Mention in "C-u C-x =" display how to insert the character w/o input methods.
[bpt/emacs.git] / src / alloc.c
CommitLineData
7146af97 1/* Storage allocation and gc for GNU Emacs Lisp interpreter.
999dd333
GM
2
3Copyright (C) 1985-1986, 1988, 1993-1995, 1997-2012
4 Free Software Foundation, Inc.
7146af97
JB
5
6This file is part of GNU Emacs.
7
9ec0b715 8GNU Emacs is free software: you can redistribute it and/or modify
7146af97 9it under the terms of the GNU General Public License as published by
9ec0b715
GM
10the Free Software Foundation, either version 3 of the License, or
11(at your option) any later version.
7146af97
JB
12
13GNU Emacs is distributed in the hope that it will be useful,
14but WITHOUT ANY WARRANTY; without even the implied warranty of
15MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16GNU General Public License for more details.
17
18You should have received a copy of the GNU General Public License
9ec0b715 19along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
7146af97 20
18160b98 21#include <config.h>
e9b309ac 22#include <stdio.h>
ab6780cd 23#include <limits.h> /* For CHAR_BIT. */
d7306fe6 24#include <setjmp.h>
92939d31 25
68c45bf0 26#include <signal.h>
92939d31 27
ae9e757a 28#ifdef HAVE_PTHREAD
aa477689
JD
29#include <pthread.h>
30#endif
31
7539e11f
KR
32/* This file is part of the core Lisp implementation, and thus must
33 deal with the real data structures. If the Lisp implementation is
34 replaced, this file likely will not be used. */
2e471eb5 35
7539e11f 36#undef HIDE_LISP_IMPLEMENTATION
7146af97 37#include "lisp.h"
ece93c02 38#include "process.h"
d5e35230 39#include "intervals.h"
4c0be5f4 40#include "puresize.h"
7146af97
JB
41#include "buffer.h"
42#include "window.h"
2538fae4 43#include "keyboard.h"
502b9b64 44#include "frame.h"
9ac0d9e0 45#include "blockinput.h"
9d80e883 46#include "character.h"
e065a56e 47#include "syssignal.h"
4a729fd8 48#include "termhooks.h" /* For struct terminal. */
34400008 49#include <setjmp.h>
0065d054 50#include <verify.h>
e065a56e 51
52828e02
PE
52/* GC_CHECK_MARKED_OBJECTS means do sanity checks on allocated objects.
53 Doable only if GC_MARK_STACK. */
54#if ! GC_MARK_STACK
55# undef GC_CHECK_MARKED_OBJECTS
56#endif
57
6b61353c 58/* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
52828e02
PE
59 memory. Can do this only if using gmalloc.c and if not checking
60 marked objects. */
6b61353c 61
52828e02
PE
62#if (defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC \
63 || defined GC_CHECK_MARKED_OBJECTS)
6b61353c
KH
64#undef GC_MALLOC_CHECK
65#endif
66
bf952fb6 67#include <unistd.h>
4004364e 68#ifndef HAVE_UNISTD_H
261cb4bb 69extern void *sbrk ();
bf952fb6 70#endif
ee1eea5c 71
de7124a7 72#include <fcntl.h>
de7124a7 73
69666f77 74#ifdef WINDOWSNT
f892cf9c 75#include "w32.h"
69666f77
EZ
76#endif
77
d1658221 78#ifdef DOUG_LEA_MALLOC
2e471eb5 79
d1658221 80#include <malloc.h>
81d492d5 81
2e471eb5
GM
82/* Specify maximum number of areas to mmap. It would be nice to use a
83 value that explicitly means "no limit". */
84
81d492d5
RS
85#define MMAP_MAX_AREAS 100000000
86
2e471eb5
GM
87#else /* not DOUG_LEA_MALLOC */
88
276cbe5a
RS
89/* The following come from gmalloc.c. */
90
5e927815
PE
91extern size_t _bytes_used;
92extern size_t __malloc_extra_blocks;
b62a57be
PE
93extern void *_malloc_internal (size_t);
94extern void _free_internal (void *);
2e471eb5
GM
95
96#endif /* not DOUG_LEA_MALLOC */
276cbe5a 97
7bc26fdb 98#if ! defined SYSTEM_MALLOC && ! defined SYNC_INPUT
ae9e757a 99#ifdef HAVE_PTHREAD
aa477689 100
f415cacd
JD
101/* When GTK uses the file chooser dialog, different backends can be loaded
102 dynamically. One such a backend is the Gnome VFS backend that gets loaded
103 if you run Gnome. That backend creates several threads and also allocates
104 memory with malloc.
105
ae9e757a
JD
106 Also, gconf and gsettings may create several threads.
107
f415cacd
JD
108 If Emacs sets malloc hooks (! SYSTEM_MALLOC) and the emacs_blocked_*
109 functions below are called from malloc, there is a chance that one
110 of these threads preempts the Emacs main thread and the hook variables
333f1b6f 111 end up in an inconsistent state. So we have a mutex to prevent that (note
f415cacd
JD
112 that the backend handles concurrent access to malloc within its own threads
113 but Emacs code running in the main thread is not included in that control).
114
026cdede 115 When UNBLOCK_INPUT is called, reinvoke_input_signal may be called. If this
f415cacd
JD
116 happens in one of the backend threads we will have two threads that tries
117 to run Emacs code at once, and the code is not prepared for that.
118 To prevent that, we only call BLOCK/UNBLOCK from the main thread. */
119
aa477689 120static pthread_mutex_t alloc_mutex;
aa477689 121
959dc601
JD
122#define BLOCK_INPUT_ALLOC \
123 do \
124 { \
125 if (pthread_equal (pthread_self (), main_thread)) \
86302e37 126 BLOCK_INPUT; \
959dc601
JD
127 pthread_mutex_lock (&alloc_mutex); \
128 } \
aa477689 129 while (0)
959dc601
JD
130#define UNBLOCK_INPUT_ALLOC \
131 do \
132 { \
133 pthread_mutex_unlock (&alloc_mutex); \
134 if (pthread_equal (pthread_self (), main_thread)) \
86302e37 135 UNBLOCK_INPUT; \
959dc601 136 } \
aa477689
JD
137 while (0)
138
ae9e757a 139#else /* ! defined HAVE_PTHREAD */
aa477689
JD
140
141#define BLOCK_INPUT_ALLOC BLOCK_INPUT
142#define UNBLOCK_INPUT_ALLOC UNBLOCK_INPUT
143
ae9e757a 144#endif /* ! defined HAVE_PTHREAD */
7bc26fdb 145#endif /* ! defined SYSTEM_MALLOC && ! defined SYNC_INPUT */
aa477689 146
2e471eb5
GM
147/* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
148 to a struct Lisp_String. */
149
7cdee936
SM
150#define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
151#define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
b059de99 152#define STRING_MARKED_P(S) (((S)->size & ARRAY_MARK_FLAG) != 0)
2e471eb5 153
eab3844f
PE
154#define VECTOR_MARK(V) ((V)->header.size |= ARRAY_MARK_FLAG)
155#define VECTOR_UNMARK(V) ((V)->header.size &= ~ARRAY_MARK_FLAG)
156#define VECTOR_MARKED_P(V) (((V)->header.size & ARRAY_MARK_FLAG) != 0)
3ef06d12 157
7bc26fdb
PE
158/* Value is the number of bytes of S, a pointer to a struct Lisp_String.
159 Be careful during GC, because S->size contains the mark bit for
2e471eb5
GM
160 strings. */
161
3ef06d12 162#define GC_STRING_BYTES(S) (STRING_BYTES (S))
2e471eb5 163
29208e82
TT
164/* Global variables. */
165struct emacs_globals globals;
166
2e471eb5
GM
167/* Number of bytes of consing done since the last gc. */
168
0de4bb68 169EMACS_INT consing_since_gc;
7146af97 170
974aae61
RS
171/* Similar minimum, computed from Vgc_cons_percentage. */
172
173EMACS_INT gc_relative_threshold;
310ea200 174
24d8a105
RS
175/* Minimum number of bytes of consing since GC before next GC,
176 when memory is full. */
177
178EMACS_INT memory_full_cons_threshold;
179
2e471eb5
GM
180/* Nonzero during GC. */
181
7146af97
JB
182int gc_in_progress;
183
3de0effb
RS
184/* Nonzero means abort if try to GC.
185 This is for code which is written on the assumption that
186 no GC will happen, so as to verify that assumption. */
187
188int abort_on_gc;
189
34400008
GM
190/* Number of live and free conses etc. */
191
c0c5c8ae
PE
192static EMACS_INT total_conses, total_markers, total_symbols, total_vector_size;
193static EMACS_INT total_free_conses, total_free_markers, total_free_symbols;
194static EMACS_INT total_free_floats, total_floats;
fd27a537 195
2e471eb5 196/* Points to memory space allocated as "spare", to be freed if we run
24d8a105
RS
197 out of memory. We keep one large block, four cons-blocks, and
198 two string blocks. */
2e471eb5 199
d3d47262 200static char *spare_memory[7];
276cbe5a 201
2b6148e4
PE
202/* Amount of spare memory to keep in large reserve block, or to see
203 whether this much is available when malloc fails on a larger request. */
2e471eb5 204
276cbe5a 205#define SPARE_MEMORY (1 << 14)
4d09bcf6 206
276cbe5a 207/* Number of extra blocks malloc should get when it needs more core. */
2e471eb5 208
276cbe5a
RS
209static int malloc_hysteresis;
210
1b8950e5
RS
211/* Initialize it to a nonzero value to force it into data space
212 (rather than bss space). That way unexec will remap it into text
213 space (pure), on some systems. We have not implemented the
214 remapping on more recent systems because this is less important
215 nowadays than in the days of small memories and timesharing. */
2e471eb5 216
2c4685ee 217EMACS_INT pure[(PURESIZE + sizeof (EMACS_INT) - 1) / sizeof (EMACS_INT)] = {1,};
7146af97 218#define PUREBEG (char *) pure
2e471eb5 219
9e713715 220/* Pointer to the pure area, and its size. */
2e471eb5 221
9e713715 222static char *purebeg;
903fe15d 223static ptrdiff_t pure_size;
9e713715
GM
224
225/* Number of bytes of pure storage used before pure storage overflowed.
226 If this is non-zero, this implies that an overflow occurred. */
227
903fe15d 228static ptrdiff_t pure_bytes_used_before_overflow;
7146af97 229
34400008
GM
230/* Value is non-zero if P points into pure space. */
231
232#define PURE_POINTER_P(P) \
6a0bf43d 233 ((uintptr_t) (P) - (uintptr_t) purebeg <= pure_size)
34400008 234
e5bc14d4
YM
235/* Index in pure at which next pure Lisp object will be allocated.. */
236
d311d28c 237static ptrdiff_t pure_bytes_used_lisp;
e5bc14d4
YM
238
239/* Number of bytes allocated for non-Lisp objects in pure storage. */
240
d311d28c 241static ptrdiff_t pure_bytes_used_non_lisp;
e5bc14d4 242
2e471eb5
GM
243/* If nonzero, this is a warning delivered by malloc and not yet
244 displayed. */
245
a8fe7202 246const char *pending_malloc_warning;
7146af97
JB
247
248/* Maximum amount of C stack to save when a GC happens. */
249
250#ifndef MAX_SAVE_STACK
251#define MAX_SAVE_STACK 16000
252#endif
253
254/* Buffer in which we save a copy of the C stack at each GC. */
255
dd3f25f7 256#if MAX_SAVE_STACK > 0
d3d47262 257static char *stack_copy;
903fe15d 258static ptrdiff_t stack_copy_size;
dd3f25f7 259#endif
7146af97 260
2e471eb5
GM
261/* Non-zero means ignore malloc warnings. Set during initialization.
262 Currently not used. */
263
d3d47262 264static int ignore_warnings;
350273a4 265
955cbe7b
PE
266static Lisp_Object Qgc_cons_threshold;
267Lisp_Object Qchar_table_extra_slots;
e8197642 268
9e713715
GM
269/* Hook run after GC has finished. */
270
955cbe7b 271static Lisp_Object Qpost_gc_hook;
2c5bd608 272
f57e2426
J
273static void mark_buffer (Lisp_Object);
274static void mark_terminals (void);
f57e2426 275static void gc_sweep (void);
72cb32cf 276static Lisp_Object make_pure_vector (ptrdiff_t);
f57e2426
J
277static void mark_glyph_matrix (struct glyph_matrix *);
278static void mark_face_cache (struct face_cache *);
41c28a37 279
69003fd8
PE
280#if !defined REL_ALLOC || defined SYSTEM_MALLOC
281static void refill_memory_reserve (void);
282#endif
f57e2426
J
283static struct Lisp_String *allocate_string (void);
284static void compact_small_strings (void);
285static void free_large_strings (void);
286static void sweep_strings (void);
244ed907 287static void free_misc (Lisp_Object);
196e41e4 288extern Lisp_Object which_symbols (Lisp_Object, EMACS_INT) EXTERNALLY_VISIBLE;
34400008 289
34400008
GM
290/* When scanning the C stack for live Lisp objects, Emacs keeps track
291 of what memory allocated via lisp_malloc is intended for what
292 purpose. This enumeration specifies the type of memory. */
293
294enum mem_type
295{
296 MEM_TYPE_NON_LISP,
297 MEM_TYPE_BUFFER,
298 MEM_TYPE_CONS,
299 MEM_TYPE_STRING,
300 MEM_TYPE_MISC,
301 MEM_TYPE_SYMBOL,
302 MEM_TYPE_FLOAT,
9c545a55
SM
303 /* We used to keep separate mem_types for subtypes of vectors such as
304 process, hash_table, frame, terminal, and window, but we never made
305 use of the distinction, so it only caused source-code complexity
306 and runtime slowdown. Minor but pointless. */
f3372c87
DA
307 MEM_TYPE_VECTORLIKE,
308 /* Special type to denote vector blocks. */
309 MEM_TYPE_VECTOR_BLOCK
34400008
GM
310};
311
261cb4bb 312static void *lisp_malloc (size_t, enum mem_type);
225ccad6 313
24d8a105 314
877935b1 315#if GC_MARK_STACK || defined GC_MALLOC_CHECK
0b378936
GM
316
317#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
318#include <stdio.h> /* For fprintf. */
319#endif
320
321/* A unique object in pure space used to make some Lisp objects
322 on free lists recognizable in O(1). */
323
d3d47262 324static Lisp_Object Vdead;
ca78dc43 325#define DEADP(x) EQ (x, Vdead)
0b378936 326
877935b1
GM
327#ifdef GC_MALLOC_CHECK
328
329enum mem_type allocated_mem_type;
877935b1
GM
330
331#endif /* GC_MALLOC_CHECK */
332
333/* A node in the red-black tree describing allocated memory containing
334 Lisp data. Each such block is recorded with its start and end
335 address when it is allocated, and removed from the tree when it
336 is freed.
337
338 A red-black tree is a balanced binary tree with the following
339 properties:
340
341 1. Every node is either red or black.
342 2. Every leaf is black.
343 3. If a node is red, then both of its children are black.
344 4. Every simple path from a node to a descendant leaf contains
345 the same number of black nodes.
346 5. The root is always black.
347
348 When nodes are inserted into the tree, or deleted from the tree,
349 the tree is "fixed" so that these properties are always true.
350
351 A red-black tree with N internal nodes has height at most 2
352 log(N+1). Searches, insertions and deletions are done in O(log N).
353 Please see a text book about data structures for a detailed
354 description of red-black trees. Any book worth its salt should
355 describe them. */
356
357struct mem_node
358{
9f7d9210
RS
359 /* Children of this node. These pointers are never NULL. When there
360 is no child, the value is MEM_NIL, which points to a dummy node. */
361 struct mem_node *left, *right;
362
363 /* The parent of this node. In the root node, this is NULL. */
364 struct mem_node *parent;
877935b1
GM
365
366 /* Start and end of allocated region. */
367 void *start, *end;
368
369 /* Node color. */
370 enum {MEM_BLACK, MEM_RED} color;
177c0ea7 371
877935b1
GM
372 /* Memory type. */
373 enum mem_type type;
374};
375
376/* Base address of stack. Set in main. */
377
378Lisp_Object *stack_base;
379
380/* Root of the tree describing allocated Lisp memory. */
381
382static struct mem_node *mem_root;
383
ece93c02
GM
384/* Lowest and highest known address in the heap. */
385
386static void *min_heap_address, *max_heap_address;
387
877935b1
GM
388/* Sentinel node of the tree. */
389
390static struct mem_node mem_z;
391#define MEM_NIL &mem_z
392
d311d28c 393static struct Lisp_Vector *allocate_vectorlike (ptrdiff_t);
261cb4bb 394static void lisp_free (void *);
f57e2426
J
395static void mark_stack (void);
396static int live_vector_p (struct mem_node *, void *);
397static int live_buffer_p (struct mem_node *, void *);
398static int live_string_p (struct mem_node *, void *);
399static int live_cons_p (struct mem_node *, void *);
400static int live_symbol_p (struct mem_node *, void *);
401static int live_float_p (struct mem_node *, void *);
402static int live_misc_p (struct mem_node *, void *);
403static void mark_maybe_object (Lisp_Object);
3164aeac 404static void mark_memory (void *, void *);
52828e02 405#if GC_MARK_STACK || defined GC_MALLOC_CHECK
f57e2426
J
406static void mem_init (void);
407static struct mem_node *mem_insert (void *, void *, enum mem_type);
408static void mem_insert_fixup (struct mem_node *);
b62a57be 409#endif
f57e2426
J
410static void mem_rotate_left (struct mem_node *);
411static void mem_rotate_right (struct mem_node *);
412static void mem_delete (struct mem_node *);
413static void mem_delete_fixup (struct mem_node *);
55d4c1b2 414static inline struct mem_node *mem_find (void *);
34400008 415
34400008
GM
416
417#if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
f57e2426 418static void check_gcpros (void);
34400008
GM
419#endif
420
877935b1 421#endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
34400008 422
ca78dc43
PE
423#ifndef DEADP
424# define DEADP(x) 0
425#endif
426
1f0b3fd2
GM
427/* Recording what needs to be marked for gc. */
428
429struct gcpro *gcprolist;
430
379b98b1
PE
431/* Addresses of staticpro'd variables. Initialize it to a nonzero
432 value; otherwise some compilers put it into BSS. */
1f0b3fd2 433
0078170f 434#define NSTATICS 0x640
d3d47262 435static Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
1f0b3fd2
GM
436
437/* Index of next unused slot in staticvec. */
438
d3d47262 439static int staticidx = 0;
1f0b3fd2 440
261cb4bb 441static void *pure_alloc (size_t, int);
1f0b3fd2
GM
442
443
444/* Value is SZ rounded up to the next multiple of ALIGNMENT.
445 ALIGNMENT must be a power of 2. */
446
ab6780cd 447#define ALIGN(ptr, ALIGNMENT) \
261cb4bb
PE
448 ((void *) (((uintptr_t) (ptr) + (ALIGNMENT) - 1) \
449 & ~ ((ALIGNMENT) - 1)))
1f0b3fd2 450
ece93c02 451
7146af97 452\f
34400008
GM
453/************************************************************************
454 Malloc
455 ************************************************************************/
456
4455ad75 457/* Function malloc calls this if it finds we are near exhausting storage. */
d457598b
AS
458
459void
a8fe7202 460malloc_warning (const char *str)
7146af97
JB
461{
462 pending_malloc_warning = str;
463}
464
34400008 465
4455ad75 466/* Display an already-pending malloc warning. */
34400008 467
d457598b 468void
971de7fb 469display_malloc_warning (void)
7146af97 470{
4455ad75
RS
471 call3 (intern ("display-warning"),
472 intern ("alloc"),
473 build_string (pending_malloc_warning),
474 intern ("emergency"));
7146af97 475 pending_malloc_warning = 0;
7146af97 476}
49efed3a 477\f
276cbe5a
RS
478/* Called if we can't allocate relocatable space for a buffer. */
479
480void
d311d28c 481buffer_memory_full (ptrdiff_t nbytes)
276cbe5a 482{
2e471eb5
GM
483 /* If buffers use the relocating allocator, no need to free
484 spare_memory, because we may have plenty of malloc space left
485 that we could get, and if we don't, the malloc that fails will
486 itself cause spare_memory to be freed. If buffers don't use the
487 relocating allocator, treat this like any other failing
488 malloc. */
276cbe5a
RS
489
490#ifndef REL_ALLOC
531b0165 491 memory_full (nbytes);
276cbe5a
RS
492#endif
493
2e471eb5
GM
494 /* This used to call error, but if we've run out of memory, we could
495 get infinite recursion trying to build the string. */
9b306d37 496 xsignal (Qnil, Vmemory_signal_data);
7146af97
JB
497}
498
f3372c87
DA
499/* A common multiple of the positive integers A and B. Ideally this
500 would be the least common multiple, but there's no way to do that
501 as a constant expression in C, so do the best that we can easily do. */
502#define COMMON_MULTIPLE(a, b) \
503 ((a) % (b) == 0 ? (a) : (b) % (a) == 0 ? (b) : (a) * (b))
34400008 504
c9d624c6 505#ifndef XMALLOC_OVERRUN_CHECK
903fe15d 506#define XMALLOC_OVERRUN_CHECK_OVERHEAD 0
c9d624c6 507#else
212f33f1 508
903fe15d
PE
509/* Check for overrun in malloc'ed buffers by wrapping a header and trailer
510 around each block.
bdbed949 511
f701dc2a
PE
512 The header consists of XMALLOC_OVERRUN_CHECK_SIZE fixed bytes
513 followed by XMALLOC_OVERRUN_SIZE_SIZE bytes containing the original
514 block size in little-endian order. The trailer consists of
515 XMALLOC_OVERRUN_CHECK_SIZE fixed bytes.
bdbed949
KS
516
517 The header is used to detect whether this block has been allocated
f701dc2a
PE
518 through these functions, as some low-level libc functions may
519 bypass the malloc hooks. */
bdbed949 520
212f33f1 521#define XMALLOC_OVERRUN_CHECK_SIZE 16
903fe15d 522#define XMALLOC_OVERRUN_CHECK_OVERHEAD \
38532ce6
PE
523 (2 * XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE)
524
525/* Define XMALLOC_OVERRUN_SIZE_SIZE so that (1) it's large enough to
f701dc2a
PE
526 hold a size_t value and (2) the header size is a multiple of the
527 alignment that Emacs needs for C types and for USE_LSB_TAG. */
528#define XMALLOC_BASE_ALIGNMENT \
529 offsetof ( \
530 struct { \
531 union { long double d; intmax_t i; void *p; } u; \
532 char c; \
533 }, \
534 c)
f3372c87 535
38532ce6 536#ifdef USE_LSB_TAG
f701dc2a
PE
537# define XMALLOC_HEADER_ALIGNMENT \
538 COMMON_MULTIPLE (1 << GCTYPEBITS, XMALLOC_BASE_ALIGNMENT)
38532ce6
PE
539#else
540# define XMALLOC_HEADER_ALIGNMENT XMALLOC_BASE_ALIGNMENT
541#endif
542#define XMALLOC_OVERRUN_SIZE_SIZE \
f701dc2a
PE
543 (((XMALLOC_OVERRUN_CHECK_SIZE + sizeof (size_t) \
544 + XMALLOC_HEADER_ALIGNMENT - 1) \
545 / XMALLOC_HEADER_ALIGNMENT * XMALLOC_HEADER_ALIGNMENT) \
546 - XMALLOC_OVERRUN_CHECK_SIZE)
bdbed949 547
903fe15d
PE
548static char const xmalloc_overrun_check_header[XMALLOC_OVERRUN_CHECK_SIZE] =
549 { '\x9a', '\x9b', '\xae', '\xaf',
550 '\xbf', '\xbe', '\xce', '\xcf',
551 '\xea', '\xeb', '\xec', '\xed',
552 '\xdf', '\xde', '\x9c', '\x9d' };
212f33f1 553
903fe15d
PE
554static char const xmalloc_overrun_check_trailer[XMALLOC_OVERRUN_CHECK_SIZE] =
555 { '\xaa', '\xab', '\xac', '\xad',
556 '\xba', '\xbb', '\xbc', '\xbd',
557 '\xca', '\xcb', '\xcc', '\xcd',
558 '\xda', '\xdb', '\xdc', '\xdd' };
212f33f1 559
903fe15d 560/* Insert and extract the block size in the header. */
bdbed949 561
903fe15d
PE
562static void
563xmalloc_put_size (unsigned char *ptr, size_t size)
564{
565 int i;
38532ce6 566 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
903fe15d 567 {
38532ce6 568 *--ptr = size & ((1 << CHAR_BIT) - 1);
903fe15d
PE
569 size >>= CHAR_BIT;
570 }
571}
bdbed949 572
903fe15d
PE
573static size_t
574xmalloc_get_size (unsigned char *ptr)
575{
576 size_t size = 0;
577 int i;
38532ce6
PE
578 ptr -= XMALLOC_OVERRUN_SIZE_SIZE;
579 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
903fe15d
PE
580 {
581 size <<= CHAR_BIT;
582 size += *ptr++;
583 }
584 return size;
585}
bdbed949
KS
586
587
d8f165a8
JD
588/* The call depth in overrun_check functions. For example, this might happen:
589 xmalloc()
590 overrun_check_malloc()
591 -> malloc -> (via hook)_-> emacs_blocked_malloc
592 -> overrun_check_malloc
593 call malloc (hooks are NULL, so real malloc is called).
594 malloc returns 10000.
595 add overhead, return 10016.
596 <- (back in overrun_check_malloc)
857ae68b 597 add overhead again, return 10032
d8f165a8 598 xmalloc returns 10032.
857ae68b
JD
599
600 (time passes).
601
d8f165a8
JD
602 xfree(10032)
603 overrun_check_free(10032)
903fe15d 604 decrease overhead
d8f165a8 605 free(10016) <- crash, because 10000 is the original pointer. */
857ae68b 606
903fe15d 607static ptrdiff_t check_depth;
857ae68b 608
bdbed949
KS
609/* Like malloc, but wraps allocated block with header and trailer. */
610
261cb4bb 611static void *
e7974947 612overrun_check_malloc (size_t size)
212f33f1 613{
bdbed949 614 register unsigned char *val;
903fe15d
PE
615 int overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_OVERHEAD : 0;
616 if (SIZE_MAX - overhead < size)
617 abort ();
212f33f1 618
857ae68b
JD
619 val = (unsigned char *) malloc (size + overhead);
620 if (val && check_depth == 1)
212f33f1 621 {
903fe15d 622 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
38532ce6 623 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
903fe15d 624 xmalloc_put_size (val, size);
72af86bd
AS
625 memcpy (val + size, xmalloc_overrun_check_trailer,
626 XMALLOC_OVERRUN_CHECK_SIZE);
212f33f1 627 }
857ae68b 628 --check_depth;
261cb4bb 629 return val;
212f33f1
KS
630}
631
bdbed949
KS
632
633/* Like realloc, but checks old block for overrun, and wraps new block
634 with header and trailer. */
635
261cb4bb
PE
636static void *
637overrun_check_realloc (void *block, size_t size)
212f33f1 638{
e7974947 639 register unsigned char *val = (unsigned char *) block;
903fe15d
PE
640 int overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_OVERHEAD : 0;
641 if (SIZE_MAX - overhead < size)
642 abort ();
212f33f1
KS
643
644 if (val
857ae68b 645 && check_depth == 1
72af86bd 646 && memcmp (xmalloc_overrun_check_header,
38532ce6 647 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
903fe15d 648 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
212f33f1 649 {
903fe15d 650 size_t osize = xmalloc_get_size (val);
72af86bd
AS
651 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
652 XMALLOC_OVERRUN_CHECK_SIZE))
212f33f1 653 abort ();
72af86bd 654 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
38532ce6
PE
655 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
656 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
212f33f1
KS
657 }
658
261cb4bb 659 val = realloc (val, size + overhead);
212f33f1 660
857ae68b 661 if (val && check_depth == 1)
212f33f1 662 {
903fe15d 663 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
38532ce6 664 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
903fe15d 665 xmalloc_put_size (val, size);
72af86bd
AS
666 memcpy (val + size, xmalloc_overrun_check_trailer,
667 XMALLOC_OVERRUN_CHECK_SIZE);
212f33f1 668 }
857ae68b 669 --check_depth;
261cb4bb 670 return val;
212f33f1
KS
671}
672
bdbed949
KS
673/* Like free, but checks block for overrun. */
674
2538aa2f 675static void
261cb4bb 676overrun_check_free (void *block)
212f33f1 677{
e7974947 678 unsigned char *val = (unsigned char *) block;
212f33f1 679
857ae68b 680 ++check_depth;
212f33f1 681 if (val
857ae68b 682 && check_depth == 1
72af86bd 683 && memcmp (xmalloc_overrun_check_header,
38532ce6 684 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
903fe15d 685 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
212f33f1 686 {
903fe15d 687 size_t osize = xmalloc_get_size (val);
72af86bd
AS
688 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
689 XMALLOC_OVERRUN_CHECK_SIZE))
212f33f1 690 abort ();
454d7973 691#ifdef XMALLOC_CLEAR_FREE_MEMORY
38532ce6 692 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
903fe15d 693 memset (val, 0xff, osize + XMALLOC_OVERRUN_CHECK_OVERHEAD);
454d7973 694#else
72af86bd 695 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
38532ce6
PE
696 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
697 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
454d7973 698#endif
212f33f1
KS
699 }
700
701 free (val);
857ae68b 702 --check_depth;
212f33f1
KS
703}
704
705#undef malloc
706#undef realloc
707#undef free
708#define malloc overrun_check_malloc
709#define realloc overrun_check_realloc
710#define free overrun_check_free
711#endif
712
dafc79fa
SM
713#ifdef SYNC_INPUT
714/* When using SYNC_INPUT, we don't call malloc from a signal handler, so
715 there's no need to block input around malloc. */
716#define MALLOC_BLOCK_INPUT ((void)0)
717#define MALLOC_UNBLOCK_INPUT ((void)0)
718#else
719#define MALLOC_BLOCK_INPUT BLOCK_INPUT
720#define MALLOC_UNBLOCK_INPUT UNBLOCK_INPUT
721#endif
bdbed949 722
34400008 723/* Like malloc but check for no memory and block interrupt input.. */
7146af97 724
261cb4bb 725void *
971de7fb 726xmalloc (size_t size)
7146af97 727{
261cb4bb 728 void *val;
7146af97 729
dafc79fa 730 MALLOC_BLOCK_INPUT;
261cb4bb 731 val = malloc (size);
dafc79fa 732 MALLOC_UNBLOCK_INPUT;
7146af97 733
2e471eb5 734 if (!val && size)
531b0165 735 memory_full (size);
7146af97
JB
736 return val;
737}
738
34400008
GM
739
740/* Like realloc but check for no memory and block interrupt input.. */
741
261cb4bb
PE
742void *
743xrealloc (void *block, size_t size)
7146af97 744{
261cb4bb 745 void *val;
7146af97 746
dafc79fa 747 MALLOC_BLOCK_INPUT;
56d2031b
JB
748 /* We must call malloc explicitly when BLOCK is 0, since some
749 reallocs don't do this. */
750 if (! block)
261cb4bb 751 val = malloc (size);
f048679d 752 else
261cb4bb 753 val = realloc (block, size);
dafc79fa 754 MALLOC_UNBLOCK_INPUT;
7146af97 755
531b0165
PE
756 if (!val && size)
757 memory_full (size);
7146af97
JB
758 return val;
759}
9ac0d9e0 760
34400008 761
005ca5c7 762/* Like free but block interrupt input. */
34400008 763
9ac0d9e0 764void
261cb4bb 765xfree (void *block)
9ac0d9e0 766{
70fdbb46
JM
767 if (!block)
768 return;
dafc79fa 769 MALLOC_BLOCK_INPUT;
9ac0d9e0 770 free (block);
dafc79fa 771 MALLOC_UNBLOCK_INPUT;
24d8a105
RS
772 /* We don't call refill_memory_reserve here
773 because that duplicates doing so in emacs_blocked_free
774 and the criterion should go there. */
9ac0d9e0
JB
775}
776
c8099634 777
0065d054
PE
778/* Other parts of Emacs pass large int values to allocator functions
779 expecting ptrdiff_t. This is portable in practice, but check it to
780 be safe. */
781verify (INT_MAX <= PTRDIFF_MAX);
782
783
784/* Allocate an array of NITEMS items, each of size ITEM_SIZE.
785 Signal an error on memory exhaustion, and block interrupt input. */
786
787void *
788xnmalloc (ptrdiff_t nitems, ptrdiff_t item_size)
789{
790 xassert (0 <= nitems && 0 < item_size);
791 if (min (PTRDIFF_MAX, SIZE_MAX) / item_size < nitems)
792 memory_full (SIZE_MAX);
793 return xmalloc (nitems * item_size);
794}
795
796
797/* Reallocate an array PA to make it of NITEMS items, each of size ITEM_SIZE.
798 Signal an error on memory exhaustion, and block interrupt input. */
799
800void *
801xnrealloc (void *pa, ptrdiff_t nitems, ptrdiff_t item_size)
802{
803 xassert (0 <= nitems && 0 < item_size);
804 if (min (PTRDIFF_MAX, SIZE_MAX) / item_size < nitems)
805 memory_full (SIZE_MAX);
806 return xrealloc (pa, nitems * item_size);
807}
808
809
810/* Grow PA, which points to an array of *NITEMS items, and return the
811 location of the reallocated array, updating *NITEMS to reflect its
812 new size. The new array will contain at least NITEMS_INCR_MIN more
813 items, but will not contain more than NITEMS_MAX items total.
814 ITEM_SIZE is the size of each item, in bytes.
815
816 ITEM_SIZE and NITEMS_INCR_MIN must be positive. *NITEMS must be
817 nonnegative. If NITEMS_MAX is -1, it is treated as if it were
818 infinity.
819
820 If PA is null, then allocate a new array instead of reallocating
821 the old one. Thus, to grow an array A without saving its old
822 contents, invoke xfree (A) immediately followed by xgrowalloc (0,
823 &NITEMS, ...).
824
825 Block interrupt input as needed. If memory exhaustion occurs, set
826 *NITEMS to zero if PA is null, and signal an error (i.e., do not
827 return). */
828
829void *
830xpalloc (void *pa, ptrdiff_t *nitems, ptrdiff_t nitems_incr_min,
831 ptrdiff_t nitems_max, ptrdiff_t item_size)
832{
833 /* The approximate size to use for initial small allocation
834 requests. This is the largest "small" request for the GNU C
835 library malloc. */
836 enum { DEFAULT_MXFAST = 64 * sizeof (size_t) / 4 };
837
838 /* If the array is tiny, grow it to about (but no greater than)
839 DEFAULT_MXFAST bytes. Otherwise, grow it by about 50%. */
840 ptrdiff_t n = *nitems;
841 ptrdiff_t tiny_max = DEFAULT_MXFAST / item_size - n;
842 ptrdiff_t half_again = n >> 1;
843 ptrdiff_t incr_estimate = max (tiny_max, half_again);
844
845 /* Adjust the increment according to three constraints: NITEMS_INCR_MIN,
846 NITEMS_MAX, and what the C language can represent safely. */
847 ptrdiff_t C_language_max = min (PTRDIFF_MAX, SIZE_MAX) / item_size;
848 ptrdiff_t n_max = (0 <= nitems_max && nitems_max < C_language_max
849 ? nitems_max : C_language_max);
850 ptrdiff_t nitems_incr_max = n_max - n;
851 ptrdiff_t incr = max (nitems_incr_min, min (incr_estimate, nitems_incr_max));
852
853 xassert (0 < item_size && 0 < nitems_incr_min && 0 <= n && -1 <= nitems_max);
854 if (! pa)
855 *nitems = 0;
856 if (nitems_incr_max < incr)
857 memory_full (SIZE_MAX);
858 n += incr;
859 pa = xrealloc (pa, n * item_size);
860 *nitems = n;
861 return pa;
862}
863
864
dca7c6a8
GM
865/* Like strdup, but uses xmalloc. */
866
867char *
971de7fb 868xstrdup (const char *s)
dca7c6a8 869{
675d5130 870 size_t len = strlen (s) + 1;
dca7c6a8 871 char *p = (char *) xmalloc (len);
72af86bd 872 memcpy (p, s, len);
dca7c6a8
GM
873 return p;
874}
875
876
f61bef8b
KS
877/* Unwind for SAFE_ALLOCA */
878
879Lisp_Object
971de7fb 880safe_alloca_unwind (Lisp_Object arg)
f61bef8b 881{
b766f870
KS
882 register struct Lisp_Save_Value *p = XSAVE_VALUE (arg);
883
884 p->dogc = 0;
885 xfree (p->pointer);
886 p->pointer = 0;
7b7990cc 887 free_misc (arg);
f61bef8b
KS
888 return Qnil;
889}
890
891
34400008
GM
892/* Like malloc but used for allocating Lisp data. NBYTES is the
893 number of bytes to allocate, TYPE describes the intended use of the
91af3942 894 allocated memory block (for strings, for conses, ...). */
34400008 895
212f33f1 896#ifndef USE_LSB_TAG
918a23a7 897static void *lisp_malloc_loser;
212f33f1 898#endif
918a23a7 899
261cb4bb 900static void *
971de7fb 901lisp_malloc (size_t nbytes, enum mem_type type)
c8099634 902{
34400008 903 register void *val;
c8099634 904
dafc79fa 905 MALLOC_BLOCK_INPUT;
877935b1
GM
906
907#ifdef GC_MALLOC_CHECK
908 allocated_mem_type = type;
909#endif
177c0ea7 910
34400008 911 val = (void *) malloc (nbytes);
c8099634 912
6b61353c 913#ifndef USE_LSB_TAG
918a23a7
RS
914 /* If the memory just allocated cannot be addressed thru a Lisp
915 object's pointer, and it needs to be,
916 that's equivalent to running out of memory. */
917 if (val && type != MEM_TYPE_NON_LISP)
918 {
919 Lisp_Object tem;
920 XSETCONS (tem, (char *) val + nbytes - 1);
921 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
922 {
923 lisp_malloc_loser = val;
924 free (val);
925 val = 0;
926 }
927 }
6b61353c 928#endif
918a23a7 929
877935b1 930#if GC_MARK_STACK && !defined GC_MALLOC_CHECK
dca7c6a8 931 if (val && type != MEM_TYPE_NON_LISP)
34400008
GM
932 mem_insert (val, (char *) val + nbytes, type);
933#endif
177c0ea7 934
dafc79fa 935 MALLOC_UNBLOCK_INPUT;
dca7c6a8 936 if (!val && nbytes)
531b0165 937 memory_full (nbytes);
c8099634
RS
938 return val;
939}
940
34400008
GM
941/* Free BLOCK. This must be called to free memory allocated with a
942 call to lisp_malloc. */
943
bf952fb6 944static void
261cb4bb 945lisp_free (void *block)
c8099634 946{
dafc79fa 947 MALLOC_BLOCK_INPUT;
c8099634 948 free (block);
877935b1 949#if GC_MARK_STACK && !defined GC_MALLOC_CHECK
34400008
GM
950 mem_delete (mem_find (block));
951#endif
dafc79fa 952 MALLOC_UNBLOCK_INPUT;
c8099634 953}
34400008 954
453b951e
SM
955/***** Allocation of aligned blocks of memory to store Lisp data. *****/
956
957/* The entry point is lisp_align_malloc which returns blocks of at most
958 BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
ab6780cd 959
b4181b01
KS
960#if defined (HAVE_POSIX_MEMALIGN) && defined (SYSTEM_MALLOC)
961#define USE_POSIX_MEMALIGN 1
962#endif
ab6780cd
SM
963
964/* BLOCK_ALIGN has to be a power of 2. */
965#define BLOCK_ALIGN (1 << 10)
ab6780cd
SM
966
967/* Padding to leave at the end of a malloc'd block. This is to give
968 malloc a chance to minimize the amount of memory wasted to alignment.
969 It should be tuned to the particular malloc library used.
19bcad1f
SM
970 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
971 posix_memalign on the other hand would ideally prefer a value of 4
972 because otherwise, there's 1020 bytes wasted between each ablocks.
f501ccb4
SM
973 In Emacs, testing shows that those 1020 can most of the time be
974 efficiently used by malloc to place other objects, so a value of 0 can
975 still preferable unless you have a lot of aligned blocks and virtually
976 nothing else. */
19bcad1f
SM
977#define BLOCK_PADDING 0
978#define BLOCK_BYTES \
0b432f21 979 (BLOCK_ALIGN - sizeof (struct ablocks *) - BLOCK_PADDING)
19bcad1f
SM
980
981/* Internal data structures and constants. */
982
ab6780cd
SM
983#define ABLOCKS_SIZE 16
984
985/* An aligned block of memory. */
986struct ablock
987{
988 union
989 {
990 char payload[BLOCK_BYTES];
991 struct ablock *next_free;
992 } x;
993 /* `abase' is the aligned base of the ablocks. */
994 /* It is overloaded to hold the virtual `busy' field that counts
995 the number of used ablock in the parent ablocks.
996 The first ablock has the `busy' field, the others have the `abase'
997 field. To tell the difference, we assume that pointers will have
998 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
999 is used to tell whether the real base of the parent ablocks is `abase'
1000 (if not, the word before the first ablock holds a pointer to the
1001 real base). */
1002 struct ablocks *abase;
1003 /* The padding of all but the last ablock is unused. The padding of
1004 the last ablock in an ablocks is not allocated. */
19bcad1f
SM
1005#if BLOCK_PADDING
1006 char padding[BLOCK_PADDING];
ebb8d410 1007#endif
ab6780cd
SM
1008};
1009
1010/* A bunch of consecutive aligned blocks. */
1011struct ablocks
1012{
1013 struct ablock blocks[ABLOCKS_SIZE];
1014};
1015
4b5afbb0 1016/* Size of the block requested from malloc or posix_memalign. */
19bcad1f 1017#define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
ab6780cd
SM
1018
1019#define ABLOCK_ABASE(block) \
d01a7826 1020 (((uintptr_t) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
ab6780cd
SM
1021 ? (struct ablocks *)(block) \
1022 : (block)->abase)
1023
1024/* Virtual `busy' field. */
1025#define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
1026
1027/* Pointer to the (not necessarily aligned) malloc block. */
349a4500 1028#ifdef USE_POSIX_MEMALIGN
19bcad1f
SM
1029#define ABLOCKS_BASE(abase) (abase)
1030#else
ab6780cd 1031#define ABLOCKS_BASE(abase) \
d01a7826 1032 (1 & (intptr_t) ABLOCKS_BUSY (abase) ? abase : ((void**)abase)[-1])
19bcad1f 1033#endif
ab6780cd
SM
1034
1035/* The list of free ablock. */
1036static struct ablock *free_ablock;
1037
1038/* Allocate an aligned block of nbytes.
1039 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
1040 smaller or equal to BLOCK_BYTES. */
261cb4bb 1041static void *
971de7fb 1042lisp_align_malloc (size_t nbytes, enum mem_type type)
ab6780cd
SM
1043{
1044 void *base, *val;
1045 struct ablocks *abase;
1046
1047 eassert (nbytes <= BLOCK_BYTES);
1048
dafc79fa 1049 MALLOC_BLOCK_INPUT;
ab6780cd
SM
1050
1051#ifdef GC_MALLOC_CHECK
1052 allocated_mem_type = type;
1053#endif
1054
1055 if (!free_ablock)
1056 {
005ca5c7 1057 int i;
d01a7826 1058 intptr_t aligned; /* int gets warning casting to 64-bit pointer. */
ab6780cd
SM
1059
1060#ifdef DOUG_LEA_MALLOC
1061 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1062 because mapped region contents are not preserved in
1063 a dumped Emacs. */
1064 mallopt (M_MMAP_MAX, 0);
1065#endif
1066
349a4500 1067#ifdef USE_POSIX_MEMALIGN
19bcad1f
SM
1068 {
1069 int err = posix_memalign (&base, BLOCK_ALIGN, ABLOCKS_BYTES);
ab349c19
RS
1070 if (err)
1071 base = NULL;
1072 abase = base;
19bcad1f
SM
1073 }
1074#else
ab6780cd
SM
1075 base = malloc (ABLOCKS_BYTES);
1076 abase = ALIGN (base, BLOCK_ALIGN);
ab349c19
RS
1077#endif
1078
6b61353c
KH
1079 if (base == 0)
1080 {
dafc79fa 1081 MALLOC_UNBLOCK_INPUT;
531b0165 1082 memory_full (ABLOCKS_BYTES);
6b61353c 1083 }
ab6780cd
SM
1084
1085 aligned = (base == abase);
1086 if (!aligned)
1087 ((void**)abase)[-1] = base;
1088
1089#ifdef DOUG_LEA_MALLOC
1090 /* Back to a reasonable maximum of mmap'ed areas. */
1091 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1092#endif
1093
6b61353c 1094#ifndef USE_LSB_TAG
8f924df7
KH
1095 /* If the memory just allocated cannot be addressed thru a Lisp
1096 object's pointer, and it needs to be, that's equivalent to
1097 running out of memory. */
1098 if (type != MEM_TYPE_NON_LISP)
1099 {
1100 Lisp_Object tem;
1101 char *end = (char *) base + ABLOCKS_BYTES - 1;
1102 XSETCONS (tem, end);
1103 if ((char *) XCONS (tem) != end)
1104 {
1105 lisp_malloc_loser = base;
1106 free (base);
dafc79fa 1107 MALLOC_UNBLOCK_INPUT;
531b0165 1108 memory_full (SIZE_MAX);
8f924df7
KH
1109 }
1110 }
6b61353c 1111#endif
8f924df7 1112
ab6780cd 1113 /* Initialize the blocks and put them on the free list.
453b951e 1114 If `base' was not properly aligned, we can't use the last block. */
ab6780cd
SM
1115 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
1116 {
1117 abase->blocks[i].abase = abase;
1118 abase->blocks[i].x.next_free = free_ablock;
1119 free_ablock = &abase->blocks[i];
1120 }
8ac068ac 1121 ABLOCKS_BUSY (abase) = (struct ablocks *) aligned;
ab6780cd 1122
d01a7826 1123 eassert (0 == ((uintptr_t) abase) % BLOCK_ALIGN);
ab6780cd
SM
1124 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
1125 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
1126 eassert (ABLOCKS_BASE (abase) == base);
d01a7826 1127 eassert (aligned == (intptr_t) ABLOCKS_BUSY (abase));
ab6780cd
SM
1128 }
1129
1130 abase = ABLOCK_ABASE (free_ablock);
8ac068ac 1131 ABLOCKS_BUSY (abase) =
d01a7826 1132 (struct ablocks *) (2 + (intptr_t) ABLOCKS_BUSY (abase));
ab6780cd
SM
1133 val = free_ablock;
1134 free_ablock = free_ablock->x.next_free;
1135
ab6780cd 1136#if GC_MARK_STACK && !defined GC_MALLOC_CHECK
3687c2ef 1137 if (type != MEM_TYPE_NON_LISP)
ab6780cd
SM
1138 mem_insert (val, (char *) val + nbytes, type);
1139#endif
1140
dafc79fa 1141 MALLOC_UNBLOCK_INPUT;
ab6780cd 1142
d01a7826 1143 eassert (0 == ((uintptr_t) val) % BLOCK_ALIGN);
ab6780cd
SM
1144 return val;
1145}
1146
1147static void
261cb4bb 1148lisp_align_free (void *block)
ab6780cd
SM
1149{
1150 struct ablock *ablock = block;
1151 struct ablocks *abase = ABLOCK_ABASE (ablock);
1152
dafc79fa 1153 MALLOC_BLOCK_INPUT;
ab6780cd
SM
1154#if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1155 mem_delete (mem_find (block));
1156#endif
1157 /* Put on free list. */
1158 ablock->x.next_free = free_ablock;
1159 free_ablock = ablock;
1160 /* Update busy count. */
453b951e
SM
1161 ABLOCKS_BUSY (abase)
1162 = (struct ablocks *) (-2 + (intptr_t) ABLOCKS_BUSY (abase));
d2db1c32 1163
d01a7826 1164 if (2 > (intptr_t) ABLOCKS_BUSY (abase))
ab6780cd 1165 { /* All the blocks are free. */
d01a7826 1166 int i = 0, aligned = (intptr_t) ABLOCKS_BUSY (abase);
ab6780cd
SM
1167 struct ablock **tem = &free_ablock;
1168 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
1169
1170 while (*tem)
1171 {
1172 if (*tem >= (struct ablock *) abase && *tem < atop)
1173 {
1174 i++;
1175 *tem = (*tem)->x.next_free;
1176 }
1177 else
1178 tem = &(*tem)->x.next_free;
1179 }
1180 eassert ((aligned & 1) == aligned);
1181 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
349a4500 1182#ifdef USE_POSIX_MEMALIGN
d01a7826 1183 eassert ((uintptr_t) ABLOCKS_BASE (abase) % BLOCK_ALIGN == 0);
cfb2f32e 1184#endif
ab6780cd
SM
1185 free (ABLOCKS_BASE (abase));
1186 }
dafc79fa 1187 MALLOC_UNBLOCK_INPUT;
ab6780cd 1188}
3ef06d12
SM
1189
1190/* Return a new buffer structure allocated from the heap with
1191 a call to lisp_malloc. */
1192
1193struct buffer *
971de7fb 1194allocate_buffer (void)
3ef06d12
SM
1195{
1196 struct buffer *b
1197 = (struct buffer *) lisp_malloc (sizeof (struct buffer),
1198 MEM_TYPE_BUFFER);
eab3844f
PE
1199 XSETPVECTYPESIZE (b, PVEC_BUFFER,
1200 ((sizeof (struct buffer) + sizeof (EMACS_INT) - 1)
1201 / sizeof (EMACS_INT)));
3ef06d12
SM
1202 return b;
1203}
1204
9ac0d9e0 1205\f
026cdede
SM
1206#ifndef SYSTEM_MALLOC
1207
9ac0d9e0
JB
1208/* Arranging to disable input signals while we're in malloc.
1209
1210 This only works with GNU malloc. To help out systems which can't
1211 use GNU malloc, all the calls to malloc, realloc, and free
1212 elsewhere in the code should be inside a BLOCK_INPUT/UNBLOCK_INPUT
026cdede 1213 pair; unfortunately, we have no idea what C library functions
9ac0d9e0 1214 might call malloc, so we can't really protect them unless you're
2c5bd608
DL
1215 using GNU malloc. Fortunately, most of the major operating systems
1216 can use GNU malloc. */
9ac0d9e0 1217
026cdede 1218#ifndef SYNC_INPUT
dafc79fa
SM
1219/* When using SYNC_INPUT, we don't call malloc from a signal handler, so
1220 there's no need to block input around malloc. */
026cdede 1221
b3303f74 1222#ifndef DOUG_LEA_MALLOC
f57e2426
J
1223extern void * (*__malloc_hook) (size_t, const void *);
1224extern void * (*__realloc_hook) (void *, size_t, const void *);
1225extern void (*__free_hook) (void *, const void *);
b3303f74
DL
1226/* Else declared in malloc.h, perhaps with an extra arg. */
1227#endif /* DOUG_LEA_MALLOC */
f57e2426
J
1228static void * (*old_malloc_hook) (size_t, const void *);
1229static void * (*old_realloc_hook) (void *, size_t, const void*);
1230static void (*old_free_hook) (void*, const void*);
9ac0d9e0 1231
4e75f29d
PE
1232#ifdef DOUG_LEA_MALLOC
1233# define BYTES_USED (mallinfo ().uordblks)
1234#else
1235# define BYTES_USED _bytes_used
1236#endif
1237
b62a57be
PE
1238#ifdef GC_MALLOC_CHECK
1239static int dont_register_blocks;
1240#endif
1241
5e927815 1242static size_t bytes_used_when_reconsidered;
ef1b0ba7 1243
4e75f29d
PE
1244/* Value of _bytes_used, when spare_memory was freed. */
1245
5e927815 1246static size_t bytes_used_when_full;
4e75f29d 1247
276cbe5a
RS
1248/* This function is used as the hook for free to call. */
1249
9ac0d9e0 1250static void
7c3320d8 1251emacs_blocked_free (void *ptr, const void *ptr2)
9ac0d9e0 1252{
aa477689 1253 BLOCK_INPUT_ALLOC;
877935b1
GM
1254
1255#ifdef GC_MALLOC_CHECK
a83fee2c
GM
1256 if (ptr)
1257 {
1258 struct mem_node *m;
177c0ea7 1259
a83fee2c
GM
1260 m = mem_find (ptr);
1261 if (m == MEM_NIL || m->start != ptr)
1262 {
1263 fprintf (stderr,
1264 "Freeing `%p' which wasn't allocated with malloc\n", ptr);
1265 abort ();
1266 }
1267 else
1268 {
1269 /* fprintf (stderr, "free %p...%p (%p)\n", m->start, m->end, ptr); */
1270 mem_delete (m);
1271 }
1272 }
877935b1 1273#endif /* GC_MALLOC_CHECK */
177c0ea7 1274
9ac0d9e0
JB
1275 __free_hook = old_free_hook;
1276 free (ptr);
177c0ea7 1277
276cbe5a
RS
1278 /* If we released our reserve (due to running out of memory),
1279 and we have a fair amount free once again,
1280 try to set aside another reserve in case we run out once more. */
24d8a105 1281 if (! NILP (Vmemory_full)
276cbe5a
RS
1282 /* Verify there is enough space that even with the malloc
1283 hysteresis this call won't run out again.
1284 The code here is correct as long as SPARE_MEMORY
1285 is substantially larger than the block size malloc uses. */
1286 && (bytes_used_when_full
4d74a5fc 1287 > ((bytes_used_when_reconsidered = BYTES_USED)
bccfb310 1288 + max (malloc_hysteresis, 4) * SPARE_MEMORY)))
24d8a105 1289 refill_memory_reserve ();
276cbe5a 1290
b0846f52 1291 __free_hook = emacs_blocked_free;
aa477689 1292 UNBLOCK_INPUT_ALLOC;
9ac0d9e0
JB
1293}
1294
34400008 1295
276cbe5a
RS
1296/* This function is the malloc hook that Emacs uses. */
1297
9ac0d9e0 1298static void *
7c3320d8 1299emacs_blocked_malloc (size_t size, const void *ptr)
9ac0d9e0
JB
1300{
1301 void *value;
1302
aa477689 1303 BLOCK_INPUT_ALLOC;
9ac0d9e0 1304 __malloc_hook = old_malloc_hook;
1177ecf6 1305#ifdef DOUG_LEA_MALLOC
5665a02f
KL
1306 /* Segfaults on my system. --lorentey */
1307 /* mallopt (M_TOP_PAD, malloc_hysteresis * 4096); */
1177ecf6 1308#else
d1658221 1309 __malloc_extra_blocks = malloc_hysteresis;
1177ecf6 1310#endif
877935b1 1311
2756d8ee 1312 value = (void *) malloc (size);
877935b1
GM
1313
1314#ifdef GC_MALLOC_CHECK
1315 {
1316 struct mem_node *m = mem_find (value);
1317 if (m != MEM_NIL)
1318 {
1319 fprintf (stderr, "Malloc returned %p which is already in use\n",
1320 value);
da05bc4c 1321 fprintf (stderr, "Region in use is %p...%p, %td bytes, type %d\n",
877935b1
GM
1322 m->start, m->end, (char *) m->end - (char *) m->start,
1323 m->type);
1324 abort ();
1325 }
1326
1327 if (!dont_register_blocks)
1328 {
1329 mem_insert (value, (char *) value + max (1, size), allocated_mem_type);
1330 allocated_mem_type = MEM_TYPE_NON_LISP;
1331 }
1332 }
1333#endif /* GC_MALLOC_CHECK */
177c0ea7 1334
b0846f52 1335 __malloc_hook = emacs_blocked_malloc;
aa477689 1336 UNBLOCK_INPUT_ALLOC;
9ac0d9e0 1337
877935b1 1338 /* fprintf (stderr, "%p malloc\n", value); */
9ac0d9e0
JB
1339 return value;
1340}
1341
34400008
GM
1342
1343/* This function is the realloc hook that Emacs uses. */
1344
9ac0d9e0 1345static void *
7c3320d8 1346emacs_blocked_realloc (void *ptr, size_t size, const void *ptr2)
9ac0d9e0
JB
1347{
1348 void *value;
1349
aa477689 1350 BLOCK_INPUT_ALLOC;
9ac0d9e0 1351 __realloc_hook = old_realloc_hook;
877935b1
GM
1352
1353#ifdef GC_MALLOC_CHECK
1354 if (ptr)
1355 {
1356 struct mem_node *m = mem_find (ptr);
1357 if (m == MEM_NIL || m->start != ptr)
1358 {
1359 fprintf (stderr,
1360 "Realloc of %p which wasn't allocated with malloc\n",
1361 ptr);
1362 abort ();
1363 }
1364
1365 mem_delete (m);
1366 }
177c0ea7 1367
877935b1 1368 /* fprintf (stderr, "%p -> realloc\n", ptr); */
177c0ea7 1369
877935b1
GM
1370 /* Prevent malloc from registering blocks. */
1371 dont_register_blocks = 1;
1372#endif /* GC_MALLOC_CHECK */
1373
2756d8ee 1374 value = (void *) realloc (ptr, size);
877935b1
GM
1375
1376#ifdef GC_MALLOC_CHECK
1377 dont_register_blocks = 0;
1378
1379 {
1380 struct mem_node *m = mem_find (value);
1381 if (m != MEM_NIL)
1382 {
1383 fprintf (stderr, "Realloc returns memory that is already in use\n");
1384 abort ();
1385 }
1386
1387 /* Can't handle zero size regions in the red-black tree. */
1388 mem_insert (value, (char *) value + max (size, 1), MEM_TYPE_NON_LISP);
1389 }
177c0ea7 1390
877935b1
GM
1391 /* fprintf (stderr, "%p <- realloc\n", value); */
1392#endif /* GC_MALLOC_CHECK */
177c0ea7 1393
b0846f52 1394 __realloc_hook = emacs_blocked_realloc;
aa477689 1395 UNBLOCK_INPUT_ALLOC;
9ac0d9e0
JB
1396
1397 return value;
1398}
1399
34400008 1400
ae9e757a 1401#ifdef HAVE_PTHREAD
aa477689
JD
1402/* Called from Fdump_emacs so that when the dumped Emacs starts, it has a
1403 normal malloc. Some thread implementations need this as they call
1404 malloc before main. The pthread_self call in BLOCK_INPUT_ALLOC then
1405 calls malloc because it is the first call, and we have an endless loop. */
1406
1407void
268c2c36 1408reset_malloc_hooks (void)
aa477689 1409{
4d580af2
AS
1410 __free_hook = old_free_hook;
1411 __malloc_hook = old_malloc_hook;
1412 __realloc_hook = old_realloc_hook;
aa477689 1413}
ae9e757a 1414#endif /* HAVE_PTHREAD */
aa477689
JD
1415
1416
34400008
GM
1417/* Called from main to set up malloc to use our hooks. */
1418
9ac0d9e0 1419void
7c3320d8 1420uninterrupt_malloc (void)
9ac0d9e0 1421{
ae9e757a 1422#ifdef HAVE_PTHREAD
a1b41389 1423#ifdef DOUG_LEA_MALLOC
aa477689
JD
1424 pthread_mutexattr_t attr;
1425
c7015153 1426 /* GLIBC has a faster way to do this, but let's keep it portable.
aa477689
JD
1427 This is according to the Single UNIX Specification. */
1428 pthread_mutexattr_init (&attr);
1429 pthread_mutexattr_settype (&attr, PTHREAD_MUTEX_RECURSIVE);
1430 pthread_mutex_init (&alloc_mutex, &attr);
a1b41389 1431#else /* !DOUG_LEA_MALLOC */
ce5b453a 1432 /* Some systems such as Solaris 2.6 don't have a recursive mutex,
a1b41389
YM
1433 and the bundled gmalloc.c doesn't require it. */
1434 pthread_mutex_init (&alloc_mutex, NULL);
1435#endif /* !DOUG_LEA_MALLOC */
ae9e757a 1436#endif /* HAVE_PTHREAD */
aa477689 1437
c8099634
RS
1438 if (__free_hook != emacs_blocked_free)
1439 old_free_hook = __free_hook;
b0846f52 1440 __free_hook = emacs_blocked_free;
9ac0d9e0 1441
c8099634
RS
1442 if (__malloc_hook != emacs_blocked_malloc)
1443 old_malloc_hook = __malloc_hook;
b0846f52 1444 __malloc_hook = emacs_blocked_malloc;
9ac0d9e0 1445
c8099634
RS
1446 if (__realloc_hook != emacs_blocked_realloc)
1447 old_realloc_hook = __realloc_hook;
b0846f52 1448 __realloc_hook = emacs_blocked_realloc;
9ac0d9e0 1449}
2e471eb5 1450
026cdede 1451#endif /* not SYNC_INPUT */
2e471eb5
GM
1452#endif /* not SYSTEM_MALLOC */
1453
1454
7146af97 1455\f
2e471eb5
GM
1456/***********************************************************************
1457 Interval Allocation
1458 ***********************************************************************/
1a4f1e2c 1459
34400008
GM
1460/* Number of intervals allocated in an interval_block structure.
1461 The 1020 is 1024 minus malloc overhead. */
1462
d5e35230
JA
1463#define INTERVAL_BLOCK_SIZE \
1464 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1465
34400008
GM
1466/* Intervals are allocated in chunks in form of an interval_block
1467 structure. */
1468
d5e35230 1469struct interval_block
2e471eb5 1470{
6b61353c 1471 /* Place `intervals' first, to preserve alignment. */
2e471eb5 1472 struct interval intervals[INTERVAL_BLOCK_SIZE];
6b61353c 1473 struct interval_block *next;
2e471eb5 1474};
d5e35230 1475
34400008
GM
1476/* Current interval block. Its `next' pointer points to older
1477 blocks. */
1478
d3d47262 1479static struct interval_block *interval_block;
34400008
GM
1480
1481/* Index in interval_block above of the next unused interval
1482 structure. */
1483
d5e35230 1484static int interval_block_index;
34400008
GM
1485
1486/* Number of free and live intervals. */
1487
c0c5c8ae 1488static EMACS_INT total_free_intervals, total_intervals;
d5e35230 1489
34400008
GM
1490/* List of free intervals. */
1491
244ed907 1492static INTERVAL interval_free_list;
d5e35230 1493
34400008
GM
1494
1495/* Initialize interval allocation. */
1496
d5e35230 1497static void
971de7fb 1498init_intervals (void)
d5e35230 1499{
005ca5c7
DL
1500 interval_block = NULL;
1501 interval_block_index = INTERVAL_BLOCK_SIZE;
d5e35230
JA
1502 interval_free_list = 0;
1503}
1504
34400008
GM
1505
1506/* Return a new interval. */
d5e35230
JA
1507
1508INTERVAL
971de7fb 1509make_interval (void)
d5e35230
JA
1510{
1511 INTERVAL val;
1512
e2984df0
CY
1513 /* eassert (!handling_signal); */
1514
dafc79fa 1515 MALLOC_BLOCK_INPUT;
cfb2f32e 1516
d5e35230
JA
1517 if (interval_free_list)
1518 {
1519 val = interval_free_list;
439d5cb4 1520 interval_free_list = INTERVAL_PARENT (interval_free_list);
d5e35230
JA
1521 }
1522 else
1523 {
1524 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1525 {
3c06d205
KH
1526 register struct interval_block *newi;
1527
34400008
GM
1528 newi = (struct interval_block *) lisp_malloc (sizeof *newi,
1529 MEM_TYPE_NON_LISP);
d5e35230 1530
d5e35230
JA
1531 newi->next = interval_block;
1532 interval_block = newi;
1533 interval_block_index = 0;
1534 }
1535 val = &interval_block->intervals[interval_block_index++];
1536 }
e2984df0 1537
dafc79fa 1538 MALLOC_UNBLOCK_INPUT;
e2984df0 1539
d5e35230 1540 consing_since_gc += sizeof (struct interval);
310ea200 1541 intervals_consed++;
d5e35230 1542 RESET_INTERVAL (val);
2336fe58 1543 val->gcmarkbit = 0;
d5e35230
JA
1544 return val;
1545}
1546
34400008
GM
1547
1548/* Mark Lisp objects in interval I. */
d5e35230
JA
1549
1550static void
971de7fb 1551mark_interval (register INTERVAL i, Lisp_Object dummy)
d5e35230 1552{
2336fe58
SM
1553 eassert (!i->gcmarkbit); /* Intervals are never shared. */
1554 i->gcmarkbit = 1;
49723c04 1555 mark_object (i->plist);
d5e35230
JA
1556}
1557
34400008
GM
1558
1559/* Mark the interval tree rooted in TREE. Don't call this directly;
1560 use the macro MARK_INTERVAL_TREE instead. */
1561
d5e35230 1562static void
971de7fb 1563mark_interval_tree (register INTERVAL tree)
d5e35230 1564{
e8720644
JB
1565 /* No need to test if this tree has been marked already; this
1566 function is always called through the MARK_INTERVAL_TREE macro,
1567 which takes care of that. */
1568
1e934989 1569 traverse_intervals_noorder (tree, mark_interval, Qnil);
d5e35230
JA
1570}
1571
34400008
GM
1572
1573/* Mark the interval tree rooted in I. */
1574
e8720644
JB
1575#define MARK_INTERVAL_TREE(i) \
1576 do { \
2336fe58 1577 if (!NULL_INTERVAL_P (i) && !i->gcmarkbit) \
e8720644
JB
1578 mark_interval_tree (i); \
1579 } while (0)
d5e35230 1580
34400008 1581
2e471eb5
GM
1582#define UNMARK_BALANCE_INTERVALS(i) \
1583 do { \
1584 if (! NULL_INTERVAL_P (i)) \
2336fe58 1585 (i) = balance_intervals (i); \
2e471eb5 1586 } while (0)
d5e35230 1587
cc2d8c6b 1588\f
6e5cb96f 1589/* Number support. If USE_LISP_UNION_TYPE is in effect, we
cc2d8c6b
KR
1590 can't create number objects in macros. */
1591#ifndef make_number
1592Lisp_Object
c566235d 1593make_number (EMACS_INT n)
cc2d8c6b
KR
1594{
1595 Lisp_Object obj;
1596 obj.s.val = n;
1597 obj.s.type = Lisp_Int;
1598 return obj;
1599}
1600#endif
d5e35230 1601\f
27f3c637
PE
1602/* Convert the pointer-sized word P to EMACS_INT while preserving its
1603 type and ptr fields. */
1604static Lisp_Object
1605widen_to_Lisp_Object (void *p)
1606{
1607 intptr_t i = (intptr_t) p;
1608#ifdef USE_LISP_UNION_TYPE
1609 Lisp_Object obj;
1610 obj.i = i;
1611 return obj;
1612#else
1613 return i;
1614#endif
1615}
1616\f
2e471eb5
GM
1617/***********************************************************************
1618 String Allocation
1619 ***********************************************************************/
1a4f1e2c 1620
2e471eb5
GM
1621/* Lisp_Strings are allocated in string_block structures. When a new
1622 string_block is allocated, all the Lisp_Strings it contains are
e0fead5d 1623 added to a free-list string_free_list. When a new Lisp_String is
2e471eb5
GM
1624 needed, it is taken from that list. During the sweep phase of GC,
1625 string_blocks that are entirely free are freed, except two which
1626 we keep.
7146af97 1627
2e471eb5
GM
1628 String data is allocated from sblock structures. Strings larger
1629 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1630 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
7146af97 1631
2e471eb5
GM
1632 Sblocks consist internally of sdata structures, one for each
1633 Lisp_String. The sdata structure points to the Lisp_String it
1634 belongs to. The Lisp_String points back to the `u.data' member of
1635 its sdata structure.
7146af97 1636
2e471eb5
GM
1637 When a Lisp_String is freed during GC, it is put back on
1638 string_free_list, and its `data' member and its sdata's `string'
1639 pointer is set to null. The size of the string is recorded in the
1640 `u.nbytes' member of the sdata. So, sdata structures that are no
1641 longer used, can be easily recognized, and it's easy to compact the
1642 sblocks of small strings which we do in compact_small_strings. */
7146af97 1643
2e471eb5
GM
1644/* Size in bytes of an sblock structure used for small strings. This
1645 is 8192 minus malloc overhead. */
7146af97 1646
2e471eb5 1647#define SBLOCK_SIZE 8188
c8099634 1648
2e471eb5
GM
1649/* Strings larger than this are considered large strings. String data
1650 for large strings is allocated from individual sblocks. */
7146af97 1651
2e471eb5
GM
1652#define LARGE_STRING_BYTES 1024
1653
1654/* Structure describing string memory sub-allocated from an sblock.
1655 This is where the contents of Lisp strings are stored. */
1656
1657struct sdata
7146af97 1658{
2e471eb5
GM
1659 /* Back-pointer to the string this sdata belongs to. If null, this
1660 structure is free, and the NBYTES member of the union below
34400008 1661 contains the string's byte size (the same value that STRING_BYTES
2e471eb5
GM
1662 would return if STRING were non-null). If non-null, STRING_BYTES
1663 (STRING) is the size of the data, and DATA contains the string's
1664 contents. */
1665 struct Lisp_String *string;
7146af97 1666
31d929e5 1667#ifdef GC_CHECK_STRING_BYTES
177c0ea7 1668
d311d28c 1669 ptrdiff_t nbytes;
31d929e5 1670 unsigned char data[1];
177c0ea7 1671
31d929e5
GM
1672#define SDATA_NBYTES(S) (S)->nbytes
1673#define SDATA_DATA(S) (S)->data
36372bf9 1674#define SDATA_SELECTOR(member) member
177c0ea7 1675
31d929e5
GM
1676#else /* not GC_CHECK_STRING_BYTES */
1677
2e471eb5
GM
1678 union
1679 {
83998b7a 1680 /* When STRING is non-null. */
2e471eb5
GM
1681 unsigned char data[1];
1682
1683 /* When STRING is null. */
d311d28c 1684 ptrdiff_t nbytes;
2e471eb5 1685 } u;
177c0ea7 1686
31d929e5
GM
1687#define SDATA_NBYTES(S) (S)->u.nbytes
1688#define SDATA_DATA(S) (S)->u.data
36372bf9 1689#define SDATA_SELECTOR(member) u.member
31d929e5
GM
1690
1691#endif /* not GC_CHECK_STRING_BYTES */
36372bf9
PE
1692
1693#define SDATA_DATA_OFFSET offsetof (struct sdata, SDATA_SELECTOR (data))
2e471eb5
GM
1694};
1695
31d929e5 1696
2e471eb5
GM
1697/* Structure describing a block of memory which is sub-allocated to
1698 obtain string data memory for strings. Blocks for small strings
1699 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1700 as large as needed. */
1701
1702struct sblock
7146af97 1703{
2e471eb5
GM
1704 /* Next in list. */
1705 struct sblock *next;
7146af97 1706
2e471eb5
GM
1707 /* Pointer to the next free sdata block. This points past the end
1708 of the sblock if there isn't any space left in this block. */
1709 struct sdata *next_free;
1710
1711 /* Start of data. */
1712 struct sdata first_data;
1713};
1714
1715/* Number of Lisp strings in a string_block structure. The 1020 is
1716 1024 minus malloc overhead. */
1717
19bcad1f 1718#define STRING_BLOCK_SIZE \
2e471eb5
GM
1719 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1720
1721/* Structure describing a block from which Lisp_String structures
1722 are allocated. */
1723
1724struct string_block
7146af97 1725{
6b61353c 1726 /* Place `strings' first, to preserve alignment. */
19bcad1f 1727 struct Lisp_String strings[STRING_BLOCK_SIZE];
6b61353c 1728 struct string_block *next;
2e471eb5 1729};
7146af97 1730
2e471eb5
GM
1731/* Head and tail of the list of sblock structures holding Lisp string
1732 data. We always allocate from current_sblock. The NEXT pointers
1733 in the sblock structures go from oldest_sblock to current_sblock. */
3c06d205 1734
2e471eb5 1735static struct sblock *oldest_sblock, *current_sblock;
7146af97 1736
2e471eb5 1737/* List of sblocks for large strings. */
7146af97 1738
2e471eb5 1739static struct sblock *large_sblocks;
7146af97 1740
5a25e253 1741/* List of string_block structures. */
7146af97 1742
2e471eb5 1743static struct string_block *string_blocks;
7146af97 1744
2e471eb5 1745/* Free-list of Lisp_Strings. */
7146af97 1746
2e471eb5 1747static struct Lisp_String *string_free_list;
7146af97 1748
2e471eb5 1749/* Number of live and free Lisp_Strings. */
c8099634 1750
c0c5c8ae 1751static EMACS_INT total_strings, total_free_strings;
7146af97 1752
2e471eb5
GM
1753/* Number of bytes used by live strings. */
1754
14162469 1755static EMACS_INT total_string_size;
2e471eb5
GM
1756
1757/* Given a pointer to a Lisp_String S which is on the free-list
1758 string_free_list, return a pointer to its successor in the
1759 free-list. */
1760
1761#define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1762
1763/* Return a pointer to the sdata structure belonging to Lisp string S.
1764 S must be live, i.e. S->data must not be null. S->data is actually
1765 a pointer to the `u.data' member of its sdata structure; the
1766 structure starts at a constant offset in front of that. */
177c0ea7 1767
36372bf9 1768#define SDATA_OF_STRING(S) ((struct sdata *) ((S)->data - SDATA_DATA_OFFSET))
31d929e5 1769
212f33f1
KS
1770
1771#ifdef GC_CHECK_STRING_OVERRUN
bdbed949
KS
1772
1773/* We check for overrun in string data blocks by appending a small
1774 "cookie" after each allocated string data block, and check for the
8349069c 1775 presence of this cookie during GC. */
bdbed949
KS
1776
1777#define GC_STRING_OVERRUN_COOKIE_SIZE 4
bfd1c781
PE
1778static char const string_overrun_cookie[GC_STRING_OVERRUN_COOKIE_SIZE] =
1779 { '\xde', '\xad', '\xbe', '\xef' };
bdbed949 1780
212f33f1 1781#else
bdbed949 1782#define GC_STRING_OVERRUN_COOKIE_SIZE 0
212f33f1
KS
1783#endif
1784
2e471eb5
GM
1785/* Value is the size of an sdata structure large enough to hold NBYTES
1786 bytes of string data. The value returned includes a terminating
1787 NUL byte, the size of the sdata structure, and padding. */
1788
31d929e5
GM
1789#ifdef GC_CHECK_STRING_BYTES
1790
2e471eb5 1791#define SDATA_SIZE(NBYTES) \
36372bf9 1792 ((SDATA_DATA_OFFSET \
2e471eb5 1793 + (NBYTES) + 1 \
d311d28c
PE
1794 + sizeof (ptrdiff_t) - 1) \
1795 & ~(sizeof (ptrdiff_t) - 1))
2e471eb5 1796
31d929e5
GM
1797#else /* not GC_CHECK_STRING_BYTES */
1798
f2d3008d
PE
1799/* The 'max' reserves space for the nbytes union member even when NBYTES + 1 is
1800 less than the size of that member. The 'max' is not needed when
d311d28c 1801 SDATA_DATA_OFFSET is a multiple of sizeof (ptrdiff_t), because then the
f2d3008d
PE
1802 alignment code reserves enough space. */
1803
1804#define SDATA_SIZE(NBYTES) \
1805 ((SDATA_DATA_OFFSET \
d311d28c 1806 + (SDATA_DATA_OFFSET % sizeof (ptrdiff_t) == 0 \
f2d3008d 1807 ? NBYTES \
d311d28c 1808 : max (NBYTES, sizeof (ptrdiff_t) - 1)) \
f2d3008d 1809 + 1 \
d311d28c
PE
1810 + sizeof (ptrdiff_t) - 1) \
1811 & ~(sizeof (ptrdiff_t) - 1))
31d929e5
GM
1812
1813#endif /* not GC_CHECK_STRING_BYTES */
2e471eb5 1814
bdbed949
KS
1815/* Extra bytes to allocate for each string. */
1816
1817#define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1818
c9d624c6
PE
1819/* Exact bound on the number of bytes in a string, not counting the
1820 terminating null. A string cannot contain more bytes than
1821 STRING_BYTES_BOUND, nor can it be so long that the size_t
1822 arithmetic in allocate_string_data would overflow while it is
1823 calculating a value to be passed to malloc. */
1824#define STRING_BYTES_MAX \
1825 min (STRING_BYTES_BOUND, \
903fe15d
PE
1826 ((SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD \
1827 - GC_STRING_EXTRA \
c9d624c6
PE
1828 - offsetof (struct sblock, first_data) \
1829 - SDATA_DATA_OFFSET) \
1830 & ~(sizeof (EMACS_INT) - 1)))
1831
2e471eb5 1832/* Initialize string allocation. Called from init_alloc_once. */
d457598b 1833
d3d47262 1834static void
971de7fb 1835init_strings (void)
7146af97 1836{
2e471eb5
GM
1837 total_strings = total_free_strings = total_string_size = 0;
1838 oldest_sblock = current_sblock = large_sblocks = NULL;
1839 string_blocks = NULL;
2e471eb5 1840 string_free_list = NULL;
4d774b0f
JB
1841 empty_unibyte_string = make_pure_string ("", 0, 0, 0);
1842 empty_multibyte_string = make_pure_string ("", 0, 0, 1);
7146af97
JB
1843}
1844
2e471eb5 1845
361b097f
GM
1846#ifdef GC_CHECK_STRING_BYTES
1847
361b097f
GM
1848static int check_string_bytes_count;
1849
676a7251
GM
1850#define CHECK_STRING_BYTES(S) STRING_BYTES (S)
1851
1852
1853/* Like GC_STRING_BYTES, but with debugging check. */
1854
d311d28c 1855ptrdiff_t
14162469 1856string_bytes (struct Lisp_String *s)
676a7251 1857{
d311d28c 1858 ptrdiff_t nbytes =
14162469
EZ
1859 (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1860
676a7251
GM
1861 if (!PURE_POINTER_P (s)
1862 && s->data
1863 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1864 abort ();
1865 return nbytes;
1866}
177c0ea7 1867
2c5bd608 1868/* Check validity of Lisp strings' string_bytes member in B. */
676a7251 1869
d3d47262 1870static void
d0f4e1f5 1871check_sblock (struct sblock *b)
361b097f 1872{
676a7251 1873 struct sdata *from, *end, *from_end;
177c0ea7 1874
676a7251 1875 end = b->next_free;
177c0ea7 1876
676a7251 1877 for (from = &b->first_data; from < end; from = from_end)
361b097f 1878 {
676a7251
GM
1879 /* Compute the next FROM here because copying below may
1880 overwrite data we need to compute it. */
d311d28c 1881 ptrdiff_t nbytes;
177c0ea7 1882
676a7251
GM
1883 /* Check that the string size recorded in the string is the
1884 same as the one recorded in the sdata structure. */
1885 if (from->string)
1886 CHECK_STRING_BYTES (from->string);
177c0ea7 1887
676a7251
GM
1888 if (from->string)
1889 nbytes = GC_STRING_BYTES (from->string);
1890 else
1891 nbytes = SDATA_NBYTES (from);
177c0ea7 1892
676a7251 1893 nbytes = SDATA_SIZE (nbytes);
212f33f1 1894 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
676a7251
GM
1895 }
1896}
361b097f 1897
676a7251
GM
1898
1899/* Check validity of Lisp strings' string_bytes member. ALL_P
1900 non-zero means check all strings, otherwise check only most
1901 recently allocated strings. Used for hunting a bug. */
1902
d3d47262 1903static void
d0f4e1f5 1904check_string_bytes (int all_p)
676a7251
GM
1905{
1906 if (all_p)
1907 {
1908 struct sblock *b;
1909
1910 for (b = large_sblocks; b; b = b->next)
1911 {
1912 struct Lisp_String *s = b->first_data.string;
1913 if (s)
1914 CHECK_STRING_BYTES (s);
361b097f 1915 }
177c0ea7 1916
676a7251
GM
1917 for (b = oldest_sblock; b; b = b->next)
1918 check_sblock (b);
361b097f 1919 }
676a7251
GM
1920 else
1921 check_sblock (current_sblock);
361b097f
GM
1922}
1923
1924#endif /* GC_CHECK_STRING_BYTES */
1925
212f33f1
KS
1926#ifdef GC_CHECK_STRING_FREE_LIST
1927
bdbed949
KS
1928/* Walk through the string free list looking for bogus next pointers.
1929 This may catch buffer overrun from a previous string. */
1930
212f33f1 1931static void
d0f4e1f5 1932check_string_free_list (void)
212f33f1
KS
1933{
1934 struct Lisp_String *s;
1935
1936 /* Pop a Lisp_String off the free-list. */
1937 s = string_free_list;
1938 while (s != NULL)
1939 {
d01a7826 1940 if ((uintptr_t) s < 1024)
5e617bc2 1941 abort ();
212f33f1
KS
1942 s = NEXT_FREE_LISP_STRING (s);
1943 }
1944}
1945#else
1946#define check_string_free_list()
1947#endif
361b097f 1948
2e471eb5
GM
1949/* Return a new Lisp_String. */
1950
1951static struct Lisp_String *
971de7fb 1952allocate_string (void)
7146af97 1953{
2e471eb5 1954 struct Lisp_String *s;
7146af97 1955
e2984df0
CY
1956 /* eassert (!handling_signal); */
1957
dafc79fa 1958 MALLOC_BLOCK_INPUT;
cfb2f32e 1959
2e471eb5
GM
1960 /* If the free-list is empty, allocate a new string_block, and
1961 add all the Lisp_Strings in it to the free-list. */
1962 if (string_free_list == NULL)
7146af97 1963 {
2e471eb5
GM
1964 struct string_block *b;
1965 int i;
1966
34400008 1967 b = (struct string_block *) lisp_malloc (sizeof *b, MEM_TYPE_STRING);
72af86bd 1968 memset (b, 0, sizeof *b);
2e471eb5
GM
1969 b->next = string_blocks;
1970 string_blocks = b;
2e471eb5 1971
19bcad1f 1972 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
7146af97 1973 {
2e471eb5
GM
1974 s = b->strings + i;
1975 NEXT_FREE_LISP_STRING (s) = string_free_list;
1976 string_free_list = s;
7146af97 1977 }
2e471eb5 1978
19bcad1f 1979 total_free_strings += STRING_BLOCK_SIZE;
7146af97 1980 }
c0f51373 1981
bdbed949 1982 check_string_free_list ();
212f33f1 1983
2e471eb5
GM
1984 /* Pop a Lisp_String off the free-list. */
1985 s = string_free_list;
1986 string_free_list = NEXT_FREE_LISP_STRING (s);
c0f51373 1987
dafc79fa 1988 MALLOC_UNBLOCK_INPUT;
e2984df0 1989
2e471eb5 1990 /* Probably not strictly necessary, but play it safe. */
72af86bd 1991 memset (s, 0, sizeof *s);
c0f51373 1992
2e471eb5
GM
1993 --total_free_strings;
1994 ++total_strings;
1995 ++strings_consed;
1996 consing_since_gc += sizeof *s;
c0f51373 1997
361b097f 1998#ifdef GC_CHECK_STRING_BYTES
e39a993c 1999 if (!noninteractive)
361b097f 2000 {
676a7251
GM
2001 if (++check_string_bytes_count == 200)
2002 {
2003 check_string_bytes_count = 0;
2004 check_string_bytes (1);
2005 }
2006 else
2007 check_string_bytes (0);
361b097f 2008 }
676a7251 2009#endif /* GC_CHECK_STRING_BYTES */
361b097f 2010
2e471eb5 2011 return s;
c0f51373 2012}
7146af97 2013
7146af97 2014
2e471eb5
GM
2015/* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
2016 plus a NUL byte at the end. Allocate an sdata structure for S, and
2017 set S->data to its `u.data' member. Store a NUL byte at the end of
2018 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
2019 S->data if it was initially non-null. */
7146af97 2020
2e471eb5 2021void
413d18e7
EZ
2022allocate_string_data (struct Lisp_String *s,
2023 EMACS_INT nchars, EMACS_INT nbytes)
7146af97 2024{
5c5fecb3 2025 struct sdata *data, *old_data;
2e471eb5 2026 struct sblock *b;
d311d28c 2027 ptrdiff_t needed, old_nbytes;
7146af97 2028
c9d624c6
PE
2029 if (STRING_BYTES_MAX < nbytes)
2030 string_overflow ();
2031
2e471eb5
GM
2032 /* Determine the number of bytes needed to store NBYTES bytes
2033 of string data. */
2034 needed = SDATA_SIZE (nbytes);
e2984df0
CY
2035 old_data = s->data ? SDATA_OF_STRING (s) : NULL;
2036 old_nbytes = GC_STRING_BYTES (s);
2037
dafc79fa 2038 MALLOC_BLOCK_INPUT;
7146af97 2039
2e471eb5
GM
2040 if (nbytes > LARGE_STRING_BYTES)
2041 {
36372bf9 2042 size_t size = offsetof (struct sblock, first_data) + needed;
2e471eb5
GM
2043
2044#ifdef DOUG_LEA_MALLOC
f8608968
GM
2045 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
2046 because mapped region contents are not preserved in
d36b182f
DL
2047 a dumped Emacs.
2048
2049 In case you think of allowing it in a dumped Emacs at the
2050 cost of not being able to re-dump, there's another reason:
2051 mmap'ed data typically have an address towards the top of the
2052 address space, which won't fit into an EMACS_INT (at least on
2053 32-bit systems with the current tagging scheme). --fx */
2e471eb5
GM
2054 mallopt (M_MMAP_MAX, 0);
2055#endif
2056
212f33f1 2057 b = (struct sblock *) lisp_malloc (size + GC_STRING_EXTRA, MEM_TYPE_NON_LISP);
177c0ea7 2058
2e471eb5
GM
2059#ifdef DOUG_LEA_MALLOC
2060 /* Back to a reasonable maximum of mmap'ed areas. */
2061 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
2062#endif
177c0ea7 2063
2e471eb5
GM
2064 b->next_free = &b->first_data;
2065 b->first_data.string = NULL;
2066 b->next = large_sblocks;
2067 large_sblocks = b;
2068 }
2069 else if (current_sblock == NULL
2070 || (((char *) current_sblock + SBLOCK_SIZE
2071 - (char *) current_sblock->next_free)
212f33f1 2072 < (needed + GC_STRING_EXTRA)))
2e471eb5
GM
2073 {
2074 /* Not enough room in the current sblock. */
34400008 2075 b = (struct sblock *) lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
2e471eb5
GM
2076 b->next_free = &b->first_data;
2077 b->first_data.string = NULL;
2078 b->next = NULL;
2079
2080 if (current_sblock)
2081 current_sblock->next = b;
2082 else
2083 oldest_sblock = b;
2084 current_sblock = b;
2085 }
2086 else
2087 b = current_sblock;
5c5fecb3 2088
2e471eb5 2089 data = b->next_free;
a0b08700
CY
2090 b->next_free = (struct sdata *) ((char *) data + needed + GC_STRING_EXTRA);
2091
dafc79fa 2092 MALLOC_UNBLOCK_INPUT;
e2984df0 2093
2e471eb5 2094 data->string = s;
31d929e5
GM
2095 s->data = SDATA_DATA (data);
2096#ifdef GC_CHECK_STRING_BYTES
2097 SDATA_NBYTES (data) = nbytes;
2098#endif
2e471eb5
GM
2099 s->size = nchars;
2100 s->size_byte = nbytes;
2101 s->data[nbytes] = '\0';
212f33f1 2102#ifdef GC_CHECK_STRING_OVERRUN
000098c1
PE
2103 memcpy ((char *) data + needed, string_overrun_cookie,
2104 GC_STRING_OVERRUN_COOKIE_SIZE);
212f33f1 2105#endif
177c0ea7 2106
5c5fecb3
GM
2107 /* If S had already data assigned, mark that as free by setting its
2108 string back-pointer to null, and recording the size of the data
00c9c33c 2109 in it. */
5c5fecb3
GM
2110 if (old_data)
2111 {
31d929e5 2112 SDATA_NBYTES (old_data) = old_nbytes;
5c5fecb3
GM
2113 old_data->string = NULL;
2114 }
2115
2e471eb5
GM
2116 consing_since_gc += needed;
2117}
2118
2119
2120/* Sweep and compact strings. */
2121
2122static void
971de7fb 2123sweep_strings (void)
2e471eb5
GM
2124{
2125 struct string_block *b, *next;
2126 struct string_block *live_blocks = NULL;
177c0ea7 2127
2e471eb5
GM
2128 string_free_list = NULL;
2129 total_strings = total_free_strings = 0;
2130 total_string_size = 0;
2131
2132 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
2133 for (b = string_blocks; b; b = next)
2134 {
2135 int i, nfree = 0;
2136 struct Lisp_String *free_list_before = string_free_list;
2137
2138 next = b->next;
2139
19bcad1f 2140 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
2e471eb5
GM
2141 {
2142 struct Lisp_String *s = b->strings + i;
2143
2144 if (s->data)
2145 {
2146 /* String was not on free-list before. */
2147 if (STRING_MARKED_P (s))
2148 {
2149 /* String is live; unmark it and its intervals. */
2150 UNMARK_STRING (s);
177c0ea7 2151
2e471eb5
GM
2152 if (!NULL_INTERVAL_P (s->intervals))
2153 UNMARK_BALANCE_INTERVALS (s->intervals);
2154
2155 ++total_strings;
2156 total_string_size += STRING_BYTES (s);
2157 }
2158 else
2159 {
2160 /* String is dead. Put it on the free-list. */
2161 struct sdata *data = SDATA_OF_STRING (s);
2162
2163 /* Save the size of S in its sdata so that we know
2164 how large that is. Reset the sdata's string
2165 back-pointer so that we know it's free. */
31d929e5
GM
2166#ifdef GC_CHECK_STRING_BYTES
2167 if (GC_STRING_BYTES (s) != SDATA_NBYTES (data))
2168 abort ();
2169#else
2e471eb5 2170 data->u.nbytes = GC_STRING_BYTES (s);
31d929e5 2171#endif
2e471eb5
GM
2172 data->string = NULL;
2173
2174 /* Reset the strings's `data' member so that we
2175 know it's free. */
2176 s->data = NULL;
2177
2178 /* Put the string on the free-list. */
2179 NEXT_FREE_LISP_STRING (s) = string_free_list;
2180 string_free_list = s;
2181 ++nfree;
2182 }
2183 }
2184 else
2185 {
2186 /* S was on the free-list before. Put it there again. */
2187 NEXT_FREE_LISP_STRING (s) = string_free_list;
2188 string_free_list = s;
2189 ++nfree;
2190 }
2191 }
2192
34400008 2193 /* Free blocks that contain free Lisp_Strings only, except
2e471eb5 2194 the first two of them. */
19bcad1f
SM
2195 if (nfree == STRING_BLOCK_SIZE
2196 && total_free_strings > STRING_BLOCK_SIZE)
2e471eb5
GM
2197 {
2198 lisp_free (b);
2e471eb5
GM
2199 string_free_list = free_list_before;
2200 }
2201 else
2202 {
2203 total_free_strings += nfree;
2204 b->next = live_blocks;
2205 live_blocks = b;
2206 }
2207 }
2208
bdbed949 2209 check_string_free_list ();
212f33f1 2210
2e471eb5
GM
2211 string_blocks = live_blocks;
2212 free_large_strings ();
2213 compact_small_strings ();
212f33f1 2214
bdbed949 2215 check_string_free_list ();
2e471eb5
GM
2216}
2217
2218
2219/* Free dead large strings. */
2220
2221static void
971de7fb 2222free_large_strings (void)
2e471eb5
GM
2223{
2224 struct sblock *b, *next;
2225 struct sblock *live_blocks = NULL;
177c0ea7 2226
2e471eb5
GM
2227 for (b = large_sblocks; b; b = next)
2228 {
2229 next = b->next;
2230
2231 if (b->first_data.string == NULL)
2232 lisp_free (b);
2233 else
2234 {
2235 b->next = live_blocks;
2236 live_blocks = b;
2237 }
2238 }
2239
2240 large_sblocks = live_blocks;
2241}
2242
2243
2244/* Compact data of small strings. Free sblocks that don't contain
2245 data of live strings after compaction. */
2246
2247static void
971de7fb 2248compact_small_strings (void)
2e471eb5
GM
2249{
2250 struct sblock *b, *tb, *next;
2251 struct sdata *from, *to, *end, *tb_end;
2252 struct sdata *to_end, *from_end;
2253
2254 /* TB is the sblock we copy to, TO is the sdata within TB we copy
2255 to, and TB_END is the end of TB. */
2256 tb = oldest_sblock;
2257 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2258 to = &tb->first_data;
2259
2260 /* Step through the blocks from the oldest to the youngest. We
2261 expect that old blocks will stabilize over time, so that less
2262 copying will happen this way. */
2263 for (b = oldest_sblock; b; b = b->next)
2264 {
2265 end = b->next_free;
2266 xassert ((char *) end <= (char *) b + SBLOCK_SIZE);
177c0ea7 2267
2e471eb5
GM
2268 for (from = &b->first_data; from < end; from = from_end)
2269 {
2270 /* Compute the next FROM here because copying below may
2271 overwrite data we need to compute it. */
d311d28c 2272 ptrdiff_t nbytes;
2e471eb5 2273
31d929e5
GM
2274#ifdef GC_CHECK_STRING_BYTES
2275 /* Check that the string size recorded in the string is the
2276 same as the one recorded in the sdata structure. */
2277 if (from->string
2278 && GC_STRING_BYTES (from->string) != SDATA_NBYTES (from))
2279 abort ();
2280#endif /* GC_CHECK_STRING_BYTES */
177c0ea7 2281
2e471eb5
GM
2282 if (from->string)
2283 nbytes = GC_STRING_BYTES (from->string);
2284 else
31d929e5 2285 nbytes = SDATA_NBYTES (from);
177c0ea7 2286
212f33f1
KS
2287 if (nbytes > LARGE_STRING_BYTES)
2288 abort ();
212f33f1 2289
2e471eb5 2290 nbytes = SDATA_SIZE (nbytes);
212f33f1
KS
2291 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
2292
2293#ifdef GC_CHECK_STRING_OVERRUN
72af86bd
AS
2294 if (memcmp (string_overrun_cookie,
2295 (char *) from_end - GC_STRING_OVERRUN_COOKIE_SIZE,
2296 GC_STRING_OVERRUN_COOKIE_SIZE))
212f33f1
KS
2297 abort ();
2298#endif
177c0ea7 2299
2e471eb5
GM
2300 /* FROM->string non-null means it's alive. Copy its data. */
2301 if (from->string)
2302 {
2303 /* If TB is full, proceed with the next sblock. */
212f33f1 2304 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2e471eb5
GM
2305 if (to_end > tb_end)
2306 {
2307 tb->next_free = to;
2308 tb = tb->next;
2309 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2310 to = &tb->first_data;
212f33f1 2311 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2e471eb5 2312 }
177c0ea7 2313
2e471eb5
GM
2314 /* Copy, and update the string's `data' pointer. */
2315 if (from != to)
2316 {
3c616cfa 2317 xassert (tb != b || to < from);
72af86bd 2318 memmove (to, from, nbytes + GC_STRING_EXTRA);
31d929e5 2319 to->string->data = SDATA_DATA (to);
2e471eb5
GM
2320 }
2321
2322 /* Advance past the sdata we copied to. */
2323 to = to_end;
2324 }
2325 }
2326 }
2327
2328 /* The rest of the sblocks following TB don't contain live data, so
2329 we can free them. */
2330 for (b = tb->next; b; b = next)
2331 {
2332 next = b->next;
2333 lisp_free (b);
2334 }
2335
2336 tb->next_free = to;
2337 tb->next = NULL;
2338 current_sblock = tb;
2339}
2340
cb93f9be
PE
2341void
2342string_overflow (void)
2343{
2344 error ("Maximum string size exceeded");
2345}
2e471eb5 2346
a7ca3326 2347DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
69623621
RS
2348 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
2349LENGTH must be an integer.
2350INIT must be an integer that represents a character. */)
5842a27b 2351 (Lisp_Object length, Lisp_Object init)
2e471eb5
GM
2352{
2353 register Lisp_Object val;
2354 register unsigned char *p, *end;
14162469
EZ
2355 int c;
2356 EMACS_INT nbytes;
2e471eb5 2357
b7826503 2358 CHECK_NATNUM (length);
2bccce07 2359 CHECK_CHARACTER (init);
2e471eb5 2360
2bccce07 2361 c = XFASTINT (init);
830ff83b 2362 if (ASCII_CHAR_P (c))
2e471eb5
GM
2363 {
2364 nbytes = XINT (length);
2365 val = make_uninit_string (nbytes);
d5db4077
KR
2366 p = SDATA (val);
2367 end = p + SCHARS (val);
2e471eb5
GM
2368 while (p != end)
2369 *p++ = c;
2370 }
2371 else
2372 {
d942b71c 2373 unsigned char str[MAX_MULTIBYTE_LENGTH];
2e471eb5 2374 int len = CHAR_STRING (c, str);
14162469 2375 EMACS_INT string_len = XINT (length);
2e471eb5 2376
d1f3d2af 2377 if (string_len > STRING_BYTES_MAX / len)
cb93f9be 2378 string_overflow ();
14162469
EZ
2379 nbytes = len * string_len;
2380 val = make_uninit_multibyte_string (string_len, nbytes);
d5db4077 2381 p = SDATA (val);
2e471eb5
GM
2382 end = p + nbytes;
2383 while (p != end)
2384 {
72af86bd 2385 memcpy (p, str, len);
2e471eb5
GM
2386 p += len;
2387 }
2388 }
177c0ea7 2389
2e471eb5
GM
2390 *p = 0;
2391 return val;
2392}
2393
2394
a7ca3326 2395DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
909e3b33 2396 doc: /* Return a new bool-vector of length LENGTH, using INIT for each element.
7ee72033 2397LENGTH must be a number. INIT matters only in whether it is t or nil. */)
5842a27b 2398 (Lisp_Object length, Lisp_Object init)
2e471eb5
GM
2399{
2400 register Lisp_Object val;
2401 struct Lisp_Bool_Vector *p;
d311d28c
PE
2402 ptrdiff_t length_in_chars;
2403 EMACS_INT length_in_elts;
14162469 2404 int bits_per_value;
2e471eb5 2405
b7826503 2406 CHECK_NATNUM (length);
2e471eb5 2407
a097329f 2408 bits_per_value = sizeof (EMACS_INT) * BOOL_VECTOR_BITS_PER_CHAR;
2e471eb5
GM
2409
2410 length_in_elts = (XFASTINT (length) + bits_per_value - 1) / bits_per_value;
2e471eb5
GM
2411
2412 /* We must allocate one more elements than LENGTH_IN_ELTS for the
2413 slot `size' of the struct Lisp_Bool_Vector. */
2414 val = Fmake_vector (make_number (length_in_elts + 1), Qnil);
177c0ea7 2415
eab3844f
PE
2416 /* No Lisp_Object to trace in there. */
2417 XSETPVECTYPESIZE (XVECTOR (val), PVEC_BOOL_VECTOR, 0);
d2029e5b
SM
2418
2419 p = XBOOL_VECTOR (val);
2e471eb5 2420 p->size = XFASTINT (length);
177c0ea7 2421
d311d28c
PE
2422 length_in_chars = ((XFASTINT (length) + BOOL_VECTOR_BITS_PER_CHAR - 1)
2423 / BOOL_VECTOR_BITS_PER_CHAR);
c0c1ee9f
PE
2424 if (length_in_chars)
2425 {
2426 memset (p->data, ! NILP (init) ? -1 : 0, length_in_chars);
177c0ea7 2427
c0c1ee9f
PE
2428 /* Clear any extraneous bits in the last byte. */
2429 p->data[length_in_chars - 1]
2430 &= (1 << (XINT (length) % BOOL_VECTOR_BITS_PER_CHAR)) - 1;
2431 }
2e471eb5
GM
2432
2433 return val;
2434}
2435
2436
2437/* Make a string from NBYTES bytes at CONTENTS, and compute the number
2438 of characters from the contents. This string may be unibyte or
2439 multibyte, depending on the contents. */
2440
2441Lisp_Object
d311d28c 2442make_string (const char *contents, ptrdiff_t nbytes)
2e471eb5
GM
2443{
2444 register Lisp_Object val;
d311d28c 2445 ptrdiff_t nchars, multibyte_nbytes;
9eac9d59 2446
90256841
PE
2447 parse_str_as_multibyte ((const unsigned char *) contents, nbytes,
2448 &nchars, &multibyte_nbytes);
9eac9d59
KH
2449 if (nbytes == nchars || nbytes != multibyte_nbytes)
2450 /* CONTENTS contains no multibyte sequences or contains an invalid
2451 multibyte sequence. We must make unibyte string. */
495a6df3
KH
2452 val = make_unibyte_string (contents, nbytes);
2453 else
2454 val = make_multibyte_string (contents, nchars, nbytes);
2e471eb5
GM
2455 return val;
2456}
2457
2458
2459/* Make an unibyte string from LENGTH bytes at CONTENTS. */
2460
2461Lisp_Object
d311d28c 2462make_unibyte_string (const char *contents, ptrdiff_t length)
2e471eb5
GM
2463{
2464 register Lisp_Object val;
2465 val = make_uninit_string (length);
72af86bd 2466 memcpy (SDATA (val), contents, length);
2e471eb5
GM
2467 return val;
2468}
2469
2470
2471/* Make a multibyte string from NCHARS characters occupying NBYTES
2472 bytes at CONTENTS. */
2473
2474Lisp_Object
14162469 2475make_multibyte_string (const char *contents,
d311d28c 2476 ptrdiff_t nchars, ptrdiff_t nbytes)
2e471eb5
GM
2477{
2478 register Lisp_Object val;
2479 val = make_uninit_multibyte_string (nchars, nbytes);
72af86bd 2480 memcpy (SDATA (val), contents, nbytes);
2e471eb5
GM
2481 return val;
2482}
2483
2484
2485/* Make a string from NCHARS characters occupying NBYTES bytes at
2486 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2487
2488Lisp_Object
14162469 2489make_string_from_bytes (const char *contents,
d311d28c 2490 ptrdiff_t nchars, ptrdiff_t nbytes)
2e471eb5
GM
2491{
2492 register Lisp_Object val;
2493 val = make_uninit_multibyte_string (nchars, nbytes);
72af86bd 2494 memcpy (SDATA (val), contents, nbytes);
d5db4077
KR
2495 if (SBYTES (val) == SCHARS (val))
2496 STRING_SET_UNIBYTE (val);
2e471eb5
GM
2497 return val;
2498}
2499
2500
2501/* Make a string from NCHARS characters occupying NBYTES bytes at
2502 CONTENTS. The argument MULTIBYTE controls whether to label the
229b28c4
KH
2503 string as multibyte. If NCHARS is negative, it counts the number of
2504 characters by itself. */
2e471eb5
GM
2505
2506Lisp_Object
14162469 2507make_specified_string (const char *contents,
d311d28c 2508 ptrdiff_t nchars, ptrdiff_t nbytes, int multibyte)
2e471eb5
GM
2509{
2510 register Lisp_Object val;
229b28c4
KH
2511
2512 if (nchars < 0)
2513 {
2514 if (multibyte)
90256841
PE
2515 nchars = multibyte_chars_in_text ((const unsigned char *) contents,
2516 nbytes);
229b28c4
KH
2517 else
2518 nchars = nbytes;
2519 }
2e471eb5 2520 val = make_uninit_multibyte_string (nchars, nbytes);
72af86bd 2521 memcpy (SDATA (val), contents, nbytes);
2e471eb5 2522 if (!multibyte)
d5db4077 2523 STRING_SET_UNIBYTE (val);
2e471eb5
GM
2524 return val;
2525}
2526
2527
2528/* Make a string from the data at STR, treating it as multibyte if the
2529 data warrants. */
2530
2531Lisp_Object
971de7fb 2532build_string (const char *str)
2e471eb5
GM
2533{
2534 return make_string (str, strlen (str));
2535}
2536
2537
2538/* Return an unibyte Lisp_String set up to hold LENGTH characters
2539 occupying LENGTH bytes. */
2540
2541Lisp_Object
413d18e7 2542make_uninit_string (EMACS_INT length)
2e471eb5
GM
2543{
2544 Lisp_Object val;
4d774b0f
JB
2545
2546 if (!length)
2547 return empty_unibyte_string;
2e471eb5 2548 val = make_uninit_multibyte_string (length, length);
d5db4077 2549 STRING_SET_UNIBYTE (val);
2e471eb5
GM
2550 return val;
2551}
2552
2553
2554/* Return a multibyte Lisp_String set up to hold NCHARS characters
2555 which occupy NBYTES bytes. */
2556
2557Lisp_Object
413d18e7 2558make_uninit_multibyte_string (EMACS_INT nchars, EMACS_INT nbytes)
2e471eb5
GM
2559{
2560 Lisp_Object string;
2561 struct Lisp_String *s;
2562
2563 if (nchars < 0)
2564 abort ();
4d774b0f
JB
2565 if (!nbytes)
2566 return empty_multibyte_string;
2e471eb5
GM
2567
2568 s = allocate_string ();
2569 allocate_string_data (s, nchars, nbytes);
2570 XSETSTRING (string, s);
2571 string_chars_consed += nbytes;
2572 return string;
2573}
2574
2575
2576\f
2577/***********************************************************************
2578 Float Allocation
2579 ***********************************************************************/
2580
2e471eb5
GM
2581/* We store float cells inside of float_blocks, allocating a new
2582 float_block with malloc whenever necessary. Float cells reclaimed
2583 by GC are put on a free list to be reallocated before allocating
ab6780cd 2584 any new float cells from the latest float_block. */
2e471eb5 2585
6b61353c
KH
2586#define FLOAT_BLOCK_SIZE \
2587 (((BLOCK_BYTES - sizeof (struct float_block *) \
2588 /* The compiler might add padding at the end. */ \
2589 - (sizeof (struct Lisp_Float) - sizeof (int))) * CHAR_BIT) \
ab6780cd
SM
2590 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2591
2592#define GETMARKBIT(block,n) \
5e617bc2
JB
2593 (((block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2594 >> ((n) % (sizeof (int) * CHAR_BIT))) \
ab6780cd
SM
2595 & 1)
2596
2597#define SETMARKBIT(block,n) \
5e617bc2
JB
2598 (block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2599 |= 1 << ((n) % (sizeof (int) * CHAR_BIT))
ab6780cd
SM
2600
2601#define UNSETMARKBIT(block,n) \
5e617bc2
JB
2602 (block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2603 &= ~(1 << ((n) % (sizeof (int) * CHAR_BIT)))
ab6780cd
SM
2604
2605#define FLOAT_BLOCK(fptr) \
d01a7826 2606 ((struct float_block *) (((uintptr_t) (fptr)) & ~(BLOCK_ALIGN - 1)))
ab6780cd
SM
2607
2608#define FLOAT_INDEX(fptr) \
d01a7826 2609 ((((uintptr_t) (fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2e471eb5
GM
2610
2611struct float_block
2612{
ab6780cd 2613 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2e471eb5 2614 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
5e617bc2 2615 int gcmarkbits[1 + FLOAT_BLOCK_SIZE / (sizeof (int) * CHAR_BIT)];
ab6780cd 2616 struct float_block *next;
2e471eb5
GM
2617};
2618
ab6780cd
SM
2619#define FLOAT_MARKED_P(fptr) \
2620 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2621
2622#define FLOAT_MARK(fptr) \
2623 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2624
2625#define FLOAT_UNMARK(fptr) \
2626 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2627
34400008
GM
2628/* Current float_block. */
2629
244ed907 2630static struct float_block *float_block;
34400008
GM
2631
2632/* Index of first unused Lisp_Float in the current float_block. */
2633
244ed907 2634static int float_block_index;
2e471eb5 2635
34400008
GM
2636/* Free-list of Lisp_Floats. */
2637
244ed907 2638static struct Lisp_Float *float_free_list;
2e471eb5 2639
34400008 2640
966533c9 2641/* Initialize float allocation. */
34400008 2642
d3d47262 2643static void
971de7fb 2644init_float (void)
2e471eb5 2645{
08b7c2cb
SM
2646 float_block = NULL;
2647 float_block_index = FLOAT_BLOCK_SIZE; /* Force alloc of new float_block. */
2e471eb5 2648 float_free_list = 0;
2e471eb5
GM
2649}
2650
34400008 2651
34400008
GM
2652/* Return a new float object with value FLOAT_VALUE. */
2653
2e471eb5 2654Lisp_Object
971de7fb 2655make_float (double float_value)
2e471eb5
GM
2656{
2657 register Lisp_Object val;
2658
e2984df0
CY
2659 /* eassert (!handling_signal); */
2660
dafc79fa 2661 MALLOC_BLOCK_INPUT;
cfb2f32e 2662
2e471eb5
GM
2663 if (float_free_list)
2664 {
2665 /* We use the data field for chaining the free list
2666 so that we won't use the same field that has the mark bit. */
2667 XSETFLOAT (val, float_free_list);
28a099a4 2668 float_free_list = float_free_list->u.chain;
2e471eb5
GM
2669 }
2670 else
2671 {
2672 if (float_block_index == FLOAT_BLOCK_SIZE)
2673 {
2674 register struct float_block *new;
2675
ab6780cd
SM
2676 new = (struct float_block *) lisp_align_malloc (sizeof *new,
2677 MEM_TYPE_FLOAT);
2e471eb5 2678 new->next = float_block;
72af86bd 2679 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2e471eb5
GM
2680 float_block = new;
2681 float_block_index = 0;
2e471eb5 2682 }
6b61353c
KH
2683 XSETFLOAT (val, &float_block->floats[float_block_index]);
2684 float_block_index++;
2e471eb5 2685 }
177c0ea7 2686
dafc79fa 2687 MALLOC_UNBLOCK_INPUT;
e2984df0 2688
f601cdf3 2689 XFLOAT_INIT (val, float_value);
6b61353c 2690 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2e471eb5
GM
2691 consing_since_gc += sizeof (struct Lisp_Float);
2692 floats_consed++;
2693 return val;
2694}
2695
2e471eb5
GM
2696
2697\f
2698/***********************************************************************
2699 Cons Allocation
2700 ***********************************************************************/
2701
2702/* We store cons cells inside of cons_blocks, allocating a new
2703 cons_block with malloc whenever necessary. Cons cells reclaimed by
2704 GC are put on a free list to be reallocated before allocating
08b7c2cb 2705 any new cons cells from the latest cons_block. */
2e471eb5 2706
a2821611
AS
2707#define CONS_BLOCK_SIZE \
2708 (((BLOCK_BYTES - sizeof (struct cons_block *) \
2709 /* The compiler might add padding at the end. */ \
2710 - (sizeof (struct Lisp_Cons) - sizeof (int))) * CHAR_BIT) \
08b7c2cb
SM
2711 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2712
2713#define CONS_BLOCK(fptr) \
d01a7826 2714 ((struct cons_block *) ((uintptr_t) (fptr) & ~(BLOCK_ALIGN - 1)))
08b7c2cb
SM
2715
2716#define CONS_INDEX(fptr) \
d01a7826 2717 (((uintptr_t) (fptr) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2e471eb5
GM
2718
2719struct cons_block
2720{
08b7c2cb 2721 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2e471eb5 2722 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
5e617bc2 2723 int gcmarkbits[1 + CONS_BLOCK_SIZE / (sizeof (int) * CHAR_BIT)];
08b7c2cb 2724 struct cons_block *next;
2e471eb5
GM
2725};
2726
08b7c2cb
SM
2727#define CONS_MARKED_P(fptr) \
2728 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2729
2730#define CONS_MARK(fptr) \
2731 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2732
2733#define CONS_UNMARK(fptr) \
2734 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2735
34400008
GM
2736/* Current cons_block. */
2737
244ed907 2738static struct cons_block *cons_block;
34400008
GM
2739
2740/* Index of first unused Lisp_Cons in the current block. */
2741
244ed907 2742static int cons_block_index;
2e471eb5 2743
34400008
GM
2744/* Free-list of Lisp_Cons structures. */
2745
244ed907 2746static struct Lisp_Cons *cons_free_list;
2e471eb5 2747
34400008
GM
2748
2749/* Initialize cons allocation. */
2750
d3d47262 2751static void
971de7fb 2752init_cons (void)
2e471eb5 2753{
08b7c2cb
SM
2754 cons_block = NULL;
2755 cons_block_index = CONS_BLOCK_SIZE; /* Force alloc of new cons_block. */
2e471eb5 2756 cons_free_list = 0;
2e471eb5
GM
2757}
2758
34400008
GM
2759
2760/* Explicitly free a cons cell by putting it on the free-list. */
2e471eb5
GM
2761
2762void
971de7fb 2763free_cons (struct Lisp_Cons *ptr)
2e471eb5 2764{
28a099a4 2765 ptr->u.chain = cons_free_list;
34400008
GM
2766#if GC_MARK_STACK
2767 ptr->car = Vdead;
2768#endif
2e471eb5
GM
2769 cons_free_list = ptr;
2770}
2771
a7ca3326 2772DEFUN ("cons", Fcons, Scons, 2, 2, 0,
a6266d23 2773 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
5842a27b 2774 (Lisp_Object car, Lisp_Object cdr)
2e471eb5
GM
2775{
2776 register Lisp_Object val;
2777
e2984df0
CY
2778 /* eassert (!handling_signal); */
2779
dafc79fa 2780 MALLOC_BLOCK_INPUT;
cfb2f32e 2781
2e471eb5
GM
2782 if (cons_free_list)
2783 {
2784 /* We use the cdr for chaining the free list
2785 so that we won't use the same field that has the mark bit. */
2786 XSETCONS (val, cons_free_list);
28a099a4 2787 cons_free_list = cons_free_list->u.chain;
2e471eb5
GM
2788 }
2789 else
2790 {
2791 if (cons_block_index == CONS_BLOCK_SIZE)
2792 {
2793 register struct cons_block *new;
08b7c2cb
SM
2794 new = (struct cons_block *) lisp_align_malloc (sizeof *new,
2795 MEM_TYPE_CONS);
72af86bd 2796 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2e471eb5
GM
2797 new->next = cons_block;
2798 cons_block = new;
2799 cons_block_index = 0;
2e471eb5 2800 }
6b61353c
KH
2801 XSETCONS (val, &cons_block->conses[cons_block_index]);
2802 cons_block_index++;
2e471eb5 2803 }
177c0ea7 2804
dafc79fa 2805 MALLOC_UNBLOCK_INPUT;
e2984df0 2806
f3fbd155
KR
2807 XSETCAR (val, car);
2808 XSETCDR (val, cdr);
6b61353c 2809 eassert (!CONS_MARKED_P (XCONS (val)));
2e471eb5
GM
2810 consing_since_gc += sizeof (struct Lisp_Cons);
2811 cons_cells_consed++;
2812 return val;
2813}
2814
e5aab7e7 2815#ifdef GC_CHECK_CONS_LIST
e3e56238
RS
2816/* Get an error now if there's any junk in the cons free list. */
2817void
971de7fb 2818check_cons_list (void)
e3e56238
RS
2819{
2820 struct Lisp_Cons *tail = cons_free_list;
2821
e3e56238 2822 while (tail)
28a099a4 2823 tail = tail->u.chain;
e3e56238 2824}
e5aab7e7 2825#endif
34400008 2826
9b306d37
KS
2827/* Make a list of 1, 2, 3, 4 or 5 specified objects. */
2828
2829Lisp_Object
971de7fb 2830list1 (Lisp_Object arg1)
9b306d37
KS
2831{
2832 return Fcons (arg1, Qnil);
2833}
2e471eb5
GM
2834
2835Lisp_Object
971de7fb 2836list2 (Lisp_Object arg1, Lisp_Object arg2)
2e471eb5
GM
2837{
2838 return Fcons (arg1, Fcons (arg2, Qnil));
2839}
2840
34400008 2841
2e471eb5 2842Lisp_Object
971de7fb 2843list3 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3)
2e471eb5
GM
2844{
2845 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2846}
2847
34400008 2848
2e471eb5 2849Lisp_Object
971de7fb 2850list4 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4)
2e471eb5
GM
2851{
2852 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2853}
2854
34400008 2855
2e471eb5 2856Lisp_Object
971de7fb 2857list5 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4, Lisp_Object arg5)
2e471eb5
GM
2858{
2859 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2860 Fcons (arg5, Qnil)))));
2861}
2862
34400008 2863
a7ca3326 2864DEFUN ("list", Flist, Slist, 0, MANY, 0,
eae936e2 2865 doc: /* Return a newly created list with specified arguments as elements.
ae8e8122
MB
2866Any number of arguments, even zero arguments, are allowed.
2867usage: (list &rest OBJECTS) */)
f66c7cf8 2868 (ptrdiff_t nargs, Lisp_Object *args)
2e471eb5
GM
2869{
2870 register Lisp_Object val;
2871 val = Qnil;
2872
2873 while (nargs > 0)
2874 {
2875 nargs--;
2876 val = Fcons (args[nargs], val);
2877 }
2878 return val;
2879}
2880
34400008 2881
a7ca3326 2882DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
a6266d23 2883 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
5842a27b 2884 (register Lisp_Object length, Lisp_Object init)
2e471eb5
GM
2885{
2886 register Lisp_Object val;
14162469 2887 register EMACS_INT size;
2e471eb5 2888
b7826503 2889 CHECK_NATNUM (length);
2e471eb5
GM
2890 size = XFASTINT (length);
2891
2892 val = Qnil;
ce070307
GM
2893 while (size > 0)
2894 {
2895 val = Fcons (init, val);
2896 --size;
2897
2898 if (size > 0)
2899 {
2900 val = Fcons (init, val);
2901 --size;
177c0ea7 2902
ce070307
GM
2903 if (size > 0)
2904 {
2905 val = Fcons (init, val);
2906 --size;
177c0ea7 2907
ce070307
GM
2908 if (size > 0)
2909 {
2910 val = Fcons (init, val);
2911 --size;
177c0ea7 2912
ce070307
GM
2913 if (size > 0)
2914 {
2915 val = Fcons (init, val);
2916 --size;
2917 }
2918 }
2919 }
2920 }
2921
2922 QUIT;
2923 }
177c0ea7 2924
7146af97
JB
2925 return val;
2926}
2e471eb5
GM
2927
2928
7146af97 2929\f
2e471eb5
GM
2930/***********************************************************************
2931 Vector Allocation
2932 ***********************************************************************/
7146af97 2933
f3372c87
DA
2934/* This value is balanced well enough to avoid too much internal overhead
2935 for the most common cases; it's not required to be a power of two, but
2936 it's expected to be a mult-of-ROUNDUP_SIZE (see below). */
34400008 2937
f3372c87 2938#define VECTOR_BLOCK_SIZE 4096
7146af97 2939
dd0b0efb
PE
2940/* Handy constants for vectorlike objects. */
2941enum
2942 {
2943 header_size = offsetof (struct Lisp_Vector, contents),
f3372c87
DA
2944 word_size = sizeof (Lisp_Object),
2945 roundup_size = COMMON_MULTIPLE (sizeof (Lisp_Object),
2946#ifdef USE_LSB_TAG
2947 8 /* Helps to maintain alignment constraints imposed by
2948 assumption that least 3 bits of pointers are always 0. */
2949#else
2950 1 /* If alignment doesn't matter, should round up
2951 to sizeof (Lisp_Object) at least. */
2952#endif
2953 )
dd0b0efb 2954 };
34400008 2955
f3372c87
DA
2956/* Round up X to nearest mult-of-ROUNDUP_SIZE,
2957 assuming ROUNDUP_SIZE is a power of 2. */
2958
2959#define vroundup(x) (((x) + (roundup_size - 1)) & ~(roundup_size - 1))
2960
2961/* Rounding helps to maintain alignment constraints if USE_LSB_TAG. */
2962
2963#define VECTOR_BLOCK_BYTES (VECTOR_BLOCK_SIZE - vroundup (sizeof (void *)))
2964
2965/* Size of the minimal vector allocated from block. */
2966
2967#define VBLOCK_BYTES_MIN vroundup (sizeof (struct Lisp_Vector))
2968
2969/* Size of the largest vector allocated from block. */
2970
2971#define VBLOCK_BYTES_MAX \
2972 vroundup ((VECTOR_BLOCK_BYTES / 2) - sizeof (Lisp_Object))
2973
2974/* We maintain one free list for each possible block-allocated
2975 vector size, and this is the number of free lists we have. */
2976
2977#define VECTOR_MAX_FREE_LIST_INDEX \
2978 ((VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN) / roundup_size + 1)
2979
2980/* When the vector is on a free list, vectorlike_header.SIZE is set to
2981 this special value ORed with vector's memory footprint size. */
2982
2983#define VECTOR_FREE_LIST_FLAG (~(ARRAY_MARK_FLAG | PSEUDOVECTOR_FLAG \
2984 | (VECTOR_BLOCK_SIZE - 1)))
2985
2986/* Common shortcut to advance vector pointer over a block data. */
2987
2988#define ADVANCE(v, nbytes) ((struct Lisp_Vector *) ((char *) (v) + (nbytes)))
2989
2990/* Common shortcut to calculate NBYTES-vector index in VECTOR_FREE_LISTS. */
2991
2992#define VINDEX(nbytes) (((nbytes) - VBLOCK_BYTES_MIN) / roundup_size)
2993
2994/* Common shortcut to setup vector on a free list. */
2995
2996#define SETUP_ON_FREE_LIST(v, nbytes, index) \
2997 do { \
2998 (v)->header.size = VECTOR_FREE_LIST_FLAG | (nbytes); \
2999 eassert ((nbytes) % roundup_size == 0); \
3000 (index) = VINDEX (nbytes); \
3001 eassert ((index) < VECTOR_MAX_FREE_LIST_INDEX); \
3002 (v)->header.next.vector = vector_free_lists[index]; \
3003 vector_free_lists[index] = (v); \
3004 } while (0)
3005
3006struct vector_block
3007{
3008 char data[VECTOR_BLOCK_BYTES];
3009 struct vector_block *next;
3010};
3011
3012/* Chain of vector blocks. */
3013
3014static struct vector_block *vector_blocks;
3015
3016/* Vector free lists, where NTH item points to a chain of free
3017 vectors of the same NBYTES size, so NTH == VINDEX (NBYTES). */
3018
3019static struct Lisp_Vector *vector_free_lists[VECTOR_MAX_FREE_LIST_INDEX];
3020
3021/* Singly-linked list of large vectors. */
3022
3023static struct Lisp_Vector *large_vectors;
3024
3025/* The only vector with 0 slots, allocated from pure space. */
3026
3027static struct Lisp_Vector *zero_vector;
3028
3029/* Get a new vector block. */
3030
3031static struct vector_block *
3032allocate_vector_block (void)
3033{
3034 struct vector_block *block;
3035
3036#ifdef DOUG_LEA_MALLOC
3037 mallopt (M_MMAP_MAX, 0);
3038#endif
3039
3040 block = xmalloc (sizeof (struct vector_block));
3041
3042#ifdef DOUG_LEA_MALLOC
3043 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
3044#endif
3045
3046#if GC_MARK_STACK && !defined GC_MALLOC_CHECK
3047 mem_insert (block->data, block->data + VECTOR_BLOCK_BYTES,
3048 MEM_TYPE_VECTOR_BLOCK);
3049#endif
3050
3051 block->next = vector_blocks;
3052 vector_blocks = block;
3053 return block;
3054}
3055
3056/* Called once to initialize vector allocation. */
3057
3058static void
3059init_vectors (void)
3060{
3061 zero_vector = pure_alloc (header_size, Lisp_Vectorlike);
3062 zero_vector->header.size = 0;
3063}
3064
3065/* Allocate vector from a vector block. */
3066
3067static struct Lisp_Vector *
3068allocate_vector_from_block (size_t nbytes)
3069{
3070 struct Lisp_Vector *vector, *rest;
3071 struct vector_block *block;
3072 size_t index, restbytes;
3073
3074 eassert (VBLOCK_BYTES_MIN <= nbytes && nbytes <= VBLOCK_BYTES_MAX);
3075 eassert (nbytes % roundup_size == 0);
3076
3077 /* First, try to allocate from a free list
3078 containing vectors of the requested size. */
3079 index = VINDEX (nbytes);
3080 if (vector_free_lists[index])
3081 {
3082 vector = vector_free_lists[index];
3083 vector_free_lists[index] = vector->header.next.vector;
3084 vector->header.next.nbytes = nbytes;
3085 return vector;
3086 }
3087
3088 /* Next, check free lists containing larger vectors. Since
3089 we will split the result, we should have remaining space
3090 large enough to use for one-slot vector at least. */
3091 for (index = VINDEX (nbytes + VBLOCK_BYTES_MIN);
3092 index < VECTOR_MAX_FREE_LIST_INDEX; index++)
3093 if (vector_free_lists[index])
3094 {
3095 /* This vector is larger than requested. */
3096 vector = vector_free_lists[index];
3097 vector_free_lists[index] = vector->header.next.vector;
3098 vector->header.next.nbytes = nbytes;
3099
3100 /* Excess bytes are used for the smaller vector,
3101 which should be set on an appropriate free list. */
3102 restbytes = index * roundup_size + VBLOCK_BYTES_MIN - nbytes;
3103 eassert (restbytes % roundup_size == 0);
3104 rest = ADVANCE (vector, nbytes);
3105 SETUP_ON_FREE_LIST (rest, restbytes, index);
3106 return vector;
3107 }
3108
3109 /* Finally, need a new vector block. */
3110 block = allocate_vector_block ();
3111
3112 /* New vector will be at the beginning of this block. */
3113 vector = (struct Lisp_Vector *) block->data;
3114 vector->header.next.nbytes = nbytes;
3115
3116 /* If the rest of space from this block is large enough
3117 for one-slot vector at least, set up it on a free list. */
3118 restbytes = VECTOR_BLOCK_BYTES - nbytes;
3119 if (restbytes >= VBLOCK_BYTES_MIN)
3120 {
3121 eassert (restbytes % roundup_size == 0);
3122 rest = ADVANCE (vector, nbytes);
3123 SETUP_ON_FREE_LIST (rest, restbytes, index);
3124 }
3125 return vector;
3126 }
3127
3128/* Return how many Lisp_Objects can be stored in V. */
3129
3130#define VECTOR_SIZE(v) ((v)->header.size & PSEUDOVECTOR_FLAG ? \
3131 (PSEUDOVECTOR_SIZE_MASK & (v)->header.size) : \
3132 (v)->header.size)
3133
3134/* Nonzero if VECTOR pointer is valid pointer inside BLOCK. */
3135
3136#define VECTOR_IN_BLOCK(vector, block) \
3137 ((char *) (vector) <= (block)->data \
3138 + VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN)
3139
3140/* Reclaim space used by unmarked vectors. */
3141
3142static void
3143sweep_vectors (void)
3144{
3145 struct vector_block *block = vector_blocks, **bprev = &vector_blocks;
3146 struct Lisp_Vector *vector, *next, **vprev = &large_vectors;
3147
3148 total_vector_size = 0;
3149 memset (vector_free_lists, 0, sizeof (vector_free_lists));
3150
3151 /* Looking through vector blocks. */
3152
3153 for (block = vector_blocks; block; block = *bprev)
3154 {
3155 int free_this_block = 0;
3156
3157 for (vector = (struct Lisp_Vector *) block->data;
3158 VECTOR_IN_BLOCK (vector, block); vector = next)
3159 {
3160 if (VECTOR_MARKED_P (vector))
3161 {
3162 VECTOR_UNMARK (vector);
3163 total_vector_size += VECTOR_SIZE (vector);
3164 next = ADVANCE (vector, vector->header.next.nbytes);
3165 }
3166 else
3167 {
3168 ptrdiff_t nbytes;
3169
3170 if ((vector->header.size & VECTOR_FREE_LIST_FLAG)
3171 == VECTOR_FREE_LIST_FLAG)
3172 vector->header.next.nbytes =
3173 vector->header.size & (VECTOR_BLOCK_SIZE - 1);
3174
3175 next = ADVANCE (vector, vector->header.next.nbytes);
3176
3177 /* While NEXT is not marked, try to coalesce with VECTOR,
3178 thus making VECTOR of the largest possible size. */
3179
3180 while (VECTOR_IN_BLOCK (next, block))
3181 {
3182 if (VECTOR_MARKED_P (next))
3183 break;
3184 if ((next->header.size & VECTOR_FREE_LIST_FLAG)
3185 == VECTOR_FREE_LIST_FLAG)
3186 nbytes = next->header.size & (VECTOR_BLOCK_SIZE - 1);
3187 else
3188 nbytes = next->header.next.nbytes;
3189 vector->header.next.nbytes += nbytes;
3190 next = ADVANCE (next, nbytes);
3191 }
3192
3193 eassert (vector->header.next.nbytes % roundup_size == 0);
3194
3195 if (vector == (struct Lisp_Vector *) block->data
3196 && !VECTOR_IN_BLOCK (next, block))
3197 /* This block should be freed because all of it's
3198 space was coalesced into the only free vector. */
3199 free_this_block = 1;
3200 else
3201 SETUP_ON_FREE_LIST (vector, vector->header.next.nbytes, nbytes);
3202 }
3203 }
3204
3205 if (free_this_block)
3206 {
3207 *bprev = block->next;
3208#if GC_MARK_STACK && !defined GC_MALLOC_CHECK
3209 mem_delete (mem_find (block->data));
3210#endif
3211 xfree (block);
3212 }
3213 else
3214 bprev = &block->next;
3215 }
3216
3217 /* Sweep large vectors. */
3218
3219 for (vector = large_vectors; vector; vector = *vprev)
3220 {
3221 if (VECTOR_MARKED_P (vector))
3222 {
3223 VECTOR_UNMARK (vector);
3224 total_vector_size += VECTOR_SIZE (vector);
3225 vprev = &vector->header.next.vector;
3226 }
3227 else
3228 {
3229 *vprev = vector->header.next.vector;
3230 lisp_free (vector);
3231 }
3232 }
3233}
3234
34400008
GM
3235/* Value is a pointer to a newly allocated Lisp_Vector structure
3236 with room for LEN Lisp_Objects. */
3237
ece93c02 3238static struct Lisp_Vector *
d311d28c 3239allocate_vectorlike (ptrdiff_t len)
1825c68d
KH
3240{
3241 struct Lisp_Vector *p;
675d5130 3242 size_t nbytes;
1825c68d 3243
dafc79fa
SM
3244 MALLOC_BLOCK_INPUT;
3245
d1658221 3246#ifdef DOUG_LEA_MALLOC
f8608968
GM
3247 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
3248 because mapped region contents are not preserved in
3249 a dumped Emacs. */
d1658221
RS
3250 mallopt (M_MMAP_MAX, 0);
3251#endif
177c0ea7 3252
cfb2f32e
SM
3253 /* This gets triggered by code which I haven't bothered to fix. --Stef */
3254 /* eassert (!handling_signal); */
3255
f3372c87
DA
3256 if (len == 0)
3257 return zero_vector;
3258
0de4bb68 3259 nbytes = header_size + len * word_size;
f3372c87
DA
3260
3261 if (nbytes <= VBLOCK_BYTES_MAX)
3262 p = allocate_vector_from_block (vroundup (nbytes));
3263 else
3264 {
3265 p = (struct Lisp_Vector *) lisp_malloc (nbytes, MEM_TYPE_VECTORLIKE);
3266 p->header.next.vector = large_vectors;
3267 large_vectors = p;
3268 }
177c0ea7 3269
d1658221 3270#ifdef DOUG_LEA_MALLOC
34400008 3271 /* Back to a reasonable maximum of mmap'ed areas. */
81d492d5 3272 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
d1658221 3273#endif
177c0ea7 3274
34400008 3275 consing_since_gc += nbytes;
310ea200 3276 vector_cells_consed += len;
1825c68d 3277
dafc79fa 3278 MALLOC_UNBLOCK_INPUT;
e2984df0 3279
1825c68d
KH
3280 return p;
3281}
3282
34400008 3283
dd0b0efb 3284/* Allocate a vector with LEN slots. */
ece93c02
GM
3285
3286struct Lisp_Vector *
dd0b0efb 3287allocate_vector (EMACS_INT len)
ece93c02 3288{
dd0b0efb
PE
3289 struct Lisp_Vector *v;
3290 ptrdiff_t nbytes_max = min (PTRDIFF_MAX, SIZE_MAX);
3291
3292 if (min ((nbytes_max - header_size) / word_size, MOST_POSITIVE_FIXNUM) < len)
3293 memory_full (SIZE_MAX);
3294 v = allocate_vectorlike (len);
3295 v->header.size = len;
ece93c02
GM
3296 return v;
3297}
3298
3299
3300/* Allocate other vector-like structures. */
3301
30f95089 3302struct Lisp_Vector *
d311d28c 3303allocate_pseudovector (int memlen, int lisplen, int tag)
ece93c02 3304{
d2029e5b 3305 struct Lisp_Vector *v = allocate_vectorlike (memlen);
e46bb31a 3306 int i;
177c0ea7 3307
d2029e5b 3308 /* Only the first lisplen slots will be traced normally by the GC. */
d2029e5b 3309 for (i = 0; i < lisplen; ++i)
ece93c02 3310 v->contents[i] = Qnil;
177c0ea7 3311
eab3844f 3312 XSETPVECTYPESIZE (v, tag, lisplen);
d2029e5b
SM
3313 return v;
3314}
d2029e5b 3315
ece93c02 3316struct Lisp_Hash_Table *
878f97ff 3317allocate_hash_table (void)
ece93c02 3318{
878f97ff 3319 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Hash_Table, count, PVEC_HASH_TABLE);
ece93c02
GM
3320}
3321
3322
3323struct window *
971de7fb 3324allocate_window (void)
ece93c02 3325{
5e617bc2 3326 return ALLOCATE_PSEUDOVECTOR (struct window, current_matrix, PVEC_WINDOW);
ece93c02 3327}
177c0ea7 3328
177c0ea7 3329
4a729fd8 3330struct terminal *
971de7fb 3331allocate_terminal (void)
4a729fd8 3332{
d2029e5b
SM
3333 struct terminal *t = ALLOCATE_PSEUDOVECTOR (struct terminal,
3334 next_terminal, PVEC_TERMINAL);
3335 /* Zero out the non-GC'd fields. FIXME: This should be made unnecessary. */
72af86bd
AS
3336 memset (&t->next_terminal, 0,
3337 (char*) (t + 1) - (char*) &t->next_terminal);
ece93c02 3338
d2029e5b 3339 return t;
4a729fd8 3340}
ece93c02
GM
3341
3342struct frame *
971de7fb 3343allocate_frame (void)
ece93c02 3344{
d2029e5b
SM
3345 struct frame *f = ALLOCATE_PSEUDOVECTOR (struct frame,
3346 face_cache, PVEC_FRAME);
3347 /* Zero out the non-GC'd fields. FIXME: This should be made unnecessary. */
72af86bd
AS
3348 memset (&f->face_cache, 0,
3349 (char *) (f + 1) - (char *) &f->face_cache);
d2029e5b 3350 return f;
ece93c02
GM
3351}
3352
3353
3354struct Lisp_Process *
971de7fb 3355allocate_process (void)
ece93c02 3356{
d2029e5b 3357 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Process, pid, PVEC_PROCESS);
ece93c02
GM
3358}
3359
3360
a7ca3326 3361DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
a6266d23 3362 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
7ee72033 3363See also the function `vector'. */)
5842a27b 3364 (register Lisp_Object length, Lisp_Object init)
7146af97 3365{
1825c68d 3366 Lisp_Object vector;
d311d28c
PE
3367 register ptrdiff_t sizei;
3368 register ptrdiff_t i;
7146af97
JB
3369 register struct Lisp_Vector *p;
3370
b7826503 3371 CHECK_NATNUM (length);
7146af97 3372
d311d28c
PE
3373 p = allocate_vector (XFASTINT (length));
3374 sizei = XFASTINT (length);
ae35e756
PE
3375 for (i = 0; i < sizei; i++)
3376 p->contents[i] = init;
7146af97 3377
1825c68d 3378 XSETVECTOR (vector, p);
7146af97
JB
3379 return vector;
3380}
3381
34400008 3382
a7ca3326 3383DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
eae936e2 3384 doc: /* Return a newly created vector with specified arguments as elements.
ae8e8122
MB
3385Any number of arguments, even zero arguments, are allowed.
3386usage: (vector &rest OBJECTS) */)
f66c7cf8 3387 (ptrdiff_t nargs, Lisp_Object *args)
7146af97
JB
3388{
3389 register Lisp_Object len, val;
f66c7cf8 3390 ptrdiff_t i;
7146af97
JB
3391 register struct Lisp_Vector *p;
3392
67ba9986 3393 XSETFASTINT (len, nargs);
7146af97
JB
3394 val = Fmake_vector (len, Qnil);
3395 p = XVECTOR (val);
ae35e756
PE
3396 for (i = 0; i < nargs; i++)
3397 p->contents[i] = args[i];
7146af97
JB
3398 return val;
3399}
3400
34400008 3401
a7ca3326 3402DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
a6266d23 3403 doc: /* Create a byte-code object with specified arguments as elements.
e2abe5a1
SM
3404The arguments should be the ARGLIST, bytecode-string BYTE-CODE, constant
3405vector CONSTANTS, maximum stack size DEPTH, (optional) DOCSTRING,
3406and (optional) INTERACTIVE-SPEC.
228299fa 3407The first four arguments are required; at most six have any
ae8e8122 3408significance.
e2abe5a1
SM
3409The ARGLIST can be either like the one of `lambda', in which case the arguments
3410will be dynamically bound before executing the byte code, or it can be an
3411integer of the form NNNNNNNRMMMMMMM where the 7bit MMMMMMM specifies the
3412minimum number of arguments, the 7-bit NNNNNNN specifies the maximum number
3413of arguments (ignoring &rest) and the R bit specifies whether there is a &rest
3414argument to catch the left-over arguments. If such an integer is used, the
3415arguments will not be dynamically bound but will be instead pushed on the
3416stack before executing the byte-code.
92cc28b2 3417usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
f66c7cf8 3418 (ptrdiff_t nargs, Lisp_Object *args)
7146af97
JB
3419{
3420 register Lisp_Object len, val;
f66c7cf8 3421 ptrdiff_t i;
7146af97
JB
3422 register struct Lisp_Vector *p;
3423
67ba9986 3424 XSETFASTINT (len, nargs);
265a9e55 3425 if (!NILP (Vpurify_flag))
f66c7cf8 3426 val = make_pure_vector (nargs);
7146af97
JB
3427 else
3428 val = Fmake_vector (len, Qnil);
9eac9d59 3429
b1feb9b4 3430 if (nargs > 1 && STRINGP (args[1]) && STRING_MULTIBYTE (args[1]))
9eac9d59
KH
3431 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
3432 earlier because they produced a raw 8-bit string for byte-code
3433 and now such a byte-code string is loaded as multibyte while
3434 raw 8-bit characters converted to multibyte form. Thus, now we
3435 must convert them back to the original unibyte form. */
3436 args[1] = Fstring_as_unibyte (args[1]);
3437
7146af97 3438 p = XVECTOR (val);
ae35e756 3439 for (i = 0; i < nargs; i++)
7146af97 3440 {
265a9e55 3441 if (!NILP (Vpurify_flag))
ae35e756
PE
3442 args[i] = Fpurecopy (args[i]);
3443 p->contents[i] = args[i];
7146af97 3444 }
876c194c
SM
3445 XSETPVECTYPE (p, PVEC_COMPILED);
3446 XSETCOMPILED (val, p);
7146af97
JB
3447 return val;
3448}
2e471eb5 3449
34400008 3450
7146af97 3451\f
2e471eb5
GM
3452/***********************************************************************
3453 Symbol Allocation
3454 ***********************************************************************/
7146af97 3455
d55c12ed
AS
3456/* Like struct Lisp_Symbol, but padded so that the size is a multiple
3457 of the required alignment if LSB tags are used. */
3458
3459union aligned_Lisp_Symbol
3460{
3461 struct Lisp_Symbol s;
3462#ifdef USE_LSB_TAG
3463 unsigned char c[(sizeof (struct Lisp_Symbol) + (1 << GCTYPEBITS) - 1)
3464 & -(1 << GCTYPEBITS)];
3465#endif
3466};
3467
2e471eb5
GM
3468/* Each symbol_block is just under 1020 bytes long, since malloc
3469 really allocates in units of powers of two and uses 4 bytes for its
3470 own overhead. */
7146af97
JB
3471
3472#define SYMBOL_BLOCK_SIZE \
d55c12ed 3473 ((1020 - sizeof (struct symbol_block *)) / sizeof (union aligned_Lisp_Symbol))
7146af97
JB
3474
3475struct symbol_block
2e471eb5 3476{
6b61353c 3477 /* Place `symbols' first, to preserve alignment. */
d55c12ed 3478 union aligned_Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
6b61353c 3479 struct symbol_block *next;
2e471eb5 3480};
7146af97 3481
34400008
GM
3482/* Current symbol block and index of first unused Lisp_Symbol
3483 structure in it. */
3484
d3d47262
JB
3485static struct symbol_block *symbol_block;
3486static int symbol_block_index;
7146af97 3487
34400008
GM
3488/* List of free symbols. */
3489
d3d47262 3490static struct Lisp_Symbol *symbol_free_list;
7146af97 3491
34400008
GM
3492
3493/* Initialize symbol allocation. */
3494
d3d47262 3495static void
971de7fb 3496init_symbol (void)
7146af97 3497{
005ca5c7
DL
3498 symbol_block = NULL;
3499 symbol_block_index = SYMBOL_BLOCK_SIZE;
7146af97
JB
3500 symbol_free_list = 0;
3501}
3502
34400008 3503
a7ca3326 3504DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
a6266d23 3505 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
7ee72033 3506Its value and function definition are void, and its property list is nil. */)
5842a27b 3507 (Lisp_Object name)
7146af97
JB
3508{
3509 register Lisp_Object val;
3510 register struct Lisp_Symbol *p;
3511
b7826503 3512 CHECK_STRING (name);
7146af97 3513
537407f0 3514 /* eassert (!handling_signal); */
cfb2f32e 3515
dafc79fa 3516 MALLOC_BLOCK_INPUT;
e2984df0 3517
7146af97
JB
3518 if (symbol_free_list)
3519 {
45d12a89 3520 XSETSYMBOL (val, symbol_free_list);
28a099a4 3521 symbol_free_list = symbol_free_list->next;
7146af97
JB
3522 }
3523 else
3524 {
3525 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
3526 {
3c06d205 3527 struct symbol_block *new;
34400008
GM
3528 new = (struct symbol_block *) lisp_malloc (sizeof *new,
3529 MEM_TYPE_SYMBOL);
7146af97
JB
3530 new->next = symbol_block;
3531 symbol_block = new;
3532 symbol_block_index = 0;
3533 }
d55c12ed 3534 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index].s);
6b61353c 3535 symbol_block_index++;
7146af97 3536 }
177c0ea7 3537
dafc79fa 3538 MALLOC_UNBLOCK_INPUT;
e2984df0 3539
7146af97 3540 p = XSYMBOL (val);
8fe5665d 3541 p->xname = name;
7146af97 3542 p->plist = Qnil;
ce5b453a
SM
3543 p->redirect = SYMBOL_PLAINVAL;
3544 SET_SYMBOL_VAL (p, Qunbound);
2e471eb5 3545 p->function = Qunbound;
9e713715 3546 p->next = NULL;
2336fe58 3547 p->gcmarkbit = 0;
9e713715
GM
3548 p->interned = SYMBOL_UNINTERNED;
3549 p->constant = 0;
b9598260 3550 p->declared_special = 0;
2e471eb5
GM
3551 consing_since_gc += sizeof (struct Lisp_Symbol);
3552 symbols_consed++;
7146af97
JB
3553 return val;
3554}
3555
3f25e183 3556
2e471eb5
GM
3557\f
3558/***********************************************************************
34400008 3559 Marker (Misc) Allocation
2e471eb5 3560 ***********************************************************************/
3f25e183 3561
d55c12ed
AS
3562/* Like union Lisp_Misc, but padded so that its size is a multiple of
3563 the required alignment when LSB tags are used. */
3564
3565union aligned_Lisp_Misc
3566{
3567 union Lisp_Misc m;
3568#ifdef USE_LSB_TAG
3569 unsigned char c[(sizeof (union Lisp_Misc) + (1 << GCTYPEBITS) - 1)
3570 & -(1 << GCTYPEBITS)];
3571#endif
3572};
3573
2e471eb5
GM
3574/* Allocation of markers and other objects that share that structure.
3575 Works like allocation of conses. */
c0696668 3576
2e471eb5 3577#define MARKER_BLOCK_SIZE \
d55c12ed 3578 ((1020 - sizeof (struct marker_block *)) / sizeof (union aligned_Lisp_Misc))
2e471eb5
GM
3579
3580struct marker_block
c0696668 3581{
6b61353c 3582 /* Place `markers' first, to preserve alignment. */
d55c12ed 3583 union aligned_Lisp_Misc markers[MARKER_BLOCK_SIZE];
6b61353c 3584 struct marker_block *next;
2e471eb5 3585};
c0696668 3586
d3d47262
JB
3587static struct marker_block *marker_block;
3588static int marker_block_index;
c0696668 3589
d3d47262 3590static union Lisp_Misc *marker_free_list;
c0696668 3591
d3d47262 3592static void
971de7fb 3593init_marker (void)
3f25e183 3594{
005ca5c7
DL
3595 marker_block = NULL;
3596 marker_block_index = MARKER_BLOCK_SIZE;
2e471eb5 3597 marker_free_list = 0;
3f25e183
RS
3598}
3599
2e471eb5
GM
3600/* Return a newly allocated Lisp_Misc object, with no substructure. */
3601
3f25e183 3602Lisp_Object
971de7fb 3603allocate_misc (void)
7146af97 3604{
2e471eb5 3605 Lisp_Object val;
7146af97 3606
e2984df0
CY
3607 /* eassert (!handling_signal); */
3608
dafc79fa 3609 MALLOC_BLOCK_INPUT;
cfb2f32e 3610
2e471eb5 3611 if (marker_free_list)
7146af97 3612 {
2e471eb5
GM
3613 XSETMISC (val, marker_free_list);
3614 marker_free_list = marker_free_list->u_free.chain;
7146af97
JB
3615 }
3616 else
7146af97 3617 {
2e471eb5
GM
3618 if (marker_block_index == MARKER_BLOCK_SIZE)
3619 {
3620 struct marker_block *new;
34400008
GM
3621 new = (struct marker_block *) lisp_malloc (sizeof *new,
3622 MEM_TYPE_MISC);
2e471eb5
GM
3623 new->next = marker_block;
3624 marker_block = new;
3625 marker_block_index = 0;
7b7990cc 3626 total_free_markers += MARKER_BLOCK_SIZE;
2e471eb5 3627 }
d55c12ed 3628 XSETMISC (val, &marker_block->markers[marker_block_index].m);
6b61353c 3629 marker_block_index++;
7146af97 3630 }
177c0ea7 3631
dafc79fa 3632 MALLOC_UNBLOCK_INPUT;
e2984df0 3633
7b7990cc 3634 --total_free_markers;
2e471eb5
GM
3635 consing_since_gc += sizeof (union Lisp_Misc);
3636 misc_objects_consed++;
67ee9f6e 3637 XMISCANY (val)->gcmarkbit = 0;
2e471eb5
GM
3638 return val;
3639}
3640
7b7990cc
KS
3641/* Free a Lisp_Misc object */
3642
244ed907 3643static void
971de7fb 3644free_misc (Lisp_Object misc)
7b7990cc 3645{
d314756e 3646 XMISCTYPE (misc) = Lisp_Misc_Free;
7b7990cc
KS
3647 XMISC (misc)->u_free.chain = marker_free_list;
3648 marker_free_list = XMISC (misc);
3649
3650 total_free_markers++;
3651}
3652
42172a6b
RS
3653/* Return a Lisp_Misc_Save_Value object containing POINTER and
3654 INTEGER. This is used to package C values to call record_unwind_protect.
3655 The unwind function can get the C values back using XSAVE_VALUE. */
3656
3657Lisp_Object
9c4c5f81 3658make_save_value (void *pointer, ptrdiff_t integer)
42172a6b
RS
3659{
3660 register Lisp_Object val;
3661 register struct Lisp_Save_Value *p;
3662
3663 val = allocate_misc ();
3664 XMISCTYPE (val) = Lisp_Misc_Save_Value;
3665 p = XSAVE_VALUE (val);
3666 p->pointer = pointer;
3667 p->integer = integer;
b766f870 3668 p->dogc = 0;
42172a6b
RS
3669 return val;
3670}
3671
a7ca3326 3672DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
a6266d23 3673 doc: /* Return a newly allocated marker which does not point at any place. */)
5842a27b 3674 (void)
2e471eb5
GM
3675{
3676 register Lisp_Object val;
3677 register struct Lisp_Marker *p;
7146af97 3678
2e471eb5
GM
3679 val = allocate_misc ();
3680 XMISCTYPE (val) = Lisp_Misc_Marker;
3681 p = XMARKER (val);
3682 p->buffer = 0;
3683 p->bytepos = 0;
3684 p->charpos = 0;
ef89c2ce 3685 p->next = NULL;
2e471eb5 3686 p->insertion_type = 0;
7146af97
JB
3687 return val;
3688}
2e471eb5
GM
3689
3690/* Put MARKER back on the free list after using it temporarily. */
3691
3692void
971de7fb 3693free_marker (Lisp_Object marker)
2e471eb5 3694{
ef89c2ce 3695 unchain_marker (XMARKER (marker));
7b7990cc 3696 free_misc (marker);
2e471eb5
GM
3697}
3698
c0696668 3699\f
7146af97 3700/* Return a newly created vector or string with specified arguments as
736471d1
RS
3701 elements. If all the arguments are characters that can fit
3702 in a string of events, make a string; otherwise, make a vector.
3703
3704 Any number of arguments, even zero arguments, are allowed. */
7146af97
JB
3705
3706Lisp_Object
971de7fb 3707make_event_array (register int nargs, Lisp_Object *args)
7146af97
JB
3708{
3709 int i;
3710
3711 for (i = 0; i < nargs; i++)
736471d1 3712 /* The things that fit in a string
c9ca4659
RS
3713 are characters that are in 0...127,
3714 after discarding the meta bit and all the bits above it. */
e687453f 3715 if (!INTEGERP (args[i])
c11285dc 3716 || (XINT (args[i]) & ~(-CHAR_META)) >= 0200)
7146af97
JB
3717 return Fvector (nargs, args);
3718
3719 /* Since the loop exited, we know that all the things in it are
3720 characters, so we can make a string. */
3721 {
c13ccad2 3722 Lisp_Object result;
177c0ea7 3723
50aee051 3724 result = Fmake_string (make_number (nargs), make_number (0));
7146af97 3725 for (i = 0; i < nargs; i++)
736471d1 3726 {
46e7e6b0 3727 SSET (result, i, XINT (args[i]));
736471d1
RS
3728 /* Move the meta bit to the right place for a string char. */
3729 if (XINT (args[i]) & CHAR_META)
46e7e6b0 3730 SSET (result, i, SREF (result, i) | 0x80);
736471d1 3731 }
177c0ea7 3732
7146af97
JB
3733 return result;
3734 }
3735}
2e471eb5
GM
3736
3737
7146af97 3738\f
24d8a105
RS
3739/************************************************************************
3740 Memory Full Handling
3741 ************************************************************************/
3742
3743
531b0165
PE
3744/* Called if malloc (NBYTES) returns zero. If NBYTES == SIZE_MAX,
3745 there may have been size_t overflow so that malloc was never
3746 called, or perhaps malloc was invoked successfully but the
3747 resulting pointer had problems fitting into a tagged EMACS_INT. In
3748 either case this counts as memory being full even though malloc did
3749 not fail. */
24d8a105
RS
3750
3751void
531b0165 3752memory_full (size_t nbytes)
24d8a105 3753{
531b0165
PE
3754 /* Do not go into hysterics merely because a large request failed. */
3755 int enough_free_memory = 0;
2b6148e4 3756 if (SPARE_MEMORY < nbytes)
531b0165 3757 {
66606eea
PE
3758 void *p;
3759
3760 MALLOC_BLOCK_INPUT;
3761 p = malloc (SPARE_MEMORY);
531b0165
PE
3762 if (p)
3763 {
4d09bcf6 3764 free (p);
531b0165
PE
3765 enough_free_memory = 1;
3766 }
66606eea 3767 MALLOC_UNBLOCK_INPUT;
531b0165 3768 }
24d8a105 3769
531b0165
PE
3770 if (! enough_free_memory)
3771 {
3772 int i;
24d8a105 3773
531b0165
PE
3774 Vmemory_full = Qt;
3775
3776 memory_full_cons_threshold = sizeof (struct cons_block);
3777
3778 /* The first time we get here, free the spare memory. */
3779 for (i = 0; i < sizeof (spare_memory) / sizeof (char *); i++)
3780 if (spare_memory[i])
3781 {
3782 if (i == 0)
3783 free (spare_memory[i]);
3784 else if (i >= 1 && i <= 4)
3785 lisp_align_free (spare_memory[i]);
3786 else
3787 lisp_free (spare_memory[i]);
3788 spare_memory[i] = 0;
3789 }
3790
3791 /* Record the space now used. When it decreases substantially,
3792 we can refill the memory reserve. */
4e75f29d 3793#if !defined SYSTEM_MALLOC && !defined SYNC_INPUT
531b0165 3794 bytes_used_when_full = BYTES_USED;
24d8a105 3795#endif
531b0165 3796 }
24d8a105
RS
3797
3798 /* This used to call error, but if we've run out of memory, we could
3799 get infinite recursion trying to build the string. */
9b306d37 3800 xsignal (Qnil, Vmemory_signal_data);
24d8a105
RS
3801}
3802
3803/* If we released our reserve (due to running out of memory),
3804 and we have a fair amount free once again,
3805 try to set aside another reserve in case we run out once more.
3806
3807 This is called when a relocatable block is freed in ralloc.c,
3808 and also directly from this file, in case we're not using ralloc.c. */
3809
3810void
971de7fb 3811refill_memory_reserve (void)
24d8a105
RS
3812{
3813#ifndef SYSTEM_MALLOC
3814 if (spare_memory[0] == 0)
903fe15d 3815 spare_memory[0] = (char *) malloc (SPARE_MEMORY);
24d8a105
RS
3816 if (spare_memory[1] == 0)
3817 spare_memory[1] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3818 MEM_TYPE_CONS);
3819 if (spare_memory[2] == 0)
3820 spare_memory[2] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3821 MEM_TYPE_CONS);
3822 if (spare_memory[3] == 0)
3823 spare_memory[3] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3824 MEM_TYPE_CONS);
3825 if (spare_memory[4] == 0)
3826 spare_memory[4] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3827 MEM_TYPE_CONS);
3828 if (spare_memory[5] == 0)
3829 spare_memory[5] = (char *) lisp_malloc (sizeof (struct string_block),
3830 MEM_TYPE_STRING);
3831 if (spare_memory[6] == 0)
3832 spare_memory[6] = (char *) lisp_malloc (sizeof (struct string_block),
3833 MEM_TYPE_STRING);
3834 if (spare_memory[0] && spare_memory[1] && spare_memory[5])
3835 Vmemory_full = Qnil;
3836#endif
3837}
3838\f
34400008
GM
3839/************************************************************************
3840 C Stack Marking
3841 ************************************************************************/
3842
13c844fb
GM
3843#if GC_MARK_STACK || defined GC_MALLOC_CHECK
3844
71cf5fa0
GM
3845/* Conservative C stack marking requires a method to identify possibly
3846 live Lisp objects given a pointer value. We do this by keeping
3847 track of blocks of Lisp data that are allocated in a red-black tree
3848 (see also the comment of mem_node which is the type of nodes in
3849 that tree). Function lisp_malloc adds information for an allocated
3850 block to the red-black tree with calls to mem_insert, and function
3851 lisp_free removes it with mem_delete. Functions live_string_p etc
3852 call mem_find to lookup information about a given pointer in the
3853 tree, and use that to determine if the pointer points to a Lisp
3854 object or not. */
3855
34400008
GM
3856/* Initialize this part of alloc.c. */
3857
3858static void
971de7fb 3859mem_init (void)
34400008
GM
3860{
3861 mem_z.left = mem_z.right = MEM_NIL;
3862 mem_z.parent = NULL;
3863 mem_z.color = MEM_BLACK;
3864 mem_z.start = mem_z.end = NULL;
3865 mem_root = MEM_NIL;
3866}
3867
3868
3869/* Value is a pointer to the mem_node containing START. Value is
3870 MEM_NIL if there is no node in the tree containing START. */
3871
55d4c1b2 3872static inline struct mem_node *
971de7fb 3873mem_find (void *start)
34400008
GM
3874{
3875 struct mem_node *p;
3876
ece93c02
GM
3877 if (start < min_heap_address || start > max_heap_address)
3878 return MEM_NIL;
3879
34400008
GM
3880 /* Make the search always successful to speed up the loop below. */
3881 mem_z.start = start;
3882 mem_z.end = (char *) start + 1;
3883
3884 p = mem_root;
3885 while (start < p->start || start >= p->end)
3886 p = start < p->start ? p->left : p->right;
3887 return p;
3888}
3889
3890
3891/* Insert a new node into the tree for a block of memory with start
3892 address START, end address END, and type TYPE. Value is a
3893 pointer to the node that was inserted. */
3894
3895static struct mem_node *
971de7fb 3896mem_insert (void *start, void *end, enum mem_type type)
34400008
GM
3897{
3898 struct mem_node *c, *parent, *x;
3899
add3c3ea 3900 if (min_heap_address == NULL || start < min_heap_address)
ece93c02 3901 min_heap_address = start;
add3c3ea 3902 if (max_heap_address == NULL || end > max_heap_address)
ece93c02
GM
3903 max_heap_address = end;
3904
34400008
GM
3905 /* See where in the tree a node for START belongs. In this
3906 particular application, it shouldn't happen that a node is already
3907 present. For debugging purposes, let's check that. */
3908 c = mem_root;
3909 parent = NULL;
3910
3911#if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
177c0ea7 3912
34400008
GM
3913 while (c != MEM_NIL)
3914 {
3915 if (start >= c->start && start < c->end)
3916 abort ();
3917 parent = c;
3918 c = start < c->start ? c->left : c->right;
3919 }
177c0ea7 3920
34400008 3921#else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
177c0ea7 3922
34400008
GM
3923 while (c != MEM_NIL)
3924 {
3925 parent = c;
3926 c = start < c->start ? c->left : c->right;
3927 }
177c0ea7 3928
34400008
GM
3929#endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3930
3931 /* Create a new node. */
877935b1
GM
3932#ifdef GC_MALLOC_CHECK
3933 x = (struct mem_node *) _malloc_internal (sizeof *x);
3934 if (x == NULL)
3935 abort ();
3936#else
34400008 3937 x = (struct mem_node *) xmalloc (sizeof *x);
877935b1 3938#endif
34400008
GM
3939 x->start = start;
3940 x->end = end;
3941 x->type = type;
3942 x->parent = parent;
3943 x->left = x->right = MEM_NIL;
3944 x->color = MEM_RED;
3945
3946 /* Insert it as child of PARENT or install it as root. */
3947 if (parent)
3948 {
3949 if (start < parent->start)
3950 parent->left = x;
3951 else
3952 parent->right = x;
3953 }
177c0ea7 3954 else
34400008
GM
3955 mem_root = x;
3956
3957 /* Re-establish red-black tree properties. */
3958 mem_insert_fixup (x);
877935b1 3959
34400008
GM
3960 return x;
3961}
3962
3963
3964/* Re-establish the red-black properties of the tree, and thereby
3965 balance the tree, after node X has been inserted; X is always red. */
3966
3967static void
971de7fb 3968mem_insert_fixup (struct mem_node *x)
34400008
GM
3969{
3970 while (x != mem_root && x->parent->color == MEM_RED)
3971 {
3972 /* X is red and its parent is red. This is a violation of
3973 red-black tree property #3. */
177c0ea7 3974
34400008
GM
3975 if (x->parent == x->parent->parent->left)
3976 {
3977 /* We're on the left side of our grandparent, and Y is our
3978 "uncle". */
3979 struct mem_node *y = x->parent->parent->right;
177c0ea7 3980
34400008
GM
3981 if (y->color == MEM_RED)
3982 {
3983 /* Uncle and parent are red but should be black because
3984 X is red. Change the colors accordingly and proceed
3985 with the grandparent. */
3986 x->parent->color = MEM_BLACK;
3987 y->color = MEM_BLACK;
3988 x->parent->parent->color = MEM_RED;
3989 x = x->parent->parent;
3990 }
3991 else
3992 {
3993 /* Parent and uncle have different colors; parent is
3994 red, uncle is black. */
3995 if (x == x->parent->right)
3996 {
3997 x = x->parent;
3998 mem_rotate_left (x);
3999 }
4000
4001 x->parent->color = MEM_BLACK;
4002 x->parent->parent->color = MEM_RED;
4003 mem_rotate_right (x->parent->parent);
4004 }
4005 }
4006 else
4007 {
4008 /* This is the symmetrical case of above. */
4009 struct mem_node *y = x->parent->parent->left;
177c0ea7 4010
34400008
GM
4011 if (y->color == MEM_RED)
4012 {
4013 x->parent->color = MEM_BLACK;
4014 y->color = MEM_BLACK;
4015 x->parent->parent->color = MEM_RED;
4016 x = x->parent->parent;
4017 }
4018 else
4019 {
4020 if (x == x->parent->left)
4021 {
4022 x = x->parent;
4023 mem_rotate_right (x);
4024 }
177c0ea7 4025
34400008
GM
4026 x->parent->color = MEM_BLACK;
4027 x->parent->parent->color = MEM_RED;
4028 mem_rotate_left (x->parent->parent);
4029 }
4030 }
4031 }
4032
4033 /* The root may have been changed to red due to the algorithm. Set
4034 it to black so that property #5 is satisfied. */
4035 mem_root->color = MEM_BLACK;
4036}
4037
4038
177c0ea7
JB
4039/* (x) (y)
4040 / \ / \
34400008
GM
4041 a (y) ===> (x) c
4042 / \ / \
4043 b c a b */
4044
4045static void
971de7fb 4046mem_rotate_left (struct mem_node *x)
34400008
GM
4047{
4048 struct mem_node *y;
4049
4050 /* Turn y's left sub-tree into x's right sub-tree. */
4051 y = x->right;
4052 x->right = y->left;
4053 if (y->left != MEM_NIL)
4054 y->left->parent = x;
4055
4056 /* Y's parent was x's parent. */
4057 if (y != MEM_NIL)
4058 y->parent = x->parent;
4059
4060 /* Get the parent to point to y instead of x. */
4061 if (x->parent)
4062 {
4063 if (x == x->parent->left)
4064 x->parent->left = y;
4065 else
4066 x->parent->right = y;
4067 }
4068 else
4069 mem_root = y;
4070
4071 /* Put x on y's left. */
4072 y->left = x;
4073 if (x != MEM_NIL)
4074 x->parent = y;
4075}
4076
4077
177c0ea7
JB
4078/* (x) (Y)
4079 / \ / \
4080 (y) c ===> a (x)
4081 / \ / \
34400008
GM
4082 a b b c */
4083
4084static void
971de7fb 4085mem_rotate_right (struct mem_node *x)
34400008
GM
4086{
4087 struct mem_node *y = x->left;
4088
4089 x->left = y->right;
4090 if (y->right != MEM_NIL)
4091 y->right->parent = x;
177c0ea7 4092
34400008
GM
4093 if (y != MEM_NIL)
4094 y->parent = x->parent;
4095 if (x->parent)
4096 {
4097 if (x == x->parent->right)
4098 x->parent->right = y;
4099 else
4100 x->parent->left = y;
4101 }
4102 else
4103 mem_root = y;
177c0ea7 4104
34400008
GM
4105 y->right = x;
4106 if (x != MEM_NIL)
4107 x->parent = y;
4108}
4109
4110
4111/* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
4112
4113static void
971de7fb 4114mem_delete (struct mem_node *z)
34400008
GM
4115{
4116 struct mem_node *x, *y;
4117
4118 if (!z || z == MEM_NIL)
4119 return;
4120
4121 if (z->left == MEM_NIL || z->right == MEM_NIL)
4122 y = z;
4123 else
4124 {
4125 y = z->right;
4126 while (y->left != MEM_NIL)
4127 y = y->left;
4128 }
4129
4130 if (y->left != MEM_NIL)
4131 x = y->left;
4132 else
4133 x = y->right;
4134
4135 x->parent = y->parent;
4136 if (y->parent)
4137 {
4138 if (y == y->parent->left)
4139 y->parent->left = x;
4140 else
4141 y->parent->right = x;
4142 }
4143 else
4144 mem_root = x;
4145
4146 if (y != z)
4147 {
4148 z->start = y->start;
4149 z->end = y->end;
4150 z->type = y->type;
4151 }
177c0ea7 4152
34400008
GM
4153 if (y->color == MEM_BLACK)
4154 mem_delete_fixup (x);
877935b1
GM
4155
4156#ifdef GC_MALLOC_CHECK
4157 _free_internal (y);
4158#else
34400008 4159 xfree (y);
877935b1 4160#endif
34400008
GM
4161}
4162
4163
4164/* Re-establish the red-black properties of the tree, after a
4165 deletion. */
4166
4167static void
971de7fb 4168mem_delete_fixup (struct mem_node *x)
34400008
GM
4169{
4170 while (x != mem_root && x->color == MEM_BLACK)
4171 {
4172 if (x == x->parent->left)
4173 {
4174 struct mem_node *w = x->parent->right;
177c0ea7 4175
34400008
GM
4176 if (w->color == MEM_RED)
4177 {
4178 w->color = MEM_BLACK;
4179 x->parent->color = MEM_RED;
4180 mem_rotate_left (x->parent);
4181 w = x->parent->right;
4182 }
177c0ea7 4183
34400008
GM
4184 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
4185 {
4186 w->color = MEM_RED;
4187 x = x->parent;
4188 }
4189 else
4190 {
4191 if (w->right->color == MEM_BLACK)
4192 {
4193 w->left->color = MEM_BLACK;
4194 w->color = MEM_RED;
4195 mem_rotate_right (w);
4196 w = x->parent->right;
4197 }
4198 w->color = x->parent->color;
4199 x->parent->color = MEM_BLACK;
4200 w->right->color = MEM_BLACK;
4201 mem_rotate_left (x->parent);
4202 x = mem_root;
4203 }
4204 }
4205 else
4206 {
4207 struct mem_node *w = x->parent->left;
177c0ea7 4208
34400008
GM
4209 if (w->color == MEM_RED)
4210 {
4211 w->color = MEM_BLACK;
4212 x->parent->color = MEM_RED;
4213 mem_rotate_right (x->parent);
4214 w = x->parent->left;
4215 }
177c0ea7 4216
34400008
GM
4217 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
4218 {
4219 w->color = MEM_RED;
4220 x = x->parent;
4221 }
4222 else
4223 {
4224 if (w->left->color == MEM_BLACK)
4225 {
4226 w->right->color = MEM_BLACK;
4227 w->color = MEM_RED;
4228 mem_rotate_left (w);
4229 w = x->parent->left;
4230 }
177c0ea7 4231
34400008
GM
4232 w->color = x->parent->color;
4233 x->parent->color = MEM_BLACK;
4234 w->left->color = MEM_BLACK;
4235 mem_rotate_right (x->parent);
4236 x = mem_root;
4237 }
4238 }
4239 }
177c0ea7 4240
34400008
GM
4241 x->color = MEM_BLACK;
4242}
4243
4244
4245/* Value is non-zero if P is a pointer to a live Lisp string on
4246 the heap. M is a pointer to the mem_block for P. */
4247
55d4c1b2 4248static inline int
971de7fb 4249live_string_p (struct mem_node *m, void *p)
34400008
GM
4250{
4251 if (m->type == MEM_TYPE_STRING)
4252 {
4253 struct string_block *b = (struct string_block *) m->start;
14162469 4254 ptrdiff_t offset = (char *) p - (char *) &b->strings[0];
34400008
GM
4255
4256 /* P must point to the start of a Lisp_String structure, and it
4257 must not be on the free-list. */
176bc847
GM
4258 return (offset >= 0
4259 && offset % sizeof b->strings[0] == 0
6b61353c 4260 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
34400008
GM
4261 && ((struct Lisp_String *) p)->data != NULL);
4262 }
4263 else
4264 return 0;
4265}
4266
4267
4268/* Value is non-zero if P is a pointer to a live Lisp cons on
4269 the heap. M is a pointer to the mem_block for P. */
4270
55d4c1b2 4271static inline int
971de7fb 4272live_cons_p (struct mem_node *m, void *p)
34400008
GM
4273{
4274 if (m->type == MEM_TYPE_CONS)
4275 {
4276 struct cons_block *b = (struct cons_block *) m->start;
14162469 4277 ptrdiff_t offset = (char *) p - (char *) &b->conses[0];
34400008
GM
4278
4279 /* P must point to the start of a Lisp_Cons, not be
4280 one of the unused cells in the current cons block,
4281 and not be on the free-list. */
176bc847
GM
4282 return (offset >= 0
4283 && offset % sizeof b->conses[0] == 0
6b61353c 4284 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
34400008
GM
4285 && (b != cons_block
4286 || offset / sizeof b->conses[0] < cons_block_index)
4287 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
4288 }
4289 else
4290 return 0;
4291}
4292
4293
4294/* Value is non-zero if P is a pointer to a live Lisp symbol on
4295 the heap. M is a pointer to the mem_block for P. */
4296
55d4c1b2 4297static inline int
971de7fb 4298live_symbol_p (struct mem_node *m, void *p)
34400008
GM
4299{
4300 if (m->type == MEM_TYPE_SYMBOL)
4301 {
4302 struct symbol_block *b = (struct symbol_block *) m->start;
14162469 4303 ptrdiff_t offset = (char *) p - (char *) &b->symbols[0];
177c0ea7 4304
34400008
GM
4305 /* P must point to the start of a Lisp_Symbol, not be
4306 one of the unused cells in the current symbol block,
4307 and not be on the free-list. */
176bc847
GM
4308 return (offset >= 0
4309 && offset % sizeof b->symbols[0] == 0
6b61353c 4310 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
34400008
GM
4311 && (b != symbol_block
4312 || offset / sizeof b->symbols[0] < symbol_block_index)
4313 && !EQ (((struct Lisp_Symbol *) p)->function, Vdead));
4314 }
4315 else
4316 return 0;
4317}
4318
4319
4320/* Value is non-zero if P is a pointer to a live Lisp float on
4321 the heap. M is a pointer to the mem_block for P. */
4322
55d4c1b2 4323static inline int
971de7fb 4324live_float_p (struct mem_node *m, void *p)
34400008
GM
4325{
4326 if (m->type == MEM_TYPE_FLOAT)
4327 {
4328 struct float_block *b = (struct float_block *) m->start;
14162469 4329 ptrdiff_t offset = (char *) p - (char *) &b->floats[0];
177c0ea7 4330
ab6780cd
SM
4331 /* P must point to the start of a Lisp_Float and not be
4332 one of the unused cells in the current float block. */
176bc847
GM
4333 return (offset >= 0
4334 && offset % sizeof b->floats[0] == 0
6b61353c 4335 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
34400008 4336 && (b != float_block
ab6780cd 4337 || offset / sizeof b->floats[0] < float_block_index));
34400008
GM
4338 }
4339 else
4340 return 0;
4341}
4342
4343
4344/* Value is non-zero if P is a pointer to a live Lisp Misc on
4345 the heap. M is a pointer to the mem_block for P. */
4346
55d4c1b2 4347static inline int
971de7fb 4348live_misc_p (struct mem_node *m, void *p)
34400008
GM
4349{
4350 if (m->type == MEM_TYPE_MISC)
4351 {
4352 struct marker_block *b = (struct marker_block *) m->start;
14162469 4353 ptrdiff_t offset = (char *) p - (char *) &b->markers[0];
177c0ea7 4354
34400008
GM
4355 /* P must point to the start of a Lisp_Misc, not be
4356 one of the unused cells in the current misc block,
4357 and not be on the free-list. */
176bc847
GM
4358 return (offset >= 0
4359 && offset % sizeof b->markers[0] == 0
6b61353c 4360 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
34400008
GM
4361 && (b != marker_block
4362 || offset / sizeof b->markers[0] < marker_block_index)
d314756e 4363 && ((union Lisp_Misc *) p)->u_any.type != Lisp_Misc_Free);
34400008
GM
4364 }
4365 else
4366 return 0;
4367}
4368
4369
4370/* Value is non-zero if P is a pointer to a live vector-like object.
4371 M is a pointer to the mem_block for P. */
4372
55d4c1b2 4373static inline int
971de7fb 4374live_vector_p (struct mem_node *m, void *p)
34400008 4375{
f3372c87
DA
4376 if (m->type == MEM_TYPE_VECTOR_BLOCK)
4377 {
4378 /* This memory node corresponds to a vector block. */
4379 struct vector_block *block = (struct vector_block *) m->start;
4380 struct Lisp_Vector *vector = (struct Lisp_Vector *) block->data;
4381
4382 /* P is in the block's allocation range. Scan the block
4383 up to P and see whether P points to the start of some
4384 vector which is not on a free list. FIXME: check whether
4385 some allocation patterns (probably a lot of short vectors)
4386 may cause a substantial overhead of this loop. */
4387 while (VECTOR_IN_BLOCK (vector, block)
4388 && vector <= (struct Lisp_Vector *) p)
4389 {
4390 if ((vector->header.size & VECTOR_FREE_LIST_FLAG)
4391 == VECTOR_FREE_LIST_FLAG)
4392 vector = ADVANCE (vector, (vector->header.size
4393 & (VECTOR_BLOCK_SIZE - 1)));
4394 else if (vector == p)
4395 return 1;
4396 else
4397 vector = ADVANCE (vector, vector->header.next.nbytes);
4398 }
4399 }
4400 else if (m->type == MEM_TYPE_VECTORLIKE && p == m->start)
4401 /* This memory node corresponds to a large vector. */
4402 return 1;
4403 return 0;
34400008
GM
4404}
4405
4406
2336fe58 4407/* Value is non-zero if P is a pointer to a live buffer. M is a
34400008
GM
4408 pointer to the mem_block for P. */
4409
55d4c1b2 4410static inline int
971de7fb 4411live_buffer_p (struct mem_node *m, void *p)
34400008
GM
4412{
4413 /* P must point to the start of the block, and the buffer
4414 must not have been killed. */
4415 return (m->type == MEM_TYPE_BUFFER
4416 && p == m->start
5d8ea120 4417 && !NILP (((struct buffer *) p)->BUFFER_INTERNAL_FIELD (name)));
34400008
GM
4418}
4419
13c844fb
GM
4420#endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
4421
4422#if GC_MARK_STACK
4423
34400008
GM
4424#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4425
4426/* Array of objects that are kept alive because the C stack contains
4427 a pattern that looks like a reference to them . */
4428
4429#define MAX_ZOMBIES 10
4430static Lisp_Object zombies[MAX_ZOMBIES];
4431
4432/* Number of zombie objects. */
4433
211a0b2a 4434static EMACS_INT nzombies;
34400008
GM
4435
4436/* Number of garbage collections. */
4437
211a0b2a 4438static EMACS_INT ngcs;
34400008
GM
4439
4440/* Average percentage of zombies per collection. */
4441
4442static double avg_zombies;
4443
4444/* Max. number of live and zombie objects. */
4445
211a0b2a 4446static EMACS_INT max_live, max_zombies;
34400008
GM
4447
4448/* Average number of live objects per GC. */
4449
4450static double avg_live;
4451
a7ca3326 4452DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
7ee72033 4453 doc: /* Show information about live and zombie objects. */)
5842a27b 4454 (void)
34400008 4455{
83fc9c63 4456 Lisp_Object args[8], zombie_list = Qnil;
211a0b2a 4457 EMACS_INT i;
6e4b3fbe 4458 for (i = 0; i < min (MAX_ZOMBIES, nzombies); i++)
83fc9c63
DL
4459 zombie_list = Fcons (zombies[i], zombie_list);
4460 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
34400008
GM
4461 args[1] = make_number (ngcs);
4462 args[2] = make_float (avg_live);
4463 args[3] = make_float (avg_zombies);
4464 args[4] = make_float (avg_zombies / avg_live / 100);
4465 args[5] = make_number (max_live);
4466 args[6] = make_number (max_zombies);
83fc9c63
DL
4467 args[7] = zombie_list;
4468 return Fmessage (8, args);
34400008
GM
4469}
4470
4471#endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4472
4473
182ff242
GM
4474/* Mark OBJ if we can prove it's a Lisp_Object. */
4475
55d4c1b2 4476static inline void
971de7fb 4477mark_maybe_object (Lisp_Object obj)
182ff242 4478{
b609f591
YM
4479 void *po;
4480 struct mem_node *m;
4481
4482 if (INTEGERP (obj))
4483 return;
4484
4485 po = (void *) XPNTR (obj);
4486 m = mem_find (po);
177c0ea7 4487
182ff242
GM
4488 if (m != MEM_NIL)
4489 {
4490 int mark_p = 0;
4491
8e50cc2d 4492 switch (XTYPE (obj))
182ff242
GM
4493 {
4494 case Lisp_String:
4495 mark_p = (live_string_p (m, po)
4496 && !STRING_MARKED_P ((struct Lisp_String *) po));
4497 break;
4498
4499 case Lisp_Cons:
08b7c2cb 4500 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
182ff242
GM
4501 break;
4502
4503 case Lisp_Symbol:
2336fe58 4504 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
182ff242
GM
4505 break;
4506
4507 case Lisp_Float:
ab6780cd 4508 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
182ff242
GM
4509 break;
4510
4511 case Lisp_Vectorlike:
8e50cc2d 4512 /* Note: can't check BUFFERP before we know it's a
182ff242
GM
4513 buffer because checking that dereferences the pointer
4514 PO which might point anywhere. */
4515 if (live_vector_p (m, po))
8e50cc2d 4516 mark_p = !SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
182ff242 4517 else if (live_buffer_p (m, po))
8e50cc2d 4518 mark_p = BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
182ff242
GM
4519 break;
4520
4521 case Lisp_Misc:
67ee9f6e 4522 mark_p = (live_misc_p (m, po) && !XMISCANY (obj)->gcmarkbit);
182ff242 4523 break;
6bbd7a29 4524
2de9f71c 4525 default:
6bbd7a29 4526 break;
182ff242
GM
4527 }
4528
4529 if (mark_p)
4530 {
4531#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4532 if (nzombies < MAX_ZOMBIES)
83fc9c63 4533 zombies[nzombies] = obj;
182ff242
GM
4534 ++nzombies;
4535#endif
49723c04 4536 mark_object (obj);
182ff242
GM
4537 }
4538 }
4539}
ece93c02
GM
4540
4541
4542/* If P points to Lisp data, mark that as live if it isn't already
4543 marked. */
4544
55d4c1b2 4545static inline void
971de7fb 4546mark_maybe_pointer (void *p)
ece93c02
GM
4547{
4548 struct mem_node *m;
4549
5045e68e 4550 /* Quickly rule out some values which can't point to Lisp data. */
d01a7826 4551 if ((intptr_t) p %
5045e68e
SM
4552#ifdef USE_LSB_TAG
4553 8 /* USE_LSB_TAG needs Lisp data to be aligned on multiples of 8. */
4554#else
4555 2 /* We assume that Lisp data is aligned on even addresses. */
4556#endif
4557 )
ece93c02 4558 return;
177c0ea7 4559
ece93c02
GM
4560 m = mem_find (p);
4561 if (m != MEM_NIL)
4562 {
4563 Lisp_Object obj = Qnil;
177c0ea7 4564
ece93c02
GM
4565 switch (m->type)
4566 {
4567 case MEM_TYPE_NON_LISP:
2fe50224 4568 /* Nothing to do; not a pointer to Lisp memory. */
ece93c02 4569 break;
177c0ea7 4570
ece93c02 4571 case MEM_TYPE_BUFFER:
5e617bc2 4572 if (live_buffer_p (m, p) && !VECTOR_MARKED_P ((struct buffer *)p))
ece93c02
GM
4573 XSETVECTOR (obj, p);
4574 break;
177c0ea7 4575
ece93c02 4576 case MEM_TYPE_CONS:
08b7c2cb 4577 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
ece93c02
GM
4578 XSETCONS (obj, p);
4579 break;
177c0ea7 4580
ece93c02
GM
4581 case MEM_TYPE_STRING:
4582 if (live_string_p (m, p)
4583 && !STRING_MARKED_P ((struct Lisp_String *) p))
4584 XSETSTRING (obj, p);
4585 break;
4586
4587 case MEM_TYPE_MISC:
2336fe58
SM
4588 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
4589 XSETMISC (obj, p);
ece93c02 4590 break;
177c0ea7 4591
ece93c02 4592 case MEM_TYPE_SYMBOL:
2336fe58 4593 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
ece93c02
GM
4594 XSETSYMBOL (obj, p);
4595 break;
177c0ea7 4596
ece93c02 4597 case MEM_TYPE_FLOAT:
ab6780cd 4598 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
ece93c02
GM
4599 XSETFLOAT (obj, p);
4600 break;
177c0ea7 4601
9c545a55 4602 case MEM_TYPE_VECTORLIKE:
f3372c87 4603 case MEM_TYPE_VECTOR_BLOCK:
ece93c02
GM
4604 if (live_vector_p (m, p))
4605 {
4606 Lisp_Object tem;
4607 XSETVECTOR (tem, p);
8e50cc2d 4608 if (!SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
ece93c02
GM
4609 obj = tem;
4610 }
4611 break;
4612
4613 default:
4614 abort ();
4615 }
4616
8e50cc2d 4617 if (!NILP (obj))
49723c04 4618 mark_object (obj);
ece93c02
GM
4619 }
4620}
4621
4622
e3fb2efb
PE
4623/* Alignment of pointer values. Use offsetof, as it sometimes returns
4624 a smaller alignment than GCC's __alignof__ and mark_memory might
4625 miss objects if __alignof__ were used. */
3164aeac
PE
4626#define GC_POINTER_ALIGNMENT offsetof (struct {char a; void *b;}, b)
4627
e3fb2efb
PE
4628/* Define POINTERS_MIGHT_HIDE_IN_OBJECTS to 1 if marking via C pointers does
4629 not suffice, which is the typical case. A host where a Lisp_Object is
4630 wider than a pointer might allocate a Lisp_Object in non-adjacent halves.
4631 If USE_LSB_TAG, the bottom half is not a valid pointer, but it should
4632 suffice to widen it to to a Lisp_Object and check it that way. */
34374650
PE
4633#if defined USE_LSB_TAG || VAL_MAX < UINTPTR_MAX
4634# if !defined USE_LSB_TAG && VAL_MAX < UINTPTR_MAX >> GCTYPEBITS
e3fb2efb
PE
4635 /* If tag bits straddle pointer-word boundaries, neither mark_maybe_pointer
4636 nor mark_maybe_object can follow the pointers. This should not occur on
4637 any practical porting target. */
4638# error "MSB type bits straddle pointer-word boundaries"
4639# endif
4640 /* Marking via C pointers does not suffice, because Lisp_Objects contain
4641 pointer words that hold pointers ORed with type bits. */
4642# define POINTERS_MIGHT_HIDE_IN_OBJECTS 1
4643#else
4644 /* Marking via C pointers suffices, because Lisp_Objects contain pointer
4645 words that hold unmodified pointers. */
4646# define POINTERS_MIGHT_HIDE_IN_OBJECTS 0
4647#endif
4648
55a314a5
YM
4649/* Mark Lisp objects referenced from the address range START+OFFSET..END
4650 or END+OFFSET..START. */
34400008 4651
177c0ea7 4652static void
3164aeac 4653mark_memory (void *start, void *end)
34400008 4654{
ece93c02 4655 void **pp;
3164aeac 4656 int i;
34400008
GM
4657
4658#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4659 nzombies = 0;
4660#endif
4661
4662 /* Make START the pointer to the start of the memory region,
4663 if it isn't already. */
4664 if (end < start)
4665 {
4666 void *tem = start;
4667 start = end;
4668 end = tem;
4669 }
ece93c02 4670
ece93c02
GM
4671 /* Mark Lisp data pointed to. This is necessary because, in some
4672 situations, the C compiler optimizes Lisp objects away, so that
4673 only a pointer to them remains. Example:
4674
4675 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
7ee72033 4676 ()
ece93c02
GM
4677 {
4678 Lisp_Object obj = build_string ("test");
4679 struct Lisp_String *s = XSTRING (obj);
4680 Fgarbage_collect ();
4681 fprintf (stderr, "test `%s'\n", s->data);
4682 return Qnil;
4683 }
4684
4685 Here, `obj' isn't really used, and the compiler optimizes it
4686 away. The only reference to the life string is through the
4687 pointer `s'. */
177c0ea7 4688
3164aeac
PE
4689 for (pp = start; (void *) pp < end; pp++)
4690 for (i = 0; i < sizeof *pp; i += GC_POINTER_ALIGNMENT)
27f3c637 4691 {
e3fb2efb
PE
4692 void *p = *(void **) ((char *) pp + i);
4693 mark_maybe_pointer (p);
4694 if (POINTERS_MIGHT_HIDE_IN_OBJECTS)
4695 mark_maybe_object (widen_to_Lisp_Object (p));
27f3c637 4696 }
182ff242
GM
4697}
4698
30f637f8
DL
4699/* setjmp will work with GCC unless NON_SAVING_SETJMP is defined in
4700 the GCC system configuration. In gcc 3.2, the only systems for
4701 which this is so are i386-sco5 non-ELF, i386-sysv3 (maybe included
4702 by others?) and ns32k-pc532-min. */
182ff242
GM
4703
4704#if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4705
4706static int setjmp_tested_p, longjmps_done;
4707
4708#define SETJMP_WILL_LIKELY_WORK "\
4709\n\
4710Emacs garbage collector has been changed to use conservative stack\n\
4711marking. Emacs has determined that the method it uses to do the\n\
4712marking will likely work on your system, but this isn't sure.\n\
4713\n\
4714If you are a system-programmer, or can get the help of a local wizard\n\
4715who is, please take a look at the function mark_stack in alloc.c, and\n\
4716verify that the methods used are appropriate for your system.\n\
4717\n\
d191623b 4718Please mail the result to <emacs-devel@gnu.org>.\n\
182ff242
GM
4719"
4720
4721#define SETJMP_WILL_NOT_WORK "\
4722\n\
4723Emacs garbage collector has been changed to use conservative stack\n\
4724marking. Emacs has determined that the default method it uses to do the\n\
4725marking will not work on your system. We will need a system-dependent\n\
4726solution for your system.\n\
4727\n\
4728Please take a look at the function mark_stack in alloc.c, and\n\
4729try to find a way to make it work on your system.\n\
30f637f8
DL
4730\n\
4731Note that you may get false negatives, depending on the compiler.\n\
4732In particular, you need to use -O with GCC for this test.\n\
4733\n\
d191623b 4734Please mail the result to <emacs-devel@gnu.org>.\n\
182ff242
GM
4735"
4736
4737
4738/* Perform a quick check if it looks like setjmp saves registers in a
4739 jmp_buf. Print a message to stderr saying so. When this test
4740 succeeds, this is _not_ a proof that setjmp is sufficient for
4741 conservative stack marking. Only the sources or a disassembly
4742 can prove that. */
4743
4744static void
2018939f 4745test_setjmp (void)
182ff242
GM
4746{
4747 char buf[10];
4748 register int x;
4749 jmp_buf jbuf;
4750 int result = 0;
4751
4752 /* Arrange for X to be put in a register. */
4753 sprintf (buf, "1");
4754 x = strlen (buf);
4755 x = 2 * x - 1;
4756
4757 setjmp (jbuf);
4758 if (longjmps_done == 1)
34400008 4759 {
182ff242 4760 /* Came here after the longjmp at the end of the function.
34400008 4761
182ff242
GM
4762 If x == 1, the longjmp has restored the register to its
4763 value before the setjmp, and we can hope that setjmp
4764 saves all such registers in the jmp_buf, although that
4765 isn't sure.
34400008 4766
182ff242
GM
4767 For other values of X, either something really strange is
4768 taking place, or the setjmp just didn't save the register. */
4769
4770 if (x == 1)
4771 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
4772 else
4773 {
4774 fprintf (stderr, SETJMP_WILL_NOT_WORK);
4775 exit (1);
34400008
GM
4776 }
4777 }
182ff242
GM
4778
4779 ++longjmps_done;
4780 x = 2;
4781 if (longjmps_done == 1)
4782 longjmp (jbuf, 1);
34400008
GM
4783}
4784
182ff242
GM
4785#endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
4786
34400008
GM
4787
4788#if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4789
4790/* Abort if anything GCPRO'd doesn't survive the GC. */
4791
4792static void
2018939f 4793check_gcpros (void)
34400008
GM
4794{
4795 struct gcpro *p;
f66c7cf8 4796 ptrdiff_t i;
34400008
GM
4797
4798 for (p = gcprolist; p; p = p->next)
4799 for (i = 0; i < p->nvars; ++i)
4800 if (!survives_gc_p (p->var[i]))
92cc28b2
SM
4801 /* FIXME: It's not necessarily a bug. It might just be that the
4802 GCPRO is unnecessary or should release the object sooner. */
34400008
GM
4803 abort ();
4804}
4805
4806#elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4807
4808static void
2018939f 4809dump_zombies (void)
34400008
GM
4810{
4811 int i;
4812
6e4b3fbe 4813 fprintf (stderr, "\nZombies kept alive = %"pI"d:\n", nzombies);
34400008
GM
4814 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
4815 {
4816 fprintf (stderr, " %d = ", i);
4817 debug_print (zombies[i]);
4818 }
4819}
4820
4821#endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4822
4823
182ff242
GM
4824/* Mark live Lisp objects on the C stack.
4825
4826 There are several system-dependent problems to consider when
4827 porting this to new architectures:
4828
4829 Processor Registers
4830
4831 We have to mark Lisp objects in CPU registers that can hold local
4832 variables or are used to pass parameters.
4833
4834 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4835 something that either saves relevant registers on the stack, or
4836 calls mark_maybe_object passing it each register's contents.
4837
4838 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4839 implementation assumes that calling setjmp saves registers we need
4840 to see in a jmp_buf which itself lies on the stack. This doesn't
4841 have to be true! It must be verified for each system, possibly
4842 by taking a look at the source code of setjmp.
4843
2018939f
AS
4844 If __builtin_unwind_init is available (defined by GCC >= 2.8) we
4845 can use it as a machine independent method to store all registers
4846 to the stack. In this case the macros described in the previous
4847 two paragraphs are not used.
4848
182ff242
GM
4849 Stack Layout
4850
4851 Architectures differ in the way their processor stack is organized.
4852 For example, the stack might look like this
4853
4854 +----------------+
4855 | Lisp_Object | size = 4
4856 +----------------+
4857 | something else | size = 2
4858 +----------------+
4859 | Lisp_Object | size = 4
4860 +----------------+
4861 | ... |
4862
4863 In such a case, not every Lisp_Object will be aligned equally. To
4864 find all Lisp_Object on the stack it won't be sufficient to walk
4865 the stack in steps of 4 bytes. Instead, two passes will be
4866 necessary, one starting at the start of the stack, and a second
4867 pass starting at the start of the stack + 2. Likewise, if the
4868 minimal alignment of Lisp_Objects on the stack is 1, four passes
4869 would be necessary, each one starting with one byte more offset
c9af454e 4870 from the stack start. */
34400008
GM
4871
4872static void
971de7fb 4873mark_stack (void)
34400008 4874{
34400008
GM
4875 void *end;
4876
2018939f
AS
4877#ifdef HAVE___BUILTIN_UNWIND_INIT
4878 /* Force callee-saved registers and register windows onto the stack.
4879 This is the preferred method if available, obviating the need for
4880 machine dependent methods. */
4881 __builtin_unwind_init ();
4882 end = &end;
4883#else /* not HAVE___BUILTIN_UNWIND_INIT */
dff45157
PE
4884#ifndef GC_SAVE_REGISTERS_ON_STACK
4885 /* jmp_buf may not be aligned enough on darwin-ppc64 */
4886 union aligned_jmpbuf {
4887 Lisp_Object o;
4888 jmp_buf j;
4889 } j;
4890 volatile int stack_grows_down_p = (char *) &j > (char *) stack_base;
4891#endif
34400008
GM
4892 /* This trick flushes the register windows so that all the state of
4893 the process is contained in the stack. */
ab6780cd 4894 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
422eec7e
DL
4895 needed on ia64 too. See mach_dep.c, where it also says inline
4896 assembler doesn't work with relevant proprietary compilers. */
4a00783e 4897#ifdef __sparc__
4d18a7a2
DN
4898#if defined (__sparc64__) && defined (__FreeBSD__)
4899 /* FreeBSD does not have a ta 3 handler. */
4c1616be
CY
4900 asm ("flushw");
4901#else
34400008 4902 asm ("ta 3");
4c1616be 4903#endif
34400008 4904#endif
177c0ea7 4905
34400008
GM
4906 /* Save registers that we need to see on the stack. We need to see
4907 registers used to hold register variables and registers used to
4908 pass parameters. */
4909#ifdef GC_SAVE_REGISTERS_ON_STACK
4910 GC_SAVE_REGISTERS_ON_STACK (end);
182ff242 4911#else /* not GC_SAVE_REGISTERS_ON_STACK */
177c0ea7 4912
182ff242
GM
4913#ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
4914 setjmp will definitely work, test it
4915 and print a message with the result
4916 of the test. */
4917 if (!setjmp_tested_p)
4918 {
4919 setjmp_tested_p = 1;
4920 test_setjmp ();
4921 }
4922#endif /* GC_SETJMP_WORKS */
177c0ea7 4923
55a314a5 4924 setjmp (j.j);
34400008 4925 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
182ff242 4926#endif /* not GC_SAVE_REGISTERS_ON_STACK */
2018939f 4927#endif /* not HAVE___BUILTIN_UNWIND_INIT */
34400008
GM
4928
4929 /* This assumes that the stack is a contiguous region in memory. If
182ff242
GM
4930 that's not the case, something has to be done here to iterate
4931 over the stack segments. */
3164aeac
PE
4932 mark_memory (stack_base, end);
4933
4dec23ff
AS
4934 /* Allow for marking a secondary stack, like the register stack on the
4935 ia64. */
4936#ifdef GC_MARK_SECONDARY_STACK
4937 GC_MARK_SECONDARY_STACK ();
4938#endif
34400008
GM
4939
4940#if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4941 check_gcpros ();
4942#endif
4943}
4944
34400008
GM
4945#endif /* GC_MARK_STACK != 0 */
4946
4947
7ffb6955 4948/* Determine whether it is safe to access memory at address P. */
d3d47262 4949static int
971de7fb 4950valid_pointer_p (void *p)
7ffb6955 4951{
f892cf9c
EZ
4952#ifdef WINDOWSNT
4953 return w32_valid_pointer_p (p, 16);
4954#else
41bed37d 4955 int fd[2];
7ffb6955
KS
4956
4957 /* Obviously, we cannot just access it (we would SEGV trying), so we
4958 trick the o/s to tell us whether p is a valid pointer.
4959 Unfortunately, we cannot use NULL_DEVICE here, as emacs_write may
4960 not validate p in that case. */
4961
41bed37d 4962 if (pipe (fd) == 0)
7ffb6955 4963 {
41bed37d
PE
4964 int valid = (emacs_write (fd[1], (char *) p, 16) == 16);
4965 emacs_close (fd[1]);
4966 emacs_close (fd[0]);
7ffb6955
KS
4967 return valid;
4968 }
4969
4970 return -1;
f892cf9c 4971#endif
7ffb6955 4972}
3cd55735
KS
4973
4974/* Return 1 if OBJ is a valid lisp object.
4975 Return 0 if OBJ is NOT a valid lisp object.
4976 Return -1 if we cannot validate OBJ.
7c0ab7d9
RS
4977 This function can be quite slow,
4978 so it should only be used in code for manual debugging. */
3cd55735
KS
4979
4980int
971de7fb 4981valid_lisp_object_p (Lisp_Object obj)
3cd55735 4982{
de7124a7 4983 void *p;
7ffb6955 4984#if GC_MARK_STACK
3cd55735 4985 struct mem_node *m;
de7124a7 4986#endif
3cd55735
KS
4987
4988 if (INTEGERP (obj))
4989 return 1;
4990
4991 p = (void *) XPNTR (obj);
3cd55735
KS
4992 if (PURE_POINTER_P (p))
4993 return 1;
4994
de7124a7 4995#if !GC_MARK_STACK
7ffb6955 4996 return valid_pointer_p (p);
de7124a7
KS
4997#else
4998
3cd55735
KS
4999 m = mem_find (p);
5000
5001 if (m == MEM_NIL)
7ffb6955
KS
5002 {
5003 int valid = valid_pointer_p (p);
5004 if (valid <= 0)
5005 return valid;
5006
5007 if (SUBRP (obj))
5008 return 1;
5009
5010 return 0;
5011 }
3cd55735
KS
5012
5013 switch (m->type)
5014 {
5015 case MEM_TYPE_NON_LISP:
5016 return 0;
5017
5018 case MEM_TYPE_BUFFER:
5019 return live_buffer_p (m, p);
5020
5021 case MEM_TYPE_CONS:
5022 return live_cons_p (m, p);
5023
5024 case MEM_TYPE_STRING:
5025 return live_string_p (m, p);
5026
5027 case MEM_TYPE_MISC:
5028 return live_misc_p (m, p);
5029
5030 case MEM_TYPE_SYMBOL:
5031 return live_symbol_p (m, p);
5032
5033 case MEM_TYPE_FLOAT:
5034 return live_float_p (m, p);
5035
9c545a55 5036 case MEM_TYPE_VECTORLIKE:
f3372c87 5037 case MEM_TYPE_VECTOR_BLOCK:
3cd55735
KS
5038 return live_vector_p (m, p);
5039
5040 default:
5041 break;
5042 }
5043
5044 return 0;
5045#endif
5046}
5047
5048
5049
34400008 5050\f
2e471eb5
GM
5051/***********************************************************************
5052 Pure Storage Management
5053 ***********************************************************************/
5054
1f0b3fd2
GM
5055/* Allocate room for SIZE bytes from pure Lisp storage and return a
5056 pointer to it. TYPE is the Lisp type for which the memory is
e5bc14d4 5057 allocated. TYPE < 0 means it's not used for a Lisp object. */
1f0b3fd2 5058
261cb4bb 5059static void *
971de7fb 5060pure_alloc (size_t size, int type)
1f0b3fd2 5061{
261cb4bb 5062 void *result;
6b61353c
KH
5063#ifdef USE_LSB_TAG
5064 size_t alignment = (1 << GCTYPEBITS);
5065#else
44117420 5066 size_t alignment = sizeof (EMACS_INT);
1f0b3fd2
GM
5067
5068 /* Give Lisp_Floats an extra alignment. */
5069 if (type == Lisp_Float)
5070 {
1f0b3fd2
GM
5071#if defined __GNUC__ && __GNUC__ >= 2
5072 alignment = __alignof (struct Lisp_Float);
5073#else
5074 alignment = sizeof (struct Lisp_Float);
5075#endif
9e713715 5076 }
6b61353c 5077#endif
1f0b3fd2 5078
44117420 5079 again:
e5bc14d4
YM
5080 if (type >= 0)
5081 {
5082 /* Allocate space for a Lisp object from the beginning of the free
5083 space with taking account of alignment. */
5084 result = ALIGN (purebeg + pure_bytes_used_lisp, alignment);
5085 pure_bytes_used_lisp = ((char *)result - (char *)purebeg) + size;
5086 }
5087 else
5088 {
5089 /* Allocate space for a non-Lisp object from the end of the free
5090 space. */
5091 pure_bytes_used_non_lisp += size;
5092 result = purebeg + pure_size - pure_bytes_used_non_lisp;
5093 }
5094 pure_bytes_used = pure_bytes_used_lisp + pure_bytes_used_non_lisp;
44117420
KS
5095
5096 if (pure_bytes_used <= pure_size)
5097 return result;
5098
5099 /* Don't allocate a large amount here,
5100 because it might get mmap'd and then its address
5101 might not be usable. */
5102 purebeg = (char *) xmalloc (10000);
5103 pure_size = 10000;
5104 pure_bytes_used_before_overflow += pure_bytes_used - size;
5105 pure_bytes_used = 0;
e5bc14d4 5106 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
44117420 5107 goto again;
1f0b3fd2
GM
5108}
5109
5110
852f8cdc 5111/* Print a warning if PURESIZE is too small. */
9e713715
GM
5112
5113void
971de7fb 5114check_pure_size (void)
9e713715
GM
5115{
5116 if (pure_bytes_used_before_overflow)
c2982e87
PE
5117 message (("emacs:0:Pure Lisp storage overflow (approx. %"pI"d"
5118 " bytes needed)"),
5119 pure_bytes_used + pure_bytes_used_before_overflow);
9e713715
GM
5120}
5121
5122
79fd0489
YM
5123/* Find the byte sequence {DATA[0], ..., DATA[NBYTES-1], '\0'} from
5124 the non-Lisp data pool of the pure storage, and return its start
5125 address. Return NULL if not found. */
5126
5127static char *
d311d28c 5128find_string_data_in_pure (const char *data, ptrdiff_t nbytes)
79fd0489 5129{
14162469 5130 int i;
d311d28c 5131 ptrdiff_t skip, bm_skip[256], last_char_skip, infinity, start, start_max;
2aff7c53 5132 const unsigned char *p;
79fd0489
YM
5133 char *non_lisp_beg;
5134
d311d28c 5135 if (pure_bytes_used_non_lisp <= nbytes)
79fd0489
YM
5136 return NULL;
5137
5138 /* Set up the Boyer-Moore table. */
5139 skip = nbytes + 1;
5140 for (i = 0; i < 256; i++)
5141 bm_skip[i] = skip;
5142
2aff7c53 5143 p = (const unsigned char *) data;
79fd0489
YM
5144 while (--skip > 0)
5145 bm_skip[*p++] = skip;
5146
5147 last_char_skip = bm_skip['\0'];
5148
5149 non_lisp_beg = purebeg + pure_size - pure_bytes_used_non_lisp;
5150 start_max = pure_bytes_used_non_lisp - (nbytes + 1);
5151
5152 /* See the comments in the function `boyer_moore' (search.c) for the
5153 use of `infinity'. */
5154 infinity = pure_bytes_used_non_lisp + 1;
5155 bm_skip['\0'] = infinity;
5156
2aff7c53 5157 p = (const unsigned char *) non_lisp_beg + nbytes;
79fd0489
YM
5158 start = 0;
5159 do
5160 {
5161 /* Check the last character (== '\0'). */
5162 do
5163 {
5164 start += bm_skip[*(p + start)];
5165 }
5166 while (start <= start_max);
5167
5168 if (start < infinity)
5169 /* Couldn't find the last character. */
5170 return NULL;
5171
5172 /* No less than `infinity' means we could find the last
5173 character at `p[start - infinity]'. */
5174 start -= infinity;
5175
5176 /* Check the remaining characters. */
5177 if (memcmp (data, non_lisp_beg + start, nbytes) == 0)
5178 /* Found. */
5179 return non_lisp_beg + start;
5180
5181 start += last_char_skip;
5182 }
5183 while (start <= start_max);
5184
5185 return NULL;
5186}
5187
5188
2e471eb5
GM
5189/* Return a string allocated in pure space. DATA is a buffer holding
5190 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
5191 non-zero means make the result string multibyte.
1a4f1e2c 5192
2e471eb5
GM
5193 Must get an error if pure storage is full, since if it cannot hold
5194 a large string it may be able to hold conses that point to that
5195 string; then the string is not protected from gc. */
7146af97
JB
5196
5197Lisp_Object
14162469 5198make_pure_string (const char *data,
d311d28c 5199 ptrdiff_t nchars, ptrdiff_t nbytes, int multibyte)
7146af97 5200{
2e471eb5
GM
5201 Lisp_Object string;
5202 struct Lisp_String *s;
c0696668 5203
1f0b3fd2 5204 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
90256841 5205 s->data = (unsigned char *) find_string_data_in_pure (data, nbytes);
79fd0489
YM
5206 if (s->data == NULL)
5207 {
5208 s->data = (unsigned char *) pure_alloc (nbytes + 1, -1);
72af86bd 5209 memcpy (s->data, data, nbytes);
79fd0489
YM
5210 s->data[nbytes] = '\0';
5211 }
2e471eb5
GM
5212 s->size = nchars;
5213 s->size_byte = multibyte ? nbytes : -1;
2e471eb5 5214 s->intervals = NULL_INTERVAL;
2e471eb5
GM
5215 XSETSTRING (string, s);
5216 return string;
7146af97
JB
5217}
5218
a56eaaef
DN
5219/* Return a string a string allocated in pure space. Do not allocate
5220 the string data, just point to DATA. */
5221
5222Lisp_Object
5223make_pure_c_string (const char *data)
5224{
5225 Lisp_Object string;
5226 struct Lisp_String *s;
d311d28c 5227 ptrdiff_t nchars = strlen (data);
a56eaaef
DN
5228
5229 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
5230 s->size = nchars;
5231 s->size_byte = -1;
323637a2 5232 s->data = (unsigned char *) data;
a56eaaef
DN
5233 s->intervals = NULL_INTERVAL;
5234 XSETSTRING (string, s);
5235 return string;
5236}
2e471eb5 5237
34400008
GM
5238/* Return a cons allocated from pure space. Give it pure copies
5239 of CAR as car and CDR as cdr. */
5240
7146af97 5241Lisp_Object
971de7fb 5242pure_cons (Lisp_Object car, Lisp_Object cdr)
7146af97
JB
5243{
5244 register Lisp_Object new;
1f0b3fd2 5245 struct Lisp_Cons *p;
7146af97 5246
1f0b3fd2
GM
5247 p = (struct Lisp_Cons *) pure_alloc (sizeof *p, Lisp_Cons);
5248 XSETCONS (new, p);
f3fbd155
KR
5249 XSETCAR (new, Fpurecopy (car));
5250 XSETCDR (new, Fpurecopy (cdr));
7146af97
JB
5251 return new;
5252}
5253
7146af97 5254
34400008
GM
5255/* Value is a float object with value NUM allocated from pure space. */
5256
d3d47262 5257static Lisp_Object
971de7fb 5258make_pure_float (double num)
7146af97
JB
5259{
5260 register Lisp_Object new;
1f0b3fd2 5261 struct Lisp_Float *p;
7146af97 5262
1f0b3fd2
GM
5263 p = (struct Lisp_Float *) pure_alloc (sizeof *p, Lisp_Float);
5264 XSETFLOAT (new, p);
f601cdf3 5265 XFLOAT_INIT (new, num);
7146af97
JB
5266 return new;
5267}
5268
34400008
GM
5269
5270/* Return a vector with room for LEN Lisp_Objects allocated from
5271 pure space. */
5272
72cb32cf 5273static Lisp_Object
d311d28c 5274make_pure_vector (ptrdiff_t len)
7146af97 5275{
1f0b3fd2
GM
5276 Lisp_Object new;
5277 struct Lisp_Vector *p;
36372bf9
PE
5278 size_t size = (offsetof (struct Lisp_Vector, contents)
5279 + len * sizeof (Lisp_Object));
7146af97 5280
1f0b3fd2
GM
5281 p = (struct Lisp_Vector *) pure_alloc (size, Lisp_Vectorlike);
5282 XSETVECTOR (new, p);
eab3844f 5283 XVECTOR (new)->header.size = len;
7146af97
JB
5284 return new;
5285}
5286
34400008 5287
a7ca3326 5288DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
909e3b33 5289 doc: /* Make a copy of object OBJ in pure storage.
228299fa 5290Recursively copies contents of vectors and cons cells.
7ee72033 5291Does not copy symbols. Copies strings without text properties. */)
5842a27b 5292 (register Lisp_Object obj)
7146af97 5293{
265a9e55 5294 if (NILP (Vpurify_flag))
7146af97
JB
5295 return obj;
5296
1f0b3fd2 5297 if (PURE_POINTER_P (XPNTR (obj)))
7146af97
JB
5298 return obj;
5299
e9515805
SM
5300 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5301 {
5302 Lisp_Object tmp = Fgethash (obj, Vpurify_flag, Qnil);
5303 if (!NILP (tmp))
5304 return tmp;
5305 }
5306
d6dd74bb 5307 if (CONSP (obj))
e9515805 5308 obj = pure_cons (XCAR (obj), XCDR (obj));
d6dd74bb 5309 else if (FLOATP (obj))
e9515805 5310 obj = make_pure_float (XFLOAT_DATA (obj));
d6dd74bb 5311 else if (STRINGP (obj))
42a5b22f 5312 obj = make_pure_string (SSDATA (obj), SCHARS (obj),
e9515805
SM
5313 SBYTES (obj),
5314 STRING_MULTIBYTE (obj));
876c194c 5315 else if (COMPILEDP (obj) || VECTORP (obj))
d6dd74bb
KH
5316 {
5317 register struct Lisp_Vector *vec;
d311d28c
PE
5318 register ptrdiff_t i;
5319 ptrdiff_t size;
d6dd74bb 5320
77b37c05 5321 size = ASIZE (obj);
7d535c68
KH
5322 if (size & PSEUDOVECTOR_FLAG)
5323 size &= PSEUDOVECTOR_SIZE_MASK;
6b61353c 5324 vec = XVECTOR (make_pure_vector (size));
d6dd74bb
KH
5325 for (i = 0; i < size; i++)
5326 vec->contents[i] = Fpurecopy (XVECTOR (obj)->contents[i]);
876c194c 5327 if (COMPILEDP (obj))
985773c9 5328 {
876c194c
SM
5329 XSETPVECTYPE (vec, PVEC_COMPILED);
5330 XSETCOMPILED (obj, vec);
985773c9 5331 }
d6dd74bb
KH
5332 else
5333 XSETVECTOR (obj, vec);
7146af97 5334 }
d6dd74bb
KH
5335 else if (MARKERP (obj))
5336 error ("Attempt to copy a marker to pure storage");
e9515805
SM
5337 else
5338 /* Not purified, don't hash-cons. */
5339 return obj;
5340
5341 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5342 Fputhash (obj, obj, Vpurify_flag);
6bbd7a29
GM
5343
5344 return obj;
7146af97 5345}
2e471eb5 5346
34400008 5347
7146af97 5348\f
34400008
GM
5349/***********************************************************************
5350 Protection from GC
5351 ***********************************************************************/
5352
2e471eb5
GM
5353/* Put an entry in staticvec, pointing at the variable with address
5354 VARADDRESS. */
7146af97
JB
5355
5356void
971de7fb 5357staticpro (Lisp_Object *varaddress)
7146af97
JB
5358{
5359 staticvec[staticidx++] = varaddress;
5360 if (staticidx >= NSTATICS)
5361 abort ();
5362}
5363
7146af97 5364\f
34400008
GM
5365/***********************************************************************
5366 Protection from GC
5367 ***********************************************************************/
1a4f1e2c 5368
e8197642
RS
5369/* Temporarily prevent garbage collection. */
5370
d311d28c 5371ptrdiff_t
971de7fb 5372inhibit_garbage_collection (void)
e8197642 5373{
d311d28c 5374 ptrdiff_t count = SPECPDL_INDEX ();
54defd0d 5375
6349ae4d 5376 specbind (Qgc_cons_threshold, make_number (MOST_POSITIVE_FIXNUM));
e8197642
RS
5377 return count;
5378}
5379
34400008 5380
a7ca3326 5381DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
7ee72033 5382 doc: /* Reclaim storage for Lisp objects no longer needed.
e1e37596
RS
5383Garbage collection happens automatically if you cons more than
5384`gc-cons-threshold' bytes of Lisp data since previous garbage collection.
5385`garbage-collect' normally returns a list with info on amount of space in use:
228299fa 5386 ((USED-CONSES . FREE-CONSES) (USED-SYMS . FREE-SYMS)
999dd333 5387 (USED-MISCS . FREE-MISCS) USED-STRING-CHARS USED-VECTOR-SLOTS
228299fa
GM
5388 (USED-FLOATS . FREE-FLOATS) (USED-INTERVALS . FREE-INTERVALS)
5389 (USED-STRINGS . FREE-STRINGS))
e1e37596 5390However, if there was overflow in pure space, `garbage-collect'
999dd333
GM
5391returns nil, because real GC can't be done.
5392See Info node `(elisp)Garbage Collection'. */)
5842a27b 5393 (void)
7146af97 5394{
7146af97 5395 register struct specbinding *bind;
7146af97 5396 char stack_top_variable;
f66c7cf8 5397 ptrdiff_t i;
6efc7df7 5398 int message_p;
96117bc7 5399 Lisp_Object total[8];
d311d28c 5400 ptrdiff_t count = SPECPDL_INDEX ();
2c5bd608
DL
5401 EMACS_TIME t1, t2, t3;
5402
3de0effb
RS
5403 if (abort_on_gc)
5404 abort ();
5405
9e713715
GM
5406 /* Can't GC if pure storage overflowed because we can't determine
5407 if something is a pure object or not. */
5408 if (pure_bytes_used_before_overflow)
5409 return Qnil;
5410
bbc012e0
KS
5411 CHECK_CONS_LIST ();
5412
3c7e66a8
RS
5413 /* Don't keep undo information around forever.
5414 Do this early on, so it is no problem if the user quits. */
5415 {
5416 register struct buffer *nextb = all_buffers;
5417
5418 while (nextb)
5419 {
5420 /* If a buffer's undo list is Qt, that means that undo is
5421 turned off in that buffer. Calling truncate_undo_list on
5422 Qt tends to return NULL, which effectively turns undo back on.
5423 So don't call truncate_undo_list if undo_list is Qt. */
5d8ea120 5424 if (! NILP (nextb->BUFFER_INTERNAL_FIELD (name)) && ! EQ (nextb->BUFFER_INTERNAL_FIELD (undo_list), Qt))
3c7e66a8
RS
5425 truncate_undo_list (nextb);
5426
5427 /* Shrink buffer gaps, but skip indirect and dead buffers. */
5d8ea120 5428 if (nextb->base_buffer == 0 && !NILP (nextb->BUFFER_INTERNAL_FIELD (name))
dc7b4525 5429 && ! nextb->text->inhibit_shrinking)
3c7e66a8
RS
5430 {
5431 /* If a buffer's gap size is more than 10% of the buffer
5432 size, or larger than 2000 bytes, then shrink it
5433 accordingly. Keep a minimum size of 20 bytes. */
5434 int size = min (2000, max (20, (nextb->text->z_byte / 10)));
5435
5436 if (nextb->text->gap_size > size)
5437 {
5438 struct buffer *save_current = current_buffer;
5439 current_buffer = nextb;
5440 make_gap (-(nextb->text->gap_size - size));
5441 current_buffer = save_current;
5442 }
5443 }
5444
eab3844f 5445 nextb = nextb->header.next.buffer;
3c7e66a8
RS
5446 }
5447 }
5448
5449 EMACS_GET_TIME (t1);
5450
58595309
KH
5451 /* In case user calls debug_print during GC,
5452 don't let that cause a recursive GC. */
5453 consing_since_gc = 0;
5454
6efc7df7
GM
5455 /* Save what's currently displayed in the echo area. */
5456 message_p = push_message ();
c55b0da6 5457 record_unwind_protect (pop_message_unwind, Qnil);
41c28a37 5458
7146af97
JB
5459 /* Save a copy of the contents of the stack, for debugging. */
5460#if MAX_SAVE_STACK > 0
265a9e55 5461 if (NILP (Vpurify_flag))
7146af97 5462 {
dd3f25f7 5463 char *stack;
903fe15d 5464 ptrdiff_t stack_size;
dd3f25f7 5465 if (&stack_top_variable < stack_bottom)
7146af97 5466 {
dd3f25f7
PE
5467 stack = &stack_top_variable;
5468 stack_size = stack_bottom - &stack_top_variable;
5469 }
5470 else
5471 {
5472 stack = stack_bottom;
5473 stack_size = &stack_top_variable - stack_bottom;
5474 }
5475 if (stack_size <= MAX_SAVE_STACK)
7146af97 5476 {
dd3f25f7 5477 if (stack_copy_size < stack_size)
7146af97 5478 {
dd3f25f7
PE
5479 stack_copy = (char *) xrealloc (stack_copy, stack_size);
5480 stack_copy_size = stack_size;
7146af97 5481 }
dd3f25f7 5482 memcpy (stack_copy, stack, stack_size);
7146af97
JB
5483 }
5484 }
5485#endif /* MAX_SAVE_STACK > 0 */
5486
299585ee 5487 if (garbage_collection_messages)
691c4285 5488 message1_nolog ("Garbage collecting...");
7146af97 5489
6e0fca1d
RS
5490 BLOCK_INPUT;
5491
eec7b73d
RS
5492 shrink_regexp_cache ();
5493
7146af97
JB
5494 gc_in_progress = 1;
5495
c23baf9f 5496 /* clear_marks (); */
7146af97 5497
005ca5c7 5498 /* Mark all the special slots that serve as the roots of accessibility. */
7146af97
JB
5499
5500 for (i = 0; i < staticidx; i++)
49723c04 5501 mark_object (*staticvec[i]);
34400008 5502
126f9c02
SM
5503 for (bind = specpdl; bind != specpdl_ptr; bind++)
5504 {
5505 mark_object (bind->symbol);
5506 mark_object (bind->old_value);
5507 }
6ed8eeff 5508 mark_terminals ();
126f9c02 5509 mark_kboards ();
98a92e2d 5510 mark_ttys ();
126f9c02
SM
5511
5512#ifdef USE_GTK
5513 {
dd4c5104 5514 extern void xg_mark_data (void);
126f9c02
SM
5515 xg_mark_data ();
5516 }
5517#endif
5518
34400008
GM
5519#if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
5520 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
5521 mark_stack ();
5522#else
acf5f7d3
SM
5523 {
5524 register struct gcpro *tail;
5525 for (tail = gcprolist; tail; tail = tail->next)
5526 for (i = 0; i < tail->nvars; i++)
005ca5c7 5527 mark_object (tail->var[i]);
acf5f7d3 5528 }
3e21b6a7 5529 mark_byte_stack ();
b286858c
SM
5530 {
5531 struct catchtag *catch;
5532 struct handler *handler;
177c0ea7 5533
7146af97
JB
5534 for (catch = catchlist; catch; catch = catch->next)
5535 {
49723c04
SM
5536 mark_object (catch->tag);
5537 mark_object (catch->val);
177c0ea7 5538 }
7146af97
JB
5539 for (handler = handlerlist; handler; handler = handler->next)
5540 {
49723c04
SM
5541 mark_object (handler->handler);
5542 mark_object (handler->var);
177c0ea7 5543 }
b286858c 5544 }
b40ea20a 5545 mark_backtrace ();
b286858c 5546#endif
7146af97 5547
454d7973
KS
5548#ifdef HAVE_WINDOW_SYSTEM
5549 mark_fringe_data ();
5550#endif
5551
74c35a48
SM
5552#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5553 mark_stack ();
5554#endif
5555
c37adf23
SM
5556 /* Everything is now marked, except for the things that require special
5557 finalization, i.e. the undo_list.
5558 Look thru every buffer's undo list
4c315bda
RS
5559 for elements that update markers that were not marked,
5560 and delete them. */
5561 {
5562 register struct buffer *nextb = all_buffers;
5563
5564 while (nextb)
5565 {
5566 /* If a buffer's undo list is Qt, that means that undo is
5567 turned off in that buffer. Calling truncate_undo_list on
5568 Qt tends to return NULL, which effectively turns undo back on.
5569 So don't call truncate_undo_list if undo_list is Qt. */
5d8ea120 5570 if (! EQ (nextb->BUFFER_INTERNAL_FIELD (undo_list), Qt))
4c315bda
RS
5571 {
5572 Lisp_Object tail, prev;
5d8ea120 5573 tail = nextb->BUFFER_INTERNAL_FIELD (undo_list);
4c315bda
RS
5574 prev = Qnil;
5575 while (CONSP (tail))
5576 {
8e50cc2d
SM
5577 if (CONSP (XCAR (tail))
5578 && MARKERP (XCAR (XCAR (tail)))
2336fe58 5579 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
4c315bda
RS
5580 {
5581 if (NILP (prev))
5d8ea120 5582 nextb->BUFFER_INTERNAL_FIELD (undo_list) = tail = XCDR (tail);
4c315bda 5583 else
f3fbd155
KR
5584 {
5585 tail = XCDR (tail);
5586 XSETCDR (prev, tail);
5587 }
4c315bda
RS
5588 }
5589 else
5590 {
5591 prev = tail;
70949dac 5592 tail = XCDR (tail);
4c315bda
RS
5593 }
5594 }
5595 }
c37adf23
SM
5596 /* Now that we have stripped the elements that need not be in the
5597 undo_list any more, we can finally mark the list. */
5d8ea120 5598 mark_object (nextb->BUFFER_INTERNAL_FIELD (undo_list));
4c315bda 5599
eab3844f 5600 nextb = nextb->header.next.buffer;
4c315bda
RS
5601 }
5602 }
5603
7146af97
JB
5604 gc_sweep ();
5605
5606 /* Clear the mark bits that we set in certain root slots. */
5607
033a5fa3 5608 unmark_byte_stack ();
3ef06d12
SM
5609 VECTOR_UNMARK (&buffer_defaults);
5610 VECTOR_UNMARK (&buffer_local_symbols);
7146af97 5611
34400008
GM
5612#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
5613 dump_zombies ();
5614#endif
5615
6e0fca1d
RS
5616 UNBLOCK_INPUT;
5617
bbc012e0
KS
5618 CHECK_CONS_LIST ();
5619
c23baf9f 5620 /* clear_marks (); */
7146af97
JB
5621 gc_in_progress = 0;
5622
5623 consing_since_gc = 0;
5624 if (gc_cons_threshold < 10000)
5625 gc_cons_threshold = 10000;
5626
c0c5c8ae 5627 gc_relative_threshold = 0;
96f077ad
SM
5628 if (FLOATP (Vgc_cons_percentage))
5629 { /* Set gc_cons_combined_threshold. */
c0c5c8ae 5630 double tot = 0;
ae35e756
PE
5631
5632 tot += total_conses * sizeof (struct Lisp_Cons);
5633 tot += total_symbols * sizeof (struct Lisp_Symbol);
5634 tot += total_markers * sizeof (union Lisp_Misc);
5635 tot += total_string_size;
5636 tot += total_vector_size * sizeof (Lisp_Object);
5637 tot += total_floats * sizeof (struct Lisp_Float);
5638 tot += total_intervals * sizeof (struct interval);
5639 tot += total_strings * sizeof (struct Lisp_String);
5640
c0c5c8ae
PE
5641 tot *= XFLOAT_DATA (Vgc_cons_percentage);
5642 if (0 < tot)
5643 {
5644 if (tot < TYPE_MAXIMUM (EMACS_INT))
5645 gc_relative_threshold = tot;
5646 else
5647 gc_relative_threshold = TYPE_MAXIMUM (EMACS_INT);
5648 }
96f077ad
SM
5649 }
5650
299585ee
RS
5651 if (garbage_collection_messages)
5652 {
6efc7df7
GM
5653 if (message_p || minibuf_level > 0)
5654 restore_message ();
299585ee
RS
5655 else
5656 message1_nolog ("Garbage collecting...done");
5657 }
7146af97 5658
98edb5ff 5659 unbind_to (count, Qnil);
2e471eb5
GM
5660
5661 total[0] = Fcons (make_number (total_conses),
5662 make_number (total_free_conses));
5663 total[1] = Fcons (make_number (total_symbols),
5664 make_number (total_free_symbols));
5665 total[2] = Fcons (make_number (total_markers),
5666 make_number (total_free_markers));
96117bc7
GM
5667 total[3] = make_number (total_string_size);
5668 total[4] = make_number (total_vector_size);
5669 total[5] = Fcons (make_number (total_floats),
2e471eb5 5670 make_number (total_free_floats));
96117bc7 5671 total[6] = Fcons (make_number (total_intervals),
2e471eb5 5672 make_number (total_free_intervals));
96117bc7 5673 total[7] = Fcons (make_number (total_strings),
2e471eb5
GM
5674 make_number (total_free_strings));
5675
34400008 5676#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
7146af97 5677 {
34400008
GM
5678 /* Compute average percentage of zombies. */
5679 double nlive = 0;
177c0ea7 5680
34400008 5681 for (i = 0; i < 7; ++i)
83fc9c63
DL
5682 if (CONSP (total[i]))
5683 nlive += XFASTINT (XCAR (total[i]));
34400008
GM
5684
5685 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
5686 max_live = max (nlive, max_live);
5687 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
5688 max_zombies = max (nzombies, max_zombies);
5689 ++ngcs;
5690 }
5691#endif
7146af97 5692
9e713715
GM
5693 if (!NILP (Vpost_gc_hook))
5694 {
d311d28c 5695 ptrdiff_t gc_count = inhibit_garbage_collection ();
9e713715 5696 safe_run_hooks (Qpost_gc_hook);
ae35e756 5697 unbind_to (gc_count, Qnil);
9e713715 5698 }
2c5bd608
DL
5699
5700 /* Accumulate statistics. */
5701 EMACS_GET_TIME (t2);
5702 EMACS_SUB_TIME (t3, t2, t1);
5703 if (FLOATP (Vgc_elapsed))
69ab9f85
SM
5704 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed) +
5705 EMACS_SECS (t3) +
5706 EMACS_USECS (t3) * 1.0e-6);
2c5bd608
DL
5707 gcs_done++;
5708
96117bc7 5709 return Flist (sizeof total / sizeof *total, total);
7146af97 5710}
34400008 5711
41c28a37 5712
3770920e
GM
5713/* Mark Lisp objects in glyph matrix MATRIX. Currently the
5714 only interesting objects referenced from glyphs are strings. */
41c28a37
GM
5715
5716static void
971de7fb 5717mark_glyph_matrix (struct glyph_matrix *matrix)
41c28a37
GM
5718{
5719 struct glyph_row *row = matrix->rows;
5720 struct glyph_row *end = row + matrix->nrows;
5721
2e471eb5
GM
5722 for (; row < end; ++row)
5723 if (row->enabled_p)
5724 {
5725 int area;
5726 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
5727 {
5728 struct glyph *glyph = row->glyphs[area];
5729 struct glyph *end_glyph = glyph + row->used[area];
177c0ea7 5730
2e471eb5 5731 for (; glyph < end_glyph; ++glyph)
8e50cc2d 5732 if (STRINGP (glyph->object)
2e471eb5 5733 && !STRING_MARKED_P (XSTRING (glyph->object)))
49723c04 5734 mark_object (glyph->object);
2e471eb5
GM
5735 }
5736 }
41c28a37
GM
5737}
5738
34400008 5739
41c28a37
GM
5740/* Mark Lisp faces in the face cache C. */
5741
5742static void
971de7fb 5743mark_face_cache (struct face_cache *c)
41c28a37
GM
5744{
5745 if (c)
5746 {
5747 int i, j;
5748 for (i = 0; i < c->used; ++i)
5749 {
5750 struct face *face = FACE_FROM_ID (c->f, i);
5751
5752 if (face)
5753 {
5754 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
49723c04 5755 mark_object (face->lface[j]);
41c28a37
GM
5756 }
5757 }
5758 }
5759}
5760
5761
7146af97 5762\f
1a4f1e2c 5763/* Mark reference to a Lisp_Object.
2e471eb5
GM
5764 If the object referred to has not been seen yet, recursively mark
5765 all the references contained in it. */
7146af97 5766
785cd37f 5767#define LAST_MARKED_SIZE 500
d3d47262 5768static Lisp_Object last_marked[LAST_MARKED_SIZE];
244ed907 5769static int last_marked_index;
785cd37f 5770
1342fc6f
RS
5771/* For debugging--call abort when we cdr down this many
5772 links of a list, in mark_object. In debugging,
5773 the call to abort will hit a breakpoint.
5774 Normally this is zero and the check never goes off. */
903fe15d 5775ptrdiff_t mark_object_loop_halt EXTERNALLY_VISIBLE;
1342fc6f 5776
8f11f7ec 5777static void
971de7fb 5778mark_vectorlike (struct Lisp_Vector *ptr)
d2029e5b 5779{
d311d28c
PE
5780 ptrdiff_t size = ptr->header.size;
5781 ptrdiff_t i;
d2029e5b 5782
8f11f7ec 5783 eassert (!VECTOR_MARKED_P (ptr));
d2029e5b
SM
5784 VECTOR_MARK (ptr); /* Else mark it */
5785 if (size & PSEUDOVECTOR_FLAG)
5786 size &= PSEUDOVECTOR_SIZE_MASK;
d3d47262 5787
d2029e5b
SM
5788 /* Note that this size is not the memory-footprint size, but only
5789 the number of Lisp_Object fields that we should trace.
5790 The distinction is used e.g. by Lisp_Process which places extra
5791 non-Lisp_Object fields at the end of the structure. */
5792 for (i = 0; i < size; i++) /* and then mark its elements */
5793 mark_object (ptr->contents[i]);
d2029e5b
SM
5794}
5795
58026347
KH
5796/* Like mark_vectorlike but optimized for char-tables (and
5797 sub-char-tables) assuming that the contents are mostly integers or
5798 symbols. */
5799
5800static void
971de7fb 5801mark_char_table (struct Lisp_Vector *ptr)
58026347 5802{
b6439961
PE
5803 int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
5804 int i;
58026347 5805
8f11f7ec 5806 eassert (!VECTOR_MARKED_P (ptr));
58026347
KH
5807 VECTOR_MARK (ptr);
5808 for (i = 0; i < size; i++)
5809 {
5810 Lisp_Object val = ptr->contents[i];
5811
ef1b0ba7 5812 if (INTEGERP (val) || (SYMBOLP (val) && XSYMBOL (val)->gcmarkbit))
58026347
KH
5813 continue;
5814 if (SUB_CHAR_TABLE_P (val))
5815 {
5816 if (! VECTOR_MARKED_P (XVECTOR (val)))
5817 mark_char_table (XVECTOR (val));
5818 }
5819 else
5820 mark_object (val);
5821 }
5822}
5823
41c28a37 5824void
971de7fb 5825mark_object (Lisp_Object arg)
7146af97 5826{
49723c04 5827 register Lisp_Object obj = arg;
4f5c1376
GM
5828#ifdef GC_CHECK_MARKED_OBJECTS
5829 void *po;
5830 struct mem_node *m;
5831#endif
903fe15d 5832 ptrdiff_t cdr_count = 0;
7146af97 5833
9149e743 5834 loop:
7146af97 5835
1f0b3fd2 5836 if (PURE_POINTER_P (XPNTR (obj)))
7146af97
JB
5837 return;
5838
49723c04 5839 last_marked[last_marked_index++] = obj;
785cd37f
RS
5840 if (last_marked_index == LAST_MARKED_SIZE)
5841 last_marked_index = 0;
5842
4f5c1376
GM
5843 /* Perform some sanity checks on the objects marked here. Abort if
5844 we encounter an object we know is bogus. This increases GC time
5845 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
5846#ifdef GC_CHECK_MARKED_OBJECTS
5847
5848 po = (void *) XPNTR (obj);
5849
5850 /* Check that the object pointed to by PO is known to be a Lisp
5851 structure allocated from the heap. */
5852#define CHECK_ALLOCATED() \
5853 do { \
5854 m = mem_find (po); \
5855 if (m == MEM_NIL) \
5856 abort (); \
5857 } while (0)
5858
5859 /* Check that the object pointed to by PO is live, using predicate
5860 function LIVEP. */
5861#define CHECK_LIVE(LIVEP) \
5862 do { \
5863 if (!LIVEP (m, po)) \
5864 abort (); \
5865 } while (0)
5866
5867 /* Check both of the above conditions. */
5868#define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
5869 do { \
5870 CHECK_ALLOCATED (); \
5871 CHECK_LIVE (LIVEP); \
5872 } while (0) \
177c0ea7 5873
4f5c1376 5874#else /* not GC_CHECK_MARKED_OBJECTS */
177c0ea7 5875
4f5c1376
GM
5876#define CHECK_LIVE(LIVEP) (void) 0
5877#define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
177c0ea7 5878
4f5c1376
GM
5879#endif /* not GC_CHECK_MARKED_OBJECTS */
5880
8e50cc2d 5881 switch (SWITCH_ENUM_CAST (XTYPE (obj)))
7146af97
JB
5882 {
5883 case Lisp_String:
5884 {
5885 register struct Lisp_String *ptr = XSTRING (obj);
8f11f7ec
SM
5886 if (STRING_MARKED_P (ptr))
5887 break;
4f5c1376 5888 CHECK_ALLOCATED_AND_LIVE (live_string_p);
d5e35230 5889 MARK_INTERVAL_TREE (ptr->intervals);
2e471eb5 5890 MARK_STRING (ptr);
361b097f 5891#ifdef GC_CHECK_STRING_BYTES
676a7251
GM
5892 /* Check that the string size recorded in the string is the
5893 same as the one recorded in the sdata structure. */
5894 CHECK_STRING_BYTES (ptr);
361b097f 5895#endif /* GC_CHECK_STRING_BYTES */
7146af97
JB
5896 }
5897 break;
5898
76437631 5899 case Lisp_Vectorlike:
8f11f7ec
SM
5900 if (VECTOR_MARKED_P (XVECTOR (obj)))
5901 break;
4f5c1376
GM
5902#ifdef GC_CHECK_MARKED_OBJECTS
5903 m = mem_find (po);
8e50cc2d 5904 if (m == MEM_NIL && !SUBRP (obj)
4f5c1376
GM
5905 && po != &buffer_defaults
5906 && po != &buffer_local_symbols)
5907 abort ();
5908#endif /* GC_CHECK_MARKED_OBJECTS */
177c0ea7 5909
8e50cc2d 5910 if (BUFFERP (obj))
6b552283 5911 {
4f5c1376 5912#ifdef GC_CHECK_MARKED_OBJECTS
8f11f7ec
SM
5913 if (po != &buffer_defaults && po != &buffer_local_symbols)
5914 {
5915 struct buffer *b;
179dade4 5916 for (b = all_buffers; b && b != po; b = b->header.next.buffer)
8f11f7ec
SM
5917 ;
5918 if (b == NULL)
5919 abort ();
4f5c1376 5920 }
8f11f7ec
SM
5921#endif /* GC_CHECK_MARKED_OBJECTS */
5922 mark_buffer (obj);
6b552283 5923 }
8e50cc2d 5924 else if (SUBRP (obj))
169ee243 5925 break;
876c194c 5926 else if (COMPILEDP (obj))
2e471eb5
GM
5927 /* We could treat this just like a vector, but it is better to
5928 save the COMPILED_CONSTANTS element for last and avoid
5929 recursion there. */
169ee243
RS
5930 {
5931 register struct Lisp_Vector *ptr = XVECTOR (obj);
b6439961
PE
5932 int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
5933 int i;
169ee243 5934
4f5c1376 5935 CHECK_LIVE (live_vector_p);
3ef06d12 5936 VECTOR_MARK (ptr); /* Else mark it */
169ee243
RS
5937 for (i = 0; i < size; i++) /* and then mark its elements */
5938 {
5939 if (i != COMPILED_CONSTANTS)
49723c04 5940 mark_object (ptr->contents[i]);
169ee243 5941 }
49723c04 5942 obj = ptr->contents[COMPILED_CONSTANTS];
169ee243
RS
5943 goto loop;
5944 }
8e50cc2d 5945 else if (FRAMEP (obj))
169ee243 5946 {
c70bbf06 5947 register struct frame *ptr = XFRAME (obj);
8f11f7ec
SM
5948 mark_vectorlike (XVECTOR (obj));
5949 mark_face_cache (ptr->face_cache);
707788bd 5950 }
8e50cc2d 5951 else if (WINDOWP (obj))
41c28a37
GM
5952 {
5953 register struct Lisp_Vector *ptr = XVECTOR (obj);
5954 struct window *w = XWINDOW (obj);
8f11f7ec
SM
5955 mark_vectorlike (ptr);
5956 /* Mark glyphs for leaf windows. Marking window matrices is
5957 sufficient because frame matrices use the same glyph
5958 memory. */
5959 if (NILP (w->hchild)
5960 && NILP (w->vchild)
5961 && w->current_matrix)
41c28a37 5962 {
8f11f7ec
SM
5963 mark_glyph_matrix (w->current_matrix);
5964 mark_glyph_matrix (w->desired_matrix);
41c28a37
GM
5965 }
5966 }
8e50cc2d 5967 else if (HASH_TABLE_P (obj))
41c28a37
GM
5968 {
5969 struct Lisp_Hash_Table *h = XHASH_TABLE (obj);
8f11f7ec
SM
5970 mark_vectorlike ((struct Lisp_Vector *)h);
5971 /* If hash table is not weak, mark all keys and values.
5972 For weak tables, mark only the vector. */
5973 if (NILP (h->weak))
5974 mark_object (h->key_and_value);
5975 else
5976 VECTOR_MARK (XVECTOR (h->key_and_value));
41c28a37 5977 }
58026347 5978 else if (CHAR_TABLE_P (obj))
8f11f7ec 5979 mark_char_table (XVECTOR (obj));
04ff9756 5980 else
d2029e5b 5981 mark_vectorlike (XVECTOR (obj));
169ee243 5982 break;
7146af97 5983
7146af97
JB
5984 case Lisp_Symbol:
5985 {
c70bbf06 5986 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
7146af97
JB
5987 struct Lisp_Symbol *ptrx;
5988
8f11f7ec
SM
5989 if (ptr->gcmarkbit)
5990 break;
4f5c1376 5991 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
2336fe58 5992 ptr->gcmarkbit = 1;
49723c04
SM
5993 mark_object (ptr->function);
5994 mark_object (ptr->plist);
ce5b453a
SM
5995 switch (ptr->redirect)
5996 {
5997 case SYMBOL_PLAINVAL: mark_object (SYMBOL_VAL (ptr)); break;
5998 case SYMBOL_VARALIAS:
5999 {
6000 Lisp_Object tem;
6001 XSETSYMBOL (tem, SYMBOL_ALIAS (ptr));
6002 mark_object (tem);
6003 break;
6004 }
6005 case SYMBOL_LOCALIZED:
6006 {
6007 struct Lisp_Buffer_Local_Value *blv = SYMBOL_BLV (ptr);
6008 /* If the value is forwarded to a buffer or keyboard field,
6009 these are marked when we see the corresponding object.
6010 And if it's forwarded to a C variable, either it's not
6011 a Lisp_Object var, or it's staticpro'd already. */
6012 mark_object (blv->where);
6013 mark_object (blv->valcell);
6014 mark_object (blv->defcell);
6015 break;
6016 }
6017 case SYMBOL_FORWARDED:
6018 /* If the value is forwarded to a buffer or keyboard field,
6019 these are marked when we see the corresponding object.
6020 And if it's forwarded to a C variable, either it's not
6021 a Lisp_Object var, or it's staticpro'd already. */
6022 break;
6023 default: abort ();
6024 }
8fe5665d
KR
6025 if (!PURE_POINTER_P (XSTRING (ptr->xname)))
6026 MARK_STRING (XSTRING (ptr->xname));
d5db4077 6027 MARK_INTERVAL_TREE (STRING_INTERVALS (ptr->xname));
177c0ea7 6028
7146af97
JB
6029 ptr = ptr->next;
6030 if (ptr)
6031 {
b0846f52 6032 ptrx = ptr; /* Use of ptrx avoids compiler bug on Sun */
7146af97 6033 XSETSYMBOL (obj, ptrx);
49723c04 6034 goto loop;
7146af97
JB
6035 }
6036 }
6037 break;
6038
a0a38eb7 6039 case Lisp_Misc:
4f5c1376 6040 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
67ee9f6e 6041 if (XMISCANY (obj)->gcmarkbit)
2336fe58 6042 break;
67ee9f6e 6043 XMISCANY (obj)->gcmarkbit = 1;
b766f870 6044
a5da44fe 6045 switch (XMISCTYPE (obj))
a0a38eb7 6046 {
465edf35 6047
2336fe58
SM
6048 case Lisp_Misc_Marker:
6049 /* DO NOT mark thru the marker's chain.
6050 The buffer's markers chain does not preserve markers from gc;
6051 instead, markers are removed from the chain when freed by gc. */
b766f870
KS
6052 break;
6053
8f924df7 6054 case Lisp_Misc_Save_Value:
9ea306d1 6055#if GC_MARK_STACK
b766f870
KS
6056 {
6057 register struct Lisp_Save_Value *ptr = XSAVE_VALUE (obj);
6058 /* If DOGC is set, POINTER is the address of a memory
6059 area containing INTEGER potential Lisp_Objects. */
6060 if (ptr->dogc)
6061 {
6062 Lisp_Object *p = (Lisp_Object *) ptr->pointer;
9c4c5f81 6063 ptrdiff_t nelt;
b766f870
KS
6064 for (nelt = ptr->integer; nelt > 0; nelt--, p++)
6065 mark_maybe_object (*p);
6066 }
6067 }
9ea306d1 6068#endif
c8616056
KH
6069 break;
6070
e202fa34
KH
6071 case Lisp_Misc_Overlay:
6072 {
6073 struct Lisp_Overlay *ptr = XOVERLAY (obj);
49723c04
SM
6074 mark_object (ptr->start);
6075 mark_object (ptr->end);
f54253ec
SM
6076 mark_object (ptr->plist);
6077 if (ptr->next)
6078 {
6079 XSETMISC (obj, ptr->next);
6080 goto loop;
6081 }
e202fa34
KH
6082 }
6083 break;
6084
a0a38eb7
KH
6085 default:
6086 abort ();
6087 }
7146af97
JB
6088 break;
6089
6090 case Lisp_Cons:
7146af97
JB
6091 {
6092 register struct Lisp_Cons *ptr = XCONS (obj);
8f11f7ec
SM
6093 if (CONS_MARKED_P (ptr))
6094 break;
4f5c1376 6095 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
08b7c2cb 6096 CONS_MARK (ptr);
c54ca951 6097 /* If the cdr is nil, avoid recursion for the car. */
28a099a4 6098 if (EQ (ptr->u.cdr, Qnil))
c54ca951 6099 {
49723c04 6100 obj = ptr->car;
1342fc6f 6101 cdr_count = 0;
c54ca951
RS
6102 goto loop;
6103 }
49723c04 6104 mark_object (ptr->car);
28a099a4 6105 obj = ptr->u.cdr;
1342fc6f
RS
6106 cdr_count++;
6107 if (cdr_count == mark_object_loop_halt)
6108 abort ();
7146af97
JB
6109 goto loop;
6110 }
6111
7146af97 6112 case Lisp_Float:
4f5c1376 6113 CHECK_ALLOCATED_AND_LIVE (live_float_p);
ab6780cd 6114 FLOAT_MARK (XFLOAT (obj));
7146af97 6115 break;
7146af97 6116
2de9f71c 6117 case_Lisp_Int:
7146af97
JB
6118 break;
6119
6120 default:
6121 abort ();
6122 }
4f5c1376
GM
6123
6124#undef CHECK_LIVE
6125#undef CHECK_ALLOCATED
6126#undef CHECK_ALLOCATED_AND_LIVE
7146af97
JB
6127}
6128
6129/* Mark the pointers in a buffer structure. */
6130
6131static void
971de7fb 6132mark_buffer (Lisp_Object buf)
7146af97 6133{
7146af97 6134 register struct buffer *buffer = XBUFFER (buf);
f54253ec 6135 register Lisp_Object *ptr, tmp;
30e3190a 6136 Lisp_Object base_buffer;
7146af97 6137
8f11f7ec 6138 eassert (!VECTOR_MARKED_P (buffer));
3ef06d12 6139 VECTOR_MARK (buffer);
7146af97 6140
30e3190a 6141 MARK_INTERVAL_TREE (BUF_INTERVALS (buffer));
d5e35230 6142
c37adf23
SM
6143 /* For now, we just don't mark the undo_list. It's done later in
6144 a special way just before the sweep phase, and after stripping
6145 some of its elements that are not needed any more. */
4c315bda 6146
f54253ec
SM
6147 if (buffer->overlays_before)
6148 {
6149 XSETMISC (tmp, buffer->overlays_before);
6150 mark_object (tmp);
6151 }
6152 if (buffer->overlays_after)
6153 {
6154 XSETMISC (tmp, buffer->overlays_after);
6155 mark_object (tmp);
6156 }
6157
9ce376f9
SM
6158 /* buffer-local Lisp variables start at `undo_list',
6159 tho only the ones from `name' on are GC'd normally. */
5d8ea120 6160 for (ptr = &buffer->BUFFER_INTERNAL_FIELD (name);
8a5c77bb
PE
6161 ptr <= &PER_BUFFER_VALUE (buffer,
6162 PER_BUFFER_VAR_OFFSET (LAST_FIELD_PER_BUFFER));
7146af97 6163 ptr++)
49723c04 6164 mark_object (*ptr);
30e3190a
RS
6165
6166 /* If this is an indirect buffer, mark its base buffer. */
349bd9ed 6167 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
30e3190a 6168 {
177c0ea7 6169 XSETBUFFER (base_buffer, buffer->base_buffer);
30e3190a
RS
6170 mark_buffer (base_buffer);
6171 }
7146af97 6172}
084b1a0c 6173
4a729fd8 6174/* Mark the Lisp pointers in the terminal objects.
0ba2624f 6175 Called by Fgarbage_collect. */
4a729fd8 6176
4a729fd8
SM
6177static void
6178mark_terminals (void)
6179{
6180 struct terminal *t;
6181 for (t = terminal_list; t; t = t->next_terminal)
6182 {
6183 eassert (t->name != NULL);
354884c4 6184#ifdef HAVE_WINDOW_SYSTEM
96ad0af7
YM
6185 /* If a terminal object is reachable from a stacpro'ed object,
6186 it might have been marked already. Make sure the image cache
6187 gets marked. */
6188 mark_image_cache (t->image_cache);
354884c4 6189#endif /* HAVE_WINDOW_SYSTEM */
96ad0af7
YM
6190 if (!VECTOR_MARKED_P (t))
6191 mark_vectorlike ((struct Lisp_Vector *)t);
4a729fd8
SM
6192 }
6193}
6194
6195
084b1a0c 6196
41c28a37
GM
6197/* Value is non-zero if OBJ will survive the current GC because it's
6198 either marked or does not need to be marked to survive. */
6199
6200int
971de7fb 6201survives_gc_p (Lisp_Object obj)
41c28a37
GM
6202{
6203 int survives_p;
177c0ea7 6204
8e50cc2d 6205 switch (XTYPE (obj))
41c28a37 6206 {
2de9f71c 6207 case_Lisp_Int:
41c28a37
GM
6208 survives_p = 1;
6209 break;
6210
6211 case Lisp_Symbol:
2336fe58 6212 survives_p = XSYMBOL (obj)->gcmarkbit;
41c28a37
GM
6213 break;
6214
6215 case Lisp_Misc:
67ee9f6e 6216 survives_p = XMISCANY (obj)->gcmarkbit;
41c28a37
GM
6217 break;
6218
6219 case Lisp_String:
08b7c2cb 6220 survives_p = STRING_MARKED_P (XSTRING (obj));
41c28a37
GM
6221 break;
6222
6223 case Lisp_Vectorlike:
8e50cc2d 6224 survives_p = SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
41c28a37
GM
6225 break;
6226
6227 case Lisp_Cons:
08b7c2cb 6228 survives_p = CONS_MARKED_P (XCONS (obj));
41c28a37
GM
6229 break;
6230
41c28a37 6231 case Lisp_Float:
ab6780cd 6232 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
41c28a37 6233 break;
41c28a37
GM
6234
6235 default:
6236 abort ();
6237 }
6238
34400008 6239 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
41c28a37
GM
6240}
6241
6242
7146af97 6243\f
1a4f1e2c 6244/* Sweep: find all structures not marked, and free them. */
7146af97
JB
6245
6246static void
971de7fb 6247gc_sweep (void)
7146af97 6248{
41c28a37
GM
6249 /* Remove or mark entries in weak hash tables.
6250 This must be done before any object is unmarked. */
6251 sweep_weak_hash_tables ();
6252
2e471eb5 6253 sweep_strings ();
676a7251
GM
6254#ifdef GC_CHECK_STRING_BYTES
6255 if (!noninteractive)
6256 check_string_bytes (1);
6257#endif
7146af97
JB
6258
6259 /* Put all unmarked conses on free list */
6260 {
6261 register struct cons_block *cblk;
6ca94ac9 6262 struct cons_block **cprev = &cons_block;
7146af97 6263 register int lim = cons_block_index;
c0c5c8ae 6264 EMACS_INT num_free = 0, num_used = 0;
7146af97
JB
6265
6266 cons_free_list = 0;
177c0ea7 6267
6ca94ac9 6268 for (cblk = cons_block; cblk; cblk = *cprev)
7146af97 6269 {
3ae2e3a3 6270 register int i = 0;
6ca94ac9 6271 int this_free = 0;
3ae2e3a3
RS
6272 int ilim = (lim + BITS_PER_INT - 1) / BITS_PER_INT;
6273
6274 /* Scan the mark bits an int at a time. */
47ea7f44 6275 for (i = 0; i < ilim; i++)
3ae2e3a3
RS
6276 {
6277 if (cblk->gcmarkbits[i] == -1)
6278 {
6279 /* Fast path - all cons cells for this int are marked. */
6280 cblk->gcmarkbits[i] = 0;
6281 num_used += BITS_PER_INT;
6282 }
6283 else
6284 {
6285 /* Some cons cells for this int are not marked.
6286 Find which ones, and free them. */
6287 int start, pos, stop;
6288
6289 start = i * BITS_PER_INT;
6290 stop = lim - start;
6291 if (stop > BITS_PER_INT)
6292 stop = BITS_PER_INT;
6293 stop += start;
6294
6295 for (pos = start; pos < stop; pos++)
6296 {
6297 if (!CONS_MARKED_P (&cblk->conses[pos]))
6298 {
6299 this_free++;
6300 cblk->conses[pos].u.chain = cons_free_list;
6301 cons_free_list = &cblk->conses[pos];
34400008 6302#if GC_MARK_STACK
3ae2e3a3 6303 cons_free_list->car = Vdead;
34400008 6304#endif
3ae2e3a3
RS
6305 }
6306 else
6307 {
6308 num_used++;
6309 CONS_UNMARK (&cblk->conses[pos]);
6310 }
6311 }
6312 }
6313 }
6314
7146af97 6315 lim = CONS_BLOCK_SIZE;
6ca94ac9
KH
6316 /* If this block contains only free conses and we have already
6317 seen more than two blocks worth of free conses then deallocate
6318 this block. */
6feef451 6319 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
6ca94ac9 6320 {
6ca94ac9
KH
6321 *cprev = cblk->next;
6322 /* Unhook from the free list. */
28a099a4 6323 cons_free_list = cblk->conses[0].u.chain;
08b7c2cb 6324 lisp_align_free (cblk);
6ca94ac9
KH
6325 }
6326 else
6feef451
AS
6327 {
6328 num_free += this_free;
6329 cprev = &cblk->next;
6330 }
7146af97
JB
6331 }
6332 total_conses = num_used;
6333 total_free_conses = num_free;
6334 }
6335
7146af97
JB
6336 /* Put all unmarked floats on free list */
6337 {
6338 register struct float_block *fblk;
6ca94ac9 6339 struct float_block **fprev = &float_block;
7146af97 6340 register int lim = float_block_index;
c0c5c8ae 6341 EMACS_INT num_free = 0, num_used = 0;
7146af97
JB
6342
6343 float_free_list = 0;
177c0ea7 6344
6ca94ac9 6345 for (fblk = float_block; fblk; fblk = *fprev)
7146af97
JB
6346 {
6347 register int i;
6ca94ac9 6348 int this_free = 0;
7146af97 6349 for (i = 0; i < lim; i++)
ab6780cd 6350 if (!FLOAT_MARKED_P (&fblk->floats[i]))
7146af97 6351 {
6ca94ac9 6352 this_free++;
28a099a4 6353 fblk->floats[i].u.chain = float_free_list;
7146af97
JB
6354 float_free_list = &fblk->floats[i];
6355 }
6356 else
6357 {
6358 num_used++;
ab6780cd 6359 FLOAT_UNMARK (&fblk->floats[i]);
7146af97
JB
6360 }
6361 lim = FLOAT_BLOCK_SIZE;
6ca94ac9
KH
6362 /* If this block contains only free floats and we have already
6363 seen more than two blocks worth of free floats then deallocate
6364 this block. */
6feef451 6365 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
6ca94ac9 6366 {
6ca94ac9
KH
6367 *fprev = fblk->next;
6368 /* Unhook from the free list. */
28a099a4 6369 float_free_list = fblk->floats[0].u.chain;
ab6780cd 6370 lisp_align_free (fblk);
6ca94ac9
KH
6371 }
6372 else
6feef451
AS
6373 {
6374 num_free += this_free;
6375 fprev = &fblk->next;
6376 }
7146af97
JB
6377 }
6378 total_floats = num_used;
6379 total_free_floats = num_free;
6380 }
7146af97 6381
d5e35230
JA
6382 /* Put all unmarked intervals on free list */
6383 {
6384 register struct interval_block *iblk;
6ca94ac9 6385 struct interval_block **iprev = &interval_block;
d5e35230 6386 register int lim = interval_block_index;
c0c5c8ae 6387 EMACS_INT num_free = 0, num_used = 0;
d5e35230
JA
6388
6389 interval_free_list = 0;
6390
6ca94ac9 6391 for (iblk = interval_block; iblk; iblk = *iprev)
d5e35230
JA
6392 {
6393 register int i;
6ca94ac9 6394 int this_free = 0;
d5e35230
JA
6395
6396 for (i = 0; i < lim; i++)
6397 {
2336fe58 6398 if (!iblk->intervals[i].gcmarkbit)
d5e35230 6399 {
439d5cb4 6400 SET_INTERVAL_PARENT (&iblk->intervals[i], interval_free_list);
d5e35230 6401 interval_free_list = &iblk->intervals[i];
6ca94ac9 6402 this_free++;
d5e35230
JA
6403 }
6404 else
6405 {
6406 num_used++;
2336fe58 6407 iblk->intervals[i].gcmarkbit = 0;
d5e35230
JA
6408 }
6409 }
6410 lim = INTERVAL_BLOCK_SIZE;
6ca94ac9
KH
6411 /* If this block contains only free intervals and we have already
6412 seen more than two blocks worth of free intervals then
6413 deallocate this block. */
6feef451 6414 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
6ca94ac9 6415 {
6ca94ac9
KH
6416 *iprev = iblk->next;
6417 /* Unhook from the free list. */
439d5cb4 6418 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
c8099634 6419 lisp_free (iblk);
6ca94ac9
KH
6420 }
6421 else
6feef451
AS
6422 {
6423 num_free += this_free;
6424 iprev = &iblk->next;
6425 }
d5e35230
JA
6426 }
6427 total_intervals = num_used;
6428 total_free_intervals = num_free;
6429 }
d5e35230 6430
7146af97
JB
6431 /* Put all unmarked symbols on free list */
6432 {
6433 register struct symbol_block *sblk;
6ca94ac9 6434 struct symbol_block **sprev = &symbol_block;
7146af97 6435 register int lim = symbol_block_index;
c0c5c8ae 6436 EMACS_INT num_free = 0, num_used = 0;
7146af97 6437
d285b373 6438 symbol_free_list = NULL;
177c0ea7 6439
6ca94ac9 6440 for (sblk = symbol_block; sblk; sblk = *sprev)
7146af97 6441 {
6ca94ac9 6442 int this_free = 0;
d55c12ed
AS
6443 union aligned_Lisp_Symbol *sym = sblk->symbols;
6444 union aligned_Lisp_Symbol *end = sym + lim;
d285b373
GM
6445
6446 for (; sym < end; ++sym)
6447 {
20035321
SM
6448 /* Check if the symbol was created during loadup. In such a case
6449 it might be pointed to by pure bytecode which we don't trace,
6450 so we conservatively assume that it is live. */
d55c12ed 6451 int pure_p = PURE_POINTER_P (XSTRING (sym->s.xname));
177c0ea7 6452
d55c12ed 6453 if (!sym->s.gcmarkbit && !pure_p)
d285b373 6454 {
d55c12ed
AS
6455 if (sym->s.redirect == SYMBOL_LOCALIZED)
6456 xfree (SYMBOL_BLV (&sym->s));
6457 sym->s.next = symbol_free_list;
6458 symbol_free_list = &sym->s;
34400008 6459#if GC_MARK_STACK
d285b373 6460 symbol_free_list->function = Vdead;
34400008 6461#endif
d285b373
GM
6462 ++this_free;
6463 }
6464 else
6465 {
6466 ++num_used;
6467 if (!pure_p)
d55c12ed
AS
6468 UNMARK_STRING (XSTRING (sym->s.xname));
6469 sym->s.gcmarkbit = 0;
d285b373
GM
6470 }
6471 }
177c0ea7 6472
7146af97 6473 lim = SYMBOL_BLOCK_SIZE;
6ca94ac9
KH
6474 /* If this block contains only free symbols and we have already
6475 seen more than two blocks worth of free symbols then deallocate
6476 this block. */
6feef451 6477 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
6ca94ac9 6478 {
6ca94ac9
KH
6479 *sprev = sblk->next;
6480 /* Unhook from the free list. */
d55c12ed 6481 symbol_free_list = sblk->symbols[0].s.next;
c8099634 6482 lisp_free (sblk);
6ca94ac9
KH
6483 }
6484 else
6feef451
AS
6485 {
6486 num_free += this_free;
6487 sprev = &sblk->next;
6488 }
7146af97
JB
6489 }
6490 total_symbols = num_used;
6491 total_free_symbols = num_free;
6492 }
6493
a9faeabe
RS
6494 /* Put all unmarked misc's on free list.
6495 For a marker, first unchain it from the buffer it points into. */
7146af97
JB
6496 {
6497 register struct marker_block *mblk;
6ca94ac9 6498 struct marker_block **mprev = &marker_block;
7146af97 6499 register int lim = marker_block_index;
c0c5c8ae 6500 EMACS_INT num_free = 0, num_used = 0;
7146af97
JB
6501
6502 marker_free_list = 0;
177c0ea7 6503
6ca94ac9 6504 for (mblk = marker_block; mblk; mblk = *mprev)
7146af97
JB
6505 {
6506 register int i;
6ca94ac9 6507 int this_free = 0;
fa05e253 6508
7146af97 6509 for (i = 0; i < lim; i++)
465edf35 6510 {
d55c12ed 6511 if (!mblk->markers[i].m.u_any.gcmarkbit)
465edf35 6512 {
d55c12ed
AS
6513 if (mblk->markers[i].m.u_any.type == Lisp_Misc_Marker)
6514 unchain_marker (&mblk->markers[i].m.u_marker);
fa05e253
RS
6515 /* Set the type of the freed object to Lisp_Misc_Free.
6516 We could leave the type alone, since nobody checks it,
465edf35 6517 but this might catch bugs faster. */
d55c12ed
AS
6518 mblk->markers[i].m.u_marker.type = Lisp_Misc_Free;
6519 mblk->markers[i].m.u_free.chain = marker_free_list;
6520 marker_free_list = &mblk->markers[i].m;
6ca94ac9 6521 this_free++;
465edf35
KH
6522 }
6523 else
6524 {
6525 num_used++;
d55c12ed 6526 mblk->markers[i].m.u_any.gcmarkbit = 0;
465edf35
KH
6527 }
6528 }
7146af97 6529 lim = MARKER_BLOCK_SIZE;
6ca94ac9
KH
6530 /* If this block contains only free markers and we have already
6531 seen more than two blocks worth of free markers then deallocate
6532 this block. */
6feef451 6533 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
6ca94ac9 6534 {
6ca94ac9
KH
6535 *mprev = mblk->next;
6536 /* Unhook from the free list. */
d55c12ed 6537 marker_free_list = mblk->markers[0].m.u_free.chain;
c8099634 6538 lisp_free (mblk);
6ca94ac9
KH
6539 }
6540 else
6feef451
AS
6541 {
6542 num_free += this_free;
6543 mprev = &mblk->next;
6544 }
7146af97
JB
6545 }
6546
6547 total_markers = num_used;
6548 total_free_markers = num_free;
6549 }
6550
6551 /* Free all unmarked buffers */
6552 {
6553 register struct buffer *buffer = all_buffers, *prev = 0, *next;
6554
6555 while (buffer)
3ef06d12 6556 if (!VECTOR_MARKED_P (buffer))
7146af97
JB
6557 {
6558 if (prev)
eab3844f 6559 prev->header.next = buffer->header.next;
7146af97 6560 else
eab3844f
PE
6561 all_buffers = buffer->header.next.buffer;
6562 next = buffer->header.next.buffer;
34400008 6563 lisp_free (buffer);
7146af97
JB
6564 buffer = next;
6565 }
6566 else
6567 {
3ef06d12 6568 VECTOR_UNMARK (buffer);
30e3190a 6569 UNMARK_BALANCE_INTERVALS (BUF_INTERVALS (buffer));
eab3844f 6570 prev = buffer, buffer = buffer->header.next.buffer;
7146af97
JB
6571 }
6572 }
6573
f3372c87 6574 sweep_vectors ();
177c0ea7 6575
676a7251
GM
6576#ifdef GC_CHECK_STRING_BYTES
6577 if (!noninteractive)
6578 check_string_bytes (1);
6579#endif
7146af97 6580}
7146af97 6581
7146af97 6582
7146af97 6583
7146af97 6584\f
20d24714
JB
6585/* Debugging aids. */
6586
31ce1c91 6587DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
a6266d23 6588 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
228299fa 6589This may be helpful in debugging Emacs's memory usage.
7ee72033 6590We divide the value by 1024 to make sure it fits in a Lisp integer. */)
5842a27b 6591 (void)
20d24714
JB
6592{
6593 Lisp_Object end;
6594
d01a7826 6595 XSETINT (end, (intptr_t) (char *) sbrk (0) / 1024);
20d24714
JB
6596
6597 return end;
6598}
6599
310ea200 6600DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
a6266d23 6601 doc: /* Return a list of counters that measure how much consing there has been.
228299fa
GM
6602Each of these counters increments for a certain kind of object.
6603The counters wrap around from the largest positive integer to zero.
6604Garbage collection does not decrease them.
6605The elements of the value are as follows:
6606 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
6607All are in units of 1 = one object consed
6608except for VECTOR-CELLS and STRING-CHARS, which count the total length of
6609objects consed.
6610MISCS include overlays, markers, and some internal types.
6611Frames, windows, buffers, and subprocesses count as vectors
7ee72033 6612 (but the contents of a buffer's text do not count here). */)
5842a27b 6613 (void)
310ea200 6614{
2e471eb5 6615 Lisp_Object consed[8];
310ea200 6616
78e985eb
GM
6617 consed[0] = make_number (min (MOST_POSITIVE_FIXNUM, cons_cells_consed));
6618 consed[1] = make_number (min (MOST_POSITIVE_FIXNUM, floats_consed));
6619 consed[2] = make_number (min (MOST_POSITIVE_FIXNUM, vector_cells_consed));
6620 consed[3] = make_number (min (MOST_POSITIVE_FIXNUM, symbols_consed));
6621 consed[4] = make_number (min (MOST_POSITIVE_FIXNUM, string_chars_consed));
6622 consed[5] = make_number (min (MOST_POSITIVE_FIXNUM, misc_objects_consed));
6623 consed[6] = make_number (min (MOST_POSITIVE_FIXNUM, intervals_consed));
6624 consed[7] = make_number (min (MOST_POSITIVE_FIXNUM, strings_consed));
310ea200 6625
2e471eb5 6626 return Flist (8, consed);
310ea200 6627}
e0b8c689 6628
8b058d44
EZ
6629/* Find at most FIND_MAX symbols which have OBJ as their value or
6630 function. This is used in gdbinit's `xwhichsymbols' command. */
6631
6632Lisp_Object
196e41e4 6633which_symbols (Lisp_Object obj, EMACS_INT find_max)
8b058d44
EZ
6634{
6635 struct symbol_block *sblk;
8d0eb4c2 6636 ptrdiff_t gc_count = inhibit_garbage_collection ();
8b058d44
EZ
6637 Lisp_Object found = Qnil;
6638
ca78dc43 6639 if (! DEADP (obj))
8b058d44
EZ
6640 {
6641 for (sblk = symbol_block; sblk; sblk = sblk->next)
6642 {
9426aba4 6643 union aligned_Lisp_Symbol *aligned_sym = sblk->symbols;
8b058d44
EZ
6644 int bn;
6645
9426aba4 6646 for (bn = 0; bn < SYMBOL_BLOCK_SIZE; bn++, aligned_sym++)
8b058d44 6647 {
9426aba4 6648 struct Lisp_Symbol *sym = &aligned_sym->s;
8b058d44
EZ
6649 Lisp_Object val;
6650 Lisp_Object tem;
6651
6652 if (sblk == symbol_block && bn >= symbol_block_index)
6653 break;
6654
6655 XSETSYMBOL (tem, sym);
6656 val = find_symbol_value (tem);
6657 if (EQ (val, obj)
6658 || EQ (sym->function, obj)
6659 || (!NILP (sym->function)
6660 && COMPILEDP (sym->function)
6661 && EQ (AREF (sym->function, COMPILED_BYTECODE), obj))
6662 || (!NILP (val)
6663 && COMPILEDP (val)
6664 && EQ (AREF (val, COMPILED_BYTECODE), obj)))
6665 {
6666 found = Fcons (tem, found);
6667 if (--find_max == 0)
6668 goto out;
6669 }
6670 }
6671 }
6672 }
6673
6674 out:
6675 unbind_to (gc_count, Qnil);
6676 return found;
6677}
6678
244ed907 6679#ifdef ENABLE_CHECKING
e0b8c689 6680int suppress_checking;
d3d47262 6681
e0b8c689 6682void
971de7fb 6683die (const char *msg, const char *file, int line)
e0b8c689 6684{
67ee9f6e 6685 fprintf (stderr, "\r\n%s:%d: Emacs fatal error: %s\r\n",
e0b8c689
KR
6686 file, line, msg);
6687 abort ();
6688}
244ed907 6689#endif
20d24714 6690\f
7146af97
JB
6691/* Initialization */
6692
dfcf069d 6693void
971de7fb 6694init_alloc_once (void)
7146af97
JB
6695{
6696 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
9e713715
GM
6697 purebeg = PUREBEG;
6698 pure_size = PURESIZE;
1f0b3fd2 6699 pure_bytes_used = 0;
e5bc14d4 6700 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
9e713715
GM
6701 pure_bytes_used_before_overflow = 0;
6702
ab6780cd
SM
6703 /* Initialize the list of free aligned blocks. */
6704 free_ablock = NULL;
6705
877935b1 6706#if GC_MARK_STACK || defined GC_MALLOC_CHECK
34400008
GM
6707 mem_init ();
6708 Vdead = make_pure_string ("DEAD", 4, 4, 0);
6709#endif
9e713715 6710
7146af97 6711 ignore_warnings = 1;
d1658221
RS
6712#ifdef DOUG_LEA_MALLOC
6713 mallopt (M_TRIM_THRESHOLD, 128*1024); /* trim threshold */
6714 mallopt (M_MMAP_THRESHOLD, 64*1024); /* mmap threshold */
81d492d5 6715 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* max. number of mmap'ed areas */
d1658221 6716#endif
7146af97
JB
6717 init_strings ();
6718 init_cons ();
6719 init_symbol ();
6720 init_marker ();
7146af97 6721 init_float ();
34400008 6722 init_intervals ();
f3372c87 6723 init_vectors ();
5ac58e4c 6724 init_weak_hash_tables ();
d5e35230 6725
276cbe5a
RS
6726#ifdef REL_ALLOC
6727 malloc_hysteresis = 32;
6728#else
6729 malloc_hysteresis = 0;
6730#endif
6731
24d8a105 6732 refill_memory_reserve ();
276cbe5a 6733
7146af97
JB
6734 ignore_warnings = 0;
6735 gcprolist = 0;
630686c8 6736 byte_stack_list = 0;
7146af97
JB
6737 staticidx = 0;
6738 consing_since_gc = 0;
7d179cea 6739 gc_cons_threshold = 100000 * sizeof (Lisp_Object);
974aae61 6740 gc_relative_threshold = 0;
7146af97
JB
6741}
6742
dfcf069d 6743void
971de7fb 6744init_alloc (void)
7146af97
JB
6745{
6746 gcprolist = 0;
630686c8 6747 byte_stack_list = 0;
182ff242
GM
6748#if GC_MARK_STACK
6749#if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
6750 setjmp_tested_p = longjmps_done = 0;
6751#endif
6752#endif
2c5bd608
DL
6753 Vgc_elapsed = make_float (0.0);
6754 gcs_done = 0;
7146af97
JB
6755}
6756
6757void
971de7fb 6758syms_of_alloc (void)
7146af97 6759{
29208e82 6760 DEFVAR_INT ("gc-cons-threshold", gc_cons_threshold,
fb7ada5f 6761 doc: /* Number of bytes of consing between garbage collections.
228299fa
GM
6762Garbage collection can happen automatically once this many bytes have been
6763allocated since the last garbage collection. All data types count.
7146af97 6764
228299fa 6765Garbage collection happens automatically only when `eval' is called.
7146af97 6766
228299fa 6767By binding this temporarily to a large number, you can effectively
96f077ad
SM
6768prevent garbage collection during a part of the program.
6769See also `gc-cons-percentage'. */);
6770
29208e82 6771 DEFVAR_LISP ("gc-cons-percentage", Vgc_cons_percentage,
fb7ada5f 6772 doc: /* Portion of the heap used for allocation.
96f077ad
SM
6773Garbage collection can happen automatically once this portion of the heap
6774has been allocated since the last garbage collection.
6775If this portion is smaller than `gc-cons-threshold', this is ignored. */);
6776 Vgc_cons_percentage = make_float (0.1);
0819585c 6777
29208e82 6778 DEFVAR_INT ("pure-bytes-used", pure_bytes_used,
333f9019 6779 doc: /* Number of bytes of shareable Lisp data allocated so far. */);
0819585c 6780
29208e82 6781 DEFVAR_INT ("cons-cells-consed", cons_cells_consed,
a6266d23 6782 doc: /* Number of cons cells that have been consed so far. */);
0819585c 6783
29208e82 6784 DEFVAR_INT ("floats-consed", floats_consed,
a6266d23 6785 doc: /* Number of floats that have been consed so far. */);
0819585c 6786
29208e82 6787 DEFVAR_INT ("vector-cells-consed", vector_cells_consed,
a6266d23 6788 doc: /* Number of vector cells that have been consed so far. */);
0819585c 6789
29208e82 6790 DEFVAR_INT ("symbols-consed", symbols_consed,
a6266d23 6791 doc: /* Number of symbols that have been consed so far. */);
0819585c 6792
29208e82 6793 DEFVAR_INT ("string-chars-consed", string_chars_consed,
a6266d23 6794 doc: /* Number of string characters that have been consed so far. */);
0819585c 6795
29208e82 6796 DEFVAR_INT ("misc-objects-consed", misc_objects_consed,
01a6dcc8
GM
6797 doc: /* Number of miscellaneous objects that have been consed so far.
6798These include markers and overlays, plus certain objects not visible
6799to users. */);
2e471eb5 6800
29208e82 6801 DEFVAR_INT ("intervals-consed", intervals_consed,
a6266d23 6802 doc: /* Number of intervals that have been consed so far. */);
7146af97 6803
29208e82 6804 DEFVAR_INT ("strings-consed", strings_consed,
a6266d23 6805 doc: /* Number of strings that have been consed so far. */);
228299fa 6806
29208e82 6807 DEFVAR_LISP ("purify-flag", Vpurify_flag,
a6266d23 6808 doc: /* Non-nil means loading Lisp code in order to dump an executable.
e9515805
SM
6809This means that certain objects should be allocated in shared (pure) space.
6810It can also be set to a hash-table, in which case this table is used to
6811do hash-consing of the objects allocated to pure space. */);
228299fa 6812
29208e82 6813 DEFVAR_BOOL ("garbage-collection-messages", garbage_collection_messages,
a6266d23 6814 doc: /* Non-nil means display messages at start and end of garbage collection. */);
299585ee
RS
6815 garbage_collection_messages = 0;
6816
29208e82 6817 DEFVAR_LISP ("post-gc-hook", Vpost_gc_hook,
a6266d23 6818 doc: /* Hook run after garbage collection has finished. */);
9e713715 6819 Vpost_gc_hook = Qnil;
cd3520a4 6820 DEFSYM (Qpost_gc_hook, "post-gc-hook");
9e713715 6821
29208e82 6822 DEFVAR_LISP ("memory-signal-data", Vmemory_signal_data,
74a54b04 6823 doc: /* Precomputed `signal' argument for memory-full error. */);
bcb61d60
KH
6824 /* We build this in advance because if we wait until we need it, we might
6825 not be able to allocate the memory to hold it. */
74a54b04 6826 Vmemory_signal_data
f4265f6c
DN
6827 = pure_cons (Qerror,
6828 pure_cons (make_pure_c_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"), Qnil));
74a54b04 6829
29208e82 6830 DEFVAR_LISP ("memory-full", Vmemory_full,
24d8a105 6831 doc: /* Non-nil means Emacs cannot get much more Lisp memory. */);
74a54b04 6832 Vmemory_full = Qnil;
bcb61d60 6833
cd3520a4
JB
6834 DEFSYM (Qgc_cons_threshold, "gc-cons-threshold");
6835 DEFSYM (Qchar_table_extra_slots, "char-table-extra-slots");
a59de17b 6836
29208e82 6837 DEFVAR_LISP ("gc-elapsed", Vgc_elapsed,
2c5bd608 6838 doc: /* Accumulated time elapsed in garbage collections.
e7415487 6839The time is in seconds as a floating point value. */);
29208e82 6840 DEFVAR_INT ("gcs-done", gcs_done,
e7415487 6841 doc: /* Accumulated number of garbage collections done. */);
2c5bd608 6842
7146af97
JB
6843 defsubr (&Scons);
6844 defsubr (&Slist);
6845 defsubr (&Svector);
6846 defsubr (&Smake_byte_code);
6847 defsubr (&Smake_list);
6848 defsubr (&Smake_vector);
6849 defsubr (&Smake_string);
7b07587b 6850 defsubr (&Smake_bool_vector);
7146af97
JB
6851 defsubr (&Smake_symbol);
6852 defsubr (&Smake_marker);
6853 defsubr (&Spurecopy);
6854 defsubr (&Sgarbage_collect);
20d24714 6855 defsubr (&Smemory_limit);
310ea200 6856 defsubr (&Smemory_use_counts);
34400008
GM
6857
6858#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
6859 defsubr (&Sgc_status);
6860#endif
7146af97 6861}