* src/eval.c (Fdefvar): Don't check constants since we only set the var if
[bpt/emacs.git] / src / alloc.c
CommitLineData
7146af97 1/* Storage allocation and gc for GNU Emacs Lisp interpreter.
999dd333
GM
2
3Copyright (C) 1985-1986, 1988, 1993-1995, 1997-2012
4 Free Software Foundation, Inc.
7146af97
JB
5
6This file is part of GNU Emacs.
7
9ec0b715 8GNU Emacs is free software: you can redistribute it and/or modify
7146af97 9it under the terms of the GNU General Public License as published by
9ec0b715
GM
10the Free Software Foundation, either version 3 of the License, or
11(at your option) any later version.
7146af97
JB
12
13GNU Emacs is distributed in the hope that it will be useful,
14but WITHOUT ANY WARRANTY; without even the implied warranty of
15MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16GNU General Public License for more details.
17
18You should have received a copy of the GNU General Public License
9ec0b715 19along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
7146af97 20
18160b98 21#include <config.h>
e9b309ac 22#include <stdio.h>
ab6780cd 23#include <limits.h> /* For CHAR_BIT. */
d7306fe6 24#include <setjmp.h>
92939d31 25
68c45bf0 26#include <signal.h>
92939d31 27
ae9e757a 28#ifdef HAVE_PTHREAD
aa477689
JD
29#include <pthread.h>
30#endif
31
7539e11f
KR
32/* This file is part of the core Lisp implementation, and thus must
33 deal with the real data structures. If the Lisp implementation is
34 replaced, this file likely will not be used. */
2e471eb5 35
7539e11f 36#undef HIDE_LISP_IMPLEMENTATION
7146af97 37#include "lisp.h"
ece93c02 38#include "process.h"
d5e35230 39#include "intervals.h"
4c0be5f4 40#include "puresize.h"
e5560ff7 41#include "character.h"
7146af97
JB
42#include "buffer.h"
43#include "window.h"
2538fae4 44#include "keyboard.h"
502b9b64 45#include "frame.h"
9ac0d9e0 46#include "blockinput.h"
e065a56e 47#include "syssignal.h"
4a729fd8 48#include "termhooks.h" /* For struct terminal. */
34400008 49#include <setjmp.h>
0065d054 50#include <verify.h>
e065a56e 51
52828e02
PE
52/* GC_CHECK_MARKED_OBJECTS means do sanity checks on allocated objects.
53 Doable only if GC_MARK_STACK. */
54#if ! GC_MARK_STACK
55# undef GC_CHECK_MARKED_OBJECTS
56#endif
57
6b61353c 58/* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
52828e02
PE
59 memory. Can do this only if using gmalloc.c and if not checking
60 marked objects. */
6b61353c 61
52828e02
PE
62#if (defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC \
63 || defined GC_CHECK_MARKED_OBJECTS)
6b61353c
KH
64#undef GC_MALLOC_CHECK
65#endif
66
bf952fb6 67#include <unistd.h>
4004364e 68#ifndef HAVE_UNISTD_H
261cb4bb 69extern void *sbrk ();
bf952fb6 70#endif
ee1eea5c 71
de7124a7 72#include <fcntl.h>
de7124a7 73
69666f77 74#ifdef WINDOWSNT
f892cf9c 75#include "w32.h"
69666f77
EZ
76#endif
77
d1658221 78#ifdef DOUG_LEA_MALLOC
2e471eb5 79
d1658221 80#include <malloc.h>
81d492d5 81
2e471eb5
GM
82/* Specify maximum number of areas to mmap. It would be nice to use a
83 value that explicitly means "no limit". */
84
81d492d5
RS
85#define MMAP_MAX_AREAS 100000000
86
2e471eb5
GM
87#else /* not DOUG_LEA_MALLOC */
88
276cbe5a
RS
89/* The following come from gmalloc.c. */
90
5e927815
PE
91extern size_t _bytes_used;
92extern size_t __malloc_extra_blocks;
b62a57be
PE
93extern void *_malloc_internal (size_t);
94extern void _free_internal (void *);
2e471eb5
GM
95
96#endif /* not DOUG_LEA_MALLOC */
276cbe5a 97
7bc26fdb 98#if ! defined SYSTEM_MALLOC && ! defined SYNC_INPUT
ae9e757a 99#ifdef HAVE_PTHREAD
aa477689 100
f415cacd
JD
101/* When GTK uses the file chooser dialog, different backends can be loaded
102 dynamically. One such a backend is the Gnome VFS backend that gets loaded
103 if you run Gnome. That backend creates several threads and also allocates
104 memory with malloc.
105
ae9e757a
JD
106 Also, gconf and gsettings may create several threads.
107
f415cacd
JD
108 If Emacs sets malloc hooks (! SYSTEM_MALLOC) and the emacs_blocked_*
109 functions below are called from malloc, there is a chance that one
110 of these threads preempts the Emacs main thread and the hook variables
333f1b6f 111 end up in an inconsistent state. So we have a mutex to prevent that (note
f415cacd
JD
112 that the backend handles concurrent access to malloc within its own threads
113 but Emacs code running in the main thread is not included in that control).
114
026cdede 115 When UNBLOCK_INPUT is called, reinvoke_input_signal may be called. If this
f415cacd
JD
116 happens in one of the backend threads we will have two threads that tries
117 to run Emacs code at once, and the code is not prepared for that.
118 To prevent that, we only call BLOCK/UNBLOCK from the main thread. */
119
aa477689 120static pthread_mutex_t alloc_mutex;
aa477689 121
959dc601
JD
122#define BLOCK_INPUT_ALLOC \
123 do \
124 { \
125 if (pthread_equal (pthread_self (), main_thread)) \
86302e37 126 BLOCK_INPUT; \
959dc601
JD
127 pthread_mutex_lock (&alloc_mutex); \
128 } \
aa477689 129 while (0)
959dc601
JD
130#define UNBLOCK_INPUT_ALLOC \
131 do \
132 { \
133 pthread_mutex_unlock (&alloc_mutex); \
134 if (pthread_equal (pthread_self (), main_thread)) \
86302e37 135 UNBLOCK_INPUT; \
959dc601 136 } \
aa477689
JD
137 while (0)
138
ae9e757a 139#else /* ! defined HAVE_PTHREAD */
aa477689
JD
140
141#define BLOCK_INPUT_ALLOC BLOCK_INPUT
142#define UNBLOCK_INPUT_ALLOC UNBLOCK_INPUT
143
ae9e757a 144#endif /* ! defined HAVE_PTHREAD */
7bc26fdb 145#endif /* ! defined SYSTEM_MALLOC && ! defined SYNC_INPUT */
aa477689 146
2e471eb5
GM
147/* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
148 to a struct Lisp_String. */
149
7cdee936
SM
150#define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
151#define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
b059de99 152#define STRING_MARKED_P(S) (((S)->size & ARRAY_MARK_FLAG) != 0)
2e471eb5 153
eab3844f
PE
154#define VECTOR_MARK(V) ((V)->header.size |= ARRAY_MARK_FLAG)
155#define VECTOR_UNMARK(V) ((V)->header.size &= ~ARRAY_MARK_FLAG)
156#define VECTOR_MARKED_P(V) (((V)->header.size & ARRAY_MARK_FLAG) != 0)
3ef06d12 157
7bc26fdb
PE
158/* Value is the number of bytes of S, a pointer to a struct Lisp_String.
159 Be careful during GC, because S->size contains the mark bit for
2e471eb5
GM
160 strings. */
161
3ef06d12 162#define GC_STRING_BYTES(S) (STRING_BYTES (S))
2e471eb5 163
29208e82
TT
164/* Global variables. */
165struct emacs_globals globals;
166
2e471eb5
GM
167/* Number of bytes of consing done since the last gc. */
168
0de4bb68 169EMACS_INT consing_since_gc;
7146af97 170
974aae61
RS
171/* Similar minimum, computed from Vgc_cons_percentage. */
172
173EMACS_INT gc_relative_threshold;
310ea200 174
24d8a105
RS
175/* Minimum number of bytes of consing since GC before next GC,
176 when memory is full. */
177
178EMACS_INT memory_full_cons_threshold;
179
2e471eb5
GM
180/* Nonzero during GC. */
181
7146af97
JB
182int gc_in_progress;
183
3de0effb
RS
184/* Nonzero means abort if try to GC.
185 This is for code which is written on the assumption that
186 no GC will happen, so as to verify that assumption. */
187
188int abort_on_gc;
189
34400008
GM
190/* Number of live and free conses etc. */
191
3ab6e069 192static EMACS_INT total_conses, total_markers, total_symbols, total_buffers;
c0c5c8ae 193static EMACS_INT total_free_conses, total_free_markers, total_free_symbols;
3ab6e069 194static EMACS_INT total_free_floats, total_floats;
fd27a537 195
2e471eb5 196/* Points to memory space allocated as "spare", to be freed if we run
24d8a105
RS
197 out of memory. We keep one large block, four cons-blocks, and
198 two string blocks. */
2e471eb5 199
d3d47262 200static char *spare_memory[7];
276cbe5a 201
2b6148e4
PE
202/* Amount of spare memory to keep in large reserve block, or to see
203 whether this much is available when malloc fails on a larger request. */
2e471eb5 204
276cbe5a 205#define SPARE_MEMORY (1 << 14)
4d09bcf6 206
276cbe5a 207/* Number of extra blocks malloc should get when it needs more core. */
2e471eb5 208
276cbe5a
RS
209static int malloc_hysteresis;
210
1b8950e5
RS
211/* Initialize it to a nonzero value to force it into data space
212 (rather than bss space). That way unexec will remap it into text
213 space (pure), on some systems. We have not implemented the
214 remapping on more recent systems because this is less important
215 nowadays than in the days of small memories and timesharing. */
2e471eb5 216
2c4685ee 217EMACS_INT pure[(PURESIZE + sizeof (EMACS_INT) - 1) / sizeof (EMACS_INT)] = {1,};
7146af97 218#define PUREBEG (char *) pure
2e471eb5 219
9e713715 220/* Pointer to the pure area, and its size. */
2e471eb5 221
9e713715 222static char *purebeg;
903fe15d 223static ptrdiff_t pure_size;
9e713715
GM
224
225/* Number of bytes of pure storage used before pure storage overflowed.
226 If this is non-zero, this implies that an overflow occurred. */
227
903fe15d 228static ptrdiff_t pure_bytes_used_before_overflow;
7146af97 229
34400008
GM
230/* Value is non-zero if P points into pure space. */
231
232#define PURE_POINTER_P(P) \
6a0bf43d 233 ((uintptr_t) (P) - (uintptr_t) purebeg <= pure_size)
34400008 234
e5bc14d4
YM
235/* Index in pure at which next pure Lisp object will be allocated.. */
236
d311d28c 237static ptrdiff_t pure_bytes_used_lisp;
e5bc14d4
YM
238
239/* Number of bytes allocated for non-Lisp objects in pure storage. */
240
d311d28c 241static ptrdiff_t pure_bytes_used_non_lisp;
e5bc14d4 242
2e471eb5
GM
243/* If nonzero, this is a warning delivered by malloc and not yet
244 displayed. */
245
a8fe7202 246const char *pending_malloc_warning;
7146af97
JB
247
248/* Maximum amount of C stack to save when a GC happens. */
249
250#ifndef MAX_SAVE_STACK
251#define MAX_SAVE_STACK 16000
252#endif
253
254/* Buffer in which we save a copy of the C stack at each GC. */
255
dd3f25f7 256#if MAX_SAVE_STACK > 0
d3d47262 257static char *stack_copy;
903fe15d 258static ptrdiff_t stack_copy_size;
dd3f25f7 259#endif
7146af97 260
955cbe7b
PE
261static Lisp_Object Qgc_cons_threshold;
262Lisp_Object Qchar_table_extra_slots;
e8197642 263
9e713715
GM
264/* Hook run after GC has finished. */
265
955cbe7b 266static Lisp_Object Qpost_gc_hook;
2c5bd608 267
f57e2426 268static void mark_terminals (void);
f57e2426 269static void gc_sweep (void);
72cb32cf 270static Lisp_Object make_pure_vector (ptrdiff_t);
f57e2426
J
271static void mark_glyph_matrix (struct glyph_matrix *);
272static void mark_face_cache (struct face_cache *);
41c28a37 273
69003fd8
PE
274#if !defined REL_ALLOC || defined SYSTEM_MALLOC
275static void refill_memory_reserve (void);
276#endif
f57e2426
J
277static struct Lisp_String *allocate_string (void);
278static void compact_small_strings (void);
279static void free_large_strings (void);
280static void sweep_strings (void);
244ed907 281static void free_misc (Lisp_Object);
196e41e4 282extern Lisp_Object which_symbols (Lisp_Object, EMACS_INT) EXTERNALLY_VISIBLE;
34400008 283
34400008
GM
284/* When scanning the C stack for live Lisp objects, Emacs keeps track
285 of what memory allocated via lisp_malloc is intended for what
286 purpose. This enumeration specifies the type of memory. */
287
288enum mem_type
289{
290 MEM_TYPE_NON_LISP,
291 MEM_TYPE_BUFFER,
292 MEM_TYPE_CONS,
293 MEM_TYPE_STRING,
294 MEM_TYPE_MISC,
295 MEM_TYPE_SYMBOL,
296 MEM_TYPE_FLOAT,
9c545a55
SM
297 /* We used to keep separate mem_types for subtypes of vectors such as
298 process, hash_table, frame, terminal, and window, but we never made
299 use of the distinction, so it only caused source-code complexity
300 and runtime slowdown. Minor but pointless. */
f3372c87
DA
301 MEM_TYPE_VECTORLIKE,
302 /* Special type to denote vector blocks. */
303 MEM_TYPE_VECTOR_BLOCK
34400008
GM
304};
305
261cb4bb 306static void *lisp_malloc (size_t, enum mem_type);
225ccad6 307
24d8a105 308
877935b1 309#if GC_MARK_STACK || defined GC_MALLOC_CHECK
0b378936
GM
310
311#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
312#include <stdio.h> /* For fprintf. */
313#endif
314
315/* A unique object in pure space used to make some Lisp objects
316 on free lists recognizable in O(1). */
317
d3d47262 318static Lisp_Object Vdead;
ca78dc43 319#define DEADP(x) EQ (x, Vdead)
0b378936 320
877935b1
GM
321#ifdef GC_MALLOC_CHECK
322
323enum mem_type allocated_mem_type;
877935b1
GM
324
325#endif /* GC_MALLOC_CHECK */
326
327/* A node in the red-black tree describing allocated memory containing
328 Lisp data. Each such block is recorded with its start and end
329 address when it is allocated, and removed from the tree when it
330 is freed.
331
332 A red-black tree is a balanced binary tree with the following
333 properties:
334
335 1. Every node is either red or black.
336 2. Every leaf is black.
337 3. If a node is red, then both of its children are black.
338 4. Every simple path from a node to a descendant leaf contains
339 the same number of black nodes.
340 5. The root is always black.
341
342 When nodes are inserted into the tree, or deleted from the tree,
343 the tree is "fixed" so that these properties are always true.
344
345 A red-black tree with N internal nodes has height at most 2
346 log(N+1). Searches, insertions and deletions are done in O(log N).
347 Please see a text book about data structures for a detailed
348 description of red-black trees. Any book worth its salt should
349 describe them. */
350
351struct mem_node
352{
9f7d9210
RS
353 /* Children of this node. These pointers are never NULL. When there
354 is no child, the value is MEM_NIL, which points to a dummy node. */
355 struct mem_node *left, *right;
356
357 /* The parent of this node. In the root node, this is NULL. */
358 struct mem_node *parent;
877935b1
GM
359
360 /* Start and end of allocated region. */
361 void *start, *end;
362
363 /* Node color. */
364 enum {MEM_BLACK, MEM_RED} color;
177c0ea7 365
877935b1
GM
366 /* Memory type. */
367 enum mem_type type;
368};
369
370/* Base address of stack. Set in main. */
371
372Lisp_Object *stack_base;
373
374/* Root of the tree describing allocated Lisp memory. */
375
376static struct mem_node *mem_root;
377
ece93c02
GM
378/* Lowest and highest known address in the heap. */
379
380static void *min_heap_address, *max_heap_address;
381
877935b1
GM
382/* Sentinel node of the tree. */
383
384static struct mem_node mem_z;
385#define MEM_NIL &mem_z
386
d311d28c 387static struct Lisp_Vector *allocate_vectorlike (ptrdiff_t);
261cb4bb 388static void lisp_free (void *);
f57e2426
J
389static void mark_stack (void);
390static int live_vector_p (struct mem_node *, void *);
391static int live_buffer_p (struct mem_node *, void *);
392static int live_string_p (struct mem_node *, void *);
393static int live_cons_p (struct mem_node *, void *);
394static int live_symbol_p (struct mem_node *, void *);
395static int live_float_p (struct mem_node *, void *);
396static int live_misc_p (struct mem_node *, void *);
397static void mark_maybe_object (Lisp_Object);
3164aeac 398static void mark_memory (void *, void *);
52828e02 399#if GC_MARK_STACK || defined GC_MALLOC_CHECK
f57e2426
J
400static void mem_init (void);
401static struct mem_node *mem_insert (void *, void *, enum mem_type);
402static void mem_insert_fixup (struct mem_node *);
b62a57be 403#endif
f57e2426
J
404static void mem_rotate_left (struct mem_node *);
405static void mem_rotate_right (struct mem_node *);
406static void mem_delete (struct mem_node *);
407static void mem_delete_fixup (struct mem_node *);
55d4c1b2 408static inline struct mem_node *mem_find (void *);
34400008 409
34400008
GM
410
411#if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
f57e2426 412static void check_gcpros (void);
34400008
GM
413#endif
414
877935b1 415#endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
34400008 416
ca78dc43
PE
417#ifndef DEADP
418# define DEADP(x) 0
419#endif
420
1f0b3fd2
GM
421/* Recording what needs to be marked for gc. */
422
423struct gcpro *gcprolist;
424
379b98b1
PE
425/* Addresses of staticpro'd variables. Initialize it to a nonzero
426 value; otherwise some compilers put it into BSS. */
1f0b3fd2 427
d251c37c 428#define NSTATICS 0x650
d3d47262 429static Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
1f0b3fd2
GM
430
431/* Index of next unused slot in staticvec. */
432
fff62aa9 433static int staticidx;
1f0b3fd2 434
261cb4bb 435static void *pure_alloc (size_t, int);
1f0b3fd2
GM
436
437
438/* Value is SZ rounded up to the next multiple of ALIGNMENT.
439 ALIGNMENT must be a power of 2. */
440
ab6780cd 441#define ALIGN(ptr, ALIGNMENT) \
261cb4bb
PE
442 ((void *) (((uintptr_t) (ptr) + (ALIGNMENT) - 1) \
443 & ~ ((ALIGNMENT) - 1)))
1f0b3fd2 444
ece93c02 445
7146af97 446\f
34400008
GM
447/************************************************************************
448 Malloc
449 ************************************************************************/
450
4455ad75 451/* Function malloc calls this if it finds we are near exhausting storage. */
d457598b
AS
452
453void
a8fe7202 454malloc_warning (const char *str)
7146af97
JB
455{
456 pending_malloc_warning = str;
457}
458
34400008 459
4455ad75 460/* Display an already-pending malloc warning. */
34400008 461
d457598b 462void
971de7fb 463display_malloc_warning (void)
7146af97 464{
4455ad75
RS
465 call3 (intern ("display-warning"),
466 intern ("alloc"),
467 build_string (pending_malloc_warning),
468 intern ("emergency"));
7146af97 469 pending_malloc_warning = 0;
7146af97 470}
49efed3a 471\f
276cbe5a
RS
472/* Called if we can't allocate relocatable space for a buffer. */
473
474void
d311d28c 475buffer_memory_full (ptrdiff_t nbytes)
276cbe5a 476{
2e471eb5
GM
477 /* If buffers use the relocating allocator, no need to free
478 spare_memory, because we may have plenty of malloc space left
479 that we could get, and if we don't, the malloc that fails will
480 itself cause spare_memory to be freed. If buffers don't use the
481 relocating allocator, treat this like any other failing
482 malloc. */
276cbe5a
RS
483
484#ifndef REL_ALLOC
531b0165 485 memory_full (nbytes);
276cbe5a
RS
486#endif
487
2e471eb5
GM
488 /* This used to call error, but if we've run out of memory, we could
489 get infinite recursion trying to build the string. */
9b306d37 490 xsignal (Qnil, Vmemory_signal_data);
7146af97
JB
491}
492
f3372c87
DA
493/* A common multiple of the positive integers A and B. Ideally this
494 would be the least common multiple, but there's no way to do that
495 as a constant expression in C, so do the best that we can easily do. */
496#define COMMON_MULTIPLE(a, b) \
497 ((a) % (b) == 0 ? (a) : (b) % (a) == 0 ? (b) : (a) * (b))
34400008 498
c9d624c6 499#ifndef XMALLOC_OVERRUN_CHECK
903fe15d 500#define XMALLOC_OVERRUN_CHECK_OVERHEAD 0
c9d624c6 501#else
212f33f1 502
903fe15d
PE
503/* Check for overrun in malloc'ed buffers by wrapping a header and trailer
504 around each block.
bdbed949 505
f701dc2a
PE
506 The header consists of XMALLOC_OVERRUN_CHECK_SIZE fixed bytes
507 followed by XMALLOC_OVERRUN_SIZE_SIZE bytes containing the original
508 block size in little-endian order. The trailer consists of
509 XMALLOC_OVERRUN_CHECK_SIZE fixed bytes.
bdbed949
KS
510
511 The header is used to detect whether this block has been allocated
f701dc2a
PE
512 through these functions, as some low-level libc functions may
513 bypass the malloc hooks. */
bdbed949 514
212f33f1 515#define XMALLOC_OVERRUN_CHECK_SIZE 16
903fe15d 516#define XMALLOC_OVERRUN_CHECK_OVERHEAD \
38532ce6
PE
517 (2 * XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE)
518
519/* Define XMALLOC_OVERRUN_SIZE_SIZE so that (1) it's large enough to
f701dc2a
PE
520 hold a size_t value and (2) the header size is a multiple of the
521 alignment that Emacs needs for C types and for USE_LSB_TAG. */
522#define XMALLOC_BASE_ALIGNMENT \
523 offsetof ( \
524 struct { \
525 union { long double d; intmax_t i; void *p; } u; \
526 char c; \
527 }, \
528 c)
f3372c87 529
bfe3e0a2 530#if USE_LSB_TAG
f701dc2a
PE
531# define XMALLOC_HEADER_ALIGNMENT \
532 COMMON_MULTIPLE (1 << GCTYPEBITS, XMALLOC_BASE_ALIGNMENT)
38532ce6
PE
533#else
534# define XMALLOC_HEADER_ALIGNMENT XMALLOC_BASE_ALIGNMENT
535#endif
536#define XMALLOC_OVERRUN_SIZE_SIZE \
f701dc2a
PE
537 (((XMALLOC_OVERRUN_CHECK_SIZE + sizeof (size_t) \
538 + XMALLOC_HEADER_ALIGNMENT - 1) \
539 / XMALLOC_HEADER_ALIGNMENT * XMALLOC_HEADER_ALIGNMENT) \
540 - XMALLOC_OVERRUN_CHECK_SIZE)
bdbed949 541
903fe15d
PE
542static char const xmalloc_overrun_check_header[XMALLOC_OVERRUN_CHECK_SIZE] =
543 { '\x9a', '\x9b', '\xae', '\xaf',
544 '\xbf', '\xbe', '\xce', '\xcf',
545 '\xea', '\xeb', '\xec', '\xed',
546 '\xdf', '\xde', '\x9c', '\x9d' };
212f33f1 547
903fe15d
PE
548static char const xmalloc_overrun_check_trailer[XMALLOC_OVERRUN_CHECK_SIZE] =
549 { '\xaa', '\xab', '\xac', '\xad',
550 '\xba', '\xbb', '\xbc', '\xbd',
551 '\xca', '\xcb', '\xcc', '\xcd',
552 '\xda', '\xdb', '\xdc', '\xdd' };
212f33f1 553
903fe15d 554/* Insert and extract the block size in the header. */
bdbed949 555
903fe15d
PE
556static void
557xmalloc_put_size (unsigned char *ptr, size_t size)
558{
559 int i;
38532ce6 560 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
903fe15d 561 {
38532ce6 562 *--ptr = size & ((1 << CHAR_BIT) - 1);
903fe15d
PE
563 size >>= CHAR_BIT;
564 }
565}
bdbed949 566
903fe15d
PE
567static size_t
568xmalloc_get_size (unsigned char *ptr)
569{
570 size_t size = 0;
571 int i;
38532ce6
PE
572 ptr -= XMALLOC_OVERRUN_SIZE_SIZE;
573 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
903fe15d
PE
574 {
575 size <<= CHAR_BIT;
576 size += *ptr++;
577 }
578 return size;
579}
bdbed949
KS
580
581
d8f165a8
JD
582/* The call depth in overrun_check functions. For example, this might happen:
583 xmalloc()
584 overrun_check_malloc()
585 -> malloc -> (via hook)_-> emacs_blocked_malloc
586 -> overrun_check_malloc
587 call malloc (hooks are NULL, so real malloc is called).
588 malloc returns 10000.
589 add overhead, return 10016.
590 <- (back in overrun_check_malloc)
857ae68b 591 add overhead again, return 10032
d8f165a8 592 xmalloc returns 10032.
857ae68b
JD
593
594 (time passes).
595
d8f165a8
JD
596 xfree(10032)
597 overrun_check_free(10032)
903fe15d 598 decrease overhead
d8f165a8 599 free(10016) <- crash, because 10000 is the original pointer. */
857ae68b 600
903fe15d 601static ptrdiff_t check_depth;
857ae68b 602
bdbed949
KS
603/* Like malloc, but wraps allocated block with header and trailer. */
604
261cb4bb 605static void *
e7974947 606overrun_check_malloc (size_t size)
212f33f1 607{
bdbed949 608 register unsigned char *val;
903fe15d
PE
609 int overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_OVERHEAD : 0;
610 if (SIZE_MAX - overhead < size)
611 abort ();
212f33f1 612
38182d90 613 val = malloc (size + overhead);
857ae68b 614 if (val && check_depth == 1)
212f33f1 615 {
903fe15d 616 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
38532ce6 617 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
903fe15d 618 xmalloc_put_size (val, size);
72af86bd
AS
619 memcpy (val + size, xmalloc_overrun_check_trailer,
620 XMALLOC_OVERRUN_CHECK_SIZE);
212f33f1 621 }
857ae68b 622 --check_depth;
261cb4bb 623 return val;
212f33f1
KS
624}
625
bdbed949
KS
626
627/* Like realloc, but checks old block for overrun, and wraps new block
628 with header and trailer. */
629
261cb4bb
PE
630static void *
631overrun_check_realloc (void *block, size_t size)
212f33f1 632{
e7974947 633 register unsigned char *val = (unsigned char *) block;
903fe15d
PE
634 int overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_OVERHEAD : 0;
635 if (SIZE_MAX - overhead < size)
636 abort ();
212f33f1
KS
637
638 if (val
857ae68b 639 && check_depth == 1
72af86bd 640 && memcmp (xmalloc_overrun_check_header,
38532ce6 641 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
903fe15d 642 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
212f33f1 643 {
903fe15d 644 size_t osize = xmalloc_get_size (val);
72af86bd
AS
645 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
646 XMALLOC_OVERRUN_CHECK_SIZE))
212f33f1 647 abort ();
72af86bd 648 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
38532ce6
PE
649 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
650 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
212f33f1
KS
651 }
652
261cb4bb 653 val = realloc (val, size + overhead);
212f33f1 654
857ae68b 655 if (val && check_depth == 1)
212f33f1 656 {
903fe15d 657 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
38532ce6 658 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
903fe15d 659 xmalloc_put_size (val, size);
72af86bd
AS
660 memcpy (val + size, xmalloc_overrun_check_trailer,
661 XMALLOC_OVERRUN_CHECK_SIZE);
212f33f1 662 }
857ae68b 663 --check_depth;
261cb4bb 664 return val;
212f33f1
KS
665}
666
bdbed949
KS
667/* Like free, but checks block for overrun. */
668
2538aa2f 669static void
261cb4bb 670overrun_check_free (void *block)
212f33f1 671{
e7974947 672 unsigned char *val = (unsigned char *) block;
212f33f1 673
857ae68b 674 ++check_depth;
212f33f1 675 if (val
857ae68b 676 && check_depth == 1
72af86bd 677 && memcmp (xmalloc_overrun_check_header,
38532ce6 678 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
903fe15d 679 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
212f33f1 680 {
903fe15d 681 size_t osize = xmalloc_get_size (val);
72af86bd
AS
682 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
683 XMALLOC_OVERRUN_CHECK_SIZE))
212f33f1 684 abort ();
454d7973 685#ifdef XMALLOC_CLEAR_FREE_MEMORY
38532ce6 686 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
903fe15d 687 memset (val, 0xff, osize + XMALLOC_OVERRUN_CHECK_OVERHEAD);
454d7973 688#else
72af86bd 689 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
38532ce6
PE
690 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
691 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
454d7973 692#endif
212f33f1
KS
693 }
694
695 free (val);
857ae68b 696 --check_depth;
212f33f1
KS
697}
698
699#undef malloc
700#undef realloc
701#undef free
702#define malloc overrun_check_malloc
703#define realloc overrun_check_realloc
704#define free overrun_check_free
705#endif
706
dafc79fa
SM
707#ifdef SYNC_INPUT
708/* When using SYNC_INPUT, we don't call malloc from a signal handler, so
709 there's no need to block input around malloc. */
710#define MALLOC_BLOCK_INPUT ((void)0)
711#define MALLOC_UNBLOCK_INPUT ((void)0)
712#else
713#define MALLOC_BLOCK_INPUT BLOCK_INPUT
714#define MALLOC_UNBLOCK_INPUT UNBLOCK_INPUT
715#endif
bdbed949 716
34400008 717/* Like malloc but check for no memory and block interrupt input.. */
7146af97 718
261cb4bb 719void *
971de7fb 720xmalloc (size_t size)
7146af97 721{
261cb4bb 722 void *val;
7146af97 723
dafc79fa 724 MALLOC_BLOCK_INPUT;
261cb4bb 725 val = malloc (size);
dafc79fa 726 MALLOC_UNBLOCK_INPUT;
7146af97 727
2e471eb5 728 if (!val && size)
531b0165 729 memory_full (size);
7146af97
JB
730 return val;
731}
732
23f86fce
DA
733/* Like the above, but zeroes out the memory just allocated. */
734
735void *
736xzalloc (size_t size)
737{
738 void *val;
739
740 MALLOC_BLOCK_INPUT;
741 val = malloc (size);
742 MALLOC_UNBLOCK_INPUT;
743
744 if (!val && size)
745 memory_full (size);
746 memset (val, 0, size);
747 return val;
748}
34400008
GM
749
750/* Like realloc but check for no memory and block interrupt input.. */
751
261cb4bb
PE
752void *
753xrealloc (void *block, size_t size)
7146af97 754{
261cb4bb 755 void *val;
7146af97 756
dafc79fa 757 MALLOC_BLOCK_INPUT;
56d2031b
JB
758 /* We must call malloc explicitly when BLOCK is 0, since some
759 reallocs don't do this. */
760 if (! block)
261cb4bb 761 val = malloc (size);
f048679d 762 else
261cb4bb 763 val = realloc (block, size);
dafc79fa 764 MALLOC_UNBLOCK_INPUT;
7146af97 765
531b0165
PE
766 if (!val && size)
767 memory_full (size);
7146af97
JB
768 return val;
769}
9ac0d9e0 770
34400008 771
005ca5c7 772/* Like free but block interrupt input. */
34400008 773
9ac0d9e0 774void
261cb4bb 775xfree (void *block)
9ac0d9e0 776{
70fdbb46
JM
777 if (!block)
778 return;
dafc79fa 779 MALLOC_BLOCK_INPUT;
9ac0d9e0 780 free (block);
dafc79fa 781 MALLOC_UNBLOCK_INPUT;
24d8a105
RS
782 /* We don't call refill_memory_reserve here
783 because that duplicates doing so in emacs_blocked_free
784 and the criterion should go there. */
9ac0d9e0
JB
785}
786
c8099634 787
0065d054
PE
788/* Other parts of Emacs pass large int values to allocator functions
789 expecting ptrdiff_t. This is portable in practice, but check it to
790 be safe. */
791verify (INT_MAX <= PTRDIFF_MAX);
792
793
794/* Allocate an array of NITEMS items, each of size ITEM_SIZE.
795 Signal an error on memory exhaustion, and block interrupt input. */
796
797void *
798xnmalloc (ptrdiff_t nitems, ptrdiff_t item_size)
799{
a54e2c05 800 eassert (0 <= nitems && 0 < item_size);
0065d054
PE
801 if (min (PTRDIFF_MAX, SIZE_MAX) / item_size < nitems)
802 memory_full (SIZE_MAX);
803 return xmalloc (nitems * item_size);
804}
805
806
807/* Reallocate an array PA to make it of NITEMS items, each of size ITEM_SIZE.
808 Signal an error on memory exhaustion, and block interrupt input. */
809
810void *
811xnrealloc (void *pa, ptrdiff_t nitems, ptrdiff_t item_size)
812{
a54e2c05 813 eassert (0 <= nitems && 0 < item_size);
0065d054
PE
814 if (min (PTRDIFF_MAX, SIZE_MAX) / item_size < nitems)
815 memory_full (SIZE_MAX);
816 return xrealloc (pa, nitems * item_size);
817}
818
819
820/* Grow PA, which points to an array of *NITEMS items, and return the
821 location of the reallocated array, updating *NITEMS to reflect its
822 new size. The new array will contain at least NITEMS_INCR_MIN more
823 items, but will not contain more than NITEMS_MAX items total.
824 ITEM_SIZE is the size of each item, in bytes.
825
826 ITEM_SIZE and NITEMS_INCR_MIN must be positive. *NITEMS must be
827 nonnegative. If NITEMS_MAX is -1, it is treated as if it were
828 infinity.
829
830 If PA is null, then allocate a new array instead of reallocating
831 the old one. Thus, to grow an array A without saving its old
832 contents, invoke xfree (A) immediately followed by xgrowalloc (0,
833 &NITEMS, ...).
834
835 Block interrupt input as needed. If memory exhaustion occurs, set
836 *NITEMS to zero if PA is null, and signal an error (i.e., do not
837 return). */
838
839void *
840xpalloc (void *pa, ptrdiff_t *nitems, ptrdiff_t nitems_incr_min,
841 ptrdiff_t nitems_max, ptrdiff_t item_size)
842{
843 /* The approximate size to use for initial small allocation
844 requests. This is the largest "small" request for the GNU C
845 library malloc. */
846 enum { DEFAULT_MXFAST = 64 * sizeof (size_t) / 4 };
847
848 /* If the array is tiny, grow it to about (but no greater than)
849 DEFAULT_MXFAST bytes. Otherwise, grow it by about 50%. */
850 ptrdiff_t n = *nitems;
851 ptrdiff_t tiny_max = DEFAULT_MXFAST / item_size - n;
852 ptrdiff_t half_again = n >> 1;
853 ptrdiff_t incr_estimate = max (tiny_max, half_again);
854
855 /* Adjust the increment according to three constraints: NITEMS_INCR_MIN,
856 NITEMS_MAX, and what the C language can represent safely. */
857 ptrdiff_t C_language_max = min (PTRDIFF_MAX, SIZE_MAX) / item_size;
858 ptrdiff_t n_max = (0 <= nitems_max && nitems_max < C_language_max
859 ? nitems_max : C_language_max);
860 ptrdiff_t nitems_incr_max = n_max - n;
861 ptrdiff_t incr = max (nitems_incr_min, min (incr_estimate, nitems_incr_max));
862
a54e2c05 863 eassert (0 < item_size && 0 < nitems_incr_min && 0 <= n && -1 <= nitems_max);
0065d054
PE
864 if (! pa)
865 *nitems = 0;
866 if (nitems_incr_max < incr)
867 memory_full (SIZE_MAX);
868 n += incr;
869 pa = xrealloc (pa, n * item_size);
870 *nitems = n;
871 return pa;
872}
873
874
dca7c6a8
GM
875/* Like strdup, but uses xmalloc. */
876
877char *
971de7fb 878xstrdup (const char *s)
dca7c6a8 879{
675d5130 880 size_t len = strlen (s) + 1;
23f86fce 881 char *p = xmalloc (len);
72af86bd 882 memcpy (p, s, len);
dca7c6a8
GM
883 return p;
884}
885
886
f61bef8b
KS
887/* Unwind for SAFE_ALLOCA */
888
889Lisp_Object
971de7fb 890safe_alloca_unwind (Lisp_Object arg)
f61bef8b 891{
b766f870
KS
892 register struct Lisp_Save_Value *p = XSAVE_VALUE (arg);
893
894 p->dogc = 0;
895 xfree (p->pointer);
896 p->pointer = 0;
7b7990cc 897 free_misc (arg);
f61bef8b
KS
898 return Qnil;
899}
900
901
34400008
GM
902/* Like malloc but used for allocating Lisp data. NBYTES is the
903 number of bytes to allocate, TYPE describes the intended use of the
91af3942 904 allocated memory block (for strings, for conses, ...). */
34400008 905
bfe3e0a2
PE
906#if ! USE_LSB_TAG
907void *lisp_malloc_loser EXTERNALLY_VISIBLE;
212f33f1 908#endif
918a23a7 909
261cb4bb 910static void *
971de7fb 911lisp_malloc (size_t nbytes, enum mem_type type)
c8099634 912{
34400008 913 register void *val;
c8099634 914
dafc79fa 915 MALLOC_BLOCK_INPUT;
877935b1
GM
916
917#ifdef GC_MALLOC_CHECK
918 allocated_mem_type = type;
919#endif
177c0ea7 920
38182d90 921 val = malloc (nbytes);
c8099634 922
bfe3e0a2 923#if ! USE_LSB_TAG
918a23a7
RS
924 /* If the memory just allocated cannot be addressed thru a Lisp
925 object's pointer, and it needs to be,
926 that's equivalent to running out of memory. */
927 if (val && type != MEM_TYPE_NON_LISP)
928 {
929 Lisp_Object tem;
930 XSETCONS (tem, (char *) val + nbytes - 1);
931 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
932 {
933 lisp_malloc_loser = val;
934 free (val);
935 val = 0;
936 }
937 }
6b61353c 938#endif
918a23a7 939
877935b1 940#if GC_MARK_STACK && !defined GC_MALLOC_CHECK
dca7c6a8 941 if (val && type != MEM_TYPE_NON_LISP)
34400008
GM
942 mem_insert (val, (char *) val + nbytes, type);
943#endif
177c0ea7 944
dafc79fa 945 MALLOC_UNBLOCK_INPUT;
dca7c6a8 946 if (!val && nbytes)
531b0165 947 memory_full (nbytes);
c8099634
RS
948 return val;
949}
950
34400008
GM
951/* Free BLOCK. This must be called to free memory allocated with a
952 call to lisp_malloc. */
953
bf952fb6 954static void
261cb4bb 955lisp_free (void *block)
c8099634 956{
dafc79fa 957 MALLOC_BLOCK_INPUT;
c8099634 958 free (block);
877935b1 959#if GC_MARK_STACK && !defined GC_MALLOC_CHECK
34400008
GM
960 mem_delete (mem_find (block));
961#endif
dafc79fa 962 MALLOC_UNBLOCK_INPUT;
c8099634 963}
34400008 964
453b951e
SM
965/***** Allocation of aligned blocks of memory to store Lisp data. *****/
966
967/* The entry point is lisp_align_malloc which returns blocks of at most
968 BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
ab6780cd 969
b4181b01
KS
970#if defined (HAVE_POSIX_MEMALIGN) && defined (SYSTEM_MALLOC)
971#define USE_POSIX_MEMALIGN 1
972#endif
ab6780cd
SM
973
974/* BLOCK_ALIGN has to be a power of 2. */
975#define BLOCK_ALIGN (1 << 10)
ab6780cd
SM
976
977/* Padding to leave at the end of a malloc'd block. This is to give
978 malloc a chance to minimize the amount of memory wasted to alignment.
979 It should be tuned to the particular malloc library used.
19bcad1f
SM
980 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
981 posix_memalign on the other hand would ideally prefer a value of 4
982 because otherwise, there's 1020 bytes wasted between each ablocks.
f501ccb4
SM
983 In Emacs, testing shows that those 1020 can most of the time be
984 efficiently used by malloc to place other objects, so a value of 0 can
985 still preferable unless you have a lot of aligned blocks and virtually
986 nothing else. */
19bcad1f
SM
987#define BLOCK_PADDING 0
988#define BLOCK_BYTES \
0b432f21 989 (BLOCK_ALIGN - sizeof (struct ablocks *) - BLOCK_PADDING)
19bcad1f
SM
990
991/* Internal data structures and constants. */
992
ab6780cd
SM
993#define ABLOCKS_SIZE 16
994
995/* An aligned block of memory. */
996struct ablock
997{
998 union
999 {
1000 char payload[BLOCK_BYTES];
1001 struct ablock *next_free;
1002 } x;
1003 /* `abase' is the aligned base of the ablocks. */
1004 /* It is overloaded to hold the virtual `busy' field that counts
1005 the number of used ablock in the parent ablocks.
1006 The first ablock has the `busy' field, the others have the `abase'
1007 field. To tell the difference, we assume that pointers will have
1008 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
1009 is used to tell whether the real base of the parent ablocks is `abase'
1010 (if not, the word before the first ablock holds a pointer to the
1011 real base). */
1012 struct ablocks *abase;
1013 /* The padding of all but the last ablock is unused. The padding of
1014 the last ablock in an ablocks is not allocated. */
19bcad1f
SM
1015#if BLOCK_PADDING
1016 char padding[BLOCK_PADDING];
ebb8d410 1017#endif
ab6780cd
SM
1018};
1019
1020/* A bunch of consecutive aligned blocks. */
1021struct ablocks
1022{
1023 struct ablock blocks[ABLOCKS_SIZE];
1024};
1025
4b5afbb0 1026/* Size of the block requested from malloc or posix_memalign. */
19bcad1f 1027#define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
ab6780cd
SM
1028
1029#define ABLOCK_ABASE(block) \
d01a7826 1030 (((uintptr_t) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
ab6780cd
SM
1031 ? (struct ablocks *)(block) \
1032 : (block)->abase)
1033
1034/* Virtual `busy' field. */
1035#define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
1036
1037/* Pointer to the (not necessarily aligned) malloc block. */
349a4500 1038#ifdef USE_POSIX_MEMALIGN
19bcad1f
SM
1039#define ABLOCKS_BASE(abase) (abase)
1040#else
ab6780cd 1041#define ABLOCKS_BASE(abase) \
d01a7826 1042 (1 & (intptr_t) ABLOCKS_BUSY (abase) ? abase : ((void**)abase)[-1])
19bcad1f 1043#endif
ab6780cd
SM
1044
1045/* The list of free ablock. */
1046static struct ablock *free_ablock;
1047
1048/* Allocate an aligned block of nbytes.
1049 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
1050 smaller or equal to BLOCK_BYTES. */
261cb4bb 1051static void *
971de7fb 1052lisp_align_malloc (size_t nbytes, enum mem_type type)
ab6780cd
SM
1053{
1054 void *base, *val;
1055 struct ablocks *abase;
1056
1057 eassert (nbytes <= BLOCK_BYTES);
1058
dafc79fa 1059 MALLOC_BLOCK_INPUT;
ab6780cd
SM
1060
1061#ifdef GC_MALLOC_CHECK
1062 allocated_mem_type = type;
1063#endif
1064
1065 if (!free_ablock)
1066 {
005ca5c7 1067 int i;
d01a7826 1068 intptr_t aligned; /* int gets warning casting to 64-bit pointer. */
ab6780cd
SM
1069
1070#ifdef DOUG_LEA_MALLOC
1071 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1072 because mapped region contents are not preserved in
1073 a dumped Emacs. */
1074 mallopt (M_MMAP_MAX, 0);
1075#endif
1076
349a4500 1077#ifdef USE_POSIX_MEMALIGN
19bcad1f
SM
1078 {
1079 int err = posix_memalign (&base, BLOCK_ALIGN, ABLOCKS_BYTES);
ab349c19
RS
1080 if (err)
1081 base = NULL;
1082 abase = base;
19bcad1f
SM
1083 }
1084#else
ab6780cd
SM
1085 base = malloc (ABLOCKS_BYTES);
1086 abase = ALIGN (base, BLOCK_ALIGN);
ab349c19
RS
1087#endif
1088
6b61353c
KH
1089 if (base == 0)
1090 {
dafc79fa 1091 MALLOC_UNBLOCK_INPUT;
531b0165 1092 memory_full (ABLOCKS_BYTES);
6b61353c 1093 }
ab6780cd
SM
1094
1095 aligned = (base == abase);
1096 if (!aligned)
1097 ((void**)abase)[-1] = base;
1098
1099#ifdef DOUG_LEA_MALLOC
1100 /* Back to a reasonable maximum of mmap'ed areas. */
1101 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1102#endif
1103
bfe3e0a2 1104#if ! USE_LSB_TAG
8f924df7
KH
1105 /* If the memory just allocated cannot be addressed thru a Lisp
1106 object's pointer, and it needs to be, that's equivalent to
1107 running out of memory. */
1108 if (type != MEM_TYPE_NON_LISP)
1109 {
1110 Lisp_Object tem;
1111 char *end = (char *) base + ABLOCKS_BYTES - 1;
1112 XSETCONS (tem, end);
1113 if ((char *) XCONS (tem) != end)
1114 {
1115 lisp_malloc_loser = base;
1116 free (base);
dafc79fa 1117 MALLOC_UNBLOCK_INPUT;
531b0165 1118 memory_full (SIZE_MAX);
8f924df7
KH
1119 }
1120 }
6b61353c 1121#endif
8f924df7 1122
ab6780cd 1123 /* Initialize the blocks and put them on the free list.
453b951e 1124 If `base' was not properly aligned, we can't use the last block. */
ab6780cd
SM
1125 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
1126 {
1127 abase->blocks[i].abase = abase;
1128 abase->blocks[i].x.next_free = free_ablock;
1129 free_ablock = &abase->blocks[i];
1130 }
8ac068ac 1131 ABLOCKS_BUSY (abase) = (struct ablocks *) aligned;
ab6780cd 1132
d01a7826 1133 eassert (0 == ((uintptr_t) abase) % BLOCK_ALIGN);
ab6780cd
SM
1134 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
1135 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
1136 eassert (ABLOCKS_BASE (abase) == base);
d01a7826 1137 eassert (aligned == (intptr_t) ABLOCKS_BUSY (abase));
ab6780cd
SM
1138 }
1139
1140 abase = ABLOCK_ABASE (free_ablock);
8ac068ac 1141 ABLOCKS_BUSY (abase) =
d01a7826 1142 (struct ablocks *) (2 + (intptr_t) ABLOCKS_BUSY (abase));
ab6780cd
SM
1143 val = free_ablock;
1144 free_ablock = free_ablock->x.next_free;
1145
ab6780cd 1146#if GC_MARK_STACK && !defined GC_MALLOC_CHECK
3687c2ef 1147 if (type != MEM_TYPE_NON_LISP)
ab6780cd
SM
1148 mem_insert (val, (char *) val + nbytes, type);
1149#endif
1150
dafc79fa 1151 MALLOC_UNBLOCK_INPUT;
ab6780cd 1152
d01a7826 1153 eassert (0 == ((uintptr_t) val) % BLOCK_ALIGN);
ab6780cd
SM
1154 return val;
1155}
1156
1157static void
261cb4bb 1158lisp_align_free (void *block)
ab6780cd
SM
1159{
1160 struct ablock *ablock = block;
1161 struct ablocks *abase = ABLOCK_ABASE (ablock);
1162
dafc79fa 1163 MALLOC_BLOCK_INPUT;
ab6780cd
SM
1164#if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1165 mem_delete (mem_find (block));
1166#endif
1167 /* Put on free list. */
1168 ablock->x.next_free = free_ablock;
1169 free_ablock = ablock;
1170 /* Update busy count. */
453b951e
SM
1171 ABLOCKS_BUSY (abase)
1172 = (struct ablocks *) (-2 + (intptr_t) ABLOCKS_BUSY (abase));
d2db1c32 1173
d01a7826 1174 if (2 > (intptr_t) ABLOCKS_BUSY (abase))
ab6780cd 1175 { /* All the blocks are free. */
d01a7826 1176 int i = 0, aligned = (intptr_t) ABLOCKS_BUSY (abase);
ab6780cd
SM
1177 struct ablock **tem = &free_ablock;
1178 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
1179
1180 while (*tem)
1181 {
1182 if (*tem >= (struct ablock *) abase && *tem < atop)
1183 {
1184 i++;
1185 *tem = (*tem)->x.next_free;
1186 }
1187 else
1188 tem = &(*tem)->x.next_free;
1189 }
1190 eassert ((aligned & 1) == aligned);
1191 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
349a4500 1192#ifdef USE_POSIX_MEMALIGN
d01a7826 1193 eassert ((uintptr_t) ABLOCKS_BASE (abase) % BLOCK_ALIGN == 0);
cfb2f32e 1194#endif
ab6780cd
SM
1195 free (ABLOCKS_BASE (abase));
1196 }
dafc79fa 1197 MALLOC_UNBLOCK_INPUT;
ab6780cd 1198}
3ef06d12 1199
9ac0d9e0 1200\f
026cdede
SM
1201#ifndef SYSTEM_MALLOC
1202
9ac0d9e0
JB
1203/* Arranging to disable input signals while we're in malloc.
1204
1205 This only works with GNU malloc. To help out systems which can't
1206 use GNU malloc, all the calls to malloc, realloc, and free
1207 elsewhere in the code should be inside a BLOCK_INPUT/UNBLOCK_INPUT
026cdede 1208 pair; unfortunately, we have no idea what C library functions
9ac0d9e0 1209 might call malloc, so we can't really protect them unless you're
2c5bd608
DL
1210 using GNU malloc. Fortunately, most of the major operating systems
1211 can use GNU malloc. */
9ac0d9e0 1212
026cdede 1213#ifndef SYNC_INPUT
dafc79fa
SM
1214/* When using SYNC_INPUT, we don't call malloc from a signal handler, so
1215 there's no need to block input around malloc. */
026cdede 1216
b3303f74 1217#ifndef DOUG_LEA_MALLOC
f57e2426
J
1218extern void * (*__malloc_hook) (size_t, const void *);
1219extern void * (*__realloc_hook) (void *, size_t, const void *);
1220extern void (*__free_hook) (void *, const void *);
b3303f74
DL
1221/* Else declared in malloc.h, perhaps with an extra arg. */
1222#endif /* DOUG_LEA_MALLOC */
f57e2426
J
1223static void * (*old_malloc_hook) (size_t, const void *);
1224static void * (*old_realloc_hook) (void *, size_t, const void*);
1225static void (*old_free_hook) (void*, const void*);
9ac0d9e0 1226
4e75f29d
PE
1227#ifdef DOUG_LEA_MALLOC
1228# define BYTES_USED (mallinfo ().uordblks)
1229#else
1230# define BYTES_USED _bytes_used
1231#endif
1232
b62a57be
PE
1233#ifdef GC_MALLOC_CHECK
1234static int dont_register_blocks;
1235#endif
1236
5e927815 1237static size_t bytes_used_when_reconsidered;
ef1b0ba7 1238
4e75f29d
PE
1239/* Value of _bytes_used, when spare_memory was freed. */
1240
5e927815 1241static size_t bytes_used_when_full;
4e75f29d 1242
276cbe5a
RS
1243/* This function is used as the hook for free to call. */
1244
9ac0d9e0 1245static void
7c3320d8 1246emacs_blocked_free (void *ptr, const void *ptr2)
9ac0d9e0 1247{
aa477689 1248 BLOCK_INPUT_ALLOC;
877935b1
GM
1249
1250#ifdef GC_MALLOC_CHECK
a83fee2c
GM
1251 if (ptr)
1252 {
1253 struct mem_node *m;
177c0ea7 1254
a83fee2c
GM
1255 m = mem_find (ptr);
1256 if (m == MEM_NIL || m->start != ptr)
1257 {
1258 fprintf (stderr,
1259 "Freeing `%p' which wasn't allocated with malloc\n", ptr);
1260 abort ();
1261 }
1262 else
1263 {
1264 /* fprintf (stderr, "free %p...%p (%p)\n", m->start, m->end, ptr); */
1265 mem_delete (m);
1266 }
1267 }
877935b1 1268#endif /* GC_MALLOC_CHECK */
177c0ea7 1269
9ac0d9e0
JB
1270 __free_hook = old_free_hook;
1271 free (ptr);
177c0ea7 1272
276cbe5a
RS
1273 /* If we released our reserve (due to running out of memory),
1274 and we have a fair amount free once again,
1275 try to set aside another reserve in case we run out once more. */
24d8a105 1276 if (! NILP (Vmemory_full)
276cbe5a
RS
1277 /* Verify there is enough space that even with the malloc
1278 hysteresis this call won't run out again.
1279 The code here is correct as long as SPARE_MEMORY
1280 is substantially larger than the block size malloc uses. */
1281 && (bytes_used_when_full
4d74a5fc 1282 > ((bytes_used_when_reconsidered = BYTES_USED)
bccfb310 1283 + max (malloc_hysteresis, 4) * SPARE_MEMORY)))
24d8a105 1284 refill_memory_reserve ();
276cbe5a 1285
b0846f52 1286 __free_hook = emacs_blocked_free;
aa477689 1287 UNBLOCK_INPUT_ALLOC;
9ac0d9e0
JB
1288}
1289
34400008 1290
276cbe5a
RS
1291/* This function is the malloc hook that Emacs uses. */
1292
9ac0d9e0 1293static void *
7c3320d8 1294emacs_blocked_malloc (size_t size, const void *ptr)
9ac0d9e0
JB
1295{
1296 void *value;
1297
aa477689 1298 BLOCK_INPUT_ALLOC;
9ac0d9e0 1299 __malloc_hook = old_malloc_hook;
1177ecf6 1300#ifdef DOUG_LEA_MALLOC
5665a02f
KL
1301 /* Segfaults on my system. --lorentey */
1302 /* mallopt (M_TOP_PAD, malloc_hysteresis * 4096); */
1177ecf6 1303#else
d1658221 1304 __malloc_extra_blocks = malloc_hysteresis;
1177ecf6 1305#endif
877935b1 1306
38182d90 1307 value = malloc (size);
877935b1
GM
1308
1309#ifdef GC_MALLOC_CHECK
1310 {
1311 struct mem_node *m = mem_find (value);
1312 if (m != MEM_NIL)
1313 {
1314 fprintf (stderr, "Malloc returned %p which is already in use\n",
1315 value);
da05bc4c 1316 fprintf (stderr, "Region in use is %p...%p, %td bytes, type %d\n",
877935b1
GM
1317 m->start, m->end, (char *) m->end - (char *) m->start,
1318 m->type);
1319 abort ();
1320 }
1321
1322 if (!dont_register_blocks)
1323 {
1324 mem_insert (value, (char *) value + max (1, size), allocated_mem_type);
1325 allocated_mem_type = MEM_TYPE_NON_LISP;
1326 }
1327 }
1328#endif /* GC_MALLOC_CHECK */
177c0ea7 1329
b0846f52 1330 __malloc_hook = emacs_blocked_malloc;
aa477689 1331 UNBLOCK_INPUT_ALLOC;
9ac0d9e0 1332
877935b1 1333 /* fprintf (stderr, "%p malloc\n", value); */
9ac0d9e0
JB
1334 return value;
1335}
1336
34400008
GM
1337
1338/* This function is the realloc hook that Emacs uses. */
1339
9ac0d9e0 1340static void *
7c3320d8 1341emacs_blocked_realloc (void *ptr, size_t size, const void *ptr2)
9ac0d9e0
JB
1342{
1343 void *value;
1344
aa477689 1345 BLOCK_INPUT_ALLOC;
9ac0d9e0 1346 __realloc_hook = old_realloc_hook;
877935b1
GM
1347
1348#ifdef GC_MALLOC_CHECK
1349 if (ptr)
1350 {
1351 struct mem_node *m = mem_find (ptr);
1352 if (m == MEM_NIL || m->start != ptr)
1353 {
1354 fprintf (stderr,
1355 "Realloc of %p which wasn't allocated with malloc\n",
1356 ptr);
1357 abort ();
1358 }
1359
1360 mem_delete (m);
1361 }
177c0ea7 1362
877935b1 1363 /* fprintf (stderr, "%p -> realloc\n", ptr); */
177c0ea7 1364
877935b1
GM
1365 /* Prevent malloc from registering blocks. */
1366 dont_register_blocks = 1;
1367#endif /* GC_MALLOC_CHECK */
1368
38182d90 1369 value = realloc (ptr, size);
877935b1
GM
1370
1371#ifdef GC_MALLOC_CHECK
1372 dont_register_blocks = 0;
1373
1374 {
1375 struct mem_node *m = mem_find (value);
1376 if (m != MEM_NIL)
1377 {
1378 fprintf (stderr, "Realloc returns memory that is already in use\n");
1379 abort ();
1380 }
1381
1382 /* Can't handle zero size regions in the red-black tree. */
1383 mem_insert (value, (char *) value + max (size, 1), MEM_TYPE_NON_LISP);
1384 }
177c0ea7 1385
877935b1
GM
1386 /* fprintf (stderr, "%p <- realloc\n", value); */
1387#endif /* GC_MALLOC_CHECK */
177c0ea7 1388
b0846f52 1389 __realloc_hook = emacs_blocked_realloc;
aa477689 1390 UNBLOCK_INPUT_ALLOC;
9ac0d9e0
JB
1391
1392 return value;
1393}
1394
34400008 1395
ae9e757a 1396#ifdef HAVE_PTHREAD
aa477689
JD
1397/* Called from Fdump_emacs so that when the dumped Emacs starts, it has a
1398 normal malloc. Some thread implementations need this as they call
1399 malloc before main. The pthread_self call in BLOCK_INPUT_ALLOC then
1400 calls malloc because it is the first call, and we have an endless loop. */
1401
1402void
268c2c36 1403reset_malloc_hooks (void)
aa477689 1404{
4d580af2
AS
1405 __free_hook = old_free_hook;
1406 __malloc_hook = old_malloc_hook;
1407 __realloc_hook = old_realloc_hook;
aa477689 1408}
ae9e757a 1409#endif /* HAVE_PTHREAD */
aa477689
JD
1410
1411
34400008
GM
1412/* Called from main to set up malloc to use our hooks. */
1413
9ac0d9e0 1414void
7c3320d8 1415uninterrupt_malloc (void)
9ac0d9e0 1416{
ae9e757a 1417#ifdef HAVE_PTHREAD
a1b41389 1418#ifdef DOUG_LEA_MALLOC
aa477689
JD
1419 pthread_mutexattr_t attr;
1420
c7015153 1421 /* GLIBC has a faster way to do this, but let's keep it portable.
aa477689
JD
1422 This is according to the Single UNIX Specification. */
1423 pthread_mutexattr_init (&attr);
1424 pthread_mutexattr_settype (&attr, PTHREAD_MUTEX_RECURSIVE);
1425 pthread_mutex_init (&alloc_mutex, &attr);
a1b41389 1426#else /* !DOUG_LEA_MALLOC */
ce5b453a 1427 /* Some systems such as Solaris 2.6 don't have a recursive mutex,
a1b41389
YM
1428 and the bundled gmalloc.c doesn't require it. */
1429 pthread_mutex_init (&alloc_mutex, NULL);
1430#endif /* !DOUG_LEA_MALLOC */
ae9e757a 1431#endif /* HAVE_PTHREAD */
aa477689 1432
c8099634
RS
1433 if (__free_hook != emacs_blocked_free)
1434 old_free_hook = __free_hook;
b0846f52 1435 __free_hook = emacs_blocked_free;
9ac0d9e0 1436
c8099634
RS
1437 if (__malloc_hook != emacs_blocked_malloc)
1438 old_malloc_hook = __malloc_hook;
b0846f52 1439 __malloc_hook = emacs_blocked_malloc;
9ac0d9e0 1440
c8099634
RS
1441 if (__realloc_hook != emacs_blocked_realloc)
1442 old_realloc_hook = __realloc_hook;
b0846f52 1443 __realloc_hook = emacs_blocked_realloc;
9ac0d9e0 1444}
2e471eb5 1445
026cdede 1446#endif /* not SYNC_INPUT */
2e471eb5
GM
1447#endif /* not SYSTEM_MALLOC */
1448
1449
7146af97 1450\f
2e471eb5
GM
1451/***********************************************************************
1452 Interval Allocation
1453 ***********************************************************************/
1a4f1e2c 1454
34400008
GM
1455/* Number of intervals allocated in an interval_block structure.
1456 The 1020 is 1024 minus malloc overhead. */
1457
d5e35230
JA
1458#define INTERVAL_BLOCK_SIZE \
1459 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1460
34400008
GM
1461/* Intervals are allocated in chunks in form of an interval_block
1462 structure. */
1463
d5e35230 1464struct interval_block
2e471eb5 1465{
6b61353c 1466 /* Place `intervals' first, to preserve alignment. */
2e471eb5 1467 struct interval intervals[INTERVAL_BLOCK_SIZE];
6b61353c 1468 struct interval_block *next;
2e471eb5 1469};
d5e35230 1470
34400008
GM
1471/* Current interval block. Its `next' pointer points to older
1472 blocks. */
1473
d3d47262 1474static struct interval_block *interval_block;
34400008
GM
1475
1476/* Index in interval_block above of the next unused interval
1477 structure. */
1478
fff62aa9 1479static int interval_block_index = INTERVAL_BLOCK_SIZE;
34400008
GM
1480
1481/* Number of free and live intervals. */
1482
c0c5c8ae 1483static EMACS_INT total_free_intervals, total_intervals;
d5e35230 1484
34400008
GM
1485/* List of free intervals. */
1486
244ed907 1487static INTERVAL interval_free_list;
d5e35230 1488
34400008 1489/* Return a new interval. */
d5e35230
JA
1490
1491INTERVAL
971de7fb 1492make_interval (void)
d5e35230
JA
1493{
1494 INTERVAL val;
1495
e2984df0
CY
1496 /* eassert (!handling_signal); */
1497
dafc79fa 1498 MALLOC_BLOCK_INPUT;
cfb2f32e 1499
d5e35230
JA
1500 if (interval_free_list)
1501 {
1502 val = interval_free_list;
439d5cb4 1503 interval_free_list = INTERVAL_PARENT (interval_free_list);
d5e35230
JA
1504 }
1505 else
1506 {
1507 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1508 {
38182d90
PE
1509 struct interval_block *newi
1510 = lisp_malloc (sizeof *newi, MEM_TYPE_NON_LISP);
d5e35230 1511
d5e35230
JA
1512 newi->next = interval_block;
1513 interval_block = newi;
1514 interval_block_index = 0;
3900d5de 1515 total_free_intervals += INTERVAL_BLOCK_SIZE;
d5e35230
JA
1516 }
1517 val = &interval_block->intervals[interval_block_index++];
1518 }
e2984df0 1519
dafc79fa 1520 MALLOC_UNBLOCK_INPUT;
e2984df0 1521
d5e35230 1522 consing_since_gc += sizeof (struct interval);
310ea200 1523 intervals_consed++;
3900d5de 1524 total_free_intervals--;
d5e35230 1525 RESET_INTERVAL (val);
2336fe58 1526 val->gcmarkbit = 0;
d5e35230
JA
1527 return val;
1528}
1529
34400008 1530
ee28be33 1531/* Mark Lisp objects in interval I. */
d5e35230
JA
1532
1533static void
971de7fb 1534mark_interval (register INTERVAL i, Lisp_Object dummy)
d5e35230 1535{
cce7fefc
DA
1536 /* Intervals should never be shared. So, if extra internal checking is
1537 enabled, GC aborts if it seems to have visited an interval twice. */
1538 eassert (!i->gcmarkbit);
2336fe58 1539 i->gcmarkbit = 1;
49723c04 1540 mark_object (i->plist);
d5e35230
JA
1541}
1542
34400008
GM
1543
1544/* Mark the interval tree rooted in TREE. Don't call this directly;
1545 use the macro MARK_INTERVAL_TREE instead. */
1546
d5e35230 1547static void
971de7fb 1548mark_interval_tree (register INTERVAL tree)
d5e35230 1549{
e8720644
JB
1550 /* No need to test if this tree has been marked already; this
1551 function is always called through the MARK_INTERVAL_TREE macro,
1552 which takes care of that. */
1553
1e934989 1554 traverse_intervals_noorder (tree, mark_interval, Qnil);
d5e35230
JA
1555}
1556
34400008
GM
1557
1558/* Mark the interval tree rooted in I. */
1559
e8720644
JB
1560#define MARK_INTERVAL_TREE(i) \
1561 do { \
2336fe58 1562 if (!NULL_INTERVAL_P (i) && !i->gcmarkbit) \
e8720644
JB
1563 mark_interval_tree (i); \
1564 } while (0)
d5e35230 1565
34400008 1566
2e471eb5
GM
1567#define UNMARK_BALANCE_INTERVALS(i) \
1568 do { \
1569 if (! NULL_INTERVAL_P (i)) \
2336fe58 1570 (i) = balance_intervals (i); \
2e471eb5 1571 } while (0)
d5e35230 1572\f
2e471eb5
GM
1573/***********************************************************************
1574 String Allocation
1575 ***********************************************************************/
1a4f1e2c 1576
2e471eb5
GM
1577/* Lisp_Strings are allocated in string_block structures. When a new
1578 string_block is allocated, all the Lisp_Strings it contains are
e0fead5d 1579 added to a free-list string_free_list. When a new Lisp_String is
2e471eb5
GM
1580 needed, it is taken from that list. During the sweep phase of GC,
1581 string_blocks that are entirely free are freed, except two which
1582 we keep.
7146af97 1583
2e471eb5
GM
1584 String data is allocated from sblock structures. Strings larger
1585 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1586 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
7146af97 1587
2e471eb5
GM
1588 Sblocks consist internally of sdata structures, one for each
1589 Lisp_String. The sdata structure points to the Lisp_String it
1590 belongs to. The Lisp_String points back to the `u.data' member of
1591 its sdata structure.
7146af97 1592
2e471eb5
GM
1593 When a Lisp_String is freed during GC, it is put back on
1594 string_free_list, and its `data' member and its sdata's `string'
1595 pointer is set to null. The size of the string is recorded in the
1596 `u.nbytes' member of the sdata. So, sdata structures that are no
1597 longer used, can be easily recognized, and it's easy to compact the
1598 sblocks of small strings which we do in compact_small_strings. */
7146af97 1599
2e471eb5
GM
1600/* Size in bytes of an sblock structure used for small strings. This
1601 is 8192 minus malloc overhead. */
7146af97 1602
2e471eb5 1603#define SBLOCK_SIZE 8188
c8099634 1604
2e471eb5
GM
1605/* Strings larger than this are considered large strings. String data
1606 for large strings is allocated from individual sblocks. */
7146af97 1607
2e471eb5
GM
1608#define LARGE_STRING_BYTES 1024
1609
1610/* Structure describing string memory sub-allocated from an sblock.
1611 This is where the contents of Lisp strings are stored. */
1612
1613struct sdata
7146af97 1614{
2e471eb5
GM
1615 /* Back-pointer to the string this sdata belongs to. If null, this
1616 structure is free, and the NBYTES member of the union below
34400008 1617 contains the string's byte size (the same value that STRING_BYTES
2e471eb5
GM
1618 would return if STRING were non-null). If non-null, STRING_BYTES
1619 (STRING) is the size of the data, and DATA contains the string's
1620 contents. */
1621 struct Lisp_String *string;
7146af97 1622
31d929e5 1623#ifdef GC_CHECK_STRING_BYTES
177c0ea7 1624
d311d28c 1625 ptrdiff_t nbytes;
31d929e5 1626 unsigned char data[1];
177c0ea7 1627
31d929e5
GM
1628#define SDATA_NBYTES(S) (S)->nbytes
1629#define SDATA_DATA(S) (S)->data
36372bf9 1630#define SDATA_SELECTOR(member) member
177c0ea7 1631
31d929e5
GM
1632#else /* not GC_CHECK_STRING_BYTES */
1633
2e471eb5
GM
1634 union
1635 {
83998b7a 1636 /* When STRING is non-null. */
2e471eb5
GM
1637 unsigned char data[1];
1638
1639 /* When STRING is null. */
d311d28c 1640 ptrdiff_t nbytes;
2e471eb5 1641 } u;
177c0ea7 1642
31d929e5
GM
1643#define SDATA_NBYTES(S) (S)->u.nbytes
1644#define SDATA_DATA(S) (S)->u.data
36372bf9 1645#define SDATA_SELECTOR(member) u.member
31d929e5
GM
1646
1647#endif /* not GC_CHECK_STRING_BYTES */
36372bf9
PE
1648
1649#define SDATA_DATA_OFFSET offsetof (struct sdata, SDATA_SELECTOR (data))
2e471eb5
GM
1650};
1651
31d929e5 1652
2e471eb5
GM
1653/* Structure describing a block of memory which is sub-allocated to
1654 obtain string data memory for strings. Blocks for small strings
1655 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1656 as large as needed. */
1657
1658struct sblock
7146af97 1659{
2e471eb5
GM
1660 /* Next in list. */
1661 struct sblock *next;
7146af97 1662
2e471eb5
GM
1663 /* Pointer to the next free sdata block. This points past the end
1664 of the sblock if there isn't any space left in this block. */
1665 struct sdata *next_free;
1666
1667 /* Start of data. */
1668 struct sdata first_data;
1669};
1670
1671/* Number of Lisp strings in a string_block structure. The 1020 is
1672 1024 minus malloc overhead. */
1673
19bcad1f 1674#define STRING_BLOCK_SIZE \
2e471eb5
GM
1675 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1676
1677/* Structure describing a block from which Lisp_String structures
1678 are allocated. */
1679
1680struct string_block
7146af97 1681{
6b61353c 1682 /* Place `strings' first, to preserve alignment. */
19bcad1f 1683 struct Lisp_String strings[STRING_BLOCK_SIZE];
6b61353c 1684 struct string_block *next;
2e471eb5 1685};
7146af97 1686
2e471eb5
GM
1687/* Head and tail of the list of sblock structures holding Lisp string
1688 data. We always allocate from current_sblock. The NEXT pointers
1689 in the sblock structures go from oldest_sblock to current_sblock. */
3c06d205 1690
2e471eb5 1691static struct sblock *oldest_sblock, *current_sblock;
7146af97 1692
2e471eb5 1693/* List of sblocks for large strings. */
7146af97 1694
2e471eb5 1695static struct sblock *large_sblocks;
7146af97 1696
5a25e253 1697/* List of string_block structures. */
7146af97 1698
2e471eb5 1699static struct string_block *string_blocks;
7146af97 1700
2e471eb5 1701/* Free-list of Lisp_Strings. */
7146af97 1702
2e471eb5 1703static struct Lisp_String *string_free_list;
7146af97 1704
2e471eb5 1705/* Number of live and free Lisp_Strings. */
c8099634 1706
c0c5c8ae 1707static EMACS_INT total_strings, total_free_strings;
7146af97 1708
2e471eb5
GM
1709/* Number of bytes used by live strings. */
1710
3ab6e069 1711static EMACS_INT total_string_bytes;
2e471eb5
GM
1712
1713/* Given a pointer to a Lisp_String S which is on the free-list
1714 string_free_list, return a pointer to its successor in the
1715 free-list. */
1716
1717#define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1718
1719/* Return a pointer to the sdata structure belonging to Lisp string S.
1720 S must be live, i.e. S->data must not be null. S->data is actually
1721 a pointer to the `u.data' member of its sdata structure; the
1722 structure starts at a constant offset in front of that. */
177c0ea7 1723
36372bf9 1724#define SDATA_OF_STRING(S) ((struct sdata *) ((S)->data - SDATA_DATA_OFFSET))
31d929e5 1725
212f33f1
KS
1726
1727#ifdef GC_CHECK_STRING_OVERRUN
bdbed949
KS
1728
1729/* We check for overrun in string data blocks by appending a small
1730 "cookie" after each allocated string data block, and check for the
8349069c 1731 presence of this cookie during GC. */
bdbed949
KS
1732
1733#define GC_STRING_OVERRUN_COOKIE_SIZE 4
bfd1c781
PE
1734static char const string_overrun_cookie[GC_STRING_OVERRUN_COOKIE_SIZE] =
1735 { '\xde', '\xad', '\xbe', '\xef' };
bdbed949 1736
212f33f1 1737#else
bdbed949 1738#define GC_STRING_OVERRUN_COOKIE_SIZE 0
212f33f1
KS
1739#endif
1740
2e471eb5
GM
1741/* Value is the size of an sdata structure large enough to hold NBYTES
1742 bytes of string data. The value returned includes a terminating
1743 NUL byte, the size of the sdata structure, and padding. */
1744
31d929e5
GM
1745#ifdef GC_CHECK_STRING_BYTES
1746
2e471eb5 1747#define SDATA_SIZE(NBYTES) \
36372bf9 1748 ((SDATA_DATA_OFFSET \
2e471eb5 1749 + (NBYTES) + 1 \
d311d28c
PE
1750 + sizeof (ptrdiff_t) - 1) \
1751 & ~(sizeof (ptrdiff_t) - 1))
2e471eb5 1752
31d929e5
GM
1753#else /* not GC_CHECK_STRING_BYTES */
1754
f2d3008d
PE
1755/* The 'max' reserves space for the nbytes union member even when NBYTES + 1 is
1756 less than the size of that member. The 'max' is not needed when
d311d28c 1757 SDATA_DATA_OFFSET is a multiple of sizeof (ptrdiff_t), because then the
f2d3008d
PE
1758 alignment code reserves enough space. */
1759
1760#define SDATA_SIZE(NBYTES) \
1761 ((SDATA_DATA_OFFSET \
d311d28c 1762 + (SDATA_DATA_OFFSET % sizeof (ptrdiff_t) == 0 \
f2d3008d 1763 ? NBYTES \
d311d28c 1764 : max (NBYTES, sizeof (ptrdiff_t) - 1)) \
f2d3008d 1765 + 1 \
d311d28c
PE
1766 + sizeof (ptrdiff_t) - 1) \
1767 & ~(sizeof (ptrdiff_t) - 1))
31d929e5
GM
1768
1769#endif /* not GC_CHECK_STRING_BYTES */
2e471eb5 1770
bdbed949
KS
1771/* Extra bytes to allocate for each string. */
1772
1773#define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1774
c9d624c6
PE
1775/* Exact bound on the number of bytes in a string, not counting the
1776 terminating null. A string cannot contain more bytes than
1777 STRING_BYTES_BOUND, nor can it be so long that the size_t
1778 arithmetic in allocate_string_data would overflow while it is
1779 calculating a value to be passed to malloc. */
1780#define STRING_BYTES_MAX \
1781 min (STRING_BYTES_BOUND, \
903fe15d
PE
1782 ((SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD \
1783 - GC_STRING_EXTRA \
c9d624c6
PE
1784 - offsetof (struct sblock, first_data) \
1785 - SDATA_DATA_OFFSET) \
1786 & ~(sizeof (EMACS_INT) - 1)))
1787
2e471eb5 1788/* Initialize string allocation. Called from init_alloc_once. */
d457598b 1789
d3d47262 1790static void
971de7fb 1791init_strings (void)
7146af97 1792{
4d774b0f
JB
1793 empty_unibyte_string = make_pure_string ("", 0, 0, 0);
1794 empty_multibyte_string = make_pure_string ("", 0, 0, 1);
7146af97
JB
1795}
1796
2e471eb5 1797
361b097f
GM
1798#ifdef GC_CHECK_STRING_BYTES
1799
361b097f
GM
1800static int check_string_bytes_count;
1801
676a7251
GM
1802#define CHECK_STRING_BYTES(S) STRING_BYTES (S)
1803
1804
1805/* Like GC_STRING_BYTES, but with debugging check. */
1806
d311d28c 1807ptrdiff_t
14162469 1808string_bytes (struct Lisp_String *s)
676a7251 1809{
d311d28c 1810 ptrdiff_t nbytes =
14162469
EZ
1811 (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1812
676a7251
GM
1813 if (!PURE_POINTER_P (s)
1814 && s->data
1815 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1816 abort ();
1817 return nbytes;
1818}
177c0ea7 1819
2c5bd608 1820/* Check validity of Lisp strings' string_bytes member in B. */
676a7251 1821
d3d47262 1822static void
d0f4e1f5 1823check_sblock (struct sblock *b)
361b097f 1824{
676a7251 1825 struct sdata *from, *end, *from_end;
177c0ea7 1826
676a7251 1827 end = b->next_free;
177c0ea7 1828
676a7251 1829 for (from = &b->first_data; from < end; from = from_end)
361b097f 1830 {
676a7251
GM
1831 /* Compute the next FROM here because copying below may
1832 overwrite data we need to compute it. */
d311d28c 1833 ptrdiff_t nbytes;
177c0ea7 1834
676a7251 1835 /* Check that the string size recorded in the string is the
ee28be33 1836 same as the one recorded in the sdata structure. */
676a7251
GM
1837 if (from->string)
1838 CHECK_STRING_BYTES (from->string);
177c0ea7 1839
676a7251
GM
1840 if (from->string)
1841 nbytes = GC_STRING_BYTES (from->string);
1842 else
1843 nbytes = SDATA_NBYTES (from);
177c0ea7 1844
676a7251 1845 nbytes = SDATA_SIZE (nbytes);
212f33f1 1846 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
676a7251
GM
1847 }
1848}
361b097f 1849
676a7251
GM
1850
1851/* Check validity of Lisp strings' string_bytes member. ALL_P
1852 non-zero means check all strings, otherwise check only most
1853 recently allocated strings. Used for hunting a bug. */
1854
d3d47262 1855static void
d0f4e1f5 1856check_string_bytes (int all_p)
676a7251
GM
1857{
1858 if (all_p)
1859 {
1860 struct sblock *b;
1861
1862 for (b = large_sblocks; b; b = b->next)
1863 {
1864 struct Lisp_String *s = b->first_data.string;
1865 if (s)
1866 CHECK_STRING_BYTES (s);
361b097f 1867 }
177c0ea7 1868
676a7251
GM
1869 for (b = oldest_sblock; b; b = b->next)
1870 check_sblock (b);
361b097f 1871 }
296094c3 1872 else if (current_sblock)
676a7251 1873 check_sblock (current_sblock);
361b097f
GM
1874}
1875
1876#endif /* GC_CHECK_STRING_BYTES */
1877
212f33f1
KS
1878#ifdef GC_CHECK_STRING_FREE_LIST
1879
bdbed949
KS
1880/* Walk through the string free list looking for bogus next pointers.
1881 This may catch buffer overrun from a previous string. */
1882
212f33f1 1883static void
d0f4e1f5 1884check_string_free_list (void)
212f33f1
KS
1885{
1886 struct Lisp_String *s;
1887
1888 /* Pop a Lisp_String off the free-list. */
1889 s = string_free_list;
1890 while (s != NULL)
1891 {
d01a7826 1892 if ((uintptr_t) s < 1024)
5e617bc2 1893 abort ();
212f33f1
KS
1894 s = NEXT_FREE_LISP_STRING (s);
1895 }
1896}
1897#else
1898#define check_string_free_list()
1899#endif
361b097f 1900
2e471eb5
GM
1901/* Return a new Lisp_String. */
1902
1903static struct Lisp_String *
971de7fb 1904allocate_string (void)
7146af97 1905{
2e471eb5 1906 struct Lisp_String *s;
7146af97 1907
e2984df0
CY
1908 /* eassert (!handling_signal); */
1909
dafc79fa 1910 MALLOC_BLOCK_INPUT;
cfb2f32e 1911
2e471eb5
GM
1912 /* If the free-list is empty, allocate a new string_block, and
1913 add all the Lisp_Strings in it to the free-list. */
1914 if (string_free_list == NULL)
7146af97 1915 {
38182d90 1916 struct string_block *b = lisp_malloc (sizeof *b, MEM_TYPE_STRING);
2e471eb5
GM
1917 int i;
1918
2e471eb5
GM
1919 b->next = string_blocks;
1920 string_blocks = b;
2e471eb5 1921
19bcad1f 1922 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
7146af97 1923 {
2e471eb5 1924 s = b->strings + i;
3fe6dd74
DA
1925 /* Every string on a free list should have NULL data pointer. */
1926 s->data = NULL;
2e471eb5
GM
1927 NEXT_FREE_LISP_STRING (s) = string_free_list;
1928 string_free_list = s;
7146af97 1929 }
2e471eb5 1930
19bcad1f 1931 total_free_strings += STRING_BLOCK_SIZE;
7146af97 1932 }
c0f51373 1933
bdbed949 1934 check_string_free_list ();
212f33f1 1935
2e471eb5
GM
1936 /* Pop a Lisp_String off the free-list. */
1937 s = string_free_list;
1938 string_free_list = NEXT_FREE_LISP_STRING (s);
c0f51373 1939
dafc79fa 1940 MALLOC_UNBLOCK_INPUT;
e2984df0 1941
2e471eb5
GM
1942 --total_free_strings;
1943 ++total_strings;
1944 ++strings_consed;
1945 consing_since_gc += sizeof *s;
c0f51373 1946
361b097f 1947#ifdef GC_CHECK_STRING_BYTES
e39a993c 1948 if (!noninteractive)
361b097f 1949 {
676a7251
GM
1950 if (++check_string_bytes_count == 200)
1951 {
1952 check_string_bytes_count = 0;
1953 check_string_bytes (1);
1954 }
1955 else
1956 check_string_bytes (0);
361b097f 1957 }
676a7251 1958#endif /* GC_CHECK_STRING_BYTES */
361b097f 1959
2e471eb5 1960 return s;
c0f51373 1961}
7146af97 1962
7146af97 1963
2e471eb5
GM
1964/* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1965 plus a NUL byte at the end. Allocate an sdata structure for S, and
1966 set S->data to its `u.data' member. Store a NUL byte at the end of
1967 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1968 S->data if it was initially non-null. */
7146af97 1969
2e471eb5 1970void
413d18e7
EZ
1971allocate_string_data (struct Lisp_String *s,
1972 EMACS_INT nchars, EMACS_INT nbytes)
7146af97 1973{
b7ffe040 1974 struct sdata *data, *old_data;
2e471eb5 1975 struct sblock *b;
b7ffe040 1976 ptrdiff_t needed, old_nbytes;
7146af97 1977
c9d624c6
PE
1978 if (STRING_BYTES_MAX < nbytes)
1979 string_overflow ();
1980
2e471eb5
GM
1981 /* Determine the number of bytes needed to store NBYTES bytes
1982 of string data. */
1983 needed = SDATA_SIZE (nbytes);
b7ffe040
DA
1984 if (s->data)
1985 {
1986 old_data = SDATA_OF_STRING (s);
1987 old_nbytes = GC_STRING_BYTES (s);
1988 }
1989 else
1990 old_data = NULL;
e2984df0 1991
dafc79fa 1992 MALLOC_BLOCK_INPUT;
7146af97 1993
2e471eb5
GM
1994 if (nbytes > LARGE_STRING_BYTES)
1995 {
36372bf9 1996 size_t size = offsetof (struct sblock, first_data) + needed;
2e471eb5
GM
1997
1998#ifdef DOUG_LEA_MALLOC
f8608968
GM
1999 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
2000 because mapped region contents are not preserved in
d36b182f
DL
2001 a dumped Emacs.
2002
2003 In case you think of allowing it in a dumped Emacs at the
2004 cost of not being able to re-dump, there's another reason:
2005 mmap'ed data typically have an address towards the top of the
2006 address space, which won't fit into an EMACS_INT (at least on
2007 32-bit systems with the current tagging scheme). --fx */
2e471eb5
GM
2008 mallopt (M_MMAP_MAX, 0);
2009#endif
2010
38182d90 2011 b = lisp_malloc (size + GC_STRING_EXTRA, MEM_TYPE_NON_LISP);
177c0ea7 2012
2e471eb5
GM
2013#ifdef DOUG_LEA_MALLOC
2014 /* Back to a reasonable maximum of mmap'ed areas. */
2015 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
2016#endif
177c0ea7 2017
2e471eb5
GM
2018 b->next_free = &b->first_data;
2019 b->first_data.string = NULL;
2020 b->next = large_sblocks;
2021 large_sblocks = b;
2022 }
2023 else if (current_sblock == NULL
2024 || (((char *) current_sblock + SBLOCK_SIZE
2025 - (char *) current_sblock->next_free)
212f33f1 2026 < (needed + GC_STRING_EXTRA)))
2e471eb5
GM
2027 {
2028 /* Not enough room in the current sblock. */
38182d90 2029 b = lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
2e471eb5
GM
2030 b->next_free = &b->first_data;
2031 b->first_data.string = NULL;
2032 b->next = NULL;
2033
2034 if (current_sblock)
2035 current_sblock->next = b;
2036 else
2037 oldest_sblock = b;
2038 current_sblock = b;
2039 }
2040 else
2041 b = current_sblock;
5c5fecb3 2042
2e471eb5 2043 data = b->next_free;
a0b08700
CY
2044 b->next_free = (struct sdata *) ((char *) data + needed + GC_STRING_EXTRA);
2045
dafc79fa 2046 MALLOC_UNBLOCK_INPUT;
e2984df0 2047
2e471eb5 2048 data->string = s;
31d929e5
GM
2049 s->data = SDATA_DATA (data);
2050#ifdef GC_CHECK_STRING_BYTES
2051 SDATA_NBYTES (data) = nbytes;
2052#endif
2e471eb5
GM
2053 s->size = nchars;
2054 s->size_byte = nbytes;
2055 s->data[nbytes] = '\0';
212f33f1 2056#ifdef GC_CHECK_STRING_OVERRUN
000098c1
PE
2057 memcpy ((char *) data + needed, string_overrun_cookie,
2058 GC_STRING_OVERRUN_COOKIE_SIZE);
212f33f1 2059#endif
b7ffe040
DA
2060
2061 /* Note that Faset may call to this function when S has already data
2062 assigned. In this case, mark data as free by setting it's string
2063 back-pointer to null, and record the size of the data in it. */
2064 if (old_data)
2065 {
2066 SDATA_NBYTES (old_data) = old_nbytes;
2067 old_data->string = NULL;
2068 }
2069
2e471eb5
GM
2070 consing_since_gc += needed;
2071}
2072
2073
2074/* Sweep and compact strings. */
2075
2076static void
971de7fb 2077sweep_strings (void)
2e471eb5
GM
2078{
2079 struct string_block *b, *next;
2080 struct string_block *live_blocks = NULL;
177c0ea7 2081
2e471eb5
GM
2082 string_free_list = NULL;
2083 total_strings = total_free_strings = 0;
3ab6e069 2084 total_string_bytes = 0;
2e471eb5
GM
2085
2086 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
2087 for (b = string_blocks; b; b = next)
2088 {
2089 int i, nfree = 0;
2090 struct Lisp_String *free_list_before = string_free_list;
2091
2092 next = b->next;
2093
19bcad1f 2094 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
2e471eb5
GM
2095 {
2096 struct Lisp_String *s = b->strings + i;
2097
2098 if (s->data)
2099 {
2100 /* String was not on free-list before. */
2101 if (STRING_MARKED_P (s))
2102 {
2103 /* String is live; unmark it and its intervals. */
2104 UNMARK_STRING (s);
177c0ea7 2105
2e471eb5
GM
2106 if (!NULL_INTERVAL_P (s->intervals))
2107 UNMARK_BALANCE_INTERVALS (s->intervals);
2108
2109 ++total_strings;
3ab6e069 2110 total_string_bytes += STRING_BYTES (s);
2e471eb5
GM
2111 }
2112 else
2113 {
2114 /* String is dead. Put it on the free-list. */
2115 struct sdata *data = SDATA_OF_STRING (s);
2116
2117 /* Save the size of S in its sdata so that we know
2118 how large that is. Reset the sdata's string
2119 back-pointer so that we know it's free. */
31d929e5
GM
2120#ifdef GC_CHECK_STRING_BYTES
2121 if (GC_STRING_BYTES (s) != SDATA_NBYTES (data))
2122 abort ();
2123#else
2e471eb5 2124 data->u.nbytes = GC_STRING_BYTES (s);
31d929e5 2125#endif
2e471eb5
GM
2126 data->string = NULL;
2127
2128 /* Reset the strings's `data' member so that we
2129 know it's free. */
2130 s->data = NULL;
2131
2132 /* Put the string on the free-list. */
2133 NEXT_FREE_LISP_STRING (s) = string_free_list;
2134 string_free_list = s;
2135 ++nfree;
2136 }
2137 }
2138 else
2139 {
2140 /* S was on the free-list before. Put it there again. */
2141 NEXT_FREE_LISP_STRING (s) = string_free_list;
2142 string_free_list = s;
2143 ++nfree;
2144 }
2145 }
2146
34400008 2147 /* Free blocks that contain free Lisp_Strings only, except
2e471eb5 2148 the first two of them. */
19bcad1f
SM
2149 if (nfree == STRING_BLOCK_SIZE
2150 && total_free_strings > STRING_BLOCK_SIZE)
2e471eb5
GM
2151 {
2152 lisp_free (b);
2e471eb5
GM
2153 string_free_list = free_list_before;
2154 }
2155 else
2156 {
2157 total_free_strings += nfree;
2158 b->next = live_blocks;
2159 live_blocks = b;
2160 }
2161 }
2162
bdbed949 2163 check_string_free_list ();
212f33f1 2164
2e471eb5
GM
2165 string_blocks = live_blocks;
2166 free_large_strings ();
2167 compact_small_strings ();
212f33f1 2168
bdbed949 2169 check_string_free_list ();
2e471eb5
GM
2170}
2171
2172
2173/* Free dead large strings. */
2174
2175static void
971de7fb 2176free_large_strings (void)
2e471eb5
GM
2177{
2178 struct sblock *b, *next;
2179 struct sblock *live_blocks = NULL;
177c0ea7 2180
2e471eb5
GM
2181 for (b = large_sblocks; b; b = next)
2182 {
2183 next = b->next;
2184
2185 if (b->first_data.string == NULL)
2186 lisp_free (b);
2187 else
2188 {
2189 b->next = live_blocks;
2190 live_blocks = b;
2191 }
2192 }
2193
2194 large_sblocks = live_blocks;
2195}
2196
2197
2198/* Compact data of small strings. Free sblocks that don't contain
2199 data of live strings after compaction. */
2200
2201static void
971de7fb 2202compact_small_strings (void)
2e471eb5
GM
2203{
2204 struct sblock *b, *tb, *next;
2205 struct sdata *from, *to, *end, *tb_end;
2206 struct sdata *to_end, *from_end;
2207
2208 /* TB is the sblock we copy to, TO is the sdata within TB we copy
2209 to, and TB_END is the end of TB. */
2210 tb = oldest_sblock;
2211 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2212 to = &tb->first_data;
2213
2214 /* Step through the blocks from the oldest to the youngest. We
2215 expect that old blocks will stabilize over time, so that less
2216 copying will happen this way. */
2217 for (b = oldest_sblock; b; b = b->next)
2218 {
2219 end = b->next_free;
a54e2c05 2220 eassert ((char *) end <= (char *) b + SBLOCK_SIZE);
177c0ea7 2221
2e471eb5
GM
2222 for (from = &b->first_data; from < end; from = from_end)
2223 {
2224 /* Compute the next FROM here because copying below may
2225 overwrite data we need to compute it. */
d311d28c 2226 ptrdiff_t nbytes;
2e471eb5 2227
31d929e5
GM
2228#ifdef GC_CHECK_STRING_BYTES
2229 /* Check that the string size recorded in the string is the
2230 same as the one recorded in the sdata structure. */
2231 if (from->string
2232 && GC_STRING_BYTES (from->string) != SDATA_NBYTES (from))
2233 abort ();
2234#endif /* GC_CHECK_STRING_BYTES */
177c0ea7 2235
2e471eb5
GM
2236 if (from->string)
2237 nbytes = GC_STRING_BYTES (from->string);
2238 else
31d929e5 2239 nbytes = SDATA_NBYTES (from);
177c0ea7 2240
212f33f1
KS
2241 if (nbytes > LARGE_STRING_BYTES)
2242 abort ();
212f33f1 2243
2e471eb5 2244 nbytes = SDATA_SIZE (nbytes);
212f33f1
KS
2245 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
2246
2247#ifdef GC_CHECK_STRING_OVERRUN
72af86bd
AS
2248 if (memcmp (string_overrun_cookie,
2249 (char *) from_end - GC_STRING_OVERRUN_COOKIE_SIZE,
2250 GC_STRING_OVERRUN_COOKIE_SIZE))
212f33f1
KS
2251 abort ();
2252#endif
177c0ea7 2253
2e471eb5
GM
2254 /* FROM->string non-null means it's alive. Copy its data. */
2255 if (from->string)
2256 {
2257 /* If TB is full, proceed with the next sblock. */
212f33f1 2258 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2e471eb5
GM
2259 if (to_end > tb_end)
2260 {
2261 tb->next_free = to;
2262 tb = tb->next;
2263 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2264 to = &tb->first_data;
212f33f1 2265 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2e471eb5 2266 }
177c0ea7 2267
2e471eb5
GM
2268 /* Copy, and update the string's `data' pointer. */
2269 if (from != to)
2270 {
a54e2c05 2271 eassert (tb != b || to < from);
72af86bd 2272 memmove (to, from, nbytes + GC_STRING_EXTRA);
31d929e5 2273 to->string->data = SDATA_DATA (to);
2e471eb5
GM
2274 }
2275
2276 /* Advance past the sdata we copied to. */
2277 to = to_end;
2278 }
2279 }
2280 }
2281
2282 /* The rest of the sblocks following TB don't contain live data, so
2283 we can free them. */
2284 for (b = tb->next; b; b = next)
2285 {
2286 next = b->next;
2287 lisp_free (b);
2288 }
2289
2290 tb->next_free = to;
2291 tb->next = NULL;
2292 current_sblock = tb;
2293}
2294
cb93f9be
PE
2295void
2296string_overflow (void)
2297{
2298 error ("Maximum string size exceeded");
2299}
2e471eb5 2300
a7ca3326 2301DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
69623621
RS
2302 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
2303LENGTH must be an integer.
2304INIT must be an integer that represents a character. */)
5842a27b 2305 (Lisp_Object length, Lisp_Object init)
2e471eb5
GM
2306{
2307 register Lisp_Object val;
2308 register unsigned char *p, *end;
14162469
EZ
2309 int c;
2310 EMACS_INT nbytes;
2e471eb5 2311
b7826503 2312 CHECK_NATNUM (length);
2bccce07 2313 CHECK_CHARACTER (init);
2e471eb5 2314
2bccce07 2315 c = XFASTINT (init);
830ff83b 2316 if (ASCII_CHAR_P (c))
2e471eb5
GM
2317 {
2318 nbytes = XINT (length);
2319 val = make_uninit_string (nbytes);
d5db4077
KR
2320 p = SDATA (val);
2321 end = p + SCHARS (val);
2e471eb5
GM
2322 while (p != end)
2323 *p++ = c;
2324 }
2325 else
2326 {
d942b71c 2327 unsigned char str[MAX_MULTIBYTE_LENGTH];
2e471eb5 2328 int len = CHAR_STRING (c, str);
14162469 2329 EMACS_INT string_len = XINT (length);
2e471eb5 2330
d1f3d2af 2331 if (string_len > STRING_BYTES_MAX / len)
cb93f9be 2332 string_overflow ();
14162469
EZ
2333 nbytes = len * string_len;
2334 val = make_uninit_multibyte_string (string_len, nbytes);
d5db4077 2335 p = SDATA (val);
2e471eb5
GM
2336 end = p + nbytes;
2337 while (p != end)
2338 {
72af86bd 2339 memcpy (p, str, len);
2e471eb5
GM
2340 p += len;
2341 }
2342 }
177c0ea7 2343
2e471eb5
GM
2344 *p = 0;
2345 return val;
2346}
2347
2348
a7ca3326 2349DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
909e3b33 2350 doc: /* Return a new bool-vector of length LENGTH, using INIT for each element.
7ee72033 2351LENGTH must be a number. INIT matters only in whether it is t or nil. */)
5842a27b 2352 (Lisp_Object length, Lisp_Object init)
2e471eb5
GM
2353{
2354 register Lisp_Object val;
2355 struct Lisp_Bool_Vector *p;
d311d28c
PE
2356 ptrdiff_t length_in_chars;
2357 EMACS_INT length_in_elts;
14162469 2358 int bits_per_value;
2e471eb5 2359
b7826503 2360 CHECK_NATNUM (length);
2e471eb5 2361
a097329f 2362 bits_per_value = sizeof (EMACS_INT) * BOOL_VECTOR_BITS_PER_CHAR;
2e471eb5
GM
2363
2364 length_in_elts = (XFASTINT (length) + bits_per_value - 1) / bits_per_value;
2e471eb5
GM
2365
2366 /* We must allocate one more elements than LENGTH_IN_ELTS for the
2367 slot `size' of the struct Lisp_Bool_Vector. */
2368 val = Fmake_vector (make_number (length_in_elts + 1), Qnil);
177c0ea7 2369
eab3844f
PE
2370 /* No Lisp_Object to trace in there. */
2371 XSETPVECTYPESIZE (XVECTOR (val), PVEC_BOOL_VECTOR, 0);
d2029e5b
SM
2372
2373 p = XBOOL_VECTOR (val);
2e471eb5 2374 p->size = XFASTINT (length);
177c0ea7 2375
d311d28c
PE
2376 length_in_chars = ((XFASTINT (length) + BOOL_VECTOR_BITS_PER_CHAR - 1)
2377 / BOOL_VECTOR_BITS_PER_CHAR);
c0c1ee9f
PE
2378 if (length_in_chars)
2379 {
2380 memset (p->data, ! NILP (init) ? -1 : 0, length_in_chars);
177c0ea7 2381
c0c1ee9f
PE
2382 /* Clear any extraneous bits in the last byte. */
2383 p->data[length_in_chars - 1]
2384 &= (1 << (XINT (length) % BOOL_VECTOR_BITS_PER_CHAR)) - 1;
2385 }
2e471eb5
GM
2386
2387 return val;
2388}
2389
2390
2391/* Make a string from NBYTES bytes at CONTENTS, and compute the number
2392 of characters from the contents. This string may be unibyte or
2393 multibyte, depending on the contents. */
2394
2395Lisp_Object
d311d28c 2396make_string (const char *contents, ptrdiff_t nbytes)
2e471eb5
GM
2397{
2398 register Lisp_Object val;
d311d28c 2399 ptrdiff_t nchars, multibyte_nbytes;
9eac9d59 2400
90256841
PE
2401 parse_str_as_multibyte ((const unsigned char *) contents, nbytes,
2402 &nchars, &multibyte_nbytes);
9eac9d59
KH
2403 if (nbytes == nchars || nbytes != multibyte_nbytes)
2404 /* CONTENTS contains no multibyte sequences or contains an invalid
2405 multibyte sequence. We must make unibyte string. */
495a6df3
KH
2406 val = make_unibyte_string (contents, nbytes);
2407 else
2408 val = make_multibyte_string (contents, nchars, nbytes);
2e471eb5
GM
2409 return val;
2410}
2411
2412
2413/* Make an unibyte string from LENGTH bytes at CONTENTS. */
2414
2415Lisp_Object
d311d28c 2416make_unibyte_string (const char *contents, ptrdiff_t length)
2e471eb5
GM
2417{
2418 register Lisp_Object val;
2419 val = make_uninit_string (length);
72af86bd 2420 memcpy (SDATA (val), contents, length);
2e471eb5
GM
2421 return val;
2422}
2423
2424
2425/* Make a multibyte string from NCHARS characters occupying NBYTES
2426 bytes at CONTENTS. */
2427
2428Lisp_Object
14162469 2429make_multibyte_string (const char *contents,
d311d28c 2430 ptrdiff_t nchars, ptrdiff_t nbytes)
2e471eb5
GM
2431{
2432 register Lisp_Object val;
2433 val = make_uninit_multibyte_string (nchars, nbytes);
72af86bd 2434 memcpy (SDATA (val), contents, nbytes);
2e471eb5
GM
2435 return val;
2436}
2437
2438
2439/* Make a string from NCHARS characters occupying NBYTES bytes at
2440 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2441
2442Lisp_Object
14162469 2443make_string_from_bytes (const char *contents,
d311d28c 2444 ptrdiff_t nchars, ptrdiff_t nbytes)
2e471eb5
GM
2445{
2446 register Lisp_Object val;
2447 val = make_uninit_multibyte_string (nchars, nbytes);
72af86bd 2448 memcpy (SDATA (val), contents, nbytes);
d5db4077
KR
2449 if (SBYTES (val) == SCHARS (val))
2450 STRING_SET_UNIBYTE (val);
2e471eb5
GM
2451 return val;
2452}
2453
2454
2455/* Make a string from NCHARS characters occupying NBYTES bytes at
2456 CONTENTS. The argument MULTIBYTE controls whether to label the
229b28c4
KH
2457 string as multibyte. If NCHARS is negative, it counts the number of
2458 characters by itself. */
2e471eb5
GM
2459
2460Lisp_Object
14162469 2461make_specified_string (const char *contents,
d311d28c 2462 ptrdiff_t nchars, ptrdiff_t nbytes, int multibyte)
2e471eb5
GM
2463{
2464 register Lisp_Object val;
229b28c4
KH
2465
2466 if (nchars < 0)
2467 {
2468 if (multibyte)
90256841
PE
2469 nchars = multibyte_chars_in_text ((const unsigned char *) contents,
2470 nbytes);
229b28c4
KH
2471 else
2472 nchars = nbytes;
2473 }
2e471eb5 2474 val = make_uninit_multibyte_string (nchars, nbytes);
72af86bd 2475 memcpy (SDATA (val), contents, nbytes);
2e471eb5 2476 if (!multibyte)
d5db4077 2477 STRING_SET_UNIBYTE (val);
2e471eb5
GM
2478 return val;
2479}
2480
2481
2e471eb5
GM
2482/* Return an unibyte Lisp_String set up to hold LENGTH characters
2483 occupying LENGTH bytes. */
2484
2485Lisp_Object
413d18e7 2486make_uninit_string (EMACS_INT length)
2e471eb5
GM
2487{
2488 Lisp_Object val;
4d774b0f
JB
2489
2490 if (!length)
2491 return empty_unibyte_string;
2e471eb5 2492 val = make_uninit_multibyte_string (length, length);
d5db4077 2493 STRING_SET_UNIBYTE (val);
2e471eb5
GM
2494 return val;
2495}
2496
2497
2498/* Return a multibyte Lisp_String set up to hold NCHARS characters
2499 which occupy NBYTES bytes. */
2500
2501Lisp_Object
413d18e7 2502make_uninit_multibyte_string (EMACS_INT nchars, EMACS_INT nbytes)
2e471eb5
GM
2503{
2504 Lisp_Object string;
2505 struct Lisp_String *s;
2506
2507 if (nchars < 0)
2508 abort ();
4d774b0f
JB
2509 if (!nbytes)
2510 return empty_multibyte_string;
2e471eb5
GM
2511
2512 s = allocate_string ();
246155eb 2513 s->intervals = NULL_INTERVAL;
2e471eb5
GM
2514 allocate_string_data (s, nchars, nbytes);
2515 XSETSTRING (string, s);
2516 string_chars_consed += nbytes;
2517 return string;
2518}
2519
a8290ec3
DA
2520/* Print arguments to BUF according to a FORMAT, then return
2521 a Lisp_String initialized with the data from BUF. */
2522
2523Lisp_Object
2524make_formatted_string (char *buf, const char *format, ...)
2525{
2526 va_list ap;
26bccfae 2527 int length;
a8290ec3
DA
2528
2529 va_start (ap, format);
2530 length = vsprintf (buf, format, ap);
2531 va_end (ap);
2532 return make_string (buf, length);
2533}
2e471eb5
GM
2534
2535\f
2536/***********************************************************************
2537 Float Allocation
2538 ***********************************************************************/
2539
2e471eb5
GM
2540/* We store float cells inside of float_blocks, allocating a new
2541 float_block with malloc whenever necessary. Float cells reclaimed
2542 by GC are put on a free list to be reallocated before allocating
ab6780cd 2543 any new float cells from the latest float_block. */
2e471eb5 2544
6b61353c
KH
2545#define FLOAT_BLOCK_SIZE \
2546 (((BLOCK_BYTES - sizeof (struct float_block *) \
2547 /* The compiler might add padding at the end. */ \
2548 - (sizeof (struct Lisp_Float) - sizeof (int))) * CHAR_BIT) \
ab6780cd
SM
2549 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2550
2551#define GETMARKBIT(block,n) \
5e617bc2
JB
2552 (((block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2553 >> ((n) % (sizeof (int) * CHAR_BIT))) \
ab6780cd
SM
2554 & 1)
2555
2556#define SETMARKBIT(block,n) \
5e617bc2
JB
2557 (block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2558 |= 1 << ((n) % (sizeof (int) * CHAR_BIT))
ab6780cd
SM
2559
2560#define UNSETMARKBIT(block,n) \
5e617bc2
JB
2561 (block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2562 &= ~(1 << ((n) % (sizeof (int) * CHAR_BIT)))
ab6780cd
SM
2563
2564#define FLOAT_BLOCK(fptr) \
d01a7826 2565 ((struct float_block *) (((uintptr_t) (fptr)) & ~(BLOCK_ALIGN - 1)))
ab6780cd
SM
2566
2567#define FLOAT_INDEX(fptr) \
d01a7826 2568 ((((uintptr_t) (fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2e471eb5
GM
2569
2570struct float_block
2571{
ab6780cd 2572 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2e471eb5 2573 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
5e617bc2 2574 int gcmarkbits[1 + FLOAT_BLOCK_SIZE / (sizeof (int) * CHAR_BIT)];
ab6780cd 2575 struct float_block *next;
2e471eb5
GM
2576};
2577
ab6780cd
SM
2578#define FLOAT_MARKED_P(fptr) \
2579 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2580
2581#define FLOAT_MARK(fptr) \
2582 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2583
2584#define FLOAT_UNMARK(fptr) \
2585 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2586
34400008
GM
2587/* Current float_block. */
2588
244ed907 2589static struct float_block *float_block;
34400008
GM
2590
2591/* Index of first unused Lisp_Float in the current float_block. */
2592
fff62aa9 2593static int float_block_index = FLOAT_BLOCK_SIZE;
2e471eb5 2594
34400008
GM
2595/* Free-list of Lisp_Floats. */
2596
244ed907 2597static struct Lisp_Float *float_free_list;
2e471eb5 2598
34400008
GM
2599/* Return a new float object with value FLOAT_VALUE. */
2600
2e471eb5 2601Lisp_Object
971de7fb 2602make_float (double float_value)
2e471eb5
GM
2603{
2604 register Lisp_Object val;
2605
e2984df0
CY
2606 /* eassert (!handling_signal); */
2607
dafc79fa 2608 MALLOC_BLOCK_INPUT;
cfb2f32e 2609
2e471eb5
GM
2610 if (float_free_list)
2611 {
2612 /* We use the data field for chaining the free list
2613 so that we won't use the same field that has the mark bit. */
2614 XSETFLOAT (val, float_free_list);
28a099a4 2615 float_free_list = float_free_list->u.chain;
2e471eb5
GM
2616 }
2617 else
2618 {
2619 if (float_block_index == FLOAT_BLOCK_SIZE)
2620 {
38182d90
PE
2621 struct float_block *new
2622 = lisp_align_malloc (sizeof *new, MEM_TYPE_FLOAT);
2e471eb5 2623 new->next = float_block;
72af86bd 2624 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2e471eb5
GM
2625 float_block = new;
2626 float_block_index = 0;
3900d5de 2627 total_free_floats += FLOAT_BLOCK_SIZE;
2e471eb5 2628 }
6b61353c
KH
2629 XSETFLOAT (val, &float_block->floats[float_block_index]);
2630 float_block_index++;
2e471eb5 2631 }
177c0ea7 2632
dafc79fa 2633 MALLOC_UNBLOCK_INPUT;
e2984df0 2634
f601cdf3 2635 XFLOAT_INIT (val, float_value);
6b61353c 2636 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2e471eb5
GM
2637 consing_since_gc += sizeof (struct Lisp_Float);
2638 floats_consed++;
3900d5de 2639 total_free_floats--;
2e471eb5
GM
2640 return val;
2641}
2642
2e471eb5
GM
2643
2644\f
2645/***********************************************************************
2646 Cons Allocation
2647 ***********************************************************************/
2648
2649/* We store cons cells inside of cons_blocks, allocating a new
2650 cons_block with malloc whenever necessary. Cons cells reclaimed by
2651 GC are put on a free list to be reallocated before allocating
08b7c2cb 2652 any new cons cells from the latest cons_block. */
2e471eb5 2653
a2821611
AS
2654#define CONS_BLOCK_SIZE \
2655 (((BLOCK_BYTES - sizeof (struct cons_block *) \
2656 /* The compiler might add padding at the end. */ \
2657 - (sizeof (struct Lisp_Cons) - sizeof (int))) * CHAR_BIT) \
08b7c2cb
SM
2658 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2659
2660#define CONS_BLOCK(fptr) \
d01a7826 2661 ((struct cons_block *) ((uintptr_t) (fptr) & ~(BLOCK_ALIGN - 1)))
08b7c2cb
SM
2662
2663#define CONS_INDEX(fptr) \
d01a7826 2664 (((uintptr_t) (fptr) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2e471eb5
GM
2665
2666struct cons_block
2667{
08b7c2cb 2668 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2e471eb5 2669 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
5e617bc2 2670 int gcmarkbits[1 + CONS_BLOCK_SIZE / (sizeof (int) * CHAR_BIT)];
08b7c2cb 2671 struct cons_block *next;
2e471eb5
GM
2672};
2673
08b7c2cb
SM
2674#define CONS_MARKED_P(fptr) \
2675 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2676
2677#define CONS_MARK(fptr) \
2678 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2679
2680#define CONS_UNMARK(fptr) \
2681 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2682
34400008
GM
2683/* Current cons_block. */
2684
244ed907 2685static struct cons_block *cons_block;
34400008
GM
2686
2687/* Index of first unused Lisp_Cons in the current block. */
2688
fff62aa9 2689static int cons_block_index = CONS_BLOCK_SIZE;
2e471eb5 2690
34400008
GM
2691/* Free-list of Lisp_Cons structures. */
2692
244ed907 2693static struct Lisp_Cons *cons_free_list;
2e471eb5 2694
34400008 2695/* Explicitly free a cons cell by putting it on the free-list. */
2e471eb5
GM
2696
2697void
971de7fb 2698free_cons (struct Lisp_Cons *ptr)
2e471eb5 2699{
28a099a4 2700 ptr->u.chain = cons_free_list;
34400008
GM
2701#if GC_MARK_STACK
2702 ptr->car = Vdead;
2703#endif
2e471eb5 2704 cons_free_list = ptr;
3900d5de 2705 total_free_conses++;
2e471eb5
GM
2706}
2707
a7ca3326 2708DEFUN ("cons", Fcons, Scons, 2, 2, 0,
a6266d23 2709 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
5842a27b 2710 (Lisp_Object car, Lisp_Object cdr)
2e471eb5
GM
2711{
2712 register Lisp_Object val;
2713
e2984df0
CY
2714 /* eassert (!handling_signal); */
2715
dafc79fa 2716 MALLOC_BLOCK_INPUT;
cfb2f32e 2717
2e471eb5
GM
2718 if (cons_free_list)
2719 {
2720 /* We use the cdr for chaining the free list
2721 so that we won't use the same field that has the mark bit. */
2722 XSETCONS (val, cons_free_list);
28a099a4 2723 cons_free_list = cons_free_list->u.chain;
2e471eb5
GM
2724 }
2725 else
2726 {
2727 if (cons_block_index == CONS_BLOCK_SIZE)
2728 {
38182d90
PE
2729 struct cons_block *new
2730 = lisp_align_malloc (sizeof *new, MEM_TYPE_CONS);
72af86bd 2731 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2e471eb5
GM
2732 new->next = cons_block;
2733 cons_block = new;
2734 cons_block_index = 0;
3900d5de 2735 total_free_conses += CONS_BLOCK_SIZE;
2e471eb5 2736 }
6b61353c
KH
2737 XSETCONS (val, &cons_block->conses[cons_block_index]);
2738 cons_block_index++;
2e471eb5 2739 }
177c0ea7 2740
dafc79fa 2741 MALLOC_UNBLOCK_INPUT;
e2984df0 2742
f3fbd155
KR
2743 XSETCAR (val, car);
2744 XSETCDR (val, cdr);
6b61353c 2745 eassert (!CONS_MARKED_P (XCONS (val)));
2e471eb5 2746 consing_since_gc += sizeof (struct Lisp_Cons);
3900d5de 2747 total_free_conses--;
2e471eb5
GM
2748 cons_cells_consed++;
2749 return val;
2750}
2751
e5aab7e7 2752#ifdef GC_CHECK_CONS_LIST
e3e56238
RS
2753/* Get an error now if there's any junk in the cons free list. */
2754void
971de7fb 2755check_cons_list (void)
e3e56238
RS
2756{
2757 struct Lisp_Cons *tail = cons_free_list;
2758
e3e56238 2759 while (tail)
28a099a4 2760 tail = tail->u.chain;
e3e56238 2761}
e5aab7e7 2762#endif
34400008 2763
9b306d37
KS
2764/* Make a list of 1, 2, 3, 4 or 5 specified objects. */
2765
2766Lisp_Object
971de7fb 2767list1 (Lisp_Object arg1)
9b306d37
KS
2768{
2769 return Fcons (arg1, Qnil);
2770}
2e471eb5
GM
2771
2772Lisp_Object
971de7fb 2773list2 (Lisp_Object arg1, Lisp_Object arg2)
2e471eb5
GM
2774{
2775 return Fcons (arg1, Fcons (arg2, Qnil));
2776}
2777
34400008 2778
2e471eb5 2779Lisp_Object
971de7fb 2780list3 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3)
2e471eb5
GM
2781{
2782 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2783}
2784
34400008 2785
2e471eb5 2786Lisp_Object
971de7fb 2787list4 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4)
2e471eb5
GM
2788{
2789 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2790}
2791
34400008 2792
2e471eb5 2793Lisp_Object
971de7fb 2794list5 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4, Lisp_Object arg5)
2e471eb5
GM
2795{
2796 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2797 Fcons (arg5, Qnil)))));
2798}
2799
34400008 2800
a7ca3326 2801DEFUN ("list", Flist, Slist, 0, MANY, 0,
eae936e2 2802 doc: /* Return a newly created list with specified arguments as elements.
ae8e8122
MB
2803Any number of arguments, even zero arguments, are allowed.
2804usage: (list &rest OBJECTS) */)
f66c7cf8 2805 (ptrdiff_t nargs, Lisp_Object *args)
2e471eb5
GM
2806{
2807 register Lisp_Object val;
2808 val = Qnil;
2809
2810 while (nargs > 0)
2811 {
2812 nargs--;
2813 val = Fcons (args[nargs], val);
2814 }
2815 return val;
2816}
2817
34400008 2818
a7ca3326 2819DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
a6266d23 2820 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
5842a27b 2821 (register Lisp_Object length, Lisp_Object init)
2e471eb5
GM
2822{
2823 register Lisp_Object val;
14162469 2824 register EMACS_INT size;
2e471eb5 2825
b7826503 2826 CHECK_NATNUM (length);
2e471eb5
GM
2827 size = XFASTINT (length);
2828
2829 val = Qnil;
ce070307
GM
2830 while (size > 0)
2831 {
2832 val = Fcons (init, val);
2833 --size;
2834
2835 if (size > 0)
2836 {
2837 val = Fcons (init, val);
2838 --size;
177c0ea7 2839
ce070307
GM
2840 if (size > 0)
2841 {
2842 val = Fcons (init, val);
2843 --size;
177c0ea7 2844
ce070307
GM
2845 if (size > 0)
2846 {
2847 val = Fcons (init, val);
2848 --size;
177c0ea7 2849
ce070307
GM
2850 if (size > 0)
2851 {
2852 val = Fcons (init, val);
2853 --size;
2854 }
2855 }
2856 }
2857 }
2858
2859 QUIT;
2860 }
177c0ea7 2861
7146af97
JB
2862 return val;
2863}
2e471eb5
GM
2864
2865
7146af97 2866\f
2e471eb5
GM
2867/***********************************************************************
2868 Vector Allocation
2869 ***********************************************************************/
7146af97 2870
f3372c87
DA
2871/* This value is balanced well enough to avoid too much internal overhead
2872 for the most common cases; it's not required to be a power of two, but
2873 it's expected to be a mult-of-ROUNDUP_SIZE (see below). */
34400008 2874
f3372c87 2875#define VECTOR_BLOCK_SIZE 4096
7146af97 2876
dd0b0efb
PE
2877/* Handy constants for vectorlike objects. */
2878enum
2879 {
2880 header_size = offsetof (struct Lisp_Vector, contents),
f3372c87
DA
2881 word_size = sizeof (Lisp_Object),
2882 roundup_size = COMMON_MULTIPLE (sizeof (Lisp_Object),
bfe3e0a2 2883 USE_LSB_TAG ? 1 << GCTYPEBITS : 1)
dd0b0efb 2884 };
34400008 2885
bfe3e0a2
PE
2886/* ROUNDUP_SIZE must be a power of 2. */
2887verify ((roundup_size & (roundup_size - 1)) == 0);
2888
ca95b3eb
DA
2889/* Verify assumptions described above. */
2890verify ((VECTOR_BLOCK_SIZE % roundup_size) == 0);
ee28be33 2891verify (VECTOR_BLOCK_SIZE <= (1 << PSEUDOVECTOR_SIZE_BITS));
ca95b3eb 2892
bfe3e0a2 2893/* Round up X to nearest mult-of-ROUNDUP_SIZE. */
f3372c87
DA
2894
2895#define vroundup(x) (((x) + (roundup_size - 1)) & ~(roundup_size - 1))
2896
2897/* Rounding helps to maintain alignment constraints if USE_LSB_TAG. */
2898
2899#define VECTOR_BLOCK_BYTES (VECTOR_BLOCK_SIZE - vroundup (sizeof (void *)))
2900
2901/* Size of the minimal vector allocated from block. */
2902
2903#define VBLOCK_BYTES_MIN vroundup (sizeof (struct Lisp_Vector))
2904
2905/* Size of the largest vector allocated from block. */
2906
2907#define VBLOCK_BYTES_MAX \
2908 vroundup ((VECTOR_BLOCK_BYTES / 2) - sizeof (Lisp_Object))
2909
2910/* We maintain one free list for each possible block-allocated
2911 vector size, and this is the number of free lists we have. */
2912
2913#define VECTOR_MAX_FREE_LIST_INDEX \
2914 ((VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN) / roundup_size + 1)
2915
f3372c87
DA
2916/* Common shortcut to advance vector pointer over a block data. */
2917
2918#define ADVANCE(v, nbytes) ((struct Lisp_Vector *) ((char *) (v) + (nbytes)))
2919
2920/* Common shortcut to calculate NBYTES-vector index in VECTOR_FREE_LISTS. */
2921
2922#define VINDEX(nbytes) (((nbytes) - VBLOCK_BYTES_MIN) / roundup_size)
2923
2924/* Common shortcut to setup vector on a free list. */
2925
2926#define SETUP_ON_FREE_LIST(v, nbytes, index) \
2927 do { \
ee28be33 2928 XSETPVECTYPESIZE (v, PVEC_FREE, nbytes); \
f3372c87
DA
2929 eassert ((nbytes) % roundup_size == 0); \
2930 (index) = VINDEX (nbytes); \
2931 eassert ((index) < VECTOR_MAX_FREE_LIST_INDEX); \
2932 (v)->header.next.vector = vector_free_lists[index]; \
2933 vector_free_lists[index] = (v); \
3900d5de 2934 total_free_vector_bytes += (nbytes); \
f3372c87
DA
2935 } while (0)
2936
2937struct vector_block
2938{
2939 char data[VECTOR_BLOCK_BYTES];
2940 struct vector_block *next;
2941};
2942
2943/* Chain of vector blocks. */
2944
2945static struct vector_block *vector_blocks;
2946
2947/* Vector free lists, where NTH item points to a chain of free
2948 vectors of the same NBYTES size, so NTH == VINDEX (NBYTES). */
2949
2950static struct Lisp_Vector *vector_free_lists[VECTOR_MAX_FREE_LIST_INDEX];
2951
2952/* Singly-linked list of large vectors. */
2953
2954static struct Lisp_Vector *large_vectors;
2955
2956/* The only vector with 0 slots, allocated from pure space. */
2957
9730daca 2958Lisp_Object zero_vector;
f3372c87 2959
3ab6e069
DA
2960/* Number of live vectors. */
2961
2962static EMACS_INT total_vectors;
2963
2964/* Number of bytes used by live and free vectors. */
2965
2966static EMACS_INT total_vector_bytes, total_free_vector_bytes;
2967
f3372c87
DA
2968/* Get a new vector block. */
2969
2970static struct vector_block *
2971allocate_vector_block (void)
2972{
38182d90 2973 struct vector_block *block = xmalloc (sizeof *block);
f3372c87
DA
2974
2975#if GC_MARK_STACK && !defined GC_MALLOC_CHECK
2976 mem_insert (block->data, block->data + VECTOR_BLOCK_BYTES,
2977 MEM_TYPE_VECTOR_BLOCK);
2978#endif
2979
2980 block->next = vector_blocks;
2981 vector_blocks = block;
2982 return block;
2983}
2984
2985/* Called once to initialize vector allocation. */
2986
2987static void
2988init_vectors (void)
2989{
9730daca 2990 zero_vector = make_pure_vector (0);
f3372c87
DA
2991}
2992
2993/* Allocate vector from a vector block. */
2994
2995static struct Lisp_Vector *
2996allocate_vector_from_block (size_t nbytes)
2997{
2998 struct Lisp_Vector *vector, *rest;
2999 struct vector_block *block;
3000 size_t index, restbytes;
3001
3002 eassert (VBLOCK_BYTES_MIN <= nbytes && nbytes <= VBLOCK_BYTES_MAX);
3003 eassert (nbytes % roundup_size == 0);
3004
3005 /* First, try to allocate from a free list
3006 containing vectors of the requested size. */
3007 index = VINDEX (nbytes);
3008 if (vector_free_lists[index])
3009 {
3010 vector = vector_free_lists[index];
3011 vector_free_lists[index] = vector->header.next.vector;
3012 vector->header.next.nbytes = nbytes;
3900d5de 3013 total_free_vector_bytes -= nbytes;
f3372c87
DA
3014 return vector;
3015 }
3016
3017 /* Next, check free lists containing larger vectors. Since
3018 we will split the result, we should have remaining space
3019 large enough to use for one-slot vector at least. */
3020 for (index = VINDEX (nbytes + VBLOCK_BYTES_MIN);
3021 index < VECTOR_MAX_FREE_LIST_INDEX; index++)
3022 if (vector_free_lists[index])
3023 {
3024 /* This vector is larger than requested. */
3025 vector = vector_free_lists[index];
3026 vector_free_lists[index] = vector->header.next.vector;
3027 vector->header.next.nbytes = nbytes;
3900d5de 3028 total_free_vector_bytes -= nbytes;
f3372c87
DA
3029
3030 /* Excess bytes are used for the smaller vector,
3031 which should be set on an appropriate free list. */
3032 restbytes = index * roundup_size + VBLOCK_BYTES_MIN - nbytes;
3033 eassert (restbytes % roundup_size == 0);
3034 rest = ADVANCE (vector, nbytes);
3035 SETUP_ON_FREE_LIST (rest, restbytes, index);
3036 return vector;
3037 }
3038
3039 /* Finally, need a new vector block. */
3040 block = allocate_vector_block ();
3041
3042 /* New vector will be at the beginning of this block. */
3043 vector = (struct Lisp_Vector *) block->data;
3044 vector->header.next.nbytes = nbytes;
3045
3046 /* If the rest of space from this block is large enough
3047 for one-slot vector at least, set up it on a free list. */
3048 restbytes = VECTOR_BLOCK_BYTES - nbytes;
3049 if (restbytes >= VBLOCK_BYTES_MIN)
3050 {
3051 eassert (restbytes % roundup_size == 0);
3052 rest = ADVANCE (vector, nbytes);
3053 SETUP_ON_FREE_LIST (rest, restbytes, index);
3054 }
3055 return vector;
3056 }
3057
f3372c87
DA
3058/* Nonzero if VECTOR pointer is valid pointer inside BLOCK. */
3059
3060#define VECTOR_IN_BLOCK(vector, block) \
3061 ((char *) (vector) <= (block)->data \
3062 + VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN)
3063
ee28be33
SM
3064/* Number of bytes used by vector-block-allocated object. This is the only
3065 place where we actually use the `nbytes' field of the vector-header.
3066 I.e. we could get rid of the `nbytes' field by computing it based on the
3067 vector-type. */
3068
3069#define PSEUDOVECTOR_NBYTES(vector) \
3070 (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_FREE) \
3071 ? vector->header.size & PSEUDOVECTOR_SIZE_MASK \
356e7178 3072 : vector->header.next.nbytes)
ee28be33 3073
f3372c87
DA
3074/* Reclaim space used by unmarked vectors. */
3075
3076static void
3077sweep_vectors (void)
3078{
3079 struct vector_block *block = vector_blocks, **bprev = &vector_blocks;
3080 struct Lisp_Vector *vector, *next, **vprev = &large_vectors;
3081
3ab6e069 3082 total_vectors = total_vector_bytes = total_free_vector_bytes = 0;
f3372c87
DA
3083 memset (vector_free_lists, 0, sizeof (vector_free_lists));
3084
3085 /* Looking through vector blocks. */
3086
3087 for (block = vector_blocks; block; block = *bprev)
3088 {
3089 int free_this_block = 0;
3090
3091 for (vector = (struct Lisp_Vector *) block->data;
3092 VECTOR_IN_BLOCK (vector, block); vector = next)
3093 {
3094 if (VECTOR_MARKED_P (vector))
3095 {
3096 VECTOR_UNMARK (vector);
3ab6e069
DA
3097 total_vectors++;
3098 total_vector_bytes += vector->header.next.nbytes;
f3372c87
DA
3099 next = ADVANCE (vector, vector->header.next.nbytes);
3100 }
3101 else
3102 {
ee28be33
SM
3103 ptrdiff_t nbytes = PSEUDOVECTOR_NBYTES (vector);
3104 ptrdiff_t total_bytes = nbytes;
f3372c87 3105
ee28be33 3106 next = ADVANCE (vector, nbytes);
f3372c87
DA
3107
3108 /* While NEXT is not marked, try to coalesce with VECTOR,
3109 thus making VECTOR of the largest possible size. */
3110
3111 while (VECTOR_IN_BLOCK (next, block))
3112 {
3113 if (VECTOR_MARKED_P (next))
3114 break;
ee28be33
SM
3115 nbytes = PSEUDOVECTOR_NBYTES (next);
3116 total_bytes += nbytes;
f3372c87
DA
3117 next = ADVANCE (next, nbytes);
3118 }
bfe3e0a2 3119
ee28be33 3120 eassert (total_bytes % roundup_size == 0);
f3372c87
DA
3121
3122 if (vector == (struct Lisp_Vector *) block->data
3123 && !VECTOR_IN_BLOCK (next, block))
3124 /* This block should be freed because all of it's
3125 space was coalesced into the only free vector. */
3126 free_this_block = 1;
3127 else
ee28be33
SM
3128 {
3129 int tmp;
3130 SETUP_ON_FREE_LIST (vector, total_bytes, tmp);
3131 }
f3372c87
DA
3132 }
3133 }
3134
3135 if (free_this_block)
3136 {
3137 *bprev = block->next;
3138#if GC_MARK_STACK && !defined GC_MALLOC_CHECK
3139 mem_delete (mem_find (block->data));
3140#endif
3141 xfree (block);
3142 }
3143 else
3144 bprev = &block->next;
3145 }
3146
3147 /* Sweep large vectors. */
3148
3149 for (vector = large_vectors; vector; vector = *vprev)
3150 {
3151 if (VECTOR_MARKED_P (vector))
3152 {
3153 VECTOR_UNMARK (vector);
3ab6e069 3154 total_vectors++;
169925ec
DA
3155 if (vector->header.size & PSEUDOVECTOR_FLAG)
3156 {
3157 if (((vector->header.size & PVEC_TYPE_MASK)
3158 >> PSEUDOVECTOR_SIZE_BITS) == PVEC_BOOL_VECTOR)
3159 {
3160 struct Lisp_Bool_Vector *b
3161 = (struct Lisp_Bool_Vector *) vector;
3162 total_vector_bytes += header_size + sizeof (b->size)
3163 + (b->size + BOOL_VECTOR_BITS_PER_CHAR - 1)
3164 / BOOL_VECTOR_BITS_PER_CHAR;
3165 }
3166 else
3167 /* All other pseudovectors are small enough to be
3168 allocated from vector blocks. This code should
3169 be redesigned if some pseudovector type grows
3170 beyond VBLOCK_BYTES_MAX. */
3171 abort ();
3172 }
3173 else
3174 total_vector_bytes
3175 += header_size + vector->header.size * word_size;
f3372c87
DA
3176 vprev = &vector->header.next.vector;
3177 }
3178 else
3179 {
3180 *vprev = vector->header.next.vector;
3181 lisp_free (vector);
3182 }
3183 }
3184}
3185
34400008
GM
3186/* Value is a pointer to a newly allocated Lisp_Vector structure
3187 with room for LEN Lisp_Objects. */
3188
ece93c02 3189static struct Lisp_Vector *
d311d28c 3190allocate_vectorlike (ptrdiff_t len)
1825c68d
KH
3191{
3192 struct Lisp_Vector *p;
3193
dafc79fa
SM
3194 MALLOC_BLOCK_INPUT;
3195
cfb2f32e
SM
3196 /* This gets triggered by code which I haven't bothered to fix. --Stef */
3197 /* eassert (!handling_signal); */
3198
f3372c87 3199 if (len == 0)
9730daca 3200 p = XVECTOR (zero_vector);
d12e8f5a 3201 else
8bbbc977 3202 {
d12e8f5a 3203 size_t nbytes = header_size + len * word_size;
f3372c87 3204
d12e8f5a
DA
3205#ifdef DOUG_LEA_MALLOC
3206 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
3207 because mapped region contents are not preserved in
3208 a dumped Emacs. */
3209 mallopt (M_MMAP_MAX, 0);
3210#endif
f3372c87 3211
d12e8f5a
DA
3212 if (nbytes <= VBLOCK_BYTES_MAX)
3213 p = allocate_vector_from_block (vroundup (nbytes));
3214 else
3215 {
38182d90 3216 p = lisp_malloc (nbytes, MEM_TYPE_VECTORLIKE);
d12e8f5a
DA
3217 p->header.next.vector = large_vectors;
3218 large_vectors = p;
3219 }
177c0ea7 3220
d1658221 3221#ifdef DOUG_LEA_MALLOC
d12e8f5a
DA
3222 /* Back to a reasonable maximum of mmap'ed areas. */
3223 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
d1658221 3224#endif
177c0ea7 3225
d12e8f5a
DA
3226 consing_since_gc += nbytes;
3227 vector_cells_consed += len;
3228 }
1825c68d 3229
dafc79fa 3230 MALLOC_UNBLOCK_INPUT;
e2984df0 3231
1825c68d
KH
3232 return p;
3233}
3234
34400008 3235
dd0b0efb 3236/* Allocate a vector with LEN slots. */
ece93c02
GM
3237
3238struct Lisp_Vector *
dd0b0efb 3239allocate_vector (EMACS_INT len)
ece93c02 3240{
dd0b0efb
PE
3241 struct Lisp_Vector *v;
3242 ptrdiff_t nbytes_max = min (PTRDIFF_MAX, SIZE_MAX);
3243
3244 if (min ((nbytes_max - header_size) / word_size, MOST_POSITIVE_FIXNUM) < len)
3245 memory_full (SIZE_MAX);
3246 v = allocate_vectorlike (len);
3247 v->header.size = len;
ece93c02
GM
3248 return v;
3249}
3250
3251
3252/* Allocate other vector-like structures. */
3253
30f95089 3254struct Lisp_Vector *
d311d28c 3255allocate_pseudovector (int memlen, int lisplen, int tag)
ece93c02 3256{
d2029e5b 3257 struct Lisp_Vector *v = allocate_vectorlike (memlen);
e46bb31a 3258 int i;
177c0ea7 3259
d2029e5b 3260 /* Only the first lisplen slots will be traced normally by the GC. */
d2029e5b 3261 for (i = 0; i < lisplen; ++i)
ece93c02 3262 v->contents[i] = Qnil;
177c0ea7 3263
eab3844f 3264 XSETPVECTYPESIZE (v, tag, lisplen);
d2029e5b
SM
3265 return v;
3266}
d2029e5b 3267
36429c89
DA
3268struct buffer *
3269allocate_buffer (void)
3270{
38182d90 3271 struct buffer *b = lisp_malloc (sizeof *b, MEM_TYPE_BUFFER);
36429c89
DA
3272
3273 XSETPVECTYPESIZE (b, PVEC_BUFFER, (offsetof (struct buffer, own_text)
3274 - header_size) / word_size);
3275 /* Note that the fields of B are not initialized. */
3276 return b;
3277}
3278
ece93c02 3279struct Lisp_Hash_Table *
878f97ff 3280allocate_hash_table (void)
ece93c02 3281{
878f97ff 3282 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Hash_Table, count, PVEC_HASH_TABLE);
ece93c02
GM
3283}
3284
ece93c02 3285struct window *
971de7fb 3286allocate_window (void)
ece93c02 3287{
62efea5e 3288 struct window *w;
177c0ea7 3289
62efea5e
DA
3290 w = ALLOCATE_PSEUDOVECTOR (struct window, current_matrix, PVEC_WINDOW);
3291 /* Users assumes that non-Lisp data is zeroed. */
3292 memset (&w->current_matrix, 0,
3293 sizeof (*w) - offsetof (struct window, current_matrix));
3294 return w;
3295}
177c0ea7 3296
4a729fd8 3297struct terminal *
971de7fb 3298allocate_terminal (void)
4a729fd8 3299{
62efea5e 3300 struct terminal *t;
ece93c02 3301
62efea5e
DA
3302 t = ALLOCATE_PSEUDOVECTOR (struct terminal, next_terminal, PVEC_TERMINAL);
3303 /* Users assumes that non-Lisp data is zeroed. */
3304 memset (&t->next_terminal, 0,
3305 sizeof (*t) - offsetof (struct terminal, next_terminal));
d2029e5b 3306 return t;
4a729fd8 3307}
ece93c02
GM
3308
3309struct frame *
971de7fb 3310allocate_frame (void)
ece93c02 3311{
62efea5e
DA
3312 struct frame *f;
3313
3314 f = ALLOCATE_PSEUDOVECTOR (struct frame, face_cache, PVEC_FRAME);
3315 /* Users assumes that non-Lisp data is zeroed. */
72af86bd 3316 memset (&f->face_cache, 0,
62efea5e 3317 sizeof (*f) - offsetof (struct frame, face_cache));
d2029e5b 3318 return f;
ece93c02
GM
3319}
3320
ece93c02 3321struct Lisp_Process *
971de7fb 3322allocate_process (void)
ece93c02 3323{
62efea5e 3324 struct Lisp_Process *p;
ece93c02 3325
62efea5e
DA
3326 p = ALLOCATE_PSEUDOVECTOR (struct Lisp_Process, pid, PVEC_PROCESS);
3327 /* Users assumes that non-Lisp data is zeroed. */
3328 memset (&p->pid, 0,
3329 sizeof (*p) - offsetof (struct Lisp_Process, pid));
3330 return p;
3331}
ece93c02 3332
a7ca3326 3333DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
a6266d23 3334 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
7ee72033 3335See also the function `vector'. */)
5842a27b 3336 (register Lisp_Object length, Lisp_Object init)
7146af97 3337{
1825c68d 3338 Lisp_Object vector;
d311d28c
PE
3339 register ptrdiff_t sizei;
3340 register ptrdiff_t i;
7146af97
JB
3341 register struct Lisp_Vector *p;
3342
b7826503 3343 CHECK_NATNUM (length);
7146af97 3344
d311d28c
PE
3345 p = allocate_vector (XFASTINT (length));
3346 sizei = XFASTINT (length);
ae35e756
PE
3347 for (i = 0; i < sizei; i++)
3348 p->contents[i] = init;
7146af97 3349
1825c68d 3350 XSETVECTOR (vector, p);
7146af97
JB
3351 return vector;
3352}
3353
34400008 3354
a7ca3326 3355DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
eae936e2 3356 doc: /* Return a newly created vector with specified arguments as elements.
ae8e8122
MB
3357Any number of arguments, even zero arguments, are allowed.
3358usage: (vector &rest OBJECTS) */)
f66c7cf8 3359 (ptrdiff_t nargs, Lisp_Object *args)
7146af97
JB
3360{
3361 register Lisp_Object len, val;
f66c7cf8 3362 ptrdiff_t i;
7146af97
JB
3363 register struct Lisp_Vector *p;
3364
67ba9986 3365 XSETFASTINT (len, nargs);
7146af97
JB
3366 val = Fmake_vector (len, Qnil);
3367 p = XVECTOR (val);
ae35e756
PE
3368 for (i = 0; i < nargs; i++)
3369 p->contents[i] = args[i];
7146af97
JB
3370 return val;
3371}
3372
3017f87f
SM
3373void
3374make_byte_code (struct Lisp_Vector *v)
3375{
3376 if (v->header.size > 1 && STRINGP (v->contents[1])
3377 && STRING_MULTIBYTE (v->contents[1]))
3378 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
3379 earlier because they produced a raw 8-bit string for byte-code
3380 and now such a byte-code string is loaded as multibyte while
3381 raw 8-bit characters converted to multibyte form. Thus, now we
3382 must convert them back to the original unibyte form. */
3383 v->contents[1] = Fstring_as_unibyte (v->contents[1]);
3384 XSETPVECTYPE (v, PVEC_COMPILED);
3385}
34400008 3386
a7ca3326 3387DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
a6266d23 3388 doc: /* Create a byte-code object with specified arguments as elements.
e2abe5a1
SM
3389The arguments should be the ARGLIST, bytecode-string BYTE-CODE, constant
3390vector CONSTANTS, maximum stack size DEPTH, (optional) DOCSTRING,
3391and (optional) INTERACTIVE-SPEC.
228299fa 3392The first four arguments are required; at most six have any
ae8e8122 3393significance.
e2abe5a1
SM
3394The ARGLIST can be either like the one of `lambda', in which case the arguments
3395will be dynamically bound before executing the byte code, or it can be an
3396integer of the form NNNNNNNRMMMMMMM where the 7bit MMMMMMM specifies the
3397minimum number of arguments, the 7-bit NNNNNNN specifies the maximum number
3398of arguments (ignoring &rest) and the R bit specifies whether there is a &rest
3399argument to catch the left-over arguments. If such an integer is used, the
3400arguments will not be dynamically bound but will be instead pushed on the
3401stack before executing the byte-code.
92cc28b2 3402usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
f66c7cf8 3403 (ptrdiff_t nargs, Lisp_Object *args)
7146af97
JB
3404{
3405 register Lisp_Object len, val;
f66c7cf8 3406 ptrdiff_t i;
7146af97
JB
3407 register struct Lisp_Vector *p;
3408
3017f87f
SM
3409 /* We used to purecopy everything here, if purify-flga was set. This worked
3410 OK for Emacs-23, but with Emacs-24's lexical binding code, it can be
3411 dangerous, since make-byte-code is used during execution to build
3412 closures, so any closure built during the preload phase would end up
3413 copied into pure space, including its free variables, which is sometimes
3414 just wasteful and other times plainly wrong (e.g. those free vars may want
3415 to be setcar'd). */
9eac9d59 3416
3017f87f
SM
3417 XSETFASTINT (len, nargs);
3418 val = Fmake_vector (len, Qnil);
9eac9d59 3419
7146af97 3420 p = XVECTOR (val);
ae35e756 3421 for (i = 0; i < nargs; i++)
3017f87f
SM
3422 p->contents[i] = args[i];
3423 make_byte_code (p);
876c194c 3424 XSETCOMPILED (val, p);
7146af97
JB
3425 return val;
3426}
2e471eb5 3427
34400008 3428
7146af97 3429\f
2e471eb5
GM
3430/***********************************************************************
3431 Symbol Allocation
3432 ***********************************************************************/
7146af97 3433
d55c12ed
AS
3434/* Like struct Lisp_Symbol, but padded so that the size is a multiple
3435 of the required alignment if LSB tags are used. */
3436
3437union aligned_Lisp_Symbol
3438{
3439 struct Lisp_Symbol s;
bfe3e0a2 3440#if USE_LSB_TAG
d55c12ed
AS
3441 unsigned char c[(sizeof (struct Lisp_Symbol) + (1 << GCTYPEBITS) - 1)
3442 & -(1 << GCTYPEBITS)];
3443#endif
3444};
3445
2e471eb5
GM
3446/* Each symbol_block is just under 1020 bytes long, since malloc
3447 really allocates in units of powers of two and uses 4 bytes for its
3017f87f 3448 own overhead. */
7146af97
JB
3449
3450#define SYMBOL_BLOCK_SIZE \
d55c12ed 3451 ((1020 - sizeof (struct symbol_block *)) / sizeof (union aligned_Lisp_Symbol))
7146af97
JB
3452
3453struct symbol_block
2e471eb5 3454{
6b61353c 3455 /* Place `symbols' first, to preserve alignment. */
d55c12ed 3456 union aligned_Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
6b61353c 3457 struct symbol_block *next;
2e471eb5 3458};
7146af97 3459
34400008
GM
3460/* Current symbol block and index of first unused Lisp_Symbol
3461 structure in it. */
3462
d3d47262 3463static struct symbol_block *symbol_block;
fff62aa9 3464static int symbol_block_index = SYMBOL_BLOCK_SIZE;
7146af97 3465
34400008
GM
3466/* List of free symbols. */
3467
d3d47262 3468static struct Lisp_Symbol *symbol_free_list;
7146af97 3469
a7ca3326 3470DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
a6266d23 3471 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
7ee72033 3472Its value and function definition are void, and its property list is nil. */)
5842a27b 3473 (Lisp_Object name)
7146af97
JB
3474{
3475 register Lisp_Object val;
3476 register struct Lisp_Symbol *p;
3477
b7826503 3478 CHECK_STRING (name);
7146af97 3479
537407f0 3480 /* eassert (!handling_signal); */
cfb2f32e 3481
dafc79fa 3482 MALLOC_BLOCK_INPUT;
e2984df0 3483
7146af97
JB
3484 if (symbol_free_list)
3485 {
45d12a89 3486 XSETSYMBOL (val, symbol_free_list);
28a099a4 3487 symbol_free_list = symbol_free_list->next;
7146af97
JB
3488 }
3489 else
3490 {
3491 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
3492 {
38182d90
PE
3493 struct symbol_block *new
3494 = lisp_malloc (sizeof *new, MEM_TYPE_SYMBOL);
7146af97
JB
3495 new->next = symbol_block;
3496 symbol_block = new;
3497 symbol_block_index = 0;
3900d5de 3498 total_free_symbols += SYMBOL_BLOCK_SIZE;
7146af97 3499 }
d55c12ed 3500 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index].s);
6b61353c 3501 symbol_block_index++;
7146af97 3502 }
177c0ea7 3503
dafc79fa 3504 MALLOC_UNBLOCK_INPUT;
e2984df0 3505
7146af97 3506 p = XSYMBOL (val);
8fe5665d 3507 p->xname = name;
7146af97 3508 p->plist = Qnil;
ce5b453a
SM
3509 p->redirect = SYMBOL_PLAINVAL;
3510 SET_SYMBOL_VAL (p, Qunbound);
2e471eb5 3511 p->function = Qunbound;
9e713715 3512 p->next = NULL;
2336fe58 3513 p->gcmarkbit = 0;
9e713715
GM
3514 p->interned = SYMBOL_UNINTERNED;
3515 p->constant = 0;
b9598260 3516 p->declared_special = 0;
2e471eb5
GM
3517 consing_since_gc += sizeof (struct Lisp_Symbol);
3518 symbols_consed++;
3900d5de 3519 total_free_symbols--;
7146af97
JB
3520 return val;
3521}
3522
3f25e183 3523
2e471eb5
GM
3524\f
3525/***********************************************************************
34400008 3526 Marker (Misc) Allocation
2e471eb5 3527 ***********************************************************************/
3f25e183 3528
d55c12ed
AS
3529/* Like union Lisp_Misc, but padded so that its size is a multiple of
3530 the required alignment when LSB tags are used. */
3531
3532union aligned_Lisp_Misc
3533{
3534 union Lisp_Misc m;
bfe3e0a2 3535#if USE_LSB_TAG
d55c12ed
AS
3536 unsigned char c[(sizeof (union Lisp_Misc) + (1 << GCTYPEBITS) - 1)
3537 & -(1 << GCTYPEBITS)];
3538#endif
3539};
3540
2e471eb5
GM
3541/* Allocation of markers and other objects that share that structure.
3542 Works like allocation of conses. */
c0696668 3543
2e471eb5 3544#define MARKER_BLOCK_SIZE \
d55c12ed 3545 ((1020 - sizeof (struct marker_block *)) / sizeof (union aligned_Lisp_Misc))
2e471eb5
GM
3546
3547struct marker_block
c0696668 3548{
6b61353c 3549 /* Place `markers' first, to preserve alignment. */
d55c12ed 3550 union aligned_Lisp_Misc markers[MARKER_BLOCK_SIZE];
6b61353c 3551 struct marker_block *next;
2e471eb5 3552};
c0696668 3553
d3d47262 3554static struct marker_block *marker_block;
fff62aa9 3555static int marker_block_index = MARKER_BLOCK_SIZE;
c0696668 3556
d3d47262 3557static union Lisp_Misc *marker_free_list;
c0696668 3558
2e471eb5
GM
3559/* Return a newly allocated Lisp_Misc object, with no substructure. */
3560
3f25e183 3561Lisp_Object
971de7fb 3562allocate_misc (void)
7146af97 3563{
2e471eb5 3564 Lisp_Object val;
7146af97 3565
e2984df0
CY
3566 /* eassert (!handling_signal); */
3567
dafc79fa 3568 MALLOC_BLOCK_INPUT;
cfb2f32e 3569
2e471eb5 3570 if (marker_free_list)
7146af97 3571 {
2e471eb5
GM
3572 XSETMISC (val, marker_free_list);
3573 marker_free_list = marker_free_list->u_free.chain;
7146af97
JB
3574 }
3575 else
7146af97 3576 {
2e471eb5
GM
3577 if (marker_block_index == MARKER_BLOCK_SIZE)
3578 {
38182d90 3579 struct marker_block *new = lisp_malloc (sizeof *new, MEM_TYPE_MISC);
2e471eb5
GM
3580 new->next = marker_block;
3581 marker_block = new;
3582 marker_block_index = 0;
7b7990cc 3583 total_free_markers += MARKER_BLOCK_SIZE;
2e471eb5 3584 }
d55c12ed 3585 XSETMISC (val, &marker_block->markers[marker_block_index].m);
6b61353c 3586 marker_block_index++;
7146af97 3587 }
177c0ea7 3588
dafc79fa 3589 MALLOC_UNBLOCK_INPUT;
e2984df0 3590
7b7990cc 3591 --total_free_markers;
2e471eb5
GM
3592 consing_since_gc += sizeof (union Lisp_Misc);
3593 misc_objects_consed++;
67ee9f6e 3594 XMISCANY (val)->gcmarkbit = 0;
2e471eb5
GM
3595 return val;
3596}
3597
7b7990cc
KS
3598/* Free a Lisp_Misc object */
3599
244ed907 3600static void
971de7fb 3601free_misc (Lisp_Object misc)
7b7990cc 3602{
d314756e 3603 XMISCTYPE (misc) = Lisp_Misc_Free;
7b7990cc
KS
3604 XMISC (misc)->u_free.chain = marker_free_list;
3605 marker_free_list = XMISC (misc);
3606
3607 total_free_markers++;
3608}
3609
42172a6b
RS
3610/* Return a Lisp_Misc_Save_Value object containing POINTER and
3611 INTEGER. This is used to package C values to call record_unwind_protect.
3612 The unwind function can get the C values back using XSAVE_VALUE. */
3613
3614Lisp_Object
9c4c5f81 3615make_save_value (void *pointer, ptrdiff_t integer)
42172a6b
RS
3616{
3617 register Lisp_Object val;
3618 register struct Lisp_Save_Value *p;
3619
3620 val = allocate_misc ();
3621 XMISCTYPE (val) = Lisp_Misc_Save_Value;
3622 p = XSAVE_VALUE (val);
3623 p->pointer = pointer;
3624 p->integer = integer;
b766f870 3625 p->dogc = 0;
42172a6b
RS
3626 return val;
3627}
3628
a7ca3326 3629DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
a6266d23 3630 doc: /* Return a newly allocated marker which does not point at any place. */)
5842a27b 3631 (void)
2e471eb5
GM
3632{
3633 register Lisp_Object val;
3634 register struct Lisp_Marker *p;
7146af97 3635
2e471eb5
GM
3636 val = allocate_misc ();
3637 XMISCTYPE (val) = Lisp_Misc_Marker;
3638 p = XMARKER (val);
3639 p->buffer = 0;
3640 p->bytepos = 0;
3641 p->charpos = 0;
ef89c2ce 3642 p->next = NULL;
2e471eb5 3643 p->insertion_type = 0;
7146af97
JB
3644 return val;
3645}
2e471eb5 3646
657924ff
DA
3647/* Return a newly allocated marker which points into BUF
3648 at character position CHARPOS and byte position BYTEPOS. */
3649
3650Lisp_Object
3651build_marker (struct buffer *buf, ptrdiff_t charpos, ptrdiff_t bytepos)
3652{
3653 Lisp_Object obj;
3654 struct Lisp_Marker *m;
3655
3656 /* No dead buffers here. */
3657 eassert (!NILP (BVAR (buf, name)));
3658
3659 /* Every character is at least one byte. */
3660 eassert (charpos <= bytepos);
3661
3662 obj = allocate_misc ();
3663 XMISCTYPE (obj) = Lisp_Misc_Marker;
3664 m = XMARKER (obj);
3665 m->buffer = buf;
3666 m->charpos = charpos;
3667 m->bytepos = bytepos;
3668 m->insertion_type = 0;
3669 m->next = BUF_MARKERS (buf);
3670 BUF_MARKERS (buf) = m;
3671 return obj;
3672}
3673
2e471eb5
GM
3674/* Put MARKER back on the free list after using it temporarily. */
3675
3676void
971de7fb 3677free_marker (Lisp_Object marker)
2e471eb5 3678{
ef89c2ce 3679 unchain_marker (XMARKER (marker));
7b7990cc 3680 free_misc (marker);
2e471eb5
GM
3681}
3682
c0696668 3683\f
7146af97 3684/* Return a newly created vector or string with specified arguments as
736471d1
RS
3685 elements. If all the arguments are characters that can fit
3686 in a string of events, make a string; otherwise, make a vector.
3687
3688 Any number of arguments, even zero arguments, are allowed. */
7146af97
JB
3689
3690Lisp_Object
971de7fb 3691make_event_array (register int nargs, Lisp_Object *args)
7146af97
JB
3692{
3693 int i;
3694
3695 for (i = 0; i < nargs; i++)
736471d1 3696 /* The things that fit in a string
c9ca4659
RS
3697 are characters that are in 0...127,
3698 after discarding the meta bit and all the bits above it. */
e687453f 3699 if (!INTEGERP (args[i])
c11285dc 3700 || (XINT (args[i]) & ~(-CHAR_META)) >= 0200)
7146af97
JB
3701 return Fvector (nargs, args);
3702
3703 /* Since the loop exited, we know that all the things in it are
3704 characters, so we can make a string. */
3705 {
c13ccad2 3706 Lisp_Object result;
177c0ea7 3707
50aee051 3708 result = Fmake_string (make_number (nargs), make_number (0));
7146af97 3709 for (i = 0; i < nargs; i++)
736471d1 3710 {
46e7e6b0 3711 SSET (result, i, XINT (args[i]));
736471d1
RS
3712 /* Move the meta bit to the right place for a string char. */
3713 if (XINT (args[i]) & CHAR_META)
46e7e6b0 3714 SSET (result, i, SREF (result, i) | 0x80);
736471d1 3715 }
177c0ea7 3716
7146af97
JB
3717 return result;
3718 }
3719}
2e471eb5
GM
3720
3721
7146af97 3722\f
24d8a105
RS
3723/************************************************************************
3724 Memory Full Handling
3725 ************************************************************************/
3726
3727
531b0165
PE
3728/* Called if malloc (NBYTES) returns zero. If NBYTES == SIZE_MAX,
3729 there may have been size_t overflow so that malloc was never
3730 called, or perhaps malloc was invoked successfully but the
3731 resulting pointer had problems fitting into a tagged EMACS_INT. In
3732 either case this counts as memory being full even though malloc did
3733 not fail. */
24d8a105
RS
3734
3735void
531b0165 3736memory_full (size_t nbytes)
24d8a105 3737{
531b0165
PE
3738 /* Do not go into hysterics merely because a large request failed. */
3739 int enough_free_memory = 0;
2b6148e4 3740 if (SPARE_MEMORY < nbytes)
531b0165 3741 {
66606eea
PE
3742 void *p;
3743
3744 MALLOC_BLOCK_INPUT;
3745 p = malloc (SPARE_MEMORY);
531b0165
PE
3746 if (p)
3747 {
4d09bcf6 3748 free (p);
531b0165
PE
3749 enough_free_memory = 1;
3750 }
66606eea 3751 MALLOC_UNBLOCK_INPUT;
531b0165 3752 }
24d8a105 3753
531b0165
PE
3754 if (! enough_free_memory)
3755 {
3756 int i;
24d8a105 3757
531b0165
PE
3758 Vmemory_full = Qt;
3759
3760 memory_full_cons_threshold = sizeof (struct cons_block);
3761
3762 /* The first time we get here, free the spare memory. */
3763 for (i = 0; i < sizeof (spare_memory) / sizeof (char *); i++)
3764 if (spare_memory[i])
3765 {
3766 if (i == 0)
3767 free (spare_memory[i]);
3768 else if (i >= 1 && i <= 4)
3769 lisp_align_free (spare_memory[i]);
3770 else
3771 lisp_free (spare_memory[i]);
3772 spare_memory[i] = 0;
3773 }
3774
3775 /* Record the space now used. When it decreases substantially,
3776 we can refill the memory reserve. */
4e75f29d 3777#if !defined SYSTEM_MALLOC && !defined SYNC_INPUT
531b0165 3778 bytes_used_when_full = BYTES_USED;
24d8a105 3779#endif
531b0165 3780 }
24d8a105
RS
3781
3782 /* This used to call error, but if we've run out of memory, we could
3783 get infinite recursion trying to build the string. */
9b306d37 3784 xsignal (Qnil, Vmemory_signal_data);
24d8a105
RS
3785}
3786
3787/* If we released our reserve (due to running out of memory),
3788 and we have a fair amount free once again,
3789 try to set aside another reserve in case we run out once more.
3790
3791 This is called when a relocatable block is freed in ralloc.c,
3792 and also directly from this file, in case we're not using ralloc.c. */
3793
3794void
971de7fb 3795refill_memory_reserve (void)
24d8a105
RS
3796{
3797#ifndef SYSTEM_MALLOC
3798 if (spare_memory[0] == 0)
38182d90 3799 spare_memory[0] = malloc (SPARE_MEMORY);
24d8a105 3800 if (spare_memory[1] == 0)
38182d90 3801 spare_memory[1] = lisp_align_malloc (sizeof (struct cons_block),
24d8a105
RS
3802 MEM_TYPE_CONS);
3803 if (spare_memory[2] == 0)
38182d90
PE
3804 spare_memory[2] = lisp_align_malloc (sizeof (struct cons_block),
3805 MEM_TYPE_CONS);
24d8a105 3806 if (spare_memory[3] == 0)
38182d90
PE
3807 spare_memory[3] = lisp_align_malloc (sizeof (struct cons_block),
3808 MEM_TYPE_CONS);
24d8a105 3809 if (spare_memory[4] == 0)
38182d90
PE
3810 spare_memory[4] = lisp_align_malloc (sizeof (struct cons_block),
3811 MEM_TYPE_CONS);
24d8a105 3812 if (spare_memory[5] == 0)
38182d90
PE
3813 spare_memory[5] = lisp_malloc (sizeof (struct string_block),
3814 MEM_TYPE_STRING);
24d8a105 3815 if (spare_memory[6] == 0)
38182d90
PE
3816 spare_memory[6] = lisp_malloc (sizeof (struct string_block),
3817 MEM_TYPE_STRING);
24d8a105
RS
3818 if (spare_memory[0] && spare_memory[1] && spare_memory[5])
3819 Vmemory_full = Qnil;
3820#endif
3821}
3822\f
34400008
GM
3823/************************************************************************
3824 C Stack Marking
3825 ************************************************************************/
3826
13c844fb
GM
3827#if GC_MARK_STACK || defined GC_MALLOC_CHECK
3828
71cf5fa0
GM
3829/* Conservative C stack marking requires a method to identify possibly
3830 live Lisp objects given a pointer value. We do this by keeping
3831 track of blocks of Lisp data that are allocated in a red-black tree
3832 (see also the comment of mem_node which is the type of nodes in
3833 that tree). Function lisp_malloc adds information for an allocated
3834 block to the red-black tree with calls to mem_insert, and function
3835 lisp_free removes it with mem_delete. Functions live_string_p etc
3836 call mem_find to lookup information about a given pointer in the
3837 tree, and use that to determine if the pointer points to a Lisp
3838 object or not. */
3839
34400008
GM
3840/* Initialize this part of alloc.c. */
3841
3842static void
971de7fb 3843mem_init (void)
34400008
GM
3844{
3845 mem_z.left = mem_z.right = MEM_NIL;
3846 mem_z.parent = NULL;
3847 mem_z.color = MEM_BLACK;
3848 mem_z.start = mem_z.end = NULL;
3849 mem_root = MEM_NIL;
3850}
3851
3852
3853/* Value is a pointer to the mem_node containing START. Value is
3854 MEM_NIL if there is no node in the tree containing START. */
3855
55d4c1b2 3856static inline struct mem_node *
971de7fb 3857mem_find (void *start)
34400008
GM
3858{
3859 struct mem_node *p;
3860
ece93c02
GM
3861 if (start < min_heap_address || start > max_heap_address)
3862 return MEM_NIL;
3863
34400008
GM
3864 /* Make the search always successful to speed up the loop below. */
3865 mem_z.start = start;
3866 mem_z.end = (char *) start + 1;
3867
3868 p = mem_root;
3869 while (start < p->start || start >= p->end)
3870 p = start < p->start ? p->left : p->right;
3871 return p;
3872}
3873
3874
3875/* Insert a new node into the tree for a block of memory with start
3876 address START, end address END, and type TYPE. Value is a
3877 pointer to the node that was inserted. */
3878
3879static struct mem_node *
971de7fb 3880mem_insert (void *start, void *end, enum mem_type type)
34400008
GM
3881{
3882 struct mem_node *c, *parent, *x;
3883
add3c3ea 3884 if (min_heap_address == NULL || start < min_heap_address)
ece93c02 3885 min_heap_address = start;
add3c3ea 3886 if (max_heap_address == NULL || end > max_heap_address)
ece93c02
GM
3887 max_heap_address = end;
3888
34400008
GM
3889 /* See where in the tree a node for START belongs. In this
3890 particular application, it shouldn't happen that a node is already
3891 present. For debugging purposes, let's check that. */
3892 c = mem_root;
3893 parent = NULL;
3894
3895#if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
177c0ea7 3896
34400008
GM
3897 while (c != MEM_NIL)
3898 {
3899 if (start >= c->start && start < c->end)
3900 abort ();
3901 parent = c;
3902 c = start < c->start ? c->left : c->right;
3903 }
177c0ea7 3904
34400008 3905#else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
177c0ea7 3906
34400008
GM
3907 while (c != MEM_NIL)
3908 {
3909 parent = c;
3910 c = start < c->start ? c->left : c->right;
3911 }
177c0ea7 3912
34400008
GM
3913#endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3914
3915 /* Create a new node. */
877935b1 3916#ifdef GC_MALLOC_CHECK
38182d90 3917 x = _malloc_internal (sizeof *x);
877935b1
GM
3918 if (x == NULL)
3919 abort ();
3920#else
23f86fce 3921 x = xmalloc (sizeof *x);
877935b1 3922#endif
34400008
GM
3923 x->start = start;
3924 x->end = end;
3925 x->type = type;
3926 x->parent = parent;
3927 x->left = x->right = MEM_NIL;
3928 x->color = MEM_RED;
3929
3930 /* Insert it as child of PARENT or install it as root. */
3931 if (parent)
3932 {
3933 if (start < parent->start)
3934 parent->left = x;
3935 else
3936 parent->right = x;
3937 }
177c0ea7 3938 else
34400008
GM
3939 mem_root = x;
3940
3941 /* Re-establish red-black tree properties. */
3942 mem_insert_fixup (x);
877935b1 3943
34400008
GM
3944 return x;
3945}
3946
3947
3948/* Re-establish the red-black properties of the tree, and thereby
3949 balance the tree, after node X has been inserted; X is always red. */
3950
3951static void
971de7fb 3952mem_insert_fixup (struct mem_node *x)
34400008
GM
3953{
3954 while (x != mem_root && x->parent->color == MEM_RED)
3955 {
3956 /* X is red and its parent is red. This is a violation of
3957 red-black tree property #3. */
177c0ea7 3958
34400008
GM
3959 if (x->parent == x->parent->parent->left)
3960 {
3961 /* We're on the left side of our grandparent, and Y is our
3962 "uncle". */
3963 struct mem_node *y = x->parent->parent->right;
177c0ea7 3964
34400008
GM
3965 if (y->color == MEM_RED)
3966 {
3967 /* Uncle and parent are red but should be black because
3968 X is red. Change the colors accordingly and proceed
3969 with the grandparent. */
3970 x->parent->color = MEM_BLACK;
3971 y->color = MEM_BLACK;
3972 x->parent->parent->color = MEM_RED;
3973 x = x->parent->parent;
3974 }
3975 else
3976 {
3977 /* Parent and uncle have different colors; parent is
3978 red, uncle is black. */
3979 if (x == x->parent->right)
3980 {
3981 x = x->parent;
3982 mem_rotate_left (x);
3983 }
3984
3985 x->parent->color = MEM_BLACK;
3986 x->parent->parent->color = MEM_RED;
3987 mem_rotate_right (x->parent->parent);
3988 }
3989 }
3990 else
3991 {
3992 /* This is the symmetrical case of above. */
3993 struct mem_node *y = x->parent->parent->left;
177c0ea7 3994
34400008
GM
3995 if (y->color == MEM_RED)
3996 {
3997 x->parent->color = MEM_BLACK;
3998 y->color = MEM_BLACK;
3999 x->parent->parent->color = MEM_RED;
4000 x = x->parent->parent;
4001 }
4002 else
4003 {
4004 if (x == x->parent->left)
4005 {
4006 x = x->parent;
4007 mem_rotate_right (x);
4008 }
177c0ea7 4009
34400008
GM
4010 x->parent->color = MEM_BLACK;
4011 x->parent->parent->color = MEM_RED;
4012 mem_rotate_left (x->parent->parent);
4013 }
4014 }
4015 }
4016
4017 /* The root may have been changed to red due to the algorithm. Set
4018 it to black so that property #5 is satisfied. */
4019 mem_root->color = MEM_BLACK;
4020}
4021
4022
177c0ea7
JB
4023/* (x) (y)
4024 / \ / \
34400008
GM
4025 a (y) ===> (x) c
4026 / \ / \
4027 b c a b */
4028
4029static void
971de7fb 4030mem_rotate_left (struct mem_node *x)
34400008
GM
4031{
4032 struct mem_node *y;
4033
4034 /* Turn y's left sub-tree into x's right sub-tree. */
4035 y = x->right;
4036 x->right = y->left;
4037 if (y->left != MEM_NIL)
4038 y->left->parent = x;
4039
4040 /* Y's parent was x's parent. */
4041 if (y != MEM_NIL)
4042 y->parent = x->parent;
4043
4044 /* Get the parent to point to y instead of x. */
4045 if (x->parent)
4046 {
4047 if (x == x->parent->left)
4048 x->parent->left = y;
4049 else
4050 x->parent->right = y;
4051 }
4052 else
4053 mem_root = y;
4054
4055 /* Put x on y's left. */
4056 y->left = x;
4057 if (x != MEM_NIL)
4058 x->parent = y;
4059}
4060
4061
177c0ea7
JB
4062/* (x) (Y)
4063 / \ / \
4064 (y) c ===> a (x)
4065 / \ / \
34400008
GM
4066 a b b c */
4067
4068static void
971de7fb 4069mem_rotate_right (struct mem_node *x)
34400008
GM
4070{
4071 struct mem_node *y = x->left;
4072
4073 x->left = y->right;
4074 if (y->right != MEM_NIL)
4075 y->right->parent = x;
177c0ea7 4076
34400008
GM
4077 if (y != MEM_NIL)
4078 y->parent = x->parent;
4079 if (x->parent)
4080 {
4081 if (x == x->parent->right)
4082 x->parent->right = y;
4083 else
4084 x->parent->left = y;
4085 }
4086 else
4087 mem_root = y;
177c0ea7 4088
34400008
GM
4089 y->right = x;
4090 if (x != MEM_NIL)
4091 x->parent = y;
4092}
4093
4094
4095/* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
4096
4097static void
971de7fb 4098mem_delete (struct mem_node *z)
34400008
GM
4099{
4100 struct mem_node *x, *y;
4101
4102 if (!z || z == MEM_NIL)
4103 return;
4104
4105 if (z->left == MEM_NIL || z->right == MEM_NIL)
4106 y = z;
4107 else
4108 {
4109 y = z->right;
4110 while (y->left != MEM_NIL)
4111 y = y->left;
4112 }
4113
4114 if (y->left != MEM_NIL)
4115 x = y->left;
4116 else
4117 x = y->right;
4118
4119 x->parent = y->parent;
4120 if (y->parent)
4121 {
4122 if (y == y->parent->left)
4123 y->parent->left = x;
4124 else
4125 y->parent->right = x;
4126 }
4127 else
4128 mem_root = x;
4129
4130 if (y != z)
4131 {
4132 z->start = y->start;
4133 z->end = y->end;
4134 z->type = y->type;
4135 }
177c0ea7 4136
34400008
GM
4137 if (y->color == MEM_BLACK)
4138 mem_delete_fixup (x);
877935b1
GM
4139
4140#ifdef GC_MALLOC_CHECK
4141 _free_internal (y);
4142#else
34400008 4143 xfree (y);
877935b1 4144#endif
34400008
GM
4145}
4146
4147
4148/* Re-establish the red-black properties of the tree, after a
4149 deletion. */
4150
4151static void
971de7fb 4152mem_delete_fixup (struct mem_node *x)
34400008
GM
4153{
4154 while (x != mem_root && x->color == MEM_BLACK)
4155 {
4156 if (x == x->parent->left)
4157 {
4158 struct mem_node *w = x->parent->right;
177c0ea7 4159
34400008
GM
4160 if (w->color == MEM_RED)
4161 {
4162 w->color = MEM_BLACK;
4163 x->parent->color = MEM_RED;
4164 mem_rotate_left (x->parent);
4165 w = x->parent->right;
4166 }
177c0ea7 4167
34400008
GM
4168 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
4169 {
4170 w->color = MEM_RED;
4171 x = x->parent;
4172 }
4173 else
4174 {
4175 if (w->right->color == MEM_BLACK)
4176 {
4177 w->left->color = MEM_BLACK;
4178 w->color = MEM_RED;
4179 mem_rotate_right (w);
4180 w = x->parent->right;
4181 }
4182 w->color = x->parent->color;
4183 x->parent->color = MEM_BLACK;
4184 w->right->color = MEM_BLACK;
4185 mem_rotate_left (x->parent);
4186 x = mem_root;
4187 }
4188 }
4189 else
4190 {
4191 struct mem_node *w = x->parent->left;
177c0ea7 4192
34400008
GM
4193 if (w->color == MEM_RED)
4194 {
4195 w->color = MEM_BLACK;
4196 x->parent->color = MEM_RED;
4197 mem_rotate_right (x->parent);
4198 w = x->parent->left;
4199 }
177c0ea7 4200
34400008
GM
4201 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
4202 {
4203 w->color = MEM_RED;
4204 x = x->parent;
4205 }
4206 else
4207 {
4208 if (w->left->color == MEM_BLACK)
4209 {
4210 w->right->color = MEM_BLACK;
4211 w->color = MEM_RED;
4212 mem_rotate_left (w);
4213 w = x->parent->left;
4214 }
177c0ea7 4215
34400008
GM
4216 w->color = x->parent->color;
4217 x->parent->color = MEM_BLACK;
4218 w->left->color = MEM_BLACK;
4219 mem_rotate_right (x->parent);
4220 x = mem_root;
4221 }
4222 }
4223 }
177c0ea7 4224
34400008
GM
4225 x->color = MEM_BLACK;
4226}
4227
4228
4229/* Value is non-zero if P is a pointer to a live Lisp string on
4230 the heap. M is a pointer to the mem_block for P. */
4231
55d4c1b2 4232static inline int
971de7fb 4233live_string_p (struct mem_node *m, void *p)
34400008
GM
4234{
4235 if (m->type == MEM_TYPE_STRING)
4236 {
4237 struct string_block *b = (struct string_block *) m->start;
14162469 4238 ptrdiff_t offset = (char *) p - (char *) &b->strings[0];
34400008
GM
4239
4240 /* P must point to the start of a Lisp_String structure, and it
4241 must not be on the free-list. */
176bc847
GM
4242 return (offset >= 0
4243 && offset % sizeof b->strings[0] == 0
6b61353c 4244 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
34400008
GM
4245 && ((struct Lisp_String *) p)->data != NULL);
4246 }
4247 else
4248 return 0;
4249}
4250
4251
4252/* Value is non-zero if P is a pointer to a live Lisp cons on
4253 the heap. M is a pointer to the mem_block for P. */
4254
55d4c1b2 4255static inline int
971de7fb 4256live_cons_p (struct mem_node *m, void *p)
34400008
GM
4257{
4258 if (m->type == MEM_TYPE_CONS)
4259 {
4260 struct cons_block *b = (struct cons_block *) m->start;
14162469 4261 ptrdiff_t offset = (char *) p - (char *) &b->conses[0];
34400008
GM
4262
4263 /* P must point to the start of a Lisp_Cons, not be
4264 one of the unused cells in the current cons block,
4265 and not be on the free-list. */
176bc847
GM
4266 return (offset >= 0
4267 && offset % sizeof b->conses[0] == 0
6b61353c 4268 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
34400008
GM
4269 && (b != cons_block
4270 || offset / sizeof b->conses[0] < cons_block_index)
4271 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
4272 }
4273 else
4274 return 0;
4275}
4276
4277
4278/* Value is non-zero if P is a pointer to a live Lisp symbol on
4279 the heap. M is a pointer to the mem_block for P. */
4280
55d4c1b2 4281static inline int
971de7fb 4282live_symbol_p (struct mem_node *m, void *p)
34400008
GM
4283{
4284 if (m->type == MEM_TYPE_SYMBOL)
4285 {
4286 struct symbol_block *b = (struct symbol_block *) m->start;
14162469 4287 ptrdiff_t offset = (char *) p - (char *) &b->symbols[0];
177c0ea7 4288
34400008
GM
4289 /* P must point to the start of a Lisp_Symbol, not be
4290 one of the unused cells in the current symbol block,
4291 and not be on the free-list. */
176bc847
GM
4292 return (offset >= 0
4293 && offset % sizeof b->symbols[0] == 0
6b61353c 4294 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
34400008
GM
4295 && (b != symbol_block
4296 || offset / sizeof b->symbols[0] < symbol_block_index)
4297 && !EQ (((struct Lisp_Symbol *) p)->function, Vdead));
4298 }
4299 else
4300 return 0;
4301}
4302
4303
4304/* Value is non-zero if P is a pointer to a live Lisp float on
4305 the heap. M is a pointer to the mem_block for P. */
4306
55d4c1b2 4307static inline int
971de7fb 4308live_float_p (struct mem_node *m, void *p)
34400008
GM
4309{
4310 if (m->type == MEM_TYPE_FLOAT)
4311 {
4312 struct float_block *b = (struct float_block *) m->start;
14162469 4313 ptrdiff_t offset = (char *) p - (char *) &b->floats[0];
177c0ea7 4314
ab6780cd
SM
4315 /* P must point to the start of a Lisp_Float and not be
4316 one of the unused cells in the current float block. */
176bc847
GM
4317 return (offset >= 0
4318 && offset % sizeof b->floats[0] == 0
6b61353c 4319 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
34400008 4320 && (b != float_block
ab6780cd 4321 || offset / sizeof b->floats[0] < float_block_index));
34400008
GM
4322 }
4323 else
4324 return 0;
4325}
4326
4327
4328/* Value is non-zero if P is a pointer to a live Lisp Misc on
4329 the heap. M is a pointer to the mem_block for P. */
4330
55d4c1b2 4331static inline int
971de7fb 4332live_misc_p (struct mem_node *m, void *p)
34400008
GM
4333{
4334 if (m->type == MEM_TYPE_MISC)
4335 {
4336 struct marker_block *b = (struct marker_block *) m->start;
14162469 4337 ptrdiff_t offset = (char *) p - (char *) &b->markers[0];
177c0ea7 4338
34400008
GM
4339 /* P must point to the start of a Lisp_Misc, not be
4340 one of the unused cells in the current misc block,
4341 and not be on the free-list. */
176bc847
GM
4342 return (offset >= 0
4343 && offset % sizeof b->markers[0] == 0
6b61353c 4344 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
34400008
GM
4345 && (b != marker_block
4346 || offset / sizeof b->markers[0] < marker_block_index)
d314756e 4347 && ((union Lisp_Misc *) p)->u_any.type != Lisp_Misc_Free);
34400008
GM
4348 }
4349 else
4350 return 0;
4351}
4352
4353
4354/* Value is non-zero if P is a pointer to a live vector-like object.
4355 M is a pointer to the mem_block for P. */
4356
55d4c1b2 4357static inline int
971de7fb 4358live_vector_p (struct mem_node *m, void *p)
34400008 4359{
f3372c87
DA
4360 if (m->type == MEM_TYPE_VECTOR_BLOCK)
4361 {
4362 /* This memory node corresponds to a vector block. */
4363 struct vector_block *block = (struct vector_block *) m->start;
4364 struct Lisp_Vector *vector = (struct Lisp_Vector *) block->data;
4365
4366 /* P is in the block's allocation range. Scan the block
4367 up to P and see whether P points to the start of some
4368 vector which is not on a free list. FIXME: check whether
4369 some allocation patterns (probably a lot of short vectors)
4370 may cause a substantial overhead of this loop. */
4371 while (VECTOR_IN_BLOCK (vector, block)
4372 && vector <= (struct Lisp_Vector *) p)
4373 {
ee28be33 4374 if (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_FREE))
f3372c87 4375 vector = ADVANCE (vector, (vector->header.size
ee28be33 4376 & PSEUDOVECTOR_SIZE_MASK));
f3372c87
DA
4377 else if (vector == p)
4378 return 1;
4379 else
4380 vector = ADVANCE (vector, vector->header.next.nbytes);
4381 }
4382 }
4383 else if (m->type == MEM_TYPE_VECTORLIKE && p == m->start)
4384 /* This memory node corresponds to a large vector. */
4385 return 1;
4386 return 0;
34400008
GM
4387}
4388
4389
2336fe58 4390/* Value is non-zero if P is a pointer to a live buffer. M is a
34400008
GM
4391 pointer to the mem_block for P. */
4392
55d4c1b2 4393static inline int
971de7fb 4394live_buffer_p (struct mem_node *m, void *p)
34400008
GM
4395{
4396 /* P must point to the start of the block, and the buffer
4397 must not have been killed. */
4398 return (m->type == MEM_TYPE_BUFFER
4399 && p == m->start
5d8ea120 4400 && !NILP (((struct buffer *) p)->BUFFER_INTERNAL_FIELD (name)));
34400008
GM
4401}
4402
13c844fb
GM
4403#endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
4404
4405#if GC_MARK_STACK
4406
34400008
GM
4407#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4408
4409/* Array of objects that are kept alive because the C stack contains
4410 a pattern that looks like a reference to them . */
4411
4412#define MAX_ZOMBIES 10
4413static Lisp_Object zombies[MAX_ZOMBIES];
4414
4415/* Number of zombie objects. */
4416
211a0b2a 4417static EMACS_INT nzombies;
34400008
GM
4418
4419/* Number of garbage collections. */
4420
211a0b2a 4421static EMACS_INT ngcs;
34400008
GM
4422
4423/* Average percentage of zombies per collection. */
4424
4425static double avg_zombies;
4426
4427/* Max. number of live and zombie objects. */
4428
211a0b2a 4429static EMACS_INT max_live, max_zombies;
34400008
GM
4430
4431/* Average number of live objects per GC. */
4432
4433static double avg_live;
4434
a7ca3326 4435DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
7ee72033 4436 doc: /* Show information about live and zombie objects. */)
5842a27b 4437 (void)
34400008 4438{
83fc9c63 4439 Lisp_Object args[8], zombie_list = Qnil;
211a0b2a 4440 EMACS_INT i;
6e4b3fbe 4441 for (i = 0; i < min (MAX_ZOMBIES, nzombies); i++)
83fc9c63
DL
4442 zombie_list = Fcons (zombies[i], zombie_list);
4443 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
34400008
GM
4444 args[1] = make_number (ngcs);
4445 args[2] = make_float (avg_live);
4446 args[3] = make_float (avg_zombies);
4447 args[4] = make_float (avg_zombies / avg_live / 100);
4448 args[5] = make_number (max_live);
4449 args[6] = make_number (max_zombies);
83fc9c63
DL
4450 args[7] = zombie_list;
4451 return Fmessage (8, args);
34400008
GM
4452}
4453
4454#endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4455
4456
182ff242
GM
4457/* Mark OBJ if we can prove it's a Lisp_Object. */
4458
55d4c1b2 4459static inline void
971de7fb 4460mark_maybe_object (Lisp_Object obj)
182ff242 4461{
b609f591
YM
4462 void *po;
4463 struct mem_node *m;
4464
4465 if (INTEGERP (obj))
4466 return;
4467
4468 po = (void *) XPNTR (obj);
4469 m = mem_find (po);
177c0ea7 4470
182ff242
GM
4471 if (m != MEM_NIL)
4472 {
4473 int mark_p = 0;
4474
8e50cc2d 4475 switch (XTYPE (obj))
182ff242
GM
4476 {
4477 case Lisp_String:
4478 mark_p = (live_string_p (m, po)
4479 && !STRING_MARKED_P ((struct Lisp_String *) po));
4480 break;
4481
4482 case Lisp_Cons:
08b7c2cb 4483 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
182ff242
GM
4484 break;
4485
4486 case Lisp_Symbol:
2336fe58 4487 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
182ff242
GM
4488 break;
4489
4490 case Lisp_Float:
ab6780cd 4491 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
182ff242
GM
4492 break;
4493
4494 case Lisp_Vectorlike:
8e50cc2d 4495 /* Note: can't check BUFFERP before we know it's a
182ff242
GM
4496 buffer because checking that dereferences the pointer
4497 PO which might point anywhere. */
4498 if (live_vector_p (m, po))
8e50cc2d 4499 mark_p = !SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
182ff242 4500 else if (live_buffer_p (m, po))
8e50cc2d 4501 mark_p = BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
182ff242
GM
4502 break;
4503
4504 case Lisp_Misc:
67ee9f6e 4505 mark_p = (live_misc_p (m, po) && !XMISCANY (obj)->gcmarkbit);
182ff242 4506 break;
6bbd7a29 4507
2de9f71c 4508 default:
6bbd7a29 4509 break;
182ff242
GM
4510 }
4511
4512 if (mark_p)
4513 {
4514#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4515 if (nzombies < MAX_ZOMBIES)
83fc9c63 4516 zombies[nzombies] = obj;
182ff242
GM
4517 ++nzombies;
4518#endif
49723c04 4519 mark_object (obj);
182ff242
GM
4520 }
4521 }
4522}
ece93c02
GM
4523
4524
4525/* If P points to Lisp data, mark that as live if it isn't already
4526 marked. */
4527
55d4c1b2 4528static inline void
971de7fb 4529mark_maybe_pointer (void *p)
ece93c02
GM
4530{
4531 struct mem_node *m;
4532
bfe3e0a2
PE
4533 /* Quickly rule out some values which can't point to Lisp data.
4534 USE_LSB_TAG needs Lisp data to be aligned on multiples of 1 << GCTYPEBITS.
4535 Otherwise, assume that Lisp data is aligned on even addresses. */
4536 if ((intptr_t) p % (USE_LSB_TAG ? 1 << GCTYPEBITS : 2))
ece93c02 4537 return;
177c0ea7 4538
ece93c02
GM
4539 m = mem_find (p);
4540 if (m != MEM_NIL)
4541 {
4542 Lisp_Object obj = Qnil;
177c0ea7 4543
ece93c02
GM
4544 switch (m->type)
4545 {
4546 case MEM_TYPE_NON_LISP:
2fe50224 4547 /* Nothing to do; not a pointer to Lisp memory. */
ece93c02 4548 break;
177c0ea7 4549
ece93c02 4550 case MEM_TYPE_BUFFER:
5e617bc2 4551 if (live_buffer_p (m, p) && !VECTOR_MARKED_P ((struct buffer *)p))
ece93c02
GM
4552 XSETVECTOR (obj, p);
4553 break;
177c0ea7 4554
ece93c02 4555 case MEM_TYPE_CONS:
08b7c2cb 4556 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
ece93c02
GM
4557 XSETCONS (obj, p);
4558 break;
177c0ea7 4559
ece93c02
GM
4560 case MEM_TYPE_STRING:
4561 if (live_string_p (m, p)
4562 && !STRING_MARKED_P ((struct Lisp_String *) p))
4563 XSETSTRING (obj, p);
4564 break;
4565
4566 case MEM_TYPE_MISC:
2336fe58
SM
4567 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
4568 XSETMISC (obj, p);
ece93c02 4569 break;
177c0ea7 4570
ece93c02 4571 case MEM_TYPE_SYMBOL:
2336fe58 4572 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
ece93c02
GM
4573 XSETSYMBOL (obj, p);
4574 break;
177c0ea7 4575
ece93c02 4576 case MEM_TYPE_FLOAT:
ab6780cd 4577 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
ece93c02
GM
4578 XSETFLOAT (obj, p);
4579 break;
177c0ea7 4580
9c545a55 4581 case MEM_TYPE_VECTORLIKE:
f3372c87 4582 case MEM_TYPE_VECTOR_BLOCK:
ece93c02
GM
4583 if (live_vector_p (m, p))
4584 {
4585 Lisp_Object tem;
4586 XSETVECTOR (tem, p);
8e50cc2d 4587 if (!SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
ece93c02
GM
4588 obj = tem;
4589 }
4590 break;
4591
4592 default:
4593 abort ();
4594 }
4595
8e50cc2d 4596 if (!NILP (obj))
49723c04 4597 mark_object (obj);
ece93c02
GM
4598 }
4599}
4600
4601
e3fb2efb
PE
4602/* Alignment of pointer values. Use offsetof, as it sometimes returns
4603 a smaller alignment than GCC's __alignof__ and mark_memory might
4604 miss objects if __alignof__ were used. */
3164aeac
PE
4605#define GC_POINTER_ALIGNMENT offsetof (struct {char a; void *b;}, b)
4606
e3fb2efb
PE
4607/* Define POINTERS_MIGHT_HIDE_IN_OBJECTS to 1 if marking via C pointers does
4608 not suffice, which is the typical case. A host where a Lisp_Object is
4609 wider than a pointer might allocate a Lisp_Object in non-adjacent halves.
4610 If USE_LSB_TAG, the bottom half is not a valid pointer, but it should
4611 suffice to widen it to to a Lisp_Object and check it that way. */
bfe3e0a2
PE
4612#if USE_LSB_TAG || VAL_MAX < UINTPTR_MAX
4613# if !USE_LSB_TAG && VAL_MAX < UINTPTR_MAX >> GCTYPEBITS
e3fb2efb
PE
4614 /* If tag bits straddle pointer-word boundaries, neither mark_maybe_pointer
4615 nor mark_maybe_object can follow the pointers. This should not occur on
4616 any practical porting target. */
4617# error "MSB type bits straddle pointer-word boundaries"
4618# endif
4619 /* Marking via C pointers does not suffice, because Lisp_Objects contain
4620 pointer words that hold pointers ORed with type bits. */
4621# define POINTERS_MIGHT_HIDE_IN_OBJECTS 1
4622#else
4623 /* Marking via C pointers suffices, because Lisp_Objects contain pointer
4624 words that hold unmodified pointers. */
4625# define POINTERS_MIGHT_HIDE_IN_OBJECTS 0
4626#endif
4627
55a314a5
YM
4628/* Mark Lisp objects referenced from the address range START+OFFSET..END
4629 or END+OFFSET..START. */
34400008 4630
177c0ea7 4631static void
3164aeac 4632mark_memory (void *start, void *end)
b41253a3
JW
4633#if defined (__clang__) && defined (__has_feature)
4634#if __has_feature(address_sanitizer)
ed6b3510
JW
4635 /* Do not allow -faddress-sanitizer to check this function, since it
4636 crosses the function stack boundary, and thus would yield many
4637 false positives. */
4638 __attribute__((no_address_safety_analysis))
4639#endif
b41253a3 4640#endif
34400008 4641{
ece93c02 4642 void **pp;
3164aeac 4643 int i;
34400008
GM
4644
4645#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4646 nzombies = 0;
4647#endif
4648
4649 /* Make START the pointer to the start of the memory region,
4650 if it isn't already. */
4651 if (end < start)
4652 {
4653 void *tem = start;
4654 start = end;
4655 end = tem;
4656 }
ece93c02 4657
ece93c02
GM
4658 /* Mark Lisp data pointed to. This is necessary because, in some
4659 situations, the C compiler optimizes Lisp objects away, so that
4660 only a pointer to them remains. Example:
4661
4662 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
7ee72033 4663 ()
ece93c02
GM
4664 {
4665 Lisp_Object obj = build_string ("test");
4666 struct Lisp_String *s = XSTRING (obj);
4667 Fgarbage_collect ();
4668 fprintf (stderr, "test `%s'\n", s->data);
4669 return Qnil;
4670 }
4671
4672 Here, `obj' isn't really used, and the compiler optimizes it
4673 away. The only reference to the life string is through the
4674 pointer `s'. */
177c0ea7 4675
3164aeac
PE
4676 for (pp = start; (void *) pp < end; pp++)
4677 for (i = 0; i < sizeof *pp; i += GC_POINTER_ALIGNMENT)
27f3c637 4678 {
e3fb2efb
PE
4679 void *p = *(void **) ((char *) pp + i);
4680 mark_maybe_pointer (p);
4681 if (POINTERS_MIGHT_HIDE_IN_OBJECTS)
646b5f55 4682 mark_maybe_object (XIL ((intptr_t) p));
27f3c637 4683 }
182ff242
GM
4684}
4685
30f637f8
DL
4686/* setjmp will work with GCC unless NON_SAVING_SETJMP is defined in
4687 the GCC system configuration. In gcc 3.2, the only systems for
4688 which this is so are i386-sco5 non-ELF, i386-sysv3 (maybe included
4689 by others?) and ns32k-pc532-min. */
182ff242
GM
4690
4691#if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4692
4693static int setjmp_tested_p, longjmps_done;
4694
4695#define SETJMP_WILL_LIKELY_WORK "\
4696\n\
4697Emacs garbage collector has been changed to use conservative stack\n\
4698marking. Emacs has determined that the method it uses to do the\n\
4699marking will likely work on your system, but this isn't sure.\n\
4700\n\
4701If you are a system-programmer, or can get the help of a local wizard\n\
4702who is, please take a look at the function mark_stack in alloc.c, and\n\
4703verify that the methods used are appropriate for your system.\n\
4704\n\
d191623b 4705Please mail the result to <emacs-devel@gnu.org>.\n\
182ff242
GM
4706"
4707
4708#define SETJMP_WILL_NOT_WORK "\
4709\n\
4710Emacs garbage collector has been changed to use conservative stack\n\
4711marking. Emacs has determined that the default method it uses to do the\n\
4712marking will not work on your system. We will need a system-dependent\n\
4713solution for your system.\n\
4714\n\
4715Please take a look at the function mark_stack in alloc.c, and\n\
4716try to find a way to make it work on your system.\n\
30f637f8
DL
4717\n\
4718Note that you may get false negatives, depending on the compiler.\n\
4719In particular, you need to use -O with GCC for this test.\n\
4720\n\
d191623b 4721Please mail the result to <emacs-devel@gnu.org>.\n\
182ff242
GM
4722"
4723
4724
4725/* Perform a quick check if it looks like setjmp saves registers in a
4726 jmp_buf. Print a message to stderr saying so. When this test
4727 succeeds, this is _not_ a proof that setjmp is sufficient for
4728 conservative stack marking. Only the sources or a disassembly
4729 can prove that. */
4730
4731static void
2018939f 4732test_setjmp (void)
182ff242
GM
4733{
4734 char buf[10];
4735 register int x;
4736 jmp_buf jbuf;
4737 int result = 0;
4738
4739 /* Arrange for X to be put in a register. */
4740 sprintf (buf, "1");
4741 x = strlen (buf);
4742 x = 2 * x - 1;
4743
4744 setjmp (jbuf);
4745 if (longjmps_done == 1)
34400008 4746 {
182ff242 4747 /* Came here after the longjmp at the end of the function.
34400008 4748
182ff242
GM
4749 If x == 1, the longjmp has restored the register to its
4750 value before the setjmp, and we can hope that setjmp
4751 saves all such registers in the jmp_buf, although that
4752 isn't sure.
34400008 4753
182ff242
GM
4754 For other values of X, either something really strange is
4755 taking place, or the setjmp just didn't save the register. */
4756
4757 if (x == 1)
4758 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
4759 else
4760 {
4761 fprintf (stderr, SETJMP_WILL_NOT_WORK);
4762 exit (1);
34400008
GM
4763 }
4764 }
182ff242
GM
4765
4766 ++longjmps_done;
4767 x = 2;
4768 if (longjmps_done == 1)
4769 longjmp (jbuf, 1);
34400008
GM
4770}
4771
182ff242
GM
4772#endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
4773
34400008
GM
4774
4775#if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4776
4777/* Abort if anything GCPRO'd doesn't survive the GC. */
4778
4779static void
2018939f 4780check_gcpros (void)
34400008
GM
4781{
4782 struct gcpro *p;
f66c7cf8 4783 ptrdiff_t i;
34400008
GM
4784
4785 for (p = gcprolist; p; p = p->next)
4786 for (i = 0; i < p->nvars; ++i)
4787 if (!survives_gc_p (p->var[i]))
92cc28b2
SM
4788 /* FIXME: It's not necessarily a bug. It might just be that the
4789 GCPRO is unnecessary or should release the object sooner. */
34400008
GM
4790 abort ();
4791}
4792
4793#elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4794
4795static void
2018939f 4796dump_zombies (void)
34400008
GM
4797{
4798 int i;
4799
6e4b3fbe 4800 fprintf (stderr, "\nZombies kept alive = %"pI"d:\n", nzombies);
34400008
GM
4801 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
4802 {
4803 fprintf (stderr, " %d = ", i);
4804 debug_print (zombies[i]);
4805 }
4806}
4807
4808#endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4809
4810
182ff242
GM
4811/* Mark live Lisp objects on the C stack.
4812
4813 There are several system-dependent problems to consider when
4814 porting this to new architectures:
4815
4816 Processor Registers
4817
4818 We have to mark Lisp objects in CPU registers that can hold local
4819 variables or are used to pass parameters.
4820
4821 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4822 something that either saves relevant registers on the stack, or
4823 calls mark_maybe_object passing it each register's contents.
4824
4825 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4826 implementation assumes that calling setjmp saves registers we need
4827 to see in a jmp_buf which itself lies on the stack. This doesn't
4828 have to be true! It must be verified for each system, possibly
4829 by taking a look at the source code of setjmp.
4830
2018939f
AS
4831 If __builtin_unwind_init is available (defined by GCC >= 2.8) we
4832 can use it as a machine independent method to store all registers
4833 to the stack. In this case the macros described in the previous
4834 two paragraphs are not used.
4835
182ff242
GM
4836 Stack Layout
4837
4838 Architectures differ in the way their processor stack is organized.
4839 For example, the stack might look like this
4840
4841 +----------------+
4842 | Lisp_Object | size = 4
4843 +----------------+
4844 | something else | size = 2
4845 +----------------+
4846 | Lisp_Object | size = 4
4847 +----------------+
4848 | ... |
4849
4850 In such a case, not every Lisp_Object will be aligned equally. To
4851 find all Lisp_Object on the stack it won't be sufficient to walk
4852 the stack in steps of 4 bytes. Instead, two passes will be
4853 necessary, one starting at the start of the stack, and a second
4854 pass starting at the start of the stack + 2. Likewise, if the
4855 minimal alignment of Lisp_Objects on the stack is 1, four passes
4856 would be necessary, each one starting with one byte more offset
c9af454e 4857 from the stack start. */
34400008
GM
4858
4859static void
971de7fb 4860mark_stack (void)
34400008 4861{
34400008
GM
4862 void *end;
4863
2018939f
AS
4864#ifdef HAVE___BUILTIN_UNWIND_INIT
4865 /* Force callee-saved registers and register windows onto the stack.
4866 This is the preferred method if available, obviating the need for
4867 machine dependent methods. */
4868 __builtin_unwind_init ();
4869 end = &end;
4870#else /* not HAVE___BUILTIN_UNWIND_INIT */
dff45157
PE
4871#ifndef GC_SAVE_REGISTERS_ON_STACK
4872 /* jmp_buf may not be aligned enough on darwin-ppc64 */
4873 union aligned_jmpbuf {
4874 Lisp_Object o;
4875 jmp_buf j;
4876 } j;
4877 volatile int stack_grows_down_p = (char *) &j > (char *) stack_base;
4878#endif
34400008
GM
4879 /* This trick flushes the register windows so that all the state of
4880 the process is contained in the stack. */
ab6780cd 4881 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
422eec7e
DL
4882 needed on ia64 too. See mach_dep.c, where it also says inline
4883 assembler doesn't work with relevant proprietary compilers. */
4a00783e 4884#ifdef __sparc__
4d18a7a2
DN
4885#if defined (__sparc64__) && defined (__FreeBSD__)
4886 /* FreeBSD does not have a ta 3 handler. */
4c1616be
CY
4887 asm ("flushw");
4888#else
34400008 4889 asm ("ta 3");
4c1616be 4890#endif
34400008 4891#endif
177c0ea7 4892
34400008
GM
4893 /* Save registers that we need to see on the stack. We need to see
4894 registers used to hold register variables and registers used to
4895 pass parameters. */
4896#ifdef GC_SAVE_REGISTERS_ON_STACK
4897 GC_SAVE_REGISTERS_ON_STACK (end);
182ff242 4898#else /* not GC_SAVE_REGISTERS_ON_STACK */
177c0ea7 4899
182ff242
GM
4900#ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
4901 setjmp will definitely work, test it
4902 and print a message with the result
4903 of the test. */
4904 if (!setjmp_tested_p)
4905 {
4906 setjmp_tested_p = 1;
4907 test_setjmp ();
4908 }
4909#endif /* GC_SETJMP_WORKS */
177c0ea7 4910
55a314a5 4911 setjmp (j.j);
34400008 4912 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
182ff242 4913#endif /* not GC_SAVE_REGISTERS_ON_STACK */
2018939f 4914#endif /* not HAVE___BUILTIN_UNWIND_INIT */
34400008
GM
4915
4916 /* This assumes that the stack is a contiguous region in memory. If
182ff242
GM
4917 that's not the case, something has to be done here to iterate
4918 over the stack segments. */
3164aeac
PE
4919 mark_memory (stack_base, end);
4920
4dec23ff
AS
4921 /* Allow for marking a secondary stack, like the register stack on the
4922 ia64. */
4923#ifdef GC_MARK_SECONDARY_STACK
4924 GC_MARK_SECONDARY_STACK ();
4925#endif
34400008
GM
4926
4927#if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4928 check_gcpros ();
4929#endif
4930}
4931
34400008
GM
4932#endif /* GC_MARK_STACK != 0 */
4933
4934
7ffb6955 4935/* Determine whether it is safe to access memory at address P. */
d3d47262 4936static int
971de7fb 4937valid_pointer_p (void *p)
7ffb6955 4938{
f892cf9c
EZ
4939#ifdef WINDOWSNT
4940 return w32_valid_pointer_p (p, 16);
4941#else
41bed37d 4942 int fd[2];
7ffb6955
KS
4943
4944 /* Obviously, we cannot just access it (we would SEGV trying), so we
4945 trick the o/s to tell us whether p is a valid pointer.
4946 Unfortunately, we cannot use NULL_DEVICE here, as emacs_write may
4947 not validate p in that case. */
4948
41bed37d 4949 if (pipe (fd) == 0)
7ffb6955 4950 {
41bed37d
PE
4951 int valid = (emacs_write (fd[1], (char *) p, 16) == 16);
4952 emacs_close (fd[1]);
4953 emacs_close (fd[0]);
7ffb6955
KS
4954 return valid;
4955 }
4956
4957 return -1;
f892cf9c 4958#endif
7ffb6955 4959}
3cd55735
KS
4960
4961/* Return 1 if OBJ is a valid lisp object.
4962 Return 0 if OBJ is NOT a valid lisp object.
4963 Return -1 if we cannot validate OBJ.
7c0ab7d9
RS
4964 This function can be quite slow,
4965 so it should only be used in code for manual debugging. */
3cd55735
KS
4966
4967int
971de7fb 4968valid_lisp_object_p (Lisp_Object obj)
3cd55735 4969{
de7124a7 4970 void *p;
7ffb6955 4971#if GC_MARK_STACK
3cd55735 4972 struct mem_node *m;
de7124a7 4973#endif
3cd55735
KS
4974
4975 if (INTEGERP (obj))
4976 return 1;
4977
4978 p = (void *) XPNTR (obj);
3cd55735
KS
4979 if (PURE_POINTER_P (p))
4980 return 1;
4981
de7124a7 4982#if !GC_MARK_STACK
7ffb6955 4983 return valid_pointer_p (p);
de7124a7
KS
4984#else
4985
3cd55735
KS
4986 m = mem_find (p);
4987
4988 if (m == MEM_NIL)
7ffb6955
KS
4989 {
4990 int valid = valid_pointer_p (p);
4991 if (valid <= 0)
4992 return valid;
4993
4994 if (SUBRP (obj))
4995 return 1;
4996
4997 return 0;
4998 }
3cd55735
KS
4999
5000 switch (m->type)
5001 {
5002 case MEM_TYPE_NON_LISP:
5003 return 0;
5004
5005 case MEM_TYPE_BUFFER:
5006 return live_buffer_p (m, p);
5007
5008 case MEM_TYPE_CONS:
5009 return live_cons_p (m, p);
5010
5011 case MEM_TYPE_STRING:
5012 return live_string_p (m, p);
5013
5014 case MEM_TYPE_MISC:
5015 return live_misc_p (m, p);
5016
5017 case MEM_TYPE_SYMBOL:
5018 return live_symbol_p (m, p);
5019
5020 case MEM_TYPE_FLOAT:
5021 return live_float_p (m, p);
5022
9c545a55 5023 case MEM_TYPE_VECTORLIKE:
f3372c87 5024 case MEM_TYPE_VECTOR_BLOCK:
3cd55735
KS
5025 return live_vector_p (m, p);
5026
5027 default:
5028 break;
5029 }
5030
5031 return 0;
5032#endif
5033}
5034
5035
5036
34400008 5037\f
2e471eb5
GM
5038/***********************************************************************
5039 Pure Storage Management
5040 ***********************************************************************/
5041
1f0b3fd2
GM
5042/* Allocate room for SIZE bytes from pure Lisp storage and return a
5043 pointer to it. TYPE is the Lisp type for which the memory is
e5bc14d4 5044 allocated. TYPE < 0 means it's not used for a Lisp object. */
1f0b3fd2 5045
261cb4bb 5046static void *
971de7fb 5047pure_alloc (size_t size, int type)
1f0b3fd2 5048{
261cb4bb 5049 void *result;
bfe3e0a2 5050#if USE_LSB_TAG
6b61353c
KH
5051 size_t alignment = (1 << GCTYPEBITS);
5052#else
44117420 5053 size_t alignment = sizeof (EMACS_INT);
1f0b3fd2
GM
5054
5055 /* Give Lisp_Floats an extra alignment. */
5056 if (type == Lisp_Float)
5057 {
1f0b3fd2
GM
5058#if defined __GNUC__ && __GNUC__ >= 2
5059 alignment = __alignof (struct Lisp_Float);
5060#else
5061 alignment = sizeof (struct Lisp_Float);
5062#endif
9e713715 5063 }
6b61353c 5064#endif
1f0b3fd2 5065
44117420 5066 again:
e5bc14d4
YM
5067 if (type >= 0)
5068 {
5069 /* Allocate space for a Lisp object from the beginning of the free
5070 space with taking account of alignment. */
5071 result = ALIGN (purebeg + pure_bytes_used_lisp, alignment);
5072 pure_bytes_used_lisp = ((char *)result - (char *)purebeg) + size;
5073 }
5074 else
5075 {
5076 /* Allocate space for a non-Lisp object from the end of the free
5077 space. */
5078 pure_bytes_used_non_lisp += size;
5079 result = purebeg + pure_size - pure_bytes_used_non_lisp;
5080 }
5081 pure_bytes_used = pure_bytes_used_lisp + pure_bytes_used_non_lisp;
44117420
KS
5082
5083 if (pure_bytes_used <= pure_size)
5084 return result;
5085
5086 /* Don't allocate a large amount here,
5087 because it might get mmap'd and then its address
5088 might not be usable. */
23f86fce 5089 purebeg = xmalloc (10000);
44117420
KS
5090 pure_size = 10000;
5091 pure_bytes_used_before_overflow += pure_bytes_used - size;
5092 pure_bytes_used = 0;
e5bc14d4 5093 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
44117420 5094 goto again;
1f0b3fd2
GM
5095}
5096
5097
852f8cdc 5098/* Print a warning if PURESIZE is too small. */
9e713715
GM
5099
5100void
971de7fb 5101check_pure_size (void)
9e713715
GM
5102{
5103 if (pure_bytes_used_before_overflow)
c2982e87
PE
5104 message (("emacs:0:Pure Lisp storage overflow (approx. %"pI"d"
5105 " bytes needed)"),
5106 pure_bytes_used + pure_bytes_used_before_overflow);
9e713715
GM
5107}
5108
5109
79fd0489
YM
5110/* Find the byte sequence {DATA[0], ..., DATA[NBYTES-1], '\0'} from
5111 the non-Lisp data pool of the pure storage, and return its start
5112 address. Return NULL if not found. */
5113
5114static char *
d311d28c 5115find_string_data_in_pure (const char *data, ptrdiff_t nbytes)
79fd0489 5116{
14162469 5117 int i;
d311d28c 5118 ptrdiff_t skip, bm_skip[256], last_char_skip, infinity, start, start_max;
2aff7c53 5119 const unsigned char *p;
79fd0489
YM
5120 char *non_lisp_beg;
5121
d311d28c 5122 if (pure_bytes_used_non_lisp <= nbytes)
79fd0489
YM
5123 return NULL;
5124
5125 /* Set up the Boyer-Moore table. */
5126 skip = nbytes + 1;
5127 for (i = 0; i < 256; i++)
5128 bm_skip[i] = skip;
5129
2aff7c53 5130 p = (const unsigned char *) data;
79fd0489
YM
5131 while (--skip > 0)
5132 bm_skip[*p++] = skip;
5133
5134 last_char_skip = bm_skip['\0'];
5135
5136 non_lisp_beg = purebeg + pure_size - pure_bytes_used_non_lisp;
5137 start_max = pure_bytes_used_non_lisp - (nbytes + 1);
5138
5139 /* See the comments in the function `boyer_moore' (search.c) for the
5140 use of `infinity'. */
5141 infinity = pure_bytes_used_non_lisp + 1;
5142 bm_skip['\0'] = infinity;
5143
2aff7c53 5144 p = (const unsigned char *) non_lisp_beg + nbytes;
79fd0489
YM
5145 start = 0;
5146 do
5147 {
5148 /* Check the last character (== '\0'). */
5149 do
5150 {
5151 start += bm_skip[*(p + start)];
5152 }
5153 while (start <= start_max);
5154
5155 if (start < infinity)
5156 /* Couldn't find the last character. */
5157 return NULL;
5158
5159 /* No less than `infinity' means we could find the last
5160 character at `p[start - infinity]'. */
5161 start -= infinity;
5162
5163 /* Check the remaining characters. */
5164 if (memcmp (data, non_lisp_beg + start, nbytes) == 0)
5165 /* Found. */
5166 return non_lisp_beg + start;
5167
5168 start += last_char_skip;
5169 }
5170 while (start <= start_max);
5171
5172 return NULL;
5173}
5174
5175
2e471eb5
GM
5176/* Return a string allocated in pure space. DATA is a buffer holding
5177 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
5178 non-zero means make the result string multibyte.
1a4f1e2c 5179
2e471eb5
GM
5180 Must get an error if pure storage is full, since if it cannot hold
5181 a large string it may be able to hold conses that point to that
5182 string; then the string is not protected from gc. */
7146af97
JB
5183
5184Lisp_Object
14162469 5185make_pure_string (const char *data,
d311d28c 5186 ptrdiff_t nchars, ptrdiff_t nbytes, int multibyte)
7146af97 5187{
2e471eb5
GM
5188 Lisp_Object string;
5189 struct Lisp_String *s;
c0696668 5190
1f0b3fd2 5191 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
90256841 5192 s->data = (unsigned char *) find_string_data_in_pure (data, nbytes);
79fd0489
YM
5193 if (s->data == NULL)
5194 {
5195 s->data = (unsigned char *) pure_alloc (nbytes + 1, -1);
72af86bd 5196 memcpy (s->data, data, nbytes);
79fd0489
YM
5197 s->data[nbytes] = '\0';
5198 }
2e471eb5
GM
5199 s->size = nchars;
5200 s->size_byte = multibyte ? nbytes : -1;
2e471eb5 5201 s->intervals = NULL_INTERVAL;
2e471eb5
GM
5202 XSETSTRING (string, s);
5203 return string;
7146af97
JB
5204}
5205
2a0213a6
DA
5206/* Return a string allocated in pure space. Do not
5207 allocate the string data, just point to DATA. */
a56eaaef
DN
5208
5209Lisp_Object
2a0213a6 5210make_pure_c_string (const char *data, ptrdiff_t nchars)
a56eaaef
DN
5211{
5212 Lisp_Object string;
5213 struct Lisp_String *s;
a56eaaef
DN
5214
5215 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
5216 s->size = nchars;
5217 s->size_byte = -1;
323637a2 5218 s->data = (unsigned char *) data;
a56eaaef
DN
5219 s->intervals = NULL_INTERVAL;
5220 XSETSTRING (string, s);
5221 return string;
5222}
2e471eb5 5223
34400008
GM
5224/* Return a cons allocated from pure space. Give it pure copies
5225 of CAR as car and CDR as cdr. */
5226
7146af97 5227Lisp_Object
971de7fb 5228pure_cons (Lisp_Object car, Lisp_Object cdr)
7146af97
JB
5229{
5230 register Lisp_Object new;
1f0b3fd2 5231 struct Lisp_Cons *p;
7146af97 5232
1f0b3fd2
GM
5233 p = (struct Lisp_Cons *) pure_alloc (sizeof *p, Lisp_Cons);
5234 XSETCONS (new, p);
f3fbd155
KR
5235 XSETCAR (new, Fpurecopy (car));
5236 XSETCDR (new, Fpurecopy (cdr));
7146af97
JB
5237 return new;
5238}
5239
7146af97 5240
34400008
GM
5241/* Value is a float object with value NUM allocated from pure space. */
5242
d3d47262 5243static Lisp_Object
971de7fb 5244make_pure_float (double num)
7146af97
JB
5245{
5246 register Lisp_Object new;
1f0b3fd2 5247 struct Lisp_Float *p;
7146af97 5248
1f0b3fd2
GM
5249 p = (struct Lisp_Float *) pure_alloc (sizeof *p, Lisp_Float);
5250 XSETFLOAT (new, p);
f601cdf3 5251 XFLOAT_INIT (new, num);
7146af97
JB
5252 return new;
5253}
5254
34400008
GM
5255
5256/* Return a vector with room for LEN Lisp_Objects allocated from
5257 pure space. */
5258
72cb32cf 5259static Lisp_Object
d311d28c 5260make_pure_vector (ptrdiff_t len)
7146af97 5261{
1f0b3fd2
GM
5262 Lisp_Object new;
5263 struct Lisp_Vector *p;
36372bf9
PE
5264 size_t size = (offsetof (struct Lisp_Vector, contents)
5265 + len * sizeof (Lisp_Object));
7146af97 5266
1f0b3fd2
GM
5267 p = (struct Lisp_Vector *) pure_alloc (size, Lisp_Vectorlike);
5268 XSETVECTOR (new, p);
eab3844f 5269 XVECTOR (new)->header.size = len;
7146af97
JB
5270 return new;
5271}
5272
34400008 5273
a7ca3326 5274DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
909e3b33 5275 doc: /* Make a copy of object OBJ in pure storage.
228299fa 5276Recursively copies contents of vectors and cons cells.
7ee72033 5277Does not copy symbols. Copies strings without text properties. */)
5842a27b 5278 (register Lisp_Object obj)
7146af97 5279{
265a9e55 5280 if (NILP (Vpurify_flag))
7146af97
JB
5281 return obj;
5282
1f0b3fd2 5283 if (PURE_POINTER_P (XPNTR (obj)))
7146af97
JB
5284 return obj;
5285
e9515805
SM
5286 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5287 {
5288 Lisp_Object tmp = Fgethash (obj, Vpurify_flag, Qnil);
5289 if (!NILP (tmp))
5290 return tmp;
5291 }
5292
d6dd74bb 5293 if (CONSP (obj))
e9515805 5294 obj = pure_cons (XCAR (obj), XCDR (obj));
d6dd74bb 5295 else if (FLOATP (obj))
e9515805 5296 obj = make_pure_float (XFLOAT_DATA (obj));
d6dd74bb 5297 else if (STRINGP (obj))
42a5b22f 5298 obj = make_pure_string (SSDATA (obj), SCHARS (obj),
e9515805
SM
5299 SBYTES (obj),
5300 STRING_MULTIBYTE (obj));
876c194c 5301 else if (COMPILEDP (obj) || VECTORP (obj))
d6dd74bb
KH
5302 {
5303 register struct Lisp_Vector *vec;
d311d28c
PE
5304 register ptrdiff_t i;
5305 ptrdiff_t size;
d6dd74bb 5306
77b37c05 5307 size = ASIZE (obj);
7d535c68
KH
5308 if (size & PSEUDOVECTOR_FLAG)
5309 size &= PSEUDOVECTOR_SIZE_MASK;
6b61353c 5310 vec = XVECTOR (make_pure_vector (size));
d6dd74bb 5311 for (i = 0; i < size; i++)
28be1ada 5312 vec->contents[i] = Fpurecopy (AREF (obj, i));
876c194c 5313 if (COMPILEDP (obj))
985773c9 5314 {
876c194c
SM
5315 XSETPVECTYPE (vec, PVEC_COMPILED);
5316 XSETCOMPILED (obj, vec);
985773c9 5317 }
d6dd74bb
KH
5318 else
5319 XSETVECTOR (obj, vec);
7146af97 5320 }
d6dd74bb
KH
5321 else if (MARKERP (obj))
5322 error ("Attempt to copy a marker to pure storage");
e9515805
SM
5323 else
5324 /* Not purified, don't hash-cons. */
5325 return obj;
5326
5327 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5328 Fputhash (obj, obj, Vpurify_flag);
6bbd7a29
GM
5329
5330 return obj;
7146af97 5331}
2e471eb5 5332
34400008 5333
7146af97 5334\f
34400008
GM
5335/***********************************************************************
5336 Protection from GC
5337 ***********************************************************************/
5338
2e471eb5
GM
5339/* Put an entry in staticvec, pointing at the variable with address
5340 VARADDRESS. */
7146af97
JB
5341
5342void
971de7fb 5343staticpro (Lisp_Object *varaddress)
7146af97
JB
5344{
5345 staticvec[staticidx++] = varaddress;
5346 if (staticidx >= NSTATICS)
5347 abort ();
5348}
5349
7146af97 5350\f
34400008
GM
5351/***********************************************************************
5352 Protection from GC
5353 ***********************************************************************/
1a4f1e2c 5354
e8197642
RS
5355/* Temporarily prevent garbage collection. */
5356
d311d28c 5357ptrdiff_t
971de7fb 5358inhibit_garbage_collection (void)
e8197642 5359{
d311d28c 5360 ptrdiff_t count = SPECPDL_INDEX ();
54defd0d 5361
6349ae4d 5362 specbind (Qgc_cons_threshold, make_number (MOST_POSITIVE_FIXNUM));
e8197642
RS
5363 return count;
5364}
5365
3ab6e069
DA
5366/* Used to avoid possible overflows when
5367 converting from C to Lisp integers. */
5368
5369static inline Lisp_Object
5370bounded_number (EMACS_INT number)
5371{
5372 return make_number (min (MOST_POSITIVE_FIXNUM, number));
5373}
34400008 5374
a7ca3326 5375DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
7ee72033 5376 doc: /* Reclaim storage for Lisp objects no longer needed.
e1e37596
RS
5377Garbage collection happens automatically if you cons more than
5378`gc-cons-threshold' bytes of Lisp data since previous garbage collection.
5379`garbage-collect' normally returns a list with info on amount of space in use:
3ab6e069
DA
5380 ((CONS INTERNAL-SIZE USED-CONSES FREE-CONSES)
5381 (SYMBOL INTERNAL-SIZE USED-SYMBOLS FREE-SYMBOLS)
5382 (MISC INTERNAL-SIZE USED-MISCS FREE-MISCS)
5383 (STRING INTERNAL-SIZE USED-STRINGS USED-STRING-BYTES FREE-STRING)
5384 (VECTOR INTERNAL-SIZE USED-VECTORS USED-VECTOR-BYTES FREE-VECTOR-BYTES)
5385 (FLOAT INTERNAL-SIZE USED-FLOATS FREE-FLOATS)
5386 (INTERVAL INTERNAL-SIZE USED-INTERVALS FREE-INTERVALS)
5387 (BUFFER INTERNAL-SIZE USED-BUFFERS))
e1e37596 5388However, if there was overflow in pure space, `garbage-collect'
999dd333
GM
5389returns nil, because real GC can't be done.
5390See Info node `(elisp)Garbage Collection'. */)
5842a27b 5391 (void)
7146af97 5392{
7146af97 5393 register struct specbinding *bind;
7146af97 5394 char stack_top_variable;
f66c7cf8 5395 ptrdiff_t i;
6efc7df7 5396 int message_p;
96117bc7 5397 Lisp_Object total[8];
d311d28c 5398 ptrdiff_t count = SPECPDL_INDEX ();
e9a9ae03 5399 EMACS_TIME t1;
2c5bd608 5400
3de0effb
RS
5401 if (abort_on_gc)
5402 abort ();
5403
9e713715
GM
5404 /* Can't GC if pure storage overflowed because we can't determine
5405 if something is a pure object or not. */
5406 if (pure_bytes_used_before_overflow)
5407 return Qnil;
5408
bbc012e0
KS
5409 CHECK_CONS_LIST ();
5410
3c7e66a8
RS
5411 /* Don't keep undo information around forever.
5412 Do this early on, so it is no problem if the user quits. */
5413 {
5414 register struct buffer *nextb = all_buffers;
5415
5416 while (nextb)
5417 {
5418 /* If a buffer's undo list is Qt, that means that undo is
5419 turned off in that buffer. Calling truncate_undo_list on
5420 Qt tends to return NULL, which effectively turns undo back on.
5421 So don't call truncate_undo_list if undo_list is Qt. */
7d7e0027
SM
5422 if (! NILP (nextb->BUFFER_INTERNAL_FIELD (name))
5423 && ! EQ (nextb->BUFFER_INTERNAL_FIELD (undo_list), Qt))
3c7e66a8
RS
5424 truncate_undo_list (nextb);
5425
5426 /* Shrink buffer gaps, but skip indirect and dead buffers. */
5d8ea120 5427 if (nextb->base_buffer == 0 && !NILP (nextb->BUFFER_INTERNAL_FIELD (name))
dc7b4525 5428 && ! nextb->text->inhibit_shrinking)
3c7e66a8
RS
5429 {
5430 /* If a buffer's gap size is more than 10% of the buffer
5431 size, or larger than 2000 bytes, then shrink it
5432 accordingly. Keep a minimum size of 20 bytes. */
5433 int size = min (2000, max (20, (nextb->text->z_byte / 10)));
5434
5435 if (nextb->text->gap_size > size)
5436 {
5437 struct buffer *save_current = current_buffer;
5438 current_buffer = nextb;
5439 make_gap (-(nextb->text->gap_size - size));
5440 current_buffer = save_current;
5441 }
5442 }
5443
eab3844f 5444 nextb = nextb->header.next.buffer;
3c7e66a8
RS
5445 }
5446 }
5447
e9a9ae03 5448 t1 = current_emacs_time ();
3c7e66a8 5449
58595309
KH
5450 /* In case user calls debug_print during GC,
5451 don't let that cause a recursive GC. */
5452 consing_since_gc = 0;
5453
6efc7df7
GM
5454 /* Save what's currently displayed in the echo area. */
5455 message_p = push_message ();
c55b0da6 5456 record_unwind_protect (pop_message_unwind, Qnil);
41c28a37 5457
7146af97
JB
5458 /* Save a copy of the contents of the stack, for debugging. */
5459#if MAX_SAVE_STACK > 0
265a9e55 5460 if (NILP (Vpurify_flag))
7146af97 5461 {
dd3f25f7 5462 char *stack;
903fe15d 5463 ptrdiff_t stack_size;
dd3f25f7 5464 if (&stack_top_variable < stack_bottom)
7146af97 5465 {
dd3f25f7
PE
5466 stack = &stack_top_variable;
5467 stack_size = stack_bottom - &stack_top_variable;
5468 }
5469 else
5470 {
5471 stack = stack_bottom;
5472 stack_size = &stack_top_variable - stack_bottom;
5473 }
5474 if (stack_size <= MAX_SAVE_STACK)
7146af97 5475 {
dd3f25f7 5476 if (stack_copy_size < stack_size)
7146af97 5477 {
38182d90 5478 stack_copy = xrealloc (stack_copy, stack_size);
dd3f25f7 5479 stack_copy_size = stack_size;
7146af97 5480 }
dd3f25f7 5481 memcpy (stack_copy, stack, stack_size);
7146af97
JB
5482 }
5483 }
5484#endif /* MAX_SAVE_STACK > 0 */
5485
299585ee 5486 if (garbage_collection_messages)
691c4285 5487 message1_nolog ("Garbage collecting...");
7146af97 5488
6e0fca1d
RS
5489 BLOCK_INPUT;
5490
eec7b73d
RS
5491 shrink_regexp_cache ();
5492
7146af97
JB
5493 gc_in_progress = 1;
5494
c23baf9f 5495 /* clear_marks (); */
7146af97 5496
005ca5c7 5497 /* Mark all the special slots that serve as the roots of accessibility. */
7146af97
JB
5498
5499 for (i = 0; i < staticidx; i++)
49723c04 5500 mark_object (*staticvec[i]);
34400008 5501
126f9c02
SM
5502 for (bind = specpdl; bind != specpdl_ptr; bind++)
5503 {
5504 mark_object (bind->symbol);
5505 mark_object (bind->old_value);
5506 }
6ed8eeff 5507 mark_terminals ();
126f9c02 5508 mark_kboards ();
98a92e2d 5509 mark_ttys ();
126f9c02
SM
5510
5511#ifdef USE_GTK
5512 {
dd4c5104 5513 extern void xg_mark_data (void);
126f9c02
SM
5514 xg_mark_data ();
5515 }
5516#endif
5517
34400008
GM
5518#if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
5519 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
5520 mark_stack ();
5521#else
acf5f7d3
SM
5522 {
5523 register struct gcpro *tail;
5524 for (tail = gcprolist; tail; tail = tail->next)
5525 for (i = 0; i < tail->nvars; i++)
005ca5c7 5526 mark_object (tail->var[i]);
acf5f7d3 5527 }
3e21b6a7 5528 mark_byte_stack ();
b286858c
SM
5529 {
5530 struct catchtag *catch;
5531 struct handler *handler;
177c0ea7 5532
7146af97
JB
5533 for (catch = catchlist; catch; catch = catch->next)
5534 {
49723c04
SM
5535 mark_object (catch->tag);
5536 mark_object (catch->val);
177c0ea7 5537 }
7146af97
JB
5538 for (handler = handlerlist; handler; handler = handler->next)
5539 {
49723c04
SM
5540 mark_object (handler->handler);
5541 mark_object (handler->var);
177c0ea7 5542 }
b286858c 5543 }
b40ea20a 5544 mark_backtrace ();
b286858c 5545#endif
7146af97 5546
454d7973
KS
5547#ifdef HAVE_WINDOW_SYSTEM
5548 mark_fringe_data ();
5549#endif
5550
74c35a48
SM
5551#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5552 mark_stack ();
5553#endif
5554
c37adf23
SM
5555 /* Everything is now marked, except for the things that require special
5556 finalization, i.e. the undo_list.
5557 Look thru every buffer's undo list
4c315bda
RS
5558 for elements that update markers that were not marked,
5559 and delete them. */
5560 {
5561 register struct buffer *nextb = all_buffers;
5562
5563 while (nextb)
5564 {
5565 /* If a buffer's undo list is Qt, that means that undo is
5566 turned off in that buffer. Calling truncate_undo_list on
5567 Qt tends to return NULL, which effectively turns undo back on.
5568 So don't call truncate_undo_list if undo_list is Qt. */
5d8ea120 5569 if (! EQ (nextb->BUFFER_INTERNAL_FIELD (undo_list), Qt))
4c315bda
RS
5570 {
5571 Lisp_Object tail, prev;
5d8ea120 5572 tail = nextb->BUFFER_INTERNAL_FIELD (undo_list);
4c315bda
RS
5573 prev = Qnil;
5574 while (CONSP (tail))
5575 {
8e50cc2d
SM
5576 if (CONSP (XCAR (tail))
5577 && MARKERP (XCAR (XCAR (tail)))
2336fe58 5578 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
4c315bda
RS
5579 {
5580 if (NILP (prev))
5d8ea120 5581 nextb->BUFFER_INTERNAL_FIELD (undo_list) = tail = XCDR (tail);
4c315bda 5582 else
f3fbd155
KR
5583 {
5584 tail = XCDR (tail);
5585 XSETCDR (prev, tail);
5586 }
4c315bda
RS
5587 }
5588 else
5589 {
5590 prev = tail;
70949dac 5591 tail = XCDR (tail);
4c315bda
RS
5592 }
5593 }
5594 }
c37adf23
SM
5595 /* Now that we have stripped the elements that need not be in the
5596 undo_list any more, we can finally mark the list. */
5d8ea120 5597 mark_object (nextb->BUFFER_INTERNAL_FIELD (undo_list));
4c315bda 5598
eab3844f 5599 nextb = nextb->header.next.buffer;
4c315bda
RS
5600 }
5601 }
5602
7146af97
JB
5603 gc_sweep ();
5604
5605 /* Clear the mark bits that we set in certain root slots. */
5606
033a5fa3 5607 unmark_byte_stack ();
3ef06d12
SM
5608 VECTOR_UNMARK (&buffer_defaults);
5609 VECTOR_UNMARK (&buffer_local_symbols);
7146af97 5610
34400008
GM
5611#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
5612 dump_zombies ();
5613#endif
5614
6e0fca1d
RS
5615 UNBLOCK_INPUT;
5616
bbc012e0
KS
5617 CHECK_CONS_LIST ();
5618
c23baf9f 5619 /* clear_marks (); */
7146af97
JB
5620 gc_in_progress = 0;
5621
5622 consing_since_gc = 0;
5623 if (gc_cons_threshold < 10000)
5624 gc_cons_threshold = 10000;
5625
c0c5c8ae 5626 gc_relative_threshold = 0;
96f077ad
SM
5627 if (FLOATP (Vgc_cons_percentage))
5628 { /* Set gc_cons_combined_threshold. */
c0c5c8ae 5629 double tot = 0;
ae35e756
PE
5630
5631 tot += total_conses * sizeof (struct Lisp_Cons);
5632 tot += total_symbols * sizeof (struct Lisp_Symbol);
5633 tot += total_markers * sizeof (union Lisp_Misc);
3ab6e069
DA
5634 tot += total_string_bytes;
5635 tot += total_vector_bytes;
ae35e756
PE
5636 tot += total_floats * sizeof (struct Lisp_Float);
5637 tot += total_intervals * sizeof (struct interval);
5638 tot += total_strings * sizeof (struct Lisp_String);
5639
c0c5c8ae
PE
5640 tot *= XFLOAT_DATA (Vgc_cons_percentage);
5641 if (0 < tot)
5642 {
5643 if (tot < TYPE_MAXIMUM (EMACS_INT))
5644 gc_relative_threshold = tot;
5645 else
5646 gc_relative_threshold = TYPE_MAXIMUM (EMACS_INT);
5647 }
96f077ad
SM
5648 }
5649
299585ee
RS
5650 if (garbage_collection_messages)
5651 {
6efc7df7
GM
5652 if (message_p || minibuf_level > 0)
5653 restore_message ();
299585ee
RS
5654 else
5655 message1_nolog ("Garbage collecting...done");
5656 }
7146af97 5657
98edb5ff 5658 unbind_to (count, Qnil);
2e471eb5 5659
3ab6e069
DA
5660 total[0] = list4 (Qcons, make_number (sizeof (struct Lisp_Cons)),
5661 bounded_number (total_conses),
5662 bounded_number (total_free_conses));
5663
5664 total[1] = list4 (Qsymbol, make_number (sizeof (struct Lisp_Symbol)),
5665 bounded_number (total_symbols),
5666 bounded_number (total_free_symbols));
5667
5668 total[2] = list4 (Qmisc, make_number (sizeof (union Lisp_Misc)),
5669 bounded_number (total_markers),
5670 bounded_number (total_free_markers));
5671
5672 total[3] = list5 (Qstring, make_number (sizeof (struct Lisp_String)),
5673 bounded_number (total_strings),
5674 bounded_number (total_string_bytes),
5675 bounded_number (total_free_strings));
5676
5677 total[4] = list5 (Qvector, make_number (sizeof (struct Lisp_Vector)),
5678 bounded_number (total_vectors),
5679 bounded_number (total_vector_bytes),
5680 bounded_number (total_free_vector_bytes));
5681
5682 total[5] = list4 (Qfloat, make_number (sizeof (struct Lisp_Float)),
5683 bounded_number (total_floats),
5684 bounded_number (total_free_floats));
5685
5686 total[6] = list4 (Qinterval, make_number (sizeof (struct interval)),
5687 bounded_number (total_intervals),
5688 bounded_number (total_free_intervals));
5689
5690 total[7] = list3 (Qbuffer, make_number (sizeof (struct buffer)),
5691 bounded_number (total_buffers));
2e471eb5 5692
34400008 5693#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
7146af97 5694 {
34400008
GM
5695 /* Compute average percentage of zombies. */
5696 double nlive = 0;
177c0ea7 5697
34400008 5698 for (i = 0; i < 7; ++i)
83fc9c63
DL
5699 if (CONSP (total[i]))
5700 nlive += XFASTINT (XCAR (total[i]));
34400008
GM
5701
5702 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
5703 max_live = max (nlive, max_live);
5704 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
5705 max_zombies = max (nzombies, max_zombies);
5706 ++ngcs;
5707 }
5708#endif
7146af97 5709
9e713715
GM
5710 if (!NILP (Vpost_gc_hook))
5711 {
d311d28c 5712 ptrdiff_t gc_count = inhibit_garbage_collection ();
9e713715 5713 safe_run_hooks (Qpost_gc_hook);
ae35e756 5714 unbind_to (gc_count, Qnil);
9e713715 5715 }
2c5bd608
DL
5716
5717 /* Accumulate statistics. */
2c5bd608 5718 if (FLOATP (Vgc_elapsed))
d35af63c 5719 {
e9a9ae03
PE
5720 EMACS_TIME t2 = current_emacs_time ();
5721 EMACS_TIME t3 = sub_emacs_time (t2, t1);
d35af63c
PE
5722 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed)
5723 + EMACS_TIME_TO_DOUBLE (t3));
5724 }
5725
2c5bd608
DL
5726 gcs_done++;
5727
96117bc7 5728 return Flist (sizeof total / sizeof *total, total);
7146af97 5729}
34400008 5730
41c28a37 5731
3770920e
GM
5732/* Mark Lisp objects in glyph matrix MATRIX. Currently the
5733 only interesting objects referenced from glyphs are strings. */
41c28a37
GM
5734
5735static void
971de7fb 5736mark_glyph_matrix (struct glyph_matrix *matrix)
41c28a37
GM
5737{
5738 struct glyph_row *row = matrix->rows;
5739 struct glyph_row *end = row + matrix->nrows;
5740
2e471eb5
GM
5741 for (; row < end; ++row)
5742 if (row->enabled_p)
5743 {
5744 int area;
5745 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
5746 {
5747 struct glyph *glyph = row->glyphs[area];
5748 struct glyph *end_glyph = glyph + row->used[area];
177c0ea7 5749
2e471eb5 5750 for (; glyph < end_glyph; ++glyph)
8e50cc2d 5751 if (STRINGP (glyph->object)
2e471eb5 5752 && !STRING_MARKED_P (XSTRING (glyph->object)))
49723c04 5753 mark_object (glyph->object);
2e471eb5
GM
5754 }
5755 }
41c28a37
GM
5756}
5757
34400008 5758
41c28a37
GM
5759/* Mark Lisp faces in the face cache C. */
5760
5761static void
971de7fb 5762mark_face_cache (struct face_cache *c)
41c28a37
GM
5763{
5764 if (c)
5765 {
5766 int i, j;
5767 for (i = 0; i < c->used; ++i)
5768 {
5769 struct face *face = FACE_FROM_ID (c->f, i);
5770
5771 if (face)
5772 {
5773 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
49723c04 5774 mark_object (face->lface[j]);
41c28a37
GM
5775 }
5776 }
5777 }
5778}
5779
5780
7146af97 5781\f
1a4f1e2c 5782/* Mark reference to a Lisp_Object.
2e471eb5
GM
5783 If the object referred to has not been seen yet, recursively mark
5784 all the references contained in it. */
7146af97 5785
785cd37f 5786#define LAST_MARKED_SIZE 500
d3d47262 5787static Lisp_Object last_marked[LAST_MARKED_SIZE];
244ed907 5788static int last_marked_index;
785cd37f 5789
1342fc6f
RS
5790/* For debugging--call abort when we cdr down this many
5791 links of a list, in mark_object. In debugging,
5792 the call to abort will hit a breakpoint.
5793 Normally this is zero and the check never goes off. */
903fe15d 5794ptrdiff_t mark_object_loop_halt EXTERNALLY_VISIBLE;
1342fc6f 5795
8f11f7ec 5796static void
971de7fb 5797mark_vectorlike (struct Lisp_Vector *ptr)
d2029e5b 5798{
d311d28c
PE
5799 ptrdiff_t size = ptr->header.size;
5800 ptrdiff_t i;
d2029e5b 5801
8f11f7ec 5802 eassert (!VECTOR_MARKED_P (ptr));
7555c33f 5803 VECTOR_MARK (ptr); /* Else mark it. */
d2029e5b
SM
5804 if (size & PSEUDOVECTOR_FLAG)
5805 size &= PSEUDOVECTOR_SIZE_MASK;
d3d47262 5806
d2029e5b
SM
5807 /* Note that this size is not the memory-footprint size, but only
5808 the number of Lisp_Object fields that we should trace.
5809 The distinction is used e.g. by Lisp_Process which places extra
7555c33f
SM
5810 non-Lisp_Object fields at the end of the structure... */
5811 for (i = 0; i < size; i++) /* ...and then mark its elements. */
d2029e5b 5812 mark_object (ptr->contents[i]);
d2029e5b
SM
5813}
5814
58026347
KH
5815/* Like mark_vectorlike but optimized for char-tables (and
5816 sub-char-tables) assuming that the contents are mostly integers or
5817 symbols. */
5818
5819static void
971de7fb 5820mark_char_table (struct Lisp_Vector *ptr)
58026347 5821{
b6439961
PE
5822 int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
5823 int i;
58026347 5824
8f11f7ec 5825 eassert (!VECTOR_MARKED_P (ptr));
58026347
KH
5826 VECTOR_MARK (ptr);
5827 for (i = 0; i < size; i++)
5828 {
5829 Lisp_Object val = ptr->contents[i];
5830
ef1b0ba7 5831 if (INTEGERP (val) || (SYMBOLP (val) && XSYMBOL (val)->gcmarkbit))
58026347
KH
5832 continue;
5833 if (SUB_CHAR_TABLE_P (val))
5834 {
5835 if (! VECTOR_MARKED_P (XVECTOR (val)))
5836 mark_char_table (XVECTOR (val));
5837 }
5838 else
5839 mark_object (val);
5840 }
5841}
5842
36429c89
DA
5843/* Mark the chain of overlays starting at PTR. */
5844
5845static void
5846mark_overlay (struct Lisp_Overlay *ptr)
5847{
5848 for (; ptr && !ptr->gcmarkbit; ptr = ptr->next)
5849 {
5850 ptr->gcmarkbit = 1;
5851 mark_object (ptr->start);
5852 mark_object (ptr->end);
5853 mark_object (ptr->plist);
5854 }
5855}
5856
5857/* Mark Lisp_Objects and special pointers in BUFFER. */
cf5c0175
DA
5858
5859static void
5860mark_buffer (struct buffer *buffer)
5861{
36429c89
DA
5862 /* This is handled much like other pseudovectors... */
5863 mark_vectorlike ((struct Lisp_Vector *) buffer);
cf5c0175 5864
36429c89 5865 /* ...but there are some buffer-specific things. */
cf5c0175
DA
5866
5867 MARK_INTERVAL_TREE (BUF_INTERVALS (buffer));
5868
5869 /* For now, we just don't mark the undo_list. It's done later in
5870 a special way just before the sweep phase, and after stripping
5871 some of its elements that are not needed any more. */
5872
36429c89
DA
5873 mark_overlay (buffer->overlays_before);
5874 mark_overlay (buffer->overlays_after);
cf5c0175
DA
5875
5876 /* If this is an indirect buffer, mark its base buffer. */
5877 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
5878 mark_buffer (buffer->base_buffer);
5879}
5880
5881/* Determine type of generic Lisp_Object and mark it accordingly. */
5882
41c28a37 5883void
971de7fb 5884mark_object (Lisp_Object arg)
7146af97 5885{
49723c04 5886 register Lisp_Object obj = arg;
4f5c1376
GM
5887#ifdef GC_CHECK_MARKED_OBJECTS
5888 void *po;
5889 struct mem_node *m;
5890#endif
903fe15d 5891 ptrdiff_t cdr_count = 0;
7146af97 5892
9149e743 5893 loop:
7146af97 5894
1f0b3fd2 5895 if (PURE_POINTER_P (XPNTR (obj)))
7146af97
JB
5896 return;
5897
49723c04 5898 last_marked[last_marked_index++] = obj;
785cd37f
RS
5899 if (last_marked_index == LAST_MARKED_SIZE)
5900 last_marked_index = 0;
5901
4f5c1376
GM
5902 /* Perform some sanity checks on the objects marked here. Abort if
5903 we encounter an object we know is bogus. This increases GC time
5904 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
5905#ifdef GC_CHECK_MARKED_OBJECTS
5906
5907 po = (void *) XPNTR (obj);
5908
5909 /* Check that the object pointed to by PO is known to be a Lisp
5910 structure allocated from the heap. */
5911#define CHECK_ALLOCATED() \
5912 do { \
5913 m = mem_find (po); \
5914 if (m == MEM_NIL) \
5915 abort (); \
5916 } while (0)
5917
5918 /* Check that the object pointed to by PO is live, using predicate
5919 function LIVEP. */
5920#define CHECK_LIVE(LIVEP) \
5921 do { \
5922 if (!LIVEP (m, po)) \
5923 abort (); \
5924 } while (0)
5925
5926 /* Check both of the above conditions. */
5927#define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
5928 do { \
5929 CHECK_ALLOCATED (); \
5930 CHECK_LIVE (LIVEP); \
5931 } while (0) \
177c0ea7 5932
4f5c1376 5933#else /* not GC_CHECK_MARKED_OBJECTS */
177c0ea7 5934
4f5c1376
GM
5935#define CHECK_LIVE(LIVEP) (void) 0
5936#define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
177c0ea7 5937
4f5c1376
GM
5938#endif /* not GC_CHECK_MARKED_OBJECTS */
5939
8e50cc2d 5940 switch (SWITCH_ENUM_CAST (XTYPE (obj)))
7146af97
JB
5941 {
5942 case Lisp_String:
5943 {
5944 register struct Lisp_String *ptr = XSTRING (obj);
8f11f7ec
SM
5945 if (STRING_MARKED_P (ptr))
5946 break;
4f5c1376 5947 CHECK_ALLOCATED_AND_LIVE (live_string_p);
2e471eb5 5948 MARK_STRING (ptr);
7555c33f 5949 MARK_INTERVAL_TREE (ptr->intervals);
361b097f 5950#ifdef GC_CHECK_STRING_BYTES
676a7251 5951 /* Check that the string size recorded in the string is the
7555c33f 5952 same as the one recorded in the sdata structure. */
676a7251 5953 CHECK_STRING_BYTES (ptr);
361b097f 5954#endif /* GC_CHECK_STRING_BYTES */
7146af97
JB
5955 }
5956 break;
5957
76437631 5958 case Lisp_Vectorlike:
cf5c0175
DA
5959 {
5960 register struct Lisp_Vector *ptr = XVECTOR (obj);
5961 register ptrdiff_t pvectype;
5962
5963 if (VECTOR_MARKED_P (ptr))
5964 break;
5965
4f5c1376 5966#ifdef GC_CHECK_MARKED_OBJECTS
cf5c0175
DA
5967 m = mem_find (po);
5968 if (m == MEM_NIL && !SUBRP (obj)
5969 && po != &buffer_defaults
5970 && po != &buffer_local_symbols)
5971 abort ();
4f5c1376 5972#endif /* GC_CHECK_MARKED_OBJECTS */
177c0ea7 5973
cf5c0175 5974 if (ptr->header.size & PSEUDOVECTOR_FLAG)
ee28be33
SM
5975 pvectype = ((ptr->header.size & PVEC_TYPE_MASK)
5976 >> PSEUDOVECTOR_SIZE_BITS);
cf5c0175
DA
5977 else
5978 pvectype = 0;
5979
cf5c0175
DA
5980 if (pvectype != PVEC_SUBR && pvectype != PVEC_BUFFER)
5981 CHECK_LIVE (live_vector_p);
169ee243 5982
ee28be33 5983 switch (pvectype)
cf5c0175 5984 {
ee28be33 5985 case PVEC_BUFFER:
cf5c0175
DA
5986#ifdef GC_CHECK_MARKED_OBJECTS
5987 if (po != &buffer_defaults && po != &buffer_local_symbols)
5988 {
5989 struct buffer *b = all_buffers;
5990 for (; b && b != po; b = b->header.next.buffer)
5991 ;
5992 if (b == NULL)
5993 abort ();
5994 }
5995#endif /* GC_CHECK_MARKED_OBJECTS */
5996 mark_buffer ((struct buffer *) ptr);
ee28be33
SM
5997 break;
5998
5999 case PVEC_COMPILED:
6000 { /* We could treat this just like a vector, but it is better
6001 to save the COMPILED_CONSTANTS element for last and avoid
6002 recursion there. */
6003 int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
6004 int i;
6005
6006 VECTOR_MARK (ptr);
6007 for (i = 0; i < size; i++)
6008 if (i != COMPILED_CONSTANTS)
6009 mark_object (ptr->contents[i]);
6010 if (size > COMPILED_CONSTANTS)
6011 {
6012 obj = ptr->contents[COMPILED_CONSTANTS];
6013 goto loop;
6014 }
6015 }
6016 break;
cf5c0175 6017
ee28be33
SM
6018 case PVEC_FRAME:
6019 {
6020 mark_vectorlike (ptr);
6021 mark_face_cache (((struct frame *) ptr)->face_cache);
6022 }
6023 break;
cf5c0175 6024
ee28be33
SM
6025 case PVEC_WINDOW:
6026 {
6027 struct window *w = (struct window *) ptr;
cf5c0175 6028
ee28be33
SM
6029 mark_vectorlike (ptr);
6030 /* Mark glyphs for leaf windows. Marking window
6031 matrices is sufficient because frame matrices
6032 use the same glyph memory. */
6033 if (NILP (w->hchild) && NILP (w->vchild) && w->current_matrix)
6034 {
6035 mark_glyph_matrix (w->current_matrix);
6036 mark_glyph_matrix (w->desired_matrix);
6037 }
6038 }
6039 break;
cf5c0175 6040
ee28be33
SM
6041 case PVEC_HASH_TABLE:
6042 {
6043 struct Lisp_Hash_Table *h = (struct Lisp_Hash_Table *) ptr;
cf5c0175 6044
ee28be33
SM
6045 mark_vectorlike (ptr);
6046 /* If hash table is not weak, mark all keys and values.
6047 For weak tables, mark only the vector. */
6048 if (NILP (h->weak))
6049 mark_object (h->key_and_value);
6050 else
6051 VECTOR_MARK (XVECTOR (h->key_and_value));
6052 }
6053 break;
cf5c0175 6054
ee28be33
SM
6055 case PVEC_CHAR_TABLE:
6056 mark_char_table (ptr);
6057 break;
cf5c0175 6058
ee28be33
SM
6059 case PVEC_BOOL_VECTOR:
6060 /* No Lisp_Objects to mark in a bool vector. */
6061 VECTOR_MARK (ptr);
6062 break;
cf5c0175 6063
ee28be33
SM
6064 case PVEC_SUBR:
6065 break;
cf5c0175 6066
ee28be33
SM
6067 case PVEC_FREE:
6068 abort ();
cf5c0175 6069
ee28be33
SM
6070 default:
6071 mark_vectorlike (ptr);
6072 }
cf5c0175 6073 }
169ee243 6074 break;
7146af97 6075
7146af97
JB
6076 case Lisp_Symbol:
6077 {
c70bbf06 6078 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
7146af97
JB
6079 struct Lisp_Symbol *ptrx;
6080
8f11f7ec
SM
6081 if (ptr->gcmarkbit)
6082 break;
4f5c1376 6083 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
2336fe58 6084 ptr->gcmarkbit = 1;
49723c04
SM
6085 mark_object (ptr->function);
6086 mark_object (ptr->plist);
ce5b453a
SM
6087 switch (ptr->redirect)
6088 {
6089 case SYMBOL_PLAINVAL: mark_object (SYMBOL_VAL (ptr)); break;
6090 case SYMBOL_VARALIAS:
6091 {
6092 Lisp_Object tem;
6093 XSETSYMBOL (tem, SYMBOL_ALIAS (ptr));
6094 mark_object (tem);
6095 break;
6096 }
6097 case SYMBOL_LOCALIZED:
6098 {
6099 struct Lisp_Buffer_Local_Value *blv = SYMBOL_BLV (ptr);
6100 /* If the value is forwarded to a buffer or keyboard field,
6101 these are marked when we see the corresponding object.
6102 And if it's forwarded to a C variable, either it's not
6103 a Lisp_Object var, or it's staticpro'd already. */
6104 mark_object (blv->where);
6105 mark_object (blv->valcell);
6106 mark_object (blv->defcell);
6107 break;
6108 }
6109 case SYMBOL_FORWARDED:
6110 /* If the value is forwarded to a buffer or keyboard field,
6111 these are marked when we see the corresponding object.
6112 And if it's forwarded to a C variable, either it's not
6113 a Lisp_Object var, or it's staticpro'd already. */
6114 break;
6115 default: abort ();
6116 }
8fe5665d
KR
6117 if (!PURE_POINTER_P (XSTRING (ptr->xname)))
6118 MARK_STRING (XSTRING (ptr->xname));
d5db4077 6119 MARK_INTERVAL_TREE (STRING_INTERVALS (ptr->xname));
177c0ea7 6120
7146af97
JB
6121 ptr = ptr->next;
6122 if (ptr)
6123 {
7555c33f 6124 ptrx = ptr; /* Use of ptrx avoids compiler bug on Sun. */
7146af97 6125 XSETSYMBOL (obj, ptrx);
49723c04 6126 goto loop;
7146af97
JB
6127 }
6128 }
6129 break;
6130
a0a38eb7 6131 case Lisp_Misc:
4f5c1376 6132 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
b766f870 6133
7555c33f
SM
6134 if (XMISCANY (obj)->gcmarkbit)
6135 break;
6136
6137 switch (XMISCTYPE (obj))
a0a38eb7 6138 {
7555c33f
SM
6139 case Lisp_Misc_Marker:
6140 /* DO NOT mark thru the marker's chain.
6141 The buffer's markers chain does not preserve markers from gc;
6142 instead, markers are removed from the chain when freed by gc. */
36429c89 6143 XMISCANY (obj)->gcmarkbit = 1;
7555c33f 6144 break;
465edf35 6145
7555c33f
SM
6146 case Lisp_Misc_Save_Value:
6147 XMISCANY (obj)->gcmarkbit = 1;
9ea306d1 6148#if GC_MARK_STACK
7555c33f
SM
6149 {
6150 register struct Lisp_Save_Value *ptr = XSAVE_VALUE (obj);
6151 /* If DOGC is set, POINTER is the address of a memory
6152 area containing INTEGER potential Lisp_Objects. */
6153 if (ptr->dogc)
6154 {
6155 Lisp_Object *p = (Lisp_Object *) ptr->pointer;
6156 ptrdiff_t nelt;
6157 for (nelt = ptr->integer; nelt > 0; nelt--, p++)
6158 mark_maybe_object (*p);
6159 }
6160 }
9ea306d1 6161#endif
7555c33f
SM
6162 break;
6163
6164 case Lisp_Misc_Overlay:
6165 mark_overlay (XOVERLAY (obj));
6166 break;
6167
6168 default:
6169 abort ();
a0a38eb7 6170 }
7146af97
JB
6171 break;
6172
6173 case Lisp_Cons:
7146af97
JB
6174 {
6175 register struct Lisp_Cons *ptr = XCONS (obj);
8f11f7ec
SM
6176 if (CONS_MARKED_P (ptr))
6177 break;
4f5c1376 6178 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
08b7c2cb 6179 CONS_MARK (ptr);
c54ca951 6180 /* If the cdr is nil, avoid recursion for the car. */
28a099a4 6181 if (EQ (ptr->u.cdr, Qnil))
c54ca951 6182 {
49723c04 6183 obj = ptr->car;
1342fc6f 6184 cdr_count = 0;
c54ca951
RS
6185 goto loop;
6186 }
49723c04 6187 mark_object (ptr->car);
28a099a4 6188 obj = ptr->u.cdr;
1342fc6f
RS
6189 cdr_count++;
6190 if (cdr_count == mark_object_loop_halt)
6191 abort ();
7146af97
JB
6192 goto loop;
6193 }
6194
7146af97 6195 case Lisp_Float:
4f5c1376 6196 CHECK_ALLOCATED_AND_LIVE (live_float_p);
ab6780cd 6197 FLOAT_MARK (XFLOAT (obj));
7146af97 6198 break;
7146af97 6199
2de9f71c 6200 case_Lisp_Int:
7146af97
JB
6201 break;
6202
6203 default:
6204 abort ();
6205 }
4f5c1376
GM
6206
6207#undef CHECK_LIVE
6208#undef CHECK_ALLOCATED
6209#undef CHECK_ALLOCATED_AND_LIVE
7146af97 6210}
4a729fd8 6211/* Mark the Lisp pointers in the terminal objects.
0ba2624f 6212 Called by Fgarbage_collect. */
4a729fd8 6213
4a729fd8
SM
6214static void
6215mark_terminals (void)
6216{
6217 struct terminal *t;
6218 for (t = terminal_list; t; t = t->next_terminal)
6219 {
6220 eassert (t->name != NULL);
354884c4 6221#ifdef HAVE_WINDOW_SYSTEM
96ad0af7
YM
6222 /* If a terminal object is reachable from a stacpro'ed object,
6223 it might have been marked already. Make sure the image cache
6224 gets marked. */
6225 mark_image_cache (t->image_cache);
354884c4 6226#endif /* HAVE_WINDOW_SYSTEM */
96ad0af7
YM
6227 if (!VECTOR_MARKED_P (t))
6228 mark_vectorlike ((struct Lisp_Vector *)t);
4a729fd8
SM
6229 }
6230}
6231
6232
084b1a0c 6233
41c28a37
GM
6234/* Value is non-zero if OBJ will survive the current GC because it's
6235 either marked or does not need to be marked to survive. */
6236
6237int
971de7fb 6238survives_gc_p (Lisp_Object obj)
41c28a37
GM
6239{
6240 int survives_p;
177c0ea7 6241
8e50cc2d 6242 switch (XTYPE (obj))
41c28a37 6243 {
2de9f71c 6244 case_Lisp_Int:
41c28a37
GM
6245 survives_p = 1;
6246 break;
6247
6248 case Lisp_Symbol:
2336fe58 6249 survives_p = XSYMBOL (obj)->gcmarkbit;
41c28a37
GM
6250 break;
6251
6252 case Lisp_Misc:
67ee9f6e 6253 survives_p = XMISCANY (obj)->gcmarkbit;
41c28a37
GM
6254 break;
6255
6256 case Lisp_String:
08b7c2cb 6257 survives_p = STRING_MARKED_P (XSTRING (obj));
41c28a37
GM
6258 break;
6259
6260 case Lisp_Vectorlike:
8e50cc2d 6261 survives_p = SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
41c28a37
GM
6262 break;
6263
6264 case Lisp_Cons:
08b7c2cb 6265 survives_p = CONS_MARKED_P (XCONS (obj));
41c28a37
GM
6266 break;
6267
41c28a37 6268 case Lisp_Float:
ab6780cd 6269 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
41c28a37 6270 break;
41c28a37
GM
6271
6272 default:
6273 abort ();
6274 }
6275
34400008 6276 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
41c28a37
GM
6277}
6278
6279
7146af97 6280\f
1a4f1e2c 6281/* Sweep: find all structures not marked, and free them. */
7146af97
JB
6282
6283static void
971de7fb 6284gc_sweep (void)
7146af97 6285{
41c28a37
GM
6286 /* Remove or mark entries in weak hash tables.
6287 This must be done before any object is unmarked. */
6288 sweep_weak_hash_tables ();
6289
2e471eb5 6290 sweep_strings ();
676a7251
GM
6291#ifdef GC_CHECK_STRING_BYTES
6292 if (!noninteractive)
6293 check_string_bytes (1);
6294#endif
7146af97
JB
6295
6296 /* Put all unmarked conses on free list */
6297 {
6298 register struct cons_block *cblk;
6ca94ac9 6299 struct cons_block **cprev = &cons_block;
7146af97 6300 register int lim = cons_block_index;
c0c5c8ae 6301 EMACS_INT num_free = 0, num_used = 0;
7146af97
JB
6302
6303 cons_free_list = 0;
177c0ea7 6304
6ca94ac9 6305 for (cblk = cons_block; cblk; cblk = *cprev)
7146af97 6306 {
3ae2e3a3 6307 register int i = 0;
6ca94ac9 6308 int this_free = 0;
3ae2e3a3
RS
6309 int ilim = (lim + BITS_PER_INT - 1) / BITS_PER_INT;
6310
6311 /* Scan the mark bits an int at a time. */
47ea7f44 6312 for (i = 0; i < ilim; i++)
3ae2e3a3
RS
6313 {
6314 if (cblk->gcmarkbits[i] == -1)
6315 {
6316 /* Fast path - all cons cells for this int are marked. */
6317 cblk->gcmarkbits[i] = 0;
6318 num_used += BITS_PER_INT;
6319 }
6320 else
6321 {
6322 /* Some cons cells for this int are not marked.
6323 Find which ones, and free them. */
6324 int start, pos, stop;
6325
6326 start = i * BITS_PER_INT;
6327 stop = lim - start;
6328 if (stop > BITS_PER_INT)
6329 stop = BITS_PER_INT;
6330 stop += start;
6331
6332 for (pos = start; pos < stop; pos++)
6333 {
6334 if (!CONS_MARKED_P (&cblk->conses[pos]))
6335 {
6336 this_free++;
6337 cblk->conses[pos].u.chain = cons_free_list;
6338 cons_free_list = &cblk->conses[pos];
34400008 6339#if GC_MARK_STACK
3ae2e3a3 6340 cons_free_list->car = Vdead;
34400008 6341#endif
3ae2e3a3
RS
6342 }
6343 else
6344 {
6345 num_used++;
6346 CONS_UNMARK (&cblk->conses[pos]);
6347 }
6348 }
6349 }
6350 }
6351
7146af97 6352 lim = CONS_BLOCK_SIZE;
6ca94ac9
KH
6353 /* If this block contains only free conses and we have already
6354 seen more than two blocks worth of free conses then deallocate
6355 this block. */
6feef451 6356 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
6ca94ac9 6357 {
6ca94ac9
KH
6358 *cprev = cblk->next;
6359 /* Unhook from the free list. */
28a099a4 6360 cons_free_list = cblk->conses[0].u.chain;
08b7c2cb 6361 lisp_align_free (cblk);
6ca94ac9
KH
6362 }
6363 else
6feef451
AS
6364 {
6365 num_free += this_free;
6366 cprev = &cblk->next;
6367 }
7146af97
JB
6368 }
6369 total_conses = num_used;
6370 total_free_conses = num_free;
6371 }
6372
7146af97
JB
6373 /* Put all unmarked floats on free list */
6374 {
6375 register struct float_block *fblk;
6ca94ac9 6376 struct float_block **fprev = &float_block;
7146af97 6377 register int lim = float_block_index;
c0c5c8ae 6378 EMACS_INT num_free = 0, num_used = 0;
7146af97
JB
6379
6380 float_free_list = 0;
177c0ea7 6381
6ca94ac9 6382 for (fblk = float_block; fblk; fblk = *fprev)
7146af97
JB
6383 {
6384 register int i;
6ca94ac9 6385 int this_free = 0;
7146af97 6386 for (i = 0; i < lim; i++)
ab6780cd 6387 if (!FLOAT_MARKED_P (&fblk->floats[i]))
7146af97 6388 {
6ca94ac9 6389 this_free++;
28a099a4 6390 fblk->floats[i].u.chain = float_free_list;
7146af97
JB
6391 float_free_list = &fblk->floats[i];
6392 }
6393 else
6394 {
6395 num_used++;
ab6780cd 6396 FLOAT_UNMARK (&fblk->floats[i]);
7146af97
JB
6397 }
6398 lim = FLOAT_BLOCK_SIZE;
6ca94ac9
KH
6399 /* If this block contains only free floats and we have already
6400 seen more than two blocks worth of free floats then deallocate
6401 this block. */
6feef451 6402 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
6ca94ac9 6403 {
6ca94ac9
KH
6404 *fprev = fblk->next;
6405 /* Unhook from the free list. */
28a099a4 6406 float_free_list = fblk->floats[0].u.chain;
ab6780cd 6407 lisp_align_free (fblk);
6ca94ac9
KH
6408 }
6409 else
6feef451
AS
6410 {
6411 num_free += this_free;
6412 fprev = &fblk->next;
6413 }
7146af97
JB
6414 }
6415 total_floats = num_used;
6416 total_free_floats = num_free;
6417 }
7146af97 6418
d5e35230
JA
6419 /* Put all unmarked intervals on free list */
6420 {
6421 register struct interval_block *iblk;
6ca94ac9 6422 struct interval_block **iprev = &interval_block;
d5e35230 6423 register int lim = interval_block_index;
c0c5c8ae 6424 EMACS_INT num_free = 0, num_used = 0;
d5e35230
JA
6425
6426 interval_free_list = 0;
6427
6ca94ac9 6428 for (iblk = interval_block; iblk; iblk = *iprev)
d5e35230
JA
6429 {
6430 register int i;
6ca94ac9 6431 int this_free = 0;
d5e35230
JA
6432
6433 for (i = 0; i < lim; i++)
6434 {
2336fe58 6435 if (!iblk->intervals[i].gcmarkbit)
d5e35230 6436 {
439d5cb4 6437 SET_INTERVAL_PARENT (&iblk->intervals[i], interval_free_list);
d5e35230 6438 interval_free_list = &iblk->intervals[i];
6ca94ac9 6439 this_free++;
d5e35230
JA
6440 }
6441 else
6442 {
6443 num_used++;
2336fe58 6444 iblk->intervals[i].gcmarkbit = 0;
d5e35230
JA
6445 }
6446 }
6447 lim = INTERVAL_BLOCK_SIZE;
6ca94ac9
KH
6448 /* If this block contains only free intervals and we have already
6449 seen more than two blocks worth of free intervals then
6450 deallocate this block. */
6feef451 6451 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
6ca94ac9 6452 {
6ca94ac9
KH
6453 *iprev = iblk->next;
6454 /* Unhook from the free list. */
439d5cb4 6455 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
c8099634 6456 lisp_free (iblk);
6ca94ac9
KH
6457 }
6458 else
6feef451
AS
6459 {
6460 num_free += this_free;
6461 iprev = &iblk->next;
6462 }
d5e35230
JA
6463 }
6464 total_intervals = num_used;
6465 total_free_intervals = num_free;
6466 }
d5e35230 6467
7146af97
JB
6468 /* Put all unmarked symbols on free list */
6469 {
6470 register struct symbol_block *sblk;
6ca94ac9 6471 struct symbol_block **sprev = &symbol_block;
7146af97 6472 register int lim = symbol_block_index;
c0c5c8ae 6473 EMACS_INT num_free = 0, num_used = 0;
7146af97 6474
d285b373 6475 symbol_free_list = NULL;
177c0ea7 6476
6ca94ac9 6477 for (sblk = symbol_block; sblk; sblk = *sprev)
7146af97 6478 {
6ca94ac9 6479 int this_free = 0;
d55c12ed
AS
6480 union aligned_Lisp_Symbol *sym = sblk->symbols;
6481 union aligned_Lisp_Symbol *end = sym + lim;
d285b373
GM
6482
6483 for (; sym < end; ++sym)
6484 {
20035321
SM
6485 /* Check if the symbol was created during loadup. In such a case
6486 it might be pointed to by pure bytecode which we don't trace,
6487 so we conservatively assume that it is live. */
d55c12ed 6488 int pure_p = PURE_POINTER_P (XSTRING (sym->s.xname));
177c0ea7 6489
d55c12ed 6490 if (!sym->s.gcmarkbit && !pure_p)
d285b373 6491 {
d55c12ed
AS
6492 if (sym->s.redirect == SYMBOL_LOCALIZED)
6493 xfree (SYMBOL_BLV (&sym->s));
6494 sym->s.next = symbol_free_list;
6495 symbol_free_list = &sym->s;
34400008 6496#if GC_MARK_STACK
d285b373 6497 symbol_free_list->function = Vdead;
34400008 6498#endif
d285b373
GM
6499 ++this_free;
6500 }
6501 else
6502 {
6503 ++num_used;
6504 if (!pure_p)
d55c12ed
AS
6505 UNMARK_STRING (XSTRING (sym->s.xname));
6506 sym->s.gcmarkbit = 0;
d285b373
GM
6507 }
6508 }
177c0ea7 6509
7146af97 6510 lim = SYMBOL_BLOCK_SIZE;
6ca94ac9
KH
6511 /* If this block contains only free symbols and we have already
6512 seen more than two blocks worth of free symbols then deallocate
6513 this block. */
6feef451 6514 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
6ca94ac9 6515 {
6ca94ac9
KH
6516 *sprev = sblk->next;
6517 /* Unhook from the free list. */
d55c12ed 6518 symbol_free_list = sblk->symbols[0].s.next;
c8099634 6519 lisp_free (sblk);
6ca94ac9
KH
6520 }
6521 else
6feef451
AS
6522 {
6523 num_free += this_free;
6524 sprev = &sblk->next;
6525 }
7146af97
JB
6526 }
6527 total_symbols = num_used;
6528 total_free_symbols = num_free;
6529 }
6530
a9faeabe
RS
6531 /* Put all unmarked misc's on free list.
6532 For a marker, first unchain it from the buffer it points into. */
7146af97
JB
6533 {
6534 register struct marker_block *mblk;
6ca94ac9 6535 struct marker_block **mprev = &marker_block;
7146af97 6536 register int lim = marker_block_index;
c0c5c8ae 6537 EMACS_INT num_free = 0, num_used = 0;
7146af97
JB
6538
6539 marker_free_list = 0;
177c0ea7 6540
6ca94ac9 6541 for (mblk = marker_block; mblk; mblk = *mprev)
7146af97
JB
6542 {
6543 register int i;
6ca94ac9 6544 int this_free = 0;
fa05e253 6545
7146af97 6546 for (i = 0; i < lim; i++)
465edf35 6547 {
d55c12ed 6548 if (!mblk->markers[i].m.u_any.gcmarkbit)
465edf35 6549 {
d55c12ed
AS
6550 if (mblk->markers[i].m.u_any.type == Lisp_Misc_Marker)
6551 unchain_marker (&mblk->markers[i].m.u_marker);
fa05e253
RS
6552 /* Set the type of the freed object to Lisp_Misc_Free.
6553 We could leave the type alone, since nobody checks it,
465edf35 6554 but this might catch bugs faster. */
d55c12ed
AS
6555 mblk->markers[i].m.u_marker.type = Lisp_Misc_Free;
6556 mblk->markers[i].m.u_free.chain = marker_free_list;
6557 marker_free_list = &mblk->markers[i].m;
6ca94ac9 6558 this_free++;
465edf35
KH
6559 }
6560 else
6561 {
6562 num_used++;
d55c12ed 6563 mblk->markers[i].m.u_any.gcmarkbit = 0;
465edf35
KH
6564 }
6565 }
7146af97 6566 lim = MARKER_BLOCK_SIZE;
6ca94ac9
KH
6567 /* If this block contains only free markers and we have already
6568 seen more than two blocks worth of free markers then deallocate
6569 this block. */
6feef451 6570 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
6ca94ac9 6571 {
6ca94ac9
KH
6572 *mprev = mblk->next;
6573 /* Unhook from the free list. */
d55c12ed 6574 marker_free_list = mblk->markers[0].m.u_free.chain;
c8099634 6575 lisp_free (mblk);
6ca94ac9
KH
6576 }
6577 else
6feef451
AS
6578 {
6579 num_free += this_free;
6580 mprev = &mblk->next;
6581 }
7146af97
JB
6582 }
6583
6584 total_markers = num_used;
6585 total_free_markers = num_free;
6586 }
6587
6588 /* Free all unmarked buffers */
6589 {
6590 register struct buffer *buffer = all_buffers, *prev = 0, *next;
6591
3ab6e069 6592 total_buffers = 0;
7146af97 6593 while (buffer)
3ef06d12 6594 if (!VECTOR_MARKED_P (buffer))
7146af97
JB
6595 {
6596 if (prev)
eab3844f 6597 prev->header.next = buffer->header.next;
7146af97 6598 else
eab3844f
PE
6599 all_buffers = buffer->header.next.buffer;
6600 next = buffer->header.next.buffer;
34400008 6601 lisp_free (buffer);
7146af97
JB
6602 buffer = next;
6603 }
6604 else
6605 {
3ef06d12 6606 VECTOR_UNMARK (buffer);
30e3190a 6607 UNMARK_BALANCE_INTERVALS (BUF_INTERVALS (buffer));
3ab6e069 6608 total_buffers++;
eab3844f 6609 prev = buffer, buffer = buffer->header.next.buffer;
7146af97
JB
6610 }
6611 }
6612
f3372c87 6613 sweep_vectors ();
177c0ea7 6614
676a7251
GM
6615#ifdef GC_CHECK_STRING_BYTES
6616 if (!noninteractive)
6617 check_string_bytes (1);
6618#endif
7146af97 6619}
7146af97 6620
7146af97 6621
7146af97 6622
7146af97 6623\f
20d24714
JB
6624/* Debugging aids. */
6625
31ce1c91 6626DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
a6266d23 6627 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
228299fa 6628This may be helpful in debugging Emacs's memory usage.
7ee72033 6629We divide the value by 1024 to make sure it fits in a Lisp integer. */)
5842a27b 6630 (void)
20d24714
JB
6631{
6632 Lisp_Object end;
6633
d01a7826 6634 XSETINT (end, (intptr_t) (char *) sbrk (0) / 1024);
20d24714
JB
6635
6636 return end;
6637}
6638
7098646f 6639DEFUN ("memory-free", Fmemory_free, Smemory_free, 0, 0, 0,
6d02fe5b
PE
6640 doc: /* Return a list (E H) of two measures of free memory.
6641E counts free lists maintained by Emacs itself. H counts the heap,
6642freed by Emacs but not released to the operating system; this is zero
6643if heap statistics are not available. Both counters are in units of
66441024 bytes, rounded up. */)
7098646f
DA
6645 (void)
6646{
6d02fe5b
PE
6647 /* Make the return value first, so that its storage is accounted for. */
6648 Lisp_Object val = Fmake_list (make_number (2), make_number (0));
6649
6650 XSETCAR (val,
3ab6e069
DA
6651 bounded_number
6652 ((total_free_conses * sizeof (struct Lisp_Cons)
6653 + total_free_markers * sizeof (union Lisp_Misc)
6654 + total_free_symbols * sizeof (struct Lisp_Symbol)
6655 + total_free_floats * sizeof (struct Lisp_Float)
6656 + total_free_intervals * sizeof (struct interval)
6657 + total_free_strings * sizeof (struct Lisp_String)
6658 + total_free_vector_bytes
6659 + 1023) >> 10));
7098646f 6660#ifdef DOUG_LEA_MALLOC
3ab6e069 6661 XSETCAR (XCDR (val), bounded_number ((mallinfo ().fordblks + 1023) >> 10));
7098646f 6662#endif
6d02fe5b 6663 return val;
7098646f
DA
6664}
6665
310ea200 6666DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
a6266d23 6667 doc: /* Return a list of counters that measure how much consing there has been.
228299fa
GM
6668Each of these counters increments for a certain kind of object.
6669The counters wrap around from the largest positive integer to zero.
6670Garbage collection does not decrease them.
6671The elements of the value are as follows:
6672 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
6673All are in units of 1 = one object consed
6674except for VECTOR-CELLS and STRING-CHARS, which count the total length of
6675objects consed.
6676MISCS include overlays, markers, and some internal types.
6677Frames, windows, buffers, and subprocesses count as vectors
7ee72033 6678 (but the contents of a buffer's text do not count here). */)
5842a27b 6679 (void)
310ea200 6680{
2e471eb5 6681 Lisp_Object consed[8];
310ea200 6682
3ab6e069
DA
6683 consed[0] = bounded_number (cons_cells_consed);
6684 consed[1] = bounded_number (floats_consed);
6685 consed[2] = bounded_number (vector_cells_consed);
6686 consed[3] = bounded_number (symbols_consed);
6687 consed[4] = bounded_number (string_chars_consed);
6688 consed[5] = bounded_number (misc_objects_consed);
6689 consed[6] = bounded_number (intervals_consed);
6690 consed[7] = bounded_number (strings_consed);
310ea200 6691
2e471eb5 6692 return Flist (8, consed);
310ea200 6693}
e0b8c689 6694
8b058d44
EZ
6695/* Find at most FIND_MAX symbols which have OBJ as their value or
6696 function. This is used in gdbinit's `xwhichsymbols' command. */
6697
6698Lisp_Object
196e41e4 6699which_symbols (Lisp_Object obj, EMACS_INT find_max)
8b058d44
EZ
6700{
6701 struct symbol_block *sblk;
8d0eb4c2 6702 ptrdiff_t gc_count = inhibit_garbage_collection ();
8b058d44
EZ
6703 Lisp_Object found = Qnil;
6704
ca78dc43 6705 if (! DEADP (obj))
8b058d44
EZ
6706 {
6707 for (sblk = symbol_block; sblk; sblk = sblk->next)
6708 {
9426aba4 6709 union aligned_Lisp_Symbol *aligned_sym = sblk->symbols;
8b058d44
EZ
6710 int bn;
6711
9426aba4 6712 for (bn = 0; bn < SYMBOL_BLOCK_SIZE; bn++, aligned_sym++)
8b058d44 6713 {
9426aba4 6714 struct Lisp_Symbol *sym = &aligned_sym->s;
8b058d44
EZ
6715 Lisp_Object val;
6716 Lisp_Object tem;
6717
6718 if (sblk == symbol_block && bn >= symbol_block_index)
6719 break;
6720
6721 XSETSYMBOL (tem, sym);
6722 val = find_symbol_value (tem);
6723 if (EQ (val, obj)
6724 || EQ (sym->function, obj)
6725 || (!NILP (sym->function)
6726 && COMPILEDP (sym->function)
6727 && EQ (AREF (sym->function, COMPILED_BYTECODE), obj))
6728 || (!NILP (val)
6729 && COMPILEDP (val)
6730 && EQ (AREF (val, COMPILED_BYTECODE), obj)))
6731 {
6732 found = Fcons (tem, found);
6733 if (--find_max == 0)
6734 goto out;
6735 }
6736 }
6737 }
6738 }
6739
6740 out:
6741 unbind_to (gc_count, Qnil);
6742 return found;
6743}
6744
244ed907 6745#ifdef ENABLE_CHECKING
e0b8c689 6746int suppress_checking;
d3d47262 6747
e0b8c689 6748void
971de7fb 6749die (const char *msg, const char *file, int line)
e0b8c689 6750{
67ee9f6e 6751 fprintf (stderr, "\r\n%s:%d: Emacs fatal error: %s\r\n",
e0b8c689
KR
6752 file, line, msg);
6753 abort ();
6754}
244ed907 6755#endif
20d24714 6756\f
7146af97
JB
6757/* Initialization */
6758
dfcf069d 6759void
971de7fb 6760init_alloc_once (void)
7146af97
JB
6761{
6762 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
9e713715
GM
6763 purebeg = PUREBEG;
6764 pure_size = PURESIZE;
ab6780cd 6765
877935b1 6766#if GC_MARK_STACK || defined GC_MALLOC_CHECK
34400008
GM
6767 mem_init ();
6768 Vdead = make_pure_string ("DEAD", 4, 4, 0);
6769#endif
9e713715 6770
d1658221
RS
6771#ifdef DOUG_LEA_MALLOC
6772 mallopt (M_TRIM_THRESHOLD, 128*1024); /* trim threshold */
6773 mallopt (M_MMAP_THRESHOLD, 64*1024); /* mmap threshold */
81d492d5 6774 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* max. number of mmap'ed areas */
d1658221 6775#endif
7146af97 6776 init_strings ();
f3372c87 6777 init_vectors ();
d5e35230 6778
276cbe5a
RS
6779#ifdef REL_ALLOC
6780 malloc_hysteresis = 32;
6781#else
6782 malloc_hysteresis = 0;
6783#endif
6784
24d8a105 6785 refill_memory_reserve ();
7d179cea 6786 gc_cons_threshold = 100000 * sizeof (Lisp_Object);
7146af97
JB
6787}
6788
dfcf069d 6789void
971de7fb 6790init_alloc (void)
7146af97
JB
6791{
6792 gcprolist = 0;
630686c8 6793 byte_stack_list = 0;
182ff242
GM
6794#if GC_MARK_STACK
6795#if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
6796 setjmp_tested_p = longjmps_done = 0;
6797#endif
6798#endif
2c5bd608
DL
6799 Vgc_elapsed = make_float (0.0);
6800 gcs_done = 0;
7146af97
JB
6801}
6802
6803void
971de7fb 6804syms_of_alloc (void)
7146af97 6805{
29208e82 6806 DEFVAR_INT ("gc-cons-threshold", gc_cons_threshold,
fb7ada5f 6807 doc: /* Number of bytes of consing between garbage collections.
228299fa
GM
6808Garbage collection can happen automatically once this many bytes have been
6809allocated since the last garbage collection. All data types count.
7146af97 6810
228299fa 6811Garbage collection happens automatically only when `eval' is called.
7146af97 6812
228299fa 6813By binding this temporarily to a large number, you can effectively
96f077ad
SM
6814prevent garbage collection during a part of the program.
6815See also `gc-cons-percentage'. */);
6816
29208e82 6817 DEFVAR_LISP ("gc-cons-percentage", Vgc_cons_percentage,
fb7ada5f 6818 doc: /* Portion of the heap used for allocation.
96f077ad
SM
6819Garbage collection can happen automatically once this portion of the heap
6820has been allocated since the last garbage collection.
6821If this portion is smaller than `gc-cons-threshold', this is ignored. */);
6822 Vgc_cons_percentage = make_float (0.1);
0819585c 6823
29208e82 6824 DEFVAR_INT ("pure-bytes-used", pure_bytes_used,
333f9019 6825 doc: /* Number of bytes of shareable Lisp data allocated so far. */);
0819585c 6826
29208e82 6827 DEFVAR_INT ("cons-cells-consed", cons_cells_consed,
a6266d23 6828 doc: /* Number of cons cells that have been consed so far. */);
0819585c 6829
29208e82 6830 DEFVAR_INT ("floats-consed", floats_consed,
a6266d23 6831 doc: /* Number of floats that have been consed so far. */);
0819585c 6832
29208e82 6833 DEFVAR_INT ("vector-cells-consed", vector_cells_consed,
a6266d23 6834 doc: /* Number of vector cells that have been consed so far. */);
0819585c 6835
29208e82 6836 DEFVAR_INT ("symbols-consed", symbols_consed,
a6266d23 6837 doc: /* Number of symbols that have been consed so far. */);
0819585c 6838
29208e82 6839 DEFVAR_INT ("string-chars-consed", string_chars_consed,
a6266d23 6840 doc: /* Number of string characters that have been consed so far. */);
0819585c 6841
29208e82 6842 DEFVAR_INT ("misc-objects-consed", misc_objects_consed,
01a6dcc8
GM
6843 doc: /* Number of miscellaneous objects that have been consed so far.
6844These include markers and overlays, plus certain objects not visible
6845to users. */);
2e471eb5 6846
29208e82 6847 DEFVAR_INT ("intervals-consed", intervals_consed,
a6266d23 6848 doc: /* Number of intervals that have been consed so far. */);
7146af97 6849
29208e82 6850 DEFVAR_INT ("strings-consed", strings_consed,
a6266d23 6851 doc: /* Number of strings that have been consed so far. */);
228299fa 6852
29208e82 6853 DEFVAR_LISP ("purify-flag", Vpurify_flag,
a6266d23 6854 doc: /* Non-nil means loading Lisp code in order to dump an executable.
e9515805
SM
6855This means that certain objects should be allocated in shared (pure) space.
6856It can also be set to a hash-table, in which case this table is used to
6857do hash-consing of the objects allocated to pure space. */);
228299fa 6858
29208e82 6859 DEFVAR_BOOL ("garbage-collection-messages", garbage_collection_messages,
a6266d23 6860 doc: /* Non-nil means display messages at start and end of garbage collection. */);
299585ee
RS
6861 garbage_collection_messages = 0;
6862
29208e82 6863 DEFVAR_LISP ("post-gc-hook", Vpost_gc_hook,
a6266d23 6864 doc: /* Hook run after garbage collection has finished. */);
9e713715 6865 Vpost_gc_hook = Qnil;
cd3520a4 6866 DEFSYM (Qpost_gc_hook, "post-gc-hook");
9e713715 6867
29208e82 6868 DEFVAR_LISP ("memory-signal-data", Vmemory_signal_data,
74a54b04 6869 doc: /* Precomputed `signal' argument for memory-full error. */);
bcb61d60
KH
6870 /* We build this in advance because if we wait until we need it, we might
6871 not be able to allocate the memory to hold it. */
74a54b04 6872 Vmemory_signal_data
f4265f6c 6873 = pure_cons (Qerror,
2a0213a6 6874 pure_cons (build_pure_c_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"), Qnil));
74a54b04 6875
29208e82 6876 DEFVAR_LISP ("memory-full", Vmemory_full,
24d8a105 6877 doc: /* Non-nil means Emacs cannot get much more Lisp memory. */);
74a54b04 6878 Vmemory_full = Qnil;
bcb61d60 6879
cd3520a4
JB
6880 DEFSYM (Qgc_cons_threshold, "gc-cons-threshold");
6881 DEFSYM (Qchar_table_extra_slots, "char-table-extra-slots");
a59de17b 6882
29208e82 6883 DEFVAR_LISP ("gc-elapsed", Vgc_elapsed,
2c5bd608 6884 doc: /* Accumulated time elapsed in garbage collections.
e7415487 6885The time is in seconds as a floating point value. */);
29208e82 6886 DEFVAR_INT ("gcs-done", gcs_done,
e7415487 6887 doc: /* Accumulated number of garbage collections done. */);
2c5bd608 6888
7146af97
JB
6889 defsubr (&Scons);
6890 defsubr (&Slist);
6891 defsubr (&Svector);
6892 defsubr (&Smake_byte_code);
6893 defsubr (&Smake_list);
6894 defsubr (&Smake_vector);
6895 defsubr (&Smake_string);
7b07587b 6896 defsubr (&Smake_bool_vector);
7146af97
JB
6897 defsubr (&Smake_symbol);
6898 defsubr (&Smake_marker);
6899 defsubr (&Spurecopy);
6900 defsubr (&Sgarbage_collect);
20d24714 6901 defsubr (&Smemory_limit);
7098646f 6902 defsubr (&Smemory_free);
310ea200 6903 defsubr (&Smemory_use_counts);
34400008
GM
6904
6905#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
6906 defsubr (&Sgc_status);
6907#endif
7146af97 6908}