Fix recently-introduced typos in Windows port.
[bpt/emacs.git] / src / alloc.c
CommitLineData
7146af97 1/* Storage allocation and gc for GNU Emacs Lisp interpreter.
999dd333
GM
2
3Copyright (C) 1985-1986, 1988, 1993-1995, 1997-2012
4 Free Software Foundation, Inc.
7146af97
JB
5
6This file is part of GNU Emacs.
7
9ec0b715 8GNU Emacs is free software: you can redistribute it and/or modify
7146af97 9it under the terms of the GNU General Public License as published by
9ec0b715
GM
10the Free Software Foundation, either version 3 of the License, or
11(at your option) any later version.
7146af97
JB
12
13GNU Emacs is distributed in the hope that it will be useful,
14but WITHOUT ANY WARRANTY; without even the implied warranty of
15MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16GNU General Public License for more details.
17
18You should have received a copy of the GNU General Public License
9ec0b715 19along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
7146af97 20
18160b98 21#include <config.h>
e9b309ac 22#include <stdio.h>
ab6780cd 23#include <limits.h> /* For CHAR_BIT. */
d7306fe6 24#include <setjmp.h>
92939d31 25
68c45bf0 26#include <signal.h>
92939d31 27
ae9e757a 28#ifdef HAVE_PTHREAD
aa477689
JD
29#include <pthread.h>
30#endif
31
7539e11f
KR
32/* This file is part of the core Lisp implementation, and thus must
33 deal with the real data structures. If the Lisp implementation is
34 replaced, this file likely will not be used. */
2e471eb5 35
7539e11f 36#undef HIDE_LISP_IMPLEMENTATION
7146af97 37#include "lisp.h"
ece93c02 38#include "process.h"
d5e35230 39#include "intervals.h"
4c0be5f4 40#include "puresize.h"
e5560ff7 41#include "character.h"
7146af97
JB
42#include "buffer.h"
43#include "window.h"
2538fae4 44#include "keyboard.h"
502b9b64 45#include "frame.h"
9ac0d9e0 46#include "blockinput.h"
e065a56e 47#include "syssignal.h"
4a729fd8 48#include "termhooks.h" /* For struct terminal. */
34400008 49#include <setjmp.h>
0065d054 50#include <verify.h>
e065a56e 51
52828e02
PE
52/* GC_CHECK_MARKED_OBJECTS means do sanity checks on allocated objects.
53 Doable only if GC_MARK_STACK. */
54#if ! GC_MARK_STACK
55# undef GC_CHECK_MARKED_OBJECTS
56#endif
57
6b61353c 58/* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
52828e02
PE
59 memory. Can do this only if using gmalloc.c and if not checking
60 marked objects. */
6b61353c 61
52828e02
PE
62#if (defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC \
63 || defined GC_CHECK_MARKED_OBJECTS)
6b61353c
KH
64#undef GC_MALLOC_CHECK
65#endif
66
bf952fb6 67#include <unistd.h>
4004364e 68#ifndef HAVE_UNISTD_H
261cb4bb 69extern void *sbrk ();
bf952fb6 70#endif
ee1eea5c 71
de7124a7 72#include <fcntl.h>
de7124a7 73
69666f77 74#ifdef WINDOWSNT
f892cf9c 75#include "w32.h"
69666f77
EZ
76#endif
77
d1658221 78#ifdef DOUG_LEA_MALLOC
2e471eb5 79
d1658221 80#include <malloc.h>
81d492d5 81
2e471eb5
GM
82/* Specify maximum number of areas to mmap. It would be nice to use a
83 value that explicitly means "no limit". */
84
81d492d5
RS
85#define MMAP_MAX_AREAS 100000000
86
2e471eb5
GM
87#else /* not DOUG_LEA_MALLOC */
88
276cbe5a
RS
89/* The following come from gmalloc.c. */
90
5e927815
PE
91extern size_t _bytes_used;
92extern size_t __malloc_extra_blocks;
b62a57be
PE
93extern void *_malloc_internal (size_t);
94extern void _free_internal (void *);
2e471eb5
GM
95
96#endif /* not DOUG_LEA_MALLOC */
276cbe5a 97
7bc26fdb 98#if ! defined SYSTEM_MALLOC && ! defined SYNC_INPUT
ae9e757a 99#ifdef HAVE_PTHREAD
aa477689 100
f415cacd
JD
101/* When GTK uses the file chooser dialog, different backends can be loaded
102 dynamically. One such a backend is the Gnome VFS backend that gets loaded
103 if you run Gnome. That backend creates several threads and also allocates
104 memory with malloc.
105
ae9e757a
JD
106 Also, gconf and gsettings may create several threads.
107
f415cacd
JD
108 If Emacs sets malloc hooks (! SYSTEM_MALLOC) and the emacs_blocked_*
109 functions below are called from malloc, there is a chance that one
110 of these threads preempts the Emacs main thread and the hook variables
333f1b6f 111 end up in an inconsistent state. So we have a mutex to prevent that (note
f415cacd
JD
112 that the backend handles concurrent access to malloc within its own threads
113 but Emacs code running in the main thread is not included in that control).
114
026cdede 115 When UNBLOCK_INPUT is called, reinvoke_input_signal may be called. If this
f415cacd
JD
116 happens in one of the backend threads we will have two threads that tries
117 to run Emacs code at once, and the code is not prepared for that.
118 To prevent that, we only call BLOCK/UNBLOCK from the main thread. */
119
aa477689 120static pthread_mutex_t alloc_mutex;
aa477689 121
959dc601
JD
122#define BLOCK_INPUT_ALLOC \
123 do \
124 { \
125 if (pthread_equal (pthread_self (), main_thread)) \
86302e37 126 BLOCK_INPUT; \
959dc601
JD
127 pthread_mutex_lock (&alloc_mutex); \
128 } \
aa477689 129 while (0)
959dc601
JD
130#define UNBLOCK_INPUT_ALLOC \
131 do \
132 { \
133 pthread_mutex_unlock (&alloc_mutex); \
134 if (pthread_equal (pthread_self (), main_thread)) \
86302e37 135 UNBLOCK_INPUT; \
959dc601 136 } \
aa477689
JD
137 while (0)
138
ae9e757a 139#else /* ! defined HAVE_PTHREAD */
aa477689
JD
140
141#define BLOCK_INPUT_ALLOC BLOCK_INPUT
142#define UNBLOCK_INPUT_ALLOC UNBLOCK_INPUT
143
ae9e757a 144#endif /* ! defined HAVE_PTHREAD */
7bc26fdb 145#endif /* ! defined SYSTEM_MALLOC && ! defined SYNC_INPUT */
aa477689 146
2e471eb5
GM
147/* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
148 to a struct Lisp_String. */
149
7cdee936
SM
150#define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
151#define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
b059de99 152#define STRING_MARKED_P(S) (((S)->size & ARRAY_MARK_FLAG) != 0)
2e471eb5 153
eab3844f
PE
154#define VECTOR_MARK(V) ((V)->header.size |= ARRAY_MARK_FLAG)
155#define VECTOR_UNMARK(V) ((V)->header.size &= ~ARRAY_MARK_FLAG)
156#define VECTOR_MARKED_P(V) (((V)->header.size & ARRAY_MARK_FLAG) != 0)
3ef06d12 157
7bc26fdb
PE
158/* Value is the number of bytes of S, a pointer to a struct Lisp_String.
159 Be careful during GC, because S->size contains the mark bit for
2e471eb5
GM
160 strings. */
161
3ef06d12 162#define GC_STRING_BYTES(S) (STRING_BYTES (S))
2e471eb5 163
0dd6d66d
DA
164/* Default value of gc_cons_threshold (see below). */
165
166#define GC_DEFAULT_THRESHOLD (100000 * sizeof (Lisp_Object))
167
29208e82
TT
168/* Global variables. */
169struct emacs_globals globals;
170
2e471eb5
GM
171/* Number of bytes of consing done since the last gc. */
172
dac616ff 173EMACS_INT consing_since_gc;
7146af97 174
974aae61
RS
175/* Similar minimum, computed from Vgc_cons_percentage. */
176
dac616ff 177EMACS_INT gc_relative_threshold;
310ea200 178
24d8a105
RS
179/* Minimum number of bytes of consing since GC before next GC,
180 when memory is full. */
181
dac616ff 182EMACS_INT memory_full_cons_threshold;
24d8a105 183
2e471eb5
GM
184/* Nonzero during GC. */
185
7146af97
JB
186int gc_in_progress;
187
3de0effb
RS
188/* Nonzero means abort if try to GC.
189 This is for code which is written on the assumption that
190 no GC will happen, so as to verify that assumption. */
191
192int abort_on_gc;
193
34400008
GM
194/* Number of live and free conses etc. */
195
3ab6e069 196static EMACS_INT total_conses, total_markers, total_symbols, total_buffers;
c0c5c8ae 197static EMACS_INT total_free_conses, total_free_markers, total_free_symbols;
3ab6e069 198static EMACS_INT total_free_floats, total_floats;
fd27a537 199
2e471eb5 200/* Points to memory space allocated as "spare", to be freed if we run
24d8a105
RS
201 out of memory. We keep one large block, four cons-blocks, and
202 two string blocks. */
2e471eb5 203
d3d47262 204static char *spare_memory[7];
276cbe5a 205
2b6148e4
PE
206/* Amount of spare memory to keep in large reserve block, or to see
207 whether this much is available when malloc fails on a larger request. */
2e471eb5 208
276cbe5a 209#define SPARE_MEMORY (1 << 14)
4d09bcf6 210
276cbe5a 211/* Number of extra blocks malloc should get when it needs more core. */
2e471eb5 212
276cbe5a
RS
213static int malloc_hysteresis;
214
1b8950e5
RS
215/* Initialize it to a nonzero value to force it into data space
216 (rather than bss space). That way unexec will remap it into text
217 space (pure), on some systems. We have not implemented the
218 remapping on more recent systems because this is less important
219 nowadays than in the days of small memories and timesharing. */
2e471eb5 220
2c4685ee 221EMACS_INT pure[(PURESIZE + sizeof (EMACS_INT) - 1) / sizeof (EMACS_INT)] = {1,};
7146af97 222#define PUREBEG (char *) pure
2e471eb5 223
9e713715 224/* Pointer to the pure area, and its size. */
2e471eb5 225
9e713715 226static char *purebeg;
903fe15d 227static ptrdiff_t pure_size;
9e713715
GM
228
229/* Number of bytes of pure storage used before pure storage overflowed.
230 If this is non-zero, this implies that an overflow occurred. */
231
903fe15d 232static ptrdiff_t pure_bytes_used_before_overflow;
7146af97 233
34400008
GM
234/* Value is non-zero if P points into pure space. */
235
236#define PURE_POINTER_P(P) \
6a0bf43d 237 ((uintptr_t) (P) - (uintptr_t) purebeg <= pure_size)
34400008 238
e5bc14d4
YM
239/* Index in pure at which next pure Lisp object will be allocated.. */
240
d311d28c 241static ptrdiff_t pure_bytes_used_lisp;
e5bc14d4
YM
242
243/* Number of bytes allocated for non-Lisp objects in pure storage. */
244
d311d28c 245static ptrdiff_t pure_bytes_used_non_lisp;
e5bc14d4 246
2e471eb5
GM
247/* If nonzero, this is a warning delivered by malloc and not yet
248 displayed. */
249
a8fe7202 250const char *pending_malloc_warning;
7146af97
JB
251
252/* Maximum amount of C stack to save when a GC happens. */
253
254#ifndef MAX_SAVE_STACK
255#define MAX_SAVE_STACK 16000
256#endif
257
258/* Buffer in which we save a copy of the C stack at each GC. */
259
dd3f25f7 260#if MAX_SAVE_STACK > 0
d3d47262 261static char *stack_copy;
903fe15d 262static ptrdiff_t stack_copy_size;
dd3f25f7 263#endif
7146af97 264
f8643a6b 265static Lisp_Object Qstring_bytes, Qvector_slots, Qheap;
955cbe7b
PE
266static Lisp_Object Qgc_cons_threshold;
267Lisp_Object Qchar_table_extra_slots;
e8197642 268
9e713715
GM
269/* Hook run after GC has finished. */
270
955cbe7b 271static Lisp_Object Qpost_gc_hook;
2c5bd608 272
f57e2426 273static void mark_terminals (void);
f57e2426 274static void gc_sweep (void);
72cb32cf 275static Lisp_Object make_pure_vector (ptrdiff_t);
f57e2426
J
276static void mark_glyph_matrix (struct glyph_matrix *);
277static void mark_face_cache (struct face_cache *);
41c28a37 278
69003fd8
PE
279#if !defined REL_ALLOC || defined SYSTEM_MALLOC
280static void refill_memory_reserve (void);
281#endif
f57e2426
J
282static struct Lisp_String *allocate_string (void);
283static void compact_small_strings (void);
284static void free_large_strings (void);
285static void sweep_strings (void);
244ed907 286static void free_misc (Lisp_Object);
196e41e4 287extern Lisp_Object which_symbols (Lisp_Object, EMACS_INT) EXTERNALLY_VISIBLE;
34400008 288
d06714cb
PE
289/* Handy constants for vectorlike objects. */
290enum
291 {
292 header_size = offsetof (struct Lisp_Vector, contents),
293 bool_header_size = offsetof (struct Lisp_Bool_Vector, data),
294 word_size = sizeof (Lisp_Object)
295 };
296
34400008
GM
297/* When scanning the C stack for live Lisp objects, Emacs keeps track
298 of what memory allocated via lisp_malloc is intended for what
299 purpose. This enumeration specifies the type of memory. */
300
301enum mem_type
302{
303 MEM_TYPE_NON_LISP,
304 MEM_TYPE_BUFFER,
305 MEM_TYPE_CONS,
306 MEM_TYPE_STRING,
307 MEM_TYPE_MISC,
308 MEM_TYPE_SYMBOL,
309 MEM_TYPE_FLOAT,
9c545a55
SM
310 /* We used to keep separate mem_types for subtypes of vectors such as
311 process, hash_table, frame, terminal, and window, but we never made
312 use of the distinction, so it only caused source-code complexity
313 and runtime slowdown. Minor but pointless. */
f3372c87
DA
314 MEM_TYPE_VECTORLIKE,
315 /* Special type to denote vector blocks. */
316 MEM_TYPE_VECTOR_BLOCK
34400008
GM
317};
318
261cb4bb 319static void *lisp_malloc (size_t, enum mem_type);
225ccad6 320
24d8a105 321
877935b1 322#if GC_MARK_STACK || defined GC_MALLOC_CHECK
0b378936
GM
323
324#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
325#include <stdio.h> /* For fprintf. */
326#endif
327
328/* A unique object in pure space used to make some Lisp objects
329 on free lists recognizable in O(1). */
330
d3d47262 331static Lisp_Object Vdead;
ca78dc43 332#define DEADP(x) EQ (x, Vdead)
0b378936 333
877935b1
GM
334#ifdef GC_MALLOC_CHECK
335
336enum mem_type allocated_mem_type;
877935b1
GM
337
338#endif /* GC_MALLOC_CHECK */
339
340/* A node in the red-black tree describing allocated memory containing
341 Lisp data. Each such block is recorded with its start and end
342 address when it is allocated, and removed from the tree when it
343 is freed.
344
345 A red-black tree is a balanced binary tree with the following
346 properties:
347
348 1. Every node is either red or black.
349 2. Every leaf is black.
350 3. If a node is red, then both of its children are black.
351 4. Every simple path from a node to a descendant leaf contains
352 the same number of black nodes.
353 5. The root is always black.
354
355 When nodes are inserted into the tree, or deleted from the tree,
356 the tree is "fixed" so that these properties are always true.
357
358 A red-black tree with N internal nodes has height at most 2
359 log(N+1). Searches, insertions and deletions are done in O(log N).
360 Please see a text book about data structures for a detailed
361 description of red-black trees. Any book worth its salt should
362 describe them. */
363
364struct mem_node
365{
9f7d9210
RS
366 /* Children of this node. These pointers are never NULL. When there
367 is no child, the value is MEM_NIL, which points to a dummy node. */
368 struct mem_node *left, *right;
369
370 /* The parent of this node. In the root node, this is NULL. */
371 struct mem_node *parent;
877935b1
GM
372
373 /* Start and end of allocated region. */
374 void *start, *end;
375
376 /* Node color. */
377 enum {MEM_BLACK, MEM_RED} color;
177c0ea7 378
877935b1
GM
379 /* Memory type. */
380 enum mem_type type;
381};
382
383/* Base address of stack. Set in main. */
384
385Lisp_Object *stack_base;
386
387/* Root of the tree describing allocated Lisp memory. */
388
389static struct mem_node *mem_root;
390
ece93c02
GM
391/* Lowest and highest known address in the heap. */
392
393static void *min_heap_address, *max_heap_address;
394
877935b1
GM
395/* Sentinel node of the tree. */
396
397static struct mem_node mem_z;
398#define MEM_NIL &mem_z
399
d311d28c 400static struct Lisp_Vector *allocate_vectorlike (ptrdiff_t);
261cb4bb 401static void lisp_free (void *);
f57e2426
J
402static void mark_stack (void);
403static int live_vector_p (struct mem_node *, void *);
404static int live_buffer_p (struct mem_node *, void *);
405static int live_string_p (struct mem_node *, void *);
406static int live_cons_p (struct mem_node *, void *);
407static int live_symbol_p (struct mem_node *, void *);
408static int live_float_p (struct mem_node *, void *);
409static int live_misc_p (struct mem_node *, void *);
410static void mark_maybe_object (Lisp_Object);
3164aeac 411static void mark_memory (void *, void *);
52828e02 412#if GC_MARK_STACK || defined GC_MALLOC_CHECK
f57e2426
J
413static void mem_init (void);
414static struct mem_node *mem_insert (void *, void *, enum mem_type);
415static void mem_insert_fixup (struct mem_node *);
b62a57be 416#endif
f57e2426
J
417static void mem_rotate_left (struct mem_node *);
418static void mem_rotate_right (struct mem_node *);
419static void mem_delete (struct mem_node *);
420static void mem_delete_fixup (struct mem_node *);
55d4c1b2 421static inline struct mem_node *mem_find (void *);
34400008 422
34400008
GM
423
424#if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
f57e2426 425static void check_gcpros (void);
34400008
GM
426#endif
427
877935b1 428#endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
34400008 429
ca78dc43
PE
430#ifndef DEADP
431# define DEADP(x) 0
432#endif
433
1f0b3fd2
GM
434/* Recording what needs to be marked for gc. */
435
436struct gcpro *gcprolist;
437
379b98b1
PE
438/* Addresses of staticpro'd variables. Initialize it to a nonzero
439 value; otherwise some compilers put it into BSS. */
1f0b3fd2 440
d251c37c 441#define NSTATICS 0x650
d3d47262 442static Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
1f0b3fd2
GM
443
444/* Index of next unused slot in staticvec. */
445
fff62aa9 446static int staticidx;
1f0b3fd2 447
261cb4bb 448static void *pure_alloc (size_t, int);
1f0b3fd2
GM
449
450
451/* Value is SZ rounded up to the next multiple of ALIGNMENT.
452 ALIGNMENT must be a power of 2. */
453
ab6780cd 454#define ALIGN(ptr, ALIGNMENT) \
261cb4bb
PE
455 ((void *) (((uintptr_t) (ptr) + (ALIGNMENT) - 1) \
456 & ~ ((ALIGNMENT) - 1)))
1f0b3fd2 457
ece93c02 458
7146af97 459\f
34400008
GM
460/************************************************************************
461 Malloc
462 ************************************************************************/
463
4455ad75 464/* Function malloc calls this if it finds we are near exhausting storage. */
d457598b
AS
465
466void
a8fe7202 467malloc_warning (const char *str)
7146af97
JB
468{
469 pending_malloc_warning = str;
470}
471
34400008 472
4455ad75 473/* Display an already-pending malloc warning. */
34400008 474
d457598b 475void
971de7fb 476display_malloc_warning (void)
7146af97 477{
4455ad75
RS
478 call3 (intern ("display-warning"),
479 intern ("alloc"),
480 build_string (pending_malloc_warning),
481 intern ("emergency"));
7146af97 482 pending_malloc_warning = 0;
7146af97 483}
49efed3a 484\f
276cbe5a
RS
485/* Called if we can't allocate relocatable space for a buffer. */
486
487void
d311d28c 488buffer_memory_full (ptrdiff_t nbytes)
276cbe5a 489{
2e471eb5
GM
490 /* If buffers use the relocating allocator, no need to free
491 spare_memory, because we may have plenty of malloc space left
492 that we could get, and if we don't, the malloc that fails will
493 itself cause spare_memory to be freed. If buffers don't use the
494 relocating allocator, treat this like any other failing
495 malloc. */
276cbe5a
RS
496
497#ifndef REL_ALLOC
531b0165 498 memory_full (nbytes);
276cbe5a
RS
499#endif
500
2e471eb5
GM
501 /* This used to call error, but if we've run out of memory, we could
502 get infinite recursion trying to build the string. */
9b306d37 503 xsignal (Qnil, Vmemory_signal_data);
7146af97
JB
504}
505
f3372c87
DA
506/* A common multiple of the positive integers A and B. Ideally this
507 would be the least common multiple, but there's no way to do that
508 as a constant expression in C, so do the best that we can easily do. */
509#define COMMON_MULTIPLE(a, b) \
510 ((a) % (b) == 0 ? (a) : (b) % (a) == 0 ? (b) : (a) * (b))
34400008 511
c9d624c6 512#ifndef XMALLOC_OVERRUN_CHECK
903fe15d 513#define XMALLOC_OVERRUN_CHECK_OVERHEAD 0
c9d624c6 514#else
212f33f1 515
903fe15d
PE
516/* Check for overrun in malloc'ed buffers by wrapping a header and trailer
517 around each block.
bdbed949 518
f701dc2a
PE
519 The header consists of XMALLOC_OVERRUN_CHECK_SIZE fixed bytes
520 followed by XMALLOC_OVERRUN_SIZE_SIZE bytes containing the original
521 block size in little-endian order. The trailer consists of
522 XMALLOC_OVERRUN_CHECK_SIZE fixed bytes.
bdbed949
KS
523
524 The header is used to detect whether this block has been allocated
f701dc2a
PE
525 through these functions, as some low-level libc functions may
526 bypass the malloc hooks. */
bdbed949 527
212f33f1 528#define XMALLOC_OVERRUN_CHECK_SIZE 16
903fe15d 529#define XMALLOC_OVERRUN_CHECK_OVERHEAD \
38532ce6
PE
530 (2 * XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE)
531
532/* Define XMALLOC_OVERRUN_SIZE_SIZE so that (1) it's large enough to
f701dc2a
PE
533 hold a size_t value and (2) the header size is a multiple of the
534 alignment that Emacs needs for C types and for USE_LSB_TAG. */
535#define XMALLOC_BASE_ALIGNMENT \
536 offsetof ( \
537 struct { \
538 union { long double d; intmax_t i; void *p; } u; \
539 char c; \
540 }, \
541 c)
f3372c87 542
bfe3e0a2 543#if USE_LSB_TAG
f701dc2a
PE
544# define XMALLOC_HEADER_ALIGNMENT \
545 COMMON_MULTIPLE (1 << GCTYPEBITS, XMALLOC_BASE_ALIGNMENT)
38532ce6
PE
546#else
547# define XMALLOC_HEADER_ALIGNMENT XMALLOC_BASE_ALIGNMENT
548#endif
549#define XMALLOC_OVERRUN_SIZE_SIZE \
f701dc2a
PE
550 (((XMALLOC_OVERRUN_CHECK_SIZE + sizeof (size_t) \
551 + XMALLOC_HEADER_ALIGNMENT - 1) \
552 / XMALLOC_HEADER_ALIGNMENT * XMALLOC_HEADER_ALIGNMENT) \
553 - XMALLOC_OVERRUN_CHECK_SIZE)
bdbed949 554
903fe15d
PE
555static char const xmalloc_overrun_check_header[XMALLOC_OVERRUN_CHECK_SIZE] =
556 { '\x9a', '\x9b', '\xae', '\xaf',
557 '\xbf', '\xbe', '\xce', '\xcf',
558 '\xea', '\xeb', '\xec', '\xed',
559 '\xdf', '\xde', '\x9c', '\x9d' };
212f33f1 560
903fe15d
PE
561static char const xmalloc_overrun_check_trailer[XMALLOC_OVERRUN_CHECK_SIZE] =
562 { '\xaa', '\xab', '\xac', '\xad',
563 '\xba', '\xbb', '\xbc', '\xbd',
564 '\xca', '\xcb', '\xcc', '\xcd',
565 '\xda', '\xdb', '\xdc', '\xdd' };
212f33f1 566
903fe15d 567/* Insert and extract the block size in the header. */
bdbed949 568
903fe15d
PE
569static void
570xmalloc_put_size (unsigned char *ptr, size_t size)
571{
572 int i;
38532ce6 573 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
903fe15d 574 {
38532ce6 575 *--ptr = size & ((1 << CHAR_BIT) - 1);
903fe15d
PE
576 size >>= CHAR_BIT;
577 }
578}
bdbed949 579
903fe15d
PE
580static size_t
581xmalloc_get_size (unsigned char *ptr)
582{
583 size_t size = 0;
584 int i;
38532ce6
PE
585 ptr -= XMALLOC_OVERRUN_SIZE_SIZE;
586 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
903fe15d
PE
587 {
588 size <<= CHAR_BIT;
589 size += *ptr++;
590 }
591 return size;
592}
bdbed949
KS
593
594
d8f165a8
JD
595/* The call depth in overrun_check functions. For example, this might happen:
596 xmalloc()
597 overrun_check_malloc()
598 -> malloc -> (via hook)_-> emacs_blocked_malloc
599 -> overrun_check_malloc
600 call malloc (hooks are NULL, so real malloc is called).
601 malloc returns 10000.
602 add overhead, return 10016.
603 <- (back in overrun_check_malloc)
857ae68b 604 add overhead again, return 10032
d8f165a8 605 xmalloc returns 10032.
857ae68b
JD
606
607 (time passes).
608
d8f165a8
JD
609 xfree(10032)
610 overrun_check_free(10032)
903fe15d 611 decrease overhead
d8f165a8 612 free(10016) <- crash, because 10000 is the original pointer. */
857ae68b 613
903fe15d 614static ptrdiff_t check_depth;
857ae68b 615
bdbed949
KS
616/* Like malloc, but wraps allocated block with header and trailer. */
617
261cb4bb 618static void *
e7974947 619overrun_check_malloc (size_t size)
212f33f1 620{
bdbed949 621 register unsigned char *val;
903fe15d
PE
622 int overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_OVERHEAD : 0;
623 if (SIZE_MAX - overhead < size)
624 abort ();
212f33f1 625
38182d90 626 val = malloc (size + overhead);
857ae68b 627 if (val && check_depth == 1)
212f33f1 628 {
903fe15d 629 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
38532ce6 630 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
903fe15d 631 xmalloc_put_size (val, size);
72af86bd
AS
632 memcpy (val + size, xmalloc_overrun_check_trailer,
633 XMALLOC_OVERRUN_CHECK_SIZE);
212f33f1 634 }
857ae68b 635 --check_depth;
261cb4bb 636 return val;
212f33f1
KS
637}
638
bdbed949
KS
639
640/* Like realloc, but checks old block for overrun, and wraps new block
641 with header and trailer. */
642
261cb4bb
PE
643static void *
644overrun_check_realloc (void *block, size_t size)
212f33f1 645{
e7974947 646 register unsigned char *val = (unsigned char *) block;
903fe15d
PE
647 int overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_OVERHEAD : 0;
648 if (SIZE_MAX - overhead < size)
649 abort ();
212f33f1
KS
650
651 if (val
857ae68b 652 && check_depth == 1
72af86bd 653 && memcmp (xmalloc_overrun_check_header,
38532ce6 654 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
903fe15d 655 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
212f33f1 656 {
903fe15d 657 size_t osize = xmalloc_get_size (val);
72af86bd
AS
658 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
659 XMALLOC_OVERRUN_CHECK_SIZE))
212f33f1 660 abort ();
72af86bd 661 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
38532ce6
PE
662 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
663 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
212f33f1
KS
664 }
665
261cb4bb 666 val = realloc (val, size + overhead);
212f33f1 667
857ae68b 668 if (val && check_depth == 1)
212f33f1 669 {
903fe15d 670 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
38532ce6 671 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
903fe15d 672 xmalloc_put_size (val, size);
72af86bd
AS
673 memcpy (val + size, xmalloc_overrun_check_trailer,
674 XMALLOC_OVERRUN_CHECK_SIZE);
212f33f1 675 }
857ae68b 676 --check_depth;
261cb4bb 677 return val;
212f33f1
KS
678}
679
bdbed949
KS
680/* Like free, but checks block for overrun. */
681
2538aa2f 682static void
261cb4bb 683overrun_check_free (void *block)
212f33f1 684{
e7974947 685 unsigned char *val = (unsigned char *) block;
212f33f1 686
857ae68b 687 ++check_depth;
212f33f1 688 if (val
857ae68b 689 && check_depth == 1
72af86bd 690 && memcmp (xmalloc_overrun_check_header,
38532ce6 691 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
903fe15d 692 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
212f33f1 693 {
903fe15d 694 size_t osize = xmalloc_get_size (val);
72af86bd
AS
695 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
696 XMALLOC_OVERRUN_CHECK_SIZE))
212f33f1 697 abort ();
454d7973 698#ifdef XMALLOC_CLEAR_FREE_MEMORY
38532ce6 699 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
903fe15d 700 memset (val, 0xff, osize + XMALLOC_OVERRUN_CHECK_OVERHEAD);
454d7973 701#else
72af86bd 702 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
38532ce6
PE
703 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
704 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
454d7973 705#endif
212f33f1
KS
706 }
707
708 free (val);
857ae68b 709 --check_depth;
212f33f1
KS
710}
711
712#undef malloc
713#undef realloc
714#undef free
715#define malloc overrun_check_malloc
716#define realloc overrun_check_realloc
717#define free overrun_check_free
718#endif
719
dafc79fa
SM
720#ifdef SYNC_INPUT
721/* When using SYNC_INPUT, we don't call malloc from a signal handler, so
722 there's no need to block input around malloc. */
723#define MALLOC_BLOCK_INPUT ((void)0)
724#define MALLOC_UNBLOCK_INPUT ((void)0)
725#else
726#define MALLOC_BLOCK_INPUT BLOCK_INPUT
727#define MALLOC_UNBLOCK_INPUT UNBLOCK_INPUT
728#endif
bdbed949 729
34400008 730/* Like malloc but check for no memory and block interrupt input.. */
7146af97 731
261cb4bb 732void *
971de7fb 733xmalloc (size_t size)
7146af97 734{
261cb4bb 735 void *val;
7146af97 736
dafc79fa 737 MALLOC_BLOCK_INPUT;
261cb4bb 738 val = malloc (size);
dafc79fa 739 MALLOC_UNBLOCK_INPUT;
7146af97 740
2e471eb5 741 if (!val && size)
531b0165 742 memory_full (size);
7146af97
JB
743 return val;
744}
745
23f86fce
DA
746/* Like the above, but zeroes out the memory just allocated. */
747
748void *
749xzalloc (size_t size)
750{
751 void *val;
752
753 MALLOC_BLOCK_INPUT;
754 val = malloc (size);
755 MALLOC_UNBLOCK_INPUT;
756
757 if (!val && size)
758 memory_full (size);
759 memset (val, 0, size);
760 return val;
761}
34400008
GM
762
763/* Like realloc but check for no memory and block interrupt input.. */
764
261cb4bb
PE
765void *
766xrealloc (void *block, size_t size)
7146af97 767{
261cb4bb 768 void *val;
7146af97 769
dafc79fa 770 MALLOC_BLOCK_INPUT;
56d2031b
JB
771 /* We must call malloc explicitly when BLOCK is 0, since some
772 reallocs don't do this. */
773 if (! block)
261cb4bb 774 val = malloc (size);
f048679d 775 else
261cb4bb 776 val = realloc (block, size);
dafc79fa 777 MALLOC_UNBLOCK_INPUT;
7146af97 778
531b0165
PE
779 if (!val && size)
780 memory_full (size);
7146af97
JB
781 return val;
782}
9ac0d9e0 783
34400008 784
005ca5c7 785/* Like free but block interrupt input. */
34400008 786
9ac0d9e0 787void
261cb4bb 788xfree (void *block)
9ac0d9e0 789{
70fdbb46
JM
790 if (!block)
791 return;
dafc79fa 792 MALLOC_BLOCK_INPUT;
9ac0d9e0 793 free (block);
dafc79fa 794 MALLOC_UNBLOCK_INPUT;
24d8a105
RS
795 /* We don't call refill_memory_reserve here
796 because that duplicates doing so in emacs_blocked_free
797 and the criterion should go there. */
9ac0d9e0
JB
798}
799
c8099634 800
0065d054
PE
801/* Other parts of Emacs pass large int values to allocator functions
802 expecting ptrdiff_t. This is portable in practice, but check it to
803 be safe. */
804verify (INT_MAX <= PTRDIFF_MAX);
805
806
807/* Allocate an array of NITEMS items, each of size ITEM_SIZE.
808 Signal an error on memory exhaustion, and block interrupt input. */
809
810void *
811xnmalloc (ptrdiff_t nitems, ptrdiff_t item_size)
812{
a54e2c05 813 eassert (0 <= nitems && 0 < item_size);
0065d054
PE
814 if (min (PTRDIFF_MAX, SIZE_MAX) / item_size < nitems)
815 memory_full (SIZE_MAX);
816 return xmalloc (nitems * item_size);
817}
818
819
820/* Reallocate an array PA to make it of NITEMS items, each of size ITEM_SIZE.
821 Signal an error on memory exhaustion, and block interrupt input. */
822
823void *
824xnrealloc (void *pa, ptrdiff_t nitems, ptrdiff_t item_size)
825{
a54e2c05 826 eassert (0 <= nitems && 0 < item_size);
0065d054
PE
827 if (min (PTRDIFF_MAX, SIZE_MAX) / item_size < nitems)
828 memory_full (SIZE_MAX);
829 return xrealloc (pa, nitems * item_size);
830}
831
832
833/* Grow PA, which points to an array of *NITEMS items, and return the
834 location of the reallocated array, updating *NITEMS to reflect its
835 new size. The new array will contain at least NITEMS_INCR_MIN more
836 items, but will not contain more than NITEMS_MAX items total.
837 ITEM_SIZE is the size of each item, in bytes.
838
839 ITEM_SIZE and NITEMS_INCR_MIN must be positive. *NITEMS must be
840 nonnegative. If NITEMS_MAX is -1, it is treated as if it were
841 infinity.
842
843 If PA is null, then allocate a new array instead of reallocating
844 the old one. Thus, to grow an array A without saving its old
845 contents, invoke xfree (A) immediately followed by xgrowalloc (0,
846 &NITEMS, ...).
847
848 Block interrupt input as needed. If memory exhaustion occurs, set
849 *NITEMS to zero if PA is null, and signal an error (i.e., do not
850 return). */
851
852void *
853xpalloc (void *pa, ptrdiff_t *nitems, ptrdiff_t nitems_incr_min,
854 ptrdiff_t nitems_max, ptrdiff_t item_size)
855{
856 /* The approximate size to use for initial small allocation
857 requests. This is the largest "small" request for the GNU C
858 library malloc. */
859 enum { DEFAULT_MXFAST = 64 * sizeof (size_t) / 4 };
860
861 /* If the array is tiny, grow it to about (but no greater than)
862 DEFAULT_MXFAST bytes. Otherwise, grow it by about 50%. */
863 ptrdiff_t n = *nitems;
864 ptrdiff_t tiny_max = DEFAULT_MXFAST / item_size - n;
865 ptrdiff_t half_again = n >> 1;
866 ptrdiff_t incr_estimate = max (tiny_max, half_again);
867
868 /* Adjust the increment according to three constraints: NITEMS_INCR_MIN,
869 NITEMS_MAX, and what the C language can represent safely. */
870 ptrdiff_t C_language_max = min (PTRDIFF_MAX, SIZE_MAX) / item_size;
871 ptrdiff_t n_max = (0 <= nitems_max && nitems_max < C_language_max
872 ? nitems_max : C_language_max);
873 ptrdiff_t nitems_incr_max = n_max - n;
874 ptrdiff_t incr = max (nitems_incr_min, min (incr_estimate, nitems_incr_max));
875
a54e2c05 876 eassert (0 < item_size && 0 < nitems_incr_min && 0 <= n && -1 <= nitems_max);
0065d054
PE
877 if (! pa)
878 *nitems = 0;
879 if (nitems_incr_max < incr)
880 memory_full (SIZE_MAX);
881 n += incr;
882 pa = xrealloc (pa, n * item_size);
883 *nitems = n;
884 return pa;
885}
886
887
dca7c6a8
GM
888/* Like strdup, but uses xmalloc. */
889
890char *
971de7fb 891xstrdup (const char *s)
dca7c6a8 892{
675d5130 893 size_t len = strlen (s) + 1;
23f86fce 894 char *p = xmalloc (len);
72af86bd 895 memcpy (p, s, len);
dca7c6a8
GM
896 return p;
897}
898
899
f61bef8b
KS
900/* Unwind for SAFE_ALLOCA */
901
902Lisp_Object
971de7fb 903safe_alloca_unwind (Lisp_Object arg)
f61bef8b 904{
b766f870
KS
905 register struct Lisp_Save_Value *p = XSAVE_VALUE (arg);
906
907 p->dogc = 0;
908 xfree (p->pointer);
909 p->pointer = 0;
7b7990cc 910 free_misc (arg);
f61bef8b
KS
911 return Qnil;
912}
913
914
34400008
GM
915/* Like malloc but used for allocating Lisp data. NBYTES is the
916 number of bytes to allocate, TYPE describes the intended use of the
91af3942 917 allocated memory block (for strings, for conses, ...). */
34400008 918
bfe3e0a2
PE
919#if ! USE_LSB_TAG
920void *lisp_malloc_loser EXTERNALLY_VISIBLE;
212f33f1 921#endif
918a23a7 922
261cb4bb 923static void *
971de7fb 924lisp_malloc (size_t nbytes, enum mem_type type)
c8099634 925{
34400008 926 register void *val;
c8099634 927
dafc79fa 928 MALLOC_BLOCK_INPUT;
877935b1
GM
929
930#ifdef GC_MALLOC_CHECK
931 allocated_mem_type = type;
932#endif
177c0ea7 933
38182d90 934 val = malloc (nbytes);
c8099634 935
bfe3e0a2 936#if ! USE_LSB_TAG
918a23a7
RS
937 /* If the memory just allocated cannot be addressed thru a Lisp
938 object's pointer, and it needs to be,
939 that's equivalent to running out of memory. */
940 if (val && type != MEM_TYPE_NON_LISP)
941 {
942 Lisp_Object tem;
943 XSETCONS (tem, (char *) val + nbytes - 1);
944 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
945 {
946 lisp_malloc_loser = val;
947 free (val);
948 val = 0;
949 }
950 }
6b61353c 951#endif
918a23a7 952
877935b1 953#if GC_MARK_STACK && !defined GC_MALLOC_CHECK
dca7c6a8 954 if (val && type != MEM_TYPE_NON_LISP)
34400008
GM
955 mem_insert (val, (char *) val + nbytes, type);
956#endif
177c0ea7 957
dafc79fa 958 MALLOC_UNBLOCK_INPUT;
dca7c6a8 959 if (!val && nbytes)
531b0165 960 memory_full (nbytes);
c8099634
RS
961 return val;
962}
963
34400008
GM
964/* Free BLOCK. This must be called to free memory allocated with a
965 call to lisp_malloc. */
966
bf952fb6 967static void
261cb4bb 968lisp_free (void *block)
c8099634 969{
dafc79fa 970 MALLOC_BLOCK_INPUT;
c8099634 971 free (block);
877935b1 972#if GC_MARK_STACK && !defined GC_MALLOC_CHECK
34400008
GM
973 mem_delete (mem_find (block));
974#endif
dafc79fa 975 MALLOC_UNBLOCK_INPUT;
c8099634 976}
34400008 977
453b951e
SM
978/***** Allocation of aligned blocks of memory to store Lisp data. *****/
979
980/* The entry point is lisp_align_malloc which returns blocks of at most
981 BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
ab6780cd 982
b4181b01
KS
983#if defined (HAVE_POSIX_MEMALIGN) && defined (SYSTEM_MALLOC)
984#define USE_POSIX_MEMALIGN 1
985#endif
ab6780cd
SM
986
987/* BLOCK_ALIGN has to be a power of 2. */
988#define BLOCK_ALIGN (1 << 10)
ab6780cd
SM
989
990/* Padding to leave at the end of a malloc'd block. This is to give
991 malloc a chance to minimize the amount of memory wasted to alignment.
992 It should be tuned to the particular malloc library used.
19bcad1f
SM
993 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
994 posix_memalign on the other hand would ideally prefer a value of 4
995 because otherwise, there's 1020 bytes wasted between each ablocks.
f501ccb4
SM
996 In Emacs, testing shows that those 1020 can most of the time be
997 efficiently used by malloc to place other objects, so a value of 0 can
998 still preferable unless you have a lot of aligned blocks and virtually
999 nothing else. */
19bcad1f
SM
1000#define BLOCK_PADDING 0
1001#define BLOCK_BYTES \
0b432f21 1002 (BLOCK_ALIGN - sizeof (struct ablocks *) - BLOCK_PADDING)
19bcad1f
SM
1003
1004/* Internal data structures and constants. */
1005
ab6780cd
SM
1006#define ABLOCKS_SIZE 16
1007
1008/* An aligned block of memory. */
1009struct ablock
1010{
1011 union
1012 {
1013 char payload[BLOCK_BYTES];
1014 struct ablock *next_free;
1015 } x;
1016 /* `abase' is the aligned base of the ablocks. */
1017 /* It is overloaded to hold the virtual `busy' field that counts
1018 the number of used ablock in the parent ablocks.
1019 The first ablock has the `busy' field, the others have the `abase'
1020 field. To tell the difference, we assume that pointers will have
1021 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
1022 is used to tell whether the real base of the parent ablocks is `abase'
1023 (if not, the word before the first ablock holds a pointer to the
1024 real base). */
1025 struct ablocks *abase;
1026 /* The padding of all but the last ablock is unused. The padding of
1027 the last ablock in an ablocks is not allocated. */
19bcad1f
SM
1028#if BLOCK_PADDING
1029 char padding[BLOCK_PADDING];
ebb8d410 1030#endif
ab6780cd
SM
1031};
1032
1033/* A bunch of consecutive aligned blocks. */
1034struct ablocks
1035{
1036 struct ablock blocks[ABLOCKS_SIZE];
1037};
1038
4b5afbb0 1039/* Size of the block requested from malloc or posix_memalign. */
19bcad1f 1040#define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
ab6780cd
SM
1041
1042#define ABLOCK_ABASE(block) \
d01a7826 1043 (((uintptr_t) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
ab6780cd
SM
1044 ? (struct ablocks *)(block) \
1045 : (block)->abase)
1046
1047/* Virtual `busy' field. */
1048#define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
1049
1050/* Pointer to the (not necessarily aligned) malloc block. */
349a4500 1051#ifdef USE_POSIX_MEMALIGN
19bcad1f
SM
1052#define ABLOCKS_BASE(abase) (abase)
1053#else
ab6780cd 1054#define ABLOCKS_BASE(abase) \
d01a7826 1055 (1 & (intptr_t) ABLOCKS_BUSY (abase) ? abase : ((void**)abase)[-1])
19bcad1f 1056#endif
ab6780cd
SM
1057
1058/* The list of free ablock. */
1059static struct ablock *free_ablock;
1060
1061/* Allocate an aligned block of nbytes.
1062 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
1063 smaller or equal to BLOCK_BYTES. */
261cb4bb 1064static void *
971de7fb 1065lisp_align_malloc (size_t nbytes, enum mem_type type)
ab6780cd
SM
1066{
1067 void *base, *val;
1068 struct ablocks *abase;
1069
1070 eassert (nbytes <= BLOCK_BYTES);
1071
dafc79fa 1072 MALLOC_BLOCK_INPUT;
ab6780cd
SM
1073
1074#ifdef GC_MALLOC_CHECK
1075 allocated_mem_type = type;
1076#endif
1077
1078 if (!free_ablock)
1079 {
005ca5c7 1080 int i;
d01a7826 1081 intptr_t aligned; /* int gets warning casting to 64-bit pointer. */
ab6780cd
SM
1082
1083#ifdef DOUG_LEA_MALLOC
1084 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1085 because mapped region contents are not preserved in
1086 a dumped Emacs. */
1087 mallopt (M_MMAP_MAX, 0);
1088#endif
1089
349a4500 1090#ifdef USE_POSIX_MEMALIGN
19bcad1f
SM
1091 {
1092 int err = posix_memalign (&base, BLOCK_ALIGN, ABLOCKS_BYTES);
ab349c19
RS
1093 if (err)
1094 base = NULL;
1095 abase = base;
19bcad1f
SM
1096 }
1097#else
ab6780cd
SM
1098 base = malloc (ABLOCKS_BYTES);
1099 abase = ALIGN (base, BLOCK_ALIGN);
ab349c19
RS
1100#endif
1101
6b61353c
KH
1102 if (base == 0)
1103 {
dafc79fa 1104 MALLOC_UNBLOCK_INPUT;
531b0165 1105 memory_full (ABLOCKS_BYTES);
6b61353c 1106 }
ab6780cd
SM
1107
1108 aligned = (base == abase);
1109 if (!aligned)
1110 ((void**)abase)[-1] = base;
1111
1112#ifdef DOUG_LEA_MALLOC
1113 /* Back to a reasonable maximum of mmap'ed areas. */
1114 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1115#endif
1116
bfe3e0a2 1117#if ! USE_LSB_TAG
8f924df7
KH
1118 /* If the memory just allocated cannot be addressed thru a Lisp
1119 object's pointer, and it needs to be, that's equivalent to
1120 running out of memory. */
1121 if (type != MEM_TYPE_NON_LISP)
1122 {
1123 Lisp_Object tem;
1124 char *end = (char *) base + ABLOCKS_BYTES - 1;
1125 XSETCONS (tem, end);
1126 if ((char *) XCONS (tem) != end)
1127 {
1128 lisp_malloc_loser = base;
1129 free (base);
dafc79fa 1130 MALLOC_UNBLOCK_INPUT;
531b0165 1131 memory_full (SIZE_MAX);
8f924df7
KH
1132 }
1133 }
6b61353c 1134#endif
8f924df7 1135
ab6780cd 1136 /* Initialize the blocks and put them on the free list.
453b951e 1137 If `base' was not properly aligned, we can't use the last block. */
ab6780cd
SM
1138 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
1139 {
1140 abase->blocks[i].abase = abase;
1141 abase->blocks[i].x.next_free = free_ablock;
1142 free_ablock = &abase->blocks[i];
1143 }
8ac068ac 1144 ABLOCKS_BUSY (abase) = (struct ablocks *) aligned;
ab6780cd 1145
d01a7826 1146 eassert (0 == ((uintptr_t) abase) % BLOCK_ALIGN);
ab6780cd
SM
1147 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
1148 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
1149 eassert (ABLOCKS_BASE (abase) == base);
d01a7826 1150 eassert (aligned == (intptr_t) ABLOCKS_BUSY (abase));
ab6780cd
SM
1151 }
1152
1153 abase = ABLOCK_ABASE (free_ablock);
8ac068ac 1154 ABLOCKS_BUSY (abase) =
d01a7826 1155 (struct ablocks *) (2 + (intptr_t) ABLOCKS_BUSY (abase));
ab6780cd
SM
1156 val = free_ablock;
1157 free_ablock = free_ablock->x.next_free;
1158
ab6780cd 1159#if GC_MARK_STACK && !defined GC_MALLOC_CHECK
3687c2ef 1160 if (type != MEM_TYPE_NON_LISP)
ab6780cd
SM
1161 mem_insert (val, (char *) val + nbytes, type);
1162#endif
1163
dafc79fa 1164 MALLOC_UNBLOCK_INPUT;
ab6780cd 1165
d01a7826 1166 eassert (0 == ((uintptr_t) val) % BLOCK_ALIGN);
ab6780cd
SM
1167 return val;
1168}
1169
1170static void
261cb4bb 1171lisp_align_free (void *block)
ab6780cd
SM
1172{
1173 struct ablock *ablock = block;
1174 struct ablocks *abase = ABLOCK_ABASE (ablock);
1175
dafc79fa 1176 MALLOC_BLOCK_INPUT;
ab6780cd
SM
1177#if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1178 mem_delete (mem_find (block));
1179#endif
1180 /* Put on free list. */
1181 ablock->x.next_free = free_ablock;
1182 free_ablock = ablock;
1183 /* Update busy count. */
453b951e
SM
1184 ABLOCKS_BUSY (abase)
1185 = (struct ablocks *) (-2 + (intptr_t) ABLOCKS_BUSY (abase));
d2db1c32 1186
d01a7826 1187 if (2 > (intptr_t) ABLOCKS_BUSY (abase))
ab6780cd 1188 { /* All the blocks are free. */
d01a7826 1189 int i = 0, aligned = (intptr_t) ABLOCKS_BUSY (abase);
ab6780cd
SM
1190 struct ablock **tem = &free_ablock;
1191 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
1192
1193 while (*tem)
1194 {
1195 if (*tem >= (struct ablock *) abase && *tem < atop)
1196 {
1197 i++;
1198 *tem = (*tem)->x.next_free;
1199 }
1200 else
1201 tem = &(*tem)->x.next_free;
1202 }
1203 eassert ((aligned & 1) == aligned);
1204 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
349a4500 1205#ifdef USE_POSIX_MEMALIGN
d01a7826 1206 eassert ((uintptr_t) ABLOCKS_BASE (abase) % BLOCK_ALIGN == 0);
cfb2f32e 1207#endif
ab6780cd
SM
1208 free (ABLOCKS_BASE (abase));
1209 }
dafc79fa 1210 MALLOC_UNBLOCK_INPUT;
ab6780cd 1211}
3ef06d12 1212
9ac0d9e0 1213\f
026cdede
SM
1214#ifndef SYSTEM_MALLOC
1215
9ac0d9e0
JB
1216/* Arranging to disable input signals while we're in malloc.
1217
1218 This only works with GNU malloc. To help out systems which can't
1219 use GNU malloc, all the calls to malloc, realloc, and free
1220 elsewhere in the code should be inside a BLOCK_INPUT/UNBLOCK_INPUT
026cdede 1221 pair; unfortunately, we have no idea what C library functions
9ac0d9e0 1222 might call malloc, so we can't really protect them unless you're
2c5bd608
DL
1223 using GNU malloc. Fortunately, most of the major operating systems
1224 can use GNU malloc. */
9ac0d9e0 1225
026cdede 1226#ifndef SYNC_INPUT
dafc79fa
SM
1227/* When using SYNC_INPUT, we don't call malloc from a signal handler, so
1228 there's no need to block input around malloc. */
026cdede 1229
b3303f74 1230#ifndef DOUG_LEA_MALLOC
f57e2426
J
1231extern void * (*__malloc_hook) (size_t, const void *);
1232extern void * (*__realloc_hook) (void *, size_t, const void *);
1233extern void (*__free_hook) (void *, const void *);
b3303f74
DL
1234/* Else declared in malloc.h, perhaps with an extra arg. */
1235#endif /* DOUG_LEA_MALLOC */
f57e2426
J
1236static void * (*old_malloc_hook) (size_t, const void *);
1237static void * (*old_realloc_hook) (void *, size_t, const void*);
1238static void (*old_free_hook) (void*, const void*);
9ac0d9e0 1239
4e75f29d
PE
1240#ifdef DOUG_LEA_MALLOC
1241# define BYTES_USED (mallinfo ().uordblks)
1242#else
1243# define BYTES_USED _bytes_used
1244#endif
1245
b62a57be
PE
1246#ifdef GC_MALLOC_CHECK
1247static int dont_register_blocks;
1248#endif
1249
5e927815 1250static size_t bytes_used_when_reconsidered;
ef1b0ba7 1251
4e75f29d
PE
1252/* Value of _bytes_used, when spare_memory was freed. */
1253
5e927815 1254static size_t bytes_used_when_full;
4e75f29d 1255
276cbe5a
RS
1256/* This function is used as the hook for free to call. */
1257
9ac0d9e0 1258static void
7c3320d8 1259emacs_blocked_free (void *ptr, const void *ptr2)
9ac0d9e0 1260{
aa477689 1261 BLOCK_INPUT_ALLOC;
877935b1
GM
1262
1263#ifdef GC_MALLOC_CHECK
a83fee2c
GM
1264 if (ptr)
1265 {
1266 struct mem_node *m;
177c0ea7 1267
a83fee2c
GM
1268 m = mem_find (ptr);
1269 if (m == MEM_NIL || m->start != ptr)
1270 {
1271 fprintf (stderr,
1272 "Freeing `%p' which wasn't allocated with malloc\n", ptr);
1273 abort ();
1274 }
1275 else
1276 {
1277 /* fprintf (stderr, "free %p...%p (%p)\n", m->start, m->end, ptr); */
1278 mem_delete (m);
1279 }
1280 }
877935b1 1281#endif /* GC_MALLOC_CHECK */
177c0ea7 1282
9ac0d9e0
JB
1283 __free_hook = old_free_hook;
1284 free (ptr);
177c0ea7 1285
276cbe5a
RS
1286 /* If we released our reserve (due to running out of memory),
1287 and we have a fair amount free once again,
1288 try to set aside another reserve in case we run out once more. */
24d8a105 1289 if (! NILP (Vmemory_full)
276cbe5a
RS
1290 /* Verify there is enough space that even with the malloc
1291 hysteresis this call won't run out again.
1292 The code here is correct as long as SPARE_MEMORY
1293 is substantially larger than the block size malloc uses. */
1294 && (bytes_used_when_full
4d74a5fc 1295 > ((bytes_used_when_reconsidered = BYTES_USED)
bccfb310 1296 + max (malloc_hysteresis, 4) * SPARE_MEMORY)))
24d8a105 1297 refill_memory_reserve ();
276cbe5a 1298
b0846f52 1299 __free_hook = emacs_blocked_free;
aa477689 1300 UNBLOCK_INPUT_ALLOC;
9ac0d9e0
JB
1301}
1302
34400008 1303
276cbe5a
RS
1304/* This function is the malloc hook that Emacs uses. */
1305
9ac0d9e0 1306static void *
7c3320d8 1307emacs_blocked_malloc (size_t size, const void *ptr)
9ac0d9e0
JB
1308{
1309 void *value;
1310
aa477689 1311 BLOCK_INPUT_ALLOC;
9ac0d9e0 1312 __malloc_hook = old_malloc_hook;
1177ecf6 1313#ifdef DOUG_LEA_MALLOC
5665a02f
KL
1314 /* Segfaults on my system. --lorentey */
1315 /* mallopt (M_TOP_PAD, malloc_hysteresis * 4096); */
1177ecf6 1316#else
d1658221 1317 __malloc_extra_blocks = malloc_hysteresis;
1177ecf6 1318#endif
877935b1 1319
38182d90 1320 value = malloc (size);
877935b1
GM
1321
1322#ifdef GC_MALLOC_CHECK
1323 {
1324 struct mem_node *m = mem_find (value);
1325 if (m != MEM_NIL)
1326 {
1327 fprintf (stderr, "Malloc returned %p which is already in use\n",
1328 value);
da05bc4c 1329 fprintf (stderr, "Region in use is %p...%p, %td bytes, type %d\n",
877935b1
GM
1330 m->start, m->end, (char *) m->end - (char *) m->start,
1331 m->type);
1332 abort ();
1333 }
1334
1335 if (!dont_register_blocks)
1336 {
1337 mem_insert (value, (char *) value + max (1, size), allocated_mem_type);
1338 allocated_mem_type = MEM_TYPE_NON_LISP;
1339 }
1340 }
1341#endif /* GC_MALLOC_CHECK */
177c0ea7 1342
b0846f52 1343 __malloc_hook = emacs_blocked_malloc;
aa477689 1344 UNBLOCK_INPUT_ALLOC;
9ac0d9e0 1345
877935b1 1346 /* fprintf (stderr, "%p malloc\n", value); */
9ac0d9e0
JB
1347 return value;
1348}
1349
34400008
GM
1350
1351/* This function is the realloc hook that Emacs uses. */
1352
9ac0d9e0 1353static void *
7c3320d8 1354emacs_blocked_realloc (void *ptr, size_t size, const void *ptr2)
9ac0d9e0
JB
1355{
1356 void *value;
1357
aa477689 1358 BLOCK_INPUT_ALLOC;
9ac0d9e0 1359 __realloc_hook = old_realloc_hook;
877935b1
GM
1360
1361#ifdef GC_MALLOC_CHECK
1362 if (ptr)
1363 {
1364 struct mem_node *m = mem_find (ptr);
1365 if (m == MEM_NIL || m->start != ptr)
1366 {
1367 fprintf (stderr,
1368 "Realloc of %p which wasn't allocated with malloc\n",
1369 ptr);
1370 abort ();
1371 }
1372
1373 mem_delete (m);
1374 }
177c0ea7 1375
877935b1 1376 /* fprintf (stderr, "%p -> realloc\n", ptr); */
177c0ea7 1377
877935b1
GM
1378 /* Prevent malloc from registering blocks. */
1379 dont_register_blocks = 1;
1380#endif /* GC_MALLOC_CHECK */
1381
38182d90 1382 value = realloc (ptr, size);
877935b1
GM
1383
1384#ifdef GC_MALLOC_CHECK
1385 dont_register_blocks = 0;
1386
1387 {
1388 struct mem_node *m = mem_find (value);
1389 if (m != MEM_NIL)
1390 {
1391 fprintf (stderr, "Realloc returns memory that is already in use\n");
1392 abort ();
1393 }
1394
1395 /* Can't handle zero size regions in the red-black tree. */
1396 mem_insert (value, (char *) value + max (size, 1), MEM_TYPE_NON_LISP);
1397 }
177c0ea7 1398
877935b1
GM
1399 /* fprintf (stderr, "%p <- realloc\n", value); */
1400#endif /* GC_MALLOC_CHECK */
177c0ea7 1401
b0846f52 1402 __realloc_hook = emacs_blocked_realloc;
aa477689 1403 UNBLOCK_INPUT_ALLOC;
9ac0d9e0
JB
1404
1405 return value;
1406}
1407
34400008 1408
ae9e757a 1409#ifdef HAVE_PTHREAD
aa477689
JD
1410/* Called from Fdump_emacs so that when the dumped Emacs starts, it has a
1411 normal malloc. Some thread implementations need this as they call
1412 malloc before main. The pthread_self call in BLOCK_INPUT_ALLOC then
1413 calls malloc because it is the first call, and we have an endless loop. */
1414
1415void
268c2c36 1416reset_malloc_hooks (void)
aa477689 1417{
4d580af2
AS
1418 __free_hook = old_free_hook;
1419 __malloc_hook = old_malloc_hook;
1420 __realloc_hook = old_realloc_hook;
aa477689 1421}
ae9e757a 1422#endif /* HAVE_PTHREAD */
aa477689
JD
1423
1424
34400008
GM
1425/* Called from main to set up malloc to use our hooks. */
1426
9ac0d9e0 1427void
7c3320d8 1428uninterrupt_malloc (void)
9ac0d9e0 1429{
ae9e757a 1430#ifdef HAVE_PTHREAD
a1b41389 1431#ifdef DOUG_LEA_MALLOC
aa477689
JD
1432 pthread_mutexattr_t attr;
1433
c7015153 1434 /* GLIBC has a faster way to do this, but let's keep it portable.
aa477689
JD
1435 This is according to the Single UNIX Specification. */
1436 pthread_mutexattr_init (&attr);
1437 pthread_mutexattr_settype (&attr, PTHREAD_MUTEX_RECURSIVE);
1438 pthread_mutex_init (&alloc_mutex, &attr);
a1b41389 1439#else /* !DOUG_LEA_MALLOC */
ce5b453a 1440 /* Some systems such as Solaris 2.6 don't have a recursive mutex,
a1b41389
YM
1441 and the bundled gmalloc.c doesn't require it. */
1442 pthread_mutex_init (&alloc_mutex, NULL);
1443#endif /* !DOUG_LEA_MALLOC */
ae9e757a 1444#endif /* HAVE_PTHREAD */
aa477689 1445
c8099634
RS
1446 if (__free_hook != emacs_blocked_free)
1447 old_free_hook = __free_hook;
b0846f52 1448 __free_hook = emacs_blocked_free;
9ac0d9e0 1449
c8099634
RS
1450 if (__malloc_hook != emacs_blocked_malloc)
1451 old_malloc_hook = __malloc_hook;
b0846f52 1452 __malloc_hook = emacs_blocked_malloc;
9ac0d9e0 1453
c8099634
RS
1454 if (__realloc_hook != emacs_blocked_realloc)
1455 old_realloc_hook = __realloc_hook;
b0846f52 1456 __realloc_hook = emacs_blocked_realloc;
9ac0d9e0 1457}
2e471eb5 1458
026cdede 1459#endif /* not SYNC_INPUT */
2e471eb5
GM
1460#endif /* not SYSTEM_MALLOC */
1461
1462
7146af97 1463\f
2e471eb5
GM
1464/***********************************************************************
1465 Interval Allocation
1466 ***********************************************************************/
1a4f1e2c 1467
34400008
GM
1468/* Number of intervals allocated in an interval_block structure.
1469 The 1020 is 1024 minus malloc overhead. */
1470
d5e35230
JA
1471#define INTERVAL_BLOCK_SIZE \
1472 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1473
34400008
GM
1474/* Intervals are allocated in chunks in form of an interval_block
1475 structure. */
1476
d5e35230 1477struct interval_block
2e471eb5 1478{
6b61353c 1479 /* Place `intervals' first, to preserve alignment. */
2e471eb5 1480 struct interval intervals[INTERVAL_BLOCK_SIZE];
6b61353c 1481 struct interval_block *next;
2e471eb5 1482};
d5e35230 1483
34400008
GM
1484/* Current interval block. Its `next' pointer points to older
1485 blocks. */
1486
d3d47262 1487static struct interval_block *interval_block;
34400008
GM
1488
1489/* Index in interval_block above of the next unused interval
1490 structure. */
1491
fff62aa9 1492static int interval_block_index = INTERVAL_BLOCK_SIZE;
34400008
GM
1493
1494/* Number of free and live intervals. */
1495
c0c5c8ae 1496static EMACS_INT total_free_intervals, total_intervals;
d5e35230 1497
34400008
GM
1498/* List of free intervals. */
1499
244ed907 1500static INTERVAL interval_free_list;
d5e35230 1501
34400008 1502/* Return a new interval. */
d5e35230
JA
1503
1504INTERVAL
971de7fb 1505make_interval (void)
d5e35230
JA
1506{
1507 INTERVAL val;
1508
e2984df0
CY
1509 /* eassert (!handling_signal); */
1510
dafc79fa 1511 MALLOC_BLOCK_INPUT;
cfb2f32e 1512
d5e35230
JA
1513 if (interval_free_list)
1514 {
1515 val = interval_free_list;
439d5cb4 1516 interval_free_list = INTERVAL_PARENT (interval_free_list);
d5e35230
JA
1517 }
1518 else
1519 {
1520 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1521 {
38182d90
PE
1522 struct interval_block *newi
1523 = lisp_malloc (sizeof *newi, MEM_TYPE_NON_LISP);
d5e35230 1524
d5e35230
JA
1525 newi->next = interval_block;
1526 interval_block = newi;
1527 interval_block_index = 0;
3900d5de 1528 total_free_intervals += INTERVAL_BLOCK_SIZE;
d5e35230
JA
1529 }
1530 val = &interval_block->intervals[interval_block_index++];
1531 }
e2984df0 1532
dafc79fa 1533 MALLOC_UNBLOCK_INPUT;
e2984df0 1534
d5e35230 1535 consing_since_gc += sizeof (struct interval);
310ea200 1536 intervals_consed++;
3900d5de 1537 total_free_intervals--;
d5e35230 1538 RESET_INTERVAL (val);
2336fe58 1539 val->gcmarkbit = 0;
d5e35230
JA
1540 return val;
1541}
1542
34400008 1543
ee28be33 1544/* Mark Lisp objects in interval I. */
d5e35230
JA
1545
1546static void
971de7fb 1547mark_interval (register INTERVAL i, Lisp_Object dummy)
d5e35230 1548{
cce7fefc
DA
1549 /* Intervals should never be shared. So, if extra internal checking is
1550 enabled, GC aborts if it seems to have visited an interval twice. */
1551 eassert (!i->gcmarkbit);
2336fe58 1552 i->gcmarkbit = 1;
49723c04 1553 mark_object (i->plist);
d5e35230
JA
1554}
1555
34400008
GM
1556
1557/* Mark the interval tree rooted in TREE. Don't call this directly;
1558 use the macro MARK_INTERVAL_TREE instead. */
1559
d5e35230 1560static void
971de7fb 1561mark_interval_tree (register INTERVAL tree)
d5e35230 1562{
e8720644
JB
1563 /* No need to test if this tree has been marked already; this
1564 function is always called through the MARK_INTERVAL_TREE macro,
1565 which takes care of that. */
1566
1e934989 1567 traverse_intervals_noorder (tree, mark_interval, Qnil);
d5e35230
JA
1568}
1569
34400008
GM
1570
1571/* Mark the interval tree rooted in I. */
1572
e8720644
JB
1573#define MARK_INTERVAL_TREE(i) \
1574 do { \
2336fe58 1575 if (!NULL_INTERVAL_P (i) && !i->gcmarkbit) \
e8720644
JB
1576 mark_interval_tree (i); \
1577 } while (0)
d5e35230 1578
34400008 1579
2e471eb5
GM
1580#define UNMARK_BALANCE_INTERVALS(i) \
1581 do { \
1582 if (! NULL_INTERVAL_P (i)) \
2336fe58 1583 (i) = balance_intervals (i); \
2e471eb5 1584 } while (0)
d5e35230 1585\f
2e471eb5
GM
1586/***********************************************************************
1587 String Allocation
1588 ***********************************************************************/
1a4f1e2c 1589
2e471eb5
GM
1590/* Lisp_Strings are allocated in string_block structures. When a new
1591 string_block is allocated, all the Lisp_Strings it contains are
e0fead5d 1592 added to a free-list string_free_list. When a new Lisp_String is
2e471eb5
GM
1593 needed, it is taken from that list. During the sweep phase of GC,
1594 string_blocks that are entirely free are freed, except two which
1595 we keep.
7146af97 1596
2e471eb5
GM
1597 String data is allocated from sblock structures. Strings larger
1598 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1599 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
7146af97 1600
2e471eb5
GM
1601 Sblocks consist internally of sdata structures, one for each
1602 Lisp_String. The sdata structure points to the Lisp_String it
1603 belongs to. The Lisp_String points back to the `u.data' member of
1604 its sdata structure.
7146af97 1605
2e471eb5
GM
1606 When a Lisp_String is freed during GC, it is put back on
1607 string_free_list, and its `data' member and its sdata's `string'
1608 pointer is set to null. The size of the string is recorded in the
1609 `u.nbytes' member of the sdata. So, sdata structures that are no
1610 longer used, can be easily recognized, and it's easy to compact the
1611 sblocks of small strings which we do in compact_small_strings. */
7146af97 1612
2e471eb5
GM
1613/* Size in bytes of an sblock structure used for small strings. This
1614 is 8192 minus malloc overhead. */
7146af97 1615
2e471eb5 1616#define SBLOCK_SIZE 8188
c8099634 1617
2e471eb5
GM
1618/* Strings larger than this are considered large strings. String data
1619 for large strings is allocated from individual sblocks. */
7146af97 1620
2e471eb5
GM
1621#define LARGE_STRING_BYTES 1024
1622
1623/* Structure describing string memory sub-allocated from an sblock.
1624 This is where the contents of Lisp strings are stored. */
1625
1626struct sdata
7146af97 1627{
2e471eb5
GM
1628 /* Back-pointer to the string this sdata belongs to. If null, this
1629 structure is free, and the NBYTES member of the union below
34400008 1630 contains the string's byte size (the same value that STRING_BYTES
2e471eb5
GM
1631 would return if STRING were non-null). If non-null, STRING_BYTES
1632 (STRING) is the size of the data, and DATA contains the string's
1633 contents. */
1634 struct Lisp_String *string;
7146af97 1635
31d929e5 1636#ifdef GC_CHECK_STRING_BYTES
177c0ea7 1637
d311d28c 1638 ptrdiff_t nbytes;
31d929e5 1639 unsigned char data[1];
177c0ea7 1640
31d929e5
GM
1641#define SDATA_NBYTES(S) (S)->nbytes
1642#define SDATA_DATA(S) (S)->data
36372bf9 1643#define SDATA_SELECTOR(member) member
177c0ea7 1644
31d929e5
GM
1645#else /* not GC_CHECK_STRING_BYTES */
1646
2e471eb5
GM
1647 union
1648 {
83998b7a 1649 /* When STRING is non-null. */
2e471eb5
GM
1650 unsigned char data[1];
1651
1652 /* When STRING is null. */
d311d28c 1653 ptrdiff_t nbytes;
2e471eb5 1654 } u;
177c0ea7 1655
31d929e5
GM
1656#define SDATA_NBYTES(S) (S)->u.nbytes
1657#define SDATA_DATA(S) (S)->u.data
36372bf9 1658#define SDATA_SELECTOR(member) u.member
31d929e5
GM
1659
1660#endif /* not GC_CHECK_STRING_BYTES */
36372bf9
PE
1661
1662#define SDATA_DATA_OFFSET offsetof (struct sdata, SDATA_SELECTOR (data))
2e471eb5
GM
1663};
1664
31d929e5 1665
2e471eb5
GM
1666/* Structure describing a block of memory which is sub-allocated to
1667 obtain string data memory for strings. Blocks for small strings
1668 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1669 as large as needed. */
1670
1671struct sblock
7146af97 1672{
2e471eb5
GM
1673 /* Next in list. */
1674 struct sblock *next;
7146af97 1675
2e471eb5
GM
1676 /* Pointer to the next free sdata block. This points past the end
1677 of the sblock if there isn't any space left in this block. */
1678 struct sdata *next_free;
1679
1680 /* Start of data. */
1681 struct sdata first_data;
1682};
1683
1684/* Number of Lisp strings in a string_block structure. The 1020 is
1685 1024 minus malloc overhead. */
1686
19bcad1f 1687#define STRING_BLOCK_SIZE \
2e471eb5
GM
1688 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1689
1690/* Structure describing a block from which Lisp_String structures
1691 are allocated. */
1692
1693struct string_block
7146af97 1694{
6b61353c 1695 /* Place `strings' first, to preserve alignment. */
19bcad1f 1696 struct Lisp_String strings[STRING_BLOCK_SIZE];
6b61353c 1697 struct string_block *next;
2e471eb5 1698};
7146af97 1699
2e471eb5
GM
1700/* Head and tail of the list of sblock structures holding Lisp string
1701 data. We always allocate from current_sblock. The NEXT pointers
1702 in the sblock structures go from oldest_sblock to current_sblock. */
3c06d205 1703
2e471eb5 1704static struct sblock *oldest_sblock, *current_sblock;
7146af97 1705
2e471eb5 1706/* List of sblocks for large strings. */
7146af97 1707
2e471eb5 1708static struct sblock *large_sblocks;
7146af97 1709
5a25e253 1710/* List of string_block structures. */
7146af97 1711
2e471eb5 1712static struct string_block *string_blocks;
7146af97 1713
2e471eb5 1714/* Free-list of Lisp_Strings. */
7146af97 1715
2e471eb5 1716static struct Lisp_String *string_free_list;
7146af97 1717
2e471eb5 1718/* Number of live and free Lisp_Strings. */
c8099634 1719
c0c5c8ae 1720static EMACS_INT total_strings, total_free_strings;
7146af97 1721
2e471eb5
GM
1722/* Number of bytes used by live strings. */
1723
3ab6e069 1724static EMACS_INT total_string_bytes;
2e471eb5
GM
1725
1726/* Given a pointer to a Lisp_String S which is on the free-list
1727 string_free_list, return a pointer to its successor in the
1728 free-list. */
1729
1730#define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1731
1732/* Return a pointer to the sdata structure belonging to Lisp string S.
1733 S must be live, i.e. S->data must not be null. S->data is actually
1734 a pointer to the `u.data' member of its sdata structure; the
1735 structure starts at a constant offset in front of that. */
177c0ea7 1736
36372bf9 1737#define SDATA_OF_STRING(S) ((struct sdata *) ((S)->data - SDATA_DATA_OFFSET))
31d929e5 1738
212f33f1
KS
1739
1740#ifdef GC_CHECK_STRING_OVERRUN
bdbed949
KS
1741
1742/* We check for overrun in string data blocks by appending a small
1743 "cookie" after each allocated string data block, and check for the
8349069c 1744 presence of this cookie during GC. */
bdbed949
KS
1745
1746#define GC_STRING_OVERRUN_COOKIE_SIZE 4
bfd1c781
PE
1747static char const string_overrun_cookie[GC_STRING_OVERRUN_COOKIE_SIZE] =
1748 { '\xde', '\xad', '\xbe', '\xef' };
bdbed949 1749
212f33f1 1750#else
bdbed949 1751#define GC_STRING_OVERRUN_COOKIE_SIZE 0
212f33f1
KS
1752#endif
1753
2e471eb5
GM
1754/* Value is the size of an sdata structure large enough to hold NBYTES
1755 bytes of string data. The value returned includes a terminating
1756 NUL byte, the size of the sdata structure, and padding. */
1757
31d929e5
GM
1758#ifdef GC_CHECK_STRING_BYTES
1759
2e471eb5 1760#define SDATA_SIZE(NBYTES) \
36372bf9 1761 ((SDATA_DATA_OFFSET \
2e471eb5 1762 + (NBYTES) + 1 \
d311d28c
PE
1763 + sizeof (ptrdiff_t) - 1) \
1764 & ~(sizeof (ptrdiff_t) - 1))
2e471eb5 1765
31d929e5
GM
1766#else /* not GC_CHECK_STRING_BYTES */
1767
f2d3008d
PE
1768/* The 'max' reserves space for the nbytes union member even when NBYTES + 1 is
1769 less than the size of that member. The 'max' is not needed when
d311d28c 1770 SDATA_DATA_OFFSET is a multiple of sizeof (ptrdiff_t), because then the
f2d3008d
PE
1771 alignment code reserves enough space. */
1772
1773#define SDATA_SIZE(NBYTES) \
1774 ((SDATA_DATA_OFFSET \
d311d28c 1775 + (SDATA_DATA_OFFSET % sizeof (ptrdiff_t) == 0 \
f2d3008d 1776 ? NBYTES \
d311d28c 1777 : max (NBYTES, sizeof (ptrdiff_t) - 1)) \
f2d3008d 1778 + 1 \
d311d28c
PE
1779 + sizeof (ptrdiff_t) - 1) \
1780 & ~(sizeof (ptrdiff_t) - 1))
31d929e5
GM
1781
1782#endif /* not GC_CHECK_STRING_BYTES */
2e471eb5 1783
bdbed949
KS
1784/* Extra bytes to allocate for each string. */
1785
1786#define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1787
c9d624c6
PE
1788/* Exact bound on the number of bytes in a string, not counting the
1789 terminating null. A string cannot contain more bytes than
1790 STRING_BYTES_BOUND, nor can it be so long that the size_t
1791 arithmetic in allocate_string_data would overflow while it is
1792 calculating a value to be passed to malloc. */
1793#define STRING_BYTES_MAX \
1794 min (STRING_BYTES_BOUND, \
903fe15d
PE
1795 ((SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD \
1796 - GC_STRING_EXTRA \
c9d624c6
PE
1797 - offsetof (struct sblock, first_data) \
1798 - SDATA_DATA_OFFSET) \
1799 & ~(sizeof (EMACS_INT) - 1)))
1800
2e471eb5 1801/* Initialize string allocation. Called from init_alloc_once. */
d457598b 1802
d3d47262 1803static void
971de7fb 1804init_strings (void)
7146af97 1805{
4d774b0f
JB
1806 empty_unibyte_string = make_pure_string ("", 0, 0, 0);
1807 empty_multibyte_string = make_pure_string ("", 0, 0, 1);
7146af97
JB
1808}
1809
2e471eb5 1810
361b097f
GM
1811#ifdef GC_CHECK_STRING_BYTES
1812
361b097f
GM
1813static int check_string_bytes_count;
1814
676a7251
GM
1815#define CHECK_STRING_BYTES(S) STRING_BYTES (S)
1816
1817
1818/* Like GC_STRING_BYTES, but with debugging check. */
1819
d311d28c 1820ptrdiff_t
14162469 1821string_bytes (struct Lisp_String *s)
676a7251 1822{
d311d28c 1823 ptrdiff_t nbytes =
14162469
EZ
1824 (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1825
676a7251
GM
1826 if (!PURE_POINTER_P (s)
1827 && s->data
1828 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1829 abort ();
1830 return nbytes;
1831}
177c0ea7 1832
2c5bd608 1833/* Check validity of Lisp strings' string_bytes member in B. */
676a7251 1834
d3d47262 1835static void
d0f4e1f5 1836check_sblock (struct sblock *b)
361b097f 1837{
676a7251 1838 struct sdata *from, *end, *from_end;
177c0ea7 1839
676a7251 1840 end = b->next_free;
177c0ea7 1841
676a7251 1842 for (from = &b->first_data; from < end; from = from_end)
361b097f 1843 {
676a7251
GM
1844 /* Compute the next FROM here because copying below may
1845 overwrite data we need to compute it. */
d311d28c 1846 ptrdiff_t nbytes;
177c0ea7 1847
676a7251 1848 /* Check that the string size recorded in the string is the
ee28be33 1849 same as the one recorded in the sdata structure. */
676a7251
GM
1850 if (from->string)
1851 CHECK_STRING_BYTES (from->string);
177c0ea7 1852
676a7251
GM
1853 if (from->string)
1854 nbytes = GC_STRING_BYTES (from->string);
1855 else
1856 nbytes = SDATA_NBYTES (from);
177c0ea7 1857
676a7251 1858 nbytes = SDATA_SIZE (nbytes);
212f33f1 1859 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
676a7251
GM
1860 }
1861}
361b097f 1862
676a7251
GM
1863
1864/* Check validity of Lisp strings' string_bytes member. ALL_P
1865 non-zero means check all strings, otherwise check only most
1866 recently allocated strings. Used for hunting a bug. */
1867
d3d47262 1868static void
d0f4e1f5 1869check_string_bytes (int all_p)
676a7251
GM
1870{
1871 if (all_p)
1872 {
1873 struct sblock *b;
1874
1875 for (b = large_sblocks; b; b = b->next)
1876 {
1877 struct Lisp_String *s = b->first_data.string;
1878 if (s)
1879 CHECK_STRING_BYTES (s);
361b097f 1880 }
177c0ea7 1881
676a7251
GM
1882 for (b = oldest_sblock; b; b = b->next)
1883 check_sblock (b);
361b097f 1884 }
296094c3 1885 else if (current_sblock)
676a7251 1886 check_sblock (current_sblock);
361b097f
GM
1887}
1888
1889#endif /* GC_CHECK_STRING_BYTES */
1890
212f33f1
KS
1891#ifdef GC_CHECK_STRING_FREE_LIST
1892
bdbed949
KS
1893/* Walk through the string free list looking for bogus next pointers.
1894 This may catch buffer overrun from a previous string. */
1895
212f33f1 1896static void
d0f4e1f5 1897check_string_free_list (void)
212f33f1
KS
1898{
1899 struct Lisp_String *s;
1900
1901 /* Pop a Lisp_String off the free-list. */
1902 s = string_free_list;
1903 while (s != NULL)
1904 {
d01a7826 1905 if ((uintptr_t) s < 1024)
5e617bc2 1906 abort ();
212f33f1
KS
1907 s = NEXT_FREE_LISP_STRING (s);
1908 }
1909}
1910#else
1911#define check_string_free_list()
1912#endif
361b097f 1913
2e471eb5
GM
1914/* Return a new Lisp_String. */
1915
1916static struct Lisp_String *
971de7fb 1917allocate_string (void)
7146af97 1918{
2e471eb5 1919 struct Lisp_String *s;
7146af97 1920
e2984df0
CY
1921 /* eassert (!handling_signal); */
1922
dafc79fa 1923 MALLOC_BLOCK_INPUT;
cfb2f32e 1924
2e471eb5
GM
1925 /* If the free-list is empty, allocate a new string_block, and
1926 add all the Lisp_Strings in it to the free-list. */
1927 if (string_free_list == NULL)
7146af97 1928 {
38182d90 1929 struct string_block *b = lisp_malloc (sizeof *b, MEM_TYPE_STRING);
2e471eb5
GM
1930 int i;
1931
2e471eb5
GM
1932 b->next = string_blocks;
1933 string_blocks = b;
2e471eb5 1934
19bcad1f 1935 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
7146af97 1936 {
2e471eb5 1937 s = b->strings + i;
3fe6dd74
DA
1938 /* Every string on a free list should have NULL data pointer. */
1939 s->data = NULL;
2e471eb5
GM
1940 NEXT_FREE_LISP_STRING (s) = string_free_list;
1941 string_free_list = s;
7146af97 1942 }
2e471eb5 1943
19bcad1f 1944 total_free_strings += STRING_BLOCK_SIZE;
7146af97 1945 }
c0f51373 1946
bdbed949 1947 check_string_free_list ();
212f33f1 1948
2e471eb5
GM
1949 /* Pop a Lisp_String off the free-list. */
1950 s = string_free_list;
1951 string_free_list = NEXT_FREE_LISP_STRING (s);
c0f51373 1952
dafc79fa 1953 MALLOC_UNBLOCK_INPUT;
e2984df0 1954
2e471eb5
GM
1955 --total_free_strings;
1956 ++total_strings;
1957 ++strings_consed;
1958 consing_since_gc += sizeof *s;
c0f51373 1959
361b097f 1960#ifdef GC_CHECK_STRING_BYTES
e39a993c 1961 if (!noninteractive)
361b097f 1962 {
676a7251
GM
1963 if (++check_string_bytes_count == 200)
1964 {
1965 check_string_bytes_count = 0;
1966 check_string_bytes (1);
1967 }
1968 else
1969 check_string_bytes (0);
361b097f 1970 }
676a7251 1971#endif /* GC_CHECK_STRING_BYTES */
361b097f 1972
2e471eb5 1973 return s;
c0f51373 1974}
7146af97 1975
7146af97 1976
2e471eb5
GM
1977/* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1978 plus a NUL byte at the end. Allocate an sdata structure for S, and
1979 set S->data to its `u.data' member. Store a NUL byte at the end of
1980 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1981 S->data if it was initially non-null. */
7146af97 1982
2e471eb5 1983void
413d18e7
EZ
1984allocate_string_data (struct Lisp_String *s,
1985 EMACS_INT nchars, EMACS_INT nbytes)
7146af97 1986{
b7ffe040 1987 struct sdata *data, *old_data;
2e471eb5 1988 struct sblock *b;
b7ffe040 1989 ptrdiff_t needed, old_nbytes;
7146af97 1990
c9d624c6
PE
1991 if (STRING_BYTES_MAX < nbytes)
1992 string_overflow ();
1993
2e471eb5
GM
1994 /* Determine the number of bytes needed to store NBYTES bytes
1995 of string data. */
1996 needed = SDATA_SIZE (nbytes);
b7ffe040
DA
1997 if (s->data)
1998 {
1999 old_data = SDATA_OF_STRING (s);
2000 old_nbytes = GC_STRING_BYTES (s);
2001 }
2002 else
2003 old_data = NULL;
e2984df0 2004
dafc79fa 2005 MALLOC_BLOCK_INPUT;
7146af97 2006
2e471eb5
GM
2007 if (nbytes > LARGE_STRING_BYTES)
2008 {
36372bf9 2009 size_t size = offsetof (struct sblock, first_data) + needed;
2e471eb5
GM
2010
2011#ifdef DOUG_LEA_MALLOC
f8608968
GM
2012 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
2013 because mapped region contents are not preserved in
d36b182f
DL
2014 a dumped Emacs.
2015
2016 In case you think of allowing it in a dumped Emacs at the
2017 cost of not being able to re-dump, there's another reason:
2018 mmap'ed data typically have an address towards the top of the
2019 address space, which won't fit into an EMACS_INT (at least on
2020 32-bit systems with the current tagging scheme). --fx */
2e471eb5
GM
2021 mallopt (M_MMAP_MAX, 0);
2022#endif
2023
38182d90 2024 b = lisp_malloc (size + GC_STRING_EXTRA, MEM_TYPE_NON_LISP);
177c0ea7 2025
2e471eb5
GM
2026#ifdef DOUG_LEA_MALLOC
2027 /* Back to a reasonable maximum of mmap'ed areas. */
2028 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
2029#endif
177c0ea7 2030
2e471eb5
GM
2031 b->next_free = &b->first_data;
2032 b->first_data.string = NULL;
2033 b->next = large_sblocks;
2034 large_sblocks = b;
2035 }
2036 else if (current_sblock == NULL
2037 || (((char *) current_sblock + SBLOCK_SIZE
2038 - (char *) current_sblock->next_free)
212f33f1 2039 < (needed + GC_STRING_EXTRA)))
2e471eb5
GM
2040 {
2041 /* Not enough room in the current sblock. */
38182d90 2042 b = lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
2e471eb5
GM
2043 b->next_free = &b->first_data;
2044 b->first_data.string = NULL;
2045 b->next = NULL;
2046
2047 if (current_sblock)
2048 current_sblock->next = b;
2049 else
2050 oldest_sblock = b;
2051 current_sblock = b;
2052 }
2053 else
2054 b = current_sblock;
5c5fecb3 2055
2e471eb5 2056 data = b->next_free;
a0b08700
CY
2057 b->next_free = (struct sdata *) ((char *) data + needed + GC_STRING_EXTRA);
2058
dafc79fa 2059 MALLOC_UNBLOCK_INPUT;
e2984df0 2060
2e471eb5 2061 data->string = s;
31d929e5
GM
2062 s->data = SDATA_DATA (data);
2063#ifdef GC_CHECK_STRING_BYTES
2064 SDATA_NBYTES (data) = nbytes;
2065#endif
2e471eb5
GM
2066 s->size = nchars;
2067 s->size_byte = nbytes;
2068 s->data[nbytes] = '\0';
212f33f1 2069#ifdef GC_CHECK_STRING_OVERRUN
000098c1
PE
2070 memcpy ((char *) data + needed, string_overrun_cookie,
2071 GC_STRING_OVERRUN_COOKIE_SIZE);
212f33f1 2072#endif
b7ffe040
DA
2073
2074 /* Note that Faset may call to this function when S has already data
2075 assigned. In this case, mark data as free by setting it's string
2076 back-pointer to null, and record the size of the data in it. */
2077 if (old_data)
2078 {
2079 SDATA_NBYTES (old_data) = old_nbytes;
2080 old_data->string = NULL;
2081 }
2082
2e471eb5
GM
2083 consing_since_gc += needed;
2084}
2085
2086
2087/* Sweep and compact strings. */
2088
2089static void
971de7fb 2090sweep_strings (void)
2e471eb5
GM
2091{
2092 struct string_block *b, *next;
2093 struct string_block *live_blocks = NULL;
177c0ea7 2094
2e471eb5
GM
2095 string_free_list = NULL;
2096 total_strings = total_free_strings = 0;
3ab6e069 2097 total_string_bytes = 0;
2e471eb5
GM
2098
2099 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
2100 for (b = string_blocks; b; b = next)
2101 {
2102 int i, nfree = 0;
2103 struct Lisp_String *free_list_before = string_free_list;
2104
2105 next = b->next;
2106
19bcad1f 2107 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
2e471eb5
GM
2108 {
2109 struct Lisp_String *s = b->strings + i;
2110
2111 if (s->data)
2112 {
2113 /* String was not on free-list before. */
2114 if (STRING_MARKED_P (s))
2115 {
2116 /* String is live; unmark it and its intervals. */
2117 UNMARK_STRING (s);
177c0ea7 2118
2e471eb5
GM
2119 if (!NULL_INTERVAL_P (s->intervals))
2120 UNMARK_BALANCE_INTERVALS (s->intervals);
2121
2122 ++total_strings;
3ab6e069 2123 total_string_bytes += STRING_BYTES (s);
2e471eb5
GM
2124 }
2125 else
2126 {
2127 /* String is dead. Put it on the free-list. */
2128 struct sdata *data = SDATA_OF_STRING (s);
2129
2130 /* Save the size of S in its sdata so that we know
2131 how large that is. Reset the sdata's string
2132 back-pointer so that we know it's free. */
31d929e5
GM
2133#ifdef GC_CHECK_STRING_BYTES
2134 if (GC_STRING_BYTES (s) != SDATA_NBYTES (data))
2135 abort ();
2136#else
2e471eb5 2137 data->u.nbytes = GC_STRING_BYTES (s);
31d929e5 2138#endif
2e471eb5
GM
2139 data->string = NULL;
2140
2141 /* Reset the strings's `data' member so that we
2142 know it's free. */
2143 s->data = NULL;
2144
2145 /* Put the string on the free-list. */
2146 NEXT_FREE_LISP_STRING (s) = string_free_list;
2147 string_free_list = s;
2148 ++nfree;
2149 }
2150 }
2151 else
2152 {
2153 /* S was on the free-list before. Put it there again. */
2154 NEXT_FREE_LISP_STRING (s) = string_free_list;
2155 string_free_list = s;
2156 ++nfree;
2157 }
2158 }
2159
34400008 2160 /* Free blocks that contain free Lisp_Strings only, except
2e471eb5 2161 the first two of them. */
19bcad1f
SM
2162 if (nfree == STRING_BLOCK_SIZE
2163 && total_free_strings > STRING_BLOCK_SIZE)
2e471eb5
GM
2164 {
2165 lisp_free (b);
2e471eb5
GM
2166 string_free_list = free_list_before;
2167 }
2168 else
2169 {
2170 total_free_strings += nfree;
2171 b->next = live_blocks;
2172 live_blocks = b;
2173 }
2174 }
2175
bdbed949 2176 check_string_free_list ();
212f33f1 2177
2e471eb5
GM
2178 string_blocks = live_blocks;
2179 free_large_strings ();
2180 compact_small_strings ();
212f33f1 2181
bdbed949 2182 check_string_free_list ();
2e471eb5
GM
2183}
2184
2185
2186/* Free dead large strings. */
2187
2188static void
971de7fb 2189free_large_strings (void)
2e471eb5
GM
2190{
2191 struct sblock *b, *next;
2192 struct sblock *live_blocks = NULL;
177c0ea7 2193
2e471eb5
GM
2194 for (b = large_sblocks; b; b = next)
2195 {
2196 next = b->next;
2197
2198 if (b->first_data.string == NULL)
2199 lisp_free (b);
2200 else
2201 {
2202 b->next = live_blocks;
2203 live_blocks = b;
2204 }
2205 }
2206
2207 large_sblocks = live_blocks;
2208}
2209
2210
2211/* Compact data of small strings. Free sblocks that don't contain
2212 data of live strings after compaction. */
2213
2214static void
971de7fb 2215compact_small_strings (void)
2e471eb5
GM
2216{
2217 struct sblock *b, *tb, *next;
2218 struct sdata *from, *to, *end, *tb_end;
2219 struct sdata *to_end, *from_end;
2220
2221 /* TB is the sblock we copy to, TO is the sdata within TB we copy
2222 to, and TB_END is the end of TB. */
2223 tb = oldest_sblock;
2224 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2225 to = &tb->first_data;
2226
2227 /* Step through the blocks from the oldest to the youngest. We
2228 expect that old blocks will stabilize over time, so that less
2229 copying will happen this way. */
2230 for (b = oldest_sblock; b; b = b->next)
2231 {
2232 end = b->next_free;
a54e2c05 2233 eassert ((char *) end <= (char *) b + SBLOCK_SIZE);
177c0ea7 2234
2e471eb5
GM
2235 for (from = &b->first_data; from < end; from = from_end)
2236 {
2237 /* Compute the next FROM here because copying below may
2238 overwrite data we need to compute it. */
d311d28c 2239 ptrdiff_t nbytes;
2e471eb5 2240
31d929e5
GM
2241#ifdef GC_CHECK_STRING_BYTES
2242 /* Check that the string size recorded in the string is the
2243 same as the one recorded in the sdata structure. */
2244 if (from->string
2245 && GC_STRING_BYTES (from->string) != SDATA_NBYTES (from))
2246 abort ();
2247#endif /* GC_CHECK_STRING_BYTES */
177c0ea7 2248
2e471eb5
GM
2249 if (from->string)
2250 nbytes = GC_STRING_BYTES (from->string);
2251 else
31d929e5 2252 nbytes = SDATA_NBYTES (from);
177c0ea7 2253
212f33f1
KS
2254 if (nbytes > LARGE_STRING_BYTES)
2255 abort ();
212f33f1 2256
2e471eb5 2257 nbytes = SDATA_SIZE (nbytes);
212f33f1
KS
2258 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
2259
2260#ifdef GC_CHECK_STRING_OVERRUN
72af86bd
AS
2261 if (memcmp (string_overrun_cookie,
2262 (char *) from_end - GC_STRING_OVERRUN_COOKIE_SIZE,
2263 GC_STRING_OVERRUN_COOKIE_SIZE))
212f33f1
KS
2264 abort ();
2265#endif
177c0ea7 2266
2e471eb5
GM
2267 /* FROM->string non-null means it's alive. Copy its data. */
2268 if (from->string)
2269 {
2270 /* If TB is full, proceed with the next sblock. */
212f33f1 2271 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2e471eb5
GM
2272 if (to_end > tb_end)
2273 {
2274 tb->next_free = to;
2275 tb = tb->next;
2276 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2277 to = &tb->first_data;
212f33f1 2278 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2e471eb5 2279 }
177c0ea7 2280
2e471eb5
GM
2281 /* Copy, and update the string's `data' pointer. */
2282 if (from != to)
2283 {
a54e2c05 2284 eassert (tb != b || to < from);
72af86bd 2285 memmove (to, from, nbytes + GC_STRING_EXTRA);
31d929e5 2286 to->string->data = SDATA_DATA (to);
2e471eb5
GM
2287 }
2288
2289 /* Advance past the sdata we copied to. */
2290 to = to_end;
2291 }
2292 }
2293 }
2294
2295 /* The rest of the sblocks following TB don't contain live data, so
2296 we can free them. */
2297 for (b = tb->next; b; b = next)
2298 {
2299 next = b->next;
2300 lisp_free (b);
2301 }
2302
2303 tb->next_free = to;
2304 tb->next = NULL;
2305 current_sblock = tb;
2306}
2307
cb93f9be
PE
2308void
2309string_overflow (void)
2310{
2311 error ("Maximum string size exceeded");
2312}
2e471eb5 2313
a7ca3326 2314DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
69623621
RS
2315 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
2316LENGTH must be an integer.
2317INIT must be an integer that represents a character. */)
5842a27b 2318 (Lisp_Object length, Lisp_Object init)
2e471eb5
GM
2319{
2320 register Lisp_Object val;
2321 register unsigned char *p, *end;
14162469
EZ
2322 int c;
2323 EMACS_INT nbytes;
2e471eb5 2324
b7826503 2325 CHECK_NATNUM (length);
2bccce07 2326 CHECK_CHARACTER (init);
2e471eb5 2327
2bccce07 2328 c = XFASTINT (init);
830ff83b 2329 if (ASCII_CHAR_P (c))
2e471eb5
GM
2330 {
2331 nbytes = XINT (length);
2332 val = make_uninit_string (nbytes);
d5db4077
KR
2333 p = SDATA (val);
2334 end = p + SCHARS (val);
2e471eb5
GM
2335 while (p != end)
2336 *p++ = c;
2337 }
2338 else
2339 {
d942b71c 2340 unsigned char str[MAX_MULTIBYTE_LENGTH];
2e471eb5 2341 int len = CHAR_STRING (c, str);
14162469 2342 EMACS_INT string_len = XINT (length);
2e471eb5 2343
d1f3d2af 2344 if (string_len > STRING_BYTES_MAX / len)
cb93f9be 2345 string_overflow ();
14162469
EZ
2346 nbytes = len * string_len;
2347 val = make_uninit_multibyte_string (string_len, nbytes);
d5db4077 2348 p = SDATA (val);
2e471eb5
GM
2349 end = p + nbytes;
2350 while (p != end)
2351 {
72af86bd 2352 memcpy (p, str, len);
2e471eb5
GM
2353 p += len;
2354 }
2355 }
177c0ea7 2356
2e471eb5
GM
2357 *p = 0;
2358 return val;
2359}
2360
2361
a7ca3326 2362DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
909e3b33 2363 doc: /* Return a new bool-vector of length LENGTH, using INIT for each element.
7ee72033 2364LENGTH must be a number. INIT matters only in whether it is t or nil. */)
5842a27b 2365 (Lisp_Object length, Lisp_Object init)
2e471eb5
GM
2366{
2367 register Lisp_Object val;
2368 struct Lisp_Bool_Vector *p;
d311d28c
PE
2369 ptrdiff_t length_in_chars;
2370 EMACS_INT length_in_elts;
14162469 2371 int bits_per_value;
d06714cb
PE
2372 int extra_bool_elts = ((bool_header_size - header_size + word_size - 1)
2373 / word_size);
2e471eb5 2374
b7826503 2375 CHECK_NATNUM (length);
2e471eb5 2376
a097329f 2377 bits_per_value = sizeof (EMACS_INT) * BOOL_VECTOR_BITS_PER_CHAR;
2e471eb5
GM
2378
2379 length_in_elts = (XFASTINT (length) + bits_per_value - 1) / bits_per_value;
2e471eb5 2380
d06714cb 2381 val = Fmake_vector (make_number (length_in_elts + extra_bool_elts), Qnil);
177c0ea7 2382
eab3844f
PE
2383 /* No Lisp_Object to trace in there. */
2384 XSETPVECTYPESIZE (XVECTOR (val), PVEC_BOOL_VECTOR, 0);
d2029e5b
SM
2385
2386 p = XBOOL_VECTOR (val);
2e471eb5 2387 p->size = XFASTINT (length);
177c0ea7 2388
d311d28c
PE
2389 length_in_chars = ((XFASTINT (length) + BOOL_VECTOR_BITS_PER_CHAR - 1)
2390 / BOOL_VECTOR_BITS_PER_CHAR);
c0c1ee9f
PE
2391 if (length_in_chars)
2392 {
2393 memset (p->data, ! NILP (init) ? -1 : 0, length_in_chars);
177c0ea7 2394
c0c1ee9f
PE
2395 /* Clear any extraneous bits in the last byte. */
2396 p->data[length_in_chars - 1]
83713154 2397 &= (1 << ((XFASTINT (length) - 1) % BOOL_VECTOR_BITS_PER_CHAR + 1)) - 1;
c0c1ee9f 2398 }
2e471eb5
GM
2399
2400 return val;
2401}
2402
2403
2404/* Make a string from NBYTES bytes at CONTENTS, and compute the number
2405 of characters from the contents. This string may be unibyte or
2406 multibyte, depending on the contents. */
2407
2408Lisp_Object
d311d28c 2409make_string (const char *contents, ptrdiff_t nbytes)
2e471eb5
GM
2410{
2411 register Lisp_Object val;
d311d28c 2412 ptrdiff_t nchars, multibyte_nbytes;
9eac9d59 2413
90256841
PE
2414 parse_str_as_multibyte ((const unsigned char *) contents, nbytes,
2415 &nchars, &multibyte_nbytes);
9eac9d59
KH
2416 if (nbytes == nchars || nbytes != multibyte_nbytes)
2417 /* CONTENTS contains no multibyte sequences or contains an invalid
2418 multibyte sequence. We must make unibyte string. */
495a6df3
KH
2419 val = make_unibyte_string (contents, nbytes);
2420 else
2421 val = make_multibyte_string (contents, nchars, nbytes);
2e471eb5
GM
2422 return val;
2423}
2424
2425
2426/* Make an unibyte string from LENGTH bytes at CONTENTS. */
2427
2428Lisp_Object
d311d28c 2429make_unibyte_string (const char *contents, ptrdiff_t length)
2e471eb5
GM
2430{
2431 register Lisp_Object val;
2432 val = make_uninit_string (length);
72af86bd 2433 memcpy (SDATA (val), contents, length);
2e471eb5
GM
2434 return val;
2435}
2436
2437
2438/* Make a multibyte string from NCHARS characters occupying NBYTES
2439 bytes at CONTENTS. */
2440
2441Lisp_Object
14162469 2442make_multibyte_string (const char *contents,
d311d28c 2443 ptrdiff_t nchars, ptrdiff_t nbytes)
2e471eb5
GM
2444{
2445 register Lisp_Object val;
2446 val = make_uninit_multibyte_string (nchars, nbytes);
72af86bd 2447 memcpy (SDATA (val), contents, nbytes);
2e471eb5
GM
2448 return val;
2449}
2450
2451
2452/* Make a string from NCHARS characters occupying NBYTES bytes at
2453 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2454
2455Lisp_Object
14162469 2456make_string_from_bytes (const char *contents,
d311d28c 2457 ptrdiff_t nchars, ptrdiff_t nbytes)
2e471eb5
GM
2458{
2459 register Lisp_Object val;
2460 val = make_uninit_multibyte_string (nchars, nbytes);
72af86bd 2461 memcpy (SDATA (val), contents, nbytes);
d5db4077
KR
2462 if (SBYTES (val) == SCHARS (val))
2463 STRING_SET_UNIBYTE (val);
2e471eb5
GM
2464 return val;
2465}
2466
2467
2468/* Make a string from NCHARS characters occupying NBYTES bytes at
2469 CONTENTS. The argument MULTIBYTE controls whether to label the
229b28c4
KH
2470 string as multibyte. If NCHARS is negative, it counts the number of
2471 characters by itself. */
2e471eb5
GM
2472
2473Lisp_Object
14162469 2474make_specified_string (const char *contents,
d311d28c 2475 ptrdiff_t nchars, ptrdiff_t nbytes, int multibyte)
2e471eb5
GM
2476{
2477 register Lisp_Object val;
229b28c4
KH
2478
2479 if (nchars < 0)
2480 {
2481 if (multibyte)
90256841
PE
2482 nchars = multibyte_chars_in_text ((const unsigned char *) contents,
2483 nbytes);
229b28c4
KH
2484 else
2485 nchars = nbytes;
2486 }
2e471eb5 2487 val = make_uninit_multibyte_string (nchars, nbytes);
72af86bd 2488 memcpy (SDATA (val), contents, nbytes);
2e471eb5 2489 if (!multibyte)
d5db4077 2490 STRING_SET_UNIBYTE (val);
2e471eb5
GM
2491 return val;
2492}
2493
2494
2e471eb5
GM
2495/* Return an unibyte Lisp_String set up to hold LENGTH characters
2496 occupying LENGTH bytes. */
2497
2498Lisp_Object
413d18e7 2499make_uninit_string (EMACS_INT length)
2e471eb5
GM
2500{
2501 Lisp_Object val;
4d774b0f
JB
2502
2503 if (!length)
2504 return empty_unibyte_string;
2e471eb5 2505 val = make_uninit_multibyte_string (length, length);
d5db4077 2506 STRING_SET_UNIBYTE (val);
2e471eb5
GM
2507 return val;
2508}
2509
2510
2511/* Return a multibyte Lisp_String set up to hold NCHARS characters
2512 which occupy NBYTES bytes. */
2513
2514Lisp_Object
413d18e7 2515make_uninit_multibyte_string (EMACS_INT nchars, EMACS_INT nbytes)
2e471eb5
GM
2516{
2517 Lisp_Object string;
2518 struct Lisp_String *s;
2519
2520 if (nchars < 0)
2521 abort ();
4d774b0f
JB
2522 if (!nbytes)
2523 return empty_multibyte_string;
2e471eb5
GM
2524
2525 s = allocate_string ();
246155eb 2526 s->intervals = NULL_INTERVAL;
2e471eb5
GM
2527 allocate_string_data (s, nchars, nbytes);
2528 XSETSTRING (string, s);
2529 string_chars_consed += nbytes;
2530 return string;
2531}
2532
a8290ec3
DA
2533/* Print arguments to BUF according to a FORMAT, then return
2534 a Lisp_String initialized with the data from BUF. */
2535
2536Lisp_Object
2537make_formatted_string (char *buf, const char *format, ...)
2538{
2539 va_list ap;
26bccfae 2540 int length;
a8290ec3
DA
2541
2542 va_start (ap, format);
2543 length = vsprintf (buf, format, ap);
2544 va_end (ap);
2545 return make_string (buf, length);
2546}
2e471eb5
GM
2547
2548\f
2549/***********************************************************************
2550 Float Allocation
2551 ***********************************************************************/
2552
2e471eb5
GM
2553/* We store float cells inside of float_blocks, allocating a new
2554 float_block with malloc whenever necessary. Float cells reclaimed
2555 by GC are put on a free list to be reallocated before allocating
ab6780cd 2556 any new float cells from the latest float_block. */
2e471eb5 2557
6b61353c
KH
2558#define FLOAT_BLOCK_SIZE \
2559 (((BLOCK_BYTES - sizeof (struct float_block *) \
2560 /* The compiler might add padding at the end. */ \
2561 - (sizeof (struct Lisp_Float) - sizeof (int))) * CHAR_BIT) \
ab6780cd
SM
2562 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2563
2564#define GETMARKBIT(block,n) \
5e617bc2
JB
2565 (((block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2566 >> ((n) % (sizeof (int) * CHAR_BIT))) \
ab6780cd
SM
2567 & 1)
2568
2569#define SETMARKBIT(block,n) \
5e617bc2
JB
2570 (block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2571 |= 1 << ((n) % (sizeof (int) * CHAR_BIT))
ab6780cd
SM
2572
2573#define UNSETMARKBIT(block,n) \
5e617bc2
JB
2574 (block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2575 &= ~(1 << ((n) % (sizeof (int) * CHAR_BIT)))
ab6780cd
SM
2576
2577#define FLOAT_BLOCK(fptr) \
d01a7826 2578 ((struct float_block *) (((uintptr_t) (fptr)) & ~(BLOCK_ALIGN - 1)))
ab6780cd
SM
2579
2580#define FLOAT_INDEX(fptr) \
d01a7826 2581 ((((uintptr_t) (fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2e471eb5
GM
2582
2583struct float_block
2584{
ab6780cd 2585 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2e471eb5 2586 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
5e617bc2 2587 int gcmarkbits[1 + FLOAT_BLOCK_SIZE / (sizeof (int) * CHAR_BIT)];
ab6780cd 2588 struct float_block *next;
2e471eb5
GM
2589};
2590
ab6780cd
SM
2591#define FLOAT_MARKED_P(fptr) \
2592 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2593
2594#define FLOAT_MARK(fptr) \
2595 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2596
2597#define FLOAT_UNMARK(fptr) \
2598 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2599
34400008
GM
2600/* Current float_block. */
2601
244ed907 2602static struct float_block *float_block;
34400008
GM
2603
2604/* Index of first unused Lisp_Float in the current float_block. */
2605
fff62aa9 2606static int float_block_index = FLOAT_BLOCK_SIZE;
2e471eb5 2607
34400008
GM
2608/* Free-list of Lisp_Floats. */
2609
244ed907 2610static struct Lisp_Float *float_free_list;
2e471eb5 2611
34400008
GM
2612/* Return a new float object with value FLOAT_VALUE. */
2613
2e471eb5 2614Lisp_Object
971de7fb 2615make_float (double float_value)
2e471eb5
GM
2616{
2617 register Lisp_Object val;
2618
e2984df0
CY
2619 /* eassert (!handling_signal); */
2620
dafc79fa 2621 MALLOC_BLOCK_INPUT;
cfb2f32e 2622
2e471eb5
GM
2623 if (float_free_list)
2624 {
2625 /* We use the data field for chaining the free list
2626 so that we won't use the same field that has the mark bit. */
2627 XSETFLOAT (val, float_free_list);
28a099a4 2628 float_free_list = float_free_list->u.chain;
2e471eb5
GM
2629 }
2630 else
2631 {
2632 if (float_block_index == FLOAT_BLOCK_SIZE)
2633 {
38182d90
PE
2634 struct float_block *new
2635 = lisp_align_malloc (sizeof *new, MEM_TYPE_FLOAT);
2e471eb5 2636 new->next = float_block;
72af86bd 2637 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2e471eb5
GM
2638 float_block = new;
2639 float_block_index = 0;
3900d5de 2640 total_free_floats += FLOAT_BLOCK_SIZE;
2e471eb5 2641 }
6b61353c
KH
2642 XSETFLOAT (val, &float_block->floats[float_block_index]);
2643 float_block_index++;
2e471eb5 2644 }
177c0ea7 2645
dafc79fa 2646 MALLOC_UNBLOCK_INPUT;
e2984df0 2647
f601cdf3 2648 XFLOAT_INIT (val, float_value);
6b61353c 2649 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2e471eb5
GM
2650 consing_since_gc += sizeof (struct Lisp_Float);
2651 floats_consed++;
3900d5de 2652 total_free_floats--;
2e471eb5
GM
2653 return val;
2654}
2655
2e471eb5
GM
2656
2657\f
2658/***********************************************************************
2659 Cons Allocation
2660 ***********************************************************************/
2661
2662/* We store cons cells inside of cons_blocks, allocating a new
2663 cons_block with malloc whenever necessary. Cons cells reclaimed by
2664 GC are put on a free list to be reallocated before allocating
08b7c2cb 2665 any new cons cells from the latest cons_block. */
2e471eb5 2666
a2821611
AS
2667#define CONS_BLOCK_SIZE \
2668 (((BLOCK_BYTES - sizeof (struct cons_block *) \
2669 /* The compiler might add padding at the end. */ \
2670 - (sizeof (struct Lisp_Cons) - sizeof (int))) * CHAR_BIT) \
08b7c2cb
SM
2671 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2672
2673#define CONS_BLOCK(fptr) \
d01a7826 2674 ((struct cons_block *) ((uintptr_t) (fptr) & ~(BLOCK_ALIGN - 1)))
08b7c2cb
SM
2675
2676#define CONS_INDEX(fptr) \
d01a7826 2677 (((uintptr_t) (fptr) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2e471eb5
GM
2678
2679struct cons_block
2680{
08b7c2cb 2681 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2e471eb5 2682 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
5e617bc2 2683 int gcmarkbits[1 + CONS_BLOCK_SIZE / (sizeof (int) * CHAR_BIT)];
08b7c2cb 2684 struct cons_block *next;
2e471eb5
GM
2685};
2686
08b7c2cb
SM
2687#define CONS_MARKED_P(fptr) \
2688 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2689
2690#define CONS_MARK(fptr) \
2691 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2692
2693#define CONS_UNMARK(fptr) \
2694 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2695
34400008
GM
2696/* Current cons_block. */
2697
244ed907 2698static struct cons_block *cons_block;
34400008
GM
2699
2700/* Index of first unused Lisp_Cons in the current block. */
2701
fff62aa9 2702static int cons_block_index = CONS_BLOCK_SIZE;
2e471eb5 2703
34400008
GM
2704/* Free-list of Lisp_Cons structures. */
2705
244ed907 2706static struct Lisp_Cons *cons_free_list;
2e471eb5 2707
34400008 2708/* Explicitly free a cons cell by putting it on the free-list. */
2e471eb5
GM
2709
2710void
971de7fb 2711free_cons (struct Lisp_Cons *ptr)
2e471eb5 2712{
28a099a4 2713 ptr->u.chain = cons_free_list;
34400008
GM
2714#if GC_MARK_STACK
2715 ptr->car = Vdead;
2716#endif
2e471eb5 2717 cons_free_list = ptr;
0dd6d66d 2718 consing_since_gc -= sizeof *ptr;
3900d5de 2719 total_free_conses++;
2e471eb5
GM
2720}
2721
a7ca3326 2722DEFUN ("cons", Fcons, Scons, 2, 2, 0,
a6266d23 2723 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
5842a27b 2724 (Lisp_Object car, Lisp_Object cdr)
2e471eb5
GM
2725{
2726 register Lisp_Object val;
2727
e2984df0
CY
2728 /* eassert (!handling_signal); */
2729
dafc79fa 2730 MALLOC_BLOCK_INPUT;
cfb2f32e 2731
2e471eb5
GM
2732 if (cons_free_list)
2733 {
2734 /* We use the cdr for chaining the free list
2735 so that we won't use the same field that has the mark bit. */
2736 XSETCONS (val, cons_free_list);
28a099a4 2737 cons_free_list = cons_free_list->u.chain;
2e471eb5
GM
2738 }
2739 else
2740 {
2741 if (cons_block_index == CONS_BLOCK_SIZE)
2742 {
38182d90
PE
2743 struct cons_block *new
2744 = lisp_align_malloc (sizeof *new, MEM_TYPE_CONS);
72af86bd 2745 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2e471eb5
GM
2746 new->next = cons_block;
2747 cons_block = new;
2748 cons_block_index = 0;
3900d5de 2749 total_free_conses += CONS_BLOCK_SIZE;
2e471eb5 2750 }
6b61353c
KH
2751 XSETCONS (val, &cons_block->conses[cons_block_index]);
2752 cons_block_index++;
2e471eb5 2753 }
177c0ea7 2754
dafc79fa 2755 MALLOC_UNBLOCK_INPUT;
e2984df0 2756
f3fbd155
KR
2757 XSETCAR (val, car);
2758 XSETCDR (val, cdr);
6b61353c 2759 eassert (!CONS_MARKED_P (XCONS (val)));
2e471eb5 2760 consing_since_gc += sizeof (struct Lisp_Cons);
3900d5de 2761 total_free_conses--;
2e471eb5
GM
2762 cons_cells_consed++;
2763 return val;
2764}
2765
e5aab7e7 2766#ifdef GC_CHECK_CONS_LIST
e3e56238
RS
2767/* Get an error now if there's any junk in the cons free list. */
2768void
971de7fb 2769check_cons_list (void)
e3e56238
RS
2770{
2771 struct Lisp_Cons *tail = cons_free_list;
2772
e3e56238 2773 while (tail)
28a099a4 2774 tail = tail->u.chain;
e3e56238 2775}
e5aab7e7 2776#endif
34400008 2777
9b306d37
KS
2778/* Make a list of 1, 2, 3, 4 or 5 specified objects. */
2779
2780Lisp_Object
971de7fb 2781list1 (Lisp_Object arg1)
9b306d37
KS
2782{
2783 return Fcons (arg1, Qnil);
2784}
2e471eb5
GM
2785
2786Lisp_Object
971de7fb 2787list2 (Lisp_Object arg1, Lisp_Object arg2)
2e471eb5
GM
2788{
2789 return Fcons (arg1, Fcons (arg2, Qnil));
2790}
2791
34400008 2792
2e471eb5 2793Lisp_Object
971de7fb 2794list3 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3)
2e471eb5
GM
2795{
2796 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2797}
2798
34400008 2799
2e471eb5 2800Lisp_Object
971de7fb 2801list4 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4)
2e471eb5
GM
2802{
2803 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2804}
2805
34400008 2806
2e471eb5 2807Lisp_Object
971de7fb 2808list5 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4, Lisp_Object arg5)
2e471eb5
GM
2809{
2810 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2811 Fcons (arg5, Qnil)))));
2812}
2813
694b6c97
DA
2814/* Make a list of COUNT Lisp_Objects, where ARG is the
2815 first one. Allocate conses from pure space if TYPE
2816 is PURE, or allocate as usual if type is HEAP. */
2817
2818Lisp_Object
2819listn (enum constype type, ptrdiff_t count, Lisp_Object arg, ...)
2820{
2821 va_list ap;
2822 ptrdiff_t i;
2823 Lisp_Object val, *objp;
2824
2825 /* Change to SAFE_ALLOCA if you hit this eassert. */
2826 eassert (count <= MAX_ALLOCA / sizeof (Lisp_Object));
2827
2828 objp = alloca (count * sizeof (Lisp_Object));
2829 objp[0] = arg;
2830 va_start (ap, arg);
2831 for (i = 1; i < count; i++)
2832 objp[i] = va_arg (ap, Lisp_Object);
2833 va_end (ap);
2834
2835 for (i = 0, val = Qnil; i < count; i++)
2836 {
2837 if (type == PURE)
2838 val = pure_cons (objp[i], val);
2839 else if (type == HEAP)
2840 val = Fcons (objp[i], val);
2841 else
2842 abort ();
2843 }
2844 return val;
2845}
34400008 2846
a7ca3326 2847DEFUN ("list", Flist, Slist, 0, MANY, 0,
eae936e2 2848 doc: /* Return a newly created list with specified arguments as elements.
ae8e8122
MB
2849Any number of arguments, even zero arguments, are allowed.
2850usage: (list &rest OBJECTS) */)
f66c7cf8 2851 (ptrdiff_t nargs, Lisp_Object *args)
2e471eb5
GM
2852{
2853 register Lisp_Object val;
2854 val = Qnil;
2855
2856 while (nargs > 0)
2857 {
2858 nargs--;
2859 val = Fcons (args[nargs], val);
2860 }
2861 return val;
2862}
2863
34400008 2864
a7ca3326 2865DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
a6266d23 2866 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
5842a27b 2867 (register Lisp_Object length, Lisp_Object init)
2e471eb5
GM
2868{
2869 register Lisp_Object val;
14162469 2870 register EMACS_INT size;
2e471eb5 2871
b7826503 2872 CHECK_NATNUM (length);
2e471eb5
GM
2873 size = XFASTINT (length);
2874
2875 val = Qnil;
ce070307
GM
2876 while (size > 0)
2877 {
2878 val = Fcons (init, val);
2879 --size;
2880
2881 if (size > 0)
2882 {
2883 val = Fcons (init, val);
2884 --size;
177c0ea7 2885
ce070307
GM
2886 if (size > 0)
2887 {
2888 val = Fcons (init, val);
2889 --size;
177c0ea7 2890
ce070307
GM
2891 if (size > 0)
2892 {
2893 val = Fcons (init, val);
2894 --size;
177c0ea7 2895
ce070307
GM
2896 if (size > 0)
2897 {
2898 val = Fcons (init, val);
2899 --size;
2900 }
2901 }
2902 }
2903 }
2904
2905 QUIT;
2906 }
177c0ea7 2907
7146af97
JB
2908 return val;
2909}
2e471eb5
GM
2910
2911
7146af97 2912\f
2e471eb5
GM
2913/***********************************************************************
2914 Vector Allocation
2915 ***********************************************************************/
7146af97 2916
f3372c87
DA
2917/* This value is balanced well enough to avoid too much internal overhead
2918 for the most common cases; it's not required to be a power of two, but
2919 it's expected to be a mult-of-ROUNDUP_SIZE (see below). */
34400008 2920
f3372c87 2921#define VECTOR_BLOCK_SIZE 4096
7146af97 2922
d06714cb 2923/* Align allocation request sizes to be a multiple of ROUNDUP_SIZE. */
dd0b0efb
PE
2924enum
2925 {
d06714cb 2926 roundup_size = COMMON_MULTIPLE (word_size,
bfe3e0a2 2927 USE_LSB_TAG ? 1 << GCTYPEBITS : 1)
dd0b0efb 2928 };
34400008 2929
bfe3e0a2
PE
2930/* ROUNDUP_SIZE must be a power of 2. */
2931verify ((roundup_size & (roundup_size - 1)) == 0);
2932
ca95b3eb
DA
2933/* Verify assumptions described above. */
2934verify ((VECTOR_BLOCK_SIZE % roundup_size) == 0);
ee28be33 2935verify (VECTOR_BLOCK_SIZE <= (1 << PSEUDOVECTOR_SIZE_BITS));
ca95b3eb 2936
bfe3e0a2 2937/* Round up X to nearest mult-of-ROUNDUP_SIZE. */
f3372c87
DA
2938
2939#define vroundup(x) (((x) + (roundup_size - 1)) & ~(roundup_size - 1))
2940
2941/* Rounding helps to maintain alignment constraints if USE_LSB_TAG. */
2942
2943#define VECTOR_BLOCK_BYTES (VECTOR_BLOCK_SIZE - vroundup (sizeof (void *)))
2944
2945/* Size of the minimal vector allocated from block. */
2946
2947#define VBLOCK_BYTES_MIN vroundup (sizeof (struct Lisp_Vector))
2948
2949/* Size of the largest vector allocated from block. */
2950
2951#define VBLOCK_BYTES_MAX \
d06714cb 2952 vroundup ((VECTOR_BLOCK_BYTES / 2) - word_size)
f3372c87
DA
2953
2954/* We maintain one free list for each possible block-allocated
2955 vector size, and this is the number of free lists we have. */
2956
2957#define VECTOR_MAX_FREE_LIST_INDEX \
2958 ((VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN) / roundup_size + 1)
2959
f3372c87
DA
2960/* Common shortcut to advance vector pointer over a block data. */
2961
2962#define ADVANCE(v, nbytes) ((struct Lisp_Vector *) ((char *) (v) + (nbytes)))
2963
2964/* Common shortcut to calculate NBYTES-vector index in VECTOR_FREE_LISTS. */
2965
2966#define VINDEX(nbytes) (((nbytes) - VBLOCK_BYTES_MIN) / roundup_size)
2967
2968/* Common shortcut to setup vector on a free list. */
2969
2970#define SETUP_ON_FREE_LIST(v, nbytes, index) \
2971 do { \
ee28be33 2972 XSETPVECTYPESIZE (v, PVEC_FREE, nbytes); \
f3372c87
DA
2973 eassert ((nbytes) % roundup_size == 0); \
2974 (index) = VINDEX (nbytes); \
2975 eassert ((index) < VECTOR_MAX_FREE_LIST_INDEX); \
2976 (v)->header.next.vector = vector_free_lists[index]; \
2977 vector_free_lists[index] = (v); \
5b835e1d 2978 total_free_vector_slots += (nbytes) / word_size; \
f3372c87
DA
2979 } while (0)
2980
2981struct vector_block
2982{
2983 char data[VECTOR_BLOCK_BYTES];
2984 struct vector_block *next;
2985};
2986
2987/* Chain of vector blocks. */
2988
2989static struct vector_block *vector_blocks;
2990
2991/* Vector free lists, where NTH item points to a chain of free
2992 vectors of the same NBYTES size, so NTH == VINDEX (NBYTES). */
2993
2994static struct Lisp_Vector *vector_free_lists[VECTOR_MAX_FREE_LIST_INDEX];
2995
2996/* Singly-linked list of large vectors. */
2997
2998static struct Lisp_Vector *large_vectors;
2999
3000/* The only vector with 0 slots, allocated from pure space. */
3001
9730daca 3002Lisp_Object zero_vector;
f3372c87 3003
3ab6e069
DA
3004/* Number of live vectors. */
3005
3006static EMACS_INT total_vectors;
3007
5b835e1d 3008/* Total size of live and free vectors, in Lisp_Object units. */
3ab6e069 3009
5b835e1d 3010static EMACS_INT total_vector_slots, total_free_vector_slots;
3ab6e069 3011
f3372c87
DA
3012/* Get a new vector block. */
3013
3014static struct vector_block *
3015allocate_vector_block (void)
3016{
38182d90 3017 struct vector_block *block = xmalloc (sizeof *block);
f3372c87
DA
3018
3019#if GC_MARK_STACK && !defined GC_MALLOC_CHECK
3020 mem_insert (block->data, block->data + VECTOR_BLOCK_BYTES,
3021 MEM_TYPE_VECTOR_BLOCK);
3022#endif
3023
3024 block->next = vector_blocks;
3025 vector_blocks = block;
3026 return block;
3027}
3028
3029/* Called once to initialize vector allocation. */
3030
3031static void
3032init_vectors (void)
3033{
9730daca 3034 zero_vector = make_pure_vector (0);
f3372c87
DA
3035}
3036
3037/* Allocate vector from a vector block. */
3038
3039static struct Lisp_Vector *
3040allocate_vector_from_block (size_t nbytes)
3041{
3042 struct Lisp_Vector *vector, *rest;
3043 struct vector_block *block;
3044 size_t index, restbytes;
3045
3046 eassert (VBLOCK_BYTES_MIN <= nbytes && nbytes <= VBLOCK_BYTES_MAX);
3047 eassert (nbytes % roundup_size == 0);
3048
3049 /* First, try to allocate from a free list
3050 containing vectors of the requested size. */
3051 index = VINDEX (nbytes);
3052 if (vector_free_lists[index])
3053 {
3054 vector = vector_free_lists[index];
3055 vector_free_lists[index] = vector->header.next.vector;
3056 vector->header.next.nbytes = nbytes;
5b835e1d 3057 total_free_vector_slots -= nbytes / word_size;
f3372c87
DA
3058 return vector;
3059 }
3060
3061 /* Next, check free lists containing larger vectors. Since
3062 we will split the result, we should have remaining space
3063 large enough to use for one-slot vector at least. */
3064 for (index = VINDEX (nbytes + VBLOCK_BYTES_MIN);
3065 index < VECTOR_MAX_FREE_LIST_INDEX; index++)
3066 if (vector_free_lists[index])
3067 {
3068 /* This vector is larger than requested. */
3069 vector = vector_free_lists[index];
3070 vector_free_lists[index] = vector->header.next.vector;
3071 vector->header.next.nbytes = nbytes;
5b835e1d 3072 total_free_vector_slots -= nbytes / word_size;
f3372c87
DA
3073
3074 /* Excess bytes are used for the smaller vector,
3075 which should be set on an appropriate free list. */
3076 restbytes = index * roundup_size + VBLOCK_BYTES_MIN - nbytes;
3077 eassert (restbytes % roundup_size == 0);
3078 rest = ADVANCE (vector, nbytes);
3079 SETUP_ON_FREE_LIST (rest, restbytes, index);
3080 return vector;
3081 }
3082
3083 /* Finally, need a new vector block. */
3084 block = allocate_vector_block ();
3085
3086 /* New vector will be at the beginning of this block. */
3087 vector = (struct Lisp_Vector *) block->data;
3088 vector->header.next.nbytes = nbytes;
3089
3090 /* If the rest of space from this block is large enough
3091 for one-slot vector at least, set up it on a free list. */
3092 restbytes = VECTOR_BLOCK_BYTES - nbytes;
3093 if (restbytes >= VBLOCK_BYTES_MIN)
3094 {
3095 eassert (restbytes % roundup_size == 0);
3096 rest = ADVANCE (vector, nbytes);
3097 SETUP_ON_FREE_LIST (rest, restbytes, index);
3098 }
3099 return vector;
3100 }
3101
f3372c87
DA
3102/* Nonzero if VECTOR pointer is valid pointer inside BLOCK. */
3103
3104#define VECTOR_IN_BLOCK(vector, block) \
3105 ((char *) (vector) <= (block)->data \
3106 + VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN)
3107
ee28be33
SM
3108/* Number of bytes used by vector-block-allocated object. This is the only
3109 place where we actually use the `nbytes' field of the vector-header.
3110 I.e. we could get rid of the `nbytes' field by computing it based on the
3111 vector-type. */
3112
3113#define PSEUDOVECTOR_NBYTES(vector) \
3114 (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_FREE) \
3115 ? vector->header.size & PSEUDOVECTOR_SIZE_MASK \
356e7178 3116 : vector->header.next.nbytes)
ee28be33 3117
f3372c87
DA
3118/* Reclaim space used by unmarked vectors. */
3119
3120static void
3121sweep_vectors (void)
3122{
3123 struct vector_block *block = vector_blocks, **bprev = &vector_blocks;
3124 struct Lisp_Vector *vector, *next, **vprev = &large_vectors;
3125
5b835e1d 3126 total_vectors = total_vector_slots = total_free_vector_slots = 0;
f3372c87
DA
3127 memset (vector_free_lists, 0, sizeof (vector_free_lists));
3128
3129 /* Looking through vector blocks. */
3130
3131 for (block = vector_blocks; block; block = *bprev)
3132 {
3133 int free_this_block = 0;
3134
3135 for (vector = (struct Lisp_Vector *) block->data;
3136 VECTOR_IN_BLOCK (vector, block); vector = next)
3137 {
3138 if (VECTOR_MARKED_P (vector))
3139 {
3140 VECTOR_UNMARK (vector);
3ab6e069 3141 total_vectors++;
5b835e1d 3142 total_vector_slots += vector->header.next.nbytes / word_size;
f3372c87
DA
3143 next = ADVANCE (vector, vector->header.next.nbytes);
3144 }
3145 else
3146 {
ee28be33
SM
3147 ptrdiff_t nbytes = PSEUDOVECTOR_NBYTES (vector);
3148 ptrdiff_t total_bytes = nbytes;
f3372c87 3149
ee28be33 3150 next = ADVANCE (vector, nbytes);
f3372c87
DA
3151
3152 /* While NEXT is not marked, try to coalesce with VECTOR,
3153 thus making VECTOR of the largest possible size. */
3154
3155 while (VECTOR_IN_BLOCK (next, block))
3156 {
3157 if (VECTOR_MARKED_P (next))
3158 break;
ee28be33
SM
3159 nbytes = PSEUDOVECTOR_NBYTES (next);
3160 total_bytes += nbytes;
f3372c87
DA
3161 next = ADVANCE (next, nbytes);
3162 }
bfe3e0a2 3163
ee28be33 3164 eassert (total_bytes % roundup_size == 0);
f3372c87
DA
3165
3166 if (vector == (struct Lisp_Vector *) block->data
3167 && !VECTOR_IN_BLOCK (next, block))
3168 /* This block should be freed because all of it's
3169 space was coalesced into the only free vector. */
3170 free_this_block = 1;
3171 else
ee28be33
SM
3172 {
3173 int tmp;
3174 SETUP_ON_FREE_LIST (vector, total_bytes, tmp);
3175 }
f3372c87
DA
3176 }
3177 }
3178
3179 if (free_this_block)
3180 {
3181 *bprev = block->next;
3182#if GC_MARK_STACK && !defined GC_MALLOC_CHECK
3183 mem_delete (mem_find (block->data));
3184#endif
3185 xfree (block);
3186 }
3187 else
3188 bprev = &block->next;
3189 }
3190
3191 /* Sweep large vectors. */
3192
3193 for (vector = large_vectors; vector; vector = *vprev)
3194 {
3195 if (VECTOR_MARKED_P (vector))
3196 {
3197 VECTOR_UNMARK (vector);
3ab6e069 3198 total_vectors++;
169925ec
DA
3199 if (vector->header.size & PSEUDOVECTOR_FLAG)
3200 {
d06714cb
PE
3201 struct Lisp_Bool_Vector *b = (struct Lisp_Bool_Vector *) vector;
3202
3203 /* All non-bool pseudovectors are small enough to be allocated
3204 from vector blocks. This code should be redesigned if some
3205 pseudovector type grows beyond VBLOCK_BYTES_MAX. */
3206 eassert (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_BOOL_VECTOR));
3207
5b835e1d 3208 total_vector_slots
d06714cb
PE
3209 += (bool_header_size
3210 + ((b->size + BOOL_VECTOR_BITS_PER_CHAR - 1)
5b835e1d 3211 / BOOL_VECTOR_BITS_PER_CHAR)) / word_size;
169925ec
DA
3212 }
3213 else
5b835e1d
DA
3214 total_vector_slots
3215 += header_size / word_size + vector->header.size;
f3372c87
DA
3216 vprev = &vector->header.next.vector;
3217 }
3218 else
3219 {
3220 *vprev = vector->header.next.vector;
3221 lisp_free (vector);
3222 }
3223 }
3224}
3225
34400008
GM
3226/* Value is a pointer to a newly allocated Lisp_Vector structure
3227 with room for LEN Lisp_Objects. */
3228
ece93c02 3229static struct Lisp_Vector *
d311d28c 3230allocate_vectorlike (ptrdiff_t len)
1825c68d
KH
3231{
3232 struct Lisp_Vector *p;
3233
dafc79fa
SM
3234 MALLOC_BLOCK_INPUT;
3235
cfb2f32e
SM
3236 /* This gets triggered by code which I haven't bothered to fix. --Stef */
3237 /* eassert (!handling_signal); */
3238
f3372c87 3239 if (len == 0)
9730daca 3240 p = XVECTOR (zero_vector);
d12e8f5a 3241 else
8bbbc977 3242 {
d12e8f5a 3243 size_t nbytes = header_size + len * word_size;
f3372c87 3244
d12e8f5a
DA
3245#ifdef DOUG_LEA_MALLOC
3246 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
3247 because mapped region contents are not preserved in
3248 a dumped Emacs. */
3249 mallopt (M_MMAP_MAX, 0);
3250#endif
f3372c87 3251
d12e8f5a
DA
3252 if (nbytes <= VBLOCK_BYTES_MAX)
3253 p = allocate_vector_from_block (vroundup (nbytes));
3254 else
3255 {
38182d90 3256 p = lisp_malloc (nbytes, MEM_TYPE_VECTORLIKE);
d12e8f5a
DA
3257 p->header.next.vector = large_vectors;
3258 large_vectors = p;
3259 }
177c0ea7 3260
d1658221 3261#ifdef DOUG_LEA_MALLOC
d12e8f5a
DA
3262 /* Back to a reasonable maximum of mmap'ed areas. */
3263 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
d1658221 3264#endif
177c0ea7 3265
d12e8f5a
DA
3266 consing_since_gc += nbytes;
3267 vector_cells_consed += len;
3268 }
1825c68d 3269
dafc79fa 3270 MALLOC_UNBLOCK_INPUT;
e2984df0 3271
1825c68d
KH
3272 return p;
3273}
3274
34400008 3275
dd0b0efb 3276/* Allocate a vector with LEN slots. */
ece93c02
GM
3277
3278struct Lisp_Vector *
dd0b0efb 3279allocate_vector (EMACS_INT len)
ece93c02 3280{
dd0b0efb
PE
3281 struct Lisp_Vector *v;
3282 ptrdiff_t nbytes_max = min (PTRDIFF_MAX, SIZE_MAX);
3283
3284 if (min ((nbytes_max - header_size) / word_size, MOST_POSITIVE_FIXNUM) < len)
3285 memory_full (SIZE_MAX);
3286 v = allocate_vectorlike (len);
3287 v->header.size = len;
ece93c02
GM
3288 return v;
3289}
3290
3291
3292/* Allocate other vector-like structures. */
3293
30f95089 3294struct Lisp_Vector *
d311d28c 3295allocate_pseudovector (int memlen, int lisplen, int tag)
ece93c02 3296{
d2029e5b 3297 struct Lisp_Vector *v = allocate_vectorlike (memlen);
e46bb31a 3298 int i;
177c0ea7 3299
d2029e5b 3300 /* Only the first lisplen slots will be traced normally by the GC. */
d2029e5b 3301 for (i = 0; i < lisplen; ++i)
ece93c02 3302 v->contents[i] = Qnil;
177c0ea7 3303
eab3844f 3304 XSETPVECTYPESIZE (v, tag, lisplen);
d2029e5b
SM
3305 return v;
3306}
d2029e5b 3307
36429c89
DA
3308struct buffer *
3309allocate_buffer (void)
3310{
38182d90 3311 struct buffer *b = lisp_malloc (sizeof *b, MEM_TYPE_BUFFER);
36429c89
DA
3312
3313 XSETPVECTYPESIZE (b, PVEC_BUFFER, (offsetof (struct buffer, own_text)
3314 - header_size) / word_size);
3315 /* Note that the fields of B are not initialized. */
3316 return b;
3317}
3318
ece93c02 3319struct Lisp_Hash_Table *
878f97ff 3320allocate_hash_table (void)
ece93c02 3321{
878f97ff 3322 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Hash_Table, count, PVEC_HASH_TABLE);
ece93c02
GM
3323}
3324
ece93c02 3325struct window *
971de7fb 3326allocate_window (void)
ece93c02 3327{
62efea5e 3328 struct window *w;
177c0ea7 3329
62efea5e
DA
3330 w = ALLOCATE_PSEUDOVECTOR (struct window, current_matrix, PVEC_WINDOW);
3331 /* Users assumes that non-Lisp data is zeroed. */
3332 memset (&w->current_matrix, 0,
3333 sizeof (*w) - offsetof (struct window, current_matrix));
3334 return w;
3335}
177c0ea7 3336
4a729fd8 3337struct terminal *
971de7fb 3338allocate_terminal (void)
4a729fd8 3339{
62efea5e 3340 struct terminal *t;
ece93c02 3341
62efea5e
DA
3342 t = ALLOCATE_PSEUDOVECTOR (struct terminal, next_terminal, PVEC_TERMINAL);
3343 /* Users assumes that non-Lisp data is zeroed. */
3344 memset (&t->next_terminal, 0,
3345 sizeof (*t) - offsetof (struct terminal, next_terminal));
d2029e5b 3346 return t;
4a729fd8 3347}
ece93c02
GM
3348
3349struct frame *
971de7fb 3350allocate_frame (void)
ece93c02 3351{
62efea5e
DA
3352 struct frame *f;
3353
3354 f = ALLOCATE_PSEUDOVECTOR (struct frame, face_cache, PVEC_FRAME);
3355 /* Users assumes that non-Lisp data is zeroed. */
72af86bd 3356 memset (&f->face_cache, 0,
62efea5e 3357 sizeof (*f) - offsetof (struct frame, face_cache));
d2029e5b 3358 return f;
ece93c02
GM
3359}
3360
ece93c02 3361struct Lisp_Process *
971de7fb 3362allocate_process (void)
ece93c02 3363{
62efea5e 3364 struct Lisp_Process *p;
ece93c02 3365
62efea5e
DA
3366 p = ALLOCATE_PSEUDOVECTOR (struct Lisp_Process, pid, PVEC_PROCESS);
3367 /* Users assumes that non-Lisp data is zeroed. */
3368 memset (&p->pid, 0,
3369 sizeof (*p) - offsetof (struct Lisp_Process, pid));
3370 return p;
3371}
ece93c02 3372
a7ca3326 3373DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
a6266d23 3374 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
7ee72033 3375See also the function `vector'. */)
5842a27b 3376 (register Lisp_Object length, Lisp_Object init)
7146af97 3377{
1825c68d 3378 Lisp_Object vector;
d311d28c
PE
3379 register ptrdiff_t sizei;
3380 register ptrdiff_t i;
7146af97
JB
3381 register struct Lisp_Vector *p;
3382
b7826503 3383 CHECK_NATNUM (length);
7146af97 3384
d311d28c
PE
3385 p = allocate_vector (XFASTINT (length));
3386 sizei = XFASTINT (length);
ae35e756
PE
3387 for (i = 0; i < sizei; i++)
3388 p->contents[i] = init;
7146af97 3389
1825c68d 3390 XSETVECTOR (vector, p);
7146af97
JB
3391 return vector;
3392}
3393
34400008 3394
a7ca3326 3395DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
eae936e2 3396 doc: /* Return a newly created vector with specified arguments as elements.
ae8e8122
MB
3397Any number of arguments, even zero arguments, are allowed.
3398usage: (vector &rest OBJECTS) */)
f66c7cf8 3399 (ptrdiff_t nargs, Lisp_Object *args)
7146af97
JB
3400{
3401 register Lisp_Object len, val;
f66c7cf8 3402 ptrdiff_t i;
7146af97
JB
3403 register struct Lisp_Vector *p;
3404
67ba9986 3405 XSETFASTINT (len, nargs);
7146af97
JB
3406 val = Fmake_vector (len, Qnil);
3407 p = XVECTOR (val);
ae35e756
PE
3408 for (i = 0; i < nargs; i++)
3409 p->contents[i] = args[i];
7146af97
JB
3410 return val;
3411}
3412
3017f87f
SM
3413void
3414make_byte_code (struct Lisp_Vector *v)
3415{
3416 if (v->header.size > 1 && STRINGP (v->contents[1])
3417 && STRING_MULTIBYTE (v->contents[1]))
3418 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
3419 earlier because they produced a raw 8-bit string for byte-code
3420 and now such a byte-code string is loaded as multibyte while
3421 raw 8-bit characters converted to multibyte form. Thus, now we
3422 must convert them back to the original unibyte form. */
3423 v->contents[1] = Fstring_as_unibyte (v->contents[1]);
3424 XSETPVECTYPE (v, PVEC_COMPILED);
3425}
34400008 3426
a7ca3326 3427DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
a6266d23 3428 doc: /* Create a byte-code object with specified arguments as elements.
e2abe5a1
SM
3429The arguments should be the ARGLIST, bytecode-string BYTE-CODE, constant
3430vector CONSTANTS, maximum stack size DEPTH, (optional) DOCSTRING,
3431and (optional) INTERACTIVE-SPEC.
228299fa 3432The first four arguments are required; at most six have any
ae8e8122 3433significance.
e2abe5a1
SM
3434The ARGLIST can be either like the one of `lambda', in which case the arguments
3435will be dynamically bound before executing the byte code, or it can be an
3436integer of the form NNNNNNNRMMMMMMM where the 7bit MMMMMMM specifies the
3437minimum number of arguments, the 7-bit NNNNNNN specifies the maximum number
3438of arguments (ignoring &rest) and the R bit specifies whether there is a &rest
3439argument to catch the left-over arguments. If such an integer is used, the
3440arguments will not be dynamically bound but will be instead pushed on the
3441stack before executing the byte-code.
92cc28b2 3442usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
f66c7cf8 3443 (ptrdiff_t nargs, Lisp_Object *args)
7146af97
JB
3444{
3445 register Lisp_Object len, val;
f66c7cf8 3446 ptrdiff_t i;
7146af97
JB
3447 register struct Lisp_Vector *p;
3448
3017f87f
SM
3449 /* We used to purecopy everything here, if purify-flga was set. This worked
3450 OK for Emacs-23, but with Emacs-24's lexical binding code, it can be
3451 dangerous, since make-byte-code is used during execution to build
3452 closures, so any closure built during the preload phase would end up
3453 copied into pure space, including its free variables, which is sometimes
3454 just wasteful and other times plainly wrong (e.g. those free vars may want
3455 to be setcar'd). */
9eac9d59 3456
3017f87f
SM
3457 XSETFASTINT (len, nargs);
3458 val = Fmake_vector (len, Qnil);
9eac9d59 3459
7146af97 3460 p = XVECTOR (val);
ae35e756 3461 for (i = 0; i < nargs; i++)
3017f87f
SM
3462 p->contents[i] = args[i];
3463 make_byte_code (p);
876c194c 3464 XSETCOMPILED (val, p);
7146af97
JB
3465 return val;
3466}
2e471eb5 3467
34400008 3468
7146af97 3469\f
2e471eb5
GM
3470/***********************************************************************
3471 Symbol Allocation
3472 ***********************************************************************/
7146af97 3473
d55c12ed
AS
3474/* Like struct Lisp_Symbol, but padded so that the size is a multiple
3475 of the required alignment if LSB tags are used. */
3476
3477union aligned_Lisp_Symbol
3478{
3479 struct Lisp_Symbol s;
bfe3e0a2 3480#if USE_LSB_TAG
d55c12ed
AS
3481 unsigned char c[(sizeof (struct Lisp_Symbol) + (1 << GCTYPEBITS) - 1)
3482 & -(1 << GCTYPEBITS)];
3483#endif
3484};
3485
2e471eb5
GM
3486/* Each symbol_block is just under 1020 bytes long, since malloc
3487 really allocates in units of powers of two and uses 4 bytes for its
3017f87f 3488 own overhead. */
7146af97
JB
3489
3490#define SYMBOL_BLOCK_SIZE \
d55c12ed 3491 ((1020 - sizeof (struct symbol_block *)) / sizeof (union aligned_Lisp_Symbol))
7146af97
JB
3492
3493struct symbol_block
2e471eb5 3494{
6b61353c 3495 /* Place `symbols' first, to preserve alignment. */
d55c12ed 3496 union aligned_Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
6b61353c 3497 struct symbol_block *next;
2e471eb5 3498};
7146af97 3499
34400008
GM
3500/* Current symbol block and index of first unused Lisp_Symbol
3501 structure in it. */
3502
d3d47262 3503static struct symbol_block *symbol_block;
fff62aa9 3504static int symbol_block_index = SYMBOL_BLOCK_SIZE;
7146af97 3505
34400008
GM
3506/* List of free symbols. */
3507
d3d47262 3508static struct Lisp_Symbol *symbol_free_list;
7146af97 3509
a7ca3326 3510DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
a6266d23 3511 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
7ee72033 3512Its value and function definition are void, and its property list is nil. */)
5842a27b 3513 (Lisp_Object name)
7146af97
JB
3514{
3515 register Lisp_Object val;
3516 register struct Lisp_Symbol *p;
3517
b7826503 3518 CHECK_STRING (name);
7146af97 3519
537407f0 3520 /* eassert (!handling_signal); */
cfb2f32e 3521
dafc79fa 3522 MALLOC_BLOCK_INPUT;
e2984df0 3523
7146af97
JB
3524 if (symbol_free_list)
3525 {
45d12a89 3526 XSETSYMBOL (val, symbol_free_list);
28a099a4 3527 symbol_free_list = symbol_free_list->next;
7146af97
JB
3528 }
3529 else
3530 {
3531 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
3532 {
38182d90
PE
3533 struct symbol_block *new
3534 = lisp_malloc (sizeof *new, MEM_TYPE_SYMBOL);
7146af97
JB
3535 new->next = symbol_block;
3536 symbol_block = new;
3537 symbol_block_index = 0;
3900d5de 3538 total_free_symbols += SYMBOL_BLOCK_SIZE;
7146af97 3539 }
d55c12ed 3540 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index].s);
6b61353c 3541 symbol_block_index++;
7146af97 3542 }
177c0ea7 3543
dafc79fa 3544 MALLOC_UNBLOCK_INPUT;
e2984df0 3545
7146af97 3546 p = XSYMBOL (val);
8fe5665d 3547 p->xname = name;
7146af97 3548 p->plist = Qnil;
ce5b453a
SM
3549 p->redirect = SYMBOL_PLAINVAL;
3550 SET_SYMBOL_VAL (p, Qunbound);
2e471eb5 3551 p->function = Qunbound;
9e713715 3552 p->next = NULL;
2336fe58 3553 p->gcmarkbit = 0;
9e713715
GM
3554 p->interned = SYMBOL_UNINTERNED;
3555 p->constant = 0;
b9598260 3556 p->declared_special = 0;
2e471eb5
GM
3557 consing_since_gc += sizeof (struct Lisp_Symbol);
3558 symbols_consed++;
3900d5de 3559 total_free_symbols--;
7146af97
JB
3560 return val;
3561}
3562
3f25e183 3563
2e471eb5
GM
3564\f
3565/***********************************************************************
34400008 3566 Marker (Misc) Allocation
2e471eb5 3567 ***********************************************************************/
3f25e183 3568
d55c12ed
AS
3569/* Like union Lisp_Misc, but padded so that its size is a multiple of
3570 the required alignment when LSB tags are used. */
3571
3572union aligned_Lisp_Misc
3573{
3574 union Lisp_Misc m;
bfe3e0a2 3575#if USE_LSB_TAG
d55c12ed
AS
3576 unsigned char c[(sizeof (union Lisp_Misc) + (1 << GCTYPEBITS) - 1)
3577 & -(1 << GCTYPEBITS)];
3578#endif
3579};
3580
2e471eb5
GM
3581/* Allocation of markers and other objects that share that structure.
3582 Works like allocation of conses. */
c0696668 3583
2e471eb5 3584#define MARKER_BLOCK_SIZE \
d55c12ed 3585 ((1020 - sizeof (struct marker_block *)) / sizeof (union aligned_Lisp_Misc))
2e471eb5
GM
3586
3587struct marker_block
c0696668 3588{
6b61353c 3589 /* Place `markers' first, to preserve alignment. */
d55c12ed 3590 union aligned_Lisp_Misc markers[MARKER_BLOCK_SIZE];
6b61353c 3591 struct marker_block *next;
2e471eb5 3592};
c0696668 3593
d3d47262 3594static struct marker_block *marker_block;
fff62aa9 3595static int marker_block_index = MARKER_BLOCK_SIZE;
c0696668 3596
d3d47262 3597static union Lisp_Misc *marker_free_list;
c0696668 3598
d7a7fda3 3599/* Return a newly allocated Lisp_Misc object of specified TYPE. */
2e471eb5 3600
d7a7fda3
DA
3601static Lisp_Object
3602allocate_misc (enum Lisp_Misc_Type type)
7146af97 3603{
2e471eb5 3604 Lisp_Object val;
7146af97 3605
e2984df0
CY
3606 /* eassert (!handling_signal); */
3607
dafc79fa 3608 MALLOC_BLOCK_INPUT;
cfb2f32e 3609
2e471eb5 3610 if (marker_free_list)
7146af97 3611 {
2e471eb5
GM
3612 XSETMISC (val, marker_free_list);
3613 marker_free_list = marker_free_list->u_free.chain;
7146af97
JB
3614 }
3615 else
7146af97 3616 {
2e471eb5
GM
3617 if (marker_block_index == MARKER_BLOCK_SIZE)
3618 {
38182d90 3619 struct marker_block *new = lisp_malloc (sizeof *new, MEM_TYPE_MISC);
2e471eb5
GM
3620 new->next = marker_block;
3621 marker_block = new;
3622 marker_block_index = 0;
7b7990cc 3623 total_free_markers += MARKER_BLOCK_SIZE;
2e471eb5 3624 }
d55c12ed 3625 XSETMISC (val, &marker_block->markers[marker_block_index].m);
6b61353c 3626 marker_block_index++;
7146af97 3627 }
177c0ea7 3628
dafc79fa 3629 MALLOC_UNBLOCK_INPUT;
e2984df0 3630
7b7990cc 3631 --total_free_markers;
2e471eb5
GM
3632 consing_since_gc += sizeof (union Lisp_Misc);
3633 misc_objects_consed++;
d7a7fda3 3634 XMISCTYPE (val) = type;
67ee9f6e 3635 XMISCANY (val)->gcmarkbit = 0;
2e471eb5
GM
3636 return val;
3637}
3638
7b7990cc
KS
3639/* Free a Lisp_Misc object */
3640
244ed907 3641static void
971de7fb 3642free_misc (Lisp_Object misc)
7b7990cc 3643{
d314756e 3644 XMISCTYPE (misc) = Lisp_Misc_Free;
7b7990cc
KS
3645 XMISC (misc)->u_free.chain = marker_free_list;
3646 marker_free_list = XMISC (misc);
0dd6d66d 3647 consing_since_gc -= sizeof (union Lisp_Misc);
7b7990cc
KS
3648 total_free_markers++;
3649}
3650
42172a6b
RS
3651/* Return a Lisp_Misc_Save_Value object containing POINTER and
3652 INTEGER. This is used to package C values to call record_unwind_protect.
3653 The unwind function can get the C values back using XSAVE_VALUE. */
3654
3655Lisp_Object
9c4c5f81 3656make_save_value (void *pointer, ptrdiff_t integer)
42172a6b
RS
3657{
3658 register Lisp_Object val;
3659 register struct Lisp_Save_Value *p;
3660
d7a7fda3 3661 val = allocate_misc (Lisp_Misc_Save_Value);
42172a6b
RS
3662 p = XSAVE_VALUE (val);
3663 p->pointer = pointer;
3664 p->integer = integer;
b766f870 3665 p->dogc = 0;
42172a6b
RS
3666 return val;
3667}
3668
d7a7fda3
DA
3669/* Return a Lisp_Misc_Overlay object with specified START, END and PLIST. */
3670
3671Lisp_Object
3672build_overlay (Lisp_Object start, Lisp_Object end, Lisp_Object plist)
3673{
3674 register Lisp_Object overlay;
3675
3676 overlay = allocate_misc (Lisp_Misc_Overlay);
3677 OVERLAY_START (overlay) = start;
3678 OVERLAY_END (overlay) = end;
3679 OVERLAY_PLIST (overlay) = plist;
3680 XOVERLAY (overlay)->next = NULL;
3681 return overlay;
3682}
3683
a7ca3326 3684DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
a6266d23 3685 doc: /* Return a newly allocated marker which does not point at any place. */)
5842a27b 3686 (void)
2e471eb5 3687{
6195f384 3688 register Lisp_Object marker = allocate_misc (Lisp_Misc_Marker);
7146af97 3689
6195f384
DA
3690 init_marker (XMARKER (marker), NULL, 0, 0, 0);
3691 return marker;
7146af97 3692}
2e471eb5 3693
657924ff
DA
3694/* Return a newly allocated marker which points into BUF
3695 at character position CHARPOS and byte position BYTEPOS. */
3696
3697Lisp_Object
3698build_marker (struct buffer *buf, ptrdiff_t charpos, ptrdiff_t bytepos)
3699{
6195f384
DA
3700 register Lisp_Object marker = allocate_misc (Lisp_Misc_Marker);
3701
3702 /* Use Fmake_marker to create marker points to nowhere. */
3703 eassert (buf != NULL);
657924ff
DA
3704
3705 /* No dead buffers here. */
3706 eassert (!NILP (BVAR (buf, name)));
3707
6195f384
DA
3708 /* In a single-byte buffer, two positions must be equal.
3709 Otherwise, every character is at least one byte. */
3710 if (BUF_Z (buf) == BUF_Z_BYTE (buf))
3711 eassert (charpos == bytepos);
3712 else
3713 eassert (charpos <= bytepos);
3714
3715 init_marker (XMARKER (marker), buf, charpos, bytepos, 0);
3716 return marker;
657924ff
DA
3717}
3718
2e471eb5
GM
3719/* Put MARKER back on the free list after using it temporarily. */
3720
3721void
971de7fb 3722free_marker (Lisp_Object marker)
2e471eb5 3723{
ef89c2ce 3724 unchain_marker (XMARKER (marker));
7b7990cc 3725 free_misc (marker);
2e471eb5
GM
3726}
3727
c0696668 3728\f
7146af97 3729/* Return a newly created vector or string with specified arguments as
736471d1
RS
3730 elements. If all the arguments are characters that can fit
3731 in a string of events, make a string; otherwise, make a vector.
3732
3733 Any number of arguments, even zero arguments, are allowed. */
7146af97
JB
3734
3735Lisp_Object
971de7fb 3736make_event_array (register int nargs, Lisp_Object *args)
7146af97
JB
3737{
3738 int i;
3739
3740 for (i = 0; i < nargs; i++)
736471d1 3741 /* The things that fit in a string
c9ca4659
RS
3742 are characters that are in 0...127,
3743 after discarding the meta bit and all the bits above it. */
e687453f 3744 if (!INTEGERP (args[i])
c11285dc 3745 || (XINT (args[i]) & ~(-CHAR_META)) >= 0200)
7146af97
JB
3746 return Fvector (nargs, args);
3747
3748 /* Since the loop exited, we know that all the things in it are
3749 characters, so we can make a string. */
3750 {
c13ccad2 3751 Lisp_Object result;
177c0ea7 3752
50aee051 3753 result = Fmake_string (make_number (nargs), make_number (0));
7146af97 3754 for (i = 0; i < nargs; i++)
736471d1 3755 {
46e7e6b0 3756 SSET (result, i, XINT (args[i]));
736471d1
RS
3757 /* Move the meta bit to the right place for a string char. */
3758 if (XINT (args[i]) & CHAR_META)
46e7e6b0 3759 SSET (result, i, SREF (result, i) | 0x80);
736471d1 3760 }
177c0ea7 3761
7146af97
JB
3762 return result;
3763 }
3764}
2e471eb5
GM
3765
3766
7146af97 3767\f
24d8a105
RS
3768/************************************************************************
3769 Memory Full Handling
3770 ************************************************************************/
3771
3772
531b0165
PE
3773/* Called if malloc (NBYTES) returns zero. If NBYTES == SIZE_MAX,
3774 there may have been size_t overflow so that malloc was never
3775 called, or perhaps malloc was invoked successfully but the
3776 resulting pointer had problems fitting into a tagged EMACS_INT. In
3777 either case this counts as memory being full even though malloc did
3778 not fail. */
24d8a105
RS
3779
3780void
531b0165 3781memory_full (size_t nbytes)
24d8a105 3782{
531b0165
PE
3783 /* Do not go into hysterics merely because a large request failed. */
3784 int enough_free_memory = 0;
2b6148e4 3785 if (SPARE_MEMORY < nbytes)
531b0165 3786 {
66606eea
PE
3787 void *p;
3788
3789 MALLOC_BLOCK_INPUT;
3790 p = malloc (SPARE_MEMORY);
531b0165
PE
3791 if (p)
3792 {
4d09bcf6 3793 free (p);
531b0165
PE
3794 enough_free_memory = 1;
3795 }
66606eea 3796 MALLOC_UNBLOCK_INPUT;
531b0165 3797 }
24d8a105 3798
531b0165
PE
3799 if (! enough_free_memory)
3800 {
3801 int i;
24d8a105 3802
531b0165
PE
3803 Vmemory_full = Qt;
3804
3805 memory_full_cons_threshold = sizeof (struct cons_block);
3806
3807 /* The first time we get here, free the spare memory. */
3808 for (i = 0; i < sizeof (spare_memory) / sizeof (char *); i++)
3809 if (spare_memory[i])
3810 {
3811 if (i == 0)
3812 free (spare_memory[i]);
3813 else if (i >= 1 && i <= 4)
3814 lisp_align_free (spare_memory[i]);
3815 else
3816 lisp_free (spare_memory[i]);
3817 spare_memory[i] = 0;
3818 }
3819
3820 /* Record the space now used. When it decreases substantially,
3821 we can refill the memory reserve. */
4e75f29d 3822#if !defined SYSTEM_MALLOC && !defined SYNC_INPUT
531b0165 3823 bytes_used_when_full = BYTES_USED;
24d8a105 3824#endif
531b0165 3825 }
24d8a105
RS
3826
3827 /* This used to call error, but if we've run out of memory, we could
3828 get infinite recursion trying to build the string. */
9b306d37 3829 xsignal (Qnil, Vmemory_signal_data);
24d8a105
RS
3830}
3831
3832/* If we released our reserve (due to running out of memory),
3833 and we have a fair amount free once again,
3834 try to set aside another reserve in case we run out once more.
3835
3836 This is called when a relocatable block is freed in ralloc.c,
3837 and also directly from this file, in case we're not using ralloc.c. */
3838
3839void
971de7fb 3840refill_memory_reserve (void)
24d8a105
RS
3841{
3842#ifndef SYSTEM_MALLOC
3843 if (spare_memory[0] == 0)
38182d90 3844 spare_memory[0] = malloc (SPARE_MEMORY);
24d8a105 3845 if (spare_memory[1] == 0)
38182d90 3846 spare_memory[1] = lisp_align_malloc (sizeof (struct cons_block),
24d8a105
RS
3847 MEM_TYPE_CONS);
3848 if (spare_memory[2] == 0)
38182d90
PE
3849 spare_memory[2] = lisp_align_malloc (sizeof (struct cons_block),
3850 MEM_TYPE_CONS);
24d8a105 3851 if (spare_memory[3] == 0)
38182d90
PE
3852 spare_memory[3] = lisp_align_malloc (sizeof (struct cons_block),
3853 MEM_TYPE_CONS);
24d8a105 3854 if (spare_memory[4] == 0)
38182d90
PE
3855 spare_memory[4] = lisp_align_malloc (sizeof (struct cons_block),
3856 MEM_TYPE_CONS);
24d8a105 3857 if (spare_memory[5] == 0)
38182d90
PE
3858 spare_memory[5] = lisp_malloc (sizeof (struct string_block),
3859 MEM_TYPE_STRING);
24d8a105 3860 if (spare_memory[6] == 0)
38182d90
PE
3861 spare_memory[6] = lisp_malloc (sizeof (struct string_block),
3862 MEM_TYPE_STRING);
24d8a105
RS
3863 if (spare_memory[0] && spare_memory[1] && spare_memory[5])
3864 Vmemory_full = Qnil;
3865#endif
3866}
3867\f
34400008
GM
3868/************************************************************************
3869 C Stack Marking
3870 ************************************************************************/
3871
13c844fb
GM
3872#if GC_MARK_STACK || defined GC_MALLOC_CHECK
3873
71cf5fa0
GM
3874/* Conservative C stack marking requires a method to identify possibly
3875 live Lisp objects given a pointer value. We do this by keeping
3876 track of blocks of Lisp data that are allocated in a red-black tree
3877 (see also the comment of mem_node which is the type of nodes in
3878 that tree). Function lisp_malloc adds information for an allocated
3879 block to the red-black tree with calls to mem_insert, and function
3880 lisp_free removes it with mem_delete. Functions live_string_p etc
3881 call mem_find to lookup information about a given pointer in the
3882 tree, and use that to determine if the pointer points to a Lisp
3883 object or not. */
3884
34400008
GM
3885/* Initialize this part of alloc.c. */
3886
3887static void
971de7fb 3888mem_init (void)
34400008
GM
3889{
3890 mem_z.left = mem_z.right = MEM_NIL;
3891 mem_z.parent = NULL;
3892 mem_z.color = MEM_BLACK;
3893 mem_z.start = mem_z.end = NULL;
3894 mem_root = MEM_NIL;
3895}
3896
3897
3898/* Value is a pointer to the mem_node containing START. Value is
3899 MEM_NIL if there is no node in the tree containing START. */
3900
55d4c1b2 3901static inline struct mem_node *
971de7fb 3902mem_find (void *start)
34400008
GM
3903{
3904 struct mem_node *p;
3905
ece93c02
GM
3906 if (start < min_heap_address || start > max_heap_address)
3907 return MEM_NIL;
3908
34400008
GM
3909 /* Make the search always successful to speed up the loop below. */
3910 mem_z.start = start;
3911 mem_z.end = (char *) start + 1;
3912
3913 p = mem_root;
3914 while (start < p->start || start >= p->end)
3915 p = start < p->start ? p->left : p->right;
3916 return p;
3917}
3918
3919
3920/* Insert a new node into the tree for a block of memory with start
3921 address START, end address END, and type TYPE. Value is a
3922 pointer to the node that was inserted. */
3923
3924static struct mem_node *
971de7fb 3925mem_insert (void *start, void *end, enum mem_type type)
34400008
GM
3926{
3927 struct mem_node *c, *parent, *x;
3928
add3c3ea 3929 if (min_heap_address == NULL || start < min_heap_address)
ece93c02 3930 min_heap_address = start;
add3c3ea 3931 if (max_heap_address == NULL || end > max_heap_address)
ece93c02
GM
3932 max_heap_address = end;
3933
34400008
GM
3934 /* See where in the tree a node for START belongs. In this
3935 particular application, it shouldn't happen that a node is already
3936 present. For debugging purposes, let's check that. */
3937 c = mem_root;
3938 parent = NULL;
3939
3940#if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
177c0ea7 3941
34400008
GM
3942 while (c != MEM_NIL)
3943 {
3944 if (start >= c->start && start < c->end)
3945 abort ();
3946 parent = c;
3947 c = start < c->start ? c->left : c->right;
3948 }
177c0ea7 3949
34400008 3950#else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
177c0ea7 3951
34400008
GM
3952 while (c != MEM_NIL)
3953 {
3954 parent = c;
3955 c = start < c->start ? c->left : c->right;
3956 }
177c0ea7 3957
34400008
GM
3958#endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3959
3960 /* Create a new node. */
877935b1 3961#ifdef GC_MALLOC_CHECK
38182d90 3962 x = _malloc_internal (sizeof *x);
877935b1
GM
3963 if (x == NULL)
3964 abort ();
3965#else
23f86fce 3966 x = xmalloc (sizeof *x);
877935b1 3967#endif
34400008
GM
3968 x->start = start;
3969 x->end = end;
3970 x->type = type;
3971 x->parent = parent;
3972 x->left = x->right = MEM_NIL;
3973 x->color = MEM_RED;
3974
3975 /* Insert it as child of PARENT or install it as root. */
3976 if (parent)
3977 {
3978 if (start < parent->start)
3979 parent->left = x;
3980 else
3981 parent->right = x;
3982 }
177c0ea7 3983 else
34400008
GM
3984 mem_root = x;
3985
3986 /* Re-establish red-black tree properties. */
3987 mem_insert_fixup (x);
877935b1 3988
34400008
GM
3989 return x;
3990}
3991
3992
3993/* Re-establish the red-black properties of the tree, and thereby
3994 balance the tree, after node X has been inserted; X is always red. */
3995
3996static void
971de7fb 3997mem_insert_fixup (struct mem_node *x)
34400008
GM
3998{
3999 while (x != mem_root && x->parent->color == MEM_RED)
4000 {
4001 /* X is red and its parent is red. This is a violation of
4002 red-black tree property #3. */
177c0ea7 4003
34400008
GM
4004 if (x->parent == x->parent->parent->left)
4005 {
4006 /* We're on the left side of our grandparent, and Y is our
4007 "uncle". */
4008 struct mem_node *y = x->parent->parent->right;
177c0ea7 4009
34400008
GM
4010 if (y->color == MEM_RED)
4011 {
4012 /* Uncle and parent are red but should be black because
4013 X is red. Change the colors accordingly and proceed
4014 with the grandparent. */
4015 x->parent->color = MEM_BLACK;
4016 y->color = MEM_BLACK;
4017 x->parent->parent->color = MEM_RED;
4018 x = x->parent->parent;
4019 }
4020 else
4021 {
4022 /* Parent and uncle have different colors; parent is
4023 red, uncle is black. */
4024 if (x == x->parent->right)
4025 {
4026 x = x->parent;
4027 mem_rotate_left (x);
4028 }
4029
4030 x->parent->color = MEM_BLACK;
4031 x->parent->parent->color = MEM_RED;
4032 mem_rotate_right (x->parent->parent);
4033 }
4034 }
4035 else
4036 {
4037 /* This is the symmetrical case of above. */
4038 struct mem_node *y = x->parent->parent->left;
177c0ea7 4039
34400008
GM
4040 if (y->color == MEM_RED)
4041 {
4042 x->parent->color = MEM_BLACK;
4043 y->color = MEM_BLACK;
4044 x->parent->parent->color = MEM_RED;
4045 x = x->parent->parent;
4046 }
4047 else
4048 {
4049 if (x == x->parent->left)
4050 {
4051 x = x->parent;
4052 mem_rotate_right (x);
4053 }
177c0ea7 4054
34400008
GM
4055 x->parent->color = MEM_BLACK;
4056 x->parent->parent->color = MEM_RED;
4057 mem_rotate_left (x->parent->parent);
4058 }
4059 }
4060 }
4061
4062 /* The root may have been changed to red due to the algorithm. Set
4063 it to black so that property #5 is satisfied. */
4064 mem_root->color = MEM_BLACK;
4065}
4066
4067
177c0ea7
JB
4068/* (x) (y)
4069 / \ / \
34400008
GM
4070 a (y) ===> (x) c
4071 / \ / \
4072 b c a b */
4073
4074static void
971de7fb 4075mem_rotate_left (struct mem_node *x)
34400008
GM
4076{
4077 struct mem_node *y;
4078
4079 /* Turn y's left sub-tree into x's right sub-tree. */
4080 y = x->right;
4081 x->right = y->left;
4082 if (y->left != MEM_NIL)
4083 y->left->parent = x;
4084
4085 /* Y's parent was x's parent. */
4086 if (y != MEM_NIL)
4087 y->parent = x->parent;
4088
4089 /* Get the parent to point to y instead of x. */
4090 if (x->parent)
4091 {
4092 if (x == x->parent->left)
4093 x->parent->left = y;
4094 else
4095 x->parent->right = y;
4096 }
4097 else
4098 mem_root = y;
4099
4100 /* Put x on y's left. */
4101 y->left = x;
4102 if (x != MEM_NIL)
4103 x->parent = y;
4104}
4105
4106
177c0ea7
JB
4107/* (x) (Y)
4108 / \ / \
4109 (y) c ===> a (x)
4110 / \ / \
34400008
GM
4111 a b b c */
4112
4113static void
971de7fb 4114mem_rotate_right (struct mem_node *x)
34400008
GM
4115{
4116 struct mem_node *y = x->left;
4117
4118 x->left = y->right;
4119 if (y->right != MEM_NIL)
4120 y->right->parent = x;
177c0ea7 4121
34400008
GM
4122 if (y != MEM_NIL)
4123 y->parent = x->parent;
4124 if (x->parent)
4125 {
4126 if (x == x->parent->right)
4127 x->parent->right = y;
4128 else
4129 x->parent->left = y;
4130 }
4131 else
4132 mem_root = y;
177c0ea7 4133
34400008
GM
4134 y->right = x;
4135 if (x != MEM_NIL)
4136 x->parent = y;
4137}
4138
4139
4140/* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
4141
4142static void
971de7fb 4143mem_delete (struct mem_node *z)
34400008
GM
4144{
4145 struct mem_node *x, *y;
4146
4147 if (!z || z == MEM_NIL)
4148 return;
4149
4150 if (z->left == MEM_NIL || z->right == MEM_NIL)
4151 y = z;
4152 else
4153 {
4154 y = z->right;
4155 while (y->left != MEM_NIL)
4156 y = y->left;
4157 }
4158
4159 if (y->left != MEM_NIL)
4160 x = y->left;
4161 else
4162 x = y->right;
4163
4164 x->parent = y->parent;
4165 if (y->parent)
4166 {
4167 if (y == y->parent->left)
4168 y->parent->left = x;
4169 else
4170 y->parent->right = x;
4171 }
4172 else
4173 mem_root = x;
4174
4175 if (y != z)
4176 {
4177 z->start = y->start;
4178 z->end = y->end;
4179 z->type = y->type;
4180 }
177c0ea7 4181
34400008
GM
4182 if (y->color == MEM_BLACK)
4183 mem_delete_fixup (x);
877935b1
GM
4184
4185#ifdef GC_MALLOC_CHECK
4186 _free_internal (y);
4187#else
34400008 4188 xfree (y);
877935b1 4189#endif
34400008
GM
4190}
4191
4192
4193/* Re-establish the red-black properties of the tree, after a
4194 deletion. */
4195
4196static void
971de7fb 4197mem_delete_fixup (struct mem_node *x)
34400008
GM
4198{
4199 while (x != mem_root && x->color == MEM_BLACK)
4200 {
4201 if (x == x->parent->left)
4202 {
4203 struct mem_node *w = x->parent->right;
177c0ea7 4204
34400008
GM
4205 if (w->color == MEM_RED)
4206 {
4207 w->color = MEM_BLACK;
4208 x->parent->color = MEM_RED;
4209 mem_rotate_left (x->parent);
4210 w = x->parent->right;
4211 }
177c0ea7 4212
34400008
GM
4213 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
4214 {
4215 w->color = MEM_RED;
4216 x = x->parent;
4217 }
4218 else
4219 {
4220 if (w->right->color == MEM_BLACK)
4221 {
4222 w->left->color = MEM_BLACK;
4223 w->color = MEM_RED;
4224 mem_rotate_right (w);
4225 w = x->parent->right;
4226 }
4227 w->color = x->parent->color;
4228 x->parent->color = MEM_BLACK;
4229 w->right->color = MEM_BLACK;
4230 mem_rotate_left (x->parent);
4231 x = mem_root;
4232 }
4233 }
4234 else
4235 {
4236 struct mem_node *w = x->parent->left;
177c0ea7 4237
34400008
GM
4238 if (w->color == MEM_RED)
4239 {
4240 w->color = MEM_BLACK;
4241 x->parent->color = MEM_RED;
4242 mem_rotate_right (x->parent);
4243 w = x->parent->left;
4244 }
177c0ea7 4245
34400008
GM
4246 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
4247 {
4248 w->color = MEM_RED;
4249 x = x->parent;
4250 }
4251 else
4252 {
4253 if (w->left->color == MEM_BLACK)
4254 {
4255 w->right->color = MEM_BLACK;
4256 w->color = MEM_RED;
4257 mem_rotate_left (w);
4258 w = x->parent->left;
4259 }
177c0ea7 4260
34400008
GM
4261 w->color = x->parent->color;
4262 x->parent->color = MEM_BLACK;
4263 w->left->color = MEM_BLACK;
4264 mem_rotate_right (x->parent);
4265 x = mem_root;
4266 }
4267 }
4268 }
177c0ea7 4269
34400008
GM
4270 x->color = MEM_BLACK;
4271}
4272
4273
4274/* Value is non-zero if P is a pointer to a live Lisp string on
4275 the heap. M is a pointer to the mem_block for P. */
4276
55d4c1b2 4277static inline int
971de7fb 4278live_string_p (struct mem_node *m, void *p)
34400008
GM
4279{
4280 if (m->type == MEM_TYPE_STRING)
4281 {
4282 struct string_block *b = (struct string_block *) m->start;
14162469 4283 ptrdiff_t offset = (char *) p - (char *) &b->strings[0];
34400008
GM
4284
4285 /* P must point to the start of a Lisp_String structure, and it
4286 must not be on the free-list. */
176bc847
GM
4287 return (offset >= 0
4288 && offset % sizeof b->strings[0] == 0
6b61353c 4289 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
34400008
GM
4290 && ((struct Lisp_String *) p)->data != NULL);
4291 }
4292 else
4293 return 0;
4294}
4295
4296
4297/* Value is non-zero if P is a pointer to a live Lisp cons on
4298 the heap. M is a pointer to the mem_block for P. */
4299
55d4c1b2 4300static inline int
971de7fb 4301live_cons_p (struct mem_node *m, void *p)
34400008
GM
4302{
4303 if (m->type == MEM_TYPE_CONS)
4304 {
4305 struct cons_block *b = (struct cons_block *) m->start;
14162469 4306 ptrdiff_t offset = (char *) p - (char *) &b->conses[0];
34400008
GM
4307
4308 /* P must point to the start of a Lisp_Cons, not be
4309 one of the unused cells in the current cons block,
4310 and not be on the free-list. */
176bc847
GM
4311 return (offset >= 0
4312 && offset % sizeof b->conses[0] == 0
6b61353c 4313 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
34400008
GM
4314 && (b != cons_block
4315 || offset / sizeof b->conses[0] < cons_block_index)
4316 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
4317 }
4318 else
4319 return 0;
4320}
4321
4322
4323/* Value is non-zero if P is a pointer to a live Lisp symbol on
4324 the heap. M is a pointer to the mem_block for P. */
4325
55d4c1b2 4326static inline int
971de7fb 4327live_symbol_p (struct mem_node *m, void *p)
34400008
GM
4328{
4329 if (m->type == MEM_TYPE_SYMBOL)
4330 {
4331 struct symbol_block *b = (struct symbol_block *) m->start;
14162469 4332 ptrdiff_t offset = (char *) p - (char *) &b->symbols[0];
177c0ea7 4333
34400008
GM
4334 /* P must point to the start of a Lisp_Symbol, not be
4335 one of the unused cells in the current symbol block,
4336 and not be on the free-list. */
176bc847
GM
4337 return (offset >= 0
4338 && offset % sizeof b->symbols[0] == 0
6b61353c 4339 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
34400008
GM
4340 && (b != symbol_block
4341 || offset / sizeof b->symbols[0] < symbol_block_index)
4342 && !EQ (((struct Lisp_Symbol *) p)->function, Vdead));
4343 }
4344 else
4345 return 0;
4346}
4347
4348
4349/* Value is non-zero if P is a pointer to a live Lisp float on
4350 the heap. M is a pointer to the mem_block for P. */
4351
55d4c1b2 4352static inline int
971de7fb 4353live_float_p (struct mem_node *m, void *p)
34400008
GM
4354{
4355 if (m->type == MEM_TYPE_FLOAT)
4356 {
4357 struct float_block *b = (struct float_block *) m->start;
14162469 4358 ptrdiff_t offset = (char *) p - (char *) &b->floats[0];
177c0ea7 4359
ab6780cd
SM
4360 /* P must point to the start of a Lisp_Float and not be
4361 one of the unused cells in the current float block. */
176bc847
GM
4362 return (offset >= 0
4363 && offset % sizeof b->floats[0] == 0
6b61353c 4364 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
34400008 4365 && (b != float_block
ab6780cd 4366 || offset / sizeof b->floats[0] < float_block_index));
34400008
GM
4367 }
4368 else
4369 return 0;
4370}
4371
4372
4373/* Value is non-zero if P is a pointer to a live Lisp Misc on
4374 the heap. M is a pointer to the mem_block for P. */
4375
55d4c1b2 4376static inline int
971de7fb 4377live_misc_p (struct mem_node *m, void *p)
34400008
GM
4378{
4379 if (m->type == MEM_TYPE_MISC)
4380 {
4381 struct marker_block *b = (struct marker_block *) m->start;
14162469 4382 ptrdiff_t offset = (char *) p - (char *) &b->markers[0];
177c0ea7 4383
34400008
GM
4384 /* P must point to the start of a Lisp_Misc, not be
4385 one of the unused cells in the current misc block,
4386 and not be on the free-list. */
176bc847
GM
4387 return (offset >= 0
4388 && offset % sizeof b->markers[0] == 0
6b61353c 4389 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
34400008
GM
4390 && (b != marker_block
4391 || offset / sizeof b->markers[0] < marker_block_index)
d314756e 4392 && ((union Lisp_Misc *) p)->u_any.type != Lisp_Misc_Free);
34400008
GM
4393 }
4394 else
4395 return 0;
4396}
4397
4398
4399/* Value is non-zero if P is a pointer to a live vector-like object.
4400 M is a pointer to the mem_block for P. */
4401
55d4c1b2 4402static inline int
971de7fb 4403live_vector_p (struct mem_node *m, void *p)
34400008 4404{
f3372c87
DA
4405 if (m->type == MEM_TYPE_VECTOR_BLOCK)
4406 {
4407 /* This memory node corresponds to a vector block. */
4408 struct vector_block *block = (struct vector_block *) m->start;
4409 struct Lisp_Vector *vector = (struct Lisp_Vector *) block->data;
4410
4411 /* P is in the block's allocation range. Scan the block
4412 up to P and see whether P points to the start of some
4413 vector which is not on a free list. FIXME: check whether
4414 some allocation patterns (probably a lot of short vectors)
4415 may cause a substantial overhead of this loop. */
4416 while (VECTOR_IN_BLOCK (vector, block)
4417 && vector <= (struct Lisp_Vector *) p)
4418 {
ee28be33 4419 if (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_FREE))
f3372c87 4420 vector = ADVANCE (vector, (vector->header.size
ee28be33 4421 & PSEUDOVECTOR_SIZE_MASK));
f3372c87
DA
4422 else if (vector == p)
4423 return 1;
4424 else
4425 vector = ADVANCE (vector, vector->header.next.nbytes);
4426 }
4427 }
4428 else if (m->type == MEM_TYPE_VECTORLIKE && p == m->start)
4429 /* This memory node corresponds to a large vector. */
4430 return 1;
4431 return 0;
34400008
GM
4432}
4433
4434
2336fe58 4435/* Value is non-zero if P is a pointer to a live buffer. M is a
34400008
GM
4436 pointer to the mem_block for P. */
4437
55d4c1b2 4438static inline int
971de7fb 4439live_buffer_p (struct mem_node *m, void *p)
34400008
GM
4440{
4441 /* P must point to the start of the block, and the buffer
4442 must not have been killed. */
4443 return (m->type == MEM_TYPE_BUFFER
4444 && p == m->start
5d8ea120 4445 && !NILP (((struct buffer *) p)->BUFFER_INTERNAL_FIELD (name)));
34400008
GM
4446}
4447
13c844fb
GM
4448#endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
4449
4450#if GC_MARK_STACK
4451
34400008
GM
4452#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4453
4454/* Array of objects that are kept alive because the C stack contains
4455 a pattern that looks like a reference to them . */
4456
4457#define MAX_ZOMBIES 10
4458static Lisp_Object zombies[MAX_ZOMBIES];
4459
4460/* Number of zombie objects. */
4461
211a0b2a 4462static EMACS_INT nzombies;
34400008
GM
4463
4464/* Number of garbage collections. */
4465
211a0b2a 4466static EMACS_INT ngcs;
34400008
GM
4467
4468/* Average percentage of zombies per collection. */
4469
4470static double avg_zombies;
4471
4472/* Max. number of live and zombie objects. */
4473
211a0b2a 4474static EMACS_INT max_live, max_zombies;
34400008
GM
4475
4476/* Average number of live objects per GC. */
4477
4478static double avg_live;
4479
a7ca3326 4480DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
7ee72033 4481 doc: /* Show information about live and zombie objects. */)
5842a27b 4482 (void)
34400008 4483{
83fc9c63 4484 Lisp_Object args[8], zombie_list = Qnil;
211a0b2a 4485 EMACS_INT i;
6e4b3fbe 4486 for (i = 0; i < min (MAX_ZOMBIES, nzombies); i++)
83fc9c63
DL
4487 zombie_list = Fcons (zombies[i], zombie_list);
4488 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
34400008
GM
4489 args[1] = make_number (ngcs);
4490 args[2] = make_float (avg_live);
4491 args[3] = make_float (avg_zombies);
4492 args[4] = make_float (avg_zombies / avg_live / 100);
4493 args[5] = make_number (max_live);
4494 args[6] = make_number (max_zombies);
83fc9c63
DL
4495 args[7] = zombie_list;
4496 return Fmessage (8, args);
34400008
GM
4497}
4498
4499#endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4500
4501
182ff242
GM
4502/* Mark OBJ if we can prove it's a Lisp_Object. */
4503
55d4c1b2 4504static inline void
971de7fb 4505mark_maybe_object (Lisp_Object obj)
182ff242 4506{
b609f591
YM
4507 void *po;
4508 struct mem_node *m;
4509
4510 if (INTEGERP (obj))
4511 return;
4512
4513 po = (void *) XPNTR (obj);
4514 m = mem_find (po);
177c0ea7 4515
182ff242
GM
4516 if (m != MEM_NIL)
4517 {
4518 int mark_p = 0;
4519
8e50cc2d 4520 switch (XTYPE (obj))
182ff242
GM
4521 {
4522 case Lisp_String:
4523 mark_p = (live_string_p (m, po)
4524 && !STRING_MARKED_P ((struct Lisp_String *) po));
4525 break;
4526
4527 case Lisp_Cons:
08b7c2cb 4528 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
182ff242
GM
4529 break;
4530
4531 case Lisp_Symbol:
2336fe58 4532 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
182ff242
GM
4533 break;
4534
4535 case Lisp_Float:
ab6780cd 4536 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
182ff242
GM
4537 break;
4538
4539 case Lisp_Vectorlike:
8e50cc2d 4540 /* Note: can't check BUFFERP before we know it's a
182ff242
GM
4541 buffer because checking that dereferences the pointer
4542 PO which might point anywhere. */
4543 if (live_vector_p (m, po))
8e50cc2d 4544 mark_p = !SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
182ff242 4545 else if (live_buffer_p (m, po))
8e50cc2d 4546 mark_p = BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
182ff242
GM
4547 break;
4548
4549 case Lisp_Misc:
67ee9f6e 4550 mark_p = (live_misc_p (m, po) && !XMISCANY (obj)->gcmarkbit);
182ff242 4551 break;
6bbd7a29 4552
2de9f71c 4553 default:
6bbd7a29 4554 break;
182ff242
GM
4555 }
4556
4557 if (mark_p)
4558 {
4559#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4560 if (nzombies < MAX_ZOMBIES)
83fc9c63 4561 zombies[nzombies] = obj;
182ff242
GM
4562 ++nzombies;
4563#endif
49723c04 4564 mark_object (obj);
182ff242
GM
4565 }
4566 }
4567}
ece93c02
GM
4568
4569
4570/* If P points to Lisp data, mark that as live if it isn't already
4571 marked. */
4572
55d4c1b2 4573static inline void
971de7fb 4574mark_maybe_pointer (void *p)
ece93c02
GM
4575{
4576 struct mem_node *m;
4577
bfe3e0a2
PE
4578 /* Quickly rule out some values which can't point to Lisp data.
4579 USE_LSB_TAG needs Lisp data to be aligned on multiples of 1 << GCTYPEBITS.
4580 Otherwise, assume that Lisp data is aligned on even addresses. */
4581 if ((intptr_t) p % (USE_LSB_TAG ? 1 << GCTYPEBITS : 2))
ece93c02 4582 return;
177c0ea7 4583
ece93c02
GM
4584 m = mem_find (p);
4585 if (m != MEM_NIL)
4586 {
4587 Lisp_Object obj = Qnil;
177c0ea7 4588
ece93c02
GM
4589 switch (m->type)
4590 {
4591 case MEM_TYPE_NON_LISP:
2fe50224 4592 /* Nothing to do; not a pointer to Lisp memory. */
ece93c02 4593 break;
177c0ea7 4594
ece93c02 4595 case MEM_TYPE_BUFFER:
5e617bc2 4596 if (live_buffer_p (m, p) && !VECTOR_MARKED_P ((struct buffer *)p))
ece93c02
GM
4597 XSETVECTOR (obj, p);
4598 break;
177c0ea7 4599
ece93c02 4600 case MEM_TYPE_CONS:
08b7c2cb 4601 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
ece93c02
GM
4602 XSETCONS (obj, p);
4603 break;
177c0ea7 4604
ece93c02
GM
4605 case MEM_TYPE_STRING:
4606 if (live_string_p (m, p)
4607 && !STRING_MARKED_P ((struct Lisp_String *) p))
4608 XSETSTRING (obj, p);
4609 break;
4610
4611 case MEM_TYPE_MISC:
2336fe58
SM
4612 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
4613 XSETMISC (obj, p);
ece93c02 4614 break;
177c0ea7 4615
ece93c02 4616 case MEM_TYPE_SYMBOL:
2336fe58 4617 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
ece93c02
GM
4618 XSETSYMBOL (obj, p);
4619 break;
177c0ea7 4620
ece93c02 4621 case MEM_TYPE_FLOAT:
ab6780cd 4622 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
ece93c02
GM
4623 XSETFLOAT (obj, p);
4624 break;
177c0ea7 4625
9c545a55 4626 case MEM_TYPE_VECTORLIKE:
f3372c87 4627 case MEM_TYPE_VECTOR_BLOCK:
ece93c02
GM
4628 if (live_vector_p (m, p))
4629 {
4630 Lisp_Object tem;
4631 XSETVECTOR (tem, p);
8e50cc2d 4632 if (!SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
ece93c02
GM
4633 obj = tem;
4634 }
4635 break;
4636
4637 default:
4638 abort ();
4639 }
4640
8e50cc2d 4641 if (!NILP (obj))
49723c04 4642 mark_object (obj);
ece93c02
GM
4643 }
4644}
4645
4646
e3fb2efb
PE
4647/* Alignment of pointer values. Use offsetof, as it sometimes returns
4648 a smaller alignment than GCC's __alignof__ and mark_memory might
4649 miss objects if __alignof__ were used. */
3164aeac
PE
4650#define GC_POINTER_ALIGNMENT offsetof (struct {char a; void *b;}, b)
4651
e3fb2efb
PE
4652/* Define POINTERS_MIGHT_HIDE_IN_OBJECTS to 1 if marking via C pointers does
4653 not suffice, which is the typical case. A host where a Lisp_Object is
4654 wider than a pointer might allocate a Lisp_Object in non-adjacent halves.
4655 If USE_LSB_TAG, the bottom half is not a valid pointer, but it should
4656 suffice to widen it to to a Lisp_Object and check it that way. */
bfe3e0a2
PE
4657#if USE_LSB_TAG || VAL_MAX < UINTPTR_MAX
4658# if !USE_LSB_TAG && VAL_MAX < UINTPTR_MAX >> GCTYPEBITS
e3fb2efb
PE
4659 /* If tag bits straddle pointer-word boundaries, neither mark_maybe_pointer
4660 nor mark_maybe_object can follow the pointers. This should not occur on
4661 any practical porting target. */
4662# error "MSB type bits straddle pointer-word boundaries"
4663# endif
4664 /* Marking via C pointers does not suffice, because Lisp_Objects contain
4665 pointer words that hold pointers ORed with type bits. */
4666# define POINTERS_MIGHT_HIDE_IN_OBJECTS 1
4667#else
4668 /* Marking via C pointers suffices, because Lisp_Objects contain pointer
4669 words that hold unmodified pointers. */
4670# define POINTERS_MIGHT_HIDE_IN_OBJECTS 0
4671#endif
4672
55a314a5
YM
4673/* Mark Lisp objects referenced from the address range START+OFFSET..END
4674 or END+OFFSET..START. */
34400008 4675
177c0ea7 4676static void
3164aeac 4677mark_memory (void *start, void *end)
b41253a3
JW
4678#if defined (__clang__) && defined (__has_feature)
4679#if __has_feature(address_sanitizer)
ed6b3510
JW
4680 /* Do not allow -faddress-sanitizer to check this function, since it
4681 crosses the function stack boundary, and thus would yield many
4682 false positives. */
4683 __attribute__((no_address_safety_analysis))
4684#endif
b41253a3 4685#endif
34400008 4686{
ece93c02 4687 void **pp;
3164aeac 4688 int i;
34400008
GM
4689
4690#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4691 nzombies = 0;
4692#endif
4693
4694 /* Make START the pointer to the start of the memory region,
4695 if it isn't already. */
4696 if (end < start)
4697 {
4698 void *tem = start;
4699 start = end;
4700 end = tem;
4701 }
ece93c02 4702
ece93c02
GM
4703 /* Mark Lisp data pointed to. This is necessary because, in some
4704 situations, the C compiler optimizes Lisp objects away, so that
4705 only a pointer to them remains. Example:
4706
4707 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
7ee72033 4708 ()
ece93c02
GM
4709 {
4710 Lisp_Object obj = build_string ("test");
4711 struct Lisp_String *s = XSTRING (obj);
4712 Fgarbage_collect ();
4713 fprintf (stderr, "test `%s'\n", s->data);
4714 return Qnil;
4715 }
4716
4717 Here, `obj' isn't really used, and the compiler optimizes it
4718 away. The only reference to the life string is through the
4719 pointer `s'. */
177c0ea7 4720
3164aeac
PE
4721 for (pp = start; (void *) pp < end; pp++)
4722 for (i = 0; i < sizeof *pp; i += GC_POINTER_ALIGNMENT)
27f3c637 4723 {
e3fb2efb
PE
4724 void *p = *(void **) ((char *) pp + i);
4725 mark_maybe_pointer (p);
4726 if (POINTERS_MIGHT_HIDE_IN_OBJECTS)
646b5f55 4727 mark_maybe_object (XIL ((intptr_t) p));
27f3c637 4728 }
182ff242
GM
4729}
4730
30f637f8
DL
4731/* setjmp will work with GCC unless NON_SAVING_SETJMP is defined in
4732 the GCC system configuration. In gcc 3.2, the only systems for
4733 which this is so are i386-sco5 non-ELF, i386-sysv3 (maybe included
4734 by others?) and ns32k-pc532-min. */
182ff242
GM
4735
4736#if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4737
4738static int setjmp_tested_p, longjmps_done;
4739
4740#define SETJMP_WILL_LIKELY_WORK "\
4741\n\
4742Emacs garbage collector has been changed to use conservative stack\n\
4743marking. Emacs has determined that the method it uses to do the\n\
4744marking will likely work on your system, but this isn't sure.\n\
4745\n\
4746If you are a system-programmer, or can get the help of a local wizard\n\
4747who is, please take a look at the function mark_stack in alloc.c, and\n\
4748verify that the methods used are appropriate for your system.\n\
4749\n\
d191623b 4750Please mail the result to <emacs-devel@gnu.org>.\n\
182ff242
GM
4751"
4752
4753#define SETJMP_WILL_NOT_WORK "\
4754\n\
4755Emacs garbage collector has been changed to use conservative stack\n\
4756marking. Emacs has determined that the default method it uses to do the\n\
4757marking will not work on your system. We will need a system-dependent\n\
4758solution for your system.\n\
4759\n\
4760Please take a look at the function mark_stack in alloc.c, and\n\
4761try to find a way to make it work on your system.\n\
30f637f8
DL
4762\n\
4763Note that you may get false negatives, depending on the compiler.\n\
4764In particular, you need to use -O with GCC for this test.\n\
4765\n\
d191623b 4766Please mail the result to <emacs-devel@gnu.org>.\n\
182ff242
GM
4767"
4768
4769
4770/* Perform a quick check if it looks like setjmp saves registers in a
4771 jmp_buf. Print a message to stderr saying so. When this test
4772 succeeds, this is _not_ a proof that setjmp is sufficient for
4773 conservative stack marking. Only the sources or a disassembly
4774 can prove that. */
4775
4776static void
2018939f 4777test_setjmp (void)
182ff242
GM
4778{
4779 char buf[10];
4780 register int x;
4781 jmp_buf jbuf;
4782 int result = 0;
4783
4784 /* Arrange for X to be put in a register. */
4785 sprintf (buf, "1");
4786 x = strlen (buf);
4787 x = 2 * x - 1;
4788
4789 setjmp (jbuf);
4790 if (longjmps_done == 1)
34400008 4791 {
182ff242 4792 /* Came here after the longjmp at the end of the function.
34400008 4793
182ff242
GM
4794 If x == 1, the longjmp has restored the register to its
4795 value before the setjmp, and we can hope that setjmp
4796 saves all such registers in the jmp_buf, although that
4797 isn't sure.
34400008 4798
182ff242
GM
4799 For other values of X, either something really strange is
4800 taking place, or the setjmp just didn't save the register. */
4801
4802 if (x == 1)
4803 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
4804 else
4805 {
4806 fprintf (stderr, SETJMP_WILL_NOT_WORK);
4807 exit (1);
34400008
GM
4808 }
4809 }
182ff242
GM
4810
4811 ++longjmps_done;
4812 x = 2;
4813 if (longjmps_done == 1)
4814 longjmp (jbuf, 1);
34400008
GM
4815}
4816
182ff242
GM
4817#endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
4818
34400008
GM
4819
4820#if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4821
4822/* Abort if anything GCPRO'd doesn't survive the GC. */
4823
4824static void
2018939f 4825check_gcpros (void)
34400008
GM
4826{
4827 struct gcpro *p;
f66c7cf8 4828 ptrdiff_t i;
34400008
GM
4829
4830 for (p = gcprolist; p; p = p->next)
4831 for (i = 0; i < p->nvars; ++i)
4832 if (!survives_gc_p (p->var[i]))
92cc28b2
SM
4833 /* FIXME: It's not necessarily a bug. It might just be that the
4834 GCPRO is unnecessary or should release the object sooner. */
34400008
GM
4835 abort ();
4836}
4837
4838#elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4839
4840static void
2018939f 4841dump_zombies (void)
34400008
GM
4842{
4843 int i;
4844
6e4b3fbe 4845 fprintf (stderr, "\nZombies kept alive = %"pI"d:\n", nzombies);
34400008
GM
4846 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
4847 {
4848 fprintf (stderr, " %d = ", i);
4849 debug_print (zombies[i]);
4850 }
4851}
4852
4853#endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4854
4855
182ff242
GM
4856/* Mark live Lisp objects on the C stack.
4857
4858 There are several system-dependent problems to consider when
4859 porting this to new architectures:
4860
4861 Processor Registers
4862
4863 We have to mark Lisp objects in CPU registers that can hold local
4864 variables or are used to pass parameters.
4865
4866 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4867 something that either saves relevant registers on the stack, or
4868 calls mark_maybe_object passing it each register's contents.
4869
4870 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4871 implementation assumes that calling setjmp saves registers we need
4872 to see in a jmp_buf which itself lies on the stack. This doesn't
4873 have to be true! It must be verified for each system, possibly
4874 by taking a look at the source code of setjmp.
4875
2018939f
AS
4876 If __builtin_unwind_init is available (defined by GCC >= 2.8) we
4877 can use it as a machine independent method to store all registers
4878 to the stack. In this case the macros described in the previous
4879 two paragraphs are not used.
4880
182ff242
GM
4881 Stack Layout
4882
4883 Architectures differ in the way their processor stack is organized.
4884 For example, the stack might look like this
4885
4886 +----------------+
4887 | Lisp_Object | size = 4
4888 +----------------+
4889 | something else | size = 2
4890 +----------------+
4891 | Lisp_Object | size = 4
4892 +----------------+
4893 | ... |
4894
4895 In such a case, not every Lisp_Object will be aligned equally. To
4896 find all Lisp_Object on the stack it won't be sufficient to walk
4897 the stack in steps of 4 bytes. Instead, two passes will be
4898 necessary, one starting at the start of the stack, and a second
4899 pass starting at the start of the stack + 2. Likewise, if the
4900 minimal alignment of Lisp_Objects on the stack is 1, four passes
4901 would be necessary, each one starting with one byte more offset
c9af454e 4902 from the stack start. */
34400008
GM
4903
4904static void
971de7fb 4905mark_stack (void)
34400008 4906{
34400008
GM
4907 void *end;
4908
2018939f
AS
4909#ifdef HAVE___BUILTIN_UNWIND_INIT
4910 /* Force callee-saved registers and register windows onto the stack.
4911 This is the preferred method if available, obviating the need for
4912 machine dependent methods. */
4913 __builtin_unwind_init ();
4914 end = &end;
4915#else /* not HAVE___BUILTIN_UNWIND_INIT */
dff45157
PE
4916#ifndef GC_SAVE_REGISTERS_ON_STACK
4917 /* jmp_buf may not be aligned enough on darwin-ppc64 */
4918 union aligned_jmpbuf {
4919 Lisp_Object o;
4920 jmp_buf j;
4921 } j;
4922 volatile int stack_grows_down_p = (char *) &j > (char *) stack_base;
4923#endif
34400008
GM
4924 /* This trick flushes the register windows so that all the state of
4925 the process is contained in the stack. */
ab6780cd 4926 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
422eec7e
DL
4927 needed on ia64 too. See mach_dep.c, where it also says inline
4928 assembler doesn't work with relevant proprietary compilers. */
4a00783e 4929#ifdef __sparc__
4d18a7a2
DN
4930#if defined (__sparc64__) && defined (__FreeBSD__)
4931 /* FreeBSD does not have a ta 3 handler. */
4c1616be
CY
4932 asm ("flushw");
4933#else
34400008 4934 asm ("ta 3");
4c1616be 4935#endif
34400008 4936#endif
177c0ea7 4937
34400008
GM
4938 /* Save registers that we need to see on the stack. We need to see
4939 registers used to hold register variables and registers used to
4940 pass parameters. */
4941#ifdef GC_SAVE_REGISTERS_ON_STACK
4942 GC_SAVE_REGISTERS_ON_STACK (end);
182ff242 4943#else /* not GC_SAVE_REGISTERS_ON_STACK */
177c0ea7 4944
182ff242
GM
4945#ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
4946 setjmp will definitely work, test it
4947 and print a message with the result
4948 of the test. */
4949 if (!setjmp_tested_p)
4950 {
4951 setjmp_tested_p = 1;
4952 test_setjmp ();
4953 }
4954#endif /* GC_SETJMP_WORKS */
177c0ea7 4955
55a314a5 4956 setjmp (j.j);
34400008 4957 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
182ff242 4958#endif /* not GC_SAVE_REGISTERS_ON_STACK */
2018939f 4959#endif /* not HAVE___BUILTIN_UNWIND_INIT */
34400008
GM
4960
4961 /* This assumes that the stack is a contiguous region in memory. If
182ff242
GM
4962 that's not the case, something has to be done here to iterate
4963 over the stack segments. */
3164aeac
PE
4964 mark_memory (stack_base, end);
4965
4dec23ff
AS
4966 /* Allow for marking a secondary stack, like the register stack on the
4967 ia64. */
4968#ifdef GC_MARK_SECONDARY_STACK
4969 GC_MARK_SECONDARY_STACK ();
4970#endif
34400008
GM
4971
4972#if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4973 check_gcpros ();
4974#endif
4975}
4976
34400008
GM
4977#endif /* GC_MARK_STACK != 0 */
4978
4979
7ffb6955 4980/* Determine whether it is safe to access memory at address P. */
d3d47262 4981static int
971de7fb 4982valid_pointer_p (void *p)
7ffb6955 4983{
f892cf9c
EZ
4984#ifdef WINDOWSNT
4985 return w32_valid_pointer_p (p, 16);
4986#else
41bed37d 4987 int fd[2];
7ffb6955
KS
4988
4989 /* Obviously, we cannot just access it (we would SEGV trying), so we
4990 trick the o/s to tell us whether p is a valid pointer.
4991 Unfortunately, we cannot use NULL_DEVICE here, as emacs_write may
4992 not validate p in that case. */
4993
41bed37d 4994 if (pipe (fd) == 0)
7ffb6955 4995 {
41bed37d
PE
4996 int valid = (emacs_write (fd[1], (char *) p, 16) == 16);
4997 emacs_close (fd[1]);
4998 emacs_close (fd[0]);
7ffb6955
KS
4999 return valid;
5000 }
5001
5002 return -1;
f892cf9c 5003#endif
7ffb6955 5004}
3cd55735
KS
5005
5006/* Return 1 if OBJ is a valid lisp object.
5007 Return 0 if OBJ is NOT a valid lisp object.
5008 Return -1 if we cannot validate OBJ.
7c0ab7d9
RS
5009 This function can be quite slow,
5010 so it should only be used in code for manual debugging. */
3cd55735
KS
5011
5012int
971de7fb 5013valid_lisp_object_p (Lisp_Object obj)
3cd55735 5014{
de7124a7 5015 void *p;
7ffb6955 5016#if GC_MARK_STACK
3cd55735 5017 struct mem_node *m;
de7124a7 5018#endif
3cd55735
KS
5019
5020 if (INTEGERP (obj))
5021 return 1;
5022
5023 p = (void *) XPNTR (obj);
3cd55735
KS
5024 if (PURE_POINTER_P (p))
5025 return 1;
5026
de7124a7 5027#if !GC_MARK_STACK
7ffb6955 5028 return valid_pointer_p (p);
de7124a7
KS
5029#else
5030
3cd55735
KS
5031 m = mem_find (p);
5032
5033 if (m == MEM_NIL)
7ffb6955
KS
5034 {
5035 int valid = valid_pointer_p (p);
5036 if (valid <= 0)
5037 return valid;
5038
5039 if (SUBRP (obj))
5040 return 1;
5041
5042 return 0;
5043 }
3cd55735
KS
5044
5045 switch (m->type)
5046 {
5047 case MEM_TYPE_NON_LISP:
5048 return 0;
5049
5050 case MEM_TYPE_BUFFER:
5051 return live_buffer_p (m, p);
5052
5053 case MEM_TYPE_CONS:
5054 return live_cons_p (m, p);
5055
5056 case MEM_TYPE_STRING:
5057 return live_string_p (m, p);
5058
5059 case MEM_TYPE_MISC:
5060 return live_misc_p (m, p);
5061
5062 case MEM_TYPE_SYMBOL:
5063 return live_symbol_p (m, p);
5064
5065 case MEM_TYPE_FLOAT:
5066 return live_float_p (m, p);
5067
9c545a55 5068 case MEM_TYPE_VECTORLIKE:
f3372c87 5069 case MEM_TYPE_VECTOR_BLOCK:
3cd55735
KS
5070 return live_vector_p (m, p);
5071
5072 default:
5073 break;
5074 }
5075
5076 return 0;
5077#endif
5078}
5079
5080
5081
34400008 5082\f
2e471eb5
GM
5083/***********************************************************************
5084 Pure Storage Management
5085 ***********************************************************************/
5086
1f0b3fd2
GM
5087/* Allocate room for SIZE bytes from pure Lisp storage and return a
5088 pointer to it. TYPE is the Lisp type for which the memory is
e5bc14d4 5089 allocated. TYPE < 0 means it's not used for a Lisp object. */
1f0b3fd2 5090
261cb4bb 5091static void *
971de7fb 5092pure_alloc (size_t size, int type)
1f0b3fd2 5093{
261cb4bb 5094 void *result;
bfe3e0a2 5095#if USE_LSB_TAG
6b61353c
KH
5096 size_t alignment = (1 << GCTYPEBITS);
5097#else
44117420 5098 size_t alignment = sizeof (EMACS_INT);
1f0b3fd2
GM
5099
5100 /* Give Lisp_Floats an extra alignment. */
5101 if (type == Lisp_Float)
5102 {
1f0b3fd2
GM
5103#if defined __GNUC__ && __GNUC__ >= 2
5104 alignment = __alignof (struct Lisp_Float);
5105#else
5106 alignment = sizeof (struct Lisp_Float);
5107#endif
9e713715 5108 }
6b61353c 5109#endif
1f0b3fd2 5110
44117420 5111 again:
e5bc14d4
YM
5112 if (type >= 0)
5113 {
5114 /* Allocate space for a Lisp object from the beginning of the free
5115 space with taking account of alignment. */
5116 result = ALIGN (purebeg + pure_bytes_used_lisp, alignment);
5117 pure_bytes_used_lisp = ((char *)result - (char *)purebeg) + size;
5118 }
5119 else
5120 {
5121 /* Allocate space for a non-Lisp object from the end of the free
5122 space. */
5123 pure_bytes_used_non_lisp += size;
5124 result = purebeg + pure_size - pure_bytes_used_non_lisp;
5125 }
5126 pure_bytes_used = pure_bytes_used_lisp + pure_bytes_used_non_lisp;
44117420
KS
5127
5128 if (pure_bytes_used <= pure_size)
5129 return result;
5130
5131 /* Don't allocate a large amount here,
5132 because it might get mmap'd and then its address
5133 might not be usable. */
23f86fce 5134 purebeg = xmalloc (10000);
44117420
KS
5135 pure_size = 10000;
5136 pure_bytes_used_before_overflow += pure_bytes_used - size;
5137 pure_bytes_used = 0;
e5bc14d4 5138 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
44117420 5139 goto again;
1f0b3fd2
GM
5140}
5141
5142
852f8cdc 5143/* Print a warning if PURESIZE is too small. */
9e713715
GM
5144
5145void
971de7fb 5146check_pure_size (void)
9e713715
GM
5147{
5148 if (pure_bytes_used_before_overflow)
c2982e87
PE
5149 message (("emacs:0:Pure Lisp storage overflow (approx. %"pI"d"
5150 " bytes needed)"),
5151 pure_bytes_used + pure_bytes_used_before_overflow);
9e713715
GM
5152}
5153
5154
79fd0489
YM
5155/* Find the byte sequence {DATA[0], ..., DATA[NBYTES-1], '\0'} from
5156 the non-Lisp data pool of the pure storage, and return its start
5157 address. Return NULL if not found. */
5158
5159static char *
d311d28c 5160find_string_data_in_pure (const char *data, ptrdiff_t nbytes)
79fd0489 5161{
14162469 5162 int i;
d311d28c 5163 ptrdiff_t skip, bm_skip[256], last_char_skip, infinity, start, start_max;
2aff7c53 5164 const unsigned char *p;
79fd0489
YM
5165 char *non_lisp_beg;
5166
d311d28c 5167 if (pure_bytes_used_non_lisp <= nbytes)
79fd0489
YM
5168 return NULL;
5169
5170 /* Set up the Boyer-Moore table. */
5171 skip = nbytes + 1;
5172 for (i = 0; i < 256; i++)
5173 bm_skip[i] = skip;
5174
2aff7c53 5175 p = (const unsigned char *) data;
79fd0489
YM
5176 while (--skip > 0)
5177 bm_skip[*p++] = skip;
5178
5179 last_char_skip = bm_skip['\0'];
5180
5181 non_lisp_beg = purebeg + pure_size - pure_bytes_used_non_lisp;
5182 start_max = pure_bytes_used_non_lisp - (nbytes + 1);
5183
5184 /* See the comments in the function `boyer_moore' (search.c) for the
5185 use of `infinity'. */
5186 infinity = pure_bytes_used_non_lisp + 1;
5187 bm_skip['\0'] = infinity;
5188
2aff7c53 5189 p = (const unsigned char *) non_lisp_beg + nbytes;
79fd0489
YM
5190 start = 0;
5191 do
5192 {
5193 /* Check the last character (== '\0'). */
5194 do
5195 {
5196 start += bm_skip[*(p + start)];
5197 }
5198 while (start <= start_max);
5199
5200 if (start < infinity)
5201 /* Couldn't find the last character. */
5202 return NULL;
5203
5204 /* No less than `infinity' means we could find the last
5205 character at `p[start - infinity]'. */
5206 start -= infinity;
5207
5208 /* Check the remaining characters. */
5209 if (memcmp (data, non_lisp_beg + start, nbytes) == 0)
5210 /* Found. */
5211 return non_lisp_beg + start;
5212
5213 start += last_char_skip;
5214 }
5215 while (start <= start_max);
5216
5217 return NULL;
5218}
5219
5220
2e471eb5
GM
5221/* Return a string allocated in pure space. DATA is a buffer holding
5222 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
5223 non-zero means make the result string multibyte.
1a4f1e2c 5224
2e471eb5
GM
5225 Must get an error if pure storage is full, since if it cannot hold
5226 a large string it may be able to hold conses that point to that
5227 string; then the string is not protected from gc. */
7146af97
JB
5228
5229Lisp_Object
14162469 5230make_pure_string (const char *data,
d311d28c 5231 ptrdiff_t nchars, ptrdiff_t nbytes, int multibyte)
7146af97 5232{
2e471eb5
GM
5233 Lisp_Object string;
5234 struct Lisp_String *s;
c0696668 5235
1f0b3fd2 5236 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
90256841 5237 s->data = (unsigned char *) find_string_data_in_pure (data, nbytes);
79fd0489
YM
5238 if (s->data == NULL)
5239 {
5240 s->data = (unsigned char *) pure_alloc (nbytes + 1, -1);
72af86bd 5241 memcpy (s->data, data, nbytes);
79fd0489
YM
5242 s->data[nbytes] = '\0';
5243 }
2e471eb5
GM
5244 s->size = nchars;
5245 s->size_byte = multibyte ? nbytes : -1;
2e471eb5 5246 s->intervals = NULL_INTERVAL;
2e471eb5
GM
5247 XSETSTRING (string, s);
5248 return string;
7146af97
JB
5249}
5250
2a0213a6
DA
5251/* Return a string allocated in pure space. Do not
5252 allocate the string data, just point to DATA. */
a56eaaef
DN
5253
5254Lisp_Object
2a0213a6 5255make_pure_c_string (const char *data, ptrdiff_t nchars)
a56eaaef
DN
5256{
5257 Lisp_Object string;
5258 struct Lisp_String *s;
a56eaaef
DN
5259
5260 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
5261 s->size = nchars;
5262 s->size_byte = -1;
323637a2 5263 s->data = (unsigned char *) data;
a56eaaef
DN
5264 s->intervals = NULL_INTERVAL;
5265 XSETSTRING (string, s);
5266 return string;
5267}
2e471eb5 5268
34400008
GM
5269/* Return a cons allocated from pure space. Give it pure copies
5270 of CAR as car and CDR as cdr. */
5271
7146af97 5272Lisp_Object
971de7fb 5273pure_cons (Lisp_Object car, Lisp_Object cdr)
7146af97
JB
5274{
5275 register Lisp_Object new;
1f0b3fd2 5276 struct Lisp_Cons *p;
7146af97 5277
1f0b3fd2
GM
5278 p = (struct Lisp_Cons *) pure_alloc (sizeof *p, Lisp_Cons);
5279 XSETCONS (new, p);
f3fbd155
KR
5280 XSETCAR (new, Fpurecopy (car));
5281 XSETCDR (new, Fpurecopy (cdr));
7146af97
JB
5282 return new;
5283}
5284
7146af97 5285
34400008
GM
5286/* Value is a float object with value NUM allocated from pure space. */
5287
d3d47262 5288static Lisp_Object
971de7fb 5289make_pure_float (double num)
7146af97
JB
5290{
5291 register Lisp_Object new;
1f0b3fd2 5292 struct Lisp_Float *p;
7146af97 5293
1f0b3fd2
GM
5294 p = (struct Lisp_Float *) pure_alloc (sizeof *p, Lisp_Float);
5295 XSETFLOAT (new, p);
f601cdf3 5296 XFLOAT_INIT (new, num);
7146af97
JB
5297 return new;
5298}
5299
34400008
GM
5300
5301/* Return a vector with room for LEN Lisp_Objects allocated from
5302 pure space. */
5303
72cb32cf 5304static Lisp_Object
d311d28c 5305make_pure_vector (ptrdiff_t len)
7146af97 5306{
1f0b3fd2
GM
5307 Lisp_Object new;
5308 struct Lisp_Vector *p;
d06714cb 5309 size_t size = header_size + len * word_size;
7146af97 5310
1f0b3fd2
GM
5311 p = (struct Lisp_Vector *) pure_alloc (size, Lisp_Vectorlike);
5312 XSETVECTOR (new, p);
eab3844f 5313 XVECTOR (new)->header.size = len;
7146af97
JB
5314 return new;
5315}
5316
34400008 5317
a7ca3326 5318DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
909e3b33 5319 doc: /* Make a copy of object OBJ in pure storage.
228299fa 5320Recursively copies contents of vectors and cons cells.
7ee72033 5321Does not copy symbols. Copies strings without text properties. */)
5842a27b 5322 (register Lisp_Object obj)
7146af97 5323{
265a9e55 5324 if (NILP (Vpurify_flag))
7146af97
JB
5325 return obj;
5326
1f0b3fd2 5327 if (PURE_POINTER_P (XPNTR (obj)))
7146af97
JB
5328 return obj;
5329
e9515805
SM
5330 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5331 {
5332 Lisp_Object tmp = Fgethash (obj, Vpurify_flag, Qnil);
5333 if (!NILP (tmp))
5334 return tmp;
5335 }
5336
d6dd74bb 5337 if (CONSP (obj))
e9515805 5338 obj = pure_cons (XCAR (obj), XCDR (obj));
d6dd74bb 5339 else if (FLOATP (obj))
e9515805 5340 obj = make_pure_float (XFLOAT_DATA (obj));
d6dd74bb 5341 else if (STRINGP (obj))
42a5b22f 5342 obj = make_pure_string (SSDATA (obj), SCHARS (obj),
e9515805
SM
5343 SBYTES (obj),
5344 STRING_MULTIBYTE (obj));
876c194c 5345 else if (COMPILEDP (obj) || VECTORP (obj))
d6dd74bb
KH
5346 {
5347 register struct Lisp_Vector *vec;
d311d28c
PE
5348 register ptrdiff_t i;
5349 ptrdiff_t size;
d6dd74bb 5350
77b37c05 5351 size = ASIZE (obj);
7d535c68
KH
5352 if (size & PSEUDOVECTOR_FLAG)
5353 size &= PSEUDOVECTOR_SIZE_MASK;
6b61353c 5354 vec = XVECTOR (make_pure_vector (size));
d6dd74bb 5355 for (i = 0; i < size; i++)
28be1ada 5356 vec->contents[i] = Fpurecopy (AREF (obj, i));
876c194c 5357 if (COMPILEDP (obj))
985773c9 5358 {
876c194c
SM
5359 XSETPVECTYPE (vec, PVEC_COMPILED);
5360 XSETCOMPILED (obj, vec);
985773c9 5361 }
d6dd74bb
KH
5362 else
5363 XSETVECTOR (obj, vec);
7146af97 5364 }
d6dd74bb
KH
5365 else if (MARKERP (obj))
5366 error ("Attempt to copy a marker to pure storage");
e9515805
SM
5367 else
5368 /* Not purified, don't hash-cons. */
5369 return obj;
5370
5371 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5372 Fputhash (obj, obj, Vpurify_flag);
6bbd7a29
GM
5373
5374 return obj;
7146af97 5375}
2e471eb5 5376
34400008 5377
7146af97 5378\f
34400008
GM
5379/***********************************************************************
5380 Protection from GC
5381 ***********************************************************************/
5382
2e471eb5
GM
5383/* Put an entry in staticvec, pointing at the variable with address
5384 VARADDRESS. */
7146af97
JB
5385
5386void
971de7fb 5387staticpro (Lisp_Object *varaddress)
7146af97
JB
5388{
5389 staticvec[staticidx++] = varaddress;
5390 if (staticidx >= NSTATICS)
5391 abort ();
5392}
5393
7146af97 5394\f
34400008
GM
5395/***********************************************************************
5396 Protection from GC
5397 ***********************************************************************/
1a4f1e2c 5398
e8197642
RS
5399/* Temporarily prevent garbage collection. */
5400
d311d28c 5401ptrdiff_t
971de7fb 5402inhibit_garbage_collection (void)
e8197642 5403{
d311d28c 5404 ptrdiff_t count = SPECPDL_INDEX ();
54defd0d 5405
6349ae4d 5406 specbind (Qgc_cons_threshold, make_number (MOST_POSITIVE_FIXNUM));
e8197642
RS
5407 return count;
5408}
5409
3ab6e069
DA
5410/* Used to avoid possible overflows when
5411 converting from C to Lisp integers. */
5412
5413static inline Lisp_Object
5414bounded_number (EMACS_INT number)
5415{
5416 return make_number (min (MOST_POSITIVE_FIXNUM, number));
5417}
34400008 5418
a7ca3326 5419DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
7ee72033 5420 doc: /* Reclaim storage for Lisp objects no longer needed.
e1e37596
RS
5421Garbage collection happens automatically if you cons more than
5422`gc-cons-threshold' bytes of Lisp data since previous garbage collection.
5db81e33
SM
5423`garbage-collect' normally returns a list with info on amount of space in use,
5424where each entry has the form (NAME SIZE USED FREE), where:
5425- NAME is a symbol describing the kind of objects this entry represents,
5426- SIZE is the number of bytes used by each one,
5427- USED is the number of those objects that were found live in the heap,
5428- FREE is the number of those objects that are not live but that Emacs
5429 keeps around for future allocations (maybe because it does not know how
5430 to return them to the OS).
e1e37596 5431However, if there was overflow in pure space, `garbage-collect'
999dd333
GM
5432returns nil, because real GC can't be done.
5433See Info node `(elisp)Garbage Collection'. */)
5842a27b 5434 (void)
7146af97 5435{
7146af97 5436 register struct specbinding *bind;
d17337e5 5437 register struct buffer *nextb;
7146af97 5438 char stack_top_variable;
f66c7cf8 5439 ptrdiff_t i;
6efc7df7 5440 int message_p;
f8643a6b 5441 Lisp_Object total[11];
d311d28c 5442 ptrdiff_t count = SPECPDL_INDEX ();
e9a9ae03 5443 EMACS_TIME t1;
2c5bd608 5444
3de0effb
RS
5445 if (abort_on_gc)
5446 abort ();
5447
9e713715
GM
5448 /* Can't GC if pure storage overflowed because we can't determine
5449 if something is a pure object or not. */
5450 if (pure_bytes_used_before_overflow)
5451 return Qnil;
5452
bbc012e0
KS
5453 CHECK_CONS_LIST ();
5454
3c7e66a8
RS
5455 /* Don't keep undo information around forever.
5456 Do this early on, so it is no problem if the user quits. */
52b852c7 5457 FOR_EACH_BUFFER (nextb)
9cd47b72 5458 compact_buffer (nextb);
3c7e66a8 5459
e9a9ae03 5460 t1 = current_emacs_time ();
3c7e66a8 5461
58595309
KH
5462 /* In case user calls debug_print during GC,
5463 don't let that cause a recursive GC. */
5464 consing_since_gc = 0;
5465
6efc7df7
GM
5466 /* Save what's currently displayed in the echo area. */
5467 message_p = push_message ();
c55b0da6 5468 record_unwind_protect (pop_message_unwind, Qnil);
41c28a37 5469
7146af97
JB
5470 /* Save a copy of the contents of the stack, for debugging. */
5471#if MAX_SAVE_STACK > 0
265a9e55 5472 if (NILP (Vpurify_flag))
7146af97 5473 {
dd3f25f7 5474 char *stack;
903fe15d 5475 ptrdiff_t stack_size;
dd3f25f7 5476 if (&stack_top_variable < stack_bottom)
7146af97 5477 {
dd3f25f7
PE
5478 stack = &stack_top_variable;
5479 stack_size = stack_bottom - &stack_top_variable;
5480 }
5481 else
5482 {
5483 stack = stack_bottom;
5484 stack_size = &stack_top_variable - stack_bottom;
5485 }
5486 if (stack_size <= MAX_SAVE_STACK)
7146af97 5487 {
dd3f25f7 5488 if (stack_copy_size < stack_size)
7146af97 5489 {
38182d90 5490 stack_copy = xrealloc (stack_copy, stack_size);
dd3f25f7 5491 stack_copy_size = stack_size;
7146af97 5492 }
dd3f25f7 5493 memcpy (stack_copy, stack, stack_size);
7146af97
JB
5494 }
5495 }
5496#endif /* MAX_SAVE_STACK > 0 */
5497
299585ee 5498 if (garbage_collection_messages)
691c4285 5499 message1_nolog ("Garbage collecting...");
7146af97 5500
6e0fca1d
RS
5501 BLOCK_INPUT;
5502
eec7b73d
RS
5503 shrink_regexp_cache ();
5504
7146af97
JB
5505 gc_in_progress = 1;
5506
005ca5c7 5507 /* Mark all the special slots that serve as the roots of accessibility. */
7146af97
JB
5508
5509 for (i = 0; i < staticidx; i++)
49723c04 5510 mark_object (*staticvec[i]);
34400008 5511
126f9c02
SM
5512 for (bind = specpdl; bind != specpdl_ptr; bind++)
5513 {
5514 mark_object (bind->symbol);
5515 mark_object (bind->old_value);
5516 }
6ed8eeff 5517 mark_terminals ();
126f9c02 5518 mark_kboards ();
98a92e2d 5519 mark_ttys ();
126f9c02
SM
5520
5521#ifdef USE_GTK
5522 {
dd4c5104 5523 extern void xg_mark_data (void);
126f9c02
SM
5524 xg_mark_data ();
5525 }
5526#endif
5527
34400008
GM
5528#if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
5529 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
5530 mark_stack ();
5531#else
acf5f7d3
SM
5532 {
5533 register struct gcpro *tail;
5534 for (tail = gcprolist; tail; tail = tail->next)
5535 for (i = 0; i < tail->nvars; i++)
005ca5c7 5536 mark_object (tail->var[i]);
acf5f7d3 5537 }
3e21b6a7 5538 mark_byte_stack ();
b286858c
SM
5539 {
5540 struct catchtag *catch;
5541 struct handler *handler;
177c0ea7 5542
7146af97
JB
5543 for (catch = catchlist; catch; catch = catch->next)
5544 {
49723c04
SM
5545 mark_object (catch->tag);
5546 mark_object (catch->val);
177c0ea7 5547 }
7146af97
JB
5548 for (handler = handlerlist; handler; handler = handler->next)
5549 {
49723c04
SM
5550 mark_object (handler->handler);
5551 mark_object (handler->var);
177c0ea7 5552 }
b286858c 5553 }
b40ea20a 5554 mark_backtrace ();
b286858c 5555#endif
7146af97 5556
454d7973
KS
5557#ifdef HAVE_WINDOW_SYSTEM
5558 mark_fringe_data ();
5559#endif
5560
74c35a48
SM
5561#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5562 mark_stack ();
5563#endif
5564
c37adf23
SM
5565 /* Everything is now marked, except for the things that require special
5566 finalization, i.e. the undo_list.
5567 Look thru every buffer's undo list
4c315bda
RS
5568 for elements that update markers that were not marked,
5569 and delete them. */
52b852c7 5570 FOR_EACH_BUFFER (nextb)
d17337e5
DA
5571 {
5572 /* If a buffer's undo list is Qt, that means that undo is
5573 turned off in that buffer. Calling truncate_undo_list on
5574 Qt tends to return NULL, which effectively turns undo back on.
5575 So don't call truncate_undo_list if undo_list is Qt. */
5576 if (! EQ (nextb->BUFFER_INTERNAL_FIELD (undo_list), Qt))
5577 {
5578 Lisp_Object tail, prev;
5579 tail = nextb->BUFFER_INTERNAL_FIELD (undo_list);
5580 prev = Qnil;
5581 while (CONSP (tail))
5582 {
5583 if (CONSP (XCAR (tail))
5584 && MARKERP (XCAR (XCAR (tail)))
5585 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
5586 {
5587 if (NILP (prev))
5588 nextb->BUFFER_INTERNAL_FIELD (undo_list) = tail = XCDR (tail);
5589 else
5590 {
5591 tail = XCDR (tail);
5592 XSETCDR (prev, tail);
5593 }
5594 }
5595 else
5596 {
5597 prev = tail;
5598 tail = XCDR (tail);
5599 }
5600 }
5601 }
5602 /* Now that we have stripped the elements that need not be in the
5603 undo_list any more, we can finally mark the list. */
5604 mark_object (nextb->BUFFER_INTERNAL_FIELD (undo_list));
5605 }
4c315bda 5606
7146af97
JB
5607 gc_sweep ();
5608
5609 /* Clear the mark bits that we set in certain root slots. */
5610
033a5fa3 5611 unmark_byte_stack ();
3ef06d12
SM
5612 VECTOR_UNMARK (&buffer_defaults);
5613 VECTOR_UNMARK (&buffer_local_symbols);
7146af97 5614
34400008
GM
5615#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
5616 dump_zombies ();
5617#endif
5618
6e0fca1d
RS
5619 UNBLOCK_INPUT;
5620
bbc012e0
KS
5621 CHECK_CONS_LIST ();
5622
7146af97
JB
5623 gc_in_progress = 0;
5624
5625 consing_since_gc = 0;
0dd6d66d
DA
5626 if (gc_cons_threshold < GC_DEFAULT_THRESHOLD / 10)
5627 gc_cons_threshold = GC_DEFAULT_THRESHOLD / 10;
7146af97 5628
c0c5c8ae 5629 gc_relative_threshold = 0;
96f077ad
SM
5630 if (FLOATP (Vgc_cons_percentage))
5631 { /* Set gc_cons_combined_threshold. */
c0c5c8ae 5632 double tot = 0;
ae35e756
PE
5633
5634 tot += total_conses * sizeof (struct Lisp_Cons);
5635 tot += total_symbols * sizeof (struct Lisp_Symbol);
5636 tot += total_markers * sizeof (union Lisp_Misc);
3ab6e069 5637 tot += total_string_bytes;
5b835e1d 5638 tot += total_vector_slots * word_size;
ae35e756
PE
5639 tot += total_floats * sizeof (struct Lisp_Float);
5640 tot += total_intervals * sizeof (struct interval);
5641 tot += total_strings * sizeof (struct Lisp_String);
5642
c0c5c8ae
PE
5643 tot *= XFLOAT_DATA (Vgc_cons_percentage);
5644 if (0 < tot)
5645 {
5646 if (tot < TYPE_MAXIMUM (EMACS_INT))
5647 gc_relative_threshold = tot;
5648 else
5649 gc_relative_threshold = TYPE_MAXIMUM (EMACS_INT);
5650 }
96f077ad
SM
5651 }
5652
299585ee
RS
5653 if (garbage_collection_messages)
5654 {
6efc7df7
GM
5655 if (message_p || minibuf_level > 0)
5656 restore_message ();
299585ee
RS
5657 else
5658 message1_nolog ("Garbage collecting...done");
5659 }
7146af97 5660
98edb5ff 5661 unbind_to (count, Qnil);
2e471eb5 5662
3ab6e069
DA
5663 total[0] = list4 (Qcons, make_number (sizeof (struct Lisp_Cons)),
5664 bounded_number (total_conses),
5665 bounded_number (total_free_conses));
5666
5667 total[1] = list4 (Qsymbol, make_number (sizeof (struct Lisp_Symbol)),
5668 bounded_number (total_symbols),
5669 bounded_number (total_free_symbols));
5670
5671 total[2] = list4 (Qmisc, make_number (sizeof (union Lisp_Misc)),
5672 bounded_number (total_markers),
5673 bounded_number (total_free_markers));
5674
5b835e1d 5675 total[3] = list4 (Qstring, make_number (sizeof (struct Lisp_String)),
3ab6e069 5676 bounded_number (total_strings),
3ab6e069
DA
5677 bounded_number (total_free_strings));
5678
5b835e1d
DA
5679 total[4] = list3 (Qstring_bytes, make_number (1),
5680 bounded_number (total_string_bytes));
3ab6e069 5681
5b835e1d
DA
5682 total[5] = list3 (Qvector, make_number (sizeof (struct Lisp_Vector)),
5683 bounded_number (total_vectors));
5684
5685 total[6] = list4 (Qvector_slots, make_number (word_size),
5686 bounded_number (total_vector_slots),
5687 bounded_number (total_free_vector_slots));
5688
5689 total[7] = list4 (Qfloat, make_number (sizeof (struct Lisp_Float)),
3ab6e069
DA
5690 bounded_number (total_floats),
5691 bounded_number (total_free_floats));
5692
5b835e1d 5693 total[8] = list4 (Qinterval, make_number (sizeof (struct interval)),
3ab6e069
DA
5694 bounded_number (total_intervals),
5695 bounded_number (total_free_intervals));
5696
5b835e1d 5697 total[9] = list3 (Qbuffer, make_number (sizeof (struct buffer)),
3ab6e069 5698 bounded_number (total_buffers));
2e471eb5 5699
f8643a6b
DA
5700 total[10] = list4 (Qheap, make_number (1024),
5701#ifdef DOUG_LEA_MALLOC
5702 bounded_number ((mallinfo ().uordblks + 1023) >> 10),
5703 bounded_number ((mallinfo ().fordblks + 1023) >> 10)
5704#else
5705 Qnil, Qnil
5706#endif
5707 );
5708
34400008 5709#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
7146af97 5710 {
34400008
GM
5711 /* Compute average percentage of zombies. */
5712 double nlive = 0;
177c0ea7 5713
34400008 5714 for (i = 0; i < 7; ++i)
83fc9c63
DL
5715 if (CONSP (total[i]))
5716 nlive += XFASTINT (XCAR (total[i]));
34400008
GM
5717
5718 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
5719 max_live = max (nlive, max_live);
5720 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
5721 max_zombies = max (nzombies, max_zombies);
5722 ++ngcs;
5723 }
5724#endif
7146af97 5725
9e713715
GM
5726 if (!NILP (Vpost_gc_hook))
5727 {
d311d28c 5728 ptrdiff_t gc_count = inhibit_garbage_collection ();
9e713715 5729 safe_run_hooks (Qpost_gc_hook);
ae35e756 5730 unbind_to (gc_count, Qnil);
9e713715 5731 }
2c5bd608
DL
5732
5733 /* Accumulate statistics. */
2c5bd608 5734 if (FLOATP (Vgc_elapsed))
d35af63c 5735 {
e9a9ae03
PE
5736 EMACS_TIME t2 = current_emacs_time ();
5737 EMACS_TIME t3 = sub_emacs_time (t2, t1);
d35af63c
PE
5738 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed)
5739 + EMACS_TIME_TO_DOUBLE (t3));
5740 }
5741
2c5bd608
DL
5742 gcs_done++;
5743
96117bc7 5744 return Flist (sizeof total / sizeof *total, total);
7146af97 5745}
34400008 5746
41c28a37 5747
3770920e
GM
5748/* Mark Lisp objects in glyph matrix MATRIX. Currently the
5749 only interesting objects referenced from glyphs are strings. */
41c28a37
GM
5750
5751static void
971de7fb 5752mark_glyph_matrix (struct glyph_matrix *matrix)
41c28a37
GM
5753{
5754 struct glyph_row *row = matrix->rows;
5755 struct glyph_row *end = row + matrix->nrows;
5756
2e471eb5
GM
5757 for (; row < end; ++row)
5758 if (row->enabled_p)
5759 {
5760 int area;
5761 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
5762 {
5763 struct glyph *glyph = row->glyphs[area];
5764 struct glyph *end_glyph = glyph + row->used[area];
177c0ea7 5765
2e471eb5 5766 for (; glyph < end_glyph; ++glyph)
8e50cc2d 5767 if (STRINGP (glyph->object)
2e471eb5 5768 && !STRING_MARKED_P (XSTRING (glyph->object)))
49723c04 5769 mark_object (glyph->object);
2e471eb5
GM
5770 }
5771 }
41c28a37
GM
5772}
5773
34400008 5774
41c28a37
GM
5775/* Mark Lisp faces in the face cache C. */
5776
5777static void
971de7fb 5778mark_face_cache (struct face_cache *c)
41c28a37
GM
5779{
5780 if (c)
5781 {
5782 int i, j;
5783 for (i = 0; i < c->used; ++i)
5784 {
5785 struct face *face = FACE_FROM_ID (c->f, i);
5786
5787 if (face)
5788 {
5789 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
49723c04 5790 mark_object (face->lface[j]);
41c28a37
GM
5791 }
5792 }
5793 }
5794}
5795
5796
7146af97 5797\f
1a4f1e2c 5798/* Mark reference to a Lisp_Object.
2e471eb5
GM
5799 If the object referred to has not been seen yet, recursively mark
5800 all the references contained in it. */
7146af97 5801
785cd37f 5802#define LAST_MARKED_SIZE 500
d3d47262 5803static Lisp_Object last_marked[LAST_MARKED_SIZE];
244ed907 5804static int last_marked_index;
785cd37f 5805
1342fc6f
RS
5806/* For debugging--call abort when we cdr down this many
5807 links of a list, in mark_object. In debugging,
5808 the call to abort will hit a breakpoint.
5809 Normally this is zero and the check never goes off. */
903fe15d 5810ptrdiff_t mark_object_loop_halt EXTERNALLY_VISIBLE;
1342fc6f 5811
8f11f7ec 5812static void
971de7fb 5813mark_vectorlike (struct Lisp_Vector *ptr)
d2029e5b 5814{
d311d28c
PE
5815 ptrdiff_t size = ptr->header.size;
5816 ptrdiff_t i;
d2029e5b 5817
8f11f7ec 5818 eassert (!VECTOR_MARKED_P (ptr));
7555c33f 5819 VECTOR_MARK (ptr); /* Else mark it. */
d2029e5b
SM
5820 if (size & PSEUDOVECTOR_FLAG)
5821 size &= PSEUDOVECTOR_SIZE_MASK;
d3d47262 5822
d2029e5b
SM
5823 /* Note that this size is not the memory-footprint size, but only
5824 the number of Lisp_Object fields that we should trace.
5825 The distinction is used e.g. by Lisp_Process which places extra
7555c33f
SM
5826 non-Lisp_Object fields at the end of the structure... */
5827 for (i = 0; i < size; i++) /* ...and then mark its elements. */
d2029e5b 5828 mark_object (ptr->contents[i]);
d2029e5b
SM
5829}
5830
58026347
KH
5831/* Like mark_vectorlike but optimized for char-tables (and
5832 sub-char-tables) assuming that the contents are mostly integers or
5833 symbols. */
5834
5835static void
971de7fb 5836mark_char_table (struct Lisp_Vector *ptr)
58026347 5837{
b6439961
PE
5838 int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
5839 int i;
58026347 5840
8f11f7ec 5841 eassert (!VECTOR_MARKED_P (ptr));
58026347
KH
5842 VECTOR_MARK (ptr);
5843 for (i = 0; i < size; i++)
5844 {
5845 Lisp_Object val = ptr->contents[i];
5846
ef1b0ba7 5847 if (INTEGERP (val) || (SYMBOLP (val) && XSYMBOL (val)->gcmarkbit))
58026347
KH
5848 continue;
5849 if (SUB_CHAR_TABLE_P (val))
5850 {
5851 if (! VECTOR_MARKED_P (XVECTOR (val)))
5852 mark_char_table (XVECTOR (val));
5853 }
5854 else
5855 mark_object (val);
5856 }
5857}
5858
36429c89
DA
5859/* Mark the chain of overlays starting at PTR. */
5860
5861static void
5862mark_overlay (struct Lisp_Overlay *ptr)
5863{
5864 for (; ptr && !ptr->gcmarkbit; ptr = ptr->next)
5865 {
5866 ptr->gcmarkbit = 1;
5867 mark_object (ptr->start);
5868 mark_object (ptr->end);
5869 mark_object (ptr->plist);
5870 }
5871}
5872
5873/* Mark Lisp_Objects and special pointers in BUFFER. */
cf5c0175
DA
5874
5875static void
5876mark_buffer (struct buffer *buffer)
5877{
36429c89
DA
5878 /* This is handled much like other pseudovectors... */
5879 mark_vectorlike ((struct Lisp_Vector *) buffer);
cf5c0175 5880
36429c89 5881 /* ...but there are some buffer-specific things. */
cf5c0175
DA
5882
5883 MARK_INTERVAL_TREE (BUF_INTERVALS (buffer));
5884
5885 /* For now, we just don't mark the undo_list. It's done later in
5886 a special way just before the sweep phase, and after stripping
5887 some of its elements that are not needed any more. */
5888
36429c89
DA
5889 mark_overlay (buffer->overlays_before);
5890 mark_overlay (buffer->overlays_after);
cf5c0175
DA
5891
5892 /* If this is an indirect buffer, mark its base buffer. */
5893 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
5894 mark_buffer (buffer->base_buffer);
5895}
5896
5897/* Determine type of generic Lisp_Object and mark it accordingly. */
5898
41c28a37 5899void
971de7fb 5900mark_object (Lisp_Object arg)
7146af97 5901{
49723c04 5902 register Lisp_Object obj = arg;
4f5c1376
GM
5903#ifdef GC_CHECK_MARKED_OBJECTS
5904 void *po;
5905 struct mem_node *m;
5906#endif
903fe15d 5907 ptrdiff_t cdr_count = 0;
7146af97 5908
9149e743 5909 loop:
7146af97 5910
1f0b3fd2 5911 if (PURE_POINTER_P (XPNTR (obj)))
7146af97
JB
5912 return;
5913
49723c04 5914 last_marked[last_marked_index++] = obj;
785cd37f
RS
5915 if (last_marked_index == LAST_MARKED_SIZE)
5916 last_marked_index = 0;
5917
4f5c1376
GM
5918 /* Perform some sanity checks on the objects marked here. Abort if
5919 we encounter an object we know is bogus. This increases GC time
5920 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
5921#ifdef GC_CHECK_MARKED_OBJECTS
5922
5923 po = (void *) XPNTR (obj);
5924
5925 /* Check that the object pointed to by PO is known to be a Lisp
5926 structure allocated from the heap. */
5927#define CHECK_ALLOCATED() \
5928 do { \
5929 m = mem_find (po); \
5930 if (m == MEM_NIL) \
5931 abort (); \
5932 } while (0)
5933
5934 /* Check that the object pointed to by PO is live, using predicate
5935 function LIVEP. */
5936#define CHECK_LIVE(LIVEP) \
5937 do { \
5938 if (!LIVEP (m, po)) \
5939 abort (); \
5940 } while (0)
5941
5942 /* Check both of the above conditions. */
5943#define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
5944 do { \
5945 CHECK_ALLOCATED (); \
5946 CHECK_LIVE (LIVEP); \
5947 } while (0) \
177c0ea7 5948
4f5c1376 5949#else /* not GC_CHECK_MARKED_OBJECTS */
177c0ea7 5950
4f5c1376
GM
5951#define CHECK_LIVE(LIVEP) (void) 0
5952#define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
177c0ea7 5953
4f5c1376
GM
5954#endif /* not GC_CHECK_MARKED_OBJECTS */
5955
8e50cc2d 5956 switch (SWITCH_ENUM_CAST (XTYPE (obj)))
7146af97
JB
5957 {
5958 case Lisp_String:
5959 {
5960 register struct Lisp_String *ptr = XSTRING (obj);
8f11f7ec
SM
5961 if (STRING_MARKED_P (ptr))
5962 break;
4f5c1376 5963 CHECK_ALLOCATED_AND_LIVE (live_string_p);
2e471eb5 5964 MARK_STRING (ptr);
7555c33f 5965 MARK_INTERVAL_TREE (ptr->intervals);
361b097f 5966#ifdef GC_CHECK_STRING_BYTES
676a7251 5967 /* Check that the string size recorded in the string is the
7555c33f 5968 same as the one recorded in the sdata structure. */
676a7251 5969 CHECK_STRING_BYTES (ptr);
361b097f 5970#endif /* GC_CHECK_STRING_BYTES */
7146af97
JB
5971 }
5972 break;
5973
76437631 5974 case Lisp_Vectorlike:
cf5c0175
DA
5975 {
5976 register struct Lisp_Vector *ptr = XVECTOR (obj);
5977 register ptrdiff_t pvectype;
5978
5979 if (VECTOR_MARKED_P (ptr))
5980 break;
5981
4f5c1376 5982#ifdef GC_CHECK_MARKED_OBJECTS
cf5c0175
DA
5983 m = mem_find (po);
5984 if (m == MEM_NIL && !SUBRP (obj)
5985 && po != &buffer_defaults
5986 && po != &buffer_local_symbols)
5987 abort ();
4f5c1376 5988#endif /* GC_CHECK_MARKED_OBJECTS */
177c0ea7 5989
cf5c0175 5990 if (ptr->header.size & PSEUDOVECTOR_FLAG)
ee28be33
SM
5991 pvectype = ((ptr->header.size & PVEC_TYPE_MASK)
5992 >> PSEUDOVECTOR_SIZE_BITS);
cf5c0175
DA
5993 else
5994 pvectype = 0;
5995
cf5c0175
DA
5996 if (pvectype != PVEC_SUBR && pvectype != PVEC_BUFFER)
5997 CHECK_LIVE (live_vector_p);
169ee243 5998
ee28be33 5999 switch (pvectype)
cf5c0175 6000 {
ee28be33 6001 case PVEC_BUFFER:
cf5c0175
DA
6002#ifdef GC_CHECK_MARKED_OBJECTS
6003 if (po != &buffer_defaults && po != &buffer_local_symbols)
6004 {
d17337e5 6005 struct buffer *b;
52b852c7 6006 FOR_EACH_BUFFER (b)
d17337e5
DA
6007 if (b == po)
6008 break;
cf5c0175
DA
6009 if (b == NULL)
6010 abort ();
6011 }
6012#endif /* GC_CHECK_MARKED_OBJECTS */
6013 mark_buffer ((struct buffer *) ptr);
ee28be33
SM
6014 break;
6015
6016 case PVEC_COMPILED:
6017 { /* We could treat this just like a vector, but it is better
6018 to save the COMPILED_CONSTANTS element for last and avoid
6019 recursion there. */
6020 int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
6021 int i;
6022
6023 VECTOR_MARK (ptr);
6024 for (i = 0; i < size; i++)
6025 if (i != COMPILED_CONSTANTS)
6026 mark_object (ptr->contents[i]);
6027 if (size > COMPILED_CONSTANTS)
6028 {
6029 obj = ptr->contents[COMPILED_CONSTANTS];
6030 goto loop;
6031 }
6032 }
6033 break;
cf5c0175 6034
ee28be33
SM
6035 case PVEC_FRAME:
6036 {
6037 mark_vectorlike (ptr);
6038 mark_face_cache (((struct frame *) ptr)->face_cache);
6039 }
6040 break;
cf5c0175 6041
ee28be33
SM
6042 case PVEC_WINDOW:
6043 {
6044 struct window *w = (struct window *) ptr;
cf5c0175 6045
ee28be33
SM
6046 mark_vectorlike (ptr);
6047 /* Mark glyphs for leaf windows. Marking window
6048 matrices is sufficient because frame matrices
6049 use the same glyph memory. */
6050 if (NILP (w->hchild) && NILP (w->vchild) && w->current_matrix)
6051 {
6052 mark_glyph_matrix (w->current_matrix);
6053 mark_glyph_matrix (w->desired_matrix);
6054 }
6055 }
6056 break;
cf5c0175 6057
ee28be33
SM
6058 case PVEC_HASH_TABLE:
6059 {
6060 struct Lisp_Hash_Table *h = (struct Lisp_Hash_Table *) ptr;
cf5c0175 6061
ee28be33
SM
6062 mark_vectorlike (ptr);
6063 /* If hash table is not weak, mark all keys and values.
6064 For weak tables, mark only the vector. */
6065 if (NILP (h->weak))
6066 mark_object (h->key_and_value);
6067 else
6068 VECTOR_MARK (XVECTOR (h->key_and_value));
6069 }
6070 break;
cf5c0175 6071
ee28be33
SM
6072 case PVEC_CHAR_TABLE:
6073 mark_char_table (ptr);
6074 break;
cf5c0175 6075
ee28be33
SM
6076 case PVEC_BOOL_VECTOR:
6077 /* No Lisp_Objects to mark in a bool vector. */
6078 VECTOR_MARK (ptr);
6079 break;
cf5c0175 6080
ee28be33
SM
6081 case PVEC_SUBR:
6082 break;
cf5c0175 6083
6195f384
DA
6084 case PVEC_EXCURSION:
6085 {
6086 struct Lisp_Excursion *e = (struct Lisp_Excursion *) ptr;
6087 /* No Lisp_Objects but two special pointers to mark here. */
6088 eassert (e->buffer != NULL);
6089 eassert (e->window != NULL);
6090 if (!VECTOR_MARKED_P (e->buffer))
6091 mark_buffer (e->buffer);
6092 if (!VECTOR_MARKED_P (e->window))
6093 mark_vectorlike ((struct Lisp_Vector *) e->window);
6094 }
6095 break;
6096
ee28be33
SM
6097 case PVEC_FREE:
6098 abort ();
cf5c0175 6099
ee28be33
SM
6100 default:
6101 mark_vectorlike (ptr);
6102 }
cf5c0175 6103 }
169ee243 6104 break;
7146af97 6105
7146af97
JB
6106 case Lisp_Symbol:
6107 {
c70bbf06 6108 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
7146af97
JB
6109 struct Lisp_Symbol *ptrx;
6110
8f11f7ec
SM
6111 if (ptr->gcmarkbit)
6112 break;
4f5c1376 6113 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
2336fe58 6114 ptr->gcmarkbit = 1;
49723c04
SM
6115 mark_object (ptr->function);
6116 mark_object (ptr->plist);
ce5b453a
SM
6117 switch (ptr->redirect)
6118 {
6119 case SYMBOL_PLAINVAL: mark_object (SYMBOL_VAL (ptr)); break;
6120 case SYMBOL_VARALIAS:
6121 {
6122 Lisp_Object tem;
6123 XSETSYMBOL (tem, SYMBOL_ALIAS (ptr));
6124 mark_object (tem);
6125 break;
6126 }
6127 case SYMBOL_LOCALIZED:
6128 {
6129 struct Lisp_Buffer_Local_Value *blv = SYMBOL_BLV (ptr);
6130 /* If the value is forwarded to a buffer or keyboard field,
6131 these are marked when we see the corresponding object.
6132 And if it's forwarded to a C variable, either it's not
6133 a Lisp_Object var, or it's staticpro'd already. */
6134 mark_object (blv->where);
6135 mark_object (blv->valcell);
6136 mark_object (blv->defcell);
6137 break;
6138 }
6139 case SYMBOL_FORWARDED:
6140 /* If the value is forwarded to a buffer or keyboard field,
6141 these are marked when we see the corresponding object.
6142 And if it's forwarded to a C variable, either it's not
6143 a Lisp_Object var, or it's staticpro'd already. */
6144 break;
6145 default: abort ();
6146 }
8fe5665d
KR
6147 if (!PURE_POINTER_P (XSTRING (ptr->xname)))
6148 MARK_STRING (XSTRING (ptr->xname));
d5db4077 6149 MARK_INTERVAL_TREE (STRING_INTERVALS (ptr->xname));
177c0ea7 6150
7146af97
JB
6151 ptr = ptr->next;
6152 if (ptr)
6153 {
7555c33f 6154 ptrx = ptr; /* Use of ptrx avoids compiler bug on Sun. */
7146af97 6155 XSETSYMBOL (obj, ptrx);
49723c04 6156 goto loop;
7146af97
JB
6157 }
6158 }
6159 break;
6160
a0a38eb7 6161 case Lisp_Misc:
4f5c1376 6162 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
b766f870 6163
7555c33f
SM
6164 if (XMISCANY (obj)->gcmarkbit)
6165 break;
6166
6167 switch (XMISCTYPE (obj))
a0a38eb7 6168 {
7555c33f
SM
6169 case Lisp_Misc_Marker:
6170 /* DO NOT mark thru the marker's chain.
6171 The buffer's markers chain does not preserve markers from gc;
6172 instead, markers are removed from the chain when freed by gc. */
36429c89 6173 XMISCANY (obj)->gcmarkbit = 1;
7555c33f 6174 break;
465edf35 6175
7555c33f
SM
6176 case Lisp_Misc_Save_Value:
6177 XMISCANY (obj)->gcmarkbit = 1;
9ea306d1 6178#if GC_MARK_STACK
7555c33f
SM
6179 {
6180 register struct Lisp_Save_Value *ptr = XSAVE_VALUE (obj);
6181 /* If DOGC is set, POINTER is the address of a memory
6182 area containing INTEGER potential Lisp_Objects. */
6183 if (ptr->dogc)
6184 {
6185 Lisp_Object *p = (Lisp_Object *) ptr->pointer;
6186 ptrdiff_t nelt;
6187 for (nelt = ptr->integer; nelt > 0; nelt--, p++)
6188 mark_maybe_object (*p);
6189 }
6190 }
9ea306d1 6191#endif
7555c33f
SM
6192 break;
6193
6194 case Lisp_Misc_Overlay:
6195 mark_overlay (XOVERLAY (obj));
6196 break;
6197
6198 default:
6199 abort ();
a0a38eb7 6200 }
7146af97
JB
6201 break;
6202
6203 case Lisp_Cons:
7146af97
JB
6204 {
6205 register struct Lisp_Cons *ptr = XCONS (obj);
8f11f7ec
SM
6206 if (CONS_MARKED_P (ptr))
6207 break;
4f5c1376 6208 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
08b7c2cb 6209 CONS_MARK (ptr);
c54ca951 6210 /* If the cdr is nil, avoid recursion for the car. */
28a099a4 6211 if (EQ (ptr->u.cdr, Qnil))
c54ca951 6212 {
49723c04 6213 obj = ptr->car;
1342fc6f 6214 cdr_count = 0;
c54ca951
RS
6215 goto loop;
6216 }
49723c04 6217 mark_object (ptr->car);
28a099a4 6218 obj = ptr->u.cdr;
1342fc6f
RS
6219 cdr_count++;
6220 if (cdr_count == mark_object_loop_halt)
6221 abort ();
7146af97
JB
6222 goto loop;
6223 }
6224
7146af97 6225 case Lisp_Float:
4f5c1376 6226 CHECK_ALLOCATED_AND_LIVE (live_float_p);
ab6780cd 6227 FLOAT_MARK (XFLOAT (obj));
7146af97 6228 break;
7146af97 6229
2de9f71c 6230 case_Lisp_Int:
7146af97
JB
6231 break;
6232
6233 default:
6234 abort ();
6235 }
4f5c1376
GM
6236
6237#undef CHECK_LIVE
6238#undef CHECK_ALLOCATED
6239#undef CHECK_ALLOCATED_AND_LIVE
7146af97 6240}
4a729fd8 6241/* Mark the Lisp pointers in the terminal objects.
0ba2624f 6242 Called by Fgarbage_collect. */
4a729fd8 6243
4a729fd8
SM
6244static void
6245mark_terminals (void)
6246{
6247 struct terminal *t;
6248 for (t = terminal_list; t; t = t->next_terminal)
6249 {
6250 eassert (t->name != NULL);
354884c4 6251#ifdef HAVE_WINDOW_SYSTEM
96ad0af7
YM
6252 /* If a terminal object is reachable from a stacpro'ed object,
6253 it might have been marked already. Make sure the image cache
6254 gets marked. */
6255 mark_image_cache (t->image_cache);
354884c4 6256#endif /* HAVE_WINDOW_SYSTEM */
96ad0af7
YM
6257 if (!VECTOR_MARKED_P (t))
6258 mark_vectorlike ((struct Lisp_Vector *)t);
4a729fd8
SM
6259 }
6260}
6261
6262
084b1a0c 6263
41c28a37
GM
6264/* Value is non-zero if OBJ will survive the current GC because it's
6265 either marked or does not need to be marked to survive. */
6266
6267int
971de7fb 6268survives_gc_p (Lisp_Object obj)
41c28a37
GM
6269{
6270 int survives_p;
177c0ea7 6271
8e50cc2d 6272 switch (XTYPE (obj))
41c28a37 6273 {
2de9f71c 6274 case_Lisp_Int:
41c28a37
GM
6275 survives_p = 1;
6276 break;
6277
6278 case Lisp_Symbol:
2336fe58 6279 survives_p = XSYMBOL (obj)->gcmarkbit;
41c28a37
GM
6280 break;
6281
6282 case Lisp_Misc:
67ee9f6e 6283 survives_p = XMISCANY (obj)->gcmarkbit;
41c28a37
GM
6284 break;
6285
6286 case Lisp_String:
08b7c2cb 6287 survives_p = STRING_MARKED_P (XSTRING (obj));
41c28a37
GM
6288 break;
6289
6290 case Lisp_Vectorlike:
8e50cc2d 6291 survives_p = SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
41c28a37
GM
6292 break;
6293
6294 case Lisp_Cons:
08b7c2cb 6295 survives_p = CONS_MARKED_P (XCONS (obj));
41c28a37
GM
6296 break;
6297
41c28a37 6298 case Lisp_Float:
ab6780cd 6299 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
41c28a37 6300 break;
41c28a37
GM
6301
6302 default:
6303 abort ();
6304 }
6305
34400008 6306 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
41c28a37
GM
6307}
6308
6309
7146af97 6310\f
1a4f1e2c 6311/* Sweep: find all structures not marked, and free them. */
7146af97
JB
6312
6313static void
971de7fb 6314gc_sweep (void)
7146af97 6315{
41c28a37
GM
6316 /* Remove or mark entries in weak hash tables.
6317 This must be done before any object is unmarked. */
6318 sweep_weak_hash_tables ();
6319
2e471eb5 6320 sweep_strings ();
676a7251
GM
6321#ifdef GC_CHECK_STRING_BYTES
6322 if (!noninteractive)
6323 check_string_bytes (1);
6324#endif
7146af97
JB
6325
6326 /* Put all unmarked conses on free list */
6327 {
6328 register struct cons_block *cblk;
6ca94ac9 6329 struct cons_block **cprev = &cons_block;
7146af97 6330 register int lim = cons_block_index;
c0c5c8ae 6331 EMACS_INT num_free = 0, num_used = 0;
7146af97
JB
6332
6333 cons_free_list = 0;
177c0ea7 6334
6ca94ac9 6335 for (cblk = cons_block; cblk; cblk = *cprev)
7146af97 6336 {
3ae2e3a3 6337 register int i = 0;
6ca94ac9 6338 int this_free = 0;
3ae2e3a3
RS
6339 int ilim = (lim + BITS_PER_INT - 1) / BITS_PER_INT;
6340
6341 /* Scan the mark bits an int at a time. */
47ea7f44 6342 for (i = 0; i < ilim; i++)
3ae2e3a3
RS
6343 {
6344 if (cblk->gcmarkbits[i] == -1)
6345 {
6346 /* Fast path - all cons cells for this int are marked. */
6347 cblk->gcmarkbits[i] = 0;
6348 num_used += BITS_PER_INT;
6349 }
6350 else
6351 {
6352 /* Some cons cells for this int are not marked.
6353 Find which ones, and free them. */
6354 int start, pos, stop;
6355
6356 start = i * BITS_PER_INT;
6357 stop = lim - start;
6358 if (stop > BITS_PER_INT)
6359 stop = BITS_PER_INT;
6360 stop += start;
6361
6362 for (pos = start; pos < stop; pos++)
6363 {
6364 if (!CONS_MARKED_P (&cblk->conses[pos]))
6365 {
6366 this_free++;
6367 cblk->conses[pos].u.chain = cons_free_list;
6368 cons_free_list = &cblk->conses[pos];
34400008 6369#if GC_MARK_STACK
3ae2e3a3 6370 cons_free_list->car = Vdead;
34400008 6371#endif
3ae2e3a3
RS
6372 }
6373 else
6374 {
6375 num_used++;
6376 CONS_UNMARK (&cblk->conses[pos]);
6377 }
6378 }
6379 }
6380 }
6381
7146af97 6382 lim = CONS_BLOCK_SIZE;
6ca94ac9
KH
6383 /* If this block contains only free conses and we have already
6384 seen more than two blocks worth of free conses then deallocate
6385 this block. */
6feef451 6386 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
6ca94ac9 6387 {
6ca94ac9
KH
6388 *cprev = cblk->next;
6389 /* Unhook from the free list. */
28a099a4 6390 cons_free_list = cblk->conses[0].u.chain;
08b7c2cb 6391 lisp_align_free (cblk);
6ca94ac9
KH
6392 }
6393 else
6feef451
AS
6394 {
6395 num_free += this_free;
6396 cprev = &cblk->next;
6397 }
7146af97
JB
6398 }
6399 total_conses = num_used;
6400 total_free_conses = num_free;
6401 }
6402
7146af97
JB
6403 /* Put all unmarked floats on free list */
6404 {
6405 register struct float_block *fblk;
6ca94ac9 6406 struct float_block **fprev = &float_block;
7146af97 6407 register int lim = float_block_index;
c0c5c8ae 6408 EMACS_INT num_free = 0, num_used = 0;
7146af97
JB
6409
6410 float_free_list = 0;
177c0ea7 6411
6ca94ac9 6412 for (fblk = float_block; fblk; fblk = *fprev)
7146af97
JB
6413 {
6414 register int i;
6ca94ac9 6415 int this_free = 0;
7146af97 6416 for (i = 0; i < lim; i++)
ab6780cd 6417 if (!FLOAT_MARKED_P (&fblk->floats[i]))
7146af97 6418 {
6ca94ac9 6419 this_free++;
28a099a4 6420 fblk->floats[i].u.chain = float_free_list;
7146af97
JB
6421 float_free_list = &fblk->floats[i];
6422 }
6423 else
6424 {
6425 num_used++;
ab6780cd 6426 FLOAT_UNMARK (&fblk->floats[i]);
7146af97
JB
6427 }
6428 lim = FLOAT_BLOCK_SIZE;
6ca94ac9
KH
6429 /* If this block contains only free floats and we have already
6430 seen more than two blocks worth of free floats then deallocate
6431 this block. */
6feef451 6432 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
6ca94ac9 6433 {
6ca94ac9
KH
6434 *fprev = fblk->next;
6435 /* Unhook from the free list. */
28a099a4 6436 float_free_list = fblk->floats[0].u.chain;
ab6780cd 6437 lisp_align_free (fblk);
6ca94ac9
KH
6438 }
6439 else
6feef451
AS
6440 {
6441 num_free += this_free;
6442 fprev = &fblk->next;
6443 }
7146af97
JB
6444 }
6445 total_floats = num_used;
6446 total_free_floats = num_free;
6447 }
7146af97 6448
d5e35230
JA
6449 /* Put all unmarked intervals on free list */
6450 {
6451 register struct interval_block *iblk;
6ca94ac9 6452 struct interval_block **iprev = &interval_block;
d5e35230 6453 register int lim = interval_block_index;
c0c5c8ae 6454 EMACS_INT num_free = 0, num_used = 0;
d5e35230
JA
6455
6456 interval_free_list = 0;
6457
6ca94ac9 6458 for (iblk = interval_block; iblk; iblk = *iprev)
d5e35230
JA
6459 {
6460 register int i;
6ca94ac9 6461 int this_free = 0;
d5e35230
JA
6462
6463 for (i = 0; i < lim; i++)
6464 {
2336fe58 6465 if (!iblk->intervals[i].gcmarkbit)
d5e35230 6466 {
439d5cb4 6467 SET_INTERVAL_PARENT (&iblk->intervals[i], interval_free_list);
d5e35230 6468 interval_free_list = &iblk->intervals[i];
6ca94ac9 6469 this_free++;
d5e35230
JA
6470 }
6471 else
6472 {
6473 num_used++;
2336fe58 6474 iblk->intervals[i].gcmarkbit = 0;
d5e35230
JA
6475 }
6476 }
6477 lim = INTERVAL_BLOCK_SIZE;
6ca94ac9
KH
6478 /* If this block contains only free intervals and we have already
6479 seen more than two blocks worth of free intervals then
6480 deallocate this block. */
6feef451 6481 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
6ca94ac9 6482 {
6ca94ac9
KH
6483 *iprev = iblk->next;
6484 /* Unhook from the free list. */
439d5cb4 6485 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
c8099634 6486 lisp_free (iblk);
6ca94ac9
KH
6487 }
6488 else
6feef451
AS
6489 {
6490 num_free += this_free;
6491 iprev = &iblk->next;
6492 }
d5e35230
JA
6493 }
6494 total_intervals = num_used;
6495 total_free_intervals = num_free;
6496 }
d5e35230 6497
7146af97
JB
6498 /* Put all unmarked symbols on free list */
6499 {
6500 register struct symbol_block *sblk;
6ca94ac9 6501 struct symbol_block **sprev = &symbol_block;
7146af97 6502 register int lim = symbol_block_index;
c0c5c8ae 6503 EMACS_INT num_free = 0, num_used = 0;
7146af97 6504
d285b373 6505 symbol_free_list = NULL;
177c0ea7 6506
6ca94ac9 6507 for (sblk = symbol_block; sblk; sblk = *sprev)
7146af97 6508 {
6ca94ac9 6509 int this_free = 0;
d55c12ed
AS
6510 union aligned_Lisp_Symbol *sym = sblk->symbols;
6511 union aligned_Lisp_Symbol *end = sym + lim;
d285b373
GM
6512
6513 for (; sym < end; ++sym)
6514 {
20035321
SM
6515 /* Check if the symbol was created during loadup. In such a case
6516 it might be pointed to by pure bytecode which we don't trace,
6517 so we conservatively assume that it is live. */
d55c12ed 6518 int pure_p = PURE_POINTER_P (XSTRING (sym->s.xname));
177c0ea7 6519
d55c12ed 6520 if (!sym->s.gcmarkbit && !pure_p)
d285b373 6521 {
d55c12ed
AS
6522 if (sym->s.redirect == SYMBOL_LOCALIZED)
6523 xfree (SYMBOL_BLV (&sym->s));
6524 sym->s.next = symbol_free_list;
6525 symbol_free_list = &sym->s;
34400008 6526#if GC_MARK_STACK
d285b373 6527 symbol_free_list->function = Vdead;
34400008 6528#endif
d285b373
GM
6529 ++this_free;
6530 }
6531 else
6532 {
6533 ++num_used;
6534 if (!pure_p)
d55c12ed
AS
6535 UNMARK_STRING (XSTRING (sym->s.xname));
6536 sym->s.gcmarkbit = 0;
d285b373
GM
6537 }
6538 }
177c0ea7 6539
7146af97 6540 lim = SYMBOL_BLOCK_SIZE;
6ca94ac9
KH
6541 /* If this block contains only free symbols and we have already
6542 seen more than two blocks worth of free symbols then deallocate
6543 this block. */
6feef451 6544 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
6ca94ac9 6545 {
6ca94ac9
KH
6546 *sprev = sblk->next;
6547 /* Unhook from the free list. */
d55c12ed 6548 symbol_free_list = sblk->symbols[0].s.next;
c8099634 6549 lisp_free (sblk);
6ca94ac9
KH
6550 }
6551 else
6feef451
AS
6552 {
6553 num_free += this_free;
6554 sprev = &sblk->next;
6555 }
7146af97
JB
6556 }
6557 total_symbols = num_used;
6558 total_free_symbols = num_free;
6559 }
6560
a9faeabe
RS
6561 /* Put all unmarked misc's on free list.
6562 For a marker, first unchain it from the buffer it points into. */
7146af97
JB
6563 {
6564 register struct marker_block *mblk;
6ca94ac9 6565 struct marker_block **mprev = &marker_block;
7146af97 6566 register int lim = marker_block_index;
c0c5c8ae 6567 EMACS_INT num_free = 0, num_used = 0;
7146af97
JB
6568
6569 marker_free_list = 0;
177c0ea7 6570
6ca94ac9 6571 for (mblk = marker_block; mblk; mblk = *mprev)
7146af97
JB
6572 {
6573 register int i;
6ca94ac9 6574 int this_free = 0;
fa05e253 6575
7146af97 6576 for (i = 0; i < lim; i++)
465edf35 6577 {
d55c12ed 6578 if (!mblk->markers[i].m.u_any.gcmarkbit)
465edf35 6579 {
d55c12ed
AS
6580 if (mblk->markers[i].m.u_any.type == Lisp_Misc_Marker)
6581 unchain_marker (&mblk->markers[i].m.u_marker);
fa05e253
RS
6582 /* Set the type of the freed object to Lisp_Misc_Free.
6583 We could leave the type alone, since nobody checks it,
465edf35 6584 but this might catch bugs faster. */
d55c12ed
AS
6585 mblk->markers[i].m.u_marker.type = Lisp_Misc_Free;
6586 mblk->markers[i].m.u_free.chain = marker_free_list;
6587 marker_free_list = &mblk->markers[i].m;
6ca94ac9 6588 this_free++;
465edf35
KH
6589 }
6590 else
6591 {
6592 num_used++;
d55c12ed 6593 mblk->markers[i].m.u_any.gcmarkbit = 0;
465edf35
KH
6594 }
6595 }
7146af97 6596 lim = MARKER_BLOCK_SIZE;
6ca94ac9
KH
6597 /* If this block contains only free markers and we have already
6598 seen more than two blocks worth of free markers then deallocate
6599 this block. */
6feef451 6600 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
6ca94ac9 6601 {
6ca94ac9
KH
6602 *mprev = mblk->next;
6603 /* Unhook from the free list. */
d55c12ed 6604 marker_free_list = mblk->markers[0].m.u_free.chain;
c8099634 6605 lisp_free (mblk);
6ca94ac9
KH
6606 }
6607 else
6feef451
AS
6608 {
6609 num_free += this_free;
6610 mprev = &mblk->next;
6611 }
7146af97
JB
6612 }
6613
6614 total_markers = num_used;
6615 total_free_markers = num_free;
6616 }
6617
6618 /* Free all unmarked buffers */
6619 {
6620 register struct buffer *buffer = all_buffers, *prev = 0, *next;
6621
3ab6e069 6622 total_buffers = 0;
7146af97 6623 while (buffer)
3ef06d12 6624 if (!VECTOR_MARKED_P (buffer))
7146af97
JB
6625 {
6626 if (prev)
eab3844f 6627 prev->header.next = buffer->header.next;
7146af97 6628 else
eab3844f
PE
6629 all_buffers = buffer->header.next.buffer;
6630 next = buffer->header.next.buffer;
34400008 6631 lisp_free (buffer);
7146af97
JB
6632 buffer = next;
6633 }
6634 else
6635 {
3ef06d12 6636 VECTOR_UNMARK (buffer);
30e3190a 6637 UNMARK_BALANCE_INTERVALS (BUF_INTERVALS (buffer));
3ab6e069 6638 total_buffers++;
eab3844f 6639 prev = buffer, buffer = buffer->header.next.buffer;
7146af97
JB
6640 }
6641 }
6642
f3372c87 6643 sweep_vectors ();
177c0ea7 6644
676a7251
GM
6645#ifdef GC_CHECK_STRING_BYTES
6646 if (!noninteractive)
6647 check_string_bytes (1);
6648#endif
7146af97 6649}
7146af97 6650
7146af97 6651
7146af97 6652
7146af97 6653\f
20d24714
JB
6654/* Debugging aids. */
6655
31ce1c91 6656DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
a6266d23 6657 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
228299fa 6658This may be helpful in debugging Emacs's memory usage.
7ee72033 6659We divide the value by 1024 to make sure it fits in a Lisp integer. */)
5842a27b 6660 (void)
20d24714
JB
6661{
6662 Lisp_Object end;
6663
d01a7826 6664 XSETINT (end, (intptr_t) (char *) sbrk (0) / 1024);
20d24714
JB
6665
6666 return end;
6667}
6668
310ea200 6669DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
a6266d23 6670 doc: /* Return a list of counters that measure how much consing there has been.
228299fa
GM
6671Each of these counters increments for a certain kind of object.
6672The counters wrap around from the largest positive integer to zero.
6673Garbage collection does not decrease them.
6674The elements of the value are as follows:
6675 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
6676All are in units of 1 = one object consed
6677except for VECTOR-CELLS and STRING-CHARS, which count the total length of
6678objects consed.
6679MISCS include overlays, markers, and some internal types.
6680Frames, windows, buffers, and subprocesses count as vectors
7ee72033 6681 (but the contents of a buffer's text do not count here). */)
5842a27b 6682 (void)
310ea200 6683{
694b6c97
DA
6684 return listn (HEAP, 8,
6685 bounded_number (cons_cells_consed),
6686 bounded_number (floats_consed),
6687 bounded_number (vector_cells_consed),
6688 bounded_number (symbols_consed),
6689 bounded_number (string_chars_consed),
6690 bounded_number (misc_objects_consed),
6691 bounded_number (intervals_consed),
6692 bounded_number (strings_consed));
310ea200 6693}
e0b8c689 6694
8b058d44
EZ
6695/* Find at most FIND_MAX symbols which have OBJ as their value or
6696 function. This is used in gdbinit's `xwhichsymbols' command. */
6697
6698Lisp_Object
196e41e4 6699which_symbols (Lisp_Object obj, EMACS_INT find_max)
8b058d44
EZ
6700{
6701 struct symbol_block *sblk;
8d0eb4c2 6702 ptrdiff_t gc_count = inhibit_garbage_collection ();
8b058d44
EZ
6703 Lisp_Object found = Qnil;
6704
ca78dc43 6705 if (! DEADP (obj))
8b058d44
EZ
6706 {
6707 for (sblk = symbol_block; sblk; sblk = sblk->next)
6708 {
9426aba4 6709 union aligned_Lisp_Symbol *aligned_sym = sblk->symbols;
8b058d44
EZ
6710 int bn;
6711
9426aba4 6712 for (bn = 0; bn < SYMBOL_BLOCK_SIZE; bn++, aligned_sym++)
8b058d44 6713 {
9426aba4 6714 struct Lisp_Symbol *sym = &aligned_sym->s;
8b058d44
EZ
6715 Lisp_Object val;
6716 Lisp_Object tem;
6717
6718 if (sblk == symbol_block && bn >= symbol_block_index)
6719 break;
6720
6721 XSETSYMBOL (tem, sym);
6722 val = find_symbol_value (tem);
6723 if (EQ (val, obj)
6724 || EQ (sym->function, obj)
6725 || (!NILP (sym->function)
6726 && COMPILEDP (sym->function)
6727 && EQ (AREF (sym->function, COMPILED_BYTECODE), obj))
6728 || (!NILP (val)
6729 && COMPILEDP (val)
6730 && EQ (AREF (val, COMPILED_BYTECODE), obj)))
6731 {
6732 found = Fcons (tem, found);
6733 if (--find_max == 0)
6734 goto out;
6735 }
6736 }
6737 }
6738 }
6739
6740 out:
6741 unbind_to (gc_count, Qnil);
6742 return found;
6743}
6744
244ed907 6745#ifdef ENABLE_CHECKING
e0b8c689 6746int suppress_checking;
d3d47262 6747
e0b8c689 6748void
971de7fb 6749die (const char *msg, const char *file, int line)
e0b8c689 6750{
67ee9f6e 6751 fprintf (stderr, "\r\n%s:%d: Emacs fatal error: %s\r\n",
e0b8c689
KR
6752 file, line, msg);
6753 abort ();
6754}
244ed907 6755#endif
20d24714 6756\f
7146af97
JB
6757/* Initialization */
6758
dfcf069d 6759void
971de7fb 6760init_alloc_once (void)
7146af97
JB
6761{
6762 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
9e713715
GM
6763 purebeg = PUREBEG;
6764 pure_size = PURESIZE;
ab6780cd 6765
877935b1 6766#if GC_MARK_STACK || defined GC_MALLOC_CHECK
34400008
GM
6767 mem_init ();
6768 Vdead = make_pure_string ("DEAD", 4, 4, 0);
6769#endif
9e713715 6770
d1658221
RS
6771#ifdef DOUG_LEA_MALLOC
6772 mallopt (M_TRIM_THRESHOLD, 128*1024); /* trim threshold */
6773 mallopt (M_MMAP_THRESHOLD, 64*1024); /* mmap threshold */
81d492d5 6774 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* max. number of mmap'ed areas */
d1658221 6775#endif
7146af97 6776 init_strings ();
f3372c87 6777 init_vectors ();
d5e35230 6778
276cbe5a
RS
6779#ifdef REL_ALLOC
6780 malloc_hysteresis = 32;
6781#else
6782 malloc_hysteresis = 0;
6783#endif
6784
24d8a105 6785 refill_memory_reserve ();
0dd6d66d 6786 gc_cons_threshold = GC_DEFAULT_THRESHOLD;
7146af97
JB
6787}
6788
dfcf069d 6789void
971de7fb 6790init_alloc (void)
7146af97
JB
6791{
6792 gcprolist = 0;
630686c8 6793 byte_stack_list = 0;
182ff242
GM
6794#if GC_MARK_STACK
6795#if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
6796 setjmp_tested_p = longjmps_done = 0;
6797#endif
6798#endif
2c5bd608
DL
6799 Vgc_elapsed = make_float (0.0);
6800 gcs_done = 0;
7146af97
JB
6801}
6802
6803void
971de7fb 6804syms_of_alloc (void)
7146af97 6805{
29208e82 6806 DEFVAR_INT ("gc-cons-threshold", gc_cons_threshold,
fb7ada5f 6807 doc: /* Number of bytes of consing between garbage collections.
228299fa
GM
6808Garbage collection can happen automatically once this many bytes have been
6809allocated since the last garbage collection. All data types count.
7146af97 6810
228299fa 6811Garbage collection happens automatically only when `eval' is called.
7146af97 6812
228299fa 6813By binding this temporarily to a large number, you can effectively
96f077ad
SM
6814prevent garbage collection during a part of the program.
6815See also `gc-cons-percentage'. */);
6816
29208e82 6817 DEFVAR_LISP ("gc-cons-percentage", Vgc_cons_percentage,
fb7ada5f 6818 doc: /* Portion of the heap used for allocation.
96f077ad
SM
6819Garbage collection can happen automatically once this portion of the heap
6820has been allocated since the last garbage collection.
6821If this portion is smaller than `gc-cons-threshold', this is ignored. */);
6822 Vgc_cons_percentage = make_float (0.1);
0819585c 6823
29208e82 6824 DEFVAR_INT ("pure-bytes-used", pure_bytes_used,
333f9019 6825 doc: /* Number of bytes of shareable Lisp data allocated so far. */);
0819585c 6826
29208e82 6827 DEFVAR_INT ("cons-cells-consed", cons_cells_consed,
a6266d23 6828 doc: /* Number of cons cells that have been consed so far. */);
0819585c 6829
29208e82 6830 DEFVAR_INT ("floats-consed", floats_consed,
a6266d23 6831 doc: /* Number of floats that have been consed so far. */);
0819585c 6832
29208e82 6833 DEFVAR_INT ("vector-cells-consed", vector_cells_consed,
a6266d23 6834 doc: /* Number of vector cells that have been consed so far. */);
0819585c 6835
29208e82 6836 DEFVAR_INT ("symbols-consed", symbols_consed,
a6266d23 6837 doc: /* Number of symbols that have been consed so far. */);
0819585c 6838
29208e82 6839 DEFVAR_INT ("string-chars-consed", string_chars_consed,
a6266d23 6840 doc: /* Number of string characters that have been consed so far. */);
0819585c 6841
29208e82 6842 DEFVAR_INT ("misc-objects-consed", misc_objects_consed,
01a6dcc8
GM
6843 doc: /* Number of miscellaneous objects that have been consed so far.
6844These include markers and overlays, plus certain objects not visible
6845to users. */);
2e471eb5 6846
29208e82 6847 DEFVAR_INT ("intervals-consed", intervals_consed,
a6266d23 6848 doc: /* Number of intervals that have been consed so far. */);
7146af97 6849
29208e82 6850 DEFVAR_INT ("strings-consed", strings_consed,
a6266d23 6851 doc: /* Number of strings that have been consed so far. */);
228299fa 6852
29208e82 6853 DEFVAR_LISP ("purify-flag", Vpurify_flag,
a6266d23 6854 doc: /* Non-nil means loading Lisp code in order to dump an executable.
e9515805
SM
6855This means that certain objects should be allocated in shared (pure) space.
6856It can also be set to a hash-table, in which case this table is used to
6857do hash-consing of the objects allocated to pure space. */);
228299fa 6858
29208e82 6859 DEFVAR_BOOL ("garbage-collection-messages", garbage_collection_messages,
a6266d23 6860 doc: /* Non-nil means display messages at start and end of garbage collection. */);
299585ee
RS
6861 garbage_collection_messages = 0;
6862
29208e82 6863 DEFVAR_LISP ("post-gc-hook", Vpost_gc_hook,
a6266d23 6864 doc: /* Hook run after garbage collection has finished. */);
9e713715 6865 Vpost_gc_hook = Qnil;
cd3520a4 6866 DEFSYM (Qpost_gc_hook, "post-gc-hook");
9e713715 6867
29208e82 6868 DEFVAR_LISP ("memory-signal-data", Vmemory_signal_data,
74a54b04 6869 doc: /* Precomputed `signal' argument for memory-full error. */);
bcb61d60
KH
6870 /* We build this in advance because if we wait until we need it, we might
6871 not be able to allocate the memory to hold it. */
74a54b04 6872 Vmemory_signal_data
694b6c97
DA
6873 = listn (PURE, 2, Qerror,
6874 build_pure_c_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"));
74a54b04 6875
29208e82 6876 DEFVAR_LISP ("memory-full", Vmemory_full,
24d8a105 6877 doc: /* Non-nil means Emacs cannot get much more Lisp memory. */);
74a54b04 6878 Vmemory_full = Qnil;
bcb61d60 6879
5b835e1d
DA
6880 DEFSYM (Qstring_bytes, "string-bytes");
6881 DEFSYM (Qvector_slots, "vector-slots");
f8643a6b 6882 DEFSYM (Qheap, "heap");
5b835e1d 6883
cd3520a4
JB
6884 DEFSYM (Qgc_cons_threshold, "gc-cons-threshold");
6885 DEFSYM (Qchar_table_extra_slots, "char-table-extra-slots");
a59de17b 6886
29208e82 6887 DEFVAR_LISP ("gc-elapsed", Vgc_elapsed,
2c5bd608 6888 doc: /* Accumulated time elapsed in garbage collections.
e7415487 6889The time is in seconds as a floating point value. */);
29208e82 6890 DEFVAR_INT ("gcs-done", gcs_done,
e7415487 6891 doc: /* Accumulated number of garbage collections done. */);
2c5bd608 6892
7146af97
JB
6893 defsubr (&Scons);
6894 defsubr (&Slist);
6895 defsubr (&Svector);
6896 defsubr (&Smake_byte_code);
6897 defsubr (&Smake_list);
6898 defsubr (&Smake_vector);
6899 defsubr (&Smake_string);
7b07587b 6900 defsubr (&Smake_bool_vector);
7146af97
JB
6901 defsubr (&Smake_symbol);
6902 defsubr (&Smake_marker);
6903 defsubr (&Spurecopy);
6904 defsubr (&Sgarbage_collect);
20d24714 6905 defsubr (&Smemory_limit);
310ea200 6906 defsubr (&Smemory_use_counts);
34400008
GM
6907
6908#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
6909 defsubr (&Sgc_status);
6910#endif
7146af97 6911}
5eceb8fb 6912
4706125e
PE
6913/* Make some symbols visible to GDB. This section is last, so that
6914 the #undef lines don't mess up later code. */
6915
6916/* When compiled with GCC, GDB might say "No enum type named
6917 pvec_type" if we don't have at least one symbol with that type, and
6918 then xbacktrace could fail. Similarly for the other enums and
6919 their values. */
6920union
6921{
6922 enum CHECK_LISP_OBJECT_TYPE CHECK_LISP_OBJECT_TYPE;
6923 enum enum_USE_LSB_TAG enum_USE_LSB_TAG;
6924 enum Lisp_Bits Lisp_Bits;
6925 enum More_Lisp_Bits More_Lisp_Bits;
6926 enum pvec_type pvec_type;
6927} const EXTERNALLY_VISIBLE gdb_make_enums_visible = {0};
6928
6929/* These symbols cannot be done as enums, since values might not be
6930 in 'int' range. Each symbol X has a corresponding X_VAL symbol,
6931 verified to have the correct value. */
5eceb8fb
PE
6932
6933#define ARRAY_MARK_FLAG_VAL PTRDIFF_MIN
6934#define PSEUDOVECTOR_FLAG_VAL (PTRDIFF_MAX - PTRDIFF_MAX / 2)
6935#define VALMASK_VAL (USE_LSB_TAG ? -1 << GCTYPEBITS : VAL_MAX)
6936
6937verify (ARRAY_MARK_FLAG_VAL == ARRAY_MARK_FLAG);
6938verify (PSEUDOVECTOR_FLAG_VAL == PSEUDOVECTOR_FLAG);
6939verify (VALMASK_VAL == VALMASK);
6940
6941#undef ARRAY_MARK_FLAG
6942#undef PSEUDOVECTOR_FLAG
6943#undef VALMASK
6944
6945ptrdiff_t const EXTERNALLY_VISIBLE
6946 ARRAY_MARK_FLAG = ARRAY_MARK_FLAG_VAL,
6947 PSEUDOVECTOR_FLAG = PSEUDOVECTOR_FLAG_VAL;
6948
6949EMACS_INT const EXTERNALLY_VISIBLE
6950 VALMASK = VALMASK_VAL;