Update for font-backend changes.
[bpt/emacs.git] / src / alloc.c
CommitLineData
7146af97 1/* Storage allocation and gc for GNU Emacs Lisp interpreter.
126f9c02 2 Copyright (C) 1985, 1986, 1988, 1993, 1994, 1995, 1997, 1998, 1999,
8cabe764
GM
3 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
4 Free Software Foundation, Inc.
7146af97
JB
5
6This file is part of GNU Emacs.
7
8GNU Emacs is free software; you can redistribute it and/or modify
9it under the terms of the GNU General Public License as published by
684d6f5b 10the Free Software Foundation; either version 3, or (at your option)
7146af97
JB
11any later version.
12
13GNU Emacs is distributed in the hope that it will be useful,
14but WITHOUT ANY WARRANTY; without even the implied warranty of
15MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16GNU General Public License for more details.
17
18You should have received a copy of the GNU General Public License
19along with GNU Emacs; see the file COPYING. If not, write to
4fc5845f
LK
20the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
21Boston, MA 02110-1301, USA. */
7146af97 22
18160b98 23#include <config.h>
e9b309ac 24#include <stdio.h>
ab6780cd 25#include <limits.h> /* For CHAR_BIT. */
92939d31 26
4f27350a
EZ
27#ifdef STDC_HEADERS
28#include <stddef.h> /* For offsetof, used by PSEUDOVECSIZE. */
29#endif
30
4455ad75
RS
31#ifdef ALLOC_DEBUG
32#undef INLINE
33#endif
34
68c45bf0 35/* Note that this declares bzero on OSF/1. How dumb. */
2e471eb5 36
68c45bf0 37#include <signal.h>
92939d31 38
aa477689
JD
39#ifdef HAVE_GTK_AND_PTHREAD
40#include <pthread.h>
41#endif
42
7539e11f
KR
43/* This file is part of the core Lisp implementation, and thus must
44 deal with the real data structures. If the Lisp implementation is
45 replaced, this file likely will not be used. */
2e471eb5 46
7539e11f 47#undef HIDE_LISP_IMPLEMENTATION
7146af97 48#include "lisp.h"
ece93c02 49#include "process.h"
d5e35230 50#include "intervals.h"
4c0be5f4 51#include "puresize.h"
7146af97
JB
52#include "buffer.h"
53#include "window.h"
2538fae4 54#include "keyboard.h"
502b9b64 55#include "frame.h"
9ac0d9e0 56#include "blockinput.h"
9d80e883 57#include "character.h"
e065a56e 58#include "syssignal.h"
4a729fd8 59#include "termhooks.h" /* For struct terminal. */
34400008 60#include <setjmp.h>
e065a56e 61
6b61353c
KH
62/* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
63 memory. Can do this only if using gmalloc.c. */
64
65#if defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC
66#undef GC_MALLOC_CHECK
67#endif
68
bf952fb6
DL
69#ifdef HAVE_UNISTD_H
70#include <unistd.h>
71#else
72extern POINTER_TYPE *sbrk ();
73#endif
ee1eea5c 74
de7124a7
KS
75#ifdef HAVE_FCNTL_H
76#define INCLUDED_FCNTL
77#include <fcntl.h>
78#endif
79#ifndef O_WRONLY
80#define O_WRONLY 1
81#endif
82
69666f77
EZ
83#ifdef WINDOWSNT
84#include <fcntl.h>
f892cf9c 85#include "w32.h"
69666f77
EZ
86#endif
87
d1658221 88#ifdef DOUG_LEA_MALLOC
2e471eb5 89
d1658221 90#include <malloc.h>
3e60b029
DL
91/* malloc.h #defines this as size_t, at least in glibc2. */
92#ifndef __malloc_size_t
d1658221 93#define __malloc_size_t int
3e60b029 94#endif
81d492d5 95
2e471eb5
GM
96/* Specify maximum number of areas to mmap. It would be nice to use a
97 value that explicitly means "no limit". */
98
81d492d5
RS
99#define MMAP_MAX_AREAS 100000000
100
2e471eb5
GM
101#else /* not DOUG_LEA_MALLOC */
102
276cbe5a
RS
103/* The following come from gmalloc.c. */
104
276cbe5a 105#define __malloc_size_t size_t
276cbe5a 106extern __malloc_size_t _bytes_used;
3e60b029 107extern __malloc_size_t __malloc_extra_blocks;
2e471eb5
GM
108
109#endif /* not DOUG_LEA_MALLOC */
276cbe5a 110
aa477689
JD
111#if ! defined (SYSTEM_MALLOC) && defined (HAVE_GTK_AND_PTHREAD)
112
f415cacd
JD
113/* When GTK uses the file chooser dialog, different backends can be loaded
114 dynamically. One such a backend is the Gnome VFS backend that gets loaded
115 if you run Gnome. That backend creates several threads and also allocates
116 memory with malloc.
117
118 If Emacs sets malloc hooks (! SYSTEM_MALLOC) and the emacs_blocked_*
119 functions below are called from malloc, there is a chance that one
120 of these threads preempts the Emacs main thread and the hook variables
333f1b6f 121 end up in an inconsistent state. So we have a mutex to prevent that (note
f415cacd
JD
122 that the backend handles concurrent access to malloc within its own threads
123 but Emacs code running in the main thread is not included in that control).
124
026cdede 125 When UNBLOCK_INPUT is called, reinvoke_input_signal may be called. If this
f415cacd
JD
126 happens in one of the backend threads we will have two threads that tries
127 to run Emacs code at once, and the code is not prepared for that.
128 To prevent that, we only call BLOCK/UNBLOCK from the main thread. */
129
aa477689 130static pthread_mutex_t alloc_mutex;
aa477689 131
959dc601
JD
132#define BLOCK_INPUT_ALLOC \
133 do \
134 { \
135 if (pthread_equal (pthread_self (), main_thread)) \
86302e37 136 BLOCK_INPUT; \
959dc601
JD
137 pthread_mutex_lock (&alloc_mutex); \
138 } \
aa477689 139 while (0)
959dc601
JD
140#define UNBLOCK_INPUT_ALLOC \
141 do \
142 { \
143 pthread_mutex_unlock (&alloc_mutex); \
144 if (pthread_equal (pthread_self (), main_thread)) \
86302e37 145 UNBLOCK_INPUT; \
959dc601 146 } \
aa477689
JD
147 while (0)
148
149#else /* SYSTEM_MALLOC || not HAVE_GTK_AND_PTHREAD */
150
151#define BLOCK_INPUT_ALLOC BLOCK_INPUT
152#define UNBLOCK_INPUT_ALLOC UNBLOCK_INPUT
153
154#endif /* SYSTEM_MALLOC || not HAVE_GTK_AND_PTHREAD */
155
276cbe5a 156/* Value of _bytes_used, when spare_memory was freed. */
2e471eb5 157
276cbe5a
RS
158static __malloc_size_t bytes_used_when_full;
159
4d74a5fc
RS
160static __malloc_size_t bytes_used_when_reconsidered;
161
2e471eb5
GM
162/* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
163 to a struct Lisp_String. */
164
7cdee936
SM
165#define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
166#define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
b059de99 167#define STRING_MARKED_P(S) (((S)->size & ARRAY_MARK_FLAG) != 0)
2e471eb5 168
3ef06d12
SM
169#define VECTOR_MARK(V) ((V)->size |= ARRAY_MARK_FLAG)
170#define VECTOR_UNMARK(V) ((V)->size &= ~ARRAY_MARK_FLAG)
b059de99 171#define VECTOR_MARKED_P(V) (((V)->size & ARRAY_MARK_FLAG) != 0)
3ef06d12 172
2e471eb5
GM
173/* Value is the number of bytes/chars of S, a pointer to a struct
174 Lisp_String. This must be used instead of STRING_BYTES (S) or
175 S->size during GC, because S->size contains the mark bit for
176 strings. */
177
3ef06d12 178#define GC_STRING_BYTES(S) (STRING_BYTES (S))
7cdee936 179#define GC_STRING_CHARS(S) ((S)->size & ~ARRAY_MARK_FLAG)
2e471eb5
GM
180
181/* Number of bytes of consing done since the last gc. */
182
7146af97
JB
183int consing_since_gc;
184
310ea200 185/* Count the amount of consing of various sorts of space. */
2e471eb5 186
31ade731
SM
187EMACS_INT cons_cells_consed;
188EMACS_INT floats_consed;
189EMACS_INT vector_cells_consed;
190EMACS_INT symbols_consed;
191EMACS_INT string_chars_consed;
192EMACS_INT misc_objects_consed;
193EMACS_INT intervals_consed;
194EMACS_INT strings_consed;
2e471eb5 195
974aae61
RS
196/* Minimum number of bytes of consing since GC before next GC. */
197
198EMACS_INT gc_cons_threshold;
199
200/* Similar minimum, computed from Vgc_cons_percentage. */
201
202EMACS_INT gc_relative_threshold;
310ea200 203
96f077ad 204static Lisp_Object Vgc_cons_percentage;
7146af97 205
24d8a105
RS
206/* Minimum number of bytes of consing since GC before next GC,
207 when memory is full. */
208
209EMACS_INT memory_full_cons_threshold;
210
2e471eb5
GM
211/* Nonzero during GC. */
212
7146af97
JB
213int gc_in_progress;
214
3de0effb
RS
215/* Nonzero means abort if try to GC.
216 This is for code which is written on the assumption that
217 no GC will happen, so as to verify that assumption. */
218
219int abort_on_gc;
220
299585ee 221/* Nonzero means display messages at beginning and end of GC. */
2e471eb5 222
299585ee
RS
223int garbage_collection_messages;
224
7146af97
JB
225#ifndef VIRT_ADDR_VARIES
226extern
227#endif /* VIRT_ADDR_VARIES */
2e471eb5 228int malloc_sbrk_used;
7146af97
JB
229
230#ifndef VIRT_ADDR_VARIES
231extern
232#endif /* VIRT_ADDR_VARIES */
2e471eb5 233int malloc_sbrk_unused;
7146af97 234
34400008
GM
235/* Number of live and free conses etc. */
236
237static int total_conses, total_markers, total_symbols, total_vector_size;
238static int total_free_conses, total_free_markers, total_free_symbols;
239static int total_free_floats, total_floats;
fd27a537 240
2e471eb5 241/* Points to memory space allocated as "spare", to be freed if we run
24d8a105
RS
242 out of memory. We keep one large block, four cons-blocks, and
243 two string blocks. */
2e471eb5 244
d3d47262 245static char *spare_memory[7];
276cbe5a 246
24d8a105 247/* Amount of spare memory to keep in large reserve block. */
2e471eb5 248
276cbe5a
RS
249#define SPARE_MEMORY (1 << 14)
250
251/* Number of extra blocks malloc should get when it needs more core. */
2e471eb5 252
276cbe5a
RS
253static int malloc_hysteresis;
254
2e471eb5
GM
255/* Non-nil means defun should do purecopy on the function definition. */
256
7146af97
JB
257Lisp_Object Vpurify_flag;
258
74a54b04
RS
259/* Non-nil means we are handling a memory-full error. */
260
261Lisp_Object Vmemory_full;
262
7146af97 263#ifndef HAVE_SHM
2e471eb5 264
1b8950e5
RS
265/* Initialize it to a nonzero value to force it into data space
266 (rather than bss space). That way unexec will remap it into text
267 space (pure), on some systems. We have not implemented the
268 remapping on more recent systems because this is less important
269 nowadays than in the days of small memories and timesharing. */
2e471eb5 270
2c4685ee 271EMACS_INT pure[(PURESIZE + sizeof (EMACS_INT) - 1) / sizeof (EMACS_INT)] = {1,};
7146af97 272#define PUREBEG (char *) pure
2e471eb5 273
9e713715 274#else /* HAVE_SHM */
2e471eb5 275
7146af97
JB
276#define pure PURE_SEG_BITS /* Use shared memory segment */
277#define PUREBEG (char *)PURE_SEG_BITS
4c0be5f4 278
9e713715 279#endif /* HAVE_SHM */
2e471eb5 280
9e713715 281/* Pointer to the pure area, and its size. */
2e471eb5 282
9e713715
GM
283static char *purebeg;
284static size_t pure_size;
285
286/* Number of bytes of pure storage used before pure storage overflowed.
287 If this is non-zero, this implies that an overflow occurred. */
288
289static size_t pure_bytes_used_before_overflow;
7146af97 290
34400008
GM
291/* Value is non-zero if P points into pure space. */
292
293#define PURE_POINTER_P(P) \
294 (((PNTR_COMPARISON_TYPE) (P) \
9e713715 295 < (PNTR_COMPARISON_TYPE) ((char *) purebeg + pure_size)) \
34400008 296 && ((PNTR_COMPARISON_TYPE) (P) \
9e713715 297 >= (PNTR_COMPARISON_TYPE) purebeg))
34400008 298
e5bc14d4 299/* Total number of bytes allocated in pure storage. */
2e471eb5 300
31ade731 301EMACS_INT pure_bytes_used;
7146af97 302
e5bc14d4
YM
303/* Index in pure at which next pure Lisp object will be allocated.. */
304
305static EMACS_INT pure_bytes_used_lisp;
306
307/* Number of bytes allocated for non-Lisp objects in pure storage. */
308
309static EMACS_INT pure_bytes_used_non_lisp;
310
2e471eb5
GM
311/* If nonzero, this is a warning delivered by malloc and not yet
312 displayed. */
313
7146af97
JB
314char *pending_malloc_warning;
315
bcb61d60 316/* Pre-computed signal argument for use when memory is exhausted. */
2e471eb5 317
74a54b04 318Lisp_Object Vmemory_signal_data;
bcb61d60 319
7146af97
JB
320/* Maximum amount of C stack to save when a GC happens. */
321
322#ifndef MAX_SAVE_STACK
323#define MAX_SAVE_STACK 16000
324#endif
325
326/* Buffer in which we save a copy of the C stack at each GC. */
327
d3d47262
JB
328static char *stack_copy;
329static int stack_copy_size;
7146af97 330
2e471eb5
GM
331/* Non-zero means ignore malloc warnings. Set during initialization.
332 Currently not used. */
333
d3d47262 334static int ignore_warnings;
350273a4 335
a59de17b 336Lisp_Object Qgc_cons_threshold, Qchar_table_extra_slots;
e8197642 337
9e713715
GM
338/* Hook run after GC has finished. */
339
340Lisp_Object Vpost_gc_hook, Qpost_gc_hook;
341
2c5bd608
DL
342Lisp_Object Vgc_elapsed; /* accumulated elapsed time in GC */
343EMACS_INT gcs_done; /* accumulated GCs */
344
2e471eb5 345static void mark_buffer P_ ((Lisp_Object));
4a729fd8 346static void mark_terminals P_ ((void));
6793bc63 347extern void mark_kboards P_ ((void));
819b8f00 348extern void mark_ttys P_ ((void));
b40ea20a 349extern void mark_backtrace P_ ((void));
2e471eb5 350static void gc_sweep P_ ((void));
41c28a37
GM
351static void mark_glyph_matrix P_ ((struct glyph_matrix *));
352static void mark_face_cache P_ ((struct face_cache *));
353
354#ifdef HAVE_WINDOW_SYSTEM
454d7973 355extern void mark_fringe_data P_ ((void));
41c28a37
GM
356#endif /* HAVE_WINDOW_SYSTEM */
357
2e471eb5
GM
358static struct Lisp_String *allocate_string P_ ((void));
359static void compact_small_strings P_ ((void));
360static void free_large_strings P_ ((void));
361static void sweep_strings P_ ((void));
7da0b0d3
RS
362
363extern int message_enable_multibyte;
34400008 364
34400008
GM
365/* When scanning the C stack for live Lisp objects, Emacs keeps track
366 of what memory allocated via lisp_malloc is intended for what
367 purpose. This enumeration specifies the type of memory. */
368
369enum mem_type
370{
371 MEM_TYPE_NON_LISP,
372 MEM_TYPE_BUFFER,
373 MEM_TYPE_CONS,
374 MEM_TYPE_STRING,
375 MEM_TYPE_MISC,
376 MEM_TYPE_SYMBOL,
377 MEM_TYPE_FLOAT,
9c545a55
SM
378 /* We used to keep separate mem_types for subtypes of vectors such as
379 process, hash_table, frame, terminal, and window, but we never made
380 use of the distinction, so it only caused source-code complexity
381 and runtime slowdown. Minor but pointless. */
382 MEM_TYPE_VECTORLIKE
34400008
GM
383};
384
24d8a105
RS
385static POINTER_TYPE *lisp_align_malloc P_ ((size_t, enum mem_type));
386static POINTER_TYPE *lisp_malloc P_ ((size_t, enum mem_type));
225ccad6
RS
387void refill_memory_reserve ();
388
24d8a105 389
877935b1 390#if GC_MARK_STACK || defined GC_MALLOC_CHECK
0b378936
GM
391
392#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
393#include <stdio.h> /* For fprintf. */
394#endif
395
396/* A unique object in pure space used to make some Lisp objects
397 on free lists recognizable in O(1). */
398
d3d47262 399static Lisp_Object Vdead;
0b378936 400
877935b1
GM
401#ifdef GC_MALLOC_CHECK
402
403enum mem_type allocated_mem_type;
d3d47262 404static int dont_register_blocks;
877935b1
GM
405
406#endif /* GC_MALLOC_CHECK */
407
408/* A node in the red-black tree describing allocated memory containing
409 Lisp data. Each such block is recorded with its start and end
410 address when it is allocated, and removed from the tree when it
411 is freed.
412
413 A red-black tree is a balanced binary tree with the following
414 properties:
415
416 1. Every node is either red or black.
417 2. Every leaf is black.
418 3. If a node is red, then both of its children are black.
419 4. Every simple path from a node to a descendant leaf contains
420 the same number of black nodes.
421 5. The root is always black.
422
423 When nodes are inserted into the tree, or deleted from the tree,
424 the tree is "fixed" so that these properties are always true.
425
426 A red-black tree with N internal nodes has height at most 2
427 log(N+1). Searches, insertions and deletions are done in O(log N).
428 Please see a text book about data structures for a detailed
429 description of red-black trees. Any book worth its salt should
430 describe them. */
431
432struct mem_node
433{
9f7d9210
RS
434 /* Children of this node. These pointers are never NULL. When there
435 is no child, the value is MEM_NIL, which points to a dummy node. */
436 struct mem_node *left, *right;
437
438 /* The parent of this node. In the root node, this is NULL. */
439 struct mem_node *parent;
877935b1
GM
440
441 /* Start and end of allocated region. */
442 void *start, *end;
443
444 /* Node color. */
445 enum {MEM_BLACK, MEM_RED} color;
177c0ea7 446
877935b1
GM
447 /* Memory type. */
448 enum mem_type type;
449};
450
451/* Base address of stack. Set in main. */
452
453Lisp_Object *stack_base;
454
455/* Root of the tree describing allocated Lisp memory. */
456
457static struct mem_node *mem_root;
458
ece93c02
GM
459/* Lowest and highest known address in the heap. */
460
461static void *min_heap_address, *max_heap_address;
462
877935b1
GM
463/* Sentinel node of the tree. */
464
465static struct mem_node mem_z;
466#define MEM_NIL &mem_z
467
b3303f74 468static POINTER_TYPE *lisp_malloc P_ ((size_t, enum mem_type));
9c545a55 469static struct Lisp_Vector *allocate_vectorlike P_ ((EMACS_INT));
bf952fb6 470static void lisp_free P_ ((POINTER_TYPE *));
34400008 471static void mark_stack P_ ((void));
34400008
GM
472static int live_vector_p P_ ((struct mem_node *, void *));
473static int live_buffer_p P_ ((struct mem_node *, void *));
474static int live_string_p P_ ((struct mem_node *, void *));
475static int live_cons_p P_ ((struct mem_node *, void *));
476static int live_symbol_p P_ ((struct mem_node *, void *));
477static int live_float_p P_ ((struct mem_node *, void *));
478static int live_misc_p P_ ((struct mem_node *, void *));
182ff242 479static void mark_maybe_object P_ ((Lisp_Object));
55a314a5 480static void mark_memory P_ ((void *, void *, int));
34400008
GM
481static void mem_init P_ ((void));
482static struct mem_node *mem_insert P_ ((void *, void *, enum mem_type));
483static void mem_insert_fixup P_ ((struct mem_node *));
484static void mem_rotate_left P_ ((struct mem_node *));
485static void mem_rotate_right P_ ((struct mem_node *));
486static void mem_delete P_ ((struct mem_node *));
487static void mem_delete_fixup P_ ((struct mem_node *));
488static INLINE struct mem_node *mem_find P_ ((void *));
489
34400008
GM
490
491#if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
492static void check_gcpros P_ ((void));
493#endif
494
877935b1 495#endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
34400008 496
1f0b3fd2
GM
497/* Recording what needs to be marked for gc. */
498
499struct gcpro *gcprolist;
500
379b98b1
PE
501/* Addresses of staticpro'd variables. Initialize it to a nonzero
502 value; otherwise some compilers put it into BSS. */
1f0b3fd2 503
1ccaa71a 504#define NSTATICS 0x600
d3d47262 505static Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
1f0b3fd2
GM
506
507/* Index of next unused slot in staticvec. */
508
d3d47262 509static int staticidx = 0;
1f0b3fd2
GM
510
511static POINTER_TYPE *pure_alloc P_ ((size_t, int));
512
513
514/* Value is SZ rounded up to the next multiple of ALIGNMENT.
515 ALIGNMENT must be a power of 2. */
516
ab6780cd
SM
517#define ALIGN(ptr, ALIGNMENT) \
518 ((POINTER_TYPE *) ((((EMACS_UINT)(ptr)) + (ALIGNMENT) - 1) \
519 & ~((ALIGNMENT) - 1)))
1f0b3fd2 520
ece93c02 521
7146af97 522\f
34400008
GM
523/************************************************************************
524 Malloc
525 ************************************************************************/
526
4455ad75 527/* Function malloc calls this if it finds we are near exhausting storage. */
d457598b
AS
528
529void
7146af97
JB
530malloc_warning (str)
531 char *str;
532{
533 pending_malloc_warning = str;
534}
535
34400008 536
4455ad75 537/* Display an already-pending malloc warning. */
34400008 538
d457598b 539void
7146af97
JB
540display_malloc_warning ()
541{
4455ad75
RS
542 call3 (intern ("display-warning"),
543 intern ("alloc"),
544 build_string (pending_malloc_warning),
545 intern ("emergency"));
7146af97 546 pending_malloc_warning = 0;
7146af97
JB
547}
548
34400008 549
d1658221 550#ifdef DOUG_LEA_MALLOC
4d74a5fc 551# define BYTES_USED (mallinfo ().uordblks)
d1658221 552#else
1177ecf6 553# define BYTES_USED _bytes_used
d1658221 554#endif
49efed3a 555\f
276cbe5a
RS
556/* Called if we can't allocate relocatable space for a buffer. */
557
558void
559buffer_memory_full ()
560{
2e471eb5
GM
561 /* If buffers use the relocating allocator, no need to free
562 spare_memory, because we may have plenty of malloc space left
563 that we could get, and if we don't, the malloc that fails will
564 itself cause spare_memory to be freed. If buffers don't use the
565 relocating allocator, treat this like any other failing
566 malloc. */
276cbe5a
RS
567
568#ifndef REL_ALLOC
569 memory_full ();
570#endif
571
2e471eb5
GM
572 /* This used to call error, but if we've run out of memory, we could
573 get infinite recursion trying to build the string. */
9b306d37 574 xsignal (Qnil, Vmemory_signal_data);
7146af97
JB
575}
576
34400008 577
212f33f1
KS
578#ifdef XMALLOC_OVERRUN_CHECK
579
bdbed949
KS
580/* Check for overrun in malloc'ed buffers by wrapping a 16 byte header
581 and a 16 byte trailer around each block.
582
583 The header consists of 12 fixed bytes + a 4 byte integer contaning the
584 original block size, while the trailer consists of 16 fixed bytes.
585
586 The header is used to detect whether this block has been allocated
587 through these functions -- as it seems that some low-level libc
588 functions may bypass the malloc hooks.
589*/
590
591
212f33f1 592#define XMALLOC_OVERRUN_CHECK_SIZE 16
bdbed949 593
212f33f1
KS
594static char xmalloc_overrun_check_header[XMALLOC_OVERRUN_CHECK_SIZE-4] =
595 { 0x9a, 0x9b, 0xae, 0xaf,
596 0xbf, 0xbe, 0xce, 0xcf,
597 0xea, 0xeb, 0xec, 0xed };
598
599static char xmalloc_overrun_check_trailer[XMALLOC_OVERRUN_CHECK_SIZE] =
600 { 0xaa, 0xab, 0xac, 0xad,
601 0xba, 0xbb, 0xbc, 0xbd,
602 0xca, 0xcb, 0xcc, 0xcd,
603 0xda, 0xdb, 0xdc, 0xdd };
604
bdbed949
KS
605/* Macros to insert and extract the block size in the header. */
606
607#define XMALLOC_PUT_SIZE(ptr, size) \
608 (ptr[-1] = (size & 0xff), \
609 ptr[-2] = ((size >> 8) & 0xff), \
610 ptr[-3] = ((size >> 16) & 0xff), \
611 ptr[-4] = ((size >> 24) & 0xff))
612
613#define XMALLOC_GET_SIZE(ptr) \
614 (size_t)((unsigned)(ptr[-1]) | \
615 ((unsigned)(ptr[-2]) << 8) | \
616 ((unsigned)(ptr[-3]) << 16) | \
617 ((unsigned)(ptr[-4]) << 24))
618
619
d8f165a8
JD
620/* The call depth in overrun_check functions. For example, this might happen:
621 xmalloc()
622 overrun_check_malloc()
623 -> malloc -> (via hook)_-> emacs_blocked_malloc
624 -> overrun_check_malloc
625 call malloc (hooks are NULL, so real malloc is called).
626 malloc returns 10000.
627 add overhead, return 10016.
628 <- (back in overrun_check_malloc)
857ae68b 629 add overhead again, return 10032
d8f165a8 630 xmalloc returns 10032.
857ae68b
JD
631
632 (time passes).
633
d8f165a8
JD
634 xfree(10032)
635 overrun_check_free(10032)
636 decrease overhed
637 free(10016) <- crash, because 10000 is the original pointer. */
857ae68b
JD
638
639static int check_depth;
640
bdbed949
KS
641/* Like malloc, but wraps allocated block with header and trailer. */
642
212f33f1
KS
643POINTER_TYPE *
644overrun_check_malloc (size)
645 size_t size;
646{
bdbed949 647 register unsigned char *val;
857ae68b 648 size_t overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_SIZE*2 : 0;
212f33f1 649
857ae68b
JD
650 val = (unsigned char *) malloc (size + overhead);
651 if (val && check_depth == 1)
212f33f1
KS
652 {
653 bcopy (xmalloc_overrun_check_header, val, XMALLOC_OVERRUN_CHECK_SIZE - 4);
212f33f1 654 val += XMALLOC_OVERRUN_CHECK_SIZE;
bdbed949 655 XMALLOC_PUT_SIZE(val, size);
212f33f1
KS
656 bcopy (xmalloc_overrun_check_trailer, val + size, XMALLOC_OVERRUN_CHECK_SIZE);
657 }
857ae68b 658 --check_depth;
212f33f1
KS
659 return (POINTER_TYPE *)val;
660}
661
bdbed949
KS
662
663/* Like realloc, but checks old block for overrun, and wraps new block
664 with header and trailer. */
665
212f33f1
KS
666POINTER_TYPE *
667overrun_check_realloc (block, size)
668 POINTER_TYPE *block;
669 size_t size;
670{
bdbed949 671 register unsigned char *val = (unsigned char *)block;
857ae68b 672 size_t overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_SIZE*2 : 0;
212f33f1
KS
673
674 if (val
857ae68b 675 && check_depth == 1
212f33f1
KS
676 && bcmp (xmalloc_overrun_check_header,
677 val - XMALLOC_OVERRUN_CHECK_SIZE,
678 XMALLOC_OVERRUN_CHECK_SIZE - 4) == 0)
679 {
bdbed949 680 size_t osize = XMALLOC_GET_SIZE (val);
212f33f1
KS
681 if (bcmp (xmalloc_overrun_check_trailer,
682 val + osize,
683 XMALLOC_OVERRUN_CHECK_SIZE))
684 abort ();
bdbed949 685 bzero (val + osize, XMALLOC_OVERRUN_CHECK_SIZE);
212f33f1 686 val -= XMALLOC_OVERRUN_CHECK_SIZE;
bdbed949 687 bzero (val, XMALLOC_OVERRUN_CHECK_SIZE);
212f33f1
KS
688 }
689
857ae68b 690 val = (unsigned char *) realloc ((POINTER_TYPE *)val, size + overhead);
212f33f1 691
857ae68b 692 if (val && check_depth == 1)
212f33f1
KS
693 {
694 bcopy (xmalloc_overrun_check_header, val, XMALLOC_OVERRUN_CHECK_SIZE - 4);
212f33f1 695 val += XMALLOC_OVERRUN_CHECK_SIZE;
bdbed949 696 XMALLOC_PUT_SIZE(val, size);
212f33f1
KS
697 bcopy (xmalloc_overrun_check_trailer, val + size, XMALLOC_OVERRUN_CHECK_SIZE);
698 }
857ae68b 699 --check_depth;
212f33f1
KS
700 return (POINTER_TYPE *)val;
701}
702
bdbed949
KS
703/* Like free, but checks block for overrun. */
704
212f33f1
KS
705void
706overrun_check_free (block)
707 POINTER_TYPE *block;
708{
bdbed949 709 unsigned char *val = (unsigned char *)block;
212f33f1 710
857ae68b 711 ++check_depth;
212f33f1 712 if (val
857ae68b 713 && check_depth == 1
212f33f1
KS
714 && bcmp (xmalloc_overrun_check_header,
715 val - XMALLOC_OVERRUN_CHECK_SIZE,
716 XMALLOC_OVERRUN_CHECK_SIZE - 4) == 0)
717 {
bdbed949 718 size_t osize = XMALLOC_GET_SIZE (val);
212f33f1
KS
719 if (bcmp (xmalloc_overrun_check_trailer,
720 val + osize,
721 XMALLOC_OVERRUN_CHECK_SIZE))
722 abort ();
454d7973
KS
723#ifdef XMALLOC_CLEAR_FREE_MEMORY
724 val -= XMALLOC_OVERRUN_CHECK_SIZE;
725 memset (val, 0xff, osize + XMALLOC_OVERRUN_CHECK_SIZE*2);
726#else
bdbed949 727 bzero (val + osize, XMALLOC_OVERRUN_CHECK_SIZE);
212f33f1 728 val -= XMALLOC_OVERRUN_CHECK_SIZE;
bdbed949 729 bzero (val, XMALLOC_OVERRUN_CHECK_SIZE);
454d7973 730#endif
212f33f1
KS
731 }
732
733 free (val);
857ae68b 734 --check_depth;
212f33f1
KS
735}
736
737#undef malloc
738#undef realloc
739#undef free
740#define malloc overrun_check_malloc
741#define realloc overrun_check_realloc
742#define free overrun_check_free
743#endif
744
dafc79fa
SM
745#ifdef SYNC_INPUT
746/* When using SYNC_INPUT, we don't call malloc from a signal handler, so
747 there's no need to block input around malloc. */
748#define MALLOC_BLOCK_INPUT ((void)0)
749#define MALLOC_UNBLOCK_INPUT ((void)0)
750#else
751#define MALLOC_BLOCK_INPUT BLOCK_INPUT
752#define MALLOC_UNBLOCK_INPUT UNBLOCK_INPUT
753#endif
bdbed949 754
34400008 755/* Like malloc but check for no memory and block interrupt input.. */
7146af97 756
c971ff9a 757POINTER_TYPE *
7146af97 758xmalloc (size)
675d5130 759 size_t size;
7146af97 760{
c971ff9a 761 register POINTER_TYPE *val;
7146af97 762
dafc79fa 763 MALLOC_BLOCK_INPUT;
c971ff9a 764 val = (POINTER_TYPE *) malloc (size);
dafc79fa 765 MALLOC_UNBLOCK_INPUT;
7146af97 766
2e471eb5
GM
767 if (!val && size)
768 memory_full ();
7146af97
JB
769 return val;
770}
771
34400008
GM
772
773/* Like realloc but check for no memory and block interrupt input.. */
774
c971ff9a 775POINTER_TYPE *
7146af97 776xrealloc (block, size)
c971ff9a 777 POINTER_TYPE *block;
675d5130 778 size_t size;
7146af97 779{
c971ff9a 780 register POINTER_TYPE *val;
7146af97 781
dafc79fa 782 MALLOC_BLOCK_INPUT;
56d2031b
JB
783 /* We must call malloc explicitly when BLOCK is 0, since some
784 reallocs don't do this. */
785 if (! block)
c971ff9a 786 val = (POINTER_TYPE *) malloc (size);
f048679d 787 else
c971ff9a 788 val = (POINTER_TYPE *) realloc (block, size);
dafc79fa 789 MALLOC_UNBLOCK_INPUT;
7146af97
JB
790
791 if (!val && size) memory_full ();
792 return val;
793}
9ac0d9e0 794
34400008 795
005ca5c7 796/* Like free but block interrupt input. */
34400008 797
9ac0d9e0
JB
798void
799xfree (block)
c971ff9a 800 POINTER_TYPE *block;
9ac0d9e0 801{
dafc79fa 802 MALLOC_BLOCK_INPUT;
9ac0d9e0 803 free (block);
dafc79fa 804 MALLOC_UNBLOCK_INPUT;
24d8a105
RS
805 /* We don't call refill_memory_reserve here
806 because that duplicates doing so in emacs_blocked_free
807 and the criterion should go there. */
9ac0d9e0
JB
808}
809
c8099634 810
dca7c6a8
GM
811/* Like strdup, but uses xmalloc. */
812
813char *
814xstrdup (s)
943b873e 815 const char *s;
dca7c6a8 816{
675d5130 817 size_t len = strlen (s) + 1;
dca7c6a8
GM
818 char *p = (char *) xmalloc (len);
819 bcopy (s, p, len);
820 return p;
821}
822
823
f61bef8b
KS
824/* Unwind for SAFE_ALLOCA */
825
826Lisp_Object
827safe_alloca_unwind (arg)
828 Lisp_Object arg;
829{
b766f870
KS
830 register struct Lisp_Save_Value *p = XSAVE_VALUE (arg);
831
832 p->dogc = 0;
833 xfree (p->pointer);
834 p->pointer = 0;
7b7990cc 835 free_misc (arg);
f61bef8b
KS
836 return Qnil;
837}
838
839
34400008
GM
840/* Like malloc but used for allocating Lisp data. NBYTES is the
841 number of bytes to allocate, TYPE describes the intended use of the
842 allcated memory block (for strings, for conses, ...). */
843
212f33f1 844#ifndef USE_LSB_TAG
918a23a7 845static void *lisp_malloc_loser;
212f33f1 846#endif
918a23a7 847
675d5130 848static POINTER_TYPE *
34400008 849lisp_malloc (nbytes, type)
675d5130 850 size_t nbytes;
34400008 851 enum mem_type type;
c8099634 852{
34400008 853 register void *val;
c8099634 854
dafc79fa 855 MALLOC_BLOCK_INPUT;
877935b1
GM
856
857#ifdef GC_MALLOC_CHECK
858 allocated_mem_type = type;
859#endif
177c0ea7 860
34400008 861 val = (void *) malloc (nbytes);
c8099634 862
6b61353c 863#ifndef USE_LSB_TAG
918a23a7
RS
864 /* If the memory just allocated cannot be addressed thru a Lisp
865 object's pointer, and it needs to be,
866 that's equivalent to running out of memory. */
867 if (val && type != MEM_TYPE_NON_LISP)
868 {
869 Lisp_Object tem;
870 XSETCONS (tem, (char *) val + nbytes - 1);
871 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
872 {
873 lisp_malloc_loser = val;
874 free (val);
875 val = 0;
876 }
877 }
6b61353c 878#endif
918a23a7 879
877935b1 880#if GC_MARK_STACK && !defined GC_MALLOC_CHECK
dca7c6a8 881 if (val && type != MEM_TYPE_NON_LISP)
34400008
GM
882 mem_insert (val, (char *) val + nbytes, type);
883#endif
177c0ea7 884
dafc79fa 885 MALLOC_UNBLOCK_INPUT;
dca7c6a8
GM
886 if (!val && nbytes)
887 memory_full ();
c8099634
RS
888 return val;
889}
890
34400008
GM
891/* Free BLOCK. This must be called to free memory allocated with a
892 call to lisp_malloc. */
893
bf952fb6 894static void
c8099634 895lisp_free (block)
675d5130 896 POINTER_TYPE *block;
c8099634 897{
dafc79fa 898 MALLOC_BLOCK_INPUT;
c8099634 899 free (block);
877935b1 900#if GC_MARK_STACK && !defined GC_MALLOC_CHECK
34400008
GM
901 mem_delete (mem_find (block));
902#endif
dafc79fa 903 MALLOC_UNBLOCK_INPUT;
c8099634 904}
34400008 905
ab6780cd
SM
906/* Allocation of aligned blocks of memory to store Lisp data. */
907/* The entry point is lisp_align_malloc which returns blocks of at most */
908/* BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
909
349a4500
SM
910/* Use posix_memalloc if the system has it and we're using the system's
911 malloc (because our gmalloc.c routines don't have posix_memalign although
912 its memalloc could be used). */
b4181b01
KS
913#if defined (HAVE_POSIX_MEMALIGN) && defined (SYSTEM_MALLOC)
914#define USE_POSIX_MEMALIGN 1
915#endif
ab6780cd
SM
916
917/* BLOCK_ALIGN has to be a power of 2. */
918#define BLOCK_ALIGN (1 << 10)
ab6780cd
SM
919
920/* Padding to leave at the end of a malloc'd block. This is to give
921 malloc a chance to minimize the amount of memory wasted to alignment.
922 It should be tuned to the particular malloc library used.
19bcad1f
SM
923 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
924 posix_memalign on the other hand would ideally prefer a value of 4
925 because otherwise, there's 1020 bytes wasted between each ablocks.
f501ccb4
SM
926 In Emacs, testing shows that those 1020 can most of the time be
927 efficiently used by malloc to place other objects, so a value of 0 can
928 still preferable unless you have a lot of aligned blocks and virtually
929 nothing else. */
19bcad1f
SM
930#define BLOCK_PADDING 0
931#define BLOCK_BYTES \
f501ccb4 932 (BLOCK_ALIGN - sizeof (struct ablock *) - BLOCK_PADDING)
19bcad1f
SM
933
934/* Internal data structures and constants. */
935
ab6780cd
SM
936#define ABLOCKS_SIZE 16
937
938/* An aligned block of memory. */
939struct ablock
940{
941 union
942 {
943 char payload[BLOCK_BYTES];
944 struct ablock *next_free;
945 } x;
946 /* `abase' is the aligned base of the ablocks. */
947 /* It is overloaded to hold the virtual `busy' field that counts
948 the number of used ablock in the parent ablocks.
949 The first ablock has the `busy' field, the others have the `abase'
950 field. To tell the difference, we assume that pointers will have
951 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
952 is used to tell whether the real base of the parent ablocks is `abase'
953 (if not, the word before the first ablock holds a pointer to the
954 real base). */
955 struct ablocks *abase;
956 /* The padding of all but the last ablock is unused. The padding of
957 the last ablock in an ablocks is not allocated. */
19bcad1f
SM
958#if BLOCK_PADDING
959 char padding[BLOCK_PADDING];
ebb8d410 960#endif
ab6780cd
SM
961};
962
963/* A bunch of consecutive aligned blocks. */
964struct ablocks
965{
966 struct ablock blocks[ABLOCKS_SIZE];
967};
968
969/* Size of the block requested from malloc or memalign. */
19bcad1f 970#define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
ab6780cd
SM
971
972#define ABLOCK_ABASE(block) \
973 (((unsigned long) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
974 ? (struct ablocks *)(block) \
975 : (block)->abase)
976
977/* Virtual `busy' field. */
978#define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
979
980/* Pointer to the (not necessarily aligned) malloc block. */
349a4500 981#ifdef USE_POSIX_MEMALIGN
19bcad1f
SM
982#define ABLOCKS_BASE(abase) (abase)
983#else
ab6780cd 984#define ABLOCKS_BASE(abase) \
005ca5c7 985 (1 & (long) ABLOCKS_BUSY (abase) ? abase : ((void**)abase)[-1])
19bcad1f 986#endif
ab6780cd
SM
987
988/* The list of free ablock. */
989static struct ablock *free_ablock;
990
991/* Allocate an aligned block of nbytes.
992 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
993 smaller or equal to BLOCK_BYTES. */
994static POINTER_TYPE *
995lisp_align_malloc (nbytes, type)
996 size_t nbytes;
997 enum mem_type type;
998{
999 void *base, *val;
1000 struct ablocks *abase;
1001
1002 eassert (nbytes <= BLOCK_BYTES);
1003
dafc79fa 1004 MALLOC_BLOCK_INPUT;
ab6780cd
SM
1005
1006#ifdef GC_MALLOC_CHECK
1007 allocated_mem_type = type;
1008#endif
1009
1010 if (!free_ablock)
1011 {
005ca5c7
DL
1012 int i;
1013 EMACS_INT aligned; /* int gets warning casting to 64-bit pointer. */
ab6780cd
SM
1014
1015#ifdef DOUG_LEA_MALLOC
1016 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1017 because mapped region contents are not preserved in
1018 a dumped Emacs. */
1019 mallopt (M_MMAP_MAX, 0);
1020#endif
1021
349a4500 1022#ifdef USE_POSIX_MEMALIGN
19bcad1f
SM
1023 {
1024 int err = posix_memalign (&base, BLOCK_ALIGN, ABLOCKS_BYTES);
ab349c19
RS
1025 if (err)
1026 base = NULL;
1027 abase = base;
19bcad1f
SM
1028 }
1029#else
ab6780cd
SM
1030 base = malloc (ABLOCKS_BYTES);
1031 abase = ALIGN (base, BLOCK_ALIGN);
ab349c19
RS
1032#endif
1033
6b61353c
KH
1034 if (base == 0)
1035 {
dafc79fa 1036 MALLOC_UNBLOCK_INPUT;
6b61353c
KH
1037 memory_full ();
1038 }
ab6780cd
SM
1039
1040 aligned = (base == abase);
1041 if (!aligned)
1042 ((void**)abase)[-1] = base;
1043
1044#ifdef DOUG_LEA_MALLOC
1045 /* Back to a reasonable maximum of mmap'ed areas. */
1046 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1047#endif
1048
6b61353c 1049#ifndef USE_LSB_TAG
8f924df7
KH
1050 /* If the memory just allocated cannot be addressed thru a Lisp
1051 object's pointer, and it needs to be, that's equivalent to
1052 running out of memory. */
1053 if (type != MEM_TYPE_NON_LISP)
1054 {
1055 Lisp_Object tem;
1056 char *end = (char *) base + ABLOCKS_BYTES - 1;
1057 XSETCONS (tem, end);
1058 if ((char *) XCONS (tem) != end)
1059 {
1060 lisp_malloc_loser = base;
1061 free (base);
dafc79fa 1062 MALLOC_UNBLOCK_INPUT;
8f924df7
KH
1063 memory_full ();
1064 }
1065 }
6b61353c 1066#endif
8f924df7 1067
ab6780cd
SM
1068 /* Initialize the blocks and put them on the free list.
1069 Is `base' was not properly aligned, we can't use the last block. */
1070 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
1071 {
1072 abase->blocks[i].abase = abase;
1073 abase->blocks[i].x.next_free = free_ablock;
1074 free_ablock = &abase->blocks[i];
1075 }
005ca5c7 1076 ABLOCKS_BUSY (abase) = (struct ablocks *) (long) aligned;
ab6780cd 1077
19bcad1f 1078 eassert (0 == ((EMACS_UINT)abase) % BLOCK_ALIGN);
ab6780cd
SM
1079 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
1080 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
1081 eassert (ABLOCKS_BASE (abase) == base);
005ca5c7 1082 eassert (aligned == (long) ABLOCKS_BUSY (abase));
ab6780cd
SM
1083 }
1084
1085 abase = ABLOCK_ABASE (free_ablock);
005ca5c7 1086 ABLOCKS_BUSY (abase) = (struct ablocks *) (2 + (long) ABLOCKS_BUSY (abase));
ab6780cd
SM
1087 val = free_ablock;
1088 free_ablock = free_ablock->x.next_free;
1089
ab6780cd
SM
1090#if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1091 if (val && type != MEM_TYPE_NON_LISP)
1092 mem_insert (val, (char *) val + nbytes, type);
1093#endif
1094
dafc79fa 1095 MALLOC_UNBLOCK_INPUT;
ab6780cd
SM
1096 if (!val && nbytes)
1097 memory_full ();
1098
1099 eassert (0 == ((EMACS_UINT)val) % BLOCK_ALIGN);
1100 return val;
1101}
1102
1103static void
1104lisp_align_free (block)
1105 POINTER_TYPE *block;
1106{
1107 struct ablock *ablock = block;
1108 struct ablocks *abase = ABLOCK_ABASE (ablock);
1109
dafc79fa 1110 MALLOC_BLOCK_INPUT;
ab6780cd
SM
1111#if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1112 mem_delete (mem_find (block));
1113#endif
1114 /* Put on free list. */
1115 ablock->x.next_free = free_ablock;
1116 free_ablock = ablock;
1117 /* Update busy count. */
005ca5c7 1118 ABLOCKS_BUSY (abase) = (struct ablocks *) (-2 + (long) ABLOCKS_BUSY (abase));
d2db1c32 1119
005ca5c7 1120 if (2 > (long) ABLOCKS_BUSY (abase))
ab6780cd 1121 { /* All the blocks are free. */
005ca5c7 1122 int i = 0, aligned = (long) ABLOCKS_BUSY (abase);
ab6780cd
SM
1123 struct ablock **tem = &free_ablock;
1124 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
1125
1126 while (*tem)
1127 {
1128 if (*tem >= (struct ablock *) abase && *tem < atop)
1129 {
1130 i++;
1131 *tem = (*tem)->x.next_free;
1132 }
1133 else
1134 tem = &(*tem)->x.next_free;
1135 }
1136 eassert ((aligned & 1) == aligned);
1137 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
349a4500 1138#ifdef USE_POSIX_MEMALIGN
cfb2f32e
SM
1139 eassert ((unsigned long)ABLOCKS_BASE (abase) % BLOCK_ALIGN == 0);
1140#endif
ab6780cd
SM
1141 free (ABLOCKS_BASE (abase));
1142 }
dafc79fa 1143 MALLOC_UNBLOCK_INPUT;
ab6780cd 1144}
3ef06d12
SM
1145
1146/* Return a new buffer structure allocated from the heap with
1147 a call to lisp_malloc. */
1148
1149struct buffer *
1150allocate_buffer ()
1151{
1152 struct buffer *b
1153 = (struct buffer *) lisp_malloc (sizeof (struct buffer),
1154 MEM_TYPE_BUFFER);
67ee9f6e
SM
1155 b->size = sizeof (struct buffer) / sizeof (EMACS_INT);
1156 XSETPVECTYPE (b, PVEC_BUFFER);
3ef06d12
SM
1157 return b;
1158}
1159
9ac0d9e0 1160\f
026cdede
SM
1161#ifndef SYSTEM_MALLOC
1162
9ac0d9e0
JB
1163/* Arranging to disable input signals while we're in malloc.
1164
1165 This only works with GNU malloc. To help out systems which can't
1166 use GNU malloc, all the calls to malloc, realloc, and free
1167 elsewhere in the code should be inside a BLOCK_INPUT/UNBLOCK_INPUT
026cdede 1168 pair; unfortunately, we have no idea what C library functions
9ac0d9e0 1169 might call malloc, so we can't really protect them unless you're
2c5bd608
DL
1170 using GNU malloc. Fortunately, most of the major operating systems
1171 can use GNU malloc. */
9ac0d9e0 1172
026cdede 1173#ifndef SYNC_INPUT
dafc79fa
SM
1174/* When using SYNC_INPUT, we don't call malloc from a signal handler, so
1175 there's no need to block input around malloc. */
026cdede 1176
b3303f74 1177#ifndef DOUG_LEA_MALLOC
fa8459a3
DN
1178extern void * (*__malloc_hook) P_ ((size_t, const void *));
1179extern void * (*__realloc_hook) P_ ((void *, size_t, const void *));
1180extern void (*__free_hook) P_ ((void *, const void *));
b3303f74
DL
1181/* Else declared in malloc.h, perhaps with an extra arg. */
1182#endif /* DOUG_LEA_MALLOC */
fa8459a3
DN
1183static void * (*old_malloc_hook) P_ ((size_t, const void *));
1184static void * (*old_realloc_hook) P_ ((void *, size_t, const void*));
1185static void (*old_free_hook) P_ ((void*, const void*));
9ac0d9e0 1186
276cbe5a
RS
1187/* This function is used as the hook for free to call. */
1188
9ac0d9e0 1189static void
fa8459a3 1190emacs_blocked_free (ptr, ptr2)
9ac0d9e0 1191 void *ptr;
fa8459a3 1192 const void *ptr2;
9ac0d9e0 1193{
aa477689 1194 BLOCK_INPUT_ALLOC;
877935b1
GM
1195
1196#ifdef GC_MALLOC_CHECK
a83fee2c
GM
1197 if (ptr)
1198 {
1199 struct mem_node *m;
177c0ea7 1200
a83fee2c
GM
1201 m = mem_find (ptr);
1202 if (m == MEM_NIL || m->start != ptr)
1203 {
1204 fprintf (stderr,
1205 "Freeing `%p' which wasn't allocated with malloc\n", ptr);
1206 abort ();
1207 }
1208 else
1209 {
1210 /* fprintf (stderr, "free %p...%p (%p)\n", m->start, m->end, ptr); */
1211 mem_delete (m);
1212 }
1213 }
877935b1 1214#endif /* GC_MALLOC_CHECK */
177c0ea7 1215
9ac0d9e0
JB
1216 __free_hook = old_free_hook;
1217 free (ptr);
177c0ea7 1218
276cbe5a
RS
1219 /* If we released our reserve (due to running out of memory),
1220 and we have a fair amount free once again,
1221 try to set aside another reserve in case we run out once more. */
24d8a105 1222 if (! NILP (Vmemory_full)
276cbe5a
RS
1223 /* Verify there is enough space that even with the malloc
1224 hysteresis this call won't run out again.
1225 The code here is correct as long as SPARE_MEMORY
1226 is substantially larger than the block size malloc uses. */
1227 && (bytes_used_when_full
4d74a5fc 1228 > ((bytes_used_when_reconsidered = BYTES_USED)
bccfb310 1229 + max (malloc_hysteresis, 4) * SPARE_MEMORY)))
24d8a105 1230 refill_memory_reserve ();
276cbe5a 1231
b0846f52 1232 __free_hook = emacs_blocked_free;
aa477689 1233 UNBLOCK_INPUT_ALLOC;
9ac0d9e0
JB
1234}
1235
34400008 1236
276cbe5a
RS
1237/* This function is the malloc hook that Emacs uses. */
1238
9ac0d9e0 1239static void *
fa8459a3 1240emacs_blocked_malloc (size, ptr)
675d5130 1241 size_t size;
fa8459a3 1242 const void *ptr;
9ac0d9e0
JB
1243{
1244 void *value;
1245
aa477689 1246 BLOCK_INPUT_ALLOC;
9ac0d9e0 1247 __malloc_hook = old_malloc_hook;
1177ecf6 1248#ifdef DOUG_LEA_MALLOC
5665a02f
KL
1249 /* Segfaults on my system. --lorentey */
1250 /* mallopt (M_TOP_PAD, malloc_hysteresis * 4096); */
1177ecf6 1251#else
d1658221 1252 __malloc_extra_blocks = malloc_hysteresis;
1177ecf6 1253#endif
877935b1 1254
2756d8ee 1255 value = (void *) malloc (size);
877935b1
GM
1256
1257#ifdef GC_MALLOC_CHECK
1258 {
1259 struct mem_node *m = mem_find (value);
1260 if (m != MEM_NIL)
1261 {
1262 fprintf (stderr, "Malloc returned %p which is already in use\n",
1263 value);
1264 fprintf (stderr, "Region in use is %p...%p, %u bytes, type %d\n",
1265 m->start, m->end, (char *) m->end - (char *) m->start,
1266 m->type);
1267 abort ();
1268 }
1269
1270 if (!dont_register_blocks)
1271 {
1272 mem_insert (value, (char *) value + max (1, size), allocated_mem_type);
1273 allocated_mem_type = MEM_TYPE_NON_LISP;
1274 }
1275 }
1276#endif /* GC_MALLOC_CHECK */
177c0ea7 1277
b0846f52 1278 __malloc_hook = emacs_blocked_malloc;
aa477689 1279 UNBLOCK_INPUT_ALLOC;
9ac0d9e0 1280
877935b1 1281 /* fprintf (stderr, "%p malloc\n", value); */
9ac0d9e0
JB
1282 return value;
1283}
1284
34400008
GM
1285
1286/* This function is the realloc hook that Emacs uses. */
1287
9ac0d9e0 1288static void *
fa8459a3 1289emacs_blocked_realloc (ptr, size, ptr2)
9ac0d9e0 1290 void *ptr;
675d5130 1291 size_t size;
fa8459a3 1292 const void *ptr2;
9ac0d9e0
JB
1293{
1294 void *value;
1295
aa477689 1296 BLOCK_INPUT_ALLOC;
9ac0d9e0 1297 __realloc_hook = old_realloc_hook;
877935b1
GM
1298
1299#ifdef GC_MALLOC_CHECK
1300 if (ptr)
1301 {
1302 struct mem_node *m = mem_find (ptr);
1303 if (m == MEM_NIL || m->start != ptr)
1304 {
1305 fprintf (stderr,
1306 "Realloc of %p which wasn't allocated with malloc\n",
1307 ptr);
1308 abort ();
1309 }
1310
1311 mem_delete (m);
1312 }
177c0ea7 1313
877935b1 1314 /* fprintf (stderr, "%p -> realloc\n", ptr); */
177c0ea7 1315
877935b1
GM
1316 /* Prevent malloc from registering blocks. */
1317 dont_register_blocks = 1;
1318#endif /* GC_MALLOC_CHECK */
1319
2756d8ee 1320 value = (void *) realloc (ptr, size);
877935b1
GM
1321
1322#ifdef GC_MALLOC_CHECK
1323 dont_register_blocks = 0;
1324
1325 {
1326 struct mem_node *m = mem_find (value);
1327 if (m != MEM_NIL)
1328 {
1329 fprintf (stderr, "Realloc returns memory that is already in use\n");
1330 abort ();
1331 }
1332
1333 /* Can't handle zero size regions in the red-black tree. */
1334 mem_insert (value, (char *) value + max (size, 1), MEM_TYPE_NON_LISP);
1335 }
177c0ea7 1336
877935b1
GM
1337 /* fprintf (stderr, "%p <- realloc\n", value); */
1338#endif /* GC_MALLOC_CHECK */
177c0ea7 1339
b0846f52 1340 __realloc_hook = emacs_blocked_realloc;
aa477689 1341 UNBLOCK_INPUT_ALLOC;
9ac0d9e0
JB
1342
1343 return value;
1344}
1345
34400008 1346
aa477689
JD
1347#ifdef HAVE_GTK_AND_PTHREAD
1348/* Called from Fdump_emacs so that when the dumped Emacs starts, it has a
1349 normal malloc. Some thread implementations need this as they call
1350 malloc before main. The pthread_self call in BLOCK_INPUT_ALLOC then
1351 calls malloc because it is the first call, and we have an endless loop. */
1352
1353void
1354reset_malloc_hooks ()
1355{
4d580af2
AS
1356 __free_hook = old_free_hook;
1357 __malloc_hook = old_malloc_hook;
1358 __realloc_hook = old_realloc_hook;
aa477689
JD
1359}
1360#endif /* HAVE_GTK_AND_PTHREAD */
1361
1362
34400008
GM
1363/* Called from main to set up malloc to use our hooks. */
1364
9ac0d9e0
JB
1365void
1366uninterrupt_malloc ()
1367{
aa477689 1368#ifdef HAVE_GTK_AND_PTHREAD
a1b41389 1369#ifdef DOUG_LEA_MALLOC
aa477689
JD
1370 pthread_mutexattr_t attr;
1371
1372 /* GLIBC has a faster way to do this, but lets keep it portable.
1373 This is according to the Single UNIX Specification. */
1374 pthread_mutexattr_init (&attr);
1375 pthread_mutexattr_settype (&attr, PTHREAD_MUTEX_RECURSIVE);
1376 pthread_mutex_init (&alloc_mutex, &attr);
a1b41389
YM
1377#else /* !DOUG_LEA_MALLOC */
1378 /* Some systems such as Solaris 2.6 doesn't have a recursive mutex,
1379 and the bundled gmalloc.c doesn't require it. */
1380 pthread_mutex_init (&alloc_mutex, NULL);
1381#endif /* !DOUG_LEA_MALLOC */
aa477689
JD
1382#endif /* HAVE_GTK_AND_PTHREAD */
1383
c8099634
RS
1384 if (__free_hook != emacs_blocked_free)
1385 old_free_hook = __free_hook;
b0846f52 1386 __free_hook = emacs_blocked_free;
9ac0d9e0 1387
c8099634
RS
1388 if (__malloc_hook != emacs_blocked_malloc)
1389 old_malloc_hook = __malloc_hook;
b0846f52 1390 __malloc_hook = emacs_blocked_malloc;
9ac0d9e0 1391
c8099634
RS
1392 if (__realloc_hook != emacs_blocked_realloc)
1393 old_realloc_hook = __realloc_hook;
b0846f52 1394 __realloc_hook = emacs_blocked_realloc;
9ac0d9e0 1395}
2e471eb5 1396
026cdede 1397#endif /* not SYNC_INPUT */
2e471eb5
GM
1398#endif /* not SYSTEM_MALLOC */
1399
1400
7146af97 1401\f
2e471eb5
GM
1402/***********************************************************************
1403 Interval Allocation
1404 ***********************************************************************/
1a4f1e2c 1405
34400008
GM
1406/* Number of intervals allocated in an interval_block structure.
1407 The 1020 is 1024 minus malloc overhead. */
1408
d5e35230
JA
1409#define INTERVAL_BLOCK_SIZE \
1410 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1411
34400008
GM
1412/* Intervals are allocated in chunks in form of an interval_block
1413 structure. */
1414
d5e35230 1415struct interval_block
2e471eb5 1416{
6b61353c 1417 /* Place `intervals' first, to preserve alignment. */
2e471eb5 1418 struct interval intervals[INTERVAL_BLOCK_SIZE];
6b61353c 1419 struct interval_block *next;
2e471eb5 1420};
d5e35230 1421
34400008
GM
1422/* Current interval block. Its `next' pointer points to older
1423 blocks. */
1424
d3d47262 1425static struct interval_block *interval_block;
34400008
GM
1426
1427/* Index in interval_block above of the next unused interval
1428 structure. */
1429
d5e35230 1430static int interval_block_index;
34400008
GM
1431
1432/* Number of free and live intervals. */
1433
2e471eb5 1434static int total_free_intervals, total_intervals;
d5e35230 1435
34400008
GM
1436/* List of free intervals. */
1437
d5e35230
JA
1438INTERVAL interval_free_list;
1439
c8099634 1440/* Total number of interval blocks now in use. */
2e471eb5 1441
d3d47262 1442static int n_interval_blocks;
c8099634 1443
34400008
GM
1444
1445/* Initialize interval allocation. */
1446
d5e35230
JA
1447static void
1448init_intervals ()
1449{
005ca5c7
DL
1450 interval_block = NULL;
1451 interval_block_index = INTERVAL_BLOCK_SIZE;
d5e35230 1452 interval_free_list = 0;
005ca5c7 1453 n_interval_blocks = 0;
d5e35230
JA
1454}
1455
34400008
GM
1456
1457/* Return a new interval. */
d5e35230
JA
1458
1459INTERVAL
1460make_interval ()
1461{
1462 INTERVAL val;
1463
e2984df0
CY
1464 /* eassert (!handling_signal); */
1465
dafc79fa 1466 MALLOC_BLOCK_INPUT;
cfb2f32e 1467
d5e35230
JA
1468 if (interval_free_list)
1469 {
1470 val = interval_free_list;
439d5cb4 1471 interval_free_list = INTERVAL_PARENT (interval_free_list);
d5e35230
JA
1472 }
1473 else
1474 {
1475 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1476 {
3c06d205
KH
1477 register struct interval_block *newi;
1478
34400008
GM
1479 newi = (struct interval_block *) lisp_malloc (sizeof *newi,
1480 MEM_TYPE_NON_LISP);
d5e35230 1481
d5e35230
JA
1482 newi->next = interval_block;
1483 interval_block = newi;
1484 interval_block_index = 0;
c8099634 1485 n_interval_blocks++;
d5e35230
JA
1486 }
1487 val = &interval_block->intervals[interval_block_index++];
1488 }
e2984df0 1489
dafc79fa 1490 MALLOC_UNBLOCK_INPUT;
e2984df0 1491
d5e35230 1492 consing_since_gc += sizeof (struct interval);
310ea200 1493 intervals_consed++;
d5e35230 1494 RESET_INTERVAL (val);
2336fe58 1495 val->gcmarkbit = 0;
d5e35230
JA
1496 return val;
1497}
1498
34400008
GM
1499
1500/* Mark Lisp objects in interval I. */
d5e35230
JA
1501
1502static void
d393c068 1503mark_interval (i, dummy)
d5e35230 1504 register INTERVAL i;
d393c068 1505 Lisp_Object dummy;
d5e35230 1506{
2336fe58
SM
1507 eassert (!i->gcmarkbit); /* Intervals are never shared. */
1508 i->gcmarkbit = 1;
49723c04 1509 mark_object (i->plist);
d5e35230
JA
1510}
1511
34400008
GM
1512
1513/* Mark the interval tree rooted in TREE. Don't call this directly;
1514 use the macro MARK_INTERVAL_TREE instead. */
1515
d5e35230
JA
1516static void
1517mark_interval_tree (tree)
1518 register INTERVAL tree;
1519{
e8720644
JB
1520 /* No need to test if this tree has been marked already; this
1521 function is always called through the MARK_INTERVAL_TREE macro,
1522 which takes care of that. */
1523
1e934989 1524 traverse_intervals_noorder (tree, mark_interval, Qnil);
d5e35230
JA
1525}
1526
34400008
GM
1527
1528/* Mark the interval tree rooted in I. */
1529
e8720644
JB
1530#define MARK_INTERVAL_TREE(i) \
1531 do { \
2336fe58 1532 if (!NULL_INTERVAL_P (i) && !i->gcmarkbit) \
e8720644
JB
1533 mark_interval_tree (i); \
1534 } while (0)
d5e35230 1535
34400008 1536
2e471eb5
GM
1537#define UNMARK_BALANCE_INTERVALS(i) \
1538 do { \
1539 if (! NULL_INTERVAL_P (i)) \
2336fe58 1540 (i) = balance_intervals (i); \
2e471eb5 1541 } while (0)
d5e35230 1542
cc2d8c6b
KR
1543\f
1544/* Number support. If NO_UNION_TYPE isn't in effect, we
1545 can't create number objects in macros. */
1546#ifndef make_number
1547Lisp_Object
1548make_number (n)
217604da 1549 EMACS_INT n;
cc2d8c6b
KR
1550{
1551 Lisp_Object obj;
1552 obj.s.val = n;
1553 obj.s.type = Lisp_Int;
1554 return obj;
1555}
1556#endif
d5e35230 1557\f
2e471eb5
GM
1558/***********************************************************************
1559 String Allocation
1560 ***********************************************************************/
1a4f1e2c 1561
2e471eb5
GM
1562/* Lisp_Strings are allocated in string_block structures. When a new
1563 string_block is allocated, all the Lisp_Strings it contains are
e0fead5d 1564 added to a free-list string_free_list. When a new Lisp_String is
2e471eb5
GM
1565 needed, it is taken from that list. During the sweep phase of GC,
1566 string_blocks that are entirely free are freed, except two which
1567 we keep.
7146af97 1568
2e471eb5
GM
1569 String data is allocated from sblock structures. Strings larger
1570 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1571 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
7146af97 1572
2e471eb5
GM
1573 Sblocks consist internally of sdata structures, one for each
1574 Lisp_String. The sdata structure points to the Lisp_String it
1575 belongs to. The Lisp_String points back to the `u.data' member of
1576 its sdata structure.
7146af97 1577
2e471eb5
GM
1578 When a Lisp_String is freed during GC, it is put back on
1579 string_free_list, and its `data' member and its sdata's `string'
1580 pointer is set to null. The size of the string is recorded in the
1581 `u.nbytes' member of the sdata. So, sdata structures that are no
1582 longer used, can be easily recognized, and it's easy to compact the
1583 sblocks of small strings which we do in compact_small_strings. */
7146af97 1584
2e471eb5
GM
1585/* Size in bytes of an sblock structure used for small strings. This
1586 is 8192 minus malloc overhead. */
7146af97 1587
2e471eb5 1588#define SBLOCK_SIZE 8188
c8099634 1589
2e471eb5
GM
1590/* Strings larger than this are considered large strings. String data
1591 for large strings is allocated from individual sblocks. */
7146af97 1592
2e471eb5
GM
1593#define LARGE_STRING_BYTES 1024
1594
1595/* Structure describing string memory sub-allocated from an sblock.
1596 This is where the contents of Lisp strings are stored. */
1597
1598struct sdata
7146af97 1599{
2e471eb5
GM
1600 /* Back-pointer to the string this sdata belongs to. If null, this
1601 structure is free, and the NBYTES member of the union below
34400008 1602 contains the string's byte size (the same value that STRING_BYTES
2e471eb5
GM
1603 would return if STRING were non-null). If non-null, STRING_BYTES
1604 (STRING) is the size of the data, and DATA contains the string's
1605 contents. */
1606 struct Lisp_String *string;
7146af97 1607
31d929e5 1608#ifdef GC_CHECK_STRING_BYTES
177c0ea7 1609
31d929e5
GM
1610 EMACS_INT nbytes;
1611 unsigned char data[1];
177c0ea7 1612
31d929e5
GM
1613#define SDATA_NBYTES(S) (S)->nbytes
1614#define SDATA_DATA(S) (S)->data
177c0ea7 1615
31d929e5
GM
1616#else /* not GC_CHECK_STRING_BYTES */
1617
2e471eb5
GM
1618 union
1619 {
1620 /* When STRING in non-null. */
1621 unsigned char data[1];
1622
1623 /* When STRING is null. */
1624 EMACS_INT nbytes;
1625 } u;
177c0ea7 1626
31d929e5
GM
1627
1628#define SDATA_NBYTES(S) (S)->u.nbytes
1629#define SDATA_DATA(S) (S)->u.data
1630
1631#endif /* not GC_CHECK_STRING_BYTES */
2e471eb5
GM
1632};
1633
31d929e5 1634
2e471eb5
GM
1635/* Structure describing a block of memory which is sub-allocated to
1636 obtain string data memory for strings. Blocks for small strings
1637 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1638 as large as needed. */
1639
1640struct sblock
7146af97 1641{
2e471eb5
GM
1642 /* Next in list. */
1643 struct sblock *next;
7146af97 1644
2e471eb5
GM
1645 /* Pointer to the next free sdata block. This points past the end
1646 of the sblock if there isn't any space left in this block. */
1647 struct sdata *next_free;
1648
1649 /* Start of data. */
1650 struct sdata first_data;
1651};
1652
1653/* Number of Lisp strings in a string_block structure. The 1020 is
1654 1024 minus malloc overhead. */
1655
19bcad1f 1656#define STRING_BLOCK_SIZE \
2e471eb5
GM
1657 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1658
1659/* Structure describing a block from which Lisp_String structures
1660 are allocated. */
1661
1662struct string_block
7146af97 1663{
6b61353c 1664 /* Place `strings' first, to preserve alignment. */
19bcad1f 1665 struct Lisp_String strings[STRING_BLOCK_SIZE];
6b61353c 1666 struct string_block *next;
2e471eb5 1667};
7146af97 1668
2e471eb5
GM
1669/* Head and tail of the list of sblock structures holding Lisp string
1670 data. We always allocate from current_sblock. The NEXT pointers
1671 in the sblock structures go from oldest_sblock to current_sblock. */
3c06d205 1672
2e471eb5 1673static struct sblock *oldest_sblock, *current_sblock;
7146af97 1674
2e471eb5 1675/* List of sblocks for large strings. */
7146af97 1676
2e471eb5 1677static struct sblock *large_sblocks;
7146af97 1678
2e471eb5 1679/* List of string_block structures, and how many there are. */
7146af97 1680
2e471eb5
GM
1681static struct string_block *string_blocks;
1682static int n_string_blocks;
7146af97 1683
2e471eb5 1684/* Free-list of Lisp_Strings. */
7146af97 1685
2e471eb5 1686static struct Lisp_String *string_free_list;
7146af97 1687
2e471eb5 1688/* Number of live and free Lisp_Strings. */
c8099634 1689
2e471eb5 1690static int total_strings, total_free_strings;
7146af97 1691
2e471eb5
GM
1692/* Number of bytes used by live strings. */
1693
1694static int total_string_size;
1695
1696/* Given a pointer to a Lisp_String S which is on the free-list
1697 string_free_list, return a pointer to its successor in the
1698 free-list. */
1699
1700#define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1701
1702/* Return a pointer to the sdata structure belonging to Lisp string S.
1703 S must be live, i.e. S->data must not be null. S->data is actually
1704 a pointer to the `u.data' member of its sdata structure; the
1705 structure starts at a constant offset in front of that. */
177c0ea7 1706
31d929e5
GM
1707#ifdef GC_CHECK_STRING_BYTES
1708
1709#define SDATA_OF_STRING(S) \
1710 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *) \
1711 - sizeof (EMACS_INT)))
1712
1713#else /* not GC_CHECK_STRING_BYTES */
1714
2e471eb5
GM
1715#define SDATA_OF_STRING(S) \
1716 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *)))
1717
31d929e5
GM
1718#endif /* not GC_CHECK_STRING_BYTES */
1719
212f33f1
KS
1720
1721#ifdef GC_CHECK_STRING_OVERRUN
bdbed949
KS
1722
1723/* We check for overrun in string data blocks by appending a small
1724 "cookie" after each allocated string data block, and check for the
8349069c 1725 presence of this cookie during GC. */
bdbed949
KS
1726
1727#define GC_STRING_OVERRUN_COOKIE_SIZE 4
1728static char string_overrun_cookie[GC_STRING_OVERRUN_COOKIE_SIZE] =
1729 { 0xde, 0xad, 0xbe, 0xef };
1730
212f33f1 1731#else
bdbed949 1732#define GC_STRING_OVERRUN_COOKIE_SIZE 0
212f33f1
KS
1733#endif
1734
2e471eb5
GM
1735/* Value is the size of an sdata structure large enough to hold NBYTES
1736 bytes of string data. The value returned includes a terminating
1737 NUL byte, the size of the sdata structure, and padding. */
1738
31d929e5
GM
1739#ifdef GC_CHECK_STRING_BYTES
1740
2e471eb5
GM
1741#define SDATA_SIZE(NBYTES) \
1742 ((sizeof (struct Lisp_String *) \
1743 + (NBYTES) + 1 \
31d929e5 1744 + sizeof (EMACS_INT) \
2e471eb5
GM
1745 + sizeof (EMACS_INT) - 1) \
1746 & ~(sizeof (EMACS_INT) - 1))
1747
31d929e5
GM
1748#else /* not GC_CHECK_STRING_BYTES */
1749
1750#define SDATA_SIZE(NBYTES) \
1751 ((sizeof (struct Lisp_String *) \
1752 + (NBYTES) + 1 \
1753 + sizeof (EMACS_INT) - 1) \
1754 & ~(sizeof (EMACS_INT) - 1))
1755
1756#endif /* not GC_CHECK_STRING_BYTES */
2e471eb5 1757
bdbed949
KS
1758/* Extra bytes to allocate for each string. */
1759
1760#define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1761
2e471eb5 1762/* Initialize string allocation. Called from init_alloc_once. */
d457598b 1763
d3d47262 1764static void
2e471eb5 1765init_strings ()
7146af97 1766{
2e471eb5
GM
1767 total_strings = total_free_strings = total_string_size = 0;
1768 oldest_sblock = current_sblock = large_sblocks = NULL;
1769 string_blocks = NULL;
1770 n_string_blocks = 0;
1771 string_free_list = NULL;
4d774b0f
JB
1772 empty_unibyte_string = make_pure_string ("", 0, 0, 0);
1773 empty_multibyte_string = make_pure_string ("", 0, 0, 1);
7146af97
JB
1774}
1775
2e471eb5 1776
361b097f
GM
1777#ifdef GC_CHECK_STRING_BYTES
1778
361b097f
GM
1779static int check_string_bytes_count;
1780
d3d47262
JB
1781static void check_string_bytes P_ ((int));
1782static void check_sblock P_ ((struct sblock *));
676a7251
GM
1783
1784#define CHECK_STRING_BYTES(S) STRING_BYTES (S)
1785
1786
1787/* Like GC_STRING_BYTES, but with debugging check. */
1788
1789int
1790string_bytes (s)
1791 struct Lisp_String *s;
1792{
7cdee936 1793 int nbytes = (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
676a7251
GM
1794 if (!PURE_POINTER_P (s)
1795 && s->data
1796 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1797 abort ();
1798 return nbytes;
1799}
177c0ea7 1800
2c5bd608 1801/* Check validity of Lisp strings' string_bytes member in B. */
676a7251 1802
d3d47262 1803static void
676a7251
GM
1804check_sblock (b)
1805 struct sblock *b;
361b097f 1806{
676a7251 1807 struct sdata *from, *end, *from_end;
177c0ea7 1808
676a7251 1809 end = b->next_free;
177c0ea7 1810
676a7251 1811 for (from = &b->first_data; from < end; from = from_end)
361b097f 1812 {
676a7251
GM
1813 /* Compute the next FROM here because copying below may
1814 overwrite data we need to compute it. */
1815 int nbytes;
177c0ea7 1816
676a7251
GM
1817 /* Check that the string size recorded in the string is the
1818 same as the one recorded in the sdata structure. */
1819 if (from->string)
1820 CHECK_STRING_BYTES (from->string);
177c0ea7 1821
676a7251
GM
1822 if (from->string)
1823 nbytes = GC_STRING_BYTES (from->string);
1824 else
1825 nbytes = SDATA_NBYTES (from);
177c0ea7 1826
676a7251 1827 nbytes = SDATA_SIZE (nbytes);
212f33f1 1828 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
676a7251
GM
1829 }
1830}
361b097f 1831
676a7251
GM
1832
1833/* Check validity of Lisp strings' string_bytes member. ALL_P
1834 non-zero means check all strings, otherwise check only most
1835 recently allocated strings. Used for hunting a bug. */
1836
d3d47262 1837static void
676a7251
GM
1838check_string_bytes (all_p)
1839 int all_p;
1840{
1841 if (all_p)
1842 {
1843 struct sblock *b;
1844
1845 for (b = large_sblocks; b; b = b->next)
1846 {
1847 struct Lisp_String *s = b->first_data.string;
1848 if (s)
1849 CHECK_STRING_BYTES (s);
361b097f 1850 }
177c0ea7 1851
676a7251
GM
1852 for (b = oldest_sblock; b; b = b->next)
1853 check_sblock (b);
361b097f 1854 }
676a7251
GM
1855 else
1856 check_sblock (current_sblock);
361b097f
GM
1857}
1858
1859#endif /* GC_CHECK_STRING_BYTES */
1860
212f33f1
KS
1861#ifdef GC_CHECK_STRING_FREE_LIST
1862
bdbed949
KS
1863/* Walk through the string free list looking for bogus next pointers.
1864 This may catch buffer overrun from a previous string. */
1865
212f33f1
KS
1866static void
1867check_string_free_list ()
1868{
1869 struct Lisp_String *s;
1870
1871 /* Pop a Lisp_String off the free-list. */
1872 s = string_free_list;
1873 while (s != NULL)
1874 {
1875 if ((unsigned)s < 1024)
1876 abort();
1877 s = NEXT_FREE_LISP_STRING (s);
1878 }
1879}
1880#else
1881#define check_string_free_list()
1882#endif
361b097f 1883
2e471eb5
GM
1884/* Return a new Lisp_String. */
1885
1886static struct Lisp_String *
1887allocate_string ()
7146af97 1888{
2e471eb5 1889 struct Lisp_String *s;
7146af97 1890
e2984df0
CY
1891 /* eassert (!handling_signal); */
1892
dafc79fa 1893 MALLOC_BLOCK_INPUT;
cfb2f32e 1894
2e471eb5
GM
1895 /* If the free-list is empty, allocate a new string_block, and
1896 add all the Lisp_Strings in it to the free-list. */
1897 if (string_free_list == NULL)
7146af97 1898 {
2e471eb5
GM
1899 struct string_block *b;
1900 int i;
1901
34400008 1902 b = (struct string_block *) lisp_malloc (sizeof *b, MEM_TYPE_STRING);
2e471eb5
GM
1903 bzero (b, sizeof *b);
1904 b->next = string_blocks;
1905 string_blocks = b;
1906 ++n_string_blocks;
1907
19bcad1f 1908 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
7146af97 1909 {
2e471eb5
GM
1910 s = b->strings + i;
1911 NEXT_FREE_LISP_STRING (s) = string_free_list;
1912 string_free_list = s;
7146af97 1913 }
2e471eb5 1914
19bcad1f 1915 total_free_strings += STRING_BLOCK_SIZE;
7146af97 1916 }
c0f51373 1917
bdbed949 1918 check_string_free_list ();
212f33f1 1919
2e471eb5
GM
1920 /* Pop a Lisp_String off the free-list. */
1921 s = string_free_list;
1922 string_free_list = NEXT_FREE_LISP_STRING (s);
c0f51373 1923
dafc79fa 1924 MALLOC_UNBLOCK_INPUT;
e2984df0 1925
2e471eb5
GM
1926 /* Probably not strictly necessary, but play it safe. */
1927 bzero (s, sizeof *s);
c0f51373 1928
2e471eb5
GM
1929 --total_free_strings;
1930 ++total_strings;
1931 ++strings_consed;
1932 consing_since_gc += sizeof *s;
c0f51373 1933
361b097f 1934#ifdef GC_CHECK_STRING_BYTES
e39a993c 1935 if (!noninteractive)
361b097f 1936 {
676a7251
GM
1937 if (++check_string_bytes_count == 200)
1938 {
1939 check_string_bytes_count = 0;
1940 check_string_bytes (1);
1941 }
1942 else
1943 check_string_bytes (0);
361b097f 1944 }
676a7251 1945#endif /* GC_CHECK_STRING_BYTES */
361b097f 1946
2e471eb5 1947 return s;
c0f51373 1948}
7146af97 1949
7146af97 1950
2e471eb5
GM
1951/* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1952 plus a NUL byte at the end. Allocate an sdata structure for S, and
1953 set S->data to its `u.data' member. Store a NUL byte at the end of
1954 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1955 S->data if it was initially non-null. */
7146af97 1956
2e471eb5
GM
1957void
1958allocate_string_data (s, nchars, nbytes)
1959 struct Lisp_String *s;
1960 int nchars, nbytes;
7146af97 1961{
5c5fecb3 1962 struct sdata *data, *old_data;
2e471eb5 1963 struct sblock *b;
5c5fecb3 1964 int needed, old_nbytes;
7146af97 1965
2e471eb5
GM
1966 /* Determine the number of bytes needed to store NBYTES bytes
1967 of string data. */
1968 needed = SDATA_SIZE (nbytes);
e2984df0
CY
1969 old_data = s->data ? SDATA_OF_STRING (s) : NULL;
1970 old_nbytes = GC_STRING_BYTES (s);
1971
dafc79fa 1972 MALLOC_BLOCK_INPUT;
7146af97 1973
2e471eb5
GM
1974 if (nbytes > LARGE_STRING_BYTES)
1975 {
675d5130 1976 size_t size = sizeof *b - sizeof (struct sdata) + needed;
2e471eb5
GM
1977
1978#ifdef DOUG_LEA_MALLOC
f8608968
GM
1979 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1980 because mapped region contents are not preserved in
d36b182f
DL
1981 a dumped Emacs.
1982
1983 In case you think of allowing it in a dumped Emacs at the
1984 cost of not being able to re-dump, there's another reason:
1985 mmap'ed data typically have an address towards the top of the
1986 address space, which won't fit into an EMACS_INT (at least on
1987 32-bit systems with the current tagging scheme). --fx */
2e471eb5
GM
1988 mallopt (M_MMAP_MAX, 0);
1989#endif
1990
212f33f1 1991 b = (struct sblock *) lisp_malloc (size + GC_STRING_EXTRA, MEM_TYPE_NON_LISP);
177c0ea7 1992
2e471eb5
GM
1993#ifdef DOUG_LEA_MALLOC
1994 /* Back to a reasonable maximum of mmap'ed areas. */
1995 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1996#endif
177c0ea7 1997
2e471eb5
GM
1998 b->next_free = &b->first_data;
1999 b->first_data.string = NULL;
2000 b->next = large_sblocks;
2001 large_sblocks = b;
2002 }
2003 else if (current_sblock == NULL
2004 || (((char *) current_sblock + SBLOCK_SIZE
2005 - (char *) current_sblock->next_free)
212f33f1 2006 < (needed + GC_STRING_EXTRA)))
2e471eb5
GM
2007 {
2008 /* Not enough room in the current sblock. */
34400008 2009 b = (struct sblock *) lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
2e471eb5
GM
2010 b->next_free = &b->first_data;
2011 b->first_data.string = NULL;
2012 b->next = NULL;
2013
2014 if (current_sblock)
2015 current_sblock->next = b;
2016 else
2017 oldest_sblock = b;
2018 current_sblock = b;
2019 }
2020 else
2021 b = current_sblock;
5c5fecb3 2022
2e471eb5 2023 data = b->next_free;
a0b08700
CY
2024 b->next_free = (struct sdata *) ((char *) data + needed + GC_STRING_EXTRA);
2025
dafc79fa 2026 MALLOC_UNBLOCK_INPUT;
e2984df0 2027
2e471eb5 2028 data->string = s;
31d929e5
GM
2029 s->data = SDATA_DATA (data);
2030#ifdef GC_CHECK_STRING_BYTES
2031 SDATA_NBYTES (data) = nbytes;
2032#endif
2e471eb5
GM
2033 s->size = nchars;
2034 s->size_byte = nbytes;
2035 s->data[nbytes] = '\0';
212f33f1 2036#ifdef GC_CHECK_STRING_OVERRUN
bdbed949
KS
2037 bcopy (string_overrun_cookie, (char *) data + needed,
2038 GC_STRING_OVERRUN_COOKIE_SIZE);
212f33f1 2039#endif
177c0ea7 2040
5c5fecb3
GM
2041 /* If S had already data assigned, mark that as free by setting its
2042 string back-pointer to null, and recording the size of the data
00c9c33c 2043 in it. */
5c5fecb3
GM
2044 if (old_data)
2045 {
31d929e5 2046 SDATA_NBYTES (old_data) = old_nbytes;
5c5fecb3
GM
2047 old_data->string = NULL;
2048 }
2049
2e471eb5
GM
2050 consing_since_gc += needed;
2051}
2052
2053
2054/* Sweep and compact strings. */
2055
2056static void
2057sweep_strings ()
2058{
2059 struct string_block *b, *next;
2060 struct string_block *live_blocks = NULL;
177c0ea7 2061
2e471eb5
GM
2062 string_free_list = NULL;
2063 total_strings = total_free_strings = 0;
2064 total_string_size = 0;
2065
2066 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
2067 for (b = string_blocks; b; b = next)
2068 {
2069 int i, nfree = 0;
2070 struct Lisp_String *free_list_before = string_free_list;
2071
2072 next = b->next;
2073
19bcad1f 2074 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
2e471eb5
GM
2075 {
2076 struct Lisp_String *s = b->strings + i;
2077
2078 if (s->data)
2079 {
2080 /* String was not on free-list before. */
2081 if (STRING_MARKED_P (s))
2082 {
2083 /* String is live; unmark it and its intervals. */
2084 UNMARK_STRING (s);
177c0ea7 2085
2e471eb5
GM
2086 if (!NULL_INTERVAL_P (s->intervals))
2087 UNMARK_BALANCE_INTERVALS (s->intervals);
2088
2089 ++total_strings;
2090 total_string_size += STRING_BYTES (s);
2091 }
2092 else
2093 {
2094 /* String is dead. Put it on the free-list. */
2095 struct sdata *data = SDATA_OF_STRING (s);
2096
2097 /* Save the size of S in its sdata so that we know
2098 how large that is. Reset the sdata's string
2099 back-pointer so that we know it's free. */
31d929e5
GM
2100#ifdef GC_CHECK_STRING_BYTES
2101 if (GC_STRING_BYTES (s) != SDATA_NBYTES (data))
2102 abort ();
2103#else
2e471eb5 2104 data->u.nbytes = GC_STRING_BYTES (s);
31d929e5 2105#endif
2e471eb5
GM
2106 data->string = NULL;
2107
2108 /* Reset the strings's `data' member so that we
2109 know it's free. */
2110 s->data = NULL;
2111
2112 /* Put the string on the free-list. */
2113 NEXT_FREE_LISP_STRING (s) = string_free_list;
2114 string_free_list = s;
2115 ++nfree;
2116 }
2117 }
2118 else
2119 {
2120 /* S was on the free-list before. Put it there again. */
2121 NEXT_FREE_LISP_STRING (s) = string_free_list;
2122 string_free_list = s;
2123 ++nfree;
2124 }
2125 }
2126
34400008 2127 /* Free blocks that contain free Lisp_Strings only, except
2e471eb5 2128 the first two of them. */
19bcad1f
SM
2129 if (nfree == STRING_BLOCK_SIZE
2130 && total_free_strings > STRING_BLOCK_SIZE)
2e471eb5
GM
2131 {
2132 lisp_free (b);
2133 --n_string_blocks;
2134 string_free_list = free_list_before;
2135 }
2136 else
2137 {
2138 total_free_strings += nfree;
2139 b->next = live_blocks;
2140 live_blocks = b;
2141 }
2142 }
2143
bdbed949 2144 check_string_free_list ();
212f33f1 2145
2e471eb5
GM
2146 string_blocks = live_blocks;
2147 free_large_strings ();
2148 compact_small_strings ();
212f33f1 2149
bdbed949 2150 check_string_free_list ();
2e471eb5
GM
2151}
2152
2153
2154/* Free dead large strings. */
2155
2156static void
2157free_large_strings ()
2158{
2159 struct sblock *b, *next;
2160 struct sblock *live_blocks = NULL;
177c0ea7 2161
2e471eb5
GM
2162 for (b = large_sblocks; b; b = next)
2163 {
2164 next = b->next;
2165
2166 if (b->first_data.string == NULL)
2167 lisp_free (b);
2168 else
2169 {
2170 b->next = live_blocks;
2171 live_blocks = b;
2172 }
2173 }
2174
2175 large_sblocks = live_blocks;
2176}
2177
2178
2179/* Compact data of small strings. Free sblocks that don't contain
2180 data of live strings after compaction. */
2181
2182static void
2183compact_small_strings ()
2184{
2185 struct sblock *b, *tb, *next;
2186 struct sdata *from, *to, *end, *tb_end;
2187 struct sdata *to_end, *from_end;
2188
2189 /* TB is the sblock we copy to, TO is the sdata within TB we copy
2190 to, and TB_END is the end of TB. */
2191 tb = oldest_sblock;
2192 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2193 to = &tb->first_data;
2194
2195 /* Step through the blocks from the oldest to the youngest. We
2196 expect that old blocks will stabilize over time, so that less
2197 copying will happen this way. */
2198 for (b = oldest_sblock; b; b = b->next)
2199 {
2200 end = b->next_free;
2201 xassert ((char *) end <= (char *) b + SBLOCK_SIZE);
177c0ea7 2202
2e471eb5
GM
2203 for (from = &b->first_data; from < end; from = from_end)
2204 {
2205 /* Compute the next FROM here because copying below may
2206 overwrite data we need to compute it. */
2207 int nbytes;
2208
31d929e5
GM
2209#ifdef GC_CHECK_STRING_BYTES
2210 /* Check that the string size recorded in the string is the
2211 same as the one recorded in the sdata structure. */
2212 if (from->string
2213 && GC_STRING_BYTES (from->string) != SDATA_NBYTES (from))
2214 abort ();
2215#endif /* GC_CHECK_STRING_BYTES */
177c0ea7 2216
2e471eb5
GM
2217 if (from->string)
2218 nbytes = GC_STRING_BYTES (from->string);
2219 else
31d929e5 2220 nbytes = SDATA_NBYTES (from);
177c0ea7 2221
212f33f1
KS
2222 if (nbytes > LARGE_STRING_BYTES)
2223 abort ();
212f33f1 2224
2e471eb5 2225 nbytes = SDATA_SIZE (nbytes);
212f33f1
KS
2226 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
2227
2228#ifdef GC_CHECK_STRING_OVERRUN
bdbed949
KS
2229 if (bcmp (string_overrun_cookie,
2230 ((char *) from_end) - GC_STRING_OVERRUN_COOKIE_SIZE,
2231 GC_STRING_OVERRUN_COOKIE_SIZE))
212f33f1
KS
2232 abort ();
2233#endif
177c0ea7 2234
2e471eb5
GM
2235 /* FROM->string non-null means it's alive. Copy its data. */
2236 if (from->string)
2237 {
2238 /* If TB is full, proceed with the next sblock. */
212f33f1 2239 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2e471eb5
GM
2240 if (to_end > tb_end)
2241 {
2242 tb->next_free = to;
2243 tb = tb->next;
2244 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2245 to = &tb->first_data;
212f33f1 2246 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2e471eb5 2247 }
177c0ea7 2248
2e471eb5
GM
2249 /* Copy, and update the string's `data' pointer. */
2250 if (from != to)
2251 {
a2407477 2252 xassert (tb != b || to <= from);
212f33f1 2253 safe_bcopy ((char *) from, (char *) to, nbytes + GC_STRING_EXTRA);
31d929e5 2254 to->string->data = SDATA_DATA (to);
2e471eb5
GM
2255 }
2256
2257 /* Advance past the sdata we copied to. */
2258 to = to_end;
2259 }
2260 }
2261 }
2262
2263 /* The rest of the sblocks following TB don't contain live data, so
2264 we can free them. */
2265 for (b = tb->next; b; b = next)
2266 {
2267 next = b->next;
2268 lisp_free (b);
2269 }
2270
2271 tb->next_free = to;
2272 tb->next = NULL;
2273 current_sblock = tb;
2274}
2275
2276
2277DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
69623621
RS
2278 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
2279LENGTH must be an integer.
2280INIT must be an integer that represents a character. */)
7ee72033 2281 (length, init)
2e471eb5
GM
2282 Lisp_Object length, init;
2283{
2284 register Lisp_Object val;
2285 register unsigned char *p, *end;
2286 int c, nbytes;
2287
b7826503
PJ
2288 CHECK_NATNUM (length);
2289 CHECK_NUMBER (init);
2e471eb5
GM
2290
2291 c = XINT (init);
830ff83b 2292 if (ASCII_CHAR_P (c))
2e471eb5
GM
2293 {
2294 nbytes = XINT (length);
2295 val = make_uninit_string (nbytes);
d5db4077
KR
2296 p = SDATA (val);
2297 end = p + SCHARS (val);
2e471eb5
GM
2298 while (p != end)
2299 *p++ = c;
2300 }
2301 else
2302 {
d942b71c 2303 unsigned char str[MAX_MULTIBYTE_LENGTH];
2e471eb5
GM
2304 int len = CHAR_STRING (c, str);
2305
2306 nbytes = len * XINT (length);
2307 val = make_uninit_multibyte_string (XINT (length), nbytes);
d5db4077 2308 p = SDATA (val);
2e471eb5
GM
2309 end = p + nbytes;
2310 while (p != end)
2311 {
2312 bcopy (str, p, len);
2313 p += len;
2314 }
2315 }
177c0ea7 2316
2e471eb5
GM
2317 *p = 0;
2318 return val;
2319}
2320
2321
2322DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
909e3b33 2323 doc: /* Return a new bool-vector of length LENGTH, using INIT for each element.
7ee72033
MB
2324LENGTH must be a number. INIT matters only in whether it is t or nil. */)
2325 (length, init)
2e471eb5
GM
2326 Lisp_Object length, init;
2327{
2328 register Lisp_Object val;
2329 struct Lisp_Bool_Vector *p;
2330 int real_init, i;
2331 int length_in_chars, length_in_elts, bits_per_value;
2332
b7826503 2333 CHECK_NATNUM (length);
2e471eb5 2334
a097329f 2335 bits_per_value = sizeof (EMACS_INT) * BOOL_VECTOR_BITS_PER_CHAR;
2e471eb5
GM
2336
2337 length_in_elts = (XFASTINT (length) + bits_per_value - 1) / bits_per_value;
a097329f
AS
2338 length_in_chars = ((XFASTINT (length) + BOOL_VECTOR_BITS_PER_CHAR - 1)
2339 / BOOL_VECTOR_BITS_PER_CHAR);
2e471eb5
GM
2340
2341 /* We must allocate one more elements than LENGTH_IN_ELTS for the
2342 slot `size' of the struct Lisp_Bool_Vector. */
2343 val = Fmake_vector (make_number (length_in_elts + 1), Qnil);
177c0ea7 2344
2e471eb5 2345 /* Get rid of any bits that would cause confusion. */
d2029e5b 2346 XVECTOR (val)->size = 0; /* No Lisp_Object to trace in there. */
d0fdb6da 2347 /* Use XVECTOR (val) rather than `p' because p->size is not TRT. */
d2029e5b
SM
2348 XSETPVECTYPE (XVECTOR (val), PVEC_BOOL_VECTOR);
2349
2350 p = XBOOL_VECTOR (val);
2e471eb5 2351 p->size = XFASTINT (length);
177c0ea7 2352
2e471eb5
GM
2353 real_init = (NILP (init) ? 0 : -1);
2354 for (i = 0; i < length_in_chars ; i++)
2355 p->data[i] = real_init;
177c0ea7 2356
2e471eb5 2357 /* Clear the extraneous bits in the last byte. */
a097329f 2358 if (XINT (length) != length_in_chars * BOOL_VECTOR_BITS_PER_CHAR)
d2029e5b 2359 p->data[length_in_chars - 1]
a097329f 2360 &= (1 << (XINT (length) % BOOL_VECTOR_BITS_PER_CHAR)) - 1;
2e471eb5
GM
2361
2362 return val;
2363}
2364
2365
2366/* Make a string from NBYTES bytes at CONTENTS, and compute the number
2367 of characters from the contents. This string may be unibyte or
2368 multibyte, depending on the contents. */
2369
2370Lisp_Object
2371make_string (contents, nbytes)
943b873e 2372 const char *contents;
2e471eb5
GM
2373 int nbytes;
2374{
2375 register Lisp_Object val;
9eac9d59
KH
2376 int nchars, multibyte_nbytes;
2377
2378 parse_str_as_multibyte (contents, nbytes, &nchars, &multibyte_nbytes);
9eac9d59
KH
2379 if (nbytes == nchars || nbytes != multibyte_nbytes)
2380 /* CONTENTS contains no multibyte sequences or contains an invalid
2381 multibyte sequence. We must make unibyte string. */
495a6df3
KH
2382 val = make_unibyte_string (contents, nbytes);
2383 else
2384 val = make_multibyte_string (contents, nchars, nbytes);
2e471eb5
GM
2385 return val;
2386}
2387
2388
2389/* Make an unibyte string from LENGTH bytes at CONTENTS. */
2390
2391Lisp_Object
2392make_unibyte_string (contents, length)
943b873e 2393 const char *contents;
2e471eb5
GM
2394 int length;
2395{
2396 register Lisp_Object val;
2397 val = make_uninit_string (length);
d5db4077
KR
2398 bcopy (contents, SDATA (val), length);
2399 STRING_SET_UNIBYTE (val);
2e471eb5
GM
2400 return val;
2401}
2402
2403
2404/* Make a multibyte string from NCHARS characters occupying NBYTES
2405 bytes at CONTENTS. */
2406
2407Lisp_Object
2408make_multibyte_string (contents, nchars, nbytes)
943b873e 2409 const char *contents;
2e471eb5
GM
2410 int nchars, nbytes;
2411{
2412 register Lisp_Object val;
2413 val = make_uninit_multibyte_string (nchars, nbytes);
d5db4077 2414 bcopy (contents, SDATA (val), nbytes);
2e471eb5
GM
2415 return val;
2416}
2417
2418
2419/* Make a string from NCHARS characters occupying NBYTES bytes at
2420 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2421
2422Lisp_Object
2423make_string_from_bytes (contents, nchars, nbytes)
fcbb914b 2424 const char *contents;
2e471eb5
GM
2425 int nchars, nbytes;
2426{
2427 register Lisp_Object val;
2428 val = make_uninit_multibyte_string (nchars, nbytes);
d5db4077
KR
2429 bcopy (contents, SDATA (val), nbytes);
2430 if (SBYTES (val) == SCHARS (val))
2431 STRING_SET_UNIBYTE (val);
2e471eb5
GM
2432 return val;
2433}
2434
2435
2436/* Make a string from NCHARS characters occupying NBYTES bytes at
2437 CONTENTS. The argument MULTIBYTE controls whether to label the
229b28c4
KH
2438 string as multibyte. If NCHARS is negative, it counts the number of
2439 characters by itself. */
2e471eb5
GM
2440
2441Lisp_Object
2442make_specified_string (contents, nchars, nbytes, multibyte)
fcbb914b 2443 const char *contents;
2e471eb5
GM
2444 int nchars, nbytes;
2445 int multibyte;
2446{
2447 register Lisp_Object val;
229b28c4
KH
2448
2449 if (nchars < 0)
2450 {
2451 if (multibyte)
2452 nchars = multibyte_chars_in_text (contents, nbytes);
2453 else
2454 nchars = nbytes;
2455 }
2e471eb5 2456 val = make_uninit_multibyte_string (nchars, nbytes);
d5db4077 2457 bcopy (contents, SDATA (val), nbytes);
2e471eb5 2458 if (!multibyte)
d5db4077 2459 STRING_SET_UNIBYTE (val);
2e471eb5
GM
2460 return val;
2461}
2462
2463
2464/* Make a string from the data at STR, treating it as multibyte if the
2465 data warrants. */
2466
2467Lisp_Object
2468build_string (str)
943b873e 2469 const char *str;
2e471eb5
GM
2470{
2471 return make_string (str, strlen (str));
2472}
2473
2474
2475/* Return an unibyte Lisp_String set up to hold LENGTH characters
2476 occupying LENGTH bytes. */
2477
2478Lisp_Object
2479make_uninit_string (length)
2480 int length;
2481{
2482 Lisp_Object val;
4d774b0f
JB
2483
2484 if (!length)
2485 return empty_unibyte_string;
2e471eb5 2486 val = make_uninit_multibyte_string (length, length);
d5db4077 2487 STRING_SET_UNIBYTE (val);
2e471eb5
GM
2488 return val;
2489}
2490
2491
2492/* Return a multibyte Lisp_String set up to hold NCHARS characters
2493 which occupy NBYTES bytes. */
2494
2495Lisp_Object
2496make_uninit_multibyte_string (nchars, nbytes)
2497 int nchars, nbytes;
2498{
2499 Lisp_Object string;
2500 struct Lisp_String *s;
2501
2502 if (nchars < 0)
2503 abort ();
4d774b0f
JB
2504 if (!nbytes)
2505 return empty_multibyte_string;
2e471eb5
GM
2506
2507 s = allocate_string ();
2508 allocate_string_data (s, nchars, nbytes);
2509 XSETSTRING (string, s);
2510 string_chars_consed += nbytes;
2511 return string;
2512}
2513
2514
2515\f
2516/***********************************************************************
2517 Float Allocation
2518 ***********************************************************************/
2519
2e471eb5
GM
2520/* We store float cells inside of float_blocks, allocating a new
2521 float_block with malloc whenever necessary. Float cells reclaimed
2522 by GC are put on a free list to be reallocated before allocating
ab6780cd 2523 any new float cells from the latest float_block. */
2e471eb5 2524
6b61353c
KH
2525#define FLOAT_BLOCK_SIZE \
2526 (((BLOCK_BYTES - sizeof (struct float_block *) \
2527 /* The compiler might add padding at the end. */ \
2528 - (sizeof (struct Lisp_Float) - sizeof (int))) * CHAR_BIT) \
ab6780cd
SM
2529 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2530
2531#define GETMARKBIT(block,n) \
2532 (((block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2533 >> ((n) % (sizeof(int) * CHAR_BIT))) \
2534 & 1)
2535
2536#define SETMARKBIT(block,n) \
2537 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2538 |= 1 << ((n) % (sizeof(int) * CHAR_BIT))
2539
2540#define UNSETMARKBIT(block,n) \
2541 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2542 &= ~(1 << ((n) % (sizeof(int) * CHAR_BIT)))
2543
2544#define FLOAT_BLOCK(fptr) \
2545 ((struct float_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2546
2547#define FLOAT_INDEX(fptr) \
2548 ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2e471eb5
GM
2549
2550struct float_block
2551{
ab6780cd 2552 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2e471eb5 2553 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
ab6780cd
SM
2554 int gcmarkbits[1 + FLOAT_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2555 struct float_block *next;
2e471eb5
GM
2556};
2557
ab6780cd
SM
2558#define FLOAT_MARKED_P(fptr) \
2559 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2560
2561#define FLOAT_MARK(fptr) \
2562 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2563
2564#define FLOAT_UNMARK(fptr) \
2565 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2566
34400008
GM
2567/* Current float_block. */
2568
2e471eb5 2569struct float_block *float_block;
34400008
GM
2570
2571/* Index of first unused Lisp_Float in the current float_block. */
2572
2e471eb5
GM
2573int float_block_index;
2574
2575/* Total number of float blocks now in use. */
2576
2577int n_float_blocks;
2578
34400008
GM
2579/* Free-list of Lisp_Floats. */
2580
2e471eb5
GM
2581struct Lisp_Float *float_free_list;
2582
34400008 2583
966533c9 2584/* Initialize float allocation. */
34400008 2585
d3d47262 2586static void
2e471eb5
GM
2587init_float ()
2588{
08b7c2cb
SM
2589 float_block = NULL;
2590 float_block_index = FLOAT_BLOCK_SIZE; /* Force alloc of new float_block. */
2e471eb5 2591 float_free_list = 0;
08b7c2cb 2592 n_float_blocks = 0;
2e471eb5
GM
2593}
2594
34400008
GM
2595
2596/* Explicitly free a float cell by putting it on the free-list. */
2e471eb5 2597
d3d47262 2598static void
2e471eb5
GM
2599free_float (ptr)
2600 struct Lisp_Float *ptr;
2601{
28a099a4 2602 ptr->u.chain = float_free_list;
2e471eb5
GM
2603 float_free_list = ptr;
2604}
2605
34400008
GM
2606
2607/* Return a new float object with value FLOAT_VALUE. */
2608
2e471eb5
GM
2609Lisp_Object
2610make_float (float_value)
2611 double float_value;
2612{
2613 register Lisp_Object val;
2614
e2984df0
CY
2615 /* eassert (!handling_signal); */
2616
dafc79fa 2617 MALLOC_BLOCK_INPUT;
cfb2f32e 2618
2e471eb5
GM
2619 if (float_free_list)
2620 {
2621 /* We use the data field for chaining the free list
2622 so that we won't use the same field that has the mark bit. */
2623 XSETFLOAT (val, float_free_list);
28a099a4 2624 float_free_list = float_free_list->u.chain;
2e471eb5
GM
2625 }
2626 else
2627 {
2628 if (float_block_index == FLOAT_BLOCK_SIZE)
2629 {
2630 register struct float_block *new;
2631
ab6780cd
SM
2632 new = (struct float_block *) lisp_align_malloc (sizeof *new,
2633 MEM_TYPE_FLOAT);
2e471eb5 2634 new->next = float_block;
6b61353c 2635 bzero ((char *) new->gcmarkbits, sizeof new->gcmarkbits);
2e471eb5
GM
2636 float_block = new;
2637 float_block_index = 0;
2638 n_float_blocks++;
2639 }
6b61353c
KH
2640 XSETFLOAT (val, &float_block->floats[float_block_index]);
2641 float_block_index++;
2e471eb5 2642 }
177c0ea7 2643
dafc79fa 2644 MALLOC_UNBLOCK_INPUT;
e2984df0 2645
2e471eb5 2646 XFLOAT_DATA (val) = float_value;
6b61353c 2647 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2e471eb5
GM
2648 consing_since_gc += sizeof (struct Lisp_Float);
2649 floats_consed++;
2650 return val;
2651}
2652
2e471eb5
GM
2653
2654\f
2655/***********************************************************************
2656 Cons Allocation
2657 ***********************************************************************/
2658
2659/* We store cons cells inside of cons_blocks, allocating a new
2660 cons_block with malloc whenever necessary. Cons cells reclaimed by
2661 GC are put on a free list to be reallocated before allocating
08b7c2cb 2662 any new cons cells from the latest cons_block. */
2e471eb5
GM
2663
2664#define CONS_BLOCK_SIZE \
08b7c2cb
SM
2665 (((BLOCK_BYTES - sizeof (struct cons_block *)) * CHAR_BIT) \
2666 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2667
2668#define CONS_BLOCK(fptr) \
2669 ((struct cons_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2670
2671#define CONS_INDEX(fptr) \
2672 ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2e471eb5
GM
2673
2674struct cons_block
2675{
08b7c2cb 2676 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2e471eb5 2677 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
08b7c2cb
SM
2678 int gcmarkbits[1 + CONS_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2679 struct cons_block *next;
2e471eb5
GM
2680};
2681
08b7c2cb
SM
2682#define CONS_MARKED_P(fptr) \
2683 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2684
2685#define CONS_MARK(fptr) \
2686 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2687
2688#define CONS_UNMARK(fptr) \
2689 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2690
34400008
GM
2691/* Current cons_block. */
2692
2e471eb5 2693struct cons_block *cons_block;
34400008
GM
2694
2695/* Index of first unused Lisp_Cons in the current block. */
2696
2e471eb5
GM
2697int cons_block_index;
2698
34400008
GM
2699/* Free-list of Lisp_Cons structures. */
2700
2e471eb5
GM
2701struct Lisp_Cons *cons_free_list;
2702
2703/* Total number of cons blocks now in use. */
2704
d3d47262 2705static int n_cons_blocks;
2e471eb5 2706
34400008
GM
2707
2708/* Initialize cons allocation. */
2709
d3d47262 2710static void
2e471eb5
GM
2711init_cons ()
2712{
08b7c2cb
SM
2713 cons_block = NULL;
2714 cons_block_index = CONS_BLOCK_SIZE; /* Force alloc of new cons_block. */
2e471eb5 2715 cons_free_list = 0;
08b7c2cb 2716 n_cons_blocks = 0;
2e471eb5
GM
2717}
2718
34400008
GM
2719
2720/* Explicitly free a cons cell by putting it on the free-list. */
2e471eb5
GM
2721
2722void
2723free_cons (ptr)
2724 struct Lisp_Cons *ptr;
2725{
28a099a4 2726 ptr->u.chain = cons_free_list;
34400008
GM
2727#if GC_MARK_STACK
2728 ptr->car = Vdead;
2729#endif
2e471eb5
GM
2730 cons_free_list = ptr;
2731}
2732
2733DEFUN ("cons", Fcons, Scons, 2, 2, 0,
a6266d23 2734 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
7ee72033 2735 (car, cdr)
2e471eb5
GM
2736 Lisp_Object car, cdr;
2737{
2738 register Lisp_Object val;
2739
e2984df0
CY
2740 /* eassert (!handling_signal); */
2741
dafc79fa 2742 MALLOC_BLOCK_INPUT;
cfb2f32e 2743
2e471eb5
GM
2744 if (cons_free_list)
2745 {
2746 /* We use the cdr for chaining the free list
2747 so that we won't use the same field that has the mark bit. */
2748 XSETCONS (val, cons_free_list);
28a099a4 2749 cons_free_list = cons_free_list->u.chain;
2e471eb5
GM
2750 }
2751 else
2752 {
2753 if (cons_block_index == CONS_BLOCK_SIZE)
2754 {
2755 register struct cons_block *new;
08b7c2cb
SM
2756 new = (struct cons_block *) lisp_align_malloc (sizeof *new,
2757 MEM_TYPE_CONS);
6b61353c 2758 bzero ((char *) new->gcmarkbits, sizeof new->gcmarkbits);
2e471eb5
GM
2759 new->next = cons_block;
2760 cons_block = new;
2761 cons_block_index = 0;
2762 n_cons_blocks++;
2763 }
6b61353c
KH
2764 XSETCONS (val, &cons_block->conses[cons_block_index]);
2765 cons_block_index++;
2e471eb5 2766 }
177c0ea7 2767
dafc79fa 2768 MALLOC_UNBLOCK_INPUT;
e2984df0 2769
f3fbd155
KR
2770 XSETCAR (val, car);
2771 XSETCDR (val, cdr);
6b61353c 2772 eassert (!CONS_MARKED_P (XCONS (val)));
2e471eb5
GM
2773 consing_since_gc += sizeof (struct Lisp_Cons);
2774 cons_cells_consed++;
2775 return val;
2776}
2777
e3e56238
RS
2778/* Get an error now if there's any junk in the cons free list. */
2779void
2780check_cons_list ()
2781{
212f33f1 2782#ifdef GC_CHECK_CONS_LIST
e3e56238
RS
2783 struct Lisp_Cons *tail = cons_free_list;
2784
e3e56238 2785 while (tail)
28a099a4 2786 tail = tail->u.chain;
e3e56238
RS
2787#endif
2788}
34400008 2789
9b306d37
KS
2790/* Make a list of 1, 2, 3, 4 or 5 specified objects. */
2791
2792Lisp_Object
2793list1 (arg1)
2794 Lisp_Object arg1;
2795{
2796 return Fcons (arg1, Qnil);
2797}
2e471eb5
GM
2798
2799Lisp_Object
2800list2 (arg1, arg2)
2801 Lisp_Object arg1, arg2;
2802{
2803 return Fcons (arg1, Fcons (arg2, Qnil));
2804}
2805
34400008 2806
2e471eb5
GM
2807Lisp_Object
2808list3 (arg1, arg2, arg3)
2809 Lisp_Object arg1, arg2, arg3;
2810{
2811 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2812}
2813
34400008 2814
2e471eb5
GM
2815Lisp_Object
2816list4 (arg1, arg2, arg3, arg4)
2817 Lisp_Object arg1, arg2, arg3, arg4;
2818{
2819 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2820}
2821
34400008 2822
2e471eb5
GM
2823Lisp_Object
2824list5 (arg1, arg2, arg3, arg4, arg5)
2825 Lisp_Object arg1, arg2, arg3, arg4, arg5;
2826{
2827 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2828 Fcons (arg5, Qnil)))));
2829}
2830
34400008 2831
2e471eb5 2832DEFUN ("list", Flist, Slist, 0, MANY, 0,
eae936e2 2833 doc: /* Return a newly created list with specified arguments as elements.
ae8e8122
MB
2834Any number of arguments, even zero arguments, are allowed.
2835usage: (list &rest OBJECTS) */)
7ee72033 2836 (nargs, args)
2e471eb5
GM
2837 int nargs;
2838 register Lisp_Object *args;
2839{
2840 register Lisp_Object val;
2841 val = Qnil;
2842
2843 while (nargs > 0)
2844 {
2845 nargs--;
2846 val = Fcons (args[nargs], val);
2847 }
2848 return val;
2849}
2850
34400008 2851
2e471eb5 2852DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
a6266d23 2853 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
7ee72033 2854 (length, init)
2e471eb5
GM
2855 register Lisp_Object length, init;
2856{
2857 register Lisp_Object val;
2858 register int size;
2859
b7826503 2860 CHECK_NATNUM (length);
2e471eb5
GM
2861 size = XFASTINT (length);
2862
2863 val = Qnil;
ce070307
GM
2864 while (size > 0)
2865 {
2866 val = Fcons (init, val);
2867 --size;
2868
2869 if (size > 0)
2870 {
2871 val = Fcons (init, val);
2872 --size;
177c0ea7 2873
ce070307
GM
2874 if (size > 0)
2875 {
2876 val = Fcons (init, val);
2877 --size;
177c0ea7 2878
ce070307
GM
2879 if (size > 0)
2880 {
2881 val = Fcons (init, val);
2882 --size;
177c0ea7 2883
ce070307
GM
2884 if (size > 0)
2885 {
2886 val = Fcons (init, val);
2887 --size;
2888 }
2889 }
2890 }
2891 }
2892
2893 QUIT;
2894 }
177c0ea7 2895
7146af97
JB
2896 return val;
2897}
2e471eb5
GM
2898
2899
7146af97 2900\f
2e471eb5
GM
2901/***********************************************************************
2902 Vector Allocation
2903 ***********************************************************************/
7146af97 2904
34400008
GM
2905/* Singly-linked list of all vectors. */
2906
d3d47262 2907static struct Lisp_Vector *all_vectors;
7146af97 2908
2e471eb5
GM
2909/* Total number of vector-like objects now in use. */
2910
d3d47262 2911static int n_vectors;
c8099634 2912
34400008
GM
2913
2914/* Value is a pointer to a newly allocated Lisp_Vector structure
2915 with room for LEN Lisp_Objects. */
2916
ece93c02 2917static struct Lisp_Vector *
9c545a55 2918allocate_vectorlike (len)
1825c68d
KH
2919 EMACS_INT len;
2920{
2921 struct Lisp_Vector *p;
675d5130 2922 size_t nbytes;
1825c68d 2923
dafc79fa
SM
2924 MALLOC_BLOCK_INPUT;
2925
d1658221 2926#ifdef DOUG_LEA_MALLOC
f8608968
GM
2927 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
2928 because mapped region contents are not preserved in
2929 a dumped Emacs. */
d1658221
RS
2930 mallopt (M_MMAP_MAX, 0);
2931#endif
177c0ea7 2932
cfb2f32e
SM
2933 /* This gets triggered by code which I haven't bothered to fix. --Stef */
2934 /* eassert (!handling_signal); */
2935
34400008 2936 nbytes = sizeof *p + (len - 1) * sizeof p->contents[0];
9c545a55 2937 p = (struct Lisp_Vector *) lisp_malloc (nbytes, MEM_TYPE_VECTORLIKE);
177c0ea7 2938
d1658221 2939#ifdef DOUG_LEA_MALLOC
34400008 2940 /* Back to a reasonable maximum of mmap'ed areas. */
81d492d5 2941 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
d1658221 2942#endif
177c0ea7 2943
34400008 2944 consing_since_gc += nbytes;
310ea200 2945 vector_cells_consed += len;
1825c68d
KH
2946
2947 p->next = all_vectors;
2948 all_vectors = p;
e2984df0 2949
dafc79fa 2950 MALLOC_UNBLOCK_INPUT;
e2984df0 2951
34400008 2952 ++n_vectors;
1825c68d
KH
2953 return p;
2954}
2955
34400008 2956
ece93c02
GM
2957/* Allocate a vector with NSLOTS slots. */
2958
2959struct Lisp_Vector *
2960allocate_vector (nslots)
2961 EMACS_INT nslots;
2962{
9c545a55 2963 struct Lisp_Vector *v = allocate_vectorlike (nslots);
ece93c02
GM
2964 v->size = nslots;
2965 return v;
2966}
2967
2968
2969/* Allocate other vector-like structures. */
2970
30f95089 2971struct Lisp_Vector *
d2029e5b
SM
2972allocate_pseudovector (memlen, lisplen, tag)
2973 int memlen, lisplen;
2974 EMACS_INT tag;
ece93c02 2975{
d2029e5b 2976 struct Lisp_Vector *v = allocate_vectorlike (memlen);
ece93c02 2977 EMACS_INT i;
177c0ea7 2978
d2029e5b
SM
2979 /* Only the first lisplen slots will be traced normally by the GC. */
2980 v->size = lisplen;
2981 for (i = 0; i < lisplen; ++i)
ece93c02 2982 v->contents[i] = Qnil;
177c0ea7 2983
d2029e5b
SM
2984 XSETPVECTYPE (v, tag); /* Add the appropriate tag. */
2985 return v;
2986}
d2029e5b 2987
ece93c02 2988struct Lisp_Hash_Table *
878f97ff 2989allocate_hash_table (void)
ece93c02 2990{
878f97ff 2991 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Hash_Table, count, PVEC_HASH_TABLE);
ece93c02
GM
2992}
2993
2994
2995struct window *
2996allocate_window ()
2997{
d2029e5b 2998 return ALLOCATE_PSEUDOVECTOR(struct window, current_matrix, PVEC_WINDOW);
ece93c02 2999}
177c0ea7 3000
177c0ea7 3001
4a729fd8
SM
3002struct terminal *
3003allocate_terminal ()
3004{
d2029e5b
SM
3005 struct terminal *t = ALLOCATE_PSEUDOVECTOR (struct terminal,
3006 next_terminal, PVEC_TERMINAL);
3007 /* Zero out the non-GC'd fields. FIXME: This should be made unnecessary. */
3008 bzero (&(t->next_terminal),
3009 ((char*)(t+1)) - ((char*)&(t->next_terminal)));
ece93c02 3010
d2029e5b 3011 return t;
4a729fd8 3012}
ece93c02
GM
3013
3014struct frame *
3015allocate_frame ()
3016{
d2029e5b
SM
3017 struct frame *f = ALLOCATE_PSEUDOVECTOR (struct frame,
3018 face_cache, PVEC_FRAME);
3019 /* Zero out the non-GC'd fields. FIXME: This should be made unnecessary. */
3020 bzero (&(f->face_cache),
3021 ((char*)(f+1)) - ((char*)&(f->face_cache)));
3022 return f;
ece93c02
GM
3023}
3024
3025
3026struct Lisp_Process *
3027allocate_process ()
3028{
d2029e5b 3029 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Process, pid, PVEC_PROCESS);
ece93c02
GM
3030}
3031
3032
7146af97 3033DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
a6266d23 3034 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
7ee72033
MB
3035See also the function `vector'. */)
3036 (length, init)
7146af97
JB
3037 register Lisp_Object length, init;
3038{
1825c68d
KH
3039 Lisp_Object vector;
3040 register EMACS_INT sizei;
3041 register int index;
7146af97
JB
3042 register struct Lisp_Vector *p;
3043
b7826503 3044 CHECK_NATNUM (length);
c9dad5ed 3045 sizei = XFASTINT (length);
7146af97 3046
ece93c02 3047 p = allocate_vector (sizei);
7146af97
JB
3048 for (index = 0; index < sizei; index++)
3049 p->contents[index] = init;
3050
1825c68d 3051 XSETVECTOR (vector, p);
7146af97
JB
3052 return vector;
3053}
3054
34400008 3055
7146af97 3056DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
eae936e2 3057 doc: /* Return a newly created vector with specified arguments as elements.
ae8e8122
MB
3058Any number of arguments, even zero arguments, are allowed.
3059usage: (vector &rest OBJECTS) */)
7ee72033 3060 (nargs, args)
7146af97
JB
3061 register int nargs;
3062 Lisp_Object *args;
3063{
3064 register Lisp_Object len, val;
3065 register int index;
3066 register struct Lisp_Vector *p;
3067
67ba9986 3068 XSETFASTINT (len, nargs);
7146af97
JB
3069 val = Fmake_vector (len, Qnil);
3070 p = XVECTOR (val);
3071 for (index = 0; index < nargs; index++)
3072 p->contents[index] = args[index];
3073 return val;
3074}
3075
34400008 3076
7146af97 3077DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
a6266d23 3078 doc: /* Create a byte-code object with specified arguments as elements.
228299fa
GM
3079The arguments should be the arglist, bytecode-string, constant vector,
3080stack size, (optional) doc string, and (optional) interactive spec.
3081The first four arguments are required; at most six have any
ae8e8122 3082significance.
92cc28b2 3083usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
7ee72033 3084 (nargs, args)
7146af97
JB
3085 register int nargs;
3086 Lisp_Object *args;
3087{
3088 register Lisp_Object len, val;
3089 register int index;
3090 register struct Lisp_Vector *p;
3091
67ba9986 3092 XSETFASTINT (len, nargs);
265a9e55 3093 if (!NILP (Vpurify_flag))
5a053ea9 3094 val = make_pure_vector ((EMACS_INT) nargs);
7146af97
JB
3095 else
3096 val = Fmake_vector (len, Qnil);
9eac9d59
KH
3097
3098 if (STRINGP (args[1]) && STRING_MULTIBYTE (args[1]))
3099 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
3100 earlier because they produced a raw 8-bit string for byte-code
3101 and now such a byte-code string is loaded as multibyte while
3102 raw 8-bit characters converted to multibyte form. Thus, now we
3103 must convert them back to the original unibyte form. */
3104 args[1] = Fstring_as_unibyte (args[1]);
3105
7146af97
JB
3106 p = XVECTOR (val);
3107 for (index = 0; index < nargs; index++)
3108 {
265a9e55 3109 if (!NILP (Vpurify_flag))
7146af97
JB
3110 args[index] = Fpurecopy (args[index]);
3111 p->contents[index] = args[index];
3112 }
d2029e5b 3113 XSETPVECTYPE (p, PVEC_COMPILED);
50aee051 3114 XSETCOMPILED (val, p);
7146af97
JB
3115 return val;
3116}
2e471eb5 3117
34400008 3118
7146af97 3119\f
2e471eb5
GM
3120/***********************************************************************
3121 Symbol Allocation
3122 ***********************************************************************/
7146af97 3123
2e471eb5
GM
3124/* Each symbol_block is just under 1020 bytes long, since malloc
3125 really allocates in units of powers of two and uses 4 bytes for its
3126 own overhead. */
7146af97
JB
3127
3128#define SYMBOL_BLOCK_SIZE \
3129 ((1020 - sizeof (struct symbol_block *)) / sizeof (struct Lisp_Symbol))
3130
3131struct symbol_block
2e471eb5 3132{
6b61353c 3133 /* Place `symbols' first, to preserve alignment. */
2e471eb5 3134 struct Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
6b61353c 3135 struct symbol_block *next;
2e471eb5 3136};
7146af97 3137
34400008
GM
3138/* Current symbol block and index of first unused Lisp_Symbol
3139 structure in it. */
3140
d3d47262
JB
3141static struct symbol_block *symbol_block;
3142static int symbol_block_index;
7146af97 3143
34400008
GM
3144/* List of free symbols. */
3145
d3d47262 3146static struct Lisp_Symbol *symbol_free_list;
7146af97 3147
c8099634 3148/* Total number of symbol blocks now in use. */
2e471eb5 3149
d3d47262 3150static int n_symbol_blocks;
c8099634 3151
34400008
GM
3152
3153/* Initialize symbol allocation. */
3154
d3d47262 3155static void
7146af97
JB
3156init_symbol ()
3157{
005ca5c7
DL
3158 symbol_block = NULL;
3159 symbol_block_index = SYMBOL_BLOCK_SIZE;
7146af97 3160 symbol_free_list = 0;
005ca5c7 3161 n_symbol_blocks = 0;
7146af97
JB
3162}
3163
34400008 3164
7146af97 3165DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
a6266d23 3166 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
7ee72033
MB
3167Its value and function definition are void, and its property list is nil. */)
3168 (name)
54ee42dd 3169 Lisp_Object name;
7146af97
JB
3170{
3171 register Lisp_Object val;
3172 register struct Lisp_Symbol *p;
3173
b7826503 3174 CHECK_STRING (name);
7146af97 3175
537407f0 3176 /* eassert (!handling_signal); */
cfb2f32e 3177
dafc79fa 3178 MALLOC_BLOCK_INPUT;
e2984df0 3179
7146af97
JB
3180 if (symbol_free_list)
3181 {
45d12a89 3182 XSETSYMBOL (val, symbol_free_list);
28a099a4 3183 symbol_free_list = symbol_free_list->next;
7146af97
JB
3184 }
3185 else
3186 {
3187 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
3188 {
3c06d205 3189 struct symbol_block *new;
34400008
GM
3190 new = (struct symbol_block *) lisp_malloc (sizeof *new,
3191 MEM_TYPE_SYMBOL);
7146af97
JB
3192 new->next = symbol_block;
3193 symbol_block = new;
3194 symbol_block_index = 0;
c8099634 3195 n_symbol_blocks++;
7146af97 3196 }
6b61353c
KH
3197 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index]);
3198 symbol_block_index++;
7146af97 3199 }
177c0ea7 3200
dafc79fa 3201 MALLOC_UNBLOCK_INPUT;
e2984df0 3202
7146af97 3203 p = XSYMBOL (val);
8fe5665d 3204 p->xname = name;
7146af97 3205 p->plist = Qnil;
2e471eb5
GM
3206 p->value = Qunbound;
3207 p->function = Qunbound;
9e713715 3208 p->next = NULL;
2336fe58 3209 p->gcmarkbit = 0;
9e713715
GM
3210 p->interned = SYMBOL_UNINTERNED;
3211 p->constant = 0;
3212 p->indirect_variable = 0;
2e471eb5
GM
3213 consing_since_gc += sizeof (struct Lisp_Symbol);
3214 symbols_consed++;
7146af97
JB
3215 return val;
3216}
3217
3f25e183 3218
2e471eb5
GM
3219\f
3220/***********************************************************************
34400008 3221 Marker (Misc) Allocation
2e471eb5 3222 ***********************************************************************/
3f25e183 3223
2e471eb5
GM
3224/* Allocation of markers and other objects that share that structure.
3225 Works like allocation of conses. */
c0696668 3226
2e471eb5
GM
3227#define MARKER_BLOCK_SIZE \
3228 ((1020 - sizeof (struct marker_block *)) / sizeof (union Lisp_Misc))
3229
3230struct marker_block
c0696668 3231{
6b61353c 3232 /* Place `markers' first, to preserve alignment. */
2e471eb5 3233 union Lisp_Misc markers[MARKER_BLOCK_SIZE];
6b61353c 3234 struct marker_block *next;
2e471eb5 3235};
c0696668 3236
d3d47262
JB
3237static struct marker_block *marker_block;
3238static int marker_block_index;
c0696668 3239
d3d47262 3240static union Lisp_Misc *marker_free_list;
c0696668 3241
2e471eb5 3242/* Total number of marker blocks now in use. */
3f25e183 3243
d3d47262 3244static int n_marker_blocks;
2e471eb5 3245
d3d47262 3246static void
2e471eb5 3247init_marker ()
3f25e183 3248{
005ca5c7
DL
3249 marker_block = NULL;
3250 marker_block_index = MARKER_BLOCK_SIZE;
2e471eb5 3251 marker_free_list = 0;
005ca5c7 3252 n_marker_blocks = 0;
3f25e183
RS
3253}
3254
2e471eb5
GM
3255/* Return a newly allocated Lisp_Misc object, with no substructure. */
3256
3f25e183 3257Lisp_Object
2e471eb5 3258allocate_misc ()
7146af97 3259{
2e471eb5 3260 Lisp_Object val;
7146af97 3261
e2984df0
CY
3262 /* eassert (!handling_signal); */
3263
dafc79fa 3264 MALLOC_BLOCK_INPUT;
cfb2f32e 3265
2e471eb5 3266 if (marker_free_list)
7146af97 3267 {
2e471eb5
GM
3268 XSETMISC (val, marker_free_list);
3269 marker_free_list = marker_free_list->u_free.chain;
7146af97
JB
3270 }
3271 else
7146af97 3272 {
2e471eb5
GM
3273 if (marker_block_index == MARKER_BLOCK_SIZE)
3274 {
3275 struct marker_block *new;
34400008
GM
3276 new = (struct marker_block *) lisp_malloc (sizeof *new,
3277 MEM_TYPE_MISC);
2e471eb5
GM
3278 new->next = marker_block;
3279 marker_block = new;
3280 marker_block_index = 0;
3281 n_marker_blocks++;
7b7990cc 3282 total_free_markers += MARKER_BLOCK_SIZE;
2e471eb5 3283 }
6b61353c
KH
3284 XSETMISC (val, &marker_block->markers[marker_block_index]);
3285 marker_block_index++;
7146af97 3286 }
177c0ea7 3287
dafc79fa 3288 MALLOC_UNBLOCK_INPUT;
e2984df0 3289
7b7990cc 3290 --total_free_markers;
2e471eb5
GM
3291 consing_since_gc += sizeof (union Lisp_Misc);
3292 misc_objects_consed++;
67ee9f6e 3293 XMISCANY (val)->gcmarkbit = 0;
2e471eb5
GM
3294 return val;
3295}
3296
7b7990cc
KS
3297/* Free a Lisp_Misc object */
3298
3299void
3300free_misc (misc)
3301 Lisp_Object misc;
3302{
d314756e 3303 XMISCTYPE (misc) = Lisp_Misc_Free;
7b7990cc
KS
3304 XMISC (misc)->u_free.chain = marker_free_list;
3305 marker_free_list = XMISC (misc);
3306
3307 total_free_markers++;
3308}
3309
42172a6b
RS
3310/* Return a Lisp_Misc_Save_Value object containing POINTER and
3311 INTEGER. This is used to package C values to call record_unwind_protect.
3312 The unwind function can get the C values back using XSAVE_VALUE. */
3313
3314Lisp_Object
3315make_save_value (pointer, integer)
3316 void *pointer;
3317 int integer;
3318{
3319 register Lisp_Object val;
3320 register struct Lisp_Save_Value *p;
3321
3322 val = allocate_misc ();
3323 XMISCTYPE (val) = Lisp_Misc_Save_Value;
3324 p = XSAVE_VALUE (val);
3325 p->pointer = pointer;
3326 p->integer = integer;
b766f870 3327 p->dogc = 0;
42172a6b
RS
3328 return val;
3329}
3330
2e471eb5 3331DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
a6266d23 3332 doc: /* Return a newly allocated marker which does not point at any place. */)
7ee72033 3333 ()
2e471eb5
GM
3334{
3335 register Lisp_Object val;
3336 register struct Lisp_Marker *p;
7146af97 3337
2e471eb5
GM
3338 val = allocate_misc ();
3339 XMISCTYPE (val) = Lisp_Misc_Marker;
3340 p = XMARKER (val);
3341 p->buffer = 0;
3342 p->bytepos = 0;
3343 p->charpos = 0;
ef89c2ce 3344 p->next = NULL;
2e471eb5 3345 p->insertion_type = 0;
7146af97
JB
3346 return val;
3347}
2e471eb5
GM
3348
3349/* Put MARKER back on the free list after using it temporarily. */
3350
3351void
3352free_marker (marker)
3353 Lisp_Object marker;
3354{
ef89c2ce 3355 unchain_marker (XMARKER (marker));
7b7990cc 3356 free_misc (marker);
2e471eb5
GM
3357}
3358
c0696668 3359\f
7146af97 3360/* Return a newly created vector or string with specified arguments as
736471d1
RS
3361 elements. If all the arguments are characters that can fit
3362 in a string of events, make a string; otherwise, make a vector.
3363
3364 Any number of arguments, even zero arguments, are allowed. */
7146af97
JB
3365
3366Lisp_Object
736471d1 3367make_event_array (nargs, args)
7146af97
JB
3368 register int nargs;
3369 Lisp_Object *args;
3370{
3371 int i;
3372
3373 for (i = 0; i < nargs; i++)
736471d1 3374 /* The things that fit in a string
c9ca4659
RS
3375 are characters that are in 0...127,
3376 after discarding the meta bit and all the bits above it. */
e687453f 3377 if (!INTEGERP (args[i])
c9ca4659 3378 || (XUINT (args[i]) & ~(-CHAR_META)) >= 0200)
7146af97
JB
3379 return Fvector (nargs, args);
3380
3381 /* Since the loop exited, we know that all the things in it are
3382 characters, so we can make a string. */
3383 {
c13ccad2 3384 Lisp_Object result;
177c0ea7 3385
50aee051 3386 result = Fmake_string (make_number (nargs), make_number (0));
7146af97 3387 for (i = 0; i < nargs; i++)
736471d1 3388 {
46e7e6b0 3389 SSET (result, i, XINT (args[i]));
736471d1
RS
3390 /* Move the meta bit to the right place for a string char. */
3391 if (XINT (args[i]) & CHAR_META)
46e7e6b0 3392 SSET (result, i, SREF (result, i) | 0x80);
736471d1 3393 }
177c0ea7 3394
7146af97
JB
3395 return result;
3396 }
3397}
2e471eb5
GM
3398
3399
7146af97 3400\f
24d8a105
RS
3401/************************************************************************
3402 Memory Full Handling
3403 ************************************************************************/
3404
3405
3406/* Called if malloc returns zero. */
3407
3408void
3409memory_full ()
3410{
3411 int i;
3412
3413 Vmemory_full = Qt;
3414
3415 memory_full_cons_threshold = sizeof (struct cons_block);
3416
3417 /* The first time we get here, free the spare memory. */
3418 for (i = 0; i < sizeof (spare_memory) / sizeof (char *); i++)
3419 if (spare_memory[i])
3420 {
3421 if (i == 0)
3422 free (spare_memory[i]);
3423 else if (i >= 1 && i <= 4)
3424 lisp_align_free (spare_memory[i]);
3425 else
3426 lisp_free (spare_memory[i]);
3427 spare_memory[i] = 0;
3428 }
3429
3430 /* Record the space now used. When it decreases substantially,
3431 we can refill the memory reserve. */
3432#ifndef SYSTEM_MALLOC
3433 bytes_used_when_full = BYTES_USED;
3434#endif
3435
3436 /* This used to call error, but if we've run out of memory, we could
3437 get infinite recursion trying to build the string. */
9b306d37 3438 xsignal (Qnil, Vmemory_signal_data);
24d8a105
RS
3439}
3440
3441/* If we released our reserve (due to running out of memory),
3442 and we have a fair amount free once again,
3443 try to set aside another reserve in case we run out once more.
3444
3445 This is called when a relocatable block is freed in ralloc.c,
3446 and also directly from this file, in case we're not using ralloc.c. */
3447
3448void
3449refill_memory_reserve ()
3450{
3451#ifndef SYSTEM_MALLOC
3452 if (spare_memory[0] == 0)
3453 spare_memory[0] = (char *) malloc ((size_t) SPARE_MEMORY);
3454 if (spare_memory[1] == 0)
3455 spare_memory[1] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3456 MEM_TYPE_CONS);
3457 if (spare_memory[2] == 0)
3458 spare_memory[2] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3459 MEM_TYPE_CONS);
3460 if (spare_memory[3] == 0)
3461 spare_memory[3] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3462 MEM_TYPE_CONS);
3463 if (spare_memory[4] == 0)
3464 spare_memory[4] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3465 MEM_TYPE_CONS);
3466 if (spare_memory[5] == 0)
3467 spare_memory[5] = (char *) lisp_malloc (sizeof (struct string_block),
3468 MEM_TYPE_STRING);
3469 if (spare_memory[6] == 0)
3470 spare_memory[6] = (char *) lisp_malloc (sizeof (struct string_block),
3471 MEM_TYPE_STRING);
3472 if (spare_memory[0] && spare_memory[1] && spare_memory[5])
3473 Vmemory_full = Qnil;
3474#endif
3475}
3476\f
34400008
GM
3477/************************************************************************
3478 C Stack Marking
3479 ************************************************************************/
3480
13c844fb
GM
3481#if GC_MARK_STACK || defined GC_MALLOC_CHECK
3482
71cf5fa0
GM
3483/* Conservative C stack marking requires a method to identify possibly
3484 live Lisp objects given a pointer value. We do this by keeping
3485 track of blocks of Lisp data that are allocated in a red-black tree
3486 (see also the comment of mem_node which is the type of nodes in
3487 that tree). Function lisp_malloc adds information for an allocated
3488 block to the red-black tree with calls to mem_insert, and function
3489 lisp_free removes it with mem_delete. Functions live_string_p etc
3490 call mem_find to lookup information about a given pointer in the
3491 tree, and use that to determine if the pointer points to a Lisp
3492 object or not. */
3493
34400008
GM
3494/* Initialize this part of alloc.c. */
3495
3496static void
3497mem_init ()
3498{
3499 mem_z.left = mem_z.right = MEM_NIL;
3500 mem_z.parent = NULL;
3501 mem_z.color = MEM_BLACK;
3502 mem_z.start = mem_z.end = NULL;
3503 mem_root = MEM_NIL;
3504}
3505
3506
3507/* Value is a pointer to the mem_node containing START. Value is
3508 MEM_NIL if there is no node in the tree containing START. */
3509
3510static INLINE struct mem_node *
3511mem_find (start)
3512 void *start;
3513{
3514 struct mem_node *p;
3515
ece93c02
GM
3516 if (start < min_heap_address || start > max_heap_address)
3517 return MEM_NIL;
3518
34400008
GM
3519 /* Make the search always successful to speed up the loop below. */
3520 mem_z.start = start;
3521 mem_z.end = (char *) start + 1;
3522
3523 p = mem_root;
3524 while (start < p->start || start >= p->end)
3525 p = start < p->start ? p->left : p->right;
3526 return p;
3527}
3528
3529
3530/* Insert a new node into the tree for a block of memory with start
3531 address START, end address END, and type TYPE. Value is a
3532 pointer to the node that was inserted. */
3533
3534static struct mem_node *
3535mem_insert (start, end, type)
3536 void *start, *end;
3537 enum mem_type type;
3538{
3539 struct mem_node *c, *parent, *x;
3540
add3c3ea 3541 if (min_heap_address == NULL || start < min_heap_address)
ece93c02 3542 min_heap_address = start;
add3c3ea 3543 if (max_heap_address == NULL || end > max_heap_address)
ece93c02
GM
3544 max_heap_address = end;
3545
34400008
GM
3546 /* See where in the tree a node for START belongs. In this
3547 particular application, it shouldn't happen that a node is already
3548 present. For debugging purposes, let's check that. */
3549 c = mem_root;
3550 parent = NULL;
3551
3552#if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
177c0ea7 3553
34400008
GM
3554 while (c != MEM_NIL)
3555 {
3556 if (start >= c->start && start < c->end)
3557 abort ();
3558 parent = c;
3559 c = start < c->start ? c->left : c->right;
3560 }
177c0ea7 3561
34400008 3562#else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
177c0ea7 3563
34400008
GM
3564 while (c != MEM_NIL)
3565 {
3566 parent = c;
3567 c = start < c->start ? c->left : c->right;
3568 }
177c0ea7 3569
34400008
GM
3570#endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3571
3572 /* Create a new node. */
877935b1
GM
3573#ifdef GC_MALLOC_CHECK
3574 x = (struct mem_node *) _malloc_internal (sizeof *x);
3575 if (x == NULL)
3576 abort ();
3577#else
34400008 3578 x = (struct mem_node *) xmalloc (sizeof *x);
877935b1 3579#endif
34400008
GM
3580 x->start = start;
3581 x->end = end;
3582 x->type = type;
3583 x->parent = parent;
3584 x->left = x->right = MEM_NIL;
3585 x->color = MEM_RED;
3586
3587 /* Insert it as child of PARENT or install it as root. */
3588 if (parent)
3589 {
3590 if (start < parent->start)
3591 parent->left = x;
3592 else
3593 parent->right = x;
3594 }
177c0ea7 3595 else
34400008
GM
3596 mem_root = x;
3597
3598 /* Re-establish red-black tree properties. */
3599 mem_insert_fixup (x);
877935b1 3600
34400008
GM
3601 return x;
3602}
3603
3604
3605/* Re-establish the red-black properties of the tree, and thereby
3606 balance the tree, after node X has been inserted; X is always red. */
3607
3608static void
3609mem_insert_fixup (x)
3610 struct mem_node *x;
3611{
3612 while (x != mem_root && x->parent->color == MEM_RED)
3613 {
3614 /* X is red and its parent is red. This is a violation of
3615 red-black tree property #3. */
177c0ea7 3616
34400008
GM
3617 if (x->parent == x->parent->parent->left)
3618 {
3619 /* We're on the left side of our grandparent, and Y is our
3620 "uncle". */
3621 struct mem_node *y = x->parent->parent->right;
177c0ea7 3622
34400008
GM
3623 if (y->color == MEM_RED)
3624 {
3625 /* Uncle and parent are red but should be black because
3626 X is red. Change the colors accordingly and proceed
3627 with the grandparent. */
3628 x->parent->color = MEM_BLACK;
3629 y->color = MEM_BLACK;
3630 x->parent->parent->color = MEM_RED;
3631 x = x->parent->parent;
3632 }
3633 else
3634 {
3635 /* Parent and uncle have different colors; parent is
3636 red, uncle is black. */
3637 if (x == x->parent->right)
3638 {
3639 x = x->parent;
3640 mem_rotate_left (x);
3641 }
3642
3643 x->parent->color = MEM_BLACK;
3644 x->parent->parent->color = MEM_RED;
3645 mem_rotate_right (x->parent->parent);
3646 }
3647 }
3648 else
3649 {
3650 /* This is the symmetrical case of above. */
3651 struct mem_node *y = x->parent->parent->left;
177c0ea7 3652
34400008
GM
3653 if (y->color == MEM_RED)
3654 {
3655 x->parent->color = MEM_BLACK;
3656 y->color = MEM_BLACK;
3657 x->parent->parent->color = MEM_RED;
3658 x = x->parent->parent;
3659 }
3660 else
3661 {
3662 if (x == x->parent->left)
3663 {
3664 x = x->parent;
3665 mem_rotate_right (x);
3666 }
177c0ea7 3667
34400008
GM
3668 x->parent->color = MEM_BLACK;
3669 x->parent->parent->color = MEM_RED;
3670 mem_rotate_left (x->parent->parent);
3671 }
3672 }
3673 }
3674
3675 /* The root may have been changed to red due to the algorithm. Set
3676 it to black so that property #5 is satisfied. */
3677 mem_root->color = MEM_BLACK;
3678}
3679
3680
177c0ea7
JB
3681/* (x) (y)
3682 / \ / \
34400008
GM
3683 a (y) ===> (x) c
3684 / \ / \
3685 b c a b */
3686
3687static void
3688mem_rotate_left (x)
3689 struct mem_node *x;
3690{
3691 struct mem_node *y;
3692
3693 /* Turn y's left sub-tree into x's right sub-tree. */
3694 y = x->right;
3695 x->right = y->left;
3696 if (y->left != MEM_NIL)
3697 y->left->parent = x;
3698
3699 /* Y's parent was x's parent. */
3700 if (y != MEM_NIL)
3701 y->parent = x->parent;
3702
3703 /* Get the parent to point to y instead of x. */
3704 if (x->parent)
3705 {
3706 if (x == x->parent->left)
3707 x->parent->left = y;
3708 else
3709 x->parent->right = y;
3710 }
3711 else
3712 mem_root = y;
3713
3714 /* Put x on y's left. */
3715 y->left = x;
3716 if (x != MEM_NIL)
3717 x->parent = y;
3718}
3719
3720
177c0ea7
JB
3721/* (x) (Y)
3722 / \ / \
3723 (y) c ===> a (x)
3724 / \ / \
34400008
GM
3725 a b b c */
3726
3727static void
3728mem_rotate_right (x)
3729 struct mem_node *x;
3730{
3731 struct mem_node *y = x->left;
3732
3733 x->left = y->right;
3734 if (y->right != MEM_NIL)
3735 y->right->parent = x;
177c0ea7 3736
34400008
GM
3737 if (y != MEM_NIL)
3738 y->parent = x->parent;
3739 if (x->parent)
3740 {
3741 if (x == x->parent->right)
3742 x->parent->right = y;
3743 else
3744 x->parent->left = y;
3745 }
3746 else
3747 mem_root = y;
177c0ea7 3748
34400008
GM
3749 y->right = x;
3750 if (x != MEM_NIL)
3751 x->parent = y;
3752}
3753
3754
3755/* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
3756
3757static void
3758mem_delete (z)
3759 struct mem_node *z;
3760{
3761 struct mem_node *x, *y;
3762
3763 if (!z || z == MEM_NIL)
3764 return;
3765
3766 if (z->left == MEM_NIL || z->right == MEM_NIL)
3767 y = z;
3768 else
3769 {
3770 y = z->right;
3771 while (y->left != MEM_NIL)
3772 y = y->left;
3773 }
3774
3775 if (y->left != MEM_NIL)
3776 x = y->left;
3777 else
3778 x = y->right;
3779
3780 x->parent = y->parent;
3781 if (y->parent)
3782 {
3783 if (y == y->parent->left)
3784 y->parent->left = x;
3785 else
3786 y->parent->right = x;
3787 }
3788 else
3789 mem_root = x;
3790
3791 if (y != z)
3792 {
3793 z->start = y->start;
3794 z->end = y->end;
3795 z->type = y->type;
3796 }
177c0ea7 3797
34400008
GM
3798 if (y->color == MEM_BLACK)
3799 mem_delete_fixup (x);
877935b1
GM
3800
3801#ifdef GC_MALLOC_CHECK
3802 _free_internal (y);
3803#else
34400008 3804 xfree (y);
877935b1 3805#endif
34400008
GM
3806}
3807
3808
3809/* Re-establish the red-black properties of the tree, after a
3810 deletion. */
3811
3812static void
3813mem_delete_fixup (x)
3814 struct mem_node *x;
3815{
3816 while (x != mem_root && x->color == MEM_BLACK)
3817 {
3818 if (x == x->parent->left)
3819 {
3820 struct mem_node *w = x->parent->right;
177c0ea7 3821
34400008
GM
3822 if (w->color == MEM_RED)
3823 {
3824 w->color = MEM_BLACK;
3825 x->parent->color = MEM_RED;
3826 mem_rotate_left (x->parent);
3827 w = x->parent->right;
3828 }
177c0ea7 3829
34400008
GM
3830 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
3831 {
3832 w->color = MEM_RED;
3833 x = x->parent;
3834 }
3835 else
3836 {
3837 if (w->right->color == MEM_BLACK)
3838 {
3839 w->left->color = MEM_BLACK;
3840 w->color = MEM_RED;
3841 mem_rotate_right (w);
3842 w = x->parent->right;
3843 }
3844 w->color = x->parent->color;
3845 x->parent->color = MEM_BLACK;
3846 w->right->color = MEM_BLACK;
3847 mem_rotate_left (x->parent);
3848 x = mem_root;
3849 }
3850 }
3851 else
3852 {
3853 struct mem_node *w = x->parent->left;
177c0ea7 3854
34400008
GM
3855 if (w->color == MEM_RED)
3856 {
3857 w->color = MEM_BLACK;
3858 x->parent->color = MEM_RED;
3859 mem_rotate_right (x->parent);
3860 w = x->parent->left;
3861 }
177c0ea7 3862
34400008
GM
3863 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
3864 {
3865 w->color = MEM_RED;
3866 x = x->parent;
3867 }
3868 else
3869 {
3870 if (w->left->color == MEM_BLACK)
3871 {
3872 w->right->color = MEM_BLACK;
3873 w->color = MEM_RED;
3874 mem_rotate_left (w);
3875 w = x->parent->left;
3876 }
177c0ea7 3877
34400008
GM
3878 w->color = x->parent->color;
3879 x->parent->color = MEM_BLACK;
3880 w->left->color = MEM_BLACK;
3881 mem_rotate_right (x->parent);
3882 x = mem_root;
3883 }
3884 }
3885 }
177c0ea7 3886
34400008
GM
3887 x->color = MEM_BLACK;
3888}
3889
3890
3891/* Value is non-zero if P is a pointer to a live Lisp string on
3892 the heap. M is a pointer to the mem_block for P. */
3893
3894static INLINE int
3895live_string_p (m, p)
3896 struct mem_node *m;
3897 void *p;
3898{
3899 if (m->type == MEM_TYPE_STRING)
3900 {
3901 struct string_block *b = (struct string_block *) m->start;
3902 int offset = (char *) p - (char *) &b->strings[0];
3903
3904 /* P must point to the start of a Lisp_String structure, and it
3905 must not be on the free-list. */
176bc847
GM
3906 return (offset >= 0
3907 && offset % sizeof b->strings[0] == 0
6b61353c 3908 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
34400008
GM
3909 && ((struct Lisp_String *) p)->data != NULL);
3910 }
3911 else
3912 return 0;
3913}
3914
3915
3916/* Value is non-zero if P is a pointer to a live Lisp cons on
3917 the heap. M is a pointer to the mem_block for P. */
3918
3919static INLINE int
3920live_cons_p (m, p)
3921 struct mem_node *m;
3922 void *p;
3923{
3924 if (m->type == MEM_TYPE_CONS)
3925 {
3926 struct cons_block *b = (struct cons_block *) m->start;
3927 int offset = (char *) p - (char *) &b->conses[0];
3928
3929 /* P must point to the start of a Lisp_Cons, not be
3930 one of the unused cells in the current cons block,
3931 and not be on the free-list. */
176bc847
GM
3932 return (offset >= 0
3933 && offset % sizeof b->conses[0] == 0
6b61353c 3934 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
34400008
GM
3935 && (b != cons_block
3936 || offset / sizeof b->conses[0] < cons_block_index)
3937 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
3938 }
3939 else
3940 return 0;
3941}
3942
3943
3944/* Value is non-zero if P is a pointer to a live Lisp symbol on
3945 the heap. M is a pointer to the mem_block for P. */
3946
3947static INLINE int
3948live_symbol_p (m, p)
3949 struct mem_node *m;
3950 void *p;
3951{
3952 if (m->type == MEM_TYPE_SYMBOL)
3953 {
3954 struct symbol_block *b = (struct symbol_block *) m->start;
3955 int offset = (char *) p - (char *) &b->symbols[0];
177c0ea7 3956
34400008
GM
3957 /* P must point to the start of a Lisp_Symbol, not be
3958 one of the unused cells in the current symbol block,
3959 and not be on the free-list. */
176bc847
GM
3960 return (offset >= 0
3961 && offset % sizeof b->symbols[0] == 0
6b61353c 3962 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
34400008
GM
3963 && (b != symbol_block
3964 || offset / sizeof b->symbols[0] < symbol_block_index)
3965 && !EQ (((struct Lisp_Symbol *) p)->function, Vdead));
3966 }
3967 else
3968 return 0;
3969}
3970
3971
3972/* Value is non-zero if P is a pointer to a live Lisp float on
3973 the heap. M is a pointer to the mem_block for P. */
3974
3975static INLINE int
3976live_float_p (m, p)
3977 struct mem_node *m;
3978 void *p;
3979{
3980 if (m->type == MEM_TYPE_FLOAT)
3981 {
3982 struct float_block *b = (struct float_block *) m->start;
3983 int offset = (char *) p - (char *) &b->floats[0];
177c0ea7 3984
ab6780cd
SM
3985 /* P must point to the start of a Lisp_Float and not be
3986 one of the unused cells in the current float block. */
176bc847
GM
3987 return (offset >= 0
3988 && offset % sizeof b->floats[0] == 0
6b61353c 3989 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
34400008 3990 && (b != float_block
ab6780cd 3991 || offset / sizeof b->floats[0] < float_block_index));
34400008
GM
3992 }
3993 else
3994 return 0;
3995}
3996
3997
3998/* Value is non-zero if P is a pointer to a live Lisp Misc on
3999 the heap. M is a pointer to the mem_block for P. */
4000
4001static INLINE int
4002live_misc_p (m, p)
4003 struct mem_node *m;
4004 void *p;
4005{
4006 if (m->type == MEM_TYPE_MISC)
4007 {
4008 struct marker_block *b = (struct marker_block *) m->start;
4009 int offset = (char *) p - (char *) &b->markers[0];
177c0ea7 4010
34400008
GM
4011 /* P must point to the start of a Lisp_Misc, not be
4012 one of the unused cells in the current misc block,
4013 and not be on the free-list. */
176bc847
GM
4014 return (offset >= 0
4015 && offset % sizeof b->markers[0] == 0
6b61353c 4016 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
34400008
GM
4017 && (b != marker_block
4018 || offset / sizeof b->markers[0] < marker_block_index)
d314756e 4019 && ((union Lisp_Misc *) p)->u_any.type != Lisp_Misc_Free);
34400008
GM
4020 }
4021 else
4022 return 0;
4023}
4024
4025
4026/* Value is non-zero if P is a pointer to a live vector-like object.
4027 M is a pointer to the mem_block for P. */
4028
4029static INLINE int
4030live_vector_p (m, p)
4031 struct mem_node *m;
4032 void *p;
4033{
9c545a55 4034 return (p == m->start && m->type == MEM_TYPE_VECTORLIKE);
34400008
GM
4035}
4036
4037
2336fe58 4038/* Value is non-zero if P is a pointer to a live buffer. M is a
34400008
GM
4039 pointer to the mem_block for P. */
4040
4041static INLINE int
4042live_buffer_p (m, p)
4043 struct mem_node *m;
4044 void *p;
4045{
4046 /* P must point to the start of the block, and the buffer
4047 must not have been killed. */
4048 return (m->type == MEM_TYPE_BUFFER
4049 && p == m->start
4050 && !NILP (((struct buffer *) p)->name));
4051}
4052
13c844fb
GM
4053#endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
4054
4055#if GC_MARK_STACK
4056
34400008
GM
4057#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4058
4059/* Array of objects that are kept alive because the C stack contains
4060 a pattern that looks like a reference to them . */
4061
4062#define MAX_ZOMBIES 10
4063static Lisp_Object zombies[MAX_ZOMBIES];
4064
4065/* Number of zombie objects. */
4066
4067static int nzombies;
4068
4069/* Number of garbage collections. */
4070
4071static int ngcs;
4072
4073/* Average percentage of zombies per collection. */
4074
4075static double avg_zombies;
4076
4077/* Max. number of live and zombie objects. */
4078
4079static int max_live, max_zombies;
4080
4081/* Average number of live objects per GC. */
4082
4083static double avg_live;
4084
4085DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
7ee72033
MB
4086 doc: /* Show information about live and zombie objects. */)
4087 ()
34400008 4088{
83fc9c63
DL
4089 Lisp_Object args[8], zombie_list = Qnil;
4090 int i;
4091 for (i = 0; i < nzombies; i++)
4092 zombie_list = Fcons (zombies[i], zombie_list);
4093 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
34400008
GM
4094 args[1] = make_number (ngcs);
4095 args[2] = make_float (avg_live);
4096 args[3] = make_float (avg_zombies);
4097 args[4] = make_float (avg_zombies / avg_live / 100);
4098 args[5] = make_number (max_live);
4099 args[6] = make_number (max_zombies);
83fc9c63
DL
4100 args[7] = zombie_list;
4101 return Fmessage (8, args);
34400008
GM
4102}
4103
4104#endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4105
4106
182ff242
GM
4107/* Mark OBJ if we can prove it's a Lisp_Object. */
4108
4109static INLINE void
4110mark_maybe_object (obj)
4111 Lisp_Object obj;
4112{
4113 void *po = (void *) XPNTR (obj);
4114 struct mem_node *m = mem_find (po);
177c0ea7 4115
182ff242
GM
4116 if (m != MEM_NIL)
4117 {
4118 int mark_p = 0;
4119
8e50cc2d 4120 switch (XTYPE (obj))
182ff242
GM
4121 {
4122 case Lisp_String:
4123 mark_p = (live_string_p (m, po)
4124 && !STRING_MARKED_P ((struct Lisp_String *) po));
4125 break;
4126
4127 case Lisp_Cons:
08b7c2cb 4128 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
182ff242
GM
4129 break;
4130
4131 case Lisp_Symbol:
2336fe58 4132 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
182ff242
GM
4133 break;
4134
4135 case Lisp_Float:
ab6780cd 4136 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
182ff242
GM
4137 break;
4138
4139 case Lisp_Vectorlike:
8e50cc2d 4140 /* Note: can't check BUFFERP before we know it's a
182ff242
GM
4141 buffer because checking that dereferences the pointer
4142 PO which might point anywhere. */
4143 if (live_vector_p (m, po))
8e50cc2d 4144 mark_p = !SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
182ff242 4145 else if (live_buffer_p (m, po))
8e50cc2d 4146 mark_p = BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
182ff242
GM
4147 break;
4148
4149 case Lisp_Misc:
67ee9f6e 4150 mark_p = (live_misc_p (m, po) && !XMISCANY (obj)->gcmarkbit);
182ff242 4151 break;
6bbd7a29
GM
4152
4153 case Lisp_Int:
31d929e5 4154 case Lisp_Type_Limit:
6bbd7a29 4155 break;
182ff242
GM
4156 }
4157
4158 if (mark_p)
4159 {
4160#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4161 if (nzombies < MAX_ZOMBIES)
83fc9c63 4162 zombies[nzombies] = obj;
182ff242
GM
4163 ++nzombies;
4164#endif
49723c04 4165 mark_object (obj);
182ff242
GM
4166 }
4167 }
4168}
ece93c02
GM
4169
4170
4171/* If P points to Lisp data, mark that as live if it isn't already
4172 marked. */
4173
4174static INLINE void
4175mark_maybe_pointer (p)
4176 void *p;
4177{
4178 struct mem_node *m;
4179
5045e68e
SM
4180 /* Quickly rule out some values which can't point to Lisp data. */
4181 if ((EMACS_INT) p %
4182#ifdef USE_LSB_TAG
4183 8 /* USE_LSB_TAG needs Lisp data to be aligned on multiples of 8. */
4184#else
4185 2 /* We assume that Lisp data is aligned on even addresses. */
4186#endif
4187 )
ece93c02 4188 return;
177c0ea7 4189
ece93c02
GM
4190 m = mem_find (p);
4191 if (m != MEM_NIL)
4192 {
4193 Lisp_Object obj = Qnil;
177c0ea7 4194
ece93c02
GM
4195 switch (m->type)
4196 {
4197 case MEM_TYPE_NON_LISP:
2fe50224 4198 /* Nothing to do; not a pointer to Lisp memory. */
ece93c02 4199 break;
177c0ea7 4200
ece93c02 4201 case MEM_TYPE_BUFFER:
3ef06d12 4202 if (live_buffer_p (m, p) && !VECTOR_MARKED_P((struct buffer *)p))
ece93c02
GM
4203 XSETVECTOR (obj, p);
4204 break;
177c0ea7 4205
ece93c02 4206 case MEM_TYPE_CONS:
08b7c2cb 4207 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
ece93c02
GM
4208 XSETCONS (obj, p);
4209 break;
177c0ea7 4210
ece93c02
GM
4211 case MEM_TYPE_STRING:
4212 if (live_string_p (m, p)
4213 && !STRING_MARKED_P ((struct Lisp_String *) p))
4214 XSETSTRING (obj, p);
4215 break;
4216
4217 case MEM_TYPE_MISC:
2336fe58
SM
4218 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
4219 XSETMISC (obj, p);
ece93c02 4220 break;
177c0ea7 4221
ece93c02 4222 case MEM_TYPE_SYMBOL:
2336fe58 4223 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
ece93c02
GM
4224 XSETSYMBOL (obj, p);
4225 break;
177c0ea7 4226
ece93c02 4227 case MEM_TYPE_FLOAT:
ab6780cd 4228 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
ece93c02
GM
4229 XSETFLOAT (obj, p);
4230 break;
177c0ea7 4231
9c545a55 4232 case MEM_TYPE_VECTORLIKE:
ece93c02
GM
4233 if (live_vector_p (m, p))
4234 {
4235 Lisp_Object tem;
4236 XSETVECTOR (tem, p);
8e50cc2d 4237 if (!SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
ece93c02
GM
4238 obj = tem;
4239 }
4240 break;
4241
4242 default:
4243 abort ();
4244 }
4245
8e50cc2d 4246 if (!NILP (obj))
49723c04 4247 mark_object (obj);
ece93c02
GM
4248 }
4249}
4250
4251
55a314a5
YM
4252/* Mark Lisp objects referenced from the address range START+OFFSET..END
4253 or END+OFFSET..START. */
34400008 4254
177c0ea7 4255static void
55a314a5 4256mark_memory (start, end, offset)
34400008 4257 void *start, *end;
55a314a5 4258 int offset;
34400008
GM
4259{
4260 Lisp_Object *p;
ece93c02 4261 void **pp;
34400008
GM
4262
4263#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4264 nzombies = 0;
4265#endif
4266
4267 /* Make START the pointer to the start of the memory region,
4268 if it isn't already. */
4269 if (end < start)
4270 {
4271 void *tem = start;
4272 start = end;
4273 end = tem;
4274 }
ece93c02
GM
4275
4276 /* Mark Lisp_Objects. */
55a314a5 4277 for (p = (Lisp_Object *) ((char *) start + offset); (void *) p < end; ++p)
182ff242 4278 mark_maybe_object (*p);
ece93c02
GM
4279
4280 /* Mark Lisp data pointed to. This is necessary because, in some
4281 situations, the C compiler optimizes Lisp objects away, so that
4282 only a pointer to them remains. Example:
4283
4284 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
7ee72033 4285 ()
ece93c02
GM
4286 {
4287 Lisp_Object obj = build_string ("test");
4288 struct Lisp_String *s = XSTRING (obj);
4289 Fgarbage_collect ();
4290 fprintf (stderr, "test `%s'\n", s->data);
4291 return Qnil;
4292 }
4293
4294 Here, `obj' isn't really used, and the compiler optimizes it
4295 away. The only reference to the life string is through the
4296 pointer `s'. */
177c0ea7 4297
55a314a5 4298 for (pp = (void **) ((char *) start + offset); (void *) pp < end; ++pp)
ece93c02 4299 mark_maybe_pointer (*pp);
182ff242
GM
4300}
4301
30f637f8
DL
4302/* setjmp will work with GCC unless NON_SAVING_SETJMP is defined in
4303 the GCC system configuration. In gcc 3.2, the only systems for
4304 which this is so are i386-sco5 non-ELF, i386-sysv3 (maybe included
4305 by others?) and ns32k-pc532-min. */
182ff242
GM
4306
4307#if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4308
4309static int setjmp_tested_p, longjmps_done;
4310
4311#define SETJMP_WILL_LIKELY_WORK "\
4312\n\
4313Emacs garbage collector has been changed to use conservative stack\n\
4314marking. Emacs has determined that the method it uses to do the\n\
4315marking will likely work on your system, but this isn't sure.\n\
4316\n\
4317If you are a system-programmer, or can get the help of a local wizard\n\
4318who is, please take a look at the function mark_stack in alloc.c, and\n\
4319verify that the methods used are appropriate for your system.\n\
4320\n\
d191623b 4321Please mail the result to <emacs-devel@gnu.org>.\n\
182ff242
GM
4322"
4323
4324#define SETJMP_WILL_NOT_WORK "\
4325\n\
4326Emacs garbage collector has been changed to use conservative stack\n\
4327marking. Emacs has determined that the default method it uses to do the\n\
4328marking will not work on your system. We will need a system-dependent\n\
4329solution for your system.\n\
4330\n\
4331Please take a look at the function mark_stack in alloc.c, and\n\
4332try to find a way to make it work on your system.\n\
30f637f8
DL
4333\n\
4334Note that you may get false negatives, depending on the compiler.\n\
4335In particular, you need to use -O with GCC for this test.\n\
4336\n\
d191623b 4337Please mail the result to <emacs-devel@gnu.org>.\n\
182ff242
GM
4338"
4339
4340
4341/* Perform a quick check if it looks like setjmp saves registers in a
4342 jmp_buf. Print a message to stderr saying so. When this test
4343 succeeds, this is _not_ a proof that setjmp is sufficient for
4344 conservative stack marking. Only the sources or a disassembly
4345 can prove that. */
4346
4347static void
4348test_setjmp ()
4349{
4350 char buf[10];
4351 register int x;
4352 jmp_buf jbuf;
4353 int result = 0;
4354
4355 /* Arrange for X to be put in a register. */
4356 sprintf (buf, "1");
4357 x = strlen (buf);
4358 x = 2 * x - 1;
4359
4360 setjmp (jbuf);
4361 if (longjmps_done == 1)
34400008 4362 {
182ff242 4363 /* Came here after the longjmp at the end of the function.
34400008 4364
182ff242
GM
4365 If x == 1, the longjmp has restored the register to its
4366 value before the setjmp, and we can hope that setjmp
4367 saves all such registers in the jmp_buf, although that
4368 isn't sure.
34400008 4369
182ff242
GM
4370 For other values of X, either something really strange is
4371 taking place, or the setjmp just didn't save the register. */
4372
4373 if (x == 1)
4374 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
4375 else
4376 {
4377 fprintf (stderr, SETJMP_WILL_NOT_WORK);
4378 exit (1);
34400008
GM
4379 }
4380 }
182ff242
GM
4381
4382 ++longjmps_done;
4383 x = 2;
4384 if (longjmps_done == 1)
4385 longjmp (jbuf, 1);
34400008
GM
4386}
4387
182ff242
GM
4388#endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
4389
34400008
GM
4390
4391#if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4392
4393/* Abort if anything GCPRO'd doesn't survive the GC. */
4394
4395static void
4396check_gcpros ()
4397{
4398 struct gcpro *p;
4399 int i;
4400
4401 for (p = gcprolist; p; p = p->next)
4402 for (i = 0; i < p->nvars; ++i)
4403 if (!survives_gc_p (p->var[i]))
92cc28b2
SM
4404 /* FIXME: It's not necessarily a bug. It might just be that the
4405 GCPRO is unnecessary or should release the object sooner. */
34400008
GM
4406 abort ();
4407}
4408
4409#elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4410
4411static void
4412dump_zombies ()
4413{
4414 int i;
4415
4416 fprintf (stderr, "\nZombies kept alive = %d:\n", nzombies);
4417 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
4418 {
4419 fprintf (stderr, " %d = ", i);
4420 debug_print (zombies[i]);
4421 }
4422}
4423
4424#endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4425
4426
182ff242
GM
4427/* Mark live Lisp objects on the C stack.
4428
4429 There are several system-dependent problems to consider when
4430 porting this to new architectures:
4431
4432 Processor Registers
4433
4434 We have to mark Lisp objects in CPU registers that can hold local
4435 variables or are used to pass parameters.
4436
4437 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4438 something that either saves relevant registers on the stack, or
4439 calls mark_maybe_object passing it each register's contents.
4440
4441 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4442 implementation assumes that calling setjmp saves registers we need
4443 to see in a jmp_buf which itself lies on the stack. This doesn't
4444 have to be true! It must be verified for each system, possibly
4445 by taking a look at the source code of setjmp.
4446
4447 Stack Layout
4448
4449 Architectures differ in the way their processor stack is organized.
4450 For example, the stack might look like this
4451
4452 +----------------+
4453 | Lisp_Object | size = 4
4454 +----------------+
4455 | something else | size = 2
4456 +----------------+
4457 | Lisp_Object | size = 4
4458 +----------------+
4459 | ... |
4460
4461 In such a case, not every Lisp_Object will be aligned equally. To
4462 find all Lisp_Object on the stack it won't be sufficient to walk
4463 the stack in steps of 4 bytes. Instead, two passes will be
4464 necessary, one starting at the start of the stack, and a second
4465 pass starting at the start of the stack + 2. Likewise, if the
4466 minimal alignment of Lisp_Objects on the stack is 1, four passes
4467 would be necessary, each one starting with one byte more offset
4468 from the stack start.
4469
4470 The current code assumes by default that Lisp_Objects are aligned
4471 equally on the stack. */
34400008
GM
4472
4473static void
4474mark_stack ()
4475{
630909a5 4476 int i;
55a314a5
YM
4477 /* jmp_buf may not be aligned enough on darwin-ppc64 */
4478 union aligned_jmpbuf {
4479 Lisp_Object o;
4480 jmp_buf j;
4481 } j;
6bbd7a29 4482 volatile int stack_grows_down_p = (char *) &j > (char *) stack_base;
34400008
GM
4483 void *end;
4484
4485 /* This trick flushes the register windows so that all the state of
4486 the process is contained in the stack. */
ab6780cd 4487 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
422eec7e
DL
4488 needed on ia64 too. See mach_dep.c, where it also says inline
4489 assembler doesn't work with relevant proprietary compilers. */
34400008
GM
4490#ifdef sparc
4491 asm ("ta 3");
4492#endif
177c0ea7 4493
34400008
GM
4494 /* Save registers that we need to see on the stack. We need to see
4495 registers used to hold register variables and registers used to
4496 pass parameters. */
4497#ifdef GC_SAVE_REGISTERS_ON_STACK
4498 GC_SAVE_REGISTERS_ON_STACK (end);
182ff242 4499#else /* not GC_SAVE_REGISTERS_ON_STACK */
177c0ea7 4500
182ff242
GM
4501#ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
4502 setjmp will definitely work, test it
4503 and print a message with the result
4504 of the test. */
4505 if (!setjmp_tested_p)
4506 {
4507 setjmp_tested_p = 1;
4508 test_setjmp ();
4509 }
4510#endif /* GC_SETJMP_WORKS */
177c0ea7 4511
55a314a5 4512 setjmp (j.j);
34400008 4513 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
182ff242 4514#endif /* not GC_SAVE_REGISTERS_ON_STACK */
34400008
GM
4515
4516 /* This assumes that the stack is a contiguous region in memory. If
182ff242
GM
4517 that's not the case, something has to be done here to iterate
4518 over the stack segments. */
630909a5 4519#ifndef GC_LISP_OBJECT_ALIGNMENT
422eec7e
DL
4520#ifdef __GNUC__
4521#define GC_LISP_OBJECT_ALIGNMENT __alignof__ (Lisp_Object)
4522#else
630909a5 4523#define GC_LISP_OBJECT_ALIGNMENT sizeof (Lisp_Object)
422eec7e 4524#endif
182ff242 4525#endif
24452cd5 4526 for (i = 0; i < sizeof (Lisp_Object); i += GC_LISP_OBJECT_ALIGNMENT)
55a314a5 4527 mark_memory (stack_base, end, i);
4dec23ff
AS
4528 /* Allow for marking a secondary stack, like the register stack on the
4529 ia64. */
4530#ifdef GC_MARK_SECONDARY_STACK
4531 GC_MARK_SECONDARY_STACK ();
4532#endif
34400008
GM
4533
4534#if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4535 check_gcpros ();
4536#endif
4537}
4538
34400008
GM
4539#endif /* GC_MARK_STACK != 0 */
4540
4541
7ffb6955 4542/* Determine whether it is safe to access memory at address P. */
d3d47262 4543static int
69b9efaa 4544valid_pointer_p (p)
7ffb6955
KS
4545 void *p;
4546{
f892cf9c
EZ
4547#ifdef WINDOWSNT
4548 return w32_valid_pointer_p (p, 16);
4549#else
7ffb6955
KS
4550 int fd;
4551
4552 /* Obviously, we cannot just access it (we would SEGV trying), so we
4553 trick the o/s to tell us whether p is a valid pointer.
4554 Unfortunately, we cannot use NULL_DEVICE here, as emacs_write may
4555 not validate p in that case. */
4556
4557 if ((fd = emacs_open ("__Valid__Lisp__Object__", O_CREAT | O_WRONLY | O_TRUNC, 0666)) >= 0)
4558 {
4559 int valid = (emacs_write (fd, (char *)p, 16) == 16);
4560 emacs_close (fd);
4561 unlink ("__Valid__Lisp__Object__");
4562 return valid;
4563 }
4564
4565 return -1;
f892cf9c 4566#endif
7ffb6955 4567}
3cd55735
KS
4568
4569/* Return 1 if OBJ is a valid lisp object.
4570 Return 0 if OBJ is NOT a valid lisp object.
4571 Return -1 if we cannot validate OBJ.
7c0ab7d9
RS
4572 This function can be quite slow,
4573 so it should only be used in code for manual debugging. */
3cd55735
KS
4574
4575int
4576valid_lisp_object_p (obj)
4577 Lisp_Object obj;
4578{
de7124a7 4579 void *p;
7ffb6955 4580#if GC_MARK_STACK
3cd55735 4581 struct mem_node *m;
de7124a7 4582#endif
3cd55735
KS
4583
4584 if (INTEGERP (obj))
4585 return 1;
4586
4587 p = (void *) XPNTR (obj);
3cd55735
KS
4588 if (PURE_POINTER_P (p))
4589 return 1;
4590
de7124a7 4591#if !GC_MARK_STACK
7ffb6955 4592 return valid_pointer_p (p);
de7124a7
KS
4593#else
4594
3cd55735
KS
4595 m = mem_find (p);
4596
4597 if (m == MEM_NIL)
7ffb6955
KS
4598 {
4599 int valid = valid_pointer_p (p);
4600 if (valid <= 0)
4601 return valid;
4602
4603 if (SUBRP (obj))
4604 return 1;
4605
4606 return 0;
4607 }
3cd55735
KS
4608
4609 switch (m->type)
4610 {
4611 case MEM_TYPE_NON_LISP:
4612 return 0;
4613
4614 case MEM_TYPE_BUFFER:
4615 return live_buffer_p (m, p);
4616
4617 case MEM_TYPE_CONS:
4618 return live_cons_p (m, p);
4619
4620 case MEM_TYPE_STRING:
4621 return live_string_p (m, p);
4622
4623 case MEM_TYPE_MISC:
4624 return live_misc_p (m, p);
4625
4626 case MEM_TYPE_SYMBOL:
4627 return live_symbol_p (m, p);
4628
4629 case MEM_TYPE_FLOAT:
4630 return live_float_p (m, p);
4631
9c545a55 4632 case MEM_TYPE_VECTORLIKE:
3cd55735
KS
4633 return live_vector_p (m, p);
4634
4635 default:
4636 break;
4637 }
4638
4639 return 0;
4640#endif
4641}
4642
4643
4644
34400008 4645\f
2e471eb5
GM
4646/***********************************************************************
4647 Pure Storage Management
4648 ***********************************************************************/
4649
1f0b3fd2
GM
4650/* Allocate room for SIZE bytes from pure Lisp storage and return a
4651 pointer to it. TYPE is the Lisp type for which the memory is
e5bc14d4 4652 allocated. TYPE < 0 means it's not used for a Lisp object. */
1f0b3fd2
GM
4653
4654static POINTER_TYPE *
4655pure_alloc (size, type)
4656 size_t size;
4657 int type;
4658{
1f0b3fd2 4659 POINTER_TYPE *result;
6b61353c
KH
4660#ifdef USE_LSB_TAG
4661 size_t alignment = (1 << GCTYPEBITS);
4662#else
44117420 4663 size_t alignment = sizeof (EMACS_INT);
1f0b3fd2
GM
4664
4665 /* Give Lisp_Floats an extra alignment. */
4666 if (type == Lisp_Float)
4667 {
1f0b3fd2
GM
4668#if defined __GNUC__ && __GNUC__ >= 2
4669 alignment = __alignof (struct Lisp_Float);
4670#else
4671 alignment = sizeof (struct Lisp_Float);
4672#endif
9e713715 4673 }
6b61353c 4674#endif
1f0b3fd2 4675
44117420 4676 again:
e5bc14d4
YM
4677 if (type >= 0)
4678 {
4679 /* Allocate space for a Lisp object from the beginning of the free
4680 space with taking account of alignment. */
4681 result = ALIGN (purebeg + pure_bytes_used_lisp, alignment);
4682 pure_bytes_used_lisp = ((char *)result - (char *)purebeg) + size;
4683 }
4684 else
4685 {
4686 /* Allocate space for a non-Lisp object from the end of the free
4687 space. */
4688 pure_bytes_used_non_lisp += size;
4689 result = purebeg + pure_size - pure_bytes_used_non_lisp;
4690 }
4691 pure_bytes_used = pure_bytes_used_lisp + pure_bytes_used_non_lisp;
44117420
KS
4692
4693 if (pure_bytes_used <= pure_size)
4694 return result;
4695
4696 /* Don't allocate a large amount here,
4697 because it might get mmap'd and then its address
4698 might not be usable. */
4699 purebeg = (char *) xmalloc (10000);
4700 pure_size = 10000;
4701 pure_bytes_used_before_overflow += pure_bytes_used - size;
4702 pure_bytes_used = 0;
e5bc14d4 4703 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
44117420 4704 goto again;
1f0b3fd2
GM
4705}
4706
4707
852f8cdc 4708/* Print a warning if PURESIZE is too small. */
9e713715
GM
4709
4710void
4711check_pure_size ()
4712{
4713 if (pure_bytes_used_before_overflow)
2aee5ca3 4714 message ("emacs:0:Pure Lisp storage overflow (approx. %d bytes needed)",
a4d35afd 4715 (int) (pure_bytes_used + pure_bytes_used_before_overflow));
9e713715
GM
4716}
4717
4718
79fd0489
YM
4719/* Find the byte sequence {DATA[0], ..., DATA[NBYTES-1], '\0'} from
4720 the non-Lisp data pool of the pure storage, and return its start
4721 address. Return NULL if not found. */
4722
4723static char *
4724find_string_data_in_pure (data, nbytes)
4725 char *data;
4726 int nbytes;
4727{
4728 int i, skip, bm_skip[256], last_char_skip, infinity, start, start_max;
4729 unsigned char *p;
4730 char *non_lisp_beg;
4731
4732 if (pure_bytes_used_non_lisp < nbytes + 1)
4733 return NULL;
4734
4735 /* Set up the Boyer-Moore table. */
4736 skip = nbytes + 1;
4737 for (i = 0; i < 256; i++)
4738 bm_skip[i] = skip;
4739
4740 p = (unsigned char *) data;
4741 while (--skip > 0)
4742 bm_skip[*p++] = skip;
4743
4744 last_char_skip = bm_skip['\0'];
4745
4746 non_lisp_beg = purebeg + pure_size - pure_bytes_used_non_lisp;
4747 start_max = pure_bytes_used_non_lisp - (nbytes + 1);
4748
4749 /* See the comments in the function `boyer_moore' (search.c) for the
4750 use of `infinity'. */
4751 infinity = pure_bytes_used_non_lisp + 1;
4752 bm_skip['\0'] = infinity;
4753
4754 p = (unsigned char *) non_lisp_beg + nbytes;
4755 start = 0;
4756 do
4757 {
4758 /* Check the last character (== '\0'). */
4759 do
4760 {
4761 start += bm_skip[*(p + start)];
4762 }
4763 while (start <= start_max);
4764
4765 if (start < infinity)
4766 /* Couldn't find the last character. */
4767 return NULL;
4768
4769 /* No less than `infinity' means we could find the last
4770 character at `p[start - infinity]'. */
4771 start -= infinity;
4772
4773 /* Check the remaining characters. */
4774 if (memcmp (data, non_lisp_beg + start, nbytes) == 0)
4775 /* Found. */
4776 return non_lisp_beg + start;
4777
4778 start += last_char_skip;
4779 }
4780 while (start <= start_max);
4781
4782 return NULL;
4783}
4784
4785
2e471eb5
GM
4786/* Return a string allocated in pure space. DATA is a buffer holding
4787 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
4788 non-zero means make the result string multibyte.
1a4f1e2c 4789
2e471eb5
GM
4790 Must get an error if pure storage is full, since if it cannot hold
4791 a large string it may be able to hold conses that point to that
4792 string; then the string is not protected from gc. */
7146af97
JB
4793
4794Lisp_Object
2e471eb5 4795make_pure_string (data, nchars, nbytes, multibyte)
7146af97 4796 char *data;
2e471eb5 4797 int nchars, nbytes;
c0696668 4798 int multibyte;
7146af97 4799{
2e471eb5
GM
4800 Lisp_Object string;
4801 struct Lisp_String *s;
c0696668 4802
1f0b3fd2 4803 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
79fd0489
YM
4804 s->data = find_string_data_in_pure (data, nbytes);
4805 if (s->data == NULL)
4806 {
4807 s->data = (unsigned char *) pure_alloc (nbytes + 1, -1);
4808 bcopy (data, s->data, nbytes);
4809 s->data[nbytes] = '\0';
4810 }
2e471eb5
GM
4811 s->size = nchars;
4812 s->size_byte = multibyte ? nbytes : -1;
2e471eb5 4813 s->intervals = NULL_INTERVAL;
2e471eb5
GM
4814 XSETSTRING (string, s);
4815 return string;
7146af97
JB
4816}
4817
2e471eb5 4818
34400008
GM
4819/* Return a cons allocated from pure space. Give it pure copies
4820 of CAR as car and CDR as cdr. */
4821
7146af97
JB
4822Lisp_Object
4823pure_cons (car, cdr)
4824 Lisp_Object car, cdr;
4825{
4826 register Lisp_Object new;
1f0b3fd2 4827 struct Lisp_Cons *p;
7146af97 4828
1f0b3fd2
GM
4829 p = (struct Lisp_Cons *) pure_alloc (sizeof *p, Lisp_Cons);
4830 XSETCONS (new, p);
f3fbd155
KR
4831 XSETCAR (new, Fpurecopy (car));
4832 XSETCDR (new, Fpurecopy (cdr));
7146af97
JB
4833 return new;
4834}
4835
7146af97 4836
34400008
GM
4837/* Value is a float object with value NUM allocated from pure space. */
4838
d3d47262 4839static Lisp_Object
7146af97
JB
4840make_pure_float (num)
4841 double num;
4842{
4843 register Lisp_Object new;
1f0b3fd2 4844 struct Lisp_Float *p;
7146af97 4845
1f0b3fd2
GM
4846 p = (struct Lisp_Float *) pure_alloc (sizeof *p, Lisp_Float);
4847 XSETFLOAT (new, p);
70949dac 4848 XFLOAT_DATA (new) = num;
7146af97
JB
4849 return new;
4850}
4851
34400008
GM
4852
4853/* Return a vector with room for LEN Lisp_Objects allocated from
4854 pure space. */
4855
7146af97
JB
4856Lisp_Object
4857make_pure_vector (len)
42607681 4858 EMACS_INT len;
7146af97 4859{
1f0b3fd2
GM
4860 Lisp_Object new;
4861 struct Lisp_Vector *p;
4862 size_t size = sizeof *p + (len - 1) * sizeof (Lisp_Object);
7146af97 4863
1f0b3fd2
GM
4864 p = (struct Lisp_Vector *) pure_alloc (size, Lisp_Vectorlike);
4865 XSETVECTOR (new, p);
7146af97
JB
4866 XVECTOR (new)->size = len;
4867 return new;
4868}
4869
34400008 4870
7146af97 4871DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
909e3b33 4872 doc: /* Make a copy of object OBJ in pure storage.
228299fa 4873Recursively copies contents of vectors and cons cells.
7ee72033
MB
4874Does not copy symbols. Copies strings without text properties. */)
4875 (obj)
7146af97
JB
4876 register Lisp_Object obj;
4877{
265a9e55 4878 if (NILP (Vpurify_flag))
7146af97
JB
4879 return obj;
4880
1f0b3fd2 4881 if (PURE_POINTER_P (XPNTR (obj)))
7146af97
JB
4882 return obj;
4883
d6dd74bb 4884 if (CONSP (obj))
70949dac 4885 return pure_cons (XCAR (obj), XCDR (obj));
d6dd74bb 4886 else if (FLOATP (obj))
70949dac 4887 return make_pure_float (XFLOAT_DATA (obj));
d6dd74bb 4888 else if (STRINGP (obj))
d5db4077
KR
4889 return make_pure_string (SDATA (obj), SCHARS (obj),
4890 SBYTES (obj),
c0696668 4891 STRING_MULTIBYTE (obj));
d6dd74bb
KH
4892 else if (COMPILEDP (obj) || VECTORP (obj))
4893 {
4894 register struct Lisp_Vector *vec;
6b61353c
KH
4895 register int i;
4896 EMACS_INT size;
d6dd74bb
KH
4897
4898 size = XVECTOR (obj)->size;
7d535c68
KH
4899 if (size & PSEUDOVECTOR_FLAG)
4900 size &= PSEUDOVECTOR_SIZE_MASK;
6b61353c 4901 vec = XVECTOR (make_pure_vector (size));
d6dd74bb
KH
4902 for (i = 0; i < size; i++)
4903 vec->contents[i] = Fpurecopy (XVECTOR (obj)->contents[i]);
4904 if (COMPILEDP (obj))
985773c9
MB
4905 {
4906 XSETPVECTYPE (vec, PVEC_COMPILED);
4907 XSETCOMPILED (obj, vec);
4908 }
d6dd74bb
KH
4909 else
4910 XSETVECTOR (obj, vec);
7146af97
JB
4911 return obj;
4912 }
d6dd74bb
KH
4913 else if (MARKERP (obj))
4914 error ("Attempt to copy a marker to pure storage");
6bbd7a29
GM
4915
4916 return obj;
7146af97 4917}
2e471eb5 4918
34400008 4919
7146af97 4920\f
34400008
GM
4921/***********************************************************************
4922 Protection from GC
4923 ***********************************************************************/
4924
2e471eb5
GM
4925/* Put an entry in staticvec, pointing at the variable with address
4926 VARADDRESS. */
7146af97
JB
4927
4928void
4929staticpro (varaddress)
4930 Lisp_Object *varaddress;
4931{
4932 staticvec[staticidx++] = varaddress;
4933 if (staticidx >= NSTATICS)
4934 abort ();
4935}
4936
4937struct catchtag
2e471eb5 4938{
7146af97
JB
4939 Lisp_Object tag;
4940 Lisp_Object val;
4941 struct catchtag *next;
2e471eb5 4942};
7146af97 4943
7146af97 4944\f
34400008
GM
4945/***********************************************************************
4946 Protection from GC
4947 ***********************************************************************/
1a4f1e2c 4948
e8197642
RS
4949/* Temporarily prevent garbage collection. */
4950
4951int
4952inhibit_garbage_collection ()
4953{
aed13378 4954 int count = SPECPDL_INDEX ();
54defd0d
AS
4955 int nbits = min (VALBITS, BITS_PER_INT);
4956
4957 specbind (Qgc_cons_threshold, make_number (((EMACS_INT) 1 << (nbits - 1)) - 1));
e8197642
RS
4958 return count;
4959}
4960
34400008 4961
7146af97 4962DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
7ee72033 4963 doc: /* Reclaim storage for Lisp objects no longer needed.
e1e37596
RS
4964Garbage collection happens automatically if you cons more than
4965`gc-cons-threshold' bytes of Lisp data since previous garbage collection.
4966`garbage-collect' normally returns a list with info on amount of space in use:
228299fa
GM
4967 ((USED-CONSES . FREE-CONSES) (USED-SYMS . FREE-SYMS)
4968 (USED-MARKERS . FREE-MARKERS) USED-STRING-CHARS USED-VECTOR-SLOTS
4969 (USED-FLOATS . FREE-FLOATS) (USED-INTERVALS . FREE-INTERVALS)
4970 (USED-STRINGS . FREE-STRINGS))
e1e37596
RS
4971However, if there was overflow in pure space, `garbage-collect'
4972returns nil, because real GC can't be done. */)
7ee72033 4973 ()
7146af97 4974{
7146af97
JB
4975 register struct specbinding *bind;
4976 struct catchtag *catch;
4977 struct handler *handler;
7146af97
JB
4978 char stack_top_variable;
4979 register int i;
6efc7df7 4980 int message_p;
96117bc7 4981 Lisp_Object total[8];
331379bf 4982 int count = SPECPDL_INDEX ();
2c5bd608
DL
4983 EMACS_TIME t1, t2, t3;
4984
3de0effb
RS
4985 if (abort_on_gc)
4986 abort ();
4987
9e713715
GM
4988 /* Can't GC if pure storage overflowed because we can't determine
4989 if something is a pure object or not. */
4990 if (pure_bytes_used_before_overflow)
4991 return Qnil;
4992
bbc012e0
KS
4993 CHECK_CONS_LIST ();
4994
3c7e66a8
RS
4995 /* Don't keep undo information around forever.
4996 Do this early on, so it is no problem if the user quits. */
4997 {
4998 register struct buffer *nextb = all_buffers;
4999
5000 while (nextb)
5001 {
5002 /* If a buffer's undo list is Qt, that means that undo is
5003 turned off in that buffer. Calling truncate_undo_list on
5004 Qt tends to return NULL, which effectively turns undo back on.
5005 So don't call truncate_undo_list if undo_list is Qt. */
303b0412 5006 if (! NILP (nextb->name) && ! EQ (nextb->undo_list, Qt))
3c7e66a8
RS
5007 truncate_undo_list (nextb);
5008
5009 /* Shrink buffer gaps, but skip indirect and dead buffers. */
dc7b4525
KH
5010 if (nextb->base_buffer == 0 && !NILP (nextb->name)
5011 && ! nextb->text->inhibit_shrinking)
3c7e66a8
RS
5012 {
5013 /* If a buffer's gap size is more than 10% of the buffer
5014 size, or larger than 2000 bytes, then shrink it
5015 accordingly. Keep a minimum size of 20 bytes. */
5016 int size = min (2000, max (20, (nextb->text->z_byte / 10)));
5017
5018 if (nextb->text->gap_size > size)
5019 {
5020 struct buffer *save_current = current_buffer;
5021 current_buffer = nextb;
5022 make_gap (-(nextb->text->gap_size - size));
5023 current_buffer = save_current;
5024 }
5025 }
5026
5027 nextb = nextb->next;
5028 }
5029 }
5030
5031 EMACS_GET_TIME (t1);
5032
58595309
KH
5033 /* In case user calls debug_print during GC,
5034 don't let that cause a recursive GC. */
5035 consing_since_gc = 0;
5036
6efc7df7
GM
5037 /* Save what's currently displayed in the echo area. */
5038 message_p = push_message ();
c55b0da6 5039 record_unwind_protect (pop_message_unwind, Qnil);
41c28a37 5040
7146af97
JB
5041 /* Save a copy of the contents of the stack, for debugging. */
5042#if MAX_SAVE_STACK > 0
265a9e55 5043 if (NILP (Vpurify_flag))
7146af97
JB
5044 {
5045 i = &stack_top_variable - stack_bottom;
5046 if (i < 0) i = -i;
5047 if (i < MAX_SAVE_STACK)
5048 {
5049 if (stack_copy == 0)
9ac0d9e0 5050 stack_copy = (char *) xmalloc (stack_copy_size = i);
7146af97 5051 else if (stack_copy_size < i)
9ac0d9e0 5052 stack_copy = (char *) xrealloc (stack_copy, (stack_copy_size = i));
7146af97
JB
5053 if (stack_copy)
5054 {
42607681 5055 if ((EMACS_INT) (&stack_top_variable - stack_bottom) > 0)
7146af97
JB
5056 bcopy (stack_bottom, stack_copy, i);
5057 else
5058 bcopy (&stack_top_variable, stack_copy, i);
5059 }
5060 }
5061 }
5062#endif /* MAX_SAVE_STACK > 0 */
5063
299585ee 5064 if (garbage_collection_messages)
691c4285 5065 message1_nolog ("Garbage collecting...");
7146af97 5066
6e0fca1d
RS
5067 BLOCK_INPUT;
5068
eec7b73d
RS
5069 shrink_regexp_cache ();
5070
7146af97
JB
5071 gc_in_progress = 1;
5072
c23baf9f 5073 /* clear_marks (); */
7146af97 5074
005ca5c7 5075 /* Mark all the special slots that serve as the roots of accessibility. */
7146af97
JB
5076
5077 for (i = 0; i < staticidx; i++)
49723c04 5078 mark_object (*staticvec[i]);
34400008 5079
126f9c02
SM
5080 for (bind = specpdl; bind != specpdl_ptr; bind++)
5081 {
5082 mark_object (bind->symbol);
5083 mark_object (bind->old_value);
5084 }
6ed8eeff 5085 mark_terminals ();
126f9c02 5086 mark_kboards ();
98a92e2d 5087 mark_ttys ();
126f9c02
SM
5088
5089#ifdef USE_GTK
5090 {
5091 extern void xg_mark_data ();
5092 xg_mark_data ();
5093 }
5094#endif
5095
34400008
GM
5096#if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
5097 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
5098 mark_stack ();
5099#else
acf5f7d3
SM
5100 {
5101 register struct gcpro *tail;
5102 for (tail = gcprolist; tail; tail = tail->next)
5103 for (i = 0; i < tail->nvars; i++)
005ca5c7 5104 mark_object (tail->var[i]);
acf5f7d3 5105 }
34400008 5106#endif
177c0ea7 5107
630686c8 5108 mark_byte_stack ();
7146af97
JB
5109 for (catch = catchlist; catch; catch = catch->next)
5110 {
49723c04
SM
5111 mark_object (catch->tag);
5112 mark_object (catch->val);
177c0ea7 5113 }
7146af97
JB
5114 for (handler = handlerlist; handler; handler = handler->next)
5115 {
49723c04
SM
5116 mark_object (handler->handler);
5117 mark_object (handler->var);
177c0ea7 5118 }
b40ea20a 5119 mark_backtrace ();
7146af97 5120
454d7973
KS
5121#ifdef HAVE_WINDOW_SYSTEM
5122 mark_fringe_data ();
5123#endif
5124
74c35a48
SM
5125#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5126 mark_stack ();
5127#endif
5128
c37adf23
SM
5129 /* Everything is now marked, except for the things that require special
5130 finalization, i.e. the undo_list.
5131 Look thru every buffer's undo list
4c315bda
RS
5132 for elements that update markers that were not marked,
5133 and delete them. */
5134 {
5135 register struct buffer *nextb = all_buffers;
5136
5137 while (nextb)
5138 {
5139 /* If a buffer's undo list is Qt, that means that undo is
5140 turned off in that buffer. Calling truncate_undo_list on
5141 Qt tends to return NULL, which effectively turns undo back on.
5142 So don't call truncate_undo_list if undo_list is Qt. */
5143 if (! EQ (nextb->undo_list, Qt))
5144 {
5145 Lisp_Object tail, prev;
5146 tail = nextb->undo_list;
5147 prev = Qnil;
5148 while (CONSP (tail))
5149 {
8e50cc2d
SM
5150 if (CONSP (XCAR (tail))
5151 && MARKERP (XCAR (XCAR (tail)))
2336fe58 5152 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
4c315bda
RS
5153 {
5154 if (NILP (prev))
70949dac 5155 nextb->undo_list = tail = XCDR (tail);
4c315bda 5156 else
f3fbd155
KR
5157 {
5158 tail = XCDR (tail);
5159 XSETCDR (prev, tail);
5160 }
4c315bda
RS
5161 }
5162 else
5163 {
5164 prev = tail;
70949dac 5165 tail = XCDR (tail);
4c315bda
RS
5166 }
5167 }
5168 }
c37adf23
SM
5169 /* Now that we have stripped the elements that need not be in the
5170 undo_list any more, we can finally mark the list. */
5171 mark_object (nextb->undo_list);
4c315bda
RS
5172
5173 nextb = nextb->next;
5174 }
5175 }
5176
7146af97
JB
5177 gc_sweep ();
5178
5179 /* Clear the mark bits that we set in certain root slots. */
5180
033a5fa3 5181 unmark_byte_stack ();
3ef06d12
SM
5182 VECTOR_UNMARK (&buffer_defaults);
5183 VECTOR_UNMARK (&buffer_local_symbols);
7146af97 5184
34400008
GM
5185#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
5186 dump_zombies ();
5187#endif
5188
6e0fca1d
RS
5189 UNBLOCK_INPUT;
5190
bbc012e0
KS
5191 CHECK_CONS_LIST ();
5192
c23baf9f 5193 /* clear_marks (); */
7146af97
JB
5194 gc_in_progress = 0;
5195
5196 consing_since_gc = 0;
5197 if (gc_cons_threshold < 10000)
5198 gc_cons_threshold = 10000;
5199
96f077ad
SM
5200 if (FLOATP (Vgc_cons_percentage))
5201 { /* Set gc_cons_combined_threshold. */
5202 EMACS_INT total = 0;
974aae61 5203
96f077ad
SM
5204 total += total_conses * sizeof (struct Lisp_Cons);
5205 total += total_symbols * sizeof (struct Lisp_Symbol);
5206 total += total_markers * sizeof (union Lisp_Misc);
5207 total += total_string_size;
5208 total += total_vector_size * sizeof (Lisp_Object);
5209 total += total_floats * sizeof (struct Lisp_Float);
5210 total += total_intervals * sizeof (struct interval);
5211 total += total_strings * sizeof (struct Lisp_String);
3cd55735 5212
974aae61 5213 gc_relative_threshold = total * XFLOAT_DATA (Vgc_cons_percentage);
96f077ad 5214 }
974aae61
RS
5215 else
5216 gc_relative_threshold = 0;
96f077ad 5217
299585ee
RS
5218 if (garbage_collection_messages)
5219 {
6efc7df7
GM
5220 if (message_p || minibuf_level > 0)
5221 restore_message ();
299585ee
RS
5222 else
5223 message1_nolog ("Garbage collecting...done");
5224 }
7146af97 5225
98edb5ff 5226 unbind_to (count, Qnil);
2e471eb5
GM
5227
5228 total[0] = Fcons (make_number (total_conses),
5229 make_number (total_free_conses));
5230 total[1] = Fcons (make_number (total_symbols),
5231 make_number (total_free_symbols));
5232 total[2] = Fcons (make_number (total_markers),
5233 make_number (total_free_markers));
96117bc7
GM
5234 total[3] = make_number (total_string_size);
5235 total[4] = make_number (total_vector_size);
5236 total[5] = Fcons (make_number (total_floats),
2e471eb5 5237 make_number (total_free_floats));
96117bc7 5238 total[6] = Fcons (make_number (total_intervals),
2e471eb5 5239 make_number (total_free_intervals));
96117bc7 5240 total[7] = Fcons (make_number (total_strings),
2e471eb5
GM
5241 make_number (total_free_strings));
5242
34400008 5243#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
7146af97 5244 {
34400008
GM
5245 /* Compute average percentage of zombies. */
5246 double nlive = 0;
177c0ea7 5247
34400008 5248 for (i = 0; i < 7; ++i)
83fc9c63
DL
5249 if (CONSP (total[i]))
5250 nlive += XFASTINT (XCAR (total[i]));
34400008
GM
5251
5252 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
5253 max_live = max (nlive, max_live);
5254 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
5255 max_zombies = max (nzombies, max_zombies);
5256 ++ngcs;
5257 }
5258#endif
7146af97 5259
9e713715
GM
5260 if (!NILP (Vpost_gc_hook))
5261 {
5262 int count = inhibit_garbage_collection ();
5263 safe_run_hooks (Qpost_gc_hook);
5264 unbind_to (count, Qnil);
5265 }
2c5bd608
DL
5266
5267 /* Accumulate statistics. */
5268 EMACS_GET_TIME (t2);
5269 EMACS_SUB_TIME (t3, t2, t1);
5270 if (FLOATP (Vgc_elapsed))
69ab9f85
SM
5271 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed) +
5272 EMACS_SECS (t3) +
5273 EMACS_USECS (t3) * 1.0e-6);
2c5bd608
DL
5274 gcs_done++;
5275
96117bc7 5276 return Flist (sizeof total / sizeof *total, total);
7146af97 5277}
34400008 5278
41c28a37 5279
3770920e
GM
5280/* Mark Lisp objects in glyph matrix MATRIX. Currently the
5281 only interesting objects referenced from glyphs are strings. */
41c28a37
GM
5282
5283static void
5284mark_glyph_matrix (matrix)
5285 struct glyph_matrix *matrix;
5286{
5287 struct glyph_row *row = matrix->rows;
5288 struct glyph_row *end = row + matrix->nrows;
5289
2e471eb5
GM
5290 for (; row < end; ++row)
5291 if (row->enabled_p)
5292 {
5293 int area;
5294 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
5295 {
5296 struct glyph *glyph = row->glyphs[area];
5297 struct glyph *end_glyph = glyph + row->used[area];
177c0ea7 5298
2e471eb5 5299 for (; glyph < end_glyph; ++glyph)
8e50cc2d 5300 if (STRINGP (glyph->object)
2e471eb5 5301 && !STRING_MARKED_P (XSTRING (glyph->object)))
49723c04 5302 mark_object (glyph->object);
2e471eb5
GM
5303 }
5304 }
41c28a37
GM
5305}
5306
34400008 5307
41c28a37
GM
5308/* Mark Lisp faces in the face cache C. */
5309
5310static void
5311mark_face_cache (c)
5312 struct face_cache *c;
5313{
5314 if (c)
5315 {
5316 int i, j;
5317 for (i = 0; i < c->used; ++i)
5318 {
5319 struct face *face = FACE_FROM_ID (c->f, i);
5320
5321 if (face)
5322 {
5323 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
49723c04 5324 mark_object (face->lface[j]);
41c28a37
GM
5325 }
5326 }
5327 }
5328}
5329
5330
7146af97 5331\f
1a4f1e2c 5332/* Mark reference to a Lisp_Object.
2e471eb5
GM
5333 If the object referred to has not been seen yet, recursively mark
5334 all the references contained in it. */
7146af97 5335
785cd37f 5336#define LAST_MARKED_SIZE 500
d3d47262 5337static Lisp_Object last_marked[LAST_MARKED_SIZE];
785cd37f
RS
5338int last_marked_index;
5339
1342fc6f
RS
5340/* For debugging--call abort when we cdr down this many
5341 links of a list, in mark_object. In debugging,
5342 the call to abort will hit a breakpoint.
5343 Normally this is zero and the check never goes off. */
d3d47262 5344static int mark_object_loop_halt;
1342fc6f 5345
d2029e5b
SM
5346/* Return non-zero if the object was not yet marked. */
5347static int
5348mark_vectorlike (ptr)
5349 struct Lisp_Vector *ptr;
5350{
5351 register EMACS_INT size = ptr->size;
5352 register int i;
5353
5354 if (VECTOR_MARKED_P (ptr))
5355 return 0; /* Already marked */
5356 VECTOR_MARK (ptr); /* Else mark it */
5357 if (size & PSEUDOVECTOR_FLAG)
5358 size &= PSEUDOVECTOR_SIZE_MASK;
d3d47262 5359
d2029e5b
SM
5360 /* Note that this size is not the memory-footprint size, but only
5361 the number of Lisp_Object fields that we should trace.
5362 The distinction is used e.g. by Lisp_Process which places extra
5363 non-Lisp_Object fields at the end of the structure. */
5364 for (i = 0; i < size; i++) /* and then mark its elements */
5365 mark_object (ptr->contents[i]);
5366 return 1;
5367}
5368
41c28a37 5369void
49723c04
SM
5370mark_object (arg)
5371 Lisp_Object arg;
7146af97 5372{
49723c04 5373 register Lisp_Object obj = arg;
4f5c1376
GM
5374#ifdef GC_CHECK_MARKED_OBJECTS
5375 void *po;
5376 struct mem_node *m;
5377#endif
1342fc6f 5378 int cdr_count = 0;
7146af97 5379
9149e743 5380 loop:
7146af97 5381
1f0b3fd2 5382 if (PURE_POINTER_P (XPNTR (obj)))
7146af97
JB
5383 return;
5384
49723c04 5385 last_marked[last_marked_index++] = obj;
785cd37f
RS
5386 if (last_marked_index == LAST_MARKED_SIZE)
5387 last_marked_index = 0;
5388
4f5c1376
GM
5389 /* Perform some sanity checks on the objects marked here. Abort if
5390 we encounter an object we know is bogus. This increases GC time
5391 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
5392#ifdef GC_CHECK_MARKED_OBJECTS
5393
5394 po = (void *) XPNTR (obj);
5395
5396 /* Check that the object pointed to by PO is known to be a Lisp
5397 structure allocated from the heap. */
5398#define CHECK_ALLOCATED() \
5399 do { \
5400 m = mem_find (po); \
5401 if (m == MEM_NIL) \
5402 abort (); \
5403 } while (0)
5404
5405 /* Check that the object pointed to by PO is live, using predicate
5406 function LIVEP. */
5407#define CHECK_LIVE(LIVEP) \
5408 do { \
5409 if (!LIVEP (m, po)) \
5410 abort (); \
5411 } while (0)
5412
5413 /* Check both of the above conditions. */
5414#define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
5415 do { \
5416 CHECK_ALLOCATED (); \
5417 CHECK_LIVE (LIVEP); \
5418 } while (0) \
177c0ea7 5419
4f5c1376 5420#else /* not GC_CHECK_MARKED_OBJECTS */
177c0ea7 5421
4f5c1376
GM
5422#define CHECK_ALLOCATED() (void) 0
5423#define CHECK_LIVE(LIVEP) (void) 0
5424#define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
177c0ea7 5425
4f5c1376
GM
5426#endif /* not GC_CHECK_MARKED_OBJECTS */
5427
8e50cc2d 5428 switch (SWITCH_ENUM_CAST (XTYPE (obj)))
7146af97
JB
5429 {
5430 case Lisp_String:
5431 {
5432 register struct Lisp_String *ptr = XSTRING (obj);
4f5c1376 5433 CHECK_ALLOCATED_AND_LIVE (live_string_p);
d5e35230 5434 MARK_INTERVAL_TREE (ptr->intervals);
2e471eb5 5435 MARK_STRING (ptr);
361b097f 5436#ifdef GC_CHECK_STRING_BYTES
676a7251
GM
5437 /* Check that the string size recorded in the string is the
5438 same as the one recorded in the sdata structure. */
5439 CHECK_STRING_BYTES (ptr);
361b097f 5440#endif /* GC_CHECK_STRING_BYTES */
7146af97
JB
5441 }
5442 break;
5443
76437631 5444 case Lisp_Vectorlike:
4f5c1376
GM
5445#ifdef GC_CHECK_MARKED_OBJECTS
5446 m = mem_find (po);
8e50cc2d 5447 if (m == MEM_NIL && !SUBRP (obj)
4f5c1376
GM
5448 && po != &buffer_defaults
5449 && po != &buffer_local_symbols)
5450 abort ();
5451#endif /* GC_CHECK_MARKED_OBJECTS */
177c0ea7 5452
8e50cc2d 5453 if (BUFFERP (obj))
6b552283 5454 {
3ef06d12 5455 if (!VECTOR_MARKED_P (XBUFFER (obj)))
4f5c1376
GM
5456 {
5457#ifdef GC_CHECK_MARKED_OBJECTS
5458 if (po != &buffer_defaults && po != &buffer_local_symbols)
5459 {
5460 struct buffer *b;
5461 for (b = all_buffers; b && b != po; b = b->next)
5462 ;
5463 if (b == NULL)
5464 abort ();
5465 }
5466#endif /* GC_CHECK_MARKED_OBJECTS */
5467 mark_buffer (obj);
5468 }
6b552283 5469 }
8e50cc2d 5470 else if (SUBRP (obj))
169ee243 5471 break;
8e50cc2d 5472 else if (COMPILEDP (obj))
2e471eb5
GM
5473 /* We could treat this just like a vector, but it is better to
5474 save the COMPILED_CONSTANTS element for last and avoid
5475 recursion there. */
169ee243
RS
5476 {
5477 register struct Lisp_Vector *ptr = XVECTOR (obj);
5478 register EMACS_INT size = ptr->size;
169ee243
RS
5479 register int i;
5480
3ef06d12 5481 if (VECTOR_MARKED_P (ptr))
169ee243 5482 break; /* Already marked */
177c0ea7 5483
4f5c1376 5484 CHECK_LIVE (live_vector_p);
3ef06d12 5485 VECTOR_MARK (ptr); /* Else mark it */
76437631 5486 size &= PSEUDOVECTOR_SIZE_MASK;
169ee243
RS
5487 for (i = 0; i < size; i++) /* and then mark its elements */
5488 {
5489 if (i != COMPILED_CONSTANTS)
49723c04 5490 mark_object (ptr->contents[i]);
169ee243 5491 }
49723c04 5492 obj = ptr->contents[COMPILED_CONSTANTS];
169ee243
RS
5493 goto loop;
5494 }
8e50cc2d 5495 else if (FRAMEP (obj))
169ee243 5496 {
c70bbf06 5497 register struct frame *ptr = XFRAME (obj);
d2029e5b 5498 if (mark_vectorlike (XVECTOR (obj)))
354884c4 5499 mark_face_cache (ptr->face_cache);
707788bd 5500 }
8e50cc2d 5501 else if (WINDOWP (obj))
41c28a37
GM
5502 {
5503 register struct Lisp_Vector *ptr = XVECTOR (obj);
5504 struct window *w = XWINDOW (obj);
d2029e5b 5505 if (mark_vectorlike (ptr))
41c28a37 5506 {
5b2f56df
SM
5507 /* Mark glyphs for leaf windows. Marking window matrices is
5508 sufficient because frame matrices use the same glyph
5509 memory. */
d2029e5b
SM
5510 if (NILP (w->hchild)
5511 && NILP (w->vchild)
5512 && w->current_matrix)
5513 {
5514 mark_glyph_matrix (w->current_matrix);
5b2f56df
SM
5515 mark_glyph_matrix (w->desired_matrix);
5516 }
41c28a37
GM
5517 }
5518 }
8e50cc2d 5519 else if (HASH_TABLE_P (obj))
41c28a37
GM
5520 {
5521 struct Lisp_Hash_Table *h = XHASH_TABLE (obj);
878f97ff
SM
5522 if (mark_vectorlike ((struct Lisp_Vector *)h))
5523 { /* If hash table is not weak, mark all keys and values.
5524 For weak tables, mark only the vector. */
c73bd236 5525 if (NILP (h->weak))
d2029e5b
SM
5526 mark_object (h->key_and_value);
5527 else
5528 VECTOR_MARK (XVECTOR (h->key_and_value));
5529 }
41c28a37 5530 }
04ff9756 5531 else
d2029e5b 5532 mark_vectorlike (XVECTOR (obj));
169ee243 5533 break;
7146af97 5534
7146af97
JB
5535 case Lisp_Symbol:
5536 {
c70bbf06 5537 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
7146af97
JB
5538 struct Lisp_Symbol *ptrx;
5539
2336fe58 5540 if (ptr->gcmarkbit) break;
4f5c1376 5541 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
2336fe58 5542 ptr->gcmarkbit = 1;
49723c04
SM
5543 mark_object (ptr->value);
5544 mark_object (ptr->function);
5545 mark_object (ptr->plist);
34400008 5546
8fe5665d
KR
5547 if (!PURE_POINTER_P (XSTRING (ptr->xname)))
5548 MARK_STRING (XSTRING (ptr->xname));
d5db4077 5549 MARK_INTERVAL_TREE (STRING_INTERVALS (ptr->xname));
177c0ea7 5550
1c6bb482
RS
5551 /* Note that we do not mark the obarray of the symbol.
5552 It is safe not to do so because nothing accesses that
5553 slot except to check whether it is nil. */
7146af97
JB
5554 ptr = ptr->next;
5555 if (ptr)
5556 {
b0846f52 5557 ptrx = ptr; /* Use of ptrx avoids compiler bug on Sun */
7146af97 5558 XSETSYMBOL (obj, ptrx);
49723c04 5559 goto loop;
7146af97
JB
5560 }
5561 }
5562 break;
5563
a0a38eb7 5564 case Lisp_Misc:
4f5c1376 5565 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
67ee9f6e 5566 if (XMISCANY (obj)->gcmarkbit)
2336fe58 5567 break;
67ee9f6e 5568 XMISCANY (obj)->gcmarkbit = 1;
b766f870 5569
a5da44fe 5570 switch (XMISCTYPE (obj))
a0a38eb7 5571 {
465edf35 5572 case Lisp_Misc_Buffer_Local_Value:
465edf35
KH
5573 {
5574 register struct Lisp_Buffer_Local_Value *ptr
5575 = XBUFFER_LOCAL_VALUE (obj);
465edf35
KH
5576 /* If the cdr is nil, avoid recursion for the car. */
5577 if (EQ (ptr->cdr, Qnil))
5578 {
49723c04 5579 obj = ptr->realvalue;
465edf35
KH
5580 goto loop;
5581 }
49723c04
SM
5582 mark_object (ptr->realvalue);
5583 mark_object (ptr->buffer);
5584 mark_object (ptr->frame);
5585 obj = ptr->cdr;
465edf35
KH
5586 goto loop;
5587 }
5588
2336fe58
SM
5589 case Lisp_Misc_Marker:
5590 /* DO NOT mark thru the marker's chain.
5591 The buffer's markers chain does not preserve markers from gc;
5592 instead, markers are removed from the chain when freed by gc. */
b766f870
KS
5593 break;
5594
c8616056
KH
5595 case Lisp_Misc_Intfwd:
5596 case Lisp_Misc_Boolfwd:
5597 case Lisp_Misc_Objfwd:
5598 case Lisp_Misc_Buffer_Objfwd:
b875d3f7 5599 case Lisp_Misc_Kboard_Objfwd:
c8616056
KH
5600 /* Don't bother with Lisp_Buffer_Objfwd,
5601 since all markable slots in current buffer marked anyway. */
5602 /* Don't need to do Lisp_Objfwd, since the places they point
5603 are protected with staticpro. */
b766f870
KS
5604 break;
5605
8f924df7 5606 case Lisp_Misc_Save_Value:
9ea306d1 5607#if GC_MARK_STACK
b766f870
KS
5608 {
5609 register struct Lisp_Save_Value *ptr = XSAVE_VALUE (obj);
5610 /* If DOGC is set, POINTER is the address of a memory
5611 area containing INTEGER potential Lisp_Objects. */
5612 if (ptr->dogc)
5613 {
5614 Lisp_Object *p = (Lisp_Object *) ptr->pointer;
5615 int nelt;
5616 for (nelt = ptr->integer; nelt > 0; nelt--, p++)
5617 mark_maybe_object (*p);
5618 }
5619 }
9ea306d1 5620#endif
c8616056
KH
5621 break;
5622
e202fa34
KH
5623 case Lisp_Misc_Overlay:
5624 {
5625 struct Lisp_Overlay *ptr = XOVERLAY (obj);
49723c04
SM
5626 mark_object (ptr->start);
5627 mark_object (ptr->end);
f54253ec
SM
5628 mark_object (ptr->plist);
5629 if (ptr->next)
5630 {
5631 XSETMISC (obj, ptr->next);
5632 goto loop;
5633 }
e202fa34
KH
5634 }
5635 break;
5636
a0a38eb7
KH
5637 default:
5638 abort ();
5639 }
7146af97
JB
5640 break;
5641
5642 case Lisp_Cons:
7146af97
JB
5643 {
5644 register struct Lisp_Cons *ptr = XCONS (obj);
08b7c2cb 5645 if (CONS_MARKED_P (ptr)) break;
4f5c1376 5646 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
08b7c2cb 5647 CONS_MARK (ptr);
c54ca951 5648 /* If the cdr is nil, avoid recursion for the car. */
28a099a4 5649 if (EQ (ptr->u.cdr, Qnil))
c54ca951 5650 {
49723c04 5651 obj = ptr->car;
1342fc6f 5652 cdr_count = 0;
c54ca951
RS
5653 goto loop;
5654 }
49723c04 5655 mark_object (ptr->car);
28a099a4 5656 obj = ptr->u.cdr;
1342fc6f
RS
5657 cdr_count++;
5658 if (cdr_count == mark_object_loop_halt)
5659 abort ();
7146af97
JB
5660 goto loop;
5661 }
5662
7146af97 5663 case Lisp_Float:
4f5c1376 5664 CHECK_ALLOCATED_AND_LIVE (live_float_p);
ab6780cd 5665 FLOAT_MARK (XFLOAT (obj));
7146af97 5666 break;
7146af97 5667
7146af97 5668 case Lisp_Int:
7146af97
JB
5669 break;
5670
5671 default:
5672 abort ();
5673 }
4f5c1376
GM
5674
5675#undef CHECK_LIVE
5676#undef CHECK_ALLOCATED
5677#undef CHECK_ALLOCATED_AND_LIVE
7146af97
JB
5678}
5679
5680/* Mark the pointers in a buffer structure. */
5681
5682static void
5683mark_buffer (buf)
5684 Lisp_Object buf;
5685{
7146af97 5686 register struct buffer *buffer = XBUFFER (buf);
f54253ec 5687 register Lisp_Object *ptr, tmp;
30e3190a 5688 Lisp_Object base_buffer;
7146af97 5689
3ef06d12 5690 VECTOR_MARK (buffer);
7146af97 5691
30e3190a 5692 MARK_INTERVAL_TREE (BUF_INTERVALS (buffer));
d5e35230 5693
c37adf23
SM
5694 /* For now, we just don't mark the undo_list. It's done later in
5695 a special way just before the sweep phase, and after stripping
5696 some of its elements that are not needed any more. */
4c315bda 5697
f54253ec
SM
5698 if (buffer->overlays_before)
5699 {
5700 XSETMISC (tmp, buffer->overlays_before);
5701 mark_object (tmp);
5702 }
5703 if (buffer->overlays_after)
5704 {
5705 XSETMISC (tmp, buffer->overlays_after);
5706 mark_object (tmp);
5707 }
5708
9ce376f9
SM
5709 /* buffer-local Lisp variables start at `undo_list',
5710 tho only the ones from `name' on are GC'd normally. */
3ef06d12 5711 for (ptr = &buffer->name;
7146af97
JB
5712 (char *)ptr < (char *)buffer + sizeof (struct buffer);
5713 ptr++)
49723c04 5714 mark_object (*ptr);
30e3190a
RS
5715
5716 /* If this is an indirect buffer, mark its base buffer. */
349bd9ed 5717 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
30e3190a 5718 {
177c0ea7 5719 XSETBUFFER (base_buffer, buffer->base_buffer);
30e3190a
RS
5720 mark_buffer (base_buffer);
5721 }
7146af97 5722}
084b1a0c 5723
4a729fd8
SM
5724/* Mark the Lisp pointers in the terminal objects.
5725 Called by the Fgarbage_collector. */
5726
4a729fd8
SM
5727static void
5728mark_terminals (void)
5729{
5730 struct terminal *t;
5731 for (t = terminal_list; t; t = t->next_terminal)
5732 {
5733 eassert (t->name != NULL);
354884c4
SM
5734#ifdef HAVE_WINDOW_SYSTEM
5735 mark_image_cache (t->image_cache);
5736#endif /* HAVE_WINDOW_SYSTEM */
e330de44 5737 mark_vectorlike ((struct Lisp_Vector *)t);
4a729fd8
SM
5738 }
5739}
5740
5741
084b1a0c 5742
41c28a37
GM
5743/* Value is non-zero if OBJ will survive the current GC because it's
5744 either marked or does not need to be marked to survive. */
5745
5746int
5747survives_gc_p (obj)
5748 Lisp_Object obj;
5749{
5750 int survives_p;
177c0ea7 5751
8e50cc2d 5752 switch (XTYPE (obj))
41c28a37
GM
5753 {
5754 case Lisp_Int:
5755 survives_p = 1;
5756 break;
5757
5758 case Lisp_Symbol:
2336fe58 5759 survives_p = XSYMBOL (obj)->gcmarkbit;
41c28a37
GM
5760 break;
5761
5762 case Lisp_Misc:
67ee9f6e 5763 survives_p = XMISCANY (obj)->gcmarkbit;
41c28a37
GM
5764 break;
5765
5766 case Lisp_String:
08b7c2cb 5767 survives_p = STRING_MARKED_P (XSTRING (obj));
41c28a37
GM
5768 break;
5769
5770 case Lisp_Vectorlike:
8e50cc2d 5771 survives_p = SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
41c28a37
GM
5772 break;
5773
5774 case Lisp_Cons:
08b7c2cb 5775 survives_p = CONS_MARKED_P (XCONS (obj));
41c28a37
GM
5776 break;
5777
41c28a37 5778 case Lisp_Float:
ab6780cd 5779 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
41c28a37 5780 break;
41c28a37
GM
5781
5782 default:
5783 abort ();
5784 }
5785
34400008 5786 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
41c28a37
GM
5787}
5788
5789
7146af97 5790\f
1a4f1e2c 5791/* Sweep: find all structures not marked, and free them. */
7146af97
JB
5792
5793static void
5794gc_sweep ()
5795{
41c28a37
GM
5796 /* Remove or mark entries in weak hash tables.
5797 This must be done before any object is unmarked. */
5798 sweep_weak_hash_tables ();
5799
2e471eb5 5800 sweep_strings ();
676a7251
GM
5801#ifdef GC_CHECK_STRING_BYTES
5802 if (!noninteractive)
5803 check_string_bytes (1);
5804#endif
7146af97
JB
5805
5806 /* Put all unmarked conses on free list */
5807 {
5808 register struct cons_block *cblk;
6ca94ac9 5809 struct cons_block **cprev = &cons_block;
7146af97
JB
5810 register int lim = cons_block_index;
5811 register int num_free = 0, num_used = 0;
5812
5813 cons_free_list = 0;
177c0ea7 5814
6ca94ac9 5815 for (cblk = cons_block; cblk; cblk = *cprev)
7146af97 5816 {
3ae2e3a3 5817 register int i = 0;
6ca94ac9 5818 int this_free = 0;
3ae2e3a3
RS
5819 int ilim = (lim + BITS_PER_INT - 1) / BITS_PER_INT;
5820
5821 /* Scan the mark bits an int at a time. */
5822 for (i = 0; i <= ilim; i++)
5823 {
5824 if (cblk->gcmarkbits[i] == -1)
5825 {
5826 /* Fast path - all cons cells for this int are marked. */
5827 cblk->gcmarkbits[i] = 0;
5828 num_used += BITS_PER_INT;
5829 }
5830 else
5831 {
5832 /* Some cons cells for this int are not marked.
5833 Find which ones, and free them. */
5834 int start, pos, stop;
5835
5836 start = i * BITS_PER_INT;
5837 stop = lim - start;
5838 if (stop > BITS_PER_INT)
5839 stop = BITS_PER_INT;
5840 stop += start;
5841
5842 for (pos = start; pos < stop; pos++)
5843 {
5844 if (!CONS_MARKED_P (&cblk->conses[pos]))
5845 {
5846 this_free++;
5847 cblk->conses[pos].u.chain = cons_free_list;
5848 cons_free_list = &cblk->conses[pos];
34400008 5849#if GC_MARK_STACK
3ae2e3a3 5850 cons_free_list->car = Vdead;
34400008 5851#endif
3ae2e3a3
RS
5852 }
5853 else
5854 {
5855 num_used++;
5856 CONS_UNMARK (&cblk->conses[pos]);
5857 }
5858 }
5859 }
5860 }
5861
7146af97 5862 lim = CONS_BLOCK_SIZE;
6ca94ac9
KH
5863 /* If this block contains only free conses and we have already
5864 seen more than two blocks worth of free conses then deallocate
5865 this block. */
6feef451 5866 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
6ca94ac9 5867 {
6ca94ac9
KH
5868 *cprev = cblk->next;
5869 /* Unhook from the free list. */
28a099a4 5870 cons_free_list = cblk->conses[0].u.chain;
08b7c2cb 5871 lisp_align_free (cblk);
c8099634 5872 n_cons_blocks--;
6ca94ac9
KH
5873 }
5874 else
6feef451
AS
5875 {
5876 num_free += this_free;
5877 cprev = &cblk->next;
5878 }
7146af97
JB
5879 }
5880 total_conses = num_used;
5881 total_free_conses = num_free;
5882 }
5883
7146af97
JB
5884 /* Put all unmarked floats on free list */
5885 {
5886 register struct float_block *fblk;
6ca94ac9 5887 struct float_block **fprev = &float_block;
7146af97
JB
5888 register int lim = float_block_index;
5889 register int num_free = 0, num_used = 0;
5890
5891 float_free_list = 0;
177c0ea7 5892
6ca94ac9 5893 for (fblk = float_block; fblk; fblk = *fprev)
7146af97
JB
5894 {
5895 register int i;
6ca94ac9 5896 int this_free = 0;
7146af97 5897 for (i = 0; i < lim; i++)
ab6780cd 5898 if (!FLOAT_MARKED_P (&fblk->floats[i]))
7146af97 5899 {
6ca94ac9 5900 this_free++;
28a099a4 5901 fblk->floats[i].u.chain = float_free_list;
7146af97
JB
5902 float_free_list = &fblk->floats[i];
5903 }
5904 else
5905 {
5906 num_used++;
ab6780cd 5907 FLOAT_UNMARK (&fblk->floats[i]);
7146af97
JB
5908 }
5909 lim = FLOAT_BLOCK_SIZE;
6ca94ac9
KH
5910 /* If this block contains only free floats and we have already
5911 seen more than two blocks worth of free floats then deallocate
5912 this block. */
6feef451 5913 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
6ca94ac9 5914 {
6ca94ac9
KH
5915 *fprev = fblk->next;
5916 /* Unhook from the free list. */
28a099a4 5917 float_free_list = fblk->floats[0].u.chain;
ab6780cd 5918 lisp_align_free (fblk);
c8099634 5919 n_float_blocks--;
6ca94ac9
KH
5920 }
5921 else
6feef451
AS
5922 {
5923 num_free += this_free;
5924 fprev = &fblk->next;
5925 }
7146af97
JB
5926 }
5927 total_floats = num_used;
5928 total_free_floats = num_free;
5929 }
7146af97 5930
d5e35230
JA
5931 /* Put all unmarked intervals on free list */
5932 {
5933 register struct interval_block *iblk;
6ca94ac9 5934 struct interval_block **iprev = &interval_block;
d5e35230
JA
5935 register int lim = interval_block_index;
5936 register int num_free = 0, num_used = 0;
5937
5938 interval_free_list = 0;
5939
6ca94ac9 5940 for (iblk = interval_block; iblk; iblk = *iprev)
d5e35230
JA
5941 {
5942 register int i;
6ca94ac9 5943 int this_free = 0;
d5e35230
JA
5944
5945 for (i = 0; i < lim; i++)
5946 {
2336fe58 5947 if (!iblk->intervals[i].gcmarkbit)
d5e35230 5948 {
439d5cb4 5949 SET_INTERVAL_PARENT (&iblk->intervals[i], interval_free_list);
d5e35230 5950 interval_free_list = &iblk->intervals[i];
6ca94ac9 5951 this_free++;
d5e35230
JA
5952 }
5953 else
5954 {
5955 num_used++;
2336fe58 5956 iblk->intervals[i].gcmarkbit = 0;
d5e35230
JA
5957 }
5958 }
5959 lim = INTERVAL_BLOCK_SIZE;
6ca94ac9
KH
5960 /* If this block contains only free intervals and we have already
5961 seen more than two blocks worth of free intervals then
5962 deallocate this block. */
6feef451 5963 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
6ca94ac9 5964 {
6ca94ac9
KH
5965 *iprev = iblk->next;
5966 /* Unhook from the free list. */
439d5cb4 5967 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
c8099634
RS
5968 lisp_free (iblk);
5969 n_interval_blocks--;
6ca94ac9
KH
5970 }
5971 else
6feef451
AS
5972 {
5973 num_free += this_free;
5974 iprev = &iblk->next;
5975 }
d5e35230
JA
5976 }
5977 total_intervals = num_used;
5978 total_free_intervals = num_free;
5979 }
d5e35230 5980
7146af97
JB
5981 /* Put all unmarked symbols on free list */
5982 {
5983 register struct symbol_block *sblk;
6ca94ac9 5984 struct symbol_block **sprev = &symbol_block;
7146af97
JB
5985 register int lim = symbol_block_index;
5986 register int num_free = 0, num_used = 0;
5987
d285b373 5988 symbol_free_list = NULL;
177c0ea7 5989
6ca94ac9 5990 for (sblk = symbol_block; sblk; sblk = *sprev)
7146af97 5991 {
6ca94ac9 5992 int this_free = 0;
d285b373
GM
5993 struct Lisp_Symbol *sym = sblk->symbols;
5994 struct Lisp_Symbol *end = sym + lim;
5995
5996 for (; sym < end; ++sym)
5997 {
20035321
SM
5998 /* Check if the symbol was created during loadup. In such a case
5999 it might be pointed to by pure bytecode which we don't trace,
6000 so we conservatively assume that it is live. */
8fe5665d 6001 int pure_p = PURE_POINTER_P (XSTRING (sym->xname));
177c0ea7 6002
2336fe58 6003 if (!sym->gcmarkbit && !pure_p)
d285b373 6004 {
28a099a4 6005 sym->next = symbol_free_list;
d285b373 6006 symbol_free_list = sym;
34400008 6007#if GC_MARK_STACK
d285b373 6008 symbol_free_list->function = Vdead;
34400008 6009#endif
d285b373
GM
6010 ++this_free;
6011 }
6012 else
6013 {
6014 ++num_used;
6015 if (!pure_p)
8fe5665d 6016 UNMARK_STRING (XSTRING (sym->xname));
2336fe58 6017 sym->gcmarkbit = 0;
d285b373
GM
6018 }
6019 }
177c0ea7 6020
7146af97 6021 lim = SYMBOL_BLOCK_SIZE;
6ca94ac9
KH
6022 /* If this block contains only free symbols and we have already
6023 seen more than two blocks worth of free symbols then deallocate
6024 this block. */
6feef451 6025 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
6ca94ac9 6026 {
6ca94ac9
KH
6027 *sprev = sblk->next;
6028 /* Unhook from the free list. */
28a099a4 6029 symbol_free_list = sblk->symbols[0].next;
c8099634
RS
6030 lisp_free (sblk);
6031 n_symbol_blocks--;
6ca94ac9
KH
6032 }
6033 else
6feef451
AS
6034 {
6035 num_free += this_free;
6036 sprev = &sblk->next;
6037 }
7146af97
JB
6038 }
6039 total_symbols = num_used;
6040 total_free_symbols = num_free;
6041 }
6042
a9faeabe
RS
6043 /* Put all unmarked misc's on free list.
6044 For a marker, first unchain it from the buffer it points into. */
7146af97
JB
6045 {
6046 register struct marker_block *mblk;
6ca94ac9 6047 struct marker_block **mprev = &marker_block;
7146af97
JB
6048 register int lim = marker_block_index;
6049 register int num_free = 0, num_used = 0;
6050
6051 marker_free_list = 0;
177c0ea7 6052
6ca94ac9 6053 for (mblk = marker_block; mblk; mblk = *mprev)
7146af97
JB
6054 {
6055 register int i;
6ca94ac9 6056 int this_free = 0;
fa05e253 6057
7146af97 6058 for (i = 0; i < lim; i++)
465edf35 6059 {
d314756e 6060 if (!mblk->markers[i].u_any.gcmarkbit)
465edf35 6061 {
d314756e 6062 if (mblk->markers[i].u_any.type == Lisp_Misc_Marker)
ef89c2ce 6063 unchain_marker (&mblk->markers[i].u_marker);
fa05e253
RS
6064 /* Set the type of the freed object to Lisp_Misc_Free.
6065 We could leave the type alone, since nobody checks it,
465edf35 6066 but this might catch bugs faster. */
a5da44fe 6067 mblk->markers[i].u_marker.type = Lisp_Misc_Free;
465edf35
KH
6068 mblk->markers[i].u_free.chain = marker_free_list;
6069 marker_free_list = &mblk->markers[i];
6ca94ac9 6070 this_free++;
465edf35
KH
6071 }
6072 else
6073 {
6074 num_used++;
d314756e 6075 mblk->markers[i].u_any.gcmarkbit = 0;
465edf35
KH
6076 }
6077 }
7146af97 6078 lim = MARKER_BLOCK_SIZE;
6ca94ac9
KH
6079 /* If this block contains only free markers and we have already
6080 seen more than two blocks worth of free markers then deallocate
6081 this block. */
6feef451 6082 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
6ca94ac9 6083 {
6ca94ac9
KH
6084 *mprev = mblk->next;
6085 /* Unhook from the free list. */
6086 marker_free_list = mblk->markers[0].u_free.chain;
c8099634
RS
6087 lisp_free (mblk);
6088 n_marker_blocks--;
6ca94ac9
KH
6089 }
6090 else
6feef451
AS
6091 {
6092 num_free += this_free;
6093 mprev = &mblk->next;
6094 }
7146af97
JB
6095 }
6096
6097 total_markers = num_used;
6098 total_free_markers = num_free;
6099 }
6100
6101 /* Free all unmarked buffers */
6102 {
6103 register struct buffer *buffer = all_buffers, *prev = 0, *next;
6104
6105 while (buffer)
3ef06d12 6106 if (!VECTOR_MARKED_P (buffer))
7146af97
JB
6107 {
6108 if (prev)
6109 prev->next = buffer->next;
6110 else
6111 all_buffers = buffer->next;
6112 next = buffer->next;
34400008 6113 lisp_free (buffer);
7146af97
JB
6114 buffer = next;
6115 }
6116 else
6117 {
3ef06d12 6118 VECTOR_UNMARK (buffer);
30e3190a 6119 UNMARK_BALANCE_INTERVALS (BUF_INTERVALS (buffer));
7146af97
JB
6120 prev = buffer, buffer = buffer->next;
6121 }
6122 }
6123
7146af97
JB
6124 /* Free all unmarked vectors */
6125 {
6126 register struct Lisp_Vector *vector = all_vectors, *prev = 0, *next;
6127 total_vector_size = 0;
6128
6129 while (vector)
3ef06d12 6130 if (!VECTOR_MARKED_P (vector))
7146af97
JB
6131 {
6132 if (prev)
6133 prev->next = vector->next;
6134 else
6135 all_vectors = vector->next;
6136 next = vector->next;
c8099634
RS
6137 lisp_free (vector);
6138 n_vectors--;
7146af97 6139 vector = next;
41c28a37 6140
7146af97
JB
6141 }
6142 else
6143 {
3ef06d12 6144 VECTOR_UNMARK (vector);
fa05e253
RS
6145 if (vector->size & PSEUDOVECTOR_FLAG)
6146 total_vector_size += (PSEUDOVECTOR_SIZE_MASK & vector->size);
6147 else
6148 total_vector_size += vector->size;
7146af97
JB
6149 prev = vector, vector = vector->next;
6150 }
6151 }
177c0ea7 6152
676a7251
GM
6153#ifdef GC_CHECK_STRING_BYTES
6154 if (!noninteractive)
6155 check_string_bytes (1);
6156#endif
7146af97 6157}
7146af97 6158
7146af97 6159
7146af97 6160
7146af97 6161\f
20d24714
JB
6162/* Debugging aids. */
6163
31ce1c91 6164DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
a6266d23 6165 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
228299fa 6166This may be helpful in debugging Emacs's memory usage.
7ee72033
MB
6167We divide the value by 1024 to make sure it fits in a Lisp integer. */)
6168 ()
20d24714
JB
6169{
6170 Lisp_Object end;
6171
45d12a89 6172 XSETINT (end, (EMACS_INT) sbrk (0) / 1024);
20d24714
JB
6173
6174 return end;
6175}
6176
310ea200 6177DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
a6266d23 6178 doc: /* Return a list of counters that measure how much consing there has been.
228299fa
GM
6179Each of these counters increments for a certain kind of object.
6180The counters wrap around from the largest positive integer to zero.
6181Garbage collection does not decrease them.
6182The elements of the value are as follows:
6183 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
6184All are in units of 1 = one object consed
6185except for VECTOR-CELLS and STRING-CHARS, which count the total length of
6186objects consed.
6187MISCS include overlays, markers, and some internal types.
6188Frames, windows, buffers, and subprocesses count as vectors
7ee72033
MB
6189 (but the contents of a buffer's text do not count here). */)
6190 ()
310ea200 6191{
2e471eb5 6192 Lisp_Object consed[8];
310ea200 6193
78e985eb
GM
6194 consed[0] = make_number (min (MOST_POSITIVE_FIXNUM, cons_cells_consed));
6195 consed[1] = make_number (min (MOST_POSITIVE_FIXNUM, floats_consed));
6196 consed[2] = make_number (min (MOST_POSITIVE_FIXNUM, vector_cells_consed));
6197 consed[3] = make_number (min (MOST_POSITIVE_FIXNUM, symbols_consed));
6198 consed[4] = make_number (min (MOST_POSITIVE_FIXNUM, string_chars_consed));
6199 consed[5] = make_number (min (MOST_POSITIVE_FIXNUM, misc_objects_consed));
6200 consed[6] = make_number (min (MOST_POSITIVE_FIXNUM, intervals_consed));
6201 consed[7] = make_number (min (MOST_POSITIVE_FIXNUM, strings_consed));
310ea200 6202
2e471eb5 6203 return Flist (8, consed);
310ea200 6204}
e0b8c689
KR
6205
6206int suppress_checking;
d3d47262 6207
e0b8c689
KR
6208void
6209die (msg, file, line)
6210 const char *msg;
6211 const char *file;
6212 int line;
6213{
67ee9f6e 6214 fprintf (stderr, "\r\n%s:%d: Emacs fatal error: %s\r\n",
e0b8c689
KR
6215 file, line, msg);
6216 abort ();
6217}
20d24714 6218\f
7146af97
JB
6219/* Initialization */
6220
dfcf069d 6221void
7146af97
JB
6222init_alloc_once ()
6223{
6224 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
9e713715
GM
6225 purebeg = PUREBEG;
6226 pure_size = PURESIZE;
1f0b3fd2 6227 pure_bytes_used = 0;
e5bc14d4 6228 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
9e713715
GM
6229 pure_bytes_used_before_overflow = 0;
6230
ab6780cd
SM
6231 /* Initialize the list of free aligned blocks. */
6232 free_ablock = NULL;
6233
877935b1 6234#if GC_MARK_STACK || defined GC_MALLOC_CHECK
34400008
GM
6235 mem_init ();
6236 Vdead = make_pure_string ("DEAD", 4, 4, 0);
6237#endif
9e713715 6238
7146af97
JB
6239 all_vectors = 0;
6240 ignore_warnings = 1;
d1658221
RS
6241#ifdef DOUG_LEA_MALLOC
6242 mallopt (M_TRIM_THRESHOLD, 128*1024); /* trim threshold */
6243 mallopt (M_MMAP_THRESHOLD, 64*1024); /* mmap threshold */
81d492d5 6244 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* max. number of mmap'ed areas */
d1658221 6245#endif
7146af97
JB
6246 init_strings ();
6247 init_cons ();
6248 init_symbol ();
6249 init_marker ();
7146af97 6250 init_float ();
34400008 6251 init_intervals ();
d5e35230 6252
276cbe5a
RS
6253#ifdef REL_ALLOC
6254 malloc_hysteresis = 32;
6255#else
6256 malloc_hysteresis = 0;
6257#endif
6258
24d8a105 6259 refill_memory_reserve ();
276cbe5a 6260
7146af97
JB
6261 ignore_warnings = 0;
6262 gcprolist = 0;
630686c8 6263 byte_stack_list = 0;
7146af97
JB
6264 staticidx = 0;
6265 consing_since_gc = 0;
7d179cea 6266 gc_cons_threshold = 100000 * sizeof (Lisp_Object);
974aae61
RS
6267 gc_relative_threshold = 0;
6268
7146af97
JB
6269#ifdef VIRT_ADDR_VARIES
6270 malloc_sbrk_unused = 1<<22; /* A large number */
6271 malloc_sbrk_used = 100000; /* as reasonable as any number */
6272#endif /* VIRT_ADDR_VARIES */
6273}
6274
dfcf069d 6275void
7146af97
JB
6276init_alloc ()
6277{
6278 gcprolist = 0;
630686c8 6279 byte_stack_list = 0;
182ff242
GM
6280#if GC_MARK_STACK
6281#if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
6282 setjmp_tested_p = longjmps_done = 0;
6283#endif
6284#endif
2c5bd608
DL
6285 Vgc_elapsed = make_float (0.0);
6286 gcs_done = 0;
7146af97
JB
6287}
6288
6289void
6290syms_of_alloc ()
6291{
7ee72033 6292 DEFVAR_INT ("gc-cons-threshold", &gc_cons_threshold,
a6266d23 6293 doc: /* *Number of bytes of consing between garbage collections.
228299fa
GM
6294Garbage collection can happen automatically once this many bytes have been
6295allocated since the last garbage collection. All data types count.
7146af97 6296
228299fa 6297Garbage collection happens automatically only when `eval' is called.
7146af97 6298
228299fa 6299By binding this temporarily to a large number, you can effectively
96f077ad
SM
6300prevent garbage collection during a part of the program.
6301See also `gc-cons-percentage'. */);
6302
6303 DEFVAR_LISP ("gc-cons-percentage", &Vgc_cons_percentage,
6304 doc: /* *Portion of the heap used for allocation.
6305Garbage collection can happen automatically once this portion of the heap
6306has been allocated since the last garbage collection.
6307If this portion is smaller than `gc-cons-threshold', this is ignored. */);
6308 Vgc_cons_percentage = make_float (0.1);
0819585c 6309
7ee72033 6310 DEFVAR_INT ("pure-bytes-used", &pure_bytes_used,
a6266d23 6311 doc: /* Number of bytes of sharable Lisp data allocated so far. */);
0819585c 6312
7ee72033 6313 DEFVAR_INT ("cons-cells-consed", &cons_cells_consed,
a6266d23 6314 doc: /* Number of cons cells that have been consed so far. */);
0819585c 6315
7ee72033 6316 DEFVAR_INT ("floats-consed", &floats_consed,
a6266d23 6317 doc: /* Number of floats that have been consed so far. */);
0819585c 6318
7ee72033 6319 DEFVAR_INT ("vector-cells-consed", &vector_cells_consed,
a6266d23 6320 doc: /* Number of vector cells that have been consed so far. */);
0819585c 6321
7ee72033 6322 DEFVAR_INT ("symbols-consed", &symbols_consed,
a6266d23 6323 doc: /* Number of symbols that have been consed so far. */);
0819585c 6324
7ee72033 6325 DEFVAR_INT ("string-chars-consed", &string_chars_consed,
a6266d23 6326 doc: /* Number of string characters that have been consed so far. */);
0819585c 6327
7ee72033 6328 DEFVAR_INT ("misc-objects-consed", &misc_objects_consed,
a6266d23 6329 doc: /* Number of miscellaneous objects that have been consed so far. */);
2e471eb5 6330
7ee72033 6331 DEFVAR_INT ("intervals-consed", &intervals_consed,
a6266d23 6332 doc: /* Number of intervals that have been consed so far. */);
7146af97 6333
7ee72033 6334 DEFVAR_INT ("strings-consed", &strings_consed,
a6266d23 6335 doc: /* Number of strings that have been consed so far. */);
228299fa 6336
7ee72033 6337 DEFVAR_LISP ("purify-flag", &Vpurify_flag,
a6266d23 6338 doc: /* Non-nil means loading Lisp code in order to dump an executable.
228299fa
GM
6339This means that certain objects should be allocated in shared (pure) space. */);
6340
7ee72033 6341 DEFVAR_BOOL ("garbage-collection-messages", &garbage_collection_messages,
a6266d23 6342 doc: /* Non-nil means display messages at start and end of garbage collection. */);
299585ee
RS
6343 garbage_collection_messages = 0;
6344
7ee72033 6345 DEFVAR_LISP ("post-gc-hook", &Vpost_gc_hook,
a6266d23 6346 doc: /* Hook run after garbage collection has finished. */);
9e713715
GM
6347 Vpost_gc_hook = Qnil;
6348 Qpost_gc_hook = intern ("post-gc-hook");
6349 staticpro (&Qpost_gc_hook);
6350
74a54b04
RS
6351 DEFVAR_LISP ("memory-signal-data", &Vmemory_signal_data,
6352 doc: /* Precomputed `signal' argument for memory-full error. */);
bcb61d60
KH
6353 /* We build this in advance because if we wait until we need it, we might
6354 not be able to allocate the memory to hold it. */
74a54b04
RS
6355 Vmemory_signal_data
6356 = list2 (Qerror,
6357 build_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"));
6358
6359 DEFVAR_LISP ("memory-full", &Vmemory_full,
24d8a105 6360 doc: /* Non-nil means Emacs cannot get much more Lisp memory. */);
74a54b04 6361 Vmemory_full = Qnil;
bcb61d60 6362
e8197642
RS
6363 staticpro (&Qgc_cons_threshold);
6364 Qgc_cons_threshold = intern ("gc-cons-threshold");
6365
a59de17b
RS
6366 staticpro (&Qchar_table_extra_slots);
6367 Qchar_table_extra_slots = intern ("char-table-extra-slots");
6368
2c5bd608
DL
6369 DEFVAR_LISP ("gc-elapsed", &Vgc_elapsed,
6370 doc: /* Accumulated time elapsed in garbage collections.
e7415487 6371The time is in seconds as a floating point value. */);
2c5bd608 6372 DEFVAR_INT ("gcs-done", &gcs_done,
e7415487 6373 doc: /* Accumulated number of garbage collections done. */);
2c5bd608 6374
7146af97
JB
6375 defsubr (&Scons);
6376 defsubr (&Slist);
6377 defsubr (&Svector);
6378 defsubr (&Smake_byte_code);
6379 defsubr (&Smake_list);
6380 defsubr (&Smake_vector);
6381 defsubr (&Smake_string);
7b07587b 6382 defsubr (&Smake_bool_vector);
7146af97
JB
6383 defsubr (&Smake_symbol);
6384 defsubr (&Smake_marker);
6385 defsubr (&Spurecopy);
6386 defsubr (&Sgarbage_collect);
20d24714 6387 defsubr (&Smemory_limit);
310ea200 6388 defsubr (&Smemory_use_counts);
34400008
GM
6389
6390#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
6391 defsubr (&Sgc_status);
6392#endif
7146af97 6393}
005ca5c7
DL
6394
6395/* arch-tag: 6695ca10-e3c5-4c2c-8bc3-ed26a7dda857
6396 (do not change this comment) */