*** empty log message ***
[bpt/emacs.git] / src / alloc.c
CommitLineData
7146af97 1/* Storage allocation and gc for GNU Emacs Lisp interpreter.
126f9c02 2 Copyright (C) 1985, 1986, 1988, 1993, 1994, 1995, 1997, 1998, 1999,
cfb2f32e 3 2000, 2001, 2002, 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
7146af97
JB
4
5This file is part of GNU Emacs.
6
7GNU Emacs is free software; you can redistribute it and/or modify
8it under the terms of the GNU General Public License as published by
7c299e7a 9the Free Software Foundation; either version 2, or (at your option)
7146af97
JB
10any later version.
11
12GNU Emacs is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15GNU General Public License for more details.
16
17You should have received a copy of the GNU General Public License
18along with GNU Emacs; see the file COPYING. If not, write to
4fc5845f
LK
19the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
20Boston, MA 02110-1301, USA. */
7146af97 21
18160b98 22#include <config.h>
e9b309ac 23#include <stdio.h>
ab6780cd 24#include <limits.h> /* For CHAR_BIT. */
92939d31 25
4f27350a
EZ
26#ifdef STDC_HEADERS
27#include <stddef.h> /* For offsetof, used by PSEUDOVECSIZE. */
28#endif
29
4455ad75
RS
30#ifdef ALLOC_DEBUG
31#undef INLINE
32#endif
33
68c45bf0 34/* Note that this declares bzero on OSF/1. How dumb. */
2e471eb5 35
68c45bf0 36#include <signal.h>
92939d31 37
aa477689
JD
38#ifdef HAVE_GTK_AND_PTHREAD
39#include <pthread.h>
40#endif
41
7539e11f
KR
42/* This file is part of the core Lisp implementation, and thus must
43 deal with the real data structures. If the Lisp implementation is
44 replaced, this file likely will not be used. */
2e471eb5 45
7539e11f 46#undef HIDE_LISP_IMPLEMENTATION
7146af97 47#include "lisp.h"
ece93c02 48#include "process.h"
d5e35230 49#include "intervals.h"
4c0be5f4 50#include "puresize.h"
7146af97
JB
51#include "buffer.h"
52#include "window.h"
2538fae4 53#include "keyboard.h"
502b9b64 54#include "frame.h"
9ac0d9e0 55#include "blockinput.h"
e54daa22 56#include "charset.h"
e065a56e 57#include "syssignal.h"
34400008 58#include <setjmp.h>
e065a56e 59
ad5f3636
DL
60/* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
61 memory. Can do this only if using gmalloc.c. */
62
63#if defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC
64#undef GC_MALLOC_CHECK
65#endif
66
bf952fb6
DL
67#ifdef HAVE_UNISTD_H
68#include <unistd.h>
69#else
70extern POINTER_TYPE *sbrk ();
71#endif
ee1eea5c 72
de7124a7
KS
73#ifdef HAVE_FCNTL_H
74#define INCLUDED_FCNTL
75#include <fcntl.h>
76#endif
77#ifndef O_WRONLY
78#define O_WRONLY 1
79#endif
80
69666f77
EZ
81#ifdef WINDOWSNT
82#include <fcntl.h>
f892cf9c 83#include "w32.h"
69666f77
EZ
84#endif
85
d1658221 86#ifdef DOUG_LEA_MALLOC
2e471eb5 87
d1658221 88#include <malloc.h>
3e60b029
DL
89/* malloc.h #defines this as size_t, at least in glibc2. */
90#ifndef __malloc_size_t
d1658221 91#define __malloc_size_t int
3e60b029 92#endif
81d492d5 93
2e471eb5
GM
94/* Specify maximum number of areas to mmap. It would be nice to use a
95 value that explicitly means "no limit". */
96
81d492d5
RS
97#define MMAP_MAX_AREAS 100000000
98
2e471eb5
GM
99#else /* not DOUG_LEA_MALLOC */
100
276cbe5a
RS
101/* The following come from gmalloc.c. */
102
276cbe5a 103#define __malloc_size_t size_t
276cbe5a 104extern __malloc_size_t _bytes_used;
3e60b029 105extern __malloc_size_t __malloc_extra_blocks;
2e471eb5
GM
106
107#endif /* not DOUG_LEA_MALLOC */
276cbe5a 108
aa477689
JD
109#if ! defined (SYSTEM_MALLOC) && defined (HAVE_GTK_AND_PTHREAD)
110
f415cacd
JD
111/* When GTK uses the file chooser dialog, different backends can be loaded
112 dynamically. One such a backend is the Gnome VFS backend that gets loaded
113 if you run Gnome. That backend creates several threads and also allocates
114 memory with malloc.
115
116 If Emacs sets malloc hooks (! SYSTEM_MALLOC) and the emacs_blocked_*
117 functions below are called from malloc, there is a chance that one
118 of these threads preempts the Emacs main thread and the hook variables
333f1b6f 119 end up in an inconsistent state. So we have a mutex to prevent that (note
f415cacd
JD
120 that the backend handles concurrent access to malloc within its own threads
121 but Emacs code running in the main thread is not included in that control).
122
026cdede 123 When UNBLOCK_INPUT is called, reinvoke_input_signal may be called. If this
f415cacd
JD
124 happens in one of the backend threads we will have two threads that tries
125 to run Emacs code at once, and the code is not prepared for that.
126 To prevent that, we only call BLOCK/UNBLOCK from the main thread. */
127
aa477689 128static pthread_mutex_t alloc_mutex;
aa477689
JD
129
130#define BLOCK_INPUT_ALLOC \
131 do \
132 { \
f3c4a0e1
YM
133 if (pthread_self () == main_thread) \
134 BLOCK_INPUT; \
135 pthread_mutex_lock (&alloc_mutex); \
aa477689
JD
136 } \
137 while (0)
138#define UNBLOCK_INPUT_ALLOC \
139 do \
140 { \
f3c4a0e1
YM
141 pthread_mutex_unlock (&alloc_mutex); \
142 if (pthread_self () == main_thread) \
143 UNBLOCK_INPUT; \
aa477689
JD
144 } \
145 while (0)
146
147#else /* SYSTEM_MALLOC || not HAVE_GTK_AND_PTHREAD */
148
149#define BLOCK_INPUT_ALLOC BLOCK_INPUT
150#define UNBLOCK_INPUT_ALLOC UNBLOCK_INPUT
151
152#endif /* SYSTEM_MALLOC || not HAVE_GTK_AND_PTHREAD */
153
276cbe5a 154/* Value of _bytes_used, when spare_memory was freed. */
2e471eb5 155
276cbe5a
RS
156static __malloc_size_t bytes_used_when_full;
157
4d74a5fc
RS
158static __malloc_size_t bytes_used_when_reconsidered;
159
2e471eb5
GM
160/* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
161 to a struct Lisp_String. */
162
7cdee936
SM
163#define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
164#define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
b059de99 165#define STRING_MARKED_P(S) (((S)->size & ARRAY_MARK_FLAG) != 0)
2e471eb5 166
3ef06d12
SM
167#define VECTOR_MARK(V) ((V)->size |= ARRAY_MARK_FLAG)
168#define VECTOR_UNMARK(V) ((V)->size &= ~ARRAY_MARK_FLAG)
b059de99 169#define VECTOR_MARKED_P(V) (((V)->size & ARRAY_MARK_FLAG) != 0)
3ef06d12 170
2e471eb5
GM
171/* Value is the number of bytes/chars of S, a pointer to a struct
172 Lisp_String. This must be used instead of STRING_BYTES (S) or
173 S->size during GC, because S->size contains the mark bit for
174 strings. */
175
3ef06d12 176#define GC_STRING_BYTES(S) (STRING_BYTES (S))
7cdee936 177#define GC_STRING_CHARS(S) ((S)->size & ~ARRAY_MARK_FLAG)
2e471eb5
GM
178
179/* Number of bytes of consing done since the last gc. */
180
7146af97
JB
181int consing_since_gc;
182
310ea200 183/* Count the amount of consing of various sorts of space. */
2e471eb5 184
31ade731
SM
185EMACS_INT cons_cells_consed;
186EMACS_INT floats_consed;
187EMACS_INT vector_cells_consed;
188EMACS_INT symbols_consed;
189EMACS_INT string_chars_consed;
190EMACS_INT misc_objects_consed;
191EMACS_INT intervals_consed;
192EMACS_INT strings_consed;
2e471eb5 193
974aae61
RS
194/* Minimum number of bytes of consing since GC before next GC. */
195
196EMACS_INT gc_cons_threshold;
197
198/* Similar minimum, computed from Vgc_cons_percentage. */
199
200EMACS_INT gc_relative_threshold;
310ea200 201
96f077ad 202static Lisp_Object Vgc_cons_percentage;
7146af97 203
24d8a105
RS
204/* Minimum number of bytes of consing since GC before next GC,
205 when memory is full. */
206
207EMACS_INT memory_full_cons_threshold;
208
2e471eb5
GM
209/* Nonzero during GC. */
210
7146af97
JB
211int gc_in_progress;
212
3de0effb
RS
213/* Nonzero means abort if try to GC.
214 This is for code which is written on the assumption that
215 no GC will happen, so as to verify that assumption. */
216
217int abort_on_gc;
218
299585ee 219/* Nonzero means display messages at beginning and end of GC. */
2e471eb5 220
299585ee
RS
221int garbage_collection_messages;
222
7146af97
JB
223#ifndef VIRT_ADDR_VARIES
224extern
225#endif /* VIRT_ADDR_VARIES */
2e471eb5 226int malloc_sbrk_used;
7146af97
JB
227
228#ifndef VIRT_ADDR_VARIES
229extern
230#endif /* VIRT_ADDR_VARIES */
2e471eb5 231int malloc_sbrk_unused;
7146af97 232
34400008
GM
233/* Number of live and free conses etc. */
234
235static int total_conses, total_markers, total_symbols, total_vector_size;
236static int total_free_conses, total_free_markers, total_free_symbols;
237static int total_free_floats, total_floats;
fd27a537 238
2e471eb5 239/* Points to memory space allocated as "spare", to be freed if we run
24d8a105
RS
240 out of memory. We keep one large block, four cons-blocks, and
241 two string blocks. */
2e471eb5 242
24d8a105 243char *spare_memory[7];
276cbe5a 244
24d8a105 245/* Amount of spare memory to keep in large reserve block. */
2e471eb5 246
276cbe5a
RS
247#define SPARE_MEMORY (1 << 14)
248
249/* Number of extra blocks malloc should get when it needs more core. */
2e471eb5 250
276cbe5a
RS
251static int malloc_hysteresis;
252
2e471eb5
GM
253/* Non-nil means defun should do purecopy on the function definition. */
254
7146af97
JB
255Lisp_Object Vpurify_flag;
256
74a54b04
RS
257/* Non-nil means we are handling a memory-full error. */
258
259Lisp_Object Vmemory_full;
260
7146af97 261#ifndef HAVE_SHM
2e471eb5 262
1b8950e5
RS
263/* Initialize it to a nonzero value to force it into data space
264 (rather than bss space). That way unexec will remap it into text
265 space (pure), on some systems. We have not implemented the
266 remapping on more recent systems because this is less important
267 nowadays than in the days of small memories and timesharing. */
2e471eb5 268
379b98b1 269EMACS_INT pure[PURESIZE / sizeof (EMACS_INT)] = {1,};
7146af97 270#define PUREBEG (char *) pure
2e471eb5 271
9e713715 272#else /* HAVE_SHM */
2e471eb5 273
7146af97
JB
274#define pure PURE_SEG_BITS /* Use shared memory segment */
275#define PUREBEG (char *)PURE_SEG_BITS
4c0be5f4 276
9e713715 277#endif /* HAVE_SHM */
2e471eb5 278
9e713715 279/* Pointer to the pure area, and its size. */
2e471eb5 280
9e713715
GM
281static char *purebeg;
282static size_t pure_size;
283
284/* Number of bytes of pure storage used before pure storage overflowed.
285 If this is non-zero, this implies that an overflow occurred. */
286
287static size_t pure_bytes_used_before_overflow;
7146af97 288
34400008
GM
289/* Value is non-zero if P points into pure space. */
290
291#define PURE_POINTER_P(P) \
292 (((PNTR_COMPARISON_TYPE) (P) \
9e713715 293 < (PNTR_COMPARISON_TYPE) ((char *) purebeg + pure_size)) \
34400008 294 && ((PNTR_COMPARISON_TYPE) (P) \
9e713715 295 >= (PNTR_COMPARISON_TYPE) purebeg))
34400008 296
e5bc14d4 297/* Total number of bytes allocated in pure storage. */
2e471eb5 298
31ade731 299EMACS_INT pure_bytes_used;
7146af97 300
e5bc14d4
YM
301/* Index in pure at which next pure Lisp object will be allocated.. */
302
303static EMACS_INT pure_bytes_used_lisp;
304
305/* Number of bytes allocated for non-Lisp objects in pure storage. */
306
307static EMACS_INT pure_bytes_used_non_lisp;
308
2e471eb5
GM
309/* If nonzero, this is a warning delivered by malloc and not yet
310 displayed. */
311
7146af97
JB
312char *pending_malloc_warning;
313
bcb61d60 314/* Pre-computed signal argument for use when memory is exhausted. */
2e471eb5 315
74a54b04 316Lisp_Object Vmemory_signal_data;
bcb61d60 317
7146af97
JB
318/* Maximum amount of C stack to save when a GC happens. */
319
320#ifndef MAX_SAVE_STACK
321#define MAX_SAVE_STACK 16000
322#endif
323
324/* Buffer in which we save a copy of the C stack at each GC. */
325
326char *stack_copy;
327int stack_copy_size;
328
2e471eb5
GM
329/* Non-zero means ignore malloc warnings. Set during initialization.
330 Currently not used. */
331
7146af97 332int ignore_warnings;
350273a4 333
a59de17b 334Lisp_Object Qgc_cons_threshold, Qchar_table_extra_slots;
e8197642 335
9e713715
GM
336/* Hook run after GC has finished. */
337
338Lisp_Object Vpost_gc_hook, Qpost_gc_hook;
339
2c5bd608
DL
340Lisp_Object Vgc_elapsed; /* accumulated elapsed time in GC */
341EMACS_INT gcs_done; /* accumulated GCs */
342
2e471eb5 343static void mark_buffer P_ ((Lisp_Object));
6793bc63 344extern void mark_kboards P_ ((void));
b40ea20a 345extern void mark_backtrace P_ ((void));
2e471eb5 346static void gc_sweep P_ ((void));
41c28a37
GM
347static void mark_glyph_matrix P_ ((struct glyph_matrix *));
348static void mark_face_cache P_ ((struct face_cache *));
349
350#ifdef HAVE_WINDOW_SYSTEM
454d7973 351extern void mark_fringe_data P_ ((void));
41c28a37
GM
352static void mark_image P_ ((struct image *));
353static void mark_image_cache P_ ((struct frame *));
354#endif /* HAVE_WINDOW_SYSTEM */
355
2e471eb5
GM
356static struct Lisp_String *allocate_string P_ ((void));
357static void compact_small_strings P_ ((void));
358static void free_large_strings P_ ((void));
359static void sweep_strings P_ ((void));
7da0b0d3
RS
360
361extern int message_enable_multibyte;
34400008 362
34400008
GM
363/* When scanning the C stack for live Lisp objects, Emacs keeps track
364 of what memory allocated via lisp_malloc is intended for what
365 purpose. This enumeration specifies the type of memory. */
366
367enum mem_type
368{
369 MEM_TYPE_NON_LISP,
370 MEM_TYPE_BUFFER,
371 MEM_TYPE_CONS,
372 MEM_TYPE_STRING,
373 MEM_TYPE_MISC,
374 MEM_TYPE_SYMBOL,
375 MEM_TYPE_FLOAT,
ece93c02
GM
376 /* Keep the following vector-like types together, with
377 MEM_TYPE_WINDOW being the last, and MEM_TYPE_VECTOR the
378 first. Or change the code of live_vector_p, for instance. */
379 MEM_TYPE_VECTOR,
380 MEM_TYPE_PROCESS,
381 MEM_TYPE_HASH_TABLE,
382 MEM_TYPE_FRAME,
383 MEM_TYPE_WINDOW
34400008
GM
384};
385
24d8a105
RS
386static POINTER_TYPE *lisp_align_malloc P_ ((size_t, enum mem_type));
387static POINTER_TYPE *lisp_malloc P_ ((size_t, enum mem_type));
225ccad6
RS
388void refill_memory_reserve ();
389
24d8a105 390
877935b1 391#if GC_MARK_STACK || defined GC_MALLOC_CHECK
0b378936
GM
392
393#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
394#include <stdio.h> /* For fprintf. */
395#endif
396
397/* A unique object in pure space used to make some Lisp objects
398 on free lists recognizable in O(1). */
399
400Lisp_Object Vdead;
401
877935b1
GM
402#ifdef GC_MALLOC_CHECK
403
404enum mem_type allocated_mem_type;
405int dont_register_blocks;
406
407#endif /* GC_MALLOC_CHECK */
408
409/* A node in the red-black tree describing allocated memory containing
410 Lisp data. Each such block is recorded with its start and end
411 address when it is allocated, and removed from the tree when it
412 is freed.
413
414 A red-black tree is a balanced binary tree with the following
415 properties:
416
417 1. Every node is either red or black.
418 2. Every leaf is black.
419 3. If a node is red, then both of its children are black.
420 4. Every simple path from a node to a descendant leaf contains
421 the same number of black nodes.
422 5. The root is always black.
423
424 When nodes are inserted into the tree, or deleted from the tree,
425 the tree is "fixed" so that these properties are always true.
426
427 A red-black tree with N internal nodes has height at most 2
428 log(N+1). Searches, insertions and deletions are done in O(log N).
429 Please see a text book about data structures for a detailed
430 description of red-black trees. Any book worth its salt should
431 describe them. */
432
433struct mem_node
434{
9f7d9210
RS
435 /* Children of this node. These pointers are never NULL. When there
436 is no child, the value is MEM_NIL, which points to a dummy node. */
437 struct mem_node *left, *right;
438
439 /* The parent of this node. In the root node, this is NULL. */
440 struct mem_node *parent;
877935b1
GM
441
442 /* Start and end of allocated region. */
443 void *start, *end;
444
445 /* Node color. */
446 enum {MEM_BLACK, MEM_RED} color;
177c0ea7 447
877935b1
GM
448 /* Memory type. */
449 enum mem_type type;
450};
451
452/* Base address of stack. Set in main. */
453
454Lisp_Object *stack_base;
455
456/* Root of the tree describing allocated Lisp memory. */
457
458static struct mem_node *mem_root;
459
ece93c02
GM
460/* Lowest and highest known address in the heap. */
461
462static void *min_heap_address, *max_heap_address;
463
877935b1
GM
464/* Sentinel node of the tree. */
465
466static struct mem_node mem_z;
467#define MEM_NIL &mem_z
468
b3303f74 469static POINTER_TYPE *lisp_malloc P_ ((size_t, enum mem_type));
ece93c02 470static struct Lisp_Vector *allocate_vectorlike P_ ((EMACS_INT, enum mem_type));
bf952fb6 471static void lisp_free P_ ((POINTER_TYPE *));
34400008 472static void mark_stack P_ ((void));
34400008
GM
473static int live_vector_p P_ ((struct mem_node *, void *));
474static int live_buffer_p P_ ((struct mem_node *, void *));
475static int live_string_p P_ ((struct mem_node *, void *));
476static int live_cons_p P_ ((struct mem_node *, void *));
477static int live_symbol_p P_ ((struct mem_node *, void *));
478static int live_float_p P_ ((struct mem_node *, void *));
479static int live_misc_p P_ ((struct mem_node *, void *));
182ff242 480static void mark_maybe_object P_ ((Lisp_Object));
34400008
GM
481static void mark_memory P_ ((void *, void *));
482static void mem_init P_ ((void));
483static struct mem_node *mem_insert P_ ((void *, void *, enum mem_type));
484static void mem_insert_fixup P_ ((struct mem_node *));
485static void mem_rotate_left P_ ((struct mem_node *));
486static void mem_rotate_right P_ ((struct mem_node *));
487static void mem_delete P_ ((struct mem_node *));
488static void mem_delete_fixup P_ ((struct mem_node *));
489static INLINE struct mem_node *mem_find P_ ((void *));
24d8a105 490
34400008
GM
491
492#if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
493static void check_gcpros P_ ((void));
494#endif
495
877935b1 496#endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
34400008 497
1f0b3fd2
GM
498/* Recording what needs to be marked for gc. */
499
500struct gcpro *gcprolist;
501
379b98b1
PE
502/* Addresses of staticpro'd variables. Initialize it to a nonzero
503 value; otherwise some compilers put it into BSS. */
1f0b3fd2 504
382d38fa 505#define NSTATICS 1280
379b98b1 506Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
1f0b3fd2
GM
507
508/* Index of next unused slot in staticvec. */
509
510int staticidx = 0;
511
512static POINTER_TYPE *pure_alloc P_ ((size_t, int));
513
514
515/* Value is SZ rounded up to the next multiple of ALIGNMENT.
516 ALIGNMENT must be a power of 2. */
517
ab6780cd
SM
518#define ALIGN(ptr, ALIGNMENT) \
519 ((POINTER_TYPE *) ((((EMACS_UINT)(ptr)) + (ALIGNMENT) - 1) \
520 & ~((ALIGNMENT) - 1)))
1f0b3fd2 521
ece93c02 522
7146af97 523\f
34400008
GM
524/************************************************************************
525 Malloc
526 ************************************************************************/
527
4455ad75 528/* Function malloc calls this if it finds we are near exhausting storage. */
d457598b
AS
529
530void
7146af97
JB
531malloc_warning (str)
532 char *str;
533{
534 pending_malloc_warning = str;
535}
536
34400008 537
4455ad75 538/* Display an already-pending malloc warning. */
34400008 539
d457598b 540void
7146af97
JB
541display_malloc_warning ()
542{
4455ad75
RS
543 call3 (intern ("display-warning"),
544 intern ("alloc"),
545 build_string (pending_malloc_warning),
546 intern ("emergency"));
7146af97 547 pending_malloc_warning = 0;
7146af97
JB
548}
549
34400008 550
d1658221 551#ifdef DOUG_LEA_MALLOC
4d74a5fc 552# define BYTES_USED (mallinfo ().uordblks)
d1658221 553#else
1177ecf6 554# define BYTES_USED _bytes_used
d1658221 555#endif
49efed3a 556\f
276cbe5a
RS
557/* Called if we can't allocate relocatable space for a buffer. */
558
559void
560buffer_memory_full ()
561{
2e471eb5
GM
562 /* If buffers use the relocating allocator, no need to free
563 spare_memory, because we may have plenty of malloc space left
564 that we could get, and if we don't, the malloc that fails will
565 itself cause spare_memory to be freed. If buffers don't use the
566 relocating allocator, treat this like any other failing
567 malloc. */
276cbe5a
RS
568
569#ifndef REL_ALLOC
570 memory_full ();
571#endif
572
2e471eb5
GM
573 /* This used to call error, but if we've run out of memory, we could
574 get infinite recursion trying to build the string. */
9b306d37 575 xsignal (Qnil, Vmemory_signal_data);
7146af97
JB
576}
577
34400008 578
212f33f1
KS
579#ifdef XMALLOC_OVERRUN_CHECK
580
bdbed949
KS
581/* Check for overrun in malloc'ed buffers by wrapping a 16 byte header
582 and a 16 byte trailer around each block.
583
584 The header consists of 12 fixed bytes + a 4 byte integer contaning the
585 original block size, while the trailer consists of 16 fixed bytes.
586
587 The header is used to detect whether this block has been allocated
588 through these functions -- as it seems that some low-level libc
589 functions may bypass the malloc hooks.
590*/
591
592
212f33f1 593#define XMALLOC_OVERRUN_CHECK_SIZE 16
bdbed949 594
212f33f1
KS
595static char xmalloc_overrun_check_header[XMALLOC_OVERRUN_CHECK_SIZE-4] =
596 { 0x9a, 0x9b, 0xae, 0xaf,
597 0xbf, 0xbe, 0xce, 0xcf,
598 0xea, 0xeb, 0xec, 0xed };
599
600static char xmalloc_overrun_check_trailer[XMALLOC_OVERRUN_CHECK_SIZE] =
601 { 0xaa, 0xab, 0xac, 0xad,
602 0xba, 0xbb, 0xbc, 0xbd,
603 0xca, 0xcb, 0xcc, 0xcd,
604 0xda, 0xdb, 0xdc, 0xdd };
605
bdbed949
KS
606/* Macros to insert and extract the block size in the header. */
607
608#define XMALLOC_PUT_SIZE(ptr, size) \
609 (ptr[-1] = (size & 0xff), \
610 ptr[-2] = ((size >> 8) & 0xff), \
611 ptr[-3] = ((size >> 16) & 0xff), \
612 ptr[-4] = ((size >> 24) & 0xff))
613
614#define XMALLOC_GET_SIZE(ptr) \
615 (size_t)((unsigned)(ptr[-1]) | \
616 ((unsigned)(ptr[-2]) << 8) | \
617 ((unsigned)(ptr[-3]) << 16) | \
618 ((unsigned)(ptr[-4]) << 24))
619
620
d8f165a8
JD
621/* The call depth in overrun_check functions. For example, this might happen:
622 xmalloc()
623 overrun_check_malloc()
624 -> malloc -> (via hook)_-> emacs_blocked_malloc
625 -> overrun_check_malloc
626 call malloc (hooks are NULL, so real malloc is called).
627 malloc returns 10000.
628 add overhead, return 10016.
629 <- (back in overrun_check_malloc)
857ae68b 630 add overhead again, return 10032
d8f165a8 631 xmalloc returns 10032.
857ae68b
JD
632
633 (time passes).
634
d8f165a8
JD
635 xfree(10032)
636 overrun_check_free(10032)
637 decrease overhed
638 free(10016) <- crash, because 10000 is the original pointer. */
857ae68b
JD
639
640static int check_depth;
641
bdbed949
KS
642/* Like malloc, but wraps allocated block with header and trailer. */
643
212f33f1
KS
644POINTER_TYPE *
645overrun_check_malloc (size)
646 size_t size;
647{
bdbed949 648 register unsigned char *val;
857ae68b 649 size_t overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_SIZE*2 : 0;
212f33f1 650
857ae68b
JD
651 val = (unsigned char *) malloc (size + overhead);
652 if (val && check_depth == 1)
212f33f1
KS
653 {
654 bcopy (xmalloc_overrun_check_header, val, XMALLOC_OVERRUN_CHECK_SIZE - 4);
212f33f1 655 val += XMALLOC_OVERRUN_CHECK_SIZE;
bdbed949 656 XMALLOC_PUT_SIZE(val, size);
212f33f1
KS
657 bcopy (xmalloc_overrun_check_trailer, val + size, XMALLOC_OVERRUN_CHECK_SIZE);
658 }
857ae68b 659 --check_depth;
212f33f1
KS
660 return (POINTER_TYPE *)val;
661}
662
bdbed949
KS
663
664/* Like realloc, but checks old block for overrun, and wraps new block
665 with header and trailer. */
666
212f33f1
KS
667POINTER_TYPE *
668overrun_check_realloc (block, size)
669 POINTER_TYPE *block;
670 size_t size;
671{
bdbed949 672 register unsigned char *val = (unsigned char *)block;
857ae68b 673 size_t overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_SIZE*2 : 0;
212f33f1
KS
674
675 if (val
857ae68b 676 && check_depth == 1
212f33f1
KS
677 && bcmp (xmalloc_overrun_check_header,
678 val - XMALLOC_OVERRUN_CHECK_SIZE,
679 XMALLOC_OVERRUN_CHECK_SIZE - 4) == 0)
680 {
bdbed949 681 size_t osize = XMALLOC_GET_SIZE (val);
212f33f1
KS
682 if (bcmp (xmalloc_overrun_check_trailer,
683 val + osize,
684 XMALLOC_OVERRUN_CHECK_SIZE))
685 abort ();
bdbed949 686 bzero (val + osize, XMALLOC_OVERRUN_CHECK_SIZE);
212f33f1 687 val -= XMALLOC_OVERRUN_CHECK_SIZE;
bdbed949 688 bzero (val, XMALLOC_OVERRUN_CHECK_SIZE);
212f33f1
KS
689 }
690
857ae68b 691 val = (unsigned char *) realloc ((POINTER_TYPE *)val, size + overhead);
212f33f1 692
857ae68b 693 if (val && check_depth == 1)
212f33f1
KS
694 {
695 bcopy (xmalloc_overrun_check_header, val, XMALLOC_OVERRUN_CHECK_SIZE - 4);
212f33f1 696 val += XMALLOC_OVERRUN_CHECK_SIZE;
bdbed949 697 XMALLOC_PUT_SIZE(val, size);
212f33f1
KS
698 bcopy (xmalloc_overrun_check_trailer, val + size, XMALLOC_OVERRUN_CHECK_SIZE);
699 }
857ae68b 700 --check_depth;
212f33f1
KS
701 return (POINTER_TYPE *)val;
702}
703
bdbed949
KS
704/* Like free, but checks block for overrun. */
705
212f33f1
KS
706void
707overrun_check_free (block)
708 POINTER_TYPE *block;
709{
bdbed949 710 unsigned char *val = (unsigned char *)block;
212f33f1 711
857ae68b 712 ++check_depth;
212f33f1 713 if (val
857ae68b 714 && check_depth == 1
212f33f1
KS
715 && bcmp (xmalloc_overrun_check_header,
716 val - XMALLOC_OVERRUN_CHECK_SIZE,
717 XMALLOC_OVERRUN_CHECK_SIZE - 4) == 0)
718 {
bdbed949 719 size_t osize = XMALLOC_GET_SIZE (val);
212f33f1
KS
720 if (bcmp (xmalloc_overrun_check_trailer,
721 val + osize,
722 XMALLOC_OVERRUN_CHECK_SIZE))
723 abort ();
454d7973
KS
724#ifdef XMALLOC_CLEAR_FREE_MEMORY
725 val -= XMALLOC_OVERRUN_CHECK_SIZE;
726 memset (val, 0xff, osize + XMALLOC_OVERRUN_CHECK_SIZE*2);
727#else
bdbed949 728 bzero (val + osize, XMALLOC_OVERRUN_CHECK_SIZE);
212f33f1 729 val -= XMALLOC_OVERRUN_CHECK_SIZE;
bdbed949 730 bzero (val, XMALLOC_OVERRUN_CHECK_SIZE);
454d7973 731#endif
212f33f1
KS
732 }
733
734 free (val);
857ae68b 735 --check_depth;
212f33f1
KS
736}
737
738#undef malloc
739#undef realloc
740#undef free
741#define malloc overrun_check_malloc
742#define realloc overrun_check_realloc
743#define free overrun_check_free
744#endif
745
bdbed949
KS
746
747/* Like malloc but check for no memory and block interrupt input.. */
748
c971ff9a 749POINTER_TYPE *
7146af97 750xmalloc (size)
675d5130 751 size_t size;
7146af97 752{
c971ff9a 753 register POINTER_TYPE *val;
7146af97 754
9ac0d9e0 755 BLOCK_INPUT;
c971ff9a 756 val = (POINTER_TYPE *) malloc (size);
9ac0d9e0 757 UNBLOCK_INPUT;
7146af97 758
2e471eb5
GM
759 if (!val && size)
760 memory_full ();
7146af97
JB
761 return val;
762}
763
34400008
GM
764
765/* Like realloc but check for no memory and block interrupt input.. */
766
c971ff9a 767POINTER_TYPE *
7146af97 768xrealloc (block, size)
c971ff9a 769 POINTER_TYPE *block;
675d5130 770 size_t size;
7146af97 771{
c971ff9a 772 register POINTER_TYPE *val;
7146af97 773
9ac0d9e0 774 BLOCK_INPUT;
56d2031b
JB
775 /* We must call malloc explicitly when BLOCK is 0, since some
776 reallocs don't do this. */
777 if (! block)
c971ff9a 778 val = (POINTER_TYPE *) malloc (size);
f048679d 779 else
c971ff9a 780 val = (POINTER_TYPE *) realloc (block, size);
9ac0d9e0 781 UNBLOCK_INPUT;
7146af97
JB
782
783 if (!val && size) memory_full ();
784 return val;
785}
9ac0d9e0 786
34400008 787
d7489312 788/* Like free but block interrupt input. */
34400008 789
9ac0d9e0
JB
790void
791xfree (block)
c971ff9a 792 POINTER_TYPE *block;
9ac0d9e0
JB
793{
794 BLOCK_INPUT;
795 free (block);
796 UNBLOCK_INPUT;
24d8a105
RS
797 /* We don't call refill_memory_reserve here
798 because that duplicates doing so in emacs_blocked_free
799 and the criterion should go there. */
9ac0d9e0
JB
800}
801
c8099634 802
dca7c6a8
GM
803/* Like strdup, but uses xmalloc. */
804
805char *
806xstrdup (s)
943b873e 807 const char *s;
dca7c6a8 808{
675d5130 809 size_t len = strlen (s) + 1;
dca7c6a8
GM
810 char *p = (char *) xmalloc (len);
811 bcopy (s, p, len);
812 return p;
813}
814
815
f61bef8b
KS
816/* Unwind for SAFE_ALLOCA */
817
818Lisp_Object
819safe_alloca_unwind (arg)
820 Lisp_Object arg;
821{
b766f870
KS
822 register struct Lisp_Save_Value *p = XSAVE_VALUE (arg);
823
824 p->dogc = 0;
825 xfree (p->pointer);
826 p->pointer = 0;
7b7990cc 827 free_misc (arg);
f61bef8b
KS
828 return Qnil;
829}
830
831
34400008
GM
832/* Like malloc but used for allocating Lisp data. NBYTES is the
833 number of bytes to allocate, TYPE describes the intended use of the
834 allcated memory block (for strings, for conses, ...). */
835
212f33f1 836#ifndef USE_LSB_TAG
918a23a7 837static void *lisp_malloc_loser;
212f33f1 838#endif
918a23a7 839
675d5130 840static POINTER_TYPE *
34400008 841lisp_malloc (nbytes, type)
675d5130 842 size_t nbytes;
34400008 843 enum mem_type type;
c8099634 844{
34400008 845 register void *val;
c8099634
RS
846
847 BLOCK_INPUT;
877935b1
GM
848
849#ifdef GC_MALLOC_CHECK
850 allocated_mem_type = type;
851#endif
177c0ea7 852
34400008 853 val = (void *) malloc (nbytes);
c8099634 854
831b476c 855#ifndef USE_LSB_TAG
918a23a7
RS
856 /* If the memory just allocated cannot be addressed thru a Lisp
857 object's pointer, and it needs to be,
858 that's equivalent to running out of memory. */
859 if (val && type != MEM_TYPE_NON_LISP)
860 {
861 Lisp_Object tem;
862 XSETCONS (tem, (char *) val + nbytes - 1);
863 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
864 {
865 lisp_malloc_loser = val;
866 free (val);
867 val = 0;
868 }
869 }
831b476c 870#endif
918a23a7 871
877935b1 872#if GC_MARK_STACK && !defined GC_MALLOC_CHECK
dca7c6a8 873 if (val && type != MEM_TYPE_NON_LISP)
34400008
GM
874 mem_insert (val, (char *) val + nbytes, type);
875#endif
177c0ea7 876
dca7c6a8
GM
877 UNBLOCK_INPUT;
878 if (!val && nbytes)
879 memory_full ();
c8099634
RS
880 return val;
881}
882
34400008
GM
883/* Free BLOCK. This must be called to free memory allocated with a
884 call to lisp_malloc. */
885
bf952fb6 886static void
c8099634 887lisp_free (block)
675d5130 888 POINTER_TYPE *block;
c8099634
RS
889{
890 BLOCK_INPUT;
c8099634 891 free (block);
877935b1 892#if GC_MARK_STACK && !defined GC_MALLOC_CHECK
34400008
GM
893 mem_delete (mem_find (block));
894#endif
c8099634
RS
895 UNBLOCK_INPUT;
896}
34400008 897
ab6780cd
SM
898/* Allocation of aligned blocks of memory to store Lisp data. */
899/* The entry point is lisp_align_malloc which returns blocks of at most */
900/* BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
901
349a4500
SM
902/* Use posix_memalloc if the system has it and we're using the system's
903 malloc (because our gmalloc.c routines don't have posix_memalign although
904 its memalloc could be used). */
b4181b01
KS
905#if defined (HAVE_POSIX_MEMALIGN) && defined (SYSTEM_MALLOC)
906#define USE_POSIX_MEMALIGN 1
907#endif
ab6780cd
SM
908
909/* BLOCK_ALIGN has to be a power of 2. */
910#define BLOCK_ALIGN (1 << 10)
ab6780cd
SM
911
912/* Padding to leave at the end of a malloc'd block. This is to give
913 malloc a chance to minimize the amount of memory wasted to alignment.
914 It should be tuned to the particular malloc library used.
19bcad1f
SM
915 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
916 posix_memalign on the other hand would ideally prefer a value of 4
917 because otherwise, there's 1020 bytes wasted between each ablocks.
f501ccb4
SM
918 In Emacs, testing shows that those 1020 can most of the time be
919 efficiently used by malloc to place other objects, so a value of 0 can
920 still preferable unless you have a lot of aligned blocks and virtually
921 nothing else. */
19bcad1f
SM
922#define BLOCK_PADDING 0
923#define BLOCK_BYTES \
f501ccb4 924 (BLOCK_ALIGN - sizeof (struct ablock *) - BLOCK_PADDING)
19bcad1f
SM
925
926/* Internal data structures and constants. */
927
ab6780cd
SM
928#define ABLOCKS_SIZE 16
929
930/* An aligned block of memory. */
931struct ablock
932{
933 union
934 {
935 char payload[BLOCK_BYTES];
936 struct ablock *next_free;
937 } x;
938 /* `abase' is the aligned base of the ablocks. */
939 /* It is overloaded to hold the virtual `busy' field that counts
940 the number of used ablock in the parent ablocks.
941 The first ablock has the `busy' field, the others have the `abase'
942 field. To tell the difference, we assume that pointers will have
943 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
944 is used to tell whether the real base of the parent ablocks is `abase'
945 (if not, the word before the first ablock holds a pointer to the
946 real base). */
947 struct ablocks *abase;
948 /* The padding of all but the last ablock is unused. The padding of
949 the last ablock in an ablocks is not allocated. */
19bcad1f
SM
950#if BLOCK_PADDING
951 char padding[BLOCK_PADDING];
ebb8d410 952#endif
ab6780cd
SM
953};
954
955/* A bunch of consecutive aligned blocks. */
956struct ablocks
957{
958 struct ablock blocks[ABLOCKS_SIZE];
959};
960
961/* Size of the block requested from malloc or memalign. */
19bcad1f 962#define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
ab6780cd
SM
963
964#define ABLOCK_ABASE(block) \
965 (((unsigned long) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
966 ? (struct ablocks *)(block) \
967 : (block)->abase)
968
969/* Virtual `busy' field. */
970#define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
971
972/* Pointer to the (not necessarily aligned) malloc block. */
349a4500 973#ifdef USE_POSIX_MEMALIGN
19bcad1f
SM
974#define ABLOCKS_BASE(abase) (abase)
975#else
ab6780cd 976#define ABLOCKS_BASE(abase) \
03bb6a06 977 (1 & (long) ABLOCKS_BUSY (abase) ? abase : ((void**)abase)[-1])
19bcad1f 978#endif
ab6780cd
SM
979
980/* The list of free ablock. */
981static struct ablock *free_ablock;
982
983/* Allocate an aligned block of nbytes.
984 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
985 smaller or equal to BLOCK_BYTES. */
986static POINTER_TYPE *
987lisp_align_malloc (nbytes, type)
988 size_t nbytes;
989 enum mem_type type;
990{
991 void *base, *val;
992 struct ablocks *abase;
993
994 eassert (nbytes <= BLOCK_BYTES);
995
996 BLOCK_INPUT;
997
998#ifdef GC_MALLOC_CHECK
999 allocated_mem_type = type;
1000#endif
1001
1002 if (!free_ablock)
1003 {
d7489312
DL
1004 int i;
1005 EMACS_INT aligned; /* int gets warning casting to 64-bit pointer. */
ab6780cd
SM
1006
1007#ifdef DOUG_LEA_MALLOC
1008 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1009 because mapped region contents are not preserved in
1010 a dumped Emacs. */
1011 mallopt (M_MMAP_MAX, 0);
1012#endif
1013
349a4500 1014#ifdef USE_POSIX_MEMALIGN
19bcad1f
SM
1015 {
1016 int err = posix_memalign (&base, BLOCK_ALIGN, ABLOCKS_BYTES);
ab349c19
RS
1017 if (err)
1018 base = NULL;
1019 abase = base;
19bcad1f
SM
1020 }
1021#else
ab6780cd
SM
1022 base = malloc (ABLOCKS_BYTES);
1023 abase = ALIGN (base, BLOCK_ALIGN);
ab349c19
RS
1024#endif
1025
4532fdde
RS
1026 if (base == 0)
1027 {
1028 UNBLOCK_INPUT;
1029 memory_full ();
1030 }
ab6780cd
SM
1031
1032 aligned = (base == abase);
1033 if (!aligned)
1034 ((void**)abase)[-1] = base;
1035
1036#ifdef DOUG_LEA_MALLOC
1037 /* Back to a reasonable maximum of mmap'ed areas. */
1038 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1039#endif
1040
831b476c 1041#ifndef USE_LSB_TAG
f4446bbf
GM
1042 /* If the memory just allocated cannot be addressed thru a Lisp
1043 object's pointer, and it needs to be, that's equivalent to
1044 running out of memory. */
1045 if (type != MEM_TYPE_NON_LISP)
1046 {
1047 Lisp_Object tem;
1048 char *end = (char *) base + ABLOCKS_BYTES - 1;
1049 XSETCONS (tem, end);
1050 if ((char *) XCONS (tem) != end)
1051 {
1052 lisp_malloc_loser = base;
1053 free (base);
1054 UNBLOCK_INPUT;
1055 memory_full ();
1056 }
1057 }
831b476c 1058#endif
f4446bbf 1059
ab6780cd
SM
1060 /* Initialize the blocks and put them on the free list.
1061 Is `base' was not properly aligned, we can't use the last block. */
1062 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
1063 {
1064 abase->blocks[i].abase = abase;
1065 abase->blocks[i].x.next_free = free_ablock;
1066 free_ablock = &abase->blocks[i];
1067 }
03bb6a06 1068 ABLOCKS_BUSY (abase) = (struct ablocks *) (long) aligned;
ab6780cd 1069
19bcad1f 1070 eassert (0 == ((EMACS_UINT)abase) % BLOCK_ALIGN);
ab6780cd
SM
1071 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
1072 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
1073 eassert (ABLOCKS_BASE (abase) == base);
03bb6a06 1074 eassert (aligned == (long) ABLOCKS_BUSY (abase));
ab6780cd
SM
1075 }
1076
1077 abase = ABLOCK_ABASE (free_ablock);
03bb6a06 1078 ABLOCKS_BUSY (abase) = (struct ablocks *) (2 + (long) ABLOCKS_BUSY (abase));
ab6780cd
SM
1079 val = free_ablock;
1080 free_ablock = free_ablock->x.next_free;
1081
ab6780cd
SM
1082#if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1083 if (val && type != MEM_TYPE_NON_LISP)
1084 mem_insert (val, (char *) val + nbytes, type);
1085#endif
1086
1087 UNBLOCK_INPUT;
1088 if (!val && nbytes)
1089 memory_full ();
1090
1091 eassert (0 == ((EMACS_UINT)val) % BLOCK_ALIGN);
1092 return val;
1093}
1094
1095static void
1096lisp_align_free (block)
1097 POINTER_TYPE *block;
1098{
1099 struct ablock *ablock = block;
1100 struct ablocks *abase = ABLOCK_ABASE (ablock);
1101
1102 BLOCK_INPUT;
1103#if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1104 mem_delete (mem_find (block));
1105#endif
1106 /* Put on free list. */
1107 ablock->x.next_free = free_ablock;
1108 free_ablock = ablock;
1109 /* Update busy count. */
03bb6a06 1110 ABLOCKS_BUSY (abase) = (struct ablocks *) (-2 + (long) ABLOCKS_BUSY (abase));
d2db1c32 1111
03bb6a06 1112 if (2 > (long) ABLOCKS_BUSY (abase))
ab6780cd 1113 { /* All the blocks are free. */
03bb6a06 1114 int i = 0, aligned = (long) ABLOCKS_BUSY (abase);
ab6780cd
SM
1115 struct ablock **tem = &free_ablock;
1116 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
1117
1118 while (*tem)
1119 {
1120 if (*tem >= (struct ablock *) abase && *tem < atop)
1121 {
1122 i++;
1123 *tem = (*tem)->x.next_free;
1124 }
1125 else
1126 tem = &(*tem)->x.next_free;
1127 }
1128 eassert ((aligned & 1) == aligned);
1129 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
349a4500 1130#ifdef USE_POSIX_MEMALIGN
cfb2f32e
SM
1131 eassert ((unsigned long)ABLOCKS_BASE (abase) % BLOCK_ALIGN == 0);
1132#endif
ab6780cd
SM
1133 free (ABLOCKS_BASE (abase));
1134 }
1135 UNBLOCK_INPUT;
1136}
3ef06d12
SM
1137
1138/* Return a new buffer structure allocated from the heap with
1139 a call to lisp_malloc. */
1140
1141struct buffer *
1142allocate_buffer ()
1143{
1144 struct buffer *b
1145 = (struct buffer *) lisp_malloc (sizeof (struct buffer),
1146 MEM_TYPE_BUFFER);
1147 return b;
1148}
1149
9ac0d9e0 1150\f
026cdede
SM
1151#ifndef SYSTEM_MALLOC
1152
9ac0d9e0
JB
1153/* Arranging to disable input signals while we're in malloc.
1154
1155 This only works with GNU malloc. To help out systems which can't
1156 use GNU malloc, all the calls to malloc, realloc, and free
1157 elsewhere in the code should be inside a BLOCK_INPUT/UNBLOCK_INPUT
026cdede 1158 pair; unfortunately, we have no idea what C library functions
9ac0d9e0 1159 might call malloc, so we can't really protect them unless you're
2c5bd608
DL
1160 using GNU malloc. Fortunately, most of the major operating systems
1161 can use GNU malloc. */
9ac0d9e0 1162
026cdede
SM
1163#ifndef SYNC_INPUT
1164
b3303f74 1165#ifndef DOUG_LEA_MALLOC
fa8459a3
DN
1166extern void * (*__malloc_hook) P_ ((size_t, const void *));
1167extern void * (*__realloc_hook) P_ ((void *, size_t, const void *));
1168extern void (*__free_hook) P_ ((void *, const void *));
b3303f74
DL
1169/* Else declared in malloc.h, perhaps with an extra arg. */
1170#endif /* DOUG_LEA_MALLOC */
fa8459a3
DN
1171static void * (*old_malloc_hook) P_ ((size_t, const void *));
1172static void * (*old_realloc_hook) P_ ((void *, size_t, const void*));
1173static void (*old_free_hook) P_ ((void*, const void*));
9ac0d9e0 1174
276cbe5a
RS
1175/* This function is used as the hook for free to call. */
1176
9ac0d9e0 1177static void
fa8459a3 1178emacs_blocked_free (ptr, ptr2)
9ac0d9e0 1179 void *ptr;
fa8459a3 1180 const void *ptr2;
9ac0d9e0 1181{
24d8a105
RS
1182 EMACS_INT bytes_used_now;
1183
aa477689 1184 BLOCK_INPUT_ALLOC;
877935b1
GM
1185
1186#ifdef GC_MALLOC_CHECK
a83fee2c
GM
1187 if (ptr)
1188 {
1189 struct mem_node *m;
177c0ea7 1190
a83fee2c
GM
1191 m = mem_find (ptr);
1192 if (m == MEM_NIL || m->start != ptr)
1193 {
1194 fprintf (stderr,
1195 "Freeing `%p' which wasn't allocated with malloc\n", ptr);
1196 abort ();
1197 }
1198 else
1199 {
1200 /* fprintf (stderr, "free %p...%p (%p)\n", m->start, m->end, ptr); */
1201 mem_delete (m);
1202 }
1203 }
877935b1 1204#endif /* GC_MALLOC_CHECK */
177c0ea7 1205
9ac0d9e0
JB
1206 __free_hook = old_free_hook;
1207 free (ptr);
177c0ea7 1208
276cbe5a
RS
1209 /* If we released our reserve (due to running out of memory),
1210 and we have a fair amount free once again,
1211 try to set aside another reserve in case we run out once more. */
24d8a105 1212 if (! NILP (Vmemory_full)
276cbe5a
RS
1213 /* Verify there is enough space that even with the malloc
1214 hysteresis this call won't run out again.
1215 The code here is correct as long as SPARE_MEMORY
1216 is substantially larger than the block size malloc uses. */
1217 && (bytes_used_when_full
4d74a5fc 1218 > ((bytes_used_when_reconsidered = BYTES_USED)
bccfb310 1219 + max (malloc_hysteresis, 4) * SPARE_MEMORY)))
24d8a105 1220 refill_memory_reserve ();
276cbe5a 1221
b0846f52 1222 __free_hook = emacs_blocked_free;
aa477689 1223 UNBLOCK_INPUT_ALLOC;
9ac0d9e0
JB
1224}
1225
34400008 1226
276cbe5a
RS
1227/* This function is the malloc hook that Emacs uses. */
1228
9ac0d9e0 1229static void *
fa8459a3 1230emacs_blocked_malloc (size, ptr)
675d5130 1231 size_t size;
fa8459a3 1232 const void *ptr;
9ac0d9e0
JB
1233{
1234 void *value;
1235
aa477689 1236 BLOCK_INPUT_ALLOC;
9ac0d9e0 1237 __malloc_hook = old_malloc_hook;
1177ecf6 1238#ifdef DOUG_LEA_MALLOC
d1658221 1239 mallopt (M_TOP_PAD, malloc_hysteresis * 4096);
1177ecf6 1240#else
d1658221 1241 __malloc_extra_blocks = malloc_hysteresis;
1177ecf6 1242#endif
877935b1 1243
2756d8ee 1244 value = (void *) malloc (size);
877935b1
GM
1245
1246#ifdef GC_MALLOC_CHECK
1247 {
1248 struct mem_node *m = mem_find (value);
1249 if (m != MEM_NIL)
1250 {
1251 fprintf (stderr, "Malloc returned %p which is already in use\n",
1252 value);
1253 fprintf (stderr, "Region in use is %p...%p, %u bytes, type %d\n",
1254 m->start, m->end, (char *) m->end - (char *) m->start,
1255 m->type);
1256 abort ();
1257 }
1258
1259 if (!dont_register_blocks)
1260 {
1261 mem_insert (value, (char *) value + max (1, size), allocated_mem_type);
1262 allocated_mem_type = MEM_TYPE_NON_LISP;
1263 }
1264 }
1265#endif /* GC_MALLOC_CHECK */
177c0ea7 1266
b0846f52 1267 __malloc_hook = emacs_blocked_malloc;
aa477689 1268 UNBLOCK_INPUT_ALLOC;
9ac0d9e0 1269
877935b1 1270 /* fprintf (stderr, "%p malloc\n", value); */
9ac0d9e0
JB
1271 return value;
1272}
1273
34400008
GM
1274
1275/* This function is the realloc hook that Emacs uses. */
1276
9ac0d9e0 1277static void *
fa8459a3 1278emacs_blocked_realloc (ptr, size, ptr2)
9ac0d9e0 1279 void *ptr;
675d5130 1280 size_t size;
fa8459a3 1281 const void *ptr2;
9ac0d9e0
JB
1282{
1283 void *value;
1284
aa477689 1285 BLOCK_INPUT_ALLOC;
9ac0d9e0 1286 __realloc_hook = old_realloc_hook;
877935b1
GM
1287
1288#ifdef GC_MALLOC_CHECK
1289 if (ptr)
1290 {
1291 struct mem_node *m = mem_find (ptr);
1292 if (m == MEM_NIL || m->start != ptr)
1293 {
1294 fprintf (stderr,
1295 "Realloc of %p which wasn't allocated with malloc\n",
1296 ptr);
1297 abort ();
1298 }
1299
1300 mem_delete (m);
1301 }
177c0ea7 1302
877935b1 1303 /* fprintf (stderr, "%p -> realloc\n", ptr); */
177c0ea7 1304
877935b1
GM
1305 /* Prevent malloc from registering blocks. */
1306 dont_register_blocks = 1;
1307#endif /* GC_MALLOC_CHECK */
1308
2756d8ee 1309 value = (void *) realloc (ptr, size);
877935b1
GM
1310
1311#ifdef GC_MALLOC_CHECK
1312 dont_register_blocks = 0;
1313
1314 {
1315 struct mem_node *m = mem_find (value);
1316 if (m != MEM_NIL)
1317 {
1318 fprintf (stderr, "Realloc returns memory that is already in use\n");
1319 abort ();
1320 }
1321
1322 /* Can't handle zero size regions in the red-black tree. */
1323 mem_insert (value, (char *) value + max (size, 1), MEM_TYPE_NON_LISP);
1324 }
177c0ea7 1325
877935b1
GM
1326 /* fprintf (stderr, "%p <- realloc\n", value); */
1327#endif /* GC_MALLOC_CHECK */
177c0ea7 1328
b0846f52 1329 __realloc_hook = emacs_blocked_realloc;
aa477689 1330 UNBLOCK_INPUT_ALLOC;
9ac0d9e0
JB
1331
1332 return value;
1333}
1334
34400008 1335
aa477689
JD
1336#ifdef HAVE_GTK_AND_PTHREAD
1337/* Called from Fdump_emacs so that when the dumped Emacs starts, it has a
1338 normal malloc. Some thread implementations need this as they call
1339 malloc before main. The pthread_self call in BLOCK_INPUT_ALLOC then
1340 calls malloc because it is the first call, and we have an endless loop. */
1341
1342void
1343reset_malloc_hooks ()
1344{
1345 __free_hook = 0;
1346 __malloc_hook = 0;
1347 __realloc_hook = 0;
1348}
1349#endif /* HAVE_GTK_AND_PTHREAD */
1350
1351
34400008
GM
1352/* Called from main to set up malloc to use our hooks. */
1353
9ac0d9e0
JB
1354void
1355uninterrupt_malloc ()
1356{
aa477689
JD
1357#ifdef HAVE_GTK_AND_PTHREAD
1358 pthread_mutexattr_t attr;
1359
1360 /* GLIBC has a faster way to do this, but lets keep it portable.
1361 This is according to the Single UNIX Specification. */
1362 pthread_mutexattr_init (&attr);
1363 pthread_mutexattr_settype (&attr, PTHREAD_MUTEX_RECURSIVE);
1364 pthread_mutex_init (&alloc_mutex, &attr);
aa477689
JD
1365#endif /* HAVE_GTK_AND_PTHREAD */
1366
c8099634
RS
1367 if (__free_hook != emacs_blocked_free)
1368 old_free_hook = __free_hook;
b0846f52 1369 __free_hook = emacs_blocked_free;
9ac0d9e0 1370
c8099634
RS
1371 if (__malloc_hook != emacs_blocked_malloc)
1372 old_malloc_hook = __malloc_hook;
b0846f52 1373 __malloc_hook = emacs_blocked_malloc;
9ac0d9e0 1374
c8099634
RS
1375 if (__realloc_hook != emacs_blocked_realloc)
1376 old_realloc_hook = __realloc_hook;
b0846f52 1377 __realloc_hook = emacs_blocked_realloc;
9ac0d9e0 1378}
2e471eb5 1379
026cdede 1380#endif /* not SYNC_INPUT */
2e471eb5
GM
1381#endif /* not SYSTEM_MALLOC */
1382
1383
7146af97 1384\f
2e471eb5
GM
1385/***********************************************************************
1386 Interval Allocation
1387 ***********************************************************************/
1a4f1e2c 1388
34400008
GM
1389/* Number of intervals allocated in an interval_block structure.
1390 The 1020 is 1024 minus malloc overhead. */
1391
d5e35230
JA
1392#define INTERVAL_BLOCK_SIZE \
1393 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1394
34400008
GM
1395/* Intervals are allocated in chunks in form of an interval_block
1396 structure. */
1397
d5e35230 1398struct interval_block
2e471eb5 1399{
d05b383a 1400 /* Place `intervals' first, to preserve alignment. */
2e471eb5 1401 struct interval intervals[INTERVAL_BLOCK_SIZE];
d05b383a 1402 struct interval_block *next;
2e471eb5 1403};
d5e35230 1404
34400008
GM
1405/* Current interval block. Its `next' pointer points to older
1406 blocks. */
1407
d5e35230 1408struct interval_block *interval_block;
34400008
GM
1409
1410/* Index in interval_block above of the next unused interval
1411 structure. */
1412
d5e35230 1413static int interval_block_index;
34400008
GM
1414
1415/* Number of free and live intervals. */
1416
2e471eb5 1417static int total_free_intervals, total_intervals;
d5e35230 1418
34400008
GM
1419/* List of free intervals. */
1420
d5e35230
JA
1421INTERVAL interval_free_list;
1422
c8099634 1423/* Total number of interval blocks now in use. */
2e471eb5 1424
c8099634
RS
1425int n_interval_blocks;
1426
34400008
GM
1427
1428/* Initialize interval allocation. */
1429
d5e35230
JA
1430static void
1431init_intervals ()
1432{
0930c1a1
SM
1433 interval_block = NULL;
1434 interval_block_index = INTERVAL_BLOCK_SIZE;
d5e35230 1435 interval_free_list = 0;
0930c1a1 1436 n_interval_blocks = 0;
d5e35230
JA
1437}
1438
34400008
GM
1439
1440/* Return a new interval. */
d5e35230
JA
1441
1442INTERVAL
1443make_interval ()
1444{
1445 INTERVAL val;
1446
e2984df0
CY
1447 /* eassert (!handling_signal); */
1448
1449#ifndef SYNC_INPUT
1450 BLOCK_INPUT;
1451#endif
cfb2f32e 1452
d5e35230
JA
1453 if (interval_free_list)
1454 {
1455 val = interval_free_list;
439d5cb4 1456 interval_free_list = INTERVAL_PARENT (interval_free_list);
d5e35230
JA
1457 }
1458 else
1459 {
1460 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1461 {
3c06d205
KH
1462 register struct interval_block *newi;
1463
34400008
GM
1464 newi = (struct interval_block *) lisp_malloc (sizeof *newi,
1465 MEM_TYPE_NON_LISP);
d5e35230 1466
d5e35230
JA
1467 newi->next = interval_block;
1468 interval_block = newi;
1469 interval_block_index = 0;
c8099634 1470 n_interval_blocks++;
d5e35230
JA
1471 }
1472 val = &interval_block->intervals[interval_block_index++];
1473 }
e2984df0
CY
1474
1475#ifndef SYNC_INPUT
1476 UNBLOCK_INPUT;
1477#endif
1478
d5e35230 1479 consing_since_gc += sizeof (struct interval);
310ea200 1480 intervals_consed++;
d5e35230 1481 RESET_INTERVAL (val);
2336fe58 1482 val->gcmarkbit = 0;
d5e35230
JA
1483 return val;
1484}
1485
34400008
GM
1486
1487/* Mark Lisp objects in interval I. */
d5e35230
JA
1488
1489static void
d393c068 1490mark_interval (i, dummy)
d5e35230 1491 register INTERVAL i;
d393c068 1492 Lisp_Object dummy;
d5e35230 1493{
2336fe58
SM
1494 eassert (!i->gcmarkbit); /* Intervals are never shared. */
1495 i->gcmarkbit = 1;
49723c04 1496 mark_object (i->plist);
d5e35230
JA
1497}
1498
34400008
GM
1499
1500/* Mark the interval tree rooted in TREE. Don't call this directly;
1501 use the macro MARK_INTERVAL_TREE instead. */
1502
d5e35230
JA
1503static void
1504mark_interval_tree (tree)
1505 register INTERVAL tree;
1506{
e8720644
JB
1507 /* No need to test if this tree has been marked already; this
1508 function is always called through the MARK_INTERVAL_TREE macro,
1509 which takes care of that. */
1510
1e934989 1511 traverse_intervals_noorder (tree, mark_interval, Qnil);
d5e35230
JA
1512}
1513
34400008
GM
1514
1515/* Mark the interval tree rooted in I. */
1516
e8720644
JB
1517#define MARK_INTERVAL_TREE(i) \
1518 do { \
2336fe58 1519 if (!NULL_INTERVAL_P (i) && !i->gcmarkbit) \
e8720644
JB
1520 mark_interval_tree (i); \
1521 } while (0)
d5e35230 1522
34400008 1523
2e471eb5
GM
1524#define UNMARK_BALANCE_INTERVALS(i) \
1525 do { \
1526 if (! NULL_INTERVAL_P (i)) \
2336fe58 1527 (i) = balance_intervals (i); \
2e471eb5 1528 } while (0)
d5e35230 1529
cc2d8c6b
KR
1530\f
1531/* Number support. If NO_UNION_TYPE isn't in effect, we
1532 can't create number objects in macros. */
1533#ifndef make_number
1534Lisp_Object
1535make_number (n)
217604da 1536 EMACS_INT n;
cc2d8c6b
KR
1537{
1538 Lisp_Object obj;
1539 obj.s.val = n;
1540 obj.s.type = Lisp_Int;
1541 return obj;
1542}
1543#endif
d5e35230 1544\f
2e471eb5
GM
1545/***********************************************************************
1546 String Allocation
1547 ***********************************************************************/
1a4f1e2c 1548
2e471eb5
GM
1549/* Lisp_Strings are allocated in string_block structures. When a new
1550 string_block is allocated, all the Lisp_Strings it contains are
e0fead5d 1551 added to a free-list string_free_list. When a new Lisp_String is
2e471eb5
GM
1552 needed, it is taken from that list. During the sweep phase of GC,
1553 string_blocks that are entirely free are freed, except two which
1554 we keep.
7146af97 1555
2e471eb5
GM
1556 String data is allocated from sblock structures. Strings larger
1557 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1558 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
7146af97 1559
2e471eb5
GM
1560 Sblocks consist internally of sdata structures, one for each
1561 Lisp_String. The sdata structure points to the Lisp_String it
1562 belongs to. The Lisp_String points back to the `u.data' member of
1563 its sdata structure.
7146af97 1564
2e471eb5
GM
1565 When a Lisp_String is freed during GC, it is put back on
1566 string_free_list, and its `data' member and its sdata's `string'
1567 pointer is set to null. The size of the string is recorded in the
1568 `u.nbytes' member of the sdata. So, sdata structures that are no
1569 longer used, can be easily recognized, and it's easy to compact the
1570 sblocks of small strings which we do in compact_small_strings. */
7146af97 1571
2e471eb5
GM
1572/* Size in bytes of an sblock structure used for small strings. This
1573 is 8192 minus malloc overhead. */
7146af97 1574
2e471eb5 1575#define SBLOCK_SIZE 8188
c8099634 1576
2e471eb5
GM
1577/* Strings larger than this are considered large strings. String data
1578 for large strings is allocated from individual sblocks. */
7146af97 1579
2e471eb5
GM
1580#define LARGE_STRING_BYTES 1024
1581
1582/* Structure describing string memory sub-allocated from an sblock.
1583 This is where the contents of Lisp strings are stored. */
1584
1585struct sdata
7146af97 1586{
2e471eb5
GM
1587 /* Back-pointer to the string this sdata belongs to. If null, this
1588 structure is free, and the NBYTES member of the union below
34400008 1589 contains the string's byte size (the same value that STRING_BYTES
2e471eb5
GM
1590 would return if STRING were non-null). If non-null, STRING_BYTES
1591 (STRING) is the size of the data, and DATA contains the string's
1592 contents. */
1593 struct Lisp_String *string;
7146af97 1594
31d929e5 1595#ifdef GC_CHECK_STRING_BYTES
177c0ea7 1596
31d929e5
GM
1597 EMACS_INT nbytes;
1598 unsigned char data[1];
177c0ea7 1599
31d929e5
GM
1600#define SDATA_NBYTES(S) (S)->nbytes
1601#define SDATA_DATA(S) (S)->data
177c0ea7 1602
31d929e5
GM
1603#else /* not GC_CHECK_STRING_BYTES */
1604
2e471eb5
GM
1605 union
1606 {
1607 /* When STRING in non-null. */
1608 unsigned char data[1];
1609
1610 /* When STRING is null. */
1611 EMACS_INT nbytes;
1612 } u;
177c0ea7 1613
31d929e5
GM
1614
1615#define SDATA_NBYTES(S) (S)->u.nbytes
1616#define SDATA_DATA(S) (S)->u.data
1617
1618#endif /* not GC_CHECK_STRING_BYTES */
2e471eb5
GM
1619};
1620
31d929e5 1621
2e471eb5
GM
1622/* Structure describing a block of memory which is sub-allocated to
1623 obtain string data memory for strings. Blocks for small strings
1624 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1625 as large as needed. */
1626
1627struct sblock
7146af97 1628{
2e471eb5
GM
1629 /* Next in list. */
1630 struct sblock *next;
7146af97 1631
2e471eb5
GM
1632 /* Pointer to the next free sdata block. This points past the end
1633 of the sblock if there isn't any space left in this block. */
1634 struct sdata *next_free;
1635
1636 /* Start of data. */
1637 struct sdata first_data;
1638};
1639
1640/* Number of Lisp strings in a string_block structure. The 1020 is
1641 1024 minus malloc overhead. */
1642
19bcad1f 1643#define STRING_BLOCK_SIZE \
2e471eb5
GM
1644 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1645
1646/* Structure describing a block from which Lisp_String structures
1647 are allocated. */
1648
1649struct string_block
7146af97 1650{
d05b383a 1651 /* Place `strings' first, to preserve alignment. */
19bcad1f 1652 struct Lisp_String strings[STRING_BLOCK_SIZE];
d05b383a 1653 struct string_block *next;
2e471eb5 1654};
7146af97 1655
2e471eb5
GM
1656/* Head and tail of the list of sblock structures holding Lisp string
1657 data. We always allocate from current_sblock. The NEXT pointers
1658 in the sblock structures go from oldest_sblock to current_sblock. */
3c06d205 1659
2e471eb5 1660static struct sblock *oldest_sblock, *current_sblock;
7146af97 1661
2e471eb5 1662/* List of sblocks for large strings. */
7146af97 1663
2e471eb5 1664static struct sblock *large_sblocks;
7146af97 1665
2e471eb5 1666/* List of string_block structures, and how many there are. */
7146af97 1667
2e471eb5
GM
1668static struct string_block *string_blocks;
1669static int n_string_blocks;
7146af97 1670
2e471eb5 1671/* Free-list of Lisp_Strings. */
7146af97 1672
2e471eb5 1673static struct Lisp_String *string_free_list;
7146af97 1674
2e471eb5 1675/* Number of live and free Lisp_Strings. */
c8099634 1676
2e471eb5 1677static int total_strings, total_free_strings;
7146af97 1678
2e471eb5
GM
1679/* Number of bytes used by live strings. */
1680
1681static int total_string_size;
1682
1683/* Given a pointer to a Lisp_String S which is on the free-list
1684 string_free_list, return a pointer to its successor in the
1685 free-list. */
1686
1687#define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1688
1689/* Return a pointer to the sdata structure belonging to Lisp string S.
1690 S must be live, i.e. S->data must not be null. S->data is actually
1691 a pointer to the `u.data' member of its sdata structure; the
1692 structure starts at a constant offset in front of that. */
177c0ea7 1693
31d929e5
GM
1694#ifdef GC_CHECK_STRING_BYTES
1695
1696#define SDATA_OF_STRING(S) \
1697 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *) \
1698 - sizeof (EMACS_INT)))
1699
1700#else /* not GC_CHECK_STRING_BYTES */
1701
2e471eb5
GM
1702#define SDATA_OF_STRING(S) \
1703 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *)))
1704
31d929e5
GM
1705#endif /* not GC_CHECK_STRING_BYTES */
1706
212f33f1
KS
1707
1708#ifdef GC_CHECK_STRING_OVERRUN
bdbed949
KS
1709
1710/* We check for overrun in string data blocks by appending a small
1711 "cookie" after each allocated string data block, and check for the
8349069c 1712 presence of this cookie during GC. */
bdbed949
KS
1713
1714#define GC_STRING_OVERRUN_COOKIE_SIZE 4
1715static char string_overrun_cookie[GC_STRING_OVERRUN_COOKIE_SIZE] =
1716 { 0xde, 0xad, 0xbe, 0xef };
1717
212f33f1 1718#else
bdbed949 1719#define GC_STRING_OVERRUN_COOKIE_SIZE 0
212f33f1
KS
1720#endif
1721
2e471eb5
GM
1722/* Value is the size of an sdata structure large enough to hold NBYTES
1723 bytes of string data. The value returned includes a terminating
1724 NUL byte, the size of the sdata structure, and padding. */
1725
31d929e5
GM
1726#ifdef GC_CHECK_STRING_BYTES
1727
2e471eb5
GM
1728#define SDATA_SIZE(NBYTES) \
1729 ((sizeof (struct Lisp_String *) \
1730 + (NBYTES) + 1 \
31d929e5 1731 + sizeof (EMACS_INT) \
2e471eb5
GM
1732 + sizeof (EMACS_INT) - 1) \
1733 & ~(sizeof (EMACS_INT) - 1))
1734
31d929e5
GM
1735#else /* not GC_CHECK_STRING_BYTES */
1736
1737#define SDATA_SIZE(NBYTES) \
1738 ((sizeof (struct Lisp_String *) \
1739 + (NBYTES) + 1 \
1740 + sizeof (EMACS_INT) - 1) \
1741 & ~(sizeof (EMACS_INT) - 1))
1742
1743#endif /* not GC_CHECK_STRING_BYTES */
2e471eb5 1744
bdbed949
KS
1745/* Extra bytes to allocate for each string. */
1746
1747#define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1748
2e471eb5 1749/* Initialize string allocation. Called from init_alloc_once. */
d457598b
AS
1750
1751void
2e471eb5 1752init_strings ()
7146af97 1753{
2e471eb5
GM
1754 total_strings = total_free_strings = total_string_size = 0;
1755 oldest_sblock = current_sblock = large_sblocks = NULL;
1756 string_blocks = NULL;
1757 n_string_blocks = 0;
1758 string_free_list = NULL;
7146af97
JB
1759}
1760
2e471eb5 1761
361b097f
GM
1762#ifdef GC_CHECK_STRING_BYTES
1763
361b097f
GM
1764static int check_string_bytes_count;
1765
676a7251
GM
1766void check_string_bytes P_ ((int));
1767void check_sblock P_ ((struct sblock *));
1768
1769#define CHECK_STRING_BYTES(S) STRING_BYTES (S)
1770
1771
1772/* Like GC_STRING_BYTES, but with debugging check. */
1773
1774int
1775string_bytes (s)
1776 struct Lisp_String *s;
1777{
7cdee936 1778 int nbytes = (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
676a7251
GM
1779 if (!PURE_POINTER_P (s)
1780 && s->data
1781 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1782 abort ();
1783 return nbytes;
1784}
177c0ea7 1785
2c5bd608 1786/* Check validity of Lisp strings' string_bytes member in B. */
676a7251 1787
361b097f 1788void
676a7251
GM
1789check_sblock (b)
1790 struct sblock *b;
361b097f 1791{
676a7251 1792 struct sdata *from, *end, *from_end;
177c0ea7 1793
676a7251 1794 end = b->next_free;
177c0ea7 1795
676a7251 1796 for (from = &b->first_data; from < end; from = from_end)
361b097f 1797 {
676a7251
GM
1798 /* Compute the next FROM here because copying below may
1799 overwrite data we need to compute it. */
1800 int nbytes;
177c0ea7 1801
676a7251
GM
1802 /* Check that the string size recorded in the string is the
1803 same as the one recorded in the sdata structure. */
1804 if (from->string)
1805 CHECK_STRING_BYTES (from->string);
177c0ea7 1806
676a7251
GM
1807 if (from->string)
1808 nbytes = GC_STRING_BYTES (from->string);
1809 else
1810 nbytes = SDATA_NBYTES (from);
177c0ea7 1811
676a7251 1812 nbytes = SDATA_SIZE (nbytes);
212f33f1 1813 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
676a7251
GM
1814 }
1815}
361b097f 1816
676a7251
GM
1817
1818/* Check validity of Lisp strings' string_bytes member. ALL_P
1819 non-zero means check all strings, otherwise check only most
1820 recently allocated strings. Used for hunting a bug. */
1821
1822void
1823check_string_bytes (all_p)
1824 int all_p;
1825{
1826 if (all_p)
1827 {
1828 struct sblock *b;
1829
1830 for (b = large_sblocks; b; b = b->next)
1831 {
1832 struct Lisp_String *s = b->first_data.string;
1833 if (s)
1834 CHECK_STRING_BYTES (s);
361b097f 1835 }
177c0ea7 1836
676a7251
GM
1837 for (b = oldest_sblock; b; b = b->next)
1838 check_sblock (b);
361b097f 1839 }
676a7251
GM
1840 else
1841 check_sblock (current_sblock);
361b097f
GM
1842}
1843
1844#endif /* GC_CHECK_STRING_BYTES */
1845
212f33f1
KS
1846#ifdef GC_CHECK_STRING_FREE_LIST
1847
bdbed949
KS
1848/* Walk through the string free list looking for bogus next pointers.
1849 This may catch buffer overrun from a previous string. */
1850
212f33f1
KS
1851static void
1852check_string_free_list ()
1853{
1854 struct Lisp_String *s;
1855
1856 /* Pop a Lisp_String off the free-list. */
1857 s = string_free_list;
1858 while (s != NULL)
1859 {
1860 if ((unsigned)s < 1024)
1861 abort();
1862 s = NEXT_FREE_LISP_STRING (s);
1863 }
1864}
1865#else
1866#define check_string_free_list()
1867#endif
361b097f 1868
2e471eb5
GM
1869/* Return a new Lisp_String. */
1870
1871static struct Lisp_String *
1872allocate_string ()
7146af97 1873{
2e471eb5 1874 struct Lisp_String *s;
7146af97 1875
e2984df0
CY
1876 /* eassert (!handling_signal); */
1877
1878#ifndef SYNC_INPUT
1879 BLOCK_INPUT;
1880#endif
cfb2f32e 1881
2e471eb5
GM
1882 /* If the free-list is empty, allocate a new string_block, and
1883 add all the Lisp_Strings in it to the free-list. */
1884 if (string_free_list == NULL)
7146af97 1885 {
2e471eb5
GM
1886 struct string_block *b;
1887 int i;
1888
34400008 1889 b = (struct string_block *) lisp_malloc (sizeof *b, MEM_TYPE_STRING);
2e471eb5
GM
1890 bzero (b, sizeof *b);
1891 b->next = string_blocks;
1892 string_blocks = b;
1893 ++n_string_blocks;
1894
19bcad1f 1895 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
7146af97 1896 {
2e471eb5
GM
1897 s = b->strings + i;
1898 NEXT_FREE_LISP_STRING (s) = string_free_list;
1899 string_free_list = s;
7146af97 1900 }
2e471eb5 1901
19bcad1f 1902 total_free_strings += STRING_BLOCK_SIZE;
7146af97 1903 }
c0f51373 1904
bdbed949 1905 check_string_free_list ();
212f33f1 1906
2e471eb5
GM
1907 /* Pop a Lisp_String off the free-list. */
1908 s = string_free_list;
1909 string_free_list = NEXT_FREE_LISP_STRING (s);
c0f51373 1910
e2984df0
CY
1911#ifndef SYNC_INPUT
1912 UNBLOCK_INPUT;
1913#endif
1914
2e471eb5
GM
1915 /* Probably not strictly necessary, but play it safe. */
1916 bzero (s, sizeof *s);
c0f51373 1917
2e471eb5
GM
1918 --total_free_strings;
1919 ++total_strings;
1920 ++strings_consed;
1921 consing_since_gc += sizeof *s;
c0f51373 1922
361b097f 1923#ifdef GC_CHECK_STRING_BYTES
83a96b4d 1924 if (!noninteractive
e0f712ba 1925#ifdef MAC_OS8
83a96b4d
AC
1926 && current_sblock
1927#endif
1928 )
361b097f 1929 {
676a7251
GM
1930 if (++check_string_bytes_count == 200)
1931 {
1932 check_string_bytes_count = 0;
1933 check_string_bytes (1);
1934 }
1935 else
1936 check_string_bytes (0);
361b097f 1937 }
676a7251 1938#endif /* GC_CHECK_STRING_BYTES */
361b097f 1939
2e471eb5 1940 return s;
c0f51373 1941}
7146af97 1942
7146af97 1943
2e471eb5
GM
1944/* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1945 plus a NUL byte at the end. Allocate an sdata structure for S, and
1946 set S->data to its `u.data' member. Store a NUL byte at the end of
1947 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1948 S->data if it was initially non-null. */
7146af97 1949
2e471eb5
GM
1950void
1951allocate_string_data (s, nchars, nbytes)
1952 struct Lisp_String *s;
1953 int nchars, nbytes;
7146af97 1954{
5c5fecb3 1955 struct sdata *data, *old_data;
2e471eb5 1956 struct sblock *b;
5c5fecb3 1957 int needed, old_nbytes;
7146af97 1958
2e471eb5
GM
1959 /* Determine the number of bytes needed to store NBYTES bytes
1960 of string data. */
1961 needed = SDATA_SIZE (nbytes);
e2984df0
CY
1962 old_data = s->data ? SDATA_OF_STRING (s) : NULL;
1963 old_nbytes = GC_STRING_BYTES (s);
1964
1965#ifndef SYNC_INPUT
1966 BLOCK_INPUT;
1967#endif
7146af97 1968
2e471eb5
GM
1969 if (nbytes > LARGE_STRING_BYTES)
1970 {
675d5130 1971 size_t size = sizeof *b - sizeof (struct sdata) + needed;
2e471eb5
GM
1972
1973#ifdef DOUG_LEA_MALLOC
f8608968
GM
1974 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1975 because mapped region contents are not preserved in
d36b182f
DL
1976 a dumped Emacs.
1977
1978 In case you think of allowing it in a dumped Emacs at the
1979 cost of not being able to re-dump, there's another reason:
1980 mmap'ed data typically have an address towards the top of the
1981 address space, which won't fit into an EMACS_INT (at least on
1982 32-bit systems with the current tagging scheme). --fx */
1673df2e 1983 BLOCK_INPUT;
2e471eb5 1984 mallopt (M_MMAP_MAX, 0);
1673df2e 1985 UNBLOCK_INPUT;
2e471eb5
GM
1986#endif
1987
212f33f1 1988 b = (struct sblock *) lisp_malloc (size + GC_STRING_EXTRA, MEM_TYPE_NON_LISP);
177c0ea7 1989
2e471eb5
GM
1990#ifdef DOUG_LEA_MALLOC
1991 /* Back to a reasonable maximum of mmap'ed areas. */
1673df2e 1992 BLOCK_INPUT;
2e471eb5 1993 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1673df2e 1994 UNBLOCK_INPUT;
2e471eb5 1995#endif
177c0ea7 1996
2e471eb5
GM
1997 b->next_free = &b->first_data;
1998 b->first_data.string = NULL;
1999 b->next = large_sblocks;
2000 large_sblocks = b;
2001 }
2002 else if (current_sblock == NULL
2003 || (((char *) current_sblock + SBLOCK_SIZE
2004 - (char *) current_sblock->next_free)
212f33f1 2005 < (needed + GC_STRING_EXTRA)))
2e471eb5
GM
2006 {
2007 /* Not enough room in the current sblock. */
34400008 2008 b = (struct sblock *) lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
2e471eb5
GM
2009 b->next_free = &b->first_data;
2010 b->first_data.string = NULL;
2011 b->next = NULL;
2012
2013 if (current_sblock)
2014 current_sblock->next = b;
2015 else
2016 oldest_sblock = b;
2017 current_sblock = b;
2018 }
2019 else
2020 b = current_sblock;
5c5fecb3 2021
2e471eb5 2022 data = b->next_free;
a0b08700
CY
2023 b->next_free = (struct sdata *) ((char *) data + needed + GC_STRING_EXTRA);
2024
e2984df0
CY
2025#ifndef SYNC_INPUT
2026 UNBLOCK_INPUT;
2027#endif
2028
2e471eb5 2029 data->string = s;
31d929e5
GM
2030 s->data = SDATA_DATA (data);
2031#ifdef GC_CHECK_STRING_BYTES
2032 SDATA_NBYTES (data) = nbytes;
2033#endif
2e471eb5
GM
2034 s->size = nchars;
2035 s->size_byte = nbytes;
2036 s->data[nbytes] = '\0';
212f33f1 2037#ifdef GC_CHECK_STRING_OVERRUN
bdbed949
KS
2038 bcopy (string_overrun_cookie, (char *) data + needed,
2039 GC_STRING_OVERRUN_COOKIE_SIZE);
212f33f1 2040#endif
177c0ea7 2041
5c5fecb3
GM
2042 /* If S had already data assigned, mark that as free by setting its
2043 string back-pointer to null, and recording the size of the data
00c9c33c 2044 in it. */
5c5fecb3
GM
2045 if (old_data)
2046 {
31d929e5 2047 SDATA_NBYTES (old_data) = old_nbytes;
5c5fecb3
GM
2048 old_data->string = NULL;
2049 }
2050
2e471eb5
GM
2051 consing_since_gc += needed;
2052}
2053
2054
2055/* Sweep and compact strings. */
2056
2057static void
2058sweep_strings ()
2059{
2060 struct string_block *b, *next;
2061 struct string_block *live_blocks = NULL;
177c0ea7 2062
2e471eb5
GM
2063 string_free_list = NULL;
2064 total_strings = total_free_strings = 0;
2065 total_string_size = 0;
2066
2067 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
2068 for (b = string_blocks; b; b = next)
2069 {
2070 int i, nfree = 0;
2071 struct Lisp_String *free_list_before = string_free_list;
2072
2073 next = b->next;
2074
19bcad1f 2075 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
2e471eb5
GM
2076 {
2077 struct Lisp_String *s = b->strings + i;
2078
2079 if (s->data)
2080 {
2081 /* String was not on free-list before. */
2082 if (STRING_MARKED_P (s))
2083 {
2084 /* String is live; unmark it and its intervals. */
2085 UNMARK_STRING (s);
177c0ea7 2086
2e471eb5
GM
2087 if (!NULL_INTERVAL_P (s->intervals))
2088 UNMARK_BALANCE_INTERVALS (s->intervals);
2089
2090 ++total_strings;
2091 total_string_size += STRING_BYTES (s);
2092 }
2093 else
2094 {
2095 /* String is dead. Put it on the free-list. */
2096 struct sdata *data = SDATA_OF_STRING (s);
2097
2098 /* Save the size of S in its sdata so that we know
2099 how large that is. Reset the sdata's string
2100 back-pointer so that we know it's free. */
31d929e5
GM
2101#ifdef GC_CHECK_STRING_BYTES
2102 if (GC_STRING_BYTES (s) != SDATA_NBYTES (data))
2103 abort ();
2104#else
2e471eb5 2105 data->u.nbytes = GC_STRING_BYTES (s);
31d929e5 2106#endif
2e471eb5
GM
2107 data->string = NULL;
2108
2109 /* Reset the strings's `data' member so that we
2110 know it's free. */
2111 s->data = NULL;
2112
2113 /* Put the string on the free-list. */
2114 NEXT_FREE_LISP_STRING (s) = string_free_list;
2115 string_free_list = s;
2116 ++nfree;
2117 }
2118 }
2119 else
2120 {
2121 /* S was on the free-list before. Put it there again. */
2122 NEXT_FREE_LISP_STRING (s) = string_free_list;
2123 string_free_list = s;
2124 ++nfree;
2125 }
2126 }
2127
34400008 2128 /* Free blocks that contain free Lisp_Strings only, except
2e471eb5 2129 the first two of them. */
19bcad1f
SM
2130 if (nfree == STRING_BLOCK_SIZE
2131 && total_free_strings > STRING_BLOCK_SIZE)
2e471eb5
GM
2132 {
2133 lisp_free (b);
2134 --n_string_blocks;
2135 string_free_list = free_list_before;
2136 }
2137 else
2138 {
2139 total_free_strings += nfree;
2140 b->next = live_blocks;
2141 live_blocks = b;
2142 }
2143 }
2144
bdbed949 2145 check_string_free_list ();
212f33f1 2146
2e471eb5
GM
2147 string_blocks = live_blocks;
2148 free_large_strings ();
2149 compact_small_strings ();
212f33f1 2150
bdbed949 2151 check_string_free_list ();
2e471eb5
GM
2152}
2153
2154
2155/* Free dead large strings. */
2156
2157static void
2158free_large_strings ()
2159{
2160 struct sblock *b, *next;
2161 struct sblock *live_blocks = NULL;
177c0ea7 2162
2e471eb5
GM
2163 for (b = large_sblocks; b; b = next)
2164 {
2165 next = b->next;
2166
2167 if (b->first_data.string == NULL)
2168 lisp_free (b);
2169 else
2170 {
2171 b->next = live_blocks;
2172 live_blocks = b;
2173 }
2174 }
2175
2176 large_sblocks = live_blocks;
2177}
2178
2179
2180/* Compact data of small strings. Free sblocks that don't contain
2181 data of live strings after compaction. */
2182
2183static void
2184compact_small_strings ()
2185{
2186 struct sblock *b, *tb, *next;
2187 struct sdata *from, *to, *end, *tb_end;
2188 struct sdata *to_end, *from_end;
2189
2190 /* TB is the sblock we copy to, TO is the sdata within TB we copy
2191 to, and TB_END is the end of TB. */
2192 tb = oldest_sblock;
2193 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2194 to = &tb->first_data;
2195
2196 /* Step through the blocks from the oldest to the youngest. We
2197 expect that old blocks will stabilize over time, so that less
2198 copying will happen this way. */
2199 for (b = oldest_sblock; b; b = b->next)
2200 {
2201 end = b->next_free;
2202 xassert ((char *) end <= (char *) b + SBLOCK_SIZE);
177c0ea7 2203
2e471eb5
GM
2204 for (from = &b->first_data; from < end; from = from_end)
2205 {
2206 /* Compute the next FROM here because copying below may
2207 overwrite data we need to compute it. */
2208 int nbytes;
2209
31d929e5
GM
2210#ifdef GC_CHECK_STRING_BYTES
2211 /* Check that the string size recorded in the string is the
2212 same as the one recorded in the sdata structure. */
2213 if (from->string
2214 && GC_STRING_BYTES (from->string) != SDATA_NBYTES (from))
2215 abort ();
2216#endif /* GC_CHECK_STRING_BYTES */
177c0ea7 2217
2e471eb5
GM
2218 if (from->string)
2219 nbytes = GC_STRING_BYTES (from->string);
2220 else
31d929e5 2221 nbytes = SDATA_NBYTES (from);
177c0ea7 2222
212f33f1
KS
2223 if (nbytes > LARGE_STRING_BYTES)
2224 abort ();
212f33f1 2225
2e471eb5 2226 nbytes = SDATA_SIZE (nbytes);
212f33f1
KS
2227 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
2228
2229#ifdef GC_CHECK_STRING_OVERRUN
bdbed949
KS
2230 if (bcmp (string_overrun_cookie,
2231 ((char *) from_end) - GC_STRING_OVERRUN_COOKIE_SIZE,
2232 GC_STRING_OVERRUN_COOKIE_SIZE))
212f33f1
KS
2233 abort ();
2234#endif
177c0ea7 2235
2e471eb5
GM
2236 /* FROM->string non-null means it's alive. Copy its data. */
2237 if (from->string)
2238 {
2239 /* If TB is full, proceed with the next sblock. */
212f33f1 2240 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2e471eb5
GM
2241 if (to_end > tb_end)
2242 {
2243 tb->next_free = to;
2244 tb = tb->next;
2245 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2246 to = &tb->first_data;
212f33f1 2247 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2e471eb5 2248 }
177c0ea7 2249
2e471eb5
GM
2250 /* Copy, and update the string's `data' pointer. */
2251 if (from != to)
2252 {
a2407477 2253 xassert (tb != b || to <= from);
212f33f1 2254 safe_bcopy ((char *) from, (char *) to, nbytes + GC_STRING_EXTRA);
31d929e5 2255 to->string->data = SDATA_DATA (to);
2e471eb5
GM
2256 }
2257
2258 /* Advance past the sdata we copied to. */
2259 to = to_end;
2260 }
2261 }
2262 }
2263
2264 /* The rest of the sblocks following TB don't contain live data, so
2265 we can free them. */
2266 for (b = tb->next; b; b = next)
2267 {
2268 next = b->next;
2269 lisp_free (b);
2270 }
2271
2272 tb->next_free = to;
2273 tb->next = NULL;
2274 current_sblock = tb;
2275}
2276
2277
2278DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
69623621
RS
2279 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
2280LENGTH must be an integer.
2281INIT must be an integer that represents a character. */)
7ee72033 2282 (length, init)
2e471eb5
GM
2283 Lisp_Object length, init;
2284{
2285 register Lisp_Object val;
2286 register unsigned char *p, *end;
2287 int c, nbytes;
2288
b7826503
PJ
2289 CHECK_NATNUM (length);
2290 CHECK_NUMBER (init);
2e471eb5
GM
2291
2292 c = XINT (init);
2293 if (SINGLE_BYTE_CHAR_P (c))
2294 {
2295 nbytes = XINT (length);
2296 val = make_uninit_string (nbytes);
d5db4077
KR
2297 p = SDATA (val);
2298 end = p + SCHARS (val);
2e471eb5
GM
2299 while (p != end)
2300 *p++ = c;
2301 }
2302 else
2303 {
d942b71c 2304 unsigned char str[MAX_MULTIBYTE_LENGTH];
2e471eb5
GM
2305 int len = CHAR_STRING (c, str);
2306
2307 nbytes = len * XINT (length);
2308 val = make_uninit_multibyte_string (XINT (length), nbytes);
d5db4077 2309 p = SDATA (val);
2e471eb5
GM
2310 end = p + nbytes;
2311 while (p != end)
2312 {
2313 bcopy (str, p, len);
2314 p += len;
2315 }
2316 }
177c0ea7 2317
2e471eb5
GM
2318 *p = 0;
2319 return val;
2320}
2321
2322
2323DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
909e3b33 2324 doc: /* Return a new bool-vector of length LENGTH, using INIT for each element.
7ee72033
MB
2325LENGTH must be a number. INIT matters only in whether it is t or nil. */)
2326 (length, init)
2e471eb5
GM
2327 Lisp_Object length, init;
2328{
2329 register Lisp_Object val;
2330 struct Lisp_Bool_Vector *p;
2331 int real_init, i;
2332 int length_in_chars, length_in_elts, bits_per_value;
2333
b7826503 2334 CHECK_NATNUM (length);
2e471eb5 2335
a097329f 2336 bits_per_value = sizeof (EMACS_INT) * BOOL_VECTOR_BITS_PER_CHAR;
2e471eb5
GM
2337
2338 length_in_elts = (XFASTINT (length) + bits_per_value - 1) / bits_per_value;
a097329f
AS
2339 length_in_chars = ((XFASTINT (length) + BOOL_VECTOR_BITS_PER_CHAR - 1)
2340 / BOOL_VECTOR_BITS_PER_CHAR);
2e471eb5
GM
2341
2342 /* We must allocate one more elements than LENGTH_IN_ELTS for the
2343 slot `size' of the struct Lisp_Bool_Vector. */
2344 val = Fmake_vector (make_number (length_in_elts + 1), Qnil);
2345 p = XBOOL_VECTOR (val);
177c0ea7 2346
2e471eb5
GM
2347 /* Get rid of any bits that would cause confusion. */
2348 p->vector_size = 0;
2349 XSETBOOL_VECTOR (val, p);
2350 p->size = XFASTINT (length);
177c0ea7 2351
2e471eb5
GM
2352 real_init = (NILP (init) ? 0 : -1);
2353 for (i = 0; i < length_in_chars ; i++)
2354 p->data[i] = real_init;
177c0ea7 2355
2e471eb5 2356 /* Clear the extraneous bits in the last byte. */
a097329f 2357 if (XINT (length) != length_in_chars * BOOL_VECTOR_BITS_PER_CHAR)
2e471eb5 2358 XBOOL_VECTOR (val)->data[length_in_chars - 1]
a097329f 2359 &= (1 << (XINT (length) % BOOL_VECTOR_BITS_PER_CHAR)) - 1;
2e471eb5
GM
2360
2361 return val;
2362}
2363
2364
2365/* Make a string from NBYTES bytes at CONTENTS, and compute the number
2366 of characters from the contents. This string may be unibyte or
2367 multibyte, depending on the contents. */
2368
2369Lisp_Object
2370make_string (contents, nbytes)
943b873e 2371 const char *contents;
2e471eb5
GM
2372 int nbytes;
2373{
2374 register Lisp_Object val;
9eac9d59
KH
2375 int nchars, multibyte_nbytes;
2376
2377 parse_str_as_multibyte (contents, nbytes, &nchars, &multibyte_nbytes);
9eac9d59
KH
2378 if (nbytes == nchars || nbytes != multibyte_nbytes)
2379 /* CONTENTS contains no multibyte sequences or contains an invalid
2380 multibyte sequence. We must make unibyte string. */
495a6df3
KH
2381 val = make_unibyte_string (contents, nbytes);
2382 else
2383 val = make_multibyte_string (contents, nchars, nbytes);
2e471eb5
GM
2384 return val;
2385}
2386
2387
2388/* Make an unibyte string from LENGTH bytes at CONTENTS. */
2389
2390Lisp_Object
2391make_unibyte_string (contents, length)
943b873e 2392 const char *contents;
2e471eb5
GM
2393 int length;
2394{
2395 register Lisp_Object val;
2396 val = make_uninit_string (length);
d5db4077
KR
2397 bcopy (contents, SDATA (val), length);
2398 STRING_SET_UNIBYTE (val);
2e471eb5
GM
2399 return val;
2400}
2401
2402
2403/* Make a multibyte string from NCHARS characters occupying NBYTES
2404 bytes at CONTENTS. */
2405
2406Lisp_Object
2407make_multibyte_string (contents, nchars, nbytes)
943b873e 2408 const char *contents;
2e471eb5
GM
2409 int nchars, nbytes;
2410{
2411 register Lisp_Object val;
2412 val = make_uninit_multibyte_string (nchars, nbytes);
d5db4077 2413 bcopy (contents, SDATA (val), nbytes);
2e471eb5
GM
2414 return val;
2415}
2416
2417
2418/* Make a string from NCHARS characters occupying NBYTES bytes at
2419 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2420
2421Lisp_Object
2422make_string_from_bytes (contents, nchars, nbytes)
fcbb914b 2423 const char *contents;
2e471eb5
GM
2424 int nchars, nbytes;
2425{
2426 register Lisp_Object val;
2427 val = make_uninit_multibyte_string (nchars, nbytes);
d5db4077
KR
2428 bcopy (contents, SDATA (val), nbytes);
2429 if (SBYTES (val) == SCHARS (val))
2430 STRING_SET_UNIBYTE (val);
2e471eb5
GM
2431 return val;
2432}
2433
2434
2435/* Make a string from NCHARS characters occupying NBYTES bytes at
2436 CONTENTS. The argument MULTIBYTE controls whether to label the
229b28c4
KH
2437 string as multibyte. If NCHARS is negative, it counts the number of
2438 characters by itself. */
2e471eb5
GM
2439
2440Lisp_Object
2441make_specified_string (contents, nchars, nbytes, multibyte)
fcbb914b 2442 const char *contents;
2e471eb5
GM
2443 int nchars, nbytes;
2444 int multibyte;
2445{
2446 register Lisp_Object val;
229b28c4
KH
2447
2448 if (nchars < 0)
2449 {
2450 if (multibyte)
2451 nchars = multibyte_chars_in_text (contents, nbytes);
2452 else
2453 nchars = nbytes;
2454 }
2e471eb5 2455 val = make_uninit_multibyte_string (nchars, nbytes);
d5db4077 2456 bcopy (contents, SDATA (val), nbytes);
2e471eb5 2457 if (!multibyte)
d5db4077 2458 STRING_SET_UNIBYTE (val);
2e471eb5
GM
2459 return val;
2460}
2461
2462
2463/* Make a string from the data at STR, treating it as multibyte if the
2464 data warrants. */
2465
2466Lisp_Object
2467build_string (str)
943b873e 2468 const char *str;
2e471eb5
GM
2469{
2470 return make_string (str, strlen (str));
2471}
2472
2473
2474/* Return an unibyte Lisp_String set up to hold LENGTH characters
2475 occupying LENGTH bytes. */
2476
2477Lisp_Object
2478make_uninit_string (length)
2479 int length;
2480{
2481 Lisp_Object val;
2482 val = make_uninit_multibyte_string (length, length);
d5db4077 2483 STRING_SET_UNIBYTE (val);
2e471eb5
GM
2484 return val;
2485}
2486
2487
2488/* Return a multibyte Lisp_String set up to hold NCHARS characters
2489 which occupy NBYTES bytes. */
2490
2491Lisp_Object
2492make_uninit_multibyte_string (nchars, nbytes)
2493 int nchars, nbytes;
2494{
2495 Lisp_Object string;
2496 struct Lisp_String *s;
2497
2498 if (nchars < 0)
2499 abort ();
2500
2501 s = allocate_string ();
2502 allocate_string_data (s, nchars, nbytes);
2503 XSETSTRING (string, s);
2504 string_chars_consed += nbytes;
2505 return string;
2506}
2507
2508
2509\f
2510/***********************************************************************
2511 Float Allocation
2512 ***********************************************************************/
2513
2e471eb5
GM
2514/* We store float cells inside of float_blocks, allocating a new
2515 float_block with malloc whenever necessary. Float cells reclaimed
2516 by GC are put on a free list to be reallocated before allocating
ab6780cd 2517 any new float cells from the latest float_block. */
2e471eb5 2518
d05b383a
SM
2519#define FLOAT_BLOCK_SIZE \
2520 (((BLOCK_BYTES - sizeof (struct float_block *) \
2521 /* The compiler might add padding at the end. */ \
2522 - (sizeof (struct Lisp_Float) - sizeof (int))) * CHAR_BIT) \
ab6780cd
SM
2523 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2524
2525#define GETMARKBIT(block,n) \
2526 (((block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2527 >> ((n) % (sizeof(int) * CHAR_BIT))) \
2528 & 1)
2529
2530#define SETMARKBIT(block,n) \
2531 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2532 |= 1 << ((n) % (sizeof(int) * CHAR_BIT))
2533
2534#define UNSETMARKBIT(block,n) \
2535 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2536 &= ~(1 << ((n) % (sizeof(int) * CHAR_BIT)))
2537
2538#define FLOAT_BLOCK(fptr) \
2539 ((struct float_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2540
2541#define FLOAT_INDEX(fptr) \
2542 ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2e471eb5
GM
2543
2544struct float_block
2545{
ab6780cd 2546 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2e471eb5 2547 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
ab6780cd
SM
2548 int gcmarkbits[1 + FLOAT_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2549 struct float_block *next;
2e471eb5
GM
2550};
2551
ab6780cd
SM
2552#define FLOAT_MARKED_P(fptr) \
2553 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2554
2555#define FLOAT_MARK(fptr) \
2556 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2557
2558#define FLOAT_UNMARK(fptr) \
2559 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2560
34400008
GM
2561/* Current float_block. */
2562
2e471eb5 2563struct float_block *float_block;
34400008
GM
2564
2565/* Index of first unused Lisp_Float in the current float_block. */
2566
2e471eb5
GM
2567int float_block_index;
2568
2569/* Total number of float blocks now in use. */
2570
2571int n_float_blocks;
2572
34400008
GM
2573/* Free-list of Lisp_Floats. */
2574
2e471eb5
GM
2575struct Lisp_Float *float_free_list;
2576
34400008 2577
966533c9 2578/* Initialize float allocation. */
34400008 2579
2e471eb5
GM
2580void
2581init_float ()
2582{
08b7c2cb
SM
2583 float_block = NULL;
2584 float_block_index = FLOAT_BLOCK_SIZE; /* Force alloc of new float_block. */
2e471eb5 2585 float_free_list = 0;
08b7c2cb 2586 n_float_blocks = 0;
2e471eb5
GM
2587}
2588
34400008
GM
2589
2590/* Explicitly free a float cell by putting it on the free-list. */
2e471eb5
GM
2591
2592void
2593free_float (ptr)
2594 struct Lisp_Float *ptr;
2595{
28a099a4 2596 ptr->u.chain = float_free_list;
2e471eb5
GM
2597 float_free_list = ptr;
2598}
2599
34400008
GM
2600
2601/* Return a new float object with value FLOAT_VALUE. */
2602
2e471eb5
GM
2603Lisp_Object
2604make_float (float_value)
2605 double float_value;
2606{
2607 register Lisp_Object val;
2608
e2984df0
CY
2609 /* eassert (!handling_signal); */
2610
2611#ifndef SYNC_INPUT
2612 BLOCK_INPUT;
2613#endif
cfb2f32e 2614
2e471eb5
GM
2615 if (float_free_list)
2616 {
2617 /* We use the data field for chaining the free list
2618 so that we won't use the same field that has the mark bit. */
2619 XSETFLOAT (val, float_free_list);
28a099a4 2620 float_free_list = float_free_list->u.chain;
2e471eb5
GM
2621 }
2622 else
2623 {
2624 if (float_block_index == FLOAT_BLOCK_SIZE)
2625 {
2626 register struct float_block *new;
2627
ab6780cd
SM
2628 new = (struct float_block *) lisp_align_malloc (sizeof *new,
2629 MEM_TYPE_FLOAT);
2e471eb5 2630 new->next = float_block;
a0668126 2631 bzero ((char *) new->gcmarkbits, sizeof new->gcmarkbits);
2e471eb5
GM
2632 float_block = new;
2633 float_block_index = 0;
2634 n_float_blocks++;
2635 }
a0668126
SM
2636 XSETFLOAT (val, &float_block->floats[float_block_index]);
2637 float_block_index++;
2e471eb5 2638 }
177c0ea7 2639
e2984df0
CY
2640#ifndef SYNC_INPUT
2641 UNBLOCK_INPUT;
2642#endif
2643
2e471eb5 2644 XFLOAT_DATA (val) = float_value;
a0668126 2645 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2e471eb5
GM
2646 consing_since_gc += sizeof (struct Lisp_Float);
2647 floats_consed++;
2648 return val;
2649}
2650
2e471eb5
GM
2651
2652\f
2653/***********************************************************************
2654 Cons Allocation
2655 ***********************************************************************/
2656
2657/* We store cons cells inside of cons_blocks, allocating a new
2658 cons_block with malloc whenever necessary. Cons cells reclaimed by
2659 GC are put on a free list to be reallocated before allocating
08b7c2cb 2660 any new cons cells from the latest cons_block. */
2e471eb5
GM
2661
2662#define CONS_BLOCK_SIZE \
08b7c2cb
SM
2663 (((BLOCK_BYTES - sizeof (struct cons_block *)) * CHAR_BIT) \
2664 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2665
2666#define CONS_BLOCK(fptr) \
2667 ((struct cons_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2668
2669#define CONS_INDEX(fptr) \
2670 ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2e471eb5
GM
2671
2672struct cons_block
2673{
08b7c2cb 2674 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2e471eb5 2675 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
08b7c2cb
SM
2676 int gcmarkbits[1 + CONS_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2677 struct cons_block *next;
2e471eb5
GM
2678};
2679
08b7c2cb
SM
2680#define CONS_MARKED_P(fptr) \
2681 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2682
2683#define CONS_MARK(fptr) \
2684 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2685
2686#define CONS_UNMARK(fptr) \
2687 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2688
34400008
GM
2689/* Current cons_block. */
2690
2e471eb5 2691struct cons_block *cons_block;
34400008
GM
2692
2693/* Index of first unused Lisp_Cons in the current block. */
2694
2e471eb5
GM
2695int cons_block_index;
2696
34400008
GM
2697/* Free-list of Lisp_Cons structures. */
2698
2e471eb5
GM
2699struct Lisp_Cons *cons_free_list;
2700
2701/* Total number of cons blocks now in use. */
2702
2703int n_cons_blocks;
2704
34400008
GM
2705
2706/* Initialize cons allocation. */
2707
2e471eb5
GM
2708void
2709init_cons ()
2710{
08b7c2cb
SM
2711 cons_block = NULL;
2712 cons_block_index = CONS_BLOCK_SIZE; /* Force alloc of new cons_block. */
2e471eb5 2713 cons_free_list = 0;
08b7c2cb 2714 n_cons_blocks = 0;
2e471eb5
GM
2715}
2716
34400008
GM
2717
2718/* Explicitly free a cons cell by putting it on the free-list. */
2e471eb5
GM
2719
2720void
2721free_cons (ptr)
2722 struct Lisp_Cons *ptr;
2723{
28a099a4 2724 ptr->u.chain = cons_free_list;
34400008
GM
2725#if GC_MARK_STACK
2726 ptr->car = Vdead;
2727#endif
2e471eb5
GM
2728 cons_free_list = ptr;
2729}
2730
2731DEFUN ("cons", Fcons, Scons, 2, 2, 0,
a6266d23 2732 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
7ee72033 2733 (car, cdr)
2e471eb5
GM
2734 Lisp_Object car, cdr;
2735{
2736 register Lisp_Object val;
2737
e2984df0
CY
2738 /* eassert (!handling_signal); */
2739
2740#ifndef SYNC_INPUT
2741 BLOCK_INPUT;
2742#endif
cfb2f32e 2743
2e471eb5
GM
2744 if (cons_free_list)
2745 {
2746 /* We use the cdr for chaining the free list
2747 so that we won't use the same field that has the mark bit. */
2748 XSETCONS (val, cons_free_list);
28a099a4 2749 cons_free_list = cons_free_list->u.chain;
2e471eb5
GM
2750 }
2751 else
2752 {
2753 if (cons_block_index == CONS_BLOCK_SIZE)
2754 {
2755 register struct cons_block *new;
08b7c2cb
SM
2756 new = (struct cons_block *) lisp_align_malloc (sizeof *new,
2757 MEM_TYPE_CONS);
a0668126 2758 bzero ((char *) new->gcmarkbits, sizeof new->gcmarkbits);
2e471eb5
GM
2759 new->next = cons_block;
2760 cons_block = new;
2761 cons_block_index = 0;
2762 n_cons_blocks++;
2763 }
a0668126
SM
2764 XSETCONS (val, &cons_block->conses[cons_block_index]);
2765 cons_block_index++;
2e471eb5 2766 }
177c0ea7 2767
e2984df0
CY
2768#ifndef SYNC_INPUT
2769 UNBLOCK_INPUT;
2770#endif
2771
f3fbd155
KR
2772 XSETCAR (val, car);
2773 XSETCDR (val, cdr);
a0668126 2774 eassert (!CONS_MARKED_P (XCONS (val)));
2e471eb5
GM
2775 consing_since_gc += sizeof (struct Lisp_Cons);
2776 cons_cells_consed++;
2777 return val;
2778}
2779
e3e56238
RS
2780/* Get an error now if there's any junk in the cons free list. */
2781void
2782check_cons_list ()
2783{
212f33f1 2784#ifdef GC_CHECK_CONS_LIST
e3e56238
RS
2785 struct Lisp_Cons *tail = cons_free_list;
2786
e3e56238 2787 while (tail)
28a099a4 2788 tail = tail->u.chain;
e3e56238
RS
2789#endif
2790}
34400008 2791
9b306d37
KS
2792/* Make a list of 1, 2, 3, 4 or 5 specified objects. */
2793
2794Lisp_Object
2795list1 (arg1)
2796 Lisp_Object arg1;
2797{
2798 return Fcons (arg1, Qnil);
2799}
2e471eb5
GM
2800
2801Lisp_Object
2802list2 (arg1, arg2)
2803 Lisp_Object arg1, arg2;
2804{
2805 return Fcons (arg1, Fcons (arg2, Qnil));
2806}
2807
34400008 2808
2e471eb5
GM
2809Lisp_Object
2810list3 (arg1, arg2, arg3)
2811 Lisp_Object arg1, arg2, arg3;
2812{
2813 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2814}
2815
34400008 2816
2e471eb5
GM
2817Lisp_Object
2818list4 (arg1, arg2, arg3, arg4)
2819 Lisp_Object arg1, arg2, arg3, arg4;
2820{
2821 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2822}
2823
34400008 2824
2e471eb5
GM
2825Lisp_Object
2826list5 (arg1, arg2, arg3, arg4, arg5)
2827 Lisp_Object arg1, arg2, arg3, arg4, arg5;
2828{
2829 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2830 Fcons (arg5, Qnil)))));
2831}
2832
34400008 2833
2e471eb5 2834DEFUN ("list", Flist, Slist, 0, MANY, 0,
eae936e2 2835 doc: /* Return a newly created list with specified arguments as elements.
ae8e8122
MB
2836Any number of arguments, even zero arguments, are allowed.
2837usage: (list &rest OBJECTS) */)
7ee72033 2838 (nargs, args)
2e471eb5
GM
2839 int nargs;
2840 register Lisp_Object *args;
2841{
2842 register Lisp_Object val;
2843 val = Qnil;
2844
2845 while (nargs > 0)
2846 {
2847 nargs--;
2848 val = Fcons (args[nargs], val);
2849 }
2850 return val;
2851}
2852
34400008 2853
2e471eb5 2854DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
a6266d23 2855 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
7ee72033 2856 (length, init)
2e471eb5
GM
2857 register Lisp_Object length, init;
2858{
2859 register Lisp_Object val;
2860 register int size;
2861
b7826503 2862 CHECK_NATNUM (length);
2e471eb5
GM
2863 size = XFASTINT (length);
2864
2865 val = Qnil;
ce070307
GM
2866 while (size > 0)
2867 {
2868 val = Fcons (init, val);
2869 --size;
2870
2871 if (size > 0)
2872 {
2873 val = Fcons (init, val);
2874 --size;
177c0ea7 2875
ce070307
GM
2876 if (size > 0)
2877 {
2878 val = Fcons (init, val);
2879 --size;
177c0ea7 2880
ce070307
GM
2881 if (size > 0)
2882 {
2883 val = Fcons (init, val);
2884 --size;
177c0ea7 2885
ce070307
GM
2886 if (size > 0)
2887 {
2888 val = Fcons (init, val);
2889 --size;
2890 }
2891 }
2892 }
2893 }
2894
2895 QUIT;
2896 }
177c0ea7 2897
7146af97
JB
2898 return val;
2899}
2e471eb5
GM
2900
2901
7146af97 2902\f
2e471eb5
GM
2903/***********************************************************************
2904 Vector Allocation
2905 ***********************************************************************/
7146af97 2906
34400008
GM
2907/* Singly-linked list of all vectors. */
2908
7146af97
JB
2909struct Lisp_Vector *all_vectors;
2910
2e471eb5
GM
2911/* Total number of vector-like objects now in use. */
2912
c8099634
RS
2913int n_vectors;
2914
34400008
GM
2915
2916/* Value is a pointer to a newly allocated Lisp_Vector structure
2917 with room for LEN Lisp_Objects. */
2918
ece93c02
GM
2919static struct Lisp_Vector *
2920allocate_vectorlike (len, type)
1825c68d 2921 EMACS_INT len;
ece93c02 2922 enum mem_type type;
1825c68d
KH
2923{
2924 struct Lisp_Vector *p;
675d5130 2925 size_t nbytes;
1825c68d 2926
d1658221 2927#ifdef DOUG_LEA_MALLOC
f8608968
GM
2928 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
2929 because mapped region contents are not preserved in
2930 a dumped Emacs. */
de7515d6 2931 BLOCK_INPUT;
d1658221 2932 mallopt (M_MMAP_MAX, 0);
de7515d6 2933 UNBLOCK_INPUT;
d1658221 2934#endif
177c0ea7 2935
cfb2f32e
SM
2936 /* This gets triggered by code which I haven't bothered to fix. --Stef */
2937 /* eassert (!handling_signal); */
2938
34400008 2939 nbytes = sizeof *p + (len - 1) * sizeof p->contents[0];
ece93c02 2940 p = (struct Lisp_Vector *) lisp_malloc (nbytes, type);
177c0ea7 2941
d1658221 2942#ifdef DOUG_LEA_MALLOC
34400008 2943 /* Back to a reasonable maximum of mmap'ed areas. */
de7515d6 2944 BLOCK_INPUT;
81d492d5 2945 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
de7515d6 2946 UNBLOCK_INPUT;
d1658221 2947#endif
177c0ea7 2948
34400008 2949 consing_since_gc += nbytes;
310ea200 2950 vector_cells_consed += len;
1825c68d 2951
e2984df0
CY
2952#ifndef SYNC_INPUT
2953 BLOCK_INPUT;
2954#endif
2955
1825c68d
KH
2956 p->next = all_vectors;
2957 all_vectors = p;
e2984df0
CY
2958
2959#ifndef SYNC_INPUT
2960 UNBLOCK_INPUT;
2961#endif
2962
34400008 2963 ++n_vectors;
1825c68d
KH
2964 return p;
2965}
2966
34400008 2967
ece93c02
GM
2968/* Allocate a vector with NSLOTS slots. */
2969
2970struct Lisp_Vector *
2971allocate_vector (nslots)
2972 EMACS_INT nslots;
2973{
2974 struct Lisp_Vector *v = allocate_vectorlike (nslots, MEM_TYPE_VECTOR);
2975 v->size = nslots;
2976 return v;
2977}
2978
2979
2980/* Allocate other vector-like structures. */
2981
2982struct Lisp_Hash_Table *
2983allocate_hash_table ()
2984{
2985 EMACS_INT len = VECSIZE (struct Lisp_Hash_Table);
2986 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_HASH_TABLE);
2987 EMACS_INT i;
177c0ea7 2988
ece93c02
GM
2989 v->size = len;
2990 for (i = 0; i < len; ++i)
2991 v->contents[i] = Qnil;
177c0ea7 2992
ece93c02
GM
2993 return (struct Lisp_Hash_Table *) v;
2994}
2995
2996
2997struct window *
2998allocate_window ()
2999{
3000 EMACS_INT len = VECSIZE (struct window);
3001 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_WINDOW);
3002 EMACS_INT i;
177c0ea7 3003
ece93c02
GM
3004 for (i = 0; i < len; ++i)
3005 v->contents[i] = Qnil;
3006 v->size = len;
177c0ea7 3007
ece93c02
GM
3008 return (struct window *) v;
3009}
3010
3011
3012struct frame *
3013allocate_frame ()
3014{
3015 EMACS_INT len = VECSIZE (struct frame);
3016 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_FRAME);
3017 EMACS_INT i;
177c0ea7 3018
ece93c02
GM
3019 for (i = 0; i < len; ++i)
3020 v->contents[i] = make_number (0);
3021 v->size = len;
3022 return (struct frame *) v;
3023}
3024
3025
3026struct Lisp_Process *
3027allocate_process ()
3028{
6bfd98e7
SM
3029 /* Memory-footprint of the object in nb of Lisp_Object fields. */
3030 EMACS_INT memlen = VECSIZE (struct Lisp_Process);
3031 /* Size if we only count the actual Lisp_Object fields (which need to be
3032 traced by the GC). */
3033 EMACS_INT lisplen = PSEUDOVECSIZE (struct Lisp_Process, pid);
3034 struct Lisp_Vector *v = allocate_vectorlike (memlen, MEM_TYPE_PROCESS);
ece93c02 3035 EMACS_INT i;
177c0ea7 3036
6bfd98e7 3037 for (i = 0; i < lisplen; ++i)
ece93c02 3038 v->contents[i] = Qnil;
6bfd98e7 3039 v->size = lisplen;
177c0ea7 3040
ece93c02
GM
3041 return (struct Lisp_Process *) v;
3042}
3043
3044
3045struct Lisp_Vector *
3046allocate_other_vector (len)
3047 EMACS_INT len;
3048{
3049 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_VECTOR);
3050 EMACS_INT i;
177c0ea7 3051
ece93c02
GM
3052 for (i = 0; i < len; ++i)
3053 v->contents[i] = Qnil;
3054 v->size = len;
177c0ea7 3055
ece93c02
GM
3056 return v;
3057}
3058
3059
7146af97 3060DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
a6266d23 3061 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
7ee72033
MB
3062See also the function `vector'. */)
3063 (length, init)
7146af97
JB
3064 register Lisp_Object length, init;
3065{
1825c68d
KH
3066 Lisp_Object vector;
3067 register EMACS_INT sizei;
3068 register int index;
7146af97
JB
3069 register struct Lisp_Vector *p;
3070
b7826503 3071 CHECK_NATNUM (length);
c9dad5ed 3072 sizei = XFASTINT (length);
7146af97 3073
ece93c02 3074 p = allocate_vector (sizei);
7146af97
JB
3075 for (index = 0; index < sizei; index++)
3076 p->contents[index] = init;
3077
1825c68d 3078 XSETVECTOR (vector, p);
7146af97
JB
3079 return vector;
3080}
3081
34400008 3082
a59de17b 3083DEFUN ("make-char-table", Fmake_char_table, Smake_char_table, 1, 2, 0,
a6266d23 3084 doc: /* Return a newly created char-table, with purpose PURPOSE.
228299fa
GM
3085Each element is initialized to INIT, which defaults to nil.
3086PURPOSE should be a symbol which has a `char-table-extra-slots' property.
7ee72033
MB
3087The property's value should be an integer between 0 and 10. */)
3088 (purpose, init)
a59de17b 3089 register Lisp_Object purpose, init;
7b07587b
RS
3090{
3091 Lisp_Object vector;
a59de17b 3092 Lisp_Object n;
b7826503 3093 CHECK_SYMBOL (purpose);
0551bde3 3094 n = Fget (purpose, Qchar_table_extra_slots);
b7826503 3095 CHECK_NUMBER (n);
7b07587b
RS
3096 if (XINT (n) < 0 || XINT (n) > 10)
3097 args_out_of_range (n, Qnil);
3098 /* Add 2 to the size for the defalt and parent slots. */
3099 vector = Fmake_vector (make_number (CHAR_TABLE_STANDARD_SLOTS + XINT (n)),
3100 init);
0551bde3 3101 XCHAR_TABLE (vector)->top = Qt;
c96a008c 3102 XCHAR_TABLE (vector)->parent = Qnil;
a59de17b 3103 XCHAR_TABLE (vector)->purpose = purpose;
7b07587b
RS
3104 XSETCHAR_TABLE (vector, XCHAR_TABLE (vector));
3105 return vector;
3106}
3107
34400008 3108
2a7a8e99 3109/* Return a newly created sub char table with slots initialized by INIT.
0551bde3
KH
3110 Since a sub char table does not appear as a top level Emacs Lisp
3111 object, we don't need a Lisp interface to make it. */
3112
3113Lisp_Object
2a7a8e99
KH
3114make_sub_char_table (init)
3115 Lisp_Object init;
0551bde3
KH
3116{
3117 Lisp_Object vector
2a7a8e99 3118 = Fmake_vector (make_number (SUB_CHAR_TABLE_STANDARD_SLOTS), init);
0551bde3 3119 XCHAR_TABLE (vector)->top = Qnil;
2a7a8e99 3120 XCHAR_TABLE (vector)->defalt = Qnil;
0551bde3
KH
3121 XSETCHAR_TABLE (vector, XCHAR_TABLE (vector));
3122 return vector;
3123}
3124
34400008 3125
7146af97 3126DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
eae936e2 3127 doc: /* Return a newly created vector with specified arguments as elements.
ae8e8122
MB
3128Any number of arguments, even zero arguments, are allowed.
3129usage: (vector &rest OBJECTS) */)
7ee72033 3130 (nargs, args)
7146af97
JB
3131 register int nargs;
3132 Lisp_Object *args;
3133{
3134 register Lisp_Object len, val;
3135 register int index;
3136 register struct Lisp_Vector *p;
3137
67ba9986 3138 XSETFASTINT (len, nargs);
7146af97
JB
3139 val = Fmake_vector (len, Qnil);
3140 p = XVECTOR (val);
3141 for (index = 0; index < nargs; index++)
3142 p->contents[index] = args[index];
3143 return val;
3144}
3145
34400008 3146
7146af97 3147DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
a6266d23 3148 doc: /* Create a byte-code object with specified arguments as elements.
228299fa
GM
3149The arguments should be the arglist, bytecode-string, constant vector,
3150stack size, (optional) doc string, and (optional) interactive spec.
3151The first four arguments are required; at most six have any
ae8e8122 3152significance.
92cc28b2 3153usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
7ee72033 3154 (nargs, args)
7146af97
JB
3155 register int nargs;
3156 Lisp_Object *args;
3157{
3158 register Lisp_Object len, val;
3159 register int index;
3160 register struct Lisp_Vector *p;
3161
67ba9986 3162 XSETFASTINT (len, nargs);
265a9e55 3163 if (!NILP (Vpurify_flag))
5a053ea9 3164 val = make_pure_vector ((EMACS_INT) nargs);
7146af97
JB
3165 else
3166 val = Fmake_vector (len, Qnil);
9eac9d59
KH
3167
3168 if (STRINGP (args[1]) && STRING_MULTIBYTE (args[1]))
3169 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
3170 earlier because they produced a raw 8-bit string for byte-code
3171 and now such a byte-code string is loaded as multibyte while
3172 raw 8-bit characters converted to multibyte form. Thus, now we
3173 must convert them back to the original unibyte form. */
3174 args[1] = Fstring_as_unibyte (args[1]);
3175
7146af97
JB
3176 p = XVECTOR (val);
3177 for (index = 0; index < nargs; index++)
3178 {
265a9e55 3179 if (!NILP (Vpurify_flag))
7146af97
JB
3180 args[index] = Fpurecopy (args[index]);
3181 p->contents[index] = args[index];
3182 }
50aee051 3183 XSETCOMPILED (val, p);
7146af97
JB
3184 return val;
3185}
2e471eb5 3186
34400008 3187
7146af97 3188\f
2e471eb5
GM
3189/***********************************************************************
3190 Symbol Allocation
3191 ***********************************************************************/
7146af97 3192
2e471eb5
GM
3193/* Each symbol_block is just under 1020 bytes long, since malloc
3194 really allocates in units of powers of two and uses 4 bytes for its
3195 own overhead. */
7146af97
JB
3196
3197#define SYMBOL_BLOCK_SIZE \
3198 ((1020 - sizeof (struct symbol_block *)) / sizeof (struct Lisp_Symbol))
3199
3200struct symbol_block
2e471eb5 3201{
d05b383a 3202 /* Place `symbols' first, to preserve alignment. */
2e471eb5 3203 struct Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
d05b383a 3204 struct symbol_block *next;
2e471eb5 3205};
7146af97 3206
34400008
GM
3207/* Current symbol block and index of first unused Lisp_Symbol
3208 structure in it. */
3209
7146af97
JB
3210struct symbol_block *symbol_block;
3211int symbol_block_index;
3212
34400008
GM
3213/* List of free symbols. */
3214
7146af97
JB
3215struct Lisp_Symbol *symbol_free_list;
3216
c8099634 3217/* Total number of symbol blocks now in use. */
2e471eb5 3218
c8099634
RS
3219int n_symbol_blocks;
3220
34400008
GM
3221
3222/* Initialize symbol allocation. */
3223
7146af97
JB
3224void
3225init_symbol ()
3226{
0930c1a1
SM
3227 symbol_block = NULL;
3228 symbol_block_index = SYMBOL_BLOCK_SIZE;
7146af97 3229 symbol_free_list = 0;
0930c1a1 3230 n_symbol_blocks = 0;
7146af97
JB
3231}
3232
34400008 3233
7146af97 3234DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
a6266d23 3235 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
7ee72033
MB
3236Its value and function definition are void, and its property list is nil. */)
3237 (name)
54ee42dd 3238 Lisp_Object name;
7146af97
JB
3239{
3240 register Lisp_Object val;
3241 register struct Lisp_Symbol *p;
3242
b7826503 3243 CHECK_STRING (name);
7146af97 3244
537407f0 3245 /* eassert (!handling_signal); */
cfb2f32e 3246
e2984df0
CY
3247#ifndef SYNC_INPUT
3248 BLOCK_INPUT;
3249#endif
3250
7146af97
JB
3251 if (symbol_free_list)
3252 {
45d12a89 3253 XSETSYMBOL (val, symbol_free_list);
28a099a4 3254 symbol_free_list = symbol_free_list->next;
7146af97
JB
3255 }
3256 else
3257 {
3258 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
3259 {
3c06d205 3260 struct symbol_block *new;
34400008
GM
3261 new = (struct symbol_block *) lisp_malloc (sizeof *new,
3262 MEM_TYPE_SYMBOL);
7146af97
JB
3263 new->next = symbol_block;
3264 symbol_block = new;
3265 symbol_block_index = 0;
c8099634 3266 n_symbol_blocks++;
7146af97 3267 }
a0668126
SM
3268 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index]);
3269 symbol_block_index++;
7146af97 3270 }
177c0ea7 3271
e2984df0
CY
3272#ifndef SYNC_INPUT
3273 UNBLOCK_INPUT;
3274#endif
3275
7146af97 3276 p = XSYMBOL (val);
8fe5665d 3277 p->xname = name;
7146af97 3278 p->plist = Qnil;
2e471eb5
GM
3279 p->value = Qunbound;
3280 p->function = Qunbound;
9e713715 3281 p->next = NULL;
2336fe58 3282 p->gcmarkbit = 0;
9e713715
GM
3283 p->interned = SYMBOL_UNINTERNED;
3284 p->constant = 0;
3285 p->indirect_variable = 0;
2e471eb5
GM
3286 consing_since_gc += sizeof (struct Lisp_Symbol);
3287 symbols_consed++;
7146af97
JB
3288 return val;
3289}
3290
3f25e183 3291
2e471eb5
GM
3292\f
3293/***********************************************************************
34400008 3294 Marker (Misc) Allocation
2e471eb5 3295 ***********************************************************************/
3f25e183 3296
2e471eb5
GM
3297/* Allocation of markers and other objects that share that structure.
3298 Works like allocation of conses. */
c0696668 3299
2e471eb5
GM
3300#define MARKER_BLOCK_SIZE \
3301 ((1020 - sizeof (struct marker_block *)) / sizeof (union Lisp_Misc))
3302
3303struct marker_block
c0696668 3304{
d05b383a 3305 /* Place `markers' first, to preserve alignment. */
2e471eb5 3306 union Lisp_Misc markers[MARKER_BLOCK_SIZE];
d05b383a 3307 struct marker_block *next;
2e471eb5 3308};
c0696668 3309
2e471eb5
GM
3310struct marker_block *marker_block;
3311int marker_block_index;
c0696668 3312
2e471eb5 3313union Lisp_Misc *marker_free_list;
c0696668 3314
2e471eb5 3315/* Total number of marker blocks now in use. */
3f25e183 3316
2e471eb5
GM
3317int n_marker_blocks;
3318
3319void
3320init_marker ()
3f25e183 3321{
0930c1a1
SM
3322 marker_block = NULL;
3323 marker_block_index = MARKER_BLOCK_SIZE;
2e471eb5 3324 marker_free_list = 0;
0930c1a1 3325 n_marker_blocks = 0;
3f25e183
RS
3326}
3327
2e471eb5
GM
3328/* Return a newly allocated Lisp_Misc object, with no substructure. */
3329
3f25e183 3330Lisp_Object
2e471eb5 3331allocate_misc ()
7146af97 3332{
2e471eb5 3333 Lisp_Object val;
7146af97 3334
e2984df0
CY
3335 /* eassert (!handling_signal); */
3336
3337#ifndef SYNC_INPUT
3338 BLOCK_INPUT;
3339#endif
cfb2f32e 3340
2e471eb5 3341 if (marker_free_list)
7146af97 3342 {
2e471eb5
GM
3343 XSETMISC (val, marker_free_list);
3344 marker_free_list = marker_free_list->u_free.chain;
7146af97
JB
3345 }
3346 else
7146af97 3347 {
2e471eb5
GM
3348 if (marker_block_index == MARKER_BLOCK_SIZE)
3349 {
3350 struct marker_block *new;
34400008
GM
3351 new = (struct marker_block *) lisp_malloc (sizeof *new,
3352 MEM_TYPE_MISC);
2e471eb5
GM
3353 new->next = marker_block;
3354 marker_block = new;
3355 marker_block_index = 0;
3356 n_marker_blocks++;
7b7990cc 3357 total_free_markers += MARKER_BLOCK_SIZE;
2e471eb5 3358 }
a0668126
SM
3359 XSETMISC (val, &marker_block->markers[marker_block_index]);
3360 marker_block_index++;
7146af97 3361 }
177c0ea7 3362
e2984df0
CY
3363#ifndef SYNC_INPUT
3364 UNBLOCK_INPUT;
3365#endif
3366
7b7990cc 3367 --total_free_markers;
2e471eb5
GM
3368 consing_since_gc += sizeof (union Lisp_Misc);
3369 misc_objects_consed++;
2336fe58 3370 XMARKER (val)->gcmarkbit = 0;
2e471eb5
GM
3371 return val;
3372}
3373
7b7990cc
KS
3374/* Free a Lisp_Misc object */
3375
3376void
3377free_misc (misc)
3378 Lisp_Object misc;
3379{
3380 XMISC (misc)->u_marker.type = Lisp_Misc_Free;
3381 XMISC (misc)->u_free.chain = marker_free_list;
3382 marker_free_list = XMISC (misc);
3383
3384 total_free_markers++;
3385}
3386
42172a6b
RS
3387/* Return a Lisp_Misc_Save_Value object containing POINTER and
3388 INTEGER. This is used to package C values to call record_unwind_protect.
3389 The unwind function can get the C values back using XSAVE_VALUE. */
3390
3391Lisp_Object
3392make_save_value (pointer, integer)
3393 void *pointer;
3394 int integer;
3395{
3396 register Lisp_Object val;
3397 register struct Lisp_Save_Value *p;
3398
3399 val = allocate_misc ();
3400 XMISCTYPE (val) = Lisp_Misc_Save_Value;
3401 p = XSAVE_VALUE (val);
3402 p->pointer = pointer;
3403 p->integer = integer;
b766f870 3404 p->dogc = 0;
42172a6b
RS
3405 return val;
3406}
3407
2e471eb5 3408DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
a6266d23 3409 doc: /* Return a newly allocated marker which does not point at any place. */)
7ee72033 3410 ()
2e471eb5
GM
3411{
3412 register Lisp_Object val;
3413 register struct Lisp_Marker *p;
7146af97 3414
2e471eb5
GM
3415 val = allocate_misc ();
3416 XMISCTYPE (val) = Lisp_Misc_Marker;
3417 p = XMARKER (val);
3418 p->buffer = 0;
3419 p->bytepos = 0;
3420 p->charpos = 0;
ef89c2ce 3421 p->next = NULL;
2e471eb5 3422 p->insertion_type = 0;
7146af97
JB
3423 return val;
3424}
2e471eb5
GM
3425
3426/* Put MARKER back on the free list after using it temporarily. */
3427
3428void
3429free_marker (marker)
3430 Lisp_Object marker;
3431{
ef89c2ce 3432 unchain_marker (XMARKER (marker));
7b7990cc 3433 free_misc (marker);
2e471eb5
GM
3434}
3435
c0696668 3436\f
7146af97 3437/* Return a newly created vector or string with specified arguments as
736471d1
RS
3438 elements. If all the arguments are characters that can fit
3439 in a string of events, make a string; otherwise, make a vector.
3440
3441 Any number of arguments, even zero arguments, are allowed. */
7146af97
JB
3442
3443Lisp_Object
736471d1 3444make_event_array (nargs, args)
7146af97
JB
3445 register int nargs;
3446 Lisp_Object *args;
3447{
3448 int i;
3449
3450 for (i = 0; i < nargs; i++)
736471d1 3451 /* The things that fit in a string
c9ca4659
RS
3452 are characters that are in 0...127,
3453 after discarding the meta bit and all the bits above it. */
e687453f 3454 if (!INTEGERP (args[i])
c9ca4659 3455 || (XUINT (args[i]) & ~(-CHAR_META)) >= 0200)
7146af97
JB
3456 return Fvector (nargs, args);
3457
3458 /* Since the loop exited, we know that all the things in it are
3459 characters, so we can make a string. */
3460 {
c13ccad2 3461 Lisp_Object result;
177c0ea7 3462
50aee051 3463 result = Fmake_string (make_number (nargs), make_number (0));
7146af97 3464 for (i = 0; i < nargs; i++)
736471d1 3465 {
46e7e6b0 3466 SSET (result, i, XINT (args[i]));
736471d1
RS
3467 /* Move the meta bit to the right place for a string char. */
3468 if (XINT (args[i]) & CHAR_META)
46e7e6b0 3469 SSET (result, i, SREF (result, i) | 0x80);
736471d1 3470 }
177c0ea7 3471
7146af97
JB
3472 return result;
3473 }
3474}
2e471eb5
GM
3475
3476
7146af97 3477\f
24d8a105
RS
3478/************************************************************************
3479 Memory Full Handling
3480 ************************************************************************/
3481
3482
3483/* Called if malloc returns zero. */
3484
3485void
3486memory_full ()
3487{
3488 int i;
3489
3490 Vmemory_full = Qt;
3491
3492 memory_full_cons_threshold = sizeof (struct cons_block);
3493
3494 /* The first time we get here, free the spare memory. */
3495 for (i = 0; i < sizeof (spare_memory) / sizeof (char *); i++)
3496 if (spare_memory[i])
3497 {
3498 if (i == 0)
3499 free (spare_memory[i]);
3500 else if (i >= 1 && i <= 4)
3501 lisp_align_free (spare_memory[i]);
3502 else
3503 lisp_free (spare_memory[i]);
3504 spare_memory[i] = 0;
3505 }
3506
3507 /* Record the space now used. When it decreases substantially,
3508 we can refill the memory reserve. */
3509#ifndef SYSTEM_MALLOC
3510 bytes_used_when_full = BYTES_USED;
3511#endif
3512
3513 /* This used to call error, but if we've run out of memory, we could
3514 get infinite recursion trying to build the string. */
9b306d37 3515 xsignal (Qnil, Vmemory_signal_data);
24d8a105
RS
3516}
3517
3518/* If we released our reserve (due to running out of memory),
3519 and we have a fair amount free once again,
3520 try to set aside another reserve in case we run out once more.
3521
3522 This is called when a relocatable block is freed in ralloc.c,
3523 and also directly from this file, in case we're not using ralloc.c. */
3524
3525void
3526refill_memory_reserve ()
3527{
3528#ifndef SYSTEM_MALLOC
3529 if (spare_memory[0] == 0)
3530 spare_memory[0] = (char *) malloc ((size_t) SPARE_MEMORY);
3531 if (spare_memory[1] == 0)
3532 spare_memory[1] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3533 MEM_TYPE_CONS);
3534 if (spare_memory[2] == 0)
3535 spare_memory[2] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3536 MEM_TYPE_CONS);
3537 if (spare_memory[3] == 0)
3538 spare_memory[3] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3539 MEM_TYPE_CONS);
3540 if (spare_memory[4] == 0)
3541 spare_memory[4] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3542 MEM_TYPE_CONS);
3543 if (spare_memory[5] == 0)
3544 spare_memory[5] = (char *) lisp_malloc (sizeof (struct string_block),
3545 MEM_TYPE_STRING);
3546 if (spare_memory[6] == 0)
3547 spare_memory[6] = (char *) lisp_malloc (sizeof (struct string_block),
3548 MEM_TYPE_STRING);
3549 if (spare_memory[0] && spare_memory[1] && spare_memory[5])
3550 Vmemory_full = Qnil;
3551#endif
3552}
3553\f
34400008
GM
3554/************************************************************************
3555 C Stack Marking
3556 ************************************************************************/
3557
13c844fb
GM
3558#if GC_MARK_STACK || defined GC_MALLOC_CHECK
3559
71cf5fa0
GM
3560/* Conservative C stack marking requires a method to identify possibly
3561 live Lisp objects given a pointer value. We do this by keeping
3562 track of blocks of Lisp data that are allocated in a red-black tree
3563 (see also the comment of mem_node which is the type of nodes in
3564 that tree). Function lisp_malloc adds information for an allocated
3565 block to the red-black tree with calls to mem_insert, and function
3566 lisp_free removes it with mem_delete. Functions live_string_p etc
3567 call mem_find to lookup information about a given pointer in the
3568 tree, and use that to determine if the pointer points to a Lisp
3569 object or not. */
3570
34400008
GM
3571/* Initialize this part of alloc.c. */
3572
3573static void
3574mem_init ()
3575{
3576 mem_z.left = mem_z.right = MEM_NIL;
3577 mem_z.parent = NULL;
3578 mem_z.color = MEM_BLACK;
3579 mem_z.start = mem_z.end = NULL;
3580 mem_root = MEM_NIL;
3581}
3582
3583
3584/* Value is a pointer to the mem_node containing START. Value is
3585 MEM_NIL if there is no node in the tree containing START. */
3586
3587static INLINE struct mem_node *
3588mem_find (start)
3589 void *start;
3590{
3591 struct mem_node *p;
3592
ece93c02
GM
3593 if (start < min_heap_address || start > max_heap_address)
3594 return MEM_NIL;
3595
34400008
GM
3596 /* Make the search always successful to speed up the loop below. */
3597 mem_z.start = start;
3598 mem_z.end = (char *) start + 1;
3599
3600 p = mem_root;
3601 while (start < p->start || start >= p->end)
3602 p = start < p->start ? p->left : p->right;
3603 return p;
3604}
3605
3606
3607/* Insert a new node into the tree for a block of memory with start
3608 address START, end address END, and type TYPE. Value is a
3609 pointer to the node that was inserted. */
3610
3611static struct mem_node *
3612mem_insert (start, end, type)
3613 void *start, *end;
3614 enum mem_type type;
3615{
3616 struct mem_node *c, *parent, *x;
3617
ece93c02
GM
3618 if (start < min_heap_address)
3619 min_heap_address = start;
3620 if (end > max_heap_address)
3621 max_heap_address = end;
3622
34400008
GM
3623 /* See where in the tree a node for START belongs. In this
3624 particular application, it shouldn't happen that a node is already
3625 present. For debugging purposes, let's check that. */
3626 c = mem_root;
3627 parent = NULL;
3628
3629#if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
177c0ea7 3630
34400008
GM
3631 while (c != MEM_NIL)
3632 {
3633 if (start >= c->start && start < c->end)
3634 abort ();
3635 parent = c;
3636 c = start < c->start ? c->left : c->right;
3637 }
177c0ea7 3638
34400008 3639#else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
177c0ea7 3640
34400008
GM
3641 while (c != MEM_NIL)
3642 {
3643 parent = c;
3644 c = start < c->start ? c->left : c->right;
3645 }
177c0ea7 3646
34400008
GM
3647#endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3648
3649 /* Create a new node. */
877935b1
GM
3650#ifdef GC_MALLOC_CHECK
3651 x = (struct mem_node *) _malloc_internal (sizeof *x);
3652 if (x == NULL)
3653 abort ();
3654#else
34400008 3655 x = (struct mem_node *) xmalloc (sizeof *x);
877935b1 3656#endif
34400008
GM
3657 x->start = start;
3658 x->end = end;
3659 x->type = type;
3660 x->parent = parent;
3661 x->left = x->right = MEM_NIL;
3662 x->color = MEM_RED;
3663
3664 /* Insert it as child of PARENT or install it as root. */
3665 if (parent)
3666 {
3667 if (start < parent->start)
3668 parent->left = x;
3669 else
3670 parent->right = x;
3671 }
177c0ea7 3672 else
34400008
GM
3673 mem_root = x;
3674
3675 /* Re-establish red-black tree properties. */
3676 mem_insert_fixup (x);
877935b1 3677
34400008
GM
3678 return x;
3679}
3680
3681
3682/* Re-establish the red-black properties of the tree, and thereby
3683 balance the tree, after node X has been inserted; X is always red. */
3684
3685static void
3686mem_insert_fixup (x)
3687 struct mem_node *x;
3688{
3689 while (x != mem_root && x->parent->color == MEM_RED)
3690 {
3691 /* X is red and its parent is red. This is a violation of
3692 red-black tree property #3. */
177c0ea7 3693
34400008
GM
3694 if (x->parent == x->parent->parent->left)
3695 {
3696 /* We're on the left side of our grandparent, and Y is our
3697 "uncle". */
3698 struct mem_node *y = x->parent->parent->right;
177c0ea7 3699
34400008
GM
3700 if (y->color == MEM_RED)
3701 {
3702 /* Uncle and parent are red but should be black because
3703 X is red. Change the colors accordingly and proceed
3704 with the grandparent. */
3705 x->parent->color = MEM_BLACK;
3706 y->color = MEM_BLACK;
3707 x->parent->parent->color = MEM_RED;
3708 x = x->parent->parent;
3709 }
3710 else
3711 {
3712 /* Parent and uncle have different colors; parent is
3713 red, uncle is black. */
3714 if (x == x->parent->right)
3715 {
3716 x = x->parent;
3717 mem_rotate_left (x);
3718 }
3719
3720 x->parent->color = MEM_BLACK;
3721 x->parent->parent->color = MEM_RED;
3722 mem_rotate_right (x->parent->parent);
3723 }
3724 }
3725 else
3726 {
3727 /* This is the symmetrical case of above. */
3728 struct mem_node *y = x->parent->parent->left;
177c0ea7 3729
34400008
GM
3730 if (y->color == MEM_RED)
3731 {
3732 x->parent->color = MEM_BLACK;
3733 y->color = MEM_BLACK;
3734 x->parent->parent->color = MEM_RED;
3735 x = x->parent->parent;
3736 }
3737 else
3738 {
3739 if (x == x->parent->left)
3740 {
3741 x = x->parent;
3742 mem_rotate_right (x);
3743 }
177c0ea7 3744
34400008
GM
3745 x->parent->color = MEM_BLACK;
3746 x->parent->parent->color = MEM_RED;
3747 mem_rotate_left (x->parent->parent);
3748 }
3749 }
3750 }
3751
3752 /* The root may have been changed to red due to the algorithm. Set
3753 it to black so that property #5 is satisfied. */
3754 mem_root->color = MEM_BLACK;
3755}
3756
3757
177c0ea7
JB
3758/* (x) (y)
3759 / \ / \
34400008
GM
3760 a (y) ===> (x) c
3761 / \ / \
3762 b c a b */
3763
3764static void
3765mem_rotate_left (x)
3766 struct mem_node *x;
3767{
3768 struct mem_node *y;
3769
3770 /* Turn y's left sub-tree into x's right sub-tree. */
3771 y = x->right;
3772 x->right = y->left;
3773 if (y->left != MEM_NIL)
3774 y->left->parent = x;
3775
3776 /* Y's parent was x's parent. */
3777 if (y != MEM_NIL)
3778 y->parent = x->parent;
3779
3780 /* Get the parent to point to y instead of x. */
3781 if (x->parent)
3782 {
3783 if (x == x->parent->left)
3784 x->parent->left = y;
3785 else
3786 x->parent->right = y;
3787 }
3788 else
3789 mem_root = y;
3790
3791 /* Put x on y's left. */
3792 y->left = x;
3793 if (x != MEM_NIL)
3794 x->parent = y;
3795}
3796
3797
177c0ea7
JB
3798/* (x) (Y)
3799 / \ / \
3800 (y) c ===> a (x)
3801 / \ / \
34400008
GM
3802 a b b c */
3803
3804static void
3805mem_rotate_right (x)
3806 struct mem_node *x;
3807{
3808 struct mem_node *y = x->left;
3809
3810 x->left = y->right;
3811 if (y->right != MEM_NIL)
3812 y->right->parent = x;
177c0ea7 3813
34400008
GM
3814 if (y != MEM_NIL)
3815 y->parent = x->parent;
3816 if (x->parent)
3817 {
3818 if (x == x->parent->right)
3819 x->parent->right = y;
3820 else
3821 x->parent->left = y;
3822 }
3823 else
3824 mem_root = y;
177c0ea7 3825
34400008
GM
3826 y->right = x;
3827 if (x != MEM_NIL)
3828 x->parent = y;
3829}
3830
3831
3832/* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
3833
3834static void
3835mem_delete (z)
3836 struct mem_node *z;
3837{
3838 struct mem_node *x, *y;
3839
3840 if (!z || z == MEM_NIL)
3841 return;
3842
3843 if (z->left == MEM_NIL || z->right == MEM_NIL)
3844 y = z;
3845 else
3846 {
3847 y = z->right;
3848 while (y->left != MEM_NIL)
3849 y = y->left;
3850 }
3851
3852 if (y->left != MEM_NIL)
3853 x = y->left;
3854 else
3855 x = y->right;
3856
3857 x->parent = y->parent;
3858 if (y->parent)
3859 {
3860 if (y == y->parent->left)
3861 y->parent->left = x;
3862 else
3863 y->parent->right = x;
3864 }
3865 else
3866 mem_root = x;
3867
3868 if (y != z)
3869 {
3870 z->start = y->start;
3871 z->end = y->end;
3872 z->type = y->type;
3873 }
177c0ea7 3874
34400008
GM
3875 if (y->color == MEM_BLACK)
3876 mem_delete_fixup (x);
877935b1
GM
3877
3878#ifdef GC_MALLOC_CHECK
3879 _free_internal (y);
3880#else
34400008 3881 xfree (y);
877935b1 3882#endif
34400008
GM
3883}
3884
3885
3886/* Re-establish the red-black properties of the tree, after a
3887 deletion. */
3888
3889static void
3890mem_delete_fixup (x)
3891 struct mem_node *x;
3892{
3893 while (x != mem_root && x->color == MEM_BLACK)
3894 {
3895 if (x == x->parent->left)
3896 {
3897 struct mem_node *w = x->parent->right;
177c0ea7 3898
34400008
GM
3899 if (w->color == MEM_RED)
3900 {
3901 w->color = MEM_BLACK;
3902 x->parent->color = MEM_RED;
3903 mem_rotate_left (x->parent);
3904 w = x->parent->right;
3905 }
177c0ea7 3906
34400008
GM
3907 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
3908 {
3909 w->color = MEM_RED;
3910 x = x->parent;
3911 }
3912 else
3913 {
3914 if (w->right->color == MEM_BLACK)
3915 {
3916 w->left->color = MEM_BLACK;
3917 w->color = MEM_RED;
3918 mem_rotate_right (w);
3919 w = x->parent->right;
3920 }
3921 w->color = x->parent->color;
3922 x->parent->color = MEM_BLACK;
3923 w->right->color = MEM_BLACK;
3924 mem_rotate_left (x->parent);
3925 x = mem_root;
3926 }
3927 }
3928 else
3929 {
3930 struct mem_node *w = x->parent->left;
177c0ea7 3931
34400008
GM
3932 if (w->color == MEM_RED)
3933 {
3934 w->color = MEM_BLACK;
3935 x->parent->color = MEM_RED;
3936 mem_rotate_right (x->parent);
3937 w = x->parent->left;
3938 }
177c0ea7 3939
34400008
GM
3940 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
3941 {
3942 w->color = MEM_RED;
3943 x = x->parent;
3944 }
3945 else
3946 {
3947 if (w->left->color == MEM_BLACK)
3948 {
3949 w->right->color = MEM_BLACK;
3950 w->color = MEM_RED;
3951 mem_rotate_left (w);
3952 w = x->parent->left;
3953 }
177c0ea7 3954
34400008
GM
3955 w->color = x->parent->color;
3956 x->parent->color = MEM_BLACK;
3957 w->left->color = MEM_BLACK;
3958 mem_rotate_right (x->parent);
3959 x = mem_root;
3960 }
3961 }
3962 }
177c0ea7 3963
34400008
GM
3964 x->color = MEM_BLACK;
3965}
3966
3967
3968/* Value is non-zero if P is a pointer to a live Lisp string on
3969 the heap. M is a pointer to the mem_block for P. */
3970
3971static INLINE int
3972live_string_p (m, p)
3973 struct mem_node *m;
3974 void *p;
3975{
3976 if (m->type == MEM_TYPE_STRING)
3977 {
3978 struct string_block *b = (struct string_block *) m->start;
3979 int offset = (char *) p - (char *) &b->strings[0];
3980
3981 /* P must point to the start of a Lisp_String structure, and it
3982 must not be on the free-list. */
176bc847
GM
3983 return (offset >= 0
3984 && offset % sizeof b->strings[0] == 0
d05b383a 3985 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
34400008
GM
3986 && ((struct Lisp_String *) p)->data != NULL);
3987 }
3988 else
3989 return 0;
3990}
3991
3992
3993/* Value is non-zero if P is a pointer to a live Lisp cons on
3994 the heap. M is a pointer to the mem_block for P. */
3995
3996static INLINE int
3997live_cons_p (m, p)
3998 struct mem_node *m;
3999 void *p;
4000{
4001 if (m->type == MEM_TYPE_CONS)
4002 {
4003 struct cons_block *b = (struct cons_block *) m->start;
4004 int offset = (char *) p - (char *) &b->conses[0];
4005
4006 /* P must point to the start of a Lisp_Cons, not be
4007 one of the unused cells in the current cons block,
4008 and not be on the free-list. */
176bc847
GM
4009 return (offset >= 0
4010 && offset % sizeof b->conses[0] == 0
d05b383a 4011 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
34400008
GM
4012 && (b != cons_block
4013 || offset / sizeof b->conses[0] < cons_block_index)
4014 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
4015 }
4016 else
4017 return 0;
4018}
4019
4020
4021/* Value is non-zero if P is a pointer to a live Lisp symbol on
4022 the heap. M is a pointer to the mem_block for P. */
4023
4024static INLINE int
4025live_symbol_p (m, p)
4026 struct mem_node *m;
4027 void *p;
4028{
4029 if (m->type == MEM_TYPE_SYMBOL)
4030 {
4031 struct symbol_block *b = (struct symbol_block *) m->start;
4032 int offset = (char *) p - (char *) &b->symbols[0];
177c0ea7 4033
34400008
GM
4034 /* P must point to the start of a Lisp_Symbol, not be
4035 one of the unused cells in the current symbol block,
4036 and not be on the free-list. */
176bc847
GM
4037 return (offset >= 0
4038 && offset % sizeof b->symbols[0] == 0
d05b383a 4039 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
34400008
GM
4040 && (b != symbol_block
4041 || offset / sizeof b->symbols[0] < symbol_block_index)
4042 && !EQ (((struct Lisp_Symbol *) p)->function, Vdead));
4043 }
4044 else
4045 return 0;
4046}
4047
4048
4049/* Value is non-zero if P is a pointer to a live Lisp float on
4050 the heap. M is a pointer to the mem_block for P. */
4051
4052static INLINE int
4053live_float_p (m, p)
4054 struct mem_node *m;
4055 void *p;
4056{
4057 if (m->type == MEM_TYPE_FLOAT)
4058 {
4059 struct float_block *b = (struct float_block *) m->start;
4060 int offset = (char *) p - (char *) &b->floats[0];
177c0ea7 4061
ab6780cd
SM
4062 /* P must point to the start of a Lisp_Float and not be
4063 one of the unused cells in the current float block. */
176bc847
GM
4064 return (offset >= 0
4065 && offset % sizeof b->floats[0] == 0
d05b383a 4066 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
34400008 4067 && (b != float_block
ab6780cd 4068 || offset / sizeof b->floats[0] < float_block_index));
34400008
GM
4069 }
4070 else
4071 return 0;
4072}
4073
4074
4075/* Value is non-zero if P is a pointer to a live Lisp Misc on
4076 the heap. M is a pointer to the mem_block for P. */
4077
4078static INLINE int
4079live_misc_p (m, p)
4080 struct mem_node *m;
4081 void *p;
4082{
4083 if (m->type == MEM_TYPE_MISC)
4084 {
4085 struct marker_block *b = (struct marker_block *) m->start;
4086 int offset = (char *) p - (char *) &b->markers[0];
177c0ea7 4087
34400008
GM
4088 /* P must point to the start of a Lisp_Misc, not be
4089 one of the unused cells in the current misc block,
4090 and not be on the free-list. */
176bc847
GM
4091 return (offset >= 0
4092 && offset % sizeof b->markers[0] == 0
d05b383a 4093 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
34400008
GM
4094 && (b != marker_block
4095 || offset / sizeof b->markers[0] < marker_block_index)
4096 && ((union Lisp_Misc *) p)->u_marker.type != Lisp_Misc_Free);
4097 }
4098 else
4099 return 0;
4100}
4101
4102
4103/* Value is non-zero if P is a pointer to a live vector-like object.
4104 M is a pointer to the mem_block for P. */
4105
4106static INLINE int
4107live_vector_p (m, p)
4108 struct mem_node *m;
4109 void *p;
4110{
ece93c02
GM
4111 return (p == m->start
4112 && m->type >= MEM_TYPE_VECTOR
4113 && m->type <= MEM_TYPE_WINDOW);
34400008
GM
4114}
4115
4116
2336fe58 4117/* Value is non-zero if P is a pointer to a live buffer. M is a
34400008
GM
4118 pointer to the mem_block for P. */
4119
4120static INLINE int
4121live_buffer_p (m, p)
4122 struct mem_node *m;
4123 void *p;
4124{
4125 /* P must point to the start of the block, and the buffer
4126 must not have been killed. */
4127 return (m->type == MEM_TYPE_BUFFER
4128 && p == m->start
4129 && !NILP (((struct buffer *) p)->name));
4130}
4131
13c844fb
GM
4132#endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
4133
4134#if GC_MARK_STACK
4135
34400008
GM
4136#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4137
4138/* Array of objects that are kept alive because the C stack contains
4139 a pattern that looks like a reference to them . */
4140
4141#define MAX_ZOMBIES 10
4142static Lisp_Object zombies[MAX_ZOMBIES];
4143
4144/* Number of zombie objects. */
4145
4146static int nzombies;
4147
4148/* Number of garbage collections. */
4149
4150static int ngcs;
4151
4152/* Average percentage of zombies per collection. */
4153
4154static double avg_zombies;
4155
4156/* Max. number of live and zombie objects. */
4157
4158static int max_live, max_zombies;
4159
4160/* Average number of live objects per GC. */
4161
4162static double avg_live;
4163
4164DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
7ee72033
MB
4165 doc: /* Show information about live and zombie objects. */)
4166 ()
34400008 4167{
83fc9c63
DL
4168 Lisp_Object args[8], zombie_list = Qnil;
4169 int i;
4170 for (i = 0; i < nzombies; i++)
4171 zombie_list = Fcons (zombies[i], zombie_list);
4172 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
34400008
GM
4173 args[1] = make_number (ngcs);
4174 args[2] = make_float (avg_live);
4175 args[3] = make_float (avg_zombies);
4176 args[4] = make_float (avg_zombies / avg_live / 100);
4177 args[5] = make_number (max_live);
4178 args[6] = make_number (max_zombies);
83fc9c63
DL
4179 args[7] = zombie_list;
4180 return Fmessage (8, args);
34400008
GM
4181}
4182
4183#endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4184
4185
182ff242
GM
4186/* Mark OBJ if we can prove it's a Lisp_Object. */
4187
4188static INLINE void
4189mark_maybe_object (obj)
4190 Lisp_Object obj;
4191{
4192 void *po = (void *) XPNTR (obj);
4193 struct mem_node *m = mem_find (po);
177c0ea7 4194
182ff242
GM
4195 if (m != MEM_NIL)
4196 {
4197 int mark_p = 0;
4198
4199 switch (XGCTYPE (obj))
4200 {
4201 case Lisp_String:
4202 mark_p = (live_string_p (m, po)
4203 && !STRING_MARKED_P ((struct Lisp_String *) po));
4204 break;
4205
4206 case Lisp_Cons:
08b7c2cb 4207 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
182ff242
GM
4208 break;
4209
4210 case Lisp_Symbol:
2336fe58 4211 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
182ff242
GM
4212 break;
4213
4214 case Lisp_Float:
ab6780cd 4215 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
182ff242
GM
4216 break;
4217
4218 case Lisp_Vectorlike:
4219 /* Note: can't check GC_BUFFERP before we know it's a
4220 buffer because checking that dereferences the pointer
4221 PO which might point anywhere. */
4222 if (live_vector_p (m, po))
3ef06d12 4223 mark_p = !GC_SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
182ff242 4224 else if (live_buffer_p (m, po))
3ef06d12 4225 mark_p = GC_BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
182ff242
GM
4226 break;
4227
4228 case Lisp_Misc:
2336fe58 4229 mark_p = (live_misc_p (m, po) && !XMARKER (obj)->gcmarkbit);
182ff242 4230 break;
6bbd7a29
GM
4231
4232 case Lisp_Int:
31d929e5 4233 case Lisp_Type_Limit:
6bbd7a29 4234 break;
182ff242
GM
4235 }
4236
4237 if (mark_p)
4238 {
4239#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4240 if (nzombies < MAX_ZOMBIES)
83fc9c63 4241 zombies[nzombies] = obj;
182ff242
GM
4242 ++nzombies;
4243#endif
49723c04 4244 mark_object (obj);
182ff242
GM
4245 }
4246 }
4247}
ece93c02
GM
4248
4249
4250/* If P points to Lisp data, mark that as live if it isn't already
4251 marked. */
4252
4253static INLINE void
4254mark_maybe_pointer (p)
4255 void *p;
4256{
4257 struct mem_node *m;
4258
4259 /* Quickly rule out some values which can't point to Lisp data. We
4260 assume that Lisp data is aligned on even addresses. */
4261 if ((EMACS_INT) p & 1)
4262 return;
177c0ea7 4263
ece93c02
GM
4264 m = mem_find (p);
4265 if (m != MEM_NIL)
4266 {
4267 Lisp_Object obj = Qnil;
177c0ea7 4268
ece93c02
GM
4269 switch (m->type)
4270 {
4271 case MEM_TYPE_NON_LISP:
2fe50224 4272 /* Nothing to do; not a pointer to Lisp memory. */
ece93c02 4273 break;
177c0ea7 4274
ece93c02 4275 case MEM_TYPE_BUFFER:
3ef06d12 4276 if (live_buffer_p (m, p) && !VECTOR_MARKED_P((struct buffer *)p))
ece93c02
GM
4277 XSETVECTOR (obj, p);
4278 break;
177c0ea7 4279
ece93c02 4280 case MEM_TYPE_CONS:
08b7c2cb 4281 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
ece93c02
GM
4282 XSETCONS (obj, p);
4283 break;
177c0ea7 4284
ece93c02
GM
4285 case MEM_TYPE_STRING:
4286 if (live_string_p (m, p)
4287 && !STRING_MARKED_P ((struct Lisp_String *) p))
4288 XSETSTRING (obj, p);
4289 break;
4290
4291 case MEM_TYPE_MISC:
2336fe58
SM
4292 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
4293 XSETMISC (obj, p);
ece93c02 4294 break;
177c0ea7 4295
ece93c02 4296 case MEM_TYPE_SYMBOL:
2336fe58 4297 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
ece93c02
GM
4298 XSETSYMBOL (obj, p);
4299 break;
177c0ea7 4300
ece93c02 4301 case MEM_TYPE_FLOAT:
ab6780cd 4302 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
ece93c02
GM
4303 XSETFLOAT (obj, p);
4304 break;
177c0ea7 4305
ece93c02
GM
4306 case MEM_TYPE_VECTOR:
4307 case MEM_TYPE_PROCESS:
4308 case MEM_TYPE_HASH_TABLE:
4309 case MEM_TYPE_FRAME:
4310 case MEM_TYPE_WINDOW:
4311 if (live_vector_p (m, p))
4312 {
4313 Lisp_Object tem;
4314 XSETVECTOR (tem, p);
3ef06d12 4315 if (!GC_SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
ece93c02
GM
4316 obj = tem;
4317 }
4318 break;
4319
4320 default:
4321 abort ();
4322 }
4323
4324 if (!GC_NILP (obj))
49723c04 4325 mark_object (obj);
ece93c02
GM
4326 }
4327}
4328
4329
4330/* Mark Lisp objects referenced from the address range START..END. */
34400008 4331
177c0ea7 4332static void
34400008
GM
4333mark_memory (start, end)
4334 void *start, *end;
4335{
4336 Lisp_Object *p;
ece93c02 4337 void **pp;
34400008
GM
4338
4339#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4340 nzombies = 0;
4341#endif
4342
4343 /* Make START the pointer to the start of the memory region,
4344 if it isn't already. */
4345 if (end < start)
4346 {
4347 void *tem = start;
4348 start = end;
4349 end = tem;
4350 }
ece93c02
GM
4351
4352 /* Mark Lisp_Objects. */
34400008 4353 for (p = (Lisp_Object *) start; (void *) p < end; ++p)
182ff242 4354 mark_maybe_object (*p);
ece93c02
GM
4355
4356 /* Mark Lisp data pointed to. This is necessary because, in some
4357 situations, the C compiler optimizes Lisp objects away, so that
4358 only a pointer to them remains. Example:
4359
4360 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
7ee72033 4361 ()
ece93c02
GM
4362 {
4363 Lisp_Object obj = build_string ("test");
4364 struct Lisp_String *s = XSTRING (obj);
4365 Fgarbage_collect ();
4366 fprintf (stderr, "test `%s'\n", s->data);
4367 return Qnil;
4368 }
4369
4370 Here, `obj' isn't really used, and the compiler optimizes it
4371 away. The only reference to the life string is through the
4372 pointer `s'. */
177c0ea7 4373
ece93c02
GM
4374 for (pp = (void **) start; (void *) pp < end; ++pp)
4375 mark_maybe_pointer (*pp);
182ff242
GM
4376}
4377
30f637f8
DL
4378/* setjmp will work with GCC unless NON_SAVING_SETJMP is defined in
4379 the GCC system configuration. In gcc 3.2, the only systems for
4380 which this is so are i386-sco5 non-ELF, i386-sysv3 (maybe included
4381 by others?) and ns32k-pc532-min. */
182ff242
GM
4382
4383#if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4384
4385static int setjmp_tested_p, longjmps_done;
4386
4387#define SETJMP_WILL_LIKELY_WORK "\
4388\n\
4389Emacs garbage collector has been changed to use conservative stack\n\
4390marking. Emacs has determined that the method it uses to do the\n\
4391marking will likely work on your system, but this isn't sure.\n\
4392\n\
4393If you are a system-programmer, or can get the help of a local wizard\n\
4394who is, please take a look at the function mark_stack in alloc.c, and\n\
4395verify that the methods used are appropriate for your system.\n\
4396\n\
d191623b 4397Please mail the result to <emacs-devel@gnu.org>.\n\
182ff242
GM
4398"
4399
4400#define SETJMP_WILL_NOT_WORK "\
4401\n\
4402Emacs garbage collector has been changed to use conservative stack\n\
4403marking. Emacs has determined that the default method it uses to do the\n\
4404marking will not work on your system. We will need a system-dependent\n\
4405solution for your system.\n\
4406\n\
4407Please take a look at the function mark_stack in alloc.c, and\n\
4408try to find a way to make it work on your system.\n\
30f637f8
DL
4409\n\
4410Note that you may get false negatives, depending on the compiler.\n\
4411In particular, you need to use -O with GCC for this test.\n\
4412\n\
d191623b 4413Please mail the result to <emacs-devel@gnu.org>.\n\
182ff242
GM
4414"
4415
4416
4417/* Perform a quick check if it looks like setjmp saves registers in a
4418 jmp_buf. Print a message to stderr saying so. When this test
4419 succeeds, this is _not_ a proof that setjmp is sufficient for
4420 conservative stack marking. Only the sources or a disassembly
4421 can prove that. */
4422
4423static void
4424test_setjmp ()
4425{
4426 char buf[10];
4427 register int x;
4428 jmp_buf jbuf;
4429 int result = 0;
4430
4431 /* Arrange for X to be put in a register. */
4432 sprintf (buf, "1");
4433 x = strlen (buf);
4434 x = 2 * x - 1;
4435
4436 setjmp (jbuf);
4437 if (longjmps_done == 1)
34400008 4438 {
182ff242 4439 /* Came here after the longjmp at the end of the function.
34400008 4440
182ff242
GM
4441 If x == 1, the longjmp has restored the register to its
4442 value before the setjmp, and we can hope that setjmp
4443 saves all such registers in the jmp_buf, although that
4444 isn't sure.
34400008 4445
182ff242
GM
4446 For other values of X, either something really strange is
4447 taking place, or the setjmp just didn't save the register. */
4448
4449 if (x == 1)
4450 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
4451 else
4452 {
4453 fprintf (stderr, SETJMP_WILL_NOT_WORK);
4454 exit (1);
34400008
GM
4455 }
4456 }
182ff242
GM
4457
4458 ++longjmps_done;
4459 x = 2;
4460 if (longjmps_done == 1)
4461 longjmp (jbuf, 1);
34400008
GM
4462}
4463
182ff242
GM
4464#endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
4465
34400008
GM
4466
4467#if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4468
4469/* Abort if anything GCPRO'd doesn't survive the GC. */
4470
4471static void
4472check_gcpros ()
4473{
4474 struct gcpro *p;
4475 int i;
4476
4477 for (p = gcprolist; p; p = p->next)
4478 for (i = 0; i < p->nvars; ++i)
4479 if (!survives_gc_p (p->var[i]))
92cc28b2
SM
4480 /* FIXME: It's not necessarily a bug. It might just be that the
4481 GCPRO is unnecessary or should release the object sooner. */
34400008
GM
4482 abort ();
4483}
4484
4485#elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4486
4487static void
4488dump_zombies ()
4489{
4490 int i;
4491
4492 fprintf (stderr, "\nZombies kept alive = %d:\n", nzombies);
4493 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
4494 {
4495 fprintf (stderr, " %d = ", i);
4496 debug_print (zombies[i]);
4497 }
4498}
4499
4500#endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4501
4502
182ff242
GM
4503/* Mark live Lisp objects on the C stack.
4504
4505 There are several system-dependent problems to consider when
4506 porting this to new architectures:
4507
4508 Processor Registers
4509
4510 We have to mark Lisp objects in CPU registers that can hold local
4511 variables or are used to pass parameters.
4512
4513 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4514 something that either saves relevant registers on the stack, or
4515 calls mark_maybe_object passing it each register's contents.
4516
4517 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4518 implementation assumes that calling setjmp saves registers we need
4519 to see in a jmp_buf which itself lies on the stack. This doesn't
4520 have to be true! It must be verified for each system, possibly
4521 by taking a look at the source code of setjmp.
4522
4523 Stack Layout
4524
4525 Architectures differ in the way their processor stack is organized.
4526 For example, the stack might look like this
4527
4528 +----------------+
4529 | Lisp_Object | size = 4
4530 +----------------+
4531 | something else | size = 2
4532 +----------------+
4533 | Lisp_Object | size = 4
4534 +----------------+
4535 | ... |
4536
4537 In such a case, not every Lisp_Object will be aligned equally. To
4538 find all Lisp_Object on the stack it won't be sufficient to walk
4539 the stack in steps of 4 bytes. Instead, two passes will be
4540 necessary, one starting at the start of the stack, and a second
4541 pass starting at the start of the stack + 2. Likewise, if the
4542 minimal alignment of Lisp_Objects on the stack is 1, four passes
4543 would be necessary, each one starting with one byte more offset
4544 from the stack start.
4545
4546 The current code assumes by default that Lisp_Objects are aligned
4547 equally on the stack. */
34400008
GM
4548
4549static void
4550mark_stack ()
4551{
630909a5 4552 int i;
34400008 4553 jmp_buf j;
6bbd7a29 4554 volatile int stack_grows_down_p = (char *) &j > (char *) stack_base;
34400008
GM
4555 void *end;
4556
4557 /* This trick flushes the register windows so that all the state of
4558 the process is contained in the stack. */
ab6780cd 4559 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
422eec7e
DL
4560 needed on ia64 too. See mach_dep.c, where it also says inline
4561 assembler doesn't work with relevant proprietary compilers. */
34400008
GM
4562#ifdef sparc
4563 asm ("ta 3");
4564#endif
177c0ea7 4565
34400008
GM
4566 /* Save registers that we need to see on the stack. We need to see
4567 registers used to hold register variables and registers used to
4568 pass parameters. */
4569#ifdef GC_SAVE_REGISTERS_ON_STACK
4570 GC_SAVE_REGISTERS_ON_STACK (end);
182ff242 4571#else /* not GC_SAVE_REGISTERS_ON_STACK */
177c0ea7 4572
182ff242
GM
4573#ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
4574 setjmp will definitely work, test it
4575 and print a message with the result
4576 of the test. */
4577 if (!setjmp_tested_p)
4578 {
4579 setjmp_tested_p = 1;
4580 test_setjmp ();
4581 }
4582#endif /* GC_SETJMP_WORKS */
177c0ea7 4583
34400008
GM
4584 setjmp (j);
4585 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
182ff242 4586#endif /* not GC_SAVE_REGISTERS_ON_STACK */
34400008
GM
4587
4588 /* This assumes that the stack is a contiguous region in memory. If
182ff242
GM
4589 that's not the case, something has to be done here to iterate
4590 over the stack segments. */
630909a5 4591#ifndef GC_LISP_OBJECT_ALIGNMENT
422eec7e
DL
4592#ifdef __GNUC__
4593#define GC_LISP_OBJECT_ALIGNMENT __alignof__ (Lisp_Object)
4594#else
630909a5 4595#define GC_LISP_OBJECT_ALIGNMENT sizeof (Lisp_Object)
422eec7e 4596#endif
182ff242 4597#endif
24452cd5 4598 for (i = 0; i < sizeof (Lisp_Object); i += GC_LISP_OBJECT_ALIGNMENT)
630909a5 4599 mark_memory ((char *) stack_base + i, end);
4dec23ff
AS
4600 /* Allow for marking a secondary stack, like the register stack on the
4601 ia64. */
4602#ifdef GC_MARK_SECONDARY_STACK
4603 GC_MARK_SECONDARY_STACK ();
4604#endif
34400008
GM
4605
4606#if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4607 check_gcpros ();
4608#endif
4609}
4610
34400008
GM
4611#endif /* GC_MARK_STACK != 0 */
4612
4613
7ffb6955 4614/* Determine whether it is safe to access memory at address P. */
69b9efaa
RS
4615int
4616valid_pointer_p (p)
7ffb6955
KS
4617 void *p;
4618{
f892cf9c
EZ
4619#ifdef WINDOWSNT
4620 return w32_valid_pointer_p (p, 16);
4621#else
7ffb6955
KS
4622 int fd;
4623
4624 /* Obviously, we cannot just access it (we would SEGV trying), so we
4625 trick the o/s to tell us whether p is a valid pointer.
4626 Unfortunately, we cannot use NULL_DEVICE here, as emacs_write may
4627 not validate p in that case. */
4628
4629 if ((fd = emacs_open ("__Valid__Lisp__Object__", O_CREAT | O_WRONLY | O_TRUNC, 0666)) >= 0)
4630 {
4631 int valid = (emacs_write (fd, (char *)p, 16) == 16);
4632 emacs_close (fd);
4633 unlink ("__Valid__Lisp__Object__");
4634 return valid;
4635 }
4636
4637 return -1;
f892cf9c 4638#endif
7ffb6955 4639}
3cd55735
KS
4640
4641/* Return 1 if OBJ is a valid lisp object.
4642 Return 0 if OBJ is NOT a valid lisp object.
4643 Return -1 if we cannot validate OBJ.
7c0ab7d9
RS
4644 This function can be quite slow,
4645 so it should only be used in code for manual debugging. */
3cd55735
KS
4646
4647int
4648valid_lisp_object_p (obj)
4649 Lisp_Object obj;
4650{
de7124a7 4651 void *p;
7ffb6955 4652#if GC_MARK_STACK
3cd55735 4653 struct mem_node *m;
de7124a7 4654#endif
3cd55735
KS
4655
4656 if (INTEGERP (obj))
4657 return 1;
4658
4659 p = (void *) XPNTR (obj);
3cd55735
KS
4660 if (PURE_POINTER_P (p))
4661 return 1;
4662
de7124a7 4663#if !GC_MARK_STACK
7ffb6955 4664 return valid_pointer_p (p);
de7124a7
KS
4665#else
4666
3cd55735
KS
4667 m = mem_find (p);
4668
4669 if (m == MEM_NIL)
7ffb6955
KS
4670 {
4671 int valid = valid_pointer_p (p);
4672 if (valid <= 0)
4673 return valid;
4674
4675 if (SUBRP (obj))
4676 return 1;
4677
4678 return 0;
4679 }
3cd55735
KS
4680
4681 switch (m->type)
4682 {
4683 case MEM_TYPE_NON_LISP:
4684 return 0;
4685
4686 case MEM_TYPE_BUFFER:
4687 return live_buffer_p (m, p);
4688
4689 case MEM_TYPE_CONS:
4690 return live_cons_p (m, p);
4691
4692 case MEM_TYPE_STRING:
4693 return live_string_p (m, p);
4694
4695 case MEM_TYPE_MISC:
4696 return live_misc_p (m, p);
4697
4698 case MEM_TYPE_SYMBOL:
4699 return live_symbol_p (m, p);
4700
4701 case MEM_TYPE_FLOAT:
4702 return live_float_p (m, p);
4703
4704 case MEM_TYPE_VECTOR:
4705 case MEM_TYPE_PROCESS:
4706 case MEM_TYPE_HASH_TABLE:
4707 case MEM_TYPE_FRAME:
4708 case MEM_TYPE_WINDOW:
4709 return live_vector_p (m, p);
4710
4711 default:
4712 break;
4713 }
4714
4715 return 0;
4716#endif
4717}
4718
4719
4720
34400008 4721\f
2e471eb5
GM
4722/***********************************************************************
4723 Pure Storage Management
4724 ***********************************************************************/
4725
1f0b3fd2
GM
4726/* Allocate room for SIZE bytes from pure Lisp storage and return a
4727 pointer to it. TYPE is the Lisp type for which the memory is
e5bc14d4 4728 allocated. TYPE < 0 means it's not used for a Lisp object. */
1f0b3fd2
GM
4729
4730static POINTER_TYPE *
4731pure_alloc (size, type)
4732 size_t size;
4733 int type;
4734{
1f0b3fd2 4735 POINTER_TYPE *result;
831b476c
SM
4736#ifdef USE_LSB_TAG
4737 size_t alignment = (1 << GCTYPEBITS);
4738#else
44117420 4739 size_t alignment = sizeof (EMACS_INT);
1f0b3fd2
GM
4740
4741 /* Give Lisp_Floats an extra alignment. */
4742 if (type == Lisp_Float)
4743 {
1f0b3fd2
GM
4744#if defined __GNUC__ && __GNUC__ >= 2
4745 alignment = __alignof (struct Lisp_Float);
4746#else
4747 alignment = sizeof (struct Lisp_Float);
4748#endif
9e713715 4749 }
831b476c 4750#endif
1f0b3fd2 4751
44117420 4752 again:
e5bc14d4
YM
4753 if (type >= 0)
4754 {
4755 /* Allocate space for a Lisp object from the beginning of the free
4756 space with taking account of alignment. */
4757 result = ALIGN (purebeg + pure_bytes_used_lisp, alignment);
4758 pure_bytes_used_lisp = ((char *)result - (char *)purebeg) + size;
4759 }
4760 else
4761 {
4762 /* Allocate space for a non-Lisp object from the end of the free
4763 space. */
4764 pure_bytes_used_non_lisp += size;
4765 result = purebeg + pure_size - pure_bytes_used_non_lisp;
4766 }
4767 pure_bytes_used = pure_bytes_used_lisp + pure_bytes_used_non_lisp;
44117420
KS
4768
4769 if (pure_bytes_used <= pure_size)
4770 return result;
4771
4772 /* Don't allocate a large amount here,
4773 because it might get mmap'd and then its address
4774 might not be usable. */
4775 purebeg = (char *) xmalloc (10000);
4776 pure_size = 10000;
4777 pure_bytes_used_before_overflow += pure_bytes_used - size;
4778 pure_bytes_used = 0;
e5bc14d4 4779 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
44117420 4780 goto again;
1f0b3fd2
GM
4781}
4782
4783
852f8cdc 4784/* Print a warning if PURESIZE is too small. */
9e713715
GM
4785
4786void
4787check_pure_size ()
4788{
4789 if (pure_bytes_used_before_overflow)
2aee5ca3 4790 message ("emacs:0:Pure Lisp storage overflow (approx. %d bytes needed)",
a4d35afd 4791 (int) (pure_bytes_used + pure_bytes_used_before_overflow));
9e713715
GM
4792}
4793
4794
79fd0489
YM
4795/* Find the byte sequence {DATA[0], ..., DATA[NBYTES-1], '\0'} from
4796 the non-Lisp data pool of the pure storage, and return its start
4797 address. Return NULL if not found. */
4798
4799static char *
4800find_string_data_in_pure (data, nbytes)
4801 char *data;
4802 int nbytes;
4803{
4804 int i, skip, bm_skip[256], last_char_skip, infinity, start, start_max;
4805 unsigned char *p;
4806 char *non_lisp_beg;
4807
4808 if (pure_bytes_used_non_lisp < nbytes + 1)
4809 return NULL;
4810
4811 /* Set up the Boyer-Moore table. */
4812 skip = nbytes + 1;
4813 for (i = 0; i < 256; i++)
4814 bm_skip[i] = skip;
4815
4816 p = (unsigned char *) data;
4817 while (--skip > 0)
4818 bm_skip[*p++] = skip;
4819
4820 last_char_skip = bm_skip['\0'];
4821
4822 non_lisp_beg = purebeg + pure_size - pure_bytes_used_non_lisp;
4823 start_max = pure_bytes_used_non_lisp - (nbytes + 1);
4824
4825 /* See the comments in the function `boyer_moore' (search.c) for the
4826 use of `infinity'. */
4827 infinity = pure_bytes_used_non_lisp + 1;
4828 bm_skip['\0'] = infinity;
4829
4830 p = (unsigned char *) non_lisp_beg + nbytes;
4831 start = 0;
4832 do
4833 {
4834 /* Check the last character (== '\0'). */
4835 do
4836 {
4837 start += bm_skip[*(p + start)];
4838 }
4839 while (start <= start_max);
4840
4841 if (start < infinity)
4842 /* Couldn't find the last character. */
4843 return NULL;
4844
4845 /* No less than `infinity' means we could find the last
4846 character at `p[start - infinity]'. */
4847 start -= infinity;
4848
4849 /* Check the remaining characters. */
4850 if (memcmp (data, non_lisp_beg + start, nbytes) == 0)
4851 /* Found. */
4852 return non_lisp_beg + start;
4853
4854 start += last_char_skip;
4855 }
4856 while (start <= start_max);
4857
4858 return NULL;
4859}
4860
4861
2e471eb5
GM
4862/* Return a string allocated in pure space. DATA is a buffer holding
4863 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
4864 non-zero means make the result string multibyte.
1a4f1e2c 4865
2e471eb5
GM
4866 Must get an error if pure storage is full, since if it cannot hold
4867 a large string it may be able to hold conses that point to that
4868 string; then the string is not protected from gc. */
7146af97
JB
4869
4870Lisp_Object
2e471eb5 4871make_pure_string (data, nchars, nbytes, multibyte)
7146af97 4872 char *data;
2e471eb5 4873 int nchars, nbytes;
c0696668 4874 int multibyte;
7146af97 4875{
2e471eb5
GM
4876 Lisp_Object string;
4877 struct Lisp_String *s;
c0696668 4878
1f0b3fd2 4879 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
79fd0489
YM
4880 s->data = find_string_data_in_pure (data, nbytes);
4881 if (s->data == NULL)
4882 {
4883 s->data = (unsigned char *) pure_alloc (nbytes + 1, -1);
4884 bcopy (data, s->data, nbytes);
4885 s->data[nbytes] = '\0';
4886 }
2e471eb5
GM
4887 s->size = nchars;
4888 s->size_byte = multibyte ? nbytes : -1;
2e471eb5 4889 s->intervals = NULL_INTERVAL;
2e471eb5
GM
4890 XSETSTRING (string, s);
4891 return string;
7146af97
JB
4892}
4893
2e471eb5 4894
34400008
GM
4895/* Return a cons allocated from pure space. Give it pure copies
4896 of CAR as car and CDR as cdr. */
4897
7146af97
JB
4898Lisp_Object
4899pure_cons (car, cdr)
4900 Lisp_Object car, cdr;
4901{
4902 register Lisp_Object new;
1f0b3fd2 4903 struct Lisp_Cons *p;
7146af97 4904
1f0b3fd2
GM
4905 p = (struct Lisp_Cons *) pure_alloc (sizeof *p, Lisp_Cons);
4906 XSETCONS (new, p);
f3fbd155
KR
4907 XSETCAR (new, Fpurecopy (car));
4908 XSETCDR (new, Fpurecopy (cdr));
7146af97
JB
4909 return new;
4910}
4911
7146af97 4912
34400008
GM
4913/* Value is a float object with value NUM allocated from pure space. */
4914
7146af97
JB
4915Lisp_Object
4916make_pure_float (num)
4917 double num;
4918{
4919 register Lisp_Object new;
1f0b3fd2 4920 struct Lisp_Float *p;
7146af97 4921
1f0b3fd2
GM
4922 p = (struct Lisp_Float *) pure_alloc (sizeof *p, Lisp_Float);
4923 XSETFLOAT (new, p);
70949dac 4924 XFLOAT_DATA (new) = num;
7146af97
JB
4925 return new;
4926}
4927
34400008
GM
4928
4929/* Return a vector with room for LEN Lisp_Objects allocated from
4930 pure space. */
4931
7146af97
JB
4932Lisp_Object
4933make_pure_vector (len)
42607681 4934 EMACS_INT len;
7146af97 4935{
1f0b3fd2
GM
4936 Lisp_Object new;
4937 struct Lisp_Vector *p;
4938 size_t size = sizeof *p + (len - 1) * sizeof (Lisp_Object);
7146af97 4939
1f0b3fd2
GM
4940 p = (struct Lisp_Vector *) pure_alloc (size, Lisp_Vectorlike);
4941 XSETVECTOR (new, p);
7146af97
JB
4942 XVECTOR (new)->size = len;
4943 return new;
4944}
4945
34400008 4946
7146af97 4947DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
909e3b33 4948 doc: /* Make a copy of object OBJ in pure storage.
228299fa 4949Recursively copies contents of vectors and cons cells.
7ee72033
MB
4950Does not copy symbols. Copies strings without text properties. */)
4951 (obj)
7146af97
JB
4952 register Lisp_Object obj;
4953{
265a9e55 4954 if (NILP (Vpurify_flag))
7146af97
JB
4955 return obj;
4956
1f0b3fd2 4957 if (PURE_POINTER_P (XPNTR (obj)))
7146af97
JB
4958 return obj;
4959
d6dd74bb 4960 if (CONSP (obj))
70949dac 4961 return pure_cons (XCAR (obj), XCDR (obj));
d6dd74bb 4962 else if (FLOATP (obj))
70949dac 4963 return make_pure_float (XFLOAT_DATA (obj));
d6dd74bb 4964 else if (STRINGP (obj))
d5db4077
KR
4965 return make_pure_string (SDATA (obj), SCHARS (obj),
4966 SBYTES (obj),
c0696668 4967 STRING_MULTIBYTE (obj));
d6dd74bb
KH
4968 else if (COMPILEDP (obj) || VECTORP (obj))
4969 {
4970 register struct Lisp_Vector *vec;
41b867ea
AS
4971 register int i;
4972 EMACS_INT size;
d6dd74bb
KH
4973
4974 size = XVECTOR (obj)->size;
7d535c68
KH
4975 if (size & PSEUDOVECTOR_FLAG)
4976 size &= PSEUDOVECTOR_SIZE_MASK;
41b867ea 4977 vec = XVECTOR (make_pure_vector (size));
d6dd74bb
KH
4978 for (i = 0; i < size; i++)
4979 vec->contents[i] = Fpurecopy (XVECTOR (obj)->contents[i]);
4980 if (COMPILEDP (obj))
4981 XSETCOMPILED (obj, vec);
4982 else
4983 XSETVECTOR (obj, vec);
7146af97
JB
4984 return obj;
4985 }
d6dd74bb
KH
4986 else if (MARKERP (obj))
4987 error ("Attempt to copy a marker to pure storage");
6bbd7a29
GM
4988
4989 return obj;
7146af97 4990}
2e471eb5 4991
34400008 4992
7146af97 4993\f
34400008
GM
4994/***********************************************************************
4995 Protection from GC
4996 ***********************************************************************/
4997
2e471eb5
GM
4998/* Put an entry in staticvec, pointing at the variable with address
4999 VARADDRESS. */
7146af97
JB
5000
5001void
5002staticpro (varaddress)
5003 Lisp_Object *varaddress;
5004{
5005 staticvec[staticidx++] = varaddress;
5006 if (staticidx >= NSTATICS)
5007 abort ();
5008}
5009
5010struct catchtag
2e471eb5 5011{
7146af97
JB
5012 Lisp_Object tag;
5013 Lisp_Object val;
5014 struct catchtag *next;
2e471eb5 5015};
7146af97 5016
7146af97 5017\f
34400008
GM
5018/***********************************************************************
5019 Protection from GC
5020 ***********************************************************************/
1a4f1e2c 5021
e8197642
RS
5022/* Temporarily prevent garbage collection. */
5023
5024int
5025inhibit_garbage_collection ()
5026{
aed13378 5027 int count = SPECPDL_INDEX ();
54defd0d
AS
5028 int nbits = min (VALBITS, BITS_PER_INT);
5029
5030 specbind (Qgc_cons_threshold, make_number (((EMACS_INT) 1 << (nbits - 1)) - 1));
e8197642
RS
5031 return count;
5032}
5033
34400008 5034
7146af97 5035DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
7ee72033 5036 doc: /* Reclaim storage for Lisp objects no longer needed.
e1e37596
RS
5037Garbage collection happens automatically if you cons more than
5038`gc-cons-threshold' bytes of Lisp data since previous garbage collection.
5039`garbage-collect' normally returns a list with info on amount of space in use:
228299fa
GM
5040 ((USED-CONSES . FREE-CONSES) (USED-SYMS . FREE-SYMS)
5041 (USED-MARKERS . FREE-MARKERS) USED-STRING-CHARS USED-VECTOR-SLOTS
5042 (USED-FLOATS . FREE-FLOATS) (USED-INTERVALS . FREE-INTERVALS)
5043 (USED-STRINGS . FREE-STRINGS))
e1e37596
RS
5044However, if there was overflow in pure space, `garbage-collect'
5045returns nil, because real GC can't be done. */)
7ee72033 5046 ()
7146af97 5047{
7146af97
JB
5048 register struct specbinding *bind;
5049 struct catchtag *catch;
5050 struct handler *handler;
7146af97
JB
5051 char stack_top_variable;
5052 register int i;
6efc7df7 5053 int message_p;
96117bc7 5054 Lisp_Object total[8];
331379bf 5055 int count = SPECPDL_INDEX ();
2c5bd608
DL
5056 EMACS_TIME t1, t2, t3;
5057
3de0effb
RS
5058 if (abort_on_gc)
5059 abort ();
5060
9e713715
GM
5061 /* Can't GC if pure storage overflowed because we can't determine
5062 if something is a pure object or not. */
5063 if (pure_bytes_used_before_overflow)
5064 return Qnil;
5065
bbc012e0
KS
5066 CHECK_CONS_LIST ();
5067
3c7e66a8
RS
5068 /* Don't keep undo information around forever.
5069 Do this early on, so it is no problem if the user quits. */
5070 {
5071 register struct buffer *nextb = all_buffers;
5072
5073 while (nextb)
5074 {
5075 /* If a buffer's undo list is Qt, that means that undo is
5076 turned off in that buffer. Calling truncate_undo_list on
5077 Qt tends to return NULL, which effectively turns undo back on.
5078 So don't call truncate_undo_list if undo_list is Qt. */
303b0412 5079 if (! NILP (nextb->name) && ! EQ (nextb->undo_list, Qt))
3c7e66a8
RS
5080 truncate_undo_list (nextb);
5081
5082 /* Shrink buffer gaps, but skip indirect and dead buffers. */
5083 if (nextb->base_buffer == 0 && !NILP (nextb->name))
5084 {
5085 /* If a buffer's gap size is more than 10% of the buffer
5086 size, or larger than 2000 bytes, then shrink it
5087 accordingly. Keep a minimum size of 20 bytes. */
5088 int size = min (2000, max (20, (nextb->text->z_byte / 10)));
5089
5090 if (nextb->text->gap_size > size)
5091 {
5092 struct buffer *save_current = current_buffer;
5093 current_buffer = nextb;
5094 make_gap (-(nextb->text->gap_size - size));
5095 current_buffer = save_current;
5096 }
5097 }
5098
5099 nextb = nextb->next;
5100 }
5101 }
5102
5103 EMACS_GET_TIME (t1);
5104
58595309
KH
5105 /* In case user calls debug_print during GC,
5106 don't let that cause a recursive GC. */
5107 consing_since_gc = 0;
5108
6efc7df7
GM
5109 /* Save what's currently displayed in the echo area. */
5110 message_p = push_message ();
c55b0da6 5111 record_unwind_protect (pop_message_unwind, Qnil);
41c28a37 5112
7146af97
JB
5113 /* Save a copy of the contents of the stack, for debugging. */
5114#if MAX_SAVE_STACK > 0
265a9e55 5115 if (NILP (Vpurify_flag))
7146af97
JB
5116 {
5117 i = &stack_top_variable - stack_bottom;
5118 if (i < 0) i = -i;
5119 if (i < MAX_SAVE_STACK)
5120 {
5121 if (stack_copy == 0)
9ac0d9e0 5122 stack_copy = (char *) xmalloc (stack_copy_size = i);
7146af97 5123 else if (stack_copy_size < i)
9ac0d9e0 5124 stack_copy = (char *) xrealloc (stack_copy, (stack_copy_size = i));
7146af97
JB
5125 if (stack_copy)
5126 {
42607681 5127 if ((EMACS_INT) (&stack_top_variable - stack_bottom) > 0)
7146af97
JB
5128 bcopy (stack_bottom, stack_copy, i);
5129 else
5130 bcopy (&stack_top_variable, stack_copy, i);
5131 }
5132 }
5133 }
5134#endif /* MAX_SAVE_STACK > 0 */
5135
299585ee 5136 if (garbage_collection_messages)
691c4285 5137 message1_nolog ("Garbage collecting...");
7146af97 5138
6e0fca1d
RS
5139 BLOCK_INPUT;
5140
eec7b73d
RS
5141 shrink_regexp_cache ();
5142
7146af97
JB
5143 gc_in_progress = 1;
5144
c23baf9f 5145 /* clear_marks (); */
7146af97 5146
0930c1a1 5147 /* Mark all the special slots that serve as the roots of accessibility. */
7146af97
JB
5148
5149 for (i = 0; i < staticidx; i++)
49723c04 5150 mark_object (*staticvec[i]);
34400008 5151
126f9c02
SM
5152 for (bind = specpdl; bind != specpdl_ptr; bind++)
5153 {
5154 mark_object (bind->symbol);
5155 mark_object (bind->old_value);
5156 }
5157 mark_kboards ();
5158
5159#ifdef USE_GTK
5160 {
5161 extern void xg_mark_data ();
5162 xg_mark_data ();
5163 }
5164#endif
5165
34400008
GM
5166#if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
5167 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
5168 mark_stack ();
5169#else
acf5f7d3
SM
5170 {
5171 register struct gcpro *tail;
5172 for (tail = gcprolist; tail; tail = tail->next)
5173 for (i = 0; i < tail->nvars; i++)
0930c1a1 5174 mark_object (tail->var[i]);
acf5f7d3 5175 }
34400008 5176#endif
177c0ea7 5177
630686c8 5178 mark_byte_stack ();
7146af97
JB
5179 for (catch = catchlist; catch; catch = catch->next)
5180 {
49723c04
SM
5181 mark_object (catch->tag);
5182 mark_object (catch->val);
177c0ea7 5183 }
7146af97
JB
5184 for (handler = handlerlist; handler; handler = handler->next)
5185 {
49723c04
SM
5186 mark_object (handler->handler);
5187 mark_object (handler->var);
177c0ea7 5188 }
b40ea20a 5189 mark_backtrace ();
7146af97 5190
454d7973
KS
5191#ifdef HAVE_WINDOW_SYSTEM
5192 mark_fringe_data ();
5193#endif
5194
74c35a48
SM
5195#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5196 mark_stack ();
5197#endif
5198
c37adf23
SM
5199 /* Everything is now marked, except for the things that require special
5200 finalization, i.e. the undo_list.
5201 Look thru every buffer's undo list
5202 for elements that update markers that were not marked,
5203 and delete them. */
4c315bda
RS
5204 {
5205 register struct buffer *nextb = all_buffers;
5206
5207 while (nextb)
5208 {
5209 /* If a buffer's undo list is Qt, that means that undo is
c37adf23
SM
5210 turned off in that buffer. Calling truncate_undo_list on
5211 Qt tends to return NULL, which effectively turns undo back on.
5212 So don't call truncate_undo_list if undo_list is Qt. */
4c315bda
RS
5213 if (! EQ (nextb->undo_list, Qt))
5214 {
c37adf23 5215 Lisp_Object tail, prev;
4c315bda
RS
5216 tail = nextb->undo_list;
5217 prev = Qnil;
5218 while (CONSP (tail))
5219 {
c37adf23
SM
5220 if (GC_CONSP (XCAR (tail))
5221 && GC_MARKERP (XCAR (XCAR (tail)))
5222 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
4c315bda
RS
5223 {
5224 if (NILP (prev))
c37adf23 5225 nextb->undo_list = tail = XCDR (tail);
4c315bda 5226 else
f3fbd155 5227 {
c37adf23 5228 tail = XCDR (tail);
f3fbd155
KR
5229 XSETCDR (prev, tail);
5230 }
4c315bda
RS
5231 }
5232 else
5233 {
5234 prev = tail;
70949dac 5235 tail = XCDR (tail);
4c315bda
RS
5236 }
5237 }
5238 }
c37adf23
SM
5239 /* Now that we have stripped the elements that need not be in the
5240 undo_list any more, we can finally mark the list. */
5241 mark_object (nextb->undo_list);
4c315bda
RS
5242
5243 nextb = nextb->next;
5244 }
5245 }
5246
c37adf23 5247 gc_sweep ();
6b67a518 5248
7146af97
JB
5249 /* Clear the mark bits that we set in certain root slots. */
5250
033a5fa3 5251 unmark_byte_stack ();
3ef06d12
SM
5252 VECTOR_UNMARK (&buffer_defaults);
5253 VECTOR_UNMARK (&buffer_local_symbols);
7146af97 5254
34400008
GM
5255#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
5256 dump_zombies ();
5257#endif
5258
6e0fca1d
RS
5259 UNBLOCK_INPUT;
5260
bbc012e0
KS
5261 CHECK_CONS_LIST ();
5262
c23baf9f 5263 /* clear_marks (); */
7146af97
JB
5264 gc_in_progress = 0;
5265
5266 consing_since_gc = 0;
5267 if (gc_cons_threshold < 10000)
5268 gc_cons_threshold = 10000;
5269
96f077ad
SM
5270 if (FLOATP (Vgc_cons_percentage))
5271 { /* Set gc_cons_combined_threshold. */
5272 EMACS_INT total = 0;
974aae61 5273
96f077ad
SM
5274 total += total_conses * sizeof (struct Lisp_Cons);
5275 total += total_symbols * sizeof (struct Lisp_Symbol);
5276 total += total_markers * sizeof (union Lisp_Misc);
5277 total += total_string_size;
5278 total += total_vector_size * sizeof (Lisp_Object);
5279 total += total_floats * sizeof (struct Lisp_Float);
5280 total += total_intervals * sizeof (struct interval);
5281 total += total_strings * sizeof (struct Lisp_String);
3cd55735 5282
974aae61 5283 gc_relative_threshold = total * XFLOAT_DATA (Vgc_cons_percentage);
96f077ad 5284 }
974aae61
RS
5285 else
5286 gc_relative_threshold = 0;
96f077ad 5287
299585ee
RS
5288 if (garbage_collection_messages)
5289 {
6efc7df7
GM
5290 if (message_p || minibuf_level > 0)
5291 restore_message ();
299585ee
RS
5292 else
5293 message1_nolog ("Garbage collecting...done");
5294 }
7146af97 5295
98edb5ff 5296 unbind_to (count, Qnil);
2e471eb5
GM
5297
5298 total[0] = Fcons (make_number (total_conses),
5299 make_number (total_free_conses));
5300 total[1] = Fcons (make_number (total_symbols),
5301 make_number (total_free_symbols));
5302 total[2] = Fcons (make_number (total_markers),
5303 make_number (total_free_markers));
96117bc7
GM
5304 total[3] = make_number (total_string_size);
5305 total[4] = make_number (total_vector_size);
5306 total[5] = Fcons (make_number (total_floats),
2e471eb5 5307 make_number (total_free_floats));
96117bc7 5308 total[6] = Fcons (make_number (total_intervals),
2e471eb5 5309 make_number (total_free_intervals));
96117bc7 5310 total[7] = Fcons (make_number (total_strings),
2e471eb5
GM
5311 make_number (total_free_strings));
5312
34400008 5313#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
7146af97 5314 {
34400008
GM
5315 /* Compute average percentage of zombies. */
5316 double nlive = 0;
177c0ea7 5317
34400008 5318 for (i = 0; i < 7; ++i)
83fc9c63
DL
5319 if (CONSP (total[i]))
5320 nlive += XFASTINT (XCAR (total[i]));
34400008
GM
5321
5322 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
5323 max_live = max (nlive, max_live);
5324 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
5325 max_zombies = max (nzombies, max_zombies);
5326 ++ngcs;
5327 }
5328#endif
7146af97 5329
9e713715
GM
5330 if (!NILP (Vpost_gc_hook))
5331 {
5332 int count = inhibit_garbage_collection ();
5333 safe_run_hooks (Qpost_gc_hook);
5334 unbind_to (count, Qnil);
5335 }
2c5bd608
DL
5336
5337 /* Accumulate statistics. */
5338 EMACS_GET_TIME (t2);
5339 EMACS_SUB_TIME (t3, t2, t1);
5340 if (FLOATP (Vgc_elapsed))
69ab9f85
SM
5341 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed) +
5342 EMACS_SECS (t3) +
5343 EMACS_USECS (t3) * 1.0e-6);
2c5bd608
DL
5344 gcs_done++;
5345
96117bc7 5346 return Flist (sizeof total / sizeof *total, total);
7146af97 5347}
34400008 5348
41c28a37 5349
3770920e
GM
5350/* Mark Lisp objects in glyph matrix MATRIX. Currently the
5351 only interesting objects referenced from glyphs are strings. */
41c28a37
GM
5352
5353static void
5354mark_glyph_matrix (matrix)
5355 struct glyph_matrix *matrix;
5356{
5357 struct glyph_row *row = matrix->rows;
5358 struct glyph_row *end = row + matrix->nrows;
5359
2e471eb5
GM
5360 for (; row < end; ++row)
5361 if (row->enabled_p)
5362 {
5363 int area;
5364 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
5365 {
5366 struct glyph *glyph = row->glyphs[area];
5367 struct glyph *end_glyph = glyph + row->used[area];
177c0ea7 5368
2e471eb5
GM
5369 for (; glyph < end_glyph; ++glyph)
5370 if (GC_STRINGP (glyph->object)
5371 && !STRING_MARKED_P (XSTRING (glyph->object)))
49723c04 5372 mark_object (glyph->object);
2e471eb5
GM
5373 }
5374 }
41c28a37
GM
5375}
5376
34400008 5377
41c28a37
GM
5378/* Mark Lisp faces in the face cache C. */
5379
5380static void
5381mark_face_cache (c)
5382 struct face_cache *c;
5383{
5384 if (c)
5385 {
5386 int i, j;
5387 for (i = 0; i < c->used; ++i)
5388 {
5389 struct face *face = FACE_FROM_ID (c->f, i);
5390
5391 if (face)
5392 {
5393 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
49723c04 5394 mark_object (face->lface[j]);
41c28a37
GM
5395 }
5396 }
5397 }
5398}
5399
5400
5401#ifdef HAVE_WINDOW_SYSTEM
5402
5403/* Mark Lisp objects in image IMG. */
5404
5405static void
5406mark_image (img)
5407 struct image *img;
5408{
49723c04 5409 mark_object (img->spec);
177c0ea7 5410
3e60b029 5411 if (!NILP (img->data.lisp_val))
49723c04 5412 mark_object (img->data.lisp_val);
41c28a37
GM
5413}
5414
5415
5416/* Mark Lisp objects in image cache of frame F. It's done this way so
5417 that we don't have to include xterm.h here. */
5418
5419static void
5420mark_image_cache (f)
5421 struct frame *f;
5422{
5423 forall_images_in_image_cache (f, mark_image);
5424}
5425
5426#endif /* HAVE_X_WINDOWS */
5427
5428
7146af97 5429\f
1a4f1e2c 5430/* Mark reference to a Lisp_Object.
2e471eb5
GM
5431 If the object referred to has not been seen yet, recursively mark
5432 all the references contained in it. */
7146af97 5433
785cd37f 5434#define LAST_MARKED_SIZE 500
49723c04 5435Lisp_Object last_marked[LAST_MARKED_SIZE];
785cd37f
RS
5436int last_marked_index;
5437
1342fc6f
RS
5438/* For debugging--call abort when we cdr down this many
5439 links of a list, in mark_object. In debugging,
5440 the call to abort will hit a breakpoint.
5441 Normally this is zero and the check never goes off. */
5442int mark_object_loop_halt;
5443
41c28a37 5444void
49723c04
SM
5445mark_object (arg)
5446 Lisp_Object arg;
7146af97 5447{
49723c04 5448 register Lisp_Object obj = arg;
4f5c1376
GM
5449#ifdef GC_CHECK_MARKED_OBJECTS
5450 void *po;
5451 struct mem_node *m;
5452#endif
1342fc6f 5453 int cdr_count = 0;
7146af97 5454
9149e743 5455 loop:
7146af97 5456
1f0b3fd2 5457 if (PURE_POINTER_P (XPNTR (obj)))
7146af97
JB
5458 return;
5459
49723c04 5460 last_marked[last_marked_index++] = obj;
785cd37f
RS
5461 if (last_marked_index == LAST_MARKED_SIZE)
5462 last_marked_index = 0;
5463
4f5c1376
GM
5464 /* Perform some sanity checks on the objects marked here. Abort if
5465 we encounter an object we know is bogus. This increases GC time
5466 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
5467#ifdef GC_CHECK_MARKED_OBJECTS
5468
5469 po = (void *) XPNTR (obj);
5470
5471 /* Check that the object pointed to by PO is known to be a Lisp
5472 structure allocated from the heap. */
5473#define CHECK_ALLOCATED() \
5474 do { \
5475 m = mem_find (po); \
5476 if (m == MEM_NIL) \
5477 abort (); \
5478 } while (0)
5479
5480 /* Check that the object pointed to by PO is live, using predicate
5481 function LIVEP. */
5482#define CHECK_LIVE(LIVEP) \
5483 do { \
5484 if (!LIVEP (m, po)) \
5485 abort (); \
5486 } while (0)
5487
5488 /* Check both of the above conditions. */
5489#define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
5490 do { \
5491 CHECK_ALLOCATED (); \
5492 CHECK_LIVE (LIVEP); \
5493 } while (0) \
177c0ea7 5494
4f5c1376 5495#else /* not GC_CHECK_MARKED_OBJECTS */
177c0ea7 5496
4f5c1376
GM
5497#define CHECK_ALLOCATED() (void) 0
5498#define CHECK_LIVE(LIVEP) (void) 0
5499#define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
177c0ea7 5500
4f5c1376
GM
5501#endif /* not GC_CHECK_MARKED_OBJECTS */
5502
0220c518 5503 switch (SWITCH_ENUM_CAST (XGCTYPE (obj)))
7146af97
JB
5504 {
5505 case Lisp_String:
5506 {
5507 register struct Lisp_String *ptr = XSTRING (obj);
4f5c1376 5508 CHECK_ALLOCATED_AND_LIVE (live_string_p);
d5e35230 5509 MARK_INTERVAL_TREE (ptr->intervals);
2e471eb5 5510 MARK_STRING (ptr);
361b097f 5511#ifdef GC_CHECK_STRING_BYTES
676a7251
GM
5512 /* Check that the string size recorded in the string is the
5513 same as the one recorded in the sdata structure. */
5514 CHECK_STRING_BYTES (ptr);
361b097f 5515#endif /* GC_CHECK_STRING_BYTES */
7146af97
JB
5516 }
5517 break;
5518
76437631 5519 case Lisp_Vectorlike:
4f5c1376
GM
5520#ifdef GC_CHECK_MARKED_OBJECTS
5521 m = mem_find (po);
5522 if (m == MEM_NIL && !GC_SUBRP (obj)
5523 && po != &buffer_defaults
5524 && po != &buffer_local_symbols)
5525 abort ();
5526#endif /* GC_CHECK_MARKED_OBJECTS */
177c0ea7 5527
30e3190a 5528 if (GC_BUFFERP (obj))
6b552283 5529 {
3ef06d12 5530 if (!VECTOR_MARKED_P (XBUFFER (obj)))
4f5c1376
GM
5531 {
5532#ifdef GC_CHECK_MARKED_OBJECTS
5533 if (po != &buffer_defaults && po != &buffer_local_symbols)
5534 {
5535 struct buffer *b;
5536 for (b = all_buffers; b && b != po; b = b->next)
5537 ;
5538 if (b == NULL)
5539 abort ();
5540 }
5541#endif /* GC_CHECK_MARKED_OBJECTS */
5542 mark_buffer (obj);
5543 }
6b552283 5544 }
30e3190a 5545 else if (GC_SUBRP (obj))
169ee243
RS
5546 break;
5547 else if (GC_COMPILEDP (obj))
2e471eb5
GM
5548 /* We could treat this just like a vector, but it is better to
5549 save the COMPILED_CONSTANTS element for last and avoid
5550 recursion there. */
169ee243
RS
5551 {
5552 register struct Lisp_Vector *ptr = XVECTOR (obj);
5553 register EMACS_INT size = ptr->size;
169ee243
RS
5554 register int i;
5555
3ef06d12 5556 if (VECTOR_MARKED_P (ptr))
169ee243 5557 break; /* Already marked */
177c0ea7 5558
4f5c1376 5559 CHECK_LIVE (live_vector_p);
3ef06d12 5560 VECTOR_MARK (ptr); /* Else mark it */
76437631 5561 size &= PSEUDOVECTOR_SIZE_MASK;
169ee243
RS
5562 for (i = 0; i < size; i++) /* and then mark its elements */
5563 {
5564 if (i != COMPILED_CONSTANTS)
49723c04 5565 mark_object (ptr->contents[i]);
169ee243 5566 }
49723c04 5567 obj = ptr->contents[COMPILED_CONSTANTS];
169ee243
RS
5568 goto loop;
5569 }
169ee243
RS
5570 else if (GC_FRAMEP (obj))
5571 {
c70bbf06 5572 register struct frame *ptr = XFRAME (obj);
169ee243 5573
3ef06d12
SM
5574 if (VECTOR_MARKED_P (ptr)) break; /* Already marked */
5575 VECTOR_MARK (ptr); /* Else mark it */
169ee243 5576
4f5c1376 5577 CHECK_LIVE (live_vector_p);
49723c04
SM
5578 mark_object (ptr->name);
5579 mark_object (ptr->icon_name);
5580 mark_object (ptr->title);
5581 mark_object (ptr->focus_frame);
5582 mark_object (ptr->selected_window);
5583 mark_object (ptr->minibuffer_window);
5584 mark_object (ptr->param_alist);
5585 mark_object (ptr->scroll_bars);
5586 mark_object (ptr->condemned_scroll_bars);
5587 mark_object (ptr->menu_bar_items);
5588 mark_object (ptr->face_alist);
5589 mark_object (ptr->menu_bar_vector);
5590 mark_object (ptr->buffer_predicate);
5591 mark_object (ptr->buffer_list);
5592 mark_object (ptr->menu_bar_window);
5593 mark_object (ptr->tool_bar_window);
41c28a37
GM
5594 mark_face_cache (ptr->face_cache);
5595#ifdef HAVE_WINDOW_SYSTEM
5596 mark_image_cache (ptr);
49723c04
SM
5597 mark_object (ptr->tool_bar_items);
5598 mark_object (ptr->desired_tool_bar_string);
5599 mark_object (ptr->current_tool_bar_string);
41c28a37 5600#endif /* HAVE_WINDOW_SYSTEM */
169ee243 5601 }
7b07587b 5602 else if (GC_BOOL_VECTOR_P (obj))
707788bd
RS
5603 {
5604 register struct Lisp_Vector *ptr = XVECTOR (obj);
5605
3ef06d12 5606 if (VECTOR_MARKED_P (ptr))
707788bd 5607 break; /* Already marked */
4f5c1376 5608 CHECK_LIVE (live_vector_p);
3ef06d12 5609 VECTOR_MARK (ptr); /* Else mark it */
707788bd 5610 }
41c28a37
GM
5611 else if (GC_WINDOWP (obj))
5612 {
5613 register struct Lisp_Vector *ptr = XVECTOR (obj);
5614 struct window *w = XWINDOW (obj);
41c28a37
GM
5615 register int i;
5616
5617 /* Stop if already marked. */
3ef06d12 5618 if (VECTOR_MARKED_P (ptr))
41c28a37
GM
5619 break;
5620
5621 /* Mark it. */
4f5c1376 5622 CHECK_LIVE (live_vector_p);
3ef06d12 5623 VECTOR_MARK (ptr);
41c28a37
GM
5624
5625 /* There is no Lisp data above The member CURRENT_MATRIX in
5626 struct WINDOW. Stop marking when that slot is reached. */
5627 for (i = 0;
c70bbf06 5628 (char *) &ptr->contents[i] < (char *) &w->current_matrix;
41c28a37 5629 i++)
49723c04 5630 mark_object (ptr->contents[i]);
41c28a37
GM
5631
5632 /* Mark glyphs for leaf windows. Marking window matrices is
5633 sufficient because frame matrices use the same glyph
5634 memory. */
5635 if (NILP (w->hchild)
5636 && NILP (w->vchild)
5637 && w->current_matrix)
5638 {
5639 mark_glyph_matrix (w->current_matrix);
5640 mark_glyph_matrix (w->desired_matrix);
5641 }
5642 }
5643 else if (GC_HASH_TABLE_P (obj))
5644 {
5645 struct Lisp_Hash_Table *h = XHASH_TABLE (obj);
177c0ea7 5646
41c28a37 5647 /* Stop if already marked. */
3ef06d12 5648 if (VECTOR_MARKED_P (h))
41c28a37 5649 break;
177c0ea7 5650
41c28a37 5651 /* Mark it. */
4f5c1376 5652 CHECK_LIVE (live_vector_p);
3ef06d12 5653 VECTOR_MARK (h);
41c28a37
GM
5654
5655 /* Mark contents. */
94a877ef 5656 /* Do not mark next_free or next_weak.
177c0ea7 5657 Being in the next_weak chain
94a877ef
RS
5658 should not keep the hash table alive.
5659 No need to mark `count' since it is an integer. */
49723c04
SM
5660 mark_object (h->test);
5661 mark_object (h->weak);
5662 mark_object (h->rehash_size);
5663 mark_object (h->rehash_threshold);
5664 mark_object (h->hash);
5665 mark_object (h->next);
5666 mark_object (h->index);
5667 mark_object (h->user_hash_function);
5668 mark_object (h->user_cmp_function);
41c28a37
GM
5669
5670 /* If hash table is not weak, mark all keys and values.
5671 For weak tables, mark only the vector. */
5672 if (GC_NILP (h->weak))
49723c04 5673 mark_object (h->key_and_value);
41c28a37 5674 else
3ef06d12 5675 VECTOR_MARK (XVECTOR (h->key_and_value));
41c28a37 5676 }
04ff9756 5677 else
169ee243
RS
5678 {
5679 register struct Lisp_Vector *ptr = XVECTOR (obj);
5680 register EMACS_INT size = ptr->size;
169ee243
RS
5681 register int i;
5682
3ef06d12 5683 if (VECTOR_MARKED_P (ptr)) break; /* Already marked */
4f5c1376 5684 CHECK_LIVE (live_vector_p);
3ef06d12 5685 VECTOR_MARK (ptr); /* Else mark it */
169ee243
RS
5686 if (size & PSEUDOVECTOR_FLAG)
5687 size &= PSEUDOVECTOR_SIZE_MASK;
41c28a37 5688
6bfd98e7
SM
5689 /* Note that this size is not the memory-footprint size, but only
5690 the number of Lisp_Object fields that we should trace.
5691 The distinction is used e.g. by Lisp_Process which places extra
5692 non-Lisp_Object fields at the end of the structure. */
169ee243 5693 for (i = 0; i < size; i++) /* and then mark its elements */
49723c04 5694 mark_object (ptr->contents[i]);
169ee243
RS
5695 }
5696 break;
7146af97 5697
7146af97
JB
5698 case Lisp_Symbol:
5699 {
c70bbf06 5700 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
7146af97
JB
5701 struct Lisp_Symbol *ptrx;
5702
2336fe58 5703 if (ptr->gcmarkbit) break;
4f5c1376 5704 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
2336fe58 5705 ptr->gcmarkbit = 1;
49723c04
SM
5706 mark_object (ptr->value);
5707 mark_object (ptr->function);
5708 mark_object (ptr->plist);
34400008 5709
8fe5665d
KR
5710 if (!PURE_POINTER_P (XSTRING (ptr->xname)))
5711 MARK_STRING (XSTRING (ptr->xname));
d5db4077 5712 MARK_INTERVAL_TREE (STRING_INTERVALS (ptr->xname));
177c0ea7 5713
1c6bb482
RS
5714 /* Note that we do not mark the obarray of the symbol.
5715 It is safe not to do so because nothing accesses that
5716 slot except to check whether it is nil. */
7146af97
JB
5717 ptr = ptr->next;
5718 if (ptr)
5719 {
b0846f52 5720 ptrx = ptr; /* Use of ptrx avoids compiler bug on Sun */
7146af97 5721 XSETSYMBOL (obj, ptrx);
49723c04 5722 goto loop;
7146af97
JB
5723 }
5724 }
5725 break;
5726
a0a38eb7 5727 case Lisp_Misc:
4f5c1376 5728 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
2336fe58
SM
5729 if (XMARKER (obj)->gcmarkbit)
5730 break;
5731 XMARKER (obj)->gcmarkbit = 1;
b766f870 5732
a5da44fe 5733 switch (XMISCTYPE (obj))
a0a38eb7 5734 {
465edf35
KH
5735 case Lisp_Misc_Buffer_Local_Value:
5736 case Lisp_Misc_Some_Buffer_Local_Value:
5737 {
5738 register struct Lisp_Buffer_Local_Value *ptr
5739 = XBUFFER_LOCAL_VALUE (obj);
465edf35
KH
5740 /* If the cdr is nil, avoid recursion for the car. */
5741 if (EQ (ptr->cdr, Qnil))
5742 {
49723c04 5743 obj = ptr->realvalue;
465edf35
KH
5744 goto loop;
5745 }
49723c04
SM
5746 mark_object (ptr->realvalue);
5747 mark_object (ptr->buffer);
5748 mark_object (ptr->frame);
5749 obj = ptr->cdr;
465edf35
KH
5750 goto loop;
5751 }
5752
2336fe58
SM
5753 case Lisp_Misc_Marker:
5754 /* DO NOT mark thru the marker's chain.
5755 The buffer's markers chain does not preserve markers from gc;
5756 instead, markers are removed from the chain when freed by gc. */
b766f870
KS
5757 break;
5758
c8616056
KH
5759 case Lisp_Misc_Intfwd:
5760 case Lisp_Misc_Boolfwd:
5761 case Lisp_Misc_Objfwd:
5762 case Lisp_Misc_Buffer_Objfwd:
b875d3f7 5763 case Lisp_Misc_Kboard_Objfwd:
c8616056
KH
5764 /* Don't bother with Lisp_Buffer_Objfwd,
5765 since all markable slots in current buffer marked anyway. */
5766 /* Don't need to do Lisp_Objfwd, since the places they point
5767 are protected with staticpro. */
b766f870
KS
5768 break;
5769
f29181dc 5770 case Lisp_Misc_Save_Value:
9ea306d1 5771#if GC_MARK_STACK
b766f870
KS
5772 {
5773 register struct Lisp_Save_Value *ptr = XSAVE_VALUE (obj);
5774 /* If DOGC is set, POINTER is the address of a memory
5775 area containing INTEGER potential Lisp_Objects. */
5776 if (ptr->dogc)
5777 {
5778 Lisp_Object *p = (Lisp_Object *) ptr->pointer;
5779 int nelt;
5780 for (nelt = ptr->integer; nelt > 0; nelt--, p++)
5781 mark_maybe_object (*p);
5782 }
5783 }
9ea306d1 5784#endif
c8616056
KH
5785 break;
5786
e202fa34
KH
5787 case Lisp_Misc_Overlay:
5788 {
5789 struct Lisp_Overlay *ptr = XOVERLAY (obj);
49723c04
SM
5790 mark_object (ptr->start);
5791 mark_object (ptr->end);
f54253ec
SM
5792 mark_object (ptr->plist);
5793 if (ptr->next)
5794 {
5795 XSETMISC (obj, ptr->next);
5796 goto loop;
5797 }
e202fa34
KH
5798 }
5799 break;
5800
a0a38eb7
KH
5801 default:
5802 abort ();
5803 }
7146af97
JB
5804 break;
5805
5806 case Lisp_Cons:
7146af97
JB
5807 {
5808 register struct Lisp_Cons *ptr = XCONS (obj);
08b7c2cb 5809 if (CONS_MARKED_P (ptr)) break;
4f5c1376 5810 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
08b7c2cb 5811 CONS_MARK (ptr);
c54ca951 5812 /* If the cdr is nil, avoid recursion for the car. */
28a099a4 5813 if (EQ (ptr->u.cdr, Qnil))
c54ca951 5814 {
49723c04 5815 obj = ptr->car;
1342fc6f 5816 cdr_count = 0;
c54ca951
RS
5817 goto loop;
5818 }
49723c04 5819 mark_object (ptr->car);
28a099a4 5820 obj = ptr->u.cdr;
1342fc6f
RS
5821 cdr_count++;
5822 if (cdr_count == mark_object_loop_halt)
5823 abort ();
7146af97
JB
5824 goto loop;
5825 }
5826
7146af97 5827 case Lisp_Float:
4f5c1376 5828 CHECK_ALLOCATED_AND_LIVE (live_float_p);
ab6780cd 5829 FLOAT_MARK (XFLOAT (obj));
7146af97 5830 break;
7146af97 5831
7146af97 5832 case Lisp_Int:
7146af97
JB
5833 break;
5834
5835 default:
5836 abort ();
5837 }
4f5c1376
GM
5838
5839#undef CHECK_LIVE
5840#undef CHECK_ALLOCATED
5841#undef CHECK_ALLOCATED_AND_LIVE
7146af97
JB
5842}
5843
5844/* Mark the pointers in a buffer structure. */
5845
5846static void
5847mark_buffer (buf)
5848 Lisp_Object buf;
5849{
7146af97 5850 register struct buffer *buffer = XBUFFER (buf);
f54253ec 5851 register Lisp_Object *ptr, tmp;
30e3190a 5852 Lisp_Object base_buffer;
7146af97 5853
3ef06d12 5854 VECTOR_MARK (buffer);
7146af97 5855
30e3190a 5856 MARK_INTERVAL_TREE (BUF_INTERVALS (buffer));
d5e35230 5857
c37adf23
SM
5858 /* For now, we just don't mark the undo_list. It's done later in
5859 a special way just before the sweep phase, and after stripping
5860 some of its elements that are not needed any more. */
4c315bda 5861
f54253ec
SM
5862 if (buffer->overlays_before)
5863 {
5864 XSETMISC (tmp, buffer->overlays_before);
5865 mark_object (tmp);
5866 }
5867 if (buffer->overlays_after)
5868 {
5869 XSETMISC (tmp, buffer->overlays_after);
5870 mark_object (tmp);
5871 }
5872
3ef06d12 5873 for (ptr = &buffer->name;
7146af97
JB
5874 (char *)ptr < (char *)buffer + sizeof (struct buffer);
5875 ptr++)
49723c04 5876 mark_object (*ptr);
30e3190a
RS
5877
5878 /* If this is an indirect buffer, mark its base buffer. */
349bd9ed 5879 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
30e3190a 5880 {
177c0ea7 5881 XSETBUFFER (base_buffer, buffer->base_buffer);
30e3190a
RS
5882 mark_buffer (base_buffer);
5883 }
7146af97 5884}
084b1a0c
KH
5885
5886
41c28a37
GM
5887/* Value is non-zero if OBJ will survive the current GC because it's
5888 either marked or does not need to be marked to survive. */
5889
5890int
5891survives_gc_p (obj)
5892 Lisp_Object obj;
5893{
5894 int survives_p;
177c0ea7 5895
41c28a37
GM
5896 switch (XGCTYPE (obj))
5897 {
5898 case Lisp_Int:
5899 survives_p = 1;
5900 break;
5901
5902 case Lisp_Symbol:
2336fe58 5903 survives_p = XSYMBOL (obj)->gcmarkbit;
41c28a37
GM
5904 break;
5905
5906 case Lisp_Misc:
ef89c2ce 5907 survives_p = XMARKER (obj)->gcmarkbit;
41c28a37
GM
5908 break;
5909
5910 case Lisp_String:
08b7c2cb 5911 survives_p = STRING_MARKED_P (XSTRING (obj));
41c28a37
GM
5912 break;
5913
5914 case Lisp_Vectorlike:
08b7c2cb 5915 survives_p = GC_SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
41c28a37
GM
5916 break;
5917
5918 case Lisp_Cons:
08b7c2cb 5919 survives_p = CONS_MARKED_P (XCONS (obj));
41c28a37
GM
5920 break;
5921
41c28a37 5922 case Lisp_Float:
ab6780cd 5923 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
41c28a37 5924 break;
41c28a37
GM
5925
5926 default:
5927 abort ();
5928 }
5929
34400008 5930 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
41c28a37
GM
5931}
5932
5933
7146af97 5934\f
1a4f1e2c 5935/* Sweep: find all structures not marked, and free them. */
7146af97
JB
5936
5937static void
5938gc_sweep ()
5939{
c37adf23
SM
5940 /* Remove or mark entries in weak hash tables.
5941 This must be done before any object is unmarked. */
5942 sweep_weak_hash_tables ();
5943
5944 sweep_strings ();
5945#ifdef GC_CHECK_STRING_BYTES
5946 if (!noninteractive)
5947 check_string_bytes (1);
5948#endif
5949
7146af97
JB
5950 /* Put all unmarked conses on free list */
5951 {
5952 register struct cons_block *cblk;
6ca94ac9 5953 struct cons_block **cprev = &cons_block;
7146af97
JB
5954 register int lim = cons_block_index;
5955 register int num_free = 0, num_used = 0;
5956
5957 cons_free_list = 0;
177c0ea7 5958
6ca94ac9 5959 for (cblk = cons_block; cblk; cblk = *cprev)
7146af97
JB
5960 {
5961 register int i;
6ca94ac9 5962 int this_free = 0;
7146af97 5963 for (i = 0; i < lim; i++)
08b7c2cb 5964 if (!CONS_MARKED_P (&cblk->conses[i]))
7146af97 5965 {
6ca94ac9 5966 this_free++;
28a099a4 5967 cblk->conses[i].u.chain = cons_free_list;
7146af97 5968 cons_free_list = &cblk->conses[i];
34400008
GM
5969#if GC_MARK_STACK
5970 cons_free_list->car = Vdead;
5971#endif
7146af97
JB
5972 }
5973 else
5974 {
5975 num_used++;
08b7c2cb 5976 CONS_UNMARK (&cblk->conses[i]);
7146af97
JB
5977 }
5978 lim = CONS_BLOCK_SIZE;
6ca94ac9
KH
5979 /* If this block contains only free conses and we have already
5980 seen more than two blocks worth of free conses then deallocate
5981 this block. */
6feef451 5982 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
6ca94ac9 5983 {
6ca94ac9
KH
5984 *cprev = cblk->next;
5985 /* Unhook from the free list. */
28a099a4 5986 cons_free_list = cblk->conses[0].u.chain;
08b7c2cb 5987 lisp_align_free (cblk);
c8099634 5988 n_cons_blocks--;
6ca94ac9
KH
5989 }
5990 else
6feef451
AS
5991 {
5992 num_free += this_free;
5993 cprev = &cblk->next;
5994 }
7146af97
JB
5995 }
5996 total_conses = num_used;
5997 total_free_conses = num_free;
5998 }
5999
7146af97
JB
6000 /* Put all unmarked floats on free list */
6001 {
6002 register struct float_block *fblk;
6ca94ac9 6003 struct float_block **fprev = &float_block;
7146af97
JB
6004 register int lim = float_block_index;
6005 register int num_free = 0, num_used = 0;
6006
6007 float_free_list = 0;
177c0ea7 6008
6ca94ac9 6009 for (fblk = float_block; fblk; fblk = *fprev)
7146af97
JB
6010 {
6011 register int i;
6ca94ac9 6012 int this_free = 0;
7146af97 6013 for (i = 0; i < lim; i++)
ab6780cd 6014 if (!FLOAT_MARKED_P (&fblk->floats[i]))
7146af97 6015 {
6ca94ac9 6016 this_free++;
28a099a4 6017 fblk->floats[i].u.chain = float_free_list;
7146af97
JB
6018 float_free_list = &fblk->floats[i];
6019 }
6020 else
6021 {
6022 num_used++;
ab6780cd 6023 FLOAT_UNMARK (&fblk->floats[i]);
7146af97
JB
6024 }
6025 lim = FLOAT_BLOCK_SIZE;
6ca94ac9
KH
6026 /* If this block contains only free floats and we have already
6027 seen more than two blocks worth of free floats then deallocate
6028 this block. */
6feef451 6029 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
6ca94ac9 6030 {
6ca94ac9
KH
6031 *fprev = fblk->next;
6032 /* Unhook from the free list. */
28a099a4 6033 float_free_list = fblk->floats[0].u.chain;
ab6780cd 6034 lisp_align_free (fblk);
c8099634 6035 n_float_blocks--;
6ca94ac9
KH
6036 }
6037 else
6feef451
AS
6038 {
6039 num_free += this_free;
6040 fprev = &fblk->next;
6041 }
7146af97
JB
6042 }
6043 total_floats = num_used;
6044 total_free_floats = num_free;
6045 }
7146af97 6046
d5e35230
JA
6047 /* Put all unmarked intervals on free list */
6048 {
6049 register struct interval_block *iblk;
6ca94ac9 6050 struct interval_block **iprev = &interval_block;
d5e35230
JA
6051 register int lim = interval_block_index;
6052 register int num_free = 0, num_used = 0;
6053
6054 interval_free_list = 0;
6055
6ca94ac9 6056 for (iblk = interval_block; iblk; iblk = *iprev)
d5e35230
JA
6057 {
6058 register int i;
6ca94ac9 6059 int this_free = 0;
d5e35230
JA
6060
6061 for (i = 0; i < lim; i++)
6062 {
2336fe58 6063 if (!iblk->intervals[i].gcmarkbit)
d5e35230 6064 {
439d5cb4 6065 SET_INTERVAL_PARENT (&iblk->intervals[i], interval_free_list);
d5e35230 6066 interval_free_list = &iblk->intervals[i];
6ca94ac9 6067 this_free++;
d5e35230
JA
6068 }
6069 else
6070 {
6071 num_used++;
2336fe58 6072 iblk->intervals[i].gcmarkbit = 0;
d5e35230
JA
6073 }
6074 }
6075 lim = INTERVAL_BLOCK_SIZE;
6ca94ac9
KH
6076 /* If this block contains only free intervals and we have already
6077 seen more than two blocks worth of free intervals then
6078 deallocate this block. */
6feef451 6079 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
6ca94ac9 6080 {
6ca94ac9
KH
6081 *iprev = iblk->next;
6082 /* Unhook from the free list. */
439d5cb4 6083 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
c8099634
RS
6084 lisp_free (iblk);
6085 n_interval_blocks--;
6ca94ac9
KH
6086 }
6087 else
6feef451
AS
6088 {
6089 num_free += this_free;
6090 iprev = &iblk->next;
6091 }
d5e35230
JA
6092 }
6093 total_intervals = num_used;
6094 total_free_intervals = num_free;
6095 }
d5e35230 6096
7146af97
JB
6097 /* Put all unmarked symbols on free list */
6098 {
6099 register struct symbol_block *sblk;
6ca94ac9 6100 struct symbol_block **sprev = &symbol_block;
7146af97
JB
6101 register int lim = symbol_block_index;
6102 register int num_free = 0, num_used = 0;
6103
d285b373 6104 symbol_free_list = NULL;
177c0ea7 6105
6ca94ac9 6106 for (sblk = symbol_block; sblk; sblk = *sprev)
7146af97 6107 {
6ca94ac9 6108 int this_free = 0;
d285b373
GM
6109 struct Lisp_Symbol *sym = sblk->symbols;
6110 struct Lisp_Symbol *end = sym + lim;
6111
6112 for (; sym < end; ++sym)
6113 {
20035321
SM
6114 /* Check if the symbol was created during loadup. In such a case
6115 it might be pointed to by pure bytecode which we don't trace,
6116 so we conservatively assume that it is live. */
8fe5665d 6117 int pure_p = PURE_POINTER_P (XSTRING (sym->xname));
177c0ea7 6118
2336fe58 6119 if (!sym->gcmarkbit && !pure_p)
d285b373 6120 {
28a099a4 6121 sym->next = symbol_free_list;
d285b373 6122 symbol_free_list = sym;
34400008 6123#if GC_MARK_STACK
d285b373 6124 symbol_free_list->function = Vdead;
34400008 6125#endif
d285b373
GM
6126 ++this_free;
6127 }
6128 else
6129 {
6130 ++num_used;
6131 if (!pure_p)
8fe5665d 6132 UNMARK_STRING (XSTRING (sym->xname));
2336fe58 6133 sym->gcmarkbit = 0;
d285b373
GM
6134 }
6135 }
177c0ea7 6136
7146af97 6137 lim = SYMBOL_BLOCK_SIZE;
6ca94ac9
KH
6138 /* If this block contains only free symbols and we have already
6139 seen more than two blocks worth of free symbols then deallocate
6140 this block. */
6feef451 6141 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
6ca94ac9 6142 {
6ca94ac9
KH
6143 *sprev = sblk->next;
6144 /* Unhook from the free list. */
28a099a4 6145 symbol_free_list = sblk->symbols[0].next;
c8099634
RS
6146 lisp_free (sblk);
6147 n_symbol_blocks--;
6ca94ac9
KH
6148 }
6149 else
6feef451
AS
6150 {
6151 num_free += this_free;
6152 sprev = &sblk->next;
6153 }
7146af97
JB
6154 }
6155 total_symbols = num_used;
6156 total_free_symbols = num_free;
6157 }
6158
a9faeabe
RS
6159 /* Put all unmarked misc's on free list.
6160 For a marker, first unchain it from the buffer it points into. */
7146af97
JB
6161 {
6162 register struct marker_block *mblk;
6ca94ac9 6163 struct marker_block **mprev = &marker_block;
7146af97
JB
6164 register int lim = marker_block_index;
6165 register int num_free = 0, num_used = 0;
6166
6167 marker_free_list = 0;
177c0ea7 6168
6ca94ac9 6169 for (mblk = marker_block; mblk; mblk = *mprev)
7146af97
JB
6170 {
6171 register int i;
6ca94ac9 6172 int this_free = 0;
fa05e253 6173
7146af97 6174 for (i = 0; i < lim; i++)
465edf35 6175 {
2336fe58 6176 if (!mblk->markers[i].u_marker.gcmarkbit)
465edf35 6177 {
a5da44fe 6178 if (mblk->markers[i].u_marker.type == Lisp_Misc_Marker)
ef89c2ce 6179 unchain_marker (&mblk->markers[i].u_marker);
fa05e253
RS
6180 /* Set the type of the freed object to Lisp_Misc_Free.
6181 We could leave the type alone, since nobody checks it,
465edf35 6182 but this might catch bugs faster. */
a5da44fe 6183 mblk->markers[i].u_marker.type = Lisp_Misc_Free;
465edf35
KH
6184 mblk->markers[i].u_free.chain = marker_free_list;
6185 marker_free_list = &mblk->markers[i];
6ca94ac9 6186 this_free++;
465edf35
KH
6187 }
6188 else
6189 {
6190 num_used++;
2336fe58 6191 mblk->markers[i].u_marker.gcmarkbit = 0;
465edf35
KH
6192 }
6193 }
7146af97 6194 lim = MARKER_BLOCK_SIZE;
6ca94ac9
KH
6195 /* If this block contains only free markers and we have already
6196 seen more than two blocks worth of free markers then deallocate
6197 this block. */
6feef451 6198 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
6ca94ac9 6199 {
6ca94ac9
KH
6200 *mprev = mblk->next;
6201 /* Unhook from the free list. */
6202 marker_free_list = mblk->markers[0].u_free.chain;
c37adf23 6203 lisp_free (mblk);
c8099634 6204 n_marker_blocks--;
6ca94ac9
KH
6205 }
6206 else
6feef451
AS
6207 {
6208 num_free += this_free;
6209 mprev = &mblk->next;
6210 }
7146af97
JB
6211 }
6212
6213 total_markers = num_used;
6214 total_free_markers = num_free;
6215 }
6216
6217 /* Free all unmarked buffers */
6218 {
6219 register struct buffer *buffer = all_buffers, *prev = 0, *next;
6220
6221 while (buffer)
3ef06d12 6222 if (!VECTOR_MARKED_P (buffer))
7146af97
JB
6223 {
6224 if (prev)
6225 prev->next = buffer->next;
6226 else
6227 all_buffers = buffer->next;
6228 next = buffer->next;
34400008 6229 lisp_free (buffer);
7146af97
JB
6230 buffer = next;
6231 }
6232 else
6233 {
3ef06d12 6234 VECTOR_UNMARK (buffer);
30e3190a 6235 UNMARK_BALANCE_INTERVALS (BUF_INTERVALS (buffer));
7146af97
JB
6236 prev = buffer, buffer = buffer->next;
6237 }
6238 }
6239
7146af97
JB
6240 /* Free all unmarked vectors */
6241 {
6242 register struct Lisp_Vector *vector = all_vectors, *prev = 0, *next;
6243 total_vector_size = 0;
6244
6245 while (vector)
3ef06d12 6246 if (!VECTOR_MARKED_P (vector))
7146af97
JB
6247 {
6248 if (prev)
6249 prev->next = vector->next;
6250 else
6251 all_vectors = vector->next;
6252 next = vector->next;
c8099634
RS
6253 lisp_free (vector);
6254 n_vectors--;
7146af97 6255 vector = next;
41c28a37 6256
7146af97
JB
6257 }
6258 else
6259 {
3ef06d12 6260 VECTOR_UNMARK (vector);
fa05e253
RS
6261 if (vector->size & PSEUDOVECTOR_FLAG)
6262 total_vector_size += (PSEUDOVECTOR_SIZE_MASK & vector->size);
6263 else
6264 total_vector_size += vector->size;
7146af97
JB
6265 prev = vector, vector = vector->next;
6266 }
6267 }
177c0ea7 6268
676a7251
GM
6269#ifdef GC_CHECK_STRING_BYTES
6270 if (!noninteractive)
6271 check_string_bytes (1);
6272#endif
7146af97 6273}
7146af97 6274
7146af97 6275
7146af97 6276
7146af97 6277\f
20d24714
JB
6278/* Debugging aids. */
6279
31ce1c91 6280DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
a6266d23 6281 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
228299fa 6282This may be helpful in debugging Emacs's memory usage.
7ee72033
MB
6283We divide the value by 1024 to make sure it fits in a Lisp integer. */)
6284 ()
20d24714
JB
6285{
6286 Lisp_Object end;
6287
45d12a89 6288 XSETINT (end, (EMACS_INT) sbrk (0) / 1024);
20d24714
JB
6289
6290 return end;
6291}
6292
310ea200 6293DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
a6266d23 6294 doc: /* Return a list of counters that measure how much consing there has been.
228299fa
GM
6295Each of these counters increments for a certain kind of object.
6296The counters wrap around from the largest positive integer to zero.
6297Garbage collection does not decrease them.
6298The elements of the value are as follows:
6299 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
6300All are in units of 1 = one object consed
6301except for VECTOR-CELLS and STRING-CHARS, which count the total length of
6302objects consed.
6303MISCS include overlays, markers, and some internal types.
6304Frames, windows, buffers, and subprocesses count as vectors
7ee72033
MB
6305 (but the contents of a buffer's text do not count here). */)
6306 ()
310ea200 6307{
2e471eb5 6308 Lisp_Object consed[8];
310ea200 6309
78e985eb
GM
6310 consed[0] = make_number (min (MOST_POSITIVE_FIXNUM, cons_cells_consed));
6311 consed[1] = make_number (min (MOST_POSITIVE_FIXNUM, floats_consed));
6312 consed[2] = make_number (min (MOST_POSITIVE_FIXNUM, vector_cells_consed));
6313 consed[3] = make_number (min (MOST_POSITIVE_FIXNUM, symbols_consed));
6314 consed[4] = make_number (min (MOST_POSITIVE_FIXNUM, string_chars_consed));
6315 consed[5] = make_number (min (MOST_POSITIVE_FIXNUM, misc_objects_consed));
6316 consed[6] = make_number (min (MOST_POSITIVE_FIXNUM, intervals_consed));
6317 consed[7] = make_number (min (MOST_POSITIVE_FIXNUM, strings_consed));
310ea200 6318
2e471eb5 6319 return Flist (8, consed);
310ea200 6320}
e0b8c689
KR
6321
6322int suppress_checking;
6323void
6324die (msg, file, line)
6325 const char *msg;
6326 const char *file;
6327 int line;
6328{
6329 fprintf (stderr, "\r\nEmacs fatal error: %s:%d: %s\r\n",
6330 file, line, msg);
6331 abort ();
6332}
20d24714 6333\f
7146af97
JB
6334/* Initialization */
6335
dfcf069d 6336void
7146af97
JB
6337init_alloc_once ()
6338{
6339 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
9e713715
GM
6340 purebeg = PUREBEG;
6341 pure_size = PURESIZE;
1f0b3fd2 6342 pure_bytes_used = 0;
e5bc14d4 6343 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
9e713715
GM
6344 pure_bytes_used_before_overflow = 0;
6345
ab6780cd
SM
6346 /* Initialize the list of free aligned blocks. */
6347 free_ablock = NULL;
6348
877935b1 6349#if GC_MARK_STACK || defined GC_MALLOC_CHECK
34400008
GM
6350 mem_init ();
6351 Vdead = make_pure_string ("DEAD", 4, 4, 0);
6352#endif
9e713715 6353
7146af97
JB
6354 all_vectors = 0;
6355 ignore_warnings = 1;
d1658221
RS
6356#ifdef DOUG_LEA_MALLOC
6357 mallopt (M_TRIM_THRESHOLD, 128*1024); /* trim threshold */
6358 mallopt (M_MMAP_THRESHOLD, 64*1024); /* mmap threshold */
81d492d5 6359 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* max. number of mmap'ed areas */
d1658221 6360#endif
7146af97
JB
6361 init_strings ();
6362 init_cons ();
6363 init_symbol ();
6364 init_marker ();
7146af97 6365 init_float ();
34400008 6366 init_intervals ();
d5e35230 6367
276cbe5a
RS
6368#ifdef REL_ALLOC
6369 malloc_hysteresis = 32;
6370#else
6371 malloc_hysteresis = 0;
6372#endif
6373
24d8a105 6374 refill_memory_reserve ();
276cbe5a 6375
7146af97
JB
6376 ignore_warnings = 0;
6377 gcprolist = 0;
630686c8 6378 byte_stack_list = 0;
7146af97
JB
6379 staticidx = 0;
6380 consing_since_gc = 0;
7d179cea 6381 gc_cons_threshold = 100000 * sizeof (Lisp_Object);
974aae61
RS
6382 gc_relative_threshold = 0;
6383
7146af97
JB
6384#ifdef VIRT_ADDR_VARIES
6385 malloc_sbrk_unused = 1<<22; /* A large number */
6386 malloc_sbrk_used = 100000; /* as reasonable as any number */
6387#endif /* VIRT_ADDR_VARIES */
6388}
6389
dfcf069d 6390void
7146af97
JB
6391init_alloc ()
6392{
6393 gcprolist = 0;
630686c8 6394 byte_stack_list = 0;
182ff242
GM
6395#if GC_MARK_STACK
6396#if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
6397 setjmp_tested_p = longjmps_done = 0;
6398#endif
6399#endif
2c5bd608
DL
6400 Vgc_elapsed = make_float (0.0);
6401 gcs_done = 0;
7146af97
JB
6402}
6403
6404void
6405syms_of_alloc ()
6406{
7ee72033 6407 DEFVAR_INT ("gc-cons-threshold", &gc_cons_threshold,
a6266d23 6408 doc: /* *Number of bytes of consing between garbage collections.
228299fa
GM
6409Garbage collection can happen automatically once this many bytes have been
6410allocated since the last garbage collection. All data types count.
7146af97 6411
228299fa 6412Garbage collection happens automatically only when `eval' is called.
7146af97 6413
228299fa 6414By binding this temporarily to a large number, you can effectively
96f077ad
SM
6415prevent garbage collection during a part of the program.
6416See also `gc-cons-percentage'. */);
6417
6418 DEFVAR_LISP ("gc-cons-percentage", &Vgc_cons_percentage,
6419 doc: /* *Portion of the heap used for allocation.
6420Garbage collection can happen automatically once this portion of the heap
6421has been allocated since the last garbage collection.
6422If this portion is smaller than `gc-cons-threshold', this is ignored. */);
6423 Vgc_cons_percentage = make_float (0.1);
0819585c 6424
7ee72033 6425 DEFVAR_INT ("pure-bytes-used", &pure_bytes_used,
a6266d23 6426 doc: /* Number of bytes of sharable Lisp data allocated so far. */);
0819585c 6427
7ee72033 6428 DEFVAR_INT ("cons-cells-consed", &cons_cells_consed,
a6266d23 6429 doc: /* Number of cons cells that have been consed so far. */);
0819585c 6430
7ee72033 6431 DEFVAR_INT ("floats-consed", &floats_consed,
a6266d23 6432 doc: /* Number of floats that have been consed so far. */);
0819585c 6433
7ee72033 6434 DEFVAR_INT ("vector-cells-consed", &vector_cells_consed,
a6266d23 6435 doc: /* Number of vector cells that have been consed so far. */);
0819585c 6436
7ee72033 6437 DEFVAR_INT ("symbols-consed", &symbols_consed,
a6266d23 6438 doc: /* Number of symbols that have been consed so far. */);
0819585c 6439
7ee72033 6440 DEFVAR_INT ("string-chars-consed", &string_chars_consed,
a6266d23 6441 doc: /* Number of string characters that have been consed so far. */);
0819585c 6442
7ee72033 6443 DEFVAR_INT ("misc-objects-consed", &misc_objects_consed,
a6266d23 6444 doc: /* Number of miscellaneous objects that have been consed so far. */);
2e471eb5 6445
7ee72033 6446 DEFVAR_INT ("intervals-consed", &intervals_consed,
a6266d23 6447 doc: /* Number of intervals that have been consed so far. */);
7146af97 6448
7ee72033 6449 DEFVAR_INT ("strings-consed", &strings_consed,
a6266d23 6450 doc: /* Number of strings that have been consed so far. */);
228299fa 6451
7ee72033 6452 DEFVAR_LISP ("purify-flag", &Vpurify_flag,
a6266d23 6453 doc: /* Non-nil means loading Lisp code in order to dump an executable.
228299fa
GM
6454This means that certain objects should be allocated in shared (pure) space. */);
6455
7ee72033 6456 DEFVAR_BOOL ("garbage-collection-messages", &garbage_collection_messages,
a6266d23 6457 doc: /* Non-nil means display messages at start and end of garbage collection. */);
299585ee
RS
6458 garbage_collection_messages = 0;
6459
7ee72033 6460 DEFVAR_LISP ("post-gc-hook", &Vpost_gc_hook,
a6266d23 6461 doc: /* Hook run after garbage collection has finished. */);
9e713715
GM
6462 Vpost_gc_hook = Qnil;
6463 Qpost_gc_hook = intern ("post-gc-hook");
6464 staticpro (&Qpost_gc_hook);
6465
74a54b04
RS
6466 DEFVAR_LISP ("memory-signal-data", &Vmemory_signal_data,
6467 doc: /* Precomputed `signal' argument for memory-full error. */);
bcb61d60
KH
6468 /* We build this in advance because if we wait until we need it, we might
6469 not be able to allocate the memory to hold it. */
74a54b04
RS
6470 Vmemory_signal_data
6471 = list2 (Qerror,
6472 build_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"));
6473
6474 DEFVAR_LISP ("memory-full", &Vmemory_full,
24d8a105 6475 doc: /* Non-nil means Emacs cannot get much more Lisp memory. */);
74a54b04 6476 Vmemory_full = Qnil;
bcb61d60 6477
e8197642
RS
6478 staticpro (&Qgc_cons_threshold);
6479 Qgc_cons_threshold = intern ("gc-cons-threshold");
6480
a59de17b
RS
6481 staticpro (&Qchar_table_extra_slots);
6482 Qchar_table_extra_slots = intern ("char-table-extra-slots");
6483
2c5bd608
DL
6484 DEFVAR_LISP ("gc-elapsed", &Vgc_elapsed,
6485 doc: /* Accumulated time elapsed in garbage collections.
e7415487 6486The time is in seconds as a floating point value. */);
2c5bd608 6487 DEFVAR_INT ("gcs-done", &gcs_done,
e7415487 6488 doc: /* Accumulated number of garbage collections done. */);
2c5bd608 6489
7146af97
JB
6490 defsubr (&Scons);
6491 defsubr (&Slist);
6492 defsubr (&Svector);
6493 defsubr (&Smake_byte_code);
6494 defsubr (&Smake_list);
6495 defsubr (&Smake_vector);
7b07587b 6496 defsubr (&Smake_char_table);
7146af97 6497 defsubr (&Smake_string);
7b07587b 6498 defsubr (&Smake_bool_vector);
7146af97
JB
6499 defsubr (&Smake_symbol);
6500 defsubr (&Smake_marker);
6501 defsubr (&Spurecopy);
6502 defsubr (&Sgarbage_collect);
20d24714 6503 defsubr (&Smemory_limit);
310ea200 6504 defsubr (&Smemory_use_counts);
34400008
GM
6505
6506#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
6507 defsubr (&Sgc_status);
6508#endif
7146af97 6509}
ab5796a9
MB
6510
6511/* arch-tag: 6695ca10-e3c5-4c2c-8bc3-ed26a7dda857
6512 (do not change this comment) */