Add an example on how to use prog-mode.
[bpt/emacs.git] / src / alloc.c
CommitLineData
7146af97 1/* Storage allocation and gc for GNU Emacs Lisp interpreter.
73b0cd50 2 Copyright (C) 1985-1986, 1988, 1993-1995, 1997-2011
8cabe764 3 Free Software Foundation, Inc.
7146af97
JB
4
5This file is part of GNU Emacs.
6
9ec0b715 7GNU Emacs is free software: you can redistribute it and/or modify
7146af97 8it under the terms of the GNU General Public License as published by
9ec0b715
GM
9the Free Software Foundation, either version 3 of the License, or
10(at your option) any later version.
7146af97
JB
11
12GNU Emacs is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15GNU General Public License for more details.
16
17You should have received a copy of the GNU General Public License
9ec0b715 18along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
7146af97 19
18160b98 20#include <config.h>
e9b309ac 21#include <stdio.h>
ab6780cd 22#include <limits.h> /* For CHAR_BIT. */
d7306fe6 23#include <setjmp.h>
92939d31 24
68c45bf0 25#include <signal.h>
92939d31 26
aa477689
JD
27#ifdef HAVE_GTK_AND_PTHREAD
28#include <pthread.h>
29#endif
30
7539e11f
KR
31/* This file is part of the core Lisp implementation, and thus must
32 deal with the real data structures. If the Lisp implementation is
33 replaced, this file likely will not be used. */
2e471eb5 34
7539e11f 35#undef HIDE_LISP_IMPLEMENTATION
7146af97 36#include "lisp.h"
ece93c02 37#include "process.h"
d5e35230 38#include "intervals.h"
4c0be5f4 39#include "puresize.h"
7146af97
JB
40#include "buffer.h"
41#include "window.h"
2538fae4 42#include "keyboard.h"
502b9b64 43#include "frame.h"
9ac0d9e0 44#include "blockinput.h"
9d80e883 45#include "character.h"
e065a56e 46#include "syssignal.h"
4a729fd8 47#include "termhooks.h" /* For struct terminal. */
34400008 48#include <setjmp.h>
e065a56e 49
6b61353c
KH
50/* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
51 memory. Can do this only if using gmalloc.c. */
52
53#if defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC
54#undef GC_MALLOC_CHECK
55#endif
56
bf952fb6 57#include <unistd.h>
4004364e 58#ifndef HAVE_UNISTD_H
bf952fb6
DL
59extern POINTER_TYPE *sbrk ();
60#endif
ee1eea5c 61
de7124a7 62#include <fcntl.h>
de7124a7 63
69666f77 64#ifdef WINDOWSNT
f892cf9c 65#include "w32.h"
69666f77
EZ
66#endif
67
d1658221 68#ifdef DOUG_LEA_MALLOC
2e471eb5 69
d1658221 70#include <malloc.h>
3e60b029
DL
71/* malloc.h #defines this as size_t, at least in glibc2. */
72#ifndef __malloc_size_t
d1658221 73#define __malloc_size_t int
3e60b029 74#endif
81d492d5 75
2e471eb5
GM
76/* Specify maximum number of areas to mmap. It would be nice to use a
77 value that explicitly means "no limit". */
78
81d492d5
RS
79#define MMAP_MAX_AREAS 100000000
80
2e471eb5
GM
81#else /* not DOUG_LEA_MALLOC */
82
276cbe5a
RS
83/* The following come from gmalloc.c. */
84
276cbe5a 85#define __malloc_size_t size_t
276cbe5a 86extern __malloc_size_t _bytes_used;
3e60b029 87extern __malloc_size_t __malloc_extra_blocks;
2e471eb5
GM
88
89#endif /* not DOUG_LEA_MALLOC */
276cbe5a 90
7bc26fdb
PE
91#if ! defined SYSTEM_MALLOC && ! defined SYNC_INPUT
92#ifdef HAVE_GTK_AND_PTHREAD
aa477689 93
f415cacd
JD
94/* When GTK uses the file chooser dialog, different backends can be loaded
95 dynamically. One such a backend is the Gnome VFS backend that gets loaded
96 if you run Gnome. That backend creates several threads and also allocates
97 memory with malloc.
98
99 If Emacs sets malloc hooks (! SYSTEM_MALLOC) and the emacs_blocked_*
100 functions below are called from malloc, there is a chance that one
101 of these threads preempts the Emacs main thread and the hook variables
333f1b6f 102 end up in an inconsistent state. So we have a mutex to prevent that (note
f415cacd
JD
103 that the backend handles concurrent access to malloc within its own threads
104 but Emacs code running in the main thread is not included in that control).
105
026cdede 106 When UNBLOCK_INPUT is called, reinvoke_input_signal may be called. If this
f415cacd
JD
107 happens in one of the backend threads we will have two threads that tries
108 to run Emacs code at once, and the code is not prepared for that.
109 To prevent that, we only call BLOCK/UNBLOCK from the main thread. */
110
aa477689 111static pthread_mutex_t alloc_mutex;
aa477689 112
959dc601
JD
113#define BLOCK_INPUT_ALLOC \
114 do \
115 { \
116 if (pthread_equal (pthread_self (), main_thread)) \
86302e37 117 BLOCK_INPUT; \
959dc601
JD
118 pthread_mutex_lock (&alloc_mutex); \
119 } \
aa477689 120 while (0)
959dc601
JD
121#define UNBLOCK_INPUT_ALLOC \
122 do \
123 { \
124 pthread_mutex_unlock (&alloc_mutex); \
125 if (pthread_equal (pthread_self (), main_thread)) \
86302e37 126 UNBLOCK_INPUT; \
959dc601 127 } \
aa477689
JD
128 while (0)
129
7bc26fdb 130#else /* ! defined HAVE_GTK_AND_PTHREAD */
aa477689
JD
131
132#define BLOCK_INPUT_ALLOC BLOCK_INPUT
133#define UNBLOCK_INPUT_ALLOC UNBLOCK_INPUT
134
7bc26fdb
PE
135#endif /* ! defined HAVE_GTK_AND_PTHREAD */
136#endif /* ! defined SYSTEM_MALLOC && ! defined SYNC_INPUT */
aa477689 137
2e471eb5
GM
138/* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
139 to a struct Lisp_String. */
140
7cdee936
SM
141#define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
142#define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
b059de99 143#define STRING_MARKED_P(S) (((S)->size & ARRAY_MARK_FLAG) != 0)
2e471eb5 144
eab3844f
PE
145#define VECTOR_MARK(V) ((V)->header.size |= ARRAY_MARK_FLAG)
146#define VECTOR_UNMARK(V) ((V)->header.size &= ~ARRAY_MARK_FLAG)
147#define VECTOR_MARKED_P(V) (((V)->header.size & ARRAY_MARK_FLAG) != 0)
3ef06d12 148
7bc26fdb
PE
149/* Value is the number of bytes of S, a pointer to a struct Lisp_String.
150 Be careful during GC, because S->size contains the mark bit for
2e471eb5
GM
151 strings. */
152
3ef06d12 153#define GC_STRING_BYTES(S) (STRING_BYTES (S))
2e471eb5 154
29208e82
TT
155/* Global variables. */
156struct emacs_globals globals;
157
2e471eb5
GM
158/* Number of bytes of consing done since the last gc. */
159
0de4bb68 160EMACS_INT consing_since_gc;
7146af97 161
974aae61
RS
162/* Similar minimum, computed from Vgc_cons_percentage. */
163
164EMACS_INT gc_relative_threshold;
310ea200 165
24d8a105
RS
166/* Minimum number of bytes of consing since GC before next GC,
167 when memory is full. */
168
169EMACS_INT memory_full_cons_threshold;
170
2e471eb5
GM
171/* Nonzero during GC. */
172
7146af97
JB
173int gc_in_progress;
174
3de0effb
RS
175/* Nonzero means abort if try to GC.
176 This is for code which is written on the assumption that
177 no GC will happen, so as to verify that assumption. */
178
179int abort_on_gc;
180
34400008
GM
181/* Number of live and free conses etc. */
182
c0c5c8ae
PE
183static EMACS_INT total_conses, total_markers, total_symbols, total_vector_size;
184static EMACS_INT total_free_conses, total_free_markers, total_free_symbols;
185static EMACS_INT total_free_floats, total_floats;
fd27a537 186
2e471eb5 187/* Points to memory space allocated as "spare", to be freed if we run
24d8a105
RS
188 out of memory. We keep one large block, four cons-blocks, and
189 two string blocks. */
2e471eb5 190
d3d47262 191static char *spare_memory[7];
276cbe5a 192
2b6148e4
PE
193/* Amount of spare memory to keep in large reserve block, or to see
194 whether this much is available when malloc fails on a larger request. */
2e471eb5 195
276cbe5a 196#define SPARE_MEMORY (1 << 14)
4d09bcf6 197
276cbe5a 198/* Number of extra blocks malloc should get when it needs more core. */
2e471eb5 199
276cbe5a
RS
200static int malloc_hysteresis;
201
1b8950e5
RS
202/* Initialize it to a nonzero value to force it into data space
203 (rather than bss space). That way unexec will remap it into text
204 space (pure), on some systems. We have not implemented the
205 remapping on more recent systems because this is less important
206 nowadays than in the days of small memories and timesharing. */
2e471eb5 207
244ed907
PE
208#ifndef VIRT_ADDR_VARIES
209static
210#endif
2c4685ee 211EMACS_INT pure[(PURESIZE + sizeof (EMACS_INT) - 1) / sizeof (EMACS_INT)] = {1,};
7146af97 212#define PUREBEG (char *) pure
2e471eb5 213
9e713715 214/* Pointer to the pure area, and its size. */
2e471eb5 215
9e713715
GM
216static char *purebeg;
217static size_t pure_size;
218
219/* Number of bytes of pure storage used before pure storage overflowed.
220 If this is non-zero, this implies that an overflow occurred. */
221
222static size_t pure_bytes_used_before_overflow;
7146af97 223
34400008
GM
224/* Value is non-zero if P points into pure space. */
225
226#define PURE_POINTER_P(P) \
227 (((PNTR_COMPARISON_TYPE) (P) \
9e713715 228 < (PNTR_COMPARISON_TYPE) ((char *) purebeg + pure_size)) \
34400008 229 && ((PNTR_COMPARISON_TYPE) (P) \
9e713715 230 >= (PNTR_COMPARISON_TYPE) purebeg))
34400008 231
e5bc14d4
YM
232/* Index in pure at which next pure Lisp object will be allocated.. */
233
234static EMACS_INT pure_bytes_used_lisp;
235
236/* Number of bytes allocated for non-Lisp objects in pure storage. */
237
238static EMACS_INT pure_bytes_used_non_lisp;
239
2e471eb5
GM
240/* If nonzero, this is a warning delivered by malloc and not yet
241 displayed. */
242
a8fe7202 243const char *pending_malloc_warning;
7146af97
JB
244
245/* Maximum amount of C stack to save when a GC happens. */
246
247#ifndef MAX_SAVE_STACK
248#define MAX_SAVE_STACK 16000
249#endif
250
251/* Buffer in which we save a copy of the C stack at each GC. */
252
dd3f25f7 253#if MAX_SAVE_STACK > 0
d3d47262 254static char *stack_copy;
dd3f25f7
PE
255static size_t stack_copy_size;
256#endif
7146af97 257
2e471eb5
GM
258/* Non-zero means ignore malloc warnings. Set during initialization.
259 Currently not used. */
260
d3d47262 261static int ignore_warnings;
350273a4 262
955cbe7b
PE
263static Lisp_Object Qgc_cons_threshold;
264Lisp_Object Qchar_table_extra_slots;
e8197642 265
9e713715
GM
266/* Hook run after GC has finished. */
267
955cbe7b 268static Lisp_Object Qpost_gc_hook;
2c5bd608 269
f57e2426
J
270static void mark_buffer (Lisp_Object);
271static void mark_terminals (void);
f57e2426
J
272static void gc_sweep (void);
273static void mark_glyph_matrix (struct glyph_matrix *);
274static void mark_face_cache (struct face_cache *);
41c28a37 275
69003fd8
PE
276#if !defined REL_ALLOC || defined SYSTEM_MALLOC
277static void refill_memory_reserve (void);
278#endif
f57e2426
J
279static struct Lisp_String *allocate_string (void);
280static void compact_small_strings (void);
281static void free_large_strings (void);
282static void sweep_strings (void);
244ed907 283static void free_misc (Lisp_Object);
34400008 284
34400008
GM
285/* When scanning the C stack for live Lisp objects, Emacs keeps track
286 of what memory allocated via lisp_malloc is intended for what
287 purpose. This enumeration specifies the type of memory. */
288
289enum mem_type
290{
291 MEM_TYPE_NON_LISP,
292 MEM_TYPE_BUFFER,
293 MEM_TYPE_CONS,
294 MEM_TYPE_STRING,
295 MEM_TYPE_MISC,
296 MEM_TYPE_SYMBOL,
297 MEM_TYPE_FLOAT,
9c545a55
SM
298 /* We used to keep separate mem_types for subtypes of vectors such as
299 process, hash_table, frame, terminal, and window, but we never made
300 use of the distinction, so it only caused source-code complexity
301 and runtime slowdown. Minor but pointless. */
302 MEM_TYPE_VECTORLIKE
34400008
GM
303};
304
f57e2426
J
305static POINTER_TYPE *lisp_align_malloc (size_t, enum mem_type);
306static POINTER_TYPE *lisp_malloc (size_t, enum mem_type);
225ccad6 307
24d8a105 308
877935b1 309#if GC_MARK_STACK || defined GC_MALLOC_CHECK
0b378936
GM
310
311#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
312#include <stdio.h> /* For fprintf. */
313#endif
314
315/* A unique object in pure space used to make some Lisp objects
316 on free lists recognizable in O(1). */
317
d3d47262 318static Lisp_Object Vdead;
0b378936 319
877935b1
GM
320#ifdef GC_MALLOC_CHECK
321
322enum mem_type allocated_mem_type;
d3d47262 323static int dont_register_blocks;
877935b1
GM
324
325#endif /* GC_MALLOC_CHECK */
326
327/* A node in the red-black tree describing allocated memory containing
328 Lisp data. Each such block is recorded with its start and end
329 address when it is allocated, and removed from the tree when it
330 is freed.
331
332 A red-black tree is a balanced binary tree with the following
333 properties:
334
335 1. Every node is either red or black.
336 2. Every leaf is black.
337 3. If a node is red, then both of its children are black.
338 4. Every simple path from a node to a descendant leaf contains
339 the same number of black nodes.
340 5. The root is always black.
341
342 When nodes are inserted into the tree, or deleted from the tree,
343 the tree is "fixed" so that these properties are always true.
344
345 A red-black tree with N internal nodes has height at most 2
346 log(N+1). Searches, insertions and deletions are done in O(log N).
347 Please see a text book about data structures for a detailed
348 description of red-black trees. Any book worth its salt should
349 describe them. */
350
351struct mem_node
352{
9f7d9210
RS
353 /* Children of this node. These pointers are never NULL. When there
354 is no child, the value is MEM_NIL, which points to a dummy node. */
355 struct mem_node *left, *right;
356
357 /* The parent of this node. In the root node, this is NULL. */
358 struct mem_node *parent;
877935b1
GM
359
360 /* Start and end of allocated region. */
361 void *start, *end;
362
363 /* Node color. */
364 enum {MEM_BLACK, MEM_RED} color;
177c0ea7 365
877935b1
GM
366 /* Memory type. */
367 enum mem_type type;
368};
369
370/* Base address of stack. Set in main. */
371
372Lisp_Object *stack_base;
373
374/* Root of the tree describing allocated Lisp memory. */
375
376static struct mem_node *mem_root;
377
ece93c02
GM
378/* Lowest and highest known address in the heap. */
379
380static void *min_heap_address, *max_heap_address;
381
877935b1
GM
382/* Sentinel node of the tree. */
383
384static struct mem_node mem_z;
385#define MEM_NIL &mem_z
386
f57e2426
J
387static struct Lisp_Vector *allocate_vectorlike (EMACS_INT);
388static void lisp_free (POINTER_TYPE *);
389static void mark_stack (void);
390static int live_vector_p (struct mem_node *, void *);
391static int live_buffer_p (struct mem_node *, void *);
392static int live_string_p (struct mem_node *, void *);
393static int live_cons_p (struct mem_node *, void *);
394static int live_symbol_p (struct mem_node *, void *);
395static int live_float_p (struct mem_node *, void *);
396static int live_misc_p (struct mem_node *, void *);
397static void mark_maybe_object (Lisp_Object);
398static void mark_memory (void *, void *, int);
399static void mem_init (void);
400static struct mem_node *mem_insert (void *, void *, enum mem_type);
401static void mem_insert_fixup (struct mem_node *);
402static void mem_rotate_left (struct mem_node *);
403static void mem_rotate_right (struct mem_node *);
404static void mem_delete (struct mem_node *);
405static void mem_delete_fixup (struct mem_node *);
55d4c1b2 406static inline struct mem_node *mem_find (void *);
34400008 407
34400008
GM
408
409#if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
f57e2426 410static void check_gcpros (void);
34400008
GM
411#endif
412
877935b1 413#endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
34400008 414
1f0b3fd2
GM
415/* Recording what needs to be marked for gc. */
416
417struct gcpro *gcprolist;
418
379b98b1
PE
419/* Addresses of staticpro'd variables. Initialize it to a nonzero
420 value; otherwise some compilers put it into BSS. */
1f0b3fd2 421
0078170f 422#define NSTATICS 0x640
d3d47262 423static Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
1f0b3fd2
GM
424
425/* Index of next unused slot in staticvec. */
426
d3d47262 427static int staticidx = 0;
1f0b3fd2 428
f57e2426 429static POINTER_TYPE *pure_alloc (size_t, int);
1f0b3fd2
GM
430
431
432/* Value is SZ rounded up to the next multiple of ALIGNMENT.
433 ALIGNMENT must be a power of 2. */
434
ab6780cd 435#define ALIGN(ptr, ALIGNMENT) \
d01a7826 436 ((POINTER_TYPE *) ((((uintptr_t) (ptr)) + (ALIGNMENT) - 1) \
ab6780cd 437 & ~((ALIGNMENT) - 1)))
1f0b3fd2 438
ece93c02 439
7146af97 440\f
34400008
GM
441/************************************************************************
442 Malloc
443 ************************************************************************/
444
4455ad75 445/* Function malloc calls this if it finds we are near exhausting storage. */
d457598b
AS
446
447void
a8fe7202 448malloc_warning (const char *str)
7146af97
JB
449{
450 pending_malloc_warning = str;
451}
452
34400008 453
4455ad75 454/* Display an already-pending malloc warning. */
34400008 455
d457598b 456void
971de7fb 457display_malloc_warning (void)
7146af97 458{
4455ad75
RS
459 call3 (intern ("display-warning"),
460 intern ("alloc"),
461 build_string (pending_malloc_warning),
462 intern ("emergency"));
7146af97 463 pending_malloc_warning = 0;
7146af97 464}
49efed3a 465\f
276cbe5a
RS
466/* Called if we can't allocate relocatable space for a buffer. */
467
468void
531b0165 469buffer_memory_full (EMACS_INT nbytes)
276cbe5a 470{
2e471eb5
GM
471 /* If buffers use the relocating allocator, no need to free
472 spare_memory, because we may have plenty of malloc space left
473 that we could get, and if we don't, the malloc that fails will
474 itself cause spare_memory to be freed. If buffers don't use the
475 relocating allocator, treat this like any other failing
476 malloc. */
276cbe5a
RS
477
478#ifndef REL_ALLOC
531b0165 479 memory_full (nbytes);
276cbe5a
RS
480#endif
481
2e471eb5
GM
482 /* This used to call error, but if we've run out of memory, we could
483 get infinite recursion trying to build the string. */
9b306d37 484 xsignal (Qnil, Vmemory_signal_data);
7146af97
JB
485}
486
34400008 487
c9d624c6
PE
488#ifndef XMALLOC_OVERRUN_CHECK
489#define XMALLOC_OVERRUN_CHECK_SIZE 0
490#else
212f33f1 491
bdbed949
KS
492/* Check for overrun in malloc'ed buffers by wrapping a 16 byte header
493 and a 16 byte trailer around each block.
494
495 The header consists of 12 fixed bytes + a 4 byte integer contaning the
496 original block size, while the trailer consists of 16 fixed bytes.
497
498 The header is used to detect whether this block has been allocated
499 through these functions -- as it seems that some low-level libc
500 functions may bypass the malloc hooks.
501*/
502
503
212f33f1 504#define XMALLOC_OVERRUN_CHECK_SIZE 16
bdbed949 505
212f33f1
KS
506static char xmalloc_overrun_check_header[XMALLOC_OVERRUN_CHECK_SIZE-4] =
507 { 0x9a, 0x9b, 0xae, 0xaf,
508 0xbf, 0xbe, 0xce, 0xcf,
509 0xea, 0xeb, 0xec, 0xed };
510
511static char xmalloc_overrun_check_trailer[XMALLOC_OVERRUN_CHECK_SIZE] =
512 { 0xaa, 0xab, 0xac, 0xad,
513 0xba, 0xbb, 0xbc, 0xbd,
514 0xca, 0xcb, 0xcc, 0xcd,
515 0xda, 0xdb, 0xdc, 0xdd };
516
bdbed949
KS
517/* Macros to insert and extract the block size in the header. */
518
519#define XMALLOC_PUT_SIZE(ptr, size) \
520 (ptr[-1] = (size & 0xff), \
521 ptr[-2] = ((size >> 8) & 0xff), \
522 ptr[-3] = ((size >> 16) & 0xff), \
523 ptr[-4] = ((size >> 24) & 0xff))
524
525#define XMALLOC_GET_SIZE(ptr) \
526 (size_t)((unsigned)(ptr[-1]) | \
527 ((unsigned)(ptr[-2]) << 8) | \
528 ((unsigned)(ptr[-3]) << 16) | \
529 ((unsigned)(ptr[-4]) << 24))
530
531
d8f165a8
JD
532/* The call depth in overrun_check functions. For example, this might happen:
533 xmalloc()
534 overrun_check_malloc()
535 -> malloc -> (via hook)_-> emacs_blocked_malloc
536 -> overrun_check_malloc
537 call malloc (hooks are NULL, so real malloc is called).
538 malloc returns 10000.
539 add overhead, return 10016.
540 <- (back in overrun_check_malloc)
857ae68b 541 add overhead again, return 10032
d8f165a8 542 xmalloc returns 10032.
857ae68b
JD
543
544 (time passes).
545
d8f165a8
JD
546 xfree(10032)
547 overrun_check_free(10032)
548 decrease overhed
549 free(10016) <- crash, because 10000 is the original pointer. */
857ae68b
JD
550
551static int check_depth;
552
bdbed949
KS
553/* Like malloc, but wraps allocated block with header and trailer. */
554
2538aa2f 555static POINTER_TYPE *
e7974947 556overrun_check_malloc (size_t size)
212f33f1 557{
bdbed949 558 register unsigned char *val;
857ae68b 559 size_t overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_SIZE*2 : 0;
212f33f1 560
857ae68b
JD
561 val = (unsigned char *) malloc (size + overhead);
562 if (val && check_depth == 1)
212f33f1 563 {
72af86bd
AS
564 memcpy (val, xmalloc_overrun_check_header,
565 XMALLOC_OVERRUN_CHECK_SIZE - 4);
212f33f1 566 val += XMALLOC_OVERRUN_CHECK_SIZE;
bdbed949 567 XMALLOC_PUT_SIZE(val, size);
72af86bd
AS
568 memcpy (val + size, xmalloc_overrun_check_trailer,
569 XMALLOC_OVERRUN_CHECK_SIZE);
212f33f1 570 }
857ae68b 571 --check_depth;
212f33f1
KS
572 return (POINTER_TYPE *)val;
573}
574
bdbed949
KS
575
576/* Like realloc, but checks old block for overrun, and wraps new block
577 with header and trailer. */
578
2538aa2f 579static POINTER_TYPE *
e7974947 580overrun_check_realloc (POINTER_TYPE *block, size_t size)
212f33f1 581{
e7974947 582 register unsigned char *val = (unsigned char *) block;
857ae68b 583 size_t overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_SIZE*2 : 0;
212f33f1
KS
584
585 if (val
857ae68b 586 && check_depth == 1
72af86bd
AS
587 && memcmp (xmalloc_overrun_check_header,
588 val - XMALLOC_OVERRUN_CHECK_SIZE,
589 XMALLOC_OVERRUN_CHECK_SIZE - 4) == 0)
212f33f1 590 {
bdbed949 591 size_t osize = XMALLOC_GET_SIZE (val);
72af86bd
AS
592 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
593 XMALLOC_OVERRUN_CHECK_SIZE))
212f33f1 594 abort ();
72af86bd 595 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
212f33f1 596 val -= XMALLOC_OVERRUN_CHECK_SIZE;
72af86bd 597 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE);
212f33f1
KS
598 }
599
857ae68b 600 val = (unsigned char *) realloc ((POINTER_TYPE *)val, size + overhead);
212f33f1 601
857ae68b 602 if (val && check_depth == 1)
212f33f1 603 {
72af86bd
AS
604 memcpy (val, xmalloc_overrun_check_header,
605 XMALLOC_OVERRUN_CHECK_SIZE - 4);
212f33f1 606 val += XMALLOC_OVERRUN_CHECK_SIZE;
bdbed949 607 XMALLOC_PUT_SIZE(val, size);
72af86bd
AS
608 memcpy (val + size, xmalloc_overrun_check_trailer,
609 XMALLOC_OVERRUN_CHECK_SIZE);
212f33f1 610 }
857ae68b 611 --check_depth;
212f33f1
KS
612 return (POINTER_TYPE *)val;
613}
614
bdbed949
KS
615/* Like free, but checks block for overrun. */
616
2538aa2f 617static void
e7974947 618overrun_check_free (POINTER_TYPE *block)
212f33f1 619{
e7974947 620 unsigned char *val = (unsigned char *) block;
212f33f1 621
857ae68b 622 ++check_depth;
212f33f1 623 if (val
857ae68b 624 && check_depth == 1
72af86bd
AS
625 && memcmp (xmalloc_overrun_check_header,
626 val - XMALLOC_OVERRUN_CHECK_SIZE,
627 XMALLOC_OVERRUN_CHECK_SIZE - 4) == 0)
212f33f1 628 {
bdbed949 629 size_t osize = XMALLOC_GET_SIZE (val);
72af86bd
AS
630 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
631 XMALLOC_OVERRUN_CHECK_SIZE))
212f33f1 632 abort ();
454d7973
KS
633#ifdef XMALLOC_CLEAR_FREE_MEMORY
634 val -= XMALLOC_OVERRUN_CHECK_SIZE;
635 memset (val, 0xff, osize + XMALLOC_OVERRUN_CHECK_SIZE*2);
636#else
72af86bd 637 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
212f33f1 638 val -= XMALLOC_OVERRUN_CHECK_SIZE;
72af86bd 639 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE);
454d7973 640#endif
212f33f1
KS
641 }
642
643 free (val);
857ae68b 644 --check_depth;
212f33f1
KS
645}
646
647#undef malloc
648#undef realloc
649#undef free
650#define malloc overrun_check_malloc
651#define realloc overrun_check_realloc
652#define free overrun_check_free
653#endif
654
dafc79fa
SM
655#ifdef SYNC_INPUT
656/* When using SYNC_INPUT, we don't call malloc from a signal handler, so
657 there's no need to block input around malloc. */
658#define MALLOC_BLOCK_INPUT ((void)0)
659#define MALLOC_UNBLOCK_INPUT ((void)0)
660#else
661#define MALLOC_BLOCK_INPUT BLOCK_INPUT
662#define MALLOC_UNBLOCK_INPUT UNBLOCK_INPUT
663#endif
bdbed949 664
34400008 665/* Like malloc but check for no memory and block interrupt input.. */
7146af97 666
c971ff9a 667POINTER_TYPE *
971de7fb 668xmalloc (size_t size)
7146af97 669{
c971ff9a 670 register POINTER_TYPE *val;
7146af97 671
dafc79fa 672 MALLOC_BLOCK_INPUT;
c971ff9a 673 val = (POINTER_TYPE *) malloc (size);
dafc79fa 674 MALLOC_UNBLOCK_INPUT;
7146af97 675
2e471eb5 676 if (!val && size)
531b0165 677 memory_full (size);
7146af97
JB
678 return val;
679}
680
34400008
GM
681
682/* Like realloc but check for no memory and block interrupt input.. */
683
c971ff9a 684POINTER_TYPE *
971de7fb 685xrealloc (POINTER_TYPE *block, size_t size)
7146af97 686{
c971ff9a 687 register POINTER_TYPE *val;
7146af97 688
dafc79fa 689 MALLOC_BLOCK_INPUT;
56d2031b
JB
690 /* We must call malloc explicitly when BLOCK is 0, since some
691 reallocs don't do this. */
692 if (! block)
c971ff9a 693 val = (POINTER_TYPE *) malloc (size);
f048679d 694 else
c971ff9a 695 val = (POINTER_TYPE *) realloc (block, size);
dafc79fa 696 MALLOC_UNBLOCK_INPUT;
7146af97 697
531b0165
PE
698 if (!val && size)
699 memory_full (size);
7146af97
JB
700 return val;
701}
9ac0d9e0 702
34400008 703
005ca5c7 704/* Like free but block interrupt input. */
34400008 705
9ac0d9e0 706void
971de7fb 707xfree (POINTER_TYPE *block)
9ac0d9e0 708{
70fdbb46
JM
709 if (!block)
710 return;
dafc79fa 711 MALLOC_BLOCK_INPUT;
9ac0d9e0 712 free (block);
dafc79fa 713 MALLOC_UNBLOCK_INPUT;
24d8a105
RS
714 /* We don't call refill_memory_reserve here
715 because that duplicates doing so in emacs_blocked_free
716 and the criterion should go there. */
9ac0d9e0
JB
717}
718
c8099634 719
dca7c6a8
GM
720/* Like strdup, but uses xmalloc. */
721
722char *
971de7fb 723xstrdup (const char *s)
dca7c6a8 724{
675d5130 725 size_t len = strlen (s) + 1;
dca7c6a8 726 char *p = (char *) xmalloc (len);
72af86bd 727 memcpy (p, s, len);
dca7c6a8
GM
728 return p;
729}
730
731
f61bef8b
KS
732/* Unwind for SAFE_ALLOCA */
733
734Lisp_Object
971de7fb 735safe_alloca_unwind (Lisp_Object arg)
f61bef8b 736{
b766f870
KS
737 register struct Lisp_Save_Value *p = XSAVE_VALUE (arg);
738
739 p->dogc = 0;
740 xfree (p->pointer);
741 p->pointer = 0;
7b7990cc 742 free_misc (arg);
f61bef8b
KS
743 return Qnil;
744}
745
746
34400008
GM
747/* Like malloc but used for allocating Lisp data. NBYTES is the
748 number of bytes to allocate, TYPE describes the intended use of the
749 allcated memory block (for strings, for conses, ...). */
750
212f33f1 751#ifndef USE_LSB_TAG
918a23a7 752static void *lisp_malloc_loser;
212f33f1 753#endif
918a23a7 754
675d5130 755static POINTER_TYPE *
971de7fb 756lisp_malloc (size_t nbytes, enum mem_type type)
c8099634 757{
34400008 758 register void *val;
c8099634 759
dafc79fa 760 MALLOC_BLOCK_INPUT;
877935b1
GM
761
762#ifdef GC_MALLOC_CHECK
763 allocated_mem_type = type;
764#endif
177c0ea7 765
34400008 766 val = (void *) malloc (nbytes);
c8099634 767
6b61353c 768#ifndef USE_LSB_TAG
918a23a7
RS
769 /* If the memory just allocated cannot be addressed thru a Lisp
770 object's pointer, and it needs to be,
771 that's equivalent to running out of memory. */
772 if (val && type != MEM_TYPE_NON_LISP)
773 {
774 Lisp_Object tem;
775 XSETCONS (tem, (char *) val + nbytes - 1);
776 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
777 {
778 lisp_malloc_loser = val;
779 free (val);
780 val = 0;
781 }
782 }
6b61353c 783#endif
918a23a7 784
877935b1 785#if GC_MARK_STACK && !defined GC_MALLOC_CHECK
dca7c6a8 786 if (val && type != MEM_TYPE_NON_LISP)
34400008
GM
787 mem_insert (val, (char *) val + nbytes, type);
788#endif
177c0ea7 789
dafc79fa 790 MALLOC_UNBLOCK_INPUT;
dca7c6a8 791 if (!val && nbytes)
531b0165 792 memory_full (nbytes);
c8099634
RS
793 return val;
794}
795
34400008
GM
796/* Free BLOCK. This must be called to free memory allocated with a
797 call to lisp_malloc. */
798
bf952fb6 799static void
971de7fb 800lisp_free (POINTER_TYPE *block)
c8099634 801{
dafc79fa 802 MALLOC_BLOCK_INPUT;
c8099634 803 free (block);
877935b1 804#if GC_MARK_STACK && !defined GC_MALLOC_CHECK
34400008
GM
805 mem_delete (mem_find (block));
806#endif
dafc79fa 807 MALLOC_UNBLOCK_INPUT;
c8099634 808}
34400008 809
ab6780cd
SM
810/* Allocation of aligned blocks of memory to store Lisp data. */
811/* The entry point is lisp_align_malloc which returns blocks of at most */
812/* BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
813
349a4500
SM
814/* Use posix_memalloc if the system has it and we're using the system's
815 malloc (because our gmalloc.c routines don't have posix_memalign although
816 its memalloc could be used). */
b4181b01
KS
817#if defined (HAVE_POSIX_MEMALIGN) && defined (SYSTEM_MALLOC)
818#define USE_POSIX_MEMALIGN 1
819#endif
ab6780cd
SM
820
821/* BLOCK_ALIGN has to be a power of 2. */
822#define BLOCK_ALIGN (1 << 10)
ab6780cd
SM
823
824/* Padding to leave at the end of a malloc'd block. This is to give
825 malloc a chance to minimize the amount of memory wasted to alignment.
826 It should be tuned to the particular malloc library used.
19bcad1f
SM
827 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
828 posix_memalign on the other hand would ideally prefer a value of 4
829 because otherwise, there's 1020 bytes wasted between each ablocks.
f501ccb4
SM
830 In Emacs, testing shows that those 1020 can most of the time be
831 efficiently used by malloc to place other objects, so a value of 0 can
832 still preferable unless you have a lot of aligned blocks and virtually
833 nothing else. */
19bcad1f
SM
834#define BLOCK_PADDING 0
835#define BLOCK_BYTES \
0b432f21 836 (BLOCK_ALIGN - sizeof (struct ablocks *) - BLOCK_PADDING)
19bcad1f
SM
837
838/* Internal data structures and constants. */
839
ab6780cd
SM
840#define ABLOCKS_SIZE 16
841
842/* An aligned block of memory. */
843struct ablock
844{
845 union
846 {
847 char payload[BLOCK_BYTES];
848 struct ablock *next_free;
849 } x;
850 /* `abase' is the aligned base of the ablocks. */
851 /* It is overloaded to hold the virtual `busy' field that counts
852 the number of used ablock in the parent ablocks.
853 The first ablock has the `busy' field, the others have the `abase'
854 field. To tell the difference, we assume that pointers will have
855 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
856 is used to tell whether the real base of the parent ablocks is `abase'
857 (if not, the word before the first ablock holds a pointer to the
858 real base). */
859 struct ablocks *abase;
860 /* The padding of all but the last ablock is unused. The padding of
861 the last ablock in an ablocks is not allocated. */
19bcad1f
SM
862#if BLOCK_PADDING
863 char padding[BLOCK_PADDING];
ebb8d410 864#endif
ab6780cd
SM
865};
866
867/* A bunch of consecutive aligned blocks. */
868struct ablocks
869{
870 struct ablock blocks[ABLOCKS_SIZE];
871};
872
873/* Size of the block requested from malloc or memalign. */
19bcad1f 874#define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
ab6780cd
SM
875
876#define ABLOCK_ABASE(block) \
d01a7826 877 (((uintptr_t) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
ab6780cd
SM
878 ? (struct ablocks *)(block) \
879 : (block)->abase)
880
881/* Virtual `busy' field. */
882#define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
883
884/* Pointer to the (not necessarily aligned) malloc block. */
349a4500 885#ifdef USE_POSIX_MEMALIGN
19bcad1f
SM
886#define ABLOCKS_BASE(abase) (abase)
887#else
ab6780cd 888#define ABLOCKS_BASE(abase) \
d01a7826 889 (1 & (intptr_t) ABLOCKS_BUSY (abase) ? abase : ((void**)abase)[-1])
19bcad1f 890#endif
ab6780cd
SM
891
892/* The list of free ablock. */
893static struct ablock *free_ablock;
894
895/* Allocate an aligned block of nbytes.
896 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
897 smaller or equal to BLOCK_BYTES. */
898static POINTER_TYPE *
971de7fb 899lisp_align_malloc (size_t nbytes, enum mem_type type)
ab6780cd
SM
900{
901 void *base, *val;
902 struct ablocks *abase;
903
904 eassert (nbytes <= BLOCK_BYTES);
905
dafc79fa 906 MALLOC_BLOCK_INPUT;
ab6780cd
SM
907
908#ifdef GC_MALLOC_CHECK
909 allocated_mem_type = type;
910#endif
911
912 if (!free_ablock)
913 {
005ca5c7 914 int i;
d01a7826 915 intptr_t aligned; /* int gets warning casting to 64-bit pointer. */
ab6780cd
SM
916
917#ifdef DOUG_LEA_MALLOC
918 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
919 because mapped region contents are not preserved in
920 a dumped Emacs. */
921 mallopt (M_MMAP_MAX, 0);
922#endif
923
349a4500 924#ifdef USE_POSIX_MEMALIGN
19bcad1f
SM
925 {
926 int err = posix_memalign (&base, BLOCK_ALIGN, ABLOCKS_BYTES);
ab349c19
RS
927 if (err)
928 base = NULL;
929 abase = base;
19bcad1f
SM
930 }
931#else
ab6780cd
SM
932 base = malloc (ABLOCKS_BYTES);
933 abase = ALIGN (base, BLOCK_ALIGN);
ab349c19
RS
934#endif
935
6b61353c
KH
936 if (base == 0)
937 {
dafc79fa 938 MALLOC_UNBLOCK_INPUT;
531b0165 939 memory_full (ABLOCKS_BYTES);
6b61353c 940 }
ab6780cd
SM
941
942 aligned = (base == abase);
943 if (!aligned)
944 ((void**)abase)[-1] = base;
945
946#ifdef DOUG_LEA_MALLOC
947 /* Back to a reasonable maximum of mmap'ed areas. */
948 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
949#endif
950
6b61353c 951#ifndef USE_LSB_TAG
8f924df7
KH
952 /* If the memory just allocated cannot be addressed thru a Lisp
953 object's pointer, and it needs to be, that's equivalent to
954 running out of memory. */
955 if (type != MEM_TYPE_NON_LISP)
956 {
957 Lisp_Object tem;
958 char *end = (char *) base + ABLOCKS_BYTES - 1;
959 XSETCONS (tem, end);
960 if ((char *) XCONS (tem) != end)
961 {
962 lisp_malloc_loser = base;
963 free (base);
dafc79fa 964 MALLOC_UNBLOCK_INPUT;
531b0165 965 memory_full (SIZE_MAX);
8f924df7
KH
966 }
967 }
6b61353c 968#endif
8f924df7 969
ab6780cd
SM
970 /* Initialize the blocks and put them on the free list.
971 Is `base' was not properly aligned, we can't use the last block. */
972 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
973 {
974 abase->blocks[i].abase = abase;
975 abase->blocks[i].x.next_free = free_ablock;
976 free_ablock = &abase->blocks[i];
977 }
8ac068ac 978 ABLOCKS_BUSY (abase) = (struct ablocks *) aligned;
ab6780cd 979
d01a7826 980 eassert (0 == ((uintptr_t) abase) % BLOCK_ALIGN);
ab6780cd
SM
981 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
982 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
983 eassert (ABLOCKS_BASE (abase) == base);
d01a7826 984 eassert (aligned == (intptr_t) ABLOCKS_BUSY (abase));
ab6780cd
SM
985 }
986
987 abase = ABLOCK_ABASE (free_ablock);
8ac068ac 988 ABLOCKS_BUSY (abase) =
d01a7826 989 (struct ablocks *) (2 + (intptr_t) ABLOCKS_BUSY (abase));
ab6780cd
SM
990 val = free_ablock;
991 free_ablock = free_ablock->x.next_free;
992
ab6780cd 993#if GC_MARK_STACK && !defined GC_MALLOC_CHECK
3687c2ef 994 if (type != MEM_TYPE_NON_LISP)
ab6780cd
SM
995 mem_insert (val, (char *) val + nbytes, type);
996#endif
997
dafc79fa 998 MALLOC_UNBLOCK_INPUT;
ab6780cd 999
d01a7826 1000 eassert (0 == ((uintptr_t) val) % BLOCK_ALIGN);
ab6780cd
SM
1001 return val;
1002}
1003
1004static void
971de7fb 1005lisp_align_free (POINTER_TYPE *block)
ab6780cd
SM
1006{
1007 struct ablock *ablock = block;
1008 struct ablocks *abase = ABLOCK_ABASE (ablock);
1009
dafc79fa 1010 MALLOC_BLOCK_INPUT;
ab6780cd
SM
1011#if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1012 mem_delete (mem_find (block));
1013#endif
1014 /* Put on free list. */
1015 ablock->x.next_free = free_ablock;
1016 free_ablock = ablock;
1017 /* Update busy count. */
8ac068ac 1018 ABLOCKS_BUSY (abase) =
d01a7826 1019 (struct ablocks *) (-2 + (intptr_t) ABLOCKS_BUSY (abase));
d2db1c32 1020
d01a7826 1021 if (2 > (intptr_t) ABLOCKS_BUSY (abase))
ab6780cd 1022 { /* All the blocks are free. */
d01a7826 1023 int i = 0, aligned = (intptr_t) ABLOCKS_BUSY (abase);
ab6780cd
SM
1024 struct ablock **tem = &free_ablock;
1025 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
1026
1027 while (*tem)
1028 {
1029 if (*tem >= (struct ablock *) abase && *tem < atop)
1030 {
1031 i++;
1032 *tem = (*tem)->x.next_free;
1033 }
1034 else
1035 tem = &(*tem)->x.next_free;
1036 }
1037 eassert ((aligned & 1) == aligned);
1038 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
349a4500 1039#ifdef USE_POSIX_MEMALIGN
d01a7826 1040 eassert ((uintptr_t) ABLOCKS_BASE (abase) % BLOCK_ALIGN == 0);
cfb2f32e 1041#endif
ab6780cd
SM
1042 free (ABLOCKS_BASE (abase));
1043 }
dafc79fa 1044 MALLOC_UNBLOCK_INPUT;
ab6780cd 1045}
3ef06d12
SM
1046
1047/* Return a new buffer structure allocated from the heap with
1048 a call to lisp_malloc. */
1049
1050struct buffer *
971de7fb 1051allocate_buffer (void)
3ef06d12
SM
1052{
1053 struct buffer *b
1054 = (struct buffer *) lisp_malloc (sizeof (struct buffer),
1055 MEM_TYPE_BUFFER);
eab3844f
PE
1056 XSETPVECTYPESIZE (b, PVEC_BUFFER,
1057 ((sizeof (struct buffer) + sizeof (EMACS_INT) - 1)
1058 / sizeof (EMACS_INT)));
3ef06d12
SM
1059 return b;
1060}
1061
9ac0d9e0 1062\f
026cdede
SM
1063#ifndef SYSTEM_MALLOC
1064
9ac0d9e0
JB
1065/* Arranging to disable input signals while we're in malloc.
1066
1067 This only works with GNU malloc. To help out systems which can't
1068 use GNU malloc, all the calls to malloc, realloc, and free
1069 elsewhere in the code should be inside a BLOCK_INPUT/UNBLOCK_INPUT
026cdede 1070 pair; unfortunately, we have no idea what C library functions
9ac0d9e0 1071 might call malloc, so we can't really protect them unless you're
2c5bd608
DL
1072 using GNU malloc. Fortunately, most of the major operating systems
1073 can use GNU malloc. */
9ac0d9e0 1074
026cdede 1075#ifndef SYNC_INPUT
dafc79fa
SM
1076/* When using SYNC_INPUT, we don't call malloc from a signal handler, so
1077 there's no need to block input around malloc. */
026cdede 1078
b3303f74 1079#ifndef DOUG_LEA_MALLOC
f57e2426
J
1080extern void * (*__malloc_hook) (size_t, const void *);
1081extern void * (*__realloc_hook) (void *, size_t, const void *);
1082extern void (*__free_hook) (void *, const void *);
b3303f74
DL
1083/* Else declared in malloc.h, perhaps with an extra arg. */
1084#endif /* DOUG_LEA_MALLOC */
f57e2426
J
1085static void * (*old_malloc_hook) (size_t, const void *);
1086static void * (*old_realloc_hook) (void *, size_t, const void*);
1087static void (*old_free_hook) (void*, const void*);
9ac0d9e0 1088
4e75f29d
PE
1089#ifdef DOUG_LEA_MALLOC
1090# define BYTES_USED (mallinfo ().uordblks)
1091#else
1092# define BYTES_USED _bytes_used
1093#endif
1094
ef1b0ba7
SM
1095static __malloc_size_t bytes_used_when_reconsidered;
1096
4e75f29d
PE
1097/* Value of _bytes_used, when spare_memory was freed. */
1098
1099static __malloc_size_t bytes_used_when_full;
1100
276cbe5a
RS
1101/* This function is used as the hook for free to call. */
1102
9ac0d9e0 1103static void
7c3320d8 1104emacs_blocked_free (void *ptr, const void *ptr2)
9ac0d9e0 1105{
aa477689 1106 BLOCK_INPUT_ALLOC;
877935b1
GM
1107
1108#ifdef GC_MALLOC_CHECK
a83fee2c
GM
1109 if (ptr)
1110 {
1111 struct mem_node *m;
177c0ea7 1112
a83fee2c
GM
1113 m = mem_find (ptr);
1114 if (m == MEM_NIL || m->start != ptr)
1115 {
1116 fprintf (stderr,
1117 "Freeing `%p' which wasn't allocated with malloc\n", ptr);
1118 abort ();
1119 }
1120 else
1121 {
1122 /* fprintf (stderr, "free %p...%p (%p)\n", m->start, m->end, ptr); */
1123 mem_delete (m);
1124 }
1125 }
877935b1 1126#endif /* GC_MALLOC_CHECK */
177c0ea7 1127
9ac0d9e0
JB
1128 __free_hook = old_free_hook;
1129 free (ptr);
177c0ea7 1130
276cbe5a
RS
1131 /* If we released our reserve (due to running out of memory),
1132 and we have a fair amount free once again,
1133 try to set aside another reserve in case we run out once more. */
24d8a105 1134 if (! NILP (Vmemory_full)
276cbe5a
RS
1135 /* Verify there is enough space that even with the malloc
1136 hysteresis this call won't run out again.
1137 The code here is correct as long as SPARE_MEMORY
1138 is substantially larger than the block size malloc uses. */
1139 && (bytes_used_when_full
4d74a5fc 1140 > ((bytes_used_when_reconsidered = BYTES_USED)
bccfb310 1141 + max (malloc_hysteresis, 4) * SPARE_MEMORY)))
24d8a105 1142 refill_memory_reserve ();
276cbe5a 1143
b0846f52 1144 __free_hook = emacs_blocked_free;
aa477689 1145 UNBLOCK_INPUT_ALLOC;
9ac0d9e0
JB
1146}
1147
34400008 1148
276cbe5a
RS
1149/* This function is the malloc hook that Emacs uses. */
1150
9ac0d9e0 1151static void *
7c3320d8 1152emacs_blocked_malloc (size_t size, const void *ptr)
9ac0d9e0
JB
1153{
1154 void *value;
1155
aa477689 1156 BLOCK_INPUT_ALLOC;
9ac0d9e0 1157 __malloc_hook = old_malloc_hook;
1177ecf6 1158#ifdef DOUG_LEA_MALLOC
5665a02f
KL
1159 /* Segfaults on my system. --lorentey */
1160 /* mallopt (M_TOP_PAD, malloc_hysteresis * 4096); */
1177ecf6 1161#else
d1658221 1162 __malloc_extra_blocks = malloc_hysteresis;
1177ecf6 1163#endif
877935b1 1164
2756d8ee 1165 value = (void *) malloc (size);
877935b1
GM
1166
1167#ifdef GC_MALLOC_CHECK
1168 {
1169 struct mem_node *m = mem_find (value);
1170 if (m != MEM_NIL)
1171 {
1172 fprintf (stderr, "Malloc returned %p which is already in use\n",
1173 value);
1174 fprintf (stderr, "Region in use is %p...%p, %u bytes, type %d\n",
1175 m->start, m->end, (char *) m->end - (char *) m->start,
1176 m->type);
1177 abort ();
1178 }
1179
1180 if (!dont_register_blocks)
1181 {
1182 mem_insert (value, (char *) value + max (1, size), allocated_mem_type);
1183 allocated_mem_type = MEM_TYPE_NON_LISP;
1184 }
1185 }
1186#endif /* GC_MALLOC_CHECK */
177c0ea7 1187
b0846f52 1188 __malloc_hook = emacs_blocked_malloc;
aa477689 1189 UNBLOCK_INPUT_ALLOC;
9ac0d9e0 1190
877935b1 1191 /* fprintf (stderr, "%p malloc\n", value); */
9ac0d9e0
JB
1192 return value;
1193}
1194
34400008
GM
1195
1196/* This function is the realloc hook that Emacs uses. */
1197
9ac0d9e0 1198static void *
7c3320d8 1199emacs_blocked_realloc (void *ptr, size_t size, const void *ptr2)
9ac0d9e0
JB
1200{
1201 void *value;
1202
aa477689 1203 BLOCK_INPUT_ALLOC;
9ac0d9e0 1204 __realloc_hook = old_realloc_hook;
877935b1
GM
1205
1206#ifdef GC_MALLOC_CHECK
1207 if (ptr)
1208 {
1209 struct mem_node *m = mem_find (ptr);
1210 if (m == MEM_NIL || m->start != ptr)
1211 {
1212 fprintf (stderr,
1213 "Realloc of %p which wasn't allocated with malloc\n",
1214 ptr);
1215 abort ();
1216 }
1217
1218 mem_delete (m);
1219 }
177c0ea7 1220
877935b1 1221 /* fprintf (stderr, "%p -> realloc\n", ptr); */
177c0ea7 1222
877935b1
GM
1223 /* Prevent malloc from registering blocks. */
1224 dont_register_blocks = 1;
1225#endif /* GC_MALLOC_CHECK */
1226
2756d8ee 1227 value = (void *) realloc (ptr, size);
877935b1
GM
1228
1229#ifdef GC_MALLOC_CHECK
1230 dont_register_blocks = 0;
1231
1232 {
1233 struct mem_node *m = mem_find (value);
1234 if (m != MEM_NIL)
1235 {
1236 fprintf (stderr, "Realloc returns memory that is already in use\n");
1237 abort ();
1238 }
1239
1240 /* Can't handle zero size regions in the red-black tree. */
1241 mem_insert (value, (char *) value + max (size, 1), MEM_TYPE_NON_LISP);
1242 }
177c0ea7 1243
877935b1
GM
1244 /* fprintf (stderr, "%p <- realloc\n", value); */
1245#endif /* GC_MALLOC_CHECK */
177c0ea7 1246
b0846f52 1247 __realloc_hook = emacs_blocked_realloc;
aa477689 1248 UNBLOCK_INPUT_ALLOC;
9ac0d9e0
JB
1249
1250 return value;
1251}
1252
34400008 1253
aa477689
JD
1254#ifdef HAVE_GTK_AND_PTHREAD
1255/* Called from Fdump_emacs so that when the dumped Emacs starts, it has a
1256 normal malloc. Some thread implementations need this as they call
1257 malloc before main. The pthread_self call in BLOCK_INPUT_ALLOC then
1258 calls malloc because it is the first call, and we have an endless loop. */
1259
1260void
268c2c36 1261reset_malloc_hooks (void)
aa477689 1262{
4d580af2
AS
1263 __free_hook = old_free_hook;
1264 __malloc_hook = old_malloc_hook;
1265 __realloc_hook = old_realloc_hook;
aa477689
JD
1266}
1267#endif /* HAVE_GTK_AND_PTHREAD */
1268
1269
34400008
GM
1270/* Called from main to set up malloc to use our hooks. */
1271
9ac0d9e0 1272void
7c3320d8 1273uninterrupt_malloc (void)
9ac0d9e0 1274{
aa477689 1275#ifdef HAVE_GTK_AND_PTHREAD
a1b41389 1276#ifdef DOUG_LEA_MALLOC
aa477689
JD
1277 pthread_mutexattr_t attr;
1278
1279 /* GLIBC has a faster way to do this, but lets keep it portable.
1280 This is according to the Single UNIX Specification. */
1281 pthread_mutexattr_init (&attr);
1282 pthread_mutexattr_settype (&attr, PTHREAD_MUTEX_RECURSIVE);
1283 pthread_mutex_init (&alloc_mutex, &attr);
a1b41389 1284#else /* !DOUG_LEA_MALLOC */
ce5b453a 1285 /* Some systems such as Solaris 2.6 don't have a recursive mutex,
a1b41389
YM
1286 and the bundled gmalloc.c doesn't require it. */
1287 pthread_mutex_init (&alloc_mutex, NULL);
1288#endif /* !DOUG_LEA_MALLOC */
aa477689
JD
1289#endif /* HAVE_GTK_AND_PTHREAD */
1290
c8099634
RS
1291 if (__free_hook != emacs_blocked_free)
1292 old_free_hook = __free_hook;
b0846f52 1293 __free_hook = emacs_blocked_free;
9ac0d9e0 1294
c8099634
RS
1295 if (__malloc_hook != emacs_blocked_malloc)
1296 old_malloc_hook = __malloc_hook;
b0846f52 1297 __malloc_hook = emacs_blocked_malloc;
9ac0d9e0 1298
c8099634
RS
1299 if (__realloc_hook != emacs_blocked_realloc)
1300 old_realloc_hook = __realloc_hook;
b0846f52 1301 __realloc_hook = emacs_blocked_realloc;
9ac0d9e0 1302}
2e471eb5 1303
026cdede 1304#endif /* not SYNC_INPUT */
2e471eb5
GM
1305#endif /* not SYSTEM_MALLOC */
1306
1307
7146af97 1308\f
2e471eb5
GM
1309/***********************************************************************
1310 Interval Allocation
1311 ***********************************************************************/
1a4f1e2c 1312
34400008
GM
1313/* Number of intervals allocated in an interval_block structure.
1314 The 1020 is 1024 minus malloc overhead. */
1315
d5e35230
JA
1316#define INTERVAL_BLOCK_SIZE \
1317 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1318
34400008
GM
1319/* Intervals are allocated in chunks in form of an interval_block
1320 structure. */
1321
d5e35230 1322struct interval_block
2e471eb5 1323{
6b61353c 1324 /* Place `intervals' first, to preserve alignment. */
2e471eb5 1325 struct interval intervals[INTERVAL_BLOCK_SIZE];
6b61353c 1326 struct interval_block *next;
2e471eb5 1327};
d5e35230 1328
34400008
GM
1329/* Current interval block. Its `next' pointer points to older
1330 blocks. */
1331
d3d47262 1332static struct interval_block *interval_block;
34400008
GM
1333
1334/* Index in interval_block above of the next unused interval
1335 structure. */
1336
d5e35230 1337static int interval_block_index;
34400008
GM
1338
1339/* Number of free and live intervals. */
1340
c0c5c8ae 1341static EMACS_INT total_free_intervals, total_intervals;
d5e35230 1342
34400008
GM
1343/* List of free intervals. */
1344
244ed907 1345static INTERVAL interval_free_list;
d5e35230 1346
34400008
GM
1347
1348/* Initialize interval allocation. */
1349
d5e35230 1350static void
971de7fb 1351init_intervals (void)
d5e35230 1352{
005ca5c7
DL
1353 interval_block = NULL;
1354 interval_block_index = INTERVAL_BLOCK_SIZE;
d5e35230
JA
1355 interval_free_list = 0;
1356}
1357
34400008
GM
1358
1359/* Return a new interval. */
d5e35230
JA
1360
1361INTERVAL
971de7fb 1362make_interval (void)
d5e35230
JA
1363{
1364 INTERVAL val;
1365
e2984df0
CY
1366 /* eassert (!handling_signal); */
1367
dafc79fa 1368 MALLOC_BLOCK_INPUT;
cfb2f32e 1369
d5e35230
JA
1370 if (interval_free_list)
1371 {
1372 val = interval_free_list;
439d5cb4 1373 interval_free_list = INTERVAL_PARENT (interval_free_list);
d5e35230
JA
1374 }
1375 else
1376 {
1377 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1378 {
3c06d205
KH
1379 register struct interval_block *newi;
1380
34400008
GM
1381 newi = (struct interval_block *) lisp_malloc (sizeof *newi,
1382 MEM_TYPE_NON_LISP);
d5e35230 1383
d5e35230
JA
1384 newi->next = interval_block;
1385 interval_block = newi;
1386 interval_block_index = 0;
1387 }
1388 val = &interval_block->intervals[interval_block_index++];
1389 }
e2984df0 1390
dafc79fa 1391 MALLOC_UNBLOCK_INPUT;
e2984df0 1392
d5e35230 1393 consing_since_gc += sizeof (struct interval);
310ea200 1394 intervals_consed++;
d5e35230 1395 RESET_INTERVAL (val);
2336fe58 1396 val->gcmarkbit = 0;
d5e35230
JA
1397 return val;
1398}
1399
34400008
GM
1400
1401/* Mark Lisp objects in interval I. */
d5e35230
JA
1402
1403static void
971de7fb 1404mark_interval (register INTERVAL i, Lisp_Object dummy)
d5e35230 1405{
2336fe58
SM
1406 eassert (!i->gcmarkbit); /* Intervals are never shared. */
1407 i->gcmarkbit = 1;
49723c04 1408 mark_object (i->plist);
d5e35230
JA
1409}
1410
34400008
GM
1411
1412/* Mark the interval tree rooted in TREE. Don't call this directly;
1413 use the macro MARK_INTERVAL_TREE instead. */
1414
d5e35230 1415static void
971de7fb 1416mark_interval_tree (register INTERVAL tree)
d5e35230 1417{
e8720644
JB
1418 /* No need to test if this tree has been marked already; this
1419 function is always called through the MARK_INTERVAL_TREE macro,
1420 which takes care of that. */
1421
1e934989 1422 traverse_intervals_noorder (tree, mark_interval, Qnil);
d5e35230
JA
1423}
1424
34400008
GM
1425
1426/* Mark the interval tree rooted in I. */
1427
e8720644
JB
1428#define MARK_INTERVAL_TREE(i) \
1429 do { \
2336fe58 1430 if (!NULL_INTERVAL_P (i) && !i->gcmarkbit) \
e8720644
JB
1431 mark_interval_tree (i); \
1432 } while (0)
d5e35230 1433
34400008 1434
2e471eb5
GM
1435#define UNMARK_BALANCE_INTERVALS(i) \
1436 do { \
1437 if (! NULL_INTERVAL_P (i)) \
2336fe58 1438 (i) = balance_intervals (i); \
2e471eb5 1439 } while (0)
d5e35230 1440
cc2d8c6b 1441\f
6e5cb96f 1442/* Number support. If USE_LISP_UNION_TYPE is in effect, we
cc2d8c6b
KR
1443 can't create number objects in macros. */
1444#ifndef make_number
1445Lisp_Object
c566235d 1446make_number (EMACS_INT n)
cc2d8c6b
KR
1447{
1448 Lisp_Object obj;
1449 obj.s.val = n;
1450 obj.s.type = Lisp_Int;
1451 return obj;
1452}
1453#endif
d5e35230 1454\f
2e471eb5
GM
1455/***********************************************************************
1456 String Allocation
1457 ***********************************************************************/
1a4f1e2c 1458
2e471eb5
GM
1459/* Lisp_Strings are allocated in string_block structures. When a new
1460 string_block is allocated, all the Lisp_Strings it contains are
e0fead5d 1461 added to a free-list string_free_list. When a new Lisp_String is
2e471eb5
GM
1462 needed, it is taken from that list. During the sweep phase of GC,
1463 string_blocks that are entirely free are freed, except two which
1464 we keep.
7146af97 1465
2e471eb5
GM
1466 String data is allocated from sblock structures. Strings larger
1467 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1468 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
7146af97 1469
2e471eb5
GM
1470 Sblocks consist internally of sdata structures, one for each
1471 Lisp_String. The sdata structure points to the Lisp_String it
1472 belongs to. The Lisp_String points back to the `u.data' member of
1473 its sdata structure.
7146af97 1474
2e471eb5
GM
1475 When a Lisp_String is freed during GC, it is put back on
1476 string_free_list, and its `data' member and its sdata's `string'
1477 pointer is set to null. The size of the string is recorded in the
1478 `u.nbytes' member of the sdata. So, sdata structures that are no
1479 longer used, can be easily recognized, and it's easy to compact the
1480 sblocks of small strings which we do in compact_small_strings. */
7146af97 1481
2e471eb5
GM
1482/* Size in bytes of an sblock structure used for small strings. This
1483 is 8192 minus malloc overhead. */
7146af97 1484
2e471eb5 1485#define SBLOCK_SIZE 8188
c8099634 1486
2e471eb5
GM
1487/* Strings larger than this are considered large strings. String data
1488 for large strings is allocated from individual sblocks. */
7146af97 1489
2e471eb5
GM
1490#define LARGE_STRING_BYTES 1024
1491
1492/* Structure describing string memory sub-allocated from an sblock.
1493 This is where the contents of Lisp strings are stored. */
1494
1495struct sdata
7146af97 1496{
2e471eb5
GM
1497 /* Back-pointer to the string this sdata belongs to. If null, this
1498 structure is free, and the NBYTES member of the union below
34400008 1499 contains the string's byte size (the same value that STRING_BYTES
2e471eb5
GM
1500 would return if STRING were non-null). If non-null, STRING_BYTES
1501 (STRING) is the size of the data, and DATA contains the string's
1502 contents. */
1503 struct Lisp_String *string;
7146af97 1504
31d929e5 1505#ifdef GC_CHECK_STRING_BYTES
177c0ea7 1506
31d929e5
GM
1507 EMACS_INT nbytes;
1508 unsigned char data[1];
177c0ea7 1509
31d929e5
GM
1510#define SDATA_NBYTES(S) (S)->nbytes
1511#define SDATA_DATA(S) (S)->data
36372bf9 1512#define SDATA_SELECTOR(member) member
177c0ea7 1513
31d929e5
GM
1514#else /* not GC_CHECK_STRING_BYTES */
1515
2e471eb5
GM
1516 union
1517 {
83998b7a 1518 /* When STRING is non-null. */
2e471eb5
GM
1519 unsigned char data[1];
1520
1521 /* When STRING is null. */
1522 EMACS_INT nbytes;
1523 } u;
177c0ea7 1524
31d929e5
GM
1525#define SDATA_NBYTES(S) (S)->u.nbytes
1526#define SDATA_DATA(S) (S)->u.data
36372bf9 1527#define SDATA_SELECTOR(member) u.member
31d929e5
GM
1528
1529#endif /* not GC_CHECK_STRING_BYTES */
36372bf9
PE
1530
1531#define SDATA_DATA_OFFSET offsetof (struct sdata, SDATA_SELECTOR (data))
2e471eb5
GM
1532};
1533
31d929e5 1534
2e471eb5
GM
1535/* Structure describing a block of memory which is sub-allocated to
1536 obtain string data memory for strings. Blocks for small strings
1537 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1538 as large as needed. */
1539
1540struct sblock
7146af97 1541{
2e471eb5
GM
1542 /* Next in list. */
1543 struct sblock *next;
7146af97 1544
2e471eb5
GM
1545 /* Pointer to the next free sdata block. This points past the end
1546 of the sblock if there isn't any space left in this block. */
1547 struct sdata *next_free;
1548
1549 /* Start of data. */
1550 struct sdata first_data;
1551};
1552
1553/* Number of Lisp strings in a string_block structure. The 1020 is
1554 1024 minus malloc overhead. */
1555
19bcad1f 1556#define STRING_BLOCK_SIZE \
2e471eb5
GM
1557 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1558
1559/* Structure describing a block from which Lisp_String structures
1560 are allocated. */
1561
1562struct string_block
7146af97 1563{
6b61353c 1564 /* Place `strings' first, to preserve alignment. */
19bcad1f 1565 struct Lisp_String strings[STRING_BLOCK_SIZE];
6b61353c 1566 struct string_block *next;
2e471eb5 1567};
7146af97 1568
2e471eb5
GM
1569/* Head and tail of the list of sblock structures holding Lisp string
1570 data. We always allocate from current_sblock. The NEXT pointers
1571 in the sblock structures go from oldest_sblock to current_sblock. */
3c06d205 1572
2e471eb5 1573static struct sblock *oldest_sblock, *current_sblock;
7146af97 1574
2e471eb5 1575/* List of sblocks for large strings. */
7146af97 1576
2e471eb5 1577static struct sblock *large_sblocks;
7146af97 1578
5a25e253 1579/* List of string_block structures. */
7146af97 1580
2e471eb5 1581static struct string_block *string_blocks;
7146af97 1582
2e471eb5 1583/* Free-list of Lisp_Strings. */
7146af97 1584
2e471eb5 1585static struct Lisp_String *string_free_list;
7146af97 1586
2e471eb5 1587/* Number of live and free Lisp_Strings. */
c8099634 1588
c0c5c8ae 1589static EMACS_INT total_strings, total_free_strings;
7146af97 1590
2e471eb5
GM
1591/* Number of bytes used by live strings. */
1592
14162469 1593static EMACS_INT total_string_size;
2e471eb5
GM
1594
1595/* Given a pointer to a Lisp_String S which is on the free-list
1596 string_free_list, return a pointer to its successor in the
1597 free-list. */
1598
1599#define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1600
1601/* Return a pointer to the sdata structure belonging to Lisp string S.
1602 S must be live, i.e. S->data must not be null. S->data is actually
1603 a pointer to the `u.data' member of its sdata structure; the
1604 structure starts at a constant offset in front of that. */
177c0ea7 1605
36372bf9 1606#define SDATA_OF_STRING(S) ((struct sdata *) ((S)->data - SDATA_DATA_OFFSET))
31d929e5 1607
212f33f1
KS
1608
1609#ifdef GC_CHECK_STRING_OVERRUN
bdbed949
KS
1610
1611/* We check for overrun in string data blocks by appending a small
1612 "cookie" after each allocated string data block, and check for the
8349069c 1613 presence of this cookie during GC. */
bdbed949
KS
1614
1615#define GC_STRING_OVERRUN_COOKIE_SIZE 4
bfd1c781
PE
1616static char const string_overrun_cookie[GC_STRING_OVERRUN_COOKIE_SIZE] =
1617 { '\xde', '\xad', '\xbe', '\xef' };
bdbed949 1618
212f33f1 1619#else
bdbed949 1620#define GC_STRING_OVERRUN_COOKIE_SIZE 0
212f33f1
KS
1621#endif
1622
2e471eb5
GM
1623/* Value is the size of an sdata structure large enough to hold NBYTES
1624 bytes of string data. The value returned includes a terminating
1625 NUL byte, the size of the sdata structure, and padding. */
1626
31d929e5
GM
1627#ifdef GC_CHECK_STRING_BYTES
1628
2e471eb5 1629#define SDATA_SIZE(NBYTES) \
36372bf9 1630 ((SDATA_DATA_OFFSET \
2e471eb5
GM
1631 + (NBYTES) + 1 \
1632 + sizeof (EMACS_INT) - 1) \
1633 & ~(sizeof (EMACS_INT) - 1))
1634
31d929e5
GM
1635#else /* not GC_CHECK_STRING_BYTES */
1636
f2d3008d
PE
1637/* The 'max' reserves space for the nbytes union member even when NBYTES + 1 is
1638 less than the size of that member. The 'max' is not needed when
1639 SDATA_DATA_OFFSET is a multiple of sizeof (EMACS_INT), because then the
1640 alignment code reserves enough space. */
1641
1642#define SDATA_SIZE(NBYTES) \
1643 ((SDATA_DATA_OFFSET \
1644 + (SDATA_DATA_OFFSET % sizeof (EMACS_INT) == 0 \
1645 ? NBYTES \
1646 : max (NBYTES, sizeof (EMACS_INT) - 1)) \
1647 + 1 \
1648 + sizeof (EMACS_INT) - 1) \
31d929e5
GM
1649 & ~(sizeof (EMACS_INT) - 1))
1650
1651#endif /* not GC_CHECK_STRING_BYTES */
2e471eb5 1652
bdbed949
KS
1653/* Extra bytes to allocate for each string. */
1654
1655#define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1656
c9d624c6
PE
1657/* Exact bound on the number of bytes in a string, not counting the
1658 terminating null. A string cannot contain more bytes than
1659 STRING_BYTES_BOUND, nor can it be so long that the size_t
1660 arithmetic in allocate_string_data would overflow while it is
1661 calculating a value to be passed to malloc. */
1662#define STRING_BYTES_MAX \
1663 min (STRING_BYTES_BOUND, \
1664 ((SIZE_MAX - XMALLOC_OVERRUN_CHECK_SIZE - GC_STRING_EXTRA \
1665 - offsetof (struct sblock, first_data) \
1666 - SDATA_DATA_OFFSET) \
1667 & ~(sizeof (EMACS_INT) - 1)))
1668
2e471eb5 1669/* Initialize string allocation. Called from init_alloc_once. */
d457598b 1670
d3d47262 1671static void
971de7fb 1672init_strings (void)
7146af97 1673{
2e471eb5
GM
1674 total_strings = total_free_strings = total_string_size = 0;
1675 oldest_sblock = current_sblock = large_sblocks = NULL;
1676 string_blocks = NULL;
2e471eb5 1677 string_free_list = NULL;
4d774b0f
JB
1678 empty_unibyte_string = make_pure_string ("", 0, 0, 0);
1679 empty_multibyte_string = make_pure_string ("", 0, 0, 1);
7146af97
JB
1680}
1681
2e471eb5 1682
361b097f
GM
1683#ifdef GC_CHECK_STRING_BYTES
1684
361b097f
GM
1685static int check_string_bytes_count;
1686
676a7251
GM
1687#define CHECK_STRING_BYTES(S) STRING_BYTES (S)
1688
1689
1690/* Like GC_STRING_BYTES, but with debugging check. */
1691
14162469
EZ
1692EMACS_INT
1693string_bytes (struct Lisp_String *s)
676a7251 1694{
14162469
EZ
1695 EMACS_INT nbytes =
1696 (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1697
676a7251
GM
1698 if (!PURE_POINTER_P (s)
1699 && s->data
1700 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1701 abort ();
1702 return nbytes;
1703}
177c0ea7 1704
2c5bd608 1705/* Check validity of Lisp strings' string_bytes member in B. */
676a7251 1706
d3d47262 1707static void
d0f4e1f5 1708check_sblock (struct sblock *b)
361b097f 1709{
676a7251 1710 struct sdata *from, *end, *from_end;
177c0ea7 1711
676a7251 1712 end = b->next_free;
177c0ea7 1713
676a7251 1714 for (from = &b->first_data; from < end; from = from_end)
361b097f 1715 {
676a7251
GM
1716 /* Compute the next FROM here because copying below may
1717 overwrite data we need to compute it. */
14162469 1718 EMACS_INT nbytes;
177c0ea7 1719
676a7251
GM
1720 /* Check that the string size recorded in the string is the
1721 same as the one recorded in the sdata structure. */
1722 if (from->string)
1723 CHECK_STRING_BYTES (from->string);
177c0ea7 1724
676a7251
GM
1725 if (from->string)
1726 nbytes = GC_STRING_BYTES (from->string);
1727 else
1728 nbytes = SDATA_NBYTES (from);
177c0ea7 1729
676a7251 1730 nbytes = SDATA_SIZE (nbytes);
212f33f1 1731 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
676a7251
GM
1732 }
1733}
361b097f 1734
676a7251
GM
1735
1736/* Check validity of Lisp strings' string_bytes member. ALL_P
1737 non-zero means check all strings, otherwise check only most
1738 recently allocated strings. Used for hunting a bug. */
1739
d3d47262 1740static void
d0f4e1f5 1741check_string_bytes (int all_p)
676a7251
GM
1742{
1743 if (all_p)
1744 {
1745 struct sblock *b;
1746
1747 for (b = large_sblocks; b; b = b->next)
1748 {
1749 struct Lisp_String *s = b->first_data.string;
1750 if (s)
1751 CHECK_STRING_BYTES (s);
361b097f 1752 }
177c0ea7 1753
676a7251
GM
1754 for (b = oldest_sblock; b; b = b->next)
1755 check_sblock (b);
361b097f 1756 }
676a7251
GM
1757 else
1758 check_sblock (current_sblock);
361b097f
GM
1759}
1760
1761#endif /* GC_CHECK_STRING_BYTES */
1762
212f33f1
KS
1763#ifdef GC_CHECK_STRING_FREE_LIST
1764
bdbed949
KS
1765/* Walk through the string free list looking for bogus next pointers.
1766 This may catch buffer overrun from a previous string. */
1767
212f33f1 1768static void
d0f4e1f5 1769check_string_free_list (void)
212f33f1
KS
1770{
1771 struct Lisp_String *s;
1772
1773 /* Pop a Lisp_String off the free-list. */
1774 s = string_free_list;
1775 while (s != NULL)
1776 {
d01a7826 1777 if ((uintptr_t) s < 1024)
212f33f1
KS
1778 abort();
1779 s = NEXT_FREE_LISP_STRING (s);
1780 }
1781}
1782#else
1783#define check_string_free_list()
1784#endif
361b097f 1785
2e471eb5
GM
1786/* Return a new Lisp_String. */
1787
1788static struct Lisp_String *
971de7fb 1789allocate_string (void)
7146af97 1790{
2e471eb5 1791 struct Lisp_String *s;
7146af97 1792
e2984df0
CY
1793 /* eassert (!handling_signal); */
1794
dafc79fa 1795 MALLOC_BLOCK_INPUT;
cfb2f32e 1796
2e471eb5
GM
1797 /* If the free-list is empty, allocate a new string_block, and
1798 add all the Lisp_Strings in it to the free-list. */
1799 if (string_free_list == NULL)
7146af97 1800 {
2e471eb5
GM
1801 struct string_block *b;
1802 int i;
1803
34400008 1804 b = (struct string_block *) lisp_malloc (sizeof *b, MEM_TYPE_STRING);
72af86bd 1805 memset (b, 0, sizeof *b);
2e471eb5
GM
1806 b->next = string_blocks;
1807 string_blocks = b;
2e471eb5 1808
19bcad1f 1809 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
7146af97 1810 {
2e471eb5
GM
1811 s = b->strings + i;
1812 NEXT_FREE_LISP_STRING (s) = string_free_list;
1813 string_free_list = s;
7146af97 1814 }
2e471eb5 1815
19bcad1f 1816 total_free_strings += STRING_BLOCK_SIZE;
7146af97 1817 }
c0f51373 1818
bdbed949 1819 check_string_free_list ();
212f33f1 1820
2e471eb5
GM
1821 /* Pop a Lisp_String off the free-list. */
1822 s = string_free_list;
1823 string_free_list = NEXT_FREE_LISP_STRING (s);
c0f51373 1824
dafc79fa 1825 MALLOC_UNBLOCK_INPUT;
e2984df0 1826
2e471eb5 1827 /* Probably not strictly necessary, but play it safe. */
72af86bd 1828 memset (s, 0, sizeof *s);
c0f51373 1829
2e471eb5
GM
1830 --total_free_strings;
1831 ++total_strings;
1832 ++strings_consed;
1833 consing_since_gc += sizeof *s;
c0f51373 1834
361b097f 1835#ifdef GC_CHECK_STRING_BYTES
e39a993c 1836 if (!noninteractive)
361b097f 1837 {
676a7251
GM
1838 if (++check_string_bytes_count == 200)
1839 {
1840 check_string_bytes_count = 0;
1841 check_string_bytes (1);
1842 }
1843 else
1844 check_string_bytes (0);
361b097f 1845 }
676a7251 1846#endif /* GC_CHECK_STRING_BYTES */
361b097f 1847
2e471eb5 1848 return s;
c0f51373 1849}
7146af97 1850
7146af97 1851
2e471eb5
GM
1852/* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1853 plus a NUL byte at the end. Allocate an sdata structure for S, and
1854 set S->data to its `u.data' member. Store a NUL byte at the end of
1855 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1856 S->data if it was initially non-null. */
7146af97 1857
2e471eb5 1858void
413d18e7
EZ
1859allocate_string_data (struct Lisp_String *s,
1860 EMACS_INT nchars, EMACS_INT nbytes)
7146af97 1861{
5c5fecb3 1862 struct sdata *data, *old_data;
2e471eb5 1863 struct sblock *b;
14162469 1864 EMACS_INT needed, old_nbytes;
7146af97 1865
c9d624c6
PE
1866 if (STRING_BYTES_MAX < nbytes)
1867 string_overflow ();
1868
2e471eb5
GM
1869 /* Determine the number of bytes needed to store NBYTES bytes
1870 of string data. */
1871 needed = SDATA_SIZE (nbytes);
e2984df0
CY
1872 old_data = s->data ? SDATA_OF_STRING (s) : NULL;
1873 old_nbytes = GC_STRING_BYTES (s);
1874
dafc79fa 1875 MALLOC_BLOCK_INPUT;
7146af97 1876
2e471eb5
GM
1877 if (nbytes > LARGE_STRING_BYTES)
1878 {
36372bf9 1879 size_t size = offsetof (struct sblock, first_data) + needed;
2e471eb5
GM
1880
1881#ifdef DOUG_LEA_MALLOC
f8608968
GM
1882 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1883 because mapped region contents are not preserved in
d36b182f
DL
1884 a dumped Emacs.
1885
1886 In case you think of allowing it in a dumped Emacs at the
1887 cost of not being able to re-dump, there's another reason:
1888 mmap'ed data typically have an address towards the top of the
1889 address space, which won't fit into an EMACS_INT (at least on
1890 32-bit systems with the current tagging scheme). --fx */
2e471eb5
GM
1891 mallopt (M_MMAP_MAX, 0);
1892#endif
1893
212f33f1 1894 b = (struct sblock *) lisp_malloc (size + GC_STRING_EXTRA, MEM_TYPE_NON_LISP);
177c0ea7 1895
2e471eb5
GM
1896#ifdef DOUG_LEA_MALLOC
1897 /* Back to a reasonable maximum of mmap'ed areas. */
1898 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1899#endif
177c0ea7 1900
2e471eb5
GM
1901 b->next_free = &b->first_data;
1902 b->first_data.string = NULL;
1903 b->next = large_sblocks;
1904 large_sblocks = b;
1905 }
1906 else if (current_sblock == NULL
1907 || (((char *) current_sblock + SBLOCK_SIZE
1908 - (char *) current_sblock->next_free)
212f33f1 1909 < (needed + GC_STRING_EXTRA)))
2e471eb5
GM
1910 {
1911 /* Not enough room in the current sblock. */
34400008 1912 b = (struct sblock *) lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
2e471eb5
GM
1913 b->next_free = &b->first_data;
1914 b->first_data.string = NULL;
1915 b->next = NULL;
1916
1917 if (current_sblock)
1918 current_sblock->next = b;
1919 else
1920 oldest_sblock = b;
1921 current_sblock = b;
1922 }
1923 else
1924 b = current_sblock;
5c5fecb3 1925
2e471eb5 1926 data = b->next_free;
a0b08700
CY
1927 b->next_free = (struct sdata *) ((char *) data + needed + GC_STRING_EXTRA);
1928
dafc79fa 1929 MALLOC_UNBLOCK_INPUT;
e2984df0 1930
2e471eb5 1931 data->string = s;
31d929e5
GM
1932 s->data = SDATA_DATA (data);
1933#ifdef GC_CHECK_STRING_BYTES
1934 SDATA_NBYTES (data) = nbytes;
1935#endif
2e471eb5
GM
1936 s->size = nchars;
1937 s->size_byte = nbytes;
1938 s->data[nbytes] = '\0';
212f33f1 1939#ifdef GC_CHECK_STRING_OVERRUN
000098c1
PE
1940 memcpy ((char *) data + needed, string_overrun_cookie,
1941 GC_STRING_OVERRUN_COOKIE_SIZE);
212f33f1 1942#endif
177c0ea7 1943
5c5fecb3
GM
1944 /* If S had already data assigned, mark that as free by setting its
1945 string back-pointer to null, and recording the size of the data
00c9c33c 1946 in it. */
5c5fecb3
GM
1947 if (old_data)
1948 {
31d929e5 1949 SDATA_NBYTES (old_data) = old_nbytes;
5c5fecb3
GM
1950 old_data->string = NULL;
1951 }
1952
2e471eb5
GM
1953 consing_since_gc += needed;
1954}
1955
1956
1957/* Sweep and compact strings. */
1958
1959static void
971de7fb 1960sweep_strings (void)
2e471eb5
GM
1961{
1962 struct string_block *b, *next;
1963 struct string_block *live_blocks = NULL;
177c0ea7 1964
2e471eb5
GM
1965 string_free_list = NULL;
1966 total_strings = total_free_strings = 0;
1967 total_string_size = 0;
1968
1969 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
1970 for (b = string_blocks; b; b = next)
1971 {
1972 int i, nfree = 0;
1973 struct Lisp_String *free_list_before = string_free_list;
1974
1975 next = b->next;
1976
19bcad1f 1977 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
2e471eb5
GM
1978 {
1979 struct Lisp_String *s = b->strings + i;
1980
1981 if (s->data)
1982 {
1983 /* String was not on free-list before. */
1984 if (STRING_MARKED_P (s))
1985 {
1986 /* String is live; unmark it and its intervals. */
1987 UNMARK_STRING (s);
177c0ea7 1988
2e471eb5
GM
1989 if (!NULL_INTERVAL_P (s->intervals))
1990 UNMARK_BALANCE_INTERVALS (s->intervals);
1991
1992 ++total_strings;
1993 total_string_size += STRING_BYTES (s);
1994 }
1995 else
1996 {
1997 /* String is dead. Put it on the free-list. */
1998 struct sdata *data = SDATA_OF_STRING (s);
1999
2000 /* Save the size of S in its sdata so that we know
2001 how large that is. Reset the sdata's string
2002 back-pointer so that we know it's free. */
31d929e5
GM
2003#ifdef GC_CHECK_STRING_BYTES
2004 if (GC_STRING_BYTES (s) != SDATA_NBYTES (data))
2005 abort ();
2006#else
2e471eb5 2007 data->u.nbytes = GC_STRING_BYTES (s);
31d929e5 2008#endif
2e471eb5
GM
2009 data->string = NULL;
2010
2011 /* Reset the strings's `data' member so that we
2012 know it's free. */
2013 s->data = NULL;
2014
2015 /* Put the string on the free-list. */
2016 NEXT_FREE_LISP_STRING (s) = string_free_list;
2017 string_free_list = s;
2018 ++nfree;
2019 }
2020 }
2021 else
2022 {
2023 /* S was on the free-list before. Put it there again. */
2024 NEXT_FREE_LISP_STRING (s) = string_free_list;
2025 string_free_list = s;
2026 ++nfree;
2027 }
2028 }
2029
34400008 2030 /* Free blocks that contain free Lisp_Strings only, except
2e471eb5 2031 the first two of them. */
19bcad1f
SM
2032 if (nfree == STRING_BLOCK_SIZE
2033 && total_free_strings > STRING_BLOCK_SIZE)
2e471eb5
GM
2034 {
2035 lisp_free (b);
2e471eb5
GM
2036 string_free_list = free_list_before;
2037 }
2038 else
2039 {
2040 total_free_strings += nfree;
2041 b->next = live_blocks;
2042 live_blocks = b;
2043 }
2044 }
2045
bdbed949 2046 check_string_free_list ();
212f33f1 2047
2e471eb5
GM
2048 string_blocks = live_blocks;
2049 free_large_strings ();
2050 compact_small_strings ();
212f33f1 2051
bdbed949 2052 check_string_free_list ();
2e471eb5
GM
2053}
2054
2055
2056/* Free dead large strings. */
2057
2058static void
971de7fb 2059free_large_strings (void)
2e471eb5
GM
2060{
2061 struct sblock *b, *next;
2062 struct sblock *live_blocks = NULL;
177c0ea7 2063
2e471eb5
GM
2064 for (b = large_sblocks; b; b = next)
2065 {
2066 next = b->next;
2067
2068 if (b->first_data.string == NULL)
2069 lisp_free (b);
2070 else
2071 {
2072 b->next = live_blocks;
2073 live_blocks = b;
2074 }
2075 }
2076
2077 large_sblocks = live_blocks;
2078}
2079
2080
2081/* Compact data of small strings. Free sblocks that don't contain
2082 data of live strings after compaction. */
2083
2084static void
971de7fb 2085compact_small_strings (void)
2e471eb5
GM
2086{
2087 struct sblock *b, *tb, *next;
2088 struct sdata *from, *to, *end, *tb_end;
2089 struct sdata *to_end, *from_end;
2090
2091 /* TB is the sblock we copy to, TO is the sdata within TB we copy
2092 to, and TB_END is the end of TB. */
2093 tb = oldest_sblock;
2094 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2095 to = &tb->first_data;
2096
2097 /* Step through the blocks from the oldest to the youngest. We
2098 expect that old blocks will stabilize over time, so that less
2099 copying will happen this way. */
2100 for (b = oldest_sblock; b; b = b->next)
2101 {
2102 end = b->next_free;
2103 xassert ((char *) end <= (char *) b + SBLOCK_SIZE);
177c0ea7 2104
2e471eb5
GM
2105 for (from = &b->first_data; from < end; from = from_end)
2106 {
2107 /* Compute the next FROM here because copying below may
2108 overwrite data we need to compute it. */
14162469 2109 EMACS_INT nbytes;
2e471eb5 2110
31d929e5
GM
2111#ifdef GC_CHECK_STRING_BYTES
2112 /* Check that the string size recorded in the string is the
2113 same as the one recorded in the sdata structure. */
2114 if (from->string
2115 && GC_STRING_BYTES (from->string) != SDATA_NBYTES (from))
2116 abort ();
2117#endif /* GC_CHECK_STRING_BYTES */
177c0ea7 2118
2e471eb5
GM
2119 if (from->string)
2120 nbytes = GC_STRING_BYTES (from->string);
2121 else
31d929e5 2122 nbytes = SDATA_NBYTES (from);
177c0ea7 2123
212f33f1
KS
2124 if (nbytes > LARGE_STRING_BYTES)
2125 abort ();
212f33f1 2126
2e471eb5 2127 nbytes = SDATA_SIZE (nbytes);
212f33f1
KS
2128 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
2129
2130#ifdef GC_CHECK_STRING_OVERRUN
72af86bd
AS
2131 if (memcmp (string_overrun_cookie,
2132 (char *) from_end - GC_STRING_OVERRUN_COOKIE_SIZE,
2133 GC_STRING_OVERRUN_COOKIE_SIZE))
212f33f1
KS
2134 abort ();
2135#endif
177c0ea7 2136
2e471eb5
GM
2137 /* FROM->string non-null means it's alive. Copy its data. */
2138 if (from->string)
2139 {
2140 /* If TB is full, proceed with the next sblock. */
212f33f1 2141 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2e471eb5
GM
2142 if (to_end > tb_end)
2143 {
2144 tb->next_free = to;
2145 tb = tb->next;
2146 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2147 to = &tb->first_data;
212f33f1 2148 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2e471eb5 2149 }
177c0ea7 2150
2e471eb5
GM
2151 /* Copy, and update the string's `data' pointer. */
2152 if (from != to)
2153 {
3c616cfa 2154 xassert (tb != b || to < from);
72af86bd 2155 memmove (to, from, nbytes + GC_STRING_EXTRA);
31d929e5 2156 to->string->data = SDATA_DATA (to);
2e471eb5
GM
2157 }
2158
2159 /* Advance past the sdata we copied to. */
2160 to = to_end;
2161 }
2162 }
2163 }
2164
2165 /* The rest of the sblocks following TB don't contain live data, so
2166 we can free them. */
2167 for (b = tb->next; b; b = next)
2168 {
2169 next = b->next;
2170 lisp_free (b);
2171 }
2172
2173 tb->next_free = to;
2174 tb->next = NULL;
2175 current_sblock = tb;
2176}
2177
cb93f9be
PE
2178void
2179string_overflow (void)
2180{
2181 error ("Maximum string size exceeded");
2182}
2e471eb5 2183
a7ca3326 2184DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
69623621
RS
2185 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
2186LENGTH must be an integer.
2187INIT must be an integer that represents a character. */)
5842a27b 2188 (Lisp_Object length, Lisp_Object init)
2e471eb5
GM
2189{
2190 register Lisp_Object val;
2191 register unsigned char *p, *end;
14162469
EZ
2192 int c;
2193 EMACS_INT nbytes;
2e471eb5 2194
b7826503 2195 CHECK_NATNUM (length);
2bccce07 2196 CHECK_CHARACTER (init);
2e471eb5 2197
2bccce07 2198 c = XFASTINT (init);
830ff83b 2199 if (ASCII_CHAR_P (c))
2e471eb5
GM
2200 {
2201 nbytes = XINT (length);
2202 val = make_uninit_string (nbytes);
d5db4077
KR
2203 p = SDATA (val);
2204 end = p + SCHARS (val);
2e471eb5
GM
2205 while (p != end)
2206 *p++ = c;
2207 }
2208 else
2209 {
d942b71c 2210 unsigned char str[MAX_MULTIBYTE_LENGTH];
2e471eb5 2211 int len = CHAR_STRING (c, str);
14162469 2212 EMACS_INT string_len = XINT (length);
2e471eb5 2213
d1f3d2af 2214 if (string_len > STRING_BYTES_MAX / len)
cb93f9be 2215 string_overflow ();
14162469
EZ
2216 nbytes = len * string_len;
2217 val = make_uninit_multibyte_string (string_len, nbytes);
d5db4077 2218 p = SDATA (val);
2e471eb5
GM
2219 end = p + nbytes;
2220 while (p != end)
2221 {
72af86bd 2222 memcpy (p, str, len);
2e471eb5
GM
2223 p += len;
2224 }
2225 }
177c0ea7 2226
2e471eb5
GM
2227 *p = 0;
2228 return val;
2229}
2230
2231
a7ca3326 2232DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
909e3b33 2233 doc: /* Return a new bool-vector of length LENGTH, using INIT for each element.
7ee72033 2234LENGTH must be a number. INIT matters only in whether it is t or nil. */)
5842a27b 2235 (Lisp_Object length, Lisp_Object init)
2e471eb5
GM
2236{
2237 register Lisp_Object val;
2238 struct Lisp_Bool_Vector *p;
14162469
EZ
2239 EMACS_INT length_in_chars, length_in_elts;
2240 int bits_per_value;
2e471eb5 2241
b7826503 2242 CHECK_NATNUM (length);
2e471eb5 2243
a097329f 2244 bits_per_value = sizeof (EMACS_INT) * BOOL_VECTOR_BITS_PER_CHAR;
2e471eb5
GM
2245
2246 length_in_elts = (XFASTINT (length) + bits_per_value - 1) / bits_per_value;
a097329f
AS
2247 length_in_chars = ((XFASTINT (length) + BOOL_VECTOR_BITS_PER_CHAR - 1)
2248 / BOOL_VECTOR_BITS_PER_CHAR);
2e471eb5
GM
2249
2250 /* We must allocate one more elements than LENGTH_IN_ELTS for the
2251 slot `size' of the struct Lisp_Bool_Vector. */
2252 val = Fmake_vector (make_number (length_in_elts + 1), Qnil);
177c0ea7 2253
eab3844f
PE
2254 /* No Lisp_Object to trace in there. */
2255 XSETPVECTYPESIZE (XVECTOR (val), PVEC_BOOL_VECTOR, 0);
d2029e5b
SM
2256
2257 p = XBOOL_VECTOR (val);
2e471eb5 2258 p->size = XFASTINT (length);
177c0ea7 2259
c0c1ee9f
PE
2260 if (length_in_chars)
2261 {
2262 memset (p->data, ! NILP (init) ? -1 : 0, length_in_chars);
177c0ea7 2263
c0c1ee9f
PE
2264 /* Clear any extraneous bits in the last byte. */
2265 p->data[length_in_chars - 1]
2266 &= (1 << (XINT (length) % BOOL_VECTOR_BITS_PER_CHAR)) - 1;
2267 }
2e471eb5
GM
2268
2269 return val;
2270}
2271
2272
2273/* Make a string from NBYTES bytes at CONTENTS, and compute the number
2274 of characters from the contents. This string may be unibyte or
2275 multibyte, depending on the contents. */
2276
2277Lisp_Object
14162469 2278make_string (const char *contents, EMACS_INT nbytes)
2e471eb5
GM
2279{
2280 register Lisp_Object val;
14162469 2281 EMACS_INT nchars, multibyte_nbytes;
9eac9d59 2282
90256841
PE
2283 parse_str_as_multibyte ((const unsigned char *) contents, nbytes,
2284 &nchars, &multibyte_nbytes);
9eac9d59
KH
2285 if (nbytes == nchars || nbytes != multibyte_nbytes)
2286 /* CONTENTS contains no multibyte sequences or contains an invalid
2287 multibyte sequence. We must make unibyte string. */
495a6df3
KH
2288 val = make_unibyte_string (contents, nbytes);
2289 else
2290 val = make_multibyte_string (contents, nchars, nbytes);
2e471eb5
GM
2291 return val;
2292}
2293
2294
2295/* Make an unibyte string from LENGTH bytes at CONTENTS. */
2296
2297Lisp_Object
14162469 2298make_unibyte_string (const char *contents, EMACS_INT length)
2e471eb5
GM
2299{
2300 register Lisp_Object val;
2301 val = make_uninit_string (length);
72af86bd 2302 memcpy (SDATA (val), contents, length);
2e471eb5
GM
2303 return val;
2304}
2305
2306
2307/* Make a multibyte string from NCHARS characters occupying NBYTES
2308 bytes at CONTENTS. */
2309
2310Lisp_Object
14162469
EZ
2311make_multibyte_string (const char *contents,
2312 EMACS_INT nchars, EMACS_INT nbytes)
2e471eb5
GM
2313{
2314 register Lisp_Object val;
2315 val = make_uninit_multibyte_string (nchars, nbytes);
72af86bd 2316 memcpy (SDATA (val), contents, nbytes);
2e471eb5
GM
2317 return val;
2318}
2319
2320
2321/* Make a string from NCHARS characters occupying NBYTES bytes at
2322 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2323
2324Lisp_Object
14162469
EZ
2325make_string_from_bytes (const char *contents,
2326 EMACS_INT nchars, EMACS_INT nbytes)
2e471eb5
GM
2327{
2328 register Lisp_Object val;
2329 val = make_uninit_multibyte_string (nchars, nbytes);
72af86bd 2330 memcpy (SDATA (val), contents, nbytes);
d5db4077
KR
2331 if (SBYTES (val) == SCHARS (val))
2332 STRING_SET_UNIBYTE (val);
2e471eb5
GM
2333 return val;
2334}
2335
2336
2337/* Make a string from NCHARS characters occupying NBYTES bytes at
2338 CONTENTS. The argument MULTIBYTE controls whether to label the
229b28c4
KH
2339 string as multibyte. If NCHARS is negative, it counts the number of
2340 characters by itself. */
2e471eb5
GM
2341
2342Lisp_Object
14162469
EZ
2343make_specified_string (const char *contents,
2344 EMACS_INT nchars, EMACS_INT nbytes, int multibyte)
2e471eb5
GM
2345{
2346 register Lisp_Object val;
229b28c4
KH
2347
2348 if (nchars < 0)
2349 {
2350 if (multibyte)
90256841
PE
2351 nchars = multibyte_chars_in_text ((const unsigned char *) contents,
2352 nbytes);
229b28c4
KH
2353 else
2354 nchars = nbytes;
2355 }
2e471eb5 2356 val = make_uninit_multibyte_string (nchars, nbytes);
72af86bd 2357 memcpy (SDATA (val), contents, nbytes);
2e471eb5 2358 if (!multibyte)
d5db4077 2359 STRING_SET_UNIBYTE (val);
2e471eb5
GM
2360 return val;
2361}
2362
2363
2364/* Make a string from the data at STR, treating it as multibyte if the
2365 data warrants. */
2366
2367Lisp_Object
971de7fb 2368build_string (const char *str)
2e471eb5
GM
2369{
2370 return make_string (str, strlen (str));
2371}
2372
2373
2374/* Return an unibyte Lisp_String set up to hold LENGTH characters
2375 occupying LENGTH bytes. */
2376
2377Lisp_Object
413d18e7 2378make_uninit_string (EMACS_INT length)
2e471eb5
GM
2379{
2380 Lisp_Object val;
4d774b0f
JB
2381
2382 if (!length)
2383 return empty_unibyte_string;
2e471eb5 2384 val = make_uninit_multibyte_string (length, length);
d5db4077 2385 STRING_SET_UNIBYTE (val);
2e471eb5
GM
2386 return val;
2387}
2388
2389
2390/* Return a multibyte Lisp_String set up to hold NCHARS characters
2391 which occupy NBYTES bytes. */
2392
2393Lisp_Object
413d18e7 2394make_uninit_multibyte_string (EMACS_INT nchars, EMACS_INT nbytes)
2e471eb5
GM
2395{
2396 Lisp_Object string;
2397 struct Lisp_String *s;
2398
2399 if (nchars < 0)
2400 abort ();
4d774b0f
JB
2401 if (!nbytes)
2402 return empty_multibyte_string;
2e471eb5
GM
2403
2404 s = allocate_string ();
2405 allocate_string_data (s, nchars, nbytes);
2406 XSETSTRING (string, s);
2407 string_chars_consed += nbytes;
2408 return string;
2409}
2410
2411
2412\f
2413/***********************************************************************
2414 Float Allocation
2415 ***********************************************************************/
2416
2e471eb5
GM
2417/* We store float cells inside of float_blocks, allocating a new
2418 float_block with malloc whenever necessary. Float cells reclaimed
2419 by GC are put on a free list to be reallocated before allocating
ab6780cd 2420 any new float cells from the latest float_block. */
2e471eb5 2421
6b61353c
KH
2422#define FLOAT_BLOCK_SIZE \
2423 (((BLOCK_BYTES - sizeof (struct float_block *) \
2424 /* The compiler might add padding at the end. */ \
2425 - (sizeof (struct Lisp_Float) - sizeof (int))) * CHAR_BIT) \
ab6780cd
SM
2426 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2427
2428#define GETMARKBIT(block,n) \
2429 (((block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2430 >> ((n) % (sizeof(int) * CHAR_BIT))) \
2431 & 1)
2432
2433#define SETMARKBIT(block,n) \
2434 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2435 |= 1 << ((n) % (sizeof(int) * CHAR_BIT))
2436
2437#define UNSETMARKBIT(block,n) \
2438 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2439 &= ~(1 << ((n) % (sizeof(int) * CHAR_BIT)))
2440
2441#define FLOAT_BLOCK(fptr) \
d01a7826 2442 ((struct float_block *) (((uintptr_t) (fptr)) & ~(BLOCK_ALIGN - 1)))
ab6780cd
SM
2443
2444#define FLOAT_INDEX(fptr) \
d01a7826 2445 ((((uintptr_t) (fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2e471eb5
GM
2446
2447struct float_block
2448{
ab6780cd 2449 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2e471eb5 2450 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
ab6780cd
SM
2451 int gcmarkbits[1 + FLOAT_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2452 struct float_block *next;
2e471eb5
GM
2453};
2454
ab6780cd
SM
2455#define FLOAT_MARKED_P(fptr) \
2456 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2457
2458#define FLOAT_MARK(fptr) \
2459 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2460
2461#define FLOAT_UNMARK(fptr) \
2462 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2463
34400008
GM
2464/* Current float_block. */
2465
244ed907 2466static struct float_block *float_block;
34400008
GM
2467
2468/* Index of first unused Lisp_Float in the current float_block. */
2469
244ed907 2470static int float_block_index;
2e471eb5 2471
34400008
GM
2472/* Free-list of Lisp_Floats. */
2473
244ed907 2474static struct Lisp_Float *float_free_list;
2e471eb5 2475
34400008 2476
966533c9 2477/* Initialize float allocation. */
34400008 2478
d3d47262 2479static void
971de7fb 2480init_float (void)
2e471eb5 2481{
08b7c2cb
SM
2482 float_block = NULL;
2483 float_block_index = FLOAT_BLOCK_SIZE; /* Force alloc of new float_block. */
2e471eb5 2484 float_free_list = 0;
2e471eb5
GM
2485}
2486
34400008 2487
34400008
GM
2488/* Return a new float object with value FLOAT_VALUE. */
2489
2e471eb5 2490Lisp_Object
971de7fb 2491make_float (double float_value)
2e471eb5
GM
2492{
2493 register Lisp_Object val;
2494
e2984df0
CY
2495 /* eassert (!handling_signal); */
2496
dafc79fa 2497 MALLOC_BLOCK_INPUT;
cfb2f32e 2498
2e471eb5
GM
2499 if (float_free_list)
2500 {
2501 /* We use the data field for chaining the free list
2502 so that we won't use the same field that has the mark bit. */
2503 XSETFLOAT (val, float_free_list);
28a099a4 2504 float_free_list = float_free_list->u.chain;
2e471eb5
GM
2505 }
2506 else
2507 {
2508 if (float_block_index == FLOAT_BLOCK_SIZE)
2509 {
2510 register struct float_block *new;
2511
ab6780cd
SM
2512 new = (struct float_block *) lisp_align_malloc (sizeof *new,
2513 MEM_TYPE_FLOAT);
2e471eb5 2514 new->next = float_block;
72af86bd 2515 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2e471eb5
GM
2516 float_block = new;
2517 float_block_index = 0;
2e471eb5 2518 }
6b61353c
KH
2519 XSETFLOAT (val, &float_block->floats[float_block_index]);
2520 float_block_index++;
2e471eb5 2521 }
177c0ea7 2522
dafc79fa 2523 MALLOC_UNBLOCK_INPUT;
e2984df0 2524
f601cdf3 2525 XFLOAT_INIT (val, float_value);
6b61353c 2526 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2e471eb5
GM
2527 consing_since_gc += sizeof (struct Lisp_Float);
2528 floats_consed++;
2529 return val;
2530}
2531
2e471eb5
GM
2532
2533\f
2534/***********************************************************************
2535 Cons Allocation
2536 ***********************************************************************/
2537
2538/* We store cons cells inside of cons_blocks, allocating a new
2539 cons_block with malloc whenever necessary. Cons cells reclaimed by
2540 GC are put on a free list to be reallocated before allocating
08b7c2cb 2541 any new cons cells from the latest cons_block. */
2e471eb5
GM
2542
2543#define CONS_BLOCK_SIZE \
08b7c2cb
SM
2544 (((BLOCK_BYTES - sizeof (struct cons_block *)) * CHAR_BIT) \
2545 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2546
2547#define CONS_BLOCK(fptr) \
d01a7826 2548 ((struct cons_block *) ((uintptr_t) (fptr) & ~(BLOCK_ALIGN - 1)))
08b7c2cb
SM
2549
2550#define CONS_INDEX(fptr) \
d01a7826 2551 (((uintptr_t) (fptr) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2e471eb5
GM
2552
2553struct cons_block
2554{
08b7c2cb 2555 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2e471eb5 2556 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
08b7c2cb
SM
2557 int gcmarkbits[1 + CONS_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2558 struct cons_block *next;
2e471eb5
GM
2559};
2560
08b7c2cb
SM
2561#define CONS_MARKED_P(fptr) \
2562 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2563
2564#define CONS_MARK(fptr) \
2565 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2566
2567#define CONS_UNMARK(fptr) \
2568 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2569
34400008
GM
2570/* Current cons_block. */
2571
244ed907 2572static struct cons_block *cons_block;
34400008
GM
2573
2574/* Index of first unused Lisp_Cons in the current block. */
2575
244ed907 2576static int cons_block_index;
2e471eb5 2577
34400008
GM
2578/* Free-list of Lisp_Cons structures. */
2579
244ed907 2580static struct Lisp_Cons *cons_free_list;
2e471eb5 2581
34400008
GM
2582
2583/* Initialize cons allocation. */
2584
d3d47262 2585static void
971de7fb 2586init_cons (void)
2e471eb5 2587{
08b7c2cb
SM
2588 cons_block = NULL;
2589 cons_block_index = CONS_BLOCK_SIZE; /* Force alloc of new cons_block. */
2e471eb5 2590 cons_free_list = 0;
2e471eb5
GM
2591}
2592
34400008
GM
2593
2594/* Explicitly free a cons cell by putting it on the free-list. */
2e471eb5
GM
2595
2596void
971de7fb 2597free_cons (struct Lisp_Cons *ptr)
2e471eb5 2598{
28a099a4 2599 ptr->u.chain = cons_free_list;
34400008
GM
2600#if GC_MARK_STACK
2601 ptr->car = Vdead;
2602#endif
2e471eb5
GM
2603 cons_free_list = ptr;
2604}
2605
a7ca3326 2606DEFUN ("cons", Fcons, Scons, 2, 2, 0,
a6266d23 2607 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
5842a27b 2608 (Lisp_Object car, Lisp_Object cdr)
2e471eb5
GM
2609{
2610 register Lisp_Object val;
2611
e2984df0
CY
2612 /* eassert (!handling_signal); */
2613
dafc79fa 2614 MALLOC_BLOCK_INPUT;
cfb2f32e 2615
2e471eb5
GM
2616 if (cons_free_list)
2617 {
2618 /* We use the cdr for chaining the free list
2619 so that we won't use the same field that has the mark bit. */
2620 XSETCONS (val, cons_free_list);
28a099a4 2621 cons_free_list = cons_free_list->u.chain;
2e471eb5
GM
2622 }
2623 else
2624 {
2625 if (cons_block_index == CONS_BLOCK_SIZE)
2626 {
2627 register struct cons_block *new;
08b7c2cb
SM
2628 new = (struct cons_block *) lisp_align_malloc (sizeof *new,
2629 MEM_TYPE_CONS);
72af86bd 2630 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2e471eb5
GM
2631 new->next = cons_block;
2632 cons_block = new;
2633 cons_block_index = 0;
2e471eb5 2634 }
6b61353c
KH
2635 XSETCONS (val, &cons_block->conses[cons_block_index]);
2636 cons_block_index++;
2e471eb5 2637 }
177c0ea7 2638
dafc79fa 2639 MALLOC_UNBLOCK_INPUT;
e2984df0 2640
f3fbd155
KR
2641 XSETCAR (val, car);
2642 XSETCDR (val, cdr);
6b61353c 2643 eassert (!CONS_MARKED_P (XCONS (val)));
2e471eb5
GM
2644 consing_since_gc += sizeof (struct Lisp_Cons);
2645 cons_cells_consed++;
2646 return val;
2647}
2648
e5aab7e7 2649#ifdef GC_CHECK_CONS_LIST
e3e56238
RS
2650/* Get an error now if there's any junk in the cons free list. */
2651void
971de7fb 2652check_cons_list (void)
e3e56238
RS
2653{
2654 struct Lisp_Cons *tail = cons_free_list;
2655
e3e56238 2656 while (tail)
28a099a4 2657 tail = tail->u.chain;
e3e56238 2658}
e5aab7e7 2659#endif
34400008 2660
9b306d37
KS
2661/* Make a list of 1, 2, 3, 4 or 5 specified objects. */
2662
2663Lisp_Object
971de7fb 2664list1 (Lisp_Object arg1)
9b306d37
KS
2665{
2666 return Fcons (arg1, Qnil);
2667}
2e471eb5
GM
2668
2669Lisp_Object
971de7fb 2670list2 (Lisp_Object arg1, Lisp_Object arg2)
2e471eb5
GM
2671{
2672 return Fcons (arg1, Fcons (arg2, Qnil));
2673}
2674
34400008 2675
2e471eb5 2676Lisp_Object
971de7fb 2677list3 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3)
2e471eb5
GM
2678{
2679 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2680}
2681
34400008 2682
2e471eb5 2683Lisp_Object
971de7fb 2684list4 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4)
2e471eb5
GM
2685{
2686 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2687}
2688
34400008 2689
2e471eb5 2690Lisp_Object
971de7fb 2691list5 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4, Lisp_Object arg5)
2e471eb5
GM
2692{
2693 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2694 Fcons (arg5, Qnil)))));
2695}
2696
34400008 2697
a7ca3326 2698DEFUN ("list", Flist, Slist, 0, MANY, 0,
eae936e2 2699 doc: /* Return a newly created list with specified arguments as elements.
ae8e8122
MB
2700Any number of arguments, even zero arguments, are allowed.
2701usage: (list &rest OBJECTS) */)
f66c7cf8 2702 (ptrdiff_t nargs, Lisp_Object *args)
2e471eb5
GM
2703{
2704 register Lisp_Object val;
2705 val = Qnil;
2706
2707 while (nargs > 0)
2708 {
2709 nargs--;
2710 val = Fcons (args[nargs], val);
2711 }
2712 return val;
2713}
2714
34400008 2715
a7ca3326 2716DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
a6266d23 2717 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
5842a27b 2718 (register Lisp_Object length, Lisp_Object init)
2e471eb5
GM
2719{
2720 register Lisp_Object val;
14162469 2721 register EMACS_INT size;
2e471eb5 2722
b7826503 2723 CHECK_NATNUM (length);
2e471eb5
GM
2724 size = XFASTINT (length);
2725
2726 val = Qnil;
ce070307
GM
2727 while (size > 0)
2728 {
2729 val = Fcons (init, val);
2730 --size;
2731
2732 if (size > 0)
2733 {
2734 val = Fcons (init, val);
2735 --size;
177c0ea7 2736
ce070307
GM
2737 if (size > 0)
2738 {
2739 val = Fcons (init, val);
2740 --size;
177c0ea7 2741
ce070307
GM
2742 if (size > 0)
2743 {
2744 val = Fcons (init, val);
2745 --size;
177c0ea7 2746
ce070307
GM
2747 if (size > 0)
2748 {
2749 val = Fcons (init, val);
2750 --size;
2751 }
2752 }
2753 }
2754 }
2755
2756 QUIT;
2757 }
177c0ea7 2758
7146af97
JB
2759 return val;
2760}
2e471eb5
GM
2761
2762
7146af97 2763\f
2e471eb5
GM
2764/***********************************************************************
2765 Vector Allocation
2766 ***********************************************************************/
7146af97 2767
34400008
GM
2768/* Singly-linked list of all vectors. */
2769
d3d47262 2770static struct Lisp_Vector *all_vectors;
7146af97 2771
dd0b0efb
PE
2772/* Handy constants for vectorlike objects. */
2773enum
2774 {
2775 header_size = offsetof (struct Lisp_Vector, contents),
2776 word_size = sizeof (Lisp_Object)
2777 };
34400008
GM
2778
2779/* Value is a pointer to a newly allocated Lisp_Vector structure
2780 with room for LEN Lisp_Objects. */
2781
ece93c02 2782static struct Lisp_Vector *
971de7fb 2783allocate_vectorlike (EMACS_INT len)
1825c68d
KH
2784{
2785 struct Lisp_Vector *p;
675d5130 2786 size_t nbytes;
1825c68d 2787
dafc79fa
SM
2788 MALLOC_BLOCK_INPUT;
2789
d1658221 2790#ifdef DOUG_LEA_MALLOC
f8608968
GM
2791 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
2792 because mapped region contents are not preserved in
2793 a dumped Emacs. */
d1658221
RS
2794 mallopt (M_MMAP_MAX, 0);
2795#endif
177c0ea7 2796
cfb2f32e
SM
2797 /* This gets triggered by code which I haven't bothered to fix. --Stef */
2798 /* eassert (!handling_signal); */
2799
0de4bb68 2800 nbytes = header_size + len * word_size;
9c545a55 2801 p = (struct Lisp_Vector *) lisp_malloc (nbytes, MEM_TYPE_VECTORLIKE);
177c0ea7 2802
d1658221 2803#ifdef DOUG_LEA_MALLOC
34400008 2804 /* Back to a reasonable maximum of mmap'ed areas. */
81d492d5 2805 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
d1658221 2806#endif
177c0ea7 2807
34400008 2808 consing_since_gc += nbytes;
310ea200 2809 vector_cells_consed += len;
1825c68d 2810
eab3844f 2811 p->header.next.vector = all_vectors;
1825c68d 2812 all_vectors = p;
e2984df0 2813
dafc79fa 2814 MALLOC_UNBLOCK_INPUT;
e2984df0 2815
1825c68d
KH
2816 return p;
2817}
2818
34400008 2819
dd0b0efb 2820/* Allocate a vector with LEN slots. */
ece93c02
GM
2821
2822struct Lisp_Vector *
dd0b0efb 2823allocate_vector (EMACS_INT len)
ece93c02 2824{
dd0b0efb
PE
2825 struct Lisp_Vector *v;
2826 ptrdiff_t nbytes_max = min (PTRDIFF_MAX, SIZE_MAX);
2827
2828 if (min ((nbytes_max - header_size) / word_size, MOST_POSITIVE_FIXNUM) < len)
2829 memory_full (SIZE_MAX);
2830 v = allocate_vectorlike (len);
2831 v->header.size = len;
ece93c02
GM
2832 return v;
2833}
2834
2835
2836/* Allocate other vector-like structures. */
2837
30f95089 2838struct Lisp_Vector *
971de7fb 2839allocate_pseudovector (int memlen, int lisplen, EMACS_INT tag)
ece93c02 2840{
d2029e5b 2841 struct Lisp_Vector *v = allocate_vectorlike (memlen);
e46bb31a 2842 int i;
177c0ea7 2843
d2029e5b 2844 /* Only the first lisplen slots will be traced normally by the GC. */
d2029e5b 2845 for (i = 0; i < lisplen; ++i)
ece93c02 2846 v->contents[i] = Qnil;
177c0ea7 2847
eab3844f 2848 XSETPVECTYPESIZE (v, tag, lisplen);
d2029e5b
SM
2849 return v;
2850}
d2029e5b 2851
ece93c02 2852struct Lisp_Hash_Table *
878f97ff 2853allocate_hash_table (void)
ece93c02 2854{
878f97ff 2855 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Hash_Table, count, PVEC_HASH_TABLE);
ece93c02
GM
2856}
2857
2858
2859struct window *
971de7fb 2860allocate_window (void)
ece93c02 2861{
d2029e5b 2862 return ALLOCATE_PSEUDOVECTOR(struct window, current_matrix, PVEC_WINDOW);
ece93c02 2863}
177c0ea7 2864
177c0ea7 2865
4a729fd8 2866struct terminal *
971de7fb 2867allocate_terminal (void)
4a729fd8 2868{
d2029e5b
SM
2869 struct terminal *t = ALLOCATE_PSEUDOVECTOR (struct terminal,
2870 next_terminal, PVEC_TERMINAL);
2871 /* Zero out the non-GC'd fields. FIXME: This should be made unnecessary. */
72af86bd
AS
2872 memset (&t->next_terminal, 0,
2873 (char*) (t + 1) - (char*) &t->next_terminal);
ece93c02 2874
d2029e5b 2875 return t;
4a729fd8 2876}
ece93c02
GM
2877
2878struct frame *
971de7fb 2879allocate_frame (void)
ece93c02 2880{
d2029e5b
SM
2881 struct frame *f = ALLOCATE_PSEUDOVECTOR (struct frame,
2882 face_cache, PVEC_FRAME);
2883 /* Zero out the non-GC'd fields. FIXME: This should be made unnecessary. */
72af86bd
AS
2884 memset (&f->face_cache, 0,
2885 (char *) (f + 1) - (char *) &f->face_cache);
d2029e5b 2886 return f;
ece93c02
GM
2887}
2888
2889
2890struct Lisp_Process *
971de7fb 2891allocate_process (void)
ece93c02 2892{
d2029e5b 2893 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Process, pid, PVEC_PROCESS);
ece93c02
GM
2894}
2895
2896
a7ca3326 2897DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
a6266d23 2898 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
7ee72033 2899See also the function `vector'. */)
5842a27b 2900 (register Lisp_Object length, Lisp_Object init)
7146af97 2901{
1825c68d
KH
2902 Lisp_Object vector;
2903 register EMACS_INT sizei;
ae35e756 2904 register EMACS_INT i;
7146af97
JB
2905 register struct Lisp_Vector *p;
2906
b7826503 2907 CHECK_NATNUM (length);
c9dad5ed 2908 sizei = XFASTINT (length);
7146af97 2909
ece93c02 2910 p = allocate_vector (sizei);
ae35e756
PE
2911 for (i = 0; i < sizei; i++)
2912 p->contents[i] = init;
7146af97 2913
1825c68d 2914 XSETVECTOR (vector, p);
7146af97
JB
2915 return vector;
2916}
2917
34400008 2918
a7ca3326 2919DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
eae936e2 2920 doc: /* Return a newly created vector with specified arguments as elements.
ae8e8122
MB
2921Any number of arguments, even zero arguments, are allowed.
2922usage: (vector &rest OBJECTS) */)
f66c7cf8 2923 (ptrdiff_t nargs, Lisp_Object *args)
7146af97
JB
2924{
2925 register Lisp_Object len, val;
f66c7cf8 2926 ptrdiff_t i;
7146af97
JB
2927 register struct Lisp_Vector *p;
2928
67ba9986 2929 XSETFASTINT (len, nargs);
7146af97
JB
2930 val = Fmake_vector (len, Qnil);
2931 p = XVECTOR (val);
ae35e756
PE
2932 for (i = 0; i < nargs; i++)
2933 p->contents[i] = args[i];
7146af97
JB
2934 return val;
2935}
2936
34400008 2937
a7ca3326 2938DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
a6266d23 2939 doc: /* Create a byte-code object with specified arguments as elements.
e2abe5a1
SM
2940The arguments should be the ARGLIST, bytecode-string BYTE-CODE, constant
2941vector CONSTANTS, maximum stack size DEPTH, (optional) DOCSTRING,
2942and (optional) INTERACTIVE-SPEC.
228299fa 2943The first four arguments are required; at most six have any
ae8e8122 2944significance.
e2abe5a1
SM
2945The ARGLIST can be either like the one of `lambda', in which case the arguments
2946will be dynamically bound before executing the byte code, or it can be an
2947integer of the form NNNNNNNRMMMMMMM where the 7bit MMMMMMM specifies the
2948minimum number of arguments, the 7-bit NNNNNNN specifies the maximum number
2949of arguments (ignoring &rest) and the R bit specifies whether there is a &rest
2950argument to catch the left-over arguments. If such an integer is used, the
2951arguments will not be dynamically bound but will be instead pushed on the
2952stack before executing the byte-code.
92cc28b2 2953usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
f66c7cf8 2954 (ptrdiff_t nargs, Lisp_Object *args)
7146af97
JB
2955{
2956 register Lisp_Object len, val;
f66c7cf8 2957 ptrdiff_t i;
7146af97
JB
2958 register struct Lisp_Vector *p;
2959
67ba9986 2960 XSETFASTINT (len, nargs);
265a9e55 2961 if (!NILP (Vpurify_flag))
f66c7cf8 2962 val = make_pure_vector (nargs);
7146af97
JB
2963 else
2964 val = Fmake_vector (len, Qnil);
9eac9d59 2965
b1feb9b4 2966 if (nargs > 1 && STRINGP (args[1]) && STRING_MULTIBYTE (args[1]))
9eac9d59
KH
2967 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
2968 earlier because they produced a raw 8-bit string for byte-code
2969 and now such a byte-code string is loaded as multibyte while
2970 raw 8-bit characters converted to multibyte form. Thus, now we
2971 must convert them back to the original unibyte form. */
2972 args[1] = Fstring_as_unibyte (args[1]);
2973
7146af97 2974 p = XVECTOR (val);
ae35e756 2975 for (i = 0; i < nargs; i++)
7146af97 2976 {
265a9e55 2977 if (!NILP (Vpurify_flag))
ae35e756
PE
2978 args[i] = Fpurecopy (args[i]);
2979 p->contents[i] = args[i];
7146af97 2980 }
876c194c
SM
2981 XSETPVECTYPE (p, PVEC_COMPILED);
2982 XSETCOMPILED (val, p);
7146af97
JB
2983 return val;
2984}
2e471eb5 2985
34400008 2986
7146af97 2987\f
2e471eb5
GM
2988/***********************************************************************
2989 Symbol Allocation
2990 ***********************************************************************/
7146af97 2991
2e471eb5
GM
2992/* Each symbol_block is just under 1020 bytes long, since malloc
2993 really allocates in units of powers of two and uses 4 bytes for its
2994 own overhead. */
7146af97
JB
2995
2996#define SYMBOL_BLOCK_SIZE \
2997 ((1020 - sizeof (struct symbol_block *)) / sizeof (struct Lisp_Symbol))
2998
2999struct symbol_block
2e471eb5 3000{
6b61353c 3001 /* Place `symbols' first, to preserve alignment. */
2e471eb5 3002 struct Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
6b61353c 3003 struct symbol_block *next;
2e471eb5 3004};
7146af97 3005
34400008
GM
3006/* Current symbol block and index of first unused Lisp_Symbol
3007 structure in it. */
3008
d3d47262
JB
3009static struct symbol_block *symbol_block;
3010static int symbol_block_index;
7146af97 3011
34400008
GM
3012/* List of free symbols. */
3013
d3d47262 3014static struct Lisp_Symbol *symbol_free_list;
7146af97 3015
34400008
GM
3016
3017/* Initialize symbol allocation. */
3018
d3d47262 3019static void
971de7fb 3020init_symbol (void)
7146af97 3021{
005ca5c7
DL
3022 symbol_block = NULL;
3023 symbol_block_index = SYMBOL_BLOCK_SIZE;
7146af97
JB
3024 symbol_free_list = 0;
3025}
3026
34400008 3027
a7ca3326 3028DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
a6266d23 3029 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
7ee72033 3030Its value and function definition are void, and its property list is nil. */)
5842a27b 3031 (Lisp_Object name)
7146af97
JB
3032{
3033 register Lisp_Object val;
3034 register struct Lisp_Symbol *p;
3035
b7826503 3036 CHECK_STRING (name);
7146af97 3037
537407f0 3038 /* eassert (!handling_signal); */
cfb2f32e 3039
dafc79fa 3040 MALLOC_BLOCK_INPUT;
e2984df0 3041
7146af97
JB
3042 if (symbol_free_list)
3043 {
45d12a89 3044 XSETSYMBOL (val, symbol_free_list);
28a099a4 3045 symbol_free_list = symbol_free_list->next;
7146af97
JB
3046 }
3047 else
3048 {
3049 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
3050 {
3c06d205 3051 struct symbol_block *new;
34400008
GM
3052 new = (struct symbol_block *) lisp_malloc (sizeof *new,
3053 MEM_TYPE_SYMBOL);
7146af97
JB
3054 new->next = symbol_block;
3055 symbol_block = new;
3056 symbol_block_index = 0;
3057 }
6b61353c
KH
3058 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index]);
3059 symbol_block_index++;
7146af97 3060 }
177c0ea7 3061
dafc79fa 3062 MALLOC_UNBLOCK_INPUT;
e2984df0 3063
7146af97 3064 p = XSYMBOL (val);
8fe5665d 3065 p->xname = name;
7146af97 3066 p->plist = Qnil;
ce5b453a
SM
3067 p->redirect = SYMBOL_PLAINVAL;
3068 SET_SYMBOL_VAL (p, Qunbound);
2e471eb5 3069 p->function = Qunbound;
9e713715 3070 p->next = NULL;
2336fe58 3071 p->gcmarkbit = 0;
9e713715
GM
3072 p->interned = SYMBOL_UNINTERNED;
3073 p->constant = 0;
b9598260 3074 p->declared_special = 0;
2e471eb5
GM
3075 consing_since_gc += sizeof (struct Lisp_Symbol);
3076 symbols_consed++;
7146af97
JB
3077 return val;
3078}
3079
3f25e183 3080
2e471eb5
GM
3081\f
3082/***********************************************************************
34400008 3083 Marker (Misc) Allocation
2e471eb5 3084 ***********************************************************************/
3f25e183 3085
2e471eb5
GM
3086/* Allocation of markers and other objects that share that structure.
3087 Works like allocation of conses. */
c0696668 3088
2e471eb5
GM
3089#define MARKER_BLOCK_SIZE \
3090 ((1020 - sizeof (struct marker_block *)) / sizeof (union Lisp_Misc))
3091
3092struct marker_block
c0696668 3093{
6b61353c 3094 /* Place `markers' first, to preserve alignment. */
2e471eb5 3095 union Lisp_Misc markers[MARKER_BLOCK_SIZE];
6b61353c 3096 struct marker_block *next;
2e471eb5 3097};
c0696668 3098
d3d47262
JB
3099static struct marker_block *marker_block;
3100static int marker_block_index;
c0696668 3101
d3d47262 3102static union Lisp_Misc *marker_free_list;
c0696668 3103
d3d47262 3104static void
971de7fb 3105init_marker (void)
3f25e183 3106{
005ca5c7
DL
3107 marker_block = NULL;
3108 marker_block_index = MARKER_BLOCK_SIZE;
2e471eb5 3109 marker_free_list = 0;
3f25e183
RS
3110}
3111
2e471eb5
GM
3112/* Return a newly allocated Lisp_Misc object, with no substructure. */
3113
3f25e183 3114Lisp_Object
971de7fb 3115allocate_misc (void)
7146af97 3116{
2e471eb5 3117 Lisp_Object val;
7146af97 3118
e2984df0
CY
3119 /* eassert (!handling_signal); */
3120
dafc79fa 3121 MALLOC_BLOCK_INPUT;
cfb2f32e 3122
2e471eb5 3123 if (marker_free_list)
7146af97 3124 {
2e471eb5
GM
3125 XSETMISC (val, marker_free_list);
3126 marker_free_list = marker_free_list->u_free.chain;
7146af97
JB
3127 }
3128 else
7146af97 3129 {
2e471eb5
GM
3130 if (marker_block_index == MARKER_BLOCK_SIZE)
3131 {
3132 struct marker_block *new;
34400008
GM
3133 new = (struct marker_block *) lisp_malloc (sizeof *new,
3134 MEM_TYPE_MISC);
2e471eb5
GM
3135 new->next = marker_block;
3136 marker_block = new;
3137 marker_block_index = 0;
7b7990cc 3138 total_free_markers += MARKER_BLOCK_SIZE;
2e471eb5 3139 }
6b61353c
KH
3140 XSETMISC (val, &marker_block->markers[marker_block_index]);
3141 marker_block_index++;
7146af97 3142 }
177c0ea7 3143
dafc79fa 3144 MALLOC_UNBLOCK_INPUT;
e2984df0 3145
7b7990cc 3146 --total_free_markers;
2e471eb5
GM
3147 consing_since_gc += sizeof (union Lisp_Misc);
3148 misc_objects_consed++;
67ee9f6e 3149 XMISCANY (val)->gcmarkbit = 0;
2e471eb5
GM
3150 return val;
3151}
3152
7b7990cc
KS
3153/* Free a Lisp_Misc object */
3154
244ed907 3155static void
971de7fb 3156free_misc (Lisp_Object misc)
7b7990cc 3157{
d314756e 3158 XMISCTYPE (misc) = Lisp_Misc_Free;
7b7990cc
KS
3159 XMISC (misc)->u_free.chain = marker_free_list;
3160 marker_free_list = XMISC (misc);
3161
3162 total_free_markers++;
3163}
3164
42172a6b
RS
3165/* Return a Lisp_Misc_Save_Value object containing POINTER and
3166 INTEGER. This is used to package C values to call record_unwind_protect.
3167 The unwind function can get the C values back using XSAVE_VALUE. */
3168
3169Lisp_Object
9c4c5f81 3170make_save_value (void *pointer, ptrdiff_t integer)
42172a6b
RS
3171{
3172 register Lisp_Object val;
3173 register struct Lisp_Save_Value *p;
3174
3175 val = allocate_misc ();
3176 XMISCTYPE (val) = Lisp_Misc_Save_Value;
3177 p = XSAVE_VALUE (val);
3178 p->pointer = pointer;
3179 p->integer = integer;
b766f870 3180 p->dogc = 0;
42172a6b
RS
3181 return val;
3182}
3183
a7ca3326 3184DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
a6266d23 3185 doc: /* Return a newly allocated marker which does not point at any place. */)
5842a27b 3186 (void)
2e471eb5
GM
3187{
3188 register Lisp_Object val;
3189 register struct Lisp_Marker *p;
7146af97 3190
2e471eb5
GM
3191 val = allocate_misc ();
3192 XMISCTYPE (val) = Lisp_Misc_Marker;
3193 p = XMARKER (val);
3194 p->buffer = 0;
3195 p->bytepos = 0;
3196 p->charpos = 0;
ef89c2ce 3197 p->next = NULL;
2e471eb5 3198 p->insertion_type = 0;
7146af97
JB
3199 return val;
3200}
2e471eb5
GM
3201
3202/* Put MARKER back on the free list after using it temporarily. */
3203
3204void
971de7fb 3205free_marker (Lisp_Object marker)
2e471eb5 3206{
ef89c2ce 3207 unchain_marker (XMARKER (marker));
7b7990cc 3208 free_misc (marker);
2e471eb5
GM
3209}
3210
c0696668 3211\f
7146af97 3212/* Return a newly created vector or string with specified arguments as
736471d1
RS
3213 elements. If all the arguments are characters that can fit
3214 in a string of events, make a string; otherwise, make a vector.
3215
3216 Any number of arguments, even zero arguments, are allowed. */
7146af97
JB
3217
3218Lisp_Object
971de7fb 3219make_event_array (register int nargs, Lisp_Object *args)
7146af97
JB
3220{
3221 int i;
3222
3223 for (i = 0; i < nargs; i++)
736471d1 3224 /* The things that fit in a string
c9ca4659
RS
3225 are characters that are in 0...127,
3226 after discarding the meta bit and all the bits above it. */
e687453f 3227 if (!INTEGERP (args[i])
c11285dc 3228 || (XINT (args[i]) & ~(-CHAR_META)) >= 0200)
7146af97
JB
3229 return Fvector (nargs, args);
3230
3231 /* Since the loop exited, we know that all the things in it are
3232 characters, so we can make a string. */
3233 {
c13ccad2 3234 Lisp_Object result;
177c0ea7 3235
50aee051 3236 result = Fmake_string (make_number (nargs), make_number (0));
7146af97 3237 for (i = 0; i < nargs; i++)
736471d1 3238 {
46e7e6b0 3239 SSET (result, i, XINT (args[i]));
736471d1
RS
3240 /* Move the meta bit to the right place for a string char. */
3241 if (XINT (args[i]) & CHAR_META)
46e7e6b0 3242 SSET (result, i, SREF (result, i) | 0x80);
736471d1 3243 }
177c0ea7 3244
7146af97
JB
3245 return result;
3246 }
3247}
2e471eb5
GM
3248
3249
7146af97 3250\f
24d8a105
RS
3251/************************************************************************
3252 Memory Full Handling
3253 ************************************************************************/
3254
3255
531b0165
PE
3256/* Called if malloc (NBYTES) returns zero. If NBYTES == SIZE_MAX,
3257 there may have been size_t overflow so that malloc was never
3258 called, or perhaps malloc was invoked successfully but the
3259 resulting pointer had problems fitting into a tagged EMACS_INT. In
3260 either case this counts as memory being full even though malloc did
3261 not fail. */
24d8a105
RS
3262
3263void
531b0165 3264memory_full (size_t nbytes)
24d8a105 3265{
531b0165
PE
3266 /* Do not go into hysterics merely because a large request failed. */
3267 int enough_free_memory = 0;
2b6148e4 3268 if (SPARE_MEMORY < nbytes)
531b0165 3269 {
2b6148e4 3270 void *p = malloc (SPARE_MEMORY);
531b0165
PE
3271 if (p)
3272 {
4d09bcf6 3273 free (p);
531b0165
PE
3274 enough_free_memory = 1;
3275 }
3276 }
24d8a105 3277
531b0165
PE
3278 if (! enough_free_memory)
3279 {
3280 int i;
24d8a105 3281
531b0165
PE
3282 Vmemory_full = Qt;
3283
3284 memory_full_cons_threshold = sizeof (struct cons_block);
3285
3286 /* The first time we get here, free the spare memory. */
3287 for (i = 0; i < sizeof (spare_memory) / sizeof (char *); i++)
3288 if (spare_memory[i])
3289 {
3290 if (i == 0)
3291 free (spare_memory[i]);
3292 else if (i >= 1 && i <= 4)
3293 lisp_align_free (spare_memory[i]);
3294 else
3295 lisp_free (spare_memory[i]);
3296 spare_memory[i] = 0;
3297 }
3298
3299 /* Record the space now used. When it decreases substantially,
3300 we can refill the memory reserve. */
4e75f29d 3301#if !defined SYSTEM_MALLOC && !defined SYNC_INPUT
531b0165 3302 bytes_used_when_full = BYTES_USED;
24d8a105 3303#endif
531b0165 3304 }
24d8a105
RS
3305
3306 /* This used to call error, but if we've run out of memory, we could
3307 get infinite recursion trying to build the string. */
9b306d37 3308 xsignal (Qnil, Vmemory_signal_data);
24d8a105
RS
3309}
3310
3311/* If we released our reserve (due to running out of memory),
3312 and we have a fair amount free once again,
3313 try to set aside another reserve in case we run out once more.
3314
3315 This is called when a relocatable block is freed in ralloc.c,
3316 and also directly from this file, in case we're not using ralloc.c. */
3317
3318void
971de7fb 3319refill_memory_reserve (void)
24d8a105
RS
3320{
3321#ifndef SYSTEM_MALLOC
3322 if (spare_memory[0] == 0)
3323 spare_memory[0] = (char *) malloc ((size_t) SPARE_MEMORY);
3324 if (spare_memory[1] == 0)
3325 spare_memory[1] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3326 MEM_TYPE_CONS);
3327 if (spare_memory[2] == 0)
3328 spare_memory[2] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3329 MEM_TYPE_CONS);
3330 if (spare_memory[3] == 0)
3331 spare_memory[3] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3332 MEM_TYPE_CONS);
3333 if (spare_memory[4] == 0)
3334 spare_memory[4] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3335 MEM_TYPE_CONS);
3336 if (spare_memory[5] == 0)
3337 spare_memory[5] = (char *) lisp_malloc (sizeof (struct string_block),
3338 MEM_TYPE_STRING);
3339 if (spare_memory[6] == 0)
3340 spare_memory[6] = (char *) lisp_malloc (sizeof (struct string_block),
3341 MEM_TYPE_STRING);
3342 if (spare_memory[0] && spare_memory[1] && spare_memory[5])
3343 Vmemory_full = Qnil;
3344#endif
3345}
3346\f
34400008
GM
3347/************************************************************************
3348 C Stack Marking
3349 ************************************************************************/
3350
13c844fb
GM
3351#if GC_MARK_STACK || defined GC_MALLOC_CHECK
3352
71cf5fa0
GM
3353/* Conservative C stack marking requires a method to identify possibly
3354 live Lisp objects given a pointer value. We do this by keeping
3355 track of blocks of Lisp data that are allocated in a red-black tree
3356 (see also the comment of mem_node which is the type of nodes in
3357 that tree). Function lisp_malloc adds information for an allocated
3358 block to the red-black tree with calls to mem_insert, and function
3359 lisp_free removes it with mem_delete. Functions live_string_p etc
3360 call mem_find to lookup information about a given pointer in the
3361 tree, and use that to determine if the pointer points to a Lisp
3362 object or not. */
3363
34400008
GM
3364/* Initialize this part of alloc.c. */
3365
3366static void
971de7fb 3367mem_init (void)
34400008
GM
3368{
3369 mem_z.left = mem_z.right = MEM_NIL;
3370 mem_z.parent = NULL;
3371 mem_z.color = MEM_BLACK;
3372 mem_z.start = mem_z.end = NULL;
3373 mem_root = MEM_NIL;
3374}
3375
3376
3377/* Value is a pointer to the mem_node containing START. Value is
3378 MEM_NIL if there is no node in the tree containing START. */
3379
55d4c1b2 3380static inline struct mem_node *
971de7fb 3381mem_find (void *start)
34400008
GM
3382{
3383 struct mem_node *p;
3384
ece93c02
GM
3385 if (start < min_heap_address || start > max_heap_address)
3386 return MEM_NIL;
3387
34400008
GM
3388 /* Make the search always successful to speed up the loop below. */
3389 mem_z.start = start;
3390 mem_z.end = (char *) start + 1;
3391
3392 p = mem_root;
3393 while (start < p->start || start >= p->end)
3394 p = start < p->start ? p->left : p->right;
3395 return p;
3396}
3397
3398
3399/* Insert a new node into the tree for a block of memory with start
3400 address START, end address END, and type TYPE. Value is a
3401 pointer to the node that was inserted. */
3402
3403static struct mem_node *
971de7fb 3404mem_insert (void *start, void *end, enum mem_type type)
34400008
GM
3405{
3406 struct mem_node *c, *parent, *x;
3407
add3c3ea 3408 if (min_heap_address == NULL || start < min_heap_address)
ece93c02 3409 min_heap_address = start;
add3c3ea 3410 if (max_heap_address == NULL || end > max_heap_address)
ece93c02
GM
3411 max_heap_address = end;
3412
34400008
GM
3413 /* See where in the tree a node for START belongs. In this
3414 particular application, it shouldn't happen that a node is already
3415 present. For debugging purposes, let's check that. */
3416 c = mem_root;
3417 parent = NULL;
3418
3419#if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
177c0ea7 3420
34400008
GM
3421 while (c != MEM_NIL)
3422 {
3423 if (start >= c->start && start < c->end)
3424 abort ();
3425 parent = c;
3426 c = start < c->start ? c->left : c->right;
3427 }
177c0ea7 3428
34400008 3429#else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
177c0ea7 3430
34400008
GM
3431 while (c != MEM_NIL)
3432 {
3433 parent = c;
3434 c = start < c->start ? c->left : c->right;
3435 }
177c0ea7 3436
34400008
GM
3437#endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3438
3439 /* Create a new node. */
877935b1
GM
3440#ifdef GC_MALLOC_CHECK
3441 x = (struct mem_node *) _malloc_internal (sizeof *x);
3442 if (x == NULL)
3443 abort ();
3444#else
34400008 3445 x = (struct mem_node *) xmalloc (sizeof *x);
877935b1 3446#endif
34400008
GM
3447 x->start = start;
3448 x->end = end;
3449 x->type = type;
3450 x->parent = parent;
3451 x->left = x->right = MEM_NIL;
3452 x->color = MEM_RED;
3453
3454 /* Insert it as child of PARENT or install it as root. */
3455 if (parent)
3456 {
3457 if (start < parent->start)
3458 parent->left = x;
3459 else
3460 parent->right = x;
3461 }
177c0ea7 3462 else
34400008
GM
3463 mem_root = x;
3464
3465 /* Re-establish red-black tree properties. */
3466 mem_insert_fixup (x);
877935b1 3467
34400008
GM
3468 return x;
3469}
3470
3471
3472/* Re-establish the red-black properties of the tree, and thereby
3473 balance the tree, after node X has been inserted; X is always red. */
3474
3475static void
971de7fb 3476mem_insert_fixup (struct mem_node *x)
34400008
GM
3477{
3478 while (x != mem_root && x->parent->color == MEM_RED)
3479 {
3480 /* X is red and its parent is red. This is a violation of
3481 red-black tree property #3. */
177c0ea7 3482
34400008
GM
3483 if (x->parent == x->parent->parent->left)
3484 {
3485 /* We're on the left side of our grandparent, and Y is our
3486 "uncle". */
3487 struct mem_node *y = x->parent->parent->right;
177c0ea7 3488
34400008
GM
3489 if (y->color == MEM_RED)
3490 {
3491 /* Uncle and parent are red but should be black because
3492 X is red. Change the colors accordingly and proceed
3493 with the grandparent. */
3494 x->parent->color = MEM_BLACK;
3495 y->color = MEM_BLACK;
3496 x->parent->parent->color = MEM_RED;
3497 x = x->parent->parent;
3498 }
3499 else
3500 {
3501 /* Parent and uncle have different colors; parent is
3502 red, uncle is black. */
3503 if (x == x->parent->right)
3504 {
3505 x = x->parent;
3506 mem_rotate_left (x);
3507 }
3508
3509 x->parent->color = MEM_BLACK;
3510 x->parent->parent->color = MEM_RED;
3511 mem_rotate_right (x->parent->parent);
3512 }
3513 }
3514 else
3515 {
3516 /* This is the symmetrical case of above. */
3517 struct mem_node *y = x->parent->parent->left;
177c0ea7 3518
34400008
GM
3519 if (y->color == MEM_RED)
3520 {
3521 x->parent->color = MEM_BLACK;
3522 y->color = MEM_BLACK;
3523 x->parent->parent->color = MEM_RED;
3524 x = x->parent->parent;
3525 }
3526 else
3527 {
3528 if (x == x->parent->left)
3529 {
3530 x = x->parent;
3531 mem_rotate_right (x);
3532 }
177c0ea7 3533
34400008
GM
3534 x->parent->color = MEM_BLACK;
3535 x->parent->parent->color = MEM_RED;
3536 mem_rotate_left (x->parent->parent);
3537 }
3538 }
3539 }
3540
3541 /* The root may have been changed to red due to the algorithm. Set
3542 it to black so that property #5 is satisfied. */
3543 mem_root->color = MEM_BLACK;
3544}
3545
3546
177c0ea7
JB
3547/* (x) (y)
3548 / \ / \
34400008
GM
3549 a (y) ===> (x) c
3550 / \ / \
3551 b c a b */
3552
3553static void
971de7fb 3554mem_rotate_left (struct mem_node *x)
34400008
GM
3555{
3556 struct mem_node *y;
3557
3558 /* Turn y's left sub-tree into x's right sub-tree. */
3559 y = x->right;
3560 x->right = y->left;
3561 if (y->left != MEM_NIL)
3562 y->left->parent = x;
3563
3564 /* Y's parent was x's parent. */
3565 if (y != MEM_NIL)
3566 y->parent = x->parent;
3567
3568 /* Get the parent to point to y instead of x. */
3569 if (x->parent)
3570 {
3571 if (x == x->parent->left)
3572 x->parent->left = y;
3573 else
3574 x->parent->right = y;
3575 }
3576 else
3577 mem_root = y;
3578
3579 /* Put x on y's left. */
3580 y->left = x;
3581 if (x != MEM_NIL)
3582 x->parent = y;
3583}
3584
3585
177c0ea7
JB
3586/* (x) (Y)
3587 / \ / \
3588 (y) c ===> a (x)
3589 / \ / \
34400008
GM
3590 a b b c */
3591
3592static void
971de7fb 3593mem_rotate_right (struct mem_node *x)
34400008
GM
3594{
3595 struct mem_node *y = x->left;
3596
3597 x->left = y->right;
3598 if (y->right != MEM_NIL)
3599 y->right->parent = x;
177c0ea7 3600
34400008
GM
3601 if (y != MEM_NIL)
3602 y->parent = x->parent;
3603 if (x->parent)
3604 {
3605 if (x == x->parent->right)
3606 x->parent->right = y;
3607 else
3608 x->parent->left = y;
3609 }
3610 else
3611 mem_root = y;
177c0ea7 3612
34400008
GM
3613 y->right = x;
3614 if (x != MEM_NIL)
3615 x->parent = y;
3616}
3617
3618
3619/* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
3620
3621static void
971de7fb 3622mem_delete (struct mem_node *z)
34400008
GM
3623{
3624 struct mem_node *x, *y;
3625
3626 if (!z || z == MEM_NIL)
3627 return;
3628
3629 if (z->left == MEM_NIL || z->right == MEM_NIL)
3630 y = z;
3631 else
3632 {
3633 y = z->right;
3634 while (y->left != MEM_NIL)
3635 y = y->left;
3636 }
3637
3638 if (y->left != MEM_NIL)
3639 x = y->left;
3640 else
3641 x = y->right;
3642
3643 x->parent = y->parent;
3644 if (y->parent)
3645 {
3646 if (y == y->parent->left)
3647 y->parent->left = x;
3648 else
3649 y->parent->right = x;
3650 }
3651 else
3652 mem_root = x;
3653
3654 if (y != z)
3655 {
3656 z->start = y->start;
3657 z->end = y->end;
3658 z->type = y->type;
3659 }
177c0ea7 3660
34400008
GM
3661 if (y->color == MEM_BLACK)
3662 mem_delete_fixup (x);
877935b1
GM
3663
3664#ifdef GC_MALLOC_CHECK
3665 _free_internal (y);
3666#else
34400008 3667 xfree (y);
877935b1 3668#endif
34400008
GM
3669}
3670
3671
3672/* Re-establish the red-black properties of the tree, after a
3673 deletion. */
3674
3675static void
971de7fb 3676mem_delete_fixup (struct mem_node *x)
34400008
GM
3677{
3678 while (x != mem_root && x->color == MEM_BLACK)
3679 {
3680 if (x == x->parent->left)
3681 {
3682 struct mem_node *w = x->parent->right;
177c0ea7 3683
34400008
GM
3684 if (w->color == MEM_RED)
3685 {
3686 w->color = MEM_BLACK;
3687 x->parent->color = MEM_RED;
3688 mem_rotate_left (x->parent);
3689 w = x->parent->right;
3690 }
177c0ea7 3691
34400008
GM
3692 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
3693 {
3694 w->color = MEM_RED;
3695 x = x->parent;
3696 }
3697 else
3698 {
3699 if (w->right->color == MEM_BLACK)
3700 {
3701 w->left->color = MEM_BLACK;
3702 w->color = MEM_RED;
3703 mem_rotate_right (w);
3704 w = x->parent->right;
3705 }
3706 w->color = x->parent->color;
3707 x->parent->color = MEM_BLACK;
3708 w->right->color = MEM_BLACK;
3709 mem_rotate_left (x->parent);
3710 x = mem_root;
3711 }
3712 }
3713 else
3714 {
3715 struct mem_node *w = x->parent->left;
177c0ea7 3716
34400008
GM
3717 if (w->color == MEM_RED)
3718 {
3719 w->color = MEM_BLACK;
3720 x->parent->color = MEM_RED;
3721 mem_rotate_right (x->parent);
3722 w = x->parent->left;
3723 }
177c0ea7 3724
34400008
GM
3725 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
3726 {
3727 w->color = MEM_RED;
3728 x = x->parent;
3729 }
3730 else
3731 {
3732 if (w->left->color == MEM_BLACK)
3733 {
3734 w->right->color = MEM_BLACK;
3735 w->color = MEM_RED;
3736 mem_rotate_left (w);
3737 w = x->parent->left;
3738 }
177c0ea7 3739
34400008
GM
3740 w->color = x->parent->color;
3741 x->parent->color = MEM_BLACK;
3742 w->left->color = MEM_BLACK;
3743 mem_rotate_right (x->parent);
3744 x = mem_root;
3745 }
3746 }
3747 }
177c0ea7 3748
34400008
GM
3749 x->color = MEM_BLACK;
3750}
3751
3752
3753/* Value is non-zero if P is a pointer to a live Lisp string on
3754 the heap. M is a pointer to the mem_block for P. */
3755
55d4c1b2 3756static inline int
971de7fb 3757live_string_p (struct mem_node *m, void *p)
34400008
GM
3758{
3759 if (m->type == MEM_TYPE_STRING)
3760 {
3761 struct string_block *b = (struct string_block *) m->start;
14162469 3762 ptrdiff_t offset = (char *) p - (char *) &b->strings[0];
34400008
GM
3763
3764 /* P must point to the start of a Lisp_String structure, and it
3765 must not be on the free-list. */
176bc847
GM
3766 return (offset >= 0
3767 && offset % sizeof b->strings[0] == 0
6b61353c 3768 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
34400008
GM
3769 && ((struct Lisp_String *) p)->data != NULL);
3770 }
3771 else
3772 return 0;
3773}
3774
3775
3776/* Value is non-zero if P is a pointer to a live Lisp cons on
3777 the heap. M is a pointer to the mem_block for P. */
3778
55d4c1b2 3779static inline int
971de7fb 3780live_cons_p (struct mem_node *m, void *p)
34400008
GM
3781{
3782 if (m->type == MEM_TYPE_CONS)
3783 {
3784 struct cons_block *b = (struct cons_block *) m->start;
14162469 3785 ptrdiff_t offset = (char *) p - (char *) &b->conses[0];
34400008
GM
3786
3787 /* P must point to the start of a Lisp_Cons, not be
3788 one of the unused cells in the current cons block,
3789 and not be on the free-list. */
176bc847
GM
3790 return (offset >= 0
3791 && offset % sizeof b->conses[0] == 0
6b61353c 3792 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
34400008
GM
3793 && (b != cons_block
3794 || offset / sizeof b->conses[0] < cons_block_index)
3795 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
3796 }
3797 else
3798 return 0;
3799}
3800
3801
3802/* Value is non-zero if P is a pointer to a live Lisp symbol on
3803 the heap. M is a pointer to the mem_block for P. */
3804
55d4c1b2 3805static inline int
971de7fb 3806live_symbol_p (struct mem_node *m, void *p)
34400008
GM
3807{
3808 if (m->type == MEM_TYPE_SYMBOL)
3809 {
3810 struct symbol_block *b = (struct symbol_block *) m->start;
14162469 3811 ptrdiff_t offset = (char *) p - (char *) &b->symbols[0];
177c0ea7 3812
34400008
GM
3813 /* P must point to the start of a Lisp_Symbol, not be
3814 one of the unused cells in the current symbol block,
3815 and not be on the free-list. */
176bc847
GM
3816 return (offset >= 0
3817 && offset % sizeof b->symbols[0] == 0
6b61353c 3818 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
34400008
GM
3819 && (b != symbol_block
3820 || offset / sizeof b->symbols[0] < symbol_block_index)
3821 && !EQ (((struct Lisp_Symbol *) p)->function, Vdead));
3822 }
3823 else
3824 return 0;
3825}
3826
3827
3828/* Value is non-zero if P is a pointer to a live Lisp float on
3829 the heap. M is a pointer to the mem_block for P. */
3830
55d4c1b2 3831static inline int
971de7fb 3832live_float_p (struct mem_node *m, void *p)
34400008
GM
3833{
3834 if (m->type == MEM_TYPE_FLOAT)
3835 {
3836 struct float_block *b = (struct float_block *) m->start;
14162469 3837 ptrdiff_t offset = (char *) p - (char *) &b->floats[0];
177c0ea7 3838
ab6780cd
SM
3839 /* P must point to the start of a Lisp_Float and not be
3840 one of the unused cells in the current float block. */
176bc847
GM
3841 return (offset >= 0
3842 && offset % sizeof b->floats[0] == 0
6b61353c 3843 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
34400008 3844 && (b != float_block
ab6780cd 3845 || offset / sizeof b->floats[0] < float_block_index));
34400008
GM
3846 }
3847 else
3848 return 0;
3849}
3850
3851
3852/* Value is non-zero if P is a pointer to a live Lisp Misc on
3853 the heap. M is a pointer to the mem_block for P. */
3854
55d4c1b2 3855static inline int
971de7fb 3856live_misc_p (struct mem_node *m, void *p)
34400008
GM
3857{
3858 if (m->type == MEM_TYPE_MISC)
3859 {
3860 struct marker_block *b = (struct marker_block *) m->start;
14162469 3861 ptrdiff_t offset = (char *) p - (char *) &b->markers[0];
177c0ea7 3862
34400008
GM
3863 /* P must point to the start of a Lisp_Misc, not be
3864 one of the unused cells in the current misc block,
3865 and not be on the free-list. */
176bc847
GM
3866 return (offset >= 0
3867 && offset % sizeof b->markers[0] == 0
6b61353c 3868 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
34400008
GM
3869 && (b != marker_block
3870 || offset / sizeof b->markers[0] < marker_block_index)
d314756e 3871 && ((union Lisp_Misc *) p)->u_any.type != Lisp_Misc_Free);
34400008
GM
3872 }
3873 else
3874 return 0;
3875}
3876
3877
3878/* Value is non-zero if P is a pointer to a live vector-like object.
3879 M is a pointer to the mem_block for P. */
3880
55d4c1b2 3881static inline int
971de7fb 3882live_vector_p (struct mem_node *m, void *p)
34400008 3883{
9c545a55 3884 return (p == m->start && m->type == MEM_TYPE_VECTORLIKE);
34400008
GM
3885}
3886
3887
2336fe58 3888/* Value is non-zero if P is a pointer to a live buffer. M is a
34400008
GM
3889 pointer to the mem_block for P. */
3890
55d4c1b2 3891static inline int
971de7fb 3892live_buffer_p (struct mem_node *m, void *p)
34400008
GM
3893{
3894 /* P must point to the start of the block, and the buffer
3895 must not have been killed. */
3896 return (m->type == MEM_TYPE_BUFFER
3897 && p == m->start
5d8ea120 3898 && !NILP (((struct buffer *) p)->BUFFER_INTERNAL_FIELD (name)));
34400008
GM
3899}
3900
13c844fb
GM
3901#endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
3902
3903#if GC_MARK_STACK
3904
34400008
GM
3905#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3906
3907/* Array of objects that are kept alive because the C stack contains
3908 a pattern that looks like a reference to them . */
3909
3910#define MAX_ZOMBIES 10
3911static Lisp_Object zombies[MAX_ZOMBIES];
3912
3913/* Number of zombie objects. */
3914
211a0b2a 3915static EMACS_INT nzombies;
34400008
GM
3916
3917/* Number of garbage collections. */
3918
211a0b2a 3919static EMACS_INT ngcs;
34400008
GM
3920
3921/* Average percentage of zombies per collection. */
3922
3923static double avg_zombies;
3924
3925/* Max. number of live and zombie objects. */
3926
211a0b2a 3927static EMACS_INT max_live, max_zombies;
34400008
GM
3928
3929/* Average number of live objects per GC. */
3930
3931static double avg_live;
3932
a7ca3326 3933DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
7ee72033 3934 doc: /* Show information about live and zombie objects. */)
5842a27b 3935 (void)
34400008 3936{
83fc9c63 3937 Lisp_Object args[8], zombie_list = Qnil;
211a0b2a 3938 EMACS_INT i;
83fc9c63
DL
3939 for (i = 0; i < nzombies; i++)
3940 zombie_list = Fcons (zombies[i], zombie_list);
3941 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
34400008
GM
3942 args[1] = make_number (ngcs);
3943 args[2] = make_float (avg_live);
3944 args[3] = make_float (avg_zombies);
3945 args[4] = make_float (avg_zombies / avg_live / 100);
3946 args[5] = make_number (max_live);
3947 args[6] = make_number (max_zombies);
83fc9c63
DL
3948 args[7] = zombie_list;
3949 return Fmessage (8, args);
34400008
GM
3950}
3951
3952#endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
3953
3954
182ff242
GM
3955/* Mark OBJ if we can prove it's a Lisp_Object. */
3956
55d4c1b2 3957static inline void
971de7fb 3958mark_maybe_object (Lisp_Object obj)
182ff242 3959{
b609f591
YM
3960 void *po;
3961 struct mem_node *m;
3962
3963 if (INTEGERP (obj))
3964 return;
3965
3966 po = (void *) XPNTR (obj);
3967 m = mem_find (po);
177c0ea7 3968
182ff242
GM
3969 if (m != MEM_NIL)
3970 {
3971 int mark_p = 0;
3972
8e50cc2d 3973 switch (XTYPE (obj))
182ff242
GM
3974 {
3975 case Lisp_String:
3976 mark_p = (live_string_p (m, po)
3977 && !STRING_MARKED_P ((struct Lisp_String *) po));
3978 break;
3979
3980 case Lisp_Cons:
08b7c2cb 3981 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
182ff242
GM
3982 break;
3983
3984 case Lisp_Symbol:
2336fe58 3985 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
182ff242
GM
3986 break;
3987
3988 case Lisp_Float:
ab6780cd 3989 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
182ff242
GM
3990 break;
3991
3992 case Lisp_Vectorlike:
8e50cc2d 3993 /* Note: can't check BUFFERP before we know it's a
182ff242
GM
3994 buffer because checking that dereferences the pointer
3995 PO which might point anywhere. */
3996 if (live_vector_p (m, po))
8e50cc2d 3997 mark_p = !SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
182ff242 3998 else if (live_buffer_p (m, po))
8e50cc2d 3999 mark_p = BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
182ff242
GM
4000 break;
4001
4002 case Lisp_Misc:
67ee9f6e 4003 mark_p = (live_misc_p (m, po) && !XMISCANY (obj)->gcmarkbit);
182ff242 4004 break;
6bbd7a29 4005
2de9f71c 4006 default:
6bbd7a29 4007 break;
182ff242
GM
4008 }
4009
4010 if (mark_p)
4011 {
4012#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4013 if (nzombies < MAX_ZOMBIES)
83fc9c63 4014 zombies[nzombies] = obj;
182ff242
GM
4015 ++nzombies;
4016#endif
49723c04 4017 mark_object (obj);
182ff242
GM
4018 }
4019 }
4020}
ece93c02
GM
4021
4022
4023/* If P points to Lisp data, mark that as live if it isn't already
4024 marked. */
4025
55d4c1b2 4026static inline void
971de7fb 4027mark_maybe_pointer (void *p)
ece93c02
GM
4028{
4029 struct mem_node *m;
4030
5045e68e 4031 /* Quickly rule out some values which can't point to Lisp data. */
d01a7826 4032 if ((intptr_t) p %
5045e68e
SM
4033#ifdef USE_LSB_TAG
4034 8 /* USE_LSB_TAG needs Lisp data to be aligned on multiples of 8. */
4035#else
4036 2 /* We assume that Lisp data is aligned on even addresses. */
4037#endif
4038 )
ece93c02 4039 return;
177c0ea7 4040
ece93c02
GM
4041 m = mem_find (p);
4042 if (m != MEM_NIL)
4043 {
4044 Lisp_Object obj = Qnil;
177c0ea7 4045
ece93c02
GM
4046 switch (m->type)
4047 {
4048 case MEM_TYPE_NON_LISP:
2fe50224 4049 /* Nothing to do; not a pointer to Lisp memory. */
ece93c02 4050 break;
177c0ea7 4051
ece93c02 4052 case MEM_TYPE_BUFFER:
3ef06d12 4053 if (live_buffer_p (m, p) && !VECTOR_MARKED_P((struct buffer *)p))
ece93c02
GM
4054 XSETVECTOR (obj, p);
4055 break;
177c0ea7 4056
ece93c02 4057 case MEM_TYPE_CONS:
08b7c2cb 4058 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
ece93c02
GM
4059 XSETCONS (obj, p);
4060 break;
177c0ea7 4061
ece93c02
GM
4062 case MEM_TYPE_STRING:
4063 if (live_string_p (m, p)
4064 && !STRING_MARKED_P ((struct Lisp_String *) p))
4065 XSETSTRING (obj, p);
4066 break;
4067
4068 case MEM_TYPE_MISC:
2336fe58
SM
4069 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
4070 XSETMISC (obj, p);
ece93c02 4071 break;
177c0ea7 4072
ece93c02 4073 case MEM_TYPE_SYMBOL:
2336fe58 4074 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
ece93c02
GM
4075 XSETSYMBOL (obj, p);
4076 break;
177c0ea7 4077
ece93c02 4078 case MEM_TYPE_FLOAT:
ab6780cd 4079 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
ece93c02
GM
4080 XSETFLOAT (obj, p);
4081 break;
177c0ea7 4082
9c545a55 4083 case MEM_TYPE_VECTORLIKE:
ece93c02
GM
4084 if (live_vector_p (m, p))
4085 {
4086 Lisp_Object tem;
4087 XSETVECTOR (tem, p);
8e50cc2d 4088 if (!SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
ece93c02
GM
4089 obj = tem;
4090 }
4091 break;
4092
4093 default:
4094 abort ();
4095 }
4096
8e50cc2d 4097 if (!NILP (obj))
49723c04 4098 mark_object (obj);
ece93c02
GM
4099 }
4100}
4101
4102
55a314a5
YM
4103/* Mark Lisp objects referenced from the address range START+OFFSET..END
4104 or END+OFFSET..START. */
34400008 4105
177c0ea7 4106static void
971de7fb 4107mark_memory (void *start, void *end, int offset)
34400008
GM
4108{
4109 Lisp_Object *p;
ece93c02 4110 void **pp;
34400008
GM
4111
4112#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4113 nzombies = 0;
4114#endif
4115
4116 /* Make START the pointer to the start of the memory region,
4117 if it isn't already. */
4118 if (end < start)
4119 {
4120 void *tem = start;
4121 start = end;
4122 end = tem;
4123 }
ece93c02
GM
4124
4125 /* Mark Lisp_Objects. */
55a314a5 4126 for (p = (Lisp_Object *) ((char *) start + offset); (void *) p < end; ++p)
182ff242 4127 mark_maybe_object (*p);
ece93c02
GM
4128
4129 /* Mark Lisp data pointed to. This is necessary because, in some
4130 situations, the C compiler optimizes Lisp objects away, so that
4131 only a pointer to them remains. Example:
4132
4133 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
7ee72033 4134 ()
ece93c02
GM
4135 {
4136 Lisp_Object obj = build_string ("test");
4137 struct Lisp_String *s = XSTRING (obj);
4138 Fgarbage_collect ();
4139 fprintf (stderr, "test `%s'\n", s->data);
4140 return Qnil;
4141 }
4142
4143 Here, `obj' isn't really used, and the compiler optimizes it
4144 away. The only reference to the life string is through the
4145 pointer `s'. */
177c0ea7 4146
55a314a5 4147 for (pp = (void **) ((char *) start + offset); (void *) pp < end; ++pp)
ece93c02 4148 mark_maybe_pointer (*pp);
182ff242
GM
4149}
4150
30f637f8
DL
4151/* setjmp will work with GCC unless NON_SAVING_SETJMP is defined in
4152 the GCC system configuration. In gcc 3.2, the only systems for
4153 which this is so are i386-sco5 non-ELF, i386-sysv3 (maybe included
4154 by others?) and ns32k-pc532-min. */
182ff242
GM
4155
4156#if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4157
4158static int setjmp_tested_p, longjmps_done;
4159
4160#define SETJMP_WILL_LIKELY_WORK "\
4161\n\
4162Emacs garbage collector has been changed to use conservative stack\n\
4163marking. Emacs has determined that the method it uses to do the\n\
4164marking will likely work on your system, but this isn't sure.\n\
4165\n\
4166If you are a system-programmer, or can get the help of a local wizard\n\
4167who is, please take a look at the function mark_stack in alloc.c, and\n\
4168verify that the methods used are appropriate for your system.\n\
4169\n\
d191623b 4170Please mail the result to <emacs-devel@gnu.org>.\n\
182ff242
GM
4171"
4172
4173#define SETJMP_WILL_NOT_WORK "\
4174\n\
4175Emacs garbage collector has been changed to use conservative stack\n\
4176marking. Emacs has determined that the default method it uses to do the\n\
4177marking will not work on your system. We will need a system-dependent\n\
4178solution for your system.\n\
4179\n\
4180Please take a look at the function mark_stack in alloc.c, and\n\
4181try to find a way to make it work on your system.\n\
30f637f8
DL
4182\n\
4183Note that you may get false negatives, depending on the compiler.\n\
4184In particular, you need to use -O with GCC for this test.\n\
4185\n\
d191623b 4186Please mail the result to <emacs-devel@gnu.org>.\n\
182ff242
GM
4187"
4188
4189
4190/* Perform a quick check if it looks like setjmp saves registers in a
4191 jmp_buf. Print a message to stderr saying so. When this test
4192 succeeds, this is _not_ a proof that setjmp is sufficient for
4193 conservative stack marking. Only the sources or a disassembly
4194 can prove that. */
4195
4196static void
2018939f 4197test_setjmp (void)
182ff242
GM
4198{
4199 char buf[10];
4200 register int x;
4201 jmp_buf jbuf;
4202 int result = 0;
4203
4204 /* Arrange for X to be put in a register. */
4205 sprintf (buf, "1");
4206 x = strlen (buf);
4207 x = 2 * x - 1;
4208
4209 setjmp (jbuf);
4210 if (longjmps_done == 1)
34400008 4211 {
182ff242 4212 /* Came here after the longjmp at the end of the function.
34400008 4213
182ff242
GM
4214 If x == 1, the longjmp has restored the register to its
4215 value before the setjmp, and we can hope that setjmp
4216 saves all such registers in the jmp_buf, although that
4217 isn't sure.
34400008 4218
182ff242
GM
4219 For other values of X, either something really strange is
4220 taking place, or the setjmp just didn't save the register. */
4221
4222 if (x == 1)
4223 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
4224 else
4225 {
4226 fprintf (stderr, SETJMP_WILL_NOT_WORK);
4227 exit (1);
34400008
GM
4228 }
4229 }
182ff242
GM
4230
4231 ++longjmps_done;
4232 x = 2;
4233 if (longjmps_done == 1)
4234 longjmp (jbuf, 1);
34400008
GM
4235}
4236
182ff242
GM
4237#endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
4238
34400008
GM
4239
4240#if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4241
4242/* Abort if anything GCPRO'd doesn't survive the GC. */
4243
4244static void
2018939f 4245check_gcpros (void)
34400008
GM
4246{
4247 struct gcpro *p;
f66c7cf8 4248 ptrdiff_t i;
34400008
GM
4249
4250 for (p = gcprolist; p; p = p->next)
4251 for (i = 0; i < p->nvars; ++i)
4252 if (!survives_gc_p (p->var[i]))
92cc28b2
SM
4253 /* FIXME: It's not necessarily a bug. It might just be that the
4254 GCPRO is unnecessary or should release the object sooner. */
34400008
GM
4255 abort ();
4256}
4257
4258#elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4259
4260static void
2018939f 4261dump_zombies (void)
34400008
GM
4262{
4263 int i;
4264
211a0b2a 4265 fprintf (stderr, "\nZombies kept alive = %"pI":\n", nzombies);
34400008
GM
4266 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
4267 {
4268 fprintf (stderr, " %d = ", i);
4269 debug_print (zombies[i]);
4270 }
4271}
4272
4273#endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4274
4275
182ff242
GM
4276/* Mark live Lisp objects on the C stack.
4277
4278 There are several system-dependent problems to consider when
4279 porting this to new architectures:
4280
4281 Processor Registers
4282
4283 We have to mark Lisp objects in CPU registers that can hold local
4284 variables or are used to pass parameters.
4285
4286 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4287 something that either saves relevant registers on the stack, or
4288 calls mark_maybe_object passing it each register's contents.
4289
4290 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4291 implementation assumes that calling setjmp saves registers we need
4292 to see in a jmp_buf which itself lies on the stack. This doesn't
4293 have to be true! It must be verified for each system, possibly
4294 by taking a look at the source code of setjmp.
4295
2018939f
AS
4296 If __builtin_unwind_init is available (defined by GCC >= 2.8) we
4297 can use it as a machine independent method to store all registers
4298 to the stack. In this case the macros described in the previous
4299 two paragraphs are not used.
4300
182ff242
GM
4301 Stack Layout
4302
4303 Architectures differ in the way their processor stack is organized.
4304 For example, the stack might look like this
4305
4306 +----------------+
4307 | Lisp_Object | size = 4
4308 +----------------+
4309 | something else | size = 2
4310 +----------------+
4311 | Lisp_Object | size = 4
4312 +----------------+
4313 | ... |
4314
4315 In such a case, not every Lisp_Object will be aligned equally. To
4316 find all Lisp_Object on the stack it won't be sufficient to walk
4317 the stack in steps of 4 bytes. Instead, two passes will be
4318 necessary, one starting at the start of the stack, and a second
4319 pass starting at the start of the stack + 2. Likewise, if the
4320 minimal alignment of Lisp_Objects on the stack is 1, four passes
4321 would be necessary, each one starting with one byte more offset
4322 from the stack start.
4323
4324 The current code assumes by default that Lisp_Objects are aligned
4325 equally on the stack. */
34400008
GM
4326
4327static void
971de7fb 4328mark_stack (void)
34400008 4329{
630909a5 4330 int i;
34400008
GM
4331 void *end;
4332
2018939f
AS
4333#ifdef HAVE___BUILTIN_UNWIND_INIT
4334 /* Force callee-saved registers and register windows onto the stack.
4335 This is the preferred method if available, obviating the need for
4336 machine dependent methods. */
4337 __builtin_unwind_init ();
4338 end = &end;
4339#else /* not HAVE___BUILTIN_UNWIND_INIT */
dff45157
PE
4340#ifndef GC_SAVE_REGISTERS_ON_STACK
4341 /* jmp_buf may not be aligned enough on darwin-ppc64 */
4342 union aligned_jmpbuf {
4343 Lisp_Object o;
4344 jmp_buf j;
4345 } j;
4346 volatile int stack_grows_down_p = (char *) &j > (char *) stack_base;
4347#endif
34400008
GM
4348 /* This trick flushes the register windows so that all the state of
4349 the process is contained in the stack. */
ab6780cd 4350 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
422eec7e
DL
4351 needed on ia64 too. See mach_dep.c, where it also says inline
4352 assembler doesn't work with relevant proprietary compilers. */
4a00783e 4353#ifdef __sparc__
4d18a7a2
DN
4354#if defined (__sparc64__) && defined (__FreeBSD__)
4355 /* FreeBSD does not have a ta 3 handler. */
4c1616be
CY
4356 asm ("flushw");
4357#else
34400008 4358 asm ("ta 3");
4c1616be 4359#endif
34400008 4360#endif
177c0ea7 4361
34400008
GM
4362 /* Save registers that we need to see on the stack. We need to see
4363 registers used to hold register variables and registers used to
4364 pass parameters. */
4365#ifdef GC_SAVE_REGISTERS_ON_STACK
4366 GC_SAVE_REGISTERS_ON_STACK (end);
182ff242 4367#else /* not GC_SAVE_REGISTERS_ON_STACK */
177c0ea7 4368
182ff242
GM
4369#ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
4370 setjmp will definitely work, test it
4371 and print a message with the result
4372 of the test. */
4373 if (!setjmp_tested_p)
4374 {
4375 setjmp_tested_p = 1;
4376 test_setjmp ();
4377 }
4378#endif /* GC_SETJMP_WORKS */
177c0ea7 4379
55a314a5 4380 setjmp (j.j);
34400008 4381 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
182ff242 4382#endif /* not GC_SAVE_REGISTERS_ON_STACK */
2018939f 4383#endif /* not HAVE___BUILTIN_UNWIND_INIT */
34400008
GM
4384
4385 /* This assumes that the stack is a contiguous region in memory. If
182ff242
GM
4386 that's not the case, something has to be done here to iterate
4387 over the stack segments. */
630909a5 4388#ifndef GC_LISP_OBJECT_ALIGNMENT
422eec7e
DL
4389#ifdef __GNUC__
4390#define GC_LISP_OBJECT_ALIGNMENT __alignof__ (Lisp_Object)
4391#else
630909a5 4392#define GC_LISP_OBJECT_ALIGNMENT sizeof (Lisp_Object)
422eec7e 4393#endif
182ff242 4394#endif
24452cd5 4395 for (i = 0; i < sizeof (Lisp_Object); i += GC_LISP_OBJECT_ALIGNMENT)
55a314a5 4396 mark_memory (stack_base, end, i);
4dec23ff
AS
4397 /* Allow for marking a secondary stack, like the register stack on the
4398 ia64. */
4399#ifdef GC_MARK_SECONDARY_STACK
4400 GC_MARK_SECONDARY_STACK ();
4401#endif
34400008
GM
4402
4403#if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4404 check_gcpros ();
4405#endif
4406}
4407
34400008
GM
4408#endif /* GC_MARK_STACK != 0 */
4409
4410
7ffb6955 4411/* Determine whether it is safe to access memory at address P. */
d3d47262 4412static int
971de7fb 4413valid_pointer_p (void *p)
7ffb6955 4414{
f892cf9c
EZ
4415#ifdef WINDOWSNT
4416 return w32_valid_pointer_p (p, 16);
4417#else
7ffb6955
KS
4418 int fd;
4419
4420 /* Obviously, we cannot just access it (we would SEGV trying), so we
4421 trick the o/s to tell us whether p is a valid pointer.
4422 Unfortunately, we cannot use NULL_DEVICE here, as emacs_write may
4423 not validate p in that case. */
4424
4425 if ((fd = emacs_open ("__Valid__Lisp__Object__", O_CREAT | O_WRONLY | O_TRUNC, 0666)) >= 0)
4426 {
4427 int valid = (emacs_write (fd, (char *)p, 16) == 16);
4428 emacs_close (fd);
4429 unlink ("__Valid__Lisp__Object__");
4430 return valid;
4431 }
4432
4433 return -1;
f892cf9c 4434#endif
7ffb6955 4435}
3cd55735
KS
4436
4437/* Return 1 if OBJ is a valid lisp object.
4438 Return 0 if OBJ is NOT a valid lisp object.
4439 Return -1 if we cannot validate OBJ.
7c0ab7d9
RS
4440 This function can be quite slow,
4441 so it should only be used in code for manual debugging. */
3cd55735
KS
4442
4443int
971de7fb 4444valid_lisp_object_p (Lisp_Object obj)
3cd55735 4445{
de7124a7 4446 void *p;
7ffb6955 4447#if GC_MARK_STACK
3cd55735 4448 struct mem_node *m;
de7124a7 4449#endif
3cd55735
KS
4450
4451 if (INTEGERP (obj))
4452 return 1;
4453
4454 p = (void *) XPNTR (obj);
3cd55735
KS
4455 if (PURE_POINTER_P (p))
4456 return 1;
4457
de7124a7 4458#if !GC_MARK_STACK
7ffb6955 4459 return valid_pointer_p (p);
de7124a7
KS
4460#else
4461
3cd55735
KS
4462 m = mem_find (p);
4463
4464 if (m == MEM_NIL)
7ffb6955
KS
4465 {
4466 int valid = valid_pointer_p (p);
4467 if (valid <= 0)
4468 return valid;
4469
4470 if (SUBRP (obj))
4471 return 1;
4472
4473 return 0;
4474 }
3cd55735
KS
4475
4476 switch (m->type)
4477 {
4478 case MEM_TYPE_NON_LISP:
4479 return 0;
4480
4481 case MEM_TYPE_BUFFER:
4482 return live_buffer_p (m, p);
4483
4484 case MEM_TYPE_CONS:
4485 return live_cons_p (m, p);
4486
4487 case MEM_TYPE_STRING:
4488 return live_string_p (m, p);
4489
4490 case MEM_TYPE_MISC:
4491 return live_misc_p (m, p);
4492
4493 case MEM_TYPE_SYMBOL:
4494 return live_symbol_p (m, p);
4495
4496 case MEM_TYPE_FLOAT:
4497 return live_float_p (m, p);
4498
9c545a55 4499 case MEM_TYPE_VECTORLIKE:
3cd55735
KS
4500 return live_vector_p (m, p);
4501
4502 default:
4503 break;
4504 }
4505
4506 return 0;
4507#endif
4508}
4509
4510
4511
34400008 4512\f
2e471eb5
GM
4513/***********************************************************************
4514 Pure Storage Management
4515 ***********************************************************************/
4516
1f0b3fd2
GM
4517/* Allocate room for SIZE bytes from pure Lisp storage and return a
4518 pointer to it. TYPE is the Lisp type for which the memory is
e5bc14d4 4519 allocated. TYPE < 0 means it's not used for a Lisp object. */
1f0b3fd2
GM
4520
4521static POINTER_TYPE *
971de7fb 4522pure_alloc (size_t size, int type)
1f0b3fd2 4523{
1f0b3fd2 4524 POINTER_TYPE *result;
6b61353c
KH
4525#ifdef USE_LSB_TAG
4526 size_t alignment = (1 << GCTYPEBITS);
4527#else
44117420 4528 size_t alignment = sizeof (EMACS_INT);
1f0b3fd2
GM
4529
4530 /* Give Lisp_Floats an extra alignment. */
4531 if (type == Lisp_Float)
4532 {
1f0b3fd2
GM
4533#if defined __GNUC__ && __GNUC__ >= 2
4534 alignment = __alignof (struct Lisp_Float);
4535#else
4536 alignment = sizeof (struct Lisp_Float);
4537#endif
9e713715 4538 }
6b61353c 4539#endif
1f0b3fd2 4540
44117420 4541 again:
e5bc14d4
YM
4542 if (type >= 0)
4543 {
4544 /* Allocate space for a Lisp object from the beginning of the free
4545 space with taking account of alignment. */
4546 result = ALIGN (purebeg + pure_bytes_used_lisp, alignment);
4547 pure_bytes_used_lisp = ((char *)result - (char *)purebeg) + size;
4548 }
4549 else
4550 {
4551 /* Allocate space for a non-Lisp object from the end of the free
4552 space. */
4553 pure_bytes_used_non_lisp += size;
4554 result = purebeg + pure_size - pure_bytes_used_non_lisp;
4555 }
4556 pure_bytes_used = pure_bytes_used_lisp + pure_bytes_used_non_lisp;
44117420
KS
4557
4558 if (pure_bytes_used <= pure_size)
4559 return result;
4560
4561 /* Don't allocate a large amount here,
4562 because it might get mmap'd and then its address
4563 might not be usable. */
4564 purebeg = (char *) xmalloc (10000);
4565 pure_size = 10000;
4566 pure_bytes_used_before_overflow += pure_bytes_used - size;
4567 pure_bytes_used = 0;
e5bc14d4 4568 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
44117420 4569 goto again;
1f0b3fd2
GM
4570}
4571
4572
852f8cdc 4573/* Print a warning if PURESIZE is too small. */
9e713715
GM
4574
4575void
971de7fb 4576check_pure_size (void)
9e713715
GM
4577{
4578 if (pure_bytes_used_before_overflow)
c2982e87
PE
4579 message (("emacs:0:Pure Lisp storage overflow (approx. %"pI"d"
4580 " bytes needed)"),
4581 pure_bytes_used + pure_bytes_used_before_overflow);
9e713715
GM
4582}
4583
4584
79fd0489
YM
4585/* Find the byte sequence {DATA[0], ..., DATA[NBYTES-1], '\0'} from
4586 the non-Lisp data pool of the pure storage, and return its start
4587 address. Return NULL if not found. */
4588
4589static char *
14162469 4590find_string_data_in_pure (const char *data, EMACS_INT nbytes)
79fd0489 4591{
14162469
EZ
4592 int i;
4593 EMACS_INT skip, bm_skip[256], last_char_skip, infinity, start, start_max;
2aff7c53 4594 const unsigned char *p;
79fd0489
YM
4595 char *non_lisp_beg;
4596
4597 if (pure_bytes_used_non_lisp < nbytes + 1)
4598 return NULL;
4599
4600 /* Set up the Boyer-Moore table. */
4601 skip = nbytes + 1;
4602 for (i = 0; i < 256; i++)
4603 bm_skip[i] = skip;
4604
2aff7c53 4605 p = (const unsigned char *) data;
79fd0489
YM
4606 while (--skip > 0)
4607 bm_skip[*p++] = skip;
4608
4609 last_char_skip = bm_skip['\0'];
4610
4611 non_lisp_beg = purebeg + pure_size - pure_bytes_used_non_lisp;
4612 start_max = pure_bytes_used_non_lisp - (nbytes + 1);
4613
4614 /* See the comments in the function `boyer_moore' (search.c) for the
4615 use of `infinity'. */
4616 infinity = pure_bytes_used_non_lisp + 1;
4617 bm_skip['\0'] = infinity;
4618
2aff7c53 4619 p = (const unsigned char *) non_lisp_beg + nbytes;
79fd0489
YM
4620 start = 0;
4621 do
4622 {
4623 /* Check the last character (== '\0'). */
4624 do
4625 {
4626 start += bm_skip[*(p + start)];
4627 }
4628 while (start <= start_max);
4629
4630 if (start < infinity)
4631 /* Couldn't find the last character. */
4632 return NULL;
4633
4634 /* No less than `infinity' means we could find the last
4635 character at `p[start - infinity]'. */
4636 start -= infinity;
4637
4638 /* Check the remaining characters. */
4639 if (memcmp (data, non_lisp_beg + start, nbytes) == 0)
4640 /* Found. */
4641 return non_lisp_beg + start;
4642
4643 start += last_char_skip;
4644 }
4645 while (start <= start_max);
4646
4647 return NULL;
4648}
4649
4650
2e471eb5
GM
4651/* Return a string allocated in pure space. DATA is a buffer holding
4652 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
4653 non-zero means make the result string multibyte.
1a4f1e2c 4654
2e471eb5
GM
4655 Must get an error if pure storage is full, since if it cannot hold
4656 a large string it may be able to hold conses that point to that
4657 string; then the string is not protected from gc. */
7146af97
JB
4658
4659Lisp_Object
14162469
EZ
4660make_pure_string (const char *data,
4661 EMACS_INT nchars, EMACS_INT nbytes, int multibyte)
7146af97 4662{
2e471eb5
GM
4663 Lisp_Object string;
4664 struct Lisp_String *s;
c0696668 4665
1f0b3fd2 4666 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
90256841 4667 s->data = (unsigned char *) find_string_data_in_pure (data, nbytes);
79fd0489
YM
4668 if (s->data == NULL)
4669 {
4670 s->data = (unsigned char *) pure_alloc (nbytes + 1, -1);
72af86bd 4671 memcpy (s->data, data, nbytes);
79fd0489
YM
4672 s->data[nbytes] = '\0';
4673 }
2e471eb5
GM
4674 s->size = nchars;
4675 s->size_byte = multibyte ? nbytes : -1;
2e471eb5 4676 s->intervals = NULL_INTERVAL;
2e471eb5
GM
4677 XSETSTRING (string, s);
4678 return string;
7146af97
JB
4679}
4680
a56eaaef
DN
4681/* Return a string a string allocated in pure space. Do not allocate
4682 the string data, just point to DATA. */
4683
4684Lisp_Object
4685make_pure_c_string (const char *data)
4686{
4687 Lisp_Object string;
4688 struct Lisp_String *s;
14162469 4689 EMACS_INT nchars = strlen (data);
a56eaaef
DN
4690
4691 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
4692 s->size = nchars;
4693 s->size_byte = -1;
323637a2 4694 s->data = (unsigned char *) data;
a56eaaef
DN
4695 s->intervals = NULL_INTERVAL;
4696 XSETSTRING (string, s);
4697 return string;
4698}
2e471eb5 4699
34400008
GM
4700/* Return a cons allocated from pure space. Give it pure copies
4701 of CAR as car and CDR as cdr. */
4702
7146af97 4703Lisp_Object
971de7fb 4704pure_cons (Lisp_Object car, Lisp_Object cdr)
7146af97
JB
4705{
4706 register Lisp_Object new;
1f0b3fd2 4707 struct Lisp_Cons *p;
7146af97 4708
1f0b3fd2
GM
4709 p = (struct Lisp_Cons *) pure_alloc (sizeof *p, Lisp_Cons);
4710 XSETCONS (new, p);
f3fbd155
KR
4711 XSETCAR (new, Fpurecopy (car));
4712 XSETCDR (new, Fpurecopy (cdr));
7146af97
JB
4713 return new;
4714}
4715
7146af97 4716
34400008
GM
4717/* Value is a float object with value NUM allocated from pure space. */
4718
d3d47262 4719static Lisp_Object
971de7fb 4720make_pure_float (double num)
7146af97
JB
4721{
4722 register Lisp_Object new;
1f0b3fd2 4723 struct Lisp_Float *p;
7146af97 4724
1f0b3fd2
GM
4725 p = (struct Lisp_Float *) pure_alloc (sizeof *p, Lisp_Float);
4726 XSETFLOAT (new, p);
f601cdf3 4727 XFLOAT_INIT (new, num);
7146af97
JB
4728 return new;
4729}
4730
34400008
GM
4731
4732/* Return a vector with room for LEN Lisp_Objects allocated from
4733 pure space. */
4734
7146af97 4735Lisp_Object
971de7fb 4736make_pure_vector (EMACS_INT len)
7146af97 4737{
1f0b3fd2
GM
4738 Lisp_Object new;
4739 struct Lisp_Vector *p;
36372bf9
PE
4740 size_t size = (offsetof (struct Lisp_Vector, contents)
4741 + len * sizeof (Lisp_Object));
7146af97 4742
1f0b3fd2
GM
4743 p = (struct Lisp_Vector *) pure_alloc (size, Lisp_Vectorlike);
4744 XSETVECTOR (new, p);
eab3844f 4745 XVECTOR (new)->header.size = len;
7146af97
JB
4746 return new;
4747}
4748
34400008 4749
a7ca3326 4750DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
909e3b33 4751 doc: /* Make a copy of object OBJ in pure storage.
228299fa 4752Recursively copies contents of vectors and cons cells.
7ee72033 4753Does not copy symbols. Copies strings without text properties. */)
5842a27b 4754 (register Lisp_Object obj)
7146af97 4755{
265a9e55 4756 if (NILP (Vpurify_flag))
7146af97
JB
4757 return obj;
4758
1f0b3fd2 4759 if (PURE_POINTER_P (XPNTR (obj)))
7146af97
JB
4760 return obj;
4761
e9515805
SM
4762 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
4763 {
4764 Lisp_Object tmp = Fgethash (obj, Vpurify_flag, Qnil);
4765 if (!NILP (tmp))
4766 return tmp;
4767 }
4768
d6dd74bb 4769 if (CONSP (obj))
e9515805 4770 obj = pure_cons (XCAR (obj), XCDR (obj));
d6dd74bb 4771 else if (FLOATP (obj))
e9515805 4772 obj = make_pure_float (XFLOAT_DATA (obj));
d6dd74bb 4773 else if (STRINGP (obj))
42a5b22f 4774 obj = make_pure_string (SSDATA (obj), SCHARS (obj),
e9515805
SM
4775 SBYTES (obj),
4776 STRING_MULTIBYTE (obj));
876c194c 4777 else if (COMPILEDP (obj) || VECTORP (obj))
d6dd74bb
KH
4778 {
4779 register struct Lisp_Vector *vec;
14162469 4780 register EMACS_INT i;
6b61353c 4781 EMACS_INT size;
d6dd74bb 4782
77b37c05 4783 size = ASIZE (obj);
7d535c68
KH
4784 if (size & PSEUDOVECTOR_FLAG)
4785 size &= PSEUDOVECTOR_SIZE_MASK;
6b61353c 4786 vec = XVECTOR (make_pure_vector (size));
d6dd74bb
KH
4787 for (i = 0; i < size; i++)
4788 vec->contents[i] = Fpurecopy (XVECTOR (obj)->contents[i]);
876c194c 4789 if (COMPILEDP (obj))
985773c9 4790 {
876c194c
SM
4791 XSETPVECTYPE (vec, PVEC_COMPILED);
4792 XSETCOMPILED (obj, vec);
985773c9 4793 }
d6dd74bb
KH
4794 else
4795 XSETVECTOR (obj, vec);
7146af97 4796 }
d6dd74bb
KH
4797 else if (MARKERP (obj))
4798 error ("Attempt to copy a marker to pure storage");
e9515805
SM
4799 else
4800 /* Not purified, don't hash-cons. */
4801 return obj;
4802
4803 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
4804 Fputhash (obj, obj, Vpurify_flag);
6bbd7a29
GM
4805
4806 return obj;
7146af97 4807}
2e471eb5 4808
34400008 4809
7146af97 4810\f
34400008
GM
4811/***********************************************************************
4812 Protection from GC
4813 ***********************************************************************/
4814
2e471eb5
GM
4815/* Put an entry in staticvec, pointing at the variable with address
4816 VARADDRESS. */
7146af97
JB
4817
4818void
971de7fb 4819staticpro (Lisp_Object *varaddress)
7146af97
JB
4820{
4821 staticvec[staticidx++] = varaddress;
4822 if (staticidx >= NSTATICS)
4823 abort ();
4824}
4825
7146af97 4826\f
34400008
GM
4827/***********************************************************************
4828 Protection from GC
4829 ***********************************************************************/
1a4f1e2c 4830
e8197642
RS
4831/* Temporarily prevent garbage collection. */
4832
4833int
971de7fb 4834inhibit_garbage_collection (void)
e8197642 4835{
aed13378 4836 int count = SPECPDL_INDEX ();
54defd0d 4837
6349ae4d 4838 specbind (Qgc_cons_threshold, make_number (MOST_POSITIVE_FIXNUM));
e8197642
RS
4839 return count;
4840}
4841
34400008 4842
a7ca3326 4843DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
7ee72033 4844 doc: /* Reclaim storage for Lisp objects no longer needed.
e1e37596
RS
4845Garbage collection happens automatically if you cons more than
4846`gc-cons-threshold' bytes of Lisp data since previous garbage collection.
4847`garbage-collect' normally returns a list with info on amount of space in use:
228299fa
GM
4848 ((USED-CONSES . FREE-CONSES) (USED-SYMS . FREE-SYMS)
4849 (USED-MARKERS . FREE-MARKERS) USED-STRING-CHARS USED-VECTOR-SLOTS
4850 (USED-FLOATS . FREE-FLOATS) (USED-INTERVALS . FREE-INTERVALS)
4851 (USED-STRINGS . FREE-STRINGS))
e1e37596
RS
4852However, if there was overflow in pure space, `garbage-collect'
4853returns nil, because real GC can't be done. */)
5842a27b 4854 (void)
7146af97 4855{
7146af97 4856 register struct specbinding *bind;
7146af97 4857 char stack_top_variable;
f66c7cf8 4858 ptrdiff_t i;
6efc7df7 4859 int message_p;
96117bc7 4860 Lisp_Object total[8];
331379bf 4861 int count = SPECPDL_INDEX ();
2c5bd608
DL
4862 EMACS_TIME t1, t2, t3;
4863
3de0effb
RS
4864 if (abort_on_gc)
4865 abort ();
4866
9e713715
GM
4867 /* Can't GC if pure storage overflowed because we can't determine
4868 if something is a pure object or not. */
4869 if (pure_bytes_used_before_overflow)
4870 return Qnil;
4871
bbc012e0
KS
4872 CHECK_CONS_LIST ();
4873
3c7e66a8
RS
4874 /* Don't keep undo information around forever.
4875 Do this early on, so it is no problem if the user quits. */
4876 {
4877 register struct buffer *nextb = all_buffers;
4878
4879 while (nextb)
4880 {
4881 /* If a buffer's undo list is Qt, that means that undo is
4882 turned off in that buffer. Calling truncate_undo_list on
4883 Qt tends to return NULL, which effectively turns undo back on.
4884 So don't call truncate_undo_list if undo_list is Qt. */
5d8ea120 4885 if (! NILP (nextb->BUFFER_INTERNAL_FIELD (name)) && ! EQ (nextb->BUFFER_INTERNAL_FIELD (undo_list), Qt))
3c7e66a8
RS
4886 truncate_undo_list (nextb);
4887
4888 /* Shrink buffer gaps, but skip indirect and dead buffers. */
5d8ea120 4889 if (nextb->base_buffer == 0 && !NILP (nextb->BUFFER_INTERNAL_FIELD (name))
dc7b4525 4890 && ! nextb->text->inhibit_shrinking)
3c7e66a8
RS
4891 {
4892 /* If a buffer's gap size is more than 10% of the buffer
4893 size, or larger than 2000 bytes, then shrink it
4894 accordingly. Keep a minimum size of 20 bytes. */
4895 int size = min (2000, max (20, (nextb->text->z_byte / 10)));
4896
4897 if (nextb->text->gap_size > size)
4898 {
4899 struct buffer *save_current = current_buffer;
4900 current_buffer = nextb;
4901 make_gap (-(nextb->text->gap_size - size));
4902 current_buffer = save_current;
4903 }
4904 }
4905
eab3844f 4906 nextb = nextb->header.next.buffer;
3c7e66a8
RS
4907 }
4908 }
4909
4910 EMACS_GET_TIME (t1);
4911
58595309
KH
4912 /* In case user calls debug_print during GC,
4913 don't let that cause a recursive GC. */
4914 consing_since_gc = 0;
4915
6efc7df7
GM
4916 /* Save what's currently displayed in the echo area. */
4917 message_p = push_message ();
c55b0da6 4918 record_unwind_protect (pop_message_unwind, Qnil);
41c28a37 4919
7146af97
JB
4920 /* Save a copy of the contents of the stack, for debugging. */
4921#if MAX_SAVE_STACK > 0
265a9e55 4922 if (NILP (Vpurify_flag))
7146af97 4923 {
dd3f25f7
PE
4924 char *stack;
4925 size_t stack_size;
4926 if (&stack_top_variable < stack_bottom)
7146af97 4927 {
dd3f25f7
PE
4928 stack = &stack_top_variable;
4929 stack_size = stack_bottom - &stack_top_variable;
4930 }
4931 else
4932 {
4933 stack = stack_bottom;
4934 stack_size = &stack_top_variable - stack_bottom;
4935 }
4936 if (stack_size <= MAX_SAVE_STACK)
7146af97 4937 {
dd3f25f7 4938 if (stack_copy_size < stack_size)
7146af97 4939 {
dd3f25f7
PE
4940 stack_copy = (char *) xrealloc (stack_copy, stack_size);
4941 stack_copy_size = stack_size;
7146af97 4942 }
dd3f25f7 4943 memcpy (stack_copy, stack, stack_size);
7146af97
JB
4944 }
4945 }
4946#endif /* MAX_SAVE_STACK > 0 */
4947
299585ee 4948 if (garbage_collection_messages)
691c4285 4949 message1_nolog ("Garbage collecting...");
7146af97 4950
6e0fca1d
RS
4951 BLOCK_INPUT;
4952
eec7b73d
RS
4953 shrink_regexp_cache ();
4954
7146af97
JB
4955 gc_in_progress = 1;
4956
c23baf9f 4957 /* clear_marks (); */
7146af97 4958
005ca5c7 4959 /* Mark all the special slots that serve as the roots of accessibility. */
7146af97
JB
4960
4961 for (i = 0; i < staticidx; i++)
49723c04 4962 mark_object (*staticvec[i]);
34400008 4963
126f9c02
SM
4964 for (bind = specpdl; bind != specpdl_ptr; bind++)
4965 {
4966 mark_object (bind->symbol);
4967 mark_object (bind->old_value);
4968 }
6ed8eeff 4969 mark_terminals ();
126f9c02 4970 mark_kboards ();
98a92e2d 4971 mark_ttys ();
126f9c02
SM
4972
4973#ifdef USE_GTK
4974 {
dd4c5104 4975 extern void xg_mark_data (void);
126f9c02
SM
4976 xg_mark_data ();
4977 }
4978#endif
4979
34400008
GM
4980#if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
4981 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
4982 mark_stack ();
4983#else
acf5f7d3
SM
4984 {
4985 register struct gcpro *tail;
4986 for (tail = gcprolist; tail; tail = tail->next)
4987 for (i = 0; i < tail->nvars; i++)
005ca5c7 4988 mark_object (tail->var[i]);
acf5f7d3 4989 }
3e21b6a7 4990 mark_byte_stack ();
b286858c
SM
4991 {
4992 struct catchtag *catch;
4993 struct handler *handler;
177c0ea7 4994
7146af97
JB
4995 for (catch = catchlist; catch; catch = catch->next)
4996 {
49723c04
SM
4997 mark_object (catch->tag);
4998 mark_object (catch->val);
177c0ea7 4999 }
7146af97
JB
5000 for (handler = handlerlist; handler; handler = handler->next)
5001 {
49723c04
SM
5002 mark_object (handler->handler);
5003 mark_object (handler->var);
177c0ea7 5004 }
b286858c 5005 }
b40ea20a 5006 mark_backtrace ();
b286858c 5007#endif
7146af97 5008
454d7973
KS
5009#ifdef HAVE_WINDOW_SYSTEM
5010 mark_fringe_data ();
5011#endif
5012
74c35a48
SM
5013#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5014 mark_stack ();
5015#endif
5016
c37adf23
SM
5017 /* Everything is now marked, except for the things that require special
5018 finalization, i.e. the undo_list.
5019 Look thru every buffer's undo list
4c315bda
RS
5020 for elements that update markers that were not marked,
5021 and delete them. */
5022 {
5023 register struct buffer *nextb = all_buffers;
5024
5025 while (nextb)
5026 {
5027 /* If a buffer's undo list is Qt, that means that undo is
5028 turned off in that buffer. Calling truncate_undo_list on
5029 Qt tends to return NULL, which effectively turns undo back on.
5030 So don't call truncate_undo_list if undo_list is Qt. */
5d8ea120 5031 if (! EQ (nextb->BUFFER_INTERNAL_FIELD (undo_list), Qt))
4c315bda
RS
5032 {
5033 Lisp_Object tail, prev;
5d8ea120 5034 tail = nextb->BUFFER_INTERNAL_FIELD (undo_list);
4c315bda
RS
5035 prev = Qnil;
5036 while (CONSP (tail))
5037 {
8e50cc2d
SM
5038 if (CONSP (XCAR (tail))
5039 && MARKERP (XCAR (XCAR (tail)))
2336fe58 5040 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
4c315bda
RS
5041 {
5042 if (NILP (prev))
5d8ea120 5043 nextb->BUFFER_INTERNAL_FIELD (undo_list) = tail = XCDR (tail);
4c315bda 5044 else
f3fbd155
KR
5045 {
5046 tail = XCDR (tail);
5047 XSETCDR (prev, tail);
5048 }
4c315bda
RS
5049 }
5050 else
5051 {
5052 prev = tail;
70949dac 5053 tail = XCDR (tail);
4c315bda
RS
5054 }
5055 }
5056 }
c37adf23
SM
5057 /* Now that we have stripped the elements that need not be in the
5058 undo_list any more, we can finally mark the list. */
5d8ea120 5059 mark_object (nextb->BUFFER_INTERNAL_FIELD (undo_list));
4c315bda 5060
eab3844f 5061 nextb = nextb->header.next.buffer;
4c315bda
RS
5062 }
5063 }
5064
7146af97
JB
5065 gc_sweep ();
5066
5067 /* Clear the mark bits that we set in certain root slots. */
5068
033a5fa3 5069 unmark_byte_stack ();
3ef06d12
SM
5070 VECTOR_UNMARK (&buffer_defaults);
5071 VECTOR_UNMARK (&buffer_local_symbols);
7146af97 5072
34400008
GM
5073#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
5074 dump_zombies ();
5075#endif
5076
6e0fca1d
RS
5077 UNBLOCK_INPUT;
5078
bbc012e0
KS
5079 CHECK_CONS_LIST ();
5080
c23baf9f 5081 /* clear_marks (); */
7146af97
JB
5082 gc_in_progress = 0;
5083
5084 consing_since_gc = 0;
5085 if (gc_cons_threshold < 10000)
5086 gc_cons_threshold = 10000;
5087
c0c5c8ae 5088 gc_relative_threshold = 0;
96f077ad
SM
5089 if (FLOATP (Vgc_cons_percentage))
5090 { /* Set gc_cons_combined_threshold. */
c0c5c8ae 5091 double tot = 0;
ae35e756
PE
5092
5093 tot += total_conses * sizeof (struct Lisp_Cons);
5094 tot += total_symbols * sizeof (struct Lisp_Symbol);
5095 tot += total_markers * sizeof (union Lisp_Misc);
5096 tot += total_string_size;
5097 tot += total_vector_size * sizeof (Lisp_Object);
5098 tot += total_floats * sizeof (struct Lisp_Float);
5099 tot += total_intervals * sizeof (struct interval);
5100 tot += total_strings * sizeof (struct Lisp_String);
5101
c0c5c8ae
PE
5102 tot *= XFLOAT_DATA (Vgc_cons_percentage);
5103 if (0 < tot)
5104 {
5105 if (tot < TYPE_MAXIMUM (EMACS_INT))
5106 gc_relative_threshold = tot;
5107 else
5108 gc_relative_threshold = TYPE_MAXIMUM (EMACS_INT);
5109 }
96f077ad
SM
5110 }
5111
299585ee
RS
5112 if (garbage_collection_messages)
5113 {
6efc7df7
GM
5114 if (message_p || minibuf_level > 0)
5115 restore_message ();
299585ee
RS
5116 else
5117 message1_nolog ("Garbage collecting...done");
5118 }
7146af97 5119
98edb5ff 5120 unbind_to (count, Qnil);
2e471eb5
GM
5121
5122 total[0] = Fcons (make_number (total_conses),
5123 make_number (total_free_conses));
5124 total[1] = Fcons (make_number (total_symbols),
5125 make_number (total_free_symbols));
5126 total[2] = Fcons (make_number (total_markers),
5127 make_number (total_free_markers));
96117bc7
GM
5128 total[3] = make_number (total_string_size);
5129 total[4] = make_number (total_vector_size);
5130 total[5] = Fcons (make_number (total_floats),
2e471eb5 5131 make_number (total_free_floats));
96117bc7 5132 total[6] = Fcons (make_number (total_intervals),
2e471eb5 5133 make_number (total_free_intervals));
96117bc7 5134 total[7] = Fcons (make_number (total_strings),
2e471eb5
GM
5135 make_number (total_free_strings));
5136
34400008 5137#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
7146af97 5138 {
34400008
GM
5139 /* Compute average percentage of zombies. */
5140 double nlive = 0;
177c0ea7 5141
34400008 5142 for (i = 0; i < 7; ++i)
83fc9c63
DL
5143 if (CONSP (total[i]))
5144 nlive += XFASTINT (XCAR (total[i]));
34400008
GM
5145
5146 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
5147 max_live = max (nlive, max_live);
5148 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
5149 max_zombies = max (nzombies, max_zombies);
5150 ++ngcs;
5151 }
5152#endif
7146af97 5153
9e713715
GM
5154 if (!NILP (Vpost_gc_hook))
5155 {
ae35e756 5156 int gc_count = inhibit_garbage_collection ();
9e713715 5157 safe_run_hooks (Qpost_gc_hook);
ae35e756 5158 unbind_to (gc_count, Qnil);
9e713715 5159 }
2c5bd608
DL
5160
5161 /* Accumulate statistics. */
5162 EMACS_GET_TIME (t2);
5163 EMACS_SUB_TIME (t3, t2, t1);
5164 if (FLOATP (Vgc_elapsed))
69ab9f85
SM
5165 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed) +
5166 EMACS_SECS (t3) +
5167 EMACS_USECS (t3) * 1.0e-6);
2c5bd608
DL
5168 gcs_done++;
5169
96117bc7 5170 return Flist (sizeof total / sizeof *total, total);
7146af97 5171}
34400008 5172
41c28a37 5173
3770920e
GM
5174/* Mark Lisp objects in glyph matrix MATRIX. Currently the
5175 only interesting objects referenced from glyphs are strings. */
41c28a37
GM
5176
5177static void
971de7fb 5178mark_glyph_matrix (struct glyph_matrix *matrix)
41c28a37
GM
5179{
5180 struct glyph_row *row = matrix->rows;
5181 struct glyph_row *end = row + matrix->nrows;
5182
2e471eb5
GM
5183 for (; row < end; ++row)
5184 if (row->enabled_p)
5185 {
5186 int area;
5187 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
5188 {
5189 struct glyph *glyph = row->glyphs[area];
5190 struct glyph *end_glyph = glyph + row->used[area];
177c0ea7 5191
2e471eb5 5192 for (; glyph < end_glyph; ++glyph)
8e50cc2d 5193 if (STRINGP (glyph->object)
2e471eb5 5194 && !STRING_MARKED_P (XSTRING (glyph->object)))
49723c04 5195 mark_object (glyph->object);
2e471eb5
GM
5196 }
5197 }
41c28a37
GM
5198}
5199
34400008 5200
41c28a37
GM
5201/* Mark Lisp faces in the face cache C. */
5202
5203static void
971de7fb 5204mark_face_cache (struct face_cache *c)
41c28a37
GM
5205{
5206 if (c)
5207 {
5208 int i, j;
5209 for (i = 0; i < c->used; ++i)
5210 {
5211 struct face *face = FACE_FROM_ID (c->f, i);
5212
5213 if (face)
5214 {
5215 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
49723c04 5216 mark_object (face->lface[j]);
41c28a37
GM
5217 }
5218 }
5219 }
5220}
5221
5222
7146af97 5223\f
1a4f1e2c 5224/* Mark reference to a Lisp_Object.
2e471eb5
GM
5225 If the object referred to has not been seen yet, recursively mark
5226 all the references contained in it. */
7146af97 5227
785cd37f 5228#define LAST_MARKED_SIZE 500
d3d47262 5229static Lisp_Object last_marked[LAST_MARKED_SIZE];
244ed907 5230static int last_marked_index;
785cd37f 5231
1342fc6f
RS
5232/* For debugging--call abort when we cdr down this many
5233 links of a list, in mark_object. In debugging,
5234 the call to abort will hit a breakpoint.
5235 Normally this is zero and the check never goes off. */
b895abce 5236static size_t mark_object_loop_halt;
1342fc6f 5237
8f11f7ec 5238static void
971de7fb 5239mark_vectorlike (struct Lisp_Vector *ptr)
d2029e5b 5240{
b6439961
PE
5241 EMACS_INT size = ptr->header.size;
5242 EMACS_INT i;
d2029e5b 5243
8f11f7ec 5244 eassert (!VECTOR_MARKED_P (ptr));
d2029e5b
SM
5245 VECTOR_MARK (ptr); /* Else mark it */
5246 if (size & PSEUDOVECTOR_FLAG)
5247 size &= PSEUDOVECTOR_SIZE_MASK;
d3d47262 5248
d2029e5b
SM
5249 /* Note that this size is not the memory-footprint size, but only
5250 the number of Lisp_Object fields that we should trace.
5251 The distinction is used e.g. by Lisp_Process which places extra
5252 non-Lisp_Object fields at the end of the structure. */
5253 for (i = 0; i < size; i++) /* and then mark its elements */
5254 mark_object (ptr->contents[i]);
d2029e5b
SM
5255}
5256
58026347
KH
5257/* Like mark_vectorlike but optimized for char-tables (and
5258 sub-char-tables) assuming that the contents are mostly integers or
5259 symbols. */
5260
5261static void
971de7fb 5262mark_char_table (struct Lisp_Vector *ptr)
58026347 5263{
b6439961
PE
5264 int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
5265 int i;
58026347 5266
8f11f7ec 5267 eassert (!VECTOR_MARKED_P (ptr));
58026347
KH
5268 VECTOR_MARK (ptr);
5269 for (i = 0; i < size; i++)
5270 {
5271 Lisp_Object val = ptr->contents[i];
5272
ef1b0ba7 5273 if (INTEGERP (val) || (SYMBOLP (val) && XSYMBOL (val)->gcmarkbit))
58026347
KH
5274 continue;
5275 if (SUB_CHAR_TABLE_P (val))
5276 {
5277 if (! VECTOR_MARKED_P (XVECTOR (val)))
5278 mark_char_table (XVECTOR (val));
5279 }
5280 else
5281 mark_object (val);
5282 }
5283}
5284
41c28a37 5285void
971de7fb 5286mark_object (Lisp_Object arg)
7146af97 5287{
49723c04 5288 register Lisp_Object obj = arg;
4f5c1376
GM
5289#ifdef GC_CHECK_MARKED_OBJECTS
5290 void *po;
5291 struct mem_node *m;
5292#endif
b895abce 5293 size_t cdr_count = 0;
7146af97 5294
9149e743 5295 loop:
7146af97 5296
1f0b3fd2 5297 if (PURE_POINTER_P (XPNTR (obj)))
7146af97
JB
5298 return;
5299
49723c04 5300 last_marked[last_marked_index++] = obj;
785cd37f
RS
5301 if (last_marked_index == LAST_MARKED_SIZE)
5302 last_marked_index = 0;
5303
4f5c1376
GM
5304 /* Perform some sanity checks on the objects marked here. Abort if
5305 we encounter an object we know is bogus. This increases GC time
5306 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
5307#ifdef GC_CHECK_MARKED_OBJECTS
5308
5309 po = (void *) XPNTR (obj);
5310
5311 /* Check that the object pointed to by PO is known to be a Lisp
5312 structure allocated from the heap. */
5313#define CHECK_ALLOCATED() \
5314 do { \
5315 m = mem_find (po); \
5316 if (m == MEM_NIL) \
5317 abort (); \
5318 } while (0)
5319
5320 /* Check that the object pointed to by PO is live, using predicate
5321 function LIVEP. */
5322#define CHECK_LIVE(LIVEP) \
5323 do { \
5324 if (!LIVEP (m, po)) \
5325 abort (); \
5326 } while (0)
5327
5328 /* Check both of the above conditions. */
5329#define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
5330 do { \
5331 CHECK_ALLOCATED (); \
5332 CHECK_LIVE (LIVEP); \
5333 } while (0) \
177c0ea7 5334
4f5c1376 5335#else /* not GC_CHECK_MARKED_OBJECTS */
177c0ea7 5336
4f5c1376
GM
5337#define CHECK_LIVE(LIVEP) (void) 0
5338#define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
177c0ea7 5339
4f5c1376
GM
5340#endif /* not GC_CHECK_MARKED_OBJECTS */
5341
8e50cc2d 5342 switch (SWITCH_ENUM_CAST (XTYPE (obj)))
7146af97
JB
5343 {
5344 case Lisp_String:
5345 {
5346 register struct Lisp_String *ptr = XSTRING (obj);
8f11f7ec
SM
5347 if (STRING_MARKED_P (ptr))
5348 break;
4f5c1376 5349 CHECK_ALLOCATED_AND_LIVE (live_string_p);
d5e35230 5350 MARK_INTERVAL_TREE (ptr->intervals);
2e471eb5 5351 MARK_STRING (ptr);
361b097f 5352#ifdef GC_CHECK_STRING_BYTES
676a7251
GM
5353 /* Check that the string size recorded in the string is the
5354 same as the one recorded in the sdata structure. */
5355 CHECK_STRING_BYTES (ptr);
361b097f 5356#endif /* GC_CHECK_STRING_BYTES */
7146af97
JB
5357 }
5358 break;
5359
76437631 5360 case Lisp_Vectorlike:
8f11f7ec
SM
5361 if (VECTOR_MARKED_P (XVECTOR (obj)))
5362 break;
4f5c1376
GM
5363#ifdef GC_CHECK_MARKED_OBJECTS
5364 m = mem_find (po);
8e50cc2d 5365 if (m == MEM_NIL && !SUBRP (obj)
4f5c1376
GM
5366 && po != &buffer_defaults
5367 && po != &buffer_local_symbols)
5368 abort ();
5369#endif /* GC_CHECK_MARKED_OBJECTS */
177c0ea7 5370
8e50cc2d 5371 if (BUFFERP (obj))
6b552283 5372 {
4f5c1376 5373#ifdef GC_CHECK_MARKED_OBJECTS
8f11f7ec
SM
5374 if (po != &buffer_defaults && po != &buffer_local_symbols)
5375 {
5376 struct buffer *b;
179dade4 5377 for (b = all_buffers; b && b != po; b = b->header.next.buffer)
8f11f7ec
SM
5378 ;
5379 if (b == NULL)
5380 abort ();
4f5c1376 5381 }
8f11f7ec
SM
5382#endif /* GC_CHECK_MARKED_OBJECTS */
5383 mark_buffer (obj);
6b552283 5384 }
8e50cc2d 5385 else if (SUBRP (obj))
169ee243 5386 break;
876c194c 5387 else if (COMPILEDP (obj))
2e471eb5
GM
5388 /* We could treat this just like a vector, but it is better to
5389 save the COMPILED_CONSTANTS element for last and avoid
5390 recursion there. */
169ee243
RS
5391 {
5392 register struct Lisp_Vector *ptr = XVECTOR (obj);
b6439961
PE
5393 int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
5394 int i;
169ee243 5395
4f5c1376 5396 CHECK_LIVE (live_vector_p);
3ef06d12 5397 VECTOR_MARK (ptr); /* Else mark it */
169ee243
RS
5398 for (i = 0; i < size; i++) /* and then mark its elements */
5399 {
5400 if (i != COMPILED_CONSTANTS)
49723c04 5401 mark_object (ptr->contents[i]);
169ee243 5402 }
49723c04 5403 obj = ptr->contents[COMPILED_CONSTANTS];
169ee243
RS
5404 goto loop;
5405 }
8e50cc2d 5406 else if (FRAMEP (obj))
169ee243 5407 {
c70bbf06 5408 register struct frame *ptr = XFRAME (obj);
8f11f7ec
SM
5409 mark_vectorlike (XVECTOR (obj));
5410 mark_face_cache (ptr->face_cache);
707788bd 5411 }
8e50cc2d 5412 else if (WINDOWP (obj))
41c28a37
GM
5413 {
5414 register struct Lisp_Vector *ptr = XVECTOR (obj);
5415 struct window *w = XWINDOW (obj);
8f11f7ec
SM
5416 mark_vectorlike (ptr);
5417 /* Mark glyphs for leaf windows. Marking window matrices is
5418 sufficient because frame matrices use the same glyph
5419 memory. */
5420 if (NILP (w->hchild)
5421 && NILP (w->vchild)
5422 && w->current_matrix)
41c28a37 5423 {
8f11f7ec
SM
5424 mark_glyph_matrix (w->current_matrix);
5425 mark_glyph_matrix (w->desired_matrix);
41c28a37
GM
5426 }
5427 }
8e50cc2d 5428 else if (HASH_TABLE_P (obj))
41c28a37
GM
5429 {
5430 struct Lisp_Hash_Table *h = XHASH_TABLE (obj);
8f11f7ec
SM
5431 mark_vectorlike ((struct Lisp_Vector *)h);
5432 /* If hash table is not weak, mark all keys and values.
5433 For weak tables, mark only the vector. */
5434 if (NILP (h->weak))
5435 mark_object (h->key_and_value);
5436 else
5437 VECTOR_MARK (XVECTOR (h->key_and_value));
41c28a37 5438 }
58026347 5439 else if (CHAR_TABLE_P (obj))
8f11f7ec 5440 mark_char_table (XVECTOR (obj));
04ff9756 5441 else
d2029e5b 5442 mark_vectorlike (XVECTOR (obj));
169ee243 5443 break;
7146af97 5444
7146af97
JB
5445 case Lisp_Symbol:
5446 {
c70bbf06 5447 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
7146af97
JB
5448 struct Lisp_Symbol *ptrx;
5449
8f11f7ec
SM
5450 if (ptr->gcmarkbit)
5451 break;
4f5c1376 5452 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
2336fe58 5453 ptr->gcmarkbit = 1;
49723c04
SM
5454 mark_object (ptr->function);
5455 mark_object (ptr->plist);
ce5b453a
SM
5456 switch (ptr->redirect)
5457 {
5458 case SYMBOL_PLAINVAL: mark_object (SYMBOL_VAL (ptr)); break;
5459 case SYMBOL_VARALIAS:
5460 {
5461 Lisp_Object tem;
5462 XSETSYMBOL (tem, SYMBOL_ALIAS (ptr));
5463 mark_object (tem);
5464 break;
5465 }
5466 case SYMBOL_LOCALIZED:
5467 {
5468 struct Lisp_Buffer_Local_Value *blv = SYMBOL_BLV (ptr);
5469 /* If the value is forwarded to a buffer or keyboard field,
5470 these are marked when we see the corresponding object.
5471 And if it's forwarded to a C variable, either it's not
5472 a Lisp_Object var, or it's staticpro'd already. */
5473 mark_object (blv->where);
5474 mark_object (blv->valcell);
5475 mark_object (blv->defcell);
5476 break;
5477 }
5478 case SYMBOL_FORWARDED:
5479 /* If the value is forwarded to a buffer or keyboard field,
5480 these are marked when we see the corresponding object.
5481 And if it's forwarded to a C variable, either it's not
5482 a Lisp_Object var, or it's staticpro'd already. */
5483 break;
5484 default: abort ();
5485 }
8fe5665d
KR
5486 if (!PURE_POINTER_P (XSTRING (ptr->xname)))
5487 MARK_STRING (XSTRING (ptr->xname));
d5db4077 5488 MARK_INTERVAL_TREE (STRING_INTERVALS (ptr->xname));
177c0ea7 5489
7146af97
JB
5490 ptr = ptr->next;
5491 if (ptr)
5492 {
b0846f52 5493 ptrx = ptr; /* Use of ptrx avoids compiler bug on Sun */
7146af97 5494 XSETSYMBOL (obj, ptrx);
49723c04 5495 goto loop;
7146af97
JB
5496 }
5497 }
5498 break;
5499
a0a38eb7 5500 case Lisp_Misc:
4f5c1376 5501 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
67ee9f6e 5502 if (XMISCANY (obj)->gcmarkbit)
2336fe58 5503 break;
67ee9f6e 5504 XMISCANY (obj)->gcmarkbit = 1;
b766f870 5505
a5da44fe 5506 switch (XMISCTYPE (obj))
a0a38eb7 5507 {
465edf35 5508
2336fe58
SM
5509 case Lisp_Misc_Marker:
5510 /* DO NOT mark thru the marker's chain.
5511 The buffer's markers chain does not preserve markers from gc;
5512 instead, markers are removed from the chain when freed by gc. */
b766f870
KS
5513 break;
5514
8f924df7 5515 case Lisp_Misc_Save_Value:
9ea306d1 5516#if GC_MARK_STACK
b766f870
KS
5517 {
5518 register struct Lisp_Save_Value *ptr = XSAVE_VALUE (obj);
5519 /* If DOGC is set, POINTER is the address of a memory
5520 area containing INTEGER potential Lisp_Objects. */
5521 if (ptr->dogc)
5522 {
5523 Lisp_Object *p = (Lisp_Object *) ptr->pointer;
9c4c5f81 5524 ptrdiff_t nelt;
b766f870
KS
5525 for (nelt = ptr->integer; nelt > 0; nelt--, p++)
5526 mark_maybe_object (*p);
5527 }
5528 }
9ea306d1 5529#endif
c8616056
KH
5530 break;
5531
e202fa34
KH
5532 case Lisp_Misc_Overlay:
5533 {
5534 struct Lisp_Overlay *ptr = XOVERLAY (obj);
49723c04
SM
5535 mark_object (ptr->start);
5536 mark_object (ptr->end);
f54253ec
SM
5537 mark_object (ptr->plist);
5538 if (ptr->next)
5539 {
5540 XSETMISC (obj, ptr->next);
5541 goto loop;
5542 }
e202fa34
KH
5543 }
5544 break;
5545
a0a38eb7
KH
5546 default:
5547 abort ();
5548 }
7146af97
JB
5549 break;
5550
5551 case Lisp_Cons:
7146af97
JB
5552 {
5553 register struct Lisp_Cons *ptr = XCONS (obj);
8f11f7ec
SM
5554 if (CONS_MARKED_P (ptr))
5555 break;
4f5c1376 5556 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
08b7c2cb 5557 CONS_MARK (ptr);
c54ca951 5558 /* If the cdr is nil, avoid recursion for the car. */
28a099a4 5559 if (EQ (ptr->u.cdr, Qnil))
c54ca951 5560 {
49723c04 5561 obj = ptr->car;
1342fc6f 5562 cdr_count = 0;
c54ca951
RS
5563 goto loop;
5564 }
49723c04 5565 mark_object (ptr->car);
28a099a4 5566 obj = ptr->u.cdr;
1342fc6f
RS
5567 cdr_count++;
5568 if (cdr_count == mark_object_loop_halt)
5569 abort ();
7146af97
JB
5570 goto loop;
5571 }
5572
7146af97 5573 case Lisp_Float:
4f5c1376 5574 CHECK_ALLOCATED_AND_LIVE (live_float_p);
ab6780cd 5575 FLOAT_MARK (XFLOAT (obj));
7146af97 5576 break;
7146af97 5577
2de9f71c 5578 case_Lisp_Int:
7146af97
JB
5579 break;
5580
5581 default:
5582 abort ();
5583 }
4f5c1376
GM
5584
5585#undef CHECK_LIVE
5586#undef CHECK_ALLOCATED
5587#undef CHECK_ALLOCATED_AND_LIVE
7146af97
JB
5588}
5589
5590/* Mark the pointers in a buffer structure. */
5591
5592static void
971de7fb 5593mark_buffer (Lisp_Object buf)
7146af97 5594{
7146af97 5595 register struct buffer *buffer = XBUFFER (buf);
f54253ec 5596 register Lisp_Object *ptr, tmp;
30e3190a 5597 Lisp_Object base_buffer;
7146af97 5598
8f11f7ec 5599 eassert (!VECTOR_MARKED_P (buffer));
3ef06d12 5600 VECTOR_MARK (buffer);
7146af97 5601
30e3190a 5602 MARK_INTERVAL_TREE (BUF_INTERVALS (buffer));
d5e35230 5603
c37adf23
SM
5604 /* For now, we just don't mark the undo_list. It's done later in
5605 a special way just before the sweep phase, and after stripping
5606 some of its elements that are not needed any more. */
4c315bda 5607
f54253ec
SM
5608 if (buffer->overlays_before)
5609 {
5610 XSETMISC (tmp, buffer->overlays_before);
5611 mark_object (tmp);
5612 }
5613 if (buffer->overlays_after)
5614 {
5615 XSETMISC (tmp, buffer->overlays_after);
5616 mark_object (tmp);
5617 }
5618
9ce376f9
SM
5619 /* buffer-local Lisp variables start at `undo_list',
5620 tho only the ones from `name' on are GC'd normally. */
5d8ea120 5621 for (ptr = &buffer->BUFFER_INTERNAL_FIELD (name);
8a5c77bb
PE
5622 ptr <= &PER_BUFFER_VALUE (buffer,
5623 PER_BUFFER_VAR_OFFSET (LAST_FIELD_PER_BUFFER));
7146af97 5624 ptr++)
49723c04 5625 mark_object (*ptr);
30e3190a
RS
5626
5627 /* If this is an indirect buffer, mark its base buffer. */
349bd9ed 5628 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
30e3190a 5629 {
177c0ea7 5630 XSETBUFFER (base_buffer, buffer->base_buffer);
30e3190a
RS
5631 mark_buffer (base_buffer);
5632 }
7146af97 5633}
084b1a0c 5634
4a729fd8
SM
5635/* Mark the Lisp pointers in the terminal objects.
5636 Called by the Fgarbage_collector. */
5637
4a729fd8
SM
5638static void
5639mark_terminals (void)
5640{
5641 struct terminal *t;
5642 for (t = terminal_list; t; t = t->next_terminal)
5643 {
5644 eassert (t->name != NULL);
354884c4 5645#ifdef HAVE_WINDOW_SYSTEM
96ad0af7
YM
5646 /* If a terminal object is reachable from a stacpro'ed object,
5647 it might have been marked already. Make sure the image cache
5648 gets marked. */
5649 mark_image_cache (t->image_cache);
354884c4 5650#endif /* HAVE_WINDOW_SYSTEM */
96ad0af7
YM
5651 if (!VECTOR_MARKED_P (t))
5652 mark_vectorlike ((struct Lisp_Vector *)t);
4a729fd8
SM
5653 }
5654}
5655
5656
084b1a0c 5657
41c28a37
GM
5658/* Value is non-zero if OBJ will survive the current GC because it's
5659 either marked or does not need to be marked to survive. */
5660
5661int
971de7fb 5662survives_gc_p (Lisp_Object obj)
41c28a37
GM
5663{
5664 int survives_p;
177c0ea7 5665
8e50cc2d 5666 switch (XTYPE (obj))
41c28a37 5667 {
2de9f71c 5668 case_Lisp_Int:
41c28a37
GM
5669 survives_p = 1;
5670 break;
5671
5672 case Lisp_Symbol:
2336fe58 5673 survives_p = XSYMBOL (obj)->gcmarkbit;
41c28a37
GM
5674 break;
5675
5676 case Lisp_Misc:
67ee9f6e 5677 survives_p = XMISCANY (obj)->gcmarkbit;
41c28a37
GM
5678 break;
5679
5680 case Lisp_String:
08b7c2cb 5681 survives_p = STRING_MARKED_P (XSTRING (obj));
41c28a37
GM
5682 break;
5683
5684 case Lisp_Vectorlike:
8e50cc2d 5685 survives_p = SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
41c28a37
GM
5686 break;
5687
5688 case Lisp_Cons:
08b7c2cb 5689 survives_p = CONS_MARKED_P (XCONS (obj));
41c28a37
GM
5690 break;
5691
41c28a37 5692 case Lisp_Float:
ab6780cd 5693 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
41c28a37 5694 break;
41c28a37
GM
5695
5696 default:
5697 abort ();
5698 }
5699
34400008 5700 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
41c28a37
GM
5701}
5702
5703
7146af97 5704\f
1a4f1e2c 5705/* Sweep: find all structures not marked, and free them. */
7146af97
JB
5706
5707static void
971de7fb 5708gc_sweep (void)
7146af97 5709{
41c28a37
GM
5710 /* Remove or mark entries in weak hash tables.
5711 This must be done before any object is unmarked. */
5712 sweep_weak_hash_tables ();
5713
2e471eb5 5714 sweep_strings ();
676a7251
GM
5715#ifdef GC_CHECK_STRING_BYTES
5716 if (!noninteractive)
5717 check_string_bytes (1);
5718#endif
7146af97
JB
5719
5720 /* Put all unmarked conses on free list */
5721 {
5722 register struct cons_block *cblk;
6ca94ac9 5723 struct cons_block **cprev = &cons_block;
7146af97 5724 register int lim = cons_block_index;
c0c5c8ae 5725 EMACS_INT num_free = 0, num_used = 0;
7146af97
JB
5726
5727 cons_free_list = 0;
177c0ea7 5728
6ca94ac9 5729 for (cblk = cons_block; cblk; cblk = *cprev)
7146af97 5730 {
3ae2e3a3 5731 register int i = 0;
6ca94ac9 5732 int this_free = 0;
3ae2e3a3
RS
5733 int ilim = (lim + BITS_PER_INT - 1) / BITS_PER_INT;
5734
5735 /* Scan the mark bits an int at a time. */
47ea7f44 5736 for (i = 0; i < ilim; i++)
3ae2e3a3
RS
5737 {
5738 if (cblk->gcmarkbits[i] == -1)
5739 {
5740 /* Fast path - all cons cells for this int are marked. */
5741 cblk->gcmarkbits[i] = 0;
5742 num_used += BITS_PER_INT;
5743 }
5744 else
5745 {
5746 /* Some cons cells for this int are not marked.
5747 Find which ones, and free them. */
5748 int start, pos, stop;
5749
5750 start = i * BITS_PER_INT;
5751 stop = lim - start;
5752 if (stop > BITS_PER_INT)
5753 stop = BITS_PER_INT;
5754 stop += start;
5755
5756 for (pos = start; pos < stop; pos++)
5757 {
5758 if (!CONS_MARKED_P (&cblk->conses[pos]))
5759 {
5760 this_free++;
5761 cblk->conses[pos].u.chain = cons_free_list;
5762 cons_free_list = &cblk->conses[pos];
34400008 5763#if GC_MARK_STACK
3ae2e3a3 5764 cons_free_list->car = Vdead;
34400008 5765#endif
3ae2e3a3
RS
5766 }
5767 else
5768 {
5769 num_used++;
5770 CONS_UNMARK (&cblk->conses[pos]);
5771 }
5772 }
5773 }
5774 }
5775
7146af97 5776 lim = CONS_BLOCK_SIZE;
6ca94ac9
KH
5777 /* If this block contains only free conses and we have already
5778 seen more than two blocks worth of free conses then deallocate
5779 this block. */
6feef451 5780 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
6ca94ac9 5781 {
6ca94ac9
KH
5782 *cprev = cblk->next;
5783 /* Unhook from the free list. */
28a099a4 5784 cons_free_list = cblk->conses[0].u.chain;
08b7c2cb 5785 lisp_align_free (cblk);
6ca94ac9
KH
5786 }
5787 else
6feef451
AS
5788 {
5789 num_free += this_free;
5790 cprev = &cblk->next;
5791 }
7146af97
JB
5792 }
5793 total_conses = num_used;
5794 total_free_conses = num_free;
5795 }
5796
7146af97
JB
5797 /* Put all unmarked floats on free list */
5798 {
5799 register struct float_block *fblk;
6ca94ac9 5800 struct float_block **fprev = &float_block;
7146af97 5801 register int lim = float_block_index;
c0c5c8ae 5802 EMACS_INT num_free = 0, num_used = 0;
7146af97
JB
5803
5804 float_free_list = 0;
177c0ea7 5805
6ca94ac9 5806 for (fblk = float_block; fblk; fblk = *fprev)
7146af97
JB
5807 {
5808 register int i;
6ca94ac9 5809 int this_free = 0;
7146af97 5810 for (i = 0; i < lim; i++)
ab6780cd 5811 if (!FLOAT_MARKED_P (&fblk->floats[i]))
7146af97 5812 {
6ca94ac9 5813 this_free++;
28a099a4 5814 fblk->floats[i].u.chain = float_free_list;
7146af97
JB
5815 float_free_list = &fblk->floats[i];
5816 }
5817 else
5818 {
5819 num_used++;
ab6780cd 5820 FLOAT_UNMARK (&fblk->floats[i]);
7146af97
JB
5821 }
5822 lim = FLOAT_BLOCK_SIZE;
6ca94ac9
KH
5823 /* If this block contains only free floats and we have already
5824 seen more than two blocks worth of free floats then deallocate
5825 this block. */
6feef451 5826 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
6ca94ac9 5827 {
6ca94ac9
KH
5828 *fprev = fblk->next;
5829 /* Unhook from the free list. */
28a099a4 5830 float_free_list = fblk->floats[0].u.chain;
ab6780cd 5831 lisp_align_free (fblk);
6ca94ac9
KH
5832 }
5833 else
6feef451
AS
5834 {
5835 num_free += this_free;
5836 fprev = &fblk->next;
5837 }
7146af97
JB
5838 }
5839 total_floats = num_used;
5840 total_free_floats = num_free;
5841 }
7146af97 5842
d5e35230
JA
5843 /* Put all unmarked intervals on free list */
5844 {
5845 register struct interval_block *iblk;
6ca94ac9 5846 struct interval_block **iprev = &interval_block;
d5e35230 5847 register int lim = interval_block_index;
c0c5c8ae 5848 EMACS_INT num_free = 0, num_used = 0;
d5e35230
JA
5849
5850 interval_free_list = 0;
5851
6ca94ac9 5852 for (iblk = interval_block; iblk; iblk = *iprev)
d5e35230
JA
5853 {
5854 register int i;
6ca94ac9 5855 int this_free = 0;
d5e35230
JA
5856
5857 for (i = 0; i < lim; i++)
5858 {
2336fe58 5859 if (!iblk->intervals[i].gcmarkbit)
d5e35230 5860 {
439d5cb4 5861 SET_INTERVAL_PARENT (&iblk->intervals[i], interval_free_list);
d5e35230 5862 interval_free_list = &iblk->intervals[i];
6ca94ac9 5863 this_free++;
d5e35230
JA
5864 }
5865 else
5866 {
5867 num_used++;
2336fe58 5868 iblk->intervals[i].gcmarkbit = 0;
d5e35230
JA
5869 }
5870 }
5871 lim = INTERVAL_BLOCK_SIZE;
6ca94ac9
KH
5872 /* If this block contains only free intervals and we have already
5873 seen more than two blocks worth of free intervals then
5874 deallocate this block. */
6feef451 5875 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
6ca94ac9 5876 {
6ca94ac9
KH
5877 *iprev = iblk->next;
5878 /* Unhook from the free list. */
439d5cb4 5879 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
c8099634 5880 lisp_free (iblk);
6ca94ac9
KH
5881 }
5882 else
6feef451
AS
5883 {
5884 num_free += this_free;
5885 iprev = &iblk->next;
5886 }
d5e35230
JA
5887 }
5888 total_intervals = num_used;
5889 total_free_intervals = num_free;
5890 }
d5e35230 5891
7146af97
JB
5892 /* Put all unmarked symbols on free list */
5893 {
5894 register struct symbol_block *sblk;
6ca94ac9 5895 struct symbol_block **sprev = &symbol_block;
7146af97 5896 register int lim = symbol_block_index;
c0c5c8ae 5897 EMACS_INT num_free = 0, num_used = 0;
7146af97 5898
d285b373 5899 symbol_free_list = NULL;
177c0ea7 5900
6ca94ac9 5901 for (sblk = symbol_block; sblk; sblk = *sprev)
7146af97 5902 {
6ca94ac9 5903 int this_free = 0;
d285b373
GM
5904 struct Lisp_Symbol *sym = sblk->symbols;
5905 struct Lisp_Symbol *end = sym + lim;
5906
5907 for (; sym < end; ++sym)
5908 {
20035321
SM
5909 /* Check if the symbol was created during loadup. In such a case
5910 it might be pointed to by pure bytecode which we don't trace,
5911 so we conservatively assume that it is live. */
8fe5665d 5912 int pure_p = PURE_POINTER_P (XSTRING (sym->xname));
177c0ea7 5913
2336fe58 5914 if (!sym->gcmarkbit && !pure_p)
d285b373 5915 {
ce5b453a
SM
5916 if (sym->redirect == SYMBOL_LOCALIZED)
5917 xfree (SYMBOL_BLV (sym));
28a099a4 5918 sym->next = symbol_free_list;
d285b373 5919 symbol_free_list = sym;
34400008 5920#if GC_MARK_STACK
d285b373 5921 symbol_free_list->function = Vdead;
34400008 5922#endif
d285b373
GM
5923 ++this_free;
5924 }
5925 else
5926 {
5927 ++num_used;
5928 if (!pure_p)
8fe5665d 5929 UNMARK_STRING (XSTRING (sym->xname));
2336fe58 5930 sym->gcmarkbit = 0;
d285b373
GM
5931 }
5932 }
177c0ea7 5933
7146af97 5934 lim = SYMBOL_BLOCK_SIZE;
6ca94ac9
KH
5935 /* If this block contains only free symbols and we have already
5936 seen more than two blocks worth of free symbols then deallocate
5937 this block. */
6feef451 5938 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
6ca94ac9 5939 {
6ca94ac9
KH
5940 *sprev = sblk->next;
5941 /* Unhook from the free list. */
28a099a4 5942 symbol_free_list = sblk->symbols[0].next;
c8099634 5943 lisp_free (sblk);
6ca94ac9
KH
5944 }
5945 else
6feef451
AS
5946 {
5947 num_free += this_free;
5948 sprev = &sblk->next;
5949 }
7146af97
JB
5950 }
5951 total_symbols = num_used;
5952 total_free_symbols = num_free;
5953 }
5954
a9faeabe
RS
5955 /* Put all unmarked misc's on free list.
5956 For a marker, first unchain it from the buffer it points into. */
7146af97
JB
5957 {
5958 register struct marker_block *mblk;
6ca94ac9 5959 struct marker_block **mprev = &marker_block;
7146af97 5960 register int lim = marker_block_index;
c0c5c8ae 5961 EMACS_INT num_free = 0, num_used = 0;
7146af97
JB
5962
5963 marker_free_list = 0;
177c0ea7 5964
6ca94ac9 5965 for (mblk = marker_block; mblk; mblk = *mprev)
7146af97
JB
5966 {
5967 register int i;
6ca94ac9 5968 int this_free = 0;
fa05e253 5969
7146af97 5970 for (i = 0; i < lim; i++)
465edf35 5971 {
d314756e 5972 if (!mblk->markers[i].u_any.gcmarkbit)
465edf35 5973 {
d314756e 5974 if (mblk->markers[i].u_any.type == Lisp_Misc_Marker)
ef89c2ce 5975 unchain_marker (&mblk->markers[i].u_marker);
fa05e253
RS
5976 /* Set the type of the freed object to Lisp_Misc_Free.
5977 We could leave the type alone, since nobody checks it,
465edf35 5978 but this might catch bugs faster. */
a5da44fe 5979 mblk->markers[i].u_marker.type = Lisp_Misc_Free;
465edf35
KH
5980 mblk->markers[i].u_free.chain = marker_free_list;
5981 marker_free_list = &mblk->markers[i];
6ca94ac9 5982 this_free++;
465edf35
KH
5983 }
5984 else
5985 {
5986 num_used++;
d314756e 5987 mblk->markers[i].u_any.gcmarkbit = 0;
465edf35
KH
5988 }
5989 }
7146af97 5990 lim = MARKER_BLOCK_SIZE;
6ca94ac9
KH
5991 /* If this block contains only free markers and we have already
5992 seen more than two blocks worth of free markers then deallocate
5993 this block. */
6feef451 5994 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
6ca94ac9 5995 {
6ca94ac9
KH
5996 *mprev = mblk->next;
5997 /* Unhook from the free list. */
5998 marker_free_list = mblk->markers[0].u_free.chain;
c8099634 5999 lisp_free (mblk);
6ca94ac9
KH
6000 }
6001 else
6feef451
AS
6002 {
6003 num_free += this_free;
6004 mprev = &mblk->next;
6005 }
7146af97
JB
6006 }
6007
6008 total_markers = num_used;
6009 total_free_markers = num_free;
6010 }
6011
6012 /* Free all unmarked buffers */
6013 {
6014 register struct buffer *buffer = all_buffers, *prev = 0, *next;
6015
6016 while (buffer)
3ef06d12 6017 if (!VECTOR_MARKED_P (buffer))
7146af97
JB
6018 {
6019 if (prev)
eab3844f 6020 prev->header.next = buffer->header.next;
7146af97 6021 else
eab3844f
PE
6022 all_buffers = buffer->header.next.buffer;
6023 next = buffer->header.next.buffer;
34400008 6024 lisp_free (buffer);
7146af97
JB
6025 buffer = next;
6026 }
6027 else
6028 {
3ef06d12 6029 VECTOR_UNMARK (buffer);
30e3190a 6030 UNMARK_BALANCE_INTERVALS (BUF_INTERVALS (buffer));
eab3844f 6031 prev = buffer, buffer = buffer->header.next.buffer;
7146af97
JB
6032 }
6033 }
6034
7146af97
JB
6035 /* Free all unmarked vectors */
6036 {
6037 register struct Lisp_Vector *vector = all_vectors, *prev = 0, *next;
6038 total_vector_size = 0;
6039
6040 while (vector)
3ef06d12 6041 if (!VECTOR_MARKED_P (vector))
7146af97
JB
6042 {
6043 if (prev)
eab3844f 6044 prev->header.next = vector->header.next;
7146af97 6045 else
eab3844f
PE
6046 all_vectors = vector->header.next.vector;
6047 next = vector->header.next.vector;
c8099634 6048 lisp_free (vector);
7146af97 6049 vector = next;
41c28a37 6050
7146af97
JB
6051 }
6052 else
6053 {
3ef06d12 6054 VECTOR_UNMARK (vector);
eab3844f
PE
6055 if (vector->header.size & PSEUDOVECTOR_FLAG)
6056 total_vector_size += PSEUDOVECTOR_SIZE_MASK & vector->header.size;
fa05e253 6057 else
eab3844f
PE
6058 total_vector_size += vector->header.size;
6059 prev = vector, vector = vector->header.next.vector;
7146af97
JB
6060 }
6061 }
177c0ea7 6062
676a7251
GM
6063#ifdef GC_CHECK_STRING_BYTES
6064 if (!noninteractive)
6065 check_string_bytes (1);
6066#endif
7146af97 6067}
7146af97 6068
7146af97 6069
7146af97 6070
7146af97 6071\f
20d24714
JB
6072/* Debugging aids. */
6073
31ce1c91 6074DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
a6266d23 6075 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
228299fa 6076This may be helpful in debugging Emacs's memory usage.
7ee72033 6077We divide the value by 1024 to make sure it fits in a Lisp integer. */)
5842a27b 6078 (void)
20d24714
JB
6079{
6080 Lisp_Object end;
6081
d01a7826 6082 XSETINT (end, (intptr_t) (char *) sbrk (0) / 1024);
20d24714
JB
6083
6084 return end;
6085}
6086
310ea200 6087DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
a6266d23 6088 doc: /* Return a list of counters that measure how much consing there has been.
228299fa
GM
6089Each of these counters increments for a certain kind of object.
6090The counters wrap around from the largest positive integer to zero.
6091Garbage collection does not decrease them.
6092The elements of the value are as follows:
6093 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
6094All are in units of 1 = one object consed
6095except for VECTOR-CELLS and STRING-CHARS, which count the total length of
6096objects consed.
6097MISCS include overlays, markers, and some internal types.
6098Frames, windows, buffers, and subprocesses count as vectors
7ee72033 6099 (but the contents of a buffer's text do not count here). */)
5842a27b 6100 (void)
310ea200 6101{
2e471eb5 6102 Lisp_Object consed[8];
310ea200 6103
78e985eb
GM
6104 consed[0] = make_number (min (MOST_POSITIVE_FIXNUM, cons_cells_consed));
6105 consed[1] = make_number (min (MOST_POSITIVE_FIXNUM, floats_consed));
6106 consed[2] = make_number (min (MOST_POSITIVE_FIXNUM, vector_cells_consed));
6107 consed[3] = make_number (min (MOST_POSITIVE_FIXNUM, symbols_consed));
6108 consed[4] = make_number (min (MOST_POSITIVE_FIXNUM, string_chars_consed));
6109 consed[5] = make_number (min (MOST_POSITIVE_FIXNUM, misc_objects_consed));
6110 consed[6] = make_number (min (MOST_POSITIVE_FIXNUM, intervals_consed));
6111 consed[7] = make_number (min (MOST_POSITIVE_FIXNUM, strings_consed));
310ea200 6112
2e471eb5 6113 return Flist (8, consed);
310ea200 6114}
e0b8c689 6115
244ed907 6116#ifdef ENABLE_CHECKING
e0b8c689 6117int suppress_checking;
d3d47262 6118
e0b8c689 6119void
971de7fb 6120die (const char *msg, const char *file, int line)
e0b8c689 6121{
67ee9f6e 6122 fprintf (stderr, "\r\n%s:%d: Emacs fatal error: %s\r\n",
e0b8c689
KR
6123 file, line, msg);
6124 abort ();
6125}
244ed907 6126#endif
20d24714 6127\f
7146af97
JB
6128/* Initialization */
6129
dfcf069d 6130void
971de7fb 6131init_alloc_once (void)
7146af97
JB
6132{
6133 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
9e713715
GM
6134 purebeg = PUREBEG;
6135 pure_size = PURESIZE;
1f0b3fd2 6136 pure_bytes_used = 0;
e5bc14d4 6137 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
9e713715
GM
6138 pure_bytes_used_before_overflow = 0;
6139
ab6780cd
SM
6140 /* Initialize the list of free aligned blocks. */
6141 free_ablock = NULL;
6142
877935b1 6143#if GC_MARK_STACK || defined GC_MALLOC_CHECK
34400008
GM
6144 mem_init ();
6145 Vdead = make_pure_string ("DEAD", 4, 4, 0);
6146#endif
9e713715 6147
7146af97
JB
6148 all_vectors = 0;
6149 ignore_warnings = 1;
d1658221
RS
6150#ifdef DOUG_LEA_MALLOC
6151 mallopt (M_TRIM_THRESHOLD, 128*1024); /* trim threshold */
6152 mallopt (M_MMAP_THRESHOLD, 64*1024); /* mmap threshold */
81d492d5 6153 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* max. number of mmap'ed areas */
d1658221 6154#endif
7146af97
JB
6155 init_strings ();
6156 init_cons ();
6157 init_symbol ();
6158 init_marker ();
7146af97 6159 init_float ();
34400008 6160 init_intervals ();
5ac58e4c 6161 init_weak_hash_tables ();
d5e35230 6162
276cbe5a
RS
6163#ifdef REL_ALLOC
6164 malloc_hysteresis = 32;
6165#else
6166 malloc_hysteresis = 0;
6167#endif
6168
24d8a105 6169 refill_memory_reserve ();
276cbe5a 6170
7146af97
JB
6171 ignore_warnings = 0;
6172 gcprolist = 0;
630686c8 6173 byte_stack_list = 0;
7146af97
JB
6174 staticidx = 0;
6175 consing_since_gc = 0;
7d179cea 6176 gc_cons_threshold = 100000 * sizeof (Lisp_Object);
974aae61 6177 gc_relative_threshold = 0;
7146af97
JB
6178}
6179
dfcf069d 6180void
971de7fb 6181init_alloc (void)
7146af97
JB
6182{
6183 gcprolist = 0;
630686c8 6184 byte_stack_list = 0;
182ff242
GM
6185#if GC_MARK_STACK
6186#if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
6187 setjmp_tested_p = longjmps_done = 0;
6188#endif
6189#endif
2c5bd608
DL
6190 Vgc_elapsed = make_float (0.0);
6191 gcs_done = 0;
7146af97
JB
6192}
6193
6194void
971de7fb 6195syms_of_alloc (void)
7146af97 6196{
29208e82 6197 DEFVAR_INT ("gc-cons-threshold", gc_cons_threshold,
a6266d23 6198 doc: /* *Number of bytes of consing between garbage collections.
228299fa
GM
6199Garbage collection can happen automatically once this many bytes have been
6200allocated since the last garbage collection. All data types count.
7146af97 6201
228299fa 6202Garbage collection happens automatically only when `eval' is called.
7146af97 6203
228299fa 6204By binding this temporarily to a large number, you can effectively
96f077ad
SM
6205prevent garbage collection during a part of the program.
6206See also `gc-cons-percentage'. */);
6207
29208e82 6208 DEFVAR_LISP ("gc-cons-percentage", Vgc_cons_percentage,
96f077ad
SM
6209 doc: /* *Portion of the heap used for allocation.
6210Garbage collection can happen automatically once this portion of the heap
6211has been allocated since the last garbage collection.
6212If this portion is smaller than `gc-cons-threshold', this is ignored. */);
6213 Vgc_cons_percentage = make_float (0.1);
0819585c 6214
29208e82 6215 DEFVAR_INT ("pure-bytes-used", pure_bytes_used,
a6266d23 6216 doc: /* Number of bytes of sharable Lisp data allocated so far. */);
0819585c 6217
29208e82 6218 DEFVAR_INT ("cons-cells-consed", cons_cells_consed,
a6266d23 6219 doc: /* Number of cons cells that have been consed so far. */);
0819585c 6220
29208e82 6221 DEFVAR_INT ("floats-consed", floats_consed,
a6266d23 6222 doc: /* Number of floats that have been consed so far. */);
0819585c 6223
29208e82 6224 DEFVAR_INT ("vector-cells-consed", vector_cells_consed,
a6266d23 6225 doc: /* Number of vector cells that have been consed so far. */);
0819585c 6226
29208e82 6227 DEFVAR_INT ("symbols-consed", symbols_consed,
a6266d23 6228 doc: /* Number of symbols that have been consed so far. */);
0819585c 6229
29208e82 6230 DEFVAR_INT ("string-chars-consed", string_chars_consed,
a6266d23 6231 doc: /* Number of string characters that have been consed so far. */);
0819585c 6232
29208e82 6233 DEFVAR_INT ("misc-objects-consed", misc_objects_consed,
a6266d23 6234 doc: /* Number of miscellaneous objects that have been consed so far. */);
2e471eb5 6235
29208e82 6236 DEFVAR_INT ("intervals-consed", intervals_consed,
a6266d23 6237 doc: /* Number of intervals that have been consed so far. */);
7146af97 6238
29208e82 6239 DEFVAR_INT ("strings-consed", strings_consed,
a6266d23 6240 doc: /* Number of strings that have been consed so far. */);
228299fa 6241
29208e82 6242 DEFVAR_LISP ("purify-flag", Vpurify_flag,
a6266d23 6243 doc: /* Non-nil means loading Lisp code in order to dump an executable.
e9515805
SM
6244This means that certain objects should be allocated in shared (pure) space.
6245It can also be set to a hash-table, in which case this table is used to
6246do hash-consing of the objects allocated to pure space. */);
228299fa 6247
29208e82 6248 DEFVAR_BOOL ("garbage-collection-messages", garbage_collection_messages,
a6266d23 6249 doc: /* Non-nil means display messages at start and end of garbage collection. */);
299585ee
RS
6250 garbage_collection_messages = 0;
6251
29208e82 6252 DEFVAR_LISP ("post-gc-hook", Vpost_gc_hook,
a6266d23 6253 doc: /* Hook run after garbage collection has finished. */);
9e713715 6254 Vpost_gc_hook = Qnil;
cd3520a4 6255 DEFSYM (Qpost_gc_hook, "post-gc-hook");
9e713715 6256
29208e82 6257 DEFVAR_LISP ("memory-signal-data", Vmemory_signal_data,
74a54b04 6258 doc: /* Precomputed `signal' argument for memory-full error. */);
bcb61d60
KH
6259 /* We build this in advance because if we wait until we need it, we might
6260 not be able to allocate the memory to hold it. */
74a54b04 6261 Vmemory_signal_data
f4265f6c
DN
6262 = pure_cons (Qerror,
6263 pure_cons (make_pure_c_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"), Qnil));
74a54b04 6264
29208e82 6265 DEFVAR_LISP ("memory-full", Vmemory_full,
24d8a105 6266 doc: /* Non-nil means Emacs cannot get much more Lisp memory. */);
74a54b04 6267 Vmemory_full = Qnil;
bcb61d60 6268
cd3520a4
JB
6269 DEFSYM (Qgc_cons_threshold, "gc-cons-threshold");
6270 DEFSYM (Qchar_table_extra_slots, "char-table-extra-slots");
a59de17b 6271
29208e82 6272 DEFVAR_LISP ("gc-elapsed", Vgc_elapsed,
2c5bd608 6273 doc: /* Accumulated time elapsed in garbage collections.
e7415487 6274The time is in seconds as a floating point value. */);
29208e82 6275 DEFVAR_INT ("gcs-done", gcs_done,
e7415487 6276 doc: /* Accumulated number of garbage collections done. */);
2c5bd608 6277
7146af97
JB
6278 defsubr (&Scons);
6279 defsubr (&Slist);
6280 defsubr (&Svector);
6281 defsubr (&Smake_byte_code);
6282 defsubr (&Smake_list);
6283 defsubr (&Smake_vector);
6284 defsubr (&Smake_string);
7b07587b 6285 defsubr (&Smake_bool_vector);
7146af97
JB
6286 defsubr (&Smake_symbol);
6287 defsubr (&Smake_marker);
6288 defsubr (&Spurecopy);
6289 defsubr (&Sgarbage_collect);
20d24714 6290 defsubr (&Smemory_limit);
310ea200 6291 defsubr (&Smemory_use_counts);
34400008
GM
6292
6293#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
6294 defsubr (&Sgc_status);
6295#endif
7146af97 6296}