message.el: Make header fill function work properly
[bpt/emacs.git] / src / alloc.c
CommitLineData
7146af97 1/* Storage allocation and gc for GNU Emacs Lisp interpreter.
999dd333
GM
2
3Copyright (C) 1985-1986, 1988, 1993-1995, 1997-2012
4 Free Software Foundation, Inc.
7146af97
JB
5
6This file is part of GNU Emacs.
7
9ec0b715 8GNU Emacs is free software: you can redistribute it and/or modify
7146af97 9it under the terms of the GNU General Public License as published by
9ec0b715
GM
10the Free Software Foundation, either version 3 of the License, or
11(at your option) any later version.
7146af97
JB
12
13GNU Emacs is distributed in the hope that it will be useful,
14but WITHOUT ANY WARRANTY; without even the implied warranty of
15MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16GNU General Public License for more details.
17
18You should have received a copy of the GNU General Public License
9ec0b715 19along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
7146af97 20
18160b98 21#include <config.h>
e9b309ac 22#include <stdio.h>
ab6780cd 23#include <limits.h> /* For CHAR_BIT. */
d7306fe6 24#include <setjmp.h>
92939d31 25
68c45bf0 26#include <signal.h>
92939d31 27
ae9e757a 28#ifdef HAVE_PTHREAD
aa477689
JD
29#include <pthread.h>
30#endif
31
7539e11f
KR
32/* This file is part of the core Lisp implementation, and thus must
33 deal with the real data structures. If the Lisp implementation is
34 replaced, this file likely will not be used. */
2e471eb5 35
7539e11f 36#undef HIDE_LISP_IMPLEMENTATION
7146af97 37#include "lisp.h"
ece93c02 38#include "process.h"
d5e35230 39#include "intervals.h"
4c0be5f4 40#include "puresize.h"
e5560ff7 41#include "character.h"
7146af97
JB
42#include "buffer.h"
43#include "window.h"
2538fae4 44#include "keyboard.h"
502b9b64 45#include "frame.h"
9ac0d9e0 46#include "blockinput.h"
e065a56e 47#include "syssignal.h"
4a729fd8 48#include "termhooks.h" /* For struct terminal. */
34400008 49#include <setjmp.h>
0065d054 50#include <verify.h>
e065a56e 51
52828e02
PE
52/* GC_CHECK_MARKED_OBJECTS means do sanity checks on allocated objects.
53 Doable only if GC_MARK_STACK. */
54#if ! GC_MARK_STACK
55# undef GC_CHECK_MARKED_OBJECTS
56#endif
57
6b61353c 58/* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
52828e02
PE
59 memory. Can do this only if using gmalloc.c and if not checking
60 marked objects. */
6b61353c 61
52828e02
PE
62#if (defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC \
63 || defined GC_CHECK_MARKED_OBJECTS)
6b61353c
KH
64#undef GC_MALLOC_CHECK
65#endif
66
bf952fb6 67#include <unistd.h>
4004364e 68#ifndef HAVE_UNISTD_H
261cb4bb 69extern void *sbrk ();
bf952fb6 70#endif
ee1eea5c 71
de7124a7 72#include <fcntl.h>
de7124a7 73
69666f77 74#ifdef WINDOWSNT
f892cf9c 75#include "w32.h"
69666f77
EZ
76#endif
77
d1658221 78#ifdef DOUG_LEA_MALLOC
2e471eb5 79
d1658221 80#include <malloc.h>
81d492d5 81
2e471eb5
GM
82/* Specify maximum number of areas to mmap. It would be nice to use a
83 value that explicitly means "no limit". */
84
81d492d5
RS
85#define MMAP_MAX_AREAS 100000000
86
2e471eb5
GM
87#else /* not DOUG_LEA_MALLOC */
88
276cbe5a
RS
89/* The following come from gmalloc.c. */
90
5e927815
PE
91extern size_t _bytes_used;
92extern size_t __malloc_extra_blocks;
b62a57be
PE
93extern void *_malloc_internal (size_t);
94extern void _free_internal (void *);
2e471eb5
GM
95
96#endif /* not DOUG_LEA_MALLOC */
276cbe5a 97
7bc26fdb 98#if ! defined SYSTEM_MALLOC && ! defined SYNC_INPUT
ae9e757a 99#ifdef HAVE_PTHREAD
aa477689 100
f415cacd
JD
101/* When GTK uses the file chooser dialog, different backends can be loaded
102 dynamically. One such a backend is the Gnome VFS backend that gets loaded
103 if you run Gnome. That backend creates several threads and also allocates
104 memory with malloc.
105
ae9e757a
JD
106 Also, gconf and gsettings may create several threads.
107
f415cacd
JD
108 If Emacs sets malloc hooks (! SYSTEM_MALLOC) and the emacs_blocked_*
109 functions below are called from malloc, there is a chance that one
110 of these threads preempts the Emacs main thread and the hook variables
333f1b6f 111 end up in an inconsistent state. So we have a mutex to prevent that (note
f415cacd
JD
112 that the backend handles concurrent access to malloc within its own threads
113 but Emacs code running in the main thread is not included in that control).
114
026cdede 115 When UNBLOCK_INPUT is called, reinvoke_input_signal may be called. If this
f415cacd
JD
116 happens in one of the backend threads we will have two threads that tries
117 to run Emacs code at once, and the code is not prepared for that.
118 To prevent that, we only call BLOCK/UNBLOCK from the main thread. */
119
aa477689 120static pthread_mutex_t alloc_mutex;
aa477689 121
959dc601
JD
122#define BLOCK_INPUT_ALLOC \
123 do \
124 { \
125 if (pthread_equal (pthread_self (), main_thread)) \
86302e37 126 BLOCK_INPUT; \
959dc601
JD
127 pthread_mutex_lock (&alloc_mutex); \
128 } \
aa477689 129 while (0)
959dc601
JD
130#define UNBLOCK_INPUT_ALLOC \
131 do \
132 { \
133 pthread_mutex_unlock (&alloc_mutex); \
134 if (pthread_equal (pthread_self (), main_thread)) \
86302e37 135 UNBLOCK_INPUT; \
959dc601 136 } \
aa477689
JD
137 while (0)
138
ae9e757a 139#else /* ! defined HAVE_PTHREAD */
aa477689
JD
140
141#define BLOCK_INPUT_ALLOC BLOCK_INPUT
142#define UNBLOCK_INPUT_ALLOC UNBLOCK_INPUT
143
ae9e757a 144#endif /* ! defined HAVE_PTHREAD */
7bc26fdb 145#endif /* ! defined SYSTEM_MALLOC && ! defined SYNC_INPUT */
aa477689 146
2e471eb5
GM
147/* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
148 to a struct Lisp_String. */
149
7cdee936
SM
150#define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
151#define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
b059de99 152#define STRING_MARKED_P(S) (((S)->size & ARRAY_MARK_FLAG) != 0)
2e471eb5 153
eab3844f
PE
154#define VECTOR_MARK(V) ((V)->header.size |= ARRAY_MARK_FLAG)
155#define VECTOR_UNMARK(V) ((V)->header.size &= ~ARRAY_MARK_FLAG)
156#define VECTOR_MARKED_P(V) (((V)->header.size & ARRAY_MARK_FLAG) != 0)
3ef06d12 157
7bc26fdb
PE
158/* Value is the number of bytes of S, a pointer to a struct Lisp_String.
159 Be careful during GC, because S->size contains the mark bit for
2e471eb5
GM
160 strings. */
161
3ef06d12 162#define GC_STRING_BYTES(S) (STRING_BYTES (S))
2e471eb5 163
0dd6d66d
DA
164/* Default value of gc_cons_threshold (see below). */
165
166#define GC_DEFAULT_THRESHOLD (100000 * sizeof (Lisp_Object))
167
29208e82
TT
168/* Global variables. */
169struct emacs_globals globals;
170
2e471eb5
GM
171/* Number of bytes of consing done since the last gc. */
172
dac616ff 173EMACS_INT consing_since_gc;
7146af97 174
974aae61
RS
175/* Similar minimum, computed from Vgc_cons_percentage. */
176
dac616ff 177EMACS_INT gc_relative_threshold;
310ea200 178
24d8a105
RS
179/* Minimum number of bytes of consing since GC before next GC,
180 when memory is full. */
181
dac616ff 182EMACS_INT memory_full_cons_threshold;
24d8a105 183
2e471eb5
GM
184/* Nonzero during GC. */
185
7146af97
JB
186int gc_in_progress;
187
3de0effb
RS
188/* Nonzero means abort if try to GC.
189 This is for code which is written on the assumption that
190 no GC will happen, so as to verify that assumption. */
191
192int abort_on_gc;
193
34400008
GM
194/* Number of live and free conses etc. */
195
3ab6e069 196static EMACS_INT total_conses, total_markers, total_symbols, total_buffers;
c0c5c8ae 197static EMACS_INT total_free_conses, total_free_markers, total_free_symbols;
3ab6e069 198static EMACS_INT total_free_floats, total_floats;
fd27a537 199
2e471eb5 200/* Points to memory space allocated as "spare", to be freed if we run
24d8a105
RS
201 out of memory. We keep one large block, four cons-blocks, and
202 two string blocks. */
2e471eb5 203
d3d47262 204static char *spare_memory[7];
276cbe5a 205
2b6148e4
PE
206/* Amount of spare memory to keep in large reserve block, or to see
207 whether this much is available when malloc fails on a larger request. */
2e471eb5 208
276cbe5a 209#define SPARE_MEMORY (1 << 14)
4d09bcf6 210
276cbe5a 211/* Number of extra blocks malloc should get when it needs more core. */
2e471eb5 212
276cbe5a
RS
213static int malloc_hysteresis;
214
1b8950e5
RS
215/* Initialize it to a nonzero value to force it into data space
216 (rather than bss space). That way unexec will remap it into text
217 space (pure), on some systems. We have not implemented the
218 remapping on more recent systems because this is less important
219 nowadays than in the days of small memories and timesharing. */
2e471eb5 220
2c4685ee 221EMACS_INT pure[(PURESIZE + sizeof (EMACS_INT) - 1) / sizeof (EMACS_INT)] = {1,};
7146af97 222#define PUREBEG (char *) pure
2e471eb5 223
9e713715 224/* Pointer to the pure area, and its size. */
2e471eb5 225
9e713715 226static char *purebeg;
903fe15d 227static ptrdiff_t pure_size;
9e713715
GM
228
229/* Number of bytes of pure storage used before pure storage overflowed.
230 If this is non-zero, this implies that an overflow occurred. */
231
903fe15d 232static ptrdiff_t pure_bytes_used_before_overflow;
7146af97 233
34400008
GM
234/* Value is non-zero if P points into pure space. */
235
236#define PURE_POINTER_P(P) \
6a0bf43d 237 ((uintptr_t) (P) - (uintptr_t) purebeg <= pure_size)
34400008 238
e5bc14d4
YM
239/* Index in pure at which next pure Lisp object will be allocated.. */
240
d311d28c 241static ptrdiff_t pure_bytes_used_lisp;
e5bc14d4
YM
242
243/* Number of bytes allocated for non-Lisp objects in pure storage. */
244
d311d28c 245static ptrdiff_t pure_bytes_used_non_lisp;
e5bc14d4 246
2e471eb5
GM
247/* If nonzero, this is a warning delivered by malloc and not yet
248 displayed. */
249
a8fe7202 250const char *pending_malloc_warning;
7146af97
JB
251
252/* Maximum amount of C stack to save when a GC happens. */
253
254#ifndef MAX_SAVE_STACK
255#define MAX_SAVE_STACK 16000
256#endif
257
258/* Buffer in which we save a copy of the C stack at each GC. */
259
dd3f25f7 260#if MAX_SAVE_STACK > 0
d3d47262 261static char *stack_copy;
903fe15d 262static ptrdiff_t stack_copy_size;
dd3f25f7 263#endif
7146af97 264
f8643a6b 265static Lisp_Object Qstring_bytes, Qvector_slots, Qheap;
955cbe7b
PE
266static Lisp_Object Qgc_cons_threshold;
267Lisp_Object Qchar_table_extra_slots;
e8197642 268
9e713715
GM
269/* Hook run after GC has finished. */
270
955cbe7b 271static Lisp_Object Qpost_gc_hook;
2c5bd608 272
f57e2426 273static void mark_terminals (void);
f57e2426 274static void gc_sweep (void);
72cb32cf 275static Lisp_Object make_pure_vector (ptrdiff_t);
f57e2426
J
276static void mark_glyph_matrix (struct glyph_matrix *);
277static void mark_face_cache (struct face_cache *);
41c28a37 278
69003fd8
PE
279#if !defined REL_ALLOC || defined SYSTEM_MALLOC
280static void refill_memory_reserve (void);
281#endif
f57e2426
J
282static struct Lisp_String *allocate_string (void);
283static void compact_small_strings (void);
284static void free_large_strings (void);
285static void sweep_strings (void);
244ed907 286static void free_misc (Lisp_Object);
196e41e4 287extern Lisp_Object which_symbols (Lisp_Object, EMACS_INT) EXTERNALLY_VISIBLE;
34400008 288
d06714cb
PE
289/* Handy constants for vectorlike objects. */
290enum
291 {
292 header_size = offsetof (struct Lisp_Vector, contents),
293 bool_header_size = offsetof (struct Lisp_Bool_Vector, data),
294 word_size = sizeof (Lisp_Object)
295 };
296
34400008
GM
297/* When scanning the C stack for live Lisp objects, Emacs keeps track
298 of what memory allocated via lisp_malloc is intended for what
299 purpose. This enumeration specifies the type of memory. */
300
301enum mem_type
302{
303 MEM_TYPE_NON_LISP,
304 MEM_TYPE_BUFFER,
305 MEM_TYPE_CONS,
306 MEM_TYPE_STRING,
307 MEM_TYPE_MISC,
308 MEM_TYPE_SYMBOL,
309 MEM_TYPE_FLOAT,
9c545a55
SM
310 /* We used to keep separate mem_types for subtypes of vectors such as
311 process, hash_table, frame, terminal, and window, but we never made
312 use of the distinction, so it only caused source-code complexity
313 and runtime slowdown. Minor but pointless. */
f3372c87
DA
314 MEM_TYPE_VECTORLIKE,
315 /* Special type to denote vector blocks. */
316 MEM_TYPE_VECTOR_BLOCK
34400008
GM
317};
318
261cb4bb 319static void *lisp_malloc (size_t, enum mem_type);
225ccad6 320
24d8a105 321
877935b1 322#if GC_MARK_STACK || defined GC_MALLOC_CHECK
0b378936
GM
323
324#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
325#include <stdio.h> /* For fprintf. */
326#endif
327
328/* A unique object in pure space used to make some Lisp objects
329 on free lists recognizable in O(1). */
330
d3d47262 331static Lisp_Object Vdead;
ca78dc43 332#define DEADP(x) EQ (x, Vdead)
0b378936 333
877935b1
GM
334#ifdef GC_MALLOC_CHECK
335
336enum mem_type allocated_mem_type;
877935b1
GM
337
338#endif /* GC_MALLOC_CHECK */
339
340/* A node in the red-black tree describing allocated memory containing
341 Lisp data. Each such block is recorded with its start and end
342 address when it is allocated, and removed from the tree when it
343 is freed.
344
345 A red-black tree is a balanced binary tree with the following
346 properties:
347
348 1. Every node is either red or black.
349 2. Every leaf is black.
350 3. If a node is red, then both of its children are black.
351 4. Every simple path from a node to a descendant leaf contains
352 the same number of black nodes.
353 5. The root is always black.
354
355 When nodes are inserted into the tree, or deleted from the tree,
356 the tree is "fixed" so that these properties are always true.
357
358 A red-black tree with N internal nodes has height at most 2
359 log(N+1). Searches, insertions and deletions are done in O(log N).
360 Please see a text book about data structures for a detailed
361 description of red-black trees. Any book worth its salt should
362 describe them. */
363
364struct mem_node
365{
9f7d9210
RS
366 /* Children of this node. These pointers are never NULL. When there
367 is no child, the value is MEM_NIL, which points to a dummy node. */
368 struct mem_node *left, *right;
369
370 /* The parent of this node. In the root node, this is NULL. */
371 struct mem_node *parent;
877935b1
GM
372
373 /* Start and end of allocated region. */
374 void *start, *end;
375
376 /* Node color. */
377 enum {MEM_BLACK, MEM_RED} color;
177c0ea7 378
877935b1
GM
379 /* Memory type. */
380 enum mem_type type;
381};
382
383/* Base address of stack. Set in main. */
384
385Lisp_Object *stack_base;
386
387/* Root of the tree describing allocated Lisp memory. */
388
389static struct mem_node *mem_root;
390
ece93c02
GM
391/* Lowest and highest known address in the heap. */
392
393static void *min_heap_address, *max_heap_address;
394
877935b1
GM
395/* Sentinel node of the tree. */
396
397static struct mem_node mem_z;
398#define MEM_NIL &mem_z
399
d311d28c 400static struct Lisp_Vector *allocate_vectorlike (ptrdiff_t);
261cb4bb 401static void lisp_free (void *);
f57e2426
J
402static void mark_stack (void);
403static int live_vector_p (struct mem_node *, void *);
404static int live_buffer_p (struct mem_node *, void *);
405static int live_string_p (struct mem_node *, void *);
406static int live_cons_p (struct mem_node *, void *);
407static int live_symbol_p (struct mem_node *, void *);
408static int live_float_p (struct mem_node *, void *);
409static int live_misc_p (struct mem_node *, void *);
410static void mark_maybe_object (Lisp_Object);
3164aeac 411static void mark_memory (void *, void *);
52828e02 412#if GC_MARK_STACK || defined GC_MALLOC_CHECK
f57e2426
J
413static void mem_init (void);
414static struct mem_node *mem_insert (void *, void *, enum mem_type);
415static void mem_insert_fixup (struct mem_node *);
b62a57be 416#endif
f57e2426
J
417static void mem_rotate_left (struct mem_node *);
418static void mem_rotate_right (struct mem_node *);
419static void mem_delete (struct mem_node *);
420static void mem_delete_fixup (struct mem_node *);
55d4c1b2 421static inline struct mem_node *mem_find (void *);
34400008 422
34400008
GM
423
424#if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
f57e2426 425static void check_gcpros (void);
34400008
GM
426#endif
427
877935b1 428#endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
34400008 429
ca78dc43
PE
430#ifndef DEADP
431# define DEADP(x) 0
432#endif
433
1f0b3fd2
GM
434/* Recording what needs to be marked for gc. */
435
436struct gcpro *gcprolist;
437
379b98b1
PE
438/* Addresses of staticpro'd variables. Initialize it to a nonzero
439 value; otherwise some compilers put it into BSS. */
1f0b3fd2 440
d251c37c 441#define NSTATICS 0x650
d3d47262 442static Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
1f0b3fd2
GM
443
444/* Index of next unused slot in staticvec. */
445
fff62aa9 446static int staticidx;
1f0b3fd2 447
261cb4bb 448static void *pure_alloc (size_t, int);
1f0b3fd2
GM
449
450
451/* Value is SZ rounded up to the next multiple of ALIGNMENT.
452 ALIGNMENT must be a power of 2. */
453
ab6780cd 454#define ALIGN(ptr, ALIGNMENT) \
261cb4bb
PE
455 ((void *) (((uintptr_t) (ptr) + (ALIGNMENT) - 1) \
456 & ~ ((ALIGNMENT) - 1)))
1f0b3fd2 457
ece93c02 458
7146af97 459\f
34400008
GM
460/************************************************************************
461 Malloc
462 ************************************************************************/
463
4455ad75 464/* Function malloc calls this if it finds we are near exhausting storage. */
d457598b
AS
465
466void
a8fe7202 467malloc_warning (const char *str)
7146af97
JB
468{
469 pending_malloc_warning = str;
470}
471
34400008 472
4455ad75 473/* Display an already-pending malloc warning. */
34400008 474
d457598b 475void
971de7fb 476display_malloc_warning (void)
7146af97 477{
4455ad75
RS
478 call3 (intern ("display-warning"),
479 intern ("alloc"),
480 build_string (pending_malloc_warning),
481 intern ("emergency"));
7146af97 482 pending_malloc_warning = 0;
7146af97 483}
49efed3a 484\f
276cbe5a
RS
485/* Called if we can't allocate relocatable space for a buffer. */
486
487void
d311d28c 488buffer_memory_full (ptrdiff_t nbytes)
276cbe5a 489{
2e471eb5
GM
490 /* If buffers use the relocating allocator, no need to free
491 spare_memory, because we may have plenty of malloc space left
492 that we could get, and if we don't, the malloc that fails will
493 itself cause spare_memory to be freed. If buffers don't use the
494 relocating allocator, treat this like any other failing
495 malloc. */
276cbe5a
RS
496
497#ifndef REL_ALLOC
531b0165 498 memory_full (nbytes);
276cbe5a
RS
499#endif
500
2e471eb5
GM
501 /* This used to call error, but if we've run out of memory, we could
502 get infinite recursion trying to build the string. */
9b306d37 503 xsignal (Qnil, Vmemory_signal_data);
7146af97
JB
504}
505
f3372c87
DA
506/* A common multiple of the positive integers A and B. Ideally this
507 would be the least common multiple, but there's no way to do that
508 as a constant expression in C, so do the best that we can easily do. */
509#define COMMON_MULTIPLE(a, b) \
510 ((a) % (b) == 0 ? (a) : (b) % (a) == 0 ? (b) : (a) * (b))
34400008 511
c9d624c6 512#ifndef XMALLOC_OVERRUN_CHECK
903fe15d 513#define XMALLOC_OVERRUN_CHECK_OVERHEAD 0
c9d624c6 514#else
212f33f1 515
903fe15d
PE
516/* Check for overrun in malloc'ed buffers by wrapping a header and trailer
517 around each block.
bdbed949 518
f701dc2a
PE
519 The header consists of XMALLOC_OVERRUN_CHECK_SIZE fixed bytes
520 followed by XMALLOC_OVERRUN_SIZE_SIZE bytes containing the original
521 block size in little-endian order. The trailer consists of
522 XMALLOC_OVERRUN_CHECK_SIZE fixed bytes.
bdbed949
KS
523
524 The header is used to detect whether this block has been allocated
f701dc2a
PE
525 through these functions, as some low-level libc functions may
526 bypass the malloc hooks. */
bdbed949 527
212f33f1 528#define XMALLOC_OVERRUN_CHECK_SIZE 16
903fe15d 529#define XMALLOC_OVERRUN_CHECK_OVERHEAD \
38532ce6
PE
530 (2 * XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE)
531
532/* Define XMALLOC_OVERRUN_SIZE_SIZE so that (1) it's large enough to
f701dc2a
PE
533 hold a size_t value and (2) the header size is a multiple of the
534 alignment that Emacs needs for C types and for USE_LSB_TAG. */
535#define XMALLOC_BASE_ALIGNMENT \
536 offsetof ( \
537 struct { \
538 union { long double d; intmax_t i; void *p; } u; \
539 char c; \
540 }, \
541 c)
f3372c87 542
bfe3e0a2 543#if USE_LSB_TAG
f701dc2a
PE
544# define XMALLOC_HEADER_ALIGNMENT \
545 COMMON_MULTIPLE (1 << GCTYPEBITS, XMALLOC_BASE_ALIGNMENT)
38532ce6
PE
546#else
547# define XMALLOC_HEADER_ALIGNMENT XMALLOC_BASE_ALIGNMENT
548#endif
549#define XMALLOC_OVERRUN_SIZE_SIZE \
f701dc2a
PE
550 (((XMALLOC_OVERRUN_CHECK_SIZE + sizeof (size_t) \
551 + XMALLOC_HEADER_ALIGNMENT - 1) \
552 / XMALLOC_HEADER_ALIGNMENT * XMALLOC_HEADER_ALIGNMENT) \
553 - XMALLOC_OVERRUN_CHECK_SIZE)
bdbed949 554
903fe15d
PE
555static char const xmalloc_overrun_check_header[XMALLOC_OVERRUN_CHECK_SIZE] =
556 { '\x9a', '\x9b', '\xae', '\xaf',
557 '\xbf', '\xbe', '\xce', '\xcf',
558 '\xea', '\xeb', '\xec', '\xed',
559 '\xdf', '\xde', '\x9c', '\x9d' };
212f33f1 560
903fe15d
PE
561static char const xmalloc_overrun_check_trailer[XMALLOC_OVERRUN_CHECK_SIZE] =
562 { '\xaa', '\xab', '\xac', '\xad',
563 '\xba', '\xbb', '\xbc', '\xbd',
564 '\xca', '\xcb', '\xcc', '\xcd',
565 '\xda', '\xdb', '\xdc', '\xdd' };
212f33f1 566
903fe15d 567/* Insert and extract the block size in the header. */
bdbed949 568
903fe15d
PE
569static void
570xmalloc_put_size (unsigned char *ptr, size_t size)
571{
572 int i;
38532ce6 573 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
903fe15d 574 {
38532ce6 575 *--ptr = size & ((1 << CHAR_BIT) - 1);
903fe15d
PE
576 size >>= CHAR_BIT;
577 }
578}
bdbed949 579
903fe15d
PE
580static size_t
581xmalloc_get_size (unsigned char *ptr)
582{
583 size_t size = 0;
584 int i;
38532ce6
PE
585 ptr -= XMALLOC_OVERRUN_SIZE_SIZE;
586 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
903fe15d
PE
587 {
588 size <<= CHAR_BIT;
589 size += *ptr++;
590 }
591 return size;
592}
bdbed949
KS
593
594
d8f165a8
JD
595/* The call depth in overrun_check functions. For example, this might happen:
596 xmalloc()
597 overrun_check_malloc()
598 -> malloc -> (via hook)_-> emacs_blocked_malloc
599 -> overrun_check_malloc
600 call malloc (hooks are NULL, so real malloc is called).
601 malloc returns 10000.
602 add overhead, return 10016.
603 <- (back in overrun_check_malloc)
857ae68b 604 add overhead again, return 10032
d8f165a8 605 xmalloc returns 10032.
857ae68b
JD
606
607 (time passes).
608
d8f165a8
JD
609 xfree(10032)
610 overrun_check_free(10032)
903fe15d 611 decrease overhead
d8f165a8 612 free(10016) <- crash, because 10000 is the original pointer. */
857ae68b 613
903fe15d 614static ptrdiff_t check_depth;
857ae68b 615
bdbed949
KS
616/* Like malloc, but wraps allocated block with header and trailer. */
617
261cb4bb 618static void *
e7974947 619overrun_check_malloc (size_t size)
212f33f1 620{
bdbed949 621 register unsigned char *val;
903fe15d
PE
622 int overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_OVERHEAD : 0;
623 if (SIZE_MAX - overhead < size)
624 abort ();
212f33f1 625
38182d90 626 val = malloc (size + overhead);
857ae68b 627 if (val && check_depth == 1)
212f33f1 628 {
903fe15d 629 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
38532ce6 630 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
903fe15d 631 xmalloc_put_size (val, size);
72af86bd
AS
632 memcpy (val + size, xmalloc_overrun_check_trailer,
633 XMALLOC_OVERRUN_CHECK_SIZE);
212f33f1 634 }
857ae68b 635 --check_depth;
261cb4bb 636 return val;
212f33f1
KS
637}
638
bdbed949
KS
639
640/* Like realloc, but checks old block for overrun, and wraps new block
641 with header and trailer. */
642
261cb4bb
PE
643static void *
644overrun_check_realloc (void *block, size_t size)
212f33f1 645{
e7974947 646 register unsigned char *val = (unsigned char *) block;
903fe15d
PE
647 int overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_OVERHEAD : 0;
648 if (SIZE_MAX - overhead < size)
649 abort ();
212f33f1
KS
650
651 if (val
857ae68b 652 && check_depth == 1
72af86bd 653 && memcmp (xmalloc_overrun_check_header,
38532ce6 654 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
903fe15d 655 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
212f33f1 656 {
903fe15d 657 size_t osize = xmalloc_get_size (val);
72af86bd
AS
658 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
659 XMALLOC_OVERRUN_CHECK_SIZE))
212f33f1 660 abort ();
72af86bd 661 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
38532ce6
PE
662 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
663 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
212f33f1
KS
664 }
665
261cb4bb 666 val = realloc (val, size + overhead);
212f33f1 667
857ae68b 668 if (val && check_depth == 1)
212f33f1 669 {
903fe15d 670 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
38532ce6 671 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
903fe15d 672 xmalloc_put_size (val, size);
72af86bd
AS
673 memcpy (val + size, xmalloc_overrun_check_trailer,
674 XMALLOC_OVERRUN_CHECK_SIZE);
212f33f1 675 }
857ae68b 676 --check_depth;
261cb4bb 677 return val;
212f33f1
KS
678}
679
bdbed949
KS
680/* Like free, but checks block for overrun. */
681
2538aa2f 682static void
261cb4bb 683overrun_check_free (void *block)
212f33f1 684{
e7974947 685 unsigned char *val = (unsigned char *) block;
212f33f1 686
857ae68b 687 ++check_depth;
212f33f1 688 if (val
857ae68b 689 && check_depth == 1
72af86bd 690 && memcmp (xmalloc_overrun_check_header,
38532ce6 691 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
903fe15d 692 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
212f33f1 693 {
903fe15d 694 size_t osize = xmalloc_get_size (val);
72af86bd
AS
695 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
696 XMALLOC_OVERRUN_CHECK_SIZE))
212f33f1 697 abort ();
454d7973 698#ifdef XMALLOC_CLEAR_FREE_MEMORY
38532ce6 699 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
903fe15d 700 memset (val, 0xff, osize + XMALLOC_OVERRUN_CHECK_OVERHEAD);
454d7973 701#else
72af86bd 702 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
38532ce6
PE
703 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
704 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
454d7973 705#endif
212f33f1
KS
706 }
707
708 free (val);
857ae68b 709 --check_depth;
212f33f1
KS
710}
711
712#undef malloc
713#undef realloc
714#undef free
715#define malloc overrun_check_malloc
716#define realloc overrun_check_realloc
717#define free overrun_check_free
718#endif
719
dafc79fa
SM
720#ifdef SYNC_INPUT
721/* When using SYNC_INPUT, we don't call malloc from a signal handler, so
722 there's no need to block input around malloc. */
723#define MALLOC_BLOCK_INPUT ((void)0)
724#define MALLOC_UNBLOCK_INPUT ((void)0)
725#else
726#define MALLOC_BLOCK_INPUT BLOCK_INPUT
727#define MALLOC_UNBLOCK_INPUT UNBLOCK_INPUT
728#endif
bdbed949 729
34400008 730/* Like malloc but check for no memory and block interrupt input.. */
7146af97 731
261cb4bb 732void *
971de7fb 733xmalloc (size_t size)
7146af97 734{
261cb4bb 735 void *val;
7146af97 736
dafc79fa 737 MALLOC_BLOCK_INPUT;
261cb4bb 738 val = malloc (size);
dafc79fa 739 MALLOC_UNBLOCK_INPUT;
7146af97 740
2e471eb5 741 if (!val && size)
531b0165 742 memory_full (size);
7146af97
JB
743 return val;
744}
745
23f86fce
DA
746/* Like the above, but zeroes out the memory just allocated. */
747
748void *
749xzalloc (size_t size)
750{
751 void *val;
752
753 MALLOC_BLOCK_INPUT;
754 val = malloc (size);
755 MALLOC_UNBLOCK_INPUT;
756
757 if (!val && size)
758 memory_full (size);
759 memset (val, 0, size);
760 return val;
761}
34400008
GM
762
763/* Like realloc but check for no memory and block interrupt input.. */
764
261cb4bb
PE
765void *
766xrealloc (void *block, size_t size)
7146af97 767{
261cb4bb 768 void *val;
7146af97 769
dafc79fa 770 MALLOC_BLOCK_INPUT;
56d2031b
JB
771 /* We must call malloc explicitly when BLOCK is 0, since some
772 reallocs don't do this. */
773 if (! block)
261cb4bb 774 val = malloc (size);
f048679d 775 else
261cb4bb 776 val = realloc (block, size);
dafc79fa 777 MALLOC_UNBLOCK_INPUT;
7146af97 778
531b0165
PE
779 if (!val && size)
780 memory_full (size);
7146af97
JB
781 return val;
782}
9ac0d9e0 783
34400008 784
005ca5c7 785/* Like free but block interrupt input. */
34400008 786
9ac0d9e0 787void
261cb4bb 788xfree (void *block)
9ac0d9e0 789{
70fdbb46
JM
790 if (!block)
791 return;
dafc79fa 792 MALLOC_BLOCK_INPUT;
9ac0d9e0 793 free (block);
dafc79fa 794 MALLOC_UNBLOCK_INPUT;
24d8a105
RS
795 /* We don't call refill_memory_reserve here
796 because that duplicates doing so in emacs_blocked_free
797 and the criterion should go there. */
9ac0d9e0
JB
798}
799
c8099634 800
0065d054
PE
801/* Other parts of Emacs pass large int values to allocator functions
802 expecting ptrdiff_t. This is portable in practice, but check it to
803 be safe. */
804verify (INT_MAX <= PTRDIFF_MAX);
805
806
807/* Allocate an array of NITEMS items, each of size ITEM_SIZE.
808 Signal an error on memory exhaustion, and block interrupt input. */
809
810void *
811xnmalloc (ptrdiff_t nitems, ptrdiff_t item_size)
812{
a54e2c05 813 eassert (0 <= nitems && 0 < item_size);
0065d054
PE
814 if (min (PTRDIFF_MAX, SIZE_MAX) / item_size < nitems)
815 memory_full (SIZE_MAX);
816 return xmalloc (nitems * item_size);
817}
818
819
820/* Reallocate an array PA to make it of NITEMS items, each of size ITEM_SIZE.
821 Signal an error on memory exhaustion, and block interrupt input. */
822
823void *
824xnrealloc (void *pa, ptrdiff_t nitems, ptrdiff_t item_size)
825{
a54e2c05 826 eassert (0 <= nitems && 0 < item_size);
0065d054
PE
827 if (min (PTRDIFF_MAX, SIZE_MAX) / item_size < nitems)
828 memory_full (SIZE_MAX);
829 return xrealloc (pa, nitems * item_size);
830}
831
832
833/* Grow PA, which points to an array of *NITEMS items, and return the
834 location of the reallocated array, updating *NITEMS to reflect its
835 new size. The new array will contain at least NITEMS_INCR_MIN more
836 items, but will not contain more than NITEMS_MAX items total.
837 ITEM_SIZE is the size of each item, in bytes.
838
839 ITEM_SIZE and NITEMS_INCR_MIN must be positive. *NITEMS must be
840 nonnegative. If NITEMS_MAX is -1, it is treated as if it were
841 infinity.
842
843 If PA is null, then allocate a new array instead of reallocating
844 the old one. Thus, to grow an array A without saving its old
845 contents, invoke xfree (A) immediately followed by xgrowalloc (0,
846 &NITEMS, ...).
847
848 Block interrupt input as needed. If memory exhaustion occurs, set
849 *NITEMS to zero if PA is null, and signal an error (i.e., do not
850 return). */
851
852void *
853xpalloc (void *pa, ptrdiff_t *nitems, ptrdiff_t nitems_incr_min,
854 ptrdiff_t nitems_max, ptrdiff_t item_size)
855{
856 /* The approximate size to use for initial small allocation
857 requests. This is the largest "small" request for the GNU C
858 library malloc. */
859 enum { DEFAULT_MXFAST = 64 * sizeof (size_t) / 4 };
860
861 /* If the array is tiny, grow it to about (but no greater than)
862 DEFAULT_MXFAST bytes. Otherwise, grow it by about 50%. */
863 ptrdiff_t n = *nitems;
864 ptrdiff_t tiny_max = DEFAULT_MXFAST / item_size - n;
865 ptrdiff_t half_again = n >> 1;
866 ptrdiff_t incr_estimate = max (tiny_max, half_again);
867
868 /* Adjust the increment according to three constraints: NITEMS_INCR_MIN,
869 NITEMS_MAX, and what the C language can represent safely. */
870 ptrdiff_t C_language_max = min (PTRDIFF_MAX, SIZE_MAX) / item_size;
871 ptrdiff_t n_max = (0 <= nitems_max && nitems_max < C_language_max
872 ? nitems_max : C_language_max);
873 ptrdiff_t nitems_incr_max = n_max - n;
874 ptrdiff_t incr = max (nitems_incr_min, min (incr_estimate, nitems_incr_max));
875
a54e2c05 876 eassert (0 < item_size && 0 < nitems_incr_min && 0 <= n && -1 <= nitems_max);
0065d054
PE
877 if (! pa)
878 *nitems = 0;
879 if (nitems_incr_max < incr)
880 memory_full (SIZE_MAX);
881 n += incr;
882 pa = xrealloc (pa, n * item_size);
883 *nitems = n;
884 return pa;
885}
886
887
dca7c6a8
GM
888/* Like strdup, but uses xmalloc. */
889
890char *
971de7fb 891xstrdup (const char *s)
dca7c6a8 892{
675d5130 893 size_t len = strlen (s) + 1;
23f86fce 894 char *p = xmalloc (len);
72af86bd 895 memcpy (p, s, len);
dca7c6a8
GM
896 return p;
897}
898
899
f61bef8b
KS
900/* Unwind for SAFE_ALLOCA */
901
902Lisp_Object
971de7fb 903safe_alloca_unwind (Lisp_Object arg)
f61bef8b 904{
b766f870
KS
905 register struct Lisp_Save_Value *p = XSAVE_VALUE (arg);
906
907 p->dogc = 0;
908 xfree (p->pointer);
909 p->pointer = 0;
7b7990cc 910 free_misc (arg);
f61bef8b
KS
911 return Qnil;
912}
913
914
34400008
GM
915/* Like malloc but used for allocating Lisp data. NBYTES is the
916 number of bytes to allocate, TYPE describes the intended use of the
91af3942 917 allocated memory block (for strings, for conses, ...). */
34400008 918
bfe3e0a2
PE
919#if ! USE_LSB_TAG
920void *lisp_malloc_loser EXTERNALLY_VISIBLE;
212f33f1 921#endif
918a23a7 922
261cb4bb 923static void *
971de7fb 924lisp_malloc (size_t nbytes, enum mem_type type)
c8099634 925{
34400008 926 register void *val;
c8099634 927
dafc79fa 928 MALLOC_BLOCK_INPUT;
877935b1
GM
929
930#ifdef GC_MALLOC_CHECK
931 allocated_mem_type = type;
932#endif
177c0ea7 933
38182d90 934 val = malloc (nbytes);
c8099634 935
bfe3e0a2 936#if ! USE_LSB_TAG
918a23a7
RS
937 /* If the memory just allocated cannot be addressed thru a Lisp
938 object's pointer, and it needs to be,
939 that's equivalent to running out of memory. */
940 if (val && type != MEM_TYPE_NON_LISP)
941 {
942 Lisp_Object tem;
943 XSETCONS (tem, (char *) val + nbytes - 1);
944 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
945 {
946 lisp_malloc_loser = val;
947 free (val);
948 val = 0;
949 }
950 }
6b61353c 951#endif
918a23a7 952
877935b1 953#if GC_MARK_STACK && !defined GC_MALLOC_CHECK
dca7c6a8 954 if (val && type != MEM_TYPE_NON_LISP)
34400008
GM
955 mem_insert (val, (char *) val + nbytes, type);
956#endif
177c0ea7 957
dafc79fa 958 MALLOC_UNBLOCK_INPUT;
dca7c6a8 959 if (!val && nbytes)
531b0165 960 memory_full (nbytes);
c8099634
RS
961 return val;
962}
963
34400008
GM
964/* Free BLOCK. This must be called to free memory allocated with a
965 call to lisp_malloc. */
966
bf952fb6 967static void
261cb4bb 968lisp_free (void *block)
c8099634 969{
dafc79fa 970 MALLOC_BLOCK_INPUT;
c8099634 971 free (block);
877935b1 972#if GC_MARK_STACK && !defined GC_MALLOC_CHECK
34400008
GM
973 mem_delete (mem_find (block));
974#endif
dafc79fa 975 MALLOC_UNBLOCK_INPUT;
c8099634 976}
34400008 977
453b951e
SM
978/***** Allocation of aligned blocks of memory to store Lisp data. *****/
979
980/* The entry point is lisp_align_malloc which returns blocks of at most
981 BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
ab6780cd 982
b4181b01
KS
983#if defined (HAVE_POSIX_MEMALIGN) && defined (SYSTEM_MALLOC)
984#define USE_POSIX_MEMALIGN 1
985#endif
ab6780cd
SM
986
987/* BLOCK_ALIGN has to be a power of 2. */
988#define BLOCK_ALIGN (1 << 10)
ab6780cd
SM
989
990/* Padding to leave at the end of a malloc'd block. This is to give
991 malloc a chance to minimize the amount of memory wasted to alignment.
992 It should be tuned to the particular malloc library used.
19bcad1f
SM
993 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
994 posix_memalign on the other hand would ideally prefer a value of 4
995 because otherwise, there's 1020 bytes wasted between each ablocks.
f501ccb4
SM
996 In Emacs, testing shows that those 1020 can most of the time be
997 efficiently used by malloc to place other objects, so a value of 0 can
998 still preferable unless you have a lot of aligned blocks and virtually
999 nothing else. */
19bcad1f
SM
1000#define BLOCK_PADDING 0
1001#define BLOCK_BYTES \
0b432f21 1002 (BLOCK_ALIGN - sizeof (struct ablocks *) - BLOCK_PADDING)
19bcad1f
SM
1003
1004/* Internal data structures and constants. */
1005
ab6780cd
SM
1006#define ABLOCKS_SIZE 16
1007
1008/* An aligned block of memory. */
1009struct ablock
1010{
1011 union
1012 {
1013 char payload[BLOCK_BYTES];
1014 struct ablock *next_free;
1015 } x;
1016 /* `abase' is the aligned base of the ablocks. */
1017 /* It is overloaded to hold the virtual `busy' field that counts
1018 the number of used ablock in the parent ablocks.
1019 The first ablock has the `busy' field, the others have the `abase'
1020 field. To tell the difference, we assume that pointers will have
1021 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
1022 is used to tell whether the real base of the parent ablocks is `abase'
1023 (if not, the word before the first ablock holds a pointer to the
1024 real base). */
1025 struct ablocks *abase;
1026 /* The padding of all but the last ablock is unused. The padding of
1027 the last ablock in an ablocks is not allocated. */
19bcad1f
SM
1028#if BLOCK_PADDING
1029 char padding[BLOCK_PADDING];
ebb8d410 1030#endif
ab6780cd
SM
1031};
1032
1033/* A bunch of consecutive aligned blocks. */
1034struct ablocks
1035{
1036 struct ablock blocks[ABLOCKS_SIZE];
1037};
1038
4b5afbb0 1039/* Size of the block requested from malloc or posix_memalign. */
19bcad1f 1040#define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
ab6780cd
SM
1041
1042#define ABLOCK_ABASE(block) \
d01a7826 1043 (((uintptr_t) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
ab6780cd
SM
1044 ? (struct ablocks *)(block) \
1045 : (block)->abase)
1046
1047/* Virtual `busy' field. */
1048#define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
1049
1050/* Pointer to the (not necessarily aligned) malloc block. */
349a4500 1051#ifdef USE_POSIX_MEMALIGN
19bcad1f
SM
1052#define ABLOCKS_BASE(abase) (abase)
1053#else
ab6780cd 1054#define ABLOCKS_BASE(abase) \
d01a7826 1055 (1 & (intptr_t) ABLOCKS_BUSY (abase) ? abase : ((void**)abase)[-1])
19bcad1f 1056#endif
ab6780cd
SM
1057
1058/* The list of free ablock. */
1059static struct ablock *free_ablock;
1060
1061/* Allocate an aligned block of nbytes.
1062 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
1063 smaller or equal to BLOCK_BYTES. */
261cb4bb 1064static void *
971de7fb 1065lisp_align_malloc (size_t nbytes, enum mem_type type)
ab6780cd
SM
1066{
1067 void *base, *val;
1068 struct ablocks *abase;
1069
1070 eassert (nbytes <= BLOCK_BYTES);
1071
dafc79fa 1072 MALLOC_BLOCK_INPUT;
ab6780cd
SM
1073
1074#ifdef GC_MALLOC_CHECK
1075 allocated_mem_type = type;
1076#endif
1077
1078 if (!free_ablock)
1079 {
005ca5c7 1080 int i;
d01a7826 1081 intptr_t aligned; /* int gets warning casting to 64-bit pointer. */
ab6780cd
SM
1082
1083#ifdef DOUG_LEA_MALLOC
1084 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1085 because mapped region contents are not preserved in
1086 a dumped Emacs. */
1087 mallopt (M_MMAP_MAX, 0);
1088#endif
1089
349a4500 1090#ifdef USE_POSIX_MEMALIGN
19bcad1f
SM
1091 {
1092 int err = posix_memalign (&base, BLOCK_ALIGN, ABLOCKS_BYTES);
ab349c19
RS
1093 if (err)
1094 base = NULL;
1095 abase = base;
19bcad1f
SM
1096 }
1097#else
ab6780cd
SM
1098 base = malloc (ABLOCKS_BYTES);
1099 abase = ALIGN (base, BLOCK_ALIGN);
ab349c19
RS
1100#endif
1101
6b61353c
KH
1102 if (base == 0)
1103 {
dafc79fa 1104 MALLOC_UNBLOCK_INPUT;
531b0165 1105 memory_full (ABLOCKS_BYTES);
6b61353c 1106 }
ab6780cd
SM
1107
1108 aligned = (base == abase);
1109 if (!aligned)
1110 ((void**)abase)[-1] = base;
1111
1112#ifdef DOUG_LEA_MALLOC
1113 /* Back to a reasonable maximum of mmap'ed areas. */
1114 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1115#endif
1116
bfe3e0a2 1117#if ! USE_LSB_TAG
8f924df7
KH
1118 /* If the memory just allocated cannot be addressed thru a Lisp
1119 object's pointer, and it needs to be, that's equivalent to
1120 running out of memory. */
1121 if (type != MEM_TYPE_NON_LISP)
1122 {
1123 Lisp_Object tem;
1124 char *end = (char *) base + ABLOCKS_BYTES - 1;
1125 XSETCONS (tem, end);
1126 if ((char *) XCONS (tem) != end)
1127 {
1128 lisp_malloc_loser = base;
1129 free (base);
dafc79fa 1130 MALLOC_UNBLOCK_INPUT;
531b0165 1131 memory_full (SIZE_MAX);
8f924df7
KH
1132 }
1133 }
6b61353c 1134#endif
8f924df7 1135
ab6780cd 1136 /* Initialize the blocks and put them on the free list.
453b951e 1137 If `base' was not properly aligned, we can't use the last block. */
ab6780cd
SM
1138 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
1139 {
1140 abase->blocks[i].abase = abase;
1141 abase->blocks[i].x.next_free = free_ablock;
1142 free_ablock = &abase->blocks[i];
1143 }
8ac068ac 1144 ABLOCKS_BUSY (abase) = (struct ablocks *) aligned;
ab6780cd 1145
d01a7826 1146 eassert (0 == ((uintptr_t) abase) % BLOCK_ALIGN);
ab6780cd
SM
1147 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
1148 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
1149 eassert (ABLOCKS_BASE (abase) == base);
d01a7826 1150 eassert (aligned == (intptr_t) ABLOCKS_BUSY (abase));
ab6780cd
SM
1151 }
1152
1153 abase = ABLOCK_ABASE (free_ablock);
8ac068ac 1154 ABLOCKS_BUSY (abase) =
d01a7826 1155 (struct ablocks *) (2 + (intptr_t) ABLOCKS_BUSY (abase));
ab6780cd
SM
1156 val = free_ablock;
1157 free_ablock = free_ablock->x.next_free;
1158
ab6780cd 1159#if GC_MARK_STACK && !defined GC_MALLOC_CHECK
3687c2ef 1160 if (type != MEM_TYPE_NON_LISP)
ab6780cd
SM
1161 mem_insert (val, (char *) val + nbytes, type);
1162#endif
1163
dafc79fa 1164 MALLOC_UNBLOCK_INPUT;
ab6780cd 1165
d01a7826 1166 eassert (0 == ((uintptr_t) val) % BLOCK_ALIGN);
ab6780cd
SM
1167 return val;
1168}
1169
1170static void
261cb4bb 1171lisp_align_free (void *block)
ab6780cd
SM
1172{
1173 struct ablock *ablock = block;
1174 struct ablocks *abase = ABLOCK_ABASE (ablock);
1175
dafc79fa 1176 MALLOC_BLOCK_INPUT;
ab6780cd
SM
1177#if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1178 mem_delete (mem_find (block));
1179#endif
1180 /* Put on free list. */
1181 ablock->x.next_free = free_ablock;
1182 free_ablock = ablock;
1183 /* Update busy count. */
453b951e
SM
1184 ABLOCKS_BUSY (abase)
1185 = (struct ablocks *) (-2 + (intptr_t) ABLOCKS_BUSY (abase));
d2db1c32 1186
d01a7826 1187 if (2 > (intptr_t) ABLOCKS_BUSY (abase))
ab6780cd 1188 { /* All the blocks are free. */
d01a7826 1189 int i = 0, aligned = (intptr_t) ABLOCKS_BUSY (abase);
ab6780cd
SM
1190 struct ablock **tem = &free_ablock;
1191 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
1192
1193 while (*tem)
1194 {
1195 if (*tem >= (struct ablock *) abase && *tem < atop)
1196 {
1197 i++;
1198 *tem = (*tem)->x.next_free;
1199 }
1200 else
1201 tem = &(*tem)->x.next_free;
1202 }
1203 eassert ((aligned & 1) == aligned);
1204 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
349a4500 1205#ifdef USE_POSIX_MEMALIGN
d01a7826 1206 eassert ((uintptr_t) ABLOCKS_BASE (abase) % BLOCK_ALIGN == 0);
cfb2f32e 1207#endif
ab6780cd
SM
1208 free (ABLOCKS_BASE (abase));
1209 }
dafc79fa 1210 MALLOC_UNBLOCK_INPUT;
ab6780cd 1211}
3ef06d12 1212
9ac0d9e0 1213\f
026cdede
SM
1214#ifndef SYSTEM_MALLOC
1215
9ac0d9e0
JB
1216/* Arranging to disable input signals while we're in malloc.
1217
1218 This only works with GNU malloc. To help out systems which can't
1219 use GNU malloc, all the calls to malloc, realloc, and free
1220 elsewhere in the code should be inside a BLOCK_INPUT/UNBLOCK_INPUT
026cdede 1221 pair; unfortunately, we have no idea what C library functions
9ac0d9e0 1222 might call malloc, so we can't really protect them unless you're
2c5bd608
DL
1223 using GNU malloc. Fortunately, most of the major operating systems
1224 can use GNU malloc. */
9ac0d9e0 1225
026cdede 1226#ifndef SYNC_INPUT
dafc79fa
SM
1227/* When using SYNC_INPUT, we don't call malloc from a signal handler, so
1228 there's no need to block input around malloc. */
026cdede 1229
b3303f74 1230#ifndef DOUG_LEA_MALLOC
f57e2426
J
1231extern void * (*__malloc_hook) (size_t, const void *);
1232extern void * (*__realloc_hook) (void *, size_t, const void *);
1233extern void (*__free_hook) (void *, const void *);
b3303f74
DL
1234/* Else declared in malloc.h, perhaps with an extra arg. */
1235#endif /* DOUG_LEA_MALLOC */
f57e2426
J
1236static void * (*old_malloc_hook) (size_t, const void *);
1237static void * (*old_realloc_hook) (void *, size_t, const void*);
1238static void (*old_free_hook) (void*, const void*);
9ac0d9e0 1239
4e75f29d
PE
1240#ifdef DOUG_LEA_MALLOC
1241# define BYTES_USED (mallinfo ().uordblks)
1242#else
1243# define BYTES_USED _bytes_used
1244#endif
1245
b62a57be
PE
1246#ifdef GC_MALLOC_CHECK
1247static int dont_register_blocks;
1248#endif
1249
5e927815 1250static size_t bytes_used_when_reconsidered;
ef1b0ba7 1251
4e75f29d
PE
1252/* Value of _bytes_used, when spare_memory was freed. */
1253
5e927815 1254static size_t bytes_used_when_full;
4e75f29d 1255
276cbe5a
RS
1256/* This function is used as the hook for free to call. */
1257
9ac0d9e0 1258static void
7c3320d8 1259emacs_blocked_free (void *ptr, const void *ptr2)
9ac0d9e0 1260{
aa477689 1261 BLOCK_INPUT_ALLOC;
877935b1
GM
1262
1263#ifdef GC_MALLOC_CHECK
a83fee2c
GM
1264 if (ptr)
1265 {
1266 struct mem_node *m;
177c0ea7 1267
a83fee2c
GM
1268 m = mem_find (ptr);
1269 if (m == MEM_NIL || m->start != ptr)
1270 {
1271 fprintf (stderr,
1272 "Freeing `%p' which wasn't allocated with malloc\n", ptr);
1273 abort ();
1274 }
1275 else
1276 {
1277 /* fprintf (stderr, "free %p...%p (%p)\n", m->start, m->end, ptr); */
1278 mem_delete (m);
1279 }
1280 }
877935b1 1281#endif /* GC_MALLOC_CHECK */
177c0ea7 1282
9ac0d9e0
JB
1283 __free_hook = old_free_hook;
1284 free (ptr);
177c0ea7 1285
276cbe5a
RS
1286 /* If we released our reserve (due to running out of memory),
1287 and we have a fair amount free once again,
1288 try to set aside another reserve in case we run out once more. */
24d8a105 1289 if (! NILP (Vmemory_full)
276cbe5a
RS
1290 /* Verify there is enough space that even with the malloc
1291 hysteresis this call won't run out again.
1292 The code here is correct as long as SPARE_MEMORY
1293 is substantially larger than the block size malloc uses. */
1294 && (bytes_used_when_full
4d74a5fc 1295 > ((bytes_used_when_reconsidered = BYTES_USED)
bccfb310 1296 + max (malloc_hysteresis, 4) * SPARE_MEMORY)))
24d8a105 1297 refill_memory_reserve ();
276cbe5a 1298
b0846f52 1299 __free_hook = emacs_blocked_free;
aa477689 1300 UNBLOCK_INPUT_ALLOC;
9ac0d9e0
JB
1301}
1302
34400008 1303
276cbe5a
RS
1304/* This function is the malloc hook that Emacs uses. */
1305
9ac0d9e0 1306static void *
7c3320d8 1307emacs_blocked_malloc (size_t size, const void *ptr)
9ac0d9e0
JB
1308{
1309 void *value;
1310
aa477689 1311 BLOCK_INPUT_ALLOC;
9ac0d9e0 1312 __malloc_hook = old_malloc_hook;
1177ecf6 1313#ifdef DOUG_LEA_MALLOC
5665a02f
KL
1314 /* Segfaults on my system. --lorentey */
1315 /* mallopt (M_TOP_PAD, malloc_hysteresis * 4096); */
1177ecf6 1316#else
d1658221 1317 __malloc_extra_blocks = malloc_hysteresis;
1177ecf6 1318#endif
877935b1 1319
38182d90 1320 value = malloc (size);
877935b1
GM
1321
1322#ifdef GC_MALLOC_CHECK
1323 {
1324 struct mem_node *m = mem_find (value);
1325 if (m != MEM_NIL)
1326 {
1327 fprintf (stderr, "Malloc returned %p which is already in use\n",
1328 value);
da05bc4c 1329 fprintf (stderr, "Region in use is %p...%p, %td bytes, type %d\n",
877935b1
GM
1330 m->start, m->end, (char *) m->end - (char *) m->start,
1331 m->type);
1332 abort ();
1333 }
1334
1335 if (!dont_register_blocks)
1336 {
1337 mem_insert (value, (char *) value + max (1, size), allocated_mem_type);
1338 allocated_mem_type = MEM_TYPE_NON_LISP;
1339 }
1340 }
1341#endif /* GC_MALLOC_CHECK */
177c0ea7 1342
b0846f52 1343 __malloc_hook = emacs_blocked_malloc;
aa477689 1344 UNBLOCK_INPUT_ALLOC;
9ac0d9e0 1345
877935b1 1346 /* fprintf (stderr, "%p malloc\n", value); */
9ac0d9e0
JB
1347 return value;
1348}
1349
34400008
GM
1350
1351/* This function is the realloc hook that Emacs uses. */
1352
9ac0d9e0 1353static void *
7c3320d8 1354emacs_blocked_realloc (void *ptr, size_t size, const void *ptr2)
9ac0d9e0
JB
1355{
1356 void *value;
1357
aa477689 1358 BLOCK_INPUT_ALLOC;
9ac0d9e0 1359 __realloc_hook = old_realloc_hook;
877935b1
GM
1360
1361#ifdef GC_MALLOC_CHECK
1362 if (ptr)
1363 {
1364 struct mem_node *m = mem_find (ptr);
1365 if (m == MEM_NIL || m->start != ptr)
1366 {
1367 fprintf (stderr,
1368 "Realloc of %p which wasn't allocated with malloc\n",
1369 ptr);
1370 abort ();
1371 }
1372
1373 mem_delete (m);
1374 }
177c0ea7 1375
877935b1 1376 /* fprintf (stderr, "%p -> realloc\n", ptr); */
177c0ea7 1377
877935b1
GM
1378 /* Prevent malloc from registering blocks. */
1379 dont_register_blocks = 1;
1380#endif /* GC_MALLOC_CHECK */
1381
38182d90 1382 value = realloc (ptr, size);
877935b1
GM
1383
1384#ifdef GC_MALLOC_CHECK
1385 dont_register_blocks = 0;
1386
1387 {
1388 struct mem_node *m = mem_find (value);
1389 if (m != MEM_NIL)
1390 {
1391 fprintf (stderr, "Realloc returns memory that is already in use\n");
1392 abort ();
1393 }
1394
1395 /* Can't handle zero size regions in the red-black tree. */
1396 mem_insert (value, (char *) value + max (size, 1), MEM_TYPE_NON_LISP);
1397 }
177c0ea7 1398
877935b1
GM
1399 /* fprintf (stderr, "%p <- realloc\n", value); */
1400#endif /* GC_MALLOC_CHECK */
177c0ea7 1401
b0846f52 1402 __realloc_hook = emacs_blocked_realloc;
aa477689 1403 UNBLOCK_INPUT_ALLOC;
9ac0d9e0
JB
1404
1405 return value;
1406}
1407
34400008 1408
ae9e757a 1409#ifdef HAVE_PTHREAD
aa477689
JD
1410/* Called from Fdump_emacs so that when the dumped Emacs starts, it has a
1411 normal malloc. Some thread implementations need this as they call
1412 malloc before main. The pthread_self call in BLOCK_INPUT_ALLOC then
1413 calls malloc because it is the first call, and we have an endless loop. */
1414
1415void
268c2c36 1416reset_malloc_hooks (void)
aa477689 1417{
4d580af2
AS
1418 __free_hook = old_free_hook;
1419 __malloc_hook = old_malloc_hook;
1420 __realloc_hook = old_realloc_hook;
aa477689 1421}
ae9e757a 1422#endif /* HAVE_PTHREAD */
aa477689
JD
1423
1424
34400008
GM
1425/* Called from main to set up malloc to use our hooks. */
1426
9ac0d9e0 1427void
7c3320d8 1428uninterrupt_malloc (void)
9ac0d9e0 1429{
ae9e757a 1430#ifdef HAVE_PTHREAD
a1b41389 1431#ifdef DOUG_LEA_MALLOC
aa477689
JD
1432 pthread_mutexattr_t attr;
1433
c7015153 1434 /* GLIBC has a faster way to do this, but let's keep it portable.
aa477689
JD
1435 This is according to the Single UNIX Specification. */
1436 pthread_mutexattr_init (&attr);
1437 pthread_mutexattr_settype (&attr, PTHREAD_MUTEX_RECURSIVE);
1438 pthread_mutex_init (&alloc_mutex, &attr);
a1b41389 1439#else /* !DOUG_LEA_MALLOC */
ce5b453a 1440 /* Some systems such as Solaris 2.6 don't have a recursive mutex,
a1b41389
YM
1441 and the bundled gmalloc.c doesn't require it. */
1442 pthread_mutex_init (&alloc_mutex, NULL);
1443#endif /* !DOUG_LEA_MALLOC */
ae9e757a 1444#endif /* HAVE_PTHREAD */
aa477689 1445
c8099634
RS
1446 if (__free_hook != emacs_blocked_free)
1447 old_free_hook = __free_hook;
b0846f52 1448 __free_hook = emacs_blocked_free;
9ac0d9e0 1449
c8099634
RS
1450 if (__malloc_hook != emacs_blocked_malloc)
1451 old_malloc_hook = __malloc_hook;
b0846f52 1452 __malloc_hook = emacs_blocked_malloc;
9ac0d9e0 1453
c8099634
RS
1454 if (__realloc_hook != emacs_blocked_realloc)
1455 old_realloc_hook = __realloc_hook;
b0846f52 1456 __realloc_hook = emacs_blocked_realloc;
9ac0d9e0 1457}
2e471eb5 1458
026cdede 1459#endif /* not SYNC_INPUT */
2e471eb5
GM
1460#endif /* not SYSTEM_MALLOC */
1461
1462
7146af97 1463\f
2e471eb5
GM
1464/***********************************************************************
1465 Interval Allocation
1466 ***********************************************************************/
1a4f1e2c 1467
34400008
GM
1468/* Number of intervals allocated in an interval_block structure.
1469 The 1020 is 1024 minus malloc overhead. */
1470
d5e35230
JA
1471#define INTERVAL_BLOCK_SIZE \
1472 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1473
34400008
GM
1474/* Intervals are allocated in chunks in form of an interval_block
1475 structure. */
1476
d5e35230 1477struct interval_block
2e471eb5 1478{
6b61353c 1479 /* Place `intervals' first, to preserve alignment. */
2e471eb5 1480 struct interval intervals[INTERVAL_BLOCK_SIZE];
6b61353c 1481 struct interval_block *next;
2e471eb5 1482};
d5e35230 1483
34400008
GM
1484/* Current interval block. Its `next' pointer points to older
1485 blocks. */
1486
d3d47262 1487static struct interval_block *interval_block;
34400008
GM
1488
1489/* Index in interval_block above of the next unused interval
1490 structure. */
1491
fff62aa9 1492static int interval_block_index = INTERVAL_BLOCK_SIZE;
34400008
GM
1493
1494/* Number of free and live intervals. */
1495
c0c5c8ae 1496static EMACS_INT total_free_intervals, total_intervals;
d5e35230 1497
34400008
GM
1498/* List of free intervals. */
1499
244ed907 1500static INTERVAL interval_free_list;
d5e35230 1501
34400008 1502/* Return a new interval. */
d5e35230
JA
1503
1504INTERVAL
971de7fb 1505make_interval (void)
d5e35230
JA
1506{
1507 INTERVAL val;
1508
e2984df0
CY
1509 /* eassert (!handling_signal); */
1510
dafc79fa 1511 MALLOC_BLOCK_INPUT;
cfb2f32e 1512
d5e35230
JA
1513 if (interval_free_list)
1514 {
1515 val = interval_free_list;
439d5cb4 1516 interval_free_list = INTERVAL_PARENT (interval_free_list);
d5e35230
JA
1517 }
1518 else
1519 {
1520 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1521 {
38182d90
PE
1522 struct interval_block *newi
1523 = lisp_malloc (sizeof *newi, MEM_TYPE_NON_LISP);
d5e35230 1524
d5e35230
JA
1525 newi->next = interval_block;
1526 interval_block = newi;
1527 interval_block_index = 0;
3900d5de 1528 total_free_intervals += INTERVAL_BLOCK_SIZE;
d5e35230
JA
1529 }
1530 val = &interval_block->intervals[interval_block_index++];
1531 }
e2984df0 1532
dafc79fa 1533 MALLOC_UNBLOCK_INPUT;
e2984df0 1534
d5e35230 1535 consing_since_gc += sizeof (struct interval);
310ea200 1536 intervals_consed++;
3900d5de 1537 total_free_intervals--;
d5e35230 1538 RESET_INTERVAL (val);
2336fe58 1539 val->gcmarkbit = 0;
d5e35230
JA
1540 return val;
1541}
1542
34400008 1543
ee28be33 1544/* Mark Lisp objects in interval I. */
d5e35230
JA
1545
1546static void
971de7fb 1547mark_interval (register INTERVAL i, Lisp_Object dummy)
d5e35230 1548{
cce7fefc
DA
1549 /* Intervals should never be shared. So, if extra internal checking is
1550 enabled, GC aborts if it seems to have visited an interval twice. */
1551 eassert (!i->gcmarkbit);
2336fe58 1552 i->gcmarkbit = 1;
49723c04 1553 mark_object (i->plist);
d5e35230
JA
1554}
1555
34400008
GM
1556
1557/* Mark the interval tree rooted in TREE. Don't call this directly;
1558 use the macro MARK_INTERVAL_TREE instead. */
1559
d5e35230 1560static void
971de7fb 1561mark_interval_tree (register INTERVAL tree)
d5e35230 1562{
e8720644
JB
1563 /* No need to test if this tree has been marked already; this
1564 function is always called through the MARK_INTERVAL_TREE macro,
1565 which takes care of that. */
1566
1e934989 1567 traverse_intervals_noorder (tree, mark_interval, Qnil);
d5e35230
JA
1568}
1569
34400008
GM
1570
1571/* Mark the interval tree rooted in I. */
1572
e8720644
JB
1573#define MARK_INTERVAL_TREE(i) \
1574 do { \
2336fe58 1575 if (!NULL_INTERVAL_P (i) && !i->gcmarkbit) \
e8720644
JB
1576 mark_interval_tree (i); \
1577 } while (0)
d5e35230 1578
34400008 1579
2e471eb5
GM
1580#define UNMARK_BALANCE_INTERVALS(i) \
1581 do { \
1582 if (! NULL_INTERVAL_P (i)) \
2336fe58 1583 (i) = balance_intervals (i); \
2e471eb5 1584 } while (0)
d5e35230 1585\f
2e471eb5
GM
1586/***********************************************************************
1587 String Allocation
1588 ***********************************************************************/
1a4f1e2c 1589
2e471eb5
GM
1590/* Lisp_Strings are allocated in string_block structures. When a new
1591 string_block is allocated, all the Lisp_Strings it contains are
e0fead5d 1592 added to a free-list string_free_list. When a new Lisp_String is
2e471eb5
GM
1593 needed, it is taken from that list. During the sweep phase of GC,
1594 string_blocks that are entirely free are freed, except two which
1595 we keep.
7146af97 1596
2e471eb5
GM
1597 String data is allocated from sblock structures. Strings larger
1598 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1599 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
7146af97 1600
2e471eb5
GM
1601 Sblocks consist internally of sdata structures, one for each
1602 Lisp_String. The sdata structure points to the Lisp_String it
1603 belongs to. The Lisp_String points back to the `u.data' member of
1604 its sdata structure.
7146af97 1605
2e471eb5
GM
1606 When a Lisp_String is freed during GC, it is put back on
1607 string_free_list, and its `data' member and its sdata's `string'
1608 pointer is set to null. The size of the string is recorded in the
1609 `u.nbytes' member of the sdata. So, sdata structures that are no
1610 longer used, can be easily recognized, and it's easy to compact the
1611 sblocks of small strings which we do in compact_small_strings. */
7146af97 1612
2e471eb5
GM
1613/* Size in bytes of an sblock structure used for small strings. This
1614 is 8192 minus malloc overhead. */
7146af97 1615
2e471eb5 1616#define SBLOCK_SIZE 8188
c8099634 1617
2e471eb5
GM
1618/* Strings larger than this are considered large strings. String data
1619 for large strings is allocated from individual sblocks. */
7146af97 1620
2e471eb5
GM
1621#define LARGE_STRING_BYTES 1024
1622
1623/* Structure describing string memory sub-allocated from an sblock.
1624 This is where the contents of Lisp strings are stored. */
1625
1626struct sdata
7146af97 1627{
2e471eb5
GM
1628 /* Back-pointer to the string this sdata belongs to. If null, this
1629 structure is free, and the NBYTES member of the union below
34400008 1630 contains the string's byte size (the same value that STRING_BYTES
2e471eb5
GM
1631 would return if STRING were non-null). If non-null, STRING_BYTES
1632 (STRING) is the size of the data, and DATA contains the string's
1633 contents. */
1634 struct Lisp_String *string;
7146af97 1635
31d929e5 1636#ifdef GC_CHECK_STRING_BYTES
177c0ea7 1637
d311d28c 1638 ptrdiff_t nbytes;
31d929e5 1639 unsigned char data[1];
177c0ea7 1640
31d929e5
GM
1641#define SDATA_NBYTES(S) (S)->nbytes
1642#define SDATA_DATA(S) (S)->data
36372bf9 1643#define SDATA_SELECTOR(member) member
177c0ea7 1644
31d929e5
GM
1645#else /* not GC_CHECK_STRING_BYTES */
1646
2e471eb5
GM
1647 union
1648 {
83998b7a 1649 /* When STRING is non-null. */
2e471eb5
GM
1650 unsigned char data[1];
1651
1652 /* When STRING is null. */
d311d28c 1653 ptrdiff_t nbytes;
2e471eb5 1654 } u;
177c0ea7 1655
31d929e5
GM
1656#define SDATA_NBYTES(S) (S)->u.nbytes
1657#define SDATA_DATA(S) (S)->u.data
36372bf9 1658#define SDATA_SELECTOR(member) u.member
31d929e5
GM
1659
1660#endif /* not GC_CHECK_STRING_BYTES */
36372bf9
PE
1661
1662#define SDATA_DATA_OFFSET offsetof (struct sdata, SDATA_SELECTOR (data))
2e471eb5
GM
1663};
1664
31d929e5 1665
2e471eb5
GM
1666/* Structure describing a block of memory which is sub-allocated to
1667 obtain string data memory for strings. Blocks for small strings
1668 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1669 as large as needed. */
1670
1671struct sblock
7146af97 1672{
2e471eb5
GM
1673 /* Next in list. */
1674 struct sblock *next;
7146af97 1675
2e471eb5
GM
1676 /* Pointer to the next free sdata block. This points past the end
1677 of the sblock if there isn't any space left in this block. */
1678 struct sdata *next_free;
1679
1680 /* Start of data. */
1681 struct sdata first_data;
1682};
1683
1684/* Number of Lisp strings in a string_block structure. The 1020 is
1685 1024 minus malloc overhead. */
1686
19bcad1f 1687#define STRING_BLOCK_SIZE \
2e471eb5
GM
1688 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1689
1690/* Structure describing a block from which Lisp_String structures
1691 are allocated. */
1692
1693struct string_block
7146af97 1694{
6b61353c 1695 /* Place `strings' first, to preserve alignment. */
19bcad1f 1696 struct Lisp_String strings[STRING_BLOCK_SIZE];
6b61353c 1697 struct string_block *next;
2e471eb5 1698};
7146af97 1699
2e471eb5
GM
1700/* Head and tail of the list of sblock structures holding Lisp string
1701 data. We always allocate from current_sblock. The NEXT pointers
1702 in the sblock structures go from oldest_sblock to current_sblock. */
3c06d205 1703
2e471eb5 1704static struct sblock *oldest_sblock, *current_sblock;
7146af97 1705
2e471eb5 1706/* List of sblocks for large strings. */
7146af97 1707
2e471eb5 1708static struct sblock *large_sblocks;
7146af97 1709
5a25e253 1710/* List of string_block structures. */
7146af97 1711
2e471eb5 1712static struct string_block *string_blocks;
7146af97 1713
2e471eb5 1714/* Free-list of Lisp_Strings. */
7146af97 1715
2e471eb5 1716static struct Lisp_String *string_free_list;
7146af97 1717
2e471eb5 1718/* Number of live and free Lisp_Strings. */
c8099634 1719
c0c5c8ae 1720static EMACS_INT total_strings, total_free_strings;
7146af97 1721
2e471eb5
GM
1722/* Number of bytes used by live strings. */
1723
3ab6e069 1724static EMACS_INT total_string_bytes;
2e471eb5
GM
1725
1726/* Given a pointer to a Lisp_String S which is on the free-list
1727 string_free_list, return a pointer to its successor in the
1728 free-list. */
1729
1730#define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1731
1732/* Return a pointer to the sdata structure belonging to Lisp string S.
1733 S must be live, i.e. S->data must not be null. S->data is actually
1734 a pointer to the `u.data' member of its sdata structure; the
1735 structure starts at a constant offset in front of that. */
177c0ea7 1736
36372bf9 1737#define SDATA_OF_STRING(S) ((struct sdata *) ((S)->data - SDATA_DATA_OFFSET))
31d929e5 1738
212f33f1
KS
1739
1740#ifdef GC_CHECK_STRING_OVERRUN
bdbed949
KS
1741
1742/* We check for overrun in string data blocks by appending a small
1743 "cookie" after each allocated string data block, and check for the
8349069c 1744 presence of this cookie during GC. */
bdbed949
KS
1745
1746#define GC_STRING_OVERRUN_COOKIE_SIZE 4
bfd1c781
PE
1747static char const string_overrun_cookie[GC_STRING_OVERRUN_COOKIE_SIZE] =
1748 { '\xde', '\xad', '\xbe', '\xef' };
bdbed949 1749
212f33f1 1750#else
bdbed949 1751#define GC_STRING_OVERRUN_COOKIE_SIZE 0
212f33f1
KS
1752#endif
1753
2e471eb5
GM
1754/* Value is the size of an sdata structure large enough to hold NBYTES
1755 bytes of string data. The value returned includes a terminating
1756 NUL byte, the size of the sdata structure, and padding. */
1757
31d929e5
GM
1758#ifdef GC_CHECK_STRING_BYTES
1759
2e471eb5 1760#define SDATA_SIZE(NBYTES) \
36372bf9 1761 ((SDATA_DATA_OFFSET \
2e471eb5 1762 + (NBYTES) + 1 \
d311d28c
PE
1763 + sizeof (ptrdiff_t) - 1) \
1764 & ~(sizeof (ptrdiff_t) - 1))
2e471eb5 1765
31d929e5
GM
1766#else /* not GC_CHECK_STRING_BYTES */
1767
f2d3008d
PE
1768/* The 'max' reserves space for the nbytes union member even when NBYTES + 1 is
1769 less than the size of that member. The 'max' is not needed when
d311d28c 1770 SDATA_DATA_OFFSET is a multiple of sizeof (ptrdiff_t), because then the
f2d3008d
PE
1771 alignment code reserves enough space. */
1772
1773#define SDATA_SIZE(NBYTES) \
1774 ((SDATA_DATA_OFFSET \
d311d28c 1775 + (SDATA_DATA_OFFSET % sizeof (ptrdiff_t) == 0 \
f2d3008d 1776 ? NBYTES \
d311d28c 1777 : max (NBYTES, sizeof (ptrdiff_t) - 1)) \
f2d3008d 1778 + 1 \
d311d28c
PE
1779 + sizeof (ptrdiff_t) - 1) \
1780 & ~(sizeof (ptrdiff_t) - 1))
31d929e5
GM
1781
1782#endif /* not GC_CHECK_STRING_BYTES */
2e471eb5 1783
bdbed949
KS
1784/* Extra bytes to allocate for each string. */
1785
1786#define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1787
c9d624c6
PE
1788/* Exact bound on the number of bytes in a string, not counting the
1789 terminating null. A string cannot contain more bytes than
1790 STRING_BYTES_BOUND, nor can it be so long that the size_t
1791 arithmetic in allocate_string_data would overflow while it is
1792 calculating a value to be passed to malloc. */
1793#define STRING_BYTES_MAX \
1794 min (STRING_BYTES_BOUND, \
903fe15d
PE
1795 ((SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD \
1796 - GC_STRING_EXTRA \
c9d624c6
PE
1797 - offsetof (struct sblock, first_data) \
1798 - SDATA_DATA_OFFSET) \
1799 & ~(sizeof (EMACS_INT) - 1)))
1800
2e471eb5 1801/* Initialize string allocation. Called from init_alloc_once. */
d457598b 1802
d3d47262 1803static void
971de7fb 1804init_strings (void)
7146af97 1805{
4d774b0f
JB
1806 empty_unibyte_string = make_pure_string ("", 0, 0, 0);
1807 empty_multibyte_string = make_pure_string ("", 0, 0, 1);
7146af97
JB
1808}
1809
2e471eb5 1810
361b097f
GM
1811#ifdef GC_CHECK_STRING_BYTES
1812
361b097f
GM
1813static int check_string_bytes_count;
1814
676a7251
GM
1815#define CHECK_STRING_BYTES(S) STRING_BYTES (S)
1816
1817
1818/* Like GC_STRING_BYTES, but with debugging check. */
1819
d311d28c 1820ptrdiff_t
14162469 1821string_bytes (struct Lisp_String *s)
676a7251 1822{
d311d28c 1823 ptrdiff_t nbytes =
14162469
EZ
1824 (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1825
676a7251
GM
1826 if (!PURE_POINTER_P (s)
1827 && s->data
1828 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1829 abort ();
1830 return nbytes;
1831}
177c0ea7 1832
2c5bd608 1833/* Check validity of Lisp strings' string_bytes member in B. */
676a7251 1834
d3d47262 1835static void
d0f4e1f5 1836check_sblock (struct sblock *b)
361b097f 1837{
676a7251 1838 struct sdata *from, *end, *from_end;
177c0ea7 1839
676a7251 1840 end = b->next_free;
177c0ea7 1841
676a7251 1842 for (from = &b->first_data; from < end; from = from_end)
361b097f 1843 {
676a7251
GM
1844 /* Compute the next FROM here because copying below may
1845 overwrite data we need to compute it. */
d311d28c 1846 ptrdiff_t nbytes;
177c0ea7 1847
676a7251 1848 /* Check that the string size recorded in the string is the
ee28be33 1849 same as the one recorded in the sdata structure. */
676a7251
GM
1850 if (from->string)
1851 CHECK_STRING_BYTES (from->string);
177c0ea7 1852
676a7251
GM
1853 if (from->string)
1854 nbytes = GC_STRING_BYTES (from->string);
1855 else
1856 nbytes = SDATA_NBYTES (from);
177c0ea7 1857
676a7251 1858 nbytes = SDATA_SIZE (nbytes);
212f33f1 1859 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
676a7251
GM
1860 }
1861}
361b097f 1862
676a7251
GM
1863
1864/* Check validity of Lisp strings' string_bytes member. ALL_P
1865 non-zero means check all strings, otherwise check only most
1866 recently allocated strings. Used for hunting a bug. */
1867
d3d47262 1868static void
d0f4e1f5 1869check_string_bytes (int all_p)
676a7251
GM
1870{
1871 if (all_p)
1872 {
1873 struct sblock *b;
1874
1875 for (b = large_sblocks; b; b = b->next)
1876 {
1877 struct Lisp_String *s = b->first_data.string;
1878 if (s)
1879 CHECK_STRING_BYTES (s);
361b097f 1880 }
177c0ea7 1881
676a7251
GM
1882 for (b = oldest_sblock; b; b = b->next)
1883 check_sblock (b);
361b097f 1884 }
296094c3 1885 else if (current_sblock)
676a7251 1886 check_sblock (current_sblock);
361b097f
GM
1887}
1888
1889#endif /* GC_CHECK_STRING_BYTES */
1890
212f33f1
KS
1891#ifdef GC_CHECK_STRING_FREE_LIST
1892
bdbed949
KS
1893/* Walk through the string free list looking for bogus next pointers.
1894 This may catch buffer overrun from a previous string. */
1895
212f33f1 1896static void
d0f4e1f5 1897check_string_free_list (void)
212f33f1
KS
1898{
1899 struct Lisp_String *s;
1900
1901 /* Pop a Lisp_String off the free-list. */
1902 s = string_free_list;
1903 while (s != NULL)
1904 {
d01a7826 1905 if ((uintptr_t) s < 1024)
5e617bc2 1906 abort ();
212f33f1
KS
1907 s = NEXT_FREE_LISP_STRING (s);
1908 }
1909}
1910#else
1911#define check_string_free_list()
1912#endif
361b097f 1913
2e471eb5
GM
1914/* Return a new Lisp_String. */
1915
1916static struct Lisp_String *
971de7fb 1917allocate_string (void)
7146af97 1918{
2e471eb5 1919 struct Lisp_String *s;
7146af97 1920
e2984df0
CY
1921 /* eassert (!handling_signal); */
1922
dafc79fa 1923 MALLOC_BLOCK_INPUT;
cfb2f32e 1924
2e471eb5
GM
1925 /* If the free-list is empty, allocate a new string_block, and
1926 add all the Lisp_Strings in it to the free-list. */
1927 if (string_free_list == NULL)
7146af97 1928 {
38182d90 1929 struct string_block *b = lisp_malloc (sizeof *b, MEM_TYPE_STRING);
2e471eb5
GM
1930 int i;
1931
2e471eb5
GM
1932 b->next = string_blocks;
1933 string_blocks = b;
2e471eb5 1934
19bcad1f 1935 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
7146af97 1936 {
2e471eb5 1937 s = b->strings + i;
3fe6dd74
DA
1938 /* Every string on a free list should have NULL data pointer. */
1939 s->data = NULL;
2e471eb5
GM
1940 NEXT_FREE_LISP_STRING (s) = string_free_list;
1941 string_free_list = s;
7146af97 1942 }
2e471eb5 1943
19bcad1f 1944 total_free_strings += STRING_BLOCK_SIZE;
7146af97 1945 }
c0f51373 1946
bdbed949 1947 check_string_free_list ();
212f33f1 1948
2e471eb5
GM
1949 /* Pop a Lisp_String off the free-list. */
1950 s = string_free_list;
1951 string_free_list = NEXT_FREE_LISP_STRING (s);
c0f51373 1952
dafc79fa 1953 MALLOC_UNBLOCK_INPUT;
e2984df0 1954
2e471eb5
GM
1955 --total_free_strings;
1956 ++total_strings;
1957 ++strings_consed;
1958 consing_since_gc += sizeof *s;
c0f51373 1959
361b097f 1960#ifdef GC_CHECK_STRING_BYTES
e39a993c 1961 if (!noninteractive)
361b097f 1962 {
676a7251
GM
1963 if (++check_string_bytes_count == 200)
1964 {
1965 check_string_bytes_count = 0;
1966 check_string_bytes (1);
1967 }
1968 else
1969 check_string_bytes (0);
361b097f 1970 }
676a7251 1971#endif /* GC_CHECK_STRING_BYTES */
361b097f 1972
2e471eb5 1973 return s;
c0f51373 1974}
7146af97 1975
7146af97 1976
2e471eb5
GM
1977/* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1978 plus a NUL byte at the end. Allocate an sdata structure for S, and
1979 set S->data to its `u.data' member. Store a NUL byte at the end of
1980 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1981 S->data if it was initially non-null. */
7146af97 1982
2e471eb5 1983void
413d18e7
EZ
1984allocate_string_data (struct Lisp_String *s,
1985 EMACS_INT nchars, EMACS_INT nbytes)
7146af97 1986{
b7ffe040 1987 struct sdata *data, *old_data;
2e471eb5 1988 struct sblock *b;
b7ffe040 1989 ptrdiff_t needed, old_nbytes;
7146af97 1990
c9d624c6
PE
1991 if (STRING_BYTES_MAX < nbytes)
1992 string_overflow ();
1993
2e471eb5
GM
1994 /* Determine the number of bytes needed to store NBYTES bytes
1995 of string data. */
1996 needed = SDATA_SIZE (nbytes);
b7ffe040
DA
1997 if (s->data)
1998 {
1999 old_data = SDATA_OF_STRING (s);
2000 old_nbytes = GC_STRING_BYTES (s);
2001 }
2002 else
2003 old_data = NULL;
e2984df0 2004
dafc79fa 2005 MALLOC_BLOCK_INPUT;
7146af97 2006
2e471eb5
GM
2007 if (nbytes > LARGE_STRING_BYTES)
2008 {
36372bf9 2009 size_t size = offsetof (struct sblock, first_data) + needed;
2e471eb5
GM
2010
2011#ifdef DOUG_LEA_MALLOC
f8608968
GM
2012 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
2013 because mapped region contents are not preserved in
d36b182f
DL
2014 a dumped Emacs.
2015
2016 In case you think of allowing it in a dumped Emacs at the
2017 cost of not being able to re-dump, there's another reason:
2018 mmap'ed data typically have an address towards the top of the
2019 address space, which won't fit into an EMACS_INT (at least on
2020 32-bit systems with the current tagging scheme). --fx */
2e471eb5
GM
2021 mallopt (M_MMAP_MAX, 0);
2022#endif
2023
38182d90 2024 b = lisp_malloc (size + GC_STRING_EXTRA, MEM_TYPE_NON_LISP);
177c0ea7 2025
2e471eb5
GM
2026#ifdef DOUG_LEA_MALLOC
2027 /* Back to a reasonable maximum of mmap'ed areas. */
2028 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
2029#endif
177c0ea7 2030
2e471eb5
GM
2031 b->next_free = &b->first_data;
2032 b->first_data.string = NULL;
2033 b->next = large_sblocks;
2034 large_sblocks = b;
2035 }
2036 else if (current_sblock == NULL
2037 || (((char *) current_sblock + SBLOCK_SIZE
2038 - (char *) current_sblock->next_free)
212f33f1 2039 < (needed + GC_STRING_EXTRA)))
2e471eb5
GM
2040 {
2041 /* Not enough room in the current sblock. */
38182d90 2042 b = lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
2e471eb5
GM
2043 b->next_free = &b->first_data;
2044 b->first_data.string = NULL;
2045 b->next = NULL;
2046
2047 if (current_sblock)
2048 current_sblock->next = b;
2049 else
2050 oldest_sblock = b;
2051 current_sblock = b;
2052 }
2053 else
2054 b = current_sblock;
5c5fecb3 2055
2e471eb5 2056 data = b->next_free;
a0b08700
CY
2057 b->next_free = (struct sdata *) ((char *) data + needed + GC_STRING_EXTRA);
2058
dafc79fa 2059 MALLOC_UNBLOCK_INPUT;
e2984df0 2060
2e471eb5 2061 data->string = s;
31d929e5
GM
2062 s->data = SDATA_DATA (data);
2063#ifdef GC_CHECK_STRING_BYTES
2064 SDATA_NBYTES (data) = nbytes;
2065#endif
2e471eb5
GM
2066 s->size = nchars;
2067 s->size_byte = nbytes;
2068 s->data[nbytes] = '\0';
212f33f1 2069#ifdef GC_CHECK_STRING_OVERRUN
000098c1
PE
2070 memcpy ((char *) data + needed, string_overrun_cookie,
2071 GC_STRING_OVERRUN_COOKIE_SIZE);
212f33f1 2072#endif
b7ffe040
DA
2073
2074 /* Note that Faset may call to this function when S has already data
2075 assigned. In this case, mark data as free by setting it's string
2076 back-pointer to null, and record the size of the data in it. */
2077 if (old_data)
2078 {
2079 SDATA_NBYTES (old_data) = old_nbytes;
2080 old_data->string = NULL;
2081 }
2082
2e471eb5
GM
2083 consing_since_gc += needed;
2084}
2085
2086
2087/* Sweep and compact strings. */
2088
2089static void
971de7fb 2090sweep_strings (void)
2e471eb5
GM
2091{
2092 struct string_block *b, *next;
2093 struct string_block *live_blocks = NULL;
177c0ea7 2094
2e471eb5
GM
2095 string_free_list = NULL;
2096 total_strings = total_free_strings = 0;
3ab6e069 2097 total_string_bytes = 0;
2e471eb5
GM
2098
2099 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
2100 for (b = string_blocks; b; b = next)
2101 {
2102 int i, nfree = 0;
2103 struct Lisp_String *free_list_before = string_free_list;
2104
2105 next = b->next;
2106
19bcad1f 2107 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
2e471eb5
GM
2108 {
2109 struct Lisp_String *s = b->strings + i;
2110
2111 if (s->data)
2112 {
2113 /* String was not on free-list before. */
2114 if (STRING_MARKED_P (s))
2115 {
2116 /* String is live; unmark it and its intervals. */
2117 UNMARK_STRING (s);
177c0ea7 2118
2e471eb5
GM
2119 if (!NULL_INTERVAL_P (s->intervals))
2120 UNMARK_BALANCE_INTERVALS (s->intervals);
2121
2122 ++total_strings;
3ab6e069 2123 total_string_bytes += STRING_BYTES (s);
2e471eb5
GM
2124 }
2125 else
2126 {
2127 /* String is dead. Put it on the free-list. */
2128 struct sdata *data = SDATA_OF_STRING (s);
2129
2130 /* Save the size of S in its sdata so that we know
2131 how large that is. Reset the sdata's string
2132 back-pointer so that we know it's free. */
31d929e5
GM
2133#ifdef GC_CHECK_STRING_BYTES
2134 if (GC_STRING_BYTES (s) != SDATA_NBYTES (data))
2135 abort ();
2136#else
2e471eb5 2137 data->u.nbytes = GC_STRING_BYTES (s);
31d929e5 2138#endif
2e471eb5
GM
2139 data->string = NULL;
2140
2141 /* Reset the strings's `data' member so that we
2142 know it's free. */
2143 s->data = NULL;
2144
2145 /* Put the string on the free-list. */
2146 NEXT_FREE_LISP_STRING (s) = string_free_list;
2147 string_free_list = s;
2148 ++nfree;
2149 }
2150 }
2151 else
2152 {
2153 /* S was on the free-list before. Put it there again. */
2154 NEXT_FREE_LISP_STRING (s) = string_free_list;
2155 string_free_list = s;
2156 ++nfree;
2157 }
2158 }
2159
34400008 2160 /* Free blocks that contain free Lisp_Strings only, except
2e471eb5 2161 the first two of them. */
19bcad1f
SM
2162 if (nfree == STRING_BLOCK_SIZE
2163 && total_free_strings > STRING_BLOCK_SIZE)
2e471eb5
GM
2164 {
2165 lisp_free (b);
2e471eb5
GM
2166 string_free_list = free_list_before;
2167 }
2168 else
2169 {
2170 total_free_strings += nfree;
2171 b->next = live_blocks;
2172 live_blocks = b;
2173 }
2174 }
2175
bdbed949 2176 check_string_free_list ();
212f33f1 2177
2e471eb5
GM
2178 string_blocks = live_blocks;
2179 free_large_strings ();
2180 compact_small_strings ();
212f33f1 2181
bdbed949 2182 check_string_free_list ();
2e471eb5
GM
2183}
2184
2185
2186/* Free dead large strings. */
2187
2188static void
971de7fb 2189free_large_strings (void)
2e471eb5
GM
2190{
2191 struct sblock *b, *next;
2192 struct sblock *live_blocks = NULL;
177c0ea7 2193
2e471eb5
GM
2194 for (b = large_sblocks; b; b = next)
2195 {
2196 next = b->next;
2197
2198 if (b->first_data.string == NULL)
2199 lisp_free (b);
2200 else
2201 {
2202 b->next = live_blocks;
2203 live_blocks = b;
2204 }
2205 }
2206
2207 large_sblocks = live_blocks;
2208}
2209
2210
2211/* Compact data of small strings. Free sblocks that don't contain
2212 data of live strings after compaction. */
2213
2214static void
971de7fb 2215compact_small_strings (void)
2e471eb5
GM
2216{
2217 struct sblock *b, *tb, *next;
2218 struct sdata *from, *to, *end, *tb_end;
2219 struct sdata *to_end, *from_end;
2220
2221 /* TB is the sblock we copy to, TO is the sdata within TB we copy
2222 to, and TB_END is the end of TB. */
2223 tb = oldest_sblock;
2224 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2225 to = &tb->first_data;
2226
2227 /* Step through the blocks from the oldest to the youngest. We
2228 expect that old blocks will stabilize over time, so that less
2229 copying will happen this way. */
2230 for (b = oldest_sblock; b; b = b->next)
2231 {
2232 end = b->next_free;
a54e2c05 2233 eassert ((char *) end <= (char *) b + SBLOCK_SIZE);
177c0ea7 2234
2e471eb5
GM
2235 for (from = &b->first_data; from < end; from = from_end)
2236 {
2237 /* Compute the next FROM here because copying below may
2238 overwrite data we need to compute it. */
d311d28c 2239 ptrdiff_t nbytes;
2e471eb5 2240
31d929e5
GM
2241#ifdef GC_CHECK_STRING_BYTES
2242 /* Check that the string size recorded in the string is the
2243 same as the one recorded in the sdata structure. */
2244 if (from->string
2245 && GC_STRING_BYTES (from->string) != SDATA_NBYTES (from))
2246 abort ();
2247#endif /* GC_CHECK_STRING_BYTES */
177c0ea7 2248
2e471eb5
GM
2249 if (from->string)
2250 nbytes = GC_STRING_BYTES (from->string);
2251 else
31d929e5 2252 nbytes = SDATA_NBYTES (from);
177c0ea7 2253
212f33f1
KS
2254 if (nbytes > LARGE_STRING_BYTES)
2255 abort ();
212f33f1 2256
2e471eb5 2257 nbytes = SDATA_SIZE (nbytes);
212f33f1
KS
2258 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
2259
2260#ifdef GC_CHECK_STRING_OVERRUN
72af86bd
AS
2261 if (memcmp (string_overrun_cookie,
2262 (char *) from_end - GC_STRING_OVERRUN_COOKIE_SIZE,
2263 GC_STRING_OVERRUN_COOKIE_SIZE))
212f33f1
KS
2264 abort ();
2265#endif
177c0ea7 2266
2e471eb5
GM
2267 /* FROM->string non-null means it's alive. Copy its data. */
2268 if (from->string)
2269 {
2270 /* If TB is full, proceed with the next sblock. */
212f33f1 2271 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2e471eb5
GM
2272 if (to_end > tb_end)
2273 {
2274 tb->next_free = to;
2275 tb = tb->next;
2276 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2277 to = &tb->first_data;
212f33f1 2278 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2e471eb5 2279 }
177c0ea7 2280
2e471eb5
GM
2281 /* Copy, and update the string's `data' pointer. */
2282 if (from != to)
2283 {
a54e2c05 2284 eassert (tb != b || to < from);
72af86bd 2285 memmove (to, from, nbytes + GC_STRING_EXTRA);
31d929e5 2286 to->string->data = SDATA_DATA (to);
2e471eb5
GM
2287 }
2288
2289 /* Advance past the sdata we copied to. */
2290 to = to_end;
2291 }
2292 }
2293 }
2294
2295 /* The rest of the sblocks following TB don't contain live data, so
2296 we can free them. */
2297 for (b = tb->next; b; b = next)
2298 {
2299 next = b->next;
2300 lisp_free (b);
2301 }
2302
2303 tb->next_free = to;
2304 tb->next = NULL;
2305 current_sblock = tb;
2306}
2307
cb93f9be
PE
2308void
2309string_overflow (void)
2310{
2311 error ("Maximum string size exceeded");
2312}
2e471eb5 2313
a7ca3326 2314DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
69623621
RS
2315 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
2316LENGTH must be an integer.
2317INIT must be an integer that represents a character. */)
5842a27b 2318 (Lisp_Object length, Lisp_Object init)
2e471eb5
GM
2319{
2320 register Lisp_Object val;
2321 register unsigned char *p, *end;
14162469
EZ
2322 int c;
2323 EMACS_INT nbytes;
2e471eb5 2324
b7826503 2325 CHECK_NATNUM (length);
2bccce07 2326 CHECK_CHARACTER (init);
2e471eb5 2327
2bccce07 2328 c = XFASTINT (init);
830ff83b 2329 if (ASCII_CHAR_P (c))
2e471eb5
GM
2330 {
2331 nbytes = XINT (length);
2332 val = make_uninit_string (nbytes);
d5db4077
KR
2333 p = SDATA (val);
2334 end = p + SCHARS (val);
2e471eb5
GM
2335 while (p != end)
2336 *p++ = c;
2337 }
2338 else
2339 {
d942b71c 2340 unsigned char str[MAX_MULTIBYTE_LENGTH];
2e471eb5 2341 int len = CHAR_STRING (c, str);
14162469 2342 EMACS_INT string_len = XINT (length);
2e471eb5 2343
d1f3d2af 2344 if (string_len > STRING_BYTES_MAX / len)
cb93f9be 2345 string_overflow ();
14162469
EZ
2346 nbytes = len * string_len;
2347 val = make_uninit_multibyte_string (string_len, nbytes);
d5db4077 2348 p = SDATA (val);
2e471eb5
GM
2349 end = p + nbytes;
2350 while (p != end)
2351 {
72af86bd 2352 memcpy (p, str, len);
2e471eb5
GM
2353 p += len;
2354 }
2355 }
177c0ea7 2356
2e471eb5
GM
2357 *p = 0;
2358 return val;
2359}
2360
2361
a7ca3326 2362DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
909e3b33 2363 doc: /* Return a new bool-vector of length LENGTH, using INIT for each element.
7ee72033 2364LENGTH must be a number. INIT matters only in whether it is t or nil. */)
5842a27b 2365 (Lisp_Object length, Lisp_Object init)
2e471eb5
GM
2366{
2367 register Lisp_Object val;
2368 struct Lisp_Bool_Vector *p;
d311d28c
PE
2369 ptrdiff_t length_in_chars;
2370 EMACS_INT length_in_elts;
14162469 2371 int bits_per_value;
d06714cb
PE
2372 int extra_bool_elts = ((bool_header_size - header_size + word_size - 1)
2373 / word_size);
2e471eb5 2374
b7826503 2375 CHECK_NATNUM (length);
2e471eb5 2376
a097329f 2377 bits_per_value = sizeof (EMACS_INT) * BOOL_VECTOR_BITS_PER_CHAR;
2e471eb5
GM
2378
2379 length_in_elts = (XFASTINT (length) + bits_per_value - 1) / bits_per_value;
2e471eb5 2380
d06714cb 2381 val = Fmake_vector (make_number (length_in_elts + extra_bool_elts), Qnil);
177c0ea7 2382
eab3844f
PE
2383 /* No Lisp_Object to trace in there. */
2384 XSETPVECTYPESIZE (XVECTOR (val), PVEC_BOOL_VECTOR, 0);
d2029e5b
SM
2385
2386 p = XBOOL_VECTOR (val);
2e471eb5 2387 p->size = XFASTINT (length);
177c0ea7 2388
d311d28c
PE
2389 length_in_chars = ((XFASTINT (length) + BOOL_VECTOR_BITS_PER_CHAR - 1)
2390 / BOOL_VECTOR_BITS_PER_CHAR);
c0c1ee9f
PE
2391 if (length_in_chars)
2392 {
2393 memset (p->data, ! NILP (init) ? -1 : 0, length_in_chars);
177c0ea7 2394
c0c1ee9f
PE
2395 /* Clear any extraneous bits in the last byte. */
2396 p->data[length_in_chars - 1]
83713154 2397 &= (1 << ((XFASTINT (length) - 1) % BOOL_VECTOR_BITS_PER_CHAR + 1)) - 1;
c0c1ee9f 2398 }
2e471eb5
GM
2399
2400 return val;
2401}
2402
2403
2404/* Make a string from NBYTES bytes at CONTENTS, and compute the number
2405 of characters from the contents. This string may be unibyte or
2406 multibyte, depending on the contents. */
2407
2408Lisp_Object
d311d28c 2409make_string (const char *contents, ptrdiff_t nbytes)
2e471eb5
GM
2410{
2411 register Lisp_Object val;
d311d28c 2412 ptrdiff_t nchars, multibyte_nbytes;
9eac9d59 2413
90256841
PE
2414 parse_str_as_multibyte ((const unsigned char *) contents, nbytes,
2415 &nchars, &multibyte_nbytes);
9eac9d59
KH
2416 if (nbytes == nchars || nbytes != multibyte_nbytes)
2417 /* CONTENTS contains no multibyte sequences or contains an invalid
2418 multibyte sequence. We must make unibyte string. */
495a6df3
KH
2419 val = make_unibyte_string (contents, nbytes);
2420 else
2421 val = make_multibyte_string (contents, nchars, nbytes);
2e471eb5
GM
2422 return val;
2423}
2424
2425
2426/* Make an unibyte string from LENGTH bytes at CONTENTS. */
2427
2428Lisp_Object
d311d28c 2429make_unibyte_string (const char *contents, ptrdiff_t length)
2e471eb5
GM
2430{
2431 register Lisp_Object val;
2432 val = make_uninit_string (length);
72af86bd 2433 memcpy (SDATA (val), contents, length);
2e471eb5
GM
2434 return val;
2435}
2436
2437
2438/* Make a multibyte string from NCHARS characters occupying NBYTES
2439 bytes at CONTENTS. */
2440
2441Lisp_Object
14162469 2442make_multibyte_string (const char *contents,
d311d28c 2443 ptrdiff_t nchars, ptrdiff_t nbytes)
2e471eb5
GM
2444{
2445 register Lisp_Object val;
2446 val = make_uninit_multibyte_string (nchars, nbytes);
72af86bd 2447 memcpy (SDATA (val), contents, nbytes);
2e471eb5
GM
2448 return val;
2449}
2450
2451
2452/* Make a string from NCHARS characters occupying NBYTES bytes at
2453 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2454
2455Lisp_Object
14162469 2456make_string_from_bytes (const char *contents,
d311d28c 2457 ptrdiff_t nchars, ptrdiff_t nbytes)
2e471eb5
GM
2458{
2459 register Lisp_Object val;
2460 val = make_uninit_multibyte_string (nchars, nbytes);
72af86bd 2461 memcpy (SDATA (val), contents, nbytes);
d5db4077
KR
2462 if (SBYTES (val) == SCHARS (val))
2463 STRING_SET_UNIBYTE (val);
2e471eb5
GM
2464 return val;
2465}
2466
2467
2468/* Make a string from NCHARS characters occupying NBYTES bytes at
2469 CONTENTS. The argument MULTIBYTE controls whether to label the
229b28c4
KH
2470 string as multibyte. If NCHARS is negative, it counts the number of
2471 characters by itself. */
2e471eb5
GM
2472
2473Lisp_Object
14162469 2474make_specified_string (const char *contents,
d311d28c 2475 ptrdiff_t nchars, ptrdiff_t nbytes, int multibyte)
2e471eb5
GM
2476{
2477 register Lisp_Object val;
229b28c4
KH
2478
2479 if (nchars < 0)
2480 {
2481 if (multibyte)
90256841
PE
2482 nchars = multibyte_chars_in_text ((const unsigned char *) contents,
2483 nbytes);
229b28c4
KH
2484 else
2485 nchars = nbytes;
2486 }
2e471eb5 2487 val = make_uninit_multibyte_string (nchars, nbytes);
72af86bd 2488 memcpy (SDATA (val), contents, nbytes);
2e471eb5 2489 if (!multibyte)
d5db4077 2490 STRING_SET_UNIBYTE (val);
2e471eb5
GM
2491 return val;
2492}
2493
2494
2e471eb5
GM
2495/* Return an unibyte Lisp_String set up to hold LENGTH characters
2496 occupying LENGTH bytes. */
2497
2498Lisp_Object
413d18e7 2499make_uninit_string (EMACS_INT length)
2e471eb5
GM
2500{
2501 Lisp_Object val;
4d774b0f
JB
2502
2503 if (!length)
2504 return empty_unibyte_string;
2e471eb5 2505 val = make_uninit_multibyte_string (length, length);
d5db4077 2506 STRING_SET_UNIBYTE (val);
2e471eb5
GM
2507 return val;
2508}
2509
2510
2511/* Return a multibyte Lisp_String set up to hold NCHARS characters
2512 which occupy NBYTES bytes. */
2513
2514Lisp_Object
413d18e7 2515make_uninit_multibyte_string (EMACS_INT nchars, EMACS_INT nbytes)
2e471eb5
GM
2516{
2517 Lisp_Object string;
2518 struct Lisp_String *s;
2519
2520 if (nchars < 0)
2521 abort ();
4d774b0f
JB
2522 if (!nbytes)
2523 return empty_multibyte_string;
2e471eb5
GM
2524
2525 s = allocate_string ();
246155eb 2526 s->intervals = NULL_INTERVAL;
2e471eb5
GM
2527 allocate_string_data (s, nchars, nbytes);
2528 XSETSTRING (string, s);
2529 string_chars_consed += nbytes;
2530 return string;
2531}
2532
a8290ec3
DA
2533/* Print arguments to BUF according to a FORMAT, then return
2534 a Lisp_String initialized with the data from BUF. */
2535
2536Lisp_Object
2537make_formatted_string (char *buf, const char *format, ...)
2538{
2539 va_list ap;
26bccfae 2540 int length;
a8290ec3
DA
2541
2542 va_start (ap, format);
2543 length = vsprintf (buf, format, ap);
2544 va_end (ap);
2545 return make_string (buf, length);
2546}
2e471eb5
GM
2547
2548\f
2549/***********************************************************************
2550 Float Allocation
2551 ***********************************************************************/
2552
2e471eb5
GM
2553/* We store float cells inside of float_blocks, allocating a new
2554 float_block with malloc whenever necessary. Float cells reclaimed
2555 by GC are put on a free list to be reallocated before allocating
ab6780cd 2556 any new float cells from the latest float_block. */
2e471eb5 2557
6b61353c
KH
2558#define FLOAT_BLOCK_SIZE \
2559 (((BLOCK_BYTES - sizeof (struct float_block *) \
2560 /* The compiler might add padding at the end. */ \
2561 - (sizeof (struct Lisp_Float) - sizeof (int))) * CHAR_BIT) \
ab6780cd
SM
2562 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2563
2564#define GETMARKBIT(block,n) \
5e617bc2
JB
2565 (((block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2566 >> ((n) % (sizeof (int) * CHAR_BIT))) \
ab6780cd
SM
2567 & 1)
2568
2569#define SETMARKBIT(block,n) \
5e617bc2
JB
2570 (block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2571 |= 1 << ((n) % (sizeof (int) * CHAR_BIT))
ab6780cd
SM
2572
2573#define UNSETMARKBIT(block,n) \
5e617bc2
JB
2574 (block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2575 &= ~(1 << ((n) % (sizeof (int) * CHAR_BIT)))
ab6780cd
SM
2576
2577#define FLOAT_BLOCK(fptr) \
d01a7826 2578 ((struct float_block *) (((uintptr_t) (fptr)) & ~(BLOCK_ALIGN - 1)))
ab6780cd
SM
2579
2580#define FLOAT_INDEX(fptr) \
d01a7826 2581 ((((uintptr_t) (fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2e471eb5
GM
2582
2583struct float_block
2584{
ab6780cd 2585 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2e471eb5 2586 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
5e617bc2 2587 int gcmarkbits[1 + FLOAT_BLOCK_SIZE / (sizeof (int) * CHAR_BIT)];
ab6780cd 2588 struct float_block *next;
2e471eb5
GM
2589};
2590
ab6780cd
SM
2591#define FLOAT_MARKED_P(fptr) \
2592 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2593
2594#define FLOAT_MARK(fptr) \
2595 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2596
2597#define FLOAT_UNMARK(fptr) \
2598 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2599
34400008
GM
2600/* Current float_block. */
2601
244ed907 2602static struct float_block *float_block;
34400008
GM
2603
2604/* Index of first unused Lisp_Float in the current float_block. */
2605
fff62aa9 2606static int float_block_index = FLOAT_BLOCK_SIZE;
2e471eb5 2607
34400008
GM
2608/* Free-list of Lisp_Floats. */
2609
244ed907 2610static struct Lisp_Float *float_free_list;
2e471eb5 2611
34400008
GM
2612/* Return a new float object with value FLOAT_VALUE. */
2613
2e471eb5 2614Lisp_Object
971de7fb 2615make_float (double float_value)
2e471eb5
GM
2616{
2617 register Lisp_Object val;
2618
e2984df0
CY
2619 /* eassert (!handling_signal); */
2620
dafc79fa 2621 MALLOC_BLOCK_INPUT;
cfb2f32e 2622
2e471eb5
GM
2623 if (float_free_list)
2624 {
2625 /* We use the data field for chaining the free list
2626 so that we won't use the same field that has the mark bit. */
2627 XSETFLOAT (val, float_free_list);
28a099a4 2628 float_free_list = float_free_list->u.chain;
2e471eb5
GM
2629 }
2630 else
2631 {
2632 if (float_block_index == FLOAT_BLOCK_SIZE)
2633 {
38182d90
PE
2634 struct float_block *new
2635 = lisp_align_malloc (sizeof *new, MEM_TYPE_FLOAT);
2e471eb5 2636 new->next = float_block;
72af86bd 2637 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2e471eb5
GM
2638 float_block = new;
2639 float_block_index = 0;
3900d5de 2640 total_free_floats += FLOAT_BLOCK_SIZE;
2e471eb5 2641 }
6b61353c
KH
2642 XSETFLOAT (val, &float_block->floats[float_block_index]);
2643 float_block_index++;
2e471eb5 2644 }
177c0ea7 2645
dafc79fa 2646 MALLOC_UNBLOCK_INPUT;
e2984df0 2647
f601cdf3 2648 XFLOAT_INIT (val, float_value);
6b61353c 2649 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2e471eb5
GM
2650 consing_since_gc += sizeof (struct Lisp_Float);
2651 floats_consed++;
3900d5de 2652 total_free_floats--;
2e471eb5
GM
2653 return val;
2654}
2655
2e471eb5
GM
2656
2657\f
2658/***********************************************************************
2659 Cons Allocation
2660 ***********************************************************************/
2661
2662/* We store cons cells inside of cons_blocks, allocating a new
2663 cons_block with malloc whenever necessary. Cons cells reclaimed by
2664 GC are put on a free list to be reallocated before allocating
08b7c2cb 2665 any new cons cells from the latest cons_block. */
2e471eb5 2666
a2821611
AS
2667#define CONS_BLOCK_SIZE \
2668 (((BLOCK_BYTES - sizeof (struct cons_block *) \
2669 /* The compiler might add padding at the end. */ \
2670 - (sizeof (struct Lisp_Cons) - sizeof (int))) * CHAR_BIT) \
08b7c2cb
SM
2671 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2672
2673#define CONS_BLOCK(fptr) \
d01a7826 2674 ((struct cons_block *) ((uintptr_t) (fptr) & ~(BLOCK_ALIGN - 1)))
08b7c2cb
SM
2675
2676#define CONS_INDEX(fptr) \
d01a7826 2677 (((uintptr_t) (fptr) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2e471eb5
GM
2678
2679struct cons_block
2680{
08b7c2cb 2681 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2e471eb5 2682 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
5e617bc2 2683 int gcmarkbits[1 + CONS_BLOCK_SIZE / (sizeof (int) * CHAR_BIT)];
08b7c2cb 2684 struct cons_block *next;
2e471eb5
GM
2685};
2686
08b7c2cb
SM
2687#define CONS_MARKED_P(fptr) \
2688 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2689
2690#define CONS_MARK(fptr) \
2691 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2692
2693#define CONS_UNMARK(fptr) \
2694 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2695
34400008
GM
2696/* Current cons_block. */
2697
244ed907 2698static struct cons_block *cons_block;
34400008
GM
2699
2700/* Index of first unused Lisp_Cons in the current block. */
2701
fff62aa9 2702static int cons_block_index = CONS_BLOCK_SIZE;
2e471eb5 2703
34400008
GM
2704/* Free-list of Lisp_Cons structures. */
2705
244ed907 2706static struct Lisp_Cons *cons_free_list;
2e471eb5 2707
34400008 2708/* Explicitly free a cons cell by putting it on the free-list. */
2e471eb5
GM
2709
2710void
971de7fb 2711free_cons (struct Lisp_Cons *ptr)
2e471eb5 2712{
28a099a4 2713 ptr->u.chain = cons_free_list;
34400008
GM
2714#if GC_MARK_STACK
2715 ptr->car = Vdead;
2716#endif
2e471eb5 2717 cons_free_list = ptr;
0dd6d66d 2718 consing_since_gc -= sizeof *ptr;
3900d5de 2719 total_free_conses++;
2e471eb5
GM
2720}
2721
a7ca3326 2722DEFUN ("cons", Fcons, Scons, 2, 2, 0,
a6266d23 2723 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
5842a27b 2724 (Lisp_Object car, Lisp_Object cdr)
2e471eb5
GM
2725{
2726 register Lisp_Object val;
2727
e2984df0
CY
2728 /* eassert (!handling_signal); */
2729
dafc79fa 2730 MALLOC_BLOCK_INPUT;
cfb2f32e 2731
2e471eb5
GM
2732 if (cons_free_list)
2733 {
2734 /* We use the cdr for chaining the free list
2735 so that we won't use the same field that has the mark bit. */
2736 XSETCONS (val, cons_free_list);
28a099a4 2737 cons_free_list = cons_free_list->u.chain;
2e471eb5
GM
2738 }
2739 else
2740 {
2741 if (cons_block_index == CONS_BLOCK_SIZE)
2742 {
38182d90
PE
2743 struct cons_block *new
2744 = lisp_align_malloc (sizeof *new, MEM_TYPE_CONS);
72af86bd 2745 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2e471eb5
GM
2746 new->next = cons_block;
2747 cons_block = new;
2748 cons_block_index = 0;
3900d5de 2749 total_free_conses += CONS_BLOCK_SIZE;
2e471eb5 2750 }
6b61353c
KH
2751 XSETCONS (val, &cons_block->conses[cons_block_index]);
2752 cons_block_index++;
2e471eb5 2753 }
177c0ea7 2754
dafc79fa 2755 MALLOC_UNBLOCK_INPUT;
e2984df0 2756
f3fbd155
KR
2757 XSETCAR (val, car);
2758 XSETCDR (val, cdr);
6b61353c 2759 eassert (!CONS_MARKED_P (XCONS (val)));
2e471eb5 2760 consing_since_gc += sizeof (struct Lisp_Cons);
3900d5de 2761 total_free_conses--;
2e471eb5
GM
2762 cons_cells_consed++;
2763 return val;
2764}
2765
e5aab7e7 2766#ifdef GC_CHECK_CONS_LIST
e3e56238
RS
2767/* Get an error now if there's any junk in the cons free list. */
2768void
971de7fb 2769check_cons_list (void)
e3e56238
RS
2770{
2771 struct Lisp_Cons *tail = cons_free_list;
2772
e3e56238 2773 while (tail)
28a099a4 2774 tail = tail->u.chain;
e3e56238 2775}
e5aab7e7 2776#endif
34400008 2777
9b306d37
KS
2778/* Make a list of 1, 2, 3, 4 or 5 specified objects. */
2779
2780Lisp_Object
971de7fb 2781list1 (Lisp_Object arg1)
9b306d37
KS
2782{
2783 return Fcons (arg1, Qnil);
2784}
2e471eb5
GM
2785
2786Lisp_Object
971de7fb 2787list2 (Lisp_Object arg1, Lisp_Object arg2)
2e471eb5
GM
2788{
2789 return Fcons (arg1, Fcons (arg2, Qnil));
2790}
2791
34400008 2792
2e471eb5 2793Lisp_Object
971de7fb 2794list3 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3)
2e471eb5
GM
2795{
2796 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2797}
2798
34400008 2799
2e471eb5 2800Lisp_Object
971de7fb 2801list4 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4)
2e471eb5
GM
2802{
2803 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2804}
2805
34400008 2806
2e471eb5 2807Lisp_Object
971de7fb 2808list5 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4, Lisp_Object arg5)
2e471eb5
GM
2809{
2810 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2811 Fcons (arg5, Qnil)))));
2812}
2813
694b6c97
DA
2814/* Make a list of COUNT Lisp_Objects, where ARG is the
2815 first one. Allocate conses from pure space if TYPE
2816 is PURE, or allocate as usual if type is HEAP. */
2817
2818Lisp_Object
2819listn (enum constype type, ptrdiff_t count, Lisp_Object arg, ...)
2820{
2821 va_list ap;
2822 ptrdiff_t i;
2823 Lisp_Object val, *objp;
2824
2825 /* Change to SAFE_ALLOCA if you hit this eassert. */
2826 eassert (count <= MAX_ALLOCA / sizeof (Lisp_Object));
2827
2828 objp = alloca (count * sizeof (Lisp_Object));
2829 objp[0] = arg;
2830 va_start (ap, arg);
2831 for (i = 1; i < count; i++)
2832 objp[i] = va_arg (ap, Lisp_Object);
2833 va_end (ap);
2834
2835 for (i = 0, val = Qnil; i < count; i++)
2836 {
2837 if (type == PURE)
2838 val = pure_cons (objp[i], val);
2839 else if (type == HEAP)
2840 val = Fcons (objp[i], val);
2841 else
2842 abort ();
2843 }
2844 return val;
2845}
34400008 2846
a7ca3326 2847DEFUN ("list", Flist, Slist, 0, MANY, 0,
eae936e2 2848 doc: /* Return a newly created list with specified arguments as elements.
ae8e8122
MB
2849Any number of arguments, even zero arguments, are allowed.
2850usage: (list &rest OBJECTS) */)
f66c7cf8 2851 (ptrdiff_t nargs, Lisp_Object *args)
2e471eb5
GM
2852{
2853 register Lisp_Object val;
2854 val = Qnil;
2855
2856 while (nargs > 0)
2857 {
2858 nargs--;
2859 val = Fcons (args[nargs], val);
2860 }
2861 return val;
2862}
2863
34400008 2864
a7ca3326 2865DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
a6266d23 2866 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
5842a27b 2867 (register Lisp_Object length, Lisp_Object init)
2e471eb5
GM
2868{
2869 register Lisp_Object val;
14162469 2870 register EMACS_INT size;
2e471eb5 2871
b7826503 2872 CHECK_NATNUM (length);
2e471eb5
GM
2873 size = XFASTINT (length);
2874
2875 val = Qnil;
ce070307
GM
2876 while (size > 0)
2877 {
2878 val = Fcons (init, val);
2879 --size;
2880
2881 if (size > 0)
2882 {
2883 val = Fcons (init, val);
2884 --size;
177c0ea7 2885
ce070307
GM
2886 if (size > 0)
2887 {
2888 val = Fcons (init, val);
2889 --size;
177c0ea7 2890
ce070307
GM
2891 if (size > 0)
2892 {
2893 val = Fcons (init, val);
2894 --size;
177c0ea7 2895
ce070307
GM
2896 if (size > 0)
2897 {
2898 val = Fcons (init, val);
2899 --size;
2900 }
2901 }
2902 }
2903 }
2904
2905 QUIT;
2906 }
177c0ea7 2907
7146af97
JB
2908 return val;
2909}
2e471eb5
GM
2910
2911
7146af97 2912\f
2e471eb5
GM
2913/***********************************************************************
2914 Vector Allocation
2915 ***********************************************************************/
7146af97 2916
f3372c87
DA
2917/* This value is balanced well enough to avoid too much internal overhead
2918 for the most common cases; it's not required to be a power of two, but
2919 it's expected to be a mult-of-ROUNDUP_SIZE (see below). */
34400008 2920
f3372c87 2921#define VECTOR_BLOCK_SIZE 4096
7146af97 2922
d06714cb 2923/* Align allocation request sizes to be a multiple of ROUNDUP_SIZE. */
dd0b0efb
PE
2924enum
2925 {
d06714cb 2926 roundup_size = COMMON_MULTIPLE (word_size,
bfe3e0a2 2927 USE_LSB_TAG ? 1 << GCTYPEBITS : 1)
dd0b0efb 2928 };
34400008 2929
bfe3e0a2
PE
2930/* ROUNDUP_SIZE must be a power of 2. */
2931verify ((roundup_size & (roundup_size - 1)) == 0);
2932
ca95b3eb
DA
2933/* Verify assumptions described above. */
2934verify ((VECTOR_BLOCK_SIZE % roundup_size) == 0);
ee28be33 2935verify (VECTOR_BLOCK_SIZE <= (1 << PSEUDOVECTOR_SIZE_BITS));
ca95b3eb 2936
bfe3e0a2 2937/* Round up X to nearest mult-of-ROUNDUP_SIZE. */
f3372c87
DA
2938
2939#define vroundup(x) (((x) + (roundup_size - 1)) & ~(roundup_size - 1))
2940
2941/* Rounding helps to maintain alignment constraints if USE_LSB_TAG. */
2942
2943#define VECTOR_BLOCK_BYTES (VECTOR_BLOCK_SIZE - vroundup (sizeof (void *)))
2944
2945/* Size of the minimal vector allocated from block. */
2946
2947#define VBLOCK_BYTES_MIN vroundup (sizeof (struct Lisp_Vector))
2948
2949/* Size of the largest vector allocated from block. */
2950
2951#define VBLOCK_BYTES_MAX \
d06714cb 2952 vroundup ((VECTOR_BLOCK_BYTES / 2) - word_size)
f3372c87
DA
2953
2954/* We maintain one free list for each possible block-allocated
2955 vector size, and this is the number of free lists we have. */
2956
2957#define VECTOR_MAX_FREE_LIST_INDEX \
2958 ((VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN) / roundup_size + 1)
2959
f3372c87
DA
2960/* Common shortcut to advance vector pointer over a block data. */
2961
2962#define ADVANCE(v, nbytes) ((struct Lisp_Vector *) ((char *) (v) + (nbytes)))
2963
2964/* Common shortcut to calculate NBYTES-vector index in VECTOR_FREE_LISTS. */
2965
2966#define VINDEX(nbytes) (((nbytes) - VBLOCK_BYTES_MIN) / roundup_size)
2967
2968/* Common shortcut to setup vector on a free list. */
2969
2970#define SETUP_ON_FREE_LIST(v, nbytes, index) \
2971 do { \
ee28be33 2972 XSETPVECTYPESIZE (v, PVEC_FREE, nbytes); \
f3372c87
DA
2973 eassert ((nbytes) % roundup_size == 0); \
2974 (index) = VINDEX (nbytes); \
2975 eassert ((index) < VECTOR_MAX_FREE_LIST_INDEX); \
2976 (v)->header.next.vector = vector_free_lists[index]; \
2977 vector_free_lists[index] = (v); \
5b835e1d 2978 total_free_vector_slots += (nbytes) / word_size; \
f3372c87
DA
2979 } while (0)
2980
2981struct vector_block
2982{
2983 char data[VECTOR_BLOCK_BYTES];
2984 struct vector_block *next;
2985};
2986
2987/* Chain of vector blocks. */
2988
2989static struct vector_block *vector_blocks;
2990
2991/* Vector free lists, where NTH item points to a chain of free
2992 vectors of the same NBYTES size, so NTH == VINDEX (NBYTES). */
2993
2994static struct Lisp_Vector *vector_free_lists[VECTOR_MAX_FREE_LIST_INDEX];
2995
2996/* Singly-linked list of large vectors. */
2997
2998static struct Lisp_Vector *large_vectors;
2999
3000/* The only vector with 0 slots, allocated from pure space. */
3001
9730daca 3002Lisp_Object zero_vector;
f3372c87 3003
3ab6e069
DA
3004/* Number of live vectors. */
3005
3006static EMACS_INT total_vectors;
3007
5b835e1d 3008/* Total size of live and free vectors, in Lisp_Object units. */
3ab6e069 3009
5b835e1d 3010static EMACS_INT total_vector_slots, total_free_vector_slots;
3ab6e069 3011
f3372c87
DA
3012/* Get a new vector block. */
3013
3014static struct vector_block *
3015allocate_vector_block (void)
3016{
38182d90 3017 struct vector_block *block = xmalloc (sizeof *block);
f3372c87
DA
3018
3019#if GC_MARK_STACK && !defined GC_MALLOC_CHECK
3020 mem_insert (block->data, block->data + VECTOR_BLOCK_BYTES,
3021 MEM_TYPE_VECTOR_BLOCK);
3022#endif
3023
3024 block->next = vector_blocks;
3025 vector_blocks = block;
3026 return block;
3027}
3028
3029/* Called once to initialize vector allocation. */
3030
3031static void
3032init_vectors (void)
3033{
9730daca 3034 zero_vector = make_pure_vector (0);
f3372c87
DA
3035}
3036
3037/* Allocate vector from a vector block. */
3038
3039static struct Lisp_Vector *
3040allocate_vector_from_block (size_t nbytes)
3041{
3042 struct Lisp_Vector *vector, *rest;
3043 struct vector_block *block;
3044 size_t index, restbytes;
3045
3046 eassert (VBLOCK_BYTES_MIN <= nbytes && nbytes <= VBLOCK_BYTES_MAX);
3047 eassert (nbytes % roundup_size == 0);
3048
3049 /* First, try to allocate from a free list
3050 containing vectors of the requested size. */
3051 index = VINDEX (nbytes);
3052 if (vector_free_lists[index])
3053 {
3054 vector = vector_free_lists[index];
3055 vector_free_lists[index] = vector->header.next.vector;
3056 vector->header.next.nbytes = nbytes;
5b835e1d 3057 total_free_vector_slots -= nbytes / word_size;
f3372c87
DA
3058 return vector;
3059 }
3060
3061 /* Next, check free lists containing larger vectors. Since
3062 we will split the result, we should have remaining space
3063 large enough to use for one-slot vector at least. */
3064 for (index = VINDEX (nbytes + VBLOCK_BYTES_MIN);
3065 index < VECTOR_MAX_FREE_LIST_INDEX; index++)
3066 if (vector_free_lists[index])
3067 {
3068 /* This vector is larger than requested. */
3069 vector = vector_free_lists[index];
3070 vector_free_lists[index] = vector->header.next.vector;
3071 vector->header.next.nbytes = nbytes;
5b835e1d 3072 total_free_vector_slots -= nbytes / word_size;
f3372c87
DA
3073
3074 /* Excess bytes are used for the smaller vector,
3075 which should be set on an appropriate free list. */
3076 restbytes = index * roundup_size + VBLOCK_BYTES_MIN - nbytes;
3077 eassert (restbytes % roundup_size == 0);
3078 rest = ADVANCE (vector, nbytes);
3079 SETUP_ON_FREE_LIST (rest, restbytes, index);
3080 return vector;
3081 }
3082
3083 /* Finally, need a new vector block. */
3084 block = allocate_vector_block ();
3085
3086 /* New vector will be at the beginning of this block. */
3087 vector = (struct Lisp_Vector *) block->data;
3088 vector->header.next.nbytes = nbytes;
3089
3090 /* If the rest of space from this block is large enough
3091 for one-slot vector at least, set up it on a free list. */
3092 restbytes = VECTOR_BLOCK_BYTES - nbytes;
3093 if (restbytes >= VBLOCK_BYTES_MIN)
3094 {
3095 eassert (restbytes % roundup_size == 0);
3096 rest = ADVANCE (vector, nbytes);
3097 SETUP_ON_FREE_LIST (rest, restbytes, index);
3098 }
3099 return vector;
3100 }
3101
f3372c87
DA
3102/* Nonzero if VECTOR pointer is valid pointer inside BLOCK. */
3103
3104#define VECTOR_IN_BLOCK(vector, block) \
3105 ((char *) (vector) <= (block)->data \
3106 + VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN)
3107
ee28be33
SM
3108/* Number of bytes used by vector-block-allocated object. This is the only
3109 place where we actually use the `nbytes' field of the vector-header.
3110 I.e. we could get rid of the `nbytes' field by computing it based on the
3111 vector-type. */
3112
3113#define PSEUDOVECTOR_NBYTES(vector) \
3114 (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_FREE) \
3115 ? vector->header.size & PSEUDOVECTOR_SIZE_MASK \
356e7178 3116 : vector->header.next.nbytes)
ee28be33 3117
f3372c87
DA
3118/* Reclaim space used by unmarked vectors. */
3119
3120static void
3121sweep_vectors (void)
3122{
3123 struct vector_block *block = vector_blocks, **bprev = &vector_blocks;
3124 struct Lisp_Vector *vector, *next, **vprev = &large_vectors;
3125
5b835e1d 3126 total_vectors = total_vector_slots = total_free_vector_slots = 0;
f3372c87
DA
3127 memset (vector_free_lists, 0, sizeof (vector_free_lists));
3128
3129 /* Looking through vector blocks. */
3130
3131 for (block = vector_blocks; block; block = *bprev)
3132 {
3133 int free_this_block = 0;
3134
3135 for (vector = (struct Lisp_Vector *) block->data;
3136 VECTOR_IN_BLOCK (vector, block); vector = next)
3137 {
3138 if (VECTOR_MARKED_P (vector))
3139 {
3140 VECTOR_UNMARK (vector);
3ab6e069 3141 total_vectors++;
5b835e1d 3142 total_vector_slots += vector->header.next.nbytes / word_size;
f3372c87
DA
3143 next = ADVANCE (vector, vector->header.next.nbytes);
3144 }
3145 else
3146 {
ee28be33
SM
3147 ptrdiff_t nbytes = PSEUDOVECTOR_NBYTES (vector);
3148 ptrdiff_t total_bytes = nbytes;
f3372c87 3149
ee28be33 3150 next = ADVANCE (vector, nbytes);
f3372c87
DA
3151
3152 /* While NEXT is not marked, try to coalesce with VECTOR,
3153 thus making VECTOR of the largest possible size. */
3154
3155 while (VECTOR_IN_BLOCK (next, block))
3156 {
3157 if (VECTOR_MARKED_P (next))
3158 break;
ee28be33
SM
3159 nbytes = PSEUDOVECTOR_NBYTES (next);
3160 total_bytes += nbytes;
f3372c87
DA
3161 next = ADVANCE (next, nbytes);
3162 }
bfe3e0a2 3163
ee28be33 3164 eassert (total_bytes % roundup_size == 0);
f3372c87
DA
3165
3166 if (vector == (struct Lisp_Vector *) block->data
3167 && !VECTOR_IN_BLOCK (next, block))
3168 /* This block should be freed because all of it's
3169 space was coalesced into the only free vector. */
3170 free_this_block = 1;
3171 else
ee28be33
SM
3172 {
3173 int tmp;
3174 SETUP_ON_FREE_LIST (vector, total_bytes, tmp);
3175 }
f3372c87
DA
3176 }
3177 }
3178
3179 if (free_this_block)
3180 {
3181 *bprev = block->next;
3182#if GC_MARK_STACK && !defined GC_MALLOC_CHECK
3183 mem_delete (mem_find (block->data));
3184#endif
3185 xfree (block);
3186 }
3187 else
3188 bprev = &block->next;
3189 }
3190
3191 /* Sweep large vectors. */
3192
3193 for (vector = large_vectors; vector; vector = *vprev)
3194 {
3195 if (VECTOR_MARKED_P (vector))
3196 {
3197 VECTOR_UNMARK (vector);
3ab6e069 3198 total_vectors++;
169925ec
DA
3199 if (vector->header.size & PSEUDOVECTOR_FLAG)
3200 {
d06714cb
PE
3201 struct Lisp_Bool_Vector *b = (struct Lisp_Bool_Vector *) vector;
3202
3203 /* All non-bool pseudovectors are small enough to be allocated
3204 from vector blocks. This code should be redesigned if some
3205 pseudovector type grows beyond VBLOCK_BYTES_MAX. */
3206 eassert (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_BOOL_VECTOR));
3207
5b835e1d 3208 total_vector_slots
d06714cb
PE
3209 += (bool_header_size
3210 + ((b->size + BOOL_VECTOR_BITS_PER_CHAR - 1)
5b835e1d 3211 / BOOL_VECTOR_BITS_PER_CHAR)) / word_size;
169925ec
DA
3212 }
3213 else
5b835e1d
DA
3214 total_vector_slots
3215 += header_size / word_size + vector->header.size;
f3372c87
DA
3216 vprev = &vector->header.next.vector;
3217 }
3218 else
3219 {
3220 *vprev = vector->header.next.vector;
3221 lisp_free (vector);
3222 }
3223 }
3224}
3225
34400008
GM
3226/* Value is a pointer to a newly allocated Lisp_Vector structure
3227 with room for LEN Lisp_Objects. */
3228
ece93c02 3229static struct Lisp_Vector *
d311d28c 3230allocate_vectorlike (ptrdiff_t len)
1825c68d
KH
3231{
3232 struct Lisp_Vector *p;
3233
dafc79fa
SM
3234 MALLOC_BLOCK_INPUT;
3235
cfb2f32e
SM
3236 /* This gets triggered by code which I haven't bothered to fix. --Stef */
3237 /* eassert (!handling_signal); */
3238
f3372c87 3239 if (len == 0)
9730daca 3240 p = XVECTOR (zero_vector);
d12e8f5a 3241 else
8bbbc977 3242 {
d12e8f5a 3243 size_t nbytes = header_size + len * word_size;
f3372c87 3244
d12e8f5a
DA
3245#ifdef DOUG_LEA_MALLOC
3246 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
3247 because mapped region contents are not preserved in
3248 a dumped Emacs. */
3249 mallopt (M_MMAP_MAX, 0);
3250#endif
f3372c87 3251
d12e8f5a
DA
3252 if (nbytes <= VBLOCK_BYTES_MAX)
3253 p = allocate_vector_from_block (vroundup (nbytes));
3254 else
3255 {
38182d90 3256 p = lisp_malloc (nbytes, MEM_TYPE_VECTORLIKE);
d12e8f5a
DA
3257 p->header.next.vector = large_vectors;
3258 large_vectors = p;
3259 }
177c0ea7 3260
d1658221 3261#ifdef DOUG_LEA_MALLOC
d12e8f5a
DA
3262 /* Back to a reasonable maximum of mmap'ed areas. */
3263 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
d1658221 3264#endif
177c0ea7 3265
d12e8f5a
DA
3266 consing_since_gc += nbytes;
3267 vector_cells_consed += len;
3268 }
1825c68d 3269
dafc79fa 3270 MALLOC_UNBLOCK_INPUT;
e2984df0 3271
1825c68d
KH
3272 return p;
3273}
3274
34400008 3275
dd0b0efb 3276/* Allocate a vector with LEN slots. */
ece93c02
GM
3277
3278struct Lisp_Vector *
dd0b0efb 3279allocate_vector (EMACS_INT len)
ece93c02 3280{
dd0b0efb
PE
3281 struct Lisp_Vector *v;
3282 ptrdiff_t nbytes_max = min (PTRDIFF_MAX, SIZE_MAX);
3283
3284 if (min ((nbytes_max - header_size) / word_size, MOST_POSITIVE_FIXNUM) < len)
3285 memory_full (SIZE_MAX);
3286 v = allocate_vectorlike (len);
3287 v->header.size = len;
ece93c02
GM
3288 return v;
3289}
3290
3291
3292/* Allocate other vector-like structures. */
3293
30f95089 3294struct Lisp_Vector *
d311d28c 3295allocate_pseudovector (int memlen, int lisplen, int tag)
ece93c02 3296{
d2029e5b 3297 struct Lisp_Vector *v = allocate_vectorlike (memlen);
e46bb31a 3298 int i;
177c0ea7 3299
d2029e5b 3300 /* Only the first lisplen slots will be traced normally by the GC. */
d2029e5b 3301 for (i = 0; i < lisplen; ++i)
ece93c02 3302 v->contents[i] = Qnil;
177c0ea7 3303
eab3844f 3304 XSETPVECTYPESIZE (v, tag, lisplen);
d2029e5b
SM
3305 return v;
3306}
d2029e5b 3307
36429c89
DA
3308struct buffer *
3309allocate_buffer (void)
3310{
38182d90 3311 struct buffer *b = lisp_malloc (sizeof *b, MEM_TYPE_BUFFER);
36429c89
DA
3312
3313 XSETPVECTYPESIZE (b, PVEC_BUFFER, (offsetof (struct buffer, own_text)
3314 - header_size) / word_size);
3315 /* Note that the fields of B are not initialized. */
3316 return b;
3317}
3318
ece93c02 3319struct Lisp_Hash_Table *
878f97ff 3320allocate_hash_table (void)
ece93c02 3321{
878f97ff 3322 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Hash_Table, count, PVEC_HASH_TABLE);
ece93c02
GM
3323}
3324
ece93c02 3325struct window *
971de7fb 3326allocate_window (void)
ece93c02 3327{
62efea5e 3328 struct window *w;
177c0ea7 3329
62efea5e
DA
3330 w = ALLOCATE_PSEUDOVECTOR (struct window, current_matrix, PVEC_WINDOW);
3331 /* Users assumes that non-Lisp data is zeroed. */
3332 memset (&w->current_matrix, 0,
3333 sizeof (*w) - offsetof (struct window, current_matrix));
3334 return w;
3335}
177c0ea7 3336
4a729fd8 3337struct terminal *
971de7fb 3338allocate_terminal (void)
4a729fd8 3339{
62efea5e 3340 struct terminal *t;
ece93c02 3341
62efea5e
DA
3342 t = ALLOCATE_PSEUDOVECTOR (struct terminal, next_terminal, PVEC_TERMINAL);
3343 /* Users assumes that non-Lisp data is zeroed. */
3344 memset (&t->next_terminal, 0,
3345 sizeof (*t) - offsetof (struct terminal, next_terminal));
d2029e5b 3346 return t;
4a729fd8 3347}
ece93c02
GM
3348
3349struct frame *
971de7fb 3350allocate_frame (void)
ece93c02 3351{
62efea5e
DA
3352 struct frame *f;
3353
3354 f = ALLOCATE_PSEUDOVECTOR (struct frame, face_cache, PVEC_FRAME);
3355 /* Users assumes that non-Lisp data is zeroed. */
72af86bd 3356 memset (&f->face_cache, 0,
62efea5e 3357 sizeof (*f) - offsetof (struct frame, face_cache));
d2029e5b 3358 return f;
ece93c02
GM
3359}
3360
ece93c02 3361struct Lisp_Process *
971de7fb 3362allocate_process (void)
ece93c02 3363{
62efea5e 3364 struct Lisp_Process *p;
ece93c02 3365
62efea5e
DA
3366 p = ALLOCATE_PSEUDOVECTOR (struct Lisp_Process, pid, PVEC_PROCESS);
3367 /* Users assumes that non-Lisp data is zeroed. */
3368 memset (&p->pid, 0,
3369 sizeof (*p) - offsetof (struct Lisp_Process, pid));
3370 return p;
3371}
ece93c02 3372
a7ca3326 3373DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
a6266d23 3374 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
7ee72033 3375See also the function `vector'. */)
5842a27b 3376 (register Lisp_Object length, Lisp_Object init)
7146af97 3377{
1825c68d 3378 Lisp_Object vector;
d311d28c
PE
3379 register ptrdiff_t sizei;
3380 register ptrdiff_t i;
7146af97
JB
3381 register struct Lisp_Vector *p;
3382
b7826503 3383 CHECK_NATNUM (length);
7146af97 3384
d311d28c
PE
3385 p = allocate_vector (XFASTINT (length));
3386 sizei = XFASTINT (length);
ae35e756
PE
3387 for (i = 0; i < sizei; i++)
3388 p->contents[i] = init;
7146af97 3389
1825c68d 3390 XSETVECTOR (vector, p);
7146af97
JB
3391 return vector;
3392}
3393
34400008 3394
a7ca3326 3395DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
eae936e2 3396 doc: /* Return a newly created vector with specified arguments as elements.
ae8e8122
MB
3397Any number of arguments, even zero arguments, are allowed.
3398usage: (vector &rest OBJECTS) */)
f66c7cf8 3399 (ptrdiff_t nargs, Lisp_Object *args)
7146af97
JB
3400{
3401 register Lisp_Object len, val;
f66c7cf8 3402 ptrdiff_t i;
7146af97
JB
3403 register struct Lisp_Vector *p;
3404
67ba9986 3405 XSETFASTINT (len, nargs);
7146af97
JB
3406 val = Fmake_vector (len, Qnil);
3407 p = XVECTOR (val);
ae35e756
PE
3408 for (i = 0; i < nargs; i++)
3409 p->contents[i] = args[i];
7146af97
JB
3410 return val;
3411}
3412
3017f87f
SM
3413void
3414make_byte_code (struct Lisp_Vector *v)
3415{
3416 if (v->header.size > 1 && STRINGP (v->contents[1])
3417 && STRING_MULTIBYTE (v->contents[1]))
3418 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
3419 earlier because they produced a raw 8-bit string for byte-code
3420 and now such a byte-code string is loaded as multibyte while
3421 raw 8-bit characters converted to multibyte form. Thus, now we
3422 must convert them back to the original unibyte form. */
3423 v->contents[1] = Fstring_as_unibyte (v->contents[1]);
3424 XSETPVECTYPE (v, PVEC_COMPILED);
3425}
34400008 3426
a7ca3326 3427DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
a6266d23 3428 doc: /* Create a byte-code object with specified arguments as elements.
e2abe5a1
SM
3429The arguments should be the ARGLIST, bytecode-string BYTE-CODE, constant
3430vector CONSTANTS, maximum stack size DEPTH, (optional) DOCSTRING,
3431and (optional) INTERACTIVE-SPEC.
228299fa 3432The first four arguments are required; at most six have any
ae8e8122 3433significance.
e2abe5a1
SM
3434The ARGLIST can be either like the one of `lambda', in which case the arguments
3435will be dynamically bound before executing the byte code, or it can be an
3436integer of the form NNNNNNNRMMMMMMM where the 7bit MMMMMMM specifies the
3437minimum number of arguments, the 7-bit NNNNNNN specifies the maximum number
3438of arguments (ignoring &rest) and the R bit specifies whether there is a &rest
3439argument to catch the left-over arguments. If such an integer is used, the
3440arguments will not be dynamically bound but will be instead pushed on the
3441stack before executing the byte-code.
92cc28b2 3442usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
f66c7cf8 3443 (ptrdiff_t nargs, Lisp_Object *args)
7146af97
JB
3444{
3445 register Lisp_Object len, val;
f66c7cf8 3446 ptrdiff_t i;
7146af97
JB
3447 register struct Lisp_Vector *p;
3448
3017f87f
SM
3449 /* We used to purecopy everything here, if purify-flga was set. This worked
3450 OK for Emacs-23, but with Emacs-24's lexical binding code, it can be
3451 dangerous, since make-byte-code is used during execution to build
3452 closures, so any closure built during the preload phase would end up
3453 copied into pure space, including its free variables, which is sometimes
3454 just wasteful and other times plainly wrong (e.g. those free vars may want
3455 to be setcar'd). */
9eac9d59 3456
3017f87f
SM
3457 XSETFASTINT (len, nargs);
3458 val = Fmake_vector (len, Qnil);
9eac9d59 3459
7146af97 3460 p = XVECTOR (val);
ae35e756 3461 for (i = 0; i < nargs; i++)
3017f87f
SM
3462 p->contents[i] = args[i];
3463 make_byte_code (p);
876c194c 3464 XSETCOMPILED (val, p);
7146af97
JB
3465 return val;
3466}
2e471eb5 3467
34400008 3468
7146af97 3469\f
2e471eb5
GM
3470/***********************************************************************
3471 Symbol Allocation
3472 ***********************************************************************/
7146af97 3473
d55c12ed
AS
3474/* Like struct Lisp_Symbol, but padded so that the size is a multiple
3475 of the required alignment if LSB tags are used. */
3476
3477union aligned_Lisp_Symbol
3478{
3479 struct Lisp_Symbol s;
bfe3e0a2 3480#if USE_LSB_TAG
d55c12ed
AS
3481 unsigned char c[(sizeof (struct Lisp_Symbol) + (1 << GCTYPEBITS) - 1)
3482 & -(1 << GCTYPEBITS)];
3483#endif
3484};
3485
2e471eb5
GM
3486/* Each symbol_block is just under 1020 bytes long, since malloc
3487 really allocates in units of powers of two and uses 4 bytes for its
3017f87f 3488 own overhead. */
7146af97
JB
3489
3490#define SYMBOL_BLOCK_SIZE \
d55c12ed 3491 ((1020 - sizeof (struct symbol_block *)) / sizeof (union aligned_Lisp_Symbol))
7146af97
JB
3492
3493struct symbol_block
2e471eb5 3494{
6b61353c 3495 /* Place `symbols' first, to preserve alignment. */
d55c12ed 3496 union aligned_Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
6b61353c 3497 struct symbol_block *next;
2e471eb5 3498};
7146af97 3499
34400008
GM
3500/* Current symbol block and index of first unused Lisp_Symbol
3501 structure in it. */
3502
d3d47262 3503static struct symbol_block *symbol_block;
fff62aa9 3504static int symbol_block_index = SYMBOL_BLOCK_SIZE;
7146af97 3505
34400008
GM
3506/* List of free symbols. */
3507
d3d47262 3508static struct Lisp_Symbol *symbol_free_list;
7146af97 3509
a7ca3326 3510DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
a6266d23 3511 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
7ee72033 3512Its value and function definition are void, and its property list is nil. */)
5842a27b 3513 (Lisp_Object name)
7146af97
JB
3514{
3515 register Lisp_Object val;
3516 register struct Lisp_Symbol *p;
3517
b7826503 3518 CHECK_STRING (name);
7146af97 3519
537407f0 3520 /* eassert (!handling_signal); */
cfb2f32e 3521
dafc79fa 3522 MALLOC_BLOCK_INPUT;
e2984df0 3523
7146af97
JB
3524 if (symbol_free_list)
3525 {
45d12a89 3526 XSETSYMBOL (val, symbol_free_list);
28a099a4 3527 symbol_free_list = symbol_free_list->next;
7146af97
JB
3528 }
3529 else
3530 {
3531 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
3532 {
38182d90
PE
3533 struct symbol_block *new
3534 = lisp_malloc (sizeof *new, MEM_TYPE_SYMBOL);
7146af97
JB
3535 new->next = symbol_block;
3536 symbol_block = new;
3537 symbol_block_index = 0;
3900d5de 3538 total_free_symbols += SYMBOL_BLOCK_SIZE;
7146af97 3539 }
d55c12ed 3540 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index].s);
6b61353c 3541 symbol_block_index++;
7146af97 3542 }
177c0ea7 3543
dafc79fa 3544 MALLOC_UNBLOCK_INPUT;
e2984df0 3545
7146af97 3546 p = XSYMBOL (val);
8fe5665d 3547 p->xname = name;
7146af97 3548 p->plist = Qnil;
ce5b453a
SM
3549 p->redirect = SYMBOL_PLAINVAL;
3550 SET_SYMBOL_VAL (p, Qunbound);
2e471eb5 3551 p->function = Qunbound;
9e713715 3552 p->next = NULL;
2336fe58 3553 p->gcmarkbit = 0;
9e713715
GM
3554 p->interned = SYMBOL_UNINTERNED;
3555 p->constant = 0;
b9598260 3556 p->declared_special = 0;
2e471eb5
GM
3557 consing_since_gc += sizeof (struct Lisp_Symbol);
3558 symbols_consed++;
3900d5de 3559 total_free_symbols--;
7146af97
JB
3560 return val;
3561}
3562
3f25e183 3563
2e471eb5
GM
3564\f
3565/***********************************************************************
34400008 3566 Marker (Misc) Allocation
2e471eb5 3567 ***********************************************************************/
3f25e183 3568
d55c12ed
AS
3569/* Like union Lisp_Misc, but padded so that its size is a multiple of
3570 the required alignment when LSB tags are used. */
3571
3572union aligned_Lisp_Misc
3573{
3574 union Lisp_Misc m;
bfe3e0a2 3575#if USE_LSB_TAG
d55c12ed
AS
3576 unsigned char c[(sizeof (union Lisp_Misc) + (1 << GCTYPEBITS) - 1)
3577 & -(1 << GCTYPEBITS)];
3578#endif
3579};
3580
2e471eb5
GM
3581/* Allocation of markers and other objects that share that structure.
3582 Works like allocation of conses. */
c0696668 3583
2e471eb5 3584#define MARKER_BLOCK_SIZE \
d55c12ed 3585 ((1020 - sizeof (struct marker_block *)) / sizeof (union aligned_Lisp_Misc))
2e471eb5
GM
3586
3587struct marker_block
c0696668 3588{
6b61353c 3589 /* Place `markers' first, to preserve alignment. */
d55c12ed 3590 union aligned_Lisp_Misc markers[MARKER_BLOCK_SIZE];
6b61353c 3591 struct marker_block *next;
2e471eb5 3592};
c0696668 3593
d3d47262 3594static struct marker_block *marker_block;
fff62aa9 3595static int marker_block_index = MARKER_BLOCK_SIZE;
c0696668 3596
d3d47262 3597static union Lisp_Misc *marker_free_list;
c0696668 3598
d7a7fda3 3599/* Return a newly allocated Lisp_Misc object of specified TYPE. */
2e471eb5 3600
d7a7fda3
DA
3601static Lisp_Object
3602allocate_misc (enum Lisp_Misc_Type type)
7146af97 3603{
2e471eb5 3604 Lisp_Object val;
7146af97 3605
e2984df0
CY
3606 /* eassert (!handling_signal); */
3607
dafc79fa 3608 MALLOC_BLOCK_INPUT;
cfb2f32e 3609
2e471eb5 3610 if (marker_free_list)
7146af97 3611 {
2e471eb5
GM
3612 XSETMISC (val, marker_free_list);
3613 marker_free_list = marker_free_list->u_free.chain;
7146af97
JB
3614 }
3615 else
7146af97 3616 {
2e471eb5
GM
3617 if (marker_block_index == MARKER_BLOCK_SIZE)
3618 {
38182d90 3619 struct marker_block *new = lisp_malloc (sizeof *new, MEM_TYPE_MISC);
2e471eb5
GM
3620 new->next = marker_block;
3621 marker_block = new;
3622 marker_block_index = 0;
7b7990cc 3623 total_free_markers += MARKER_BLOCK_SIZE;
2e471eb5 3624 }
d55c12ed 3625 XSETMISC (val, &marker_block->markers[marker_block_index].m);
6b61353c 3626 marker_block_index++;
7146af97 3627 }
177c0ea7 3628
dafc79fa 3629 MALLOC_UNBLOCK_INPUT;
e2984df0 3630
7b7990cc 3631 --total_free_markers;
2e471eb5
GM
3632 consing_since_gc += sizeof (union Lisp_Misc);
3633 misc_objects_consed++;
d7a7fda3 3634 XMISCTYPE (val) = type;
67ee9f6e 3635 XMISCANY (val)->gcmarkbit = 0;
2e471eb5
GM
3636 return val;
3637}
3638
7b7990cc
KS
3639/* Free a Lisp_Misc object */
3640
244ed907 3641static void
971de7fb 3642free_misc (Lisp_Object misc)
7b7990cc 3643{
d314756e 3644 XMISCTYPE (misc) = Lisp_Misc_Free;
7b7990cc
KS
3645 XMISC (misc)->u_free.chain = marker_free_list;
3646 marker_free_list = XMISC (misc);
0dd6d66d 3647 consing_since_gc -= sizeof (union Lisp_Misc);
7b7990cc
KS
3648 total_free_markers++;
3649}
3650
42172a6b
RS
3651/* Return a Lisp_Misc_Save_Value object containing POINTER and
3652 INTEGER. This is used to package C values to call record_unwind_protect.
3653 The unwind function can get the C values back using XSAVE_VALUE. */
3654
3655Lisp_Object
9c4c5f81 3656make_save_value (void *pointer, ptrdiff_t integer)
42172a6b
RS
3657{
3658 register Lisp_Object val;
3659 register struct Lisp_Save_Value *p;
3660
d7a7fda3 3661 val = allocate_misc (Lisp_Misc_Save_Value);
42172a6b
RS
3662 p = XSAVE_VALUE (val);
3663 p->pointer = pointer;
3664 p->integer = integer;
b766f870 3665 p->dogc = 0;
42172a6b
RS
3666 return val;
3667}
3668
d7a7fda3
DA
3669/* Return a Lisp_Misc_Overlay object with specified START, END and PLIST. */
3670
3671Lisp_Object
3672build_overlay (Lisp_Object start, Lisp_Object end, Lisp_Object plist)
3673{
3674 register Lisp_Object overlay;
3675
3676 overlay = allocate_misc (Lisp_Misc_Overlay);
3677 OVERLAY_START (overlay) = start;
3678 OVERLAY_END (overlay) = end;
3679 OVERLAY_PLIST (overlay) = plist;
3680 XOVERLAY (overlay)->next = NULL;
3681 return overlay;
3682}
3683
a7ca3326 3684DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
a6266d23 3685 doc: /* Return a newly allocated marker which does not point at any place. */)
5842a27b 3686 (void)
2e471eb5 3687{
eeaea515
DA
3688 register Lisp_Object val;
3689 register struct Lisp_Marker *p;
7146af97 3690
eeaea515
DA
3691 val = allocate_misc (Lisp_Misc_Marker);
3692 p = XMARKER (val);
3693 p->buffer = 0;
3694 p->bytepos = 0;
3695 p->charpos = 0;
3696 p->next = NULL;
3697 p->insertion_type = 0;
3698 return val;
7146af97 3699}
2e471eb5 3700
657924ff
DA
3701/* Return a newly allocated marker which points into BUF
3702 at character position CHARPOS and byte position BYTEPOS. */
3703
3704Lisp_Object
3705build_marker (struct buffer *buf, ptrdiff_t charpos, ptrdiff_t bytepos)
3706{
eeaea515
DA
3707 Lisp_Object obj;
3708 struct Lisp_Marker *m;
657924ff
DA
3709
3710 /* No dead buffers here. */
3711 eassert (!NILP (BVAR (buf, name)));
3712
eeaea515
DA
3713 /* Every character is at least one byte. */
3714 eassert (charpos <= bytepos);
3715
3716 obj = allocate_misc (Lisp_Misc_Marker);
3717 m = XMARKER (obj);
3718 m->buffer = buf;
3719 m->charpos = charpos;
3720 m->bytepos = bytepos;
3721 m->insertion_type = 0;
3722 m->next = BUF_MARKERS (buf);
3723 BUF_MARKERS (buf) = m;
3724 return obj;
657924ff
DA
3725}
3726
2e471eb5
GM
3727/* Put MARKER back on the free list after using it temporarily. */
3728
3729void
971de7fb 3730free_marker (Lisp_Object marker)
2e471eb5 3731{
ef89c2ce 3732 unchain_marker (XMARKER (marker));
7b7990cc 3733 free_misc (marker);
2e471eb5
GM
3734}
3735
c0696668 3736\f
7146af97 3737/* Return a newly created vector or string with specified arguments as
736471d1
RS
3738 elements. If all the arguments are characters that can fit
3739 in a string of events, make a string; otherwise, make a vector.
3740
3741 Any number of arguments, even zero arguments, are allowed. */
7146af97
JB
3742
3743Lisp_Object
971de7fb 3744make_event_array (register int nargs, Lisp_Object *args)
7146af97
JB
3745{
3746 int i;
3747
3748 for (i = 0; i < nargs; i++)
736471d1 3749 /* The things that fit in a string
c9ca4659
RS
3750 are characters that are in 0...127,
3751 after discarding the meta bit and all the bits above it. */
e687453f 3752 if (!INTEGERP (args[i])
c11285dc 3753 || (XINT (args[i]) & ~(-CHAR_META)) >= 0200)
7146af97
JB
3754 return Fvector (nargs, args);
3755
3756 /* Since the loop exited, we know that all the things in it are
3757 characters, so we can make a string. */
3758 {
c13ccad2 3759 Lisp_Object result;
177c0ea7 3760
50aee051 3761 result = Fmake_string (make_number (nargs), make_number (0));
7146af97 3762 for (i = 0; i < nargs; i++)
736471d1 3763 {
46e7e6b0 3764 SSET (result, i, XINT (args[i]));
736471d1
RS
3765 /* Move the meta bit to the right place for a string char. */
3766 if (XINT (args[i]) & CHAR_META)
46e7e6b0 3767 SSET (result, i, SREF (result, i) | 0x80);
736471d1 3768 }
177c0ea7 3769
7146af97
JB
3770 return result;
3771 }
3772}
2e471eb5
GM
3773
3774
7146af97 3775\f
24d8a105
RS
3776/************************************************************************
3777 Memory Full Handling
3778 ************************************************************************/
3779
3780
531b0165
PE
3781/* Called if malloc (NBYTES) returns zero. If NBYTES == SIZE_MAX,
3782 there may have been size_t overflow so that malloc was never
3783 called, or perhaps malloc was invoked successfully but the
3784 resulting pointer had problems fitting into a tagged EMACS_INT. In
3785 either case this counts as memory being full even though malloc did
3786 not fail. */
24d8a105
RS
3787
3788void
531b0165 3789memory_full (size_t nbytes)
24d8a105 3790{
531b0165
PE
3791 /* Do not go into hysterics merely because a large request failed. */
3792 int enough_free_memory = 0;
2b6148e4 3793 if (SPARE_MEMORY < nbytes)
531b0165 3794 {
66606eea
PE
3795 void *p;
3796
3797 MALLOC_BLOCK_INPUT;
3798 p = malloc (SPARE_MEMORY);
531b0165
PE
3799 if (p)
3800 {
4d09bcf6 3801 free (p);
531b0165
PE
3802 enough_free_memory = 1;
3803 }
66606eea 3804 MALLOC_UNBLOCK_INPUT;
531b0165 3805 }
24d8a105 3806
531b0165
PE
3807 if (! enough_free_memory)
3808 {
3809 int i;
24d8a105 3810
531b0165
PE
3811 Vmemory_full = Qt;
3812
3813 memory_full_cons_threshold = sizeof (struct cons_block);
3814
3815 /* The first time we get here, free the spare memory. */
3816 for (i = 0; i < sizeof (spare_memory) / sizeof (char *); i++)
3817 if (spare_memory[i])
3818 {
3819 if (i == 0)
3820 free (spare_memory[i]);
3821 else if (i >= 1 && i <= 4)
3822 lisp_align_free (spare_memory[i]);
3823 else
3824 lisp_free (spare_memory[i]);
3825 spare_memory[i] = 0;
3826 }
3827
3828 /* Record the space now used. When it decreases substantially,
3829 we can refill the memory reserve. */
4e75f29d 3830#if !defined SYSTEM_MALLOC && !defined SYNC_INPUT
531b0165 3831 bytes_used_when_full = BYTES_USED;
24d8a105 3832#endif
531b0165 3833 }
24d8a105
RS
3834
3835 /* This used to call error, but if we've run out of memory, we could
3836 get infinite recursion trying to build the string. */
9b306d37 3837 xsignal (Qnil, Vmemory_signal_data);
24d8a105
RS
3838}
3839
3840/* If we released our reserve (due to running out of memory),
3841 and we have a fair amount free once again,
3842 try to set aside another reserve in case we run out once more.
3843
3844 This is called when a relocatable block is freed in ralloc.c,
3845 and also directly from this file, in case we're not using ralloc.c. */
3846
3847void
971de7fb 3848refill_memory_reserve (void)
24d8a105
RS
3849{
3850#ifndef SYSTEM_MALLOC
3851 if (spare_memory[0] == 0)
38182d90 3852 spare_memory[0] = malloc (SPARE_MEMORY);
24d8a105 3853 if (spare_memory[1] == 0)
38182d90 3854 spare_memory[1] = lisp_align_malloc (sizeof (struct cons_block),
24d8a105
RS
3855 MEM_TYPE_CONS);
3856 if (spare_memory[2] == 0)
38182d90
PE
3857 spare_memory[2] = lisp_align_malloc (sizeof (struct cons_block),
3858 MEM_TYPE_CONS);
24d8a105 3859 if (spare_memory[3] == 0)
38182d90
PE
3860 spare_memory[3] = lisp_align_malloc (sizeof (struct cons_block),
3861 MEM_TYPE_CONS);
24d8a105 3862 if (spare_memory[4] == 0)
38182d90
PE
3863 spare_memory[4] = lisp_align_malloc (sizeof (struct cons_block),
3864 MEM_TYPE_CONS);
24d8a105 3865 if (spare_memory[5] == 0)
38182d90
PE
3866 spare_memory[5] = lisp_malloc (sizeof (struct string_block),
3867 MEM_TYPE_STRING);
24d8a105 3868 if (spare_memory[6] == 0)
38182d90
PE
3869 spare_memory[6] = lisp_malloc (sizeof (struct string_block),
3870 MEM_TYPE_STRING);
24d8a105
RS
3871 if (spare_memory[0] && spare_memory[1] && spare_memory[5])
3872 Vmemory_full = Qnil;
3873#endif
3874}
3875\f
34400008
GM
3876/************************************************************************
3877 C Stack Marking
3878 ************************************************************************/
3879
13c844fb
GM
3880#if GC_MARK_STACK || defined GC_MALLOC_CHECK
3881
71cf5fa0
GM
3882/* Conservative C stack marking requires a method to identify possibly
3883 live Lisp objects given a pointer value. We do this by keeping
3884 track of blocks of Lisp data that are allocated in a red-black tree
3885 (see also the comment of mem_node which is the type of nodes in
3886 that tree). Function lisp_malloc adds information for an allocated
3887 block to the red-black tree with calls to mem_insert, and function
3888 lisp_free removes it with mem_delete. Functions live_string_p etc
3889 call mem_find to lookup information about a given pointer in the
3890 tree, and use that to determine if the pointer points to a Lisp
3891 object or not. */
3892
34400008
GM
3893/* Initialize this part of alloc.c. */
3894
3895static void
971de7fb 3896mem_init (void)
34400008
GM
3897{
3898 mem_z.left = mem_z.right = MEM_NIL;
3899 mem_z.parent = NULL;
3900 mem_z.color = MEM_BLACK;
3901 mem_z.start = mem_z.end = NULL;
3902 mem_root = MEM_NIL;
3903}
3904
3905
3906/* Value is a pointer to the mem_node containing START. Value is
3907 MEM_NIL if there is no node in the tree containing START. */
3908
55d4c1b2 3909static inline struct mem_node *
971de7fb 3910mem_find (void *start)
34400008
GM
3911{
3912 struct mem_node *p;
3913
ece93c02
GM
3914 if (start < min_heap_address || start > max_heap_address)
3915 return MEM_NIL;
3916
34400008
GM
3917 /* Make the search always successful to speed up the loop below. */
3918 mem_z.start = start;
3919 mem_z.end = (char *) start + 1;
3920
3921 p = mem_root;
3922 while (start < p->start || start >= p->end)
3923 p = start < p->start ? p->left : p->right;
3924 return p;
3925}
3926
3927
3928/* Insert a new node into the tree for a block of memory with start
3929 address START, end address END, and type TYPE. Value is a
3930 pointer to the node that was inserted. */
3931
3932static struct mem_node *
971de7fb 3933mem_insert (void *start, void *end, enum mem_type type)
34400008
GM
3934{
3935 struct mem_node *c, *parent, *x;
3936
add3c3ea 3937 if (min_heap_address == NULL || start < min_heap_address)
ece93c02 3938 min_heap_address = start;
add3c3ea 3939 if (max_heap_address == NULL || end > max_heap_address)
ece93c02
GM
3940 max_heap_address = end;
3941
34400008
GM
3942 /* See where in the tree a node for START belongs. In this
3943 particular application, it shouldn't happen that a node is already
3944 present. For debugging purposes, let's check that. */
3945 c = mem_root;
3946 parent = NULL;
3947
3948#if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
177c0ea7 3949
34400008
GM
3950 while (c != MEM_NIL)
3951 {
3952 if (start >= c->start && start < c->end)
3953 abort ();
3954 parent = c;
3955 c = start < c->start ? c->left : c->right;
3956 }
177c0ea7 3957
34400008 3958#else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
177c0ea7 3959
34400008
GM
3960 while (c != MEM_NIL)
3961 {
3962 parent = c;
3963 c = start < c->start ? c->left : c->right;
3964 }
177c0ea7 3965
34400008
GM
3966#endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3967
3968 /* Create a new node. */
877935b1 3969#ifdef GC_MALLOC_CHECK
38182d90 3970 x = _malloc_internal (sizeof *x);
877935b1
GM
3971 if (x == NULL)
3972 abort ();
3973#else
23f86fce 3974 x = xmalloc (sizeof *x);
877935b1 3975#endif
34400008
GM
3976 x->start = start;
3977 x->end = end;
3978 x->type = type;
3979 x->parent = parent;
3980 x->left = x->right = MEM_NIL;
3981 x->color = MEM_RED;
3982
3983 /* Insert it as child of PARENT or install it as root. */
3984 if (parent)
3985 {
3986 if (start < parent->start)
3987 parent->left = x;
3988 else
3989 parent->right = x;
3990 }
177c0ea7 3991 else
34400008
GM
3992 mem_root = x;
3993
3994 /* Re-establish red-black tree properties. */
3995 mem_insert_fixup (x);
877935b1 3996
34400008
GM
3997 return x;
3998}
3999
4000
4001/* Re-establish the red-black properties of the tree, and thereby
4002 balance the tree, after node X has been inserted; X is always red. */
4003
4004static void
971de7fb 4005mem_insert_fixup (struct mem_node *x)
34400008
GM
4006{
4007 while (x != mem_root && x->parent->color == MEM_RED)
4008 {
4009 /* X is red and its parent is red. This is a violation of
4010 red-black tree property #3. */
177c0ea7 4011
34400008
GM
4012 if (x->parent == x->parent->parent->left)
4013 {
4014 /* We're on the left side of our grandparent, and Y is our
4015 "uncle". */
4016 struct mem_node *y = x->parent->parent->right;
177c0ea7 4017
34400008
GM
4018 if (y->color == MEM_RED)
4019 {
4020 /* Uncle and parent are red but should be black because
4021 X is red. Change the colors accordingly and proceed
4022 with the grandparent. */
4023 x->parent->color = MEM_BLACK;
4024 y->color = MEM_BLACK;
4025 x->parent->parent->color = MEM_RED;
4026 x = x->parent->parent;
4027 }
4028 else
4029 {
4030 /* Parent and uncle have different colors; parent is
4031 red, uncle is black. */
4032 if (x == x->parent->right)
4033 {
4034 x = x->parent;
4035 mem_rotate_left (x);
4036 }
4037
4038 x->parent->color = MEM_BLACK;
4039 x->parent->parent->color = MEM_RED;
4040 mem_rotate_right (x->parent->parent);
4041 }
4042 }
4043 else
4044 {
4045 /* This is the symmetrical case of above. */
4046 struct mem_node *y = x->parent->parent->left;
177c0ea7 4047
34400008
GM
4048 if (y->color == MEM_RED)
4049 {
4050 x->parent->color = MEM_BLACK;
4051 y->color = MEM_BLACK;
4052 x->parent->parent->color = MEM_RED;
4053 x = x->parent->parent;
4054 }
4055 else
4056 {
4057 if (x == x->parent->left)
4058 {
4059 x = x->parent;
4060 mem_rotate_right (x);
4061 }
177c0ea7 4062
34400008
GM
4063 x->parent->color = MEM_BLACK;
4064 x->parent->parent->color = MEM_RED;
4065 mem_rotate_left (x->parent->parent);
4066 }
4067 }
4068 }
4069
4070 /* The root may have been changed to red due to the algorithm. Set
4071 it to black so that property #5 is satisfied. */
4072 mem_root->color = MEM_BLACK;
4073}
4074
4075
177c0ea7
JB
4076/* (x) (y)
4077 / \ / \
34400008
GM
4078 a (y) ===> (x) c
4079 / \ / \
4080 b c a b */
4081
4082static void
971de7fb 4083mem_rotate_left (struct mem_node *x)
34400008
GM
4084{
4085 struct mem_node *y;
4086
4087 /* Turn y's left sub-tree into x's right sub-tree. */
4088 y = x->right;
4089 x->right = y->left;
4090 if (y->left != MEM_NIL)
4091 y->left->parent = x;
4092
4093 /* Y's parent was x's parent. */
4094 if (y != MEM_NIL)
4095 y->parent = x->parent;
4096
4097 /* Get the parent to point to y instead of x. */
4098 if (x->parent)
4099 {
4100 if (x == x->parent->left)
4101 x->parent->left = y;
4102 else
4103 x->parent->right = y;
4104 }
4105 else
4106 mem_root = y;
4107
4108 /* Put x on y's left. */
4109 y->left = x;
4110 if (x != MEM_NIL)
4111 x->parent = y;
4112}
4113
4114
177c0ea7
JB
4115/* (x) (Y)
4116 / \ / \
4117 (y) c ===> a (x)
4118 / \ / \
34400008
GM
4119 a b b c */
4120
4121static void
971de7fb 4122mem_rotate_right (struct mem_node *x)
34400008
GM
4123{
4124 struct mem_node *y = x->left;
4125
4126 x->left = y->right;
4127 if (y->right != MEM_NIL)
4128 y->right->parent = x;
177c0ea7 4129
34400008
GM
4130 if (y != MEM_NIL)
4131 y->parent = x->parent;
4132 if (x->parent)
4133 {
4134 if (x == x->parent->right)
4135 x->parent->right = y;
4136 else
4137 x->parent->left = y;
4138 }
4139 else
4140 mem_root = y;
177c0ea7 4141
34400008
GM
4142 y->right = x;
4143 if (x != MEM_NIL)
4144 x->parent = y;
4145}
4146
4147
4148/* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
4149
4150static void
971de7fb 4151mem_delete (struct mem_node *z)
34400008
GM
4152{
4153 struct mem_node *x, *y;
4154
4155 if (!z || z == MEM_NIL)
4156 return;
4157
4158 if (z->left == MEM_NIL || z->right == MEM_NIL)
4159 y = z;
4160 else
4161 {
4162 y = z->right;
4163 while (y->left != MEM_NIL)
4164 y = y->left;
4165 }
4166
4167 if (y->left != MEM_NIL)
4168 x = y->left;
4169 else
4170 x = y->right;
4171
4172 x->parent = y->parent;
4173 if (y->parent)
4174 {
4175 if (y == y->parent->left)
4176 y->parent->left = x;
4177 else
4178 y->parent->right = x;
4179 }
4180 else
4181 mem_root = x;
4182
4183 if (y != z)
4184 {
4185 z->start = y->start;
4186 z->end = y->end;
4187 z->type = y->type;
4188 }
177c0ea7 4189
34400008
GM
4190 if (y->color == MEM_BLACK)
4191 mem_delete_fixup (x);
877935b1
GM
4192
4193#ifdef GC_MALLOC_CHECK
4194 _free_internal (y);
4195#else
34400008 4196 xfree (y);
877935b1 4197#endif
34400008
GM
4198}
4199
4200
4201/* Re-establish the red-black properties of the tree, after a
4202 deletion. */
4203
4204static void
971de7fb 4205mem_delete_fixup (struct mem_node *x)
34400008
GM
4206{
4207 while (x != mem_root && x->color == MEM_BLACK)
4208 {
4209 if (x == x->parent->left)
4210 {
4211 struct mem_node *w = x->parent->right;
177c0ea7 4212
34400008
GM
4213 if (w->color == MEM_RED)
4214 {
4215 w->color = MEM_BLACK;
4216 x->parent->color = MEM_RED;
4217 mem_rotate_left (x->parent);
4218 w = x->parent->right;
4219 }
177c0ea7 4220
34400008
GM
4221 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
4222 {
4223 w->color = MEM_RED;
4224 x = x->parent;
4225 }
4226 else
4227 {
4228 if (w->right->color == MEM_BLACK)
4229 {
4230 w->left->color = MEM_BLACK;
4231 w->color = MEM_RED;
4232 mem_rotate_right (w);
4233 w = x->parent->right;
4234 }
4235 w->color = x->parent->color;
4236 x->parent->color = MEM_BLACK;
4237 w->right->color = MEM_BLACK;
4238 mem_rotate_left (x->parent);
4239 x = mem_root;
4240 }
4241 }
4242 else
4243 {
4244 struct mem_node *w = x->parent->left;
177c0ea7 4245
34400008
GM
4246 if (w->color == MEM_RED)
4247 {
4248 w->color = MEM_BLACK;
4249 x->parent->color = MEM_RED;
4250 mem_rotate_right (x->parent);
4251 w = x->parent->left;
4252 }
177c0ea7 4253
34400008
GM
4254 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
4255 {
4256 w->color = MEM_RED;
4257 x = x->parent;
4258 }
4259 else
4260 {
4261 if (w->left->color == MEM_BLACK)
4262 {
4263 w->right->color = MEM_BLACK;
4264 w->color = MEM_RED;
4265 mem_rotate_left (w);
4266 w = x->parent->left;
4267 }
177c0ea7 4268
34400008
GM
4269 w->color = x->parent->color;
4270 x->parent->color = MEM_BLACK;
4271 w->left->color = MEM_BLACK;
4272 mem_rotate_right (x->parent);
4273 x = mem_root;
4274 }
4275 }
4276 }
177c0ea7 4277
34400008
GM
4278 x->color = MEM_BLACK;
4279}
4280
4281
4282/* Value is non-zero if P is a pointer to a live Lisp string on
4283 the heap. M is a pointer to the mem_block for P. */
4284
55d4c1b2 4285static inline int
971de7fb 4286live_string_p (struct mem_node *m, void *p)
34400008
GM
4287{
4288 if (m->type == MEM_TYPE_STRING)
4289 {
4290 struct string_block *b = (struct string_block *) m->start;
14162469 4291 ptrdiff_t offset = (char *) p - (char *) &b->strings[0];
34400008
GM
4292
4293 /* P must point to the start of a Lisp_String structure, and it
4294 must not be on the free-list. */
176bc847
GM
4295 return (offset >= 0
4296 && offset % sizeof b->strings[0] == 0
6b61353c 4297 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
34400008
GM
4298 && ((struct Lisp_String *) p)->data != NULL);
4299 }
4300 else
4301 return 0;
4302}
4303
4304
4305/* Value is non-zero if P is a pointer to a live Lisp cons on
4306 the heap. M is a pointer to the mem_block for P. */
4307
55d4c1b2 4308static inline int
971de7fb 4309live_cons_p (struct mem_node *m, void *p)
34400008
GM
4310{
4311 if (m->type == MEM_TYPE_CONS)
4312 {
4313 struct cons_block *b = (struct cons_block *) m->start;
14162469 4314 ptrdiff_t offset = (char *) p - (char *) &b->conses[0];
34400008
GM
4315
4316 /* P must point to the start of a Lisp_Cons, not be
4317 one of the unused cells in the current cons block,
4318 and not be on the free-list. */
176bc847
GM
4319 return (offset >= 0
4320 && offset % sizeof b->conses[0] == 0
6b61353c 4321 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
34400008
GM
4322 && (b != cons_block
4323 || offset / sizeof b->conses[0] < cons_block_index)
4324 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
4325 }
4326 else
4327 return 0;
4328}
4329
4330
4331/* Value is non-zero if P is a pointer to a live Lisp symbol on
4332 the heap. M is a pointer to the mem_block for P. */
4333
55d4c1b2 4334static inline int
971de7fb 4335live_symbol_p (struct mem_node *m, void *p)
34400008
GM
4336{
4337 if (m->type == MEM_TYPE_SYMBOL)
4338 {
4339 struct symbol_block *b = (struct symbol_block *) m->start;
14162469 4340 ptrdiff_t offset = (char *) p - (char *) &b->symbols[0];
177c0ea7 4341
34400008
GM
4342 /* P must point to the start of a Lisp_Symbol, not be
4343 one of the unused cells in the current symbol block,
4344 and not be on the free-list. */
176bc847
GM
4345 return (offset >= 0
4346 && offset % sizeof b->symbols[0] == 0
6b61353c 4347 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
34400008
GM
4348 && (b != symbol_block
4349 || offset / sizeof b->symbols[0] < symbol_block_index)
4350 && !EQ (((struct Lisp_Symbol *) p)->function, Vdead));
4351 }
4352 else
4353 return 0;
4354}
4355
4356
4357/* Value is non-zero if P is a pointer to a live Lisp float on
4358 the heap. M is a pointer to the mem_block for P. */
4359
55d4c1b2 4360static inline int
971de7fb 4361live_float_p (struct mem_node *m, void *p)
34400008
GM
4362{
4363 if (m->type == MEM_TYPE_FLOAT)
4364 {
4365 struct float_block *b = (struct float_block *) m->start;
14162469 4366 ptrdiff_t offset = (char *) p - (char *) &b->floats[0];
177c0ea7 4367
ab6780cd
SM
4368 /* P must point to the start of a Lisp_Float and not be
4369 one of the unused cells in the current float block. */
176bc847
GM
4370 return (offset >= 0
4371 && offset % sizeof b->floats[0] == 0
6b61353c 4372 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
34400008 4373 && (b != float_block
ab6780cd 4374 || offset / sizeof b->floats[0] < float_block_index));
34400008
GM
4375 }
4376 else
4377 return 0;
4378}
4379
4380
4381/* Value is non-zero if P is a pointer to a live Lisp Misc on
4382 the heap. M is a pointer to the mem_block for P. */
4383
55d4c1b2 4384static inline int
971de7fb 4385live_misc_p (struct mem_node *m, void *p)
34400008
GM
4386{
4387 if (m->type == MEM_TYPE_MISC)
4388 {
4389 struct marker_block *b = (struct marker_block *) m->start;
14162469 4390 ptrdiff_t offset = (char *) p - (char *) &b->markers[0];
177c0ea7 4391
34400008
GM
4392 /* P must point to the start of a Lisp_Misc, not be
4393 one of the unused cells in the current misc block,
4394 and not be on the free-list. */
176bc847
GM
4395 return (offset >= 0
4396 && offset % sizeof b->markers[0] == 0
6b61353c 4397 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
34400008
GM
4398 && (b != marker_block
4399 || offset / sizeof b->markers[0] < marker_block_index)
d314756e 4400 && ((union Lisp_Misc *) p)->u_any.type != Lisp_Misc_Free);
34400008
GM
4401 }
4402 else
4403 return 0;
4404}
4405
4406
4407/* Value is non-zero if P is a pointer to a live vector-like object.
4408 M is a pointer to the mem_block for P. */
4409
55d4c1b2 4410static inline int
971de7fb 4411live_vector_p (struct mem_node *m, void *p)
34400008 4412{
f3372c87
DA
4413 if (m->type == MEM_TYPE_VECTOR_BLOCK)
4414 {
4415 /* This memory node corresponds to a vector block. */
4416 struct vector_block *block = (struct vector_block *) m->start;
4417 struct Lisp_Vector *vector = (struct Lisp_Vector *) block->data;
4418
4419 /* P is in the block's allocation range. Scan the block
4420 up to P and see whether P points to the start of some
4421 vector which is not on a free list. FIXME: check whether
4422 some allocation patterns (probably a lot of short vectors)
4423 may cause a substantial overhead of this loop. */
4424 while (VECTOR_IN_BLOCK (vector, block)
4425 && vector <= (struct Lisp_Vector *) p)
4426 {
ee28be33 4427 if (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_FREE))
f3372c87 4428 vector = ADVANCE (vector, (vector->header.size
ee28be33 4429 & PSEUDOVECTOR_SIZE_MASK));
f3372c87
DA
4430 else if (vector == p)
4431 return 1;
4432 else
4433 vector = ADVANCE (vector, vector->header.next.nbytes);
4434 }
4435 }
4436 else if (m->type == MEM_TYPE_VECTORLIKE && p == m->start)
4437 /* This memory node corresponds to a large vector. */
4438 return 1;
4439 return 0;
34400008
GM
4440}
4441
4442
2336fe58 4443/* Value is non-zero if P is a pointer to a live buffer. M is a
34400008
GM
4444 pointer to the mem_block for P. */
4445
55d4c1b2 4446static inline int
971de7fb 4447live_buffer_p (struct mem_node *m, void *p)
34400008
GM
4448{
4449 /* P must point to the start of the block, and the buffer
4450 must not have been killed. */
4451 return (m->type == MEM_TYPE_BUFFER
4452 && p == m->start
5d8ea120 4453 && !NILP (((struct buffer *) p)->BUFFER_INTERNAL_FIELD (name)));
34400008
GM
4454}
4455
13c844fb
GM
4456#endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
4457
4458#if GC_MARK_STACK
4459
34400008
GM
4460#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4461
4462/* Array of objects that are kept alive because the C stack contains
4463 a pattern that looks like a reference to them . */
4464
4465#define MAX_ZOMBIES 10
4466static Lisp_Object zombies[MAX_ZOMBIES];
4467
4468/* Number of zombie objects. */
4469
211a0b2a 4470static EMACS_INT nzombies;
34400008
GM
4471
4472/* Number of garbage collections. */
4473
211a0b2a 4474static EMACS_INT ngcs;
34400008
GM
4475
4476/* Average percentage of zombies per collection. */
4477
4478static double avg_zombies;
4479
4480/* Max. number of live and zombie objects. */
4481
211a0b2a 4482static EMACS_INT max_live, max_zombies;
34400008
GM
4483
4484/* Average number of live objects per GC. */
4485
4486static double avg_live;
4487
a7ca3326 4488DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
7ee72033 4489 doc: /* Show information about live and zombie objects. */)
5842a27b 4490 (void)
34400008 4491{
83fc9c63 4492 Lisp_Object args[8], zombie_list = Qnil;
211a0b2a 4493 EMACS_INT i;
6e4b3fbe 4494 for (i = 0; i < min (MAX_ZOMBIES, nzombies); i++)
83fc9c63
DL
4495 zombie_list = Fcons (zombies[i], zombie_list);
4496 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
34400008
GM
4497 args[1] = make_number (ngcs);
4498 args[2] = make_float (avg_live);
4499 args[3] = make_float (avg_zombies);
4500 args[4] = make_float (avg_zombies / avg_live / 100);
4501 args[5] = make_number (max_live);
4502 args[6] = make_number (max_zombies);
83fc9c63
DL
4503 args[7] = zombie_list;
4504 return Fmessage (8, args);
34400008
GM
4505}
4506
4507#endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4508
4509
182ff242
GM
4510/* Mark OBJ if we can prove it's a Lisp_Object. */
4511
55d4c1b2 4512static inline void
971de7fb 4513mark_maybe_object (Lisp_Object obj)
182ff242 4514{
b609f591
YM
4515 void *po;
4516 struct mem_node *m;
4517
4518 if (INTEGERP (obj))
4519 return;
4520
4521 po = (void *) XPNTR (obj);
4522 m = mem_find (po);
177c0ea7 4523
182ff242
GM
4524 if (m != MEM_NIL)
4525 {
4526 int mark_p = 0;
4527
8e50cc2d 4528 switch (XTYPE (obj))
182ff242
GM
4529 {
4530 case Lisp_String:
4531 mark_p = (live_string_p (m, po)
4532 && !STRING_MARKED_P ((struct Lisp_String *) po));
4533 break;
4534
4535 case Lisp_Cons:
08b7c2cb 4536 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
182ff242
GM
4537 break;
4538
4539 case Lisp_Symbol:
2336fe58 4540 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
182ff242
GM
4541 break;
4542
4543 case Lisp_Float:
ab6780cd 4544 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
182ff242
GM
4545 break;
4546
4547 case Lisp_Vectorlike:
8e50cc2d 4548 /* Note: can't check BUFFERP before we know it's a
182ff242
GM
4549 buffer because checking that dereferences the pointer
4550 PO which might point anywhere. */
4551 if (live_vector_p (m, po))
8e50cc2d 4552 mark_p = !SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
182ff242 4553 else if (live_buffer_p (m, po))
8e50cc2d 4554 mark_p = BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
182ff242
GM
4555 break;
4556
4557 case Lisp_Misc:
67ee9f6e 4558 mark_p = (live_misc_p (m, po) && !XMISCANY (obj)->gcmarkbit);
182ff242 4559 break;
6bbd7a29 4560
2de9f71c 4561 default:
6bbd7a29 4562 break;
182ff242
GM
4563 }
4564
4565 if (mark_p)
4566 {
4567#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4568 if (nzombies < MAX_ZOMBIES)
83fc9c63 4569 zombies[nzombies] = obj;
182ff242
GM
4570 ++nzombies;
4571#endif
49723c04 4572 mark_object (obj);
182ff242
GM
4573 }
4574 }
4575}
ece93c02
GM
4576
4577
4578/* If P points to Lisp data, mark that as live if it isn't already
4579 marked. */
4580
55d4c1b2 4581static inline void
971de7fb 4582mark_maybe_pointer (void *p)
ece93c02
GM
4583{
4584 struct mem_node *m;
4585
bfe3e0a2
PE
4586 /* Quickly rule out some values which can't point to Lisp data.
4587 USE_LSB_TAG needs Lisp data to be aligned on multiples of 1 << GCTYPEBITS.
4588 Otherwise, assume that Lisp data is aligned on even addresses. */
4589 if ((intptr_t) p % (USE_LSB_TAG ? 1 << GCTYPEBITS : 2))
ece93c02 4590 return;
177c0ea7 4591
ece93c02
GM
4592 m = mem_find (p);
4593 if (m != MEM_NIL)
4594 {
4595 Lisp_Object obj = Qnil;
177c0ea7 4596
ece93c02
GM
4597 switch (m->type)
4598 {
4599 case MEM_TYPE_NON_LISP:
2fe50224 4600 /* Nothing to do; not a pointer to Lisp memory. */
ece93c02 4601 break;
177c0ea7 4602
ece93c02 4603 case MEM_TYPE_BUFFER:
5e617bc2 4604 if (live_buffer_p (m, p) && !VECTOR_MARKED_P ((struct buffer *)p))
ece93c02
GM
4605 XSETVECTOR (obj, p);
4606 break;
177c0ea7 4607
ece93c02 4608 case MEM_TYPE_CONS:
08b7c2cb 4609 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
ece93c02
GM
4610 XSETCONS (obj, p);
4611 break;
177c0ea7 4612
ece93c02
GM
4613 case MEM_TYPE_STRING:
4614 if (live_string_p (m, p)
4615 && !STRING_MARKED_P ((struct Lisp_String *) p))
4616 XSETSTRING (obj, p);
4617 break;
4618
4619 case MEM_TYPE_MISC:
2336fe58
SM
4620 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
4621 XSETMISC (obj, p);
ece93c02 4622 break;
177c0ea7 4623
ece93c02 4624 case MEM_TYPE_SYMBOL:
2336fe58 4625 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
ece93c02
GM
4626 XSETSYMBOL (obj, p);
4627 break;
177c0ea7 4628
ece93c02 4629 case MEM_TYPE_FLOAT:
ab6780cd 4630 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
ece93c02
GM
4631 XSETFLOAT (obj, p);
4632 break;
177c0ea7 4633
9c545a55 4634 case MEM_TYPE_VECTORLIKE:
f3372c87 4635 case MEM_TYPE_VECTOR_BLOCK:
ece93c02
GM
4636 if (live_vector_p (m, p))
4637 {
4638 Lisp_Object tem;
4639 XSETVECTOR (tem, p);
8e50cc2d 4640 if (!SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
ece93c02
GM
4641 obj = tem;
4642 }
4643 break;
4644
4645 default:
4646 abort ();
4647 }
4648
8e50cc2d 4649 if (!NILP (obj))
49723c04 4650 mark_object (obj);
ece93c02
GM
4651 }
4652}
4653
4654
e3fb2efb
PE
4655/* Alignment of pointer values. Use offsetof, as it sometimes returns
4656 a smaller alignment than GCC's __alignof__ and mark_memory might
4657 miss objects if __alignof__ were used. */
3164aeac
PE
4658#define GC_POINTER_ALIGNMENT offsetof (struct {char a; void *b;}, b)
4659
e3fb2efb
PE
4660/* Define POINTERS_MIGHT_HIDE_IN_OBJECTS to 1 if marking via C pointers does
4661 not suffice, which is the typical case. A host where a Lisp_Object is
4662 wider than a pointer might allocate a Lisp_Object in non-adjacent halves.
4663 If USE_LSB_TAG, the bottom half is not a valid pointer, but it should
4664 suffice to widen it to to a Lisp_Object and check it that way. */
bfe3e0a2
PE
4665#if USE_LSB_TAG || VAL_MAX < UINTPTR_MAX
4666# if !USE_LSB_TAG && VAL_MAX < UINTPTR_MAX >> GCTYPEBITS
e3fb2efb
PE
4667 /* If tag bits straddle pointer-word boundaries, neither mark_maybe_pointer
4668 nor mark_maybe_object can follow the pointers. This should not occur on
4669 any practical porting target. */
4670# error "MSB type bits straddle pointer-word boundaries"
4671# endif
4672 /* Marking via C pointers does not suffice, because Lisp_Objects contain
4673 pointer words that hold pointers ORed with type bits. */
4674# define POINTERS_MIGHT_HIDE_IN_OBJECTS 1
4675#else
4676 /* Marking via C pointers suffices, because Lisp_Objects contain pointer
4677 words that hold unmodified pointers. */
4678# define POINTERS_MIGHT_HIDE_IN_OBJECTS 0
4679#endif
4680
55a314a5
YM
4681/* Mark Lisp objects referenced from the address range START+OFFSET..END
4682 or END+OFFSET..START. */
34400008 4683
177c0ea7 4684static void
3164aeac 4685mark_memory (void *start, void *end)
b41253a3
JW
4686#if defined (__clang__) && defined (__has_feature)
4687#if __has_feature(address_sanitizer)
ed6b3510
JW
4688 /* Do not allow -faddress-sanitizer to check this function, since it
4689 crosses the function stack boundary, and thus would yield many
4690 false positives. */
4691 __attribute__((no_address_safety_analysis))
4692#endif
b41253a3 4693#endif
34400008 4694{
ece93c02 4695 void **pp;
3164aeac 4696 int i;
34400008
GM
4697
4698#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4699 nzombies = 0;
4700#endif
4701
4702 /* Make START the pointer to the start of the memory region,
4703 if it isn't already. */
4704 if (end < start)
4705 {
4706 void *tem = start;
4707 start = end;
4708 end = tem;
4709 }
ece93c02 4710
ece93c02
GM
4711 /* Mark Lisp data pointed to. This is necessary because, in some
4712 situations, the C compiler optimizes Lisp objects away, so that
4713 only a pointer to them remains. Example:
4714
4715 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
7ee72033 4716 ()
ece93c02
GM
4717 {
4718 Lisp_Object obj = build_string ("test");
4719 struct Lisp_String *s = XSTRING (obj);
4720 Fgarbage_collect ();
4721 fprintf (stderr, "test `%s'\n", s->data);
4722 return Qnil;
4723 }
4724
4725 Here, `obj' isn't really used, and the compiler optimizes it
4726 away. The only reference to the life string is through the
4727 pointer `s'. */
177c0ea7 4728
3164aeac
PE
4729 for (pp = start; (void *) pp < end; pp++)
4730 for (i = 0; i < sizeof *pp; i += GC_POINTER_ALIGNMENT)
27f3c637 4731 {
e3fb2efb
PE
4732 void *p = *(void **) ((char *) pp + i);
4733 mark_maybe_pointer (p);
4734 if (POINTERS_MIGHT_HIDE_IN_OBJECTS)
646b5f55 4735 mark_maybe_object (XIL ((intptr_t) p));
27f3c637 4736 }
182ff242
GM
4737}
4738
30f637f8
DL
4739/* setjmp will work with GCC unless NON_SAVING_SETJMP is defined in
4740 the GCC system configuration. In gcc 3.2, the only systems for
4741 which this is so are i386-sco5 non-ELF, i386-sysv3 (maybe included
4742 by others?) and ns32k-pc532-min. */
182ff242
GM
4743
4744#if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4745
4746static int setjmp_tested_p, longjmps_done;
4747
4748#define SETJMP_WILL_LIKELY_WORK "\
4749\n\
4750Emacs garbage collector has been changed to use conservative stack\n\
4751marking. Emacs has determined that the method it uses to do the\n\
4752marking will likely work on your system, but this isn't sure.\n\
4753\n\
4754If you are a system-programmer, or can get the help of a local wizard\n\
4755who is, please take a look at the function mark_stack in alloc.c, and\n\
4756verify that the methods used are appropriate for your system.\n\
4757\n\
d191623b 4758Please mail the result to <emacs-devel@gnu.org>.\n\
182ff242
GM
4759"
4760
4761#define SETJMP_WILL_NOT_WORK "\
4762\n\
4763Emacs garbage collector has been changed to use conservative stack\n\
4764marking. Emacs has determined that the default method it uses to do the\n\
4765marking will not work on your system. We will need a system-dependent\n\
4766solution for your system.\n\
4767\n\
4768Please take a look at the function mark_stack in alloc.c, and\n\
4769try to find a way to make it work on your system.\n\
30f637f8
DL
4770\n\
4771Note that you may get false negatives, depending on the compiler.\n\
4772In particular, you need to use -O with GCC for this test.\n\
4773\n\
d191623b 4774Please mail the result to <emacs-devel@gnu.org>.\n\
182ff242
GM
4775"
4776
4777
4778/* Perform a quick check if it looks like setjmp saves registers in a
4779 jmp_buf. Print a message to stderr saying so. When this test
4780 succeeds, this is _not_ a proof that setjmp is sufficient for
4781 conservative stack marking. Only the sources or a disassembly
4782 can prove that. */
4783
4784static void
2018939f 4785test_setjmp (void)
182ff242
GM
4786{
4787 char buf[10];
4788 register int x;
4789 jmp_buf jbuf;
4790 int result = 0;
4791
4792 /* Arrange for X to be put in a register. */
4793 sprintf (buf, "1");
4794 x = strlen (buf);
4795 x = 2 * x - 1;
4796
4797 setjmp (jbuf);
4798 if (longjmps_done == 1)
34400008 4799 {
182ff242 4800 /* Came here after the longjmp at the end of the function.
34400008 4801
182ff242
GM
4802 If x == 1, the longjmp has restored the register to its
4803 value before the setjmp, and we can hope that setjmp
4804 saves all such registers in the jmp_buf, although that
4805 isn't sure.
34400008 4806
182ff242
GM
4807 For other values of X, either something really strange is
4808 taking place, or the setjmp just didn't save the register. */
4809
4810 if (x == 1)
4811 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
4812 else
4813 {
4814 fprintf (stderr, SETJMP_WILL_NOT_WORK);
4815 exit (1);
34400008
GM
4816 }
4817 }
182ff242
GM
4818
4819 ++longjmps_done;
4820 x = 2;
4821 if (longjmps_done == 1)
4822 longjmp (jbuf, 1);
34400008
GM
4823}
4824
182ff242
GM
4825#endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
4826
34400008
GM
4827
4828#if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4829
4830/* Abort if anything GCPRO'd doesn't survive the GC. */
4831
4832static void
2018939f 4833check_gcpros (void)
34400008
GM
4834{
4835 struct gcpro *p;
f66c7cf8 4836 ptrdiff_t i;
34400008
GM
4837
4838 for (p = gcprolist; p; p = p->next)
4839 for (i = 0; i < p->nvars; ++i)
4840 if (!survives_gc_p (p->var[i]))
92cc28b2
SM
4841 /* FIXME: It's not necessarily a bug. It might just be that the
4842 GCPRO is unnecessary or should release the object sooner. */
34400008
GM
4843 abort ();
4844}
4845
4846#elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4847
4848static void
2018939f 4849dump_zombies (void)
34400008
GM
4850{
4851 int i;
4852
6e4b3fbe 4853 fprintf (stderr, "\nZombies kept alive = %"pI"d:\n", nzombies);
34400008
GM
4854 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
4855 {
4856 fprintf (stderr, " %d = ", i);
4857 debug_print (zombies[i]);
4858 }
4859}
4860
4861#endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4862
4863
182ff242
GM
4864/* Mark live Lisp objects on the C stack.
4865
4866 There are several system-dependent problems to consider when
4867 porting this to new architectures:
4868
4869 Processor Registers
4870
4871 We have to mark Lisp objects in CPU registers that can hold local
4872 variables or are used to pass parameters.
4873
4874 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4875 something that either saves relevant registers on the stack, or
4876 calls mark_maybe_object passing it each register's contents.
4877
4878 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4879 implementation assumes that calling setjmp saves registers we need
4880 to see in a jmp_buf which itself lies on the stack. This doesn't
4881 have to be true! It must be verified for each system, possibly
4882 by taking a look at the source code of setjmp.
4883
2018939f
AS
4884 If __builtin_unwind_init is available (defined by GCC >= 2.8) we
4885 can use it as a machine independent method to store all registers
4886 to the stack. In this case the macros described in the previous
4887 two paragraphs are not used.
4888
182ff242
GM
4889 Stack Layout
4890
4891 Architectures differ in the way their processor stack is organized.
4892 For example, the stack might look like this
4893
4894 +----------------+
4895 | Lisp_Object | size = 4
4896 +----------------+
4897 | something else | size = 2
4898 +----------------+
4899 | Lisp_Object | size = 4
4900 +----------------+
4901 | ... |
4902
4903 In such a case, not every Lisp_Object will be aligned equally. To
4904 find all Lisp_Object on the stack it won't be sufficient to walk
4905 the stack in steps of 4 bytes. Instead, two passes will be
4906 necessary, one starting at the start of the stack, and a second
4907 pass starting at the start of the stack + 2. Likewise, if the
4908 minimal alignment of Lisp_Objects on the stack is 1, four passes
4909 would be necessary, each one starting with one byte more offset
c9af454e 4910 from the stack start. */
34400008
GM
4911
4912static void
971de7fb 4913mark_stack (void)
34400008 4914{
34400008
GM
4915 void *end;
4916
2018939f
AS
4917#ifdef HAVE___BUILTIN_UNWIND_INIT
4918 /* Force callee-saved registers and register windows onto the stack.
4919 This is the preferred method if available, obviating the need for
4920 machine dependent methods. */
4921 __builtin_unwind_init ();
4922 end = &end;
4923#else /* not HAVE___BUILTIN_UNWIND_INIT */
dff45157
PE
4924#ifndef GC_SAVE_REGISTERS_ON_STACK
4925 /* jmp_buf may not be aligned enough on darwin-ppc64 */
4926 union aligned_jmpbuf {
4927 Lisp_Object o;
4928 jmp_buf j;
4929 } j;
4930 volatile int stack_grows_down_p = (char *) &j > (char *) stack_base;
4931#endif
34400008
GM
4932 /* This trick flushes the register windows so that all the state of
4933 the process is contained in the stack. */
ab6780cd 4934 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
422eec7e
DL
4935 needed on ia64 too. See mach_dep.c, where it also says inline
4936 assembler doesn't work with relevant proprietary compilers. */
4a00783e 4937#ifdef __sparc__
4d18a7a2
DN
4938#if defined (__sparc64__) && defined (__FreeBSD__)
4939 /* FreeBSD does not have a ta 3 handler. */
4c1616be
CY
4940 asm ("flushw");
4941#else
34400008 4942 asm ("ta 3");
4c1616be 4943#endif
34400008 4944#endif
177c0ea7 4945
34400008
GM
4946 /* Save registers that we need to see on the stack. We need to see
4947 registers used to hold register variables and registers used to
4948 pass parameters. */
4949#ifdef GC_SAVE_REGISTERS_ON_STACK
4950 GC_SAVE_REGISTERS_ON_STACK (end);
182ff242 4951#else /* not GC_SAVE_REGISTERS_ON_STACK */
177c0ea7 4952
182ff242
GM
4953#ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
4954 setjmp will definitely work, test it
4955 and print a message with the result
4956 of the test. */
4957 if (!setjmp_tested_p)
4958 {
4959 setjmp_tested_p = 1;
4960 test_setjmp ();
4961 }
4962#endif /* GC_SETJMP_WORKS */
177c0ea7 4963
55a314a5 4964 setjmp (j.j);
34400008 4965 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
182ff242 4966#endif /* not GC_SAVE_REGISTERS_ON_STACK */
2018939f 4967#endif /* not HAVE___BUILTIN_UNWIND_INIT */
34400008
GM
4968
4969 /* This assumes that the stack is a contiguous region in memory. If
182ff242
GM
4970 that's not the case, something has to be done here to iterate
4971 over the stack segments. */
3164aeac
PE
4972 mark_memory (stack_base, end);
4973
4dec23ff
AS
4974 /* Allow for marking a secondary stack, like the register stack on the
4975 ia64. */
4976#ifdef GC_MARK_SECONDARY_STACK
4977 GC_MARK_SECONDARY_STACK ();
4978#endif
34400008
GM
4979
4980#if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4981 check_gcpros ();
4982#endif
4983}
4984
34400008
GM
4985#endif /* GC_MARK_STACK != 0 */
4986
4987
7ffb6955 4988/* Determine whether it is safe to access memory at address P. */
d3d47262 4989static int
971de7fb 4990valid_pointer_p (void *p)
7ffb6955 4991{
f892cf9c
EZ
4992#ifdef WINDOWSNT
4993 return w32_valid_pointer_p (p, 16);
4994#else
41bed37d 4995 int fd[2];
7ffb6955
KS
4996
4997 /* Obviously, we cannot just access it (we would SEGV trying), so we
4998 trick the o/s to tell us whether p is a valid pointer.
4999 Unfortunately, we cannot use NULL_DEVICE here, as emacs_write may
5000 not validate p in that case. */
5001
41bed37d 5002 if (pipe (fd) == 0)
7ffb6955 5003 {
41bed37d
PE
5004 int valid = (emacs_write (fd[1], (char *) p, 16) == 16);
5005 emacs_close (fd[1]);
5006 emacs_close (fd[0]);
7ffb6955
KS
5007 return valid;
5008 }
5009
5010 return -1;
f892cf9c 5011#endif
7ffb6955 5012}
3cd55735
KS
5013
5014/* Return 1 if OBJ is a valid lisp object.
5015 Return 0 if OBJ is NOT a valid lisp object.
5016 Return -1 if we cannot validate OBJ.
7c0ab7d9
RS
5017 This function can be quite slow,
5018 so it should only be used in code for manual debugging. */
3cd55735
KS
5019
5020int
971de7fb 5021valid_lisp_object_p (Lisp_Object obj)
3cd55735 5022{
de7124a7 5023 void *p;
7ffb6955 5024#if GC_MARK_STACK
3cd55735 5025 struct mem_node *m;
de7124a7 5026#endif
3cd55735
KS
5027
5028 if (INTEGERP (obj))
5029 return 1;
5030
5031 p = (void *) XPNTR (obj);
3cd55735
KS
5032 if (PURE_POINTER_P (p))
5033 return 1;
5034
de7124a7 5035#if !GC_MARK_STACK
7ffb6955 5036 return valid_pointer_p (p);
de7124a7
KS
5037#else
5038
3cd55735
KS
5039 m = mem_find (p);
5040
5041 if (m == MEM_NIL)
7ffb6955
KS
5042 {
5043 int valid = valid_pointer_p (p);
5044 if (valid <= 0)
5045 return valid;
5046
5047 if (SUBRP (obj))
5048 return 1;
5049
5050 return 0;
5051 }
3cd55735
KS
5052
5053 switch (m->type)
5054 {
5055 case MEM_TYPE_NON_LISP:
5056 return 0;
5057
5058 case MEM_TYPE_BUFFER:
5059 return live_buffer_p (m, p);
5060
5061 case MEM_TYPE_CONS:
5062 return live_cons_p (m, p);
5063
5064 case MEM_TYPE_STRING:
5065 return live_string_p (m, p);
5066
5067 case MEM_TYPE_MISC:
5068 return live_misc_p (m, p);
5069
5070 case MEM_TYPE_SYMBOL:
5071 return live_symbol_p (m, p);
5072
5073 case MEM_TYPE_FLOAT:
5074 return live_float_p (m, p);
5075
9c545a55 5076 case MEM_TYPE_VECTORLIKE:
f3372c87 5077 case MEM_TYPE_VECTOR_BLOCK:
3cd55735
KS
5078 return live_vector_p (m, p);
5079
5080 default:
5081 break;
5082 }
5083
5084 return 0;
5085#endif
5086}
5087
5088
5089
34400008 5090\f
2e471eb5
GM
5091/***********************************************************************
5092 Pure Storage Management
5093 ***********************************************************************/
5094
1f0b3fd2
GM
5095/* Allocate room for SIZE bytes from pure Lisp storage and return a
5096 pointer to it. TYPE is the Lisp type for which the memory is
e5bc14d4 5097 allocated. TYPE < 0 means it's not used for a Lisp object. */
1f0b3fd2 5098
261cb4bb 5099static void *
971de7fb 5100pure_alloc (size_t size, int type)
1f0b3fd2 5101{
261cb4bb 5102 void *result;
bfe3e0a2 5103#if USE_LSB_TAG
6b61353c
KH
5104 size_t alignment = (1 << GCTYPEBITS);
5105#else
44117420 5106 size_t alignment = sizeof (EMACS_INT);
1f0b3fd2
GM
5107
5108 /* Give Lisp_Floats an extra alignment. */
5109 if (type == Lisp_Float)
5110 {
1f0b3fd2
GM
5111#if defined __GNUC__ && __GNUC__ >= 2
5112 alignment = __alignof (struct Lisp_Float);
5113#else
5114 alignment = sizeof (struct Lisp_Float);
5115#endif
9e713715 5116 }
6b61353c 5117#endif
1f0b3fd2 5118
44117420 5119 again:
e5bc14d4
YM
5120 if (type >= 0)
5121 {
5122 /* Allocate space for a Lisp object from the beginning of the free
5123 space with taking account of alignment. */
5124 result = ALIGN (purebeg + pure_bytes_used_lisp, alignment);
5125 pure_bytes_used_lisp = ((char *)result - (char *)purebeg) + size;
5126 }
5127 else
5128 {
5129 /* Allocate space for a non-Lisp object from the end of the free
5130 space. */
5131 pure_bytes_used_non_lisp += size;
5132 result = purebeg + pure_size - pure_bytes_used_non_lisp;
5133 }
5134 pure_bytes_used = pure_bytes_used_lisp + pure_bytes_used_non_lisp;
44117420
KS
5135
5136 if (pure_bytes_used <= pure_size)
5137 return result;
5138
5139 /* Don't allocate a large amount here,
5140 because it might get mmap'd and then its address
5141 might not be usable. */
23f86fce 5142 purebeg = xmalloc (10000);
44117420
KS
5143 pure_size = 10000;
5144 pure_bytes_used_before_overflow += pure_bytes_used - size;
5145 pure_bytes_used = 0;
e5bc14d4 5146 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
44117420 5147 goto again;
1f0b3fd2
GM
5148}
5149
5150
852f8cdc 5151/* Print a warning if PURESIZE is too small. */
9e713715
GM
5152
5153void
971de7fb 5154check_pure_size (void)
9e713715
GM
5155{
5156 if (pure_bytes_used_before_overflow)
c2982e87
PE
5157 message (("emacs:0:Pure Lisp storage overflow (approx. %"pI"d"
5158 " bytes needed)"),
5159 pure_bytes_used + pure_bytes_used_before_overflow);
9e713715
GM
5160}
5161
5162
79fd0489
YM
5163/* Find the byte sequence {DATA[0], ..., DATA[NBYTES-1], '\0'} from
5164 the non-Lisp data pool of the pure storage, and return its start
5165 address. Return NULL if not found. */
5166
5167static char *
d311d28c 5168find_string_data_in_pure (const char *data, ptrdiff_t nbytes)
79fd0489 5169{
14162469 5170 int i;
d311d28c 5171 ptrdiff_t skip, bm_skip[256], last_char_skip, infinity, start, start_max;
2aff7c53 5172 const unsigned char *p;
79fd0489
YM
5173 char *non_lisp_beg;
5174
d311d28c 5175 if (pure_bytes_used_non_lisp <= nbytes)
79fd0489
YM
5176 return NULL;
5177
5178 /* Set up the Boyer-Moore table. */
5179 skip = nbytes + 1;
5180 for (i = 0; i < 256; i++)
5181 bm_skip[i] = skip;
5182
2aff7c53 5183 p = (const unsigned char *) data;
79fd0489
YM
5184 while (--skip > 0)
5185 bm_skip[*p++] = skip;
5186
5187 last_char_skip = bm_skip['\0'];
5188
5189 non_lisp_beg = purebeg + pure_size - pure_bytes_used_non_lisp;
5190 start_max = pure_bytes_used_non_lisp - (nbytes + 1);
5191
5192 /* See the comments in the function `boyer_moore' (search.c) for the
5193 use of `infinity'. */
5194 infinity = pure_bytes_used_non_lisp + 1;
5195 bm_skip['\0'] = infinity;
5196
2aff7c53 5197 p = (const unsigned char *) non_lisp_beg + nbytes;
79fd0489
YM
5198 start = 0;
5199 do
5200 {
5201 /* Check the last character (== '\0'). */
5202 do
5203 {
5204 start += bm_skip[*(p + start)];
5205 }
5206 while (start <= start_max);
5207
5208 if (start < infinity)
5209 /* Couldn't find the last character. */
5210 return NULL;
5211
5212 /* No less than `infinity' means we could find the last
5213 character at `p[start - infinity]'. */
5214 start -= infinity;
5215
5216 /* Check the remaining characters. */
5217 if (memcmp (data, non_lisp_beg + start, nbytes) == 0)
5218 /* Found. */
5219 return non_lisp_beg + start;
5220
5221 start += last_char_skip;
5222 }
5223 while (start <= start_max);
5224
5225 return NULL;
5226}
5227
5228
2e471eb5
GM
5229/* Return a string allocated in pure space. DATA is a buffer holding
5230 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
5231 non-zero means make the result string multibyte.
1a4f1e2c 5232
2e471eb5
GM
5233 Must get an error if pure storage is full, since if it cannot hold
5234 a large string it may be able to hold conses that point to that
5235 string; then the string is not protected from gc. */
7146af97
JB
5236
5237Lisp_Object
14162469 5238make_pure_string (const char *data,
d311d28c 5239 ptrdiff_t nchars, ptrdiff_t nbytes, int multibyte)
7146af97 5240{
2e471eb5
GM
5241 Lisp_Object string;
5242 struct Lisp_String *s;
c0696668 5243
1f0b3fd2 5244 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
90256841 5245 s->data = (unsigned char *) find_string_data_in_pure (data, nbytes);
79fd0489
YM
5246 if (s->data == NULL)
5247 {
5248 s->data = (unsigned char *) pure_alloc (nbytes + 1, -1);
72af86bd 5249 memcpy (s->data, data, nbytes);
79fd0489
YM
5250 s->data[nbytes] = '\0';
5251 }
2e471eb5
GM
5252 s->size = nchars;
5253 s->size_byte = multibyte ? nbytes : -1;
2e471eb5 5254 s->intervals = NULL_INTERVAL;
2e471eb5
GM
5255 XSETSTRING (string, s);
5256 return string;
7146af97
JB
5257}
5258
2a0213a6
DA
5259/* Return a string allocated in pure space. Do not
5260 allocate the string data, just point to DATA. */
a56eaaef
DN
5261
5262Lisp_Object
2a0213a6 5263make_pure_c_string (const char *data, ptrdiff_t nchars)
a56eaaef
DN
5264{
5265 Lisp_Object string;
5266 struct Lisp_String *s;
a56eaaef
DN
5267
5268 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
5269 s->size = nchars;
5270 s->size_byte = -1;
323637a2 5271 s->data = (unsigned char *) data;
a56eaaef
DN
5272 s->intervals = NULL_INTERVAL;
5273 XSETSTRING (string, s);
5274 return string;
5275}
2e471eb5 5276
34400008
GM
5277/* Return a cons allocated from pure space. Give it pure copies
5278 of CAR as car and CDR as cdr. */
5279
7146af97 5280Lisp_Object
971de7fb 5281pure_cons (Lisp_Object car, Lisp_Object cdr)
7146af97
JB
5282{
5283 register Lisp_Object new;
1f0b3fd2 5284 struct Lisp_Cons *p;
7146af97 5285
1f0b3fd2
GM
5286 p = (struct Lisp_Cons *) pure_alloc (sizeof *p, Lisp_Cons);
5287 XSETCONS (new, p);
f3fbd155
KR
5288 XSETCAR (new, Fpurecopy (car));
5289 XSETCDR (new, Fpurecopy (cdr));
7146af97
JB
5290 return new;
5291}
5292
7146af97 5293
34400008
GM
5294/* Value is a float object with value NUM allocated from pure space. */
5295
d3d47262 5296static Lisp_Object
971de7fb 5297make_pure_float (double num)
7146af97
JB
5298{
5299 register Lisp_Object new;
1f0b3fd2 5300 struct Lisp_Float *p;
7146af97 5301
1f0b3fd2
GM
5302 p = (struct Lisp_Float *) pure_alloc (sizeof *p, Lisp_Float);
5303 XSETFLOAT (new, p);
f601cdf3 5304 XFLOAT_INIT (new, num);
7146af97
JB
5305 return new;
5306}
5307
34400008
GM
5308
5309/* Return a vector with room for LEN Lisp_Objects allocated from
5310 pure space. */
5311
72cb32cf 5312static Lisp_Object
d311d28c 5313make_pure_vector (ptrdiff_t len)
7146af97 5314{
1f0b3fd2
GM
5315 Lisp_Object new;
5316 struct Lisp_Vector *p;
d06714cb 5317 size_t size = header_size + len * word_size;
7146af97 5318
1f0b3fd2
GM
5319 p = (struct Lisp_Vector *) pure_alloc (size, Lisp_Vectorlike);
5320 XSETVECTOR (new, p);
eab3844f 5321 XVECTOR (new)->header.size = len;
7146af97
JB
5322 return new;
5323}
5324
34400008 5325
a7ca3326 5326DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
909e3b33 5327 doc: /* Make a copy of object OBJ in pure storage.
228299fa 5328Recursively copies contents of vectors and cons cells.
7ee72033 5329Does not copy symbols. Copies strings without text properties. */)
5842a27b 5330 (register Lisp_Object obj)
7146af97 5331{
265a9e55 5332 if (NILP (Vpurify_flag))
7146af97
JB
5333 return obj;
5334
1f0b3fd2 5335 if (PURE_POINTER_P (XPNTR (obj)))
7146af97
JB
5336 return obj;
5337
e9515805
SM
5338 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5339 {
5340 Lisp_Object tmp = Fgethash (obj, Vpurify_flag, Qnil);
5341 if (!NILP (tmp))
5342 return tmp;
5343 }
5344
d6dd74bb 5345 if (CONSP (obj))
e9515805 5346 obj = pure_cons (XCAR (obj), XCDR (obj));
d6dd74bb 5347 else if (FLOATP (obj))
e9515805 5348 obj = make_pure_float (XFLOAT_DATA (obj));
d6dd74bb 5349 else if (STRINGP (obj))
42a5b22f 5350 obj = make_pure_string (SSDATA (obj), SCHARS (obj),
e9515805
SM
5351 SBYTES (obj),
5352 STRING_MULTIBYTE (obj));
876c194c 5353 else if (COMPILEDP (obj) || VECTORP (obj))
d6dd74bb
KH
5354 {
5355 register struct Lisp_Vector *vec;
d311d28c
PE
5356 register ptrdiff_t i;
5357 ptrdiff_t size;
d6dd74bb 5358
77b37c05 5359 size = ASIZE (obj);
7d535c68
KH
5360 if (size & PSEUDOVECTOR_FLAG)
5361 size &= PSEUDOVECTOR_SIZE_MASK;
6b61353c 5362 vec = XVECTOR (make_pure_vector (size));
d6dd74bb 5363 for (i = 0; i < size; i++)
28be1ada 5364 vec->contents[i] = Fpurecopy (AREF (obj, i));
876c194c 5365 if (COMPILEDP (obj))
985773c9 5366 {
876c194c
SM
5367 XSETPVECTYPE (vec, PVEC_COMPILED);
5368 XSETCOMPILED (obj, vec);
985773c9 5369 }
d6dd74bb
KH
5370 else
5371 XSETVECTOR (obj, vec);
7146af97 5372 }
d6dd74bb
KH
5373 else if (MARKERP (obj))
5374 error ("Attempt to copy a marker to pure storage");
e9515805
SM
5375 else
5376 /* Not purified, don't hash-cons. */
5377 return obj;
5378
5379 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5380 Fputhash (obj, obj, Vpurify_flag);
6bbd7a29
GM
5381
5382 return obj;
7146af97 5383}
2e471eb5 5384
34400008 5385
7146af97 5386\f
34400008
GM
5387/***********************************************************************
5388 Protection from GC
5389 ***********************************************************************/
5390
2e471eb5
GM
5391/* Put an entry in staticvec, pointing at the variable with address
5392 VARADDRESS. */
7146af97
JB
5393
5394void
971de7fb 5395staticpro (Lisp_Object *varaddress)
7146af97
JB
5396{
5397 staticvec[staticidx++] = varaddress;
5398 if (staticidx >= NSTATICS)
5399 abort ();
5400}
5401
7146af97 5402\f
34400008
GM
5403/***********************************************************************
5404 Protection from GC
5405 ***********************************************************************/
1a4f1e2c 5406
e8197642
RS
5407/* Temporarily prevent garbage collection. */
5408
d311d28c 5409ptrdiff_t
971de7fb 5410inhibit_garbage_collection (void)
e8197642 5411{
d311d28c 5412 ptrdiff_t count = SPECPDL_INDEX ();
54defd0d 5413
6349ae4d 5414 specbind (Qgc_cons_threshold, make_number (MOST_POSITIVE_FIXNUM));
e8197642
RS
5415 return count;
5416}
5417
3ab6e069
DA
5418/* Used to avoid possible overflows when
5419 converting from C to Lisp integers. */
5420
5421static inline Lisp_Object
5422bounded_number (EMACS_INT number)
5423{
5424 return make_number (min (MOST_POSITIVE_FIXNUM, number));
5425}
34400008 5426
a7ca3326 5427DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
7ee72033 5428 doc: /* Reclaim storage for Lisp objects no longer needed.
e1e37596
RS
5429Garbage collection happens automatically if you cons more than
5430`gc-cons-threshold' bytes of Lisp data since previous garbage collection.
5db81e33
SM
5431`garbage-collect' normally returns a list with info on amount of space in use,
5432where each entry has the form (NAME SIZE USED FREE), where:
5433- NAME is a symbol describing the kind of objects this entry represents,
5434- SIZE is the number of bytes used by each one,
5435- USED is the number of those objects that were found live in the heap,
5436- FREE is the number of those objects that are not live but that Emacs
5437 keeps around for future allocations (maybe because it does not know how
5438 to return them to the OS).
e1e37596 5439However, if there was overflow in pure space, `garbage-collect'
999dd333
GM
5440returns nil, because real GC can't be done.
5441See Info node `(elisp)Garbage Collection'. */)
5842a27b 5442 (void)
7146af97 5443{
7146af97 5444 register struct specbinding *bind;
d17337e5 5445 register struct buffer *nextb;
7146af97 5446 char stack_top_variable;
f66c7cf8 5447 ptrdiff_t i;
6efc7df7 5448 int message_p;
f8643a6b 5449 Lisp_Object total[11];
d311d28c 5450 ptrdiff_t count = SPECPDL_INDEX ();
e9a9ae03 5451 EMACS_TIME t1;
2c5bd608 5452
3de0effb
RS
5453 if (abort_on_gc)
5454 abort ();
5455
9e713715
GM
5456 /* Can't GC if pure storage overflowed because we can't determine
5457 if something is a pure object or not. */
5458 if (pure_bytes_used_before_overflow)
5459 return Qnil;
5460
bbc012e0
KS
5461 CHECK_CONS_LIST ();
5462
3c7e66a8
RS
5463 /* Don't keep undo information around forever.
5464 Do this early on, so it is no problem if the user quits. */
52b852c7 5465 FOR_EACH_BUFFER (nextb)
9cd47b72 5466 compact_buffer (nextb);
3c7e66a8 5467
e9a9ae03 5468 t1 = current_emacs_time ();
3c7e66a8 5469
58595309
KH
5470 /* In case user calls debug_print during GC,
5471 don't let that cause a recursive GC. */
5472 consing_since_gc = 0;
5473
6efc7df7
GM
5474 /* Save what's currently displayed in the echo area. */
5475 message_p = push_message ();
c55b0da6 5476 record_unwind_protect (pop_message_unwind, Qnil);
41c28a37 5477
7146af97
JB
5478 /* Save a copy of the contents of the stack, for debugging. */
5479#if MAX_SAVE_STACK > 0
265a9e55 5480 if (NILP (Vpurify_flag))
7146af97 5481 {
dd3f25f7 5482 char *stack;
903fe15d 5483 ptrdiff_t stack_size;
dd3f25f7 5484 if (&stack_top_variable < stack_bottom)
7146af97 5485 {
dd3f25f7
PE
5486 stack = &stack_top_variable;
5487 stack_size = stack_bottom - &stack_top_variable;
5488 }
5489 else
5490 {
5491 stack = stack_bottom;
5492 stack_size = &stack_top_variable - stack_bottom;
5493 }
5494 if (stack_size <= MAX_SAVE_STACK)
7146af97 5495 {
dd3f25f7 5496 if (stack_copy_size < stack_size)
7146af97 5497 {
38182d90 5498 stack_copy = xrealloc (stack_copy, stack_size);
dd3f25f7 5499 stack_copy_size = stack_size;
7146af97 5500 }
dd3f25f7 5501 memcpy (stack_copy, stack, stack_size);
7146af97
JB
5502 }
5503 }
5504#endif /* MAX_SAVE_STACK > 0 */
5505
299585ee 5506 if (garbage_collection_messages)
691c4285 5507 message1_nolog ("Garbage collecting...");
7146af97 5508
6e0fca1d
RS
5509 BLOCK_INPUT;
5510
eec7b73d
RS
5511 shrink_regexp_cache ();
5512
7146af97
JB
5513 gc_in_progress = 1;
5514
005ca5c7 5515 /* Mark all the special slots that serve as the roots of accessibility. */
7146af97
JB
5516
5517 for (i = 0; i < staticidx; i++)
49723c04 5518 mark_object (*staticvec[i]);
34400008 5519
126f9c02
SM
5520 for (bind = specpdl; bind != specpdl_ptr; bind++)
5521 {
5522 mark_object (bind->symbol);
5523 mark_object (bind->old_value);
5524 }
6ed8eeff 5525 mark_terminals ();
126f9c02 5526 mark_kboards ();
98a92e2d 5527 mark_ttys ();
126f9c02
SM
5528
5529#ifdef USE_GTK
5530 {
dd4c5104 5531 extern void xg_mark_data (void);
126f9c02
SM
5532 xg_mark_data ();
5533 }
5534#endif
5535
34400008
GM
5536#if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
5537 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
5538 mark_stack ();
5539#else
acf5f7d3
SM
5540 {
5541 register struct gcpro *tail;
5542 for (tail = gcprolist; tail; tail = tail->next)
5543 for (i = 0; i < tail->nvars; i++)
005ca5c7 5544 mark_object (tail->var[i]);
acf5f7d3 5545 }
3e21b6a7 5546 mark_byte_stack ();
b286858c
SM
5547 {
5548 struct catchtag *catch;
5549 struct handler *handler;
177c0ea7 5550
7146af97
JB
5551 for (catch = catchlist; catch; catch = catch->next)
5552 {
49723c04
SM
5553 mark_object (catch->tag);
5554 mark_object (catch->val);
177c0ea7 5555 }
7146af97
JB
5556 for (handler = handlerlist; handler; handler = handler->next)
5557 {
49723c04
SM
5558 mark_object (handler->handler);
5559 mark_object (handler->var);
177c0ea7 5560 }
b286858c 5561 }
b40ea20a 5562 mark_backtrace ();
b286858c 5563#endif
7146af97 5564
454d7973
KS
5565#ifdef HAVE_WINDOW_SYSTEM
5566 mark_fringe_data ();
5567#endif
5568
74c35a48
SM
5569#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5570 mark_stack ();
5571#endif
5572
c37adf23
SM
5573 /* Everything is now marked, except for the things that require special
5574 finalization, i.e. the undo_list.
5575 Look thru every buffer's undo list
4c315bda
RS
5576 for elements that update markers that were not marked,
5577 and delete them. */
52b852c7 5578 FOR_EACH_BUFFER (nextb)
d17337e5
DA
5579 {
5580 /* If a buffer's undo list is Qt, that means that undo is
5581 turned off in that buffer. Calling truncate_undo_list on
5582 Qt tends to return NULL, which effectively turns undo back on.
5583 So don't call truncate_undo_list if undo_list is Qt. */
5584 if (! EQ (nextb->BUFFER_INTERNAL_FIELD (undo_list), Qt))
5585 {
5586 Lisp_Object tail, prev;
5587 tail = nextb->BUFFER_INTERNAL_FIELD (undo_list);
5588 prev = Qnil;
5589 while (CONSP (tail))
5590 {
5591 if (CONSP (XCAR (tail))
5592 && MARKERP (XCAR (XCAR (tail)))
5593 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
5594 {
5595 if (NILP (prev))
5596 nextb->BUFFER_INTERNAL_FIELD (undo_list) = tail = XCDR (tail);
5597 else
5598 {
5599 tail = XCDR (tail);
5600 XSETCDR (prev, tail);
5601 }
5602 }
5603 else
5604 {
5605 prev = tail;
5606 tail = XCDR (tail);
5607 }
5608 }
5609 }
5610 /* Now that we have stripped the elements that need not be in the
5611 undo_list any more, we can finally mark the list. */
5612 mark_object (nextb->BUFFER_INTERNAL_FIELD (undo_list));
5613 }
4c315bda 5614
7146af97
JB
5615 gc_sweep ();
5616
5617 /* Clear the mark bits that we set in certain root slots. */
5618
033a5fa3 5619 unmark_byte_stack ();
3ef06d12
SM
5620 VECTOR_UNMARK (&buffer_defaults);
5621 VECTOR_UNMARK (&buffer_local_symbols);
7146af97 5622
34400008
GM
5623#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
5624 dump_zombies ();
5625#endif
5626
6e0fca1d
RS
5627 UNBLOCK_INPUT;
5628
bbc012e0
KS
5629 CHECK_CONS_LIST ();
5630
7146af97
JB
5631 gc_in_progress = 0;
5632
5633 consing_since_gc = 0;
0dd6d66d
DA
5634 if (gc_cons_threshold < GC_DEFAULT_THRESHOLD / 10)
5635 gc_cons_threshold = GC_DEFAULT_THRESHOLD / 10;
7146af97 5636
c0c5c8ae 5637 gc_relative_threshold = 0;
96f077ad
SM
5638 if (FLOATP (Vgc_cons_percentage))
5639 { /* Set gc_cons_combined_threshold. */
c0c5c8ae 5640 double tot = 0;
ae35e756
PE
5641
5642 tot += total_conses * sizeof (struct Lisp_Cons);
5643 tot += total_symbols * sizeof (struct Lisp_Symbol);
5644 tot += total_markers * sizeof (union Lisp_Misc);
3ab6e069 5645 tot += total_string_bytes;
5b835e1d 5646 tot += total_vector_slots * word_size;
ae35e756
PE
5647 tot += total_floats * sizeof (struct Lisp_Float);
5648 tot += total_intervals * sizeof (struct interval);
5649 tot += total_strings * sizeof (struct Lisp_String);
5650
c0c5c8ae
PE
5651 tot *= XFLOAT_DATA (Vgc_cons_percentage);
5652 if (0 < tot)
5653 {
5654 if (tot < TYPE_MAXIMUM (EMACS_INT))
5655 gc_relative_threshold = tot;
5656 else
5657 gc_relative_threshold = TYPE_MAXIMUM (EMACS_INT);
5658 }
96f077ad
SM
5659 }
5660
299585ee
RS
5661 if (garbage_collection_messages)
5662 {
6efc7df7
GM
5663 if (message_p || minibuf_level > 0)
5664 restore_message ();
299585ee
RS
5665 else
5666 message1_nolog ("Garbage collecting...done");
5667 }
7146af97 5668
98edb5ff 5669 unbind_to (count, Qnil);
2e471eb5 5670
3ab6e069
DA
5671 total[0] = list4 (Qcons, make_number (sizeof (struct Lisp_Cons)),
5672 bounded_number (total_conses),
5673 bounded_number (total_free_conses));
5674
5675 total[1] = list4 (Qsymbol, make_number (sizeof (struct Lisp_Symbol)),
5676 bounded_number (total_symbols),
5677 bounded_number (total_free_symbols));
5678
5679 total[2] = list4 (Qmisc, make_number (sizeof (union Lisp_Misc)),
5680 bounded_number (total_markers),
5681 bounded_number (total_free_markers));
5682
5b835e1d 5683 total[3] = list4 (Qstring, make_number (sizeof (struct Lisp_String)),
3ab6e069 5684 bounded_number (total_strings),
3ab6e069
DA
5685 bounded_number (total_free_strings));
5686
5b835e1d
DA
5687 total[4] = list3 (Qstring_bytes, make_number (1),
5688 bounded_number (total_string_bytes));
3ab6e069 5689
5b835e1d
DA
5690 total[5] = list3 (Qvector, make_number (sizeof (struct Lisp_Vector)),
5691 bounded_number (total_vectors));
5692
5693 total[6] = list4 (Qvector_slots, make_number (word_size),
5694 bounded_number (total_vector_slots),
5695 bounded_number (total_free_vector_slots));
5696
5697 total[7] = list4 (Qfloat, make_number (sizeof (struct Lisp_Float)),
3ab6e069
DA
5698 bounded_number (total_floats),
5699 bounded_number (total_free_floats));
5700
5b835e1d 5701 total[8] = list4 (Qinterval, make_number (sizeof (struct interval)),
3ab6e069
DA
5702 bounded_number (total_intervals),
5703 bounded_number (total_free_intervals));
5704
5b835e1d 5705 total[9] = list3 (Qbuffer, make_number (sizeof (struct buffer)),
3ab6e069 5706 bounded_number (total_buffers));
2e471eb5 5707
f8643a6b
DA
5708 total[10] = list4 (Qheap, make_number (1024),
5709#ifdef DOUG_LEA_MALLOC
5710 bounded_number ((mallinfo ().uordblks + 1023) >> 10),
5711 bounded_number ((mallinfo ().fordblks + 1023) >> 10)
5712#else
5713 Qnil, Qnil
5714#endif
5715 );
5716
34400008 5717#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
7146af97 5718 {
34400008
GM
5719 /* Compute average percentage of zombies. */
5720 double nlive = 0;
177c0ea7 5721
34400008 5722 for (i = 0; i < 7; ++i)
83fc9c63
DL
5723 if (CONSP (total[i]))
5724 nlive += XFASTINT (XCAR (total[i]));
34400008
GM
5725
5726 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
5727 max_live = max (nlive, max_live);
5728 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
5729 max_zombies = max (nzombies, max_zombies);
5730 ++ngcs;
5731 }
5732#endif
7146af97 5733
9e713715
GM
5734 if (!NILP (Vpost_gc_hook))
5735 {
d311d28c 5736 ptrdiff_t gc_count = inhibit_garbage_collection ();
9e713715 5737 safe_run_hooks (Qpost_gc_hook);
ae35e756 5738 unbind_to (gc_count, Qnil);
9e713715 5739 }
2c5bd608
DL
5740
5741 /* Accumulate statistics. */
2c5bd608 5742 if (FLOATP (Vgc_elapsed))
d35af63c 5743 {
e9a9ae03
PE
5744 EMACS_TIME t2 = current_emacs_time ();
5745 EMACS_TIME t3 = sub_emacs_time (t2, t1);
d35af63c
PE
5746 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed)
5747 + EMACS_TIME_TO_DOUBLE (t3));
5748 }
5749
2c5bd608
DL
5750 gcs_done++;
5751
96117bc7 5752 return Flist (sizeof total / sizeof *total, total);
7146af97 5753}
34400008 5754
41c28a37 5755
3770920e
GM
5756/* Mark Lisp objects in glyph matrix MATRIX. Currently the
5757 only interesting objects referenced from glyphs are strings. */
41c28a37
GM
5758
5759static void
971de7fb 5760mark_glyph_matrix (struct glyph_matrix *matrix)
41c28a37
GM
5761{
5762 struct glyph_row *row = matrix->rows;
5763 struct glyph_row *end = row + matrix->nrows;
5764
2e471eb5
GM
5765 for (; row < end; ++row)
5766 if (row->enabled_p)
5767 {
5768 int area;
5769 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
5770 {
5771 struct glyph *glyph = row->glyphs[area];
5772 struct glyph *end_glyph = glyph + row->used[area];
177c0ea7 5773
2e471eb5 5774 for (; glyph < end_glyph; ++glyph)
8e50cc2d 5775 if (STRINGP (glyph->object)
2e471eb5 5776 && !STRING_MARKED_P (XSTRING (glyph->object)))
49723c04 5777 mark_object (glyph->object);
2e471eb5
GM
5778 }
5779 }
41c28a37
GM
5780}
5781
34400008 5782
41c28a37
GM
5783/* Mark Lisp faces in the face cache C. */
5784
5785static void
971de7fb 5786mark_face_cache (struct face_cache *c)
41c28a37
GM
5787{
5788 if (c)
5789 {
5790 int i, j;
5791 for (i = 0; i < c->used; ++i)
5792 {
5793 struct face *face = FACE_FROM_ID (c->f, i);
5794
5795 if (face)
5796 {
5797 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
49723c04 5798 mark_object (face->lface[j]);
41c28a37
GM
5799 }
5800 }
5801 }
5802}
5803
5804
7146af97 5805\f
1a4f1e2c 5806/* Mark reference to a Lisp_Object.
2e471eb5
GM
5807 If the object referred to has not been seen yet, recursively mark
5808 all the references contained in it. */
7146af97 5809
785cd37f 5810#define LAST_MARKED_SIZE 500
d3d47262 5811static Lisp_Object last_marked[LAST_MARKED_SIZE];
244ed907 5812static int last_marked_index;
785cd37f 5813
1342fc6f
RS
5814/* For debugging--call abort when we cdr down this many
5815 links of a list, in mark_object. In debugging,
5816 the call to abort will hit a breakpoint.
5817 Normally this is zero and the check never goes off. */
903fe15d 5818ptrdiff_t mark_object_loop_halt EXTERNALLY_VISIBLE;
1342fc6f 5819
8f11f7ec 5820static void
971de7fb 5821mark_vectorlike (struct Lisp_Vector *ptr)
d2029e5b 5822{
d311d28c
PE
5823 ptrdiff_t size = ptr->header.size;
5824 ptrdiff_t i;
d2029e5b 5825
8f11f7ec 5826 eassert (!VECTOR_MARKED_P (ptr));
7555c33f 5827 VECTOR_MARK (ptr); /* Else mark it. */
d2029e5b
SM
5828 if (size & PSEUDOVECTOR_FLAG)
5829 size &= PSEUDOVECTOR_SIZE_MASK;
d3d47262 5830
d2029e5b
SM
5831 /* Note that this size is not the memory-footprint size, but only
5832 the number of Lisp_Object fields that we should trace.
5833 The distinction is used e.g. by Lisp_Process which places extra
7555c33f
SM
5834 non-Lisp_Object fields at the end of the structure... */
5835 for (i = 0; i < size; i++) /* ...and then mark its elements. */
d2029e5b 5836 mark_object (ptr->contents[i]);
d2029e5b
SM
5837}
5838
58026347
KH
5839/* Like mark_vectorlike but optimized for char-tables (and
5840 sub-char-tables) assuming that the contents are mostly integers or
5841 symbols. */
5842
5843static void
971de7fb 5844mark_char_table (struct Lisp_Vector *ptr)
58026347 5845{
b6439961
PE
5846 int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
5847 int i;
58026347 5848
8f11f7ec 5849 eassert (!VECTOR_MARKED_P (ptr));
58026347
KH
5850 VECTOR_MARK (ptr);
5851 for (i = 0; i < size; i++)
5852 {
5853 Lisp_Object val = ptr->contents[i];
5854
ef1b0ba7 5855 if (INTEGERP (val) || (SYMBOLP (val) && XSYMBOL (val)->gcmarkbit))
58026347
KH
5856 continue;
5857 if (SUB_CHAR_TABLE_P (val))
5858 {
5859 if (! VECTOR_MARKED_P (XVECTOR (val)))
5860 mark_char_table (XVECTOR (val));
5861 }
5862 else
5863 mark_object (val);
5864 }
5865}
5866
36429c89
DA
5867/* Mark the chain of overlays starting at PTR. */
5868
5869static void
5870mark_overlay (struct Lisp_Overlay *ptr)
5871{
5872 for (; ptr && !ptr->gcmarkbit; ptr = ptr->next)
5873 {
5874 ptr->gcmarkbit = 1;
5875 mark_object (ptr->start);
5876 mark_object (ptr->end);
5877 mark_object (ptr->plist);
5878 }
5879}
5880
5881/* Mark Lisp_Objects and special pointers in BUFFER. */
cf5c0175
DA
5882
5883static void
5884mark_buffer (struct buffer *buffer)
5885{
36429c89
DA
5886 /* This is handled much like other pseudovectors... */
5887 mark_vectorlike ((struct Lisp_Vector *) buffer);
cf5c0175 5888
36429c89 5889 /* ...but there are some buffer-specific things. */
cf5c0175
DA
5890
5891 MARK_INTERVAL_TREE (BUF_INTERVALS (buffer));
5892
5893 /* For now, we just don't mark the undo_list. It's done later in
5894 a special way just before the sweep phase, and after stripping
5895 some of its elements that are not needed any more. */
5896
36429c89
DA
5897 mark_overlay (buffer->overlays_before);
5898 mark_overlay (buffer->overlays_after);
cf5c0175
DA
5899
5900 /* If this is an indirect buffer, mark its base buffer. */
5901 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
5902 mark_buffer (buffer->base_buffer);
5903}
5904
5905/* Determine type of generic Lisp_Object and mark it accordingly. */
5906
41c28a37 5907void
971de7fb 5908mark_object (Lisp_Object arg)
7146af97 5909{
49723c04 5910 register Lisp_Object obj = arg;
4f5c1376
GM
5911#ifdef GC_CHECK_MARKED_OBJECTS
5912 void *po;
5913 struct mem_node *m;
5914#endif
903fe15d 5915 ptrdiff_t cdr_count = 0;
7146af97 5916
9149e743 5917 loop:
7146af97 5918
1f0b3fd2 5919 if (PURE_POINTER_P (XPNTR (obj)))
7146af97
JB
5920 return;
5921
49723c04 5922 last_marked[last_marked_index++] = obj;
785cd37f
RS
5923 if (last_marked_index == LAST_MARKED_SIZE)
5924 last_marked_index = 0;
5925
4f5c1376
GM
5926 /* Perform some sanity checks on the objects marked here. Abort if
5927 we encounter an object we know is bogus. This increases GC time
5928 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
5929#ifdef GC_CHECK_MARKED_OBJECTS
5930
5931 po = (void *) XPNTR (obj);
5932
5933 /* Check that the object pointed to by PO is known to be a Lisp
5934 structure allocated from the heap. */
5935#define CHECK_ALLOCATED() \
5936 do { \
5937 m = mem_find (po); \
5938 if (m == MEM_NIL) \
5939 abort (); \
5940 } while (0)
5941
5942 /* Check that the object pointed to by PO is live, using predicate
5943 function LIVEP. */
5944#define CHECK_LIVE(LIVEP) \
5945 do { \
5946 if (!LIVEP (m, po)) \
5947 abort (); \
5948 } while (0)
5949
5950 /* Check both of the above conditions. */
5951#define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
5952 do { \
5953 CHECK_ALLOCATED (); \
5954 CHECK_LIVE (LIVEP); \
5955 } while (0) \
177c0ea7 5956
4f5c1376 5957#else /* not GC_CHECK_MARKED_OBJECTS */
177c0ea7 5958
4f5c1376
GM
5959#define CHECK_LIVE(LIVEP) (void) 0
5960#define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
177c0ea7 5961
4f5c1376
GM
5962#endif /* not GC_CHECK_MARKED_OBJECTS */
5963
8e50cc2d 5964 switch (SWITCH_ENUM_CAST (XTYPE (obj)))
7146af97
JB
5965 {
5966 case Lisp_String:
5967 {
5968 register struct Lisp_String *ptr = XSTRING (obj);
8f11f7ec
SM
5969 if (STRING_MARKED_P (ptr))
5970 break;
4f5c1376 5971 CHECK_ALLOCATED_AND_LIVE (live_string_p);
2e471eb5 5972 MARK_STRING (ptr);
7555c33f 5973 MARK_INTERVAL_TREE (ptr->intervals);
361b097f 5974#ifdef GC_CHECK_STRING_BYTES
676a7251 5975 /* Check that the string size recorded in the string is the
7555c33f 5976 same as the one recorded in the sdata structure. */
676a7251 5977 CHECK_STRING_BYTES (ptr);
361b097f 5978#endif /* GC_CHECK_STRING_BYTES */
7146af97
JB
5979 }
5980 break;
5981
76437631 5982 case Lisp_Vectorlike:
cf5c0175
DA
5983 {
5984 register struct Lisp_Vector *ptr = XVECTOR (obj);
5985 register ptrdiff_t pvectype;
5986
5987 if (VECTOR_MARKED_P (ptr))
5988 break;
5989
4f5c1376 5990#ifdef GC_CHECK_MARKED_OBJECTS
cf5c0175
DA
5991 m = mem_find (po);
5992 if (m == MEM_NIL && !SUBRP (obj)
5993 && po != &buffer_defaults
5994 && po != &buffer_local_symbols)
5995 abort ();
4f5c1376 5996#endif /* GC_CHECK_MARKED_OBJECTS */
177c0ea7 5997
cf5c0175 5998 if (ptr->header.size & PSEUDOVECTOR_FLAG)
ee28be33
SM
5999 pvectype = ((ptr->header.size & PVEC_TYPE_MASK)
6000 >> PSEUDOVECTOR_SIZE_BITS);
cf5c0175
DA
6001 else
6002 pvectype = 0;
6003
cf5c0175
DA
6004 if (pvectype != PVEC_SUBR && pvectype != PVEC_BUFFER)
6005 CHECK_LIVE (live_vector_p);
169ee243 6006
ee28be33 6007 switch (pvectype)
cf5c0175 6008 {
ee28be33 6009 case PVEC_BUFFER:
cf5c0175
DA
6010#ifdef GC_CHECK_MARKED_OBJECTS
6011 if (po != &buffer_defaults && po != &buffer_local_symbols)
6012 {
d17337e5 6013 struct buffer *b;
52b852c7 6014 FOR_EACH_BUFFER (b)
d17337e5
DA
6015 if (b == po)
6016 break;
cf5c0175
DA
6017 if (b == NULL)
6018 abort ();
6019 }
6020#endif /* GC_CHECK_MARKED_OBJECTS */
6021 mark_buffer ((struct buffer *) ptr);
ee28be33
SM
6022 break;
6023
6024 case PVEC_COMPILED:
6025 { /* We could treat this just like a vector, but it is better
6026 to save the COMPILED_CONSTANTS element for last and avoid
6027 recursion there. */
6028 int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
6029 int i;
6030
6031 VECTOR_MARK (ptr);
6032 for (i = 0; i < size; i++)
6033 if (i != COMPILED_CONSTANTS)
6034 mark_object (ptr->contents[i]);
6035 if (size > COMPILED_CONSTANTS)
6036 {
6037 obj = ptr->contents[COMPILED_CONSTANTS];
6038 goto loop;
6039 }
6040 }
6041 break;
cf5c0175 6042
ee28be33
SM
6043 case PVEC_FRAME:
6044 {
6045 mark_vectorlike (ptr);
6046 mark_face_cache (((struct frame *) ptr)->face_cache);
6047 }
6048 break;
cf5c0175 6049
ee28be33
SM
6050 case PVEC_WINDOW:
6051 {
6052 struct window *w = (struct window *) ptr;
cf5c0175 6053
ee28be33
SM
6054 mark_vectorlike (ptr);
6055 /* Mark glyphs for leaf windows. Marking window
6056 matrices is sufficient because frame matrices
6057 use the same glyph memory. */
6058 if (NILP (w->hchild) && NILP (w->vchild) && w->current_matrix)
6059 {
6060 mark_glyph_matrix (w->current_matrix);
6061 mark_glyph_matrix (w->desired_matrix);
6062 }
6063 }
6064 break;
cf5c0175 6065
ee28be33
SM
6066 case PVEC_HASH_TABLE:
6067 {
6068 struct Lisp_Hash_Table *h = (struct Lisp_Hash_Table *) ptr;
cf5c0175 6069
ee28be33
SM
6070 mark_vectorlike (ptr);
6071 /* If hash table is not weak, mark all keys and values.
6072 For weak tables, mark only the vector. */
6073 if (NILP (h->weak))
6074 mark_object (h->key_and_value);
6075 else
6076 VECTOR_MARK (XVECTOR (h->key_and_value));
6077 }
6078 break;
cf5c0175 6079
ee28be33
SM
6080 case PVEC_CHAR_TABLE:
6081 mark_char_table (ptr);
6082 break;
cf5c0175 6083
ee28be33
SM
6084 case PVEC_BOOL_VECTOR:
6085 /* No Lisp_Objects to mark in a bool vector. */
6086 VECTOR_MARK (ptr);
6087 break;
cf5c0175 6088
ee28be33
SM
6089 case PVEC_SUBR:
6090 break;
cf5c0175 6091
ee28be33
SM
6092 case PVEC_FREE:
6093 abort ();
cf5c0175 6094
ee28be33
SM
6095 default:
6096 mark_vectorlike (ptr);
6097 }
cf5c0175 6098 }
169ee243 6099 break;
7146af97 6100
7146af97
JB
6101 case Lisp_Symbol:
6102 {
c70bbf06 6103 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
7146af97
JB
6104 struct Lisp_Symbol *ptrx;
6105
8f11f7ec
SM
6106 if (ptr->gcmarkbit)
6107 break;
4f5c1376 6108 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
2336fe58 6109 ptr->gcmarkbit = 1;
49723c04
SM
6110 mark_object (ptr->function);
6111 mark_object (ptr->plist);
ce5b453a
SM
6112 switch (ptr->redirect)
6113 {
6114 case SYMBOL_PLAINVAL: mark_object (SYMBOL_VAL (ptr)); break;
6115 case SYMBOL_VARALIAS:
6116 {
6117 Lisp_Object tem;
6118 XSETSYMBOL (tem, SYMBOL_ALIAS (ptr));
6119 mark_object (tem);
6120 break;
6121 }
6122 case SYMBOL_LOCALIZED:
6123 {
6124 struct Lisp_Buffer_Local_Value *blv = SYMBOL_BLV (ptr);
6125 /* If the value is forwarded to a buffer or keyboard field,
6126 these are marked when we see the corresponding object.
6127 And if it's forwarded to a C variable, either it's not
6128 a Lisp_Object var, or it's staticpro'd already. */
6129 mark_object (blv->where);
6130 mark_object (blv->valcell);
6131 mark_object (blv->defcell);
6132 break;
6133 }
6134 case SYMBOL_FORWARDED:
6135 /* If the value is forwarded to a buffer or keyboard field,
6136 these are marked when we see the corresponding object.
6137 And if it's forwarded to a C variable, either it's not
6138 a Lisp_Object var, or it's staticpro'd already. */
6139 break;
6140 default: abort ();
6141 }
8fe5665d
KR
6142 if (!PURE_POINTER_P (XSTRING (ptr->xname)))
6143 MARK_STRING (XSTRING (ptr->xname));
d5db4077 6144 MARK_INTERVAL_TREE (STRING_INTERVALS (ptr->xname));
177c0ea7 6145
7146af97
JB
6146 ptr = ptr->next;
6147 if (ptr)
6148 {
7555c33f 6149 ptrx = ptr; /* Use of ptrx avoids compiler bug on Sun. */
7146af97 6150 XSETSYMBOL (obj, ptrx);
49723c04 6151 goto loop;
7146af97
JB
6152 }
6153 }
6154 break;
6155
a0a38eb7 6156 case Lisp_Misc:
4f5c1376 6157 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
b766f870 6158
7555c33f
SM
6159 if (XMISCANY (obj)->gcmarkbit)
6160 break;
6161
6162 switch (XMISCTYPE (obj))
a0a38eb7 6163 {
7555c33f
SM
6164 case Lisp_Misc_Marker:
6165 /* DO NOT mark thru the marker's chain.
6166 The buffer's markers chain does not preserve markers from gc;
6167 instead, markers are removed from the chain when freed by gc. */
36429c89 6168 XMISCANY (obj)->gcmarkbit = 1;
7555c33f 6169 break;
465edf35 6170
7555c33f
SM
6171 case Lisp_Misc_Save_Value:
6172 XMISCANY (obj)->gcmarkbit = 1;
9ea306d1 6173#if GC_MARK_STACK
7555c33f
SM
6174 {
6175 register struct Lisp_Save_Value *ptr = XSAVE_VALUE (obj);
6176 /* If DOGC is set, POINTER is the address of a memory
6177 area containing INTEGER potential Lisp_Objects. */
6178 if (ptr->dogc)
6179 {
6180 Lisp_Object *p = (Lisp_Object *) ptr->pointer;
6181 ptrdiff_t nelt;
6182 for (nelt = ptr->integer; nelt > 0; nelt--, p++)
6183 mark_maybe_object (*p);
6184 }
6185 }
9ea306d1 6186#endif
7555c33f
SM
6187 break;
6188
6189 case Lisp_Misc_Overlay:
6190 mark_overlay (XOVERLAY (obj));
6191 break;
6192
6193 default:
6194 abort ();
a0a38eb7 6195 }
7146af97
JB
6196 break;
6197
6198 case Lisp_Cons:
7146af97
JB
6199 {
6200 register struct Lisp_Cons *ptr = XCONS (obj);
8f11f7ec
SM
6201 if (CONS_MARKED_P (ptr))
6202 break;
4f5c1376 6203 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
08b7c2cb 6204 CONS_MARK (ptr);
c54ca951 6205 /* If the cdr is nil, avoid recursion for the car. */
28a099a4 6206 if (EQ (ptr->u.cdr, Qnil))
c54ca951 6207 {
49723c04 6208 obj = ptr->car;
1342fc6f 6209 cdr_count = 0;
c54ca951
RS
6210 goto loop;
6211 }
49723c04 6212 mark_object (ptr->car);
28a099a4 6213 obj = ptr->u.cdr;
1342fc6f
RS
6214 cdr_count++;
6215 if (cdr_count == mark_object_loop_halt)
6216 abort ();
7146af97
JB
6217 goto loop;
6218 }
6219
7146af97 6220 case Lisp_Float:
4f5c1376 6221 CHECK_ALLOCATED_AND_LIVE (live_float_p);
ab6780cd 6222 FLOAT_MARK (XFLOAT (obj));
7146af97 6223 break;
7146af97 6224
2de9f71c 6225 case_Lisp_Int:
7146af97
JB
6226 break;
6227
6228 default:
6229 abort ();
6230 }
4f5c1376
GM
6231
6232#undef CHECK_LIVE
6233#undef CHECK_ALLOCATED
6234#undef CHECK_ALLOCATED_AND_LIVE
7146af97 6235}
4a729fd8 6236/* Mark the Lisp pointers in the terminal objects.
0ba2624f 6237 Called by Fgarbage_collect. */
4a729fd8 6238
4a729fd8
SM
6239static void
6240mark_terminals (void)
6241{
6242 struct terminal *t;
6243 for (t = terminal_list; t; t = t->next_terminal)
6244 {
6245 eassert (t->name != NULL);
354884c4 6246#ifdef HAVE_WINDOW_SYSTEM
96ad0af7
YM
6247 /* If a terminal object is reachable from a stacpro'ed object,
6248 it might have been marked already. Make sure the image cache
6249 gets marked. */
6250 mark_image_cache (t->image_cache);
354884c4 6251#endif /* HAVE_WINDOW_SYSTEM */
96ad0af7
YM
6252 if (!VECTOR_MARKED_P (t))
6253 mark_vectorlike ((struct Lisp_Vector *)t);
4a729fd8
SM
6254 }
6255}
6256
6257
084b1a0c 6258
41c28a37
GM
6259/* Value is non-zero if OBJ will survive the current GC because it's
6260 either marked or does not need to be marked to survive. */
6261
6262int
971de7fb 6263survives_gc_p (Lisp_Object obj)
41c28a37
GM
6264{
6265 int survives_p;
177c0ea7 6266
8e50cc2d 6267 switch (XTYPE (obj))
41c28a37 6268 {
2de9f71c 6269 case_Lisp_Int:
41c28a37
GM
6270 survives_p = 1;
6271 break;
6272
6273 case Lisp_Symbol:
2336fe58 6274 survives_p = XSYMBOL (obj)->gcmarkbit;
41c28a37
GM
6275 break;
6276
6277 case Lisp_Misc:
67ee9f6e 6278 survives_p = XMISCANY (obj)->gcmarkbit;
41c28a37
GM
6279 break;
6280
6281 case Lisp_String:
08b7c2cb 6282 survives_p = STRING_MARKED_P (XSTRING (obj));
41c28a37
GM
6283 break;
6284
6285 case Lisp_Vectorlike:
8e50cc2d 6286 survives_p = SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
41c28a37
GM
6287 break;
6288
6289 case Lisp_Cons:
08b7c2cb 6290 survives_p = CONS_MARKED_P (XCONS (obj));
41c28a37
GM
6291 break;
6292
41c28a37 6293 case Lisp_Float:
ab6780cd 6294 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
41c28a37 6295 break;
41c28a37
GM
6296
6297 default:
6298 abort ();
6299 }
6300
34400008 6301 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
41c28a37
GM
6302}
6303
6304
7146af97 6305\f
1a4f1e2c 6306/* Sweep: find all structures not marked, and free them. */
7146af97
JB
6307
6308static void
971de7fb 6309gc_sweep (void)
7146af97 6310{
41c28a37
GM
6311 /* Remove or mark entries in weak hash tables.
6312 This must be done before any object is unmarked. */
6313 sweep_weak_hash_tables ();
6314
2e471eb5 6315 sweep_strings ();
676a7251
GM
6316#ifdef GC_CHECK_STRING_BYTES
6317 if (!noninteractive)
6318 check_string_bytes (1);
6319#endif
7146af97
JB
6320
6321 /* Put all unmarked conses on free list */
6322 {
6323 register struct cons_block *cblk;
6ca94ac9 6324 struct cons_block **cprev = &cons_block;
7146af97 6325 register int lim = cons_block_index;
c0c5c8ae 6326 EMACS_INT num_free = 0, num_used = 0;
7146af97
JB
6327
6328 cons_free_list = 0;
177c0ea7 6329
6ca94ac9 6330 for (cblk = cons_block; cblk; cblk = *cprev)
7146af97 6331 {
3ae2e3a3 6332 register int i = 0;
6ca94ac9 6333 int this_free = 0;
3ae2e3a3
RS
6334 int ilim = (lim + BITS_PER_INT - 1) / BITS_PER_INT;
6335
6336 /* Scan the mark bits an int at a time. */
47ea7f44 6337 for (i = 0; i < ilim; i++)
3ae2e3a3
RS
6338 {
6339 if (cblk->gcmarkbits[i] == -1)
6340 {
6341 /* Fast path - all cons cells for this int are marked. */
6342 cblk->gcmarkbits[i] = 0;
6343 num_used += BITS_PER_INT;
6344 }
6345 else
6346 {
6347 /* Some cons cells for this int are not marked.
6348 Find which ones, and free them. */
6349 int start, pos, stop;
6350
6351 start = i * BITS_PER_INT;
6352 stop = lim - start;
6353 if (stop > BITS_PER_INT)
6354 stop = BITS_PER_INT;
6355 stop += start;
6356
6357 for (pos = start; pos < stop; pos++)
6358 {
6359 if (!CONS_MARKED_P (&cblk->conses[pos]))
6360 {
6361 this_free++;
6362 cblk->conses[pos].u.chain = cons_free_list;
6363 cons_free_list = &cblk->conses[pos];
34400008 6364#if GC_MARK_STACK
3ae2e3a3 6365 cons_free_list->car = Vdead;
34400008 6366#endif
3ae2e3a3
RS
6367 }
6368 else
6369 {
6370 num_used++;
6371 CONS_UNMARK (&cblk->conses[pos]);
6372 }
6373 }
6374 }
6375 }
6376
7146af97 6377 lim = CONS_BLOCK_SIZE;
6ca94ac9
KH
6378 /* If this block contains only free conses and we have already
6379 seen more than two blocks worth of free conses then deallocate
6380 this block. */
6feef451 6381 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
6ca94ac9 6382 {
6ca94ac9
KH
6383 *cprev = cblk->next;
6384 /* Unhook from the free list. */
28a099a4 6385 cons_free_list = cblk->conses[0].u.chain;
08b7c2cb 6386 lisp_align_free (cblk);
6ca94ac9
KH
6387 }
6388 else
6feef451
AS
6389 {
6390 num_free += this_free;
6391 cprev = &cblk->next;
6392 }
7146af97
JB
6393 }
6394 total_conses = num_used;
6395 total_free_conses = num_free;
6396 }
6397
7146af97
JB
6398 /* Put all unmarked floats on free list */
6399 {
6400 register struct float_block *fblk;
6ca94ac9 6401 struct float_block **fprev = &float_block;
7146af97 6402 register int lim = float_block_index;
c0c5c8ae 6403 EMACS_INT num_free = 0, num_used = 0;
7146af97
JB
6404
6405 float_free_list = 0;
177c0ea7 6406
6ca94ac9 6407 for (fblk = float_block; fblk; fblk = *fprev)
7146af97
JB
6408 {
6409 register int i;
6ca94ac9 6410 int this_free = 0;
7146af97 6411 for (i = 0; i < lim; i++)
ab6780cd 6412 if (!FLOAT_MARKED_P (&fblk->floats[i]))
7146af97 6413 {
6ca94ac9 6414 this_free++;
28a099a4 6415 fblk->floats[i].u.chain = float_free_list;
7146af97
JB
6416 float_free_list = &fblk->floats[i];
6417 }
6418 else
6419 {
6420 num_used++;
ab6780cd 6421 FLOAT_UNMARK (&fblk->floats[i]);
7146af97
JB
6422 }
6423 lim = FLOAT_BLOCK_SIZE;
6ca94ac9
KH
6424 /* If this block contains only free floats and we have already
6425 seen more than two blocks worth of free floats then deallocate
6426 this block. */
6feef451 6427 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
6ca94ac9 6428 {
6ca94ac9
KH
6429 *fprev = fblk->next;
6430 /* Unhook from the free list. */
28a099a4 6431 float_free_list = fblk->floats[0].u.chain;
ab6780cd 6432 lisp_align_free (fblk);
6ca94ac9
KH
6433 }
6434 else
6feef451
AS
6435 {
6436 num_free += this_free;
6437 fprev = &fblk->next;
6438 }
7146af97
JB
6439 }
6440 total_floats = num_used;
6441 total_free_floats = num_free;
6442 }
7146af97 6443
d5e35230
JA
6444 /* Put all unmarked intervals on free list */
6445 {
6446 register struct interval_block *iblk;
6ca94ac9 6447 struct interval_block **iprev = &interval_block;
d5e35230 6448 register int lim = interval_block_index;
c0c5c8ae 6449 EMACS_INT num_free = 0, num_used = 0;
d5e35230
JA
6450
6451 interval_free_list = 0;
6452
6ca94ac9 6453 for (iblk = interval_block; iblk; iblk = *iprev)
d5e35230
JA
6454 {
6455 register int i;
6ca94ac9 6456 int this_free = 0;
d5e35230
JA
6457
6458 for (i = 0; i < lim; i++)
6459 {
2336fe58 6460 if (!iblk->intervals[i].gcmarkbit)
d5e35230 6461 {
439d5cb4 6462 SET_INTERVAL_PARENT (&iblk->intervals[i], interval_free_list);
d5e35230 6463 interval_free_list = &iblk->intervals[i];
6ca94ac9 6464 this_free++;
d5e35230
JA
6465 }
6466 else
6467 {
6468 num_used++;
2336fe58 6469 iblk->intervals[i].gcmarkbit = 0;
d5e35230
JA
6470 }
6471 }
6472 lim = INTERVAL_BLOCK_SIZE;
6ca94ac9
KH
6473 /* If this block contains only free intervals and we have already
6474 seen more than two blocks worth of free intervals then
6475 deallocate this block. */
6feef451 6476 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
6ca94ac9 6477 {
6ca94ac9
KH
6478 *iprev = iblk->next;
6479 /* Unhook from the free list. */
439d5cb4 6480 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
c8099634 6481 lisp_free (iblk);
6ca94ac9
KH
6482 }
6483 else
6feef451
AS
6484 {
6485 num_free += this_free;
6486 iprev = &iblk->next;
6487 }
d5e35230
JA
6488 }
6489 total_intervals = num_used;
6490 total_free_intervals = num_free;
6491 }
d5e35230 6492
7146af97
JB
6493 /* Put all unmarked symbols on free list */
6494 {
6495 register struct symbol_block *sblk;
6ca94ac9 6496 struct symbol_block **sprev = &symbol_block;
7146af97 6497 register int lim = symbol_block_index;
c0c5c8ae 6498 EMACS_INT num_free = 0, num_used = 0;
7146af97 6499
d285b373 6500 symbol_free_list = NULL;
177c0ea7 6501
6ca94ac9 6502 for (sblk = symbol_block; sblk; sblk = *sprev)
7146af97 6503 {
6ca94ac9 6504 int this_free = 0;
d55c12ed
AS
6505 union aligned_Lisp_Symbol *sym = sblk->symbols;
6506 union aligned_Lisp_Symbol *end = sym + lim;
d285b373
GM
6507
6508 for (; sym < end; ++sym)
6509 {
20035321
SM
6510 /* Check if the symbol was created during loadup. In such a case
6511 it might be pointed to by pure bytecode which we don't trace,
6512 so we conservatively assume that it is live. */
d55c12ed 6513 int pure_p = PURE_POINTER_P (XSTRING (sym->s.xname));
177c0ea7 6514
d55c12ed 6515 if (!sym->s.gcmarkbit && !pure_p)
d285b373 6516 {
d55c12ed
AS
6517 if (sym->s.redirect == SYMBOL_LOCALIZED)
6518 xfree (SYMBOL_BLV (&sym->s));
6519 sym->s.next = symbol_free_list;
6520 symbol_free_list = &sym->s;
34400008 6521#if GC_MARK_STACK
d285b373 6522 symbol_free_list->function = Vdead;
34400008 6523#endif
d285b373
GM
6524 ++this_free;
6525 }
6526 else
6527 {
6528 ++num_used;
6529 if (!pure_p)
d55c12ed
AS
6530 UNMARK_STRING (XSTRING (sym->s.xname));
6531 sym->s.gcmarkbit = 0;
d285b373
GM
6532 }
6533 }
177c0ea7 6534
7146af97 6535 lim = SYMBOL_BLOCK_SIZE;
6ca94ac9
KH
6536 /* If this block contains only free symbols and we have already
6537 seen more than two blocks worth of free symbols then deallocate
6538 this block. */
6feef451 6539 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
6ca94ac9 6540 {
6ca94ac9
KH
6541 *sprev = sblk->next;
6542 /* Unhook from the free list. */
d55c12ed 6543 symbol_free_list = sblk->symbols[0].s.next;
c8099634 6544 lisp_free (sblk);
6ca94ac9
KH
6545 }
6546 else
6feef451
AS
6547 {
6548 num_free += this_free;
6549 sprev = &sblk->next;
6550 }
7146af97
JB
6551 }
6552 total_symbols = num_used;
6553 total_free_symbols = num_free;
6554 }
6555
a9faeabe
RS
6556 /* Put all unmarked misc's on free list.
6557 For a marker, first unchain it from the buffer it points into. */
7146af97
JB
6558 {
6559 register struct marker_block *mblk;
6ca94ac9 6560 struct marker_block **mprev = &marker_block;
7146af97 6561 register int lim = marker_block_index;
c0c5c8ae 6562 EMACS_INT num_free = 0, num_used = 0;
7146af97
JB
6563
6564 marker_free_list = 0;
177c0ea7 6565
6ca94ac9 6566 for (mblk = marker_block; mblk; mblk = *mprev)
7146af97
JB
6567 {
6568 register int i;
6ca94ac9 6569 int this_free = 0;
fa05e253 6570
7146af97 6571 for (i = 0; i < lim; i++)
465edf35 6572 {
d55c12ed 6573 if (!mblk->markers[i].m.u_any.gcmarkbit)
465edf35 6574 {
d55c12ed
AS
6575 if (mblk->markers[i].m.u_any.type == Lisp_Misc_Marker)
6576 unchain_marker (&mblk->markers[i].m.u_marker);
fa05e253
RS
6577 /* Set the type of the freed object to Lisp_Misc_Free.
6578 We could leave the type alone, since nobody checks it,
465edf35 6579 but this might catch bugs faster. */
d55c12ed
AS
6580 mblk->markers[i].m.u_marker.type = Lisp_Misc_Free;
6581 mblk->markers[i].m.u_free.chain = marker_free_list;
6582 marker_free_list = &mblk->markers[i].m;
6ca94ac9 6583 this_free++;
465edf35
KH
6584 }
6585 else
6586 {
6587 num_used++;
d55c12ed 6588 mblk->markers[i].m.u_any.gcmarkbit = 0;
465edf35
KH
6589 }
6590 }
7146af97 6591 lim = MARKER_BLOCK_SIZE;
6ca94ac9
KH
6592 /* If this block contains only free markers and we have already
6593 seen more than two blocks worth of free markers then deallocate
6594 this block. */
6feef451 6595 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
6ca94ac9 6596 {
6ca94ac9
KH
6597 *mprev = mblk->next;
6598 /* Unhook from the free list. */
d55c12ed 6599 marker_free_list = mblk->markers[0].m.u_free.chain;
c8099634 6600 lisp_free (mblk);
6ca94ac9
KH
6601 }
6602 else
6feef451
AS
6603 {
6604 num_free += this_free;
6605 mprev = &mblk->next;
6606 }
7146af97
JB
6607 }
6608
6609 total_markers = num_used;
6610 total_free_markers = num_free;
6611 }
6612
6613 /* Free all unmarked buffers */
6614 {
6615 register struct buffer *buffer = all_buffers, *prev = 0, *next;
6616
3ab6e069 6617 total_buffers = 0;
7146af97 6618 while (buffer)
3ef06d12 6619 if (!VECTOR_MARKED_P (buffer))
7146af97
JB
6620 {
6621 if (prev)
eab3844f 6622 prev->header.next = buffer->header.next;
7146af97 6623 else
eab3844f
PE
6624 all_buffers = buffer->header.next.buffer;
6625 next = buffer->header.next.buffer;
34400008 6626 lisp_free (buffer);
7146af97
JB
6627 buffer = next;
6628 }
6629 else
6630 {
3ef06d12 6631 VECTOR_UNMARK (buffer);
30e3190a 6632 UNMARK_BALANCE_INTERVALS (BUF_INTERVALS (buffer));
3ab6e069 6633 total_buffers++;
eab3844f 6634 prev = buffer, buffer = buffer->header.next.buffer;
7146af97
JB
6635 }
6636 }
6637
f3372c87 6638 sweep_vectors ();
177c0ea7 6639
676a7251
GM
6640#ifdef GC_CHECK_STRING_BYTES
6641 if (!noninteractive)
6642 check_string_bytes (1);
6643#endif
7146af97 6644}
7146af97 6645
7146af97 6646
7146af97 6647
7146af97 6648\f
20d24714
JB
6649/* Debugging aids. */
6650
31ce1c91 6651DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
a6266d23 6652 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
228299fa 6653This may be helpful in debugging Emacs's memory usage.
7ee72033 6654We divide the value by 1024 to make sure it fits in a Lisp integer. */)
5842a27b 6655 (void)
20d24714
JB
6656{
6657 Lisp_Object end;
6658
d01a7826 6659 XSETINT (end, (intptr_t) (char *) sbrk (0) / 1024);
20d24714
JB
6660
6661 return end;
6662}
6663
310ea200 6664DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
a6266d23 6665 doc: /* Return a list of counters that measure how much consing there has been.
228299fa
GM
6666Each of these counters increments for a certain kind of object.
6667The counters wrap around from the largest positive integer to zero.
6668Garbage collection does not decrease them.
6669The elements of the value are as follows:
6670 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
6671All are in units of 1 = one object consed
6672except for VECTOR-CELLS and STRING-CHARS, which count the total length of
6673objects consed.
6674MISCS include overlays, markers, and some internal types.
6675Frames, windows, buffers, and subprocesses count as vectors
7ee72033 6676 (but the contents of a buffer's text do not count here). */)
5842a27b 6677 (void)
310ea200 6678{
694b6c97
DA
6679 return listn (HEAP, 8,
6680 bounded_number (cons_cells_consed),
6681 bounded_number (floats_consed),
6682 bounded_number (vector_cells_consed),
6683 bounded_number (symbols_consed),
6684 bounded_number (string_chars_consed),
6685 bounded_number (misc_objects_consed),
6686 bounded_number (intervals_consed),
6687 bounded_number (strings_consed));
310ea200 6688}
e0b8c689 6689
8b058d44
EZ
6690/* Find at most FIND_MAX symbols which have OBJ as their value or
6691 function. This is used in gdbinit's `xwhichsymbols' command. */
6692
6693Lisp_Object
196e41e4 6694which_symbols (Lisp_Object obj, EMACS_INT find_max)
8b058d44
EZ
6695{
6696 struct symbol_block *sblk;
8d0eb4c2 6697 ptrdiff_t gc_count = inhibit_garbage_collection ();
8b058d44
EZ
6698 Lisp_Object found = Qnil;
6699
ca78dc43 6700 if (! DEADP (obj))
8b058d44
EZ
6701 {
6702 for (sblk = symbol_block; sblk; sblk = sblk->next)
6703 {
9426aba4 6704 union aligned_Lisp_Symbol *aligned_sym = sblk->symbols;
8b058d44
EZ
6705 int bn;
6706
9426aba4 6707 for (bn = 0; bn < SYMBOL_BLOCK_SIZE; bn++, aligned_sym++)
8b058d44 6708 {
9426aba4 6709 struct Lisp_Symbol *sym = &aligned_sym->s;
8b058d44
EZ
6710 Lisp_Object val;
6711 Lisp_Object tem;
6712
6713 if (sblk == symbol_block && bn >= symbol_block_index)
6714 break;
6715
6716 XSETSYMBOL (tem, sym);
6717 val = find_symbol_value (tem);
6718 if (EQ (val, obj)
6719 || EQ (sym->function, obj)
6720 || (!NILP (sym->function)
6721 && COMPILEDP (sym->function)
6722 && EQ (AREF (sym->function, COMPILED_BYTECODE), obj))
6723 || (!NILP (val)
6724 && COMPILEDP (val)
6725 && EQ (AREF (val, COMPILED_BYTECODE), obj)))
6726 {
6727 found = Fcons (tem, found);
6728 if (--find_max == 0)
6729 goto out;
6730 }
6731 }
6732 }
6733 }
6734
6735 out:
6736 unbind_to (gc_count, Qnil);
6737 return found;
6738}
6739
244ed907 6740#ifdef ENABLE_CHECKING
e0b8c689 6741int suppress_checking;
d3d47262 6742
e0b8c689 6743void
971de7fb 6744die (const char *msg, const char *file, int line)
e0b8c689 6745{
67ee9f6e 6746 fprintf (stderr, "\r\n%s:%d: Emacs fatal error: %s\r\n",
e0b8c689
KR
6747 file, line, msg);
6748 abort ();
6749}
244ed907 6750#endif
20d24714 6751\f
7146af97
JB
6752/* Initialization */
6753
dfcf069d 6754void
971de7fb 6755init_alloc_once (void)
7146af97
JB
6756{
6757 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
9e713715
GM
6758 purebeg = PUREBEG;
6759 pure_size = PURESIZE;
ab6780cd 6760
877935b1 6761#if GC_MARK_STACK || defined GC_MALLOC_CHECK
34400008
GM
6762 mem_init ();
6763 Vdead = make_pure_string ("DEAD", 4, 4, 0);
6764#endif
9e713715 6765
d1658221
RS
6766#ifdef DOUG_LEA_MALLOC
6767 mallopt (M_TRIM_THRESHOLD, 128*1024); /* trim threshold */
6768 mallopt (M_MMAP_THRESHOLD, 64*1024); /* mmap threshold */
81d492d5 6769 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* max. number of mmap'ed areas */
d1658221 6770#endif
7146af97 6771 init_strings ();
f3372c87 6772 init_vectors ();
d5e35230 6773
276cbe5a
RS
6774#ifdef REL_ALLOC
6775 malloc_hysteresis = 32;
6776#else
6777 malloc_hysteresis = 0;
6778#endif
6779
24d8a105 6780 refill_memory_reserve ();
0dd6d66d 6781 gc_cons_threshold = GC_DEFAULT_THRESHOLD;
7146af97
JB
6782}
6783
dfcf069d 6784void
971de7fb 6785init_alloc (void)
7146af97
JB
6786{
6787 gcprolist = 0;
630686c8 6788 byte_stack_list = 0;
182ff242
GM
6789#if GC_MARK_STACK
6790#if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
6791 setjmp_tested_p = longjmps_done = 0;
6792#endif
6793#endif
2c5bd608
DL
6794 Vgc_elapsed = make_float (0.0);
6795 gcs_done = 0;
7146af97
JB
6796}
6797
6798void
971de7fb 6799syms_of_alloc (void)
7146af97 6800{
29208e82 6801 DEFVAR_INT ("gc-cons-threshold", gc_cons_threshold,
fb7ada5f 6802 doc: /* Number of bytes of consing between garbage collections.
228299fa
GM
6803Garbage collection can happen automatically once this many bytes have been
6804allocated since the last garbage collection. All data types count.
7146af97 6805
228299fa 6806Garbage collection happens automatically only when `eval' is called.
7146af97 6807
228299fa 6808By binding this temporarily to a large number, you can effectively
96f077ad
SM
6809prevent garbage collection during a part of the program.
6810See also `gc-cons-percentage'. */);
6811
29208e82 6812 DEFVAR_LISP ("gc-cons-percentage", Vgc_cons_percentage,
fb7ada5f 6813 doc: /* Portion of the heap used for allocation.
96f077ad
SM
6814Garbage collection can happen automatically once this portion of the heap
6815has been allocated since the last garbage collection.
6816If this portion is smaller than `gc-cons-threshold', this is ignored. */);
6817 Vgc_cons_percentage = make_float (0.1);
0819585c 6818
29208e82 6819 DEFVAR_INT ("pure-bytes-used", pure_bytes_used,
333f9019 6820 doc: /* Number of bytes of shareable Lisp data allocated so far. */);
0819585c 6821
29208e82 6822 DEFVAR_INT ("cons-cells-consed", cons_cells_consed,
a6266d23 6823 doc: /* Number of cons cells that have been consed so far. */);
0819585c 6824
29208e82 6825 DEFVAR_INT ("floats-consed", floats_consed,
a6266d23 6826 doc: /* Number of floats that have been consed so far. */);
0819585c 6827
29208e82 6828 DEFVAR_INT ("vector-cells-consed", vector_cells_consed,
a6266d23 6829 doc: /* Number of vector cells that have been consed so far. */);
0819585c 6830
29208e82 6831 DEFVAR_INT ("symbols-consed", symbols_consed,
a6266d23 6832 doc: /* Number of symbols that have been consed so far. */);
0819585c 6833
29208e82 6834 DEFVAR_INT ("string-chars-consed", string_chars_consed,
a6266d23 6835 doc: /* Number of string characters that have been consed so far. */);
0819585c 6836
29208e82 6837 DEFVAR_INT ("misc-objects-consed", misc_objects_consed,
01a6dcc8
GM
6838 doc: /* Number of miscellaneous objects that have been consed so far.
6839These include markers and overlays, plus certain objects not visible
6840to users. */);
2e471eb5 6841
29208e82 6842 DEFVAR_INT ("intervals-consed", intervals_consed,
a6266d23 6843 doc: /* Number of intervals that have been consed so far. */);
7146af97 6844
29208e82 6845 DEFVAR_INT ("strings-consed", strings_consed,
a6266d23 6846 doc: /* Number of strings that have been consed so far. */);
228299fa 6847
29208e82 6848 DEFVAR_LISP ("purify-flag", Vpurify_flag,
a6266d23 6849 doc: /* Non-nil means loading Lisp code in order to dump an executable.
e9515805
SM
6850This means that certain objects should be allocated in shared (pure) space.
6851It can also be set to a hash-table, in which case this table is used to
6852do hash-consing of the objects allocated to pure space. */);
228299fa 6853
29208e82 6854 DEFVAR_BOOL ("garbage-collection-messages", garbage_collection_messages,
a6266d23 6855 doc: /* Non-nil means display messages at start and end of garbage collection. */);
299585ee
RS
6856 garbage_collection_messages = 0;
6857
29208e82 6858 DEFVAR_LISP ("post-gc-hook", Vpost_gc_hook,
a6266d23 6859 doc: /* Hook run after garbage collection has finished. */);
9e713715 6860 Vpost_gc_hook = Qnil;
cd3520a4 6861 DEFSYM (Qpost_gc_hook, "post-gc-hook");
9e713715 6862
29208e82 6863 DEFVAR_LISP ("memory-signal-data", Vmemory_signal_data,
74a54b04 6864 doc: /* Precomputed `signal' argument for memory-full error. */);
bcb61d60
KH
6865 /* We build this in advance because if we wait until we need it, we might
6866 not be able to allocate the memory to hold it. */
74a54b04 6867 Vmemory_signal_data
694b6c97
DA
6868 = listn (PURE, 2, Qerror,
6869 build_pure_c_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"));
74a54b04 6870
29208e82 6871 DEFVAR_LISP ("memory-full", Vmemory_full,
24d8a105 6872 doc: /* Non-nil means Emacs cannot get much more Lisp memory. */);
74a54b04 6873 Vmemory_full = Qnil;
bcb61d60 6874
5b835e1d
DA
6875 DEFSYM (Qstring_bytes, "string-bytes");
6876 DEFSYM (Qvector_slots, "vector-slots");
f8643a6b 6877 DEFSYM (Qheap, "heap");
5b835e1d 6878
cd3520a4
JB
6879 DEFSYM (Qgc_cons_threshold, "gc-cons-threshold");
6880 DEFSYM (Qchar_table_extra_slots, "char-table-extra-slots");
a59de17b 6881
29208e82 6882 DEFVAR_LISP ("gc-elapsed", Vgc_elapsed,
2c5bd608 6883 doc: /* Accumulated time elapsed in garbage collections.
e7415487 6884The time is in seconds as a floating point value. */);
29208e82 6885 DEFVAR_INT ("gcs-done", gcs_done,
e7415487 6886 doc: /* Accumulated number of garbage collections done. */);
2c5bd608 6887
7146af97
JB
6888 defsubr (&Scons);
6889 defsubr (&Slist);
6890 defsubr (&Svector);
6891 defsubr (&Smake_byte_code);
6892 defsubr (&Smake_list);
6893 defsubr (&Smake_vector);
6894 defsubr (&Smake_string);
7b07587b 6895 defsubr (&Smake_bool_vector);
7146af97
JB
6896 defsubr (&Smake_symbol);
6897 defsubr (&Smake_marker);
6898 defsubr (&Spurecopy);
6899 defsubr (&Sgarbage_collect);
20d24714 6900 defsubr (&Smemory_limit);
310ea200 6901 defsubr (&Smemory_use_counts);
34400008
GM
6902
6903#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
6904 defsubr (&Sgc_status);
6905#endif
7146af97 6906}
5eceb8fb 6907
4706125e
PE
6908/* Make some symbols visible to GDB. This section is last, so that
6909 the #undef lines don't mess up later code. */
6910
6911/* When compiled with GCC, GDB might say "No enum type named
6912 pvec_type" if we don't have at least one symbol with that type, and
6913 then xbacktrace could fail. Similarly for the other enums and
6914 their values. */
6915union
6916{
6917 enum CHECK_LISP_OBJECT_TYPE CHECK_LISP_OBJECT_TYPE;
6918 enum enum_USE_LSB_TAG enum_USE_LSB_TAG;
6919 enum Lisp_Bits Lisp_Bits;
6920 enum More_Lisp_Bits More_Lisp_Bits;
6921 enum pvec_type pvec_type;
6922} const EXTERNALLY_VISIBLE gdb_make_enums_visible = {0};
6923
6924/* These symbols cannot be done as enums, since values might not be
6925 in 'int' range. Each symbol X has a corresponding X_VAL symbol,
6926 verified to have the correct value. */
5eceb8fb
PE
6927
6928#define ARRAY_MARK_FLAG_VAL PTRDIFF_MIN
6929#define PSEUDOVECTOR_FLAG_VAL (PTRDIFF_MAX - PTRDIFF_MAX / 2)
6930#define VALMASK_VAL (USE_LSB_TAG ? -1 << GCTYPEBITS : VAL_MAX)
6931
6932verify (ARRAY_MARK_FLAG_VAL == ARRAY_MARK_FLAG);
6933verify (PSEUDOVECTOR_FLAG_VAL == PSEUDOVECTOR_FLAG);
6934verify (VALMASK_VAL == VALMASK);
6935
6936#undef ARRAY_MARK_FLAG
6937#undef PSEUDOVECTOR_FLAG
6938#undef VALMASK
6939
6940ptrdiff_t const EXTERNALLY_VISIBLE
6941 ARRAY_MARK_FLAG = ARRAY_MARK_FLAG_VAL,
6942 PSEUDOVECTOR_FLAG = PSEUDOVECTOR_FLAG_VAL;
6943
6944EMACS_INT const EXTERNALLY_VISIBLE
6945 VALMASK = VALMASK_VAL;