(meta-mark-active): Fix condition to just
[bpt/emacs.git] / src / alloc.c
CommitLineData
7146af97 1/* Storage allocation and gc for GNU Emacs Lisp interpreter.
126f9c02
SM
2 Copyright (C) 1985, 1986, 1988, 1993, 1994, 1995, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
7146af97
JB
4
5This file is part of GNU Emacs.
6
7GNU Emacs is free software; you can redistribute it and/or modify
8it under the terms of the GNU General Public License as published by
7c299e7a 9the Free Software Foundation; either version 2, or (at your option)
7146af97
JB
10any later version.
11
12GNU Emacs is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15GNU General Public License for more details.
16
17You should have received a copy of the GNU General Public License
18along with GNU Emacs; see the file COPYING. If not, write to
3b7ad313
EN
19the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
20Boston, MA 02111-1307, USA. */
7146af97 21
18160b98 22#include <config.h>
e9b309ac 23#include <stdio.h>
ab6780cd 24#include <limits.h> /* For CHAR_BIT. */
92939d31 25
4455ad75
RS
26#ifdef ALLOC_DEBUG
27#undef INLINE
28#endif
29
68c45bf0 30/* Note that this declares bzero on OSF/1. How dumb. */
2e471eb5 31
68c45bf0 32#include <signal.h>
92939d31 33
aa477689
JD
34#ifdef HAVE_GTK_AND_PTHREAD
35#include <pthread.h>
36#endif
37
7539e11f
KR
38/* This file is part of the core Lisp implementation, and thus must
39 deal with the real data structures. If the Lisp implementation is
40 replaced, this file likely will not be used. */
2e471eb5 41
7539e11f 42#undef HIDE_LISP_IMPLEMENTATION
7146af97 43#include "lisp.h"
ece93c02 44#include "process.h"
d5e35230 45#include "intervals.h"
4c0be5f4 46#include "puresize.h"
7146af97
JB
47#include "buffer.h"
48#include "window.h"
2538fae4 49#include "keyboard.h"
502b9b64 50#include "frame.h"
9ac0d9e0 51#include "blockinput.h"
e54daa22 52#include "charset.h"
e065a56e 53#include "syssignal.h"
34400008 54#include <setjmp.h>
e065a56e 55
ad5f3636
DL
56/* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
57 memory. Can do this only if using gmalloc.c. */
58
59#if defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC
60#undef GC_MALLOC_CHECK
61#endif
62
bf952fb6
DL
63#ifdef HAVE_UNISTD_H
64#include <unistd.h>
65#else
66extern POINTER_TYPE *sbrk ();
67#endif
ee1eea5c 68
d1658221 69#ifdef DOUG_LEA_MALLOC
2e471eb5 70
d1658221 71#include <malloc.h>
3e60b029
DL
72/* malloc.h #defines this as size_t, at least in glibc2. */
73#ifndef __malloc_size_t
d1658221 74#define __malloc_size_t int
3e60b029 75#endif
81d492d5 76
2e471eb5
GM
77/* Specify maximum number of areas to mmap. It would be nice to use a
78 value that explicitly means "no limit". */
79
81d492d5
RS
80#define MMAP_MAX_AREAS 100000000
81
2e471eb5
GM
82#else /* not DOUG_LEA_MALLOC */
83
276cbe5a
RS
84/* The following come from gmalloc.c. */
85
276cbe5a 86#define __malloc_size_t size_t
276cbe5a 87extern __malloc_size_t _bytes_used;
3e60b029 88extern __malloc_size_t __malloc_extra_blocks;
2e471eb5
GM
89
90#endif /* not DOUG_LEA_MALLOC */
276cbe5a 91
aa477689
JD
92#if ! defined (SYSTEM_MALLOC) && defined (HAVE_GTK_AND_PTHREAD)
93
f415cacd
JD
94/* When GTK uses the file chooser dialog, different backends can be loaded
95 dynamically. One such a backend is the Gnome VFS backend that gets loaded
96 if you run Gnome. That backend creates several threads and also allocates
97 memory with malloc.
98
99 If Emacs sets malloc hooks (! SYSTEM_MALLOC) and the emacs_blocked_*
100 functions below are called from malloc, there is a chance that one
101 of these threads preempts the Emacs main thread and the hook variables
333f1b6f 102 end up in an inconsistent state. So we have a mutex to prevent that (note
f415cacd
JD
103 that the backend handles concurrent access to malloc within its own threads
104 but Emacs code running in the main thread is not included in that control).
105
026cdede 106 When UNBLOCK_INPUT is called, reinvoke_input_signal may be called. If this
f415cacd
JD
107 happens in one of the backend threads we will have two threads that tries
108 to run Emacs code at once, and the code is not prepared for that.
109 To prevent that, we only call BLOCK/UNBLOCK from the main thread. */
110
aa477689 111static pthread_mutex_t alloc_mutex;
aa477689
JD
112
113#define BLOCK_INPUT_ALLOC \
114 do \
115 { \
116 pthread_mutex_lock (&alloc_mutex); \
117 if (pthread_self () == main_thread) \
118 BLOCK_INPUT; \
119 } \
120 while (0)
121#define UNBLOCK_INPUT_ALLOC \
122 do \
123 { \
124 if (pthread_self () == main_thread) \
125 UNBLOCK_INPUT; \
126 pthread_mutex_unlock (&alloc_mutex); \
127 } \
128 while (0)
129
130#else /* SYSTEM_MALLOC || not HAVE_GTK_AND_PTHREAD */
131
132#define BLOCK_INPUT_ALLOC BLOCK_INPUT
133#define UNBLOCK_INPUT_ALLOC UNBLOCK_INPUT
134
135#endif /* SYSTEM_MALLOC || not HAVE_GTK_AND_PTHREAD */
136
276cbe5a 137/* Value of _bytes_used, when spare_memory was freed. */
2e471eb5 138
276cbe5a
RS
139static __malloc_size_t bytes_used_when_full;
140
2e471eb5
GM
141/* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
142 to a struct Lisp_String. */
143
7cdee936
SM
144#define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
145#define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
b059de99 146#define STRING_MARKED_P(S) (((S)->size & ARRAY_MARK_FLAG) != 0)
2e471eb5 147
3ef06d12
SM
148#define VECTOR_MARK(V) ((V)->size |= ARRAY_MARK_FLAG)
149#define VECTOR_UNMARK(V) ((V)->size &= ~ARRAY_MARK_FLAG)
b059de99 150#define VECTOR_MARKED_P(V) (((V)->size & ARRAY_MARK_FLAG) != 0)
3ef06d12 151
2e471eb5
GM
152/* Value is the number of bytes/chars of S, a pointer to a struct
153 Lisp_String. This must be used instead of STRING_BYTES (S) or
154 S->size during GC, because S->size contains the mark bit for
155 strings. */
156
3ef06d12 157#define GC_STRING_BYTES(S) (STRING_BYTES (S))
7cdee936 158#define GC_STRING_CHARS(S) ((S)->size & ~ARRAY_MARK_FLAG)
2e471eb5
GM
159
160/* Number of bytes of consing done since the last gc. */
161
7146af97
JB
162int consing_since_gc;
163
310ea200 164/* Count the amount of consing of various sorts of space. */
2e471eb5 165
31ade731
SM
166EMACS_INT cons_cells_consed;
167EMACS_INT floats_consed;
168EMACS_INT vector_cells_consed;
169EMACS_INT symbols_consed;
170EMACS_INT string_chars_consed;
171EMACS_INT misc_objects_consed;
172EMACS_INT intervals_consed;
173EMACS_INT strings_consed;
2e471eb5
GM
174
175/* Number of bytes of consing since GC before another GC should be done. */
310ea200 176
31ade731 177EMACS_INT gc_cons_threshold;
7146af97 178
2e471eb5
GM
179/* Nonzero during GC. */
180
7146af97
JB
181int gc_in_progress;
182
3de0effb
RS
183/* Nonzero means abort if try to GC.
184 This is for code which is written on the assumption that
185 no GC will happen, so as to verify that assumption. */
186
187int abort_on_gc;
188
299585ee 189/* Nonzero means display messages at beginning and end of GC. */
2e471eb5 190
299585ee
RS
191int garbage_collection_messages;
192
7146af97
JB
193#ifndef VIRT_ADDR_VARIES
194extern
195#endif /* VIRT_ADDR_VARIES */
2e471eb5 196int malloc_sbrk_used;
7146af97
JB
197
198#ifndef VIRT_ADDR_VARIES
199extern
200#endif /* VIRT_ADDR_VARIES */
2e471eb5 201int malloc_sbrk_unused;
7146af97 202
34400008
GM
203/* Number of live and free conses etc. */
204
205static int total_conses, total_markers, total_symbols, total_vector_size;
206static int total_free_conses, total_free_markers, total_free_symbols;
207static int total_free_floats, total_floats;
fd27a537 208
2e471eb5
GM
209/* Points to memory space allocated as "spare", to be freed if we run
210 out of memory. */
211
276cbe5a
RS
212static char *spare_memory;
213
214/* Amount of spare memory to keep in reserve. */
2e471eb5 215
276cbe5a
RS
216#define SPARE_MEMORY (1 << 14)
217
218/* Number of extra blocks malloc should get when it needs more core. */
2e471eb5 219
276cbe5a
RS
220static int malloc_hysteresis;
221
2e471eb5
GM
222/* Non-nil means defun should do purecopy on the function definition. */
223
7146af97
JB
224Lisp_Object Vpurify_flag;
225
74a54b04
RS
226/* Non-nil means we are handling a memory-full error. */
227
228Lisp_Object Vmemory_full;
229
7146af97 230#ifndef HAVE_SHM
2e471eb5 231
1b8950e5
RS
232/* Initialize it to a nonzero value to force it into data space
233 (rather than bss space). That way unexec will remap it into text
234 space (pure), on some systems. We have not implemented the
235 remapping on more recent systems because this is less important
236 nowadays than in the days of small memories and timesharing. */
2e471eb5 237
379b98b1 238EMACS_INT pure[PURESIZE / sizeof (EMACS_INT)] = {1,};
7146af97 239#define PUREBEG (char *) pure
2e471eb5 240
9e713715 241#else /* HAVE_SHM */
2e471eb5 242
7146af97
JB
243#define pure PURE_SEG_BITS /* Use shared memory segment */
244#define PUREBEG (char *)PURE_SEG_BITS
4c0be5f4 245
9e713715 246#endif /* HAVE_SHM */
2e471eb5 247
9e713715 248/* Pointer to the pure area, and its size. */
2e471eb5 249
9e713715
GM
250static char *purebeg;
251static size_t pure_size;
252
253/* Number of bytes of pure storage used before pure storage overflowed.
254 If this is non-zero, this implies that an overflow occurred. */
255
256static size_t pure_bytes_used_before_overflow;
7146af97 257
34400008
GM
258/* Value is non-zero if P points into pure space. */
259
260#define PURE_POINTER_P(P) \
261 (((PNTR_COMPARISON_TYPE) (P) \
9e713715 262 < (PNTR_COMPARISON_TYPE) ((char *) purebeg + pure_size)) \
34400008 263 && ((PNTR_COMPARISON_TYPE) (P) \
9e713715 264 >= (PNTR_COMPARISON_TYPE) purebeg))
34400008 265
2e471eb5
GM
266/* Index in pure at which next pure object will be allocated.. */
267
31ade731 268EMACS_INT pure_bytes_used;
7146af97 269
2e471eb5
GM
270/* If nonzero, this is a warning delivered by malloc and not yet
271 displayed. */
272
7146af97
JB
273char *pending_malloc_warning;
274
bcb61d60 275/* Pre-computed signal argument for use when memory is exhausted. */
2e471eb5 276
74a54b04 277Lisp_Object Vmemory_signal_data;
bcb61d60 278
7146af97
JB
279/* Maximum amount of C stack to save when a GC happens. */
280
281#ifndef MAX_SAVE_STACK
282#define MAX_SAVE_STACK 16000
283#endif
284
285/* Buffer in which we save a copy of the C stack at each GC. */
286
287char *stack_copy;
288int stack_copy_size;
289
2e471eb5
GM
290/* Non-zero means ignore malloc warnings. Set during initialization.
291 Currently not used. */
292
7146af97 293int ignore_warnings;
350273a4 294
a59de17b 295Lisp_Object Qgc_cons_threshold, Qchar_table_extra_slots;
e8197642 296
9e713715
GM
297/* Hook run after GC has finished. */
298
299Lisp_Object Vpost_gc_hook, Qpost_gc_hook;
300
2c5bd608
DL
301Lisp_Object Vgc_elapsed; /* accumulated elapsed time in GC */
302EMACS_INT gcs_done; /* accumulated GCs */
303
2e471eb5 304static void mark_buffer P_ ((Lisp_Object));
6793bc63 305extern void mark_kboards P_ ((void));
b40ea20a 306extern void mark_backtrace P_ ((void));
2e471eb5 307static void gc_sweep P_ ((void));
41c28a37
GM
308static void mark_glyph_matrix P_ ((struct glyph_matrix *));
309static void mark_face_cache P_ ((struct face_cache *));
310
311#ifdef HAVE_WINDOW_SYSTEM
454d7973 312extern void mark_fringe_data P_ ((void));
41c28a37
GM
313static void mark_image P_ ((struct image *));
314static void mark_image_cache P_ ((struct frame *));
315#endif /* HAVE_WINDOW_SYSTEM */
316
2e471eb5
GM
317static struct Lisp_String *allocate_string P_ ((void));
318static void compact_small_strings P_ ((void));
319static void free_large_strings P_ ((void));
320static void sweep_strings P_ ((void));
7da0b0d3
RS
321
322extern int message_enable_multibyte;
34400008 323
34400008
GM
324/* When scanning the C stack for live Lisp objects, Emacs keeps track
325 of what memory allocated via lisp_malloc is intended for what
326 purpose. This enumeration specifies the type of memory. */
327
328enum mem_type
329{
330 MEM_TYPE_NON_LISP,
331 MEM_TYPE_BUFFER,
332 MEM_TYPE_CONS,
333 MEM_TYPE_STRING,
334 MEM_TYPE_MISC,
335 MEM_TYPE_SYMBOL,
336 MEM_TYPE_FLOAT,
ece93c02
GM
337 /* Keep the following vector-like types together, with
338 MEM_TYPE_WINDOW being the last, and MEM_TYPE_VECTOR the
339 first. Or change the code of live_vector_p, for instance. */
340 MEM_TYPE_VECTOR,
341 MEM_TYPE_PROCESS,
342 MEM_TYPE_HASH_TABLE,
343 MEM_TYPE_FRAME,
344 MEM_TYPE_WINDOW
34400008
GM
345};
346
877935b1 347#if GC_MARK_STACK || defined GC_MALLOC_CHECK
0b378936
GM
348
349#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
350#include <stdio.h> /* For fprintf. */
351#endif
352
353/* A unique object in pure space used to make some Lisp objects
354 on free lists recognizable in O(1). */
355
356Lisp_Object Vdead;
357
877935b1
GM
358#ifdef GC_MALLOC_CHECK
359
360enum mem_type allocated_mem_type;
361int dont_register_blocks;
362
363#endif /* GC_MALLOC_CHECK */
364
365/* A node in the red-black tree describing allocated memory containing
366 Lisp data. Each such block is recorded with its start and end
367 address when it is allocated, and removed from the tree when it
368 is freed.
369
370 A red-black tree is a balanced binary tree with the following
371 properties:
372
373 1. Every node is either red or black.
374 2. Every leaf is black.
375 3. If a node is red, then both of its children are black.
376 4. Every simple path from a node to a descendant leaf contains
377 the same number of black nodes.
378 5. The root is always black.
379
380 When nodes are inserted into the tree, or deleted from the tree,
381 the tree is "fixed" so that these properties are always true.
382
383 A red-black tree with N internal nodes has height at most 2
384 log(N+1). Searches, insertions and deletions are done in O(log N).
385 Please see a text book about data structures for a detailed
386 description of red-black trees. Any book worth its salt should
387 describe them. */
388
389struct mem_node
390{
9f7d9210
RS
391 /* Children of this node. These pointers are never NULL. When there
392 is no child, the value is MEM_NIL, which points to a dummy node. */
393 struct mem_node *left, *right;
394
395 /* The parent of this node. In the root node, this is NULL. */
396 struct mem_node *parent;
877935b1
GM
397
398 /* Start and end of allocated region. */
399 void *start, *end;
400
401 /* Node color. */
402 enum {MEM_BLACK, MEM_RED} color;
177c0ea7 403
877935b1
GM
404 /* Memory type. */
405 enum mem_type type;
406};
407
408/* Base address of stack. Set in main. */
409
410Lisp_Object *stack_base;
411
412/* Root of the tree describing allocated Lisp memory. */
413
414static struct mem_node *mem_root;
415
ece93c02
GM
416/* Lowest and highest known address in the heap. */
417
418static void *min_heap_address, *max_heap_address;
419
877935b1
GM
420/* Sentinel node of the tree. */
421
422static struct mem_node mem_z;
423#define MEM_NIL &mem_z
424
b3303f74 425static POINTER_TYPE *lisp_malloc P_ ((size_t, enum mem_type));
ece93c02 426static struct Lisp_Vector *allocate_vectorlike P_ ((EMACS_INT, enum mem_type));
bf952fb6 427static void lisp_free P_ ((POINTER_TYPE *));
34400008 428static void mark_stack P_ ((void));
34400008
GM
429static int live_vector_p P_ ((struct mem_node *, void *));
430static int live_buffer_p P_ ((struct mem_node *, void *));
431static int live_string_p P_ ((struct mem_node *, void *));
432static int live_cons_p P_ ((struct mem_node *, void *));
433static int live_symbol_p P_ ((struct mem_node *, void *));
434static int live_float_p P_ ((struct mem_node *, void *));
435static int live_misc_p P_ ((struct mem_node *, void *));
182ff242 436static void mark_maybe_object P_ ((Lisp_Object));
34400008
GM
437static void mark_memory P_ ((void *, void *));
438static void mem_init P_ ((void));
439static struct mem_node *mem_insert P_ ((void *, void *, enum mem_type));
440static void mem_insert_fixup P_ ((struct mem_node *));
441static void mem_rotate_left P_ ((struct mem_node *));
442static void mem_rotate_right P_ ((struct mem_node *));
443static void mem_delete P_ ((struct mem_node *));
444static void mem_delete_fixup P_ ((struct mem_node *));
445static INLINE struct mem_node *mem_find P_ ((void *));
446
447#if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
448static void check_gcpros P_ ((void));
449#endif
450
877935b1 451#endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
34400008 452
1f0b3fd2
GM
453/* Recording what needs to be marked for gc. */
454
455struct gcpro *gcprolist;
456
379b98b1
PE
457/* Addresses of staticpro'd variables. Initialize it to a nonzero
458 value; otherwise some compilers put it into BSS. */
1f0b3fd2 459
382d38fa 460#define NSTATICS 1280
379b98b1 461Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
1f0b3fd2
GM
462
463/* Index of next unused slot in staticvec. */
464
465int staticidx = 0;
466
467static POINTER_TYPE *pure_alloc P_ ((size_t, int));
468
469
470/* Value is SZ rounded up to the next multiple of ALIGNMENT.
471 ALIGNMENT must be a power of 2. */
472
ab6780cd
SM
473#define ALIGN(ptr, ALIGNMENT) \
474 ((POINTER_TYPE *) ((((EMACS_UINT)(ptr)) + (ALIGNMENT) - 1) \
475 & ~((ALIGNMENT) - 1)))
1f0b3fd2 476
ece93c02 477
7146af97 478\f
34400008
GM
479/************************************************************************
480 Malloc
481 ************************************************************************/
482
4455ad75 483/* Function malloc calls this if it finds we are near exhausting storage. */
d457598b
AS
484
485void
7146af97
JB
486malloc_warning (str)
487 char *str;
488{
489 pending_malloc_warning = str;
490}
491
34400008 492
4455ad75 493/* Display an already-pending malloc warning. */
34400008 494
d457598b 495void
7146af97
JB
496display_malloc_warning ()
497{
4455ad75
RS
498 call3 (intern ("display-warning"),
499 intern ("alloc"),
500 build_string (pending_malloc_warning),
501 intern ("emergency"));
7146af97 502 pending_malloc_warning = 0;
7146af97
JB
503}
504
34400008 505
d1658221 506#ifdef DOUG_LEA_MALLOC
1177ecf6 507# define BYTES_USED (mallinfo ().arena)
d1658221 508#else
1177ecf6 509# define BYTES_USED _bytes_used
d1658221
RS
510#endif
511
34400008 512
2e471eb5 513/* Called if malloc returns zero. */
276cbe5a 514
d457598b 515void
7146af97
JB
516memory_full ()
517{
74a54b04
RS
518 Vmemory_full = Qt;
519
276cbe5a 520#ifndef SYSTEM_MALLOC
d1658221 521 bytes_used_when_full = BYTES_USED;
276cbe5a
RS
522#endif
523
524 /* The first time we get here, free the spare memory. */
525 if (spare_memory)
526 {
527 free (spare_memory);
528 spare_memory = 0;
529 }
530
2e471eb5
GM
531 /* This used to call error, but if we've run out of memory, we could
532 get infinite recursion trying to build the string. */
276cbe5a 533 while (1)
74a54b04 534 Fsignal (Qnil, Vmemory_signal_data);
276cbe5a
RS
535}
536
34400008 537
276cbe5a
RS
538/* Called if we can't allocate relocatable space for a buffer. */
539
540void
541buffer_memory_full ()
542{
2e471eb5
GM
543 /* If buffers use the relocating allocator, no need to free
544 spare_memory, because we may have plenty of malloc space left
545 that we could get, and if we don't, the malloc that fails will
546 itself cause spare_memory to be freed. If buffers don't use the
547 relocating allocator, treat this like any other failing
548 malloc. */
276cbe5a
RS
549
550#ifndef REL_ALLOC
551 memory_full ();
552#endif
553
74a54b04
RS
554 Vmemory_full = Qt;
555
2e471eb5
GM
556 /* This used to call error, but if we've run out of memory, we could
557 get infinite recursion trying to build the string. */
bcb61d60 558 while (1)
74a54b04 559 Fsignal (Qnil, Vmemory_signal_data);
7146af97
JB
560}
561
34400008 562
212f33f1
KS
563#ifdef XMALLOC_OVERRUN_CHECK
564
bdbed949
KS
565/* Check for overrun in malloc'ed buffers by wrapping a 16 byte header
566 and a 16 byte trailer around each block.
567
568 The header consists of 12 fixed bytes + a 4 byte integer contaning the
569 original block size, while the trailer consists of 16 fixed bytes.
570
571 The header is used to detect whether this block has been allocated
572 through these functions -- as it seems that some low-level libc
573 functions may bypass the malloc hooks.
574*/
575
576
212f33f1 577#define XMALLOC_OVERRUN_CHECK_SIZE 16
bdbed949 578
212f33f1
KS
579static char xmalloc_overrun_check_header[XMALLOC_OVERRUN_CHECK_SIZE-4] =
580 { 0x9a, 0x9b, 0xae, 0xaf,
581 0xbf, 0xbe, 0xce, 0xcf,
582 0xea, 0xeb, 0xec, 0xed };
583
584static char xmalloc_overrun_check_trailer[XMALLOC_OVERRUN_CHECK_SIZE] =
585 { 0xaa, 0xab, 0xac, 0xad,
586 0xba, 0xbb, 0xbc, 0xbd,
587 0xca, 0xcb, 0xcc, 0xcd,
588 0xda, 0xdb, 0xdc, 0xdd };
589
bdbed949
KS
590/* Macros to insert and extract the block size in the header. */
591
592#define XMALLOC_PUT_SIZE(ptr, size) \
593 (ptr[-1] = (size & 0xff), \
594 ptr[-2] = ((size >> 8) & 0xff), \
595 ptr[-3] = ((size >> 16) & 0xff), \
596 ptr[-4] = ((size >> 24) & 0xff))
597
598#define XMALLOC_GET_SIZE(ptr) \
599 (size_t)((unsigned)(ptr[-1]) | \
600 ((unsigned)(ptr[-2]) << 8) | \
601 ((unsigned)(ptr[-3]) << 16) | \
602 ((unsigned)(ptr[-4]) << 24))
603
604
d8f165a8
JD
605/* The call depth in overrun_check functions. For example, this might happen:
606 xmalloc()
607 overrun_check_malloc()
608 -> malloc -> (via hook)_-> emacs_blocked_malloc
609 -> overrun_check_malloc
610 call malloc (hooks are NULL, so real malloc is called).
611 malloc returns 10000.
612 add overhead, return 10016.
613 <- (back in overrun_check_malloc)
857ae68b 614 add overhead again, return 10032
d8f165a8 615 xmalloc returns 10032.
857ae68b
JD
616
617 (time passes).
618
d8f165a8
JD
619 xfree(10032)
620 overrun_check_free(10032)
621 decrease overhed
622 free(10016) <- crash, because 10000 is the original pointer. */
857ae68b
JD
623
624static int check_depth;
625
bdbed949
KS
626/* Like malloc, but wraps allocated block with header and trailer. */
627
212f33f1
KS
628POINTER_TYPE *
629overrun_check_malloc (size)
630 size_t size;
631{
bdbed949 632 register unsigned char *val;
857ae68b 633 size_t overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_SIZE*2 : 0;
212f33f1 634
857ae68b
JD
635 val = (unsigned char *) malloc (size + overhead);
636 if (val && check_depth == 1)
212f33f1
KS
637 {
638 bcopy (xmalloc_overrun_check_header, val, XMALLOC_OVERRUN_CHECK_SIZE - 4);
212f33f1 639 val += XMALLOC_OVERRUN_CHECK_SIZE;
bdbed949 640 XMALLOC_PUT_SIZE(val, size);
212f33f1
KS
641 bcopy (xmalloc_overrun_check_trailer, val + size, XMALLOC_OVERRUN_CHECK_SIZE);
642 }
857ae68b 643 --check_depth;
212f33f1
KS
644 return (POINTER_TYPE *)val;
645}
646
bdbed949
KS
647
648/* Like realloc, but checks old block for overrun, and wraps new block
649 with header and trailer. */
650
212f33f1
KS
651POINTER_TYPE *
652overrun_check_realloc (block, size)
653 POINTER_TYPE *block;
654 size_t size;
655{
bdbed949 656 register unsigned char *val = (unsigned char *)block;
857ae68b 657 size_t overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_SIZE*2 : 0;
212f33f1
KS
658
659 if (val
857ae68b 660 && check_depth == 1
212f33f1
KS
661 && bcmp (xmalloc_overrun_check_header,
662 val - XMALLOC_OVERRUN_CHECK_SIZE,
663 XMALLOC_OVERRUN_CHECK_SIZE - 4) == 0)
664 {
bdbed949 665 size_t osize = XMALLOC_GET_SIZE (val);
212f33f1
KS
666 if (bcmp (xmalloc_overrun_check_trailer,
667 val + osize,
668 XMALLOC_OVERRUN_CHECK_SIZE))
669 abort ();
bdbed949 670 bzero (val + osize, XMALLOC_OVERRUN_CHECK_SIZE);
212f33f1 671 val -= XMALLOC_OVERRUN_CHECK_SIZE;
bdbed949 672 bzero (val, XMALLOC_OVERRUN_CHECK_SIZE);
212f33f1
KS
673 }
674
857ae68b 675 val = (unsigned char *) realloc ((POINTER_TYPE *)val, size + overhead);
212f33f1 676
857ae68b 677 if (val && check_depth == 1)
212f33f1
KS
678 {
679 bcopy (xmalloc_overrun_check_header, val, XMALLOC_OVERRUN_CHECK_SIZE - 4);
212f33f1 680 val += XMALLOC_OVERRUN_CHECK_SIZE;
bdbed949 681 XMALLOC_PUT_SIZE(val, size);
212f33f1
KS
682 bcopy (xmalloc_overrun_check_trailer, val + size, XMALLOC_OVERRUN_CHECK_SIZE);
683 }
857ae68b 684 --check_depth;
212f33f1
KS
685 return (POINTER_TYPE *)val;
686}
687
bdbed949
KS
688/* Like free, but checks block for overrun. */
689
212f33f1
KS
690void
691overrun_check_free (block)
692 POINTER_TYPE *block;
693{
bdbed949 694 unsigned char *val = (unsigned char *)block;
212f33f1 695
857ae68b 696 ++check_depth;
212f33f1 697 if (val
857ae68b 698 && check_depth == 1
212f33f1
KS
699 && bcmp (xmalloc_overrun_check_header,
700 val - XMALLOC_OVERRUN_CHECK_SIZE,
701 XMALLOC_OVERRUN_CHECK_SIZE - 4) == 0)
702 {
bdbed949 703 size_t osize = XMALLOC_GET_SIZE (val);
212f33f1
KS
704 if (bcmp (xmalloc_overrun_check_trailer,
705 val + osize,
706 XMALLOC_OVERRUN_CHECK_SIZE))
707 abort ();
454d7973
KS
708#ifdef XMALLOC_CLEAR_FREE_MEMORY
709 val -= XMALLOC_OVERRUN_CHECK_SIZE;
710 memset (val, 0xff, osize + XMALLOC_OVERRUN_CHECK_SIZE*2);
711#else
bdbed949 712 bzero (val + osize, XMALLOC_OVERRUN_CHECK_SIZE);
212f33f1 713 val -= XMALLOC_OVERRUN_CHECK_SIZE;
bdbed949 714 bzero (val, XMALLOC_OVERRUN_CHECK_SIZE);
454d7973 715#endif
212f33f1
KS
716 }
717
718 free (val);
857ae68b 719 --check_depth;
212f33f1
KS
720}
721
722#undef malloc
723#undef realloc
724#undef free
725#define malloc overrun_check_malloc
726#define realloc overrun_check_realloc
727#define free overrun_check_free
728#endif
729
bdbed949
KS
730
731/* Like malloc but check for no memory and block interrupt input.. */
732
c971ff9a 733POINTER_TYPE *
7146af97 734xmalloc (size)
675d5130 735 size_t size;
7146af97 736{
c971ff9a 737 register POINTER_TYPE *val;
7146af97 738
9ac0d9e0 739 BLOCK_INPUT;
c971ff9a 740 val = (POINTER_TYPE *) malloc (size);
9ac0d9e0 741 UNBLOCK_INPUT;
7146af97 742
2e471eb5
GM
743 if (!val && size)
744 memory_full ();
7146af97
JB
745 return val;
746}
747
34400008
GM
748
749/* Like realloc but check for no memory and block interrupt input.. */
750
c971ff9a 751POINTER_TYPE *
7146af97 752xrealloc (block, size)
c971ff9a 753 POINTER_TYPE *block;
675d5130 754 size_t size;
7146af97 755{
c971ff9a 756 register POINTER_TYPE *val;
7146af97 757
9ac0d9e0 758 BLOCK_INPUT;
56d2031b
JB
759 /* We must call malloc explicitly when BLOCK is 0, since some
760 reallocs don't do this. */
761 if (! block)
c971ff9a 762 val = (POINTER_TYPE *) malloc (size);
f048679d 763 else
c971ff9a 764 val = (POINTER_TYPE *) realloc (block, size);
9ac0d9e0 765 UNBLOCK_INPUT;
7146af97
JB
766
767 if (!val && size) memory_full ();
768 return val;
769}
9ac0d9e0 770
34400008 771
d7489312 772/* Like free but block interrupt input. */
34400008 773
9ac0d9e0
JB
774void
775xfree (block)
c971ff9a 776 POINTER_TYPE *block;
9ac0d9e0
JB
777{
778 BLOCK_INPUT;
779 free (block);
780 UNBLOCK_INPUT;
781}
782
c8099634 783
dca7c6a8
GM
784/* Like strdup, but uses xmalloc. */
785
786char *
787xstrdup (s)
943b873e 788 const char *s;
dca7c6a8 789{
675d5130 790 size_t len = strlen (s) + 1;
dca7c6a8
GM
791 char *p = (char *) xmalloc (len);
792 bcopy (s, p, len);
793 return p;
794}
795
796
f61bef8b
KS
797/* Unwind for SAFE_ALLOCA */
798
799Lisp_Object
800safe_alloca_unwind (arg)
801 Lisp_Object arg;
802{
b766f870
KS
803 register struct Lisp_Save_Value *p = XSAVE_VALUE (arg);
804
805 p->dogc = 0;
806 xfree (p->pointer);
807 p->pointer = 0;
7b7990cc 808 free_misc (arg);
f61bef8b
KS
809 return Qnil;
810}
811
812
34400008
GM
813/* Like malloc but used for allocating Lisp data. NBYTES is the
814 number of bytes to allocate, TYPE describes the intended use of the
815 allcated memory block (for strings, for conses, ...). */
816
212f33f1 817#ifndef USE_LSB_TAG
918a23a7 818static void *lisp_malloc_loser;
212f33f1 819#endif
918a23a7 820
675d5130 821static POINTER_TYPE *
34400008 822lisp_malloc (nbytes, type)
675d5130 823 size_t nbytes;
34400008 824 enum mem_type type;
c8099634 825{
34400008 826 register void *val;
c8099634
RS
827
828 BLOCK_INPUT;
877935b1
GM
829
830#ifdef GC_MALLOC_CHECK
831 allocated_mem_type = type;
832#endif
177c0ea7 833
34400008 834 val = (void *) malloc (nbytes);
c8099634 835
831b476c 836#ifndef USE_LSB_TAG
918a23a7
RS
837 /* If the memory just allocated cannot be addressed thru a Lisp
838 object's pointer, and it needs to be,
839 that's equivalent to running out of memory. */
840 if (val && type != MEM_TYPE_NON_LISP)
841 {
842 Lisp_Object tem;
843 XSETCONS (tem, (char *) val + nbytes - 1);
844 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
845 {
846 lisp_malloc_loser = val;
847 free (val);
848 val = 0;
849 }
850 }
831b476c 851#endif
918a23a7 852
877935b1 853#if GC_MARK_STACK && !defined GC_MALLOC_CHECK
dca7c6a8 854 if (val && type != MEM_TYPE_NON_LISP)
34400008
GM
855 mem_insert (val, (char *) val + nbytes, type);
856#endif
177c0ea7 857
dca7c6a8
GM
858 UNBLOCK_INPUT;
859 if (!val && nbytes)
860 memory_full ();
c8099634
RS
861 return val;
862}
863
34400008
GM
864/* Free BLOCK. This must be called to free memory allocated with a
865 call to lisp_malloc. */
866
bf952fb6 867static void
c8099634 868lisp_free (block)
675d5130 869 POINTER_TYPE *block;
c8099634
RS
870{
871 BLOCK_INPUT;
c8099634 872 free (block);
877935b1 873#if GC_MARK_STACK && !defined GC_MALLOC_CHECK
34400008
GM
874 mem_delete (mem_find (block));
875#endif
c8099634
RS
876 UNBLOCK_INPUT;
877}
34400008 878
ab6780cd
SM
879/* Allocation of aligned blocks of memory to store Lisp data. */
880/* The entry point is lisp_align_malloc which returns blocks of at most */
881/* BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
882
883
884/* BLOCK_ALIGN has to be a power of 2. */
885#define BLOCK_ALIGN (1 << 10)
ab6780cd
SM
886
887/* Padding to leave at the end of a malloc'd block. This is to give
888 malloc a chance to minimize the amount of memory wasted to alignment.
889 It should be tuned to the particular malloc library used.
19bcad1f
SM
890 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
891 posix_memalign on the other hand would ideally prefer a value of 4
892 because otherwise, there's 1020 bytes wasted between each ablocks.
893 But testing shows that those 1020 will most of the time be efficiently
894 used by malloc to place other objects, so a value of 0 is still preferable
895 unless you have a lot of cons&floats and virtually nothing else. */
896#define BLOCK_PADDING 0
897#define BLOCK_BYTES \
898 (BLOCK_ALIGN - sizeof (struct aligned_block *) - BLOCK_PADDING)
899
900/* Internal data structures and constants. */
901
ab6780cd
SM
902#define ABLOCKS_SIZE 16
903
904/* An aligned block of memory. */
905struct ablock
906{
907 union
908 {
909 char payload[BLOCK_BYTES];
910 struct ablock *next_free;
911 } x;
912 /* `abase' is the aligned base of the ablocks. */
913 /* It is overloaded to hold the virtual `busy' field that counts
914 the number of used ablock in the parent ablocks.
915 The first ablock has the `busy' field, the others have the `abase'
916 field. To tell the difference, we assume that pointers will have
917 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
918 is used to tell whether the real base of the parent ablocks is `abase'
919 (if not, the word before the first ablock holds a pointer to the
920 real base). */
921 struct ablocks *abase;
922 /* The padding of all but the last ablock is unused. The padding of
923 the last ablock in an ablocks is not allocated. */
19bcad1f
SM
924#if BLOCK_PADDING
925 char padding[BLOCK_PADDING];
ebb8d410 926#endif
ab6780cd
SM
927};
928
929/* A bunch of consecutive aligned blocks. */
930struct ablocks
931{
932 struct ablock blocks[ABLOCKS_SIZE];
933};
934
935/* Size of the block requested from malloc or memalign. */
19bcad1f 936#define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
ab6780cd
SM
937
938#define ABLOCK_ABASE(block) \
939 (((unsigned long) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
940 ? (struct ablocks *)(block) \
941 : (block)->abase)
942
943/* Virtual `busy' field. */
944#define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
945
946/* Pointer to the (not necessarily aligned) malloc block. */
19bcad1f
SM
947#ifdef HAVE_POSIX_MEMALIGN
948#define ABLOCKS_BASE(abase) (abase)
949#else
ab6780cd 950#define ABLOCKS_BASE(abase) \
03bb6a06 951 (1 & (long) ABLOCKS_BUSY (abase) ? abase : ((void**)abase)[-1])
19bcad1f 952#endif
ab6780cd
SM
953
954/* The list of free ablock. */
955static struct ablock *free_ablock;
956
957/* Allocate an aligned block of nbytes.
958 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
959 smaller or equal to BLOCK_BYTES. */
960static POINTER_TYPE *
961lisp_align_malloc (nbytes, type)
962 size_t nbytes;
963 enum mem_type type;
964{
965 void *base, *val;
966 struct ablocks *abase;
967
968 eassert (nbytes <= BLOCK_BYTES);
969
970 BLOCK_INPUT;
971
972#ifdef GC_MALLOC_CHECK
973 allocated_mem_type = type;
974#endif
975
976 if (!free_ablock)
977 {
d7489312
DL
978 int i;
979 EMACS_INT aligned; /* int gets warning casting to 64-bit pointer. */
ab6780cd
SM
980
981#ifdef DOUG_LEA_MALLOC
982 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
983 because mapped region contents are not preserved in
984 a dumped Emacs. */
985 mallopt (M_MMAP_MAX, 0);
986#endif
987
19bcad1f
SM
988#ifdef HAVE_POSIX_MEMALIGN
989 {
990 int err = posix_memalign (&base, BLOCK_ALIGN, ABLOCKS_BYTES);
ab349c19
RS
991 if (err)
992 base = NULL;
993 abase = base;
19bcad1f
SM
994 }
995#else
ab6780cd
SM
996 base = malloc (ABLOCKS_BYTES);
997 abase = ALIGN (base, BLOCK_ALIGN);
ab349c19
RS
998#endif
999
4532fdde
RS
1000 if (base == 0)
1001 {
1002 UNBLOCK_INPUT;
1003 memory_full ();
1004 }
ab6780cd
SM
1005
1006 aligned = (base == abase);
1007 if (!aligned)
1008 ((void**)abase)[-1] = base;
1009
1010#ifdef DOUG_LEA_MALLOC
1011 /* Back to a reasonable maximum of mmap'ed areas. */
1012 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1013#endif
1014
831b476c 1015#ifndef USE_LSB_TAG
f4446bbf
GM
1016 /* If the memory just allocated cannot be addressed thru a Lisp
1017 object's pointer, and it needs to be, that's equivalent to
1018 running out of memory. */
1019 if (type != MEM_TYPE_NON_LISP)
1020 {
1021 Lisp_Object tem;
1022 char *end = (char *) base + ABLOCKS_BYTES - 1;
1023 XSETCONS (tem, end);
1024 if ((char *) XCONS (tem) != end)
1025 {
1026 lisp_malloc_loser = base;
1027 free (base);
1028 UNBLOCK_INPUT;
1029 memory_full ();
1030 }
1031 }
831b476c 1032#endif
f4446bbf 1033
ab6780cd
SM
1034 /* Initialize the blocks and put them on the free list.
1035 Is `base' was not properly aligned, we can't use the last block. */
1036 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
1037 {
1038 abase->blocks[i].abase = abase;
1039 abase->blocks[i].x.next_free = free_ablock;
1040 free_ablock = &abase->blocks[i];
1041 }
03bb6a06 1042 ABLOCKS_BUSY (abase) = (struct ablocks *) (long) aligned;
ab6780cd 1043
19bcad1f 1044 eassert (0 == ((EMACS_UINT)abase) % BLOCK_ALIGN);
ab6780cd
SM
1045 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
1046 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
1047 eassert (ABLOCKS_BASE (abase) == base);
03bb6a06 1048 eassert (aligned == (long) ABLOCKS_BUSY (abase));
ab6780cd
SM
1049 }
1050
1051 abase = ABLOCK_ABASE (free_ablock);
03bb6a06 1052 ABLOCKS_BUSY (abase) = (struct ablocks *) (2 + (long) ABLOCKS_BUSY (abase));
ab6780cd
SM
1053 val = free_ablock;
1054 free_ablock = free_ablock->x.next_free;
1055
ab6780cd
SM
1056#if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1057 if (val && type != MEM_TYPE_NON_LISP)
1058 mem_insert (val, (char *) val + nbytes, type);
1059#endif
1060
1061 UNBLOCK_INPUT;
1062 if (!val && nbytes)
1063 memory_full ();
1064
1065 eassert (0 == ((EMACS_UINT)val) % BLOCK_ALIGN);
1066 return val;
1067}
1068
1069static void
1070lisp_align_free (block)
1071 POINTER_TYPE *block;
1072{
1073 struct ablock *ablock = block;
1074 struct ablocks *abase = ABLOCK_ABASE (ablock);
1075
1076 BLOCK_INPUT;
1077#if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1078 mem_delete (mem_find (block));
1079#endif
1080 /* Put on free list. */
1081 ablock->x.next_free = free_ablock;
1082 free_ablock = ablock;
1083 /* Update busy count. */
03bb6a06 1084 ABLOCKS_BUSY (abase) = (struct ablocks *) (-2 + (long) ABLOCKS_BUSY (abase));
d2db1c32 1085
03bb6a06 1086 if (2 > (long) ABLOCKS_BUSY (abase))
ab6780cd 1087 { /* All the blocks are free. */
03bb6a06 1088 int i = 0, aligned = (long) ABLOCKS_BUSY (abase);
ab6780cd
SM
1089 struct ablock **tem = &free_ablock;
1090 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
1091
1092 while (*tem)
1093 {
1094 if (*tem >= (struct ablock *) abase && *tem < atop)
1095 {
1096 i++;
1097 *tem = (*tem)->x.next_free;
1098 }
1099 else
1100 tem = &(*tem)->x.next_free;
1101 }
1102 eassert ((aligned & 1) == aligned);
1103 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
1104 free (ABLOCKS_BASE (abase));
1105 }
1106 UNBLOCK_INPUT;
1107}
3ef06d12
SM
1108
1109/* Return a new buffer structure allocated from the heap with
1110 a call to lisp_malloc. */
1111
1112struct buffer *
1113allocate_buffer ()
1114{
1115 struct buffer *b
1116 = (struct buffer *) lisp_malloc (sizeof (struct buffer),
1117 MEM_TYPE_BUFFER);
1118 return b;
1119}
1120
9ac0d9e0 1121\f
026cdede
SM
1122#ifndef SYSTEM_MALLOC
1123
1124/* If we released our reserve (due to running out of memory),
1125 and we have a fair amount free once again,
1126 try to set aside another reserve in case we run out once more.
1127
1128 This is called when a relocatable block is freed in ralloc.c. */
1129
1130void
1131refill_memory_reserve ()
1132{
1133 if (spare_memory == 0)
1134 spare_memory = (char *) malloc ((size_t) SPARE_MEMORY);
1135}
1136
1137\f
9ac0d9e0
JB
1138/* Arranging to disable input signals while we're in malloc.
1139
1140 This only works with GNU malloc. To help out systems which can't
1141 use GNU malloc, all the calls to malloc, realloc, and free
1142 elsewhere in the code should be inside a BLOCK_INPUT/UNBLOCK_INPUT
026cdede 1143 pair; unfortunately, we have no idea what C library functions
9ac0d9e0 1144 might call malloc, so we can't really protect them unless you're
2c5bd608
DL
1145 using GNU malloc. Fortunately, most of the major operating systems
1146 can use GNU malloc. */
9ac0d9e0 1147
026cdede
SM
1148#ifndef SYNC_INPUT
1149
b3303f74
DL
1150#ifndef DOUG_LEA_MALLOC
1151extern void * (*__malloc_hook) P_ ((size_t));
1152extern void * (*__realloc_hook) P_ ((void *, size_t));
1153extern void (*__free_hook) P_ ((void *));
1154/* Else declared in malloc.h, perhaps with an extra arg. */
1155#endif /* DOUG_LEA_MALLOC */
b0846f52 1156static void * (*old_malloc_hook) ();
b0846f52 1157static void * (*old_realloc_hook) ();
b0846f52 1158static void (*old_free_hook) ();
9ac0d9e0 1159
276cbe5a
RS
1160/* This function is used as the hook for free to call. */
1161
9ac0d9e0
JB
1162static void
1163emacs_blocked_free (ptr)
1164 void *ptr;
1165{
aa477689 1166 BLOCK_INPUT_ALLOC;
877935b1
GM
1167
1168#ifdef GC_MALLOC_CHECK
a83fee2c
GM
1169 if (ptr)
1170 {
1171 struct mem_node *m;
177c0ea7 1172
a83fee2c
GM
1173 m = mem_find (ptr);
1174 if (m == MEM_NIL || m->start != ptr)
1175 {
1176 fprintf (stderr,
1177 "Freeing `%p' which wasn't allocated with malloc\n", ptr);
1178 abort ();
1179 }
1180 else
1181 {
1182 /* fprintf (stderr, "free %p...%p (%p)\n", m->start, m->end, ptr); */
1183 mem_delete (m);
1184 }
1185 }
877935b1 1186#endif /* GC_MALLOC_CHECK */
177c0ea7 1187
9ac0d9e0
JB
1188 __free_hook = old_free_hook;
1189 free (ptr);
177c0ea7 1190
276cbe5a
RS
1191 /* If we released our reserve (due to running out of memory),
1192 and we have a fair amount free once again,
1193 try to set aside another reserve in case we run out once more. */
1194 if (spare_memory == 0
1195 /* Verify there is enough space that even with the malloc
1196 hysteresis this call won't run out again.
1197 The code here is correct as long as SPARE_MEMORY
1198 is substantially larger than the block size malloc uses. */
1199 && (bytes_used_when_full
d1658221 1200 > BYTES_USED + max (malloc_hysteresis, 4) * SPARE_MEMORY))
675d5130 1201 spare_memory = (char *) malloc ((size_t) SPARE_MEMORY);
276cbe5a 1202
b0846f52 1203 __free_hook = emacs_blocked_free;
aa477689 1204 UNBLOCK_INPUT_ALLOC;
9ac0d9e0
JB
1205}
1206
34400008 1207
276cbe5a
RS
1208/* This function is the malloc hook that Emacs uses. */
1209
9ac0d9e0
JB
1210static void *
1211emacs_blocked_malloc (size)
675d5130 1212 size_t size;
9ac0d9e0
JB
1213{
1214 void *value;
1215
aa477689 1216 BLOCK_INPUT_ALLOC;
9ac0d9e0 1217 __malloc_hook = old_malloc_hook;
1177ecf6 1218#ifdef DOUG_LEA_MALLOC
d1658221 1219 mallopt (M_TOP_PAD, malloc_hysteresis * 4096);
1177ecf6 1220#else
d1658221 1221 __malloc_extra_blocks = malloc_hysteresis;
1177ecf6 1222#endif
877935b1 1223
2756d8ee 1224 value = (void *) malloc (size);
877935b1
GM
1225
1226#ifdef GC_MALLOC_CHECK
1227 {
1228 struct mem_node *m = mem_find (value);
1229 if (m != MEM_NIL)
1230 {
1231 fprintf (stderr, "Malloc returned %p which is already in use\n",
1232 value);
1233 fprintf (stderr, "Region in use is %p...%p, %u bytes, type %d\n",
1234 m->start, m->end, (char *) m->end - (char *) m->start,
1235 m->type);
1236 abort ();
1237 }
1238
1239 if (!dont_register_blocks)
1240 {
1241 mem_insert (value, (char *) value + max (1, size), allocated_mem_type);
1242 allocated_mem_type = MEM_TYPE_NON_LISP;
1243 }
1244 }
1245#endif /* GC_MALLOC_CHECK */
177c0ea7 1246
b0846f52 1247 __malloc_hook = emacs_blocked_malloc;
aa477689 1248 UNBLOCK_INPUT_ALLOC;
9ac0d9e0 1249
877935b1 1250 /* fprintf (stderr, "%p malloc\n", value); */
9ac0d9e0
JB
1251 return value;
1252}
1253
34400008
GM
1254
1255/* This function is the realloc hook that Emacs uses. */
1256
9ac0d9e0
JB
1257static void *
1258emacs_blocked_realloc (ptr, size)
1259 void *ptr;
675d5130 1260 size_t size;
9ac0d9e0
JB
1261{
1262 void *value;
1263
aa477689 1264 BLOCK_INPUT_ALLOC;
9ac0d9e0 1265 __realloc_hook = old_realloc_hook;
877935b1
GM
1266
1267#ifdef GC_MALLOC_CHECK
1268 if (ptr)
1269 {
1270 struct mem_node *m = mem_find (ptr);
1271 if (m == MEM_NIL || m->start != ptr)
1272 {
1273 fprintf (stderr,
1274 "Realloc of %p which wasn't allocated with malloc\n",
1275 ptr);
1276 abort ();
1277 }
1278
1279 mem_delete (m);
1280 }
177c0ea7 1281
877935b1 1282 /* fprintf (stderr, "%p -> realloc\n", ptr); */
177c0ea7 1283
877935b1
GM
1284 /* Prevent malloc from registering blocks. */
1285 dont_register_blocks = 1;
1286#endif /* GC_MALLOC_CHECK */
1287
2756d8ee 1288 value = (void *) realloc (ptr, size);
877935b1
GM
1289
1290#ifdef GC_MALLOC_CHECK
1291 dont_register_blocks = 0;
1292
1293 {
1294 struct mem_node *m = mem_find (value);
1295 if (m != MEM_NIL)
1296 {
1297 fprintf (stderr, "Realloc returns memory that is already in use\n");
1298 abort ();
1299 }
1300
1301 /* Can't handle zero size regions in the red-black tree. */
1302 mem_insert (value, (char *) value + max (size, 1), MEM_TYPE_NON_LISP);
1303 }
177c0ea7 1304
877935b1
GM
1305 /* fprintf (stderr, "%p <- realloc\n", value); */
1306#endif /* GC_MALLOC_CHECK */
177c0ea7 1307
b0846f52 1308 __realloc_hook = emacs_blocked_realloc;
aa477689 1309 UNBLOCK_INPUT_ALLOC;
9ac0d9e0
JB
1310
1311 return value;
1312}
1313
34400008 1314
aa477689
JD
1315#ifdef HAVE_GTK_AND_PTHREAD
1316/* Called from Fdump_emacs so that when the dumped Emacs starts, it has a
1317 normal malloc. Some thread implementations need this as they call
1318 malloc before main. The pthread_self call in BLOCK_INPUT_ALLOC then
1319 calls malloc because it is the first call, and we have an endless loop. */
1320
1321void
1322reset_malloc_hooks ()
1323{
1324 __free_hook = 0;
1325 __malloc_hook = 0;
1326 __realloc_hook = 0;
1327}
1328#endif /* HAVE_GTK_AND_PTHREAD */
1329
1330
34400008
GM
1331/* Called from main to set up malloc to use our hooks. */
1332
9ac0d9e0
JB
1333void
1334uninterrupt_malloc ()
1335{
aa477689
JD
1336#ifdef HAVE_GTK_AND_PTHREAD
1337 pthread_mutexattr_t attr;
1338
1339 /* GLIBC has a faster way to do this, but lets keep it portable.
1340 This is according to the Single UNIX Specification. */
1341 pthread_mutexattr_init (&attr);
1342 pthread_mutexattr_settype (&attr, PTHREAD_MUTEX_RECURSIVE);
1343 pthread_mutex_init (&alloc_mutex, &attr);
aa477689
JD
1344#endif /* HAVE_GTK_AND_PTHREAD */
1345
c8099634
RS
1346 if (__free_hook != emacs_blocked_free)
1347 old_free_hook = __free_hook;
b0846f52 1348 __free_hook = emacs_blocked_free;
9ac0d9e0 1349
c8099634
RS
1350 if (__malloc_hook != emacs_blocked_malloc)
1351 old_malloc_hook = __malloc_hook;
b0846f52 1352 __malloc_hook = emacs_blocked_malloc;
9ac0d9e0 1353
c8099634
RS
1354 if (__realloc_hook != emacs_blocked_realloc)
1355 old_realloc_hook = __realloc_hook;
b0846f52 1356 __realloc_hook = emacs_blocked_realloc;
9ac0d9e0 1357}
2e471eb5 1358
026cdede 1359#endif /* not SYNC_INPUT */
2e471eb5
GM
1360#endif /* not SYSTEM_MALLOC */
1361
1362
7146af97 1363\f
2e471eb5
GM
1364/***********************************************************************
1365 Interval Allocation
1366 ***********************************************************************/
1a4f1e2c 1367
34400008
GM
1368/* Number of intervals allocated in an interval_block structure.
1369 The 1020 is 1024 minus malloc overhead. */
1370
d5e35230
JA
1371#define INTERVAL_BLOCK_SIZE \
1372 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1373
34400008
GM
1374/* Intervals are allocated in chunks in form of an interval_block
1375 structure. */
1376
d5e35230 1377struct interval_block
2e471eb5 1378{
d05b383a 1379 /* Place `intervals' first, to preserve alignment. */
2e471eb5 1380 struct interval intervals[INTERVAL_BLOCK_SIZE];
d05b383a 1381 struct interval_block *next;
2e471eb5 1382};
d5e35230 1383
34400008
GM
1384/* Current interval block. Its `next' pointer points to older
1385 blocks. */
1386
d5e35230 1387struct interval_block *interval_block;
34400008
GM
1388
1389/* Index in interval_block above of the next unused interval
1390 structure. */
1391
d5e35230 1392static int interval_block_index;
34400008
GM
1393
1394/* Number of free and live intervals. */
1395
2e471eb5 1396static int total_free_intervals, total_intervals;
d5e35230 1397
34400008
GM
1398/* List of free intervals. */
1399
d5e35230
JA
1400INTERVAL interval_free_list;
1401
c8099634 1402/* Total number of interval blocks now in use. */
2e471eb5 1403
c8099634
RS
1404int n_interval_blocks;
1405
34400008
GM
1406
1407/* Initialize interval allocation. */
1408
d5e35230
JA
1409static void
1410init_intervals ()
1411{
0930c1a1
SM
1412 interval_block = NULL;
1413 interval_block_index = INTERVAL_BLOCK_SIZE;
d5e35230 1414 interval_free_list = 0;
0930c1a1 1415 n_interval_blocks = 0;
d5e35230
JA
1416}
1417
34400008
GM
1418
1419/* Return a new interval. */
d5e35230
JA
1420
1421INTERVAL
1422make_interval ()
1423{
1424 INTERVAL val;
1425
1426 if (interval_free_list)
1427 {
1428 val = interval_free_list;
439d5cb4 1429 interval_free_list = INTERVAL_PARENT (interval_free_list);
d5e35230
JA
1430 }
1431 else
1432 {
1433 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1434 {
3c06d205
KH
1435 register struct interval_block *newi;
1436
34400008
GM
1437 newi = (struct interval_block *) lisp_malloc (sizeof *newi,
1438 MEM_TYPE_NON_LISP);
d5e35230 1439
d5e35230
JA
1440 newi->next = interval_block;
1441 interval_block = newi;
1442 interval_block_index = 0;
c8099634 1443 n_interval_blocks++;
d5e35230
JA
1444 }
1445 val = &interval_block->intervals[interval_block_index++];
1446 }
1447 consing_since_gc += sizeof (struct interval);
310ea200 1448 intervals_consed++;
d5e35230 1449 RESET_INTERVAL (val);
2336fe58 1450 val->gcmarkbit = 0;
d5e35230
JA
1451 return val;
1452}
1453
34400008
GM
1454
1455/* Mark Lisp objects in interval I. */
d5e35230
JA
1456
1457static void
d393c068 1458mark_interval (i, dummy)
d5e35230 1459 register INTERVAL i;
d393c068 1460 Lisp_Object dummy;
d5e35230 1461{
2336fe58
SM
1462 eassert (!i->gcmarkbit); /* Intervals are never shared. */
1463 i->gcmarkbit = 1;
49723c04 1464 mark_object (i->plist);
d5e35230
JA
1465}
1466
34400008
GM
1467
1468/* Mark the interval tree rooted in TREE. Don't call this directly;
1469 use the macro MARK_INTERVAL_TREE instead. */
1470
d5e35230
JA
1471static void
1472mark_interval_tree (tree)
1473 register INTERVAL tree;
1474{
e8720644
JB
1475 /* No need to test if this tree has been marked already; this
1476 function is always called through the MARK_INTERVAL_TREE macro,
1477 which takes care of that. */
1478
1e934989 1479 traverse_intervals_noorder (tree, mark_interval, Qnil);
d5e35230
JA
1480}
1481
34400008
GM
1482
1483/* Mark the interval tree rooted in I. */
1484
e8720644
JB
1485#define MARK_INTERVAL_TREE(i) \
1486 do { \
2336fe58 1487 if (!NULL_INTERVAL_P (i) && !i->gcmarkbit) \
e8720644
JB
1488 mark_interval_tree (i); \
1489 } while (0)
d5e35230 1490
34400008 1491
2e471eb5
GM
1492#define UNMARK_BALANCE_INTERVALS(i) \
1493 do { \
1494 if (! NULL_INTERVAL_P (i)) \
2336fe58 1495 (i) = balance_intervals (i); \
2e471eb5 1496 } while (0)
d5e35230 1497
cc2d8c6b
KR
1498\f
1499/* Number support. If NO_UNION_TYPE isn't in effect, we
1500 can't create number objects in macros. */
1501#ifndef make_number
1502Lisp_Object
1503make_number (n)
1504 int n;
1505{
1506 Lisp_Object obj;
1507 obj.s.val = n;
1508 obj.s.type = Lisp_Int;
1509 return obj;
1510}
1511#endif
d5e35230 1512\f
2e471eb5
GM
1513/***********************************************************************
1514 String Allocation
1515 ***********************************************************************/
1a4f1e2c 1516
2e471eb5
GM
1517/* Lisp_Strings are allocated in string_block structures. When a new
1518 string_block is allocated, all the Lisp_Strings it contains are
e0fead5d 1519 added to a free-list string_free_list. When a new Lisp_String is
2e471eb5
GM
1520 needed, it is taken from that list. During the sweep phase of GC,
1521 string_blocks that are entirely free are freed, except two which
1522 we keep.
7146af97 1523
2e471eb5
GM
1524 String data is allocated from sblock structures. Strings larger
1525 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1526 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
7146af97 1527
2e471eb5
GM
1528 Sblocks consist internally of sdata structures, one for each
1529 Lisp_String. The sdata structure points to the Lisp_String it
1530 belongs to. The Lisp_String points back to the `u.data' member of
1531 its sdata structure.
7146af97 1532
2e471eb5
GM
1533 When a Lisp_String is freed during GC, it is put back on
1534 string_free_list, and its `data' member and its sdata's `string'
1535 pointer is set to null. The size of the string is recorded in the
1536 `u.nbytes' member of the sdata. So, sdata structures that are no
1537 longer used, can be easily recognized, and it's easy to compact the
1538 sblocks of small strings which we do in compact_small_strings. */
7146af97 1539
2e471eb5
GM
1540/* Size in bytes of an sblock structure used for small strings. This
1541 is 8192 minus malloc overhead. */
7146af97 1542
2e471eb5 1543#define SBLOCK_SIZE 8188
c8099634 1544
2e471eb5
GM
1545/* Strings larger than this are considered large strings. String data
1546 for large strings is allocated from individual sblocks. */
7146af97 1547
2e471eb5
GM
1548#define LARGE_STRING_BYTES 1024
1549
1550/* Structure describing string memory sub-allocated from an sblock.
1551 This is where the contents of Lisp strings are stored. */
1552
1553struct sdata
7146af97 1554{
2e471eb5
GM
1555 /* Back-pointer to the string this sdata belongs to. If null, this
1556 structure is free, and the NBYTES member of the union below
34400008 1557 contains the string's byte size (the same value that STRING_BYTES
2e471eb5
GM
1558 would return if STRING were non-null). If non-null, STRING_BYTES
1559 (STRING) is the size of the data, and DATA contains the string's
1560 contents. */
1561 struct Lisp_String *string;
7146af97 1562
31d929e5 1563#ifdef GC_CHECK_STRING_BYTES
177c0ea7 1564
31d929e5
GM
1565 EMACS_INT nbytes;
1566 unsigned char data[1];
177c0ea7 1567
31d929e5
GM
1568#define SDATA_NBYTES(S) (S)->nbytes
1569#define SDATA_DATA(S) (S)->data
177c0ea7 1570
31d929e5
GM
1571#else /* not GC_CHECK_STRING_BYTES */
1572
2e471eb5
GM
1573 union
1574 {
1575 /* When STRING in non-null. */
1576 unsigned char data[1];
1577
1578 /* When STRING is null. */
1579 EMACS_INT nbytes;
1580 } u;
177c0ea7 1581
31d929e5
GM
1582
1583#define SDATA_NBYTES(S) (S)->u.nbytes
1584#define SDATA_DATA(S) (S)->u.data
1585
1586#endif /* not GC_CHECK_STRING_BYTES */
2e471eb5
GM
1587};
1588
31d929e5 1589
2e471eb5
GM
1590/* Structure describing a block of memory which is sub-allocated to
1591 obtain string data memory for strings. Blocks for small strings
1592 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1593 as large as needed. */
1594
1595struct sblock
7146af97 1596{
2e471eb5
GM
1597 /* Next in list. */
1598 struct sblock *next;
7146af97 1599
2e471eb5
GM
1600 /* Pointer to the next free sdata block. This points past the end
1601 of the sblock if there isn't any space left in this block. */
1602 struct sdata *next_free;
1603
1604 /* Start of data. */
1605 struct sdata first_data;
1606};
1607
1608/* Number of Lisp strings in a string_block structure. The 1020 is
1609 1024 minus malloc overhead. */
1610
19bcad1f 1611#define STRING_BLOCK_SIZE \
2e471eb5
GM
1612 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1613
1614/* Structure describing a block from which Lisp_String structures
1615 are allocated. */
1616
1617struct string_block
7146af97 1618{
d05b383a 1619 /* Place `strings' first, to preserve alignment. */
19bcad1f 1620 struct Lisp_String strings[STRING_BLOCK_SIZE];
d05b383a 1621 struct string_block *next;
2e471eb5 1622};
7146af97 1623
2e471eb5
GM
1624/* Head and tail of the list of sblock structures holding Lisp string
1625 data. We always allocate from current_sblock. The NEXT pointers
1626 in the sblock structures go from oldest_sblock to current_sblock. */
3c06d205 1627
2e471eb5 1628static struct sblock *oldest_sblock, *current_sblock;
7146af97 1629
2e471eb5 1630/* List of sblocks for large strings. */
7146af97 1631
2e471eb5 1632static struct sblock *large_sblocks;
7146af97 1633
2e471eb5 1634/* List of string_block structures, and how many there are. */
7146af97 1635
2e471eb5
GM
1636static struct string_block *string_blocks;
1637static int n_string_blocks;
7146af97 1638
2e471eb5 1639/* Free-list of Lisp_Strings. */
7146af97 1640
2e471eb5 1641static struct Lisp_String *string_free_list;
7146af97 1642
2e471eb5 1643/* Number of live and free Lisp_Strings. */
c8099634 1644
2e471eb5 1645static int total_strings, total_free_strings;
7146af97 1646
2e471eb5
GM
1647/* Number of bytes used by live strings. */
1648
1649static int total_string_size;
1650
1651/* Given a pointer to a Lisp_String S which is on the free-list
1652 string_free_list, return a pointer to its successor in the
1653 free-list. */
1654
1655#define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1656
1657/* Return a pointer to the sdata structure belonging to Lisp string S.
1658 S must be live, i.e. S->data must not be null. S->data is actually
1659 a pointer to the `u.data' member of its sdata structure; the
1660 structure starts at a constant offset in front of that. */
177c0ea7 1661
31d929e5
GM
1662#ifdef GC_CHECK_STRING_BYTES
1663
1664#define SDATA_OF_STRING(S) \
1665 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *) \
1666 - sizeof (EMACS_INT)))
1667
1668#else /* not GC_CHECK_STRING_BYTES */
1669
2e471eb5
GM
1670#define SDATA_OF_STRING(S) \
1671 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *)))
1672
31d929e5
GM
1673#endif /* not GC_CHECK_STRING_BYTES */
1674
212f33f1
KS
1675
1676#ifdef GC_CHECK_STRING_OVERRUN
bdbed949
KS
1677
1678/* We check for overrun in string data blocks by appending a small
1679 "cookie" after each allocated string data block, and check for the
1680 presense of this cookie during GC. */
1681
1682#define GC_STRING_OVERRUN_COOKIE_SIZE 4
1683static char string_overrun_cookie[GC_STRING_OVERRUN_COOKIE_SIZE] =
1684 { 0xde, 0xad, 0xbe, 0xef };
1685
212f33f1 1686#else
bdbed949 1687#define GC_STRING_OVERRUN_COOKIE_SIZE 0
212f33f1
KS
1688#endif
1689
2e471eb5
GM
1690/* Value is the size of an sdata structure large enough to hold NBYTES
1691 bytes of string data. The value returned includes a terminating
1692 NUL byte, the size of the sdata structure, and padding. */
1693
31d929e5
GM
1694#ifdef GC_CHECK_STRING_BYTES
1695
2e471eb5
GM
1696#define SDATA_SIZE(NBYTES) \
1697 ((sizeof (struct Lisp_String *) \
1698 + (NBYTES) + 1 \
31d929e5 1699 + sizeof (EMACS_INT) \
2e471eb5
GM
1700 + sizeof (EMACS_INT) - 1) \
1701 & ~(sizeof (EMACS_INT) - 1))
1702
31d929e5
GM
1703#else /* not GC_CHECK_STRING_BYTES */
1704
1705#define SDATA_SIZE(NBYTES) \
1706 ((sizeof (struct Lisp_String *) \
1707 + (NBYTES) + 1 \
1708 + sizeof (EMACS_INT) - 1) \
1709 & ~(sizeof (EMACS_INT) - 1))
1710
1711#endif /* not GC_CHECK_STRING_BYTES */
2e471eb5 1712
bdbed949
KS
1713/* Extra bytes to allocate for each string. */
1714
1715#define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1716
2e471eb5 1717/* Initialize string allocation. Called from init_alloc_once. */
d457598b
AS
1718
1719void
2e471eb5 1720init_strings ()
7146af97 1721{
2e471eb5
GM
1722 total_strings = total_free_strings = total_string_size = 0;
1723 oldest_sblock = current_sblock = large_sblocks = NULL;
1724 string_blocks = NULL;
1725 n_string_blocks = 0;
1726 string_free_list = NULL;
7146af97
JB
1727}
1728
2e471eb5 1729
361b097f
GM
1730#ifdef GC_CHECK_STRING_BYTES
1731
361b097f
GM
1732static int check_string_bytes_count;
1733
676a7251
GM
1734void check_string_bytes P_ ((int));
1735void check_sblock P_ ((struct sblock *));
1736
1737#define CHECK_STRING_BYTES(S) STRING_BYTES (S)
1738
1739
1740/* Like GC_STRING_BYTES, but with debugging check. */
1741
1742int
1743string_bytes (s)
1744 struct Lisp_String *s;
1745{
7cdee936 1746 int nbytes = (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
676a7251
GM
1747 if (!PURE_POINTER_P (s)
1748 && s->data
1749 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1750 abort ();
1751 return nbytes;
1752}
177c0ea7 1753
2c5bd608 1754/* Check validity of Lisp strings' string_bytes member in B. */
676a7251 1755
361b097f 1756void
676a7251
GM
1757check_sblock (b)
1758 struct sblock *b;
361b097f 1759{
676a7251 1760 struct sdata *from, *end, *from_end;
177c0ea7 1761
676a7251 1762 end = b->next_free;
177c0ea7 1763
676a7251 1764 for (from = &b->first_data; from < end; from = from_end)
361b097f 1765 {
676a7251
GM
1766 /* Compute the next FROM here because copying below may
1767 overwrite data we need to compute it. */
1768 int nbytes;
177c0ea7 1769
676a7251
GM
1770 /* Check that the string size recorded in the string is the
1771 same as the one recorded in the sdata structure. */
1772 if (from->string)
1773 CHECK_STRING_BYTES (from->string);
177c0ea7 1774
676a7251
GM
1775 if (from->string)
1776 nbytes = GC_STRING_BYTES (from->string);
1777 else
1778 nbytes = SDATA_NBYTES (from);
177c0ea7 1779
676a7251 1780 nbytes = SDATA_SIZE (nbytes);
212f33f1 1781 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
676a7251
GM
1782 }
1783}
361b097f 1784
676a7251
GM
1785
1786/* Check validity of Lisp strings' string_bytes member. ALL_P
1787 non-zero means check all strings, otherwise check only most
1788 recently allocated strings. Used for hunting a bug. */
1789
1790void
1791check_string_bytes (all_p)
1792 int all_p;
1793{
1794 if (all_p)
1795 {
1796 struct sblock *b;
1797
1798 for (b = large_sblocks; b; b = b->next)
1799 {
1800 struct Lisp_String *s = b->first_data.string;
1801 if (s)
1802 CHECK_STRING_BYTES (s);
361b097f 1803 }
177c0ea7 1804
676a7251
GM
1805 for (b = oldest_sblock; b; b = b->next)
1806 check_sblock (b);
361b097f 1807 }
676a7251
GM
1808 else
1809 check_sblock (current_sblock);
361b097f
GM
1810}
1811
1812#endif /* GC_CHECK_STRING_BYTES */
1813
212f33f1
KS
1814#ifdef GC_CHECK_STRING_FREE_LIST
1815
bdbed949
KS
1816/* Walk through the string free list looking for bogus next pointers.
1817 This may catch buffer overrun from a previous string. */
1818
212f33f1
KS
1819static void
1820check_string_free_list ()
1821{
1822 struct Lisp_String *s;
1823
1824 /* Pop a Lisp_String off the free-list. */
1825 s = string_free_list;
1826 while (s != NULL)
1827 {
1828 if ((unsigned)s < 1024)
1829 abort();
1830 s = NEXT_FREE_LISP_STRING (s);
1831 }
1832}
1833#else
1834#define check_string_free_list()
1835#endif
361b097f 1836
2e471eb5
GM
1837/* Return a new Lisp_String. */
1838
1839static struct Lisp_String *
1840allocate_string ()
7146af97 1841{
2e471eb5 1842 struct Lisp_String *s;
7146af97 1843
2e471eb5
GM
1844 /* If the free-list is empty, allocate a new string_block, and
1845 add all the Lisp_Strings in it to the free-list. */
1846 if (string_free_list == NULL)
7146af97 1847 {
2e471eb5
GM
1848 struct string_block *b;
1849 int i;
1850
34400008 1851 b = (struct string_block *) lisp_malloc (sizeof *b, MEM_TYPE_STRING);
2e471eb5
GM
1852 bzero (b, sizeof *b);
1853 b->next = string_blocks;
1854 string_blocks = b;
1855 ++n_string_blocks;
1856
19bcad1f 1857 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
7146af97 1858 {
2e471eb5
GM
1859 s = b->strings + i;
1860 NEXT_FREE_LISP_STRING (s) = string_free_list;
1861 string_free_list = s;
7146af97 1862 }
2e471eb5 1863
19bcad1f 1864 total_free_strings += STRING_BLOCK_SIZE;
7146af97 1865 }
c0f51373 1866
bdbed949 1867 check_string_free_list ();
212f33f1 1868
2e471eb5
GM
1869 /* Pop a Lisp_String off the free-list. */
1870 s = string_free_list;
1871 string_free_list = NEXT_FREE_LISP_STRING (s);
c0f51373 1872
2e471eb5
GM
1873 /* Probably not strictly necessary, but play it safe. */
1874 bzero (s, sizeof *s);
c0f51373 1875
2e471eb5
GM
1876 --total_free_strings;
1877 ++total_strings;
1878 ++strings_consed;
1879 consing_since_gc += sizeof *s;
c0f51373 1880
361b097f 1881#ifdef GC_CHECK_STRING_BYTES
83a96b4d 1882 if (!noninteractive
e0f712ba 1883#ifdef MAC_OS8
83a96b4d
AC
1884 && current_sblock
1885#endif
1886 )
361b097f 1887 {
676a7251
GM
1888 if (++check_string_bytes_count == 200)
1889 {
1890 check_string_bytes_count = 0;
1891 check_string_bytes (1);
1892 }
1893 else
1894 check_string_bytes (0);
361b097f 1895 }
676a7251 1896#endif /* GC_CHECK_STRING_BYTES */
361b097f 1897
2e471eb5 1898 return s;
c0f51373 1899}
7146af97 1900
7146af97 1901
2e471eb5
GM
1902/* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1903 plus a NUL byte at the end. Allocate an sdata structure for S, and
1904 set S->data to its `u.data' member. Store a NUL byte at the end of
1905 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1906 S->data if it was initially non-null. */
7146af97 1907
2e471eb5
GM
1908void
1909allocate_string_data (s, nchars, nbytes)
1910 struct Lisp_String *s;
1911 int nchars, nbytes;
7146af97 1912{
5c5fecb3 1913 struct sdata *data, *old_data;
2e471eb5 1914 struct sblock *b;
5c5fecb3 1915 int needed, old_nbytes;
7146af97 1916
2e471eb5
GM
1917 /* Determine the number of bytes needed to store NBYTES bytes
1918 of string data. */
1919 needed = SDATA_SIZE (nbytes);
7146af97 1920
2e471eb5
GM
1921 if (nbytes > LARGE_STRING_BYTES)
1922 {
675d5130 1923 size_t size = sizeof *b - sizeof (struct sdata) + needed;
2e471eb5
GM
1924
1925#ifdef DOUG_LEA_MALLOC
f8608968
GM
1926 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1927 because mapped region contents are not preserved in
d36b182f
DL
1928 a dumped Emacs.
1929
1930 In case you think of allowing it in a dumped Emacs at the
1931 cost of not being able to re-dump, there's another reason:
1932 mmap'ed data typically have an address towards the top of the
1933 address space, which won't fit into an EMACS_INT (at least on
1934 32-bit systems with the current tagging scheme). --fx */
2e471eb5
GM
1935 mallopt (M_MMAP_MAX, 0);
1936#endif
1937
212f33f1 1938 b = (struct sblock *) lisp_malloc (size + GC_STRING_EXTRA, MEM_TYPE_NON_LISP);
177c0ea7 1939
2e471eb5
GM
1940#ifdef DOUG_LEA_MALLOC
1941 /* Back to a reasonable maximum of mmap'ed areas. */
1942 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1943#endif
177c0ea7 1944
2e471eb5
GM
1945 b->next_free = &b->first_data;
1946 b->first_data.string = NULL;
1947 b->next = large_sblocks;
1948 large_sblocks = b;
1949 }
1950 else if (current_sblock == NULL
1951 || (((char *) current_sblock + SBLOCK_SIZE
1952 - (char *) current_sblock->next_free)
212f33f1 1953 < (needed + GC_STRING_EXTRA)))
2e471eb5
GM
1954 {
1955 /* Not enough room in the current sblock. */
34400008 1956 b = (struct sblock *) lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
2e471eb5
GM
1957 b->next_free = &b->first_data;
1958 b->first_data.string = NULL;
1959 b->next = NULL;
1960
1961 if (current_sblock)
1962 current_sblock->next = b;
1963 else
1964 oldest_sblock = b;
1965 current_sblock = b;
1966 }
1967 else
1968 b = current_sblock;
5c5fecb3
GM
1969
1970 old_data = s->data ? SDATA_OF_STRING (s) : NULL;
1971 old_nbytes = GC_STRING_BYTES (s);
177c0ea7 1972
2e471eb5
GM
1973 data = b->next_free;
1974 data->string = s;
31d929e5
GM
1975 s->data = SDATA_DATA (data);
1976#ifdef GC_CHECK_STRING_BYTES
1977 SDATA_NBYTES (data) = nbytes;
1978#endif
2e471eb5
GM
1979 s->size = nchars;
1980 s->size_byte = nbytes;
1981 s->data[nbytes] = '\0';
212f33f1 1982#ifdef GC_CHECK_STRING_OVERRUN
bdbed949
KS
1983 bcopy (string_overrun_cookie, (char *) data + needed,
1984 GC_STRING_OVERRUN_COOKIE_SIZE);
212f33f1
KS
1985#endif
1986 b->next_free = (struct sdata *) ((char *) data + needed + GC_STRING_EXTRA);
177c0ea7 1987
5c5fecb3
GM
1988 /* If S had already data assigned, mark that as free by setting its
1989 string back-pointer to null, and recording the size of the data
00c9c33c 1990 in it. */
5c5fecb3
GM
1991 if (old_data)
1992 {
31d929e5 1993 SDATA_NBYTES (old_data) = old_nbytes;
5c5fecb3
GM
1994 old_data->string = NULL;
1995 }
1996
2e471eb5
GM
1997 consing_since_gc += needed;
1998}
1999
2000
2001/* Sweep and compact strings. */
2002
2003static void
2004sweep_strings ()
2005{
2006 struct string_block *b, *next;
2007 struct string_block *live_blocks = NULL;
177c0ea7 2008
2e471eb5
GM
2009 string_free_list = NULL;
2010 total_strings = total_free_strings = 0;
2011 total_string_size = 0;
2012
2013 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
2014 for (b = string_blocks; b; b = next)
2015 {
2016 int i, nfree = 0;
2017 struct Lisp_String *free_list_before = string_free_list;
2018
2019 next = b->next;
2020
19bcad1f 2021 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
2e471eb5
GM
2022 {
2023 struct Lisp_String *s = b->strings + i;
2024
2025 if (s->data)
2026 {
2027 /* String was not on free-list before. */
2028 if (STRING_MARKED_P (s))
2029 {
2030 /* String is live; unmark it and its intervals. */
2031 UNMARK_STRING (s);
177c0ea7 2032
2e471eb5
GM
2033 if (!NULL_INTERVAL_P (s->intervals))
2034 UNMARK_BALANCE_INTERVALS (s->intervals);
2035
2036 ++total_strings;
2037 total_string_size += STRING_BYTES (s);
2038 }
2039 else
2040 {
2041 /* String is dead. Put it on the free-list. */
2042 struct sdata *data = SDATA_OF_STRING (s);
2043
2044 /* Save the size of S in its sdata so that we know
2045 how large that is. Reset the sdata's string
2046 back-pointer so that we know it's free. */
31d929e5
GM
2047#ifdef GC_CHECK_STRING_BYTES
2048 if (GC_STRING_BYTES (s) != SDATA_NBYTES (data))
2049 abort ();
2050#else
2e471eb5 2051 data->u.nbytes = GC_STRING_BYTES (s);
31d929e5 2052#endif
2e471eb5
GM
2053 data->string = NULL;
2054
2055 /* Reset the strings's `data' member so that we
2056 know it's free. */
2057 s->data = NULL;
2058
2059 /* Put the string on the free-list. */
2060 NEXT_FREE_LISP_STRING (s) = string_free_list;
2061 string_free_list = s;
2062 ++nfree;
2063 }
2064 }
2065 else
2066 {
2067 /* S was on the free-list before. Put it there again. */
2068 NEXT_FREE_LISP_STRING (s) = string_free_list;
2069 string_free_list = s;
2070 ++nfree;
2071 }
2072 }
2073
34400008 2074 /* Free blocks that contain free Lisp_Strings only, except
2e471eb5 2075 the first two of them. */
19bcad1f
SM
2076 if (nfree == STRING_BLOCK_SIZE
2077 && total_free_strings > STRING_BLOCK_SIZE)
2e471eb5
GM
2078 {
2079 lisp_free (b);
2080 --n_string_blocks;
2081 string_free_list = free_list_before;
2082 }
2083 else
2084 {
2085 total_free_strings += nfree;
2086 b->next = live_blocks;
2087 live_blocks = b;
2088 }
2089 }
2090
bdbed949 2091 check_string_free_list ();
212f33f1 2092
2e471eb5
GM
2093 string_blocks = live_blocks;
2094 free_large_strings ();
2095 compact_small_strings ();
212f33f1 2096
bdbed949 2097 check_string_free_list ();
2e471eb5
GM
2098}
2099
2100
2101/* Free dead large strings. */
2102
2103static void
2104free_large_strings ()
2105{
2106 struct sblock *b, *next;
2107 struct sblock *live_blocks = NULL;
177c0ea7 2108
2e471eb5
GM
2109 for (b = large_sblocks; b; b = next)
2110 {
2111 next = b->next;
2112
2113 if (b->first_data.string == NULL)
2114 lisp_free (b);
2115 else
2116 {
2117 b->next = live_blocks;
2118 live_blocks = b;
2119 }
2120 }
2121
2122 large_sblocks = live_blocks;
2123}
2124
2125
2126/* Compact data of small strings. Free sblocks that don't contain
2127 data of live strings after compaction. */
2128
2129static void
2130compact_small_strings ()
2131{
2132 struct sblock *b, *tb, *next;
2133 struct sdata *from, *to, *end, *tb_end;
2134 struct sdata *to_end, *from_end;
2135
2136 /* TB is the sblock we copy to, TO is the sdata within TB we copy
2137 to, and TB_END is the end of TB. */
2138 tb = oldest_sblock;
2139 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2140 to = &tb->first_data;
2141
2142 /* Step through the blocks from the oldest to the youngest. We
2143 expect that old blocks will stabilize over time, so that less
2144 copying will happen this way. */
2145 for (b = oldest_sblock; b; b = b->next)
2146 {
2147 end = b->next_free;
2148 xassert ((char *) end <= (char *) b + SBLOCK_SIZE);
177c0ea7 2149
2e471eb5
GM
2150 for (from = &b->first_data; from < end; from = from_end)
2151 {
2152 /* Compute the next FROM here because copying below may
2153 overwrite data we need to compute it. */
2154 int nbytes;
2155
31d929e5
GM
2156#ifdef GC_CHECK_STRING_BYTES
2157 /* Check that the string size recorded in the string is the
2158 same as the one recorded in the sdata structure. */
2159 if (from->string
2160 && GC_STRING_BYTES (from->string) != SDATA_NBYTES (from))
2161 abort ();
2162#endif /* GC_CHECK_STRING_BYTES */
177c0ea7 2163
2e471eb5
GM
2164 if (from->string)
2165 nbytes = GC_STRING_BYTES (from->string);
2166 else
31d929e5 2167 nbytes = SDATA_NBYTES (from);
177c0ea7 2168
212f33f1
KS
2169 if (nbytes > LARGE_STRING_BYTES)
2170 abort ();
212f33f1 2171
2e471eb5 2172 nbytes = SDATA_SIZE (nbytes);
212f33f1
KS
2173 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
2174
2175#ifdef GC_CHECK_STRING_OVERRUN
bdbed949
KS
2176 if (bcmp (string_overrun_cookie,
2177 ((char *) from_end) - GC_STRING_OVERRUN_COOKIE_SIZE,
2178 GC_STRING_OVERRUN_COOKIE_SIZE))
212f33f1
KS
2179 abort ();
2180#endif
177c0ea7 2181
2e471eb5
GM
2182 /* FROM->string non-null means it's alive. Copy its data. */
2183 if (from->string)
2184 {
2185 /* If TB is full, proceed with the next sblock. */
212f33f1 2186 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2e471eb5
GM
2187 if (to_end > tb_end)
2188 {
2189 tb->next_free = to;
2190 tb = tb->next;
2191 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2192 to = &tb->first_data;
212f33f1 2193 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2e471eb5 2194 }
177c0ea7 2195
2e471eb5
GM
2196 /* Copy, and update the string's `data' pointer. */
2197 if (from != to)
2198 {
a2407477 2199 xassert (tb != b || to <= from);
212f33f1 2200 safe_bcopy ((char *) from, (char *) to, nbytes + GC_STRING_EXTRA);
31d929e5 2201 to->string->data = SDATA_DATA (to);
2e471eb5
GM
2202 }
2203
2204 /* Advance past the sdata we copied to. */
2205 to = to_end;
2206 }
2207 }
2208 }
2209
2210 /* The rest of the sblocks following TB don't contain live data, so
2211 we can free them. */
2212 for (b = tb->next; b; b = next)
2213 {
2214 next = b->next;
2215 lisp_free (b);
2216 }
2217
2218 tb->next_free = to;
2219 tb->next = NULL;
2220 current_sblock = tb;
2221}
2222
2223
2224DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
69623621
RS
2225 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
2226LENGTH must be an integer.
2227INIT must be an integer that represents a character. */)
7ee72033 2228 (length, init)
2e471eb5
GM
2229 Lisp_Object length, init;
2230{
2231 register Lisp_Object val;
2232 register unsigned char *p, *end;
2233 int c, nbytes;
2234
b7826503
PJ
2235 CHECK_NATNUM (length);
2236 CHECK_NUMBER (init);
2e471eb5
GM
2237
2238 c = XINT (init);
2239 if (SINGLE_BYTE_CHAR_P (c))
2240 {
2241 nbytes = XINT (length);
2242 val = make_uninit_string (nbytes);
d5db4077
KR
2243 p = SDATA (val);
2244 end = p + SCHARS (val);
2e471eb5
GM
2245 while (p != end)
2246 *p++ = c;
2247 }
2248 else
2249 {
d942b71c 2250 unsigned char str[MAX_MULTIBYTE_LENGTH];
2e471eb5
GM
2251 int len = CHAR_STRING (c, str);
2252
2253 nbytes = len * XINT (length);
2254 val = make_uninit_multibyte_string (XINT (length), nbytes);
d5db4077 2255 p = SDATA (val);
2e471eb5
GM
2256 end = p + nbytes;
2257 while (p != end)
2258 {
2259 bcopy (str, p, len);
2260 p += len;
2261 }
2262 }
177c0ea7 2263
2e471eb5
GM
2264 *p = 0;
2265 return val;
2266}
2267
2268
2269DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
a6266d23 2270 doc: /* Return a new bool-vector of length LENGTH, using INIT for as each element.
7ee72033
MB
2271LENGTH must be a number. INIT matters only in whether it is t or nil. */)
2272 (length, init)
2e471eb5
GM
2273 Lisp_Object length, init;
2274{
2275 register Lisp_Object val;
2276 struct Lisp_Bool_Vector *p;
2277 int real_init, i;
2278 int length_in_chars, length_in_elts, bits_per_value;
2279
b7826503 2280 CHECK_NATNUM (length);
2e471eb5 2281
a097329f 2282 bits_per_value = sizeof (EMACS_INT) * BOOL_VECTOR_BITS_PER_CHAR;
2e471eb5
GM
2283
2284 length_in_elts = (XFASTINT (length) + bits_per_value - 1) / bits_per_value;
a097329f
AS
2285 length_in_chars = ((XFASTINT (length) + BOOL_VECTOR_BITS_PER_CHAR - 1)
2286 / BOOL_VECTOR_BITS_PER_CHAR);
2e471eb5
GM
2287
2288 /* We must allocate one more elements than LENGTH_IN_ELTS for the
2289 slot `size' of the struct Lisp_Bool_Vector. */
2290 val = Fmake_vector (make_number (length_in_elts + 1), Qnil);
2291 p = XBOOL_VECTOR (val);
177c0ea7 2292
2e471eb5
GM
2293 /* Get rid of any bits that would cause confusion. */
2294 p->vector_size = 0;
2295 XSETBOOL_VECTOR (val, p);
2296 p->size = XFASTINT (length);
177c0ea7 2297
2e471eb5
GM
2298 real_init = (NILP (init) ? 0 : -1);
2299 for (i = 0; i < length_in_chars ; i++)
2300 p->data[i] = real_init;
177c0ea7 2301
2e471eb5 2302 /* Clear the extraneous bits in the last byte. */
a097329f 2303 if (XINT (length) != length_in_chars * BOOL_VECTOR_BITS_PER_CHAR)
2e471eb5 2304 XBOOL_VECTOR (val)->data[length_in_chars - 1]
a097329f 2305 &= (1 << (XINT (length) % BOOL_VECTOR_BITS_PER_CHAR)) - 1;
2e471eb5
GM
2306
2307 return val;
2308}
2309
2310
2311/* Make a string from NBYTES bytes at CONTENTS, and compute the number
2312 of characters from the contents. This string may be unibyte or
2313 multibyte, depending on the contents. */
2314
2315Lisp_Object
2316make_string (contents, nbytes)
943b873e 2317 const char *contents;
2e471eb5
GM
2318 int nbytes;
2319{
2320 register Lisp_Object val;
9eac9d59
KH
2321 int nchars, multibyte_nbytes;
2322
2323 parse_str_as_multibyte (contents, nbytes, &nchars, &multibyte_nbytes);
9eac9d59
KH
2324 if (nbytes == nchars || nbytes != multibyte_nbytes)
2325 /* CONTENTS contains no multibyte sequences or contains an invalid
2326 multibyte sequence. We must make unibyte string. */
495a6df3
KH
2327 val = make_unibyte_string (contents, nbytes);
2328 else
2329 val = make_multibyte_string (contents, nchars, nbytes);
2e471eb5
GM
2330 return val;
2331}
2332
2333
2334/* Make an unibyte string from LENGTH bytes at CONTENTS. */
2335
2336Lisp_Object
2337make_unibyte_string (contents, length)
943b873e 2338 const char *contents;
2e471eb5
GM
2339 int length;
2340{
2341 register Lisp_Object val;
2342 val = make_uninit_string (length);
d5db4077
KR
2343 bcopy (contents, SDATA (val), length);
2344 STRING_SET_UNIBYTE (val);
2e471eb5
GM
2345 return val;
2346}
2347
2348
2349/* Make a multibyte string from NCHARS characters occupying NBYTES
2350 bytes at CONTENTS. */
2351
2352Lisp_Object
2353make_multibyte_string (contents, nchars, nbytes)
943b873e 2354 const char *contents;
2e471eb5
GM
2355 int nchars, nbytes;
2356{
2357 register Lisp_Object val;
2358 val = make_uninit_multibyte_string (nchars, nbytes);
d5db4077 2359 bcopy (contents, SDATA (val), nbytes);
2e471eb5
GM
2360 return val;
2361}
2362
2363
2364/* Make a string from NCHARS characters occupying NBYTES bytes at
2365 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2366
2367Lisp_Object
2368make_string_from_bytes (contents, nchars, nbytes)
fcbb914b 2369 const char *contents;
2e471eb5
GM
2370 int nchars, nbytes;
2371{
2372 register Lisp_Object val;
2373 val = make_uninit_multibyte_string (nchars, nbytes);
d5db4077
KR
2374 bcopy (contents, SDATA (val), nbytes);
2375 if (SBYTES (val) == SCHARS (val))
2376 STRING_SET_UNIBYTE (val);
2e471eb5
GM
2377 return val;
2378}
2379
2380
2381/* Make a string from NCHARS characters occupying NBYTES bytes at
2382 CONTENTS. The argument MULTIBYTE controls whether to label the
229b28c4
KH
2383 string as multibyte. If NCHARS is negative, it counts the number of
2384 characters by itself. */
2e471eb5
GM
2385
2386Lisp_Object
2387make_specified_string (contents, nchars, nbytes, multibyte)
fcbb914b 2388 const char *contents;
2e471eb5
GM
2389 int nchars, nbytes;
2390 int multibyte;
2391{
2392 register Lisp_Object val;
229b28c4
KH
2393
2394 if (nchars < 0)
2395 {
2396 if (multibyte)
2397 nchars = multibyte_chars_in_text (contents, nbytes);
2398 else
2399 nchars = nbytes;
2400 }
2e471eb5 2401 val = make_uninit_multibyte_string (nchars, nbytes);
d5db4077 2402 bcopy (contents, SDATA (val), nbytes);
2e471eb5 2403 if (!multibyte)
d5db4077 2404 STRING_SET_UNIBYTE (val);
2e471eb5
GM
2405 return val;
2406}
2407
2408
2409/* Make a string from the data at STR, treating it as multibyte if the
2410 data warrants. */
2411
2412Lisp_Object
2413build_string (str)
943b873e 2414 const char *str;
2e471eb5
GM
2415{
2416 return make_string (str, strlen (str));
2417}
2418
2419
2420/* Return an unibyte Lisp_String set up to hold LENGTH characters
2421 occupying LENGTH bytes. */
2422
2423Lisp_Object
2424make_uninit_string (length)
2425 int length;
2426{
2427 Lisp_Object val;
2428 val = make_uninit_multibyte_string (length, length);
d5db4077 2429 STRING_SET_UNIBYTE (val);
2e471eb5
GM
2430 return val;
2431}
2432
2433
2434/* Return a multibyte Lisp_String set up to hold NCHARS characters
2435 which occupy NBYTES bytes. */
2436
2437Lisp_Object
2438make_uninit_multibyte_string (nchars, nbytes)
2439 int nchars, nbytes;
2440{
2441 Lisp_Object string;
2442 struct Lisp_String *s;
2443
2444 if (nchars < 0)
2445 abort ();
2446
2447 s = allocate_string ();
2448 allocate_string_data (s, nchars, nbytes);
2449 XSETSTRING (string, s);
2450 string_chars_consed += nbytes;
2451 return string;
2452}
2453
2454
2455\f
2456/***********************************************************************
2457 Float Allocation
2458 ***********************************************************************/
2459
2e471eb5
GM
2460/* We store float cells inside of float_blocks, allocating a new
2461 float_block with malloc whenever necessary. Float cells reclaimed
2462 by GC are put on a free list to be reallocated before allocating
ab6780cd 2463 any new float cells from the latest float_block. */
2e471eb5 2464
d05b383a
SM
2465#define FLOAT_BLOCK_SIZE \
2466 (((BLOCK_BYTES - sizeof (struct float_block *) \
2467 /* The compiler might add padding at the end. */ \
2468 - (sizeof (struct Lisp_Float) - sizeof (int))) * CHAR_BIT) \
ab6780cd
SM
2469 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2470
2471#define GETMARKBIT(block,n) \
2472 (((block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2473 >> ((n) % (sizeof(int) * CHAR_BIT))) \
2474 & 1)
2475
2476#define SETMARKBIT(block,n) \
2477 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2478 |= 1 << ((n) % (sizeof(int) * CHAR_BIT))
2479
2480#define UNSETMARKBIT(block,n) \
2481 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2482 &= ~(1 << ((n) % (sizeof(int) * CHAR_BIT)))
2483
2484#define FLOAT_BLOCK(fptr) \
2485 ((struct float_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2486
2487#define FLOAT_INDEX(fptr) \
2488 ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2e471eb5
GM
2489
2490struct float_block
2491{
ab6780cd 2492 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2e471eb5 2493 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
ab6780cd
SM
2494 int gcmarkbits[1 + FLOAT_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2495 struct float_block *next;
2e471eb5
GM
2496};
2497
ab6780cd
SM
2498#define FLOAT_MARKED_P(fptr) \
2499 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2500
2501#define FLOAT_MARK(fptr) \
2502 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2503
2504#define FLOAT_UNMARK(fptr) \
2505 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2506
34400008
GM
2507/* Current float_block. */
2508
2e471eb5 2509struct float_block *float_block;
34400008
GM
2510
2511/* Index of first unused Lisp_Float in the current float_block. */
2512
2e471eb5
GM
2513int float_block_index;
2514
2515/* Total number of float blocks now in use. */
2516
2517int n_float_blocks;
2518
34400008
GM
2519/* Free-list of Lisp_Floats. */
2520
2e471eb5
GM
2521struct Lisp_Float *float_free_list;
2522
34400008 2523
966533c9 2524/* Initialize float allocation. */
34400008 2525
2e471eb5
GM
2526void
2527init_float ()
2528{
08b7c2cb
SM
2529 float_block = NULL;
2530 float_block_index = FLOAT_BLOCK_SIZE; /* Force alloc of new float_block. */
2e471eb5 2531 float_free_list = 0;
08b7c2cb 2532 n_float_blocks = 0;
2e471eb5
GM
2533}
2534
34400008
GM
2535
2536/* Explicitly free a float cell by putting it on the free-list. */
2e471eb5
GM
2537
2538void
2539free_float (ptr)
2540 struct Lisp_Float *ptr;
2541{
2542 *(struct Lisp_Float **)&ptr->data = float_free_list;
2543 float_free_list = ptr;
2544}
2545
34400008
GM
2546
2547/* Return a new float object with value FLOAT_VALUE. */
2548
2e471eb5
GM
2549Lisp_Object
2550make_float (float_value)
2551 double float_value;
2552{
2553 register Lisp_Object val;
2554
2555 if (float_free_list)
2556 {
2557 /* We use the data field for chaining the free list
2558 so that we won't use the same field that has the mark bit. */
2559 XSETFLOAT (val, float_free_list);
2560 float_free_list = *(struct Lisp_Float **)&float_free_list->data;
2561 }
2562 else
2563 {
2564 if (float_block_index == FLOAT_BLOCK_SIZE)
2565 {
2566 register struct float_block *new;
2567
ab6780cd
SM
2568 new = (struct float_block *) lisp_align_malloc (sizeof *new,
2569 MEM_TYPE_FLOAT);
2e471eb5 2570 new->next = float_block;
a0668126 2571 bzero ((char *) new->gcmarkbits, sizeof new->gcmarkbits);
2e471eb5
GM
2572 float_block = new;
2573 float_block_index = 0;
2574 n_float_blocks++;
2575 }
a0668126
SM
2576 XSETFLOAT (val, &float_block->floats[float_block_index]);
2577 float_block_index++;
2e471eb5 2578 }
177c0ea7 2579
2e471eb5 2580 XFLOAT_DATA (val) = float_value;
a0668126 2581 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2e471eb5
GM
2582 consing_since_gc += sizeof (struct Lisp_Float);
2583 floats_consed++;
2584 return val;
2585}
2586
2e471eb5
GM
2587
2588\f
2589/***********************************************************************
2590 Cons Allocation
2591 ***********************************************************************/
2592
2593/* We store cons cells inside of cons_blocks, allocating a new
2594 cons_block with malloc whenever necessary. Cons cells reclaimed by
2595 GC are put on a free list to be reallocated before allocating
08b7c2cb 2596 any new cons cells from the latest cons_block. */
2e471eb5
GM
2597
2598#define CONS_BLOCK_SIZE \
08b7c2cb
SM
2599 (((BLOCK_BYTES - sizeof (struct cons_block *)) * CHAR_BIT) \
2600 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2601
2602#define CONS_BLOCK(fptr) \
2603 ((struct cons_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2604
2605#define CONS_INDEX(fptr) \
2606 ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2e471eb5
GM
2607
2608struct cons_block
2609{
08b7c2cb 2610 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2e471eb5 2611 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
08b7c2cb
SM
2612 int gcmarkbits[1 + CONS_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2613 struct cons_block *next;
2e471eb5
GM
2614};
2615
08b7c2cb
SM
2616#define CONS_MARKED_P(fptr) \
2617 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2618
2619#define CONS_MARK(fptr) \
2620 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2621
2622#define CONS_UNMARK(fptr) \
2623 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2624
34400008
GM
2625/* Current cons_block. */
2626
2e471eb5 2627struct cons_block *cons_block;
34400008
GM
2628
2629/* Index of first unused Lisp_Cons in the current block. */
2630
2e471eb5
GM
2631int cons_block_index;
2632
34400008
GM
2633/* Free-list of Lisp_Cons structures. */
2634
2e471eb5
GM
2635struct Lisp_Cons *cons_free_list;
2636
2637/* Total number of cons blocks now in use. */
2638
2639int n_cons_blocks;
2640
34400008
GM
2641
2642/* Initialize cons allocation. */
2643
2e471eb5
GM
2644void
2645init_cons ()
2646{
08b7c2cb
SM
2647 cons_block = NULL;
2648 cons_block_index = CONS_BLOCK_SIZE; /* Force alloc of new cons_block. */
2e471eb5 2649 cons_free_list = 0;
08b7c2cb 2650 n_cons_blocks = 0;
2e471eb5
GM
2651}
2652
34400008
GM
2653
2654/* Explicitly free a cons cell by putting it on the free-list. */
2e471eb5
GM
2655
2656void
2657free_cons (ptr)
2658 struct Lisp_Cons *ptr;
2659{
2660 *(struct Lisp_Cons **)&ptr->cdr = cons_free_list;
34400008
GM
2661#if GC_MARK_STACK
2662 ptr->car = Vdead;
2663#endif
2e471eb5
GM
2664 cons_free_list = ptr;
2665}
2666
2667DEFUN ("cons", Fcons, Scons, 2, 2, 0,
a6266d23 2668 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
7ee72033 2669 (car, cdr)
2e471eb5
GM
2670 Lisp_Object car, cdr;
2671{
2672 register Lisp_Object val;
2673
2674 if (cons_free_list)
2675 {
2676 /* We use the cdr for chaining the free list
2677 so that we won't use the same field that has the mark bit. */
2678 XSETCONS (val, cons_free_list);
2679 cons_free_list = *(struct Lisp_Cons **)&cons_free_list->cdr;
2680 }
2681 else
2682 {
2683 if (cons_block_index == CONS_BLOCK_SIZE)
2684 {
2685 register struct cons_block *new;
08b7c2cb
SM
2686 new = (struct cons_block *) lisp_align_malloc (sizeof *new,
2687 MEM_TYPE_CONS);
a0668126 2688 bzero ((char *) new->gcmarkbits, sizeof new->gcmarkbits);
2e471eb5
GM
2689 new->next = cons_block;
2690 cons_block = new;
2691 cons_block_index = 0;
2692 n_cons_blocks++;
2693 }
a0668126
SM
2694 XSETCONS (val, &cons_block->conses[cons_block_index]);
2695 cons_block_index++;
2e471eb5 2696 }
177c0ea7 2697
f3fbd155
KR
2698 XSETCAR (val, car);
2699 XSETCDR (val, cdr);
a0668126 2700 eassert (!CONS_MARKED_P (XCONS (val)));
2e471eb5
GM
2701 consing_since_gc += sizeof (struct Lisp_Cons);
2702 cons_cells_consed++;
2703 return val;
2704}
2705
e3e56238
RS
2706/* Get an error now if there's any junk in the cons free list. */
2707void
2708check_cons_list ()
2709{
212f33f1 2710#ifdef GC_CHECK_CONS_LIST
e3e56238
RS
2711 struct Lisp_Cons *tail = cons_free_list;
2712
e3e56238
RS
2713 while (tail)
2714 tail = *(struct Lisp_Cons **)&tail->cdr;
2715#endif
2716}
34400008 2717
2e471eb5
GM
2718/* Make a list of 2, 3, 4 or 5 specified objects. */
2719
2720Lisp_Object
2721list2 (arg1, arg2)
2722 Lisp_Object arg1, arg2;
2723{
2724 return Fcons (arg1, Fcons (arg2, Qnil));
2725}
2726
34400008 2727
2e471eb5
GM
2728Lisp_Object
2729list3 (arg1, arg2, arg3)
2730 Lisp_Object arg1, arg2, arg3;
2731{
2732 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2733}
2734
34400008 2735
2e471eb5
GM
2736Lisp_Object
2737list4 (arg1, arg2, arg3, arg4)
2738 Lisp_Object arg1, arg2, arg3, arg4;
2739{
2740 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2741}
2742
34400008 2743
2e471eb5
GM
2744Lisp_Object
2745list5 (arg1, arg2, arg3, arg4, arg5)
2746 Lisp_Object arg1, arg2, arg3, arg4, arg5;
2747{
2748 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2749 Fcons (arg5, Qnil)))));
2750}
2751
34400008 2752
2e471eb5 2753DEFUN ("list", Flist, Slist, 0, MANY, 0,
eae936e2 2754 doc: /* Return a newly created list with specified arguments as elements.
ae8e8122
MB
2755Any number of arguments, even zero arguments, are allowed.
2756usage: (list &rest OBJECTS) */)
7ee72033 2757 (nargs, args)
2e471eb5
GM
2758 int nargs;
2759 register Lisp_Object *args;
2760{
2761 register Lisp_Object val;
2762 val = Qnil;
2763
2764 while (nargs > 0)
2765 {
2766 nargs--;
2767 val = Fcons (args[nargs], val);
2768 }
2769 return val;
2770}
2771
34400008 2772
2e471eb5 2773DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
a6266d23 2774 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
7ee72033 2775 (length, init)
2e471eb5
GM
2776 register Lisp_Object length, init;
2777{
2778 register Lisp_Object val;
2779 register int size;
2780
b7826503 2781 CHECK_NATNUM (length);
2e471eb5
GM
2782 size = XFASTINT (length);
2783
2784 val = Qnil;
ce070307
GM
2785 while (size > 0)
2786 {
2787 val = Fcons (init, val);
2788 --size;
2789
2790 if (size > 0)
2791 {
2792 val = Fcons (init, val);
2793 --size;
177c0ea7 2794
ce070307
GM
2795 if (size > 0)
2796 {
2797 val = Fcons (init, val);
2798 --size;
177c0ea7 2799
ce070307
GM
2800 if (size > 0)
2801 {
2802 val = Fcons (init, val);
2803 --size;
177c0ea7 2804
ce070307
GM
2805 if (size > 0)
2806 {
2807 val = Fcons (init, val);
2808 --size;
2809 }
2810 }
2811 }
2812 }
2813
2814 QUIT;
2815 }
177c0ea7 2816
7146af97
JB
2817 return val;
2818}
2e471eb5
GM
2819
2820
7146af97 2821\f
2e471eb5
GM
2822/***********************************************************************
2823 Vector Allocation
2824 ***********************************************************************/
7146af97 2825
34400008
GM
2826/* Singly-linked list of all vectors. */
2827
7146af97
JB
2828struct Lisp_Vector *all_vectors;
2829
2e471eb5
GM
2830/* Total number of vector-like objects now in use. */
2831
c8099634
RS
2832int n_vectors;
2833
34400008
GM
2834
2835/* Value is a pointer to a newly allocated Lisp_Vector structure
2836 with room for LEN Lisp_Objects. */
2837
ece93c02
GM
2838static struct Lisp_Vector *
2839allocate_vectorlike (len, type)
1825c68d 2840 EMACS_INT len;
ece93c02 2841 enum mem_type type;
1825c68d
KH
2842{
2843 struct Lisp_Vector *p;
675d5130 2844 size_t nbytes;
1825c68d 2845
d1658221 2846#ifdef DOUG_LEA_MALLOC
f8608968
GM
2847 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
2848 because mapped region contents are not preserved in
2849 a dumped Emacs. */
de7515d6 2850 BLOCK_INPUT;
d1658221 2851 mallopt (M_MMAP_MAX, 0);
de7515d6 2852 UNBLOCK_INPUT;
d1658221 2853#endif
177c0ea7 2854
34400008 2855 nbytes = sizeof *p + (len - 1) * sizeof p->contents[0];
ece93c02 2856 p = (struct Lisp_Vector *) lisp_malloc (nbytes, type);
177c0ea7 2857
d1658221 2858#ifdef DOUG_LEA_MALLOC
34400008 2859 /* Back to a reasonable maximum of mmap'ed areas. */
de7515d6 2860 BLOCK_INPUT;
81d492d5 2861 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
de7515d6 2862 UNBLOCK_INPUT;
d1658221 2863#endif
177c0ea7 2864
34400008 2865 consing_since_gc += nbytes;
310ea200 2866 vector_cells_consed += len;
1825c68d
KH
2867
2868 p->next = all_vectors;
2869 all_vectors = p;
34400008 2870 ++n_vectors;
1825c68d
KH
2871 return p;
2872}
2873
34400008 2874
ece93c02
GM
2875/* Allocate a vector with NSLOTS slots. */
2876
2877struct Lisp_Vector *
2878allocate_vector (nslots)
2879 EMACS_INT nslots;
2880{
2881 struct Lisp_Vector *v = allocate_vectorlike (nslots, MEM_TYPE_VECTOR);
2882 v->size = nslots;
2883 return v;
2884}
2885
2886
2887/* Allocate other vector-like structures. */
2888
2889struct Lisp_Hash_Table *
2890allocate_hash_table ()
2891{
2892 EMACS_INT len = VECSIZE (struct Lisp_Hash_Table);
2893 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_HASH_TABLE);
2894 EMACS_INT i;
177c0ea7 2895
ece93c02
GM
2896 v->size = len;
2897 for (i = 0; i < len; ++i)
2898 v->contents[i] = Qnil;
177c0ea7 2899
ece93c02
GM
2900 return (struct Lisp_Hash_Table *) v;
2901}
2902
2903
2904struct window *
2905allocate_window ()
2906{
2907 EMACS_INT len = VECSIZE (struct window);
2908 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_WINDOW);
2909 EMACS_INT i;
177c0ea7 2910
ece93c02
GM
2911 for (i = 0; i < len; ++i)
2912 v->contents[i] = Qnil;
2913 v->size = len;
177c0ea7 2914
ece93c02
GM
2915 return (struct window *) v;
2916}
2917
2918
2919struct frame *
2920allocate_frame ()
2921{
2922 EMACS_INT len = VECSIZE (struct frame);
2923 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_FRAME);
2924 EMACS_INT i;
177c0ea7 2925
ece93c02
GM
2926 for (i = 0; i < len; ++i)
2927 v->contents[i] = make_number (0);
2928 v->size = len;
2929 return (struct frame *) v;
2930}
2931
2932
2933struct Lisp_Process *
2934allocate_process ()
2935{
2936 EMACS_INT len = VECSIZE (struct Lisp_Process);
2937 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_PROCESS);
2938 EMACS_INT i;
177c0ea7 2939
ece93c02
GM
2940 for (i = 0; i < len; ++i)
2941 v->contents[i] = Qnil;
2942 v->size = len;
177c0ea7 2943
ece93c02
GM
2944 return (struct Lisp_Process *) v;
2945}
2946
2947
2948struct Lisp_Vector *
2949allocate_other_vector (len)
2950 EMACS_INT len;
2951{
2952 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_VECTOR);
2953 EMACS_INT i;
177c0ea7 2954
ece93c02
GM
2955 for (i = 0; i < len; ++i)
2956 v->contents[i] = Qnil;
2957 v->size = len;
177c0ea7 2958
ece93c02
GM
2959 return v;
2960}
2961
2962
7146af97 2963DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
a6266d23 2964 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
7ee72033
MB
2965See also the function `vector'. */)
2966 (length, init)
7146af97
JB
2967 register Lisp_Object length, init;
2968{
1825c68d
KH
2969 Lisp_Object vector;
2970 register EMACS_INT sizei;
2971 register int index;
7146af97
JB
2972 register struct Lisp_Vector *p;
2973
b7826503 2974 CHECK_NATNUM (length);
c9dad5ed 2975 sizei = XFASTINT (length);
7146af97 2976
ece93c02 2977 p = allocate_vector (sizei);
7146af97
JB
2978 for (index = 0; index < sizei; index++)
2979 p->contents[index] = init;
2980
1825c68d 2981 XSETVECTOR (vector, p);
7146af97
JB
2982 return vector;
2983}
2984
34400008 2985
a59de17b 2986DEFUN ("make-char-table", Fmake_char_table, Smake_char_table, 1, 2, 0,
a6266d23 2987 doc: /* Return a newly created char-table, with purpose PURPOSE.
228299fa
GM
2988Each element is initialized to INIT, which defaults to nil.
2989PURPOSE should be a symbol which has a `char-table-extra-slots' property.
7ee72033
MB
2990The property's value should be an integer between 0 and 10. */)
2991 (purpose, init)
a59de17b 2992 register Lisp_Object purpose, init;
7b07587b
RS
2993{
2994 Lisp_Object vector;
a59de17b 2995 Lisp_Object n;
b7826503 2996 CHECK_SYMBOL (purpose);
0551bde3 2997 n = Fget (purpose, Qchar_table_extra_slots);
b7826503 2998 CHECK_NUMBER (n);
7b07587b
RS
2999 if (XINT (n) < 0 || XINT (n) > 10)
3000 args_out_of_range (n, Qnil);
3001 /* Add 2 to the size for the defalt and parent slots. */
3002 vector = Fmake_vector (make_number (CHAR_TABLE_STANDARD_SLOTS + XINT (n)),
3003 init);
0551bde3 3004 XCHAR_TABLE (vector)->top = Qt;
c96a008c 3005 XCHAR_TABLE (vector)->parent = Qnil;
a59de17b 3006 XCHAR_TABLE (vector)->purpose = purpose;
7b07587b
RS
3007 XSETCHAR_TABLE (vector, XCHAR_TABLE (vector));
3008 return vector;
3009}
3010
34400008 3011
0551bde3
KH
3012/* Return a newly created sub char table with default value DEFALT.
3013 Since a sub char table does not appear as a top level Emacs Lisp
3014 object, we don't need a Lisp interface to make it. */
3015
3016Lisp_Object
3017make_sub_char_table (defalt)
3018 Lisp_Object defalt;
3019{
3020 Lisp_Object vector
3021 = Fmake_vector (make_number (SUB_CHAR_TABLE_STANDARD_SLOTS), Qnil);
3022 XCHAR_TABLE (vector)->top = Qnil;
3023 XCHAR_TABLE (vector)->defalt = defalt;
3024 XSETCHAR_TABLE (vector, XCHAR_TABLE (vector));
3025 return vector;
3026}
3027
34400008 3028
7146af97 3029DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
eae936e2 3030 doc: /* Return a newly created vector with specified arguments as elements.
ae8e8122
MB
3031Any number of arguments, even zero arguments, are allowed.
3032usage: (vector &rest OBJECTS) */)
7ee72033 3033 (nargs, args)
7146af97
JB
3034 register int nargs;
3035 Lisp_Object *args;
3036{
3037 register Lisp_Object len, val;
3038 register int index;
3039 register struct Lisp_Vector *p;
3040
67ba9986 3041 XSETFASTINT (len, nargs);
7146af97
JB
3042 val = Fmake_vector (len, Qnil);
3043 p = XVECTOR (val);
3044 for (index = 0; index < nargs; index++)
3045 p->contents[index] = args[index];
3046 return val;
3047}
3048
34400008 3049
7146af97 3050DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
a6266d23 3051 doc: /* Create a byte-code object with specified arguments as elements.
228299fa
GM
3052The arguments should be the arglist, bytecode-string, constant vector,
3053stack size, (optional) doc string, and (optional) interactive spec.
3054The first four arguments are required; at most six have any
ae8e8122 3055significance.
92cc28b2 3056usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
7ee72033 3057 (nargs, args)
7146af97
JB
3058 register int nargs;
3059 Lisp_Object *args;
3060{
3061 register Lisp_Object len, val;
3062 register int index;
3063 register struct Lisp_Vector *p;
3064
67ba9986 3065 XSETFASTINT (len, nargs);
265a9e55 3066 if (!NILP (Vpurify_flag))
5a053ea9 3067 val = make_pure_vector ((EMACS_INT) nargs);
7146af97
JB
3068 else
3069 val = Fmake_vector (len, Qnil);
9eac9d59
KH
3070
3071 if (STRINGP (args[1]) && STRING_MULTIBYTE (args[1]))
3072 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
3073 earlier because they produced a raw 8-bit string for byte-code
3074 and now such a byte-code string is loaded as multibyte while
3075 raw 8-bit characters converted to multibyte form. Thus, now we
3076 must convert them back to the original unibyte form. */
3077 args[1] = Fstring_as_unibyte (args[1]);
3078
7146af97
JB
3079 p = XVECTOR (val);
3080 for (index = 0; index < nargs; index++)
3081 {
265a9e55 3082 if (!NILP (Vpurify_flag))
7146af97
JB
3083 args[index] = Fpurecopy (args[index]);
3084 p->contents[index] = args[index];
3085 }
50aee051 3086 XSETCOMPILED (val, p);
7146af97
JB
3087 return val;
3088}
2e471eb5 3089
34400008 3090
7146af97 3091\f
2e471eb5
GM
3092/***********************************************************************
3093 Symbol Allocation
3094 ***********************************************************************/
7146af97 3095
2e471eb5
GM
3096/* Each symbol_block is just under 1020 bytes long, since malloc
3097 really allocates in units of powers of two and uses 4 bytes for its
3098 own overhead. */
7146af97
JB
3099
3100#define SYMBOL_BLOCK_SIZE \
3101 ((1020 - sizeof (struct symbol_block *)) / sizeof (struct Lisp_Symbol))
3102
3103struct symbol_block
2e471eb5 3104{
d05b383a 3105 /* Place `symbols' first, to preserve alignment. */
2e471eb5 3106 struct Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
d05b383a 3107 struct symbol_block *next;
2e471eb5 3108};
7146af97 3109
34400008
GM
3110/* Current symbol block and index of first unused Lisp_Symbol
3111 structure in it. */
3112
7146af97
JB
3113struct symbol_block *symbol_block;
3114int symbol_block_index;
3115
34400008
GM
3116/* List of free symbols. */
3117
7146af97
JB
3118struct Lisp_Symbol *symbol_free_list;
3119
c8099634 3120/* Total number of symbol blocks now in use. */
2e471eb5 3121
c8099634
RS
3122int n_symbol_blocks;
3123
34400008
GM
3124
3125/* Initialize symbol allocation. */
3126
7146af97
JB
3127void
3128init_symbol ()
3129{
0930c1a1
SM
3130 symbol_block = NULL;
3131 symbol_block_index = SYMBOL_BLOCK_SIZE;
7146af97 3132 symbol_free_list = 0;
0930c1a1 3133 n_symbol_blocks = 0;
7146af97
JB
3134}
3135
34400008 3136
7146af97 3137DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
a6266d23 3138 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
7ee72033
MB
3139Its value and function definition are void, and its property list is nil. */)
3140 (name)
54ee42dd 3141 Lisp_Object name;
7146af97
JB
3142{
3143 register Lisp_Object val;
3144 register struct Lisp_Symbol *p;
3145
b7826503 3146 CHECK_STRING (name);
7146af97
JB
3147
3148 if (symbol_free_list)
3149 {
45d12a89 3150 XSETSYMBOL (val, symbol_free_list);
85481507 3151 symbol_free_list = *(struct Lisp_Symbol **)&symbol_free_list->value;
7146af97
JB
3152 }
3153 else
3154 {
3155 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
3156 {
3c06d205 3157 struct symbol_block *new;
34400008
GM
3158 new = (struct symbol_block *) lisp_malloc (sizeof *new,
3159 MEM_TYPE_SYMBOL);
7146af97
JB
3160 new->next = symbol_block;
3161 symbol_block = new;
3162 symbol_block_index = 0;
c8099634 3163 n_symbol_blocks++;
7146af97 3164 }
a0668126
SM
3165 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index]);
3166 symbol_block_index++;
7146af97 3167 }
177c0ea7 3168
7146af97 3169 p = XSYMBOL (val);
8fe5665d 3170 p->xname = name;
7146af97 3171 p->plist = Qnil;
2e471eb5
GM
3172 p->value = Qunbound;
3173 p->function = Qunbound;
9e713715 3174 p->next = NULL;
2336fe58 3175 p->gcmarkbit = 0;
9e713715
GM
3176 p->interned = SYMBOL_UNINTERNED;
3177 p->constant = 0;
3178 p->indirect_variable = 0;
2e471eb5
GM
3179 consing_since_gc += sizeof (struct Lisp_Symbol);
3180 symbols_consed++;
7146af97
JB
3181 return val;
3182}
3183
3f25e183 3184
2e471eb5
GM
3185\f
3186/***********************************************************************
34400008 3187 Marker (Misc) Allocation
2e471eb5 3188 ***********************************************************************/
3f25e183 3189
2e471eb5
GM
3190/* Allocation of markers and other objects that share that structure.
3191 Works like allocation of conses. */
c0696668 3192
2e471eb5
GM
3193#define MARKER_BLOCK_SIZE \
3194 ((1020 - sizeof (struct marker_block *)) / sizeof (union Lisp_Misc))
3195
3196struct marker_block
c0696668 3197{
d05b383a 3198 /* Place `markers' first, to preserve alignment. */
2e471eb5 3199 union Lisp_Misc markers[MARKER_BLOCK_SIZE];
d05b383a 3200 struct marker_block *next;
2e471eb5 3201};
c0696668 3202
2e471eb5
GM
3203struct marker_block *marker_block;
3204int marker_block_index;
c0696668 3205
2e471eb5 3206union Lisp_Misc *marker_free_list;
c0696668 3207
2e471eb5 3208/* Total number of marker blocks now in use. */
3f25e183 3209
2e471eb5
GM
3210int n_marker_blocks;
3211
3212void
3213init_marker ()
3f25e183 3214{
0930c1a1
SM
3215 marker_block = NULL;
3216 marker_block_index = MARKER_BLOCK_SIZE;
2e471eb5 3217 marker_free_list = 0;
0930c1a1 3218 n_marker_blocks = 0;
3f25e183
RS
3219}
3220
2e471eb5
GM
3221/* Return a newly allocated Lisp_Misc object, with no substructure. */
3222
3f25e183 3223Lisp_Object
2e471eb5 3224allocate_misc ()
7146af97 3225{
2e471eb5 3226 Lisp_Object val;
7146af97 3227
2e471eb5 3228 if (marker_free_list)
7146af97 3229 {
2e471eb5
GM
3230 XSETMISC (val, marker_free_list);
3231 marker_free_list = marker_free_list->u_free.chain;
7146af97
JB
3232 }
3233 else
7146af97 3234 {
2e471eb5
GM
3235 if (marker_block_index == MARKER_BLOCK_SIZE)
3236 {
3237 struct marker_block *new;
34400008
GM
3238 new = (struct marker_block *) lisp_malloc (sizeof *new,
3239 MEM_TYPE_MISC);
2e471eb5
GM
3240 new->next = marker_block;
3241 marker_block = new;
3242 marker_block_index = 0;
3243 n_marker_blocks++;
7b7990cc 3244 total_free_markers += MARKER_BLOCK_SIZE;
2e471eb5 3245 }
a0668126
SM
3246 XSETMISC (val, &marker_block->markers[marker_block_index]);
3247 marker_block_index++;
7146af97 3248 }
177c0ea7 3249
7b7990cc 3250 --total_free_markers;
2e471eb5
GM
3251 consing_since_gc += sizeof (union Lisp_Misc);
3252 misc_objects_consed++;
2336fe58 3253 XMARKER (val)->gcmarkbit = 0;
2e471eb5
GM
3254 return val;
3255}
3256
7b7990cc
KS
3257/* Free a Lisp_Misc object */
3258
3259void
3260free_misc (misc)
3261 Lisp_Object misc;
3262{
3263 XMISC (misc)->u_marker.type = Lisp_Misc_Free;
3264 XMISC (misc)->u_free.chain = marker_free_list;
3265 marker_free_list = XMISC (misc);
3266
3267 total_free_markers++;
3268}
3269
42172a6b
RS
3270/* Return a Lisp_Misc_Save_Value object containing POINTER and
3271 INTEGER. This is used to package C values to call record_unwind_protect.
3272 The unwind function can get the C values back using XSAVE_VALUE. */
3273
3274Lisp_Object
3275make_save_value (pointer, integer)
3276 void *pointer;
3277 int integer;
3278{
3279 register Lisp_Object val;
3280 register struct Lisp_Save_Value *p;
3281
3282 val = allocate_misc ();
3283 XMISCTYPE (val) = Lisp_Misc_Save_Value;
3284 p = XSAVE_VALUE (val);
3285 p->pointer = pointer;
3286 p->integer = integer;
b766f870 3287 p->dogc = 0;
42172a6b
RS
3288 return val;
3289}
3290
2e471eb5 3291DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
a6266d23 3292 doc: /* Return a newly allocated marker which does not point at any place. */)
7ee72033 3293 ()
2e471eb5
GM
3294{
3295 register Lisp_Object val;
3296 register struct Lisp_Marker *p;
7146af97 3297
2e471eb5
GM
3298 val = allocate_misc ();
3299 XMISCTYPE (val) = Lisp_Misc_Marker;
3300 p = XMARKER (val);
3301 p->buffer = 0;
3302 p->bytepos = 0;
3303 p->charpos = 0;
ef89c2ce 3304 p->next = NULL;
2e471eb5 3305 p->insertion_type = 0;
7146af97
JB
3306 return val;
3307}
2e471eb5
GM
3308
3309/* Put MARKER back on the free list after using it temporarily. */
3310
3311void
3312free_marker (marker)
3313 Lisp_Object marker;
3314{
ef89c2ce 3315 unchain_marker (XMARKER (marker));
7b7990cc 3316 free_misc (marker);
2e471eb5
GM
3317}
3318
c0696668 3319\f
7146af97 3320/* Return a newly created vector or string with specified arguments as
736471d1
RS
3321 elements. If all the arguments are characters that can fit
3322 in a string of events, make a string; otherwise, make a vector.
3323
3324 Any number of arguments, even zero arguments, are allowed. */
7146af97
JB
3325
3326Lisp_Object
736471d1 3327make_event_array (nargs, args)
7146af97
JB
3328 register int nargs;
3329 Lisp_Object *args;
3330{
3331 int i;
3332
3333 for (i = 0; i < nargs; i++)
736471d1 3334 /* The things that fit in a string
c9ca4659
RS
3335 are characters that are in 0...127,
3336 after discarding the meta bit and all the bits above it. */
e687453f 3337 if (!INTEGERP (args[i])
c9ca4659 3338 || (XUINT (args[i]) & ~(-CHAR_META)) >= 0200)
7146af97
JB
3339 return Fvector (nargs, args);
3340
3341 /* Since the loop exited, we know that all the things in it are
3342 characters, so we can make a string. */
3343 {
c13ccad2 3344 Lisp_Object result;
177c0ea7 3345
50aee051 3346 result = Fmake_string (make_number (nargs), make_number (0));
7146af97 3347 for (i = 0; i < nargs; i++)
736471d1 3348 {
46e7e6b0 3349 SSET (result, i, XINT (args[i]));
736471d1
RS
3350 /* Move the meta bit to the right place for a string char. */
3351 if (XINT (args[i]) & CHAR_META)
46e7e6b0 3352 SSET (result, i, SREF (result, i) | 0x80);
736471d1 3353 }
177c0ea7 3354
7146af97
JB
3355 return result;
3356 }
3357}
2e471eb5
GM
3358
3359
7146af97 3360\f
34400008
GM
3361/************************************************************************
3362 C Stack Marking
3363 ************************************************************************/
3364
13c844fb
GM
3365#if GC_MARK_STACK || defined GC_MALLOC_CHECK
3366
71cf5fa0
GM
3367/* Conservative C stack marking requires a method to identify possibly
3368 live Lisp objects given a pointer value. We do this by keeping
3369 track of blocks of Lisp data that are allocated in a red-black tree
3370 (see also the comment of mem_node which is the type of nodes in
3371 that tree). Function lisp_malloc adds information for an allocated
3372 block to the red-black tree with calls to mem_insert, and function
3373 lisp_free removes it with mem_delete. Functions live_string_p etc
3374 call mem_find to lookup information about a given pointer in the
3375 tree, and use that to determine if the pointer points to a Lisp
3376 object or not. */
3377
34400008
GM
3378/* Initialize this part of alloc.c. */
3379
3380static void
3381mem_init ()
3382{
3383 mem_z.left = mem_z.right = MEM_NIL;
3384 mem_z.parent = NULL;
3385 mem_z.color = MEM_BLACK;
3386 mem_z.start = mem_z.end = NULL;
3387 mem_root = MEM_NIL;
3388}
3389
3390
3391/* Value is a pointer to the mem_node containing START. Value is
3392 MEM_NIL if there is no node in the tree containing START. */
3393
3394static INLINE struct mem_node *
3395mem_find (start)
3396 void *start;
3397{
3398 struct mem_node *p;
3399
ece93c02
GM
3400 if (start < min_heap_address || start > max_heap_address)
3401 return MEM_NIL;
3402
34400008
GM
3403 /* Make the search always successful to speed up the loop below. */
3404 mem_z.start = start;
3405 mem_z.end = (char *) start + 1;
3406
3407 p = mem_root;
3408 while (start < p->start || start >= p->end)
3409 p = start < p->start ? p->left : p->right;
3410 return p;
3411}
3412
3413
3414/* Insert a new node into the tree for a block of memory with start
3415 address START, end address END, and type TYPE. Value is a
3416 pointer to the node that was inserted. */
3417
3418static struct mem_node *
3419mem_insert (start, end, type)
3420 void *start, *end;
3421 enum mem_type type;
3422{
3423 struct mem_node *c, *parent, *x;
3424
ece93c02
GM
3425 if (start < min_heap_address)
3426 min_heap_address = start;
3427 if (end > max_heap_address)
3428 max_heap_address = end;
3429
34400008
GM
3430 /* See where in the tree a node for START belongs. In this
3431 particular application, it shouldn't happen that a node is already
3432 present. For debugging purposes, let's check that. */
3433 c = mem_root;
3434 parent = NULL;
3435
3436#if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
177c0ea7 3437
34400008
GM
3438 while (c != MEM_NIL)
3439 {
3440 if (start >= c->start && start < c->end)
3441 abort ();
3442 parent = c;
3443 c = start < c->start ? c->left : c->right;
3444 }
177c0ea7 3445
34400008 3446#else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
177c0ea7 3447
34400008
GM
3448 while (c != MEM_NIL)
3449 {
3450 parent = c;
3451 c = start < c->start ? c->left : c->right;
3452 }
177c0ea7 3453
34400008
GM
3454#endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3455
3456 /* Create a new node. */
877935b1
GM
3457#ifdef GC_MALLOC_CHECK
3458 x = (struct mem_node *) _malloc_internal (sizeof *x);
3459 if (x == NULL)
3460 abort ();
3461#else
34400008 3462 x = (struct mem_node *) xmalloc (sizeof *x);
877935b1 3463#endif
34400008
GM
3464 x->start = start;
3465 x->end = end;
3466 x->type = type;
3467 x->parent = parent;
3468 x->left = x->right = MEM_NIL;
3469 x->color = MEM_RED;
3470
3471 /* Insert it as child of PARENT or install it as root. */
3472 if (parent)
3473 {
3474 if (start < parent->start)
3475 parent->left = x;
3476 else
3477 parent->right = x;
3478 }
177c0ea7 3479 else
34400008
GM
3480 mem_root = x;
3481
3482 /* Re-establish red-black tree properties. */
3483 mem_insert_fixup (x);
877935b1 3484
34400008
GM
3485 return x;
3486}
3487
3488
3489/* Re-establish the red-black properties of the tree, and thereby
3490 balance the tree, after node X has been inserted; X is always red. */
3491
3492static void
3493mem_insert_fixup (x)
3494 struct mem_node *x;
3495{
3496 while (x != mem_root && x->parent->color == MEM_RED)
3497 {
3498 /* X is red and its parent is red. This is a violation of
3499 red-black tree property #3. */
177c0ea7 3500
34400008
GM
3501 if (x->parent == x->parent->parent->left)
3502 {
3503 /* We're on the left side of our grandparent, and Y is our
3504 "uncle". */
3505 struct mem_node *y = x->parent->parent->right;
177c0ea7 3506
34400008
GM
3507 if (y->color == MEM_RED)
3508 {
3509 /* Uncle and parent are red but should be black because
3510 X is red. Change the colors accordingly and proceed
3511 with the grandparent. */
3512 x->parent->color = MEM_BLACK;
3513 y->color = MEM_BLACK;
3514 x->parent->parent->color = MEM_RED;
3515 x = x->parent->parent;
3516 }
3517 else
3518 {
3519 /* Parent and uncle have different colors; parent is
3520 red, uncle is black. */
3521 if (x == x->parent->right)
3522 {
3523 x = x->parent;
3524 mem_rotate_left (x);
3525 }
3526
3527 x->parent->color = MEM_BLACK;
3528 x->parent->parent->color = MEM_RED;
3529 mem_rotate_right (x->parent->parent);
3530 }
3531 }
3532 else
3533 {
3534 /* This is the symmetrical case of above. */
3535 struct mem_node *y = x->parent->parent->left;
177c0ea7 3536
34400008
GM
3537 if (y->color == MEM_RED)
3538 {
3539 x->parent->color = MEM_BLACK;
3540 y->color = MEM_BLACK;
3541 x->parent->parent->color = MEM_RED;
3542 x = x->parent->parent;
3543 }
3544 else
3545 {
3546 if (x == x->parent->left)
3547 {
3548 x = x->parent;
3549 mem_rotate_right (x);
3550 }
177c0ea7 3551
34400008
GM
3552 x->parent->color = MEM_BLACK;
3553 x->parent->parent->color = MEM_RED;
3554 mem_rotate_left (x->parent->parent);
3555 }
3556 }
3557 }
3558
3559 /* The root may have been changed to red due to the algorithm. Set
3560 it to black so that property #5 is satisfied. */
3561 mem_root->color = MEM_BLACK;
3562}
3563
3564
177c0ea7
JB
3565/* (x) (y)
3566 / \ / \
34400008
GM
3567 a (y) ===> (x) c
3568 / \ / \
3569 b c a b */
3570
3571static void
3572mem_rotate_left (x)
3573 struct mem_node *x;
3574{
3575 struct mem_node *y;
3576
3577 /* Turn y's left sub-tree into x's right sub-tree. */
3578 y = x->right;
3579 x->right = y->left;
3580 if (y->left != MEM_NIL)
3581 y->left->parent = x;
3582
3583 /* Y's parent was x's parent. */
3584 if (y != MEM_NIL)
3585 y->parent = x->parent;
3586
3587 /* Get the parent to point to y instead of x. */
3588 if (x->parent)
3589 {
3590 if (x == x->parent->left)
3591 x->parent->left = y;
3592 else
3593 x->parent->right = y;
3594 }
3595 else
3596 mem_root = y;
3597
3598 /* Put x on y's left. */
3599 y->left = x;
3600 if (x != MEM_NIL)
3601 x->parent = y;
3602}
3603
3604
177c0ea7
JB
3605/* (x) (Y)
3606 / \ / \
3607 (y) c ===> a (x)
3608 / \ / \
34400008
GM
3609 a b b c */
3610
3611static void
3612mem_rotate_right (x)
3613 struct mem_node *x;
3614{
3615 struct mem_node *y = x->left;
3616
3617 x->left = y->right;
3618 if (y->right != MEM_NIL)
3619 y->right->parent = x;
177c0ea7 3620
34400008
GM
3621 if (y != MEM_NIL)
3622 y->parent = x->parent;
3623 if (x->parent)
3624 {
3625 if (x == x->parent->right)
3626 x->parent->right = y;
3627 else
3628 x->parent->left = y;
3629 }
3630 else
3631 mem_root = y;
177c0ea7 3632
34400008
GM
3633 y->right = x;
3634 if (x != MEM_NIL)
3635 x->parent = y;
3636}
3637
3638
3639/* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
3640
3641static void
3642mem_delete (z)
3643 struct mem_node *z;
3644{
3645 struct mem_node *x, *y;
3646
3647 if (!z || z == MEM_NIL)
3648 return;
3649
3650 if (z->left == MEM_NIL || z->right == MEM_NIL)
3651 y = z;
3652 else
3653 {
3654 y = z->right;
3655 while (y->left != MEM_NIL)
3656 y = y->left;
3657 }
3658
3659 if (y->left != MEM_NIL)
3660 x = y->left;
3661 else
3662 x = y->right;
3663
3664 x->parent = y->parent;
3665 if (y->parent)
3666 {
3667 if (y == y->parent->left)
3668 y->parent->left = x;
3669 else
3670 y->parent->right = x;
3671 }
3672 else
3673 mem_root = x;
3674
3675 if (y != z)
3676 {
3677 z->start = y->start;
3678 z->end = y->end;
3679 z->type = y->type;
3680 }
177c0ea7 3681
34400008
GM
3682 if (y->color == MEM_BLACK)
3683 mem_delete_fixup (x);
877935b1
GM
3684
3685#ifdef GC_MALLOC_CHECK
3686 _free_internal (y);
3687#else
34400008 3688 xfree (y);
877935b1 3689#endif
34400008
GM
3690}
3691
3692
3693/* Re-establish the red-black properties of the tree, after a
3694 deletion. */
3695
3696static void
3697mem_delete_fixup (x)
3698 struct mem_node *x;
3699{
3700 while (x != mem_root && x->color == MEM_BLACK)
3701 {
3702 if (x == x->parent->left)
3703 {
3704 struct mem_node *w = x->parent->right;
177c0ea7 3705
34400008
GM
3706 if (w->color == MEM_RED)
3707 {
3708 w->color = MEM_BLACK;
3709 x->parent->color = MEM_RED;
3710 mem_rotate_left (x->parent);
3711 w = x->parent->right;
3712 }
177c0ea7 3713
34400008
GM
3714 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
3715 {
3716 w->color = MEM_RED;
3717 x = x->parent;
3718 }
3719 else
3720 {
3721 if (w->right->color == MEM_BLACK)
3722 {
3723 w->left->color = MEM_BLACK;
3724 w->color = MEM_RED;
3725 mem_rotate_right (w);
3726 w = x->parent->right;
3727 }
3728 w->color = x->parent->color;
3729 x->parent->color = MEM_BLACK;
3730 w->right->color = MEM_BLACK;
3731 mem_rotate_left (x->parent);
3732 x = mem_root;
3733 }
3734 }
3735 else
3736 {
3737 struct mem_node *w = x->parent->left;
177c0ea7 3738
34400008
GM
3739 if (w->color == MEM_RED)
3740 {
3741 w->color = MEM_BLACK;
3742 x->parent->color = MEM_RED;
3743 mem_rotate_right (x->parent);
3744 w = x->parent->left;
3745 }
177c0ea7 3746
34400008
GM
3747 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
3748 {
3749 w->color = MEM_RED;
3750 x = x->parent;
3751 }
3752 else
3753 {
3754 if (w->left->color == MEM_BLACK)
3755 {
3756 w->right->color = MEM_BLACK;
3757 w->color = MEM_RED;
3758 mem_rotate_left (w);
3759 w = x->parent->left;
3760 }
177c0ea7 3761
34400008
GM
3762 w->color = x->parent->color;
3763 x->parent->color = MEM_BLACK;
3764 w->left->color = MEM_BLACK;
3765 mem_rotate_right (x->parent);
3766 x = mem_root;
3767 }
3768 }
3769 }
177c0ea7 3770
34400008
GM
3771 x->color = MEM_BLACK;
3772}
3773
3774
3775/* Value is non-zero if P is a pointer to a live Lisp string on
3776 the heap. M is a pointer to the mem_block for P. */
3777
3778static INLINE int
3779live_string_p (m, p)
3780 struct mem_node *m;
3781 void *p;
3782{
3783 if (m->type == MEM_TYPE_STRING)
3784 {
3785 struct string_block *b = (struct string_block *) m->start;
3786 int offset = (char *) p - (char *) &b->strings[0];
3787
3788 /* P must point to the start of a Lisp_String structure, and it
3789 must not be on the free-list. */
176bc847
GM
3790 return (offset >= 0
3791 && offset % sizeof b->strings[0] == 0
d05b383a 3792 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
34400008
GM
3793 && ((struct Lisp_String *) p)->data != NULL);
3794 }
3795 else
3796 return 0;
3797}
3798
3799
3800/* Value is non-zero if P is a pointer to a live Lisp cons on
3801 the heap. M is a pointer to the mem_block for P. */
3802
3803static INLINE int
3804live_cons_p (m, p)
3805 struct mem_node *m;
3806 void *p;
3807{
3808 if (m->type == MEM_TYPE_CONS)
3809 {
3810 struct cons_block *b = (struct cons_block *) m->start;
3811 int offset = (char *) p - (char *) &b->conses[0];
3812
3813 /* P must point to the start of a Lisp_Cons, not be
3814 one of the unused cells in the current cons block,
3815 and not be on the free-list. */
176bc847
GM
3816 return (offset >= 0
3817 && offset % sizeof b->conses[0] == 0
d05b383a 3818 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
34400008
GM
3819 && (b != cons_block
3820 || offset / sizeof b->conses[0] < cons_block_index)
3821 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
3822 }
3823 else
3824 return 0;
3825}
3826
3827
3828/* Value is non-zero if P is a pointer to a live Lisp symbol on
3829 the heap. M is a pointer to the mem_block for P. */
3830
3831static INLINE int
3832live_symbol_p (m, p)
3833 struct mem_node *m;
3834 void *p;
3835{
3836 if (m->type == MEM_TYPE_SYMBOL)
3837 {
3838 struct symbol_block *b = (struct symbol_block *) m->start;
3839 int offset = (char *) p - (char *) &b->symbols[0];
177c0ea7 3840
34400008
GM
3841 /* P must point to the start of a Lisp_Symbol, not be
3842 one of the unused cells in the current symbol block,
3843 and not be on the free-list. */
176bc847
GM
3844 return (offset >= 0
3845 && offset % sizeof b->symbols[0] == 0
d05b383a 3846 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
34400008
GM
3847 && (b != symbol_block
3848 || offset / sizeof b->symbols[0] < symbol_block_index)
3849 && !EQ (((struct Lisp_Symbol *) p)->function, Vdead));
3850 }
3851 else
3852 return 0;
3853}
3854
3855
3856/* Value is non-zero if P is a pointer to a live Lisp float on
3857 the heap. M is a pointer to the mem_block for P. */
3858
3859static INLINE int
3860live_float_p (m, p)
3861 struct mem_node *m;
3862 void *p;
3863{
3864 if (m->type == MEM_TYPE_FLOAT)
3865 {
3866 struct float_block *b = (struct float_block *) m->start;
3867 int offset = (char *) p - (char *) &b->floats[0];
177c0ea7 3868
ab6780cd
SM
3869 /* P must point to the start of a Lisp_Float and not be
3870 one of the unused cells in the current float block. */
176bc847
GM
3871 return (offset >= 0
3872 && offset % sizeof b->floats[0] == 0
d05b383a 3873 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
34400008 3874 && (b != float_block
ab6780cd 3875 || offset / sizeof b->floats[0] < float_block_index));
34400008
GM
3876 }
3877 else
3878 return 0;
3879}
3880
3881
3882/* Value is non-zero if P is a pointer to a live Lisp Misc on
3883 the heap. M is a pointer to the mem_block for P. */
3884
3885static INLINE int
3886live_misc_p (m, p)
3887 struct mem_node *m;
3888 void *p;
3889{
3890 if (m->type == MEM_TYPE_MISC)
3891 {
3892 struct marker_block *b = (struct marker_block *) m->start;
3893 int offset = (char *) p - (char *) &b->markers[0];
177c0ea7 3894
34400008
GM
3895 /* P must point to the start of a Lisp_Misc, not be
3896 one of the unused cells in the current misc block,
3897 and not be on the free-list. */
176bc847
GM
3898 return (offset >= 0
3899 && offset % sizeof b->markers[0] == 0
d05b383a 3900 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
34400008
GM
3901 && (b != marker_block
3902 || offset / sizeof b->markers[0] < marker_block_index)
3903 && ((union Lisp_Misc *) p)->u_marker.type != Lisp_Misc_Free);
3904 }
3905 else
3906 return 0;
3907}
3908
3909
3910/* Value is non-zero if P is a pointer to a live vector-like object.
3911 M is a pointer to the mem_block for P. */
3912
3913static INLINE int
3914live_vector_p (m, p)
3915 struct mem_node *m;
3916 void *p;
3917{
ece93c02
GM
3918 return (p == m->start
3919 && m->type >= MEM_TYPE_VECTOR
3920 && m->type <= MEM_TYPE_WINDOW);
34400008
GM
3921}
3922
3923
2336fe58 3924/* Value is non-zero if P is a pointer to a live buffer. M is a
34400008
GM
3925 pointer to the mem_block for P. */
3926
3927static INLINE int
3928live_buffer_p (m, p)
3929 struct mem_node *m;
3930 void *p;
3931{
3932 /* P must point to the start of the block, and the buffer
3933 must not have been killed. */
3934 return (m->type == MEM_TYPE_BUFFER
3935 && p == m->start
3936 && !NILP (((struct buffer *) p)->name));
3937}
3938
13c844fb
GM
3939#endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
3940
3941#if GC_MARK_STACK
3942
34400008
GM
3943#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3944
3945/* Array of objects that are kept alive because the C stack contains
3946 a pattern that looks like a reference to them . */
3947
3948#define MAX_ZOMBIES 10
3949static Lisp_Object zombies[MAX_ZOMBIES];
3950
3951/* Number of zombie objects. */
3952
3953static int nzombies;
3954
3955/* Number of garbage collections. */
3956
3957static int ngcs;
3958
3959/* Average percentage of zombies per collection. */
3960
3961static double avg_zombies;
3962
3963/* Max. number of live and zombie objects. */
3964
3965static int max_live, max_zombies;
3966
3967/* Average number of live objects per GC. */
3968
3969static double avg_live;
3970
3971DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
7ee72033
MB
3972 doc: /* Show information about live and zombie objects. */)
3973 ()
34400008 3974{
83fc9c63
DL
3975 Lisp_Object args[8], zombie_list = Qnil;
3976 int i;
3977 for (i = 0; i < nzombies; i++)
3978 zombie_list = Fcons (zombies[i], zombie_list);
3979 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
34400008
GM
3980 args[1] = make_number (ngcs);
3981 args[2] = make_float (avg_live);
3982 args[3] = make_float (avg_zombies);
3983 args[4] = make_float (avg_zombies / avg_live / 100);
3984 args[5] = make_number (max_live);
3985 args[6] = make_number (max_zombies);
83fc9c63
DL
3986 args[7] = zombie_list;
3987 return Fmessage (8, args);
34400008
GM
3988}
3989
3990#endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
3991
3992
182ff242
GM
3993/* Mark OBJ if we can prove it's a Lisp_Object. */
3994
3995static INLINE void
3996mark_maybe_object (obj)
3997 Lisp_Object obj;
3998{
3999 void *po = (void *) XPNTR (obj);
4000 struct mem_node *m = mem_find (po);
177c0ea7 4001
182ff242
GM
4002 if (m != MEM_NIL)
4003 {
4004 int mark_p = 0;
4005
4006 switch (XGCTYPE (obj))
4007 {
4008 case Lisp_String:
4009 mark_p = (live_string_p (m, po)
4010 && !STRING_MARKED_P ((struct Lisp_String *) po));
4011 break;
4012
4013 case Lisp_Cons:
08b7c2cb 4014 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
182ff242
GM
4015 break;
4016
4017 case Lisp_Symbol:
2336fe58 4018 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
182ff242
GM
4019 break;
4020
4021 case Lisp_Float:
ab6780cd 4022 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
182ff242
GM
4023 break;
4024
4025 case Lisp_Vectorlike:
4026 /* Note: can't check GC_BUFFERP before we know it's a
4027 buffer because checking that dereferences the pointer
4028 PO which might point anywhere. */
4029 if (live_vector_p (m, po))
3ef06d12 4030 mark_p = !GC_SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
182ff242 4031 else if (live_buffer_p (m, po))
3ef06d12 4032 mark_p = GC_BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
182ff242
GM
4033 break;
4034
4035 case Lisp_Misc:
2336fe58 4036 mark_p = (live_misc_p (m, po) && !XMARKER (obj)->gcmarkbit);
182ff242 4037 break;
6bbd7a29
GM
4038
4039 case Lisp_Int:
31d929e5 4040 case Lisp_Type_Limit:
6bbd7a29 4041 break;
182ff242
GM
4042 }
4043
4044 if (mark_p)
4045 {
4046#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4047 if (nzombies < MAX_ZOMBIES)
83fc9c63 4048 zombies[nzombies] = obj;
182ff242
GM
4049 ++nzombies;
4050#endif
49723c04 4051 mark_object (obj);
182ff242
GM
4052 }
4053 }
4054}
ece93c02
GM
4055
4056
4057/* If P points to Lisp data, mark that as live if it isn't already
4058 marked. */
4059
4060static INLINE void
4061mark_maybe_pointer (p)
4062 void *p;
4063{
4064 struct mem_node *m;
4065
4066 /* Quickly rule out some values which can't point to Lisp data. We
4067 assume that Lisp data is aligned on even addresses. */
4068 if ((EMACS_INT) p & 1)
4069 return;
177c0ea7 4070
ece93c02
GM
4071 m = mem_find (p);
4072 if (m != MEM_NIL)
4073 {
4074 Lisp_Object obj = Qnil;
177c0ea7 4075
ece93c02
GM
4076 switch (m->type)
4077 {
4078 case MEM_TYPE_NON_LISP:
2fe50224 4079 /* Nothing to do; not a pointer to Lisp memory. */
ece93c02 4080 break;
177c0ea7 4081
ece93c02 4082 case MEM_TYPE_BUFFER:
3ef06d12 4083 if (live_buffer_p (m, p) && !VECTOR_MARKED_P((struct buffer *)p))
ece93c02
GM
4084 XSETVECTOR (obj, p);
4085 break;
177c0ea7 4086
ece93c02 4087 case MEM_TYPE_CONS:
08b7c2cb 4088 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
ece93c02
GM
4089 XSETCONS (obj, p);
4090 break;
177c0ea7 4091
ece93c02
GM
4092 case MEM_TYPE_STRING:
4093 if (live_string_p (m, p)
4094 && !STRING_MARKED_P ((struct Lisp_String *) p))
4095 XSETSTRING (obj, p);
4096 break;
4097
4098 case MEM_TYPE_MISC:
2336fe58
SM
4099 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
4100 XSETMISC (obj, p);
ece93c02 4101 break;
177c0ea7 4102
ece93c02 4103 case MEM_TYPE_SYMBOL:
2336fe58 4104 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
ece93c02
GM
4105 XSETSYMBOL (obj, p);
4106 break;
177c0ea7 4107
ece93c02 4108 case MEM_TYPE_FLOAT:
ab6780cd 4109 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
ece93c02
GM
4110 XSETFLOAT (obj, p);
4111 break;
177c0ea7 4112
ece93c02
GM
4113 case MEM_TYPE_VECTOR:
4114 case MEM_TYPE_PROCESS:
4115 case MEM_TYPE_HASH_TABLE:
4116 case MEM_TYPE_FRAME:
4117 case MEM_TYPE_WINDOW:
4118 if (live_vector_p (m, p))
4119 {
4120 Lisp_Object tem;
4121 XSETVECTOR (tem, p);
3ef06d12 4122 if (!GC_SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
ece93c02
GM
4123 obj = tem;
4124 }
4125 break;
4126
4127 default:
4128 abort ();
4129 }
4130
4131 if (!GC_NILP (obj))
49723c04 4132 mark_object (obj);
ece93c02
GM
4133 }
4134}
4135
4136
4137/* Mark Lisp objects referenced from the address range START..END. */
34400008 4138
177c0ea7 4139static void
34400008
GM
4140mark_memory (start, end)
4141 void *start, *end;
4142{
4143 Lisp_Object *p;
ece93c02 4144 void **pp;
34400008
GM
4145
4146#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4147 nzombies = 0;
4148#endif
4149
4150 /* Make START the pointer to the start of the memory region,
4151 if it isn't already. */
4152 if (end < start)
4153 {
4154 void *tem = start;
4155 start = end;
4156 end = tem;
4157 }
ece93c02
GM
4158
4159 /* Mark Lisp_Objects. */
34400008 4160 for (p = (Lisp_Object *) start; (void *) p < end; ++p)
182ff242 4161 mark_maybe_object (*p);
ece93c02
GM
4162
4163 /* Mark Lisp data pointed to. This is necessary because, in some
4164 situations, the C compiler optimizes Lisp objects away, so that
4165 only a pointer to them remains. Example:
4166
4167 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
7ee72033 4168 ()
ece93c02
GM
4169 {
4170 Lisp_Object obj = build_string ("test");
4171 struct Lisp_String *s = XSTRING (obj);
4172 Fgarbage_collect ();
4173 fprintf (stderr, "test `%s'\n", s->data);
4174 return Qnil;
4175 }
4176
4177 Here, `obj' isn't really used, and the compiler optimizes it
4178 away. The only reference to the life string is through the
4179 pointer `s'. */
177c0ea7 4180
ece93c02
GM
4181 for (pp = (void **) start; (void *) pp < end; ++pp)
4182 mark_maybe_pointer (*pp);
182ff242
GM
4183}
4184
30f637f8
DL
4185/* setjmp will work with GCC unless NON_SAVING_SETJMP is defined in
4186 the GCC system configuration. In gcc 3.2, the only systems for
4187 which this is so are i386-sco5 non-ELF, i386-sysv3 (maybe included
4188 by others?) and ns32k-pc532-min. */
182ff242
GM
4189
4190#if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4191
4192static int setjmp_tested_p, longjmps_done;
4193
4194#define SETJMP_WILL_LIKELY_WORK "\
4195\n\
4196Emacs garbage collector has been changed to use conservative stack\n\
4197marking. Emacs has determined that the method it uses to do the\n\
4198marking will likely work on your system, but this isn't sure.\n\
4199\n\
4200If you are a system-programmer, or can get the help of a local wizard\n\
4201who is, please take a look at the function mark_stack in alloc.c, and\n\
4202verify that the methods used are appropriate for your system.\n\
4203\n\
d191623b 4204Please mail the result to <emacs-devel@gnu.org>.\n\
182ff242
GM
4205"
4206
4207#define SETJMP_WILL_NOT_WORK "\
4208\n\
4209Emacs garbage collector has been changed to use conservative stack\n\
4210marking. Emacs has determined that the default method it uses to do the\n\
4211marking will not work on your system. We will need a system-dependent\n\
4212solution for your system.\n\
4213\n\
4214Please take a look at the function mark_stack in alloc.c, and\n\
4215try to find a way to make it work on your system.\n\
30f637f8
DL
4216\n\
4217Note that you may get false negatives, depending on the compiler.\n\
4218In particular, you need to use -O with GCC for this test.\n\
4219\n\
d191623b 4220Please mail the result to <emacs-devel@gnu.org>.\n\
182ff242
GM
4221"
4222
4223
4224/* Perform a quick check if it looks like setjmp saves registers in a
4225 jmp_buf. Print a message to stderr saying so. When this test
4226 succeeds, this is _not_ a proof that setjmp is sufficient for
4227 conservative stack marking. Only the sources or a disassembly
4228 can prove that. */
4229
4230static void
4231test_setjmp ()
4232{
4233 char buf[10];
4234 register int x;
4235 jmp_buf jbuf;
4236 int result = 0;
4237
4238 /* Arrange for X to be put in a register. */
4239 sprintf (buf, "1");
4240 x = strlen (buf);
4241 x = 2 * x - 1;
4242
4243 setjmp (jbuf);
4244 if (longjmps_done == 1)
34400008 4245 {
182ff242 4246 /* Came here after the longjmp at the end of the function.
34400008 4247
182ff242
GM
4248 If x == 1, the longjmp has restored the register to its
4249 value before the setjmp, and we can hope that setjmp
4250 saves all such registers in the jmp_buf, although that
4251 isn't sure.
34400008 4252
182ff242
GM
4253 For other values of X, either something really strange is
4254 taking place, or the setjmp just didn't save the register. */
4255
4256 if (x == 1)
4257 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
4258 else
4259 {
4260 fprintf (stderr, SETJMP_WILL_NOT_WORK);
4261 exit (1);
34400008
GM
4262 }
4263 }
182ff242
GM
4264
4265 ++longjmps_done;
4266 x = 2;
4267 if (longjmps_done == 1)
4268 longjmp (jbuf, 1);
34400008
GM
4269}
4270
182ff242
GM
4271#endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
4272
34400008
GM
4273
4274#if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4275
4276/* Abort if anything GCPRO'd doesn't survive the GC. */
4277
4278static void
4279check_gcpros ()
4280{
4281 struct gcpro *p;
4282 int i;
4283
4284 for (p = gcprolist; p; p = p->next)
4285 for (i = 0; i < p->nvars; ++i)
4286 if (!survives_gc_p (p->var[i]))
92cc28b2
SM
4287 /* FIXME: It's not necessarily a bug. It might just be that the
4288 GCPRO is unnecessary or should release the object sooner. */
34400008
GM
4289 abort ();
4290}
4291
4292#elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4293
4294static void
4295dump_zombies ()
4296{
4297 int i;
4298
4299 fprintf (stderr, "\nZombies kept alive = %d:\n", nzombies);
4300 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
4301 {
4302 fprintf (stderr, " %d = ", i);
4303 debug_print (zombies[i]);
4304 }
4305}
4306
4307#endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4308
4309
182ff242
GM
4310/* Mark live Lisp objects on the C stack.
4311
4312 There are several system-dependent problems to consider when
4313 porting this to new architectures:
4314
4315 Processor Registers
4316
4317 We have to mark Lisp objects in CPU registers that can hold local
4318 variables or are used to pass parameters.
4319
4320 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4321 something that either saves relevant registers on the stack, or
4322 calls mark_maybe_object passing it each register's contents.
4323
4324 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4325 implementation assumes that calling setjmp saves registers we need
4326 to see in a jmp_buf which itself lies on the stack. This doesn't
4327 have to be true! It must be verified for each system, possibly
4328 by taking a look at the source code of setjmp.
4329
4330 Stack Layout
4331
4332 Architectures differ in the way their processor stack is organized.
4333 For example, the stack might look like this
4334
4335 +----------------+
4336 | Lisp_Object | size = 4
4337 +----------------+
4338 | something else | size = 2
4339 +----------------+
4340 | Lisp_Object | size = 4
4341 +----------------+
4342 | ... |
4343
4344 In such a case, not every Lisp_Object will be aligned equally. To
4345 find all Lisp_Object on the stack it won't be sufficient to walk
4346 the stack in steps of 4 bytes. Instead, two passes will be
4347 necessary, one starting at the start of the stack, and a second
4348 pass starting at the start of the stack + 2. Likewise, if the
4349 minimal alignment of Lisp_Objects on the stack is 1, four passes
4350 would be necessary, each one starting with one byte more offset
4351 from the stack start.
4352
4353 The current code assumes by default that Lisp_Objects are aligned
4354 equally on the stack. */
34400008
GM
4355
4356static void
4357mark_stack ()
4358{
630909a5 4359 int i;
34400008 4360 jmp_buf j;
6bbd7a29 4361 volatile int stack_grows_down_p = (char *) &j > (char *) stack_base;
34400008
GM
4362 void *end;
4363
4364 /* This trick flushes the register windows so that all the state of
4365 the process is contained in the stack. */
ab6780cd 4366 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
422eec7e
DL
4367 needed on ia64 too. See mach_dep.c, where it also says inline
4368 assembler doesn't work with relevant proprietary compilers. */
34400008
GM
4369#ifdef sparc
4370 asm ("ta 3");
4371#endif
177c0ea7 4372
34400008
GM
4373 /* Save registers that we need to see on the stack. We need to see
4374 registers used to hold register variables and registers used to
4375 pass parameters. */
4376#ifdef GC_SAVE_REGISTERS_ON_STACK
4377 GC_SAVE_REGISTERS_ON_STACK (end);
182ff242 4378#else /* not GC_SAVE_REGISTERS_ON_STACK */
177c0ea7 4379
182ff242
GM
4380#ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
4381 setjmp will definitely work, test it
4382 and print a message with the result
4383 of the test. */
4384 if (!setjmp_tested_p)
4385 {
4386 setjmp_tested_p = 1;
4387 test_setjmp ();
4388 }
4389#endif /* GC_SETJMP_WORKS */
177c0ea7 4390
34400008
GM
4391 setjmp (j);
4392 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
182ff242 4393#endif /* not GC_SAVE_REGISTERS_ON_STACK */
34400008
GM
4394
4395 /* This assumes that the stack is a contiguous region in memory. If
182ff242
GM
4396 that's not the case, something has to be done here to iterate
4397 over the stack segments. */
630909a5 4398#ifndef GC_LISP_OBJECT_ALIGNMENT
422eec7e
DL
4399#ifdef __GNUC__
4400#define GC_LISP_OBJECT_ALIGNMENT __alignof__ (Lisp_Object)
4401#else
630909a5 4402#define GC_LISP_OBJECT_ALIGNMENT sizeof (Lisp_Object)
422eec7e 4403#endif
182ff242 4404#endif
24452cd5 4405 for (i = 0; i < sizeof (Lisp_Object); i += GC_LISP_OBJECT_ALIGNMENT)
630909a5 4406 mark_memory ((char *) stack_base + i, end);
4dec23ff
AS
4407 /* Allow for marking a secondary stack, like the register stack on the
4408 ia64. */
4409#ifdef GC_MARK_SECONDARY_STACK
4410 GC_MARK_SECONDARY_STACK ();
4411#endif
34400008
GM
4412
4413#if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4414 check_gcpros ();
4415#endif
4416}
4417
4418
4419#endif /* GC_MARK_STACK != 0 */
4420
4421
4422\f
2e471eb5
GM
4423/***********************************************************************
4424 Pure Storage Management
4425 ***********************************************************************/
4426
1f0b3fd2
GM
4427/* Allocate room for SIZE bytes from pure Lisp storage and return a
4428 pointer to it. TYPE is the Lisp type for which the memory is
4429 allocated. TYPE < 0 means it's not used for a Lisp object.
4430
4431 If store_pure_type_info is set and TYPE is >= 0, the type of
4432 the allocated object is recorded in pure_types. */
4433
4434static POINTER_TYPE *
4435pure_alloc (size, type)
4436 size_t size;
4437 int type;
4438{
1f0b3fd2 4439 POINTER_TYPE *result;
831b476c
SM
4440#ifdef USE_LSB_TAG
4441 size_t alignment = (1 << GCTYPEBITS);
4442#else
44117420 4443 size_t alignment = sizeof (EMACS_INT);
1f0b3fd2
GM
4444
4445 /* Give Lisp_Floats an extra alignment. */
4446 if (type == Lisp_Float)
4447 {
1f0b3fd2
GM
4448#if defined __GNUC__ && __GNUC__ >= 2
4449 alignment = __alignof (struct Lisp_Float);
4450#else
4451 alignment = sizeof (struct Lisp_Float);
4452#endif
9e713715 4453 }
831b476c 4454#endif
1f0b3fd2 4455
44117420 4456 again:
ab6780cd 4457 result = ALIGN (purebeg + pure_bytes_used, alignment);
44117420
KS
4458 pure_bytes_used = ((char *)result - (char *)purebeg) + size;
4459
4460 if (pure_bytes_used <= pure_size)
4461 return result;
4462
4463 /* Don't allocate a large amount here,
4464 because it might get mmap'd and then its address
4465 might not be usable. */
4466 purebeg = (char *) xmalloc (10000);
4467 pure_size = 10000;
4468 pure_bytes_used_before_overflow += pure_bytes_used - size;
4469 pure_bytes_used = 0;
4470 goto again;
1f0b3fd2
GM
4471}
4472
4473
852f8cdc 4474/* Print a warning if PURESIZE is too small. */
9e713715
GM
4475
4476void
4477check_pure_size ()
4478{
4479 if (pure_bytes_used_before_overflow)
a4d35afd
SM
4480 message ("Pure Lisp storage overflow (approx. %d bytes needed)",
4481 (int) (pure_bytes_used + pure_bytes_used_before_overflow));
9e713715
GM
4482}
4483
4484
2e471eb5
GM
4485/* Return a string allocated in pure space. DATA is a buffer holding
4486 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
4487 non-zero means make the result string multibyte.
1a4f1e2c 4488
2e471eb5
GM
4489 Must get an error if pure storage is full, since if it cannot hold
4490 a large string it may be able to hold conses that point to that
4491 string; then the string is not protected from gc. */
7146af97
JB
4492
4493Lisp_Object
2e471eb5 4494make_pure_string (data, nchars, nbytes, multibyte)
7146af97 4495 char *data;
2e471eb5 4496 int nchars, nbytes;
c0696668 4497 int multibyte;
7146af97 4498{
2e471eb5
GM
4499 Lisp_Object string;
4500 struct Lisp_String *s;
c0696668 4501
1f0b3fd2
GM
4502 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
4503 s->data = (unsigned char *) pure_alloc (nbytes + 1, -1);
2e471eb5
GM
4504 s->size = nchars;
4505 s->size_byte = multibyte ? nbytes : -1;
4506 bcopy (data, s->data, nbytes);
4507 s->data[nbytes] = '\0';
4508 s->intervals = NULL_INTERVAL;
2e471eb5
GM
4509 XSETSTRING (string, s);
4510 return string;
7146af97
JB
4511}
4512
2e471eb5 4513
34400008
GM
4514/* Return a cons allocated from pure space. Give it pure copies
4515 of CAR as car and CDR as cdr. */
4516
7146af97
JB
4517Lisp_Object
4518pure_cons (car, cdr)
4519 Lisp_Object car, cdr;
4520{
4521 register Lisp_Object new;
1f0b3fd2 4522 struct Lisp_Cons *p;
7146af97 4523
1f0b3fd2
GM
4524 p = (struct Lisp_Cons *) pure_alloc (sizeof *p, Lisp_Cons);
4525 XSETCONS (new, p);
f3fbd155
KR
4526 XSETCAR (new, Fpurecopy (car));
4527 XSETCDR (new, Fpurecopy (cdr));
7146af97
JB
4528 return new;
4529}
4530
7146af97 4531
34400008
GM
4532/* Value is a float object with value NUM allocated from pure space. */
4533
7146af97
JB
4534Lisp_Object
4535make_pure_float (num)
4536 double num;
4537{
4538 register Lisp_Object new;
1f0b3fd2 4539 struct Lisp_Float *p;
7146af97 4540
1f0b3fd2
GM
4541 p = (struct Lisp_Float *) pure_alloc (sizeof *p, Lisp_Float);
4542 XSETFLOAT (new, p);
70949dac 4543 XFLOAT_DATA (new) = num;
7146af97
JB
4544 return new;
4545}
4546
34400008
GM
4547
4548/* Return a vector with room for LEN Lisp_Objects allocated from
4549 pure space. */
4550
7146af97
JB
4551Lisp_Object
4552make_pure_vector (len)
42607681 4553 EMACS_INT len;
7146af97 4554{
1f0b3fd2
GM
4555 Lisp_Object new;
4556 struct Lisp_Vector *p;
4557 size_t size = sizeof *p + (len - 1) * sizeof (Lisp_Object);
7146af97 4558
1f0b3fd2
GM
4559 p = (struct Lisp_Vector *) pure_alloc (size, Lisp_Vectorlike);
4560 XSETVECTOR (new, p);
7146af97
JB
4561 XVECTOR (new)->size = len;
4562 return new;
4563}
4564
34400008 4565
7146af97 4566DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
7ee72033 4567 doc: /* Make a copy of OBJECT in pure storage.
228299fa 4568Recursively copies contents of vectors and cons cells.
7ee72033
MB
4569Does not copy symbols. Copies strings without text properties. */)
4570 (obj)
7146af97
JB
4571 register Lisp_Object obj;
4572{
265a9e55 4573 if (NILP (Vpurify_flag))
7146af97
JB
4574 return obj;
4575
1f0b3fd2 4576 if (PURE_POINTER_P (XPNTR (obj)))
7146af97
JB
4577 return obj;
4578
d6dd74bb 4579 if (CONSP (obj))
70949dac 4580 return pure_cons (XCAR (obj), XCDR (obj));
d6dd74bb 4581 else if (FLOATP (obj))
70949dac 4582 return make_pure_float (XFLOAT_DATA (obj));
d6dd74bb 4583 else if (STRINGP (obj))
d5db4077
KR
4584 return make_pure_string (SDATA (obj), SCHARS (obj),
4585 SBYTES (obj),
c0696668 4586 STRING_MULTIBYTE (obj));
d6dd74bb
KH
4587 else if (COMPILEDP (obj) || VECTORP (obj))
4588 {
4589 register struct Lisp_Vector *vec;
41b867ea
AS
4590 register int i;
4591 EMACS_INT size;
d6dd74bb
KH
4592
4593 size = XVECTOR (obj)->size;
7d535c68
KH
4594 if (size & PSEUDOVECTOR_FLAG)
4595 size &= PSEUDOVECTOR_SIZE_MASK;
41b867ea 4596 vec = XVECTOR (make_pure_vector (size));
d6dd74bb
KH
4597 for (i = 0; i < size; i++)
4598 vec->contents[i] = Fpurecopy (XVECTOR (obj)->contents[i]);
4599 if (COMPILEDP (obj))
4600 XSETCOMPILED (obj, vec);
4601 else
4602 XSETVECTOR (obj, vec);
7146af97
JB
4603 return obj;
4604 }
d6dd74bb
KH
4605 else if (MARKERP (obj))
4606 error ("Attempt to copy a marker to pure storage");
6bbd7a29
GM
4607
4608 return obj;
7146af97 4609}
2e471eb5 4610
34400008 4611
7146af97 4612\f
34400008
GM
4613/***********************************************************************
4614 Protection from GC
4615 ***********************************************************************/
4616
2e471eb5
GM
4617/* Put an entry in staticvec, pointing at the variable with address
4618 VARADDRESS. */
7146af97
JB
4619
4620void
4621staticpro (varaddress)
4622 Lisp_Object *varaddress;
4623{
4624 staticvec[staticidx++] = varaddress;
4625 if (staticidx >= NSTATICS)
4626 abort ();
4627}
4628
4629struct catchtag
2e471eb5 4630{
7146af97
JB
4631 Lisp_Object tag;
4632 Lisp_Object val;
4633 struct catchtag *next;
2e471eb5 4634};
7146af97 4635
7146af97 4636\f
34400008
GM
4637/***********************************************************************
4638 Protection from GC
4639 ***********************************************************************/
1a4f1e2c 4640
e8197642
RS
4641/* Temporarily prevent garbage collection. */
4642
4643int
4644inhibit_garbage_collection ()
4645{
aed13378 4646 int count = SPECPDL_INDEX ();
54defd0d
AS
4647 int nbits = min (VALBITS, BITS_PER_INT);
4648
4649 specbind (Qgc_cons_threshold, make_number (((EMACS_INT) 1 << (nbits - 1)) - 1));
e8197642
RS
4650 return count;
4651}
4652
34400008 4653
7146af97 4654DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
7ee72033 4655 doc: /* Reclaim storage for Lisp objects no longer needed.
e1e37596
RS
4656Garbage collection happens automatically if you cons more than
4657`gc-cons-threshold' bytes of Lisp data since previous garbage collection.
4658`garbage-collect' normally returns a list with info on amount of space in use:
228299fa
GM
4659 ((USED-CONSES . FREE-CONSES) (USED-SYMS . FREE-SYMS)
4660 (USED-MARKERS . FREE-MARKERS) USED-STRING-CHARS USED-VECTOR-SLOTS
4661 (USED-FLOATS . FREE-FLOATS) (USED-INTERVALS . FREE-INTERVALS)
4662 (USED-STRINGS . FREE-STRINGS))
e1e37596
RS
4663However, if there was overflow in pure space, `garbage-collect'
4664returns nil, because real GC can't be done. */)
7ee72033 4665 ()
7146af97 4666{
7146af97
JB
4667 register struct specbinding *bind;
4668 struct catchtag *catch;
4669 struct handler *handler;
7146af97
JB
4670 char stack_top_variable;
4671 register int i;
6efc7df7 4672 int message_p;
96117bc7 4673 Lisp_Object total[8];
331379bf 4674 int count = SPECPDL_INDEX ();
2c5bd608
DL
4675 EMACS_TIME t1, t2, t3;
4676
3de0effb
RS
4677 if (abort_on_gc)
4678 abort ();
4679
9e713715
GM
4680 /* Can't GC if pure storage overflowed because we can't determine
4681 if something is a pure object or not. */
4682 if (pure_bytes_used_before_overflow)
4683 return Qnil;
4684
3c7e66a8
RS
4685 /* Don't keep undo information around forever.
4686 Do this early on, so it is no problem if the user quits. */
4687 {
4688 register struct buffer *nextb = all_buffers;
4689
4690 while (nextb)
4691 {
4692 /* If a buffer's undo list is Qt, that means that undo is
4693 turned off in that buffer. Calling truncate_undo_list on
4694 Qt tends to return NULL, which effectively turns undo back on.
4695 So don't call truncate_undo_list if undo_list is Qt. */
303b0412 4696 if (! NILP (nextb->name) && ! EQ (nextb->undo_list, Qt))
3c7e66a8
RS
4697 truncate_undo_list (nextb);
4698
4699 /* Shrink buffer gaps, but skip indirect and dead buffers. */
4700 if (nextb->base_buffer == 0 && !NILP (nextb->name))
4701 {
4702 /* If a buffer's gap size is more than 10% of the buffer
4703 size, or larger than 2000 bytes, then shrink it
4704 accordingly. Keep a minimum size of 20 bytes. */
4705 int size = min (2000, max (20, (nextb->text->z_byte / 10)));
4706
4707 if (nextb->text->gap_size > size)
4708 {
4709 struct buffer *save_current = current_buffer;
4710 current_buffer = nextb;
4711 make_gap (-(nextb->text->gap_size - size));
4712 current_buffer = save_current;
4713 }
4714 }
4715
4716 nextb = nextb->next;
4717 }
4718 }
4719
4720 EMACS_GET_TIME (t1);
4721
58595309
KH
4722 /* In case user calls debug_print during GC,
4723 don't let that cause a recursive GC. */
4724 consing_since_gc = 0;
4725
6efc7df7
GM
4726 /* Save what's currently displayed in the echo area. */
4727 message_p = push_message ();
c55b0da6 4728 record_unwind_protect (pop_message_unwind, Qnil);
41c28a37 4729
7146af97
JB
4730 /* Save a copy of the contents of the stack, for debugging. */
4731#if MAX_SAVE_STACK > 0
265a9e55 4732 if (NILP (Vpurify_flag))
7146af97
JB
4733 {
4734 i = &stack_top_variable - stack_bottom;
4735 if (i < 0) i = -i;
4736 if (i < MAX_SAVE_STACK)
4737 {
4738 if (stack_copy == 0)
9ac0d9e0 4739 stack_copy = (char *) xmalloc (stack_copy_size = i);
7146af97 4740 else if (stack_copy_size < i)
9ac0d9e0 4741 stack_copy = (char *) xrealloc (stack_copy, (stack_copy_size = i));
7146af97
JB
4742 if (stack_copy)
4743 {
42607681 4744 if ((EMACS_INT) (&stack_top_variable - stack_bottom) > 0)
7146af97
JB
4745 bcopy (stack_bottom, stack_copy, i);
4746 else
4747 bcopy (&stack_top_variable, stack_copy, i);
4748 }
4749 }
4750 }
4751#endif /* MAX_SAVE_STACK > 0 */
4752
299585ee 4753 if (garbage_collection_messages)
691c4285 4754 message1_nolog ("Garbage collecting...");
7146af97 4755
6e0fca1d
RS
4756 BLOCK_INPUT;
4757
eec7b73d
RS
4758 shrink_regexp_cache ();
4759
7146af97
JB
4760 gc_in_progress = 1;
4761
c23baf9f 4762 /* clear_marks (); */
7146af97 4763
0930c1a1 4764 /* Mark all the special slots that serve as the roots of accessibility. */
7146af97
JB
4765
4766 for (i = 0; i < staticidx; i++)
49723c04 4767 mark_object (*staticvec[i]);
34400008 4768
126f9c02
SM
4769 for (bind = specpdl; bind != specpdl_ptr; bind++)
4770 {
4771 mark_object (bind->symbol);
4772 mark_object (bind->old_value);
4773 }
4774 mark_kboards ();
4775
4776#ifdef USE_GTK
4777 {
4778 extern void xg_mark_data ();
4779 xg_mark_data ();
4780 }
4781#endif
4782
34400008
GM
4783#if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
4784 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
4785 mark_stack ();
4786#else
acf5f7d3
SM
4787 {
4788 register struct gcpro *tail;
4789 for (tail = gcprolist; tail; tail = tail->next)
4790 for (i = 0; i < tail->nvars; i++)
0930c1a1 4791 mark_object (tail->var[i]);
acf5f7d3 4792 }
34400008 4793#endif
177c0ea7 4794
630686c8 4795 mark_byte_stack ();
7146af97
JB
4796 for (catch = catchlist; catch; catch = catch->next)
4797 {
49723c04
SM
4798 mark_object (catch->tag);
4799 mark_object (catch->val);
177c0ea7 4800 }
7146af97
JB
4801 for (handler = handlerlist; handler; handler = handler->next)
4802 {
49723c04
SM
4803 mark_object (handler->handler);
4804 mark_object (handler->var);
177c0ea7 4805 }
b40ea20a 4806 mark_backtrace ();
7146af97 4807
454d7973
KS
4808#ifdef HAVE_WINDOW_SYSTEM
4809 mark_fringe_data ();
4810#endif
4811
74c35a48
SM
4812#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4813 mark_stack ();
4814#endif
4815
c37adf23
SM
4816 /* Everything is now marked, except for the things that require special
4817 finalization, i.e. the undo_list.
4818 Look thru every buffer's undo list
4819 for elements that update markers that were not marked,
4820 and delete them. */
4c315bda
RS
4821 {
4822 register struct buffer *nextb = all_buffers;
4823
4824 while (nextb)
4825 {
4826 /* If a buffer's undo list is Qt, that means that undo is
c37adf23
SM
4827 turned off in that buffer. Calling truncate_undo_list on
4828 Qt tends to return NULL, which effectively turns undo back on.
4829 So don't call truncate_undo_list if undo_list is Qt. */
4c315bda
RS
4830 if (! EQ (nextb->undo_list, Qt))
4831 {
c37adf23 4832 Lisp_Object tail, prev;
4c315bda
RS
4833 tail = nextb->undo_list;
4834 prev = Qnil;
4835 while (CONSP (tail))
4836 {
c37adf23
SM
4837 if (GC_CONSP (XCAR (tail))
4838 && GC_MARKERP (XCAR (XCAR (tail)))
4839 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
4c315bda
RS
4840 {
4841 if (NILP (prev))
c37adf23 4842 nextb->undo_list = tail = XCDR (tail);
4c315bda 4843 else
f3fbd155 4844 {
c37adf23 4845 tail = XCDR (tail);
f3fbd155
KR
4846 XSETCDR (prev, tail);
4847 }
4c315bda
RS
4848 }
4849 else
4850 {
4851 prev = tail;
70949dac 4852 tail = XCDR (tail);
4c315bda
RS
4853 }
4854 }
4855 }
c37adf23
SM
4856 /* Now that we have stripped the elements that need not be in the
4857 undo_list any more, we can finally mark the list. */
4858 mark_object (nextb->undo_list);
4c315bda
RS
4859
4860 nextb = nextb->next;
4861 }
4862 }
4863
c37adf23 4864 gc_sweep ();
6b67a518 4865
7146af97
JB
4866 /* Clear the mark bits that we set in certain root slots. */
4867
033a5fa3 4868 unmark_byte_stack ();
3ef06d12
SM
4869 VECTOR_UNMARK (&buffer_defaults);
4870 VECTOR_UNMARK (&buffer_local_symbols);
7146af97 4871
34400008
GM
4872#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
4873 dump_zombies ();
4874#endif
4875
6e0fca1d
RS
4876 UNBLOCK_INPUT;
4877
c23baf9f 4878 /* clear_marks (); */
7146af97
JB
4879 gc_in_progress = 0;
4880
4881 consing_since_gc = 0;
4882 if (gc_cons_threshold < 10000)
4883 gc_cons_threshold = 10000;
4884
299585ee
RS
4885 if (garbage_collection_messages)
4886 {
6efc7df7
GM
4887 if (message_p || minibuf_level > 0)
4888 restore_message ();
299585ee
RS
4889 else
4890 message1_nolog ("Garbage collecting...done");
4891 }
7146af97 4892
98edb5ff 4893 unbind_to (count, Qnil);
2e471eb5
GM
4894
4895 total[0] = Fcons (make_number (total_conses),
4896 make_number (total_free_conses));
4897 total[1] = Fcons (make_number (total_symbols),
4898 make_number (total_free_symbols));
4899 total[2] = Fcons (make_number (total_markers),
4900 make_number (total_free_markers));
96117bc7
GM
4901 total[3] = make_number (total_string_size);
4902 total[4] = make_number (total_vector_size);
4903 total[5] = Fcons (make_number (total_floats),
2e471eb5 4904 make_number (total_free_floats));
96117bc7 4905 total[6] = Fcons (make_number (total_intervals),
2e471eb5 4906 make_number (total_free_intervals));
96117bc7 4907 total[7] = Fcons (make_number (total_strings),
2e471eb5
GM
4908 make_number (total_free_strings));
4909
34400008 4910#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
7146af97 4911 {
34400008
GM
4912 /* Compute average percentage of zombies. */
4913 double nlive = 0;
177c0ea7 4914
34400008 4915 for (i = 0; i < 7; ++i)
83fc9c63
DL
4916 if (CONSP (total[i]))
4917 nlive += XFASTINT (XCAR (total[i]));
34400008
GM
4918
4919 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
4920 max_live = max (nlive, max_live);
4921 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
4922 max_zombies = max (nzombies, max_zombies);
4923 ++ngcs;
4924 }
4925#endif
7146af97 4926
9e713715
GM
4927 if (!NILP (Vpost_gc_hook))
4928 {
4929 int count = inhibit_garbage_collection ();
4930 safe_run_hooks (Qpost_gc_hook);
4931 unbind_to (count, Qnil);
4932 }
2c5bd608
DL
4933
4934 /* Accumulate statistics. */
4935 EMACS_GET_TIME (t2);
4936 EMACS_SUB_TIME (t3, t2, t1);
4937 if (FLOATP (Vgc_elapsed))
69ab9f85
SM
4938 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed) +
4939 EMACS_SECS (t3) +
4940 EMACS_USECS (t3) * 1.0e-6);
2c5bd608
DL
4941 gcs_done++;
4942
96117bc7 4943 return Flist (sizeof total / sizeof *total, total);
7146af97 4944}
34400008 4945
41c28a37 4946
3770920e
GM
4947/* Mark Lisp objects in glyph matrix MATRIX. Currently the
4948 only interesting objects referenced from glyphs are strings. */
41c28a37
GM
4949
4950static void
4951mark_glyph_matrix (matrix)
4952 struct glyph_matrix *matrix;
4953{
4954 struct glyph_row *row = matrix->rows;
4955 struct glyph_row *end = row + matrix->nrows;
4956
2e471eb5
GM
4957 for (; row < end; ++row)
4958 if (row->enabled_p)
4959 {
4960 int area;
4961 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
4962 {
4963 struct glyph *glyph = row->glyphs[area];
4964 struct glyph *end_glyph = glyph + row->used[area];
177c0ea7 4965
2e471eb5
GM
4966 for (; glyph < end_glyph; ++glyph)
4967 if (GC_STRINGP (glyph->object)
4968 && !STRING_MARKED_P (XSTRING (glyph->object)))
49723c04 4969 mark_object (glyph->object);
2e471eb5
GM
4970 }
4971 }
41c28a37
GM
4972}
4973
34400008 4974
41c28a37
GM
4975/* Mark Lisp faces in the face cache C. */
4976
4977static void
4978mark_face_cache (c)
4979 struct face_cache *c;
4980{
4981 if (c)
4982 {
4983 int i, j;
4984 for (i = 0; i < c->used; ++i)
4985 {
4986 struct face *face = FACE_FROM_ID (c->f, i);
4987
4988 if (face)
4989 {
4990 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
49723c04 4991 mark_object (face->lface[j]);
41c28a37
GM
4992 }
4993 }
4994 }
4995}
4996
4997
4998#ifdef HAVE_WINDOW_SYSTEM
4999
5000/* Mark Lisp objects in image IMG. */
5001
5002static void
5003mark_image (img)
5004 struct image *img;
5005{
49723c04 5006 mark_object (img->spec);
177c0ea7 5007
3e60b029 5008 if (!NILP (img->data.lisp_val))
49723c04 5009 mark_object (img->data.lisp_val);
41c28a37
GM
5010}
5011
5012
5013/* Mark Lisp objects in image cache of frame F. It's done this way so
5014 that we don't have to include xterm.h here. */
5015
5016static void
5017mark_image_cache (f)
5018 struct frame *f;
5019{
5020 forall_images_in_image_cache (f, mark_image);
5021}
5022
5023#endif /* HAVE_X_WINDOWS */
5024
5025
7146af97 5026\f
1a4f1e2c 5027/* Mark reference to a Lisp_Object.
2e471eb5
GM
5028 If the object referred to has not been seen yet, recursively mark
5029 all the references contained in it. */
7146af97 5030
785cd37f 5031#define LAST_MARKED_SIZE 500
49723c04 5032Lisp_Object last_marked[LAST_MARKED_SIZE];
785cd37f
RS
5033int last_marked_index;
5034
1342fc6f
RS
5035/* For debugging--call abort when we cdr down this many
5036 links of a list, in mark_object. In debugging,
5037 the call to abort will hit a breakpoint.
5038 Normally this is zero and the check never goes off. */
5039int mark_object_loop_halt;
5040
41c28a37 5041void
49723c04
SM
5042mark_object (arg)
5043 Lisp_Object arg;
7146af97 5044{
49723c04 5045 register Lisp_Object obj = arg;
4f5c1376
GM
5046#ifdef GC_CHECK_MARKED_OBJECTS
5047 void *po;
5048 struct mem_node *m;
5049#endif
1342fc6f 5050 int cdr_count = 0;
7146af97 5051
9149e743 5052 loop:
7146af97 5053
1f0b3fd2 5054 if (PURE_POINTER_P (XPNTR (obj)))
7146af97
JB
5055 return;
5056
49723c04 5057 last_marked[last_marked_index++] = obj;
785cd37f
RS
5058 if (last_marked_index == LAST_MARKED_SIZE)
5059 last_marked_index = 0;
5060
4f5c1376
GM
5061 /* Perform some sanity checks on the objects marked here. Abort if
5062 we encounter an object we know is bogus. This increases GC time
5063 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
5064#ifdef GC_CHECK_MARKED_OBJECTS
5065
5066 po = (void *) XPNTR (obj);
5067
5068 /* Check that the object pointed to by PO is known to be a Lisp
5069 structure allocated from the heap. */
5070#define CHECK_ALLOCATED() \
5071 do { \
5072 m = mem_find (po); \
5073 if (m == MEM_NIL) \
5074 abort (); \
5075 } while (0)
5076
5077 /* Check that the object pointed to by PO is live, using predicate
5078 function LIVEP. */
5079#define CHECK_LIVE(LIVEP) \
5080 do { \
5081 if (!LIVEP (m, po)) \
5082 abort (); \
5083 } while (0)
5084
5085 /* Check both of the above conditions. */
5086#define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
5087 do { \
5088 CHECK_ALLOCATED (); \
5089 CHECK_LIVE (LIVEP); \
5090 } while (0) \
177c0ea7 5091
4f5c1376 5092#else /* not GC_CHECK_MARKED_OBJECTS */
177c0ea7 5093
4f5c1376
GM
5094#define CHECK_ALLOCATED() (void) 0
5095#define CHECK_LIVE(LIVEP) (void) 0
5096#define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
177c0ea7 5097
4f5c1376
GM
5098#endif /* not GC_CHECK_MARKED_OBJECTS */
5099
0220c518 5100 switch (SWITCH_ENUM_CAST (XGCTYPE (obj)))
7146af97
JB
5101 {
5102 case Lisp_String:
5103 {
5104 register struct Lisp_String *ptr = XSTRING (obj);
4f5c1376 5105 CHECK_ALLOCATED_AND_LIVE (live_string_p);
d5e35230 5106 MARK_INTERVAL_TREE (ptr->intervals);
2e471eb5 5107 MARK_STRING (ptr);
361b097f 5108#ifdef GC_CHECK_STRING_BYTES
676a7251
GM
5109 /* Check that the string size recorded in the string is the
5110 same as the one recorded in the sdata structure. */
5111 CHECK_STRING_BYTES (ptr);
361b097f 5112#endif /* GC_CHECK_STRING_BYTES */
7146af97
JB
5113 }
5114 break;
5115
76437631 5116 case Lisp_Vectorlike:
4f5c1376
GM
5117#ifdef GC_CHECK_MARKED_OBJECTS
5118 m = mem_find (po);
5119 if (m == MEM_NIL && !GC_SUBRP (obj)
5120 && po != &buffer_defaults
5121 && po != &buffer_local_symbols)
5122 abort ();
5123#endif /* GC_CHECK_MARKED_OBJECTS */
177c0ea7 5124
30e3190a 5125 if (GC_BUFFERP (obj))
6b552283 5126 {
3ef06d12 5127 if (!VECTOR_MARKED_P (XBUFFER (obj)))
4f5c1376
GM
5128 {
5129#ifdef GC_CHECK_MARKED_OBJECTS
5130 if (po != &buffer_defaults && po != &buffer_local_symbols)
5131 {
5132 struct buffer *b;
5133 for (b = all_buffers; b && b != po; b = b->next)
5134 ;
5135 if (b == NULL)
5136 abort ();
5137 }
5138#endif /* GC_CHECK_MARKED_OBJECTS */
5139 mark_buffer (obj);
5140 }
6b552283 5141 }
30e3190a 5142 else if (GC_SUBRP (obj))
169ee243
RS
5143 break;
5144 else if (GC_COMPILEDP (obj))
2e471eb5
GM
5145 /* We could treat this just like a vector, but it is better to
5146 save the COMPILED_CONSTANTS element for last and avoid
5147 recursion there. */
169ee243
RS
5148 {
5149 register struct Lisp_Vector *ptr = XVECTOR (obj);
5150 register EMACS_INT size = ptr->size;
169ee243
RS
5151 register int i;
5152
3ef06d12 5153 if (VECTOR_MARKED_P (ptr))
169ee243 5154 break; /* Already marked */
177c0ea7 5155
4f5c1376 5156 CHECK_LIVE (live_vector_p);
3ef06d12 5157 VECTOR_MARK (ptr); /* Else mark it */
76437631 5158 size &= PSEUDOVECTOR_SIZE_MASK;
169ee243
RS
5159 for (i = 0; i < size; i++) /* and then mark its elements */
5160 {
5161 if (i != COMPILED_CONSTANTS)
49723c04 5162 mark_object (ptr->contents[i]);
169ee243 5163 }
49723c04 5164 obj = ptr->contents[COMPILED_CONSTANTS];
169ee243
RS
5165 goto loop;
5166 }
169ee243
RS
5167 else if (GC_FRAMEP (obj))
5168 {
c70bbf06 5169 register struct frame *ptr = XFRAME (obj);
169ee243 5170
3ef06d12
SM
5171 if (VECTOR_MARKED_P (ptr)) break; /* Already marked */
5172 VECTOR_MARK (ptr); /* Else mark it */
169ee243 5173
4f5c1376 5174 CHECK_LIVE (live_vector_p);
49723c04
SM
5175 mark_object (ptr->name);
5176 mark_object (ptr->icon_name);
5177 mark_object (ptr->title);
5178 mark_object (ptr->focus_frame);
5179 mark_object (ptr->selected_window);
5180 mark_object (ptr->minibuffer_window);
5181 mark_object (ptr->param_alist);
5182 mark_object (ptr->scroll_bars);
5183 mark_object (ptr->condemned_scroll_bars);
5184 mark_object (ptr->menu_bar_items);
5185 mark_object (ptr->face_alist);
5186 mark_object (ptr->menu_bar_vector);
5187 mark_object (ptr->buffer_predicate);
5188 mark_object (ptr->buffer_list);
5189 mark_object (ptr->menu_bar_window);
5190 mark_object (ptr->tool_bar_window);
41c28a37
GM
5191 mark_face_cache (ptr->face_cache);
5192#ifdef HAVE_WINDOW_SYSTEM
5193 mark_image_cache (ptr);
49723c04
SM
5194 mark_object (ptr->tool_bar_items);
5195 mark_object (ptr->desired_tool_bar_string);
5196 mark_object (ptr->current_tool_bar_string);
41c28a37 5197#endif /* HAVE_WINDOW_SYSTEM */
169ee243 5198 }
7b07587b 5199 else if (GC_BOOL_VECTOR_P (obj))
707788bd
RS
5200 {
5201 register struct Lisp_Vector *ptr = XVECTOR (obj);
5202
3ef06d12 5203 if (VECTOR_MARKED_P (ptr))
707788bd 5204 break; /* Already marked */
4f5c1376 5205 CHECK_LIVE (live_vector_p);
3ef06d12 5206 VECTOR_MARK (ptr); /* Else mark it */
707788bd 5207 }
41c28a37
GM
5208 else if (GC_WINDOWP (obj))
5209 {
5210 register struct Lisp_Vector *ptr = XVECTOR (obj);
5211 struct window *w = XWINDOW (obj);
41c28a37
GM
5212 register int i;
5213
5214 /* Stop if already marked. */
3ef06d12 5215 if (VECTOR_MARKED_P (ptr))
41c28a37
GM
5216 break;
5217
5218 /* Mark it. */
4f5c1376 5219 CHECK_LIVE (live_vector_p);
3ef06d12 5220 VECTOR_MARK (ptr);
41c28a37
GM
5221
5222 /* There is no Lisp data above The member CURRENT_MATRIX in
5223 struct WINDOW. Stop marking when that slot is reached. */
5224 for (i = 0;
c70bbf06 5225 (char *) &ptr->contents[i] < (char *) &w->current_matrix;
41c28a37 5226 i++)
49723c04 5227 mark_object (ptr->contents[i]);
41c28a37
GM
5228
5229 /* Mark glyphs for leaf windows. Marking window matrices is
5230 sufficient because frame matrices use the same glyph
5231 memory. */
5232 if (NILP (w->hchild)
5233 && NILP (w->vchild)
5234 && w->current_matrix)
5235 {
5236 mark_glyph_matrix (w->current_matrix);
5237 mark_glyph_matrix (w->desired_matrix);
5238 }
5239 }
5240 else if (GC_HASH_TABLE_P (obj))
5241 {
5242 struct Lisp_Hash_Table *h = XHASH_TABLE (obj);
177c0ea7 5243
41c28a37 5244 /* Stop if already marked. */
3ef06d12 5245 if (VECTOR_MARKED_P (h))
41c28a37 5246 break;
177c0ea7 5247
41c28a37 5248 /* Mark it. */
4f5c1376 5249 CHECK_LIVE (live_vector_p);
3ef06d12 5250 VECTOR_MARK (h);
41c28a37
GM
5251
5252 /* Mark contents. */
94a877ef 5253 /* Do not mark next_free or next_weak.
177c0ea7 5254 Being in the next_weak chain
94a877ef
RS
5255 should not keep the hash table alive.
5256 No need to mark `count' since it is an integer. */
49723c04
SM
5257 mark_object (h->test);
5258 mark_object (h->weak);
5259 mark_object (h->rehash_size);
5260 mark_object (h->rehash_threshold);
5261 mark_object (h->hash);
5262 mark_object (h->next);
5263 mark_object (h->index);
5264 mark_object (h->user_hash_function);
5265 mark_object (h->user_cmp_function);
41c28a37
GM
5266
5267 /* If hash table is not weak, mark all keys and values.
5268 For weak tables, mark only the vector. */
5269 if (GC_NILP (h->weak))
49723c04 5270 mark_object (h->key_and_value);
41c28a37 5271 else
3ef06d12 5272 VECTOR_MARK (XVECTOR (h->key_and_value));
41c28a37 5273 }
04ff9756 5274 else
169ee243
RS
5275 {
5276 register struct Lisp_Vector *ptr = XVECTOR (obj);
5277 register EMACS_INT size = ptr->size;
169ee243
RS
5278 register int i;
5279
3ef06d12 5280 if (VECTOR_MARKED_P (ptr)) break; /* Already marked */
4f5c1376 5281 CHECK_LIVE (live_vector_p);
3ef06d12 5282 VECTOR_MARK (ptr); /* Else mark it */
169ee243
RS
5283 if (size & PSEUDOVECTOR_FLAG)
5284 size &= PSEUDOVECTOR_SIZE_MASK;
41c28a37 5285
169ee243 5286 for (i = 0; i < size; i++) /* and then mark its elements */
49723c04 5287 mark_object (ptr->contents[i]);
169ee243
RS
5288 }
5289 break;
7146af97 5290
7146af97
JB
5291 case Lisp_Symbol:
5292 {
c70bbf06 5293 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
7146af97
JB
5294 struct Lisp_Symbol *ptrx;
5295
2336fe58 5296 if (ptr->gcmarkbit) break;
4f5c1376 5297 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
2336fe58 5298 ptr->gcmarkbit = 1;
49723c04
SM
5299 mark_object (ptr->value);
5300 mark_object (ptr->function);
5301 mark_object (ptr->plist);
34400008 5302
8fe5665d
KR
5303 if (!PURE_POINTER_P (XSTRING (ptr->xname)))
5304 MARK_STRING (XSTRING (ptr->xname));
d5db4077 5305 MARK_INTERVAL_TREE (STRING_INTERVALS (ptr->xname));
177c0ea7 5306
1c6bb482
RS
5307 /* Note that we do not mark the obarray of the symbol.
5308 It is safe not to do so because nothing accesses that
5309 slot except to check whether it is nil. */
7146af97
JB
5310 ptr = ptr->next;
5311 if (ptr)
5312 {
b0846f52 5313 ptrx = ptr; /* Use of ptrx avoids compiler bug on Sun */
7146af97 5314 XSETSYMBOL (obj, ptrx);
49723c04 5315 goto loop;
7146af97
JB
5316 }
5317 }
5318 break;
5319
a0a38eb7 5320 case Lisp_Misc:
4f5c1376 5321 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
2336fe58
SM
5322 if (XMARKER (obj)->gcmarkbit)
5323 break;
5324 XMARKER (obj)->gcmarkbit = 1;
b766f870 5325
a5da44fe 5326 switch (XMISCTYPE (obj))
a0a38eb7 5327 {
465edf35
KH
5328 case Lisp_Misc_Buffer_Local_Value:
5329 case Lisp_Misc_Some_Buffer_Local_Value:
5330 {
5331 register struct Lisp_Buffer_Local_Value *ptr
5332 = XBUFFER_LOCAL_VALUE (obj);
465edf35
KH
5333 /* If the cdr is nil, avoid recursion for the car. */
5334 if (EQ (ptr->cdr, Qnil))
5335 {
49723c04 5336 obj = ptr->realvalue;
465edf35
KH
5337 goto loop;
5338 }
49723c04
SM
5339 mark_object (ptr->realvalue);
5340 mark_object (ptr->buffer);
5341 mark_object (ptr->frame);
5342 obj = ptr->cdr;
465edf35
KH
5343 goto loop;
5344 }
5345
2336fe58
SM
5346 case Lisp_Misc_Marker:
5347 /* DO NOT mark thru the marker's chain.
5348 The buffer's markers chain does not preserve markers from gc;
5349 instead, markers are removed from the chain when freed by gc. */
b766f870
KS
5350 break;
5351
c8616056
KH
5352 case Lisp_Misc_Intfwd:
5353 case Lisp_Misc_Boolfwd:
5354 case Lisp_Misc_Objfwd:
5355 case Lisp_Misc_Buffer_Objfwd:
b875d3f7 5356 case Lisp_Misc_Kboard_Objfwd:
c8616056
KH
5357 /* Don't bother with Lisp_Buffer_Objfwd,
5358 since all markable slots in current buffer marked anyway. */
5359 /* Don't need to do Lisp_Objfwd, since the places they point
5360 are protected with staticpro. */
b766f870
KS
5361 break;
5362
f29181dc 5363 case Lisp_Misc_Save_Value:
9ea306d1 5364#if GC_MARK_STACK
b766f870
KS
5365 {
5366 register struct Lisp_Save_Value *ptr = XSAVE_VALUE (obj);
5367 /* If DOGC is set, POINTER is the address of a memory
5368 area containing INTEGER potential Lisp_Objects. */
5369 if (ptr->dogc)
5370 {
5371 Lisp_Object *p = (Lisp_Object *) ptr->pointer;
5372 int nelt;
5373 for (nelt = ptr->integer; nelt > 0; nelt--, p++)
5374 mark_maybe_object (*p);
5375 }
5376 }
9ea306d1 5377#endif
c8616056
KH
5378 break;
5379
e202fa34
KH
5380 case Lisp_Misc_Overlay:
5381 {
5382 struct Lisp_Overlay *ptr = XOVERLAY (obj);
49723c04
SM
5383 mark_object (ptr->start);
5384 mark_object (ptr->end);
f54253ec
SM
5385 mark_object (ptr->plist);
5386 if (ptr->next)
5387 {
5388 XSETMISC (obj, ptr->next);
5389 goto loop;
5390 }
e202fa34
KH
5391 }
5392 break;
5393
a0a38eb7
KH
5394 default:
5395 abort ();
5396 }
7146af97
JB
5397 break;
5398
5399 case Lisp_Cons:
7146af97
JB
5400 {
5401 register struct Lisp_Cons *ptr = XCONS (obj);
08b7c2cb 5402 if (CONS_MARKED_P (ptr)) break;
4f5c1376 5403 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
08b7c2cb 5404 CONS_MARK (ptr);
c54ca951
RS
5405 /* If the cdr is nil, avoid recursion for the car. */
5406 if (EQ (ptr->cdr, Qnil))
5407 {
49723c04 5408 obj = ptr->car;
1342fc6f 5409 cdr_count = 0;
c54ca951
RS
5410 goto loop;
5411 }
49723c04
SM
5412 mark_object (ptr->car);
5413 obj = ptr->cdr;
1342fc6f
RS
5414 cdr_count++;
5415 if (cdr_count == mark_object_loop_halt)
5416 abort ();
7146af97
JB
5417 goto loop;
5418 }
5419
7146af97 5420 case Lisp_Float:
4f5c1376 5421 CHECK_ALLOCATED_AND_LIVE (live_float_p);
ab6780cd 5422 FLOAT_MARK (XFLOAT (obj));
7146af97 5423 break;
7146af97 5424
7146af97 5425 case Lisp_Int:
7146af97
JB
5426 break;
5427
5428 default:
5429 abort ();
5430 }
4f5c1376
GM
5431
5432#undef CHECK_LIVE
5433#undef CHECK_ALLOCATED
5434#undef CHECK_ALLOCATED_AND_LIVE
7146af97
JB
5435}
5436
5437/* Mark the pointers in a buffer structure. */
5438
5439static void
5440mark_buffer (buf)
5441 Lisp_Object buf;
5442{
7146af97 5443 register struct buffer *buffer = XBUFFER (buf);
f54253ec 5444 register Lisp_Object *ptr, tmp;
30e3190a 5445 Lisp_Object base_buffer;
7146af97 5446
3ef06d12 5447 VECTOR_MARK (buffer);
7146af97 5448
30e3190a 5449 MARK_INTERVAL_TREE (BUF_INTERVALS (buffer));
d5e35230 5450
c37adf23
SM
5451 /* For now, we just don't mark the undo_list. It's done later in
5452 a special way just before the sweep phase, and after stripping
5453 some of its elements that are not needed any more. */
4c315bda 5454
f54253ec
SM
5455 if (buffer->overlays_before)
5456 {
5457 XSETMISC (tmp, buffer->overlays_before);
5458 mark_object (tmp);
5459 }
5460 if (buffer->overlays_after)
5461 {
5462 XSETMISC (tmp, buffer->overlays_after);
5463 mark_object (tmp);
5464 }
5465
3ef06d12 5466 for (ptr = &buffer->name;
7146af97
JB
5467 (char *)ptr < (char *)buffer + sizeof (struct buffer);
5468 ptr++)
49723c04 5469 mark_object (*ptr);
30e3190a
RS
5470
5471 /* If this is an indirect buffer, mark its base buffer. */
349bd9ed 5472 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
30e3190a 5473 {
177c0ea7 5474 XSETBUFFER (base_buffer, buffer->base_buffer);
30e3190a
RS
5475 mark_buffer (base_buffer);
5476 }
7146af97 5477}
084b1a0c
KH
5478
5479
41c28a37
GM
5480/* Value is non-zero if OBJ will survive the current GC because it's
5481 either marked or does not need to be marked to survive. */
5482
5483int
5484survives_gc_p (obj)
5485 Lisp_Object obj;
5486{
5487 int survives_p;
177c0ea7 5488
41c28a37
GM
5489 switch (XGCTYPE (obj))
5490 {
5491 case Lisp_Int:
5492 survives_p = 1;
5493 break;
5494
5495 case Lisp_Symbol:
2336fe58 5496 survives_p = XSYMBOL (obj)->gcmarkbit;
41c28a37
GM
5497 break;
5498
5499 case Lisp_Misc:
ef89c2ce 5500 survives_p = XMARKER (obj)->gcmarkbit;
41c28a37
GM
5501 break;
5502
5503 case Lisp_String:
08b7c2cb 5504 survives_p = STRING_MARKED_P (XSTRING (obj));
41c28a37
GM
5505 break;
5506
5507 case Lisp_Vectorlike:
08b7c2cb 5508 survives_p = GC_SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
41c28a37
GM
5509 break;
5510
5511 case Lisp_Cons:
08b7c2cb 5512 survives_p = CONS_MARKED_P (XCONS (obj));
41c28a37
GM
5513 break;
5514
41c28a37 5515 case Lisp_Float:
ab6780cd 5516 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
41c28a37 5517 break;
41c28a37
GM
5518
5519 default:
5520 abort ();
5521 }
5522
34400008 5523 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
41c28a37
GM
5524}
5525
5526
7146af97 5527\f
1a4f1e2c 5528/* Sweep: find all structures not marked, and free them. */
7146af97
JB
5529
5530static void
5531gc_sweep ()
5532{
c37adf23
SM
5533 /* Remove or mark entries in weak hash tables.
5534 This must be done before any object is unmarked. */
5535 sweep_weak_hash_tables ();
5536
5537 sweep_strings ();
5538#ifdef GC_CHECK_STRING_BYTES
5539 if (!noninteractive)
5540 check_string_bytes (1);
5541#endif
5542
7146af97
JB
5543 /* Put all unmarked conses on free list */
5544 {
5545 register struct cons_block *cblk;
6ca94ac9 5546 struct cons_block **cprev = &cons_block;
7146af97
JB
5547 register int lim = cons_block_index;
5548 register int num_free = 0, num_used = 0;
5549
5550 cons_free_list = 0;
177c0ea7 5551
6ca94ac9 5552 for (cblk = cons_block; cblk; cblk = *cprev)
7146af97
JB
5553 {
5554 register int i;
6ca94ac9 5555 int this_free = 0;
7146af97 5556 for (i = 0; i < lim; i++)
08b7c2cb 5557 if (!CONS_MARKED_P (&cblk->conses[i]))
7146af97 5558 {
6ca94ac9 5559 this_free++;
1cd5fe6a 5560 *(struct Lisp_Cons **)&cblk->conses[i].cdr = cons_free_list;
7146af97 5561 cons_free_list = &cblk->conses[i];
34400008
GM
5562#if GC_MARK_STACK
5563 cons_free_list->car = Vdead;
5564#endif
7146af97
JB
5565 }
5566 else
5567 {
5568 num_used++;
08b7c2cb 5569 CONS_UNMARK (&cblk->conses[i]);
7146af97
JB
5570 }
5571 lim = CONS_BLOCK_SIZE;
6ca94ac9
KH
5572 /* If this block contains only free conses and we have already
5573 seen more than two blocks worth of free conses then deallocate
5574 this block. */
6feef451 5575 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
6ca94ac9 5576 {
6ca94ac9
KH
5577 *cprev = cblk->next;
5578 /* Unhook from the free list. */
5579 cons_free_list = *(struct Lisp_Cons **) &cblk->conses[0].cdr;
08b7c2cb 5580 lisp_align_free (cblk);
c8099634 5581 n_cons_blocks--;
6ca94ac9
KH
5582 }
5583 else
6feef451
AS
5584 {
5585 num_free += this_free;
5586 cprev = &cblk->next;
5587 }
7146af97
JB
5588 }
5589 total_conses = num_used;
5590 total_free_conses = num_free;
5591 }
5592
7146af97
JB
5593 /* Put all unmarked floats on free list */
5594 {
5595 register struct float_block *fblk;
6ca94ac9 5596 struct float_block **fprev = &float_block;
7146af97
JB
5597 register int lim = float_block_index;
5598 register int num_free = 0, num_used = 0;
5599
5600 float_free_list = 0;
177c0ea7 5601
6ca94ac9 5602 for (fblk = float_block; fblk; fblk = *fprev)
7146af97
JB
5603 {
5604 register int i;
6ca94ac9 5605 int this_free = 0;
7146af97 5606 for (i = 0; i < lim; i++)
ab6780cd 5607 if (!FLOAT_MARKED_P (&fblk->floats[i]))
7146af97 5608 {
6ca94ac9 5609 this_free++;
1cd5fe6a 5610 *(struct Lisp_Float **)&fblk->floats[i].data = float_free_list;
7146af97
JB
5611 float_free_list = &fblk->floats[i];
5612 }
5613 else
5614 {
5615 num_used++;
ab6780cd 5616 FLOAT_UNMARK (&fblk->floats[i]);
7146af97
JB
5617 }
5618 lim = FLOAT_BLOCK_SIZE;
6ca94ac9
KH
5619 /* If this block contains only free floats and we have already
5620 seen more than two blocks worth of free floats then deallocate
5621 this block. */
6feef451 5622 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
6ca94ac9 5623 {
6ca94ac9
KH
5624 *fprev = fblk->next;
5625 /* Unhook from the free list. */
5626 float_free_list = *(struct Lisp_Float **) &fblk->floats[0].data;
ab6780cd 5627 lisp_align_free (fblk);
c8099634 5628 n_float_blocks--;
6ca94ac9
KH
5629 }
5630 else
6feef451
AS
5631 {
5632 num_free += this_free;
5633 fprev = &fblk->next;
5634 }
7146af97
JB
5635 }
5636 total_floats = num_used;
5637 total_free_floats = num_free;
5638 }
7146af97 5639
d5e35230
JA
5640 /* Put all unmarked intervals on free list */
5641 {
5642 register struct interval_block *iblk;
6ca94ac9 5643 struct interval_block **iprev = &interval_block;
d5e35230
JA
5644 register int lim = interval_block_index;
5645 register int num_free = 0, num_used = 0;
5646
5647 interval_free_list = 0;
5648
6ca94ac9 5649 for (iblk = interval_block; iblk; iblk = *iprev)
d5e35230
JA
5650 {
5651 register int i;
6ca94ac9 5652 int this_free = 0;
d5e35230
JA
5653
5654 for (i = 0; i < lim; i++)
5655 {
2336fe58 5656 if (!iblk->intervals[i].gcmarkbit)
d5e35230 5657 {
439d5cb4 5658 SET_INTERVAL_PARENT (&iblk->intervals[i], interval_free_list);
d5e35230 5659 interval_free_list = &iblk->intervals[i];
6ca94ac9 5660 this_free++;
d5e35230
JA
5661 }
5662 else
5663 {
5664 num_used++;
2336fe58 5665 iblk->intervals[i].gcmarkbit = 0;
d5e35230
JA
5666 }
5667 }
5668 lim = INTERVAL_BLOCK_SIZE;
6ca94ac9
KH
5669 /* If this block contains only free intervals and we have already
5670 seen more than two blocks worth of free intervals then
5671 deallocate this block. */
6feef451 5672 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
6ca94ac9 5673 {
6ca94ac9
KH
5674 *iprev = iblk->next;
5675 /* Unhook from the free list. */
439d5cb4 5676 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
c8099634
RS
5677 lisp_free (iblk);
5678 n_interval_blocks--;
6ca94ac9
KH
5679 }
5680 else
6feef451
AS
5681 {
5682 num_free += this_free;
5683 iprev = &iblk->next;
5684 }
d5e35230
JA
5685 }
5686 total_intervals = num_used;
5687 total_free_intervals = num_free;
5688 }
d5e35230 5689
7146af97
JB
5690 /* Put all unmarked symbols on free list */
5691 {
5692 register struct symbol_block *sblk;
6ca94ac9 5693 struct symbol_block **sprev = &symbol_block;
7146af97
JB
5694 register int lim = symbol_block_index;
5695 register int num_free = 0, num_used = 0;
5696
d285b373 5697 symbol_free_list = NULL;
177c0ea7 5698
6ca94ac9 5699 for (sblk = symbol_block; sblk; sblk = *sprev)
7146af97 5700 {
6ca94ac9 5701 int this_free = 0;
d285b373
GM
5702 struct Lisp_Symbol *sym = sblk->symbols;
5703 struct Lisp_Symbol *end = sym + lim;
5704
5705 for (; sym < end; ++sym)
5706 {
20035321
SM
5707 /* Check if the symbol was created during loadup. In such a case
5708 it might be pointed to by pure bytecode which we don't trace,
5709 so we conservatively assume that it is live. */
8fe5665d 5710 int pure_p = PURE_POINTER_P (XSTRING (sym->xname));
177c0ea7 5711
2336fe58 5712 if (!sym->gcmarkbit && !pure_p)
d285b373
GM
5713 {
5714 *(struct Lisp_Symbol **) &sym->value = symbol_free_list;
5715 symbol_free_list = sym;
34400008 5716#if GC_MARK_STACK
d285b373 5717 symbol_free_list->function = Vdead;
34400008 5718#endif
d285b373
GM
5719 ++this_free;
5720 }
5721 else
5722 {
5723 ++num_used;
5724 if (!pure_p)
8fe5665d 5725 UNMARK_STRING (XSTRING (sym->xname));
2336fe58 5726 sym->gcmarkbit = 0;
d285b373
GM
5727 }
5728 }
177c0ea7 5729
7146af97 5730 lim = SYMBOL_BLOCK_SIZE;
6ca94ac9
KH
5731 /* If this block contains only free symbols and we have already
5732 seen more than two blocks worth of free symbols then deallocate
5733 this block. */
6feef451 5734 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
6ca94ac9 5735 {
6ca94ac9
KH
5736 *sprev = sblk->next;
5737 /* Unhook from the free list. */
5738 symbol_free_list = *(struct Lisp_Symbol **)&sblk->symbols[0].value;
c8099634
RS
5739 lisp_free (sblk);
5740 n_symbol_blocks--;
6ca94ac9
KH
5741 }
5742 else
6feef451
AS
5743 {
5744 num_free += this_free;
5745 sprev = &sblk->next;
5746 }
7146af97
JB
5747 }
5748 total_symbols = num_used;
5749 total_free_symbols = num_free;
5750 }
5751
a9faeabe
RS
5752 /* Put all unmarked misc's on free list.
5753 For a marker, first unchain it from the buffer it points into. */
7146af97
JB
5754 {
5755 register struct marker_block *mblk;
6ca94ac9 5756 struct marker_block **mprev = &marker_block;
7146af97
JB
5757 register int lim = marker_block_index;
5758 register int num_free = 0, num_used = 0;
5759
5760 marker_free_list = 0;
177c0ea7 5761
6ca94ac9 5762 for (mblk = marker_block; mblk; mblk = *mprev)
7146af97
JB
5763 {
5764 register int i;
6ca94ac9 5765 int this_free = 0;
fa05e253 5766
7146af97 5767 for (i = 0; i < lim; i++)
465edf35 5768 {
2336fe58 5769 if (!mblk->markers[i].u_marker.gcmarkbit)
465edf35 5770 {
a5da44fe 5771 if (mblk->markers[i].u_marker.type == Lisp_Misc_Marker)
ef89c2ce 5772 unchain_marker (&mblk->markers[i].u_marker);
fa05e253
RS
5773 /* Set the type of the freed object to Lisp_Misc_Free.
5774 We could leave the type alone, since nobody checks it,
465edf35 5775 but this might catch bugs faster. */
a5da44fe 5776 mblk->markers[i].u_marker.type = Lisp_Misc_Free;
465edf35
KH
5777 mblk->markers[i].u_free.chain = marker_free_list;
5778 marker_free_list = &mblk->markers[i];
6ca94ac9 5779 this_free++;
465edf35
KH
5780 }
5781 else
5782 {
5783 num_used++;
2336fe58 5784 mblk->markers[i].u_marker.gcmarkbit = 0;
465edf35
KH
5785 }
5786 }
7146af97 5787 lim = MARKER_BLOCK_SIZE;
6ca94ac9
KH
5788 /* If this block contains only free markers and we have already
5789 seen more than two blocks worth of free markers then deallocate
5790 this block. */
6feef451 5791 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
6ca94ac9 5792 {
6ca94ac9
KH
5793 *mprev = mblk->next;
5794 /* Unhook from the free list. */
5795 marker_free_list = mblk->markers[0].u_free.chain;
c37adf23 5796 lisp_free (mblk);
c8099634 5797 n_marker_blocks--;
6ca94ac9
KH
5798 }
5799 else
6feef451
AS
5800 {
5801 num_free += this_free;
5802 mprev = &mblk->next;
5803 }
7146af97
JB
5804 }
5805
5806 total_markers = num_used;
5807 total_free_markers = num_free;
5808 }
5809
5810 /* Free all unmarked buffers */
5811 {
5812 register struct buffer *buffer = all_buffers, *prev = 0, *next;
5813
5814 while (buffer)
3ef06d12 5815 if (!VECTOR_MARKED_P (buffer))
7146af97
JB
5816 {
5817 if (prev)
5818 prev->next = buffer->next;
5819 else
5820 all_buffers = buffer->next;
5821 next = buffer->next;
34400008 5822 lisp_free (buffer);
7146af97
JB
5823 buffer = next;
5824 }
5825 else
5826 {
3ef06d12 5827 VECTOR_UNMARK (buffer);
30e3190a 5828 UNMARK_BALANCE_INTERVALS (BUF_INTERVALS (buffer));
7146af97
JB
5829 prev = buffer, buffer = buffer->next;
5830 }
5831 }
5832
7146af97
JB
5833 /* Free all unmarked vectors */
5834 {
5835 register struct Lisp_Vector *vector = all_vectors, *prev = 0, *next;
5836 total_vector_size = 0;
5837
5838 while (vector)
3ef06d12 5839 if (!VECTOR_MARKED_P (vector))
7146af97
JB
5840 {
5841 if (prev)
5842 prev->next = vector->next;
5843 else
5844 all_vectors = vector->next;
5845 next = vector->next;
c8099634
RS
5846 lisp_free (vector);
5847 n_vectors--;
7146af97 5848 vector = next;
41c28a37 5849
7146af97
JB
5850 }
5851 else
5852 {
3ef06d12 5853 VECTOR_UNMARK (vector);
fa05e253
RS
5854 if (vector->size & PSEUDOVECTOR_FLAG)
5855 total_vector_size += (PSEUDOVECTOR_SIZE_MASK & vector->size);
5856 else
5857 total_vector_size += vector->size;
7146af97
JB
5858 prev = vector, vector = vector->next;
5859 }
5860 }
177c0ea7 5861
676a7251
GM
5862#ifdef GC_CHECK_STRING_BYTES
5863 if (!noninteractive)
5864 check_string_bytes (1);
5865#endif
7146af97 5866}
7146af97 5867
7146af97 5868
7146af97 5869
7146af97 5870\f
20d24714
JB
5871/* Debugging aids. */
5872
31ce1c91 5873DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
a6266d23 5874 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
228299fa 5875This may be helpful in debugging Emacs's memory usage.
7ee72033
MB
5876We divide the value by 1024 to make sure it fits in a Lisp integer. */)
5877 ()
20d24714
JB
5878{
5879 Lisp_Object end;
5880
45d12a89 5881 XSETINT (end, (EMACS_INT) sbrk (0) / 1024);
20d24714
JB
5882
5883 return end;
5884}
5885
310ea200 5886DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
a6266d23 5887 doc: /* Return a list of counters that measure how much consing there has been.
228299fa
GM
5888Each of these counters increments for a certain kind of object.
5889The counters wrap around from the largest positive integer to zero.
5890Garbage collection does not decrease them.
5891The elements of the value are as follows:
5892 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
5893All are in units of 1 = one object consed
5894except for VECTOR-CELLS and STRING-CHARS, which count the total length of
5895objects consed.
5896MISCS include overlays, markers, and some internal types.
5897Frames, windows, buffers, and subprocesses count as vectors
7ee72033
MB
5898 (but the contents of a buffer's text do not count here). */)
5899 ()
310ea200 5900{
2e471eb5 5901 Lisp_Object consed[8];
310ea200 5902
78e985eb
GM
5903 consed[0] = make_number (min (MOST_POSITIVE_FIXNUM, cons_cells_consed));
5904 consed[1] = make_number (min (MOST_POSITIVE_FIXNUM, floats_consed));
5905 consed[2] = make_number (min (MOST_POSITIVE_FIXNUM, vector_cells_consed));
5906 consed[3] = make_number (min (MOST_POSITIVE_FIXNUM, symbols_consed));
5907 consed[4] = make_number (min (MOST_POSITIVE_FIXNUM, string_chars_consed));
5908 consed[5] = make_number (min (MOST_POSITIVE_FIXNUM, misc_objects_consed));
5909 consed[6] = make_number (min (MOST_POSITIVE_FIXNUM, intervals_consed));
5910 consed[7] = make_number (min (MOST_POSITIVE_FIXNUM, strings_consed));
310ea200 5911
2e471eb5 5912 return Flist (8, consed);
310ea200 5913}
e0b8c689
KR
5914
5915int suppress_checking;
5916void
5917die (msg, file, line)
5918 const char *msg;
5919 const char *file;
5920 int line;
5921{
5922 fprintf (stderr, "\r\nEmacs fatal error: %s:%d: %s\r\n",
5923 file, line, msg);
5924 abort ();
5925}
20d24714 5926\f
7146af97
JB
5927/* Initialization */
5928
dfcf069d 5929void
7146af97
JB
5930init_alloc_once ()
5931{
5932 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
9e713715
GM
5933 purebeg = PUREBEG;
5934 pure_size = PURESIZE;
1f0b3fd2 5935 pure_bytes_used = 0;
9e713715
GM
5936 pure_bytes_used_before_overflow = 0;
5937
ab6780cd
SM
5938 /* Initialize the list of free aligned blocks. */
5939 free_ablock = NULL;
5940
877935b1 5941#if GC_MARK_STACK || defined GC_MALLOC_CHECK
34400008
GM
5942 mem_init ();
5943 Vdead = make_pure_string ("DEAD", 4, 4, 0);
5944#endif
9e713715 5945
7146af97
JB
5946 all_vectors = 0;
5947 ignore_warnings = 1;
d1658221
RS
5948#ifdef DOUG_LEA_MALLOC
5949 mallopt (M_TRIM_THRESHOLD, 128*1024); /* trim threshold */
5950 mallopt (M_MMAP_THRESHOLD, 64*1024); /* mmap threshold */
81d492d5 5951 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* max. number of mmap'ed areas */
d1658221 5952#endif
7146af97
JB
5953 init_strings ();
5954 init_cons ();
5955 init_symbol ();
5956 init_marker ();
7146af97 5957 init_float ();
34400008 5958 init_intervals ();
d5e35230 5959
276cbe5a
RS
5960#ifdef REL_ALLOC
5961 malloc_hysteresis = 32;
5962#else
5963 malloc_hysteresis = 0;
5964#endif
5965
5966 spare_memory = (char *) malloc (SPARE_MEMORY);
5967
7146af97
JB
5968 ignore_warnings = 0;
5969 gcprolist = 0;
630686c8 5970 byte_stack_list = 0;
7146af97
JB
5971 staticidx = 0;
5972 consing_since_gc = 0;
7d179cea 5973 gc_cons_threshold = 100000 * sizeof (Lisp_Object);
7146af97
JB
5974#ifdef VIRT_ADDR_VARIES
5975 malloc_sbrk_unused = 1<<22; /* A large number */
5976 malloc_sbrk_used = 100000; /* as reasonable as any number */
5977#endif /* VIRT_ADDR_VARIES */
5978}
5979
dfcf069d 5980void
7146af97
JB
5981init_alloc ()
5982{
5983 gcprolist = 0;
630686c8 5984 byte_stack_list = 0;
182ff242
GM
5985#if GC_MARK_STACK
5986#if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
5987 setjmp_tested_p = longjmps_done = 0;
5988#endif
5989#endif
2c5bd608
DL
5990 Vgc_elapsed = make_float (0.0);
5991 gcs_done = 0;
7146af97
JB
5992}
5993
5994void
5995syms_of_alloc ()
5996{
7ee72033 5997 DEFVAR_INT ("gc-cons-threshold", &gc_cons_threshold,
a6266d23 5998 doc: /* *Number of bytes of consing between garbage collections.
228299fa
GM
5999Garbage collection can happen automatically once this many bytes have been
6000allocated since the last garbage collection. All data types count.
7146af97 6001
228299fa 6002Garbage collection happens automatically only when `eval' is called.
7146af97 6003
228299fa
GM
6004By binding this temporarily to a large number, you can effectively
6005prevent garbage collection during a part of the program. */);
0819585c 6006
7ee72033 6007 DEFVAR_INT ("pure-bytes-used", &pure_bytes_used,
a6266d23 6008 doc: /* Number of bytes of sharable Lisp data allocated so far. */);
0819585c 6009
7ee72033 6010 DEFVAR_INT ("cons-cells-consed", &cons_cells_consed,
a6266d23 6011 doc: /* Number of cons cells that have been consed so far. */);
0819585c 6012
7ee72033 6013 DEFVAR_INT ("floats-consed", &floats_consed,
a6266d23 6014 doc: /* Number of floats that have been consed so far. */);
0819585c 6015
7ee72033 6016 DEFVAR_INT ("vector-cells-consed", &vector_cells_consed,
a6266d23 6017 doc: /* Number of vector cells that have been consed so far. */);
0819585c 6018
7ee72033 6019 DEFVAR_INT ("symbols-consed", &symbols_consed,
a6266d23 6020 doc: /* Number of symbols that have been consed so far. */);
0819585c 6021
7ee72033 6022 DEFVAR_INT ("string-chars-consed", &string_chars_consed,
a6266d23 6023 doc: /* Number of string characters that have been consed so far. */);
0819585c 6024
7ee72033 6025 DEFVAR_INT ("misc-objects-consed", &misc_objects_consed,
a6266d23 6026 doc: /* Number of miscellaneous objects that have been consed so far. */);
2e471eb5 6027
7ee72033 6028 DEFVAR_INT ("intervals-consed", &intervals_consed,
a6266d23 6029 doc: /* Number of intervals that have been consed so far. */);
7146af97 6030
7ee72033 6031 DEFVAR_INT ("strings-consed", &strings_consed,
a6266d23 6032 doc: /* Number of strings that have been consed so far. */);
228299fa 6033
7ee72033 6034 DEFVAR_LISP ("purify-flag", &Vpurify_flag,
a6266d23 6035 doc: /* Non-nil means loading Lisp code in order to dump an executable.
228299fa
GM
6036This means that certain objects should be allocated in shared (pure) space. */);
6037
7ee72033 6038 DEFVAR_BOOL ("garbage-collection-messages", &garbage_collection_messages,
a6266d23 6039 doc: /* Non-nil means display messages at start and end of garbage collection. */);
299585ee
RS
6040 garbage_collection_messages = 0;
6041
7ee72033 6042 DEFVAR_LISP ("post-gc-hook", &Vpost_gc_hook,
a6266d23 6043 doc: /* Hook run after garbage collection has finished. */);
9e713715
GM
6044 Vpost_gc_hook = Qnil;
6045 Qpost_gc_hook = intern ("post-gc-hook");
6046 staticpro (&Qpost_gc_hook);
6047
74a54b04
RS
6048 DEFVAR_LISP ("memory-signal-data", &Vmemory_signal_data,
6049 doc: /* Precomputed `signal' argument for memory-full error. */);
bcb61d60
KH
6050 /* We build this in advance because if we wait until we need it, we might
6051 not be able to allocate the memory to hold it. */
74a54b04
RS
6052 Vmemory_signal_data
6053 = list2 (Qerror,
6054 build_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"));
6055
6056 DEFVAR_LISP ("memory-full", &Vmemory_full,
6057 doc: /* Non-nil means we are handling a memory-full error. */);
6058 Vmemory_full = Qnil;
bcb61d60 6059
e8197642
RS
6060 staticpro (&Qgc_cons_threshold);
6061 Qgc_cons_threshold = intern ("gc-cons-threshold");
6062
a59de17b
RS
6063 staticpro (&Qchar_table_extra_slots);
6064 Qchar_table_extra_slots = intern ("char-table-extra-slots");
6065
2c5bd608
DL
6066 DEFVAR_LISP ("gc-elapsed", &Vgc_elapsed,
6067 doc: /* Accumulated time elapsed in garbage collections.
e7415487 6068The time is in seconds as a floating point value. */);
2c5bd608 6069 DEFVAR_INT ("gcs-done", &gcs_done,
e7415487 6070 doc: /* Accumulated number of garbage collections done. */);
2c5bd608 6071
7146af97
JB
6072 defsubr (&Scons);
6073 defsubr (&Slist);
6074 defsubr (&Svector);
6075 defsubr (&Smake_byte_code);
6076 defsubr (&Smake_list);
6077 defsubr (&Smake_vector);
7b07587b 6078 defsubr (&Smake_char_table);
7146af97 6079 defsubr (&Smake_string);
7b07587b 6080 defsubr (&Smake_bool_vector);
7146af97
JB
6081 defsubr (&Smake_symbol);
6082 defsubr (&Smake_marker);
6083 defsubr (&Spurecopy);
6084 defsubr (&Sgarbage_collect);
20d24714 6085 defsubr (&Smemory_limit);
310ea200 6086 defsubr (&Smemory_use_counts);
34400008
GM
6087
6088#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
6089 defsubr (&Sgc_status);
6090#endif
7146af97 6091}
ab5796a9
MB
6092
6093/* arch-tag: 6695ca10-e3c5-4c2c-8bc3-ed26a7dda857
6094 (do not change this comment) */