* src/puresize.h (BASE_PURESIZE): Bump by another 1K.
[bpt/emacs.git] / src / alloc.c
CommitLineData
7146af97 1/* Storage allocation and gc for GNU Emacs Lisp interpreter.
999dd333 2
ba318903 3Copyright (C) 1985-1986, 1988, 1993-1995, 1997-2014 Free Software
ab422c4d 4Foundation, Inc.
7146af97
JB
5
6This file is part of GNU Emacs.
7
9ec0b715 8GNU Emacs is free software: you can redistribute it and/or modify
7146af97 9it under the terms of the GNU General Public License as published by
9ec0b715
GM
10the Free Software Foundation, either version 3 of the License, or
11(at your option) any later version.
7146af97
JB
12
13GNU Emacs is distributed in the hope that it will be useful,
14but WITHOUT ANY WARRANTY; without even the implied warranty of
15MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16GNU General Public License for more details.
17
18You should have received a copy of the GNU General Public License
9ec0b715 19along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
7146af97 20
18160b98 21#include <config.h>
f162bcc3 22
e9b309ac 23#include <stdio.h>
ab6780cd 24#include <limits.h> /* For CHAR_BIT. */
92939d31 25
bc8000ff 26#ifdef ENABLE_CHECKING
b09cca6a 27#include <signal.h> /* For SIGABRT. */
bc8000ff
EZ
28#endif
29
ae9e757a 30#ifdef HAVE_PTHREAD
aa477689
JD
31#include <pthread.h>
32#endif
33
7146af97 34#include "lisp.h"
ece93c02 35#include "process.h"
d5e35230 36#include "intervals.h"
4c0be5f4 37#include "puresize.h"
e5560ff7 38#include "character.h"
7146af97
JB
39#include "buffer.h"
40#include "window.h"
2538fae4 41#include "keyboard.h"
502b9b64 42#include "frame.h"
9ac0d9e0 43#include "blockinput.h"
4a729fd8 44#include "termhooks.h" /* For struct terminal. */
d141d701
DA
45#ifdef HAVE_WINDOW_SYSTEM
46#include TERM_HEADER
47#endif /* HAVE_WINDOW_SYSTEM */
0328b6de 48
0065d054 49#include <verify.h>
e065a56e 50
009581fa
PE
51#if (defined ENABLE_CHECKING \
52 && defined HAVE_VALGRIND_VALGRIND_H \
53 && !defined USE_VALGRIND)
54# define USE_VALGRIND 1
55#endif
56
a84683fd
DC
57#if USE_VALGRIND
58#include <valgrind/valgrind.h>
59#include <valgrind/memcheck.h>
d160dd0c 60static bool valgrind_p;
a84683fd
DC
61#endif
62
52828e02
PE
63/* GC_CHECK_MARKED_OBJECTS means do sanity checks on allocated objects.
64 Doable only if GC_MARK_STACK. */
65#if ! GC_MARK_STACK
66# undef GC_CHECK_MARKED_OBJECTS
67#endif
68
6b61353c 69/* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
52828e02
PE
70 memory. Can do this only if using gmalloc.c and if not checking
71 marked objects. */
6b61353c 72
52828e02
PE
73#if (defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC \
74 || defined GC_CHECK_MARKED_OBJECTS)
6b61353c
KH
75#undef GC_MALLOC_CHECK
76#endif
77
bf952fb6 78#include <unistd.h>
de7124a7 79#include <fcntl.h>
de7124a7 80
a411ac43
PE
81#ifdef USE_GTK
82# include "gtkutil.h"
83#endif
69666f77 84#ifdef WINDOWSNT
f892cf9c 85#include "w32.h"
62aba0d4 86#include "w32heap.h" /* for sbrk */
69666f77
EZ
87#endif
88
d1658221 89#ifdef DOUG_LEA_MALLOC
2e471eb5 90
d1658221 91#include <malloc.h>
81d492d5 92
2e471eb5
GM
93/* Specify maximum number of areas to mmap. It would be nice to use a
94 value that explicitly means "no limit". */
95
81d492d5
RS
96#define MMAP_MAX_AREAS 100000000
97
2e471eb5 98#endif /* not DOUG_LEA_MALLOC */
276cbe5a 99
2e471eb5
GM
100/* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
101 to a struct Lisp_String. */
102
7cdee936
SM
103#define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
104#define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
b059de99 105#define STRING_MARKED_P(S) (((S)->size & ARRAY_MARK_FLAG) != 0)
2e471eb5 106
eab3844f
PE
107#define VECTOR_MARK(V) ((V)->header.size |= ARRAY_MARK_FLAG)
108#define VECTOR_UNMARK(V) ((V)->header.size &= ~ARRAY_MARK_FLAG)
109#define VECTOR_MARKED_P(V) (((V)->header.size & ARRAY_MARK_FLAG) != 0)
3ef06d12 110
0dd6d66d
DA
111/* Default value of gc_cons_threshold (see below). */
112
663e2b3f 113#define GC_DEFAULT_THRESHOLD (100000 * word_size)
0dd6d66d 114
29208e82
TT
115/* Global variables. */
116struct emacs_globals globals;
117
2e471eb5
GM
118/* Number of bytes of consing done since the last gc. */
119
dac616ff 120EMACS_INT consing_since_gc;
7146af97 121
974aae61
RS
122/* Similar minimum, computed from Vgc_cons_percentage. */
123
dac616ff 124EMACS_INT gc_relative_threshold;
310ea200 125
24d8a105
RS
126/* Minimum number of bytes of consing since GC before next GC,
127 when memory is full. */
128
dac616ff 129EMACS_INT memory_full_cons_threshold;
24d8a105 130
fce31d69 131/* True during GC. */
2e471eb5 132
fce31d69 133bool gc_in_progress;
7146af97 134
fce31d69 135/* True means abort if try to GC.
3de0effb
RS
136 This is for code which is written on the assumption that
137 no GC will happen, so as to verify that assumption. */
138
fce31d69 139bool abort_on_gc;
3de0effb 140
34400008
GM
141/* Number of live and free conses etc. */
142
3ab6e069 143static EMACS_INT total_conses, total_markers, total_symbols, total_buffers;
c0c5c8ae 144static EMACS_INT total_free_conses, total_free_markers, total_free_symbols;
3ab6e069 145static EMACS_INT total_free_floats, total_floats;
fd27a537 146
2e471eb5 147/* Points to memory space allocated as "spare", to be freed if we run
24d8a105
RS
148 out of memory. We keep one large block, four cons-blocks, and
149 two string blocks. */
2e471eb5 150
d3d47262 151static char *spare_memory[7];
276cbe5a 152
2b6148e4
PE
153/* Amount of spare memory to keep in large reserve block, or to see
154 whether this much is available when malloc fails on a larger request. */
2e471eb5 155
276cbe5a 156#define SPARE_MEMORY (1 << 14)
4d09bcf6 157
1b8950e5
RS
158/* Initialize it to a nonzero value to force it into data space
159 (rather than bss space). That way unexec will remap it into text
160 space (pure), on some systems. We have not implemented the
161 remapping on more recent systems because this is less important
162 nowadays than in the days of small memories and timesharing. */
2e471eb5 163
2c4685ee 164EMACS_INT pure[(PURESIZE + sizeof (EMACS_INT) - 1) / sizeof (EMACS_INT)] = {1,};
7146af97 165#define PUREBEG (char *) pure
2e471eb5 166
9e713715 167/* Pointer to the pure area, and its size. */
2e471eb5 168
9e713715 169static char *purebeg;
903fe15d 170static ptrdiff_t pure_size;
9e713715
GM
171
172/* Number of bytes of pure storage used before pure storage overflowed.
173 If this is non-zero, this implies that an overflow occurred. */
174
903fe15d 175static ptrdiff_t pure_bytes_used_before_overflow;
7146af97 176
fce31d69 177/* True if P points into pure space. */
34400008
GM
178
179#define PURE_POINTER_P(P) \
6a0bf43d 180 ((uintptr_t) (P) - (uintptr_t) purebeg <= pure_size)
34400008 181
fecbd8ff 182/* Index in pure at which next pure Lisp object will be allocated.. */
e5bc14d4 183
d311d28c 184static ptrdiff_t pure_bytes_used_lisp;
e5bc14d4
YM
185
186/* Number of bytes allocated for non-Lisp objects in pure storage. */
187
d311d28c 188static ptrdiff_t pure_bytes_used_non_lisp;
e5bc14d4 189
2e471eb5
GM
190/* If nonzero, this is a warning delivered by malloc and not yet
191 displayed. */
192
a8fe7202 193const char *pending_malloc_warning;
7146af97
JB
194
195/* Maximum amount of C stack to save when a GC happens. */
196
197#ifndef MAX_SAVE_STACK
198#define MAX_SAVE_STACK 16000
199#endif
200
201/* Buffer in which we save a copy of the C stack at each GC. */
202
dd3f25f7 203#if MAX_SAVE_STACK > 0
d3d47262 204static char *stack_copy;
903fe15d 205static ptrdiff_t stack_copy_size;
e76119d7
PE
206
207/* Copy to DEST a block of memory from SRC of size SIZE bytes,
208 avoiding any address sanitization. */
209
210static void * ATTRIBUTE_NO_SANITIZE_ADDRESS
211no_sanitize_memcpy (void *dest, void const *src, size_t size)
212{
213 if (! ADDRESS_SANITIZER)
214 return memcpy (dest, src, size);
215 else
216 {
217 size_t i;
218 char *d = dest;
219 char const *s = src;
220 for (i = 0; i < size; i++)
221 d[i] = s[i];
222 return dest;
223 }
224}
225
226#endif /* MAX_SAVE_STACK > 0 */
7146af97 227
fecbd8ff
SM
228static Lisp_Object Qconses;
229static Lisp_Object Qsymbols;
230static Lisp_Object Qmiscs;
231static Lisp_Object Qstrings;
232static Lisp_Object Qvectors;
233static Lisp_Object Qfloats;
234static Lisp_Object Qintervals;
235static Lisp_Object Qbuffers;
f8643a6b 236static Lisp_Object Qstring_bytes, Qvector_slots, Qheap;
955cbe7b 237static Lisp_Object Qgc_cons_threshold;
3d80c99f 238Lisp_Object Qautomatic_gc;
955cbe7b 239Lisp_Object Qchar_table_extra_slots;
e8197642 240
9e713715
GM
241/* Hook run after GC has finished. */
242
955cbe7b 243static Lisp_Object Qpost_gc_hook;
2c5bd608 244
f57e2426 245static void mark_terminals (void);
f57e2426 246static void gc_sweep (void);
72cb32cf 247static Lisp_Object make_pure_vector (ptrdiff_t);
c752cfa9 248static void mark_buffer (struct buffer *);
41c28a37 249
69003fd8
PE
250#if !defined REL_ALLOC || defined SYSTEM_MALLOC
251static void refill_memory_reserve (void);
252#endif
f57e2426
J
253static void compact_small_strings (void);
254static void free_large_strings (void);
196e41e4 255extern Lisp_Object which_symbols (Lisp_Object, EMACS_INT) EXTERNALLY_VISIBLE;
34400008 256
914adc42
DA
257/* When scanning the C stack for live Lisp objects, Emacs keeps track of
258 what memory allocated via lisp_malloc and lisp_align_malloc is intended
259 for what purpose. This enumeration specifies the type of memory. */
34400008
GM
260
261enum mem_type
262{
263 MEM_TYPE_NON_LISP,
264 MEM_TYPE_BUFFER,
265 MEM_TYPE_CONS,
266 MEM_TYPE_STRING,
267 MEM_TYPE_MISC,
268 MEM_TYPE_SYMBOL,
269 MEM_TYPE_FLOAT,
914adc42
DA
270 /* Since all non-bool pseudovectors are small enough to be
271 allocated from vector blocks, this memory type denotes
272 large regular vectors and large bool pseudovectors. */
f3372c87
DA
273 MEM_TYPE_VECTORLIKE,
274 /* Special type to denote vector blocks. */
35aaa1ea
DA
275 MEM_TYPE_VECTOR_BLOCK,
276 /* Special type to denote reserved memory. */
277 MEM_TYPE_SPARE
34400008
GM
278};
279
877935b1 280#if GC_MARK_STACK || defined GC_MALLOC_CHECK
0b378936 281
0b378936
GM
282/* A unique object in pure space used to make some Lisp objects
283 on free lists recognizable in O(1). */
284
d3d47262 285static Lisp_Object Vdead;
ca78dc43 286#define DEADP(x) EQ (x, Vdead)
0b378936 287
877935b1
GM
288#ifdef GC_MALLOC_CHECK
289
290enum mem_type allocated_mem_type;
877935b1
GM
291
292#endif /* GC_MALLOC_CHECK */
293
294/* A node in the red-black tree describing allocated memory containing
295 Lisp data. Each such block is recorded with its start and end
296 address when it is allocated, and removed from the tree when it
297 is freed.
298
299 A red-black tree is a balanced binary tree with the following
300 properties:
301
302 1. Every node is either red or black.
303 2. Every leaf is black.
304 3. If a node is red, then both of its children are black.
305 4. Every simple path from a node to a descendant leaf contains
306 the same number of black nodes.
307 5. The root is always black.
308
309 When nodes are inserted into the tree, or deleted from the tree,
310 the tree is "fixed" so that these properties are always true.
311
312 A red-black tree with N internal nodes has height at most 2
313 log(N+1). Searches, insertions and deletions are done in O(log N).
314 Please see a text book about data structures for a detailed
315 description of red-black trees. Any book worth its salt should
316 describe them. */
317
318struct mem_node
319{
9f7d9210
RS
320 /* Children of this node. These pointers are never NULL. When there
321 is no child, the value is MEM_NIL, which points to a dummy node. */
322 struct mem_node *left, *right;
323
324 /* The parent of this node. In the root node, this is NULL. */
325 struct mem_node *parent;
877935b1
GM
326
327 /* Start and end of allocated region. */
328 void *start, *end;
329
330 /* Node color. */
331 enum {MEM_BLACK, MEM_RED} color;
177c0ea7 332
877935b1
GM
333 /* Memory type. */
334 enum mem_type type;
335};
336
337/* Base address of stack. Set in main. */
338
339Lisp_Object *stack_base;
340
341/* Root of the tree describing allocated Lisp memory. */
342
343static struct mem_node *mem_root;
344
ece93c02
GM
345/* Lowest and highest known address in the heap. */
346
347static void *min_heap_address, *max_heap_address;
348
877935b1
GM
349/* Sentinel node of the tree. */
350
351static struct mem_node mem_z;
352#define MEM_NIL &mem_z
353
f57e2426
J
354static struct mem_node *mem_insert (void *, void *, enum mem_type);
355static void mem_insert_fixup (struct mem_node *);
356static void mem_rotate_left (struct mem_node *);
357static void mem_rotate_right (struct mem_node *);
358static void mem_delete (struct mem_node *);
359static void mem_delete_fixup (struct mem_node *);
b0ab8123 360static struct mem_node *mem_find (void *);
34400008 361
877935b1 362#endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
34400008 363
ca78dc43
PE
364#ifndef DEADP
365# define DEADP(x) 0
366#endif
367
1f0b3fd2
GM
368/* Recording what needs to be marked for gc. */
369
370struct gcpro *gcprolist;
371
379b98b1
PE
372/* Addresses of staticpro'd variables. Initialize it to a nonzero
373 value; otherwise some compilers put it into BSS. */
1f0b3fd2 374
4195afc3 375enum { NSTATICS = 2048 };
d3d47262 376static Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
1f0b3fd2
GM
377
378/* Index of next unused slot in staticvec. */
379
fff62aa9 380static int staticidx;
1f0b3fd2 381
261cb4bb 382static void *pure_alloc (size_t, int);
1f0b3fd2 383
df5b4930
PE
384/* Return X rounded to the next multiple of Y. Arguments should not
385 have side effects, as they are evaluated more than once. Assume X
386 + Y - 1 does not overflow. Tune for Y being a power of 2. */
1f0b3fd2 387
df5b4930
PE
388#define ROUNDUP(x, y) ((y) & ((y) - 1) \
389 ? ((x) + (y) - 1) - ((x) + (y) - 1) % (y) \
390 : ((x) + (y) - 1) & ~ ((y) - 1))
1f0b3fd2 391
df5b4930
PE
392/* Return PTR rounded up to the next multiple of ALIGNMENT. */
393
394static void *
395ALIGN (void *ptr, int alignment)
396{
397 return (void *) ROUNDUP ((uintptr_t) ptr, alignment);
398}
1f0b3fd2 399
84575e67
PE
400static void
401XFLOAT_INIT (Lisp_Object f, double n)
402{
403 XFLOAT (f)->u.data = n;
404}
ece93c02 405
7146af97 406\f
34400008
GM
407/************************************************************************
408 Malloc
409 ************************************************************************/
410
4455ad75 411/* Function malloc calls this if it finds we are near exhausting storage. */
d457598b
AS
412
413void
a8fe7202 414malloc_warning (const char *str)
7146af97
JB
415{
416 pending_malloc_warning = str;
417}
418
34400008 419
4455ad75 420/* Display an already-pending malloc warning. */
34400008 421
d457598b 422void
971de7fb 423display_malloc_warning (void)
7146af97 424{
4455ad75
RS
425 call3 (intern ("display-warning"),
426 intern ("alloc"),
427 build_string (pending_malloc_warning),
428 intern ("emergency"));
7146af97 429 pending_malloc_warning = 0;
7146af97 430}
49efed3a 431\f
276cbe5a
RS
432/* Called if we can't allocate relocatable space for a buffer. */
433
434void
d311d28c 435buffer_memory_full (ptrdiff_t nbytes)
276cbe5a 436{
2e471eb5
GM
437 /* If buffers use the relocating allocator, no need to free
438 spare_memory, because we may have plenty of malloc space left
439 that we could get, and if we don't, the malloc that fails will
440 itself cause spare_memory to be freed. If buffers don't use the
441 relocating allocator, treat this like any other failing
442 malloc. */
276cbe5a
RS
443
444#ifndef REL_ALLOC
531b0165 445 memory_full (nbytes);
d9df6f40 446#else
2e471eb5
GM
447 /* This used to call error, but if we've run out of memory, we could
448 get infinite recursion trying to build the string. */
9b306d37 449 xsignal (Qnil, Vmemory_signal_data);
d9df6f40 450#endif
7146af97
JB
451}
452
f3372c87
DA
453/* A common multiple of the positive integers A and B. Ideally this
454 would be the least common multiple, but there's no way to do that
455 as a constant expression in C, so do the best that we can easily do. */
456#define COMMON_MULTIPLE(a, b) \
457 ((a) % (b) == 0 ? (a) : (b) % (a) == 0 ? (b) : (a) * (b))
34400008 458
c9d624c6 459#ifndef XMALLOC_OVERRUN_CHECK
903fe15d 460#define XMALLOC_OVERRUN_CHECK_OVERHEAD 0
c9d624c6 461#else
212f33f1 462
903fe15d
PE
463/* Check for overrun in malloc'ed buffers by wrapping a header and trailer
464 around each block.
bdbed949 465
f701dc2a
PE
466 The header consists of XMALLOC_OVERRUN_CHECK_SIZE fixed bytes
467 followed by XMALLOC_OVERRUN_SIZE_SIZE bytes containing the original
468 block size in little-endian order. The trailer consists of
469 XMALLOC_OVERRUN_CHECK_SIZE fixed bytes.
bdbed949
KS
470
471 The header is used to detect whether this block has been allocated
f701dc2a
PE
472 through these functions, as some low-level libc functions may
473 bypass the malloc hooks. */
bdbed949 474
212f33f1 475#define XMALLOC_OVERRUN_CHECK_SIZE 16
903fe15d 476#define XMALLOC_OVERRUN_CHECK_OVERHEAD \
38532ce6
PE
477 (2 * XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE)
478
479/* Define XMALLOC_OVERRUN_SIZE_SIZE so that (1) it's large enough to
f701dc2a
PE
480 hold a size_t value and (2) the header size is a multiple of the
481 alignment that Emacs needs for C types and for USE_LSB_TAG. */
482#define XMALLOC_BASE_ALIGNMENT \
e32a5799 483 alignof (union { long double d; intmax_t i; void *p; })
f3372c87 484
bfe3e0a2 485#if USE_LSB_TAG
f701dc2a 486# define XMALLOC_HEADER_ALIGNMENT \
2b90362b 487 COMMON_MULTIPLE (GCALIGNMENT, XMALLOC_BASE_ALIGNMENT)
38532ce6
PE
488#else
489# define XMALLOC_HEADER_ALIGNMENT XMALLOC_BASE_ALIGNMENT
490#endif
491#define XMALLOC_OVERRUN_SIZE_SIZE \
f701dc2a
PE
492 (((XMALLOC_OVERRUN_CHECK_SIZE + sizeof (size_t) \
493 + XMALLOC_HEADER_ALIGNMENT - 1) \
494 / XMALLOC_HEADER_ALIGNMENT * XMALLOC_HEADER_ALIGNMENT) \
495 - XMALLOC_OVERRUN_CHECK_SIZE)
bdbed949 496
903fe15d
PE
497static char const xmalloc_overrun_check_header[XMALLOC_OVERRUN_CHECK_SIZE] =
498 { '\x9a', '\x9b', '\xae', '\xaf',
499 '\xbf', '\xbe', '\xce', '\xcf',
500 '\xea', '\xeb', '\xec', '\xed',
501 '\xdf', '\xde', '\x9c', '\x9d' };
212f33f1 502
903fe15d
PE
503static char const xmalloc_overrun_check_trailer[XMALLOC_OVERRUN_CHECK_SIZE] =
504 { '\xaa', '\xab', '\xac', '\xad',
505 '\xba', '\xbb', '\xbc', '\xbd',
506 '\xca', '\xcb', '\xcc', '\xcd',
507 '\xda', '\xdb', '\xdc', '\xdd' };
212f33f1 508
903fe15d 509/* Insert and extract the block size in the header. */
bdbed949 510
903fe15d
PE
511static void
512xmalloc_put_size (unsigned char *ptr, size_t size)
513{
514 int i;
38532ce6 515 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
903fe15d 516 {
38532ce6 517 *--ptr = size & ((1 << CHAR_BIT) - 1);
903fe15d
PE
518 size >>= CHAR_BIT;
519 }
520}
bdbed949 521
903fe15d
PE
522static size_t
523xmalloc_get_size (unsigned char *ptr)
524{
525 size_t size = 0;
526 int i;
38532ce6
PE
527 ptr -= XMALLOC_OVERRUN_SIZE_SIZE;
528 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
903fe15d
PE
529 {
530 size <<= CHAR_BIT;
531 size += *ptr++;
532 }
533 return size;
534}
bdbed949
KS
535
536
537/* Like malloc, but wraps allocated block with header and trailer. */
538
261cb4bb 539static void *
e7974947 540overrun_check_malloc (size_t size)
212f33f1 541{
bdbed949 542 register unsigned char *val;
0caaedb1 543 if (SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD < size)
1088b922 544 emacs_abort ();
212f33f1 545
0caaedb1
PE
546 val = malloc (size + XMALLOC_OVERRUN_CHECK_OVERHEAD);
547 if (val)
212f33f1 548 {
903fe15d 549 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
38532ce6 550 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
903fe15d 551 xmalloc_put_size (val, size);
72af86bd
AS
552 memcpy (val + size, xmalloc_overrun_check_trailer,
553 XMALLOC_OVERRUN_CHECK_SIZE);
212f33f1 554 }
261cb4bb 555 return val;
212f33f1
KS
556}
557
bdbed949
KS
558
559/* Like realloc, but checks old block for overrun, and wraps new block
560 with header and trailer. */
561
261cb4bb
PE
562static void *
563overrun_check_realloc (void *block, size_t size)
212f33f1 564{
e7974947 565 register unsigned char *val = (unsigned char *) block;
0caaedb1 566 if (SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD < size)
1088b922 567 emacs_abort ();
212f33f1
KS
568
569 if (val
72af86bd 570 && memcmp (xmalloc_overrun_check_header,
38532ce6 571 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
903fe15d 572 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
212f33f1 573 {
903fe15d 574 size_t osize = xmalloc_get_size (val);
72af86bd
AS
575 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
576 XMALLOC_OVERRUN_CHECK_SIZE))
1088b922 577 emacs_abort ();
72af86bd 578 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
38532ce6
PE
579 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
580 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
212f33f1
KS
581 }
582
0caaedb1 583 val = realloc (val, size + XMALLOC_OVERRUN_CHECK_OVERHEAD);
212f33f1 584
0caaedb1 585 if (val)
212f33f1 586 {
903fe15d 587 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
38532ce6 588 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
903fe15d 589 xmalloc_put_size (val, size);
72af86bd
AS
590 memcpy (val + size, xmalloc_overrun_check_trailer,
591 XMALLOC_OVERRUN_CHECK_SIZE);
212f33f1 592 }
261cb4bb 593 return val;
212f33f1
KS
594}
595
bdbed949
KS
596/* Like free, but checks block for overrun. */
597
2538aa2f 598static void
261cb4bb 599overrun_check_free (void *block)
212f33f1 600{
e7974947 601 unsigned char *val = (unsigned char *) block;
212f33f1
KS
602
603 if (val
72af86bd 604 && memcmp (xmalloc_overrun_check_header,
38532ce6 605 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
903fe15d 606 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
212f33f1 607 {
903fe15d 608 size_t osize = xmalloc_get_size (val);
72af86bd
AS
609 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
610 XMALLOC_OVERRUN_CHECK_SIZE))
1088b922 611 emacs_abort ();
454d7973 612#ifdef XMALLOC_CLEAR_FREE_MEMORY
38532ce6 613 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
903fe15d 614 memset (val, 0xff, osize + XMALLOC_OVERRUN_CHECK_OVERHEAD);
454d7973 615#else
72af86bd 616 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
38532ce6
PE
617 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
618 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
454d7973 619#endif
212f33f1
KS
620 }
621
622 free (val);
623}
624
625#undef malloc
626#undef realloc
627#undef free
628#define malloc overrun_check_malloc
629#define realloc overrun_check_realloc
630#define free overrun_check_free
631#endif
632
0caaedb1
PE
633/* If compiled with XMALLOC_BLOCK_INPUT_CHECK, define a symbol
634 BLOCK_INPUT_IN_MEMORY_ALLOCATORS that is visible to the debugger.
635 If that variable is set, block input while in one of Emacs's memory
636 allocation functions. There should be no need for this debugging
637 option, since signal handlers do not allocate memory, but Emacs
638 formerly allocated memory in signal handlers and this compile-time
639 option remains as a way to help debug the issue should it rear its
640 ugly head again. */
641#ifdef XMALLOC_BLOCK_INPUT_CHECK
642bool block_input_in_memory_allocators EXTERNALLY_VISIBLE;
643static void
644malloc_block_input (void)
645{
646 if (block_input_in_memory_allocators)
4d7e6e51 647 block_input ();
0caaedb1
PE
648}
649static void
650malloc_unblock_input (void)
651{
652 if (block_input_in_memory_allocators)
4d7e6e51 653 unblock_input ();
0caaedb1
PE
654}
655# define MALLOC_BLOCK_INPUT malloc_block_input ()
656# define MALLOC_UNBLOCK_INPUT malloc_unblock_input ()
dafc79fa 657#else
0caaedb1
PE
658# define MALLOC_BLOCK_INPUT ((void) 0)
659# define MALLOC_UNBLOCK_INPUT ((void) 0)
dafc79fa 660#endif
bdbed949 661
3a880af4
SM
662#define MALLOC_PROBE(size) \
663 do { \
664 if (profiler_memory_running) \
665 malloc_probe (size); \
666 } while (0)
667
668
34400008 669/* Like malloc but check for no memory and block interrupt input.. */
7146af97 670
261cb4bb 671void *
971de7fb 672xmalloc (size_t size)
7146af97 673{
261cb4bb 674 void *val;
7146af97 675
dafc79fa 676 MALLOC_BLOCK_INPUT;
261cb4bb 677 val = malloc (size);
dafc79fa 678 MALLOC_UNBLOCK_INPUT;
7146af97 679
2e471eb5 680 if (!val && size)
531b0165 681 memory_full (size);
c2d7786e 682 MALLOC_PROBE (size);
7146af97
JB
683 return val;
684}
685
23f86fce
DA
686/* Like the above, but zeroes out the memory just allocated. */
687
688void *
689xzalloc (size_t size)
690{
691 void *val;
692
693 MALLOC_BLOCK_INPUT;
694 val = malloc (size);
695 MALLOC_UNBLOCK_INPUT;
696
697 if (!val && size)
698 memory_full (size);
699 memset (val, 0, size);
c2d7786e 700 MALLOC_PROBE (size);
23f86fce
DA
701 return val;
702}
34400008
GM
703
704/* Like realloc but check for no memory and block interrupt input.. */
705
261cb4bb
PE
706void *
707xrealloc (void *block, size_t size)
7146af97 708{
261cb4bb 709 void *val;
7146af97 710
dafc79fa 711 MALLOC_BLOCK_INPUT;
56d2031b
JB
712 /* We must call malloc explicitly when BLOCK is 0, since some
713 reallocs don't do this. */
714 if (! block)
261cb4bb 715 val = malloc (size);
f048679d 716 else
261cb4bb 717 val = realloc (block, size);
dafc79fa 718 MALLOC_UNBLOCK_INPUT;
7146af97 719
531b0165
PE
720 if (!val && size)
721 memory_full (size);
c2d7786e 722 MALLOC_PROBE (size);
7146af97
JB
723 return val;
724}
9ac0d9e0 725
34400008 726
005ca5c7 727/* Like free but block interrupt input. */
34400008 728
9ac0d9e0 729void
261cb4bb 730xfree (void *block)
9ac0d9e0 731{
70fdbb46
JM
732 if (!block)
733 return;
dafc79fa 734 MALLOC_BLOCK_INPUT;
9ac0d9e0 735 free (block);
dafc79fa 736 MALLOC_UNBLOCK_INPUT;
24d8a105 737 /* We don't call refill_memory_reserve here
0caaedb1 738 because in practice the call in r_alloc_free seems to suffice. */
9ac0d9e0
JB
739}
740
c8099634 741
0065d054
PE
742/* Other parts of Emacs pass large int values to allocator functions
743 expecting ptrdiff_t. This is portable in practice, but check it to
744 be safe. */
745verify (INT_MAX <= PTRDIFF_MAX);
746
747
748/* Allocate an array of NITEMS items, each of size ITEM_SIZE.
749 Signal an error on memory exhaustion, and block interrupt input. */
750
751void *
752xnmalloc (ptrdiff_t nitems, ptrdiff_t item_size)
753{
a54e2c05 754 eassert (0 <= nitems && 0 < item_size);
0065d054
PE
755 if (min (PTRDIFF_MAX, SIZE_MAX) / item_size < nitems)
756 memory_full (SIZE_MAX);
757 return xmalloc (nitems * item_size);
758}
759
760
761/* Reallocate an array PA to make it of NITEMS items, each of size ITEM_SIZE.
762 Signal an error on memory exhaustion, and block interrupt input. */
763
764void *
765xnrealloc (void *pa, ptrdiff_t nitems, ptrdiff_t item_size)
766{
a54e2c05 767 eassert (0 <= nitems && 0 < item_size);
0065d054
PE
768 if (min (PTRDIFF_MAX, SIZE_MAX) / item_size < nitems)
769 memory_full (SIZE_MAX);
770 return xrealloc (pa, nitems * item_size);
771}
772
773
774/* Grow PA, which points to an array of *NITEMS items, and return the
775 location of the reallocated array, updating *NITEMS to reflect its
776 new size. The new array will contain at least NITEMS_INCR_MIN more
777 items, but will not contain more than NITEMS_MAX items total.
778 ITEM_SIZE is the size of each item, in bytes.
779
780 ITEM_SIZE and NITEMS_INCR_MIN must be positive. *NITEMS must be
781 nonnegative. If NITEMS_MAX is -1, it is treated as if it were
782 infinity.
783
784 If PA is null, then allocate a new array instead of reallocating
2dd2e622 785 the old one.
0065d054
PE
786
787 Block interrupt input as needed. If memory exhaustion occurs, set
788 *NITEMS to zero if PA is null, and signal an error (i.e., do not
2dd2e622
PE
789 return).
790
791 Thus, to grow an array A without saving its old contents, do
792 { xfree (A); A = NULL; A = xpalloc (NULL, &AITEMS, ...); }.
793 The A = NULL avoids a dangling pointer if xpalloc exhausts memory
794 and signals an error, and later this code is reexecuted and
795 attempts to free A. */
0065d054
PE
796
797void *
798xpalloc (void *pa, ptrdiff_t *nitems, ptrdiff_t nitems_incr_min,
799 ptrdiff_t nitems_max, ptrdiff_t item_size)
800{
801 /* The approximate size to use for initial small allocation
802 requests. This is the largest "small" request for the GNU C
803 library malloc. */
804 enum { DEFAULT_MXFAST = 64 * sizeof (size_t) / 4 };
805
806 /* If the array is tiny, grow it to about (but no greater than)
807 DEFAULT_MXFAST bytes. Otherwise, grow it by about 50%. */
808 ptrdiff_t n = *nitems;
809 ptrdiff_t tiny_max = DEFAULT_MXFAST / item_size - n;
810 ptrdiff_t half_again = n >> 1;
811 ptrdiff_t incr_estimate = max (tiny_max, half_again);
812
813 /* Adjust the increment according to three constraints: NITEMS_INCR_MIN,
814 NITEMS_MAX, and what the C language can represent safely. */
815 ptrdiff_t C_language_max = min (PTRDIFF_MAX, SIZE_MAX) / item_size;
816 ptrdiff_t n_max = (0 <= nitems_max && nitems_max < C_language_max
817 ? nitems_max : C_language_max);
818 ptrdiff_t nitems_incr_max = n_max - n;
819 ptrdiff_t incr = max (nitems_incr_min, min (incr_estimate, nitems_incr_max));
820
7216e43b 821 eassert (0 < item_size && 0 < nitems_incr_min && 0 <= n && -1 <= nitems_max);
0065d054
PE
822 if (! pa)
823 *nitems = 0;
824 if (nitems_incr_max < incr)
825 memory_full (SIZE_MAX);
826 n += incr;
827 pa = xrealloc (pa, n * item_size);
828 *nitems = n;
829 return pa;
830}
831
832
dca7c6a8
GM
833/* Like strdup, but uses xmalloc. */
834
835char *
971de7fb 836xstrdup (const char *s)
dca7c6a8 837{
9acc1074 838 ptrdiff_t size;
309f24d1 839 eassert (s);
9acc1074
PE
840 size = strlen (s) + 1;
841 return memcpy (xmalloc (size), s, size);
dca7c6a8
GM
842}
843
5b71542d
DA
844/* Like above, but duplicates Lisp string to C string. */
845
846char *
847xlispstrdup (Lisp_Object string)
848{
849 ptrdiff_t size = SBYTES (string) + 1;
850 return memcpy (xmalloc (size), SSDATA (string), size);
851}
852
8268febf
PE
853/* Assign to *PTR a copy of STRING, freeing any storage *PTR formerly
854 pointed to. If STRING is null, assign it without copying anything.
855 Allocate before freeing, to avoid a dangling pointer if allocation
856 fails. */
857
858void
859dupstring (char **ptr, char const *string)
860{
861 char *old = *ptr;
862 *ptr = string ? xstrdup (string) : 0;
863 xfree (old);
864}
865
866
5745a7df
PE
867/* Like putenv, but (1) use the equivalent of xmalloc and (2) the
868 argument is a const pointer. */
869
870void
871xputenv (char const *string)
872{
873 if (putenv ((char *) string) != 0)
874 memory_full (0);
875}
dca7c6a8 876
98c6f1e3
PE
877/* Return a newly allocated memory block of SIZE bytes, remembering
878 to free it when unwinding. */
879void *
880record_xmalloc (size_t size)
881{
882 void *p = xmalloc (size);
27e498e6 883 record_unwind_protect_ptr (xfree, p);
98c6f1e3
PE
884 return p;
885}
886
f61bef8b 887
34400008
GM
888/* Like malloc but used for allocating Lisp data. NBYTES is the
889 number of bytes to allocate, TYPE describes the intended use of the
91af3942 890 allocated memory block (for strings, for conses, ...). */
34400008 891
bfe3e0a2
PE
892#if ! USE_LSB_TAG
893void *lisp_malloc_loser EXTERNALLY_VISIBLE;
212f33f1 894#endif
918a23a7 895
261cb4bb 896static void *
971de7fb 897lisp_malloc (size_t nbytes, enum mem_type type)
c8099634 898{
34400008 899 register void *val;
c8099634 900
dafc79fa 901 MALLOC_BLOCK_INPUT;
877935b1
GM
902
903#ifdef GC_MALLOC_CHECK
904 allocated_mem_type = type;
905#endif
177c0ea7 906
38182d90 907 val = malloc (nbytes);
c8099634 908
bfe3e0a2 909#if ! USE_LSB_TAG
918a23a7
RS
910 /* If the memory just allocated cannot be addressed thru a Lisp
911 object's pointer, and it needs to be,
912 that's equivalent to running out of memory. */
913 if (val && type != MEM_TYPE_NON_LISP)
914 {
915 Lisp_Object tem;
916 XSETCONS (tem, (char *) val + nbytes - 1);
917 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
918 {
919 lisp_malloc_loser = val;
920 free (val);
921 val = 0;
922 }
923 }
6b61353c 924#endif
918a23a7 925
877935b1 926#if GC_MARK_STACK && !defined GC_MALLOC_CHECK
dca7c6a8 927 if (val && type != MEM_TYPE_NON_LISP)
34400008
GM
928 mem_insert (val, (char *) val + nbytes, type);
929#endif
177c0ea7 930
dafc79fa 931 MALLOC_UNBLOCK_INPUT;
dca7c6a8 932 if (!val && nbytes)
531b0165 933 memory_full (nbytes);
c2d7786e 934 MALLOC_PROBE (nbytes);
c8099634
RS
935 return val;
936}
937
34400008
GM
938/* Free BLOCK. This must be called to free memory allocated with a
939 call to lisp_malloc. */
940
bf952fb6 941static void
261cb4bb 942lisp_free (void *block)
c8099634 943{
dafc79fa 944 MALLOC_BLOCK_INPUT;
c8099634 945 free (block);
877935b1 946#if GC_MARK_STACK && !defined GC_MALLOC_CHECK
34400008
GM
947 mem_delete (mem_find (block));
948#endif
dafc79fa 949 MALLOC_UNBLOCK_INPUT;
c8099634 950}
34400008 951
453b951e
SM
952/***** Allocation of aligned blocks of memory to store Lisp data. *****/
953
954/* The entry point is lisp_align_malloc which returns blocks of at most
955 BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
ab6780cd 956
e76119d7
PE
957/* Use aligned_alloc if it or a simple substitute is available.
958 Address sanitization breaks aligned allocation, as of gcc 4.8.2 and
959 clang 3.3 anyway. */
960
961#if ! ADDRESS_SANITIZER
962# if !defined SYSTEM_MALLOC && !defined DOUG_LEA_MALLOC
963# define USE_ALIGNED_ALLOC 1
aea07e2c
PE
964/* Defined in gmalloc.c. */
965void *aligned_alloc (size_t, size_t);
e76119d7
PE
966# elif defined HAVE_ALIGNED_ALLOC
967# define USE_ALIGNED_ALLOC 1
968# elif defined HAVE_POSIX_MEMALIGN
969# define USE_ALIGNED_ALLOC 1
aea07e2c
PE
970static void *
971aligned_alloc (size_t alignment, size_t size)
972{
973 void *p;
974 return posix_memalign (&p, alignment, size) == 0 ? p : 0;
975}
e76119d7 976# endif
b4181b01 977#endif
ab6780cd
SM
978
979/* BLOCK_ALIGN has to be a power of 2. */
980#define BLOCK_ALIGN (1 << 10)
ab6780cd
SM
981
982/* Padding to leave at the end of a malloc'd block. This is to give
983 malloc a chance to minimize the amount of memory wasted to alignment.
984 It should be tuned to the particular malloc library used.
19bcad1f 985 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
aea07e2c 986 aligned_alloc on the other hand would ideally prefer a value of 4
19bcad1f 987 because otherwise, there's 1020 bytes wasted between each ablocks.
f501ccb4
SM
988 In Emacs, testing shows that those 1020 can most of the time be
989 efficiently used by malloc to place other objects, so a value of 0 can
990 still preferable unless you have a lot of aligned blocks and virtually
991 nothing else. */
19bcad1f
SM
992#define BLOCK_PADDING 0
993#define BLOCK_BYTES \
0b432f21 994 (BLOCK_ALIGN - sizeof (struct ablocks *) - BLOCK_PADDING)
19bcad1f
SM
995
996/* Internal data structures and constants. */
997
ab6780cd
SM
998#define ABLOCKS_SIZE 16
999
1000/* An aligned block of memory. */
1001struct ablock
1002{
1003 union
1004 {
1005 char payload[BLOCK_BYTES];
1006 struct ablock *next_free;
1007 } x;
1008 /* `abase' is the aligned base of the ablocks. */
1009 /* It is overloaded to hold the virtual `busy' field that counts
1010 the number of used ablock in the parent ablocks.
1011 The first ablock has the `busy' field, the others have the `abase'
1012 field. To tell the difference, we assume that pointers will have
1013 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
1014 is used to tell whether the real base of the parent ablocks is `abase'
1015 (if not, the word before the first ablock holds a pointer to the
1016 real base). */
1017 struct ablocks *abase;
1018 /* The padding of all but the last ablock is unused. The padding of
1019 the last ablock in an ablocks is not allocated. */
19bcad1f
SM
1020#if BLOCK_PADDING
1021 char padding[BLOCK_PADDING];
ebb8d410 1022#endif
ab6780cd
SM
1023};
1024
1025/* A bunch of consecutive aligned blocks. */
1026struct ablocks
1027{
1028 struct ablock blocks[ABLOCKS_SIZE];
1029};
1030
aea07e2c 1031/* Size of the block requested from malloc or aligned_alloc. */
19bcad1f 1032#define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
ab6780cd
SM
1033
1034#define ABLOCK_ABASE(block) \
d01a7826 1035 (((uintptr_t) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
ab6780cd
SM
1036 ? (struct ablocks *)(block) \
1037 : (block)->abase)
1038
1039/* Virtual `busy' field. */
1040#define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
1041
1042/* Pointer to the (not necessarily aligned) malloc block. */
aea07e2c 1043#ifdef USE_ALIGNED_ALLOC
19bcad1f
SM
1044#define ABLOCKS_BASE(abase) (abase)
1045#else
ab6780cd 1046#define ABLOCKS_BASE(abase) \
7be68de5 1047 (1 & (intptr_t) ABLOCKS_BUSY (abase) ? abase : ((void **)abase)[-1])
19bcad1f 1048#endif
ab6780cd
SM
1049
1050/* The list of free ablock. */
1051static struct ablock *free_ablock;
1052
1053/* Allocate an aligned block of nbytes.
1054 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
1055 smaller or equal to BLOCK_BYTES. */
261cb4bb 1056static void *
971de7fb 1057lisp_align_malloc (size_t nbytes, enum mem_type type)
ab6780cd
SM
1058{
1059 void *base, *val;
1060 struct ablocks *abase;
1061
1062 eassert (nbytes <= BLOCK_BYTES);
1063
dafc79fa 1064 MALLOC_BLOCK_INPUT;
ab6780cd
SM
1065
1066#ifdef GC_MALLOC_CHECK
1067 allocated_mem_type = type;
1068#endif
1069
1070 if (!free_ablock)
1071 {
005ca5c7 1072 int i;
d01a7826 1073 intptr_t aligned; /* int gets warning casting to 64-bit pointer. */
ab6780cd
SM
1074
1075#ifdef DOUG_LEA_MALLOC
1076 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1077 because mapped region contents are not preserved in
1078 a dumped Emacs. */
1079 mallopt (M_MMAP_MAX, 0);
1080#endif
1081
aea07e2c
PE
1082#ifdef USE_ALIGNED_ALLOC
1083 abase = base = aligned_alloc (BLOCK_ALIGN, ABLOCKS_BYTES);
19bcad1f 1084#else
ab6780cd
SM
1085 base = malloc (ABLOCKS_BYTES);
1086 abase = ALIGN (base, BLOCK_ALIGN);
ab349c19
RS
1087#endif
1088
6b61353c
KH
1089 if (base == 0)
1090 {
dafc79fa 1091 MALLOC_UNBLOCK_INPUT;
531b0165 1092 memory_full (ABLOCKS_BYTES);
6b61353c 1093 }
ab6780cd
SM
1094
1095 aligned = (base == abase);
1096 if (!aligned)
7be68de5 1097 ((void **) abase)[-1] = base;
ab6780cd
SM
1098
1099#ifdef DOUG_LEA_MALLOC
1100 /* Back to a reasonable maximum of mmap'ed areas. */
1101 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1102#endif
1103
bfe3e0a2 1104#if ! USE_LSB_TAG
8f924df7
KH
1105 /* If the memory just allocated cannot be addressed thru a Lisp
1106 object's pointer, and it needs to be, that's equivalent to
1107 running out of memory. */
1108 if (type != MEM_TYPE_NON_LISP)
1109 {
1110 Lisp_Object tem;
1111 char *end = (char *) base + ABLOCKS_BYTES - 1;
1112 XSETCONS (tem, end);
1113 if ((char *) XCONS (tem) != end)
1114 {
1115 lisp_malloc_loser = base;
1116 free (base);
dafc79fa 1117 MALLOC_UNBLOCK_INPUT;
531b0165 1118 memory_full (SIZE_MAX);
8f924df7
KH
1119 }
1120 }
6b61353c 1121#endif
8f924df7 1122
ab6780cd 1123 /* Initialize the blocks and put them on the free list.
453b951e 1124 If `base' was not properly aligned, we can't use the last block. */
ab6780cd
SM
1125 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
1126 {
1127 abase->blocks[i].abase = abase;
1128 abase->blocks[i].x.next_free = free_ablock;
1129 free_ablock = &abase->blocks[i];
1130 }
8ac068ac 1131 ABLOCKS_BUSY (abase) = (struct ablocks *) aligned;
ab6780cd 1132
d01a7826 1133 eassert (0 == ((uintptr_t) abase) % BLOCK_ALIGN);
ab6780cd
SM
1134 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
1135 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
1136 eassert (ABLOCKS_BASE (abase) == base);
d01a7826 1137 eassert (aligned == (intptr_t) ABLOCKS_BUSY (abase));
ab6780cd
SM
1138 }
1139
1140 abase = ABLOCK_ABASE (free_ablock);
caecb91c
SM
1141 ABLOCKS_BUSY (abase)
1142 = (struct ablocks *) (2 + (intptr_t) ABLOCKS_BUSY (abase));
ab6780cd
SM
1143 val = free_ablock;
1144 free_ablock = free_ablock->x.next_free;
1145
ab6780cd 1146#if GC_MARK_STACK && !defined GC_MALLOC_CHECK
3687c2ef 1147 if (type != MEM_TYPE_NON_LISP)
ab6780cd
SM
1148 mem_insert (val, (char *) val + nbytes, type);
1149#endif
1150
dafc79fa 1151 MALLOC_UNBLOCK_INPUT;
ab6780cd 1152
c2d7786e
TM
1153 MALLOC_PROBE (nbytes);
1154
d01a7826 1155 eassert (0 == ((uintptr_t) val) % BLOCK_ALIGN);
ab6780cd
SM
1156 return val;
1157}
1158
1159static void
261cb4bb 1160lisp_align_free (void *block)
ab6780cd
SM
1161{
1162 struct ablock *ablock = block;
1163 struct ablocks *abase = ABLOCK_ABASE (ablock);
1164
dafc79fa 1165 MALLOC_BLOCK_INPUT;
ab6780cd
SM
1166#if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1167 mem_delete (mem_find (block));
1168#endif
1169 /* Put on free list. */
1170 ablock->x.next_free = free_ablock;
1171 free_ablock = ablock;
1172 /* Update busy count. */
453b951e
SM
1173 ABLOCKS_BUSY (abase)
1174 = (struct ablocks *) (-2 + (intptr_t) ABLOCKS_BUSY (abase));
d2db1c32 1175
d01a7826 1176 if (2 > (intptr_t) ABLOCKS_BUSY (abase))
ab6780cd 1177 { /* All the blocks are free. */
d01a7826 1178 int i = 0, aligned = (intptr_t) ABLOCKS_BUSY (abase);
ab6780cd
SM
1179 struct ablock **tem = &free_ablock;
1180 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
1181
1182 while (*tem)
1183 {
1184 if (*tem >= (struct ablock *) abase && *tem < atop)
1185 {
1186 i++;
1187 *tem = (*tem)->x.next_free;
1188 }
1189 else
1190 tem = &(*tem)->x.next_free;
1191 }
1192 eassert ((aligned & 1) == aligned);
1193 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
349a4500 1194#ifdef USE_POSIX_MEMALIGN
d01a7826 1195 eassert ((uintptr_t) ABLOCKS_BASE (abase) % BLOCK_ALIGN == 0);
cfb2f32e 1196#endif
ab6780cd
SM
1197 free (ABLOCKS_BASE (abase));
1198 }
dafc79fa 1199 MALLOC_UNBLOCK_INPUT;
ab6780cd 1200}
3ef06d12 1201
9ac0d9e0 1202\f
2e471eb5
GM
1203/***********************************************************************
1204 Interval Allocation
1205 ***********************************************************************/
1a4f1e2c 1206
34400008
GM
1207/* Number of intervals allocated in an interval_block structure.
1208 The 1020 is 1024 minus malloc overhead. */
1209
d5e35230
JA
1210#define INTERVAL_BLOCK_SIZE \
1211 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1212
bad98418 1213/* Intervals are allocated in chunks in the form of an interval_block
34400008
GM
1214 structure. */
1215
d5e35230 1216struct interval_block
2e471eb5 1217{
6b61353c 1218 /* Place `intervals' first, to preserve alignment. */
2e471eb5 1219 struct interval intervals[INTERVAL_BLOCK_SIZE];
6b61353c 1220 struct interval_block *next;
2e471eb5 1221};
d5e35230 1222
34400008
GM
1223/* Current interval block. Its `next' pointer points to older
1224 blocks. */
1225
d3d47262 1226static struct interval_block *interval_block;
34400008
GM
1227
1228/* Index in interval_block above of the next unused interval
1229 structure. */
1230
fff62aa9 1231static int interval_block_index = INTERVAL_BLOCK_SIZE;
34400008
GM
1232
1233/* Number of free and live intervals. */
1234
c0c5c8ae 1235static EMACS_INT total_free_intervals, total_intervals;
d5e35230 1236
34400008
GM
1237/* List of free intervals. */
1238
244ed907 1239static INTERVAL interval_free_list;
d5e35230 1240
34400008 1241/* Return a new interval. */
d5e35230
JA
1242
1243INTERVAL
971de7fb 1244make_interval (void)
d5e35230
JA
1245{
1246 INTERVAL val;
1247
dafc79fa 1248 MALLOC_BLOCK_INPUT;
cfb2f32e 1249
d5e35230
JA
1250 if (interval_free_list)
1251 {
1252 val = interval_free_list;
439d5cb4 1253 interval_free_list = INTERVAL_PARENT (interval_free_list);
d5e35230
JA
1254 }
1255 else
1256 {
1257 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1258 {
38182d90
PE
1259 struct interval_block *newi
1260 = lisp_malloc (sizeof *newi, MEM_TYPE_NON_LISP);
d5e35230 1261
d5e35230
JA
1262 newi->next = interval_block;
1263 interval_block = newi;
1264 interval_block_index = 0;
3900d5de 1265 total_free_intervals += INTERVAL_BLOCK_SIZE;
d5e35230
JA
1266 }
1267 val = &interval_block->intervals[interval_block_index++];
1268 }
e2984df0 1269
dafc79fa 1270 MALLOC_UNBLOCK_INPUT;
e2984df0 1271
d5e35230 1272 consing_since_gc += sizeof (struct interval);
310ea200 1273 intervals_consed++;
3900d5de 1274 total_free_intervals--;
d5e35230 1275 RESET_INTERVAL (val);
2336fe58 1276 val->gcmarkbit = 0;
d5e35230
JA
1277 return val;
1278}
1279
34400008 1280
ee28be33 1281/* Mark Lisp objects in interval I. */
d5e35230
JA
1282
1283static void
971de7fb 1284mark_interval (register INTERVAL i, Lisp_Object dummy)
d5e35230 1285{
cce7fefc
DA
1286 /* Intervals should never be shared. So, if extra internal checking is
1287 enabled, GC aborts if it seems to have visited an interval twice. */
1288 eassert (!i->gcmarkbit);
2336fe58 1289 i->gcmarkbit = 1;
49723c04 1290 mark_object (i->plist);
d5e35230
JA
1291}
1292
34400008
GM
1293/* Mark the interval tree rooted in I. */
1294
8707c1e5
DA
1295#define MARK_INTERVAL_TREE(i) \
1296 do { \
1297 if (i && !i->gcmarkbit) \
1298 traverse_intervals_noorder (i, mark_interval, Qnil); \
2e471eb5 1299 } while (0)
77c7bcb1 1300
2e471eb5
GM
1301/***********************************************************************
1302 String Allocation
1303 ***********************************************************************/
1a4f1e2c 1304
2e471eb5
GM
1305/* Lisp_Strings are allocated in string_block structures. When a new
1306 string_block is allocated, all the Lisp_Strings it contains are
e0fead5d 1307 added to a free-list string_free_list. When a new Lisp_String is
2e471eb5
GM
1308 needed, it is taken from that list. During the sweep phase of GC,
1309 string_blocks that are entirely free are freed, except two which
1310 we keep.
7146af97 1311
2e471eb5
GM
1312 String data is allocated from sblock structures. Strings larger
1313 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1314 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
7146af97 1315
2e471eb5
GM
1316 Sblocks consist internally of sdata structures, one for each
1317 Lisp_String. The sdata structure points to the Lisp_String it
1318 belongs to. The Lisp_String points back to the `u.data' member of
1319 its sdata structure.
7146af97 1320
2e471eb5
GM
1321 When a Lisp_String is freed during GC, it is put back on
1322 string_free_list, and its `data' member and its sdata's `string'
1323 pointer is set to null. The size of the string is recorded in the
fbe9e0b9 1324 `n.nbytes' member of the sdata. So, sdata structures that are no
2e471eb5
GM
1325 longer used, can be easily recognized, and it's easy to compact the
1326 sblocks of small strings which we do in compact_small_strings. */
7146af97 1327
2e471eb5
GM
1328/* Size in bytes of an sblock structure used for small strings. This
1329 is 8192 minus malloc overhead. */
7146af97 1330
2e471eb5 1331#define SBLOCK_SIZE 8188
c8099634 1332
2e471eb5
GM
1333/* Strings larger than this are considered large strings. String data
1334 for large strings is allocated from individual sblocks. */
7146af97 1335
2e471eb5
GM
1336#define LARGE_STRING_BYTES 1024
1337
91f2d272
PE
1338/* The SDATA typedef is a struct or union describing string memory
1339 sub-allocated from an sblock. This is where the contents of Lisp
1340 strings are stored. */
2e471eb5 1341
91f2d272 1342struct sdata
7146af97 1343{
2e471eb5 1344 /* Back-pointer to the string this sdata belongs to. If null, this
91f2d272 1345 structure is free, and NBYTES (in this structure or in the union below)
34400008 1346 contains the string's byte size (the same value that STRING_BYTES
2e471eb5
GM
1347 would return if STRING were non-null). If non-null, STRING_BYTES
1348 (STRING) is the size of the data, and DATA contains the string's
1349 contents. */
1350 struct Lisp_String *string;
7146af97 1351
91f2d272 1352#ifdef GC_CHECK_STRING_BYTES
d311d28c 1353 ptrdiff_t nbytes;
91f2d272
PE
1354#endif
1355
fbe9e0b9 1356 unsigned char data[FLEXIBLE_ARRAY_MEMBER];
91f2d272
PE
1357};
1358
1359#ifdef GC_CHECK_STRING_BYTES
177c0ea7 1360
91f2d272 1361typedef struct sdata sdata;
31d929e5
GM
1362#define SDATA_NBYTES(S) (S)->nbytes
1363#define SDATA_DATA(S) (S)->data
177c0ea7 1364
fbe9e0b9 1365#else
31d929e5 1366
fbe9e0b9
PE
1367typedef union
1368{
1369 struct Lisp_String *string;
1370
91f2d272
PE
1371 /* When STRING is nonnull, this union is actually of type 'struct sdata',
1372 which has a flexible array member. However, if implemented by
1373 giving this union a member of type 'struct sdata', the union
1374 could not be the last (flexible) member of 'struct sblock',
1375 because C99 prohibits a flexible array member from having a type
1376 that is itself a flexible array. So, comment this member out here,
1377 but remember that the option's there when using this union. */
1378#if 0
1379 struct sdata u;
1380#endif
2e471eb5 1381
fbe9e0b9
PE
1382 /* When STRING is null. */
1383 struct
1384 {
1385 struct Lisp_String *string;
d311d28c 1386 ptrdiff_t nbytes;
fbe9e0b9
PE
1387 } n;
1388} sdata;
177c0ea7 1389
fbe9e0b9 1390#define SDATA_NBYTES(S) (S)->n.nbytes
91f2d272 1391#define SDATA_DATA(S) ((struct sdata *) (S))->data
31d929e5
GM
1392
1393#endif /* not GC_CHECK_STRING_BYTES */
36372bf9 1394
91f2d272 1395enum { SDATA_DATA_OFFSET = offsetof (struct sdata, data) };
31d929e5 1396
2e471eb5
GM
1397/* Structure describing a block of memory which is sub-allocated to
1398 obtain string data memory for strings. Blocks for small strings
1399 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1400 as large as needed. */
1401
1402struct sblock
7146af97 1403{
2e471eb5
GM
1404 /* Next in list. */
1405 struct sblock *next;
7146af97 1406
2e471eb5
GM
1407 /* Pointer to the next free sdata block. This points past the end
1408 of the sblock if there isn't any space left in this block. */
fbe9e0b9 1409 sdata *next_free;
2e471eb5 1410
91f2d272
PE
1411 /* String data. */
1412 sdata data[FLEXIBLE_ARRAY_MEMBER];
2e471eb5
GM
1413};
1414
1415/* Number of Lisp strings in a string_block structure. The 1020 is
1416 1024 minus malloc overhead. */
1417
19bcad1f 1418#define STRING_BLOCK_SIZE \
2e471eb5
GM
1419 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1420
1421/* Structure describing a block from which Lisp_String structures
1422 are allocated. */
1423
1424struct string_block
7146af97 1425{
6b61353c 1426 /* Place `strings' first, to preserve alignment. */
19bcad1f 1427 struct Lisp_String strings[STRING_BLOCK_SIZE];
6b61353c 1428 struct string_block *next;
2e471eb5 1429};
7146af97 1430
2e471eb5
GM
1431/* Head and tail of the list of sblock structures holding Lisp string
1432 data. We always allocate from current_sblock. The NEXT pointers
1433 in the sblock structures go from oldest_sblock to current_sblock. */
3c06d205 1434
2e471eb5 1435static struct sblock *oldest_sblock, *current_sblock;
7146af97 1436
2e471eb5 1437/* List of sblocks for large strings. */
7146af97 1438
2e471eb5 1439static struct sblock *large_sblocks;
7146af97 1440
5a25e253 1441/* List of string_block structures. */
7146af97 1442
2e471eb5 1443static struct string_block *string_blocks;
7146af97 1444
2e471eb5 1445/* Free-list of Lisp_Strings. */
7146af97 1446
2e471eb5 1447static struct Lisp_String *string_free_list;
7146af97 1448
2e471eb5 1449/* Number of live and free Lisp_Strings. */
c8099634 1450
c0c5c8ae 1451static EMACS_INT total_strings, total_free_strings;
7146af97 1452
2e471eb5
GM
1453/* Number of bytes used by live strings. */
1454
3ab6e069 1455static EMACS_INT total_string_bytes;
2e471eb5
GM
1456
1457/* Given a pointer to a Lisp_String S which is on the free-list
1458 string_free_list, return a pointer to its successor in the
1459 free-list. */
1460
1461#define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1462
1463/* Return a pointer to the sdata structure belonging to Lisp string S.
1464 S must be live, i.e. S->data must not be null. S->data is actually
1465 a pointer to the `u.data' member of its sdata structure; the
1466 structure starts at a constant offset in front of that. */
177c0ea7 1467
fbe9e0b9 1468#define SDATA_OF_STRING(S) ((sdata *) ((S)->data - SDATA_DATA_OFFSET))
31d929e5 1469
212f33f1
KS
1470
1471#ifdef GC_CHECK_STRING_OVERRUN
bdbed949
KS
1472
1473/* We check for overrun in string data blocks by appending a small
1474 "cookie" after each allocated string data block, and check for the
8349069c 1475 presence of this cookie during GC. */
bdbed949
KS
1476
1477#define GC_STRING_OVERRUN_COOKIE_SIZE 4
bfd1c781
PE
1478static char const string_overrun_cookie[GC_STRING_OVERRUN_COOKIE_SIZE] =
1479 { '\xde', '\xad', '\xbe', '\xef' };
bdbed949 1480
212f33f1 1481#else
bdbed949 1482#define GC_STRING_OVERRUN_COOKIE_SIZE 0
212f33f1
KS
1483#endif
1484
2e471eb5
GM
1485/* Value is the size of an sdata structure large enough to hold NBYTES
1486 bytes of string data. The value returned includes a terminating
1487 NUL byte, the size of the sdata structure, and padding. */
1488
31d929e5
GM
1489#ifdef GC_CHECK_STRING_BYTES
1490
2e471eb5 1491#define SDATA_SIZE(NBYTES) \
36372bf9 1492 ((SDATA_DATA_OFFSET \
2e471eb5 1493 + (NBYTES) + 1 \
d311d28c
PE
1494 + sizeof (ptrdiff_t) - 1) \
1495 & ~(sizeof (ptrdiff_t) - 1))
2e471eb5 1496
31d929e5
GM
1497#else /* not GC_CHECK_STRING_BYTES */
1498
f2d3008d
PE
1499/* The 'max' reserves space for the nbytes union member even when NBYTES + 1 is
1500 less than the size of that member. The 'max' is not needed when
d311d28c 1501 SDATA_DATA_OFFSET is a multiple of sizeof (ptrdiff_t), because then the
f2d3008d
PE
1502 alignment code reserves enough space. */
1503
1504#define SDATA_SIZE(NBYTES) \
1505 ((SDATA_DATA_OFFSET \
d311d28c 1506 + (SDATA_DATA_OFFSET % sizeof (ptrdiff_t) == 0 \
f2d3008d 1507 ? NBYTES \
d311d28c 1508 : max (NBYTES, sizeof (ptrdiff_t) - 1)) \
f2d3008d 1509 + 1 \
d311d28c
PE
1510 + sizeof (ptrdiff_t) - 1) \
1511 & ~(sizeof (ptrdiff_t) - 1))
31d929e5
GM
1512
1513#endif /* not GC_CHECK_STRING_BYTES */
2e471eb5 1514
bdbed949
KS
1515/* Extra bytes to allocate for each string. */
1516
1517#define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1518
c9d624c6
PE
1519/* Exact bound on the number of bytes in a string, not counting the
1520 terminating null. A string cannot contain more bytes than
1521 STRING_BYTES_BOUND, nor can it be so long that the size_t
1522 arithmetic in allocate_string_data would overflow while it is
1523 calculating a value to be passed to malloc. */
03a660a6
PE
1524static ptrdiff_t const STRING_BYTES_MAX =
1525 min (STRING_BYTES_BOUND,
1526 ((SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD
1527 - GC_STRING_EXTRA
91f2d272 1528 - offsetof (struct sblock, data)
03a660a6
PE
1529 - SDATA_DATA_OFFSET)
1530 & ~(sizeof (EMACS_INT) - 1)));
c9d624c6 1531
2e471eb5 1532/* Initialize string allocation. Called from init_alloc_once. */
d457598b 1533
d3d47262 1534static void
971de7fb 1535init_strings (void)
7146af97 1536{
4d774b0f
JB
1537 empty_unibyte_string = make_pure_string ("", 0, 0, 0);
1538 empty_multibyte_string = make_pure_string ("", 0, 0, 1);
7146af97
JB
1539}
1540
2e471eb5 1541
361b097f
GM
1542#ifdef GC_CHECK_STRING_BYTES
1543
361b097f
GM
1544static int check_string_bytes_count;
1545
e499d0ee
DA
1546/* Like STRING_BYTES, but with debugging check. Can be
1547 called during GC, so pay attention to the mark bit. */
676a7251 1548
d311d28c 1549ptrdiff_t
14162469 1550string_bytes (struct Lisp_String *s)
676a7251 1551{
d311d28c 1552 ptrdiff_t nbytes =
14162469
EZ
1553 (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1554
676a7251
GM
1555 if (!PURE_POINTER_P (s)
1556 && s->data
1557 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1088b922 1558 emacs_abort ();
676a7251
GM
1559 return nbytes;
1560}
177c0ea7 1561
2c5bd608 1562/* Check validity of Lisp strings' string_bytes member in B. */
676a7251 1563
d3d47262 1564static void
d0f4e1f5 1565check_sblock (struct sblock *b)
361b097f 1566{
fbe9e0b9 1567 sdata *from, *end, *from_end;
177c0ea7 1568
676a7251 1569 end = b->next_free;
177c0ea7 1570
91f2d272 1571 for (from = b->data; from < end; from = from_end)
361b097f 1572 {
676a7251
GM
1573 /* Compute the next FROM here because copying below may
1574 overwrite data we need to compute it. */
d311d28c 1575 ptrdiff_t nbytes;
177c0ea7 1576
676a7251 1577 /* Check that the string size recorded in the string is the
ee28be33 1578 same as the one recorded in the sdata structure. */
e499d0ee
DA
1579 nbytes = SDATA_SIZE (from->string ? string_bytes (from->string)
1580 : SDATA_NBYTES (from));
fbe9e0b9 1581 from_end = (sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
676a7251
GM
1582 }
1583}
361b097f 1584
676a7251
GM
1585
1586/* Check validity of Lisp strings' string_bytes member. ALL_P
fce31d69 1587 means check all strings, otherwise check only most
676a7251
GM
1588 recently allocated strings. Used for hunting a bug. */
1589
d3d47262 1590static void
fce31d69 1591check_string_bytes (bool all_p)
676a7251
GM
1592{
1593 if (all_p)
1594 {
1595 struct sblock *b;
1596
1597 for (b = large_sblocks; b; b = b->next)
1598 {
91f2d272 1599 struct Lisp_String *s = b->data[0].string;
676a7251 1600 if (s)
e499d0ee 1601 string_bytes (s);
361b097f 1602 }
177c0ea7 1603
676a7251
GM
1604 for (b = oldest_sblock; b; b = b->next)
1605 check_sblock (b);
361b097f 1606 }
296094c3 1607 else if (current_sblock)
676a7251 1608 check_sblock (current_sblock);
361b097f
GM
1609}
1610
e499d0ee
DA
1611#else /* not GC_CHECK_STRING_BYTES */
1612
1613#define check_string_bytes(all) ((void) 0)
1614
361b097f
GM
1615#endif /* GC_CHECK_STRING_BYTES */
1616
212f33f1
KS
1617#ifdef GC_CHECK_STRING_FREE_LIST
1618
bdbed949
KS
1619/* Walk through the string free list looking for bogus next pointers.
1620 This may catch buffer overrun from a previous string. */
1621
212f33f1 1622static void
d0f4e1f5 1623check_string_free_list (void)
212f33f1
KS
1624{
1625 struct Lisp_String *s;
1626
1627 /* Pop a Lisp_String off the free-list. */
1628 s = string_free_list;
1629 while (s != NULL)
1630 {
d01a7826 1631 if ((uintptr_t) s < 1024)
1088b922 1632 emacs_abort ();
212f33f1
KS
1633 s = NEXT_FREE_LISP_STRING (s);
1634 }
1635}
1636#else
1637#define check_string_free_list()
1638#endif
361b097f 1639
2e471eb5
GM
1640/* Return a new Lisp_String. */
1641
1642static struct Lisp_String *
971de7fb 1643allocate_string (void)
7146af97 1644{
2e471eb5 1645 struct Lisp_String *s;
7146af97 1646
dafc79fa 1647 MALLOC_BLOCK_INPUT;
cfb2f32e 1648
2e471eb5
GM
1649 /* If the free-list is empty, allocate a new string_block, and
1650 add all the Lisp_Strings in it to the free-list. */
1651 if (string_free_list == NULL)
7146af97 1652 {
38182d90 1653 struct string_block *b = lisp_malloc (sizeof *b, MEM_TYPE_STRING);
2e471eb5
GM
1654 int i;
1655
2e471eb5
GM
1656 b->next = string_blocks;
1657 string_blocks = b;
2e471eb5 1658
19bcad1f 1659 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
7146af97 1660 {
2e471eb5 1661 s = b->strings + i;
3fe6dd74
DA
1662 /* Every string on a free list should have NULL data pointer. */
1663 s->data = NULL;
2e471eb5
GM
1664 NEXT_FREE_LISP_STRING (s) = string_free_list;
1665 string_free_list = s;
7146af97 1666 }
2e471eb5 1667
19bcad1f 1668 total_free_strings += STRING_BLOCK_SIZE;
7146af97 1669 }
c0f51373 1670
bdbed949 1671 check_string_free_list ();
212f33f1 1672
2e471eb5
GM
1673 /* Pop a Lisp_String off the free-list. */
1674 s = string_free_list;
1675 string_free_list = NEXT_FREE_LISP_STRING (s);
c0f51373 1676
dafc79fa 1677 MALLOC_UNBLOCK_INPUT;
e2984df0 1678
2e471eb5
GM
1679 --total_free_strings;
1680 ++total_strings;
1681 ++strings_consed;
1682 consing_since_gc += sizeof *s;
c0f51373 1683
361b097f 1684#ifdef GC_CHECK_STRING_BYTES
e39a993c 1685 if (!noninteractive)
361b097f 1686 {
676a7251
GM
1687 if (++check_string_bytes_count == 200)
1688 {
1689 check_string_bytes_count = 0;
1690 check_string_bytes (1);
1691 }
1692 else
1693 check_string_bytes (0);
361b097f 1694 }
676a7251 1695#endif /* GC_CHECK_STRING_BYTES */
361b097f 1696
2e471eb5 1697 return s;
c0f51373 1698}
7146af97 1699
7146af97 1700
2e471eb5
GM
1701/* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1702 plus a NUL byte at the end. Allocate an sdata structure for S, and
1703 set S->data to its `u.data' member. Store a NUL byte at the end of
1704 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1705 S->data if it was initially non-null. */
7146af97 1706
2e471eb5 1707void
413d18e7
EZ
1708allocate_string_data (struct Lisp_String *s,
1709 EMACS_INT nchars, EMACS_INT nbytes)
7146af97 1710{
fbe9e0b9 1711 sdata *data, *old_data;
2e471eb5 1712 struct sblock *b;
b7ffe040 1713 ptrdiff_t needed, old_nbytes;
7146af97 1714
c9d624c6
PE
1715 if (STRING_BYTES_MAX < nbytes)
1716 string_overflow ();
1717
2e471eb5
GM
1718 /* Determine the number of bytes needed to store NBYTES bytes
1719 of string data. */
1720 needed = SDATA_SIZE (nbytes);
b7ffe040
DA
1721 if (s->data)
1722 {
1723 old_data = SDATA_OF_STRING (s);
e499d0ee 1724 old_nbytes = STRING_BYTES (s);
b7ffe040
DA
1725 }
1726 else
1727 old_data = NULL;
e2984df0 1728
dafc79fa 1729 MALLOC_BLOCK_INPUT;
7146af97 1730
2e471eb5
GM
1731 if (nbytes > LARGE_STRING_BYTES)
1732 {
91f2d272 1733 size_t size = offsetof (struct sblock, data) + needed;
2e471eb5
GM
1734
1735#ifdef DOUG_LEA_MALLOC
f8608968
GM
1736 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1737 because mapped region contents are not preserved in
d36b182f
DL
1738 a dumped Emacs.
1739
1740 In case you think of allowing it in a dumped Emacs at the
1741 cost of not being able to re-dump, there's another reason:
1742 mmap'ed data typically have an address towards the top of the
1743 address space, which won't fit into an EMACS_INT (at least on
1744 32-bit systems with the current tagging scheme). --fx */
2e471eb5
GM
1745 mallopt (M_MMAP_MAX, 0);
1746#endif
1747
38182d90 1748 b = lisp_malloc (size + GC_STRING_EXTRA, MEM_TYPE_NON_LISP);
177c0ea7 1749
2e471eb5 1750#ifdef DOUG_LEA_MALLOC
b09cca6a 1751 /* Back to a reasonable maximum of mmap'ed areas. */
2e471eb5
GM
1752 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1753#endif
177c0ea7 1754
91f2d272
PE
1755 b->next_free = b->data;
1756 b->data[0].string = NULL;
2e471eb5
GM
1757 b->next = large_sblocks;
1758 large_sblocks = b;
1759 }
1760 else if (current_sblock == NULL
1761 || (((char *) current_sblock + SBLOCK_SIZE
1762 - (char *) current_sblock->next_free)
212f33f1 1763 < (needed + GC_STRING_EXTRA)))
2e471eb5
GM
1764 {
1765 /* Not enough room in the current sblock. */
38182d90 1766 b = lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
91f2d272
PE
1767 b->next_free = b->data;
1768 b->data[0].string = NULL;
2e471eb5
GM
1769 b->next = NULL;
1770
1771 if (current_sblock)
1772 current_sblock->next = b;
1773 else
1774 oldest_sblock = b;
1775 current_sblock = b;
1776 }
1777 else
1778 b = current_sblock;
5c5fecb3 1779
2e471eb5 1780 data = b->next_free;
fbe9e0b9 1781 b->next_free = (sdata *) ((char *) data + needed + GC_STRING_EXTRA);
a0b08700 1782
dafc79fa 1783 MALLOC_UNBLOCK_INPUT;
e2984df0 1784
2e471eb5 1785 data->string = s;
31d929e5
GM
1786 s->data = SDATA_DATA (data);
1787#ifdef GC_CHECK_STRING_BYTES
1788 SDATA_NBYTES (data) = nbytes;
1789#endif
2e471eb5
GM
1790 s->size = nchars;
1791 s->size_byte = nbytes;
1792 s->data[nbytes] = '\0';
212f33f1 1793#ifdef GC_CHECK_STRING_OVERRUN
000098c1
PE
1794 memcpy ((char *) data + needed, string_overrun_cookie,
1795 GC_STRING_OVERRUN_COOKIE_SIZE);
212f33f1 1796#endif
b7ffe040
DA
1797
1798 /* Note that Faset may call to this function when S has already data
1799 assigned. In this case, mark data as free by setting it's string
1800 back-pointer to null, and record the size of the data in it. */
1801 if (old_data)
1802 {
1803 SDATA_NBYTES (old_data) = old_nbytes;
1804 old_data->string = NULL;
1805 }
1806
2e471eb5
GM
1807 consing_since_gc += needed;
1808}
1809
1810
1811/* Sweep and compact strings. */
1812
1813static void
971de7fb 1814sweep_strings (void)
2e471eb5
GM
1815{
1816 struct string_block *b, *next;
1817 struct string_block *live_blocks = NULL;
177c0ea7 1818
2e471eb5
GM
1819 string_free_list = NULL;
1820 total_strings = total_free_strings = 0;
3ab6e069 1821 total_string_bytes = 0;
2e471eb5
GM
1822
1823 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
1824 for (b = string_blocks; b; b = next)
1825 {
1826 int i, nfree = 0;
1827 struct Lisp_String *free_list_before = string_free_list;
1828
1829 next = b->next;
1830
19bcad1f 1831 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
2e471eb5
GM
1832 {
1833 struct Lisp_String *s = b->strings + i;
1834
1835 if (s->data)
1836 {
1837 /* String was not on free-list before. */
1838 if (STRING_MARKED_P (s))
1839 {
1840 /* String is live; unmark it and its intervals. */
1841 UNMARK_STRING (s);
177c0ea7 1842
8707c1e5
DA
1843 /* Do not use string_(set|get)_intervals here. */
1844 s->intervals = balance_intervals (s->intervals);
2e471eb5
GM
1845
1846 ++total_strings;
3ab6e069 1847 total_string_bytes += STRING_BYTES (s);
2e471eb5
GM
1848 }
1849 else
1850 {
1851 /* String is dead. Put it on the free-list. */
fbe9e0b9 1852 sdata *data = SDATA_OF_STRING (s);
2e471eb5
GM
1853
1854 /* Save the size of S in its sdata so that we know
1855 how large that is. Reset the sdata's string
1856 back-pointer so that we know it's free. */
31d929e5 1857#ifdef GC_CHECK_STRING_BYTES
e499d0ee 1858 if (string_bytes (s) != SDATA_NBYTES (data))
1088b922 1859 emacs_abort ();
31d929e5 1860#else
fbe9e0b9 1861 data->n.nbytes = STRING_BYTES (s);
31d929e5 1862#endif
2e471eb5
GM
1863 data->string = NULL;
1864
1865 /* Reset the strings's `data' member so that we
1866 know it's free. */
1867 s->data = NULL;
1868
1869 /* Put the string on the free-list. */
1870 NEXT_FREE_LISP_STRING (s) = string_free_list;
1871 string_free_list = s;
1872 ++nfree;
1873 }
1874 }
1875 else
1876 {
1877 /* S was on the free-list before. Put it there again. */
1878 NEXT_FREE_LISP_STRING (s) = string_free_list;
1879 string_free_list = s;
1880 ++nfree;
1881 }
1882 }
1883
34400008 1884 /* Free blocks that contain free Lisp_Strings only, except
2e471eb5 1885 the first two of them. */
19bcad1f
SM
1886 if (nfree == STRING_BLOCK_SIZE
1887 && total_free_strings > STRING_BLOCK_SIZE)
2e471eb5
GM
1888 {
1889 lisp_free (b);
2e471eb5
GM
1890 string_free_list = free_list_before;
1891 }
1892 else
1893 {
1894 total_free_strings += nfree;
1895 b->next = live_blocks;
1896 live_blocks = b;
1897 }
1898 }
1899
bdbed949 1900 check_string_free_list ();
212f33f1 1901
2e471eb5
GM
1902 string_blocks = live_blocks;
1903 free_large_strings ();
1904 compact_small_strings ();
212f33f1 1905
bdbed949 1906 check_string_free_list ();
2e471eb5
GM
1907}
1908
1909
1910/* Free dead large strings. */
1911
1912static void
971de7fb 1913free_large_strings (void)
2e471eb5
GM
1914{
1915 struct sblock *b, *next;
1916 struct sblock *live_blocks = NULL;
177c0ea7 1917
2e471eb5
GM
1918 for (b = large_sblocks; b; b = next)
1919 {
1920 next = b->next;
1921
91f2d272 1922 if (b->data[0].string == NULL)
2e471eb5
GM
1923 lisp_free (b);
1924 else
1925 {
1926 b->next = live_blocks;
1927 live_blocks = b;
1928 }
1929 }
1930
1931 large_sblocks = live_blocks;
1932}
1933
1934
1935/* Compact data of small strings. Free sblocks that don't contain
1936 data of live strings after compaction. */
1937
1938static void
971de7fb 1939compact_small_strings (void)
2e471eb5
GM
1940{
1941 struct sblock *b, *tb, *next;
fbe9e0b9
PE
1942 sdata *from, *to, *end, *tb_end;
1943 sdata *to_end, *from_end;
2e471eb5
GM
1944
1945 /* TB is the sblock we copy to, TO is the sdata within TB we copy
1946 to, and TB_END is the end of TB. */
1947 tb = oldest_sblock;
fbe9e0b9 1948 tb_end = (sdata *) ((char *) tb + SBLOCK_SIZE);
91f2d272 1949 to = tb->data;
2e471eb5
GM
1950
1951 /* Step through the blocks from the oldest to the youngest. We
1952 expect that old blocks will stabilize over time, so that less
1953 copying will happen this way. */
1954 for (b = oldest_sblock; b; b = b->next)
1955 {
1956 end = b->next_free;
a54e2c05 1957 eassert ((char *) end <= (char *) b + SBLOCK_SIZE);
177c0ea7 1958
91f2d272 1959 for (from = b->data; from < end; from = from_end)
2e471eb5
GM
1960 {
1961 /* Compute the next FROM here because copying below may
1962 overwrite data we need to compute it. */
d311d28c 1963 ptrdiff_t nbytes;
e499d0ee 1964 struct Lisp_String *s = from->string;
2e471eb5 1965
31d929e5
GM
1966#ifdef GC_CHECK_STRING_BYTES
1967 /* Check that the string size recorded in the string is the
b09cca6a 1968 same as the one recorded in the sdata structure. */
e499d0ee 1969 if (s && string_bytes (s) != SDATA_NBYTES (from))
1088b922 1970 emacs_abort ();
31d929e5 1971#endif /* GC_CHECK_STRING_BYTES */
177c0ea7 1972
e499d0ee
DA
1973 nbytes = s ? STRING_BYTES (s) : SDATA_NBYTES (from);
1974 eassert (nbytes <= LARGE_STRING_BYTES);
212f33f1 1975
2e471eb5 1976 nbytes = SDATA_SIZE (nbytes);
fbe9e0b9 1977 from_end = (sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
212f33f1
KS
1978
1979#ifdef GC_CHECK_STRING_OVERRUN
72af86bd
AS
1980 if (memcmp (string_overrun_cookie,
1981 (char *) from_end - GC_STRING_OVERRUN_COOKIE_SIZE,
1982 GC_STRING_OVERRUN_COOKIE_SIZE))
1088b922 1983 emacs_abort ();
212f33f1 1984#endif
177c0ea7 1985
e499d0ee
DA
1986 /* Non-NULL S means it's alive. Copy its data. */
1987 if (s)
2e471eb5
GM
1988 {
1989 /* If TB is full, proceed with the next sblock. */
fbe9e0b9 1990 to_end = (sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2e471eb5
GM
1991 if (to_end > tb_end)
1992 {
1993 tb->next_free = to;
1994 tb = tb->next;
fbe9e0b9 1995 tb_end = (sdata *) ((char *) tb + SBLOCK_SIZE);
91f2d272 1996 to = tb->data;
fbe9e0b9 1997 to_end = (sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2e471eb5 1998 }
177c0ea7 1999
2e471eb5
GM
2000 /* Copy, and update the string's `data' pointer. */
2001 if (from != to)
2002 {
a54e2c05 2003 eassert (tb != b || to < from);
72af86bd 2004 memmove (to, from, nbytes + GC_STRING_EXTRA);
31d929e5 2005 to->string->data = SDATA_DATA (to);
2e471eb5
GM
2006 }
2007
2008 /* Advance past the sdata we copied to. */
2009 to = to_end;
2010 }
2011 }
2012 }
2013
2014 /* The rest of the sblocks following TB don't contain live data, so
2015 we can free them. */
2016 for (b = tb->next; b; b = next)
2017 {
2018 next = b->next;
2019 lisp_free (b);
2020 }
2021
2022 tb->next_free = to;
2023 tb->next = NULL;
2024 current_sblock = tb;
2025}
2026
cb93f9be
PE
2027void
2028string_overflow (void)
2029{
2030 error ("Maximum string size exceeded");
2031}
2e471eb5 2032
a7ca3326 2033DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
69623621
RS
2034 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
2035LENGTH must be an integer.
2036INIT must be an integer that represents a character. */)
5842a27b 2037 (Lisp_Object length, Lisp_Object init)
2e471eb5
GM
2038{
2039 register Lisp_Object val;
14162469
EZ
2040 int c;
2041 EMACS_INT nbytes;
2e471eb5 2042
b7826503 2043 CHECK_NATNUM (length);
2bccce07 2044 CHECK_CHARACTER (init);
2e471eb5 2045
2bccce07 2046 c = XFASTINT (init);
830ff83b 2047 if (ASCII_CHAR_P (c))
2e471eb5
GM
2048 {
2049 nbytes = XINT (length);
2050 val = make_uninit_string (nbytes);
3c439e0a
DA
2051 memset (SDATA (val), c, nbytes);
2052 SDATA (val)[nbytes] = 0;
2e471eb5
GM
2053 }
2054 else
2055 {
d942b71c 2056 unsigned char str[MAX_MULTIBYTE_LENGTH];
cc593f54 2057 ptrdiff_t len = CHAR_STRING (c, str);
14162469 2058 EMACS_INT string_len = XINT (length);
3c439e0a 2059 unsigned char *p, *beg, *end;
2e471eb5 2060
d1f3d2af 2061 if (string_len > STRING_BYTES_MAX / len)
cb93f9be 2062 string_overflow ();
14162469
EZ
2063 nbytes = len * string_len;
2064 val = make_uninit_multibyte_string (string_len, nbytes);
3c439e0a 2065 for (beg = SDATA (val), p = beg, end = beg + nbytes; p < end; p += len)
2e471eb5 2066 {
3c439e0a
DA
2067 /* First time we just copy `str' to the data of `val'. */
2068 if (p == beg)
2069 memcpy (p, str, len);
2070 else
2071 {
2072 /* Next time we copy largest possible chunk from
2073 initialized to uninitialized part of `val'. */
2074 len = min (p - beg, end - p);
2075 memcpy (p, beg, len);
2076 }
2e471eb5 2077 }
3c439e0a 2078 *p = 0;
2e471eb5 2079 }
177c0ea7 2080
2e471eb5
GM
2081 return val;
2082}
2083
2cf00efc
PE
2084/* Fill A with 1 bits if INIT is non-nil, and with 0 bits otherwise.
2085 Return A. */
3e0b94e7 2086
2cf00efc 2087Lisp_Object
df5b4930
PE
2088bool_vector_fill (Lisp_Object a, Lisp_Object init)
2089{
2090 EMACS_INT nbits = bool_vector_size (a);
2091 if (0 < nbits)
3e0b94e7 2092 {
df5b4930
PE
2093 unsigned char *data = bool_vector_uchar_data (a);
2094 int pattern = NILP (init) ? 0 : (1 << BOOL_VECTOR_BITS_PER_CHAR) - 1;
2cf00efc 2095 ptrdiff_t nbytes = bool_vector_bytes (nbits);
df5b4930
PE
2096 int last_mask = ~ (~0 << ((nbits - 1) % BOOL_VECTOR_BITS_PER_CHAR + 1));
2097 memset (data, pattern, nbytes - 1);
2098 data[nbytes - 1] = pattern & last_mask;
3e0b94e7 2099 }
2cf00efc 2100 return a;
3e0b94e7 2101}
2e471eb5 2102
2cf00efc
PE
2103/* Return a newly allocated, uninitialized bool vector of size NBITS. */
2104
2105Lisp_Object
2106make_uninit_bool_vector (EMACS_INT nbits)
2e471eb5 2107{
df5b4930 2108 Lisp_Object val;
75360f19 2109 EMACS_INT words = bool_vector_words (nbits);
87d86601
PE
2110 EMACS_INT word_bytes = words * sizeof (bits_word);
2111 EMACS_INT needed_elements = ((bool_header_size - header_size + word_bytes
2112 + word_size - 1)
2113 / word_size);
2114 struct Lisp_Bool_Vector *p
2115 = (struct Lisp_Bool_Vector *) allocate_vector (needed_elements);
3e0b94e7 2116 XSETVECTOR (val, p);
914adc42 2117 XSETPVECTYPESIZE (XVECTOR (val), PVEC_BOOL_VECTOR, 0, 0);
2cf00efc 2118 p->size = nbits;
2e471eb5 2119
75360f19
PE
2120 /* Clear padding at the end. */
2121 if (words)
2122 p->data[words - 1] = 0;
3e0b94e7 2123
2e471eb5
GM
2124 return val;
2125}
2126
2cf00efc
PE
2127DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
2128 doc: /* Return a new bool-vector of length LENGTH, using INIT for each element.
2129LENGTH must be a number. INIT matters only in whether it is t or nil. */)
2130 (Lisp_Object length, Lisp_Object init)
2131{
2132 Lisp_Object val;
2133
2134 CHECK_NATNUM (length);
2135 val = make_uninit_bool_vector (XFASTINT (length));
2136 return bool_vector_fill (val, init);
2137}
2138
2e471eb5
GM
2139
2140/* Make a string from NBYTES bytes at CONTENTS, and compute the number
2141 of characters from the contents. This string may be unibyte or
2142 multibyte, depending on the contents. */
2143
2144Lisp_Object
d311d28c 2145make_string (const char *contents, ptrdiff_t nbytes)
2e471eb5
GM
2146{
2147 register Lisp_Object val;
d311d28c 2148 ptrdiff_t nchars, multibyte_nbytes;
9eac9d59 2149
90256841
PE
2150 parse_str_as_multibyte ((const unsigned char *) contents, nbytes,
2151 &nchars, &multibyte_nbytes);
9eac9d59
KH
2152 if (nbytes == nchars || nbytes != multibyte_nbytes)
2153 /* CONTENTS contains no multibyte sequences or contains an invalid
2154 multibyte sequence. We must make unibyte string. */
495a6df3
KH
2155 val = make_unibyte_string (contents, nbytes);
2156 else
2157 val = make_multibyte_string (contents, nchars, nbytes);
2e471eb5
GM
2158 return val;
2159}
2160
2161
2162/* Make an unibyte string from LENGTH bytes at CONTENTS. */
2163
2164Lisp_Object
d311d28c 2165make_unibyte_string (const char *contents, ptrdiff_t length)
2e471eb5
GM
2166{
2167 register Lisp_Object val;
2168 val = make_uninit_string (length);
72af86bd 2169 memcpy (SDATA (val), contents, length);
2e471eb5
GM
2170 return val;
2171}
2172
2173
2174/* Make a multibyte string from NCHARS characters occupying NBYTES
2175 bytes at CONTENTS. */
2176
2177Lisp_Object
14162469 2178make_multibyte_string (const char *contents,
d311d28c 2179 ptrdiff_t nchars, ptrdiff_t nbytes)
2e471eb5
GM
2180{
2181 register Lisp_Object val;
2182 val = make_uninit_multibyte_string (nchars, nbytes);
72af86bd 2183 memcpy (SDATA (val), contents, nbytes);
2e471eb5
GM
2184 return val;
2185}
2186
2187
2188/* Make a string from NCHARS characters occupying NBYTES bytes at
2189 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2190
2191Lisp_Object
14162469 2192make_string_from_bytes (const char *contents,
d311d28c 2193 ptrdiff_t nchars, ptrdiff_t nbytes)
2e471eb5
GM
2194{
2195 register Lisp_Object val;
2196 val = make_uninit_multibyte_string (nchars, nbytes);
72af86bd 2197 memcpy (SDATA (val), contents, nbytes);
d5db4077
KR
2198 if (SBYTES (val) == SCHARS (val))
2199 STRING_SET_UNIBYTE (val);
2e471eb5
GM
2200 return val;
2201}
2202
2203
2204/* Make a string from NCHARS characters occupying NBYTES bytes at
2205 CONTENTS. The argument MULTIBYTE controls whether to label the
229b28c4
KH
2206 string as multibyte. If NCHARS is negative, it counts the number of
2207 characters by itself. */
2e471eb5
GM
2208
2209Lisp_Object
14162469 2210make_specified_string (const char *contents,
fce31d69 2211 ptrdiff_t nchars, ptrdiff_t nbytes, bool multibyte)
2e471eb5 2212{
fce31d69 2213 Lisp_Object val;
229b28c4
KH
2214
2215 if (nchars < 0)
2216 {
2217 if (multibyte)
90256841
PE
2218 nchars = multibyte_chars_in_text ((const unsigned char *) contents,
2219 nbytes);
229b28c4
KH
2220 else
2221 nchars = nbytes;
2222 }
2e471eb5 2223 val = make_uninit_multibyte_string (nchars, nbytes);
72af86bd 2224 memcpy (SDATA (val), contents, nbytes);
2e471eb5 2225 if (!multibyte)
d5db4077 2226 STRING_SET_UNIBYTE (val);
2e471eb5
GM
2227 return val;
2228}
2229
2230
2e471eb5
GM
2231/* Return an unibyte Lisp_String set up to hold LENGTH characters
2232 occupying LENGTH bytes. */
2233
2234Lisp_Object
413d18e7 2235make_uninit_string (EMACS_INT length)
2e471eb5
GM
2236{
2237 Lisp_Object val;
4d774b0f
JB
2238
2239 if (!length)
2240 return empty_unibyte_string;
2e471eb5 2241 val = make_uninit_multibyte_string (length, length);
d5db4077 2242 STRING_SET_UNIBYTE (val);
2e471eb5
GM
2243 return val;
2244}
2245
2246
2247/* Return a multibyte Lisp_String set up to hold NCHARS characters
2248 which occupy NBYTES bytes. */
2249
2250Lisp_Object
413d18e7 2251make_uninit_multibyte_string (EMACS_INT nchars, EMACS_INT nbytes)
2e471eb5
GM
2252{
2253 Lisp_Object string;
2254 struct Lisp_String *s;
2255
2256 if (nchars < 0)
1088b922 2257 emacs_abort ();
4d774b0f
JB
2258 if (!nbytes)
2259 return empty_multibyte_string;
2e471eb5
GM
2260
2261 s = allocate_string ();
77c7bcb1 2262 s->intervals = NULL;
2e471eb5
GM
2263 allocate_string_data (s, nchars, nbytes);
2264 XSETSTRING (string, s);
2265 string_chars_consed += nbytes;
2266 return string;
2267}
2268
a8290ec3
DA
2269/* Print arguments to BUF according to a FORMAT, then return
2270 a Lisp_String initialized with the data from BUF. */
2271
2272Lisp_Object
2273make_formatted_string (char *buf, const char *format, ...)
2274{
2275 va_list ap;
26bccfae 2276 int length;
a8290ec3
DA
2277
2278 va_start (ap, format);
2279 length = vsprintf (buf, format, ap);
2280 va_end (ap);
2281 return make_string (buf, length);
2282}
2e471eb5
GM
2283
2284\f
2285/***********************************************************************
2286 Float Allocation
2287 ***********************************************************************/
2288
2e471eb5
GM
2289/* We store float cells inside of float_blocks, allocating a new
2290 float_block with malloc whenever necessary. Float cells reclaimed
2291 by GC are put on a free list to be reallocated before allocating
ab6780cd 2292 any new float cells from the latest float_block. */
2e471eb5 2293
6b61353c
KH
2294#define FLOAT_BLOCK_SIZE \
2295 (((BLOCK_BYTES - sizeof (struct float_block *) \
2296 /* The compiler might add padding at the end. */ \
2297 - (sizeof (struct Lisp_Float) - sizeof (int))) * CHAR_BIT) \
ab6780cd
SM
2298 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2299
2300#define GETMARKBIT(block,n) \
5e617bc2
JB
2301 (((block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2302 >> ((n) % (sizeof (int) * CHAR_BIT))) \
ab6780cd
SM
2303 & 1)
2304
2305#define SETMARKBIT(block,n) \
5e617bc2
JB
2306 (block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2307 |= 1 << ((n) % (sizeof (int) * CHAR_BIT))
ab6780cd
SM
2308
2309#define UNSETMARKBIT(block,n) \
5e617bc2
JB
2310 (block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2311 &= ~(1 << ((n) % (sizeof (int) * CHAR_BIT)))
ab6780cd
SM
2312
2313#define FLOAT_BLOCK(fptr) \
d01a7826 2314 ((struct float_block *) (((uintptr_t) (fptr)) & ~(BLOCK_ALIGN - 1)))
ab6780cd
SM
2315
2316#define FLOAT_INDEX(fptr) \
d01a7826 2317 ((((uintptr_t) (fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2e471eb5
GM
2318
2319struct float_block
2320{
ab6780cd 2321 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2e471eb5 2322 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
5e617bc2 2323 int gcmarkbits[1 + FLOAT_BLOCK_SIZE / (sizeof (int) * CHAR_BIT)];
ab6780cd 2324 struct float_block *next;
2e471eb5
GM
2325};
2326
ab6780cd
SM
2327#define FLOAT_MARKED_P(fptr) \
2328 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2329
2330#define FLOAT_MARK(fptr) \
2331 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2332
2333#define FLOAT_UNMARK(fptr) \
2334 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2335
34400008
GM
2336/* Current float_block. */
2337
244ed907 2338static struct float_block *float_block;
34400008
GM
2339
2340/* Index of first unused Lisp_Float in the current float_block. */
2341
fff62aa9 2342static int float_block_index = FLOAT_BLOCK_SIZE;
2e471eb5 2343
34400008
GM
2344/* Free-list of Lisp_Floats. */
2345
244ed907 2346static struct Lisp_Float *float_free_list;
2e471eb5 2347
34400008
GM
2348/* Return a new float object with value FLOAT_VALUE. */
2349
2e471eb5 2350Lisp_Object
971de7fb 2351make_float (double float_value)
2e471eb5
GM
2352{
2353 register Lisp_Object val;
2354
dafc79fa 2355 MALLOC_BLOCK_INPUT;
cfb2f32e 2356
2e471eb5
GM
2357 if (float_free_list)
2358 {
2359 /* We use the data field for chaining the free list
2360 so that we won't use the same field that has the mark bit. */
2361 XSETFLOAT (val, float_free_list);
28a099a4 2362 float_free_list = float_free_list->u.chain;
2e471eb5
GM
2363 }
2364 else
2365 {
2366 if (float_block_index == FLOAT_BLOCK_SIZE)
2367 {
38182d90
PE
2368 struct float_block *new
2369 = lisp_align_malloc (sizeof *new, MEM_TYPE_FLOAT);
2e471eb5 2370 new->next = float_block;
72af86bd 2371 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2e471eb5
GM
2372 float_block = new;
2373 float_block_index = 0;
3900d5de 2374 total_free_floats += FLOAT_BLOCK_SIZE;
2e471eb5 2375 }
6b61353c
KH
2376 XSETFLOAT (val, &float_block->floats[float_block_index]);
2377 float_block_index++;
2e471eb5 2378 }
177c0ea7 2379
dafc79fa 2380 MALLOC_UNBLOCK_INPUT;
e2984df0 2381
f601cdf3 2382 XFLOAT_INIT (val, float_value);
6b61353c 2383 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2e471eb5
GM
2384 consing_since_gc += sizeof (struct Lisp_Float);
2385 floats_consed++;
3900d5de 2386 total_free_floats--;
2e471eb5
GM
2387 return val;
2388}
2389
2e471eb5
GM
2390
2391\f
2392/***********************************************************************
2393 Cons Allocation
2394 ***********************************************************************/
2395
2396/* We store cons cells inside of cons_blocks, allocating a new
2397 cons_block with malloc whenever necessary. Cons cells reclaimed by
2398 GC are put on a free list to be reallocated before allocating
08b7c2cb 2399 any new cons cells from the latest cons_block. */
2e471eb5 2400
a2821611
AS
2401#define CONS_BLOCK_SIZE \
2402 (((BLOCK_BYTES - sizeof (struct cons_block *) \
2403 /* The compiler might add padding at the end. */ \
2404 - (sizeof (struct Lisp_Cons) - sizeof (int))) * CHAR_BIT) \
08b7c2cb
SM
2405 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2406
2407#define CONS_BLOCK(fptr) \
d01a7826 2408 ((struct cons_block *) ((uintptr_t) (fptr) & ~(BLOCK_ALIGN - 1)))
08b7c2cb
SM
2409
2410#define CONS_INDEX(fptr) \
d01a7826 2411 (((uintptr_t) (fptr) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2e471eb5
GM
2412
2413struct cons_block
2414{
08b7c2cb 2415 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2e471eb5 2416 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
5e617bc2 2417 int gcmarkbits[1 + CONS_BLOCK_SIZE / (sizeof (int) * CHAR_BIT)];
08b7c2cb 2418 struct cons_block *next;
2e471eb5
GM
2419};
2420
08b7c2cb
SM
2421#define CONS_MARKED_P(fptr) \
2422 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2423
2424#define CONS_MARK(fptr) \
2425 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2426
2427#define CONS_UNMARK(fptr) \
2428 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2429
34400008
GM
2430/* Current cons_block. */
2431
244ed907 2432static struct cons_block *cons_block;
34400008
GM
2433
2434/* Index of first unused Lisp_Cons in the current block. */
2435
fff62aa9 2436static int cons_block_index = CONS_BLOCK_SIZE;
2e471eb5 2437
34400008
GM
2438/* Free-list of Lisp_Cons structures. */
2439
244ed907 2440static struct Lisp_Cons *cons_free_list;
2e471eb5 2441
34400008 2442/* Explicitly free a cons cell by putting it on the free-list. */
2e471eb5
GM
2443
2444void
971de7fb 2445free_cons (struct Lisp_Cons *ptr)
2e471eb5 2446{
28a099a4 2447 ptr->u.chain = cons_free_list;
34400008 2448#if GC_MARK_STACK
c644523b 2449 ptr->car = Vdead;
34400008 2450#endif
2e471eb5 2451 cons_free_list = ptr;
0dd6d66d 2452 consing_since_gc -= sizeof *ptr;
3900d5de 2453 total_free_conses++;
2e471eb5
GM
2454}
2455
a7ca3326 2456DEFUN ("cons", Fcons, Scons, 2, 2, 0,
a6266d23 2457 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
5842a27b 2458 (Lisp_Object car, Lisp_Object cdr)
2e471eb5
GM
2459{
2460 register Lisp_Object val;
2461
dafc79fa 2462 MALLOC_BLOCK_INPUT;
cfb2f32e 2463
2e471eb5
GM
2464 if (cons_free_list)
2465 {
2466 /* We use the cdr for chaining the free list
2467 so that we won't use the same field that has the mark bit. */
2468 XSETCONS (val, cons_free_list);
28a099a4 2469 cons_free_list = cons_free_list->u.chain;
2e471eb5
GM
2470 }
2471 else
2472 {
2473 if (cons_block_index == CONS_BLOCK_SIZE)
2474 {
38182d90
PE
2475 struct cons_block *new
2476 = lisp_align_malloc (sizeof *new, MEM_TYPE_CONS);
72af86bd 2477 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2e471eb5
GM
2478 new->next = cons_block;
2479 cons_block = new;
2480 cons_block_index = 0;
3900d5de 2481 total_free_conses += CONS_BLOCK_SIZE;
2e471eb5 2482 }
6b61353c
KH
2483 XSETCONS (val, &cons_block->conses[cons_block_index]);
2484 cons_block_index++;
2e471eb5 2485 }
177c0ea7 2486
dafc79fa 2487 MALLOC_UNBLOCK_INPUT;
e2984df0 2488
f3fbd155
KR
2489 XSETCAR (val, car);
2490 XSETCDR (val, cdr);
6b61353c 2491 eassert (!CONS_MARKED_P (XCONS (val)));
2e471eb5 2492 consing_since_gc += sizeof (struct Lisp_Cons);
3900d5de 2493 total_free_conses--;
2e471eb5
GM
2494 cons_cells_consed++;
2495 return val;
2496}
2497
e5aab7e7 2498#ifdef GC_CHECK_CONS_LIST
e3e56238
RS
2499/* Get an error now if there's any junk in the cons free list. */
2500void
971de7fb 2501check_cons_list (void)
e3e56238
RS
2502{
2503 struct Lisp_Cons *tail = cons_free_list;
2504
e3e56238 2505 while (tail)
28a099a4 2506 tail = tail->u.chain;
e3e56238 2507}
e5aab7e7 2508#endif
34400008 2509
9b306d37
KS
2510/* Make a list of 1, 2, 3, 4 or 5 specified objects. */
2511
2512Lisp_Object
971de7fb 2513list1 (Lisp_Object arg1)
9b306d37
KS
2514{
2515 return Fcons (arg1, Qnil);
2516}
2e471eb5
GM
2517
2518Lisp_Object
971de7fb 2519list2 (Lisp_Object arg1, Lisp_Object arg2)
2e471eb5
GM
2520{
2521 return Fcons (arg1, Fcons (arg2, Qnil));
2522}
2523
34400008 2524
2e471eb5 2525Lisp_Object
971de7fb 2526list3 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3)
2e471eb5
GM
2527{
2528 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2529}
2530
34400008 2531
2e471eb5 2532Lisp_Object
971de7fb 2533list4 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4)
2e471eb5
GM
2534{
2535 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2536}
2537
34400008 2538
2e471eb5 2539Lisp_Object
971de7fb 2540list5 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4, Lisp_Object arg5)
2e471eb5
GM
2541{
2542 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2543 Fcons (arg5, Qnil)))));
2544}
2545
694b6c97
DA
2546/* Make a list of COUNT Lisp_Objects, where ARG is the
2547 first one. Allocate conses from pure space if TYPE
3438fe21 2548 is CONSTYPE_PURE, or allocate as usual if type is CONSTYPE_HEAP. */
694b6c97
DA
2549
2550Lisp_Object
2551listn (enum constype type, ptrdiff_t count, Lisp_Object arg, ...)
2552{
2553 va_list ap;
2554 ptrdiff_t i;
2555 Lisp_Object val, *objp;
2556
2557 /* Change to SAFE_ALLOCA if you hit this eassert. */
663e2b3f 2558 eassert (count <= MAX_ALLOCA / word_size);
694b6c97 2559
663e2b3f 2560 objp = alloca (count * word_size);
694b6c97
DA
2561 objp[0] = arg;
2562 va_start (ap, arg);
2563 for (i = 1; i < count; i++)
2564 objp[i] = va_arg (ap, Lisp_Object);
2565 va_end (ap);
2566
bcfbc9de 2567 for (val = Qnil, i = count - 1; i >= 0; i--)
694b6c97 2568 {
3438fe21 2569 if (type == CONSTYPE_PURE)
694b6c97 2570 val = pure_cons (objp[i], val);
3438fe21 2571 else if (type == CONSTYPE_HEAP)
694b6c97
DA
2572 val = Fcons (objp[i], val);
2573 else
1088b922 2574 emacs_abort ();
694b6c97
DA
2575 }
2576 return val;
2577}
34400008 2578
a7ca3326 2579DEFUN ("list", Flist, Slist, 0, MANY, 0,
eae936e2 2580 doc: /* Return a newly created list with specified arguments as elements.
ae8e8122
MB
2581Any number of arguments, even zero arguments, are allowed.
2582usage: (list &rest OBJECTS) */)
f66c7cf8 2583 (ptrdiff_t nargs, Lisp_Object *args)
2e471eb5
GM
2584{
2585 register Lisp_Object val;
2586 val = Qnil;
2587
2588 while (nargs > 0)
2589 {
2590 nargs--;
2591 val = Fcons (args[nargs], val);
2592 }
2593 return val;
2594}
2595
34400008 2596
a7ca3326 2597DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
a6266d23 2598 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
5842a27b 2599 (register Lisp_Object length, Lisp_Object init)
2e471eb5
GM
2600{
2601 register Lisp_Object val;
14162469 2602 register EMACS_INT size;
2e471eb5 2603
b7826503 2604 CHECK_NATNUM (length);
2e471eb5
GM
2605 size = XFASTINT (length);
2606
2607 val = Qnil;
ce070307
GM
2608 while (size > 0)
2609 {
2610 val = Fcons (init, val);
2611 --size;
2612
2613 if (size > 0)
2614 {
2615 val = Fcons (init, val);
2616 --size;
177c0ea7 2617
ce070307
GM
2618 if (size > 0)
2619 {
2620 val = Fcons (init, val);
2621 --size;
177c0ea7 2622
ce070307
GM
2623 if (size > 0)
2624 {
2625 val = Fcons (init, val);
2626 --size;
177c0ea7 2627
ce070307
GM
2628 if (size > 0)
2629 {
2630 val = Fcons (init, val);
2631 --size;
2632 }
2633 }
2634 }
2635 }
2636
2637 QUIT;
2638 }
177c0ea7 2639
7146af97
JB
2640 return val;
2641}
2e471eb5
GM
2642
2643
7146af97 2644\f
2e471eb5
GM
2645/***********************************************************************
2646 Vector Allocation
2647 ***********************************************************************/
7146af97 2648
91f2d272 2649/* Sometimes a vector's contents are merely a pointer internally used
13a5993b
PE
2650 in vector allocation code. On the rare platforms where a null
2651 pointer cannot be tagged, represent it with a Lisp 0.
2652 Usually you don't want to touch this. */
2653
2654enum { TAGGABLE_NULL = (DATA_SEG_BITS & ~VALMASK) == 0 };
91f2d272
PE
2655
2656static struct Lisp_Vector *
2657next_vector (struct Lisp_Vector *v)
2658{
13a5993b
PE
2659 if (! TAGGABLE_NULL && EQ (v->contents[0], make_number (0)))
2660 return 0;
91f2d272
PE
2661 return XUNTAG (v->contents[0], 0);
2662}
2663
2664static void
2665set_next_vector (struct Lisp_Vector *v, struct Lisp_Vector *p)
2666{
13a5993b 2667 v->contents[0] = TAGGABLE_NULL || p ? make_lisp_ptr (p, 0) : make_number (0);
91f2d272
PE
2668}
2669
f3372c87
DA
2670/* This value is balanced well enough to avoid too much internal overhead
2671 for the most common cases; it's not required to be a power of two, but
2672 it's expected to be a mult-of-ROUNDUP_SIZE (see below). */
34400008 2673
f3372c87 2674#define VECTOR_BLOCK_SIZE 4096
7146af97 2675
dd0b0efb
PE
2676enum
2677 {
91f2d272
PE
2678 /* Alignment of struct Lisp_Vector objects. */
2679 vector_alignment = COMMON_MULTIPLE (ALIGNOF_STRUCT_LISP_VECTOR,
2680 USE_LSB_TAG ? GCALIGNMENT : 1),
2681
2682 /* Vector size requests are a multiple of this. */
2683 roundup_size = COMMON_MULTIPLE (vector_alignment, word_size)
dd0b0efb 2684 };
34400008 2685
ca95b3eb
DA
2686/* Verify assumptions described above. */
2687verify ((VECTOR_BLOCK_SIZE % roundup_size) == 0);
ee28be33 2688verify (VECTOR_BLOCK_SIZE <= (1 << PSEUDOVECTOR_SIZE_BITS));
ca95b3eb 2689
3e0b94e7 2690/* Round up X to nearest mult-of-ROUNDUP_SIZE --- use at compile time. */
df5b4930 2691#define vroundup_ct(x) ROUNDUP (x, roundup_size)
3e0b94e7 2692/* Round up X to nearest mult-of-ROUNDUP_SIZE --- use at runtime. */
b9ff995e 2693#define vroundup(x) (eassume ((x) >= 0), vroundup_ct (x))
f3372c87
DA
2694
2695/* Rounding helps to maintain alignment constraints if USE_LSB_TAG. */
2696
3e0b94e7 2697#define VECTOR_BLOCK_BYTES (VECTOR_BLOCK_SIZE - vroundup_ct (sizeof (void *)))
f3372c87
DA
2698
2699/* Size of the minimal vector allocated from block. */
2700
3e0b94e7 2701#define VBLOCK_BYTES_MIN vroundup_ct (header_size + sizeof (Lisp_Object))
f3372c87
DA
2702
2703/* Size of the largest vector allocated from block. */
2704
2705#define VBLOCK_BYTES_MAX \
d06714cb 2706 vroundup ((VECTOR_BLOCK_BYTES / 2) - word_size)
f3372c87
DA
2707
2708/* We maintain one free list for each possible block-allocated
2709 vector size, and this is the number of free lists we have. */
2710
2711#define VECTOR_MAX_FREE_LIST_INDEX \
2712 ((VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN) / roundup_size + 1)
2713
f3372c87
DA
2714/* Common shortcut to advance vector pointer over a block data. */
2715
2716#define ADVANCE(v, nbytes) ((struct Lisp_Vector *) ((char *) (v) + (nbytes)))
2717
2718/* Common shortcut to calculate NBYTES-vector index in VECTOR_FREE_LISTS. */
2719
2720#define VINDEX(nbytes) (((nbytes) - VBLOCK_BYTES_MIN) / roundup_size)
2721
2722/* Common shortcut to setup vector on a free list. */
2723
914adc42
DA
2724#define SETUP_ON_FREE_LIST(v, nbytes, tmp) \
2725 do { \
2726 (tmp) = ((nbytes - header_size) / word_size); \
2727 XSETPVECTYPESIZE (v, PVEC_FREE, 0, (tmp)); \
2728 eassert ((nbytes) % roundup_size == 0); \
2729 (tmp) = VINDEX (nbytes); \
2730 eassert ((tmp) < VECTOR_MAX_FREE_LIST_INDEX); \
91f2d272 2731 set_next_vector (v, vector_free_lists[tmp]); \
914adc42
DA
2732 vector_free_lists[tmp] = (v); \
2733 total_free_vector_slots += (nbytes) / word_size; \
f3372c87
DA
2734 } while (0)
2735
914adc42 2736/* This internal type is used to maintain the list of large vectors
91f2d272
PE
2737 which are allocated at their own, e.g. outside of vector blocks.
2738
2739 struct large_vector itself cannot contain a struct Lisp_Vector, as
2740 the latter contains a flexible array member and C99 does not allow
2741 such structs to be nested. Instead, each struct large_vector
2742 object LV is followed by a struct Lisp_Vector, which is at offset
2743 large_vector_offset from LV, and whose address is therefore
2744 large_vector_vec (&LV). */
914adc42
DA
2745
2746struct large_vector
2747{
91f2d272 2748 struct large_vector *next;
914adc42
DA
2749};
2750
91f2d272
PE
2751enum
2752{
2753 large_vector_offset = ROUNDUP (sizeof (struct large_vector), vector_alignment)
2754};
2755
2756static struct Lisp_Vector *
2757large_vector_vec (struct large_vector *p)
2758{
2759 return (struct Lisp_Vector *) ((char *) p + large_vector_offset);
2760}
2761
914adc42
DA
2762/* This internal type is used to maintain an underlying storage
2763 for small vectors. */
2764
f3372c87
DA
2765struct vector_block
2766{
2767 char data[VECTOR_BLOCK_BYTES];
2768 struct vector_block *next;
2769};
2770
2771/* Chain of vector blocks. */
2772
2773static struct vector_block *vector_blocks;
2774
2775/* Vector free lists, where NTH item points to a chain of free
2776 vectors of the same NBYTES size, so NTH == VINDEX (NBYTES). */
2777
2778static struct Lisp_Vector *vector_free_lists[VECTOR_MAX_FREE_LIST_INDEX];
2779
2780/* Singly-linked list of large vectors. */
2781
914adc42 2782static struct large_vector *large_vectors;
f3372c87
DA
2783
2784/* The only vector with 0 slots, allocated from pure space. */
2785
9730daca 2786Lisp_Object zero_vector;
f3372c87 2787
3ab6e069
DA
2788/* Number of live vectors. */
2789
2790static EMACS_INT total_vectors;
2791
5b835e1d 2792/* Total size of live and free vectors, in Lisp_Object units. */
3ab6e069 2793
5b835e1d 2794static EMACS_INT total_vector_slots, total_free_vector_slots;
3ab6e069 2795
f3372c87
DA
2796/* Get a new vector block. */
2797
2798static struct vector_block *
2799allocate_vector_block (void)
2800{
38182d90 2801 struct vector_block *block = xmalloc (sizeof *block);
f3372c87
DA
2802
2803#if GC_MARK_STACK && !defined GC_MALLOC_CHECK
2804 mem_insert (block->data, block->data + VECTOR_BLOCK_BYTES,
2805 MEM_TYPE_VECTOR_BLOCK);
2806#endif
2807
2808 block->next = vector_blocks;
2809 vector_blocks = block;
2810 return block;
2811}
2812
2813/* Called once to initialize vector allocation. */
2814
2815static void
2816init_vectors (void)
2817{
9730daca 2818 zero_vector = make_pure_vector (0);
f3372c87
DA
2819}
2820
2821/* Allocate vector from a vector block. */
2822
2823static struct Lisp_Vector *
2824allocate_vector_from_block (size_t nbytes)
2825{
914adc42 2826 struct Lisp_Vector *vector;
f3372c87
DA
2827 struct vector_block *block;
2828 size_t index, restbytes;
2829
2830 eassert (VBLOCK_BYTES_MIN <= nbytes && nbytes <= VBLOCK_BYTES_MAX);
2831 eassert (nbytes % roundup_size == 0);
2832
2833 /* First, try to allocate from a free list
2834 containing vectors of the requested size. */
2835 index = VINDEX (nbytes);
2836 if (vector_free_lists[index])
2837 {
2838 vector = vector_free_lists[index];
91f2d272 2839 vector_free_lists[index] = next_vector (vector);
5b835e1d 2840 total_free_vector_slots -= nbytes / word_size;
f3372c87
DA
2841 return vector;
2842 }
2843
2844 /* Next, check free lists containing larger vectors. Since
2845 we will split the result, we should have remaining space
2846 large enough to use for one-slot vector at least. */
2847 for (index = VINDEX (nbytes + VBLOCK_BYTES_MIN);
2848 index < VECTOR_MAX_FREE_LIST_INDEX; index++)
2849 if (vector_free_lists[index])
2850 {
2851 /* This vector is larger than requested. */
2852 vector = vector_free_lists[index];
91f2d272 2853 vector_free_lists[index] = next_vector (vector);
5b835e1d 2854 total_free_vector_slots -= nbytes / word_size;
f3372c87
DA
2855
2856 /* Excess bytes are used for the smaller vector,
2857 which should be set on an appropriate free list. */
2858 restbytes = index * roundup_size + VBLOCK_BYTES_MIN - nbytes;
2859 eassert (restbytes % roundup_size == 0);
914adc42 2860 SETUP_ON_FREE_LIST (ADVANCE (vector, nbytes), restbytes, index);
f3372c87
DA
2861 return vector;
2862 }
2863
2864 /* Finally, need a new vector block. */
2865 block = allocate_vector_block ();
2866
2867 /* New vector will be at the beginning of this block. */
2868 vector = (struct Lisp_Vector *) block->data;
f3372c87
DA
2869
2870 /* If the rest of space from this block is large enough
2871 for one-slot vector at least, set up it on a free list. */
2872 restbytes = VECTOR_BLOCK_BYTES - nbytes;
2873 if (restbytes >= VBLOCK_BYTES_MIN)
2874 {
2875 eassert (restbytes % roundup_size == 0);
914adc42 2876 SETUP_ON_FREE_LIST (ADVANCE (vector, nbytes), restbytes, index);
f3372c87
DA
2877 }
2878 return vector;
914adc42 2879}
f3372c87 2880
f3372c87
DA
2881/* Nonzero if VECTOR pointer is valid pointer inside BLOCK. */
2882
2883#define VECTOR_IN_BLOCK(vector, block) \
2884 ((char *) (vector) <= (block)->data \
2885 + VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN)
2886
914adc42 2887/* Return the memory footprint of V in bytes. */
ee28be33 2888
914adc42
DA
2889static ptrdiff_t
2890vector_nbytes (struct Lisp_Vector *v)
2891{
2892 ptrdiff_t size = v->header.size & ~ARRAY_MARK_FLAG;
2cf00efc 2893 ptrdiff_t nwords;
914adc42
DA
2894
2895 if (size & PSEUDOVECTOR_FLAG)
2896 {
2897 if (PSEUDOVECTOR_TYPEP (&v->header, PVEC_BOOL_VECTOR))
3e0b94e7
DC
2898 {
2899 struct Lisp_Bool_Vector *bv = (struct Lisp_Bool_Vector *) v;
2cf00efc
PE
2900 ptrdiff_t word_bytes = (bool_vector_words (bv->size)
2901 * sizeof (bits_word));
2902 ptrdiff_t boolvec_bytes = bool_header_size + word_bytes;
2903 verify (header_size <= bool_header_size);
2904 nwords = (boolvec_bytes - header_size + word_size - 1) / word_size;
3e0b94e7 2905 }
914adc42 2906 else
2cf00efc
PE
2907 nwords = ((size & PSEUDOVECTOR_SIZE_MASK)
2908 + ((size & PSEUDOVECTOR_REST_MASK)
2909 >> PSEUDOVECTOR_SIZE_BITS));
914adc42
DA
2910 }
2911 else
2cf00efc
PE
2912 nwords = size;
2913 return vroundup (header_size + word_size * nwords);
914adc42 2914}
ee28be33 2915
86bd985e
DA
2916/* Release extra resources still in use by VECTOR, which may be any
2917 vector-like object. For now, this is used just to free data in
2918 font objects. */
2919
2920static void
2921cleanup_vector (struct Lisp_Vector *vector)
2922{
5035fbc1
DA
2923 if (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_FONT)
2924 && ((vector->header.size & PSEUDOVECTOR_SIZE_MASK)
2925 == FONT_OBJECT_MAX))
5ae356d9 2926 {
4346235f
EZ
2927 struct font_driver *drv = ((struct font *) vector)->driver;
2928
2929 /* The font driver might sometimes be NULL, e.g. if Emacs was
2930 interrupted before it had time to set it up. */
2931 if (drv)
2932 {
2933 /* Attempt to catch subtle bugs like Bug#16140. */
2934 eassert (valid_font_driver (drv));
2935 drv->close ((struct font *) vector);
2936 }
5ae356d9 2937 }
86bd985e
DA
2938}
2939
f3372c87
DA
2940/* Reclaim space used by unmarked vectors. */
2941
2942static void
2943sweep_vectors (void)
2944{
1570ae92 2945 struct vector_block *block, **bprev = &vector_blocks;
914adc42
DA
2946 struct large_vector *lv, **lvprev = &large_vectors;
2947 struct Lisp_Vector *vector, *next;
f3372c87 2948
5b835e1d 2949 total_vectors = total_vector_slots = total_free_vector_slots = 0;
f3372c87
DA
2950 memset (vector_free_lists, 0, sizeof (vector_free_lists));
2951
2952 /* Looking through vector blocks. */
2953
2954 for (block = vector_blocks; block; block = *bprev)
2955 {
fce31d69 2956 bool free_this_block = 0;
914adc42 2957 ptrdiff_t nbytes;
f3372c87
DA
2958
2959 for (vector = (struct Lisp_Vector *) block->data;
2960 VECTOR_IN_BLOCK (vector, block); vector = next)
2961 {
2962 if (VECTOR_MARKED_P (vector))
2963 {
2964 VECTOR_UNMARK (vector);
3ab6e069 2965 total_vectors++;
914adc42
DA
2966 nbytes = vector_nbytes (vector);
2967 total_vector_slots += nbytes / word_size;
2968 next = ADVANCE (vector, nbytes);
f3372c87
DA
2969 }
2970 else
2971 {
914adc42 2972 ptrdiff_t total_bytes;
f3372c87 2973
86bd985e 2974 cleanup_vector (vector);
914adc42
DA
2975 nbytes = vector_nbytes (vector);
2976 total_bytes = nbytes;
ee28be33 2977 next = ADVANCE (vector, nbytes);
f3372c87
DA
2978
2979 /* While NEXT is not marked, try to coalesce with VECTOR,
2980 thus making VECTOR of the largest possible size. */
2981
2982 while (VECTOR_IN_BLOCK (next, block))
2983 {
2984 if (VECTOR_MARKED_P (next))
2985 break;
86bd985e 2986 cleanup_vector (next);
914adc42 2987 nbytes = vector_nbytes (next);
ee28be33 2988 total_bytes += nbytes;
f3372c87
DA
2989 next = ADVANCE (next, nbytes);
2990 }
bfe3e0a2 2991
ee28be33 2992 eassert (total_bytes % roundup_size == 0);
f3372c87
DA
2993
2994 if (vector == (struct Lisp_Vector *) block->data
2995 && !VECTOR_IN_BLOCK (next, block))
2996 /* This block should be freed because all of it's
2997 space was coalesced into the only free vector. */
2998 free_this_block = 1;
2999 else
ee28be33 3000 {
ba355de0 3001 size_t tmp;
ee28be33
SM
3002 SETUP_ON_FREE_LIST (vector, total_bytes, tmp);
3003 }
f3372c87
DA
3004 }
3005 }
3006
3007 if (free_this_block)
3008 {
3009 *bprev = block->next;
3010#if GC_MARK_STACK && !defined GC_MALLOC_CHECK
3011 mem_delete (mem_find (block->data));
3012#endif
3013 xfree (block);
3014 }
3015 else
3016 bprev = &block->next;
3017 }
3018
3019 /* Sweep large vectors. */
3020
914adc42 3021 for (lv = large_vectors; lv; lv = *lvprev)
f3372c87 3022 {
91f2d272 3023 vector = large_vector_vec (lv);
f3372c87
DA
3024 if (VECTOR_MARKED_P (vector))
3025 {
3026 VECTOR_UNMARK (vector);
3ab6e069 3027 total_vectors++;
169925ec
DA
3028 if (vector->header.size & PSEUDOVECTOR_FLAG)
3029 {
d06714cb
PE
3030 /* All non-bool pseudovectors are small enough to be allocated
3031 from vector blocks. This code should be redesigned if some
3032 pseudovector type grows beyond VBLOCK_BYTES_MAX. */
3033 eassert (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_BOOL_VECTOR));
3e0b94e7 3034 total_vector_slots += vector_nbytes (vector) / word_size;
169925ec
DA
3035 }
3036 else
5b835e1d
DA
3037 total_vector_slots
3038 += header_size / word_size + vector->header.size;
91f2d272 3039 lvprev = &lv->next;
f3372c87
DA
3040 }
3041 else
3042 {
91f2d272 3043 *lvprev = lv->next;
914adc42 3044 lisp_free (lv);
f3372c87
DA
3045 }
3046 }
3047}
3048
34400008
GM
3049/* Value is a pointer to a newly allocated Lisp_Vector structure
3050 with room for LEN Lisp_Objects. */
3051
ece93c02 3052static struct Lisp_Vector *
d311d28c 3053allocate_vectorlike (ptrdiff_t len)
1825c68d
KH
3054{
3055 struct Lisp_Vector *p;
3056
dafc79fa
SM
3057 MALLOC_BLOCK_INPUT;
3058
f3372c87 3059 if (len == 0)
9730daca 3060 p = XVECTOR (zero_vector);
d12e8f5a 3061 else
8bbbc977 3062 {
d12e8f5a 3063 size_t nbytes = header_size + len * word_size;
f3372c87 3064
d12e8f5a
DA
3065#ifdef DOUG_LEA_MALLOC
3066 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
3067 because mapped region contents are not preserved in
3068 a dumped Emacs. */
3069 mallopt (M_MMAP_MAX, 0);
3070#endif
f3372c87 3071
d12e8f5a
DA
3072 if (nbytes <= VBLOCK_BYTES_MAX)
3073 p = allocate_vector_from_block (vroundup (nbytes));
3074 else
3075 {
914adc42 3076 struct large_vector *lv
91f2d272 3077 = lisp_malloc ((large_vector_offset + header_size
fbe9e0b9 3078 + len * word_size),
914adc42 3079 MEM_TYPE_VECTORLIKE);
91f2d272 3080 lv->next = large_vectors;
914adc42 3081 large_vectors = lv;
91f2d272 3082 p = large_vector_vec (lv);
d12e8f5a 3083 }
177c0ea7 3084
d1658221 3085#ifdef DOUG_LEA_MALLOC
d12e8f5a
DA
3086 /* Back to a reasonable maximum of mmap'ed areas. */
3087 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
d1658221 3088#endif
177c0ea7 3089
d12e8f5a
DA
3090 consing_since_gc += nbytes;
3091 vector_cells_consed += len;
3092 }
1825c68d 3093
dafc79fa 3094 MALLOC_UNBLOCK_INPUT;
e2984df0 3095
1825c68d
KH
3096 return p;
3097}
3098
34400008 3099
dd0b0efb 3100/* Allocate a vector with LEN slots. */
ece93c02
GM
3101
3102struct Lisp_Vector *
dd0b0efb 3103allocate_vector (EMACS_INT len)
ece93c02 3104{
dd0b0efb
PE
3105 struct Lisp_Vector *v;
3106 ptrdiff_t nbytes_max = min (PTRDIFF_MAX, SIZE_MAX);
3107
3108 if (min ((nbytes_max - header_size) / word_size, MOST_POSITIVE_FIXNUM) < len)
3109 memory_full (SIZE_MAX);
3110 v = allocate_vectorlike (len);
3111 v->header.size = len;
ece93c02
GM
3112 return v;
3113}
3114
3115
3116/* Allocate other vector-like structures. */
3117
30f95089 3118struct Lisp_Vector *
914adc42 3119allocate_pseudovector (int memlen, int lisplen, enum pvec_type tag)
ece93c02 3120{
d2029e5b 3121 struct Lisp_Vector *v = allocate_vectorlike (memlen);
e46bb31a 3122 int i;
177c0ea7 3123
914adc42
DA
3124 /* Catch bogus values. */
3125 eassert (tag <= PVEC_FONT);
3126 eassert (memlen - lisplen <= (1 << PSEUDOVECTOR_REST_BITS) - 1);
3127 eassert (lisplen <= (1 << PSEUDOVECTOR_SIZE_BITS) - 1);
3128
d2029e5b 3129 /* Only the first lisplen slots will be traced normally by the GC. */
d2029e5b 3130 for (i = 0; i < lisplen; ++i)
91f2d272 3131 v->contents[i] = Qnil;
177c0ea7 3132
914adc42 3133 XSETPVECTYPESIZE (v, tag, lisplen, memlen - lisplen);
d2029e5b
SM
3134 return v;
3135}
d2029e5b 3136
36429c89
DA
3137struct buffer *
3138allocate_buffer (void)
3139{
38182d90 3140 struct buffer *b = lisp_malloc (sizeof *b, MEM_TYPE_BUFFER);
36429c89 3141
914adc42 3142 BUFFER_PVEC_INIT (b);
c752cfa9 3143 /* Put B on the chain of all buffers including killed ones. */
914adc42 3144 b->next = all_buffers;
c752cfa9
DA
3145 all_buffers = b;
3146 /* Note that the rest fields of B are not initialized. */
36429c89
DA
3147 return b;
3148}
3149
ece93c02 3150struct Lisp_Hash_Table *
878f97ff 3151allocate_hash_table (void)
ece93c02 3152{
878f97ff 3153 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Hash_Table, count, PVEC_HASH_TABLE);
ece93c02
GM
3154}
3155
ece93c02 3156struct window *
971de7fb 3157allocate_window (void)
ece93c02 3158{
62efea5e 3159 struct window *w;
177c0ea7 3160
62efea5e
DA
3161 w = ALLOCATE_PSEUDOVECTOR (struct window, current_matrix, PVEC_WINDOW);
3162 /* Users assumes that non-Lisp data is zeroed. */
3163 memset (&w->current_matrix, 0,
3164 sizeof (*w) - offsetof (struct window, current_matrix));
3165 return w;
3166}
177c0ea7 3167
4a729fd8 3168struct terminal *
971de7fb 3169allocate_terminal (void)
4a729fd8 3170{
62efea5e 3171 struct terminal *t;
ece93c02 3172
62efea5e
DA
3173 t = ALLOCATE_PSEUDOVECTOR (struct terminal, next_terminal, PVEC_TERMINAL);
3174 /* Users assumes that non-Lisp data is zeroed. */
3175 memset (&t->next_terminal, 0,
3176 sizeof (*t) - offsetof (struct terminal, next_terminal));
d2029e5b 3177 return t;
4a729fd8 3178}
ece93c02
GM
3179
3180struct frame *
971de7fb 3181allocate_frame (void)
ece93c02 3182{
62efea5e
DA
3183 struct frame *f;
3184
3185 f = ALLOCATE_PSEUDOVECTOR (struct frame, face_cache, PVEC_FRAME);
3186 /* Users assumes that non-Lisp data is zeroed. */
72af86bd 3187 memset (&f->face_cache, 0,
62efea5e 3188 sizeof (*f) - offsetof (struct frame, face_cache));
d2029e5b 3189 return f;
ece93c02
GM
3190}
3191
ece93c02 3192struct Lisp_Process *
971de7fb 3193allocate_process (void)
ece93c02 3194{
62efea5e 3195 struct Lisp_Process *p;
ece93c02 3196
62efea5e
DA
3197 p = ALLOCATE_PSEUDOVECTOR (struct Lisp_Process, pid, PVEC_PROCESS);
3198 /* Users assumes that non-Lisp data is zeroed. */
3199 memset (&p->pid, 0,
3200 sizeof (*p) - offsetof (struct Lisp_Process, pid));
3201 return p;
3202}
ece93c02 3203
a7ca3326 3204DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
a6266d23 3205 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
7ee72033 3206See also the function `vector'. */)
5842a27b 3207 (register Lisp_Object length, Lisp_Object init)
7146af97 3208{
1825c68d 3209 Lisp_Object vector;
d311d28c
PE
3210 register ptrdiff_t sizei;
3211 register ptrdiff_t i;
7146af97
JB
3212 register struct Lisp_Vector *p;
3213
b7826503 3214 CHECK_NATNUM (length);
7146af97 3215
d311d28c
PE
3216 p = allocate_vector (XFASTINT (length));
3217 sizei = XFASTINT (length);
ae35e756 3218 for (i = 0; i < sizei; i++)
91f2d272 3219 p->contents[i] = init;
7146af97 3220
1825c68d 3221 XSETVECTOR (vector, p);
7146af97
JB
3222 return vector;
3223}
3224
34400008 3225
a7ca3326 3226DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
eae936e2 3227 doc: /* Return a newly created vector with specified arguments as elements.
ae8e8122
MB
3228Any number of arguments, even zero arguments, are allowed.
3229usage: (vector &rest OBJECTS) */)
f66c7cf8 3230 (ptrdiff_t nargs, Lisp_Object *args)
7146af97 3231{
f66c7cf8 3232 ptrdiff_t i;
25721f5b
DA
3233 register Lisp_Object val = make_uninit_vector (nargs);
3234 register struct Lisp_Vector *p = XVECTOR (val);
7146af97 3235
ae35e756 3236 for (i = 0; i < nargs; i++)
91f2d272 3237 p->contents[i] = args[i];
7146af97
JB
3238 return val;
3239}
3240
3017f87f
SM
3241void
3242make_byte_code (struct Lisp_Vector *v)
3243{
ed0ca4a5
PE
3244 /* Don't allow the global zero_vector to become a byte code object. */
3245 eassert (0 < v->header.size);
3246
91f2d272
PE
3247 if (v->header.size > 1 && STRINGP (v->contents[1])
3248 && STRING_MULTIBYTE (v->contents[1]))
3017f87f
SM
3249 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
3250 earlier because they produced a raw 8-bit string for byte-code
3251 and now such a byte-code string is loaded as multibyte while
3252 raw 8-bit characters converted to multibyte form. Thus, now we
3253 must convert them back to the original unibyte form. */
91f2d272 3254 v->contents[1] = Fstring_as_unibyte (v->contents[1]);
3017f87f
SM
3255 XSETPVECTYPE (v, PVEC_COMPILED);
3256}
34400008 3257
a7ca3326 3258DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
a6266d23 3259 doc: /* Create a byte-code object with specified arguments as elements.
e2abe5a1
SM
3260The arguments should be the ARGLIST, bytecode-string BYTE-CODE, constant
3261vector CONSTANTS, maximum stack size DEPTH, (optional) DOCSTRING,
3262and (optional) INTERACTIVE-SPEC.
228299fa 3263The first four arguments are required; at most six have any
ae8e8122 3264significance.
e2abe5a1
SM
3265The ARGLIST can be either like the one of `lambda', in which case the arguments
3266will be dynamically bound before executing the byte code, or it can be an
3267integer of the form NNNNNNNRMMMMMMM where the 7bit MMMMMMM specifies the
3268minimum number of arguments, the 7-bit NNNNNNN specifies the maximum number
3269of arguments (ignoring &rest) and the R bit specifies whether there is a &rest
3270argument to catch the left-over arguments. If such an integer is used, the
3271arguments will not be dynamically bound but will be instead pushed on the
3272stack before executing the byte-code.
92cc28b2 3273usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
f66c7cf8 3274 (ptrdiff_t nargs, Lisp_Object *args)
7146af97 3275{
f66c7cf8 3276 ptrdiff_t i;
25721f5b
DA
3277 register Lisp_Object val = make_uninit_vector (nargs);
3278 register struct Lisp_Vector *p = XVECTOR (val);
7146af97 3279
12fbe755 3280 /* We used to purecopy everything here, if purify-flag was set. This worked
3017f87f
SM
3281 OK for Emacs-23, but with Emacs-24's lexical binding code, it can be
3282 dangerous, since make-byte-code is used during execution to build
3283 closures, so any closure built during the preload phase would end up
3284 copied into pure space, including its free variables, which is sometimes
3285 just wasteful and other times plainly wrong (e.g. those free vars may want
3286 to be setcar'd). */
9eac9d59 3287
ae35e756 3288 for (i = 0; i < nargs; i++)
91f2d272 3289 p->contents[i] = args[i];
3017f87f 3290 make_byte_code (p);
876c194c 3291 XSETCOMPILED (val, p);
7146af97
JB
3292 return val;
3293}
2e471eb5 3294
34400008 3295
7146af97 3296\f
2e471eb5
GM
3297/***********************************************************************
3298 Symbol Allocation
3299 ***********************************************************************/
7146af97 3300
d55c12ed
AS
3301/* Like struct Lisp_Symbol, but padded so that the size is a multiple
3302 of the required alignment if LSB tags are used. */
3303
3304union aligned_Lisp_Symbol
3305{
3306 struct Lisp_Symbol s;
bfe3e0a2 3307#if USE_LSB_TAG
2b90362b
DA
3308 unsigned char c[(sizeof (struct Lisp_Symbol) + GCALIGNMENT - 1)
3309 & -GCALIGNMENT];
d55c12ed
AS
3310#endif
3311};
3312
2e471eb5
GM
3313/* Each symbol_block is just under 1020 bytes long, since malloc
3314 really allocates in units of powers of two and uses 4 bytes for its
3017f87f 3315 own overhead. */
7146af97
JB
3316
3317#define SYMBOL_BLOCK_SIZE \
d55c12ed 3318 ((1020 - sizeof (struct symbol_block *)) / sizeof (union aligned_Lisp_Symbol))
7146af97
JB
3319
3320struct symbol_block
2e471eb5 3321{
6b61353c 3322 /* Place `symbols' first, to preserve alignment. */
d55c12ed 3323 union aligned_Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
6b61353c 3324 struct symbol_block *next;
2e471eb5 3325};
7146af97 3326
34400008
GM
3327/* Current symbol block and index of first unused Lisp_Symbol
3328 structure in it. */
3329
d3d47262 3330static struct symbol_block *symbol_block;
fff62aa9 3331static int symbol_block_index = SYMBOL_BLOCK_SIZE;
e3b83880
SM
3332/* Pointer to the first symbol_block that contains pinned symbols.
3333 Tests for 24.4 showed that at dump-time, Emacs contains about 15K symbols,
3334 10K of which are pinned (and all but 250 of them are interned in obarray),
3335 whereas a "typical session" has in the order of 30K symbols.
3336 `symbol_block_pinned' lets mark_pinned_symbols scan only 15K symbols rather
3337 than 30K to find the 10K symbols we need to mark. */
3338static struct symbol_block *symbol_block_pinned;
7146af97 3339
34400008
GM
3340/* List of free symbols. */
3341
d3d47262 3342static struct Lisp_Symbol *symbol_free_list;
7146af97 3343
84575e67
PE
3344static void
3345set_symbol_name (Lisp_Object sym, Lisp_Object name)
3346{
3347 XSYMBOL (sym)->name = name;
3348}
3349
a7ca3326 3350DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
a6266d23 3351 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
eadf1faa 3352Its value is void, and its function definition and property list are nil. */)
5842a27b 3353 (Lisp_Object name)
7146af97
JB
3354{
3355 register Lisp_Object val;
3356 register struct Lisp_Symbol *p;
3357
b7826503 3358 CHECK_STRING (name);
7146af97 3359
dafc79fa 3360 MALLOC_BLOCK_INPUT;
e2984df0 3361
7146af97
JB
3362 if (symbol_free_list)
3363 {
45d12a89 3364 XSETSYMBOL (val, symbol_free_list);
28a099a4 3365 symbol_free_list = symbol_free_list->next;
7146af97
JB
3366 }
3367 else
3368 {
3369 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
3370 {
38182d90
PE
3371 struct symbol_block *new
3372 = lisp_malloc (sizeof *new, MEM_TYPE_SYMBOL);
7146af97
JB
3373 new->next = symbol_block;
3374 symbol_block = new;
3375 symbol_block_index = 0;
3900d5de 3376 total_free_symbols += SYMBOL_BLOCK_SIZE;
7146af97 3377 }
d55c12ed 3378 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index].s);
6b61353c 3379 symbol_block_index++;
7146af97 3380 }
177c0ea7 3381
dafc79fa 3382 MALLOC_UNBLOCK_INPUT;
e2984df0 3383
7146af97 3384 p = XSYMBOL (val);
c644523b
DA
3385 set_symbol_name (val, name);
3386 set_symbol_plist (val, Qnil);
ce5b453a
SM
3387 p->redirect = SYMBOL_PLAINVAL;
3388 SET_SYMBOL_VAL (p, Qunbound);
eadf1faa 3389 set_symbol_function (val, Qnil);
c644523b 3390 set_symbol_next (val, NULL);
e3b83880 3391 p->gcmarkbit = false;
9e713715
GM
3392 p->interned = SYMBOL_UNINTERNED;
3393 p->constant = 0;
e3b83880
SM
3394 p->declared_special = false;
3395 p->pinned = false;
2e471eb5
GM
3396 consing_since_gc += sizeof (struct Lisp_Symbol);
3397 symbols_consed++;
3900d5de 3398 total_free_symbols--;
7146af97
JB
3399 return val;
3400}
3401
3f25e183 3402
2e471eb5
GM
3403\f
3404/***********************************************************************
34400008 3405 Marker (Misc) Allocation
2e471eb5 3406 ***********************************************************************/
3f25e183 3407
d55c12ed
AS
3408/* Like union Lisp_Misc, but padded so that its size is a multiple of
3409 the required alignment when LSB tags are used. */
3410
3411union aligned_Lisp_Misc
3412{
3413 union Lisp_Misc m;
bfe3e0a2 3414#if USE_LSB_TAG
2b90362b
DA
3415 unsigned char c[(sizeof (union Lisp_Misc) + GCALIGNMENT - 1)
3416 & -GCALIGNMENT];
d55c12ed
AS
3417#endif
3418};
3419
2e471eb5
GM
3420/* Allocation of markers and other objects that share that structure.
3421 Works like allocation of conses. */
c0696668 3422
2e471eb5 3423#define MARKER_BLOCK_SIZE \
d55c12ed 3424 ((1020 - sizeof (struct marker_block *)) / sizeof (union aligned_Lisp_Misc))
2e471eb5
GM
3425
3426struct marker_block
c0696668 3427{
6b61353c 3428 /* Place `markers' first, to preserve alignment. */
d55c12ed 3429 union aligned_Lisp_Misc markers[MARKER_BLOCK_SIZE];
6b61353c 3430 struct marker_block *next;
2e471eb5 3431};
c0696668 3432
d3d47262 3433static struct marker_block *marker_block;
fff62aa9 3434static int marker_block_index = MARKER_BLOCK_SIZE;
c0696668 3435
d3d47262 3436static union Lisp_Misc *marker_free_list;
c0696668 3437
d7a7fda3 3438/* Return a newly allocated Lisp_Misc object of specified TYPE. */
2e471eb5 3439
1b971ac1 3440static Lisp_Object
d7a7fda3 3441allocate_misc (enum Lisp_Misc_Type type)
7146af97 3442{
2e471eb5 3443 Lisp_Object val;
7146af97 3444
dafc79fa 3445 MALLOC_BLOCK_INPUT;
cfb2f32e 3446
2e471eb5 3447 if (marker_free_list)
7146af97 3448 {
2e471eb5
GM
3449 XSETMISC (val, marker_free_list);
3450 marker_free_list = marker_free_list->u_free.chain;
7146af97
JB
3451 }
3452 else
7146af97 3453 {
2e471eb5
GM
3454 if (marker_block_index == MARKER_BLOCK_SIZE)
3455 {
38182d90 3456 struct marker_block *new = lisp_malloc (sizeof *new, MEM_TYPE_MISC);
2e471eb5
GM
3457 new->next = marker_block;
3458 marker_block = new;
3459 marker_block_index = 0;
7b7990cc 3460 total_free_markers += MARKER_BLOCK_SIZE;
2e471eb5 3461 }
d55c12ed 3462 XSETMISC (val, &marker_block->markers[marker_block_index].m);
6b61353c 3463 marker_block_index++;
7146af97 3464 }
177c0ea7 3465
dafc79fa 3466 MALLOC_UNBLOCK_INPUT;
e2984df0 3467
7b7990cc 3468 --total_free_markers;
2e471eb5
GM
3469 consing_since_gc += sizeof (union Lisp_Misc);
3470 misc_objects_consed++;
84575e67 3471 XMISCANY (val)->type = type;
67ee9f6e 3472 XMISCANY (val)->gcmarkbit = 0;
2e471eb5
GM
3473 return val;
3474}
3475
73ebd38f 3476/* Free a Lisp_Misc object. */
7b7990cc 3477
73ebd38f 3478void
971de7fb 3479free_misc (Lisp_Object misc)
7b7990cc 3480{
84575e67 3481 XMISCANY (misc)->type = Lisp_Misc_Free;
7b7990cc
KS
3482 XMISC (misc)->u_free.chain = marker_free_list;
3483 marker_free_list = XMISC (misc);
0dd6d66d 3484 consing_since_gc -= sizeof (union Lisp_Misc);
7b7990cc
KS
3485 total_free_markers++;
3486}
3487
7b1123d8
PE
3488/* Verify properties of Lisp_Save_Value's representation
3489 that are assumed here and elsewhere. */
3490
3491verify (SAVE_UNUSED == 0);
52a9bcae
PE
3492verify (((SAVE_INTEGER | SAVE_POINTER | SAVE_FUNCPOINTER | SAVE_OBJECT)
3493 >> SAVE_SLOT_BITS)
3494 == 0);
7b1123d8 3495
1396ac86
PE
3496/* Return Lisp_Save_Value objects for the various combinations
3497 that callers need. */
1b971ac1
DA
3498
3499Lisp_Object
1396ac86 3500make_save_int_int_int (ptrdiff_t a, ptrdiff_t b, ptrdiff_t c)
1b971ac1 3501{
1b971ac1
DA
3502 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3503 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
1396ac86
PE
3504 p->save_type = SAVE_TYPE_INT_INT_INT;
3505 p->data[0].integer = a;
3506 p->data[1].integer = b;
3507 p->data[2].integer = c;
3508 return val;
3509}
1b971ac1 3510
1396ac86
PE
3511Lisp_Object
3512make_save_obj_obj_obj_obj (Lisp_Object a, Lisp_Object b, Lisp_Object c,
3513 Lisp_Object d)
3514{
3515 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3516 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3517 p->save_type = SAVE_TYPE_OBJ_OBJ_OBJ_OBJ;
3518 p->data[0].object = a;
3519 p->data[1].object = b;
3520 p->data[2].object = c;
3521 p->data[3].object = d;
3522 return val;
3523}
1b971ac1 3524
1396ac86
PE
3525Lisp_Object
3526make_save_ptr (void *a)
3527{
3528 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3529 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3530 p->save_type = SAVE_POINTER;
3531 p->data[0].pointer = a;
3532 return val;
3533}
7b1123d8 3534
1396ac86
PE
3535Lisp_Object
3536make_save_ptr_int (void *a, ptrdiff_t b)
3537{
3538 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3539 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3540 p->save_type = SAVE_TYPE_PTR_INT;
3541 p->data[0].pointer = a;
3542 p->data[1].integer = b;
3543 return val;
3544}
1b971ac1 3545
7cdf484b 3546#if ! (defined USE_X_TOOLKIT || defined USE_GTK)
f4e891b5
PE
3547Lisp_Object
3548make_save_ptr_ptr (void *a, void *b)
3549{
3550 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3551 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3552 p->save_type = SAVE_TYPE_PTR_PTR;
3553 p->data[0].pointer = a;
3554 p->data[1].pointer = b;
3555 return val;
3556}
3557#endif
3558
1396ac86
PE
3559Lisp_Object
3560make_save_funcptr_ptr_obj (void (*a) (void), void *b, Lisp_Object c)
3561{
3562 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3563 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3564 p->save_type = SAVE_TYPE_FUNCPTR_PTR_OBJ;
3565 p->data[0].funcpointer = a;
3566 p->data[1].pointer = b;
3567 p->data[2].object = c;
1b971ac1
DA
3568 return val;
3569}
3570
1396ac86
PE
3571/* Return a Lisp_Save_Value object that represents an array A
3572 of N Lisp objects. */
42172a6b
RS
3573
3574Lisp_Object
1396ac86 3575make_save_memory (Lisp_Object *a, ptrdiff_t n)
42172a6b 3576{
468afbac
DA
3577 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3578 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
1396ac86
PE
3579 p->save_type = SAVE_TYPE_MEMORY;
3580 p->data[0].pointer = a;
3581 p->data[1].integer = n;
468afbac 3582 return val;
42172a6b
RS
3583}
3584
73ebd38f
DA
3585/* Free a Lisp_Save_Value object. Do not use this function
3586 if SAVE contains pointer other than returned by xmalloc. */
62c2e5ed 3587
27e498e6 3588void
62c2e5ed
DA
3589free_save_value (Lisp_Object save)
3590{
2b30549c 3591 xfree (XSAVE_POINTER (save, 0));
62c2e5ed
DA
3592 free_misc (save);
3593}
3594
d7a7fda3
DA
3595/* Return a Lisp_Misc_Overlay object with specified START, END and PLIST. */
3596
3597Lisp_Object
3598build_overlay (Lisp_Object start, Lisp_Object end, Lisp_Object plist)
3599{
3600 register Lisp_Object overlay;
3601
3602 overlay = allocate_misc (Lisp_Misc_Overlay);
3603 OVERLAY_START (overlay) = start;
3604 OVERLAY_END (overlay) = end;
c644523b 3605 set_overlay_plist (overlay, plist);
d7a7fda3
DA
3606 XOVERLAY (overlay)->next = NULL;
3607 return overlay;
3608}
3609
a7ca3326 3610DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
a6266d23 3611 doc: /* Return a newly allocated marker which does not point at any place. */)
5842a27b 3612 (void)
2e471eb5 3613{
eeaea515
DA
3614 register Lisp_Object val;
3615 register struct Lisp_Marker *p;
7146af97 3616
eeaea515
DA
3617 val = allocate_misc (Lisp_Misc_Marker);
3618 p = XMARKER (val);
3619 p->buffer = 0;
3620 p->bytepos = 0;
3621 p->charpos = 0;
3622 p->next = NULL;
3623 p->insertion_type = 0;
101ed2bb 3624 p->need_adjustment = 0;
eeaea515 3625 return val;
7146af97 3626}
2e471eb5 3627
657924ff
DA
3628/* Return a newly allocated marker which points into BUF
3629 at character position CHARPOS and byte position BYTEPOS. */
3630
3631Lisp_Object
3632build_marker (struct buffer *buf, ptrdiff_t charpos, ptrdiff_t bytepos)
3633{
eeaea515
DA
3634 Lisp_Object obj;
3635 struct Lisp_Marker *m;
657924ff
DA
3636
3637 /* No dead buffers here. */
e578f381 3638 eassert (BUFFER_LIVE_P (buf));
657924ff 3639
eeaea515
DA
3640 /* Every character is at least one byte. */
3641 eassert (charpos <= bytepos);
3642
3643 obj = allocate_misc (Lisp_Misc_Marker);
3644 m = XMARKER (obj);
3645 m->buffer = buf;
3646 m->charpos = charpos;
3647 m->bytepos = bytepos;
3648 m->insertion_type = 0;
101ed2bb 3649 m->need_adjustment = 0;
eeaea515
DA
3650 m->next = BUF_MARKERS (buf);
3651 BUF_MARKERS (buf) = m;
3652 return obj;
657924ff
DA
3653}
3654
2e471eb5
GM
3655/* Put MARKER back on the free list after using it temporarily. */
3656
3657void
971de7fb 3658free_marker (Lisp_Object marker)
2e471eb5 3659{
ef89c2ce 3660 unchain_marker (XMARKER (marker));
7b7990cc 3661 free_misc (marker);
2e471eb5
GM
3662}
3663
c0696668 3664\f
7146af97 3665/* Return a newly created vector or string with specified arguments as
736471d1
RS
3666 elements. If all the arguments are characters that can fit
3667 in a string of events, make a string; otherwise, make a vector.
3668
3669 Any number of arguments, even zero arguments, are allowed. */
7146af97
JB
3670
3671Lisp_Object
0c90b9ee 3672make_event_array (ptrdiff_t nargs, Lisp_Object *args)
7146af97 3673{
0c90b9ee 3674 ptrdiff_t i;
7146af97
JB
3675
3676 for (i = 0; i < nargs; i++)
736471d1 3677 /* The things that fit in a string
c9ca4659
RS
3678 are characters that are in 0...127,
3679 after discarding the meta bit and all the bits above it. */
e687453f 3680 if (!INTEGERP (args[i])
c11285dc 3681 || (XINT (args[i]) & ~(-CHAR_META)) >= 0200)
7146af97
JB
3682 return Fvector (nargs, args);
3683
3684 /* Since the loop exited, we know that all the things in it are
3685 characters, so we can make a string. */
3686 {
c13ccad2 3687 Lisp_Object result;
177c0ea7 3688
50aee051 3689 result = Fmake_string (make_number (nargs), make_number (0));
7146af97 3690 for (i = 0; i < nargs; i++)
736471d1 3691 {
46e7e6b0 3692 SSET (result, i, XINT (args[i]));
736471d1
RS
3693 /* Move the meta bit to the right place for a string char. */
3694 if (XINT (args[i]) & CHAR_META)
46e7e6b0 3695 SSET (result, i, SREF (result, i) | 0x80);
736471d1 3696 }
177c0ea7 3697
7146af97
JB
3698 return result;
3699 }
3700}
2e471eb5
GM
3701
3702
7146af97 3703\f
24d8a105
RS
3704/************************************************************************
3705 Memory Full Handling
3706 ************************************************************************/
3707
3708
531b0165
PE
3709/* Called if malloc (NBYTES) returns zero. If NBYTES == SIZE_MAX,
3710 there may have been size_t overflow so that malloc was never
3711 called, or perhaps malloc was invoked successfully but the
3712 resulting pointer had problems fitting into a tagged EMACS_INT. In
3713 either case this counts as memory being full even though malloc did
3714 not fail. */
24d8a105
RS
3715
3716void
531b0165 3717memory_full (size_t nbytes)
24d8a105 3718{
531b0165 3719 /* Do not go into hysterics merely because a large request failed. */
fce31d69 3720 bool enough_free_memory = 0;
2b6148e4 3721 if (SPARE_MEMORY < nbytes)
531b0165 3722 {
66606eea
PE
3723 void *p;
3724
3725 MALLOC_BLOCK_INPUT;
3726 p = malloc (SPARE_MEMORY);
531b0165
PE
3727 if (p)
3728 {
4d09bcf6 3729 free (p);
531b0165
PE
3730 enough_free_memory = 1;
3731 }
66606eea 3732 MALLOC_UNBLOCK_INPUT;
531b0165 3733 }
24d8a105 3734
531b0165
PE
3735 if (! enough_free_memory)
3736 {
3737 int i;
24d8a105 3738
531b0165
PE
3739 Vmemory_full = Qt;
3740
3741 memory_full_cons_threshold = sizeof (struct cons_block);
3742
3743 /* The first time we get here, free the spare memory. */
3744 for (i = 0; i < sizeof (spare_memory) / sizeof (char *); i++)
3745 if (spare_memory[i])
3746 {
3747 if (i == 0)
3748 free (spare_memory[i]);
3749 else if (i >= 1 && i <= 4)
3750 lisp_align_free (spare_memory[i]);
3751 else
3752 lisp_free (spare_memory[i]);
3753 spare_memory[i] = 0;
3754 }
531b0165 3755 }
24d8a105
RS
3756
3757 /* This used to call error, but if we've run out of memory, we could
3758 get infinite recursion trying to build the string. */
9b306d37 3759 xsignal (Qnil, Vmemory_signal_data);
24d8a105
RS
3760}
3761
3762/* If we released our reserve (due to running out of memory),
3763 and we have a fair amount free once again,
3764 try to set aside another reserve in case we run out once more.
3765
3766 This is called when a relocatable block is freed in ralloc.c,
3767 and also directly from this file, in case we're not using ralloc.c. */
3768
3769void
971de7fb 3770refill_memory_reserve (void)
24d8a105
RS
3771{
3772#ifndef SYSTEM_MALLOC
3773 if (spare_memory[0] == 0)
38182d90 3774 spare_memory[0] = malloc (SPARE_MEMORY);
24d8a105 3775 if (spare_memory[1] == 0)
38182d90 3776 spare_memory[1] = lisp_align_malloc (sizeof (struct cons_block),
35aaa1ea 3777 MEM_TYPE_SPARE);
24d8a105 3778 if (spare_memory[2] == 0)
38182d90 3779 spare_memory[2] = lisp_align_malloc (sizeof (struct cons_block),
35aaa1ea 3780 MEM_TYPE_SPARE);
24d8a105 3781 if (spare_memory[3] == 0)
38182d90 3782 spare_memory[3] = lisp_align_malloc (sizeof (struct cons_block),
35aaa1ea 3783 MEM_TYPE_SPARE);
24d8a105 3784 if (spare_memory[4] == 0)
38182d90 3785 spare_memory[4] = lisp_align_malloc (sizeof (struct cons_block),
35aaa1ea 3786 MEM_TYPE_SPARE);
24d8a105 3787 if (spare_memory[5] == 0)
38182d90 3788 spare_memory[5] = lisp_malloc (sizeof (struct string_block),
35aaa1ea 3789 MEM_TYPE_SPARE);
24d8a105 3790 if (spare_memory[6] == 0)
38182d90 3791 spare_memory[6] = lisp_malloc (sizeof (struct string_block),
35aaa1ea 3792 MEM_TYPE_SPARE);
24d8a105
RS
3793 if (spare_memory[0] && spare_memory[1] && spare_memory[5])
3794 Vmemory_full = Qnil;
3795#endif
3796}
3797\f
34400008
GM
3798/************************************************************************
3799 C Stack Marking
3800 ************************************************************************/
3801
13c844fb
GM
3802#if GC_MARK_STACK || defined GC_MALLOC_CHECK
3803
71cf5fa0
GM
3804/* Conservative C stack marking requires a method to identify possibly
3805 live Lisp objects given a pointer value. We do this by keeping
3806 track of blocks of Lisp data that are allocated in a red-black tree
3807 (see also the comment of mem_node which is the type of nodes in
3808 that tree). Function lisp_malloc adds information for an allocated
3809 block to the red-black tree with calls to mem_insert, and function
3810 lisp_free removes it with mem_delete. Functions live_string_p etc
3811 call mem_find to lookup information about a given pointer in the
3812 tree, and use that to determine if the pointer points to a Lisp
3813 object or not. */
3814
34400008
GM
3815/* Initialize this part of alloc.c. */
3816
3817static void
971de7fb 3818mem_init (void)
34400008
GM
3819{
3820 mem_z.left = mem_z.right = MEM_NIL;
3821 mem_z.parent = NULL;
3822 mem_z.color = MEM_BLACK;
3823 mem_z.start = mem_z.end = NULL;
3824 mem_root = MEM_NIL;
3825}
3826
3827
3828/* Value is a pointer to the mem_node containing START. Value is
3829 MEM_NIL if there is no node in the tree containing START. */
3830
b0ab8123 3831static struct mem_node *
971de7fb 3832mem_find (void *start)
34400008
GM
3833{
3834 struct mem_node *p;
3835
ece93c02
GM
3836 if (start < min_heap_address || start > max_heap_address)
3837 return MEM_NIL;
3838
34400008
GM
3839 /* Make the search always successful to speed up the loop below. */
3840 mem_z.start = start;
3841 mem_z.end = (char *) start + 1;
3842
3843 p = mem_root;
3844 while (start < p->start || start >= p->end)
3845 p = start < p->start ? p->left : p->right;
3846 return p;
3847}
3848
3849
3850/* Insert a new node into the tree for a block of memory with start
3851 address START, end address END, and type TYPE. Value is a
3852 pointer to the node that was inserted. */
3853
3854static struct mem_node *
971de7fb 3855mem_insert (void *start, void *end, enum mem_type type)
34400008
GM
3856{
3857 struct mem_node *c, *parent, *x;
3858
add3c3ea 3859 if (min_heap_address == NULL || start < min_heap_address)
ece93c02 3860 min_heap_address = start;
add3c3ea 3861 if (max_heap_address == NULL || end > max_heap_address)
ece93c02
GM
3862 max_heap_address = end;
3863
34400008
GM
3864 /* See where in the tree a node for START belongs. In this
3865 particular application, it shouldn't happen that a node is already
3866 present. For debugging purposes, let's check that. */
3867 c = mem_root;
3868 parent = NULL;
3869
3870#if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
177c0ea7 3871
34400008
GM
3872 while (c != MEM_NIL)
3873 {
3874 if (start >= c->start && start < c->end)
1088b922 3875 emacs_abort ();
34400008
GM
3876 parent = c;
3877 c = start < c->start ? c->left : c->right;
3878 }
177c0ea7 3879
34400008 3880#else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
177c0ea7 3881
34400008
GM
3882 while (c != MEM_NIL)
3883 {
3884 parent = c;
3885 c = start < c->start ? c->left : c->right;
3886 }
177c0ea7 3887
34400008
GM
3888#endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3889
3890 /* Create a new node. */
877935b1 3891#ifdef GC_MALLOC_CHECK
0caaedb1 3892 x = malloc (sizeof *x);
877935b1 3893 if (x == NULL)
1088b922 3894 emacs_abort ();
877935b1 3895#else
23f86fce 3896 x = xmalloc (sizeof *x);
877935b1 3897#endif
34400008
GM
3898 x->start = start;
3899 x->end = end;
3900 x->type = type;
3901 x->parent = parent;
3902 x->left = x->right = MEM_NIL;
3903 x->color = MEM_RED;
3904
3905 /* Insert it as child of PARENT or install it as root. */
3906 if (parent)
3907 {
3908 if (start < parent->start)
3909 parent->left = x;
3910 else
3911 parent->right = x;
3912 }
177c0ea7 3913 else
34400008
GM
3914 mem_root = x;
3915
3916 /* Re-establish red-black tree properties. */
3917 mem_insert_fixup (x);
877935b1 3918
34400008
GM
3919 return x;
3920}
3921
3922
3923/* Re-establish the red-black properties of the tree, and thereby
3924 balance the tree, after node X has been inserted; X is always red. */
3925
3926static void
971de7fb 3927mem_insert_fixup (struct mem_node *x)
34400008
GM
3928{
3929 while (x != mem_root && x->parent->color == MEM_RED)
3930 {
3931 /* X is red and its parent is red. This is a violation of
3932 red-black tree property #3. */
177c0ea7 3933
34400008
GM
3934 if (x->parent == x->parent->parent->left)
3935 {
3936 /* We're on the left side of our grandparent, and Y is our
3937 "uncle". */
3938 struct mem_node *y = x->parent->parent->right;
177c0ea7 3939
34400008
GM
3940 if (y->color == MEM_RED)
3941 {
3942 /* Uncle and parent are red but should be black because
3943 X is red. Change the colors accordingly and proceed
3944 with the grandparent. */
3945 x->parent->color = MEM_BLACK;
3946 y->color = MEM_BLACK;
3947 x->parent->parent->color = MEM_RED;
3948 x = x->parent->parent;
3949 }
3950 else
3951 {
3952 /* Parent and uncle have different colors; parent is
3953 red, uncle is black. */
3954 if (x == x->parent->right)
3955 {
3956 x = x->parent;
3957 mem_rotate_left (x);
3958 }
3959
3960 x->parent->color = MEM_BLACK;
3961 x->parent->parent->color = MEM_RED;
3962 mem_rotate_right (x->parent->parent);
3963 }
3964 }
3965 else
3966 {
3967 /* This is the symmetrical case of above. */
3968 struct mem_node *y = x->parent->parent->left;
177c0ea7 3969
34400008
GM
3970 if (y->color == MEM_RED)
3971 {
3972 x->parent->color = MEM_BLACK;
3973 y->color = MEM_BLACK;
3974 x->parent->parent->color = MEM_RED;
3975 x = x->parent->parent;
3976 }
3977 else
3978 {
3979 if (x == x->parent->left)
3980 {
3981 x = x->parent;
3982 mem_rotate_right (x);
3983 }
177c0ea7 3984
34400008
GM
3985 x->parent->color = MEM_BLACK;
3986 x->parent->parent->color = MEM_RED;
3987 mem_rotate_left (x->parent->parent);
3988 }
3989 }
3990 }
3991
3992 /* The root may have been changed to red due to the algorithm. Set
3993 it to black so that property #5 is satisfied. */
3994 mem_root->color = MEM_BLACK;
3995}
3996
3997
177c0ea7
JB
3998/* (x) (y)
3999 / \ / \
34400008
GM
4000 a (y) ===> (x) c
4001 / \ / \
4002 b c a b */
4003
4004static void
971de7fb 4005mem_rotate_left (struct mem_node *x)
34400008
GM
4006{
4007 struct mem_node *y;
4008
4009 /* Turn y's left sub-tree into x's right sub-tree. */
4010 y = x->right;
4011 x->right = y->left;
4012 if (y->left != MEM_NIL)
4013 y->left->parent = x;
4014
4015 /* Y's parent was x's parent. */
4016 if (y != MEM_NIL)
4017 y->parent = x->parent;
4018
4019 /* Get the parent to point to y instead of x. */
4020 if (x->parent)
4021 {
4022 if (x == x->parent->left)
4023 x->parent->left = y;
4024 else
4025 x->parent->right = y;
4026 }
4027 else
4028 mem_root = y;
4029
4030 /* Put x on y's left. */
4031 y->left = x;
4032 if (x != MEM_NIL)
4033 x->parent = y;
4034}
4035
4036
177c0ea7
JB
4037/* (x) (Y)
4038 / \ / \
4039 (y) c ===> a (x)
4040 / \ / \
34400008
GM
4041 a b b c */
4042
4043static void
971de7fb 4044mem_rotate_right (struct mem_node *x)
34400008
GM
4045{
4046 struct mem_node *y = x->left;
4047
4048 x->left = y->right;
4049 if (y->right != MEM_NIL)
4050 y->right->parent = x;
177c0ea7 4051
34400008
GM
4052 if (y != MEM_NIL)
4053 y->parent = x->parent;
4054 if (x->parent)
4055 {
4056 if (x == x->parent->right)
4057 x->parent->right = y;
4058 else
4059 x->parent->left = y;
4060 }
4061 else
4062 mem_root = y;
177c0ea7 4063
34400008
GM
4064 y->right = x;
4065 if (x != MEM_NIL)
4066 x->parent = y;
4067}
4068
4069
4070/* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
4071
4072static void
971de7fb 4073mem_delete (struct mem_node *z)
34400008
GM
4074{
4075 struct mem_node *x, *y;
4076
4077 if (!z || z == MEM_NIL)
4078 return;
4079
4080 if (z->left == MEM_NIL || z->right == MEM_NIL)
4081 y = z;
4082 else
4083 {
4084 y = z->right;
4085 while (y->left != MEM_NIL)
4086 y = y->left;
4087 }
4088
4089 if (y->left != MEM_NIL)
4090 x = y->left;
4091 else
4092 x = y->right;
4093
4094 x->parent = y->parent;
4095 if (y->parent)
4096 {
4097 if (y == y->parent->left)
4098 y->parent->left = x;
4099 else
4100 y->parent->right = x;
4101 }
4102 else
4103 mem_root = x;
4104
4105 if (y != z)
4106 {
4107 z->start = y->start;
4108 z->end = y->end;
4109 z->type = y->type;
4110 }
177c0ea7 4111
34400008
GM
4112 if (y->color == MEM_BLACK)
4113 mem_delete_fixup (x);
877935b1
GM
4114
4115#ifdef GC_MALLOC_CHECK
0caaedb1 4116 free (y);
877935b1 4117#else
34400008 4118 xfree (y);
877935b1 4119#endif
34400008
GM
4120}
4121
4122
4123/* Re-establish the red-black properties of the tree, after a
4124 deletion. */
4125
4126static void
971de7fb 4127mem_delete_fixup (struct mem_node *x)
34400008
GM
4128{
4129 while (x != mem_root && x->color == MEM_BLACK)
4130 {
4131 if (x == x->parent->left)
4132 {
4133 struct mem_node *w = x->parent->right;
177c0ea7 4134
34400008
GM
4135 if (w->color == MEM_RED)
4136 {
4137 w->color = MEM_BLACK;
4138 x->parent->color = MEM_RED;
4139 mem_rotate_left (x->parent);
4140 w = x->parent->right;
4141 }
177c0ea7 4142
34400008
GM
4143 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
4144 {
4145 w->color = MEM_RED;
4146 x = x->parent;
4147 }
4148 else
4149 {
4150 if (w->right->color == MEM_BLACK)
4151 {
4152 w->left->color = MEM_BLACK;
4153 w->color = MEM_RED;
4154 mem_rotate_right (w);
4155 w = x->parent->right;
4156 }
4157 w->color = x->parent->color;
4158 x->parent->color = MEM_BLACK;
4159 w->right->color = MEM_BLACK;
4160 mem_rotate_left (x->parent);
4161 x = mem_root;
4162 }
4163 }
4164 else
4165 {
4166 struct mem_node *w = x->parent->left;
177c0ea7 4167
34400008
GM
4168 if (w->color == MEM_RED)
4169 {
4170 w->color = MEM_BLACK;
4171 x->parent->color = MEM_RED;
4172 mem_rotate_right (x->parent);
4173 w = x->parent->left;
4174 }
177c0ea7 4175
34400008
GM
4176 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
4177 {
4178 w->color = MEM_RED;
4179 x = x->parent;
4180 }
4181 else
4182 {
4183 if (w->left->color == MEM_BLACK)
4184 {
4185 w->right->color = MEM_BLACK;
4186 w->color = MEM_RED;
4187 mem_rotate_left (w);
4188 w = x->parent->left;
4189 }
177c0ea7 4190
34400008
GM
4191 w->color = x->parent->color;
4192 x->parent->color = MEM_BLACK;
4193 w->left->color = MEM_BLACK;
4194 mem_rotate_right (x->parent);
4195 x = mem_root;
4196 }
4197 }
4198 }
177c0ea7 4199
34400008
GM
4200 x->color = MEM_BLACK;
4201}
4202
4203
4204/* Value is non-zero if P is a pointer to a live Lisp string on
4205 the heap. M is a pointer to the mem_block for P. */
4206
b0ab8123 4207static bool
971de7fb 4208live_string_p (struct mem_node *m, void *p)
34400008
GM
4209{
4210 if (m->type == MEM_TYPE_STRING)
4211 {
7d652d97 4212 struct string_block *b = m->start;
14162469 4213 ptrdiff_t offset = (char *) p - (char *) &b->strings[0];
34400008
GM
4214
4215 /* P must point to the start of a Lisp_String structure, and it
4216 must not be on the free-list. */
176bc847
GM
4217 return (offset >= 0
4218 && offset % sizeof b->strings[0] == 0
6b61353c 4219 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
34400008
GM
4220 && ((struct Lisp_String *) p)->data != NULL);
4221 }
4222 else
4223 return 0;
4224}
4225
4226
4227/* Value is non-zero if P is a pointer to a live Lisp cons on
4228 the heap. M is a pointer to the mem_block for P. */
4229
b0ab8123 4230static bool
971de7fb 4231live_cons_p (struct mem_node *m, void *p)
34400008
GM
4232{
4233 if (m->type == MEM_TYPE_CONS)
4234 {
7d652d97 4235 struct cons_block *b = m->start;
14162469 4236 ptrdiff_t offset = (char *) p - (char *) &b->conses[0];
34400008
GM
4237
4238 /* P must point to the start of a Lisp_Cons, not be
4239 one of the unused cells in the current cons block,
4240 and not be on the free-list. */
176bc847
GM
4241 return (offset >= 0
4242 && offset % sizeof b->conses[0] == 0
6b61353c 4243 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
34400008
GM
4244 && (b != cons_block
4245 || offset / sizeof b->conses[0] < cons_block_index)
c644523b 4246 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
34400008
GM
4247 }
4248 else
4249 return 0;
4250}
4251
4252
4253/* Value is non-zero if P is a pointer to a live Lisp symbol on
4254 the heap. M is a pointer to the mem_block for P. */
4255
b0ab8123 4256static bool
971de7fb 4257live_symbol_p (struct mem_node *m, void *p)
34400008
GM
4258{
4259 if (m->type == MEM_TYPE_SYMBOL)
4260 {
7d652d97 4261 struct symbol_block *b = m->start;
14162469 4262 ptrdiff_t offset = (char *) p - (char *) &b->symbols[0];
177c0ea7 4263
34400008
GM
4264 /* P must point to the start of a Lisp_Symbol, not be
4265 one of the unused cells in the current symbol block,
4266 and not be on the free-list. */
176bc847
GM
4267 return (offset >= 0
4268 && offset % sizeof b->symbols[0] == 0
6b61353c 4269 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
34400008
GM
4270 && (b != symbol_block
4271 || offset / sizeof b->symbols[0] < symbol_block_index)
c644523b 4272 && !EQ (((struct Lisp_Symbol *)p)->function, Vdead));
34400008
GM
4273 }
4274 else
4275 return 0;
4276}
4277
4278
4279/* Value is non-zero if P is a pointer to a live Lisp float on
4280 the heap. M is a pointer to the mem_block for P. */
4281
b0ab8123 4282static bool
971de7fb 4283live_float_p (struct mem_node *m, void *p)
34400008
GM
4284{
4285 if (m->type == MEM_TYPE_FLOAT)
4286 {
7d652d97 4287 struct float_block *b = m->start;
14162469 4288 ptrdiff_t offset = (char *) p - (char *) &b->floats[0];
177c0ea7 4289
ab6780cd
SM
4290 /* P must point to the start of a Lisp_Float and not be
4291 one of the unused cells in the current float block. */
176bc847
GM
4292 return (offset >= 0
4293 && offset % sizeof b->floats[0] == 0
6b61353c 4294 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
34400008 4295 && (b != float_block
ab6780cd 4296 || offset / sizeof b->floats[0] < float_block_index));
34400008
GM
4297 }
4298 else
4299 return 0;
4300}
4301
4302
4303/* Value is non-zero if P is a pointer to a live Lisp Misc on
4304 the heap. M is a pointer to the mem_block for P. */
4305
b0ab8123 4306static bool
971de7fb 4307live_misc_p (struct mem_node *m, void *p)
34400008
GM
4308{
4309 if (m->type == MEM_TYPE_MISC)
4310 {
7d652d97 4311 struct marker_block *b = m->start;
14162469 4312 ptrdiff_t offset = (char *) p - (char *) &b->markers[0];
177c0ea7 4313
34400008
GM
4314 /* P must point to the start of a Lisp_Misc, not be
4315 one of the unused cells in the current misc block,
4316 and not be on the free-list. */
176bc847
GM
4317 return (offset >= 0
4318 && offset % sizeof b->markers[0] == 0
6b61353c 4319 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
34400008
GM
4320 && (b != marker_block
4321 || offset / sizeof b->markers[0] < marker_block_index)
d314756e 4322 && ((union Lisp_Misc *) p)->u_any.type != Lisp_Misc_Free);
34400008
GM
4323 }
4324 else
4325 return 0;
4326}
4327
4328
4329/* Value is non-zero if P is a pointer to a live vector-like object.
4330 M is a pointer to the mem_block for P. */
4331
b0ab8123 4332static bool
971de7fb 4333live_vector_p (struct mem_node *m, void *p)
34400008 4334{
f3372c87
DA
4335 if (m->type == MEM_TYPE_VECTOR_BLOCK)
4336 {
4337 /* This memory node corresponds to a vector block. */
7d652d97 4338 struct vector_block *block = m->start;
f3372c87
DA
4339 struct Lisp_Vector *vector = (struct Lisp_Vector *) block->data;
4340
4341 /* P is in the block's allocation range. Scan the block
4342 up to P and see whether P points to the start of some
4343 vector which is not on a free list. FIXME: check whether
4344 some allocation patterns (probably a lot of short vectors)
4345 may cause a substantial overhead of this loop. */
4346 while (VECTOR_IN_BLOCK (vector, block)
4347 && vector <= (struct Lisp_Vector *) p)
4348 {
914adc42 4349 if (!PSEUDOVECTOR_TYPEP (&vector->header, PVEC_FREE) && vector == p)
f3372c87
DA
4350 return 1;
4351 else
914adc42 4352 vector = ADVANCE (vector, vector_nbytes (vector));
f3372c87
DA
4353 }
4354 }
91f2d272 4355 else if (m->type == MEM_TYPE_VECTORLIKE && p == large_vector_vec (m->start))
f3372c87
DA
4356 /* This memory node corresponds to a large vector. */
4357 return 1;
4358 return 0;
34400008
GM
4359}
4360
4361
2336fe58 4362/* Value is non-zero if P is a pointer to a live buffer. M is a
34400008
GM
4363 pointer to the mem_block for P. */
4364
b0ab8123 4365static bool
971de7fb 4366live_buffer_p (struct mem_node *m, void *p)
34400008
GM
4367{
4368 /* P must point to the start of the block, and the buffer
4369 must not have been killed. */
4370 return (m->type == MEM_TYPE_BUFFER
4371 && p == m->start
e34f7f79 4372 && !NILP (((struct buffer *) p)->INTERNAL_FIELD (name)));
34400008
GM
4373}
4374
13c844fb
GM
4375#endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
4376
4377#if GC_MARK_STACK
4378
34400008
GM
4379#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4380
0c5307b0
DA
4381/* Currently not used, but may be called from gdb. */
4382
4383void dump_zombies (void) EXTERNALLY_VISIBLE;
4384
34400008 4385/* Array of objects that are kept alive because the C stack contains
f224e500 4386 a pattern that looks like a reference to them. */
34400008
GM
4387
4388#define MAX_ZOMBIES 10
4389static Lisp_Object zombies[MAX_ZOMBIES];
4390
4391/* Number of zombie objects. */
4392
211a0b2a 4393static EMACS_INT nzombies;
34400008
GM
4394
4395/* Number of garbage collections. */
4396
211a0b2a 4397static EMACS_INT ngcs;
34400008
GM
4398
4399/* Average percentage of zombies per collection. */
4400
4401static double avg_zombies;
4402
4403/* Max. number of live and zombie objects. */
4404
211a0b2a 4405static EMACS_INT max_live, max_zombies;
34400008
GM
4406
4407/* Average number of live objects per GC. */
4408
4409static double avg_live;
4410
a7ca3326 4411DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
7ee72033 4412 doc: /* Show information about live and zombie objects. */)
5842a27b 4413 (void)
34400008 4414{
83fc9c63 4415 Lisp_Object args[8], zombie_list = Qnil;
211a0b2a 4416 EMACS_INT i;
6e4b3fbe 4417 for (i = 0; i < min (MAX_ZOMBIES, nzombies); i++)
83fc9c63
DL
4418 zombie_list = Fcons (zombies[i], zombie_list);
4419 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
34400008
GM
4420 args[1] = make_number (ngcs);
4421 args[2] = make_float (avg_live);
4422 args[3] = make_float (avg_zombies);
4423 args[4] = make_float (avg_zombies / avg_live / 100);
4424 args[5] = make_number (max_live);
4425 args[6] = make_number (max_zombies);
83fc9c63
DL
4426 args[7] = zombie_list;
4427 return Fmessage (8, args);
34400008
GM
4428}
4429
4430#endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4431
4432
182ff242
GM
4433/* Mark OBJ if we can prove it's a Lisp_Object. */
4434
b0ab8123 4435static void
971de7fb 4436mark_maybe_object (Lisp_Object obj)
182ff242 4437{
b609f591
YM
4438 void *po;
4439 struct mem_node *m;
4440
a84683fd
DC
4441#if USE_VALGRIND
4442 if (valgrind_p)
4443 VALGRIND_MAKE_MEM_DEFINED (&obj, sizeof (obj));
4444#endif
4445
b609f591
YM
4446 if (INTEGERP (obj))
4447 return;
4448
4449 po = (void *) XPNTR (obj);
4450 m = mem_find (po);
177c0ea7 4451
182ff242
GM
4452 if (m != MEM_NIL)
4453 {
fce31d69 4454 bool mark_p = 0;
182ff242 4455
8e50cc2d 4456 switch (XTYPE (obj))
182ff242
GM
4457 {
4458 case Lisp_String:
4459 mark_p = (live_string_p (m, po)
4460 && !STRING_MARKED_P ((struct Lisp_String *) po));
4461 break;
4462
4463 case Lisp_Cons:
08b7c2cb 4464 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
182ff242
GM
4465 break;
4466
4467 case Lisp_Symbol:
2336fe58 4468 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
182ff242
GM
4469 break;
4470
4471 case Lisp_Float:
ab6780cd 4472 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
182ff242
GM
4473 break;
4474
4475 case Lisp_Vectorlike:
8e50cc2d 4476 /* Note: can't check BUFFERP before we know it's a
182ff242
GM
4477 buffer because checking that dereferences the pointer
4478 PO which might point anywhere. */
4479 if (live_vector_p (m, po))
8e50cc2d 4480 mark_p = !SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
182ff242 4481 else if (live_buffer_p (m, po))
8e50cc2d 4482 mark_p = BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
182ff242
GM
4483 break;
4484
4485 case Lisp_Misc:
67ee9f6e 4486 mark_p = (live_misc_p (m, po) && !XMISCANY (obj)->gcmarkbit);
182ff242 4487 break;
6bbd7a29 4488
2de9f71c 4489 default:
6bbd7a29 4490 break;
182ff242
GM
4491 }
4492
4493 if (mark_p)
4494 {
4495#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4496 if (nzombies < MAX_ZOMBIES)
83fc9c63 4497 zombies[nzombies] = obj;
182ff242
GM
4498 ++nzombies;
4499#endif
49723c04 4500 mark_object (obj);
182ff242
GM
4501 }
4502 }
4503}
ece93c02
GM
4504
4505
4506/* If P points to Lisp data, mark that as live if it isn't already
4507 marked. */
4508
b0ab8123 4509static void
971de7fb 4510mark_maybe_pointer (void *p)
ece93c02
GM
4511{
4512 struct mem_node *m;
4513
a84683fd
DC
4514#if USE_VALGRIND
4515 if (valgrind_p)
4516 VALGRIND_MAKE_MEM_DEFINED (&p, sizeof (p));
4517#endif
4518
bfe3e0a2 4519 /* Quickly rule out some values which can't point to Lisp data.
2b90362b 4520 USE_LSB_TAG needs Lisp data to be aligned on multiples of GCALIGNMENT.
bfe3e0a2 4521 Otherwise, assume that Lisp data is aligned on even addresses. */
2b90362b 4522 if ((intptr_t) p % (USE_LSB_TAG ? GCALIGNMENT : 2))
ece93c02 4523 return;
177c0ea7 4524
ece93c02
GM
4525 m = mem_find (p);
4526 if (m != MEM_NIL)
4527 {
4528 Lisp_Object obj = Qnil;
177c0ea7 4529
ece93c02
GM
4530 switch (m->type)
4531 {
4532 case MEM_TYPE_NON_LISP:
5474c384 4533 case MEM_TYPE_SPARE:
2fe50224 4534 /* Nothing to do; not a pointer to Lisp memory. */
ece93c02 4535 break;
177c0ea7 4536
ece93c02 4537 case MEM_TYPE_BUFFER:
5e617bc2 4538 if (live_buffer_p (m, p) && !VECTOR_MARKED_P ((struct buffer *)p))
ece93c02
GM
4539 XSETVECTOR (obj, p);
4540 break;
177c0ea7 4541
ece93c02 4542 case MEM_TYPE_CONS:
08b7c2cb 4543 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
ece93c02
GM
4544 XSETCONS (obj, p);
4545 break;
177c0ea7 4546
ece93c02
GM
4547 case MEM_TYPE_STRING:
4548 if (live_string_p (m, p)
4549 && !STRING_MARKED_P ((struct Lisp_String *) p))
4550 XSETSTRING (obj, p);
4551 break;
4552
4553 case MEM_TYPE_MISC:
2336fe58
SM
4554 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
4555 XSETMISC (obj, p);
ece93c02 4556 break;
177c0ea7 4557
ece93c02 4558 case MEM_TYPE_SYMBOL:
2336fe58 4559 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
ece93c02
GM
4560 XSETSYMBOL (obj, p);
4561 break;
177c0ea7 4562
ece93c02 4563 case MEM_TYPE_FLOAT:
ab6780cd 4564 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
ece93c02
GM
4565 XSETFLOAT (obj, p);
4566 break;
177c0ea7 4567
9c545a55 4568 case MEM_TYPE_VECTORLIKE:
f3372c87 4569 case MEM_TYPE_VECTOR_BLOCK:
ece93c02
GM
4570 if (live_vector_p (m, p))
4571 {
4572 Lisp_Object tem;
4573 XSETVECTOR (tem, p);
8e50cc2d 4574 if (!SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
ece93c02
GM
4575 obj = tem;
4576 }
4577 break;
4578
4579 default:
1088b922 4580 emacs_abort ();
ece93c02
GM
4581 }
4582
8e50cc2d 4583 if (!NILP (obj))
49723c04 4584 mark_object (obj);
ece93c02
GM
4585 }
4586}
4587
4588
e32a5799 4589/* Alignment of pointer values. Use alignof, as it sometimes returns
e3fb2efb
PE
4590 a smaller alignment than GCC's __alignof__ and mark_memory might
4591 miss objects if __alignof__ were used. */
e32a5799 4592#define GC_POINTER_ALIGNMENT alignof (void *)
3164aeac 4593
e3fb2efb
PE
4594/* Define POINTERS_MIGHT_HIDE_IN_OBJECTS to 1 if marking via C pointers does
4595 not suffice, which is the typical case. A host where a Lisp_Object is
4596 wider than a pointer might allocate a Lisp_Object in non-adjacent halves.
4597 If USE_LSB_TAG, the bottom half is not a valid pointer, but it should
4598 suffice to widen it to to a Lisp_Object and check it that way. */
bfe3e0a2
PE
4599#if USE_LSB_TAG || VAL_MAX < UINTPTR_MAX
4600# if !USE_LSB_TAG && VAL_MAX < UINTPTR_MAX >> GCTYPEBITS
e3fb2efb
PE
4601 /* If tag bits straddle pointer-word boundaries, neither mark_maybe_pointer
4602 nor mark_maybe_object can follow the pointers. This should not occur on
4603 any practical porting target. */
4604# error "MSB type bits straddle pointer-word boundaries"
4605# endif
4606 /* Marking via C pointers does not suffice, because Lisp_Objects contain
4607 pointer words that hold pointers ORed with type bits. */
4608# define POINTERS_MIGHT_HIDE_IN_OBJECTS 1
4609#else
4610 /* Marking via C pointers suffices, because Lisp_Objects contain pointer
4611 words that hold unmodified pointers. */
4612# define POINTERS_MIGHT_HIDE_IN_OBJECTS 0
4613#endif
4614
55a314a5
YM
4615/* Mark Lisp objects referenced from the address range START+OFFSET..END
4616 or END+OFFSET..START. */
34400008 4617
e76119d7 4618static void ATTRIBUTE_NO_SANITIZE_ADDRESS
3164aeac 4619mark_memory (void *start, void *end)
34400008 4620{
ece93c02 4621 void **pp;
3164aeac 4622 int i;
34400008
GM
4623
4624#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4625 nzombies = 0;
4626#endif
4627
4628 /* Make START the pointer to the start of the memory region,
4629 if it isn't already. */
4630 if (end < start)
4631 {
4632 void *tem = start;
4633 start = end;
4634 end = tem;
4635 }
ece93c02 4636
ece93c02
GM
4637 /* Mark Lisp data pointed to. This is necessary because, in some
4638 situations, the C compiler optimizes Lisp objects away, so that
4639 only a pointer to them remains. Example:
4640
4641 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
7ee72033 4642 ()
ece93c02
GM
4643 {
4644 Lisp_Object obj = build_string ("test");
4645 struct Lisp_String *s = XSTRING (obj);
4646 Fgarbage_collect ();
4647 fprintf (stderr, "test `%s'\n", s->data);
4648 return Qnil;
4649 }
4650
4651 Here, `obj' isn't really used, and the compiler optimizes it
4652 away. The only reference to the life string is through the
4653 pointer `s'. */
177c0ea7 4654
3164aeac
PE
4655 for (pp = start; (void *) pp < end; pp++)
4656 for (i = 0; i < sizeof *pp; i += GC_POINTER_ALIGNMENT)
27f3c637 4657 {
e3fb2efb
PE
4658 void *p = *(void **) ((char *) pp + i);
4659 mark_maybe_pointer (p);
4660 if (POINTERS_MIGHT_HIDE_IN_OBJECTS)
646b5f55 4661 mark_maybe_object (XIL ((intptr_t) p));
27f3c637 4662 }
182ff242
GM
4663}
4664
182ff242
GM
4665#if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4666
fce31d69
PE
4667static bool setjmp_tested_p;
4668static int longjmps_done;
182ff242
GM
4669
4670#define SETJMP_WILL_LIKELY_WORK "\
4671\n\
4672Emacs garbage collector has been changed to use conservative stack\n\
4673marking. Emacs has determined that the method it uses to do the\n\
4674marking will likely work on your system, but this isn't sure.\n\
4675\n\
4676If you are a system-programmer, or can get the help of a local wizard\n\
4677who is, please take a look at the function mark_stack in alloc.c, and\n\
4678verify that the methods used are appropriate for your system.\n\
4679\n\
d191623b 4680Please mail the result to <emacs-devel@gnu.org>.\n\
182ff242
GM
4681"
4682
4683#define SETJMP_WILL_NOT_WORK "\
4684\n\
4685Emacs garbage collector has been changed to use conservative stack\n\
4686marking. Emacs has determined that the default method it uses to do the\n\
4687marking will not work on your system. We will need a system-dependent\n\
4688solution for your system.\n\
4689\n\
4690Please take a look at the function mark_stack in alloc.c, and\n\
4691try to find a way to make it work on your system.\n\
30f637f8
DL
4692\n\
4693Note that you may get false negatives, depending on the compiler.\n\
4694In particular, you need to use -O with GCC for this test.\n\
4695\n\
d191623b 4696Please mail the result to <emacs-devel@gnu.org>.\n\
182ff242
GM
4697"
4698
4699
4700/* Perform a quick check if it looks like setjmp saves registers in a
4701 jmp_buf. Print a message to stderr saying so. When this test
4702 succeeds, this is _not_ a proof that setjmp is sufficient for
4703 conservative stack marking. Only the sources or a disassembly
4704 can prove that. */
4705
4706static void
2018939f 4707test_setjmp (void)
182ff242
GM
4708{
4709 char buf[10];
4710 register int x;
0328b6de 4711 sys_jmp_buf jbuf;
182ff242
GM
4712
4713 /* Arrange for X to be put in a register. */
4714 sprintf (buf, "1");
4715 x = strlen (buf);
4716 x = 2 * x - 1;
4717
0328b6de 4718 sys_setjmp (jbuf);
182ff242 4719 if (longjmps_done == 1)
34400008 4720 {
182ff242 4721 /* Came here after the longjmp at the end of the function.
34400008 4722
182ff242
GM
4723 If x == 1, the longjmp has restored the register to its
4724 value before the setjmp, and we can hope that setjmp
4725 saves all such registers in the jmp_buf, although that
4726 isn't sure.
34400008 4727
182ff242
GM
4728 For other values of X, either something really strange is
4729 taking place, or the setjmp just didn't save the register. */
4730
4731 if (x == 1)
4732 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
4733 else
4734 {
4735 fprintf (stderr, SETJMP_WILL_NOT_WORK);
4736 exit (1);
34400008
GM
4737 }
4738 }
182ff242
GM
4739
4740 ++longjmps_done;
4741 x = 2;
4742 if (longjmps_done == 1)
0328b6de 4743 sys_longjmp (jbuf, 1);
34400008
GM
4744}
4745
182ff242
GM
4746#endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
4747
34400008
GM
4748
4749#if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4750
4751/* Abort if anything GCPRO'd doesn't survive the GC. */
4752
4753static void
2018939f 4754check_gcpros (void)
34400008
GM
4755{
4756 struct gcpro *p;
f66c7cf8 4757 ptrdiff_t i;
34400008
GM
4758
4759 for (p = gcprolist; p; p = p->next)
4760 for (i = 0; i < p->nvars; ++i)
4761 if (!survives_gc_p (p->var[i]))
92cc28b2
SM
4762 /* FIXME: It's not necessarily a bug. It might just be that the
4763 GCPRO is unnecessary or should release the object sooner. */
1088b922 4764 emacs_abort ();
34400008
GM
4765}
4766
4767#elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4768
0c5307b0 4769void
2018939f 4770dump_zombies (void)
34400008
GM
4771{
4772 int i;
4773
6e4b3fbe 4774 fprintf (stderr, "\nZombies kept alive = %"pI"d:\n", nzombies);
34400008
GM
4775 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
4776 {
4777 fprintf (stderr, " %d = ", i);
4778 debug_print (zombies[i]);
4779 }
4780}
4781
4782#endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4783
4784
182ff242
GM
4785/* Mark live Lisp objects on the C stack.
4786
4787 There are several system-dependent problems to consider when
4788 porting this to new architectures:
4789
4790 Processor Registers
4791
4792 We have to mark Lisp objects in CPU registers that can hold local
4793 variables or are used to pass parameters.
4794
4795 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4796 something that either saves relevant registers on the stack, or
4797 calls mark_maybe_object passing it each register's contents.
4798
4799 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4800 implementation assumes that calling setjmp saves registers we need
4801 to see in a jmp_buf which itself lies on the stack. This doesn't
4802 have to be true! It must be verified for each system, possibly
4803 by taking a look at the source code of setjmp.
4804
2018939f
AS
4805 If __builtin_unwind_init is available (defined by GCC >= 2.8) we
4806 can use it as a machine independent method to store all registers
4807 to the stack. In this case the macros described in the previous
4808 two paragraphs are not used.
4809
182ff242
GM
4810 Stack Layout
4811
4812 Architectures differ in the way their processor stack is organized.
4813 For example, the stack might look like this
4814
4815 +----------------+
4816 | Lisp_Object | size = 4
4817 +----------------+
4818 | something else | size = 2
4819 +----------------+
4820 | Lisp_Object | size = 4
4821 +----------------+
4822 | ... |
4823
4824 In such a case, not every Lisp_Object will be aligned equally. To
4825 find all Lisp_Object on the stack it won't be sufficient to walk
4826 the stack in steps of 4 bytes. Instead, two passes will be
4827 necessary, one starting at the start of the stack, and a second
4828 pass starting at the start of the stack + 2. Likewise, if the
4829 minimal alignment of Lisp_Objects on the stack is 1, four passes
4830 would be necessary, each one starting with one byte more offset
c9af454e 4831 from the stack start. */
34400008
GM
4832
4833static void
971de7fb 4834mark_stack (void)
34400008 4835{
34400008
GM
4836 void *end;
4837
2018939f
AS
4838#ifdef HAVE___BUILTIN_UNWIND_INIT
4839 /* Force callee-saved registers and register windows onto the stack.
4840 This is the preferred method if available, obviating the need for
4841 machine dependent methods. */
4842 __builtin_unwind_init ();
4843 end = &end;
4844#else /* not HAVE___BUILTIN_UNWIND_INIT */
dff45157
PE
4845#ifndef GC_SAVE_REGISTERS_ON_STACK
4846 /* jmp_buf may not be aligned enough on darwin-ppc64 */
4847 union aligned_jmpbuf {
4848 Lisp_Object o;
0328b6de 4849 sys_jmp_buf j;
dff45157 4850 } j;
fce31d69 4851 volatile bool stack_grows_down_p = (char *) &j > (char *) stack_base;
dff45157 4852#endif
34400008
GM
4853 /* This trick flushes the register windows so that all the state of
4854 the process is contained in the stack. */
ab6780cd 4855 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
422eec7e
DL
4856 needed on ia64 too. See mach_dep.c, where it also says inline
4857 assembler doesn't work with relevant proprietary compilers. */
4a00783e 4858#ifdef __sparc__
4d18a7a2
DN
4859#if defined (__sparc64__) && defined (__FreeBSD__)
4860 /* FreeBSD does not have a ta 3 handler. */
4c1616be
CY
4861 asm ("flushw");
4862#else
34400008 4863 asm ("ta 3");
4c1616be 4864#endif
34400008 4865#endif
177c0ea7 4866
34400008
GM
4867 /* Save registers that we need to see on the stack. We need to see
4868 registers used to hold register variables and registers used to
4869 pass parameters. */
4870#ifdef GC_SAVE_REGISTERS_ON_STACK
4871 GC_SAVE_REGISTERS_ON_STACK (end);
182ff242 4872#else /* not GC_SAVE_REGISTERS_ON_STACK */
177c0ea7 4873
182ff242
GM
4874#ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
4875 setjmp will definitely work, test it
4876 and print a message with the result
4877 of the test. */
4878 if (!setjmp_tested_p)
4879 {
4880 setjmp_tested_p = 1;
4881 test_setjmp ();
4882 }
4883#endif /* GC_SETJMP_WORKS */
177c0ea7 4884
0328b6de 4885 sys_setjmp (j.j);
34400008 4886 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
182ff242 4887#endif /* not GC_SAVE_REGISTERS_ON_STACK */
2018939f 4888#endif /* not HAVE___BUILTIN_UNWIND_INIT */
34400008
GM
4889
4890 /* This assumes that the stack is a contiguous region in memory. If
182ff242
GM
4891 that's not the case, something has to be done here to iterate
4892 over the stack segments. */
3164aeac
PE
4893 mark_memory (stack_base, end);
4894
4dec23ff
AS
4895 /* Allow for marking a secondary stack, like the register stack on the
4896 ia64. */
4897#ifdef GC_MARK_SECONDARY_STACK
4898 GC_MARK_SECONDARY_STACK ();
4899#endif
34400008
GM
4900
4901#if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4902 check_gcpros ();
4903#endif
4904}
4905
0c5307b0
DA
4906#else /* GC_MARK_STACK == 0 */
4907
4908#define mark_maybe_object(obj) emacs_abort ()
4909
34400008
GM
4910#endif /* GC_MARK_STACK != 0 */
4911
4912
7ffb6955 4913/* Determine whether it is safe to access memory at address P. */
d3d47262 4914static int
971de7fb 4915valid_pointer_p (void *p)
7ffb6955 4916{
f892cf9c
EZ
4917#ifdef WINDOWSNT
4918 return w32_valid_pointer_p (p, 16);
4919#else
41bed37d 4920 int fd[2];
7ffb6955
KS
4921
4922 /* Obviously, we cannot just access it (we would SEGV trying), so we
4923 trick the o/s to tell us whether p is a valid pointer.
4924 Unfortunately, we cannot use NULL_DEVICE here, as emacs_write may
4925 not validate p in that case. */
4926
c7ddc792 4927 if (emacs_pipe (fd) == 0)
7ffb6955 4928 {
223752d7 4929 bool valid = emacs_write (fd[1], p, 16) == 16;
41bed37d
PE
4930 emacs_close (fd[1]);
4931 emacs_close (fd[0]);
7ffb6955
KS
4932 return valid;
4933 }
4934
4935 return -1;
f892cf9c 4936#endif
7ffb6955 4937}
3cd55735 4938
6cda572a
DA
4939/* Return 2 if OBJ is a killed or special buffer object, 1 if OBJ is a
4940 valid lisp object, 0 if OBJ is NOT a valid lisp object, or -1 if we
4941 cannot validate OBJ. This function can be quite slow, so its primary
4942 use is the manual debugging. The only exception is print_object, where
4943 we use it to check whether the memory referenced by the pointer of
4944 Lisp_Save_Value object contains valid objects. */
3cd55735
KS
4945
4946int
971de7fb 4947valid_lisp_object_p (Lisp_Object obj)
3cd55735 4948{
de7124a7 4949 void *p;
7ffb6955 4950#if GC_MARK_STACK
3cd55735 4951 struct mem_node *m;
de7124a7 4952#endif
3cd55735
KS
4953
4954 if (INTEGERP (obj))
4955 return 1;
4956
4957 p = (void *) XPNTR (obj);
3cd55735
KS
4958 if (PURE_POINTER_P (p))
4959 return 1;
4960
c1ca42ca
DA
4961 if (p == &buffer_defaults || p == &buffer_local_symbols)
4962 return 2;
4963
de7124a7 4964#if !GC_MARK_STACK
7ffb6955 4965 return valid_pointer_p (p);
de7124a7
KS
4966#else
4967
3cd55735
KS
4968 m = mem_find (p);
4969
4970 if (m == MEM_NIL)
7ffb6955
KS
4971 {
4972 int valid = valid_pointer_p (p);
4973 if (valid <= 0)
4974 return valid;
4975
4976 if (SUBRP (obj))
4977 return 1;
4978
4979 return 0;
4980 }
3cd55735
KS
4981
4982 switch (m->type)
4983 {
4984 case MEM_TYPE_NON_LISP:
5474c384 4985 case MEM_TYPE_SPARE:
3cd55735
KS
4986 return 0;
4987
4988 case MEM_TYPE_BUFFER:
c1ca42ca 4989 return live_buffer_p (m, p) ? 1 : 2;
3cd55735
KS
4990
4991 case MEM_TYPE_CONS:
4992 return live_cons_p (m, p);
4993
4994 case MEM_TYPE_STRING:
4995 return live_string_p (m, p);
4996
4997 case MEM_TYPE_MISC:
4998 return live_misc_p (m, p);
4999
5000 case MEM_TYPE_SYMBOL:
5001 return live_symbol_p (m, p);
5002
5003 case MEM_TYPE_FLOAT:
5004 return live_float_p (m, p);
5005
9c545a55 5006 case MEM_TYPE_VECTORLIKE:
f3372c87 5007 case MEM_TYPE_VECTOR_BLOCK:
3cd55735
KS
5008 return live_vector_p (m, p);
5009
5010 default:
5011 break;
5012 }
5013
5014 return 0;
5015#endif
5016}
5017
5018
5019
34400008 5020\f
2e471eb5
GM
5021/***********************************************************************
5022 Pure Storage Management
5023 ***********************************************************************/
5024
1f0b3fd2
GM
5025/* Allocate room for SIZE bytes from pure Lisp storage and return a
5026 pointer to it. TYPE is the Lisp type for which the memory is
e5bc14d4 5027 allocated. TYPE < 0 means it's not used for a Lisp object. */
1f0b3fd2 5028
261cb4bb 5029static void *
971de7fb 5030pure_alloc (size_t size, int type)
1f0b3fd2 5031{
261cb4bb 5032 void *result;
bfe3e0a2 5033#if USE_LSB_TAG
2b90362b 5034 size_t alignment = GCALIGNMENT;
6b61353c 5035#else
e32a5799 5036 size_t alignment = alignof (EMACS_INT);
1f0b3fd2
GM
5037
5038 /* Give Lisp_Floats an extra alignment. */
5039 if (type == Lisp_Float)
e32a5799 5040 alignment = alignof (struct Lisp_Float);
6b61353c 5041#endif
1f0b3fd2 5042
44117420 5043 again:
e5bc14d4
YM
5044 if (type >= 0)
5045 {
5046 /* Allocate space for a Lisp object from the beginning of the free
5047 space with taking account of alignment. */
5048 result = ALIGN (purebeg + pure_bytes_used_lisp, alignment);
5049 pure_bytes_used_lisp = ((char *)result - (char *)purebeg) + size;
5050 }
5051 else
5052 {
5053 /* Allocate space for a non-Lisp object from the end of the free
5054 space. */
5055 pure_bytes_used_non_lisp += size;
5056 result = purebeg + pure_size - pure_bytes_used_non_lisp;
5057 }
5058 pure_bytes_used = pure_bytes_used_lisp + pure_bytes_used_non_lisp;
44117420
KS
5059
5060 if (pure_bytes_used <= pure_size)
5061 return result;
5062
5063 /* Don't allocate a large amount here,
5064 because it might get mmap'd and then its address
5065 might not be usable. */
23f86fce 5066 purebeg = xmalloc (10000);
44117420
KS
5067 pure_size = 10000;
5068 pure_bytes_used_before_overflow += pure_bytes_used - size;
5069 pure_bytes_used = 0;
e5bc14d4 5070 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
44117420 5071 goto again;
1f0b3fd2
GM
5072}
5073
5074
852f8cdc 5075/* Print a warning if PURESIZE is too small. */
9e713715
GM
5076
5077void
971de7fb 5078check_pure_size (void)
9e713715
GM
5079{
5080 if (pure_bytes_used_before_overflow)
c2982e87
PE
5081 message (("emacs:0:Pure Lisp storage overflow (approx. %"pI"d"
5082 " bytes needed)"),
5083 pure_bytes_used + pure_bytes_used_before_overflow);
9e713715
GM
5084}
5085
5086
79fd0489
YM
5087/* Find the byte sequence {DATA[0], ..., DATA[NBYTES-1], '\0'} from
5088 the non-Lisp data pool of the pure storage, and return its start
5089 address. Return NULL if not found. */
5090
5091static char *
d311d28c 5092find_string_data_in_pure (const char *data, ptrdiff_t nbytes)
79fd0489 5093{
14162469 5094 int i;
d311d28c 5095 ptrdiff_t skip, bm_skip[256], last_char_skip, infinity, start, start_max;
2aff7c53 5096 const unsigned char *p;
79fd0489
YM
5097 char *non_lisp_beg;
5098
d311d28c 5099 if (pure_bytes_used_non_lisp <= nbytes)
79fd0489
YM
5100 return NULL;
5101
5102 /* Set up the Boyer-Moore table. */
5103 skip = nbytes + 1;
5104 for (i = 0; i < 256; i++)
5105 bm_skip[i] = skip;
5106
2aff7c53 5107 p = (const unsigned char *) data;
79fd0489
YM
5108 while (--skip > 0)
5109 bm_skip[*p++] = skip;
5110
5111 last_char_skip = bm_skip['\0'];
5112
5113 non_lisp_beg = purebeg + pure_size - pure_bytes_used_non_lisp;
5114 start_max = pure_bytes_used_non_lisp - (nbytes + 1);
5115
5116 /* See the comments in the function `boyer_moore' (search.c) for the
5117 use of `infinity'. */
5118 infinity = pure_bytes_used_non_lisp + 1;
5119 bm_skip['\0'] = infinity;
5120
2aff7c53 5121 p = (const unsigned char *) non_lisp_beg + nbytes;
79fd0489
YM
5122 start = 0;
5123 do
5124 {
5125 /* Check the last character (== '\0'). */
5126 do
5127 {
5128 start += bm_skip[*(p + start)];
5129 }
5130 while (start <= start_max);
5131
5132 if (start < infinity)
5133 /* Couldn't find the last character. */
5134 return NULL;
5135
5136 /* No less than `infinity' means we could find the last
5137 character at `p[start - infinity]'. */
5138 start -= infinity;
5139
5140 /* Check the remaining characters. */
5141 if (memcmp (data, non_lisp_beg + start, nbytes) == 0)
5142 /* Found. */
5143 return non_lisp_beg + start;
5144
5145 start += last_char_skip;
5146 }
5147 while (start <= start_max);
5148
5149 return NULL;
5150}
5151
5152
2e471eb5
GM
5153/* Return a string allocated in pure space. DATA is a buffer holding
5154 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
fce31d69 5155 means make the result string multibyte.
1a4f1e2c 5156
2e471eb5
GM
5157 Must get an error if pure storage is full, since if it cannot hold
5158 a large string it may be able to hold conses that point to that
5159 string; then the string is not protected from gc. */
7146af97
JB
5160
5161Lisp_Object
14162469 5162make_pure_string (const char *data,
fce31d69 5163 ptrdiff_t nchars, ptrdiff_t nbytes, bool multibyte)
7146af97 5164{
2e471eb5 5165 Lisp_Object string;
98c6f1e3 5166 struct Lisp_String *s = pure_alloc (sizeof *s, Lisp_String);
90256841 5167 s->data = (unsigned char *) find_string_data_in_pure (data, nbytes);
79fd0489
YM
5168 if (s->data == NULL)
5169 {
98c6f1e3 5170 s->data = pure_alloc (nbytes + 1, -1);
72af86bd 5171 memcpy (s->data, data, nbytes);
79fd0489
YM
5172 s->data[nbytes] = '\0';
5173 }
2e471eb5
GM
5174 s->size = nchars;
5175 s->size_byte = multibyte ? nbytes : -1;
77c7bcb1 5176 s->intervals = NULL;
2e471eb5
GM
5177 XSETSTRING (string, s);
5178 return string;
7146af97
JB
5179}
5180
2a0213a6
DA
5181/* Return a string allocated in pure space. Do not
5182 allocate the string data, just point to DATA. */
a56eaaef
DN
5183
5184Lisp_Object
2a0213a6 5185make_pure_c_string (const char *data, ptrdiff_t nchars)
a56eaaef
DN
5186{
5187 Lisp_Object string;
98c6f1e3 5188 struct Lisp_String *s = pure_alloc (sizeof *s, Lisp_String);
a56eaaef
DN
5189 s->size = nchars;
5190 s->size_byte = -1;
323637a2 5191 s->data = (unsigned char *) data;
77c7bcb1 5192 s->intervals = NULL;
a56eaaef
DN
5193 XSETSTRING (string, s);
5194 return string;
5195}
2e471eb5 5196
e3b83880
SM
5197static Lisp_Object purecopy (Lisp_Object obj);
5198
34400008
GM
5199/* Return a cons allocated from pure space. Give it pure copies
5200 of CAR as car and CDR as cdr. */
5201
7146af97 5202Lisp_Object
971de7fb 5203pure_cons (Lisp_Object car, Lisp_Object cdr)
7146af97 5204{
98c6f1e3
PE
5205 Lisp_Object new;
5206 struct Lisp_Cons *p = pure_alloc (sizeof *p, Lisp_Cons);
1f0b3fd2 5207 XSETCONS (new, p);
e3b83880
SM
5208 XSETCAR (new, purecopy (car));
5209 XSETCDR (new, purecopy (cdr));
7146af97
JB
5210 return new;
5211}
5212
7146af97 5213
34400008
GM
5214/* Value is a float object with value NUM allocated from pure space. */
5215
d3d47262 5216static Lisp_Object
971de7fb 5217make_pure_float (double num)
7146af97 5218{
98c6f1e3
PE
5219 Lisp_Object new;
5220 struct Lisp_Float *p = pure_alloc (sizeof *p, Lisp_Float);
1f0b3fd2 5221 XSETFLOAT (new, p);
f601cdf3 5222 XFLOAT_INIT (new, num);
7146af97
JB
5223 return new;
5224}
5225
34400008
GM
5226
5227/* Return a vector with room for LEN Lisp_Objects allocated from
5228 pure space. */
5229
72cb32cf 5230static Lisp_Object
d311d28c 5231make_pure_vector (ptrdiff_t len)
7146af97 5232{
1f0b3fd2 5233 Lisp_Object new;
d06714cb 5234 size_t size = header_size + len * word_size;
98c6f1e3 5235 struct Lisp_Vector *p = pure_alloc (size, Lisp_Vectorlike);
1f0b3fd2 5236 XSETVECTOR (new, p);
eab3844f 5237 XVECTOR (new)->header.size = len;
7146af97
JB
5238 return new;
5239}
5240
34400008 5241
a7ca3326 5242DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
909e3b33 5243 doc: /* Make a copy of object OBJ in pure storage.
228299fa 5244Recursively copies contents of vectors and cons cells.
7ee72033 5245Does not copy symbols. Copies strings without text properties. */)
5842a27b 5246 (register Lisp_Object obj)
7146af97 5247{
265a9e55 5248 if (NILP (Vpurify_flag))
7146af97 5249 return obj;
e3b83880
SM
5250 else if (MARKERP (obj) || OVERLAYP (obj)
5251 || HASH_TABLE_P (obj) || SYMBOLP (obj))
5252 /* Can't purify those. */
7146af97 5253 return obj;
e3b83880
SM
5254 else
5255 return purecopy (obj);
5256}
5257
5258static Lisp_Object
5259purecopy (Lisp_Object obj)
5260{
5261 if (PURE_POINTER_P (XPNTR (obj)) || INTEGERP (obj) || SUBRP (obj))
5262 return obj; /* Already pure. */
7146af97 5263
e9515805
SM
5264 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5265 {
5266 Lisp_Object tmp = Fgethash (obj, Vpurify_flag, Qnil);
5267 if (!NILP (tmp))
5268 return tmp;
5269 }
5270
d6dd74bb 5271 if (CONSP (obj))
e9515805 5272 obj = pure_cons (XCAR (obj), XCDR (obj));
d6dd74bb 5273 else if (FLOATP (obj))
e9515805 5274 obj = make_pure_float (XFLOAT_DATA (obj));
d6dd74bb 5275 else if (STRINGP (obj))
42a5b22f 5276 obj = make_pure_string (SSDATA (obj), SCHARS (obj),
e9515805
SM
5277 SBYTES (obj),
5278 STRING_MULTIBYTE (obj));
876c194c 5279 else if (COMPILEDP (obj) || VECTORP (obj))
d6dd74bb
KH
5280 {
5281 register struct Lisp_Vector *vec;
d311d28c
PE
5282 register ptrdiff_t i;
5283 ptrdiff_t size;
d6dd74bb 5284
77b37c05 5285 size = ASIZE (obj);
7d535c68
KH
5286 if (size & PSEUDOVECTOR_FLAG)
5287 size &= PSEUDOVECTOR_SIZE_MASK;
6b61353c 5288 vec = XVECTOR (make_pure_vector (size));
d6dd74bb 5289 for (i = 0; i < size; i++)
e3b83880 5290 vec->contents[i] = purecopy (AREF (obj, i));
876c194c 5291 if (COMPILEDP (obj))
985773c9 5292 {
876c194c
SM
5293 XSETPVECTYPE (vec, PVEC_COMPILED);
5294 XSETCOMPILED (obj, vec);
985773c9 5295 }
d6dd74bb
KH
5296 else
5297 XSETVECTOR (obj, vec);
7146af97 5298 }
e3b83880
SM
5299 else if (SYMBOLP (obj))
5300 {
5301 if (!XSYMBOL (obj)->pinned)
5302 { /* We can't purify them, but they appear in many pure objects.
5303 Mark them as `pinned' so we know to mark them at every GC cycle. */
5304 XSYMBOL (obj)->pinned = true;
5305 symbol_block_pinned = symbol_block;
5306 }
5307 return obj;
5308 }
e9515805 5309 else
e3b83880
SM
5310 {
5311 Lisp_Object args[2];
5312 args[0] = build_pure_c_string ("Don't know how to purify: %S");
5313 args[1] = obj;
5314 Fsignal (Qerror, (Fcons (Fformat (2, args), Qnil)));
5315 }
e9515805
SM
5316
5317 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5318 Fputhash (obj, obj, Vpurify_flag);
6bbd7a29
GM
5319
5320 return obj;
7146af97 5321}
2e471eb5 5322
34400008 5323
7146af97 5324\f
34400008
GM
5325/***********************************************************************
5326 Protection from GC
5327 ***********************************************************************/
5328
2e471eb5
GM
5329/* Put an entry in staticvec, pointing at the variable with address
5330 VARADDRESS. */
7146af97
JB
5331
5332void
971de7fb 5333staticpro (Lisp_Object *varaddress)
7146af97 5334{
7146af97 5335 if (staticidx >= NSTATICS)
afb8aa24 5336 fatal ("NSTATICS too small; try increasing and recompiling Emacs.");
4195afc3 5337 staticvec[staticidx++] = varaddress;
7146af97
JB
5338}
5339
7146af97 5340\f
34400008
GM
5341/***********************************************************************
5342 Protection from GC
5343 ***********************************************************************/
1a4f1e2c 5344
e8197642
RS
5345/* Temporarily prevent garbage collection. */
5346
d311d28c 5347ptrdiff_t
971de7fb 5348inhibit_garbage_collection (void)
e8197642 5349{
d311d28c 5350 ptrdiff_t count = SPECPDL_INDEX ();
54defd0d 5351
6349ae4d 5352 specbind (Qgc_cons_threshold, make_number (MOST_POSITIVE_FIXNUM));
e8197642
RS
5353 return count;
5354}
5355
3ab6e069
DA
5356/* Used to avoid possible overflows when
5357 converting from C to Lisp integers. */
5358
b0ab8123 5359static Lisp_Object
3ab6e069
DA
5360bounded_number (EMACS_INT number)
5361{
5362 return make_number (min (MOST_POSITIVE_FIXNUM, number));
5363}
34400008 5364
12b3895d
TM
5365/* Calculate total bytes of live objects. */
5366
5367static size_t
5368total_bytes_of_live_objects (void)
5369{
5370 size_t tot = 0;
5371 tot += total_conses * sizeof (struct Lisp_Cons);
5372 tot += total_symbols * sizeof (struct Lisp_Symbol);
5373 tot += total_markers * sizeof (union Lisp_Misc);
5374 tot += total_string_bytes;
5375 tot += total_vector_slots * word_size;
5376 tot += total_floats * sizeof (struct Lisp_Float);
5377 tot += total_intervals * sizeof (struct interval);
5378 tot += total_strings * sizeof (struct Lisp_String);
5379 return tot;
5380}
5381
fc54bdd5
DA
5382#ifdef HAVE_WINDOW_SYSTEM
5383
5ae356d9
DA
5384/* This code has a few issues on MS-Windows, see Bug#15876 and Bug#16140. */
5385
5386#if !defined (HAVE_NTGUI)
5387
fc54bdd5
DA
5388/* Remove unmarked font-spec and font-entity objects from ENTRY, which is
5389 (DRIVER-TYPE NUM-FRAMES FONT-CACHE-DATA ...), and return changed entry. */
5390
5391static Lisp_Object
5392compact_font_cache_entry (Lisp_Object entry)
5393{
5394 Lisp_Object tail, *prev = &entry;
5395
5396 for (tail = entry; CONSP (tail); tail = XCDR (tail))
5397 {
5398 bool drop = 0;
5399 Lisp_Object obj = XCAR (tail);
5400
5401 /* Consider OBJ if it is (font-spec . [font-entity font-entity ...]). */
5402 if (CONSP (obj) && FONT_SPEC_P (XCAR (obj))
5403 && !VECTOR_MARKED_P (XFONT_SPEC (XCAR (obj)))
5404 && VECTORP (XCDR (obj)))
5405 {
5406 ptrdiff_t i, size = ASIZE (XCDR (obj)) & ~ARRAY_MARK_FLAG;
5407
5408 /* If font-spec is not marked, most likely all font-entities
5409 are not marked too. But we must be sure that nothing is
5410 marked within OBJ before we really drop it. */
5411 for (i = 0; i < size; i++)
5412 if (VECTOR_MARKED_P (XFONT_ENTITY (AREF (XCDR (obj), i))))
5413 break;
5414
5415 if (i == size)
5416 drop = 1;
5417 }
5418 if (drop)
5419 *prev = XCDR (tail);
5420 else
5421 prev = xcdr_addr (tail);
5422 }
5423 return entry;
5424}
5425
5ae356d9
DA
5426#endif /* not HAVE_NTGUI */
5427
fc54bdd5
DA
5428/* Compact font caches on all terminals and mark
5429 everything which is still here after compaction. */
5430
5431static void
5432compact_font_caches (void)
5433{
5434 struct terminal *t;
5435
5436 for (t = terminal_list; t; t = t->next_terminal)
5437 {
5438 Lisp_Object cache = TERMINAL_FONT_CACHE (t);
5ae356d9 5439#if !defined (HAVE_NTGUI)
fc54bdd5
DA
5440 if (CONSP (cache))
5441 {
5442 Lisp_Object entry;
5443
5444 for (entry = XCDR (cache); CONSP (entry); entry = XCDR (entry))
5445 XSETCAR (entry, compact_font_cache_entry (XCAR (entry)));
5446 }
5ae356d9 5447#endif /* not HAVE_NTGUI */
fc54bdd5
DA
5448 mark_object (cache);
5449 }
5450}
5451
5452#else /* not HAVE_WINDOW_SYSTEM */
5453
5454#define compact_font_caches() (void)(0)
5455
5456#endif /* HAVE_WINDOW_SYSTEM */
5457
5458/* Remove (MARKER . DATA) entries with unmarked MARKER
5459 from buffer undo LIST and return changed list. */
5460
5461static Lisp_Object
5462compact_undo_list (Lisp_Object list)
5463{
5464 Lisp_Object tail, *prev = &list;
5465
5466 for (tail = list; CONSP (tail); tail = XCDR (tail))
5467 {
5468 if (CONSP (XCAR (tail))
5469 && MARKERP (XCAR (XCAR (tail)))
5470 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
5471 *prev = XCDR (tail);
5472 else
5473 prev = xcdr_addr (tail);
5474 }
5475 return list;
5476}
5477
e3b83880
SM
5478static void
5479mark_pinned_symbols (void)
5480{
5481 struct symbol_block *sblk;
5482 int lim = (symbol_block_pinned == symbol_block
5483 ? symbol_block_index : SYMBOL_BLOCK_SIZE);
5484
5485 for (sblk = symbol_block_pinned; sblk; sblk = sblk->next)
5486 {
5487 union aligned_Lisp_Symbol *sym = sblk->symbols, *end = sym + lim;
5488 for (; sym < end; ++sym)
5489 if (sym->s.pinned)
5490 mark_object (make_lisp_ptr (&sym->s, Lisp_Symbol));
5491
5492 lim = SYMBOL_BLOCK_SIZE;
5493 }
5494}
5495
a7ca3326 5496DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
7ee72033 5497 doc: /* Reclaim storage for Lisp objects no longer needed.
e1e37596
RS
5498Garbage collection happens automatically if you cons more than
5499`gc-cons-threshold' bytes of Lisp data since previous garbage collection.
5db81e33
SM
5500`garbage-collect' normally returns a list with info on amount of space in use,
5501where each entry has the form (NAME SIZE USED FREE), where:
5502- NAME is a symbol describing the kind of objects this entry represents,
5503- SIZE is the number of bytes used by each one,
5504- USED is the number of those objects that were found live in the heap,
5505- FREE is the number of those objects that are not live but that Emacs
5506 keeps around for future allocations (maybe because it does not know how
5507 to return them to the OS).
e1e37596 5508However, if there was overflow in pure space, `garbage-collect'
999dd333
GM
5509returns nil, because real GC can't be done.
5510See Info node `(elisp)Garbage Collection'. */)
5842a27b 5511 (void)
7146af97 5512{
fce31d69 5513 struct buffer *nextb;
7146af97 5514 char stack_top_variable;
f66c7cf8 5515 ptrdiff_t i;
fce31d69 5516 bool message_p;
d311d28c 5517 ptrdiff_t count = SPECPDL_INDEX ();
43aac990 5518 struct timespec start;
fecbd8ff 5519 Lisp_Object retval = Qnil;
12b3895d 5520 size_t tot_before = 0;
2c5bd608 5521
3de0effb 5522 if (abort_on_gc)
1088b922 5523 emacs_abort ();
3de0effb 5524
9e713715
GM
5525 /* Can't GC if pure storage overflowed because we can't determine
5526 if something is a pure object or not. */
5527 if (pure_bytes_used_before_overflow)
5528 return Qnil;
5529
3d80c99f 5530 /* Record this function, so it appears on the profiler's backtraces. */
2f592f95 5531 record_in_backtrace (Qautomatic_gc, &Qnil, 0);
3d80c99f 5532
7e63e0c3 5533 check_cons_list ();
bbc012e0 5534
3c7e66a8
RS
5535 /* Don't keep undo information around forever.
5536 Do this early on, so it is no problem if the user quits. */
52b852c7 5537 FOR_EACH_BUFFER (nextb)
9cd47b72 5538 compact_buffer (nextb);
3c7e66a8 5539
6521894d 5540 if (profiler_memory_running)
12b3895d
TM
5541 tot_before = total_bytes_of_live_objects ();
5542
43aac990 5543 start = current_timespec ();
3c7e66a8 5544
58595309
KH
5545 /* In case user calls debug_print during GC,
5546 don't let that cause a recursive GC. */
5547 consing_since_gc = 0;
5548
6efc7df7
GM
5549 /* Save what's currently displayed in the echo area. */
5550 message_p = push_message ();
27e498e6 5551 record_unwind_protect_void (pop_message_unwind);
41c28a37 5552
7146af97
JB
5553 /* Save a copy of the contents of the stack, for debugging. */
5554#if MAX_SAVE_STACK > 0
265a9e55 5555 if (NILP (Vpurify_flag))
7146af97 5556 {
dd3f25f7 5557 char *stack;
903fe15d 5558 ptrdiff_t stack_size;
dd3f25f7 5559 if (&stack_top_variable < stack_bottom)
7146af97 5560 {
dd3f25f7
PE
5561 stack = &stack_top_variable;
5562 stack_size = stack_bottom - &stack_top_variable;
5563 }
5564 else
5565 {
5566 stack = stack_bottom;
5567 stack_size = &stack_top_variable - stack_bottom;
5568 }
5569 if (stack_size <= MAX_SAVE_STACK)
7146af97 5570 {
dd3f25f7 5571 if (stack_copy_size < stack_size)
7146af97 5572 {
38182d90 5573 stack_copy = xrealloc (stack_copy, stack_size);
dd3f25f7 5574 stack_copy_size = stack_size;
7146af97 5575 }
e76119d7 5576 no_sanitize_memcpy (stack_copy, stack, stack_size);
7146af97
JB
5577 }
5578 }
5579#endif /* MAX_SAVE_STACK > 0 */
5580
299585ee 5581 if (garbage_collection_messages)
691c4285 5582 message1_nolog ("Garbage collecting...");
7146af97 5583
4d7e6e51 5584 block_input ();
6e0fca1d 5585
eec7b73d
RS
5586 shrink_regexp_cache ();
5587
7146af97
JB
5588 gc_in_progress = 1;
5589
005ca5c7 5590 /* Mark all the special slots that serve as the roots of accessibility. */
7146af97 5591
c752cfa9
DA
5592 mark_buffer (&buffer_defaults);
5593 mark_buffer (&buffer_local_symbols);
5594
7146af97 5595 for (i = 0; i < staticidx; i++)
49723c04 5596 mark_object (*staticvec[i]);
34400008 5597
e3b83880 5598 mark_pinned_symbols ();
2f592f95 5599 mark_specpdl ();
6ed8eeff 5600 mark_terminals ();
126f9c02
SM
5601 mark_kboards ();
5602
5603#ifdef USE_GTK
a411ac43 5604 xg_mark_data ();
126f9c02
SM
5605#endif
5606
34400008
GM
5607#if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
5608 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
5609 mark_stack ();
5610#else
acf5f7d3
SM
5611 {
5612 register struct gcpro *tail;
5613 for (tail = gcprolist; tail; tail = tail->next)
5614 for (i = 0; i < tail->nvars; i++)
005ca5c7 5615 mark_object (tail->var[i]);
acf5f7d3 5616 }
3e21b6a7 5617 mark_byte_stack ();
adf2aa61 5618#endif
b286858c 5619 {
b286858c 5620 struct handler *handler;
adf2aa61
SM
5621 for (handler = handlerlist; handler; handler = handler->next)
5622 {
5623 mark_object (handler->tag_or_ch);
5624 mark_object (handler->val);
5625 }
b286858c 5626 }
454d7973
KS
5627#ifdef HAVE_WINDOW_SYSTEM
5628 mark_fringe_data ();
5629#endif
5630
74c35a48
SM
5631#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5632 mark_stack ();
5633#endif
5634
fc54bdd5
DA
5635 /* Everything is now marked, except for the data in font caches
5636 and undo lists. They're compacted by removing an items which
5637 aren't reachable otherwise. */
5638
5639 compact_font_caches ();
5640
52b852c7 5641 FOR_EACH_BUFFER (nextb)
d17337e5 5642 {
fc54bdd5
DA
5643 if (!EQ (BVAR (nextb, undo_list), Qt))
5644 bset_undo_list (nextb, compact_undo_list (BVAR (nextb, undo_list)));
5645 /* Now that we have stripped the elements that need not be
5646 in the undo_list any more, we can finally mark the list. */
5647 mark_object (BVAR (nextb, undo_list));
d17337e5 5648 }
4c315bda 5649
7146af97
JB
5650 gc_sweep ();
5651
5652 /* Clear the mark bits that we set in certain root slots. */
5653
033a5fa3 5654 unmark_byte_stack ();
3ef06d12
SM
5655 VECTOR_UNMARK (&buffer_defaults);
5656 VECTOR_UNMARK (&buffer_local_symbols);
7146af97 5657
34400008
GM
5658#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
5659 dump_zombies ();
5660#endif
5661
7e63e0c3 5662 check_cons_list ();
bbc012e0 5663
7146af97
JB
5664 gc_in_progress = 0;
5665
5c747675
DA
5666 unblock_input ();
5667
7146af97 5668 consing_since_gc = 0;
0dd6d66d
DA
5669 if (gc_cons_threshold < GC_DEFAULT_THRESHOLD / 10)
5670 gc_cons_threshold = GC_DEFAULT_THRESHOLD / 10;
7146af97 5671
c0c5c8ae 5672 gc_relative_threshold = 0;
96f077ad
SM
5673 if (FLOATP (Vgc_cons_percentage))
5674 { /* Set gc_cons_combined_threshold. */
12b3895d 5675 double tot = total_bytes_of_live_objects ();
ae35e756 5676
c0c5c8ae 5677 tot *= XFLOAT_DATA (Vgc_cons_percentage);
7216e43b 5678 if (0 < tot)
c0c5c8ae
PE
5679 {
5680 if (tot < TYPE_MAXIMUM (EMACS_INT))
5681 gc_relative_threshold = tot;
5682 else
5683 gc_relative_threshold = TYPE_MAXIMUM (EMACS_INT);
5684 }
96f077ad
SM
5685 }
5686
299585ee
RS
5687 if (garbage_collection_messages)
5688 {
6efc7df7
GM
5689 if (message_p || minibuf_level > 0)
5690 restore_message ();
299585ee
RS
5691 else
5692 message1_nolog ("Garbage collecting...done");
5693 }
7146af97 5694
98edb5ff 5695 unbind_to (count, Qnil);
fecbd8ff
SM
5696 {
5697 Lisp_Object total[11];
5698 int total_size = 10;
2e471eb5 5699
fecbd8ff
SM
5700 total[0] = list4 (Qconses, make_number (sizeof (struct Lisp_Cons)),
5701 bounded_number (total_conses),
5702 bounded_number (total_free_conses));
3ab6e069 5703
fecbd8ff
SM
5704 total[1] = list4 (Qsymbols, make_number (sizeof (struct Lisp_Symbol)),
5705 bounded_number (total_symbols),
5706 bounded_number (total_free_symbols));
3ab6e069 5707
fecbd8ff
SM
5708 total[2] = list4 (Qmiscs, make_number (sizeof (union Lisp_Misc)),
5709 bounded_number (total_markers),
5710 bounded_number (total_free_markers));
3ab6e069 5711
fecbd8ff
SM
5712 total[3] = list4 (Qstrings, make_number (sizeof (struct Lisp_String)),
5713 bounded_number (total_strings),
5714 bounded_number (total_free_strings));
3ab6e069 5715
fecbd8ff
SM
5716 total[4] = list3 (Qstring_bytes, make_number (1),
5717 bounded_number (total_string_bytes));
3ab6e069 5718
fbe9e0b9
PE
5719 total[5] = list3 (Qvectors,
5720 make_number (header_size + sizeof (Lisp_Object)),
fecbd8ff 5721 bounded_number (total_vectors));
5b835e1d 5722
fecbd8ff
SM
5723 total[6] = list4 (Qvector_slots, make_number (word_size),
5724 bounded_number (total_vector_slots),
5725 bounded_number (total_free_vector_slots));
5b835e1d 5726
fecbd8ff
SM
5727 total[7] = list4 (Qfloats, make_number (sizeof (struct Lisp_Float)),
5728 bounded_number (total_floats),
5729 bounded_number (total_free_floats));
3ab6e069 5730
fecbd8ff
SM
5731 total[8] = list4 (Qintervals, make_number (sizeof (struct interval)),
5732 bounded_number (total_intervals),
5733 bounded_number (total_free_intervals));
3ab6e069 5734
fecbd8ff
SM
5735 total[9] = list3 (Qbuffers, make_number (sizeof (struct buffer)),
5736 bounded_number (total_buffers));
2e471eb5 5737
f8643a6b 5738#ifdef DOUG_LEA_MALLOC
fecbd8ff
SM
5739 total_size++;
5740 total[10] = list4 (Qheap, make_number (1024),
5741 bounded_number ((mallinfo ().uordblks + 1023) >> 10),
5742 bounded_number ((mallinfo ().fordblks + 1023) >> 10));
f8643a6b 5743#endif
fecbd8ff
SM
5744 retval = Flist (total_size, total);
5745 }
f8643a6b 5746
34400008 5747#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
7146af97 5748 {
34400008 5749 /* Compute average percentage of zombies. */
fecbd8ff
SM
5750 double nlive
5751 = (total_conses + total_symbols + total_markers + total_strings
5752 + total_vectors + total_floats + total_intervals + total_buffers);
34400008
GM
5753
5754 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
5755 max_live = max (nlive, max_live);
5756 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
5757 max_zombies = max (nzombies, max_zombies);
5758 ++ngcs;
dbcf001c 5759 }
34400008 5760#endif
7146af97 5761
9e713715
GM
5762 if (!NILP (Vpost_gc_hook))
5763 {
d311d28c 5764 ptrdiff_t gc_count = inhibit_garbage_collection ();
9e713715 5765 safe_run_hooks (Qpost_gc_hook);
ae35e756 5766 unbind_to (gc_count, Qnil);
9e713715 5767 }
2c5bd608
DL
5768
5769 /* Accumulate statistics. */
2c5bd608 5770 if (FLOATP (Vgc_elapsed))
387d4d92 5771 {
43aac990 5772 struct timespec since_start = timespec_sub (current_timespec (), start);
387d4d92 5773 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed)
43aac990 5774 + timespectod (since_start));
387d4d92 5775 }
d35af63c 5776
2c5bd608
DL
5777 gcs_done++;
5778
12b3895d 5779 /* Collect profiling data. */
6521894d 5780 if (profiler_memory_running)
12b3895d
TM
5781 {
5782 size_t swept = 0;
6521894d
SM
5783 size_t tot_after = total_bytes_of_live_objects ();
5784 if (tot_before > tot_after)
5785 swept = tot_before - tot_after;
3d80c99f 5786 malloc_probe (swept);
12b3895d
TM
5787 }
5788
fecbd8ff 5789 return retval;
7146af97 5790}
34400008 5791
41c28a37 5792
3770920e
GM
5793/* Mark Lisp objects in glyph matrix MATRIX. Currently the
5794 only interesting objects referenced from glyphs are strings. */
41c28a37
GM
5795
5796static void
971de7fb 5797mark_glyph_matrix (struct glyph_matrix *matrix)
41c28a37
GM
5798{
5799 struct glyph_row *row = matrix->rows;
5800 struct glyph_row *end = row + matrix->nrows;
5801
2e471eb5
GM
5802 for (; row < end; ++row)
5803 if (row->enabled_p)
5804 {
5805 int area;
5806 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
5807 {
5808 struct glyph *glyph = row->glyphs[area];
5809 struct glyph *end_glyph = glyph + row->used[area];
177c0ea7 5810
2e471eb5 5811 for (; glyph < end_glyph; ++glyph)
8e50cc2d 5812 if (STRINGP (glyph->object)
2e471eb5 5813 && !STRING_MARKED_P (XSTRING (glyph->object)))
49723c04 5814 mark_object (glyph->object);
2e471eb5
GM
5815 }
5816 }
41c28a37
GM
5817}
5818
1a4f1e2c 5819/* Mark reference to a Lisp_Object.
2e471eb5
GM
5820 If the object referred to has not been seen yet, recursively mark
5821 all the references contained in it. */
7146af97 5822
785cd37f 5823#define LAST_MARKED_SIZE 500
d3d47262 5824static Lisp_Object last_marked[LAST_MARKED_SIZE];
244ed907 5825static int last_marked_index;
785cd37f 5826
1342fc6f
RS
5827/* For debugging--call abort when we cdr down this many
5828 links of a list, in mark_object. In debugging,
5829 the call to abort will hit a breakpoint.
5830 Normally this is zero and the check never goes off. */
903fe15d 5831ptrdiff_t mark_object_loop_halt EXTERNALLY_VISIBLE;
1342fc6f 5832
8f11f7ec 5833static void
971de7fb 5834mark_vectorlike (struct Lisp_Vector *ptr)
d2029e5b 5835{
d311d28c
PE
5836 ptrdiff_t size = ptr->header.size;
5837 ptrdiff_t i;
d2029e5b 5838
8f11f7ec 5839 eassert (!VECTOR_MARKED_P (ptr));
7555c33f 5840 VECTOR_MARK (ptr); /* Else mark it. */
d2029e5b
SM
5841 if (size & PSEUDOVECTOR_FLAG)
5842 size &= PSEUDOVECTOR_SIZE_MASK;
d3d47262 5843
d2029e5b
SM
5844 /* Note that this size is not the memory-footprint size, but only
5845 the number of Lisp_Object fields that we should trace.
5846 The distinction is used e.g. by Lisp_Process which places extra
7555c33f
SM
5847 non-Lisp_Object fields at the end of the structure... */
5848 for (i = 0; i < size; i++) /* ...and then mark its elements. */
91f2d272 5849 mark_object (ptr->contents[i]);
d2029e5b
SM
5850}
5851
58026347
KH
5852/* Like mark_vectorlike but optimized for char-tables (and
5853 sub-char-tables) assuming that the contents are mostly integers or
5854 symbols. */
5855
5856static void
971de7fb 5857mark_char_table (struct Lisp_Vector *ptr)
58026347 5858{
b6439961
PE
5859 int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
5860 int i;
58026347 5861
8f11f7ec 5862 eassert (!VECTOR_MARKED_P (ptr));
58026347
KH
5863 VECTOR_MARK (ptr);
5864 for (i = 0; i < size; i++)
5865 {
91f2d272 5866 Lisp_Object val = ptr->contents[i];
58026347 5867
ef1b0ba7 5868 if (INTEGERP (val) || (SYMBOLP (val) && XSYMBOL (val)->gcmarkbit))
58026347
KH
5869 continue;
5870 if (SUB_CHAR_TABLE_P (val))
5871 {
5872 if (! VECTOR_MARKED_P (XVECTOR (val)))
5873 mark_char_table (XVECTOR (val));
5874 }
5875 else
5876 mark_object (val);
5877 }
5878}
5879
36429c89
DA
5880/* Mark the chain of overlays starting at PTR. */
5881
5882static void
5883mark_overlay (struct Lisp_Overlay *ptr)
5884{
5885 for (; ptr && !ptr->gcmarkbit; ptr = ptr->next)
5886 {
5887 ptr->gcmarkbit = 1;
c644523b
DA
5888 mark_object (ptr->start);
5889 mark_object (ptr->end);
5890 mark_object (ptr->plist);
36429c89
DA
5891 }
5892}
5893
5894/* Mark Lisp_Objects and special pointers in BUFFER. */
cf5c0175
DA
5895
5896static void
5897mark_buffer (struct buffer *buffer)
5898{
b4fa72f2
DA
5899 /* This is handled much like other pseudovectors... */
5900 mark_vectorlike ((struct Lisp_Vector *) buffer);
cf5c0175 5901
b4fa72f2 5902 /* ...but there are some buffer-specific things. */
cf5c0175 5903
b4fa72f2 5904 MARK_INTERVAL_TREE (buffer_intervals (buffer));
cf5c0175 5905
b4fa72f2
DA
5906 /* For now, we just don't mark the undo_list. It's done later in
5907 a special way just before the sweep phase, and after stripping
5908 some of its elements that are not needed any more. */
cf5c0175 5909
b4fa72f2
DA
5910 mark_overlay (buffer->overlays_before);
5911 mark_overlay (buffer->overlays_after);
cf5c0175 5912
b4fa72f2
DA
5913 /* If this is an indirect buffer, mark its base buffer. */
5914 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
5915 mark_buffer (buffer->base_buffer);
cf5c0175
DA
5916}
5917
fc54bdd5
DA
5918/* Mark Lisp faces in the face cache C. */
5919
5920static void
5921mark_face_cache (struct face_cache *c)
5922{
5923 if (c)
5924 {
5925 int i, j;
5926 for (i = 0; i < c->used; ++i)
5927 {
5928 struct face *face = FACE_FROM_ID (c->f, i);
5929
5930 if (face)
5931 {
5932 if (face->font && !VECTOR_MARKED_P (face->font))
5933 mark_vectorlike ((struct Lisp_Vector *) face->font);
5934
5935 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
5936 mark_object (face->lface[j]);
5937 }
5938 }
5939 }
5940}
5941
d59a1afb 5942/* Remove killed buffers or items whose car is a killed buffer from
e99f70c8 5943 LIST, and mark other items. Return changed LIST, which is marked. */
d73e321c 5944
5779a1dc 5945static Lisp_Object
d59a1afb 5946mark_discard_killed_buffers (Lisp_Object list)
d73e321c 5947{
d59a1afb 5948 Lisp_Object tail, *prev = &list;
d73e321c 5949
d59a1afb
DA
5950 for (tail = list; CONSP (tail) && !CONS_MARKED_P (XCONS (tail));
5951 tail = XCDR (tail))
d73e321c 5952 {
5779a1dc 5953 Lisp_Object tem = XCAR (tail);
d73e321c
DA
5954 if (CONSP (tem))
5955 tem = XCAR (tem);
5956 if (BUFFERP (tem) && !BUFFER_LIVE_P (XBUFFER (tem)))
5779a1dc 5957 *prev = XCDR (tail);
d73e321c 5958 else
d59a1afb
DA
5959 {
5960 CONS_MARK (XCONS (tail));
5961 mark_object (XCAR (tail));
84575e67 5962 prev = xcdr_addr (tail);
d59a1afb 5963 }
d73e321c 5964 }
e99f70c8 5965 mark_object (tail);
d73e321c
DA
5966 return list;
5967}
5968
cf5c0175
DA
5969/* Determine type of generic Lisp_Object and mark it accordingly. */
5970
41c28a37 5971void
971de7fb 5972mark_object (Lisp_Object arg)
7146af97 5973{
49723c04 5974 register Lisp_Object obj = arg;
4f5c1376
GM
5975#ifdef GC_CHECK_MARKED_OBJECTS
5976 void *po;
5977 struct mem_node *m;
5978#endif
903fe15d 5979 ptrdiff_t cdr_count = 0;
7146af97 5980
9149e743 5981 loop:
7146af97 5982
1f0b3fd2 5983 if (PURE_POINTER_P (XPNTR (obj)))
7146af97
JB
5984 return;
5985
49723c04 5986 last_marked[last_marked_index++] = obj;
785cd37f
RS
5987 if (last_marked_index == LAST_MARKED_SIZE)
5988 last_marked_index = 0;
5989
4f5c1376
GM
5990 /* Perform some sanity checks on the objects marked here. Abort if
5991 we encounter an object we know is bogus. This increases GC time
5992 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
5993#ifdef GC_CHECK_MARKED_OBJECTS
5994
5995 po = (void *) XPNTR (obj);
5996
5997 /* Check that the object pointed to by PO is known to be a Lisp
5998 structure allocated from the heap. */
5999#define CHECK_ALLOCATED() \
6000 do { \
6001 m = mem_find (po); \
6002 if (m == MEM_NIL) \
1088b922 6003 emacs_abort (); \
4f5c1376
GM
6004 } while (0)
6005
6006 /* Check that the object pointed to by PO is live, using predicate
6007 function LIVEP. */
6008#define CHECK_LIVE(LIVEP) \
6009 do { \
6010 if (!LIVEP (m, po)) \
1088b922 6011 emacs_abort (); \
4f5c1376
GM
6012 } while (0)
6013
6014 /* Check both of the above conditions. */
6015#define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
6016 do { \
6017 CHECK_ALLOCATED (); \
6018 CHECK_LIVE (LIVEP); \
6019 } while (0) \
177c0ea7 6020
4f5c1376 6021#else /* not GC_CHECK_MARKED_OBJECTS */
177c0ea7 6022
4f5c1376
GM
6023#define CHECK_LIVE(LIVEP) (void) 0
6024#define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
177c0ea7 6025
4f5c1376
GM
6026#endif /* not GC_CHECK_MARKED_OBJECTS */
6027
7393bcbb 6028 switch (XTYPE (obj))
7146af97
JB
6029 {
6030 case Lisp_String:
6031 {
6032 register struct Lisp_String *ptr = XSTRING (obj);
8f11f7ec
SM
6033 if (STRING_MARKED_P (ptr))
6034 break;
4f5c1376 6035 CHECK_ALLOCATED_AND_LIVE (live_string_p);
2e471eb5 6036 MARK_STRING (ptr);
7555c33f 6037 MARK_INTERVAL_TREE (ptr->intervals);
361b097f 6038#ifdef GC_CHECK_STRING_BYTES
676a7251 6039 /* Check that the string size recorded in the string is the
7555c33f 6040 same as the one recorded in the sdata structure. */
e499d0ee 6041 string_bytes (ptr);
361b097f 6042#endif /* GC_CHECK_STRING_BYTES */
7146af97
JB
6043 }
6044 break;
6045
76437631 6046 case Lisp_Vectorlike:
cf5c0175
DA
6047 {
6048 register struct Lisp_Vector *ptr = XVECTOR (obj);
6049 register ptrdiff_t pvectype;
6050
6051 if (VECTOR_MARKED_P (ptr))
6052 break;
6053
4f5c1376 6054#ifdef GC_CHECK_MARKED_OBJECTS
cf5c0175 6055 m = mem_find (po);
c752cfa9 6056 if (m == MEM_NIL && !SUBRP (obj))
1088b922 6057 emacs_abort ();
4f5c1376 6058#endif /* GC_CHECK_MARKED_OBJECTS */
177c0ea7 6059
cf5c0175 6060 if (ptr->header.size & PSEUDOVECTOR_FLAG)
ee28be33 6061 pvectype = ((ptr->header.size & PVEC_TYPE_MASK)
914adc42 6062 >> PSEUDOVECTOR_AREA_BITS);
cf5c0175 6063 else
6aea7528 6064 pvectype = PVEC_NORMAL_VECTOR;
cf5c0175 6065
cf5c0175
DA
6066 if (pvectype != PVEC_SUBR && pvectype != PVEC_BUFFER)
6067 CHECK_LIVE (live_vector_p);
169ee243 6068
ee28be33 6069 switch (pvectype)
cf5c0175 6070 {
ee28be33 6071 case PVEC_BUFFER:
cf5c0175 6072#ifdef GC_CHECK_MARKED_OBJECTS
c752cfa9
DA
6073 {
6074 struct buffer *b;
6075 FOR_EACH_BUFFER (b)
6076 if (b == po)
6077 break;
6078 if (b == NULL)
6079 emacs_abort ();
6080 }
cf5c0175
DA
6081#endif /* GC_CHECK_MARKED_OBJECTS */
6082 mark_buffer ((struct buffer *) ptr);
ee28be33
SM
6083 break;
6084
6085 case PVEC_COMPILED:
6086 { /* We could treat this just like a vector, but it is better
6087 to save the COMPILED_CONSTANTS element for last and avoid
6088 recursion there. */
6089 int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
6090 int i;
6091
6092 VECTOR_MARK (ptr);
6093 for (i = 0; i < size; i++)
6094 if (i != COMPILED_CONSTANTS)
91f2d272 6095 mark_object (ptr->contents[i]);
ee28be33
SM
6096 if (size > COMPILED_CONSTANTS)
6097 {
91f2d272 6098 obj = ptr->contents[COMPILED_CONSTANTS];
ee28be33
SM
6099 goto loop;
6100 }
6101 }
6102 break;
cf5c0175 6103
ee28be33 6104 case PVEC_FRAME:
df24a230
DA
6105 {
6106 struct frame *f = (struct frame *) ptr;
6107
6108 mark_vectorlike (ptr);
6109 mark_face_cache (f->face_cache);
6110#ifdef HAVE_WINDOW_SYSTEM
6111 if (FRAME_WINDOW_P (f) && FRAME_X_OUTPUT (f))
6112 {
6113 struct font *font = FRAME_FONT (f);
6114
6115 if (font && !VECTOR_MARKED_P (font))
6116 mark_vectorlike ((struct Lisp_Vector *) font);
6117 }
6118#endif
6119 }
ee28be33 6120 break;
cf5c0175 6121
ee28be33
SM
6122 case PVEC_WINDOW:
6123 {
6124 struct window *w = (struct window *) ptr;
5779a1dc 6125
0699fc18 6126 mark_vectorlike (ptr);
e99f70c8 6127
e74aeda8 6128 /* Mark glyph matrices, if any. Marking window
0699fc18
DA
6129 matrices is sufficient because frame matrices
6130 use the same glyph memory. */
e74aeda8 6131 if (w->current_matrix)
ee28be33 6132 {
0699fc18
DA
6133 mark_glyph_matrix (w->current_matrix);
6134 mark_glyph_matrix (w->desired_matrix);
ee28be33 6135 }
e99f70c8
SM
6136
6137 /* Filter out killed buffers from both buffer lists
6138 in attempt to help GC to reclaim killed buffers faster.
6139 We can do it elsewhere for live windows, but this is the
6140 best place to do it for dead windows. */
6141 wset_prev_buffers
6142 (w, mark_discard_killed_buffers (w->prev_buffers));
6143 wset_next_buffers
6144 (w, mark_discard_killed_buffers (w->next_buffers));
ee28be33
SM
6145 }
6146 break;
cf5c0175 6147
ee28be33
SM
6148 case PVEC_HASH_TABLE:
6149 {
6150 struct Lisp_Hash_Table *h = (struct Lisp_Hash_Table *) ptr;
cf5c0175 6151
ee28be33 6152 mark_vectorlike (ptr);
b7432bb2
SM
6153 mark_object (h->test.name);
6154 mark_object (h->test.user_hash_function);
6155 mark_object (h->test.user_cmp_function);
ee28be33
SM
6156 /* If hash table is not weak, mark all keys and values.
6157 For weak tables, mark only the vector. */
6158 if (NILP (h->weak))
6159 mark_object (h->key_and_value);
6160 else
6161 VECTOR_MARK (XVECTOR (h->key_and_value));
6162 }
6163 break;
cf5c0175 6164
ee28be33
SM
6165 case PVEC_CHAR_TABLE:
6166 mark_char_table (ptr);
6167 break;
cf5c0175 6168
ee28be33
SM
6169 case PVEC_BOOL_VECTOR:
6170 /* No Lisp_Objects to mark in a bool vector. */
6171 VECTOR_MARK (ptr);
6172 break;
cf5c0175 6173
ee28be33
SM
6174 case PVEC_SUBR:
6175 break;
cf5c0175 6176
ee28be33 6177 case PVEC_FREE:
1088b922 6178 emacs_abort ();
cf5c0175 6179
ee28be33
SM
6180 default:
6181 mark_vectorlike (ptr);
6182 }
cf5c0175 6183 }
169ee243 6184 break;
7146af97 6185
7146af97
JB
6186 case Lisp_Symbol:
6187 {
c70bbf06 6188 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
7146af97
JB
6189 struct Lisp_Symbol *ptrx;
6190
8f11f7ec
SM
6191 if (ptr->gcmarkbit)
6192 break;
4f5c1376 6193 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
2336fe58 6194 ptr->gcmarkbit = 1;
c644523b
DA
6195 mark_object (ptr->function);
6196 mark_object (ptr->plist);
ce5b453a
SM
6197 switch (ptr->redirect)
6198 {
6199 case SYMBOL_PLAINVAL: mark_object (SYMBOL_VAL (ptr)); break;
6200 case SYMBOL_VARALIAS:
6201 {
6202 Lisp_Object tem;
6203 XSETSYMBOL (tem, SYMBOL_ALIAS (ptr));
6204 mark_object (tem);
6205 break;
6206 }
6207 case SYMBOL_LOCALIZED:
6208 {
6209 struct Lisp_Buffer_Local_Value *blv = SYMBOL_BLV (ptr);
d73e321c
DA
6210 Lisp_Object where = blv->where;
6211 /* If the value is set up for a killed buffer or deleted
6212 frame, restore it's global binding. If the value is
6213 forwarded to a C variable, either it's not a Lisp_Object
6214 var, or it's staticpro'd already. */
6215 if ((BUFFERP (where) && !BUFFER_LIVE_P (XBUFFER (where)))
6216 || (FRAMEP (where) && !FRAME_LIVE_P (XFRAME (where))))
6217 swap_in_global_binding (ptr);
ce5b453a
SM
6218 mark_object (blv->where);
6219 mark_object (blv->valcell);
6220 mark_object (blv->defcell);
6221 break;
6222 }
6223 case SYMBOL_FORWARDED:
6224 /* If the value is forwarded to a buffer or keyboard field,
6225 these are marked when we see the corresponding object.
6226 And if it's forwarded to a C variable, either it's not
6227 a Lisp_Object var, or it's staticpro'd already. */
6228 break;
1088b922 6229 default: emacs_abort ();
ce5b453a 6230 }
c644523b
DA
6231 if (!PURE_POINTER_P (XSTRING (ptr->name)))
6232 MARK_STRING (XSTRING (ptr->name));
0c94c8d6 6233 MARK_INTERVAL_TREE (string_intervals (ptr->name));
177c0ea7 6234
7146af97
JB
6235 ptr = ptr->next;
6236 if (ptr)
6237 {
7555c33f 6238 ptrx = ptr; /* Use of ptrx avoids compiler bug on Sun. */
7146af97 6239 XSETSYMBOL (obj, ptrx);
49723c04 6240 goto loop;
7146af97
JB
6241 }
6242 }
6243 break;
6244
a0a38eb7 6245 case Lisp_Misc:
4f5c1376 6246 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
b766f870 6247
7555c33f
SM
6248 if (XMISCANY (obj)->gcmarkbit)
6249 break;
6250
6251 switch (XMISCTYPE (obj))
a0a38eb7 6252 {
7555c33f
SM
6253 case Lisp_Misc_Marker:
6254 /* DO NOT mark thru the marker's chain.
6255 The buffer's markers chain does not preserve markers from gc;
6256 instead, markers are removed from the chain when freed by gc. */
36429c89 6257 XMISCANY (obj)->gcmarkbit = 1;
7555c33f 6258 break;
465edf35 6259
7555c33f
SM
6260 case Lisp_Misc_Save_Value:
6261 XMISCANY (obj)->gcmarkbit = 1;
7555c33f 6262 {
7b1123d8
PE
6263 struct Lisp_Save_Value *ptr = XSAVE_VALUE (obj);
6264 /* If `save_type' is zero, `data[0].pointer' is the address
73ebd38f
DA
6265 of a memory area containing `data[1].integer' potential
6266 Lisp_Objects. */
7b1123d8 6267 if (GC_MARK_STACK && ptr->save_type == SAVE_TYPE_MEMORY)
7555c33f 6268 {
c50cf2ea 6269 Lisp_Object *p = ptr->data[0].pointer;
7555c33f 6270 ptrdiff_t nelt;
73ebd38f 6271 for (nelt = ptr->data[1].integer; nelt > 0; nelt--, p++)
7555c33f
SM
6272 mark_maybe_object (*p);
6273 }
73ebd38f 6274 else
73ebd38f
DA
6275 {
6276 /* Find Lisp_Objects in `data[N]' slots and mark them. */
7b1123d8
PE
6277 int i;
6278 for (i = 0; i < SAVE_VALUE_SLOTS; i++)
6279 if (save_type (ptr, i) == SAVE_OBJECT)
6280 mark_object (ptr->data[i].object);
73ebd38f 6281 }
7555c33f 6282 }
7555c33f
SM
6283 break;
6284
6285 case Lisp_Misc_Overlay:
6286 mark_overlay (XOVERLAY (obj));
6287 break;
6288
6289 default:
1088b922 6290 emacs_abort ();
a0a38eb7 6291 }
7146af97
JB
6292 break;
6293
6294 case Lisp_Cons:
7146af97
JB
6295 {
6296 register struct Lisp_Cons *ptr = XCONS (obj);
8f11f7ec
SM
6297 if (CONS_MARKED_P (ptr))
6298 break;
4f5c1376 6299 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
08b7c2cb 6300 CONS_MARK (ptr);
c54ca951 6301 /* If the cdr is nil, avoid recursion for the car. */
c644523b 6302 if (EQ (ptr->u.cdr, Qnil))
c54ca951 6303 {
c644523b 6304 obj = ptr->car;
1342fc6f 6305 cdr_count = 0;
c54ca951
RS
6306 goto loop;
6307 }
c644523b
DA
6308 mark_object (ptr->car);
6309 obj = ptr->u.cdr;
1342fc6f
RS
6310 cdr_count++;
6311 if (cdr_count == mark_object_loop_halt)
1088b922 6312 emacs_abort ();
7146af97
JB
6313 goto loop;
6314 }
6315
7146af97 6316 case Lisp_Float:
4f5c1376 6317 CHECK_ALLOCATED_AND_LIVE (live_float_p);
ab6780cd 6318 FLOAT_MARK (XFLOAT (obj));
7146af97 6319 break;
7146af97 6320
2de9f71c 6321 case_Lisp_Int:
7146af97
JB
6322 break;
6323
6324 default:
1088b922 6325 emacs_abort ();
7146af97 6326 }
4f5c1376
GM
6327
6328#undef CHECK_LIVE
6329#undef CHECK_ALLOCATED
6330#undef CHECK_ALLOCATED_AND_LIVE
7146af97 6331}
4a729fd8 6332/* Mark the Lisp pointers in the terminal objects.
0ba2624f 6333 Called by Fgarbage_collect. */
4a729fd8 6334
4a729fd8
SM
6335static void
6336mark_terminals (void)
6337{
6338 struct terminal *t;
6339 for (t = terminal_list; t; t = t->next_terminal)
6340 {
6341 eassert (t->name != NULL);
354884c4 6342#ifdef HAVE_WINDOW_SYSTEM
96ad0af7
YM
6343 /* If a terminal object is reachable from a stacpro'ed object,
6344 it might have been marked already. Make sure the image cache
6345 gets marked. */
6346 mark_image_cache (t->image_cache);
354884c4 6347#endif /* HAVE_WINDOW_SYSTEM */
96ad0af7
YM
6348 if (!VECTOR_MARKED_P (t))
6349 mark_vectorlike ((struct Lisp_Vector *)t);
4a729fd8
SM
6350 }
6351}
6352
6353
084b1a0c 6354
41c28a37
GM
6355/* Value is non-zero if OBJ will survive the current GC because it's
6356 either marked or does not need to be marked to survive. */
6357
fce31d69 6358bool
971de7fb 6359survives_gc_p (Lisp_Object obj)
41c28a37 6360{
fce31d69 6361 bool survives_p;
177c0ea7 6362
8e50cc2d 6363 switch (XTYPE (obj))
41c28a37 6364 {
2de9f71c 6365 case_Lisp_Int:
41c28a37
GM
6366 survives_p = 1;
6367 break;
6368
6369 case Lisp_Symbol:
2336fe58 6370 survives_p = XSYMBOL (obj)->gcmarkbit;
41c28a37
GM
6371 break;
6372
6373 case Lisp_Misc:
67ee9f6e 6374 survives_p = XMISCANY (obj)->gcmarkbit;
41c28a37
GM
6375 break;
6376
6377 case Lisp_String:
08b7c2cb 6378 survives_p = STRING_MARKED_P (XSTRING (obj));
41c28a37
GM
6379 break;
6380
6381 case Lisp_Vectorlike:
8e50cc2d 6382 survives_p = SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
41c28a37
GM
6383 break;
6384
6385 case Lisp_Cons:
08b7c2cb 6386 survives_p = CONS_MARKED_P (XCONS (obj));
41c28a37
GM
6387 break;
6388
41c28a37 6389 case Lisp_Float:
ab6780cd 6390 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
41c28a37 6391 break;
41c28a37
GM
6392
6393 default:
1088b922 6394 emacs_abort ();
41c28a37
GM
6395 }
6396
34400008 6397 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
41c28a37
GM
6398}
6399
6400
7146af97 6401\f
655ab9a3 6402/* Sweep: find all structures not marked, and free them. */
7146af97
JB
6403
6404static void
971de7fb 6405gc_sweep (void)
7146af97 6406{
41c28a37
GM
6407 /* Remove or mark entries in weak hash tables.
6408 This must be done before any object is unmarked. */
6409 sweep_weak_hash_tables ();
6410
2e471eb5 6411 sweep_strings ();
e499d0ee 6412 check_string_bytes (!noninteractive);
7146af97 6413
655ab9a3 6414 /* Put all unmarked conses on free list. */
7146af97
JB
6415 {
6416 register struct cons_block *cblk;
6ca94ac9 6417 struct cons_block **cprev = &cons_block;
7146af97 6418 register int lim = cons_block_index;
c0c5c8ae 6419 EMACS_INT num_free = 0, num_used = 0;
7146af97
JB
6420
6421 cons_free_list = 0;
177c0ea7 6422
6ca94ac9 6423 for (cblk = cons_block; cblk; cblk = *cprev)
7146af97 6424 {
3ae2e3a3 6425 register int i = 0;
6ca94ac9 6426 int this_free = 0;
3ae2e3a3
RS
6427 int ilim = (lim + BITS_PER_INT - 1) / BITS_PER_INT;
6428
6429 /* Scan the mark bits an int at a time. */
47ea7f44 6430 for (i = 0; i < ilim; i++)
3ae2e3a3
RS
6431 {
6432 if (cblk->gcmarkbits[i] == -1)
6433 {
6434 /* Fast path - all cons cells for this int are marked. */
6435 cblk->gcmarkbits[i] = 0;
6436 num_used += BITS_PER_INT;
6437 }
6438 else
6439 {
6440 /* Some cons cells for this int are not marked.
6441 Find which ones, and free them. */
6442 int start, pos, stop;
6443
6444 start = i * BITS_PER_INT;
6445 stop = lim - start;
6446 if (stop > BITS_PER_INT)
6447 stop = BITS_PER_INT;
6448 stop += start;
6449
6450 for (pos = start; pos < stop; pos++)
6451 {
6452 if (!CONS_MARKED_P (&cblk->conses[pos]))
6453 {
6454 this_free++;
6455 cblk->conses[pos].u.chain = cons_free_list;
6456 cons_free_list = &cblk->conses[pos];
34400008 6457#if GC_MARK_STACK
c644523b 6458 cons_free_list->car = Vdead;
34400008 6459#endif
3ae2e3a3
RS
6460 }
6461 else
6462 {
6463 num_used++;
6464 CONS_UNMARK (&cblk->conses[pos]);
6465 }
6466 }
6467 }
6468 }
6469
7146af97 6470 lim = CONS_BLOCK_SIZE;
6ca94ac9
KH
6471 /* If this block contains only free conses and we have already
6472 seen more than two blocks worth of free conses then deallocate
6473 this block. */
6feef451 6474 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
6ca94ac9 6475 {
6ca94ac9
KH
6476 *cprev = cblk->next;
6477 /* Unhook from the free list. */
28a099a4 6478 cons_free_list = cblk->conses[0].u.chain;
08b7c2cb 6479 lisp_align_free (cblk);
6ca94ac9
KH
6480 }
6481 else
6feef451
AS
6482 {
6483 num_free += this_free;
6484 cprev = &cblk->next;
6485 }
7146af97
JB
6486 }
6487 total_conses = num_used;
6488 total_free_conses = num_free;
6489 }
6490
655ab9a3 6491 /* Put all unmarked floats on free list. */
7146af97
JB
6492 {
6493 register struct float_block *fblk;
6ca94ac9 6494 struct float_block **fprev = &float_block;
7146af97 6495 register int lim = float_block_index;
c0c5c8ae 6496 EMACS_INT num_free = 0, num_used = 0;
7146af97
JB
6497
6498 float_free_list = 0;
177c0ea7 6499
6ca94ac9 6500 for (fblk = float_block; fblk; fblk = *fprev)
7146af97
JB
6501 {
6502 register int i;
6ca94ac9 6503 int this_free = 0;
7146af97 6504 for (i = 0; i < lim; i++)
ab6780cd 6505 if (!FLOAT_MARKED_P (&fblk->floats[i]))
7146af97 6506 {
6ca94ac9 6507 this_free++;
28a099a4 6508 fblk->floats[i].u.chain = float_free_list;
7146af97
JB
6509 float_free_list = &fblk->floats[i];
6510 }
6511 else
6512 {
6513 num_used++;
ab6780cd 6514 FLOAT_UNMARK (&fblk->floats[i]);
7146af97
JB
6515 }
6516 lim = FLOAT_BLOCK_SIZE;
6ca94ac9
KH
6517 /* If this block contains only free floats and we have already
6518 seen more than two blocks worth of free floats then deallocate
6519 this block. */
6feef451 6520 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
6ca94ac9 6521 {
6ca94ac9
KH
6522 *fprev = fblk->next;
6523 /* Unhook from the free list. */
28a099a4 6524 float_free_list = fblk->floats[0].u.chain;
ab6780cd 6525 lisp_align_free (fblk);
6ca94ac9
KH
6526 }
6527 else
6feef451
AS
6528 {
6529 num_free += this_free;
6530 fprev = &fblk->next;
6531 }
7146af97
JB
6532 }
6533 total_floats = num_used;
6534 total_free_floats = num_free;
6535 }
7146af97 6536
655ab9a3 6537 /* Put all unmarked intervals on free list. */
d5e35230
JA
6538 {
6539 register struct interval_block *iblk;
6ca94ac9 6540 struct interval_block **iprev = &interval_block;
d5e35230 6541 register int lim = interval_block_index;
c0c5c8ae 6542 EMACS_INT num_free = 0, num_used = 0;
d5e35230
JA
6543
6544 interval_free_list = 0;
6545
6ca94ac9 6546 for (iblk = interval_block; iblk; iblk = *iprev)
d5e35230
JA
6547 {
6548 register int i;
6ca94ac9 6549 int this_free = 0;
d5e35230
JA
6550
6551 for (i = 0; i < lim; i++)
6552 {
2336fe58 6553 if (!iblk->intervals[i].gcmarkbit)
d5e35230 6554 {
0c94c8d6 6555 set_interval_parent (&iblk->intervals[i], interval_free_list);
d5e35230 6556 interval_free_list = &iblk->intervals[i];
6ca94ac9 6557 this_free++;
d5e35230
JA
6558 }
6559 else
6560 {
6561 num_used++;
2336fe58 6562 iblk->intervals[i].gcmarkbit = 0;
d5e35230
JA
6563 }
6564 }
6565 lim = INTERVAL_BLOCK_SIZE;
6ca94ac9
KH
6566 /* If this block contains only free intervals and we have already
6567 seen more than two blocks worth of free intervals then
6568 deallocate this block. */
6feef451 6569 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
6ca94ac9 6570 {
6ca94ac9
KH
6571 *iprev = iblk->next;
6572 /* Unhook from the free list. */
439d5cb4 6573 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
c8099634 6574 lisp_free (iblk);
6ca94ac9
KH
6575 }
6576 else
6feef451
AS
6577 {
6578 num_free += this_free;
6579 iprev = &iblk->next;
6580 }
d5e35230
JA
6581 }
6582 total_intervals = num_used;
6583 total_free_intervals = num_free;
6584 }
d5e35230 6585
655ab9a3 6586 /* Put all unmarked symbols on free list. */
7146af97
JB
6587 {
6588 register struct symbol_block *sblk;
6ca94ac9 6589 struct symbol_block **sprev = &symbol_block;
7146af97 6590 register int lim = symbol_block_index;
c0c5c8ae 6591 EMACS_INT num_free = 0, num_used = 0;
7146af97 6592
d285b373 6593 symbol_free_list = NULL;
177c0ea7 6594
6ca94ac9 6595 for (sblk = symbol_block; sblk; sblk = *sprev)
7146af97 6596 {
6ca94ac9 6597 int this_free = 0;
d55c12ed
AS
6598 union aligned_Lisp_Symbol *sym = sblk->symbols;
6599 union aligned_Lisp_Symbol *end = sym + lim;
d285b373
GM
6600
6601 for (; sym < end; ++sym)
6602 {
e3b83880 6603 if (!sym->s.gcmarkbit)
d285b373 6604 {
d55c12ed
AS
6605 if (sym->s.redirect == SYMBOL_LOCALIZED)
6606 xfree (SYMBOL_BLV (&sym->s));
6607 sym->s.next = symbol_free_list;
6608 symbol_free_list = &sym->s;
34400008 6609#if GC_MARK_STACK
c644523b 6610 symbol_free_list->function = Vdead;
34400008 6611#endif
d285b373
GM
6612 ++this_free;
6613 }
6614 else
6615 {
6616 ++num_used;
e3b83880 6617 eassert (!STRING_MARKED_P (XSTRING (sym->s.name)));
d55c12ed 6618 sym->s.gcmarkbit = 0;
d285b373
GM
6619 }
6620 }
177c0ea7 6621
7146af97 6622 lim = SYMBOL_BLOCK_SIZE;
6ca94ac9
KH
6623 /* If this block contains only free symbols and we have already
6624 seen more than two blocks worth of free symbols then deallocate
6625 this block. */
6feef451 6626 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
6ca94ac9 6627 {
6ca94ac9
KH
6628 *sprev = sblk->next;
6629 /* Unhook from the free list. */
d55c12ed 6630 symbol_free_list = sblk->symbols[0].s.next;
c8099634 6631 lisp_free (sblk);
6ca94ac9
KH
6632 }
6633 else
6feef451
AS
6634 {
6635 num_free += this_free;
6636 sprev = &sblk->next;
6637 }
7146af97
JB
6638 }
6639 total_symbols = num_used;
6640 total_free_symbols = num_free;
6641 }
6642
a9faeabe
RS
6643 /* Put all unmarked misc's on free list.
6644 For a marker, first unchain it from the buffer it points into. */
7146af97
JB
6645 {
6646 register struct marker_block *mblk;
6ca94ac9 6647 struct marker_block **mprev = &marker_block;
7146af97 6648 register int lim = marker_block_index;
c0c5c8ae 6649 EMACS_INT num_free = 0, num_used = 0;
7146af97
JB
6650
6651 marker_free_list = 0;
177c0ea7 6652
6ca94ac9 6653 for (mblk = marker_block; mblk; mblk = *mprev)
7146af97
JB
6654 {
6655 register int i;
6ca94ac9 6656 int this_free = 0;
fa05e253 6657
7146af97 6658 for (i = 0; i < lim; i++)
465edf35 6659 {
d55c12ed 6660 if (!mblk->markers[i].m.u_any.gcmarkbit)
465edf35 6661 {
d55c12ed
AS
6662 if (mblk->markers[i].m.u_any.type == Lisp_Misc_Marker)
6663 unchain_marker (&mblk->markers[i].m.u_marker);
fa05e253
RS
6664 /* Set the type of the freed object to Lisp_Misc_Free.
6665 We could leave the type alone, since nobody checks it,
465edf35 6666 but this might catch bugs faster. */
d55c12ed
AS
6667 mblk->markers[i].m.u_marker.type = Lisp_Misc_Free;
6668 mblk->markers[i].m.u_free.chain = marker_free_list;
6669 marker_free_list = &mblk->markers[i].m;
6ca94ac9 6670 this_free++;
465edf35
KH
6671 }
6672 else
6673 {
6674 num_used++;
d55c12ed 6675 mblk->markers[i].m.u_any.gcmarkbit = 0;
465edf35
KH
6676 }
6677 }
7146af97 6678 lim = MARKER_BLOCK_SIZE;
6ca94ac9
KH
6679 /* If this block contains only free markers and we have already
6680 seen more than two blocks worth of free markers then deallocate
6681 this block. */
6feef451 6682 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
6ca94ac9 6683 {
6ca94ac9
KH
6684 *mprev = mblk->next;
6685 /* Unhook from the free list. */
d55c12ed 6686 marker_free_list = mblk->markers[0].m.u_free.chain;
c8099634 6687 lisp_free (mblk);
6ca94ac9
KH
6688 }
6689 else
6feef451
AS
6690 {
6691 num_free += this_free;
6692 mprev = &mblk->next;
6693 }
7146af97
JB
6694 }
6695
6696 total_markers = num_used;
6697 total_free_markers = num_free;
6698 }
6699
6700 /* Free all unmarked buffers */
6701 {
3e98c68e 6702 register struct buffer *buffer, **bprev = &all_buffers;
7146af97 6703
3ab6e069 6704 total_buffers = 0;
3e98c68e 6705 for (buffer = all_buffers; buffer; buffer = *bprev)
3ef06d12 6706 if (!VECTOR_MARKED_P (buffer))
7146af97 6707 {
914adc42 6708 *bprev = buffer->next;
34400008 6709 lisp_free (buffer);
7146af97
JB
6710 }
6711 else
6712 {
3ef06d12 6713 VECTOR_UNMARK (buffer);
8707c1e5
DA
6714 /* Do not use buffer_(set|get)_intervals here. */
6715 buffer->text->intervals = balance_intervals (buffer->text->intervals);
3ab6e069 6716 total_buffers++;
914adc42 6717 bprev = &buffer->next;
7146af97
JB
6718 }
6719 }
6720
f3372c87 6721 sweep_vectors ();
e499d0ee 6722 check_string_bytes (!noninteractive);
7146af97 6723}
7146af97 6724
7146af97 6725
7146af97 6726
7146af97 6727\f
20d24714
JB
6728/* Debugging aids. */
6729
31ce1c91 6730DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
a6266d23 6731 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
228299fa 6732This may be helpful in debugging Emacs's memory usage.
7ee72033 6733We divide the value by 1024 to make sure it fits in a Lisp integer. */)
5842a27b 6734 (void)
20d24714
JB
6735{
6736 Lisp_Object end;
6737
5e48429a
JD
6738#ifdef HAVE_NS
6739 /* Avoid warning. sbrk has no relation to memory allocated anyway. */
6740 XSETINT (end, 0);
6741#else
d01a7826 6742 XSETINT (end, (intptr_t) (char *) sbrk (0) / 1024);
5e48429a 6743#endif
20d24714
JB
6744
6745 return end;
6746}
6747
310ea200 6748DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
a6266d23 6749 doc: /* Return a list of counters that measure how much consing there has been.
228299fa
GM
6750Each of these counters increments for a certain kind of object.
6751The counters wrap around from the largest positive integer to zero.
6752Garbage collection does not decrease them.
6753The elements of the value are as follows:
6754 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
6755All are in units of 1 = one object consed
6756except for VECTOR-CELLS and STRING-CHARS, which count the total length of
6757objects consed.
6758MISCS include overlays, markers, and some internal types.
6759Frames, windows, buffers, and subprocesses count as vectors
7ee72033 6760 (but the contents of a buffer's text do not count here). */)
5842a27b 6761 (void)
310ea200 6762{
3438fe21 6763 return listn (CONSTYPE_HEAP, 8,
694b6c97
DA
6764 bounded_number (cons_cells_consed),
6765 bounded_number (floats_consed),
6766 bounded_number (vector_cells_consed),
6767 bounded_number (symbols_consed),
6768 bounded_number (string_chars_consed),
6769 bounded_number (misc_objects_consed),
6770 bounded_number (intervals_consed),
6771 bounded_number (strings_consed));
310ea200 6772}
e0b8c689 6773
8b058d44
EZ
6774/* Find at most FIND_MAX symbols which have OBJ as their value or
6775 function. This is used in gdbinit's `xwhichsymbols' command. */
6776
6777Lisp_Object
196e41e4 6778which_symbols (Lisp_Object obj, EMACS_INT find_max)
8b058d44
EZ
6779{
6780 struct symbol_block *sblk;
8d0eb4c2 6781 ptrdiff_t gc_count = inhibit_garbage_collection ();
8b058d44
EZ
6782 Lisp_Object found = Qnil;
6783
ca78dc43 6784 if (! DEADP (obj))
8b058d44
EZ
6785 {
6786 for (sblk = symbol_block; sblk; sblk = sblk->next)
6787 {
9426aba4 6788 union aligned_Lisp_Symbol *aligned_sym = sblk->symbols;
8b058d44
EZ
6789 int bn;
6790
9426aba4 6791 for (bn = 0; bn < SYMBOL_BLOCK_SIZE; bn++, aligned_sym++)
8b058d44 6792 {
9426aba4 6793 struct Lisp_Symbol *sym = &aligned_sym->s;
8b058d44
EZ
6794 Lisp_Object val;
6795 Lisp_Object tem;
6796
6797 if (sblk == symbol_block && bn >= symbol_block_index)
6798 break;
6799
6800 XSETSYMBOL (tem, sym);
6801 val = find_symbol_value (tem);
6802 if (EQ (val, obj)
c644523b
DA
6803 || EQ (sym->function, obj)
6804 || (!NILP (sym->function)
6805 && COMPILEDP (sym->function)
6806 && EQ (AREF (sym->function, COMPILED_BYTECODE), obj))
8b058d44
EZ
6807 || (!NILP (val)
6808 && COMPILEDP (val)
6809 && EQ (AREF (val, COMPILED_BYTECODE), obj)))
6810 {
6811 found = Fcons (tem, found);
6812 if (--find_max == 0)
6813 goto out;
6814 }
6815 }
6816 }
6817 }
6818
6819 out:
6820 unbind_to (gc_count, Qnil);
6821 return found;
6822}
6823
244ed907 6824#ifdef ENABLE_CHECKING
f4a681b0 6825
fce31d69 6826bool suppress_checking;
d3d47262 6827
e0b8c689 6828void
971de7fb 6829die (const char *msg, const char *file, int line)
e0b8c689 6830{
5013fc08 6831 fprintf (stderr, "\r\n%s:%d: Emacs fatal error: assertion failed: %s\r\n",
e0b8c689 6832 file, line, msg);
4d7e6e51 6833 terminate_due_to_signal (SIGABRT, INT_MAX);
e0b8c689 6834}
244ed907 6835#endif
20d24714 6836\f
b09cca6a 6837/* Initialization. */
7146af97 6838
dfcf069d 6839void
971de7fb 6840init_alloc_once (void)
7146af97
JB
6841{
6842 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
9e713715
GM
6843 purebeg = PUREBEG;
6844 pure_size = PURESIZE;
ab6780cd 6845
877935b1 6846#if GC_MARK_STACK || defined GC_MALLOC_CHECK
34400008
GM
6847 mem_init ();
6848 Vdead = make_pure_string ("DEAD", 4, 4, 0);
6849#endif
9e713715 6850
d1658221 6851#ifdef DOUG_LEA_MALLOC
b09cca6a
SM
6852 mallopt (M_TRIM_THRESHOLD, 128 * 1024); /* Trim threshold. */
6853 mallopt (M_MMAP_THRESHOLD, 64 * 1024); /* Mmap threshold. */
6854 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* Max. number of mmap'ed areas. */
d1658221 6855#endif
7146af97 6856 init_strings ();
f3372c87 6857 init_vectors ();
d5e35230 6858
24d8a105 6859 refill_memory_reserve ();
0dd6d66d 6860 gc_cons_threshold = GC_DEFAULT_THRESHOLD;
7146af97
JB
6861}
6862
dfcf069d 6863void
971de7fb 6864init_alloc (void)
7146af97
JB
6865{
6866 gcprolist = 0;
630686c8 6867 byte_stack_list = 0;
182ff242
GM
6868#if GC_MARK_STACK
6869#if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
6870 setjmp_tested_p = longjmps_done = 0;
6871#endif
6872#endif
2c5bd608
DL
6873 Vgc_elapsed = make_float (0.0);
6874 gcs_done = 0;
a84683fd
DC
6875
6876#if USE_VALGRIND
d160dd0c 6877 valgrind_p = RUNNING_ON_VALGRIND != 0;
a84683fd 6878#endif
7146af97
JB
6879}
6880
6881void
971de7fb 6882syms_of_alloc (void)
7146af97 6883{
29208e82 6884 DEFVAR_INT ("gc-cons-threshold", gc_cons_threshold,
fb7ada5f 6885 doc: /* Number of bytes of consing between garbage collections.
228299fa
GM
6886Garbage collection can happen automatically once this many bytes have been
6887allocated since the last garbage collection. All data types count.
7146af97 6888
228299fa 6889Garbage collection happens automatically only when `eval' is called.
7146af97 6890
228299fa 6891By binding this temporarily to a large number, you can effectively
96f077ad
SM
6892prevent garbage collection during a part of the program.
6893See also `gc-cons-percentage'. */);
6894
29208e82 6895 DEFVAR_LISP ("gc-cons-percentage", Vgc_cons_percentage,
fb7ada5f 6896 doc: /* Portion of the heap used for allocation.
96f077ad
SM
6897Garbage collection can happen automatically once this portion of the heap
6898has been allocated since the last garbage collection.
6899If this portion is smaller than `gc-cons-threshold', this is ignored. */);
6900 Vgc_cons_percentage = make_float (0.1);
0819585c 6901
29208e82 6902 DEFVAR_INT ("pure-bytes-used", pure_bytes_used,
333f9019 6903 doc: /* Number of bytes of shareable Lisp data allocated so far. */);
0819585c 6904
29208e82 6905 DEFVAR_INT ("cons-cells-consed", cons_cells_consed,
a6266d23 6906 doc: /* Number of cons cells that have been consed so far. */);
0819585c 6907
29208e82 6908 DEFVAR_INT ("floats-consed", floats_consed,
a6266d23 6909 doc: /* Number of floats that have been consed so far. */);
0819585c 6910
29208e82 6911 DEFVAR_INT ("vector-cells-consed", vector_cells_consed,
a6266d23 6912 doc: /* Number of vector cells that have been consed so far. */);
0819585c 6913
29208e82 6914 DEFVAR_INT ("symbols-consed", symbols_consed,
a6266d23 6915 doc: /* Number of symbols that have been consed so far. */);
0819585c 6916
29208e82 6917 DEFVAR_INT ("string-chars-consed", string_chars_consed,
a6266d23 6918 doc: /* Number of string characters that have been consed so far. */);
0819585c 6919
29208e82 6920 DEFVAR_INT ("misc-objects-consed", misc_objects_consed,
01a6dcc8
GM
6921 doc: /* Number of miscellaneous objects that have been consed so far.
6922These include markers and overlays, plus certain objects not visible
6923to users. */);
2e471eb5 6924
29208e82 6925 DEFVAR_INT ("intervals-consed", intervals_consed,
a6266d23 6926 doc: /* Number of intervals that have been consed so far. */);
7146af97 6927
29208e82 6928 DEFVAR_INT ("strings-consed", strings_consed,
a6266d23 6929 doc: /* Number of strings that have been consed so far. */);
228299fa 6930
29208e82 6931 DEFVAR_LISP ("purify-flag", Vpurify_flag,
a6266d23 6932 doc: /* Non-nil means loading Lisp code in order to dump an executable.
e9515805
SM
6933This means that certain objects should be allocated in shared (pure) space.
6934It can also be set to a hash-table, in which case this table is used to
6935do hash-consing of the objects allocated to pure space. */);
228299fa 6936
29208e82 6937 DEFVAR_BOOL ("garbage-collection-messages", garbage_collection_messages,
a6266d23 6938 doc: /* Non-nil means display messages at start and end of garbage collection. */);
299585ee
RS
6939 garbage_collection_messages = 0;
6940
29208e82 6941 DEFVAR_LISP ("post-gc-hook", Vpost_gc_hook,
a6266d23 6942 doc: /* Hook run after garbage collection has finished. */);
9e713715 6943 Vpost_gc_hook = Qnil;
cd3520a4 6944 DEFSYM (Qpost_gc_hook, "post-gc-hook");
9e713715 6945
29208e82 6946 DEFVAR_LISP ("memory-signal-data", Vmemory_signal_data,
74a54b04 6947 doc: /* Precomputed `signal' argument for memory-full error. */);
bcb61d60
KH
6948 /* We build this in advance because if we wait until we need it, we might
6949 not be able to allocate the memory to hold it. */
74a54b04 6950 Vmemory_signal_data
3438fe21 6951 = listn (CONSTYPE_PURE, 2, Qerror,
694b6c97 6952 build_pure_c_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"));
74a54b04 6953
29208e82 6954 DEFVAR_LISP ("memory-full", Vmemory_full,
24d8a105 6955 doc: /* Non-nil means Emacs cannot get much more Lisp memory. */);
74a54b04 6956 Vmemory_full = Qnil;
bcb61d60 6957
fecbd8ff
SM
6958 DEFSYM (Qconses, "conses");
6959 DEFSYM (Qsymbols, "symbols");
6960 DEFSYM (Qmiscs, "miscs");
6961 DEFSYM (Qstrings, "strings");
6962 DEFSYM (Qvectors, "vectors");
6963 DEFSYM (Qfloats, "floats");
6964 DEFSYM (Qintervals, "intervals");
6965 DEFSYM (Qbuffers, "buffers");
5b835e1d
DA
6966 DEFSYM (Qstring_bytes, "string-bytes");
6967 DEFSYM (Qvector_slots, "vector-slots");
f8643a6b 6968 DEFSYM (Qheap, "heap");
3d80c99f 6969 DEFSYM (Qautomatic_gc, "Automatic GC");
5b835e1d 6970
cd3520a4
JB
6971 DEFSYM (Qgc_cons_threshold, "gc-cons-threshold");
6972 DEFSYM (Qchar_table_extra_slots, "char-table-extra-slots");
a59de17b 6973
29208e82 6974 DEFVAR_LISP ("gc-elapsed", Vgc_elapsed,
2c5bd608 6975 doc: /* Accumulated time elapsed in garbage collections.
e7415487 6976The time is in seconds as a floating point value. */);
29208e82 6977 DEFVAR_INT ("gcs-done", gcs_done,
e7415487 6978 doc: /* Accumulated number of garbage collections done. */);
2c5bd608 6979
7146af97
JB
6980 defsubr (&Scons);
6981 defsubr (&Slist);
6982 defsubr (&Svector);
6983 defsubr (&Smake_byte_code);
6984 defsubr (&Smake_list);
6985 defsubr (&Smake_vector);
6986 defsubr (&Smake_string);
7b07587b 6987 defsubr (&Smake_bool_vector);
7146af97
JB
6988 defsubr (&Smake_symbol);
6989 defsubr (&Smake_marker);
6990 defsubr (&Spurecopy);
6991 defsubr (&Sgarbage_collect);
20d24714 6992 defsubr (&Smemory_limit);
310ea200 6993 defsubr (&Smemory_use_counts);
34400008
GM
6994
6995#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
6996 defsubr (&Sgc_status);
6997#endif
7146af97 6998}
5eceb8fb 6999
4706125e
PE
7000/* When compiled with GCC, GDB might say "No enum type named
7001 pvec_type" if we don't have at least one symbol with that type, and
7002 then xbacktrace could fail. Similarly for the other enums and
62aba0d4
FP
7003 their values. Some non-GCC compilers don't like these constructs. */
7004#ifdef __GNUC__
4706125e
PE
7005union
7006{
03a660a6
PE
7007 enum CHARTAB_SIZE_BITS CHARTAB_SIZE_BITS;
7008 enum CHAR_TABLE_STANDARD_SLOTS CHAR_TABLE_STANDARD_SLOTS;
7009 enum char_bits char_bits;
4706125e 7010 enum CHECK_LISP_OBJECT_TYPE CHECK_LISP_OBJECT_TYPE;
03a660a6 7011 enum DEFAULT_HASH_SIZE DEFAULT_HASH_SIZE;
4706125e
PE
7012 enum enum_USE_LSB_TAG enum_USE_LSB_TAG;
7013 enum Lisp_Bits Lisp_Bits;
03a660a6
PE
7014 enum Lisp_Compiled Lisp_Compiled;
7015 enum maxargs maxargs;
7016 enum MAX_ALLOCA MAX_ALLOCA;
4706125e
PE
7017 enum More_Lisp_Bits More_Lisp_Bits;
7018 enum pvec_type pvec_type;
7019} const EXTERNALLY_VISIBLE gdb_make_enums_visible = {0};
62aba0d4 7020#endif /* __GNUC__ */