5296 /* Not purified, don't hash-cons. */
5297 return obj;
5298
5299 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5300 Fputhash (obj, obj, Vpurify_flag);
6bbd7a29
GM
5301
5302 return obj;
7146af97 5303}
2e471eb5 5304
34400008 5305
7146af97 5306\f
34400008
GM
5307/***********************************************************************
5308 Protection from GC
5309 ***********************************************************************/
5310
2e471eb5
GM
5311/* Put an entry in staticvec, pointing at the variable with address
5312 VARADDRESS. */
7146af97
JB
5313
5314void
971de7fb 5315staticpro (Lisp_Object *varaddress)
7146af97
JB
5316{
5317 staticvec[staticidx++] = varaddress;
5318 if (staticidx >= NSTATICS)
5319 abort ();
5320}
5321
7146af97 5322\f
34400008
GM
5323/***********************************************************************
5324 Protection from GC
5325 ***********************************************************************/
1a4f1e2c 5326
e8197642
RS
5327/* Temporarily prevent garbage collection. */
5328
d311d28c 5329ptrdiff_t
971de7fb 5330inhibit_garbage_collection (void)
e8197642 5331{
d311d28c 5332 ptrdiff_t count = SPECPDL_INDEX ();
54defd0d 5333
6349ae4d 5334 specbind (Qgc_cons_threshold, make_number (MOST_POSITIVE_FIXNUM));
e8197642
RS
5335 return count;
5336}
5337
34400008 5338
a7ca3326 5339DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
7ee72033 5340 doc: /* Reclaim storage for Lisp objects no longer needed.
e1e37596
RS
5341Garbage collection happens automatically if you cons more than
5342`gc-cons-threshold' bytes of Lisp data since previous garbage collection.
5343`garbage-collect' normally returns a list with info on amount of space in use:
228299fa 5344 ((USED-CONSES . FREE-CONSES) (USED-SYMS . FREE-SYMS)
999dd333 5345 (USED-MISCS . FREE-MISCS) USED-STRING-CHARS USED-VECTOR-SLOTS
228299fa
GM
5346 (USED-FLOATS . FREE-FLOATS) (USED-INTERVALS . FREE-INTERVALS)
5347 (USED-STRINGS . FREE-STRINGS))
e1e37596 5348However, if there was overflow in pure space, `garbage-collect'
999dd333
GM
5349returns nil, because real GC can't be done.
5350See Info node `(elisp)Garbage Collection'. */)
5842a27b 5351 (void)
7146af97 5352{
7146af97 5353 register struct specbinding *bind;
7146af97 5354 char stack_top_variable;
f66c7cf8 5355 ptrdiff_t i;
6efc7df7 5356 int message_p;
96117bc7 5357 Lisp_Object total[8];
d311d28c 5358 ptrdiff_t count = SPECPDL_INDEX ();
2c5bd608
DL
5359 EMACS_TIME t1, t2, t3;
5360
3de0effb
RS
5361 if (abort_on_gc)
5362 abort ();
5363
9e713715
GM
5364 /* Can't GC if pure storage overflowed because we can't determine
5365 if something is a pure object or not. */
5366 if (pure_bytes_used_before_overflow)
5367 return Qnil;
5368
bbc012e0
KS
5369 CHECK_CONS_LIST ();
5370
3c7e66a8
RS
5371 /* Don't keep undo information around forever.
5372 Do this early on, so it is no problem if the user quits. */
5373 {
5374 register struct buffer *nextb = all_buffers;
5375
5376 while (nextb)
5377 {
5378 /* If a buffer's undo list is Qt, that means that undo is
5379 turned off in that buffer. Calling truncate_undo_list on
5380 Qt tends to return NULL, which effectively turns undo back on.
5381 So don't call truncate_undo_list if undo_list is Qt. */
7d7e0027
SM
5382 if (! NILP (nextb->BUFFER_INTERNAL_FIELD (name))
5383 && ! EQ (nextb->BUFFER_INTERNAL_FIELD (undo_list), Qt))
3c7e66a8
RS
5384 truncate_undo_list (nextb);
5385
5386 /* Shrink buffer gaps, but skip indirect and dead buffers. */
5d8ea120 5387 if (nextb->base_buffer == 0 && !NILP (nextb->BUFFER_INTERNAL_FIELD (name))
dc7b4525 5388 && ! nextb->text->inhibit_shrinking)
3c7e66a8
RS
5389 {
5390 /* If a buffer's gap size is more than 10% of the buffer
5391 size, or larger than 2000 bytes, then shrink it
5392 accordingly. Keep a minimum size of 20 bytes. */
5393 int size = min (2000, max (20, (nextb->text->z_byte / 10)));
5394
5395 if (nextb->text->gap_size > size)
5396 {
5397 struct buffer *save_current = current_buffer;
5398 current_buffer = nextb;
5399 make_gap (-(nextb->text->gap_size - size));
5400 current_buffer = save_current;
5401 }
5402 }
5403
eab3844f 5404 nextb = nextb->header.next.buffer;
3c7e66a8
RS
5405 }
5406 }
5407
5408 EMACS_GET_TIME (t1);
5409
58595309
KH
5410 /* In case user calls debug_print during GC,
5411 don't let that cause a recursive GC. */
5412 consing_since_gc = 0;
5413
6efc7df7
GM
5414 /* Save what's currently displayed in the echo area. */
5415 message_p = push_message ();
c55b0da6 5416 record_unwind_protect (pop_message_unwind, Qnil);
41c28a37 5417
7146af97
JB
5418 /* Save a copy of the contents of the stack, for debugging. */
5419#if MAX_SAVE_STACK > 0
265a9e55 5420 if (NILP (Vpurify_flag))
7146af97 5421 {
dd3f25f7 5422 char *stack;
903fe15d 5423 ptrdiff_t stack_size;
dd3f25f7 5424 if (&stack_top_variable < stack_bottom)
7146af97 5425 {
dd3f25f7
PE
5426 stack = &stack_top_variable;
5427 stack_size = stack_bottom - &stack_top_variable;
5428 }
5429 else
5430 {
5431 stack = stack_bottom;
5432 stack_size = &stack_top_variable - stack_bottom;
5433 }
5434 if (stack_size <= MAX_SAVE_STACK)
7146af97 5435 {
dd3f25f7 5436 if (stack_copy_size < stack_size)
7146af97 5437 {
dd3f25f7
PE
5438 stack_copy = (char *) xrealloc (stack_copy, stack_size);
5439 stack_copy_size = stack_size;
7146af97 5440 }
dd3f25f7 5441 memcpy (stack_copy, stack, stack_size);
7146af97
JB
5442 }
5443 }
5444#endif /* MAX_SAVE_STACK > 0 */
5445
299585ee 5446 if (garbage_collection_messages)
691c4285 5447 message1_nolog ("Garbage collecting...");
7146af97 5448
6e0fca1d
RS
5449 BLOCK_INPUT;
5450
eec7b73d
RS
5451 shrink_regexp_cache ();
5452
7146af97
JB
5453 gc_in_progress = 1;
5454
c23baf9f 5455 /* clear_marks (); */
7146af97 5456
005ca5c7 5457 /* Mark all the special slots that serve as the roots of accessibility. */
7146af97
JB
5458
5459 for (i = 0; i < staticidx; i++)
49723c04 5460 mark_object (*staticvec[i]);
34400008 5461
126f9c02
SM
5462 for (bind = specpdl; bind != specpdl_ptr; bind++)
5463 {
5464 mark_object (bind->symbol);
5465 mark_object (bind->old_value);
5466 }
6ed8eeff 5467 mark_terminals ();
126f9c02 5468 mark_kboards ();
98a92e2d 5469 mark_ttys ();
126f9c02
SM
5470
5471#ifdef USE_GTK
5472 {
dd4c5104 5473 extern void xg_mark_data (void);
126f9c02
SM
5474 xg_mark_data ();
5475 }
5476#endif
5477
34400008
GM
5478#if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
5479 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
5480 mark_stack ();
5481#else
acf5f7d3
SM
5482 {
5483 register struct gcpro *tail;
5484 for (tail = gcprolist; tail; tail = tail->next)
5485 for (i = 0; i < tail->nvars; i++)
005ca5c7 5486 mark_object (tail->var[i]);
acf5f7d3 5487 }
3e21b6a7 5488 mark_byte_stack ();
b286858c
SM
5489 {
5490 struct catchtag *catch;
5491 struct handler *handler;
177c0ea7 5492
7146af97
JB
5493 for (catch = catchlist; catch; catch = catch->next)
5494 {
49723c04
SM
5495 mark_object (catch->tag);
5496 mark_object (catch->val);
177c0ea7 5497 }
7146af97
JB
5498 for (handler = handlerlist; handler; handler = handler->next)
5499 {
49723c04
SM
5500 mark_object (handler->handler);
5501 mark_object (handler->var);
177c0ea7 5502 }
b286858c 5503 }
b40ea20a 5504 mark_backtrace ();
b286858c 5505#endif
7146af97 5506
454d7973
KS
5507#ifdef HAVE_WINDOW_SYSTEM
5508 mark_fringe_data ();
5509#endif
5510
74c35a48
SM
5511#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5512 mark_stack ();
5513#endif
5514
c37adf23
SM
5515 /* Everything is now marked, except for the things that require special
5516 finalization, i.e. the undo_list.
5517 Look thru every buffer's undo list
4c315bda
RS
5518 for elements that update markers that were not marked,
5519 and delete them. */
5520 {
5521 register struct buffer *nextb = all_buffers;
5522
5523 while (nextb)
5524 {
5525 /* If a buffer's undo list is Qt, that means that undo is
5526 turned off in that buffer. Calling truncate_undo_list on
5527 Qt tends to return NULL, which effectively turns undo back on.
5528 So don't call truncate_undo_list if undo_list is Qt. */
5d8ea120 5529 if (! EQ (nextb->BUFFER_INTERNAL_FIELD (undo_list), Qt))
4c315bda
RS
5530 {
5531 Lisp_Object tail, prev;
5d8ea120 5532 tail = nextb->BUFFER_INTERNAL_FIELD (undo_list);
4c315bda
RS
5533 prev = Qnil;
5534 while (CONSP (tail))
5535 {
8e50cc2d
SM
5536 if (CONSP (XCAR (tail))
5537 && MARKERP (XCAR (XCAR (tail)))
2336fe58 5538 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
4c315bda
RS
5539 {
5540 if (NILP (prev))
5d8ea120 5541 nextb->BUFFER_INTERNAL_FIELD (undo_list) = tail = XCDR (tail);
4c315bda 5542 else
f3fbd155
KR
5543 {
5544 tail = XCDR (tail);
5545 XSETCDR (prev, tail);
5546 }
4c315bda
RS
5547 }
5548 else
5549 {
5550 prev = tail;
70949dac 5551 tail = XCDR (tail);
4c315bda
RS
5552 }
5553 }
5554 }
c37adf23
SM
5555 /* Now that we have stripped the elements that need not be in the
5556 undo_list any more, we can finally mark the list. */
5d8ea120 5557 mark_object (nextb->BUFFER_INTERNAL_FIELD (undo_list));
4c315bda 5558
eab3844f 5559 nextb = nextb->header.next.buffer;
4c315bda
RS
5560 }
5561 }
5562
7146af97
JB
5563 gc_sweep ();
5564
5565 /* Clear the mark bits that we set in certain root slots. */
5566
033a5fa3 5567 unmark_byte_stack ();
3ef06d12
SM
5568 VECTOR_UNMARK (&buffer_defaults);
5569 VECTOR_UNMARK (&buffer_local_symbols);
7146af97 5570
34400008
GM
5571#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
5572 dump_zombies ();
5573#endif
5574
6e0fca1d
RS
5575 UNBLOCK_INPUT;
5576
bbc012e0
KS
5577 CHECK_CONS_LIST ();
5578
c23baf9f 5579 /* clear_marks (); */
7146af97
JB
5580 gc_in_progress = 0;
5581
5582 consing_since_gc = 0;
5583 if (gc_cons_threshold < 10000)
5584 gc_cons_threshold = 10000;
5585
c0c5c8ae 5586 gc_relative_threshold = 0;
96f077ad
SM
5587 if (FLOATP (Vgc_cons_percentage))
5588 { /* Set gc_cons_combined_threshold. */
c0c5c8ae 5589 double tot = 0;
ae35e756
PE
5590
5591 tot += total_conses * sizeof (struct Lisp_Cons);
5592 tot += total_symbols * sizeof (struct Lisp_Symbol);
5593 tot += total_markers * sizeof (union Lisp_Misc);
5594 tot += total_string_size;
5595 tot += total_vector_size * sizeof (Lisp_Object);
5596 tot += total_floats * sizeof (struct Lisp_Float);
5597 tot += total_intervals * sizeof (struct interval);
5598 tot += total_strings * sizeof (struct Lisp_String);
5599
c0c5c8ae
PE
5600 tot *= XFLOAT_DATA (Vgc_cons_percentage);
5601 if (0 < tot)
5602 {
5603 if (tot < TYPE_MAXIMUM (EMACS_INT))
5604 gc_relative_threshold = tot;
5605 else
5606 gc_relative_threshold = TYPE_MAXIMUM (EMACS_INT);
5607 }
96f077ad
SM
5608 }
5609
299585ee
RS
5610 if (garbage_collection_messages)
5611 {
6efc7df7
GM
5612 if (message_p || minibuf_level > 0)
5613 restore_message ();
299585ee
RS
5614 else
5615 message1_nolog ("Garbage collecting...done");
5616 }
7146af97 5617
98edb5ff 5618 unbind_to (count, Qnil);
2e471eb5
GM
5619
5620 total[0] = Fcons (make_number (total_conses),
5621 make_number (total_free_conses));
5622 total[1] = Fcons (make_number (total_symbols),
5623 make_number (total_free_symbols));
5624 total[2] = Fcons (make_number (total_markers),
5625 make_number (total_free_markers));
96117bc7
GM
5626 total[3] = make_number (total_string_size);
5627 total[4] = make_number (total_vector_size);
5628 total[5] = Fcons (make_number (total_floats),
2e471eb5 5629 make_number (total_free_floats));
96117bc7 5630 total[6] = Fcons (make_number (total_intervals),
2e471eb5 5631 make_number (total_free_intervals));
96117bc7 5632 total[7] = Fcons (make_number (total_strings),
2e471eb5
GM
5633 make_number (total_free_strings));
5634
34400008 5635#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
7146af97 5636 {
34400008
GM
5637 /* Compute average percentage of zombies. */
5638 double nlive = 0;
177c0ea7 5639
34400008 5640 for (i = 0; i < 7; ++i)
83fc9c63
DL
5641 if (CONSP (total[i]))
5642 nlive += XFASTINT (XCAR (total[i]));
34400008
GM
5643
5644 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
5645 max_live = max (nlive, max_live);
5646 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
5647 max_zombies = max (nzombies, max_zombies);
5648 ++ngcs;
5649 }
5650#endif
7146af97 5651
9e713715
GM
5652 if (!NILP (Vpost_gc_hook))
5653 {
d311d28c 5654 ptrdiff_t gc_count = inhibit_garbage_collection ();
9e713715 5655 safe_run_hooks (Qpost_gc_hook);
ae35e756 5656 unbind_to (gc_count, Qnil);
9e713715 5657 }
2c5bd608
DL
5658
5659 /* Accumulate statistics. */
2c5bd608 5660 if (FLOATP (Vgc_elapsed))
d35af63c
PE
5661 {
5662 EMACS_GET_TIME (t2);
5663 EMACS_SUB_TIME (t3, t2, t1);
5664 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed)
5665 + EMACS_TIME_TO_DOUBLE (t3));
5666 }
5667
2c5bd608
DL
5668 gcs_done++;
5669
96117bc7 5670 return Flist (sizeof total / sizeof *total, total);
7146af97 5671}
34400008 5672
41c28a37 5673
3770920e
GM
5674/* Mark Lisp objects in glyph matrix MATRIX. Currently the
5675 only interesting objects referenced from glyphs are strings. */
41c28a37
GM
5676
5677static void
971de7fb 5678mark_glyph_matrix (struct glyph_matrix *matrix)
41c28a37
GM
5679{
5680 struct glyph_row *row = matrix->rows;
5681 struct glyph_row *end = row + matrix->nrows;
5682
2e471eb5
GM
5683 for (; row < end; ++row)
5684 if (row->enabled_p)
5685 {
5686 int area;
5687 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
5688 {
5689 struct glyph *glyph = row->glyphs[area];
5690 struct glyph *end_glyph = glyph + row->used[area];
177c0ea7 5691
2e471eb5 5692 for (; glyph < end_glyph; ++glyph)
8e50cc2d 5693 if (STRINGP (glyph->object)
2e471eb5 5694 && !STRING_MARKED_P (XSTRING (glyph->object)))
49723c04 5695 mark_object (glyph->object);
2e471eb5
GM
5696 }
5697 }
41c28a37
GM
5698}
5699
34400008 5700
41c28a37
GM
5701/* Mark Lisp faces in the face cache C. */
5702
5703static void
971de7fb 5704mark_face_cache (struct face_cache *c)
41c28a37
GM
5705{
5706 if (c)
5707 {
5708 int i, j;
5709 for (i = 0; i < c->used; ++i)
5710 {
5711 struct face *face = FACE_FROM_ID (c->f, i);
5712
5713 if (face)
5714 {
5715 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
49723c04 5716 mark_object (face->lface[j]);
41c28a37
GM
5717 }
5718 }
5719 }
5720}
5721
5722
7146af97 5723\f
1a4f1e2c 5724/* Mark reference to a Lisp_Object.
2e471eb5
GM
5725 If the object referred to has not been seen yet, recursively mark
5726 all the references contained in it. */
7146af97 5727
785cd37f 5728#define LAST_MARKED_SIZE 500
d3d47262 5729static Lisp_Object last_marked[LAST_MARKED_SIZE];
244ed907 5730static int last_marked_index;
785cd37f 5731
1342fc6f
RS
5732/* For debugging--call abort when we cdr down this many
5733 links of a list, in mark_object. In debugging,
5734 the call to abort will hit a breakpoint.
5735 Normally this is zero and the check never goes off. */
903fe15d 5736ptrdiff_t mark_object_loop_halt EXTERNALLY_VISIBLE;
1342fc6f 5737
8f11f7ec 5738static void
971de7fb 5739mark_vectorlike (struct Lisp_Vector *ptr)
d2029e5b 5740{
d311d28c
PE
5741 ptrdiff_t size = ptr->header.size;
5742 ptrdiff_t i;
d2029e5b 5743
8f11f7ec 5744 eassert (!VECTOR_MARKED_P (ptr));
d2029e5b
SM
5745 VECTOR_MARK (ptr); /* Else mark it */
5746 if (size & PSEUDOVECTOR_FLAG)
5747 size &= PSEUDOVECTOR_SIZE_MASK;
d3d47262 5748
d2029e5b
SM
5749 /* Note that this size is not the memory-footprint size, but only
5750 the number of Lisp_Object fields that we should trace.
5751 The distinction is used e.g. by Lisp_Process which places extra
5752 non-Lisp_Object fields at the end of the structure. */
5753 for (i = 0; i < size; i++) /* and then mark its elements */
5754 mark_object (ptr->contents[i]);
d2029e5b
SM
5755}
5756
58026347
KH
5757/* Like mark_vectorlike but optimized for char-tables (and
5758 sub-char-tables) assuming that the contents are mostly integers or
5759 symbols. */
5760
5761static void
971de7fb 5762mark_char_table (struct Lisp_Vector *ptr)
58026347 5763{
b6439961
PE
5764 int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
5765 int i;
58026347 5766
8f11f7ec 5767 eassert (!VECTOR_MARKED_P (ptr));
58026347
KH
5768 VECTOR_MARK (ptr);
5769 for (i = 0; i < size; i++)
5770 {
5771 Lisp_Object val = ptr->contents[i];
5772
ef1b0ba7 5773 if (INTEGERP (val) || (SYMBOLP (val) && XSYMBOL (val)->gcmarkbit))
58026347
KH
5774 continue;
5775 if (SUB_CHAR_TABLE_P (val))
5776 {
5777 if (! VECTOR_MARKED_P (XVECTOR (val)))
5778 mark_char_table (XVECTOR (val));
5779 }
5780 else
5781 mark_object (val);
5782 }
5783}
5784
36429c89
DA
5785/* Mark the chain of overlays starting at PTR. */
5786
5787static void
5788mark_overlay (struct Lisp_Overlay *ptr)
5789{
5790 for (; ptr && !ptr->gcmarkbit; ptr = ptr->next)
5791 {
5792 ptr->gcmarkbit = 1;
5793 mark_object (ptr->start);
5794 mark_object (ptr->end);
5795 mark_object (ptr->plist);
5796 }
5797}
5798
5799/* Mark Lisp_Objects and special pointers in BUFFER. */
cf5c0175
DA
5800
5801static void
5802mark_buffer (struct buffer *buffer)
5803{
36429c89
DA
5804 /* This is handled much like other pseudovectors... */
5805 mark_vectorlike ((struct Lisp_Vector *) buffer);
cf5c0175 5806
36429c89 5807 /* ...but there are some buffer-specific things. */
cf5c0175
DA
5808
5809 MARK_INTERVAL_TREE (BUF_INTERVALS (buffer));
5810
5811 /* For now, we just don't mark the undo_list. It's done later in
5812 a special way just before the sweep phase, and after stripping
5813 some of its elements that are not needed any more. */
5814
36429c89
DA
5815 mark_overlay (buffer->overlays_before);
5816 mark_overlay (buffer->overlays_after);
cf5c0175
DA
5817
5818 /* If this is an indirect buffer, mark its base buffer. */
5819 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
5820 mark_buffer (buffer->base_buffer);
5821}
5822
5823/* Determine type of generic Lisp_Object and mark it accordingly. */
5824
41c28a37 5825void
971de7fb 5826mark_object (Lisp_Object arg)
7146af97 5827{
49723c04 5828 register Lisp_Object obj = arg;
4f5c1376
GM
5829#ifdef GC_CHECK_MARKED_OBJECTS
5830 void *po;
5831 struct mem_node *m;
5832#endif
903fe15d 5833 ptrdiff_t cdr_count = 0;
7146af97 5834
9149e743 5835 loop:
7146af97 5836
1f0b3fd2 5837 if (PURE_POINTER_P (XPNTR (obj)))
7146af97
JB
5838 return;
5839
49723c04 5840 last_marked[last_marked_index++] = obj;
785cd37f
RS
5841 if (last_marked_index == LAST_MARKED_SIZE)
5842 last_marked_index = 0;
5843
4f5c1376
GM
5844 /* Perform some sanity checks on the objects marked here. Abort if
5845 we encounter an object we know is bogus. This increases GC time
5846 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
5847#ifdef GC_CHECK_MARKED_OBJECTS
5848
5849 po = (void *) XPNTR (obj);
5850
5851 /* Check that the object pointed to by PO is known to be a Lisp
5852 structure allocated from the heap. */
5853#define CHECK_ALLOCATED() \
5854 do { \
5855 m = mem_find (po); \
5856 if (m == MEM_NIL) \
5857 abort (); \
5858 } while (0)
5859
5860 /* Check that the object pointed to by PO is live, using predicate
5861 function LIVEP. */
5862#define CHECK_LIVE(LIVEP) \
5863 do { \
5864 if (!LIVEP (m, po)) \
5865 abort (); \
5866 } while (0)
5867
5868 /* Check both of the above conditions. */
5869#define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
5870 do { \
5871 CHECK_ALLOCATED (); \
5872 CHECK_LIVE (LIVEP); \
5873 } while (0) \
177c0ea7 5874
4f5c1376 5875#else /* not GC_CHECK_MARKED_OBJECTS */
177c0ea7 5876
4f5c1376
GM
5877#define CHECK_LIVE(LIVEP) (void) 0
5878#define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
177c0ea7 5879
4f5c1376
GM
5880#endif /* not GC_CHECK_MARKED_OBJECTS */
5881
8e50cc2d 5882 switch (SWITCH_ENUM_CAST (XTYPE (obj)))
7146af97
JB
5883 {
5884 case Lisp_String:
5885 {
5886 register struct Lisp_String *ptr = XSTRING (obj);
8f11f7ec
SM
5887 if (STRING_MARKED_P (ptr))
5888 break;
4f5c1376 5889 CHECK_ALLOCATED_AND_LIVE (live_string_p);
d5e35230 5890 MARK_INTERVAL_TREE (ptr->intervals);
2e471eb5 5891 MARK_STRING (ptr);
361b097f 5892#ifdef GC_CHECK_STRING_BYTES
676a7251
GM
5893 /* Check that the string size recorded in the string is the
5894 same as the one recorded in the sdata structure. */
5895 CHECK_STRING_BYTES (ptr);
361b097f 5896#endif /* GC_CHECK_STRING_BYTES */
7146af97
JB
5897 }
5898 break;
5899
76437631 5900 case Lisp_Vectorlike:
cf5c0175
DA
5901 {
5902 register struct Lisp_Vector *ptr = XVECTOR (obj);
5903 register ptrdiff_t pvectype;
5904
5905 if (VECTOR_MARKED_P (ptr))
5906 break;
5907
4f5c1376 5908#ifdef GC_CHECK_MARKED_OBJECTS
cf5c0175
DA
5909 m = mem_find (po);
5910 if (m == MEM_NIL && !SUBRP (obj)
5911 && po != &buffer_defaults
5912 && po != &buffer_local_symbols)
5913 abort ();
4f5c1376 5914#endif /* GC_CHECK_MARKED_OBJECTS */
177c0ea7 5915
cf5c0175
DA
5916 if (ptr->header.size & PSEUDOVECTOR_FLAG)
5917 pvectype = ptr->header.size & PVEC_TYPE_MASK;
5918 else
5919 pvectype = 0;
5920
cf5c0175
DA
5921 if (pvectype != PVEC_SUBR && pvectype != PVEC_BUFFER)
5922 CHECK_LIVE (live_vector_p);
169ee243 5923
cf5c0175
DA
5924 if (pvectype == PVEC_BUFFER)
5925 {
5926#ifdef GC_CHECK_MARKED_OBJECTS
5927 if (po != &buffer_defaults && po != &buffer_local_symbols)
5928 {
5929 struct buffer *b = all_buffers;
5930 for (; b && b != po; b = b->header.next.buffer)
5931 ;
5932 if (b == NULL)
5933 abort ();
5934 }
5935#endif /* GC_CHECK_MARKED_OBJECTS */
5936 mark_buffer ((struct buffer *) ptr);
5937 }
5938
5939 else if (pvectype == PVEC_COMPILED)
5940 /* We could treat this just like a vector, but it is better
5941 to save the COMPILED_CONSTANTS element for last and avoid
5942 recursion there. */
5943 {
5944 int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
5945 int i;
5946
5947 VECTOR_MARK (ptr);
5948 for (i = 0; i < size; i++)
169ee243 5949 if (i != COMPILED_CONSTANTS)
49723c04 5950 mark_object (ptr->contents[i]);
cf5c0175
DA
5951 obj = ptr->contents[COMPILED_CONSTANTS];
5952 goto loop;
5953 }
5954
5955 else if (pvectype == PVEC_FRAME)
5956 {
5957 mark_vectorlike (ptr);
5958 mark_face_cache (((struct frame *) ptr)->face_cache);
5959 }
5960
5961 else if (pvectype == PVEC_WINDOW)
5962 {
5963 struct window *w = (struct window *) ptr;
5964
5965 mark_vectorlike (ptr);
5966 /* Mark glyphs for leaf windows. Marking window
5967 matrices is sufficient because frame matrices
5968 use the same glyph memory. */
5969 if (NILP (w->hchild) && NILP (w->vchild) && w->current_matrix)
5970 {
5971 mark_glyph_matrix (w->current_matrix);
5972 mark_glyph_matrix (w->desired_matrix);
5973 }
5974 }
5975
5976 else if (pvectype == PVEC_HASH_TABLE)
41c28a37 5977 {
cf5c0175
DA
5978 struct Lisp_Hash_Table *h = (struct Lisp_Hash_Table *) ptr;
5979
8f11f7ec 5980 mark_vectorlike (ptr);
8f11f7ec
SM
5981 /* If hash table is not weak, mark all keys and values.
5982 For weak tables, mark only the vector. */
5983 if (NILP (h->weak))
5984 mark_object (h->key_and_value);
5985 else
5986 VECTOR_MARK (XVECTOR (h->key_and_value));
41c28a37 5987 }
cf5c0175
DA
5988
5989 else if (pvectype == PVEC_CHAR_TABLE)
5990 mark_char_table (ptr);
5991
5992 else if (pvectype == PVEC_BOOL_VECTOR)
5993 /* No Lisp_Objects to mark in a bool vector. */
5994 VECTOR_MARK (ptr);
5995
5996 else if (pvectype != PVEC_SUBR)
5997 mark_vectorlike (ptr);
5998 }
169ee243 5999 break;
7146af97 6000
7146af97
JB
6001 case Lisp_Symbol:
6002 {
c70bbf06 6003 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
7146af97
JB
6004 struct Lisp_Symbol *ptrx;
6005
8f11f7ec
SM
6006 if (ptr->gcmarkbit)
6007 break;
4f5c1376 6008 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
2336fe58 6009 ptr->gcmarkbit = 1;
49723c04
SM
6010 mark_object (ptr->function);
6011 mark_object (ptr->plist);
ce5b453a
SM
6012 switch (ptr->redirect)
6013 {
6014 case SYMBOL_PLAINVAL: mark_object (SYMBOL_VAL (ptr)); break;
6015 case SYMBOL_VARALIAS:
6016 {
6017 Lisp_Object tem;
6018 XSETSYMBOL (tem, SYMBOL_ALIAS (ptr));
6019 mark_object (tem);
6020 break;
6021 }
6022 case SYMBOL_LOCALIZED:
6023 {
6024 struct Lisp_Buffer_Local_Value *blv = SYMBOL_BLV (ptr);
6025 /* If the value is forwarded to a buffer or keyboard field,
6026 these are marked when we see the corresponding object.
6027 And if it's forwarded to a C variable, either it's not
6028 a Lisp_Object var, or it's staticpro'd already. */
6029 mark_object (blv->where);
6030 mark_object (blv->valcell);
6031 mark_object (blv->defcell);
6032 break;
6033 }
6034 case SYMBOL_FORWARDED:
6035 /* If the value is forwarded to a buffer or keyboard field,
6036 these are marked when we see the corresponding object.
6037 And if it's forwarded to a C variable, either it's not
6038 a Lisp_Object var, or it's staticpro'd already. */
6039 break;
6040 default: abort ();
6041 }
8fe5665d
KR
6042 if (!PURE_POINTER_P (XSTRING (ptr->xname)))
6043 MARK_STRING (XSTRING (ptr->xname));
d5db4077 6044 MARK_INTERVAL_TREE (STRING_INTERVALS (ptr->xname));
177c0ea7 6045
7146af97
JB
6046 ptr = ptr->next;
6047 if (ptr)
6048 {
b0846f52 6049 ptrx = ptr; /* Use of ptrx avoids compiler bug on Sun */
7146af97 6050 XSETSYMBOL (obj, ptrx);
49723c04 6051 goto loop;
7146af97
JB
6052 }
6053 }
6054 break;
6055
a0a38eb7 6056 case Lisp_Misc:
4f5c1376 6057 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
b766f870 6058
36429c89
DA
6059 if (XMISCTYPE (obj) == Lisp_Misc_Overlay)
6060 mark_overlay (XOVERLAY (obj));
6061 else
a0a38eb7 6062 {
36429c89
DA
6063 if (XMISCANY (obj)->gcmarkbit)
6064 break;
6065 XMISCANY (obj)->gcmarkbit = 1;
465edf35 6066
36429c89
DA
6067 /* Note that we don't mark thru the marker's
6068 chain. The buffer's markers chain does not
6069 preserve markers from GC; instead, markers
6070 are removed from the chain when freed by GC. */
b766f870 6071
9ea306d1 6072#if GC_MARK_STACK
36429c89
DA
6073 if (XMISCTYPE (obj) == Lisp_Misc_Save_Value)
6074 {
6075 register struct Lisp_Save_Value *ptr = XSAVE_VALUE (obj);
6076 /* If DOGC is set, POINTER is the address of a memory
6077 area containing INTEGER potential Lisp_Objects. */
6078 if (ptr->dogc)
6079 {
6080 Lisp_Object *p = (Lisp_Object *) ptr->pointer;
6081 ptrdiff_t nelt;
6082 for (nelt = ptr->integer; nelt > 0; nelt--, p++)
6083 mark_maybe_object (*p);
6084 }
6085 }
9ea306d1 6086#endif
a0a38eb7 6087 }
7146af97
JB
6088 break;
6089
6090 case Lisp_Cons:
7146af97
JB
6091 {
6092 register struct Lisp_Cons *ptr = XCONS (obj);
8f11f7ec
SM
6093 if (CONS_MARKED_P (ptr))
6094 break;
4f5c1376 6095 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
08b7c2cb 6096 CONS_MARK (ptr);
c54ca951 6097 /* If the cdr is nil, avoid recursion for the car. */
28a099a4 6098 if (EQ (ptr->u.cdr, Qnil))
c54ca951 6099 {
49723c04 6100 obj = ptr->car;
1342fc6f 6101 cdr_count = 0;
c54ca951
RS
6102 goto loop;
6103 }
49723c04 6104 mark_object (ptr->car);
28a099a4 6105 obj = ptr->u.cdr;
1342fc6f
RS
6106 cdr_count++;
6107 if (cdr_count == mark_object_loop_halt)
6108 abort ();
7146af97
JB
6109 goto loop;
6110 }
6111
7146af97 6112 case Lisp_Float:
4f5c1376 6113 CHECK_ALLOCATED_AND_LIVE (live_float_p);
ab6780cd 6114 FLOAT_MARK (XFLOAT (obj));
7146af97 6115 break;
7146af97 6116
2de9f71c 6117 case_Lisp_Int:
7146af97
JB
6118 break;
6119
6120 default:
6121 abort ();
6122 }
4f5c1376
GM
6123
6124#undef CHECK_LIVE
6125#undef CHECK_ALLOCATED
6126#undef CHECK_ALLOCATED_AND_LIVE
7146af97 6127}
4a729fd8 6128/* Mark the Lisp pointers in the terminal objects.
0ba2624f 6129 Called by Fgarbage_collect. */
4a729fd8 6130
4a729fd8
SM
6131static void
6132mark_terminals (void)
6133{
6134 struct terminal *t;
6135 for (t = terminal_list; t; t = t->next_terminal)
6136 {
6137 eassert (t->name != NULL);
354884c4 6138#ifdef HAVE_WINDOW_SYSTEM
96ad0af7
YM
6139 /* If a terminal object is reachable from a stacpro'ed object,
6140 it might have been marked already. Make sure the image cache
6141 gets marked. */
6142 mark_image_cache (t->image_cache);
354884c4 6143#endif /* HAVE_WINDOW_SYSTEM */
96ad0af7
YM
6144 if (!VECTOR_MARKED_P (t))
6145 mark_vectorlike ((struct Lisp_Vector *)t);
4a729fd8
SM
6146 }
6147}
6148
6149
084b1a0c 6150
41c28a37
GM
6151/* Value is non-zero if OBJ will survive the current GC because it's
6152 either marked or does not need to be marked to survive. */
6153
6154int
971de7fb 6155survives_gc_p (Lisp_Object obj)
41c28a37
GM
6156{
6157 int survives_p;
177c0ea7 6158
8e50cc2d 6159 switch (XTYPE (obj))
41c28a37 6160 {
2de9f71c 6161 case_Lisp_Int:
41c28a37
GM
6162 survives_p = 1;
6163 break;
6164
6165 case Lisp_Symbol:
2336fe58 6166 survives_p = XSYMBOL (obj)->gcmarkbit;
41c28a37
GM
6167 break;
6168
6169 case Lisp_Misc:
67ee9f6e 6170 survives_p = XMISCANY (obj)->gcmarkbit;
41c28a37
GM
6171 break;
6172
6173 case Lisp_String:
08b7c2cb 6174 survives_p = STRING_MARKED_P (XSTRING (obj));
41c28a37
GM
6175 break;
6176
6177 case Lisp_Vectorlike:
8e50cc2d 6178 survives_p = SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
41c28a37
GM
6179 break;
6180
6181 case Lisp_Cons:
08b7c2cb 6182 survives_p = CONS_MARKED_P (XCONS (obj));
41c28a37
GM
6183 break;
6184
41c28a37 6185 case Lisp_Float:
ab6780cd 6186 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
41c28a37 6187 break;
41c28a37
GM
6188
6189 default:
6190 abort ();
6191 }
6192
34400008 6193 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
41c28a37
GM
6194}
6195
6196
7146af97 6197\f
1a4f1e2c 6198/* Sweep: find all structures not marked, and free them. */
7146af97
JB
6199
6200static void
971de7fb 6201gc_sweep (void)
7146af97 6202{
41c28a37
GM
6203 /* Remove or mark entries in weak hash tables.
6204 This must be done before any object is unmarked. */
6205 sweep_weak_hash_tables ();
6206
2e471eb5 6207 sweep_strings ();
676a7251
GM
6208#ifdef GC_CHECK_STRING_BYTES
6209 if (!noninteractive)
6210 check_string_bytes (1);
6211#endif
7146af97
JB
6212
6213 /* Put all unmarked conses on free list */
6214 {
6215 register struct cons_block *cblk;
6ca94ac9 6216 struct cons_block **cprev = &cons_block;
7146af97 6217 register int lim = cons_block_index;
c0c5c8ae 6218 EMACS_INT num_free = 0, num_used = 0;
7146af97
JB
6219
6220 cons_free_list = 0;
177c0ea7 6221
6ca94ac9 6222 for (cblk = cons_block; cblk; cblk = *cprev)
7146af97 6223 {
3ae2e3a3 6224 register int i = 0;
6ca94ac9 6225 int this_free = 0;
3ae2e3a3
RS
6226 int ilim = (lim + BITS_PER_INT - 1) / BITS_PER_INT;
6227
6228 /* Scan the mark bits an int at a time. */
47ea7f44 6229 for (i = 0; i < ilim; i++)
3ae2e3a3
RS
6230 {
6231 if (cblk->gcmarkbits[i] == -1)
6232 {
6233 /* Fast path - all cons cells for this int are marked. */
6234 cblk->gcmarkbits[i] = 0;
6235 num_used += BITS_PER_INT;
6236 }
6237 else
6238 {
6239 /* Some cons cells for this int are not marked.
6240 Find which ones, and free them. */
6241 int start, pos, stop;
6242
6243 start = i * BITS_PER_INT;
6244 stop = lim - start;
6245 if (stop > BITS_PER_INT)
6246 stop = BITS_PER_INT;
6247 stop += start;
6248
6249 for (pos = start; pos < stop; pos++)
6250 {
6251 if (!CONS_MARKED_P (&cblk->conses[pos]))
6252 {
6253 this_free++;
6254 cblk->conses[pos].u.chain = cons_free_list;
6255 cons_free_list = &cblk->conses[pos];
34400008 6256#if GC_MARK_STACK
3ae2e3a3 6257 cons_free_list->car = Vdead;
34400008 6258#endif
3ae2e3a3
RS
6259 }
6260 else
6261 {
6262 num_used++;
6263 CONS_UNMARK (&cblk->conses[pos]);
6264 }
6265 }
6266 }
6267 }
6268
7146af97 6269 lim = CONS_BLOCK_SIZE;
6ca94ac9
KH
6270 /* If this block contains only free conses and we have already
6271 seen more than two blocks worth of free conses then deallocate
6272 this block. */
6feef451 6273 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
6ca94ac9 6274 {
6ca94ac9
KH
6275 *cprev = cblk->next;
6276 /* Unhook from the free list. */
28a099a4 6277 cons_free_list = cblk->conses[0].u.chain;
08b7c2cb 6278 lisp_align_free (cblk);
6ca94ac9
KH
6279 }
6280 else
6feef451
AS
6281 {
6282 num_free += this_free;
6283 cprev = &cblk->next;
6284 }
7146af97
JB
6285 }
6286 total_conses = num_used;
6287 total_free_conses = num_free;
6288 }
6289
7146af97
JB
6290 /* Put all unmarked floats on free list */
6291 {
6292 register struct float_block *fblk;
6ca94ac9 6293 struct float_block **fprev = &float_block;
7146af97 6294 register int lim = float_block_index;
c0c5c8ae 6295 EMACS_INT num_free = 0, num_used = 0;
7146af97
JB
6296
6297 float_free_list = 0;
177c0ea7 6298
6ca94ac9 6299 for (fblk = float_block; fblk; fblk = *fprev)
7146af97
JB
6300 {
6301 register int i;
6ca94ac9 6302 int this_free = 0;
7146af97 6303 for (i = 0; i < lim; i++)
ab6780cd 6304 if (!FLOAT_MARKED_P (&fblk->floats[i]))
7146af97 6305 {
6ca94ac9 6306 this_free++;
28a099a4 6307 fblk->floats[i].u.chain = float_free_list;
7146af97
JB
6308 float_free_list = &fblk->floats[i];
6309 }
6310 else
6311 {
6312 num_used++;
ab6780cd 6313 FLOAT_UNMARK (&fblk->floats[i]);
7146af97
JB
6314 }
6315 lim = FLOAT_BLOCK_SIZE;
6ca94ac9
KH
6316 /* If this block contains only free floats and we have already
6317 seen more than two blocks worth of free floats then deallocate
6318 this block. */
6feef451 6319 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
6ca94ac9 6320 {
6ca94ac9
KH
6321 *fprev = fblk->next;
6322 /* Unhook from the free list. */
28a099a4 6323 float_free_list = fblk->floats[0].u.chain;
ab6780cd 6324 lisp_align_free (fblk);
6ca94ac9
KH
6325 }
6326 else
6feef451
AS
6327 {
6328 num_free += this_free;
6329 fprev = &fblk->next;
6330 }
7146af97
JB
6331 }
6332 total_floats = num_used;
6333 total_free_floats = num_free;
6334 }
7146af97 6335
d5e35230
JA
6336 /* Put all unmarked intervals on free list */
6337 {
6338 register struct interval_block *iblk;
6ca94ac9 6339 struct interval_block **iprev = &interval_block;
d5e35230 6340 register int lim = interval_block_index;
c0c5c8ae 6341 EMACS_INT num_free = 0, num_used = 0;
d5e35230
JA
6342
6343 interval_free_list = 0;
6344
6ca94ac9 6345 for (iblk = interval_block; iblk; iblk = *iprev)
d5e35230
JA
6346 {
6347 register int i;
6ca94ac9 6348 int this_free = 0;
d5e35230
JA
6349
6350 for (i = 0; i < lim; i++)
6351 {
2336fe58 6352 if (!iblk->intervals[i].gcmarkbit)
d5e35230 6353 {
439d5cb4 6354 SET_INTERVAL_PARENT (&iblk->intervals[i], interval_free_list);
d5e35230 6355 interval_free_list = &iblk->intervals[i];
6ca94ac9 6356 this_free++;
d5e35230
JA
6357 }
6358 else
6359 {
6360 num_used++;
2336fe58 6361 iblk->intervals[i].gcmarkbit = 0;
d5e35230
JA
6362 }
6363 }
6364 lim = INTERVAL_BLOCK_SIZE;
6ca94ac9
KH
6365 /* If this block contains only free intervals and we have already
6366 seen more than two blocks worth of free intervals then
6367 deallocate this block. */
6feef451 6368 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
6ca94ac9 6369 {
6ca94ac9
KH
6370 *iprev = iblk->next;
6371 /* Unhook from the free list. */
439d5cb4 6372 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
c8099634 6373 lisp_free (iblk);
6ca94ac9
KH
6374 }
6375 else
6feef451
AS
6376 {
6377 num_free += this_free;
6378 iprev = &iblk->next;
6379 }
d5e35230
JA
6380 }
6381 total_intervals = num_used;
6382 total_free_intervals = num_free;
6383 }
d5e35230 6384
7146af97
JB
6385 /* Put all unmarked symbols on free list */
6386 {
6387 register struct symbol_block *sblk;
6ca94ac9 6388 struct symbol_block **sprev = &symbol_block;
7146af97 6389 register int lim = symbol_block_index;
c0c5c8ae 6390 EMACS_INT num_free = 0, num_used = 0;
7146af97 6391
d285b373 6392 symbol_free_list = NULL;
177c0ea7 6393
6ca94ac9 6394 for (sblk = symbol_block; sblk; sblk = *sprev)
7146af97 6395 {
6ca94ac9 6396 int this_free = 0;
d55c12ed
AS
6397 union aligned_Lisp_Symbol *sym = sblk->symbols;
6398 union aligned_Lisp_Symbol *end = sym + lim;
d285b373
GM
6399
6400 for (; sym < end; ++sym)
6401 {
20035321
SM
6402 /* Check if the symbol was created during loadup. In such a case
6403 it might be pointed to by pure bytecode which we don't trace,
6404 so we conservatively assume that it is live. */
d55c12ed 6405 int pure_p = PURE_POINTER_P (XSTRING (sym->s.xname));
177c0ea7 6406
d55c12ed 6407 if (!sym->s.gcmarkbit && !pure_p)
d285b373 6408 {
d55c12ed
AS
6409 if (sym->s.redirect == SYMBOL_LOCALIZED)
6410 xfree (SYMBOL_BLV (&sym->s));
6411 sym->s.next = symbol_free_list;
6412 symbol_free_list = &sym->s;
34400008 6413#if GC_MARK_STACK
d285b373 6414 symbol_free_list->function = Vdead;
34400008 6415#endif
d285b373
GM
6416 ++this_free;
6417 }
6418 else
6419 {
6420 ++num_used;
6421 if (!pure_p)
d55c12ed
AS
6422 UNMARK_STRING (XSTRING (sym->s.xname));
6423 sym->s.gcmarkbit = 0;
d285b373
GM
6424 }
6425 }
177c0ea7 6426
7146af97 6427 lim = SYMBOL_BLOCK_SIZE;
6ca94ac9
KH
6428 /* If this block contains only free symbols and we have already
6429 seen more than two blocks worth of free symbols then deallocate
6430 this block. */
6feef451 6431 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
6ca94ac9 6432 {
6ca94ac9
KH
6433 *sprev = sblk->next;
6434 /* Unhook from the free list. */
d55c12ed 6435 symbol_free_list = sblk->symbols[0].s.next;
c8099634 6436 lisp_free (sblk);
6ca94ac9
KH
6437 }
6438 else
6feef451
AS
6439 {
6440 num_free += this_free;
6441 sprev = &sblk->next;
6442 }
7146af97
JB
6443 }
6444 total_symbols = num_used;
6445 total_free_symbols = num_free;
6446 }
6447
a9faeabe
RS
6448 /* Put all unmarked misc's on free list.
6449 For a marker, first unchain it from the buffer it points into. */
7146af97
JB
6450 {
6451 register struct marker_block *mblk;
6ca94ac9 6452 struct marker_block **mprev = &marker_block;
7146af97 6453 register int lim = marker_block_index;
c0c5c8ae 6454 EMACS_INT num_free = 0, num_used = 0;
7146af97
JB
6455
6456 marker_free_list = 0;
177c0ea7 6457
6ca94ac9 6458 for (mblk = marker_block; mblk; mblk = *mprev)
7146af97
JB
6459 {
6460 register int i;
6ca94ac9 6461 int this_free = 0;
fa05e253 6462
7146af97 6463 for (i = 0; i < lim; i++)
465edf35 6464 {
d55c12ed 6465 if (!mblk->markers[i].m.u_any.gcmarkbit)
465edf35 6466 {
d55c12ed
AS
6467 if (mblk->markers[i].m.u_any.type == Lisp_Misc_Marker)
6468 unchain_marker (&mblk->markers[i].m.u_marker);
fa05e253
RS
6469 /* Set the type of the freed object to Lisp_Misc_Free.
6470 We could leave the type alone, since nobody checks it,
465edf35 6471 but this might catch bugs faster. */
d55c12ed
AS
6472 mblk->markers[i].m.u_marker.type = Lisp_Misc_Free;
6473 mblk->markers[i].m.u_free.chain = marker_free_list;
6474 marker_free_list = &mblk->markers[i].m;
6ca94ac9 6475 this_free++;
465edf35
KH
6476 }
6477 else
6478 {
6479 num_used++;
d55c12ed 6480 mblk->markers[i].m.u_any.gcmarkbit = 0;
465edf35
KH
6481 }
6482 }
7146af97 6483 lim = MARKER_BLOCK_SIZE;
6ca94ac9
KH
6484 /* If this block contains only free markers and we have already
6485 seen more than two blocks worth of free markers then deallocate
6486 this block. */
6feef451 6487 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
6ca94ac9 6488 {
6ca94ac9
KH
6489 *mprev = mblk->next;
6490 /* Unhook from the free list. */
d55c12ed 6491 marker_free_list = mblk->markers[0].m.u_free.chain;
c8099634 6492 lisp_free (mblk);
6ca94ac9
KH
6493 }
6494 else
6feef451
AS
6495 {
6496 num_free += this_free;
6497 mprev = &mblk->next;
6498 }
7146af97
JB
6499 }
6500
6501 total_markers = num_used;
6502 total_free_markers = num_free;
6503 }
6504
6505 /* Free all unmarked buffers */
6506 {
6507 register struct buffer *buffer = all_buffers, *prev = 0, *next;
6508
6509 while (buffer)
3ef06d12 6510 if (!VECTOR_MARKED_P (buffer))
7146af97
JB
6511 {
6512 if (prev)
eab3844f 6513 prev->header.next = buffer->header.next;
7146af97 6514 else
eab3844f
PE
6515 all_buffers = buffer->header.next.buffer;
6516 next = buffer->header.next.buffer;
34400008 6517 lisp_free (buffer);
7146af97
JB
6518 buffer = next;
6519 }
6520 else
6521 {
3ef06d12 6522 VECTOR_UNMARK (buffer);
30e3190a 6523 UNMARK_BALANCE_INTERVALS (BUF_INTERVALS (buffer));
eab3844f 6524 prev = buffer, buffer = buffer->header.next.buffer;
7146af97
JB
6525 }
6526 }
6527
f3372c87 6528 sweep_vectors ();
177c0ea7 6529
676a7251
GM
6530#ifdef GC_CHECK_STRING_BYTES
6531 if (!noninteractive)
6532 check_string_bytes (1);
6533#endif
7146af97 6534}
7146af97 6535
7146af97 6536
7146af97 6537
7146af97 6538\f
20d24714
JB
6539/* Debugging aids. */
6540
31ce1c91 6541DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
a6266d23 6542 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
228299fa 6543This may be helpful in debugging Emacs's memory usage.
7ee72033 6544We divide the value by 1024 to make sure it fits in a Lisp integer. */)
5842a27b 6545 (void)
20d24714
JB
6546{
6547 Lisp_Object end;
6548
d01a7826 6549 XSETINT (end, (intptr_t) (char *) sbrk (0) / 1024);
20d24714
JB
6550
6551 return end;
6552}
6553
310ea200 6554DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
a6266d23 6555 doc: /* Return a list of counters that measure how much consing there has been.
228299fa
GM
6556Each of these counters increments for a certain kind of object.
6557The counters wrap around from the largest positive integer to zero.
6558Garbage collection does not decrease them.
6559The elements of the value are as follows:
6560 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
6561All are in units of 1 = one object consed
6562except for VECTOR-CELLS and STRING-CHARS, which count the total length of
6563objects consed.
6564MISCS include overlays, markers, and some internal types.
6565Frames, windows, buffers, and subprocesses count as vectors
7ee72033 6566 (but the contents of a buffer's text do not count here). */)
5842a27b 6567 (void)
310ea200 6568{
2e471eb5 6569 Lisp_Object consed[8];
310ea200 6570
78e985eb
GM
6571 consed[0] = make_number (min (MOST_POSITIVE_FIXNUM, cons_cells_consed));
6572 consed[1] = make_number (min (MOST_POSITIVE_FIXNUM, floats_consed));
6573 consed[2] = make_number (min (MOST_POSITIVE_FIXNUM, vector_cells_consed));
6574 consed[3] = make_number (min (MOST_POSITIVE_FIXNUM, symbols_consed));
6575 consed[4] = make_number (min (MOST_POSITIVE_FIXNUM, string_chars_consed));
6576 consed[5] = make_number (min (MOST_POSITIVE_FIXNUM, misc_objects_consed));
6577 consed[6] = make_number (min (MOST_POSITIVE_FIXNUM, intervals_consed));
6578 consed[7] = make_number (min (MOST_POSITIVE_FIXNUM, strings_consed));
310ea200 6579
2e471eb5 6580 return Flist (8, consed);
310ea200 6581}
e0b8c689 6582
8b058d44
EZ
6583/* Find at most FIND_MAX symbols which have OBJ as their value or
6584 function. This is used in gdbinit's `xwhichsymbols' command. */
6585
6586Lisp_Object
196e41e4 6587which_symbols (Lisp_Object obj, EMACS_INT find_max)
8b058d44
EZ
6588{
6589 struct symbol_block *sblk;
8d0eb4c2 6590 ptrdiff_t gc_count = inhibit_garbage_collection ();
8b058d44
EZ
6591 Lisp_Object found = Qnil;
6592
ca78dc43 6593 if (! DEADP (obj))
8b058d44
EZ
6594 {
6595 for (sblk = symbol_block; sblk; sblk = sblk->next)
6596 {
9426aba4 6597 union aligned_Lisp_Symbol *aligned_sym = sblk->symbols;
8b058d44
EZ
6598 int bn;
6599
9426aba4 6600 for (bn = 0; bn < SYMBOL_BLOCK_SIZE; bn++, aligned_sym++)
8b058d44 6601 {
9426aba4 6602 struct Lisp_Symbol *sym = &aligned_sym->s;
8b058d44
EZ
6603 Lisp_Object val;
6604 Lisp_Object tem;
6605
6606 if (sblk == symbol_block && bn >= symbol_block_index)
6607 break;
6608
6609 XSETSYMBOL (tem, sym);
6610 val = find_symbol_value (tem);
6611 if (EQ (val, obj)
6612 || EQ (sym->function, obj)
6613 || (!NILP (sym->function)
6614 && COMPILEDP (sym->function)
6615 && EQ (AREF (sym->function, COMPILED_BYTECODE), obj))
6616 || (!NILP (val)
6617 && COMPILEDP (val)
6618 && EQ (AREF (val, COMPILED_BYTECODE), obj)))
6619 {
6620 found = Fcons (tem, found);
6621 if (--find_max == 0)
6622 goto out;
6623 }
6624 }
6625 }
6626 }
6627
6628 out:
6629 unbind_to (gc_count, Qnil);
6630 return found;
6631}
6632
244ed907 6633#ifdef ENABLE_CHECKING
e0b8c689 6634int suppress_checking;
d3d47262 6635
e0b8c689 6636void
971de7fb 6637die (const char *msg, const char *file, int line)
e0b8c689 6638{
67ee9f6e 6639 fprintf (stderr, "\r\n%s:%d: Emacs fatal error: %s\r\n",
e0b8c689
KR
6640 file, line, msg);
6641 abort ();
6642}
244ed907 6643#endif
20d24714 6644\f
7146af97
JB
6645/* Initialization */
6646
dfcf069d 6647void
971de7fb 6648init_alloc_once (void)
7146af97
JB
6649{
6650 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
9e713715
GM
6651 purebeg = PUREBEG;
6652 pure_size = PURESIZE;
1f0b3fd2 6653 pure_bytes_used = 0;
e5bc14d4 6654 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
9e713715
GM
6655 pure_bytes_used_before_overflow = 0;
6656
ab6780cd
SM
6657 /* Initialize the list of free aligned blocks. */
6658 free_ablock = NULL;
6659
877935b1 6660#if GC_MARK_STACK || defined GC_MALLOC_CHECK
34400008
GM
6661 mem_init ();
6662 Vdead = make_pure_string ("DEAD", 4, 4, 0);
6663#endif
9e713715 6664
7146af97 6665 ignore_warnings = 1;
d1658221
RS
6666#ifdef DOUG_LEA_MALLOC
6667 mallopt (M_TRIM_THRESHOLD, 128*1024); /* trim threshold */
6668 mallopt (M_MMAP_THRESHOLD, 64*1024); /* mmap threshold */
81d492d5 6669 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* max. number of mmap'ed areas */
d1658221 6670#endif
7146af97
JB
6671 init_strings ();
6672 init_cons ();
6673 init_symbol ();
6674 init_marker ();
7146af97 6675 init_float ();
34400008 6676 init_intervals ();
f3372c87 6677 init_vectors ();
5ac58e4c 6678 init_weak_hash_tables ();
d5e35230 6679
276cbe5a
RS
6680#ifdef REL_ALLOC
6681 malloc_hysteresis = 32;
6682#else
6683 malloc_hysteresis = 0;
6684#endif
6685
24d8a105 6686 refill_memory_reserve ();
276cbe5a 6687
7146af97
JB
6688 ignore_warnings = 0;
6689 gcprolist = 0;
630686c8 6690 byte_stack_list = 0;
7146af97
JB
6691 staticidx = 0;
6692 consing_since_gc = 0;
7d179cea 6693 gc_cons_threshold = 100000 * sizeof (Lisp_Object);
974aae61 6694 gc_relative_threshold = 0;
7146af97
JB
6695}
6696
dfcf069d 6697void
971de7fb 6698init_alloc (void)
7146af97
JB
6699{
6700 gcprolist = 0;
630686c8 6701 byte_stack_list = 0;
182ff242
GM
6702#if GC_MARK_STACK
6703#if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
6704 setjmp_tested_p = longjmps_done = 0;
6705#endif
6706#endif
2c5bd608
DL
6707 Vgc_elapsed = make_float (0.0);
6708 gcs_done = 0;
7146af97
JB
6709}
6710
6711void
971de7fb 6712syms_of_alloc (void)
7146af97 6713{
29208e82 6714 DEFVAR_INT ("gc-cons-threshold", gc_cons_threshold,
fb7ada5f 6715 doc: /* Number of bytes of consing between garbage collections.
228299fa
GM
6716Garbage collection can happen automatically once this many bytes have been
6717allocated since the last garbage collection. All data types count.
7146af97 6718
228299fa 6719Garbage collection happens automatically only when `eval' is called.
7146af97 6720
228299fa 6721By binding this temporarily to a large number, you can effectively
96f077ad
SM
6722prevent garbage collection during a part of the program.
6723See also `gc-cons-percentage'. */);
6724
29208e82 6725 DEFVAR_LISP ("gc-cons-percentage", Vgc_cons_percentage,
fb7ada5f 6726 doc: /* Portion of the heap used for allocation.
96f077ad
SM
6727Garbage collection can happen automatically once this portion of the heap
6728has been allocated since the last garbage collection.
6729If this portion is smaller than `gc-cons-threshold', this is ignored. */);
6730 Vgc_cons_percentage = make_float (0.1);
0819585c 6731
29208e82 6732 DEFVAR_INT ("pure-bytes-used", pure_bytes_used,
333f9019 6733 doc: /* Number of bytes of shareable Lisp data allocated so far. */);
0819585c 6734
29208e82 6735 DEFVAR_INT ("cons-cells-consed", cons_cells_consed,
a6266d23 6736 doc: /* Number of cons cells that have been consed so far. */);
0819585c 6737
29208e82 6738 DEFVAR_INT ("floats-consed", floats_consed,
a6266d23 6739 doc: /* Number of floats that have been consed so far. */);
0819585c 6740
29208e82 6741 DEFVAR_INT ("vector-cells-consed", vector_cells_consed,
a6266d23 6742 doc: /* Number of vector cells that have been consed so far. */);
0819585c 6743
29208e82 6744 DEFVAR_INT ("symbols-consed", symbols_consed,
a6266d23 6745 doc: /* Number of symbols that have been consed so far. */);
0819585c 6746
29208e82 6747 DEFVAR_INT ("string-chars-consed", string_chars_consed,
a6266d23 6748 doc: /* Number of string characters that have been consed so far. */);
0819585c 6749
29208e82 6750 DEFVAR_INT ("misc-objects-consed", misc_objects_consed,
01a6dcc8
GM
6751 doc: /* Number of miscellaneous objects that have been consed so far.
6752These include markers and overlays, plus certain objects not visible
6753to users. */);
2e471eb5 6754
29208e82 6755 DEFVAR_INT ("intervals-consed", intervals_consed,
a6266d23 6756 doc: /* Number of intervals that have been consed so far. */);
7146af97 6757
29208e82 6758 DEFVAR_INT ("strings-consed", strings_consed,
a6266d23 6759 doc: /* Number of strings that have been consed so far. */);
228299fa 6760
29208e82 6761 DEFVAR_LISP ("purify-flag", Vpurify_flag,
a6266d23 6762 doc: /* Non-nil means loading Lisp code in order to dump an executable.
e9515805
SM
6763This means that certain objects should be allocated in shared (pure) space.
6764It can also be set to a hash-table, in which case this table is used to
6765do hash-consing of the objects allocated to pure space. */);
228299fa 6766
29208e82 6767 DEFVAR_BOOL ("garbage-collection-messages", garbage_collection_messages,
a6266d23 6768 doc: /* Non-nil means display messages at start and end of garbage collection. */);
299585ee
RS
6769 garbage_collection_messages = 0;
6770
29208e82 6771 DEFVAR_LISP ("post-gc-hook", Vpost_gc_hook,
a6266d23 6772 doc: /* Hook run after garbage collection has finished. */);
9e713715 6773 Vpost_gc_hook = Qnil;
cd3520a4 6774 DEFSYM (Qpost_gc_hook, "post-gc-hook");
9e713715 6775
29208e82 6776 DEFVAR_LISP ("memory-signal-data", Vmemory_signal_data,
74a54b04 6777 doc: /* Precomputed `signal' argument for memory-full error. */);
bcb61d60
KH
6778 /* We build this in advance because if we wait until we need it, we might
6779 not be able to allocate the memory to hold it. */
74a54b04 6780 Vmemory_signal_data
f4265f6c
DN
6781 = pure_cons (Qerror,
6782 pure_cons (make_pure_c_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"), Qnil));
74a54b04 6783
29208e82 6784 DEFVAR_LISP ("memory-full", Vmemory_full,
24d8a105 6785 doc: /* Non-nil means Emacs cannot get much more Lisp memory. */);
74a54b04 6786 Vmemory_full = Qnil;
bcb61d60 6787
cd3520a4
JB
6788 DEFSYM (Qgc_cons_threshold, "gc-cons-threshold");
6789 DEFSYM (Qchar_table_extra_slots, "char-table-extra-slots");
a59de17b 6790
29208e82 6791 DEFVAR_LISP ("gc-elapsed", Vgc_elapsed,
2c5bd608 6792 doc: /* Accumulated time elapsed in garbage collections.
e7415487 6793The time is in seconds as a floating point value. */);
29208e82 6794 DEFVAR_INT ("gcs-done", gcs_done,
e7415487 6795 doc: /* Accumulated number of garbage collections done. */);
2c5bd608 6796
7146af97
JB
6797 defsubr (&Scons);
6798 defsubr (&Slist);
6799 defsubr (&Svector);
6800 defsubr (&Smake_byte_code);
6801 defsubr (&Smake_list);
6802 defsubr (&Smake_vector);
6803 defsubr (&Smake_string);
7b07587b 6804 defsubr (&Smake_bool_vector);
7146af97
JB
6805 defsubr (&Smake_symbol);
6806 defsubr (&Smake_marker);
6807 defsubr (&Spurecopy);
6808 defsubr (&Sgarbage_collect);
20d24714 6809 defsubr (&Smemory_limit);
310ea200 6810 defsubr (&Smemory_use_counts);
34400008
GM
6811
6812#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
6813 defsubr (&Sgc_status);
6814#endif
7146af97 6815}