(quail-help): The output message is improved.
[bpt/emacs.git] / src / alloc.c
CommitLineData
7146af97 1/* Storage allocation and gc for GNU Emacs Lisp interpreter.
2e471eb5 2 Copyright (C) 1985, 86, 88, 93, 94, 95, 97, 98, 1999, 2000
4a2f9c6a 3 Free Software Foundation, Inc.
7146af97
JB
4
5This file is part of GNU Emacs.
6
7GNU Emacs is free software; you can redistribute it and/or modify
8it under the terms of the GNU General Public License as published by
7c299e7a 9the Free Software Foundation; either version 2, or (at your option)
7146af97
JB
10any later version.
11
12GNU Emacs is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15GNU General Public License for more details.
16
17You should have received a copy of the GNU General Public License
18along with GNU Emacs; see the file COPYING. If not, write to
3b7ad313
EN
19the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
20Boston, MA 02111-1307, USA. */
7146af97 21
18160b98 22#include <config.h>
e9b309ac 23#include <stdio.h>
92939d31 24
68c45bf0 25/* Note that this declares bzero on OSF/1. How dumb. */
2e471eb5 26
68c45bf0 27#include <signal.h>
92939d31 28
7539e11f
KR
29/* This file is part of the core Lisp implementation, and thus must
30 deal with the real data structures. If the Lisp implementation is
31 replaced, this file likely will not be used. */
2e471eb5 32
7539e11f 33#undef HIDE_LISP_IMPLEMENTATION
7146af97 34#include "lisp.h"
d5e35230 35#include "intervals.h"
4c0be5f4 36#include "puresize.h"
7146af97
JB
37#include "buffer.h"
38#include "window.h"
2538fae4 39#include "keyboard.h"
502b9b64 40#include "frame.h"
9ac0d9e0 41#include "blockinput.h"
e54daa22 42#include "charset.h"
e065a56e 43#include "syssignal.h"
34400008 44#include <setjmp.h>
e065a56e 45
bf952fb6
DL
46#ifdef HAVE_UNISTD_H
47#include <unistd.h>
48#else
49extern POINTER_TYPE *sbrk ();
50#endif
ee1eea5c 51
d1658221 52#ifdef DOUG_LEA_MALLOC
2e471eb5 53
d1658221
RS
54#include <malloc.h>
55#define __malloc_size_t int
81d492d5 56
2e471eb5
GM
57/* Specify maximum number of areas to mmap. It would be nice to use a
58 value that explicitly means "no limit". */
59
81d492d5
RS
60#define MMAP_MAX_AREAS 100000000
61
2e471eb5
GM
62#else /* not DOUG_LEA_MALLOC */
63
276cbe5a
RS
64/* The following come from gmalloc.c. */
65
e9b309ac 66#if defined (STDC_HEADERS)
276cbe5a
RS
67#include <stddef.h>
68#define __malloc_size_t size_t
69#else
70#define __malloc_size_t unsigned int
71#endif
72extern __malloc_size_t _bytes_used;
73extern int __malloc_extra_blocks;
2e471eb5
GM
74
75#endif /* not DOUG_LEA_MALLOC */
276cbe5a 76
7146af97 77#define max(A,B) ((A) > (B) ? (A) : (B))
b580578b 78#define min(A,B) ((A) < (B) ? (A) : (B))
7146af97
JB
79
80/* Macro to verify that storage intended for Lisp objects is not
81 out of range to fit in the space for a pointer.
82 ADDRESS is the start of the block, and SIZE
83 is the amount of space within which objects can start. */
2e471eb5 84
7146af97
JB
85#define VALIDATE_LISP_STORAGE(address, size) \
86do \
87 { \
88 Lisp_Object val; \
45d12a89 89 XSETCONS (val, (char *) address + size); \
7146af97
JB
90 if ((char *) XCONS (val) != (char *) address + size) \
91 { \
9ac0d9e0 92 xfree (address); \
7146af97
JB
93 memory_full (); \
94 } \
95 } while (0)
96
276cbe5a 97/* Value of _bytes_used, when spare_memory was freed. */
2e471eb5 98
276cbe5a
RS
99static __malloc_size_t bytes_used_when_full;
100
2e471eb5
GM
101/* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
102 to a struct Lisp_String. */
103
cc2d8c6b
KR
104#define MARK_STRING(S) ((S)->size |= MARKBIT)
105#define UNMARK_STRING(S) ((S)->size &= ~MARKBIT)
106#define STRING_MARKED_P(S) ((S)->size & MARKBIT)
2e471eb5
GM
107
108/* Value is the number of bytes/chars of S, a pointer to a struct
109 Lisp_String. This must be used instead of STRING_BYTES (S) or
110 S->size during GC, because S->size contains the mark bit for
111 strings. */
112
113#define GC_STRING_BYTES(S) (STRING_BYTES (S) & ~MARKBIT)
114#define GC_STRING_CHARS(S) ((S)->size & ~MARKBIT)
115
116/* Number of bytes of consing done since the last gc. */
117
7146af97
JB
118int consing_since_gc;
119
310ea200 120/* Count the amount of consing of various sorts of space. */
2e471eb5 121
310ea200
RS
122int cons_cells_consed;
123int floats_consed;
124int vector_cells_consed;
125int symbols_consed;
126int string_chars_consed;
127int misc_objects_consed;
128int intervals_consed;
2e471eb5
GM
129int strings_consed;
130
131/* Number of bytes of consing since GC before another GC should be done. */
310ea200 132
b580578b 133int gc_cons_threshold;
7146af97 134
2e471eb5
GM
135/* Nonzero during GC. */
136
7146af97
JB
137int gc_in_progress;
138
299585ee 139/* Nonzero means display messages at beginning and end of GC. */
2e471eb5 140
299585ee
RS
141int garbage_collection_messages;
142
7146af97
JB
143#ifndef VIRT_ADDR_VARIES
144extern
145#endif /* VIRT_ADDR_VARIES */
2e471eb5 146int malloc_sbrk_used;
7146af97
JB
147
148#ifndef VIRT_ADDR_VARIES
149extern
150#endif /* VIRT_ADDR_VARIES */
2e471eb5 151int malloc_sbrk_unused;
7146af97 152
502b9b64 153/* Two limits controlling how much undo information to keep. */
2e471eb5 154
502b9b64
JB
155int undo_limit;
156int undo_strong_limit;
7146af97 157
34400008
GM
158/* Number of live and free conses etc. */
159
160static int total_conses, total_markers, total_symbols, total_vector_size;
161static int total_free_conses, total_free_markers, total_free_symbols;
162static int total_free_floats, total_floats;
fd27a537 163
2e471eb5
GM
164/* Points to memory space allocated as "spare", to be freed if we run
165 out of memory. */
166
276cbe5a
RS
167static char *spare_memory;
168
169/* Amount of spare memory to keep in reserve. */
2e471eb5 170
276cbe5a
RS
171#define SPARE_MEMORY (1 << 14)
172
173/* Number of extra blocks malloc should get when it needs more core. */
2e471eb5 174
276cbe5a
RS
175static int malloc_hysteresis;
176
2e471eb5
GM
177/* Non-nil means defun should do purecopy on the function definition. */
178
7146af97
JB
179Lisp_Object Vpurify_flag;
180
181#ifndef HAVE_SHM
2e471eb5
GM
182
183/* Force it into data space! */
184
185EMACS_INT pure[PURESIZE / sizeof (EMACS_INT)] = {0,};
7146af97 186#define PUREBEG (char *) pure
2e471eb5
GM
187
188#else /* not HAVE_SHM */
189
7146af97
JB
190#define pure PURE_SEG_BITS /* Use shared memory segment */
191#define PUREBEG (char *)PURE_SEG_BITS
4c0be5f4
JB
192
193/* This variable is used only by the XPNTR macro when HAVE_SHM is
194 defined. If we used the PURESIZE macro directly there, that would
2e471eb5 195 make most of Emacs dependent on puresize.h, which we don't want -
4c0be5f4
JB
196 you should be able to change that without too much recompilation.
197 So map_in_data initializes pure_size, and the dependencies work
198 out. */
2e471eb5 199
42607681 200EMACS_INT pure_size;
2e471eb5 201
7146af97
JB
202#endif /* not HAVE_SHM */
203
34400008
GM
204/* Value is non-zero if P points into pure space. */
205
206#define PURE_POINTER_P(P) \
207 (((PNTR_COMPARISON_TYPE) (P) \
208 < (PNTR_COMPARISON_TYPE) ((char *) pure + PURESIZE)) \
209 && ((PNTR_COMPARISON_TYPE) (P) \
210 >= (PNTR_COMPARISON_TYPE) pure))
211
2e471eb5
GM
212/* Index in pure at which next pure object will be allocated.. */
213
7146af97
JB
214int pureptr;
215
2e471eb5
GM
216/* If nonzero, this is a warning delivered by malloc and not yet
217 displayed. */
218
7146af97
JB
219char *pending_malloc_warning;
220
bcb61d60 221/* Pre-computed signal argument for use when memory is exhausted. */
2e471eb5 222
cf3540e4 223Lisp_Object memory_signal_data;
bcb61d60 224
7146af97
JB
225/* Maximum amount of C stack to save when a GC happens. */
226
227#ifndef MAX_SAVE_STACK
228#define MAX_SAVE_STACK 16000
229#endif
230
231/* Buffer in which we save a copy of the C stack at each GC. */
232
233char *stack_copy;
234int stack_copy_size;
235
2e471eb5
GM
236/* Non-zero means ignore malloc warnings. Set during initialization.
237 Currently not used. */
238
7146af97 239int ignore_warnings;
350273a4 240
a59de17b 241Lisp_Object Qgc_cons_threshold, Qchar_table_extra_slots;
e8197642 242
2e471eb5
GM
243static void mark_buffer P_ ((Lisp_Object));
244static void mark_kboards P_ ((void));
245static void gc_sweep P_ ((void));
41c28a37
GM
246static void mark_glyph_matrix P_ ((struct glyph_matrix *));
247static void mark_face_cache P_ ((struct face_cache *));
248
249#ifdef HAVE_WINDOW_SYSTEM
250static void mark_image P_ ((struct image *));
251static void mark_image_cache P_ ((struct frame *));
252#endif /* HAVE_WINDOW_SYSTEM */
253
2e471eb5
GM
254static struct Lisp_String *allocate_string P_ ((void));
255static void compact_small_strings P_ ((void));
256static void free_large_strings P_ ((void));
257static void sweep_strings P_ ((void));
7da0b0d3
RS
258
259extern int message_enable_multibyte;
34400008 260
34400008
GM
261/* When scanning the C stack for live Lisp objects, Emacs keeps track
262 of what memory allocated via lisp_malloc is intended for what
263 purpose. This enumeration specifies the type of memory. */
264
265enum mem_type
266{
267 MEM_TYPE_NON_LISP,
268 MEM_TYPE_BUFFER,
269 MEM_TYPE_CONS,
270 MEM_TYPE_STRING,
271 MEM_TYPE_MISC,
272 MEM_TYPE_SYMBOL,
273 MEM_TYPE_FLOAT,
274 MEM_TYPE_VECTOR
275};
276
0b378936
GM
277#if GC_MARK_STACK
278
279#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
280#include <stdio.h> /* For fprintf. */
281#endif
282
283/* A unique object in pure space used to make some Lisp objects
284 on free lists recognizable in O(1). */
285
286Lisp_Object Vdead;
287
34400008 288struct mem_node;
b3303f74 289static POINTER_TYPE *lisp_malloc P_ ((size_t, enum mem_type));
bf952fb6 290static void lisp_free P_ ((POINTER_TYPE *));
34400008
GM
291static void mark_stack P_ ((void));
292static void init_stack P_ ((Lisp_Object *));
293static int live_vector_p P_ ((struct mem_node *, void *));
294static int live_buffer_p P_ ((struct mem_node *, void *));
295static int live_string_p P_ ((struct mem_node *, void *));
296static int live_cons_p P_ ((struct mem_node *, void *));
297static int live_symbol_p P_ ((struct mem_node *, void *));
298static int live_float_p P_ ((struct mem_node *, void *));
299static int live_misc_p P_ ((struct mem_node *, void *));
182ff242 300static void mark_maybe_object P_ ((Lisp_Object));
34400008
GM
301static void mark_memory P_ ((void *, void *));
302static void mem_init P_ ((void));
303static struct mem_node *mem_insert P_ ((void *, void *, enum mem_type));
304static void mem_insert_fixup P_ ((struct mem_node *));
305static void mem_rotate_left P_ ((struct mem_node *));
306static void mem_rotate_right P_ ((struct mem_node *));
307static void mem_delete P_ ((struct mem_node *));
308static void mem_delete_fixup P_ ((struct mem_node *));
309static INLINE struct mem_node *mem_find P_ ((void *));
310
311#if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
312static void check_gcpros P_ ((void));
313#endif
314
315#endif /* GC_MARK_STACK != 0 */
316
7146af97 317\f
34400008
GM
318/************************************************************************
319 Malloc
320 ************************************************************************/
321
322/* Write STR to Vstandard_output plus some advice on how to free some
323 memory. Called when memory gets low. */
1a4f1e2c 324
7146af97
JB
325Lisp_Object
326malloc_warning_1 (str)
327 Lisp_Object str;
328{
329 Fprinc (str, Vstandard_output);
330 write_string ("\nKilling some buffers may delay running out of memory.\n", -1);
331 write_string ("However, certainly by the time you receive the 95% warning,\n", -1);
332 write_string ("you should clean up, kill this Emacs, and start a new one.", -1);
333 return Qnil;
334}
335
34400008
GM
336
337/* Function malloc calls this if it finds we are near exhausting
338 storage. */
d457598b
AS
339
340void
7146af97
JB
341malloc_warning (str)
342 char *str;
343{
344 pending_malloc_warning = str;
345}
346
34400008
GM
347
348/* Display a malloc warning in buffer *Danger*. */
349
d457598b 350void
7146af97
JB
351display_malloc_warning ()
352{
353 register Lisp_Object val;
354
355 val = build_string (pending_malloc_warning);
356 pending_malloc_warning = 0;
357 internal_with_output_to_temp_buffer (" *Danger*", malloc_warning_1, val);
358}
359
34400008 360
d1658221 361#ifdef DOUG_LEA_MALLOC
1177ecf6 362# define BYTES_USED (mallinfo ().arena)
d1658221 363#else
1177ecf6 364# define BYTES_USED _bytes_used
d1658221
RS
365#endif
366
34400008 367
2e471eb5 368/* Called if malloc returns zero. */
276cbe5a 369
d457598b 370void
7146af97
JB
371memory_full ()
372{
276cbe5a 373#ifndef SYSTEM_MALLOC
d1658221 374 bytes_used_when_full = BYTES_USED;
276cbe5a
RS
375#endif
376
377 /* The first time we get here, free the spare memory. */
378 if (spare_memory)
379 {
380 free (spare_memory);
381 spare_memory = 0;
382 }
383
2e471eb5
GM
384 /* This used to call error, but if we've run out of memory, we could
385 get infinite recursion trying to build the string. */
276cbe5a 386 while (1)
74d84334 387 Fsignal (Qnil, memory_signal_data);
276cbe5a
RS
388}
389
34400008 390
276cbe5a
RS
391/* Called if we can't allocate relocatable space for a buffer. */
392
393void
394buffer_memory_full ()
395{
2e471eb5
GM
396 /* If buffers use the relocating allocator, no need to free
397 spare_memory, because we may have plenty of malloc space left
398 that we could get, and if we don't, the malloc that fails will
399 itself cause spare_memory to be freed. If buffers don't use the
400 relocating allocator, treat this like any other failing
401 malloc. */
276cbe5a
RS
402
403#ifndef REL_ALLOC
404 memory_full ();
405#endif
406
2e471eb5
GM
407 /* This used to call error, but if we've run out of memory, we could
408 get infinite recursion trying to build the string. */
bcb61d60
KH
409 while (1)
410 Fsignal (Qerror, memory_signal_data);
7146af97
JB
411}
412
34400008
GM
413
414/* Like malloc but check for no memory and block interrupt input.. */
7146af97 415
c971ff9a 416POINTER_TYPE *
7146af97 417xmalloc (size)
675d5130 418 size_t size;
7146af97 419{
c971ff9a 420 register POINTER_TYPE *val;
7146af97 421
9ac0d9e0 422 BLOCK_INPUT;
c971ff9a 423 val = (POINTER_TYPE *) malloc (size);
9ac0d9e0 424 UNBLOCK_INPUT;
7146af97 425
2e471eb5
GM
426 if (!val && size)
427 memory_full ();
7146af97
JB
428 return val;
429}
430
34400008
GM
431
432/* Like realloc but check for no memory and block interrupt input.. */
433
c971ff9a 434POINTER_TYPE *
7146af97 435xrealloc (block, size)
c971ff9a 436 POINTER_TYPE *block;
675d5130 437 size_t size;
7146af97 438{
c971ff9a 439 register POINTER_TYPE *val;
7146af97 440
9ac0d9e0 441 BLOCK_INPUT;
56d2031b
JB
442 /* We must call malloc explicitly when BLOCK is 0, since some
443 reallocs don't do this. */
444 if (! block)
c971ff9a 445 val = (POINTER_TYPE *) malloc (size);
f048679d 446 else
c971ff9a 447 val = (POINTER_TYPE *) realloc (block, size);
9ac0d9e0 448 UNBLOCK_INPUT;
7146af97
JB
449
450 if (!val && size) memory_full ();
451 return val;
452}
9ac0d9e0 453
34400008
GM
454
455/* Like free but block interrupt input.. */
456
9ac0d9e0
JB
457void
458xfree (block)
c971ff9a 459 POINTER_TYPE *block;
9ac0d9e0
JB
460{
461 BLOCK_INPUT;
462 free (block);
463 UNBLOCK_INPUT;
464}
465
c8099634 466
dca7c6a8
GM
467/* Like strdup, but uses xmalloc. */
468
469char *
470xstrdup (s)
471 char *s;
472{
675d5130 473 size_t len = strlen (s) + 1;
dca7c6a8
GM
474 char *p = (char *) xmalloc (len);
475 bcopy (s, p, len);
476 return p;
477}
478
479
34400008
GM
480/* Like malloc but used for allocating Lisp data. NBYTES is the
481 number of bytes to allocate, TYPE describes the intended use of the
482 allcated memory block (for strings, for conses, ...). */
483
675d5130 484static POINTER_TYPE *
34400008 485lisp_malloc (nbytes, type)
675d5130 486 size_t nbytes;
34400008 487 enum mem_type type;
c8099634 488{
34400008 489 register void *val;
c8099634
RS
490
491 BLOCK_INPUT;
34400008 492 val = (void *) malloc (nbytes);
c8099634 493
34400008 494#if GC_MARK_STACK
dca7c6a8 495 if (val && type != MEM_TYPE_NON_LISP)
34400008
GM
496 mem_insert (val, (char *) val + nbytes, type);
497#endif
498
dca7c6a8
GM
499 UNBLOCK_INPUT;
500 if (!val && nbytes)
501 memory_full ();
c8099634
RS
502 return val;
503}
504
34400008
GM
505
506/* Return a new buffer structure allocated from the heap with
507 a call to lisp_malloc. */
508
509struct buffer *
510allocate_buffer ()
511{
512 return (struct buffer *) lisp_malloc (sizeof (struct buffer),
513 MEM_TYPE_BUFFER);
514}
515
516
517/* Free BLOCK. This must be called to free memory allocated with a
518 call to lisp_malloc. */
519
bf952fb6 520static void
c8099634 521lisp_free (block)
675d5130 522 POINTER_TYPE *block;
c8099634
RS
523{
524 BLOCK_INPUT;
c8099634 525 free (block);
34400008
GM
526#if GC_MARK_STACK
527 mem_delete (mem_find (block));
528#endif
c8099634
RS
529 UNBLOCK_INPUT;
530}
34400008 531
9ac0d9e0
JB
532\f
533/* Arranging to disable input signals while we're in malloc.
534
535 This only works with GNU malloc. To help out systems which can't
536 use GNU malloc, all the calls to malloc, realloc, and free
537 elsewhere in the code should be inside a BLOCK_INPUT/UNBLOCK_INPUT
538 pairs; unfortunately, we have no idea what C library functions
539 might call malloc, so we can't really protect them unless you're
540 using GNU malloc. Fortunately, most of the major operating can use
541 GNU malloc. */
542
543#ifndef SYSTEM_MALLOC
b3303f74
DL
544#ifndef DOUG_LEA_MALLOC
545extern void * (*__malloc_hook) P_ ((size_t));
546extern void * (*__realloc_hook) P_ ((void *, size_t));
547extern void (*__free_hook) P_ ((void *));
548/* Else declared in malloc.h, perhaps with an extra arg. */
549#endif /* DOUG_LEA_MALLOC */
b0846f52 550static void * (*old_malloc_hook) ();
b0846f52 551static void * (*old_realloc_hook) ();
b0846f52 552static void (*old_free_hook) ();
9ac0d9e0 553
276cbe5a
RS
554/* This function is used as the hook for free to call. */
555
9ac0d9e0
JB
556static void
557emacs_blocked_free (ptr)
558 void *ptr;
559{
560 BLOCK_INPUT;
561 __free_hook = old_free_hook;
562 free (ptr);
276cbe5a
RS
563 /* If we released our reserve (due to running out of memory),
564 and we have a fair amount free once again,
565 try to set aside another reserve in case we run out once more. */
566 if (spare_memory == 0
567 /* Verify there is enough space that even with the malloc
568 hysteresis this call won't run out again.
569 The code here is correct as long as SPARE_MEMORY
570 is substantially larger than the block size malloc uses. */
571 && (bytes_used_when_full
d1658221 572 > BYTES_USED + max (malloc_hysteresis, 4) * SPARE_MEMORY))
675d5130 573 spare_memory = (char *) malloc ((size_t) SPARE_MEMORY);
276cbe5a 574
b0846f52 575 __free_hook = emacs_blocked_free;
9ac0d9e0
JB
576 UNBLOCK_INPUT;
577}
578
34400008 579
276cbe5a
RS
580/* If we released our reserve (due to running out of memory),
581 and we have a fair amount free once again,
582 try to set aside another reserve in case we run out once more.
583
584 This is called when a relocatable block is freed in ralloc.c. */
585
586void
587refill_memory_reserve ()
588{
589 if (spare_memory == 0)
675d5130 590 spare_memory = (char *) malloc ((size_t) SPARE_MEMORY);
276cbe5a
RS
591}
592
34400008 593
276cbe5a
RS
594/* This function is the malloc hook that Emacs uses. */
595
9ac0d9e0
JB
596static void *
597emacs_blocked_malloc (size)
675d5130 598 size_t size;
9ac0d9e0
JB
599{
600 void *value;
601
602 BLOCK_INPUT;
603 __malloc_hook = old_malloc_hook;
1177ecf6 604#ifdef DOUG_LEA_MALLOC
d1658221 605 mallopt (M_TOP_PAD, malloc_hysteresis * 4096);
1177ecf6 606#else
d1658221 607 __malloc_extra_blocks = malloc_hysteresis;
1177ecf6 608#endif
2756d8ee 609 value = (void *) malloc (size);
b0846f52 610 __malloc_hook = emacs_blocked_malloc;
9ac0d9e0
JB
611 UNBLOCK_INPUT;
612
613 return value;
614}
615
34400008
GM
616
617/* This function is the realloc hook that Emacs uses. */
618
9ac0d9e0
JB
619static void *
620emacs_blocked_realloc (ptr, size)
621 void *ptr;
675d5130 622 size_t size;
9ac0d9e0
JB
623{
624 void *value;
625
626 BLOCK_INPUT;
627 __realloc_hook = old_realloc_hook;
2756d8ee 628 value = (void *) realloc (ptr, size);
b0846f52 629 __realloc_hook = emacs_blocked_realloc;
9ac0d9e0
JB
630 UNBLOCK_INPUT;
631
632 return value;
633}
634
34400008
GM
635
636/* Called from main to set up malloc to use our hooks. */
637
9ac0d9e0
JB
638void
639uninterrupt_malloc ()
640{
c8099634
RS
641 if (__free_hook != emacs_blocked_free)
642 old_free_hook = __free_hook;
b0846f52 643 __free_hook = emacs_blocked_free;
9ac0d9e0 644
c8099634
RS
645 if (__malloc_hook != emacs_blocked_malloc)
646 old_malloc_hook = __malloc_hook;
b0846f52 647 __malloc_hook = emacs_blocked_malloc;
9ac0d9e0 648
c8099634
RS
649 if (__realloc_hook != emacs_blocked_realloc)
650 old_realloc_hook = __realloc_hook;
b0846f52 651 __realloc_hook = emacs_blocked_realloc;
9ac0d9e0 652}
2e471eb5
GM
653
654#endif /* not SYSTEM_MALLOC */
655
656
7146af97 657\f
2e471eb5
GM
658/***********************************************************************
659 Interval Allocation
660 ***********************************************************************/
1a4f1e2c 661
34400008
GM
662/* Number of intervals allocated in an interval_block structure.
663 The 1020 is 1024 minus malloc overhead. */
664
d5e35230
JA
665#define INTERVAL_BLOCK_SIZE \
666 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
667
34400008
GM
668/* Intervals are allocated in chunks in form of an interval_block
669 structure. */
670
d5e35230 671struct interval_block
2e471eb5
GM
672{
673 struct interval_block *next;
674 struct interval intervals[INTERVAL_BLOCK_SIZE];
675};
d5e35230 676
34400008
GM
677/* Current interval block. Its `next' pointer points to older
678 blocks. */
679
d5e35230 680struct interval_block *interval_block;
34400008
GM
681
682/* Index in interval_block above of the next unused interval
683 structure. */
684
d5e35230 685static int interval_block_index;
34400008
GM
686
687/* Number of free and live intervals. */
688
2e471eb5 689static int total_free_intervals, total_intervals;
d5e35230 690
34400008
GM
691/* List of free intervals. */
692
d5e35230
JA
693INTERVAL interval_free_list;
694
c8099634 695/* Total number of interval blocks now in use. */
2e471eb5 696
c8099634
RS
697int n_interval_blocks;
698
34400008
GM
699
700/* Initialize interval allocation. */
701
d5e35230
JA
702static void
703init_intervals ()
704{
705 interval_block
34400008
GM
706 = (struct interval_block *) lisp_malloc (sizeof *interval_block,
707 MEM_TYPE_NON_LISP);
d5e35230 708 interval_block->next = 0;
290c8f1e 709 bzero ((char *) interval_block->intervals, sizeof interval_block->intervals);
d5e35230
JA
710 interval_block_index = 0;
711 interval_free_list = 0;
c8099634 712 n_interval_blocks = 1;
d5e35230
JA
713}
714
34400008
GM
715
716/* Return a new interval. */
d5e35230
JA
717
718INTERVAL
719make_interval ()
720{
721 INTERVAL val;
722
723 if (interval_free_list)
724 {
725 val = interval_free_list;
439d5cb4 726 interval_free_list = INTERVAL_PARENT (interval_free_list);
d5e35230
JA
727 }
728 else
729 {
730 if (interval_block_index == INTERVAL_BLOCK_SIZE)
731 {
3c06d205
KH
732 register struct interval_block *newi;
733
34400008
GM
734 newi = (struct interval_block *) lisp_malloc (sizeof *newi,
735 MEM_TYPE_NON_LISP);
d5e35230
JA
736
737 VALIDATE_LISP_STORAGE (newi, sizeof *newi);
738 newi->next = interval_block;
739 interval_block = newi;
740 interval_block_index = 0;
c8099634 741 n_interval_blocks++;
d5e35230
JA
742 }
743 val = &interval_block->intervals[interval_block_index++];
744 }
745 consing_since_gc += sizeof (struct interval);
310ea200 746 intervals_consed++;
d5e35230
JA
747 RESET_INTERVAL (val);
748 return val;
749}
750
34400008
GM
751
752/* Mark Lisp objects in interval I. */
d5e35230
JA
753
754static void
d393c068 755mark_interval (i, dummy)
d5e35230 756 register INTERVAL i;
d393c068 757 Lisp_Object dummy;
d5e35230
JA
758{
759 if (XMARKBIT (i->plist))
760 abort ();
761 mark_object (&i->plist);
762 XMARK (i->plist);
763}
764
34400008
GM
765
766/* Mark the interval tree rooted in TREE. Don't call this directly;
767 use the macro MARK_INTERVAL_TREE instead. */
768
d5e35230
JA
769static void
770mark_interval_tree (tree)
771 register INTERVAL tree;
772{
e8720644
JB
773 /* No need to test if this tree has been marked already; this
774 function is always called through the MARK_INTERVAL_TREE macro,
775 which takes care of that. */
776
777 /* XMARK expands to an assignment; the LHS of an assignment can't be
778 a cast. */
e0b8c689 779 XMARK (tree->up.obj);
d5e35230 780
d393c068 781 traverse_intervals (tree, 1, 0, mark_interval, Qnil);
d5e35230
JA
782}
783
34400008
GM
784
785/* Mark the interval tree rooted in I. */
786
e8720644
JB
787#define MARK_INTERVAL_TREE(i) \
788 do { \
789 if (!NULL_INTERVAL_P (i) \
e0b8c689 790 && ! XMARKBIT (i->up.obj)) \
e8720644
JB
791 mark_interval_tree (i); \
792 } while (0)
d5e35230 793
34400008 794
1a4f1e2c 795/* The oddity in the call to XUNMARK is necessary because XUNMARK
2e471eb5
GM
796 expands to an assignment to its argument, and most C compilers
797 don't support casts on the left operand of `='. */
798
799#define UNMARK_BALANCE_INTERVALS(i) \
800 do { \
801 if (! NULL_INTERVAL_P (i)) \
802 { \
e0b8c689 803 XUNMARK ((i)->up.obj); \
2e471eb5
GM
804 (i) = balance_intervals (i); \
805 } \
806 } while (0)
d5e35230 807
cc2d8c6b
KR
808\f
809/* Number support. If NO_UNION_TYPE isn't in effect, we
810 can't create number objects in macros. */
811#ifndef make_number
812Lisp_Object
813make_number (n)
814 int n;
815{
816 Lisp_Object obj;
817 obj.s.val = n;
818 obj.s.type = Lisp_Int;
819 return obj;
820}
821#endif
d5e35230 822\f
2e471eb5
GM
823/***********************************************************************
824 String Allocation
825 ***********************************************************************/
1a4f1e2c 826
2e471eb5
GM
827/* Lisp_Strings are allocated in string_block structures. When a new
828 string_block is allocated, all the Lisp_Strings it contains are
829 added to a free-list stiing_free_list. When a new Lisp_String is
830 needed, it is taken from that list. During the sweep phase of GC,
831 string_blocks that are entirely free are freed, except two which
832 we keep.
7146af97 833
2e471eb5
GM
834 String data is allocated from sblock structures. Strings larger
835 than LARGE_STRING_BYTES, get their own sblock, data for smaller
836 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
7146af97 837
2e471eb5
GM
838 Sblocks consist internally of sdata structures, one for each
839 Lisp_String. The sdata structure points to the Lisp_String it
840 belongs to. The Lisp_String points back to the `u.data' member of
841 its sdata structure.
7146af97 842
2e471eb5
GM
843 When a Lisp_String is freed during GC, it is put back on
844 string_free_list, and its `data' member and its sdata's `string'
845 pointer is set to null. The size of the string is recorded in the
846 `u.nbytes' member of the sdata. So, sdata structures that are no
847 longer used, can be easily recognized, and it's easy to compact the
848 sblocks of small strings which we do in compact_small_strings. */
7146af97 849
2e471eb5
GM
850/* Size in bytes of an sblock structure used for small strings. This
851 is 8192 minus malloc overhead. */
7146af97 852
2e471eb5 853#define SBLOCK_SIZE 8188
c8099634 854
2e471eb5
GM
855/* Strings larger than this are considered large strings. String data
856 for large strings is allocated from individual sblocks. */
7146af97 857
2e471eb5
GM
858#define LARGE_STRING_BYTES 1024
859
860/* Structure describing string memory sub-allocated from an sblock.
861 This is where the contents of Lisp strings are stored. */
862
863struct sdata
7146af97 864{
2e471eb5
GM
865 /* Back-pointer to the string this sdata belongs to. If null, this
866 structure is free, and the NBYTES member of the union below
34400008 867 contains the string's byte size (the same value that STRING_BYTES
2e471eb5
GM
868 would return if STRING were non-null). If non-null, STRING_BYTES
869 (STRING) is the size of the data, and DATA contains the string's
870 contents. */
871 struct Lisp_String *string;
7146af97 872
2e471eb5
GM
873 union
874 {
875 /* When STRING in non-null. */
876 unsigned char data[1];
877
878 /* When STRING is null. */
879 EMACS_INT nbytes;
880 } u;
881};
882
883/* Structure describing a block of memory which is sub-allocated to
884 obtain string data memory for strings. Blocks for small strings
885 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
886 as large as needed. */
887
888struct sblock
7146af97 889{
2e471eb5
GM
890 /* Next in list. */
891 struct sblock *next;
7146af97 892
2e471eb5
GM
893 /* Pointer to the next free sdata block. This points past the end
894 of the sblock if there isn't any space left in this block. */
895 struct sdata *next_free;
896
897 /* Start of data. */
898 struct sdata first_data;
899};
900
901/* Number of Lisp strings in a string_block structure. The 1020 is
902 1024 minus malloc overhead. */
903
904#define STRINGS_IN_STRING_BLOCK \
905 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
906
907/* Structure describing a block from which Lisp_String structures
908 are allocated. */
909
910struct string_block
7146af97 911{
2e471eb5
GM
912 struct string_block *next;
913 struct Lisp_String strings[STRINGS_IN_STRING_BLOCK];
914};
7146af97 915
2e471eb5
GM
916/* Head and tail of the list of sblock structures holding Lisp string
917 data. We always allocate from current_sblock. The NEXT pointers
918 in the sblock structures go from oldest_sblock to current_sblock. */
3c06d205 919
2e471eb5 920static struct sblock *oldest_sblock, *current_sblock;
7146af97 921
2e471eb5 922/* List of sblocks for large strings. */
7146af97 923
2e471eb5 924static struct sblock *large_sblocks;
7146af97 925
2e471eb5 926/* List of string_block structures, and how many there are. */
7146af97 927
2e471eb5
GM
928static struct string_block *string_blocks;
929static int n_string_blocks;
7146af97 930
2e471eb5 931/* Free-list of Lisp_Strings. */
7146af97 932
2e471eb5 933static struct Lisp_String *string_free_list;
7146af97 934
2e471eb5 935/* Number of live and free Lisp_Strings. */
c8099634 936
2e471eb5 937static int total_strings, total_free_strings;
7146af97 938
2e471eb5
GM
939/* Number of bytes used by live strings. */
940
941static int total_string_size;
942
943/* Given a pointer to a Lisp_String S which is on the free-list
944 string_free_list, return a pointer to its successor in the
945 free-list. */
946
947#define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
948
949/* Return a pointer to the sdata structure belonging to Lisp string S.
950 S must be live, i.e. S->data must not be null. S->data is actually
951 a pointer to the `u.data' member of its sdata structure; the
952 structure starts at a constant offset in front of that. */
953
954#define SDATA_OF_STRING(S) \
955 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *)))
956
957/* Value is the size of an sdata structure large enough to hold NBYTES
958 bytes of string data. The value returned includes a terminating
959 NUL byte, the size of the sdata structure, and padding. */
960
961#define SDATA_SIZE(NBYTES) \
962 ((sizeof (struct Lisp_String *) \
963 + (NBYTES) + 1 \
964 + sizeof (EMACS_INT) - 1) \
965 & ~(sizeof (EMACS_INT) - 1))
966
967
968/* Initialize string allocation. Called from init_alloc_once. */
d457598b
AS
969
970void
2e471eb5 971init_strings ()
7146af97 972{
2e471eb5
GM
973 total_strings = total_free_strings = total_string_size = 0;
974 oldest_sblock = current_sblock = large_sblocks = NULL;
975 string_blocks = NULL;
976 n_string_blocks = 0;
977 string_free_list = NULL;
7146af97
JB
978}
979
2e471eb5
GM
980
981/* Return a new Lisp_String. */
982
983static struct Lisp_String *
984allocate_string ()
7146af97 985{
2e471eb5 986 struct Lisp_String *s;
7146af97 987
2e471eb5
GM
988 /* If the free-list is empty, allocate a new string_block, and
989 add all the Lisp_Strings in it to the free-list. */
990 if (string_free_list == NULL)
7146af97 991 {
2e471eb5
GM
992 struct string_block *b;
993 int i;
994
34400008 995 b = (struct string_block *) lisp_malloc (sizeof *b, MEM_TYPE_STRING);
2e471eb5
GM
996 VALIDATE_LISP_STORAGE (b, sizeof *b);
997 bzero (b, sizeof *b);
998 b->next = string_blocks;
999 string_blocks = b;
1000 ++n_string_blocks;
1001
1002 for (i = STRINGS_IN_STRING_BLOCK - 1; i >= 0; --i)
7146af97 1003 {
2e471eb5
GM
1004 s = b->strings + i;
1005 NEXT_FREE_LISP_STRING (s) = string_free_list;
1006 string_free_list = s;
7146af97 1007 }
2e471eb5
GM
1008
1009 total_free_strings += STRINGS_IN_STRING_BLOCK;
7146af97 1010 }
c0f51373 1011
2e471eb5
GM
1012 /* Pop a Lisp_String off the free-list. */
1013 s = string_free_list;
1014 string_free_list = NEXT_FREE_LISP_STRING (s);
c0f51373 1015
2e471eb5
GM
1016 /* Probably not strictly necessary, but play it safe. */
1017 bzero (s, sizeof *s);
c0f51373 1018
2e471eb5
GM
1019 --total_free_strings;
1020 ++total_strings;
1021 ++strings_consed;
1022 consing_since_gc += sizeof *s;
c0f51373 1023
2e471eb5 1024 return s;
c0f51373 1025}
7146af97 1026
7146af97 1027
2e471eb5
GM
1028/* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1029 plus a NUL byte at the end. Allocate an sdata structure for S, and
1030 set S->data to its `u.data' member. Store a NUL byte at the end of
1031 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1032 S->data if it was initially non-null. */
7146af97 1033
2e471eb5
GM
1034void
1035allocate_string_data (s, nchars, nbytes)
1036 struct Lisp_String *s;
1037 int nchars, nbytes;
7146af97 1038{
5c5fecb3 1039 struct sdata *data, *old_data;
2e471eb5 1040 struct sblock *b;
5c5fecb3 1041 int needed, old_nbytes;
7146af97 1042
2e471eb5
GM
1043 /* Determine the number of bytes needed to store NBYTES bytes
1044 of string data. */
1045 needed = SDATA_SIZE (nbytes);
7146af97 1046
2e471eb5
GM
1047 if (nbytes > LARGE_STRING_BYTES)
1048 {
675d5130 1049 size_t size = sizeof *b - sizeof (struct sdata) + needed;
2e471eb5
GM
1050
1051#ifdef DOUG_LEA_MALLOC
f8608968
GM
1052 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1053 because mapped region contents are not preserved in
1054 a dumped Emacs. */
2e471eb5
GM
1055 mallopt (M_MMAP_MAX, 0);
1056#endif
1057
34400008 1058 b = (struct sblock *) lisp_malloc (size, MEM_TYPE_NON_LISP);
2e471eb5
GM
1059
1060#ifdef DOUG_LEA_MALLOC
1061 /* Back to a reasonable maximum of mmap'ed areas. */
1062 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1063#endif
1064
1065 b->next_free = &b->first_data;
1066 b->first_data.string = NULL;
1067 b->next = large_sblocks;
1068 large_sblocks = b;
1069 }
1070 else if (current_sblock == NULL
1071 || (((char *) current_sblock + SBLOCK_SIZE
1072 - (char *) current_sblock->next_free)
1073 < needed))
1074 {
1075 /* Not enough room in the current sblock. */
34400008 1076 b = (struct sblock *) lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
2e471eb5
GM
1077 b->next_free = &b->first_data;
1078 b->first_data.string = NULL;
1079 b->next = NULL;
1080
1081 if (current_sblock)
1082 current_sblock->next = b;
1083 else
1084 oldest_sblock = b;
1085 current_sblock = b;
1086 }
1087 else
1088 b = current_sblock;
5c5fecb3
GM
1089
1090 old_data = s->data ? SDATA_OF_STRING (s) : NULL;
1091 old_nbytes = GC_STRING_BYTES (s);
2e471eb5
GM
1092
1093 data = b->next_free;
1094 data->string = s;
1095 s->data = data->u.data;
1096 s->size = nchars;
1097 s->size_byte = nbytes;
1098 s->data[nbytes] = '\0';
1099 b->next_free = (struct sdata *) ((char *) data + needed);
1100
5c5fecb3
GM
1101 /* If S had already data assigned, mark that as free by setting its
1102 string back-pointer to null, and recording the size of the data
00c9c33c 1103 in it. */
5c5fecb3
GM
1104 if (old_data)
1105 {
5c5fecb3
GM
1106 old_data->u.nbytes = old_nbytes;
1107 old_data->string = NULL;
1108 }
1109
2e471eb5
GM
1110 consing_since_gc += needed;
1111}
1112
1113
1114/* Sweep and compact strings. */
1115
1116static void
1117sweep_strings ()
1118{
1119 struct string_block *b, *next;
1120 struct string_block *live_blocks = NULL;
1121
1122 string_free_list = NULL;
1123 total_strings = total_free_strings = 0;
1124 total_string_size = 0;
1125
1126 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
1127 for (b = string_blocks; b; b = next)
1128 {
1129 int i, nfree = 0;
1130 struct Lisp_String *free_list_before = string_free_list;
1131
1132 next = b->next;
1133
1134 for (i = 0; i < STRINGS_IN_STRING_BLOCK; ++i)
1135 {
1136 struct Lisp_String *s = b->strings + i;
1137
1138 if (s->data)
1139 {
1140 /* String was not on free-list before. */
1141 if (STRING_MARKED_P (s))
1142 {
1143 /* String is live; unmark it and its intervals. */
1144 UNMARK_STRING (s);
1145
1146 if (!NULL_INTERVAL_P (s->intervals))
1147 UNMARK_BALANCE_INTERVALS (s->intervals);
1148
1149 ++total_strings;
1150 total_string_size += STRING_BYTES (s);
1151 }
1152 else
1153 {
1154 /* String is dead. Put it on the free-list. */
1155 struct sdata *data = SDATA_OF_STRING (s);
1156
1157 /* Save the size of S in its sdata so that we know
1158 how large that is. Reset the sdata's string
1159 back-pointer so that we know it's free. */
1160 data->u.nbytes = GC_STRING_BYTES (s);
1161 data->string = NULL;
1162
1163 /* Reset the strings's `data' member so that we
1164 know it's free. */
1165 s->data = NULL;
1166
1167 /* Put the string on the free-list. */
1168 NEXT_FREE_LISP_STRING (s) = string_free_list;
1169 string_free_list = s;
1170 ++nfree;
1171 }
1172 }
1173 else
1174 {
1175 /* S was on the free-list before. Put it there again. */
1176 NEXT_FREE_LISP_STRING (s) = string_free_list;
1177 string_free_list = s;
1178 ++nfree;
1179 }
1180 }
1181
34400008 1182 /* Free blocks that contain free Lisp_Strings only, except
2e471eb5
GM
1183 the first two of them. */
1184 if (nfree == STRINGS_IN_STRING_BLOCK
1185 && total_free_strings > STRINGS_IN_STRING_BLOCK)
1186 {
1187 lisp_free (b);
1188 --n_string_blocks;
1189 string_free_list = free_list_before;
1190 }
1191 else
1192 {
1193 total_free_strings += nfree;
1194 b->next = live_blocks;
1195 live_blocks = b;
1196 }
1197 }
1198
1199 string_blocks = live_blocks;
1200 free_large_strings ();
1201 compact_small_strings ();
1202}
1203
1204
1205/* Free dead large strings. */
1206
1207static void
1208free_large_strings ()
1209{
1210 struct sblock *b, *next;
1211 struct sblock *live_blocks = NULL;
1212
1213 for (b = large_sblocks; b; b = next)
1214 {
1215 next = b->next;
1216
1217 if (b->first_data.string == NULL)
1218 lisp_free (b);
1219 else
1220 {
1221 b->next = live_blocks;
1222 live_blocks = b;
1223 }
1224 }
1225
1226 large_sblocks = live_blocks;
1227}
1228
1229
1230/* Compact data of small strings. Free sblocks that don't contain
1231 data of live strings after compaction. */
1232
1233static void
1234compact_small_strings ()
1235{
1236 struct sblock *b, *tb, *next;
1237 struct sdata *from, *to, *end, *tb_end;
1238 struct sdata *to_end, *from_end;
1239
1240 /* TB is the sblock we copy to, TO is the sdata within TB we copy
1241 to, and TB_END is the end of TB. */
1242 tb = oldest_sblock;
1243 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
1244 to = &tb->first_data;
1245
1246 /* Step through the blocks from the oldest to the youngest. We
1247 expect that old blocks will stabilize over time, so that less
1248 copying will happen this way. */
1249 for (b = oldest_sblock; b; b = b->next)
1250 {
1251 end = b->next_free;
1252 xassert ((char *) end <= (char *) b + SBLOCK_SIZE);
1253
1254 for (from = &b->first_data; from < end; from = from_end)
1255 {
1256 /* Compute the next FROM here because copying below may
1257 overwrite data we need to compute it. */
1258 int nbytes;
1259
1260 if (from->string)
1261 nbytes = GC_STRING_BYTES (from->string);
1262 else
1263 nbytes = from->u.nbytes;
1264
1265 nbytes = SDATA_SIZE (nbytes);
1266 from_end = (struct sdata *) ((char *) from + nbytes);
1267
1268 /* FROM->string non-null means it's alive. Copy its data. */
1269 if (from->string)
1270 {
1271 /* If TB is full, proceed with the next sblock. */
1272 to_end = (struct sdata *) ((char *) to + nbytes);
1273 if (to_end > tb_end)
1274 {
1275 tb->next_free = to;
1276 tb = tb->next;
1277 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
1278 to = &tb->first_data;
1279 to_end = (struct sdata *) ((char *) to + nbytes);
1280 }
1281
1282 /* Copy, and update the string's `data' pointer. */
1283 if (from != to)
1284 {
a2407477
GM
1285 xassert (tb != b || to <= from);
1286 safe_bcopy ((char *) from, (char *) to, nbytes);
2e471eb5
GM
1287 to->string->data = to->u.data;
1288 }
1289
1290 /* Advance past the sdata we copied to. */
1291 to = to_end;
1292 }
1293 }
1294 }
1295
1296 /* The rest of the sblocks following TB don't contain live data, so
1297 we can free them. */
1298 for (b = tb->next; b; b = next)
1299 {
1300 next = b->next;
1301 lisp_free (b);
1302 }
1303
1304 tb->next_free = to;
1305 tb->next = NULL;
1306 current_sblock = tb;
1307}
1308
1309
1310DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
1311 "Return a newly created string of length LENGTH, with each element being INIT.\n\
1312Both LENGTH and INIT must be numbers.")
1313 (length, init)
1314 Lisp_Object length, init;
1315{
1316 register Lisp_Object val;
1317 register unsigned char *p, *end;
1318 int c, nbytes;
1319
1320 CHECK_NATNUM (length, 0);
1321 CHECK_NUMBER (init, 1);
1322
1323 c = XINT (init);
1324 if (SINGLE_BYTE_CHAR_P (c))
1325 {
1326 nbytes = XINT (length);
1327 val = make_uninit_string (nbytes);
1328 p = XSTRING (val)->data;
1329 end = p + XSTRING (val)->size;
1330 while (p != end)
1331 *p++ = c;
1332 }
1333 else
1334 {
1335 unsigned char str[4];
1336 int len = CHAR_STRING (c, str);
1337
1338 nbytes = len * XINT (length);
1339 val = make_uninit_multibyte_string (XINT (length), nbytes);
1340 p = XSTRING (val)->data;
1341 end = p + nbytes;
1342 while (p != end)
1343 {
1344 bcopy (str, p, len);
1345 p += len;
1346 }
1347 }
1348
1349 *p = 0;
1350 return val;
1351}
1352
1353
1354DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
1355 "Return a new bool-vector of length LENGTH, using INIT for as each element.\n\
1356LENGTH must be a number. INIT matters only in whether it is t or nil.")
1357 (length, init)
1358 Lisp_Object length, init;
1359{
1360 register Lisp_Object val;
1361 struct Lisp_Bool_Vector *p;
1362 int real_init, i;
1363 int length_in_chars, length_in_elts, bits_per_value;
1364
1365 CHECK_NATNUM (length, 0);
1366
1367 bits_per_value = sizeof (EMACS_INT) * BITS_PER_CHAR;
1368
1369 length_in_elts = (XFASTINT (length) + bits_per_value - 1) / bits_per_value;
1370 length_in_chars = ((XFASTINT (length) + BITS_PER_CHAR - 1) / BITS_PER_CHAR);
1371
1372 /* We must allocate one more elements than LENGTH_IN_ELTS for the
1373 slot `size' of the struct Lisp_Bool_Vector. */
1374 val = Fmake_vector (make_number (length_in_elts + 1), Qnil);
1375 p = XBOOL_VECTOR (val);
34400008 1376
2e471eb5
GM
1377 /* Get rid of any bits that would cause confusion. */
1378 p->vector_size = 0;
1379 XSETBOOL_VECTOR (val, p);
1380 p->size = XFASTINT (length);
1381
1382 real_init = (NILP (init) ? 0 : -1);
1383 for (i = 0; i < length_in_chars ; i++)
1384 p->data[i] = real_init;
34400008 1385
2e471eb5
GM
1386 /* Clear the extraneous bits in the last byte. */
1387 if (XINT (length) != length_in_chars * BITS_PER_CHAR)
1388 XBOOL_VECTOR (val)->data[length_in_chars - 1]
1389 &= (1 << (XINT (length) % BITS_PER_CHAR)) - 1;
1390
1391 return val;
1392}
1393
1394
1395/* Make a string from NBYTES bytes at CONTENTS, and compute the number
1396 of characters from the contents. This string may be unibyte or
1397 multibyte, depending on the contents. */
1398
1399Lisp_Object
1400make_string (contents, nbytes)
1401 char *contents;
1402 int nbytes;
1403{
1404 register Lisp_Object val;
9eac9d59
KH
1405 int nchars, multibyte_nbytes;
1406
1407 parse_str_as_multibyte (contents, nbytes, &nchars, &multibyte_nbytes);
2e471eb5
GM
1408 val = make_uninit_multibyte_string (nchars, nbytes);
1409 bcopy (contents, XSTRING (val)->data, nbytes);
9eac9d59
KH
1410 if (nbytes == nchars || nbytes != multibyte_nbytes)
1411 /* CONTENTS contains no multibyte sequences or contains an invalid
1412 multibyte sequence. We must make unibyte string. */
2e471eb5
GM
1413 SET_STRING_BYTES (XSTRING (val), -1);
1414 return val;
1415}
1416
1417
1418/* Make an unibyte string from LENGTH bytes at CONTENTS. */
1419
1420Lisp_Object
1421make_unibyte_string (contents, length)
1422 char *contents;
1423 int length;
1424{
1425 register Lisp_Object val;
1426 val = make_uninit_string (length);
1427 bcopy (contents, XSTRING (val)->data, length);
1428 SET_STRING_BYTES (XSTRING (val), -1);
1429 return val;
1430}
1431
1432
1433/* Make a multibyte string from NCHARS characters occupying NBYTES
1434 bytes at CONTENTS. */
1435
1436Lisp_Object
1437make_multibyte_string (contents, nchars, nbytes)
1438 char *contents;
1439 int nchars, nbytes;
1440{
1441 register Lisp_Object val;
1442 val = make_uninit_multibyte_string (nchars, nbytes);
1443 bcopy (contents, XSTRING (val)->data, nbytes);
1444 return val;
1445}
1446
1447
1448/* Make a string from NCHARS characters occupying NBYTES bytes at
1449 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
1450
1451Lisp_Object
1452make_string_from_bytes (contents, nchars, nbytes)
1453 char *contents;
1454 int nchars, nbytes;
1455{
1456 register Lisp_Object val;
1457 val = make_uninit_multibyte_string (nchars, nbytes);
1458 bcopy (contents, XSTRING (val)->data, nbytes);
1459 if (STRING_BYTES (XSTRING (val)) == XSTRING (val)->size)
1460 SET_STRING_BYTES (XSTRING (val), -1);
1461 return val;
1462}
1463
1464
1465/* Make a string from NCHARS characters occupying NBYTES bytes at
1466 CONTENTS. The argument MULTIBYTE controls whether to label the
1467 string as multibyte. */
1468
1469Lisp_Object
1470make_specified_string (contents, nchars, nbytes, multibyte)
1471 char *contents;
1472 int nchars, nbytes;
1473 int multibyte;
1474{
1475 register Lisp_Object val;
1476 val = make_uninit_multibyte_string (nchars, nbytes);
1477 bcopy (contents, XSTRING (val)->data, nbytes);
1478 if (!multibyte)
1479 SET_STRING_BYTES (XSTRING (val), -1);
1480 return val;
1481}
1482
1483
1484/* Make a string from the data at STR, treating it as multibyte if the
1485 data warrants. */
1486
1487Lisp_Object
1488build_string (str)
1489 char *str;
1490{
1491 return make_string (str, strlen (str));
1492}
1493
1494
1495/* Return an unibyte Lisp_String set up to hold LENGTH characters
1496 occupying LENGTH bytes. */
1497
1498Lisp_Object
1499make_uninit_string (length)
1500 int length;
1501{
1502 Lisp_Object val;
1503 val = make_uninit_multibyte_string (length, length);
1504 SET_STRING_BYTES (XSTRING (val), -1);
1505 return val;
1506}
1507
1508
1509/* Return a multibyte Lisp_String set up to hold NCHARS characters
1510 which occupy NBYTES bytes. */
1511
1512Lisp_Object
1513make_uninit_multibyte_string (nchars, nbytes)
1514 int nchars, nbytes;
1515{
1516 Lisp_Object string;
1517 struct Lisp_String *s;
1518
1519 if (nchars < 0)
1520 abort ();
1521
1522 s = allocate_string ();
1523 allocate_string_data (s, nchars, nbytes);
1524 XSETSTRING (string, s);
1525 string_chars_consed += nbytes;
1526 return string;
1527}
1528
1529
1530\f
1531/***********************************************************************
1532 Float Allocation
1533 ***********************************************************************/
1534
2e471eb5
GM
1535/* We store float cells inside of float_blocks, allocating a new
1536 float_block with malloc whenever necessary. Float cells reclaimed
1537 by GC are put on a free list to be reallocated before allocating
1538 any new float cells from the latest float_block.
1539
1540 Each float_block is just under 1020 bytes long, since malloc really
1541 allocates in units of powers of two and uses 4 bytes for its own
1542 overhead. */
1543
1544#define FLOAT_BLOCK_SIZE \
1545 ((1020 - sizeof (struct float_block *)) / sizeof (struct Lisp_Float))
1546
1547struct float_block
1548{
1549 struct float_block *next;
1550 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
1551};
1552
34400008
GM
1553/* Current float_block. */
1554
2e471eb5 1555struct float_block *float_block;
34400008
GM
1556
1557/* Index of first unused Lisp_Float in the current float_block. */
1558
2e471eb5
GM
1559int float_block_index;
1560
1561/* Total number of float blocks now in use. */
1562
1563int n_float_blocks;
1564
34400008
GM
1565/* Free-list of Lisp_Floats. */
1566
2e471eb5
GM
1567struct Lisp_Float *float_free_list;
1568
34400008
GM
1569
1570/* Initialze float allocation. */
1571
2e471eb5
GM
1572void
1573init_float ()
1574{
34400008
GM
1575 float_block = (struct float_block *) lisp_malloc (sizeof *float_block,
1576 MEM_TYPE_FLOAT);
2e471eb5
GM
1577 float_block->next = 0;
1578 bzero ((char *) float_block->floats, sizeof float_block->floats);
1579 float_block_index = 0;
1580 float_free_list = 0;
1581 n_float_blocks = 1;
1582}
1583
34400008
GM
1584
1585/* Explicitly free a float cell by putting it on the free-list. */
2e471eb5
GM
1586
1587void
1588free_float (ptr)
1589 struct Lisp_Float *ptr;
1590{
1591 *(struct Lisp_Float **)&ptr->data = float_free_list;
34400008
GM
1592#if GC_MARK_STACK
1593 ptr->type = Vdead;
1594#endif
2e471eb5
GM
1595 float_free_list = ptr;
1596}
1597
34400008
GM
1598
1599/* Return a new float object with value FLOAT_VALUE. */
1600
2e471eb5
GM
1601Lisp_Object
1602make_float (float_value)
1603 double float_value;
1604{
1605 register Lisp_Object val;
1606
1607 if (float_free_list)
1608 {
1609 /* We use the data field for chaining the free list
1610 so that we won't use the same field that has the mark bit. */
1611 XSETFLOAT (val, float_free_list);
1612 float_free_list = *(struct Lisp_Float **)&float_free_list->data;
1613 }
1614 else
1615 {
1616 if (float_block_index == FLOAT_BLOCK_SIZE)
1617 {
1618 register struct float_block *new;
1619
34400008
GM
1620 new = (struct float_block *) lisp_malloc (sizeof *new,
1621 MEM_TYPE_FLOAT);
2e471eb5
GM
1622 VALIDATE_LISP_STORAGE (new, sizeof *new);
1623 new->next = float_block;
1624 float_block = new;
1625 float_block_index = 0;
1626 n_float_blocks++;
1627 }
1628 XSETFLOAT (val, &float_block->floats[float_block_index++]);
1629 }
1630
1631 XFLOAT_DATA (val) = float_value;
1632 XSETFASTINT (XFLOAT (val)->type, 0); /* bug chasing -wsr */
1633 consing_since_gc += sizeof (struct Lisp_Float);
1634 floats_consed++;
1635 return val;
1636}
1637
2e471eb5
GM
1638
1639\f
1640/***********************************************************************
1641 Cons Allocation
1642 ***********************************************************************/
1643
1644/* We store cons cells inside of cons_blocks, allocating a new
1645 cons_block with malloc whenever necessary. Cons cells reclaimed by
1646 GC are put on a free list to be reallocated before allocating
1647 any new cons cells from the latest cons_block.
1648
1649 Each cons_block is just under 1020 bytes long,
1650 since malloc really allocates in units of powers of two
1651 and uses 4 bytes for its own overhead. */
1652
1653#define CONS_BLOCK_SIZE \
1654 ((1020 - sizeof (struct cons_block *)) / sizeof (struct Lisp_Cons))
1655
1656struct cons_block
1657{
1658 struct cons_block *next;
1659 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
1660};
1661
34400008
GM
1662/* Current cons_block. */
1663
2e471eb5 1664struct cons_block *cons_block;
34400008
GM
1665
1666/* Index of first unused Lisp_Cons in the current block. */
1667
2e471eb5
GM
1668int cons_block_index;
1669
34400008
GM
1670/* Free-list of Lisp_Cons structures. */
1671
2e471eb5
GM
1672struct Lisp_Cons *cons_free_list;
1673
1674/* Total number of cons blocks now in use. */
1675
1676int n_cons_blocks;
1677
34400008
GM
1678
1679/* Initialize cons allocation. */
1680
2e471eb5
GM
1681void
1682init_cons ()
1683{
34400008
GM
1684 cons_block = (struct cons_block *) lisp_malloc (sizeof *cons_block,
1685 MEM_TYPE_CONS);
2e471eb5
GM
1686 cons_block->next = 0;
1687 bzero ((char *) cons_block->conses, sizeof cons_block->conses);
1688 cons_block_index = 0;
1689 cons_free_list = 0;
1690 n_cons_blocks = 1;
1691}
1692
34400008
GM
1693
1694/* Explicitly free a cons cell by putting it on the free-list. */
2e471eb5
GM
1695
1696void
1697free_cons (ptr)
1698 struct Lisp_Cons *ptr;
1699{
1700 *(struct Lisp_Cons **)&ptr->cdr = cons_free_list;
34400008
GM
1701#if GC_MARK_STACK
1702 ptr->car = Vdead;
1703#endif
2e471eb5
GM
1704 cons_free_list = ptr;
1705}
1706
34400008 1707
2e471eb5
GM
1708DEFUN ("cons", Fcons, Scons, 2, 2, 0,
1709 "Create a new cons, give it CAR and CDR as components, and return it.")
1710 (car, cdr)
1711 Lisp_Object car, cdr;
1712{
1713 register Lisp_Object val;
1714
1715 if (cons_free_list)
1716 {
1717 /* We use the cdr for chaining the free list
1718 so that we won't use the same field that has the mark bit. */
1719 XSETCONS (val, cons_free_list);
1720 cons_free_list = *(struct Lisp_Cons **)&cons_free_list->cdr;
1721 }
1722 else
1723 {
1724 if (cons_block_index == CONS_BLOCK_SIZE)
1725 {
1726 register struct cons_block *new;
34400008
GM
1727 new = (struct cons_block *) lisp_malloc (sizeof *new,
1728 MEM_TYPE_CONS);
2e471eb5
GM
1729 VALIDATE_LISP_STORAGE (new, sizeof *new);
1730 new->next = cons_block;
1731 cons_block = new;
1732 cons_block_index = 0;
1733 n_cons_blocks++;
1734 }
1735 XSETCONS (val, &cons_block->conses[cons_block_index++]);
1736 }
1737
1738 XCAR (val) = car;
1739 XCDR (val) = cdr;
1740 consing_since_gc += sizeof (struct Lisp_Cons);
1741 cons_cells_consed++;
1742 return val;
1743}
1744
34400008 1745
2e471eb5
GM
1746/* Make a list of 2, 3, 4 or 5 specified objects. */
1747
1748Lisp_Object
1749list2 (arg1, arg2)
1750 Lisp_Object arg1, arg2;
1751{
1752 return Fcons (arg1, Fcons (arg2, Qnil));
1753}
1754
34400008 1755
2e471eb5
GM
1756Lisp_Object
1757list3 (arg1, arg2, arg3)
1758 Lisp_Object arg1, arg2, arg3;
1759{
1760 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
1761}
1762
34400008 1763
2e471eb5
GM
1764Lisp_Object
1765list4 (arg1, arg2, arg3, arg4)
1766 Lisp_Object arg1, arg2, arg3, arg4;
1767{
1768 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
1769}
1770
34400008 1771
2e471eb5
GM
1772Lisp_Object
1773list5 (arg1, arg2, arg3, arg4, arg5)
1774 Lisp_Object arg1, arg2, arg3, arg4, arg5;
1775{
1776 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
1777 Fcons (arg5, Qnil)))));
1778}
1779
34400008 1780
2e471eb5
GM
1781DEFUN ("list", Flist, Slist, 0, MANY, 0,
1782 "Return a newly created list with specified arguments as elements.\n\
1783Any number of arguments, even zero arguments, are allowed.")
1784 (nargs, args)
1785 int nargs;
1786 register Lisp_Object *args;
1787{
1788 register Lisp_Object val;
1789 val = Qnil;
1790
1791 while (nargs > 0)
1792 {
1793 nargs--;
1794 val = Fcons (args[nargs], val);
1795 }
1796 return val;
1797}
1798
34400008 1799
2e471eb5
GM
1800DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
1801 "Return a newly created list of length LENGTH, with each element being INIT.")
1802 (length, init)
1803 register Lisp_Object length, init;
1804{
1805 register Lisp_Object val;
1806 register int size;
1807
1808 CHECK_NATNUM (length, 0);
1809 size = XFASTINT (length);
1810
1811 val = Qnil;
7146af97
JB
1812 while (size-- > 0)
1813 val = Fcons (init, val);
1814 return val;
1815}
2e471eb5
GM
1816
1817
7146af97 1818\f
2e471eb5
GM
1819/***********************************************************************
1820 Vector Allocation
1821 ***********************************************************************/
7146af97 1822
34400008
GM
1823/* Singly-linked list of all vectors. */
1824
7146af97
JB
1825struct Lisp_Vector *all_vectors;
1826
2e471eb5
GM
1827/* Total number of vector-like objects now in use. */
1828
c8099634
RS
1829int n_vectors;
1830
34400008
GM
1831
1832/* Value is a pointer to a newly allocated Lisp_Vector structure
1833 with room for LEN Lisp_Objects. */
1834
1825c68d
KH
1835struct Lisp_Vector *
1836allocate_vectorlike (len)
1837 EMACS_INT len;
1838{
1839 struct Lisp_Vector *p;
675d5130 1840 size_t nbytes;
1825c68d 1841
d1658221 1842#ifdef DOUG_LEA_MALLOC
f8608968
GM
1843 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1844 because mapped region contents are not preserved in
1845 a dumped Emacs. */
d1658221
RS
1846 mallopt (M_MMAP_MAX, 0);
1847#endif
34400008
GM
1848
1849 nbytes = sizeof *p + (len - 1) * sizeof p->contents[0];
1850 p = (struct Lisp_Vector *) lisp_malloc (nbytes, MEM_TYPE_VECTOR);
1851
d1658221 1852#ifdef DOUG_LEA_MALLOC
34400008 1853 /* Back to a reasonable maximum of mmap'ed areas. */
81d492d5 1854 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
d1658221 1855#endif
34400008 1856
1825c68d 1857 VALIDATE_LISP_STORAGE (p, 0);
34400008 1858 consing_since_gc += nbytes;
310ea200 1859 vector_cells_consed += len;
1825c68d
KH
1860
1861 p->next = all_vectors;
1862 all_vectors = p;
34400008 1863 ++n_vectors;
1825c68d
KH
1864 return p;
1865}
1866
34400008 1867
7146af97
JB
1868DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
1869 "Return a newly created vector of length LENGTH, with each element being INIT.\n\
1870See also the function `vector'.")
1871 (length, init)
1872 register Lisp_Object length, init;
1873{
1825c68d
KH
1874 Lisp_Object vector;
1875 register EMACS_INT sizei;
1876 register int index;
7146af97
JB
1877 register struct Lisp_Vector *p;
1878
c9dad5ed
KH
1879 CHECK_NATNUM (length, 0);
1880 sizei = XFASTINT (length);
7146af97 1881
1825c68d 1882 p = allocate_vectorlike (sizei);
7146af97 1883 p->size = sizei;
7146af97
JB
1884 for (index = 0; index < sizei; index++)
1885 p->contents[index] = init;
1886
1825c68d 1887 XSETVECTOR (vector, p);
7146af97
JB
1888 return vector;
1889}
1890
34400008 1891
a59de17b 1892DEFUN ("make-char-table", Fmake_char_table, Smake_char_table, 1, 2, 0,
c58b2b4d 1893 "Return a newly created char-table, with purpose PURPOSE.\n\
7b07587b 1894Each element is initialized to INIT, which defaults to nil.\n\
d7cd5d4f 1895PURPOSE should be a symbol which has a `char-table-extra-slots' property.\n\
a59de17b
RS
1896The property's value should be an integer between 0 and 10.")
1897 (purpose, init)
1898 register Lisp_Object purpose, init;
7b07587b
RS
1899{
1900 Lisp_Object vector;
a59de17b
RS
1901 Lisp_Object n;
1902 CHECK_SYMBOL (purpose, 1);
0551bde3 1903 n = Fget (purpose, Qchar_table_extra_slots);
a59de17b 1904 CHECK_NUMBER (n, 0);
7b07587b
RS
1905 if (XINT (n) < 0 || XINT (n) > 10)
1906 args_out_of_range (n, Qnil);
1907 /* Add 2 to the size for the defalt and parent slots. */
1908 vector = Fmake_vector (make_number (CHAR_TABLE_STANDARD_SLOTS + XINT (n)),
1909 init);
0551bde3 1910 XCHAR_TABLE (vector)->top = Qt;
c96a008c 1911 XCHAR_TABLE (vector)->parent = Qnil;
a59de17b 1912 XCHAR_TABLE (vector)->purpose = purpose;
7b07587b
RS
1913 XSETCHAR_TABLE (vector, XCHAR_TABLE (vector));
1914 return vector;
1915}
1916
34400008 1917
0551bde3
KH
1918/* Return a newly created sub char table with default value DEFALT.
1919 Since a sub char table does not appear as a top level Emacs Lisp
1920 object, we don't need a Lisp interface to make it. */
1921
1922Lisp_Object
1923make_sub_char_table (defalt)
1924 Lisp_Object defalt;
1925{
1926 Lisp_Object vector
1927 = Fmake_vector (make_number (SUB_CHAR_TABLE_STANDARD_SLOTS), Qnil);
1928 XCHAR_TABLE (vector)->top = Qnil;
1929 XCHAR_TABLE (vector)->defalt = defalt;
1930 XSETCHAR_TABLE (vector, XCHAR_TABLE (vector));
1931 return vector;
1932}
1933
34400008 1934
7146af97
JB
1935DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
1936 "Return a newly created vector with specified arguments as elements.\n\
1937Any number of arguments, even zero arguments, are allowed.")
1938 (nargs, args)
1939 register int nargs;
1940 Lisp_Object *args;
1941{
1942 register Lisp_Object len, val;
1943 register int index;
1944 register struct Lisp_Vector *p;
1945
67ba9986 1946 XSETFASTINT (len, nargs);
7146af97
JB
1947 val = Fmake_vector (len, Qnil);
1948 p = XVECTOR (val);
1949 for (index = 0; index < nargs; index++)
1950 p->contents[index] = args[index];
1951 return val;
1952}
1953
34400008 1954
7146af97
JB
1955DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
1956 "Create a byte-code object with specified arguments as elements.\n\
1957The arguments should be the arglist, bytecode-string, constant vector,\n\
1958stack size, (optional) doc string, and (optional) interactive spec.\n\
1959The first four arguments are required; at most six have any\n\
1960significance.")
1961 (nargs, args)
1962 register int nargs;
1963 Lisp_Object *args;
1964{
1965 register Lisp_Object len, val;
1966 register int index;
1967 register struct Lisp_Vector *p;
1968
67ba9986 1969 XSETFASTINT (len, nargs);
265a9e55 1970 if (!NILP (Vpurify_flag))
5a053ea9 1971 val = make_pure_vector ((EMACS_INT) nargs);
7146af97
JB
1972 else
1973 val = Fmake_vector (len, Qnil);
9eac9d59
KH
1974
1975 if (STRINGP (args[1]) && STRING_MULTIBYTE (args[1]))
1976 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
1977 earlier because they produced a raw 8-bit string for byte-code
1978 and now such a byte-code string is loaded as multibyte while
1979 raw 8-bit characters converted to multibyte form. Thus, now we
1980 must convert them back to the original unibyte form. */
1981 args[1] = Fstring_as_unibyte (args[1]);
1982
7146af97
JB
1983 p = XVECTOR (val);
1984 for (index = 0; index < nargs; index++)
1985 {
265a9e55 1986 if (!NILP (Vpurify_flag))
7146af97
JB
1987 args[index] = Fpurecopy (args[index]);
1988 p->contents[index] = args[index];
1989 }
50aee051 1990 XSETCOMPILED (val, p);
7146af97
JB
1991 return val;
1992}
2e471eb5 1993
34400008 1994
7146af97 1995\f
2e471eb5
GM
1996/***********************************************************************
1997 Symbol Allocation
1998 ***********************************************************************/
7146af97 1999
2e471eb5
GM
2000/* Each symbol_block is just under 1020 bytes long, since malloc
2001 really allocates in units of powers of two and uses 4 bytes for its
2002 own overhead. */
7146af97
JB
2003
2004#define SYMBOL_BLOCK_SIZE \
2005 ((1020 - sizeof (struct symbol_block *)) / sizeof (struct Lisp_Symbol))
2006
2007struct symbol_block
2e471eb5
GM
2008{
2009 struct symbol_block *next;
2010 struct Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
2011};
7146af97 2012
34400008
GM
2013/* Current symbol block and index of first unused Lisp_Symbol
2014 structure in it. */
2015
7146af97
JB
2016struct symbol_block *symbol_block;
2017int symbol_block_index;
2018
34400008
GM
2019/* List of free symbols. */
2020
7146af97
JB
2021struct Lisp_Symbol *symbol_free_list;
2022
c8099634 2023/* Total number of symbol blocks now in use. */
2e471eb5 2024
c8099634
RS
2025int n_symbol_blocks;
2026
34400008
GM
2027
2028/* Initialize symbol allocation. */
2029
7146af97
JB
2030void
2031init_symbol ()
2032{
34400008
GM
2033 symbol_block = (struct symbol_block *) lisp_malloc (sizeof *symbol_block,
2034 MEM_TYPE_SYMBOL);
7146af97 2035 symbol_block->next = 0;
290c8f1e 2036 bzero ((char *) symbol_block->symbols, sizeof symbol_block->symbols);
7146af97
JB
2037 symbol_block_index = 0;
2038 symbol_free_list = 0;
c8099634 2039 n_symbol_blocks = 1;
7146af97
JB
2040}
2041
34400008 2042
7146af97
JB
2043DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
2044 "Return a newly allocated uninterned symbol whose name is NAME.\n\
2045Its value and function definition are void, and its property list is nil.")
54ee42dd
EN
2046 (name)
2047 Lisp_Object name;
7146af97
JB
2048{
2049 register Lisp_Object val;
2050 register struct Lisp_Symbol *p;
2051
54ee42dd 2052 CHECK_STRING (name, 0);
7146af97
JB
2053
2054 if (symbol_free_list)
2055 {
45d12a89 2056 XSETSYMBOL (val, symbol_free_list);
85481507 2057 symbol_free_list = *(struct Lisp_Symbol **)&symbol_free_list->value;
7146af97
JB
2058 }
2059 else
2060 {
2061 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
2062 {
3c06d205 2063 struct symbol_block *new;
34400008
GM
2064 new = (struct symbol_block *) lisp_malloc (sizeof *new,
2065 MEM_TYPE_SYMBOL);
7146af97
JB
2066 VALIDATE_LISP_STORAGE (new, sizeof *new);
2067 new->next = symbol_block;
2068 symbol_block = new;
2069 symbol_block_index = 0;
c8099634 2070 n_symbol_blocks++;
7146af97 2071 }
45d12a89 2072 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index++]);
7146af97 2073 }
2e471eb5 2074
7146af97 2075 p = XSYMBOL (val);
636b7260 2076 p->name = XSTRING (name);
47d5b31e 2077 p->obarray = Qnil;
7146af97 2078 p->plist = Qnil;
2e471eb5
GM
2079 p->value = Qunbound;
2080 p->function = Qunbound;
2081 p->next = 0;
2082 consing_since_gc += sizeof (struct Lisp_Symbol);
2083 symbols_consed++;
7146af97
JB
2084 return val;
2085}
2086
3f25e183 2087
2e471eb5
GM
2088\f
2089/***********************************************************************
34400008 2090 Marker (Misc) Allocation
2e471eb5 2091 ***********************************************************************/
3f25e183 2092
2e471eb5
GM
2093/* Allocation of markers and other objects that share that structure.
2094 Works like allocation of conses. */
c0696668 2095
2e471eb5
GM
2096#define MARKER_BLOCK_SIZE \
2097 ((1020 - sizeof (struct marker_block *)) / sizeof (union Lisp_Misc))
2098
2099struct marker_block
c0696668 2100{
2e471eb5
GM
2101 struct marker_block *next;
2102 union Lisp_Misc markers[MARKER_BLOCK_SIZE];
2103};
c0696668 2104
2e471eb5
GM
2105struct marker_block *marker_block;
2106int marker_block_index;
c0696668 2107
2e471eb5 2108union Lisp_Misc *marker_free_list;
c0696668 2109
2e471eb5 2110/* Total number of marker blocks now in use. */
3f25e183 2111
2e471eb5
GM
2112int n_marker_blocks;
2113
2114void
2115init_marker ()
3f25e183 2116{
34400008
GM
2117 marker_block = (struct marker_block *) lisp_malloc (sizeof *marker_block,
2118 MEM_TYPE_MISC);
2e471eb5
GM
2119 marker_block->next = 0;
2120 bzero ((char *) marker_block->markers, sizeof marker_block->markers);
2121 marker_block_index = 0;
2122 marker_free_list = 0;
2123 n_marker_blocks = 1;
3f25e183
RS
2124}
2125
2e471eb5
GM
2126/* Return a newly allocated Lisp_Misc object, with no substructure. */
2127
3f25e183 2128Lisp_Object
2e471eb5 2129allocate_misc ()
7146af97 2130{
2e471eb5 2131 Lisp_Object val;
7146af97 2132
2e471eb5 2133 if (marker_free_list)
7146af97 2134 {
2e471eb5
GM
2135 XSETMISC (val, marker_free_list);
2136 marker_free_list = marker_free_list->u_free.chain;
7146af97
JB
2137 }
2138 else
7146af97 2139 {
2e471eb5
GM
2140 if (marker_block_index == MARKER_BLOCK_SIZE)
2141 {
2142 struct marker_block *new;
34400008
GM
2143 new = (struct marker_block *) lisp_malloc (sizeof *new,
2144 MEM_TYPE_MISC);
2e471eb5
GM
2145 VALIDATE_LISP_STORAGE (new, sizeof *new);
2146 new->next = marker_block;
2147 marker_block = new;
2148 marker_block_index = 0;
2149 n_marker_blocks++;
2150 }
2151 XSETMISC (val, &marker_block->markers[marker_block_index++]);
7146af97 2152 }
2e471eb5
GM
2153
2154 consing_since_gc += sizeof (union Lisp_Misc);
2155 misc_objects_consed++;
2156 return val;
2157}
2158
2159DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
2160 "Return a newly allocated marker which does not point at any place.")
2161 ()
2162{
2163 register Lisp_Object val;
2164 register struct Lisp_Marker *p;
7146af97 2165
2e471eb5
GM
2166 val = allocate_misc ();
2167 XMISCTYPE (val) = Lisp_Misc_Marker;
2168 p = XMARKER (val);
2169 p->buffer = 0;
2170 p->bytepos = 0;
2171 p->charpos = 0;
2172 p->chain = Qnil;
2173 p->insertion_type = 0;
7146af97
JB
2174 return val;
2175}
2e471eb5
GM
2176
2177/* Put MARKER back on the free list after using it temporarily. */
2178
2179void
2180free_marker (marker)
2181 Lisp_Object marker;
2182{
2183 unchain_marker (marker);
2184
2185 XMISC (marker)->u_marker.type = Lisp_Misc_Free;
2186 XMISC (marker)->u_free.chain = marker_free_list;
2187 marker_free_list = XMISC (marker);
2188
2189 total_free_markers++;
2190}
2191
c0696668 2192\f
7146af97 2193/* Return a newly created vector or string with specified arguments as
736471d1
RS
2194 elements. If all the arguments are characters that can fit
2195 in a string of events, make a string; otherwise, make a vector.
2196
2197 Any number of arguments, even zero arguments, are allowed. */
7146af97
JB
2198
2199Lisp_Object
736471d1 2200make_event_array (nargs, args)
7146af97
JB
2201 register int nargs;
2202 Lisp_Object *args;
2203{
2204 int i;
2205
2206 for (i = 0; i < nargs; i++)
736471d1 2207 /* The things that fit in a string
c9ca4659
RS
2208 are characters that are in 0...127,
2209 after discarding the meta bit and all the bits above it. */
e687453f 2210 if (!INTEGERP (args[i])
c9ca4659 2211 || (XUINT (args[i]) & ~(-CHAR_META)) >= 0200)
7146af97
JB
2212 return Fvector (nargs, args);
2213
2214 /* Since the loop exited, we know that all the things in it are
2215 characters, so we can make a string. */
2216 {
c13ccad2 2217 Lisp_Object result;
7146af97 2218
50aee051 2219 result = Fmake_string (make_number (nargs), make_number (0));
7146af97 2220 for (i = 0; i < nargs; i++)
736471d1
RS
2221 {
2222 XSTRING (result)->data[i] = XINT (args[i]);
2223 /* Move the meta bit to the right place for a string char. */
2224 if (XINT (args[i]) & CHAR_META)
2225 XSTRING (result)->data[i] |= 0x80;
2226 }
7146af97
JB
2227
2228 return result;
2229 }
2230}
2e471eb5
GM
2231
2232
7146af97 2233\f
34400008
GM
2234/************************************************************************
2235 C Stack Marking
2236 ************************************************************************/
2237
2238#if GC_MARK_STACK
2239
2240
2241/* Base address of stack. Set in main. */
2242
2243Lisp_Object *stack_base;
2244
2245/* A node in the red-black tree describing allocated memory containing
2246 Lisp data. Each such block is recorded with its start and end
2247 address when it is allocated, and removed from the tree when it
2248 is freed.
2249
2250 A red-black tree is a balanced binary tree with the following
2251 properties:
2252
2253 1. Every node is either red or black.
2254 2. Every leaf is black.
2255 3. If a node is red, then both of its children are black.
2256 4. Every simple path from a node to a descendant leaf contains
2257 the same number of black nodes.
2258 5. The root is always black.
2259
2260 When nodes are inserted into the tree, or deleted from the tree,
2261 the tree is "fixed" so that these properties are always true.
2262
2263 A red-black tree with N internal nodes has height at most 2
2264 log(N+1). Searches, insertions and deletions are done in O(log N).
2265 Please see a text book about data structures for a detailed
2266 description of red-black trees. Any book worth its salt should
2267 describe them. */
2268
2269struct mem_node
2270{
2271 struct mem_node *left, *right, *parent;
2272
2273 /* Start and end of allocated region. */
2274 void *start, *end;
2275
2276 /* Node color. */
2277 enum {MEM_BLACK, MEM_RED} color;
2278
2279 /* Memory type. */
2280 enum mem_type type;
2281};
2282
2283/* Root of the tree describing allocated Lisp memory. */
2284
2285static struct mem_node *mem_root;
2286
2287/* Sentinel node of the tree. */
2288
2289static struct mem_node mem_z;
2290#define MEM_NIL &mem_z
2291
2292
2293/* Initialize this part of alloc.c. */
2294
2295static void
2296mem_init ()
2297{
2298 mem_z.left = mem_z.right = MEM_NIL;
2299 mem_z.parent = NULL;
2300 mem_z.color = MEM_BLACK;
2301 mem_z.start = mem_z.end = NULL;
2302 mem_root = MEM_NIL;
2303}
2304
2305
2306/* Value is a pointer to the mem_node containing START. Value is
2307 MEM_NIL if there is no node in the tree containing START. */
2308
2309static INLINE struct mem_node *
2310mem_find (start)
2311 void *start;
2312{
2313 struct mem_node *p;
2314
2315 /* Make the search always successful to speed up the loop below. */
2316 mem_z.start = start;
2317 mem_z.end = (char *) start + 1;
2318
2319 p = mem_root;
2320 while (start < p->start || start >= p->end)
2321 p = start < p->start ? p->left : p->right;
2322 return p;
2323}
2324
2325
2326/* Insert a new node into the tree for a block of memory with start
2327 address START, end address END, and type TYPE. Value is a
2328 pointer to the node that was inserted. */
2329
2330static struct mem_node *
2331mem_insert (start, end, type)
2332 void *start, *end;
2333 enum mem_type type;
2334{
2335 struct mem_node *c, *parent, *x;
2336
2337 /* See where in the tree a node for START belongs. In this
2338 particular application, it shouldn't happen that a node is already
2339 present. For debugging purposes, let's check that. */
2340 c = mem_root;
2341 parent = NULL;
2342
2343#if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
2344
2345 while (c != MEM_NIL)
2346 {
2347 if (start >= c->start && start < c->end)
2348 abort ();
2349 parent = c;
2350 c = start < c->start ? c->left : c->right;
2351 }
2352
2353#else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
2354
2355 while (c != MEM_NIL)
2356 {
2357 parent = c;
2358 c = start < c->start ? c->left : c->right;
2359 }
2360
2361#endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
2362
2363 /* Create a new node. */
2364 x = (struct mem_node *) xmalloc (sizeof *x);
2365 x->start = start;
2366 x->end = end;
2367 x->type = type;
2368 x->parent = parent;
2369 x->left = x->right = MEM_NIL;
2370 x->color = MEM_RED;
2371
2372 /* Insert it as child of PARENT or install it as root. */
2373 if (parent)
2374 {
2375 if (start < parent->start)
2376 parent->left = x;
2377 else
2378 parent->right = x;
2379 }
2380 else
2381 mem_root = x;
2382
2383 /* Re-establish red-black tree properties. */
2384 mem_insert_fixup (x);
2385 return x;
2386}
2387
2388
2389/* Re-establish the red-black properties of the tree, and thereby
2390 balance the tree, after node X has been inserted; X is always red. */
2391
2392static void
2393mem_insert_fixup (x)
2394 struct mem_node *x;
2395{
2396 while (x != mem_root && x->parent->color == MEM_RED)
2397 {
2398 /* X is red and its parent is red. This is a violation of
2399 red-black tree property #3. */
2400
2401 if (x->parent == x->parent->parent->left)
2402 {
2403 /* We're on the left side of our grandparent, and Y is our
2404 "uncle". */
2405 struct mem_node *y = x->parent->parent->right;
2406
2407 if (y->color == MEM_RED)
2408 {
2409 /* Uncle and parent are red but should be black because
2410 X is red. Change the colors accordingly and proceed
2411 with the grandparent. */
2412 x->parent->color = MEM_BLACK;
2413 y->color = MEM_BLACK;
2414 x->parent->parent->color = MEM_RED;
2415 x = x->parent->parent;
2416 }
2417 else
2418 {
2419 /* Parent and uncle have different colors; parent is
2420 red, uncle is black. */
2421 if (x == x->parent->right)
2422 {
2423 x = x->parent;
2424 mem_rotate_left (x);
2425 }
2426
2427 x->parent->color = MEM_BLACK;
2428 x->parent->parent->color = MEM_RED;
2429 mem_rotate_right (x->parent->parent);
2430 }
2431 }
2432 else
2433 {
2434 /* This is the symmetrical case of above. */
2435 struct mem_node *y = x->parent->parent->left;
2436
2437 if (y->color == MEM_RED)
2438 {
2439 x->parent->color = MEM_BLACK;
2440 y->color = MEM_BLACK;
2441 x->parent->parent->color = MEM_RED;
2442 x = x->parent->parent;
2443 }
2444 else
2445 {
2446 if (x == x->parent->left)
2447 {
2448 x = x->parent;
2449 mem_rotate_right (x);
2450 }
2451
2452 x->parent->color = MEM_BLACK;
2453 x->parent->parent->color = MEM_RED;
2454 mem_rotate_left (x->parent->parent);
2455 }
2456 }
2457 }
2458
2459 /* The root may have been changed to red due to the algorithm. Set
2460 it to black so that property #5 is satisfied. */
2461 mem_root->color = MEM_BLACK;
2462}
2463
2464
2465/* (x) (y)
2466 / \ / \
2467 a (y) ===> (x) c
2468 / \ / \
2469 b c a b */
2470
2471static void
2472mem_rotate_left (x)
2473 struct mem_node *x;
2474{
2475 struct mem_node *y;
2476
2477 /* Turn y's left sub-tree into x's right sub-tree. */
2478 y = x->right;
2479 x->right = y->left;
2480 if (y->left != MEM_NIL)
2481 y->left->parent = x;
2482
2483 /* Y's parent was x's parent. */
2484 if (y != MEM_NIL)
2485 y->parent = x->parent;
2486
2487 /* Get the parent to point to y instead of x. */
2488 if (x->parent)
2489 {
2490 if (x == x->parent->left)
2491 x->parent->left = y;
2492 else
2493 x->parent->right = y;
2494 }
2495 else
2496 mem_root = y;
2497
2498 /* Put x on y's left. */
2499 y->left = x;
2500 if (x != MEM_NIL)
2501 x->parent = y;
2502}
2503
2504
2505/* (x) (Y)
2506 / \ / \
2507 (y) c ===> a (x)
2508 / \ / \
2509 a b b c */
2510
2511static void
2512mem_rotate_right (x)
2513 struct mem_node *x;
2514{
2515 struct mem_node *y = x->left;
2516
2517 x->left = y->right;
2518 if (y->right != MEM_NIL)
2519 y->right->parent = x;
2520
2521 if (y != MEM_NIL)
2522 y->parent = x->parent;
2523 if (x->parent)
2524 {
2525 if (x == x->parent->right)
2526 x->parent->right = y;
2527 else
2528 x->parent->left = y;
2529 }
2530 else
2531 mem_root = y;
2532
2533 y->right = x;
2534 if (x != MEM_NIL)
2535 x->parent = y;
2536}
2537
2538
2539/* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
2540
2541static void
2542mem_delete (z)
2543 struct mem_node *z;
2544{
2545 struct mem_node *x, *y;
2546
2547 if (!z || z == MEM_NIL)
2548 return;
2549
2550 if (z->left == MEM_NIL || z->right == MEM_NIL)
2551 y = z;
2552 else
2553 {
2554 y = z->right;
2555 while (y->left != MEM_NIL)
2556 y = y->left;
2557 }
2558
2559 if (y->left != MEM_NIL)
2560 x = y->left;
2561 else
2562 x = y->right;
2563
2564 x->parent = y->parent;
2565 if (y->parent)
2566 {
2567 if (y == y->parent->left)
2568 y->parent->left = x;
2569 else
2570 y->parent->right = x;
2571 }
2572 else
2573 mem_root = x;
2574
2575 if (y != z)
2576 {
2577 z->start = y->start;
2578 z->end = y->end;
2579 z->type = y->type;
2580 }
2581
2582 if (y->color == MEM_BLACK)
2583 mem_delete_fixup (x);
2584 xfree (y);
2585}
2586
2587
2588/* Re-establish the red-black properties of the tree, after a
2589 deletion. */
2590
2591static void
2592mem_delete_fixup (x)
2593 struct mem_node *x;
2594{
2595 while (x != mem_root && x->color == MEM_BLACK)
2596 {
2597 if (x == x->parent->left)
2598 {
2599 struct mem_node *w = x->parent->right;
2600
2601 if (w->color == MEM_RED)
2602 {
2603 w->color = MEM_BLACK;
2604 x->parent->color = MEM_RED;
2605 mem_rotate_left (x->parent);
2606 w = x->parent->right;
2607 }
2608
2609 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
2610 {
2611 w->color = MEM_RED;
2612 x = x->parent;
2613 }
2614 else
2615 {
2616 if (w->right->color == MEM_BLACK)
2617 {
2618 w->left->color = MEM_BLACK;
2619 w->color = MEM_RED;
2620 mem_rotate_right (w);
2621 w = x->parent->right;
2622 }
2623 w->color = x->parent->color;
2624 x->parent->color = MEM_BLACK;
2625 w->right->color = MEM_BLACK;
2626 mem_rotate_left (x->parent);
2627 x = mem_root;
2628 }
2629 }
2630 else
2631 {
2632 struct mem_node *w = x->parent->left;
2633
2634 if (w->color == MEM_RED)
2635 {
2636 w->color = MEM_BLACK;
2637 x->parent->color = MEM_RED;
2638 mem_rotate_right (x->parent);
2639 w = x->parent->left;
2640 }
2641
2642 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
2643 {
2644 w->color = MEM_RED;
2645 x = x->parent;
2646 }
2647 else
2648 {
2649 if (w->left->color == MEM_BLACK)
2650 {
2651 w->right->color = MEM_BLACK;
2652 w->color = MEM_RED;
2653 mem_rotate_left (w);
2654 w = x->parent->left;
2655 }
2656
2657 w->color = x->parent->color;
2658 x->parent->color = MEM_BLACK;
2659 w->left->color = MEM_BLACK;
2660 mem_rotate_right (x->parent);
2661 x = mem_root;
2662 }
2663 }
2664 }
2665
2666 x->color = MEM_BLACK;
2667}
2668
2669
2670/* Value is non-zero if P is a pointer to a live Lisp string on
2671 the heap. M is a pointer to the mem_block for P. */
2672
2673static INLINE int
2674live_string_p (m, p)
2675 struct mem_node *m;
2676 void *p;
2677{
2678 if (m->type == MEM_TYPE_STRING)
2679 {
2680 struct string_block *b = (struct string_block *) m->start;
2681 int offset = (char *) p - (char *) &b->strings[0];
2682
2683 /* P must point to the start of a Lisp_String structure, and it
2684 must not be on the free-list. */
2685 return (offset % sizeof b->strings[0] == 0
2686 && ((struct Lisp_String *) p)->data != NULL);
2687 }
2688 else
2689 return 0;
2690}
2691
2692
2693/* Value is non-zero if P is a pointer to a live Lisp cons on
2694 the heap. M is a pointer to the mem_block for P. */
2695
2696static INLINE int
2697live_cons_p (m, p)
2698 struct mem_node *m;
2699 void *p;
2700{
2701 if (m->type == MEM_TYPE_CONS)
2702 {
2703 struct cons_block *b = (struct cons_block *) m->start;
2704 int offset = (char *) p - (char *) &b->conses[0];
2705
2706 /* P must point to the start of a Lisp_Cons, not be
2707 one of the unused cells in the current cons block,
2708 and not be on the free-list. */
2709 return (offset % sizeof b->conses[0] == 0
2710 && (b != cons_block
2711 || offset / sizeof b->conses[0] < cons_block_index)
2712 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
2713 }
2714 else
2715 return 0;
2716}
2717
2718
2719/* Value is non-zero if P is a pointer to a live Lisp symbol on
2720 the heap. M is a pointer to the mem_block for P. */
2721
2722static INLINE int
2723live_symbol_p (m, p)
2724 struct mem_node *m;
2725 void *p;
2726{
2727 if (m->type == MEM_TYPE_SYMBOL)
2728 {
2729 struct symbol_block *b = (struct symbol_block *) m->start;
2730 int offset = (char *) p - (char *) &b->symbols[0];
2731
2732 /* P must point to the start of a Lisp_Symbol, not be
2733 one of the unused cells in the current symbol block,
2734 and not be on the free-list. */
2735 return (offset % sizeof b->symbols[0] == 0
2736 && (b != symbol_block
2737 || offset / sizeof b->symbols[0] < symbol_block_index)
2738 && !EQ (((struct Lisp_Symbol *) p)->function, Vdead));
2739 }
2740 else
2741 return 0;
2742}
2743
2744
2745/* Value is non-zero if P is a pointer to a live Lisp float on
2746 the heap. M is a pointer to the mem_block for P. */
2747
2748static INLINE int
2749live_float_p (m, p)
2750 struct mem_node *m;
2751 void *p;
2752{
2753 if (m->type == MEM_TYPE_FLOAT)
2754 {
2755 struct float_block *b = (struct float_block *) m->start;
2756 int offset = (char *) p - (char *) &b->floats[0];
2757
2758 /* P must point to the start of a Lisp_Float, not be
2759 one of the unused cells in the current float block,
2760 and not be on the free-list. */
2761 return (offset % sizeof b->floats[0] == 0
2762 && (b != float_block
2763 || offset / sizeof b->floats[0] < float_block_index)
2764 && !EQ (((struct Lisp_Float *) p)->type, Vdead));
2765 }
2766 else
2767 return 0;
2768}
2769
2770
2771/* Value is non-zero if P is a pointer to a live Lisp Misc on
2772 the heap. M is a pointer to the mem_block for P. */
2773
2774static INLINE int
2775live_misc_p (m, p)
2776 struct mem_node *m;
2777 void *p;
2778{
2779 if (m->type == MEM_TYPE_MISC)
2780 {
2781 struct marker_block *b = (struct marker_block *) m->start;
2782 int offset = (char *) p - (char *) &b->markers[0];
2783
2784 /* P must point to the start of a Lisp_Misc, not be
2785 one of the unused cells in the current misc block,
2786 and not be on the free-list. */
2787 return (offset % sizeof b->markers[0] == 0
2788 && (b != marker_block
2789 || offset / sizeof b->markers[0] < marker_block_index)
2790 && ((union Lisp_Misc *) p)->u_marker.type != Lisp_Misc_Free);
2791 }
2792 else
2793 return 0;
2794}
2795
2796
2797/* Value is non-zero if P is a pointer to a live vector-like object.
2798 M is a pointer to the mem_block for P. */
2799
2800static INLINE int
2801live_vector_p (m, p)
2802 struct mem_node *m;
2803 void *p;
2804{
2805 return m->type == MEM_TYPE_VECTOR && p == m->start;
2806}
2807
2808
2809/* Value is non-zero of P is a pointer to a live buffer. M is a
2810 pointer to the mem_block for P. */
2811
2812static INLINE int
2813live_buffer_p (m, p)
2814 struct mem_node *m;
2815 void *p;
2816{
2817 /* P must point to the start of the block, and the buffer
2818 must not have been killed. */
2819 return (m->type == MEM_TYPE_BUFFER
2820 && p == m->start
2821 && !NILP (((struct buffer *) p)->name));
2822}
2823
2824
2825#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
2826
2827/* Array of objects that are kept alive because the C stack contains
2828 a pattern that looks like a reference to them . */
2829
2830#define MAX_ZOMBIES 10
2831static Lisp_Object zombies[MAX_ZOMBIES];
2832
2833/* Number of zombie objects. */
2834
2835static int nzombies;
2836
2837/* Number of garbage collections. */
2838
2839static int ngcs;
2840
2841/* Average percentage of zombies per collection. */
2842
2843static double avg_zombies;
2844
2845/* Max. number of live and zombie objects. */
2846
2847static int max_live, max_zombies;
2848
2849/* Average number of live objects per GC. */
2850
2851static double avg_live;
2852
2853DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
2854 "Show information about live and zombie objects.")
2855 ()
2856{
2857 Lisp_Object args[7];
2858 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d");
2859 args[1] = make_number (ngcs);
2860 args[2] = make_float (avg_live);
2861 args[3] = make_float (avg_zombies);
2862 args[4] = make_float (avg_zombies / avg_live / 100);
2863 args[5] = make_number (max_live);
2864 args[6] = make_number (max_zombies);
2865 return Fmessage (7, args);
2866}
2867
2868#endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
2869
2870
182ff242
GM
2871/* Mark OBJ if we can prove it's a Lisp_Object. */
2872
2873static INLINE void
2874mark_maybe_object (obj)
2875 Lisp_Object obj;
2876{
2877 void *po = (void *) XPNTR (obj);
2878 struct mem_node *m = mem_find (po);
2879
2880 if (m != MEM_NIL)
2881 {
2882 int mark_p = 0;
2883
2884 switch (XGCTYPE (obj))
2885 {
2886 case Lisp_String:
2887 mark_p = (live_string_p (m, po)
2888 && !STRING_MARKED_P ((struct Lisp_String *) po));
2889 break;
2890
2891 case Lisp_Cons:
2892 mark_p = (live_cons_p (m, po)
2893 && !XMARKBIT (XCONS (obj)->car));
2894 break;
2895
2896 case Lisp_Symbol:
2897 mark_p = (live_symbol_p (m, po)
2898 && !XMARKBIT (XSYMBOL (obj)->plist));
2899 break;
2900
2901 case Lisp_Float:
2902 mark_p = (live_float_p (m, po)
2903 && !XMARKBIT (XFLOAT (obj)->type));
2904 break;
2905
2906 case Lisp_Vectorlike:
2907 /* Note: can't check GC_BUFFERP before we know it's a
2908 buffer because checking that dereferences the pointer
2909 PO which might point anywhere. */
2910 if (live_vector_p (m, po))
2911 mark_p = (!GC_SUBRP (obj)
2912 && !(XVECTOR (obj)->size & ARRAY_MARK_FLAG));
2913 else if (live_buffer_p (m, po))
2914 mark_p = GC_BUFFERP (obj) && !XMARKBIT (XBUFFER (obj)->name);
2915 break;
2916
2917 case Lisp_Misc:
2918 if (live_misc_p (m, po))
2919 {
2920 switch (XMISCTYPE (obj))
2921 {
2922 case Lisp_Misc_Marker:
2923 mark_p = !XMARKBIT (XMARKER (obj)->chain);
2924 break;
2925
2926 case Lisp_Misc_Buffer_Local_Value:
2927 case Lisp_Misc_Some_Buffer_Local_Value:
2928 mark_p = !XMARKBIT (XBUFFER_LOCAL_VALUE (obj)->realvalue);
2929 break;
2930
2931 case Lisp_Misc_Overlay:
2932 mark_p = !XMARKBIT (XOVERLAY (obj)->plist);
2933 break;
2934 }
2935 }
2936 break;
2937 }
2938
2939 if (mark_p)
2940 {
2941#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
2942 if (nzombies < MAX_ZOMBIES)
2943 zombies[nzombies] = *p;
2944 ++nzombies;
2945#endif
2946 mark_object (&obj);
2947 }
2948 }
2949}
2950
34400008
GM
2951/* Mark Lisp objects in the address range START..END. */
2952
2953static void
2954mark_memory (start, end)
2955 void *start, *end;
2956{
2957 Lisp_Object *p;
2958
2959#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
2960 nzombies = 0;
2961#endif
2962
2963 /* Make START the pointer to the start of the memory region,
2964 if it isn't already. */
2965 if (end < start)
2966 {
2967 void *tem = start;
2968 start = end;
2969 end = tem;
2970 }
182ff242 2971
34400008 2972 for (p = (Lisp_Object *) start; (void *) p < end; ++p)
182ff242
GM
2973 mark_maybe_object (*p);
2974}
2975
2976
2977#if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
2978
2979static int setjmp_tested_p, longjmps_done;
2980
2981#define SETJMP_WILL_LIKELY_WORK "\
2982\n\
2983Emacs garbage collector has been changed to use conservative stack\n\
2984marking. Emacs has determined that the method it uses to do the\n\
2985marking will likely work on your system, but this isn't sure.\n\
2986\n\
2987If you are a system-programmer, or can get the help of a local wizard\n\
2988who is, please take a look at the function mark_stack in alloc.c, and\n\
2989verify that the methods used are appropriate for your system.\n\
2990\n\
2991Please mail the result to <gerd@gnu.org>.\n\
2992"
2993
2994#define SETJMP_WILL_NOT_WORK "\
2995\n\
2996Emacs garbage collector has been changed to use conservative stack\n\
2997marking. Emacs has determined that the default method it uses to do the\n\
2998marking will not work on your system. We will need a system-dependent\n\
2999solution for your system.\n\
3000\n\
3001Please take a look at the function mark_stack in alloc.c, and\n\
3002try to find a way to make it work on your system.\n\
3003Please mail the result to <gerd@gnu.org>.\n\
3004"
3005
3006
3007/* Perform a quick check if it looks like setjmp saves registers in a
3008 jmp_buf. Print a message to stderr saying so. When this test
3009 succeeds, this is _not_ a proof that setjmp is sufficient for
3010 conservative stack marking. Only the sources or a disassembly
3011 can prove that. */
3012
3013static void
3014test_setjmp ()
3015{
3016 char buf[10];
3017 register int x;
3018 jmp_buf jbuf;
3019 int result = 0;
3020
3021 /* Arrange for X to be put in a register. */
3022 sprintf (buf, "1");
3023 x = strlen (buf);
3024 x = 2 * x - 1;
3025
3026 setjmp (jbuf);
3027 if (longjmps_done == 1)
34400008 3028 {
182ff242 3029 /* Came here after the longjmp at the end of the function.
34400008 3030
182ff242
GM
3031 If x == 1, the longjmp has restored the register to its
3032 value before the setjmp, and we can hope that setjmp
3033 saves all such registers in the jmp_buf, although that
3034 isn't sure.
34400008 3035
182ff242
GM
3036 For other values of X, either something really strange is
3037 taking place, or the setjmp just didn't save the register. */
3038
3039 if (x == 1)
3040 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
3041 else
3042 {
3043 fprintf (stderr, SETJMP_WILL_NOT_WORK);
3044 exit (1);
34400008
GM
3045 }
3046 }
182ff242
GM
3047
3048 ++longjmps_done;
3049 x = 2;
3050 if (longjmps_done == 1)
3051 longjmp (jbuf, 1);
34400008
GM
3052}
3053
182ff242
GM
3054#endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
3055
34400008
GM
3056
3057#if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
3058
3059/* Abort if anything GCPRO'd doesn't survive the GC. */
3060
3061static void
3062check_gcpros ()
3063{
3064 struct gcpro *p;
3065 int i;
3066
3067 for (p = gcprolist; p; p = p->next)
3068 for (i = 0; i < p->nvars; ++i)
3069 if (!survives_gc_p (p->var[i]))
3070 abort ();
3071}
3072
3073#elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3074
3075static void
3076dump_zombies ()
3077{
3078 int i;
3079
3080 fprintf (stderr, "\nZombies kept alive = %d:\n", nzombies);
3081 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
3082 {
3083 fprintf (stderr, " %d = ", i);
3084 debug_print (zombies[i]);
3085 }
3086}
3087
3088#endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
3089
3090
182ff242
GM
3091/* Mark live Lisp objects on the C stack.
3092
3093 There are several system-dependent problems to consider when
3094 porting this to new architectures:
3095
3096 Processor Registers
3097
3098 We have to mark Lisp objects in CPU registers that can hold local
3099 variables or are used to pass parameters.
3100
3101 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
3102 something that either saves relevant registers on the stack, or
3103 calls mark_maybe_object passing it each register's contents.
3104
3105 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
3106 implementation assumes that calling setjmp saves registers we need
3107 to see in a jmp_buf which itself lies on the stack. This doesn't
3108 have to be true! It must be verified for each system, possibly
3109 by taking a look at the source code of setjmp.
3110
3111 Stack Layout
3112
3113 Architectures differ in the way their processor stack is organized.
3114 For example, the stack might look like this
3115
3116 +----------------+
3117 | Lisp_Object | size = 4
3118 +----------------+
3119 | something else | size = 2
3120 +----------------+
3121 | Lisp_Object | size = 4
3122 +----------------+
3123 | ... |
3124
3125 In such a case, not every Lisp_Object will be aligned equally. To
3126 find all Lisp_Object on the stack it won't be sufficient to walk
3127 the stack in steps of 4 bytes. Instead, two passes will be
3128 necessary, one starting at the start of the stack, and a second
3129 pass starting at the start of the stack + 2. Likewise, if the
3130 minimal alignment of Lisp_Objects on the stack is 1, four passes
3131 would be necessary, each one starting with one byte more offset
3132 from the stack start.
3133
3134 The current code assumes by default that Lisp_Objects are aligned
3135 equally on the stack. */
34400008
GM
3136
3137static void
3138mark_stack ()
3139{
3140 jmp_buf j;
3141 int stack_grows_down_p = (char *) &j > (char *) stack_base;
3142 void *end;
3143
3144 /* This trick flushes the register windows so that all the state of
3145 the process is contained in the stack. */
3146#ifdef sparc
3147 asm ("ta 3");
3148#endif
3149
3150 /* Save registers that we need to see on the stack. We need to see
3151 registers used to hold register variables and registers used to
3152 pass parameters. */
3153#ifdef GC_SAVE_REGISTERS_ON_STACK
3154 GC_SAVE_REGISTERS_ON_STACK (end);
182ff242
GM
3155#else /* not GC_SAVE_REGISTERS_ON_STACK */
3156
3157#ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
3158 setjmp will definitely work, test it
3159 and print a message with the result
3160 of the test. */
3161 if (!setjmp_tested_p)
3162 {
3163 setjmp_tested_p = 1;
3164 test_setjmp ();
3165 }
3166#endif /* GC_SETJMP_WORKS */
3167
34400008
GM
3168 setjmp (j);
3169 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
182ff242 3170#endif /* not GC_SAVE_REGISTERS_ON_STACK */
34400008
GM
3171
3172 /* This assumes that the stack is a contiguous region in memory. If
182ff242
GM
3173 that's not the case, something has to be done here to iterate
3174 over the stack segments. */
3175#if GC_LISP_OBJECT_ALIGNMENT == 1
3176 mark_memory (stack_base, end);
3177 mark_memory ((char *) stack_base + 1, end);
3178 mark_memory ((char *) stack_base + 2, end);
3179 mark_memory ((char *) stack_base + 3, end);
3180#elif GC_LISP_OBJECT_ALIGNMENT == 2
3181 mark_memory (stack_base, end);
3182 mark_memory ((char *) stack_base + 2, end);
3183#else
34400008 3184 mark_memory (stack_base, end);
182ff242 3185#endif
34400008
GM
3186
3187#if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
3188 check_gcpros ();
3189#endif
3190}
3191
3192
3193#endif /* GC_MARK_STACK != 0 */
3194
3195
3196\f
2e471eb5
GM
3197/***********************************************************************
3198 Pure Storage Management
3199 ***********************************************************************/
3200
3201/* Return a string allocated in pure space. DATA is a buffer holding
3202 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
3203 non-zero means make the result string multibyte.
1a4f1e2c 3204
2e471eb5
GM
3205 Must get an error if pure storage is full, since if it cannot hold
3206 a large string it may be able to hold conses that point to that
3207 string; then the string is not protected from gc. */
7146af97
JB
3208
3209Lisp_Object
2e471eb5 3210make_pure_string (data, nchars, nbytes, multibyte)
7146af97 3211 char *data;
2e471eb5 3212 int nchars, nbytes;
c0696668 3213 int multibyte;
7146af97 3214{
2e471eb5
GM
3215 Lisp_Object string;
3216 struct Lisp_String *s;
3217 int string_size, data_size;
c0696668 3218
2e471eb5 3219#define PAD(SZ) (((SZ) + sizeof (EMACS_INT) - 1) & ~(sizeof (EMACS_INT) - 1))
7146af97 3220
2e471eb5
GM
3221 string_size = PAD (sizeof (struct Lisp_String));
3222 data_size = PAD (nbytes + 1);
3223
3224#undef PAD
3225
3226 if (pureptr + string_size + data_size > PURESIZE)
7146af97 3227 error ("Pure Lisp storage exhausted");
2e471eb5
GM
3228
3229 s = (struct Lisp_String *) (PUREBEG + pureptr);
3230 pureptr += string_size;
3231 s->data = (unsigned char *) (PUREBEG + pureptr);
3232 pureptr += data_size;
3233
3234 s->size = nchars;
3235 s->size_byte = multibyte ? nbytes : -1;
3236 bcopy (data, s->data, nbytes);
3237 s->data[nbytes] = '\0';
3238 s->intervals = NULL_INTERVAL;
3239
3240 XSETSTRING (string, s);
3241 return string;
7146af97
JB
3242}
3243
2e471eb5 3244
34400008
GM
3245/* Return a cons allocated from pure space. Give it pure copies
3246 of CAR as car and CDR as cdr. */
3247
7146af97
JB
3248Lisp_Object
3249pure_cons (car, cdr)
3250 Lisp_Object car, cdr;
3251{
3252 register Lisp_Object new;
3253
3254 if (pureptr + sizeof (struct Lisp_Cons) > PURESIZE)
3255 error ("Pure Lisp storage exhausted");
45d12a89 3256 XSETCONS (new, PUREBEG + pureptr);
7146af97 3257 pureptr += sizeof (struct Lisp_Cons);
70949dac
KR
3258 XCAR (new) = Fpurecopy (car);
3259 XCDR (new) = Fpurecopy (cdr);
7146af97
JB
3260 return new;
3261}
3262
7146af97 3263
34400008
GM
3264/* Value is a float object with value NUM allocated from pure space. */
3265
7146af97
JB
3266Lisp_Object
3267make_pure_float (num)
3268 double num;
3269{
3270 register Lisp_Object new;
3271
6d19f28a
JB
3272 /* Make sure that PUREBEG + pureptr is aligned on at least a sizeof
3273 (double) boundary. Some architectures (like the sparc) require
3274 this, and I suspect that floats are rare enough that it's no
3275 tragedy for those that do. */
3276 {
675d5130 3277 size_t alignment;
6d19f28a
JB
3278 char *p = PUREBEG + pureptr;
3279
fe90ad97
JB
3280#ifdef __GNUC__
3281#if __GNUC__ >= 2
6d19f28a 3282 alignment = __alignof (struct Lisp_Float);
fe90ad97 3283#else
6d19f28a 3284 alignment = sizeof (struct Lisp_Float);
fe90ad97
JB
3285#endif
3286#else
6d19f28a 3287 alignment = sizeof (struct Lisp_Float);
fe90ad97 3288#endif
6d19f28a
JB
3289 p = (char *) (((unsigned long) p + alignment - 1) & - alignment);
3290 pureptr = p - PUREBEG;
3291 }
1a4f1e2c 3292
7146af97
JB
3293 if (pureptr + sizeof (struct Lisp_Float) > PURESIZE)
3294 error ("Pure Lisp storage exhausted");
45d12a89 3295 XSETFLOAT (new, PUREBEG + pureptr);
7146af97 3296 pureptr += sizeof (struct Lisp_Float);
70949dac 3297 XFLOAT_DATA (new) = num;
67ba9986 3298 XSETFASTINT (XFLOAT (new)->type, 0); /* bug chasing -wsr */
7146af97
JB
3299 return new;
3300}
3301
34400008
GM
3302
3303/* Return a vector with room for LEN Lisp_Objects allocated from
3304 pure space. */
3305
7146af97
JB
3306Lisp_Object
3307make_pure_vector (len)
42607681 3308 EMACS_INT len;
7146af97
JB
3309{
3310 register Lisp_Object new;
34400008
GM
3311 register EMACS_INT size = (sizeof (struct Lisp_Vector)
3312 + (len - 1) * sizeof (Lisp_Object));
7146af97
JB
3313
3314 if (pureptr + size > PURESIZE)
3315 error ("Pure Lisp storage exhausted");
3316
45d12a89 3317 XSETVECTOR (new, PUREBEG + pureptr);
7146af97
JB
3318 pureptr += size;
3319 XVECTOR (new)->size = len;
3320 return new;
3321}
3322
34400008 3323
7146af97
JB
3324DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
3325 "Make a copy of OBJECT in pure storage.\n\
3326Recursively copies contents of vectors and cons cells.\n\
d71c0668 3327Does not copy symbols. Copies strings without text properties.")
7146af97
JB
3328 (obj)
3329 register Lisp_Object obj;
3330{
265a9e55 3331 if (NILP (Vpurify_flag))
7146af97
JB
3332 return obj;
3333
3334 if ((PNTR_COMPARISON_TYPE) XPNTR (obj) < (PNTR_COMPARISON_TYPE) ((char *) pure + PURESIZE)
3335 && (PNTR_COMPARISON_TYPE) XPNTR (obj) >= (PNTR_COMPARISON_TYPE) pure)
3336 return obj;
3337
d6dd74bb 3338 if (CONSP (obj))
70949dac 3339 return pure_cons (XCAR (obj), XCDR (obj));
d6dd74bb 3340 else if (FLOATP (obj))
70949dac 3341 return make_pure_float (XFLOAT_DATA (obj));
d6dd74bb 3342 else if (STRINGP (obj))
3f25e183 3343 return make_pure_string (XSTRING (obj)->data, XSTRING (obj)->size,
c0696668
RS
3344 STRING_BYTES (XSTRING (obj)),
3345 STRING_MULTIBYTE (obj));
d6dd74bb
KH
3346 else if (COMPILEDP (obj) || VECTORP (obj))
3347 {
3348 register struct Lisp_Vector *vec;
3349 register int i, size;
3350
3351 size = XVECTOR (obj)->size;
7d535c68
KH
3352 if (size & PSEUDOVECTOR_FLAG)
3353 size &= PSEUDOVECTOR_SIZE_MASK;
01a4d290 3354 vec = XVECTOR (make_pure_vector ((EMACS_INT) size));
d6dd74bb
KH
3355 for (i = 0; i < size; i++)
3356 vec->contents[i] = Fpurecopy (XVECTOR (obj)->contents[i]);
3357 if (COMPILEDP (obj))
3358 XSETCOMPILED (obj, vec);
3359 else
3360 XSETVECTOR (obj, vec);
7146af97
JB
3361 return obj;
3362 }
d6dd74bb
KH
3363 else if (MARKERP (obj))
3364 error ("Attempt to copy a marker to pure storage");
3365 else
3366 return obj;
7146af97 3367}
2e471eb5 3368
34400008 3369
7146af97 3370\f
34400008
GM
3371/***********************************************************************
3372 Protection from GC
3373 ***********************************************************************/
3374
7146af97
JB
3375/* Recording what needs to be marked for gc. */
3376
3377struct gcpro *gcprolist;
3378
34400008 3379/* Addresses of staticpro'd variables. */
7146af97 3380
34400008 3381#define NSTATICS 1024
7146af97
JB
3382Lisp_Object *staticvec[NSTATICS] = {0};
3383
34400008
GM
3384/* Index of next unused slot in staticvec. */
3385
7146af97
JB
3386int staticidx = 0;
3387
34400008 3388
2e471eb5
GM
3389/* Put an entry in staticvec, pointing at the variable with address
3390 VARADDRESS. */
7146af97
JB
3391
3392void
3393staticpro (varaddress)
3394 Lisp_Object *varaddress;
3395{
3396 staticvec[staticidx++] = varaddress;
3397 if (staticidx >= NSTATICS)
3398 abort ();
3399}
3400
3401struct catchtag
2e471eb5 3402{
7146af97
JB
3403 Lisp_Object tag;
3404 Lisp_Object val;
3405 struct catchtag *next;
2e471eb5 3406};
7146af97
JB
3407
3408struct backtrace
2e471eb5
GM
3409{
3410 struct backtrace *next;
3411 Lisp_Object *function;
3412 Lisp_Object *args; /* Points to vector of args. */
3413 int nargs; /* Length of vector. */
3414 /* If nargs is UNEVALLED, args points to slot holding list of
3415 unevalled args. */
3416 char evalargs;
3417};
3418
34400008 3419
7146af97 3420\f
34400008
GM
3421/***********************************************************************
3422 Protection from GC
3423 ***********************************************************************/
1a4f1e2c 3424
e8197642
RS
3425/* Temporarily prevent garbage collection. */
3426
3427int
3428inhibit_garbage_collection ()
3429{
3430 int count = specpdl_ptr - specpdl;
26b926e1 3431 Lisp_Object number;
68be917d 3432 int nbits = min (VALBITS, BITS_PER_INT);
e8197642 3433
b580578b 3434 XSETINT (number, ((EMACS_INT) 1 << (nbits - 1)) - 1);
26b926e1
RS
3435
3436 specbind (Qgc_cons_threshold, number);
e8197642
RS
3437
3438 return count;
3439}
3440
34400008 3441
7146af97
JB
3442DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
3443 "Reclaim storage for Lisp objects no longer needed.\n\
3444Returns info on amount of space in use:\n\
3445 ((USED-CONSES . FREE-CONSES) (USED-SYMS . FREE-SYMS)\n\
3446 (USED-MARKERS . FREE-MARKERS) USED-STRING-CHARS USED-VECTOR-SLOTS\n\
2e471eb5
GM
3447 (USED-FLOATS . FREE-FLOATS) (USED-INTERVALS . FREE-INTERVALS\n\
3448 (USED-STRINGS . FREE-STRINGS))\n\
7146af97
JB
3449Garbage collection happens automatically if you cons more than\n\
3450`gc-cons-threshold' bytes of Lisp data since previous garbage collection.")
3451 ()
3452{
3453 register struct gcpro *tail;
3454 register struct specbinding *bind;
3455 struct catchtag *catch;
3456 struct handler *handler;
3457 register struct backtrace *backlist;
7146af97
JB
3458 char stack_top_variable;
3459 register int i;
6efc7df7 3460 int message_p;
2e471eb5 3461 Lisp_Object total[7];
7146af97 3462
58595309
KH
3463 /* In case user calls debug_print during GC,
3464 don't let that cause a recursive GC. */
3465 consing_since_gc = 0;
3466
6efc7df7
GM
3467 /* Save what's currently displayed in the echo area. */
3468 message_p = push_message ();
41c28a37 3469
7146af97
JB
3470 /* Save a copy of the contents of the stack, for debugging. */
3471#if MAX_SAVE_STACK > 0
265a9e55 3472 if (NILP (Vpurify_flag))
7146af97
JB
3473 {
3474 i = &stack_top_variable - stack_bottom;
3475 if (i < 0) i = -i;
3476 if (i < MAX_SAVE_STACK)
3477 {
3478 if (stack_copy == 0)
9ac0d9e0 3479 stack_copy = (char *) xmalloc (stack_copy_size = i);
7146af97 3480 else if (stack_copy_size < i)
9ac0d9e0 3481 stack_copy = (char *) xrealloc (stack_copy, (stack_copy_size = i));
7146af97
JB
3482 if (stack_copy)
3483 {
42607681 3484 if ((EMACS_INT) (&stack_top_variable - stack_bottom) > 0)
7146af97
JB
3485 bcopy (stack_bottom, stack_copy, i);
3486 else
3487 bcopy (&stack_top_variable, stack_copy, i);
3488 }
3489 }
3490 }
3491#endif /* MAX_SAVE_STACK > 0 */
3492
299585ee 3493 if (garbage_collection_messages)
691c4285 3494 message1_nolog ("Garbage collecting...");
7146af97 3495
6e0fca1d
RS
3496 BLOCK_INPUT;
3497
eec7b73d
RS
3498 shrink_regexp_cache ();
3499
4929a878 3500 /* Don't keep undo information around forever. */
7146af97
JB
3501 {
3502 register struct buffer *nextb = all_buffers;
3503
3504 while (nextb)
3505 {
ffd56f97
JB
3506 /* If a buffer's undo list is Qt, that means that undo is
3507 turned off in that buffer. Calling truncate_undo_list on
3508 Qt tends to return NULL, which effectively turns undo back on.
3509 So don't call truncate_undo_list if undo_list is Qt. */
3510 if (! EQ (nextb->undo_list, Qt))
3511 nextb->undo_list
502b9b64
JB
3512 = truncate_undo_list (nextb->undo_list, undo_limit,
3513 undo_strong_limit);
7146af97
JB
3514 nextb = nextb->next;
3515 }
3516 }
3517
3518 gc_in_progress = 1;
3519
c23baf9f 3520 /* clear_marks (); */
7146af97 3521
7146af97
JB
3522 /* Mark all the special slots that serve as the roots of accessibility.
3523
3524 Usually the special slots to mark are contained in particular structures.
3525 Then we know no slot is marked twice because the structures don't overlap.
3526 In some cases, the structures point to the slots to be marked.
3527 For these, we use MARKBIT to avoid double marking of the slot. */
3528
3529 for (i = 0; i < staticidx; i++)
3530 mark_object (staticvec[i]);
34400008
GM
3531
3532#if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
3533 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
3534 mark_stack ();
3535#else
7146af97
JB
3536 for (tail = gcprolist; tail; tail = tail->next)
3537 for (i = 0; i < tail->nvars; i++)
3538 if (!XMARKBIT (tail->var[i]))
3539 {
3540 mark_object (&tail->var[i]);
3541 XMARK (tail->var[i]);
3542 }
34400008
GM
3543#endif
3544
630686c8 3545 mark_byte_stack ();
7146af97
JB
3546 for (bind = specpdl; bind != specpdl_ptr; bind++)
3547 {
3548 mark_object (&bind->symbol);
3549 mark_object (&bind->old_value);
3550 }
3551 for (catch = catchlist; catch; catch = catch->next)
3552 {
3553 mark_object (&catch->tag);
3554 mark_object (&catch->val);
3555 }
3556 for (handler = handlerlist; handler; handler = handler->next)
3557 {
3558 mark_object (&handler->handler);
3559 mark_object (&handler->var);
3560 }
3561 for (backlist = backtrace_list; backlist; backlist = backlist->next)
3562 {
3563 if (!XMARKBIT (*backlist->function))
3564 {
3565 mark_object (backlist->function);
3566 XMARK (*backlist->function);
3567 }
3568 if (backlist->nargs == UNEVALLED || backlist->nargs == MANY)
3569 i = 0;
3570 else
3571 i = backlist->nargs - 1;
3572 for (; i >= 0; i--)
3573 if (!XMARKBIT (backlist->args[i]))
3574 {
3575 mark_object (&backlist->args[i]);
3576 XMARK (backlist->args[i]);
3577 }
3578 }
b875d3f7 3579 mark_kboards ();
7146af97 3580
4c315bda
RS
3581 /* Look thru every buffer's undo list
3582 for elements that update markers that were not marked,
3583 and delete them. */
3584 {
3585 register struct buffer *nextb = all_buffers;
3586
3587 while (nextb)
3588 {
3589 /* If a buffer's undo list is Qt, that means that undo is
3590 turned off in that buffer. Calling truncate_undo_list on
3591 Qt tends to return NULL, which effectively turns undo back on.
3592 So don't call truncate_undo_list if undo_list is Qt. */
3593 if (! EQ (nextb->undo_list, Qt))
3594 {
3595 Lisp_Object tail, prev;
3596 tail = nextb->undo_list;
3597 prev = Qnil;
3598 while (CONSP (tail))
3599 {
70949dac
KR
3600 if (GC_CONSP (XCAR (tail))
3601 && GC_MARKERP (XCAR (XCAR (tail)))
3602 && ! XMARKBIT (XMARKER (XCAR (XCAR (tail)))->chain))
4c315bda
RS
3603 {
3604 if (NILP (prev))
70949dac 3605 nextb->undo_list = tail = XCDR (tail);
4c315bda 3606 else
70949dac 3607 tail = XCDR (prev) = XCDR (tail);
4c315bda
RS
3608 }
3609 else
3610 {
3611 prev = tail;
70949dac 3612 tail = XCDR (tail);
4c315bda
RS
3613 }
3614 }
3615 }
3616
3617 nextb = nextb->next;
3618 }
3619 }
3620
34400008
GM
3621#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3622 mark_stack ();
3623#endif
3624
7146af97
JB
3625 gc_sweep ();
3626
3627 /* Clear the mark bits that we set in certain root slots. */
3628
34400008
GM
3629#if (GC_MARK_STACK == GC_USE_GCPROS_AS_BEFORE \
3630 || GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES)
7146af97
JB
3631 for (tail = gcprolist; tail; tail = tail->next)
3632 for (i = 0; i < tail->nvars; i++)
3633 XUNMARK (tail->var[i]);
34400008
GM
3634#endif
3635
033a5fa3 3636 unmark_byte_stack ();
7146af97
JB
3637 for (backlist = backtrace_list; backlist; backlist = backlist->next)
3638 {
3639 XUNMARK (*backlist->function);
3640 if (backlist->nargs == UNEVALLED || backlist->nargs == MANY)
3641 i = 0;
3642 else
3643 i = backlist->nargs - 1;
3644 for (; i >= 0; i--)
3645 XUNMARK (backlist->args[i]);
3646 }
3647 XUNMARK (buffer_defaults.name);
3648 XUNMARK (buffer_local_symbols.name);
3649
34400008
GM
3650#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
3651 dump_zombies ();
3652#endif
3653
6e0fca1d
RS
3654 UNBLOCK_INPUT;
3655
c23baf9f 3656 /* clear_marks (); */
7146af97
JB
3657 gc_in_progress = 0;
3658
3659 consing_since_gc = 0;
3660 if (gc_cons_threshold < 10000)
3661 gc_cons_threshold = 10000;
3662
299585ee
RS
3663 if (garbage_collection_messages)
3664 {
6efc7df7
GM
3665 if (message_p || minibuf_level > 0)
3666 restore_message ();
299585ee
RS
3667 else
3668 message1_nolog ("Garbage collecting...done");
3669 }
7146af97 3670
6efc7df7 3671 pop_message ();
2e471eb5
GM
3672
3673 total[0] = Fcons (make_number (total_conses),
3674 make_number (total_free_conses));
3675 total[1] = Fcons (make_number (total_symbols),
3676 make_number (total_free_symbols));
3677 total[2] = Fcons (make_number (total_markers),
3678 make_number (total_free_markers));
3679 total[3] = Fcons (make_number (total_string_size),
3680 make_number (total_vector_size));
2e471eb5
GM
3681 total[4] = Fcons (make_number (total_floats),
3682 make_number (total_free_floats));
2e471eb5
GM
3683 total[5] = Fcons (make_number (total_intervals),
3684 make_number (total_free_intervals));
3685 total[6] = Fcons (make_number (total_strings),
3686 make_number (total_free_strings));
3687
34400008 3688#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
7146af97 3689 {
34400008
GM
3690 /* Compute average percentage of zombies. */
3691 double nlive = 0;
3692
3693 for (i = 0; i < 7; ++i)
3694 nlive += XFASTINT (XCAR (total[i]));
3695
3696 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
3697 max_live = max (nlive, max_live);
3698 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
3699 max_zombies = max (nzombies, max_zombies);
3700 ++ngcs;
3701 }
3702#endif
7146af97 3703
34400008 3704 return Flist (7, total);
7146af97 3705}
34400008 3706
41c28a37 3707
3770920e
GM
3708/* Mark Lisp objects in glyph matrix MATRIX. Currently the
3709 only interesting objects referenced from glyphs are strings. */
41c28a37
GM
3710
3711static void
3712mark_glyph_matrix (matrix)
3713 struct glyph_matrix *matrix;
3714{
3715 struct glyph_row *row = matrix->rows;
3716 struct glyph_row *end = row + matrix->nrows;
3717
2e471eb5
GM
3718 for (; row < end; ++row)
3719 if (row->enabled_p)
3720 {
3721 int area;
3722 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
3723 {
3724 struct glyph *glyph = row->glyphs[area];
3725 struct glyph *end_glyph = glyph + row->used[area];
3726
3727 for (; glyph < end_glyph; ++glyph)
3728 if (GC_STRINGP (glyph->object)
3729 && !STRING_MARKED_P (XSTRING (glyph->object)))
3730 mark_object (&glyph->object);
3731 }
3732 }
41c28a37
GM
3733}
3734
34400008 3735
41c28a37
GM
3736/* Mark Lisp faces in the face cache C. */
3737
3738static void
3739mark_face_cache (c)
3740 struct face_cache *c;
3741{
3742 if (c)
3743 {
3744 int i, j;
3745 for (i = 0; i < c->used; ++i)
3746 {
3747 struct face *face = FACE_FROM_ID (c->f, i);
3748
3749 if (face)
3750 {
3751 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
3752 mark_object (&face->lface[j]);
41c28a37
GM
3753 }
3754 }
3755 }
3756}
3757
3758
3759#ifdef HAVE_WINDOW_SYSTEM
3760
3761/* Mark Lisp objects in image IMG. */
3762
3763static void
3764mark_image (img)
3765 struct image *img;
3766{
3767 mark_object (&img->spec);
3768
3769 if (!NILP (img->data.lisp_val))
3770 mark_object (&img->data.lisp_val);
3771}
3772
3773
3774/* Mark Lisp objects in image cache of frame F. It's done this way so
3775 that we don't have to include xterm.h here. */
3776
3777static void
3778mark_image_cache (f)
3779 struct frame *f;
3780{
3781 forall_images_in_image_cache (f, mark_image);
3782}
3783
3784#endif /* HAVE_X_WINDOWS */
3785
3786
7146af97 3787\f
1a4f1e2c 3788/* Mark reference to a Lisp_Object.
2e471eb5
GM
3789 If the object referred to has not been seen yet, recursively mark
3790 all the references contained in it. */
7146af97 3791
785cd37f
RS
3792#define LAST_MARKED_SIZE 500
3793Lisp_Object *last_marked[LAST_MARKED_SIZE];
3794int last_marked_index;
3795
41c28a37 3796void
436c5811
RS
3797mark_object (argptr)
3798 Lisp_Object *argptr;
7146af97 3799{
436c5811 3800 Lisp_Object *objptr = argptr;
7146af97 3801 register Lisp_Object obj;
4f5c1376
GM
3802#ifdef GC_CHECK_MARKED_OBJECTS
3803 void *po;
3804 struct mem_node *m;
3805#endif
7146af97 3806
9149e743 3807 loop:
7146af97 3808 obj = *objptr;
9149e743 3809 loop2:
7146af97
JB
3810 XUNMARK (obj);
3811
34400008 3812 if (PURE_POINTER_P ((PNTR_COMPARISON_TYPE) XPNTR (obj)))
7146af97
JB
3813 return;
3814
785cd37f
RS
3815 last_marked[last_marked_index++] = objptr;
3816 if (last_marked_index == LAST_MARKED_SIZE)
3817 last_marked_index = 0;
3818
4f5c1376
GM
3819 /* Perform some sanity checks on the objects marked here. Abort if
3820 we encounter an object we know is bogus. This increases GC time
3821 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
3822#ifdef GC_CHECK_MARKED_OBJECTS
3823
3824 po = (void *) XPNTR (obj);
3825
3826 /* Check that the object pointed to by PO is known to be a Lisp
3827 structure allocated from the heap. */
3828#define CHECK_ALLOCATED() \
3829 do { \
3830 m = mem_find (po); \
3831 if (m == MEM_NIL) \
3832 abort (); \
3833 } while (0)
3834
3835 /* Check that the object pointed to by PO is live, using predicate
3836 function LIVEP. */
3837#define CHECK_LIVE(LIVEP) \
3838 do { \
3839 if (!LIVEP (m, po)) \
3840 abort (); \
3841 } while (0)
3842
3843 /* Check both of the above conditions. */
3844#define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
3845 do { \
3846 CHECK_ALLOCATED (); \
3847 CHECK_LIVE (LIVEP); \
3848 } while (0) \
3849
3850#else /* not GC_CHECK_MARKED_OBJECTS */
3851
3852#define CHECK_ALLOCATED() (void) 0
3853#define CHECK_LIVE(LIVEP) (void) 0
3854#define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
3855
3856#endif /* not GC_CHECK_MARKED_OBJECTS */
3857
0220c518 3858 switch (SWITCH_ENUM_CAST (XGCTYPE (obj)))
7146af97
JB
3859 {
3860 case Lisp_String:
3861 {
3862 register struct Lisp_String *ptr = XSTRING (obj);
4f5c1376 3863 CHECK_ALLOCATED_AND_LIVE (live_string_p);
d5e35230 3864 MARK_INTERVAL_TREE (ptr->intervals);
2e471eb5 3865 MARK_STRING (ptr);
7146af97
JB
3866 }
3867 break;
3868
76437631 3869 case Lisp_Vectorlike:
4f5c1376
GM
3870#ifdef GC_CHECK_MARKED_OBJECTS
3871 m = mem_find (po);
3872 if (m == MEM_NIL && !GC_SUBRP (obj)
3873 && po != &buffer_defaults
3874 && po != &buffer_local_symbols)
3875 abort ();
3876#endif /* GC_CHECK_MARKED_OBJECTS */
3877
30e3190a 3878 if (GC_BUFFERP (obj))
6b552283
KH
3879 {
3880 if (!XMARKBIT (XBUFFER (obj)->name))
4f5c1376
GM
3881 {
3882#ifdef GC_CHECK_MARKED_OBJECTS
3883 if (po != &buffer_defaults && po != &buffer_local_symbols)
3884 {
3885 struct buffer *b;
3886 for (b = all_buffers; b && b != po; b = b->next)
3887 ;
3888 if (b == NULL)
3889 abort ();
3890 }
3891#endif /* GC_CHECK_MARKED_OBJECTS */
3892 mark_buffer (obj);
3893 }
6b552283 3894 }
30e3190a 3895 else if (GC_SUBRP (obj))
169ee243
RS
3896 break;
3897 else if (GC_COMPILEDP (obj))
2e471eb5
GM
3898 /* We could treat this just like a vector, but it is better to
3899 save the COMPILED_CONSTANTS element for last and avoid
3900 recursion there. */
169ee243
RS
3901 {
3902 register struct Lisp_Vector *ptr = XVECTOR (obj);
3903 register EMACS_INT size = ptr->size;
3904 /* See comment above under Lisp_Vector. */
3905 struct Lisp_Vector *volatile ptr1 = ptr;
3906 register int i;
3907
3908 if (size & ARRAY_MARK_FLAG)
3909 break; /* Already marked */
4f5c1376
GM
3910
3911 CHECK_LIVE (live_vector_p);
169ee243 3912 ptr->size |= ARRAY_MARK_FLAG; /* Else mark it */
76437631 3913 size &= PSEUDOVECTOR_SIZE_MASK;
169ee243
RS
3914 for (i = 0; i < size; i++) /* and then mark its elements */
3915 {
3916 if (i != COMPILED_CONSTANTS)
3917 mark_object (&ptr1->contents[i]);
3918 }
3919 /* This cast should be unnecessary, but some Mips compiler complains
3920 (MIPS-ABI + SysVR4, DC/OSx, etc). */
3921 objptr = (Lisp_Object *) &ptr1->contents[COMPILED_CONSTANTS];
3922 goto loop;
3923 }
169ee243
RS
3924 else if (GC_FRAMEP (obj))
3925 {
3926 /* See comment above under Lisp_Vector for why this is volatile. */
3927 register struct frame *volatile ptr = XFRAME (obj);
3928 register EMACS_INT size = ptr->size;
3929
3930 if (size & ARRAY_MARK_FLAG) break; /* Already marked */
3931 ptr->size |= ARRAY_MARK_FLAG; /* Else mark it */
3932
4f5c1376 3933 CHECK_LIVE (live_vector_p);
169ee243 3934 mark_object (&ptr->name);
894a9d16 3935 mark_object (&ptr->icon_name);
aba6deb8 3936 mark_object (&ptr->title);
169ee243
RS
3937 mark_object (&ptr->focus_frame);
3938 mark_object (&ptr->selected_window);
3939 mark_object (&ptr->minibuffer_window);
3940 mark_object (&ptr->param_alist);
3941 mark_object (&ptr->scroll_bars);
3942 mark_object (&ptr->condemned_scroll_bars);
3943 mark_object (&ptr->menu_bar_items);
3944 mark_object (&ptr->face_alist);
3945 mark_object (&ptr->menu_bar_vector);
3946 mark_object (&ptr->buffer_predicate);
a0e1f185 3947 mark_object (&ptr->buffer_list);
41c28a37 3948 mark_object (&ptr->menu_bar_window);
9ea173e8 3949 mark_object (&ptr->tool_bar_window);
41c28a37
GM
3950 mark_face_cache (ptr->face_cache);
3951#ifdef HAVE_WINDOW_SYSTEM
3952 mark_image_cache (ptr);
9ea173e8
GM
3953 mark_object (&ptr->desired_tool_bar_items);
3954 mark_object (&ptr->current_tool_bar_items);
3955 mark_object (&ptr->desired_tool_bar_string);
3956 mark_object (&ptr->current_tool_bar_string);
41c28a37 3957#endif /* HAVE_WINDOW_SYSTEM */
169ee243 3958 }
7b07587b 3959 else if (GC_BOOL_VECTOR_P (obj))
707788bd
RS
3960 {
3961 register struct Lisp_Vector *ptr = XVECTOR (obj);
3962
3963 if (ptr->size & ARRAY_MARK_FLAG)
3964 break; /* Already marked */
4f5c1376 3965 CHECK_LIVE (live_vector_p);
707788bd
RS
3966 ptr->size |= ARRAY_MARK_FLAG; /* Else mark it */
3967 }
41c28a37
GM
3968 else if (GC_WINDOWP (obj))
3969 {
3970 register struct Lisp_Vector *ptr = XVECTOR (obj);
3971 struct window *w = XWINDOW (obj);
3972 register EMACS_INT size = ptr->size;
3973 /* The reason we use ptr1 is to avoid an apparent hardware bug
3974 that happens occasionally on the FSF's HP 300s.
3975 The bug is that a2 gets clobbered by recursive calls to mark_object.
3976 The clobberage seems to happen during function entry,
3977 perhaps in the moveml instruction.
3978 Yes, this is a crock, but we have to do it. */
3979 struct Lisp_Vector *volatile ptr1 = ptr;
3980 register int i;
3981
3982 /* Stop if already marked. */
3983 if (size & ARRAY_MARK_FLAG)
3984 break;
3985
3986 /* Mark it. */
4f5c1376 3987 CHECK_LIVE (live_vector_p);
41c28a37
GM
3988 ptr->size |= ARRAY_MARK_FLAG;
3989
3990 /* There is no Lisp data above The member CURRENT_MATRIX in
3991 struct WINDOW. Stop marking when that slot is reached. */
3992 for (i = 0;
3993 (char *) &ptr1->contents[i] < (char *) &w->current_matrix;
3994 i++)
3995 mark_object (&ptr1->contents[i]);
3996
3997 /* Mark glyphs for leaf windows. Marking window matrices is
3998 sufficient because frame matrices use the same glyph
3999 memory. */
4000 if (NILP (w->hchild)
4001 && NILP (w->vchild)
4002 && w->current_matrix)
4003 {
4004 mark_glyph_matrix (w->current_matrix);
4005 mark_glyph_matrix (w->desired_matrix);
4006 }
4007 }
4008 else if (GC_HASH_TABLE_P (obj))
4009 {
4010 struct Lisp_Hash_Table *h = XHASH_TABLE (obj);
4011 EMACS_INT size = h->size;
4012
4013 /* Stop if already marked. */
4014 if (size & ARRAY_MARK_FLAG)
4015 break;
4f5c1376 4016
41c28a37 4017 /* Mark it. */
4f5c1376 4018 CHECK_LIVE (live_vector_p);
41c28a37
GM
4019 h->size |= ARRAY_MARK_FLAG;
4020
4021 /* Mark contents. */
4022 mark_object (&h->test);
4023 mark_object (&h->weak);
4024 mark_object (&h->rehash_size);
4025 mark_object (&h->rehash_threshold);
4026 mark_object (&h->hash);
4027 mark_object (&h->next);
4028 mark_object (&h->index);
4029 mark_object (&h->user_hash_function);
4030 mark_object (&h->user_cmp_function);
4031
4032 /* If hash table is not weak, mark all keys and values.
4033 For weak tables, mark only the vector. */
4034 if (GC_NILP (h->weak))
4035 mark_object (&h->key_and_value);
4036 else
4037 XVECTOR (h->key_and_value)->size |= ARRAY_MARK_FLAG;
4038
4039 }
04ff9756 4040 else
169ee243
RS
4041 {
4042 register struct Lisp_Vector *ptr = XVECTOR (obj);
4043 register EMACS_INT size = ptr->size;
4044 /* The reason we use ptr1 is to avoid an apparent hardware bug
4045 that happens occasionally on the FSF's HP 300s.
4046 The bug is that a2 gets clobbered by recursive calls to mark_object.
4047 The clobberage seems to happen during function entry,
4048 perhaps in the moveml instruction.
4049 Yes, this is a crock, but we have to do it. */
4050 struct Lisp_Vector *volatile ptr1 = ptr;
4051 register int i;
4052
4053 if (size & ARRAY_MARK_FLAG) break; /* Already marked */
4f5c1376 4054 CHECK_LIVE (live_vector_p);
169ee243
RS
4055 ptr->size |= ARRAY_MARK_FLAG; /* Else mark it */
4056 if (size & PSEUDOVECTOR_FLAG)
4057 size &= PSEUDOVECTOR_SIZE_MASK;
41c28a37 4058
169ee243
RS
4059 for (i = 0; i < size; i++) /* and then mark its elements */
4060 mark_object (&ptr1->contents[i]);
4061 }
4062 break;
7146af97 4063
7146af97
JB
4064 case Lisp_Symbol:
4065 {
41f54422
RS
4066 /* See comment above under Lisp_Vector for why this is volatile. */
4067 register struct Lisp_Symbol *volatile ptr = XSYMBOL (obj);
7146af97
JB
4068 struct Lisp_Symbol *ptrx;
4069
4070 if (XMARKBIT (ptr->plist)) break;
4f5c1376 4071 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
7146af97 4072 XMARK (ptr->plist);
7146af97
JB
4073 mark_object ((Lisp_Object *) &ptr->value);
4074 mark_object (&ptr->function);
4075 mark_object (&ptr->plist);
34400008
GM
4076
4077 if (!PURE_POINTER_P (ptr->name))
4078 MARK_STRING (ptr->name);
2e471eb5 4079 MARK_INTERVAL_TREE (ptr->name->intervals);
2e471eb5 4080
1c6bb482
RS
4081 /* Note that we do not mark the obarray of the symbol.
4082 It is safe not to do so because nothing accesses that
4083 slot except to check whether it is nil. */
7146af97
JB
4084 ptr = ptr->next;
4085 if (ptr)
4086 {
9149e743
KH
4087 /* For the benefit of the last_marked log. */
4088 objptr = (Lisp_Object *)&XSYMBOL (obj)->next;
b0846f52 4089 ptrx = ptr; /* Use of ptrx avoids compiler bug on Sun */
7146af97 4090 XSETSYMBOL (obj, ptrx);
9149e743
KH
4091 /* We can't goto loop here because *objptr doesn't contain an
4092 actual Lisp_Object with valid datatype field. */
4093 goto loop2;
7146af97
JB
4094 }
4095 }
4096 break;
4097
a0a38eb7 4098 case Lisp_Misc:
4f5c1376 4099 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
a5da44fe 4100 switch (XMISCTYPE (obj))
a0a38eb7
KH
4101 {
4102 case Lisp_Misc_Marker:
4103 XMARK (XMARKER (obj)->chain);
4104 /* DO NOT mark thru the marker's chain.
4105 The buffer's markers chain does not preserve markers from gc;
4106 instead, markers are removed from the chain when freed by gc. */
4107 break;
4108
465edf35
KH
4109 case Lisp_Misc_Buffer_Local_Value:
4110 case Lisp_Misc_Some_Buffer_Local_Value:
4111 {
4112 register struct Lisp_Buffer_Local_Value *ptr
4113 = XBUFFER_LOCAL_VALUE (obj);
a9faeabe
RS
4114 if (XMARKBIT (ptr->realvalue)) break;
4115 XMARK (ptr->realvalue);
465edf35
KH
4116 /* If the cdr is nil, avoid recursion for the car. */
4117 if (EQ (ptr->cdr, Qnil))
4118 {
a9faeabe 4119 objptr = &ptr->realvalue;
465edf35
KH
4120 goto loop;
4121 }
a9faeabe
RS
4122 mark_object (&ptr->realvalue);
4123 mark_object (&ptr->buffer);
4124 mark_object (&ptr->frame);
465edf35
KH
4125 /* See comment above under Lisp_Vector for why not use ptr here. */
4126 objptr = &XBUFFER_LOCAL_VALUE (obj)->cdr;
4127 goto loop;
4128 }
4129
c8616056
KH
4130 case Lisp_Misc_Intfwd:
4131 case Lisp_Misc_Boolfwd:
4132 case Lisp_Misc_Objfwd:
4133 case Lisp_Misc_Buffer_Objfwd:
b875d3f7 4134 case Lisp_Misc_Kboard_Objfwd:
c8616056
KH
4135 /* Don't bother with Lisp_Buffer_Objfwd,
4136 since all markable slots in current buffer marked anyway. */
4137 /* Don't need to do Lisp_Objfwd, since the places they point
4138 are protected with staticpro. */
4139 break;
4140
e202fa34
KH
4141 case Lisp_Misc_Overlay:
4142 {
4143 struct Lisp_Overlay *ptr = XOVERLAY (obj);
4144 if (!XMARKBIT (ptr->plist))
4145 {
4146 XMARK (ptr->plist);
4147 mark_object (&ptr->start);
4148 mark_object (&ptr->end);
4149 objptr = &ptr->plist;
4150 goto loop;
4151 }
4152 }
4153 break;
4154
a0a38eb7
KH
4155 default:
4156 abort ();
4157 }
7146af97
JB
4158 break;
4159
4160 case Lisp_Cons:
7146af97
JB
4161 {
4162 register struct Lisp_Cons *ptr = XCONS (obj);
4163 if (XMARKBIT (ptr->car)) break;
4f5c1376 4164 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
7146af97 4165 XMARK (ptr->car);
c54ca951
RS
4166 /* If the cdr is nil, avoid recursion for the car. */
4167 if (EQ (ptr->cdr, Qnil))
4168 {
4169 objptr = &ptr->car;
c54ca951
RS
4170 goto loop;
4171 }
7146af97 4172 mark_object (&ptr->car);
41f54422 4173 /* See comment above under Lisp_Vector for why not use ptr here. */
70949dac 4174 objptr = &XCDR (obj);
7146af97
JB
4175 goto loop;
4176 }
4177
7146af97 4178 case Lisp_Float:
4f5c1376 4179 CHECK_ALLOCATED_AND_LIVE (live_float_p);
7146af97
JB
4180 XMARK (XFLOAT (obj)->type);
4181 break;
7146af97 4182
7146af97 4183 case Lisp_Int:
7146af97
JB
4184 break;
4185
4186 default:
4187 abort ();
4188 }
4f5c1376
GM
4189
4190#undef CHECK_LIVE
4191#undef CHECK_ALLOCATED
4192#undef CHECK_ALLOCATED_AND_LIVE
7146af97
JB
4193}
4194
4195/* Mark the pointers in a buffer structure. */
4196
4197static void
4198mark_buffer (buf)
4199 Lisp_Object buf;
4200{
7146af97
JB
4201 register struct buffer *buffer = XBUFFER (buf);
4202 register Lisp_Object *ptr;
30e3190a 4203 Lisp_Object base_buffer;
7146af97
JB
4204
4205 /* This is the buffer's markbit */
4206 mark_object (&buffer->name);
4207 XMARK (buffer->name);
4208
30e3190a 4209 MARK_INTERVAL_TREE (BUF_INTERVALS (buffer));
d5e35230 4210
4c315bda
RS
4211 if (CONSP (buffer->undo_list))
4212 {
4213 Lisp_Object tail;
4214 tail = buffer->undo_list;
4215
4216 while (CONSP (tail))
4217 {
4218 register struct Lisp_Cons *ptr = XCONS (tail);
4219
4220 if (XMARKBIT (ptr->car))
4221 break;
4222 XMARK (ptr->car);
4223 if (GC_CONSP (ptr->car)
70949dac
KR
4224 && ! XMARKBIT (XCAR (ptr->car))
4225 && GC_MARKERP (XCAR (ptr->car)))
4c315bda 4226 {
70949dac
KR
4227 XMARK (XCAR (ptr->car));
4228 mark_object (&XCDR (ptr->car));
4c315bda
RS
4229 }
4230 else
4231 mark_object (&ptr->car);
4232
4233 if (CONSP (ptr->cdr))
4234 tail = ptr->cdr;
4235 else
4236 break;
4237 }
4238
70949dac 4239 mark_object (&XCDR (tail));
4c315bda
RS
4240 }
4241 else
4242 mark_object (&buffer->undo_list);
4243
7146af97
JB
4244 for (ptr = &buffer->name + 1;
4245 (char *)ptr < (char *)buffer + sizeof (struct buffer);
4246 ptr++)
4247 mark_object (ptr);
30e3190a
RS
4248
4249 /* If this is an indirect buffer, mark its base buffer. */
6b552283 4250 if (buffer->base_buffer && !XMARKBIT (buffer->base_buffer->name))
30e3190a
RS
4251 {
4252 XSETBUFFER (base_buffer, buffer->base_buffer);
4253 mark_buffer (base_buffer);
4254 }
7146af97 4255}
084b1a0c
KH
4256
4257
b875d3f7 4258/* Mark the pointers in the kboard objects. */
084b1a0c
KH
4259
4260static void
b875d3f7 4261mark_kboards ()
084b1a0c 4262{
b875d3f7 4263 KBOARD *kb;
b94daf1e 4264 Lisp_Object *p;
b875d3f7 4265 for (kb = all_kboards; kb; kb = kb->next_kboard)
084b1a0c 4266 {
b94daf1e
KH
4267 if (kb->kbd_macro_buffer)
4268 for (p = kb->kbd_macro_buffer; p < kb->kbd_macro_ptr; p++)
4269 mark_object (p);
4bfd0c4f
RS
4270 mark_object (&kb->Voverriding_terminal_local_map);
4271 mark_object (&kb->Vlast_command);
4272 mark_object (&kb->Vreal_last_command);
9671abc2 4273 mark_object (&kb->Vprefix_arg);
23c73c16 4274 mark_object (&kb->Vlast_prefix_arg);
b875d3f7 4275 mark_object (&kb->kbd_queue);
4bfd0c4f 4276 mark_object (&kb->defining_kbd_macro);
b875d3f7 4277 mark_object (&kb->Vlast_kbd_macro);
b94daf1e 4278 mark_object (&kb->Vsystem_key_alist);
6d03a6fd 4279 mark_object (&kb->system_key_syms);
4bfd0c4f 4280 mark_object (&kb->Vdefault_minibuffer_frame);
084b1a0c
KH
4281 }
4282}
41c28a37
GM
4283
4284
4285/* Value is non-zero if OBJ will survive the current GC because it's
4286 either marked or does not need to be marked to survive. */
4287
4288int
4289survives_gc_p (obj)
4290 Lisp_Object obj;
4291{
4292 int survives_p;
4293
4294 switch (XGCTYPE (obj))
4295 {
4296 case Lisp_Int:
4297 survives_p = 1;
4298 break;
4299
4300 case Lisp_Symbol:
4301 survives_p = XMARKBIT (XSYMBOL (obj)->plist);
4302 break;
4303
4304 case Lisp_Misc:
4305 switch (XMISCTYPE (obj))
4306 {
4307 case Lisp_Misc_Marker:
4308 survives_p = XMARKBIT (obj);
4309 break;
4310
4311 case Lisp_Misc_Buffer_Local_Value:
4312 case Lisp_Misc_Some_Buffer_Local_Value:
4313 survives_p = XMARKBIT (XBUFFER_LOCAL_VALUE (obj)->realvalue);
4314 break;
4315
4316 case Lisp_Misc_Intfwd:
4317 case Lisp_Misc_Boolfwd:
4318 case Lisp_Misc_Objfwd:
4319 case Lisp_Misc_Buffer_Objfwd:
4320 case Lisp_Misc_Kboard_Objfwd:
4321 survives_p = 1;
4322 break;
4323
4324 case Lisp_Misc_Overlay:
4325 survives_p = XMARKBIT (XOVERLAY (obj)->plist);
4326 break;
4327
4328 default:
4329 abort ();
4330 }
4331 break;
4332
4333 case Lisp_String:
4334 {
4335 struct Lisp_String *s = XSTRING (obj);
2e471eb5 4336 survives_p = STRING_MARKED_P (s);
41c28a37
GM
4337 }
4338 break;
4339
4340 case Lisp_Vectorlike:
4341 if (GC_BUFFERP (obj))
4342 survives_p = XMARKBIT (XBUFFER (obj)->name);
4343 else if (GC_SUBRP (obj))
4344 survives_p = 1;
4345 else
4346 survives_p = XVECTOR (obj)->size & ARRAY_MARK_FLAG;
4347 break;
4348
4349 case Lisp_Cons:
4350 survives_p = XMARKBIT (XCAR (obj));
4351 break;
4352
41c28a37
GM
4353 case Lisp_Float:
4354 survives_p = XMARKBIT (XFLOAT (obj)->type);
4355 break;
41c28a37
GM
4356
4357 default:
4358 abort ();
4359 }
4360
34400008 4361 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
41c28a37
GM
4362}
4363
4364
7146af97 4365\f
1a4f1e2c 4366/* Sweep: find all structures not marked, and free them. */
7146af97
JB
4367
4368static void
4369gc_sweep ()
4370{
41c28a37
GM
4371 /* Remove or mark entries in weak hash tables.
4372 This must be done before any object is unmarked. */
4373 sweep_weak_hash_tables ();
4374
2e471eb5 4375 sweep_strings ();
7146af97
JB
4376
4377 /* Put all unmarked conses on free list */
4378 {
4379 register struct cons_block *cblk;
6ca94ac9 4380 struct cons_block **cprev = &cons_block;
7146af97
JB
4381 register int lim = cons_block_index;
4382 register int num_free = 0, num_used = 0;
4383
4384 cons_free_list = 0;
4385
6ca94ac9 4386 for (cblk = cons_block; cblk; cblk = *cprev)
7146af97
JB
4387 {
4388 register int i;
6ca94ac9 4389 int this_free = 0;
7146af97
JB
4390 for (i = 0; i < lim; i++)
4391 if (!XMARKBIT (cblk->conses[i].car))
4392 {
6ca94ac9 4393 this_free++;
1cd5fe6a 4394 *(struct Lisp_Cons **)&cblk->conses[i].cdr = cons_free_list;
7146af97 4395 cons_free_list = &cblk->conses[i];
34400008
GM
4396#if GC_MARK_STACK
4397 cons_free_list->car = Vdead;
4398#endif
7146af97
JB
4399 }
4400 else
4401 {
4402 num_used++;
4403 XUNMARK (cblk->conses[i].car);
4404 }
4405 lim = CONS_BLOCK_SIZE;
6ca94ac9
KH
4406 /* If this block contains only free conses and we have already
4407 seen more than two blocks worth of free conses then deallocate
4408 this block. */
6feef451 4409 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
6ca94ac9 4410 {
6ca94ac9
KH
4411 *cprev = cblk->next;
4412 /* Unhook from the free list. */
4413 cons_free_list = *(struct Lisp_Cons **) &cblk->conses[0].cdr;
c8099634
RS
4414 lisp_free (cblk);
4415 n_cons_blocks--;
6ca94ac9
KH
4416 }
4417 else
6feef451
AS
4418 {
4419 num_free += this_free;
4420 cprev = &cblk->next;
4421 }
7146af97
JB
4422 }
4423 total_conses = num_used;
4424 total_free_conses = num_free;
4425 }
4426
7146af97
JB
4427 /* Put all unmarked floats on free list */
4428 {
4429 register struct float_block *fblk;
6ca94ac9 4430 struct float_block **fprev = &float_block;
7146af97
JB
4431 register int lim = float_block_index;
4432 register int num_free = 0, num_used = 0;
4433
4434 float_free_list = 0;
4435
6ca94ac9 4436 for (fblk = float_block; fblk; fblk = *fprev)
7146af97
JB
4437 {
4438 register int i;
6ca94ac9 4439 int this_free = 0;
7146af97
JB
4440 for (i = 0; i < lim; i++)
4441 if (!XMARKBIT (fblk->floats[i].type))
4442 {
6ca94ac9 4443 this_free++;
1cd5fe6a 4444 *(struct Lisp_Float **)&fblk->floats[i].data = float_free_list;
7146af97 4445 float_free_list = &fblk->floats[i];
34400008
GM
4446#if GC_MARK_STACK
4447 float_free_list->type = Vdead;
4448#endif
7146af97
JB
4449 }
4450 else
4451 {
4452 num_used++;
4453 XUNMARK (fblk->floats[i].type);
4454 }
4455 lim = FLOAT_BLOCK_SIZE;
6ca94ac9
KH
4456 /* If this block contains only free floats and we have already
4457 seen more than two blocks worth of free floats then deallocate
4458 this block. */
6feef451 4459 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
6ca94ac9 4460 {
6ca94ac9
KH
4461 *fprev = fblk->next;
4462 /* Unhook from the free list. */
4463 float_free_list = *(struct Lisp_Float **) &fblk->floats[0].data;
c8099634
RS
4464 lisp_free (fblk);
4465 n_float_blocks--;
6ca94ac9
KH
4466 }
4467 else
6feef451
AS
4468 {
4469 num_free += this_free;
4470 fprev = &fblk->next;
4471 }
7146af97
JB
4472 }
4473 total_floats = num_used;
4474 total_free_floats = num_free;
4475 }
7146af97 4476
d5e35230
JA
4477 /* Put all unmarked intervals on free list */
4478 {
4479 register struct interval_block *iblk;
6ca94ac9 4480 struct interval_block **iprev = &interval_block;
d5e35230
JA
4481 register int lim = interval_block_index;
4482 register int num_free = 0, num_used = 0;
4483
4484 interval_free_list = 0;
4485
6ca94ac9 4486 for (iblk = interval_block; iblk; iblk = *iprev)
d5e35230
JA
4487 {
4488 register int i;
6ca94ac9 4489 int this_free = 0;
d5e35230
JA
4490
4491 for (i = 0; i < lim; i++)
4492 {
4493 if (! XMARKBIT (iblk->intervals[i].plist))
4494 {
439d5cb4 4495 SET_INTERVAL_PARENT (&iblk->intervals[i], interval_free_list);
d5e35230 4496 interval_free_list = &iblk->intervals[i];
6ca94ac9 4497 this_free++;
d5e35230
JA
4498 }
4499 else
4500 {
4501 num_used++;
4502 XUNMARK (iblk->intervals[i].plist);
4503 }
4504 }
4505 lim = INTERVAL_BLOCK_SIZE;
6ca94ac9
KH
4506 /* If this block contains only free intervals and we have already
4507 seen more than two blocks worth of free intervals then
4508 deallocate this block. */
6feef451 4509 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
6ca94ac9 4510 {
6ca94ac9
KH
4511 *iprev = iblk->next;
4512 /* Unhook from the free list. */
439d5cb4 4513 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
c8099634
RS
4514 lisp_free (iblk);
4515 n_interval_blocks--;
6ca94ac9
KH
4516 }
4517 else
6feef451
AS
4518 {
4519 num_free += this_free;
4520 iprev = &iblk->next;
4521 }
d5e35230
JA
4522 }
4523 total_intervals = num_used;
4524 total_free_intervals = num_free;
4525 }
d5e35230 4526
7146af97
JB
4527 /* Put all unmarked symbols on free list */
4528 {
4529 register struct symbol_block *sblk;
6ca94ac9 4530 struct symbol_block **sprev = &symbol_block;
7146af97
JB
4531 register int lim = symbol_block_index;
4532 register int num_free = 0, num_used = 0;
4533
4534 symbol_free_list = 0;
4535
6ca94ac9 4536 for (sblk = symbol_block; sblk; sblk = *sprev)
7146af97
JB
4537 {
4538 register int i;
6ca94ac9 4539 int this_free = 0;
7146af97
JB
4540 for (i = 0; i < lim; i++)
4541 if (!XMARKBIT (sblk->symbols[i].plist))
4542 {
85481507 4543 *(struct Lisp_Symbol **)&sblk->symbols[i].value = symbol_free_list;
7146af97 4544 symbol_free_list = &sblk->symbols[i];
34400008
GM
4545#if GC_MARK_STACK
4546 symbol_free_list->function = Vdead;
4547#endif
6ca94ac9 4548 this_free++;
7146af97
JB
4549 }
4550 else
4551 {
4552 num_used++;
34400008
GM
4553 if (!PURE_POINTER_P (sblk->symbols[i].name))
4554 UNMARK_STRING (sblk->symbols[i].name);
7146af97
JB
4555 XUNMARK (sblk->symbols[i].plist);
4556 }
4557 lim = SYMBOL_BLOCK_SIZE;
6ca94ac9
KH
4558 /* If this block contains only free symbols and we have already
4559 seen more than two blocks worth of free symbols then deallocate
4560 this block. */
6feef451 4561 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
6ca94ac9 4562 {
6ca94ac9
KH
4563 *sprev = sblk->next;
4564 /* Unhook from the free list. */
4565 symbol_free_list = *(struct Lisp_Symbol **)&sblk->symbols[0].value;
c8099634
RS
4566 lisp_free (sblk);
4567 n_symbol_blocks--;
6ca94ac9
KH
4568 }
4569 else
6feef451
AS
4570 {
4571 num_free += this_free;
4572 sprev = &sblk->next;
4573 }
7146af97
JB
4574 }
4575 total_symbols = num_used;
4576 total_free_symbols = num_free;
4577 }
4578
a9faeabe
RS
4579 /* Put all unmarked misc's on free list.
4580 For a marker, first unchain it from the buffer it points into. */
7146af97
JB
4581 {
4582 register struct marker_block *mblk;
6ca94ac9 4583 struct marker_block **mprev = &marker_block;
7146af97
JB
4584 register int lim = marker_block_index;
4585 register int num_free = 0, num_used = 0;
4586
4587 marker_free_list = 0;
4588
6ca94ac9 4589 for (mblk = marker_block; mblk; mblk = *mprev)
7146af97
JB
4590 {
4591 register int i;
6ca94ac9 4592 int this_free = 0;
26b926e1 4593 EMACS_INT already_free = -1;
fa05e253 4594
7146af97 4595 for (i = 0; i < lim; i++)
465edf35
KH
4596 {
4597 Lisp_Object *markword;
a5da44fe 4598 switch (mblk->markers[i].u_marker.type)
465edf35
KH
4599 {
4600 case Lisp_Misc_Marker:
4601 markword = &mblk->markers[i].u_marker.chain;
4602 break;
4603 case Lisp_Misc_Buffer_Local_Value:
4604 case Lisp_Misc_Some_Buffer_Local_Value:
a9faeabe 4605 markword = &mblk->markers[i].u_buffer_local_value.realvalue;
465edf35 4606 break;
e202fa34
KH
4607 case Lisp_Misc_Overlay:
4608 markword = &mblk->markers[i].u_overlay.plist;
4609 break;
fa05e253
RS
4610 case Lisp_Misc_Free:
4611 /* If the object was already free, keep it
4612 on the free list. */
74d84334 4613 markword = (Lisp_Object *) &already_free;
fa05e253 4614 break;
465edf35
KH
4615 default:
4616 markword = 0;
e202fa34 4617 break;
465edf35
KH
4618 }
4619 if (markword && !XMARKBIT (*markword))
4620 {
4621 Lisp_Object tem;
a5da44fe 4622 if (mblk->markers[i].u_marker.type == Lisp_Misc_Marker)
465edf35
KH
4623 {
4624 /* tem1 avoids Sun compiler bug */
4625 struct Lisp_Marker *tem1 = &mblk->markers[i].u_marker;
4626 XSETMARKER (tem, tem1);
4627 unchain_marker (tem);
4628 }
fa05e253
RS
4629 /* Set the type of the freed object to Lisp_Misc_Free.
4630 We could leave the type alone, since nobody checks it,
465edf35 4631 but this might catch bugs faster. */
a5da44fe 4632 mblk->markers[i].u_marker.type = Lisp_Misc_Free;
465edf35
KH
4633 mblk->markers[i].u_free.chain = marker_free_list;
4634 marker_free_list = &mblk->markers[i];
6ca94ac9 4635 this_free++;
465edf35
KH
4636 }
4637 else
4638 {
4639 num_used++;
4640 if (markword)
4641 XUNMARK (*markword);
4642 }
4643 }
7146af97 4644 lim = MARKER_BLOCK_SIZE;
6ca94ac9
KH
4645 /* If this block contains only free markers and we have already
4646 seen more than two blocks worth of free markers then deallocate
4647 this block. */
6feef451 4648 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
6ca94ac9 4649 {
6ca94ac9
KH
4650 *mprev = mblk->next;
4651 /* Unhook from the free list. */
4652 marker_free_list = mblk->markers[0].u_free.chain;
c8099634
RS
4653 lisp_free (mblk);
4654 n_marker_blocks--;
6ca94ac9
KH
4655 }
4656 else
6feef451
AS
4657 {
4658 num_free += this_free;
4659 mprev = &mblk->next;
4660 }
7146af97
JB
4661 }
4662
4663 total_markers = num_used;
4664 total_free_markers = num_free;
4665 }
4666
4667 /* Free all unmarked buffers */
4668 {
4669 register struct buffer *buffer = all_buffers, *prev = 0, *next;
4670
4671 while (buffer)
4672 if (!XMARKBIT (buffer->name))
4673 {
4674 if (prev)
4675 prev->next = buffer->next;
4676 else
4677 all_buffers = buffer->next;
4678 next = buffer->next;
34400008 4679 lisp_free (buffer);
7146af97
JB
4680 buffer = next;
4681 }
4682 else
4683 {
4684 XUNMARK (buffer->name);
30e3190a 4685 UNMARK_BALANCE_INTERVALS (BUF_INTERVALS (buffer));
7146af97
JB
4686 prev = buffer, buffer = buffer->next;
4687 }
4688 }
4689
7146af97
JB
4690 /* Free all unmarked vectors */
4691 {
4692 register struct Lisp_Vector *vector = all_vectors, *prev = 0, *next;
4693 total_vector_size = 0;
4694
4695 while (vector)
4696 if (!(vector->size & ARRAY_MARK_FLAG))
4697 {
4698 if (prev)
4699 prev->next = vector->next;
4700 else
4701 all_vectors = vector->next;
4702 next = vector->next;
c8099634
RS
4703 lisp_free (vector);
4704 n_vectors--;
7146af97 4705 vector = next;
41c28a37 4706
7146af97
JB
4707 }
4708 else
4709 {
4710 vector->size &= ~ARRAY_MARK_FLAG;
fa05e253
RS
4711 if (vector->size & PSEUDOVECTOR_FLAG)
4712 total_vector_size += (PSEUDOVECTOR_SIZE_MASK & vector->size);
4713 else
4714 total_vector_size += vector->size;
7146af97
JB
4715 prev = vector, vector = vector->next;
4716 }
4717 }
7146af97 4718}
7146af97 4719
7146af97 4720
7146af97 4721
7146af97 4722\f
20d24714
JB
4723/* Debugging aids. */
4724
31ce1c91 4725DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
20d24714
JB
4726 "Return the address of the last byte Emacs has allocated, divided by 1024.\n\
4727This may be helpful in debugging Emacs's memory usage.\n\
e41ae81f 4728We divide the value by 1024 to make sure it fits in a Lisp integer.")
20d24714
JB
4729 ()
4730{
4731 Lisp_Object end;
4732
45d12a89 4733 XSETINT (end, (EMACS_INT) sbrk (0) / 1024);
20d24714
JB
4734
4735 return end;
4736}
4737
310ea200
RS
4738DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
4739 "Return a list of counters that measure how much consing there has been.\n\
4740Each of these counters increments for a certain kind of object.\n\
4741The counters wrap around from the largest positive integer to zero.\n\
4742Garbage collection does not decrease them.\n\
4743The elements of the value are as follows:\n\
2e471eb5 4744 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)\n\
310ea200
RS
4745All are in units of 1 = one object consed\n\
4746except for VECTOR-CELLS and STRING-CHARS, which count the total length of\n\
4747objects consed.\n\
4748MISCS include overlays, markers, and some internal types.\n\
4749Frames, windows, buffers, and subprocesses count as vectors\n\
4750 (but the contents of a buffer's text do not count here).")
4751 ()
4752{
2e471eb5 4753 Lisp_Object consed[8];
310ea200 4754
2e471eb5 4755 XSETINT (consed[0],
290c8f1e 4756 cons_cells_consed & ~(((EMACS_INT) 1) << (VALBITS - 1)));
2e471eb5 4757 XSETINT (consed[1],
290c8f1e 4758 floats_consed & ~(((EMACS_INT) 1) << (VALBITS - 1)));
2e471eb5 4759 XSETINT (consed[2],
290c8f1e 4760 vector_cells_consed & ~(((EMACS_INT) 1) << (VALBITS - 1)));
2e471eb5 4761 XSETINT (consed[3],
290c8f1e 4762 symbols_consed & ~(((EMACS_INT) 1) << (VALBITS - 1)));
2e471eb5 4763 XSETINT (consed[4],
290c8f1e 4764 string_chars_consed & ~(((EMACS_INT) 1) << (VALBITS - 1)));
2e471eb5 4765 XSETINT (consed[5],
290c8f1e 4766 misc_objects_consed & ~(((EMACS_INT) 1) << (VALBITS - 1)));
2e471eb5 4767 XSETINT (consed[6],
290c8f1e 4768 intervals_consed & ~(((EMACS_INT) 1) << (VALBITS - 1)));
2e471eb5
GM
4769 XSETINT (consed[7],
4770 strings_consed & ~(((EMACS_INT) 1) << (VALBITS - 1)));
310ea200 4771
2e471eb5 4772 return Flist (8, consed);
310ea200 4773}
e0b8c689
KR
4774
4775int suppress_checking;
4776void
4777die (msg, file, line)
4778 const char *msg;
4779 const char *file;
4780 int line;
4781{
4782 fprintf (stderr, "\r\nEmacs fatal error: %s:%d: %s\r\n",
4783 file, line, msg);
4784 abort ();
4785}
20d24714 4786\f
7146af97
JB
4787/* Initialization */
4788
dfcf069d 4789void
7146af97
JB
4790init_alloc_once ()
4791{
4792 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
4793 pureptr = 0;
34400008
GM
4794#if GC_MARK_STACK
4795 mem_init ();
4796 Vdead = make_pure_string ("DEAD", 4, 4, 0);
4797#endif
4c0be5f4
JB
4798#ifdef HAVE_SHM
4799 pure_size = PURESIZE;
4800#endif
7146af97
JB
4801 all_vectors = 0;
4802 ignore_warnings = 1;
d1658221
RS
4803#ifdef DOUG_LEA_MALLOC
4804 mallopt (M_TRIM_THRESHOLD, 128*1024); /* trim threshold */
4805 mallopt (M_MMAP_THRESHOLD, 64*1024); /* mmap threshold */
81d492d5 4806 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* max. number of mmap'ed areas */
d1658221 4807#endif
7146af97
JB
4808 init_strings ();
4809 init_cons ();
4810 init_symbol ();
4811 init_marker ();
7146af97 4812 init_float ();
34400008 4813 init_intervals ();
d5e35230 4814
276cbe5a
RS
4815#ifdef REL_ALLOC
4816 malloc_hysteresis = 32;
4817#else
4818 malloc_hysteresis = 0;
4819#endif
4820
4821 spare_memory = (char *) malloc (SPARE_MEMORY);
4822
7146af97
JB
4823 ignore_warnings = 0;
4824 gcprolist = 0;
630686c8 4825 byte_stack_list = 0;
7146af97
JB
4826 staticidx = 0;
4827 consing_since_gc = 0;
7d179cea 4828 gc_cons_threshold = 100000 * sizeof (Lisp_Object);
7146af97
JB
4829#ifdef VIRT_ADDR_VARIES
4830 malloc_sbrk_unused = 1<<22; /* A large number */
4831 malloc_sbrk_used = 100000; /* as reasonable as any number */
4832#endif /* VIRT_ADDR_VARIES */
4833}
4834
dfcf069d 4835void
7146af97
JB
4836init_alloc ()
4837{
4838 gcprolist = 0;
630686c8 4839 byte_stack_list = 0;
182ff242
GM
4840#if GC_MARK_STACK
4841#if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4842 setjmp_tested_p = longjmps_done = 0;
4843#endif
4844#endif
7146af97
JB
4845}
4846
4847void
4848syms_of_alloc ()
4849{
4850 DEFVAR_INT ("gc-cons-threshold", &gc_cons_threshold,
4851 "*Number of bytes of consing between garbage collections.\n\
4852Garbage collection can happen automatically once this many bytes have been\n\
4853allocated since the last garbage collection. All data types count.\n\n\
4854Garbage collection happens automatically only when `eval' is called.\n\n\
4855By binding this temporarily to a large number, you can effectively\n\
4856prevent garbage collection during a part of the program.");
4857
4858 DEFVAR_INT ("pure-bytes-used", &pureptr,
4859 "Number of bytes of sharable Lisp data allocated so far.");
4860
0819585c
RS
4861 DEFVAR_INT ("cons-cells-consed", &cons_cells_consed,
4862 "Number of cons cells that have been consed so far.");
4863
4864 DEFVAR_INT ("floats-consed", &floats_consed,
4865 "Number of floats that have been consed so far.");
4866
4867 DEFVAR_INT ("vector-cells-consed", &vector_cells_consed,
4868 "Number of vector cells that have been consed so far.");
4869
4870 DEFVAR_INT ("symbols-consed", &symbols_consed,
4871 "Number of symbols that have been consed so far.");
4872
4873 DEFVAR_INT ("string-chars-consed", &string_chars_consed,
4874 "Number of string characters that have been consed so far.");
4875
4876 DEFVAR_INT ("misc-objects-consed", &misc_objects_consed,
4877 "Number of miscellaneous objects that have been consed so far.");
4878
4879 DEFVAR_INT ("intervals-consed", &intervals_consed,
4880 "Number of intervals that have been consed so far.");
4881
2e471eb5
GM
4882 DEFVAR_INT ("strings-consed", &strings_consed,
4883 "Number of strings that have been consed so far.");
4884
7146af97
JB
4885 DEFVAR_LISP ("purify-flag", &Vpurify_flag,
4886 "Non-nil means loading Lisp code in order to dump an executable.\n\
4887This means that certain objects should be allocated in shared (pure) space.");
4888
502b9b64 4889 DEFVAR_INT ("undo-limit", &undo_limit,
7146af97 4890 "Keep no more undo information once it exceeds this size.\n\
502b9b64 4891This limit is applied when garbage collection happens.\n\
7146af97
JB
4892The size is counted as the number of bytes occupied,\n\
4893which includes both saved text and other data.");
502b9b64 4894 undo_limit = 20000;
7146af97 4895
502b9b64 4896 DEFVAR_INT ("undo-strong-limit", &undo_strong_limit,
7146af97
JB
4897 "Don't keep more than this much size of undo information.\n\
4898A command which pushes past this size is itself forgotten.\n\
502b9b64 4899This limit is applied when garbage collection happens.\n\
7146af97
JB
4900The size is counted as the number of bytes occupied,\n\
4901which includes both saved text and other data.");
502b9b64 4902 undo_strong_limit = 30000;
7146af97 4903
299585ee
RS
4904 DEFVAR_BOOL ("garbage-collection-messages", &garbage_collection_messages,
4905 "Non-nil means display messages at start and end of garbage collection.");
4906 garbage_collection_messages = 0;
4907
bcb61d60
KH
4908 /* We build this in advance because if we wait until we need it, we might
4909 not be able to allocate the memory to hold it. */
cf3540e4 4910 memory_signal_data
276cbe5a 4911 = Fcons (Qerror, Fcons (build_string ("Memory exhausted--use M-x save-some-buffers RET"), Qnil));
bcb61d60
KH
4912 staticpro (&memory_signal_data);
4913
e8197642
RS
4914 staticpro (&Qgc_cons_threshold);
4915 Qgc_cons_threshold = intern ("gc-cons-threshold");
4916
a59de17b
RS
4917 staticpro (&Qchar_table_extra_slots);
4918 Qchar_table_extra_slots = intern ("char-table-extra-slots");
4919
7146af97
JB
4920 defsubr (&Scons);
4921 defsubr (&Slist);
4922 defsubr (&Svector);
4923 defsubr (&Smake_byte_code);
4924 defsubr (&Smake_list);
4925 defsubr (&Smake_vector);
7b07587b 4926 defsubr (&Smake_char_table);
7146af97 4927 defsubr (&Smake_string);
7b07587b 4928 defsubr (&Smake_bool_vector);
7146af97
JB
4929 defsubr (&Smake_symbol);
4930 defsubr (&Smake_marker);
4931 defsubr (&Spurecopy);
4932 defsubr (&Sgarbage_collect);
20d24714 4933 defsubr (&Smemory_limit);
310ea200 4934 defsubr (&Smemory_use_counts);
34400008
GM
4935
4936#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4937 defsubr (&Sgc_status);
4938#endif
7146af97 4939}