Fix a typo in a recent entry in src/ChangeLog.
[bpt/emacs.git] / src / alloc.c
CommitLineData
7146af97 1/* Storage allocation and gc for GNU Emacs Lisp interpreter.
999dd333
GM
2
3Copyright (C) 1985-1986, 1988, 1993-1995, 1997-2012
4 Free Software Foundation, Inc.
7146af97
JB
5
6This file is part of GNU Emacs.
7
9ec0b715 8GNU Emacs is free software: you can redistribute it and/or modify
7146af97 9it under the terms of the GNU General Public License as published by
9ec0b715
GM
10the Free Software Foundation, either version 3 of the License, or
11(at your option) any later version.
7146af97
JB
12
13GNU Emacs is distributed in the hope that it will be useful,
14but WITHOUT ANY WARRANTY; without even the implied warranty of
15MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16GNU General Public License for more details.
17
18You should have received a copy of the GNU General Public License
9ec0b715 19along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
7146af97 20
18160b98 21#include <config.h>
f162bcc3
PE
22
23#define LISP_INLINE EXTERN_INLINE
24
e9b309ac 25#include <stdio.h>
ab6780cd 26#include <limits.h> /* For CHAR_BIT. */
92939d31 27
bc8000ff
EZ
28#ifdef ENABLE_CHECKING
29#include <signal.h> /* For SIGABRT. */
30#endif
31
ae9e757a 32#ifdef HAVE_PTHREAD
aa477689
JD
33#include <pthread.h>
34#endif
35
7146af97 36#include "lisp.h"
ece93c02 37#include "process.h"
d5e35230 38#include "intervals.h"
4c0be5f4 39#include "puresize.h"
e5560ff7 40#include "character.h"
7146af97
JB
41#include "buffer.h"
42#include "window.h"
2538fae4 43#include "keyboard.h"
502b9b64 44#include "frame.h"
9ac0d9e0 45#include "blockinput.h"
4a729fd8 46#include "termhooks.h" /* For struct terminal. */
0328b6de 47
0065d054 48#include <verify.h>
e065a56e 49
52828e02
PE
50/* GC_CHECK_MARKED_OBJECTS means do sanity checks on allocated objects.
51 Doable only if GC_MARK_STACK. */
52#if ! GC_MARK_STACK
53# undef GC_CHECK_MARKED_OBJECTS
54#endif
55
6b61353c 56/* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
52828e02
PE
57 memory. Can do this only if using gmalloc.c and if not checking
58 marked objects. */
6b61353c 59
52828e02
PE
60#if (defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC \
61 || defined GC_CHECK_MARKED_OBJECTS)
6b61353c
KH
62#undef GC_MALLOC_CHECK
63#endif
64
bf952fb6 65#include <unistd.h>
4004364e 66#ifndef HAVE_UNISTD_H
261cb4bb 67extern void *sbrk ();
bf952fb6 68#endif
ee1eea5c 69
de7124a7 70#include <fcntl.h>
de7124a7 71
a411ac43
PE
72#ifdef USE_GTK
73# include "gtkutil.h"
74#endif
69666f77 75#ifdef WINDOWSNT
f892cf9c 76#include "w32.h"
69666f77
EZ
77#endif
78
d1658221 79#ifdef DOUG_LEA_MALLOC
2e471eb5 80
d1658221 81#include <malloc.h>
81d492d5 82
2e471eb5
GM
83/* Specify maximum number of areas to mmap. It would be nice to use a
84 value that explicitly means "no limit". */
85
81d492d5
RS
86#define MMAP_MAX_AREAS 100000000
87
2e471eb5 88#endif /* not DOUG_LEA_MALLOC */
276cbe5a 89
2e471eb5
GM
90/* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
91 to a struct Lisp_String. */
92
7cdee936
SM
93#define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
94#define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
b059de99 95#define STRING_MARKED_P(S) (((S)->size & ARRAY_MARK_FLAG) != 0)
2e471eb5 96
eab3844f
PE
97#define VECTOR_MARK(V) ((V)->header.size |= ARRAY_MARK_FLAG)
98#define VECTOR_UNMARK(V) ((V)->header.size &= ~ARRAY_MARK_FLAG)
99#define VECTOR_MARKED_P(V) (((V)->header.size & ARRAY_MARK_FLAG) != 0)
3ef06d12 100
0dd6d66d
DA
101/* Default value of gc_cons_threshold (see below). */
102
663e2b3f 103#define GC_DEFAULT_THRESHOLD (100000 * word_size)
0dd6d66d 104
29208e82
TT
105/* Global variables. */
106struct emacs_globals globals;
107
2e471eb5
GM
108/* Number of bytes of consing done since the last gc. */
109
dac616ff 110EMACS_INT consing_since_gc;
7146af97 111
974aae61
RS
112/* Similar minimum, computed from Vgc_cons_percentage. */
113
dac616ff 114EMACS_INT gc_relative_threshold;
310ea200 115
24d8a105
RS
116/* Minimum number of bytes of consing since GC before next GC,
117 when memory is full. */
118
dac616ff 119EMACS_INT memory_full_cons_threshold;
24d8a105 120
fce31d69 121/* True during GC. */
2e471eb5 122
fce31d69 123bool gc_in_progress;
7146af97 124
fce31d69 125/* True means abort if try to GC.
3de0effb
RS
126 This is for code which is written on the assumption that
127 no GC will happen, so as to verify that assumption. */
128
fce31d69 129bool abort_on_gc;
3de0effb 130
34400008
GM
131/* Number of live and free conses etc. */
132
3ab6e069 133static EMACS_INT total_conses, total_markers, total_symbols, total_buffers;
c0c5c8ae 134static EMACS_INT total_free_conses, total_free_markers, total_free_symbols;
3ab6e069 135static EMACS_INT total_free_floats, total_floats;
fd27a537 136
2e471eb5 137/* Points to memory space allocated as "spare", to be freed if we run
24d8a105
RS
138 out of memory. We keep one large block, four cons-blocks, and
139 two string blocks. */
2e471eb5 140
d3d47262 141static char *spare_memory[7];
276cbe5a 142
2b6148e4
PE
143/* Amount of spare memory to keep in large reserve block, or to see
144 whether this much is available when malloc fails on a larger request. */
2e471eb5 145
276cbe5a 146#define SPARE_MEMORY (1 << 14)
4d09bcf6 147
1b8950e5
RS
148/* Initialize it to a nonzero value to force it into data space
149 (rather than bss space). That way unexec will remap it into text
150 space (pure), on some systems. We have not implemented the
151 remapping on more recent systems because this is less important
152 nowadays than in the days of small memories and timesharing. */
2e471eb5 153
2c4685ee 154EMACS_INT pure[(PURESIZE + sizeof (EMACS_INT) - 1) / sizeof (EMACS_INT)] = {1,};
7146af97 155#define PUREBEG (char *) pure
2e471eb5 156
9e713715 157/* Pointer to the pure area, and its size. */
2e471eb5 158
9e713715 159static char *purebeg;
903fe15d 160static ptrdiff_t pure_size;
9e713715
GM
161
162/* Number of bytes of pure storage used before pure storage overflowed.
163 If this is non-zero, this implies that an overflow occurred. */
164
903fe15d 165static ptrdiff_t pure_bytes_used_before_overflow;
7146af97 166
fce31d69 167/* True if P points into pure space. */
34400008
GM
168
169#define PURE_POINTER_P(P) \
6a0bf43d 170 ((uintptr_t) (P) - (uintptr_t) purebeg <= pure_size)
34400008 171
fecbd8ff 172/* Index in pure at which next pure Lisp object will be allocated.. */
e5bc14d4 173
d311d28c 174static ptrdiff_t pure_bytes_used_lisp;
e5bc14d4
YM
175
176/* Number of bytes allocated for non-Lisp objects in pure storage. */
177
d311d28c 178static ptrdiff_t pure_bytes_used_non_lisp;
e5bc14d4 179
2e471eb5
GM
180/* If nonzero, this is a warning delivered by malloc and not yet
181 displayed. */
182
a8fe7202 183const char *pending_malloc_warning;
7146af97
JB
184
185/* Maximum amount of C stack to save when a GC happens. */
186
187#ifndef MAX_SAVE_STACK
188#define MAX_SAVE_STACK 16000
189#endif
190
191/* Buffer in which we save a copy of the C stack at each GC. */
192
dd3f25f7 193#if MAX_SAVE_STACK > 0
d3d47262 194static char *stack_copy;
903fe15d 195static ptrdiff_t stack_copy_size;
dd3f25f7 196#endif
7146af97 197
fecbd8ff
SM
198static Lisp_Object Qconses;
199static Lisp_Object Qsymbols;
200static Lisp_Object Qmiscs;
201static Lisp_Object Qstrings;
202static Lisp_Object Qvectors;
203static Lisp_Object Qfloats;
204static Lisp_Object Qintervals;
205static Lisp_Object Qbuffers;
f8643a6b 206static Lisp_Object Qstring_bytes, Qvector_slots, Qheap;
955cbe7b
PE
207static Lisp_Object Qgc_cons_threshold;
208Lisp_Object Qchar_table_extra_slots;
e8197642 209
9e713715
GM
210/* Hook run after GC has finished. */
211
955cbe7b 212static Lisp_Object Qpost_gc_hook;
2c5bd608 213
f57e2426 214static void mark_terminals (void);
f57e2426 215static void gc_sweep (void);
72cb32cf 216static Lisp_Object make_pure_vector (ptrdiff_t);
f57e2426
J
217static void mark_glyph_matrix (struct glyph_matrix *);
218static void mark_face_cache (struct face_cache *);
c752cfa9 219static void mark_buffer (struct buffer *);
41c28a37 220
69003fd8
PE
221#if !defined REL_ALLOC || defined SYSTEM_MALLOC
222static void refill_memory_reserve (void);
223#endif
f57e2426
J
224static struct Lisp_String *allocate_string (void);
225static void compact_small_strings (void);
226static void free_large_strings (void);
227static void sweep_strings (void);
244ed907 228static void free_misc (Lisp_Object);
196e41e4 229extern Lisp_Object which_symbols (Lisp_Object, EMACS_INT) EXTERNALLY_VISIBLE;
34400008 230
34400008
GM
231/* When scanning the C stack for live Lisp objects, Emacs keeps track
232 of what memory allocated via lisp_malloc is intended for what
233 purpose. This enumeration specifies the type of memory. */
234
235enum mem_type
236{
237 MEM_TYPE_NON_LISP,
238 MEM_TYPE_BUFFER,
239 MEM_TYPE_CONS,
240 MEM_TYPE_STRING,
241 MEM_TYPE_MISC,
242 MEM_TYPE_SYMBOL,
243 MEM_TYPE_FLOAT,
9c545a55
SM
244 /* We used to keep separate mem_types for subtypes of vectors such as
245 process, hash_table, frame, terminal, and window, but we never made
246 use of the distinction, so it only caused source-code complexity
247 and runtime slowdown. Minor but pointless. */
f3372c87
DA
248 MEM_TYPE_VECTORLIKE,
249 /* Special type to denote vector blocks. */
35aaa1ea
DA
250 MEM_TYPE_VECTOR_BLOCK,
251 /* Special type to denote reserved memory. */
252 MEM_TYPE_SPARE
34400008
GM
253};
254
261cb4bb 255static void *lisp_malloc (size_t, enum mem_type);
225ccad6 256
24d8a105 257
877935b1 258#if GC_MARK_STACK || defined GC_MALLOC_CHECK
0b378936
GM
259
260#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
261#include <stdio.h> /* For fprintf. */
262#endif
263
264/* A unique object in pure space used to make some Lisp objects
265 on free lists recognizable in O(1). */
266
d3d47262 267static Lisp_Object Vdead;
ca78dc43 268#define DEADP(x) EQ (x, Vdead)
0b378936 269
877935b1
GM
270#ifdef GC_MALLOC_CHECK
271
272enum mem_type allocated_mem_type;
877935b1
GM
273
274#endif /* GC_MALLOC_CHECK */
275
276/* A node in the red-black tree describing allocated memory containing
277 Lisp data. Each such block is recorded with its start and end
278 address when it is allocated, and removed from the tree when it
279 is freed.
280
281 A red-black tree is a balanced binary tree with the following
282 properties:
283
284 1. Every node is either red or black.
285 2. Every leaf is black.
286 3. If a node is red, then both of its children are black.
287 4. Every simple path from a node to a descendant leaf contains
288 the same number of black nodes.
289 5. The root is always black.
290
291 When nodes are inserted into the tree, or deleted from the tree,
292 the tree is "fixed" so that these properties are always true.
293
294 A red-black tree with N internal nodes has height at most 2
295 log(N+1). Searches, insertions and deletions are done in O(log N).
296 Please see a text book about data structures for a detailed
297 description of red-black trees. Any book worth its salt should
298 describe them. */
299
300struct mem_node
301{
9f7d9210
RS
302 /* Children of this node. These pointers are never NULL. When there
303 is no child, the value is MEM_NIL, which points to a dummy node. */
304 struct mem_node *left, *right;
305
306 /* The parent of this node. In the root node, this is NULL. */
307 struct mem_node *parent;
877935b1
GM
308
309 /* Start and end of allocated region. */
310 void *start, *end;
311
312 /* Node color. */
313 enum {MEM_BLACK, MEM_RED} color;
177c0ea7 314
877935b1
GM
315 /* Memory type. */
316 enum mem_type type;
317};
318
319/* Base address of stack. Set in main. */
320
321Lisp_Object *stack_base;
322
323/* Root of the tree describing allocated Lisp memory. */
324
325static struct mem_node *mem_root;
326
ece93c02
GM
327/* Lowest and highest known address in the heap. */
328
329static void *min_heap_address, *max_heap_address;
330
877935b1
GM
331/* Sentinel node of the tree. */
332
333static struct mem_node mem_z;
334#define MEM_NIL &mem_z
335
d311d28c 336static struct Lisp_Vector *allocate_vectorlike (ptrdiff_t);
261cb4bb 337static void lisp_free (void *);
f57e2426 338static void mark_stack (void);
fce31d69
PE
339static bool live_vector_p (struct mem_node *, void *);
340static bool live_buffer_p (struct mem_node *, void *);
341static bool live_string_p (struct mem_node *, void *);
342static bool live_cons_p (struct mem_node *, void *);
343static bool live_symbol_p (struct mem_node *, void *);
344static bool live_float_p (struct mem_node *, void *);
345static bool live_misc_p (struct mem_node *, void *);
f57e2426 346static void mark_maybe_object (Lisp_Object);
3164aeac 347static void mark_memory (void *, void *);
52828e02 348#if GC_MARK_STACK || defined GC_MALLOC_CHECK
f57e2426
J
349static void mem_init (void);
350static struct mem_node *mem_insert (void *, void *, enum mem_type);
351static void mem_insert_fixup (struct mem_node *);
352static void mem_rotate_left (struct mem_node *);
353static void mem_rotate_right (struct mem_node *);
354static void mem_delete (struct mem_node *);
355static void mem_delete_fixup (struct mem_node *);
55d4c1b2 356static inline struct mem_node *mem_find (void *);
0caaedb1 357#endif
34400008 358
34400008
GM
359
360#if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
f57e2426 361static void check_gcpros (void);
34400008
GM
362#endif
363
877935b1 364#endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
34400008 365
ca78dc43
PE
366#ifndef DEADP
367# define DEADP(x) 0
368#endif
369
1f0b3fd2
GM
370/* Recording what needs to be marked for gc. */
371
372struct gcpro *gcprolist;
373
379b98b1
PE
374/* Addresses of staticpro'd variables. Initialize it to a nonzero
375 value; otherwise some compilers put it into BSS. */
1f0b3fd2 376
d251c37c 377#define NSTATICS 0x650
d3d47262 378static Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
1f0b3fd2
GM
379
380/* Index of next unused slot in staticvec. */
381
fff62aa9 382static int staticidx;
1f0b3fd2 383
261cb4bb 384static void *pure_alloc (size_t, int);
1f0b3fd2
GM
385
386
387/* Value is SZ rounded up to the next multiple of ALIGNMENT.
388 ALIGNMENT must be a power of 2. */
389
ab6780cd 390#define ALIGN(ptr, ALIGNMENT) \
261cb4bb
PE
391 ((void *) (((uintptr_t) (ptr) + (ALIGNMENT) - 1) \
392 & ~ ((ALIGNMENT) - 1)))
1f0b3fd2 393
ece93c02 394
7146af97 395\f
34400008
GM
396/************************************************************************
397 Malloc
398 ************************************************************************/
399
4455ad75 400/* Function malloc calls this if it finds we are near exhausting storage. */
d457598b
AS
401
402void
a8fe7202 403malloc_warning (const char *str)
7146af97
JB
404{
405 pending_malloc_warning = str;
406}
407
34400008 408
4455ad75 409/* Display an already-pending malloc warning. */
34400008 410
d457598b 411void
971de7fb 412display_malloc_warning (void)
7146af97 413{
4455ad75
RS
414 call3 (intern ("display-warning"),
415 intern ("alloc"),
416 build_string (pending_malloc_warning),
417 intern ("emergency"));
7146af97 418 pending_malloc_warning = 0;
7146af97 419}
49efed3a 420\f
276cbe5a
RS
421/* Called if we can't allocate relocatable space for a buffer. */
422
423void
d311d28c 424buffer_memory_full (ptrdiff_t nbytes)
276cbe5a 425{
2e471eb5
GM
426 /* If buffers use the relocating allocator, no need to free
427 spare_memory, because we may have plenty of malloc space left
428 that we could get, and if we don't, the malloc that fails will
429 itself cause spare_memory to be freed. If buffers don't use the
430 relocating allocator, treat this like any other failing
431 malloc. */
276cbe5a
RS
432
433#ifndef REL_ALLOC
531b0165 434 memory_full (nbytes);
276cbe5a
RS
435#endif
436
2e471eb5
GM
437 /* This used to call error, but if we've run out of memory, we could
438 get infinite recursion trying to build the string. */
9b306d37 439 xsignal (Qnil, Vmemory_signal_data);
7146af97
JB
440}
441
f3372c87
DA
442/* A common multiple of the positive integers A and B. Ideally this
443 would be the least common multiple, but there's no way to do that
444 as a constant expression in C, so do the best that we can easily do. */
445#define COMMON_MULTIPLE(a, b) \
446 ((a) % (b) == 0 ? (a) : (b) % (a) == 0 ? (b) : (a) * (b))
34400008 447
c9d624c6 448#ifndef XMALLOC_OVERRUN_CHECK
903fe15d 449#define XMALLOC_OVERRUN_CHECK_OVERHEAD 0
c9d624c6 450#else
212f33f1 451
903fe15d
PE
452/* Check for overrun in malloc'ed buffers by wrapping a header and trailer
453 around each block.
bdbed949 454
f701dc2a
PE
455 The header consists of XMALLOC_OVERRUN_CHECK_SIZE fixed bytes
456 followed by XMALLOC_OVERRUN_SIZE_SIZE bytes containing the original
457 block size in little-endian order. The trailer consists of
458 XMALLOC_OVERRUN_CHECK_SIZE fixed bytes.
bdbed949
KS
459
460 The header is used to detect whether this block has been allocated
f701dc2a
PE
461 through these functions, as some low-level libc functions may
462 bypass the malloc hooks. */
bdbed949 463
212f33f1 464#define XMALLOC_OVERRUN_CHECK_SIZE 16
903fe15d 465#define XMALLOC_OVERRUN_CHECK_OVERHEAD \
38532ce6
PE
466 (2 * XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE)
467
468/* Define XMALLOC_OVERRUN_SIZE_SIZE so that (1) it's large enough to
f701dc2a
PE
469 hold a size_t value and (2) the header size is a multiple of the
470 alignment that Emacs needs for C types and for USE_LSB_TAG. */
471#define XMALLOC_BASE_ALIGNMENT \
e32a5799 472 alignof (union { long double d; intmax_t i; void *p; })
f3372c87 473
bfe3e0a2 474#if USE_LSB_TAG
f701dc2a 475# define XMALLOC_HEADER_ALIGNMENT \
2b90362b 476 COMMON_MULTIPLE (GCALIGNMENT, XMALLOC_BASE_ALIGNMENT)
38532ce6
PE
477#else
478# define XMALLOC_HEADER_ALIGNMENT XMALLOC_BASE_ALIGNMENT
479#endif
480#define XMALLOC_OVERRUN_SIZE_SIZE \
f701dc2a
PE
481 (((XMALLOC_OVERRUN_CHECK_SIZE + sizeof (size_t) \
482 + XMALLOC_HEADER_ALIGNMENT - 1) \
483 / XMALLOC_HEADER_ALIGNMENT * XMALLOC_HEADER_ALIGNMENT) \
484 - XMALLOC_OVERRUN_CHECK_SIZE)
bdbed949 485
903fe15d
PE
486static char const xmalloc_overrun_check_header[XMALLOC_OVERRUN_CHECK_SIZE] =
487 { '\x9a', '\x9b', '\xae', '\xaf',
488 '\xbf', '\xbe', '\xce', '\xcf',
489 '\xea', '\xeb', '\xec', '\xed',
490 '\xdf', '\xde', '\x9c', '\x9d' };
212f33f1 491
903fe15d
PE
492static char const xmalloc_overrun_check_trailer[XMALLOC_OVERRUN_CHECK_SIZE] =
493 { '\xaa', '\xab', '\xac', '\xad',
494 '\xba', '\xbb', '\xbc', '\xbd',
495 '\xca', '\xcb', '\xcc', '\xcd',
496 '\xda', '\xdb', '\xdc', '\xdd' };
212f33f1 497
903fe15d 498/* Insert and extract the block size in the header. */
bdbed949 499
903fe15d
PE
500static void
501xmalloc_put_size (unsigned char *ptr, size_t size)
502{
503 int i;
38532ce6 504 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
903fe15d 505 {
38532ce6 506 *--ptr = size & ((1 << CHAR_BIT) - 1);
903fe15d
PE
507 size >>= CHAR_BIT;
508 }
509}
bdbed949 510
903fe15d
PE
511static size_t
512xmalloc_get_size (unsigned char *ptr)
513{
514 size_t size = 0;
515 int i;
38532ce6
PE
516 ptr -= XMALLOC_OVERRUN_SIZE_SIZE;
517 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
903fe15d
PE
518 {
519 size <<= CHAR_BIT;
520 size += *ptr++;
521 }
522 return size;
523}
bdbed949
KS
524
525
526/* Like malloc, but wraps allocated block with header and trailer. */
527
261cb4bb 528static void *
e7974947 529overrun_check_malloc (size_t size)
212f33f1 530{
bdbed949 531 register unsigned char *val;
0caaedb1 532 if (SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD < size)
1088b922 533 emacs_abort ();
212f33f1 534
0caaedb1
PE
535 val = malloc (size + XMALLOC_OVERRUN_CHECK_OVERHEAD);
536 if (val)
212f33f1 537 {
903fe15d 538 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
38532ce6 539 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
903fe15d 540 xmalloc_put_size (val, size);
72af86bd
AS
541 memcpy (val + size, xmalloc_overrun_check_trailer,
542 XMALLOC_OVERRUN_CHECK_SIZE);
212f33f1 543 }
261cb4bb 544 return val;
212f33f1
KS
545}
546
bdbed949
KS
547
548/* Like realloc, but checks old block for overrun, and wraps new block
549 with header and trailer. */
550
261cb4bb
PE
551static void *
552overrun_check_realloc (void *block, size_t size)
212f33f1 553{
e7974947 554 register unsigned char *val = (unsigned char *) block;
0caaedb1 555 if (SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD < size)
1088b922 556 emacs_abort ();
212f33f1
KS
557
558 if (val
72af86bd 559 && memcmp (xmalloc_overrun_check_header,
38532ce6 560 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
903fe15d 561 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
212f33f1 562 {
903fe15d 563 size_t osize = xmalloc_get_size (val);
72af86bd
AS
564 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
565 XMALLOC_OVERRUN_CHECK_SIZE))
1088b922 566 emacs_abort ();
72af86bd 567 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
38532ce6
PE
568 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
569 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
212f33f1
KS
570 }
571
0caaedb1 572 val = realloc (val, size + XMALLOC_OVERRUN_CHECK_OVERHEAD);
212f33f1 573
0caaedb1 574 if (val)
212f33f1 575 {
903fe15d 576 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
38532ce6 577 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
903fe15d 578 xmalloc_put_size (val, size);
72af86bd
AS
579 memcpy (val + size, xmalloc_overrun_check_trailer,
580 XMALLOC_OVERRUN_CHECK_SIZE);
212f33f1 581 }
261cb4bb 582 return val;
212f33f1
KS
583}
584
bdbed949
KS
585/* Like free, but checks block for overrun. */
586
2538aa2f 587static void
261cb4bb 588overrun_check_free (void *block)
212f33f1 589{
e7974947 590 unsigned char *val = (unsigned char *) block;
212f33f1
KS
591
592 if (val
72af86bd 593 && memcmp (xmalloc_overrun_check_header,
38532ce6 594 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
903fe15d 595 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
212f33f1 596 {
903fe15d 597 size_t osize = xmalloc_get_size (val);
72af86bd
AS
598 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
599 XMALLOC_OVERRUN_CHECK_SIZE))
1088b922 600 emacs_abort ();
454d7973 601#ifdef XMALLOC_CLEAR_FREE_MEMORY
38532ce6 602 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
903fe15d 603 memset (val, 0xff, osize + XMALLOC_OVERRUN_CHECK_OVERHEAD);
454d7973 604#else
72af86bd 605 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
38532ce6
PE
606 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
607 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
454d7973 608#endif
212f33f1
KS
609 }
610
611 free (val);
612}
613
614#undef malloc
615#undef realloc
616#undef free
617#define malloc overrun_check_malloc
618#define realloc overrun_check_realloc
619#define free overrun_check_free
620#endif
621
0caaedb1
PE
622/* If compiled with XMALLOC_BLOCK_INPUT_CHECK, define a symbol
623 BLOCK_INPUT_IN_MEMORY_ALLOCATORS that is visible to the debugger.
624 If that variable is set, block input while in one of Emacs's memory
625 allocation functions. There should be no need for this debugging
626 option, since signal handlers do not allocate memory, but Emacs
627 formerly allocated memory in signal handlers and this compile-time
628 option remains as a way to help debug the issue should it rear its
629 ugly head again. */
630#ifdef XMALLOC_BLOCK_INPUT_CHECK
631bool block_input_in_memory_allocators EXTERNALLY_VISIBLE;
632static void
633malloc_block_input (void)
634{
635 if (block_input_in_memory_allocators)
4d7e6e51 636 block_input ();
0caaedb1
PE
637}
638static void
639malloc_unblock_input (void)
640{
641 if (block_input_in_memory_allocators)
4d7e6e51 642 unblock_input ();
0caaedb1
PE
643}
644# define MALLOC_BLOCK_INPUT malloc_block_input ()
645# define MALLOC_UNBLOCK_INPUT malloc_unblock_input ()
dafc79fa 646#else
0caaedb1
PE
647# define MALLOC_BLOCK_INPUT ((void) 0)
648# define MALLOC_UNBLOCK_INPUT ((void) 0)
dafc79fa 649#endif
bdbed949 650
34400008 651/* Like malloc but check for no memory and block interrupt input.. */
7146af97 652
261cb4bb 653void *
971de7fb 654xmalloc (size_t size)
7146af97 655{
261cb4bb 656 void *val;
7146af97 657
dafc79fa 658 MALLOC_BLOCK_INPUT;
261cb4bb 659 val = malloc (size);
dafc79fa 660 MALLOC_UNBLOCK_INPUT;
7146af97 661
2e471eb5 662 if (!val && size)
531b0165 663 memory_full (size);
7146af97
JB
664 return val;
665}
666
23f86fce
DA
667/* Like the above, but zeroes out the memory just allocated. */
668
669void *
670xzalloc (size_t size)
671{
672 void *val;
673
674 MALLOC_BLOCK_INPUT;
675 val = malloc (size);
676 MALLOC_UNBLOCK_INPUT;
677
678 if (!val && size)
679 memory_full (size);
680 memset (val, 0, size);
681 return val;
682}
34400008
GM
683
684/* Like realloc but check for no memory and block interrupt input.. */
685
261cb4bb
PE
686void *
687xrealloc (void *block, size_t size)
7146af97 688{
261cb4bb 689 void *val;
7146af97 690
dafc79fa 691 MALLOC_BLOCK_INPUT;
56d2031b
JB
692 /* We must call malloc explicitly when BLOCK is 0, since some
693 reallocs don't do this. */
694 if (! block)
261cb4bb 695 val = malloc (size);
f048679d 696 else
261cb4bb 697 val = realloc (block, size);
dafc79fa 698 MALLOC_UNBLOCK_INPUT;
7146af97 699
531b0165
PE
700 if (!val && size)
701 memory_full (size);
7146af97
JB
702 return val;
703}
9ac0d9e0 704
34400008 705
005ca5c7 706/* Like free but block interrupt input. */
34400008 707
9ac0d9e0 708void
261cb4bb 709xfree (void *block)
9ac0d9e0 710{
70fdbb46
JM
711 if (!block)
712 return;
dafc79fa 713 MALLOC_BLOCK_INPUT;
9ac0d9e0 714 free (block);
dafc79fa 715 MALLOC_UNBLOCK_INPUT;
24d8a105 716 /* We don't call refill_memory_reserve here
0caaedb1 717 because in practice the call in r_alloc_free seems to suffice. */
9ac0d9e0
JB
718}
719
c8099634 720
0065d054
PE
721/* Other parts of Emacs pass large int values to allocator functions
722 expecting ptrdiff_t. This is portable in practice, but check it to
723 be safe. */
724verify (INT_MAX <= PTRDIFF_MAX);
725
726
727/* Allocate an array of NITEMS items, each of size ITEM_SIZE.
728 Signal an error on memory exhaustion, and block interrupt input. */
729
730void *
731xnmalloc (ptrdiff_t nitems, ptrdiff_t item_size)
732{
a54e2c05 733 eassert (0 <= nitems && 0 < item_size);
0065d054
PE
734 if (min (PTRDIFF_MAX, SIZE_MAX) / item_size < nitems)
735 memory_full (SIZE_MAX);
736 return xmalloc (nitems * item_size);
737}
738
739
740/* Reallocate an array PA to make it of NITEMS items, each of size ITEM_SIZE.
741 Signal an error on memory exhaustion, and block interrupt input. */
742
743void *
744xnrealloc (void *pa, ptrdiff_t nitems, ptrdiff_t item_size)
745{
a54e2c05 746 eassert (0 <= nitems && 0 < item_size);
0065d054
PE
747 if (min (PTRDIFF_MAX, SIZE_MAX) / item_size < nitems)
748 memory_full (SIZE_MAX);
749 return xrealloc (pa, nitems * item_size);
750}
751
752
753/* Grow PA, which points to an array of *NITEMS items, and return the
754 location of the reallocated array, updating *NITEMS to reflect its
755 new size. The new array will contain at least NITEMS_INCR_MIN more
756 items, but will not contain more than NITEMS_MAX items total.
757 ITEM_SIZE is the size of each item, in bytes.
758
759 ITEM_SIZE and NITEMS_INCR_MIN must be positive. *NITEMS must be
760 nonnegative. If NITEMS_MAX is -1, it is treated as if it were
761 infinity.
762
763 If PA is null, then allocate a new array instead of reallocating
764 the old one. Thus, to grow an array A without saving its old
765 contents, invoke xfree (A) immediately followed by xgrowalloc (0,
766 &NITEMS, ...).
767
768 Block interrupt input as needed. If memory exhaustion occurs, set
769 *NITEMS to zero if PA is null, and signal an error (i.e., do not
770 return). */
771
772void *
773xpalloc (void *pa, ptrdiff_t *nitems, ptrdiff_t nitems_incr_min,
774 ptrdiff_t nitems_max, ptrdiff_t item_size)
775{
776 /* The approximate size to use for initial small allocation
777 requests. This is the largest "small" request for the GNU C
778 library malloc. */
779 enum { DEFAULT_MXFAST = 64 * sizeof (size_t) / 4 };
780
781 /* If the array is tiny, grow it to about (but no greater than)
782 DEFAULT_MXFAST bytes. Otherwise, grow it by about 50%. */
783 ptrdiff_t n = *nitems;
784 ptrdiff_t tiny_max = DEFAULT_MXFAST / item_size - n;
785 ptrdiff_t half_again = n >> 1;
786 ptrdiff_t incr_estimate = max (tiny_max, half_again);
787
788 /* Adjust the increment according to three constraints: NITEMS_INCR_MIN,
789 NITEMS_MAX, and what the C language can represent safely. */
790 ptrdiff_t C_language_max = min (PTRDIFF_MAX, SIZE_MAX) / item_size;
791 ptrdiff_t n_max = (0 <= nitems_max && nitems_max < C_language_max
792 ? nitems_max : C_language_max);
793 ptrdiff_t nitems_incr_max = n_max - n;
794 ptrdiff_t incr = max (nitems_incr_min, min (incr_estimate, nitems_incr_max));
795
a54e2c05 796 eassert (0 < item_size && 0 < nitems_incr_min && 0 <= n && -1 <= nitems_max);
0065d054
PE
797 if (! pa)
798 *nitems = 0;
799 if (nitems_incr_max < incr)
800 memory_full (SIZE_MAX);
801 n += incr;
802 pa = xrealloc (pa, n * item_size);
803 *nitems = n;
804 return pa;
805}
806
807
dca7c6a8
GM
808/* Like strdup, but uses xmalloc. */
809
810char *
971de7fb 811xstrdup (const char *s)
dca7c6a8 812{
675d5130 813 size_t len = strlen (s) + 1;
23f86fce 814 char *p = xmalloc (len);
72af86bd 815 memcpy (p, s, len);
dca7c6a8
GM
816 return p;
817}
818
819
f61bef8b
KS
820/* Unwind for SAFE_ALLOCA */
821
822Lisp_Object
971de7fb 823safe_alloca_unwind (Lisp_Object arg)
f61bef8b 824{
b766f870
KS
825 register struct Lisp_Save_Value *p = XSAVE_VALUE (arg);
826
827 p->dogc = 0;
828 xfree (p->pointer);
829 p->pointer = 0;
7b7990cc 830 free_misc (arg);
f61bef8b
KS
831 return Qnil;
832}
833
98c6f1e3
PE
834/* Return a newly allocated memory block of SIZE bytes, remembering
835 to free it when unwinding. */
836void *
837record_xmalloc (size_t size)
838{
839 void *p = xmalloc (size);
840 record_unwind_protect (safe_alloca_unwind, make_save_value (p, 0));
841 return p;
842}
843
f61bef8b 844
34400008
GM
845/* Like malloc but used for allocating Lisp data. NBYTES is the
846 number of bytes to allocate, TYPE describes the intended use of the
91af3942 847 allocated memory block (for strings, for conses, ...). */
34400008 848
bfe3e0a2
PE
849#if ! USE_LSB_TAG
850void *lisp_malloc_loser EXTERNALLY_VISIBLE;
212f33f1 851#endif
918a23a7 852
261cb4bb 853static void *
971de7fb 854lisp_malloc (size_t nbytes, enum mem_type type)
c8099634 855{
34400008 856 register void *val;
c8099634 857
dafc79fa 858 MALLOC_BLOCK_INPUT;
877935b1
GM
859
860#ifdef GC_MALLOC_CHECK
861 allocated_mem_type = type;
862#endif
177c0ea7 863
38182d90 864 val = malloc (nbytes);
c8099634 865
bfe3e0a2 866#if ! USE_LSB_TAG
918a23a7
RS
867 /* If the memory just allocated cannot be addressed thru a Lisp
868 object's pointer, and it needs to be,
869 that's equivalent to running out of memory. */
870 if (val && type != MEM_TYPE_NON_LISP)
871 {
872 Lisp_Object tem;
873 XSETCONS (tem, (char *) val + nbytes - 1);
874 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
875 {
876 lisp_malloc_loser = val;
877 free (val);
878 val = 0;
879 }
880 }
6b61353c 881#endif
918a23a7 882
877935b1 883#if GC_MARK_STACK && !defined GC_MALLOC_CHECK
dca7c6a8 884 if (val && type != MEM_TYPE_NON_LISP)
34400008
GM
885 mem_insert (val, (char *) val + nbytes, type);
886#endif
177c0ea7 887
dafc79fa 888 MALLOC_UNBLOCK_INPUT;
dca7c6a8 889 if (!val && nbytes)
531b0165 890 memory_full (nbytes);
c8099634
RS
891 return val;
892}
893
34400008
GM
894/* Free BLOCK. This must be called to free memory allocated with a
895 call to lisp_malloc. */
896
bf952fb6 897static void
261cb4bb 898lisp_free (void *block)
c8099634 899{
dafc79fa 900 MALLOC_BLOCK_INPUT;
c8099634 901 free (block);
877935b1 902#if GC_MARK_STACK && !defined GC_MALLOC_CHECK
34400008
GM
903 mem_delete (mem_find (block));
904#endif
dafc79fa 905 MALLOC_UNBLOCK_INPUT;
c8099634 906}
34400008 907
453b951e
SM
908/***** Allocation of aligned blocks of memory to store Lisp data. *****/
909
910/* The entry point is lisp_align_malloc which returns blocks of at most
911 BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
ab6780cd 912
b4181b01
KS
913#if defined (HAVE_POSIX_MEMALIGN) && defined (SYSTEM_MALLOC)
914#define USE_POSIX_MEMALIGN 1
915#endif
ab6780cd
SM
916
917/* BLOCK_ALIGN has to be a power of 2. */
918#define BLOCK_ALIGN (1 << 10)
ab6780cd
SM
919
920/* Padding to leave at the end of a malloc'd block. This is to give
921 malloc a chance to minimize the amount of memory wasted to alignment.
922 It should be tuned to the particular malloc library used.
19bcad1f
SM
923 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
924 posix_memalign on the other hand would ideally prefer a value of 4
925 because otherwise, there's 1020 bytes wasted between each ablocks.
f501ccb4
SM
926 In Emacs, testing shows that those 1020 can most of the time be
927 efficiently used by malloc to place other objects, so a value of 0 can
928 still preferable unless you have a lot of aligned blocks and virtually
929 nothing else. */
19bcad1f
SM
930#define BLOCK_PADDING 0
931#define BLOCK_BYTES \
0b432f21 932 (BLOCK_ALIGN - sizeof (struct ablocks *) - BLOCK_PADDING)
19bcad1f
SM
933
934/* Internal data structures and constants. */
935
ab6780cd
SM
936#define ABLOCKS_SIZE 16
937
938/* An aligned block of memory. */
939struct ablock
940{
941 union
942 {
943 char payload[BLOCK_BYTES];
944 struct ablock *next_free;
945 } x;
946 /* `abase' is the aligned base of the ablocks. */
947 /* It is overloaded to hold the virtual `busy' field that counts
948 the number of used ablock in the parent ablocks.
949 The first ablock has the `busy' field, the others have the `abase'
950 field. To tell the difference, we assume that pointers will have
951 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
952 is used to tell whether the real base of the parent ablocks is `abase'
953 (if not, the word before the first ablock holds a pointer to the
954 real base). */
955 struct ablocks *abase;
956 /* The padding of all but the last ablock is unused. The padding of
957 the last ablock in an ablocks is not allocated. */
19bcad1f
SM
958#if BLOCK_PADDING
959 char padding[BLOCK_PADDING];
ebb8d410 960#endif
ab6780cd
SM
961};
962
963/* A bunch of consecutive aligned blocks. */
964struct ablocks
965{
966 struct ablock blocks[ABLOCKS_SIZE];
967};
968
4b5afbb0 969/* Size of the block requested from malloc or posix_memalign. */
19bcad1f 970#define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
ab6780cd
SM
971
972#define ABLOCK_ABASE(block) \
d01a7826 973 (((uintptr_t) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
ab6780cd
SM
974 ? (struct ablocks *)(block) \
975 : (block)->abase)
976
977/* Virtual `busy' field. */
978#define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
979
980/* Pointer to the (not necessarily aligned) malloc block. */
349a4500 981#ifdef USE_POSIX_MEMALIGN
19bcad1f
SM
982#define ABLOCKS_BASE(abase) (abase)
983#else
ab6780cd 984#define ABLOCKS_BASE(abase) \
d01a7826 985 (1 & (intptr_t) ABLOCKS_BUSY (abase) ? abase : ((void**)abase)[-1])
19bcad1f 986#endif
ab6780cd
SM
987
988/* The list of free ablock. */
989static struct ablock *free_ablock;
990
991/* Allocate an aligned block of nbytes.
992 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
993 smaller or equal to BLOCK_BYTES. */
261cb4bb 994static void *
971de7fb 995lisp_align_malloc (size_t nbytes, enum mem_type type)
ab6780cd
SM
996{
997 void *base, *val;
998 struct ablocks *abase;
999
1000 eassert (nbytes <= BLOCK_BYTES);
1001
dafc79fa 1002 MALLOC_BLOCK_INPUT;
ab6780cd
SM
1003
1004#ifdef GC_MALLOC_CHECK
1005 allocated_mem_type = type;
1006#endif
1007
1008 if (!free_ablock)
1009 {
005ca5c7 1010 int i;
d01a7826 1011 intptr_t aligned; /* int gets warning casting to 64-bit pointer. */
ab6780cd
SM
1012
1013#ifdef DOUG_LEA_MALLOC
1014 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1015 because mapped region contents are not preserved in
1016 a dumped Emacs. */
1017 mallopt (M_MMAP_MAX, 0);
1018#endif
1019
349a4500 1020#ifdef USE_POSIX_MEMALIGN
19bcad1f
SM
1021 {
1022 int err = posix_memalign (&base, BLOCK_ALIGN, ABLOCKS_BYTES);
ab349c19
RS
1023 if (err)
1024 base = NULL;
1025 abase = base;
19bcad1f
SM
1026 }
1027#else
ab6780cd
SM
1028 base = malloc (ABLOCKS_BYTES);
1029 abase = ALIGN (base, BLOCK_ALIGN);
ab349c19
RS
1030#endif
1031
6b61353c
KH
1032 if (base == 0)
1033 {
dafc79fa 1034 MALLOC_UNBLOCK_INPUT;
531b0165 1035 memory_full (ABLOCKS_BYTES);
6b61353c 1036 }
ab6780cd
SM
1037
1038 aligned = (base == abase);
1039 if (!aligned)
1040 ((void**)abase)[-1] = base;
1041
1042#ifdef DOUG_LEA_MALLOC
1043 /* Back to a reasonable maximum of mmap'ed areas. */
1044 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1045#endif
1046
bfe3e0a2 1047#if ! USE_LSB_TAG
8f924df7
KH
1048 /* If the memory just allocated cannot be addressed thru a Lisp
1049 object's pointer, and it needs to be, that's equivalent to
1050 running out of memory. */
1051 if (type != MEM_TYPE_NON_LISP)
1052 {
1053 Lisp_Object tem;
1054 char *end = (char *) base + ABLOCKS_BYTES - 1;
1055 XSETCONS (tem, end);
1056 if ((char *) XCONS (tem) != end)
1057 {
1058 lisp_malloc_loser = base;
1059 free (base);
dafc79fa 1060 MALLOC_UNBLOCK_INPUT;
531b0165 1061 memory_full (SIZE_MAX);
8f924df7
KH
1062 }
1063 }
6b61353c 1064#endif
8f924df7 1065
ab6780cd 1066 /* Initialize the blocks and put them on the free list.
453b951e 1067 If `base' was not properly aligned, we can't use the last block. */
ab6780cd
SM
1068 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
1069 {
1070 abase->blocks[i].abase = abase;
1071 abase->blocks[i].x.next_free = free_ablock;
1072 free_ablock = &abase->blocks[i];
1073 }
8ac068ac 1074 ABLOCKS_BUSY (abase) = (struct ablocks *) aligned;
ab6780cd 1075
d01a7826 1076 eassert (0 == ((uintptr_t) abase) % BLOCK_ALIGN);
ab6780cd
SM
1077 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
1078 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
1079 eassert (ABLOCKS_BASE (abase) == base);
d01a7826 1080 eassert (aligned == (intptr_t) ABLOCKS_BUSY (abase));
ab6780cd
SM
1081 }
1082
1083 abase = ABLOCK_ABASE (free_ablock);
8ac068ac 1084 ABLOCKS_BUSY (abase) =
d01a7826 1085 (struct ablocks *) (2 + (intptr_t) ABLOCKS_BUSY (abase));
ab6780cd
SM
1086 val = free_ablock;
1087 free_ablock = free_ablock->x.next_free;
1088
ab6780cd 1089#if GC_MARK_STACK && !defined GC_MALLOC_CHECK
3687c2ef 1090 if (type != MEM_TYPE_NON_LISP)
ab6780cd
SM
1091 mem_insert (val, (char *) val + nbytes, type);
1092#endif
1093
dafc79fa 1094 MALLOC_UNBLOCK_INPUT;
ab6780cd 1095
d01a7826 1096 eassert (0 == ((uintptr_t) val) % BLOCK_ALIGN);
ab6780cd
SM
1097 return val;
1098}
1099
1100static void
261cb4bb 1101lisp_align_free (void *block)
ab6780cd
SM
1102{
1103 struct ablock *ablock = block;
1104 struct ablocks *abase = ABLOCK_ABASE (ablock);
1105
dafc79fa 1106 MALLOC_BLOCK_INPUT;
ab6780cd
SM
1107#if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1108 mem_delete (mem_find (block));
1109#endif
1110 /* Put on free list. */
1111 ablock->x.next_free = free_ablock;
1112 free_ablock = ablock;
1113 /* Update busy count. */
453b951e
SM
1114 ABLOCKS_BUSY (abase)
1115 = (struct ablocks *) (-2 + (intptr_t) ABLOCKS_BUSY (abase));
d2db1c32 1116
d01a7826 1117 if (2 > (intptr_t) ABLOCKS_BUSY (abase))
ab6780cd 1118 { /* All the blocks are free. */
d01a7826 1119 int i = 0, aligned = (intptr_t) ABLOCKS_BUSY (abase);
ab6780cd
SM
1120 struct ablock **tem = &free_ablock;
1121 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
1122
1123 while (*tem)
1124 {
1125 if (*tem >= (struct ablock *) abase && *tem < atop)
1126 {
1127 i++;
1128 *tem = (*tem)->x.next_free;
1129 }
1130 else
1131 tem = &(*tem)->x.next_free;
1132 }
1133 eassert ((aligned & 1) == aligned);
1134 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
349a4500 1135#ifdef USE_POSIX_MEMALIGN
d01a7826 1136 eassert ((uintptr_t) ABLOCKS_BASE (abase) % BLOCK_ALIGN == 0);
cfb2f32e 1137#endif
ab6780cd
SM
1138 free (ABLOCKS_BASE (abase));
1139 }
dafc79fa 1140 MALLOC_UNBLOCK_INPUT;
ab6780cd 1141}
3ef06d12 1142
9ac0d9e0 1143\f
2e471eb5
GM
1144/***********************************************************************
1145 Interval Allocation
1146 ***********************************************************************/
1a4f1e2c 1147
34400008
GM
1148/* Number of intervals allocated in an interval_block structure.
1149 The 1020 is 1024 minus malloc overhead. */
1150
d5e35230
JA
1151#define INTERVAL_BLOCK_SIZE \
1152 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1153
34400008
GM
1154/* Intervals are allocated in chunks in form of an interval_block
1155 structure. */
1156
d5e35230 1157struct interval_block
2e471eb5 1158{
6b61353c 1159 /* Place `intervals' first, to preserve alignment. */
2e471eb5 1160 struct interval intervals[INTERVAL_BLOCK_SIZE];
6b61353c 1161 struct interval_block *next;
2e471eb5 1162};
d5e35230 1163
34400008
GM
1164/* Current interval block. Its `next' pointer points to older
1165 blocks. */
1166
d3d47262 1167static struct interval_block *interval_block;
34400008
GM
1168
1169/* Index in interval_block above of the next unused interval
1170 structure. */
1171
fff62aa9 1172static int interval_block_index = INTERVAL_BLOCK_SIZE;
34400008
GM
1173
1174/* Number of free and live intervals. */
1175
c0c5c8ae 1176static EMACS_INT total_free_intervals, total_intervals;
d5e35230 1177
34400008
GM
1178/* List of free intervals. */
1179
244ed907 1180static INTERVAL interval_free_list;
d5e35230 1181
34400008 1182/* Return a new interval. */
d5e35230
JA
1183
1184INTERVAL
971de7fb 1185make_interval (void)
d5e35230
JA
1186{
1187 INTERVAL val;
1188
dafc79fa 1189 MALLOC_BLOCK_INPUT;
cfb2f32e 1190
d5e35230
JA
1191 if (interval_free_list)
1192 {
1193 val = interval_free_list;
439d5cb4 1194 interval_free_list = INTERVAL_PARENT (interval_free_list);
d5e35230
JA
1195 }
1196 else
1197 {
1198 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1199 {
38182d90
PE
1200 struct interval_block *newi
1201 = lisp_malloc (sizeof *newi, MEM_TYPE_NON_LISP);
d5e35230 1202
d5e35230
JA
1203 newi->next = interval_block;
1204 interval_block = newi;
1205 interval_block_index = 0;
3900d5de 1206 total_free_intervals += INTERVAL_BLOCK_SIZE;
d5e35230
JA
1207 }
1208 val = &interval_block->intervals[interval_block_index++];
1209 }
e2984df0 1210
dafc79fa 1211 MALLOC_UNBLOCK_INPUT;
e2984df0 1212
d5e35230 1213 consing_since_gc += sizeof (struct interval);
310ea200 1214 intervals_consed++;
3900d5de 1215 total_free_intervals--;
d5e35230 1216 RESET_INTERVAL (val);
2336fe58 1217 val->gcmarkbit = 0;
d5e35230
JA
1218 return val;
1219}
1220
34400008 1221
ee28be33 1222/* Mark Lisp objects in interval I. */
d5e35230
JA
1223
1224static void
971de7fb 1225mark_interval (register INTERVAL i, Lisp_Object dummy)
d5e35230 1226{
cce7fefc
DA
1227 /* Intervals should never be shared. So, if extra internal checking is
1228 enabled, GC aborts if it seems to have visited an interval twice. */
1229 eassert (!i->gcmarkbit);
2336fe58 1230 i->gcmarkbit = 1;
49723c04 1231 mark_object (i->plist);
d5e35230
JA
1232}
1233
34400008
GM
1234/* Mark the interval tree rooted in I. */
1235
8707c1e5
DA
1236#define MARK_INTERVAL_TREE(i) \
1237 do { \
1238 if (i && !i->gcmarkbit) \
1239 traverse_intervals_noorder (i, mark_interval, Qnil); \
2e471eb5 1240 } while (0)
77c7bcb1 1241
2e471eb5
GM
1242/***********************************************************************
1243 String Allocation
1244 ***********************************************************************/
1a4f1e2c 1245
2e471eb5
GM
1246/* Lisp_Strings are allocated in string_block structures. When a new
1247 string_block is allocated, all the Lisp_Strings it contains are
e0fead5d 1248 added to a free-list string_free_list. When a new Lisp_String is
2e471eb5
GM
1249 needed, it is taken from that list. During the sweep phase of GC,
1250 string_blocks that are entirely free are freed, except two which
1251 we keep.
7146af97 1252
2e471eb5
GM
1253 String data is allocated from sblock structures. Strings larger
1254 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1255 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
7146af97 1256
2e471eb5
GM
1257 Sblocks consist internally of sdata structures, one for each
1258 Lisp_String. The sdata structure points to the Lisp_String it
1259 belongs to. The Lisp_String points back to the `u.data' member of
1260 its sdata structure.
7146af97 1261
2e471eb5
GM
1262 When a Lisp_String is freed during GC, it is put back on
1263 string_free_list, and its `data' member and its sdata's `string'
1264 pointer is set to null. The size of the string is recorded in the
1265 `u.nbytes' member of the sdata. So, sdata structures that are no
1266 longer used, can be easily recognized, and it's easy to compact the
1267 sblocks of small strings which we do in compact_small_strings. */
7146af97 1268
2e471eb5
GM
1269/* Size in bytes of an sblock structure used for small strings. This
1270 is 8192 minus malloc overhead. */
7146af97 1271
2e471eb5 1272#define SBLOCK_SIZE 8188
c8099634 1273
2e471eb5
GM
1274/* Strings larger than this are considered large strings. String data
1275 for large strings is allocated from individual sblocks. */
7146af97 1276
2e471eb5
GM
1277#define LARGE_STRING_BYTES 1024
1278
1279/* Structure describing string memory sub-allocated from an sblock.
1280 This is where the contents of Lisp strings are stored. */
1281
1282struct sdata
7146af97 1283{
2e471eb5
GM
1284 /* Back-pointer to the string this sdata belongs to. If null, this
1285 structure is free, and the NBYTES member of the union below
34400008 1286 contains the string's byte size (the same value that STRING_BYTES
2e471eb5
GM
1287 would return if STRING were non-null). If non-null, STRING_BYTES
1288 (STRING) is the size of the data, and DATA contains the string's
1289 contents. */
1290 struct Lisp_String *string;
7146af97 1291
31d929e5 1292#ifdef GC_CHECK_STRING_BYTES
177c0ea7 1293
d311d28c 1294 ptrdiff_t nbytes;
31d929e5 1295 unsigned char data[1];
177c0ea7 1296
31d929e5
GM
1297#define SDATA_NBYTES(S) (S)->nbytes
1298#define SDATA_DATA(S) (S)->data
36372bf9 1299#define SDATA_SELECTOR(member) member
177c0ea7 1300
31d929e5
GM
1301#else /* not GC_CHECK_STRING_BYTES */
1302
2e471eb5
GM
1303 union
1304 {
83998b7a 1305 /* When STRING is non-null. */
2e471eb5
GM
1306 unsigned char data[1];
1307
1308 /* When STRING is null. */
d311d28c 1309 ptrdiff_t nbytes;
2e471eb5 1310 } u;
177c0ea7 1311
31d929e5
GM
1312#define SDATA_NBYTES(S) (S)->u.nbytes
1313#define SDATA_DATA(S) (S)->u.data
36372bf9 1314#define SDATA_SELECTOR(member) u.member
31d929e5
GM
1315
1316#endif /* not GC_CHECK_STRING_BYTES */
36372bf9
PE
1317
1318#define SDATA_DATA_OFFSET offsetof (struct sdata, SDATA_SELECTOR (data))
2e471eb5
GM
1319};
1320
31d929e5 1321
2e471eb5
GM
1322/* Structure describing a block of memory which is sub-allocated to
1323 obtain string data memory for strings. Blocks for small strings
1324 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1325 as large as needed. */
1326
1327struct sblock
7146af97 1328{
2e471eb5
GM
1329 /* Next in list. */
1330 struct sblock *next;
7146af97 1331
2e471eb5
GM
1332 /* Pointer to the next free sdata block. This points past the end
1333 of the sblock if there isn't any space left in this block. */
1334 struct sdata *next_free;
1335
1336 /* Start of data. */
1337 struct sdata first_data;
1338};
1339
1340/* Number of Lisp strings in a string_block structure. The 1020 is
1341 1024 minus malloc overhead. */
1342
19bcad1f 1343#define STRING_BLOCK_SIZE \
2e471eb5
GM
1344 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1345
1346/* Structure describing a block from which Lisp_String structures
1347 are allocated. */
1348
1349struct string_block
7146af97 1350{
6b61353c 1351 /* Place `strings' first, to preserve alignment. */
19bcad1f 1352 struct Lisp_String strings[STRING_BLOCK_SIZE];
6b61353c 1353 struct string_block *next;
2e471eb5 1354};
7146af97 1355
2e471eb5
GM
1356/* Head and tail of the list of sblock structures holding Lisp string
1357 data. We always allocate from current_sblock. The NEXT pointers
1358 in the sblock structures go from oldest_sblock to current_sblock. */
3c06d205 1359
2e471eb5 1360static struct sblock *oldest_sblock, *current_sblock;
7146af97 1361
2e471eb5 1362/* List of sblocks for large strings. */
7146af97 1363
2e471eb5 1364static struct sblock *large_sblocks;
7146af97 1365
5a25e253 1366/* List of string_block structures. */
7146af97 1367
2e471eb5 1368static struct string_block *string_blocks;
7146af97 1369
2e471eb5 1370/* Free-list of Lisp_Strings. */
7146af97 1371
2e471eb5 1372static struct Lisp_String *string_free_list;
7146af97 1373
2e471eb5 1374/* Number of live and free Lisp_Strings. */
c8099634 1375
c0c5c8ae 1376static EMACS_INT total_strings, total_free_strings;
7146af97 1377
2e471eb5
GM
1378/* Number of bytes used by live strings. */
1379
3ab6e069 1380static EMACS_INT total_string_bytes;
2e471eb5
GM
1381
1382/* Given a pointer to a Lisp_String S which is on the free-list
1383 string_free_list, return a pointer to its successor in the
1384 free-list. */
1385
1386#define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1387
1388/* Return a pointer to the sdata structure belonging to Lisp string S.
1389 S must be live, i.e. S->data must not be null. S->data is actually
1390 a pointer to the `u.data' member of its sdata structure; the
1391 structure starts at a constant offset in front of that. */
177c0ea7 1392
36372bf9 1393#define SDATA_OF_STRING(S) ((struct sdata *) ((S)->data - SDATA_DATA_OFFSET))
31d929e5 1394
212f33f1
KS
1395
1396#ifdef GC_CHECK_STRING_OVERRUN
bdbed949
KS
1397
1398/* We check for overrun in string data blocks by appending a small
1399 "cookie" after each allocated string data block, and check for the
8349069c 1400 presence of this cookie during GC. */
bdbed949
KS
1401
1402#define GC_STRING_OVERRUN_COOKIE_SIZE 4
bfd1c781
PE
1403static char const string_overrun_cookie[GC_STRING_OVERRUN_COOKIE_SIZE] =
1404 { '\xde', '\xad', '\xbe', '\xef' };
bdbed949 1405
212f33f1 1406#else
bdbed949 1407#define GC_STRING_OVERRUN_COOKIE_SIZE 0
212f33f1
KS
1408#endif
1409
2e471eb5
GM
1410/* Value is the size of an sdata structure large enough to hold NBYTES
1411 bytes of string data. The value returned includes a terminating
1412 NUL byte, the size of the sdata structure, and padding. */
1413
31d929e5
GM
1414#ifdef GC_CHECK_STRING_BYTES
1415
2e471eb5 1416#define SDATA_SIZE(NBYTES) \
36372bf9 1417 ((SDATA_DATA_OFFSET \
2e471eb5 1418 + (NBYTES) + 1 \
d311d28c
PE
1419 + sizeof (ptrdiff_t) - 1) \
1420 & ~(sizeof (ptrdiff_t) - 1))
2e471eb5 1421
31d929e5
GM
1422#else /* not GC_CHECK_STRING_BYTES */
1423
f2d3008d
PE
1424/* The 'max' reserves space for the nbytes union member even when NBYTES + 1 is
1425 less than the size of that member. The 'max' is not needed when
d311d28c 1426 SDATA_DATA_OFFSET is a multiple of sizeof (ptrdiff_t), because then the
f2d3008d
PE
1427 alignment code reserves enough space. */
1428
1429#define SDATA_SIZE(NBYTES) \
1430 ((SDATA_DATA_OFFSET \
d311d28c 1431 + (SDATA_DATA_OFFSET % sizeof (ptrdiff_t) == 0 \
f2d3008d 1432 ? NBYTES \
d311d28c 1433 : max (NBYTES, sizeof (ptrdiff_t) - 1)) \
f2d3008d 1434 + 1 \
d311d28c
PE
1435 + sizeof (ptrdiff_t) - 1) \
1436 & ~(sizeof (ptrdiff_t) - 1))
31d929e5
GM
1437
1438#endif /* not GC_CHECK_STRING_BYTES */
2e471eb5 1439
bdbed949
KS
1440/* Extra bytes to allocate for each string. */
1441
1442#define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1443
c9d624c6
PE
1444/* Exact bound on the number of bytes in a string, not counting the
1445 terminating null. A string cannot contain more bytes than
1446 STRING_BYTES_BOUND, nor can it be so long that the size_t
1447 arithmetic in allocate_string_data would overflow while it is
1448 calculating a value to be passed to malloc. */
03a660a6
PE
1449static ptrdiff_t const STRING_BYTES_MAX =
1450 min (STRING_BYTES_BOUND,
1451 ((SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD
1452 - GC_STRING_EXTRA
1453 - offsetof (struct sblock, first_data)
1454 - SDATA_DATA_OFFSET)
1455 & ~(sizeof (EMACS_INT) - 1)));
c9d624c6 1456
2e471eb5 1457/* Initialize string allocation. Called from init_alloc_once. */
d457598b 1458
d3d47262 1459static void
971de7fb 1460init_strings (void)
7146af97 1461{
4d774b0f
JB
1462 empty_unibyte_string = make_pure_string ("", 0, 0, 0);
1463 empty_multibyte_string = make_pure_string ("", 0, 0, 1);
7146af97
JB
1464}
1465
2e471eb5 1466
361b097f
GM
1467#ifdef GC_CHECK_STRING_BYTES
1468
361b097f
GM
1469static int check_string_bytes_count;
1470
e499d0ee
DA
1471/* Like STRING_BYTES, but with debugging check. Can be
1472 called during GC, so pay attention to the mark bit. */
676a7251 1473
d311d28c 1474ptrdiff_t
14162469 1475string_bytes (struct Lisp_String *s)
676a7251 1476{
d311d28c 1477 ptrdiff_t nbytes =
14162469
EZ
1478 (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1479
676a7251
GM
1480 if (!PURE_POINTER_P (s)
1481 && s->data
1482 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1088b922 1483 emacs_abort ();
676a7251
GM
1484 return nbytes;
1485}
177c0ea7 1486
2c5bd608 1487/* Check validity of Lisp strings' string_bytes member in B. */
676a7251 1488
d3d47262 1489static void
d0f4e1f5 1490check_sblock (struct sblock *b)
361b097f 1491{
676a7251 1492 struct sdata *from, *end, *from_end;
177c0ea7 1493
676a7251 1494 end = b->next_free;
177c0ea7 1495
676a7251 1496 for (from = &b->first_data; from < end; from = from_end)
361b097f 1497 {
676a7251
GM
1498 /* Compute the next FROM here because copying below may
1499 overwrite data we need to compute it. */
d311d28c 1500 ptrdiff_t nbytes;
177c0ea7 1501
676a7251 1502 /* Check that the string size recorded in the string is the
ee28be33 1503 same as the one recorded in the sdata structure. */
e499d0ee
DA
1504 nbytes = SDATA_SIZE (from->string ? string_bytes (from->string)
1505 : SDATA_NBYTES (from));
212f33f1 1506 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
676a7251
GM
1507 }
1508}
361b097f 1509
676a7251
GM
1510
1511/* Check validity of Lisp strings' string_bytes member. ALL_P
fce31d69 1512 means check all strings, otherwise check only most
676a7251
GM
1513 recently allocated strings. Used for hunting a bug. */
1514
d3d47262 1515static void
fce31d69 1516check_string_bytes (bool all_p)
676a7251
GM
1517{
1518 if (all_p)
1519 {
1520 struct sblock *b;
1521
1522 for (b = large_sblocks; b; b = b->next)
1523 {
1524 struct Lisp_String *s = b->first_data.string;
1525 if (s)
e499d0ee 1526 string_bytes (s);
361b097f 1527 }
177c0ea7 1528
676a7251
GM
1529 for (b = oldest_sblock; b; b = b->next)
1530 check_sblock (b);
361b097f 1531 }
296094c3 1532 else if (current_sblock)
676a7251 1533 check_sblock (current_sblock);
361b097f
GM
1534}
1535
e499d0ee
DA
1536#else /* not GC_CHECK_STRING_BYTES */
1537
1538#define check_string_bytes(all) ((void) 0)
1539
361b097f
GM
1540#endif /* GC_CHECK_STRING_BYTES */
1541
212f33f1
KS
1542#ifdef GC_CHECK_STRING_FREE_LIST
1543
bdbed949
KS
1544/* Walk through the string free list looking for bogus next pointers.
1545 This may catch buffer overrun from a previous string. */
1546
212f33f1 1547static void
d0f4e1f5 1548check_string_free_list (void)
212f33f1
KS
1549{
1550 struct Lisp_String *s;
1551
1552 /* Pop a Lisp_String off the free-list. */
1553 s = string_free_list;
1554 while (s != NULL)
1555 {
d01a7826 1556 if ((uintptr_t) s < 1024)
1088b922 1557 emacs_abort ();
212f33f1
KS
1558 s = NEXT_FREE_LISP_STRING (s);
1559 }
1560}
1561#else
1562#define check_string_free_list()
1563#endif
361b097f 1564
2e471eb5
GM
1565/* Return a new Lisp_String. */
1566
1567static struct Lisp_String *
971de7fb 1568allocate_string (void)
7146af97 1569{
2e471eb5 1570 struct Lisp_String *s;
7146af97 1571
dafc79fa 1572 MALLOC_BLOCK_INPUT;
cfb2f32e 1573
2e471eb5
GM
1574 /* If the free-list is empty, allocate a new string_block, and
1575 add all the Lisp_Strings in it to the free-list. */
1576 if (string_free_list == NULL)
7146af97 1577 {
38182d90 1578 struct string_block *b = lisp_malloc (sizeof *b, MEM_TYPE_STRING);
2e471eb5
GM
1579 int i;
1580
2e471eb5
GM
1581 b->next = string_blocks;
1582 string_blocks = b;
2e471eb5 1583
19bcad1f 1584 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
7146af97 1585 {
2e471eb5 1586 s = b->strings + i;
3fe6dd74
DA
1587 /* Every string on a free list should have NULL data pointer. */
1588 s->data = NULL;
2e471eb5
GM
1589 NEXT_FREE_LISP_STRING (s) = string_free_list;
1590 string_free_list = s;
7146af97 1591 }
2e471eb5 1592
19bcad1f 1593 total_free_strings += STRING_BLOCK_SIZE;
7146af97 1594 }
c0f51373 1595
bdbed949 1596 check_string_free_list ();
212f33f1 1597
2e471eb5
GM
1598 /* Pop a Lisp_String off the free-list. */
1599 s = string_free_list;
1600 string_free_list = NEXT_FREE_LISP_STRING (s);
c0f51373 1601
dafc79fa 1602 MALLOC_UNBLOCK_INPUT;
e2984df0 1603
2e471eb5
GM
1604 --total_free_strings;
1605 ++total_strings;
1606 ++strings_consed;
1607 consing_since_gc += sizeof *s;
c0f51373 1608
361b097f 1609#ifdef GC_CHECK_STRING_BYTES
e39a993c 1610 if (!noninteractive)
361b097f 1611 {
676a7251
GM
1612 if (++check_string_bytes_count == 200)
1613 {
1614 check_string_bytes_count = 0;
1615 check_string_bytes (1);
1616 }
1617 else
1618 check_string_bytes (0);
361b097f 1619 }
676a7251 1620#endif /* GC_CHECK_STRING_BYTES */
361b097f 1621
2e471eb5 1622 return s;
c0f51373 1623}
7146af97 1624
7146af97 1625
2e471eb5
GM
1626/* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1627 plus a NUL byte at the end. Allocate an sdata structure for S, and
1628 set S->data to its `u.data' member. Store a NUL byte at the end of
1629 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1630 S->data if it was initially non-null. */
7146af97 1631
2e471eb5 1632void
413d18e7
EZ
1633allocate_string_data (struct Lisp_String *s,
1634 EMACS_INT nchars, EMACS_INT nbytes)
7146af97 1635{
b7ffe040 1636 struct sdata *data, *old_data;
2e471eb5 1637 struct sblock *b;
b7ffe040 1638 ptrdiff_t needed, old_nbytes;
7146af97 1639
c9d624c6
PE
1640 if (STRING_BYTES_MAX < nbytes)
1641 string_overflow ();
1642
2e471eb5
GM
1643 /* Determine the number of bytes needed to store NBYTES bytes
1644 of string data. */
1645 needed = SDATA_SIZE (nbytes);
b7ffe040
DA
1646 if (s->data)
1647 {
1648 old_data = SDATA_OF_STRING (s);
e499d0ee 1649 old_nbytes = STRING_BYTES (s);
b7ffe040
DA
1650 }
1651 else
1652 old_data = NULL;
e2984df0 1653
dafc79fa 1654 MALLOC_BLOCK_INPUT;
7146af97 1655
2e471eb5
GM
1656 if (nbytes > LARGE_STRING_BYTES)
1657 {
36372bf9 1658 size_t size = offsetof (struct sblock, first_data) + needed;
2e471eb5
GM
1659
1660#ifdef DOUG_LEA_MALLOC
f8608968
GM
1661 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1662 because mapped region contents are not preserved in
d36b182f
DL
1663 a dumped Emacs.
1664
1665 In case you think of allowing it in a dumped Emacs at the
1666 cost of not being able to re-dump, there's another reason:
1667 mmap'ed data typically have an address towards the top of the
1668 address space, which won't fit into an EMACS_INT (at least on
1669 32-bit systems with the current tagging scheme). --fx */
2e471eb5
GM
1670 mallopt (M_MMAP_MAX, 0);
1671#endif
1672
38182d90 1673 b = lisp_malloc (size + GC_STRING_EXTRA, MEM_TYPE_NON_LISP);
177c0ea7 1674
2e471eb5
GM
1675#ifdef DOUG_LEA_MALLOC
1676 /* Back to a reasonable maximum of mmap'ed areas. */
1677 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1678#endif
177c0ea7 1679
2e471eb5
GM
1680 b->next_free = &b->first_data;
1681 b->first_data.string = NULL;
1682 b->next = large_sblocks;
1683 large_sblocks = b;
1684 }
1685 else if (current_sblock == NULL
1686 || (((char *) current_sblock + SBLOCK_SIZE
1687 - (char *) current_sblock->next_free)
212f33f1 1688 < (needed + GC_STRING_EXTRA)))
2e471eb5
GM
1689 {
1690 /* Not enough room in the current sblock. */
38182d90 1691 b = lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
2e471eb5
GM
1692 b->next_free = &b->first_data;
1693 b->first_data.string = NULL;
1694 b->next = NULL;
1695
1696 if (current_sblock)
1697 current_sblock->next = b;
1698 else
1699 oldest_sblock = b;
1700 current_sblock = b;
1701 }
1702 else
1703 b = current_sblock;
5c5fecb3 1704
2e471eb5 1705 data = b->next_free;
a0b08700
CY
1706 b->next_free = (struct sdata *) ((char *) data + needed + GC_STRING_EXTRA);
1707
dafc79fa 1708 MALLOC_UNBLOCK_INPUT;
e2984df0 1709
2e471eb5 1710 data->string = s;
31d929e5
GM
1711 s->data = SDATA_DATA (data);
1712#ifdef GC_CHECK_STRING_BYTES
1713 SDATA_NBYTES (data) = nbytes;
1714#endif
2e471eb5
GM
1715 s->size = nchars;
1716 s->size_byte = nbytes;
1717 s->data[nbytes] = '\0';
212f33f1 1718#ifdef GC_CHECK_STRING_OVERRUN
000098c1
PE
1719 memcpy ((char *) data + needed, string_overrun_cookie,
1720 GC_STRING_OVERRUN_COOKIE_SIZE);
212f33f1 1721#endif
b7ffe040
DA
1722
1723 /* Note that Faset may call to this function when S has already data
1724 assigned. In this case, mark data as free by setting it's string
1725 back-pointer to null, and record the size of the data in it. */
1726 if (old_data)
1727 {
1728 SDATA_NBYTES (old_data) = old_nbytes;
1729 old_data->string = NULL;
1730 }
1731
2e471eb5
GM
1732 consing_since_gc += needed;
1733}
1734
1735
1736/* Sweep and compact strings. */
1737
1738static void
971de7fb 1739sweep_strings (void)
2e471eb5
GM
1740{
1741 struct string_block *b, *next;
1742 struct string_block *live_blocks = NULL;
177c0ea7 1743
2e471eb5
GM
1744 string_free_list = NULL;
1745 total_strings = total_free_strings = 0;
3ab6e069 1746 total_string_bytes = 0;
2e471eb5
GM
1747
1748 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
1749 for (b = string_blocks; b; b = next)
1750 {
1751 int i, nfree = 0;
1752 struct Lisp_String *free_list_before = string_free_list;
1753
1754 next = b->next;
1755
19bcad1f 1756 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
2e471eb5
GM
1757 {
1758 struct Lisp_String *s = b->strings + i;
1759
1760 if (s->data)
1761 {
1762 /* String was not on free-list before. */
1763 if (STRING_MARKED_P (s))
1764 {
1765 /* String is live; unmark it and its intervals. */
1766 UNMARK_STRING (s);
177c0ea7 1767
8707c1e5
DA
1768 /* Do not use string_(set|get)_intervals here. */
1769 s->intervals = balance_intervals (s->intervals);
2e471eb5
GM
1770
1771 ++total_strings;
3ab6e069 1772 total_string_bytes += STRING_BYTES (s);
2e471eb5
GM
1773 }
1774 else
1775 {
1776 /* String is dead. Put it on the free-list. */
1777 struct sdata *data = SDATA_OF_STRING (s);
1778
1779 /* Save the size of S in its sdata so that we know
1780 how large that is. Reset the sdata's string
1781 back-pointer so that we know it's free. */
31d929e5 1782#ifdef GC_CHECK_STRING_BYTES
e499d0ee 1783 if (string_bytes (s) != SDATA_NBYTES (data))
1088b922 1784 emacs_abort ();
31d929e5 1785#else
e499d0ee 1786 data->u.nbytes = STRING_BYTES (s);
31d929e5 1787#endif
2e471eb5
GM
1788 data->string = NULL;
1789
1790 /* Reset the strings's `data' member so that we
1791 know it's free. */
1792 s->data = NULL;
1793
1794 /* Put the string on the free-list. */
1795 NEXT_FREE_LISP_STRING (s) = string_free_list;
1796 string_free_list = s;
1797 ++nfree;
1798 }
1799 }
1800 else
1801 {
1802 /* S was on the free-list before. Put it there again. */
1803 NEXT_FREE_LISP_STRING (s) = string_free_list;
1804 string_free_list = s;
1805 ++nfree;
1806 }
1807 }
1808
34400008 1809 /* Free blocks that contain free Lisp_Strings only, except
2e471eb5 1810 the first two of them. */
19bcad1f
SM
1811 if (nfree == STRING_BLOCK_SIZE
1812 && total_free_strings > STRING_BLOCK_SIZE)
2e471eb5
GM
1813 {
1814 lisp_free (b);
2e471eb5
GM
1815 string_free_list = free_list_before;
1816 }
1817 else
1818 {
1819 total_free_strings += nfree;
1820 b->next = live_blocks;
1821 live_blocks = b;
1822 }
1823 }
1824
bdbed949 1825 check_string_free_list ();
212f33f1 1826
2e471eb5
GM
1827 string_blocks = live_blocks;
1828 free_large_strings ();
1829 compact_small_strings ();
212f33f1 1830
bdbed949 1831 check_string_free_list ();
2e471eb5
GM
1832}
1833
1834
1835/* Free dead large strings. */
1836
1837static void
971de7fb 1838free_large_strings (void)
2e471eb5
GM
1839{
1840 struct sblock *b, *next;
1841 struct sblock *live_blocks = NULL;
177c0ea7 1842
2e471eb5
GM
1843 for (b = large_sblocks; b; b = next)
1844 {
1845 next = b->next;
1846
1847 if (b->first_data.string == NULL)
1848 lisp_free (b);
1849 else
1850 {
1851 b->next = live_blocks;
1852 live_blocks = b;
1853 }
1854 }
1855
1856 large_sblocks = live_blocks;
1857}
1858
1859
1860/* Compact data of small strings. Free sblocks that don't contain
1861 data of live strings after compaction. */
1862
1863static void
971de7fb 1864compact_small_strings (void)
2e471eb5
GM
1865{
1866 struct sblock *b, *tb, *next;
1867 struct sdata *from, *to, *end, *tb_end;
1868 struct sdata *to_end, *from_end;
1869
1870 /* TB is the sblock we copy to, TO is the sdata within TB we copy
1871 to, and TB_END is the end of TB. */
1872 tb = oldest_sblock;
1873 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
1874 to = &tb->first_data;
1875
1876 /* Step through the blocks from the oldest to the youngest. We
1877 expect that old blocks will stabilize over time, so that less
1878 copying will happen this way. */
1879 for (b = oldest_sblock; b; b = b->next)
1880 {
1881 end = b->next_free;
a54e2c05 1882 eassert ((char *) end <= (char *) b + SBLOCK_SIZE);
177c0ea7 1883
2e471eb5
GM
1884 for (from = &b->first_data; from < end; from = from_end)
1885 {
1886 /* Compute the next FROM here because copying below may
1887 overwrite data we need to compute it. */
d311d28c 1888 ptrdiff_t nbytes;
e499d0ee 1889 struct Lisp_String *s = from->string;
2e471eb5 1890
31d929e5
GM
1891#ifdef GC_CHECK_STRING_BYTES
1892 /* Check that the string size recorded in the string is the
1893 same as the one recorded in the sdata structure. */
e499d0ee 1894 if (s && string_bytes (s) != SDATA_NBYTES (from))
1088b922 1895 emacs_abort ();
31d929e5 1896#endif /* GC_CHECK_STRING_BYTES */
177c0ea7 1897
e499d0ee
DA
1898 nbytes = s ? STRING_BYTES (s) : SDATA_NBYTES (from);
1899 eassert (nbytes <= LARGE_STRING_BYTES);
212f33f1 1900
2e471eb5 1901 nbytes = SDATA_SIZE (nbytes);
212f33f1
KS
1902 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1903
1904#ifdef GC_CHECK_STRING_OVERRUN
72af86bd
AS
1905 if (memcmp (string_overrun_cookie,
1906 (char *) from_end - GC_STRING_OVERRUN_COOKIE_SIZE,
1907 GC_STRING_OVERRUN_COOKIE_SIZE))
1088b922 1908 emacs_abort ();
212f33f1 1909#endif
177c0ea7 1910
e499d0ee
DA
1911 /* Non-NULL S means it's alive. Copy its data. */
1912 if (s)
2e471eb5
GM
1913 {
1914 /* If TB is full, proceed with the next sblock. */
212f33f1 1915 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2e471eb5
GM
1916 if (to_end > tb_end)
1917 {
1918 tb->next_free = to;
1919 tb = tb->next;
1920 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
1921 to = &tb->first_data;
212f33f1 1922 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2e471eb5 1923 }
177c0ea7 1924
2e471eb5
GM
1925 /* Copy, and update the string's `data' pointer. */
1926 if (from != to)
1927 {
a54e2c05 1928 eassert (tb != b || to < from);
72af86bd 1929 memmove (to, from, nbytes + GC_STRING_EXTRA);
31d929e5 1930 to->string->data = SDATA_DATA (to);
2e471eb5
GM
1931 }
1932
1933 /* Advance past the sdata we copied to. */
1934 to = to_end;
1935 }
1936 }
1937 }
1938
1939 /* The rest of the sblocks following TB don't contain live data, so
1940 we can free them. */
1941 for (b = tb->next; b; b = next)
1942 {
1943 next = b->next;
1944 lisp_free (b);
1945 }
1946
1947 tb->next_free = to;
1948 tb->next = NULL;
1949 current_sblock = tb;
1950}
1951
cb93f9be
PE
1952void
1953string_overflow (void)
1954{
1955 error ("Maximum string size exceeded");
1956}
2e471eb5 1957
a7ca3326 1958DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
69623621
RS
1959 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
1960LENGTH must be an integer.
1961INIT must be an integer that represents a character. */)
5842a27b 1962 (Lisp_Object length, Lisp_Object init)
2e471eb5
GM
1963{
1964 register Lisp_Object val;
1965 register unsigned char *p, *end;
14162469
EZ
1966 int c;
1967 EMACS_INT nbytes;
2e471eb5 1968
b7826503 1969 CHECK_NATNUM (length);
2bccce07 1970 CHECK_CHARACTER (init);
2e471eb5 1971
2bccce07 1972 c = XFASTINT (init);
830ff83b 1973 if (ASCII_CHAR_P (c))
2e471eb5
GM
1974 {
1975 nbytes = XINT (length);
1976 val = make_uninit_string (nbytes);
d5db4077
KR
1977 p = SDATA (val);
1978 end = p + SCHARS (val);
2e471eb5
GM
1979 while (p != end)
1980 *p++ = c;
1981 }
1982 else
1983 {
d942b71c 1984 unsigned char str[MAX_MULTIBYTE_LENGTH];
2e471eb5 1985 int len = CHAR_STRING (c, str);
14162469 1986 EMACS_INT string_len = XINT (length);
2e471eb5 1987
d1f3d2af 1988 if (string_len > STRING_BYTES_MAX / len)
cb93f9be 1989 string_overflow ();
14162469
EZ
1990 nbytes = len * string_len;
1991 val = make_uninit_multibyte_string (string_len, nbytes);
d5db4077 1992 p = SDATA (val);
2e471eb5
GM
1993 end = p + nbytes;
1994 while (p != end)
1995 {
72af86bd 1996 memcpy (p, str, len);
2e471eb5
GM
1997 p += len;
1998 }
1999 }
177c0ea7 2000
2e471eb5
GM
2001 *p = 0;
2002 return val;
2003}
2004
2005
a7ca3326 2006DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
909e3b33 2007 doc: /* Return a new bool-vector of length LENGTH, using INIT for each element.
7ee72033 2008LENGTH must be a number. INIT matters only in whether it is t or nil. */)
5842a27b 2009 (Lisp_Object length, Lisp_Object init)
2e471eb5
GM
2010{
2011 register Lisp_Object val;
2012 struct Lisp_Bool_Vector *p;
d311d28c
PE
2013 ptrdiff_t length_in_chars;
2014 EMACS_INT length_in_elts;
14162469 2015 int bits_per_value;
d06714cb
PE
2016 int extra_bool_elts = ((bool_header_size - header_size + word_size - 1)
2017 / word_size);
2e471eb5 2018
b7826503 2019 CHECK_NATNUM (length);
2e471eb5 2020
a097329f 2021 bits_per_value = sizeof (EMACS_INT) * BOOL_VECTOR_BITS_PER_CHAR;
2e471eb5
GM
2022
2023 length_in_elts = (XFASTINT (length) + bits_per_value - 1) / bits_per_value;
2e471eb5 2024
d06714cb 2025 val = Fmake_vector (make_number (length_in_elts + extra_bool_elts), Qnil);
177c0ea7 2026
eab3844f
PE
2027 /* No Lisp_Object to trace in there. */
2028 XSETPVECTYPESIZE (XVECTOR (val), PVEC_BOOL_VECTOR, 0);
d2029e5b
SM
2029
2030 p = XBOOL_VECTOR (val);
2e471eb5 2031 p->size = XFASTINT (length);
177c0ea7 2032
d311d28c
PE
2033 length_in_chars = ((XFASTINT (length) + BOOL_VECTOR_BITS_PER_CHAR - 1)
2034 / BOOL_VECTOR_BITS_PER_CHAR);
c0c1ee9f
PE
2035 if (length_in_chars)
2036 {
2037 memset (p->data, ! NILP (init) ? -1 : 0, length_in_chars);
177c0ea7 2038
c0c1ee9f
PE
2039 /* Clear any extraneous bits in the last byte. */
2040 p->data[length_in_chars - 1]
83713154 2041 &= (1 << ((XFASTINT (length) - 1) % BOOL_VECTOR_BITS_PER_CHAR + 1)) - 1;
c0c1ee9f 2042 }
2e471eb5
GM
2043
2044 return val;
2045}
2046
2047
2048/* Make a string from NBYTES bytes at CONTENTS, and compute the number
2049 of characters from the contents. This string may be unibyte or
2050 multibyte, depending on the contents. */
2051
2052Lisp_Object
d311d28c 2053make_string (const char *contents, ptrdiff_t nbytes)
2e471eb5
GM
2054{
2055 register Lisp_Object val;
d311d28c 2056 ptrdiff_t nchars, multibyte_nbytes;
9eac9d59 2057
90256841
PE
2058 parse_str_as_multibyte ((const unsigned char *) contents, nbytes,
2059 &nchars, &multibyte_nbytes);
9eac9d59
KH
2060 if (nbytes == nchars || nbytes != multibyte_nbytes)
2061 /* CONTENTS contains no multibyte sequences or contains an invalid
2062 multibyte sequence. We must make unibyte string. */
495a6df3
KH
2063 val = make_unibyte_string (contents, nbytes);
2064 else
2065 val = make_multibyte_string (contents, nchars, nbytes);
2e471eb5
GM
2066 return val;
2067}
2068
2069
2070/* Make an unibyte string from LENGTH bytes at CONTENTS. */
2071
2072Lisp_Object
d311d28c 2073make_unibyte_string (const char *contents, ptrdiff_t length)
2e471eb5
GM
2074{
2075 register Lisp_Object val;
2076 val = make_uninit_string (length);
72af86bd 2077 memcpy (SDATA (val), contents, length);
2e471eb5
GM
2078 return val;
2079}
2080
2081
2082/* Make a multibyte string from NCHARS characters occupying NBYTES
2083 bytes at CONTENTS. */
2084
2085Lisp_Object
14162469 2086make_multibyte_string (const char *contents,
d311d28c 2087 ptrdiff_t nchars, ptrdiff_t nbytes)
2e471eb5
GM
2088{
2089 register Lisp_Object val;
2090 val = make_uninit_multibyte_string (nchars, nbytes);
72af86bd 2091 memcpy (SDATA (val), contents, nbytes);
2e471eb5
GM
2092 return val;
2093}
2094
2095
2096/* Make a string from NCHARS characters occupying NBYTES bytes at
2097 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2098
2099Lisp_Object
14162469 2100make_string_from_bytes (const char *contents,
d311d28c 2101 ptrdiff_t nchars, ptrdiff_t nbytes)
2e471eb5
GM
2102{
2103 register Lisp_Object val;
2104 val = make_uninit_multibyte_string (nchars, nbytes);
72af86bd 2105 memcpy (SDATA (val), contents, nbytes);
d5db4077
KR
2106 if (SBYTES (val) == SCHARS (val))
2107 STRING_SET_UNIBYTE (val);
2e471eb5
GM
2108 return val;
2109}
2110
2111
2112/* Make a string from NCHARS characters occupying NBYTES bytes at
2113 CONTENTS. The argument MULTIBYTE controls whether to label the
229b28c4
KH
2114 string as multibyte. If NCHARS is negative, it counts the number of
2115 characters by itself. */
2e471eb5
GM
2116
2117Lisp_Object
14162469 2118make_specified_string (const char *contents,
fce31d69 2119 ptrdiff_t nchars, ptrdiff_t nbytes, bool multibyte)
2e471eb5 2120{
fce31d69 2121 Lisp_Object val;
229b28c4
KH
2122
2123 if (nchars < 0)
2124 {
2125 if (multibyte)
90256841
PE
2126 nchars = multibyte_chars_in_text ((const unsigned char *) contents,
2127 nbytes);
229b28c4
KH
2128 else
2129 nchars = nbytes;
2130 }
2e471eb5 2131 val = make_uninit_multibyte_string (nchars, nbytes);
72af86bd 2132 memcpy (SDATA (val), contents, nbytes);
2e471eb5 2133 if (!multibyte)
d5db4077 2134 STRING_SET_UNIBYTE (val);
2e471eb5
GM
2135 return val;
2136}
2137
2138
2e471eb5
GM
2139/* Return an unibyte Lisp_String set up to hold LENGTH characters
2140 occupying LENGTH bytes. */
2141
2142Lisp_Object
413d18e7 2143make_uninit_string (EMACS_INT length)
2e471eb5
GM
2144{
2145 Lisp_Object val;
4d774b0f
JB
2146
2147 if (!length)
2148 return empty_unibyte_string;
2e471eb5 2149 val = make_uninit_multibyte_string (length, length);
d5db4077 2150 STRING_SET_UNIBYTE (val);
2e471eb5
GM
2151 return val;
2152}
2153
2154
2155/* Return a multibyte Lisp_String set up to hold NCHARS characters
2156 which occupy NBYTES bytes. */
2157
2158Lisp_Object
413d18e7 2159make_uninit_multibyte_string (EMACS_INT nchars, EMACS_INT nbytes)
2e471eb5
GM
2160{
2161 Lisp_Object string;
2162 struct Lisp_String *s;
2163
2164 if (nchars < 0)
1088b922 2165 emacs_abort ();
4d774b0f
JB
2166 if (!nbytes)
2167 return empty_multibyte_string;
2e471eb5
GM
2168
2169 s = allocate_string ();
77c7bcb1 2170 s->intervals = NULL;
2e471eb5
GM
2171 allocate_string_data (s, nchars, nbytes);
2172 XSETSTRING (string, s);
2173 string_chars_consed += nbytes;
2174 return string;
2175}
2176
a8290ec3
DA
2177/* Print arguments to BUF according to a FORMAT, then return
2178 a Lisp_String initialized with the data from BUF. */
2179
2180Lisp_Object
2181make_formatted_string (char *buf, const char *format, ...)
2182{
2183 va_list ap;
26bccfae 2184 int length;
a8290ec3
DA
2185
2186 va_start (ap, format);
2187 length = vsprintf (buf, format, ap);
2188 va_end (ap);
2189 return make_string (buf, length);
2190}
2e471eb5
GM
2191
2192\f
2193/***********************************************************************
2194 Float Allocation
2195 ***********************************************************************/
2196
2e471eb5
GM
2197/* We store float cells inside of float_blocks, allocating a new
2198 float_block with malloc whenever necessary. Float cells reclaimed
2199 by GC are put on a free list to be reallocated before allocating
ab6780cd 2200 any new float cells from the latest float_block. */
2e471eb5 2201
6b61353c
KH
2202#define FLOAT_BLOCK_SIZE \
2203 (((BLOCK_BYTES - sizeof (struct float_block *) \
2204 /* The compiler might add padding at the end. */ \
2205 - (sizeof (struct Lisp_Float) - sizeof (int))) * CHAR_BIT) \
ab6780cd
SM
2206 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2207
2208#define GETMARKBIT(block,n) \
5e617bc2
JB
2209 (((block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2210 >> ((n) % (sizeof (int) * CHAR_BIT))) \
ab6780cd
SM
2211 & 1)
2212
2213#define SETMARKBIT(block,n) \
5e617bc2
JB
2214 (block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2215 |= 1 << ((n) % (sizeof (int) * CHAR_BIT))
ab6780cd
SM
2216
2217#define UNSETMARKBIT(block,n) \
5e617bc2
JB
2218 (block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2219 &= ~(1 << ((n) % (sizeof (int) * CHAR_BIT)))
ab6780cd
SM
2220
2221#define FLOAT_BLOCK(fptr) \
d01a7826 2222 ((struct float_block *) (((uintptr_t) (fptr)) & ~(BLOCK_ALIGN - 1)))
ab6780cd
SM
2223
2224#define FLOAT_INDEX(fptr) \
d01a7826 2225 ((((uintptr_t) (fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2e471eb5
GM
2226
2227struct float_block
2228{
ab6780cd 2229 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2e471eb5 2230 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
5e617bc2 2231 int gcmarkbits[1 + FLOAT_BLOCK_SIZE / (sizeof (int) * CHAR_BIT)];
ab6780cd 2232 struct float_block *next;
2e471eb5
GM
2233};
2234
ab6780cd
SM
2235#define FLOAT_MARKED_P(fptr) \
2236 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2237
2238#define FLOAT_MARK(fptr) \
2239 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2240
2241#define FLOAT_UNMARK(fptr) \
2242 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2243
34400008
GM
2244/* Current float_block. */
2245
244ed907 2246static struct float_block *float_block;
34400008
GM
2247
2248/* Index of first unused Lisp_Float in the current float_block. */
2249
fff62aa9 2250static int float_block_index = FLOAT_BLOCK_SIZE;
2e471eb5 2251
34400008
GM
2252/* Free-list of Lisp_Floats. */
2253
244ed907 2254static struct Lisp_Float *float_free_list;
2e471eb5 2255
34400008
GM
2256/* Return a new float object with value FLOAT_VALUE. */
2257
2e471eb5 2258Lisp_Object
971de7fb 2259make_float (double float_value)
2e471eb5
GM
2260{
2261 register Lisp_Object val;
2262
dafc79fa 2263 MALLOC_BLOCK_INPUT;
cfb2f32e 2264
2e471eb5
GM
2265 if (float_free_list)
2266 {
2267 /* We use the data field for chaining the free list
2268 so that we won't use the same field that has the mark bit. */
2269 XSETFLOAT (val, float_free_list);
28a099a4 2270 float_free_list = float_free_list->u.chain;
2e471eb5
GM
2271 }
2272 else
2273 {
2274 if (float_block_index == FLOAT_BLOCK_SIZE)
2275 {
38182d90
PE
2276 struct float_block *new
2277 = lisp_align_malloc (sizeof *new, MEM_TYPE_FLOAT);
2e471eb5 2278 new->next = float_block;
72af86bd 2279 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2e471eb5
GM
2280 float_block = new;
2281 float_block_index = 0;
3900d5de 2282 total_free_floats += FLOAT_BLOCK_SIZE;
2e471eb5 2283 }
6b61353c
KH
2284 XSETFLOAT (val, &float_block->floats[float_block_index]);
2285 float_block_index++;
2e471eb5 2286 }
177c0ea7 2287
dafc79fa 2288 MALLOC_UNBLOCK_INPUT;
e2984df0 2289
f601cdf3 2290 XFLOAT_INIT (val, float_value);
6b61353c 2291 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2e471eb5
GM
2292 consing_since_gc += sizeof (struct Lisp_Float);
2293 floats_consed++;
3900d5de 2294 total_free_floats--;
2e471eb5
GM
2295 return val;
2296}
2297
2e471eb5
GM
2298
2299\f
2300/***********************************************************************
2301 Cons Allocation
2302 ***********************************************************************/
2303
2304/* We store cons cells inside of cons_blocks, allocating a new
2305 cons_block with malloc whenever necessary. Cons cells reclaimed by
2306 GC are put on a free list to be reallocated before allocating
08b7c2cb 2307 any new cons cells from the latest cons_block. */
2e471eb5 2308
a2821611
AS
2309#define CONS_BLOCK_SIZE \
2310 (((BLOCK_BYTES - sizeof (struct cons_block *) \
2311 /* The compiler might add padding at the end. */ \
2312 - (sizeof (struct Lisp_Cons) - sizeof (int))) * CHAR_BIT) \
08b7c2cb
SM
2313 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2314
2315#define CONS_BLOCK(fptr) \
d01a7826 2316 ((struct cons_block *) ((uintptr_t) (fptr) & ~(BLOCK_ALIGN - 1)))
08b7c2cb
SM
2317
2318#define CONS_INDEX(fptr) \
d01a7826 2319 (((uintptr_t) (fptr) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2e471eb5
GM
2320
2321struct cons_block
2322{
08b7c2cb 2323 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2e471eb5 2324 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
5e617bc2 2325 int gcmarkbits[1 + CONS_BLOCK_SIZE / (sizeof (int) * CHAR_BIT)];
08b7c2cb 2326 struct cons_block *next;
2e471eb5
GM
2327};
2328
08b7c2cb
SM
2329#define CONS_MARKED_P(fptr) \
2330 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2331
2332#define CONS_MARK(fptr) \
2333 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2334
2335#define CONS_UNMARK(fptr) \
2336 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2337
34400008
GM
2338/* Current cons_block. */
2339
244ed907 2340static struct cons_block *cons_block;
34400008
GM
2341
2342/* Index of first unused Lisp_Cons in the current block. */
2343
fff62aa9 2344static int cons_block_index = CONS_BLOCK_SIZE;
2e471eb5 2345
34400008
GM
2346/* Free-list of Lisp_Cons structures. */
2347
244ed907 2348static struct Lisp_Cons *cons_free_list;
2e471eb5 2349
34400008 2350/* Explicitly free a cons cell by putting it on the free-list. */
2e471eb5
GM
2351
2352void
971de7fb 2353free_cons (struct Lisp_Cons *ptr)
2e471eb5 2354{
28a099a4 2355 ptr->u.chain = cons_free_list;
34400008 2356#if GC_MARK_STACK
c644523b 2357 ptr->car = Vdead;
34400008 2358#endif
2e471eb5 2359 cons_free_list = ptr;
0dd6d66d 2360 consing_since_gc -= sizeof *ptr;
3900d5de 2361 total_free_conses++;
2e471eb5
GM
2362}
2363
a7ca3326 2364DEFUN ("cons", Fcons, Scons, 2, 2, 0,
a6266d23 2365 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
5842a27b 2366 (Lisp_Object car, Lisp_Object cdr)
2e471eb5
GM
2367{
2368 register Lisp_Object val;
2369
dafc79fa 2370 MALLOC_BLOCK_INPUT;
cfb2f32e 2371
2e471eb5
GM
2372 if (cons_free_list)
2373 {
2374 /* We use the cdr for chaining the free list
2375 so that we won't use the same field that has the mark bit. */
2376 XSETCONS (val, cons_free_list);
28a099a4 2377 cons_free_list = cons_free_list->u.chain;
2e471eb5
GM
2378 }
2379 else
2380 {
2381 if (cons_block_index == CONS_BLOCK_SIZE)
2382 {
38182d90
PE
2383 struct cons_block *new
2384 = lisp_align_malloc (sizeof *new, MEM_TYPE_CONS);
72af86bd 2385 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2e471eb5
GM
2386 new->next = cons_block;
2387 cons_block = new;
2388 cons_block_index = 0;
3900d5de 2389 total_free_conses += CONS_BLOCK_SIZE;
2e471eb5 2390 }
6b61353c
KH
2391 XSETCONS (val, &cons_block->conses[cons_block_index]);
2392 cons_block_index++;
2e471eb5 2393 }
177c0ea7 2394
dafc79fa 2395 MALLOC_UNBLOCK_INPUT;
e2984df0 2396
f3fbd155
KR
2397 XSETCAR (val, car);
2398 XSETCDR (val, cdr);
6b61353c 2399 eassert (!CONS_MARKED_P (XCONS (val)));
2e471eb5 2400 consing_since_gc += sizeof (struct Lisp_Cons);
3900d5de 2401 total_free_conses--;
2e471eb5
GM
2402 cons_cells_consed++;
2403 return val;
2404}
2405
e5aab7e7 2406#ifdef GC_CHECK_CONS_LIST
e3e56238
RS
2407/* Get an error now if there's any junk in the cons free list. */
2408void
971de7fb 2409check_cons_list (void)
e3e56238
RS
2410{
2411 struct Lisp_Cons *tail = cons_free_list;
2412
e3e56238 2413 while (tail)
28a099a4 2414 tail = tail->u.chain;
e3e56238 2415}
e5aab7e7 2416#endif
34400008 2417
9b306d37
KS
2418/* Make a list of 1, 2, 3, 4 or 5 specified objects. */
2419
2420Lisp_Object
971de7fb 2421list1 (Lisp_Object arg1)
9b306d37
KS
2422{
2423 return Fcons (arg1, Qnil);
2424}
2e471eb5
GM
2425
2426Lisp_Object
971de7fb 2427list2 (Lisp_Object arg1, Lisp_Object arg2)
2e471eb5
GM
2428{
2429 return Fcons (arg1, Fcons (arg2, Qnil));
2430}
2431
34400008 2432
2e471eb5 2433Lisp_Object
971de7fb 2434list3 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3)
2e471eb5
GM
2435{
2436 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2437}
2438
34400008 2439
2e471eb5 2440Lisp_Object
971de7fb 2441list4 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4)
2e471eb5
GM
2442{
2443 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2444}
2445
34400008 2446
2e471eb5 2447Lisp_Object
971de7fb 2448list5 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4, Lisp_Object arg5)
2e471eb5
GM
2449{
2450 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2451 Fcons (arg5, Qnil)))));
2452}
2453
694b6c97
DA
2454/* Make a list of COUNT Lisp_Objects, where ARG is the
2455 first one. Allocate conses from pure space if TYPE
3438fe21 2456 is CONSTYPE_PURE, or allocate as usual if type is CONSTYPE_HEAP. */
694b6c97
DA
2457
2458Lisp_Object
2459listn (enum constype type, ptrdiff_t count, Lisp_Object arg, ...)
2460{
2461 va_list ap;
2462 ptrdiff_t i;
2463 Lisp_Object val, *objp;
2464
2465 /* Change to SAFE_ALLOCA if you hit this eassert. */
663e2b3f 2466 eassert (count <= MAX_ALLOCA / word_size);
694b6c97 2467
663e2b3f 2468 objp = alloca (count * word_size);
694b6c97
DA
2469 objp[0] = arg;
2470 va_start (ap, arg);
2471 for (i = 1; i < count; i++)
2472 objp[i] = va_arg (ap, Lisp_Object);
2473 va_end (ap);
2474
bcfbc9de 2475 for (val = Qnil, i = count - 1; i >= 0; i--)
694b6c97 2476 {
3438fe21 2477 if (type == CONSTYPE_PURE)
694b6c97 2478 val = pure_cons (objp[i], val);
3438fe21 2479 else if (type == CONSTYPE_HEAP)
694b6c97
DA
2480 val = Fcons (objp[i], val);
2481 else
1088b922 2482 emacs_abort ();
694b6c97
DA
2483 }
2484 return val;
2485}
34400008 2486
a7ca3326 2487DEFUN ("list", Flist, Slist, 0, MANY, 0,
eae936e2 2488 doc: /* Return a newly created list with specified arguments as elements.
ae8e8122
MB
2489Any number of arguments, even zero arguments, are allowed.
2490usage: (list &rest OBJECTS) */)
f66c7cf8 2491 (ptrdiff_t nargs, Lisp_Object *args)
2e471eb5
GM
2492{
2493 register Lisp_Object val;
2494 val = Qnil;
2495
2496 while (nargs > 0)
2497 {
2498 nargs--;
2499 val = Fcons (args[nargs], val);
2500 }
2501 return val;
2502}
2503
34400008 2504
a7ca3326 2505DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
a6266d23 2506 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
5842a27b 2507 (register Lisp_Object length, Lisp_Object init)
2e471eb5
GM
2508{
2509 register Lisp_Object val;
14162469 2510 register EMACS_INT size;
2e471eb5 2511
b7826503 2512 CHECK_NATNUM (length);
2e471eb5
GM
2513 size = XFASTINT (length);
2514
2515 val = Qnil;
ce070307
GM
2516 while (size > 0)
2517 {
2518 val = Fcons (init, val);
2519 --size;
2520
2521 if (size > 0)
2522 {
2523 val = Fcons (init, val);
2524 --size;
177c0ea7 2525
ce070307
GM
2526 if (size > 0)
2527 {
2528 val = Fcons (init, val);
2529 --size;
177c0ea7 2530
ce070307
GM
2531 if (size > 0)
2532 {
2533 val = Fcons (init, val);
2534 --size;
177c0ea7 2535
ce070307
GM
2536 if (size > 0)
2537 {
2538 val = Fcons (init, val);
2539 --size;
2540 }
2541 }
2542 }
2543 }
2544
2545 QUIT;
2546 }
177c0ea7 2547
7146af97
JB
2548 return val;
2549}
2e471eb5
GM
2550
2551
7146af97 2552\f
2e471eb5
GM
2553/***********************************************************************
2554 Vector Allocation
2555 ***********************************************************************/
7146af97 2556
f3372c87
DA
2557/* This value is balanced well enough to avoid too much internal overhead
2558 for the most common cases; it's not required to be a power of two, but
2559 it's expected to be a mult-of-ROUNDUP_SIZE (see below). */
34400008 2560
f3372c87 2561#define VECTOR_BLOCK_SIZE 4096
7146af97 2562
d06714cb 2563/* Align allocation request sizes to be a multiple of ROUNDUP_SIZE. */
dd0b0efb
PE
2564enum
2565 {
2b90362b 2566 roundup_size = COMMON_MULTIPLE (word_size, USE_LSB_TAG ? GCALIGNMENT : 1)
dd0b0efb 2567 };
34400008 2568
bfe3e0a2
PE
2569/* ROUNDUP_SIZE must be a power of 2. */
2570verify ((roundup_size & (roundup_size - 1)) == 0);
2571
ca95b3eb
DA
2572/* Verify assumptions described above. */
2573verify ((VECTOR_BLOCK_SIZE % roundup_size) == 0);
ee28be33 2574verify (VECTOR_BLOCK_SIZE <= (1 << PSEUDOVECTOR_SIZE_BITS));
ca95b3eb 2575
bfe3e0a2 2576/* Round up X to nearest mult-of-ROUNDUP_SIZE. */
f3372c87
DA
2577
2578#define vroundup(x) (((x) + (roundup_size - 1)) & ~(roundup_size - 1))
2579
2580/* Rounding helps to maintain alignment constraints if USE_LSB_TAG. */
2581
2582#define VECTOR_BLOCK_BYTES (VECTOR_BLOCK_SIZE - vroundup (sizeof (void *)))
2583
2584/* Size of the minimal vector allocated from block. */
2585
2586#define VBLOCK_BYTES_MIN vroundup (sizeof (struct Lisp_Vector))
2587
2588/* Size of the largest vector allocated from block. */
2589
2590#define VBLOCK_BYTES_MAX \
d06714cb 2591 vroundup ((VECTOR_BLOCK_BYTES / 2) - word_size)
f3372c87
DA
2592
2593/* We maintain one free list for each possible block-allocated
2594 vector size, and this is the number of free lists we have. */
2595
2596#define VECTOR_MAX_FREE_LIST_INDEX \
2597 ((VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN) / roundup_size + 1)
2598
f3372c87
DA
2599/* Common shortcut to advance vector pointer over a block data. */
2600
2601#define ADVANCE(v, nbytes) ((struct Lisp_Vector *) ((char *) (v) + (nbytes)))
2602
2603/* Common shortcut to calculate NBYTES-vector index in VECTOR_FREE_LISTS. */
2604
2605#define VINDEX(nbytes) (((nbytes) - VBLOCK_BYTES_MIN) / roundup_size)
2606
2607/* Common shortcut to setup vector on a free list. */
2608
2609#define SETUP_ON_FREE_LIST(v, nbytes, index) \
2610 do { \
ee28be33 2611 XSETPVECTYPESIZE (v, PVEC_FREE, nbytes); \
f3372c87
DA
2612 eassert ((nbytes) % roundup_size == 0); \
2613 (index) = VINDEX (nbytes); \
2614 eassert ((index) < VECTOR_MAX_FREE_LIST_INDEX); \
2615 (v)->header.next.vector = vector_free_lists[index]; \
2616 vector_free_lists[index] = (v); \
5b835e1d 2617 total_free_vector_slots += (nbytes) / word_size; \
f3372c87
DA
2618 } while (0)
2619
2620struct vector_block
2621{
2622 char data[VECTOR_BLOCK_BYTES];
2623 struct vector_block *next;
2624};
2625
2626/* Chain of vector blocks. */
2627
2628static struct vector_block *vector_blocks;
2629
2630/* Vector free lists, where NTH item points to a chain of free
2631 vectors of the same NBYTES size, so NTH == VINDEX (NBYTES). */
2632
2633static struct Lisp_Vector *vector_free_lists[VECTOR_MAX_FREE_LIST_INDEX];
2634
2635/* Singly-linked list of large vectors. */
2636
2637static struct Lisp_Vector *large_vectors;
2638
2639/* The only vector with 0 slots, allocated from pure space. */
2640
9730daca 2641Lisp_Object zero_vector;
f3372c87 2642
3ab6e069
DA
2643/* Number of live vectors. */
2644
2645static EMACS_INT total_vectors;
2646
5b835e1d 2647/* Total size of live and free vectors, in Lisp_Object units. */
3ab6e069 2648
5b835e1d 2649static EMACS_INT total_vector_slots, total_free_vector_slots;
3ab6e069 2650
f3372c87
DA
2651/* Get a new vector block. */
2652
2653static struct vector_block *
2654allocate_vector_block (void)
2655{
38182d90 2656 struct vector_block *block = xmalloc (sizeof *block);
f3372c87
DA
2657
2658#if GC_MARK_STACK && !defined GC_MALLOC_CHECK
2659 mem_insert (block->data, block->data + VECTOR_BLOCK_BYTES,
2660 MEM_TYPE_VECTOR_BLOCK);
2661#endif
2662
2663 block->next = vector_blocks;
2664 vector_blocks = block;
2665 return block;
2666}
2667
2668/* Called once to initialize vector allocation. */
2669
2670static void
2671init_vectors (void)
2672{
9730daca 2673 zero_vector = make_pure_vector (0);
f3372c87
DA
2674}
2675
2676/* Allocate vector from a vector block. */
2677
2678static struct Lisp_Vector *
2679allocate_vector_from_block (size_t nbytes)
2680{
2681 struct Lisp_Vector *vector, *rest;
2682 struct vector_block *block;
2683 size_t index, restbytes;
2684
2685 eassert (VBLOCK_BYTES_MIN <= nbytes && nbytes <= VBLOCK_BYTES_MAX);
2686 eassert (nbytes % roundup_size == 0);
2687
2688 /* First, try to allocate from a free list
2689 containing vectors of the requested size. */
2690 index = VINDEX (nbytes);
2691 if (vector_free_lists[index])
2692 {
2693 vector = vector_free_lists[index];
2694 vector_free_lists[index] = vector->header.next.vector;
2695 vector->header.next.nbytes = nbytes;
5b835e1d 2696 total_free_vector_slots -= nbytes / word_size;
f3372c87
DA
2697 return vector;
2698 }
2699
2700 /* Next, check free lists containing larger vectors. Since
2701 we will split the result, we should have remaining space
2702 large enough to use for one-slot vector at least. */
2703 for (index = VINDEX (nbytes + VBLOCK_BYTES_MIN);
2704 index < VECTOR_MAX_FREE_LIST_INDEX; index++)
2705 if (vector_free_lists[index])
2706 {
2707 /* This vector is larger than requested. */
2708 vector = vector_free_lists[index];
2709 vector_free_lists[index] = vector->header.next.vector;
2710 vector->header.next.nbytes = nbytes;
5b835e1d 2711 total_free_vector_slots -= nbytes / word_size;
f3372c87
DA
2712
2713 /* Excess bytes are used for the smaller vector,
2714 which should be set on an appropriate free list. */
2715 restbytes = index * roundup_size + VBLOCK_BYTES_MIN - nbytes;
2716 eassert (restbytes % roundup_size == 0);
2717 rest = ADVANCE (vector, nbytes);
2718 SETUP_ON_FREE_LIST (rest, restbytes, index);
2719 return vector;
2720 }
2721
2722 /* Finally, need a new vector block. */
2723 block = allocate_vector_block ();
2724
2725 /* New vector will be at the beginning of this block. */
2726 vector = (struct Lisp_Vector *) block->data;
2727 vector->header.next.nbytes = nbytes;
2728
2729 /* If the rest of space from this block is large enough
2730 for one-slot vector at least, set up it on a free list. */
2731 restbytes = VECTOR_BLOCK_BYTES - nbytes;
2732 if (restbytes >= VBLOCK_BYTES_MIN)
2733 {
2734 eassert (restbytes % roundup_size == 0);
2735 rest = ADVANCE (vector, nbytes);
2736 SETUP_ON_FREE_LIST (rest, restbytes, index);
2737 }
2738 return vector;
2739 }
2740
f3372c87
DA
2741/* Nonzero if VECTOR pointer is valid pointer inside BLOCK. */
2742
2743#define VECTOR_IN_BLOCK(vector, block) \
2744 ((char *) (vector) <= (block)->data \
2745 + VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN)
2746
ee28be33
SM
2747/* Number of bytes used by vector-block-allocated object. This is the only
2748 place where we actually use the `nbytes' field of the vector-header.
2749 I.e. we could get rid of the `nbytes' field by computing it based on the
2750 vector-type. */
2751
2752#define PSEUDOVECTOR_NBYTES(vector) \
2753 (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_FREE) \
2754 ? vector->header.size & PSEUDOVECTOR_SIZE_MASK \
356e7178 2755 : vector->header.next.nbytes)
ee28be33 2756
f3372c87
DA
2757/* Reclaim space used by unmarked vectors. */
2758
2759static void
2760sweep_vectors (void)
2761{
2762 struct vector_block *block = vector_blocks, **bprev = &vector_blocks;
2763 struct Lisp_Vector *vector, *next, **vprev = &large_vectors;
2764
5b835e1d 2765 total_vectors = total_vector_slots = total_free_vector_slots = 0;
f3372c87
DA
2766 memset (vector_free_lists, 0, sizeof (vector_free_lists));
2767
2768 /* Looking through vector blocks. */
2769
2770 for (block = vector_blocks; block; block = *bprev)
2771 {
fce31d69 2772 bool free_this_block = 0;
f3372c87
DA
2773
2774 for (vector = (struct Lisp_Vector *) block->data;
2775 VECTOR_IN_BLOCK (vector, block); vector = next)
2776 {
2777 if (VECTOR_MARKED_P (vector))
2778 {
2779 VECTOR_UNMARK (vector);
3ab6e069 2780 total_vectors++;
5b835e1d 2781 total_vector_slots += vector->header.next.nbytes / word_size;
f3372c87
DA
2782 next = ADVANCE (vector, vector->header.next.nbytes);
2783 }
2784 else
2785 {
ee28be33
SM
2786 ptrdiff_t nbytes = PSEUDOVECTOR_NBYTES (vector);
2787 ptrdiff_t total_bytes = nbytes;
f3372c87 2788
ee28be33 2789 next = ADVANCE (vector, nbytes);
f3372c87
DA
2790
2791 /* While NEXT is not marked, try to coalesce with VECTOR,
2792 thus making VECTOR of the largest possible size. */
2793
2794 while (VECTOR_IN_BLOCK (next, block))
2795 {
2796 if (VECTOR_MARKED_P (next))
2797 break;
ee28be33
SM
2798 nbytes = PSEUDOVECTOR_NBYTES (next);
2799 total_bytes += nbytes;
f3372c87
DA
2800 next = ADVANCE (next, nbytes);
2801 }
bfe3e0a2 2802
ee28be33 2803 eassert (total_bytes % roundup_size == 0);
f3372c87
DA
2804
2805 if (vector == (struct Lisp_Vector *) block->data
2806 && !VECTOR_IN_BLOCK (next, block))
2807 /* This block should be freed because all of it's
2808 space was coalesced into the only free vector. */
2809 free_this_block = 1;
2810 else
ee28be33
SM
2811 {
2812 int tmp;
2813 SETUP_ON_FREE_LIST (vector, total_bytes, tmp);
2814 }
f3372c87
DA
2815 }
2816 }
2817
2818 if (free_this_block)
2819 {
2820 *bprev = block->next;
2821#if GC_MARK_STACK && !defined GC_MALLOC_CHECK
2822 mem_delete (mem_find (block->data));
2823#endif
2824 xfree (block);
2825 }
2826 else
2827 bprev = &block->next;
2828 }
2829
2830 /* Sweep large vectors. */
2831
2832 for (vector = large_vectors; vector; vector = *vprev)
2833 {
2834 if (VECTOR_MARKED_P (vector))
2835 {
2836 VECTOR_UNMARK (vector);
3ab6e069 2837 total_vectors++;
169925ec
DA
2838 if (vector->header.size & PSEUDOVECTOR_FLAG)
2839 {
d06714cb
PE
2840 struct Lisp_Bool_Vector *b = (struct Lisp_Bool_Vector *) vector;
2841
2842 /* All non-bool pseudovectors are small enough to be allocated
2843 from vector blocks. This code should be redesigned if some
2844 pseudovector type grows beyond VBLOCK_BYTES_MAX. */
2845 eassert (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_BOOL_VECTOR));
2846
5b835e1d 2847 total_vector_slots
d06714cb
PE
2848 += (bool_header_size
2849 + ((b->size + BOOL_VECTOR_BITS_PER_CHAR - 1)
5b835e1d 2850 / BOOL_VECTOR_BITS_PER_CHAR)) / word_size;
169925ec
DA
2851 }
2852 else
5b835e1d
DA
2853 total_vector_slots
2854 += header_size / word_size + vector->header.size;
f3372c87
DA
2855 vprev = &vector->header.next.vector;
2856 }
2857 else
2858 {
2859 *vprev = vector->header.next.vector;
2860 lisp_free (vector);
2861 }
2862 }
2863}
2864
34400008
GM
2865/* Value is a pointer to a newly allocated Lisp_Vector structure
2866 with room for LEN Lisp_Objects. */
2867
ece93c02 2868static struct Lisp_Vector *
d311d28c 2869allocate_vectorlike (ptrdiff_t len)
1825c68d
KH
2870{
2871 struct Lisp_Vector *p;
2872
dafc79fa
SM
2873 MALLOC_BLOCK_INPUT;
2874
f3372c87 2875 if (len == 0)
9730daca 2876 p = XVECTOR (zero_vector);
d12e8f5a 2877 else
8bbbc977 2878 {
d12e8f5a 2879 size_t nbytes = header_size + len * word_size;
f3372c87 2880
d12e8f5a
DA
2881#ifdef DOUG_LEA_MALLOC
2882 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
2883 because mapped region contents are not preserved in
2884 a dumped Emacs. */
2885 mallopt (M_MMAP_MAX, 0);
2886#endif
f3372c87 2887
d12e8f5a
DA
2888 if (nbytes <= VBLOCK_BYTES_MAX)
2889 p = allocate_vector_from_block (vroundup (nbytes));
2890 else
2891 {
38182d90 2892 p = lisp_malloc (nbytes, MEM_TYPE_VECTORLIKE);
d12e8f5a
DA
2893 p->header.next.vector = large_vectors;
2894 large_vectors = p;
2895 }
177c0ea7 2896
d1658221 2897#ifdef DOUG_LEA_MALLOC
d12e8f5a
DA
2898 /* Back to a reasonable maximum of mmap'ed areas. */
2899 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
d1658221 2900#endif
177c0ea7 2901
d12e8f5a
DA
2902 consing_since_gc += nbytes;
2903 vector_cells_consed += len;
2904 }
1825c68d 2905
dafc79fa 2906 MALLOC_UNBLOCK_INPUT;
e2984df0 2907
1825c68d
KH
2908 return p;
2909}
2910
34400008 2911
dd0b0efb 2912/* Allocate a vector with LEN slots. */
ece93c02
GM
2913
2914struct Lisp_Vector *
dd0b0efb 2915allocate_vector (EMACS_INT len)
ece93c02 2916{
dd0b0efb
PE
2917 struct Lisp_Vector *v;
2918 ptrdiff_t nbytes_max = min (PTRDIFF_MAX, SIZE_MAX);
2919
2920 if (min ((nbytes_max - header_size) / word_size, MOST_POSITIVE_FIXNUM) < len)
2921 memory_full (SIZE_MAX);
2922 v = allocate_vectorlike (len);
2923 v->header.size = len;
ece93c02
GM
2924 return v;
2925}
2926
2927
2928/* Allocate other vector-like structures. */
2929
30f95089 2930struct Lisp_Vector *
d311d28c 2931allocate_pseudovector (int memlen, int lisplen, int tag)
ece93c02 2932{
d2029e5b 2933 struct Lisp_Vector *v = allocate_vectorlike (memlen);
e46bb31a 2934 int i;
177c0ea7 2935
d2029e5b 2936 /* Only the first lisplen slots will be traced normally by the GC. */
d2029e5b 2937 for (i = 0; i < lisplen; ++i)
ece93c02 2938 v->contents[i] = Qnil;
177c0ea7 2939
eab3844f 2940 XSETPVECTYPESIZE (v, tag, lisplen);
d2029e5b
SM
2941 return v;
2942}
d2029e5b 2943
36429c89
DA
2944struct buffer *
2945allocate_buffer (void)
2946{
38182d90 2947 struct buffer *b = lisp_malloc (sizeof *b, MEM_TYPE_BUFFER);
36429c89
DA
2948
2949 XSETPVECTYPESIZE (b, PVEC_BUFFER, (offsetof (struct buffer, own_text)
2950 - header_size) / word_size);
c752cfa9
DA
2951 /* Put B on the chain of all buffers including killed ones. */
2952 b->header.next.buffer = all_buffers;
2953 all_buffers = b;
2954 /* Note that the rest fields of B are not initialized. */
36429c89
DA
2955 return b;
2956}
2957
ece93c02 2958struct Lisp_Hash_Table *
878f97ff 2959allocate_hash_table (void)
ece93c02 2960{
878f97ff 2961 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Hash_Table, count, PVEC_HASH_TABLE);
ece93c02
GM
2962}
2963
ece93c02 2964struct window *
971de7fb 2965allocate_window (void)
ece93c02 2966{
62efea5e 2967 struct window *w;
177c0ea7 2968
62efea5e
DA
2969 w = ALLOCATE_PSEUDOVECTOR (struct window, current_matrix, PVEC_WINDOW);
2970 /* Users assumes that non-Lisp data is zeroed. */
2971 memset (&w->current_matrix, 0,
2972 sizeof (*w) - offsetof (struct window, current_matrix));
2973 return w;
2974}
177c0ea7 2975
4a729fd8 2976struct terminal *
971de7fb 2977allocate_terminal (void)
4a729fd8 2978{
62efea5e 2979 struct terminal *t;
ece93c02 2980
62efea5e
DA
2981 t = ALLOCATE_PSEUDOVECTOR (struct terminal, next_terminal, PVEC_TERMINAL);
2982 /* Users assumes that non-Lisp data is zeroed. */
2983 memset (&t->next_terminal, 0,
2984 sizeof (*t) - offsetof (struct terminal, next_terminal));
d2029e5b 2985 return t;
4a729fd8 2986}
ece93c02
GM
2987
2988struct frame *
971de7fb 2989allocate_frame (void)
ece93c02 2990{
62efea5e
DA
2991 struct frame *f;
2992
2993 f = ALLOCATE_PSEUDOVECTOR (struct frame, face_cache, PVEC_FRAME);
2994 /* Users assumes that non-Lisp data is zeroed. */
72af86bd 2995 memset (&f->face_cache, 0,
62efea5e 2996 sizeof (*f) - offsetof (struct frame, face_cache));
d2029e5b 2997 return f;
ece93c02
GM
2998}
2999
ece93c02 3000struct Lisp_Process *
971de7fb 3001allocate_process (void)
ece93c02 3002{
62efea5e 3003 struct Lisp_Process *p;
ece93c02 3004
62efea5e
DA
3005 p = ALLOCATE_PSEUDOVECTOR (struct Lisp_Process, pid, PVEC_PROCESS);
3006 /* Users assumes that non-Lisp data is zeroed. */
3007 memset (&p->pid, 0,
3008 sizeof (*p) - offsetof (struct Lisp_Process, pid));
3009 return p;
3010}
ece93c02 3011
a7ca3326 3012DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
a6266d23 3013 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
7ee72033 3014See also the function `vector'. */)
5842a27b 3015 (register Lisp_Object length, Lisp_Object init)
7146af97 3016{
1825c68d 3017 Lisp_Object vector;
d311d28c
PE
3018 register ptrdiff_t sizei;
3019 register ptrdiff_t i;
7146af97
JB
3020 register struct Lisp_Vector *p;
3021
b7826503 3022 CHECK_NATNUM (length);
7146af97 3023
d311d28c
PE
3024 p = allocate_vector (XFASTINT (length));
3025 sizei = XFASTINT (length);
ae35e756
PE
3026 for (i = 0; i < sizei; i++)
3027 p->contents[i] = init;
7146af97 3028
1825c68d 3029 XSETVECTOR (vector, p);
7146af97
JB
3030 return vector;
3031}
3032
34400008 3033
a7ca3326 3034DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
eae936e2 3035 doc: /* Return a newly created vector with specified arguments as elements.
ae8e8122
MB
3036Any number of arguments, even zero arguments, are allowed.
3037usage: (vector &rest OBJECTS) */)
f66c7cf8 3038 (ptrdiff_t nargs, Lisp_Object *args)
7146af97
JB
3039{
3040 register Lisp_Object len, val;
f66c7cf8 3041 ptrdiff_t i;
7146af97
JB
3042 register struct Lisp_Vector *p;
3043
67ba9986 3044 XSETFASTINT (len, nargs);
7146af97
JB
3045 val = Fmake_vector (len, Qnil);
3046 p = XVECTOR (val);
ae35e756
PE
3047 for (i = 0; i < nargs; i++)
3048 p->contents[i] = args[i];
7146af97
JB
3049 return val;
3050}
3051
3017f87f
SM
3052void
3053make_byte_code (struct Lisp_Vector *v)
3054{
3055 if (v->header.size > 1 && STRINGP (v->contents[1])
3056 && STRING_MULTIBYTE (v->contents[1]))
3057 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
3058 earlier because they produced a raw 8-bit string for byte-code
3059 and now such a byte-code string is loaded as multibyte while
3060 raw 8-bit characters converted to multibyte form. Thus, now we
3061 must convert them back to the original unibyte form. */
3062 v->contents[1] = Fstring_as_unibyte (v->contents[1]);
3063 XSETPVECTYPE (v, PVEC_COMPILED);
3064}
34400008 3065
a7ca3326 3066DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
a6266d23 3067 doc: /* Create a byte-code object with specified arguments as elements.
e2abe5a1
SM
3068The arguments should be the ARGLIST, bytecode-string BYTE-CODE, constant
3069vector CONSTANTS, maximum stack size DEPTH, (optional) DOCSTRING,
3070and (optional) INTERACTIVE-SPEC.
228299fa 3071The first four arguments are required; at most six have any
ae8e8122 3072significance.
e2abe5a1
SM
3073The ARGLIST can be either like the one of `lambda', in which case the arguments
3074will be dynamically bound before executing the byte code, or it can be an
3075integer of the form NNNNNNNRMMMMMMM where the 7bit MMMMMMM specifies the
3076minimum number of arguments, the 7-bit NNNNNNN specifies the maximum number
3077of arguments (ignoring &rest) and the R bit specifies whether there is a &rest
3078argument to catch the left-over arguments. If such an integer is used, the
3079arguments will not be dynamically bound but will be instead pushed on the
3080stack before executing the byte-code.
92cc28b2 3081usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
f66c7cf8 3082 (ptrdiff_t nargs, Lisp_Object *args)
7146af97
JB
3083{
3084 register Lisp_Object len, val;
f66c7cf8 3085 ptrdiff_t i;
7146af97
JB
3086 register struct Lisp_Vector *p;
3087
3017f87f
SM
3088 /* We used to purecopy everything here, if purify-flga was set. This worked
3089 OK for Emacs-23, but with Emacs-24's lexical binding code, it can be
3090 dangerous, since make-byte-code is used during execution to build
3091 closures, so any closure built during the preload phase would end up
3092 copied into pure space, including its free variables, which is sometimes
3093 just wasteful and other times plainly wrong (e.g. those free vars may want
3094 to be setcar'd). */
9eac9d59 3095
3017f87f
SM
3096 XSETFASTINT (len, nargs);
3097 val = Fmake_vector (len, Qnil);
9eac9d59 3098
7146af97 3099 p = XVECTOR (val);
ae35e756 3100 for (i = 0; i < nargs; i++)
3017f87f
SM
3101 p->contents[i] = args[i];
3102 make_byte_code (p);
876c194c 3103 XSETCOMPILED (val, p);
7146af97
JB
3104 return val;
3105}
2e471eb5 3106
34400008 3107
7146af97 3108\f
2e471eb5
GM
3109/***********************************************************************
3110 Symbol Allocation
3111 ***********************************************************************/
7146af97 3112
d55c12ed
AS
3113/* Like struct Lisp_Symbol, but padded so that the size is a multiple
3114 of the required alignment if LSB tags are used. */
3115
3116union aligned_Lisp_Symbol
3117{
3118 struct Lisp_Symbol s;
bfe3e0a2 3119#if USE_LSB_TAG
2b90362b
DA
3120 unsigned char c[(sizeof (struct Lisp_Symbol) + GCALIGNMENT - 1)
3121 & -GCALIGNMENT];
d55c12ed
AS
3122#endif
3123};
3124
2e471eb5
GM
3125/* Each symbol_block is just under 1020 bytes long, since malloc
3126 really allocates in units of powers of two and uses 4 bytes for its
3017f87f 3127 own overhead. */
7146af97
JB
3128
3129#define SYMBOL_BLOCK_SIZE \
d55c12ed 3130 ((1020 - sizeof (struct symbol_block *)) / sizeof (union aligned_Lisp_Symbol))
7146af97
JB
3131
3132struct symbol_block
2e471eb5 3133{
6b61353c 3134 /* Place `symbols' first, to preserve alignment. */
d55c12ed 3135 union aligned_Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
6b61353c 3136 struct symbol_block *next;
2e471eb5 3137};
7146af97 3138
34400008
GM
3139/* Current symbol block and index of first unused Lisp_Symbol
3140 structure in it. */
3141
d3d47262 3142static struct symbol_block *symbol_block;
fff62aa9 3143static int symbol_block_index = SYMBOL_BLOCK_SIZE;
7146af97 3144
34400008
GM
3145/* List of free symbols. */
3146
d3d47262 3147static struct Lisp_Symbol *symbol_free_list;
7146af97 3148
a7ca3326 3149DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
a6266d23 3150 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
7ee72033 3151Its value and function definition are void, and its property list is nil. */)
5842a27b 3152 (Lisp_Object name)
7146af97
JB
3153{
3154 register Lisp_Object val;
3155 register struct Lisp_Symbol *p;
3156
b7826503 3157 CHECK_STRING (name);
7146af97 3158
dafc79fa 3159 MALLOC_BLOCK_INPUT;
e2984df0 3160
7146af97
JB
3161 if (symbol_free_list)
3162 {
45d12a89 3163 XSETSYMBOL (val, symbol_free_list);
28a099a4 3164 symbol_free_list = symbol_free_list->next;
7146af97
JB
3165 }
3166 else
3167 {
3168 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
3169 {
38182d90
PE
3170 struct symbol_block *new
3171 = lisp_malloc (sizeof *new, MEM_TYPE_SYMBOL);
7146af97
JB
3172 new->next = symbol_block;
3173 symbol_block = new;
3174 symbol_block_index = 0;
3900d5de 3175 total_free_symbols += SYMBOL_BLOCK_SIZE;
7146af97 3176 }
d55c12ed 3177 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index].s);
6b61353c 3178 symbol_block_index++;
7146af97 3179 }
177c0ea7 3180
dafc79fa 3181 MALLOC_UNBLOCK_INPUT;
e2984df0 3182
7146af97 3183 p = XSYMBOL (val);
c644523b
DA
3184 set_symbol_name (val, name);
3185 set_symbol_plist (val, Qnil);
ce5b453a
SM
3186 p->redirect = SYMBOL_PLAINVAL;
3187 SET_SYMBOL_VAL (p, Qunbound);
c644523b
DA
3188 set_symbol_function (val, Qunbound);
3189 set_symbol_next (val, NULL);
2336fe58 3190 p->gcmarkbit = 0;
9e713715
GM
3191 p->interned = SYMBOL_UNINTERNED;
3192 p->constant = 0;
b9598260 3193 p->declared_special = 0;
2e471eb5
GM
3194 consing_since_gc += sizeof (struct Lisp_Symbol);
3195 symbols_consed++;
3900d5de 3196 total_free_symbols--;
7146af97
JB
3197 return val;
3198}
3199
3f25e183 3200
2e471eb5
GM
3201\f
3202/***********************************************************************
34400008 3203 Marker (Misc) Allocation
2e471eb5 3204 ***********************************************************************/
3f25e183 3205
d55c12ed
AS
3206/* Like union Lisp_Misc, but padded so that its size is a multiple of
3207 the required alignment when LSB tags are used. */
3208
3209union aligned_Lisp_Misc
3210{
3211 union Lisp_Misc m;
bfe3e0a2 3212#if USE_LSB_TAG
2b90362b
DA
3213 unsigned char c[(sizeof (union Lisp_Misc) + GCALIGNMENT - 1)
3214 & -GCALIGNMENT];
d55c12ed
AS
3215#endif
3216};
3217
2e471eb5
GM
3218/* Allocation of markers and other objects that share that structure.
3219 Works like allocation of conses. */
c0696668 3220
2e471eb5 3221#define MARKER_BLOCK_SIZE \
d55c12ed 3222 ((1020 - sizeof (struct marker_block *)) / sizeof (union aligned_Lisp_Misc))
2e471eb5
GM
3223
3224struct marker_block
c0696668 3225{
6b61353c 3226 /* Place `markers' first, to preserve alignment. */
d55c12ed 3227 union aligned_Lisp_Misc markers[MARKER_BLOCK_SIZE];
6b61353c 3228 struct marker_block *next;
2e471eb5 3229};
c0696668 3230
d3d47262 3231static struct marker_block *marker_block;
fff62aa9 3232static int marker_block_index = MARKER_BLOCK_SIZE;
c0696668 3233
d3d47262 3234static union Lisp_Misc *marker_free_list;
c0696668 3235
d7a7fda3 3236/* Return a newly allocated Lisp_Misc object of specified TYPE. */
2e471eb5 3237
d7a7fda3
DA
3238static Lisp_Object
3239allocate_misc (enum Lisp_Misc_Type type)
7146af97 3240{
2e471eb5 3241 Lisp_Object val;
7146af97 3242
dafc79fa 3243 MALLOC_BLOCK_INPUT;
cfb2f32e 3244
2e471eb5 3245 if (marker_free_list)
7146af97 3246 {
2e471eb5
GM
3247 XSETMISC (val, marker_free_list);
3248 marker_free_list = marker_free_list->u_free.chain;
7146af97
JB
3249 }
3250 else
7146af97 3251 {
2e471eb5
GM
3252 if (marker_block_index == MARKER_BLOCK_SIZE)
3253 {
38182d90 3254 struct marker_block *new = lisp_malloc (sizeof *new, MEM_TYPE_MISC);
2e471eb5
GM
3255 new->next = marker_block;
3256 marker_block = new;
3257 marker_block_index = 0;
7b7990cc 3258 total_free_markers += MARKER_BLOCK_SIZE;
2e471eb5 3259 }
d55c12ed 3260 XSETMISC (val, &marker_block->markers[marker_block_index].m);
6b61353c 3261 marker_block_index++;
7146af97 3262 }
177c0ea7 3263
dafc79fa 3264 MALLOC_UNBLOCK_INPUT;
e2984df0 3265
7b7990cc 3266 --total_free_markers;
2e471eb5
GM
3267 consing_since_gc += sizeof (union Lisp_Misc);
3268 misc_objects_consed++;
d7a7fda3 3269 XMISCTYPE (val) = type;
67ee9f6e 3270 XMISCANY (val)->gcmarkbit = 0;
2e471eb5
GM
3271 return val;
3272}
3273
7b7990cc
KS
3274/* Free a Lisp_Misc object */
3275
244ed907 3276static void
971de7fb 3277free_misc (Lisp_Object misc)
7b7990cc 3278{
d314756e 3279 XMISCTYPE (misc) = Lisp_Misc_Free;
7b7990cc
KS
3280 XMISC (misc)->u_free.chain = marker_free_list;
3281 marker_free_list = XMISC (misc);
0dd6d66d 3282 consing_since_gc -= sizeof (union Lisp_Misc);
7b7990cc
KS
3283 total_free_markers++;
3284}
3285
42172a6b
RS
3286/* Return a Lisp_Misc_Save_Value object containing POINTER and
3287 INTEGER. This is used to package C values to call record_unwind_protect.
3288 The unwind function can get the C values back using XSAVE_VALUE. */
3289
3290Lisp_Object
9c4c5f81 3291make_save_value (void *pointer, ptrdiff_t integer)
42172a6b
RS
3292{
3293 register Lisp_Object val;
3294 register struct Lisp_Save_Value *p;
3295
d7a7fda3 3296 val = allocate_misc (Lisp_Misc_Save_Value);
42172a6b
RS
3297 p = XSAVE_VALUE (val);
3298 p->pointer = pointer;
3299 p->integer = integer;
b766f870 3300 p->dogc = 0;
42172a6b
RS
3301 return val;
3302}
3303
d7a7fda3
DA
3304/* Return a Lisp_Misc_Overlay object with specified START, END and PLIST. */
3305
3306Lisp_Object
3307build_overlay (Lisp_Object start, Lisp_Object end, Lisp_Object plist)
3308{
3309 register Lisp_Object overlay;
3310
3311 overlay = allocate_misc (Lisp_Misc_Overlay);
3312 OVERLAY_START (overlay) = start;
3313 OVERLAY_END (overlay) = end;
c644523b 3314 set_overlay_plist (overlay, plist);
d7a7fda3
DA
3315 XOVERLAY (overlay)->next = NULL;
3316 return overlay;
3317}
3318
a7ca3326 3319DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
a6266d23 3320 doc: /* Return a newly allocated marker which does not point at any place. */)
5842a27b 3321 (void)
2e471eb5 3322{
eeaea515
DA
3323 register Lisp_Object val;
3324 register struct Lisp_Marker *p;
7146af97 3325
eeaea515
DA
3326 val = allocate_misc (Lisp_Misc_Marker);
3327 p = XMARKER (val);
3328 p->buffer = 0;
3329 p->bytepos = 0;
3330 p->charpos = 0;
3331 p->next = NULL;
3332 p->insertion_type = 0;
3333 return val;
7146af97 3334}
2e471eb5 3335
657924ff
DA
3336/* Return a newly allocated marker which points into BUF
3337 at character position CHARPOS and byte position BYTEPOS. */
3338
3339Lisp_Object
3340build_marker (struct buffer *buf, ptrdiff_t charpos, ptrdiff_t bytepos)
3341{
eeaea515
DA
3342 Lisp_Object obj;
3343 struct Lisp_Marker *m;
657924ff
DA
3344
3345 /* No dead buffers here. */
e578f381 3346 eassert (BUFFER_LIVE_P (buf));
657924ff 3347
eeaea515
DA
3348 /* Every character is at least one byte. */
3349 eassert (charpos <= bytepos);
3350
3351 obj = allocate_misc (Lisp_Misc_Marker);
3352 m = XMARKER (obj);
3353 m->buffer = buf;
3354 m->charpos = charpos;
3355 m->bytepos = bytepos;
3356 m->insertion_type = 0;
3357 m->next = BUF_MARKERS (buf);
3358 BUF_MARKERS (buf) = m;
3359 return obj;
657924ff
DA
3360}
3361
2e471eb5
GM
3362/* Put MARKER back on the free list after using it temporarily. */
3363
3364void
971de7fb 3365free_marker (Lisp_Object marker)
2e471eb5 3366{
ef89c2ce 3367 unchain_marker (XMARKER (marker));
7b7990cc 3368 free_misc (marker);
2e471eb5
GM
3369}
3370
c0696668 3371\f
7146af97 3372/* Return a newly created vector or string with specified arguments as
736471d1
RS
3373 elements. If all the arguments are characters that can fit
3374 in a string of events, make a string; otherwise, make a vector.
3375
3376 Any number of arguments, even zero arguments, are allowed. */
7146af97
JB
3377
3378Lisp_Object
971de7fb 3379make_event_array (register int nargs, Lisp_Object *args)
7146af97
JB
3380{
3381 int i;
3382
3383 for (i = 0; i < nargs; i++)
736471d1 3384 /* The things that fit in a string
c9ca4659
RS
3385 are characters that are in 0...127,
3386 after discarding the meta bit and all the bits above it. */
e687453f 3387 if (!INTEGERP (args[i])
c11285dc 3388 || (XINT (args[i]) & ~(-CHAR_META)) >= 0200)
7146af97
JB
3389 return Fvector (nargs, args);
3390
3391 /* Since the loop exited, we know that all the things in it are
3392 characters, so we can make a string. */
3393 {
c13ccad2 3394 Lisp_Object result;
177c0ea7 3395
50aee051 3396 result = Fmake_string (make_number (nargs), make_number (0));
7146af97 3397 for (i = 0; i < nargs; i++)
736471d1 3398 {
46e7e6b0 3399 SSET (result, i, XINT (args[i]));
736471d1
RS
3400 /* Move the meta bit to the right place for a string char. */
3401 if (XINT (args[i]) & CHAR_META)
46e7e6b0 3402 SSET (result, i, SREF (result, i) | 0x80);
736471d1 3403 }
177c0ea7 3404
7146af97
JB
3405 return result;
3406 }
3407}
2e471eb5
GM
3408
3409
7146af97 3410\f
24d8a105
RS
3411/************************************************************************
3412 Memory Full Handling
3413 ************************************************************************/
3414
3415
531b0165
PE
3416/* Called if malloc (NBYTES) returns zero. If NBYTES == SIZE_MAX,
3417 there may have been size_t overflow so that malloc was never
3418 called, or perhaps malloc was invoked successfully but the
3419 resulting pointer had problems fitting into a tagged EMACS_INT. In
3420 either case this counts as memory being full even though malloc did
3421 not fail. */
24d8a105
RS
3422
3423void
531b0165 3424memory_full (size_t nbytes)
24d8a105 3425{
531b0165 3426 /* Do not go into hysterics merely because a large request failed. */
fce31d69 3427 bool enough_free_memory = 0;
2b6148e4 3428 if (SPARE_MEMORY < nbytes)
531b0165 3429 {
66606eea
PE
3430 void *p;
3431
3432 MALLOC_BLOCK_INPUT;
3433 p = malloc (SPARE_MEMORY);
531b0165
PE
3434 if (p)
3435 {
4d09bcf6 3436 free (p);
531b0165
PE
3437 enough_free_memory = 1;
3438 }
66606eea 3439 MALLOC_UNBLOCK_INPUT;
531b0165 3440 }
24d8a105 3441
531b0165
PE
3442 if (! enough_free_memory)
3443 {
3444 int i;
24d8a105 3445
531b0165
PE
3446 Vmemory_full = Qt;
3447
3448 memory_full_cons_threshold = sizeof (struct cons_block);
3449
3450 /* The first time we get here, free the spare memory. */
3451 for (i = 0; i < sizeof (spare_memory) / sizeof (char *); i++)
3452 if (spare_memory[i])
3453 {
3454 if (i == 0)
3455 free (spare_memory[i]);
3456 else if (i >= 1 && i <= 4)
3457 lisp_align_free (spare_memory[i]);
3458 else
3459 lisp_free (spare_memory[i]);
3460 spare_memory[i] = 0;
3461 }
531b0165 3462 }
24d8a105
RS
3463
3464 /* This used to call error, but if we've run out of memory, we could
3465 get infinite recursion trying to build the string. */
9b306d37 3466 xsignal (Qnil, Vmemory_signal_data);
24d8a105
RS
3467}
3468
3469/* If we released our reserve (due to running out of memory),
3470 and we have a fair amount free once again,
3471 try to set aside another reserve in case we run out once more.
3472
3473 This is called when a relocatable block is freed in ralloc.c,
3474 and also directly from this file, in case we're not using ralloc.c. */
3475
3476void
971de7fb 3477refill_memory_reserve (void)
24d8a105
RS
3478{
3479#ifndef SYSTEM_MALLOC
3480 if (spare_memory[0] == 0)
38182d90 3481 spare_memory[0] = malloc (SPARE_MEMORY);
24d8a105 3482 if (spare_memory[1] == 0)
38182d90 3483 spare_memory[1] = lisp_align_malloc (sizeof (struct cons_block),
35aaa1ea 3484 MEM_TYPE_SPARE);
24d8a105 3485 if (spare_memory[2] == 0)
38182d90 3486 spare_memory[2] = lisp_align_malloc (sizeof (struct cons_block),
35aaa1ea 3487 MEM_TYPE_SPARE);
24d8a105 3488 if (spare_memory[3] == 0)
38182d90 3489 spare_memory[3] = lisp_align_malloc (sizeof (struct cons_block),
35aaa1ea 3490 MEM_TYPE_SPARE);
24d8a105 3491 if (spare_memory[4] == 0)
38182d90 3492 spare_memory[4] = lisp_align_malloc (sizeof (struct cons_block),
35aaa1ea 3493 MEM_TYPE_SPARE);
24d8a105 3494 if (spare_memory[5] == 0)
38182d90 3495 spare_memory[5] = lisp_malloc (sizeof (struct string_block),
35aaa1ea 3496 MEM_TYPE_SPARE);
24d8a105 3497 if (spare_memory[6] == 0)
38182d90 3498 spare_memory[6] = lisp_malloc (sizeof (struct string_block),
35aaa1ea 3499 MEM_TYPE_SPARE);
24d8a105
RS
3500 if (spare_memory[0] && spare_memory[1] && spare_memory[5])
3501 Vmemory_full = Qnil;
3502#endif
3503}
3504\f
34400008
GM
3505/************************************************************************
3506 C Stack Marking
3507 ************************************************************************/
3508
13c844fb
GM
3509#if GC_MARK_STACK || defined GC_MALLOC_CHECK
3510
71cf5fa0
GM
3511/* Conservative C stack marking requires a method to identify possibly
3512 live Lisp objects given a pointer value. We do this by keeping
3513 track of blocks of Lisp data that are allocated in a red-black tree
3514 (see also the comment of mem_node which is the type of nodes in
3515 that tree). Function lisp_malloc adds information for an allocated
3516 block to the red-black tree with calls to mem_insert, and function
3517 lisp_free removes it with mem_delete. Functions live_string_p etc
3518 call mem_find to lookup information about a given pointer in the
3519 tree, and use that to determine if the pointer points to a Lisp
3520 object or not. */
3521
34400008
GM
3522/* Initialize this part of alloc.c. */
3523
3524static void
971de7fb 3525mem_init (void)
34400008
GM
3526{
3527 mem_z.left = mem_z.right = MEM_NIL;
3528 mem_z.parent = NULL;
3529 mem_z.color = MEM_BLACK;
3530 mem_z.start = mem_z.end = NULL;
3531 mem_root = MEM_NIL;
3532}
3533
3534
3535/* Value is a pointer to the mem_node containing START. Value is
3536 MEM_NIL if there is no node in the tree containing START. */
3537
55d4c1b2 3538static inline struct mem_node *
971de7fb 3539mem_find (void *start)
34400008
GM
3540{
3541 struct mem_node *p;
3542
ece93c02
GM
3543 if (start < min_heap_address || start > max_heap_address)
3544 return MEM_NIL;
3545
34400008
GM
3546 /* Make the search always successful to speed up the loop below. */
3547 mem_z.start = start;
3548 mem_z.end = (char *) start + 1;
3549
3550 p = mem_root;
3551 while (start < p->start || start >= p->end)
3552 p = start < p->start ? p->left : p->right;
3553 return p;
3554}
3555
3556
3557/* Insert a new node into the tree for a block of memory with start
3558 address START, end address END, and type TYPE. Value is a
3559 pointer to the node that was inserted. */
3560
3561static struct mem_node *
971de7fb 3562mem_insert (void *start, void *end, enum mem_type type)
34400008
GM
3563{
3564 struct mem_node *c, *parent, *x;
3565
add3c3ea 3566 if (min_heap_address == NULL || start < min_heap_address)
ece93c02 3567 min_heap_address = start;
add3c3ea 3568 if (max_heap_address == NULL || end > max_heap_address)
ece93c02
GM
3569 max_heap_address = end;
3570
34400008
GM
3571 /* See where in the tree a node for START belongs. In this
3572 particular application, it shouldn't happen that a node is already
3573 present. For debugging purposes, let's check that. */
3574 c = mem_root;
3575 parent = NULL;
3576
3577#if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
177c0ea7 3578
34400008
GM
3579 while (c != MEM_NIL)
3580 {
3581 if (start >= c->start && start < c->end)
1088b922 3582 emacs_abort ();
34400008
GM
3583 parent = c;
3584 c = start < c->start ? c->left : c->right;
3585 }
177c0ea7 3586
34400008 3587#else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
177c0ea7 3588
34400008
GM
3589 while (c != MEM_NIL)
3590 {
3591 parent = c;
3592 c = start < c->start ? c->left : c->right;
3593 }
177c0ea7 3594
34400008
GM
3595#endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3596
3597 /* Create a new node. */
877935b1 3598#ifdef GC_MALLOC_CHECK
0caaedb1 3599 x = malloc (sizeof *x);
877935b1 3600 if (x == NULL)
1088b922 3601 emacs_abort ();
877935b1 3602#else
23f86fce 3603 x = xmalloc (sizeof *x);
877935b1 3604#endif
34400008
GM
3605 x->start = start;
3606 x->end = end;
3607 x->type = type;
3608 x->parent = parent;
3609 x->left = x->right = MEM_NIL;
3610 x->color = MEM_RED;
3611
3612 /* Insert it as child of PARENT or install it as root. */
3613 if (parent)
3614 {
3615 if (start < parent->start)
3616 parent->left = x;
3617 else
3618 parent->right = x;
3619 }
177c0ea7 3620 else
34400008
GM
3621 mem_root = x;
3622
3623 /* Re-establish red-black tree properties. */
3624 mem_insert_fixup (x);
877935b1 3625
34400008
GM
3626 return x;
3627}
3628
3629
3630/* Re-establish the red-black properties of the tree, and thereby
3631 balance the tree, after node X has been inserted; X is always red. */
3632
3633static void
971de7fb 3634mem_insert_fixup (struct mem_node *x)
34400008
GM
3635{
3636 while (x != mem_root && x->parent->color == MEM_RED)
3637 {
3638 /* X is red and its parent is red. This is a violation of
3639 red-black tree property #3. */
177c0ea7 3640
34400008
GM
3641 if (x->parent == x->parent->parent->left)
3642 {
3643 /* We're on the left side of our grandparent, and Y is our
3644 "uncle". */
3645 struct mem_node *y = x->parent->parent->right;
177c0ea7 3646
34400008
GM
3647 if (y->color == MEM_RED)
3648 {
3649 /* Uncle and parent are red but should be black because
3650 X is red. Change the colors accordingly and proceed
3651 with the grandparent. */
3652 x->parent->color = MEM_BLACK;
3653 y->color = MEM_BLACK;
3654 x->parent->parent->color = MEM_RED;
3655 x = x->parent->parent;
3656 }
3657 else
3658 {
3659 /* Parent and uncle have different colors; parent is
3660 red, uncle is black. */
3661 if (x == x->parent->right)
3662 {
3663 x = x->parent;
3664 mem_rotate_left (x);
3665 }
3666
3667 x->parent->color = MEM_BLACK;
3668 x->parent->parent->color = MEM_RED;
3669 mem_rotate_right (x->parent->parent);
3670 }
3671 }
3672 else
3673 {
3674 /* This is the symmetrical case of above. */
3675 struct mem_node *y = x->parent->parent->left;
177c0ea7 3676
34400008
GM
3677 if (y->color == MEM_RED)
3678 {
3679 x->parent->color = MEM_BLACK;
3680 y->color = MEM_BLACK;
3681 x->parent->parent->color = MEM_RED;
3682 x = x->parent->parent;
3683 }
3684 else
3685 {
3686 if (x == x->parent->left)
3687 {
3688 x = x->parent;
3689 mem_rotate_right (x);
3690 }
177c0ea7 3691
34400008
GM
3692 x->parent->color = MEM_BLACK;
3693 x->parent->parent->color = MEM_RED;
3694 mem_rotate_left (x->parent->parent);
3695 }
3696 }
3697 }
3698
3699 /* The root may have been changed to red due to the algorithm. Set
3700 it to black so that property #5 is satisfied. */
3701 mem_root->color = MEM_BLACK;
3702}
3703
3704
177c0ea7
JB
3705/* (x) (y)
3706 / \ / \
34400008
GM
3707 a (y) ===> (x) c
3708 / \ / \
3709 b c a b */
3710
3711static void
971de7fb 3712mem_rotate_left (struct mem_node *x)
34400008
GM
3713{
3714 struct mem_node *y;
3715
3716 /* Turn y's left sub-tree into x's right sub-tree. */
3717 y = x->right;
3718 x->right = y->left;
3719 if (y->left != MEM_NIL)
3720 y->left->parent = x;
3721
3722 /* Y's parent was x's parent. */
3723 if (y != MEM_NIL)
3724 y->parent = x->parent;
3725
3726 /* Get the parent to point to y instead of x. */
3727 if (x->parent)
3728 {
3729 if (x == x->parent->left)
3730 x->parent->left = y;
3731 else
3732 x->parent->right = y;
3733 }
3734 else
3735 mem_root = y;
3736
3737 /* Put x on y's left. */
3738 y->left = x;
3739 if (x != MEM_NIL)
3740 x->parent = y;
3741}
3742
3743
177c0ea7
JB
3744/* (x) (Y)
3745 / \ / \
3746 (y) c ===> a (x)
3747 / \ / \
34400008
GM
3748 a b b c */
3749
3750static void
971de7fb 3751mem_rotate_right (struct mem_node *x)
34400008
GM
3752{
3753 struct mem_node *y = x->left;
3754
3755 x->left = y->right;
3756 if (y->right != MEM_NIL)
3757 y->right->parent = x;
177c0ea7 3758
34400008
GM
3759 if (y != MEM_NIL)
3760 y->parent = x->parent;
3761 if (x->parent)
3762 {
3763 if (x == x->parent->right)
3764 x->parent->right = y;
3765 else
3766 x->parent->left = y;
3767 }
3768 else
3769 mem_root = y;
177c0ea7 3770
34400008
GM
3771 y->right = x;
3772 if (x != MEM_NIL)
3773 x->parent = y;
3774}
3775
3776
3777/* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
3778
3779static void
971de7fb 3780mem_delete (struct mem_node *z)
34400008
GM
3781{
3782 struct mem_node *x, *y;
3783
3784 if (!z || z == MEM_NIL)
3785 return;
3786
3787 if (z->left == MEM_NIL || z->right == MEM_NIL)
3788 y = z;
3789 else
3790 {
3791 y = z->right;
3792 while (y->left != MEM_NIL)
3793 y = y->left;
3794 }
3795
3796 if (y->left != MEM_NIL)
3797 x = y->left;
3798 else
3799 x = y->right;
3800
3801 x->parent = y->parent;
3802 if (y->parent)
3803 {
3804 if (y == y->parent->left)
3805 y->parent->left = x;
3806 else
3807 y->parent->right = x;
3808 }
3809 else
3810 mem_root = x;
3811
3812 if (y != z)
3813 {
3814 z->start = y->start;
3815 z->end = y->end;
3816 z->type = y->type;
3817 }
177c0ea7 3818
34400008
GM
3819 if (y->color == MEM_BLACK)
3820 mem_delete_fixup (x);
877935b1
GM
3821
3822#ifdef GC_MALLOC_CHECK
0caaedb1 3823 free (y);
877935b1 3824#else
34400008 3825 xfree (y);
877935b1 3826#endif
34400008
GM
3827}
3828
3829
3830/* Re-establish the red-black properties of the tree, after a
3831 deletion. */
3832
3833static void
971de7fb 3834mem_delete_fixup (struct mem_node *x)
34400008
GM
3835{
3836 while (x != mem_root && x->color == MEM_BLACK)
3837 {
3838 if (x == x->parent->left)
3839 {
3840 struct mem_node *w = x->parent->right;
177c0ea7 3841
34400008
GM
3842 if (w->color == MEM_RED)
3843 {
3844 w->color = MEM_BLACK;
3845 x->parent->color = MEM_RED;
3846 mem_rotate_left (x->parent);
3847 w = x->parent->right;
3848 }
177c0ea7 3849
34400008
GM
3850 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
3851 {
3852 w->color = MEM_RED;
3853 x = x->parent;
3854 }
3855 else
3856 {
3857 if (w->right->color == MEM_BLACK)
3858 {
3859 w->left->color = MEM_BLACK;
3860 w->color = MEM_RED;
3861 mem_rotate_right (w);
3862 w = x->parent->right;
3863 }
3864 w->color = x->parent->color;
3865 x->parent->color = MEM_BLACK;
3866 w->right->color = MEM_BLACK;
3867 mem_rotate_left (x->parent);
3868 x = mem_root;
3869 }
3870 }
3871 else
3872 {
3873 struct mem_node *w = x->parent->left;
177c0ea7 3874
34400008
GM
3875 if (w->color == MEM_RED)
3876 {
3877 w->color = MEM_BLACK;
3878 x->parent->color = MEM_RED;
3879 mem_rotate_right (x->parent);
3880 w = x->parent->left;
3881 }
177c0ea7 3882
34400008
GM
3883 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
3884 {
3885 w->color = MEM_RED;
3886 x = x->parent;
3887 }
3888 else
3889 {
3890 if (w->left->color == MEM_BLACK)
3891 {
3892 w->right->color = MEM_BLACK;
3893 w->color = MEM_RED;
3894 mem_rotate_left (w);
3895 w = x->parent->left;
3896 }
177c0ea7 3897
34400008
GM
3898 w->color = x->parent->color;
3899 x->parent->color = MEM_BLACK;
3900 w->left->color = MEM_BLACK;
3901 mem_rotate_right (x->parent);
3902 x = mem_root;
3903 }
3904 }
3905 }
177c0ea7 3906
34400008
GM
3907 x->color = MEM_BLACK;
3908}
3909
3910
3911/* Value is non-zero if P is a pointer to a live Lisp string on
3912 the heap. M is a pointer to the mem_block for P. */
3913
fce31d69 3914static inline bool
971de7fb 3915live_string_p (struct mem_node *m, void *p)
34400008
GM
3916{
3917 if (m->type == MEM_TYPE_STRING)
3918 {
3919 struct string_block *b = (struct string_block *) m->start;
14162469 3920 ptrdiff_t offset = (char *) p - (char *) &b->strings[0];
34400008
GM
3921
3922 /* P must point to the start of a Lisp_String structure, and it
3923 must not be on the free-list. */
176bc847
GM
3924 return (offset >= 0
3925 && offset % sizeof b->strings[0] == 0
6b61353c 3926 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
34400008
GM
3927 && ((struct Lisp_String *) p)->data != NULL);
3928 }
3929 else
3930 return 0;
3931}
3932
3933
3934/* Value is non-zero if P is a pointer to a live Lisp cons on
3935 the heap. M is a pointer to the mem_block for P. */
3936
fce31d69 3937static inline bool
971de7fb 3938live_cons_p (struct mem_node *m, void *p)
34400008
GM
3939{
3940 if (m->type == MEM_TYPE_CONS)
3941 {
3942 struct cons_block *b = (struct cons_block *) m->start;
14162469 3943 ptrdiff_t offset = (char *) p - (char *) &b->conses[0];
34400008
GM
3944
3945 /* P must point to the start of a Lisp_Cons, not be
3946 one of the unused cells in the current cons block,
3947 and not be on the free-list. */
176bc847
GM
3948 return (offset >= 0
3949 && offset % sizeof b->conses[0] == 0
6b61353c 3950 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
34400008
GM
3951 && (b != cons_block
3952 || offset / sizeof b->conses[0] < cons_block_index)
c644523b 3953 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
34400008
GM
3954 }
3955 else
3956 return 0;
3957}
3958
3959
3960/* Value is non-zero if P is a pointer to a live Lisp symbol on
3961 the heap. M is a pointer to the mem_block for P. */
3962
fce31d69 3963static inline bool
971de7fb 3964live_symbol_p (struct mem_node *m, void *p)
34400008
GM
3965{
3966 if (m->type == MEM_TYPE_SYMBOL)
3967 {
3968 struct symbol_block *b = (struct symbol_block *) m->start;
14162469 3969 ptrdiff_t offset = (char *) p - (char *) &b->symbols[0];
177c0ea7 3970
34400008
GM
3971 /* P must point to the start of a Lisp_Symbol, not be
3972 one of the unused cells in the current symbol block,
3973 and not be on the free-list. */
176bc847
GM
3974 return (offset >= 0
3975 && offset % sizeof b->symbols[0] == 0
6b61353c 3976 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
34400008
GM
3977 && (b != symbol_block
3978 || offset / sizeof b->symbols[0] < symbol_block_index)
c644523b 3979 && !EQ (((struct Lisp_Symbol *)p)->function, Vdead));
34400008
GM
3980 }
3981 else
3982 return 0;
3983}
3984
3985
3986/* Value is non-zero if P is a pointer to a live Lisp float on
3987 the heap. M is a pointer to the mem_block for P. */
3988
fce31d69 3989static inline bool
971de7fb 3990live_float_p (struct mem_node *m, void *p)
34400008
GM
3991{
3992 if (m->type == MEM_TYPE_FLOAT)
3993 {
3994 struct float_block *b = (struct float_block *) m->start;
14162469 3995 ptrdiff_t offset = (char *) p - (char *) &b->floats[0];
177c0ea7 3996
ab6780cd
SM
3997 /* P must point to the start of a Lisp_Float and not be
3998 one of the unused cells in the current float block. */
176bc847
GM
3999 return (offset >= 0
4000 && offset % sizeof b->floats[0] == 0
6b61353c 4001 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
34400008 4002 && (b != float_block
ab6780cd 4003 || offset / sizeof b->floats[0] < float_block_index));
34400008
GM
4004 }
4005 else
4006 return 0;
4007}
4008
4009
4010/* Value is non-zero if P is a pointer to a live Lisp Misc on
4011 the heap. M is a pointer to the mem_block for P. */
4012
fce31d69 4013static inline bool
971de7fb 4014live_misc_p (struct mem_node *m, void *p)
34400008
GM
4015{
4016 if (m->type == MEM_TYPE_MISC)
4017 {
4018 struct marker_block *b = (struct marker_block *) m->start;
14162469 4019 ptrdiff_t offset = (char *) p - (char *) &b->markers[0];
177c0ea7 4020
34400008
GM
4021 /* P must point to the start of a Lisp_Misc, not be
4022 one of the unused cells in the current misc block,
4023 and not be on the free-list. */
176bc847
GM
4024 return (offset >= 0
4025 && offset % sizeof b->markers[0] == 0
6b61353c 4026 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
34400008
GM
4027 && (b != marker_block
4028 || offset / sizeof b->markers[0] < marker_block_index)
d314756e 4029 && ((union Lisp_Misc *) p)->u_any.type != Lisp_Misc_Free);
34400008
GM
4030 }
4031 else
4032 return 0;
4033}
4034
4035
4036/* Value is non-zero if P is a pointer to a live vector-like object.
4037 M is a pointer to the mem_block for P. */
4038
fce31d69 4039static inline bool
971de7fb 4040live_vector_p (struct mem_node *m, void *p)
34400008 4041{
f3372c87
DA
4042 if (m->type == MEM_TYPE_VECTOR_BLOCK)
4043 {
4044 /* This memory node corresponds to a vector block. */
4045 struct vector_block *block = (struct vector_block *) m->start;
4046 struct Lisp_Vector *vector = (struct Lisp_Vector *) block->data;
4047
4048 /* P is in the block's allocation range. Scan the block
4049 up to P and see whether P points to the start of some
4050 vector which is not on a free list. FIXME: check whether
4051 some allocation patterns (probably a lot of short vectors)
4052 may cause a substantial overhead of this loop. */
4053 while (VECTOR_IN_BLOCK (vector, block)
4054 && vector <= (struct Lisp_Vector *) p)
4055 {
ee28be33 4056 if (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_FREE))
f3372c87 4057 vector = ADVANCE (vector, (vector->header.size
ee28be33 4058 & PSEUDOVECTOR_SIZE_MASK));
f3372c87
DA
4059 else if (vector == p)
4060 return 1;
4061 else
4062 vector = ADVANCE (vector, vector->header.next.nbytes);
4063 }
4064 }
4065 else if (m->type == MEM_TYPE_VECTORLIKE && p == m->start)
4066 /* This memory node corresponds to a large vector. */
4067 return 1;
4068 return 0;
34400008
GM
4069}
4070
4071
2336fe58 4072/* Value is non-zero if P is a pointer to a live buffer. M is a
34400008
GM
4073 pointer to the mem_block for P. */
4074
fce31d69 4075static inline bool
971de7fb 4076live_buffer_p (struct mem_node *m, void *p)
34400008
GM
4077{
4078 /* P must point to the start of the block, and the buffer
4079 must not have been killed. */
4080 return (m->type == MEM_TYPE_BUFFER
4081 && p == m->start
e34f7f79 4082 && !NILP (((struct buffer *) p)->INTERNAL_FIELD (name)));
34400008
GM
4083}
4084
13c844fb
GM
4085#endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
4086
4087#if GC_MARK_STACK
4088
34400008
GM
4089#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4090
4091/* Array of objects that are kept alive because the C stack contains
4092 a pattern that looks like a reference to them . */
4093
4094#define MAX_ZOMBIES 10
4095static Lisp_Object zombies[MAX_ZOMBIES];
4096
4097/* Number of zombie objects. */
4098
211a0b2a 4099static EMACS_INT nzombies;
34400008
GM
4100
4101/* Number of garbage collections. */
4102
211a0b2a 4103static EMACS_INT ngcs;
34400008
GM
4104
4105/* Average percentage of zombies per collection. */
4106
4107static double avg_zombies;
4108
4109/* Max. number of live and zombie objects. */
4110
211a0b2a 4111static EMACS_INT max_live, max_zombies;
34400008
GM
4112
4113/* Average number of live objects per GC. */
4114
4115static double avg_live;
4116
a7ca3326 4117DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
7ee72033 4118 doc: /* Show information about live and zombie objects. */)
5842a27b 4119 (void)
34400008 4120{
83fc9c63 4121 Lisp_Object args[8], zombie_list = Qnil;
211a0b2a 4122 EMACS_INT i;
6e4b3fbe 4123 for (i = 0; i < min (MAX_ZOMBIES, nzombies); i++)
83fc9c63
DL
4124 zombie_list = Fcons (zombies[i], zombie_list);
4125 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
34400008
GM
4126 args[1] = make_number (ngcs);
4127 args[2] = make_float (avg_live);
4128 args[3] = make_float (avg_zombies);
4129 args[4] = make_float (avg_zombies / avg_live / 100);
4130 args[5] = make_number (max_live);
4131 args[6] = make_number (max_zombies);
83fc9c63
DL
4132 args[7] = zombie_list;
4133 return Fmessage (8, args);
34400008
GM
4134}
4135
4136#endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4137
4138
182ff242
GM
4139/* Mark OBJ if we can prove it's a Lisp_Object. */
4140
55d4c1b2 4141static inline void
971de7fb 4142mark_maybe_object (Lisp_Object obj)
182ff242 4143{
b609f591
YM
4144 void *po;
4145 struct mem_node *m;
4146
4147 if (INTEGERP (obj))
4148 return;
4149
4150 po = (void *) XPNTR (obj);
4151 m = mem_find (po);
177c0ea7 4152
182ff242
GM
4153 if (m != MEM_NIL)
4154 {
fce31d69 4155 bool mark_p = 0;
182ff242 4156
8e50cc2d 4157 switch (XTYPE (obj))
182ff242
GM
4158 {
4159 case Lisp_String:
4160 mark_p = (live_string_p (m, po)
4161 && !STRING_MARKED_P ((struct Lisp_String *) po));
4162 break;
4163
4164 case Lisp_Cons:
08b7c2cb 4165 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
182ff242
GM
4166 break;
4167
4168 case Lisp_Symbol:
2336fe58 4169 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
182ff242
GM
4170 break;
4171
4172 case Lisp_Float:
ab6780cd 4173 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
182ff242
GM
4174 break;
4175
4176 case Lisp_Vectorlike:
8e50cc2d 4177 /* Note: can't check BUFFERP before we know it's a
182ff242
GM
4178 buffer because checking that dereferences the pointer
4179 PO which might point anywhere. */
4180 if (live_vector_p (m, po))
8e50cc2d 4181 mark_p = !SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
182ff242 4182 else if (live_buffer_p (m, po))
8e50cc2d 4183 mark_p = BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
182ff242
GM
4184 break;
4185
4186 case Lisp_Misc:
67ee9f6e 4187 mark_p = (live_misc_p (m, po) && !XMISCANY (obj)->gcmarkbit);
182ff242 4188 break;
6bbd7a29 4189
2de9f71c 4190 default:
6bbd7a29 4191 break;
182ff242
GM
4192 }
4193
4194 if (mark_p)
4195 {
4196#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4197 if (nzombies < MAX_ZOMBIES)
83fc9c63 4198 zombies[nzombies] = obj;
182ff242
GM
4199 ++nzombies;
4200#endif
49723c04 4201 mark_object (obj);
182ff242
GM
4202 }
4203 }
4204}
ece93c02
GM
4205
4206
4207/* If P points to Lisp data, mark that as live if it isn't already
4208 marked. */
4209
55d4c1b2 4210static inline void
971de7fb 4211mark_maybe_pointer (void *p)
ece93c02
GM
4212{
4213 struct mem_node *m;
4214
bfe3e0a2 4215 /* Quickly rule out some values which can't point to Lisp data.
2b90362b 4216 USE_LSB_TAG needs Lisp data to be aligned on multiples of GCALIGNMENT.
bfe3e0a2 4217 Otherwise, assume that Lisp data is aligned on even addresses. */
2b90362b 4218 if ((intptr_t) p % (USE_LSB_TAG ? GCALIGNMENT : 2))
ece93c02 4219 return;
177c0ea7 4220
ece93c02
GM
4221 m = mem_find (p);
4222 if (m != MEM_NIL)
4223 {
4224 Lisp_Object obj = Qnil;
177c0ea7 4225
ece93c02
GM
4226 switch (m->type)
4227 {
4228 case MEM_TYPE_NON_LISP:
5474c384 4229 case MEM_TYPE_SPARE:
2fe50224 4230 /* Nothing to do; not a pointer to Lisp memory. */
ece93c02 4231 break;
177c0ea7 4232
ece93c02 4233 case MEM_TYPE_BUFFER:
5e617bc2 4234 if (live_buffer_p (m, p) && !VECTOR_MARKED_P ((struct buffer *)p))
ece93c02
GM
4235 XSETVECTOR (obj, p);
4236 break;
177c0ea7 4237
ece93c02 4238 case MEM_TYPE_CONS:
08b7c2cb 4239 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
ece93c02
GM
4240 XSETCONS (obj, p);
4241 break;
177c0ea7 4242
ece93c02
GM
4243 case MEM_TYPE_STRING:
4244 if (live_string_p (m, p)
4245 && !STRING_MARKED_P ((struct Lisp_String *) p))
4246 XSETSTRING (obj, p);
4247 break;
4248
4249 case MEM_TYPE_MISC:
2336fe58
SM
4250 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
4251 XSETMISC (obj, p);
ece93c02 4252 break;
177c0ea7 4253
ece93c02 4254 case MEM_TYPE_SYMBOL:
2336fe58 4255 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
ece93c02
GM
4256 XSETSYMBOL (obj, p);
4257 break;
177c0ea7 4258
ece93c02 4259 case MEM_TYPE_FLOAT:
ab6780cd 4260 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
ece93c02
GM
4261 XSETFLOAT (obj, p);
4262 break;
177c0ea7 4263
9c545a55 4264 case MEM_TYPE_VECTORLIKE:
f3372c87 4265 case MEM_TYPE_VECTOR_BLOCK:
ece93c02
GM
4266 if (live_vector_p (m, p))
4267 {
4268 Lisp_Object tem;
4269 XSETVECTOR (tem, p);
8e50cc2d 4270 if (!SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
ece93c02
GM
4271 obj = tem;
4272 }
4273 break;
4274
4275 default:
1088b922 4276 emacs_abort ();
ece93c02
GM
4277 }
4278
8e50cc2d 4279 if (!NILP (obj))
49723c04 4280 mark_object (obj);
ece93c02
GM
4281 }
4282}
4283
4284
e32a5799 4285/* Alignment of pointer values. Use alignof, as it sometimes returns
e3fb2efb
PE
4286 a smaller alignment than GCC's __alignof__ and mark_memory might
4287 miss objects if __alignof__ were used. */
e32a5799 4288#define GC_POINTER_ALIGNMENT alignof (void *)
3164aeac 4289
e3fb2efb
PE
4290/* Define POINTERS_MIGHT_HIDE_IN_OBJECTS to 1 if marking via C pointers does
4291 not suffice, which is the typical case. A host where a Lisp_Object is
4292 wider than a pointer might allocate a Lisp_Object in non-adjacent halves.
4293 If USE_LSB_TAG, the bottom half is not a valid pointer, but it should
4294 suffice to widen it to to a Lisp_Object and check it that way. */
bfe3e0a2
PE
4295#if USE_LSB_TAG || VAL_MAX < UINTPTR_MAX
4296# if !USE_LSB_TAG && VAL_MAX < UINTPTR_MAX >> GCTYPEBITS
e3fb2efb
PE
4297 /* If tag bits straddle pointer-word boundaries, neither mark_maybe_pointer
4298 nor mark_maybe_object can follow the pointers. This should not occur on
4299 any practical porting target. */
4300# error "MSB type bits straddle pointer-word boundaries"
4301# endif
4302 /* Marking via C pointers does not suffice, because Lisp_Objects contain
4303 pointer words that hold pointers ORed with type bits. */
4304# define POINTERS_MIGHT_HIDE_IN_OBJECTS 1
4305#else
4306 /* Marking via C pointers suffices, because Lisp_Objects contain pointer
4307 words that hold unmodified pointers. */
4308# define POINTERS_MIGHT_HIDE_IN_OBJECTS 0
4309#endif
4310
55a314a5
YM
4311/* Mark Lisp objects referenced from the address range START+OFFSET..END
4312 or END+OFFSET..START. */
34400008 4313
177c0ea7 4314static void
3164aeac 4315mark_memory (void *start, void *end)
b41253a3
JW
4316#if defined (__clang__) && defined (__has_feature)
4317#if __has_feature(address_sanitizer)
ed6b3510
JW
4318 /* Do not allow -faddress-sanitizer to check this function, since it
4319 crosses the function stack boundary, and thus would yield many
4320 false positives. */
4321 __attribute__((no_address_safety_analysis))
4322#endif
b41253a3 4323#endif
34400008 4324{
ece93c02 4325 void **pp;
3164aeac 4326 int i;
34400008
GM
4327
4328#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4329 nzombies = 0;
4330#endif
4331
4332 /* Make START the pointer to the start of the memory region,
4333 if it isn't already. */
4334 if (end < start)
4335 {
4336 void *tem = start;
4337 start = end;
4338 end = tem;
4339 }
ece93c02 4340
ece93c02
GM
4341 /* Mark Lisp data pointed to. This is necessary because, in some
4342 situations, the C compiler optimizes Lisp objects away, so that
4343 only a pointer to them remains. Example:
4344
4345 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
7ee72033 4346 ()
ece93c02
GM
4347 {
4348 Lisp_Object obj = build_string ("test");
4349 struct Lisp_String *s = XSTRING (obj);
4350 Fgarbage_collect ();
4351 fprintf (stderr, "test `%s'\n", s->data);
4352 return Qnil;
4353 }
4354
4355 Here, `obj' isn't really used, and the compiler optimizes it
4356 away. The only reference to the life string is through the
4357 pointer `s'. */
177c0ea7 4358
3164aeac
PE
4359 for (pp = start; (void *) pp < end; pp++)
4360 for (i = 0; i < sizeof *pp; i += GC_POINTER_ALIGNMENT)
27f3c637 4361 {
e3fb2efb
PE
4362 void *p = *(void **) ((char *) pp + i);
4363 mark_maybe_pointer (p);
4364 if (POINTERS_MIGHT_HIDE_IN_OBJECTS)
646b5f55 4365 mark_maybe_object (XIL ((intptr_t) p));
27f3c637 4366 }
182ff242
GM
4367}
4368
30f637f8
DL
4369/* setjmp will work with GCC unless NON_SAVING_SETJMP is defined in
4370 the GCC system configuration. In gcc 3.2, the only systems for
4371 which this is so are i386-sco5 non-ELF, i386-sysv3 (maybe included
4372 by others?) and ns32k-pc532-min. */
182ff242
GM
4373
4374#if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4375
fce31d69
PE
4376static bool setjmp_tested_p;
4377static int longjmps_done;
182ff242
GM
4378
4379#define SETJMP_WILL_LIKELY_WORK "\
4380\n\
4381Emacs garbage collector has been changed to use conservative stack\n\
4382marking. Emacs has determined that the method it uses to do the\n\
4383marking will likely work on your system, but this isn't sure.\n\
4384\n\
4385If you are a system-programmer, or can get the help of a local wizard\n\
4386who is, please take a look at the function mark_stack in alloc.c, and\n\
4387verify that the methods used are appropriate for your system.\n\
4388\n\
d191623b 4389Please mail the result to <emacs-devel@gnu.org>.\n\
182ff242
GM
4390"
4391
4392#define SETJMP_WILL_NOT_WORK "\
4393\n\
4394Emacs garbage collector has been changed to use conservative stack\n\
4395marking. Emacs has determined that the default method it uses to do the\n\
4396marking will not work on your system. We will need a system-dependent\n\
4397solution for your system.\n\
4398\n\
4399Please take a look at the function mark_stack in alloc.c, and\n\
4400try to find a way to make it work on your system.\n\
30f637f8
DL
4401\n\
4402Note that you may get false negatives, depending on the compiler.\n\
4403In particular, you need to use -O with GCC for this test.\n\
4404\n\
d191623b 4405Please mail the result to <emacs-devel@gnu.org>.\n\
182ff242
GM
4406"
4407
4408
4409/* Perform a quick check if it looks like setjmp saves registers in a
4410 jmp_buf. Print a message to stderr saying so. When this test
4411 succeeds, this is _not_ a proof that setjmp is sufficient for
4412 conservative stack marking. Only the sources or a disassembly
4413 can prove that. */
4414
4415static void
2018939f 4416test_setjmp (void)
182ff242
GM
4417{
4418 char buf[10];
4419 register int x;
0328b6de 4420 sys_jmp_buf jbuf;
182ff242
GM
4421
4422 /* Arrange for X to be put in a register. */
4423 sprintf (buf, "1");
4424 x = strlen (buf);
4425 x = 2 * x - 1;
4426
0328b6de 4427 sys_setjmp (jbuf);
182ff242 4428 if (longjmps_done == 1)
34400008 4429 {
182ff242 4430 /* Came here after the longjmp at the end of the function.
34400008 4431
182ff242
GM
4432 If x == 1, the longjmp has restored the register to its
4433 value before the setjmp, and we can hope that setjmp
4434 saves all such registers in the jmp_buf, although that
4435 isn't sure.
34400008 4436
182ff242
GM
4437 For other values of X, either something really strange is
4438 taking place, or the setjmp just didn't save the register. */
4439
4440 if (x == 1)
4441 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
4442 else
4443 {
4444 fprintf (stderr, SETJMP_WILL_NOT_WORK);
4445 exit (1);
34400008
GM
4446 }
4447 }
182ff242
GM
4448
4449 ++longjmps_done;
4450 x = 2;
4451 if (longjmps_done == 1)
0328b6de 4452 sys_longjmp (jbuf, 1);
34400008
GM
4453}
4454
182ff242
GM
4455#endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
4456
34400008
GM
4457
4458#if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4459
4460/* Abort if anything GCPRO'd doesn't survive the GC. */
4461
4462static void
2018939f 4463check_gcpros (void)
34400008
GM
4464{
4465 struct gcpro *p;
f66c7cf8 4466 ptrdiff_t i;
34400008
GM
4467
4468 for (p = gcprolist; p; p = p->next)
4469 for (i = 0; i < p->nvars; ++i)
4470 if (!survives_gc_p (p->var[i]))
92cc28b2
SM
4471 /* FIXME: It's not necessarily a bug. It might just be that the
4472 GCPRO is unnecessary or should release the object sooner. */
1088b922 4473 emacs_abort ();
34400008
GM
4474}
4475
4476#elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4477
4478static void
2018939f 4479dump_zombies (void)
34400008
GM
4480{
4481 int i;
4482
6e4b3fbe 4483 fprintf (stderr, "\nZombies kept alive = %"pI"d:\n", nzombies);
34400008
GM
4484 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
4485 {
4486 fprintf (stderr, " %d = ", i);
4487 debug_print (zombies[i]);
4488 }
4489}
4490
4491#endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4492
4493
182ff242
GM
4494/* Mark live Lisp objects on the C stack.
4495
4496 There are several system-dependent problems to consider when
4497 porting this to new architectures:
4498
4499 Processor Registers
4500
4501 We have to mark Lisp objects in CPU registers that can hold local
4502 variables or are used to pass parameters.
4503
4504 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4505 something that either saves relevant registers on the stack, or
4506 calls mark_maybe_object passing it each register's contents.
4507
4508 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4509 implementation assumes that calling setjmp saves registers we need
4510 to see in a jmp_buf which itself lies on the stack. This doesn't
4511 have to be true! It must be verified for each system, possibly
4512 by taking a look at the source code of setjmp.
4513
2018939f
AS
4514 If __builtin_unwind_init is available (defined by GCC >= 2.8) we
4515 can use it as a machine independent method to store all registers
4516 to the stack. In this case the macros described in the previous
4517 two paragraphs are not used.
4518
182ff242
GM
4519 Stack Layout
4520
4521 Architectures differ in the way their processor stack is organized.
4522 For example, the stack might look like this
4523
4524 +----------------+
4525 | Lisp_Object | size = 4
4526 +----------------+
4527 | something else | size = 2
4528 +----------------+
4529 | Lisp_Object | size = 4
4530 +----------------+
4531 | ... |
4532
4533 In such a case, not every Lisp_Object will be aligned equally. To
4534 find all Lisp_Object on the stack it won't be sufficient to walk
4535 the stack in steps of 4 bytes. Instead, two passes will be
4536 necessary, one starting at the start of the stack, and a second
4537 pass starting at the start of the stack + 2. Likewise, if the
4538 minimal alignment of Lisp_Objects on the stack is 1, four passes
4539 would be necessary, each one starting with one byte more offset
c9af454e 4540 from the stack start. */
34400008
GM
4541
4542static void
971de7fb 4543mark_stack (void)
34400008 4544{
34400008
GM
4545 void *end;
4546
2018939f
AS
4547#ifdef HAVE___BUILTIN_UNWIND_INIT
4548 /* Force callee-saved registers and register windows onto the stack.
4549 This is the preferred method if available, obviating the need for
4550 machine dependent methods. */
4551 __builtin_unwind_init ();
4552 end = &end;
4553#else /* not HAVE___BUILTIN_UNWIND_INIT */
dff45157
PE
4554#ifndef GC_SAVE_REGISTERS_ON_STACK
4555 /* jmp_buf may not be aligned enough on darwin-ppc64 */
4556 union aligned_jmpbuf {
4557 Lisp_Object o;
0328b6de 4558 sys_jmp_buf j;
dff45157 4559 } j;
fce31d69 4560 volatile bool stack_grows_down_p = (char *) &j > (char *) stack_base;
dff45157 4561#endif
34400008
GM
4562 /* This trick flushes the register windows so that all the state of
4563 the process is contained in the stack. */
ab6780cd 4564 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
422eec7e
DL
4565 needed on ia64 too. See mach_dep.c, where it also says inline
4566 assembler doesn't work with relevant proprietary compilers. */
4a00783e 4567#ifdef __sparc__
4d18a7a2
DN
4568#if defined (__sparc64__) && defined (__FreeBSD__)
4569 /* FreeBSD does not have a ta 3 handler. */
4c1616be
CY
4570 asm ("flushw");
4571#else
34400008 4572 asm ("ta 3");
4c1616be 4573#endif
34400008 4574#endif
177c0ea7 4575
34400008
GM
4576 /* Save registers that we need to see on the stack. We need to see
4577 registers used to hold register variables and registers used to
4578 pass parameters. */
4579#ifdef GC_SAVE_REGISTERS_ON_STACK
4580 GC_SAVE_REGISTERS_ON_STACK (end);
182ff242 4581#else /* not GC_SAVE_REGISTERS_ON_STACK */
177c0ea7 4582
182ff242
GM
4583#ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
4584 setjmp will definitely work, test it
4585 and print a message with the result
4586 of the test. */
4587 if (!setjmp_tested_p)
4588 {
4589 setjmp_tested_p = 1;
4590 test_setjmp ();
4591 }
4592#endif /* GC_SETJMP_WORKS */
177c0ea7 4593
0328b6de 4594 sys_setjmp (j.j);
34400008 4595 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
182ff242 4596#endif /* not GC_SAVE_REGISTERS_ON_STACK */
2018939f 4597#endif /* not HAVE___BUILTIN_UNWIND_INIT */
34400008
GM
4598
4599 /* This assumes that the stack is a contiguous region in memory. If
182ff242
GM
4600 that's not the case, something has to be done here to iterate
4601 over the stack segments. */
3164aeac
PE
4602 mark_memory (stack_base, end);
4603
4dec23ff
AS
4604 /* Allow for marking a secondary stack, like the register stack on the
4605 ia64. */
4606#ifdef GC_MARK_SECONDARY_STACK
4607 GC_MARK_SECONDARY_STACK ();
4608#endif
34400008
GM
4609
4610#if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4611 check_gcpros ();
4612#endif
4613}
4614
34400008
GM
4615#endif /* GC_MARK_STACK != 0 */
4616
4617
7ffb6955 4618/* Determine whether it is safe to access memory at address P. */
d3d47262 4619static int
971de7fb 4620valid_pointer_p (void *p)
7ffb6955 4621{
f892cf9c
EZ
4622#ifdef WINDOWSNT
4623 return w32_valid_pointer_p (p, 16);
4624#else
41bed37d 4625 int fd[2];
7ffb6955
KS
4626
4627 /* Obviously, we cannot just access it (we would SEGV trying), so we
4628 trick the o/s to tell us whether p is a valid pointer.
4629 Unfortunately, we cannot use NULL_DEVICE here, as emacs_write may
4630 not validate p in that case. */
4631
41bed37d 4632 if (pipe (fd) == 0)
7ffb6955 4633 {
fce31d69 4634 bool valid = emacs_write (fd[1], (char *) p, 16) == 16;
41bed37d
PE
4635 emacs_close (fd[1]);
4636 emacs_close (fd[0]);
7ffb6955
KS
4637 return valid;
4638 }
4639
4640 return -1;
f892cf9c 4641#endif
7ffb6955 4642}
3cd55735 4643
c1ca42ca
DA
4644/* Return 2 if OBJ is a killed or special buffer object.
4645 Return 1 if OBJ is a valid lisp object.
3cd55735
KS
4646 Return 0 if OBJ is NOT a valid lisp object.
4647 Return -1 if we cannot validate OBJ.
7c0ab7d9
RS
4648 This function can be quite slow,
4649 so it should only be used in code for manual debugging. */
3cd55735
KS
4650
4651int
971de7fb 4652valid_lisp_object_p (Lisp_Object obj)
3cd55735 4653{
de7124a7 4654 void *p;
7ffb6955 4655#if GC_MARK_STACK
3cd55735 4656 struct mem_node *m;
de7124a7 4657#endif
3cd55735
KS
4658
4659 if (INTEGERP (obj))
4660 return 1;
4661
4662 p = (void *) XPNTR (obj);
3cd55735
KS
4663 if (PURE_POINTER_P (p))
4664 return 1;
4665
c1ca42ca
DA
4666 if (p == &buffer_defaults || p == &buffer_local_symbols)
4667 return 2;
4668
de7124a7 4669#if !GC_MARK_STACK
7ffb6955 4670 return valid_pointer_p (p);
de7124a7
KS
4671#else
4672
3cd55735
KS
4673 m = mem_find (p);
4674
4675 if (m == MEM_NIL)
7ffb6955
KS
4676 {
4677 int valid = valid_pointer_p (p);
4678 if (valid <= 0)
4679 return valid;
4680
4681 if (SUBRP (obj))
4682 return 1;
4683
4684 return 0;
4685 }
3cd55735
KS
4686
4687 switch (m->type)
4688 {
4689 case MEM_TYPE_NON_LISP:
5474c384 4690 case MEM_TYPE_SPARE:
3cd55735
KS
4691 return 0;
4692
4693 case MEM_TYPE_BUFFER:
c1ca42ca 4694 return live_buffer_p (m, p) ? 1 : 2;
3cd55735
KS
4695
4696 case MEM_TYPE_CONS:
4697 return live_cons_p (m, p);
4698
4699 case MEM_TYPE_STRING:
4700 return live_string_p (m, p);
4701
4702 case MEM_TYPE_MISC:
4703 return live_misc_p (m, p);
4704
4705 case MEM_TYPE_SYMBOL:
4706 return live_symbol_p (m, p);
4707
4708 case MEM_TYPE_FLOAT:
4709 return live_float_p (m, p);
4710
9c545a55 4711 case MEM_TYPE_VECTORLIKE:
f3372c87 4712 case MEM_TYPE_VECTOR_BLOCK:
3cd55735
KS
4713 return live_vector_p (m, p);
4714
4715 default:
4716 break;
4717 }
4718
4719 return 0;
4720#endif
4721}
4722
4723
4724
34400008 4725\f
2e471eb5
GM
4726/***********************************************************************
4727 Pure Storage Management
4728 ***********************************************************************/
4729
1f0b3fd2
GM
4730/* Allocate room for SIZE bytes from pure Lisp storage and return a
4731 pointer to it. TYPE is the Lisp type for which the memory is
e5bc14d4 4732 allocated. TYPE < 0 means it's not used for a Lisp object. */
1f0b3fd2 4733
261cb4bb 4734static void *
971de7fb 4735pure_alloc (size_t size, int type)
1f0b3fd2 4736{
261cb4bb 4737 void *result;
bfe3e0a2 4738#if USE_LSB_TAG
2b90362b 4739 size_t alignment = GCALIGNMENT;
6b61353c 4740#else
e32a5799 4741 size_t alignment = alignof (EMACS_INT);
1f0b3fd2
GM
4742
4743 /* Give Lisp_Floats an extra alignment. */
4744 if (type == Lisp_Float)
e32a5799 4745 alignment = alignof (struct Lisp_Float);
6b61353c 4746#endif
1f0b3fd2 4747
44117420 4748 again:
e5bc14d4
YM
4749 if (type >= 0)
4750 {
4751 /* Allocate space for a Lisp object from the beginning of the free
4752 space with taking account of alignment. */
4753 result = ALIGN (purebeg + pure_bytes_used_lisp, alignment);
4754 pure_bytes_used_lisp = ((char *)result - (char *)purebeg) + size;
4755 }
4756 else
4757 {
4758 /* Allocate space for a non-Lisp object from the end of the free
4759 space. */
4760 pure_bytes_used_non_lisp += size;
4761 result = purebeg + pure_size - pure_bytes_used_non_lisp;
4762 }
4763 pure_bytes_used = pure_bytes_used_lisp + pure_bytes_used_non_lisp;
44117420
KS
4764
4765 if (pure_bytes_used <= pure_size)
4766 return result;
4767
4768 /* Don't allocate a large amount here,
4769 because it might get mmap'd and then its address
4770 might not be usable. */
23f86fce 4771 purebeg = xmalloc (10000);
44117420
KS
4772 pure_size = 10000;
4773 pure_bytes_used_before_overflow += pure_bytes_used - size;
4774 pure_bytes_used = 0;
e5bc14d4 4775 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
44117420 4776 goto again;
1f0b3fd2
GM
4777}
4778
4779
852f8cdc 4780/* Print a warning if PURESIZE is too small. */
9e713715
GM
4781
4782void
971de7fb 4783check_pure_size (void)
9e713715
GM
4784{
4785 if (pure_bytes_used_before_overflow)
c2982e87
PE
4786 message (("emacs:0:Pure Lisp storage overflow (approx. %"pI"d"
4787 " bytes needed)"),
4788 pure_bytes_used + pure_bytes_used_before_overflow);
9e713715
GM
4789}
4790
4791
79fd0489
YM
4792/* Find the byte sequence {DATA[0], ..., DATA[NBYTES-1], '\0'} from
4793 the non-Lisp data pool of the pure storage, and return its start
4794 address. Return NULL if not found. */
4795
4796static char *
d311d28c 4797find_string_data_in_pure (const char *data, ptrdiff_t nbytes)
79fd0489 4798{
14162469 4799 int i;
d311d28c 4800 ptrdiff_t skip, bm_skip[256], last_char_skip, infinity, start, start_max;
2aff7c53 4801 const unsigned char *p;
79fd0489
YM
4802 char *non_lisp_beg;
4803
d311d28c 4804 if (pure_bytes_used_non_lisp <= nbytes)
79fd0489
YM
4805 return NULL;
4806
4807 /* Set up the Boyer-Moore table. */
4808 skip = nbytes + 1;
4809 for (i = 0; i < 256; i++)
4810 bm_skip[i] = skip;
4811
2aff7c53 4812 p = (const unsigned char *) data;
79fd0489
YM
4813 while (--skip > 0)
4814 bm_skip[*p++] = skip;
4815
4816 last_char_skip = bm_skip['\0'];
4817
4818 non_lisp_beg = purebeg + pure_size - pure_bytes_used_non_lisp;
4819 start_max = pure_bytes_used_non_lisp - (nbytes + 1);
4820
4821 /* See the comments in the function `boyer_moore' (search.c) for the
4822 use of `infinity'. */
4823 infinity = pure_bytes_used_non_lisp + 1;
4824 bm_skip['\0'] = infinity;
4825
2aff7c53 4826 p = (const unsigned char *) non_lisp_beg + nbytes;
79fd0489
YM
4827 start = 0;
4828 do
4829 {
4830 /* Check the last character (== '\0'). */
4831 do
4832 {
4833 start += bm_skip[*(p + start)];
4834 }
4835 while (start <= start_max);
4836
4837 if (start < infinity)
4838 /* Couldn't find the last character. */
4839 return NULL;
4840
4841 /* No less than `infinity' means we could find the last
4842 character at `p[start - infinity]'. */
4843 start -= infinity;
4844
4845 /* Check the remaining characters. */
4846 if (memcmp (data, non_lisp_beg + start, nbytes) == 0)
4847 /* Found. */
4848 return non_lisp_beg + start;
4849
4850 start += last_char_skip;
4851 }
4852 while (start <= start_max);
4853
4854 return NULL;
4855}
4856
4857
2e471eb5
GM
4858/* Return a string allocated in pure space. DATA is a buffer holding
4859 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
fce31d69 4860 means make the result string multibyte.
1a4f1e2c 4861
2e471eb5
GM
4862 Must get an error if pure storage is full, since if it cannot hold
4863 a large string it may be able to hold conses that point to that
4864 string; then the string is not protected from gc. */
7146af97
JB
4865
4866Lisp_Object
14162469 4867make_pure_string (const char *data,
fce31d69 4868 ptrdiff_t nchars, ptrdiff_t nbytes, bool multibyte)
7146af97 4869{
2e471eb5 4870 Lisp_Object string;
98c6f1e3 4871 struct Lisp_String *s = pure_alloc (sizeof *s, Lisp_String);
90256841 4872 s->data = (unsigned char *) find_string_data_in_pure (data, nbytes);
79fd0489
YM
4873 if (s->data == NULL)
4874 {
98c6f1e3 4875 s->data = pure_alloc (nbytes + 1, -1);
72af86bd 4876 memcpy (s->data, data, nbytes);
79fd0489
YM
4877 s->data[nbytes] = '\0';
4878 }
2e471eb5
GM
4879 s->size = nchars;
4880 s->size_byte = multibyte ? nbytes : -1;
77c7bcb1 4881 s->intervals = NULL;
2e471eb5
GM
4882 XSETSTRING (string, s);
4883 return string;
7146af97
JB
4884}
4885
2a0213a6
DA
4886/* Return a string allocated in pure space. Do not
4887 allocate the string data, just point to DATA. */
a56eaaef
DN
4888
4889Lisp_Object
2a0213a6 4890make_pure_c_string (const char *data, ptrdiff_t nchars)
a56eaaef
DN
4891{
4892 Lisp_Object string;
98c6f1e3 4893 struct Lisp_String *s = pure_alloc (sizeof *s, Lisp_String);
a56eaaef
DN
4894 s->size = nchars;
4895 s->size_byte = -1;
323637a2 4896 s->data = (unsigned char *) data;
77c7bcb1 4897 s->intervals = NULL;
a56eaaef
DN
4898 XSETSTRING (string, s);
4899 return string;
4900}
2e471eb5 4901
34400008
GM
4902/* Return a cons allocated from pure space. Give it pure copies
4903 of CAR as car and CDR as cdr. */
4904
7146af97 4905Lisp_Object
971de7fb 4906pure_cons (Lisp_Object car, Lisp_Object cdr)
7146af97 4907{
98c6f1e3
PE
4908 Lisp_Object new;
4909 struct Lisp_Cons *p = pure_alloc (sizeof *p, Lisp_Cons);
1f0b3fd2 4910 XSETCONS (new, p);
f3fbd155
KR
4911 XSETCAR (new, Fpurecopy (car));
4912 XSETCDR (new, Fpurecopy (cdr));
7146af97
JB
4913 return new;
4914}
4915
7146af97 4916
34400008
GM
4917/* Value is a float object with value NUM allocated from pure space. */
4918
d3d47262 4919static Lisp_Object
971de7fb 4920make_pure_float (double num)
7146af97 4921{
98c6f1e3
PE
4922 Lisp_Object new;
4923 struct Lisp_Float *p = pure_alloc (sizeof *p, Lisp_Float);
1f0b3fd2 4924 XSETFLOAT (new, p);
f601cdf3 4925 XFLOAT_INIT (new, num);
7146af97
JB
4926 return new;
4927}
4928
34400008
GM
4929
4930/* Return a vector with room for LEN Lisp_Objects allocated from
4931 pure space. */
4932
72cb32cf 4933static Lisp_Object
d311d28c 4934make_pure_vector (ptrdiff_t len)
7146af97 4935{
1f0b3fd2 4936 Lisp_Object new;
d06714cb 4937 size_t size = header_size + len * word_size;
98c6f1e3 4938 struct Lisp_Vector *p = pure_alloc (size, Lisp_Vectorlike);
1f0b3fd2 4939 XSETVECTOR (new, p);
eab3844f 4940 XVECTOR (new)->header.size = len;
7146af97
JB
4941 return new;
4942}
4943
34400008 4944
a7ca3326 4945DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
909e3b33 4946 doc: /* Make a copy of object OBJ in pure storage.
228299fa 4947Recursively copies contents of vectors and cons cells.
7ee72033 4948Does not copy symbols. Copies strings without text properties. */)
5842a27b 4949 (register Lisp_Object obj)
7146af97 4950{
265a9e55 4951 if (NILP (Vpurify_flag))
7146af97
JB
4952 return obj;
4953
1f0b3fd2 4954 if (PURE_POINTER_P (XPNTR (obj)))
7146af97
JB
4955 return obj;
4956
e9515805
SM
4957 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
4958 {
4959 Lisp_Object tmp = Fgethash (obj, Vpurify_flag, Qnil);
4960 if (!NILP (tmp))
4961 return tmp;
4962 }
4963
d6dd74bb 4964 if (CONSP (obj))
e9515805 4965 obj = pure_cons (XCAR (obj), XCDR (obj));
d6dd74bb 4966 else if (FLOATP (obj))
e9515805 4967 obj = make_pure_float (XFLOAT_DATA (obj));
d6dd74bb 4968 else if (STRINGP (obj))
42a5b22f 4969 obj = make_pure_string (SSDATA (obj), SCHARS (obj),
e9515805
SM
4970 SBYTES (obj),
4971 STRING_MULTIBYTE (obj));
876c194c 4972 else if (COMPILEDP (obj) || VECTORP (obj))
d6dd74bb
KH
4973 {
4974 register struct Lisp_Vector *vec;
d311d28c
PE
4975 register ptrdiff_t i;
4976 ptrdiff_t size;
d6dd74bb 4977
77b37c05 4978 size = ASIZE (obj);
7d535c68
KH
4979 if (size & PSEUDOVECTOR_FLAG)
4980 size &= PSEUDOVECTOR_SIZE_MASK;
6b61353c 4981 vec = XVECTOR (make_pure_vector (size));
d6dd74bb 4982 for (i = 0; i < size; i++)
28be1ada 4983 vec->contents[i] = Fpurecopy (AREF (obj, i));
876c194c 4984 if (COMPILEDP (obj))
985773c9 4985 {
876c194c
SM
4986 XSETPVECTYPE (vec, PVEC_COMPILED);
4987 XSETCOMPILED (obj, vec);
985773c9 4988 }
d6dd74bb
KH
4989 else
4990 XSETVECTOR (obj, vec);
7146af97 4991 }
d6dd74bb
KH
4992 else if (MARKERP (obj))
4993 error ("Attempt to copy a marker to pure storage");
e9515805
SM
4994 else
4995 /* Not purified, don't hash-cons. */
4996 return obj;
4997
4998 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
4999 Fputhash (obj, obj, Vpurify_flag);
6bbd7a29
GM
5000
5001 return obj;
7146af97 5002}
2e471eb5 5003
34400008 5004
7146af97 5005\f
34400008
GM
5006/***********************************************************************
5007 Protection from GC
5008 ***********************************************************************/
5009
2e471eb5
GM
5010/* Put an entry in staticvec, pointing at the variable with address
5011 VARADDRESS. */
7146af97
JB
5012
5013void
971de7fb 5014staticpro (Lisp_Object *varaddress)
7146af97
JB
5015{
5016 staticvec[staticidx++] = varaddress;
5017 if (staticidx >= NSTATICS)
1088b922 5018 emacs_abort ();
7146af97
JB
5019}
5020
7146af97 5021\f
34400008
GM
5022/***********************************************************************
5023 Protection from GC
5024 ***********************************************************************/
1a4f1e2c 5025
e8197642
RS
5026/* Temporarily prevent garbage collection. */
5027
d311d28c 5028ptrdiff_t
971de7fb 5029inhibit_garbage_collection (void)
e8197642 5030{
d311d28c 5031 ptrdiff_t count = SPECPDL_INDEX ();
54defd0d 5032
6349ae4d 5033 specbind (Qgc_cons_threshold, make_number (MOST_POSITIVE_FIXNUM));
e8197642
RS
5034 return count;
5035}
5036
3ab6e069
DA
5037/* Used to avoid possible overflows when
5038 converting from C to Lisp integers. */
5039
5040static inline Lisp_Object
5041bounded_number (EMACS_INT number)
5042{
5043 return make_number (min (MOST_POSITIVE_FIXNUM, number));
5044}
34400008 5045
a7ca3326 5046DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
7ee72033 5047 doc: /* Reclaim storage for Lisp objects no longer needed.
e1e37596
RS
5048Garbage collection happens automatically if you cons more than
5049`gc-cons-threshold' bytes of Lisp data since previous garbage collection.
5db81e33
SM
5050`garbage-collect' normally returns a list with info on amount of space in use,
5051where each entry has the form (NAME SIZE USED FREE), where:
5052- NAME is a symbol describing the kind of objects this entry represents,
5053- SIZE is the number of bytes used by each one,
5054- USED is the number of those objects that were found live in the heap,
5055- FREE is the number of those objects that are not live but that Emacs
5056 keeps around for future allocations (maybe because it does not know how
5057 to return them to the OS).
e1e37596 5058However, if there was overflow in pure space, `garbage-collect'
999dd333
GM
5059returns nil, because real GC can't be done.
5060See Info node `(elisp)Garbage Collection'. */)
5842a27b 5061 (void)
7146af97 5062{
fce31d69
PE
5063 struct specbinding *bind;
5064 struct buffer *nextb;
7146af97 5065 char stack_top_variable;
f66c7cf8 5066 ptrdiff_t i;
fce31d69 5067 bool message_p;
d311d28c 5068 ptrdiff_t count = SPECPDL_INDEX ();
dbcf001c 5069 EMACS_TIME start;
fecbd8ff 5070 Lisp_Object retval = Qnil;
2c5bd608 5071
3de0effb 5072 if (abort_on_gc)
1088b922 5073 emacs_abort ();
3de0effb 5074
9e713715
GM
5075 /* Can't GC if pure storage overflowed because we can't determine
5076 if something is a pure object or not. */
5077 if (pure_bytes_used_before_overflow)
5078 return Qnil;
5079
7e63e0c3 5080 check_cons_list ();
bbc012e0 5081
3c7e66a8
RS
5082 /* Don't keep undo information around forever.
5083 Do this early on, so it is no problem if the user quits. */
52b852c7 5084 FOR_EACH_BUFFER (nextb)
9cd47b72 5085 compact_buffer (nextb);
3c7e66a8 5086
dbcf001c 5087 start = current_emacs_time ();
3c7e66a8 5088
58595309
KH
5089 /* In case user calls debug_print during GC,
5090 don't let that cause a recursive GC. */
5091 consing_since_gc = 0;
5092
6efc7df7
GM
5093 /* Save what's currently displayed in the echo area. */
5094 message_p = push_message ();
c55b0da6 5095 record_unwind_protect (pop_message_unwind, Qnil);
41c28a37 5096
7146af97
JB
5097 /* Save a copy of the contents of the stack, for debugging. */
5098#if MAX_SAVE_STACK > 0
265a9e55 5099 if (NILP (Vpurify_flag))
7146af97 5100 {
dd3f25f7 5101 char *stack;
903fe15d 5102 ptrdiff_t stack_size;
dd3f25f7 5103 if (&stack_top_variable < stack_bottom)
7146af97 5104 {
dd3f25f7
PE
5105 stack = &stack_top_variable;
5106 stack_size = stack_bottom - &stack_top_variable;
5107 }
5108 else
5109 {
5110 stack = stack_bottom;
5111 stack_size = &stack_top_variable - stack_bottom;
5112 }
5113 if (stack_size <= MAX_SAVE_STACK)
7146af97 5114 {
dd3f25f7 5115 if (stack_copy_size < stack_size)
7146af97 5116 {
38182d90 5117 stack_copy = xrealloc (stack_copy, stack_size);
dd3f25f7 5118 stack_copy_size = stack_size;
7146af97 5119 }
dd3f25f7 5120 memcpy (stack_copy, stack, stack_size);
7146af97
JB
5121 }
5122 }
5123#endif /* MAX_SAVE_STACK > 0 */
5124
299585ee 5125 if (garbage_collection_messages)
691c4285 5126 message1_nolog ("Garbage collecting...");
7146af97 5127
4d7e6e51 5128 block_input ();
6e0fca1d 5129
eec7b73d
RS
5130 shrink_regexp_cache ();
5131
7146af97
JB
5132 gc_in_progress = 1;
5133
005ca5c7 5134 /* Mark all the special slots that serve as the roots of accessibility. */
7146af97 5135
c752cfa9
DA
5136 mark_buffer (&buffer_defaults);
5137 mark_buffer (&buffer_local_symbols);
5138
7146af97 5139 for (i = 0; i < staticidx; i++)
49723c04 5140 mark_object (*staticvec[i]);
34400008 5141
126f9c02
SM
5142 for (bind = specpdl; bind != specpdl_ptr; bind++)
5143 {
5144 mark_object (bind->symbol);
5145 mark_object (bind->old_value);
5146 }
6ed8eeff 5147 mark_terminals ();
126f9c02
SM
5148 mark_kboards ();
5149
5150#ifdef USE_GTK
a411ac43 5151 xg_mark_data ();
126f9c02
SM
5152#endif
5153
34400008
GM
5154#if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
5155 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
5156 mark_stack ();
5157#else
acf5f7d3
SM
5158 {
5159 register struct gcpro *tail;
5160 for (tail = gcprolist; tail; tail = tail->next)
5161 for (i = 0; i < tail->nvars; i++)
005ca5c7 5162 mark_object (tail->var[i]);
acf5f7d3 5163 }
3e21b6a7 5164 mark_byte_stack ();
b286858c
SM
5165 {
5166 struct catchtag *catch;
5167 struct handler *handler;
177c0ea7 5168
7146af97
JB
5169 for (catch = catchlist; catch; catch = catch->next)
5170 {
49723c04
SM
5171 mark_object (catch->tag);
5172 mark_object (catch->val);
177c0ea7 5173 }
7146af97
JB
5174 for (handler = handlerlist; handler; handler = handler->next)
5175 {
49723c04
SM
5176 mark_object (handler->handler);
5177 mark_object (handler->var);
177c0ea7 5178 }
b286858c 5179 }
b40ea20a 5180 mark_backtrace ();
b286858c 5181#endif
7146af97 5182
454d7973
KS
5183#ifdef HAVE_WINDOW_SYSTEM
5184 mark_fringe_data ();
5185#endif
5186
74c35a48
SM
5187#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5188 mark_stack ();
5189#endif
5190
c37adf23
SM
5191 /* Everything is now marked, except for the things that require special
5192 finalization, i.e. the undo_list.
5193 Look thru every buffer's undo list
4c315bda
RS
5194 for elements that update markers that were not marked,
5195 and delete them. */
52b852c7 5196 FOR_EACH_BUFFER (nextb)
d17337e5
DA
5197 {
5198 /* If a buffer's undo list is Qt, that means that undo is
5199 turned off in that buffer. Calling truncate_undo_list on
5200 Qt tends to return NULL, which effectively turns undo back on.
5201 So don't call truncate_undo_list if undo_list is Qt. */
e34f7f79 5202 if (! EQ (nextb->INTERNAL_FIELD (undo_list), Qt))
d17337e5
DA
5203 {
5204 Lisp_Object tail, prev;
e34f7f79 5205 tail = nextb->INTERNAL_FIELD (undo_list);
d17337e5
DA
5206 prev = Qnil;
5207 while (CONSP (tail))
5208 {
5209 if (CONSP (XCAR (tail))
5210 && MARKERP (XCAR (XCAR (tail)))
5211 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
5212 {
5213 if (NILP (prev))
e34f7f79 5214 nextb->INTERNAL_FIELD (undo_list) = tail = XCDR (tail);
d17337e5
DA
5215 else
5216 {
5217 tail = XCDR (tail);
5218 XSETCDR (prev, tail);
5219 }
5220 }
5221 else
5222 {
5223 prev = tail;
5224 tail = XCDR (tail);
5225 }
5226 }
5227 }
5228 /* Now that we have stripped the elements that need not be in the
5229 undo_list any more, we can finally mark the list. */
e34f7f79 5230 mark_object (nextb->INTERNAL_FIELD (undo_list));
d17337e5 5231 }
4c315bda 5232
7146af97
JB
5233 gc_sweep ();
5234
5235 /* Clear the mark bits that we set in certain root slots. */
5236
033a5fa3 5237 unmark_byte_stack ();
3ef06d12
SM
5238 VECTOR_UNMARK (&buffer_defaults);
5239 VECTOR_UNMARK (&buffer_local_symbols);
7146af97 5240
34400008
GM
5241#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
5242 dump_zombies ();
5243#endif
5244
4d7e6e51 5245 unblock_input ();
6e0fca1d 5246
7e63e0c3 5247 check_cons_list ();
bbc012e0 5248
7146af97
JB
5249 gc_in_progress = 0;
5250
5251 consing_since_gc = 0;
0dd6d66d
DA
5252 if (gc_cons_threshold < GC_DEFAULT_THRESHOLD / 10)
5253 gc_cons_threshold = GC_DEFAULT_THRESHOLD / 10;
7146af97 5254
c0c5c8ae 5255 gc_relative_threshold = 0;
96f077ad
SM
5256 if (FLOATP (Vgc_cons_percentage))
5257 { /* Set gc_cons_combined_threshold. */
c0c5c8ae 5258 double tot = 0;
ae35e756
PE
5259
5260 tot += total_conses * sizeof (struct Lisp_Cons);
5261 tot += total_symbols * sizeof (struct Lisp_Symbol);
5262 tot += total_markers * sizeof (union Lisp_Misc);
3ab6e069 5263 tot += total_string_bytes;
5b835e1d 5264 tot += total_vector_slots * word_size;
ae35e756
PE
5265 tot += total_floats * sizeof (struct Lisp_Float);
5266 tot += total_intervals * sizeof (struct interval);
5267 tot += total_strings * sizeof (struct Lisp_String);
5268
c0c5c8ae
PE
5269 tot *= XFLOAT_DATA (Vgc_cons_percentage);
5270 if (0 < tot)
5271 {
5272 if (tot < TYPE_MAXIMUM (EMACS_INT))
5273 gc_relative_threshold = tot;
5274 else
5275 gc_relative_threshold = TYPE_MAXIMUM (EMACS_INT);
5276 }
96f077ad
SM
5277 }
5278
299585ee
RS
5279 if (garbage_collection_messages)
5280 {
6efc7df7
GM
5281 if (message_p || minibuf_level > 0)
5282 restore_message ();
299585ee
RS
5283 else
5284 message1_nolog ("Garbage collecting...done");
5285 }
7146af97 5286
98edb5ff 5287 unbind_to (count, Qnil);
fecbd8ff
SM
5288 {
5289 Lisp_Object total[11];
5290 int total_size = 10;
2e471eb5 5291
fecbd8ff
SM
5292 total[0] = list4 (Qconses, make_number (sizeof (struct Lisp_Cons)),
5293 bounded_number (total_conses),
5294 bounded_number (total_free_conses));
3ab6e069 5295
fecbd8ff
SM
5296 total[1] = list4 (Qsymbols, make_number (sizeof (struct Lisp_Symbol)),
5297 bounded_number (total_symbols),
5298 bounded_number (total_free_symbols));
3ab6e069 5299
fecbd8ff
SM
5300 total[2] = list4 (Qmiscs, make_number (sizeof (union Lisp_Misc)),
5301 bounded_number (total_markers),
5302 bounded_number (total_free_markers));
3ab6e069 5303
fecbd8ff
SM
5304 total[3] = list4 (Qstrings, make_number (sizeof (struct Lisp_String)),
5305 bounded_number (total_strings),
5306 bounded_number (total_free_strings));
3ab6e069 5307
fecbd8ff
SM
5308 total[4] = list3 (Qstring_bytes, make_number (1),
5309 bounded_number (total_string_bytes));
3ab6e069 5310
fecbd8ff
SM
5311 total[5] = list3 (Qvectors, make_number (sizeof (struct Lisp_Vector)),
5312 bounded_number (total_vectors));
5b835e1d 5313
fecbd8ff
SM
5314 total[6] = list4 (Qvector_slots, make_number (word_size),
5315 bounded_number (total_vector_slots),
5316 bounded_number (total_free_vector_slots));
5b835e1d 5317
fecbd8ff
SM
5318 total[7] = list4 (Qfloats, make_number (sizeof (struct Lisp_Float)),
5319 bounded_number (total_floats),
5320 bounded_number (total_free_floats));
3ab6e069 5321
fecbd8ff
SM
5322 total[8] = list4 (Qintervals, make_number (sizeof (struct interval)),
5323 bounded_number (total_intervals),
5324 bounded_number (total_free_intervals));
3ab6e069 5325
fecbd8ff
SM
5326 total[9] = list3 (Qbuffers, make_number (sizeof (struct buffer)),
5327 bounded_number (total_buffers));
2e471eb5 5328
f8643a6b 5329#ifdef DOUG_LEA_MALLOC
fecbd8ff
SM
5330 total_size++;
5331 total[10] = list4 (Qheap, make_number (1024),
5332 bounded_number ((mallinfo ().uordblks + 1023) >> 10),
5333 bounded_number ((mallinfo ().fordblks + 1023) >> 10));
f8643a6b 5334#endif
fecbd8ff
SM
5335 retval = Flist (total_size, total);
5336 }
f8643a6b 5337
34400008 5338#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
7146af97 5339 {
34400008 5340 /* Compute average percentage of zombies. */
fecbd8ff
SM
5341 double nlive
5342 = (total_conses + total_symbols + total_markers + total_strings
5343 + total_vectors + total_floats + total_intervals + total_buffers);
34400008
GM
5344
5345 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
5346 max_live = max (nlive, max_live);
5347 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
5348 max_zombies = max (nzombies, max_zombies);
5349 ++ngcs;
dbcf001c 5350 }
34400008 5351#endif
7146af97 5352
9e713715
GM
5353 if (!NILP (Vpost_gc_hook))
5354 {
d311d28c 5355 ptrdiff_t gc_count = inhibit_garbage_collection ();
9e713715 5356 safe_run_hooks (Qpost_gc_hook);
ae35e756 5357 unbind_to (gc_count, Qnil);
9e713715 5358 }
2c5bd608
DL
5359
5360 /* Accumulate statistics. */
2c5bd608 5361 if (FLOATP (Vgc_elapsed))
387d4d92
PE
5362 {
5363 EMACS_TIME since_start = sub_emacs_time (current_emacs_time (), start);
5364 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed)
5365 + EMACS_TIME_TO_DOUBLE (since_start));
5366 }
d35af63c 5367
2c5bd608
DL
5368 gcs_done++;
5369
fecbd8ff 5370 return retval;
7146af97 5371}
34400008 5372
41c28a37 5373
3770920e
GM
5374/* Mark Lisp objects in glyph matrix MATRIX. Currently the
5375 only interesting objects referenced from glyphs are strings. */
41c28a37
GM
5376
5377static void
971de7fb 5378mark_glyph_matrix (struct glyph_matrix *matrix)
41c28a37
GM
5379{
5380 struct glyph_row *row = matrix->rows;
5381 struct glyph_row *end = row + matrix->nrows;
5382
2e471eb5
GM
5383 for (; row < end; ++row)
5384 if (row->enabled_p)
5385 {
5386 int area;
5387 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
5388 {
5389 struct glyph *glyph = row->glyphs[area];
5390 struct glyph *end_glyph = glyph + row->used[area];
177c0ea7 5391
2e471eb5 5392 for (; glyph < end_glyph; ++glyph)
8e50cc2d 5393 if (STRINGP (glyph->object)
2e471eb5 5394 && !STRING_MARKED_P (XSTRING (glyph->object)))
49723c04 5395 mark_object (glyph->object);
2e471eb5
GM
5396 }
5397 }
41c28a37
GM
5398}
5399
34400008 5400
41c28a37
GM
5401/* Mark Lisp faces in the face cache C. */
5402
5403static void
971de7fb 5404mark_face_cache (struct face_cache *c)
41c28a37
GM
5405{
5406 if (c)
5407 {
5408 int i, j;
5409 for (i = 0; i < c->used; ++i)
5410 {
5411 struct face *face = FACE_FROM_ID (c->f, i);
5412
5413 if (face)
5414 {
5415 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
49723c04 5416 mark_object (face->lface[j]);
41c28a37
GM
5417 }
5418 }
5419 }
5420}
5421
5422
7146af97 5423\f
1a4f1e2c 5424/* Mark reference to a Lisp_Object.
2e471eb5
GM
5425 If the object referred to has not been seen yet, recursively mark
5426 all the references contained in it. */
7146af97 5427
785cd37f 5428#define LAST_MARKED_SIZE 500
d3d47262 5429static Lisp_Object last_marked[LAST_MARKED_SIZE];
244ed907 5430static int last_marked_index;
785cd37f 5431
1342fc6f
RS
5432/* For debugging--call abort when we cdr down this many
5433 links of a list, in mark_object. In debugging,
5434 the call to abort will hit a breakpoint.
5435 Normally this is zero and the check never goes off. */
903fe15d 5436ptrdiff_t mark_object_loop_halt EXTERNALLY_VISIBLE;
1342fc6f 5437
8f11f7ec 5438static void
971de7fb 5439mark_vectorlike (struct Lisp_Vector *ptr)
d2029e5b 5440{
d311d28c
PE
5441 ptrdiff_t size = ptr->header.size;
5442 ptrdiff_t i;
d2029e5b 5443
8f11f7ec 5444 eassert (!VECTOR_MARKED_P (ptr));
7555c33f 5445 VECTOR_MARK (ptr); /* Else mark it. */
d2029e5b
SM
5446 if (size & PSEUDOVECTOR_FLAG)
5447 size &= PSEUDOVECTOR_SIZE_MASK;
d3d47262 5448
d2029e5b
SM
5449 /* Note that this size is not the memory-footprint size, but only
5450 the number of Lisp_Object fields that we should trace.
5451 The distinction is used e.g. by Lisp_Process which places extra
7555c33f
SM
5452 non-Lisp_Object fields at the end of the structure... */
5453 for (i = 0; i < size; i++) /* ...and then mark its elements. */
d2029e5b 5454 mark_object (ptr->contents[i]);
d2029e5b
SM
5455}
5456
58026347
KH
5457/* Like mark_vectorlike but optimized for char-tables (and
5458 sub-char-tables) assuming that the contents are mostly integers or
5459 symbols. */
5460
5461static void
971de7fb 5462mark_char_table (struct Lisp_Vector *ptr)
58026347 5463{
b6439961
PE
5464 int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
5465 int i;
58026347 5466
8f11f7ec 5467 eassert (!VECTOR_MARKED_P (ptr));
58026347
KH
5468 VECTOR_MARK (ptr);
5469 for (i = 0; i < size; i++)
5470 {
5471 Lisp_Object val = ptr->contents[i];
5472
ef1b0ba7 5473 if (INTEGERP (val) || (SYMBOLP (val) && XSYMBOL (val)->gcmarkbit))
58026347
KH
5474 continue;
5475 if (SUB_CHAR_TABLE_P (val))
5476 {
5477 if (! VECTOR_MARKED_P (XVECTOR (val)))
5478 mark_char_table (XVECTOR (val));
5479 }
5480 else
5481 mark_object (val);
5482 }
5483}
5484
36429c89
DA
5485/* Mark the chain of overlays starting at PTR. */
5486
5487static void
5488mark_overlay (struct Lisp_Overlay *ptr)
5489{
5490 for (; ptr && !ptr->gcmarkbit; ptr = ptr->next)
5491 {
5492 ptr->gcmarkbit = 1;
c644523b
DA
5493 mark_object (ptr->start);
5494 mark_object (ptr->end);
5495 mark_object (ptr->plist);
36429c89
DA
5496 }
5497}
5498
5499/* Mark Lisp_Objects and special pointers in BUFFER. */
cf5c0175
DA
5500
5501static void
5502mark_buffer (struct buffer *buffer)
5503{
b4fa72f2
DA
5504 /* This is handled much like other pseudovectors... */
5505 mark_vectorlike ((struct Lisp_Vector *) buffer);
cf5c0175 5506
b4fa72f2 5507 /* ...but there are some buffer-specific things. */
cf5c0175 5508
b4fa72f2 5509 MARK_INTERVAL_TREE (buffer_intervals (buffer));
cf5c0175 5510
b4fa72f2
DA
5511 /* For now, we just don't mark the undo_list. It's done later in
5512 a special way just before the sweep phase, and after stripping
5513 some of its elements that are not needed any more. */
cf5c0175 5514
b4fa72f2
DA
5515 mark_overlay (buffer->overlays_before);
5516 mark_overlay (buffer->overlays_after);
cf5c0175 5517
b4fa72f2
DA
5518 /* If this is an indirect buffer, mark its base buffer. */
5519 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
5520 mark_buffer (buffer->base_buffer);
cf5c0175
DA
5521}
5522
d59a1afb 5523/* Remove killed buffers or items whose car is a killed buffer from
e99f70c8 5524 LIST, and mark other items. Return changed LIST, which is marked. */
d73e321c 5525
5779a1dc 5526static Lisp_Object
d59a1afb 5527mark_discard_killed_buffers (Lisp_Object list)
d73e321c 5528{
d59a1afb 5529 Lisp_Object tail, *prev = &list;
d73e321c 5530
d59a1afb
DA
5531 for (tail = list; CONSP (tail) && !CONS_MARKED_P (XCONS (tail));
5532 tail = XCDR (tail))
d73e321c 5533 {
5779a1dc 5534 Lisp_Object tem = XCAR (tail);
d73e321c
DA
5535 if (CONSP (tem))
5536 tem = XCAR (tem);
5537 if (BUFFERP (tem) && !BUFFER_LIVE_P (XBUFFER (tem)))
5779a1dc 5538 *prev = XCDR (tail);
d73e321c 5539 else
d59a1afb
DA
5540 {
5541 CONS_MARK (XCONS (tail));
5542 mark_object (XCAR (tail));
5543 prev = &XCDR_AS_LVALUE (tail);
5544 }
d73e321c 5545 }
e99f70c8 5546 mark_object (tail);
d73e321c
DA
5547 return list;
5548}
5549
cf5c0175
DA
5550/* Determine type of generic Lisp_Object and mark it accordingly. */
5551
41c28a37 5552void
971de7fb 5553mark_object (Lisp_Object arg)
7146af97 5554{
49723c04 5555 register Lisp_Object obj = arg;
4f5c1376
GM
5556#ifdef GC_CHECK_MARKED_OBJECTS
5557 void *po;
5558 struct mem_node *m;
5559#endif
903fe15d 5560 ptrdiff_t cdr_count = 0;
7146af97 5561
9149e743 5562 loop:
7146af97 5563
1f0b3fd2 5564 if (PURE_POINTER_P (XPNTR (obj)))
7146af97
JB
5565 return;
5566
49723c04 5567 last_marked[last_marked_index++] = obj;
785cd37f
RS
5568 if (last_marked_index == LAST_MARKED_SIZE)
5569 last_marked_index = 0;
5570
4f5c1376
GM
5571 /* Perform some sanity checks on the objects marked here. Abort if
5572 we encounter an object we know is bogus. This increases GC time
5573 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
5574#ifdef GC_CHECK_MARKED_OBJECTS
5575
5576 po = (void *) XPNTR (obj);
5577
5578 /* Check that the object pointed to by PO is known to be a Lisp
5579 structure allocated from the heap. */
5580#define CHECK_ALLOCATED() \
5581 do { \
5582 m = mem_find (po); \
5583 if (m == MEM_NIL) \
1088b922 5584 emacs_abort (); \
4f5c1376
GM
5585 } while (0)
5586
5587 /* Check that the object pointed to by PO is live, using predicate
5588 function LIVEP. */
5589#define CHECK_LIVE(LIVEP) \
5590 do { \
5591 if (!LIVEP (m, po)) \
1088b922 5592 emacs_abort (); \
4f5c1376
GM
5593 } while (0)
5594
5595 /* Check both of the above conditions. */
5596#define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
5597 do { \
5598 CHECK_ALLOCATED (); \
5599 CHECK_LIVE (LIVEP); \
5600 } while (0) \
177c0ea7 5601
4f5c1376 5602#else /* not GC_CHECK_MARKED_OBJECTS */
177c0ea7 5603
4f5c1376
GM
5604#define CHECK_LIVE(LIVEP) (void) 0
5605#define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
177c0ea7 5606
4f5c1376
GM
5607#endif /* not GC_CHECK_MARKED_OBJECTS */
5608
7393bcbb 5609 switch (XTYPE (obj))
7146af97
JB
5610 {
5611 case Lisp_String:
5612 {
5613 register struct Lisp_String *ptr = XSTRING (obj);
8f11f7ec
SM
5614 if (STRING_MARKED_P (ptr))
5615 break;
4f5c1376 5616 CHECK_ALLOCATED_AND_LIVE (live_string_p);
2e471eb5 5617 MARK_STRING (ptr);
7555c33f 5618 MARK_INTERVAL_TREE (ptr->intervals);
361b097f 5619#ifdef GC_CHECK_STRING_BYTES
676a7251 5620 /* Check that the string size recorded in the string is the
7555c33f 5621 same as the one recorded in the sdata structure. */
e499d0ee 5622 string_bytes (ptr);
361b097f 5623#endif /* GC_CHECK_STRING_BYTES */
7146af97
JB
5624 }
5625 break;
5626
76437631 5627 case Lisp_Vectorlike:
cf5c0175
DA
5628 {
5629 register struct Lisp_Vector *ptr = XVECTOR (obj);
5630 register ptrdiff_t pvectype;
5631
5632 if (VECTOR_MARKED_P (ptr))
5633 break;
5634
4f5c1376 5635#ifdef GC_CHECK_MARKED_OBJECTS
cf5c0175 5636 m = mem_find (po);
c752cfa9 5637 if (m == MEM_NIL && !SUBRP (obj))
1088b922 5638 emacs_abort ();
4f5c1376 5639#endif /* GC_CHECK_MARKED_OBJECTS */
177c0ea7 5640
cf5c0175 5641 if (ptr->header.size & PSEUDOVECTOR_FLAG)
ee28be33
SM
5642 pvectype = ((ptr->header.size & PVEC_TYPE_MASK)
5643 >> PSEUDOVECTOR_SIZE_BITS);
cf5c0175
DA
5644 else
5645 pvectype = 0;
5646
cf5c0175
DA
5647 if (pvectype != PVEC_SUBR && pvectype != PVEC_BUFFER)
5648 CHECK_LIVE (live_vector_p);
169ee243 5649
ee28be33 5650 switch (pvectype)
cf5c0175 5651 {
ee28be33 5652 case PVEC_BUFFER:
cf5c0175 5653#ifdef GC_CHECK_MARKED_OBJECTS
c752cfa9
DA
5654 {
5655 struct buffer *b;
5656 FOR_EACH_BUFFER (b)
5657 if (b == po)
5658 break;
5659 if (b == NULL)
5660 emacs_abort ();
5661 }
cf5c0175
DA
5662#endif /* GC_CHECK_MARKED_OBJECTS */
5663 mark_buffer ((struct buffer *) ptr);
ee28be33
SM
5664 break;
5665
5666 case PVEC_COMPILED:
5667 { /* We could treat this just like a vector, but it is better
5668 to save the COMPILED_CONSTANTS element for last and avoid
5669 recursion there. */
5670 int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
5671 int i;
5672
5673 VECTOR_MARK (ptr);
5674 for (i = 0; i < size; i++)
5675 if (i != COMPILED_CONSTANTS)
5676 mark_object (ptr->contents[i]);
5677 if (size > COMPILED_CONSTANTS)
5678 {
5679 obj = ptr->contents[COMPILED_CONSTANTS];
5680 goto loop;
5681 }
5682 }
5683 break;
cf5c0175 5684
ee28be33 5685 case PVEC_FRAME:
d59a1afb
DA
5686 mark_vectorlike (ptr);
5687 mark_face_cache (((struct frame *) ptr)->face_cache);
ee28be33 5688 break;
cf5c0175 5689
ee28be33
SM
5690 case PVEC_WINDOW:
5691 {
5692 struct window *w = (struct window *) ptr;
d73e321c 5693 bool leaf = NILP (w->hchild) && NILP (w->vchild);
5779a1dc 5694
0699fc18 5695 mark_vectorlike (ptr);
e99f70c8 5696
0699fc18
DA
5697 /* Mark glyphs for leaf windows. Marking window
5698 matrices is sufficient because frame matrices
5699 use the same glyph memory. */
d73e321c 5700 if (leaf && w->current_matrix)
ee28be33 5701 {
0699fc18
DA
5702 mark_glyph_matrix (w->current_matrix);
5703 mark_glyph_matrix (w->desired_matrix);
ee28be33 5704 }
e99f70c8
SM
5705
5706 /* Filter out killed buffers from both buffer lists
5707 in attempt to help GC to reclaim killed buffers faster.
5708 We can do it elsewhere for live windows, but this is the
5709 best place to do it for dead windows. */
5710 wset_prev_buffers
5711 (w, mark_discard_killed_buffers (w->prev_buffers));
5712 wset_next_buffers
5713 (w, mark_discard_killed_buffers (w->next_buffers));
ee28be33
SM
5714 }
5715 break;
cf5c0175 5716
ee28be33
SM
5717 case PVEC_HASH_TABLE:
5718 {
5719 struct Lisp_Hash_Table *h = (struct Lisp_Hash_Table *) ptr;
cf5c0175 5720
ee28be33
SM
5721 mark_vectorlike (ptr);
5722 /* If hash table is not weak, mark all keys and values.
5723 For weak tables, mark only the vector. */
5724 if (NILP (h->weak))
5725 mark_object (h->key_and_value);
5726 else
5727 VECTOR_MARK (XVECTOR (h->key_and_value));
5728 }
5729 break;
cf5c0175 5730
ee28be33
SM
5731 case PVEC_CHAR_TABLE:
5732 mark_char_table (ptr);
5733 break;
cf5c0175 5734
ee28be33
SM
5735 case PVEC_BOOL_VECTOR:
5736 /* No Lisp_Objects to mark in a bool vector. */
5737 VECTOR_MARK (ptr);
5738 break;
cf5c0175 5739
ee28be33
SM
5740 case PVEC_SUBR:
5741 break;
cf5c0175 5742
ee28be33 5743 case PVEC_FREE:
1088b922 5744 emacs_abort ();
cf5c0175 5745
ee28be33
SM
5746 default:
5747 mark_vectorlike (ptr);
5748 }
cf5c0175 5749 }
169ee243 5750 break;
7146af97 5751
7146af97
JB
5752 case Lisp_Symbol:
5753 {
c70bbf06 5754 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
7146af97
JB
5755 struct Lisp_Symbol *ptrx;
5756
8f11f7ec
SM
5757 if (ptr->gcmarkbit)
5758 break;
4f5c1376 5759 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
2336fe58 5760 ptr->gcmarkbit = 1;
c644523b
DA
5761 mark_object (ptr->function);
5762 mark_object (ptr->plist);
ce5b453a
SM
5763 switch (ptr->redirect)
5764 {
5765 case SYMBOL_PLAINVAL: mark_object (SYMBOL_VAL (ptr)); break;
5766 case SYMBOL_VARALIAS:
5767 {
5768 Lisp_Object tem;
5769 XSETSYMBOL (tem, SYMBOL_ALIAS (ptr));
5770 mark_object (tem);
5771 break;
5772 }
5773 case SYMBOL_LOCALIZED:
5774 {
5775 struct Lisp_Buffer_Local_Value *blv = SYMBOL_BLV (ptr);
d73e321c
DA
5776 Lisp_Object where = blv->where;
5777 /* If the value is set up for a killed buffer or deleted
5778 frame, restore it's global binding. If the value is
5779 forwarded to a C variable, either it's not a Lisp_Object
5780 var, or it's staticpro'd already. */
5781 if ((BUFFERP (where) && !BUFFER_LIVE_P (XBUFFER (where)))
5782 || (FRAMEP (where) && !FRAME_LIVE_P (XFRAME (where))))
5783 swap_in_global_binding (ptr);
ce5b453a
SM
5784 mark_object (blv->where);
5785 mark_object (blv->valcell);
5786 mark_object (blv->defcell);
5787 break;
5788 }
5789 case SYMBOL_FORWARDED:
5790 /* If the value is forwarded to a buffer or keyboard field,
5791 these are marked when we see the corresponding object.
5792 And if it's forwarded to a C variable, either it's not
5793 a Lisp_Object var, or it's staticpro'd already. */
5794 break;
1088b922 5795 default: emacs_abort ();
ce5b453a 5796 }
c644523b
DA
5797 if (!PURE_POINTER_P (XSTRING (ptr->name)))
5798 MARK_STRING (XSTRING (ptr->name));
0c94c8d6 5799 MARK_INTERVAL_TREE (string_intervals (ptr->name));
177c0ea7 5800
7146af97
JB
5801 ptr = ptr->next;
5802 if (ptr)
5803 {
7555c33f 5804 ptrx = ptr; /* Use of ptrx avoids compiler bug on Sun. */
7146af97 5805 XSETSYMBOL (obj, ptrx);
49723c04 5806 goto loop;
7146af97
JB
5807 }
5808 }
5809 break;
5810
a0a38eb7 5811 case Lisp_Misc:
4f5c1376 5812 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
b766f870 5813
7555c33f
SM
5814 if (XMISCANY (obj)->gcmarkbit)
5815 break;
5816
5817 switch (XMISCTYPE (obj))
a0a38eb7 5818 {
7555c33f
SM
5819 case Lisp_Misc_Marker:
5820 /* DO NOT mark thru the marker's chain.
5821 The buffer's markers chain does not preserve markers from gc;
5822 instead, markers are removed from the chain when freed by gc. */
36429c89 5823 XMISCANY (obj)->gcmarkbit = 1;
7555c33f 5824 break;
465edf35 5825
7555c33f
SM
5826 case Lisp_Misc_Save_Value:
5827 XMISCANY (obj)->gcmarkbit = 1;
9ea306d1 5828#if GC_MARK_STACK
7555c33f
SM
5829 {
5830 register struct Lisp_Save_Value *ptr = XSAVE_VALUE (obj);
5831 /* If DOGC is set, POINTER is the address of a memory
5832 area containing INTEGER potential Lisp_Objects. */
5833 if (ptr->dogc)
5834 {
5835 Lisp_Object *p = (Lisp_Object *) ptr->pointer;
5836 ptrdiff_t nelt;
5837 for (nelt = ptr->integer; nelt > 0; nelt--, p++)
5838 mark_maybe_object (*p);
5839 }
5840 }
9ea306d1 5841#endif
7555c33f
SM
5842 break;
5843
5844 case Lisp_Misc_Overlay:
5845 mark_overlay (XOVERLAY (obj));
5846 break;
5847
5848 default:
1088b922 5849 emacs_abort ();
a0a38eb7 5850 }
7146af97
JB
5851 break;
5852
5853 case Lisp_Cons:
7146af97
JB
5854 {
5855 register struct Lisp_Cons *ptr = XCONS (obj);
8f11f7ec
SM
5856 if (CONS_MARKED_P (ptr))
5857 break;
4f5c1376 5858 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
08b7c2cb 5859 CONS_MARK (ptr);
c54ca951 5860 /* If the cdr is nil, avoid recursion for the car. */
c644523b 5861 if (EQ (ptr->u.cdr, Qnil))
c54ca951 5862 {
c644523b 5863 obj = ptr->car;
1342fc6f 5864 cdr_count = 0;
c54ca951
RS
5865 goto loop;
5866 }
c644523b
DA
5867 mark_object (ptr->car);
5868 obj = ptr->u.cdr;
1342fc6f
RS
5869 cdr_count++;
5870 if (cdr_count == mark_object_loop_halt)
1088b922 5871 emacs_abort ();
7146af97
JB
5872 goto loop;
5873 }
5874
7146af97 5875 case Lisp_Float:
4f5c1376 5876 CHECK_ALLOCATED_AND_LIVE (live_float_p);
ab6780cd 5877 FLOAT_MARK (XFLOAT (obj));
7146af97 5878 break;
7146af97 5879
2de9f71c 5880 case_Lisp_Int:
7146af97
JB
5881 break;
5882
5883 default:
1088b922 5884 emacs_abort ();
7146af97 5885 }
4f5c1376
GM
5886
5887#undef CHECK_LIVE
5888#undef CHECK_ALLOCATED
5889#undef CHECK_ALLOCATED_AND_LIVE
7146af97 5890}
4a729fd8 5891/* Mark the Lisp pointers in the terminal objects.
0ba2624f 5892 Called by Fgarbage_collect. */
4a729fd8 5893
4a729fd8
SM
5894static void
5895mark_terminals (void)
5896{
5897 struct terminal *t;
5898 for (t = terminal_list; t; t = t->next_terminal)
5899 {
5900 eassert (t->name != NULL);
354884c4 5901#ifdef HAVE_WINDOW_SYSTEM
96ad0af7
YM
5902 /* If a terminal object is reachable from a stacpro'ed object,
5903 it might have been marked already. Make sure the image cache
5904 gets marked. */
5905 mark_image_cache (t->image_cache);
354884c4 5906#endif /* HAVE_WINDOW_SYSTEM */
96ad0af7
YM
5907 if (!VECTOR_MARKED_P (t))
5908 mark_vectorlike ((struct Lisp_Vector *)t);
4a729fd8
SM
5909 }
5910}
5911
5912
084b1a0c 5913
41c28a37
GM
5914/* Value is non-zero if OBJ will survive the current GC because it's
5915 either marked or does not need to be marked to survive. */
5916
fce31d69 5917bool
971de7fb 5918survives_gc_p (Lisp_Object obj)
41c28a37 5919{
fce31d69 5920 bool survives_p;
177c0ea7 5921
8e50cc2d 5922 switch (XTYPE (obj))
41c28a37 5923 {
2de9f71c 5924 case_Lisp_Int:
41c28a37
GM
5925 survives_p = 1;
5926 break;
5927
5928 case Lisp_Symbol:
2336fe58 5929 survives_p = XSYMBOL (obj)->gcmarkbit;
41c28a37
GM
5930 break;
5931
5932 case Lisp_Misc:
67ee9f6e 5933 survives_p = XMISCANY (obj)->gcmarkbit;
41c28a37
GM
5934 break;
5935
5936 case Lisp_String:
08b7c2cb 5937 survives_p = STRING_MARKED_P (XSTRING (obj));
41c28a37
GM
5938 break;
5939
5940 case Lisp_Vectorlike:
8e50cc2d 5941 survives_p = SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
41c28a37
GM
5942 break;
5943
5944 case Lisp_Cons:
08b7c2cb 5945 survives_p = CONS_MARKED_P (XCONS (obj));
41c28a37
GM
5946 break;
5947
41c28a37 5948 case Lisp_Float:
ab6780cd 5949 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
41c28a37 5950 break;
41c28a37
GM
5951
5952 default:
1088b922 5953 emacs_abort ();
41c28a37
GM
5954 }
5955
34400008 5956 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
41c28a37
GM
5957}
5958
5959
7146af97 5960\f
1a4f1e2c 5961/* Sweep: find all structures not marked, and free them. */
7146af97
JB
5962
5963static void
971de7fb 5964gc_sweep (void)
7146af97 5965{
41c28a37
GM
5966 /* Remove or mark entries in weak hash tables.
5967 This must be done before any object is unmarked. */
5968 sweep_weak_hash_tables ();
5969
2e471eb5 5970 sweep_strings ();
e499d0ee 5971 check_string_bytes (!noninteractive);
7146af97
JB
5972
5973 /* Put all unmarked conses on free list */
5974 {
5975 register struct cons_block *cblk;
6ca94ac9 5976 struct cons_block **cprev = &cons_block;
7146af97 5977 register int lim = cons_block_index;
c0c5c8ae 5978 EMACS_INT num_free = 0, num_used = 0;
7146af97
JB
5979
5980 cons_free_list = 0;
177c0ea7 5981
6ca94ac9 5982 for (cblk = cons_block; cblk; cblk = *cprev)
7146af97 5983 {
3ae2e3a3 5984 register int i = 0;
6ca94ac9 5985 int this_free = 0;
3ae2e3a3
RS
5986 int ilim = (lim + BITS_PER_INT - 1) / BITS_PER_INT;
5987
5988 /* Scan the mark bits an int at a time. */
47ea7f44 5989 for (i = 0; i < ilim; i++)
3ae2e3a3
RS
5990 {
5991 if (cblk->gcmarkbits[i] == -1)
5992 {
5993 /* Fast path - all cons cells for this int are marked. */
5994 cblk->gcmarkbits[i] = 0;
5995 num_used += BITS_PER_INT;
5996 }
5997 else
5998 {
5999 /* Some cons cells for this int are not marked.
6000 Find which ones, and free them. */
6001 int start, pos, stop;
6002
6003 start = i * BITS_PER_INT;
6004 stop = lim - start;
6005 if (stop > BITS_PER_INT)
6006 stop = BITS_PER_INT;
6007 stop += start;
6008
6009 for (pos = start; pos < stop; pos++)
6010 {
6011 if (!CONS_MARKED_P (&cblk->conses[pos]))
6012 {
6013 this_free++;
6014 cblk->conses[pos].u.chain = cons_free_list;
6015 cons_free_list = &cblk->conses[pos];
34400008 6016#if GC_MARK_STACK
c644523b 6017 cons_free_list->car = Vdead;
34400008 6018#endif
3ae2e3a3
RS
6019 }
6020 else
6021 {
6022 num_used++;
6023 CONS_UNMARK (&cblk->conses[pos]);
6024 }
6025 }
6026 }
6027 }
6028
7146af97 6029 lim = CONS_BLOCK_SIZE;
6ca94ac9
KH
6030 /* If this block contains only free conses and we have already
6031 seen more than two blocks worth of free conses then deallocate
6032 this block. */
6feef451 6033 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
6ca94ac9 6034 {
6ca94ac9
KH
6035 *cprev = cblk->next;
6036 /* Unhook from the free list. */
28a099a4 6037 cons_free_list = cblk->conses[0].u.chain;
08b7c2cb 6038 lisp_align_free (cblk);
6ca94ac9
KH
6039 }
6040 else
6feef451
AS
6041 {
6042 num_free += this_free;
6043 cprev = &cblk->next;
6044 }
7146af97
JB
6045 }
6046 total_conses = num_used;
6047 total_free_conses = num_free;
6048 }
6049
7146af97
JB
6050 /* Put all unmarked floats on free list */
6051 {
6052 register struct float_block *fblk;
6ca94ac9 6053 struct float_block **fprev = &float_block;
7146af97 6054 register int lim = float_block_index;
c0c5c8ae 6055 EMACS_INT num_free = 0, num_used = 0;
7146af97
JB
6056
6057 float_free_list = 0;
177c0ea7 6058
6ca94ac9 6059 for (fblk = float_block; fblk; fblk = *fprev)
7146af97
JB
6060 {
6061 register int i;
6ca94ac9 6062 int this_free = 0;
7146af97 6063 for (i = 0; i < lim; i++)
ab6780cd 6064 if (!FLOAT_MARKED_P (&fblk->floats[i]))
7146af97 6065 {
6ca94ac9 6066 this_free++;
28a099a4 6067 fblk->floats[i].u.chain = float_free_list;
7146af97
JB
6068 float_free_list = &fblk->floats[i];
6069 }
6070 else
6071 {
6072 num_used++;
ab6780cd 6073 FLOAT_UNMARK (&fblk->floats[i]);
7146af97
JB
6074 }
6075 lim = FLOAT_BLOCK_SIZE;
6ca94ac9
KH
6076 /* If this block contains only free floats and we have already
6077 seen more than two blocks worth of free floats then deallocate
6078 this block. */
6feef451 6079 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
6ca94ac9 6080 {
6ca94ac9
KH
6081 *fprev = fblk->next;
6082 /* Unhook from the free list. */
28a099a4 6083 float_free_list = fblk->floats[0].u.chain;
ab6780cd 6084 lisp_align_free (fblk);
6ca94ac9
KH
6085 }
6086 else
6feef451
AS
6087 {
6088 num_free += this_free;
6089 fprev = &fblk->next;
6090 }
7146af97
JB
6091 }
6092 total_floats = num_used;
6093 total_free_floats = num_free;
6094 }
7146af97 6095
d5e35230
JA
6096 /* Put all unmarked intervals on free list */
6097 {
6098 register struct interval_block *iblk;
6ca94ac9 6099 struct interval_block **iprev = &interval_block;
d5e35230 6100 register int lim = interval_block_index;
c0c5c8ae 6101 EMACS_INT num_free = 0, num_used = 0;
d5e35230
JA
6102
6103 interval_free_list = 0;
6104
6ca94ac9 6105 for (iblk = interval_block; iblk; iblk = *iprev)
d5e35230
JA
6106 {
6107 register int i;
6ca94ac9 6108 int this_free = 0;
d5e35230
JA
6109
6110 for (i = 0; i < lim; i++)
6111 {
2336fe58 6112 if (!iblk->intervals[i].gcmarkbit)
d5e35230 6113 {
0c94c8d6 6114 set_interval_parent (&iblk->intervals[i], interval_free_list);
d5e35230 6115 interval_free_list = &iblk->intervals[i];
6ca94ac9 6116 this_free++;
d5e35230
JA
6117 }
6118 else
6119 {
6120 num_used++;
2336fe58 6121 iblk->intervals[i].gcmarkbit = 0;
d5e35230
JA
6122 }
6123 }
6124 lim = INTERVAL_BLOCK_SIZE;
6ca94ac9
KH
6125 /* If this block contains only free intervals and we have already
6126 seen more than two blocks worth of free intervals then
6127 deallocate this block. */
6feef451 6128 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
6ca94ac9 6129 {
6ca94ac9
KH
6130 *iprev = iblk->next;
6131 /* Unhook from the free list. */
439d5cb4 6132 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
c8099634 6133 lisp_free (iblk);
6ca94ac9
KH
6134 }
6135 else
6feef451
AS
6136 {
6137 num_free += this_free;
6138 iprev = &iblk->next;
6139 }
d5e35230
JA
6140 }
6141 total_intervals = num_used;
6142 total_free_intervals = num_free;
6143 }
d5e35230 6144
7146af97
JB
6145 /* Put all unmarked symbols on free list */
6146 {
6147 register struct symbol_block *sblk;
6ca94ac9 6148 struct symbol_block **sprev = &symbol_block;
7146af97 6149 register int lim = symbol_block_index;
c0c5c8ae 6150 EMACS_INT num_free = 0, num_used = 0;
7146af97 6151
d285b373 6152 symbol_free_list = NULL;
177c0ea7 6153
6ca94ac9 6154 for (sblk = symbol_block; sblk; sblk = *sprev)
7146af97 6155 {
6ca94ac9 6156 int this_free = 0;
d55c12ed
AS
6157 union aligned_Lisp_Symbol *sym = sblk->symbols;
6158 union aligned_Lisp_Symbol *end = sym + lim;
d285b373
GM
6159
6160 for (; sym < end; ++sym)
6161 {
20035321
SM
6162 /* Check if the symbol was created during loadup. In such a case
6163 it might be pointed to by pure bytecode which we don't trace,
6164 so we conservatively assume that it is live. */
fce31d69 6165 bool pure_p = PURE_POINTER_P (XSTRING (sym->s.name));
177c0ea7 6166
d55c12ed 6167 if (!sym->s.gcmarkbit && !pure_p)
d285b373 6168 {
d55c12ed
AS
6169 if (sym->s.redirect == SYMBOL_LOCALIZED)
6170 xfree (SYMBOL_BLV (&sym->s));
6171 sym->s.next = symbol_free_list;
6172 symbol_free_list = &sym->s;
34400008 6173#if GC_MARK_STACK
c644523b 6174 symbol_free_list->function = Vdead;
34400008 6175#endif
d285b373
GM
6176 ++this_free;
6177 }
6178 else
6179 {
6180 ++num_used;
6181 if (!pure_p)
c644523b 6182 UNMARK_STRING (XSTRING (sym->s.name));
d55c12ed 6183 sym->s.gcmarkbit = 0;
d285b373
GM
6184 }
6185 }
177c0ea7 6186
7146af97 6187 lim = SYMBOL_BLOCK_SIZE;
6ca94ac9
KH
6188 /* If this block contains only free symbols and we have already
6189 seen more than two blocks worth of free symbols then deallocate
6190 this block. */
6feef451 6191 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
6ca94ac9 6192 {
6ca94ac9
KH
6193 *sprev = sblk->next;
6194 /* Unhook from the free list. */
d55c12ed 6195 symbol_free_list = sblk->symbols[0].s.next;
c8099634 6196 lisp_free (sblk);
6ca94ac9
KH
6197 }
6198 else
6feef451
AS
6199 {
6200 num_free += this_free;
6201 sprev = &sblk->next;
6202 }
7146af97
JB
6203 }
6204 total_symbols = num_used;
6205 total_free_symbols = num_free;
6206 }
6207
a9faeabe
RS
6208 /* Put all unmarked misc's on free list.
6209 For a marker, first unchain it from the buffer it points into. */
7146af97
JB
6210 {
6211 register struct marker_block *mblk;
6ca94ac9 6212 struct marker_block **mprev = &marker_block;
7146af97 6213 register int lim = marker_block_index;
c0c5c8ae 6214 EMACS_INT num_free = 0, num_used = 0;
7146af97
JB
6215
6216 marker_free_list = 0;
177c0ea7 6217
6ca94ac9 6218 for (mblk = marker_block; mblk; mblk = *mprev)
7146af97
JB
6219 {
6220 register int i;
6ca94ac9 6221 int this_free = 0;
fa05e253 6222
7146af97 6223 for (i = 0; i < lim; i++)
465edf35 6224 {
d55c12ed 6225 if (!mblk->markers[i].m.u_any.gcmarkbit)
465edf35 6226 {
d55c12ed
AS
6227 if (mblk->markers[i].m.u_any.type == Lisp_Misc_Marker)
6228 unchain_marker (&mblk->markers[i].m.u_marker);
fa05e253
RS
6229 /* Set the type of the freed object to Lisp_Misc_Free.
6230 We could leave the type alone, since nobody checks it,
465edf35 6231 but this might catch bugs faster. */
d55c12ed
AS
6232 mblk->markers[i].m.u_marker.type = Lisp_Misc_Free;
6233 mblk->markers[i].m.u_free.chain = marker_free_list;
6234 marker_free_list = &mblk->markers[i].m;
6ca94ac9 6235 this_free++;
465edf35
KH
6236 }
6237 else
6238 {
6239 num_used++;
d55c12ed 6240 mblk->markers[i].m.u_any.gcmarkbit = 0;
465edf35
KH
6241 }
6242 }
7146af97 6243 lim = MARKER_BLOCK_SIZE;
6ca94ac9
KH
6244 /* If this block contains only free markers and we have already
6245 seen more than two blocks worth of free markers then deallocate
6246 this block. */
6feef451 6247 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
6ca94ac9 6248 {
6ca94ac9
KH
6249 *mprev = mblk->next;
6250 /* Unhook from the free list. */
d55c12ed 6251 marker_free_list = mblk->markers[0].m.u_free.chain;
c8099634 6252 lisp_free (mblk);
6ca94ac9
KH
6253 }
6254 else
6feef451
AS
6255 {
6256 num_free += this_free;
6257 mprev = &mblk->next;
6258 }
7146af97
JB
6259 }
6260
6261 total_markers = num_used;
6262 total_free_markers = num_free;
6263 }
6264
6265 /* Free all unmarked buffers */
6266 {
6267 register struct buffer *buffer = all_buffers, *prev = 0, *next;
6268
3ab6e069 6269 total_buffers = 0;
7146af97 6270 while (buffer)
3ef06d12 6271 if (!VECTOR_MARKED_P (buffer))
7146af97
JB
6272 {
6273 if (prev)
eab3844f 6274 prev->header.next = buffer->header.next;
7146af97 6275 else
eab3844f
PE
6276 all_buffers = buffer->header.next.buffer;
6277 next = buffer->header.next.buffer;
34400008 6278 lisp_free (buffer);
7146af97
JB
6279 buffer = next;
6280 }
6281 else
6282 {
3ef06d12 6283 VECTOR_UNMARK (buffer);
8707c1e5
DA
6284 /* Do not use buffer_(set|get)_intervals here. */
6285 buffer->text->intervals = balance_intervals (buffer->text->intervals);
3ab6e069 6286 total_buffers++;
eab3844f 6287 prev = buffer, buffer = buffer->header.next.buffer;
7146af97
JB
6288 }
6289 }
6290
f3372c87 6291 sweep_vectors ();
e499d0ee 6292 check_string_bytes (!noninteractive);
7146af97 6293}
7146af97 6294
7146af97 6295
7146af97 6296
7146af97 6297\f
20d24714
JB
6298/* Debugging aids. */
6299
31ce1c91 6300DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
a6266d23 6301 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
228299fa 6302This may be helpful in debugging Emacs's memory usage.
7ee72033 6303We divide the value by 1024 to make sure it fits in a Lisp integer. */)
5842a27b 6304 (void)
20d24714
JB
6305{
6306 Lisp_Object end;
6307
d01a7826 6308 XSETINT (end, (intptr_t) (char *) sbrk (0) / 1024);
20d24714
JB
6309
6310 return end;
6311}
6312
310ea200 6313DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
a6266d23 6314 doc: /* Return a list of counters that measure how much consing there has been.
228299fa
GM
6315Each of these counters increments for a certain kind of object.
6316The counters wrap around from the largest positive integer to zero.
6317Garbage collection does not decrease them.
6318The elements of the value are as follows:
6319 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
6320All are in units of 1 = one object consed
6321except for VECTOR-CELLS and STRING-CHARS, which count the total length of
6322objects consed.
6323MISCS include overlays, markers, and some internal types.
6324Frames, windows, buffers, and subprocesses count as vectors
7ee72033 6325 (but the contents of a buffer's text do not count here). */)
5842a27b 6326 (void)
310ea200 6327{
3438fe21 6328 return listn (CONSTYPE_HEAP, 8,
694b6c97
DA
6329 bounded_number (cons_cells_consed),
6330 bounded_number (floats_consed),
6331 bounded_number (vector_cells_consed),
6332 bounded_number (symbols_consed),
6333 bounded_number (string_chars_consed),
6334 bounded_number (misc_objects_consed),
6335 bounded_number (intervals_consed),
6336 bounded_number (strings_consed));
310ea200 6337}
e0b8c689 6338
8b058d44
EZ
6339/* Find at most FIND_MAX symbols which have OBJ as their value or
6340 function. This is used in gdbinit's `xwhichsymbols' command. */
6341
6342Lisp_Object
196e41e4 6343which_symbols (Lisp_Object obj, EMACS_INT find_max)
8b058d44
EZ
6344{
6345 struct symbol_block *sblk;
8d0eb4c2 6346 ptrdiff_t gc_count = inhibit_garbage_collection ();
8b058d44
EZ
6347 Lisp_Object found = Qnil;
6348
ca78dc43 6349 if (! DEADP (obj))
8b058d44
EZ
6350 {
6351 for (sblk = symbol_block; sblk; sblk = sblk->next)
6352 {
9426aba4 6353 union aligned_Lisp_Symbol *aligned_sym = sblk->symbols;
8b058d44
EZ
6354 int bn;
6355
9426aba4 6356 for (bn = 0; bn < SYMBOL_BLOCK_SIZE; bn++, aligned_sym++)
8b058d44 6357 {
9426aba4 6358 struct Lisp_Symbol *sym = &aligned_sym->s;
8b058d44
EZ
6359 Lisp_Object val;
6360 Lisp_Object tem;
6361
6362 if (sblk == symbol_block && bn >= symbol_block_index)
6363 break;
6364
6365 XSETSYMBOL (tem, sym);
6366 val = find_symbol_value (tem);
6367 if (EQ (val, obj)
c644523b
DA
6368 || EQ (sym->function, obj)
6369 || (!NILP (sym->function)
6370 && COMPILEDP (sym->function)
6371 && EQ (AREF (sym->function, COMPILED_BYTECODE), obj))
8b058d44
EZ
6372 || (!NILP (val)
6373 && COMPILEDP (val)
6374 && EQ (AREF (val, COMPILED_BYTECODE), obj)))
6375 {
6376 found = Fcons (tem, found);
6377 if (--find_max == 0)
6378 goto out;
6379 }
6380 }
6381 }
6382 }
6383
6384 out:
6385 unbind_to (gc_count, Qnil);
6386 return found;
6387}
6388
244ed907 6389#ifdef ENABLE_CHECKING
f4a681b0 6390
fce31d69 6391bool suppress_checking;
d3d47262 6392
e0b8c689 6393void
971de7fb 6394die (const char *msg, const char *file, int line)
e0b8c689 6395{
67ee9f6e 6396 fprintf (stderr, "\r\n%s:%d: Emacs fatal error: %s\r\n",
e0b8c689 6397 file, line, msg);
4d7e6e51 6398 terminate_due_to_signal (SIGABRT, INT_MAX);
e0b8c689 6399}
244ed907 6400#endif
20d24714 6401\f
7146af97
JB
6402/* Initialization */
6403
dfcf069d 6404void
971de7fb 6405init_alloc_once (void)
7146af97
JB
6406{
6407 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
9e713715
GM
6408 purebeg = PUREBEG;
6409 pure_size = PURESIZE;
ab6780cd 6410
877935b1 6411#if GC_MARK_STACK || defined GC_MALLOC_CHECK
34400008
GM
6412 mem_init ();
6413 Vdead = make_pure_string ("DEAD", 4, 4, 0);
6414#endif
9e713715 6415
d1658221
RS
6416#ifdef DOUG_LEA_MALLOC
6417 mallopt (M_TRIM_THRESHOLD, 128*1024); /* trim threshold */
6418 mallopt (M_MMAP_THRESHOLD, 64*1024); /* mmap threshold */
81d492d5 6419 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* max. number of mmap'ed areas */
d1658221 6420#endif
7146af97 6421 init_strings ();
f3372c87 6422 init_vectors ();
d5e35230 6423
24d8a105 6424 refill_memory_reserve ();
0dd6d66d 6425 gc_cons_threshold = GC_DEFAULT_THRESHOLD;
7146af97
JB
6426}
6427
dfcf069d 6428void
971de7fb 6429init_alloc (void)
7146af97
JB
6430{
6431 gcprolist = 0;
630686c8 6432 byte_stack_list = 0;
182ff242
GM
6433#if GC_MARK_STACK
6434#if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
6435 setjmp_tested_p = longjmps_done = 0;
6436#endif
6437#endif
2c5bd608
DL
6438 Vgc_elapsed = make_float (0.0);
6439 gcs_done = 0;
7146af97
JB
6440}
6441
6442void
971de7fb 6443syms_of_alloc (void)
7146af97 6444{
29208e82 6445 DEFVAR_INT ("gc-cons-threshold", gc_cons_threshold,
fb7ada5f 6446 doc: /* Number of bytes of consing between garbage collections.
228299fa
GM
6447Garbage collection can happen automatically once this many bytes have been
6448allocated since the last garbage collection. All data types count.
7146af97 6449
228299fa 6450Garbage collection happens automatically only when `eval' is called.
7146af97 6451
228299fa 6452By binding this temporarily to a large number, you can effectively
96f077ad
SM
6453prevent garbage collection during a part of the program.
6454See also `gc-cons-percentage'. */);
6455
29208e82 6456 DEFVAR_LISP ("gc-cons-percentage", Vgc_cons_percentage,
fb7ada5f 6457 doc: /* Portion of the heap used for allocation.
96f077ad
SM
6458Garbage collection can happen automatically once this portion of the heap
6459has been allocated since the last garbage collection.
6460If this portion is smaller than `gc-cons-threshold', this is ignored. */);
6461 Vgc_cons_percentage = make_float (0.1);
0819585c 6462
29208e82 6463 DEFVAR_INT ("pure-bytes-used", pure_bytes_used,
333f9019 6464 doc: /* Number of bytes of shareable Lisp data allocated so far. */);
0819585c 6465
29208e82 6466 DEFVAR_INT ("cons-cells-consed", cons_cells_consed,
a6266d23 6467 doc: /* Number of cons cells that have been consed so far. */);
0819585c 6468
29208e82 6469 DEFVAR_INT ("floats-consed", floats_consed,
a6266d23 6470 doc: /* Number of floats that have been consed so far. */);
0819585c 6471
29208e82 6472 DEFVAR_INT ("vector-cells-consed", vector_cells_consed,
a6266d23 6473 doc: /* Number of vector cells that have been consed so far. */);
0819585c 6474
29208e82 6475 DEFVAR_INT ("symbols-consed", symbols_consed,
a6266d23 6476 doc: /* Number of symbols that have been consed so far. */);
0819585c 6477
29208e82 6478 DEFVAR_INT ("string-chars-consed", string_chars_consed,
a6266d23 6479 doc: /* Number of string characters that have been consed so far. */);
0819585c 6480
29208e82 6481 DEFVAR_INT ("misc-objects-consed", misc_objects_consed,
01a6dcc8
GM
6482 doc: /* Number of miscellaneous objects that have been consed so far.
6483These include markers and overlays, plus certain objects not visible
6484to users. */);
2e471eb5 6485
29208e82 6486 DEFVAR_INT ("intervals-consed", intervals_consed,
a6266d23 6487 doc: /* Number of intervals that have been consed so far. */);
7146af97 6488
29208e82 6489 DEFVAR_INT ("strings-consed", strings_consed,
a6266d23 6490 doc: /* Number of strings that have been consed so far. */);
228299fa 6491
29208e82 6492 DEFVAR_LISP ("purify-flag", Vpurify_flag,
a6266d23 6493 doc: /* Non-nil means loading Lisp code in order to dump an executable.
e9515805
SM
6494This means that certain objects should be allocated in shared (pure) space.
6495It can also be set to a hash-table, in which case this table is used to
6496do hash-consing of the objects allocated to pure space. */);
228299fa 6497
29208e82 6498 DEFVAR_BOOL ("garbage-collection-messages", garbage_collection_messages,
a6266d23 6499 doc: /* Non-nil means display messages at start and end of garbage collection. */);
299585ee
RS
6500 garbage_collection_messages = 0;
6501
29208e82 6502 DEFVAR_LISP ("post-gc-hook", Vpost_gc_hook,
a6266d23 6503 doc: /* Hook run after garbage collection has finished. */);
9e713715 6504 Vpost_gc_hook = Qnil;
cd3520a4 6505 DEFSYM (Qpost_gc_hook, "post-gc-hook");
9e713715 6506
29208e82 6507 DEFVAR_LISP ("memory-signal-data", Vmemory_signal_data,
74a54b04 6508 doc: /* Precomputed `signal' argument for memory-full error. */);
bcb61d60
KH
6509 /* We build this in advance because if we wait until we need it, we might
6510 not be able to allocate the memory to hold it. */
74a54b04 6511 Vmemory_signal_data
3438fe21 6512 = listn (CONSTYPE_PURE, 2, Qerror,
694b6c97 6513 build_pure_c_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"));
74a54b04 6514
29208e82 6515 DEFVAR_LISP ("memory-full", Vmemory_full,
24d8a105 6516 doc: /* Non-nil means Emacs cannot get much more Lisp memory. */);
74a54b04 6517 Vmemory_full = Qnil;
bcb61d60 6518
fecbd8ff
SM
6519 DEFSYM (Qconses, "conses");
6520 DEFSYM (Qsymbols, "symbols");
6521 DEFSYM (Qmiscs, "miscs");
6522 DEFSYM (Qstrings, "strings");
6523 DEFSYM (Qvectors, "vectors");
6524 DEFSYM (Qfloats, "floats");
6525 DEFSYM (Qintervals, "intervals");
6526 DEFSYM (Qbuffers, "buffers");
5b835e1d
DA
6527 DEFSYM (Qstring_bytes, "string-bytes");
6528 DEFSYM (Qvector_slots, "vector-slots");
f8643a6b 6529 DEFSYM (Qheap, "heap");
5b835e1d 6530
cd3520a4
JB
6531 DEFSYM (Qgc_cons_threshold, "gc-cons-threshold");
6532 DEFSYM (Qchar_table_extra_slots, "char-table-extra-slots");
a59de17b 6533
29208e82 6534 DEFVAR_LISP ("gc-elapsed", Vgc_elapsed,
2c5bd608 6535 doc: /* Accumulated time elapsed in garbage collections.
e7415487 6536The time is in seconds as a floating point value. */);
29208e82 6537 DEFVAR_INT ("gcs-done", gcs_done,
e7415487 6538 doc: /* Accumulated number of garbage collections done. */);
2c5bd608 6539
7146af97
JB
6540 defsubr (&Scons);
6541 defsubr (&Slist);
6542 defsubr (&Svector);
6543 defsubr (&Smake_byte_code);
6544 defsubr (&Smake_list);
6545 defsubr (&Smake_vector);
6546 defsubr (&Smake_string);
7b07587b 6547 defsubr (&Smake_bool_vector);
7146af97
JB
6548 defsubr (&Smake_symbol);
6549 defsubr (&Smake_marker);
6550 defsubr (&Spurecopy);
6551 defsubr (&Sgarbage_collect);
20d24714 6552 defsubr (&Smemory_limit);
310ea200 6553 defsubr (&Smemory_use_counts);
34400008
GM
6554
6555#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
6556 defsubr (&Sgc_status);
6557#endif
7146af97 6558}
5eceb8fb 6559
4706125e
PE
6560/* When compiled with GCC, GDB might say "No enum type named
6561 pvec_type" if we don't have at least one symbol with that type, and
6562 then xbacktrace could fail. Similarly for the other enums and
6563 their values. */
6564union
6565{
03a660a6
PE
6566 enum CHARTAB_SIZE_BITS CHARTAB_SIZE_BITS;
6567 enum CHAR_TABLE_STANDARD_SLOTS CHAR_TABLE_STANDARD_SLOTS;
6568 enum char_bits char_bits;
4706125e 6569 enum CHECK_LISP_OBJECT_TYPE CHECK_LISP_OBJECT_TYPE;
03a660a6 6570 enum DEFAULT_HASH_SIZE DEFAULT_HASH_SIZE;
4706125e 6571 enum enum_USE_LSB_TAG enum_USE_LSB_TAG;
03a660a6 6572 enum FLOAT_TO_STRING_BUFSIZE FLOAT_TO_STRING_BUFSIZE;
4706125e 6573 enum Lisp_Bits Lisp_Bits;
03a660a6
PE
6574 enum Lisp_Compiled Lisp_Compiled;
6575 enum maxargs maxargs;
6576 enum MAX_ALLOCA MAX_ALLOCA;
4706125e
PE
6577 enum More_Lisp_Bits More_Lisp_Bits;
6578 enum pvec_type pvec_type;
c32af1e4
PE
6579#if USE_LSB_TAG
6580 enum lsb_bits lsb_bits;
6581#endif
4706125e 6582} const EXTERNALLY_VISIBLE gdb_make_enums_visible = {0};