Support transparency for ImageMagick images.
[bpt/emacs.git] / src / alloc.c
CommitLineData
7146af97 1/* Storage allocation and gc for GNU Emacs Lisp interpreter.
999dd333
GM
2
3Copyright (C) 1985-1986, 1988, 1993-1995, 1997-2012
4 Free Software Foundation, Inc.
7146af97
JB
5
6This file is part of GNU Emacs.
7
9ec0b715 8GNU Emacs is free software: you can redistribute it and/or modify
7146af97 9it under the terms of the GNU General Public License as published by
9ec0b715
GM
10the Free Software Foundation, either version 3 of the License, or
11(at your option) any later version.
7146af97
JB
12
13GNU Emacs is distributed in the hope that it will be useful,
14but WITHOUT ANY WARRANTY; without even the implied warranty of
15MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16GNU General Public License for more details.
17
18You should have received a copy of the GNU General Public License
9ec0b715 19along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
7146af97 20
18160b98 21#include <config.h>
e9b309ac 22#include <stdio.h>
ab6780cd 23#include <limits.h> /* For CHAR_BIT. */
d7306fe6 24#include <setjmp.h>
92939d31 25
68c45bf0 26#include <signal.h>
92939d31 27
ae9e757a 28#ifdef HAVE_PTHREAD
aa477689
JD
29#include <pthread.h>
30#endif
31
7539e11f
KR
32/* This file is part of the core Lisp implementation, and thus must
33 deal with the real data structures. If the Lisp implementation is
34 replaced, this file likely will not be used. */
2e471eb5 35
7539e11f 36#undef HIDE_LISP_IMPLEMENTATION
7146af97 37#include "lisp.h"
ece93c02 38#include "process.h"
d5e35230 39#include "intervals.h"
4c0be5f4 40#include "puresize.h"
7146af97
JB
41#include "buffer.h"
42#include "window.h"
2538fae4 43#include "keyboard.h"
502b9b64 44#include "frame.h"
9ac0d9e0 45#include "blockinput.h"
9d80e883 46#include "character.h"
e065a56e 47#include "syssignal.h"
4a729fd8 48#include "termhooks.h" /* For struct terminal. */
34400008 49#include <setjmp.h>
0065d054 50#include <verify.h>
e065a56e 51
52828e02
PE
52/* GC_CHECK_MARKED_OBJECTS means do sanity checks on allocated objects.
53 Doable only if GC_MARK_STACK. */
54#if ! GC_MARK_STACK
55# undef GC_CHECK_MARKED_OBJECTS
56#endif
57
6b61353c 58/* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
52828e02
PE
59 memory. Can do this only if using gmalloc.c and if not checking
60 marked objects. */
6b61353c 61
52828e02
PE
62#if (defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC \
63 || defined GC_CHECK_MARKED_OBJECTS)
6b61353c
KH
64#undef GC_MALLOC_CHECK
65#endif
66
bf952fb6 67#include <unistd.h>
4004364e 68#ifndef HAVE_UNISTD_H
261cb4bb 69extern void *sbrk ();
bf952fb6 70#endif
ee1eea5c 71
de7124a7 72#include <fcntl.h>
de7124a7 73
69666f77 74#ifdef WINDOWSNT
f892cf9c 75#include "w32.h"
69666f77
EZ
76#endif
77
d1658221 78#ifdef DOUG_LEA_MALLOC
2e471eb5 79
d1658221 80#include <malloc.h>
81d492d5 81
2e471eb5
GM
82/* Specify maximum number of areas to mmap. It would be nice to use a
83 value that explicitly means "no limit". */
84
81d492d5
RS
85#define MMAP_MAX_AREAS 100000000
86
2e471eb5
GM
87#else /* not DOUG_LEA_MALLOC */
88
276cbe5a
RS
89/* The following come from gmalloc.c. */
90
5e927815
PE
91extern size_t _bytes_used;
92extern size_t __malloc_extra_blocks;
b62a57be
PE
93extern void *_malloc_internal (size_t);
94extern void _free_internal (void *);
2e471eb5
GM
95
96#endif /* not DOUG_LEA_MALLOC */
276cbe5a 97
7bc26fdb 98#if ! defined SYSTEM_MALLOC && ! defined SYNC_INPUT
ae9e757a 99#ifdef HAVE_PTHREAD
aa477689 100
f415cacd
JD
101/* When GTK uses the file chooser dialog, different backends can be loaded
102 dynamically. One such a backend is the Gnome VFS backend that gets loaded
103 if you run Gnome. That backend creates several threads and also allocates
104 memory with malloc.
105
ae9e757a
JD
106 Also, gconf and gsettings may create several threads.
107
f415cacd
JD
108 If Emacs sets malloc hooks (! SYSTEM_MALLOC) and the emacs_blocked_*
109 functions below are called from malloc, there is a chance that one
110 of these threads preempts the Emacs main thread and the hook variables
333f1b6f 111 end up in an inconsistent state. So we have a mutex to prevent that (note
f415cacd
JD
112 that the backend handles concurrent access to malloc within its own threads
113 but Emacs code running in the main thread is not included in that control).
114
026cdede 115 When UNBLOCK_INPUT is called, reinvoke_input_signal may be called. If this
f415cacd
JD
116 happens in one of the backend threads we will have two threads that tries
117 to run Emacs code at once, and the code is not prepared for that.
118 To prevent that, we only call BLOCK/UNBLOCK from the main thread. */
119
aa477689 120static pthread_mutex_t alloc_mutex;
aa477689 121
959dc601
JD
122#define BLOCK_INPUT_ALLOC \
123 do \
124 { \
125 if (pthread_equal (pthread_self (), main_thread)) \
86302e37 126 BLOCK_INPUT; \
959dc601
JD
127 pthread_mutex_lock (&alloc_mutex); \
128 } \
aa477689 129 while (0)
959dc601
JD
130#define UNBLOCK_INPUT_ALLOC \
131 do \
132 { \
133 pthread_mutex_unlock (&alloc_mutex); \
134 if (pthread_equal (pthread_self (), main_thread)) \
86302e37 135 UNBLOCK_INPUT; \
959dc601 136 } \
aa477689
JD
137 while (0)
138
ae9e757a 139#else /* ! defined HAVE_PTHREAD */
aa477689
JD
140
141#define BLOCK_INPUT_ALLOC BLOCK_INPUT
142#define UNBLOCK_INPUT_ALLOC UNBLOCK_INPUT
143
ae9e757a 144#endif /* ! defined HAVE_PTHREAD */
7bc26fdb 145#endif /* ! defined SYSTEM_MALLOC && ! defined SYNC_INPUT */
aa477689 146
2e471eb5
GM
147/* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
148 to a struct Lisp_String. */
149
7cdee936
SM
150#define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
151#define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
b059de99 152#define STRING_MARKED_P(S) (((S)->size & ARRAY_MARK_FLAG) != 0)
2e471eb5 153
eab3844f
PE
154#define VECTOR_MARK(V) ((V)->header.size |= ARRAY_MARK_FLAG)
155#define VECTOR_UNMARK(V) ((V)->header.size &= ~ARRAY_MARK_FLAG)
156#define VECTOR_MARKED_P(V) (((V)->header.size & ARRAY_MARK_FLAG) != 0)
3ef06d12 157
7bc26fdb
PE
158/* Value is the number of bytes of S, a pointer to a struct Lisp_String.
159 Be careful during GC, because S->size contains the mark bit for
2e471eb5
GM
160 strings. */
161
3ef06d12 162#define GC_STRING_BYTES(S) (STRING_BYTES (S))
2e471eb5 163
29208e82
TT
164/* Global variables. */
165struct emacs_globals globals;
166
2e471eb5
GM
167/* Number of bytes of consing done since the last gc. */
168
0de4bb68 169EMACS_INT consing_since_gc;
7146af97 170
974aae61
RS
171/* Similar minimum, computed from Vgc_cons_percentage. */
172
173EMACS_INT gc_relative_threshold;
310ea200 174
24d8a105
RS
175/* Minimum number of bytes of consing since GC before next GC,
176 when memory is full. */
177
178EMACS_INT memory_full_cons_threshold;
179
2e471eb5
GM
180/* Nonzero during GC. */
181
7146af97
JB
182int gc_in_progress;
183
3de0effb
RS
184/* Nonzero means abort if try to GC.
185 This is for code which is written on the assumption that
186 no GC will happen, so as to verify that assumption. */
187
188int abort_on_gc;
189
34400008
GM
190/* Number of live and free conses etc. */
191
c0c5c8ae
PE
192static EMACS_INT total_conses, total_markers, total_symbols, total_vector_size;
193static EMACS_INT total_free_conses, total_free_markers, total_free_symbols;
194static EMACS_INT total_free_floats, total_floats;
fd27a537 195
2e471eb5 196/* Points to memory space allocated as "spare", to be freed if we run
24d8a105
RS
197 out of memory. We keep one large block, four cons-blocks, and
198 two string blocks. */
2e471eb5 199
d3d47262 200static char *spare_memory[7];
276cbe5a 201
2b6148e4
PE
202/* Amount of spare memory to keep in large reserve block, or to see
203 whether this much is available when malloc fails on a larger request. */
2e471eb5 204
276cbe5a 205#define SPARE_MEMORY (1 << 14)
4d09bcf6 206
276cbe5a 207/* Number of extra blocks malloc should get when it needs more core. */
2e471eb5 208
276cbe5a
RS
209static int malloc_hysteresis;
210
1b8950e5
RS
211/* Initialize it to a nonzero value to force it into data space
212 (rather than bss space). That way unexec will remap it into text
213 space (pure), on some systems. We have not implemented the
214 remapping on more recent systems because this is less important
215 nowadays than in the days of small memories and timesharing. */
2e471eb5 216
2c4685ee 217EMACS_INT pure[(PURESIZE + sizeof (EMACS_INT) - 1) / sizeof (EMACS_INT)] = {1,};
7146af97 218#define PUREBEG (char *) pure
2e471eb5 219
9e713715 220/* Pointer to the pure area, and its size. */
2e471eb5 221
9e713715 222static char *purebeg;
903fe15d 223static ptrdiff_t pure_size;
9e713715
GM
224
225/* Number of bytes of pure storage used before pure storage overflowed.
226 If this is non-zero, this implies that an overflow occurred. */
227
903fe15d 228static ptrdiff_t pure_bytes_used_before_overflow;
7146af97 229
34400008
GM
230/* Value is non-zero if P points into pure space. */
231
232#define PURE_POINTER_P(P) \
6a0bf43d 233 ((uintptr_t) (P) - (uintptr_t) purebeg <= pure_size)
34400008 234
e5bc14d4
YM
235/* Index in pure at which next pure Lisp object will be allocated.. */
236
d311d28c 237static ptrdiff_t pure_bytes_used_lisp;
e5bc14d4
YM
238
239/* Number of bytes allocated for non-Lisp objects in pure storage. */
240
d311d28c 241static ptrdiff_t pure_bytes_used_non_lisp;
e5bc14d4 242
2e471eb5
GM
243/* If nonzero, this is a warning delivered by malloc and not yet
244 displayed. */
245
a8fe7202 246const char *pending_malloc_warning;
7146af97
JB
247
248/* Maximum amount of C stack to save when a GC happens. */
249
250#ifndef MAX_SAVE_STACK
251#define MAX_SAVE_STACK 16000
252#endif
253
254/* Buffer in which we save a copy of the C stack at each GC. */
255
dd3f25f7 256#if MAX_SAVE_STACK > 0
d3d47262 257static char *stack_copy;
903fe15d 258static ptrdiff_t stack_copy_size;
dd3f25f7 259#endif
7146af97 260
2e471eb5
GM
261/* Non-zero means ignore malloc warnings. Set during initialization.
262 Currently not used. */
263
d3d47262 264static int ignore_warnings;
350273a4 265
955cbe7b
PE
266static Lisp_Object Qgc_cons_threshold;
267Lisp_Object Qchar_table_extra_slots;
e8197642 268
9e713715
GM
269/* Hook run after GC has finished. */
270
955cbe7b 271static Lisp_Object Qpost_gc_hook;
2c5bd608 272
f57e2426
J
273static void mark_buffer (Lisp_Object);
274static void mark_terminals (void);
f57e2426 275static void gc_sweep (void);
72cb32cf 276static Lisp_Object make_pure_vector (ptrdiff_t);
f57e2426
J
277static void mark_glyph_matrix (struct glyph_matrix *);
278static void mark_face_cache (struct face_cache *);
41c28a37 279
69003fd8
PE
280#if !defined REL_ALLOC || defined SYSTEM_MALLOC
281static void refill_memory_reserve (void);
282#endif
f57e2426
J
283static struct Lisp_String *allocate_string (void);
284static void compact_small_strings (void);
285static void free_large_strings (void);
286static void sweep_strings (void);
244ed907 287static void free_misc (Lisp_Object);
196e41e4 288extern Lisp_Object which_symbols (Lisp_Object, EMACS_INT) EXTERNALLY_VISIBLE;
34400008 289
34400008
GM
290/* When scanning the C stack for live Lisp objects, Emacs keeps track
291 of what memory allocated via lisp_malloc is intended for what
292 purpose. This enumeration specifies the type of memory. */
293
294enum mem_type
295{
296 MEM_TYPE_NON_LISP,
297 MEM_TYPE_BUFFER,
298 MEM_TYPE_CONS,
299 MEM_TYPE_STRING,
300 MEM_TYPE_MISC,
301 MEM_TYPE_SYMBOL,
302 MEM_TYPE_FLOAT,
9c545a55
SM
303 /* We used to keep separate mem_types for subtypes of vectors such as
304 process, hash_table, frame, terminal, and window, but we never made
305 use of the distinction, so it only caused source-code complexity
306 and runtime slowdown. Minor but pointless. */
f3372c87
DA
307 MEM_TYPE_VECTORLIKE,
308 /* Special type to denote vector blocks. */
309 MEM_TYPE_VECTOR_BLOCK
34400008
GM
310};
311
261cb4bb 312static void *lisp_malloc (size_t, enum mem_type);
225ccad6 313
24d8a105 314
877935b1 315#if GC_MARK_STACK || defined GC_MALLOC_CHECK
0b378936
GM
316
317#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
318#include <stdio.h> /* For fprintf. */
319#endif
320
321/* A unique object in pure space used to make some Lisp objects
322 on free lists recognizable in O(1). */
323
d3d47262 324static Lisp_Object Vdead;
ca78dc43 325#define DEADP(x) EQ (x, Vdead)
0b378936 326
877935b1
GM
327#ifdef GC_MALLOC_CHECK
328
329enum mem_type allocated_mem_type;
877935b1
GM
330
331#endif /* GC_MALLOC_CHECK */
332
333/* A node in the red-black tree describing allocated memory containing
334 Lisp data. Each such block is recorded with its start and end
335 address when it is allocated, and removed from the tree when it
336 is freed.
337
338 A red-black tree is a balanced binary tree with the following
339 properties:
340
341 1. Every node is either red or black.
342 2. Every leaf is black.
343 3. If a node is red, then both of its children are black.
344 4. Every simple path from a node to a descendant leaf contains
345 the same number of black nodes.
346 5. The root is always black.
347
348 When nodes are inserted into the tree, or deleted from the tree,
349 the tree is "fixed" so that these properties are always true.
350
351 A red-black tree with N internal nodes has height at most 2
352 log(N+1). Searches, insertions and deletions are done in O(log N).
353 Please see a text book about data structures for a detailed
354 description of red-black trees. Any book worth its salt should
355 describe them. */
356
357struct mem_node
358{
9f7d9210
RS
359 /* Children of this node. These pointers are never NULL. When there
360 is no child, the value is MEM_NIL, which points to a dummy node. */
361 struct mem_node *left, *right;
362
363 /* The parent of this node. In the root node, this is NULL. */
364 struct mem_node *parent;
877935b1
GM
365
366 /* Start and end of allocated region. */
367 void *start, *end;
368
369 /* Node color. */
370 enum {MEM_BLACK, MEM_RED} color;
177c0ea7 371
877935b1
GM
372 /* Memory type. */
373 enum mem_type type;
374};
375
376/* Base address of stack. Set in main. */
377
378Lisp_Object *stack_base;
379
380/* Root of the tree describing allocated Lisp memory. */
381
382static struct mem_node *mem_root;
383
ece93c02
GM
384/* Lowest and highest known address in the heap. */
385
386static void *min_heap_address, *max_heap_address;
387
877935b1
GM
388/* Sentinel node of the tree. */
389
390static struct mem_node mem_z;
391#define MEM_NIL &mem_z
392
d311d28c 393static struct Lisp_Vector *allocate_vectorlike (ptrdiff_t);
261cb4bb 394static void lisp_free (void *);
f57e2426
J
395static void mark_stack (void);
396static int live_vector_p (struct mem_node *, void *);
397static int live_buffer_p (struct mem_node *, void *);
398static int live_string_p (struct mem_node *, void *);
399static int live_cons_p (struct mem_node *, void *);
400static int live_symbol_p (struct mem_node *, void *);
401static int live_float_p (struct mem_node *, void *);
402static int live_misc_p (struct mem_node *, void *);
403static void mark_maybe_object (Lisp_Object);
3164aeac 404static void mark_memory (void *, void *);
52828e02 405#if GC_MARK_STACK || defined GC_MALLOC_CHECK
f57e2426
J
406static void mem_init (void);
407static struct mem_node *mem_insert (void *, void *, enum mem_type);
408static void mem_insert_fixup (struct mem_node *);
b62a57be 409#endif
f57e2426
J
410static void mem_rotate_left (struct mem_node *);
411static void mem_rotate_right (struct mem_node *);
412static void mem_delete (struct mem_node *);
413static void mem_delete_fixup (struct mem_node *);
55d4c1b2 414static inline struct mem_node *mem_find (void *);
34400008 415
34400008
GM
416
417#if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
f57e2426 418static void check_gcpros (void);
34400008
GM
419#endif
420
877935b1 421#endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
34400008 422
ca78dc43
PE
423#ifndef DEADP
424# define DEADP(x) 0
425#endif
426
1f0b3fd2
GM
427/* Recording what needs to be marked for gc. */
428
429struct gcpro *gcprolist;
430
379b98b1
PE
431/* Addresses of staticpro'd variables. Initialize it to a nonzero
432 value; otherwise some compilers put it into BSS. */
1f0b3fd2 433
0078170f 434#define NSTATICS 0x640
d3d47262 435static Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
1f0b3fd2
GM
436
437/* Index of next unused slot in staticvec. */
438
d3d47262 439static int staticidx = 0;
1f0b3fd2 440
261cb4bb 441static void *pure_alloc (size_t, int);
1f0b3fd2
GM
442
443
444/* Value is SZ rounded up to the next multiple of ALIGNMENT.
445 ALIGNMENT must be a power of 2. */
446
ab6780cd 447#define ALIGN(ptr, ALIGNMENT) \
261cb4bb
PE
448 ((void *) (((uintptr_t) (ptr) + (ALIGNMENT) - 1) \
449 & ~ ((ALIGNMENT) - 1)))
1f0b3fd2 450
ece93c02 451
7146af97 452\f
34400008
GM
453/************************************************************************
454 Malloc
455 ************************************************************************/
456
4455ad75 457/* Function malloc calls this if it finds we are near exhausting storage. */
d457598b
AS
458
459void
a8fe7202 460malloc_warning (const char *str)
7146af97
JB
461{
462 pending_malloc_warning = str;
463}
464
34400008 465
4455ad75 466/* Display an already-pending malloc warning. */
34400008 467
d457598b 468void
971de7fb 469display_malloc_warning (void)
7146af97 470{
4455ad75
RS
471 call3 (intern ("display-warning"),
472 intern ("alloc"),
473 build_string (pending_malloc_warning),
474 intern ("emergency"));
7146af97 475 pending_malloc_warning = 0;
7146af97 476}
49efed3a 477\f
276cbe5a
RS
478/* Called if we can't allocate relocatable space for a buffer. */
479
480void
d311d28c 481buffer_memory_full (ptrdiff_t nbytes)
276cbe5a 482{
2e471eb5
GM
483 /* If buffers use the relocating allocator, no need to free
484 spare_memory, because we may have plenty of malloc space left
485 that we could get, and if we don't, the malloc that fails will
486 itself cause spare_memory to be freed. If buffers don't use the
487 relocating allocator, treat this like any other failing
488 malloc. */
276cbe5a
RS
489
490#ifndef REL_ALLOC
531b0165 491 memory_full (nbytes);
276cbe5a
RS
492#endif
493
2e471eb5
GM
494 /* This used to call error, but if we've run out of memory, we could
495 get infinite recursion trying to build the string. */
9b306d37 496 xsignal (Qnil, Vmemory_signal_data);
7146af97
JB
497}
498
f3372c87
DA
499/* A common multiple of the positive integers A and B. Ideally this
500 would be the least common multiple, but there's no way to do that
501 as a constant expression in C, so do the best that we can easily do. */
502#define COMMON_MULTIPLE(a, b) \
503 ((a) % (b) == 0 ? (a) : (b) % (a) == 0 ? (b) : (a) * (b))
34400008 504
c9d624c6 505#ifndef XMALLOC_OVERRUN_CHECK
903fe15d 506#define XMALLOC_OVERRUN_CHECK_OVERHEAD 0
c9d624c6 507#else
212f33f1 508
903fe15d
PE
509/* Check for overrun in malloc'ed buffers by wrapping a header and trailer
510 around each block.
bdbed949 511
f701dc2a
PE
512 The header consists of XMALLOC_OVERRUN_CHECK_SIZE fixed bytes
513 followed by XMALLOC_OVERRUN_SIZE_SIZE bytes containing the original
514 block size in little-endian order. The trailer consists of
515 XMALLOC_OVERRUN_CHECK_SIZE fixed bytes.
bdbed949
KS
516
517 The header is used to detect whether this block has been allocated
f701dc2a
PE
518 through these functions, as some low-level libc functions may
519 bypass the malloc hooks. */
bdbed949 520
212f33f1 521#define XMALLOC_OVERRUN_CHECK_SIZE 16
903fe15d 522#define XMALLOC_OVERRUN_CHECK_OVERHEAD \
38532ce6
PE
523 (2 * XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE)
524
525/* Define XMALLOC_OVERRUN_SIZE_SIZE so that (1) it's large enough to
f701dc2a
PE
526 hold a size_t value and (2) the header size is a multiple of the
527 alignment that Emacs needs for C types and for USE_LSB_TAG. */
528#define XMALLOC_BASE_ALIGNMENT \
529 offsetof ( \
530 struct { \
531 union { long double d; intmax_t i; void *p; } u; \
532 char c; \
533 }, \
534 c)
f3372c87 535
38532ce6 536#ifdef USE_LSB_TAG
f701dc2a
PE
537# define XMALLOC_HEADER_ALIGNMENT \
538 COMMON_MULTIPLE (1 << GCTYPEBITS, XMALLOC_BASE_ALIGNMENT)
38532ce6
PE
539#else
540# define XMALLOC_HEADER_ALIGNMENT XMALLOC_BASE_ALIGNMENT
541#endif
542#define XMALLOC_OVERRUN_SIZE_SIZE \
f701dc2a
PE
543 (((XMALLOC_OVERRUN_CHECK_SIZE + sizeof (size_t) \
544 + XMALLOC_HEADER_ALIGNMENT - 1) \
545 / XMALLOC_HEADER_ALIGNMENT * XMALLOC_HEADER_ALIGNMENT) \
546 - XMALLOC_OVERRUN_CHECK_SIZE)
bdbed949 547
903fe15d
PE
548static char const xmalloc_overrun_check_header[XMALLOC_OVERRUN_CHECK_SIZE] =
549 { '\x9a', '\x9b', '\xae', '\xaf',
550 '\xbf', '\xbe', '\xce', '\xcf',
551 '\xea', '\xeb', '\xec', '\xed',
552 '\xdf', '\xde', '\x9c', '\x9d' };
212f33f1 553
903fe15d
PE
554static char const xmalloc_overrun_check_trailer[XMALLOC_OVERRUN_CHECK_SIZE] =
555 { '\xaa', '\xab', '\xac', '\xad',
556 '\xba', '\xbb', '\xbc', '\xbd',
557 '\xca', '\xcb', '\xcc', '\xcd',
558 '\xda', '\xdb', '\xdc', '\xdd' };
212f33f1 559
903fe15d 560/* Insert and extract the block size in the header. */
bdbed949 561
903fe15d
PE
562static void
563xmalloc_put_size (unsigned char *ptr, size_t size)
564{
565 int i;
38532ce6 566 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
903fe15d 567 {
38532ce6 568 *--ptr = size & ((1 << CHAR_BIT) - 1);
903fe15d
PE
569 size >>= CHAR_BIT;
570 }
571}
bdbed949 572
903fe15d
PE
573static size_t
574xmalloc_get_size (unsigned char *ptr)
575{
576 size_t size = 0;
577 int i;
38532ce6
PE
578 ptr -= XMALLOC_OVERRUN_SIZE_SIZE;
579 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
903fe15d
PE
580 {
581 size <<= CHAR_BIT;
582 size += *ptr++;
583 }
584 return size;
585}
bdbed949
KS
586
587
d8f165a8
JD
588/* The call depth in overrun_check functions. For example, this might happen:
589 xmalloc()
590 overrun_check_malloc()
591 -> malloc -> (via hook)_-> emacs_blocked_malloc
592 -> overrun_check_malloc
593 call malloc (hooks are NULL, so real malloc is called).
594 malloc returns 10000.
595 add overhead, return 10016.
596 <- (back in overrun_check_malloc)
857ae68b 597 add overhead again, return 10032
d8f165a8 598 xmalloc returns 10032.
857ae68b
JD
599
600 (time passes).
601
d8f165a8
JD
602 xfree(10032)
603 overrun_check_free(10032)
903fe15d 604 decrease overhead
d8f165a8 605 free(10016) <- crash, because 10000 is the original pointer. */
857ae68b 606
903fe15d 607static ptrdiff_t check_depth;
857ae68b 608
bdbed949
KS
609/* Like malloc, but wraps allocated block with header and trailer. */
610
261cb4bb 611static void *
e7974947 612overrun_check_malloc (size_t size)
212f33f1 613{
bdbed949 614 register unsigned char *val;
903fe15d
PE
615 int overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_OVERHEAD : 0;
616 if (SIZE_MAX - overhead < size)
617 abort ();
212f33f1 618
857ae68b
JD
619 val = (unsigned char *) malloc (size + overhead);
620 if (val && check_depth == 1)
212f33f1 621 {
903fe15d 622 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
38532ce6 623 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
903fe15d 624 xmalloc_put_size (val, size);
72af86bd
AS
625 memcpy (val + size, xmalloc_overrun_check_trailer,
626 XMALLOC_OVERRUN_CHECK_SIZE);
212f33f1 627 }
857ae68b 628 --check_depth;
261cb4bb 629 return val;
212f33f1
KS
630}
631
bdbed949
KS
632
633/* Like realloc, but checks old block for overrun, and wraps new block
634 with header and trailer. */
635
261cb4bb
PE
636static void *
637overrun_check_realloc (void *block, size_t size)
212f33f1 638{
e7974947 639 register unsigned char *val = (unsigned char *) block;
903fe15d
PE
640 int overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_OVERHEAD : 0;
641 if (SIZE_MAX - overhead < size)
642 abort ();
212f33f1
KS
643
644 if (val
857ae68b 645 && check_depth == 1
72af86bd 646 && memcmp (xmalloc_overrun_check_header,
38532ce6 647 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
903fe15d 648 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
212f33f1 649 {
903fe15d 650 size_t osize = xmalloc_get_size (val);
72af86bd
AS
651 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
652 XMALLOC_OVERRUN_CHECK_SIZE))
212f33f1 653 abort ();
72af86bd 654 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
38532ce6
PE
655 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
656 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
212f33f1
KS
657 }
658
261cb4bb 659 val = realloc (val, size + overhead);
212f33f1 660
857ae68b 661 if (val && check_depth == 1)
212f33f1 662 {
903fe15d 663 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
38532ce6 664 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
903fe15d 665 xmalloc_put_size (val, size);
72af86bd
AS
666 memcpy (val + size, xmalloc_overrun_check_trailer,
667 XMALLOC_OVERRUN_CHECK_SIZE);
212f33f1 668 }
857ae68b 669 --check_depth;
261cb4bb 670 return val;
212f33f1
KS
671}
672
bdbed949
KS
673/* Like free, but checks block for overrun. */
674
2538aa2f 675static void
261cb4bb 676overrun_check_free (void *block)
212f33f1 677{
e7974947 678 unsigned char *val = (unsigned char *) block;
212f33f1 679
857ae68b 680 ++check_depth;
212f33f1 681 if (val
857ae68b 682 && check_depth == 1
72af86bd 683 && memcmp (xmalloc_overrun_check_header,
38532ce6 684 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
903fe15d 685 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
212f33f1 686 {
903fe15d 687 size_t osize = xmalloc_get_size (val);
72af86bd
AS
688 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
689 XMALLOC_OVERRUN_CHECK_SIZE))
212f33f1 690 abort ();
454d7973 691#ifdef XMALLOC_CLEAR_FREE_MEMORY
38532ce6 692 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
903fe15d 693 memset (val, 0xff, osize + XMALLOC_OVERRUN_CHECK_OVERHEAD);
454d7973 694#else
72af86bd 695 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
38532ce6
PE
696 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
697 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
454d7973 698#endif
212f33f1
KS
699 }
700
701 free (val);
857ae68b 702 --check_depth;
212f33f1
KS
703}
704
705#undef malloc
706#undef realloc
707#undef free
708#define malloc overrun_check_malloc
709#define realloc overrun_check_realloc
710#define free overrun_check_free
711#endif
712
dafc79fa
SM
713#ifdef SYNC_INPUT
714/* When using SYNC_INPUT, we don't call malloc from a signal handler, so
715 there's no need to block input around malloc. */
716#define MALLOC_BLOCK_INPUT ((void)0)
717#define MALLOC_UNBLOCK_INPUT ((void)0)
718#else
719#define MALLOC_BLOCK_INPUT BLOCK_INPUT
720#define MALLOC_UNBLOCK_INPUT UNBLOCK_INPUT
721#endif
bdbed949 722
34400008 723/* Like malloc but check for no memory and block interrupt input.. */
7146af97 724
261cb4bb 725void *
971de7fb 726xmalloc (size_t size)
7146af97 727{
261cb4bb 728 void *val;
7146af97 729
dafc79fa 730 MALLOC_BLOCK_INPUT;
261cb4bb 731 val = malloc (size);
dafc79fa 732 MALLOC_UNBLOCK_INPUT;
7146af97 733
2e471eb5 734 if (!val && size)
531b0165 735 memory_full (size);
7146af97
JB
736 return val;
737}
738
34400008
GM
739
740/* Like realloc but check for no memory and block interrupt input.. */
741
261cb4bb
PE
742void *
743xrealloc (void *block, size_t size)
7146af97 744{
261cb4bb 745 void *val;
7146af97 746
dafc79fa 747 MALLOC_BLOCK_INPUT;
56d2031b
JB
748 /* We must call malloc explicitly when BLOCK is 0, since some
749 reallocs don't do this. */
750 if (! block)
261cb4bb 751 val = malloc (size);
f048679d 752 else
261cb4bb 753 val = realloc (block, size);
dafc79fa 754 MALLOC_UNBLOCK_INPUT;
7146af97 755
531b0165
PE
756 if (!val && size)
757 memory_full (size);
7146af97
JB
758 return val;
759}
9ac0d9e0 760
34400008 761
005ca5c7 762/* Like free but block interrupt input. */
34400008 763
9ac0d9e0 764void
261cb4bb 765xfree (void *block)
9ac0d9e0 766{
70fdbb46
JM
767 if (!block)
768 return;
dafc79fa 769 MALLOC_BLOCK_INPUT;
9ac0d9e0 770 free (block);
dafc79fa 771 MALLOC_UNBLOCK_INPUT;
24d8a105
RS
772 /* We don't call refill_memory_reserve here
773 because that duplicates doing so in emacs_blocked_free
774 and the criterion should go there. */
9ac0d9e0
JB
775}
776
c8099634 777
0065d054
PE
778/* Other parts of Emacs pass large int values to allocator functions
779 expecting ptrdiff_t. This is portable in practice, but check it to
780 be safe. */
781verify (INT_MAX <= PTRDIFF_MAX);
782
783
784/* Allocate an array of NITEMS items, each of size ITEM_SIZE.
785 Signal an error on memory exhaustion, and block interrupt input. */
786
787void *
788xnmalloc (ptrdiff_t nitems, ptrdiff_t item_size)
789{
790 xassert (0 <= nitems && 0 < item_size);
791 if (min (PTRDIFF_MAX, SIZE_MAX) / item_size < nitems)
792 memory_full (SIZE_MAX);
793 return xmalloc (nitems * item_size);
794}
795
796
797/* Reallocate an array PA to make it of NITEMS items, each of size ITEM_SIZE.
798 Signal an error on memory exhaustion, and block interrupt input. */
799
800void *
801xnrealloc (void *pa, ptrdiff_t nitems, ptrdiff_t item_size)
802{
803 xassert (0 <= nitems && 0 < item_size);
804 if (min (PTRDIFF_MAX, SIZE_MAX) / item_size < nitems)
805 memory_full (SIZE_MAX);
806 return xrealloc (pa, nitems * item_size);
807}
808
809
810/* Grow PA, which points to an array of *NITEMS items, and return the
811 location of the reallocated array, updating *NITEMS to reflect its
812 new size. The new array will contain at least NITEMS_INCR_MIN more
813 items, but will not contain more than NITEMS_MAX items total.
814 ITEM_SIZE is the size of each item, in bytes.
815
816 ITEM_SIZE and NITEMS_INCR_MIN must be positive. *NITEMS must be
817 nonnegative. If NITEMS_MAX is -1, it is treated as if it were
818 infinity.
819
820 If PA is null, then allocate a new array instead of reallocating
821 the old one. Thus, to grow an array A without saving its old
822 contents, invoke xfree (A) immediately followed by xgrowalloc (0,
823 &NITEMS, ...).
824
825 Block interrupt input as needed. If memory exhaustion occurs, set
826 *NITEMS to zero if PA is null, and signal an error (i.e., do not
827 return). */
828
829void *
830xpalloc (void *pa, ptrdiff_t *nitems, ptrdiff_t nitems_incr_min,
831 ptrdiff_t nitems_max, ptrdiff_t item_size)
832{
833 /* The approximate size to use for initial small allocation
834 requests. This is the largest "small" request for the GNU C
835 library malloc. */
836 enum { DEFAULT_MXFAST = 64 * sizeof (size_t) / 4 };
837
838 /* If the array is tiny, grow it to about (but no greater than)
839 DEFAULT_MXFAST bytes. Otherwise, grow it by about 50%. */
840 ptrdiff_t n = *nitems;
841 ptrdiff_t tiny_max = DEFAULT_MXFAST / item_size - n;
842 ptrdiff_t half_again = n >> 1;
843 ptrdiff_t incr_estimate = max (tiny_max, half_again);
844
845 /* Adjust the increment according to three constraints: NITEMS_INCR_MIN,
846 NITEMS_MAX, and what the C language can represent safely. */
847 ptrdiff_t C_language_max = min (PTRDIFF_MAX, SIZE_MAX) / item_size;
848 ptrdiff_t n_max = (0 <= nitems_max && nitems_max < C_language_max
849 ? nitems_max : C_language_max);
850 ptrdiff_t nitems_incr_max = n_max - n;
851 ptrdiff_t incr = max (nitems_incr_min, min (incr_estimate, nitems_incr_max));
852
853 xassert (0 < item_size && 0 < nitems_incr_min && 0 <= n && -1 <= nitems_max);
854 if (! pa)
855 *nitems = 0;
856 if (nitems_incr_max < incr)
857 memory_full (SIZE_MAX);
858 n += incr;
859 pa = xrealloc (pa, n * item_size);
860 *nitems = n;
861 return pa;
862}
863
864
dca7c6a8
GM
865/* Like strdup, but uses xmalloc. */
866
867char *
971de7fb 868xstrdup (const char *s)
dca7c6a8 869{
675d5130 870 size_t len = strlen (s) + 1;
dca7c6a8 871 char *p = (char *) xmalloc (len);
72af86bd 872 memcpy (p, s, len);
dca7c6a8
GM
873 return p;
874}
875
876
f61bef8b
KS
877/* Unwind for SAFE_ALLOCA */
878
879Lisp_Object
971de7fb 880safe_alloca_unwind (Lisp_Object arg)
f61bef8b 881{
b766f870
KS
882 register struct Lisp_Save_Value *p = XSAVE_VALUE (arg);
883
884 p->dogc = 0;
885 xfree (p->pointer);
886 p->pointer = 0;
7b7990cc 887 free_misc (arg);
f61bef8b
KS
888 return Qnil;
889}
890
891
34400008
GM
892/* Like malloc but used for allocating Lisp data. NBYTES is the
893 number of bytes to allocate, TYPE describes the intended use of the
91af3942 894 allocated memory block (for strings, for conses, ...). */
34400008 895
212f33f1 896#ifndef USE_LSB_TAG
918a23a7 897static void *lisp_malloc_loser;
212f33f1 898#endif
918a23a7 899
261cb4bb 900static void *
971de7fb 901lisp_malloc (size_t nbytes, enum mem_type type)
c8099634 902{
34400008 903 register void *val;
c8099634 904
dafc79fa 905 MALLOC_BLOCK_INPUT;
877935b1
GM
906
907#ifdef GC_MALLOC_CHECK
908 allocated_mem_type = type;
909#endif
177c0ea7 910
34400008 911 val = (void *) malloc (nbytes);
c8099634 912
6b61353c 913#ifndef USE_LSB_TAG
918a23a7
RS
914 /* If the memory just allocated cannot be addressed thru a Lisp
915 object's pointer, and it needs to be,
916 that's equivalent to running out of memory. */
917 if (val && type != MEM_TYPE_NON_LISP)
918 {
919 Lisp_Object tem;
920 XSETCONS (tem, (char *) val + nbytes - 1);
921 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
922 {
923 lisp_malloc_loser = val;
924 free (val);
925 val = 0;
926 }
927 }
6b61353c 928#endif
918a23a7 929
877935b1 930#if GC_MARK_STACK && !defined GC_MALLOC_CHECK
dca7c6a8 931 if (val && type != MEM_TYPE_NON_LISP)
34400008
GM
932 mem_insert (val, (char *) val + nbytes, type);
933#endif
177c0ea7 934
dafc79fa 935 MALLOC_UNBLOCK_INPUT;
dca7c6a8 936 if (!val && nbytes)
531b0165 937 memory_full (nbytes);
c8099634
RS
938 return val;
939}
940
34400008
GM
941/* Free BLOCK. This must be called to free memory allocated with a
942 call to lisp_malloc. */
943
bf952fb6 944static void
261cb4bb 945lisp_free (void *block)
c8099634 946{
dafc79fa 947 MALLOC_BLOCK_INPUT;
c8099634 948 free (block);
877935b1 949#if GC_MARK_STACK && !defined GC_MALLOC_CHECK
34400008
GM
950 mem_delete (mem_find (block));
951#endif
dafc79fa 952 MALLOC_UNBLOCK_INPUT;
c8099634 953}
34400008 954
453b951e
SM
955/***** Allocation of aligned blocks of memory to store Lisp data. *****/
956
957/* The entry point is lisp_align_malloc which returns blocks of at most
958 BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
ab6780cd 959
b4181b01
KS
960#if defined (HAVE_POSIX_MEMALIGN) && defined (SYSTEM_MALLOC)
961#define USE_POSIX_MEMALIGN 1
962#endif
ab6780cd
SM
963
964/* BLOCK_ALIGN has to be a power of 2. */
965#define BLOCK_ALIGN (1 << 10)
ab6780cd
SM
966
967/* Padding to leave at the end of a malloc'd block. This is to give
968 malloc a chance to minimize the amount of memory wasted to alignment.
969 It should be tuned to the particular malloc library used.
19bcad1f
SM
970 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
971 posix_memalign on the other hand would ideally prefer a value of 4
972 because otherwise, there's 1020 bytes wasted between each ablocks.
f501ccb4
SM
973 In Emacs, testing shows that those 1020 can most of the time be
974 efficiently used by malloc to place other objects, so a value of 0 can
975 still preferable unless you have a lot of aligned blocks and virtually
976 nothing else. */
19bcad1f
SM
977#define BLOCK_PADDING 0
978#define BLOCK_BYTES \
0b432f21 979 (BLOCK_ALIGN - sizeof (struct ablocks *) - BLOCK_PADDING)
19bcad1f
SM
980
981/* Internal data structures and constants. */
982
ab6780cd
SM
983#define ABLOCKS_SIZE 16
984
985/* An aligned block of memory. */
986struct ablock
987{
988 union
989 {
990 char payload[BLOCK_BYTES];
991 struct ablock *next_free;
992 } x;
993 /* `abase' is the aligned base of the ablocks. */
994 /* It is overloaded to hold the virtual `busy' field that counts
995 the number of used ablock in the parent ablocks.
996 The first ablock has the `busy' field, the others have the `abase'
997 field. To tell the difference, we assume that pointers will have
998 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
999 is used to tell whether the real base of the parent ablocks is `abase'
1000 (if not, the word before the first ablock holds a pointer to the
1001 real base). */
1002 struct ablocks *abase;
1003 /* The padding of all but the last ablock is unused. The padding of
1004 the last ablock in an ablocks is not allocated. */
19bcad1f
SM
1005#if BLOCK_PADDING
1006 char padding[BLOCK_PADDING];
ebb8d410 1007#endif
ab6780cd
SM
1008};
1009
1010/* A bunch of consecutive aligned blocks. */
1011struct ablocks
1012{
1013 struct ablock blocks[ABLOCKS_SIZE];
1014};
1015
4b5afbb0 1016/* Size of the block requested from malloc or posix_memalign. */
19bcad1f 1017#define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
ab6780cd
SM
1018
1019#define ABLOCK_ABASE(block) \
d01a7826 1020 (((uintptr_t) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
ab6780cd
SM
1021 ? (struct ablocks *)(block) \
1022 : (block)->abase)
1023
1024/* Virtual `busy' field. */
1025#define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
1026
1027/* Pointer to the (not necessarily aligned) malloc block. */
349a4500 1028#ifdef USE_POSIX_MEMALIGN
19bcad1f
SM
1029#define ABLOCKS_BASE(abase) (abase)
1030#else
ab6780cd 1031#define ABLOCKS_BASE(abase) \
d01a7826 1032 (1 & (intptr_t) ABLOCKS_BUSY (abase) ? abase : ((void**)abase)[-1])
19bcad1f 1033#endif
ab6780cd
SM
1034
1035/* The list of free ablock. */
1036static struct ablock *free_ablock;
1037
1038/* Allocate an aligned block of nbytes.
1039 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
1040 smaller or equal to BLOCK_BYTES. */
261cb4bb 1041static void *
971de7fb 1042lisp_align_malloc (size_t nbytes, enum mem_type type)
ab6780cd
SM
1043{
1044 void *base, *val;
1045 struct ablocks *abase;
1046
1047 eassert (nbytes <= BLOCK_BYTES);
1048
dafc79fa 1049 MALLOC_BLOCK_INPUT;
ab6780cd
SM
1050
1051#ifdef GC_MALLOC_CHECK
1052 allocated_mem_type = type;
1053#endif
1054
1055 if (!free_ablock)
1056 {
005ca5c7 1057 int i;
d01a7826 1058 intptr_t aligned; /* int gets warning casting to 64-bit pointer. */
ab6780cd
SM
1059
1060#ifdef DOUG_LEA_MALLOC
1061 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1062 because mapped region contents are not preserved in
1063 a dumped Emacs. */
1064 mallopt (M_MMAP_MAX, 0);
1065#endif
1066
349a4500 1067#ifdef USE_POSIX_MEMALIGN
19bcad1f
SM
1068 {
1069 int err = posix_memalign (&base, BLOCK_ALIGN, ABLOCKS_BYTES);
ab349c19
RS
1070 if (err)
1071 base = NULL;
1072 abase = base;
19bcad1f
SM
1073 }
1074#else
ab6780cd
SM
1075 base = malloc (ABLOCKS_BYTES);
1076 abase = ALIGN (base, BLOCK_ALIGN);
ab349c19
RS
1077#endif
1078
6b61353c
KH
1079 if (base == 0)
1080 {
dafc79fa 1081 MALLOC_UNBLOCK_INPUT;
531b0165 1082 memory_full (ABLOCKS_BYTES);
6b61353c 1083 }
ab6780cd
SM
1084
1085 aligned = (base == abase);
1086 if (!aligned)
1087 ((void**)abase)[-1] = base;
1088
1089#ifdef DOUG_LEA_MALLOC
1090 /* Back to a reasonable maximum of mmap'ed areas. */
1091 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1092#endif
1093
6b61353c 1094#ifndef USE_LSB_TAG
8f924df7
KH
1095 /* If the memory just allocated cannot be addressed thru a Lisp
1096 object's pointer, and it needs to be, that's equivalent to
1097 running out of memory. */
1098 if (type != MEM_TYPE_NON_LISP)
1099 {
1100 Lisp_Object tem;
1101 char *end = (char *) base + ABLOCKS_BYTES - 1;
1102 XSETCONS (tem, end);
1103 if ((char *) XCONS (tem) != end)
1104 {
1105 lisp_malloc_loser = base;
1106 free (base);
dafc79fa 1107 MALLOC_UNBLOCK_INPUT;
531b0165 1108 memory_full (SIZE_MAX);
8f924df7
KH
1109 }
1110 }
6b61353c 1111#endif
8f924df7 1112
ab6780cd 1113 /* Initialize the blocks and put them on the free list.
453b951e 1114 If `base' was not properly aligned, we can't use the last block. */
ab6780cd
SM
1115 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
1116 {
1117 abase->blocks[i].abase = abase;
1118 abase->blocks[i].x.next_free = free_ablock;
1119 free_ablock = &abase->blocks[i];
1120 }
8ac068ac 1121 ABLOCKS_BUSY (abase) = (struct ablocks *) aligned;
ab6780cd 1122
d01a7826 1123 eassert (0 == ((uintptr_t) abase) % BLOCK_ALIGN);
ab6780cd
SM
1124 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
1125 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
1126 eassert (ABLOCKS_BASE (abase) == base);
d01a7826 1127 eassert (aligned == (intptr_t) ABLOCKS_BUSY (abase));
ab6780cd
SM
1128 }
1129
1130 abase = ABLOCK_ABASE (free_ablock);
8ac068ac 1131 ABLOCKS_BUSY (abase) =
d01a7826 1132 (struct ablocks *) (2 + (intptr_t) ABLOCKS_BUSY (abase));
ab6780cd
SM
1133 val = free_ablock;
1134 free_ablock = free_ablock->x.next_free;
1135
ab6780cd 1136#if GC_MARK_STACK && !defined GC_MALLOC_CHECK
3687c2ef 1137 if (type != MEM_TYPE_NON_LISP)
ab6780cd
SM
1138 mem_insert (val, (char *) val + nbytes, type);
1139#endif
1140
dafc79fa 1141 MALLOC_UNBLOCK_INPUT;
ab6780cd 1142
d01a7826 1143 eassert (0 == ((uintptr_t) val) % BLOCK_ALIGN);
ab6780cd
SM
1144 return val;
1145}
1146
1147static void
261cb4bb 1148lisp_align_free (void *block)
ab6780cd
SM
1149{
1150 struct ablock *ablock = block;
1151 struct ablocks *abase = ABLOCK_ABASE (ablock);
1152
dafc79fa 1153 MALLOC_BLOCK_INPUT;
ab6780cd
SM
1154#if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1155 mem_delete (mem_find (block));
1156#endif
1157 /* Put on free list. */
1158 ablock->x.next_free = free_ablock;
1159 free_ablock = ablock;
1160 /* Update busy count. */
453b951e
SM
1161 ABLOCKS_BUSY (abase)
1162 = (struct ablocks *) (-2 + (intptr_t) ABLOCKS_BUSY (abase));
d2db1c32 1163
d01a7826 1164 if (2 > (intptr_t) ABLOCKS_BUSY (abase))
ab6780cd 1165 { /* All the blocks are free. */
d01a7826 1166 int i = 0, aligned = (intptr_t) ABLOCKS_BUSY (abase);
ab6780cd
SM
1167 struct ablock **tem = &free_ablock;
1168 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
1169
1170 while (*tem)
1171 {
1172 if (*tem >= (struct ablock *) abase && *tem < atop)
1173 {
1174 i++;
1175 *tem = (*tem)->x.next_free;
1176 }
1177 else
1178 tem = &(*tem)->x.next_free;
1179 }
1180 eassert ((aligned & 1) == aligned);
1181 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
349a4500 1182#ifdef USE_POSIX_MEMALIGN
d01a7826 1183 eassert ((uintptr_t) ABLOCKS_BASE (abase) % BLOCK_ALIGN == 0);
cfb2f32e 1184#endif
ab6780cd
SM
1185 free (ABLOCKS_BASE (abase));
1186 }
dafc79fa 1187 MALLOC_UNBLOCK_INPUT;
ab6780cd 1188}
3ef06d12
SM
1189
1190/* Return a new buffer structure allocated from the heap with
1191 a call to lisp_malloc. */
1192
1193struct buffer *
971de7fb 1194allocate_buffer (void)
3ef06d12
SM
1195{
1196 struct buffer *b
1197 = (struct buffer *) lisp_malloc (sizeof (struct buffer),
1198 MEM_TYPE_BUFFER);
eab3844f
PE
1199 XSETPVECTYPESIZE (b, PVEC_BUFFER,
1200 ((sizeof (struct buffer) + sizeof (EMACS_INT) - 1)
1201 / sizeof (EMACS_INT)));
3ef06d12
SM
1202 return b;
1203}
1204
9ac0d9e0 1205\f
026cdede
SM
1206#ifndef SYSTEM_MALLOC
1207
9ac0d9e0
JB
1208/* Arranging to disable input signals while we're in malloc.
1209
1210 This only works with GNU malloc. To help out systems which can't
1211 use GNU malloc, all the calls to malloc, realloc, and free
1212 elsewhere in the code should be inside a BLOCK_INPUT/UNBLOCK_INPUT
026cdede 1213 pair; unfortunately, we have no idea what C library functions
9ac0d9e0 1214 might call malloc, so we can't really protect them unless you're
2c5bd608
DL
1215 using GNU malloc. Fortunately, most of the major operating systems
1216 can use GNU malloc. */
9ac0d9e0 1217
026cdede 1218#ifndef SYNC_INPUT
dafc79fa
SM
1219/* When using SYNC_INPUT, we don't call malloc from a signal handler, so
1220 there's no need to block input around malloc. */
026cdede 1221
b3303f74 1222#ifndef DOUG_LEA_MALLOC
f57e2426
J
1223extern void * (*__malloc_hook) (size_t, const void *);
1224extern void * (*__realloc_hook) (void *, size_t, const void *);
1225extern void (*__free_hook) (void *, const void *);
b3303f74
DL
1226/* Else declared in malloc.h, perhaps with an extra arg. */
1227#endif /* DOUG_LEA_MALLOC */
f57e2426
J
1228static void * (*old_malloc_hook) (size_t, const void *);
1229static void * (*old_realloc_hook) (void *, size_t, const void*);
1230static void (*old_free_hook) (void*, const void*);
9ac0d9e0 1231
4e75f29d
PE
1232#ifdef DOUG_LEA_MALLOC
1233# define BYTES_USED (mallinfo ().uordblks)
1234#else
1235# define BYTES_USED _bytes_used
1236#endif
1237
b62a57be
PE
1238#ifdef GC_MALLOC_CHECK
1239static int dont_register_blocks;
1240#endif
1241
5e927815 1242static size_t bytes_used_when_reconsidered;
ef1b0ba7 1243
4e75f29d
PE
1244/* Value of _bytes_used, when spare_memory was freed. */
1245
5e927815 1246static size_t bytes_used_when_full;
4e75f29d 1247
276cbe5a
RS
1248/* This function is used as the hook for free to call. */
1249
9ac0d9e0 1250static void
7c3320d8 1251emacs_blocked_free (void *ptr, const void *ptr2)
9ac0d9e0 1252{
aa477689 1253 BLOCK_INPUT_ALLOC;
877935b1
GM
1254
1255#ifdef GC_MALLOC_CHECK
a83fee2c
GM
1256 if (ptr)
1257 {
1258 struct mem_node *m;
177c0ea7 1259
a83fee2c
GM
1260 m = mem_find (ptr);
1261 if (m == MEM_NIL || m->start != ptr)
1262 {
1263 fprintf (stderr,
1264 "Freeing `%p' which wasn't allocated with malloc\n", ptr);
1265 abort ();
1266 }
1267 else
1268 {
1269 /* fprintf (stderr, "free %p...%p (%p)\n", m->start, m->end, ptr); */
1270 mem_delete (m);
1271 }
1272 }
877935b1 1273#endif /* GC_MALLOC_CHECK */
177c0ea7 1274
9ac0d9e0
JB
1275 __free_hook = old_free_hook;
1276 free (ptr);
177c0ea7 1277
276cbe5a
RS
1278 /* If we released our reserve (due to running out of memory),
1279 and we have a fair amount free once again,
1280 try to set aside another reserve in case we run out once more. */
24d8a105 1281 if (! NILP (Vmemory_full)
276cbe5a
RS
1282 /* Verify there is enough space that even with the malloc
1283 hysteresis this call won't run out again.
1284 The code here is correct as long as SPARE_MEMORY
1285 is substantially larger than the block size malloc uses. */
1286 && (bytes_used_when_full
4d74a5fc 1287 > ((bytes_used_when_reconsidered = BYTES_USED)
bccfb310 1288 + max (malloc_hysteresis, 4) * SPARE_MEMORY)))
24d8a105 1289 refill_memory_reserve ();
276cbe5a 1290
b0846f52 1291 __free_hook = emacs_blocked_free;
aa477689 1292 UNBLOCK_INPUT_ALLOC;
9ac0d9e0
JB
1293}
1294
34400008 1295
276cbe5a
RS
1296/* This function is the malloc hook that Emacs uses. */
1297
9ac0d9e0 1298static void *
7c3320d8 1299emacs_blocked_malloc (size_t size, const void *ptr)
9ac0d9e0
JB
1300{
1301 void *value;
1302
aa477689 1303 BLOCK_INPUT_ALLOC;
9ac0d9e0 1304 __malloc_hook = old_malloc_hook;
1177ecf6 1305#ifdef DOUG_LEA_MALLOC
5665a02f
KL
1306 /* Segfaults on my system. --lorentey */
1307 /* mallopt (M_TOP_PAD, malloc_hysteresis * 4096); */
1177ecf6 1308#else
d1658221 1309 __malloc_extra_blocks = malloc_hysteresis;
1177ecf6 1310#endif
877935b1 1311
2756d8ee 1312 value = (void *) malloc (size);
877935b1
GM
1313
1314#ifdef GC_MALLOC_CHECK
1315 {
1316 struct mem_node *m = mem_find (value);
1317 if (m != MEM_NIL)
1318 {
1319 fprintf (stderr, "Malloc returned %p which is already in use\n",
1320 value);
da05bc4c 1321 fprintf (stderr, "Region in use is %p...%p, %td bytes, type %d\n",
877935b1
GM
1322 m->start, m->end, (char *) m->end - (char *) m->start,
1323 m->type);
1324 abort ();
1325 }
1326
1327 if (!dont_register_blocks)
1328 {
1329 mem_insert (value, (char *) value + max (1, size), allocated_mem_type);
1330 allocated_mem_type = MEM_TYPE_NON_LISP;
1331 }
1332 }
1333#endif /* GC_MALLOC_CHECK */
177c0ea7 1334
b0846f52 1335 __malloc_hook = emacs_blocked_malloc;
aa477689 1336 UNBLOCK_INPUT_ALLOC;
9ac0d9e0 1337
877935b1 1338 /* fprintf (stderr, "%p malloc\n", value); */
9ac0d9e0
JB
1339 return value;
1340}
1341
34400008
GM
1342
1343/* This function is the realloc hook that Emacs uses. */
1344
9ac0d9e0 1345static void *
7c3320d8 1346emacs_blocked_realloc (void *ptr, size_t size, const void *ptr2)
9ac0d9e0
JB
1347{
1348 void *value;
1349
aa477689 1350 BLOCK_INPUT_ALLOC;
9ac0d9e0 1351 __realloc_hook = old_realloc_hook;
877935b1
GM
1352
1353#ifdef GC_MALLOC_CHECK
1354 if (ptr)
1355 {
1356 struct mem_node *m = mem_find (ptr);
1357 if (m == MEM_NIL || m->start != ptr)
1358 {
1359 fprintf (stderr,
1360 "Realloc of %p which wasn't allocated with malloc\n",
1361 ptr);
1362 abort ();
1363 }
1364
1365 mem_delete (m);
1366 }
177c0ea7 1367
877935b1 1368 /* fprintf (stderr, "%p -> realloc\n", ptr); */
177c0ea7 1369
877935b1
GM
1370 /* Prevent malloc from registering blocks. */
1371 dont_register_blocks = 1;
1372#endif /* GC_MALLOC_CHECK */
1373
2756d8ee 1374 value = (void *) realloc (ptr, size);
877935b1
GM
1375
1376#ifdef GC_MALLOC_CHECK
1377 dont_register_blocks = 0;
1378
1379 {
1380 struct mem_node *m = mem_find (value);
1381 if (m != MEM_NIL)
1382 {
1383 fprintf (stderr, "Realloc returns memory that is already in use\n");
1384 abort ();
1385 }
1386
1387 /* Can't handle zero size regions in the red-black tree. */
1388 mem_insert (value, (char *) value + max (size, 1), MEM_TYPE_NON_LISP);
1389 }
177c0ea7 1390
877935b1
GM
1391 /* fprintf (stderr, "%p <- realloc\n", value); */
1392#endif /* GC_MALLOC_CHECK */
177c0ea7 1393
b0846f52 1394 __realloc_hook = emacs_blocked_realloc;
aa477689 1395 UNBLOCK_INPUT_ALLOC;
9ac0d9e0
JB
1396
1397 return value;
1398}
1399
34400008 1400
ae9e757a 1401#ifdef HAVE_PTHREAD
aa477689
JD
1402/* Called from Fdump_emacs so that when the dumped Emacs starts, it has a
1403 normal malloc. Some thread implementations need this as they call
1404 malloc before main. The pthread_self call in BLOCK_INPUT_ALLOC then
1405 calls malloc because it is the first call, and we have an endless loop. */
1406
1407void
268c2c36 1408reset_malloc_hooks (void)
aa477689 1409{
4d580af2
AS
1410 __free_hook = old_free_hook;
1411 __malloc_hook = old_malloc_hook;
1412 __realloc_hook = old_realloc_hook;
aa477689 1413}
ae9e757a 1414#endif /* HAVE_PTHREAD */
aa477689
JD
1415
1416
34400008
GM
1417/* Called from main to set up malloc to use our hooks. */
1418
9ac0d9e0 1419void
7c3320d8 1420uninterrupt_malloc (void)
9ac0d9e0 1421{
ae9e757a 1422#ifdef HAVE_PTHREAD
a1b41389 1423#ifdef DOUG_LEA_MALLOC
aa477689
JD
1424 pthread_mutexattr_t attr;
1425
c7015153 1426 /* GLIBC has a faster way to do this, but let's keep it portable.
aa477689
JD
1427 This is according to the Single UNIX Specification. */
1428 pthread_mutexattr_init (&attr);
1429 pthread_mutexattr_settype (&attr, PTHREAD_MUTEX_RECURSIVE);
1430 pthread_mutex_init (&alloc_mutex, &attr);
a1b41389 1431#else /* !DOUG_LEA_MALLOC */
ce5b453a 1432 /* Some systems such as Solaris 2.6 don't have a recursive mutex,
a1b41389
YM
1433 and the bundled gmalloc.c doesn't require it. */
1434 pthread_mutex_init (&alloc_mutex, NULL);
1435#endif /* !DOUG_LEA_MALLOC */
ae9e757a 1436#endif /* HAVE_PTHREAD */
aa477689 1437
c8099634
RS
1438 if (__free_hook != emacs_blocked_free)
1439 old_free_hook = __free_hook;
b0846f52 1440 __free_hook = emacs_blocked_free;
9ac0d9e0 1441
c8099634
RS
1442 if (__malloc_hook != emacs_blocked_malloc)
1443 old_malloc_hook = __malloc_hook;
b0846f52 1444 __malloc_hook = emacs_blocked_malloc;
9ac0d9e0 1445
c8099634
RS
1446 if (__realloc_hook != emacs_blocked_realloc)
1447 old_realloc_hook = __realloc_hook;
b0846f52 1448 __realloc_hook = emacs_blocked_realloc;
9ac0d9e0 1449}
2e471eb5 1450
026cdede 1451#endif /* not SYNC_INPUT */
2e471eb5
GM
1452#endif /* not SYSTEM_MALLOC */
1453
1454
7146af97 1455\f
2e471eb5
GM
1456/***********************************************************************
1457 Interval Allocation
1458 ***********************************************************************/
1a4f1e2c 1459
34400008
GM
1460/* Number of intervals allocated in an interval_block structure.
1461 The 1020 is 1024 minus malloc overhead. */
1462
d5e35230
JA
1463#define INTERVAL_BLOCK_SIZE \
1464 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1465
34400008
GM
1466/* Intervals are allocated in chunks in form of an interval_block
1467 structure. */
1468
d5e35230 1469struct interval_block
2e471eb5 1470{
6b61353c 1471 /* Place `intervals' first, to preserve alignment. */
2e471eb5 1472 struct interval intervals[INTERVAL_BLOCK_SIZE];
6b61353c 1473 struct interval_block *next;
2e471eb5 1474};
d5e35230 1475
34400008
GM
1476/* Current interval block. Its `next' pointer points to older
1477 blocks. */
1478
d3d47262 1479static struct interval_block *interval_block;
34400008
GM
1480
1481/* Index in interval_block above of the next unused interval
1482 structure. */
1483
d5e35230 1484static int interval_block_index;
34400008
GM
1485
1486/* Number of free and live intervals. */
1487
c0c5c8ae 1488static EMACS_INT total_free_intervals, total_intervals;
d5e35230 1489
34400008
GM
1490/* List of free intervals. */
1491
244ed907 1492static INTERVAL interval_free_list;
d5e35230 1493
34400008
GM
1494
1495/* Initialize interval allocation. */
1496
d5e35230 1497static void
971de7fb 1498init_intervals (void)
d5e35230 1499{
005ca5c7
DL
1500 interval_block = NULL;
1501 interval_block_index = INTERVAL_BLOCK_SIZE;
d5e35230
JA
1502 interval_free_list = 0;
1503}
1504
34400008
GM
1505
1506/* Return a new interval. */
d5e35230
JA
1507
1508INTERVAL
971de7fb 1509make_interval (void)
d5e35230
JA
1510{
1511 INTERVAL val;
1512
e2984df0
CY
1513 /* eassert (!handling_signal); */
1514
dafc79fa 1515 MALLOC_BLOCK_INPUT;
cfb2f32e 1516
d5e35230
JA
1517 if (interval_free_list)
1518 {
1519 val = interval_free_list;
439d5cb4 1520 interval_free_list = INTERVAL_PARENT (interval_free_list);
d5e35230
JA
1521 }
1522 else
1523 {
1524 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1525 {
3c06d205
KH
1526 register struct interval_block *newi;
1527
34400008
GM
1528 newi = (struct interval_block *) lisp_malloc (sizeof *newi,
1529 MEM_TYPE_NON_LISP);
d5e35230 1530
d5e35230
JA
1531 newi->next = interval_block;
1532 interval_block = newi;
1533 interval_block_index = 0;
1534 }
1535 val = &interval_block->intervals[interval_block_index++];
1536 }
e2984df0 1537
dafc79fa 1538 MALLOC_UNBLOCK_INPUT;
e2984df0 1539
d5e35230 1540 consing_since_gc += sizeof (struct interval);
310ea200 1541 intervals_consed++;
d5e35230 1542 RESET_INTERVAL (val);
2336fe58 1543 val->gcmarkbit = 0;
d5e35230
JA
1544 return val;
1545}
1546
34400008
GM
1547
1548/* Mark Lisp objects in interval I. */
d5e35230
JA
1549
1550static void
971de7fb 1551mark_interval (register INTERVAL i, Lisp_Object dummy)
d5e35230 1552{
2336fe58
SM
1553 eassert (!i->gcmarkbit); /* Intervals are never shared. */
1554 i->gcmarkbit = 1;
49723c04 1555 mark_object (i->plist);
d5e35230
JA
1556}
1557
34400008
GM
1558
1559/* Mark the interval tree rooted in TREE. Don't call this directly;
1560 use the macro MARK_INTERVAL_TREE instead. */
1561
d5e35230 1562static void
971de7fb 1563mark_interval_tree (register INTERVAL tree)
d5e35230 1564{
e8720644
JB
1565 /* No need to test if this tree has been marked already; this
1566 function is always called through the MARK_INTERVAL_TREE macro,
1567 which takes care of that. */
1568
1e934989 1569 traverse_intervals_noorder (tree, mark_interval, Qnil);
d5e35230
JA
1570}
1571
34400008
GM
1572
1573/* Mark the interval tree rooted in I. */
1574
e8720644
JB
1575#define MARK_INTERVAL_TREE(i) \
1576 do { \
2336fe58 1577 if (!NULL_INTERVAL_P (i) && !i->gcmarkbit) \
e8720644
JB
1578 mark_interval_tree (i); \
1579 } while (0)
d5e35230 1580
34400008 1581
2e471eb5
GM
1582#define UNMARK_BALANCE_INTERVALS(i) \
1583 do { \
1584 if (! NULL_INTERVAL_P (i)) \
2336fe58 1585 (i) = balance_intervals (i); \
2e471eb5 1586 } while (0)
d5e35230 1587
cc2d8c6b 1588\f
6e5cb96f 1589/* Number support. If USE_LISP_UNION_TYPE is in effect, we
cc2d8c6b
KR
1590 can't create number objects in macros. */
1591#ifndef make_number
1592Lisp_Object
c566235d 1593make_number (EMACS_INT n)
cc2d8c6b
KR
1594{
1595 Lisp_Object obj;
1596 obj.s.val = n;
1597 obj.s.type = Lisp_Int;
1598 return obj;
1599}
1600#endif
d5e35230 1601\f
27f3c637
PE
1602/* Convert the pointer-sized word P to EMACS_INT while preserving its
1603 type and ptr fields. */
1604static Lisp_Object
1605widen_to_Lisp_Object (void *p)
1606{
1607 intptr_t i = (intptr_t) p;
1608#ifdef USE_LISP_UNION_TYPE
1609 Lisp_Object obj;
1610 obj.i = i;
1611 return obj;
1612#else
1613 return i;
1614#endif
1615}
1616\f
2e471eb5
GM
1617/***********************************************************************
1618 String Allocation
1619 ***********************************************************************/
1a4f1e2c 1620
2e471eb5
GM
1621/* Lisp_Strings are allocated in string_block structures. When a new
1622 string_block is allocated, all the Lisp_Strings it contains are
e0fead5d 1623 added to a free-list string_free_list. When a new Lisp_String is
2e471eb5
GM
1624 needed, it is taken from that list. During the sweep phase of GC,
1625 string_blocks that are entirely free are freed, except two which
1626 we keep.
7146af97 1627
2e471eb5
GM
1628 String data is allocated from sblock structures. Strings larger
1629 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1630 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
7146af97 1631
2e471eb5
GM
1632 Sblocks consist internally of sdata structures, one for each
1633 Lisp_String. The sdata structure points to the Lisp_String it
1634 belongs to. The Lisp_String points back to the `u.data' member of
1635 its sdata structure.
7146af97 1636
2e471eb5
GM
1637 When a Lisp_String is freed during GC, it is put back on
1638 string_free_list, and its `data' member and its sdata's `string'
1639 pointer is set to null. The size of the string is recorded in the
1640 `u.nbytes' member of the sdata. So, sdata structures that are no
1641 longer used, can be easily recognized, and it's easy to compact the
1642 sblocks of small strings which we do in compact_small_strings. */
7146af97 1643
2e471eb5
GM
1644/* Size in bytes of an sblock structure used for small strings. This
1645 is 8192 minus malloc overhead. */
7146af97 1646
2e471eb5 1647#define SBLOCK_SIZE 8188
c8099634 1648
2e471eb5
GM
1649/* Strings larger than this are considered large strings. String data
1650 for large strings is allocated from individual sblocks. */
7146af97 1651
2e471eb5
GM
1652#define LARGE_STRING_BYTES 1024
1653
1654/* Structure describing string memory sub-allocated from an sblock.
1655 This is where the contents of Lisp strings are stored. */
1656
1657struct sdata
7146af97 1658{
2e471eb5
GM
1659 /* Back-pointer to the string this sdata belongs to. If null, this
1660 structure is free, and the NBYTES member of the union below
34400008 1661 contains the string's byte size (the same value that STRING_BYTES
2e471eb5
GM
1662 would return if STRING were non-null). If non-null, STRING_BYTES
1663 (STRING) is the size of the data, and DATA contains the string's
1664 contents. */
1665 struct Lisp_String *string;
7146af97 1666
31d929e5 1667#ifdef GC_CHECK_STRING_BYTES
177c0ea7 1668
d311d28c 1669 ptrdiff_t nbytes;
31d929e5 1670 unsigned char data[1];
177c0ea7 1671
31d929e5
GM
1672#define SDATA_NBYTES(S) (S)->nbytes
1673#define SDATA_DATA(S) (S)->data
36372bf9 1674#define SDATA_SELECTOR(member) member
177c0ea7 1675
31d929e5
GM
1676#else /* not GC_CHECK_STRING_BYTES */
1677
2e471eb5
GM
1678 union
1679 {
83998b7a 1680 /* When STRING is non-null. */
2e471eb5
GM
1681 unsigned char data[1];
1682
1683 /* When STRING is null. */
d311d28c 1684 ptrdiff_t nbytes;
2e471eb5 1685 } u;
177c0ea7 1686
31d929e5
GM
1687#define SDATA_NBYTES(S) (S)->u.nbytes
1688#define SDATA_DATA(S) (S)->u.data
36372bf9 1689#define SDATA_SELECTOR(member) u.member
31d929e5
GM
1690
1691#endif /* not GC_CHECK_STRING_BYTES */
36372bf9
PE
1692
1693#define SDATA_DATA_OFFSET offsetof (struct sdata, SDATA_SELECTOR (data))
2e471eb5
GM
1694};
1695
31d929e5 1696
2e471eb5
GM
1697/* Structure describing a block of memory which is sub-allocated to
1698 obtain string data memory for strings. Blocks for small strings
1699 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1700 as large as needed. */
1701
1702struct sblock
7146af97 1703{
2e471eb5
GM
1704 /* Next in list. */
1705 struct sblock *next;
7146af97 1706
2e471eb5
GM
1707 /* Pointer to the next free sdata block. This points past the end
1708 of the sblock if there isn't any space left in this block. */
1709 struct sdata *next_free;
1710
1711 /* Start of data. */
1712 struct sdata first_data;
1713};
1714
1715/* Number of Lisp strings in a string_block structure. The 1020 is
1716 1024 minus malloc overhead. */
1717
19bcad1f 1718#define STRING_BLOCK_SIZE \
2e471eb5
GM
1719 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1720
1721/* Structure describing a block from which Lisp_String structures
1722 are allocated. */
1723
1724struct string_block
7146af97 1725{
6b61353c 1726 /* Place `strings' first, to preserve alignment. */
19bcad1f 1727 struct Lisp_String strings[STRING_BLOCK_SIZE];
6b61353c 1728 struct string_block *next;
2e471eb5 1729};
7146af97 1730
2e471eb5
GM
1731/* Head and tail of the list of sblock structures holding Lisp string
1732 data. We always allocate from current_sblock. The NEXT pointers
1733 in the sblock structures go from oldest_sblock to current_sblock. */
3c06d205 1734
2e471eb5 1735static struct sblock *oldest_sblock, *current_sblock;
7146af97 1736
2e471eb5 1737/* List of sblocks for large strings. */
7146af97 1738
2e471eb5 1739static struct sblock *large_sblocks;
7146af97 1740
5a25e253 1741/* List of string_block structures. */
7146af97 1742
2e471eb5 1743static struct string_block *string_blocks;
7146af97 1744
2e471eb5 1745/* Free-list of Lisp_Strings. */
7146af97 1746
2e471eb5 1747static struct Lisp_String *string_free_list;
7146af97 1748
2e471eb5 1749/* Number of live and free Lisp_Strings. */
c8099634 1750
c0c5c8ae 1751static EMACS_INT total_strings, total_free_strings;
7146af97 1752
2e471eb5
GM
1753/* Number of bytes used by live strings. */
1754
14162469 1755static EMACS_INT total_string_size;
2e471eb5
GM
1756
1757/* Given a pointer to a Lisp_String S which is on the free-list
1758 string_free_list, return a pointer to its successor in the
1759 free-list. */
1760
1761#define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1762
1763/* Return a pointer to the sdata structure belonging to Lisp string S.
1764 S must be live, i.e. S->data must not be null. S->data is actually
1765 a pointer to the `u.data' member of its sdata structure; the
1766 structure starts at a constant offset in front of that. */
177c0ea7 1767
36372bf9 1768#define SDATA_OF_STRING(S) ((struct sdata *) ((S)->data - SDATA_DATA_OFFSET))
31d929e5 1769
212f33f1
KS
1770
1771#ifdef GC_CHECK_STRING_OVERRUN
bdbed949
KS
1772
1773/* We check for overrun in string data blocks by appending a small
1774 "cookie" after each allocated string data block, and check for the
8349069c 1775 presence of this cookie during GC. */
bdbed949
KS
1776
1777#define GC_STRING_OVERRUN_COOKIE_SIZE 4
bfd1c781
PE
1778static char const string_overrun_cookie[GC_STRING_OVERRUN_COOKIE_SIZE] =
1779 { '\xde', '\xad', '\xbe', '\xef' };
bdbed949 1780
212f33f1 1781#else
bdbed949 1782#define GC_STRING_OVERRUN_COOKIE_SIZE 0
212f33f1
KS
1783#endif
1784
2e471eb5
GM
1785/* Value is the size of an sdata structure large enough to hold NBYTES
1786 bytes of string data. The value returned includes a terminating
1787 NUL byte, the size of the sdata structure, and padding. */
1788
31d929e5
GM
1789#ifdef GC_CHECK_STRING_BYTES
1790
2e471eb5 1791#define SDATA_SIZE(NBYTES) \
36372bf9 1792 ((SDATA_DATA_OFFSET \
2e471eb5 1793 + (NBYTES) + 1 \
d311d28c
PE
1794 + sizeof (ptrdiff_t) - 1) \
1795 & ~(sizeof (ptrdiff_t) - 1))
2e471eb5 1796
31d929e5
GM
1797#else /* not GC_CHECK_STRING_BYTES */
1798
f2d3008d
PE
1799/* The 'max' reserves space for the nbytes union member even when NBYTES + 1 is
1800 less than the size of that member. The 'max' is not needed when
d311d28c 1801 SDATA_DATA_OFFSET is a multiple of sizeof (ptrdiff_t), because then the
f2d3008d
PE
1802 alignment code reserves enough space. */
1803
1804#define SDATA_SIZE(NBYTES) \
1805 ((SDATA_DATA_OFFSET \
d311d28c 1806 + (SDATA_DATA_OFFSET % sizeof (ptrdiff_t) == 0 \
f2d3008d 1807 ? NBYTES \
d311d28c 1808 : max (NBYTES, sizeof (ptrdiff_t) - 1)) \
f2d3008d 1809 + 1 \
d311d28c
PE
1810 + sizeof (ptrdiff_t) - 1) \
1811 & ~(sizeof (ptrdiff_t) - 1))
31d929e5
GM
1812
1813#endif /* not GC_CHECK_STRING_BYTES */
2e471eb5 1814
bdbed949
KS
1815/* Extra bytes to allocate for each string. */
1816
1817#define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1818
c9d624c6
PE
1819/* Exact bound on the number of bytes in a string, not counting the
1820 terminating null. A string cannot contain more bytes than
1821 STRING_BYTES_BOUND, nor can it be so long that the size_t
1822 arithmetic in allocate_string_data would overflow while it is
1823 calculating a value to be passed to malloc. */
1824#define STRING_BYTES_MAX \
1825 min (STRING_BYTES_BOUND, \
903fe15d
PE
1826 ((SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD \
1827 - GC_STRING_EXTRA \
c9d624c6
PE
1828 - offsetof (struct sblock, first_data) \
1829 - SDATA_DATA_OFFSET) \
1830 & ~(sizeof (EMACS_INT) - 1)))
1831
2e471eb5 1832/* Initialize string allocation. Called from init_alloc_once. */
d457598b 1833
d3d47262 1834static void
971de7fb 1835init_strings (void)
7146af97 1836{
2e471eb5
GM
1837 total_strings = total_free_strings = total_string_size = 0;
1838 oldest_sblock = current_sblock = large_sblocks = NULL;
1839 string_blocks = NULL;
2e471eb5 1840 string_free_list = NULL;
4d774b0f
JB
1841 empty_unibyte_string = make_pure_string ("", 0, 0, 0);
1842 empty_multibyte_string = make_pure_string ("", 0, 0, 1);
7146af97
JB
1843}
1844
2e471eb5 1845
361b097f
GM
1846#ifdef GC_CHECK_STRING_BYTES
1847
361b097f
GM
1848static int check_string_bytes_count;
1849
676a7251
GM
1850#define CHECK_STRING_BYTES(S) STRING_BYTES (S)
1851
1852
1853/* Like GC_STRING_BYTES, but with debugging check. */
1854
d311d28c 1855ptrdiff_t
14162469 1856string_bytes (struct Lisp_String *s)
676a7251 1857{
d311d28c 1858 ptrdiff_t nbytes =
14162469
EZ
1859 (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1860
676a7251
GM
1861 if (!PURE_POINTER_P (s)
1862 && s->data
1863 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1864 abort ();
1865 return nbytes;
1866}
177c0ea7 1867
2c5bd608 1868/* Check validity of Lisp strings' string_bytes member in B. */
676a7251 1869
d3d47262 1870static void
d0f4e1f5 1871check_sblock (struct sblock *b)
361b097f 1872{
676a7251 1873 struct sdata *from, *end, *from_end;
177c0ea7 1874
676a7251 1875 end = b->next_free;
177c0ea7 1876
676a7251 1877 for (from = &b->first_data; from < end; from = from_end)
361b097f 1878 {
676a7251
GM
1879 /* Compute the next FROM here because copying below may
1880 overwrite data we need to compute it. */
d311d28c 1881 ptrdiff_t nbytes;
177c0ea7 1882
676a7251
GM
1883 /* Check that the string size recorded in the string is the
1884 same as the one recorded in the sdata structure. */
1885 if (from->string)
1886 CHECK_STRING_BYTES (from->string);
177c0ea7 1887
676a7251
GM
1888 if (from->string)
1889 nbytes = GC_STRING_BYTES (from->string);
1890 else
1891 nbytes = SDATA_NBYTES (from);
177c0ea7 1892
676a7251 1893 nbytes = SDATA_SIZE (nbytes);
212f33f1 1894 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
676a7251
GM
1895 }
1896}
361b097f 1897
676a7251
GM
1898
1899/* Check validity of Lisp strings' string_bytes member. ALL_P
1900 non-zero means check all strings, otherwise check only most
1901 recently allocated strings. Used for hunting a bug. */
1902
d3d47262 1903static void
d0f4e1f5 1904check_string_bytes (int all_p)
676a7251
GM
1905{
1906 if (all_p)
1907 {
1908 struct sblock *b;
1909
1910 for (b = large_sblocks; b; b = b->next)
1911 {
1912 struct Lisp_String *s = b->first_data.string;
1913 if (s)
1914 CHECK_STRING_BYTES (s);
361b097f 1915 }
177c0ea7 1916
676a7251
GM
1917 for (b = oldest_sblock; b; b = b->next)
1918 check_sblock (b);
361b097f 1919 }
676a7251
GM
1920 else
1921 check_sblock (current_sblock);
361b097f
GM
1922}
1923
1924#endif /* GC_CHECK_STRING_BYTES */
1925
212f33f1
KS
1926#ifdef GC_CHECK_STRING_FREE_LIST
1927
bdbed949
KS
1928/* Walk through the string free list looking for bogus next pointers.
1929 This may catch buffer overrun from a previous string. */
1930
212f33f1 1931static void
d0f4e1f5 1932check_string_free_list (void)
212f33f1
KS
1933{
1934 struct Lisp_String *s;
1935
1936 /* Pop a Lisp_String off the free-list. */
1937 s = string_free_list;
1938 while (s != NULL)
1939 {
d01a7826 1940 if ((uintptr_t) s < 1024)
5e617bc2 1941 abort ();
212f33f1
KS
1942 s = NEXT_FREE_LISP_STRING (s);
1943 }
1944}
1945#else
1946#define check_string_free_list()
1947#endif
361b097f 1948
2e471eb5
GM
1949/* Return a new Lisp_String. */
1950
1951static struct Lisp_String *
971de7fb 1952allocate_string (void)
7146af97 1953{
2e471eb5 1954 struct Lisp_String *s;
7146af97 1955
e2984df0
CY
1956 /* eassert (!handling_signal); */
1957
dafc79fa 1958 MALLOC_BLOCK_INPUT;
cfb2f32e 1959
2e471eb5
GM
1960 /* If the free-list is empty, allocate a new string_block, and
1961 add all the Lisp_Strings in it to the free-list. */
1962 if (string_free_list == NULL)
7146af97 1963 {
2e471eb5
GM
1964 struct string_block *b;
1965 int i;
1966
34400008 1967 b = (struct string_block *) lisp_malloc (sizeof *b, MEM_TYPE_STRING);
72af86bd 1968 memset (b, 0, sizeof *b);
2e471eb5
GM
1969 b->next = string_blocks;
1970 string_blocks = b;
2e471eb5 1971
19bcad1f 1972 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
7146af97 1973 {
2e471eb5
GM
1974 s = b->strings + i;
1975 NEXT_FREE_LISP_STRING (s) = string_free_list;
1976 string_free_list = s;
7146af97 1977 }
2e471eb5 1978
19bcad1f 1979 total_free_strings += STRING_BLOCK_SIZE;
7146af97 1980 }
c0f51373 1981
bdbed949 1982 check_string_free_list ();
212f33f1 1983
2e471eb5
GM
1984 /* Pop a Lisp_String off the free-list. */
1985 s = string_free_list;
1986 string_free_list = NEXT_FREE_LISP_STRING (s);
c0f51373 1987
dafc79fa 1988 MALLOC_UNBLOCK_INPUT;
e2984df0 1989
2e471eb5 1990 /* Probably not strictly necessary, but play it safe. */
72af86bd 1991 memset (s, 0, sizeof *s);
c0f51373 1992
2e471eb5
GM
1993 --total_free_strings;
1994 ++total_strings;
1995 ++strings_consed;
1996 consing_since_gc += sizeof *s;
c0f51373 1997
361b097f 1998#ifdef GC_CHECK_STRING_BYTES
e39a993c 1999 if (!noninteractive)
361b097f 2000 {
676a7251
GM
2001 if (++check_string_bytes_count == 200)
2002 {
2003 check_string_bytes_count = 0;
2004 check_string_bytes (1);
2005 }
2006 else
2007 check_string_bytes (0);
361b097f 2008 }
676a7251 2009#endif /* GC_CHECK_STRING_BYTES */
361b097f 2010
2e471eb5 2011 return s;
c0f51373 2012}
7146af97 2013
7146af97 2014
2e471eb5
GM
2015/* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
2016 plus a NUL byte at the end. Allocate an sdata structure for S, and
2017 set S->data to its `u.data' member. Store a NUL byte at the end of
2018 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
2019 S->data if it was initially non-null. */
7146af97 2020
2e471eb5 2021void
413d18e7
EZ
2022allocate_string_data (struct Lisp_String *s,
2023 EMACS_INT nchars, EMACS_INT nbytes)
7146af97 2024{
5c5fecb3 2025 struct sdata *data, *old_data;
2e471eb5 2026 struct sblock *b;
d311d28c 2027 ptrdiff_t needed, old_nbytes;
7146af97 2028
c9d624c6
PE
2029 if (STRING_BYTES_MAX < nbytes)
2030 string_overflow ();
2031
2e471eb5
GM
2032 /* Determine the number of bytes needed to store NBYTES bytes
2033 of string data. */
2034 needed = SDATA_SIZE (nbytes);
e2984df0
CY
2035 old_data = s->data ? SDATA_OF_STRING (s) : NULL;
2036 old_nbytes = GC_STRING_BYTES (s);
2037
dafc79fa 2038 MALLOC_BLOCK_INPUT;
7146af97 2039
2e471eb5
GM
2040 if (nbytes > LARGE_STRING_BYTES)
2041 {
36372bf9 2042 size_t size = offsetof (struct sblock, first_data) + needed;
2e471eb5
GM
2043
2044#ifdef DOUG_LEA_MALLOC
f8608968
GM
2045 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
2046 because mapped region contents are not preserved in
d36b182f
DL
2047 a dumped Emacs.
2048
2049 In case you think of allowing it in a dumped Emacs at the
2050 cost of not being able to re-dump, there's another reason:
2051 mmap'ed data typically have an address towards the top of the
2052 address space, which won't fit into an EMACS_INT (at least on
2053 32-bit systems with the current tagging scheme). --fx */
2e471eb5
GM
2054 mallopt (M_MMAP_MAX, 0);
2055#endif
2056
212f33f1 2057 b = (struct sblock *) lisp_malloc (size + GC_STRING_EXTRA, MEM_TYPE_NON_LISP);
177c0ea7 2058
2e471eb5
GM
2059#ifdef DOUG_LEA_MALLOC
2060 /* Back to a reasonable maximum of mmap'ed areas. */
2061 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
2062#endif
177c0ea7 2063
2e471eb5
GM
2064 b->next_free = &b->first_data;
2065 b->first_data.string = NULL;
2066 b->next = large_sblocks;
2067 large_sblocks = b;
2068 }
2069 else if (current_sblock == NULL
2070 || (((char *) current_sblock + SBLOCK_SIZE
2071 - (char *) current_sblock->next_free)
212f33f1 2072 < (needed + GC_STRING_EXTRA)))
2e471eb5
GM
2073 {
2074 /* Not enough room in the current sblock. */
34400008 2075 b = (struct sblock *) lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
2e471eb5
GM
2076 b->next_free = &b->first_data;
2077 b->first_data.string = NULL;
2078 b->next = NULL;
2079
2080 if (current_sblock)
2081 current_sblock->next = b;
2082 else
2083 oldest_sblock = b;
2084 current_sblock = b;
2085 }
2086 else
2087 b = current_sblock;
5c5fecb3 2088
2e471eb5 2089 data = b->next_free;
a0b08700
CY
2090 b->next_free = (struct sdata *) ((char *) data + needed + GC_STRING_EXTRA);
2091
dafc79fa 2092 MALLOC_UNBLOCK_INPUT;
e2984df0 2093
2e471eb5 2094 data->string = s;
31d929e5
GM
2095 s->data = SDATA_DATA (data);
2096#ifdef GC_CHECK_STRING_BYTES
2097 SDATA_NBYTES (data) = nbytes;
2098#endif
2e471eb5
GM
2099 s->size = nchars;
2100 s->size_byte = nbytes;
2101 s->data[nbytes] = '\0';
212f33f1 2102#ifdef GC_CHECK_STRING_OVERRUN
000098c1
PE
2103 memcpy ((char *) data + needed, string_overrun_cookie,
2104 GC_STRING_OVERRUN_COOKIE_SIZE);
212f33f1 2105#endif
177c0ea7 2106
5c5fecb3
GM
2107 /* If S had already data assigned, mark that as free by setting its
2108 string back-pointer to null, and recording the size of the data
00c9c33c 2109 in it. */
5c5fecb3
GM
2110 if (old_data)
2111 {
31d929e5 2112 SDATA_NBYTES (old_data) = old_nbytes;
5c5fecb3
GM
2113 old_data->string = NULL;
2114 }
2115
2e471eb5
GM
2116 consing_since_gc += needed;
2117}
2118
2119
2120/* Sweep and compact strings. */
2121
2122static void
971de7fb 2123sweep_strings (void)
2e471eb5
GM
2124{
2125 struct string_block *b, *next;
2126 struct string_block *live_blocks = NULL;
177c0ea7 2127
2e471eb5
GM
2128 string_free_list = NULL;
2129 total_strings = total_free_strings = 0;
2130 total_string_size = 0;
2131
2132 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
2133 for (b = string_blocks; b; b = next)
2134 {
2135 int i, nfree = 0;
2136 struct Lisp_String *free_list_before = string_free_list;
2137
2138 next = b->next;
2139
19bcad1f 2140 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
2e471eb5
GM
2141 {
2142 struct Lisp_String *s = b->strings + i;
2143
2144 if (s->data)
2145 {
2146 /* String was not on free-list before. */
2147 if (STRING_MARKED_P (s))
2148 {
2149 /* String is live; unmark it and its intervals. */
2150 UNMARK_STRING (s);
177c0ea7 2151
2e471eb5
GM
2152 if (!NULL_INTERVAL_P (s->intervals))
2153 UNMARK_BALANCE_INTERVALS (s->intervals);
2154
2155 ++total_strings;
2156 total_string_size += STRING_BYTES (s);
2157 }
2158 else
2159 {
2160 /* String is dead. Put it on the free-list. */
2161 struct sdata *data = SDATA_OF_STRING (s);
2162
2163 /* Save the size of S in its sdata so that we know
2164 how large that is. Reset the sdata's string
2165 back-pointer so that we know it's free. */
31d929e5
GM
2166#ifdef GC_CHECK_STRING_BYTES
2167 if (GC_STRING_BYTES (s) != SDATA_NBYTES (data))
2168 abort ();
2169#else
2e471eb5 2170 data->u.nbytes = GC_STRING_BYTES (s);
31d929e5 2171#endif
2e471eb5
GM
2172 data->string = NULL;
2173
2174 /* Reset the strings's `data' member so that we
2175 know it's free. */
2176 s->data = NULL;
2177
2178 /* Put the string on the free-list. */
2179 NEXT_FREE_LISP_STRING (s) = string_free_list;
2180 string_free_list = s;
2181 ++nfree;
2182 }
2183 }
2184 else
2185 {
2186 /* S was on the free-list before. Put it there again. */
2187 NEXT_FREE_LISP_STRING (s) = string_free_list;
2188 string_free_list = s;
2189 ++nfree;
2190 }
2191 }
2192
34400008 2193 /* Free blocks that contain free Lisp_Strings only, except
2e471eb5 2194 the first two of them. */
19bcad1f
SM
2195 if (nfree == STRING_BLOCK_SIZE
2196 && total_free_strings > STRING_BLOCK_SIZE)
2e471eb5
GM
2197 {
2198 lisp_free (b);
2e471eb5
GM
2199 string_free_list = free_list_before;
2200 }
2201 else
2202 {
2203 total_free_strings += nfree;
2204 b->next = live_blocks;
2205 live_blocks = b;
2206 }
2207 }
2208
bdbed949 2209 check_string_free_list ();
212f33f1 2210
2e471eb5
GM
2211 string_blocks = live_blocks;
2212 free_large_strings ();
2213 compact_small_strings ();
212f33f1 2214
bdbed949 2215 check_string_free_list ();
2e471eb5
GM
2216}
2217
2218
2219/* Free dead large strings. */
2220
2221static void
971de7fb 2222free_large_strings (void)
2e471eb5
GM
2223{
2224 struct sblock *b, *next;
2225 struct sblock *live_blocks = NULL;
177c0ea7 2226
2e471eb5
GM
2227 for (b = large_sblocks; b; b = next)
2228 {
2229 next = b->next;
2230
2231 if (b->first_data.string == NULL)
2232 lisp_free (b);
2233 else
2234 {
2235 b->next = live_blocks;
2236 live_blocks = b;
2237 }
2238 }
2239
2240 large_sblocks = live_blocks;
2241}
2242
2243
2244/* Compact data of small strings. Free sblocks that don't contain
2245 data of live strings after compaction. */
2246
2247static void
971de7fb 2248compact_small_strings (void)
2e471eb5
GM
2249{
2250 struct sblock *b, *tb, *next;
2251 struct sdata *from, *to, *end, *tb_end;
2252 struct sdata *to_end, *from_end;
2253
2254 /* TB is the sblock we copy to, TO is the sdata within TB we copy
2255 to, and TB_END is the end of TB. */
2256 tb = oldest_sblock;
2257 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2258 to = &tb->first_data;
2259
2260 /* Step through the blocks from the oldest to the youngest. We
2261 expect that old blocks will stabilize over time, so that less
2262 copying will happen this way. */
2263 for (b = oldest_sblock; b; b = b->next)
2264 {
2265 end = b->next_free;
2266 xassert ((char *) end <= (char *) b + SBLOCK_SIZE);
177c0ea7 2267
2e471eb5
GM
2268 for (from = &b->first_data; from < end; from = from_end)
2269 {
2270 /* Compute the next FROM here because copying below may
2271 overwrite data we need to compute it. */
d311d28c 2272 ptrdiff_t nbytes;
2e471eb5 2273
31d929e5
GM
2274#ifdef GC_CHECK_STRING_BYTES
2275 /* Check that the string size recorded in the string is the
2276 same as the one recorded in the sdata structure. */
2277 if (from->string
2278 && GC_STRING_BYTES (from->string) != SDATA_NBYTES (from))
2279 abort ();
2280#endif /* GC_CHECK_STRING_BYTES */
177c0ea7 2281
2e471eb5
GM
2282 if (from->string)
2283 nbytes = GC_STRING_BYTES (from->string);
2284 else
31d929e5 2285 nbytes = SDATA_NBYTES (from);
177c0ea7 2286
212f33f1
KS
2287 if (nbytes > LARGE_STRING_BYTES)
2288 abort ();
212f33f1 2289
2e471eb5 2290 nbytes = SDATA_SIZE (nbytes);
212f33f1
KS
2291 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
2292
2293#ifdef GC_CHECK_STRING_OVERRUN
72af86bd
AS
2294 if (memcmp (string_overrun_cookie,
2295 (char *) from_end - GC_STRING_OVERRUN_COOKIE_SIZE,
2296 GC_STRING_OVERRUN_COOKIE_SIZE))
212f33f1
KS
2297 abort ();
2298#endif
177c0ea7 2299
2e471eb5
GM
2300 /* FROM->string non-null means it's alive. Copy its data. */
2301 if (from->string)
2302 {
2303 /* If TB is full, proceed with the next sblock. */
212f33f1 2304 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2e471eb5
GM
2305 if (to_end > tb_end)
2306 {
2307 tb->next_free = to;
2308 tb = tb->next;
2309 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2310 to = &tb->first_data;
212f33f1 2311 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2e471eb5 2312 }
177c0ea7 2313
2e471eb5
GM
2314 /* Copy, and update the string's `data' pointer. */
2315 if (from != to)
2316 {
3c616cfa 2317 xassert (tb != b || to < from);
72af86bd 2318 memmove (to, from, nbytes + GC_STRING_EXTRA);
31d929e5 2319 to->string->data = SDATA_DATA (to);
2e471eb5
GM
2320 }
2321
2322 /* Advance past the sdata we copied to. */
2323 to = to_end;
2324 }
2325 }
2326 }
2327
2328 /* The rest of the sblocks following TB don't contain live data, so
2329 we can free them. */
2330 for (b = tb->next; b; b = next)
2331 {
2332 next = b->next;
2333 lisp_free (b);
2334 }
2335
2336 tb->next_free = to;
2337 tb->next = NULL;
2338 current_sblock = tb;
2339}
2340
cb93f9be
PE
2341void
2342string_overflow (void)
2343{
2344 error ("Maximum string size exceeded");
2345}
2e471eb5 2346
a7ca3326 2347DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
69623621
RS
2348 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
2349LENGTH must be an integer.
2350INIT must be an integer that represents a character. */)
5842a27b 2351 (Lisp_Object length, Lisp_Object init)
2e471eb5
GM
2352{
2353 register Lisp_Object val;
2354 register unsigned char *p, *end;
14162469
EZ
2355 int c;
2356 EMACS_INT nbytes;
2e471eb5 2357
b7826503 2358 CHECK_NATNUM (length);
2bccce07 2359 CHECK_CHARACTER (init);
2e471eb5 2360
2bccce07 2361 c = XFASTINT (init);
830ff83b 2362 if (ASCII_CHAR_P (c))
2e471eb5
GM
2363 {
2364 nbytes = XINT (length);
2365 val = make_uninit_string (nbytes);
d5db4077
KR
2366 p = SDATA (val);
2367 end = p + SCHARS (val);
2e471eb5
GM
2368 while (p != end)
2369 *p++ = c;
2370 }
2371 else
2372 {
d942b71c 2373 unsigned char str[MAX_MULTIBYTE_LENGTH];
2e471eb5 2374 int len = CHAR_STRING (c, str);
14162469 2375 EMACS_INT string_len = XINT (length);
2e471eb5 2376
d1f3d2af 2377 if (string_len > STRING_BYTES_MAX / len)
cb93f9be 2378 string_overflow ();
14162469
EZ
2379 nbytes = len * string_len;
2380 val = make_uninit_multibyte_string (string_len, nbytes);
d5db4077 2381 p = SDATA (val);
2e471eb5
GM
2382 end = p + nbytes;
2383 while (p != end)
2384 {
72af86bd 2385 memcpy (p, str, len);
2e471eb5
GM
2386 p += len;
2387 }
2388 }
177c0ea7 2389
2e471eb5
GM
2390 *p = 0;
2391 return val;
2392}
2393
2394
a7ca3326 2395DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
909e3b33 2396 doc: /* Return a new bool-vector of length LENGTH, using INIT for each element.
7ee72033 2397LENGTH must be a number. INIT matters only in whether it is t or nil. */)
5842a27b 2398 (Lisp_Object length, Lisp_Object init)
2e471eb5
GM
2399{
2400 register Lisp_Object val;
2401 struct Lisp_Bool_Vector *p;
d311d28c
PE
2402 ptrdiff_t length_in_chars;
2403 EMACS_INT length_in_elts;
14162469 2404 int bits_per_value;
2e471eb5 2405
b7826503 2406 CHECK_NATNUM (length);
2e471eb5 2407
a097329f 2408 bits_per_value = sizeof (EMACS_INT) * BOOL_VECTOR_BITS_PER_CHAR;
2e471eb5
GM
2409
2410 length_in_elts = (XFASTINT (length) + bits_per_value - 1) / bits_per_value;
2e471eb5
GM
2411
2412 /* We must allocate one more elements than LENGTH_IN_ELTS for the
2413 slot `size' of the struct Lisp_Bool_Vector. */
2414 val = Fmake_vector (make_number (length_in_elts + 1), Qnil);
177c0ea7 2415
eab3844f
PE
2416 /* No Lisp_Object to trace in there. */
2417 XSETPVECTYPESIZE (XVECTOR (val), PVEC_BOOL_VECTOR, 0);
d2029e5b
SM
2418
2419 p = XBOOL_VECTOR (val);
2e471eb5 2420 p->size = XFASTINT (length);
177c0ea7 2421
d311d28c
PE
2422 length_in_chars = ((XFASTINT (length) + BOOL_VECTOR_BITS_PER_CHAR - 1)
2423 / BOOL_VECTOR_BITS_PER_CHAR);
c0c1ee9f
PE
2424 if (length_in_chars)
2425 {
2426 memset (p->data, ! NILP (init) ? -1 : 0, length_in_chars);
177c0ea7 2427
c0c1ee9f
PE
2428 /* Clear any extraneous bits in the last byte. */
2429 p->data[length_in_chars - 1]
2430 &= (1 << (XINT (length) % BOOL_VECTOR_BITS_PER_CHAR)) - 1;
2431 }
2e471eb5
GM
2432
2433 return val;
2434}
2435
2436
2437/* Make a string from NBYTES bytes at CONTENTS, and compute the number
2438 of characters from the contents. This string may be unibyte or
2439 multibyte, depending on the contents. */
2440
2441Lisp_Object
d311d28c 2442make_string (const char *contents, ptrdiff_t nbytes)
2e471eb5
GM
2443{
2444 register Lisp_Object val;
d311d28c 2445 ptrdiff_t nchars, multibyte_nbytes;
9eac9d59 2446
90256841
PE
2447 parse_str_as_multibyte ((const unsigned char *) contents, nbytes,
2448 &nchars, &multibyte_nbytes);
9eac9d59
KH
2449 if (nbytes == nchars || nbytes != multibyte_nbytes)
2450 /* CONTENTS contains no multibyte sequences or contains an invalid
2451 multibyte sequence. We must make unibyte string. */
495a6df3
KH
2452 val = make_unibyte_string (contents, nbytes);
2453 else
2454 val = make_multibyte_string (contents, nchars, nbytes);
2e471eb5
GM
2455 return val;
2456}
2457
2458
2459/* Make an unibyte string from LENGTH bytes at CONTENTS. */
2460
2461Lisp_Object
d311d28c 2462make_unibyte_string (const char *contents, ptrdiff_t length)
2e471eb5
GM
2463{
2464 register Lisp_Object val;
2465 val = make_uninit_string (length);
72af86bd 2466 memcpy (SDATA (val), contents, length);
2e471eb5
GM
2467 return val;
2468}
2469
2470
2471/* Make a multibyte string from NCHARS characters occupying NBYTES
2472 bytes at CONTENTS. */
2473
2474Lisp_Object
14162469 2475make_multibyte_string (const char *contents,
d311d28c 2476 ptrdiff_t nchars, ptrdiff_t nbytes)
2e471eb5
GM
2477{
2478 register Lisp_Object val;
2479 val = make_uninit_multibyte_string (nchars, nbytes);
72af86bd 2480 memcpy (SDATA (val), contents, nbytes);
2e471eb5
GM
2481 return val;
2482}
2483
2484
2485/* Make a string from NCHARS characters occupying NBYTES bytes at
2486 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2487
2488Lisp_Object
14162469 2489make_string_from_bytes (const char *contents,
d311d28c 2490 ptrdiff_t nchars, ptrdiff_t nbytes)
2e471eb5
GM
2491{
2492 register Lisp_Object val;
2493 val = make_uninit_multibyte_string (nchars, nbytes);
72af86bd 2494 memcpy (SDATA (val), contents, nbytes);
d5db4077
KR
2495 if (SBYTES (val) == SCHARS (val))
2496 STRING_SET_UNIBYTE (val);
2e471eb5
GM
2497 return val;
2498}
2499
2500
2501/* Make a string from NCHARS characters occupying NBYTES bytes at
2502 CONTENTS. The argument MULTIBYTE controls whether to label the
229b28c4
KH
2503 string as multibyte. If NCHARS is negative, it counts the number of
2504 characters by itself. */
2e471eb5
GM
2505
2506Lisp_Object
14162469 2507make_specified_string (const char *contents,
d311d28c 2508 ptrdiff_t nchars, ptrdiff_t nbytes, int multibyte)
2e471eb5
GM
2509{
2510 register Lisp_Object val;
229b28c4
KH
2511
2512 if (nchars < 0)
2513 {
2514 if (multibyte)
90256841
PE
2515 nchars = multibyte_chars_in_text ((const unsigned char *) contents,
2516 nbytes);
229b28c4
KH
2517 else
2518 nchars = nbytes;
2519 }
2e471eb5 2520 val = make_uninit_multibyte_string (nchars, nbytes);
72af86bd 2521 memcpy (SDATA (val), contents, nbytes);
2e471eb5 2522 if (!multibyte)
d5db4077 2523 STRING_SET_UNIBYTE (val);
2e471eb5
GM
2524 return val;
2525}
2526
2527
2528/* Make a string from the data at STR, treating it as multibyte if the
2529 data warrants. */
2530
2531Lisp_Object
971de7fb 2532build_string (const char *str)
2e471eb5
GM
2533{
2534 return make_string (str, strlen (str));
2535}
2536
2537
2538/* Return an unibyte Lisp_String set up to hold LENGTH characters
2539 occupying LENGTH bytes. */
2540
2541Lisp_Object
413d18e7 2542make_uninit_string (EMACS_INT length)
2e471eb5
GM
2543{
2544 Lisp_Object val;
4d774b0f
JB
2545
2546 if (!length)
2547 return empty_unibyte_string;
2e471eb5 2548 val = make_uninit_multibyte_string (length, length);
d5db4077 2549 STRING_SET_UNIBYTE (val);
2e471eb5
GM
2550 return val;
2551}
2552
2553
2554/* Return a multibyte Lisp_String set up to hold NCHARS characters
2555 which occupy NBYTES bytes. */
2556
2557Lisp_Object
413d18e7 2558make_uninit_multibyte_string (EMACS_INT nchars, EMACS_INT nbytes)
2e471eb5
GM
2559{
2560 Lisp_Object string;
2561 struct Lisp_String *s;
2562
2563 if (nchars < 0)
2564 abort ();
4d774b0f
JB
2565 if (!nbytes)
2566 return empty_multibyte_string;
2e471eb5
GM
2567
2568 s = allocate_string ();
2569 allocate_string_data (s, nchars, nbytes);
2570 XSETSTRING (string, s);
2571 string_chars_consed += nbytes;
2572 return string;
2573}
2574
2575
2576\f
2577/***********************************************************************
2578 Float Allocation
2579 ***********************************************************************/
2580
2e471eb5
GM
2581/* We store float cells inside of float_blocks, allocating a new
2582 float_block with malloc whenever necessary. Float cells reclaimed
2583 by GC are put on a free list to be reallocated before allocating
ab6780cd 2584 any new float cells from the latest float_block. */
2e471eb5 2585
6b61353c
KH
2586#define FLOAT_BLOCK_SIZE \
2587 (((BLOCK_BYTES - sizeof (struct float_block *) \
2588 /* The compiler might add padding at the end. */ \
2589 - (sizeof (struct Lisp_Float) - sizeof (int))) * CHAR_BIT) \
ab6780cd
SM
2590 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2591
2592#define GETMARKBIT(block,n) \
5e617bc2
JB
2593 (((block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2594 >> ((n) % (sizeof (int) * CHAR_BIT))) \
ab6780cd
SM
2595 & 1)
2596
2597#define SETMARKBIT(block,n) \
5e617bc2
JB
2598 (block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2599 |= 1 << ((n) % (sizeof (int) * CHAR_BIT))
ab6780cd
SM
2600
2601#define UNSETMARKBIT(block,n) \
5e617bc2
JB
2602 (block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2603 &= ~(1 << ((n) % (sizeof (int) * CHAR_BIT)))
ab6780cd
SM
2604
2605#define FLOAT_BLOCK(fptr) \
d01a7826 2606 ((struct float_block *) (((uintptr_t) (fptr)) & ~(BLOCK_ALIGN - 1)))
ab6780cd
SM
2607
2608#define FLOAT_INDEX(fptr) \
d01a7826 2609 ((((uintptr_t) (fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2e471eb5
GM
2610
2611struct float_block
2612{
ab6780cd 2613 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2e471eb5 2614 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
5e617bc2 2615 int gcmarkbits[1 + FLOAT_BLOCK_SIZE / (sizeof (int) * CHAR_BIT)];
ab6780cd 2616 struct float_block *next;
2e471eb5
GM
2617};
2618
ab6780cd
SM
2619#define FLOAT_MARKED_P(fptr) \
2620 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2621
2622#define FLOAT_MARK(fptr) \
2623 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2624
2625#define FLOAT_UNMARK(fptr) \
2626 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2627
34400008
GM
2628/* Current float_block. */
2629
244ed907 2630static struct float_block *float_block;
34400008
GM
2631
2632/* Index of first unused Lisp_Float in the current float_block. */
2633
244ed907 2634static int float_block_index;
2e471eb5 2635
34400008
GM
2636/* Free-list of Lisp_Floats. */
2637
244ed907 2638static struct Lisp_Float *float_free_list;
2e471eb5 2639
34400008 2640
966533c9 2641/* Initialize float allocation. */
34400008 2642
d3d47262 2643static void
971de7fb 2644init_float (void)
2e471eb5 2645{
08b7c2cb
SM
2646 float_block = NULL;
2647 float_block_index = FLOAT_BLOCK_SIZE; /* Force alloc of new float_block. */
2e471eb5 2648 float_free_list = 0;
2e471eb5
GM
2649}
2650
34400008 2651
34400008
GM
2652/* Return a new float object with value FLOAT_VALUE. */
2653
2e471eb5 2654Lisp_Object
971de7fb 2655make_float (double float_value)
2e471eb5
GM
2656{
2657 register Lisp_Object val;
2658
e2984df0
CY
2659 /* eassert (!handling_signal); */
2660
dafc79fa 2661 MALLOC_BLOCK_INPUT;
cfb2f32e 2662
2e471eb5
GM
2663 if (float_free_list)
2664 {
2665 /* We use the data field for chaining the free list
2666 so that we won't use the same field that has the mark bit. */
2667 XSETFLOAT (val, float_free_list);
28a099a4 2668 float_free_list = float_free_list->u.chain;
2e471eb5
GM
2669 }
2670 else
2671 {
2672 if (float_block_index == FLOAT_BLOCK_SIZE)
2673 {
2674 register struct float_block *new;
2675
ab6780cd
SM
2676 new = (struct float_block *) lisp_align_malloc (sizeof *new,
2677 MEM_TYPE_FLOAT);
2e471eb5 2678 new->next = float_block;
72af86bd 2679 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2e471eb5
GM
2680 float_block = new;
2681 float_block_index = 0;
2e471eb5 2682 }
6b61353c
KH
2683 XSETFLOAT (val, &float_block->floats[float_block_index]);
2684 float_block_index++;
2e471eb5 2685 }
177c0ea7 2686
dafc79fa 2687 MALLOC_UNBLOCK_INPUT;
e2984df0 2688
f601cdf3 2689 XFLOAT_INIT (val, float_value);
6b61353c 2690 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2e471eb5
GM
2691 consing_since_gc += sizeof (struct Lisp_Float);
2692 floats_consed++;
2693 return val;
2694}
2695
2e471eb5
GM
2696
2697\f
2698/***********************************************************************
2699 Cons Allocation
2700 ***********************************************************************/
2701
2702/* We store cons cells inside of cons_blocks, allocating a new
2703 cons_block with malloc whenever necessary. Cons cells reclaimed by
2704 GC are put on a free list to be reallocated before allocating
08b7c2cb 2705 any new cons cells from the latest cons_block. */
2e471eb5 2706
a2821611
AS
2707#define CONS_BLOCK_SIZE \
2708 (((BLOCK_BYTES - sizeof (struct cons_block *) \
2709 /* The compiler might add padding at the end. */ \
2710 - (sizeof (struct Lisp_Cons) - sizeof (int))) * CHAR_BIT) \
08b7c2cb
SM
2711 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2712
2713#define CONS_BLOCK(fptr) \
d01a7826 2714 ((struct cons_block *) ((uintptr_t) (fptr) & ~(BLOCK_ALIGN - 1)))
08b7c2cb
SM
2715
2716#define CONS_INDEX(fptr) \
d01a7826 2717 (((uintptr_t) (fptr) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2e471eb5
GM
2718
2719struct cons_block
2720{
08b7c2cb 2721 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2e471eb5 2722 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
5e617bc2 2723 int gcmarkbits[1 + CONS_BLOCK_SIZE / (sizeof (int) * CHAR_BIT)];
08b7c2cb 2724 struct cons_block *next;
2e471eb5
GM
2725};
2726
08b7c2cb
SM
2727#define CONS_MARKED_P(fptr) \
2728 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2729
2730#define CONS_MARK(fptr) \
2731 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2732
2733#define CONS_UNMARK(fptr) \
2734 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2735
34400008
GM
2736/* Current cons_block. */
2737
244ed907 2738static struct cons_block *cons_block;
34400008
GM
2739
2740/* Index of first unused Lisp_Cons in the current block. */
2741
244ed907 2742static int cons_block_index;
2e471eb5 2743
34400008
GM
2744/* Free-list of Lisp_Cons structures. */
2745
244ed907 2746static struct Lisp_Cons *cons_free_list;
2e471eb5 2747
34400008
GM
2748
2749/* Initialize cons allocation. */
2750
d3d47262 2751static void
971de7fb 2752init_cons (void)
2e471eb5 2753{
08b7c2cb
SM
2754 cons_block = NULL;
2755 cons_block_index = CONS_BLOCK_SIZE; /* Force alloc of new cons_block. */
2e471eb5 2756 cons_free_list = 0;
2e471eb5
GM
2757}
2758
34400008
GM
2759
2760/* Explicitly free a cons cell by putting it on the free-list. */
2e471eb5
GM
2761
2762void
971de7fb 2763free_cons (struct Lisp_Cons *ptr)
2e471eb5 2764{
28a099a4 2765 ptr->u.chain = cons_free_list;
34400008
GM
2766#if GC_MARK_STACK
2767 ptr->car = Vdead;
2768#endif
2e471eb5
GM
2769 cons_free_list = ptr;
2770}
2771
a7ca3326 2772DEFUN ("cons", Fcons, Scons, 2, 2, 0,
a6266d23 2773 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
5842a27b 2774 (Lisp_Object car, Lisp_Object cdr)
2e471eb5
GM
2775{
2776 register Lisp_Object val;
2777
e2984df0
CY
2778 /* eassert (!handling_signal); */
2779
dafc79fa 2780 MALLOC_BLOCK_INPUT;
cfb2f32e 2781
2e471eb5
GM
2782 if (cons_free_list)
2783 {
2784 /* We use the cdr for chaining the free list
2785 so that we won't use the same field that has the mark bit. */
2786 XSETCONS (val, cons_free_list);
28a099a4 2787 cons_free_list = cons_free_list->u.chain;
2e471eb5
GM
2788 }
2789 else
2790 {
2791 if (cons_block_index == CONS_BLOCK_SIZE)
2792 {
2793 register struct cons_block *new;
08b7c2cb
SM
2794 new = (struct cons_block *) lisp_align_malloc (sizeof *new,
2795 MEM_TYPE_CONS);
72af86bd 2796 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2e471eb5
GM
2797 new->next = cons_block;
2798 cons_block = new;
2799 cons_block_index = 0;
2e471eb5 2800 }
6b61353c
KH
2801 XSETCONS (val, &cons_block->conses[cons_block_index]);
2802 cons_block_index++;
2e471eb5 2803 }
177c0ea7 2804
dafc79fa 2805 MALLOC_UNBLOCK_INPUT;
e2984df0 2806
f3fbd155
KR
2807 XSETCAR (val, car);
2808 XSETCDR (val, cdr);
6b61353c 2809 eassert (!CONS_MARKED_P (XCONS (val)));
2e471eb5
GM
2810 consing_since_gc += sizeof (struct Lisp_Cons);
2811 cons_cells_consed++;
2812 return val;
2813}
2814
e5aab7e7 2815#ifdef GC_CHECK_CONS_LIST
e3e56238
RS
2816/* Get an error now if there's any junk in the cons free list. */
2817void
971de7fb 2818check_cons_list (void)
e3e56238
RS
2819{
2820 struct Lisp_Cons *tail = cons_free_list;
2821
e3e56238 2822 while (tail)
28a099a4 2823 tail = tail->u.chain;
e3e56238 2824}
e5aab7e7 2825#endif
34400008 2826
9b306d37
KS
2827/* Make a list of 1, 2, 3, 4 or 5 specified objects. */
2828
2829Lisp_Object
971de7fb 2830list1 (Lisp_Object arg1)
9b306d37
KS
2831{
2832 return Fcons (arg1, Qnil);
2833}
2e471eb5
GM
2834
2835Lisp_Object
971de7fb 2836list2 (Lisp_Object arg1, Lisp_Object arg2)
2e471eb5
GM
2837{
2838 return Fcons (arg1, Fcons (arg2, Qnil));
2839}
2840
34400008 2841
2e471eb5 2842Lisp_Object
971de7fb 2843list3 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3)
2e471eb5
GM
2844{
2845 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2846}
2847
34400008 2848
2e471eb5 2849Lisp_Object
971de7fb 2850list4 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4)
2e471eb5
GM
2851{
2852 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2853}
2854
34400008 2855
2e471eb5 2856Lisp_Object
971de7fb 2857list5 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4, Lisp_Object arg5)
2e471eb5
GM
2858{
2859 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2860 Fcons (arg5, Qnil)))));
2861}
2862
34400008 2863
a7ca3326 2864DEFUN ("list", Flist, Slist, 0, MANY, 0,
eae936e2 2865 doc: /* Return a newly created list with specified arguments as elements.
ae8e8122
MB
2866Any number of arguments, even zero arguments, are allowed.
2867usage: (list &rest OBJECTS) */)
f66c7cf8 2868 (ptrdiff_t nargs, Lisp_Object *args)
2e471eb5
GM
2869{
2870 register Lisp_Object val;
2871 val = Qnil;
2872
2873 while (nargs > 0)
2874 {
2875 nargs--;
2876 val = Fcons (args[nargs], val);
2877 }
2878 return val;
2879}
2880
34400008 2881
a7ca3326 2882DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
a6266d23 2883 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
5842a27b 2884 (register Lisp_Object length, Lisp_Object init)
2e471eb5
GM
2885{
2886 register Lisp_Object val;
14162469 2887 register EMACS_INT size;
2e471eb5 2888
b7826503 2889 CHECK_NATNUM (length);
2e471eb5
GM
2890 size = XFASTINT (length);
2891
2892 val = Qnil;
ce070307
GM
2893 while (size > 0)
2894 {
2895 val = Fcons (init, val);
2896 --size;
2897
2898 if (size > 0)
2899 {
2900 val = Fcons (init, val);
2901 --size;
177c0ea7 2902
ce070307
GM
2903 if (size > 0)
2904 {
2905 val = Fcons (init, val);
2906 --size;
177c0ea7 2907
ce070307
GM
2908 if (size > 0)
2909 {
2910 val = Fcons (init, val);
2911 --size;
177c0ea7 2912
ce070307
GM
2913 if (size > 0)
2914 {
2915 val = Fcons (init, val);
2916 --size;
2917 }
2918 }
2919 }
2920 }
2921
2922 QUIT;
2923 }
177c0ea7 2924
7146af97
JB
2925 return val;
2926}
2e471eb5
GM
2927
2928
7146af97 2929\f
2e471eb5
GM
2930/***********************************************************************
2931 Vector Allocation
2932 ***********************************************************************/
7146af97 2933
f3372c87
DA
2934/* This value is balanced well enough to avoid too much internal overhead
2935 for the most common cases; it's not required to be a power of two, but
2936 it's expected to be a mult-of-ROUNDUP_SIZE (see below). */
34400008 2937
f3372c87 2938#define VECTOR_BLOCK_SIZE 4096
7146af97 2939
dd0b0efb
PE
2940/* Handy constants for vectorlike objects. */
2941enum
2942 {
2943 header_size = offsetof (struct Lisp_Vector, contents),
f3372c87
DA
2944 word_size = sizeof (Lisp_Object),
2945 roundup_size = COMMON_MULTIPLE (sizeof (Lisp_Object),
2946#ifdef USE_LSB_TAG
2947 8 /* Helps to maintain alignment constraints imposed by
2948 assumption that least 3 bits of pointers are always 0. */
2949#else
2950 1 /* If alignment doesn't matter, should round up
2951 to sizeof (Lisp_Object) at least. */
2952#endif
2953 )
dd0b0efb 2954 };
34400008 2955
f3372c87
DA
2956/* Round up X to nearest mult-of-ROUNDUP_SIZE,
2957 assuming ROUNDUP_SIZE is a power of 2. */
2958
2959#define vroundup(x) (((x) + (roundup_size - 1)) & ~(roundup_size - 1))
2960
2961/* Rounding helps to maintain alignment constraints if USE_LSB_TAG. */
2962
2963#define VECTOR_BLOCK_BYTES (VECTOR_BLOCK_SIZE - vroundup (sizeof (void *)))
2964
2965/* Size of the minimal vector allocated from block. */
2966
2967#define VBLOCK_BYTES_MIN vroundup (sizeof (struct Lisp_Vector))
2968
2969/* Size of the largest vector allocated from block. */
2970
2971#define VBLOCK_BYTES_MAX \
2972 vroundup ((VECTOR_BLOCK_BYTES / 2) - sizeof (Lisp_Object))
2973
2974/* We maintain one free list for each possible block-allocated
2975 vector size, and this is the number of free lists we have. */
2976
2977#define VECTOR_MAX_FREE_LIST_INDEX \
2978 ((VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN) / roundup_size + 1)
2979
2980/* When the vector is on a free list, vectorlike_header.SIZE is set to
2981 this special value ORed with vector's memory footprint size. */
2982
2983#define VECTOR_FREE_LIST_FLAG (~(ARRAY_MARK_FLAG | PSEUDOVECTOR_FLAG \
2984 | (VECTOR_BLOCK_SIZE - 1)))
2985
2986/* Common shortcut to advance vector pointer over a block data. */
2987
2988#define ADVANCE(v, nbytes) ((struct Lisp_Vector *) ((char *) (v) + (nbytes)))
2989
2990/* Common shortcut to calculate NBYTES-vector index in VECTOR_FREE_LISTS. */
2991
2992#define VINDEX(nbytes) (((nbytes) - VBLOCK_BYTES_MIN) / roundup_size)
2993
2994/* Common shortcut to setup vector on a free list. */
2995
2996#define SETUP_ON_FREE_LIST(v, nbytes, index) \
2997 do { \
2998 (v)->header.size = VECTOR_FREE_LIST_FLAG | (nbytes); \
2999 eassert ((nbytes) % roundup_size == 0); \
3000 (index) = VINDEX (nbytes); \
3001 eassert ((index) < VECTOR_MAX_FREE_LIST_INDEX); \
3002 (v)->header.next.vector = vector_free_lists[index]; \
3003 vector_free_lists[index] = (v); \
3004 } while (0)
3005
3006struct vector_block
3007{
3008 char data[VECTOR_BLOCK_BYTES];
3009 struct vector_block *next;
3010};
3011
3012/* Chain of vector blocks. */
3013
3014static struct vector_block *vector_blocks;
3015
3016/* Vector free lists, where NTH item points to a chain of free
3017 vectors of the same NBYTES size, so NTH == VINDEX (NBYTES). */
3018
3019static struct Lisp_Vector *vector_free_lists[VECTOR_MAX_FREE_LIST_INDEX];
3020
3021/* Singly-linked list of large vectors. */
3022
3023static struct Lisp_Vector *large_vectors;
3024
3025/* The only vector with 0 slots, allocated from pure space. */
3026
3027static struct Lisp_Vector *zero_vector;
3028
3029/* Get a new vector block. */
3030
3031static struct vector_block *
3032allocate_vector_block (void)
3033{
3034 struct vector_block *block;
3035
3036#ifdef DOUG_LEA_MALLOC
3037 mallopt (M_MMAP_MAX, 0);
3038#endif
3039
3040 block = xmalloc (sizeof (struct vector_block));
3041
3042#ifdef DOUG_LEA_MALLOC
3043 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
3044#endif
3045
3046#if GC_MARK_STACK && !defined GC_MALLOC_CHECK
3047 mem_insert (block->data, block->data + VECTOR_BLOCK_BYTES,
3048 MEM_TYPE_VECTOR_BLOCK);
3049#endif
3050
3051 block->next = vector_blocks;
3052 vector_blocks = block;
3053 return block;
3054}
3055
3056/* Called once to initialize vector allocation. */
3057
3058static void
3059init_vectors (void)
3060{
3061 zero_vector = pure_alloc (header_size, Lisp_Vectorlike);
3062 zero_vector->header.size = 0;
3063}
3064
3065/* Allocate vector from a vector block. */
3066
3067static struct Lisp_Vector *
3068allocate_vector_from_block (size_t nbytes)
3069{
3070 struct Lisp_Vector *vector, *rest;
3071 struct vector_block *block;
3072 size_t index, restbytes;
3073
3074 eassert (VBLOCK_BYTES_MIN <= nbytes && nbytes <= VBLOCK_BYTES_MAX);
3075 eassert (nbytes % roundup_size == 0);
3076
3077 /* First, try to allocate from a free list
3078 containing vectors of the requested size. */
3079 index = VINDEX (nbytes);
3080 if (vector_free_lists[index])
3081 {
3082 vector = vector_free_lists[index];
3083 vector_free_lists[index] = vector->header.next.vector;
3084 vector->header.next.nbytes = nbytes;
3085 return vector;
3086 }
3087
3088 /* Next, check free lists containing larger vectors. Since
3089 we will split the result, we should have remaining space
3090 large enough to use for one-slot vector at least. */
3091 for (index = VINDEX (nbytes + VBLOCK_BYTES_MIN);
3092 index < VECTOR_MAX_FREE_LIST_INDEX; index++)
3093 if (vector_free_lists[index])
3094 {
3095 /* This vector is larger than requested. */
3096 vector = vector_free_lists[index];
3097 vector_free_lists[index] = vector->header.next.vector;
3098 vector->header.next.nbytes = nbytes;
3099
3100 /* Excess bytes are used for the smaller vector,
3101 which should be set on an appropriate free list. */
3102 restbytes = index * roundup_size + VBLOCK_BYTES_MIN - nbytes;
3103 eassert (restbytes % roundup_size == 0);
3104 rest = ADVANCE (vector, nbytes);
3105 SETUP_ON_FREE_LIST (rest, restbytes, index);
3106 return vector;
3107 }
3108
3109 /* Finally, need a new vector block. */
3110 block = allocate_vector_block ();
3111
3112 /* New vector will be at the beginning of this block. */
3113 vector = (struct Lisp_Vector *) block->data;
3114 vector->header.next.nbytes = nbytes;
3115
3116 /* If the rest of space from this block is large enough
3117 for one-slot vector at least, set up it on a free list. */
3118 restbytes = VECTOR_BLOCK_BYTES - nbytes;
3119 if (restbytes >= VBLOCK_BYTES_MIN)
3120 {
3121 eassert (restbytes % roundup_size == 0);
3122 rest = ADVANCE (vector, nbytes);
3123 SETUP_ON_FREE_LIST (rest, restbytes, index);
3124 }
3125 return vector;
3126 }
3127
3128/* Return how many Lisp_Objects can be stored in V. */
3129
3130#define VECTOR_SIZE(v) ((v)->header.size & PSEUDOVECTOR_FLAG ? \
3131 (PSEUDOVECTOR_SIZE_MASK & (v)->header.size) : \
3132 (v)->header.size)
3133
3134/* Nonzero if VECTOR pointer is valid pointer inside BLOCK. */
3135
3136#define VECTOR_IN_BLOCK(vector, block) \
3137 ((char *) (vector) <= (block)->data \
3138 + VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN)
3139
3140/* Reclaim space used by unmarked vectors. */
3141
3142static void
3143sweep_vectors (void)
3144{
3145 struct vector_block *block = vector_blocks, **bprev = &vector_blocks;
3146 struct Lisp_Vector *vector, *next, **vprev = &large_vectors;
3147
3148 total_vector_size = 0;
3149 memset (vector_free_lists, 0, sizeof (vector_free_lists));
3150
3151 /* Looking through vector blocks. */
3152
3153 for (block = vector_blocks; block; block = *bprev)
3154 {
3155 int free_this_block = 0;
3156
3157 for (vector = (struct Lisp_Vector *) block->data;
3158 VECTOR_IN_BLOCK (vector, block); vector = next)
3159 {
3160 if (VECTOR_MARKED_P (vector))
3161 {
3162 VECTOR_UNMARK (vector);
3163 total_vector_size += VECTOR_SIZE (vector);
3164 next = ADVANCE (vector, vector->header.next.nbytes);
3165 }
3166 else
3167 {
3168 ptrdiff_t nbytes;
3169
3170 if ((vector->header.size & VECTOR_FREE_LIST_FLAG)
3171 == VECTOR_FREE_LIST_FLAG)
3172 vector->header.next.nbytes =
3173 vector->header.size & (VECTOR_BLOCK_SIZE - 1);
3174
3175 next = ADVANCE (vector, vector->header.next.nbytes);
3176
3177 /* While NEXT is not marked, try to coalesce with VECTOR,
3178 thus making VECTOR of the largest possible size. */
3179
3180 while (VECTOR_IN_BLOCK (next, block))
3181 {
3182 if (VECTOR_MARKED_P (next))
3183 break;
3184 if ((next->header.size & VECTOR_FREE_LIST_FLAG)
3185 == VECTOR_FREE_LIST_FLAG)
3186 nbytes = next->header.size & (VECTOR_BLOCK_SIZE - 1);
3187 else
3188 nbytes = next->header.next.nbytes;
3189 vector->header.next.nbytes += nbytes;
3190 next = ADVANCE (next, nbytes);
3191 }
3192
3193 eassert (vector->header.next.nbytes % roundup_size == 0);
3194
3195 if (vector == (struct Lisp_Vector *) block->data
3196 && !VECTOR_IN_BLOCK (next, block))
3197 /* This block should be freed because all of it's
3198 space was coalesced into the only free vector. */
3199 free_this_block = 1;
3200 else
3201 SETUP_ON_FREE_LIST (vector, vector->header.next.nbytes, nbytes);
3202 }
3203 }
3204
3205 if (free_this_block)
3206 {
3207 *bprev = block->next;
3208#if GC_MARK_STACK && !defined GC_MALLOC_CHECK
3209 mem_delete (mem_find (block->data));
3210#endif
3211 xfree (block);
3212 }
3213 else
3214 bprev = &block->next;
3215 }
3216
3217 /* Sweep large vectors. */
3218
3219 for (vector = large_vectors; vector; vector = *vprev)
3220 {
3221 if (VECTOR_MARKED_P (vector))
3222 {
3223 VECTOR_UNMARK (vector);
3224 total_vector_size += VECTOR_SIZE (vector);
3225 vprev = &vector->header.next.vector;
3226 }
3227 else
3228 {
3229 *vprev = vector->header.next.vector;
3230 lisp_free (vector);
3231 }
3232 }
3233}
3234
34400008
GM
3235/* Value is a pointer to a newly allocated Lisp_Vector structure
3236 with room for LEN Lisp_Objects. */
3237
ece93c02 3238static struct Lisp_Vector *
d311d28c 3239allocate_vectorlike (ptrdiff_t len)
1825c68d
KH
3240{
3241 struct Lisp_Vector *p;
675d5130 3242 size_t nbytes;
1825c68d 3243
dafc79fa
SM
3244 MALLOC_BLOCK_INPUT;
3245
d1658221 3246#ifdef DOUG_LEA_MALLOC
f8608968
GM
3247 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
3248 because mapped region contents are not preserved in
3249 a dumped Emacs. */
d1658221
RS
3250 mallopt (M_MMAP_MAX, 0);
3251#endif
177c0ea7 3252
cfb2f32e
SM
3253 /* This gets triggered by code which I haven't bothered to fix. --Stef */
3254 /* eassert (!handling_signal); */
3255
f3372c87 3256 if (len == 0)
8bbbc977
EZ
3257 {
3258 MALLOC_UNBLOCK_INPUT;
3259 return zero_vector;
3260 }
f3372c87 3261
0de4bb68 3262 nbytes = header_size + len * word_size;
f3372c87
DA
3263
3264 if (nbytes <= VBLOCK_BYTES_MAX)
3265 p = allocate_vector_from_block (vroundup (nbytes));
3266 else
3267 {
3268 p = (struct Lisp_Vector *) lisp_malloc (nbytes, MEM_TYPE_VECTORLIKE);
3269 p->header.next.vector = large_vectors;
3270 large_vectors = p;
3271 }
177c0ea7 3272
d1658221 3273#ifdef DOUG_LEA_MALLOC
34400008 3274 /* Back to a reasonable maximum of mmap'ed areas. */
81d492d5 3275 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
d1658221 3276#endif
177c0ea7 3277
34400008 3278 consing_since_gc += nbytes;
310ea200 3279 vector_cells_consed += len;
1825c68d 3280
dafc79fa 3281 MALLOC_UNBLOCK_INPUT;
e2984df0 3282
1825c68d
KH
3283 return p;
3284}
3285
34400008 3286
dd0b0efb 3287/* Allocate a vector with LEN slots. */
ece93c02
GM
3288
3289struct Lisp_Vector *
dd0b0efb 3290allocate_vector (EMACS_INT len)
ece93c02 3291{
dd0b0efb
PE
3292 struct Lisp_Vector *v;
3293 ptrdiff_t nbytes_max = min (PTRDIFF_MAX, SIZE_MAX);
3294
3295 if (min ((nbytes_max - header_size) / word_size, MOST_POSITIVE_FIXNUM) < len)
3296 memory_full (SIZE_MAX);
3297 v = allocate_vectorlike (len);
3298 v->header.size = len;
ece93c02
GM
3299 return v;
3300}
3301
3302
3303/* Allocate other vector-like structures. */
3304
30f95089 3305struct Lisp_Vector *
d311d28c 3306allocate_pseudovector (int memlen, int lisplen, int tag)
ece93c02 3307{
d2029e5b 3308 struct Lisp_Vector *v = allocate_vectorlike (memlen);
e46bb31a 3309 int i;
177c0ea7 3310
d2029e5b 3311 /* Only the first lisplen slots will be traced normally by the GC. */
d2029e5b 3312 for (i = 0; i < lisplen; ++i)
ece93c02 3313 v->contents[i] = Qnil;
177c0ea7 3314
eab3844f 3315 XSETPVECTYPESIZE (v, tag, lisplen);
d2029e5b
SM
3316 return v;
3317}
d2029e5b 3318
ece93c02 3319struct Lisp_Hash_Table *
878f97ff 3320allocate_hash_table (void)
ece93c02 3321{
878f97ff 3322 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Hash_Table, count, PVEC_HASH_TABLE);
ece93c02
GM
3323}
3324
3325
3326struct window *
971de7fb 3327allocate_window (void)
ece93c02 3328{
5e617bc2 3329 return ALLOCATE_PSEUDOVECTOR (struct window, current_matrix, PVEC_WINDOW);
ece93c02 3330}
177c0ea7 3331
177c0ea7 3332
4a729fd8 3333struct terminal *
971de7fb 3334allocate_terminal (void)
4a729fd8 3335{
d2029e5b
SM
3336 struct terminal *t = ALLOCATE_PSEUDOVECTOR (struct terminal,
3337 next_terminal, PVEC_TERMINAL);
3338 /* Zero out the non-GC'd fields. FIXME: This should be made unnecessary. */
72af86bd
AS
3339 memset (&t->next_terminal, 0,
3340 (char*) (t + 1) - (char*) &t->next_terminal);
ece93c02 3341
d2029e5b 3342 return t;
4a729fd8 3343}
ece93c02
GM
3344
3345struct frame *
971de7fb 3346allocate_frame (void)
ece93c02 3347{
d2029e5b
SM
3348 struct frame *f = ALLOCATE_PSEUDOVECTOR (struct frame,
3349 face_cache, PVEC_FRAME);
3350 /* Zero out the non-GC'd fields. FIXME: This should be made unnecessary. */
72af86bd
AS
3351 memset (&f->face_cache, 0,
3352 (char *) (f + 1) - (char *) &f->face_cache);
d2029e5b 3353 return f;
ece93c02
GM
3354}
3355
3356
3357struct Lisp_Process *
971de7fb 3358allocate_process (void)
ece93c02 3359{
d2029e5b 3360 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Process, pid, PVEC_PROCESS);
ece93c02
GM
3361}
3362
3363
a7ca3326 3364DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
a6266d23 3365 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
7ee72033 3366See also the function `vector'. */)
5842a27b 3367 (register Lisp_Object length, Lisp_Object init)
7146af97 3368{
1825c68d 3369 Lisp_Object vector;
d311d28c
PE
3370 register ptrdiff_t sizei;
3371 register ptrdiff_t i;
7146af97
JB
3372 register struct Lisp_Vector *p;
3373
b7826503 3374 CHECK_NATNUM (length);
7146af97 3375
d311d28c
PE
3376 p = allocate_vector (XFASTINT (length));
3377 sizei = XFASTINT (length);
ae35e756
PE
3378 for (i = 0; i < sizei; i++)
3379 p->contents[i] = init;
7146af97 3380
1825c68d 3381 XSETVECTOR (vector, p);
7146af97
JB
3382 return vector;
3383}
3384
34400008 3385
a7ca3326 3386DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
eae936e2 3387 doc: /* Return a newly created vector with specified arguments as elements.
ae8e8122
MB
3388Any number of arguments, even zero arguments, are allowed.
3389usage: (vector &rest OBJECTS) */)
f66c7cf8 3390 (ptrdiff_t nargs, Lisp_Object *args)
7146af97
JB
3391{
3392 register Lisp_Object len, val;
f66c7cf8 3393 ptrdiff_t i;
7146af97
JB
3394 register struct Lisp_Vector *p;
3395
67ba9986 3396 XSETFASTINT (len, nargs);
7146af97
JB
3397 val = Fmake_vector (len, Qnil);
3398 p = XVECTOR (val);
ae35e756
PE
3399 for (i = 0; i < nargs; i++)
3400 p->contents[i] = args[i];
7146af97
JB
3401 return val;
3402}
3403
34400008 3404
a7ca3326 3405DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
a6266d23 3406 doc: /* Create a byte-code object with specified arguments as elements.
e2abe5a1
SM
3407The arguments should be the ARGLIST, bytecode-string BYTE-CODE, constant
3408vector CONSTANTS, maximum stack size DEPTH, (optional) DOCSTRING,
3409and (optional) INTERACTIVE-SPEC.
228299fa 3410The first four arguments are required; at most six have any
ae8e8122 3411significance.
e2abe5a1
SM
3412The ARGLIST can be either like the one of `lambda', in which case the arguments
3413will be dynamically bound before executing the byte code, or it can be an
3414integer of the form NNNNNNNRMMMMMMM where the 7bit MMMMMMM specifies the
3415minimum number of arguments, the 7-bit NNNNNNN specifies the maximum number
3416of arguments (ignoring &rest) and the R bit specifies whether there is a &rest
3417argument to catch the left-over arguments. If such an integer is used, the
3418arguments will not be dynamically bound but will be instead pushed on the
3419stack before executing the byte-code.
92cc28b2 3420usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
f66c7cf8 3421 (ptrdiff_t nargs, Lisp_Object *args)
7146af97
JB
3422{
3423 register Lisp_Object len, val;
f66c7cf8 3424 ptrdiff_t i;
7146af97
JB
3425 register struct Lisp_Vector *p;
3426
67ba9986 3427 XSETFASTINT (len, nargs);
265a9e55 3428 if (!NILP (Vpurify_flag))
f66c7cf8 3429 val = make_pure_vector (nargs);
7146af97
JB
3430 else
3431 val = Fmake_vector (len, Qnil);
9eac9d59 3432
b1feb9b4 3433 if (nargs > 1 && STRINGP (args[1]) && STRING_MULTIBYTE (args[1]))
9eac9d59
KH
3434 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
3435 earlier because they produced a raw 8-bit string for byte-code
3436 and now such a byte-code string is loaded as multibyte while
3437 raw 8-bit characters converted to multibyte form. Thus, now we
3438 must convert them back to the original unibyte form. */
3439 args[1] = Fstring_as_unibyte (args[1]);
3440
7146af97 3441 p = XVECTOR (val);
ae35e756 3442 for (i = 0; i < nargs; i++)
7146af97 3443 {
265a9e55 3444 if (!NILP (Vpurify_flag))
ae35e756
PE
3445 args[i] = Fpurecopy (args[i]);
3446 p->contents[i] = args[i];
7146af97 3447 }
876c194c
SM
3448 XSETPVECTYPE (p, PVEC_COMPILED);
3449 XSETCOMPILED (val, p);
7146af97
JB
3450 return val;
3451}
2e471eb5 3452
34400008 3453
7146af97 3454\f
2e471eb5
GM
3455/***********************************************************************
3456 Symbol Allocation
3457 ***********************************************************************/
7146af97 3458
d55c12ed
AS
3459/* Like struct Lisp_Symbol, but padded so that the size is a multiple
3460 of the required alignment if LSB tags are used. */
3461
3462union aligned_Lisp_Symbol
3463{
3464 struct Lisp_Symbol s;
3465#ifdef USE_LSB_TAG
3466 unsigned char c[(sizeof (struct Lisp_Symbol) + (1 << GCTYPEBITS) - 1)
3467 & -(1 << GCTYPEBITS)];
3468#endif
3469};
3470
2e471eb5
GM
3471/* Each symbol_block is just under 1020 bytes long, since malloc
3472 really allocates in units of powers of two and uses 4 bytes for its
3473 own overhead. */
7146af97
JB
3474
3475#define SYMBOL_BLOCK_SIZE \
d55c12ed 3476 ((1020 - sizeof (struct symbol_block *)) / sizeof (union aligned_Lisp_Symbol))
7146af97
JB
3477
3478struct symbol_block
2e471eb5 3479{
6b61353c 3480 /* Place `symbols' first, to preserve alignment. */
d55c12ed 3481 union aligned_Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
6b61353c 3482 struct symbol_block *next;
2e471eb5 3483};
7146af97 3484
34400008
GM
3485/* Current symbol block and index of first unused Lisp_Symbol
3486 structure in it. */
3487
d3d47262
JB
3488static struct symbol_block *symbol_block;
3489static int symbol_block_index;
7146af97 3490
34400008
GM
3491/* List of free symbols. */
3492
d3d47262 3493static struct Lisp_Symbol *symbol_free_list;
7146af97 3494
34400008
GM
3495
3496/* Initialize symbol allocation. */
3497
d3d47262 3498static void
971de7fb 3499init_symbol (void)
7146af97 3500{
005ca5c7
DL
3501 symbol_block = NULL;
3502 symbol_block_index = SYMBOL_BLOCK_SIZE;
7146af97
JB
3503 symbol_free_list = 0;
3504}
3505
34400008 3506
a7ca3326 3507DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
a6266d23 3508 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
7ee72033 3509Its value and function definition are void, and its property list is nil. */)
5842a27b 3510 (Lisp_Object name)
7146af97
JB
3511{
3512 register Lisp_Object val;
3513 register struct Lisp_Symbol *p;
3514
b7826503 3515 CHECK_STRING (name);
7146af97 3516
537407f0 3517 /* eassert (!handling_signal); */
cfb2f32e 3518
dafc79fa 3519 MALLOC_BLOCK_INPUT;
e2984df0 3520
7146af97
JB
3521 if (symbol_free_list)
3522 {
45d12a89 3523 XSETSYMBOL (val, symbol_free_list);
28a099a4 3524 symbol_free_list = symbol_free_list->next;
7146af97
JB
3525 }
3526 else
3527 {
3528 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
3529 {
3c06d205 3530 struct symbol_block *new;
34400008
GM
3531 new = (struct symbol_block *) lisp_malloc (sizeof *new,
3532 MEM_TYPE_SYMBOL);
7146af97
JB
3533 new->next = symbol_block;
3534 symbol_block = new;
3535 symbol_block_index = 0;
3536 }
d55c12ed 3537 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index].s);
6b61353c 3538 symbol_block_index++;
7146af97 3539 }
177c0ea7 3540
dafc79fa 3541 MALLOC_UNBLOCK_INPUT;
e2984df0 3542
7146af97 3543 p = XSYMBOL (val);
8fe5665d 3544 p->xname = name;
7146af97 3545 p->plist = Qnil;
ce5b453a
SM
3546 p->redirect = SYMBOL_PLAINVAL;
3547 SET_SYMBOL_VAL (p, Qunbound);
2e471eb5 3548 p->function = Qunbound;
9e713715 3549 p->next = NULL;
2336fe58 3550 p->gcmarkbit = 0;
9e713715
GM
3551 p->interned = SYMBOL_UNINTERNED;
3552 p->constant = 0;
b9598260 3553 p->declared_special = 0;
2e471eb5
GM
3554 consing_since_gc += sizeof (struct Lisp_Symbol);
3555 symbols_consed++;
7146af97
JB
3556 return val;
3557}
3558
3f25e183 3559
2e471eb5
GM
3560\f
3561/***********************************************************************
34400008 3562 Marker (Misc) Allocation
2e471eb5 3563 ***********************************************************************/
3f25e183 3564
d55c12ed
AS
3565/* Like union Lisp_Misc, but padded so that its size is a multiple of
3566 the required alignment when LSB tags are used. */
3567
3568union aligned_Lisp_Misc
3569{
3570 union Lisp_Misc m;
3571#ifdef USE_LSB_TAG
3572 unsigned char c[(sizeof (union Lisp_Misc) + (1 << GCTYPEBITS) - 1)
3573 & -(1 << GCTYPEBITS)];
3574#endif
3575};
3576
2e471eb5
GM
3577/* Allocation of markers and other objects that share that structure.
3578 Works like allocation of conses. */
c0696668 3579
2e471eb5 3580#define MARKER_BLOCK_SIZE \
d55c12ed 3581 ((1020 - sizeof (struct marker_block *)) / sizeof (union aligned_Lisp_Misc))
2e471eb5
GM
3582
3583struct marker_block
c0696668 3584{
6b61353c 3585 /* Place `markers' first, to preserve alignment. */
d55c12ed 3586 union aligned_Lisp_Misc markers[MARKER_BLOCK_SIZE];
6b61353c 3587 struct marker_block *next;
2e471eb5 3588};
c0696668 3589
d3d47262
JB
3590static struct marker_block *marker_block;
3591static int marker_block_index;
c0696668 3592
d3d47262 3593static union Lisp_Misc *marker_free_list;
c0696668 3594
d3d47262 3595static void
971de7fb 3596init_marker (void)
3f25e183 3597{
005ca5c7
DL
3598 marker_block = NULL;
3599 marker_block_index = MARKER_BLOCK_SIZE;
2e471eb5 3600 marker_free_list = 0;
3f25e183
RS
3601}
3602
2e471eb5
GM
3603/* Return a newly allocated Lisp_Misc object, with no substructure. */
3604
3f25e183 3605Lisp_Object
971de7fb 3606allocate_misc (void)
7146af97 3607{
2e471eb5 3608 Lisp_Object val;
7146af97 3609
e2984df0
CY
3610 /* eassert (!handling_signal); */
3611
dafc79fa 3612 MALLOC_BLOCK_INPUT;
cfb2f32e 3613
2e471eb5 3614 if (marker_free_list)
7146af97 3615 {
2e471eb5
GM
3616 XSETMISC (val, marker_free_list);
3617 marker_free_list = marker_free_list->u_free.chain;
7146af97
JB
3618 }
3619 else
7146af97 3620 {
2e471eb5
GM
3621 if (marker_block_index == MARKER_BLOCK_SIZE)
3622 {
3623 struct marker_block *new;
34400008
GM
3624 new = (struct marker_block *) lisp_malloc (sizeof *new,
3625 MEM_TYPE_MISC);
2e471eb5
GM
3626 new->next = marker_block;
3627 marker_block = new;
3628 marker_block_index = 0;
7b7990cc 3629 total_free_markers += MARKER_BLOCK_SIZE;
2e471eb5 3630 }
d55c12ed 3631 XSETMISC (val, &marker_block->markers[marker_block_index].m);
6b61353c 3632 marker_block_index++;
7146af97 3633 }
177c0ea7 3634
dafc79fa 3635 MALLOC_UNBLOCK_INPUT;
e2984df0 3636
7b7990cc 3637 --total_free_markers;
2e471eb5
GM
3638 consing_since_gc += sizeof (union Lisp_Misc);
3639 misc_objects_consed++;
67ee9f6e 3640 XMISCANY (val)->gcmarkbit = 0;
2e471eb5
GM
3641 return val;
3642}
3643
7b7990cc
KS
3644/* Free a Lisp_Misc object */
3645
244ed907 3646static void
971de7fb 3647free_misc (Lisp_Object misc)
7b7990cc 3648{
d314756e 3649 XMISCTYPE (misc) = Lisp_Misc_Free;
7b7990cc
KS
3650 XMISC (misc)->u_free.chain = marker_free_list;
3651 marker_free_list = XMISC (misc);
3652
3653 total_free_markers++;
3654}
3655
42172a6b
RS
3656/* Return a Lisp_Misc_Save_Value object containing POINTER and
3657 INTEGER. This is used to package C values to call record_unwind_protect.
3658 The unwind function can get the C values back using XSAVE_VALUE. */
3659
3660Lisp_Object
9c4c5f81 3661make_save_value (void *pointer, ptrdiff_t integer)
42172a6b
RS
3662{
3663 register Lisp_Object val;
3664 register struct Lisp_Save_Value *p;
3665
3666 val = allocate_misc ();
3667 XMISCTYPE (val) = Lisp_Misc_Save_Value;
3668 p = XSAVE_VALUE (val);
3669 p->pointer = pointer;
3670 p->integer = integer;
b766f870 3671 p->dogc = 0;
42172a6b
RS
3672 return val;
3673}
3674
a7ca3326 3675DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
a6266d23 3676 doc: /* Return a newly allocated marker which does not point at any place. */)
5842a27b 3677 (void)
2e471eb5
GM
3678{
3679 register Lisp_Object val;
3680 register struct Lisp_Marker *p;
7146af97 3681
2e471eb5
GM
3682 val = allocate_misc ();
3683 XMISCTYPE (val) = Lisp_Misc_Marker;
3684 p = XMARKER (val);
3685 p->buffer = 0;
3686 p->bytepos = 0;
3687 p->charpos = 0;
ef89c2ce 3688 p->next = NULL;
2e471eb5 3689 p->insertion_type = 0;
7146af97
JB
3690 return val;
3691}
2e471eb5
GM
3692
3693/* Put MARKER back on the free list after using it temporarily. */
3694
3695void
971de7fb 3696free_marker (Lisp_Object marker)
2e471eb5 3697{
ef89c2ce 3698 unchain_marker (XMARKER (marker));
7b7990cc 3699 free_misc (marker);
2e471eb5
GM
3700}
3701
c0696668 3702\f
7146af97 3703/* Return a newly created vector or string with specified arguments as
736471d1
RS
3704 elements. If all the arguments are characters that can fit
3705 in a string of events, make a string; otherwise, make a vector.
3706
3707 Any number of arguments, even zero arguments, are allowed. */
7146af97
JB
3708
3709Lisp_Object
971de7fb 3710make_event_array (register int nargs, Lisp_Object *args)
7146af97
JB
3711{
3712 int i;
3713
3714 for (i = 0; i < nargs; i++)
736471d1 3715 /* The things that fit in a string
c9ca4659
RS
3716 are characters that are in 0...127,
3717 after discarding the meta bit and all the bits above it. */
e687453f 3718 if (!INTEGERP (args[i])
c11285dc 3719 || (XINT (args[i]) & ~(-CHAR_META)) >= 0200)
7146af97
JB
3720 return Fvector (nargs, args);
3721
3722 /* Since the loop exited, we know that all the things in it are
3723 characters, so we can make a string. */
3724 {
c13ccad2 3725 Lisp_Object result;
177c0ea7 3726
50aee051 3727 result = Fmake_string (make_number (nargs), make_number (0));
7146af97 3728 for (i = 0; i < nargs; i++)
736471d1 3729 {
46e7e6b0 3730 SSET (result, i, XINT (args[i]));
736471d1
RS
3731 /* Move the meta bit to the right place for a string char. */
3732 if (XINT (args[i]) & CHAR_META)
46e7e6b0 3733 SSET (result, i, SREF (result, i) | 0x80);
736471d1 3734 }
177c0ea7 3735
7146af97
JB
3736 return result;
3737 }
3738}
2e471eb5
GM
3739
3740
7146af97 3741\f
24d8a105
RS
3742/************************************************************************
3743 Memory Full Handling
3744 ************************************************************************/
3745
3746
531b0165
PE
3747/* Called if malloc (NBYTES) returns zero. If NBYTES == SIZE_MAX,
3748 there may have been size_t overflow so that malloc was never
3749 called, or perhaps malloc was invoked successfully but the
3750 resulting pointer had problems fitting into a tagged EMACS_INT. In
3751 either case this counts as memory being full even though malloc did
3752 not fail. */
24d8a105
RS
3753
3754void
531b0165 3755memory_full (size_t nbytes)
24d8a105 3756{
531b0165
PE
3757 /* Do not go into hysterics merely because a large request failed. */
3758 int enough_free_memory = 0;
2b6148e4 3759 if (SPARE_MEMORY < nbytes)
531b0165 3760 {
66606eea
PE
3761 void *p;
3762
3763 MALLOC_BLOCK_INPUT;
3764 p = malloc (SPARE_MEMORY);
531b0165
PE
3765 if (p)
3766 {
4d09bcf6 3767 free (p);
531b0165
PE
3768 enough_free_memory = 1;
3769 }
66606eea 3770 MALLOC_UNBLOCK_INPUT;
531b0165 3771 }
24d8a105 3772
531b0165
PE
3773 if (! enough_free_memory)
3774 {
3775 int i;
24d8a105 3776
531b0165
PE
3777 Vmemory_full = Qt;
3778
3779 memory_full_cons_threshold = sizeof (struct cons_block);
3780
3781 /* The first time we get here, free the spare memory. */
3782 for (i = 0; i < sizeof (spare_memory) / sizeof (char *); i++)
3783 if (spare_memory[i])
3784 {
3785 if (i == 0)
3786 free (spare_memory[i]);
3787 else if (i >= 1 && i <= 4)
3788 lisp_align_free (spare_memory[i]);
3789 else
3790 lisp_free (spare_memory[i]);
3791 spare_memory[i] = 0;
3792 }
3793
3794 /* Record the space now used. When it decreases substantially,
3795 we can refill the memory reserve. */
4e75f29d 3796#if !defined SYSTEM_MALLOC && !defined SYNC_INPUT
531b0165 3797 bytes_used_when_full = BYTES_USED;
24d8a105 3798#endif
531b0165 3799 }
24d8a105
RS
3800
3801 /* This used to call error, but if we've run out of memory, we could
3802 get infinite recursion trying to build the string. */
9b306d37 3803 xsignal (Qnil, Vmemory_signal_data);
24d8a105
RS
3804}
3805
3806/* If we released our reserve (due to running out of memory),
3807 and we have a fair amount free once again,
3808 try to set aside another reserve in case we run out once more.
3809
3810 This is called when a relocatable block is freed in ralloc.c,
3811 and also directly from this file, in case we're not using ralloc.c. */
3812
3813void
971de7fb 3814refill_memory_reserve (void)
24d8a105
RS
3815{
3816#ifndef SYSTEM_MALLOC
3817 if (spare_memory[0] == 0)
903fe15d 3818 spare_memory[0] = (char *) malloc (SPARE_MEMORY);
24d8a105
RS
3819 if (spare_memory[1] == 0)
3820 spare_memory[1] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3821 MEM_TYPE_CONS);
3822 if (spare_memory[2] == 0)
3823 spare_memory[2] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3824 MEM_TYPE_CONS);
3825 if (spare_memory[3] == 0)
3826 spare_memory[3] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3827 MEM_TYPE_CONS);
3828 if (spare_memory[4] == 0)
3829 spare_memory[4] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3830 MEM_TYPE_CONS);
3831 if (spare_memory[5] == 0)
3832 spare_memory[5] = (char *) lisp_malloc (sizeof (struct string_block),
3833 MEM_TYPE_STRING);
3834 if (spare_memory[6] == 0)
3835 spare_memory[6] = (char *) lisp_malloc (sizeof (struct string_block),
3836 MEM_TYPE_STRING);
3837 if (spare_memory[0] && spare_memory[1] && spare_memory[5])
3838 Vmemory_full = Qnil;
3839#endif
3840}
3841\f
34400008
GM
3842/************************************************************************
3843 C Stack Marking
3844 ************************************************************************/
3845
13c844fb
GM
3846#if GC_MARK_STACK || defined GC_MALLOC_CHECK
3847
71cf5fa0
GM
3848/* Conservative C stack marking requires a method to identify possibly
3849 live Lisp objects given a pointer value. We do this by keeping
3850 track of blocks of Lisp data that are allocated in a red-black tree
3851 (see also the comment of mem_node which is the type of nodes in
3852 that tree). Function lisp_malloc adds information for an allocated
3853 block to the red-black tree with calls to mem_insert, and function
3854 lisp_free removes it with mem_delete. Functions live_string_p etc
3855 call mem_find to lookup information about a given pointer in the
3856 tree, and use that to determine if the pointer points to a Lisp
3857 object or not. */
3858
34400008
GM
3859/* Initialize this part of alloc.c. */
3860
3861static void
971de7fb 3862mem_init (void)
34400008
GM
3863{
3864 mem_z.left = mem_z.right = MEM_NIL;
3865 mem_z.parent = NULL;
3866 mem_z.color = MEM_BLACK;
3867 mem_z.start = mem_z.end = NULL;
3868 mem_root = MEM_NIL;
3869}
3870
3871
3872/* Value is a pointer to the mem_node containing START. Value is
3873 MEM_NIL if there is no node in the tree containing START. */
3874
55d4c1b2 3875static inline struct mem_node *
971de7fb 3876mem_find (void *start)
34400008
GM
3877{
3878 struct mem_node *p;
3879
ece93c02
GM
3880 if (start < min_heap_address || start > max_heap_address)
3881 return MEM_NIL;
3882
34400008
GM
3883 /* Make the search always successful to speed up the loop below. */
3884 mem_z.start = start;
3885 mem_z.end = (char *) start + 1;
3886
3887 p = mem_root;
3888 while (start < p->start || start >= p->end)
3889 p = start < p->start ? p->left : p->right;
3890 return p;
3891}
3892
3893
3894/* Insert a new node into the tree for a block of memory with start
3895 address START, end address END, and type TYPE. Value is a
3896 pointer to the node that was inserted. */
3897
3898static struct mem_node *
971de7fb 3899mem_insert (void *start, void *end, enum mem_type type)
34400008
GM
3900{
3901 struct mem_node *c, *parent, *x;
3902
add3c3ea 3903 if (min_heap_address == NULL || start < min_heap_address)
ece93c02 3904 min_heap_address = start;
add3c3ea 3905 if (max_heap_address == NULL || end > max_heap_address)
ece93c02
GM
3906 max_heap_address = end;
3907
34400008
GM
3908 /* See where in the tree a node for START belongs. In this
3909 particular application, it shouldn't happen that a node is already
3910 present. For debugging purposes, let's check that. */
3911 c = mem_root;
3912 parent = NULL;
3913
3914#if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
177c0ea7 3915
34400008
GM
3916 while (c != MEM_NIL)
3917 {
3918 if (start >= c->start && start < c->end)
3919 abort ();
3920 parent = c;
3921 c = start < c->start ? c->left : c->right;
3922 }
177c0ea7 3923
34400008 3924#else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
177c0ea7 3925
34400008
GM
3926 while (c != MEM_NIL)
3927 {
3928 parent = c;
3929 c = start < c->start ? c->left : c->right;
3930 }
177c0ea7 3931
34400008
GM
3932#endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3933
3934 /* Create a new node. */
877935b1
GM
3935#ifdef GC_MALLOC_CHECK
3936 x = (struct mem_node *) _malloc_internal (sizeof *x);
3937 if (x == NULL)
3938 abort ();
3939#else
34400008 3940 x = (struct mem_node *) xmalloc (sizeof *x);
877935b1 3941#endif
34400008
GM
3942 x->start = start;
3943 x->end = end;
3944 x->type = type;
3945 x->parent = parent;
3946 x->left = x->right = MEM_NIL;
3947 x->color = MEM_RED;
3948
3949 /* Insert it as child of PARENT or install it as root. */
3950 if (parent)
3951 {
3952 if (start < parent->start)
3953 parent->left = x;
3954 else
3955 parent->right = x;
3956 }
177c0ea7 3957 else
34400008
GM
3958 mem_root = x;
3959
3960 /* Re-establish red-black tree properties. */
3961 mem_insert_fixup (x);
877935b1 3962
34400008
GM
3963 return x;
3964}
3965
3966
3967/* Re-establish the red-black properties of the tree, and thereby
3968 balance the tree, after node X has been inserted; X is always red. */
3969
3970static void
971de7fb 3971mem_insert_fixup (struct mem_node *x)
34400008
GM
3972{
3973 while (x != mem_root && x->parent->color == MEM_RED)
3974 {
3975 /* X is red and its parent is red. This is a violation of
3976 red-black tree property #3. */
177c0ea7 3977
34400008
GM
3978 if (x->parent == x->parent->parent->left)
3979 {
3980 /* We're on the left side of our grandparent, and Y is our
3981 "uncle". */
3982 struct mem_node *y = x->parent->parent->right;
177c0ea7 3983
34400008
GM
3984 if (y->color == MEM_RED)
3985 {
3986 /* Uncle and parent are red but should be black because
3987 X is red. Change the colors accordingly and proceed
3988 with the grandparent. */
3989 x->parent->color = MEM_BLACK;
3990 y->color = MEM_BLACK;
3991 x->parent->parent->color = MEM_RED;
3992 x = x->parent->parent;
3993 }
3994 else
3995 {
3996 /* Parent and uncle have different colors; parent is
3997 red, uncle is black. */
3998 if (x == x->parent->right)
3999 {
4000 x = x->parent;
4001 mem_rotate_left (x);
4002 }
4003
4004 x->parent->color = MEM_BLACK;
4005 x->parent->parent->color = MEM_RED;
4006 mem_rotate_right (x->parent->parent);
4007 }
4008 }
4009 else
4010 {
4011 /* This is the symmetrical case of above. */
4012 struct mem_node *y = x->parent->parent->left;
177c0ea7 4013
34400008
GM
4014 if (y->color == MEM_RED)
4015 {
4016 x->parent->color = MEM_BLACK;
4017 y->color = MEM_BLACK;
4018 x->parent->parent->color = MEM_RED;
4019 x = x->parent->parent;
4020 }
4021 else
4022 {
4023 if (x == x->parent->left)
4024 {
4025 x = x->parent;
4026 mem_rotate_right (x);
4027 }
177c0ea7 4028
34400008
GM
4029 x->parent->color = MEM_BLACK;
4030 x->parent->parent->color = MEM_RED;
4031 mem_rotate_left (x->parent->parent);
4032 }
4033 }
4034 }
4035
4036 /* The root may have been changed to red due to the algorithm. Set
4037 it to black so that property #5 is satisfied. */
4038 mem_root->color = MEM_BLACK;
4039}
4040
4041
177c0ea7
JB
4042/* (x) (y)
4043 / \ / \
34400008
GM
4044 a (y) ===> (x) c
4045 / \ / \
4046 b c a b */
4047
4048static void
971de7fb 4049mem_rotate_left (struct mem_node *x)
34400008
GM
4050{
4051 struct mem_node *y;
4052
4053 /* Turn y's left sub-tree into x's right sub-tree. */
4054 y = x->right;
4055 x->right = y->left;
4056 if (y->left != MEM_NIL)
4057 y->left->parent = x;
4058
4059 /* Y's parent was x's parent. */
4060 if (y != MEM_NIL)
4061 y->parent = x->parent;
4062
4063 /* Get the parent to point to y instead of x. */
4064 if (x->parent)
4065 {
4066 if (x == x->parent->left)
4067 x->parent->left = y;
4068 else
4069 x->parent->right = y;
4070 }
4071 else
4072 mem_root = y;
4073
4074 /* Put x on y's left. */
4075 y->left = x;
4076 if (x != MEM_NIL)
4077 x->parent = y;
4078}
4079
4080
177c0ea7
JB
4081/* (x) (Y)
4082 / \ / \
4083 (y) c ===> a (x)
4084 / \ / \
34400008
GM
4085 a b b c */
4086
4087static void
971de7fb 4088mem_rotate_right (struct mem_node *x)
34400008
GM
4089{
4090 struct mem_node *y = x->left;
4091
4092 x->left = y->right;
4093 if (y->right != MEM_NIL)
4094 y->right->parent = x;
177c0ea7 4095
34400008
GM
4096 if (y != MEM_NIL)
4097 y->parent = x->parent;
4098 if (x->parent)
4099 {
4100 if (x == x->parent->right)
4101 x->parent->right = y;
4102 else
4103 x->parent->left = y;
4104 }
4105 else
4106 mem_root = y;
177c0ea7 4107
34400008
GM
4108 y->right = x;
4109 if (x != MEM_NIL)
4110 x->parent = y;
4111}
4112
4113
4114/* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
4115
4116static void
971de7fb 4117mem_delete (struct mem_node *z)
34400008
GM
4118{
4119 struct mem_node *x, *y;
4120
4121 if (!z || z == MEM_NIL)
4122 return;
4123
4124 if (z->left == MEM_NIL || z->right == MEM_NIL)
4125 y = z;
4126 else
4127 {
4128 y = z->right;
4129 while (y->left != MEM_NIL)
4130 y = y->left;
4131 }
4132
4133 if (y->left != MEM_NIL)
4134 x = y->left;
4135 else
4136 x = y->right;
4137
4138 x->parent = y->parent;
4139 if (y->parent)
4140 {
4141 if (y == y->parent->left)
4142 y->parent->left = x;
4143 else
4144 y->parent->right = x;
4145 }
4146 else
4147 mem_root = x;
4148
4149 if (y != z)
4150 {
4151 z->start = y->start;
4152 z->end = y->end;
4153 z->type = y->type;
4154 }
177c0ea7 4155
34400008
GM
4156 if (y->color == MEM_BLACK)
4157 mem_delete_fixup (x);
877935b1
GM
4158
4159#ifdef GC_MALLOC_CHECK
4160 _free_internal (y);
4161#else
34400008 4162 xfree (y);
877935b1 4163#endif
34400008
GM
4164}
4165
4166
4167/* Re-establish the red-black properties of the tree, after a
4168 deletion. */
4169
4170static void
971de7fb 4171mem_delete_fixup (struct mem_node *x)
34400008
GM
4172{
4173 while (x != mem_root && x->color == MEM_BLACK)
4174 {
4175 if (x == x->parent->left)
4176 {
4177 struct mem_node *w = x->parent->right;
177c0ea7 4178
34400008
GM
4179 if (w->color == MEM_RED)
4180 {
4181 w->color = MEM_BLACK;
4182 x->parent->color = MEM_RED;
4183 mem_rotate_left (x->parent);
4184 w = x->parent->right;
4185 }
177c0ea7 4186
34400008
GM
4187 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
4188 {
4189 w->color = MEM_RED;
4190 x = x->parent;
4191 }
4192 else
4193 {
4194 if (w->right->color == MEM_BLACK)
4195 {
4196 w->left->color = MEM_BLACK;
4197 w->color = MEM_RED;
4198 mem_rotate_right (w);
4199 w = x->parent->right;
4200 }
4201 w->color = x->parent->color;
4202 x->parent->color = MEM_BLACK;
4203 w->right->color = MEM_BLACK;
4204 mem_rotate_left (x->parent);
4205 x = mem_root;
4206 }
4207 }
4208 else
4209 {
4210 struct mem_node *w = x->parent->left;
177c0ea7 4211
34400008
GM
4212 if (w->color == MEM_RED)
4213 {
4214 w->color = MEM_BLACK;
4215 x->parent->color = MEM_RED;
4216 mem_rotate_right (x->parent);
4217 w = x->parent->left;
4218 }
177c0ea7 4219
34400008
GM
4220 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
4221 {
4222 w->color = MEM_RED;
4223 x = x->parent;
4224 }
4225 else
4226 {
4227 if (w->left->color == MEM_BLACK)
4228 {
4229 w->right->color = MEM_BLACK;
4230 w->color = MEM_RED;
4231 mem_rotate_left (w);
4232 w = x->parent->left;
4233 }
177c0ea7 4234
34400008
GM
4235 w->color = x->parent->color;
4236 x->parent->color = MEM_BLACK;
4237 w->left->color = MEM_BLACK;
4238 mem_rotate_right (x->parent);
4239 x = mem_root;
4240 }
4241 }
4242 }
177c0ea7 4243
34400008
GM
4244 x->color = MEM_BLACK;
4245}
4246
4247
4248/* Value is non-zero if P is a pointer to a live Lisp string on
4249 the heap. M is a pointer to the mem_block for P. */
4250
55d4c1b2 4251static inline int
971de7fb 4252live_string_p (struct mem_node *m, void *p)
34400008
GM
4253{
4254 if (m->type == MEM_TYPE_STRING)
4255 {
4256 struct string_block *b = (struct string_block *) m->start;
14162469 4257 ptrdiff_t offset = (char *) p - (char *) &b->strings[0];
34400008
GM
4258
4259 /* P must point to the start of a Lisp_String structure, and it
4260 must not be on the free-list. */
176bc847
GM
4261 return (offset >= 0
4262 && offset % sizeof b->strings[0] == 0
6b61353c 4263 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
34400008
GM
4264 && ((struct Lisp_String *) p)->data != NULL);
4265 }
4266 else
4267 return 0;
4268}
4269
4270
4271/* Value is non-zero if P is a pointer to a live Lisp cons on
4272 the heap. M is a pointer to the mem_block for P. */
4273
55d4c1b2 4274static inline int
971de7fb 4275live_cons_p (struct mem_node *m, void *p)
34400008
GM
4276{
4277 if (m->type == MEM_TYPE_CONS)
4278 {
4279 struct cons_block *b = (struct cons_block *) m->start;
14162469 4280 ptrdiff_t offset = (char *) p - (char *) &b->conses[0];
34400008
GM
4281
4282 /* P must point to the start of a Lisp_Cons, not be
4283 one of the unused cells in the current cons block,
4284 and not be on the free-list. */
176bc847
GM
4285 return (offset >= 0
4286 && offset % sizeof b->conses[0] == 0
6b61353c 4287 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
34400008
GM
4288 && (b != cons_block
4289 || offset / sizeof b->conses[0] < cons_block_index)
4290 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
4291 }
4292 else
4293 return 0;
4294}
4295
4296
4297/* Value is non-zero if P is a pointer to a live Lisp symbol on
4298 the heap. M is a pointer to the mem_block for P. */
4299
55d4c1b2 4300static inline int
971de7fb 4301live_symbol_p (struct mem_node *m, void *p)
34400008
GM
4302{
4303 if (m->type == MEM_TYPE_SYMBOL)
4304 {
4305 struct symbol_block *b = (struct symbol_block *) m->start;
14162469 4306 ptrdiff_t offset = (char *) p - (char *) &b->symbols[0];
177c0ea7 4307
34400008
GM
4308 /* P must point to the start of a Lisp_Symbol, not be
4309 one of the unused cells in the current symbol block,
4310 and not be on the free-list. */
176bc847
GM
4311 return (offset >= 0
4312 && offset % sizeof b->symbols[0] == 0
6b61353c 4313 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
34400008
GM
4314 && (b != symbol_block
4315 || offset / sizeof b->symbols[0] < symbol_block_index)
4316 && !EQ (((struct Lisp_Symbol *) p)->function, Vdead));
4317 }
4318 else
4319 return 0;
4320}
4321
4322
4323/* Value is non-zero if P is a pointer to a live Lisp float on
4324 the heap. M is a pointer to the mem_block for P. */
4325
55d4c1b2 4326static inline int
971de7fb 4327live_float_p (struct mem_node *m, void *p)
34400008
GM
4328{
4329 if (m->type == MEM_TYPE_FLOAT)
4330 {
4331 struct float_block *b = (struct float_block *) m->start;
14162469 4332 ptrdiff_t offset = (char *) p - (char *) &b->floats[0];
177c0ea7 4333
ab6780cd
SM
4334 /* P must point to the start of a Lisp_Float and not be
4335 one of the unused cells in the current float block. */
176bc847
GM
4336 return (offset >= 0
4337 && offset % sizeof b->floats[0] == 0
6b61353c 4338 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
34400008 4339 && (b != float_block
ab6780cd 4340 || offset / sizeof b->floats[0] < float_block_index));
34400008
GM
4341 }
4342 else
4343 return 0;
4344}
4345
4346
4347/* Value is non-zero if P is a pointer to a live Lisp Misc on
4348 the heap. M is a pointer to the mem_block for P. */
4349
55d4c1b2 4350static inline int
971de7fb 4351live_misc_p (struct mem_node *m, void *p)
34400008
GM
4352{
4353 if (m->type == MEM_TYPE_MISC)
4354 {
4355 struct marker_block *b = (struct marker_block *) m->start;
14162469 4356 ptrdiff_t offset = (char *) p - (char *) &b->markers[0];
177c0ea7 4357
34400008
GM
4358 /* P must point to the start of a Lisp_Misc, not be
4359 one of the unused cells in the current misc block,
4360 and not be on the free-list. */
176bc847
GM
4361 return (offset >= 0
4362 && offset % sizeof b->markers[0] == 0
6b61353c 4363 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
34400008
GM
4364 && (b != marker_block
4365 || offset / sizeof b->markers[0] < marker_block_index)
d314756e 4366 && ((union Lisp_Misc *) p)->u_any.type != Lisp_Misc_Free);
34400008
GM
4367 }
4368 else
4369 return 0;
4370}
4371
4372
4373/* Value is non-zero if P is a pointer to a live vector-like object.
4374 M is a pointer to the mem_block for P. */
4375
55d4c1b2 4376static inline int
971de7fb 4377live_vector_p (struct mem_node *m, void *p)
34400008 4378{
f3372c87
DA
4379 if (m->type == MEM_TYPE_VECTOR_BLOCK)
4380 {
4381 /* This memory node corresponds to a vector block. */
4382 struct vector_block *block = (struct vector_block *) m->start;
4383 struct Lisp_Vector *vector = (struct Lisp_Vector *) block->data;
4384
4385 /* P is in the block's allocation range. Scan the block
4386 up to P and see whether P points to the start of some
4387 vector which is not on a free list. FIXME: check whether
4388 some allocation patterns (probably a lot of short vectors)
4389 may cause a substantial overhead of this loop. */
4390 while (VECTOR_IN_BLOCK (vector, block)
4391 && vector <= (struct Lisp_Vector *) p)
4392 {
4393 if ((vector->header.size & VECTOR_FREE_LIST_FLAG)
4394 == VECTOR_FREE_LIST_FLAG)
4395 vector = ADVANCE (vector, (vector->header.size
4396 & (VECTOR_BLOCK_SIZE - 1)));
4397 else if (vector == p)
4398 return 1;
4399 else
4400 vector = ADVANCE (vector, vector->header.next.nbytes);
4401 }
4402 }
4403 else if (m->type == MEM_TYPE_VECTORLIKE && p == m->start)
4404 /* This memory node corresponds to a large vector. */
4405 return 1;
4406 return 0;
34400008
GM
4407}
4408
4409
2336fe58 4410/* Value is non-zero if P is a pointer to a live buffer. M is a
34400008
GM
4411 pointer to the mem_block for P. */
4412
55d4c1b2 4413static inline int
971de7fb 4414live_buffer_p (struct mem_node *m, void *p)
34400008
GM
4415{
4416 /* P must point to the start of the block, and the buffer
4417 must not have been killed. */
4418 return (m->type == MEM_TYPE_BUFFER
4419 && p == m->start
5d8ea120 4420 && !NILP (((struct buffer *) p)->BUFFER_INTERNAL_FIELD (name)));
34400008
GM
4421}
4422
13c844fb
GM
4423#endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
4424
4425#if GC_MARK_STACK
4426
34400008
GM
4427#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4428
4429/* Array of objects that are kept alive because the C stack contains
4430 a pattern that looks like a reference to them . */
4431
4432#define MAX_ZOMBIES 10
4433static Lisp_Object zombies[MAX_ZOMBIES];
4434
4435/* Number of zombie objects. */
4436
211a0b2a 4437static EMACS_INT nzombies;
34400008
GM
4438
4439/* Number of garbage collections. */
4440
211a0b2a 4441static EMACS_INT ngcs;
34400008
GM
4442
4443/* Average percentage of zombies per collection. */
4444
4445static double avg_zombies;
4446
4447/* Max. number of live and zombie objects. */
4448
211a0b2a 4449static EMACS_INT max_live, max_zombies;
34400008
GM
4450
4451/* Average number of live objects per GC. */
4452
4453static double avg_live;
4454
a7ca3326 4455DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
7ee72033 4456 doc: /* Show information about live and zombie objects. */)
5842a27b 4457 (void)
34400008 4458{
83fc9c63 4459 Lisp_Object args[8], zombie_list = Qnil;
211a0b2a 4460 EMACS_INT i;
6e4b3fbe 4461 for (i = 0; i < min (MAX_ZOMBIES, nzombies); i++)
83fc9c63
DL
4462 zombie_list = Fcons (zombies[i], zombie_list);
4463 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
34400008
GM
4464 args[1] = make_number (ngcs);
4465 args[2] = make_float (avg_live);
4466 args[3] = make_float (avg_zombies);
4467 args[4] = make_float (avg_zombies / avg_live / 100);
4468 args[5] = make_number (max_live);
4469 args[6] = make_number (max_zombies);
83fc9c63
DL
4470 args[7] = zombie_list;
4471 return Fmessage (8, args);
34400008
GM
4472}
4473
4474#endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4475
4476
182ff242
GM
4477/* Mark OBJ if we can prove it's a Lisp_Object. */
4478
55d4c1b2 4479static inline void
971de7fb 4480mark_maybe_object (Lisp_Object obj)
182ff242 4481{
b609f591
YM
4482 void *po;
4483 struct mem_node *m;
4484
4485 if (INTEGERP (obj))
4486 return;
4487
4488 po = (void *) XPNTR (obj);
4489 m = mem_find (po);
177c0ea7 4490
182ff242
GM
4491 if (m != MEM_NIL)
4492 {
4493 int mark_p = 0;
4494
8e50cc2d 4495 switch (XTYPE (obj))
182ff242
GM
4496 {
4497 case Lisp_String:
4498 mark_p = (live_string_p (m, po)
4499 && !STRING_MARKED_P ((struct Lisp_String *) po));
4500 break;
4501
4502 case Lisp_Cons:
08b7c2cb 4503 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
182ff242
GM
4504 break;
4505
4506 case Lisp_Symbol:
2336fe58 4507 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
182ff242
GM
4508 break;
4509
4510 case Lisp_Float:
ab6780cd 4511 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
182ff242
GM
4512 break;
4513
4514 case Lisp_Vectorlike:
8e50cc2d 4515 /* Note: can't check BUFFERP before we know it's a
182ff242
GM
4516 buffer because checking that dereferences the pointer
4517 PO which might point anywhere. */
4518 if (live_vector_p (m, po))
8e50cc2d 4519 mark_p = !SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
182ff242 4520 else if (live_buffer_p (m, po))
8e50cc2d 4521 mark_p = BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
182ff242
GM
4522 break;
4523
4524 case Lisp_Misc:
67ee9f6e 4525 mark_p = (live_misc_p (m, po) && !XMISCANY (obj)->gcmarkbit);
182ff242 4526 break;
6bbd7a29 4527
2de9f71c 4528 default:
6bbd7a29 4529 break;
182ff242
GM
4530 }
4531
4532 if (mark_p)
4533 {
4534#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4535 if (nzombies < MAX_ZOMBIES)
83fc9c63 4536 zombies[nzombies] = obj;
182ff242
GM
4537 ++nzombies;
4538#endif
49723c04 4539 mark_object (obj);
182ff242
GM
4540 }
4541 }
4542}
ece93c02
GM
4543
4544
4545/* If P points to Lisp data, mark that as live if it isn't already
4546 marked. */
4547
55d4c1b2 4548static inline void
971de7fb 4549mark_maybe_pointer (void *p)
ece93c02
GM
4550{
4551 struct mem_node *m;
4552
5045e68e 4553 /* Quickly rule out some values which can't point to Lisp data. */
d01a7826 4554 if ((intptr_t) p %
5045e68e
SM
4555#ifdef USE_LSB_TAG
4556 8 /* USE_LSB_TAG needs Lisp data to be aligned on multiples of 8. */
4557#else
4558 2 /* We assume that Lisp data is aligned on even addresses. */
4559#endif
4560 )
ece93c02 4561 return;
177c0ea7 4562
ece93c02
GM
4563 m = mem_find (p);
4564 if (m != MEM_NIL)
4565 {
4566 Lisp_Object obj = Qnil;
177c0ea7 4567
ece93c02
GM
4568 switch (m->type)
4569 {
4570 case MEM_TYPE_NON_LISP:
2fe50224 4571 /* Nothing to do; not a pointer to Lisp memory. */
ece93c02 4572 break;
177c0ea7 4573
ece93c02 4574 case MEM_TYPE_BUFFER:
5e617bc2 4575 if (live_buffer_p (m, p) && !VECTOR_MARKED_P ((struct buffer *)p))
ece93c02
GM
4576 XSETVECTOR (obj, p);
4577 break;
177c0ea7 4578
ece93c02 4579 case MEM_TYPE_CONS:
08b7c2cb 4580 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
ece93c02
GM
4581 XSETCONS (obj, p);
4582 break;
177c0ea7 4583
ece93c02
GM
4584 case MEM_TYPE_STRING:
4585 if (live_string_p (m, p)
4586 && !STRING_MARKED_P ((struct Lisp_String *) p))
4587 XSETSTRING (obj, p);
4588 break;
4589
4590 case MEM_TYPE_MISC:
2336fe58
SM
4591 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
4592 XSETMISC (obj, p);
ece93c02 4593 break;
177c0ea7 4594
ece93c02 4595 case MEM_TYPE_SYMBOL:
2336fe58 4596 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
ece93c02
GM
4597 XSETSYMBOL (obj, p);
4598 break;
177c0ea7 4599
ece93c02 4600 case MEM_TYPE_FLOAT:
ab6780cd 4601 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
ece93c02
GM
4602 XSETFLOAT (obj, p);
4603 break;
177c0ea7 4604
9c545a55 4605 case MEM_TYPE_VECTORLIKE:
f3372c87 4606 case MEM_TYPE_VECTOR_BLOCK:
ece93c02
GM
4607 if (live_vector_p (m, p))
4608 {
4609 Lisp_Object tem;
4610 XSETVECTOR (tem, p);
8e50cc2d 4611 if (!SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
ece93c02
GM
4612 obj = tem;
4613 }
4614 break;
4615
4616 default:
4617 abort ();
4618 }
4619
8e50cc2d 4620 if (!NILP (obj))
49723c04 4621 mark_object (obj);
ece93c02
GM
4622 }
4623}
4624
4625
e3fb2efb
PE
4626/* Alignment of pointer values. Use offsetof, as it sometimes returns
4627 a smaller alignment than GCC's __alignof__ and mark_memory might
4628 miss objects if __alignof__ were used. */
3164aeac
PE
4629#define GC_POINTER_ALIGNMENT offsetof (struct {char a; void *b;}, b)
4630
e3fb2efb
PE
4631/* Define POINTERS_MIGHT_HIDE_IN_OBJECTS to 1 if marking via C pointers does
4632 not suffice, which is the typical case. A host where a Lisp_Object is
4633 wider than a pointer might allocate a Lisp_Object in non-adjacent halves.
4634 If USE_LSB_TAG, the bottom half is not a valid pointer, but it should
4635 suffice to widen it to to a Lisp_Object and check it that way. */
34374650
PE
4636#if defined USE_LSB_TAG || VAL_MAX < UINTPTR_MAX
4637# if !defined USE_LSB_TAG && VAL_MAX < UINTPTR_MAX >> GCTYPEBITS
e3fb2efb
PE
4638 /* If tag bits straddle pointer-word boundaries, neither mark_maybe_pointer
4639 nor mark_maybe_object can follow the pointers. This should not occur on
4640 any practical porting target. */
4641# error "MSB type bits straddle pointer-word boundaries"
4642# endif
4643 /* Marking via C pointers does not suffice, because Lisp_Objects contain
4644 pointer words that hold pointers ORed with type bits. */
4645# define POINTERS_MIGHT_HIDE_IN_OBJECTS 1
4646#else
4647 /* Marking via C pointers suffices, because Lisp_Objects contain pointer
4648 words that hold unmodified pointers. */
4649# define POINTERS_MIGHT_HIDE_IN_OBJECTS 0
4650#endif
4651
55a314a5
YM
4652/* Mark Lisp objects referenced from the address range START+OFFSET..END
4653 or END+OFFSET..START. */
34400008 4654
177c0ea7 4655static void
3164aeac 4656mark_memory (void *start, void *end)
34400008 4657{
ece93c02 4658 void **pp;
3164aeac 4659 int i;
34400008
GM
4660
4661#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4662 nzombies = 0;
4663#endif
4664
4665 /* Make START the pointer to the start of the memory region,
4666 if it isn't already. */
4667 if (end < start)
4668 {
4669 void *tem = start;
4670 start = end;
4671 end = tem;
4672 }
ece93c02 4673
ece93c02
GM
4674 /* Mark Lisp data pointed to. This is necessary because, in some
4675 situations, the C compiler optimizes Lisp objects away, so that
4676 only a pointer to them remains. Example:
4677
4678 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
7ee72033 4679 ()
ece93c02
GM
4680 {
4681 Lisp_Object obj = build_string ("test");
4682 struct Lisp_String *s = XSTRING (obj);
4683 Fgarbage_collect ();
4684 fprintf (stderr, "test `%s'\n", s->data);
4685 return Qnil;
4686 }
4687
4688 Here, `obj' isn't really used, and the compiler optimizes it
4689 away. The only reference to the life string is through the
4690 pointer `s'. */
177c0ea7 4691
3164aeac
PE
4692 for (pp = start; (void *) pp < end; pp++)
4693 for (i = 0; i < sizeof *pp; i += GC_POINTER_ALIGNMENT)
27f3c637 4694 {
e3fb2efb
PE
4695 void *p = *(void **) ((char *) pp + i);
4696 mark_maybe_pointer (p);
4697 if (POINTERS_MIGHT_HIDE_IN_OBJECTS)
4698 mark_maybe_object (widen_to_Lisp_Object (p));
27f3c637 4699 }
182ff242
GM
4700}
4701
30f637f8
DL
4702/* setjmp will work with GCC unless NON_SAVING_SETJMP is defined in
4703 the GCC system configuration. In gcc 3.2, the only systems for
4704 which this is so are i386-sco5 non-ELF, i386-sysv3 (maybe included
4705 by others?) and ns32k-pc532-min. */
182ff242
GM
4706
4707#if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4708
4709static int setjmp_tested_p, longjmps_done;
4710
4711#define SETJMP_WILL_LIKELY_WORK "\
4712\n\
4713Emacs garbage collector has been changed to use conservative stack\n\
4714marking. Emacs has determined that the method it uses to do the\n\
4715marking will likely work on your system, but this isn't sure.\n\
4716\n\
4717If you are a system-programmer, or can get the help of a local wizard\n\
4718who is, please take a look at the function mark_stack in alloc.c, and\n\
4719verify that the methods used are appropriate for your system.\n\
4720\n\
d191623b 4721Please mail the result to <emacs-devel@gnu.org>.\n\
182ff242
GM
4722"
4723
4724#define SETJMP_WILL_NOT_WORK "\
4725\n\
4726Emacs garbage collector has been changed to use conservative stack\n\
4727marking. Emacs has determined that the default method it uses to do the\n\
4728marking will not work on your system. We will need a system-dependent\n\
4729solution for your system.\n\
4730\n\
4731Please take a look at the function mark_stack in alloc.c, and\n\
4732try to find a way to make it work on your system.\n\
30f637f8
DL
4733\n\
4734Note that you may get false negatives, depending on the compiler.\n\
4735In particular, you need to use -O with GCC for this test.\n\
4736\n\
d191623b 4737Please mail the result to <emacs-devel@gnu.org>.\n\
182ff242
GM
4738"
4739
4740
4741/* Perform a quick check if it looks like setjmp saves registers in a
4742 jmp_buf. Print a message to stderr saying so. When this test
4743 succeeds, this is _not_ a proof that setjmp is sufficient for
4744 conservative stack marking. Only the sources or a disassembly
4745 can prove that. */
4746
4747static void
2018939f 4748test_setjmp (void)
182ff242
GM
4749{
4750 char buf[10];
4751 register int x;
4752 jmp_buf jbuf;
4753 int result = 0;
4754
4755 /* Arrange for X to be put in a register. */
4756 sprintf (buf, "1");
4757 x = strlen (buf);
4758 x = 2 * x - 1;
4759
4760 setjmp (jbuf);
4761 if (longjmps_done == 1)
34400008 4762 {
182ff242 4763 /* Came here after the longjmp at the end of the function.
34400008 4764
182ff242
GM
4765 If x == 1, the longjmp has restored the register to its
4766 value before the setjmp, and we can hope that setjmp
4767 saves all such registers in the jmp_buf, although that
4768 isn't sure.
34400008 4769
182ff242
GM
4770 For other values of X, either something really strange is
4771 taking place, or the setjmp just didn't save the register. */
4772
4773 if (x == 1)
4774 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
4775 else
4776 {
4777 fprintf (stderr, SETJMP_WILL_NOT_WORK);
4778 exit (1);
34400008
GM
4779 }
4780 }
182ff242
GM
4781
4782 ++longjmps_done;
4783 x = 2;
4784 if (longjmps_done == 1)
4785 longjmp (jbuf, 1);
34400008
GM
4786}
4787
182ff242
GM
4788#endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
4789
34400008
GM
4790
4791#if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4792
4793/* Abort if anything GCPRO'd doesn't survive the GC. */
4794
4795static void
2018939f 4796check_gcpros (void)
34400008
GM
4797{
4798 struct gcpro *p;
f66c7cf8 4799 ptrdiff_t i;
34400008
GM
4800
4801 for (p = gcprolist; p; p = p->next)
4802 for (i = 0; i < p->nvars; ++i)
4803 if (!survives_gc_p (p->var[i]))
92cc28b2
SM
4804 /* FIXME: It's not necessarily a bug. It might just be that the
4805 GCPRO is unnecessary or should release the object sooner. */
34400008
GM
4806 abort ();
4807}
4808
4809#elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4810
4811static void
2018939f 4812dump_zombies (void)
34400008
GM
4813{
4814 int i;
4815
6e4b3fbe 4816 fprintf (stderr, "\nZombies kept alive = %"pI"d:\n", nzombies);
34400008
GM
4817 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
4818 {
4819 fprintf (stderr, " %d = ", i);
4820 debug_print (zombies[i]);
4821 }
4822}
4823
4824#endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4825
4826
182ff242
GM
4827/* Mark live Lisp objects on the C stack.
4828
4829 There are several system-dependent problems to consider when
4830 porting this to new architectures:
4831
4832 Processor Registers
4833
4834 We have to mark Lisp objects in CPU registers that can hold local
4835 variables or are used to pass parameters.
4836
4837 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4838 something that either saves relevant registers on the stack, or
4839 calls mark_maybe_object passing it each register's contents.
4840
4841 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4842 implementation assumes that calling setjmp saves registers we need
4843 to see in a jmp_buf which itself lies on the stack. This doesn't
4844 have to be true! It must be verified for each system, possibly
4845 by taking a look at the source code of setjmp.
4846
2018939f
AS
4847 If __builtin_unwind_init is available (defined by GCC >= 2.8) we
4848 can use it as a machine independent method to store all registers
4849 to the stack. In this case the macros described in the previous
4850 two paragraphs are not used.
4851
182ff242
GM
4852 Stack Layout
4853
4854 Architectures differ in the way their processor stack is organized.
4855 For example, the stack might look like this
4856
4857 +----------------+
4858 | Lisp_Object | size = 4
4859 +----------------+
4860 | something else | size = 2
4861 +----------------+
4862 | Lisp_Object | size = 4
4863 +----------------+
4864 | ... |
4865
4866 In such a case, not every Lisp_Object will be aligned equally. To
4867 find all Lisp_Object on the stack it won't be sufficient to walk
4868 the stack in steps of 4 bytes. Instead, two passes will be
4869 necessary, one starting at the start of the stack, and a second
4870 pass starting at the start of the stack + 2. Likewise, if the
4871 minimal alignment of Lisp_Objects on the stack is 1, four passes
4872 would be necessary, each one starting with one byte more offset
c9af454e 4873 from the stack start. */
34400008
GM
4874
4875static void
971de7fb 4876mark_stack (void)
34400008 4877{
34400008
GM
4878 void *end;
4879
2018939f
AS
4880#ifdef HAVE___BUILTIN_UNWIND_INIT
4881 /* Force callee-saved registers and register windows onto the stack.
4882 This is the preferred method if available, obviating the need for
4883 machine dependent methods. */
4884 __builtin_unwind_init ();
4885 end = &end;
4886#else /* not HAVE___BUILTIN_UNWIND_INIT */
dff45157
PE
4887#ifndef GC_SAVE_REGISTERS_ON_STACK
4888 /* jmp_buf may not be aligned enough on darwin-ppc64 */
4889 union aligned_jmpbuf {
4890 Lisp_Object o;
4891 jmp_buf j;
4892 } j;
4893 volatile int stack_grows_down_p = (char *) &j > (char *) stack_base;
4894#endif
34400008
GM
4895 /* This trick flushes the register windows so that all the state of
4896 the process is contained in the stack. */
ab6780cd 4897 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
422eec7e
DL
4898 needed on ia64 too. See mach_dep.c, where it also says inline
4899 assembler doesn't work with relevant proprietary compilers. */
4a00783e 4900#ifdef __sparc__
4d18a7a2
DN
4901#if defined (__sparc64__) && defined (__FreeBSD__)
4902 /* FreeBSD does not have a ta 3 handler. */
4c1616be
CY
4903 asm ("flushw");
4904#else
34400008 4905 asm ("ta 3");
4c1616be 4906#endif
34400008 4907#endif
177c0ea7 4908
34400008
GM
4909 /* Save registers that we need to see on the stack. We need to see
4910 registers used to hold register variables and registers used to
4911 pass parameters. */
4912#ifdef GC_SAVE_REGISTERS_ON_STACK
4913 GC_SAVE_REGISTERS_ON_STACK (end);
182ff242 4914#else /* not GC_SAVE_REGISTERS_ON_STACK */
177c0ea7 4915
182ff242
GM
4916#ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
4917 setjmp will definitely work, test it
4918 and print a message with the result
4919 of the test. */
4920 if (!setjmp_tested_p)
4921 {
4922 setjmp_tested_p = 1;
4923 test_setjmp ();
4924 }
4925#endif /* GC_SETJMP_WORKS */
177c0ea7 4926
55a314a5 4927 setjmp (j.j);
34400008 4928 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
182ff242 4929#endif /* not GC_SAVE_REGISTERS_ON_STACK */
2018939f 4930#endif /* not HAVE___BUILTIN_UNWIND_INIT */
34400008
GM
4931
4932 /* This assumes that the stack is a contiguous region in memory. If
182ff242
GM
4933 that's not the case, something has to be done here to iterate
4934 over the stack segments. */
3164aeac
PE
4935 mark_memory (stack_base, end);
4936
4dec23ff
AS
4937 /* Allow for marking a secondary stack, like the register stack on the
4938 ia64. */
4939#ifdef GC_MARK_SECONDARY_STACK
4940 GC_MARK_SECONDARY_STACK ();
4941#endif
34400008
GM
4942
4943#if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4944 check_gcpros ();
4945#endif
4946}
4947
34400008
GM
4948#endif /* GC_MARK_STACK != 0 */
4949
4950
7ffb6955 4951/* Determine whether it is safe to access memory at address P. */
d3d47262 4952static int
971de7fb 4953valid_pointer_p (void *p)
7ffb6955 4954{
f892cf9c
EZ
4955#ifdef WINDOWSNT
4956 return w32_valid_pointer_p (p, 16);
4957#else
41bed37d 4958 int fd[2];
7ffb6955
KS
4959
4960 /* Obviously, we cannot just access it (we would SEGV trying), so we
4961 trick the o/s to tell us whether p is a valid pointer.
4962 Unfortunately, we cannot use NULL_DEVICE here, as emacs_write may
4963 not validate p in that case. */
4964
41bed37d 4965 if (pipe (fd) == 0)
7ffb6955 4966 {
41bed37d
PE
4967 int valid = (emacs_write (fd[1], (char *) p, 16) == 16);
4968 emacs_close (fd[1]);
4969 emacs_close (fd[0]);
7ffb6955
KS
4970 return valid;
4971 }
4972
4973 return -1;
f892cf9c 4974#endif
7ffb6955 4975}
3cd55735
KS
4976
4977/* Return 1 if OBJ is a valid lisp object.
4978 Return 0 if OBJ is NOT a valid lisp object.
4979 Return -1 if we cannot validate OBJ.
7c0ab7d9
RS
4980 This function can be quite slow,
4981 so it should only be used in code for manual debugging. */
3cd55735
KS
4982
4983int
971de7fb 4984valid_lisp_object_p (Lisp_Object obj)
3cd55735 4985{
de7124a7 4986 void *p;
7ffb6955 4987#if GC_MARK_STACK
3cd55735 4988 struct mem_node *m;
de7124a7 4989#endif
3cd55735
KS
4990
4991 if (INTEGERP (obj))
4992 return 1;
4993
4994 p = (void *) XPNTR (obj);
3cd55735
KS
4995 if (PURE_POINTER_P (p))
4996 return 1;
4997
de7124a7 4998#if !GC_MARK_STACK
7ffb6955 4999 return valid_pointer_p (p);
de7124a7
KS
5000#else
5001
3cd55735
KS
5002 m = mem_find (p);
5003
5004 if (m == MEM_NIL)
7ffb6955
KS
5005 {
5006 int valid = valid_pointer_p (p);
5007 if (valid <= 0)
5008 return valid;
5009
5010 if (SUBRP (obj))
5011 return 1;
5012
5013 return 0;
5014 }
3cd55735
KS
5015
5016 switch (m->type)
5017 {
5018 case MEM_TYPE_NON_LISP:
5019 return 0;
5020
5021 case MEM_TYPE_BUFFER:
5022 return live_buffer_p (m, p);
5023
5024 case MEM_TYPE_CONS:
5025 return live_cons_p (m, p);
5026
5027 case MEM_TYPE_STRING:
5028 return live_string_p (m, p);
5029
5030 case MEM_TYPE_MISC:
5031 return live_misc_p (m, p);
5032
5033 case MEM_TYPE_SYMBOL:
5034 return live_symbol_p (m, p);
5035
5036 case MEM_TYPE_FLOAT:
5037 return live_float_p (m, p);
5038
9c545a55 5039 case MEM_TYPE_VECTORLIKE:
f3372c87 5040 case MEM_TYPE_VECTOR_BLOCK:
3cd55735
KS
5041 return live_vector_p (m, p);
5042
5043 default:
5044 break;
5045 }
5046
5047 return 0;
5048#endif
5049}
5050
5051
5052
34400008 5053\f
2e471eb5
GM
5054/***********************************************************************
5055 Pure Storage Management
5056 ***********************************************************************/
5057
1f0b3fd2
GM
5058/* Allocate room for SIZE bytes from pure Lisp storage and return a
5059 pointer to it. TYPE is the Lisp type for which the memory is
e5bc14d4 5060 allocated. TYPE < 0 means it's not used for a Lisp object. */
1f0b3fd2 5061
261cb4bb 5062static void *
971de7fb 5063pure_alloc (size_t size, int type)
1f0b3fd2 5064{
261cb4bb 5065 void *result;
6b61353c
KH
5066#ifdef USE_LSB_TAG
5067 size_t alignment = (1 << GCTYPEBITS);
5068#else
44117420 5069 size_t alignment = sizeof (EMACS_INT);
1f0b3fd2
GM
5070
5071 /* Give Lisp_Floats an extra alignment. */
5072 if (type == Lisp_Float)
5073 {
1f0b3fd2
GM
5074#if defined __GNUC__ && __GNUC__ >= 2
5075 alignment = __alignof (struct Lisp_Float);
5076#else
5077 alignment = sizeof (struct Lisp_Float);
5078#endif
9e713715 5079 }
6b61353c 5080#endif
1f0b3fd2 5081
44117420 5082 again:
e5bc14d4
YM
5083 if (type >= 0)
5084 {
5085 /* Allocate space for a Lisp object from the beginning of the free
5086 space with taking account of alignment. */
5087 result = ALIGN (purebeg + pure_bytes_used_lisp, alignment);
5088 pure_bytes_used_lisp = ((char *)result - (char *)purebeg) + size;
5089 }
5090 else
5091 {
5092 /* Allocate space for a non-Lisp object from the end of the free
5093 space. */
5094 pure_bytes_used_non_lisp += size;
5095 result = purebeg + pure_size - pure_bytes_used_non_lisp;
5096 }
5097 pure_bytes_used = pure_bytes_used_lisp + pure_bytes_used_non_lisp;
44117420
KS
5098
5099 if (pure_bytes_used <= pure_size)
5100 return result;
5101
5102 /* Don't allocate a large amount here,
5103 because it might get mmap'd and then its address
5104 might not be usable. */
5105 purebeg = (char *) xmalloc (10000);
5106 pure_size = 10000;
5107 pure_bytes_used_before_overflow += pure_bytes_used - size;
5108 pure_bytes_used = 0;
e5bc14d4 5109 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
44117420 5110 goto again;
1f0b3fd2
GM
5111}
5112
5113
852f8cdc 5114/* Print a warning if PURESIZE is too small. */
9e713715
GM
5115
5116void
971de7fb 5117check_pure_size (void)
9e713715
GM
5118{
5119 if (pure_bytes_used_before_overflow)
c2982e87
PE
5120 message (("emacs:0:Pure Lisp storage overflow (approx. %"pI"d"
5121 " bytes needed)"),
5122 pure_bytes_used + pure_bytes_used_before_overflow);
9e713715
GM
5123}
5124
5125
79fd0489
YM
5126/* Find the byte sequence {DATA[0], ..., DATA[NBYTES-1], '\0'} from
5127 the non-Lisp data pool of the pure storage, and return its start
5128 address. Return NULL if not found. */
5129
5130static char *
d311d28c 5131find_string_data_in_pure (const char *data, ptrdiff_t nbytes)
79fd0489 5132{
14162469 5133 int i;
d311d28c 5134 ptrdiff_t skip, bm_skip[256], last_char_skip, infinity, start, start_max;
2aff7c53 5135 const unsigned char *p;
79fd0489
YM
5136 char *non_lisp_beg;
5137
d311d28c 5138 if (pure_bytes_used_non_lisp <= nbytes)
79fd0489
YM
5139 return NULL;
5140
5141 /* Set up the Boyer-Moore table. */
5142 skip = nbytes + 1;
5143 for (i = 0; i < 256; i++)
5144 bm_skip[i] = skip;
5145
2aff7c53 5146 p = (const unsigned char *) data;
79fd0489
YM
5147 while (--skip > 0)
5148 bm_skip[*p++] = skip;
5149
5150 last_char_skip = bm_skip['\0'];
5151
5152 non_lisp_beg = purebeg + pure_size - pure_bytes_used_non_lisp;
5153 start_max = pure_bytes_used_non_lisp - (nbytes + 1);
5154
5155 /* See the comments in the function `boyer_moore' (search.c) for the
5156 use of `infinity'. */
5157 infinity = pure_bytes_used_non_lisp + 1;
5158 bm_skip['\0'] = infinity;
5159
2aff7c53 5160 p = (const unsigned char *) non_lisp_beg + nbytes;
79fd0489
YM
5161 start = 0;
5162 do
5163 {
5164 /* Check the last character (== '\0'). */
5165 do
5166 {
5167 start += bm_skip[*(p + start)];
5168 }
5169 while (start <= start_max);
5170
5171 if (start < infinity)
5172 /* Couldn't find the last character. */
5173 return NULL;
5174
5175 /* No less than `infinity' means we could find the last
5176 character at `p[start - infinity]'. */
5177 start -= infinity;
5178
5179 /* Check the remaining characters. */
5180 if (memcmp (data, non_lisp_beg + start, nbytes) == 0)
5181 /* Found. */
5182 return non_lisp_beg + start;
5183
5184 start += last_char_skip;
5185 }
5186 while (start <= start_max);
5187
5188 return NULL;
5189}
5190
5191
2e471eb5
GM
5192/* Return a string allocated in pure space. DATA is a buffer holding
5193 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
5194 non-zero means make the result string multibyte.
1a4f1e2c 5195
2e471eb5
GM
5196 Must get an error if pure storage is full, since if it cannot hold
5197 a large string it may be able to hold conses that point to that
5198 string; then the string is not protected from gc. */
7146af97
JB
5199
5200Lisp_Object
14162469 5201make_pure_string (const char *data,
d311d28c 5202 ptrdiff_t nchars, ptrdiff_t nbytes, int multibyte)
7146af97 5203{
2e471eb5
GM
5204 Lisp_Object string;
5205 struct Lisp_String *s;
c0696668 5206
1f0b3fd2 5207 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
90256841 5208 s->data = (unsigned char *) find_string_data_in_pure (data, nbytes);
79fd0489
YM
5209 if (s->data == NULL)
5210 {
5211 s->data = (unsigned char *) pure_alloc (nbytes + 1, -1);
72af86bd 5212 memcpy (s->data, data, nbytes);
79fd0489
YM
5213 s->data[nbytes] = '\0';
5214 }
2e471eb5
GM
5215 s->size = nchars;
5216 s->size_byte = multibyte ? nbytes : -1;
2e471eb5 5217 s->intervals = NULL_INTERVAL;
2e471eb5
GM
5218 XSETSTRING (string, s);
5219 return string;
7146af97
JB
5220}
5221
a56eaaef
DN
5222/* Return a string a string allocated in pure space. Do not allocate
5223 the string data, just point to DATA. */
5224
5225Lisp_Object
5226make_pure_c_string (const char *data)
5227{
5228 Lisp_Object string;
5229 struct Lisp_String *s;
d311d28c 5230 ptrdiff_t nchars = strlen (data);
a56eaaef
DN
5231
5232 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
5233 s->size = nchars;
5234 s->size_byte = -1;
323637a2 5235 s->data = (unsigned char *) data;
a56eaaef
DN
5236 s->intervals = NULL_INTERVAL;
5237 XSETSTRING (string, s);
5238 return string;
5239}
2e471eb5 5240
34400008
GM
5241/* Return a cons allocated from pure space. Give it pure copies
5242 of CAR as car and CDR as cdr. */
5243
7146af97 5244Lisp_Object
971de7fb 5245pure_cons (Lisp_Object car, Lisp_Object cdr)
7146af97
JB
5246{
5247 register Lisp_Object new;
1f0b3fd2 5248 struct Lisp_Cons *p;
7146af97 5249
1f0b3fd2
GM
5250 p = (struct Lisp_Cons *) pure_alloc (sizeof *p, Lisp_Cons);
5251 XSETCONS (new, p);
f3fbd155
KR
5252 XSETCAR (new, Fpurecopy (car));
5253 XSETCDR (new, Fpurecopy (cdr));
7146af97
JB
5254 return new;
5255}
5256
7146af97 5257
34400008
GM
5258/* Value is a float object with value NUM allocated from pure space. */
5259
d3d47262 5260static Lisp_Object
971de7fb 5261make_pure_float (double num)
7146af97
JB
5262{
5263 register Lisp_Object new;
1f0b3fd2 5264 struct Lisp_Float *p;
7146af97 5265
1f0b3fd2
GM
5266 p = (struct Lisp_Float *) pure_alloc (sizeof *p, Lisp_Float);
5267 XSETFLOAT (new, p);
f601cdf3 5268 XFLOAT_INIT (new, num);
7146af97
JB
5269 return new;
5270}
5271
34400008
GM
5272
5273/* Return a vector with room for LEN Lisp_Objects allocated from
5274 pure space. */
5275
72cb32cf 5276static Lisp_Object
d311d28c 5277make_pure_vector (ptrdiff_t len)
7146af97 5278{
1f0b3fd2
GM
5279 Lisp_Object new;
5280 struct Lisp_Vector *p;
36372bf9
PE
5281 size_t size = (offsetof (struct Lisp_Vector, contents)
5282 + len * sizeof (Lisp_Object));
7146af97 5283
1f0b3fd2
GM
5284 p = (struct Lisp_Vector *) pure_alloc (size, Lisp_Vectorlike);
5285 XSETVECTOR (new, p);
eab3844f 5286 XVECTOR (new)->header.size = len;
7146af97
JB
5287 return new;
5288}
5289
34400008 5290
a7ca3326 5291DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
909e3b33 5292 doc: /* Make a copy of object OBJ in pure storage.
228299fa 5293Recursively copies contents of vectors and cons cells.
7ee72033 5294Does not copy symbols. Copies strings without text properties. */)
5842a27b 5295 (register Lisp_Object obj)
7146af97 5296{
265a9e55 5297 if (NILP (Vpurify_flag))
7146af97
JB
5298 return obj;
5299
1f0b3fd2 5300 if (PURE_POINTER_P (XPNTR (obj)))
7146af97
JB
5301 return obj;
5302
e9515805
SM
5303 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5304 {
5305 Lisp_Object tmp = Fgethash (obj, Vpurify_flag, Qnil);
5306 if (!NILP (tmp))
5307 return tmp;
5308 }
5309
d6dd74bb 5310 if (CONSP (obj))
e9515805 5311 obj = pure_cons (XCAR (obj), XCDR (obj));
d6dd74bb 5312 else if (FLOATP (obj))
e9515805 5313 obj = make_pure_float (XFLOAT_DATA (obj));
d6dd74bb 5314 else if (STRINGP (obj))
42a5b22f 5315 obj = make_pure_string (SSDATA (obj), SCHARS (obj),
e9515805
SM
5316 SBYTES (obj),
5317 STRING_MULTIBYTE (obj));
876c194c 5318 else if (COMPILEDP (obj) || VECTORP (obj))
d6dd74bb
KH
5319 {
5320 register struct Lisp_Vector *vec;
d311d28c
PE
5321 register ptrdiff_t i;
5322 ptrdiff_t size;
d6dd74bb 5323
77b37c05 5324 size = ASIZE (obj);
7d535c68
KH
5325 if (size & PSEUDOVECTOR_FLAG)
5326 size &= PSEUDOVECTOR_SIZE_MASK;
6b61353c 5327 vec = XVECTOR (make_pure_vector (size));
d6dd74bb
KH
5328 for (i = 0; i < size; i++)
5329 vec->contents[i] = Fpurecopy (XVECTOR (obj)->contents[i]);
876c194c 5330 if (COMPILEDP (obj))
985773c9 5331 {
876c194c
SM
5332 XSETPVECTYPE (vec, PVEC_COMPILED);
5333 XSETCOMPILED (obj, vec);
985773c9 5334 }
d6dd74bb
KH
5335 else
5336 XSETVECTOR (obj, vec);
7146af97 5337 }
d6dd74bb
KH
5338 else if (MARKERP (obj))
5339 error ("Attempt to copy a marker to pure storage");
e9515805
SM
5340 else
5341 /* Not purified, don't hash-cons. */
5342 return obj;
5343
5344 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5345 Fputhash (obj, obj, Vpurify_flag);
6bbd7a29
GM
5346
5347 return obj;
7146af97 5348}
2e471eb5 5349
34400008 5350
7146af97 5351\f
34400008
GM
5352/***********************************************************************
5353 Protection from GC
5354 ***********************************************************************/
5355
2e471eb5
GM
5356/* Put an entry in staticvec, pointing at the variable with address
5357 VARADDRESS. */
7146af97
JB
5358
5359void
971de7fb 5360staticpro (Lisp_Object *varaddress)
7146af97
JB
5361{
5362 staticvec[staticidx++] = varaddress;
5363 if (staticidx >= NSTATICS)
5364 abort ();
5365}
5366
7146af97 5367\f
34400008
GM
5368/***********************************************************************
5369 Protection from GC
5370 ***********************************************************************/
1a4f1e2c 5371
e8197642
RS
5372/* Temporarily prevent garbage collection. */
5373
d311d28c 5374ptrdiff_t
971de7fb 5375inhibit_garbage_collection (void)
e8197642 5376{
d311d28c 5377 ptrdiff_t count = SPECPDL_INDEX ();
54defd0d 5378
6349ae4d 5379 specbind (Qgc_cons_threshold, make_number (MOST_POSITIVE_FIXNUM));
e8197642
RS
5380 return count;
5381}
5382
34400008 5383
a7ca3326 5384DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
7ee72033 5385 doc: /* Reclaim storage for Lisp objects no longer needed.
e1e37596
RS
5386Garbage collection happens automatically if you cons more than
5387`gc-cons-threshold' bytes of Lisp data since previous garbage collection.
5388`garbage-collect' normally returns a list with info on amount of space in use:
228299fa 5389 ((USED-CONSES . FREE-CONSES) (USED-SYMS . FREE-SYMS)
999dd333 5390 (USED-MISCS . FREE-MISCS) USED-STRING-CHARS USED-VECTOR-SLOTS
228299fa
GM
5391 (USED-FLOATS . FREE-FLOATS) (USED-INTERVALS . FREE-INTERVALS)
5392 (USED-STRINGS . FREE-STRINGS))
e1e37596 5393However, if there was overflow in pure space, `garbage-collect'
999dd333
GM
5394returns nil, because real GC can't be done.
5395See Info node `(elisp)Garbage Collection'. */)
5842a27b 5396 (void)
7146af97 5397{
7146af97 5398 register struct specbinding *bind;
7146af97 5399 char stack_top_variable;
f66c7cf8 5400 ptrdiff_t i;
6efc7df7 5401 int message_p;
96117bc7 5402 Lisp_Object total[8];
d311d28c 5403 ptrdiff_t count = SPECPDL_INDEX ();
2c5bd608
DL
5404 EMACS_TIME t1, t2, t3;
5405
3de0effb
RS
5406 if (abort_on_gc)
5407 abort ();
5408
9e713715
GM
5409 /* Can't GC if pure storage overflowed because we can't determine
5410 if something is a pure object or not. */
5411 if (pure_bytes_used_before_overflow)
5412 return Qnil;
5413
bbc012e0
KS
5414 CHECK_CONS_LIST ();
5415
3c7e66a8
RS
5416 /* Don't keep undo information around forever.
5417 Do this early on, so it is no problem if the user quits. */
5418 {
5419 register struct buffer *nextb = all_buffers;
5420
5421 while (nextb)
5422 {
5423 /* If a buffer's undo list is Qt, that means that undo is
5424 turned off in that buffer. Calling truncate_undo_list on
5425 Qt tends to return NULL, which effectively turns undo back on.
5426 So don't call truncate_undo_list if undo_list is Qt. */
5d8ea120 5427 if (! NILP (nextb->BUFFER_INTERNAL_FIELD (name)) && ! EQ (nextb->BUFFER_INTERNAL_FIELD (undo_list), Qt))
3c7e66a8
RS
5428 truncate_undo_list (nextb);
5429
5430 /* Shrink buffer gaps, but skip indirect and dead buffers. */
5d8ea120 5431 if (nextb->base_buffer == 0 && !NILP (nextb->BUFFER_INTERNAL_FIELD (name))
dc7b4525 5432 && ! nextb->text->inhibit_shrinking)
3c7e66a8
RS
5433 {
5434 /* If a buffer's gap size is more than 10% of the buffer
5435 size, or larger than 2000 bytes, then shrink it
5436 accordingly. Keep a minimum size of 20 bytes. */
5437 int size = min (2000, max (20, (nextb->text->z_byte / 10)));
5438
5439 if (nextb->text->gap_size > size)
5440 {
5441 struct buffer *save_current = current_buffer;
5442 current_buffer = nextb;
5443 make_gap (-(nextb->text->gap_size - size));
5444 current_buffer = save_current;
5445 }
5446 }
5447
eab3844f 5448 nextb = nextb->header.next.buffer;
3c7e66a8
RS
5449 }
5450 }
5451
5452 EMACS_GET_TIME (t1);
5453
58595309
KH
5454 /* In case user calls debug_print during GC,
5455 don't let that cause a recursive GC. */
5456 consing_since_gc = 0;
5457
6efc7df7
GM
5458 /* Save what's currently displayed in the echo area. */
5459 message_p = push_message ();
c55b0da6 5460 record_unwind_protect (pop_message_unwind, Qnil);
41c28a37 5461
7146af97
JB
5462 /* Save a copy of the contents of the stack, for debugging. */
5463#if MAX_SAVE_STACK > 0
265a9e55 5464 if (NILP (Vpurify_flag))
7146af97 5465 {
dd3f25f7 5466 char *stack;
903fe15d 5467 ptrdiff_t stack_size;
dd3f25f7 5468 if (&stack_top_variable < stack_bottom)
7146af97 5469 {
dd3f25f7
PE
5470 stack = &stack_top_variable;
5471 stack_size = stack_bottom - &stack_top_variable;
5472 }
5473 else
5474 {
5475 stack = stack_bottom;
5476 stack_size = &stack_top_variable - stack_bottom;
5477 }
5478 if (stack_size <= MAX_SAVE_STACK)
7146af97 5479 {
dd3f25f7 5480 if (stack_copy_size < stack_size)
7146af97 5481 {
dd3f25f7
PE
5482 stack_copy = (char *) xrealloc (stack_copy, stack_size);
5483 stack_copy_size = stack_size;
7146af97 5484 }
dd3f25f7 5485 memcpy (stack_copy, stack, stack_size);
7146af97
JB
5486 }
5487 }
5488#endif /* MAX_SAVE_STACK > 0 */
5489
299585ee 5490 if (garbage_collection_messages)
691c4285 5491 message1_nolog ("Garbage collecting...");
7146af97 5492
6e0fca1d
RS
5493 BLOCK_INPUT;
5494
eec7b73d
RS
5495 shrink_regexp_cache ();
5496
7146af97
JB
5497 gc_in_progress = 1;
5498
c23baf9f 5499 /* clear_marks (); */
7146af97 5500
005ca5c7 5501 /* Mark all the special slots that serve as the roots of accessibility. */
7146af97
JB
5502
5503 for (i = 0; i < staticidx; i++)
49723c04 5504 mark_object (*staticvec[i]);
34400008 5505
126f9c02
SM
5506 for (bind = specpdl; bind != specpdl_ptr; bind++)
5507 {
5508 mark_object (bind->symbol);
5509 mark_object (bind->old_value);
5510 }
6ed8eeff 5511 mark_terminals ();
126f9c02 5512 mark_kboards ();
98a92e2d 5513 mark_ttys ();
126f9c02
SM
5514
5515#ifdef USE_GTK
5516 {
dd4c5104 5517 extern void xg_mark_data (void);
126f9c02
SM
5518 xg_mark_data ();
5519 }
5520#endif
5521
34400008
GM
5522#if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
5523 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
5524 mark_stack ();
5525#else
acf5f7d3
SM
5526 {
5527 register struct gcpro *tail;
5528 for (tail = gcprolist; tail; tail = tail->next)
5529 for (i = 0; i < tail->nvars; i++)
005ca5c7 5530 mark_object (tail->var[i]);
acf5f7d3 5531 }
3e21b6a7 5532 mark_byte_stack ();
b286858c
SM
5533 {
5534 struct catchtag *catch;
5535 struct handler *handler;
177c0ea7 5536
7146af97
JB
5537 for (catch = catchlist; catch; catch = catch->next)
5538 {
49723c04
SM
5539 mark_object (catch->tag);
5540 mark_object (catch->val);
177c0ea7 5541 }
7146af97
JB
5542 for (handler = handlerlist; handler; handler = handler->next)
5543 {
49723c04
SM
5544 mark_object (handler->handler);
5545 mark_object (handler->var);
177c0ea7 5546 }
b286858c 5547 }
b40ea20a 5548 mark_backtrace ();
b286858c 5549#endif
7146af97 5550
454d7973
KS
5551#ifdef HAVE_WINDOW_SYSTEM
5552 mark_fringe_data ();
5553#endif
5554
74c35a48
SM
5555#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5556 mark_stack ();
5557#endif
5558
c37adf23
SM
5559 /* Everything is now marked, except for the things that require special
5560 finalization, i.e. the undo_list.
5561 Look thru every buffer's undo list
4c315bda
RS
5562 for elements that update markers that were not marked,
5563 and delete them. */
5564 {
5565 register struct buffer *nextb = all_buffers;
5566
5567 while (nextb)
5568 {
5569 /* If a buffer's undo list is Qt, that means that undo is
5570 turned off in that buffer. Calling truncate_undo_list on
5571 Qt tends to return NULL, which effectively turns undo back on.
5572 So don't call truncate_undo_list if undo_list is Qt. */
5d8ea120 5573 if (! EQ (nextb->BUFFER_INTERNAL_FIELD (undo_list), Qt))
4c315bda
RS
5574 {
5575 Lisp_Object tail, prev;
5d8ea120 5576 tail = nextb->BUFFER_INTERNAL_FIELD (undo_list);
4c315bda
RS
5577 prev = Qnil;
5578 while (CONSP (tail))
5579 {
8e50cc2d
SM
5580 if (CONSP (XCAR (tail))
5581 && MARKERP (XCAR (XCAR (tail)))
2336fe58 5582 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
4c315bda
RS
5583 {
5584 if (NILP (prev))
5d8ea120 5585 nextb->BUFFER_INTERNAL_FIELD (undo_list) = tail = XCDR (tail);
4c315bda 5586 else
f3fbd155
KR
5587 {
5588 tail = XCDR (tail);
5589 XSETCDR (prev, tail);
5590 }
4c315bda
RS
5591 }
5592 else
5593 {
5594 prev = tail;
70949dac 5595 tail = XCDR (tail);
4c315bda
RS
5596 }
5597 }
5598 }
c37adf23
SM
5599 /* Now that we have stripped the elements that need not be in the
5600 undo_list any more, we can finally mark the list. */
5d8ea120 5601 mark_object (nextb->BUFFER_INTERNAL_FIELD (undo_list));
4c315bda 5602
eab3844f 5603 nextb = nextb->header.next.buffer;
4c315bda
RS
5604 }
5605 }
5606
7146af97
JB
5607 gc_sweep ();
5608
5609 /* Clear the mark bits that we set in certain root slots. */
5610
033a5fa3 5611 unmark_byte_stack ();
3ef06d12
SM
5612 VECTOR_UNMARK (&buffer_defaults);
5613 VECTOR_UNMARK (&buffer_local_symbols);
7146af97 5614
34400008
GM
5615#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
5616 dump_zombies ();
5617#endif
5618
6e0fca1d
RS
5619 UNBLOCK_INPUT;
5620
bbc012e0
KS
5621 CHECK_CONS_LIST ();
5622
c23baf9f 5623 /* clear_marks (); */
7146af97
JB
5624 gc_in_progress = 0;
5625
5626 consing_since_gc = 0;
5627 if (gc_cons_threshold < 10000)
5628 gc_cons_threshold = 10000;
5629
c0c5c8ae 5630 gc_relative_threshold = 0;
96f077ad
SM
5631 if (FLOATP (Vgc_cons_percentage))
5632 { /* Set gc_cons_combined_threshold. */
c0c5c8ae 5633 double tot = 0;
ae35e756
PE
5634
5635 tot += total_conses * sizeof (struct Lisp_Cons);
5636 tot += total_symbols * sizeof (struct Lisp_Symbol);
5637 tot += total_markers * sizeof (union Lisp_Misc);
5638 tot += total_string_size;
5639 tot += total_vector_size * sizeof (Lisp_Object);
5640 tot += total_floats * sizeof (struct Lisp_Float);
5641 tot += total_intervals * sizeof (struct interval);
5642 tot += total_strings * sizeof (struct Lisp_String);
5643
c0c5c8ae
PE
5644 tot *= XFLOAT_DATA (Vgc_cons_percentage);
5645 if (0 < tot)
5646 {
5647 if (tot < TYPE_MAXIMUM (EMACS_INT))
5648 gc_relative_threshold = tot;
5649 else
5650 gc_relative_threshold = TYPE_MAXIMUM (EMACS_INT);
5651 }
96f077ad
SM
5652 }
5653
299585ee
RS
5654 if (garbage_collection_messages)
5655 {
6efc7df7
GM
5656 if (message_p || minibuf_level > 0)
5657 restore_message ();
299585ee
RS
5658 else
5659 message1_nolog ("Garbage collecting...done");
5660 }
7146af97 5661
98edb5ff 5662 unbind_to (count, Qnil);
2e471eb5
GM
5663
5664 total[0] = Fcons (make_number (total_conses),
5665 make_number (total_free_conses));
5666 total[1] = Fcons (make_number (total_symbols),
5667 make_number (total_free_symbols));
5668 total[2] = Fcons (make_number (total_markers),
5669 make_number (total_free_markers));
96117bc7
GM
5670 total[3] = make_number (total_string_size);
5671 total[4] = make_number (total_vector_size);
5672 total[5] = Fcons (make_number (total_floats),
2e471eb5 5673 make_number (total_free_floats));
96117bc7 5674 total[6] = Fcons (make_number (total_intervals),
2e471eb5 5675 make_number (total_free_intervals));
96117bc7 5676 total[7] = Fcons (make_number (total_strings),
2e471eb5
GM
5677 make_number (total_free_strings));
5678
34400008 5679#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
7146af97 5680 {
34400008
GM
5681 /* Compute average percentage of zombies. */
5682 double nlive = 0;
177c0ea7 5683
34400008 5684 for (i = 0; i < 7; ++i)
83fc9c63
DL
5685 if (CONSP (total[i]))
5686 nlive += XFASTINT (XCAR (total[i]));
34400008
GM
5687
5688 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
5689 max_live = max (nlive, max_live);
5690 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
5691 max_zombies = max (nzombies, max_zombies);
5692 ++ngcs;
5693 }
5694#endif
7146af97 5695
9e713715
GM
5696 if (!NILP (Vpost_gc_hook))
5697 {
d311d28c 5698 ptrdiff_t gc_count = inhibit_garbage_collection ();
9e713715 5699 safe_run_hooks (Qpost_gc_hook);
ae35e756 5700 unbind_to (gc_count, Qnil);
9e713715 5701 }
2c5bd608
DL
5702
5703 /* Accumulate statistics. */
5704 EMACS_GET_TIME (t2);
5705 EMACS_SUB_TIME (t3, t2, t1);
5706 if (FLOATP (Vgc_elapsed))
69ab9f85
SM
5707 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed) +
5708 EMACS_SECS (t3) +
5709 EMACS_USECS (t3) * 1.0e-6);
2c5bd608
DL
5710 gcs_done++;
5711
96117bc7 5712 return Flist (sizeof total / sizeof *total, total);
7146af97 5713}
34400008 5714
41c28a37 5715
3770920e
GM
5716/* Mark Lisp objects in glyph matrix MATRIX. Currently the
5717 only interesting objects referenced from glyphs are strings. */
41c28a37
GM
5718
5719static void
971de7fb 5720mark_glyph_matrix (struct glyph_matrix *matrix)
41c28a37
GM
5721{
5722 struct glyph_row *row = matrix->rows;
5723 struct glyph_row *end = row + matrix->nrows;
5724
2e471eb5
GM
5725 for (; row < end; ++row)
5726 if (row->enabled_p)
5727 {
5728 int area;
5729 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
5730 {
5731 struct glyph *glyph = row->glyphs[area];
5732 struct glyph *end_glyph = glyph + row->used[area];
177c0ea7 5733
2e471eb5 5734 for (; glyph < end_glyph; ++glyph)
8e50cc2d 5735 if (STRINGP (glyph->object)
2e471eb5 5736 && !STRING_MARKED_P (XSTRING (glyph->object)))
49723c04 5737 mark_object (glyph->object);
2e471eb5
GM
5738 }
5739 }
41c28a37
GM
5740}
5741
34400008 5742
41c28a37
GM
5743/* Mark Lisp faces in the face cache C. */
5744
5745static void
971de7fb 5746mark_face_cache (struct face_cache *c)
41c28a37
GM
5747{
5748 if (c)
5749 {
5750 int i, j;
5751 for (i = 0; i < c->used; ++i)
5752 {
5753 struct face *face = FACE_FROM_ID (c->f, i);
5754
5755 if (face)
5756 {
5757 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
49723c04 5758 mark_object (face->lface[j]);
41c28a37
GM
5759 }
5760 }
5761 }
5762}
5763
5764
7146af97 5765\f
1a4f1e2c 5766/* Mark reference to a Lisp_Object.
2e471eb5
GM
5767 If the object referred to has not been seen yet, recursively mark
5768 all the references contained in it. */
7146af97 5769
785cd37f 5770#define LAST_MARKED_SIZE 500
d3d47262 5771static Lisp_Object last_marked[LAST_MARKED_SIZE];
244ed907 5772static int last_marked_index;
785cd37f 5773
1342fc6f
RS
5774/* For debugging--call abort when we cdr down this many
5775 links of a list, in mark_object. In debugging,
5776 the call to abort will hit a breakpoint.
5777 Normally this is zero and the check never goes off. */
903fe15d 5778ptrdiff_t mark_object_loop_halt EXTERNALLY_VISIBLE;
1342fc6f 5779
8f11f7ec 5780static void
971de7fb 5781mark_vectorlike (struct Lisp_Vector *ptr)
d2029e5b 5782{
d311d28c
PE
5783 ptrdiff_t size = ptr->header.size;
5784 ptrdiff_t i;
d2029e5b 5785
8f11f7ec 5786 eassert (!VECTOR_MARKED_P (ptr));
d2029e5b
SM
5787 VECTOR_MARK (ptr); /* Else mark it */
5788 if (size & PSEUDOVECTOR_FLAG)
5789 size &= PSEUDOVECTOR_SIZE_MASK;
d3d47262 5790
d2029e5b
SM
5791 /* Note that this size is not the memory-footprint size, but only
5792 the number of Lisp_Object fields that we should trace.
5793 The distinction is used e.g. by Lisp_Process which places extra
5794 non-Lisp_Object fields at the end of the structure. */
5795 for (i = 0; i < size; i++) /* and then mark its elements */
5796 mark_object (ptr->contents[i]);
d2029e5b
SM
5797}
5798
58026347
KH
5799/* Like mark_vectorlike but optimized for char-tables (and
5800 sub-char-tables) assuming that the contents are mostly integers or
5801 symbols. */
5802
5803static void
971de7fb 5804mark_char_table (struct Lisp_Vector *ptr)
58026347 5805{
b6439961
PE
5806 int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
5807 int i;
58026347 5808
8f11f7ec 5809 eassert (!VECTOR_MARKED_P (ptr));
58026347
KH
5810 VECTOR_MARK (ptr);
5811 for (i = 0; i < size; i++)
5812 {
5813 Lisp_Object val = ptr->contents[i];
5814
ef1b0ba7 5815 if (INTEGERP (val) || (SYMBOLP (val) && XSYMBOL (val)->gcmarkbit))
58026347
KH
5816 continue;
5817 if (SUB_CHAR_TABLE_P (val))
5818 {
5819 if (! VECTOR_MARKED_P (XVECTOR (val)))
5820 mark_char_table (XVECTOR (val));
5821 }
5822 else
5823 mark_object (val);
5824 }
5825}
5826
41c28a37 5827void
971de7fb 5828mark_object (Lisp_Object arg)
7146af97 5829{
49723c04 5830 register Lisp_Object obj = arg;
4f5c1376
GM
5831#ifdef GC_CHECK_MARKED_OBJECTS
5832 void *po;
5833 struct mem_node *m;
5834#endif
903fe15d 5835 ptrdiff_t cdr_count = 0;
7146af97 5836
9149e743 5837 loop:
7146af97 5838
1f0b3fd2 5839 if (PURE_POINTER_P (XPNTR (obj)))
7146af97
JB
5840 return;
5841
49723c04 5842 last_marked[last_marked_index++] = obj;
785cd37f
RS
5843 if (last_marked_index == LAST_MARKED_SIZE)
5844 last_marked_index = 0;
5845
4f5c1376
GM
5846 /* Perform some sanity checks on the objects marked here. Abort if
5847 we encounter an object we know is bogus. This increases GC time
5848 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
5849#ifdef GC_CHECK_MARKED_OBJECTS
5850
5851 po = (void *) XPNTR (obj);
5852
5853 /* Check that the object pointed to by PO is known to be a Lisp
5854 structure allocated from the heap. */
5855#define CHECK_ALLOCATED() \
5856 do { \
5857 m = mem_find (po); \
5858 if (m == MEM_NIL) \
5859 abort (); \
5860 } while (0)
5861
5862 /* Check that the object pointed to by PO is live, using predicate
5863 function LIVEP. */
5864#define CHECK_LIVE(LIVEP) \
5865 do { \
5866 if (!LIVEP (m, po)) \
5867 abort (); \
5868 } while (0)
5869
5870 /* Check both of the above conditions. */
5871#define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
5872 do { \
5873 CHECK_ALLOCATED (); \
5874 CHECK_LIVE (LIVEP); \
5875 } while (0) \
177c0ea7 5876
4f5c1376 5877#else /* not GC_CHECK_MARKED_OBJECTS */
177c0ea7 5878
4f5c1376
GM
5879#define CHECK_LIVE(LIVEP) (void) 0
5880#define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
177c0ea7 5881
4f5c1376
GM
5882#endif /* not GC_CHECK_MARKED_OBJECTS */
5883
8e50cc2d 5884 switch (SWITCH_ENUM_CAST (XTYPE (obj)))
7146af97
JB
5885 {
5886 case Lisp_String:
5887 {
5888 register struct Lisp_String *ptr = XSTRING (obj);
8f11f7ec
SM
5889 if (STRING_MARKED_P (ptr))
5890 break;
4f5c1376 5891 CHECK_ALLOCATED_AND_LIVE (live_string_p);
d5e35230 5892 MARK_INTERVAL_TREE (ptr->intervals);
2e471eb5 5893 MARK_STRING (ptr);
361b097f 5894#ifdef GC_CHECK_STRING_BYTES
676a7251
GM
5895 /* Check that the string size recorded in the string is the
5896 same as the one recorded in the sdata structure. */
5897 CHECK_STRING_BYTES (ptr);
361b097f 5898#endif /* GC_CHECK_STRING_BYTES */
7146af97
JB
5899 }
5900 break;
5901
76437631 5902 case Lisp_Vectorlike:
8f11f7ec
SM
5903 if (VECTOR_MARKED_P (XVECTOR (obj)))
5904 break;
4f5c1376
GM
5905#ifdef GC_CHECK_MARKED_OBJECTS
5906 m = mem_find (po);
8e50cc2d 5907 if (m == MEM_NIL && !SUBRP (obj)
4f5c1376
GM
5908 && po != &buffer_defaults
5909 && po != &buffer_local_symbols)
5910 abort ();
5911#endif /* GC_CHECK_MARKED_OBJECTS */
177c0ea7 5912
8e50cc2d 5913 if (BUFFERP (obj))
6b552283 5914 {
4f5c1376 5915#ifdef GC_CHECK_MARKED_OBJECTS
8f11f7ec
SM
5916 if (po != &buffer_defaults && po != &buffer_local_symbols)
5917 {
5918 struct buffer *b;
179dade4 5919 for (b = all_buffers; b && b != po; b = b->header.next.buffer)
8f11f7ec
SM
5920 ;
5921 if (b == NULL)
5922 abort ();
4f5c1376 5923 }
8f11f7ec
SM
5924#endif /* GC_CHECK_MARKED_OBJECTS */
5925 mark_buffer (obj);
6b552283 5926 }
8e50cc2d 5927 else if (SUBRP (obj))
169ee243 5928 break;
876c194c 5929 else if (COMPILEDP (obj))
2e471eb5
GM
5930 /* We could treat this just like a vector, but it is better to
5931 save the COMPILED_CONSTANTS element for last and avoid
5932 recursion there. */
169ee243
RS
5933 {
5934 register struct Lisp_Vector *ptr = XVECTOR (obj);
b6439961
PE
5935 int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
5936 int i;
169ee243 5937
4f5c1376 5938 CHECK_LIVE (live_vector_p);
3ef06d12 5939 VECTOR_MARK (ptr); /* Else mark it */
169ee243
RS
5940 for (i = 0; i < size; i++) /* and then mark its elements */
5941 {
5942 if (i != COMPILED_CONSTANTS)
49723c04 5943 mark_object (ptr->contents[i]);
169ee243 5944 }
49723c04 5945 obj = ptr->contents[COMPILED_CONSTANTS];
169ee243
RS
5946 goto loop;
5947 }
8e50cc2d 5948 else if (FRAMEP (obj))
169ee243 5949 {
c70bbf06 5950 register struct frame *ptr = XFRAME (obj);
8f11f7ec
SM
5951 mark_vectorlike (XVECTOR (obj));
5952 mark_face_cache (ptr->face_cache);
707788bd 5953 }
8e50cc2d 5954 else if (WINDOWP (obj))
41c28a37
GM
5955 {
5956 register struct Lisp_Vector *ptr = XVECTOR (obj);
5957 struct window *w = XWINDOW (obj);
8f11f7ec
SM
5958 mark_vectorlike (ptr);
5959 /* Mark glyphs for leaf windows. Marking window matrices is
5960 sufficient because frame matrices use the same glyph
5961 memory. */
5962 if (NILP (w->hchild)
5963 && NILP (w->vchild)
5964 && w->current_matrix)
41c28a37 5965 {
8f11f7ec
SM
5966 mark_glyph_matrix (w->current_matrix);
5967 mark_glyph_matrix (w->desired_matrix);
41c28a37
GM
5968 }
5969 }
8e50cc2d 5970 else if (HASH_TABLE_P (obj))
41c28a37
GM
5971 {
5972 struct Lisp_Hash_Table *h = XHASH_TABLE (obj);
8f11f7ec
SM
5973 mark_vectorlike ((struct Lisp_Vector *)h);
5974 /* If hash table is not weak, mark all keys and values.
5975 For weak tables, mark only the vector. */
5976 if (NILP (h->weak))
5977 mark_object (h->key_and_value);
5978 else
5979 VECTOR_MARK (XVECTOR (h->key_and_value));
41c28a37 5980 }
58026347 5981 else if (CHAR_TABLE_P (obj))
8f11f7ec 5982 mark_char_table (XVECTOR (obj));
04ff9756 5983 else
d2029e5b 5984 mark_vectorlike (XVECTOR (obj));
169ee243 5985 break;
7146af97 5986
7146af97
JB
5987 case Lisp_Symbol:
5988 {
c70bbf06 5989 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
7146af97
JB
5990 struct Lisp_Symbol *ptrx;
5991
8f11f7ec
SM
5992 if (ptr->gcmarkbit)
5993 break;
4f5c1376 5994 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
2336fe58 5995 ptr->gcmarkbit = 1;
49723c04
SM
5996 mark_object (ptr->function);
5997 mark_object (ptr->plist);
ce5b453a
SM
5998 switch (ptr->redirect)
5999 {
6000 case SYMBOL_PLAINVAL: mark_object (SYMBOL_VAL (ptr)); break;
6001 case SYMBOL_VARALIAS:
6002 {
6003 Lisp_Object tem;
6004 XSETSYMBOL (tem, SYMBOL_ALIAS (ptr));
6005 mark_object (tem);
6006 break;
6007 }
6008 case SYMBOL_LOCALIZED:
6009 {
6010 struct Lisp_Buffer_Local_Value *blv = SYMBOL_BLV (ptr);
6011 /* If the value is forwarded to a buffer or keyboard field,
6012 these are marked when we see the corresponding object.
6013 And if it's forwarded to a C variable, either it's not
6014 a Lisp_Object var, or it's staticpro'd already. */
6015 mark_object (blv->where);
6016 mark_object (blv->valcell);
6017 mark_object (blv->defcell);
6018 break;
6019 }
6020 case SYMBOL_FORWARDED:
6021 /* If the value is forwarded to a buffer or keyboard field,
6022 these are marked when we see the corresponding object.
6023 And if it's forwarded to a C variable, either it's not
6024 a Lisp_Object var, or it's staticpro'd already. */
6025 break;
6026 default: abort ();
6027 }
8fe5665d
KR
6028 if (!PURE_POINTER_P (XSTRING (ptr->xname)))
6029 MARK_STRING (XSTRING (ptr->xname));
d5db4077 6030 MARK_INTERVAL_TREE (STRING_INTERVALS (ptr->xname));
177c0ea7 6031
7146af97
JB
6032 ptr = ptr->next;
6033 if (ptr)
6034 {
b0846f52 6035 ptrx = ptr; /* Use of ptrx avoids compiler bug on Sun */
7146af97 6036 XSETSYMBOL (obj, ptrx);
49723c04 6037 goto loop;
7146af97
JB
6038 }
6039 }
6040 break;
6041
a0a38eb7 6042 case Lisp_Misc:
4f5c1376 6043 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
67ee9f6e 6044 if (XMISCANY (obj)->gcmarkbit)
2336fe58 6045 break;
67ee9f6e 6046 XMISCANY (obj)->gcmarkbit = 1;
b766f870 6047
a5da44fe 6048 switch (XMISCTYPE (obj))
a0a38eb7 6049 {
465edf35 6050
2336fe58
SM
6051 case Lisp_Misc_Marker:
6052 /* DO NOT mark thru the marker's chain.
6053 The buffer's markers chain does not preserve markers from gc;
6054 instead, markers are removed from the chain when freed by gc. */
b766f870
KS
6055 break;
6056
8f924df7 6057 case Lisp_Misc_Save_Value:
9ea306d1 6058#if GC_MARK_STACK
b766f870
KS
6059 {
6060 register struct Lisp_Save_Value *ptr = XSAVE_VALUE (obj);
6061 /* If DOGC is set, POINTER is the address of a memory
6062 area containing INTEGER potential Lisp_Objects. */
6063 if (ptr->dogc)
6064 {
6065 Lisp_Object *p = (Lisp_Object *) ptr->pointer;
9c4c5f81 6066 ptrdiff_t nelt;
b766f870
KS
6067 for (nelt = ptr->integer; nelt > 0; nelt--, p++)
6068 mark_maybe_object (*p);
6069 }
6070 }
9ea306d1 6071#endif
c8616056
KH
6072 break;
6073
e202fa34
KH
6074 case Lisp_Misc_Overlay:
6075 {
6076 struct Lisp_Overlay *ptr = XOVERLAY (obj);
49723c04
SM
6077 mark_object (ptr->start);
6078 mark_object (ptr->end);
f54253ec
SM
6079 mark_object (ptr->plist);
6080 if (ptr->next)
6081 {
6082 XSETMISC (obj, ptr->next);
6083 goto loop;
6084 }
e202fa34
KH
6085 }
6086 break;
6087
a0a38eb7
KH
6088 default:
6089 abort ();
6090 }
7146af97
JB
6091 break;
6092
6093 case Lisp_Cons:
7146af97
JB
6094 {
6095 register struct Lisp_Cons *ptr = XCONS (obj);
8f11f7ec
SM
6096 if (CONS_MARKED_P (ptr))
6097 break;
4f5c1376 6098 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
08b7c2cb 6099 CONS_MARK (ptr);
c54ca951 6100 /* If the cdr is nil, avoid recursion for the car. */
28a099a4 6101 if (EQ (ptr->u.cdr, Qnil))
c54ca951 6102 {
49723c04 6103 obj = ptr->car;
1342fc6f 6104 cdr_count = 0;
c54ca951
RS
6105 goto loop;
6106 }
49723c04 6107 mark_object (ptr->car);
28a099a4 6108 obj = ptr->u.cdr;
1342fc6f
RS
6109 cdr_count++;
6110 if (cdr_count == mark_object_loop_halt)
6111 abort ();
7146af97
JB
6112 goto loop;
6113 }
6114
7146af97 6115 case Lisp_Float:
4f5c1376 6116 CHECK_ALLOCATED_AND_LIVE (live_float_p);
ab6780cd 6117 FLOAT_MARK (XFLOAT (obj));
7146af97 6118 break;
7146af97 6119
2de9f71c 6120 case_Lisp_Int:
7146af97
JB
6121 break;
6122
6123 default:
6124 abort ();
6125 }
4f5c1376
GM
6126
6127#undef CHECK_LIVE
6128#undef CHECK_ALLOCATED
6129#undef CHECK_ALLOCATED_AND_LIVE
7146af97
JB
6130}
6131
6132/* Mark the pointers in a buffer structure. */
6133
6134static void
971de7fb 6135mark_buffer (Lisp_Object buf)
7146af97 6136{
7146af97 6137 register struct buffer *buffer = XBUFFER (buf);
f54253ec 6138 register Lisp_Object *ptr, tmp;
30e3190a 6139 Lisp_Object base_buffer;
7146af97 6140
8f11f7ec 6141 eassert (!VECTOR_MARKED_P (buffer));
3ef06d12 6142 VECTOR_MARK (buffer);
7146af97 6143
30e3190a 6144 MARK_INTERVAL_TREE (BUF_INTERVALS (buffer));
d5e35230 6145
c37adf23
SM
6146 /* For now, we just don't mark the undo_list. It's done later in
6147 a special way just before the sweep phase, and after stripping
6148 some of its elements that are not needed any more. */
4c315bda 6149
f54253ec
SM
6150 if (buffer->overlays_before)
6151 {
6152 XSETMISC (tmp, buffer->overlays_before);
6153 mark_object (tmp);
6154 }
6155 if (buffer->overlays_after)
6156 {
6157 XSETMISC (tmp, buffer->overlays_after);
6158 mark_object (tmp);
6159 }
6160
9ce376f9
SM
6161 /* buffer-local Lisp variables start at `undo_list',
6162 tho only the ones from `name' on are GC'd normally. */
5d8ea120 6163 for (ptr = &buffer->BUFFER_INTERNAL_FIELD (name);
8a5c77bb
PE
6164 ptr <= &PER_BUFFER_VALUE (buffer,
6165 PER_BUFFER_VAR_OFFSET (LAST_FIELD_PER_BUFFER));
7146af97 6166 ptr++)
49723c04 6167 mark_object (*ptr);
30e3190a
RS
6168
6169 /* If this is an indirect buffer, mark its base buffer. */
349bd9ed 6170 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
30e3190a 6171 {
177c0ea7 6172 XSETBUFFER (base_buffer, buffer->base_buffer);
30e3190a
RS
6173 mark_buffer (base_buffer);
6174 }
7146af97 6175}
084b1a0c 6176
4a729fd8 6177/* Mark the Lisp pointers in the terminal objects.
0ba2624f 6178 Called by Fgarbage_collect. */
4a729fd8 6179
4a729fd8
SM
6180static void
6181mark_terminals (void)
6182{
6183 struct terminal *t;
6184 for (t = terminal_list; t; t = t->next_terminal)
6185 {
6186 eassert (t->name != NULL);
354884c4 6187#ifdef HAVE_WINDOW_SYSTEM
96ad0af7
YM
6188 /* If a terminal object is reachable from a stacpro'ed object,
6189 it might have been marked already. Make sure the image cache
6190 gets marked. */
6191 mark_image_cache (t->image_cache);
354884c4 6192#endif /* HAVE_WINDOW_SYSTEM */
96ad0af7
YM
6193 if (!VECTOR_MARKED_P (t))
6194 mark_vectorlike ((struct Lisp_Vector *)t);
4a729fd8
SM
6195 }
6196}
6197
6198
084b1a0c 6199
41c28a37
GM
6200/* Value is non-zero if OBJ will survive the current GC because it's
6201 either marked or does not need to be marked to survive. */
6202
6203int
971de7fb 6204survives_gc_p (Lisp_Object obj)
41c28a37
GM
6205{
6206 int survives_p;
177c0ea7 6207
8e50cc2d 6208 switch (XTYPE (obj))
41c28a37 6209 {
2de9f71c 6210 case_Lisp_Int:
41c28a37
GM
6211 survives_p = 1;
6212 break;
6213
6214 case Lisp_Symbol:
2336fe58 6215 survives_p = XSYMBOL (obj)->gcmarkbit;
41c28a37
GM
6216 break;
6217
6218 case Lisp_Misc:
67ee9f6e 6219 survives_p = XMISCANY (obj)->gcmarkbit;
41c28a37
GM
6220 break;
6221
6222 case Lisp_String:
08b7c2cb 6223 survives_p = STRING_MARKED_P (XSTRING (obj));
41c28a37
GM
6224 break;
6225
6226 case Lisp_Vectorlike:
8e50cc2d 6227 survives_p = SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
41c28a37
GM
6228 break;
6229
6230 case Lisp_Cons:
08b7c2cb 6231 survives_p = CONS_MARKED_P (XCONS (obj));
41c28a37
GM
6232 break;
6233
41c28a37 6234 case Lisp_Float:
ab6780cd 6235 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
41c28a37 6236 break;
41c28a37
GM
6237
6238 default:
6239 abort ();
6240 }
6241
34400008 6242 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
41c28a37
GM
6243}
6244
6245
7146af97 6246\f
1a4f1e2c 6247/* Sweep: find all structures not marked, and free them. */
7146af97
JB
6248
6249static void
971de7fb 6250gc_sweep (void)
7146af97 6251{
41c28a37
GM
6252 /* Remove or mark entries in weak hash tables.
6253 This must be done before any object is unmarked. */
6254 sweep_weak_hash_tables ();
6255
2e471eb5 6256 sweep_strings ();
676a7251
GM
6257#ifdef GC_CHECK_STRING_BYTES
6258 if (!noninteractive)
6259 check_string_bytes (1);
6260#endif
7146af97
JB
6261
6262 /* Put all unmarked conses on free list */
6263 {
6264 register struct cons_block *cblk;
6ca94ac9 6265 struct cons_block **cprev = &cons_block;
7146af97 6266 register int lim = cons_block_index;
c0c5c8ae 6267 EMACS_INT num_free = 0, num_used = 0;
7146af97
JB
6268
6269 cons_free_list = 0;
177c0ea7 6270
6ca94ac9 6271 for (cblk = cons_block; cblk; cblk = *cprev)
7146af97 6272 {
3ae2e3a3 6273 register int i = 0;
6ca94ac9 6274 int this_free = 0;
3ae2e3a3
RS
6275 int ilim = (lim + BITS_PER_INT - 1) / BITS_PER_INT;
6276
6277 /* Scan the mark bits an int at a time. */
47ea7f44 6278 for (i = 0; i < ilim; i++)
3ae2e3a3
RS
6279 {
6280 if (cblk->gcmarkbits[i] == -1)
6281 {
6282 /* Fast path - all cons cells for this int are marked. */
6283 cblk->gcmarkbits[i] = 0;
6284 num_used += BITS_PER_INT;
6285 }
6286 else
6287 {
6288 /* Some cons cells for this int are not marked.
6289 Find which ones, and free them. */
6290 int start, pos, stop;
6291
6292 start = i * BITS_PER_INT;
6293 stop = lim - start;
6294 if (stop > BITS_PER_INT)
6295 stop = BITS_PER_INT;
6296 stop += start;
6297
6298 for (pos = start; pos < stop; pos++)
6299 {
6300 if (!CONS_MARKED_P (&cblk->conses[pos]))
6301 {
6302 this_free++;
6303 cblk->conses[pos].u.chain = cons_free_list;
6304 cons_free_list = &cblk->conses[pos];
34400008 6305#if GC_MARK_STACK
3ae2e3a3 6306 cons_free_list->car = Vdead;
34400008 6307#endif
3ae2e3a3
RS
6308 }
6309 else
6310 {
6311 num_used++;
6312 CONS_UNMARK (&cblk->conses[pos]);
6313 }
6314 }
6315 }
6316 }
6317
7146af97 6318 lim = CONS_BLOCK_SIZE;
6ca94ac9
KH
6319 /* If this block contains only free conses and we have already
6320 seen more than two blocks worth of free conses then deallocate
6321 this block. */
6feef451 6322 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
6ca94ac9 6323 {
6ca94ac9
KH
6324 *cprev = cblk->next;
6325 /* Unhook from the free list. */
28a099a4 6326 cons_free_list = cblk->conses[0].u.chain;
08b7c2cb 6327 lisp_align_free (cblk);
6ca94ac9
KH
6328 }
6329 else
6feef451
AS
6330 {
6331 num_free += this_free;
6332 cprev = &cblk->next;
6333 }
7146af97
JB
6334 }
6335 total_conses = num_used;
6336 total_free_conses = num_free;
6337 }
6338
7146af97
JB
6339 /* Put all unmarked floats on free list */
6340 {
6341 register struct float_block *fblk;
6ca94ac9 6342 struct float_block **fprev = &float_block;
7146af97 6343 register int lim = float_block_index;
c0c5c8ae 6344 EMACS_INT num_free = 0, num_used = 0;
7146af97
JB
6345
6346 float_free_list = 0;
177c0ea7 6347
6ca94ac9 6348 for (fblk = float_block; fblk; fblk = *fprev)
7146af97
JB
6349 {
6350 register int i;
6ca94ac9 6351 int this_free = 0;
7146af97 6352 for (i = 0; i < lim; i++)
ab6780cd 6353 if (!FLOAT_MARKED_P (&fblk->floats[i]))
7146af97 6354 {
6ca94ac9 6355 this_free++;
28a099a4 6356 fblk->floats[i].u.chain = float_free_list;
7146af97
JB
6357 float_free_list = &fblk->floats[i];
6358 }
6359 else
6360 {
6361 num_used++;
ab6780cd 6362 FLOAT_UNMARK (&fblk->floats[i]);
7146af97
JB
6363 }
6364 lim = FLOAT_BLOCK_SIZE;
6ca94ac9
KH
6365 /* If this block contains only free floats and we have already
6366 seen more than two blocks worth of free floats then deallocate
6367 this block. */
6feef451 6368 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
6ca94ac9 6369 {
6ca94ac9
KH
6370 *fprev = fblk->next;
6371 /* Unhook from the free list. */
28a099a4 6372 float_free_list = fblk->floats[0].u.chain;
ab6780cd 6373 lisp_align_free (fblk);
6ca94ac9
KH
6374 }
6375 else
6feef451
AS
6376 {
6377 num_free += this_free;
6378 fprev = &fblk->next;
6379 }
7146af97
JB
6380 }
6381 total_floats = num_used;
6382 total_free_floats = num_free;
6383 }
7146af97 6384
d5e35230
JA
6385 /* Put all unmarked intervals on free list */
6386 {
6387 register struct interval_block *iblk;
6ca94ac9 6388 struct interval_block **iprev = &interval_block;
d5e35230 6389 register int lim = interval_block_index;
c0c5c8ae 6390 EMACS_INT num_free = 0, num_used = 0;
d5e35230
JA
6391
6392 interval_free_list = 0;
6393
6ca94ac9 6394 for (iblk = interval_block; iblk; iblk = *iprev)
d5e35230
JA
6395 {
6396 register int i;
6ca94ac9 6397 int this_free = 0;
d5e35230
JA
6398
6399 for (i = 0; i < lim; i++)
6400 {
2336fe58 6401 if (!iblk->intervals[i].gcmarkbit)
d5e35230 6402 {
439d5cb4 6403 SET_INTERVAL_PARENT (&iblk->intervals[i], interval_free_list);
d5e35230 6404 interval_free_list = &iblk->intervals[i];
6ca94ac9 6405 this_free++;
d5e35230
JA
6406 }
6407 else
6408 {
6409 num_used++;
2336fe58 6410 iblk->intervals[i].gcmarkbit = 0;
d5e35230
JA
6411 }
6412 }
6413 lim = INTERVAL_BLOCK_SIZE;
6ca94ac9
KH
6414 /* If this block contains only free intervals and we have already
6415 seen more than two blocks worth of free intervals then
6416 deallocate this block. */
6feef451 6417 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
6ca94ac9 6418 {
6ca94ac9
KH
6419 *iprev = iblk->next;
6420 /* Unhook from the free list. */
439d5cb4 6421 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
c8099634 6422 lisp_free (iblk);
6ca94ac9
KH
6423 }
6424 else
6feef451
AS
6425 {
6426 num_free += this_free;
6427 iprev = &iblk->next;
6428 }
d5e35230
JA
6429 }
6430 total_intervals = num_used;
6431 total_free_intervals = num_free;
6432 }
d5e35230 6433
7146af97
JB
6434 /* Put all unmarked symbols on free list */
6435 {
6436 register struct symbol_block *sblk;
6ca94ac9 6437 struct symbol_block **sprev = &symbol_block;
7146af97 6438 register int lim = symbol_block_index;
c0c5c8ae 6439 EMACS_INT num_free = 0, num_used = 0;
7146af97 6440
d285b373 6441 symbol_free_list = NULL;
177c0ea7 6442
6ca94ac9 6443 for (sblk = symbol_block; sblk; sblk = *sprev)
7146af97 6444 {
6ca94ac9 6445 int this_free = 0;
d55c12ed
AS
6446 union aligned_Lisp_Symbol *sym = sblk->symbols;
6447 union aligned_Lisp_Symbol *end = sym + lim;
d285b373
GM
6448
6449 for (; sym < end; ++sym)
6450 {
20035321
SM
6451 /* Check if the symbol was created during loadup. In such a case
6452 it might be pointed to by pure bytecode which we don't trace,
6453 so we conservatively assume that it is live. */
d55c12ed 6454 int pure_p = PURE_POINTER_P (XSTRING (sym->s.xname));
177c0ea7 6455
d55c12ed 6456 if (!sym->s.gcmarkbit && !pure_p)
d285b373 6457 {
d55c12ed
AS
6458 if (sym->s.redirect == SYMBOL_LOCALIZED)
6459 xfree (SYMBOL_BLV (&sym->s));
6460 sym->s.next = symbol_free_list;
6461 symbol_free_list = &sym->s;
34400008 6462#if GC_MARK_STACK
d285b373 6463 symbol_free_list->function = Vdead;
34400008 6464#endif
d285b373
GM
6465 ++this_free;
6466 }
6467 else
6468 {
6469 ++num_used;
6470 if (!pure_p)
d55c12ed
AS
6471 UNMARK_STRING (XSTRING (sym->s.xname));
6472 sym->s.gcmarkbit = 0;
d285b373
GM
6473 }
6474 }
177c0ea7 6475
7146af97 6476 lim = SYMBOL_BLOCK_SIZE;
6ca94ac9
KH
6477 /* If this block contains only free symbols and we have already
6478 seen more than two blocks worth of free symbols then deallocate
6479 this block. */
6feef451 6480 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
6ca94ac9 6481 {
6ca94ac9
KH
6482 *sprev = sblk->next;
6483 /* Unhook from the free list. */
d55c12ed 6484 symbol_free_list = sblk->symbols[0].s.next;
c8099634 6485 lisp_free (sblk);
6ca94ac9
KH
6486 }
6487 else
6feef451
AS
6488 {
6489 num_free += this_free;
6490 sprev = &sblk->next;
6491 }
7146af97
JB
6492 }
6493 total_symbols = num_used;
6494 total_free_symbols = num_free;
6495 }
6496
a9faeabe
RS
6497 /* Put all unmarked misc's on free list.
6498 For a marker, first unchain it from the buffer it points into. */
7146af97
JB
6499 {
6500 register struct marker_block *mblk;
6ca94ac9 6501 struct marker_block **mprev = &marker_block;
7146af97 6502 register int lim = marker_block_index;
c0c5c8ae 6503 EMACS_INT num_free = 0, num_used = 0;
7146af97
JB
6504
6505 marker_free_list = 0;
177c0ea7 6506
6ca94ac9 6507 for (mblk = marker_block; mblk; mblk = *mprev)
7146af97
JB
6508 {
6509 register int i;
6ca94ac9 6510 int this_free = 0;
fa05e253 6511
7146af97 6512 for (i = 0; i < lim; i++)
465edf35 6513 {
d55c12ed 6514 if (!mblk->markers[i].m.u_any.gcmarkbit)
465edf35 6515 {
d55c12ed
AS
6516 if (mblk->markers[i].m.u_any.type == Lisp_Misc_Marker)
6517 unchain_marker (&mblk->markers[i].m.u_marker);
fa05e253
RS
6518 /* Set the type of the freed object to Lisp_Misc_Free.
6519 We could leave the type alone, since nobody checks it,
465edf35 6520 but this might catch bugs faster. */
d55c12ed
AS
6521 mblk->markers[i].m.u_marker.type = Lisp_Misc_Free;
6522 mblk->markers[i].m.u_free.chain = marker_free_list;
6523 marker_free_list = &mblk->markers[i].m;
6ca94ac9 6524 this_free++;
465edf35
KH
6525 }
6526 else
6527 {
6528 num_used++;
d55c12ed 6529 mblk->markers[i].m.u_any.gcmarkbit = 0;
465edf35
KH
6530 }
6531 }
7146af97 6532 lim = MARKER_BLOCK_SIZE;
6ca94ac9
KH
6533 /* If this block contains only free markers and we have already
6534 seen more than two blocks worth of free markers then deallocate
6535 this block. */
6feef451 6536 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
6ca94ac9 6537 {
6ca94ac9
KH
6538 *mprev = mblk->next;
6539 /* Unhook from the free list. */
d55c12ed 6540 marker_free_list = mblk->markers[0].m.u_free.chain;
c8099634 6541 lisp_free (mblk);
6ca94ac9
KH
6542 }
6543 else
6feef451
AS
6544 {
6545 num_free += this_free;
6546 mprev = &mblk->next;
6547 }
7146af97
JB
6548 }
6549
6550 total_markers = num_used;
6551 total_free_markers = num_free;
6552 }
6553
6554 /* Free all unmarked buffers */
6555 {
6556 register struct buffer *buffer = all_buffers, *prev = 0, *next;
6557
6558 while (buffer)
3ef06d12 6559 if (!VECTOR_MARKED_P (buffer))
7146af97
JB
6560 {
6561 if (prev)
eab3844f 6562 prev->header.next = buffer->header.next;
7146af97 6563 else
eab3844f
PE
6564 all_buffers = buffer->header.next.buffer;
6565 next = buffer->header.next.buffer;
34400008 6566 lisp_free (buffer);
7146af97
JB
6567 buffer = next;
6568 }
6569 else
6570 {
3ef06d12 6571 VECTOR_UNMARK (buffer);
30e3190a 6572 UNMARK_BALANCE_INTERVALS (BUF_INTERVALS (buffer));
eab3844f 6573 prev = buffer, buffer = buffer->header.next.buffer;
7146af97
JB
6574 }
6575 }
6576
f3372c87 6577 sweep_vectors ();
177c0ea7 6578
676a7251
GM
6579#ifdef GC_CHECK_STRING_BYTES
6580 if (!noninteractive)
6581 check_string_bytes (1);
6582#endif
7146af97 6583}
7146af97 6584
7146af97 6585
7146af97 6586
7146af97 6587\f
20d24714
JB
6588/* Debugging aids. */
6589
31ce1c91 6590DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
a6266d23 6591 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
228299fa 6592This may be helpful in debugging Emacs's memory usage.
7ee72033 6593We divide the value by 1024 to make sure it fits in a Lisp integer. */)
5842a27b 6594 (void)
20d24714
JB
6595{
6596 Lisp_Object end;
6597
d01a7826 6598 XSETINT (end, (intptr_t) (char *) sbrk (0) / 1024);
20d24714
JB
6599
6600 return end;
6601}
6602
310ea200 6603DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
a6266d23 6604 doc: /* Return a list of counters that measure how much consing there has been.
228299fa
GM
6605Each of these counters increments for a certain kind of object.
6606The counters wrap around from the largest positive integer to zero.
6607Garbage collection does not decrease them.
6608The elements of the value are as follows:
6609 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
6610All are in units of 1 = one object consed
6611except for VECTOR-CELLS and STRING-CHARS, which count the total length of
6612objects consed.
6613MISCS include overlays, markers, and some internal types.
6614Frames, windows, buffers, and subprocesses count as vectors
7ee72033 6615 (but the contents of a buffer's text do not count here). */)
5842a27b 6616 (void)
310ea200 6617{
2e471eb5 6618 Lisp_Object consed[8];
310ea200 6619
78e985eb
GM
6620 consed[0] = make_number (min (MOST_POSITIVE_FIXNUM, cons_cells_consed));
6621 consed[1] = make_number (min (MOST_POSITIVE_FIXNUM, floats_consed));
6622 consed[2] = make_number (min (MOST_POSITIVE_FIXNUM, vector_cells_consed));
6623 consed[3] = make_number (min (MOST_POSITIVE_FIXNUM, symbols_consed));
6624 consed[4] = make_number (min (MOST_POSITIVE_FIXNUM, string_chars_consed));
6625 consed[5] = make_number (min (MOST_POSITIVE_FIXNUM, misc_objects_consed));
6626 consed[6] = make_number (min (MOST_POSITIVE_FIXNUM, intervals_consed));
6627 consed[7] = make_number (min (MOST_POSITIVE_FIXNUM, strings_consed));
310ea200 6628
2e471eb5 6629 return Flist (8, consed);
310ea200 6630}
e0b8c689 6631
8b058d44
EZ
6632/* Find at most FIND_MAX symbols which have OBJ as their value or
6633 function. This is used in gdbinit's `xwhichsymbols' command. */
6634
6635Lisp_Object
196e41e4 6636which_symbols (Lisp_Object obj, EMACS_INT find_max)
8b058d44
EZ
6637{
6638 struct symbol_block *sblk;
8d0eb4c2 6639 ptrdiff_t gc_count = inhibit_garbage_collection ();
8b058d44
EZ
6640 Lisp_Object found = Qnil;
6641
ca78dc43 6642 if (! DEADP (obj))
8b058d44
EZ
6643 {
6644 for (sblk = symbol_block; sblk; sblk = sblk->next)
6645 {
9426aba4 6646 union aligned_Lisp_Symbol *aligned_sym = sblk->symbols;
8b058d44
EZ
6647 int bn;
6648
9426aba4 6649 for (bn = 0; bn < SYMBOL_BLOCK_SIZE; bn++, aligned_sym++)
8b058d44 6650 {
9426aba4 6651 struct Lisp_Symbol *sym = &aligned_sym->s;
8b058d44
EZ
6652 Lisp_Object val;
6653 Lisp_Object tem;
6654
6655 if (sblk == symbol_block && bn >= symbol_block_index)
6656 break;
6657
6658 XSETSYMBOL (tem, sym);
6659 val = find_symbol_value (tem);
6660 if (EQ (val, obj)
6661 || EQ (sym->function, obj)
6662 || (!NILP (sym->function)
6663 && COMPILEDP (sym->function)
6664 && EQ (AREF (sym->function, COMPILED_BYTECODE), obj))
6665 || (!NILP (val)
6666 && COMPILEDP (val)
6667 && EQ (AREF (val, COMPILED_BYTECODE), obj)))
6668 {
6669 found = Fcons (tem, found);
6670 if (--find_max == 0)
6671 goto out;
6672 }
6673 }
6674 }
6675 }
6676
6677 out:
6678 unbind_to (gc_count, Qnil);
6679 return found;
6680}
6681
244ed907 6682#ifdef ENABLE_CHECKING
e0b8c689 6683int suppress_checking;
d3d47262 6684
e0b8c689 6685void
971de7fb 6686die (const char *msg, const char *file, int line)
e0b8c689 6687{
67ee9f6e 6688 fprintf (stderr, "\r\n%s:%d: Emacs fatal error: %s\r\n",
e0b8c689
KR
6689 file, line, msg);
6690 abort ();
6691}
244ed907 6692#endif
20d24714 6693\f
7146af97
JB
6694/* Initialization */
6695
dfcf069d 6696void
971de7fb 6697init_alloc_once (void)
7146af97
JB
6698{
6699 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
9e713715
GM
6700 purebeg = PUREBEG;
6701 pure_size = PURESIZE;
1f0b3fd2 6702 pure_bytes_used = 0;
e5bc14d4 6703 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
9e713715
GM
6704 pure_bytes_used_before_overflow = 0;
6705
ab6780cd
SM
6706 /* Initialize the list of free aligned blocks. */
6707 free_ablock = NULL;
6708
877935b1 6709#if GC_MARK_STACK || defined GC_MALLOC_CHECK
34400008
GM
6710 mem_init ();
6711 Vdead = make_pure_string ("DEAD", 4, 4, 0);
6712#endif
9e713715 6713
7146af97 6714 ignore_warnings = 1;
d1658221
RS
6715#ifdef DOUG_LEA_MALLOC
6716 mallopt (M_TRIM_THRESHOLD, 128*1024); /* trim threshold */
6717 mallopt (M_MMAP_THRESHOLD, 64*1024); /* mmap threshold */
81d492d5 6718 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* max. number of mmap'ed areas */
d1658221 6719#endif
7146af97
JB
6720 init_strings ();
6721 init_cons ();
6722 init_symbol ();
6723 init_marker ();
7146af97 6724 init_float ();
34400008 6725 init_intervals ();
f3372c87 6726 init_vectors ();
5ac58e4c 6727 init_weak_hash_tables ();
d5e35230 6728
276cbe5a
RS
6729#ifdef REL_ALLOC
6730 malloc_hysteresis = 32;
6731#else
6732 malloc_hysteresis = 0;
6733#endif
6734
24d8a105 6735 refill_memory_reserve ();
276cbe5a 6736
7146af97
JB
6737 ignore_warnings = 0;
6738 gcprolist = 0;
630686c8 6739 byte_stack_list = 0;
7146af97
JB
6740 staticidx = 0;
6741 consing_since_gc = 0;
7d179cea 6742 gc_cons_threshold = 100000 * sizeof (Lisp_Object);
974aae61 6743 gc_relative_threshold = 0;
7146af97
JB
6744}
6745
dfcf069d 6746void
971de7fb 6747init_alloc (void)
7146af97
JB
6748{
6749 gcprolist = 0;
630686c8 6750 byte_stack_list = 0;
182ff242
GM
6751#if GC_MARK_STACK
6752#if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
6753 setjmp_tested_p = longjmps_done = 0;
6754#endif
6755#endif
2c5bd608
DL
6756 Vgc_elapsed = make_float (0.0);
6757 gcs_done = 0;
7146af97
JB
6758}
6759
6760void
971de7fb 6761syms_of_alloc (void)
7146af97 6762{
29208e82 6763 DEFVAR_INT ("gc-cons-threshold", gc_cons_threshold,
fb7ada5f 6764 doc: /* Number of bytes of consing between garbage collections.
228299fa
GM
6765Garbage collection can happen automatically once this many bytes have been
6766allocated since the last garbage collection. All data types count.
7146af97 6767
228299fa 6768Garbage collection happens automatically only when `eval' is called.
7146af97 6769
228299fa 6770By binding this temporarily to a large number, you can effectively
96f077ad
SM
6771prevent garbage collection during a part of the program.
6772See also `gc-cons-percentage'. */);
6773
29208e82 6774 DEFVAR_LISP ("gc-cons-percentage", Vgc_cons_percentage,
fb7ada5f 6775 doc: /* Portion of the heap used for allocation.
96f077ad
SM
6776Garbage collection can happen automatically once this portion of the heap
6777has been allocated since the last garbage collection.
6778If this portion is smaller than `gc-cons-threshold', this is ignored. */);
6779 Vgc_cons_percentage = make_float (0.1);
0819585c 6780
29208e82 6781 DEFVAR_INT ("pure-bytes-used", pure_bytes_used,
333f9019 6782 doc: /* Number of bytes of shareable Lisp data allocated so far. */);
0819585c 6783
29208e82 6784 DEFVAR_INT ("cons-cells-consed", cons_cells_consed,
a6266d23 6785 doc: /* Number of cons cells that have been consed so far. */);
0819585c 6786
29208e82 6787 DEFVAR_INT ("floats-consed", floats_consed,
a6266d23 6788 doc: /* Number of floats that have been consed so far. */);
0819585c 6789
29208e82 6790 DEFVAR_INT ("vector-cells-consed", vector_cells_consed,
a6266d23 6791 doc: /* Number of vector cells that have been consed so far. */);
0819585c 6792
29208e82 6793 DEFVAR_INT ("symbols-consed", symbols_consed,
a6266d23 6794 doc: /* Number of symbols that have been consed so far. */);
0819585c 6795
29208e82 6796 DEFVAR_INT ("string-chars-consed", string_chars_consed,
a6266d23 6797 doc: /* Number of string characters that have been consed so far. */);
0819585c 6798
29208e82 6799 DEFVAR_INT ("misc-objects-consed", misc_objects_consed,
01a6dcc8
GM
6800 doc: /* Number of miscellaneous objects that have been consed so far.
6801These include markers and overlays, plus certain objects not visible
6802to users. */);
2e471eb5 6803
29208e82 6804 DEFVAR_INT ("intervals-consed", intervals_consed,
a6266d23 6805 doc: /* Number of intervals that have been consed so far. */);
7146af97 6806
29208e82 6807 DEFVAR_INT ("strings-consed", strings_consed,
a6266d23 6808 doc: /* Number of strings that have been consed so far. */);
228299fa 6809
29208e82 6810 DEFVAR_LISP ("purify-flag", Vpurify_flag,
a6266d23 6811 doc: /* Non-nil means loading Lisp code in order to dump an executable.
e9515805
SM
6812This means that certain objects should be allocated in shared (pure) space.
6813It can also be set to a hash-table, in which case this table is used to
6814do hash-consing of the objects allocated to pure space. */);
228299fa 6815
29208e82 6816 DEFVAR_BOOL ("garbage-collection-messages", garbage_collection_messages,
a6266d23 6817 doc: /* Non-nil means display messages at start and end of garbage collection. */);
299585ee
RS
6818 garbage_collection_messages = 0;
6819
29208e82 6820 DEFVAR_LISP ("post-gc-hook", Vpost_gc_hook,
a6266d23 6821 doc: /* Hook run after garbage collection has finished. */);
9e713715 6822 Vpost_gc_hook = Qnil;
cd3520a4 6823 DEFSYM (Qpost_gc_hook, "post-gc-hook");
9e713715 6824
29208e82 6825 DEFVAR_LISP ("memory-signal-data", Vmemory_signal_data,
74a54b04 6826 doc: /* Precomputed `signal' argument for memory-full error. */);
bcb61d60
KH
6827 /* We build this in advance because if we wait until we need it, we might
6828 not be able to allocate the memory to hold it. */
74a54b04 6829 Vmemory_signal_data
f4265f6c
DN
6830 = pure_cons (Qerror,
6831 pure_cons (make_pure_c_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"), Qnil));
74a54b04 6832
29208e82 6833 DEFVAR_LISP ("memory-full", Vmemory_full,
24d8a105 6834 doc: /* Non-nil means Emacs cannot get much more Lisp memory. */);
74a54b04 6835 Vmemory_full = Qnil;
bcb61d60 6836
cd3520a4
JB
6837 DEFSYM (Qgc_cons_threshold, "gc-cons-threshold");
6838 DEFSYM (Qchar_table_extra_slots, "char-table-extra-slots");
a59de17b 6839
29208e82 6840 DEFVAR_LISP ("gc-elapsed", Vgc_elapsed,
2c5bd608 6841 doc: /* Accumulated time elapsed in garbage collections.
e7415487 6842The time is in seconds as a floating point value. */);
29208e82 6843 DEFVAR_INT ("gcs-done", gcs_done,
e7415487 6844 doc: /* Accumulated number of garbage collections done. */);
2c5bd608 6845
7146af97
JB
6846 defsubr (&Scons);
6847 defsubr (&Slist);
6848 defsubr (&Svector);
6849 defsubr (&Smake_byte_code);
6850 defsubr (&Smake_list);
6851 defsubr (&Smake_vector);
6852 defsubr (&Smake_string);
7b07587b 6853 defsubr (&Smake_bool_vector);
7146af97
JB
6854 defsubr (&Smake_symbol);
6855 defsubr (&Smake_marker);
6856 defsubr (&Spurecopy);
6857 defsubr (&Sgarbage_collect);
20d24714 6858 defsubr (&Smemory_limit);
310ea200 6859 defsubr (&Smemory_use_counts);
34400008
GM
6860
6861#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
6862 defsubr (&Sgc_status);
6863#endif
7146af97 6864}