(disabled-command-hook): Use shorthand for obsolescence.
[bpt/emacs.git] / src / alloc.c
CommitLineData
7146af97 1/* Storage allocation and gc for GNU Emacs Lisp interpreter.
d05b383a 2 Copyright (C) 1985,86,88,93,94,95,97,98,1999,2000,01,02,03,2004
4a2f9c6a 3 Free Software Foundation, Inc.
7146af97
JB
4
5This file is part of GNU Emacs.
6
7GNU Emacs is free software; you can redistribute it and/or modify
8it under the terms of the GNU General Public License as published by
7c299e7a 9the Free Software Foundation; either version 2, or (at your option)
7146af97
JB
10any later version.
11
12GNU Emacs is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15GNU General Public License for more details.
16
17You should have received a copy of the GNU General Public License
18along with GNU Emacs; see the file COPYING. If not, write to
3b7ad313
EN
19the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
20Boston, MA 02111-1307, USA. */
7146af97 21
18160b98 22#include <config.h>
e9b309ac 23#include <stdio.h>
ab6780cd 24#include <limits.h> /* For CHAR_BIT. */
92939d31 25
4455ad75
RS
26#ifdef ALLOC_DEBUG
27#undef INLINE
28#endif
29
68c45bf0 30/* Note that this declares bzero on OSF/1. How dumb. */
2e471eb5 31
68c45bf0 32#include <signal.h>
92939d31 33
7539e11f
KR
34/* This file is part of the core Lisp implementation, and thus must
35 deal with the real data structures. If the Lisp implementation is
36 replaced, this file likely will not be used. */
2e471eb5 37
7539e11f 38#undef HIDE_LISP_IMPLEMENTATION
7146af97 39#include "lisp.h"
ece93c02 40#include "process.h"
d5e35230 41#include "intervals.h"
4c0be5f4 42#include "puresize.h"
7146af97
JB
43#include "buffer.h"
44#include "window.h"
2538fae4 45#include "keyboard.h"
502b9b64 46#include "frame.h"
9ac0d9e0 47#include "blockinput.h"
e54daa22 48#include "charset.h"
e065a56e 49#include "syssignal.h"
34400008 50#include <setjmp.h>
e065a56e 51
ad5f3636
DL
52/* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
53 memory. Can do this only if using gmalloc.c. */
54
55#if defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC
56#undef GC_MALLOC_CHECK
57#endif
58
bf952fb6
DL
59#ifdef HAVE_UNISTD_H
60#include <unistd.h>
61#else
62extern POINTER_TYPE *sbrk ();
63#endif
ee1eea5c 64
d1658221 65#ifdef DOUG_LEA_MALLOC
2e471eb5 66
d1658221 67#include <malloc.h>
3e60b029
DL
68/* malloc.h #defines this as size_t, at least in glibc2. */
69#ifndef __malloc_size_t
d1658221 70#define __malloc_size_t int
3e60b029 71#endif
81d492d5 72
2e471eb5
GM
73/* Specify maximum number of areas to mmap. It would be nice to use a
74 value that explicitly means "no limit". */
75
81d492d5
RS
76#define MMAP_MAX_AREAS 100000000
77
2e471eb5
GM
78#else /* not DOUG_LEA_MALLOC */
79
276cbe5a
RS
80/* The following come from gmalloc.c. */
81
276cbe5a 82#define __malloc_size_t size_t
276cbe5a 83extern __malloc_size_t _bytes_used;
3e60b029 84extern __malloc_size_t __malloc_extra_blocks;
2e471eb5
GM
85
86#endif /* not DOUG_LEA_MALLOC */
276cbe5a 87
276cbe5a 88/* Value of _bytes_used, when spare_memory was freed. */
2e471eb5 89
276cbe5a
RS
90static __malloc_size_t bytes_used_when_full;
91
2e471eb5
GM
92/* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
93 to a struct Lisp_String. */
94
7cdee936
SM
95#define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
96#define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
97#define STRING_MARKED_P(S) ((S)->size & ARRAY_MARK_FLAG)
2e471eb5 98
3ef06d12
SM
99#define VECTOR_MARK(V) ((V)->size |= ARRAY_MARK_FLAG)
100#define VECTOR_UNMARK(V) ((V)->size &= ~ARRAY_MARK_FLAG)
101#define VECTOR_MARKED_P(V) ((V)->size & ARRAY_MARK_FLAG)
102
2e471eb5
GM
103/* Value is the number of bytes/chars of S, a pointer to a struct
104 Lisp_String. This must be used instead of STRING_BYTES (S) or
105 S->size during GC, because S->size contains the mark bit for
106 strings. */
107
3ef06d12 108#define GC_STRING_BYTES(S) (STRING_BYTES (S))
7cdee936 109#define GC_STRING_CHARS(S) ((S)->size & ~ARRAY_MARK_FLAG)
2e471eb5
GM
110
111/* Number of bytes of consing done since the last gc. */
112
7146af97
JB
113int consing_since_gc;
114
310ea200 115/* Count the amount of consing of various sorts of space. */
2e471eb5 116
31ade731
SM
117EMACS_INT cons_cells_consed;
118EMACS_INT floats_consed;
119EMACS_INT vector_cells_consed;
120EMACS_INT symbols_consed;
121EMACS_INT string_chars_consed;
122EMACS_INT misc_objects_consed;
123EMACS_INT intervals_consed;
124EMACS_INT strings_consed;
2e471eb5
GM
125
126/* Number of bytes of consing since GC before another GC should be done. */
310ea200 127
31ade731 128EMACS_INT gc_cons_threshold;
7146af97 129
2e471eb5
GM
130/* Nonzero during GC. */
131
7146af97
JB
132int gc_in_progress;
133
3de0effb
RS
134/* Nonzero means abort if try to GC.
135 This is for code which is written on the assumption that
136 no GC will happen, so as to verify that assumption. */
137
138int abort_on_gc;
139
299585ee 140/* Nonzero means display messages at beginning and end of GC. */
2e471eb5 141
299585ee
RS
142int garbage_collection_messages;
143
7146af97
JB
144#ifndef VIRT_ADDR_VARIES
145extern
146#endif /* VIRT_ADDR_VARIES */
2e471eb5 147int malloc_sbrk_used;
7146af97
JB
148
149#ifndef VIRT_ADDR_VARIES
150extern
151#endif /* VIRT_ADDR_VARIES */
2e471eb5 152int malloc_sbrk_unused;
7146af97 153
502b9b64 154/* Two limits controlling how much undo information to keep. */
2e471eb5 155
31ade731
SM
156EMACS_INT undo_limit;
157EMACS_INT undo_strong_limit;
ae6a9bfe 158EMACS_INT undo_outer_limit;
7146af97 159
34400008
GM
160/* Number of live and free conses etc. */
161
162static int total_conses, total_markers, total_symbols, total_vector_size;
163static int total_free_conses, total_free_markers, total_free_symbols;
164static int total_free_floats, total_floats;
fd27a537 165
2e471eb5
GM
166/* Points to memory space allocated as "spare", to be freed if we run
167 out of memory. */
168
276cbe5a
RS
169static char *spare_memory;
170
171/* Amount of spare memory to keep in reserve. */
2e471eb5 172
276cbe5a
RS
173#define SPARE_MEMORY (1 << 14)
174
175/* Number of extra blocks malloc should get when it needs more core. */
2e471eb5 176
276cbe5a
RS
177static int malloc_hysteresis;
178
2e471eb5
GM
179/* Non-nil means defun should do purecopy on the function definition. */
180
7146af97
JB
181Lisp_Object Vpurify_flag;
182
74a54b04
RS
183/* Non-nil means we are handling a memory-full error. */
184
185Lisp_Object Vmemory_full;
186
7146af97 187#ifndef HAVE_SHM
2e471eb5 188
379b98b1
PE
189/* Force it into data space! Initialize it to a nonzero value;
190 otherwise some compilers put it into BSS. */
2e471eb5 191
379b98b1 192EMACS_INT pure[PURESIZE / sizeof (EMACS_INT)] = {1,};
7146af97 193#define PUREBEG (char *) pure
2e471eb5 194
9e713715 195#else /* HAVE_SHM */
2e471eb5 196
7146af97
JB
197#define pure PURE_SEG_BITS /* Use shared memory segment */
198#define PUREBEG (char *)PURE_SEG_BITS
4c0be5f4 199
9e713715 200#endif /* HAVE_SHM */
2e471eb5 201
9e713715 202/* Pointer to the pure area, and its size. */
2e471eb5 203
9e713715
GM
204static char *purebeg;
205static size_t pure_size;
206
207/* Number of bytes of pure storage used before pure storage overflowed.
208 If this is non-zero, this implies that an overflow occurred. */
209
210static size_t pure_bytes_used_before_overflow;
7146af97 211
34400008
GM
212/* Value is non-zero if P points into pure space. */
213
214#define PURE_POINTER_P(P) \
215 (((PNTR_COMPARISON_TYPE) (P) \
9e713715 216 < (PNTR_COMPARISON_TYPE) ((char *) purebeg + pure_size)) \
34400008 217 && ((PNTR_COMPARISON_TYPE) (P) \
9e713715 218 >= (PNTR_COMPARISON_TYPE) purebeg))
34400008 219
2e471eb5
GM
220/* Index in pure at which next pure object will be allocated.. */
221
31ade731 222EMACS_INT pure_bytes_used;
7146af97 223
2e471eb5
GM
224/* If nonzero, this is a warning delivered by malloc and not yet
225 displayed. */
226
7146af97
JB
227char *pending_malloc_warning;
228
bcb61d60 229/* Pre-computed signal argument for use when memory is exhausted. */
2e471eb5 230
74a54b04 231Lisp_Object Vmemory_signal_data;
bcb61d60 232
7146af97
JB
233/* Maximum amount of C stack to save when a GC happens. */
234
235#ifndef MAX_SAVE_STACK
236#define MAX_SAVE_STACK 16000
237#endif
238
239/* Buffer in which we save a copy of the C stack at each GC. */
240
241char *stack_copy;
242int stack_copy_size;
243
2e471eb5
GM
244/* Non-zero means ignore malloc warnings. Set during initialization.
245 Currently not used. */
246
7146af97 247int ignore_warnings;
350273a4 248
a59de17b 249Lisp_Object Qgc_cons_threshold, Qchar_table_extra_slots;
e8197642 250
9e713715
GM
251/* Hook run after GC has finished. */
252
253Lisp_Object Vpost_gc_hook, Qpost_gc_hook;
254
2c5bd608
DL
255Lisp_Object Vgc_elapsed; /* accumulated elapsed time in GC */
256EMACS_INT gcs_done; /* accumulated GCs */
257
2e471eb5 258static void mark_buffer P_ ((Lisp_Object));
6793bc63 259extern void mark_kboards P_ ((void));
b40ea20a 260extern void mark_backtrace P_ ((void));
2e471eb5 261static void gc_sweep P_ ((void));
41c28a37
GM
262static void mark_glyph_matrix P_ ((struct glyph_matrix *));
263static void mark_face_cache P_ ((struct face_cache *));
264
265#ifdef HAVE_WINDOW_SYSTEM
266static void mark_image P_ ((struct image *));
267static void mark_image_cache P_ ((struct frame *));
268#endif /* HAVE_WINDOW_SYSTEM */
269
2e471eb5
GM
270static struct Lisp_String *allocate_string P_ ((void));
271static void compact_small_strings P_ ((void));
272static void free_large_strings P_ ((void));
273static void sweep_strings P_ ((void));
7da0b0d3
RS
274
275extern int message_enable_multibyte;
34400008 276
34400008
GM
277/* When scanning the C stack for live Lisp objects, Emacs keeps track
278 of what memory allocated via lisp_malloc is intended for what
279 purpose. This enumeration specifies the type of memory. */
280
281enum mem_type
282{
283 MEM_TYPE_NON_LISP,
284 MEM_TYPE_BUFFER,
285 MEM_TYPE_CONS,
286 MEM_TYPE_STRING,
287 MEM_TYPE_MISC,
288 MEM_TYPE_SYMBOL,
289 MEM_TYPE_FLOAT,
ece93c02
GM
290 /* Keep the following vector-like types together, with
291 MEM_TYPE_WINDOW being the last, and MEM_TYPE_VECTOR the
292 first. Or change the code of live_vector_p, for instance. */
293 MEM_TYPE_VECTOR,
294 MEM_TYPE_PROCESS,
295 MEM_TYPE_HASH_TABLE,
296 MEM_TYPE_FRAME,
297 MEM_TYPE_WINDOW
34400008
GM
298};
299
877935b1 300#if GC_MARK_STACK || defined GC_MALLOC_CHECK
0b378936
GM
301
302#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
303#include <stdio.h> /* For fprintf. */
304#endif
305
306/* A unique object in pure space used to make some Lisp objects
307 on free lists recognizable in O(1). */
308
309Lisp_Object Vdead;
310
877935b1
GM
311#ifdef GC_MALLOC_CHECK
312
313enum mem_type allocated_mem_type;
314int dont_register_blocks;
315
316#endif /* GC_MALLOC_CHECK */
317
318/* A node in the red-black tree describing allocated memory containing
319 Lisp data. Each such block is recorded with its start and end
320 address when it is allocated, and removed from the tree when it
321 is freed.
322
323 A red-black tree is a balanced binary tree with the following
324 properties:
325
326 1. Every node is either red or black.
327 2. Every leaf is black.
328 3. If a node is red, then both of its children are black.
329 4. Every simple path from a node to a descendant leaf contains
330 the same number of black nodes.
331 5. The root is always black.
332
333 When nodes are inserted into the tree, or deleted from the tree,
334 the tree is "fixed" so that these properties are always true.
335
336 A red-black tree with N internal nodes has height at most 2
337 log(N+1). Searches, insertions and deletions are done in O(log N).
338 Please see a text book about data structures for a detailed
339 description of red-black trees. Any book worth its salt should
340 describe them. */
341
342struct mem_node
343{
9f7d9210
RS
344 /* Children of this node. These pointers are never NULL. When there
345 is no child, the value is MEM_NIL, which points to a dummy node. */
346 struct mem_node *left, *right;
347
348 /* The parent of this node. In the root node, this is NULL. */
349 struct mem_node *parent;
877935b1
GM
350
351 /* Start and end of allocated region. */
352 void *start, *end;
353
354 /* Node color. */
355 enum {MEM_BLACK, MEM_RED} color;
177c0ea7 356
877935b1
GM
357 /* Memory type. */
358 enum mem_type type;
359};
360
361/* Base address of stack. Set in main. */
362
363Lisp_Object *stack_base;
364
365/* Root of the tree describing allocated Lisp memory. */
366
367static struct mem_node *mem_root;
368
ece93c02
GM
369/* Lowest and highest known address in the heap. */
370
371static void *min_heap_address, *max_heap_address;
372
877935b1
GM
373/* Sentinel node of the tree. */
374
375static struct mem_node mem_z;
376#define MEM_NIL &mem_z
377
b3303f74 378static POINTER_TYPE *lisp_malloc P_ ((size_t, enum mem_type));
ece93c02 379static struct Lisp_Vector *allocate_vectorlike P_ ((EMACS_INT, enum mem_type));
bf952fb6 380static void lisp_free P_ ((POINTER_TYPE *));
34400008 381static void mark_stack P_ ((void));
34400008
GM
382static int live_vector_p P_ ((struct mem_node *, void *));
383static int live_buffer_p P_ ((struct mem_node *, void *));
384static int live_string_p P_ ((struct mem_node *, void *));
385static int live_cons_p P_ ((struct mem_node *, void *));
386static int live_symbol_p P_ ((struct mem_node *, void *));
387static int live_float_p P_ ((struct mem_node *, void *));
388static int live_misc_p P_ ((struct mem_node *, void *));
182ff242 389static void mark_maybe_object P_ ((Lisp_Object));
34400008
GM
390static void mark_memory P_ ((void *, void *));
391static void mem_init P_ ((void));
392static struct mem_node *mem_insert P_ ((void *, void *, enum mem_type));
393static void mem_insert_fixup P_ ((struct mem_node *));
394static void mem_rotate_left P_ ((struct mem_node *));
395static void mem_rotate_right P_ ((struct mem_node *));
396static void mem_delete P_ ((struct mem_node *));
397static void mem_delete_fixup P_ ((struct mem_node *));
398static INLINE struct mem_node *mem_find P_ ((void *));
399
400#if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
401static void check_gcpros P_ ((void));
402#endif
403
877935b1 404#endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
34400008 405
1f0b3fd2
GM
406/* Recording what needs to be marked for gc. */
407
408struct gcpro *gcprolist;
409
379b98b1
PE
410/* Addresses of staticpro'd variables. Initialize it to a nonzero
411 value; otherwise some compilers put it into BSS. */
1f0b3fd2 412
382d38fa 413#define NSTATICS 1280
379b98b1 414Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
1f0b3fd2
GM
415
416/* Index of next unused slot in staticvec. */
417
418int staticidx = 0;
419
420static POINTER_TYPE *pure_alloc P_ ((size_t, int));
421
422
423/* Value is SZ rounded up to the next multiple of ALIGNMENT.
424 ALIGNMENT must be a power of 2. */
425
ab6780cd
SM
426#define ALIGN(ptr, ALIGNMENT) \
427 ((POINTER_TYPE *) ((((EMACS_UINT)(ptr)) + (ALIGNMENT) - 1) \
428 & ~((ALIGNMENT) - 1)))
1f0b3fd2 429
ece93c02 430
7146af97 431\f
34400008
GM
432/************************************************************************
433 Malloc
434 ************************************************************************/
435
4455ad75 436/* Function malloc calls this if it finds we are near exhausting storage. */
d457598b
AS
437
438void
7146af97
JB
439malloc_warning (str)
440 char *str;
441{
442 pending_malloc_warning = str;
443}
444
34400008 445
4455ad75 446/* Display an already-pending malloc warning. */
34400008 447
d457598b 448void
7146af97
JB
449display_malloc_warning ()
450{
4455ad75
RS
451 call3 (intern ("display-warning"),
452 intern ("alloc"),
453 build_string (pending_malloc_warning),
454 intern ("emergency"));
7146af97 455 pending_malloc_warning = 0;
7146af97
JB
456}
457
34400008 458
d1658221 459#ifdef DOUG_LEA_MALLOC
1177ecf6 460# define BYTES_USED (mallinfo ().arena)
d1658221 461#else
1177ecf6 462# define BYTES_USED _bytes_used
d1658221
RS
463#endif
464
34400008 465
2e471eb5 466/* Called if malloc returns zero. */
276cbe5a 467
d457598b 468void
7146af97
JB
469memory_full ()
470{
74a54b04
RS
471 Vmemory_full = Qt;
472
276cbe5a 473#ifndef SYSTEM_MALLOC
d1658221 474 bytes_used_when_full = BYTES_USED;
276cbe5a
RS
475#endif
476
477 /* The first time we get here, free the spare memory. */
478 if (spare_memory)
479 {
480 free (spare_memory);
481 spare_memory = 0;
482 }
483
2e471eb5
GM
484 /* This used to call error, but if we've run out of memory, we could
485 get infinite recursion trying to build the string. */
276cbe5a 486 while (1)
74a54b04 487 Fsignal (Qnil, Vmemory_signal_data);
276cbe5a
RS
488}
489
34400008 490
276cbe5a
RS
491/* Called if we can't allocate relocatable space for a buffer. */
492
493void
494buffer_memory_full ()
495{
2e471eb5
GM
496 /* If buffers use the relocating allocator, no need to free
497 spare_memory, because we may have plenty of malloc space left
498 that we could get, and if we don't, the malloc that fails will
499 itself cause spare_memory to be freed. If buffers don't use the
500 relocating allocator, treat this like any other failing
501 malloc. */
276cbe5a
RS
502
503#ifndef REL_ALLOC
504 memory_full ();
505#endif
506
74a54b04
RS
507 Vmemory_full = Qt;
508
2e471eb5
GM
509 /* This used to call error, but if we've run out of memory, we could
510 get infinite recursion trying to build the string. */
bcb61d60 511 while (1)
74a54b04 512 Fsignal (Qnil, Vmemory_signal_data);
7146af97
JB
513}
514
34400008
GM
515
516/* Like malloc but check for no memory and block interrupt input.. */
7146af97 517
c971ff9a 518POINTER_TYPE *
7146af97 519xmalloc (size)
675d5130 520 size_t size;
7146af97 521{
c971ff9a 522 register POINTER_TYPE *val;
7146af97 523
9ac0d9e0 524 BLOCK_INPUT;
c971ff9a 525 val = (POINTER_TYPE *) malloc (size);
9ac0d9e0 526 UNBLOCK_INPUT;
7146af97 527
2e471eb5
GM
528 if (!val && size)
529 memory_full ();
7146af97
JB
530 return val;
531}
532
34400008
GM
533
534/* Like realloc but check for no memory and block interrupt input.. */
535
c971ff9a 536POINTER_TYPE *
7146af97 537xrealloc (block, size)
c971ff9a 538 POINTER_TYPE *block;
675d5130 539 size_t size;
7146af97 540{
c971ff9a 541 register POINTER_TYPE *val;
7146af97 542
9ac0d9e0 543 BLOCK_INPUT;
56d2031b
JB
544 /* We must call malloc explicitly when BLOCK is 0, since some
545 reallocs don't do this. */
546 if (! block)
c971ff9a 547 val = (POINTER_TYPE *) malloc (size);
f048679d 548 else
c971ff9a 549 val = (POINTER_TYPE *) realloc (block, size);
9ac0d9e0 550 UNBLOCK_INPUT;
7146af97
JB
551
552 if (!val && size) memory_full ();
553 return val;
554}
9ac0d9e0 555
34400008 556
d7489312 557/* Like free but block interrupt input. */
34400008 558
9ac0d9e0
JB
559void
560xfree (block)
c971ff9a 561 POINTER_TYPE *block;
9ac0d9e0
JB
562{
563 BLOCK_INPUT;
564 free (block);
565 UNBLOCK_INPUT;
566}
567
c8099634 568
dca7c6a8
GM
569/* Like strdup, but uses xmalloc. */
570
571char *
572xstrdup (s)
943b873e 573 const char *s;
dca7c6a8 574{
675d5130 575 size_t len = strlen (s) + 1;
dca7c6a8
GM
576 char *p = (char *) xmalloc (len);
577 bcopy (s, p, len);
578 return p;
579}
580
581
f61bef8b
KS
582/* Unwind for SAFE_ALLOCA */
583
584Lisp_Object
585safe_alloca_unwind (arg)
586 Lisp_Object arg;
587{
b766f870
KS
588 register struct Lisp_Save_Value *p = XSAVE_VALUE (arg);
589
590 p->dogc = 0;
591 xfree (p->pointer);
592 p->pointer = 0;
7b7990cc 593 free_misc (arg);
f61bef8b
KS
594 return Qnil;
595}
596
597
34400008
GM
598/* Like malloc but used for allocating Lisp data. NBYTES is the
599 number of bytes to allocate, TYPE describes the intended use of the
600 allcated memory block (for strings, for conses, ...). */
601
918a23a7
RS
602static void *lisp_malloc_loser;
603
675d5130 604static POINTER_TYPE *
34400008 605lisp_malloc (nbytes, type)
675d5130 606 size_t nbytes;
34400008 607 enum mem_type type;
c8099634 608{
34400008 609 register void *val;
c8099634
RS
610
611 BLOCK_INPUT;
877935b1
GM
612
613#ifdef GC_MALLOC_CHECK
614 allocated_mem_type = type;
615#endif
177c0ea7 616
34400008 617 val = (void *) malloc (nbytes);
c8099634 618
831b476c 619#ifndef USE_LSB_TAG
918a23a7
RS
620 /* If the memory just allocated cannot be addressed thru a Lisp
621 object's pointer, and it needs to be,
622 that's equivalent to running out of memory. */
623 if (val && type != MEM_TYPE_NON_LISP)
624 {
625 Lisp_Object tem;
626 XSETCONS (tem, (char *) val + nbytes - 1);
627 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
628 {
629 lisp_malloc_loser = val;
630 free (val);
631 val = 0;
632 }
633 }
831b476c 634#endif
918a23a7 635
877935b1 636#if GC_MARK_STACK && !defined GC_MALLOC_CHECK
dca7c6a8 637 if (val && type != MEM_TYPE_NON_LISP)
34400008
GM
638 mem_insert (val, (char *) val + nbytes, type);
639#endif
177c0ea7 640
dca7c6a8
GM
641 UNBLOCK_INPUT;
642 if (!val && nbytes)
643 memory_full ();
c8099634
RS
644 return val;
645}
646
34400008
GM
647/* Free BLOCK. This must be called to free memory allocated with a
648 call to lisp_malloc. */
649
bf952fb6 650static void
c8099634 651lisp_free (block)
675d5130 652 POINTER_TYPE *block;
c8099634
RS
653{
654 BLOCK_INPUT;
c8099634 655 free (block);
877935b1 656#if GC_MARK_STACK && !defined GC_MALLOC_CHECK
34400008
GM
657 mem_delete (mem_find (block));
658#endif
c8099634
RS
659 UNBLOCK_INPUT;
660}
34400008 661
ab6780cd
SM
662/* Allocation of aligned blocks of memory to store Lisp data. */
663/* The entry point is lisp_align_malloc which returns blocks of at most */
664/* BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
665
666
667/* BLOCK_ALIGN has to be a power of 2. */
668#define BLOCK_ALIGN (1 << 10)
ab6780cd
SM
669
670/* Padding to leave at the end of a malloc'd block. This is to give
671 malloc a chance to minimize the amount of memory wasted to alignment.
672 It should be tuned to the particular malloc library used.
19bcad1f
SM
673 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
674 posix_memalign on the other hand would ideally prefer a value of 4
675 because otherwise, there's 1020 bytes wasted between each ablocks.
676 But testing shows that those 1020 will most of the time be efficiently
677 used by malloc to place other objects, so a value of 0 is still preferable
678 unless you have a lot of cons&floats and virtually nothing else. */
679#define BLOCK_PADDING 0
680#define BLOCK_BYTES \
681 (BLOCK_ALIGN - sizeof (struct aligned_block *) - BLOCK_PADDING)
682
683/* Internal data structures and constants. */
684
ab6780cd
SM
685#define ABLOCKS_SIZE 16
686
687/* An aligned block of memory. */
688struct ablock
689{
690 union
691 {
692 char payload[BLOCK_BYTES];
693 struct ablock *next_free;
694 } x;
695 /* `abase' is the aligned base of the ablocks. */
696 /* It is overloaded to hold the virtual `busy' field that counts
697 the number of used ablock in the parent ablocks.
698 The first ablock has the `busy' field, the others have the `abase'
699 field. To tell the difference, we assume that pointers will have
700 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
701 is used to tell whether the real base of the parent ablocks is `abase'
702 (if not, the word before the first ablock holds a pointer to the
703 real base). */
704 struct ablocks *abase;
705 /* The padding of all but the last ablock is unused. The padding of
706 the last ablock in an ablocks is not allocated. */
19bcad1f
SM
707#if BLOCK_PADDING
708 char padding[BLOCK_PADDING];
ebb8d410 709#endif
ab6780cd
SM
710};
711
712/* A bunch of consecutive aligned blocks. */
713struct ablocks
714{
715 struct ablock blocks[ABLOCKS_SIZE];
716};
717
718/* Size of the block requested from malloc or memalign. */
19bcad1f 719#define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
ab6780cd
SM
720
721#define ABLOCK_ABASE(block) \
722 (((unsigned long) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
723 ? (struct ablocks *)(block) \
724 : (block)->abase)
725
726/* Virtual `busy' field. */
727#define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
728
729/* Pointer to the (not necessarily aligned) malloc block. */
19bcad1f
SM
730#ifdef HAVE_POSIX_MEMALIGN
731#define ABLOCKS_BASE(abase) (abase)
732#else
ab6780cd 733#define ABLOCKS_BASE(abase) \
03bb6a06 734 (1 & (long) ABLOCKS_BUSY (abase) ? abase : ((void**)abase)[-1])
19bcad1f 735#endif
ab6780cd
SM
736
737/* The list of free ablock. */
738static struct ablock *free_ablock;
739
740/* Allocate an aligned block of nbytes.
741 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
742 smaller or equal to BLOCK_BYTES. */
743static POINTER_TYPE *
744lisp_align_malloc (nbytes, type)
745 size_t nbytes;
746 enum mem_type type;
747{
748 void *base, *val;
749 struct ablocks *abase;
750
751 eassert (nbytes <= BLOCK_BYTES);
752
753 BLOCK_INPUT;
754
755#ifdef GC_MALLOC_CHECK
756 allocated_mem_type = type;
757#endif
758
759 if (!free_ablock)
760 {
d7489312
DL
761 int i;
762 EMACS_INT aligned; /* int gets warning casting to 64-bit pointer. */
ab6780cd
SM
763
764#ifdef DOUG_LEA_MALLOC
765 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
766 because mapped region contents are not preserved in
767 a dumped Emacs. */
768 mallopt (M_MMAP_MAX, 0);
769#endif
770
19bcad1f
SM
771#ifdef HAVE_POSIX_MEMALIGN
772 {
773 int err = posix_memalign (&base, BLOCK_ALIGN, ABLOCKS_BYTES);
ab349c19
RS
774 if (err)
775 base = NULL;
776 abase = base;
19bcad1f
SM
777 }
778#else
ab6780cd
SM
779 base = malloc (ABLOCKS_BYTES);
780 abase = ALIGN (base, BLOCK_ALIGN);
ab349c19
RS
781#endif
782
4532fdde
RS
783 if (base == 0)
784 {
785 UNBLOCK_INPUT;
786 memory_full ();
787 }
ab6780cd
SM
788
789 aligned = (base == abase);
790 if (!aligned)
791 ((void**)abase)[-1] = base;
792
793#ifdef DOUG_LEA_MALLOC
794 /* Back to a reasonable maximum of mmap'ed areas. */
795 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
796#endif
797
831b476c 798#ifndef USE_LSB_TAG
f4446bbf
GM
799 /* If the memory just allocated cannot be addressed thru a Lisp
800 object's pointer, and it needs to be, that's equivalent to
801 running out of memory. */
802 if (type != MEM_TYPE_NON_LISP)
803 {
804 Lisp_Object tem;
805 char *end = (char *) base + ABLOCKS_BYTES - 1;
806 XSETCONS (tem, end);
807 if ((char *) XCONS (tem) != end)
808 {
809 lisp_malloc_loser = base;
810 free (base);
811 UNBLOCK_INPUT;
812 memory_full ();
813 }
814 }
831b476c 815#endif
f4446bbf 816
ab6780cd
SM
817 /* Initialize the blocks and put them on the free list.
818 Is `base' was not properly aligned, we can't use the last block. */
819 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
820 {
821 abase->blocks[i].abase = abase;
822 abase->blocks[i].x.next_free = free_ablock;
823 free_ablock = &abase->blocks[i];
824 }
03bb6a06 825 ABLOCKS_BUSY (abase) = (struct ablocks *) (long) aligned;
ab6780cd 826
19bcad1f 827 eassert (0 == ((EMACS_UINT)abase) % BLOCK_ALIGN);
ab6780cd
SM
828 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
829 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
830 eassert (ABLOCKS_BASE (abase) == base);
03bb6a06 831 eassert (aligned == (long) ABLOCKS_BUSY (abase));
ab6780cd
SM
832 }
833
834 abase = ABLOCK_ABASE (free_ablock);
03bb6a06 835 ABLOCKS_BUSY (abase) = (struct ablocks *) (2 + (long) ABLOCKS_BUSY (abase));
ab6780cd
SM
836 val = free_ablock;
837 free_ablock = free_ablock->x.next_free;
838
ab6780cd
SM
839#if GC_MARK_STACK && !defined GC_MALLOC_CHECK
840 if (val && type != MEM_TYPE_NON_LISP)
841 mem_insert (val, (char *) val + nbytes, type);
842#endif
843
844 UNBLOCK_INPUT;
845 if (!val && nbytes)
846 memory_full ();
847
848 eassert (0 == ((EMACS_UINT)val) % BLOCK_ALIGN);
849 return val;
850}
851
852static void
853lisp_align_free (block)
854 POINTER_TYPE *block;
855{
856 struct ablock *ablock = block;
857 struct ablocks *abase = ABLOCK_ABASE (ablock);
858
859 BLOCK_INPUT;
860#if GC_MARK_STACK && !defined GC_MALLOC_CHECK
861 mem_delete (mem_find (block));
862#endif
863 /* Put on free list. */
864 ablock->x.next_free = free_ablock;
865 free_ablock = ablock;
866 /* Update busy count. */
03bb6a06 867 ABLOCKS_BUSY (abase) = (struct ablocks *) (-2 + (long) ABLOCKS_BUSY (abase));
d2db1c32 868
03bb6a06 869 if (2 > (long) ABLOCKS_BUSY (abase))
ab6780cd 870 { /* All the blocks are free. */
03bb6a06 871 int i = 0, aligned = (long) ABLOCKS_BUSY (abase);
ab6780cd
SM
872 struct ablock **tem = &free_ablock;
873 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
874
875 while (*tem)
876 {
877 if (*tem >= (struct ablock *) abase && *tem < atop)
878 {
879 i++;
880 *tem = (*tem)->x.next_free;
881 }
882 else
883 tem = &(*tem)->x.next_free;
884 }
885 eassert ((aligned & 1) == aligned);
886 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
887 free (ABLOCKS_BASE (abase));
888 }
889 UNBLOCK_INPUT;
890}
3ef06d12
SM
891
892/* Return a new buffer structure allocated from the heap with
893 a call to lisp_malloc. */
894
895struct buffer *
896allocate_buffer ()
897{
898 struct buffer *b
899 = (struct buffer *) lisp_malloc (sizeof (struct buffer),
900 MEM_TYPE_BUFFER);
901 return b;
902}
903
9ac0d9e0
JB
904\f
905/* Arranging to disable input signals while we're in malloc.
906
907 This only works with GNU malloc. To help out systems which can't
908 use GNU malloc, all the calls to malloc, realloc, and free
909 elsewhere in the code should be inside a BLOCK_INPUT/UNBLOCK_INPUT
910 pairs; unfortunately, we have no idea what C library functions
911 might call malloc, so we can't really protect them unless you're
2c5bd608
DL
912 using GNU malloc. Fortunately, most of the major operating systems
913 can use GNU malloc. */
9ac0d9e0
JB
914
915#ifndef SYSTEM_MALLOC
b3303f74
DL
916#ifndef DOUG_LEA_MALLOC
917extern void * (*__malloc_hook) P_ ((size_t));
918extern void * (*__realloc_hook) P_ ((void *, size_t));
919extern void (*__free_hook) P_ ((void *));
920/* Else declared in malloc.h, perhaps with an extra arg. */
921#endif /* DOUG_LEA_MALLOC */
b0846f52 922static void * (*old_malloc_hook) ();
b0846f52 923static void * (*old_realloc_hook) ();
b0846f52 924static void (*old_free_hook) ();
9ac0d9e0 925
276cbe5a
RS
926/* This function is used as the hook for free to call. */
927
9ac0d9e0
JB
928static void
929emacs_blocked_free (ptr)
930 void *ptr;
931{
932 BLOCK_INPUT;
877935b1
GM
933
934#ifdef GC_MALLOC_CHECK
a83fee2c
GM
935 if (ptr)
936 {
937 struct mem_node *m;
177c0ea7 938
a83fee2c
GM
939 m = mem_find (ptr);
940 if (m == MEM_NIL || m->start != ptr)
941 {
942 fprintf (stderr,
943 "Freeing `%p' which wasn't allocated with malloc\n", ptr);
944 abort ();
945 }
946 else
947 {
948 /* fprintf (stderr, "free %p...%p (%p)\n", m->start, m->end, ptr); */
949 mem_delete (m);
950 }
951 }
877935b1 952#endif /* GC_MALLOC_CHECK */
177c0ea7 953
9ac0d9e0
JB
954 __free_hook = old_free_hook;
955 free (ptr);
177c0ea7 956
276cbe5a
RS
957 /* If we released our reserve (due to running out of memory),
958 and we have a fair amount free once again,
959 try to set aside another reserve in case we run out once more. */
960 if (spare_memory == 0
961 /* Verify there is enough space that even with the malloc
962 hysteresis this call won't run out again.
963 The code here is correct as long as SPARE_MEMORY
964 is substantially larger than the block size malloc uses. */
965 && (bytes_used_when_full
d1658221 966 > BYTES_USED + max (malloc_hysteresis, 4) * SPARE_MEMORY))
675d5130 967 spare_memory = (char *) malloc ((size_t) SPARE_MEMORY);
276cbe5a 968
b0846f52 969 __free_hook = emacs_blocked_free;
9ac0d9e0
JB
970 UNBLOCK_INPUT;
971}
972
34400008 973
276cbe5a
RS
974/* If we released our reserve (due to running out of memory),
975 and we have a fair amount free once again,
976 try to set aside another reserve in case we run out once more.
977
978 This is called when a relocatable block is freed in ralloc.c. */
979
980void
981refill_memory_reserve ()
982{
983 if (spare_memory == 0)
675d5130 984 spare_memory = (char *) malloc ((size_t) SPARE_MEMORY);
276cbe5a
RS
985}
986
34400008 987
276cbe5a
RS
988/* This function is the malloc hook that Emacs uses. */
989
9ac0d9e0
JB
990static void *
991emacs_blocked_malloc (size)
675d5130 992 size_t size;
9ac0d9e0
JB
993{
994 void *value;
995
996 BLOCK_INPUT;
997 __malloc_hook = old_malloc_hook;
1177ecf6 998#ifdef DOUG_LEA_MALLOC
d1658221 999 mallopt (M_TOP_PAD, malloc_hysteresis * 4096);
1177ecf6 1000#else
d1658221 1001 __malloc_extra_blocks = malloc_hysteresis;
1177ecf6 1002#endif
877935b1 1003
2756d8ee 1004 value = (void *) malloc (size);
877935b1
GM
1005
1006#ifdef GC_MALLOC_CHECK
1007 {
1008 struct mem_node *m = mem_find (value);
1009 if (m != MEM_NIL)
1010 {
1011 fprintf (stderr, "Malloc returned %p which is already in use\n",
1012 value);
1013 fprintf (stderr, "Region in use is %p...%p, %u bytes, type %d\n",
1014 m->start, m->end, (char *) m->end - (char *) m->start,
1015 m->type);
1016 abort ();
1017 }
1018
1019 if (!dont_register_blocks)
1020 {
1021 mem_insert (value, (char *) value + max (1, size), allocated_mem_type);
1022 allocated_mem_type = MEM_TYPE_NON_LISP;
1023 }
1024 }
1025#endif /* GC_MALLOC_CHECK */
177c0ea7 1026
b0846f52 1027 __malloc_hook = emacs_blocked_malloc;
9ac0d9e0
JB
1028 UNBLOCK_INPUT;
1029
877935b1 1030 /* fprintf (stderr, "%p malloc\n", value); */
9ac0d9e0
JB
1031 return value;
1032}
1033
34400008
GM
1034
1035/* This function is the realloc hook that Emacs uses. */
1036
9ac0d9e0
JB
1037static void *
1038emacs_blocked_realloc (ptr, size)
1039 void *ptr;
675d5130 1040 size_t size;
9ac0d9e0
JB
1041{
1042 void *value;
1043
1044 BLOCK_INPUT;
1045 __realloc_hook = old_realloc_hook;
877935b1
GM
1046
1047#ifdef GC_MALLOC_CHECK
1048 if (ptr)
1049 {
1050 struct mem_node *m = mem_find (ptr);
1051 if (m == MEM_NIL || m->start != ptr)
1052 {
1053 fprintf (stderr,
1054 "Realloc of %p which wasn't allocated with malloc\n",
1055 ptr);
1056 abort ();
1057 }
1058
1059 mem_delete (m);
1060 }
177c0ea7 1061
877935b1 1062 /* fprintf (stderr, "%p -> realloc\n", ptr); */
177c0ea7 1063
877935b1
GM
1064 /* Prevent malloc from registering blocks. */
1065 dont_register_blocks = 1;
1066#endif /* GC_MALLOC_CHECK */
1067
2756d8ee 1068 value = (void *) realloc (ptr, size);
877935b1
GM
1069
1070#ifdef GC_MALLOC_CHECK
1071 dont_register_blocks = 0;
1072
1073 {
1074 struct mem_node *m = mem_find (value);
1075 if (m != MEM_NIL)
1076 {
1077 fprintf (stderr, "Realloc returns memory that is already in use\n");
1078 abort ();
1079 }
1080
1081 /* Can't handle zero size regions in the red-black tree. */
1082 mem_insert (value, (char *) value + max (size, 1), MEM_TYPE_NON_LISP);
1083 }
177c0ea7 1084
877935b1
GM
1085 /* fprintf (stderr, "%p <- realloc\n", value); */
1086#endif /* GC_MALLOC_CHECK */
177c0ea7 1087
b0846f52 1088 __realloc_hook = emacs_blocked_realloc;
9ac0d9e0
JB
1089 UNBLOCK_INPUT;
1090
1091 return value;
1092}
1093
34400008
GM
1094
1095/* Called from main to set up malloc to use our hooks. */
1096
9ac0d9e0
JB
1097void
1098uninterrupt_malloc ()
1099{
c8099634
RS
1100 if (__free_hook != emacs_blocked_free)
1101 old_free_hook = __free_hook;
b0846f52 1102 __free_hook = emacs_blocked_free;
9ac0d9e0 1103
c8099634
RS
1104 if (__malloc_hook != emacs_blocked_malloc)
1105 old_malloc_hook = __malloc_hook;
b0846f52 1106 __malloc_hook = emacs_blocked_malloc;
9ac0d9e0 1107
c8099634
RS
1108 if (__realloc_hook != emacs_blocked_realloc)
1109 old_realloc_hook = __realloc_hook;
b0846f52 1110 __realloc_hook = emacs_blocked_realloc;
9ac0d9e0 1111}
2e471eb5
GM
1112
1113#endif /* not SYSTEM_MALLOC */
1114
1115
7146af97 1116\f
2e471eb5
GM
1117/***********************************************************************
1118 Interval Allocation
1119 ***********************************************************************/
1a4f1e2c 1120
34400008
GM
1121/* Number of intervals allocated in an interval_block structure.
1122 The 1020 is 1024 minus malloc overhead. */
1123
d5e35230
JA
1124#define INTERVAL_BLOCK_SIZE \
1125 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1126
34400008
GM
1127/* Intervals are allocated in chunks in form of an interval_block
1128 structure. */
1129
d5e35230 1130struct interval_block
2e471eb5 1131{
d05b383a 1132 /* Place `intervals' first, to preserve alignment. */
2e471eb5 1133 struct interval intervals[INTERVAL_BLOCK_SIZE];
d05b383a 1134 struct interval_block *next;
2e471eb5 1135};
d5e35230 1136
34400008
GM
1137/* Current interval block. Its `next' pointer points to older
1138 blocks. */
1139
d5e35230 1140struct interval_block *interval_block;
34400008
GM
1141
1142/* Index in interval_block above of the next unused interval
1143 structure. */
1144
d5e35230 1145static int interval_block_index;
34400008
GM
1146
1147/* Number of free and live intervals. */
1148
2e471eb5 1149static int total_free_intervals, total_intervals;
d5e35230 1150
34400008
GM
1151/* List of free intervals. */
1152
d5e35230
JA
1153INTERVAL interval_free_list;
1154
c8099634 1155/* Total number of interval blocks now in use. */
2e471eb5 1156
c8099634
RS
1157int n_interval_blocks;
1158
34400008
GM
1159
1160/* Initialize interval allocation. */
1161
d5e35230
JA
1162static void
1163init_intervals ()
1164{
0930c1a1
SM
1165 interval_block = NULL;
1166 interval_block_index = INTERVAL_BLOCK_SIZE;
d5e35230 1167 interval_free_list = 0;
0930c1a1 1168 n_interval_blocks = 0;
d5e35230
JA
1169}
1170
34400008
GM
1171
1172/* Return a new interval. */
d5e35230
JA
1173
1174INTERVAL
1175make_interval ()
1176{
1177 INTERVAL val;
1178
1179 if (interval_free_list)
1180 {
1181 val = interval_free_list;
439d5cb4 1182 interval_free_list = INTERVAL_PARENT (interval_free_list);
d5e35230
JA
1183 }
1184 else
1185 {
1186 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1187 {
3c06d205
KH
1188 register struct interval_block *newi;
1189
34400008
GM
1190 newi = (struct interval_block *) lisp_malloc (sizeof *newi,
1191 MEM_TYPE_NON_LISP);
d5e35230 1192
d5e35230
JA
1193 newi->next = interval_block;
1194 interval_block = newi;
1195 interval_block_index = 0;
c8099634 1196 n_interval_blocks++;
d5e35230
JA
1197 }
1198 val = &interval_block->intervals[interval_block_index++];
1199 }
1200 consing_since_gc += sizeof (struct interval);
310ea200 1201 intervals_consed++;
d5e35230 1202 RESET_INTERVAL (val);
2336fe58 1203 val->gcmarkbit = 0;
d5e35230
JA
1204 return val;
1205}
1206
34400008
GM
1207
1208/* Mark Lisp objects in interval I. */
d5e35230
JA
1209
1210static void
d393c068 1211mark_interval (i, dummy)
d5e35230 1212 register INTERVAL i;
d393c068 1213 Lisp_Object dummy;
d5e35230 1214{
2336fe58
SM
1215 eassert (!i->gcmarkbit); /* Intervals are never shared. */
1216 i->gcmarkbit = 1;
49723c04 1217 mark_object (i->plist);
d5e35230
JA
1218}
1219
34400008
GM
1220
1221/* Mark the interval tree rooted in TREE. Don't call this directly;
1222 use the macro MARK_INTERVAL_TREE instead. */
1223
d5e35230
JA
1224static void
1225mark_interval_tree (tree)
1226 register INTERVAL tree;
1227{
e8720644
JB
1228 /* No need to test if this tree has been marked already; this
1229 function is always called through the MARK_INTERVAL_TREE macro,
1230 which takes care of that. */
1231
1e934989 1232 traverse_intervals_noorder (tree, mark_interval, Qnil);
d5e35230
JA
1233}
1234
34400008
GM
1235
1236/* Mark the interval tree rooted in I. */
1237
e8720644
JB
1238#define MARK_INTERVAL_TREE(i) \
1239 do { \
2336fe58 1240 if (!NULL_INTERVAL_P (i) && !i->gcmarkbit) \
e8720644
JB
1241 mark_interval_tree (i); \
1242 } while (0)
d5e35230 1243
34400008 1244
2e471eb5
GM
1245#define UNMARK_BALANCE_INTERVALS(i) \
1246 do { \
1247 if (! NULL_INTERVAL_P (i)) \
2336fe58 1248 (i) = balance_intervals (i); \
2e471eb5 1249 } while (0)
d5e35230 1250
cc2d8c6b
KR
1251\f
1252/* Number support. If NO_UNION_TYPE isn't in effect, we
1253 can't create number objects in macros. */
1254#ifndef make_number
1255Lisp_Object
1256make_number (n)
1257 int n;
1258{
1259 Lisp_Object obj;
1260 obj.s.val = n;
1261 obj.s.type = Lisp_Int;
1262 return obj;
1263}
1264#endif
d5e35230 1265\f
2e471eb5
GM
1266/***********************************************************************
1267 String Allocation
1268 ***********************************************************************/
1a4f1e2c 1269
2e471eb5
GM
1270/* Lisp_Strings are allocated in string_block structures. When a new
1271 string_block is allocated, all the Lisp_Strings it contains are
e0fead5d 1272 added to a free-list string_free_list. When a new Lisp_String is
2e471eb5
GM
1273 needed, it is taken from that list. During the sweep phase of GC,
1274 string_blocks that are entirely free are freed, except two which
1275 we keep.
7146af97 1276
2e471eb5
GM
1277 String data is allocated from sblock structures. Strings larger
1278 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1279 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
7146af97 1280
2e471eb5
GM
1281 Sblocks consist internally of sdata structures, one for each
1282 Lisp_String. The sdata structure points to the Lisp_String it
1283 belongs to. The Lisp_String points back to the `u.data' member of
1284 its sdata structure.
7146af97 1285
2e471eb5
GM
1286 When a Lisp_String is freed during GC, it is put back on
1287 string_free_list, and its `data' member and its sdata's `string'
1288 pointer is set to null. The size of the string is recorded in the
1289 `u.nbytes' member of the sdata. So, sdata structures that are no
1290 longer used, can be easily recognized, and it's easy to compact the
1291 sblocks of small strings which we do in compact_small_strings. */
7146af97 1292
2e471eb5
GM
1293/* Size in bytes of an sblock structure used for small strings. This
1294 is 8192 minus malloc overhead. */
7146af97 1295
2e471eb5 1296#define SBLOCK_SIZE 8188
c8099634 1297
2e471eb5
GM
1298/* Strings larger than this are considered large strings. String data
1299 for large strings is allocated from individual sblocks. */
7146af97 1300
2e471eb5
GM
1301#define LARGE_STRING_BYTES 1024
1302
1303/* Structure describing string memory sub-allocated from an sblock.
1304 This is where the contents of Lisp strings are stored. */
1305
1306struct sdata
7146af97 1307{
2e471eb5
GM
1308 /* Back-pointer to the string this sdata belongs to. If null, this
1309 structure is free, and the NBYTES member of the union below
34400008 1310 contains the string's byte size (the same value that STRING_BYTES
2e471eb5
GM
1311 would return if STRING were non-null). If non-null, STRING_BYTES
1312 (STRING) is the size of the data, and DATA contains the string's
1313 contents. */
1314 struct Lisp_String *string;
7146af97 1315
31d929e5 1316#ifdef GC_CHECK_STRING_BYTES
177c0ea7 1317
31d929e5
GM
1318 EMACS_INT nbytes;
1319 unsigned char data[1];
177c0ea7 1320
31d929e5
GM
1321#define SDATA_NBYTES(S) (S)->nbytes
1322#define SDATA_DATA(S) (S)->data
177c0ea7 1323
31d929e5
GM
1324#else /* not GC_CHECK_STRING_BYTES */
1325
2e471eb5
GM
1326 union
1327 {
1328 /* When STRING in non-null. */
1329 unsigned char data[1];
1330
1331 /* When STRING is null. */
1332 EMACS_INT nbytes;
1333 } u;
177c0ea7 1334
31d929e5
GM
1335
1336#define SDATA_NBYTES(S) (S)->u.nbytes
1337#define SDATA_DATA(S) (S)->u.data
1338
1339#endif /* not GC_CHECK_STRING_BYTES */
2e471eb5
GM
1340};
1341
31d929e5 1342
2e471eb5
GM
1343/* Structure describing a block of memory which is sub-allocated to
1344 obtain string data memory for strings. Blocks for small strings
1345 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1346 as large as needed. */
1347
1348struct sblock
7146af97 1349{
2e471eb5
GM
1350 /* Next in list. */
1351 struct sblock *next;
7146af97 1352
2e471eb5
GM
1353 /* Pointer to the next free sdata block. This points past the end
1354 of the sblock if there isn't any space left in this block. */
1355 struct sdata *next_free;
1356
1357 /* Start of data. */
1358 struct sdata first_data;
1359};
1360
1361/* Number of Lisp strings in a string_block structure. The 1020 is
1362 1024 minus malloc overhead. */
1363
19bcad1f 1364#define STRING_BLOCK_SIZE \
2e471eb5
GM
1365 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1366
1367/* Structure describing a block from which Lisp_String structures
1368 are allocated. */
1369
1370struct string_block
7146af97 1371{
d05b383a 1372 /* Place `strings' first, to preserve alignment. */
19bcad1f 1373 struct Lisp_String strings[STRING_BLOCK_SIZE];
d05b383a 1374 struct string_block *next;
2e471eb5 1375};
7146af97 1376
2e471eb5
GM
1377/* Head and tail of the list of sblock structures holding Lisp string
1378 data. We always allocate from current_sblock. The NEXT pointers
1379 in the sblock structures go from oldest_sblock to current_sblock. */
3c06d205 1380
2e471eb5 1381static struct sblock *oldest_sblock, *current_sblock;
7146af97 1382
2e471eb5 1383/* List of sblocks for large strings. */
7146af97 1384
2e471eb5 1385static struct sblock *large_sblocks;
7146af97 1386
2e471eb5 1387/* List of string_block structures, and how many there are. */
7146af97 1388
2e471eb5
GM
1389static struct string_block *string_blocks;
1390static int n_string_blocks;
7146af97 1391
2e471eb5 1392/* Free-list of Lisp_Strings. */
7146af97 1393
2e471eb5 1394static struct Lisp_String *string_free_list;
7146af97 1395
2e471eb5 1396/* Number of live and free Lisp_Strings. */
c8099634 1397
2e471eb5 1398static int total_strings, total_free_strings;
7146af97 1399
2e471eb5
GM
1400/* Number of bytes used by live strings. */
1401
1402static int total_string_size;
1403
1404/* Given a pointer to a Lisp_String S which is on the free-list
1405 string_free_list, return a pointer to its successor in the
1406 free-list. */
1407
1408#define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1409
1410/* Return a pointer to the sdata structure belonging to Lisp string S.
1411 S must be live, i.e. S->data must not be null. S->data is actually
1412 a pointer to the `u.data' member of its sdata structure; the
1413 structure starts at a constant offset in front of that. */
177c0ea7 1414
31d929e5
GM
1415#ifdef GC_CHECK_STRING_BYTES
1416
1417#define SDATA_OF_STRING(S) \
1418 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *) \
1419 - sizeof (EMACS_INT)))
1420
1421#else /* not GC_CHECK_STRING_BYTES */
1422
2e471eb5
GM
1423#define SDATA_OF_STRING(S) \
1424 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *)))
1425
31d929e5
GM
1426#endif /* not GC_CHECK_STRING_BYTES */
1427
2e471eb5
GM
1428/* Value is the size of an sdata structure large enough to hold NBYTES
1429 bytes of string data. The value returned includes a terminating
1430 NUL byte, the size of the sdata structure, and padding. */
1431
31d929e5
GM
1432#ifdef GC_CHECK_STRING_BYTES
1433
2e471eb5
GM
1434#define SDATA_SIZE(NBYTES) \
1435 ((sizeof (struct Lisp_String *) \
1436 + (NBYTES) + 1 \
31d929e5 1437 + sizeof (EMACS_INT) \
2e471eb5
GM
1438 + sizeof (EMACS_INT) - 1) \
1439 & ~(sizeof (EMACS_INT) - 1))
1440
31d929e5
GM
1441#else /* not GC_CHECK_STRING_BYTES */
1442
1443#define SDATA_SIZE(NBYTES) \
1444 ((sizeof (struct Lisp_String *) \
1445 + (NBYTES) + 1 \
1446 + sizeof (EMACS_INT) - 1) \
1447 & ~(sizeof (EMACS_INT) - 1))
1448
1449#endif /* not GC_CHECK_STRING_BYTES */
2e471eb5
GM
1450
1451/* Initialize string allocation. Called from init_alloc_once. */
d457598b
AS
1452
1453void
2e471eb5 1454init_strings ()
7146af97 1455{
2e471eb5
GM
1456 total_strings = total_free_strings = total_string_size = 0;
1457 oldest_sblock = current_sblock = large_sblocks = NULL;
1458 string_blocks = NULL;
1459 n_string_blocks = 0;
1460 string_free_list = NULL;
7146af97
JB
1461}
1462
2e471eb5 1463
361b097f
GM
1464#ifdef GC_CHECK_STRING_BYTES
1465
361b097f
GM
1466static int check_string_bytes_count;
1467
676a7251
GM
1468void check_string_bytes P_ ((int));
1469void check_sblock P_ ((struct sblock *));
1470
1471#define CHECK_STRING_BYTES(S) STRING_BYTES (S)
1472
1473
1474/* Like GC_STRING_BYTES, but with debugging check. */
1475
1476int
1477string_bytes (s)
1478 struct Lisp_String *s;
1479{
7cdee936 1480 int nbytes = (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
676a7251
GM
1481 if (!PURE_POINTER_P (s)
1482 && s->data
1483 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1484 abort ();
1485 return nbytes;
1486}
177c0ea7 1487
2c5bd608 1488/* Check validity of Lisp strings' string_bytes member in B. */
676a7251 1489
361b097f 1490void
676a7251
GM
1491check_sblock (b)
1492 struct sblock *b;
361b097f 1493{
676a7251 1494 struct sdata *from, *end, *from_end;
177c0ea7 1495
676a7251 1496 end = b->next_free;
177c0ea7 1497
676a7251 1498 for (from = &b->first_data; from < end; from = from_end)
361b097f 1499 {
676a7251
GM
1500 /* Compute the next FROM here because copying below may
1501 overwrite data we need to compute it. */
1502 int nbytes;
177c0ea7 1503
676a7251
GM
1504 /* Check that the string size recorded in the string is the
1505 same as the one recorded in the sdata structure. */
1506 if (from->string)
1507 CHECK_STRING_BYTES (from->string);
177c0ea7 1508
676a7251
GM
1509 if (from->string)
1510 nbytes = GC_STRING_BYTES (from->string);
1511 else
1512 nbytes = SDATA_NBYTES (from);
177c0ea7 1513
676a7251
GM
1514 nbytes = SDATA_SIZE (nbytes);
1515 from_end = (struct sdata *) ((char *) from + nbytes);
1516 }
1517}
361b097f 1518
676a7251
GM
1519
1520/* Check validity of Lisp strings' string_bytes member. ALL_P
1521 non-zero means check all strings, otherwise check only most
1522 recently allocated strings. Used for hunting a bug. */
1523
1524void
1525check_string_bytes (all_p)
1526 int all_p;
1527{
1528 if (all_p)
1529 {
1530 struct sblock *b;
1531
1532 for (b = large_sblocks; b; b = b->next)
1533 {
1534 struct Lisp_String *s = b->first_data.string;
1535 if (s)
1536 CHECK_STRING_BYTES (s);
361b097f 1537 }
177c0ea7 1538
676a7251
GM
1539 for (b = oldest_sblock; b; b = b->next)
1540 check_sblock (b);
361b097f 1541 }
676a7251
GM
1542 else
1543 check_sblock (current_sblock);
361b097f
GM
1544}
1545
1546#endif /* GC_CHECK_STRING_BYTES */
1547
1548
2e471eb5
GM
1549/* Return a new Lisp_String. */
1550
1551static struct Lisp_String *
1552allocate_string ()
7146af97 1553{
2e471eb5 1554 struct Lisp_String *s;
7146af97 1555
2e471eb5
GM
1556 /* If the free-list is empty, allocate a new string_block, and
1557 add all the Lisp_Strings in it to the free-list. */
1558 if (string_free_list == NULL)
7146af97 1559 {
2e471eb5
GM
1560 struct string_block *b;
1561 int i;
1562
34400008 1563 b = (struct string_block *) lisp_malloc (sizeof *b, MEM_TYPE_STRING);
2e471eb5
GM
1564 bzero (b, sizeof *b);
1565 b->next = string_blocks;
1566 string_blocks = b;
1567 ++n_string_blocks;
1568
19bcad1f 1569 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
7146af97 1570 {
2e471eb5
GM
1571 s = b->strings + i;
1572 NEXT_FREE_LISP_STRING (s) = string_free_list;
1573 string_free_list = s;
7146af97 1574 }
2e471eb5 1575
19bcad1f 1576 total_free_strings += STRING_BLOCK_SIZE;
7146af97 1577 }
c0f51373 1578
2e471eb5
GM
1579 /* Pop a Lisp_String off the free-list. */
1580 s = string_free_list;
1581 string_free_list = NEXT_FREE_LISP_STRING (s);
c0f51373 1582
2e471eb5
GM
1583 /* Probably not strictly necessary, but play it safe. */
1584 bzero (s, sizeof *s);
c0f51373 1585
2e471eb5
GM
1586 --total_free_strings;
1587 ++total_strings;
1588 ++strings_consed;
1589 consing_since_gc += sizeof *s;
c0f51373 1590
361b097f 1591#ifdef GC_CHECK_STRING_BYTES
83a96b4d 1592 if (!noninteractive
e0f712ba 1593#ifdef MAC_OS8
83a96b4d
AC
1594 && current_sblock
1595#endif
1596 )
361b097f 1597 {
676a7251
GM
1598 if (++check_string_bytes_count == 200)
1599 {
1600 check_string_bytes_count = 0;
1601 check_string_bytes (1);
1602 }
1603 else
1604 check_string_bytes (0);
361b097f 1605 }
676a7251 1606#endif /* GC_CHECK_STRING_BYTES */
361b097f 1607
2e471eb5 1608 return s;
c0f51373 1609}
7146af97 1610
7146af97 1611
2e471eb5
GM
1612/* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1613 plus a NUL byte at the end. Allocate an sdata structure for S, and
1614 set S->data to its `u.data' member. Store a NUL byte at the end of
1615 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1616 S->data if it was initially non-null. */
7146af97 1617
2e471eb5
GM
1618void
1619allocate_string_data (s, nchars, nbytes)
1620 struct Lisp_String *s;
1621 int nchars, nbytes;
7146af97 1622{
5c5fecb3 1623 struct sdata *data, *old_data;
2e471eb5 1624 struct sblock *b;
5c5fecb3 1625 int needed, old_nbytes;
7146af97 1626
2e471eb5
GM
1627 /* Determine the number of bytes needed to store NBYTES bytes
1628 of string data. */
1629 needed = SDATA_SIZE (nbytes);
7146af97 1630
2e471eb5
GM
1631 if (nbytes > LARGE_STRING_BYTES)
1632 {
675d5130 1633 size_t size = sizeof *b - sizeof (struct sdata) + needed;
2e471eb5
GM
1634
1635#ifdef DOUG_LEA_MALLOC
f8608968
GM
1636 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1637 because mapped region contents are not preserved in
d36b182f
DL
1638 a dumped Emacs.
1639
1640 In case you think of allowing it in a dumped Emacs at the
1641 cost of not being able to re-dump, there's another reason:
1642 mmap'ed data typically have an address towards the top of the
1643 address space, which won't fit into an EMACS_INT (at least on
1644 32-bit systems with the current tagging scheme). --fx */
2e471eb5
GM
1645 mallopt (M_MMAP_MAX, 0);
1646#endif
1647
34400008 1648 b = (struct sblock *) lisp_malloc (size, MEM_TYPE_NON_LISP);
177c0ea7 1649
2e471eb5
GM
1650#ifdef DOUG_LEA_MALLOC
1651 /* Back to a reasonable maximum of mmap'ed areas. */
1652 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1653#endif
177c0ea7 1654
2e471eb5
GM
1655 b->next_free = &b->first_data;
1656 b->first_data.string = NULL;
1657 b->next = large_sblocks;
1658 large_sblocks = b;
1659 }
1660 else if (current_sblock == NULL
1661 || (((char *) current_sblock + SBLOCK_SIZE
1662 - (char *) current_sblock->next_free)
1663 < needed))
1664 {
1665 /* Not enough room in the current sblock. */
34400008 1666 b = (struct sblock *) lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
2e471eb5
GM
1667 b->next_free = &b->first_data;
1668 b->first_data.string = NULL;
1669 b->next = NULL;
1670
1671 if (current_sblock)
1672 current_sblock->next = b;
1673 else
1674 oldest_sblock = b;
1675 current_sblock = b;
1676 }
1677 else
1678 b = current_sblock;
5c5fecb3
GM
1679
1680 old_data = s->data ? SDATA_OF_STRING (s) : NULL;
1681 old_nbytes = GC_STRING_BYTES (s);
177c0ea7 1682
2e471eb5
GM
1683 data = b->next_free;
1684 data->string = s;
31d929e5
GM
1685 s->data = SDATA_DATA (data);
1686#ifdef GC_CHECK_STRING_BYTES
1687 SDATA_NBYTES (data) = nbytes;
1688#endif
2e471eb5
GM
1689 s->size = nchars;
1690 s->size_byte = nbytes;
1691 s->data[nbytes] = '\0';
1692 b->next_free = (struct sdata *) ((char *) data + needed);
177c0ea7 1693
5c5fecb3
GM
1694 /* If S had already data assigned, mark that as free by setting its
1695 string back-pointer to null, and recording the size of the data
00c9c33c 1696 in it. */
5c5fecb3
GM
1697 if (old_data)
1698 {
31d929e5 1699 SDATA_NBYTES (old_data) = old_nbytes;
5c5fecb3
GM
1700 old_data->string = NULL;
1701 }
1702
2e471eb5
GM
1703 consing_since_gc += needed;
1704}
1705
1706
1707/* Sweep and compact strings. */
1708
1709static void
1710sweep_strings ()
1711{
1712 struct string_block *b, *next;
1713 struct string_block *live_blocks = NULL;
177c0ea7 1714
2e471eb5
GM
1715 string_free_list = NULL;
1716 total_strings = total_free_strings = 0;
1717 total_string_size = 0;
1718
1719 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
1720 for (b = string_blocks; b; b = next)
1721 {
1722 int i, nfree = 0;
1723 struct Lisp_String *free_list_before = string_free_list;
1724
1725 next = b->next;
1726
19bcad1f 1727 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
2e471eb5
GM
1728 {
1729 struct Lisp_String *s = b->strings + i;
1730
1731 if (s->data)
1732 {
1733 /* String was not on free-list before. */
1734 if (STRING_MARKED_P (s))
1735 {
1736 /* String is live; unmark it and its intervals. */
1737 UNMARK_STRING (s);
177c0ea7 1738
2e471eb5
GM
1739 if (!NULL_INTERVAL_P (s->intervals))
1740 UNMARK_BALANCE_INTERVALS (s->intervals);
1741
1742 ++total_strings;
1743 total_string_size += STRING_BYTES (s);
1744 }
1745 else
1746 {
1747 /* String is dead. Put it on the free-list. */
1748 struct sdata *data = SDATA_OF_STRING (s);
1749
1750 /* Save the size of S in its sdata so that we know
1751 how large that is. Reset the sdata's string
1752 back-pointer so that we know it's free. */
31d929e5
GM
1753#ifdef GC_CHECK_STRING_BYTES
1754 if (GC_STRING_BYTES (s) != SDATA_NBYTES (data))
1755 abort ();
1756#else
2e471eb5 1757 data->u.nbytes = GC_STRING_BYTES (s);
31d929e5 1758#endif
2e471eb5
GM
1759 data->string = NULL;
1760
1761 /* Reset the strings's `data' member so that we
1762 know it's free. */
1763 s->data = NULL;
1764
1765 /* Put the string on the free-list. */
1766 NEXT_FREE_LISP_STRING (s) = string_free_list;
1767 string_free_list = s;
1768 ++nfree;
1769 }
1770 }
1771 else
1772 {
1773 /* S was on the free-list before. Put it there again. */
1774 NEXT_FREE_LISP_STRING (s) = string_free_list;
1775 string_free_list = s;
1776 ++nfree;
1777 }
1778 }
1779
34400008 1780 /* Free blocks that contain free Lisp_Strings only, except
2e471eb5 1781 the first two of them. */
19bcad1f
SM
1782 if (nfree == STRING_BLOCK_SIZE
1783 && total_free_strings > STRING_BLOCK_SIZE)
2e471eb5
GM
1784 {
1785 lisp_free (b);
1786 --n_string_blocks;
1787 string_free_list = free_list_before;
1788 }
1789 else
1790 {
1791 total_free_strings += nfree;
1792 b->next = live_blocks;
1793 live_blocks = b;
1794 }
1795 }
1796
1797 string_blocks = live_blocks;
1798 free_large_strings ();
1799 compact_small_strings ();
1800}
1801
1802
1803/* Free dead large strings. */
1804
1805static void
1806free_large_strings ()
1807{
1808 struct sblock *b, *next;
1809 struct sblock *live_blocks = NULL;
177c0ea7 1810
2e471eb5
GM
1811 for (b = large_sblocks; b; b = next)
1812 {
1813 next = b->next;
1814
1815 if (b->first_data.string == NULL)
1816 lisp_free (b);
1817 else
1818 {
1819 b->next = live_blocks;
1820 live_blocks = b;
1821 }
1822 }
1823
1824 large_sblocks = live_blocks;
1825}
1826
1827
1828/* Compact data of small strings. Free sblocks that don't contain
1829 data of live strings after compaction. */
1830
1831static void
1832compact_small_strings ()
1833{
1834 struct sblock *b, *tb, *next;
1835 struct sdata *from, *to, *end, *tb_end;
1836 struct sdata *to_end, *from_end;
1837
1838 /* TB is the sblock we copy to, TO is the sdata within TB we copy
1839 to, and TB_END is the end of TB. */
1840 tb = oldest_sblock;
1841 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
1842 to = &tb->first_data;
1843
1844 /* Step through the blocks from the oldest to the youngest. We
1845 expect that old blocks will stabilize over time, so that less
1846 copying will happen this way. */
1847 for (b = oldest_sblock; b; b = b->next)
1848 {
1849 end = b->next_free;
1850 xassert ((char *) end <= (char *) b + SBLOCK_SIZE);
177c0ea7 1851
2e471eb5
GM
1852 for (from = &b->first_data; from < end; from = from_end)
1853 {
1854 /* Compute the next FROM here because copying below may
1855 overwrite data we need to compute it. */
1856 int nbytes;
1857
31d929e5
GM
1858#ifdef GC_CHECK_STRING_BYTES
1859 /* Check that the string size recorded in the string is the
1860 same as the one recorded in the sdata structure. */
1861 if (from->string
1862 && GC_STRING_BYTES (from->string) != SDATA_NBYTES (from))
1863 abort ();
1864#endif /* GC_CHECK_STRING_BYTES */
177c0ea7 1865
2e471eb5
GM
1866 if (from->string)
1867 nbytes = GC_STRING_BYTES (from->string);
1868 else
31d929e5 1869 nbytes = SDATA_NBYTES (from);
177c0ea7 1870
2e471eb5
GM
1871 nbytes = SDATA_SIZE (nbytes);
1872 from_end = (struct sdata *) ((char *) from + nbytes);
177c0ea7 1873
2e471eb5
GM
1874 /* FROM->string non-null means it's alive. Copy its data. */
1875 if (from->string)
1876 {
1877 /* If TB is full, proceed with the next sblock. */
1878 to_end = (struct sdata *) ((char *) to + nbytes);
1879 if (to_end > tb_end)
1880 {
1881 tb->next_free = to;
1882 tb = tb->next;
1883 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
1884 to = &tb->first_data;
1885 to_end = (struct sdata *) ((char *) to + nbytes);
1886 }
177c0ea7 1887
2e471eb5
GM
1888 /* Copy, and update the string's `data' pointer. */
1889 if (from != to)
1890 {
a2407477
GM
1891 xassert (tb != b || to <= from);
1892 safe_bcopy ((char *) from, (char *) to, nbytes);
31d929e5 1893 to->string->data = SDATA_DATA (to);
2e471eb5
GM
1894 }
1895
1896 /* Advance past the sdata we copied to. */
1897 to = to_end;
1898 }
1899 }
1900 }
1901
1902 /* The rest of the sblocks following TB don't contain live data, so
1903 we can free them. */
1904 for (b = tb->next; b; b = next)
1905 {
1906 next = b->next;
1907 lisp_free (b);
1908 }
1909
1910 tb->next_free = to;
1911 tb->next = NULL;
1912 current_sblock = tb;
1913}
1914
1915
1916DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
69623621
RS
1917 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
1918LENGTH must be an integer.
1919INIT must be an integer that represents a character. */)
7ee72033 1920 (length, init)
2e471eb5
GM
1921 Lisp_Object length, init;
1922{
1923 register Lisp_Object val;
1924 register unsigned char *p, *end;
1925 int c, nbytes;
1926
b7826503
PJ
1927 CHECK_NATNUM (length);
1928 CHECK_NUMBER (init);
2e471eb5
GM
1929
1930 c = XINT (init);
1931 if (SINGLE_BYTE_CHAR_P (c))
1932 {
1933 nbytes = XINT (length);
1934 val = make_uninit_string (nbytes);
d5db4077
KR
1935 p = SDATA (val);
1936 end = p + SCHARS (val);
2e471eb5
GM
1937 while (p != end)
1938 *p++ = c;
1939 }
1940 else
1941 {
d942b71c 1942 unsigned char str[MAX_MULTIBYTE_LENGTH];
2e471eb5
GM
1943 int len = CHAR_STRING (c, str);
1944
1945 nbytes = len * XINT (length);
1946 val = make_uninit_multibyte_string (XINT (length), nbytes);
d5db4077 1947 p = SDATA (val);
2e471eb5
GM
1948 end = p + nbytes;
1949 while (p != end)
1950 {
1951 bcopy (str, p, len);
1952 p += len;
1953 }
1954 }
177c0ea7 1955
2e471eb5
GM
1956 *p = 0;
1957 return val;
1958}
1959
1960
1961DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
a6266d23 1962 doc: /* Return a new bool-vector of length LENGTH, using INIT for as each element.
7ee72033
MB
1963LENGTH must be a number. INIT matters only in whether it is t or nil. */)
1964 (length, init)
2e471eb5
GM
1965 Lisp_Object length, init;
1966{
1967 register Lisp_Object val;
1968 struct Lisp_Bool_Vector *p;
1969 int real_init, i;
1970 int length_in_chars, length_in_elts, bits_per_value;
1971
b7826503 1972 CHECK_NATNUM (length);
2e471eb5 1973
a097329f 1974 bits_per_value = sizeof (EMACS_INT) * BOOL_VECTOR_BITS_PER_CHAR;
2e471eb5
GM
1975
1976 length_in_elts = (XFASTINT (length) + bits_per_value - 1) / bits_per_value;
a097329f
AS
1977 length_in_chars = ((XFASTINT (length) + BOOL_VECTOR_BITS_PER_CHAR - 1)
1978 / BOOL_VECTOR_BITS_PER_CHAR);
2e471eb5
GM
1979
1980 /* We must allocate one more elements than LENGTH_IN_ELTS for the
1981 slot `size' of the struct Lisp_Bool_Vector. */
1982 val = Fmake_vector (make_number (length_in_elts + 1), Qnil);
1983 p = XBOOL_VECTOR (val);
177c0ea7 1984
2e471eb5
GM
1985 /* Get rid of any bits that would cause confusion. */
1986 p->vector_size = 0;
1987 XSETBOOL_VECTOR (val, p);
1988 p->size = XFASTINT (length);
177c0ea7 1989
2e471eb5
GM
1990 real_init = (NILP (init) ? 0 : -1);
1991 for (i = 0; i < length_in_chars ; i++)
1992 p->data[i] = real_init;
177c0ea7 1993
2e471eb5 1994 /* Clear the extraneous bits in the last byte. */
a097329f 1995 if (XINT (length) != length_in_chars * BOOL_VECTOR_BITS_PER_CHAR)
2e471eb5 1996 XBOOL_VECTOR (val)->data[length_in_chars - 1]
a097329f 1997 &= (1 << (XINT (length) % BOOL_VECTOR_BITS_PER_CHAR)) - 1;
2e471eb5
GM
1998
1999 return val;
2000}
2001
2002
2003/* Make a string from NBYTES bytes at CONTENTS, and compute the number
2004 of characters from the contents. This string may be unibyte or
2005 multibyte, depending on the contents. */
2006
2007Lisp_Object
2008make_string (contents, nbytes)
943b873e 2009 const char *contents;
2e471eb5
GM
2010 int nbytes;
2011{
2012 register Lisp_Object val;
9eac9d59
KH
2013 int nchars, multibyte_nbytes;
2014
2015 parse_str_as_multibyte (contents, nbytes, &nchars, &multibyte_nbytes);
9eac9d59
KH
2016 if (nbytes == nchars || nbytes != multibyte_nbytes)
2017 /* CONTENTS contains no multibyte sequences or contains an invalid
2018 multibyte sequence. We must make unibyte string. */
495a6df3
KH
2019 val = make_unibyte_string (contents, nbytes);
2020 else
2021 val = make_multibyte_string (contents, nchars, nbytes);
2e471eb5
GM
2022 return val;
2023}
2024
2025
2026/* Make an unibyte string from LENGTH bytes at CONTENTS. */
2027
2028Lisp_Object
2029make_unibyte_string (contents, length)
943b873e 2030 const char *contents;
2e471eb5
GM
2031 int length;
2032{
2033 register Lisp_Object val;
2034 val = make_uninit_string (length);
d5db4077
KR
2035 bcopy (contents, SDATA (val), length);
2036 STRING_SET_UNIBYTE (val);
2e471eb5
GM
2037 return val;
2038}
2039
2040
2041/* Make a multibyte string from NCHARS characters occupying NBYTES
2042 bytes at CONTENTS. */
2043
2044Lisp_Object
2045make_multibyte_string (contents, nchars, nbytes)
943b873e 2046 const char *contents;
2e471eb5
GM
2047 int nchars, nbytes;
2048{
2049 register Lisp_Object val;
2050 val = make_uninit_multibyte_string (nchars, nbytes);
d5db4077 2051 bcopy (contents, SDATA (val), nbytes);
2e471eb5
GM
2052 return val;
2053}
2054
2055
2056/* Make a string from NCHARS characters occupying NBYTES bytes at
2057 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2058
2059Lisp_Object
2060make_string_from_bytes (contents, nchars, nbytes)
fcbb914b 2061 const char *contents;
2e471eb5
GM
2062 int nchars, nbytes;
2063{
2064 register Lisp_Object val;
2065 val = make_uninit_multibyte_string (nchars, nbytes);
d5db4077
KR
2066 bcopy (contents, SDATA (val), nbytes);
2067 if (SBYTES (val) == SCHARS (val))
2068 STRING_SET_UNIBYTE (val);
2e471eb5
GM
2069 return val;
2070}
2071
2072
2073/* Make a string from NCHARS characters occupying NBYTES bytes at
2074 CONTENTS. The argument MULTIBYTE controls whether to label the
229b28c4
KH
2075 string as multibyte. If NCHARS is negative, it counts the number of
2076 characters by itself. */
2e471eb5
GM
2077
2078Lisp_Object
2079make_specified_string (contents, nchars, nbytes, multibyte)
fcbb914b 2080 const char *contents;
2e471eb5
GM
2081 int nchars, nbytes;
2082 int multibyte;
2083{
2084 register Lisp_Object val;
229b28c4
KH
2085
2086 if (nchars < 0)
2087 {
2088 if (multibyte)
2089 nchars = multibyte_chars_in_text (contents, nbytes);
2090 else
2091 nchars = nbytes;
2092 }
2e471eb5 2093 val = make_uninit_multibyte_string (nchars, nbytes);
d5db4077 2094 bcopy (contents, SDATA (val), nbytes);
2e471eb5 2095 if (!multibyte)
d5db4077 2096 STRING_SET_UNIBYTE (val);
2e471eb5
GM
2097 return val;
2098}
2099
2100
2101/* Make a string from the data at STR, treating it as multibyte if the
2102 data warrants. */
2103
2104Lisp_Object
2105build_string (str)
943b873e 2106 const char *str;
2e471eb5
GM
2107{
2108 return make_string (str, strlen (str));
2109}
2110
2111
2112/* Return an unibyte Lisp_String set up to hold LENGTH characters
2113 occupying LENGTH bytes. */
2114
2115Lisp_Object
2116make_uninit_string (length)
2117 int length;
2118{
2119 Lisp_Object val;
2120 val = make_uninit_multibyte_string (length, length);
d5db4077 2121 STRING_SET_UNIBYTE (val);
2e471eb5
GM
2122 return val;
2123}
2124
2125
2126/* Return a multibyte Lisp_String set up to hold NCHARS characters
2127 which occupy NBYTES bytes. */
2128
2129Lisp_Object
2130make_uninit_multibyte_string (nchars, nbytes)
2131 int nchars, nbytes;
2132{
2133 Lisp_Object string;
2134 struct Lisp_String *s;
2135
2136 if (nchars < 0)
2137 abort ();
2138
2139 s = allocate_string ();
2140 allocate_string_data (s, nchars, nbytes);
2141 XSETSTRING (string, s);
2142 string_chars_consed += nbytes;
2143 return string;
2144}
2145
2146
2147\f
2148/***********************************************************************
2149 Float Allocation
2150 ***********************************************************************/
2151
2e471eb5
GM
2152/* We store float cells inside of float_blocks, allocating a new
2153 float_block with malloc whenever necessary. Float cells reclaimed
2154 by GC are put on a free list to be reallocated before allocating
ab6780cd 2155 any new float cells from the latest float_block. */
2e471eb5 2156
d05b383a
SM
2157#define FLOAT_BLOCK_SIZE \
2158 (((BLOCK_BYTES - sizeof (struct float_block *) \
2159 /* The compiler might add padding at the end. */ \
2160 - (sizeof (struct Lisp_Float) - sizeof (int))) * CHAR_BIT) \
ab6780cd
SM
2161 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2162
2163#define GETMARKBIT(block,n) \
2164 (((block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2165 >> ((n) % (sizeof(int) * CHAR_BIT))) \
2166 & 1)
2167
2168#define SETMARKBIT(block,n) \
2169 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2170 |= 1 << ((n) % (sizeof(int) * CHAR_BIT))
2171
2172#define UNSETMARKBIT(block,n) \
2173 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2174 &= ~(1 << ((n) % (sizeof(int) * CHAR_BIT)))
2175
2176#define FLOAT_BLOCK(fptr) \
2177 ((struct float_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2178
2179#define FLOAT_INDEX(fptr) \
2180 ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2e471eb5
GM
2181
2182struct float_block
2183{
ab6780cd 2184 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2e471eb5 2185 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
ab6780cd
SM
2186 int gcmarkbits[1 + FLOAT_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2187 struct float_block *next;
2e471eb5
GM
2188};
2189
ab6780cd
SM
2190#define FLOAT_MARKED_P(fptr) \
2191 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2192
2193#define FLOAT_MARK(fptr) \
2194 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2195
2196#define FLOAT_UNMARK(fptr) \
2197 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2198
34400008
GM
2199/* Current float_block. */
2200
2e471eb5 2201struct float_block *float_block;
34400008
GM
2202
2203/* Index of first unused Lisp_Float in the current float_block. */
2204
2e471eb5
GM
2205int float_block_index;
2206
2207/* Total number of float blocks now in use. */
2208
2209int n_float_blocks;
2210
34400008
GM
2211/* Free-list of Lisp_Floats. */
2212
2e471eb5
GM
2213struct Lisp_Float *float_free_list;
2214
34400008 2215
966533c9 2216/* Initialize float allocation. */
34400008 2217
2e471eb5
GM
2218void
2219init_float ()
2220{
08b7c2cb
SM
2221 float_block = NULL;
2222 float_block_index = FLOAT_BLOCK_SIZE; /* Force alloc of new float_block. */
2e471eb5 2223 float_free_list = 0;
08b7c2cb 2224 n_float_blocks = 0;
2e471eb5
GM
2225}
2226
34400008
GM
2227
2228/* Explicitly free a float cell by putting it on the free-list. */
2e471eb5
GM
2229
2230void
2231free_float (ptr)
2232 struct Lisp_Float *ptr;
2233{
2234 *(struct Lisp_Float **)&ptr->data = float_free_list;
2235 float_free_list = ptr;
2236}
2237
34400008
GM
2238
2239/* Return a new float object with value FLOAT_VALUE. */
2240
2e471eb5
GM
2241Lisp_Object
2242make_float (float_value)
2243 double float_value;
2244{
2245 register Lisp_Object val;
2246
2247 if (float_free_list)
2248 {
2249 /* We use the data field for chaining the free list
2250 so that we won't use the same field that has the mark bit. */
2251 XSETFLOAT (val, float_free_list);
2252 float_free_list = *(struct Lisp_Float **)&float_free_list->data;
2253 }
2254 else
2255 {
2256 if (float_block_index == FLOAT_BLOCK_SIZE)
2257 {
2258 register struct float_block *new;
2259
ab6780cd
SM
2260 new = (struct float_block *) lisp_align_malloc (sizeof *new,
2261 MEM_TYPE_FLOAT);
2e471eb5 2262 new->next = float_block;
a0668126 2263 bzero ((char *) new->gcmarkbits, sizeof new->gcmarkbits);
2e471eb5
GM
2264 float_block = new;
2265 float_block_index = 0;
2266 n_float_blocks++;
2267 }
a0668126
SM
2268 XSETFLOAT (val, &float_block->floats[float_block_index]);
2269 float_block_index++;
2e471eb5 2270 }
177c0ea7 2271
2e471eb5 2272 XFLOAT_DATA (val) = float_value;
a0668126 2273 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2e471eb5
GM
2274 consing_since_gc += sizeof (struct Lisp_Float);
2275 floats_consed++;
2276 return val;
2277}
2278
2e471eb5
GM
2279
2280\f
2281/***********************************************************************
2282 Cons Allocation
2283 ***********************************************************************/
2284
2285/* We store cons cells inside of cons_blocks, allocating a new
2286 cons_block with malloc whenever necessary. Cons cells reclaimed by
2287 GC are put on a free list to be reallocated before allocating
08b7c2cb 2288 any new cons cells from the latest cons_block. */
2e471eb5
GM
2289
2290#define CONS_BLOCK_SIZE \
08b7c2cb
SM
2291 (((BLOCK_BYTES - sizeof (struct cons_block *)) * CHAR_BIT) \
2292 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2293
2294#define CONS_BLOCK(fptr) \
2295 ((struct cons_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2296
2297#define CONS_INDEX(fptr) \
2298 ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2e471eb5
GM
2299
2300struct cons_block
2301{
08b7c2cb 2302 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2e471eb5 2303 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
08b7c2cb
SM
2304 int gcmarkbits[1 + CONS_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2305 struct cons_block *next;
2e471eb5
GM
2306};
2307
08b7c2cb
SM
2308#define CONS_MARKED_P(fptr) \
2309 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2310
2311#define CONS_MARK(fptr) \
2312 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2313
2314#define CONS_UNMARK(fptr) \
2315 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2316
34400008
GM
2317/* Current cons_block. */
2318
2e471eb5 2319struct cons_block *cons_block;
34400008
GM
2320
2321/* Index of first unused Lisp_Cons in the current block. */
2322
2e471eb5
GM
2323int cons_block_index;
2324
34400008
GM
2325/* Free-list of Lisp_Cons structures. */
2326
2e471eb5
GM
2327struct Lisp_Cons *cons_free_list;
2328
2329/* Total number of cons blocks now in use. */
2330
2331int n_cons_blocks;
2332
34400008
GM
2333
2334/* Initialize cons allocation. */
2335
2e471eb5
GM
2336void
2337init_cons ()
2338{
08b7c2cb
SM
2339 cons_block = NULL;
2340 cons_block_index = CONS_BLOCK_SIZE; /* Force alloc of new cons_block. */
2e471eb5 2341 cons_free_list = 0;
08b7c2cb 2342 n_cons_blocks = 0;
2e471eb5
GM
2343}
2344
34400008
GM
2345
2346/* Explicitly free a cons cell by putting it on the free-list. */
2e471eb5
GM
2347
2348void
2349free_cons (ptr)
2350 struct Lisp_Cons *ptr;
2351{
2352 *(struct Lisp_Cons **)&ptr->cdr = cons_free_list;
34400008
GM
2353#if GC_MARK_STACK
2354 ptr->car = Vdead;
2355#endif
2e471eb5
GM
2356 cons_free_list = ptr;
2357}
2358
2359DEFUN ("cons", Fcons, Scons, 2, 2, 0,
a6266d23 2360 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
7ee72033 2361 (car, cdr)
2e471eb5
GM
2362 Lisp_Object car, cdr;
2363{
2364 register Lisp_Object val;
2365
2366 if (cons_free_list)
2367 {
2368 /* We use the cdr for chaining the free list
2369 so that we won't use the same field that has the mark bit. */
2370 XSETCONS (val, cons_free_list);
2371 cons_free_list = *(struct Lisp_Cons **)&cons_free_list->cdr;
2372 }
2373 else
2374 {
2375 if (cons_block_index == CONS_BLOCK_SIZE)
2376 {
2377 register struct cons_block *new;
08b7c2cb
SM
2378 new = (struct cons_block *) lisp_align_malloc (sizeof *new,
2379 MEM_TYPE_CONS);
a0668126 2380 bzero ((char *) new->gcmarkbits, sizeof new->gcmarkbits);
2e471eb5
GM
2381 new->next = cons_block;
2382 cons_block = new;
2383 cons_block_index = 0;
2384 n_cons_blocks++;
2385 }
a0668126
SM
2386 XSETCONS (val, &cons_block->conses[cons_block_index]);
2387 cons_block_index++;
2e471eb5 2388 }
177c0ea7 2389
f3fbd155
KR
2390 XSETCAR (val, car);
2391 XSETCDR (val, cdr);
a0668126 2392 eassert (!CONS_MARKED_P (XCONS (val)));
2e471eb5
GM
2393 consing_since_gc += sizeof (struct Lisp_Cons);
2394 cons_cells_consed++;
2395 return val;
2396}
2397
e3e56238
RS
2398/* Get an error now if there's any junk in the cons free list. */
2399void
2400check_cons_list ()
2401{
2402 struct Lisp_Cons *tail = cons_free_list;
2403
2404#if 0
2405 while (tail)
2406 tail = *(struct Lisp_Cons **)&tail->cdr;
2407#endif
2408}
34400008 2409
2e471eb5
GM
2410/* Make a list of 2, 3, 4 or 5 specified objects. */
2411
2412Lisp_Object
2413list2 (arg1, arg2)
2414 Lisp_Object arg1, arg2;
2415{
2416 return Fcons (arg1, Fcons (arg2, Qnil));
2417}
2418
34400008 2419
2e471eb5
GM
2420Lisp_Object
2421list3 (arg1, arg2, arg3)
2422 Lisp_Object arg1, arg2, arg3;
2423{
2424 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2425}
2426
34400008 2427
2e471eb5
GM
2428Lisp_Object
2429list4 (arg1, arg2, arg3, arg4)
2430 Lisp_Object arg1, arg2, arg3, arg4;
2431{
2432 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2433}
2434
34400008 2435
2e471eb5
GM
2436Lisp_Object
2437list5 (arg1, arg2, arg3, arg4, arg5)
2438 Lisp_Object arg1, arg2, arg3, arg4, arg5;
2439{
2440 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2441 Fcons (arg5, Qnil)))));
2442}
2443
34400008 2444
2e471eb5 2445DEFUN ("list", Flist, Slist, 0, MANY, 0,
eae936e2 2446 doc: /* Return a newly created list with specified arguments as elements.
ae8e8122
MB
2447Any number of arguments, even zero arguments, are allowed.
2448usage: (list &rest OBJECTS) */)
7ee72033 2449 (nargs, args)
2e471eb5
GM
2450 int nargs;
2451 register Lisp_Object *args;
2452{
2453 register Lisp_Object val;
2454 val = Qnil;
2455
2456 while (nargs > 0)
2457 {
2458 nargs--;
2459 val = Fcons (args[nargs], val);
2460 }
2461 return val;
2462}
2463
34400008 2464
2e471eb5 2465DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
a6266d23 2466 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
7ee72033 2467 (length, init)
2e471eb5
GM
2468 register Lisp_Object length, init;
2469{
2470 register Lisp_Object val;
2471 register int size;
2472
b7826503 2473 CHECK_NATNUM (length);
2e471eb5
GM
2474 size = XFASTINT (length);
2475
2476 val = Qnil;
ce070307
GM
2477 while (size > 0)
2478 {
2479 val = Fcons (init, val);
2480 --size;
2481
2482 if (size > 0)
2483 {
2484 val = Fcons (init, val);
2485 --size;
177c0ea7 2486
ce070307
GM
2487 if (size > 0)
2488 {
2489 val = Fcons (init, val);
2490 --size;
177c0ea7 2491
ce070307
GM
2492 if (size > 0)
2493 {
2494 val = Fcons (init, val);
2495 --size;
177c0ea7 2496
ce070307
GM
2497 if (size > 0)
2498 {
2499 val = Fcons (init, val);
2500 --size;
2501 }
2502 }
2503 }
2504 }
2505
2506 QUIT;
2507 }
177c0ea7 2508
7146af97
JB
2509 return val;
2510}
2e471eb5
GM
2511
2512
7146af97 2513\f
2e471eb5
GM
2514/***********************************************************************
2515 Vector Allocation
2516 ***********************************************************************/
7146af97 2517
34400008
GM
2518/* Singly-linked list of all vectors. */
2519
7146af97
JB
2520struct Lisp_Vector *all_vectors;
2521
2e471eb5
GM
2522/* Total number of vector-like objects now in use. */
2523
c8099634
RS
2524int n_vectors;
2525
34400008
GM
2526
2527/* Value is a pointer to a newly allocated Lisp_Vector structure
2528 with room for LEN Lisp_Objects. */
2529
ece93c02
GM
2530static struct Lisp_Vector *
2531allocate_vectorlike (len, type)
1825c68d 2532 EMACS_INT len;
ece93c02 2533 enum mem_type type;
1825c68d
KH
2534{
2535 struct Lisp_Vector *p;
675d5130 2536 size_t nbytes;
1825c68d 2537
d1658221 2538#ifdef DOUG_LEA_MALLOC
f8608968
GM
2539 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
2540 because mapped region contents are not preserved in
2541 a dumped Emacs. */
de7515d6 2542 BLOCK_INPUT;
d1658221 2543 mallopt (M_MMAP_MAX, 0);
de7515d6 2544 UNBLOCK_INPUT;
d1658221 2545#endif
177c0ea7 2546
34400008 2547 nbytes = sizeof *p + (len - 1) * sizeof p->contents[0];
ece93c02 2548 p = (struct Lisp_Vector *) lisp_malloc (nbytes, type);
177c0ea7 2549
d1658221 2550#ifdef DOUG_LEA_MALLOC
34400008 2551 /* Back to a reasonable maximum of mmap'ed areas. */
de7515d6 2552 BLOCK_INPUT;
81d492d5 2553 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
de7515d6 2554 UNBLOCK_INPUT;
d1658221 2555#endif
177c0ea7 2556
34400008 2557 consing_since_gc += nbytes;
310ea200 2558 vector_cells_consed += len;
1825c68d
KH
2559
2560 p->next = all_vectors;
2561 all_vectors = p;
34400008 2562 ++n_vectors;
1825c68d
KH
2563 return p;
2564}
2565
34400008 2566
ece93c02
GM
2567/* Allocate a vector with NSLOTS slots. */
2568
2569struct Lisp_Vector *
2570allocate_vector (nslots)
2571 EMACS_INT nslots;
2572{
2573 struct Lisp_Vector *v = allocate_vectorlike (nslots, MEM_TYPE_VECTOR);
2574 v->size = nslots;
2575 return v;
2576}
2577
2578
2579/* Allocate other vector-like structures. */
2580
2581struct Lisp_Hash_Table *
2582allocate_hash_table ()
2583{
2584 EMACS_INT len = VECSIZE (struct Lisp_Hash_Table);
2585 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_HASH_TABLE);
2586 EMACS_INT i;
177c0ea7 2587
ece93c02
GM
2588 v->size = len;
2589 for (i = 0; i < len; ++i)
2590 v->contents[i] = Qnil;
177c0ea7 2591
ece93c02
GM
2592 return (struct Lisp_Hash_Table *) v;
2593}
2594
2595
2596struct window *
2597allocate_window ()
2598{
2599 EMACS_INT len = VECSIZE (struct window);
2600 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_WINDOW);
2601 EMACS_INT i;
177c0ea7 2602
ece93c02
GM
2603 for (i = 0; i < len; ++i)
2604 v->contents[i] = Qnil;
2605 v->size = len;
177c0ea7 2606
ece93c02
GM
2607 return (struct window *) v;
2608}
2609
2610
2611struct frame *
2612allocate_frame ()
2613{
2614 EMACS_INT len = VECSIZE (struct frame);
2615 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_FRAME);
2616 EMACS_INT i;
177c0ea7 2617
ece93c02
GM
2618 for (i = 0; i < len; ++i)
2619 v->contents[i] = make_number (0);
2620 v->size = len;
2621 return (struct frame *) v;
2622}
2623
2624
2625struct Lisp_Process *
2626allocate_process ()
2627{
2628 EMACS_INT len = VECSIZE (struct Lisp_Process);
2629 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_PROCESS);
2630 EMACS_INT i;
177c0ea7 2631
ece93c02
GM
2632 for (i = 0; i < len; ++i)
2633 v->contents[i] = Qnil;
2634 v->size = len;
177c0ea7 2635
ece93c02
GM
2636 return (struct Lisp_Process *) v;
2637}
2638
2639
2640struct Lisp_Vector *
2641allocate_other_vector (len)
2642 EMACS_INT len;
2643{
2644 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_VECTOR);
2645 EMACS_INT i;
177c0ea7 2646
ece93c02
GM
2647 for (i = 0; i < len; ++i)
2648 v->contents[i] = Qnil;
2649 v->size = len;
177c0ea7 2650
ece93c02
GM
2651 return v;
2652}
2653
2654
7146af97 2655DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
a6266d23 2656 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
7ee72033
MB
2657See also the function `vector'. */)
2658 (length, init)
7146af97
JB
2659 register Lisp_Object length, init;
2660{
1825c68d
KH
2661 Lisp_Object vector;
2662 register EMACS_INT sizei;
2663 register int index;
7146af97
JB
2664 register struct Lisp_Vector *p;
2665
b7826503 2666 CHECK_NATNUM (length);
c9dad5ed 2667 sizei = XFASTINT (length);
7146af97 2668
ece93c02 2669 p = allocate_vector (sizei);
7146af97
JB
2670 for (index = 0; index < sizei; index++)
2671 p->contents[index] = init;
2672
1825c68d 2673 XSETVECTOR (vector, p);
7146af97
JB
2674 return vector;
2675}
2676
34400008 2677
a59de17b 2678DEFUN ("make-char-table", Fmake_char_table, Smake_char_table, 1, 2, 0,
a6266d23 2679 doc: /* Return a newly created char-table, with purpose PURPOSE.
228299fa
GM
2680Each element is initialized to INIT, which defaults to nil.
2681PURPOSE should be a symbol which has a `char-table-extra-slots' property.
7ee72033
MB
2682The property's value should be an integer between 0 and 10. */)
2683 (purpose, init)
a59de17b 2684 register Lisp_Object purpose, init;
7b07587b
RS
2685{
2686 Lisp_Object vector;
a59de17b 2687 Lisp_Object n;
b7826503 2688 CHECK_SYMBOL (purpose);
0551bde3 2689 n = Fget (purpose, Qchar_table_extra_slots);
b7826503 2690 CHECK_NUMBER (n);
7b07587b
RS
2691 if (XINT (n) < 0 || XINT (n) > 10)
2692 args_out_of_range (n, Qnil);
2693 /* Add 2 to the size for the defalt and parent slots. */
2694 vector = Fmake_vector (make_number (CHAR_TABLE_STANDARD_SLOTS + XINT (n)),
2695 init);
0551bde3 2696 XCHAR_TABLE (vector)->top = Qt;
c96a008c 2697 XCHAR_TABLE (vector)->parent = Qnil;
a59de17b 2698 XCHAR_TABLE (vector)->purpose = purpose;
7b07587b
RS
2699 XSETCHAR_TABLE (vector, XCHAR_TABLE (vector));
2700 return vector;
2701}
2702
34400008 2703
0551bde3
KH
2704/* Return a newly created sub char table with default value DEFALT.
2705 Since a sub char table does not appear as a top level Emacs Lisp
2706 object, we don't need a Lisp interface to make it. */
2707
2708Lisp_Object
2709make_sub_char_table (defalt)
2710 Lisp_Object defalt;
2711{
2712 Lisp_Object vector
2713 = Fmake_vector (make_number (SUB_CHAR_TABLE_STANDARD_SLOTS), Qnil);
2714 XCHAR_TABLE (vector)->top = Qnil;
2715 XCHAR_TABLE (vector)->defalt = defalt;
2716 XSETCHAR_TABLE (vector, XCHAR_TABLE (vector));
2717 return vector;
2718}
2719
34400008 2720
7146af97 2721DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
eae936e2 2722 doc: /* Return a newly created vector with specified arguments as elements.
ae8e8122
MB
2723Any number of arguments, even zero arguments, are allowed.
2724usage: (vector &rest OBJECTS) */)
7ee72033 2725 (nargs, args)
7146af97
JB
2726 register int nargs;
2727 Lisp_Object *args;
2728{
2729 register Lisp_Object len, val;
2730 register int index;
2731 register struct Lisp_Vector *p;
2732
67ba9986 2733 XSETFASTINT (len, nargs);
7146af97
JB
2734 val = Fmake_vector (len, Qnil);
2735 p = XVECTOR (val);
2736 for (index = 0; index < nargs; index++)
2737 p->contents[index] = args[index];
2738 return val;
2739}
2740
34400008 2741
7146af97 2742DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
a6266d23 2743 doc: /* Create a byte-code object with specified arguments as elements.
228299fa
GM
2744The arguments should be the arglist, bytecode-string, constant vector,
2745stack size, (optional) doc string, and (optional) interactive spec.
2746The first four arguments are required; at most six have any
ae8e8122 2747significance.
92cc28b2 2748usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
7ee72033 2749 (nargs, args)
7146af97
JB
2750 register int nargs;
2751 Lisp_Object *args;
2752{
2753 register Lisp_Object len, val;
2754 register int index;
2755 register struct Lisp_Vector *p;
2756
67ba9986 2757 XSETFASTINT (len, nargs);
265a9e55 2758 if (!NILP (Vpurify_flag))
5a053ea9 2759 val = make_pure_vector ((EMACS_INT) nargs);
7146af97
JB
2760 else
2761 val = Fmake_vector (len, Qnil);
9eac9d59
KH
2762
2763 if (STRINGP (args[1]) && STRING_MULTIBYTE (args[1]))
2764 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
2765 earlier because they produced a raw 8-bit string for byte-code
2766 and now such a byte-code string is loaded as multibyte while
2767 raw 8-bit characters converted to multibyte form. Thus, now we
2768 must convert them back to the original unibyte form. */
2769 args[1] = Fstring_as_unibyte (args[1]);
2770
7146af97
JB
2771 p = XVECTOR (val);
2772 for (index = 0; index < nargs; index++)
2773 {
265a9e55 2774 if (!NILP (Vpurify_flag))
7146af97
JB
2775 args[index] = Fpurecopy (args[index]);
2776 p->contents[index] = args[index];
2777 }
50aee051 2778 XSETCOMPILED (val, p);
7146af97
JB
2779 return val;
2780}
2e471eb5 2781
34400008 2782
7146af97 2783\f
2e471eb5
GM
2784/***********************************************************************
2785 Symbol Allocation
2786 ***********************************************************************/
7146af97 2787
2e471eb5
GM
2788/* Each symbol_block is just under 1020 bytes long, since malloc
2789 really allocates in units of powers of two and uses 4 bytes for its
2790 own overhead. */
7146af97
JB
2791
2792#define SYMBOL_BLOCK_SIZE \
2793 ((1020 - sizeof (struct symbol_block *)) / sizeof (struct Lisp_Symbol))
2794
2795struct symbol_block
2e471eb5 2796{
d05b383a 2797 /* Place `symbols' first, to preserve alignment. */
2e471eb5 2798 struct Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
d05b383a 2799 struct symbol_block *next;
2e471eb5 2800};
7146af97 2801
34400008
GM
2802/* Current symbol block and index of first unused Lisp_Symbol
2803 structure in it. */
2804
7146af97
JB
2805struct symbol_block *symbol_block;
2806int symbol_block_index;
2807
34400008
GM
2808/* List of free symbols. */
2809
7146af97
JB
2810struct Lisp_Symbol *symbol_free_list;
2811
c8099634 2812/* Total number of symbol blocks now in use. */
2e471eb5 2813
c8099634
RS
2814int n_symbol_blocks;
2815
34400008
GM
2816
2817/* Initialize symbol allocation. */
2818
7146af97
JB
2819void
2820init_symbol ()
2821{
0930c1a1
SM
2822 symbol_block = NULL;
2823 symbol_block_index = SYMBOL_BLOCK_SIZE;
7146af97 2824 symbol_free_list = 0;
0930c1a1 2825 n_symbol_blocks = 0;
7146af97
JB
2826}
2827
34400008 2828
7146af97 2829DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
a6266d23 2830 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
7ee72033
MB
2831Its value and function definition are void, and its property list is nil. */)
2832 (name)
54ee42dd 2833 Lisp_Object name;
7146af97
JB
2834{
2835 register Lisp_Object val;
2836 register struct Lisp_Symbol *p;
2837
b7826503 2838 CHECK_STRING (name);
7146af97
JB
2839
2840 if (symbol_free_list)
2841 {
45d12a89 2842 XSETSYMBOL (val, symbol_free_list);
85481507 2843 symbol_free_list = *(struct Lisp_Symbol **)&symbol_free_list->value;
7146af97
JB
2844 }
2845 else
2846 {
2847 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
2848 {
3c06d205 2849 struct symbol_block *new;
34400008
GM
2850 new = (struct symbol_block *) lisp_malloc (sizeof *new,
2851 MEM_TYPE_SYMBOL);
7146af97
JB
2852 new->next = symbol_block;
2853 symbol_block = new;
2854 symbol_block_index = 0;
c8099634 2855 n_symbol_blocks++;
7146af97 2856 }
a0668126
SM
2857 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index]);
2858 symbol_block_index++;
7146af97 2859 }
177c0ea7 2860
7146af97 2861 p = XSYMBOL (val);
8fe5665d 2862 p->xname = name;
7146af97 2863 p->plist = Qnil;
2e471eb5
GM
2864 p->value = Qunbound;
2865 p->function = Qunbound;
9e713715 2866 p->next = NULL;
2336fe58 2867 p->gcmarkbit = 0;
9e713715
GM
2868 p->interned = SYMBOL_UNINTERNED;
2869 p->constant = 0;
2870 p->indirect_variable = 0;
2e471eb5
GM
2871 consing_since_gc += sizeof (struct Lisp_Symbol);
2872 symbols_consed++;
7146af97
JB
2873 return val;
2874}
2875
3f25e183 2876
2e471eb5
GM
2877\f
2878/***********************************************************************
34400008 2879 Marker (Misc) Allocation
2e471eb5 2880 ***********************************************************************/
3f25e183 2881
2e471eb5
GM
2882/* Allocation of markers and other objects that share that structure.
2883 Works like allocation of conses. */
c0696668 2884
2e471eb5
GM
2885#define MARKER_BLOCK_SIZE \
2886 ((1020 - sizeof (struct marker_block *)) / sizeof (union Lisp_Misc))
2887
2888struct marker_block
c0696668 2889{
d05b383a 2890 /* Place `markers' first, to preserve alignment. */
2e471eb5 2891 union Lisp_Misc markers[MARKER_BLOCK_SIZE];
d05b383a 2892 struct marker_block *next;
2e471eb5 2893};
c0696668 2894
2e471eb5
GM
2895struct marker_block *marker_block;
2896int marker_block_index;
c0696668 2897
2e471eb5 2898union Lisp_Misc *marker_free_list;
c0696668 2899
2e471eb5 2900/* Total number of marker blocks now in use. */
3f25e183 2901
2e471eb5
GM
2902int n_marker_blocks;
2903
2904void
2905init_marker ()
3f25e183 2906{
0930c1a1
SM
2907 marker_block = NULL;
2908 marker_block_index = MARKER_BLOCK_SIZE;
2e471eb5 2909 marker_free_list = 0;
0930c1a1 2910 n_marker_blocks = 0;
3f25e183
RS
2911}
2912
2e471eb5
GM
2913/* Return a newly allocated Lisp_Misc object, with no substructure. */
2914
3f25e183 2915Lisp_Object
2e471eb5 2916allocate_misc ()
7146af97 2917{
2e471eb5 2918 Lisp_Object val;
7146af97 2919
2e471eb5 2920 if (marker_free_list)
7146af97 2921 {
2e471eb5
GM
2922 XSETMISC (val, marker_free_list);
2923 marker_free_list = marker_free_list->u_free.chain;
7146af97
JB
2924 }
2925 else
7146af97 2926 {
2e471eb5
GM
2927 if (marker_block_index == MARKER_BLOCK_SIZE)
2928 {
2929 struct marker_block *new;
34400008
GM
2930 new = (struct marker_block *) lisp_malloc (sizeof *new,
2931 MEM_TYPE_MISC);
2e471eb5
GM
2932 new->next = marker_block;
2933 marker_block = new;
2934 marker_block_index = 0;
2935 n_marker_blocks++;
7b7990cc 2936 total_free_markers += MARKER_BLOCK_SIZE;
2e471eb5 2937 }
a0668126
SM
2938 XSETMISC (val, &marker_block->markers[marker_block_index]);
2939 marker_block_index++;
7146af97 2940 }
177c0ea7 2941
7b7990cc 2942 --total_free_markers;
2e471eb5
GM
2943 consing_since_gc += sizeof (union Lisp_Misc);
2944 misc_objects_consed++;
2336fe58 2945 XMARKER (val)->gcmarkbit = 0;
2e471eb5
GM
2946 return val;
2947}
2948
7b7990cc
KS
2949/* Free a Lisp_Misc object */
2950
2951void
2952free_misc (misc)
2953 Lisp_Object misc;
2954{
2955 XMISC (misc)->u_marker.type = Lisp_Misc_Free;
2956 XMISC (misc)->u_free.chain = marker_free_list;
2957 marker_free_list = XMISC (misc);
2958
2959 total_free_markers++;
2960}
2961
42172a6b
RS
2962/* Return a Lisp_Misc_Save_Value object containing POINTER and
2963 INTEGER. This is used to package C values to call record_unwind_protect.
2964 The unwind function can get the C values back using XSAVE_VALUE. */
2965
2966Lisp_Object
2967make_save_value (pointer, integer)
2968 void *pointer;
2969 int integer;
2970{
2971 register Lisp_Object val;
2972 register struct Lisp_Save_Value *p;
2973
2974 val = allocate_misc ();
2975 XMISCTYPE (val) = Lisp_Misc_Save_Value;
2976 p = XSAVE_VALUE (val);
2977 p->pointer = pointer;
2978 p->integer = integer;
b766f870 2979 p->dogc = 0;
42172a6b
RS
2980 return val;
2981}
2982
2e471eb5 2983DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
a6266d23 2984 doc: /* Return a newly allocated marker which does not point at any place. */)
7ee72033 2985 ()
2e471eb5
GM
2986{
2987 register Lisp_Object val;
2988 register struct Lisp_Marker *p;
7146af97 2989
2e471eb5
GM
2990 val = allocate_misc ();
2991 XMISCTYPE (val) = Lisp_Misc_Marker;
2992 p = XMARKER (val);
2993 p->buffer = 0;
2994 p->bytepos = 0;
2995 p->charpos = 0;
ef89c2ce 2996 p->next = NULL;
2e471eb5 2997 p->insertion_type = 0;
7146af97
JB
2998 return val;
2999}
2e471eb5
GM
3000
3001/* Put MARKER back on the free list after using it temporarily. */
3002
3003void
3004free_marker (marker)
3005 Lisp_Object marker;
3006{
ef89c2ce 3007 unchain_marker (XMARKER (marker));
7b7990cc 3008 free_misc (marker);
2e471eb5
GM
3009}
3010
c0696668 3011\f
7146af97 3012/* Return a newly created vector or string with specified arguments as
736471d1
RS
3013 elements. If all the arguments are characters that can fit
3014 in a string of events, make a string; otherwise, make a vector.
3015
3016 Any number of arguments, even zero arguments, are allowed. */
7146af97
JB
3017
3018Lisp_Object
736471d1 3019make_event_array (nargs, args)
7146af97
JB
3020 register int nargs;
3021 Lisp_Object *args;
3022{
3023 int i;
3024
3025 for (i = 0; i < nargs; i++)
736471d1 3026 /* The things that fit in a string
c9ca4659
RS
3027 are characters that are in 0...127,
3028 after discarding the meta bit and all the bits above it. */
e687453f 3029 if (!INTEGERP (args[i])
c9ca4659 3030 || (XUINT (args[i]) & ~(-CHAR_META)) >= 0200)
7146af97
JB
3031 return Fvector (nargs, args);
3032
3033 /* Since the loop exited, we know that all the things in it are
3034 characters, so we can make a string. */
3035 {
c13ccad2 3036 Lisp_Object result;
177c0ea7 3037
50aee051 3038 result = Fmake_string (make_number (nargs), make_number (0));
7146af97 3039 for (i = 0; i < nargs; i++)
736471d1 3040 {
46e7e6b0 3041 SSET (result, i, XINT (args[i]));
736471d1
RS
3042 /* Move the meta bit to the right place for a string char. */
3043 if (XINT (args[i]) & CHAR_META)
46e7e6b0 3044 SSET (result, i, SREF (result, i) | 0x80);
736471d1 3045 }
177c0ea7 3046
7146af97
JB
3047 return result;
3048 }
3049}
2e471eb5
GM
3050
3051
7146af97 3052\f
34400008
GM
3053/************************************************************************
3054 C Stack Marking
3055 ************************************************************************/
3056
13c844fb
GM
3057#if GC_MARK_STACK || defined GC_MALLOC_CHECK
3058
71cf5fa0
GM
3059/* Conservative C stack marking requires a method to identify possibly
3060 live Lisp objects given a pointer value. We do this by keeping
3061 track of blocks of Lisp data that are allocated in a red-black tree
3062 (see also the comment of mem_node which is the type of nodes in
3063 that tree). Function lisp_malloc adds information for an allocated
3064 block to the red-black tree with calls to mem_insert, and function
3065 lisp_free removes it with mem_delete. Functions live_string_p etc
3066 call mem_find to lookup information about a given pointer in the
3067 tree, and use that to determine if the pointer points to a Lisp
3068 object or not. */
3069
34400008
GM
3070/* Initialize this part of alloc.c. */
3071
3072static void
3073mem_init ()
3074{
3075 mem_z.left = mem_z.right = MEM_NIL;
3076 mem_z.parent = NULL;
3077 mem_z.color = MEM_BLACK;
3078 mem_z.start = mem_z.end = NULL;
3079 mem_root = MEM_NIL;
3080}
3081
3082
3083/* Value is a pointer to the mem_node containing START. Value is
3084 MEM_NIL if there is no node in the tree containing START. */
3085
3086static INLINE struct mem_node *
3087mem_find (start)
3088 void *start;
3089{
3090 struct mem_node *p;
3091
ece93c02
GM
3092 if (start < min_heap_address || start > max_heap_address)
3093 return MEM_NIL;
3094
34400008
GM
3095 /* Make the search always successful to speed up the loop below. */
3096 mem_z.start = start;
3097 mem_z.end = (char *) start + 1;
3098
3099 p = mem_root;
3100 while (start < p->start || start >= p->end)
3101 p = start < p->start ? p->left : p->right;
3102 return p;
3103}
3104
3105
3106/* Insert a new node into the tree for a block of memory with start
3107 address START, end address END, and type TYPE. Value is a
3108 pointer to the node that was inserted. */
3109
3110static struct mem_node *
3111mem_insert (start, end, type)
3112 void *start, *end;
3113 enum mem_type type;
3114{
3115 struct mem_node *c, *parent, *x;
3116
ece93c02
GM
3117 if (start < min_heap_address)
3118 min_heap_address = start;
3119 if (end > max_heap_address)
3120 max_heap_address = end;
3121
34400008
GM
3122 /* See where in the tree a node for START belongs. In this
3123 particular application, it shouldn't happen that a node is already
3124 present. For debugging purposes, let's check that. */
3125 c = mem_root;
3126 parent = NULL;
3127
3128#if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
177c0ea7 3129
34400008
GM
3130 while (c != MEM_NIL)
3131 {
3132 if (start >= c->start && start < c->end)
3133 abort ();
3134 parent = c;
3135 c = start < c->start ? c->left : c->right;
3136 }
177c0ea7 3137
34400008 3138#else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
177c0ea7 3139
34400008
GM
3140 while (c != MEM_NIL)
3141 {
3142 parent = c;
3143 c = start < c->start ? c->left : c->right;
3144 }
177c0ea7 3145
34400008
GM
3146#endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3147
3148 /* Create a new node. */
877935b1
GM
3149#ifdef GC_MALLOC_CHECK
3150 x = (struct mem_node *) _malloc_internal (sizeof *x);
3151 if (x == NULL)
3152 abort ();
3153#else
34400008 3154 x = (struct mem_node *) xmalloc (sizeof *x);
877935b1 3155#endif
34400008
GM
3156 x->start = start;
3157 x->end = end;
3158 x->type = type;
3159 x->parent = parent;
3160 x->left = x->right = MEM_NIL;
3161 x->color = MEM_RED;
3162
3163 /* Insert it as child of PARENT or install it as root. */
3164 if (parent)
3165 {
3166 if (start < parent->start)
3167 parent->left = x;
3168 else
3169 parent->right = x;
3170 }
177c0ea7 3171 else
34400008
GM
3172 mem_root = x;
3173
3174 /* Re-establish red-black tree properties. */
3175 mem_insert_fixup (x);
877935b1 3176
34400008
GM
3177 return x;
3178}
3179
3180
3181/* Re-establish the red-black properties of the tree, and thereby
3182 balance the tree, after node X has been inserted; X is always red. */
3183
3184static void
3185mem_insert_fixup (x)
3186 struct mem_node *x;
3187{
3188 while (x != mem_root && x->parent->color == MEM_RED)
3189 {
3190 /* X is red and its parent is red. This is a violation of
3191 red-black tree property #3. */
177c0ea7 3192
34400008
GM
3193 if (x->parent == x->parent->parent->left)
3194 {
3195 /* We're on the left side of our grandparent, and Y is our
3196 "uncle". */
3197 struct mem_node *y = x->parent->parent->right;
177c0ea7 3198
34400008
GM
3199 if (y->color == MEM_RED)
3200 {
3201 /* Uncle and parent are red but should be black because
3202 X is red. Change the colors accordingly and proceed
3203 with the grandparent. */
3204 x->parent->color = MEM_BLACK;
3205 y->color = MEM_BLACK;
3206 x->parent->parent->color = MEM_RED;
3207 x = x->parent->parent;
3208 }
3209 else
3210 {
3211 /* Parent and uncle have different colors; parent is
3212 red, uncle is black. */
3213 if (x == x->parent->right)
3214 {
3215 x = x->parent;
3216 mem_rotate_left (x);
3217 }
3218
3219 x->parent->color = MEM_BLACK;
3220 x->parent->parent->color = MEM_RED;
3221 mem_rotate_right (x->parent->parent);
3222 }
3223 }
3224 else
3225 {
3226 /* This is the symmetrical case of above. */
3227 struct mem_node *y = x->parent->parent->left;
177c0ea7 3228
34400008
GM
3229 if (y->color == MEM_RED)
3230 {
3231 x->parent->color = MEM_BLACK;
3232 y->color = MEM_BLACK;
3233 x->parent->parent->color = MEM_RED;
3234 x = x->parent->parent;
3235 }
3236 else
3237 {
3238 if (x == x->parent->left)
3239 {
3240 x = x->parent;
3241 mem_rotate_right (x);
3242 }
177c0ea7 3243
34400008
GM
3244 x->parent->color = MEM_BLACK;
3245 x->parent->parent->color = MEM_RED;
3246 mem_rotate_left (x->parent->parent);
3247 }
3248 }
3249 }
3250
3251 /* The root may have been changed to red due to the algorithm. Set
3252 it to black so that property #5 is satisfied. */
3253 mem_root->color = MEM_BLACK;
3254}
3255
3256
177c0ea7
JB
3257/* (x) (y)
3258 / \ / \
34400008
GM
3259 a (y) ===> (x) c
3260 / \ / \
3261 b c a b */
3262
3263static void
3264mem_rotate_left (x)
3265 struct mem_node *x;
3266{
3267 struct mem_node *y;
3268
3269 /* Turn y's left sub-tree into x's right sub-tree. */
3270 y = x->right;
3271 x->right = y->left;
3272 if (y->left != MEM_NIL)
3273 y->left->parent = x;
3274
3275 /* Y's parent was x's parent. */
3276 if (y != MEM_NIL)
3277 y->parent = x->parent;
3278
3279 /* Get the parent to point to y instead of x. */
3280 if (x->parent)
3281 {
3282 if (x == x->parent->left)
3283 x->parent->left = y;
3284 else
3285 x->parent->right = y;
3286 }
3287 else
3288 mem_root = y;
3289
3290 /* Put x on y's left. */
3291 y->left = x;
3292 if (x != MEM_NIL)
3293 x->parent = y;
3294}
3295
3296
177c0ea7
JB
3297/* (x) (Y)
3298 / \ / \
3299 (y) c ===> a (x)
3300 / \ / \
34400008
GM
3301 a b b c */
3302
3303static void
3304mem_rotate_right (x)
3305 struct mem_node *x;
3306{
3307 struct mem_node *y = x->left;
3308
3309 x->left = y->right;
3310 if (y->right != MEM_NIL)
3311 y->right->parent = x;
177c0ea7 3312
34400008
GM
3313 if (y != MEM_NIL)
3314 y->parent = x->parent;
3315 if (x->parent)
3316 {
3317 if (x == x->parent->right)
3318 x->parent->right = y;
3319 else
3320 x->parent->left = y;
3321 }
3322 else
3323 mem_root = y;
177c0ea7 3324
34400008
GM
3325 y->right = x;
3326 if (x != MEM_NIL)
3327 x->parent = y;
3328}
3329
3330
3331/* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
3332
3333static void
3334mem_delete (z)
3335 struct mem_node *z;
3336{
3337 struct mem_node *x, *y;
3338
3339 if (!z || z == MEM_NIL)
3340 return;
3341
3342 if (z->left == MEM_NIL || z->right == MEM_NIL)
3343 y = z;
3344 else
3345 {
3346 y = z->right;
3347 while (y->left != MEM_NIL)
3348 y = y->left;
3349 }
3350
3351 if (y->left != MEM_NIL)
3352 x = y->left;
3353 else
3354 x = y->right;
3355
3356 x->parent = y->parent;
3357 if (y->parent)
3358 {
3359 if (y == y->parent->left)
3360 y->parent->left = x;
3361 else
3362 y->parent->right = x;
3363 }
3364 else
3365 mem_root = x;
3366
3367 if (y != z)
3368 {
3369 z->start = y->start;
3370 z->end = y->end;
3371 z->type = y->type;
3372 }
177c0ea7 3373
34400008
GM
3374 if (y->color == MEM_BLACK)
3375 mem_delete_fixup (x);
877935b1
GM
3376
3377#ifdef GC_MALLOC_CHECK
3378 _free_internal (y);
3379#else
34400008 3380 xfree (y);
877935b1 3381#endif
34400008
GM
3382}
3383
3384
3385/* Re-establish the red-black properties of the tree, after a
3386 deletion. */
3387
3388static void
3389mem_delete_fixup (x)
3390 struct mem_node *x;
3391{
3392 while (x != mem_root && x->color == MEM_BLACK)
3393 {
3394 if (x == x->parent->left)
3395 {
3396 struct mem_node *w = x->parent->right;
177c0ea7 3397
34400008
GM
3398 if (w->color == MEM_RED)
3399 {
3400 w->color = MEM_BLACK;
3401 x->parent->color = MEM_RED;
3402 mem_rotate_left (x->parent);
3403 w = x->parent->right;
3404 }
177c0ea7 3405
34400008
GM
3406 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
3407 {
3408 w->color = MEM_RED;
3409 x = x->parent;
3410 }
3411 else
3412 {
3413 if (w->right->color == MEM_BLACK)
3414 {
3415 w->left->color = MEM_BLACK;
3416 w->color = MEM_RED;
3417 mem_rotate_right (w);
3418 w = x->parent->right;
3419 }
3420 w->color = x->parent->color;
3421 x->parent->color = MEM_BLACK;
3422 w->right->color = MEM_BLACK;
3423 mem_rotate_left (x->parent);
3424 x = mem_root;
3425 }
3426 }
3427 else
3428 {
3429 struct mem_node *w = x->parent->left;
177c0ea7 3430
34400008
GM
3431 if (w->color == MEM_RED)
3432 {
3433 w->color = MEM_BLACK;
3434 x->parent->color = MEM_RED;
3435 mem_rotate_right (x->parent);
3436 w = x->parent->left;
3437 }
177c0ea7 3438
34400008
GM
3439 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
3440 {
3441 w->color = MEM_RED;
3442 x = x->parent;
3443 }
3444 else
3445 {
3446 if (w->left->color == MEM_BLACK)
3447 {
3448 w->right->color = MEM_BLACK;
3449 w->color = MEM_RED;
3450 mem_rotate_left (w);
3451 w = x->parent->left;
3452 }
177c0ea7 3453
34400008
GM
3454 w->color = x->parent->color;
3455 x->parent->color = MEM_BLACK;
3456 w->left->color = MEM_BLACK;
3457 mem_rotate_right (x->parent);
3458 x = mem_root;
3459 }
3460 }
3461 }
177c0ea7 3462
34400008
GM
3463 x->color = MEM_BLACK;
3464}
3465
3466
3467/* Value is non-zero if P is a pointer to a live Lisp string on
3468 the heap. M is a pointer to the mem_block for P. */
3469
3470static INLINE int
3471live_string_p (m, p)
3472 struct mem_node *m;
3473 void *p;
3474{
3475 if (m->type == MEM_TYPE_STRING)
3476 {
3477 struct string_block *b = (struct string_block *) m->start;
3478 int offset = (char *) p - (char *) &b->strings[0];
3479
3480 /* P must point to the start of a Lisp_String structure, and it
3481 must not be on the free-list. */
176bc847
GM
3482 return (offset >= 0
3483 && offset % sizeof b->strings[0] == 0
d05b383a 3484 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
34400008
GM
3485 && ((struct Lisp_String *) p)->data != NULL);
3486 }
3487 else
3488 return 0;
3489}
3490
3491
3492/* Value is non-zero if P is a pointer to a live Lisp cons on
3493 the heap. M is a pointer to the mem_block for P. */
3494
3495static INLINE int
3496live_cons_p (m, p)
3497 struct mem_node *m;
3498 void *p;
3499{
3500 if (m->type == MEM_TYPE_CONS)
3501 {
3502 struct cons_block *b = (struct cons_block *) m->start;
3503 int offset = (char *) p - (char *) &b->conses[0];
3504
3505 /* P must point to the start of a Lisp_Cons, not be
3506 one of the unused cells in the current cons block,
3507 and not be on the free-list. */
176bc847
GM
3508 return (offset >= 0
3509 && offset % sizeof b->conses[0] == 0
d05b383a 3510 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
34400008
GM
3511 && (b != cons_block
3512 || offset / sizeof b->conses[0] < cons_block_index)
3513 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
3514 }
3515 else
3516 return 0;
3517}
3518
3519
3520/* Value is non-zero if P is a pointer to a live Lisp symbol on
3521 the heap. M is a pointer to the mem_block for P. */
3522
3523static INLINE int
3524live_symbol_p (m, p)
3525 struct mem_node *m;
3526 void *p;
3527{
3528 if (m->type == MEM_TYPE_SYMBOL)
3529 {
3530 struct symbol_block *b = (struct symbol_block *) m->start;
3531 int offset = (char *) p - (char *) &b->symbols[0];
177c0ea7 3532
34400008
GM
3533 /* P must point to the start of a Lisp_Symbol, not be
3534 one of the unused cells in the current symbol block,
3535 and not be on the free-list. */
176bc847
GM
3536 return (offset >= 0
3537 && offset % sizeof b->symbols[0] == 0
d05b383a 3538 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
34400008
GM
3539 && (b != symbol_block
3540 || offset / sizeof b->symbols[0] < symbol_block_index)
3541 && !EQ (((struct Lisp_Symbol *) p)->function, Vdead));
3542 }
3543 else
3544 return 0;
3545}
3546
3547
3548/* Value is non-zero if P is a pointer to a live Lisp float on
3549 the heap. M is a pointer to the mem_block for P. */
3550
3551static INLINE int
3552live_float_p (m, p)
3553 struct mem_node *m;
3554 void *p;
3555{
3556 if (m->type == MEM_TYPE_FLOAT)
3557 {
3558 struct float_block *b = (struct float_block *) m->start;
3559 int offset = (char *) p - (char *) &b->floats[0];
177c0ea7 3560
ab6780cd
SM
3561 /* P must point to the start of a Lisp_Float and not be
3562 one of the unused cells in the current float block. */
176bc847
GM
3563 return (offset >= 0
3564 && offset % sizeof b->floats[0] == 0
d05b383a 3565 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
34400008 3566 && (b != float_block
ab6780cd 3567 || offset / sizeof b->floats[0] < float_block_index));
34400008
GM
3568 }
3569 else
3570 return 0;
3571}
3572
3573
3574/* Value is non-zero if P is a pointer to a live Lisp Misc on
3575 the heap. M is a pointer to the mem_block for P. */
3576
3577static INLINE int
3578live_misc_p (m, p)
3579 struct mem_node *m;
3580 void *p;
3581{
3582 if (m->type == MEM_TYPE_MISC)
3583 {
3584 struct marker_block *b = (struct marker_block *) m->start;
3585 int offset = (char *) p - (char *) &b->markers[0];
177c0ea7 3586
34400008
GM
3587 /* P must point to the start of a Lisp_Misc, not be
3588 one of the unused cells in the current misc block,
3589 and not be on the free-list. */
176bc847
GM
3590 return (offset >= 0
3591 && offset % sizeof b->markers[0] == 0
d05b383a 3592 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
34400008
GM
3593 && (b != marker_block
3594 || offset / sizeof b->markers[0] < marker_block_index)
3595 && ((union Lisp_Misc *) p)->u_marker.type != Lisp_Misc_Free);
3596 }
3597 else
3598 return 0;
3599}
3600
3601
3602/* Value is non-zero if P is a pointer to a live vector-like object.
3603 M is a pointer to the mem_block for P. */
3604
3605static INLINE int
3606live_vector_p (m, p)
3607 struct mem_node *m;
3608 void *p;
3609{
ece93c02
GM
3610 return (p == m->start
3611 && m->type >= MEM_TYPE_VECTOR
3612 && m->type <= MEM_TYPE_WINDOW);
34400008
GM
3613}
3614
3615
2336fe58 3616/* Value is non-zero if P is a pointer to a live buffer. M is a
34400008
GM
3617 pointer to the mem_block for P. */
3618
3619static INLINE int
3620live_buffer_p (m, p)
3621 struct mem_node *m;
3622 void *p;
3623{
3624 /* P must point to the start of the block, and the buffer
3625 must not have been killed. */
3626 return (m->type == MEM_TYPE_BUFFER
3627 && p == m->start
3628 && !NILP (((struct buffer *) p)->name));
3629}
3630
13c844fb
GM
3631#endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
3632
3633#if GC_MARK_STACK
3634
34400008
GM
3635#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3636
3637/* Array of objects that are kept alive because the C stack contains
3638 a pattern that looks like a reference to them . */
3639
3640#define MAX_ZOMBIES 10
3641static Lisp_Object zombies[MAX_ZOMBIES];
3642
3643/* Number of zombie objects. */
3644
3645static int nzombies;
3646
3647/* Number of garbage collections. */
3648
3649static int ngcs;
3650
3651/* Average percentage of zombies per collection. */
3652
3653static double avg_zombies;
3654
3655/* Max. number of live and zombie objects. */
3656
3657static int max_live, max_zombies;
3658
3659/* Average number of live objects per GC. */
3660
3661static double avg_live;
3662
3663DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
7ee72033
MB
3664 doc: /* Show information about live and zombie objects. */)
3665 ()
34400008 3666{
83fc9c63
DL
3667 Lisp_Object args[8], zombie_list = Qnil;
3668 int i;
3669 for (i = 0; i < nzombies; i++)
3670 zombie_list = Fcons (zombies[i], zombie_list);
3671 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
34400008
GM
3672 args[1] = make_number (ngcs);
3673 args[2] = make_float (avg_live);
3674 args[3] = make_float (avg_zombies);
3675 args[4] = make_float (avg_zombies / avg_live / 100);
3676 args[5] = make_number (max_live);
3677 args[6] = make_number (max_zombies);
83fc9c63
DL
3678 args[7] = zombie_list;
3679 return Fmessage (8, args);
34400008
GM
3680}
3681
3682#endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
3683
3684
182ff242
GM
3685/* Mark OBJ if we can prove it's a Lisp_Object. */
3686
3687static INLINE void
3688mark_maybe_object (obj)
3689 Lisp_Object obj;
3690{
3691 void *po = (void *) XPNTR (obj);
3692 struct mem_node *m = mem_find (po);
177c0ea7 3693
182ff242
GM
3694 if (m != MEM_NIL)
3695 {
3696 int mark_p = 0;
3697
3698 switch (XGCTYPE (obj))
3699 {
3700 case Lisp_String:
3701 mark_p = (live_string_p (m, po)
3702 && !STRING_MARKED_P ((struct Lisp_String *) po));
3703 break;
3704
3705 case Lisp_Cons:
08b7c2cb 3706 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
182ff242
GM
3707 break;
3708
3709 case Lisp_Symbol:
2336fe58 3710 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
182ff242
GM
3711 break;
3712
3713 case Lisp_Float:
ab6780cd 3714 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
182ff242
GM
3715 break;
3716
3717 case Lisp_Vectorlike:
3718 /* Note: can't check GC_BUFFERP before we know it's a
3719 buffer because checking that dereferences the pointer
3720 PO which might point anywhere. */
3721 if (live_vector_p (m, po))
3ef06d12 3722 mark_p = !GC_SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
182ff242 3723 else if (live_buffer_p (m, po))
3ef06d12 3724 mark_p = GC_BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
182ff242
GM
3725 break;
3726
3727 case Lisp_Misc:
2336fe58 3728 mark_p = (live_misc_p (m, po) && !XMARKER (obj)->gcmarkbit);
182ff242 3729 break;
6bbd7a29
GM
3730
3731 case Lisp_Int:
31d929e5 3732 case Lisp_Type_Limit:
6bbd7a29 3733 break;
182ff242
GM
3734 }
3735
3736 if (mark_p)
3737 {
3738#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3739 if (nzombies < MAX_ZOMBIES)
83fc9c63 3740 zombies[nzombies] = obj;
182ff242
GM
3741 ++nzombies;
3742#endif
49723c04 3743 mark_object (obj);
182ff242
GM
3744 }
3745 }
3746}
ece93c02
GM
3747
3748
3749/* If P points to Lisp data, mark that as live if it isn't already
3750 marked. */
3751
3752static INLINE void
3753mark_maybe_pointer (p)
3754 void *p;
3755{
3756 struct mem_node *m;
3757
3758 /* Quickly rule out some values which can't point to Lisp data. We
3759 assume that Lisp data is aligned on even addresses. */
3760 if ((EMACS_INT) p & 1)
3761 return;
177c0ea7 3762
ece93c02
GM
3763 m = mem_find (p);
3764 if (m != MEM_NIL)
3765 {
3766 Lisp_Object obj = Qnil;
177c0ea7 3767
ece93c02
GM
3768 switch (m->type)
3769 {
3770 case MEM_TYPE_NON_LISP:
2fe50224 3771 /* Nothing to do; not a pointer to Lisp memory. */
ece93c02 3772 break;
177c0ea7 3773
ece93c02 3774 case MEM_TYPE_BUFFER:
3ef06d12 3775 if (live_buffer_p (m, p) && !VECTOR_MARKED_P((struct buffer *)p))
ece93c02
GM
3776 XSETVECTOR (obj, p);
3777 break;
177c0ea7 3778
ece93c02 3779 case MEM_TYPE_CONS:
08b7c2cb 3780 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
ece93c02
GM
3781 XSETCONS (obj, p);
3782 break;
177c0ea7 3783
ece93c02
GM
3784 case MEM_TYPE_STRING:
3785 if (live_string_p (m, p)
3786 && !STRING_MARKED_P ((struct Lisp_String *) p))
3787 XSETSTRING (obj, p);
3788 break;
3789
3790 case MEM_TYPE_MISC:
2336fe58
SM
3791 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
3792 XSETMISC (obj, p);
ece93c02 3793 break;
177c0ea7 3794
ece93c02 3795 case MEM_TYPE_SYMBOL:
2336fe58 3796 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
ece93c02
GM
3797 XSETSYMBOL (obj, p);
3798 break;
177c0ea7 3799
ece93c02 3800 case MEM_TYPE_FLOAT:
ab6780cd 3801 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
ece93c02
GM
3802 XSETFLOAT (obj, p);
3803 break;
177c0ea7 3804
ece93c02
GM
3805 case MEM_TYPE_VECTOR:
3806 case MEM_TYPE_PROCESS:
3807 case MEM_TYPE_HASH_TABLE:
3808 case MEM_TYPE_FRAME:
3809 case MEM_TYPE_WINDOW:
3810 if (live_vector_p (m, p))
3811 {
3812 Lisp_Object tem;
3813 XSETVECTOR (tem, p);
3ef06d12 3814 if (!GC_SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
ece93c02
GM
3815 obj = tem;
3816 }
3817 break;
3818
3819 default:
3820 abort ();
3821 }
3822
3823 if (!GC_NILP (obj))
49723c04 3824 mark_object (obj);
ece93c02
GM
3825 }
3826}
3827
3828
3829/* Mark Lisp objects referenced from the address range START..END. */
34400008 3830
177c0ea7 3831static void
34400008
GM
3832mark_memory (start, end)
3833 void *start, *end;
3834{
3835 Lisp_Object *p;
ece93c02 3836 void **pp;
34400008
GM
3837
3838#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3839 nzombies = 0;
3840#endif
3841
3842 /* Make START the pointer to the start of the memory region,
3843 if it isn't already. */
3844 if (end < start)
3845 {
3846 void *tem = start;
3847 start = end;
3848 end = tem;
3849 }
ece93c02
GM
3850
3851 /* Mark Lisp_Objects. */
34400008 3852 for (p = (Lisp_Object *) start; (void *) p < end; ++p)
182ff242 3853 mark_maybe_object (*p);
ece93c02
GM
3854
3855 /* Mark Lisp data pointed to. This is necessary because, in some
3856 situations, the C compiler optimizes Lisp objects away, so that
3857 only a pointer to them remains. Example:
3858
3859 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
7ee72033 3860 ()
ece93c02
GM
3861 {
3862 Lisp_Object obj = build_string ("test");
3863 struct Lisp_String *s = XSTRING (obj);
3864 Fgarbage_collect ();
3865 fprintf (stderr, "test `%s'\n", s->data);
3866 return Qnil;
3867 }
3868
3869 Here, `obj' isn't really used, and the compiler optimizes it
3870 away. The only reference to the life string is through the
3871 pointer `s'. */
177c0ea7 3872
ece93c02
GM
3873 for (pp = (void **) start; (void *) pp < end; ++pp)
3874 mark_maybe_pointer (*pp);
182ff242
GM
3875}
3876
30f637f8
DL
3877/* setjmp will work with GCC unless NON_SAVING_SETJMP is defined in
3878 the GCC system configuration. In gcc 3.2, the only systems for
3879 which this is so are i386-sco5 non-ELF, i386-sysv3 (maybe included
3880 by others?) and ns32k-pc532-min. */
182ff242
GM
3881
3882#if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
3883
3884static int setjmp_tested_p, longjmps_done;
3885
3886#define SETJMP_WILL_LIKELY_WORK "\
3887\n\
3888Emacs garbage collector has been changed to use conservative stack\n\
3889marking. Emacs has determined that the method it uses to do the\n\
3890marking will likely work on your system, but this isn't sure.\n\
3891\n\
3892If you are a system-programmer, or can get the help of a local wizard\n\
3893who is, please take a look at the function mark_stack in alloc.c, and\n\
3894verify that the methods used are appropriate for your system.\n\
3895\n\
d191623b 3896Please mail the result to <emacs-devel@gnu.org>.\n\
182ff242
GM
3897"
3898
3899#define SETJMP_WILL_NOT_WORK "\
3900\n\
3901Emacs garbage collector has been changed to use conservative stack\n\
3902marking. Emacs has determined that the default method it uses to do the\n\
3903marking will not work on your system. We will need a system-dependent\n\
3904solution for your system.\n\
3905\n\
3906Please take a look at the function mark_stack in alloc.c, and\n\
3907try to find a way to make it work on your system.\n\
30f637f8
DL
3908\n\
3909Note that you may get false negatives, depending on the compiler.\n\
3910In particular, you need to use -O with GCC for this test.\n\
3911\n\
d191623b 3912Please mail the result to <emacs-devel@gnu.org>.\n\
182ff242
GM
3913"
3914
3915
3916/* Perform a quick check if it looks like setjmp saves registers in a
3917 jmp_buf. Print a message to stderr saying so. When this test
3918 succeeds, this is _not_ a proof that setjmp is sufficient for
3919 conservative stack marking. Only the sources or a disassembly
3920 can prove that. */
3921
3922static void
3923test_setjmp ()
3924{
3925 char buf[10];
3926 register int x;
3927 jmp_buf jbuf;
3928 int result = 0;
3929
3930 /* Arrange for X to be put in a register. */
3931 sprintf (buf, "1");
3932 x = strlen (buf);
3933 x = 2 * x - 1;
3934
3935 setjmp (jbuf);
3936 if (longjmps_done == 1)
34400008 3937 {
182ff242 3938 /* Came here after the longjmp at the end of the function.
34400008 3939
182ff242
GM
3940 If x == 1, the longjmp has restored the register to its
3941 value before the setjmp, and we can hope that setjmp
3942 saves all such registers in the jmp_buf, although that
3943 isn't sure.
34400008 3944
182ff242
GM
3945 For other values of X, either something really strange is
3946 taking place, or the setjmp just didn't save the register. */
3947
3948 if (x == 1)
3949 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
3950 else
3951 {
3952 fprintf (stderr, SETJMP_WILL_NOT_WORK);
3953 exit (1);
34400008
GM
3954 }
3955 }
182ff242
GM
3956
3957 ++longjmps_done;
3958 x = 2;
3959 if (longjmps_done == 1)
3960 longjmp (jbuf, 1);
34400008
GM
3961}
3962
182ff242
GM
3963#endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
3964
34400008
GM
3965
3966#if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
3967
3968/* Abort if anything GCPRO'd doesn't survive the GC. */
3969
3970static void
3971check_gcpros ()
3972{
3973 struct gcpro *p;
3974 int i;
3975
3976 for (p = gcprolist; p; p = p->next)
3977 for (i = 0; i < p->nvars; ++i)
3978 if (!survives_gc_p (p->var[i]))
92cc28b2
SM
3979 /* FIXME: It's not necessarily a bug. It might just be that the
3980 GCPRO is unnecessary or should release the object sooner. */
34400008
GM
3981 abort ();
3982}
3983
3984#elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3985
3986static void
3987dump_zombies ()
3988{
3989 int i;
3990
3991 fprintf (stderr, "\nZombies kept alive = %d:\n", nzombies);
3992 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
3993 {
3994 fprintf (stderr, " %d = ", i);
3995 debug_print (zombies[i]);
3996 }
3997}
3998
3999#endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4000
4001
182ff242
GM
4002/* Mark live Lisp objects on the C stack.
4003
4004 There are several system-dependent problems to consider when
4005 porting this to new architectures:
4006
4007 Processor Registers
4008
4009 We have to mark Lisp objects in CPU registers that can hold local
4010 variables or are used to pass parameters.
4011
4012 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4013 something that either saves relevant registers on the stack, or
4014 calls mark_maybe_object passing it each register's contents.
4015
4016 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4017 implementation assumes that calling setjmp saves registers we need
4018 to see in a jmp_buf which itself lies on the stack. This doesn't
4019 have to be true! It must be verified for each system, possibly
4020 by taking a look at the source code of setjmp.
4021
4022 Stack Layout
4023
4024 Architectures differ in the way their processor stack is organized.
4025 For example, the stack might look like this
4026
4027 +----------------+
4028 | Lisp_Object | size = 4
4029 +----------------+
4030 | something else | size = 2
4031 +----------------+
4032 | Lisp_Object | size = 4
4033 +----------------+
4034 | ... |
4035
4036 In such a case, not every Lisp_Object will be aligned equally. To
4037 find all Lisp_Object on the stack it won't be sufficient to walk
4038 the stack in steps of 4 bytes. Instead, two passes will be
4039 necessary, one starting at the start of the stack, and a second
4040 pass starting at the start of the stack + 2. Likewise, if the
4041 minimal alignment of Lisp_Objects on the stack is 1, four passes
4042 would be necessary, each one starting with one byte more offset
4043 from the stack start.
4044
4045 The current code assumes by default that Lisp_Objects are aligned
4046 equally on the stack. */
34400008
GM
4047
4048static void
4049mark_stack ()
4050{
630909a5 4051 int i;
34400008 4052 jmp_buf j;
6bbd7a29 4053 volatile int stack_grows_down_p = (char *) &j > (char *) stack_base;
34400008
GM
4054 void *end;
4055
4056 /* This trick flushes the register windows so that all the state of
4057 the process is contained in the stack. */
ab6780cd 4058 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
422eec7e
DL
4059 needed on ia64 too. See mach_dep.c, where it also says inline
4060 assembler doesn't work with relevant proprietary compilers. */
34400008
GM
4061#ifdef sparc
4062 asm ("ta 3");
4063#endif
177c0ea7 4064
34400008
GM
4065 /* Save registers that we need to see on the stack. We need to see
4066 registers used to hold register variables and registers used to
4067 pass parameters. */
4068#ifdef GC_SAVE_REGISTERS_ON_STACK
4069 GC_SAVE_REGISTERS_ON_STACK (end);
182ff242 4070#else /* not GC_SAVE_REGISTERS_ON_STACK */
177c0ea7 4071
182ff242
GM
4072#ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
4073 setjmp will definitely work, test it
4074 and print a message with the result
4075 of the test. */
4076 if (!setjmp_tested_p)
4077 {
4078 setjmp_tested_p = 1;
4079 test_setjmp ();
4080 }
4081#endif /* GC_SETJMP_WORKS */
177c0ea7 4082
34400008
GM
4083 setjmp (j);
4084 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
182ff242 4085#endif /* not GC_SAVE_REGISTERS_ON_STACK */
34400008
GM
4086
4087 /* This assumes that the stack is a contiguous region in memory. If
182ff242
GM
4088 that's not the case, something has to be done here to iterate
4089 over the stack segments. */
630909a5 4090#ifndef GC_LISP_OBJECT_ALIGNMENT
422eec7e
DL
4091#ifdef __GNUC__
4092#define GC_LISP_OBJECT_ALIGNMENT __alignof__ (Lisp_Object)
4093#else
630909a5 4094#define GC_LISP_OBJECT_ALIGNMENT sizeof (Lisp_Object)
422eec7e 4095#endif
182ff242 4096#endif
24452cd5 4097 for (i = 0; i < sizeof (Lisp_Object); i += GC_LISP_OBJECT_ALIGNMENT)
630909a5 4098 mark_memory ((char *) stack_base + i, end);
34400008
GM
4099
4100#if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4101 check_gcpros ();
4102#endif
4103}
4104
4105
4106#endif /* GC_MARK_STACK != 0 */
4107
4108
4109\f
2e471eb5
GM
4110/***********************************************************************
4111 Pure Storage Management
4112 ***********************************************************************/
4113
1f0b3fd2
GM
4114/* Allocate room for SIZE bytes from pure Lisp storage and return a
4115 pointer to it. TYPE is the Lisp type for which the memory is
4116 allocated. TYPE < 0 means it's not used for a Lisp object.
4117
4118 If store_pure_type_info is set and TYPE is >= 0, the type of
4119 the allocated object is recorded in pure_types. */
4120
4121static POINTER_TYPE *
4122pure_alloc (size, type)
4123 size_t size;
4124 int type;
4125{
1f0b3fd2 4126 POINTER_TYPE *result;
831b476c
SM
4127#ifdef USE_LSB_TAG
4128 size_t alignment = (1 << GCTYPEBITS);
4129#else
44117420 4130 size_t alignment = sizeof (EMACS_INT);
1f0b3fd2
GM
4131
4132 /* Give Lisp_Floats an extra alignment. */
4133 if (type == Lisp_Float)
4134 {
1f0b3fd2
GM
4135#if defined __GNUC__ && __GNUC__ >= 2
4136 alignment = __alignof (struct Lisp_Float);
4137#else
4138 alignment = sizeof (struct Lisp_Float);
4139#endif
9e713715 4140 }
831b476c 4141#endif
1f0b3fd2 4142
44117420 4143 again:
ab6780cd 4144 result = ALIGN (purebeg + pure_bytes_used, alignment);
44117420
KS
4145 pure_bytes_used = ((char *)result - (char *)purebeg) + size;
4146
4147 if (pure_bytes_used <= pure_size)
4148 return result;
4149
4150 /* Don't allocate a large amount here,
4151 because it might get mmap'd and then its address
4152 might not be usable. */
4153 purebeg = (char *) xmalloc (10000);
4154 pure_size = 10000;
4155 pure_bytes_used_before_overflow += pure_bytes_used - size;
4156 pure_bytes_used = 0;
4157 goto again;
1f0b3fd2
GM
4158}
4159
4160
852f8cdc 4161/* Print a warning if PURESIZE is too small. */
9e713715
GM
4162
4163void
4164check_pure_size ()
4165{
4166 if (pure_bytes_used_before_overflow)
a4d35afd
SM
4167 message ("Pure Lisp storage overflow (approx. %d bytes needed)",
4168 (int) (pure_bytes_used + pure_bytes_used_before_overflow));
9e713715
GM
4169}
4170
4171
2e471eb5
GM
4172/* Return a string allocated in pure space. DATA is a buffer holding
4173 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
4174 non-zero means make the result string multibyte.
1a4f1e2c 4175
2e471eb5
GM
4176 Must get an error if pure storage is full, since if it cannot hold
4177 a large string it may be able to hold conses that point to that
4178 string; then the string is not protected from gc. */
7146af97
JB
4179
4180Lisp_Object
2e471eb5 4181make_pure_string (data, nchars, nbytes, multibyte)
7146af97 4182 char *data;
2e471eb5 4183 int nchars, nbytes;
c0696668 4184 int multibyte;
7146af97 4185{
2e471eb5
GM
4186 Lisp_Object string;
4187 struct Lisp_String *s;
c0696668 4188
1f0b3fd2
GM
4189 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
4190 s->data = (unsigned char *) pure_alloc (nbytes + 1, -1);
2e471eb5
GM
4191 s->size = nchars;
4192 s->size_byte = multibyte ? nbytes : -1;
4193 bcopy (data, s->data, nbytes);
4194 s->data[nbytes] = '\0';
4195 s->intervals = NULL_INTERVAL;
2e471eb5
GM
4196 XSETSTRING (string, s);
4197 return string;
7146af97
JB
4198}
4199
2e471eb5 4200
34400008
GM
4201/* Return a cons allocated from pure space. Give it pure copies
4202 of CAR as car and CDR as cdr. */
4203
7146af97
JB
4204Lisp_Object
4205pure_cons (car, cdr)
4206 Lisp_Object car, cdr;
4207{
4208 register Lisp_Object new;
1f0b3fd2 4209 struct Lisp_Cons *p;
7146af97 4210
1f0b3fd2
GM
4211 p = (struct Lisp_Cons *) pure_alloc (sizeof *p, Lisp_Cons);
4212 XSETCONS (new, p);
f3fbd155
KR
4213 XSETCAR (new, Fpurecopy (car));
4214 XSETCDR (new, Fpurecopy (cdr));
7146af97
JB
4215 return new;
4216}
4217
7146af97 4218
34400008
GM
4219/* Value is a float object with value NUM allocated from pure space. */
4220
7146af97
JB
4221Lisp_Object
4222make_pure_float (num)
4223 double num;
4224{
4225 register Lisp_Object new;
1f0b3fd2 4226 struct Lisp_Float *p;
7146af97 4227
1f0b3fd2
GM
4228 p = (struct Lisp_Float *) pure_alloc (sizeof *p, Lisp_Float);
4229 XSETFLOAT (new, p);
70949dac 4230 XFLOAT_DATA (new) = num;
7146af97
JB
4231 return new;
4232}
4233
34400008
GM
4234
4235/* Return a vector with room for LEN Lisp_Objects allocated from
4236 pure space. */
4237
7146af97
JB
4238Lisp_Object
4239make_pure_vector (len)
42607681 4240 EMACS_INT len;
7146af97 4241{
1f0b3fd2
GM
4242 Lisp_Object new;
4243 struct Lisp_Vector *p;
4244 size_t size = sizeof *p + (len - 1) * sizeof (Lisp_Object);
7146af97 4245
1f0b3fd2
GM
4246 p = (struct Lisp_Vector *) pure_alloc (size, Lisp_Vectorlike);
4247 XSETVECTOR (new, p);
7146af97
JB
4248 XVECTOR (new)->size = len;
4249 return new;
4250}
4251
34400008 4252
7146af97 4253DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
7ee72033 4254 doc: /* Make a copy of OBJECT in pure storage.
228299fa 4255Recursively copies contents of vectors and cons cells.
7ee72033
MB
4256Does not copy symbols. Copies strings without text properties. */)
4257 (obj)
7146af97
JB
4258 register Lisp_Object obj;
4259{
265a9e55 4260 if (NILP (Vpurify_flag))
7146af97
JB
4261 return obj;
4262
1f0b3fd2 4263 if (PURE_POINTER_P (XPNTR (obj)))
7146af97
JB
4264 return obj;
4265
d6dd74bb 4266 if (CONSP (obj))
70949dac 4267 return pure_cons (XCAR (obj), XCDR (obj));
d6dd74bb 4268 else if (FLOATP (obj))
70949dac 4269 return make_pure_float (XFLOAT_DATA (obj));
d6dd74bb 4270 else if (STRINGP (obj))
d5db4077
KR
4271 return make_pure_string (SDATA (obj), SCHARS (obj),
4272 SBYTES (obj),
c0696668 4273 STRING_MULTIBYTE (obj));
d6dd74bb
KH
4274 else if (COMPILEDP (obj) || VECTORP (obj))
4275 {
4276 register struct Lisp_Vector *vec;
41b867ea
AS
4277 register int i;
4278 EMACS_INT size;
d6dd74bb
KH
4279
4280 size = XVECTOR (obj)->size;
7d535c68
KH
4281 if (size & PSEUDOVECTOR_FLAG)
4282 size &= PSEUDOVECTOR_SIZE_MASK;
41b867ea 4283 vec = XVECTOR (make_pure_vector (size));
d6dd74bb
KH
4284 for (i = 0; i < size; i++)
4285 vec->contents[i] = Fpurecopy (XVECTOR (obj)->contents[i]);
4286 if (COMPILEDP (obj))
4287 XSETCOMPILED (obj, vec);
4288 else
4289 XSETVECTOR (obj, vec);
7146af97
JB
4290 return obj;
4291 }
d6dd74bb
KH
4292 else if (MARKERP (obj))
4293 error ("Attempt to copy a marker to pure storage");
6bbd7a29
GM
4294
4295 return obj;
7146af97 4296}
2e471eb5 4297
34400008 4298
7146af97 4299\f
34400008
GM
4300/***********************************************************************
4301 Protection from GC
4302 ***********************************************************************/
4303
2e471eb5
GM
4304/* Put an entry in staticvec, pointing at the variable with address
4305 VARADDRESS. */
7146af97
JB
4306
4307void
4308staticpro (varaddress)
4309 Lisp_Object *varaddress;
4310{
4311 staticvec[staticidx++] = varaddress;
4312 if (staticidx >= NSTATICS)
4313 abort ();
4314}
4315
4316struct catchtag
2e471eb5 4317{
7146af97
JB
4318 Lisp_Object tag;
4319 Lisp_Object val;
4320 struct catchtag *next;
2e471eb5 4321};
7146af97 4322
7146af97 4323\f
34400008
GM
4324/***********************************************************************
4325 Protection from GC
4326 ***********************************************************************/
1a4f1e2c 4327
e8197642
RS
4328/* Temporarily prevent garbage collection. */
4329
4330int
4331inhibit_garbage_collection ()
4332{
aed13378 4333 int count = SPECPDL_INDEX ();
54defd0d
AS
4334 int nbits = min (VALBITS, BITS_PER_INT);
4335
4336 specbind (Qgc_cons_threshold, make_number (((EMACS_INT) 1 << (nbits - 1)) - 1));
e8197642
RS
4337 return count;
4338}
4339
34400008 4340
7146af97 4341DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
7ee72033 4342 doc: /* Reclaim storage for Lisp objects no longer needed.
e1e37596
RS
4343Garbage collection happens automatically if you cons more than
4344`gc-cons-threshold' bytes of Lisp data since previous garbage collection.
4345`garbage-collect' normally returns a list with info on amount of space in use:
228299fa
GM
4346 ((USED-CONSES . FREE-CONSES) (USED-SYMS . FREE-SYMS)
4347 (USED-MARKERS . FREE-MARKERS) USED-STRING-CHARS USED-VECTOR-SLOTS
4348 (USED-FLOATS . FREE-FLOATS) (USED-INTERVALS . FREE-INTERVALS)
4349 (USED-STRINGS . FREE-STRINGS))
e1e37596
RS
4350However, if there was overflow in pure space, `garbage-collect'
4351returns nil, because real GC can't be done. */)
7ee72033 4352 ()
7146af97 4353{
7146af97
JB
4354 register struct specbinding *bind;
4355 struct catchtag *catch;
4356 struct handler *handler;
7146af97
JB
4357 char stack_top_variable;
4358 register int i;
6efc7df7 4359 int message_p;
96117bc7 4360 Lisp_Object total[8];
331379bf 4361 int count = SPECPDL_INDEX ();
2c5bd608
DL
4362 EMACS_TIME t1, t2, t3;
4363
3de0effb
RS
4364 if (abort_on_gc)
4365 abort ();
4366
2c5bd608 4367 EMACS_GET_TIME (t1);
7146af97 4368
9e713715
GM
4369 /* Can't GC if pure storage overflowed because we can't determine
4370 if something is a pure object or not. */
4371 if (pure_bytes_used_before_overflow)
4372 return Qnil;
4373
58595309
KH
4374 /* In case user calls debug_print during GC,
4375 don't let that cause a recursive GC. */
4376 consing_since_gc = 0;
4377
6efc7df7
GM
4378 /* Save what's currently displayed in the echo area. */
4379 message_p = push_message ();
c55b0da6 4380 record_unwind_protect (pop_message_unwind, Qnil);
41c28a37 4381
7146af97
JB
4382 /* Save a copy of the contents of the stack, for debugging. */
4383#if MAX_SAVE_STACK > 0
265a9e55 4384 if (NILP (Vpurify_flag))
7146af97
JB
4385 {
4386 i = &stack_top_variable - stack_bottom;
4387 if (i < 0) i = -i;
4388 if (i < MAX_SAVE_STACK)
4389 {
4390 if (stack_copy == 0)
9ac0d9e0 4391 stack_copy = (char *) xmalloc (stack_copy_size = i);
7146af97 4392 else if (stack_copy_size < i)
9ac0d9e0 4393 stack_copy = (char *) xrealloc (stack_copy, (stack_copy_size = i));
7146af97
JB
4394 if (stack_copy)
4395 {
42607681 4396 if ((EMACS_INT) (&stack_top_variable - stack_bottom) > 0)
7146af97
JB
4397 bcopy (stack_bottom, stack_copy, i);
4398 else
4399 bcopy (&stack_top_variable, stack_copy, i);
4400 }
4401 }
4402 }
4403#endif /* MAX_SAVE_STACK > 0 */
4404
299585ee 4405 if (garbage_collection_messages)
691c4285 4406 message1_nolog ("Garbage collecting...");
7146af97 4407
6e0fca1d
RS
4408 BLOCK_INPUT;
4409
eec7b73d
RS
4410 shrink_regexp_cache ();
4411
4929a878 4412 /* Don't keep undo information around forever. */
7146af97
JB
4413 {
4414 register struct buffer *nextb = all_buffers;
4415
4416 while (nextb)
4417 {
ffd56f97
JB
4418 /* If a buffer's undo list is Qt, that means that undo is
4419 turned off in that buffer. Calling truncate_undo_list on
4420 Qt tends to return NULL, which effectively turns undo back on.
4421 So don't call truncate_undo_list if undo_list is Qt. */
4422 if (! EQ (nextb->undo_list, Qt))
177c0ea7 4423 nextb->undo_list
502b9b64 4424 = truncate_undo_list (nextb->undo_list, undo_limit,
ae6a9bfe 4425 undo_strong_limit, undo_outer_limit);
e0fead5d
AI
4426
4427 /* Shrink buffer gaps, but skip indirect and dead buffers. */
4428 if (nextb->base_buffer == 0 && !NILP (nextb->name))
4429 {
4430 /* If a buffer's gap size is more than 10% of the buffer
4431 size, or larger than 2000 bytes, then shrink it
4432 accordingly. Keep a minimum size of 20 bytes. */
4433 int size = min (2000, max (20, (nextb->text->z_byte / 10)));
4434
4435 if (nextb->text->gap_size > size)
4436 {
4437 struct buffer *save_current = current_buffer;
4438 current_buffer = nextb;
4439 make_gap (-(nextb->text->gap_size - size));
4440 current_buffer = save_current;
4441 }
4442 }
4443
7146af97
JB
4444 nextb = nextb->next;
4445 }
4446 }
4447
4448 gc_in_progress = 1;
4449
c23baf9f 4450 /* clear_marks (); */
7146af97 4451
0930c1a1 4452 /* Mark all the special slots that serve as the roots of accessibility. */
7146af97
JB
4453
4454 for (i = 0; i < staticidx; i++)
49723c04 4455 mark_object (*staticvec[i]);
34400008
GM
4456
4457#if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
4458 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
4459 mark_stack ();
4460#else
acf5f7d3
SM
4461 {
4462 register struct gcpro *tail;
4463 for (tail = gcprolist; tail; tail = tail->next)
4464 for (i = 0; i < tail->nvars; i++)
0930c1a1 4465 mark_object (tail->var[i]);
acf5f7d3 4466 }
34400008 4467#endif
177c0ea7 4468
630686c8 4469 mark_byte_stack ();
7146af97
JB
4470 for (bind = specpdl; bind != specpdl_ptr; bind++)
4471 {
49723c04
SM
4472 mark_object (bind->symbol);
4473 mark_object (bind->old_value);
7146af97
JB
4474 }
4475 for (catch = catchlist; catch; catch = catch->next)
4476 {
49723c04
SM
4477 mark_object (catch->tag);
4478 mark_object (catch->val);
177c0ea7 4479 }
7146af97
JB
4480 for (handler = handlerlist; handler; handler = handler->next)
4481 {
49723c04
SM
4482 mark_object (handler->handler);
4483 mark_object (handler->var);
177c0ea7 4484 }
b40ea20a 4485 mark_backtrace ();
b875d3f7 4486 mark_kboards ();
7146af97 4487
74c35a48
SM
4488#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4489 mark_stack ();
4490#endif
4491
4492#ifdef USE_GTK
4493 {
4494 extern void xg_mark_data ();
4495 xg_mark_data ();
4496 }
4497#endif
4498
c37adf23
SM
4499 /* Everything is now marked, except for the things that require special
4500 finalization, i.e. the undo_list.
4501 Look thru every buffer's undo list
4502 for elements that update markers that were not marked,
4503 and delete them. */
4c315bda
RS
4504 {
4505 register struct buffer *nextb = all_buffers;
4506
4507 while (nextb)
4508 {
4509 /* If a buffer's undo list is Qt, that means that undo is
c37adf23
SM
4510 turned off in that buffer. Calling truncate_undo_list on
4511 Qt tends to return NULL, which effectively turns undo back on.
4512 So don't call truncate_undo_list if undo_list is Qt. */
4c315bda
RS
4513 if (! EQ (nextb->undo_list, Qt))
4514 {
c37adf23 4515 Lisp_Object tail, prev;
4c315bda
RS
4516 tail = nextb->undo_list;
4517 prev = Qnil;
4518 while (CONSP (tail))
4519 {
c37adf23
SM
4520 if (GC_CONSP (XCAR (tail))
4521 && GC_MARKERP (XCAR (XCAR (tail)))
4522 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
4c315bda
RS
4523 {
4524 if (NILP (prev))
c37adf23 4525 nextb->undo_list = tail = XCDR (tail);
4c315bda 4526 else
f3fbd155 4527 {
c37adf23 4528 tail = XCDR (tail);
f3fbd155
KR
4529 XSETCDR (prev, tail);
4530 }
4c315bda
RS
4531 }
4532 else
4533 {
4534 prev = tail;
70949dac 4535 tail = XCDR (tail);
4c315bda
RS
4536 }
4537 }
4538 }
c37adf23
SM
4539 /* Now that we have stripped the elements that need not be in the
4540 undo_list any more, we can finally mark the list. */
4541 mark_object (nextb->undo_list);
4c315bda
RS
4542
4543 nextb = nextb->next;
4544 }
4545 }
4546
c37adf23 4547 gc_sweep ();
6b67a518 4548
7146af97
JB
4549 /* Clear the mark bits that we set in certain root slots. */
4550
033a5fa3 4551 unmark_byte_stack ();
3ef06d12
SM
4552 VECTOR_UNMARK (&buffer_defaults);
4553 VECTOR_UNMARK (&buffer_local_symbols);
7146af97 4554
34400008
GM
4555#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
4556 dump_zombies ();
4557#endif
4558
6e0fca1d
RS
4559 UNBLOCK_INPUT;
4560
c23baf9f 4561 /* clear_marks (); */
7146af97
JB
4562 gc_in_progress = 0;
4563
4564 consing_since_gc = 0;
4565 if (gc_cons_threshold < 10000)
4566 gc_cons_threshold = 10000;
4567
299585ee
RS
4568 if (garbage_collection_messages)
4569 {
6efc7df7
GM
4570 if (message_p || minibuf_level > 0)
4571 restore_message ();
299585ee
RS
4572 else
4573 message1_nolog ("Garbage collecting...done");
4574 }
7146af97 4575
98edb5ff 4576 unbind_to (count, Qnil);
2e471eb5
GM
4577
4578 total[0] = Fcons (make_number (total_conses),
4579 make_number (total_free_conses));
4580 total[1] = Fcons (make_number (total_symbols),
4581 make_number (total_free_symbols));
4582 total[2] = Fcons (make_number (total_markers),
4583 make_number (total_free_markers));
96117bc7
GM
4584 total[3] = make_number (total_string_size);
4585 total[4] = make_number (total_vector_size);
4586 total[5] = Fcons (make_number (total_floats),
2e471eb5 4587 make_number (total_free_floats));
96117bc7 4588 total[6] = Fcons (make_number (total_intervals),
2e471eb5 4589 make_number (total_free_intervals));
96117bc7 4590 total[7] = Fcons (make_number (total_strings),
2e471eb5
GM
4591 make_number (total_free_strings));
4592
34400008 4593#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
7146af97 4594 {
34400008
GM
4595 /* Compute average percentage of zombies. */
4596 double nlive = 0;
177c0ea7 4597
34400008 4598 for (i = 0; i < 7; ++i)
83fc9c63
DL
4599 if (CONSP (total[i]))
4600 nlive += XFASTINT (XCAR (total[i]));
34400008
GM
4601
4602 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
4603 max_live = max (nlive, max_live);
4604 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
4605 max_zombies = max (nzombies, max_zombies);
4606 ++ngcs;
4607 }
4608#endif
7146af97 4609
9e713715
GM
4610 if (!NILP (Vpost_gc_hook))
4611 {
4612 int count = inhibit_garbage_collection ();
4613 safe_run_hooks (Qpost_gc_hook);
4614 unbind_to (count, Qnil);
4615 }
2c5bd608
DL
4616
4617 /* Accumulate statistics. */
4618 EMACS_GET_TIME (t2);
4619 EMACS_SUB_TIME (t3, t2, t1);
4620 if (FLOATP (Vgc_elapsed))
69ab9f85
SM
4621 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed) +
4622 EMACS_SECS (t3) +
4623 EMACS_USECS (t3) * 1.0e-6);
2c5bd608
DL
4624 gcs_done++;
4625
96117bc7 4626 return Flist (sizeof total / sizeof *total, total);
7146af97 4627}
34400008 4628
41c28a37 4629
3770920e
GM
4630/* Mark Lisp objects in glyph matrix MATRIX. Currently the
4631 only interesting objects referenced from glyphs are strings. */
41c28a37
GM
4632
4633static void
4634mark_glyph_matrix (matrix)
4635 struct glyph_matrix *matrix;
4636{
4637 struct glyph_row *row = matrix->rows;
4638 struct glyph_row *end = row + matrix->nrows;
4639
2e471eb5
GM
4640 for (; row < end; ++row)
4641 if (row->enabled_p)
4642 {
4643 int area;
4644 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
4645 {
4646 struct glyph *glyph = row->glyphs[area];
4647 struct glyph *end_glyph = glyph + row->used[area];
177c0ea7 4648
2e471eb5
GM
4649 for (; glyph < end_glyph; ++glyph)
4650 if (GC_STRINGP (glyph->object)
4651 && !STRING_MARKED_P (XSTRING (glyph->object)))
49723c04 4652 mark_object (glyph->object);
2e471eb5
GM
4653 }
4654 }
41c28a37
GM
4655}
4656
34400008 4657
41c28a37
GM
4658/* Mark Lisp faces in the face cache C. */
4659
4660static void
4661mark_face_cache (c)
4662 struct face_cache *c;
4663{
4664 if (c)
4665 {
4666 int i, j;
4667 for (i = 0; i < c->used; ++i)
4668 {
4669 struct face *face = FACE_FROM_ID (c->f, i);
4670
4671 if (face)
4672 {
4673 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
49723c04 4674 mark_object (face->lface[j]);
41c28a37
GM
4675 }
4676 }
4677 }
4678}
4679
4680
4681#ifdef HAVE_WINDOW_SYSTEM
4682
4683/* Mark Lisp objects in image IMG. */
4684
4685static void
4686mark_image (img)
4687 struct image *img;
4688{
49723c04 4689 mark_object (img->spec);
177c0ea7 4690
3e60b029 4691 if (!NILP (img->data.lisp_val))
49723c04 4692 mark_object (img->data.lisp_val);
41c28a37
GM
4693}
4694
4695
4696/* Mark Lisp objects in image cache of frame F. It's done this way so
4697 that we don't have to include xterm.h here. */
4698
4699static void
4700mark_image_cache (f)
4701 struct frame *f;
4702{
4703 forall_images_in_image_cache (f, mark_image);
4704}
4705
4706#endif /* HAVE_X_WINDOWS */
4707
4708
7146af97 4709\f
1a4f1e2c 4710/* Mark reference to a Lisp_Object.
2e471eb5
GM
4711 If the object referred to has not been seen yet, recursively mark
4712 all the references contained in it. */
7146af97 4713
785cd37f 4714#define LAST_MARKED_SIZE 500
49723c04 4715Lisp_Object last_marked[LAST_MARKED_SIZE];
785cd37f
RS
4716int last_marked_index;
4717
1342fc6f
RS
4718/* For debugging--call abort when we cdr down this many
4719 links of a list, in mark_object. In debugging,
4720 the call to abort will hit a breakpoint.
4721 Normally this is zero and the check never goes off. */
4722int mark_object_loop_halt;
4723
41c28a37 4724void
49723c04
SM
4725mark_object (arg)
4726 Lisp_Object arg;
7146af97 4727{
49723c04 4728 register Lisp_Object obj = arg;
4f5c1376
GM
4729#ifdef GC_CHECK_MARKED_OBJECTS
4730 void *po;
4731 struct mem_node *m;
4732#endif
1342fc6f 4733 int cdr_count = 0;
7146af97 4734
9149e743 4735 loop:
7146af97 4736
1f0b3fd2 4737 if (PURE_POINTER_P (XPNTR (obj)))
7146af97
JB
4738 return;
4739
49723c04 4740 last_marked[last_marked_index++] = obj;
785cd37f
RS
4741 if (last_marked_index == LAST_MARKED_SIZE)
4742 last_marked_index = 0;
4743
4f5c1376
GM
4744 /* Perform some sanity checks on the objects marked here. Abort if
4745 we encounter an object we know is bogus. This increases GC time
4746 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
4747#ifdef GC_CHECK_MARKED_OBJECTS
4748
4749 po = (void *) XPNTR (obj);
4750
4751 /* Check that the object pointed to by PO is known to be a Lisp
4752 structure allocated from the heap. */
4753#define CHECK_ALLOCATED() \
4754 do { \
4755 m = mem_find (po); \
4756 if (m == MEM_NIL) \
4757 abort (); \
4758 } while (0)
4759
4760 /* Check that the object pointed to by PO is live, using predicate
4761 function LIVEP. */
4762#define CHECK_LIVE(LIVEP) \
4763 do { \
4764 if (!LIVEP (m, po)) \
4765 abort (); \
4766 } while (0)
4767
4768 /* Check both of the above conditions. */
4769#define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
4770 do { \
4771 CHECK_ALLOCATED (); \
4772 CHECK_LIVE (LIVEP); \
4773 } while (0) \
177c0ea7 4774
4f5c1376 4775#else /* not GC_CHECK_MARKED_OBJECTS */
177c0ea7 4776
4f5c1376
GM
4777#define CHECK_ALLOCATED() (void) 0
4778#define CHECK_LIVE(LIVEP) (void) 0
4779#define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
177c0ea7 4780
4f5c1376
GM
4781#endif /* not GC_CHECK_MARKED_OBJECTS */
4782
0220c518 4783 switch (SWITCH_ENUM_CAST (XGCTYPE (obj)))
7146af97
JB
4784 {
4785 case Lisp_String:
4786 {
4787 register struct Lisp_String *ptr = XSTRING (obj);
4f5c1376 4788 CHECK_ALLOCATED_AND_LIVE (live_string_p);
d5e35230 4789 MARK_INTERVAL_TREE (ptr->intervals);
2e471eb5 4790 MARK_STRING (ptr);
361b097f 4791#ifdef GC_CHECK_STRING_BYTES
676a7251
GM
4792 /* Check that the string size recorded in the string is the
4793 same as the one recorded in the sdata structure. */
4794 CHECK_STRING_BYTES (ptr);
361b097f 4795#endif /* GC_CHECK_STRING_BYTES */
7146af97
JB
4796 }
4797 break;
4798
76437631 4799 case Lisp_Vectorlike:
4f5c1376
GM
4800#ifdef GC_CHECK_MARKED_OBJECTS
4801 m = mem_find (po);
4802 if (m == MEM_NIL && !GC_SUBRP (obj)
4803 && po != &buffer_defaults
4804 && po != &buffer_local_symbols)
4805 abort ();
4806#endif /* GC_CHECK_MARKED_OBJECTS */
177c0ea7 4807
30e3190a 4808 if (GC_BUFFERP (obj))
6b552283 4809 {
3ef06d12 4810 if (!VECTOR_MARKED_P (XBUFFER (obj)))
4f5c1376
GM
4811 {
4812#ifdef GC_CHECK_MARKED_OBJECTS
4813 if (po != &buffer_defaults && po != &buffer_local_symbols)
4814 {
4815 struct buffer *b;
4816 for (b = all_buffers; b && b != po; b = b->next)
4817 ;
4818 if (b == NULL)
4819 abort ();
4820 }
4821#endif /* GC_CHECK_MARKED_OBJECTS */
4822 mark_buffer (obj);
4823 }
6b552283 4824 }
30e3190a 4825 else if (GC_SUBRP (obj))
169ee243
RS
4826 break;
4827 else if (GC_COMPILEDP (obj))
2e471eb5
GM
4828 /* We could treat this just like a vector, but it is better to
4829 save the COMPILED_CONSTANTS element for last and avoid
4830 recursion there. */
169ee243
RS
4831 {
4832 register struct Lisp_Vector *ptr = XVECTOR (obj);
4833 register EMACS_INT size = ptr->size;
169ee243
RS
4834 register int i;
4835
3ef06d12 4836 if (VECTOR_MARKED_P (ptr))
169ee243 4837 break; /* Already marked */
177c0ea7 4838
4f5c1376 4839 CHECK_LIVE (live_vector_p);
3ef06d12 4840 VECTOR_MARK (ptr); /* Else mark it */
76437631 4841 size &= PSEUDOVECTOR_SIZE_MASK;
169ee243
RS
4842 for (i = 0; i < size; i++) /* and then mark its elements */
4843 {
4844 if (i != COMPILED_CONSTANTS)
49723c04 4845 mark_object (ptr->contents[i]);
169ee243 4846 }
49723c04 4847 obj = ptr->contents[COMPILED_CONSTANTS];
169ee243
RS
4848 goto loop;
4849 }
169ee243
RS
4850 else if (GC_FRAMEP (obj))
4851 {
c70bbf06 4852 register struct frame *ptr = XFRAME (obj);
169ee243 4853
3ef06d12
SM
4854 if (VECTOR_MARKED_P (ptr)) break; /* Already marked */
4855 VECTOR_MARK (ptr); /* Else mark it */
169ee243 4856
4f5c1376 4857 CHECK_LIVE (live_vector_p);
49723c04
SM
4858 mark_object (ptr->name);
4859 mark_object (ptr->icon_name);
4860 mark_object (ptr->title);
4861 mark_object (ptr->focus_frame);
4862 mark_object (ptr->selected_window);
4863 mark_object (ptr->minibuffer_window);
4864 mark_object (ptr->param_alist);
4865 mark_object (ptr->scroll_bars);
4866 mark_object (ptr->condemned_scroll_bars);
4867 mark_object (ptr->menu_bar_items);
4868 mark_object (ptr->face_alist);
4869 mark_object (ptr->menu_bar_vector);
4870 mark_object (ptr->buffer_predicate);
4871 mark_object (ptr->buffer_list);
4872 mark_object (ptr->menu_bar_window);
4873 mark_object (ptr->tool_bar_window);
41c28a37
GM
4874 mark_face_cache (ptr->face_cache);
4875#ifdef HAVE_WINDOW_SYSTEM
4876 mark_image_cache (ptr);
49723c04
SM
4877 mark_object (ptr->tool_bar_items);
4878 mark_object (ptr->desired_tool_bar_string);
4879 mark_object (ptr->current_tool_bar_string);
41c28a37 4880#endif /* HAVE_WINDOW_SYSTEM */
169ee243 4881 }
7b07587b 4882 else if (GC_BOOL_VECTOR_P (obj))
707788bd
RS
4883 {
4884 register struct Lisp_Vector *ptr = XVECTOR (obj);
4885
3ef06d12 4886 if (VECTOR_MARKED_P (ptr))
707788bd 4887 break; /* Already marked */
4f5c1376 4888 CHECK_LIVE (live_vector_p);
3ef06d12 4889 VECTOR_MARK (ptr); /* Else mark it */
707788bd 4890 }
41c28a37
GM
4891 else if (GC_WINDOWP (obj))
4892 {
4893 register struct Lisp_Vector *ptr = XVECTOR (obj);
4894 struct window *w = XWINDOW (obj);
41c28a37
GM
4895 register int i;
4896
4897 /* Stop if already marked. */
3ef06d12 4898 if (VECTOR_MARKED_P (ptr))
41c28a37
GM
4899 break;
4900
4901 /* Mark it. */
4f5c1376 4902 CHECK_LIVE (live_vector_p);
3ef06d12 4903 VECTOR_MARK (ptr);
41c28a37
GM
4904
4905 /* There is no Lisp data above The member CURRENT_MATRIX in
4906 struct WINDOW. Stop marking when that slot is reached. */
4907 for (i = 0;
c70bbf06 4908 (char *) &ptr->contents[i] < (char *) &w->current_matrix;
41c28a37 4909 i++)
49723c04 4910 mark_object (ptr->contents[i]);
41c28a37
GM
4911
4912 /* Mark glyphs for leaf windows. Marking window matrices is
4913 sufficient because frame matrices use the same glyph
4914 memory. */
4915 if (NILP (w->hchild)
4916 && NILP (w->vchild)
4917 && w->current_matrix)
4918 {
4919 mark_glyph_matrix (w->current_matrix);
4920 mark_glyph_matrix (w->desired_matrix);
4921 }
4922 }
4923 else if (GC_HASH_TABLE_P (obj))
4924 {
4925 struct Lisp_Hash_Table *h = XHASH_TABLE (obj);
177c0ea7 4926
41c28a37 4927 /* Stop if already marked. */
3ef06d12 4928 if (VECTOR_MARKED_P (h))
41c28a37 4929 break;
177c0ea7 4930
41c28a37 4931 /* Mark it. */
4f5c1376 4932 CHECK_LIVE (live_vector_p);
3ef06d12 4933 VECTOR_MARK (h);
41c28a37
GM
4934
4935 /* Mark contents. */
94a877ef 4936 /* Do not mark next_free or next_weak.
177c0ea7 4937 Being in the next_weak chain
94a877ef
RS
4938 should not keep the hash table alive.
4939 No need to mark `count' since it is an integer. */
49723c04
SM
4940 mark_object (h->test);
4941 mark_object (h->weak);
4942 mark_object (h->rehash_size);
4943 mark_object (h->rehash_threshold);
4944 mark_object (h->hash);
4945 mark_object (h->next);
4946 mark_object (h->index);
4947 mark_object (h->user_hash_function);
4948 mark_object (h->user_cmp_function);
41c28a37
GM
4949
4950 /* If hash table is not weak, mark all keys and values.
4951 For weak tables, mark only the vector. */
4952 if (GC_NILP (h->weak))
49723c04 4953 mark_object (h->key_and_value);
41c28a37 4954 else
3ef06d12 4955 VECTOR_MARK (XVECTOR (h->key_and_value));
41c28a37 4956 }
04ff9756 4957 else
169ee243
RS
4958 {
4959 register struct Lisp_Vector *ptr = XVECTOR (obj);
4960 register EMACS_INT size = ptr->size;
169ee243
RS
4961 register int i;
4962
3ef06d12 4963 if (VECTOR_MARKED_P (ptr)) break; /* Already marked */
4f5c1376 4964 CHECK_LIVE (live_vector_p);
3ef06d12 4965 VECTOR_MARK (ptr); /* Else mark it */
169ee243
RS
4966 if (size & PSEUDOVECTOR_FLAG)
4967 size &= PSEUDOVECTOR_SIZE_MASK;
41c28a37 4968
169ee243 4969 for (i = 0; i < size; i++) /* and then mark its elements */
49723c04 4970 mark_object (ptr->contents[i]);
169ee243
RS
4971 }
4972 break;
7146af97 4973
7146af97
JB
4974 case Lisp_Symbol:
4975 {
c70bbf06 4976 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
7146af97
JB
4977 struct Lisp_Symbol *ptrx;
4978
2336fe58 4979 if (ptr->gcmarkbit) break;
4f5c1376 4980 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
2336fe58 4981 ptr->gcmarkbit = 1;
49723c04
SM
4982 mark_object (ptr->value);
4983 mark_object (ptr->function);
4984 mark_object (ptr->plist);
34400008 4985
8fe5665d
KR
4986 if (!PURE_POINTER_P (XSTRING (ptr->xname)))
4987 MARK_STRING (XSTRING (ptr->xname));
d5db4077 4988 MARK_INTERVAL_TREE (STRING_INTERVALS (ptr->xname));
177c0ea7 4989
1c6bb482
RS
4990 /* Note that we do not mark the obarray of the symbol.
4991 It is safe not to do so because nothing accesses that
4992 slot except to check whether it is nil. */
7146af97
JB
4993 ptr = ptr->next;
4994 if (ptr)
4995 {
b0846f52 4996 ptrx = ptr; /* Use of ptrx avoids compiler bug on Sun */
7146af97 4997 XSETSYMBOL (obj, ptrx);
49723c04 4998 goto loop;
7146af97
JB
4999 }
5000 }
5001 break;
5002
a0a38eb7 5003 case Lisp_Misc:
4f5c1376 5004 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
2336fe58
SM
5005 if (XMARKER (obj)->gcmarkbit)
5006 break;
5007 XMARKER (obj)->gcmarkbit = 1;
b766f870 5008
a5da44fe 5009 switch (XMISCTYPE (obj))
a0a38eb7 5010 {
465edf35
KH
5011 case Lisp_Misc_Buffer_Local_Value:
5012 case Lisp_Misc_Some_Buffer_Local_Value:
5013 {
5014 register struct Lisp_Buffer_Local_Value *ptr
5015 = XBUFFER_LOCAL_VALUE (obj);
465edf35
KH
5016 /* If the cdr is nil, avoid recursion for the car. */
5017 if (EQ (ptr->cdr, Qnil))
5018 {
49723c04 5019 obj = ptr->realvalue;
465edf35
KH
5020 goto loop;
5021 }
49723c04
SM
5022 mark_object (ptr->realvalue);
5023 mark_object (ptr->buffer);
5024 mark_object (ptr->frame);
5025 obj = ptr->cdr;
465edf35
KH
5026 goto loop;
5027 }
5028
2336fe58
SM
5029 case Lisp_Misc_Marker:
5030 /* DO NOT mark thru the marker's chain.
5031 The buffer's markers chain does not preserve markers from gc;
5032 instead, markers are removed from the chain when freed by gc. */
b766f870
KS
5033 break;
5034
c8616056
KH
5035 case Lisp_Misc_Intfwd:
5036 case Lisp_Misc_Boolfwd:
5037 case Lisp_Misc_Objfwd:
5038 case Lisp_Misc_Buffer_Objfwd:
b875d3f7 5039 case Lisp_Misc_Kboard_Objfwd:
c8616056
KH
5040 /* Don't bother with Lisp_Buffer_Objfwd,
5041 since all markable slots in current buffer marked anyway. */
5042 /* Don't need to do Lisp_Objfwd, since the places they point
5043 are protected with staticpro. */
b766f870
KS
5044 break;
5045
f29181dc 5046 case Lisp_Misc_Save_Value:
9ea306d1 5047#if GC_MARK_STACK
b766f870
KS
5048 {
5049 register struct Lisp_Save_Value *ptr = XSAVE_VALUE (obj);
5050 /* If DOGC is set, POINTER is the address of a memory
5051 area containing INTEGER potential Lisp_Objects. */
5052 if (ptr->dogc)
5053 {
5054 Lisp_Object *p = (Lisp_Object *) ptr->pointer;
5055 int nelt;
5056 for (nelt = ptr->integer; nelt > 0; nelt--, p++)
5057 mark_maybe_object (*p);
5058 }
5059 }
9ea306d1 5060#endif
c8616056
KH
5061 break;
5062
e202fa34
KH
5063 case Lisp_Misc_Overlay:
5064 {
5065 struct Lisp_Overlay *ptr = XOVERLAY (obj);
49723c04
SM
5066 mark_object (ptr->start);
5067 mark_object (ptr->end);
f54253ec
SM
5068 mark_object (ptr->plist);
5069 if (ptr->next)
5070 {
5071 XSETMISC (obj, ptr->next);
5072 goto loop;
5073 }
e202fa34
KH
5074 }
5075 break;
5076
a0a38eb7
KH
5077 default:
5078 abort ();
5079 }
7146af97
JB
5080 break;
5081
5082 case Lisp_Cons:
7146af97
JB
5083 {
5084 register struct Lisp_Cons *ptr = XCONS (obj);
08b7c2cb 5085 if (CONS_MARKED_P (ptr)) break;
4f5c1376 5086 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
08b7c2cb 5087 CONS_MARK (ptr);
c54ca951
RS
5088 /* If the cdr is nil, avoid recursion for the car. */
5089 if (EQ (ptr->cdr, Qnil))
5090 {
49723c04 5091 obj = ptr->car;
1342fc6f 5092 cdr_count = 0;
c54ca951
RS
5093 goto loop;
5094 }
49723c04
SM
5095 mark_object (ptr->car);
5096 obj = ptr->cdr;
1342fc6f
RS
5097 cdr_count++;
5098 if (cdr_count == mark_object_loop_halt)
5099 abort ();
7146af97
JB
5100 goto loop;
5101 }
5102
7146af97 5103 case Lisp_Float:
4f5c1376 5104 CHECK_ALLOCATED_AND_LIVE (live_float_p);
ab6780cd 5105 FLOAT_MARK (XFLOAT (obj));
7146af97 5106 break;
7146af97 5107
7146af97 5108 case Lisp_Int:
7146af97
JB
5109 break;
5110
5111 default:
5112 abort ();
5113 }
4f5c1376
GM
5114
5115#undef CHECK_LIVE
5116#undef CHECK_ALLOCATED
5117#undef CHECK_ALLOCATED_AND_LIVE
7146af97
JB
5118}
5119
5120/* Mark the pointers in a buffer structure. */
5121
5122static void
5123mark_buffer (buf)
5124 Lisp_Object buf;
5125{
7146af97 5126 register struct buffer *buffer = XBUFFER (buf);
f54253ec 5127 register Lisp_Object *ptr, tmp;
30e3190a 5128 Lisp_Object base_buffer;
7146af97 5129
3ef06d12 5130 VECTOR_MARK (buffer);
7146af97 5131
30e3190a 5132 MARK_INTERVAL_TREE (BUF_INTERVALS (buffer));
d5e35230 5133
c37adf23
SM
5134 /* For now, we just don't mark the undo_list. It's done later in
5135 a special way just before the sweep phase, and after stripping
5136 some of its elements that are not needed any more. */
4c315bda 5137
f54253ec
SM
5138 if (buffer->overlays_before)
5139 {
5140 XSETMISC (tmp, buffer->overlays_before);
5141 mark_object (tmp);
5142 }
5143 if (buffer->overlays_after)
5144 {
5145 XSETMISC (tmp, buffer->overlays_after);
5146 mark_object (tmp);
5147 }
5148
3ef06d12 5149 for (ptr = &buffer->name;
7146af97
JB
5150 (char *)ptr < (char *)buffer + sizeof (struct buffer);
5151 ptr++)
49723c04 5152 mark_object (*ptr);
30e3190a
RS
5153
5154 /* If this is an indirect buffer, mark its base buffer. */
349bd9ed 5155 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
30e3190a 5156 {
177c0ea7 5157 XSETBUFFER (base_buffer, buffer->base_buffer);
30e3190a
RS
5158 mark_buffer (base_buffer);
5159 }
7146af97 5160}
084b1a0c
KH
5161
5162
41c28a37
GM
5163/* Value is non-zero if OBJ will survive the current GC because it's
5164 either marked or does not need to be marked to survive. */
5165
5166int
5167survives_gc_p (obj)
5168 Lisp_Object obj;
5169{
5170 int survives_p;
177c0ea7 5171
41c28a37
GM
5172 switch (XGCTYPE (obj))
5173 {
5174 case Lisp_Int:
5175 survives_p = 1;
5176 break;
5177
5178 case Lisp_Symbol:
2336fe58 5179 survives_p = XSYMBOL (obj)->gcmarkbit;
41c28a37
GM
5180 break;
5181
5182 case Lisp_Misc:
ef89c2ce 5183 survives_p = XMARKER (obj)->gcmarkbit;
41c28a37
GM
5184 break;
5185
5186 case Lisp_String:
08b7c2cb 5187 survives_p = STRING_MARKED_P (XSTRING (obj));
41c28a37
GM
5188 break;
5189
5190 case Lisp_Vectorlike:
08b7c2cb 5191 survives_p = GC_SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
41c28a37
GM
5192 break;
5193
5194 case Lisp_Cons:
08b7c2cb 5195 survives_p = CONS_MARKED_P (XCONS (obj));
41c28a37
GM
5196 break;
5197
41c28a37 5198 case Lisp_Float:
ab6780cd 5199 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
41c28a37 5200 break;
41c28a37
GM
5201
5202 default:
5203 abort ();
5204 }
5205
34400008 5206 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
41c28a37
GM
5207}
5208
5209
7146af97 5210\f
1a4f1e2c 5211/* Sweep: find all structures not marked, and free them. */
7146af97
JB
5212
5213static void
5214gc_sweep ()
5215{
c37adf23
SM
5216 /* Remove or mark entries in weak hash tables.
5217 This must be done before any object is unmarked. */
5218 sweep_weak_hash_tables ();
5219
5220 sweep_strings ();
5221#ifdef GC_CHECK_STRING_BYTES
5222 if (!noninteractive)
5223 check_string_bytes (1);
5224#endif
5225
7146af97
JB
5226 /* Put all unmarked conses on free list */
5227 {
5228 register struct cons_block *cblk;
6ca94ac9 5229 struct cons_block **cprev = &cons_block;
7146af97
JB
5230 register int lim = cons_block_index;
5231 register int num_free = 0, num_used = 0;
5232
5233 cons_free_list = 0;
177c0ea7 5234
6ca94ac9 5235 for (cblk = cons_block; cblk; cblk = *cprev)
7146af97
JB
5236 {
5237 register int i;
6ca94ac9 5238 int this_free = 0;
7146af97 5239 for (i = 0; i < lim; i++)
08b7c2cb 5240 if (!CONS_MARKED_P (&cblk->conses[i]))
7146af97 5241 {
6ca94ac9 5242 this_free++;
1cd5fe6a 5243 *(struct Lisp_Cons **)&cblk->conses[i].cdr = cons_free_list;
7146af97 5244 cons_free_list = &cblk->conses[i];
34400008
GM
5245#if GC_MARK_STACK
5246 cons_free_list->car = Vdead;
5247#endif
7146af97
JB
5248 }
5249 else
5250 {
5251 num_used++;
08b7c2cb 5252 CONS_UNMARK (&cblk->conses[i]);
7146af97
JB
5253 }
5254 lim = CONS_BLOCK_SIZE;
6ca94ac9
KH
5255 /* If this block contains only free conses and we have already
5256 seen more than two blocks worth of free conses then deallocate
5257 this block. */
6feef451 5258 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
6ca94ac9 5259 {
6ca94ac9
KH
5260 *cprev = cblk->next;
5261 /* Unhook from the free list. */
5262 cons_free_list = *(struct Lisp_Cons **) &cblk->conses[0].cdr;
08b7c2cb 5263 lisp_align_free (cblk);
c8099634 5264 n_cons_blocks--;
6ca94ac9
KH
5265 }
5266 else
6feef451
AS
5267 {
5268 num_free += this_free;
5269 cprev = &cblk->next;
5270 }
7146af97
JB
5271 }
5272 total_conses = num_used;
5273 total_free_conses = num_free;
5274 }
5275
7146af97
JB
5276 /* Put all unmarked floats on free list */
5277 {
5278 register struct float_block *fblk;
6ca94ac9 5279 struct float_block **fprev = &float_block;
7146af97
JB
5280 register int lim = float_block_index;
5281 register int num_free = 0, num_used = 0;
5282
5283 float_free_list = 0;
177c0ea7 5284
6ca94ac9 5285 for (fblk = float_block; fblk; fblk = *fprev)
7146af97
JB
5286 {
5287 register int i;
6ca94ac9 5288 int this_free = 0;
7146af97 5289 for (i = 0; i < lim; i++)
ab6780cd 5290 if (!FLOAT_MARKED_P (&fblk->floats[i]))
7146af97 5291 {
6ca94ac9 5292 this_free++;
1cd5fe6a 5293 *(struct Lisp_Float **)&fblk->floats[i].data = float_free_list;
7146af97
JB
5294 float_free_list = &fblk->floats[i];
5295 }
5296 else
5297 {
5298 num_used++;
ab6780cd 5299 FLOAT_UNMARK (&fblk->floats[i]);
7146af97
JB
5300 }
5301 lim = FLOAT_BLOCK_SIZE;
6ca94ac9
KH
5302 /* If this block contains only free floats and we have already
5303 seen more than two blocks worth of free floats then deallocate
5304 this block. */
6feef451 5305 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
6ca94ac9 5306 {
6ca94ac9
KH
5307 *fprev = fblk->next;
5308 /* Unhook from the free list. */
5309 float_free_list = *(struct Lisp_Float **) &fblk->floats[0].data;
ab6780cd 5310 lisp_align_free (fblk);
c8099634 5311 n_float_blocks--;
6ca94ac9
KH
5312 }
5313 else
6feef451
AS
5314 {
5315 num_free += this_free;
5316 fprev = &fblk->next;
5317 }
7146af97
JB
5318 }
5319 total_floats = num_used;
5320 total_free_floats = num_free;
5321 }
7146af97 5322
d5e35230
JA
5323 /* Put all unmarked intervals on free list */
5324 {
5325 register struct interval_block *iblk;
6ca94ac9 5326 struct interval_block **iprev = &interval_block;
d5e35230
JA
5327 register int lim = interval_block_index;
5328 register int num_free = 0, num_used = 0;
5329
5330 interval_free_list = 0;
5331
6ca94ac9 5332 for (iblk = interval_block; iblk; iblk = *iprev)
d5e35230
JA
5333 {
5334 register int i;
6ca94ac9 5335 int this_free = 0;
d5e35230
JA
5336
5337 for (i = 0; i < lim; i++)
5338 {
2336fe58 5339 if (!iblk->intervals[i].gcmarkbit)
d5e35230 5340 {
439d5cb4 5341 SET_INTERVAL_PARENT (&iblk->intervals[i], interval_free_list);
d5e35230 5342 interval_free_list = &iblk->intervals[i];
6ca94ac9 5343 this_free++;
d5e35230
JA
5344 }
5345 else
5346 {
5347 num_used++;
2336fe58 5348 iblk->intervals[i].gcmarkbit = 0;
d5e35230
JA
5349 }
5350 }
5351 lim = INTERVAL_BLOCK_SIZE;
6ca94ac9
KH
5352 /* If this block contains only free intervals and we have already
5353 seen more than two blocks worth of free intervals then
5354 deallocate this block. */
6feef451 5355 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
6ca94ac9 5356 {
6ca94ac9
KH
5357 *iprev = iblk->next;
5358 /* Unhook from the free list. */
439d5cb4 5359 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
c8099634
RS
5360 lisp_free (iblk);
5361 n_interval_blocks--;
6ca94ac9
KH
5362 }
5363 else
6feef451
AS
5364 {
5365 num_free += this_free;
5366 iprev = &iblk->next;
5367 }
d5e35230
JA
5368 }
5369 total_intervals = num_used;
5370 total_free_intervals = num_free;
5371 }
d5e35230 5372
7146af97
JB
5373 /* Put all unmarked symbols on free list */
5374 {
5375 register struct symbol_block *sblk;
6ca94ac9 5376 struct symbol_block **sprev = &symbol_block;
7146af97
JB
5377 register int lim = symbol_block_index;
5378 register int num_free = 0, num_used = 0;
5379
d285b373 5380 symbol_free_list = NULL;
177c0ea7 5381
6ca94ac9 5382 for (sblk = symbol_block; sblk; sblk = *sprev)
7146af97 5383 {
6ca94ac9 5384 int this_free = 0;
d285b373
GM
5385 struct Lisp_Symbol *sym = sblk->symbols;
5386 struct Lisp_Symbol *end = sym + lim;
5387
5388 for (; sym < end; ++sym)
5389 {
20035321
SM
5390 /* Check if the symbol was created during loadup. In such a case
5391 it might be pointed to by pure bytecode which we don't trace,
5392 so we conservatively assume that it is live. */
8fe5665d 5393 int pure_p = PURE_POINTER_P (XSTRING (sym->xname));
177c0ea7 5394
2336fe58 5395 if (!sym->gcmarkbit && !pure_p)
d285b373
GM
5396 {
5397 *(struct Lisp_Symbol **) &sym->value = symbol_free_list;
5398 symbol_free_list = sym;
34400008 5399#if GC_MARK_STACK
d285b373 5400 symbol_free_list->function = Vdead;
34400008 5401#endif
d285b373
GM
5402 ++this_free;
5403 }
5404 else
5405 {
5406 ++num_used;
5407 if (!pure_p)
8fe5665d 5408 UNMARK_STRING (XSTRING (sym->xname));
2336fe58 5409 sym->gcmarkbit = 0;
d285b373
GM
5410 }
5411 }
177c0ea7 5412
7146af97 5413 lim = SYMBOL_BLOCK_SIZE;
6ca94ac9
KH
5414 /* If this block contains only free symbols and we have already
5415 seen more than two blocks worth of free symbols then deallocate
5416 this block. */
6feef451 5417 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
6ca94ac9 5418 {
6ca94ac9
KH
5419 *sprev = sblk->next;
5420 /* Unhook from the free list. */
5421 symbol_free_list = *(struct Lisp_Symbol **)&sblk->symbols[0].value;
c8099634
RS
5422 lisp_free (sblk);
5423 n_symbol_blocks--;
6ca94ac9
KH
5424 }
5425 else
6feef451
AS
5426 {
5427 num_free += this_free;
5428 sprev = &sblk->next;
5429 }
7146af97
JB
5430 }
5431 total_symbols = num_used;
5432 total_free_symbols = num_free;
5433 }
5434
a9faeabe
RS
5435 /* Put all unmarked misc's on free list.
5436 For a marker, first unchain it from the buffer it points into. */
7146af97
JB
5437 {
5438 register struct marker_block *mblk;
6ca94ac9 5439 struct marker_block **mprev = &marker_block;
7146af97
JB
5440 register int lim = marker_block_index;
5441 register int num_free = 0, num_used = 0;
5442
5443 marker_free_list = 0;
177c0ea7 5444
6ca94ac9 5445 for (mblk = marker_block; mblk; mblk = *mprev)
7146af97
JB
5446 {
5447 register int i;
6ca94ac9 5448 int this_free = 0;
fa05e253 5449
7146af97 5450 for (i = 0; i < lim; i++)
465edf35 5451 {
2336fe58 5452 if (!mblk->markers[i].u_marker.gcmarkbit)
465edf35 5453 {
a5da44fe 5454 if (mblk->markers[i].u_marker.type == Lisp_Misc_Marker)
ef89c2ce 5455 unchain_marker (&mblk->markers[i].u_marker);
fa05e253
RS
5456 /* Set the type of the freed object to Lisp_Misc_Free.
5457 We could leave the type alone, since nobody checks it,
465edf35 5458 but this might catch bugs faster. */
a5da44fe 5459 mblk->markers[i].u_marker.type = Lisp_Misc_Free;
465edf35
KH
5460 mblk->markers[i].u_free.chain = marker_free_list;
5461 marker_free_list = &mblk->markers[i];
6ca94ac9 5462 this_free++;
465edf35
KH
5463 }
5464 else
5465 {
5466 num_used++;
2336fe58 5467 mblk->markers[i].u_marker.gcmarkbit = 0;
465edf35
KH
5468 }
5469 }
7146af97 5470 lim = MARKER_BLOCK_SIZE;
6ca94ac9
KH
5471 /* If this block contains only free markers and we have already
5472 seen more than two blocks worth of free markers then deallocate
5473 this block. */
6feef451 5474 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
6ca94ac9 5475 {
6ca94ac9
KH
5476 *mprev = mblk->next;
5477 /* Unhook from the free list. */
5478 marker_free_list = mblk->markers[0].u_free.chain;
c37adf23 5479 lisp_free (mblk);
c8099634 5480 n_marker_blocks--;
6ca94ac9
KH
5481 }
5482 else
6feef451
AS
5483 {
5484 num_free += this_free;
5485 mprev = &mblk->next;
5486 }
7146af97
JB
5487 }
5488
5489 total_markers = num_used;
5490 total_free_markers = num_free;
5491 }
5492
5493 /* Free all unmarked buffers */
5494 {
5495 register struct buffer *buffer = all_buffers, *prev = 0, *next;
5496
5497 while (buffer)
3ef06d12 5498 if (!VECTOR_MARKED_P (buffer))
7146af97
JB
5499 {
5500 if (prev)
5501 prev->next = buffer->next;
5502 else
5503 all_buffers = buffer->next;
5504 next = buffer->next;
34400008 5505 lisp_free (buffer);
7146af97
JB
5506 buffer = next;
5507 }
5508 else
5509 {
3ef06d12 5510 VECTOR_UNMARK (buffer);
30e3190a 5511 UNMARK_BALANCE_INTERVALS (BUF_INTERVALS (buffer));
7146af97
JB
5512 prev = buffer, buffer = buffer->next;
5513 }
5514 }
5515
7146af97
JB
5516 /* Free all unmarked vectors */
5517 {
5518 register struct Lisp_Vector *vector = all_vectors, *prev = 0, *next;
5519 total_vector_size = 0;
5520
5521 while (vector)
3ef06d12 5522 if (!VECTOR_MARKED_P (vector))
7146af97
JB
5523 {
5524 if (prev)
5525 prev->next = vector->next;
5526 else
5527 all_vectors = vector->next;
5528 next = vector->next;
c8099634
RS
5529 lisp_free (vector);
5530 n_vectors--;
7146af97 5531 vector = next;
41c28a37 5532
7146af97
JB
5533 }
5534 else
5535 {
3ef06d12 5536 VECTOR_UNMARK (vector);
fa05e253
RS
5537 if (vector->size & PSEUDOVECTOR_FLAG)
5538 total_vector_size += (PSEUDOVECTOR_SIZE_MASK & vector->size);
5539 else
5540 total_vector_size += vector->size;
7146af97
JB
5541 prev = vector, vector = vector->next;
5542 }
5543 }
177c0ea7 5544
676a7251
GM
5545#ifdef GC_CHECK_STRING_BYTES
5546 if (!noninteractive)
5547 check_string_bytes (1);
5548#endif
7146af97 5549}
7146af97 5550
7146af97 5551
7146af97 5552
7146af97 5553\f
20d24714
JB
5554/* Debugging aids. */
5555
31ce1c91 5556DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
a6266d23 5557 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
228299fa 5558This may be helpful in debugging Emacs's memory usage.
7ee72033
MB
5559We divide the value by 1024 to make sure it fits in a Lisp integer. */)
5560 ()
20d24714
JB
5561{
5562 Lisp_Object end;
5563
45d12a89 5564 XSETINT (end, (EMACS_INT) sbrk (0) / 1024);
20d24714
JB
5565
5566 return end;
5567}
5568
310ea200 5569DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
a6266d23 5570 doc: /* Return a list of counters that measure how much consing there has been.
228299fa
GM
5571Each of these counters increments for a certain kind of object.
5572The counters wrap around from the largest positive integer to zero.
5573Garbage collection does not decrease them.
5574The elements of the value are as follows:
5575 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
5576All are in units of 1 = one object consed
5577except for VECTOR-CELLS and STRING-CHARS, which count the total length of
5578objects consed.
5579MISCS include overlays, markers, and some internal types.
5580Frames, windows, buffers, and subprocesses count as vectors
7ee72033
MB
5581 (but the contents of a buffer's text do not count here). */)
5582 ()
310ea200 5583{
2e471eb5 5584 Lisp_Object consed[8];
310ea200 5585
78e985eb
GM
5586 consed[0] = make_number (min (MOST_POSITIVE_FIXNUM, cons_cells_consed));
5587 consed[1] = make_number (min (MOST_POSITIVE_FIXNUM, floats_consed));
5588 consed[2] = make_number (min (MOST_POSITIVE_FIXNUM, vector_cells_consed));
5589 consed[3] = make_number (min (MOST_POSITIVE_FIXNUM, symbols_consed));
5590 consed[4] = make_number (min (MOST_POSITIVE_FIXNUM, string_chars_consed));
5591 consed[5] = make_number (min (MOST_POSITIVE_FIXNUM, misc_objects_consed));
5592 consed[6] = make_number (min (MOST_POSITIVE_FIXNUM, intervals_consed));
5593 consed[7] = make_number (min (MOST_POSITIVE_FIXNUM, strings_consed));
310ea200 5594
2e471eb5 5595 return Flist (8, consed);
310ea200 5596}
e0b8c689
KR
5597
5598int suppress_checking;
5599void
5600die (msg, file, line)
5601 const char *msg;
5602 const char *file;
5603 int line;
5604{
5605 fprintf (stderr, "\r\nEmacs fatal error: %s:%d: %s\r\n",
5606 file, line, msg);
5607 abort ();
5608}
20d24714 5609\f
7146af97
JB
5610/* Initialization */
5611
dfcf069d 5612void
7146af97
JB
5613init_alloc_once ()
5614{
5615 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
9e713715
GM
5616 purebeg = PUREBEG;
5617 pure_size = PURESIZE;
1f0b3fd2 5618 pure_bytes_used = 0;
9e713715
GM
5619 pure_bytes_used_before_overflow = 0;
5620
ab6780cd
SM
5621 /* Initialize the list of free aligned blocks. */
5622 free_ablock = NULL;
5623
877935b1 5624#if GC_MARK_STACK || defined GC_MALLOC_CHECK
34400008
GM
5625 mem_init ();
5626 Vdead = make_pure_string ("DEAD", 4, 4, 0);
5627#endif
9e713715 5628
7146af97
JB
5629 all_vectors = 0;
5630 ignore_warnings = 1;
d1658221
RS
5631#ifdef DOUG_LEA_MALLOC
5632 mallopt (M_TRIM_THRESHOLD, 128*1024); /* trim threshold */
5633 mallopt (M_MMAP_THRESHOLD, 64*1024); /* mmap threshold */
81d492d5 5634 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* max. number of mmap'ed areas */
d1658221 5635#endif
7146af97
JB
5636 init_strings ();
5637 init_cons ();
5638 init_symbol ();
5639 init_marker ();
7146af97 5640 init_float ();
34400008 5641 init_intervals ();
d5e35230 5642
276cbe5a
RS
5643#ifdef REL_ALLOC
5644 malloc_hysteresis = 32;
5645#else
5646 malloc_hysteresis = 0;
5647#endif
5648
5649 spare_memory = (char *) malloc (SPARE_MEMORY);
5650
7146af97
JB
5651 ignore_warnings = 0;
5652 gcprolist = 0;
630686c8 5653 byte_stack_list = 0;
7146af97
JB
5654 staticidx = 0;
5655 consing_since_gc = 0;
7d179cea 5656 gc_cons_threshold = 100000 * sizeof (Lisp_Object);
7146af97
JB
5657#ifdef VIRT_ADDR_VARIES
5658 malloc_sbrk_unused = 1<<22; /* A large number */
5659 malloc_sbrk_used = 100000; /* as reasonable as any number */
5660#endif /* VIRT_ADDR_VARIES */
5661}
5662
dfcf069d 5663void
7146af97
JB
5664init_alloc ()
5665{
5666 gcprolist = 0;
630686c8 5667 byte_stack_list = 0;
182ff242
GM
5668#if GC_MARK_STACK
5669#if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
5670 setjmp_tested_p = longjmps_done = 0;
5671#endif
5672#endif
2c5bd608
DL
5673 Vgc_elapsed = make_float (0.0);
5674 gcs_done = 0;
7146af97
JB
5675}
5676
5677void
5678syms_of_alloc ()
5679{
7ee72033 5680 DEFVAR_INT ("gc-cons-threshold", &gc_cons_threshold,
a6266d23 5681 doc: /* *Number of bytes of consing between garbage collections.
228299fa
GM
5682Garbage collection can happen automatically once this many bytes have been
5683allocated since the last garbage collection. All data types count.
7146af97 5684
228299fa 5685Garbage collection happens automatically only when `eval' is called.
7146af97 5686
228299fa
GM
5687By binding this temporarily to a large number, you can effectively
5688prevent garbage collection during a part of the program. */);
0819585c 5689
7ee72033 5690 DEFVAR_INT ("pure-bytes-used", &pure_bytes_used,
a6266d23 5691 doc: /* Number of bytes of sharable Lisp data allocated so far. */);
0819585c 5692
7ee72033 5693 DEFVAR_INT ("cons-cells-consed", &cons_cells_consed,
a6266d23 5694 doc: /* Number of cons cells that have been consed so far. */);
0819585c 5695
7ee72033 5696 DEFVAR_INT ("floats-consed", &floats_consed,
a6266d23 5697 doc: /* Number of floats that have been consed so far. */);
0819585c 5698
7ee72033 5699 DEFVAR_INT ("vector-cells-consed", &vector_cells_consed,
a6266d23 5700 doc: /* Number of vector cells that have been consed so far. */);
0819585c 5701
7ee72033 5702 DEFVAR_INT ("symbols-consed", &symbols_consed,
a6266d23 5703 doc: /* Number of symbols that have been consed so far. */);
0819585c 5704
7ee72033 5705 DEFVAR_INT ("string-chars-consed", &string_chars_consed,
a6266d23 5706 doc: /* Number of string characters that have been consed so far. */);
0819585c 5707
7ee72033 5708 DEFVAR_INT ("misc-objects-consed", &misc_objects_consed,
a6266d23 5709 doc: /* Number of miscellaneous objects that have been consed so far. */);
2e471eb5 5710
7ee72033 5711 DEFVAR_INT ("intervals-consed", &intervals_consed,
a6266d23 5712 doc: /* Number of intervals that have been consed so far. */);
7146af97 5713
7ee72033 5714 DEFVAR_INT ("strings-consed", &strings_consed,
a6266d23 5715 doc: /* Number of strings that have been consed so far. */);
228299fa 5716
7ee72033 5717 DEFVAR_LISP ("purify-flag", &Vpurify_flag,
a6266d23 5718 doc: /* Non-nil means loading Lisp code in order to dump an executable.
228299fa
GM
5719This means that certain objects should be allocated in shared (pure) space. */);
5720
7ee72033 5721 DEFVAR_INT ("undo-limit", &undo_limit,
a6266d23 5722 doc: /* Keep no more undo information once it exceeds this size.
228299fa
GM
5723This limit is applied when garbage collection happens.
5724The size is counted as the number of bytes occupied,
5725which includes both saved text and other data. */);
502b9b64 5726 undo_limit = 20000;
7146af97 5727
7ee72033 5728 DEFVAR_INT ("undo-strong-limit", &undo_strong_limit,
a6266d23 5729 doc: /* Don't keep more than this much size of undo information.
ae6a9bfe
RS
5730A previous command which pushes the undo list past this size
5731is entirely forgotten when GC happens.
228299fa
GM
5732The size is counted as the number of bytes occupied,
5733which includes both saved text and other data. */);
502b9b64 5734 undo_strong_limit = 30000;
7146af97 5735
ae6a9bfe
RS
5736 DEFVAR_INT ("undo-outer-limit", &undo_outer_limit,
5737 doc: /* Don't keep more than this much size of undo information.
5738If the current command has produced more than this much undo information,
5739GC discards it. This is a last-ditch limit to prevent memory overflow.
5740The size is counted as the number of bytes occupied,
5741which includes both saved text and other data. */);
5742 undo_outer_limit = 300000;
5743
7ee72033 5744 DEFVAR_BOOL ("garbage-collection-messages", &garbage_collection_messages,
a6266d23 5745 doc: /* Non-nil means display messages at start and end of garbage collection. */);
299585ee
RS
5746 garbage_collection_messages = 0;
5747
7ee72033 5748 DEFVAR_LISP ("post-gc-hook", &Vpost_gc_hook,
a6266d23 5749 doc: /* Hook run after garbage collection has finished. */);
9e713715
GM
5750 Vpost_gc_hook = Qnil;
5751 Qpost_gc_hook = intern ("post-gc-hook");
5752 staticpro (&Qpost_gc_hook);
5753
74a54b04
RS
5754 DEFVAR_LISP ("memory-signal-data", &Vmemory_signal_data,
5755 doc: /* Precomputed `signal' argument for memory-full error. */);
bcb61d60
KH
5756 /* We build this in advance because if we wait until we need it, we might
5757 not be able to allocate the memory to hold it. */
74a54b04
RS
5758 Vmemory_signal_data
5759 = list2 (Qerror,
5760 build_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"));
5761
5762 DEFVAR_LISP ("memory-full", &Vmemory_full,
5763 doc: /* Non-nil means we are handling a memory-full error. */);
5764 Vmemory_full = Qnil;
bcb61d60 5765
e8197642
RS
5766 staticpro (&Qgc_cons_threshold);
5767 Qgc_cons_threshold = intern ("gc-cons-threshold");
5768
a59de17b
RS
5769 staticpro (&Qchar_table_extra_slots);
5770 Qchar_table_extra_slots = intern ("char-table-extra-slots");
5771
2c5bd608
DL
5772 DEFVAR_LISP ("gc-elapsed", &Vgc_elapsed,
5773 doc: /* Accumulated time elapsed in garbage collections.
e7415487 5774The time is in seconds as a floating point value. */);
2c5bd608 5775 DEFVAR_INT ("gcs-done", &gcs_done,
e7415487 5776 doc: /* Accumulated number of garbage collections done. */);
2c5bd608 5777
7146af97
JB
5778 defsubr (&Scons);
5779 defsubr (&Slist);
5780 defsubr (&Svector);
5781 defsubr (&Smake_byte_code);
5782 defsubr (&Smake_list);
5783 defsubr (&Smake_vector);
7b07587b 5784 defsubr (&Smake_char_table);
7146af97 5785 defsubr (&Smake_string);
7b07587b 5786 defsubr (&Smake_bool_vector);
7146af97
JB
5787 defsubr (&Smake_symbol);
5788 defsubr (&Smake_marker);
5789 defsubr (&Spurecopy);
5790 defsubr (&Sgarbage_collect);
20d24714 5791 defsubr (&Smemory_limit);
310ea200 5792 defsubr (&Smemory_use_counts);
34400008
GM
5793
5794#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5795 defsubr (&Sgc_status);
5796#endif
7146af97 5797}
ab5796a9
MB
5798
5799/* arch-tag: 6695ca10-e3c5-4c2c-8bc3-ed26a7dda857
5800 (do not change this comment) */