Additional minor fix to (Bug#8539).
[bpt/emacs.git] / src / alloc.c
CommitLineData
7146af97 1/* Storage allocation and gc for GNU Emacs Lisp interpreter.
73b0cd50 2 Copyright (C) 1985-1986, 1988, 1993-1995, 1997-2011
8cabe764 3 Free Software Foundation, Inc.
7146af97
JB
4
5This file is part of GNU Emacs.
6
9ec0b715 7GNU Emacs is free software: you can redistribute it and/or modify
7146af97 8it under the terms of the GNU General Public License as published by
9ec0b715
GM
9the Free Software Foundation, either version 3 of the License, or
10(at your option) any later version.
7146af97
JB
11
12GNU Emacs is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15GNU General Public License for more details.
16
17You should have received a copy of the GNU General Public License
9ec0b715 18along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
7146af97 19
18160b98 20#include <config.h>
e9b309ac 21#include <stdio.h>
ab6780cd 22#include <limits.h> /* For CHAR_BIT. */
d7306fe6 23#include <setjmp.h>
92939d31 24
4455ad75
RS
25#ifdef ALLOC_DEBUG
26#undef INLINE
27#endif
28
68c45bf0 29#include <signal.h>
92939d31 30
aa477689
JD
31#ifdef HAVE_GTK_AND_PTHREAD
32#include <pthread.h>
33#endif
34
7539e11f
KR
35/* This file is part of the core Lisp implementation, and thus must
36 deal with the real data structures. If the Lisp implementation is
37 replaced, this file likely will not be used. */
2e471eb5 38
7539e11f 39#undef HIDE_LISP_IMPLEMENTATION
7146af97 40#include "lisp.h"
ece93c02 41#include "process.h"
d5e35230 42#include "intervals.h"
4c0be5f4 43#include "puresize.h"
7146af97
JB
44#include "buffer.h"
45#include "window.h"
2538fae4 46#include "keyboard.h"
502b9b64 47#include "frame.h"
9ac0d9e0 48#include "blockinput.h"
9d80e883 49#include "character.h"
e065a56e 50#include "syssignal.h"
4a729fd8 51#include "termhooks.h" /* For struct terminal. */
34400008 52#include <setjmp.h>
e065a56e 53
6b61353c
KH
54/* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
55 memory. Can do this only if using gmalloc.c. */
56
57#if defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC
58#undef GC_MALLOC_CHECK
59#endif
60
bf952fb6 61#include <unistd.h>
4004364e 62#ifndef HAVE_UNISTD_H
bf952fb6
DL
63extern POINTER_TYPE *sbrk ();
64#endif
ee1eea5c 65
de7124a7 66#include <fcntl.h>
de7124a7 67
69666f77 68#ifdef WINDOWSNT
f892cf9c 69#include "w32.h"
69666f77
EZ
70#endif
71
d1658221 72#ifdef DOUG_LEA_MALLOC
2e471eb5 73
d1658221 74#include <malloc.h>
3e60b029
DL
75/* malloc.h #defines this as size_t, at least in glibc2. */
76#ifndef __malloc_size_t
d1658221 77#define __malloc_size_t int
3e60b029 78#endif
81d492d5 79
2e471eb5
GM
80/* Specify maximum number of areas to mmap. It would be nice to use a
81 value that explicitly means "no limit". */
82
81d492d5
RS
83#define MMAP_MAX_AREAS 100000000
84
2e471eb5
GM
85#else /* not DOUG_LEA_MALLOC */
86
276cbe5a
RS
87/* The following come from gmalloc.c. */
88
276cbe5a 89#define __malloc_size_t size_t
276cbe5a 90extern __malloc_size_t _bytes_used;
3e60b029 91extern __malloc_size_t __malloc_extra_blocks;
2e471eb5
GM
92
93#endif /* not DOUG_LEA_MALLOC */
276cbe5a 94
7bc26fdb
PE
95#if ! defined SYSTEM_MALLOC && ! defined SYNC_INPUT
96#ifdef HAVE_GTK_AND_PTHREAD
aa477689 97
f415cacd
JD
98/* When GTK uses the file chooser dialog, different backends can be loaded
99 dynamically. One such a backend is the Gnome VFS backend that gets loaded
100 if you run Gnome. That backend creates several threads and also allocates
101 memory with malloc.
102
103 If Emacs sets malloc hooks (! SYSTEM_MALLOC) and the emacs_blocked_*
104 functions below are called from malloc, there is a chance that one
105 of these threads preempts the Emacs main thread and the hook variables
333f1b6f 106 end up in an inconsistent state. So we have a mutex to prevent that (note
f415cacd
JD
107 that the backend handles concurrent access to malloc within its own threads
108 but Emacs code running in the main thread is not included in that control).
109
026cdede 110 When UNBLOCK_INPUT is called, reinvoke_input_signal may be called. If this
f415cacd
JD
111 happens in one of the backend threads we will have two threads that tries
112 to run Emacs code at once, and the code is not prepared for that.
113 To prevent that, we only call BLOCK/UNBLOCK from the main thread. */
114
aa477689 115static pthread_mutex_t alloc_mutex;
aa477689 116
959dc601
JD
117#define BLOCK_INPUT_ALLOC \
118 do \
119 { \
120 if (pthread_equal (pthread_self (), main_thread)) \
86302e37 121 BLOCK_INPUT; \
959dc601
JD
122 pthread_mutex_lock (&alloc_mutex); \
123 } \
aa477689 124 while (0)
959dc601
JD
125#define UNBLOCK_INPUT_ALLOC \
126 do \
127 { \
128 pthread_mutex_unlock (&alloc_mutex); \
129 if (pthread_equal (pthread_self (), main_thread)) \
86302e37 130 UNBLOCK_INPUT; \
959dc601 131 } \
aa477689
JD
132 while (0)
133
7bc26fdb 134#else /* ! defined HAVE_GTK_AND_PTHREAD */
aa477689
JD
135
136#define BLOCK_INPUT_ALLOC BLOCK_INPUT
137#define UNBLOCK_INPUT_ALLOC UNBLOCK_INPUT
138
7bc26fdb
PE
139#endif /* ! defined HAVE_GTK_AND_PTHREAD */
140#endif /* ! defined SYSTEM_MALLOC && ! defined SYNC_INPUT */
aa477689 141
2e471eb5
GM
142/* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
143 to a struct Lisp_String. */
144
7cdee936
SM
145#define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
146#define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
b059de99 147#define STRING_MARKED_P(S) (((S)->size & ARRAY_MARK_FLAG) != 0)
2e471eb5 148
eab3844f
PE
149#define VECTOR_MARK(V) ((V)->header.size |= ARRAY_MARK_FLAG)
150#define VECTOR_UNMARK(V) ((V)->header.size &= ~ARRAY_MARK_FLAG)
151#define VECTOR_MARKED_P(V) (((V)->header.size & ARRAY_MARK_FLAG) != 0)
3ef06d12 152
7bc26fdb
PE
153/* Value is the number of bytes of S, a pointer to a struct Lisp_String.
154 Be careful during GC, because S->size contains the mark bit for
2e471eb5
GM
155 strings. */
156
3ef06d12 157#define GC_STRING_BYTES(S) (STRING_BYTES (S))
2e471eb5 158
29208e82
TT
159/* Global variables. */
160struct emacs_globals globals;
161
2e471eb5
GM
162/* Number of bytes of consing done since the last gc. */
163
7146af97
JB
164int consing_since_gc;
165
974aae61
RS
166/* Similar minimum, computed from Vgc_cons_percentage. */
167
168EMACS_INT gc_relative_threshold;
310ea200 169
24d8a105
RS
170/* Minimum number of bytes of consing since GC before next GC,
171 when memory is full. */
172
173EMACS_INT memory_full_cons_threshold;
174
2e471eb5
GM
175/* Nonzero during GC. */
176
7146af97
JB
177int gc_in_progress;
178
3de0effb
RS
179/* Nonzero means abort if try to GC.
180 This is for code which is written on the assumption that
181 no GC will happen, so as to verify that assumption. */
182
183int abort_on_gc;
184
34400008
GM
185/* Number of live and free conses etc. */
186
187static int total_conses, total_markers, total_symbols, total_vector_size;
188static int total_free_conses, total_free_markers, total_free_symbols;
189static int total_free_floats, total_floats;
fd27a537 190
2e471eb5 191/* Points to memory space allocated as "spare", to be freed if we run
24d8a105
RS
192 out of memory. We keep one large block, four cons-blocks, and
193 two string blocks. */
2e471eb5 194
d3d47262 195static char *spare_memory[7];
276cbe5a 196
4e75f29d 197#ifndef SYSTEM_MALLOC
24d8a105 198/* Amount of spare memory to keep in large reserve block. */
2e471eb5 199
276cbe5a 200#define SPARE_MEMORY (1 << 14)
4e75f29d 201#endif
276cbe5a
RS
202
203/* Number of extra blocks malloc should get when it needs more core. */
2e471eb5 204
276cbe5a
RS
205static int malloc_hysteresis;
206
1b8950e5
RS
207/* Initialize it to a nonzero value to force it into data space
208 (rather than bss space). That way unexec will remap it into text
209 space (pure), on some systems. We have not implemented the
210 remapping on more recent systems because this is less important
211 nowadays than in the days of small memories and timesharing. */
2e471eb5 212
244ed907
PE
213#ifndef VIRT_ADDR_VARIES
214static
215#endif
2c4685ee 216EMACS_INT pure[(PURESIZE + sizeof (EMACS_INT) - 1) / sizeof (EMACS_INT)] = {1,};
7146af97 217#define PUREBEG (char *) pure
2e471eb5 218
9e713715 219/* Pointer to the pure area, and its size. */
2e471eb5 220
9e713715
GM
221static char *purebeg;
222static size_t pure_size;
223
224/* Number of bytes of pure storage used before pure storage overflowed.
225 If this is non-zero, this implies that an overflow occurred. */
226
227static size_t pure_bytes_used_before_overflow;
7146af97 228
34400008
GM
229/* Value is non-zero if P points into pure space. */
230
231#define PURE_POINTER_P(P) \
232 (((PNTR_COMPARISON_TYPE) (P) \
9e713715 233 < (PNTR_COMPARISON_TYPE) ((char *) purebeg + pure_size)) \
34400008 234 && ((PNTR_COMPARISON_TYPE) (P) \
9e713715 235 >= (PNTR_COMPARISON_TYPE) purebeg))
34400008 236
e5bc14d4
YM
237/* Index in pure at which next pure Lisp object will be allocated.. */
238
239static EMACS_INT pure_bytes_used_lisp;
240
241/* Number of bytes allocated for non-Lisp objects in pure storage. */
242
243static EMACS_INT pure_bytes_used_non_lisp;
244
2e471eb5
GM
245/* If nonzero, this is a warning delivered by malloc and not yet
246 displayed. */
247
a8fe7202 248const char *pending_malloc_warning;
7146af97
JB
249
250/* Maximum amount of C stack to save when a GC happens. */
251
252#ifndef MAX_SAVE_STACK
253#define MAX_SAVE_STACK 16000
254#endif
255
256/* Buffer in which we save a copy of the C stack at each GC. */
257
dd3f25f7 258#if MAX_SAVE_STACK > 0
d3d47262 259static char *stack_copy;
dd3f25f7
PE
260static size_t stack_copy_size;
261#endif
7146af97 262
2e471eb5
GM
263/* Non-zero means ignore malloc warnings. Set during initialization.
264 Currently not used. */
265
d3d47262 266static int ignore_warnings;
350273a4 267
955cbe7b
PE
268static Lisp_Object Qgc_cons_threshold;
269Lisp_Object Qchar_table_extra_slots;
e8197642 270
9e713715
GM
271/* Hook run after GC has finished. */
272
955cbe7b 273static Lisp_Object Qpost_gc_hook;
2c5bd608 274
f57e2426
J
275static void mark_buffer (Lisp_Object);
276static void mark_terminals (void);
f57e2426
J
277static void gc_sweep (void);
278static void mark_glyph_matrix (struct glyph_matrix *);
279static void mark_face_cache (struct face_cache *);
41c28a37 280
69003fd8
PE
281#if !defined REL_ALLOC || defined SYSTEM_MALLOC
282static void refill_memory_reserve (void);
283#endif
f57e2426
J
284static struct Lisp_String *allocate_string (void);
285static void compact_small_strings (void);
286static void free_large_strings (void);
287static void sweep_strings (void);
244ed907 288static void free_misc (Lisp_Object);
34400008 289
34400008
GM
290/* When scanning the C stack for live Lisp objects, Emacs keeps track
291 of what memory allocated via lisp_malloc is intended for what
292 purpose. This enumeration specifies the type of memory. */
293
294enum mem_type
295{
296 MEM_TYPE_NON_LISP,
297 MEM_TYPE_BUFFER,
298 MEM_TYPE_CONS,
299 MEM_TYPE_STRING,
300 MEM_TYPE_MISC,
301 MEM_TYPE_SYMBOL,
302 MEM_TYPE_FLOAT,
9c545a55
SM
303 /* We used to keep separate mem_types for subtypes of vectors such as
304 process, hash_table, frame, terminal, and window, but we never made
305 use of the distinction, so it only caused source-code complexity
306 and runtime slowdown. Minor but pointless. */
307 MEM_TYPE_VECTORLIKE
34400008
GM
308};
309
f57e2426
J
310static POINTER_TYPE *lisp_align_malloc (size_t, enum mem_type);
311static POINTER_TYPE *lisp_malloc (size_t, enum mem_type);
225ccad6 312
24d8a105 313
877935b1 314#if GC_MARK_STACK || defined GC_MALLOC_CHECK
0b378936
GM
315
316#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
317#include <stdio.h> /* For fprintf. */
318#endif
319
320/* A unique object in pure space used to make some Lisp objects
321 on free lists recognizable in O(1). */
322
d3d47262 323static Lisp_Object Vdead;
0b378936 324
877935b1
GM
325#ifdef GC_MALLOC_CHECK
326
327enum mem_type allocated_mem_type;
d3d47262 328static int dont_register_blocks;
877935b1
GM
329
330#endif /* GC_MALLOC_CHECK */
331
332/* A node in the red-black tree describing allocated memory containing
333 Lisp data. Each such block is recorded with its start and end
334 address when it is allocated, and removed from the tree when it
335 is freed.
336
337 A red-black tree is a balanced binary tree with the following
338 properties:
339
340 1. Every node is either red or black.
341 2. Every leaf is black.
342 3. If a node is red, then both of its children are black.
343 4. Every simple path from a node to a descendant leaf contains
344 the same number of black nodes.
345 5. The root is always black.
346
347 When nodes are inserted into the tree, or deleted from the tree,
348 the tree is "fixed" so that these properties are always true.
349
350 A red-black tree with N internal nodes has height at most 2
351 log(N+1). Searches, insertions and deletions are done in O(log N).
352 Please see a text book about data structures for a detailed
353 description of red-black trees. Any book worth its salt should
354 describe them. */
355
356struct mem_node
357{
9f7d9210
RS
358 /* Children of this node. These pointers are never NULL. When there
359 is no child, the value is MEM_NIL, which points to a dummy node. */
360 struct mem_node *left, *right;
361
362 /* The parent of this node. In the root node, this is NULL. */
363 struct mem_node *parent;
877935b1
GM
364
365 /* Start and end of allocated region. */
366 void *start, *end;
367
368 /* Node color. */
369 enum {MEM_BLACK, MEM_RED} color;
177c0ea7 370
877935b1
GM
371 /* Memory type. */
372 enum mem_type type;
373};
374
375/* Base address of stack. Set in main. */
376
377Lisp_Object *stack_base;
378
379/* Root of the tree describing allocated Lisp memory. */
380
381static struct mem_node *mem_root;
382
ece93c02
GM
383/* Lowest and highest known address in the heap. */
384
385static void *min_heap_address, *max_heap_address;
386
877935b1
GM
387/* Sentinel node of the tree. */
388
389static struct mem_node mem_z;
390#define MEM_NIL &mem_z
391
f57e2426
J
392static struct Lisp_Vector *allocate_vectorlike (EMACS_INT);
393static void lisp_free (POINTER_TYPE *);
394static void mark_stack (void);
395static int live_vector_p (struct mem_node *, void *);
396static int live_buffer_p (struct mem_node *, void *);
397static int live_string_p (struct mem_node *, void *);
398static int live_cons_p (struct mem_node *, void *);
399static int live_symbol_p (struct mem_node *, void *);
400static int live_float_p (struct mem_node *, void *);
401static int live_misc_p (struct mem_node *, void *);
402static void mark_maybe_object (Lisp_Object);
403static void mark_memory (void *, void *, int);
404static void mem_init (void);
405static struct mem_node *mem_insert (void *, void *, enum mem_type);
406static void mem_insert_fixup (struct mem_node *);
407static void mem_rotate_left (struct mem_node *);
408static void mem_rotate_right (struct mem_node *);
409static void mem_delete (struct mem_node *);
410static void mem_delete_fixup (struct mem_node *);
411static INLINE struct mem_node *mem_find (void *);
34400008 412
34400008
GM
413
414#if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
f57e2426 415static void check_gcpros (void);
34400008
GM
416#endif
417
877935b1 418#endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
34400008 419
1f0b3fd2
GM
420/* Recording what needs to be marked for gc. */
421
422struct gcpro *gcprolist;
423
379b98b1
PE
424/* Addresses of staticpro'd variables. Initialize it to a nonzero
425 value; otherwise some compilers put it into BSS. */
1f0b3fd2 426
0078170f 427#define NSTATICS 0x640
d3d47262 428static Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
1f0b3fd2
GM
429
430/* Index of next unused slot in staticvec. */
431
d3d47262 432static int staticidx = 0;
1f0b3fd2 433
f57e2426 434static POINTER_TYPE *pure_alloc (size_t, int);
1f0b3fd2
GM
435
436
437/* Value is SZ rounded up to the next multiple of ALIGNMENT.
438 ALIGNMENT must be a power of 2. */
439
ab6780cd 440#define ALIGN(ptr, ALIGNMENT) \
d01a7826 441 ((POINTER_TYPE *) ((((uintptr_t) (ptr)) + (ALIGNMENT) - 1) \
ab6780cd 442 & ~((ALIGNMENT) - 1)))
1f0b3fd2 443
ece93c02 444
7146af97 445\f
34400008
GM
446/************************************************************************
447 Malloc
448 ************************************************************************/
449
4455ad75 450/* Function malloc calls this if it finds we are near exhausting storage. */
d457598b
AS
451
452void
a8fe7202 453malloc_warning (const char *str)
7146af97
JB
454{
455 pending_malloc_warning = str;
456}
457
34400008 458
4455ad75 459/* Display an already-pending malloc warning. */
34400008 460
d457598b 461void
971de7fb 462display_malloc_warning (void)
7146af97 463{
4455ad75
RS
464 call3 (intern ("display-warning"),
465 intern ("alloc"),
466 build_string (pending_malloc_warning),
467 intern ("emergency"));
7146af97 468 pending_malloc_warning = 0;
7146af97 469}
49efed3a 470\f
276cbe5a
RS
471/* Called if we can't allocate relocatable space for a buffer. */
472
473void
971de7fb 474buffer_memory_full (void)
276cbe5a 475{
2e471eb5
GM
476 /* If buffers use the relocating allocator, no need to free
477 spare_memory, because we may have plenty of malloc space left
478 that we could get, and if we don't, the malloc that fails will
479 itself cause spare_memory to be freed. If buffers don't use the
480 relocating allocator, treat this like any other failing
481 malloc. */
276cbe5a
RS
482
483#ifndef REL_ALLOC
484 memory_full ();
485#endif
486
2e471eb5
GM
487 /* This used to call error, but if we've run out of memory, we could
488 get infinite recursion trying to build the string. */
9b306d37 489 xsignal (Qnil, Vmemory_signal_data);
7146af97
JB
490}
491
34400008 492
212f33f1
KS
493#ifdef XMALLOC_OVERRUN_CHECK
494
bdbed949
KS
495/* Check for overrun in malloc'ed buffers by wrapping a 16 byte header
496 and a 16 byte trailer around each block.
497
498 The header consists of 12 fixed bytes + a 4 byte integer contaning the
499 original block size, while the trailer consists of 16 fixed bytes.
500
501 The header is used to detect whether this block has been allocated
502 through these functions -- as it seems that some low-level libc
503 functions may bypass the malloc hooks.
504*/
505
506
212f33f1 507#define XMALLOC_OVERRUN_CHECK_SIZE 16
bdbed949 508
212f33f1
KS
509static char xmalloc_overrun_check_header[XMALLOC_OVERRUN_CHECK_SIZE-4] =
510 { 0x9a, 0x9b, 0xae, 0xaf,
511 0xbf, 0xbe, 0xce, 0xcf,
512 0xea, 0xeb, 0xec, 0xed };
513
514static char xmalloc_overrun_check_trailer[XMALLOC_OVERRUN_CHECK_SIZE] =
515 { 0xaa, 0xab, 0xac, 0xad,
516 0xba, 0xbb, 0xbc, 0xbd,
517 0xca, 0xcb, 0xcc, 0xcd,
518 0xda, 0xdb, 0xdc, 0xdd };
519
bdbed949
KS
520/* Macros to insert and extract the block size in the header. */
521
522#define XMALLOC_PUT_SIZE(ptr, size) \
523 (ptr[-1] = (size & 0xff), \
524 ptr[-2] = ((size >> 8) & 0xff), \
525 ptr[-3] = ((size >> 16) & 0xff), \
526 ptr[-4] = ((size >> 24) & 0xff))
527
528#define XMALLOC_GET_SIZE(ptr) \
529 (size_t)((unsigned)(ptr[-1]) | \
530 ((unsigned)(ptr[-2]) << 8) | \
531 ((unsigned)(ptr[-3]) << 16) | \
532 ((unsigned)(ptr[-4]) << 24))
533
534
d8f165a8
JD
535/* The call depth in overrun_check functions. For example, this might happen:
536 xmalloc()
537 overrun_check_malloc()
538 -> malloc -> (via hook)_-> emacs_blocked_malloc
539 -> overrun_check_malloc
540 call malloc (hooks are NULL, so real malloc is called).
541 malloc returns 10000.
542 add overhead, return 10016.
543 <- (back in overrun_check_malloc)
857ae68b 544 add overhead again, return 10032
d8f165a8 545 xmalloc returns 10032.
857ae68b
JD
546
547 (time passes).
548
d8f165a8
JD
549 xfree(10032)
550 overrun_check_free(10032)
551 decrease overhed
552 free(10016) <- crash, because 10000 is the original pointer. */
857ae68b
JD
553
554static int check_depth;
555
bdbed949
KS
556/* Like malloc, but wraps allocated block with header and trailer. */
557
2538aa2f 558static POINTER_TYPE *
e7974947 559overrun_check_malloc (size_t size)
212f33f1 560{
bdbed949 561 register unsigned char *val;
857ae68b 562 size_t overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_SIZE*2 : 0;
212f33f1 563
857ae68b
JD
564 val = (unsigned char *) malloc (size + overhead);
565 if (val && check_depth == 1)
212f33f1 566 {
72af86bd
AS
567 memcpy (val, xmalloc_overrun_check_header,
568 XMALLOC_OVERRUN_CHECK_SIZE - 4);
212f33f1 569 val += XMALLOC_OVERRUN_CHECK_SIZE;
bdbed949 570 XMALLOC_PUT_SIZE(val, size);
72af86bd
AS
571 memcpy (val + size, xmalloc_overrun_check_trailer,
572 XMALLOC_OVERRUN_CHECK_SIZE);
212f33f1 573 }
857ae68b 574 --check_depth;
212f33f1
KS
575 return (POINTER_TYPE *)val;
576}
577
bdbed949
KS
578
579/* Like realloc, but checks old block for overrun, and wraps new block
580 with header and trailer. */
581
2538aa2f 582static POINTER_TYPE *
e7974947 583overrun_check_realloc (POINTER_TYPE *block, size_t size)
212f33f1 584{
e7974947 585 register unsigned char *val = (unsigned char *) block;
857ae68b 586 size_t overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_SIZE*2 : 0;
212f33f1
KS
587
588 if (val
857ae68b 589 && check_depth == 1
72af86bd
AS
590 && memcmp (xmalloc_overrun_check_header,
591 val - XMALLOC_OVERRUN_CHECK_SIZE,
592 XMALLOC_OVERRUN_CHECK_SIZE - 4) == 0)
212f33f1 593 {
bdbed949 594 size_t osize = XMALLOC_GET_SIZE (val);
72af86bd
AS
595 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
596 XMALLOC_OVERRUN_CHECK_SIZE))
212f33f1 597 abort ();
72af86bd 598 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
212f33f1 599 val -= XMALLOC_OVERRUN_CHECK_SIZE;
72af86bd 600 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE);
212f33f1
KS
601 }
602
857ae68b 603 val = (unsigned char *) realloc ((POINTER_TYPE *)val, size + overhead);
212f33f1 604
857ae68b 605 if (val && check_depth == 1)
212f33f1 606 {
72af86bd
AS
607 memcpy (val, xmalloc_overrun_check_header,
608 XMALLOC_OVERRUN_CHECK_SIZE - 4);
212f33f1 609 val += XMALLOC_OVERRUN_CHECK_SIZE;
bdbed949 610 XMALLOC_PUT_SIZE(val, size);
72af86bd
AS
611 memcpy (val + size, xmalloc_overrun_check_trailer,
612 XMALLOC_OVERRUN_CHECK_SIZE);
212f33f1 613 }
857ae68b 614 --check_depth;
212f33f1
KS
615 return (POINTER_TYPE *)val;
616}
617
bdbed949
KS
618/* Like free, but checks block for overrun. */
619
2538aa2f 620static void
e7974947 621overrun_check_free (POINTER_TYPE *block)
212f33f1 622{
e7974947 623 unsigned char *val = (unsigned char *) block;
212f33f1 624
857ae68b 625 ++check_depth;
212f33f1 626 if (val
857ae68b 627 && check_depth == 1
72af86bd
AS
628 && memcmp (xmalloc_overrun_check_header,
629 val - XMALLOC_OVERRUN_CHECK_SIZE,
630 XMALLOC_OVERRUN_CHECK_SIZE - 4) == 0)
212f33f1 631 {
bdbed949 632 size_t osize = XMALLOC_GET_SIZE (val);
72af86bd
AS
633 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
634 XMALLOC_OVERRUN_CHECK_SIZE))
212f33f1 635 abort ();
454d7973
KS
636#ifdef XMALLOC_CLEAR_FREE_MEMORY
637 val -= XMALLOC_OVERRUN_CHECK_SIZE;
638 memset (val, 0xff, osize + XMALLOC_OVERRUN_CHECK_SIZE*2);
639#else
72af86bd 640 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
212f33f1 641 val -= XMALLOC_OVERRUN_CHECK_SIZE;
72af86bd 642 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE);
454d7973 643#endif
212f33f1
KS
644 }
645
646 free (val);
857ae68b 647 --check_depth;
212f33f1
KS
648}
649
650#undef malloc
651#undef realloc
652#undef free
653#define malloc overrun_check_malloc
654#define realloc overrun_check_realloc
655#define free overrun_check_free
656#endif
657
dafc79fa
SM
658#ifdef SYNC_INPUT
659/* When using SYNC_INPUT, we don't call malloc from a signal handler, so
660 there's no need to block input around malloc. */
661#define MALLOC_BLOCK_INPUT ((void)0)
662#define MALLOC_UNBLOCK_INPUT ((void)0)
663#else
664#define MALLOC_BLOCK_INPUT BLOCK_INPUT
665#define MALLOC_UNBLOCK_INPUT UNBLOCK_INPUT
666#endif
bdbed949 667
34400008 668/* Like malloc but check for no memory and block interrupt input.. */
7146af97 669
c971ff9a 670POINTER_TYPE *
971de7fb 671xmalloc (size_t size)
7146af97 672{
c971ff9a 673 register POINTER_TYPE *val;
7146af97 674
dafc79fa 675 MALLOC_BLOCK_INPUT;
c971ff9a 676 val = (POINTER_TYPE *) malloc (size);
dafc79fa 677 MALLOC_UNBLOCK_INPUT;
7146af97 678
2e471eb5
GM
679 if (!val && size)
680 memory_full ();
7146af97
JB
681 return val;
682}
683
34400008
GM
684
685/* Like realloc but check for no memory and block interrupt input.. */
686
c971ff9a 687POINTER_TYPE *
971de7fb 688xrealloc (POINTER_TYPE *block, size_t size)
7146af97 689{
c971ff9a 690 register POINTER_TYPE *val;
7146af97 691
dafc79fa 692 MALLOC_BLOCK_INPUT;
56d2031b
JB
693 /* We must call malloc explicitly when BLOCK is 0, since some
694 reallocs don't do this. */
695 if (! block)
c971ff9a 696 val = (POINTER_TYPE *) malloc (size);
f048679d 697 else
c971ff9a 698 val = (POINTER_TYPE *) realloc (block, size);
dafc79fa 699 MALLOC_UNBLOCK_INPUT;
7146af97
JB
700
701 if (!val && size) memory_full ();
702 return val;
703}
9ac0d9e0 704
34400008 705
005ca5c7 706/* Like free but block interrupt input. */
34400008 707
9ac0d9e0 708void
971de7fb 709xfree (POINTER_TYPE *block)
9ac0d9e0 710{
70fdbb46
JM
711 if (!block)
712 return;
dafc79fa 713 MALLOC_BLOCK_INPUT;
9ac0d9e0 714 free (block);
dafc79fa 715 MALLOC_UNBLOCK_INPUT;
24d8a105
RS
716 /* We don't call refill_memory_reserve here
717 because that duplicates doing so in emacs_blocked_free
718 and the criterion should go there. */
9ac0d9e0
JB
719}
720
c8099634 721
dca7c6a8
GM
722/* Like strdup, but uses xmalloc. */
723
724char *
971de7fb 725xstrdup (const char *s)
dca7c6a8 726{
675d5130 727 size_t len = strlen (s) + 1;
dca7c6a8 728 char *p = (char *) xmalloc (len);
72af86bd 729 memcpy (p, s, len);
dca7c6a8
GM
730 return p;
731}
732
733
f61bef8b
KS
734/* Unwind for SAFE_ALLOCA */
735
736Lisp_Object
971de7fb 737safe_alloca_unwind (Lisp_Object arg)
f61bef8b 738{
b766f870
KS
739 register struct Lisp_Save_Value *p = XSAVE_VALUE (arg);
740
741 p->dogc = 0;
742 xfree (p->pointer);
743 p->pointer = 0;
7b7990cc 744 free_misc (arg);
f61bef8b
KS
745 return Qnil;
746}
747
748
34400008
GM
749/* Like malloc but used for allocating Lisp data. NBYTES is the
750 number of bytes to allocate, TYPE describes the intended use of the
751 allcated memory block (for strings, for conses, ...). */
752
212f33f1 753#ifndef USE_LSB_TAG
918a23a7 754static void *lisp_malloc_loser;
212f33f1 755#endif
918a23a7 756
675d5130 757static POINTER_TYPE *
971de7fb 758lisp_malloc (size_t nbytes, enum mem_type type)
c8099634 759{
34400008 760 register void *val;
c8099634 761
dafc79fa 762 MALLOC_BLOCK_INPUT;
877935b1
GM
763
764#ifdef GC_MALLOC_CHECK
765 allocated_mem_type = type;
766#endif
177c0ea7 767
34400008 768 val = (void *) malloc (nbytes);
c8099634 769
6b61353c 770#ifndef USE_LSB_TAG
918a23a7
RS
771 /* If the memory just allocated cannot be addressed thru a Lisp
772 object's pointer, and it needs to be,
773 that's equivalent to running out of memory. */
774 if (val && type != MEM_TYPE_NON_LISP)
775 {
776 Lisp_Object tem;
777 XSETCONS (tem, (char *) val + nbytes - 1);
778 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
779 {
780 lisp_malloc_loser = val;
781 free (val);
782 val = 0;
783 }
784 }
6b61353c 785#endif
918a23a7 786
877935b1 787#if GC_MARK_STACK && !defined GC_MALLOC_CHECK
dca7c6a8 788 if (val && type != MEM_TYPE_NON_LISP)
34400008
GM
789 mem_insert (val, (char *) val + nbytes, type);
790#endif
177c0ea7 791
dafc79fa 792 MALLOC_UNBLOCK_INPUT;
dca7c6a8
GM
793 if (!val && nbytes)
794 memory_full ();
c8099634
RS
795 return val;
796}
797
34400008
GM
798/* Free BLOCK. This must be called to free memory allocated with a
799 call to lisp_malloc. */
800
bf952fb6 801static void
971de7fb 802lisp_free (POINTER_TYPE *block)
c8099634 803{
dafc79fa 804 MALLOC_BLOCK_INPUT;
c8099634 805 free (block);
877935b1 806#if GC_MARK_STACK && !defined GC_MALLOC_CHECK
34400008
GM
807 mem_delete (mem_find (block));
808#endif
dafc79fa 809 MALLOC_UNBLOCK_INPUT;
c8099634 810}
34400008 811
ab6780cd
SM
812/* Allocation of aligned blocks of memory to store Lisp data. */
813/* The entry point is lisp_align_malloc which returns blocks of at most */
814/* BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
815
349a4500
SM
816/* Use posix_memalloc if the system has it and we're using the system's
817 malloc (because our gmalloc.c routines don't have posix_memalign although
818 its memalloc could be used). */
b4181b01
KS
819#if defined (HAVE_POSIX_MEMALIGN) && defined (SYSTEM_MALLOC)
820#define USE_POSIX_MEMALIGN 1
821#endif
ab6780cd
SM
822
823/* BLOCK_ALIGN has to be a power of 2. */
824#define BLOCK_ALIGN (1 << 10)
ab6780cd
SM
825
826/* Padding to leave at the end of a malloc'd block. This is to give
827 malloc a chance to minimize the amount of memory wasted to alignment.
828 It should be tuned to the particular malloc library used.
19bcad1f
SM
829 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
830 posix_memalign on the other hand would ideally prefer a value of 4
831 because otherwise, there's 1020 bytes wasted between each ablocks.
f501ccb4
SM
832 In Emacs, testing shows that those 1020 can most of the time be
833 efficiently used by malloc to place other objects, so a value of 0 can
834 still preferable unless you have a lot of aligned blocks and virtually
835 nothing else. */
19bcad1f
SM
836#define BLOCK_PADDING 0
837#define BLOCK_BYTES \
0b432f21 838 (BLOCK_ALIGN - sizeof (struct ablocks *) - BLOCK_PADDING)
19bcad1f
SM
839
840/* Internal data structures and constants. */
841
ab6780cd
SM
842#define ABLOCKS_SIZE 16
843
844/* An aligned block of memory. */
845struct ablock
846{
847 union
848 {
849 char payload[BLOCK_BYTES];
850 struct ablock *next_free;
851 } x;
852 /* `abase' is the aligned base of the ablocks. */
853 /* It is overloaded to hold the virtual `busy' field that counts
854 the number of used ablock in the parent ablocks.
855 The first ablock has the `busy' field, the others have the `abase'
856 field. To tell the difference, we assume that pointers will have
857 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
858 is used to tell whether the real base of the parent ablocks is `abase'
859 (if not, the word before the first ablock holds a pointer to the
860 real base). */
861 struct ablocks *abase;
862 /* The padding of all but the last ablock is unused. The padding of
863 the last ablock in an ablocks is not allocated. */
19bcad1f
SM
864#if BLOCK_PADDING
865 char padding[BLOCK_PADDING];
ebb8d410 866#endif
ab6780cd
SM
867};
868
869/* A bunch of consecutive aligned blocks. */
870struct ablocks
871{
872 struct ablock blocks[ABLOCKS_SIZE];
873};
874
875/* Size of the block requested from malloc or memalign. */
19bcad1f 876#define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
ab6780cd
SM
877
878#define ABLOCK_ABASE(block) \
d01a7826 879 (((uintptr_t) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
ab6780cd
SM
880 ? (struct ablocks *)(block) \
881 : (block)->abase)
882
883/* Virtual `busy' field. */
884#define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
885
886/* Pointer to the (not necessarily aligned) malloc block. */
349a4500 887#ifdef USE_POSIX_MEMALIGN
19bcad1f
SM
888#define ABLOCKS_BASE(abase) (abase)
889#else
ab6780cd 890#define ABLOCKS_BASE(abase) \
d01a7826 891 (1 & (intptr_t) ABLOCKS_BUSY (abase) ? abase : ((void**)abase)[-1])
19bcad1f 892#endif
ab6780cd
SM
893
894/* The list of free ablock. */
895static struct ablock *free_ablock;
896
897/* Allocate an aligned block of nbytes.
898 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
899 smaller or equal to BLOCK_BYTES. */
900static POINTER_TYPE *
971de7fb 901lisp_align_malloc (size_t nbytes, enum mem_type type)
ab6780cd
SM
902{
903 void *base, *val;
904 struct ablocks *abase;
905
906 eassert (nbytes <= BLOCK_BYTES);
907
dafc79fa 908 MALLOC_BLOCK_INPUT;
ab6780cd
SM
909
910#ifdef GC_MALLOC_CHECK
911 allocated_mem_type = type;
912#endif
913
914 if (!free_ablock)
915 {
005ca5c7 916 int i;
d01a7826 917 intptr_t aligned; /* int gets warning casting to 64-bit pointer. */
ab6780cd
SM
918
919#ifdef DOUG_LEA_MALLOC
920 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
921 because mapped region contents are not preserved in
922 a dumped Emacs. */
923 mallopt (M_MMAP_MAX, 0);
924#endif
925
349a4500 926#ifdef USE_POSIX_MEMALIGN
19bcad1f
SM
927 {
928 int err = posix_memalign (&base, BLOCK_ALIGN, ABLOCKS_BYTES);
ab349c19
RS
929 if (err)
930 base = NULL;
931 abase = base;
19bcad1f
SM
932 }
933#else
ab6780cd
SM
934 base = malloc (ABLOCKS_BYTES);
935 abase = ALIGN (base, BLOCK_ALIGN);
ab349c19
RS
936#endif
937
6b61353c
KH
938 if (base == 0)
939 {
dafc79fa 940 MALLOC_UNBLOCK_INPUT;
6b61353c
KH
941 memory_full ();
942 }
ab6780cd
SM
943
944 aligned = (base == abase);
945 if (!aligned)
946 ((void**)abase)[-1] = base;
947
948#ifdef DOUG_LEA_MALLOC
949 /* Back to a reasonable maximum of mmap'ed areas. */
950 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
951#endif
952
6b61353c 953#ifndef USE_LSB_TAG
8f924df7
KH
954 /* If the memory just allocated cannot be addressed thru a Lisp
955 object's pointer, and it needs to be, that's equivalent to
956 running out of memory. */
957 if (type != MEM_TYPE_NON_LISP)
958 {
959 Lisp_Object tem;
960 char *end = (char *) base + ABLOCKS_BYTES - 1;
961 XSETCONS (tem, end);
962 if ((char *) XCONS (tem) != end)
963 {
964 lisp_malloc_loser = base;
965 free (base);
dafc79fa 966 MALLOC_UNBLOCK_INPUT;
8f924df7
KH
967 memory_full ();
968 }
969 }
6b61353c 970#endif
8f924df7 971
ab6780cd
SM
972 /* Initialize the blocks and put them on the free list.
973 Is `base' was not properly aligned, we can't use the last block. */
974 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
975 {
976 abase->blocks[i].abase = abase;
977 abase->blocks[i].x.next_free = free_ablock;
978 free_ablock = &abase->blocks[i];
979 }
8ac068ac 980 ABLOCKS_BUSY (abase) = (struct ablocks *) aligned;
ab6780cd 981
d01a7826 982 eassert (0 == ((uintptr_t) abase) % BLOCK_ALIGN);
ab6780cd
SM
983 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
984 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
985 eassert (ABLOCKS_BASE (abase) == base);
d01a7826 986 eassert (aligned == (intptr_t) ABLOCKS_BUSY (abase));
ab6780cd
SM
987 }
988
989 abase = ABLOCK_ABASE (free_ablock);
8ac068ac 990 ABLOCKS_BUSY (abase) =
d01a7826 991 (struct ablocks *) (2 + (intptr_t) ABLOCKS_BUSY (abase));
ab6780cd
SM
992 val = free_ablock;
993 free_ablock = free_ablock->x.next_free;
994
ab6780cd
SM
995#if GC_MARK_STACK && !defined GC_MALLOC_CHECK
996 if (val && type != MEM_TYPE_NON_LISP)
997 mem_insert (val, (char *) val + nbytes, type);
998#endif
999
dafc79fa 1000 MALLOC_UNBLOCK_INPUT;
ab6780cd
SM
1001 if (!val && nbytes)
1002 memory_full ();
1003
d01a7826 1004 eassert (0 == ((uintptr_t) val) % BLOCK_ALIGN);
ab6780cd
SM
1005 return val;
1006}
1007
1008static void
971de7fb 1009lisp_align_free (POINTER_TYPE *block)
ab6780cd
SM
1010{
1011 struct ablock *ablock = block;
1012 struct ablocks *abase = ABLOCK_ABASE (ablock);
1013
dafc79fa 1014 MALLOC_BLOCK_INPUT;
ab6780cd
SM
1015#if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1016 mem_delete (mem_find (block));
1017#endif
1018 /* Put on free list. */
1019 ablock->x.next_free = free_ablock;
1020 free_ablock = ablock;
1021 /* Update busy count. */
8ac068ac 1022 ABLOCKS_BUSY (abase) =
d01a7826 1023 (struct ablocks *) (-2 + (intptr_t) ABLOCKS_BUSY (abase));
d2db1c32 1024
d01a7826 1025 if (2 > (intptr_t) ABLOCKS_BUSY (abase))
ab6780cd 1026 { /* All the blocks are free. */
d01a7826 1027 int i = 0, aligned = (intptr_t) ABLOCKS_BUSY (abase);
ab6780cd
SM
1028 struct ablock **tem = &free_ablock;
1029 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
1030
1031 while (*tem)
1032 {
1033 if (*tem >= (struct ablock *) abase && *tem < atop)
1034 {
1035 i++;
1036 *tem = (*tem)->x.next_free;
1037 }
1038 else
1039 tem = &(*tem)->x.next_free;
1040 }
1041 eassert ((aligned & 1) == aligned);
1042 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
349a4500 1043#ifdef USE_POSIX_MEMALIGN
d01a7826 1044 eassert ((uintptr_t) ABLOCKS_BASE (abase) % BLOCK_ALIGN == 0);
cfb2f32e 1045#endif
ab6780cd
SM
1046 free (ABLOCKS_BASE (abase));
1047 }
dafc79fa 1048 MALLOC_UNBLOCK_INPUT;
ab6780cd 1049}
3ef06d12
SM
1050
1051/* Return a new buffer structure allocated from the heap with
1052 a call to lisp_malloc. */
1053
1054struct buffer *
971de7fb 1055allocate_buffer (void)
3ef06d12
SM
1056{
1057 struct buffer *b
1058 = (struct buffer *) lisp_malloc (sizeof (struct buffer),
1059 MEM_TYPE_BUFFER);
eab3844f
PE
1060 XSETPVECTYPESIZE (b, PVEC_BUFFER,
1061 ((sizeof (struct buffer) + sizeof (EMACS_INT) - 1)
1062 / sizeof (EMACS_INT)));
3ef06d12
SM
1063 return b;
1064}
1065
9ac0d9e0 1066\f
026cdede
SM
1067#ifndef SYSTEM_MALLOC
1068
9ac0d9e0
JB
1069/* Arranging to disable input signals while we're in malloc.
1070
1071 This only works with GNU malloc. To help out systems which can't
1072 use GNU malloc, all the calls to malloc, realloc, and free
1073 elsewhere in the code should be inside a BLOCK_INPUT/UNBLOCK_INPUT
026cdede 1074 pair; unfortunately, we have no idea what C library functions
9ac0d9e0 1075 might call malloc, so we can't really protect them unless you're
2c5bd608
DL
1076 using GNU malloc. Fortunately, most of the major operating systems
1077 can use GNU malloc. */
9ac0d9e0 1078
026cdede 1079#ifndef SYNC_INPUT
dafc79fa
SM
1080/* When using SYNC_INPUT, we don't call malloc from a signal handler, so
1081 there's no need to block input around malloc. */
026cdede 1082
b3303f74 1083#ifndef DOUG_LEA_MALLOC
f57e2426
J
1084extern void * (*__malloc_hook) (size_t, const void *);
1085extern void * (*__realloc_hook) (void *, size_t, const void *);
1086extern void (*__free_hook) (void *, const void *);
b3303f74
DL
1087/* Else declared in malloc.h, perhaps with an extra arg. */
1088#endif /* DOUG_LEA_MALLOC */
f57e2426
J
1089static void * (*old_malloc_hook) (size_t, const void *);
1090static void * (*old_realloc_hook) (void *, size_t, const void*);
1091static void (*old_free_hook) (void*, const void*);
9ac0d9e0 1092
4e75f29d
PE
1093#ifdef DOUG_LEA_MALLOC
1094# define BYTES_USED (mallinfo ().uordblks)
1095#else
1096# define BYTES_USED _bytes_used
1097#endif
1098
ef1b0ba7
SM
1099static __malloc_size_t bytes_used_when_reconsidered;
1100
4e75f29d
PE
1101/* Value of _bytes_used, when spare_memory was freed. */
1102
1103static __malloc_size_t bytes_used_when_full;
1104
276cbe5a
RS
1105/* This function is used as the hook for free to call. */
1106
9ac0d9e0 1107static void
7c3320d8 1108emacs_blocked_free (void *ptr, const void *ptr2)
9ac0d9e0 1109{
aa477689 1110 BLOCK_INPUT_ALLOC;
877935b1
GM
1111
1112#ifdef GC_MALLOC_CHECK
a83fee2c
GM
1113 if (ptr)
1114 {
1115 struct mem_node *m;
177c0ea7 1116
a83fee2c
GM
1117 m = mem_find (ptr);
1118 if (m == MEM_NIL || m->start != ptr)
1119 {
1120 fprintf (stderr,
1121 "Freeing `%p' which wasn't allocated with malloc\n", ptr);
1122 abort ();
1123 }
1124 else
1125 {
1126 /* fprintf (stderr, "free %p...%p (%p)\n", m->start, m->end, ptr); */
1127 mem_delete (m);
1128 }
1129 }
877935b1 1130#endif /* GC_MALLOC_CHECK */
177c0ea7 1131
9ac0d9e0
JB
1132 __free_hook = old_free_hook;
1133 free (ptr);
177c0ea7 1134
276cbe5a
RS
1135 /* If we released our reserve (due to running out of memory),
1136 and we have a fair amount free once again,
1137 try to set aside another reserve in case we run out once more. */
24d8a105 1138 if (! NILP (Vmemory_full)
276cbe5a
RS
1139 /* Verify there is enough space that even with the malloc
1140 hysteresis this call won't run out again.
1141 The code here is correct as long as SPARE_MEMORY
1142 is substantially larger than the block size malloc uses. */
1143 && (bytes_used_when_full
4d74a5fc 1144 > ((bytes_used_when_reconsidered = BYTES_USED)
bccfb310 1145 + max (malloc_hysteresis, 4) * SPARE_MEMORY)))
24d8a105 1146 refill_memory_reserve ();
276cbe5a 1147
b0846f52 1148 __free_hook = emacs_blocked_free;
aa477689 1149 UNBLOCK_INPUT_ALLOC;
9ac0d9e0
JB
1150}
1151
34400008 1152
276cbe5a
RS
1153/* This function is the malloc hook that Emacs uses. */
1154
9ac0d9e0 1155static void *
7c3320d8 1156emacs_blocked_malloc (size_t size, const void *ptr)
9ac0d9e0
JB
1157{
1158 void *value;
1159
aa477689 1160 BLOCK_INPUT_ALLOC;
9ac0d9e0 1161 __malloc_hook = old_malloc_hook;
1177ecf6 1162#ifdef DOUG_LEA_MALLOC
5665a02f
KL
1163 /* Segfaults on my system. --lorentey */
1164 /* mallopt (M_TOP_PAD, malloc_hysteresis * 4096); */
1177ecf6 1165#else
d1658221 1166 __malloc_extra_blocks = malloc_hysteresis;
1177ecf6 1167#endif
877935b1 1168
2756d8ee 1169 value = (void *) malloc (size);
877935b1
GM
1170
1171#ifdef GC_MALLOC_CHECK
1172 {
1173 struct mem_node *m = mem_find (value);
1174 if (m != MEM_NIL)
1175 {
1176 fprintf (stderr, "Malloc returned %p which is already in use\n",
1177 value);
1178 fprintf (stderr, "Region in use is %p...%p, %u bytes, type %d\n",
1179 m->start, m->end, (char *) m->end - (char *) m->start,
1180 m->type);
1181 abort ();
1182 }
1183
1184 if (!dont_register_blocks)
1185 {
1186 mem_insert (value, (char *) value + max (1, size), allocated_mem_type);
1187 allocated_mem_type = MEM_TYPE_NON_LISP;
1188 }
1189 }
1190#endif /* GC_MALLOC_CHECK */
177c0ea7 1191
b0846f52 1192 __malloc_hook = emacs_blocked_malloc;
aa477689 1193 UNBLOCK_INPUT_ALLOC;
9ac0d9e0 1194
877935b1 1195 /* fprintf (stderr, "%p malloc\n", value); */
9ac0d9e0
JB
1196 return value;
1197}
1198
34400008
GM
1199
1200/* This function is the realloc hook that Emacs uses. */
1201
9ac0d9e0 1202static void *
7c3320d8 1203emacs_blocked_realloc (void *ptr, size_t size, const void *ptr2)
9ac0d9e0
JB
1204{
1205 void *value;
1206
aa477689 1207 BLOCK_INPUT_ALLOC;
9ac0d9e0 1208 __realloc_hook = old_realloc_hook;
877935b1
GM
1209
1210#ifdef GC_MALLOC_CHECK
1211 if (ptr)
1212 {
1213 struct mem_node *m = mem_find (ptr);
1214 if (m == MEM_NIL || m->start != ptr)
1215 {
1216 fprintf (stderr,
1217 "Realloc of %p which wasn't allocated with malloc\n",
1218 ptr);
1219 abort ();
1220 }
1221
1222 mem_delete (m);
1223 }
177c0ea7 1224
877935b1 1225 /* fprintf (stderr, "%p -> realloc\n", ptr); */
177c0ea7 1226
877935b1
GM
1227 /* Prevent malloc from registering blocks. */
1228 dont_register_blocks = 1;
1229#endif /* GC_MALLOC_CHECK */
1230
2756d8ee 1231 value = (void *) realloc (ptr, size);
877935b1
GM
1232
1233#ifdef GC_MALLOC_CHECK
1234 dont_register_blocks = 0;
1235
1236 {
1237 struct mem_node *m = mem_find (value);
1238 if (m != MEM_NIL)
1239 {
1240 fprintf (stderr, "Realloc returns memory that is already in use\n");
1241 abort ();
1242 }
1243
1244 /* Can't handle zero size regions in the red-black tree. */
1245 mem_insert (value, (char *) value + max (size, 1), MEM_TYPE_NON_LISP);
1246 }
177c0ea7 1247
877935b1
GM
1248 /* fprintf (stderr, "%p <- realloc\n", value); */
1249#endif /* GC_MALLOC_CHECK */
177c0ea7 1250
b0846f52 1251 __realloc_hook = emacs_blocked_realloc;
aa477689 1252 UNBLOCK_INPUT_ALLOC;
9ac0d9e0
JB
1253
1254 return value;
1255}
1256
34400008 1257
aa477689
JD
1258#ifdef HAVE_GTK_AND_PTHREAD
1259/* Called from Fdump_emacs so that when the dumped Emacs starts, it has a
1260 normal malloc. Some thread implementations need this as they call
1261 malloc before main. The pthread_self call in BLOCK_INPUT_ALLOC then
1262 calls malloc because it is the first call, and we have an endless loop. */
1263
1264void
1265reset_malloc_hooks ()
1266{
4d580af2
AS
1267 __free_hook = old_free_hook;
1268 __malloc_hook = old_malloc_hook;
1269 __realloc_hook = old_realloc_hook;
aa477689
JD
1270}
1271#endif /* HAVE_GTK_AND_PTHREAD */
1272
1273
34400008
GM
1274/* Called from main to set up malloc to use our hooks. */
1275
9ac0d9e0 1276void
7c3320d8 1277uninterrupt_malloc (void)
9ac0d9e0 1278{
aa477689 1279#ifdef HAVE_GTK_AND_PTHREAD
a1b41389 1280#ifdef DOUG_LEA_MALLOC
aa477689
JD
1281 pthread_mutexattr_t attr;
1282
1283 /* GLIBC has a faster way to do this, but lets keep it portable.
1284 This is according to the Single UNIX Specification. */
1285 pthread_mutexattr_init (&attr);
1286 pthread_mutexattr_settype (&attr, PTHREAD_MUTEX_RECURSIVE);
1287 pthread_mutex_init (&alloc_mutex, &attr);
a1b41389 1288#else /* !DOUG_LEA_MALLOC */
ce5b453a 1289 /* Some systems such as Solaris 2.6 don't have a recursive mutex,
a1b41389
YM
1290 and the bundled gmalloc.c doesn't require it. */
1291 pthread_mutex_init (&alloc_mutex, NULL);
1292#endif /* !DOUG_LEA_MALLOC */
aa477689
JD
1293#endif /* HAVE_GTK_AND_PTHREAD */
1294
c8099634
RS
1295 if (__free_hook != emacs_blocked_free)
1296 old_free_hook = __free_hook;
b0846f52 1297 __free_hook = emacs_blocked_free;
9ac0d9e0 1298
c8099634
RS
1299 if (__malloc_hook != emacs_blocked_malloc)
1300 old_malloc_hook = __malloc_hook;
b0846f52 1301 __malloc_hook = emacs_blocked_malloc;
9ac0d9e0 1302
c8099634
RS
1303 if (__realloc_hook != emacs_blocked_realloc)
1304 old_realloc_hook = __realloc_hook;
b0846f52 1305 __realloc_hook = emacs_blocked_realloc;
9ac0d9e0 1306}
2e471eb5 1307
026cdede 1308#endif /* not SYNC_INPUT */
2e471eb5
GM
1309#endif /* not SYSTEM_MALLOC */
1310
1311
7146af97 1312\f
2e471eb5
GM
1313/***********************************************************************
1314 Interval Allocation
1315 ***********************************************************************/
1a4f1e2c 1316
34400008
GM
1317/* Number of intervals allocated in an interval_block structure.
1318 The 1020 is 1024 minus malloc overhead. */
1319
d5e35230
JA
1320#define INTERVAL_BLOCK_SIZE \
1321 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1322
34400008
GM
1323/* Intervals are allocated in chunks in form of an interval_block
1324 structure. */
1325
d5e35230 1326struct interval_block
2e471eb5 1327{
6b61353c 1328 /* Place `intervals' first, to preserve alignment. */
2e471eb5 1329 struct interval intervals[INTERVAL_BLOCK_SIZE];
6b61353c 1330 struct interval_block *next;
2e471eb5 1331};
d5e35230 1332
34400008
GM
1333/* Current interval block. Its `next' pointer points to older
1334 blocks. */
1335
d3d47262 1336static struct interval_block *interval_block;
34400008
GM
1337
1338/* Index in interval_block above of the next unused interval
1339 structure. */
1340
d5e35230 1341static int interval_block_index;
34400008
GM
1342
1343/* Number of free and live intervals. */
1344
2e471eb5 1345static int total_free_intervals, total_intervals;
d5e35230 1346
34400008
GM
1347/* List of free intervals. */
1348
244ed907 1349static INTERVAL interval_free_list;
d5e35230 1350
c8099634 1351/* Total number of interval blocks now in use. */
2e471eb5 1352
d3d47262 1353static int n_interval_blocks;
c8099634 1354
34400008
GM
1355
1356/* Initialize interval allocation. */
1357
d5e35230 1358static void
971de7fb 1359init_intervals (void)
d5e35230 1360{
005ca5c7
DL
1361 interval_block = NULL;
1362 interval_block_index = INTERVAL_BLOCK_SIZE;
d5e35230 1363 interval_free_list = 0;
005ca5c7 1364 n_interval_blocks = 0;
d5e35230
JA
1365}
1366
34400008
GM
1367
1368/* Return a new interval. */
d5e35230
JA
1369
1370INTERVAL
971de7fb 1371make_interval (void)
d5e35230
JA
1372{
1373 INTERVAL val;
1374
e2984df0
CY
1375 /* eassert (!handling_signal); */
1376
dafc79fa 1377 MALLOC_BLOCK_INPUT;
cfb2f32e 1378
d5e35230
JA
1379 if (interval_free_list)
1380 {
1381 val = interval_free_list;
439d5cb4 1382 interval_free_list = INTERVAL_PARENT (interval_free_list);
d5e35230
JA
1383 }
1384 else
1385 {
1386 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1387 {
3c06d205
KH
1388 register struct interval_block *newi;
1389
34400008
GM
1390 newi = (struct interval_block *) lisp_malloc (sizeof *newi,
1391 MEM_TYPE_NON_LISP);
d5e35230 1392
d5e35230
JA
1393 newi->next = interval_block;
1394 interval_block = newi;
1395 interval_block_index = 0;
c8099634 1396 n_interval_blocks++;
d5e35230
JA
1397 }
1398 val = &interval_block->intervals[interval_block_index++];
1399 }
e2984df0 1400
dafc79fa 1401 MALLOC_UNBLOCK_INPUT;
e2984df0 1402
d5e35230 1403 consing_since_gc += sizeof (struct interval);
310ea200 1404 intervals_consed++;
d5e35230 1405 RESET_INTERVAL (val);
2336fe58 1406 val->gcmarkbit = 0;
d5e35230
JA
1407 return val;
1408}
1409
34400008
GM
1410
1411/* Mark Lisp objects in interval I. */
d5e35230
JA
1412
1413static void
971de7fb 1414mark_interval (register INTERVAL i, Lisp_Object dummy)
d5e35230 1415{
2336fe58
SM
1416 eassert (!i->gcmarkbit); /* Intervals are never shared. */
1417 i->gcmarkbit = 1;
49723c04 1418 mark_object (i->plist);
d5e35230
JA
1419}
1420
34400008
GM
1421
1422/* Mark the interval tree rooted in TREE. Don't call this directly;
1423 use the macro MARK_INTERVAL_TREE instead. */
1424
d5e35230 1425static void
971de7fb 1426mark_interval_tree (register INTERVAL tree)
d5e35230 1427{
e8720644
JB
1428 /* No need to test if this tree has been marked already; this
1429 function is always called through the MARK_INTERVAL_TREE macro,
1430 which takes care of that. */
1431
1e934989 1432 traverse_intervals_noorder (tree, mark_interval, Qnil);
d5e35230
JA
1433}
1434
34400008
GM
1435
1436/* Mark the interval tree rooted in I. */
1437
e8720644
JB
1438#define MARK_INTERVAL_TREE(i) \
1439 do { \
2336fe58 1440 if (!NULL_INTERVAL_P (i) && !i->gcmarkbit) \
e8720644
JB
1441 mark_interval_tree (i); \
1442 } while (0)
d5e35230 1443
34400008 1444
2e471eb5
GM
1445#define UNMARK_BALANCE_INTERVALS(i) \
1446 do { \
1447 if (! NULL_INTERVAL_P (i)) \
2336fe58 1448 (i) = balance_intervals (i); \
2e471eb5 1449 } while (0)
d5e35230 1450
cc2d8c6b 1451\f
6e5cb96f 1452/* Number support. If USE_LISP_UNION_TYPE is in effect, we
cc2d8c6b
KR
1453 can't create number objects in macros. */
1454#ifndef make_number
1455Lisp_Object
c566235d 1456make_number (EMACS_INT n)
cc2d8c6b
KR
1457{
1458 Lisp_Object obj;
1459 obj.s.val = n;
1460 obj.s.type = Lisp_Int;
1461 return obj;
1462}
1463#endif
d5e35230 1464\f
2e471eb5
GM
1465/***********************************************************************
1466 String Allocation
1467 ***********************************************************************/
1a4f1e2c 1468
2e471eb5
GM
1469/* Lisp_Strings are allocated in string_block structures. When a new
1470 string_block is allocated, all the Lisp_Strings it contains are
e0fead5d 1471 added to a free-list string_free_list. When a new Lisp_String is
2e471eb5
GM
1472 needed, it is taken from that list. During the sweep phase of GC,
1473 string_blocks that are entirely free are freed, except two which
1474 we keep.
7146af97 1475
2e471eb5
GM
1476 String data is allocated from sblock structures. Strings larger
1477 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1478 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
7146af97 1479
2e471eb5
GM
1480 Sblocks consist internally of sdata structures, one for each
1481 Lisp_String. The sdata structure points to the Lisp_String it
1482 belongs to. The Lisp_String points back to the `u.data' member of
1483 its sdata structure.
7146af97 1484
2e471eb5
GM
1485 When a Lisp_String is freed during GC, it is put back on
1486 string_free_list, and its `data' member and its sdata's `string'
1487 pointer is set to null. The size of the string is recorded in the
1488 `u.nbytes' member of the sdata. So, sdata structures that are no
1489 longer used, can be easily recognized, and it's easy to compact the
1490 sblocks of small strings which we do in compact_small_strings. */
7146af97 1491
2e471eb5
GM
1492/* Size in bytes of an sblock structure used for small strings. This
1493 is 8192 minus malloc overhead. */
7146af97 1494
2e471eb5 1495#define SBLOCK_SIZE 8188
c8099634 1496
2e471eb5
GM
1497/* Strings larger than this are considered large strings. String data
1498 for large strings is allocated from individual sblocks. */
7146af97 1499
2e471eb5
GM
1500#define LARGE_STRING_BYTES 1024
1501
1502/* Structure describing string memory sub-allocated from an sblock.
1503 This is where the contents of Lisp strings are stored. */
1504
1505struct sdata
7146af97 1506{
2e471eb5
GM
1507 /* Back-pointer to the string this sdata belongs to. If null, this
1508 structure is free, and the NBYTES member of the union below
34400008 1509 contains the string's byte size (the same value that STRING_BYTES
2e471eb5
GM
1510 would return if STRING were non-null). If non-null, STRING_BYTES
1511 (STRING) is the size of the data, and DATA contains the string's
1512 contents. */
1513 struct Lisp_String *string;
7146af97 1514
31d929e5 1515#ifdef GC_CHECK_STRING_BYTES
177c0ea7 1516
31d929e5
GM
1517 EMACS_INT nbytes;
1518 unsigned char data[1];
177c0ea7 1519
31d929e5
GM
1520#define SDATA_NBYTES(S) (S)->nbytes
1521#define SDATA_DATA(S) (S)->data
36372bf9 1522#define SDATA_SELECTOR(member) member
177c0ea7 1523
31d929e5
GM
1524#else /* not GC_CHECK_STRING_BYTES */
1525
2e471eb5
GM
1526 union
1527 {
83998b7a 1528 /* When STRING is non-null. */
2e471eb5
GM
1529 unsigned char data[1];
1530
1531 /* When STRING is null. */
1532 EMACS_INT nbytes;
1533 } u;
177c0ea7 1534
31d929e5
GM
1535#define SDATA_NBYTES(S) (S)->u.nbytes
1536#define SDATA_DATA(S) (S)->u.data
36372bf9 1537#define SDATA_SELECTOR(member) u.member
31d929e5
GM
1538
1539#endif /* not GC_CHECK_STRING_BYTES */
36372bf9
PE
1540
1541#define SDATA_DATA_OFFSET offsetof (struct sdata, SDATA_SELECTOR (data))
2e471eb5
GM
1542};
1543
31d929e5 1544
2e471eb5
GM
1545/* Structure describing a block of memory which is sub-allocated to
1546 obtain string data memory for strings. Blocks for small strings
1547 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1548 as large as needed. */
1549
1550struct sblock
7146af97 1551{
2e471eb5
GM
1552 /* Next in list. */
1553 struct sblock *next;
7146af97 1554
2e471eb5
GM
1555 /* Pointer to the next free sdata block. This points past the end
1556 of the sblock if there isn't any space left in this block. */
1557 struct sdata *next_free;
1558
1559 /* Start of data. */
1560 struct sdata first_data;
1561};
1562
1563/* Number of Lisp strings in a string_block structure. The 1020 is
1564 1024 minus malloc overhead. */
1565
19bcad1f 1566#define STRING_BLOCK_SIZE \
2e471eb5
GM
1567 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1568
1569/* Structure describing a block from which Lisp_String structures
1570 are allocated. */
1571
1572struct string_block
7146af97 1573{
6b61353c 1574 /* Place `strings' first, to preserve alignment. */
19bcad1f 1575 struct Lisp_String strings[STRING_BLOCK_SIZE];
6b61353c 1576 struct string_block *next;
2e471eb5 1577};
7146af97 1578
2e471eb5
GM
1579/* Head and tail of the list of sblock structures holding Lisp string
1580 data. We always allocate from current_sblock. The NEXT pointers
1581 in the sblock structures go from oldest_sblock to current_sblock. */
3c06d205 1582
2e471eb5 1583static struct sblock *oldest_sblock, *current_sblock;
7146af97 1584
2e471eb5 1585/* List of sblocks for large strings. */
7146af97 1586
2e471eb5 1587static struct sblock *large_sblocks;
7146af97 1588
2e471eb5 1589/* List of string_block structures, and how many there are. */
7146af97 1590
2e471eb5
GM
1591static struct string_block *string_blocks;
1592static int n_string_blocks;
7146af97 1593
2e471eb5 1594/* Free-list of Lisp_Strings. */
7146af97 1595
2e471eb5 1596static struct Lisp_String *string_free_list;
7146af97 1597
2e471eb5 1598/* Number of live and free Lisp_Strings. */
c8099634 1599
2e471eb5 1600static int total_strings, total_free_strings;
7146af97 1601
2e471eb5
GM
1602/* Number of bytes used by live strings. */
1603
14162469 1604static EMACS_INT total_string_size;
2e471eb5
GM
1605
1606/* Given a pointer to a Lisp_String S which is on the free-list
1607 string_free_list, return a pointer to its successor in the
1608 free-list. */
1609
1610#define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1611
1612/* Return a pointer to the sdata structure belonging to Lisp string S.
1613 S must be live, i.e. S->data must not be null. S->data is actually
1614 a pointer to the `u.data' member of its sdata structure; the
1615 structure starts at a constant offset in front of that. */
177c0ea7 1616
36372bf9 1617#define SDATA_OF_STRING(S) ((struct sdata *) ((S)->data - SDATA_DATA_OFFSET))
31d929e5 1618
212f33f1
KS
1619
1620#ifdef GC_CHECK_STRING_OVERRUN
bdbed949
KS
1621
1622/* We check for overrun in string data blocks by appending a small
1623 "cookie" after each allocated string data block, and check for the
8349069c 1624 presence of this cookie during GC. */
bdbed949
KS
1625
1626#define GC_STRING_OVERRUN_COOKIE_SIZE 4
bfd1c781
PE
1627static char const string_overrun_cookie[GC_STRING_OVERRUN_COOKIE_SIZE] =
1628 { '\xde', '\xad', '\xbe', '\xef' };
bdbed949 1629
212f33f1 1630#else
bdbed949 1631#define GC_STRING_OVERRUN_COOKIE_SIZE 0
212f33f1
KS
1632#endif
1633
2e471eb5
GM
1634/* Value is the size of an sdata structure large enough to hold NBYTES
1635 bytes of string data. The value returned includes a terminating
1636 NUL byte, the size of the sdata structure, and padding. */
1637
31d929e5
GM
1638#ifdef GC_CHECK_STRING_BYTES
1639
2e471eb5 1640#define SDATA_SIZE(NBYTES) \
36372bf9 1641 ((SDATA_DATA_OFFSET \
2e471eb5
GM
1642 + (NBYTES) + 1 \
1643 + sizeof (EMACS_INT) - 1) \
1644 & ~(sizeof (EMACS_INT) - 1))
1645
31d929e5
GM
1646#else /* not GC_CHECK_STRING_BYTES */
1647
f2d3008d
PE
1648/* The 'max' reserves space for the nbytes union member even when NBYTES + 1 is
1649 less than the size of that member. The 'max' is not needed when
1650 SDATA_DATA_OFFSET is a multiple of sizeof (EMACS_INT), because then the
1651 alignment code reserves enough space. */
1652
1653#define SDATA_SIZE(NBYTES) \
1654 ((SDATA_DATA_OFFSET \
1655 + (SDATA_DATA_OFFSET % sizeof (EMACS_INT) == 0 \
1656 ? NBYTES \
1657 : max (NBYTES, sizeof (EMACS_INT) - 1)) \
1658 + 1 \
1659 + sizeof (EMACS_INT) - 1) \
31d929e5
GM
1660 & ~(sizeof (EMACS_INT) - 1))
1661
1662#endif /* not GC_CHECK_STRING_BYTES */
2e471eb5 1663
bdbed949
KS
1664/* Extra bytes to allocate for each string. */
1665
1666#define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1667
2e471eb5 1668/* Initialize string allocation. Called from init_alloc_once. */
d457598b 1669
d3d47262 1670static void
971de7fb 1671init_strings (void)
7146af97 1672{
2e471eb5
GM
1673 total_strings = total_free_strings = total_string_size = 0;
1674 oldest_sblock = current_sblock = large_sblocks = NULL;
1675 string_blocks = NULL;
1676 n_string_blocks = 0;
1677 string_free_list = NULL;
4d774b0f
JB
1678 empty_unibyte_string = make_pure_string ("", 0, 0, 0);
1679 empty_multibyte_string = make_pure_string ("", 0, 0, 1);
7146af97
JB
1680}
1681
2e471eb5 1682
361b097f
GM
1683#ifdef GC_CHECK_STRING_BYTES
1684
361b097f
GM
1685static int check_string_bytes_count;
1686
676a7251
GM
1687#define CHECK_STRING_BYTES(S) STRING_BYTES (S)
1688
1689
1690/* Like GC_STRING_BYTES, but with debugging check. */
1691
14162469
EZ
1692EMACS_INT
1693string_bytes (struct Lisp_String *s)
676a7251 1694{
14162469
EZ
1695 EMACS_INT nbytes =
1696 (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1697
676a7251
GM
1698 if (!PURE_POINTER_P (s)
1699 && s->data
1700 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1701 abort ();
1702 return nbytes;
1703}
177c0ea7 1704
2c5bd608 1705/* Check validity of Lisp strings' string_bytes member in B. */
676a7251 1706
d3d47262 1707static void
d0f4e1f5 1708check_sblock (struct sblock *b)
361b097f 1709{
676a7251 1710 struct sdata *from, *end, *from_end;
177c0ea7 1711
676a7251 1712 end = b->next_free;
177c0ea7 1713
676a7251 1714 for (from = &b->first_data; from < end; from = from_end)
361b097f 1715 {
676a7251
GM
1716 /* Compute the next FROM here because copying below may
1717 overwrite data we need to compute it. */
14162469 1718 EMACS_INT nbytes;
177c0ea7 1719
676a7251
GM
1720 /* Check that the string size recorded in the string is the
1721 same as the one recorded in the sdata structure. */
1722 if (from->string)
1723 CHECK_STRING_BYTES (from->string);
177c0ea7 1724
676a7251
GM
1725 if (from->string)
1726 nbytes = GC_STRING_BYTES (from->string);
1727 else
1728 nbytes = SDATA_NBYTES (from);
177c0ea7 1729
676a7251 1730 nbytes = SDATA_SIZE (nbytes);
212f33f1 1731 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
676a7251
GM
1732 }
1733}
361b097f 1734
676a7251
GM
1735
1736/* Check validity of Lisp strings' string_bytes member. ALL_P
1737 non-zero means check all strings, otherwise check only most
1738 recently allocated strings. Used for hunting a bug. */
1739
d3d47262 1740static void
d0f4e1f5 1741check_string_bytes (int all_p)
676a7251
GM
1742{
1743 if (all_p)
1744 {
1745 struct sblock *b;
1746
1747 for (b = large_sblocks; b; b = b->next)
1748 {
1749 struct Lisp_String *s = b->first_data.string;
1750 if (s)
1751 CHECK_STRING_BYTES (s);
361b097f 1752 }
177c0ea7 1753
676a7251
GM
1754 for (b = oldest_sblock; b; b = b->next)
1755 check_sblock (b);
361b097f 1756 }
676a7251
GM
1757 else
1758 check_sblock (current_sblock);
361b097f
GM
1759}
1760
1761#endif /* GC_CHECK_STRING_BYTES */
1762
212f33f1
KS
1763#ifdef GC_CHECK_STRING_FREE_LIST
1764
bdbed949
KS
1765/* Walk through the string free list looking for bogus next pointers.
1766 This may catch buffer overrun from a previous string. */
1767
212f33f1 1768static void
d0f4e1f5 1769check_string_free_list (void)
212f33f1
KS
1770{
1771 struct Lisp_String *s;
1772
1773 /* Pop a Lisp_String off the free-list. */
1774 s = string_free_list;
1775 while (s != NULL)
1776 {
d01a7826 1777 if ((uintptr_t) s < 1024)
212f33f1
KS
1778 abort();
1779 s = NEXT_FREE_LISP_STRING (s);
1780 }
1781}
1782#else
1783#define check_string_free_list()
1784#endif
361b097f 1785
2e471eb5
GM
1786/* Return a new Lisp_String. */
1787
1788static struct Lisp_String *
971de7fb 1789allocate_string (void)
7146af97 1790{
2e471eb5 1791 struct Lisp_String *s;
7146af97 1792
e2984df0
CY
1793 /* eassert (!handling_signal); */
1794
dafc79fa 1795 MALLOC_BLOCK_INPUT;
cfb2f32e 1796
2e471eb5
GM
1797 /* If the free-list is empty, allocate a new string_block, and
1798 add all the Lisp_Strings in it to the free-list. */
1799 if (string_free_list == NULL)
7146af97 1800 {
2e471eb5
GM
1801 struct string_block *b;
1802 int i;
1803
34400008 1804 b = (struct string_block *) lisp_malloc (sizeof *b, MEM_TYPE_STRING);
72af86bd 1805 memset (b, 0, sizeof *b);
2e471eb5
GM
1806 b->next = string_blocks;
1807 string_blocks = b;
1808 ++n_string_blocks;
1809
19bcad1f 1810 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
7146af97 1811 {
2e471eb5
GM
1812 s = b->strings + i;
1813 NEXT_FREE_LISP_STRING (s) = string_free_list;
1814 string_free_list = s;
7146af97 1815 }
2e471eb5 1816
19bcad1f 1817 total_free_strings += STRING_BLOCK_SIZE;
7146af97 1818 }
c0f51373 1819
bdbed949 1820 check_string_free_list ();
212f33f1 1821
2e471eb5
GM
1822 /* Pop a Lisp_String off the free-list. */
1823 s = string_free_list;
1824 string_free_list = NEXT_FREE_LISP_STRING (s);
c0f51373 1825
dafc79fa 1826 MALLOC_UNBLOCK_INPUT;
e2984df0 1827
2e471eb5 1828 /* Probably not strictly necessary, but play it safe. */
72af86bd 1829 memset (s, 0, sizeof *s);
c0f51373 1830
2e471eb5
GM
1831 --total_free_strings;
1832 ++total_strings;
1833 ++strings_consed;
1834 consing_since_gc += sizeof *s;
c0f51373 1835
361b097f 1836#ifdef GC_CHECK_STRING_BYTES
e39a993c 1837 if (!noninteractive)
361b097f 1838 {
676a7251
GM
1839 if (++check_string_bytes_count == 200)
1840 {
1841 check_string_bytes_count = 0;
1842 check_string_bytes (1);
1843 }
1844 else
1845 check_string_bytes (0);
361b097f 1846 }
676a7251 1847#endif /* GC_CHECK_STRING_BYTES */
361b097f 1848
2e471eb5 1849 return s;
c0f51373 1850}
7146af97 1851
7146af97 1852
2e471eb5
GM
1853/* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1854 plus a NUL byte at the end. Allocate an sdata structure for S, and
1855 set S->data to its `u.data' member. Store a NUL byte at the end of
1856 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1857 S->data if it was initially non-null. */
7146af97 1858
2e471eb5 1859void
413d18e7
EZ
1860allocate_string_data (struct Lisp_String *s,
1861 EMACS_INT nchars, EMACS_INT nbytes)
7146af97 1862{
5c5fecb3 1863 struct sdata *data, *old_data;
2e471eb5 1864 struct sblock *b;
14162469 1865 EMACS_INT needed, old_nbytes;
7146af97 1866
2e471eb5
GM
1867 /* Determine the number of bytes needed to store NBYTES bytes
1868 of string data. */
1869 needed = SDATA_SIZE (nbytes);
e2984df0
CY
1870 old_data = s->data ? SDATA_OF_STRING (s) : NULL;
1871 old_nbytes = GC_STRING_BYTES (s);
1872
dafc79fa 1873 MALLOC_BLOCK_INPUT;
7146af97 1874
2e471eb5
GM
1875 if (nbytes > LARGE_STRING_BYTES)
1876 {
36372bf9 1877 size_t size = offsetof (struct sblock, first_data) + needed;
2e471eb5
GM
1878
1879#ifdef DOUG_LEA_MALLOC
f8608968
GM
1880 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1881 because mapped region contents are not preserved in
d36b182f
DL
1882 a dumped Emacs.
1883
1884 In case you think of allowing it in a dumped Emacs at the
1885 cost of not being able to re-dump, there's another reason:
1886 mmap'ed data typically have an address towards the top of the
1887 address space, which won't fit into an EMACS_INT (at least on
1888 32-bit systems with the current tagging scheme). --fx */
2e471eb5
GM
1889 mallopt (M_MMAP_MAX, 0);
1890#endif
1891
212f33f1 1892 b = (struct sblock *) lisp_malloc (size + GC_STRING_EXTRA, MEM_TYPE_NON_LISP);
177c0ea7 1893
2e471eb5
GM
1894#ifdef DOUG_LEA_MALLOC
1895 /* Back to a reasonable maximum of mmap'ed areas. */
1896 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1897#endif
177c0ea7 1898
2e471eb5
GM
1899 b->next_free = &b->first_data;
1900 b->first_data.string = NULL;
1901 b->next = large_sblocks;
1902 large_sblocks = b;
1903 }
1904 else if (current_sblock == NULL
1905 || (((char *) current_sblock + SBLOCK_SIZE
1906 - (char *) current_sblock->next_free)
212f33f1 1907 < (needed + GC_STRING_EXTRA)))
2e471eb5
GM
1908 {
1909 /* Not enough room in the current sblock. */
34400008 1910 b = (struct sblock *) lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
2e471eb5
GM
1911 b->next_free = &b->first_data;
1912 b->first_data.string = NULL;
1913 b->next = NULL;
1914
1915 if (current_sblock)
1916 current_sblock->next = b;
1917 else
1918 oldest_sblock = b;
1919 current_sblock = b;
1920 }
1921 else
1922 b = current_sblock;
5c5fecb3 1923
2e471eb5 1924 data = b->next_free;
a0b08700
CY
1925 b->next_free = (struct sdata *) ((char *) data + needed + GC_STRING_EXTRA);
1926
dafc79fa 1927 MALLOC_UNBLOCK_INPUT;
e2984df0 1928
2e471eb5 1929 data->string = s;
31d929e5
GM
1930 s->data = SDATA_DATA (data);
1931#ifdef GC_CHECK_STRING_BYTES
1932 SDATA_NBYTES (data) = nbytes;
1933#endif
2e471eb5
GM
1934 s->size = nchars;
1935 s->size_byte = nbytes;
1936 s->data[nbytes] = '\0';
212f33f1 1937#ifdef GC_CHECK_STRING_OVERRUN
000098c1
PE
1938 memcpy ((char *) data + needed, string_overrun_cookie,
1939 GC_STRING_OVERRUN_COOKIE_SIZE);
212f33f1 1940#endif
177c0ea7 1941
5c5fecb3
GM
1942 /* If S had already data assigned, mark that as free by setting its
1943 string back-pointer to null, and recording the size of the data
00c9c33c 1944 in it. */
5c5fecb3
GM
1945 if (old_data)
1946 {
31d929e5 1947 SDATA_NBYTES (old_data) = old_nbytes;
5c5fecb3
GM
1948 old_data->string = NULL;
1949 }
1950
2e471eb5
GM
1951 consing_since_gc += needed;
1952}
1953
1954
1955/* Sweep and compact strings. */
1956
1957static void
971de7fb 1958sweep_strings (void)
2e471eb5
GM
1959{
1960 struct string_block *b, *next;
1961 struct string_block *live_blocks = NULL;
177c0ea7 1962
2e471eb5
GM
1963 string_free_list = NULL;
1964 total_strings = total_free_strings = 0;
1965 total_string_size = 0;
1966
1967 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
1968 for (b = string_blocks; b; b = next)
1969 {
1970 int i, nfree = 0;
1971 struct Lisp_String *free_list_before = string_free_list;
1972
1973 next = b->next;
1974
19bcad1f 1975 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
2e471eb5
GM
1976 {
1977 struct Lisp_String *s = b->strings + i;
1978
1979 if (s->data)
1980 {
1981 /* String was not on free-list before. */
1982 if (STRING_MARKED_P (s))
1983 {
1984 /* String is live; unmark it and its intervals. */
1985 UNMARK_STRING (s);
177c0ea7 1986
2e471eb5
GM
1987 if (!NULL_INTERVAL_P (s->intervals))
1988 UNMARK_BALANCE_INTERVALS (s->intervals);
1989
1990 ++total_strings;
1991 total_string_size += STRING_BYTES (s);
1992 }
1993 else
1994 {
1995 /* String is dead. Put it on the free-list. */
1996 struct sdata *data = SDATA_OF_STRING (s);
1997
1998 /* Save the size of S in its sdata so that we know
1999 how large that is. Reset the sdata's string
2000 back-pointer so that we know it's free. */
31d929e5
GM
2001#ifdef GC_CHECK_STRING_BYTES
2002 if (GC_STRING_BYTES (s) != SDATA_NBYTES (data))
2003 abort ();
2004#else
2e471eb5 2005 data->u.nbytes = GC_STRING_BYTES (s);
31d929e5 2006#endif
2e471eb5
GM
2007 data->string = NULL;
2008
2009 /* Reset the strings's `data' member so that we
2010 know it's free. */
2011 s->data = NULL;
2012
2013 /* Put the string on the free-list. */
2014 NEXT_FREE_LISP_STRING (s) = string_free_list;
2015 string_free_list = s;
2016 ++nfree;
2017 }
2018 }
2019 else
2020 {
2021 /* S was on the free-list before. Put it there again. */
2022 NEXT_FREE_LISP_STRING (s) = string_free_list;
2023 string_free_list = s;
2024 ++nfree;
2025 }
2026 }
2027
34400008 2028 /* Free blocks that contain free Lisp_Strings only, except
2e471eb5 2029 the first two of them. */
19bcad1f
SM
2030 if (nfree == STRING_BLOCK_SIZE
2031 && total_free_strings > STRING_BLOCK_SIZE)
2e471eb5
GM
2032 {
2033 lisp_free (b);
2034 --n_string_blocks;
2035 string_free_list = free_list_before;
2036 }
2037 else
2038 {
2039 total_free_strings += nfree;
2040 b->next = live_blocks;
2041 live_blocks = b;
2042 }
2043 }
2044
bdbed949 2045 check_string_free_list ();
212f33f1 2046
2e471eb5
GM
2047 string_blocks = live_blocks;
2048 free_large_strings ();
2049 compact_small_strings ();
212f33f1 2050
bdbed949 2051 check_string_free_list ();
2e471eb5
GM
2052}
2053
2054
2055/* Free dead large strings. */
2056
2057static void
971de7fb 2058free_large_strings (void)
2e471eb5
GM
2059{
2060 struct sblock *b, *next;
2061 struct sblock *live_blocks = NULL;
177c0ea7 2062
2e471eb5
GM
2063 for (b = large_sblocks; b; b = next)
2064 {
2065 next = b->next;
2066
2067 if (b->first_data.string == NULL)
2068 lisp_free (b);
2069 else
2070 {
2071 b->next = live_blocks;
2072 live_blocks = b;
2073 }
2074 }
2075
2076 large_sblocks = live_blocks;
2077}
2078
2079
2080/* Compact data of small strings. Free sblocks that don't contain
2081 data of live strings after compaction. */
2082
2083static void
971de7fb 2084compact_small_strings (void)
2e471eb5
GM
2085{
2086 struct sblock *b, *tb, *next;
2087 struct sdata *from, *to, *end, *tb_end;
2088 struct sdata *to_end, *from_end;
2089
2090 /* TB is the sblock we copy to, TO is the sdata within TB we copy
2091 to, and TB_END is the end of TB. */
2092 tb = oldest_sblock;
2093 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2094 to = &tb->first_data;
2095
2096 /* Step through the blocks from the oldest to the youngest. We
2097 expect that old blocks will stabilize over time, so that less
2098 copying will happen this way. */
2099 for (b = oldest_sblock; b; b = b->next)
2100 {
2101 end = b->next_free;
2102 xassert ((char *) end <= (char *) b + SBLOCK_SIZE);
177c0ea7 2103
2e471eb5
GM
2104 for (from = &b->first_data; from < end; from = from_end)
2105 {
2106 /* Compute the next FROM here because copying below may
2107 overwrite data we need to compute it. */
14162469 2108 EMACS_INT nbytes;
2e471eb5 2109
31d929e5
GM
2110#ifdef GC_CHECK_STRING_BYTES
2111 /* Check that the string size recorded in the string is the
2112 same as the one recorded in the sdata structure. */
2113 if (from->string
2114 && GC_STRING_BYTES (from->string) != SDATA_NBYTES (from))
2115 abort ();
2116#endif /* GC_CHECK_STRING_BYTES */
177c0ea7 2117
2e471eb5
GM
2118 if (from->string)
2119 nbytes = GC_STRING_BYTES (from->string);
2120 else
31d929e5 2121 nbytes = SDATA_NBYTES (from);
177c0ea7 2122
212f33f1
KS
2123 if (nbytes > LARGE_STRING_BYTES)
2124 abort ();
212f33f1 2125
2e471eb5 2126 nbytes = SDATA_SIZE (nbytes);
212f33f1
KS
2127 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
2128
2129#ifdef GC_CHECK_STRING_OVERRUN
72af86bd
AS
2130 if (memcmp (string_overrun_cookie,
2131 (char *) from_end - GC_STRING_OVERRUN_COOKIE_SIZE,
2132 GC_STRING_OVERRUN_COOKIE_SIZE))
212f33f1
KS
2133 abort ();
2134#endif
177c0ea7 2135
2e471eb5
GM
2136 /* FROM->string non-null means it's alive. Copy its data. */
2137 if (from->string)
2138 {
2139 /* If TB is full, proceed with the next sblock. */
212f33f1 2140 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2e471eb5
GM
2141 if (to_end > tb_end)
2142 {
2143 tb->next_free = to;
2144 tb = tb->next;
2145 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2146 to = &tb->first_data;
212f33f1 2147 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2e471eb5 2148 }
177c0ea7 2149
2e471eb5
GM
2150 /* Copy, and update the string's `data' pointer. */
2151 if (from != to)
2152 {
3c616cfa 2153 xassert (tb != b || to < from);
72af86bd 2154 memmove (to, from, nbytes + GC_STRING_EXTRA);
31d929e5 2155 to->string->data = SDATA_DATA (to);
2e471eb5
GM
2156 }
2157
2158 /* Advance past the sdata we copied to. */
2159 to = to_end;
2160 }
2161 }
2162 }
2163
2164 /* The rest of the sblocks following TB don't contain live data, so
2165 we can free them. */
2166 for (b = tb->next; b; b = next)
2167 {
2168 next = b->next;
2169 lisp_free (b);
2170 }
2171
2172 tb->next_free = to;
2173 tb->next = NULL;
2174 current_sblock = tb;
2175}
2176
cb93f9be
PE
2177void
2178string_overflow (void)
2179{
2180 error ("Maximum string size exceeded");
2181}
2e471eb5 2182
a7ca3326 2183DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
69623621
RS
2184 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
2185LENGTH must be an integer.
2186INIT must be an integer that represents a character. */)
5842a27b 2187 (Lisp_Object length, Lisp_Object init)
2e471eb5
GM
2188{
2189 register Lisp_Object val;
2190 register unsigned char *p, *end;
14162469
EZ
2191 int c;
2192 EMACS_INT nbytes;
2e471eb5 2193
b7826503
PJ
2194 CHECK_NATNUM (length);
2195 CHECK_NUMBER (init);
2e471eb5
GM
2196
2197 c = XINT (init);
830ff83b 2198 if (ASCII_CHAR_P (c))
2e471eb5
GM
2199 {
2200 nbytes = XINT (length);
2201 val = make_uninit_string (nbytes);
d5db4077
KR
2202 p = SDATA (val);
2203 end = p + SCHARS (val);
2e471eb5
GM
2204 while (p != end)
2205 *p++ = c;
2206 }
2207 else
2208 {
d942b71c 2209 unsigned char str[MAX_MULTIBYTE_LENGTH];
2e471eb5 2210 int len = CHAR_STRING (c, str);
14162469 2211 EMACS_INT string_len = XINT (length);
2e471eb5 2212
14162469 2213 if (string_len > MOST_POSITIVE_FIXNUM / len)
cb93f9be 2214 string_overflow ();
14162469
EZ
2215 nbytes = len * string_len;
2216 val = make_uninit_multibyte_string (string_len, nbytes);
d5db4077 2217 p = SDATA (val);
2e471eb5
GM
2218 end = p + nbytes;
2219 while (p != end)
2220 {
72af86bd 2221 memcpy (p, str, len);
2e471eb5
GM
2222 p += len;
2223 }
2224 }
177c0ea7 2225
2e471eb5
GM
2226 *p = 0;
2227 return val;
2228}
2229
2230
a7ca3326 2231DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
909e3b33 2232 doc: /* Return a new bool-vector of length LENGTH, using INIT for each element.
7ee72033 2233LENGTH must be a number. INIT matters only in whether it is t or nil. */)
5842a27b 2234 (Lisp_Object length, Lisp_Object init)
2e471eb5
GM
2235{
2236 register Lisp_Object val;
2237 struct Lisp_Bool_Vector *p;
2238 int real_init, i;
14162469
EZ
2239 EMACS_INT length_in_chars, length_in_elts;
2240 int bits_per_value;
2e471eb5 2241
b7826503 2242 CHECK_NATNUM (length);
2e471eb5 2243
a097329f 2244 bits_per_value = sizeof (EMACS_INT) * BOOL_VECTOR_BITS_PER_CHAR;
2e471eb5
GM
2245
2246 length_in_elts = (XFASTINT (length) + bits_per_value - 1) / bits_per_value;
a097329f
AS
2247 length_in_chars = ((XFASTINT (length) + BOOL_VECTOR_BITS_PER_CHAR - 1)
2248 / BOOL_VECTOR_BITS_PER_CHAR);
2e471eb5
GM
2249
2250 /* We must allocate one more elements than LENGTH_IN_ELTS for the
2251 slot `size' of the struct Lisp_Bool_Vector. */
2252 val = Fmake_vector (make_number (length_in_elts + 1), Qnil);
177c0ea7 2253
eab3844f
PE
2254 /* No Lisp_Object to trace in there. */
2255 XSETPVECTYPESIZE (XVECTOR (val), PVEC_BOOL_VECTOR, 0);
d2029e5b
SM
2256
2257 p = XBOOL_VECTOR (val);
2e471eb5 2258 p->size = XFASTINT (length);
177c0ea7 2259
2e471eb5
GM
2260 real_init = (NILP (init) ? 0 : -1);
2261 for (i = 0; i < length_in_chars ; i++)
2262 p->data[i] = real_init;
177c0ea7 2263
2e471eb5 2264 /* Clear the extraneous bits in the last byte. */
a097329f 2265 if (XINT (length) != length_in_chars * BOOL_VECTOR_BITS_PER_CHAR)
d2029e5b 2266 p->data[length_in_chars - 1]
a097329f 2267 &= (1 << (XINT (length) % BOOL_VECTOR_BITS_PER_CHAR)) - 1;
2e471eb5
GM
2268
2269 return val;
2270}
2271
2272
2273/* Make a string from NBYTES bytes at CONTENTS, and compute the number
2274 of characters from the contents. This string may be unibyte or
2275 multibyte, depending on the contents. */
2276
2277Lisp_Object
14162469 2278make_string (const char *contents, EMACS_INT nbytes)
2e471eb5
GM
2279{
2280 register Lisp_Object val;
14162469 2281 EMACS_INT nchars, multibyte_nbytes;
9eac9d59 2282
90256841
PE
2283 parse_str_as_multibyte ((const unsigned char *) contents, nbytes,
2284 &nchars, &multibyte_nbytes);
9eac9d59
KH
2285 if (nbytes == nchars || nbytes != multibyte_nbytes)
2286 /* CONTENTS contains no multibyte sequences or contains an invalid
2287 multibyte sequence. We must make unibyte string. */
495a6df3
KH
2288 val = make_unibyte_string (contents, nbytes);
2289 else
2290 val = make_multibyte_string (contents, nchars, nbytes);
2e471eb5
GM
2291 return val;
2292}
2293
2294
2295/* Make an unibyte string from LENGTH bytes at CONTENTS. */
2296
2297Lisp_Object
14162469 2298make_unibyte_string (const char *contents, EMACS_INT length)
2e471eb5
GM
2299{
2300 register Lisp_Object val;
2301 val = make_uninit_string (length);
72af86bd 2302 memcpy (SDATA (val), contents, length);
2e471eb5
GM
2303 return val;
2304}
2305
2306
2307/* Make a multibyte string from NCHARS characters occupying NBYTES
2308 bytes at CONTENTS. */
2309
2310Lisp_Object
14162469
EZ
2311make_multibyte_string (const char *contents,
2312 EMACS_INT nchars, EMACS_INT nbytes)
2e471eb5
GM
2313{
2314 register Lisp_Object val;
2315 val = make_uninit_multibyte_string (nchars, nbytes);
72af86bd 2316 memcpy (SDATA (val), contents, nbytes);
2e471eb5
GM
2317 return val;
2318}
2319
2320
2321/* Make a string from NCHARS characters occupying NBYTES bytes at
2322 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2323
2324Lisp_Object
14162469
EZ
2325make_string_from_bytes (const char *contents,
2326 EMACS_INT nchars, EMACS_INT nbytes)
2e471eb5
GM
2327{
2328 register Lisp_Object val;
2329 val = make_uninit_multibyte_string (nchars, nbytes);
72af86bd 2330 memcpy (SDATA (val), contents, nbytes);
d5db4077
KR
2331 if (SBYTES (val) == SCHARS (val))
2332 STRING_SET_UNIBYTE (val);
2e471eb5
GM
2333 return val;
2334}
2335
2336
2337/* Make a string from NCHARS characters occupying NBYTES bytes at
2338 CONTENTS. The argument MULTIBYTE controls whether to label the
229b28c4
KH
2339 string as multibyte. If NCHARS is negative, it counts the number of
2340 characters by itself. */
2e471eb5
GM
2341
2342Lisp_Object
14162469
EZ
2343make_specified_string (const char *contents,
2344 EMACS_INT nchars, EMACS_INT nbytes, int multibyte)
2e471eb5
GM
2345{
2346 register Lisp_Object val;
229b28c4
KH
2347
2348 if (nchars < 0)
2349 {
2350 if (multibyte)
90256841
PE
2351 nchars = multibyte_chars_in_text ((const unsigned char *) contents,
2352 nbytes);
229b28c4
KH
2353 else
2354 nchars = nbytes;
2355 }
2e471eb5 2356 val = make_uninit_multibyte_string (nchars, nbytes);
72af86bd 2357 memcpy (SDATA (val), contents, nbytes);
2e471eb5 2358 if (!multibyte)
d5db4077 2359 STRING_SET_UNIBYTE (val);
2e471eb5
GM
2360 return val;
2361}
2362
2363
2364/* Make a string from the data at STR, treating it as multibyte if the
2365 data warrants. */
2366
2367Lisp_Object
971de7fb 2368build_string (const char *str)
2e471eb5
GM
2369{
2370 return make_string (str, strlen (str));
2371}
2372
2373
2374/* Return an unibyte Lisp_String set up to hold LENGTH characters
2375 occupying LENGTH bytes. */
2376
2377Lisp_Object
413d18e7 2378make_uninit_string (EMACS_INT length)
2e471eb5
GM
2379{
2380 Lisp_Object val;
4d774b0f
JB
2381
2382 if (!length)
2383 return empty_unibyte_string;
2e471eb5 2384 val = make_uninit_multibyte_string (length, length);
d5db4077 2385 STRING_SET_UNIBYTE (val);
2e471eb5
GM
2386 return val;
2387}
2388
2389
2390/* Return a multibyte Lisp_String set up to hold NCHARS characters
2391 which occupy NBYTES bytes. */
2392
2393Lisp_Object
413d18e7 2394make_uninit_multibyte_string (EMACS_INT nchars, EMACS_INT nbytes)
2e471eb5
GM
2395{
2396 Lisp_Object string;
2397 struct Lisp_String *s;
2398
2399 if (nchars < 0)
2400 abort ();
4d774b0f
JB
2401 if (!nbytes)
2402 return empty_multibyte_string;
2e471eb5
GM
2403
2404 s = allocate_string ();
2405 allocate_string_data (s, nchars, nbytes);
2406 XSETSTRING (string, s);
2407 string_chars_consed += nbytes;
2408 return string;
2409}
2410
2411
2412\f
2413/***********************************************************************
2414 Float Allocation
2415 ***********************************************************************/
2416
2e471eb5
GM
2417/* We store float cells inside of float_blocks, allocating a new
2418 float_block with malloc whenever necessary. Float cells reclaimed
2419 by GC are put on a free list to be reallocated before allocating
ab6780cd 2420 any new float cells from the latest float_block. */
2e471eb5 2421
6b61353c
KH
2422#define FLOAT_BLOCK_SIZE \
2423 (((BLOCK_BYTES - sizeof (struct float_block *) \
2424 /* The compiler might add padding at the end. */ \
2425 - (sizeof (struct Lisp_Float) - sizeof (int))) * CHAR_BIT) \
ab6780cd
SM
2426 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2427
2428#define GETMARKBIT(block,n) \
2429 (((block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2430 >> ((n) % (sizeof(int) * CHAR_BIT))) \
2431 & 1)
2432
2433#define SETMARKBIT(block,n) \
2434 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2435 |= 1 << ((n) % (sizeof(int) * CHAR_BIT))
2436
2437#define UNSETMARKBIT(block,n) \
2438 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2439 &= ~(1 << ((n) % (sizeof(int) * CHAR_BIT)))
2440
2441#define FLOAT_BLOCK(fptr) \
d01a7826 2442 ((struct float_block *) (((uintptr_t) (fptr)) & ~(BLOCK_ALIGN - 1)))
ab6780cd
SM
2443
2444#define FLOAT_INDEX(fptr) \
d01a7826 2445 ((((uintptr_t) (fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2e471eb5
GM
2446
2447struct float_block
2448{
ab6780cd 2449 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2e471eb5 2450 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
ab6780cd
SM
2451 int gcmarkbits[1 + FLOAT_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2452 struct float_block *next;
2e471eb5
GM
2453};
2454
ab6780cd
SM
2455#define FLOAT_MARKED_P(fptr) \
2456 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2457
2458#define FLOAT_MARK(fptr) \
2459 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2460
2461#define FLOAT_UNMARK(fptr) \
2462 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2463
34400008
GM
2464/* Current float_block. */
2465
244ed907 2466static struct float_block *float_block;
34400008
GM
2467
2468/* Index of first unused Lisp_Float in the current float_block. */
2469
244ed907 2470static int float_block_index;
2e471eb5
GM
2471
2472/* Total number of float blocks now in use. */
2473
244ed907 2474static int n_float_blocks;
2e471eb5 2475
34400008
GM
2476/* Free-list of Lisp_Floats. */
2477
244ed907 2478static struct Lisp_Float *float_free_list;
2e471eb5 2479
34400008 2480
966533c9 2481/* Initialize float allocation. */
34400008 2482
d3d47262 2483static void
971de7fb 2484init_float (void)
2e471eb5 2485{
08b7c2cb
SM
2486 float_block = NULL;
2487 float_block_index = FLOAT_BLOCK_SIZE; /* Force alloc of new float_block. */
2e471eb5 2488 float_free_list = 0;
08b7c2cb 2489 n_float_blocks = 0;
2e471eb5
GM
2490}
2491
34400008 2492
34400008
GM
2493/* Return a new float object with value FLOAT_VALUE. */
2494
2e471eb5 2495Lisp_Object
971de7fb 2496make_float (double float_value)
2e471eb5
GM
2497{
2498 register Lisp_Object val;
2499
e2984df0
CY
2500 /* eassert (!handling_signal); */
2501
dafc79fa 2502 MALLOC_BLOCK_INPUT;
cfb2f32e 2503
2e471eb5
GM
2504 if (float_free_list)
2505 {
2506 /* We use the data field for chaining the free list
2507 so that we won't use the same field that has the mark bit. */
2508 XSETFLOAT (val, float_free_list);
28a099a4 2509 float_free_list = float_free_list->u.chain;
2e471eb5
GM
2510 }
2511 else
2512 {
2513 if (float_block_index == FLOAT_BLOCK_SIZE)
2514 {
2515 register struct float_block *new;
2516
ab6780cd
SM
2517 new = (struct float_block *) lisp_align_malloc (sizeof *new,
2518 MEM_TYPE_FLOAT);
2e471eb5 2519 new->next = float_block;
72af86bd 2520 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2e471eb5
GM
2521 float_block = new;
2522 float_block_index = 0;
2523 n_float_blocks++;
2524 }
6b61353c
KH
2525 XSETFLOAT (val, &float_block->floats[float_block_index]);
2526 float_block_index++;
2e471eb5 2527 }
177c0ea7 2528
dafc79fa 2529 MALLOC_UNBLOCK_INPUT;
e2984df0 2530
f601cdf3 2531 XFLOAT_INIT (val, float_value);
6b61353c 2532 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2e471eb5
GM
2533 consing_since_gc += sizeof (struct Lisp_Float);
2534 floats_consed++;
2535 return val;
2536}
2537
2e471eb5
GM
2538
2539\f
2540/***********************************************************************
2541 Cons Allocation
2542 ***********************************************************************/
2543
2544/* We store cons cells inside of cons_blocks, allocating a new
2545 cons_block with malloc whenever necessary. Cons cells reclaimed by
2546 GC are put on a free list to be reallocated before allocating
08b7c2cb 2547 any new cons cells from the latest cons_block. */
2e471eb5
GM
2548
2549#define CONS_BLOCK_SIZE \
08b7c2cb
SM
2550 (((BLOCK_BYTES - sizeof (struct cons_block *)) * CHAR_BIT) \
2551 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2552
2553#define CONS_BLOCK(fptr) \
d01a7826 2554 ((struct cons_block *) ((uintptr_t) (fptr) & ~(BLOCK_ALIGN - 1)))
08b7c2cb
SM
2555
2556#define CONS_INDEX(fptr) \
d01a7826 2557 (((uintptr_t) (fptr) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2e471eb5
GM
2558
2559struct cons_block
2560{
08b7c2cb 2561 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2e471eb5 2562 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
08b7c2cb
SM
2563 int gcmarkbits[1 + CONS_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2564 struct cons_block *next;
2e471eb5
GM
2565};
2566
08b7c2cb
SM
2567#define CONS_MARKED_P(fptr) \
2568 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2569
2570#define CONS_MARK(fptr) \
2571 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2572
2573#define CONS_UNMARK(fptr) \
2574 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2575
34400008
GM
2576/* Current cons_block. */
2577
244ed907 2578static struct cons_block *cons_block;
34400008
GM
2579
2580/* Index of first unused Lisp_Cons in the current block. */
2581
244ed907 2582static int cons_block_index;
2e471eb5 2583
34400008
GM
2584/* Free-list of Lisp_Cons structures. */
2585
244ed907 2586static struct Lisp_Cons *cons_free_list;
2e471eb5
GM
2587
2588/* Total number of cons blocks now in use. */
2589
d3d47262 2590static int n_cons_blocks;
2e471eb5 2591
34400008
GM
2592
2593/* Initialize cons allocation. */
2594
d3d47262 2595static void
971de7fb 2596init_cons (void)
2e471eb5 2597{
08b7c2cb
SM
2598 cons_block = NULL;
2599 cons_block_index = CONS_BLOCK_SIZE; /* Force alloc of new cons_block. */
2e471eb5 2600 cons_free_list = 0;
08b7c2cb 2601 n_cons_blocks = 0;
2e471eb5
GM
2602}
2603
34400008
GM
2604
2605/* Explicitly free a cons cell by putting it on the free-list. */
2e471eb5
GM
2606
2607void
971de7fb 2608free_cons (struct Lisp_Cons *ptr)
2e471eb5 2609{
28a099a4 2610 ptr->u.chain = cons_free_list;
34400008
GM
2611#if GC_MARK_STACK
2612 ptr->car = Vdead;
2613#endif
2e471eb5
GM
2614 cons_free_list = ptr;
2615}
2616
a7ca3326 2617DEFUN ("cons", Fcons, Scons, 2, 2, 0,
a6266d23 2618 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
5842a27b 2619 (Lisp_Object car, Lisp_Object cdr)
2e471eb5
GM
2620{
2621 register Lisp_Object val;
2622
e2984df0
CY
2623 /* eassert (!handling_signal); */
2624
dafc79fa 2625 MALLOC_BLOCK_INPUT;
cfb2f32e 2626
2e471eb5
GM
2627 if (cons_free_list)
2628 {
2629 /* We use the cdr for chaining the free list
2630 so that we won't use the same field that has the mark bit. */
2631 XSETCONS (val, cons_free_list);
28a099a4 2632 cons_free_list = cons_free_list->u.chain;
2e471eb5
GM
2633 }
2634 else
2635 {
2636 if (cons_block_index == CONS_BLOCK_SIZE)
2637 {
2638 register struct cons_block *new;
08b7c2cb
SM
2639 new = (struct cons_block *) lisp_align_malloc (sizeof *new,
2640 MEM_TYPE_CONS);
72af86bd 2641 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2e471eb5
GM
2642 new->next = cons_block;
2643 cons_block = new;
2644 cons_block_index = 0;
2645 n_cons_blocks++;
2646 }
6b61353c
KH
2647 XSETCONS (val, &cons_block->conses[cons_block_index]);
2648 cons_block_index++;
2e471eb5 2649 }
177c0ea7 2650
dafc79fa 2651 MALLOC_UNBLOCK_INPUT;
e2984df0 2652
f3fbd155
KR
2653 XSETCAR (val, car);
2654 XSETCDR (val, cdr);
6b61353c 2655 eassert (!CONS_MARKED_P (XCONS (val)));
2e471eb5
GM
2656 consing_since_gc += sizeof (struct Lisp_Cons);
2657 cons_cells_consed++;
2658 return val;
2659}
2660
e5aab7e7 2661#ifdef GC_CHECK_CONS_LIST
e3e56238
RS
2662/* Get an error now if there's any junk in the cons free list. */
2663void
971de7fb 2664check_cons_list (void)
e3e56238
RS
2665{
2666 struct Lisp_Cons *tail = cons_free_list;
2667
e3e56238 2668 while (tail)
28a099a4 2669 tail = tail->u.chain;
e3e56238 2670}
e5aab7e7 2671#endif
34400008 2672
9b306d37
KS
2673/* Make a list of 1, 2, 3, 4 or 5 specified objects. */
2674
2675Lisp_Object
971de7fb 2676list1 (Lisp_Object arg1)
9b306d37
KS
2677{
2678 return Fcons (arg1, Qnil);
2679}
2e471eb5
GM
2680
2681Lisp_Object
971de7fb 2682list2 (Lisp_Object arg1, Lisp_Object arg2)
2e471eb5
GM
2683{
2684 return Fcons (arg1, Fcons (arg2, Qnil));
2685}
2686
34400008 2687
2e471eb5 2688Lisp_Object
971de7fb 2689list3 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3)
2e471eb5
GM
2690{
2691 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2692}
2693
34400008 2694
2e471eb5 2695Lisp_Object
971de7fb 2696list4 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4)
2e471eb5
GM
2697{
2698 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2699}
2700
34400008 2701
2e471eb5 2702Lisp_Object
971de7fb 2703list5 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4, Lisp_Object arg5)
2e471eb5
GM
2704{
2705 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2706 Fcons (arg5, Qnil)))));
2707}
2708
34400008 2709
a7ca3326 2710DEFUN ("list", Flist, Slist, 0, MANY, 0,
eae936e2 2711 doc: /* Return a newly created list with specified arguments as elements.
ae8e8122
MB
2712Any number of arguments, even zero arguments, are allowed.
2713usage: (list &rest OBJECTS) */)
c5101a77 2714 (size_t nargs, register Lisp_Object *args)
2e471eb5
GM
2715{
2716 register Lisp_Object val;
2717 val = Qnil;
2718
2719 while (nargs > 0)
2720 {
2721 nargs--;
2722 val = Fcons (args[nargs], val);
2723 }
2724 return val;
2725}
2726
34400008 2727
a7ca3326 2728DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
a6266d23 2729 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
5842a27b 2730 (register Lisp_Object length, Lisp_Object init)
2e471eb5
GM
2731{
2732 register Lisp_Object val;
14162469 2733 register EMACS_INT size;
2e471eb5 2734
b7826503 2735 CHECK_NATNUM (length);
2e471eb5
GM
2736 size = XFASTINT (length);
2737
2738 val = Qnil;
ce070307
GM
2739 while (size > 0)
2740 {
2741 val = Fcons (init, val);
2742 --size;
2743
2744 if (size > 0)
2745 {
2746 val = Fcons (init, val);
2747 --size;
177c0ea7 2748
ce070307
GM
2749 if (size > 0)
2750 {
2751 val = Fcons (init, val);
2752 --size;
177c0ea7 2753
ce070307
GM
2754 if (size > 0)
2755 {
2756 val = Fcons (init, val);
2757 --size;
177c0ea7 2758
ce070307
GM
2759 if (size > 0)
2760 {
2761 val = Fcons (init, val);
2762 --size;
2763 }
2764 }
2765 }
2766 }
2767
2768 QUIT;
2769 }
177c0ea7 2770
7146af97
JB
2771 return val;
2772}
2e471eb5
GM
2773
2774
7146af97 2775\f
2e471eb5
GM
2776/***********************************************************************
2777 Vector Allocation
2778 ***********************************************************************/
7146af97 2779
34400008
GM
2780/* Singly-linked list of all vectors. */
2781
d3d47262 2782static struct Lisp_Vector *all_vectors;
7146af97 2783
2e471eb5
GM
2784/* Total number of vector-like objects now in use. */
2785
d3d47262 2786static int n_vectors;
c8099634 2787
34400008
GM
2788
2789/* Value is a pointer to a newly allocated Lisp_Vector structure
2790 with room for LEN Lisp_Objects. */
2791
ece93c02 2792static struct Lisp_Vector *
971de7fb 2793allocate_vectorlike (EMACS_INT len)
1825c68d
KH
2794{
2795 struct Lisp_Vector *p;
675d5130 2796 size_t nbytes;
1825c68d 2797
dafc79fa
SM
2798 MALLOC_BLOCK_INPUT;
2799
d1658221 2800#ifdef DOUG_LEA_MALLOC
f8608968
GM
2801 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
2802 because mapped region contents are not preserved in
2803 a dumped Emacs. */
d1658221
RS
2804 mallopt (M_MMAP_MAX, 0);
2805#endif
177c0ea7 2806
cfb2f32e
SM
2807 /* This gets triggered by code which I haven't bothered to fix. --Stef */
2808 /* eassert (!handling_signal); */
2809
36372bf9
PE
2810 nbytes = (offsetof (struct Lisp_Vector, contents)
2811 + len * sizeof p->contents[0]);
9c545a55 2812 p = (struct Lisp_Vector *) lisp_malloc (nbytes, MEM_TYPE_VECTORLIKE);
177c0ea7 2813
d1658221 2814#ifdef DOUG_LEA_MALLOC
34400008 2815 /* Back to a reasonable maximum of mmap'ed areas. */
81d492d5 2816 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
d1658221 2817#endif
177c0ea7 2818
34400008 2819 consing_since_gc += nbytes;
310ea200 2820 vector_cells_consed += len;
1825c68d 2821
eab3844f 2822 p->header.next.vector = all_vectors;
1825c68d 2823 all_vectors = p;
e2984df0 2824
dafc79fa 2825 MALLOC_UNBLOCK_INPUT;
e2984df0 2826
34400008 2827 ++n_vectors;
1825c68d
KH
2828 return p;
2829}
2830
34400008 2831
ece93c02
GM
2832/* Allocate a vector with NSLOTS slots. */
2833
2834struct Lisp_Vector *
971de7fb 2835allocate_vector (EMACS_INT nslots)
ece93c02 2836{
9c545a55 2837 struct Lisp_Vector *v = allocate_vectorlike (nslots);
eab3844f 2838 v->header.size = nslots;
ece93c02
GM
2839 return v;
2840}
2841
2842
2843/* Allocate other vector-like structures. */
2844
30f95089 2845struct Lisp_Vector *
971de7fb 2846allocate_pseudovector (int memlen, int lisplen, EMACS_INT tag)
ece93c02 2847{
d2029e5b 2848 struct Lisp_Vector *v = allocate_vectorlike (memlen);
ece93c02 2849 EMACS_INT i;
177c0ea7 2850
d2029e5b 2851 /* Only the first lisplen slots will be traced normally by the GC. */
d2029e5b 2852 for (i = 0; i < lisplen; ++i)
ece93c02 2853 v->contents[i] = Qnil;
177c0ea7 2854
eab3844f 2855 XSETPVECTYPESIZE (v, tag, lisplen);
d2029e5b
SM
2856 return v;
2857}
d2029e5b 2858
ece93c02 2859struct Lisp_Hash_Table *
878f97ff 2860allocate_hash_table (void)
ece93c02 2861{
878f97ff 2862 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Hash_Table, count, PVEC_HASH_TABLE);
ece93c02
GM
2863}
2864
2865
2866struct window *
971de7fb 2867allocate_window (void)
ece93c02 2868{
d2029e5b 2869 return ALLOCATE_PSEUDOVECTOR(struct window, current_matrix, PVEC_WINDOW);
ece93c02 2870}
177c0ea7 2871
177c0ea7 2872
4a729fd8 2873struct terminal *
971de7fb 2874allocate_terminal (void)
4a729fd8 2875{
d2029e5b
SM
2876 struct terminal *t = ALLOCATE_PSEUDOVECTOR (struct terminal,
2877 next_terminal, PVEC_TERMINAL);
2878 /* Zero out the non-GC'd fields. FIXME: This should be made unnecessary. */
72af86bd
AS
2879 memset (&t->next_terminal, 0,
2880 (char*) (t + 1) - (char*) &t->next_terminal);
ece93c02 2881
d2029e5b 2882 return t;
4a729fd8 2883}
ece93c02
GM
2884
2885struct frame *
971de7fb 2886allocate_frame (void)
ece93c02 2887{
d2029e5b
SM
2888 struct frame *f = ALLOCATE_PSEUDOVECTOR (struct frame,
2889 face_cache, PVEC_FRAME);
2890 /* Zero out the non-GC'd fields. FIXME: This should be made unnecessary. */
72af86bd
AS
2891 memset (&f->face_cache, 0,
2892 (char *) (f + 1) - (char *) &f->face_cache);
d2029e5b 2893 return f;
ece93c02
GM
2894}
2895
2896
2897struct Lisp_Process *
971de7fb 2898allocate_process (void)
ece93c02 2899{
d2029e5b 2900 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Process, pid, PVEC_PROCESS);
ece93c02
GM
2901}
2902
2903
a7ca3326 2904DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
a6266d23 2905 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
7ee72033 2906See also the function `vector'. */)
5842a27b 2907 (register Lisp_Object length, Lisp_Object init)
7146af97 2908{
1825c68d
KH
2909 Lisp_Object vector;
2910 register EMACS_INT sizei;
ae35e756 2911 register EMACS_INT i;
7146af97
JB
2912 register struct Lisp_Vector *p;
2913
b7826503 2914 CHECK_NATNUM (length);
c9dad5ed 2915 sizei = XFASTINT (length);
7146af97 2916
ece93c02 2917 p = allocate_vector (sizei);
ae35e756
PE
2918 for (i = 0; i < sizei; i++)
2919 p->contents[i] = init;
7146af97 2920
1825c68d 2921 XSETVECTOR (vector, p);
7146af97
JB
2922 return vector;
2923}
2924
34400008 2925
a7ca3326 2926DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
eae936e2 2927 doc: /* Return a newly created vector with specified arguments as elements.
ae8e8122
MB
2928Any number of arguments, even zero arguments, are allowed.
2929usage: (vector &rest OBJECTS) */)
c5101a77 2930 (register size_t nargs, Lisp_Object *args)
7146af97
JB
2931{
2932 register Lisp_Object len, val;
c5101a77 2933 register size_t i;
7146af97
JB
2934 register struct Lisp_Vector *p;
2935
67ba9986 2936 XSETFASTINT (len, nargs);
7146af97
JB
2937 val = Fmake_vector (len, Qnil);
2938 p = XVECTOR (val);
ae35e756
PE
2939 for (i = 0; i < nargs; i++)
2940 p->contents[i] = args[i];
7146af97
JB
2941 return val;
2942}
2943
34400008 2944
a7ca3326 2945DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
a6266d23 2946 doc: /* Create a byte-code object with specified arguments as elements.
e2abe5a1
SM
2947The arguments should be the ARGLIST, bytecode-string BYTE-CODE, constant
2948vector CONSTANTS, maximum stack size DEPTH, (optional) DOCSTRING,
2949and (optional) INTERACTIVE-SPEC.
228299fa 2950The first four arguments are required; at most six have any
ae8e8122 2951significance.
e2abe5a1
SM
2952The ARGLIST can be either like the one of `lambda', in which case the arguments
2953will be dynamically bound before executing the byte code, or it can be an
2954integer of the form NNNNNNNRMMMMMMM where the 7bit MMMMMMM specifies the
2955minimum number of arguments, the 7-bit NNNNNNN specifies the maximum number
2956of arguments (ignoring &rest) and the R bit specifies whether there is a &rest
2957argument to catch the left-over arguments. If such an integer is used, the
2958arguments will not be dynamically bound but will be instead pushed on the
2959stack before executing the byte-code.
92cc28b2 2960usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
c5101a77 2961 (register size_t nargs, Lisp_Object *args)
7146af97
JB
2962{
2963 register Lisp_Object len, val;
c5101a77 2964 register size_t i;
7146af97
JB
2965 register struct Lisp_Vector *p;
2966
67ba9986 2967 XSETFASTINT (len, nargs);
265a9e55 2968 if (!NILP (Vpurify_flag))
5a053ea9 2969 val = make_pure_vector ((EMACS_INT) nargs);
7146af97
JB
2970 else
2971 val = Fmake_vector (len, Qnil);
9eac9d59 2972
b1feb9b4 2973 if (nargs > 1 && STRINGP (args[1]) && STRING_MULTIBYTE (args[1]))
9eac9d59
KH
2974 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
2975 earlier because they produced a raw 8-bit string for byte-code
2976 and now such a byte-code string is loaded as multibyte while
2977 raw 8-bit characters converted to multibyte form. Thus, now we
2978 must convert them back to the original unibyte form. */
2979 args[1] = Fstring_as_unibyte (args[1]);
2980
7146af97 2981 p = XVECTOR (val);
ae35e756 2982 for (i = 0; i < nargs; i++)
7146af97 2983 {
265a9e55 2984 if (!NILP (Vpurify_flag))
ae35e756
PE
2985 args[i] = Fpurecopy (args[i]);
2986 p->contents[i] = args[i];
7146af97 2987 }
876c194c
SM
2988 XSETPVECTYPE (p, PVEC_COMPILED);
2989 XSETCOMPILED (val, p);
7146af97
JB
2990 return val;
2991}
2e471eb5 2992
34400008 2993
7146af97 2994\f
2e471eb5
GM
2995/***********************************************************************
2996 Symbol Allocation
2997 ***********************************************************************/
7146af97 2998
2e471eb5
GM
2999/* Each symbol_block is just under 1020 bytes long, since malloc
3000 really allocates in units of powers of two and uses 4 bytes for its
3001 own overhead. */
7146af97
JB
3002
3003#define SYMBOL_BLOCK_SIZE \
3004 ((1020 - sizeof (struct symbol_block *)) / sizeof (struct Lisp_Symbol))
3005
3006struct symbol_block
2e471eb5 3007{
6b61353c 3008 /* Place `symbols' first, to preserve alignment. */
2e471eb5 3009 struct Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
6b61353c 3010 struct symbol_block *next;
2e471eb5 3011};
7146af97 3012
34400008
GM
3013/* Current symbol block and index of first unused Lisp_Symbol
3014 structure in it. */
3015
d3d47262
JB
3016static struct symbol_block *symbol_block;
3017static int symbol_block_index;
7146af97 3018
34400008
GM
3019/* List of free symbols. */
3020
d3d47262 3021static struct Lisp_Symbol *symbol_free_list;
7146af97 3022
c8099634 3023/* Total number of symbol blocks now in use. */
2e471eb5 3024
d3d47262 3025static int n_symbol_blocks;
c8099634 3026
34400008
GM
3027
3028/* Initialize symbol allocation. */
3029
d3d47262 3030static void
971de7fb 3031init_symbol (void)
7146af97 3032{
005ca5c7
DL
3033 symbol_block = NULL;
3034 symbol_block_index = SYMBOL_BLOCK_SIZE;
7146af97 3035 symbol_free_list = 0;
005ca5c7 3036 n_symbol_blocks = 0;
7146af97
JB
3037}
3038
34400008 3039
a7ca3326 3040DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
a6266d23 3041 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
7ee72033 3042Its value and function definition are void, and its property list is nil. */)
5842a27b 3043 (Lisp_Object name)
7146af97
JB
3044{
3045 register Lisp_Object val;
3046 register struct Lisp_Symbol *p;
3047
b7826503 3048 CHECK_STRING (name);
7146af97 3049
537407f0 3050 /* eassert (!handling_signal); */
cfb2f32e 3051
dafc79fa 3052 MALLOC_BLOCK_INPUT;
e2984df0 3053
7146af97
JB
3054 if (symbol_free_list)
3055 {
45d12a89 3056 XSETSYMBOL (val, symbol_free_list);
28a099a4 3057 symbol_free_list = symbol_free_list->next;
7146af97
JB
3058 }
3059 else
3060 {
3061 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
3062 {
3c06d205 3063 struct symbol_block *new;
34400008
GM
3064 new = (struct symbol_block *) lisp_malloc (sizeof *new,
3065 MEM_TYPE_SYMBOL);
7146af97
JB
3066 new->next = symbol_block;
3067 symbol_block = new;
3068 symbol_block_index = 0;
c8099634 3069 n_symbol_blocks++;
7146af97 3070 }
6b61353c
KH
3071 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index]);
3072 symbol_block_index++;
7146af97 3073 }
177c0ea7 3074
dafc79fa 3075 MALLOC_UNBLOCK_INPUT;
e2984df0 3076
7146af97 3077 p = XSYMBOL (val);
8fe5665d 3078 p->xname = name;
7146af97 3079 p->plist = Qnil;
ce5b453a
SM
3080 p->redirect = SYMBOL_PLAINVAL;
3081 SET_SYMBOL_VAL (p, Qunbound);
2e471eb5 3082 p->function = Qunbound;
9e713715 3083 p->next = NULL;
2336fe58 3084 p->gcmarkbit = 0;
9e713715
GM
3085 p->interned = SYMBOL_UNINTERNED;
3086 p->constant = 0;
b9598260 3087 p->declared_special = 0;
2e471eb5
GM
3088 consing_since_gc += sizeof (struct Lisp_Symbol);
3089 symbols_consed++;
7146af97
JB
3090 return val;
3091}
3092
3f25e183 3093
2e471eb5
GM
3094\f
3095/***********************************************************************
34400008 3096 Marker (Misc) Allocation
2e471eb5 3097 ***********************************************************************/
3f25e183 3098
2e471eb5
GM
3099/* Allocation of markers and other objects that share that structure.
3100 Works like allocation of conses. */
c0696668 3101
2e471eb5
GM
3102#define MARKER_BLOCK_SIZE \
3103 ((1020 - sizeof (struct marker_block *)) / sizeof (union Lisp_Misc))
3104
3105struct marker_block
c0696668 3106{
6b61353c 3107 /* Place `markers' first, to preserve alignment. */
2e471eb5 3108 union Lisp_Misc markers[MARKER_BLOCK_SIZE];
6b61353c 3109 struct marker_block *next;
2e471eb5 3110};
c0696668 3111
d3d47262
JB
3112static struct marker_block *marker_block;
3113static int marker_block_index;
c0696668 3114
d3d47262 3115static union Lisp_Misc *marker_free_list;
c0696668 3116
2e471eb5 3117/* Total number of marker blocks now in use. */
3f25e183 3118
d3d47262 3119static int n_marker_blocks;
2e471eb5 3120
d3d47262 3121static void
971de7fb 3122init_marker (void)
3f25e183 3123{
005ca5c7
DL
3124 marker_block = NULL;
3125 marker_block_index = MARKER_BLOCK_SIZE;
2e471eb5 3126 marker_free_list = 0;
005ca5c7 3127 n_marker_blocks = 0;
3f25e183
RS
3128}
3129
2e471eb5
GM
3130/* Return a newly allocated Lisp_Misc object, with no substructure. */
3131
3f25e183 3132Lisp_Object
971de7fb 3133allocate_misc (void)
7146af97 3134{
2e471eb5 3135 Lisp_Object val;
7146af97 3136
e2984df0
CY
3137 /* eassert (!handling_signal); */
3138
dafc79fa 3139 MALLOC_BLOCK_INPUT;
cfb2f32e 3140
2e471eb5 3141 if (marker_free_list)
7146af97 3142 {
2e471eb5
GM
3143 XSETMISC (val, marker_free_list);
3144 marker_free_list = marker_free_list->u_free.chain;
7146af97
JB
3145 }
3146 else
7146af97 3147 {
2e471eb5
GM
3148 if (marker_block_index == MARKER_BLOCK_SIZE)
3149 {
3150 struct marker_block *new;
34400008
GM
3151 new = (struct marker_block *) lisp_malloc (sizeof *new,
3152 MEM_TYPE_MISC);
2e471eb5
GM
3153 new->next = marker_block;
3154 marker_block = new;
3155 marker_block_index = 0;
3156 n_marker_blocks++;
7b7990cc 3157 total_free_markers += MARKER_BLOCK_SIZE;
2e471eb5 3158 }
6b61353c
KH
3159 XSETMISC (val, &marker_block->markers[marker_block_index]);
3160 marker_block_index++;
7146af97 3161 }
177c0ea7 3162
dafc79fa 3163 MALLOC_UNBLOCK_INPUT;
e2984df0 3164
7b7990cc 3165 --total_free_markers;
2e471eb5
GM
3166 consing_since_gc += sizeof (union Lisp_Misc);
3167 misc_objects_consed++;
67ee9f6e 3168 XMISCANY (val)->gcmarkbit = 0;
2e471eb5
GM
3169 return val;
3170}
3171
7b7990cc
KS
3172/* Free a Lisp_Misc object */
3173
244ed907 3174static void
971de7fb 3175free_misc (Lisp_Object misc)
7b7990cc 3176{
d314756e 3177 XMISCTYPE (misc) = Lisp_Misc_Free;
7b7990cc
KS
3178 XMISC (misc)->u_free.chain = marker_free_list;
3179 marker_free_list = XMISC (misc);
3180
3181 total_free_markers++;
3182}
3183
42172a6b
RS
3184/* Return a Lisp_Misc_Save_Value object containing POINTER and
3185 INTEGER. This is used to package C values to call record_unwind_protect.
3186 The unwind function can get the C values back using XSAVE_VALUE. */
3187
3188Lisp_Object
971de7fb 3189make_save_value (void *pointer, int integer)
42172a6b
RS
3190{
3191 register Lisp_Object val;
3192 register struct Lisp_Save_Value *p;
3193
3194 val = allocate_misc ();
3195 XMISCTYPE (val) = Lisp_Misc_Save_Value;
3196 p = XSAVE_VALUE (val);
3197 p->pointer = pointer;
3198 p->integer = integer;
b766f870 3199 p->dogc = 0;
42172a6b
RS
3200 return val;
3201}
3202
a7ca3326 3203DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
a6266d23 3204 doc: /* Return a newly allocated marker which does not point at any place. */)
5842a27b 3205 (void)
2e471eb5
GM
3206{
3207 register Lisp_Object val;
3208 register struct Lisp_Marker *p;
7146af97 3209
2e471eb5
GM
3210 val = allocate_misc ();
3211 XMISCTYPE (val) = Lisp_Misc_Marker;
3212 p = XMARKER (val);
3213 p->buffer = 0;
3214 p->bytepos = 0;
3215 p->charpos = 0;
ef89c2ce 3216 p->next = NULL;
2e471eb5 3217 p->insertion_type = 0;
7146af97
JB
3218 return val;
3219}
2e471eb5
GM
3220
3221/* Put MARKER back on the free list after using it temporarily. */
3222
3223void
971de7fb 3224free_marker (Lisp_Object marker)
2e471eb5 3225{
ef89c2ce 3226 unchain_marker (XMARKER (marker));
7b7990cc 3227 free_misc (marker);
2e471eb5
GM
3228}
3229
c0696668 3230\f
7146af97 3231/* Return a newly created vector or string with specified arguments as
736471d1
RS
3232 elements. If all the arguments are characters that can fit
3233 in a string of events, make a string; otherwise, make a vector.
3234
3235 Any number of arguments, even zero arguments, are allowed. */
7146af97
JB
3236
3237Lisp_Object
971de7fb 3238make_event_array (register int nargs, Lisp_Object *args)
7146af97
JB
3239{
3240 int i;
3241
3242 for (i = 0; i < nargs; i++)
736471d1 3243 /* The things that fit in a string
c9ca4659
RS
3244 are characters that are in 0...127,
3245 after discarding the meta bit and all the bits above it. */
e687453f 3246 if (!INTEGERP (args[i])
c11285dc 3247 || (XINT (args[i]) & ~(-CHAR_META)) >= 0200)
7146af97
JB
3248 return Fvector (nargs, args);
3249
3250 /* Since the loop exited, we know that all the things in it are
3251 characters, so we can make a string. */
3252 {
c13ccad2 3253 Lisp_Object result;
177c0ea7 3254
50aee051 3255 result = Fmake_string (make_number (nargs), make_number (0));
7146af97 3256 for (i = 0; i < nargs; i++)
736471d1 3257 {
46e7e6b0 3258 SSET (result, i, XINT (args[i]));
736471d1
RS
3259 /* Move the meta bit to the right place for a string char. */
3260 if (XINT (args[i]) & CHAR_META)
46e7e6b0 3261 SSET (result, i, SREF (result, i) | 0x80);
736471d1 3262 }
177c0ea7 3263
7146af97
JB
3264 return result;
3265 }
3266}
2e471eb5
GM
3267
3268
7146af97 3269\f
24d8a105
RS
3270/************************************************************************
3271 Memory Full Handling
3272 ************************************************************************/
3273
3274
3275/* Called if malloc returns zero. */
3276
3277void
971de7fb 3278memory_full (void)
24d8a105
RS
3279{
3280 int i;
3281
3282 Vmemory_full = Qt;
3283
3284 memory_full_cons_threshold = sizeof (struct cons_block);
3285
3286 /* The first time we get here, free the spare memory. */
3287 for (i = 0; i < sizeof (spare_memory) / sizeof (char *); i++)
3288 if (spare_memory[i])
3289 {
3290 if (i == 0)
3291 free (spare_memory[i]);
3292 else if (i >= 1 && i <= 4)
3293 lisp_align_free (spare_memory[i]);
3294 else
3295 lisp_free (spare_memory[i]);
3296 spare_memory[i] = 0;
3297 }
3298
3299 /* Record the space now used. When it decreases substantially,
3300 we can refill the memory reserve. */
4e75f29d 3301#if !defined SYSTEM_MALLOC && !defined SYNC_INPUT
24d8a105
RS
3302 bytes_used_when_full = BYTES_USED;
3303#endif
3304
3305 /* This used to call error, but if we've run out of memory, we could
3306 get infinite recursion trying to build the string. */
9b306d37 3307 xsignal (Qnil, Vmemory_signal_data);
24d8a105
RS
3308}
3309
3310/* If we released our reserve (due to running out of memory),
3311 and we have a fair amount free once again,
3312 try to set aside another reserve in case we run out once more.
3313
3314 This is called when a relocatable block is freed in ralloc.c,
3315 and also directly from this file, in case we're not using ralloc.c. */
3316
3317void
971de7fb 3318refill_memory_reserve (void)
24d8a105
RS
3319{
3320#ifndef SYSTEM_MALLOC
3321 if (spare_memory[0] == 0)
3322 spare_memory[0] = (char *) malloc ((size_t) SPARE_MEMORY);
3323 if (spare_memory[1] == 0)
3324 spare_memory[1] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3325 MEM_TYPE_CONS);
3326 if (spare_memory[2] == 0)
3327 spare_memory[2] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3328 MEM_TYPE_CONS);
3329 if (spare_memory[3] == 0)
3330 spare_memory[3] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3331 MEM_TYPE_CONS);
3332 if (spare_memory[4] == 0)
3333 spare_memory[4] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3334 MEM_TYPE_CONS);
3335 if (spare_memory[5] == 0)
3336 spare_memory[5] = (char *) lisp_malloc (sizeof (struct string_block),
3337 MEM_TYPE_STRING);
3338 if (spare_memory[6] == 0)
3339 spare_memory[6] = (char *) lisp_malloc (sizeof (struct string_block),
3340 MEM_TYPE_STRING);
3341 if (spare_memory[0] && spare_memory[1] && spare_memory[5])
3342 Vmemory_full = Qnil;
3343#endif
3344}
3345\f
34400008
GM
3346/************************************************************************
3347 C Stack Marking
3348 ************************************************************************/
3349
13c844fb
GM
3350#if GC_MARK_STACK || defined GC_MALLOC_CHECK
3351
71cf5fa0
GM
3352/* Conservative C stack marking requires a method to identify possibly
3353 live Lisp objects given a pointer value. We do this by keeping
3354 track of blocks of Lisp data that are allocated in a red-black tree
3355 (see also the comment of mem_node which is the type of nodes in
3356 that tree). Function lisp_malloc adds information for an allocated
3357 block to the red-black tree with calls to mem_insert, and function
3358 lisp_free removes it with mem_delete. Functions live_string_p etc
3359 call mem_find to lookup information about a given pointer in the
3360 tree, and use that to determine if the pointer points to a Lisp
3361 object or not. */
3362
34400008
GM
3363/* Initialize this part of alloc.c. */
3364
3365static void
971de7fb 3366mem_init (void)
34400008
GM
3367{
3368 mem_z.left = mem_z.right = MEM_NIL;
3369 mem_z.parent = NULL;
3370 mem_z.color = MEM_BLACK;
3371 mem_z.start = mem_z.end = NULL;
3372 mem_root = MEM_NIL;
3373}
3374
3375
3376/* Value is a pointer to the mem_node containing START. Value is
3377 MEM_NIL if there is no node in the tree containing START. */
3378
3379static INLINE struct mem_node *
971de7fb 3380mem_find (void *start)
34400008
GM
3381{
3382 struct mem_node *p;
3383
ece93c02
GM
3384 if (start < min_heap_address || start > max_heap_address)
3385 return MEM_NIL;
3386
34400008
GM
3387 /* Make the search always successful to speed up the loop below. */
3388 mem_z.start = start;
3389 mem_z.end = (char *) start + 1;
3390
3391 p = mem_root;
3392 while (start < p->start || start >= p->end)
3393 p = start < p->start ? p->left : p->right;
3394 return p;
3395}
3396
3397
3398/* Insert a new node into the tree for a block of memory with start
3399 address START, end address END, and type TYPE. Value is a
3400 pointer to the node that was inserted. */
3401
3402static struct mem_node *
971de7fb 3403mem_insert (void *start, void *end, enum mem_type type)
34400008
GM
3404{
3405 struct mem_node *c, *parent, *x;
3406
add3c3ea 3407 if (min_heap_address == NULL || start < min_heap_address)
ece93c02 3408 min_heap_address = start;
add3c3ea 3409 if (max_heap_address == NULL || end > max_heap_address)
ece93c02
GM
3410 max_heap_address = end;
3411
34400008
GM
3412 /* See where in the tree a node for START belongs. In this
3413 particular application, it shouldn't happen that a node is already
3414 present. For debugging purposes, let's check that. */
3415 c = mem_root;
3416 parent = NULL;
3417
3418#if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
177c0ea7 3419
34400008
GM
3420 while (c != MEM_NIL)
3421 {
3422 if (start >= c->start && start < c->end)
3423 abort ();
3424 parent = c;
3425 c = start < c->start ? c->left : c->right;
3426 }
177c0ea7 3427
34400008 3428#else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
177c0ea7 3429
34400008
GM
3430 while (c != MEM_NIL)
3431 {
3432 parent = c;
3433 c = start < c->start ? c->left : c->right;
3434 }
177c0ea7 3435
34400008
GM
3436#endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3437
3438 /* Create a new node. */
877935b1
GM
3439#ifdef GC_MALLOC_CHECK
3440 x = (struct mem_node *) _malloc_internal (sizeof *x);
3441 if (x == NULL)
3442 abort ();
3443#else
34400008 3444 x = (struct mem_node *) xmalloc (sizeof *x);
877935b1 3445#endif
34400008
GM
3446 x->start = start;
3447 x->end = end;
3448 x->type = type;
3449 x->parent = parent;
3450 x->left = x->right = MEM_NIL;
3451 x->color = MEM_RED;
3452
3453 /* Insert it as child of PARENT or install it as root. */
3454 if (parent)
3455 {
3456 if (start < parent->start)
3457 parent->left = x;
3458 else
3459 parent->right = x;
3460 }
177c0ea7 3461 else
34400008
GM
3462 mem_root = x;
3463
3464 /* Re-establish red-black tree properties. */
3465 mem_insert_fixup (x);
877935b1 3466
34400008
GM
3467 return x;
3468}
3469
3470
3471/* Re-establish the red-black properties of the tree, and thereby
3472 balance the tree, after node X has been inserted; X is always red. */
3473
3474static void
971de7fb 3475mem_insert_fixup (struct mem_node *x)
34400008
GM
3476{
3477 while (x != mem_root && x->parent->color == MEM_RED)
3478 {
3479 /* X is red and its parent is red. This is a violation of
3480 red-black tree property #3. */
177c0ea7 3481
34400008
GM
3482 if (x->parent == x->parent->parent->left)
3483 {
3484 /* We're on the left side of our grandparent, and Y is our
3485 "uncle". */
3486 struct mem_node *y = x->parent->parent->right;
177c0ea7 3487
34400008
GM
3488 if (y->color == MEM_RED)
3489 {
3490 /* Uncle and parent are red but should be black because
3491 X is red. Change the colors accordingly and proceed
3492 with the grandparent. */
3493 x->parent->color = MEM_BLACK;
3494 y->color = MEM_BLACK;
3495 x->parent->parent->color = MEM_RED;
3496 x = x->parent->parent;
3497 }
3498 else
3499 {
3500 /* Parent and uncle have different colors; parent is
3501 red, uncle is black. */
3502 if (x == x->parent->right)
3503 {
3504 x = x->parent;
3505 mem_rotate_left (x);
3506 }
3507
3508 x->parent->color = MEM_BLACK;
3509 x->parent->parent->color = MEM_RED;
3510 mem_rotate_right (x->parent->parent);
3511 }
3512 }
3513 else
3514 {
3515 /* This is the symmetrical case of above. */
3516 struct mem_node *y = x->parent->parent->left;
177c0ea7 3517
34400008
GM
3518 if (y->color == MEM_RED)
3519 {
3520 x->parent->color = MEM_BLACK;
3521 y->color = MEM_BLACK;
3522 x->parent->parent->color = MEM_RED;
3523 x = x->parent->parent;
3524 }
3525 else
3526 {
3527 if (x == x->parent->left)
3528 {
3529 x = x->parent;
3530 mem_rotate_right (x);
3531 }
177c0ea7 3532
34400008
GM
3533 x->parent->color = MEM_BLACK;
3534 x->parent->parent->color = MEM_RED;
3535 mem_rotate_left (x->parent->parent);
3536 }
3537 }
3538 }
3539
3540 /* The root may have been changed to red due to the algorithm. Set
3541 it to black so that property #5 is satisfied. */
3542 mem_root->color = MEM_BLACK;
3543}
3544
3545
177c0ea7
JB
3546/* (x) (y)
3547 / \ / \
34400008
GM
3548 a (y) ===> (x) c
3549 / \ / \
3550 b c a b */
3551
3552static void
971de7fb 3553mem_rotate_left (struct mem_node *x)
34400008
GM
3554{
3555 struct mem_node *y;
3556
3557 /* Turn y's left sub-tree into x's right sub-tree. */
3558 y = x->right;
3559 x->right = y->left;
3560 if (y->left != MEM_NIL)
3561 y->left->parent = x;
3562
3563 /* Y's parent was x's parent. */
3564 if (y != MEM_NIL)
3565 y->parent = x->parent;
3566
3567 /* Get the parent to point to y instead of x. */
3568 if (x->parent)
3569 {
3570 if (x == x->parent->left)
3571 x->parent->left = y;
3572 else
3573 x->parent->right = y;
3574 }
3575 else
3576 mem_root = y;
3577
3578 /* Put x on y's left. */
3579 y->left = x;
3580 if (x != MEM_NIL)
3581 x->parent = y;
3582}
3583
3584
177c0ea7
JB
3585/* (x) (Y)
3586 / \ / \
3587 (y) c ===> a (x)
3588 / \ / \
34400008
GM
3589 a b b c */
3590
3591static void
971de7fb 3592mem_rotate_right (struct mem_node *x)
34400008
GM
3593{
3594 struct mem_node *y = x->left;
3595
3596 x->left = y->right;
3597 if (y->right != MEM_NIL)
3598 y->right->parent = x;
177c0ea7 3599
34400008
GM
3600 if (y != MEM_NIL)
3601 y->parent = x->parent;
3602 if (x->parent)
3603 {
3604 if (x == x->parent->right)
3605 x->parent->right = y;
3606 else
3607 x->parent->left = y;
3608 }
3609 else
3610 mem_root = y;
177c0ea7 3611
34400008
GM
3612 y->right = x;
3613 if (x != MEM_NIL)
3614 x->parent = y;
3615}
3616
3617
3618/* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
3619
3620static void
971de7fb 3621mem_delete (struct mem_node *z)
34400008
GM
3622{
3623 struct mem_node *x, *y;
3624
3625 if (!z || z == MEM_NIL)
3626 return;
3627
3628 if (z->left == MEM_NIL || z->right == MEM_NIL)
3629 y = z;
3630 else
3631 {
3632 y = z->right;
3633 while (y->left != MEM_NIL)
3634 y = y->left;
3635 }
3636
3637 if (y->left != MEM_NIL)
3638 x = y->left;
3639 else
3640 x = y->right;
3641
3642 x->parent = y->parent;
3643 if (y->parent)
3644 {
3645 if (y == y->parent->left)
3646 y->parent->left = x;
3647 else
3648 y->parent->right = x;
3649 }
3650 else
3651 mem_root = x;
3652
3653 if (y != z)
3654 {
3655 z->start = y->start;
3656 z->end = y->end;
3657 z->type = y->type;
3658 }
177c0ea7 3659
34400008
GM
3660 if (y->color == MEM_BLACK)
3661 mem_delete_fixup (x);
877935b1
GM
3662
3663#ifdef GC_MALLOC_CHECK
3664 _free_internal (y);
3665#else
34400008 3666 xfree (y);
877935b1 3667#endif
34400008
GM
3668}
3669
3670
3671/* Re-establish the red-black properties of the tree, after a
3672 deletion. */
3673
3674static void
971de7fb 3675mem_delete_fixup (struct mem_node *x)
34400008
GM
3676{
3677 while (x != mem_root && x->color == MEM_BLACK)
3678 {
3679 if (x == x->parent->left)
3680 {
3681 struct mem_node *w = x->parent->right;
177c0ea7 3682
34400008
GM
3683 if (w->color == MEM_RED)
3684 {
3685 w->color = MEM_BLACK;
3686 x->parent->color = MEM_RED;
3687 mem_rotate_left (x->parent);
3688 w = x->parent->right;
3689 }
177c0ea7 3690
34400008
GM
3691 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
3692 {
3693 w->color = MEM_RED;
3694 x = x->parent;
3695 }
3696 else
3697 {
3698 if (w->right->color == MEM_BLACK)
3699 {
3700 w->left->color = MEM_BLACK;
3701 w->color = MEM_RED;
3702 mem_rotate_right (w);
3703 w = x->parent->right;
3704 }
3705 w->color = x->parent->color;
3706 x->parent->color = MEM_BLACK;
3707 w->right->color = MEM_BLACK;
3708 mem_rotate_left (x->parent);
3709 x = mem_root;
3710 }
3711 }
3712 else
3713 {
3714 struct mem_node *w = x->parent->left;
177c0ea7 3715
34400008
GM
3716 if (w->color == MEM_RED)
3717 {
3718 w->color = MEM_BLACK;
3719 x->parent->color = MEM_RED;
3720 mem_rotate_right (x->parent);
3721 w = x->parent->left;
3722 }
177c0ea7 3723
34400008
GM
3724 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
3725 {
3726 w->color = MEM_RED;
3727 x = x->parent;
3728 }
3729 else
3730 {
3731 if (w->left->color == MEM_BLACK)
3732 {
3733 w->right->color = MEM_BLACK;
3734 w->color = MEM_RED;
3735 mem_rotate_left (w);
3736 w = x->parent->left;
3737 }
177c0ea7 3738
34400008
GM
3739 w->color = x->parent->color;
3740 x->parent->color = MEM_BLACK;
3741 w->left->color = MEM_BLACK;
3742 mem_rotate_right (x->parent);
3743 x = mem_root;
3744 }
3745 }
3746 }
177c0ea7 3747
34400008
GM
3748 x->color = MEM_BLACK;
3749}
3750
3751
3752/* Value is non-zero if P is a pointer to a live Lisp string on
3753 the heap. M is a pointer to the mem_block for P. */
3754
3755static INLINE int
971de7fb 3756live_string_p (struct mem_node *m, void *p)
34400008
GM
3757{
3758 if (m->type == MEM_TYPE_STRING)
3759 {
3760 struct string_block *b = (struct string_block *) m->start;
14162469 3761 ptrdiff_t offset = (char *) p - (char *) &b->strings[0];
34400008
GM
3762
3763 /* P must point to the start of a Lisp_String structure, and it
3764 must not be on the free-list. */
176bc847
GM
3765 return (offset >= 0
3766 && offset % sizeof b->strings[0] == 0
6b61353c 3767 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
34400008
GM
3768 && ((struct Lisp_String *) p)->data != NULL);
3769 }
3770 else
3771 return 0;
3772}
3773
3774
3775/* Value is non-zero if P is a pointer to a live Lisp cons on
3776 the heap. M is a pointer to the mem_block for P. */
3777
3778static INLINE int
971de7fb 3779live_cons_p (struct mem_node *m, void *p)
34400008
GM
3780{
3781 if (m->type == MEM_TYPE_CONS)
3782 {
3783 struct cons_block *b = (struct cons_block *) m->start;
14162469 3784 ptrdiff_t offset = (char *) p - (char *) &b->conses[0];
34400008
GM
3785
3786 /* P must point to the start of a Lisp_Cons, not be
3787 one of the unused cells in the current cons block,
3788 and not be on the free-list. */
176bc847
GM
3789 return (offset >= 0
3790 && offset % sizeof b->conses[0] == 0
6b61353c 3791 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
34400008
GM
3792 && (b != cons_block
3793 || offset / sizeof b->conses[0] < cons_block_index)
3794 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
3795 }
3796 else
3797 return 0;
3798}
3799
3800
3801/* Value is non-zero if P is a pointer to a live Lisp symbol on
3802 the heap. M is a pointer to the mem_block for P. */
3803
3804static INLINE int
971de7fb 3805live_symbol_p (struct mem_node *m, void *p)
34400008
GM
3806{
3807 if (m->type == MEM_TYPE_SYMBOL)
3808 {
3809 struct symbol_block *b = (struct symbol_block *) m->start;
14162469 3810 ptrdiff_t offset = (char *) p - (char *) &b->symbols[0];
177c0ea7 3811
34400008
GM
3812 /* P must point to the start of a Lisp_Symbol, not be
3813 one of the unused cells in the current symbol block,
3814 and not be on the free-list. */
176bc847
GM
3815 return (offset >= 0
3816 && offset % sizeof b->symbols[0] == 0
6b61353c 3817 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
34400008
GM
3818 && (b != symbol_block
3819 || offset / sizeof b->symbols[0] < symbol_block_index)
3820 && !EQ (((struct Lisp_Symbol *) p)->function, Vdead));
3821 }
3822 else
3823 return 0;
3824}
3825
3826
3827/* Value is non-zero if P is a pointer to a live Lisp float on
3828 the heap. M is a pointer to the mem_block for P. */
3829
3830static INLINE int
971de7fb 3831live_float_p (struct mem_node *m, void *p)
34400008
GM
3832{
3833 if (m->type == MEM_TYPE_FLOAT)
3834 {
3835 struct float_block *b = (struct float_block *) m->start;
14162469 3836 ptrdiff_t offset = (char *) p - (char *) &b->floats[0];
177c0ea7 3837
ab6780cd
SM
3838 /* P must point to the start of a Lisp_Float and not be
3839 one of the unused cells in the current float block. */
176bc847
GM
3840 return (offset >= 0
3841 && offset % sizeof b->floats[0] == 0
6b61353c 3842 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
34400008 3843 && (b != float_block
ab6780cd 3844 || offset / sizeof b->floats[0] < float_block_index));
34400008
GM
3845 }
3846 else
3847 return 0;
3848}
3849
3850
3851/* Value is non-zero if P is a pointer to a live Lisp Misc on
3852 the heap. M is a pointer to the mem_block for P. */
3853
3854static INLINE int
971de7fb 3855live_misc_p (struct mem_node *m, void *p)
34400008
GM
3856{
3857 if (m->type == MEM_TYPE_MISC)
3858 {
3859 struct marker_block *b = (struct marker_block *) m->start;
14162469 3860 ptrdiff_t offset = (char *) p - (char *) &b->markers[0];
177c0ea7 3861
34400008
GM
3862 /* P must point to the start of a Lisp_Misc, not be
3863 one of the unused cells in the current misc block,
3864 and not be on the free-list. */
176bc847
GM
3865 return (offset >= 0
3866 && offset % sizeof b->markers[0] == 0
6b61353c 3867 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
34400008
GM
3868 && (b != marker_block
3869 || offset / sizeof b->markers[0] < marker_block_index)
d314756e 3870 && ((union Lisp_Misc *) p)->u_any.type != Lisp_Misc_Free);
34400008
GM
3871 }
3872 else
3873 return 0;
3874}
3875
3876
3877/* Value is non-zero if P is a pointer to a live vector-like object.
3878 M is a pointer to the mem_block for P. */
3879
3880static INLINE int
971de7fb 3881live_vector_p (struct mem_node *m, void *p)
34400008 3882{
9c545a55 3883 return (p == m->start && m->type == MEM_TYPE_VECTORLIKE);
34400008
GM
3884}
3885
3886
2336fe58 3887/* Value is non-zero if P is a pointer to a live buffer. M is a
34400008
GM
3888 pointer to the mem_block for P. */
3889
3890static INLINE int
971de7fb 3891live_buffer_p (struct mem_node *m, void *p)
34400008
GM
3892{
3893 /* P must point to the start of the block, and the buffer
3894 must not have been killed. */
3895 return (m->type == MEM_TYPE_BUFFER
3896 && p == m->start
5d8ea120 3897 && !NILP (((struct buffer *) p)->BUFFER_INTERNAL_FIELD (name)));
34400008
GM
3898}
3899
13c844fb
GM
3900#endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
3901
3902#if GC_MARK_STACK
3903
34400008
GM
3904#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3905
3906/* Array of objects that are kept alive because the C stack contains
3907 a pattern that looks like a reference to them . */
3908
3909#define MAX_ZOMBIES 10
3910static Lisp_Object zombies[MAX_ZOMBIES];
3911
3912/* Number of zombie objects. */
3913
3914static int nzombies;
3915
3916/* Number of garbage collections. */
3917
3918static int ngcs;
3919
3920/* Average percentage of zombies per collection. */
3921
3922static double avg_zombies;
3923
3924/* Max. number of live and zombie objects. */
3925
3926static int max_live, max_zombies;
3927
3928/* Average number of live objects per GC. */
3929
3930static double avg_live;
3931
a7ca3326 3932DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
7ee72033 3933 doc: /* Show information about live and zombie objects. */)
5842a27b 3934 (void)
34400008 3935{
83fc9c63
DL
3936 Lisp_Object args[8], zombie_list = Qnil;
3937 int i;
3938 for (i = 0; i < nzombies; i++)
3939 zombie_list = Fcons (zombies[i], zombie_list);
3940 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
34400008
GM
3941 args[1] = make_number (ngcs);
3942 args[2] = make_float (avg_live);
3943 args[3] = make_float (avg_zombies);
3944 args[4] = make_float (avg_zombies / avg_live / 100);
3945 args[5] = make_number (max_live);
3946 args[6] = make_number (max_zombies);
83fc9c63
DL
3947 args[7] = zombie_list;
3948 return Fmessage (8, args);
34400008
GM
3949}
3950
3951#endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
3952
3953
182ff242
GM
3954/* Mark OBJ if we can prove it's a Lisp_Object. */
3955
3956static INLINE void
971de7fb 3957mark_maybe_object (Lisp_Object obj)
182ff242 3958{
b609f591
YM
3959 void *po;
3960 struct mem_node *m;
3961
3962 if (INTEGERP (obj))
3963 return;
3964
3965 po = (void *) XPNTR (obj);
3966 m = mem_find (po);
177c0ea7 3967
182ff242
GM
3968 if (m != MEM_NIL)
3969 {
3970 int mark_p = 0;
3971
8e50cc2d 3972 switch (XTYPE (obj))
182ff242
GM
3973 {
3974 case Lisp_String:
3975 mark_p = (live_string_p (m, po)
3976 && !STRING_MARKED_P ((struct Lisp_String *) po));
3977 break;
3978
3979 case Lisp_Cons:
08b7c2cb 3980 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
182ff242
GM
3981 break;
3982
3983 case Lisp_Symbol:
2336fe58 3984 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
182ff242
GM
3985 break;
3986
3987 case Lisp_Float:
ab6780cd 3988 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
182ff242
GM
3989 break;
3990
3991 case Lisp_Vectorlike:
8e50cc2d 3992 /* Note: can't check BUFFERP before we know it's a
182ff242
GM
3993 buffer because checking that dereferences the pointer
3994 PO which might point anywhere. */
3995 if (live_vector_p (m, po))
8e50cc2d 3996 mark_p = !SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
182ff242 3997 else if (live_buffer_p (m, po))
8e50cc2d 3998 mark_p = BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
182ff242
GM
3999 break;
4000
4001 case Lisp_Misc:
67ee9f6e 4002 mark_p = (live_misc_p (m, po) && !XMISCANY (obj)->gcmarkbit);
182ff242 4003 break;
6bbd7a29 4004
2de9f71c 4005 default:
6bbd7a29 4006 break;
182ff242
GM
4007 }
4008
4009 if (mark_p)
4010 {
4011#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4012 if (nzombies < MAX_ZOMBIES)
83fc9c63 4013 zombies[nzombies] = obj;
182ff242
GM
4014 ++nzombies;
4015#endif
49723c04 4016 mark_object (obj);
182ff242
GM
4017 }
4018 }
4019}
ece93c02
GM
4020
4021
4022/* If P points to Lisp data, mark that as live if it isn't already
4023 marked. */
4024
4025static INLINE void
971de7fb 4026mark_maybe_pointer (void *p)
ece93c02
GM
4027{
4028 struct mem_node *m;
4029
5045e68e 4030 /* Quickly rule out some values which can't point to Lisp data. */
d01a7826 4031 if ((intptr_t) p %
5045e68e
SM
4032#ifdef USE_LSB_TAG
4033 8 /* USE_LSB_TAG needs Lisp data to be aligned on multiples of 8. */
4034#else
4035 2 /* We assume that Lisp data is aligned on even addresses. */
4036#endif
4037 )
ece93c02 4038 return;
177c0ea7 4039
ece93c02
GM
4040 m = mem_find (p);
4041 if (m != MEM_NIL)
4042 {
4043 Lisp_Object obj = Qnil;
177c0ea7 4044
ece93c02
GM
4045 switch (m->type)
4046 {
4047 case MEM_TYPE_NON_LISP:
2fe50224 4048 /* Nothing to do; not a pointer to Lisp memory. */
ece93c02 4049 break;
177c0ea7 4050
ece93c02 4051 case MEM_TYPE_BUFFER:
3ef06d12 4052 if (live_buffer_p (m, p) && !VECTOR_MARKED_P((struct buffer *)p))
ece93c02
GM
4053 XSETVECTOR (obj, p);
4054 break;
177c0ea7 4055
ece93c02 4056 case MEM_TYPE_CONS:
08b7c2cb 4057 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
ece93c02
GM
4058 XSETCONS (obj, p);
4059 break;
177c0ea7 4060
ece93c02
GM
4061 case MEM_TYPE_STRING:
4062 if (live_string_p (m, p)
4063 && !STRING_MARKED_P ((struct Lisp_String *) p))
4064 XSETSTRING (obj, p);
4065 break;
4066
4067 case MEM_TYPE_MISC:
2336fe58
SM
4068 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
4069 XSETMISC (obj, p);
ece93c02 4070 break;
177c0ea7 4071
ece93c02 4072 case MEM_TYPE_SYMBOL:
2336fe58 4073 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
ece93c02
GM
4074 XSETSYMBOL (obj, p);
4075 break;
177c0ea7 4076
ece93c02 4077 case MEM_TYPE_FLOAT:
ab6780cd 4078 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
ece93c02
GM
4079 XSETFLOAT (obj, p);
4080 break;
177c0ea7 4081
9c545a55 4082 case MEM_TYPE_VECTORLIKE:
ece93c02
GM
4083 if (live_vector_p (m, p))
4084 {
4085 Lisp_Object tem;
4086 XSETVECTOR (tem, p);
8e50cc2d 4087 if (!SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
ece93c02
GM
4088 obj = tem;
4089 }
4090 break;
4091
4092 default:
4093 abort ();
4094 }
4095
8e50cc2d 4096 if (!NILP (obj))
49723c04 4097 mark_object (obj);
ece93c02
GM
4098 }
4099}
4100
4101
55a314a5
YM
4102/* Mark Lisp objects referenced from the address range START+OFFSET..END
4103 or END+OFFSET..START. */
34400008 4104
177c0ea7 4105static void
971de7fb 4106mark_memory (void *start, void *end, int offset)
34400008
GM
4107{
4108 Lisp_Object *p;
ece93c02 4109 void **pp;
34400008
GM
4110
4111#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4112 nzombies = 0;
4113#endif
4114
4115 /* Make START the pointer to the start of the memory region,
4116 if it isn't already. */
4117 if (end < start)
4118 {
4119 void *tem = start;
4120 start = end;
4121 end = tem;
4122 }
ece93c02
GM
4123
4124 /* Mark Lisp_Objects. */
55a314a5 4125 for (p = (Lisp_Object *) ((char *) start + offset); (void *) p < end; ++p)
182ff242 4126 mark_maybe_object (*p);
ece93c02
GM
4127
4128 /* Mark Lisp data pointed to. This is necessary because, in some
4129 situations, the C compiler optimizes Lisp objects away, so that
4130 only a pointer to them remains. Example:
4131
4132 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
7ee72033 4133 ()
ece93c02
GM
4134 {
4135 Lisp_Object obj = build_string ("test");
4136 struct Lisp_String *s = XSTRING (obj);
4137 Fgarbage_collect ();
4138 fprintf (stderr, "test `%s'\n", s->data);
4139 return Qnil;
4140 }
4141
4142 Here, `obj' isn't really used, and the compiler optimizes it
4143 away. The only reference to the life string is through the
4144 pointer `s'. */
177c0ea7 4145
55a314a5 4146 for (pp = (void **) ((char *) start + offset); (void *) pp < end; ++pp)
ece93c02 4147 mark_maybe_pointer (*pp);
182ff242
GM
4148}
4149
30f637f8
DL
4150/* setjmp will work with GCC unless NON_SAVING_SETJMP is defined in
4151 the GCC system configuration. In gcc 3.2, the only systems for
4152 which this is so are i386-sco5 non-ELF, i386-sysv3 (maybe included
4153 by others?) and ns32k-pc532-min. */
182ff242
GM
4154
4155#if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4156
4157static int setjmp_tested_p, longjmps_done;
4158
4159#define SETJMP_WILL_LIKELY_WORK "\
4160\n\
4161Emacs garbage collector has been changed to use conservative stack\n\
4162marking. Emacs has determined that the method it uses to do the\n\
4163marking will likely work on your system, but this isn't sure.\n\
4164\n\
4165If you are a system-programmer, or can get the help of a local wizard\n\
4166who is, please take a look at the function mark_stack in alloc.c, and\n\
4167verify that the methods used are appropriate for your system.\n\
4168\n\
d191623b 4169Please mail the result to <emacs-devel@gnu.org>.\n\
182ff242
GM
4170"
4171
4172#define SETJMP_WILL_NOT_WORK "\
4173\n\
4174Emacs garbage collector has been changed to use conservative stack\n\
4175marking. Emacs has determined that the default method it uses to do the\n\
4176marking will not work on your system. We will need a system-dependent\n\
4177solution for your system.\n\
4178\n\
4179Please take a look at the function mark_stack in alloc.c, and\n\
4180try to find a way to make it work on your system.\n\
30f637f8
DL
4181\n\
4182Note that you may get false negatives, depending on the compiler.\n\
4183In particular, you need to use -O with GCC for this test.\n\
4184\n\
d191623b 4185Please mail the result to <emacs-devel@gnu.org>.\n\
182ff242
GM
4186"
4187
4188
4189/* Perform a quick check if it looks like setjmp saves registers in a
4190 jmp_buf. Print a message to stderr saying so. When this test
4191 succeeds, this is _not_ a proof that setjmp is sufficient for
4192 conservative stack marking. Only the sources or a disassembly
4193 can prove that. */
4194
4195static void
2018939f 4196test_setjmp (void)
182ff242
GM
4197{
4198 char buf[10];
4199 register int x;
4200 jmp_buf jbuf;
4201 int result = 0;
4202
4203 /* Arrange for X to be put in a register. */
4204 sprintf (buf, "1");
4205 x = strlen (buf);
4206 x = 2 * x - 1;
4207
4208 setjmp (jbuf);
4209 if (longjmps_done == 1)
34400008 4210 {
182ff242 4211 /* Came here after the longjmp at the end of the function.
34400008 4212
182ff242
GM
4213 If x == 1, the longjmp has restored the register to its
4214 value before the setjmp, and we can hope that setjmp
4215 saves all such registers in the jmp_buf, although that
4216 isn't sure.
34400008 4217
182ff242
GM
4218 For other values of X, either something really strange is
4219 taking place, or the setjmp just didn't save the register. */
4220
4221 if (x == 1)
4222 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
4223 else
4224 {
4225 fprintf (stderr, SETJMP_WILL_NOT_WORK);
4226 exit (1);
34400008
GM
4227 }
4228 }
182ff242
GM
4229
4230 ++longjmps_done;
4231 x = 2;
4232 if (longjmps_done == 1)
4233 longjmp (jbuf, 1);
34400008
GM
4234}
4235
182ff242
GM
4236#endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
4237
34400008
GM
4238
4239#if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4240
4241/* Abort if anything GCPRO'd doesn't survive the GC. */
4242
4243static void
2018939f 4244check_gcpros (void)
34400008
GM
4245{
4246 struct gcpro *p;
c5101a77 4247 size_t i;
34400008
GM
4248
4249 for (p = gcprolist; p; p = p->next)
4250 for (i = 0; i < p->nvars; ++i)
4251 if (!survives_gc_p (p->var[i]))
92cc28b2
SM
4252 /* FIXME: It's not necessarily a bug. It might just be that the
4253 GCPRO is unnecessary or should release the object sooner. */
34400008
GM
4254 abort ();
4255}
4256
4257#elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4258
4259static void
2018939f 4260dump_zombies (void)
34400008
GM
4261{
4262 int i;
4263
4264 fprintf (stderr, "\nZombies kept alive = %d:\n", nzombies);
4265 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
4266 {
4267 fprintf (stderr, " %d = ", i);
4268 debug_print (zombies[i]);
4269 }
4270}
4271
4272#endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4273
4274
182ff242
GM
4275/* Mark live Lisp objects on the C stack.
4276
4277 There are several system-dependent problems to consider when
4278 porting this to new architectures:
4279
4280 Processor Registers
4281
4282 We have to mark Lisp objects in CPU registers that can hold local
4283 variables or are used to pass parameters.
4284
4285 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4286 something that either saves relevant registers on the stack, or
4287 calls mark_maybe_object passing it each register's contents.
4288
4289 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4290 implementation assumes that calling setjmp saves registers we need
4291 to see in a jmp_buf which itself lies on the stack. This doesn't
4292 have to be true! It must be verified for each system, possibly
4293 by taking a look at the source code of setjmp.
4294
2018939f
AS
4295 If __builtin_unwind_init is available (defined by GCC >= 2.8) we
4296 can use it as a machine independent method to store all registers
4297 to the stack. In this case the macros described in the previous
4298 two paragraphs are not used.
4299
182ff242
GM
4300 Stack Layout
4301
4302 Architectures differ in the way their processor stack is organized.
4303 For example, the stack might look like this
4304
4305 +----------------+
4306 | Lisp_Object | size = 4
4307 +----------------+
4308 | something else | size = 2
4309 +----------------+
4310 | Lisp_Object | size = 4
4311 +----------------+
4312 | ... |
4313
4314 In such a case, not every Lisp_Object will be aligned equally. To
4315 find all Lisp_Object on the stack it won't be sufficient to walk
4316 the stack in steps of 4 bytes. Instead, two passes will be
4317 necessary, one starting at the start of the stack, and a second
4318 pass starting at the start of the stack + 2. Likewise, if the
4319 minimal alignment of Lisp_Objects on the stack is 1, four passes
4320 would be necessary, each one starting with one byte more offset
4321 from the stack start.
4322
4323 The current code assumes by default that Lisp_Objects are aligned
4324 equally on the stack. */
34400008
GM
4325
4326static void
971de7fb 4327mark_stack (void)
34400008 4328{
630909a5 4329 int i;
34400008
GM
4330 void *end;
4331
2018939f
AS
4332#ifdef HAVE___BUILTIN_UNWIND_INIT
4333 /* Force callee-saved registers and register windows onto the stack.
4334 This is the preferred method if available, obviating the need for
4335 machine dependent methods. */
4336 __builtin_unwind_init ();
4337 end = &end;
4338#else /* not HAVE___BUILTIN_UNWIND_INIT */
dff45157
PE
4339#ifndef GC_SAVE_REGISTERS_ON_STACK
4340 /* jmp_buf may not be aligned enough on darwin-ppc64 */
4341 union aligned_jmpbuf {
4342 Lisp_Object o;
4343 jmp_buf j;
4344 } j;
4345 volatile int stack_grows_down_p = (char *) &j > (char *) stack_base;
4346#endif
34400008
GM
4347 /* This trick flushes the register windows so that all the state of
4348 the process is contained in the stack. */
ab6780cd 4349 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
422eec7e
DL
4350 needed on ia64 too. See mach_dep.c, where it also says inline
4351 assembler doesn't work with relevant proprietary compilers. */
4a00783e 4352#ifdef __sparc__
4d18a7a2
DN
4353#if defined (__sparc64__) && defined (__FreeBSD__)
4354 /* FreeBSD does not have a ta 3 handler. */
4c1616be
CY
4355 asm ("flushw");
4356#else
34400008 4357 asm ("ta 3");
4c1616be 4358#endif
34400008 4359#endif
177c0ea7 4360
34400008
GM
4361 /* Save registers that we need to see on the stack. We need to see
4362 registers used to hold register variables and registers used to
4363 pass parameters. */
4364#ifdef GC_SAVE_REGISTERS_ON_STACK
4365 GC_SAVE_REGISTERS_ON_STACK (end);
182ff242 4366#else /* not GC_SAVE_REGISTERS_ON_STACK */
177c0ea7 4367
182ff242
GM
4368#ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
4369 setjmp will definitely work, test it
4370 and print a message with the result
4371 of the test. */
4372 if (!setjmp_tested_p)
4373 {
4374 setjmp_tested_p = 1;
4375 test_setjmp ();
4376 }
4377#endif /* GC_SETJMP_WORKS */
177c0ea7 4378
55a314a5 4379 setjmp (j.j);
34400008 4380 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
182ff242 4381#endif /* not GC_SAVE_REGISTERS_ON_STACK */
2018939f 4382#endif /* not HAVE___BUILTIN_UNWIND_INIT */
34400008
GM
4383
4384 /* This assumes that the stack is a contiguous region in memory. If
182ff242
GM
4385 that's not the case, something has to be done here to iterate
4386 over the stack segments. */
630909a5 4387#ifndef GC_LISP_OBJECT_ALIGNMENT
422eec7e
DL
4388#ifdef __GNUC__
4389#define GC_LISP_OBJECT_ALIGNMENT __alignof__ (Lisp_Object)
4390#else
630909a5 4391#define GC_LISP_OBJECT_ALIGNMENT sizeof (Lisp_Object)
422eec7e 4392#endif
182ff242 4393#endif
24452cd5 4394 for (i = 0; i < sizeof (Lisp_Object); i += GC_LISP_OBJECT_ALIGNMENT)
55a314a5 4395 mark_memory (stack_base, end, i);
4dec23ff
AS
4396 /* Allow for marking a secondary stack, like the register stack on the
4397 ia64. */
4398#ifdef GC_MARK_SECONDARY_STACK
4399 GC_MARK_SECONDARY_STACK ();
4400#endif
34400008
GM
4401
4402#if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4403 check_gcpros ();
4404#endif
4405}
4406
34400008
GM
4407#endif /* GC_MARK_STACK != 0 */
4408
4409
7ffb6955 4410/* Determine whether it is safe to access memory at address P. */
d3d47262 4411static int
971de7fb 4412valid_pointer_p (void *p)
7ffb6955 4413{
f892cf9c
EZ
4414#ifdef WINDOWSNT
4415 return w32_valid_pointer_p (p, 16);
4416#else
7ffb6955
KS
4417 int fd;
4418
4419 /* Obviously, we cannot just access it (we would SEGV trying), so we
4420 trick the o/s to tell us whether p is a valid pointer.
4421 Unfortunately, we cannot use NULL_DEVICE here, as emacs_write may
4422 not validate p in that case. */
4423
4424 if ((fd = emacs_open ("__Valid__Lisp__Object__", O_CREAT | O_WRONLY | O_TRUNC, 0666)) >= 0)
4425 {
4426 int valid = (emacs_write (fd, (char *)p, 16) == 16);
4427 emacs_close (fd);
4428 unlink ("__Valid__Lisp__Object__");
4429 return valid;
4430 }
4431
4432 return -1;
f892cf9c 4433#endif
7ffb6955 4434}
3cd55735
KS
4435
4436/* Return 1 if OBJ is a valid lisp object.
4437 Return 0 if OBJ is NOT a valid lisp object.
4438 Return -1 if we cannot validate OBJ.
7c0ab7d9
RS
4439 This function can be quite slow,
4440 so it should only be used in code for manual debugging. */
3cd55735
KS
4441
4442int
971de7fb 4443valid_lisp_object_p (Lisp_Object obj)
3cd55735 4444{
de7124a7 4445 void *p;
7ffb6955 4446#if GC_MARK_STACK
3cd55735 4447 struct mem_node *m;
de7124a7 4448#endif
3cd55735
KS
4449
4450 if (INTEGERP (obj))
4451 return 1;
4452
4453 p = (void *) XPNTR (obj);
3cd55735
KS
4454 if (PURE_POINTER_P (p))
4455 return 1;
4456
de7124a7 4457#if !GC_MARK_STACK
7ffb6955 4458 return valid_pointer_p (p);
de7124a7
KS
4459#else
4460
3cd55735
KS
4461 m = mem_find (p);
4462
4463 if (m == MEM_NIL)
7ffb6955
KS
4464 {
4465 int valid = valid_pointer_p (p);
4466 if (valid <= 0)
4467 return valid;
4468
4469 if (SUBRP (obj))
4470 return 1;
4471
4472 return 0;
4473 }
3cd55735
KS
4474
4475 switch (m->type)
4476 {
4477 case MEM_TYPE_NON_LISP:
4478 return 0;
4479
4480 case MEM_TYPE_BUFFER:
4481 return live_buffer_p (m, p);
4482
4483 case MEM_TYPE_CONS:
4484 return live_cons_p (m, p);
4485
4486 case MEM_TYPE_STRING:
4487 return live_string_p (m, p);
4488
4489 case MEM_TYPE_MISC:
4490 return live_misc_p (m, p);
4491
4492 case MEM_TYPE_SYMBOL:
4493 return live_symbol_p (m, p);
4494
4495 case MEM_TYPE_FLOAT:
4496 return live_float_p (m, p);
4497
9c545a55 4498 case MEM_TYPE_VECTORLIKE:
3cd55735
KS
4499 return live_vector_p (m, p);
4500
4501 default:
4502 break;
4503 }
4504
4505 return 0;
4506#endif
4507}
4508
4509
4510
34400008 4511\f
2e471eb5
GM
4512/***********************************************************************
4513 Pure Storage Management
4514 ***********************************************************************/
4515
1f0b3fd2
GM
4516/* Allocate room for SIZE bytes from pure Lisp storage and return a
4517 pointer to it. TYPE is the Lisp type for which the memory is
e5bc14d4 4518 allocated. TYPE < 0 means it's not used for a Lisp object. */
1f0b3fd2
GM
4519
4520static POINTER_TYPE *
971de7fb 4521pure_alloc (size_t size, int type)
1f0b3fd2 4522{
1f0b3fd2 4523 POINTER_TYPE *result;
6b61353c
KH
4524#ifdef USE_LSB_TAG
4525 size_t alignment = (1 << GCTYPEBITS);
4526#else
44117420 4527 size_t alignment = sizeof (EMACS_INT);
1f0b3fd2
GM
4528
4529 /* Give Lisp_Floats an extra alignment. */
4530 if (type == Lisp_Float)
4531 {
1f0b3fd2
GM
4532#if defined __GNUC__ && __GNUC__ >= 2
4533 alignment = __alignof (struct Lisp_Float);
4534#else
4535 alignment = sizeof (struct Lisp_Float);
4536#endif
9e713715 4537 }
6b61353c 4538#endif
1f0b3fd2 4539
44117420 4540 again:
e5bc14d4
YM
4541 if (type >= 0)
4542 {
4543 /* Allocate space for a Lisp object from the beginning of the free
4544 space with taking account of alignment. */
4545 result = ALIGN (purebeg + pure_bytes_used_lisp, alignment);
4546 pure_bytes_used_lisp = ((char *)result - (char *)purebeg) + size;
4547 }
4548 else
4549 {
4550 /* Allocate space for a non-Lisp object from the end of the free
4551 space. */
4552 pure_bytes_used_non_lisp += size;
4553 result = purebeg + pure_size - pure_bytes_used_non_lisp;
4554 }
4555 pure_bytes_used = pure_bytes_used_lisp + pure_bytes_used_non_lisp;
44117420
KS
4556
4557 if (pure_bytes_used <= pure_size)
4558 return result;
4559
4560 /* Don't allocate a large amount here,
4561 because it might get mmap'd and then its address
4562 might not be usable. */
4563 purebeg = (char *) xmalloc (10000);
4564 pure_size = 10000;
4565 pure_bytes_used_before_overflow += pure_bytes_used - size;
4566 pure_bytes_used = 0;
e5bc14d4 4567 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
44117420 4568 goto again;
1f0b3fd2
GM
4569}
4570
4571
852f8cdc 4572/* Print a warning if PURESIZE is too small. */
9e713715
GM
4573
4574void
971de7fb 4575check_pure_size (void)
9e713715
GM
4576{
4577 if (pure_bytes_used_before_overflow)
c2982e87
PE
4578 message (("emacs:0:Pure Lisp storage overflow (approx. %"pI"d"
4579 " bytes needed)"),
4580 pure_bytes_used + pure_bytes_used_before_overflow);
9e713715
GM
4581}
4582
4583
79fd0489
YM
4584/* Find the byte sequence {DATA[0], ..., DATA[NBYTES-1], '\0'} from
4585 the non-Lisp data pool of the pure storage, and return its start
4586 address. Return NULL if not found. */
4587
4588static char *
14162469 4589find_string_data_in_pure (const char *data, EMACS_INT nbytes)
79fd0489 4590{
14162469
EZ
4591 int i;
4592 EMACS_INT skip, bm_skip[256], last_char_skip, infinity, start, start_max;
2aff7c53 4593 const unsigned char *p;
79fd0489
YM
4594 char *non_lisp_beg;
4595
4596 if (pure_bytes_used_non_lisp < nbytes + 1)
4597 return NULL;
4598
4599 /* Set up the Boyer-Moore table. */
4600 skip = nbytes + 1;
4601 for (i = 0; i < 256; i++)
4602 bm_skip[i] = skip;
4603
2aff7c53 4604 p = (const unsigned char *) data;
79fd0489
YM
4605 while (--skip > 0)
4606 bm_skip[*p++] = skip;
4607
4608 last_char_skip = bm_skip['\0'];
4609
4610 non_lisp_beg = purebeg + pure_size - pure_bytes_used_non_lisp;
4611 start_max = pure_bytes_used_non_lisp - (nbytes + 1);
4612
4613 /* See the comments in the function `boyer_moore' (search.c) for the
4614 use of `infinity'. */
4615 infinity = pure_bytes_used_non_lisp + 1;
4616 bm_skip['\0'] = infinity;
4617
2aff7c53 4618 p = (const unsigned char *) non_lisp_beg + nbytes;
79fd0489
YM
4619 start = 0;
4620 do
4621 {
4622 /* Check the last character (== '\0'). */
4623 do
4624 {
4625 start += bm_skip[*(p + start)];
4626 }
4627 while (start <= start_max);
4628
4629 if (start < infinity)
4630 /* Couldn't find the last character. */
4631 return NULL;
4632
4633 /* No less than `infinity' means we could find the last
4634 character at `p[start - infinity]'. */
4635 start -= infinity;
4636
4637 /* Check the remaining characters. */
4638 if (memcmp (data, non_lisp_beg + start, nbytes) == 0)
4639 /* Found. */
4640 return non_lisp_beg + start;
4641
4642 start += last_char_skip;
4643 }
4644 while (start <= start_max);
4645
4646 return NULL;
4647}
4648
4649
2e471eb5
GM
4650/* Return a string allocated in pure space. DATA is a buffer holding
4651 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
4652 non-zero means make the result string multibyte.
1a4f1e2c 4653
2e471eb5
GM
4654 Must get an error if pure storage is full, since if it cannot hold
4655 a large string it may be able to hold conses that point to that
4656 string; then the string is not protected from gc. */
7146af97
JB
4657
4658Lisp_Object
14162469
EZ
4659make_pure_string (const char *data,
4660 EMACS_INT nchars, EMACS_INT nbytes, int multibyte)
7146af97 4661{
2e471eb5
GM
4662 Lisp_Object string;
4663 struct Lisp_String *s;
c0696668 4664
1f0b3fd2 4665 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
90256841 4666 s->data = (unsigned char *) find_string_data_in_pure (data, nbytes);
79fd0489
YM
4667 if (s->data == NULL)
4668 {
4669 s->data = (unsigned char *) pure_alloc (nbytes + 1, -1);
72af86bd 4670 memcpy (s->data, data, nbytes);
79fd0489
YM
4671 s->data[nbytes] = '\0';
4672 }
2e471eb5
GM
4673 s->size = nchars;
4674 s->size_byte = multibyte ? nbytes : -1;
2e471eb5 4675 s->intervals = NULL_INTERVAL;
2e471eb5
GM
4676 XSETSTRING (string, s);
4677 return string;
7146af97
JB
4678}
4679
a56eaaef
DN
4680/* Return a string a string allocated in pure space. Do not allocate
4681 the string data, just point to DATA. */
4682
4683Lisp_Object
4684make_pure_c_string (const char *data)
4685{
4686 Lisp_Object string;
4687 struct Lisp_String *s;
14162469 4688 EMACS_INT nchars = strlen (data);
a56eaaef
DN
4689
4690 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
4691 s->size = nchars;
4692 s->size_byte = -1;
323637a2 4693 s->data = (unsigned char *) data;
a56eaaef
DN
4694 s->intervals = NULL_INTERVAL;
4695 XSETSTRING (string, s);
4696 return string;
4697}
2e471eb5 4698
34400008
GM
4699/* Return a cons allocated from pure space. Give it pure copies
4700 of CAR as car and CDR as cdr. */
4701
7146af97 4702Lisp_Object
971de7fb 4703pure_cons (Lisp_Object car, Lisp_Object cdr)
7146af97
JB
4704{
4705 register Lisp_Object new;
1f0b3fd2 4706 struct Lisp_Cons *p;
7146af97 4707
1f0b3fd2
GM
4708 p = (struct Lisp_Cons *) pure_alloc (sizeof *p, Lisp_Cons);
4709 XSETCONS (new, p);
f3fbd155
KR
4710 XSETCAR (new, Fpurecopy (car));
4711 XSETCDR (new, Fpurecopy (cdr));
7146af97
JB
4712 return new;
4713}
4714
7146af97 4715
34400008
GM
4716/* Value is a float object with value NUM allocated from pure space. */
4717
d3d47262 4718static Lisp_Object
971de7fb 4719make_pure_float (double num)
7146af97
JB
4720{
4721 register Lisp_Object new;
1f0b3fd2 4722 struct Lisp_Float *p;
7146af97 4723
1f0b3fd2
GM
4724 p = (struct Lisp_Float *) pure_alloc (sizeof *p, Lisp_Float);
4725 XSETFLOAT (new, p);
f601cdf3 4726 XFLOAT_INIT (new, num);
7146af97
JB
4727 return new;
4728}
4729
34400008
GM
4730
4731/* Return a vector with room for LEN Lisp_Objects allocated from
4732 pure space. */
4733
7146af97 4734Lisp_Object
971de7fb 4735make_pure_vector (EMACS_INT len)
7146af97 4736{
1f0b3fd2
GM
4737 Lisp_Object new;
4738 struct Lisp_Vector *p;
36372bf9
PE
4739 size_t size = (offsetof (struct Lisp_Vector, contents)
4740 + len * sizeof (Lisp_Object));
7146af97 4741
1f0b3fd2
GM
4742 p = (struct Lisp_Vector *) pure_alloc (size, Lisp_Vectorlike);
4743 XSETVECTOR (new, p);
eab3844f 4744 XVECTOR (new)->header.size = len;
7146af97
JB
4745 return new;
4746}
4747
34400008 4748
a7ca3326 4749DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
909e3b33 4750 doc: /* Make a copy of object OBJ in pure storage.
228299fa 4751Recursively copies contents of vectors and cons cells.
7ee72033 4752Does not copy symbols. Copies strings without text properties. */)
5842a27b 4753 (register Lisp_Object obj)
7146af97 4754{
265a9e55 4755 if (NILP (Vpurify_flag))
7146af97
JB
4756 return obj;
4757
1f0b3fd2 4758 if (PURE_POINTER_P (XPNTR (obj)))
7146af97
JB
4759 return obj;
4760
e9515805
SM
4761 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
4762 {
4763 Lisp_Object tmp = Fgethash (obj, Vpurify_flag, Qnil);
4764 if (!NILP (tmp))
4765 return tmp;
4766 }
4767
d6dd74bb 4768 if (CONSP (obj))
e9515805 4769 obj = pure_cons (XCAR (obj), XCDR (obj));
d6dd74bb 4770 else if (FLOATP (obj))
e9515805 4771 obj = make_pure_float (XFLOAT_DATA (obj));
d6dd74bb 4772 else if (STRINGP (obj))
42a5b22f 4773 obj = make_pure_string (SSDATA (obj), SCHARS (obj),
e9515805
SM
4774 SBYTES (obj),
4775 STRING_MULTIBYTE (obj));
876c194c 4776 else if (COMPILEDP (obj) || VECTORP (obj))
d6dd74bb
KH
4777 {
4778 register struct Lisp_Vector *vec;
14162469 4779 register EMACS_INT i;
6b61353c 4780 EMACS_INT size;
d6dd74bb 4781
77b37c05 4782 size = ASIZE (obj);
7d535c68
KH
4783 if (size & PSEUDOVECTOR_FLAG)
4784 size &= PSEUDOVECTOR_SIZE_MASK;
6b61353c 4785 vec = XVECTOR (make_pure_vector (size));
d6dd74bb
KH
4786 for (i = 0; i < size; i++)
4787 vec->contents[i] = Fpurecopy (XVECTOR (obj)->contents[i]);
876c194c 4788 if (COMPILEDP (obj))
985773c9 4789 {
876c194c
SM
4790 XSETPVECTYPE (vec, PVEC_COMPILED);
4791 XSETCOMPILED (obj, vec);
985773c9 4792 }
d6dd74bb
KH
4793 else
4794 XSETVECTOR (obj, vec);
7146af97 4795 }
d6dd74bb
KH
4796 else if (MARKERP (obj))
4797 error ("Attempt to copy a marker to pure storage");
e9515805
SM
4798 else
4799 /* Not purified, don't hash-cons. */
4800 return obj;
4801
4802 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
4803 Fputhash (obj, obj, Vpurify_flag);
6bbd7a29
GM
4804
4805 return obj;
7146af97 4806}
2e471eb5 4807
34400008 4808
7146af97 4809\f
34400008
GM
4810/***********************************************************************
4811 Protection from GC
4812 ***********************************************************************/
4813
2e471eb5
GM
4814/* Put an entry in staticvec, pointing at the variable with address
4815 VARADDRESS. */
7146af97
JB
4816
4817void
971de7fb 4818staticpro (Lisp_Object *varaddress)
7146af97
JB
4819{
4820 staticvec[staticidx++] = varaddress;
4821 if (staticidx >= NSTATICS)
4822 abort ();
4823}
4824
7146af97 4825\f
34400008
GM
4826/***********************************************************************
4827 Protection from GC
4828 ***********************************************************************/
1a4f1e2c 4829
e8197642
RS
4830/* Temporarily prevent garbage collection. */
4831
4832int
971de7fb 4833inhibit_garbage_collection (void)
e8197642 4834{
aed13378 4835 int count = SPECPDL_INDEX ();
54defd0d
AS
4836 int nbits = min (VALBITS, BITS_PER_INT);
4837
4838 specbind (Qgc_cons_threshold, make_number (((EMACS_INT) 1 << (nbits - 1)) - 1));
e8197642
RS
4839 return count;
4840}
4841
34400008 4842
a7ca3326 4843DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
7ee72033 4844 doc: /* Reclaim storage for Lisp objects no longer needed.
e1e37596
RS
4845Garbage collection happens automatically if you cons more than
4846`gc-cons-threshold' bytes of Lisp data since previous garbage collection.
4847`garbage-collect' normally returns a list with info on amount of space in use:
228299fa
GM
4848 ((USED-CONSES . FREE-CONSES) (USED-SYMS . FREE-SYMS)
4849 (USED-MARKERS . FREE-MARKERS) USED-STRING-CHARS USED-VECTOR-SLOTS
4850 (USED-FLOATS . FREE-FLOATS) (USED-INTERVALS . FREE-INTERVALS)
4851 (USED-STRINGS . FREE-STRINGS))
e1e37596
RS
4852However, if there was overflow in pure space, `garbage-collect'
4853returns nil, because real GC can't be done. */)
5842a27b 4854 (void)
7146af97 4855{
7146af97 4856 register struct specbinding *bind;
7146af97 4857 char stack_top_variable;
c5101a77 4858 register size_t i;
6efc7df7 4859 int message_p;
96117bc7 4860 Lisp_Object total[8];
331379bf 4861 int count = SPECPDL_INDEX ();
2c5bd608
DL
4862 EMACS_TIME t1, t2, t3;
4863
3de0effb
RS
4864 if (abort_on_gc)
4865 abort ();
4866
9e713715
GM
4867 /* Can't GC if pure storage overflowed because we can't determine
4868 if something is a pure object or not. */
4869 if (pure_bytes_used_before_overflow)
4870 return Qnil;
4871
bbc012e0
KS
4872 CHECK_CONS_LIST ();
4873
3c7e66a8
RS
4874 /* Don't keep undo information around forever.
4875 Do this early on, so it is no problem if the user quits. */
4876 {
4877 register struct buffer *nextb = all_buffers;
4878
4879 while (nextb)
4880 {
4881 /* If a buffer's undo list is Qt, that means that undo is
4882 turned off in that buffer. Calling truncate_undo_list on
4883 Qt tends to return NULL, which effectively turns undo back on.
4884 So don't call truncate_undo_list if undo_list is Qt. */
5d8ea120 4885 if (! NILP (nextb->BUFFER_INTERNAL_FIELD (name)) && ! EQ (nextb->BUFFER_INTERNAL_FIELD (undo_list), Qt))
3c7e66a8
RS
4886 truncate_undo_list (nextb);
4887
4888 /* Shrink buffer gaps, but skip indirect and dead buffers. */
5d8ea120 4889 if (nextb->base_buffer == 0 && !NILP (nextb->BUFFER_INTERNAL_FIELD (name))
dc7b4525 4890 && ! nextb->text->inhibit_shrinking)
3c7e66a8
RS
4891 {
4892 /* If a buffer's gap size is more than 10% of the buffer
4893 size, or larger than 2000 bytes, then shrink it
4894 accordingly. Keep a minimum size of 20 bytes. */
4895 int size = min (2000, max (20, (nextb->text->z_byte / 10)));
4896
4897 if (nextb->text->gap_size > size)
4898 {
4899 struct buffer *save_current = current_buffer;
4900 current_buffer = nextb;
4901 make_gap (-(nextb->text->gap_size - size));
4902 current_buffer = save_current;
4903 }
4904 }
4905
eab3844f 4906 nextb = nextb->header.next.buffer;
3c7e66a8
RS
4907 }
4908 }
4909
4910 EMACS_GET_TIME (t1);
4911
58595309
KH
4912 /* In case user calls debug_print during GC,
4913 don't let that cause a recursive GC. */
4914 consing_since_gc = 0;
4915
6efc7df7
GM
4916 /* Save what's currently displayed in the echo area. */
4917 message_p = push_message ();
c55b0da6 4918 record_unwind_protect (pop_message_unwind, Qnil);
41c28a37 4919
7146af97
JB
4920 /* Save a copy of the contents of the stack, for debugging. */
4921#if MAX_SAVE_STACK > 0
265a9e55 4922 if (NILP (Vpurify_flag))
7146af97 4923 {
dd3f25f7
PE
4924 char *stack;
4925 size_t stack_size;
4926 if (&stack_top_variable < stack_bottom)
7146af97 4927 {
dd3f25f7
PE
4928 stack = &stack_top_variable;
4929 stack_size = stack_bottom - &stack_top_variable;
4930 }
4931 else
4932 {
4933 stack = stack_bottom;
4934 stack_size = &stack_top_variable - stack_bottom;
4935 }
4936 if (stack_size <= MAX_SAVE_STACK)
7146af97 4937 {
dd3f25f7 4938 if (stack_copy_size < stack_size)
7146af97 4939 {
dd3f25f7
PE
4940 stack_copy = (char *) xrealloc (stack_copy, stack_size);
4941 stack_copy_size = stack_size;
7146af97 4942 }
dd3f25f7 4943 memcpy (stack_copy, stack, stack_size);
7146af97
JB
4944 }
4945 }
4946#endif /* MAX_SAVE_STACK > 0 */
4947
299585ee 4948 if (garbage_collection_messages)
691c4285 4949 message1_nolog ("Garbage collecting...");
7146af97 4950
6e0fca1d
RS
4951 BLOCK_INPUT;
4952
eec7b73d
RS
4953 shrink_regexp_cache ();
4954
7146af97
JB
4955 gc_in_progress = 1;
4956
c23baf9f 4957 /* clear_marks (); */
7146af97 4958
005ca5c7 4959 /* Mark all the special slots that serve as the roots of accessibility. */
7146af97
JB
4960
4961 for (i = 0; i < staticidx; i++)
49723c04 4962 mark_object (*staticvec[i]);
34400008 4963
126f9c02
SM
4964 for (bind = specpdl; bind != specpdl_ptr; bind++)
4965 {
4966 mark_object (bind->symbol);
4967 mark_object (bind->old_value);
4968 }
6ed8eeff 4969 mark_terminals ();
126f9c02 4970 mark_kboards ();
98a92e2d 4971 mark_ttys ();
126f9c02
SM
4972
4973#ifdef USE_GTK
4974 {
dd4c5104 4975 extern void xg_mark_data (void);
126f9c02
SM
4976 xg_mark_data ();
4977 }
4978#endif
4979
34400008
GM
4980#if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
4981 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
4982 mark_stack ();
4983#else
acf5f7d3
SM
4984 {
4985 register struct gcpro *tail;
4986 for (tail = gcprolist; tail; tail = tail->next)
4987 for (i = 0; i < tail->nvars; i++)
005ca5c7 4988 mark_object (tail->var[i]);
acf5f7d3 4989 }
3e21b6a7 4990 mark_byte_stack ();
b286858c
SM
4991 {
4992 struct catchtag *catch;
4993 struct handler *handler;
177c0ea7 4994
7146af97
JB
4995 for (catch = catchlist; catch; catch = catch->next)
4996 {
49723c04
SM
4997 mark_object (catch->tag);
4998 mark_object (catch->val);
177c0ea7 4999 }
7146af97
JB
5000 for (handler = handlerlist; handler; handler = handler->next)
5001 {
49723c04
SM
5002 mark_object (handler->handler);
5003 mark_object (handler->var);
177c0ea7 5004 }
b286858c 5005 }
b40ea20a 5006 mark_backtrace ();
b286858c 5007#endif
7146af97 5008
454d7973
KS
5009#ifdef HAVE_WINDOW_SYSTEM
5010 mark_fringe_data ();
5011#endif
5012
74c35a48
SM
5013#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5014 mark_stack ();
5015#endif
5016
c37adf23
SM
5017 /* Everything is now marked, except for the things that require special
5018 finalization, i.e. the undo_list.
5019 Look thru every buffer's undo list
4c315bda
RS
5020 for elements that update markers that were not marked,
5021 and delete them. */
5022 {
5023 register struct buffer *nextb = all_buffers;
5024
5025 while (nextb)
5026 {
5027 /* If a buffer's undo list is Qt, that means that undo is
5028 turned off in that buffer. Calling truncate_undo_list on
5029 Qt tends to return NULL, which effectively turns undo back on.
5030 So don't call truncate_undo_list if undo_list is Qt. */
5d8ea120 5031 if (! EQ (nextb->BUFFER_INTERNAL_FIELD (undo_list), Qt))
4c315bda
RS
5032 {
5033 Lisp_Object tail, prev;
5d8ea120 5034 tail = nextb->BUFFER_INTERNAL_FIELD (undo_list);
4c315bda
RS
5035 prev = Qnil;
5036 while (CONSP (tail))
5037 {
8e50cc2d
SM
5038 if (CONSP (XCAR (tail))
5039 && MARKERP (XCAR (XCAR (tail)))
2336fe58 5040 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
4c315bda
RS
5041 {
5042 if (NILP (prev))
5d8ea120 5043 nextb->BUFFER_INTERNAL_FIELD (undo_list) = tail = XCDR (tail);
4c315bda 5044 else
f3fbd155
KR
5045 {
5046 tail = XCDR (tail);
5047 XSETCDR (prev, tail);
5048 }
4c315bda
RS
5049 }
5050 else
5051 {
5052 prev = tail;
70949dac 5053 tail = XCDR (tail);
4c315bda
RS
5054 }
5055 }
5056 }
c37adf23
SM
5057 /* Now that we have stripped the elements that need not be in the
5058 undo_list any more, we can finally mark the list. */
5d8ea120 5059 mark_object (nextb->BUFFER_INTERNAL_FIELD (undo_list));
4c315bda 5060
eab3844f 5061 nextb = nextb->header.next.buffer;
4c315bda
RS
5062 }
5063 }
5064
7146af97
JB
5065 gc_sweep ();
5066
5067 /* Clear the mark bits that we set in certain root slots. */
5068
033a5fa3 5069 unmark_byte_stack ();
3ef06d12
SM
5070 VECTOR_UNMARK (&buffer_defaults);
5071 VECTOR_UNMARK (&buffer_local_symbols);
7146af97 5072
34400008
GM
5073#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
5074 dump_zombies ();
5075#endif
5076
6e0fca1d
RS
5077 UNBLOCK_INPUT;
5078
bbc012e0
KS
5079 CHECK_CONS_LIST ();
5080
c23baf9f 5081 /* clear_marks (); */
7146af97
JB
5082 gc_in_progress = 0;
5083
5084 consing_since_gc = 0;
5085 if (gc_cons_threshold < 10000)
5086 gc_cons_threshold = 10000;
5087
96f077ad
SM
5088 if (FLOATP (Vgc_cons_percentage))
5089 { /* Set gc_cons_combined_threshold. */
ae35e756
PE
5090 EMACS_INT tot = 0;
5091
5092 tot += total_conses * sizeof (struct Lisp_Cons);
5093 tot += total_symbols * sizeof (struct Lisp_Symbol);
5094 tot += total_markers * sizeof (union Lisp_Misc);
5095 tot += total_string_size;
5096 tot += total_vector_size * sizeof (Lisp_Object);
5097 tot += total_floats * sizeof (struct Lisp_Float);
5098 tot += total_intervals * sizeof (struct interval);
5099 tot += total_strings * sizeof (struct Lisp_String);
5100
5101 gc_relative_threshold = tot * XFLOAT_DATA (Vgc_cons_percentage);
96f077ad 5102 }
974aae61
RS
5103 else
5104 gc_relative_threshold = 0;
96f077ad 5105
299585ee
RS
5106 if (garbage_collection_messages)
5107 {
6efc7df7
GM
5108 if (message_p || minibuf_level > 0)
5109 restore_message ();
299585ee
RS
5110 else
5111 message1_nolog ("Garbage collecting...done");
5112 }
7146af97 5113
98edb5ff 5114 unbind_to (count, Qnil);
2e471eb5
GM
5115
5116 total[0] = Fcons (make_number (total_conses),
5117 make_number (total_free_conses));
5118 total[1] = Fcons (make_number (total_symbols),
5119 make_number (total_free_symbols));
5120 total[2] = Fcons (make_number (total_markers),
5121 make_number (total_free_markers));
96117bc7
GM
5122 total[3] = make_number (total_string_size);
5123 total[4] = make_number (total_vector_size);
5124 total[5] = Fcons (make_number (total_floats),
2e471eb5 5125 make_number (total_free_floats));
96117bc7 5126 total[6] = Fcons (make_number (total_intervals),
2e471eb5 5127 make_number (total_free_intervals));
96117bc7 5128 total[7] = Fcons (make_number (total_strings),
2e471eb5
GM
5129 make_number (total_free_strings));
5130
34400008 5131#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
7146af97 5132 {
34400008
GM
5133 /* Compute average percentage of zombies. */
5134 double nlive = 0;
177c0ea7 5135
34400008 5136 for (i = 0; i < 7; ++i)
83fc9c63
DL
5137 if (CONSP (total[i]))
5138 nlive += XFASTINT (XCAR (total[i]));
34400008
GM
5139
5140 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
5141 max_live = max (nlive, max_live);
5142 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
5143 max_zombies = max (nzombies, max_zombies);
5144 ++ngcs;
5145 }
5146#endif
7146af97 5147
9e713715
GM
5148 if (!NILP (Vpost_gc_hook))
5149 {
ae35e756 5150 int gc_count = inhibit_garbage_collection ();
9e713715 5151 safe_run_hooks (Qpost_gc_hook);
ae35e756 5152 unbind_to (gc_count, Qnil);
9e713715 5153 }
2c5bd608
DL
5154
5155 /* Accumulate statistics. */
5156 EMACS_GET_TIME (t2);
5157 EMACS_SUB_TIME (t3, t2, t1);
5158 if (FLOATP (Vgc_elapsed))
69ab9f85
SM
5159 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed) +
5160 EMACS_SECS (t3) +
5161 EMACS_USECS (t3) * 1.0e-6);
2c5bd608
DL
5162 gcs_done++;
5163
96117bc7 5164 return Flist (sizeof total / sizeof *total, total);
7146af97 5165}
34400008 5166
41c28a37 5167
3770920e
GM
5168/* Mark Lisp objects in glyph matrix MATRIX. Currently the
5169 only interesting objects referenced from glyphs are strings. */
41c28a37
GM
5170
5171static void
971de7fb 5172mark_glyph_matrix (struct glyph_matrix *matrix)
41c28a37
GM
5173{
5174 struct glyph_row *row = matrix->rows;
5175 struct glyph_row *end = row + matrix->nrows;
5176
2e471eb5
GM
5177 for (; row < end; ++row)
5178 if (row->enabled_p)
5179 {
5180 int area;
5181 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
5182 {
5183 struct glyph *glyph = row->glyphs[area];
5184 struct glyph *end_glyph = glyph + row->used[area];
177c0ea7 5185
2e471eb5 5186 for (; glyph < end_glyph; ++glyph)
8e50cc2d 5187 if (STRINGP (glyph->object)
2e471eb5 5188 && !STRING_MARKED_P (XSTRING (glyph->object)))
49723c04 5189 mark_object (glyph->object);
2e471eb5
GM
5190 }
5191 }
41c28a37
GM
5192}
5193
34400008 5194
41c28a37
GM
5195/* Mark Lisp faces in the face cache C. */
5196
5197static void
971de7fb 5198mark_face_cache (struct face_cache *c)
41c28a37
GM
5199{
5200 if (c)
5201 {
5202 int i, j;
5203 for (i = 0; i < c->used; ++i)
5204 {
5205 struct face *face = FACE_FROM_ID (c->f, i);
5206
5207 if (face)
5208 {
5209 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
49723c04 5210 mark_object (face->lface[j]);
41c28a37
GM
5211 }
5212 }
5213 }
5214}
5215
5216
7146af97 5217\f
1a4f1e2c 5218/* Mark reference to a Lisp_Object.
2e471eb5
GM
5219 If the object referred to has not been seen yet, recursively mark
5220 all the references contained in it. */
7146af97 5221
785cd37f 5222#define LAST_MARKED_SIZE 500
d3d47262 5223static Lisp_Object last_marked[LAST_MARKED_SIZE];
244ed907 5224static int last_marked_index;
785cd37f 5225
1342fc6f
RS
5226/* For debugging--call abort when we cdr down this many
5227 links of a list, in mark_object. In debugging,
5228 the call to abort will hit a breakpoint.
5229 Normally this is zero and the check never goes off. */
b895abce 5230static size_t mark_object_loop_halt;
1342fc6f 5231
8f11f7ec 5232static void
971de7fb 5233mark_vectorlike (struct Lisp_Vector *ptr)
d2029e5b 5234{
eab3844f 5235 register EMACS_UINT size = ptr->header.size;
14162469 5236 register EMACS_UINT i;
d2029e5b 5237
8f11f7ec 5238 eassert (!VECTOR_MARKED_P (ptr));
d2029e5b
SM
5239 VECTOR_MARK (ptr); /* Else mark it */
5240 if (size & PSEUDOVECTOR_FLAG)
5241 size &= PSEUDOVECTOR_SIZE_MASK;
d3d47262 5242
d2029e5b
SM
5243 /* Note that this size is not the memory-footprint size, but only
5244 the number of Lisp_Object fields that we should trace.
5245 The distinction is used e.g. by Lisp_Process which places extra
5246 non-Lisp_Object fields at the end of the structure. */
5247 for (i = 0; i < size; i++) /* and then mark its elements */
5248 mark_object (ptr->contents[i]);
d2029e5b
SM
5249}
5250
58026347
KH
5251/* Like mark_vectorlike but optimized for char-tables (and
5252 sub-char-tables) assuming that the contents are mostly integers or
5253 symbols. */
5254
5255static void
971de7fb 5256mark_char_table (struct Lisp_Vector *ptr)
58026347 5257{
eab3844f 5258 register EMACS_UINT size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
14162469 5259 register EMACS_UINT i;
58026347 5260
8f11f7ec 5261 eassert (!VECTOR_MARKED_P (ptr));
58026347
KH
5262 VECTOR_MARK (ptr);
5263 for (i = 0; i < size; i++)
5264 {
5265 Lisp_Object val = ptr->contents[i];
5266
ef1b0ba7 5267 if (INTEGERP (val) || (SYMBOLP (val) && XSYMBOL (val)->gcmarkbit))
58026347
KH
5268 continue;
5269 if (SUB_CHAR_TABLE_P (val))
5270 {
5271 if (! VECTOR_MARKED_P (XVECTOR (val)))
5272 mark_char_table (XVECTOR (val));
5273 }
5274 else
5275 mark_object (val);
5276 }
5277}
5278
41c28a37 5279void
971de7fb 5280mark_object (Lisp_Object arg)
7146af97 5281{
49723c04 5282 register Lisp_Object obj = arg;
4f5c1376
GM
5283#ifdef GC_CHECK_MARKED_OBJECTS
5284 void *po;
5285 struct mem_node *m;
5286#endif
b895abce 5287 size_t cdr_count = 0;
7146af97 5288
9149e743 5289 loop:
7146af97 5290
1f0b3fd2 5291 if (PURE_POINTER_P (XPNTR (obj)))
7146af97
JB
5292 return;
5293
49723c04 5294 last_marked[last_marked_index++] = obj;
785cd37f
RS
5295 if (last_marked_index == LAST_MARKED_SIZE)
5296 last_marked_index = 0;
5297
4f5c1376
GM
5298 /* Perform some sanity checks on the objects marked here. Abort if
5299 we encounter an object we know is bogus. This increases GC time
5300 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
5301#ifdef GC_CHECK_MARKED_OBJECTS
5302
5303 po = (void *) XPNTR (obj);
5304
5305 /* Check that the object pointed to by PO is known to be a Lisp
5306 structure allocated from the heap. */
5307#define CHECK_ALLOCATED() \
5308 do { \
5309 m = mem_find (po); \
5310 if (m == MEM_NIL) \
5311 abort (); \
5312 } while (0)
5313
5314 /* Check that the object pointed to by PO is live, using predicate
5315 function LIVEP. */
5316#define CHECK_LIVE(LIVEP) \
5317 do { \
5318 if (!LIVEP (m, po)) \
5319 abort (); \
5320 } while (0)
5321
5322 /* Check both of the above conditions. */
5323#define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
5324 do { \
5325 CHECK_ALLOCATED (); \
5326 CHECK_LIVE (LIVEP); \
5327 } while (0) \
177c0ea7 5328
4f5c1376 5329#else /* not GC_CHECK_MARKED_OBJECTS */
177c0ea7 5330
4f5c1376
GM
5331#define CHECK_LIVE(LIVEP) (void) 0
5332#define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
177c0ea7 5333
4f5c1376
GM
5334#endif /* not GC_CHECK_MARKED_OBJECTS */
5335
8e50cc2d 5336 switch (SWITCH_ENUM_CAST (XTYPE (obj)))
7146af97
JB
5337 {
5338 case Lisp_String:
5339 {
5340 register struct Lisp_String *ptr = XSTRING (obj);
8f11f7ec
SM
5341 if (STRING_MARKED_P (ptr))
5342 break;
4f5c1376 5343 CHECK_ALLOCATED_AND_LIVE (live_string_p);
d5e35230 5344 MARK_INTERVAL_TREE (ptr->intervals);
2e471eb5 5345 MARK_STRING (ptr);
361b097f 5346#ifdef GC_CHECK_STRING_BYTES
676a7251
GM
5347 /* Check that the string size recorded in the string is the
5348 same as the one recorded in the sdata structure. */
5349 CHECK_STRING_BYTES (ptr);
361b097f 5350#endif /* GC_CHECK_STRING_BYTES */
7146af97
JB
5351 }
5352 break;
5353
76437631 5354 case Lisp_Vectorlike:
8f11f7ec
SM
5355 if (VECTOR_MARKED_P (XVECTOR (obj)))
5356 break;
4f5c1376
GM
5357#ifdef GC_CHECK_MARKED_OBJECTS
5358 m = mem_find (po);
8e50cc2d 5359 if (m == MEM_NIL && !SUBRP (obj)
4f5c1376
GM
5360 && po != &buffer_defaults
5361 && po != &buffer_local_symbols)
5362 abort ();
5363#endif /* GC_CHECK_MARKED_OBJECTS */
177c0ea7 5364
8e50cc2d 5365 if (BUFFERP (obj))
6b552283 5366 {
4f5c1376 5367#ifdef GC_CHECK_MARKED_OBJECTS
8f11f7ec
SM
5368 if (po != &buffer_defaults && po != &buffer_local_symbols)
5369 {
5370 struct buffer *b;
179dade4 5371 for (b = all_buffers; b && b != po; b = b->header.next.buffer)
8f11f7ec
SM
5372 ;
5373 if (b == NULL)
5374 abort ();
4f5c1376 5375 }
8f11f7ec
SM
5376#endif /* GC_CHECK_MARKED_OBJECTS */
5377 mark_buffer (obj);
6b552283 5378 }
8e50cc2d 5379 else if (SUBRP (obj))
169ee243 5380 break;
876c194c 5381 else if (COMPILEDP (obj))
2e471eb5
GM
5382 /* We could treat this just like a vector, but it is better to
5383 save the COMPILED_CONSTANTS element for last and avoid
5384 recursion there. */
169ee243
RS
5385 {
5386 register struct Lisp_Vector *ptr = XVECTOR (obj);
eab3844f 5387 register EMACS_UINT size = ptr->header.size;
14162469 5388 register EMACS_UINT i;
169ee243 5389
4f5c1376 5390 CHECK_LIVE (live_vector_p);
3ef06d12 5391 VECTOR_MARK (ptr); /* Else mark it */
76437631 5392 size &= PSEUDOVECTOR_SIZE_MASK;
169ee243
RS
5393 for (i = 0; i < size; i++) /* and then mark its elements */
5394 {
5395 if (i != COMPILED_CONSTANTS)
49723c04 5396 mark_object (ptr->contents[i]);
169ee243 5397 }
49723c04 5398 obj = ptr->contents[COMPILED_CONSTANTS];
169ee243
RS
5399 goto loop;
5400 }
8e50cc2d 5401 else if (FRAMEP (obj))
169ee243 5402 {
c70bbf06 5403 register struct frame *ptr = XFRAME (obj);
8f11f7ec
SM
5404 mark_vectorlike (XVECTOR (obj));
5405 mark_face_cache (ptr->face_cache);
707788bd 5406 }
8e50cc2d 5407 else if (WINDOWP (obj))
41c28a37
GM
5408 {
5409 register struct Lisp_Vector *ptr = XVECTOR (obj);
5410 struct window *w = XWINDOW (obj);
8f11f7ec
SM
5411 mark_vectorlike (ptr);
5412 /* Mark glyphs for leaf windows. Marking window matrices is
5413 sufficient because frame matrices use the same glyph
5414 memory. */
5415 if (NILP (w->hchild)
5416 && NILP (w->vchild)
5417 && w->current_matrix)
41c28a37 5418 {
8f11f7ec
SM
5419 mark_glyph_matrix (w->current_matrix);
5420 mark_glyph_matrix (w->desired_matrix);
41c28a37
GM
5421 }
5422 }
8e50cc2d 5423 else if (HASH_TABLE_P (obj))
41c28a37
GM
5424 {
5425 struct Lisp_Hash_Table *h = XHASH_TABLE (obj);
8f11f7ec
SM
5426 mark_vectorlike ((struct Lisp_Vector *)h);
5427 /* If hash table is not weak, mark all keys and values.
5428 For weak tables, mark only the vector. */
5429 if (NILP (h->weak))
5430 mark_object (h->key_and_value);
5431 else
5432 VECTOR_MARK (XVECTOR (h->key_and_value));
41c28a37 5433 }
58026347 5434 else if (CHAR_TABLE_P (obj))
8f11f7ec 5435 mark_char_table (XVECTOR (obj));
04ff9756 5436 else
d2029e5b 5437 mark_vectorlike (XVECTOR (obj));
169ee243 5438 break;
7146af97 5439
7146af97
JB
5440 case Lisp_Symbol:
5441 {
c70bbf06 5442 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
7146af97
JB
5443 struct Lisp_Symbol *ptrx;
5444
8f11f7ec
SM
5445 if (ptr->gcmarkbit)
5446 break;
4f5c1376 5447 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
2336fe58 5448 ptr->gcmarkbit = 1;
49723c04
SM
5449 mark_object (ptr->function);
5450 mark_object (ptr->plist);
ce5b453a
SM
5451 switch (ptr->redirect)
5452 {
5453 case SYMBOL_PLAINVAL: mark_object (SYMBOL_VAL (ptr)); break;
5454 case SYMBOL_VARALIAS:
5455 {
5456 Lisp_Object tem;
5457 XSETSYMBOL (tem, SYMBOL_ALIAS (ptr));
5458 mark_object (tem);
5459 break;
5460 }
5461 case SYMBOL_LOCALIZED:
5462 {
5463 struct Lisp_Buffer_Local_Value *blv = SYMBOL_BLV (ptr);
5464 /* If the value is forwarded to a buffer or keyboard field,
5465 these are marked when we see the corresponding object.
5466 And if it's forwarded to a C variable, either it's not
5467 a Lisp_Object var, or it's staticpro'd already. */
5468 mark_object (blv->where);
5469 mark_object (blv->valcell);
5470 mark_object (blv->defcell);
5471 break;
5472 }
5473 case SYMBOL_FORWARDED:
5474 /* If the value is forwarded to a buffer or keyboard field,
5475 these are marked when we see the corresponding object.
5476 And if it's forwarded to a C variable, either it's not
5477 a Lisp_Object var, or it's staticpro'd already. */
5478 break;
5479 default: abort ();
5480 }
8fe5665d
KR
5481 if (!PURE_POINTER_P (XSTRING (ptr->xname)))
5482 MARK_STRING (XSTRING (ptr->xname));
d5db4077 5483 MARK_INTERVAL_TREE (STRING_INTERVALS (ptr->xname));
177c0ea7 5484
7146af97
JB
5485 ptr = ptr->next;
5486 if (ptr)
5487 {
b0846f52 5488 ptrx = ptr; /* Use of ptrx avoids compiler bug on Sun */
7146af97 5489 XSETSYMBOL (obj, ptrx);
49723c04 5490 goto loop;
7146af97
JB
5491 }
5492 }
5493 break;
5494
a0a38eb7 5495 case Lisp_Misc:
4f5c1376 5496 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
67ee9f6e 5497 if (XMISCANY (obj)->gcmarkbit)
2336fe58 5498 break;
67ee9f6e 5499 XMISCANY (obj)->gcmarkbit = 1;
b766f870 5500
a5da44fe 5501 switch (XMISCTYPE (obj))
a0a38eb7 5502 {
465edf35 5503
2336fe58
SM
5504 case Lisp_Misc_Marker:
5505 /* DO NOT mark thru the marker's chain.
5506 The buffer's markers chain does not preserve markers from gc;
5507 instead, markers are removed from the chain when freed by gc. */
b766f870
KS
5508 break;
5509
8f924df7 5510 case Lisp_Misc_Save_Value:
9ea306d1 5511#if GC_MARK_STACK
b766f870
KS
5512 {
5513 register struct Lisp_Save_Value *ptr = XSAVE_VALUE (obj);
5514 /* If DOGC is set, POINTER is the address of a memory
5515 area containing INTEGER potential Lisp_Objects. */
5516 if (ptr->dogc)
5517 {
5518 Lisp_Object *p = (Lisp_Object *) ptr->pointer;
5519 int nelt;
5520 for (nelt = ptr->integer; nelt > 0; nelt--, p++)
5521 mark_maybe_object (*p);
5522 }
5523 }
9ea306d1 5524#endif
c8616056
KH
5525 break;
5526
e202fa34
KH
5527 case Lisp_Misc_Overlay:
5528 {
5529 struct Lisp_Overlay *ptr = XOVERLAY (obj);
49723c04
SM
5530 mark_object (ptr->start);
5531 mark_object (ptr->end);
f54253ec
SM
5532 mark_object (ptr->plist);
5533 if (ptr->next)
5534 {
5535 XSETMISC (obj, ptr->next);
5536 goto loop;
5537 }
e202fa34
KH
5538 }
5539 break;
5540
a0a38eb7
KH
5541 default:
5542 abort ();
5543 }
7146af97
JB
5544 break;
5545
5546 case Lisp_Cons:
7146af97
JB
5547 {
5548 register struct Lisp_Cons *ptr = XCONS (obj);
8f11f7ec
SM
5549 if (CONS_MARKED_P (ptr))
5550 break;
4f5c1376 5551 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
08b7c2cb 5552 CONS_MARK (ptr);
c54ca951 5553 /* If the cdr is nil, avoid recursion for the car. */
28a099a4 5554 if (EQ (ptr->u.cdr, Qnil))
c54ca951 5555 {
49723c04 5556 obj = ptr->car;
1342fc6f 5557 cdr_count = 0;
c54ca951
RS
5558 goto loop;
5559 }
49723c04 5560 mark_object (ptr->car);
28a099a4 5561 obj = ptr->u.cdr;
1342fc6f
RS
5562 cdr_count++;
5563 if (cdr_count == mark_object_loop_halt)
5564 abort ();
7146af97
JB
5565 goto loop;
5566 }
5567
7146af97 5568 case Lisp_Float:
4f5c1376 5569 CHECK_ALLOCATED_AND_LIVE (live_float_p);
ab6780cd 5570 FLOAT_MARK (XFLOAT (obj));
7146af97 5571 break;
7146af97 5572
2de9f71c 5573 case_Lisp_Int:
7146af97
JB
5574 break;
5575
5576 default:
5577 abort ();
5578 }
4f5c1376
GM
5579
5580#undef CHECK_LIVE
5581#undef CHECK_ALLOCATED
5582#undef CHECK_ALLOCATED_AND_LIVE
7146af97
JB
5583}
5584
5585/* Mark the pointers in a buffer structure. */
5586
5587static void
971de7fb 5588mark_buffer (Lisp_Object buf)
7146af97 5589{
7146af97 5590 register struct buffer *buffer = XBUFFER (buf);
f54253ec 5591 register Lisp_Object *ptr, tmp;
30e3190a 5592 Lisp_Object base_buffer;
7146af97 5593
8f11f7ec 5594 eassert (!VECTOR_MARKED_P (buffer));
3ef06d12 5595 VECTOR_MARK (buffer);
7146af97 5596
30e3190a 5597 MARK_INTERVAL_TREE (BUF_INTERVALS (buffer));
d5e35230 5598
c37adf23
SM
5599 /* For now, we just don't mark the undo_list. It's done later in
5600 a special way just before the sweep phase, and after stripping
5601 some of its elements that are not needed any more. */
4c315bda 5602
f54253ec
SM
5603 if (buffer->overlays_before)
5604 {
5605 XSETMISC (tmp, buffer->overlays_before);
5606 mark_object (tmp);
5607 }
5608 if (buffer->overlays_after)
5609 {
5610 XSETMISC (tmp, buffer->overlays_after);
5611 mark_object (tmp);
5612 }
5613
9ce376f9
SM
5614 /* buffer-local Lisp variables start at `undo_list',
5615 tho only the ones from `name' on are GC'd normally. */
5d8ea120 5616 for (ptr = &buffer->BUFFER_INTERNAL_FIELD (name);
7146af97
JB
5617 (char *)ptr < (char *)buffer + sizeof (struct buffer);
5618 ptr++)
49723c04 5619 mark_object (*ptr);
30e3190a
RS
5620
5621 /* If this is an indirect buffer, mark its base buffer. */
349bd9ed 5622 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
30e3190a 5623 {
177c0ea7 5624 XSETBUFFER (base_buffer, buffer->base_buffer);
30e3190a
RS
5625 mark_buffer (base_buffer);
5626 }
7146af97 5627}
084b1a0c 5628
4a729fd8
SM
5629/* Mark the Lisp pointers in the terminal objects.
5630 Called by the Fgarbage_collector. */
5631
4a729fd8
SM
5632static void
5633mark_terminals (void)
5634{
5635 struct terminal *t;
5636 for (t = terminal_list; t; t = t->next_terminal)
5637 {
5638 eassert (t->name != NULL);
354884c4 5639#ifdef HAVE_WINDOW_SYSTEM
96ad0af7
YM
5640 /* If a terminal object is reachable from a stacpro'ed object,
5641 it might have been marked already. Make sure the image cache
5642 gets marked. */
5643 mark_image_cache (t->image_cache);
354884c4 5644#endif /* HAVE_WINDOW_SYSTEM */
96ad0af7
YM
5645 if (!VECTOR_MARKED_P (t))
5646 mark_vectorlike ((struct Lisp_Vector *)t);
4a729fd8
SM
5647 }
5648}
5649
5650
084b1a0c 5651
41c28a37
GM
5652/* Value is non-zero if OBJ will survive the current GC because it's
5653 either marked or does not need to be marked to survive. */
5654
5655int
971de7fb 5656survives_gc_p (Lisp_Object obj)
41c28a37
GM
5657{
5658 int survives_p;
177c0ea7 5659
8e50cc2d 5660 switch (XTYPE (obj))
41c28a37 5661 {
2de9f71c 5662 case_Lisp_Int:
41c28a37
GM
5663 survives_p = 1;
5664 break;
5665
5666 case Lisp_Symbol:
2336fe58 5667 survives_p = XSYMBOL (obj)->gcmarkbit;
41c28a37
GM
5668 break;
5669
5670 case Lisp_Misc:
67ee9f6e 5671 survives_p = XMISCANY (obj)->gcmarkbit;
41c28a37
GM
5672 break;
5673
5674 case Lisp_String:
08b7c2cb 5675 survives_p = STRING_MARKED_P (XSTRING (obj));
41c28a37
GM
5676 break;
5677
5678 case Lisp_Vectorlike:
8e50cc2d 5679 survives_p = SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
41c28a37
GM
5680 break;
5681
5682 case Lisp_Cons:
08b7c2cb 5683 survives_p = CONS_MARKED_P (XCONS (obj));
41c28a37
GM
5684 break;
5685
41c28a37 5686 case Lisp_Float:
ab6780cd 5687 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
41c28a37 5688 break;
41c28a37
GM
5689
5690 default:
5691 abort ();
5692 }
5693
34400008 5694 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
41c28a37
GM
5695}
5696
5697
7146af97 5698\f
1a4f1e2c 5699/* Sweep: find all structures not marked, and free them. */
7146af97
JB
5700
5701static void
971de7fb 5702gc_sweep (void)
7146af97 5703{
41c28a37
GM
5704 /* Remove or mark entries in weak hash tables.
5705 This must be done before any object is unmarked. */
5706 sweep_weak_hash_tables ();
5707
2e471eb5 5708 sweep_strings ();
676a7251
GM
5709#ifdef GC_CHECK_STRING_BYTES
5710 if (!noninteractive)
5711 check_string_bytes (1);
5712#endif
7146af97
JB
5713
5714 /* Put all unmarked conses on free list */
5715 {
5716 register struct cons_block *cblk;
6ca94ac9 5717 struct cons_block **cprev = &cons_block;
7146af97
JB
5718 register int lim = cons_block_index;
5719 register int num_free = 0, num_used = 0;
5720
5721 cons_free_list = 0;
177c0ea7 5722
6ca94ac9 5723 for (cblk = cons_block; cblk; cblk = *cprev)
7146af97 5724 {
3ae2e3a3 5725 register int i = 0;
6ca94ac9 5726 int this_free = 0;
3ae2e3a3
RS
5727 int ilim = (lim + BITS_PER_INT - 1) / BITS_PER_INT;
5728
5729 /* Scan the mark bits an int at a time. */
5730 for (i = 0; i <= ilim; i++)
5731 {
5732 if (cblk->gcmarkbits[i] == -1)
5733 {
5734 /* Fast path - all cons cells for this int are marked. */
5735 cblk->gcmarkbits[i] = 0;
5736 num_used += BITS_PER_INT;
5737 }
5738 else
5739 {
5740 /* Some cons cells for this int are not marked.
5741 Find which ones, and free them. */
5742 int start, pos, stop;
5743
5744 start = i * BITS_PER_INT;
5745 stop = lim - start;
5746 if (stop > BITS_PER_INT)
5747 stop = BITS_PER_INT;
5748 stop += start;
5749
5750 for (pos = start; pos < stop; pos++)
5751 {
5752 if (!CONS_MARKED_P (&cblk->conses[pos]))
5753 {
5754 this_free++;
5755 cblk->conses[pos].u.chain = cons_free_list;
5756 cons_free_list = &cblk->conses[pos];
34400008 5757#if GC_MARK_STACK
3ae2e3a3 5758 cons_free_list->car = Vdead;
34400008 5759#endif
3ae2e3a3
RS
5760 }
5761 else
5762 {
5763 num_used++;
5764 CONS_UNMARK (&cblk->conses[pos]);
5765 }
5766 }
5767 }
5768 }
5769
7146af97 5770 lim = CONS_BLOCK_SIZE;
6ca94ac9
KH
5771 /* If this block contains only free conses and we have already
5772 seen more than two blocks worth of free conses then deallocate
5773 this block. */
6feef451 5774 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
6ca94ac9 5775 {
6ca94ac9
KH
5776 *cprev = cblk->next;
5777 /* Unhook from the free list. */
28a099a4 5778 cons_free_list = cblk->conses[0].u.chain;
08b7c2cb 5779 lisp_align_free (cblk);
c8099634 5780 n_cons_blocks--;
6ca94ac9
KH
5781 }
5782 else
6feef451
AS
5783 {
5784 num_free += this_free;
5785 cprev = &cblk->next;
5786 }
7146af97
JB
5787 }
5788 total_conses = num_used;
5789 total_free_conses = num_free;
5790 }
5791
7146af97
JB
5792 /* Put all unmarked floats on free list */
5793 {
5794 register struct float_block *fblk;
6ca94ac9 5795 struct float_block **fprev = &float_block;
7146af97
JB
5796 register int lim = float_block_index;
5797 register int num_free = 0, num_used = 0;
5798
5799 float_free_list = 0;
177c0ea7 5800
6ca94ac9 5801 for (fblk = float_block; fblk; fblk = *fprev)
7146af97
JB
5802 {
5803 register int i;
6ca94ac9 5804 int this_free = 0;
7146af97 5805 for (i = 0; i < lim; i++)
ab6780cd 5806 if (!FLOAT_MARKED_P (&fblk->floats[i]))
7146af97 5807 {
6ca94ac9 5808 this_free++;
28a099a4 5809 fblk->floats[i].u.chain = float_free_list;
7146af97
JB
5810 float_free_list = &fblk->floats[i];
5811 }
5812 else
5813 {
5814 num_used++;
ab6780cd 5815 FLOAT_UNMARK (&fblk->floats[i]);
7146af97
JB
5816 }
5817 lim = FLOAT_BLOCK_SIZE;
6ca94ac9
KH
5818 /* If this block contains only free floats and we have already
5819 seen more than two blocks worth of free floats then deallocate
5820 this block. */
6feef451 5821 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
6ca94ac9 5822 {
6ca94ac9
KH
5823 *fprev = fblk->next;
5824 /* Unhook from the free list. */
28a099a4 5825 float_free_list = fblk->floats[0].u.chain;
ab6780cd 5826 lisp_align_free (fblk);
c8099634 5827 n_float_blocks--;
6ca94ac9
KH
5828 }
5829 else
6feef451
AS
5830 {
5831 num_free += this_free;
5832 fprev = &fblk->next;
5833 }
7146af97
JB
5834 }
5835 total_floats = num_used;
5836 total_free_floats = num_free;
5837 }
7146af97 5838
d5e35230
JA
5839 /* Put all unmarked intervals on free list */
5840 {
5841 register struct interval_block *iblk;
6ca94ac9 5842 struct interval_block **iprev = &interval_block;
d5e35230
JA
5843 register int lim = interval_block_index;
5844 register int num_free = 0, num_used = 0;
5845
5846 interval_free_list = 0;
5847
6ca94ac9 5848 for (iblk = interval_block; iblk; iblk = *iprev)
d5e35230
JA
5849 {
5850 register int i;
6ca94ac9 5851 int this_free = 0;
d5e35230
JA
5852
5853 for (i = 0; i < lim; i++)
5854 {
2336fe58 5855 if (!iblk->intervals[i].gcmarkbit)
d5e35230 5856 {
439d5cb4 5857 SET_INTERVAL_PARENT (&iblk->intervals[i], interval_free_list);
d5e35230 5858 interval_free_list = &iblk->intervals[i];
6ca94ac9 5859 this_free++;
d5e35230
JA
5860 }
5861 else
5862 {
5863 num_used++;
2336fe58 5864 iblk->intervals[i].gcmarkbit = 0;
d5e35230
JA
5865 }
5866 }
5867 lim = INTERVAL_BLOCK_SIZE;
6ca94ac9
KH
5868 /* If this block contains only free intervals and we have already
5869 seen more than two blocks worth of free intervals then
5870 deallocate this block. */
6feef451 5871 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
6ca94ac9 5872 {
6ca94ac9
KH
5873 *iprev = iblk->next;
5874 /* Unhook from the free list. */
439d5cb4 5875 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
c8099634
RS
5876 lisp_free (iblk);
5877 n_interval_blocks--;
6ca94ac9
KH
5878 }
5879 else
6feef451
AS
5880 {
5881 num_free += this_free;
5882 iprev = &iblk->next;
5883 }
d5e35230
JA
5884 }
5885 total_intervals = num_used;
5886 total_free_intervals = num_free;
5887 }
d5e35230 5888
7146af97
JB
5889 /* Put all unmarked symbols on free list */
5890 {
5891 register struct symbol_block *sblk;
6ca94ac9 5892 struct symbol_block **sprev = &symbol_block;
7146af97
JB
5893 register int lim = symbol_block_index;
5894 register int num_free = 0, num_used = 0;
5895
d285b373 5896 symbol_free_list = NULL;
177c0ea7 5897
6ca94ac9 5898 for (sblk = symbol_block; sblk; sblk = *sprev)
7146af97 5899 {
6ca94ac9 5900 int this_free = 0;
d285b373
GM
5901 struct Lisp_Symbol *sym = sblk->symbols;
5902 struct Lisp_Symbol *end = sym + lim;
5903
5904 for (; sym < end; ++sym)
5905 {
20035321
SM
5906 /* Check if the symbol was created during loadup. In such a case
5907 it might be pointed to by pure bytecode which we don't trace,
5908 so we conservatively assume that it is live. */
8fe5665d 5909 int pure_p = PURE_POINTER_P (XSTRING (sym->xname));
177c0ea7 5910
2336fe58 5911 if (!sym->gcmarkbit && !pure_p)
d285b373 5912 {
ce5b453a
SM
5913 if (sym->redirect == SYMBOL_LOCALIZED)
5914 xfree (SYMBOL_BLV (sym));
28a099a4 5915 sym->next = symbol_free_list;
d285b373 5916 symbol_free_list = sym;
34400008 5917#if GC_MARK_STACK
d285b373 5918 symbol_free_list->function = Vdead;
34400008 5919#endif
d285b373
GM
5920 ++this_free;
5921 }
5922 else
5923 {
5924 ++num_used;
5925 if (!pure_p)
8fe5665d 5926 UNMARK_STRING (XSTRING (sym->xname));
2336fe58 5927 sym->gcmarkbit = 0;
d285b373
GM
5928 }
5929 }
177c0ea7 5930
7146af97 5931 lim = SYMBOL_BLOCK_SIZE;
6ca94ac9
KH
5932 /* If this block contains only free symbols and we have already
5933 seen more than two blocks worth of free symbols then deallocate
5934 this block. */
6feef451 5935 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
6ca94ac9 5936 {
6ca94ac9
KH
5937 *sprev = sblk->next;
5938 /* Unhook from the free list. */
28a099a4 5939 symbol_free_list = sblk->symbols[0].next;
c8099634
RS
5940 lisp_free (sblk);
5941 n_symbol_blocks--;
6ca94ac9
KH
5942 }
5943 else
6feef451
AS
5944 {
5945 num_free += this_free;
5946 sprev = &sblk->next;
5947 }
7146af97
JB
5948 }
5949 total_symbols = num_used;
5950 total_free_symbols = num_free;
5951 }
5952
a9faeabe
RS
5953 /* Put all unmarked misc's on free list.
5954 For a marker, first unchain it from the buffer it points into. */
7146af97
JB
5955 {
5956 register struct marker_block *mblk;
6ca94ac9 5957 struct marker_block **mprev = &marker_block;
7146af97
JB
5958 register int lim = marker_block_index;
5959 register int num_free = 0, num_used = 0;
5960
5961 marker_free_list = 0;
177c0ea7 5962
6ca94ac9 5963 for (mblk = marker_block; mblk; mblk = *mprev)
7146af97
JB
5964 {
5965 register int i;
6ca94ac9 5966 int this_free = 0;
fa05e253 5967
7146af97 5968 for (i = 0; i < lim; i++)
465edf35 5969 {
d314756e 5970 if (!mblk->markers[i].u_any.gcmarkbit)
465edf35 5971 {
d314756e 5972 if (mblk->markers[i].u_any.type == Lisp_Misc_Marker)
ef89c2ce 5973 unchain_marker (&mblk->markers[i].u_marker);
fa05e253
RS
5974 /* Set the type of the freed object to Lisp_Misc_Free.
5975 We could leave the type alone, since nobody checks it,
465edf35 5976 but this might catch bugs faster. */
a5da44fe 5977 mblk->markers[i].u_marker.type = Lisp_Misc_Free;
465edf35
KH
5978 mblk->markers[i].u_free.chain = marker_free_list;
5979 marker_free_list = &mblk->markers[i];
6ca94ac9 5980 this_free++;
465edf35
KH
5981 }
5982 else
5983 {
5984 num_used++;
d314756e 5985 mblk->markers[i].u_any.gcmarkbit = 0;
465edf35
KH
5986 }
5987 }
7146af97 5988 lim = MARKER_BLOCK_SIZE;
6ca94ac9
KH
5989 /* If this block contains only free markers and we have already
5990 seen more than two blocks worth of free markers then deallocate
5991 this block. */
6feef451 5992 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
6ca94ac9 5993 {
6ca94ac9
KH
5994 *mprev = mblk->next;
5995 /* Unhook from the free list. */
5996 marker_free_list = mblk->markers[0].u_free.chain;
c8099634
RS
5997 lisp_free (mblk);
5998 n_marker_blocks--;
6ca94ac9
KH
5999 }
6000 else
6feef451
AS
6001 {
6002 num_free += this_free;
6003 mprev = &mblk->next;
6004 }
7146af97
JB
6005 }
6006
6007 total_markers = num_used;
6008 total_free_markers = num_free;
6009 }
6010
6011 /* Free all unmarked buffers */
6012 {
6013 register struct buffer *buffer = all_buffers, *prev = 0, *next;
6014
6015 while (buffer)
3ef06d12 6016 if (!VECTOR_MARKED_P (buffer))
7146af97
JB
6017 {
6018 if (prev)
eab3844f 6019 prev->header.next = buffer->header.next;
7146af97 6020 else
eab3844f
PE
6021 all_buffers = buffer->header.next.buffer;
6022 next = buffer->header.next.buffer;
34400008 6023 lisp_free (buffer);
7146af97
JB
6024 buffer = next;
6025 }
6026 else
6027 {
3ef06d12 6028 VECTOR_UNMARK (buffer);
30e3190a 6029 UNMARK_BALANCE_INTERVALS (BUF_INTERVALS (buffer));
eab3844f 6030 prev = buffer, buffer = buffer->header.next.buffer;
7146af97
JB
6031 }
6032 }
6033
7146af97
JB
6034 /* Free all unmarked vectors */
6035 {
6036 register struct Lisp_Vector *vector = all_vectors, *prev = 0, *next;
6037 total_vector_size = 0;
6038
6039 while (vector)
3ef06d12 6040 if (!VECTOR_MARKED_P (vector))
7146af97
JB
6041 {
6042 if (prev)
eab3844f 6043 prev->header.next = vector->header.next;
7146af97 6044 else
eab3844f
PE
6045 all_vectors = vector->header.next.vector;
6046 next = vector->header.next.vector;
c8099634
RS
6047 lisp_free (vector);
6048 n_vectors--;
7146af97 6049 vector = next;
41c28a37 6050
7146af97
JB
6051 }
6052 else
6053 {
3ef06d12 6054 VECTOR_UNMARK (vector);
eab3844f
PE
6055 if (vector->header.size & PSEUDOVECTOR_FLAG)
6056 total_vector_size += PSEUDOVECTOR_SIZE_MASK & vector->header.size;
fa05e253 6057 else
eab3844f
PE
6058 total_vector_size += vector->header.size;
6059 prev = vector, vector = vector->header.next.vector;
7146af97
JB
6060 }
6061 }
177c0ea7 6062
676a7251
GM
6063#ifdef GC_CHECK_STRING_BYTES
6064 if (!noninteractive)
6065 check_string_bytes (1);
6066#endif
7146af97 6067}
7146af97 6068
7146af97 6069
7146af97 6070
7146af97 6071\f
20d24714
JB
6072/* Debugging aids. */
6073
31ce1c91 6074DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
a6266d23 6075 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
228299fa 6076This may be helpful in debugging Emacs's memory usage.
7ee72033 6077We divide the value by 1024 to make sure it fits in a Lisp integer. */)
5842a27b 6078 (void)
20d24714
JB
6079{
6080 Lisp_Object end;
6081
d01a7826 6082 XSETINT (end, (intptr_t) (char *) sbrk (0) / 1024);
20d24714
JB
6083
6084 return end;
6085}
6086
310ea200 6087DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
a6266d23 6088 doc: /* Return a list of counters that measure how much consing there has been.
228299fa
GM
6089Each of these counters increments for a certain kind of object.
6090The counters wrap around from the largest positive integer to zero.
6091Garbage collection does not decrease them.
6092The elements of the value are as follows:
6093 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
6094All are in units of 1 = one object consed
6095except for VECTOR-CELLS and STRING-CHARS, which count the total length of
6096objects consed.
6097MISCS include overlays, markers, and some internal types.
6098Frames, windows, buffers, and subprocesses count as vectors
7ee72033 6099 (but the contents of a buffer's text do not count here). */)
5842a27b 6100 (void)
310ea200 6101{
2e471eb5 6102 Lisp_Object consed[8];
310ea200 6103
78e985eb
GM
6104 consed[0] = make_number (min (MOST_POSITIVE_FIXNUM, cons_cells_consed));
6105 consed[1] = make_number (min (MOST_POSITIVE_FIXNUM, floats_consed));
6106 consed[2] = make_number (min (MOST_POSITIVE_FIXNUM, vector_cells_consed));
6107 consed[3] = make_number (min (MOST_POSITIVE_FIXNUM, symbols_consed));
6108 consed[4] = make_number (min (MOST_POSITIVE_FIXNUM, string_chars_consed));
6109 consed[5] = make_number (min (MOST_POSITIVE_FIXNUM, misc_objects_consed));
6110 consed[6] = make_number (min (MOST_POSITIVE_FIXNUM, intervals_consed));
6111 consed[7] = make_number (min (MOST_POSITIVE_FIXNUM, strings_consed));
310ea200 6112
2e471eb5 6113 return Flist (8, consed);
310ea200 6114}
e0b8c689 6115
244ed907 6116#ifdef ENABLE_CHECKING
e0b8c689 6117int suppress_checking;
d3d47262 6118
e0b8c689 6119void
971de7fb 6120die (const char *msg, const char *file, int line)
e0b8c689 6121{
67ee9f6e 6122 fprintf (stderr, "\r\n%s:%d: Emacs fatal error: %s\r\n",
e0b8c689
KR
6123 file, line, msg);
6124 abort ();
6125}
244ed907 6126#endif
20d24714 6127\f
7146af97
JB
6128/* Initialization */
6129
dfcf069d 6130void
971de7fb 6131init_alloc_once (void)
7146af97
JB
6132{
6133 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
9e713715
GM
6134 purebeg = PUREBEG;
6135 pure_size = PURESIZE;
1f0b3fd2 6136 pure_bytes_used = 0;
e5bc14d4 6137 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
9e713715
GM
6138 pure_bytes_used_before_overflow = 0;
6139
ab6780cd
SM
6140 /* Initialize the list of free aligned blocks. */
6141 free_ablock = NULL;
6142
877935b1 6143#if GC_MARK_STACK || defined GC_MALLOC_CHECK
34400008
GM
6144 mem_init ();
6145 Vdead = make_pure_string ("DEAD", 4, 4, 0);
6146#endif
9e713715 6147
7146af97
JB
6148 all_vectors = 0;
6149 ignore_warnings = 1;
d1658221
RS
6150#ifdef DOUG_LEA_MALLOC
6151 mallopt (M_TRIM_THRESHOLD, 128*1024); /* trim threshold */
6152 mallopt (M_MMAP_THRESHOLD, 64*1024); /* mmap threshold */
81d492d5 6153 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* max. number of mmap'ed areas */
d1658221 6154#endif
7146af97
JB
6155 init_strings ();
6156 init_cons ();
6157 init_symbol ();
6158 init_marker ();
7146af97 6159 init_float ();
34400008 6160 init_intervals ();
5ac58e4c 6161 init_weak_hash_tables ();
d5e35230 6162
276cbe5a
RS
6163#ifdef REL_ALLOC
6164 malloc_hysteresis = 32;
6165#else
6166 malloc_hysteresis = 0;
6167#endif
6168
24d8a105 6169 refill_memory_reserve ();
276cbe5a 6170
7146af97
JB
6171 ignore_warnings = 0;
6172 gcprolist = 0;
630686c8 6173 byte_stack_list = 0;
7146af97
JB
6174 staticidx = 0;
6175 consing_since_gc = 0;
7d179cea 6176 gc_cons_threshold = 100000 * sizeof (Lisp_Object);
974aae61 6177 gc_relative_threshold = 0;
7146af97
JB
6178}
6179
dfcf069d 6180void
971de7fb 6181init_alloc (void)
7146af97
JB
6182{
6183 gcprolist = 0;
630686c8 6184 byte_stack_list = 0;
182ff242
GM
6185#if GC_MARK_STACK
6186#if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
6187 setjmp_tested_p = longjmps_done = 0;
6188#endif
6189#endif
2c5bd608
DL
6190 Vgc_elapsed = make_float (0.0);
6191 gcs_done = 0;
7146af97
JB
6192}
6193
6194void
971de7fb 6195syms_of_alloc (void)
7146af97 6196{
29208e82 6197 DEFVAR_INT ("gc-cons-threshold", gc_cons_threshold,
a6266d23 6198 doc: /* *Number of bytes of consing between garbage collections.
228299fa
GM
6199Garbage collection can happen automatically once this many bytes have been
6200allocated since the last garbage collection. All data types count.
7146af97 6201
228299fa 6202Garbage collection happens automatically only when `eval' is called.
7146af97 6203
228299fa 6204By binding this temporarily to a large number, you can effectively
96f077ad
SM
6205prevent garbage collection during a part of the program.
6206See also `gc-cons-percentage'. */);
6207
29208e82 6208 DEFVAR_LISP ("gc-cons-percentage", Vgc_cons_percentage,
96f077ad
SM
6209 doc: /* *Portion of the heap used for allocation.
6210Garbage collection can happen automatically once this portion of the heap
6211has been allocated since the last garbage collection.
6212If this portion is smaller than `gc-cons-threshold', this is ignored. */);
6213 Vgc_cons_percentage = make_float (0.1);
0819585c 6214
29208e82 6215 DEFVAR_INT ("pure-bytes-used", pure_bytes_used,
a6266d23 6216 doc: /* Number of bytes of sharable Lisp data allocated so far. */);
0819585c 6217
29208e82 6218 DEFVAR_INT ("cons-cells-consed", cons_cells_consed,
a6266d23 6219 doc: /* Number of cons cells that have been consed so far. */);
0819585c 6220
29208e82 6221 DEFVAR_INT ("floats-consed", floats_consed,
a6266d23 6222 doc: /* Number of floats that have been consed so far. */);
0819585c 6223
29208e82 6224 DEFVAR_INT ("vector-cells-consed", vector_cells_consed,
a6266d23 6225 doc: /* Number of vector cells that have been consed so far. */);
0819585c 6226
29208e82 6227 DEFVAR_INT ("symbols-consed", symbols_consed,
a6266d23 6228 doc: /* Number of symbols that have been consed so far. */);
0819585c 6229
29208e82 6230 DEFVAR_INT ("string-chars-consed", string_chars_consed,
a6266d23 6231 doc: /* Number of string characters that have been consed so far. */);
0819585c 6232
29208e82 6233 DEFVAR_INT ("misc-objects-consed", misc_objects_consed,
a6266d23 6234 doc: /* Number of miscellaneous objects that have been consed so far. */);
2e471eb5 6235
29208e82 6236 DEFVAR_INT ("intervals-consed", intervals_consed,
a6266d23 6237 doc: /* Number of intervals that have been consed so far. */);
7146af97 6238
29208e82 6239 DEFVAR_INT ("strings-consed", strings_consed,
a6266d23 6240 doc: /* Number of strings that have been consed so far. */);
228299fa 6241
29208e82 6242 DEFVAR_LISP ("purify-flag", Vpurify_flag,
a6266d23 6243 doc: /* Non-nil means loading Lisp code in order to dump an executable.
e9515805
SM
6244This means that certain objects should be allocated in shared (pure) space.
6245It can also be set to a hash-table, in which case this table is used to
6246do hash-consing of the objects allocated to pure space. */);
228299fa 6247
29208e82 6248 DEFVAR_BOOL ("garbage-collection-messages", garbage_collection_messages,
a6266d23 6249 doc: /* Non-nil means display messages at start and end of garbage collection. */);
299585ee
RS
6250 garbage_collection_messages = 0;
6251
29208e82 6252 DEFVAR_LISP ("post-gc-hook", Vpost_gc_hook,
a6266d23 6253 doc: /* Hook run after garbage collection has finished. */);
9e713715 6254 Vpost_gc_hook = Qnil;
d67b4f80 6255 Qpost_gc_hook = intern_c_string ("post-gc-hook");
9e713715
GM
6256 staticpro (&Qpost_gc_hook);
6257
29208e82 6258 DEFVAR_LISP ("memory-signal-data", Vmemory_signal_data,
74a54b04 6259 doc: /* Precomputed `signal' argument for memory-full error. */);
bcb61d60
KH
6260 /* We build this in advance because if we wait until we need it, we might
6261 not be able to allocate the memory to hold it. */
74a54b04 6262 Vmemory_signal_data
f4265f6c
DN
6263 = pure_cons (Qerror,
6264 pure_cons (make_pure_c_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"), Qnil));
74a54b04 6265
29208e82 6266 DEFVAR_LISP ("memory-full", Vmemory_full,
24d8a105 6267 doc: /* Non-nil means Emacs cannot get much more Lisp memory. */);
74a54b04 6268 Vmemory_full = Qnil;
bcb61d60 6269
e8197642 6270 staticpro (&Qgc_cons_threshold);
d67b4f80 6271 Qgc_cons_threshold = intern_c_string ("gc-cons-threshold");
e8197642 6272
a59de17b 6273 staticpro (&Qchar_table_extra_slots);
d67b4f80 6274 Qchar_table_extra_slots = intern_c_string ("char-table-extra-slots");
a59de17b 6275
29208e82 6276 DEFVAR_LISP ("gc-elapsed", Vgc_elapsed,
2c5bd608 6277 doc: /* Accumulated time elapsed in garbage collections.
e7415487 6278The time is in seconds as a floating point value. */);
29208e82 6279 DEFVAR_INT ("gcs-done", gcs_done,
e7415487 6280 doc: /* Accumulated number of garbage collections done. */);
2c5bd608 6281
7146af97
JB
6282 defsubr (&Scons);
6283 defsubr (&Slist);
6284 defsubr (&Svector);
6285 defsubr (&Smake_byte_code);
6286 defsubr (&Smake_list);
6287 defsubr (&Smake_vector);
6288 defsubr (&Smake_string);
7b07587b 6289 defsubr (&Smake_bool_vector);
7146af97
JB
6290 defsubr (&Smake_symbol);
6291 defsubr (&Smake_marker);
6292 defsubr (&Spurecopy);
6293 defsubr (&Sgarbage_collect);
20d24714 6294 defsubr (&Smemory_limit);
310ea200 6295 defsubr (&Smemory_use_counts);
34400008
GM
6296
6297#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
6298 defsubr (&Sgc_status);
6299#endif
7146af97 6300}