New macro to iterate over all buffers, miscellaneous cleanups.
[bpt/emacs.git] / src / alloc.c
CommitLineData
7146af97 1/* Storage allocation and gc for GNU Emacs Lisp interpreter.
999dd333
GM
2
3Copyright (C) 1985-1986, 1988, 1993-1995, 1997-2012
4 Free Software Foundation, Inc.
7146af97
JB
5
6This file is part of GNU Emacs.
7
9ec0b715 8GNU Emacs is free software: you can redistribute it and/or modify
7146af97 9it under the terms of the GNU General Public License as published by
9ec0b715
GM
10the Free Software Foundation, either version 3 of the License, or
11(at your option) any later version.
7146af97
JB
12
13GNU Emacs is distributed in the hope that it will be useful,
14but WITHOUT ANY WARRANTY; without even the implied warranty of
15MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16GNU General Public License for more details.
17
18You should have received a copy of the GNU General Public License
9ec0b715 19along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
7146af97 20
18160b98 21#include <config.h>
e9b309ac 22#include <stdio.h>
ab6780cd 23#include <limits.h> /* For CHAR_BIT. */
d7306fe6 24#include <setjmp.h>
92939d31 25
68c45bf0 26#include <signal.h>
92939d31 27
ae9e757a 28#ifdef HAVE_PTHREAD
aa477689
JD
29#include <pthread.h>
30#endif
31
7539e11f
KR
32/* This file is part of the core Lisp implementation, and thus must
33 deal with the real data structures. If the Lisp implementation is
34 replaced, this file likely will not be used. */
2e471eb5 35
7539e11f 36#undef HIDE_LISP_IMPLEMENTATION
7146af97 37#include "lisp.h"
ece93c02 38#include "process.h"
d5e35230 39#include "intervals.h"
4c0be5f4 40#include "puresize.h"
e5560ff7 41#include "character.h"
7146af97
JB
42#include "buffer.h"
43#include "window.h"
2538fae4 44#include "keyboard.h"
502b9b64 45#include "frame.h"
9ac0d9e0 46#include "blockinput.h"
e065a56e 47#include "syssignal.h"
4a729fd8 48#include "termhooks.h" /* For struct terminal. */
34400008 49#include <setjmp.h>
0065d054 50#include <verify.h>
e065a56e 51
52828e02
PE
52/* GC_CHECK_MARKED_OBJECTS means do sanity checks on allocated objects.
53 Doable only if GC_MARK_STACK. */
54#if ! GC_MARK_STACK
55# undef GC_CHECK_MARKED_OBJECTS
56#endif
57
6b61353c 58/* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
52828e02
PE
59 memory. Can do this only if using gmalloc.c and if not checking
60 marked objects. */
6b61353c 61
52828e02
PE
62#if (defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC \
63 || defined GC_CHECK_MARKED_OBJECTS)
6b61353c
KH
64#undef GC_MALLOC_CHECK
65#endif
66
bf952fb6 67#include <unistd.h>
4004364e 68#ifndef HAVE_UNISTD_H
261cb4bb 69extern void *sbrk ();
bf952fb6 70#endif
ee1eea5c 71
de7124a7 72#include <fcntl.h>
de7124a7 73
69666f77 74#ifdef WINDOWSNT
f892cf9c 75#include "w32.h"
69666f77
EZ
76#endif
77
d1658221 78#ifdef DOUG_LEA_MALLOC
2e471eb5 79
d1658221 80#include <malloc.h>
81d492d5 81
2e471eb5
GM
82/* Specify maximum number of areas to mmap. It would be nice to use a
83 value that explicitly means "no limit". */
84
81d492d5
RS
85#define MMAP_MAX_AREAS 100000000
86
2e471eb5
GM
87#else /* not DOUG_LEA_MALLOC */
88
276cbe5a
RS
89/* The following come from gmalloc.c. */
90
5e927815
PE
91extern size_t _bytes_used;
92extern size_t __malloc_extra_blocks;
b62a57be
PE
93extern void *_malloc_internal (size_t);
94extern void _free_internal (void *);
2e471eb5
GM
95
96#endif /* not DOUG_LEA_MALLOC */
276cbe5a 97
7bc26fdb 98#if ! defined SYSTEM_MALLOC && ! defined SYNC_INPUT
ae9e757a 99#ifdef HAVE_PTHREAD
aa477689 100
f415cacd
JD
101/* When GTK uses the file chooser dialog, different backends can be loaded
102 dynamically. One such a backend is the Gnome VFS backend that gets loaded
103 if you run Gnome. That backend creates several threads and also allocates
104 memory with malloc.
105
ae9e757a
JD
106 Also, gconf and gsettings may create several threads.
107
f415cacd
JD
108 If Emacs sets malloc hooks (! SYSTEM_MALLOC) and the emacs_blocked_*
109 functions below are called from malloc, there is a chance that one
110 of these threads preempts the Emacs main thread and the hook variables
333f1b6f 111 end up in an inconsistent state. So we have a mutex to prevent that (note
f415cacd
JD
112 that the backend handles concurrent access to malloc within its own threads
113 but Emacs code running in the main thread is not included in that control).
114
026cdede 115 When UNBLOCK_INPUT is called, reinvoke_input_signal may be called. If this
f415cacd
JD
116 happens in one of the backend threads we will have two threads that tries
117 to run Emacs code at once, and the code is not prepared for that.
118 To prevent that, we only call BLOCK/UNBLOCK from the main thread. */
119
aa477689 120static pthread_mutex_t alloc_mutex;
aa477689 121
959dc601
JD
122#define BLOCK_INPUT_ALLOC \
123 do \
124 { \
125 if (pthread_equal (pthread_self (), main_thread)) \
86302e37 126 BLOCK_INPUT; \
959dc601
JD
127 pthread_mutex_lock (&alloc_mutex); \
128 } \
aa477689 129 while (0)
959dc601
JD
130#define UNBLOCK_INPUT_ALLOC \
131 do \
132 { \
133 pthread_mutex_unlock (&alloc_mutex); \
134 if (pthread_equal (pthread_self (), main_thread)) \
86302e37 135 UNBLOCK_INPUT; \
959dc601 136 } \
aa477689
JD
137 while (0)
138
ae9e757a 139#else /* ! defined HAVE_PTHREAD */
aa477689
JD
140
141#define BLOCK_INPUT_ALLOC BLOCK_INPUT
142#define UNBLOCK_INPUT_ALLOC UNBLOCK_INPUT
143
ae9e757a 144#endif /* ! defined HAVE_PTHREAD */
7bc26fdb 145#endif /* ! defined SYSTEM_MALLOC && ! defined SYNC_INPUT */
aa477689 146
2e471eb5
GM
147/* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
148 to a struct Lisp_String. */
149
7cdee936
SM
150#define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
151#define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
b059de99 152#define STRING_MARKED_P(S) (((S)->size & ARRAY_MARK_FLAG) != 0)
2e471eb5 153
eab3844f
PE
154#define VECTOR_MARK(V) ((V)->header.size |= ARRAY_MARK_FLAG)
155#define VECTOR_UNMARK(V) ((V)->header.size &= ~ARRAY_MARK_FLAG)
156#define VECTOR_MARKED_P(V) (((V)->header.size & ARRAY_MARK_FLAG) != 0)
3ef06d12 157
7bc26fdb
PE
158/* Value is the number of bytes of S, a pointer to a struct Lisp_String.
159 Be careful during GC, because S->size contains the mark bit for
2e471eb5
GM
160 strings. */
161
3ef06d12 162#define GC_STRING_BYTES(S) (STRING_BYTES (S))
2e471eb5 163
29208e82
TT
164/* Global variables. */
165struct emacs_globals globals;
166
2e471eb5
GM
167/* Number of bytes of consing done since the last gc. */
168
0de4bb68 169EMACS_INT consing_since_gc;
7146af97 170
974aae61
RS
171/* Similar minimum, computed from Vgc_cons_percentage. */
172
173EMACS_INT gc_relative_threshold;
310ea200 174
24d8a105
RS
175/* Minimum number of bytes of consing since GC before next GC,
176 when memory is full. */
177
178EMACS_INT memory_full_cons_threshold;
179
2e471eb5
GM
180/* Nonzero during GC. */
181
7146af97
JB
182int gc_in_progress;
183
3de0effb
RS
184/* Nonzero means abort if try to GC.
185 This is for code which is written on the assumption that
186 no GC will happen, so as to verify that assumption. */
187
188int abort_on_gc;
189
34400008
GM
190/* Number of live and free conses etc. */
191
3ab6e069 192static EMACS_INT total_conses, total_markers, total_symbols, total_buffers;
c0c5c8ae 193static EMACS_INT total_free_conses, total_free_markers, total_free_symbols;
3ab6e069 194static EMACS_INT total_free_floats, total_floats;
fd27a537 195
2e471eb5 196/* Points to memory space allocated as "spare", to be freed if we run
24d8a105
RS
197 out of memory. We keep one large block, four cons-blocks, and
198 two string blocks. */
2e471eb5 199
d3d47262 200static char *spare_memory[7];
276cbe5a 201
2b6148e4
PE
202/* Amount of spare memory to keep in large reserve block, or to see
203 whether this much is available when malloc fails on a larger request. */
2e471eb5 204
276cbe5a 205#define SPARE_MEMORY (1 << 14)
4d09bcf6 206
276cbe5a 207/* Number of extra blocks malloc should get when it needs more core. */
2e471eb5 208
276cbe5a
RS
209static int malloc_hysteresis;
210
1b8950e5
RS
211/* Initialize it to a nonzero value to force it into data space
212 (rather than bss space). That way unexec will remap it into text
213 space (pure), on some systems. We have not implemented the
214 remapping on more recent systems because this is less important
215 nowadays than in the days of small memories and timesharing. */
2e471eb5 216
2c4685ee 217EMACS_INT pure[(PURESIZE + sizeof (EMACS_INT) - 1) / sizeof (EMACS_INT)] = {1,};
7146af97 218#define PUREBEG (char *) pure
2e471eb5 219
9e713715 220/* Pointer to the pure area, and its size. */
2e471eb5 221
9e713715 222static char *purebeg;
903fe15d 223static ptrdiff_t pure_size;
9e713715
GM
224
225/* Number of bytes of pure storage used before pure storage overflowed.
226 If this is non-zero, this implies that an overflow occurred. */
227
903fe15d 228static ptrdiff_t pure_bytes_used_before_overflow;
7146af97 229
34400008
GM
230/* Value is non-zero if P points into pure space. */
231
232#define PURE_POINTER_P(P) \
6a0bf43d 233 ((uintptr_t) (P) - (uintptr_t) purebeg <= pure_size)
34400008 234
e5bc14d4
YM
235/* Index in pure at which next pure Lisp object will be allocated.. */
236
d311d28c 237static ptrdiff_t pure_bytes_used_lisp;
e5bc14d4
YM
238
239/* Number of bytes allocated for non-Lisp objects in pure storage. */
240
d311d28c 241static ptrdiff_t pure_bytes_used_non_lisp;
e5bc14d4 242
2e471eb5
GM
243/* If nonzero, this is a warning delivered by malloc and not yet
244 displayed. */
245
a8fe7202 246const char *pending_malloc_warning;
7146af97
JB
247
248/* Maximum amount of C stack to save when a GC happens. */
249
250#ifndef MAX_SAVE_STACK
251#define MAX_SAVE_STACK 16000
252#endif
253
254/* Buffer in which we save a copy of the C stack at each GC. */
255
dd3f25f7 256#if MAX_SAVE_STACK > 0
d3d47262 257static char *stack_copy;
903fe15d 258static ptrdiff_t stack_copy_size;
dd3f25f7 259#endif
7146af97 260
955cbe7b
PE
261static Lisp_Object Qgc_cons_threshold;
262Lisp_Object Qchar_table_extra_slots;
e8197642 263
9e713715
GM
264/* Hook run after GC has finished. */
265
955cbe7b 266static Lisp_Object Qpost_gc_hook;
2c5bd608 267
f57e2426 268static void mark_terminals (void);
f57e2426 269static void gc_sweep (void);
72cb32cf 270static Lisp_Object make_pure_vector (ptrdiff_t);
f57e2426
J
271static void mark_glyph_matrix (struct glyph_matrix *);
272static void mark_face_cache (struct face_cache *);
41c28a37 273
69003fd8
PE
274#if !defined REL_ALLOC || defined SYSTEM_MALLOC
275static void refill_memory_reserve (void);
276#endif
f57e2426
J
277static struct Lisp_String *allocate_string (void);
278static void compact_small_strings (void);
279static void free_large_strings (void);
280static void sweep_strings (void);
244ed907 281static void free_misc (Lisp_Object);
196e41e4 282extern Lisp_Object which_symbols (Lisp_Object, EMACS_INT) EXTERNALLY_VISIBLE;
34400008 283
d06714cb
PE
284/* Handy constants for vectorlike objects. */
285enum
286 {
287 header_size = offsetof (struct Lisp_Vector, contents),
288 bool_header_size = offsetof (struct Lisp_Bool_Vector, data),
289 word_size = sizeof (Lisp_Object)
290 };
291
34400008
GM
292/* When scanning the C stack for live Lisp objects, Emacs keeps track
293 of what memory allocated via lisp_malloc is intended for what
294 purpose. This enumeration specifies the type of memory. */
295
296enum mem_type
297{
298 MEM_TYPE_NON_LISP,
299 MEM_TYPE_BUFFER,
300 MEM_TYPE_CONS,
301 MEM_TYPE_STRING,
302 MEM_TYPE_MISC,
303 MEM_TYPE_SYMBOL,
304 MEM_TYPE_FLOAT,
9c545a55
SM
305 /* We used to keep separate mem_types for subtypes of vectors such as
306 process, hash_table, frame, terminal, and window, but we never made
307 use of the distinction, so it only caused source-code complexity
308 and runtime slowdown. Minor but pointless. */
f3372c87
DA
309 MEM_TYPE_VECTORLIKE,
310 /* Special type to denote vector blocks. */
311 MEM_TYPE_VECTOR_BLOCK
34400008
GM
312};
313
261cb4bb 314static void *lisp_malloc (size_t, enum mem_type);
225ccad6 315
24d8a105 316
877935b1 317#if GC_MARK_STACK || defined GC_MALLOC_CHECK
0b378936
GM
318
319#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
320#include <stdio.h> /* For fprintf. */
321#endif
322
323/* A unique object in pure space used to make some Lisp objects
324 on free lists recognizable in O(1). */
325
d3d47262 326static Lisp_Object Vdead;
ca78dc43 327#define DEADP(x) EQ (x, Vdead)
0b378936 328
877935b1
GM
329#ifdef GC_MALLOC_CHECK
330
331enum mem_type allocated_mem_type;
877935b1
GM
332
333#endif /* GC_MALLOC_CHECK */
334
335/* A node in the red-black tree describing allocated memory containing
336 Lisp data. Each such block is recorded with its start and end
337 address when it is allocated, and removed from the tree when it
338 is freed.
339
340 A red-black tree is a balanced binary tree with the following
341 properties:
342
343 1. Every node is either red or black.
344 2. Every leaf is black.
345 3. If a node is red, then both of its children are black.
346 4. Every simple path from a node to a descendant leaf contains
347 the same number of black nodes.
348 5. The root is always black.
349
350 When nodes are inserted into the tree, or deleted from the tree,
351 the tree is "fixed" so that these properties are always true.
352
353 A red-black tree with N internal nodes has height at most 2
354 log(N+1). Searches, insertions and deletions are done in O(log N).
355 Please see a text book about data structures for a detailed
356 description of red-black trees. Any book worth its salt should
357 describe them. */
358
359struct mem_node
360{
9f7d9210
RS
361 /* Children of this node. These pointers are never NULL. When there
362 is no child, the value is MEM_NIL, which points to a dummy node. */
363 struct mem_node *left, *right;
364
365 /* The parent of this node. In the root node, this is NULL. */
366 struct mem_node *parent;
877935b1
GM
367
368 /* Start and end of allocated region. */
369 void *start, *end;
370
371 /* Node color. */
372 enum {MEM_BLACK, MEM_RED} color;
177c0ea7 373
877935b1
GM
374 /* Memory type. */
375 enum mem_type type;
376};
377
378/* Base address of stack. Set in main. */
379
380Lisp_Object *stack_base;
381
382/* Root of the tree describing allocated Lisp memory. */
383
384static struct mem_node *mem_root;
385
ece93c02
GM
386/* Lowest and highest known address in the heap. */
387
388static void *min_heap_address, *max_heap_address;
389
877935b1
GM
390/* Sentinel node of the tree. */
391
392static struct mem_node mem_z;
393#define MEM_NIL &mem_z
394
d311d28c 395static struct Lisp_Vector *allocate_vectorlike (ptrdiff_t);
261cb4bb 396static void lisp_free (void *);
f57e2426
J
397static void mark_stack (void);
398static int live_vector_p (struct mem_node *, void *);
399static int live_buffer_p (struct mem_node *, void *);
400static int live_string_p (struct mem_node *, void *);
401static int live_cons_p (struct mem_node *, void *);
402static int live_symbol_p (struct mem_node *, void *);
403static int live_float_p (struct mem_node *, void *);
404static int live_misc_p (struct mem_node *, void *);
405static void mark_maybe_object (Lisp_Object);
3164aeac 406static void mark_memory (void *, void *);
52828e02 407#if GC_MARK_STACK || defined GC_MALLOC_CHECK
f57e2426
J
408static void mem_init (void);
409static struct mem_node *mem_insert (void *, void *, enum mem_type);
410static void mem_insert_fixup (struct mem_node *);
b62a57be 411#endif
f57e2426
J
412static void mem_rotate_left (struct mem_node *);
413static void mem_rotate_right (struct mem_node *);
414static void mem_delete (struct mem_node *);
415static void mem_delete_fixup (struct mem_node *);
55d4c1b2 416static inline struct mem_node *mem_find (void *);
34400008 417
34400008
GM
418
419#if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
f57e2426 420static void check_gcpros (void);
34400008
GM
421#endif
422
877935b1 423#endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
34400008 424
ca78dc43
PE
425#ifndef DEADP
426# define DEADP(x) 0
427#endif
428
1f0b3fd2
GM
429/* Recording what needs to be marked for gc. */
430
431struct gcpro *gcprolist;
432
379b98b1
PE
433/* Addresses of staticpro'd variables. Initialize it to a nonzero
434 value; otherwise some compilers put it into BSS. */
1f0b3fd2 435
d251c37c 436#define NSTATICS 0x650
d3d47262 437static Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
1f0b3fd2
GM
438
439/* Index of next unused slot in staticvec. */
440
fff62aa9 441static int staticidx;
1f0b3fd2 442
261cb4bb 443static void *pure_alloc (size_t, int);
1f0b3fd2
GM
444
445
446/* Value is SZ rounded up to the next multiple of ALIGNMENT.
447 ALIGNMENT must be a power of 2. */
448
ab6780cd 449#define ALIGN(ptr, ALIGNMENT) \
261cb4bb
PE
450 ((void *) (((uintptr_t) (ptr) + (ALIGNMENT) - 1) \
451 & ~ ((ALIGNMENT) - 1)))
1f0b3fd2 452
ece93c02 453
7146af97 454\f
34400008
GM
455/************************************************************************
456 Malloc
457 ************************************************************************/
458
4455ad75 459/* Function malloc calls this if it finds we are near exhausting storage. */
d457598b
AS
460
461void
a8fe7202 462malloc_warning (const char *str)
7146af97
JB
463{
464 pending_malloc_warning = str;
465}
466
34400008 467
4455ad75 468/* Display an already-pending malloc warning. */
34400008 469
d457598b 470void
971de7fb 471display_malloc_warning (void)
7146af97 472{
4455ad75
RS
473 call3 (intern ("display-warning"),
474 intern ("alloc"),
475 build_string (pending_malloc_warning),
476 intern ("emergency"));
7146af97 477 pending_malloc_warning = 0;
7146af97 478}
49efed3a 479\f
276cbe5a
RS
480/* Called if we can't allocate relocatable space for a buffer. */
481
482void
d311d28c 483buffer_memory_full (ptrdiff_t nbytes)
276cbe5a 484{
2e471eb5
GM
485 /* If buffers use the relocating allocator, no need to free
486 spare_memory, because we may have plenty of malloc space left
487 that we could get, and if we don't, the malloc that fails will
488 itself cause spare_memory to be freed. If buffers don't use the
489 relocating allocator, treat this like any other failing
490 malloc. */
276cbe5a
RS
491
492#ifndef REL_ALLOC
531b0165 493 memory_full (nbytes);
276cbe5a
RS
494#endif
495
2e471eb5
GM
496 /* This used to call error, but if we've run out of memory, we could
497 get infinite recursion trying to build the string. */
9b306d37 498 xsignal (Qnil, Vmemory_signal_data);
7146af97
JB
499}
500
f3372c87
DA
501/* A common multiple of the positive integers A and B. Ideally this
502 would be the least common multiple, but there's no way to do that
503 as a constant expression in C, so do the best that we can easily do. */
504#define COMMON_MULTIPLE(a, b) \
505 ((a) % (b) == 0 ? (a) : (b) % (a) == 0 ? (b) : (a) * (b))
34400008 506
c9d624c6 507#ifndef XMALLOC_OVERRUN_CHECK
903fe15d 508#define XMALLOC_OVERRUN_CHECK_OVERHEAD 0
c9d624c6 509#else
212f33f1 510
903fe15d
PE
511/* Check for overrun in malloc'ed buffers by wrapping a header and trailer
512 around each block.
bdbed949 513
f701dc2a
PE
514 The header consists of XMALLOC_OVERRUN_CHECK_SIZE fixed bytes
515 followed by XMALLOC_OVERRUN_SIZE_SIZE bytes containing the original
516 block size in little-endian order. The trailer consists of
517 XMALLOC_OVERRUN_CHECK_SIZE fixed bytes.
bdbed949
KS
518
519 The header is used to detect whether this block has been allocated
f701dc2a
PE
520 through these functions, as some low-level libc functions may
521 bypass the malloc hooks. */
bdbed949 522
212f33f1 523#define XMALLOC_OVERRUN_CHECK_SIZE 16
903fe15d 524#define XMALLOC_OVERRUN_CHECK_OVERHEAD \
38532ce6
PE
525 (2 * XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE)
526
527/* Define XMALLOC_OVERRUN_SIZE_SIZE so that (1) it's large enough to
f701dc2a
PE
528 hold a size_t value and (2) the header size is a multiple of the
529 alignment that Emacs needs for C types and for USE_LSB_TAG. */
530#define XMALLOC_BASE_ALIGNMENT \
531 offsetof ( \
532 struct { \
533 union { long double d; intmax_t i; void *p; } u; \
534 char c; \
535 }, \
536 c)
f3372c87 537
bfe3e0a2 538#if USE_LSB_TAG
f701dc2a
PE
539# define XMALLOC_HEADER_ALIGNMENT \
540 COMMON_MULTIPLE (1 << GCTYPEBITS, XMALLOC_BASE_ALIGNMENT)
38532ce6
PE
541#else
542# define XMALLOC_HEADER_ALIGNMENT XMALLOC_BASE_ALIGNMENT
543#endif
544#define XMALLOC_OVERRUN_SIZE_SIZE \
f701dc2a
PE
545 (((XMALLOC_OVERRUN_CHECK_SIZE + sizeof (size_t) \
546 + XMALLOC_HEADER_ALIGNMENT - 1) \
547 / XMALLOC_HEADER_ALIGNMENT * XMALLOC_HEADER_ALIGNMENT) \
548 - XMALLOC_OVERRUN_CHECK_SIZE)
bdbed949 549
903fe15d
PE
550static char const xmalloc_overrun_check_header[XMALLOC_OVERRUN_CHECK_SIZE] =
551 { '\x9a', '\x9b', '\xae', '\xaf',
552 '\xbf', '\xbe', '\xce', '\xcf',
553 '\xea', '\xeb', '\xec', '\xed',
554 '\xdf', '\xde', '\x9c', '\x9d' };
212f33f1 555
903fe15d
PE
556static char const xmalloc_overrun_check_trailer[XMALLOC_OVERRUN_CHECK_SIZE] =
557 { '\xaa', '\xab', '\xac', '\xad',
558 '\xba', '\xbb', '\xbc', '\xbd',
559 '\xca', '\xcb', '\xcc', '\xcd',
560 '\xda', '\xdb', '\xdc', '\xdd' };
212f33f1 561
903fe15d 562/* Insert and extract the block size in the header. */
bdbed949 563
903fe15d
PE
564static void
565xmalloc_put_size (unsigned char *ptr, size_t size)
566{
567 int i;
38532ce6 568 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
903fe15d 569 {
38532ce6 570 *--ptr = size & ((1 << CHAR_BIT) - 1);
903fe15d
PE
571 size >>= CHAR_BIT;
572 }
573}
bdbed949 574
903fe15d
PE
575static size_t
576xmalloc_get_size (unsigned char *ptr)
577{
578 size_t size = 0;
579 int i;
38532ce6
PE
580 ptr -= XMALLOC_OVERRUN_SIZE_SIZE;
581 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
903fe15d
PE
582 {
583 size <<= CHAR_BIT;
584 size += *ptr++;
585 }
586 return size;
587}
bdbed949
KS
588
589
d8f165a8
JD
590/* The call depth in overrun_check functions. For example, this might happen:
591 xmalloc()
592 overrun_check_malloc()
593 -> malloc -> (via hook)_-> emacs_blocked_malloc
594 -> overrun_check_malloc
595 call malloc (hooks are NULL, so real malloc is called).
596 malloc returns 10000.
597 add overhead, return 10016.
598 <- (back in overrun_check_malloc)
857ae68b 599 add overhead again, return 10032
d8f165a8 600 xmalloc returns 10032.
857ae68b
JD
601
602 (time passes).
603
d8f165a8
JD
604 xfree(10032)
605 overrun_check_free(10032)
903fe15d 606 decrease overhead
d8f165a8 607 free(10016) <- crash, because 10000 is the original pointer. */
857ae68b 608
903fe15d 609static ptrdiff_t check_depth;
857ae68b 610
bdbed949
KS
611/* Like malloc, but wraps allocated block with header and trailer. */
612
261cb4bb 613static void *
e7974947 614overrun_check_malloc (size_t size)
212f33f1 615{
bdbed949 616 register unsigned char *val;
903fe15d
PE
617 int overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_OVERHEAD : 0;
618 if (SIZE_MAX - overhead < size)
619 abort ();
212f33f1 620
38182d90 621 val = malloc (size + overhead);
857ae68b 622 if (val && check_depth == 1)
212f33f1 623 {
903fe15d 624 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
38532ce6 625 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
903fe15d 626 xmalloc_put_size (val, size);
72af86bd
AS
627 memcpy (val + size, xmalloc_overrun_check_trailer,
628 XMALLOC_OVERRUN_CHECK_SIZE);
212f33f1 629 }
857ae68b 630 --check_depth;
261cb4bb 631 return val;
212f33f1
KS
632}
633
bdbed949
KS
634
635/* Like realloc, but checks old block for overrun, and wraps new block
636 with header and trailer. */
637
261cb4bb
PE
638static void *
639overrun_check_realloc (void *block, size_t size)
212f33f1 640{
e7974947 641 register unsigned char *val = (unsigned char *) block;
903fe15d
PE
642 int overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_OVERHEAD : 0;
643 if (SIZE_MAX - overhead < size)
644 abort ();
212f33f1
KS
645
646 if (val
857ae68b 647 && check_depth == 1
72af86bd 648 && memcmp (xmalloc_overrun_check_header,
38532ce6 649 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
903fe15d 650 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
212f33f1 651 {
903fe15d 652 size_t osize = xmalloc_get_size (val);
72af86bd
AS
653 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
654 XMALLOC_OVERRUN_CHECK_SIZE))
212f33f1 655 abort ();
72af86bd 656 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
38532ce6
PE
657 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
658 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
212f33f1
KS
659 }
660
261cb4bb 661 val = realloc (val, size + overhead);
212f33f1 662
857ae68b 663 if (val && check_depth == 1)
212f33f1 664 {
903fe15d 665 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
38532ce6 666 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
903fe15d 667 xmalloc_put_size (val, size);
72af86bd
AS
668 memcpy (val + size, xmalloc_overrun_check_trailer,
669 XMALLOC_OVERRUN_CHECK_SIZE);
212f33f1 670 }
857ae68b 671 --check_depth;
261cb4bb 672 return val;
212f33f1
KS
673}
674
bdbed949
KS
675/* Like free, but checks block for overrun. */
676
2538aa2f 677static void
261cb4bb 678overrun_check_free (void *block)
212f33f1 679{
e7974947 680 unsigned char *val = (unsigned char *) block;
212f33f1 681
857ae68b 682 ++check_depth;
212f33f1 683 if (val
857ae68b 684 && check_depth == 1
72af86bd 685 && memcmp (xmalloc_overrun_check_header,
38532ce6 686 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
903fe15d 687 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
212f33f1 688 {
903fe15d 689 size_t osize = xmalloc_get_size (val);
72af86bd
AS
690 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
691 XMALLOC_OVERRUN_CHECK_SIZE))
212f33f1 692 abort ();
454d7973 693#ifdef XMALLOC_CLEAR_FREE_MEMORY
38532ce6 694 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
903fe15d 695 memset (val, 0xff, osize + XMALLOC_OVERRUN_CHECK_OVERHEAD);
454d7973 696#else
72af86bd 697 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
38532ce6
PE
698 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
699 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
454d7973 700#endif
212f33f1
KS
701 }
702
703 free (val);
857ae68b 704 --check_depth;
212f33f1
KS
705}
706
707#undef malloc
708#undef realloc
709#undef free
710#define malloc overrun_check_malloc
711#define realloc overrun_check_realloc
712#define free overrun_check_free
713#endif
714
dafc79fa
SM
715#ifdef SYNC_INPUT
716/* When using SYNC_INPUT, we don't call malloc from a signal handler, so
717 there's no need to block input around malloc. */
718#define MALLOC_BLOCK_INPUT ((void)0)
719#define MALLOC_UNBLOCK_INPUT ((void)0)
720#else
721#define MALLOC_BLOCK_INPUT BLOCK_INPUT
722#define MALLOC_UNBLOCK_INPUT UNBLOCK_INPUT
723#endif
bdbed949 724
34400008 725/* Like malloc but check for no memory and block interrupt input.. */
7146af97 726
261cb4bb 727void *
971de7fb 728xmalloc (size_t size)
7146af97 729{
261cb4bb 730 void *val;
7146af97 731
dafc79fa 732 MALLOC_BLOCK_INPUT;
261cb4bb 733 val = malloc (size);
dafc79fa 734 MALLOC_UNBLOCK_INPUT;
7146af97 735
2e471eb5 736 if (!val && size)
531b0165 737 memory_full (size);
7146af97
JB
738 return val;
739}
740
23f86fce
DA
741/* Like the above, but zeroes out the memory just allocated. */
742
743void *
744xzalloc (size_t size)
745{
746 void *val;
747
748 MALLOC_BLOCK_INPUT;
749 val = malloc (size);
750 MALLOC_UNBLOCK_INPUT;
751
752 if (!val && size)
753 memory_full (size);
754 memset (val, 0, size);
755 return val;
756}
34400008
GM
757
758/* Like realloc but check for no memory and block interrupt input.. */
759
261cb4bb
PE
760void *
761xrealloc (void *block, size_t size)
7146af97 762{
261cb4bb 763 void *val;
7146af97 764
dafc79fa 765 MALLOC_BLOCK_INPUT;
56d2031b
JB
766 /* We must call malloc explicitly when BLOCK is 0, since some
767 reallocs don't do this. */
768 if (! block)
261cb4bb 769 val = malloc (size);
f048679d 770 else
261cb4bb 771 val = realloc (block, size);
dafc79fa 772 MALLOC_UNBLOCK_INPUT;
7146af97 773
531b0165
PE
774 if (!val && size)
775 memory_full (size);
7146af97
JB
776 return val;
777}
9ac0d9e0 778
34400008 779
005ca5c7 780/* Like free but block interrupt input. */
34400008 781
9ac0d9e0 782void
261cb4bb 783xfree (void *block)
9ac0d9e0 784{
70fdbb46
JM
785 if (!block)
786 return;
dafc79fa 787 MALLOC_BLOCK_INPUT;
9ac0d9e0 788 free (block);
dafc79fa 789 MALLOC_UNBLOCK_INPUT;
24d8a105
RS
790 /* We don't call refill_memory_reserve here
791 because that duplicates doing so in emacs_blocked_free
792 and the criterion should go there. */
9ac0d9e0
JB
793}
794
c8099634 795
0065d054
PE
796/* Other parts of Emacs pass large int values to allocator functions
797 expecting ptrdiff_t. This is portable in practice, but check it to
798 be safe. */
799verify (INT_MAX <= PTRDIFF_MAX);
800
801
802/* Allocate an array of NITEMS items, each of size ITEM_SIZE.
803 Signal an error on memory exhaustion, and block interrupt input. */
804
805void *
806xnmalloc (ptrdiff_t nitems, ptrdiff_t item_size)
807{
a54e2c05 808 eassert (0 <= nitems && 0 < item_size);
0065d054
PE
809 if (min (PTRDIFF_MAX, SIZE_MAX) / item_size < nitems)
810 memory_full (SIZE_MAX);
811 return xmalloc (nitems * item_size);
812}
813
814
815/* Reallocate an array PA to make it of NITEMS items, each of size ITEM_SIZE.
816 Signal an error on memory exhaustion, and block interrupt input. */
817
818void *
819xnrealloc (void *pa, ptrdiff_t nitems, ptrdiff_t item_size)
820{
a54e2c05 821 eassert (0 <= nitems && 0 < item_size);
0065d054
PE
822 if (min (PTRDIFF_MAX, SIZE_MAX) / item_size < nitems)
823 memory_full (SIZE_MAX);
824 return xrealloc (pa, nitems * item_size);
825}
826
827
828/* Grow PA, which points to an array of *NITEMS items, and return the
829 location of the reallocated array, updating *NITEMS to reflect its
830 new size. The new array will contain at least NITEMS_INCR_MIN more
831 items, but will not contain more than NITEMS_MAX items total.
832 ITEM_SIZE is the size of each item, in bytes.
833
834 ITEM_SIZE and NITEMS_INCR_MIN must be positive. *NITEMS must be
835 nonnegative. If NITEMS_MAX is -1, it is treated as if it were
836 infinity.
837
838 If PA is null, then allocate a new array instead of reallocating
839 the old one. Thus, to grow an array A without saving its old
840 contents, invoke xfree (A) immediately followed by xgrowalloc (0,
841 &NITEMS, ...).
842
843 Block interrupt input as needed. If memory exhaustion occurs, set
844 *NITEMS to zero if PA is null, and signal an error (i.e., do not
845 return). */
846
847void *
848xpalloc (void *pa, ptrdiff_t *nitems, ptrdiff_t nitems_incr_min,
849 ptrdiff_t nitems_max, ptrdiff_t item_size)
850{
851 /* The approximate size to use for initial small allocation
852 requests. This is the largest "small" request for the GNU C
853 library malloc. */
854 enum { DEFAULT_MXFAST = 64 * sizeof (size_t) / 4 };
855
856 /* If the array is tiny, grow it to about (but no greater than)
857 DEFAULT_MXFAST bytes. Otherwise, grow it by about 50%. */
858 ptrdiff_t n = *nitems;
859 ptrdiff_t tiny_max = DEFAULT_MXFAST / item_size - n;
860 ptrdiff_t half_again = n >> 1;
861 ptrdiff_t incr_estimate = max (tiny_max, half_again);
862
863 /* Adjust the increment according to three constraints: NITEMS_INCR_MIN,
864 NITEMS_MAX, and what the C language can represent safely. */
865 ptrdiff_t C_language_max = min (PTRDIFF_MAX, SIZE_MAX) / item_size;
866 ptrdiff_t n_max = (0 <= nitems_max && nitems_max < C_language_max
867 ? nitems_max : C_language_max);
868 ptrdiff_t nitems_incr_max = n_max - n;
869 ptrdiff_t incr = max (nitems_incr_min, min (incr_estimate, nitems_incr_max));
870
a54e2c05 871 eassert (0 < item_size && 0 < nitems_incr_min && 0 <= n && -1 <= nitems_max);
0065d054
PE
872 if (! pa)
873 *nitems = 0;
874 if (nitems_incr_max < incr)
875 memory_full (SIZE_MAX);
876 n += incr;
877 pa = xrealloc (pa, n * item_size);
878 *nitems = n;
879 return pa;
880}
881
882
dca7c6a8
GM
883/* Like strdup, but uses xmalloc. */
884
885char *
971de7fb 886xstrdup (const char *s)
dca7c6a8 887{
675d5130 888 size_t len = strlen (s) + 1;
23f86fce 889 char *p = xmalloc (len);
72af86bd 890 memcpy (p, s, len);
dca7c6a8
GM
891 return p;
892}
893
894
f61bef8b
KS
895/* Unwind for SAFE_ALLOCA */
896
897Lisp_Object
971de7fb 898safe_alloca_unwind (Lisp_Object arg)
f61bef8b 899{
b766f870
KS
900 register struct Lisp_Save_Value *p = XSAVE_VALUE (arg);
901
902 p->dogc = 0;
903 xfree (p->pointer);
904 p->pointer = 0;
7b7990cc 905 free_misc (arg);
f61bef8b
KS
906 return Qnil;
907}
908
909
34400008
GM
910/* Like malloc but used for allocating Lisp data. NBYTES is the
911 number of bytes to allocate, TYPE describes the intended use of the
91af3942 912 allocated memory block (for strings, for conses, ...). */
34400008 913
bfe3e0a2
PE
914#if ! USE_LSB_TAG
915void *lisp_malloc_loser EXTERNALLY_VISIBLE;
212f33f1 916#endif
918a23a7 917
261cb4bb 918static void *
971de7fb 919lisp_malloc (size_t nbytes, enum mem_type type)
c8099634 920{
34400008 921 register void *val;
c8099634 922
dafc79fa 923 MALLOC_BLOCK_INPUT;
877935b1
GM
924
925#ifdef GC_MALLOC_CHECK
926 allocated_mem_type = type;
927#endif
177c0ea7 928
38182d90 929 val = malloc (nbytes);
c8099634 930
bfe3e0a2 931#if ! USE_LSB_TAG
918a23a7
RS
932 /* If the memory just allocated cannot be addressed thru a Lisp
933 object's pointer, and it needs to be,
934 that's equivalent to running out of memory. */
935 if (val && type != MEM_TYPE_NON_LISP)
936 {
937 Lisp_Object tem;
938 XSETCONS (tem, (char *) val + nbytes - 1);
939 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
940 {
941 lisp_malloc_loser = val;
942 free (val);
943 val = 0;
944 }
945 }
6b61353c 946#endif
918a23a7 947
877935b1 948#if GC_MARK_STACK && !defined GC_MALLOC_CHECK
dca7c6a8 949 if (val && type != MEM_TYPE_NON_LISP)
34400008
GM
950 mem_insert (val, (char *) val + nbytes, type);
951#endif
177c0ea7 952
dafc79fa 953 MALLOC_UNBLOCK_INPUT;
dca7c6a8 954 if (!val && nbytes)
531b0165 955 memory_full (nbytes);
c8099634
RS
956 return val;
957}
958
34400008
GM
959/* Free BLOCK. This must be called to free memory allocated with a
960 call to lisp_malloc. */
961
bf952fb6 962static void
261cb4bb 963lisp_free (void *block)
c8099634 964{
dafc79fa 965 MALLOC_BLOCK_INPUT;
c8099634 966 free (block);
877935b1 967#if GC_MARK_STACK && !defined GC_MALLOC_CHECK
34400008
GM
968 mem_delete (mem_find (block));
969#endif
dafc79fa 970 MALLOC_UNBLOCK_INPUT;
c8099634 971}
34400008 972
453b951e
SM
973/***** Allocation of aligned blocks of memory to store Lisp data. *****/
974
975/* The entry point is lisp_align_malloc which returns blocks of at most
976 BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
ab6780cd 977
b4181b01
KS
978#if defined (HAVE_POSIX_MEMALIGN) && defined (SYSTEM_MALLOC)
979#define USE_POSIX_MEMALIGN 1
980#endif
ab6780cd
SM
981
982/* BLOCK_ALIGN has to be a power of 2. */
983#define BLOCK_ALIGN (1 << 10)
ab6780cd
SM
984
985/* Padding to leave at the end of a malloc'd block. This is to give
986 malloc a chance to minimize the amount of memory wasted to alignment.
987 It should be tuned to the particular malloc library used.
19bcad1f
SM
988 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
989 posix_memalign on the other hand would ideally prefer a value of 4
990 because otherwise, there's 1020 bytes wasted between each ablocks.
f501ccb4
SM
991 In Emacs, testing shows that those 1020 can most of the time be
992 efficiently used by malloc to place other objects, so a value of 0 can
993 still preferable unless you have a lot of aligned blocks and virtually
994 nothing else. */
19bcad1f
SM
995#define BLOCK_PADDING 0
996#define BLOCK_BYTES \
0b432f21 997 (BLOCK_ALIGN - sizeof (struct ablocks *) - BLOCK_PADDING)
19bcad1f
SM
998
999/* Internal data structures and constants. */
1000
ab6780cd
SM
1001#define ABLOCKS_SIZE 16
1002
1003/* An aligned block of memory. */
1004struct ablock
1005{
1006 union
1007 {
1008 char payload[BLOCK_BYTES];
1009 struct ablock *next_free;
1010 } x;
1011 /* `abase' is the aligned base of the ablocks. */
1012 /* It is overloaded to hold the virtual `busy' field that counts
1013 the number of used ablock in the parent ablocks.
1014 The first ablock has the `busy' field, the others have the `abase'
1015 field. To tell the difference, we assume that pointers will have
1016 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
1017 is used to tell whether the real base of the parent ablocks is `abase'
1018 (if not, the word before the first ablock holds a pointer to the
1019 real base). */
1020 struct ablocks *abase;
1021 /* The padding of all but the last ablock is unused. The padding of
1022 the last ablock in an ablocks is not allocated. */
19bcad1f
SM
1023#if BLOCK_PADDING
1024 char padding[BLOCK_PADDING];
ebb8d410 1025#endif
ab6780cd
SM
1026};
1027
1028/* A bunch of consecutive aligned blocks. */
1029struct ablocks
1030{
1031 struct ablock blocks[ABLOCKS_SIZE];
1032};
1033
4b5afbb0 1034/* Size of the block requested from malloc or posix_memalign. */
19bcad1f 1035#define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
ab6780cd
SM
1036
1037#define ABLOCK_ABASE(block) \
d01a7826 1038 (((uintptr_t) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
ab6780cd
SM
1039 ? (struct ablocks *)(block) \
1040 : (block)->abase)
1041
1042/* Virtual `busy' field. */
1043#define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
1044
1045/* Pointer to the (not necessarily aligned) malloc block. */
349a4500 1046#ifdef USE_POSIX_MEMALIGN
19bcad1f
SM
1047#define ABLOCKS_BASE(abase) (abase)
1048#else
ab6780cd 1049#define ABLOCKS_BASE(abase) \
d01a7826 1050 (1 & (intptr_t) ABLOCKS_BUSY (abase) ? abase : ((void**)abase)[-1])
19bcad1f 1051#endif
ab6780cd
SM
1052
1053/* The list of free ablock. */
1054static struct ablock *free_ablock;
1055
1056/* Allocate an aligned block of nbytes.
1057 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
1058 smaller or equal to BLOCK_BYTES. */
261cb4bb 1059static void *
971de7fb 1060lisp_align_malloc (size_t nbytes, enum mem_type type)
ab6780cd
SM
1061{
1062 void *base, *val;
1063 struct ablocks *abase;
1064
1065 eassert (nbytes <= BLOCK_BYTES);
1066
dafc79fa 1067 MALLOC_BLOCK_INPUT;
ab6780cd
SM
1068
1069#ifdef GC_MALLOC_CHECK
1070 allocated_mem_type = type;
1071#endif
1072
1073 if (!free_ablock)
1074 {
005ca5c7 1075 int i;
d01a7826 1076 intptr_t aligned; /* int gets warning casting to 64-bit pointer. */
ab6780cd
SM
1077
1078#ifdef DOUG_LEA_MALLOC
1079 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1080 because mapped region contents are not preserved in
1081 a dumped Emacs. */
1082 mallopt (M_MMAP_MAX, 0);
1083#endif
1084
349a4500 1085#ifdef USE_POSIX_MEMALIGN
19bcad1f
SM
1086 {
1087 int err = posix_memalign (&base, BLOCK_ALIGN, ABLOCKS_BYTES);
ab349c19
RS
1088 if (err)
1089 base = NULL;
1090 abase = base;
19bcad1f
SM
1091 }
1092#else
ab6780cd
SM
1093 base = malloc (ABLOCKS_BYTES);
1094 abase = ALIGN (base, BLOCK_ALIGN);
ab349c19
RS
1095#endif
1096
6b61353c
KH
1097 if (base == 0)
1098 {
dafc79fa 1099 MALLOC_UNBLOCK_INPUT;
531b0165 1100 memory_full (ABLOCKS_BYTES);
6b61353c 1101 }
ab6780cd
SM
1102
1103 aligned = (base == abase);
1104 if (!aligned)
1105 ((void**)abase)[-1] = base;
1106
1107#ifdef DOUG_LEA_MALLOC
1108 /* Back to a reasonable maximum of mmap'ed areas. */
1109 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1110#endif
1111
bfe3e0a2 1112#if ! USE_LSB_TAG
8f924df7
KH
1113 /* If the memory just allocated cannot be addressed thru a Lisp
1114 object's pointer, and it needs to be, that's equivalent to
1115 running out of memory. */
1116 if (type != MEM_TYPE_NON_LISP)
1117 {
1118 Lisp_Object tem;
1119 char *end = (char *) base + ABLOCKS_BYTES - 1;
1120 XSETCONS (tem, end);
1121 if ((char *) XCONS (tem) != end)
1122 {
1123 lisp_malloc_loser = base;
1124 free (base);
dafc79fa 1125 MALLOC_UNBLOCK_INPUT;
531b0165 1126 memory_full (SIZE_MAX);
8f924df7
KH
1127 }
1128 }
6b61353c 1129#endif
8f924df7 1130
ab6780cd 1131 /* Initialize the blocks and put them on the free list.
453b951e 1132 If `base' was not properly aligned, we can't use the last block. */
ab6780cd
SM
1133 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
1134 {
1135 abase->blocks[i].abase = abase;
1136 abase->blocks[i].x.next_free = free_ablock;
1137 free_ablock = &abase->blocks[i];
1138 }
8ac068ac 1139 ABLOCKS_BUSY (abase) = (struct ablocks *) aligned;
ab6780cd 1140
d01a7826 1141 eassert (0 == ((uintptr_t) abase) % BLOCK_ALIGN);
ab6780cd
SM
1142 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
1143 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
1144 eassert (ABLOCKS_BASE (abase) == base);
d01a7826 1145 eassert (aligned == (intptr_t) ABLOCKS_BUSY (abase));
ab6780cd
SM
1146 }
1147
1148 abase = ABLOCK_ABASE (free_ablock);
8ac068ac 1149 ABLOCKS_BUSY (abase) =
d01a7826 1150 (struct ablocks *) (2 + (intptr_t) ABLOCKS_BUSY (abase));
ab6780cd
SM
1151 val = free_ablock;
1152 free_ablock = free_ablock->x.next_free;
1153
ab6780cd 1154#if GC_MARK_STACK && !defined GC_MALLOC_CHECK
3687c2ef 1155 if (type != MEM_TYPE_NON_LISP)
ab6780cd
SM
1156 mem_insert (val, (char *) val + nbytes, type);
1157#endif
1158
dafc79fa 1159 MALLOC_UNBLOCK_INPUT;
ab6780cd 1160
d01a7826 1161 eassert (0 == ((uintptr_t) val) % BLOCK_ALIGN);
ab6780cd
SM
1162 return val;
1163}
1164
1165static void
261cb4bb 1166lisp_align_free (void *block)
ab6780cd
SM
1167{
1168 struct ablock *ablock = block;
1169 struct ablocks *abase = ABLOCK_ABASE (ablock);
1170
dafc79fa 1171 MALLOC_BLOCK_INPUT;
ab6780cd
SM
1172#if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1173 mem_delete (mem_find (block));
1174#endif
1175 /* Put on free list. */
1176 ablock->x.next_free = free_ablock;
1177 free_ablock = ablock;
1178 /* Update busy count. */
453b951e
SM
1179 ABLOCKS_BUSY (abase)
1180 = (struct ablocks *) (-2 + (intptr_t) ABLOCKS_BUSY (abase));
d2db1c32 1181
d01a7826 1182 if (2 > (intptr_t) ABLOCKS_BUSY (abase))
ab6780cd 1183 { /* All the blocks are free. */
d01a7826 1184 int i = 0, aligned = (intptr_t) ABLOCKS_BUSY (abase);
ab6780cd
SM
1185 struct ablock **tem = &free_ablock;
1186 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
1187
1188 while (*tem)
1189 {
1190 if (*tem >= (struct ablock *) abase && *tem < atop)
1191 {
1192 i++;
1193 *tem = (*tem)->x.next_free;
1194 }
1195 else
1196 tem = &(*tem)->x.next_free;
1197 }
1198 eassert ((aligned & 1) == aligned);
1199 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
349a4500 1200#ifdef USE_POSIX_MEMALIGN
d01a7826 1201 eassert ((uintptr_t) ABLOCKS_BASE (abase) % BLOCK_ALIGN == 0);
cfb2f32e 1202#endif
ab6780cd
SM
1203 free (ABLOCKS_BASE (abase));
1204 }
dafc79fa 1205 MALLOC_UNBLOCK_INPUT;
ab6780cd 1206}
3ef06d12 1207
9ac0d9e0 1208\f
026cdede
SM
1209#ifndef SYSTEM_MALLOC
1210
9ac0d9e0
JB
1211/* Arranging to disable input signals while we're in malloc.
1212
1213 This only works with GNU malloc. To help out systems which can't
1214 use GNU malloc, all the calls to malloc, realloc, and free
1215 elsewhere in the code should be inside a BLOCK_INPUT/UNBLOCK_INPUT
026cdede 1216 pair; unfortunately, we have no idea what C library functions
9ac0d9e0 1217 might call malloc, so we can't really protect them unless you're
2c5bd608
DL
1218 using GNU malloc. Fortunately, most of the major operating systems
1219 can use GNU malloc. */
9ac0d9e0 1220
026cdede 1221#ifndef SYNC_INPUT
dafc79fa
SM
1222/* When using SYNC_INPUT, we don't call malloc from a signal handler, so
1223 there's no need to block input around malloc. */
026cdede 1224
b3303f74 1225#ifndef DOUG_LEA_MALLOC
f57e2426
J
1226extern void * (*__malloc_hook) (size_t, const void *);
1227extern void * (*__realloc_hook) (void *, size_t, const void *);
1228extern void (*__free_hook) (void *, const void *);
b3303f74
DL
1229/* Else declared in malloc.h, perhaps with an extra arg. */
1230#endif /* DOUG_LEA_MALLOC */
f57e2426
J
1231static void * (*old_malloc_hook) (size_t, const void *);
1232static void * (*old_realloc_hook) (void *, size_t, const void*);
1233static void (*old_free_hook) (void*, const void*);
9ac0d9e0 1234
4e75f29d
PE
1235#ifdef DOUG_LEA_MALLOC
1236# define BYTES_USED (mallinfo ().uordblks)
1237#else
1238# define BYTES_USED _bytes_used
1239#endif
1240
b62a57be
PE
1241#ifdef GC_MALLOC_CHECK
1242static int dont_register_blocks;
1243#endif
1244
5e927815 1245static size_t bytes_used_when_reconsidered;
ef1b0ba7 1246
4e75f29d
PE
1247/* Value of _bytes_used, when spare_memory was freed. */
1248
5e927815 1249static size_t bytes_used_when_full;
4e75f29d 1250
276cbe5a
RS
1251/* This function is used as the hook for free to call. */
1252
9ac0d9e0 1253static void
7c3320d8 1254emacs_blocked_free (void *ptr, const void *ptr2)
9ac0d9e0 1255{
aa477689 1256 BLOCK_INPUT_ALLOC;
877935b1
GM
1257
1258#ifdef GC_MALLOC_CHECK
a83fee2c
GM
1259 if (ptr)
1260 {
1261 struct mem_node *m;
177c0ea7 1262
a83fee2c
GM
1263 m = mem_find (ptr);
1264 if (m == MEM_NIL || m->start != ptr)
1265 {
1266 fprintf (stderr,
1267 "Freeing `%p' which wasn't allocated with malloc\n", ptr);
1268 abort ();
1269 }
1270 else
1271 {
1272 /* fprintf (stderr, "free %p...%p (%p)\n", m->start, m->end, ptr); */
1273 mem_delete (m);
1274 }
1275 }
877935b1 1276#endif /* GC_MALLOC_CHECK */
177c0ea7 1277
9ac0d9e0
JB
1278 __free_hook = old_free_hook;
1279 free (ptr);
177c0ea7 1280
276cbe5a
RS
1281 /* If we released our reserve (due to running out of memory),
1282 and we have a fair amount free once again,
1283 try to set aside another reserve in case we run out once more. */
24d8a105 1284 if (! NILP (Vmemory_full)
276cbe5a
RS
1285 /* Verify there is enough space that even with the malloc
1286 hysteresis this call won't run out again.
1287 The code here is correct as long as SPARE_MEMORY
1288 is substantially larger than the block size malloc uses. */
1289 && (bytes_used_when_full
4d74a5fc 1290 > ((bytes_used_when_reconsidered = BYTES_USED)
bccfb310 1291 + max (malloc_hysteresis, 4) * SPARE_MEMORY)))
24d8a105 1292 refill_memory_reserve ();
276cbe5a 1293
b0846f52 1294 __free_hook = emacs_blocked_free;
aa477689 1295 UNBLOCK_INPUT_ALLOC;
9ac0d9e0
JB
1296}
1297
34400008 1298
276cbe5a
RS
1299/* This function is the malloc hook that Emacs uses. */
1300
9ac0d9e0 1301static void *
7c3320d8 1302emacs_blocked_malloc (size_t size, const void *ptr)
9ac0d9e0
JB
1303{
1304 void *value;
1305
aa477689 1306 BLOCK_INPUT_ALLOC;
9ac0d9e0 1307 __malloc_hook = old_malloc_hook;
1177ecf6 1308#ifdef DOUG_LEA_MALLOC
5665a02f
KL
1309 /* Segfaults on my system. --lorentey */
1310 /* mallopt (M_TOP_PAD, malloc_hysteresis * 4096); */
1177ecf6 1311#else
d1658221 1312 __malloc_extra_blocks = malloc_hysteresis;
1177ecf6 1313#endif
877935b1 1314
38182d90 1315 value = malloc (size);
877935b1
GM
1316
1317#ifdef GC_MALLOC_CHECK
1318 {
1319 struct mem_node *m = mem_find (value);
1320 if (m != MEM_NIL)
1321 {
1322 fprintf (stderr, "Malloc returned %p which is already in use\n",
1323 value);
da05bc4c 1324 fprintf (stderr, "Region in use is %p...%p, %td bytes, type %d\n",
877935b1
GM
1325 m->start, m->end, (char *) m->end - (char *) m->start,
1326 m->type);
1327 abort ();
1328 }
1329
1330 if (!dont_register_blocks)
1331 {
1332 mem_insert (value, (char *) value + max (1, size), allocated_mem_type);
1333 allocated_mem_type = MEM_TYPE_NON_LISP;
1334 }
1335 }
1336#endif /* GC_MALLOC_CHECK */
177c0ea7 1337
b0846f52 1338 __malloc_hook = emacs_blocked_malloc;
aa477689 1339 UNBLOCK_INPUT_ALLOC;
9ac0d9e0 1340
877935b1 1341 /* fprintf (stderr, "%p malloc\n", value); */
9ac0d9e0
JB
1342 return value;
1343}
1344
34400008
GM
1345
1346/* This function is the realloc hook that Emacs uses. */
1347
9ac0d9e0 1348static void *
7c3320d8 1349emacs_blocked_realloc (void *ptr, size_t size, const void *ptr2)
9ac0d9e0
JB
1350{
1351 void *value;
1352
aa477689 1353 BLOCK_INPUT_ALLOC;
9ac0d9e0 1354 __realloc_hook = old_realloc_hook;
877935b1
GM
1355
1356#ifdef GC_MALLOC_CHECK
1357 if (ptr)
1358 {
1359 struct mem_node *m = mem_find (ptr);
1360 if (m == MEM_NIL || m->start != ptr)
1361 {
1362 fprintf (stderr,
1363 "Realloc of %p which wasn't allocated with malloc\n",
1364 ptr);
1365 abort ();
1366 }
1367
1368 mem_delete (m);
1369 }
177c0ea7 1370
877935b1 1371 /* fprintf (stderr, "%p -> realloc\n", ptr); */
177c0ea7 1372
877935b1
GM
1373 /* Prevent malloc from registering blocks. */
1374 dont_register_blocks = 1;
1375#endif /* GC_MALLOC_CHECK */
1376
38182d90 1377 value = realloc (ptr, size);
877935b1
GM
1378
1379#ifdef GC_MALLOC_CHECK
1380 dont_register_blocks = 0;
1381
1382 {
1383 struct mem_node *m = mem_find (value);
1384 if (m != MEM_NIL)
1385 {
1386 fprintf (stderr, "Realloc returns memory that is already in use\n");
1387 abort ();
1388 }
1389
1390 /* Can't handle zero size regions in the red-black tree. */
1391 mem_insert (value, (char *) value + max (size, 1), MEM_TYPE_NON_LISP);
1392 }
177c0ea7 1393
877935b1
GM
1394 /* fprintf (stderr, "%p <- realloc\n", value); */
1395#endif /* GC_MALLOC_CHECK */
177c0ea7 1396
b0846f52 1397 __realloc_hook = emacs_blocked_realloc;
aa477689 1398 UNBLOCK_INPUT_ALLOC;
9ac0d9e0
JB
1399
1400 return value;
1401}
1402
34400008 1403
ae9e757a 1404#ifdef HAVE_PTHREAD
aa477689
JD
1405/* Called from Fdump_emacs so that when the dumped Emacs starts, it has a
1406 normal malloc. Some thread implementations need this as they call
1407 malloc before main. The pthread_self call in BLOCK_INPUT_ALLOC then
1408 calls malloc because it is the first call, and we have an endless loop. */
1409
1410void
268c2c36 1411reset_malloc_hooks (void)
aa477689 1412{
4d580af2
AS
1413 __free_hook = old_free_hook;
1414 __malloc_hook = old_malloc_hook;
1415 __realloc_hook = old_realloc_hook;
aa477689 1416}
ae9e757a 1417#endif /* HAVE_PTHREAD */
aa477689
JD
1418
1419
34400008
GM
1420/* Called from main to set up malloc to use our hooks. */
1421
9ac0d9e0 1422void
7c3320d8 1423uninterrupt_malloc (void)
9ac0d9e0 1424{
ae9e757a 1425#ifdef HAVE_PTHREAD
a1b41389 1426#ifdef DOUG_LEA_MALLOC
aa477689
JD
1427 pthread_mutexattr_t attr;
1428
c7015153 1429 /* GLIBC has a faster way to do this, but let's keep it portable.
aa477689
JD
1430 This is according to the Single UNIX Specification. */
1431 pthread_mutexattr_init (&attr);
1432 pthread_mutexattr_settype (&attr, PTHREAD_MUTEX_RECURSIVE);
1433 pthread_mutex_init (&alloc_mutex, &attr);
a1b41389 1434#else /* !DOUG_LEA_MALLOC */
ce5b453a 1435 /* Some systems such as Solaris 2.6 don't have a recursive mutex,
a1b41389
YM
1436 and the bundled gmalloc.c doesn't require it. */
1437 pthread_mutex_init (&alloc_mutex, NULL);
1438#endif /* !DOUG_LEA_MALLOC */
ae9e757a 1439#endif /* HAVE_PTHREAD */
aa477689 1440
c8099634
RS
1441 if (__free_hook != emacs_blocked_free)
1442 old_free_hook = __free_hook;
b0846f52 1443 __free_hook = emacs_blocked_free;
9ac0d9e0 1444
c8099634
RS
1445 if (__malloc_hook != emacs_blocked_malloc)
1446 old_malloc_hook = __malloc_hook;
b0846f52 1447 __malloc_hook = emacs_blocked_malloc;
9ac0d9e0 1448
c8099634
RS
1449 if (__realloc_hook != emacs_blocked_realloc)
1450 old_realloc_hook = __realloc_hook;
b0846f52 1451 __realloc_hook = emacs_blocked_realloc;
9ac0d9e0 1452}
2e471eb5 1453
026cdede 1454#endif /* not SYNC_INPUT */
2e471eb5
GM
1455#endif /* not SYSTEM_MALLOC */
1456
1457
7146af97 1458\f
2e471eb5
GM
1459/***********************************************************************
1460 Interval Allocation
1461 ***********************************************************************/
1a4f1e2c 1462
34400008
GM
1463/* Number of intervals allocated in an interval_block structure.
1464 The 1020 is 1024 minus malloc overhead. */
1465
d5e35230
JA
1466#define INTERVAL_BLOCK_SIZE \
1467 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1468
34400008
GM
1469/* Intervals are allocated in chunks in form of an interval_block
1470 structure. */
1471
d5e35230 1472struct interval_block
2e471eb5 1473{
6b61353c 1474 /* Place `intervals' first, to preserve alignment. */
2e471eb5 1475 struct interval intervals[INTERVAL_BLOCK_SIZE];
6b61353c 1476 struct interval_block *next;
2e471eb5 1477};
d5e35230 1478
34400008
GM
1479/* Current interval block. Its `next' pointer points to older
1480 blocks. */
1481
d3d47262 1482static struct interval_block *interval_block;
34400008
GM
1483
1484/* Index in interval_block above of the next unused interval
1485 structure. */
1486
fff62aa9 1487static int interval_block_index = INTERVAL_BLOCK_SIZE;
34400008
GM
1488
1489/* Number of free and live intervals. */
1490
c0c5c8ae 1491static EMACS_INT total_free_intervals, total_intervals;
d5e35230 1492
34400008
GM
1493/* List of free intervals. */
1494
244ed907 1495static INTERVAL interval_free_list;
d5e35230 1496
34400008 1497/* Return a new interval. */
d5e35230
JA
1498
1499INTERVAL
971de7fb 1500make_interval (void)
d5e35230
JA
1501{
1502 INTERVAL val;
1503
e2984df0
CY
1504 /* eassert (!handling_signal); */
1505
dafc79fa 1506 MALLOC_BLOCK_INPUT;
cfb2f32e 1507
d5e35230
JA
1508 if (interval_free_list)
1509 {
1510 val = interval_free_list;
439d5cb4 1511 interval_free_list = INTERVAL_PARENT (interval_free_list);
d5e35230
JA
1512 }
1513 else
1514 {
1515 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1516 {
38182d90
PE
1517 struct interval_block *newi
1518 = lisp_malloc (sizeof *newi, MEM_TYPE_NON_LISP);
d5e35230 1519
d5e35230
JA
1520 newi->next = interval_block;
1521 interval_block = newi;
1522 interval_block_index = 0;
3900d5de 1523 total_free_intervals += INTERVAL_BLOCK_SIZE;
d5e35230
JA
1524 }
1525 val = &interval_block->intervals[interval_block_index++];
1526 }
e2984df0 1527
dafc79fa 1528 MALLOC_UNBLOCK_INPUT;
e2984df0 1529
d5e35230 1530 consing_since_gc += sizeof (struct interval);
310ea200 1531 intervals_consed++;
3900d5de 1532 total_free_intervals--;
d5e35230 1533 RESET_INTERVAL (val);
2336fe58 1534 val->gcmarkbit = 0;
d5e35230
JA
1535 return val;
1536}
1537
34400008 1538
ee28be33 1539/* Mark Lisp objects in interval I. */
d5e35230
JA
1540
1541static void
971de7fb 1542mark_interval (register INTERVAL i, Lisp_Object dummy)
d5e35230 1543{
cce7fefc
DA
1544 /* Intervals should never be shared. So, if extra internal checking is
1545 enabled, GC aborts if it seems to have visited an interval twice. */
1546 eassert (!i->gcmarkbit);
2336fe58 1547 i->gcmarkbit = 1;
49723c04 1548 mark_object (i->plist);
d5e35230
JA
1549}
1550
34400008
GM
1551
1552/* Mark the interval tree rooted in TREE. Don't call this directly;
1553 use the macro MARK_INTERVAL_TREE instead. */
1554
d5e35230 1555static void
971de7fb 1556mark_interval_tree (register INTERVAL tree)
d5e35230 1557{
e8720644
JB
1558 /* No need to test if this tree has been marked already; this
1559 function is always called through the MARK_INTERVAL_TREE macro,
1560 which takes care of that. */
1561
1e934989 1562 traverse_intervals_noorder (tree, mark_interval, Qnil);
d5e35230
JA
1563}
1564
34400008
GM
1565
1566/* Mark the interval tree rooted in I. */
1567
e8720644
JB
1568#define MARK_INTERVAL_TREE(i) \
1569 do { \
2336fe58 1570 if (!NULL_INTERVAL_P (i) && !i->gcmarkbit) \
e8720644
JB
1571 mark_interval_tree (i); \
1572 } while (0)
d5e35230 1573
34400008 1574
2e471eb5
GM
1575#define UNMARK_BALANCE_INTERVALS(i) \
1576 do { \
1577 if (! NULL_INTERVAL_P (i)) \
2336fe58 1578 (i) = balance_intervals (i); \
2e471eb5 1579 } while (0)
d5e35230 1580\f
2e471eb5
GM
1581/***********************************************************************
1582 String Allocation
1583 ***********************************************************************/
1a4f1e2c 1584
2e471eb5
GM
1585/* Lisp_Strings are allocated in string_block structures. When a new
1586 string_block is allocated, all the Lisp_Strings it contains are
e0fead5d 1587 added to a free-list string_free_list. When a new Lisp_String is
2e471eb5
GM
1588 needed, it is taken from that list. During the sweep phase of GC,
1589 string_blocks that are entirely free are freed, except two which
1590 we keep.
7146af97 1591
2e471eb5
GM
1592 String data is allocated from sblock structures. Strings larger
1593 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1594 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
7146af97 1595
2e471eb5
GM
1596 Sblocks consist internally of sdata structures, one for each
1597 Lisp_String. The sdata structure points to the Lisp_String it
1598 belongs to. The Lisp_String points back to the `u.data' member of
1599 its sdata structure.
7146af97 1600
2e471eb5
GM
1601 When a Lisp_String is freed during GC, it is put back on
1602 string_free_list, and its `data' member and its sdata's `string'
1603 pointer is set to null. The size of the string is recorded in the
1604 `u.nbytes' member of the sdata. So, sdata structures that are no
1605 longer used, can be easily recognized, and it's easy to compact the
1606 sblocks of small strings which we do in compact_small_strings. */
7146af97 1607
2e471eb5
GM
1608/* Size in bytes of an sblock structure used for small strings. This
1609 is 8192 minus malloc overhead. */
7146af97 1610
2e471eb5 1611#define SBLOCK_SIZE 8188
c8099634 1612
2e471eb5
GM
1613/* Strings larger than this are considered large strings. String data
1614 for large strings is allocated from individual sblocks. */
7146af97 1615
2e471eb5
GM
1616#define LARGE_STRING_BYTES 1024
1617
1618/* Structure describing string memory sub-allocated from an sblock.
1619 This is where the contents of Lisp strings are stored. */
1620
1621struct sdata
7146af97 1622{
2e471eb5
GM
1623 /* Back-pointer to the string this sdata belongs to. If null, this
1624 structure is free, and the NBYTES member of the union below
34400008 1625 contains the string's byte size (the same value that STRING_BYTES
2e471eb5
GM
1626 would return if STRING were non-null). If non-null, STRING_BYTES
1627 (STRING) is the size of the data, and DATA contains the string's
1628 contents. */
1629 struct Lisp_String *string;
7146af97 1630
31d929e5 1631#ifdef GC_CHECK_STRING_BYTES
177c0ea7 1632
d311d28c 1633 ptrdiff_t nbytes;
31d929e5 1634 unsigned char data[1];
177c0ea7 1635
31d929e5
GM
1636#define SDATA_NBYTES(S) (S)->nbytes
1637#define SDATA_DATA(S) (S)->data
36372bf9 1638#define SDATA_SELECTOR(member) member
177c0ea7 1639
31d929e5
GM
1640#else /* not GC_CHECK_STRING_BYTES */
1641
2e471eb5
GM
1642 union
1643 {
83998b7a 1644 /* When STRING is non-null. */
2e471eb5
GM
1645 unsigned char data[1];
1646
1647 /* When STRING is null. */
d311d28c 1648 ptrdiff_t nbytes;
2e471eb5 1649 } u;
177c0ea7 1650
31d929e5
GM
1651#define SDATA_NBYTES(S) (S)->u.nbytes
1652#define SDATA_DATA(S) (S)->u.data
36372bf9 1653#define SDATA_SELECTOR(member) u.member
31d929e5
GM
1654
1655#endif /* not GC_CHECK_STRING_BYTES */
36372bf9
PE
1656
1657#define SDATA_DATA_OFFSET offsetof (struct sdata, SDATA_SELECTOR (data))
2e471eb5
GM
1658};
1659
31d929e5 1660
2e471eb5
GM
1661/* Structure describing a block of memory which is sub-allocated to
1662 obtain string data memory for strings. Blocks for small strings
1663 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1664 as large as needed. */
1665
1666struct sblock
7146af97 1667{
2e471eb5
GM
1668 /* Next in list. */
1669 struct sblock *next;
7146af97 1670
2e471eb5
GM
1671 /* Pointer to the next free sdata block. This points past the end
1672 of the sblock if there isn't any space left in this block. */
1673 struct sdata *next_free;
1674
1675 /* Start of data. */
1676 struct sdata first_data;
1677};
1678
1679/* Number of Lisp strings in a string_block structure. The 1020 is
1680 1024 minus malloc overhead. */
1681
19bcad1f 1682#define STRING_BLOCK_SIZE \
2e471eb5
GM
1683 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1684
1685/* Structure describing a block from which Lisp_String structures
1686 are allocated. */
1687
1688struct string_block
7146af97 1689{
6b61353c 1690 /* Place `strings' first, to preserve alignment. */
19bcad1f 1691 struct Lisp_String strings[STRING_BLOCK_SIZE];
6b61353c 1692 struct string_block *next;
2e471eb5 1693};
7146af97 1694
2e471eb5
GM
1695/* Head and tail of the list of sblock structures holding Lisp string
1696 data. We always allocate from current_sblock. The NEXT pointers
1697 in the sblock structures go from oldest_sblock to current_sblock. */
3c06d205 1698
2e471eb5 1699static struct sblock *oldest_sblock, *current_sblock;
7146af97 1700
2e471eb5 1701/* List of sblocks for large strings. */
7146af97 1702
2e471eb5 1703static struct sblock *large_sblocks;
7146af97 1704
5a25e253 1705/* List of string_block structures. */
7146af97 1706
2e471eb5 1707static struct string_block *string_blocks;
7146af97 1708
2e471eb5 1709/* Free-list of Lisp_Strings. */
7146af97 1710
2e471eb5 1711static struct Lisp_String *string_free_list;
7146af97 1712
2e471eb5 1713/* Number of live and free Lisp_Strings. */
c8099634 1714
c0c5c8ae 1715static EMACS_INT total_strings, total_free_strings;
7146af97 1716
2e471eb5
GM
1717/* Number of bytes used by live strings. */
1718
3ab6e069 1719static EMACS_INT total_string_bytes;
2e471eb5
GM
1720
1721/* Given a pointer to a Lisp_String S which is on the free-list
1722 string_free_list, return a pointer to its successor in the
1723 free-list. */
1724
1725#define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1726
1727/* Return a pointer to the sdata structure belonging to Lisp string S.
1728 S must be live, i.e. S->data must not be null. S->data is actually
1729 a pointer to the `u.data' member of its sdata structure; the
1730 structure starts at a constant offset in front of that. */
177c0ea7 1731
36372bf9 1732#define SDATA_OF_STRING(S) ((struct sdata *) ((S)->data - SDATA_DATA_OFFSET))
31d929e5 1733
212f33f1
KS
1734
1735#ifdef GC_CHECK_STRING_OVERRUN
bdbed949
KS
1736
1737/* We check for overrun in string data blocks by appending a small
1738 "cookie" after each allocated string data block, and check for the
8349069c 1739 presence of this cookie during GC. */
bdbed949
KS
1740
1741#define GC_STRING_OVERRUN_COOKIE_SIZE 4
bfd1c781
PE
1742static char const string_overrun_cookie[GC_STRING_OVERRUN_COOKIE_SIZE] =
1743 { '\xde', '\xad', '\xbe', '\xef' };
bdbed949 1744
212f33f1 1745#else
bdbed949 1746#define GC_STRING_OVERRUN_COOKIE_SIZE 0
212f33f1
KS
1747#endif
1748
2e471eb5
GM
1749/* Value is the size of an sdata structure large enough to hold NBYTES
1750 bytes of string data. The value returned includes a terminating
1751 NUL byte, the size of the sdata structure, and padding. */
1752
31d929e5
GM
1753#ifdef GC_CHECK_STRING_BYTES
1754
2e471eb5 1755#define SDATA_SIZE(NBYTES) \
36372bf9 1756 ((SDATA_DATA_OFFSET \
2e471eb5 1757 + (NBYTES) + 1 \
d311d28c
PE
1758 + sizeof (ptrdiff_t) - 1) \
1759 & ~(sizeof (ptrdiff_t) - 1))
2e471eb5 1760
31d929e5
GM
1761#else /* not GC_CHECK_STRING_BYTES */
1762
f2d3008d
PE
1763/* The 'max' reserves space for the nbytes union member even when NBYTES + 1 is
1764 less than the size of that member. The 'max' is not needed when
d311d28c 1765 SDATA_DATA_OFFSET is a multiple of sizeof (ptrdiff_t), because then the
f2d3008d
PE
1766 alignment code reserves enough space. */
1767
1768#define SDATA_SIZE(NBYTES) \
1769 ((SDATA_DATA_OFFSET \
d311d28c 1770 + (SDATA_DATA_OFFSET % sizeof (ptrdiff_t) == 0 \
f2d3008d 1771 ? NBYTES \
d311d28c 1772 : max (NBYTES, sizeof (ptrdiff_t) - 1)) \
f2d3008d 1773 + 1 \
d311d28c
PE
1774 + sizeof (ptrdiff_t) - 1) \
1775 & ~(sizeof (ptrdiff_t) - 1))
31d929e5
GM
1776
1777#endif /* not GC_CHECK_STRING_BYTES */
2e471eb5 1778
bdbed949
KS
1779/* Extra bytes to allocate for each string. */
1780
1781#define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1782
c9d624c6
PE
1783/* Exact bound on the number of bytes in a string, not counting the
1784 terminating null. A string cannot contain more bytes than
1785 STRING_BYTES_BOUND, nor can it be so long that the size_t
1786 arithmetic in allocate_string_data would overflow while it is
1787 calculating a value to be passed to malloc. */
1788#define STRING_BYTES_MAX \
1789 min (STRING_BYTES_BOUND, \
903fe15d
PE
1790 ((SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD \
1791 - GC_STRING_EXTRA \
c9d624c6
PE
1792 - offsetof (struct sblock, first_data) \
1793 - SDATA_DATA_OFFSET) \
1794 & ~(sizeof (EMACS_INT) - 1)))
1795
2e471eb5 1796/* Initialize string allocation. Called from init_alloc_once. */
d457598b 1797
d3d47262 1798static void
971de7fb 1799init_strings (void)
7146af97 1800{
4d774b0f
JB
1801 empty_unibyte_string = make_pure_string ("", 0, 0, 0);
1802 empty_multibyte_string = make_pure_string ("", 0, 0, 1);
7146af97
JB
1803}
1804
2e471eb5 1805
361b097f
GM
1806#ifdef GC_CHECK_STRING_BYTES
1807
361b097f
GM
1808static int check_string_bytes_count;
1809
676a7251
GM
1810#define CHECK_STRING_BYTES(S) STRING_BYTES (S)
1811
1812
1813/* Like GC_STRING_BYTES, but with debugging check. */
1814
d311d28c 1815ptrdiff_t
14162469 1816string_bytes (struct Lisp_String *s)
676a7251 1817{
d311d28c 1818 ptrdiff_t nbytes =
14162469
EZ
1819 (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1820
676a7251
GM
1821 if (!PURE_POINTER_P (s)
1822 && s->data
1823 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1824 abort ();
1825 return nbytes;
1826}
177c0ea7 1827
2c5bd608 1828/* Check validity of Lisp strings' string_bytes member in B. */
676a7251 1829
d3d47262 1830static void
d0f4e1f5 1831check_sblock (struct sblock *b)
361b097f 1832{
676a7251 1833 struct sdata *from, *end, *from_end;
177c0ea7 1834
676a7251 1835 end = b->next_free;
177c0ea7 1836
676a7251 1837 for (from = &b->first_data; from < end; from = from_end)
361b097f 1838 {
676a7251
GM
1839 /* Compute the next FROM here because copying below may
1840 overwrite data we need to compute it. */
d311d28c 1841 ptrdiff_t nbytes;
177c0ea7 1842
676a7251 1843 /* Check that the string size recorded in the string is the
ee28be33 1844 same as the one recorded in the sdata structure. */
676a7251
GM
1845 if (from->string)
1846 CHECK_STRING_BYTES (from->string);
177c0ea7 1847
676a7251
GM
1848 if (from->string)
1849 nbytes = GC_STRING_BYTES (from->string);
1850 else
1851 nbytes = SDATA_NBYTES (from);
177c0ea7 1852
676a7251 1853 nbytes = SDATA_SIZE (nbytes);
212f33f1 1854 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
676a7251
GM
1855 }
1856}
361b097f 1857
676a7251
GM
1858
1859/* Check validity of Lisp strings' string_bytes member. ALL_P
1860 non-zero means check all strings, otherwise check only most
1861 recently allocated strings. Used for hunting a bug. */
1862
d3d47262 1863static void
d0f4e1f5 1864check_string_bytes (int all_p)
676a7251
GM
1865{
1866 if (all_p)
1867 {
1868 struct sblock *b;
1869
1870 for (b = large_sblocks; b; b = b->next)
1871 {
1872 struct Lisp_String *s = b->first_data.string;
1873 if (s)
1874 CHECK_STRING_BYTES (s);
361b097f 1875 }
177c0ea7 1876
676a7251
GM
1877 for (b = oldest_sblock; b; b = b->next)
1878 check_sblock (b);
361b097f 1879 }
296094c3 1880 else if (current_sblock)
676a7251 1881 check_sblock (current_sblock);
361b097f
GM
1882}
1883
1884#endif /* GC_CHECK_STRING_BYTES */
1885
212f33f1
KS
1886#ifdef GC_CHECK_STRING_FREE_LIST
1887
bdbed949
KS
1888/* Walk through the string free list looking for bogus next pointers.
1889 This may catch buffer overrun from a previous string. */
1890
212f33f1 1891static void
d0f4e1f5 1892check_string_free_list (void)
212f33f1
KS
1893{
1894 struct Lisp_String *s;
1895
1896 /* Pop a Lisp_String off the free-list. */
1897 s = string_free_list;
1898 while (s != NULL)
1899 {
d01a7826 1900 if ((uintptr_t) s < 1024)
5e617bc2 1901 abort ();
212f33f1
KS
1902 s = NEXT_FREE_LISP_STRING (s);
1903 }
1904}
1905#else
1906#define check_string_free_list()
1907#endif
361b097f 1908
2e471eb5
GM
1909/* Return a new Lisp_String. */
1910
1911static struct Lisp_String *
971de7fb 1912allocate_string (void)
7146af97 1913{
2e471eb5 1914 struct Lisp_String *s;
7146af97 1915
e2984df0
CY
1916 /* eassert (!handling_signal); */
1917
dafc79fa 1918 MALLOC_BLOCK_INPUT;
cfb2f32e 1919
2e471eb5
GM
1920 /* If the free-list is empty, allocate a new string_block, and
1921 add all the Lisp_Strings in it to the free-list. */
1922 if (string_free_list == NULL)
7146af97 1923 {
38182d90 1924 struct string_block *b = lisp_malloc (sizeof *b, MEM_TYPE_STRING);
2e471eb5
GM
1925 int i;
1926
2e471eb5
GM
1927 b->next = string_blocks;
1928 string_blocks = b;
2e471eb5 1929
19bcad1f 1930 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
7146af97 1931 {
2e471eb5 1932 s = b->strings + i;
3fe6dd74
DA
1933 /* Every string on a free list should have NULL data pointer. */
1934 s->data = NULL;
2e471eb5
GM
1935 NEXT_FREE_LISP_STRING (s) = string_free_list;
1936 string_free_list = s;
7146af97 1937 }
2e471eb5 1938
19bcad1f 1939 total_free_strings += STRING_BLOCK_SIZE;
7146af97 1940 }
c0f51373 1941
bdbed949 1942 check_string_free_list ();
212f33f1 1943
2e471eb5
GM
1944 /* Pop a Lisp_String off the free-list. */
1945 s = string_free_list;
1946 string_free_list = NEXT_FREE_LISP_STRING (s);
c0f51373 1947
dafc79fa 1948 MALLOC_UNBLOCK_INPUT;
e2984df0 1949
2e471eb5
GM
1950 --total_free_strings;
1951 ++total_strings;
1952 ++strings_consed;
1953 consing_since_gc += sizeof *s;
c0f51373 1954
361b097f 1955#ifdef GC_CHECK_STRING_BYTES
e39a993c 1956 if (!noninteractive)
361b097f 1957 {
676a7251
GM
1958 if (++check_string_bytes_count == 200)
1959 {
1960 check_string_bytes_count = 0;
1961 check_string_bytes (1);
1962 }
1963 else
1964 check_string_bytes (0);
361b097f 1965 }
676a7251 1966#endif /* GC_CHECK_STRING_BYTES */
361b097f 1967
2e471eb5 1968 return s;
c0f51373 1969}
7146af97 1970
7146af97 1971
2e471eb5
GM
1972/* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1973 plus a NUL byte at the end. Allocate an sdata structure for S, and
1974 set S->data to its `u.data' member. Store a NUL byte at the end of
1975 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1976 S->data if it was initially non-null. */
7146af97 1977
2e471eb5 1978void
413d18e7
EZ
1979allocate_string_data (struct Lisp_String *s,
1980 EMACS_INT nchars, EMACS_INT nbytes)
7146af97 1981{
b7ffe040 1982 struct sdata *data, *old_data;
2e471eb5 1983 struct sblock *b;
b7ffe040 1984 ptrdiff_t needed, old_nbytes;
7146af97 1985
c9d624c6
PE
1986 if (STRING_BYTES_MAX < nbytes)
1987 string_overflow ();
1988
2e471eb5
GM
1989 /* Determine the number of bytes needed to store NBYTES bytes
1990 of string data. */
1991 needed = SDATA_SIZE (nbytes);
b7ffe040
DA
1992 if (s->data)
1993 {
1994 old_data = SDATA_OF_STRING (s);
1995 old_nbytes = GC_STRING_BYTES (s);
1996 }
1997 else
1998 old_data = NULL;
e2984df0 1999
dafc79fa 2000 MALLOC_BLOCK_INPUT;
7146af97 2001
2e471eb5
GM
2002 if (nbytes > LARGE_STRING_BYTES)
2003 {
36372bf9 2004 size_t size = offsetof (struct sblock, first_data) + needed;
2e471eb5
GM
2005
2006#ifdef DOUG_LEA_MALLOC
f8608968
GM
2007 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
2008 because mapped region contents are not preserved in
d36b182f
DL
2009 a dumped Emacs.
2010
2011 In case you think of allowing it in a dumped Emacs at the
2012 cost of not being able to re-dump, there's another reason:
2013 mmap'ed data typically have an address towards the top of the
2014 address space, which won't fit into an EMACS_INT (at least on
2015 32-bit systems with the current tagging scheme). --fx */
2e471eb5
GM
2016 mallopt (M_MMAP_MAX, 0);
2017#endif
2018
38182d90 2019 b = lisp_malloc (size + GC_STRING_EXTRA, MEM_TYPE_NON_LISP);
177c0ea7 2020
2e471eb5
GM
2021#ifdef DOUG_LEA_MALLOC
2022 /* Back to a reasonable maximum of mmap'ed areas. */
2023 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
2024#endif
177c0ea7 2025
2e471eb5
GM
2026 b->next_free = &b->first_data;
2027 b->first_data.string = NULL;
2028 b->next = large_sblocks;
2029 large_sblocks = b;
2030 }
2031 else if (current_sblock == NULL
2032 || (((char *) current_sblock + SBLOCK_SIZE
2033 - (char *) current_sblock->next_free)
212f33f1 2034 < (needed + GC_STRING_EXTRA)))
2e471eb5
GM
2035 {
2036 /* Not enough room in the current sblock. */
38182d90 2037 b = lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
2e471eb5
GM
2038 b->next_free = &b->first_data;
2039 b->first_data.string = NULL;
2040 b->next = NULL;
2041
2042 if (current_sblock)
2043 current_sblock->next = b;
2044 else
2045 oldest_sblock = b;
2046 current_sblock = b;
2047 }
2048 else
2049 b = current_sblock;
5c5fecb3 2050
2e471eb5 2051 data = b->next_free;
a0b08700
CY
2052 b->next_free = (struct sdata *) ((char *) data + needed + GC_STRING_EXTRA);
2053
dafc79fa 2054 MALLOC_UNBLOCK_INPUT;
e2984df0 2055
2e471eb5 2056 data->string = s;
31d929e5
GM
2057 s->data = SDATA_DATA (data);
2058#ifdef GC_CHECK_STRING_BYTES
2059 SDATA_NBYTES (data) = nbytes;
2060#endif
2e471eb5
GM
2061 s->size = nchars;
2062 s->size_byte = nbytes;
2063 s->data[nbytes] = '\0';
212f33f1 2064#ifdef GC_CHECK_STRING_OVERRUN
000098c1
PE
2065 memcpy ((char *) data + needed, string_overrun_cookie,
2066 GC_STRING_OVERRUN_COOKIE_SIZE);
212f33f1 2067#endif
b7ffe040
DA
2068
2069 /* Note that Faset may call to this function when S has already data
2070 assigned. In this case, mark data as free by setting it's string
2071 back-pointer to null, and record the size of the data in it. */
2072 if (old_data)
2073 {
2074 SDATA_NBYTES (old_data) = old_nbytes;
2075 old_data->string = NULL;
2076 }
2077
2e471eb5
GM
2078 consing_since_gc += needed;
2079}
2080
2081
2082/* Sweep and compact strings. */
2083
2084static void
971de7fb 2085sweep_strings (void)
2e471eb5
GM
2086{
2087 struct string_block *b, *next;
2088 struct string_block *live_blocks = NULL;
177c0ea7 2089
2e471eb5
GM
2090 string_free_list = NULL;
2091 total_strings = total_free_strings = 0;
3ab6e069 2092 total_string_bytes = 0;
2e471eb5
GM
2093
2094 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
2095 for (b = string_blocks; b; b = next)
2096 {
2097 int i, nfree = 0;
2098 struct Lisp_String *free_list_before = string_free_list;
2099
2100 next = b->next;
2101
19bcad1f 2102 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
2e471eb5
GM
2103 {
2104 struct Lisp_String *s = b->strings + i;
2105
2106 if (s->data)
2107 {
2108 /* String was not on free-list before. */
2109 if (STRING_MARKED_P (s))
2110 {
2111 /* String is live; unmark it and its intervals. */
2112 UNMARK_STRING (s);
177c0ea7 2113
2e471eb5
GM
2114 if (!NULL_INTERVAL_P (s->intervals))
2115 UNMARK_BALANCE_INTERVALS (s->intervals);
2116
2117 ++total_strings;
3ab6e069 2118 total_string_bytes += STRING_BYTES (s);
2e471eb5
GM
2119 }
2120 else
2121 {
2122 /* String is dead. Put it on the free-list. */
2123 struct sdata *data = SDATA_OF_STRING (s);
2124
2125 /* Save the size of S in its sdata so that we know
2126 how large that is. Reset the sdata's string
2127 back-pointer so that we know it's free. */
31d929e5
GM
2128#ifdef GC_CHECK_STRING_BYTES
2129 if (GC_STRING_BYTES (s) != SDATA_NBYTES (data))
2130 abort ();
2131#else
2e471eb5 2132 data->u.nbytes = GC_STRING_BYTES (s);
31d929e5 2133#endif
2e471eb5
GM
2134 data->string = NULL;
2135
2136 /* Reset the strings's `data' member so that we
2137 know it's free. */
2138 s->data = NULL;
2139
2140 /* Put the string on the free-list. */
2141 NEXT_FREE_LISP_STRING (s) = string_free_list;
2142 string_free_list = s;
2143 ++nfree;
2144 }
2145 }
2146 else
2147 {
2148 /* S was on the free-list before. Put it there again. */
2149 NEXT_FREE_LISP_STRING (s) = string_free_list;
2150 string_free_list = s;
2151 ++nfree;
2152 }
2153 }
2154
34400008 2155 /* Free blocks that contain free Lisp_Strings only, except
2e471eb5 2156 the first two of them. */
19bcad1f
SM
2157 if (nfree == STRING_BLOCK_SIZE
2158 && total_free_strings > STRING_BLOCK_SIZE)
2e471eb5
GM
2159 {
2160 lisp_free (b);
2e471eb5
GM
2161 string_free_list = free_list_before;
2162 }
2163 else
2164 {
2165 total_free_strings += nfree;
2166 b->next = live_blocks;
2167 live_blocks = b;
2168 }
2169 }
2170
bdbed949 2171 check_string_free_list ();
212f33f1 2172
2e471eb5
GM
2173 string_blocks = live_blocks;
2174 free_large_strings ();
2175 compact_small_strings ();
212f33f1 2176
bdbed949 2177 check_string_free_list ();
2e471eb5
GM
2178}
2179
2180
2181/* Free dead large strings. */
2182
2183static void
971de7fb 2184free_large_strings (void)
2e471eb5
GM
2185{
2186 struct sblock *b, *next;
2187 struct sblock *live_blocks = NULL;
177c0ea7 2188
2e471eb5
GM
2189 for (b = large_sblocks; b; b = next)
2190 {
2191 next = b->next;
2192
2193 if (b->first_data.string == NULL)
2194 lisp_free (b);
2195 else
2196 {
2197 b->next = live_blocks;
2198 live_blocks = b;
2199 }
2200 }
2201
2202 large_sblocks = live_blocks;
2203}
2204
2205
2206/* Compact data of small strings. Free sblocks that don't contain
2207 data of live strings after compaction. */
2208
2209static void
971de7fb 2210compact_small_strings (void)
2e471eb5
GM
2211{
2212 struct sblock *b, *tb, *next;
2213 struct sdata *from, *to, *end, *tb_end;
2214 struct sdata *to_end, *from_end;
2215
2216 /* TB is the sblock we copy to, TO is the sdata within TB we copy
2217 to, and TB_END is the end of TB. */
2218 tb = oldest_sblock;
2219 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2220 to = &tb->first_data;
2221
2222 /* Step through the blocks from the oldest to the youngest. We
2223 expect that old blocks will stabilize over time, so that less
2224 copying will happen this way. */
2225 for (b = oldest_sblock; b; b = b->next)
2226 {
2227 end = b->next_free;
a54e2c05 2228 eassert ((char *) end <= (char *) b + SBLOCK_SIZE);
177c0ea7 2229
2e471eb5
GM
2230 for (from = &b->first_data; from < end; from = from_end)
2231 {
2232 /* Compute the next FROM here because copying below may
2233 overwrite data we need to compute it. */
d311d28c 2234 ptrdiff_t nbytes;
2e471eb5 2235
31d929e5
GM
2236#ifdef GC_CHECK_STRING_BYTES
2237 /* Check that the string size recorded in the string is the
2238 same as the one recorded in the sdata structure. */
2239 if (from->string
2240 && GC_STRING_BYTES (from->string) != SDATA_NBYTES (from))
2241 abort ();
2242#endif /* GC_CHECK_STRING_BYTES */
177c0ea7 2243
2e471eb5
GM
2244 if (from->string)
2245 nbytes = GC_STRING_BYTES (from->string);
2246 else
31d929e5 2247 nbytes = SDATA_NBYTES (from);
177c0ea7 2248
212f33f1
KS
2249 if (nbytes > LARGE_STRING_BYTES)
2250 abort ();
212f33f1 2251
2e471eb5 2252 nbytes = SDATA_SIZE (nbytes);
212f33f1
KS
2253 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
2254
2255#ifdef GC_CHECK_STRING_OVERRUN
72af86bd
AS
2256 if (memcmp (string_overrun_cookie,
2257 (char *) from_end - GC_STRING_OVERRUN_COOKIE_SIZE,
2258 GC_STRING_OVERRUN_COOKIE_SIZE))
212f33f1
KS
2259 abort ();
2260#endif
177c0ea7 2261
2e471eb5
GM
2262 /* FROM->string non-null means it's alive. Copy its data. */
2263 if (from->string)
2264 {
2265 /* If TB is full, proceed with the next sblock. */
212f33f1 2266 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2e471eb5
GM
2267 if (to_end > tb_end)
2268 {
2269 tb->next_free = to;
2270 tb = tb->next;
2271 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2272 to = &tb->first_data;
212f33f1 2273 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2e471eb5 2274 }
177c0ea7 2275
2e471eb5
GM
2276 /* Copy, and update the string's `data' pointer. */
2277 if (from != to)
2278 {
a54e2c05 2279 eassert (tb != b || to < from);
72af86bd 2280 memmove (to, from, nbytes + GC_STRING_EXTRA);
31d929e5 2281 to->string->data = SDATA_DATA (to);
2e471eb5
GM
2282 }
2283
2284 /* Advance past the sdata we copied to. */
2285 to = to_end;
2286 }
2287 }
2288 }
2289
2290 /* The rest of the sblocks following TB don't contain live data, so
2291 we can free them. */
2292 for (b = tb->next; b; b = next)
2293 {
2294 next = b->next;
2295 lisp_free (b);
2296 }
2297
2298 tb->next_free = to;
2299 tb->next = NULL;
2300 current_sblock = tb;
2301}
2302
cb93f9be
PE
2303void
2304string_overflow (void)
2305{
2306 error ("Maximum string size exceeded");
2307}
2e471eb5 2308
a7ca3326 2309DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
69623621
RS
2310 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
2311LENGTH must be an integer.
2312INIT must be an integer that represents a character. */)
5842a27b 2313 (Lisp_Object length, Lisp_Object init)
2e471eb5
GM
2314{
2315 register Lisp_Object val;
2316 register unsigned char *p, *end;
14162469
EZ
2317 int c;
2318 EMACS_INT nbytes;
2e471eb5 2319
b7826503 2320 CHECK_NATNUM (length);
2bccce07 2321 CHECK_CHARACTER (init);
2e471eb5 2322
2bccce07 2323 c = XFASTINT (init);
830ff83b 2324 if (ASCII_CHAR_P (c))
2e471eb5
GM
2325 {
2326 nbytes = XINT (length);
2327 val = make_uninit_string (nbytes);
d5db4077
KR
2328 p = SDATA (val);
2329 end = p + SCHARS (val);
2e471eb5
GM
2330 while (p != end)
2331 *p++ = c;
2332 }
2333 else
2334 {
d942b71c 2335 unsigned char str[MAX_MULTIBYTE_LENGTH];
2e471eb5 2336 int len = CHAR_STRING (c, str);
14162469 2337 EMACS_INT string_len = XINT (length);
2e471eb5 2338
d1f3d2af 2339 if (string_len > STRING_BYTES_MAX / len)
cb93f9be 2340 string_overflow ();
14162469
EZ
2341 nbytes = len * string_len;
2342 val = make_uninit_multibyte_string (string_len, nbytes);
d5db4077 2343 p = SDATA (val);
2e471eb5
GM
2344 end = p + nbytes;
2345 while (p != end)
2346 {
72af86bd 2347 memcpy (p, str, len);
2e471eb5
GM
2348 p += len;
2349 }
2350 }
177c0ea7 2351
2e471eb5
GM
2352 *p = 0;
2353 return val;
2354}
2355
2356
a7ca3326 2357DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
909e3b33 2358 doc: /* Return a new bool-vector of length LENGTH, using INIT for each element.
7ee72033 2359LENGTH must be a number. INIT matters only in whether it is t or nil. */)
5842a27b 2360 (Lisp_Object length, Lisp_Object init)
2e471eb5
GM
2361{
2362 register Lisp_Object val;
2363 struct Lisp_Bool_Vector *p;
d311d28c
PE
2364 ptrdiff_t length_in_chars;
2365 EMACS_INT length_in_elts;
14162469 2366 int bits_per_value;
d06714cb
PE
2367 int extra_bool_elts = ((bool_header_size - header_size + word_size - 1)
2368 / word_size);
2e471eb5 2369
b7826503 2370 CHECK_NATNUM (length);
2e471eb5 2371
a097329f 2372 bits_per_value = sizeof (EMACS_INT) * BOOL_VECTOR_BITS_PER_CHAR;
2e471eb5
GM
2373
2374 length_in_elts = (XFASTINT (length) + bits_per_value - 1) / bits_per_value;
2e471eb5 2375
d06714cb 2376 val = Fmake_vector (make_number (length_in_elts + extra_bool_elts), Qnil);
177c0ea7 2377
eab3844f
PE
2378 /* No Lisp_Object to trace in there. */
2379 XSETPVECTYPESIZE (XVECTOR (val), PVEC_BOOL_VECTOR, 0);
d2029e5b
SM
2380
2381 p = XBOOL_VECTOR (val);
2e471eb5 2382 p->size = XFASTINT (length);
177c0ea7 2383
d311d28c
PE
2384 length_in_chars = ((XFASTINT (length) + BOOL_VECTOR_BITS_PER_CHAR - 1)
2385 / BOOL_VECTOR_BITS_PER_CHAR);
c0c1ee9f
PE
2386 if (length_in_chars)
2387 {
2388 memset (p->data, ! NILP (init) ? -1 : 0, length_in_chars);
177c0ea7 2389
c0c1ee9f
PE
2390 /* Clear any extraneous bits in the last byte. */
2391 p->data[length_in_chars - 1]
83713154 2392 &= (1 << ((XFASTINT (length) - 1) % BOOL_VECTOR_BITS_PER_CHAR + 1)) - 1;
c0c1ee9f 2393 }
2e471eb5
GM
2394
2395 return val;
2396}
2397
2398
2399/* Make a string from NBYTES bytes at CONTENTS, and compute the number
2400 of characters from the contents. This string may be unibyte or
2401 multibyte, depending on the contents. */
2402
2403Lisp_Object
d311d28c 2404make_string (const char *contents, ptrdiff_t nbytes)
2e471eb5
GM
2405{
2406 register Lisp_Object val;
d311d28c 2407 ptrdiff_t nchars, multibyte_nbytes;
9eac9d59 2408
90256841
PE
2409 parse_str_as_multibyte ((const unsigned char *) contents, nbytes,
2410 &nchars, &multibyte_nbytes);
9eac9d59
KH
2411 if (nbytes == nchars || nbytes != multibyte_nbytes)
2412 /* CONTENTS contains no multibyte sequences or contains an invalid
2413 multibyte sequence. We must make unibyte string. */
495a6df3
KH
2414 val = make_unibyte_string (contents, nbytes);
2415 else
2416 val = make_multibyte_string (contents, nchars, nbytes);
2e471eb5
GM
2417 return val;
2418}
2419
2420
2421/* Make an unibyte string from LENGTH bytes at CONTENTS. */
2422
2423Lisp_Object
d311d28c 2424make_unibyte_string (const char *contents, ptrdiff_t length)
2e471eb5
GM
2425{
2426 register Lisp_Object val;
2427 val = make_uninit_string (length);
72af86bd 2428 memcpy (SDATA (val), contents, length);
2e471eb5
GM
2429 return val;
2430}
2431
2432
2433/* Make a multibyte string from NCHARS characters occupying NBYTES
2434 bytes at CONTENTS. */
2435
2436Lisp_Object
14162469 2437make_multibyte_string (const char *contents,
d311d28c 2438 ptrdiff_t nchars, ptrdiff_t nbytes)
2e471eb5
GM
2439{
2440 register Lisp_Object val;
2441 val = make_uninit_multibyte_string (nchars, nbytes);
72af86bd 2442 memcpy (SDATA (val), contents, nbytes);
2e471eb5
GM
2443 return val;
2444}
2445
2446
2447/* Make a string from NCHARS characters occupying NBYTES bytes at
2448 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2449
2450Lisp_Object
14162469 2451make_string_from_bytes (const char *contents,
d311d28c 2452 ptrdiff_t nchars, ptrdiff_t nbytes)
2e471eb5
GM
2453{
2454 register Lisp_Object val;
2455 val = make_uninit_multibyte_string (nchars, nbytes);
72af86bd 2456 memcpy (SDATA (val), contents, nbytes);
d5db4077
KR
2457 if (SBYTES (val) == SCHARS (val))
2458 STRING_SET_UNIBYTE (val);
2e471eb5
GM
2459 return val;
2460}
2461
2462
2463/* Make a string from NCHARS characters occupying NBYTES bytes at
2464 CONTENTS. The argument MULTIBYTE controls whether to label the
229b28c4
KH
2465 string as multibyte. If NCHARS is negative, it counts the number of
2466 characters by itself. */
2e471eb5
GM
2467
2468Lisp_Object
14162469 2469make_specified_string (const char *contents,
d311d28c 2470 ptrdiff_t nchars, ptrdiff_t nbytes, int multibyte)
2e471eb5
GM
2471{
2472 register Lisp_Object val;
229b28c4
KH
2473
2474 if (nchars < 0)
2475 {
2476 if (multibyte)
90256841
PE
2477 nchars = multibyte_chars_in_text ((const unsigned char *) contents,
2478 nbytes);
229b28c4
KH
2479 else
2480 nchars = nbytes;
2481 }
2e471eb5 2482 val = make_uninit_multibyte_string (nchars, nbytes);
72af86bd 2483 memcpy (SDATA (val), contents, nbytes);
2e471eb5 2484 if (!multibyte)
d5db4077 2485 STRING_SET_UNIBYTE (val);
2e471eb5
GM
2486 return val;
2487}
2488
2489
2e471eb5
GM
2490/* Return an unibyte Lisp_String set up to hold LENGTH characters
2491 occupying LENGTH bytes. */
2492
2493Lisp_Object
413d18e7 2494make_uninit_string (EMACS_INT length)
2e471eb5
GM
2495{
2496 Lisp_Object val;
4d774b0f
JB
2497
2498 if (!length)
2499 return empty_unibyte_string;
2e471eb5 2500 val = make_uninit_multibyte_string (length, length);
d5db4077 2501 STRING_SET_UNIBYTE (val);
2e471eb5
GM
2502 return val;
2503}
2504
2505
2506/* Return a multibyte Lisp_String set up to hold NCHARS characters
2507 which occupy NBYTES bytes. */
2508
2509Lisp_Object
413d18e7 2510make_uninit_multibyte_string (EMACS_INT nchars, EMACS_INT nbytes)
2e471eb5
GM
2511{
2512 Lisp_Object string;
2513 struct Lisp_String *s;
2514
2515 if (nchars < 0)
2516 abort ();
4d774b0f
JB
2517 if (!nbytes)
2518 return empty_multibyte_string;
2e471eb5
GM
2519
2520 s = allocate_string ();
246155eb 2521 s->intervals = NULL_INTERVAL;
2e471eb5
GM
2522 allocate_string_data (s, nchars, nbytes);
2523 XSETSTRING (string, s);
2524 string_chars_consed += nbytes;
2525 return string;
2526}
2527
a8290ec3
DA
2528/* Print arguments to BUF according to a FORMAT, then return
2529 a Lisp_String initialized with the data from BUF. */
2530
2531Lisp_Object
2532make_formatted_string (char *buf, const char *format, ...)
2533{
2534 va_list ap;
26bccfae 2535 int length;
a8290ec3
DA
2536
2537 va_start (ap, format);
2538 length = vsprintf (buf, format, ap);
2539 va_end (ap);
2540 return make_string (buf, length);
2541}
2e471eb5
GM
2542
2543\f
2544/***********************************************************************
2545 Float Allocation
2546 ***********************************************************************/
2547
2e471eb5
GM
2548/* We store float cells inside of float_blocks, allocating a new
2549 float_block with malloc whenever necessary. Float cells reclaimed
2550 by GC are put on a free list to be reallocated before allocating
ab6780cd 2551 any new float cells from the latest float_block. */
2e471eb5 2552
6b61353c
KH
2553#define FLOAT_BLOCK_SIZE \
2554 (((BLOCK_BYTES - sizeof (struct float_block *) \
2555 /* The compiler might add padding at the end. */ \
2556 - (sizeof (struct Lisp_Float) - sizeof (int))) * CHAR_BIT) \
ab6780cd
SM
2557 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2558
2559#define GETMARKBIT(block,n) \
5e617bc2
JB
2560 (((block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2561 >> ((n) % (sizeof (int) * CHAR_BIT))) \
ab6780cd
SM
2562 & 1)
2563
2564#define SETMARKBIT(block,n) \
5e617bc2
JB
2565 (block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2566 |= 1 << ((n) % (sizeof (int) * CHAR_BIT))
ab6780cd
SM
2567
2568#define UNSETMARKBIT(block,n) \
5e617bc2
JB
2569 (block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2570 &= ~(1 << ((n) % (sizeof (int) * CHAR_BIT)))
ab6780cd
SM
2571
2572#define FLOAT_BLOCK(fptr) \
d01a7826 2573 ((struct float_block *) (((uintptr_t) (fptr)) & ~(BLOCK_ALIGN - 1)))
ab6780cd
SM
2574
2575#define FLOAT_INDEX(fptr) \
d01a7826 2576 ((((uintptr_t) (fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2e471eb5
GM
2577
2578struct float_block
2579{
ab6780cd 2580 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2e471eb5 2581 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
5e617bc2 2582 int gcmarkbits[1 + FLOAT_BLOCK_SIZE / (sizeof (int) * CHAR_BIT)];
ab6780cd 2583 struct float_block *next;
2e471eb5
GM
2584};
2585
ab6780cd
SM
2586#define FLOAT_MARKED_P(fptr) \
2587 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2588
2589#define FLOAT_MARK(fptr) \
2590 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2591
2592#define FLOAT_UNMARK(fptr) \
2593 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2594
34400008
GM
2595/* Current float_block. */
2596
244ed907 2597static struct float_block *float_block;
34400008
GM
2598
2599/* Index of first unused Lisp_Float in the current float_block. */
2600
fff62aa9 2601static int float_block_index = FLOAT_BLOCK_SIZE;
2e471eb5 2602
34400008
GM
2603/* Free-list of Lisp_Floats. */
2604
244ed907 2605static struct Lisp_Float *float_free_list;
2e471eb5 2606
34400008
GM
2607/* Return a new float object with value FLOAT_VALUE. */
2608
2e471eb5 2609Lisp_Object
971de7fb 2610make_float (double float_value)
2e471eb5
GM
2611{
2612 register Lisp_Object val;
2613
e2984df0
CY
2614 /* eassert (!handling_signal); */
2615
dafc79fa 2616 MALLOC_BLOCK_INPUT;
cfb2f32e 2617
2e471eb5
GM
2618 if (float_free_list)
2619 {
2620 /* We use the data field for chaining the free list
2621 so that we won't use the same field that has the mark bit. */
2622 XSETFLOAT (val, float_free_list);
28a099a4 2623 float_free_list = float_free_list->u.chain;
2e471eb5
GM
2624 }
2625 else
2626 {
2627 if (float_block_index == FLOAT_BLOCK_SIZE)
2628 {
38182d90
PE
2629 struct float_block *new
2630 = lisp_align_malloc (sizeof *new, MEM_TYPE_FLOAT);
2e471eb5 2631 new->next = float_block;
72af86bd 2632 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2e471eb5
GM
2633 float_block = new;
2634 float_block_index = 0;
3900d5de 2635 total_free_floats += FLOAT_BLOCK_SIZE;
2e471eb5 2636 }
6b61353c
KH
2637 XSETFLOAT (val, &float_block->floats[float_block_index]);
2638 float_block_index++;
2e471eb5 2639 }
177c0ea7 2640
dafc79fa 2641 MALLOC_UNBLOCK_INPUT;
e2984df0 2642
f601cdf3 2643 XFLOAT_INIT (val, float_value);
6b61353c 2644 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2e471eb5
GM
2645 consing_since_gc += sizeof (struct Lisp_Float);
2646 floats_consed++;
3900d5de 2647 total_free_floats--;
2e471eb5
GM
2648 return val;
2649}
2650
2e471eb5
GM
2651
2652\f
2653/***********************************************************************
2654 Cons Allocation
2655 ***********************************************************************/
2656
2657/* We store cons cells inside of cons_blocks, allocating a new
2658 cons_block with malloc whenever necessary. Cons cells reclaimed by
2659 GC are put on a free list to be reallocated before allocating
08b7c2cb 2660 any new cons cells from the latest cons_block. */
2e471eb5 2661
a2821611
AS
2662#define CONS_BLOCK_SIZE \
2663 (((BLOCK_BYTES - sizeof (struct cons_block *) \
2664 /* The compiler might add padding at the end. */ \
2665 - (sizeof (struct Lisp_Cons) - sizeof (int))) * CHAR_BIT) \
08b7c2cb
SM
2666 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2667
2668#define CONS_BLOCK(fptr) \
d01a7826 2669 ((struct cons_block *) ((uintptr_t) (fptr) & ~(BLOCK_ALIGN - 1)))
08b7c2cb
SM
2670
2671#define CONS_INDEX(fptr) \
d01a7826 2672 (((uintptr_t) (fptr) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2e471eb5
GM
2673
2674struct cons_block
2675{
08b7c2cb 2676 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2e471eb5 2677 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
5e617bc2 2678 int gcmarkbits[1 + CONS_BLOCK_SIZE / (sizeof (int) * CHAR_BIT)];
08b7c2cb 2679 struct cons_block *next;
2e471eb5
GM
2680};
2681
08b7c2cb
SM
2682#define CONS_MARKED_P(fptr) \
2683 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2684
2685#define CONS_MARK(fptr) \
2686 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2687
2688#define CONS_UNMARK(fptr) \
2689 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2690
34400008
GM
2691/* Current cons_block. */
2692
244ed907 2693static struct cons_block *cons_block;
34400008
GM
2694
2695/* Index of first unused Lisp_Cons in the current block. */
2696
fff62aa9 2697static int cons_block_index = CONS_BLOCK_SIZE;
2e471eb5 2698
34400008
GM
2699/* Free-list of Lisp_Cons structures. */
2700
244ed907 2701static struct Lisp_Cons *cons_free_list;
2e471eb5 2702
34400008 2703/* Explicitly free a cons cell by putting it on the free-list. */
2e471eb5
GM
2704
2705void
971de7fb 2706free_cons (struct Lisp_Cons *ptr)
2e471eb5 2707{
28a099a4 2708 ptr->u.chain = cons_free_list;
34400008
GM
2709#if GC_MARK_STACK
2710 ptr->car = Vdead;
2711#endif
2e471eb5 2712 cons_free_list = ptr;
3900d5de 2713 total_free_conses++;
2e471eb5
GM
2714}
2715
a7ca3326 2716DEFUN ("cons", Fcons, Scons, 2, 2, 0,
a6266d23 2717 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
5842a27b 2718 (Lisp_Object car, Lisp_Object cdr)
2e471eb5
GM
2719{
2720 register Lisp_Object val;
2721
e2984df0
CY
2722 /* eassert (!handling_signal); */
2723
dafc79fa 2724 MALLOC_BLOCK_INPUT;
cfb2f32e 2725
2e471eb5
GM
2726 if (cons_free_list)
2727 {
2728 /* We use the cdr for chaining the free list
2729 so that we won't use the same field that has the mark bit. */
2730 XSETCONS (val, cons_free_list);
28a099a4 2731 cons_free_list = cons_free_list->u.chain;
2e471eb5
GM
2732 }
2733 else
2734 {
2735 if (cons_block_index == CONS_BLOCK_SIZE)
2736 {
38182d90
PE
2737 struct cons_block *new
2738 = lisp_align_malloc (sizeof *new, MEM_TYPE_CONS);
72af86bd 2739 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2e471eb5
GM
2740 new->next = cons_block;
2741 cons_block = new;
2742 cons_block_index = 0;
3900d5de 2743 total_free_conses += CONS_BLOCK_SIZE;
2e471eb5 2744 }
6b61353c
KH
2745 XSETCONS (val, &cons_block->conses[cons_block_index]);
2746 cons_block_index++;
2e471eb5 2747 }
177c0ea7 2748
dafc79fa 2749 MALLOC_UNBLOCK_INPUT;
e2984df0 2750
f3fbd155
KR
2751 XSETCAR (val, car);
2752 XSETCDR (val, cdr);
6b61353c 2753 eassert (!CONS_MARKED_P (XCONS (val)));
2e471eb5 2754 consing_since_gc += sizeof (struct Lisp_Cons);
3900d5de 2755 total_free_conses--;
2e471eb5
GM
2756 cons_cells_consed++;
2757 return val;
2758}
2759
e5aab7e7 2760#ifdef GC_CHECK_CONS_LIST
e3e56238
RS
2761/* Get an error now if there's any junk in the cons free list. */
2762void
971de7fb 2763check_cons_list (void)
e3e56238
RS
2764{
2765 struct Lisp_Cons *tail = cons_free_list;
2766
e3e56238 2767 while (tail)
28a099a4 2768 tail = tail->u.chain;
e3e56238 2769}
e5aab7e7 2770#endif
34400008 2771
9b306d37
KS
2772/* Make a list of 1, 2, 3, 4 or 5 specified objects. */
2773
2774Lisp_Object
971de7fb 2775list1 (Lisp_Object arg1)
9b306d37
KS
2776{
2777 return Fcons (arg1, Qnil);
2778}
2e471eb5
GM
2779
2780Lisp_Object
971de7fb 2781list2 (Lisp_Object arg1, Lisp_Object arg2)
2e471eb5
GM
2782{
2783 return Fcons (arg1, Fcons (arg2, Qnil));
2784}
2785
34400008 2786
2e471eb5 2787Lisp_Object
971de7fb 2788list3 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3)
2e471eb5
GM
2789{
2790 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2791}
2792
34400008 2793
2e471eb5 2794Lisp_Object
971de7fb 2795list4 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4)
2e471eb5
GM
2796{
2797 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2798}
2799
34400008 2800
2e471eb5 2801Lisp_Object
971de7fb 2802list5 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4, Lisp_Object arg5)
2e471eb5
GM
2803{
2804 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2805 Fcons (arg5, Qnil)))));
2806}
2807
34400008 2808
a7ca3326 2809DEFUN ("list", Flist, Slist, 0, MANY, 0,
eae936e2 2810 doc: /* Return a newly created list with specified arguments as elements.
ae8e8122
MB
2811Any number of arguments, even zero arguments, are allowed.
2812usage: (list &rest OBJECTS) */)
f66c7cf8 2813 (ptrdiff_t nargs, Lisp_Object *args)
2e471eb5
GM
2814{
2815 register Lisp_Object val;
2816 val = Qnil;
2817
2818 while (nargs > 0)
2819 {
2820 nargs--;
2821 val = Fcons (args[nargs], val);
2822 }
2823 return val;
2824}
2825
34400008 2826
a7ca3326 2827DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
a6266d23 2828 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
5842a27b 2829 (register Lisp_Object length, Lisp_Object init)
2e471eb5
GM
2830{
2831 register Lisp_Object val;
14162469 2832 register EMACS_INT size;
2e471eb5 2833
b7826503 2834 CHECK_NATNUM (length);
2e471eb5
GM
2835 size = XFASTINT (length);
2836
2837 val = Qnil;
ce070307
GM
2838 while (size > 0)
2839 {
2840 val = Fcons (init, val);
2841 --size;
2842
2843 if (size > 0)
2844 {
2845 val = Fcons (init, val);
2846 --size;
177c0ea7 2847
ce070307
GM
2848 if (size > 0)
2849 {
2850 val = Fcons (init, val);
2851 --size;
177c0ea7 2852
ce070307
GM
2853 if (size > 0)
2854 {
2855 val = Fcons (init, val);
2856 --size;
177c0ea7 2857
ce070307
GM
2858 if (size > 0)
2859 {
2860 val = Fcons (init, val);
2861 --size;
2862 }
2863 }
2864 }
2865 }
2866
2867 QUIT;
2868 }
177c0ea7 2869
7146af97
JB
2870 return val;
2871}
2e471eb5
GM
2872
2873
7146af97 2874\f
2e471eb5
GM
2875/***********************************************************************
2876 Vector Allocation
2877 ***********************************************************************/
7146af97 2878
f3372c87
DA
2879/* This value is balanced well enough to avoid too much internal overhead
2880 for the most common cases; it's not required to be a power of two, but
2881 it's expected to be a mult-of-ROUNDUP_SIZE (see below). */
34400008 2882
f3372c87 2883#define VECTOR_BLOCK_SIZE 4096
7146af97 2884
d06714cb 2885/* Align allocation request sizes to be a multiple of ROUNDUP_SIZE. */
dd0b0efb
PE
2886enum
2887 {
d06714cb 2888 roundup_size = COMMON_MULTIPLE (word_size,
bfe3e0a2 2889 USE_LSB_TAG ? 1 << GCTYPEBITS : 1)
dd0b0efb 2890 };
34400008 2891
bfe3e0a2
PE
2892/* ROUNDUP_SIZE must be a power of 2. */
2893verify ((roundup_size & (roundup_size - 1)) == 0);
2894
ca95b3eb
DA
2895/* Verify assumptions described above. */
2896verify ((VECTOR_BLOCK_SIZE % roundup_size) == 0);
ee28be33 2897verify (VECTOR_BLOCK_SIZE <= (1 << PSEUDOVECTOR_SIZE_BITS));
ca95b3eb 2898
bfe3e0a2 2899/* Round up X to nearest mult-of-ROUNDUP_SIZE. */
f3372c87
DA
2900
2901#define vroundup(x) (((x) + (roundup_size - 1)) & ~(roundup_size - 1))
2902
2903/* Rounding helps to maintain alignment constraints if USE_LSB_TAG. */
2904
2905#define VECTOR_BLOCK_BYTES (VECTOR_BLOCK_SIZE - vroundup (sizeof (void *)))
2906
2907/* Size of the minimal vector allocated from block. */
2908
2909#define VBLOCK_BYTES_MIN vroundup (sizeof (struct Lisp_Vector))
2910
2911/* Size of the largest vector allocated from block. */
2912
2913#define VBLOCK_BYTES_MAX \
d06714cb 2914 vroundup ((VECTOR_BLOCK_BYTES / 2) - word_size)
f3372c87
DA
2915
2916/* We maintain one free list for each possible block-allocated
2917 vector size, and this is the number of free lists we have. */
2918
2919#define VECTOR_MAX_FREE_LIST_INDEX \
2920 ((VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN) / roundup_size + 1)
2921
f3372c87
DA
2922/* Common shortcut to advance vector pointer over a block data. */
2923
2924#define ADVANCE(v, nbytes) ((struct Lisp_Vector *) ((char *) (v) + (nbytes)))
2925
2926/* Common shortcut to calculate NBYTES-vector index in VECTOR_FREE_LISTS. */
2927
2928#define VINDEX(nbytes) (((nbytes) - VBLOCK_BYTES_MIN) / roundup_size)
2929
2930/* Common shortcut to setup vector on a free list. */
2931
2932#define SETUP_ON_FREE_LIST(v, nbytes, index) \
2933 do { \
ee28be33 2934 XSETPVECTYPESIZE (v, PVEC_FREE, nbytes); \
f3372c87
DA
2935 eassert ((nbytes) % roundup_size == 0); \
2936 (index) = VINDEX (nbytes); \
2937 eassert ((index) < VECTOR_MAX_FREE_LIST_INDEX); \
2938 (v)->header.next.vector = vector_free_lists[index]; \
2939 vector_free_lists[index] = (v); \
3900d5de 2940 total_free_vector_bytes += (nbytes); \
f3372c87
DA
2941 } while (0)
2942
2943struct vector_block
2944{
2945 char data[VECTOR_BLOCK_BYTES];
2946 struct vector_block *next;
2947};
2948
2949/* Chain of vector blocks. */
2950
2951static struct vector_block *vector_blocks;
2952
2953/* Vector free lists, where NTH item points to a chain of free
2954 vectors of the same NBYTES size, so NTH == VINDEX (NBYTES). */
2955
2956static struct Lisp_Vector *vector_free_lists[VECTOR_MAX_FREE_LIST_INDEX];
2957
2958/* Singly-linked list of large vectors. */
2959
2960static struct Lisp_Vector *large_vectors;
2961
2962/* The only vector with 0 slots, allocated from pure space. */
2963
9730daca 2964Lisp_Object zero_vector;
f3372c87 2965
3ab6e069
DA
2966/* Number of live vectors. */
2967
2968static EMACS_INT total_vectors;
2969
2970/* Number of bytes used by live and free vectors. */
2971
2972static EMACS_INT total_vector_bytes, total_free_vector_bytes;
2973
f3372c87
DA
2974/* Get a new vector block. */
2975
2976static struct vector_block *
2977allocate_vector_block (void)
2978{
38182d90 2979 struct vector_block *block = xmalloc (sizeof *block);
f3372c87
DA
2980
2981#if GC_MARK_STACK && !defined GC_MALLOC_CHECK
2982 mem_insert (block->data, block->data + VECTOR_BLOCK_BYTES,
2983 MEM_TYPE_VECTOR_BLOCK);
2984#endif
2985
2986 block->next = vector_blocks;
2987 vector_blocks = block;
2988 return block;
2989}
2990
2991/* Called once to initialize vector allocation. */
2992
2993static void
2994init_vectors (void)
2995{
9730daca 2996 zero_vector = make_pure_vector (0);
f3372c87
DA
2997}
2998
2999/* Allocate vector from a vector block. */
3000
3001static struct Lisp_Vector *
3002allocate_vector_from_block (size_t nbytes)
3003{
3004 struct Lisp_Vector *vector, *rest;
3005 struct vector_block *block;
3006 size_t index, restbytes;
3007
3008 eassert (VBLOCK_BYTES_MIN <= nbytes && nbytes <= VBLOCK_BYTES_MAX);
3009 eassert (nbytes % roundup_size == 0);
3010
3011 /* First, try to allocate from a free list
3012 containing vectors of the requested size. */
3013 index = VINDEX (nbytes);
3014 if (vector_free_lists[index])
3015 {
3016 vector = vector_free_lists[index];
3017 vector_free_lists[index] = vector->header.next.vector;
3018 vector->header.next.nbytes = nbytes;
3900d5de 3019 total_free_vector_bytes -= nbytes;
f3372c87
DA
3020 return vector;
3021 }
3022
3023 /* Next, check free lists containing larger vectors. Since
3024 we will split the result, we should have remaining space
3025 large enough to use for one-slot vector at least. */
3026 for (index = VINDEX (nbytes + VBLOCK_BYTES_MIN);
3027 index < VECTOR_MAX_FREE_LIST_INDEX; index++)
3028 if (vector_free_lists[index])
3029 {
3030 /* This vector is larger than requested. */
3031 vector = vector_free_lists[index];
3032 vector_free_lists[index] = vector->header.next.vector;
3033 vector->header.next.nbytes = nbytes;
3900d5de 3034 total_free_vector_bytes -= nbytes;
f3372c87
DA
3035
3036 /* Excess bytes are used for the smaller vector,
3037 which should be set on an appropriate free list. */
3038 restbytes = index * roundup_size + VBLOCK_BYTES_MIN - nbytes;
3039 eassert (restbytes % roundup_size == 0);
3040 rest = ADVANCE (vector, nbytes);
3041 SETUP_ON_FREE_LIST (rest, restbytes, index);
3042 return vector;
3043 }
3044
3045 /* Finally, need a new vector block. */
3046 block = allocate_vector_block ();
3047
3048 /* New vector will be at the beginning of this block. */
3049 vector = (struct Lisp_Vector *) block->data;
3050 vector->header.next.nbytes = nbytes;
3051
3052 /* If the rest of space from this block is large enough
3053 for one-slot vector at least, set up it on a free list. */
3054 restbytes = VECTOR_BLOCK_BYTES - nbytes;
3055 if (restbytes >= VBLOCK_BYTES_MIN)
3056 {
3057 eassert (restbytes % roundup_size == 0);
3058 rest = ADVANCE (vector, nbytes);
3059 SETUP_ON_FREE_LIST (rest, restbytes, index);
3060 }
3061 return vector;
3062 }
3063
f3372c87
DA
3064/* Nonzero if VECTOR pointer is valid pointer inside BLOCK. */
3065
3066#define VECTOR_IN_BLOCK(vector, block) \
3067 ((char *) (vector) <= (block)->data \
3068 + VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN)
3069
ee28be33
SM
3070/* Number of bytes used by vector-block-allocated object. This is the only
3071 place where we actually use the `nbytes' field of the vector-header.
3072 I.e. we could get rid of the `nbytes' field by computing it based on the
3073 vector-type. */
3074
3075#define PSEUDOVECTOR_NBYTES(vector) \
3076 (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_FREE) \
3077 ? vector->header.size & PSEUDOVECTOR_SIZE_MASK \
356e7178 3078 : vector->header.next.nbytes)
ee28be33 3079
f3372c87
DA
3080/* Reclaim space used by unmarked vectors. */
3081
3082static void
3083sweep_vectors (void)
3084{
3085 struct vector_block *block = vector_blocks, **bprev = &vector_blocks;
3086 struct Lisp_Vector *vector, *next, **vprev = &large_vectors;
3087
3ab6e069 3088 total_vectors = total_vector_bytes = total_free_vector_bytes = 0;
f3372c87
DA
3089 memset (vector_free_lists, 0, sizeof (vector_free_lists));
3090
3091 /* Looking through vector blocks. */
3092
3093 for (block = vector_blocks; block; block = *bprev)
3094 {
3095 int free_this_block = 0;
3096
3097 for (vector = (struct Lisp_Vector *) block->data;
3098 VECTOR_IN_BLOCK (vector, block); vector = next)
3099 {
3100 if (VECTOR_MARKED_P (vector))
3101 {
3102 VECTOR_UNMARK (vector);
3ab6e069
DA
3103 total_vectors++;
3104 total_vector_bytes += vector->header.next.nbytes;
f3372c87
DA
3105 next = ADVANCE (vector, vector->header.next.nbytes);
3106 }
3107 else
3108 {
ee28be33
SM
3109 ptrdiff_t nbytes = PSEUDOVECTOR_NBYTES (vector);
3110 ptrdiff_t total_bytes = nbytes;
f3372c87 3111
ee28be33 3112 next = ADVANCE (vector, nbytes);
f3372c87
DA
3113
3114 /* While NEXT is not marked, try to coalesce with VECTOR,
3115 thus making VECTOR of the largest possible size. */
3116
3117 while (VECTOR_IN_BLOCK (next, block))
3118 {
3119 if (VECTOR_MARKED_P (next))
3120 break;
ee28be33
SM
3121 nbytes = PSEUDOVECTOR_NBYTES (next);
3122 total_bytes += nbytes;
f3372c87
DA
3123 next = ADVANCE (next, nbytes);
3124 }
bfe3e0a2 3125
ee28be33 3126 eassert (total_bytes % roundup_size == 0);
f3372c87
DA
3127
3128 if (vector == (struct Lisp_Vector *) block->data
3129 && !VECTOR_IN_BLOCK (next, block))
3130 /* This block should be freed because all of it's
3131 space was coalesced into the only free vector. */
3132 free_this_block = 1;
3133 else
ee28be33
SM
3134 {
3135 int tmp;
3136 SETUP_ON_FREE_LIST (vector, total_bytes, tmp);
3137 }
f3372c87
DA
3138 }
3139 }
3140
3141 if (free_this_block)
3142 {
3143 *bprev = block->next;
3144#if GC_MARK_STACK && !defined GC_MALLOC_CHECK
3145 mem_delete (mem_find (block->data));
3146#endif
3147 xfree (block);
3148 }
3149 else
3150 bprev = &block->next;
3151 }
3152
3153 /* Sweep large vectors. */
3154
3155 for (vector = large_vectors; vector; vector = *vprev)
3156 {
3157 if (VECTOR_MARKED_P (vector))
3158 {
3159 VECTOR_UNMARK (vector);
3ab6e069 3160 total_vectors++;
169925ec
DA
3161 if (vector->header.size & PSEUDOVECTOR_FLAG)
3162 {
d06714cb
PE
3163 struct Lisp_Bool_Vector *b = (struct Lisp_Bool_Vector *) vector;
3164
3165 /* All non-bool pseudovectors are small enough to be allocated
3166 from vector blocks. This code should be redesigned if some
3167 pseudovector type grows beyond VBLOCK_BYTES_MAX. */
3168 eassert (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_BOOL_VECTOR));
3169
3170 total_vector_bytes
3171 += (bool_header_size
3172 + ((b->size + BOOL_VECTOR_BITS_PER_CHAR - 1)
3173 / BOOL_VECTOR_BITS_PER_CHAR));
169925ec
DA
3174 }
3175 else
d06714cb
PE
3176 total_vector_bytes += (header_size
3177 + vector->header.size * word_size);
f3372c87
DA
3178 vprev = &vector->header.next.vector;
3179 }
3180 else
3181 {
3182 *vprev = vector->header.next.vector;
3183 lisp_free (vector);
3184 }
3185 }
3186}
3187
34400008
GM
3188/* Value is a pointer to a newly allocated Lisp_Vector structure
3189 with room for LEN Lisp_Objects. */
3190
ece93c02 3191static struct Lisp_Vector *
d311d28c 3192allocate_vectorlike (ptrdiff_t len)
1825c68d
KH
3193{
3194 struct Lisp_Vector *p;
3195
dafc79fa
SM
3196 MALLOC_BLOCK_INPUT;
3197
cfb2f32e
SM
3198 /* This gets triggered by code which I haven't bothered to fix. --Stef */
3199 /* eassert (!handling_signal); */
3200
f3372c87 3201 if (len == 0)
9730daca 3202 p = XVECTOR (zero_vector);
d12e8f5a 3203 else
8bbbc977 3204 {
d12e8f5a 3205 size_t nbytes = header_size + len * word_size;
f3372c87 3206
d12e8f5a
DA
3207#ifdef DOUG_LEA_MALLOC
3208 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
3209 because mapped region contents are not preserved in
3210 a dumped Emacs. */
3211 mallopt (M_MMAP_MAX, 0);
3212#endif
f3372c87 3213
d12e8f5a
DA
3214 if (nbytes <= VBLOCK_BYTES_MAX)
3215 p = allocate_vector_from_block (vroundup (nbytes));
3216 else
3217 {
38182d90 3218 p = lisp_malloc (nbytes, MEM_TYPE_VECTORLIKE);
d12e8f5a
DA
3219 p->header.next.vector = large_vectors;
3220 large_vectors = p;
3221 }
177c0ea7 3222
d1658221 3223#ifdef DOUG_LEA_MALLOC
d12e8f5a
DA
3224 /* Back to a reasonable maximum of mmap'ed areas. */
3225 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
d1658221 3226#endif
177c0ea7 3227
d12e8f5a
DA
3228 consing_since_gc += nbytes;
3229 vector_cells_consed += len;
3230 }
1825c68d 3231
dafc79fa 3232 MALLOC_UNBLOCK_INPUT;
e2984df0 3233
1825c68d
KH
3234 return p;
3235}
3236
34400008 3237
dd0b0efb 3238/* Allocate a vector with LEN slots. */
ece93c02
GM
3239
3240struct Lisp_Vector *
dd0b0efb 3241allocate_vector (EMACS_INT len)
ece93c02 3242{
dd0b0efb
PE
3243 struct Lisp_Vector *v;
3244 ptrdiff_t nbytes_max = min (PTRDIFF_MAX, SIZE_MAX);
3245
3246 if (min ((nbytes_max - header_size) / word_size, MOST_POSITIVE_FIXNUM) < len)
3247 memory_full (SIZE_MAX);
3248 v = allocate_vectorlike (len);
3249 v->header.size = len;
ece93c02
GM
3250 return v;
3251}
3252
3253
3254/* Allocate other vector-like structures. */
3255
30f95089 3256struct Lisp_Vector *
d311d28c 3257allocate_pseudovector (int memlen, int lisplen, int tag)
ece93c02 3258{
d2029e5b 3259 struct Lisp_Vector *v = allocate_vectorlike (memlen);
e46bb31a 3260 int i;
177c0ea7 3261
d2029e5b 3262 /* Only the first lisplen slots will be traced normally by the GC. */
d2029e5b 3263 for (i = 0; i < lisplen; ++i)
ece93c02 3264 v->contents[i] = Qnil;
177c0ea7 3265
eab3844f 3266 XSETPVECTYPESIZE (v, tag, lisplen);
d2029e5b
SM
3267 return v;
3268}
d2029e5b 3269
36429c89
DA
3270struct buffer *
3271allocate_buffer (void)
3272{
38182d90 3273 struct buffer *b = lisp_malloc (sizeof *b, MEM_TYPE_BUFFER);
36429c89
DA
3274
3275 XSETPVECTYPESIZE (b, PVEC_BUFFER, (offsetof (struct buffer, own_text)
3276 - header_size) / word_size);
3277 /* Note that the fields of B are not initialized. */
3278 return b;
3279}
3280
ece93c02 3281struct Lisp_Hash_Table *
878f97ff 3282allocate_hash_table (void)
ece93c02 3283{
878f97ff 3284 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Hash_Table, count, PVEC_HASH_TABLE);
ece93c02
GM
3285}
3286
ece93c02 3287struct window *
971de7fb 3288allocate_window (void)
ece93c02 3289{
62efea5e 3290 struct window *w;
177c0ea7 3291
62efea5e
DA
3292 w = ALLOCATE_PSEUDOVECTOR (struct window, current_matrix, PVEC_WINDOW);
3293 /* Users assumes that non-Lisp data is zeroed. */
3294 memset (&w->current_matrix, 0,
3295 sizeof (*w) - offsetof (struct window, current_matrix));
3296 return w;
3297}
177c0ea7 3298
4a729fd8 3299struct terminal *
971de7fb 3300allocate_terminal (void)
4a729fd8 3301{
62efea5e 3302 struct terminal *t;
ece93c02 3303
62efea5e
DA
3304 t = ALLOCATE_PSEUDOVECTOR (struct terminal, next_terminal, PVEC_TERMINAL);
3305 /* Users assumes that non-Lisp data is zeroed. */
3306 memset (&t->next_terminal, 0,
3307 sizeof (*t) - offsetof (struct terminal, next_terminal));
d2029e5b 3308 return t;
4a729fd8 3309}
ece93c02
GM
3310
3311struct frame *
971de7fb 3312allocate_frame (void)
ece93c02 3313{
62efea5e
DA
3314 struct frame *f;
3315
3316 f = ALLOCATE_PSEUDOVECTOR (struct frame, face_cache, PVEC_FRAME);
3317 /* Users assumes that non-Lisp data is zeroed. */
72af86bd 3318 memset (&f->face_cache, 0,
62efea5e 3319 sizeof (*f) - offsetof (struct frame, face_cache));
d2029e5b 3320 return f;
ece93c02
GM
3321}
3322
ece93c02 3323struct Lisp_Process *
971de7fb 3324allocate_process (void)
ece93c02 3325{
62efea5e 3326 struct Lisp_Process *p;
ece93c02 3327
62efea5e
DA
3328 p = ALLOCATE_PSEUDOVECTOR (struct Lisp_Process, pid, PVEC_PROCESS);
3329 /* Users assumes that non-Lisp data is zeroed. */
3330 memset (&p->pid, 0,
3331 sizeof (*p) - offsetof (struct Lisp_Process, pid));
3332 return p;
3333}
ece93c02 3334
a7ca3326 3335DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
a6266d23 3336 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
7ee72033 3337See also the function `vector'. */)
5842a27b 3338 (register Lisp_Object length, Lisp_Object init)
7146af97 3339{
1825c68d 3340 Lisp_Object vector;
d311d28c
PE
3341 register ptrdiff_t sizei;
3342 register ptrdiff_t i;
7146af97
JB
3343 register struct Lisp_Vector *p;
3344
b7826503 3345 CHECK_NATNUM (length);
7146af97 3346
d311d28c
PE
3347 p = allocate_vector (XFASTINT (length));
3348 sizei = XFASTINT (length);
ae35e756
PE
3349 for (i = 0; i < sizei; i++)
3350 p->contents[i] = init;
7146af97 3351
1825c68d 3352 XSETVECTOR (vector, p);
7146af97
JB
3353 return vector;
3354}
3355
34400008 3356
a7ca3326 3357DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
eae936e2 3358 doc: /* Return a newly created vector with specified arguments as elements.
ae8e8122
MB
3359Any number of arguments, even zero arguments, are allowed.
3360usage: (vector &rest OBJECTS) */)
f66c7cf8 3361 (ptrdiff_t nargs, Lisp_Object *args)
7146af97
JB
3362{
3363 register Lisp_Object len, val;
f66c7cf8 3364 ptrdiff_t i;
7146af97
JB
3365 register struct Lisp_Vector *p;
3366
67ba9986 3367 XSETFASTINT (len, nargs);
7146af97
JB
3368 val = Fmake_vector (len, Qnil);
3369 p = XVECTOR (val);
ae35e756
PE
3370 for (i = 0; i < nargs; i++)
3371 p->contents[i] = args[i];
7146af97
JB
3372 return val;
3373}
3374
3017f87f
SM
3375void
3376make_byte_code (struct Lisp_Vector *v)
3377{
3378 if (v->header.size > 1 && STRINGP (v->contents[1])
3379 && STRING_MULTIBYTE (v->contents[1]))
3380 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
3381 earlier because they produced a raw 8-bit string for byte-code
3382 and now such a byte-code string is loaded as multibyte while
3383 raw 8-bit characters converted to multibyte form. Thus, now we
3384 must convert them back to the original unibyte form. */
3385 v->contents[1] = Fstring_as_unibyte (v->contents[1]);
3386 XSETPVECTYPE (v, PVEC_COMPILED);
3387}
34400008 3388
a7ca3326 3389DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
a6266d23 3390 doc: /* Create a byte-code object with specified arguments as elements.
e2abe5a1
SM
3391The arguments should be the ARGLIST, bytecode-string BYTE-CODE, constant
3392vector CONSTANTS, maximum stack size DEPTH, (optional) DOCSTRING,
3393and (optional) INTERACTIVE-SPEC.
228299fa 3394The first four arguments are required; at most six have any
ae8e8122 3395significance.
e2abe5a1
SM
3396The ARGLIST can be either like the one of `lambda', in which case the arguments
3397will be dynamically bound before executing the byte code, or it can be an
3398integer of the form NNNNNNNRMMMMMMM where the 7bit MMMMMMM specifies the
3399minimum number of arguments, the 7-bit NNNNNNN specifies the maximum number
3400of arguments (ignoring &rest) and the R bit specifies whether there is a &rest
3401argument to catch the left-over arguments. If such an integer is used, the
3402arguments will not be dynamically bound but will be instead pushed on the
3403stack before executing the byte-code.
92cc28b2 3404usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
f66c7cf8 3405 (ptrdiff_t nargs, Lisp_Object *args)
7146af97
JB
3406{
3407 register Lisp_Object len, val;
f66c7cf8 3408 ptrdiff_t i;
7146af97
JB
3409 register struct Lisp_Vector *p;
3410
3017f87f
SM
3411 /* We used to purecopy everything here, if purify-flga was set. This worked
3412 OK for Emacs-23, but with Emacs-24's lexical binding code, it can be
3413 dangerous, since make-byte-code is used during execution to build
3414 closures, so any closure built during the preload phase would end up
3415 copied into pure space, including its free variables, which is sometimes
3416 just wasteful and other times plainly wrong (e.g. those free vars may want
3417 to be setcar'd). */
9eac9d59 3418
3017f87f
SM
3419 XSETFASTINT (len, nargs);
3420 val = Fmake_vector (len, Qnil);
9eac9d59 3421
7146af97 3422 p = XVECTOR (val);
ae35e756 3423 for (i = 0; i < nargs; i++)
3017f87f
SM
3424 p->contents[i] = args[i];
3425 make_byte_code (p);
876c194c 3426 XSETCOMPILED (val, p);
7146af97
JB
3427 return val;
3428}
2e471eb5 3429
34400008 3430
7146af97 3431\f
2e471eb5
GM
3432/***********************************************************************
3433 Symbol Allocation
3434 ***********************************************************************/
7146af97 3435
d55c12ed
AS
3436/* Like struct Lisp_Symbol, but padded so that the size is a multiple
3437 of the required alignment if LSB tags are used. */
3438
3439union aligned_Lisp_Symbol
3440{
3441 struct Lisp_Symbol s;
bfe3e0a2 3442#if USE_LSB_TAG
d55c12ed
AS
3443 unsigned char c[(sizeof (struct Lisp_Symbol) + (1 << GCTYPEBITS) - 1)
3444 & -(1 << GCTYPEBITS)];
3445#endif
3446};
3447
2e471eb5
GM
3448/* Each symbol_block is just under 1020 bytes long, since malloc
3449 really allocates in units of powers of two and uses 4 bytes for its
3017f87f 3450 own overhead. */
7146af97
JB
3451
3452#define SYMBOL_BLOCK_SIZE \
d55c12ed 3453 ((1020 - sizeof (struct symbol_block *)) / sizeof (union aligned_Lisp_Symbol))
7146af97
JB
3454
3455struct symbol_block
2e471eb5 3456{
6b61353c 3457 /* Place `symbols' first, to preserve alignment. */
d55c12ed 3458 union aligned_Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
6b61353c 3459 struct symbol_block *next;
2e471eb5 3460};
7146af97 3461
34400008
GM
3462/* Current symbol block and index of first unused Lisp_Symbol
3463 structure in it. */
3464
d3d47262 3465static struct symbol_block *symbol_block;
fff62aa9 3466static int symbol_block_index = SYMBOL_BLOCK_SIZE;
7146af97 3467
34400008
GM
3468/* List of free symbols. */
3469
d3d47262 3470static struct Lisp_Symbol *symbol_free_list;
7146af97 3471
a7ca3326 3472DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
a6266d23 3473 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
7ee72033 3474Its value and function definition are void, and its property list is nil. */)
5842a27b 3475 (Lisp_Object name)
7146af97
JB
3476{
3477 register Lisp_Object val;
3478 register struct Lisp_Symbol *p;
3479
b7826503 3480 CHECK_STRING (name);
7146af97 3481
537407f0 3482 /* eassert (!handling_signal); */
cfb2f32e 3483
dafc79fa 3484 MALLOC_BLOCK_INPUT;
e2984df0 3485
7146af97
JB
3486 if (symbol_free_list)
3487 {
45d12a89 3488 XSETSYMBOL (val, symbol_free_list);
28a099a4 3489 symbol_free_list = symbol_free_list->next;
7146af97
JB
3490 }
3491 else
3492 {
3493 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
3494 {
38182d90
PE
3495 struct symbol_block *new
3496 = lisp_malloc (sizeof *new, MEM_TYPE_SYMBOL);
7146af97
JB
3497 new->next = symbol_block;
3498 symbol_block = new;
3499 symbol_block_index = 0;
3900d5de 3500 total_free_symbols += SYMBOL_BLOCK_SIZE;
7146af97 3501 }
d55c12ed 3502 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index].s);
6b61353c 3503 symbol_block_index++;
7146af97 3504 }
177c0ea7 3505
dafc79fa 3506 MALLOC_UNBLOCK_INPUT;
e2984df0 3507
7146af97 3508 p = XSYMBOL (val);
8fe5665d 3509 p->xname = name;
7146af97 3510 p->plist = Qnil;
ce5b453a
SM
3511 p->redirect = SYMBOL_PLAINVAL;
3512 SET_SYMBOL_VAL (p, Qunbound);
2e471eb5 3513 p->function = Qunbound;
9e713715 3514 p->next = NULL;
2336fe58 3515 p->gcmarkbit = 0;
9e713715
GM
3516 p->interned = SYMBOL_UNINTERNED;
3517 p->constant = 0;
b9598260 3518 p->declared_special = 0;
2e471eb5
GM
3519 consing_since_gc += sizeof (struct Lisp_Symbol);
3520 symbols_consed++;
3900d5de 3521 total_free_symbols--;
7146af97
JB
3522 return val;
3523}
3524
3f25e183 3525
2e471eb5
GM
3526\f
3527/***********************************************************************
34400008 3528 Marker (Misc) Allocation
2e471eb5 3529 ***********************************************************************/
3f25e183 3530
d55c12ed
AS
3531/* Like union Lisp_Misc, but padded so that its size is a multiple of
3532 the required alignment when LSB tags are used. */
3533
3534union aligned_Lisp_Misc
3535{
3536 union Lisp_Misc m;
bfe3e0a2 3537#if USE_LSB_TAG
d55c12ed
AS
3538 unsigned char c[(sizeof (union Lisp_Misc) + (1 << GCTYPEBITS) - 1)
3539 & -(1 << GCTYPEBITS)];
3540#endif
3541};
3542
2e471eb5
GM
3543/* Allocation of markers and other objects that share that structure.
3544 Works like allocation of conses. */
c0696668 3545
2e471eb5 3546#define MARKER_BLOCK_SIZE \
d55c12ed 3547 ((1020 - sizeof (struct marker_block *)) / sizeof (union aligned_Lisp_Misc))
2e471eb5
GM
3548
3549struct marker_block
c0696668 3550{
6b61353c 3551 /* Place `markers' first, to preserve alignment. */
d55c12ed 3552 union aligned_Lisp_Misc markers[MARKER_BLOCK_SIZE];
6b61353c 3553 struct marker_block *next;
2e471eb5 3554};
c0696668 3555
d3d47262 3556static struct marker_block *marker_block;
fff62aa9 3557static int marker_block_index = MARKER_BLOCK_SIZE;
c0696668 3558
d3d47262 3559static union Lisp_Misc *marker_free_list;
c0696668 3560
2e471eb5
GM
3561/* Return a newly allocated Lisp_Misc object, with no substructure. */
3562
3f25e183 3563Lisp_Object
971de7fb 3564allocate_misc (void)
7146af97 3565{
2e471eb5 3566 Lisp_Object val;
7146af97 3567
e2984df0
CY
3568 /* eassert (!handling_signal); */
3569
dafc79fa 3570 MALLOC_BLOCK_INPUT;
cfb2f32e 3571
2e471eb5 3572 if (marker_free_list)
7146af97 3573 {
2e471eb5
GM
3574 XSETMISC (val, marker_free_list);
3575 marker_free_list = marker_free_list->u_free.chain;
7146af97
JB
3576 }
3577 else
7146af97 3578 {
2e471eb5
GM
3579 if (marker_block_index == MARKER_BLOCK_SIZE)
3580 {
38182d90 3581 struct marker_block *new = lisp_malloc (sizeof *new, MEM_TYPE_MISC);
2e471eb5
GM
3582 new->next = marker_block;
3583 marker_block = new;
3584 marker_block_index = 0;
7b7990cc 3585 total_free_markers += MARKER_BLOCK_SIZE;
2e471eb5 3586 }
d55c12ed 3587 XSETMISC (val, &marker_block->markers[marker_block_index].m);
6b61353c 3588 marker_block_index++;
7146af97 3589 }
177c0ea7 3590
dafc79fa 3591 MALLOC_UNBLOCK_INPUT;
e2984df0 3592
7b7990cc 3593 --total_free_markers;
2e471eb5
GM
3594 consing_since_gc += sizeof (union Lisp_Misc);
3595 misc_objects_consed++;
67ee9f6e 3596 XMISCANY (val)->gcmarkbit = 0;
2e471eb5
GM
3597 return val;
3598}
3599
7b7990cc
KS
3600/* Free a Lisp_Misc object */
3601
244ed907 3602static void
971de7fb 3603free_misc (Lisp_Object misc)
7b7990cc 3604{
d314756e 3605 XMISCTYPE (misc) = Lisp_Misc_Free;
7b7990cc
KS
3606 XMISC (misc)->u_free.chain = marker_free_list;
3607 marker_free_list = XMISC (misc);
3608
3609 total_free_markers++;
3610}
3611
42172a6b
RS
3612/* Return a Lisp_Misc_Save_Value object containing POINTER and
3613 INTEGER. This is used to package C values to call record_unwind_protect.
3614 The unwind function can get the C values back using XSAVE_VALUE. */
3615
3616Lisp_Object
9c4c5f81 3617make_save_value (void *pointer, ptrdiff_t integer)
42172a6b
RS
3618{
3619 register Lisp_Object val;
3620 register struct Lisp_Save_Value *p;
3621
3622 val = allocate_misc ();
3623 XMISCTYPE (val) = Lisp_Misc_Save_Value;
3624 p = XSAVE_VALUE (val);
3625 p->pointer = pointer;
3626 p->integer = integer;
b766f870 3627 p->dogc = 0;
42172a6b
RS
3628 return val;
3629}
3630
a7ca3326 3631DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
a6266d23 3632 doc: /* Return a newly allocated marker which does not point at any place. */)
5842a27b 3633 (void)
2e471eb5
GM
3634{
3635 register Lisp_Object val;
3636 register struct Lisp_Marker *p;
7146af97 3637
2e471eb5
GM
3638 val = allocate_misc ();
3639 XMISCTYPE (val) = Lisp_Misc_Marker;
3640 p = XMARKER (val);
3641 p->buffer = 0;
3642 p->bytepos = 0;
3643 p->charpos = 0;
ef89c2ce 3644 p->next = NULL;
2e471eb5 3645 p->insertion_type = 0;
7146af97
JB
3646 return val;
3647}
2e471eb5 3648
657924ff
DA
3649/* Return a newly allocated marker which points into BUF
3650 at character position CHARPOS and byte position BYTEPOS. */
3651
3652Lisp_Object
3653build_marker (struct buffer *buf, ptrdiff_t charpos, ptrdiff_t bytepos)
3654{
3655 Lisp_Object obj;
3656 struct Lisp_Marker *m;
3657
3658 /* No dead buffers here. */
3659 eassert (!NILP (BVAR (buf, name)));
3660
3661 /* Every character is at least one byte. */
3662 eassert (charpos <= bytepos);
3663
3664 obj = allocate_misc ();
3665 XMISCTYPE (obj) = Lisp_Misc_Marker;
3666 m = XMARKER (obj);
3667 m->buffer = buf;
3668 m->charpos = charpos;
3669 m->bytepos = bytepos;
3670 m->insertion_type = 0;
3671 m->next = BUF_MARKERS (buf);
3672 BUF_MARKERS (buf) = m;
3673 return obj;
3674}
3675
2e471eb5
GM
3676/* Put MARKER back on the free list after using it temporarily. */
3677
3678void
971de7fb 3679free_marker (Lisp_Object marker)
2e471eb5 3680{
ef89c2ce 3681 unchain_marker (XMARKER (marker));
7b7990cc 3682 free_misc (marker);
2e471eb5
GM
3683}
3684
c0696668 3685\f
7146af97 3686/* Return a newly created vector or string with specified arguments as
736471d1
RS
3687 elements. If all the arguments are characters that can fit
3688 in a string of events, make a string; otherwise, make a vector.
3689
3690 Any number of arguments, even zero arguments, are allowed. */
7146af97
JB
3691
3692Lisp_Object
971de7fb 3693make_event_array (register int nargs, Lisp_Object *args)
7146af97
JB
3694{
3695 int i;
3696
3697 for (i = 0; i < nargs; i++)
736471d1 3698 /* The things that fit in a string
c9ca4659
RS
3699 are characters that are in 0...127,
3700 after discarding the meta bit and all the bits above it. */
e687453f 3701 if (!INTEGERP (args[i])
c11285dc 3702 || (XINT (args[i]) & ~(-CHAR_META)) >= 0200)
7146af97
JB
3703 return Fvector (nargs, args);
3704
3705 /* Since the loop exited, we know that all the things in it are
3706 characters, so we can make a string. */
3707 {
c13ccad2 3708 Lisp_Object result;
177c0ea7 3709
50aee051 3710 result = Fmake_string (make_number (nargs), make_number (0));
7146af97 3711 for (i = 0; i < nargs; i++)
736471d1 3712 {
46e7e6b0 3713 SSET (result, i, XINT (args[i]));
736471d1
RS
3714 /* Move the meta bit to the right place for a string char. */
3715 if (XINT (args[i]) & CHAR_META)
46e7e6b0 3716 SSET (result, i, SREF (result, i) | 0x80);
736471d1 3717 }
177c0ea7 3718
7146af97
JB
3719 return result;
3720 }
3721}
2e471eb5
GM
3722
3723
7146af97 3724\f
24d8a105
RS
3725/************************************************************************
3726 Memory Full Handling
3727 ************************************************************************/
3728
3729
531b0165
PE
3730/* Called if malloc (NBYTES) returns zero. If NBYTES == SIZE_MAX,
3731 there may have been size_t overflow so that malloc was never
3732 called, or perhaps malloc was invoked successfully but the
3733 resulting pointer had problems fitting into a tagged EMACS_INT. In
3734 either case this counts as memory being full even though malloc did
3735 not fail. */
24d8a105
RS
3736
3737void
531b0165 3738memory_full (size_t nbytes)
24d8a105 3739{
531b0165
PE
3740 /* Do not go into hysterics merely because a large request failed. */
3741 int enough_free_memory = 0;
2b6148e4 3742 if (SPARE_MEMORY < nbytes)
531b0165 3743 {
66606eea
PE
3744 void *p;
3745
3746 MALLOC_BLOCK_INPUT;
3747 p = malloc (SPARE_MEMORY);
531b0165
PE
3748 if (p)
3749 {
4d09bcf6 3750 free (p);
531b0165
PE
3751 enough_free_memory = 1;
3752 }
66606eea 3753 MALLOC_UNBLOCK_INPUT;
531b0165 3754 }
24d8a105 3755
531b0165
PE
3756 if (! enough_free_memory)
3757 {
3758 int i;
24d8a105 3759
531b0165
PE
3760 Vmemory_full = Qt;
3761
3762 memory_full_cons_threshold = sizeof (struct cons_block);
3763
3764 /* The first time we get here, free the spare memory. */
3765 for (i = 0; i < sizeof (spare_memory) / sizeof (char *); i++)
3766 if (spare_memory[i])
3767 {
3768 if (i == 0)
3769 free (spare_memory[i]);
3770 else if (i >= 1 && i <= 4)
3771 lisp_align_free (spare_memory[i]);
3772 else
3773 lisp_free (spare_memory[i]);
3774 spare_memory[i] = 0;
3775 }
3776
3777 /* Record the space now used. When it decreases substantially,
3778 we can refill the memory reserve. */
4e75f29d 3779#if !defined SYSTEM_MALLOC && !defined SYNC_INPUT
531b0165 3780 bytes_used_when_full = BYTES_USED;
24d8a105 3781#endif
531b0165 3782 }
24d8a105
RS
3783
3784 /* This used to call error, but if we've run out of memory, we could
3785 get infinite recursion trying to build the string. */
9b306d37 3786 xsignal (Qnil, Vmemory_signal_data);
24d8a105
RS
3787}
3788
3789/* If we released our reserve (due to running out of memory),
3790 and we have a fair amount free once again,
3791 try to set aside another reserve in case we run out once more.
3792
3793 This is called when a relocatable block is freed in ralloc.c,
3794 and also directly from this file, in case we're not using ralloc.c. */
3795
3796void
971de7fb 3797refill_memory_reserve (void)
24d8a105
RS
3798{
3799#ifndef SYSTEM_MALLOC
3800 if (spare_memory[0] == 0)
38182d90 3801 spare_memory[0] = malloc (SPARE_MEMORY);
24d8a105 3802 if (spare_memory[1] == 0)
38182d90 3803 spare_memory[1] = lisp_align_malloc (sizeof (struct cons_block),
24d8a105
RS
3804 MEM_TYPE_CONS);
3805 if (spare_memory[2] == 0)
38182d90
PE
3806 spare_memory[2] = lisp_align_malloc (sizeof (struct cons_block),
3807 MEM_TYPE_CONS);
24d8a105 3808 if (spare_memory[3] == 0)
38182d90
PE
3809 spare_memory[3] = lisp_align_malloc (sizeof (struct cons_block),
3810 MEM_TYPE_CONS);
24d8a105 3811 if (spare_memory[4] == 0)
38182d90
PE
3812 spare_memory[4] = lisp_align_malloc (sizeof (struct cons_block),
3813 MEM_TYPE_CONS);
24d8a105 3814 if (spare_memory[5] == 0)
38182d90
PE
3815 spare_memory[5] = lisp_malloc (sizeof (struct string_block),
3816 MEM_TYPE_STRING);
24d8a105 3817 if (spare_memory[6] == 0)
38182d90
PE
3818 spare_memory[6] = lisp_malloc (sizeof (struct string_block),
3819 MEM_TYPE_STRING);
24d8a105
RS
3820 if (spare_memory[0] && spare_memory[1] && spare_memory[5])
3821 Vmemory_full = Qnil;
3822#endif
3823}
3824\f
34400008
GM
3825/************************************************************************
3826 C Stack Marking
3827 ************************************************************************/
3828
13c844fb
GM
3829#if GC_MARK_STACK || defined GC_MALLOC_CHECK
3830
71cf5fa0
GM
3831/* Conservative C stack marking requires a method to identify possibly
3832 live Lisp objects given a pointer value. We do this by keeping
3833 track of blocks of Lisp data that are allocated in a red-black tree
3834 (see also the comment of mem_node which is the type of nodes in
3835 that tree). Function lisp_malloc adds information for an allocated
3836 block to the red-black tree with calls to mem_insert, and function
3837 lisp_free removes it with mem_delete. Functions live_string_p etc
3838 call mem_find to lookup information about a given pointer in the
3839 tree, and use that to determine if the pointer points to a Lisp
3840 object or not. */
3841
34400008
GM
3842/* Initialize this part of alloc.c. */
3843
3844static void
971de7fb 3845mem_init (void)
34400008
GM
3846{
3847 mem_z.left = mem_z.right = MEM_NIL;
3848 mem_z.parent = NULL;
3849 mem_z.color = MEM_BLACK;
3850 mem_z.start = mem_z.end = NULL;
3851 mem_root = MEM_NIL;
3852}
3853
3854
3855/* Value is a pointer to the mem_node containing START. Value is
3856 MEM_NIL if there is no node in the tree containing START. */
3857
55d4c1b2 3858static inline struct mem_node *
971de7fb 3859mem_find (void *start)
34400008
GM
3860{
3861 struct mem_node *p;
3862
ece93c02
GM
3863 if (start < min_heap_address || start > max_heap_address)
3864 return MEM_NIL;
3865
34400008
GM
3866 /* Make the search always successful to speed up the loop below. */
3867 mem_z.start = start;
3868 mem_z.end = (char *) start + 1;
3869
3870 p = mem_root;
3871 while (start < p->start || start >= p->end)
3872 p = start < p->start ? p->left : p->right;
3873 return p;
3874}
3875
3876
3877/* Insert a new node into the tree for a block of memory with start
3878 address START, end address END, and type TYPE. Value is a
3879 pointer to the node that was inserted. */
3880
3881static struct mem_node *
971de7fb 3882mem_insert (void *start, void *end, enum mem_type type)
34400008
GM
3883{
3884 struct mem_node *c, *parent, *x;
3885
add3c3ea 3886 if (min_heap_address == NULL || start < min_heap_address)
ece93c02 3887 min_heap_address = start;
add3c3ea 3888 if (max_heap_address == NULL || end > max_heap_address)
ece93c02
GM
3889 max_heap_address = end;
3890
34400008
GM
3891 /* See where in the tree a node for START belongs. In this
3892 particular application, it shouldn't happen that a node is already
3893 present. For debugging purposes, let's check that. */
3894 c = mem_root;
3895 parent = NULL;
3896
3897#if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
177c0ea7 3898
34400008
GM
3899 while (c != MEM_NIL)
3900 {
3901 if (start >= c->start && start < c->end)
3902 abort ();
3903 parent = c;
3904 c = start < c->start ? c->left : c->right;
3905 }
177c0ea7 3906
34400008 3907#else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
177c0ea7 3908
34400008
GM
3909 while (c != MEM_NIL)
3910 {
3911 parent = c;
3912 c = start < c->start ? c->left : c->right;
3913 }
177c0ea7 3914
34400008
GM
3915#endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3916
3917 /* Create a new node. */
877935b1 3918#ifdef GC_MALLOC_CHECK
38182d90 3919 x = _malloc_internal (sizeof *x);
877935b1
GM
3920 if (x == NULL)
3921 abort ();
3922#else
23f86fce 3923 x = xmalloc (sizeof *x);
877935b1 3924#endif
34400008
GM
3925 x->start = start;
3926 x->end = end;
3927 x->type = type;
3928 x->parent = parent;
3929 x->left = x->right = MEM_NIL;
3930 x->color = MEM_RED;
3931
3932 /* Insert it as child of PARENT or install it as root. */
3933 if (parent)
3934 {
3935 if (start < parent->start)
3936 parent->left = x;
3937 else
3938 parent->right = x;
3939 }
177c0ea7 3940 else
34400008
GM
3941 mem_root = x;
3942
3943 /* Re-establish red-black tree properties. */
3944 mem_insert_fixup (x);
877935b1 3945
34400008
GM
3946 return x;
3947}
3948
3949
3950/* Re-establish the red-black properties of the tree, and thereby
3951 balance the tree, after node X has been inserted; X is always red. */
3952
3953static void
971de7fb 3954mem_insert_fixup (struct mem_node *x)
34400008
GM
3955{
3956 while (x != mem_root && x->parent->color == MEM_RED)
3957 {
3958 /* X is red and its parent is red. This is a violation of
3959 red-black tree property #3. */
177c0ea7 3960
34400008
GM
3961 if (x->parent == x->parent->parent->left)
3962 {
3963 /* We're on the left side of our grandparent, and Y is our
3964 "uncle". */
3965 struct mem_node *y = x->parent->parent->right;
177c0ea7 3966
34400008
GM
3967 if (y->color == MEM_RED)
3968 {
3969 /* Uncle and parent are red but should be black because
3970 X is red. Change the colors accordingly and proceed
3971 with the grandparent. */
3972 x->parent->color = MEM_BLACK;
3973 y->color = MEM_BLACK;
3974 x->parent->parent->color = MEM_RED;
3975 x = x->parent->parent;
3976 }
3977 else
3978 {
3979 /* Parent and uncle have different colors; parent is
3980 red, uncle is black. */
3981 if (x == x->parent->right)
3982 {
3983 x = x->parent;
3984 mem_rotate_left (x);
3985 }
3986
3987 x->parent->color = MEM_BLACK;
3988 x->parent->parent->color = MEM_RED;
3989 mem_rotate_right (x->parent->parent);
3990 }
3991 }
3992 else
3993 {
3994 /* This is the symmetrical case of above. */
3995 struct mem_node *y = x->parent->parent->left;
177c0ea7 3996
34400008
GM
3997 if (y->color == MEM_RED)
3998 {
3999 x->parent->color = MEM_BLACK;
4000 y->color = MEM_BLACK;
4001 x->parent->parent->color = MEM_RED;
4002 x = x->parent->parent;
4003 }
4004 else
4005 {
4006 if (x == x->parent->left)
4007 {
4008 x = x->parent;
4009 mem_rotate_right (x);
4010 }
177c0ea7 4011
34400008
GM
4012 x->parent->color = MEM_BLACK;
4013 x->parent->parent->color = MEM_RED;
4014 mem_rotate_left (x->parent->parent);
4015 }
4016 }
4017 }
4018
4019 /* The root may have been changed to red due to the algorithm. Set
4020 it to black so that property #5 is satisfied. */
4021 mem_root->color = MEM_BLACK;
4022}
4023
4024
177c0ea7
JB
4025/* (x) (y)
4026 / \ / \
34400008
GM
4027 a (y) ===> (x) c
4028 / \ / \
4029 b c a b */
4030
4031static void
971de7fb 4032mem_rotate_left (struct mem_node *x)
34400008
GM
4033{
4034 struct mem_node *y;
4035
4036 /* Turn y's left sub-tree into x's right sub-tree. */
4037 y = x->right;
4038 x->right = y->left;
4039 if (y->left != MEM_NIL)
4040 y->left->parent = x;
4041
4042 /* Y's parent was x's parent. */
4043 if (y != MEM_NIL)
4044 y->parent = x->parent;
4045
4046 /* Get the parent to point to y instead of x. */
4047 if (x->parent)
4048 {
4049 if (x == x->parent->left)
4050 x->parent->left = y;
4051 else
4052 x->parent->right = y;
4053 }
4054 else
4055 mem_root = y;
4056
4057 /* Put x on y's left. */
4058 y->left = x;
4059 if (x != MEM_NIL)
4060 x->parent = y;
4061}
4062
4063
177c0ea7
JB
4064/* (x) (Y)
4065 / \ / \
4066 (y) c ===> a (x)
4067 / \ / \
34400008
GM
4068 a b b c */
4069
4070static void
971de7fb 4071mem_rotate_right (struct mem_node *x)
34400008
GM
4072{
4073 struct mem_node *y = x->left;
4074
4075 x->left = y->right;
4076 if (y->right != MEM_NIL)
4077 y->right->parent = x;
177c0ea7 4078
34400008
GM
4079 if (y != MEM_NIL)
4080 y->parent = x->parent;
4081 if (x->parent)
4082 {
4083 if (x == x->parent->right)
4084 x->parent->right = y;
4085 else
4086 x->parent->left = y;
4087 }
4088 else
4089 mem_root = y;
177c0ea7 4090
34400008
GM
4091 y->right = x;
4092 if (x != MEM_NIL)
4093 x->parent = y;
4094}
4095
4096
4097/* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
4098
4099static void
971de7fb 4100mem_delete (struct mem_node *z)
34400008
GM
4101{
4102 struct mem_node *x, *y;
4103
4104 if (!z || z == MEM_NIL)
4105 return;
4106
4107 if (z->left == MEM_NIL || z->right == MEM_NIL)
4108 y = z;
4109 else
4110 {
4111 y = z->right;
4112 while (y->left != MEM_NIL)
4113 y = y->left;
4114 }
4115
4116 if (y->left != MEM_NIL)
4117 x = y->left;
4118 else
4119 x = y->right;
4120
4121 x->parent = y->parent;
4122 if (y->parent)
4123 {
4124 if (y == y->parent->left)
4125 y->parent->left = x;
4126 else
4127 y->parent->right = x;
4128 }
4129 else
4130 mem_root = x;
4131
4132 if (y != z)
4133 {
4134 z->start = y->start;
4135 z->end = y->end;
4136 z->type = y->type;
4137 }
177c0ea7 4138
34400008
GM
4139 if (y->color == MEM_BLACK)
4140 mem_delete_fixup (x);
877935b1
GM
4141
4142#ifdef GC_MALLOC_CHECK
4143 _free_internal (y);
4144#else
34400008 4145 xfree (y);
877935b1 4146#endif
34400008
GM
4147}
4148
4149
4150/* Re-establish the red-black properties of the tree, after a
4151 deletion. */
4152
4153static void
971de7fb 4154mem_delete_fixup (struct mem_node *x)
34400008
GM
4155{
4156 while (x != mem_root && x->color == MEM_BLACK)
4157 {
4158 if (x == x->parent->left)
4159 {
4160 struct mem_node *w = x->parent->right;
177c0ea7 4161
34400008
GM
4162 if (w->color == MEM_RED)
4163 {
4164 w->color = MEM_BLACK;
4165 x->parent->color = MEM_RED;
4166 mem_rotate_left (x->parent);
4167 w = x->parent->right;
4168 }
177c0ea7 4169
34400008
GM
4170 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
4171 {
4172 w->color = MEM_RED;
4173 x = x->parent;
4174 }
4175 else
4176 {
4177 if (w->right->color == MEM_BLACK)
4178 {
4179 w->left->color = MEM_BLACK;
4180 w->color = MEM_RED;
4181 mem_rotate_right (w);
4182 w = x->parent->right;
4183 }
4184 w->color = x->parent->color;
4185 x->parent->color = MEM_BLACK;
4186 w->right->color = MEM_BLACK;
4187 mem_rotate_left (x->parent);
4188 x = mem_root;
4189 }
4190 }
4191 else
4192 {
4193 struct mem_node *w = x->parent->left;
177c0ea7 4194
34400008
GM
4195 if (w->color == MEM_RED)
4196 {
4197 w->color = MEM_BLACK;
4198 x->parent->color = MEM_RED;
4199 mem_rotate_right (x->parent);
4200 w = x->parent->left;
4201 }
177c0ea7 4202
34400008
GM
4203 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
4204 {
4205 w->color = MEM_RED;
4206 x = x->parent;
4207 }
4208 else
4209 {
4210 if (w->left->color == MEM_BLACK)
4211 {
4212 w->right->color = MEM_BLACK;
4213 w->color = MEM_RED;
4214 mem_rotate_left (w);
4215 w = x->parent->left;
4216 }
177c0ea7 4217
34400008
GM
4218 w->color = x->parent->color;
4219 x->parent->color = MEM_BLACK;
4220 w->left->color = MEM_BLACK;
4221 mem_rotate_right (x->parent);
4222 x = mem_root;
4223 }
4224 }
4225 }
177c0ea7 4226
34400008
GM
4227 x->color = MEM_BLACK;
4228}
4229
4230
4231/* Value is non-zero if P is a pointer to a live Lisp string on
4232 the heap. M is a pointer to the mem_block for P. */
4233
55d4c1b2 4234static inline int
971de7fb 4235live_string_p (struct mem_node *m, void *p)
34400008
GM
4236{
4237 if (m->type == MEM_TYPE_STRING)
4238 {
4239 struct string_block *b = (struct string_block *) m->start;
14162469 4240 ptrdiff_t offset = (char *) p - (char *) &b->strings[0];
34400008
GM
4241
4242 /* P must point to the start of a Lisp_String structure, and it
4243 must not be on the free-list. */
176bc847
GM
4244 return (offset >= 0
4245 && offset % sizeof b->strings[0] == 0
6b61353c 4246 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
34400008
GM
4247 && ((struct Lisp_String *) p)->data != NULL);
4248 }
4249 else
4250 return 0;
4251}
4252
4253
4254/* Value is non-zero if P is a pointer to a live Lisp cons on
4255 the heap. M is a pointer to the mem_block for P. */
4256
55d4c1b2 4257static inline int
971de7fb 4258live_cons_p (struct mem_node *m, void *p)
34400008
GM
4259{
4260 if (m->type == MEM_TYPE_CONS)
4261 {
4262 struct cons_block *b = (struct cons_block *) m->start;
14162469 4263 ptrdiff_t offset = (char *) p - (char *) &b->conses[0];
34400008
GM
4264
4265 /* P must point to the start of a Lisp_Cons, not be
4266 one of the unused cells in the current cons block,
4267 and not be on the free-list. */
176bc847
GM
4268 return (offset >= 0
4269 && offset % sizeof b->conses[0] == 0
6b61353c 4270 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
34400008
GM
4271 && (b != cons_block
4272 || offset / sizeof b->conses[0] < cons_block_index)
4273 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
4274 }
4275 else
4276 return 0;
4277}
4278
4279
4280/* Value is non-zero if P is a pointer to a live Lisp symbol on
4281 the heap. M is a pointer to the mem_block for P. */
4282
55d4c1b2 4283static inline int
971de7fb 4284live_symbol_p (struct mem_node *m, void *p)
34400008
GM
4285{
4286 if (m->type == MEM_TYPE_SYMBOL)
4287 {
4288 struct symbol_block *b = (struct symbol_block *) m->start;
14162469 4289 ptrdiff_t offset = (char *) p - (char *) &b->symbols[0];
177c0ea7 4290
34400008
GM
4291 /* P must point to the start of a Lisp_Symbol, not be
4292 one of the unused cells in the current symbol block,
4293 and not be on the free-list. */
176bc847
GM
4294 return (offset >= 0
4295 && offset % sizeof b->symbols[0] == 0
6b61353c 4296 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
34400008
GM
4297 && (b != symbol_block
4298 || offset / sizeof b->symbols[0] < symbol_block_index)
4299 && !EQ (((struct Lisp_Symbol *) p)->function, Vdead));
4300 }
4301 else
4302 return 0;
4303}
4304
4305
4306/* Value is non-zero if P is a pointer to a live Lisp float on
4307 the heap. M is a pointer to the mem_block for P. */
4308
55d4c1b2 4309static inline int
971de7fb 4310live_float_p (struct mem_node *m, void *p)
34400008
GM
4311{
4312 if (m->type == MEM_TYPE_FLOAT)
4313 {
4314 struct float_block *b = (struct float_block *) m->start;
14162469 4315 ptrdiff_t offset = (char *) p - (char *) &b->floats[0];
177c0ea7 4316
ab6780cd
SM
4317 /* P must point to the start of a Lisp_Float and not be
4318 one of the unused cells in the current float block. */
176bc847
GM
4319 return (offset >= 0
4320 && offset % sizeof b->floats[0] == 0
6b61353c 4321 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
34400008 4322 && (b != float_block
ab6780cd 4323 || offset / sizeof b->floats[0] < float_block_index));
34400008
GM
4324 }
4325 else
4326 return 0;
4327}
4328
4329
4330/* Value is non-zero if P is a pointer to a live Lisp Misc on
4331 the heap. M is a pointer to the mem_block for P. */
4332
55d4c1b2 4333static inline int
971de7fb 4334live_misc_p (struct mem_node *m, void *p)
34400008
GM
4335{
4336 if (m->type == MEM_TYPE_MISC)
4337 {
4338 struct marker_block *b = (struct marker_block *) m->start;
14162469 4339 ptrdiff_t offset = (char *) p - (char *) &b->markers[0];
177c0ea7 4340
34400008
GM
4341 /* P must point to the start of a Lisp_Misc, not be
4342 one of the unused cells in the current misc block,
4343 and not be on the free-list. */
176bc847
GM
4344 return (offset >= 0
4345 && offset % sizeof b->markers[0] == 0
6b61353c 4346 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
34400008
GM
4347 && (b != marker_block
4348 || offset / sizeof b->markers[0] < marker_block_index)
d314756e 4349 && ((union Lisp_Misc *) p)->u_any.type != Lisp_Misc_Free);
34400008
GM
4350 }
4351 else
4352 return 0;
4353}
4354
4355
4356/* Value is non-zero if P is a pointer to a live vector-like object.
4357 M is a pointer to the mem_block for P. */
4358
55d4c1b2 4359static inline int
971de7fb 4360live_vector_p (struct mem_node *m, void *p)
34400008 4361{
f3372c87
DA
4362 if (m->type == MEM_TYPE_VECTOR_BLOCK)
4363 {
4364 /* This memory node corresponds to a vector block. */
4365 struct vector_block *block = (struct vector_block *) m->start;
4366 struct Lisp_Vector *vector = (struct Lisp_Vector *) block->data;
4367
4368 /* P is in the block's allocation range. Scan the block
4369 up to P and see whether P points to the start of some
4370 vector which is not on a free list. FIXME: check whether
4371 some allocation patterns (probably a lot of short vectors)
4372 may cause a substantial overhead of this loop. */
4373 while (VECTOR_IN_BLOCK (vector, block)
4374 && vector <= (struct Lisp_Vector *) p)
4375 {
ee28be33 4376 if (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_FREE))
f3372c87 4377 vector = ADVANCE (vector, (vector->header.size
ee28be33 4378 & PSEUDOVECTOR_SIZE_MASK));
f3372c87
DA
4379 else if (vector == p)
4380 return 1;
4381 else
4382 vector = ADVANCE (vector, vector->header.next.nbytes);
4383 }
4384 }
4385 else if (m->type == MEM_TYPE_VECTORLIKE && p == m->start)
4386 /* This memory node corresponds to a large vector. */
4387 return 1;
4388 return 0;
34400008
GM
4389}
4390
4391
2336fe58 4392/* Value is non-zero if P is a pointer to a live buffer. M is a
34400008
GM
4393 pointer to the mem_block for P. */
4394
55d4c1b2 4395static inline int
971de7fb 4396live_buffer_p (struct mem_node *m, void *p)
34400008
GM
4397{
4398 /* P must point to the start of the block, and the buffer
4399 must not have been killed. */
4400 return (m->type == MEM_TYPE_BUFFER
4401 && p == m->start
5d8ea120 4402 && !NILP (((struct buffer *) p)->BUFFER_INTERNAL_FIELD (name)));
34400008
GM
4403}
4404
13c844fb
GM
4405#endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
4406
4407#if GC_MARK_STACK
4408
34400008
GM
4409#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4410
4411/* Array of objects that are kept alive because the C stack contains
4412 a pattern that looks like a reference to them . */
4413
4414#define MAX_ZOMBIES 10
4415static Lisp_Object zombies[MAX_ZOMBIES];
4416
4417/* Number of zombie objects. */
4418
211a0b2a 4419static EMACS_INT nzombies;
34400008
GM
4420
4421/* Number of garbage collections. */
4422
211a0b2a 4423static EMACS_INT ngcs;
34400008
GM
4424
4425/* Average percentage of zombies per collection. */
4426
4427static double avg_zombies;
4428
4429/* Max. number of live and zombie objects. */
4430
211a0b2a 4431static EMACS_INT max_live, max_zombies;
34400008
GM
4432
4433/* Average number of live objects per GC. */
4434
4435static double avg_live;
4436
a7ca3326 4437DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
7ee72033 4438 doc: /* Show information about live and zombie objects. */)
5842a27b 4439 (void)
34400008 4440{
83fc9c63 4441 Lisp_Object args[8], zombie_list = Qnil;
211a0b2a 4442 EMACS_INT i;
6e4b3fbe 4443 for (i = 0; i < min (MAX_ZOMBIES, nzombies); i++)
83fc9c63
DL
4444 zombie_list = Fcons (zombies[i], zombie_list);
4445 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
34400008
GM
4446 args[1] = make_number (ngcs);
4447 args[2] = make_float (avg_live);
4448 args[3] = make_float (avg_zombies);
4449 args[4] = make_float (avg_zombies / avg_live / 100);
4450 args[5] = make_number (max_live);
4451 args[6] = make_number (max_zombies);
83fc9c63
DL
4452 args[7] = zombie_list;
4453 return Fmessage (8, args);
34400008
GM
4454}
4455
4456#endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4457
4458
182ff242
GM
4459/* Mark OBJ if we can prove it's a Lisp_Object. */
4460
55d4c1b2 4461static inline void
971de7fb 4462mark_maybe_object (Lisp_Object obj)
182ff242 4463{
b609f591
YM
4464 void *po;
4465 struct mem_node *m;
4466
4467 if (INTEGERP (obj))
4468 return;
4469
4470 po = (void *) XPNTR (obj);
4471 m = mem_find (po);
177c0ea7 4472
182ff242
GM
4473 if (m != MEM_NIL)
4474 {
4475 int mark_p = 0;
4476
8e50cc2d 4477 switch (XTYPE (obj))
182ff242
GM
4478 {
4479 case Lisp_String:
4480 mark_p = (live_string_p (m, po)
4481 && !STRING_MARKED_P ((struct Lisp_String *) po));
4482 break;
4483
4484 case Lisp_Cons:
08b7c2cb 4485 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
182ff242
GM
4486 break;
4487
4488 case Lisp_Symbol:
2336fe58 4489 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
182ff242
GM
4490 break;
4491
4492 case Lisp_Float:
ab6780cd 4493 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
182ff242
GM
4494 break;
4495
4496 case Lisp_Vectorlike:
8e50cc2d 4497 /* Note: can't check BUFFERP before we know it's a
182ff242
GM
4498 buffer because checking that dereferences the pointer
4499 PO which might point anywhere. */
4500 if (live_vector_p (m, po))
8e50cc2d 4501 mark_p = !SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
182ff242 4502 else if (live_buffer_p (m, po))
8e50cc2d 4503 mark_p = BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
182ff242
GM
4504 break;
4505
4506 case Lisp_Misc:
67ee9f6e 4507 mark_p = (live_misc_p (m, po) && !XMISCANY (obj)->gcmarkbit);
182ff242 4508 break;
6bbd7a29 4509
2de9f71c 4510 default:
6bbd7a29 4511 break;
182ff242
GM
4512 }
4513
4514 if (mark_p)
4515 {
4516#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4517 if (nzombies < MAX_ZOMBIES)
83fc9c63 4518 zombies[nzombies] = obj;
182ff242
GM
4519 ++nzombies;
4520#endif
49723c04 4521 mark_object (obj);
182ff242
GM
4522 }
4523 }
4524}
ece93c02
GM
4525
4526
4527/* If P points to Lisp data, mark that as live if it isn't already
4528 marked. */
4529
55d4c1b2 4530static inline void
971de7fb 4531mark_maybe_pointer (void *p)
ece93c02
GM
4532{
4533 struct mem_node *m;
4534
bfe3e0a2
PE
4535 /* Quickly rule out some values which can't point to Lisp data.
4536 USE_LSB_TAG needs Lisp data to be aligned on multiples of 1 << GCTYPEBITS.
4537 Otherwise, assume that Lisp data is aligned on even addresses. */
4538 if ((intptr_t) p % (USE_LSB_TAG ? 1 << GCTYPEBITS : 2))
ece93c02 4539 return;
177c0ea7 4540
ece93c02
GM
4541 m = mem_find (p);
4542 if (m != MEM_NIL)
4543 {
4544 Lisp_Object obj = Qnil;
177c0ea7 4545
ece93c02
GM
4546 switch (m->type)
4547 {
4548 case MEM_TYPE_NON_LISP:
2fe50224 4549 /* Nothing to do; not a pointer to Lisp memory. */
ece93c02 4550 break;
177c0ea7 4551
ece93c02 4552 case MEM_TYPE_BUFFER:
5e617bc2 4553 if (live_buffer_p (m, p) && !VECTOR_MARKED_P ((struct buffer *)p))
ece93c02
GM
4554 XSETVECTOR (obj, p);
4555 break;
177c0ea7 4556
ece93c02 4557 case MEM_TYPE_CONS:
08b7c2cb 4558 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
ece93c02
GM
4559 XSETCONS (obj, p);
4560 break;
177c0ea7 4561
ece93c02
GM
4562 case MEM_TYPE_STRING:
4563 if (live_string_p (m, p)
4564 && !STRING_MARKED_P ((struct Lisp_String *) p))
4565 XSETSTRING (obj, p);
4566 break;
4567
4568 case MEM_TYPE_MISC:
2336fe58
SM
4569 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
4570 XSETMISC (obj, p);
ece93c02 4571 break;
177c0ea7 4572
ece93c02 4573 case MEM_TYPE_SYMBOL:
2336fe58 4574 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
ece93c02
GM
4575 XSETSYMBOL (obj, p);
4576 break;
177c0ea7 4577
ece93c02 4578 case MEM_TYPE_FLOAT:
ab6780cd 4579 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
ece93c02
GM
4580 XSETFLOAT (obj, p);
4581 break;
177c0ea7 4582
9c545a55 4583 case MEM_TYPE_VECTORLIKE:
f3372c87 4584 case MEM_TYPE_VECTOR_BLOCK:
ece93c02
GM
4585 if (live_vector_p (m, p))
4586 {
4587 Lisp_Object tem;
4588 XSETVECTOR (tem, p);
8e50cc2d 4589 if (!SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
ece93c02
GM
4590 obj = tem;
4591 }
4592 break;
4593
4594 default:
4595 abort ();
4596 }
4597
8e50cc2d 4598 if (!NILP (obj))
49723c04 4599 mark_object (obj);
ece93c02
GM
4600 }
4601}
4602
4603
e3fb2efb
PE
4604/* Alignment of pointer values. Use offsetof, as it sometimes returns
4605 a smaller alignment than GCC's __alignof__ and mark_memory might
4606 miss objects if __alignof__ were used. */
3164aeac
PE
4607#define GC_POINTER_ALIGNMENT offsetof (struct {char a; void *b;}, b)
4608
e3fb2efb
PE
4609/* Define POINTERS_MIGHT_HIDE_IN_OBJECTS to 1 if marking via C pointers does
4610 not suffice, which is the typical case. A host where a Lisp_Object is
4611 wider than a pointer might allocate a Lisp_Object in non-adjacent halves.
4612 If USE_LSB_TAG, the bottom half is not a valid pointer, but it should
4613 suffice to widen it to to a Lisp_Object and check it that way. */
bfe3e0a2
PE
4614#if USE_LSB_TAG || VAL_MAX < UINTPTR_MAX
4615# if !USE_LSB_TAG && VAL_MAX < UINTPTR_MAX >> GCTYPEBITS
e3fb2efb
PE
4616 /* If tag bits straddle pointer-word boundaries, neither mark_maybe_pointer
4617 nor mark_maybe_object can follow the pointers. This should not occur on
4618 any practical porting target. */
4619# error "MSB type bits straddle pointer-word boundaries"
4620# endif
4621 /* Marking via C pointers does not suffice, because Lisp_Objects contain
4622 pointer words that hold pointers ORed with type bits. */
4623# define POINTERS_MIGHT_HIDE_IN_OBJECTS 1
4624#else
4625 /* Marking via C pointers suffices, because Lisp_Objects contain pointer
4626 words that hold unmodified pointers. */
4627# define POINTERS_MIGHT_HIDE_IN_OBJECTS 0
4628#endif
4629
55a314a5
YM
4630/* Mark Lisp objects referenced from the address range START+OFFSET..END
4631 or END+OFFSET..START. */
34400008 4632
177c0ea7 4633static void
3164aeac 4634mark_memory (void *start, void *end)
b41253a3
JW
4635#if defined (__clang__) && defined (__has_feature)
4636#if __has_feature(address_sanitizer)
ed6b3510
JW
4637 /* Do not allow -faddress-sanitizer to check this function, since it
4638 crosses the function stack boundary, and thus would yield many
4639 false positives. */
4640 __attribute__((no_address_safety_analysis))
4641#endif
b41253a3 4642#endif
34400008 4643{
ece93c02 4644 void **pp;
3164aeac 4645 int i;
34400008
GM
4646
4647#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4648 nzombies = 0;
4649#endif
4650
4651 /* Make START the pointer to the start of the memory region,
4652 if it isn't already. */
4653 if (end < start)
4654 {
4655 void *tem = start;
4656 start = end;
4657 end = tem;
4658 }
ece93c02 4659
ece93c02
GM
4660 /* Mark Lisp data pointed to. This is necessary because, in some
4661 situations, the C compiler optimizes Lisp objects away, so that
4662 only a pointer to them remains. Example:
4663
4664 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
7ee72033 4665 ()
ece93c02
GM
4666 {
4667 Lisp_Object obj = build_string ("test");
4668 struct Lisp_String *s = XSTRING (obj);
4669 Fgarbage_collect ();
4670 fprintf (stderr, "test `%s'\n", s->data);
4671 return Qnil;
4672 }
4673
4674 Here, `obj' isn't really used, and the compiler optimizes it
4675 away. The only reference to the life string is through the
4676 pointer `s'. */
177c0ea7 4677
3164aeac
PE
4678 for (pp = start; (void *) pp < end; pp++)
4679 for (i = 0; i < sizeof *pp; i += GC_POINTER_ALIGNMENT)
27f3c637 4680 {
e3fb2efb
PE
4681 void *p = *(void **) ((char *) pp + i);
4682 mark_maybe_pointer (p);
4683 if (POINTERS_MIGHT_HIDE_IN_OBJECTS)
646b5f55 4684 mark_maybe_object (XIL ((intptr_t) p));
27f3c637 4685 }
182ff242
GM
4686}
4687
30f637f8
DL
4688/* setjmp will work with GCC unless NON_SAVING_SETJMP is defined in
4689 the GCC system configuration. In gcc 3.2, the only systems for
4690 which this is so are i386-sco5 non-ELF, i386-sysv3 (maybe included
4691 by others?) and ns32k-pc532-min. */
182ff242
GM
4692
4693#if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4694
4695static int setjmp_tested_p, longjmps_done;
4696
4697#define SETJMP_WILL_LIKELY_WORK "\
4698\n\
4699Emacs garbage collector has been changed to use conservative stack\n\
4700marking. Emacs has determined that the method it uses to do the\n\
4701marking will likely work on your system, but this isn't sure.\n\
4702\n\
4703If you are a system-programmer, or can get the help of a local wizard\n\
4704who is, please take a look at the function mark_stack in alloc.c, and\n\
4705verify that the methods used are appropriate for your system.\n\
4706\n\
d191623b 4707Please mail the result to <emacs-devel@gnu.org>.\n\
182ff242
GM
4708"
4709
4710#define SETJMP_WILL_NOT_WORK "\
4711\n\
4712Emacs garbage collector has been changed to use conservative stack\n\
4713marking. Emacs has determined that the default method it uses to do the\n\
4714marking will not work on your system. We will need a system-dependent\n\
4715solution for your system.\n\
4716\n\
4717Please take a look at the function mark_stack in alloc.c, and\n\
4718try to find a way to make it work on your system.\n\
30f637f8
DL
4719\n\
4720Note that you may get false negatives, depending on the compiler.\n\
4721In particular, you need to use -O with GCC for this test.\n\
4722\n\
d191623b 4723Please mail the result to <emacs-devel@gnu.org>.\n\
182ff242
GM
4724"
4725
4726
4727/* Perform a quick check if it looks like setjmp saves registers in a
4728 jmp_buf. Print a message to stderr saying so. When this test
4729 succeeds, this is _not_ a proof that setjmp is sufficient for
4730 conservative stack marking. Only the sources or a disassembly
4731 can prove that. */
4732
4733static void
2018939f 4734test_setjmp (void)
182ff242
GM
4735{
4736 char buf[10];
4737 register int x;
4738 jmp_buf jbuf;
4739 int result = 0;
4740
4741 /* Arrange for X to be put in a register. */
4742 sprintf (buf, "1");
4743 x = strlen (buf);
4744 x = 2 * x - 1;
4745
4746 setjmp (jbuf);
4747 if (longjmps_done == 1)
34400008 4748 {
182ff242 4749 /* Came here after the longjmp at the end of the function.
34400008 4750
182ff242
GM
4751 If x == 1, the longjmp has restored the register to its
4752 value before the setjmp, and we can hope that setjmp
4753 saves all such registers in the jmp_buf, although that
4754 isn't sure.
34400008 4755
182ff242
GM
4756 For other values of X, either something really strange is
4757 taking place, or the setjmp just didn't save the register. */
4758
4759 if (x == 1)
4760 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
4761 else
4762 {
4763 fprintf (stderr, SETJMP_WILL_NOT_WORK);
4764 exit (1);
34400008
GM
4765 }
4766 }
182ff242
GM
4767
4768 ++longjmps_done;
4769 x = 2;
4770 if (longjmps_done == 1)
4771 longjmp (jbuf, 1);
34400008
GM
4772}
4773
182ff242
GM
4774#endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
4775
34400008
GM
4776
4777#if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4778
4779/* Abort if anything GCPRO'd doesn't survive the GC. */
4780
4781static void
2018939f 4782check_gcpros (void)
34400008
GM
4783{
4784 struct gcpro *p;
f66c7cf8 4785 ptrdiff_t i;
34400008
GM
4786
4787 for (p = gcprolist; p; p = p->next)
4788 for (i = 0; i < p->nvars; ++i)
4789 if (!survives_gc_p (p->var[i]))
92cc28b2
SM
4790 /* FIXME: It's not necessarily a bug. It might just be that the
4791 GCPRO is unnecessary or should release the object sooner. */
34400008
GM
4792 abort ();
4793}
4794
4795#elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4796
4797static void
2018939f 4798dump_zombies (void)
34400008
GM
4799{
4800 int i;
4801
6e4b3fbe 4802 fprintf (stderr, "\nZombies kept alive = %"pI"d:\n", nzombies);
34400008
GM
4803 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
4804 {
4805 fprintf (stderr, " %d = ", i);
4806 debug_print (zombies[i]);
4807 }
4808}
4809
4810#endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4811
4812
182ff242
GM
4813/* Mark live Lisp objects on the C stack.
4814
4815 There are several system-dependent problems to consider when
4816 porting this to new architectures:
4817
4818 Processor Registers
4819
4820 We have to mark Lisp objects in CPU registers that can hold local
4821 variables or are used to pass parameters.
4822
4823 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4824 something that either saves relevant registers on the stack, or
4825 calls mark_maybe_object passing it each register's contents.
4826
4827 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4828 implementation assumes that calling setjmp saves registers we need
4829 to see in a jmp_buf which itself lies on the stack. This doesn't
4830 have to be true! It must be verified for each system, possibly
4831 by taking a look at the source code of setjmp.
4832
2018939f
AS
4833 If __builtin_unwind_init is available (defined by GCC >= 2.8) we
4834 can use it as a machine independent method to store all registers
4835 to the stack. In this case the macros described in the previous
4836 two paragraphs are not used.
4837
182ff242
GM
4838 Stack Layout
4839
4840 Architectures differ in the way their processor stack is organized.
4841 For example, the stack might look like this
4842
4843 +----------------+
4844 | Lisp_Object | size = 4
4845 +----------------+
4846 | something else | size = 2
4847 +----------------+
4848 | Lisp_Object | size = 4
4849 +----------------+
4850 | ... |
4851
4852 In such a case, not every Lisp_Object will be aligned equally. To
4853 find all Lisp_Object on the stack it won't be sufficient to walk
4854 the stack in steps of 4 bytes. Instead, two passes will be
4855 necessary, one starting at the start of the stack, and a second
4856 pass starting at the start of the stack + 2. Likewise, if the
4857 minimal alignment of Lisp_Objects on the stack is 1, four passes
4858 would be necessary, each one starting with one byte more offset
c9af454e 4859 from the stack start. */
34400008
GM
4860
4861static void
971de7fb 4862mark_stack (void)
34400008 4863{
34400008
GM
4864 void *end;
4865
2018939f
AS
4866#ifdef HAVE___BUILTIN_UNWIND_INIT
4867 /* Force callee-saved registers and register windows onto the stack.
4868 This is the preferred method if available, obviating the need for
4869 machine dependent methods. */
4870 __builtin_unwind_init ();
4871 end = &end;
4872#else /* not HAVE___BUILTIN_UNWIND_INIT */
dff45157
PE
4873#ifndef GC_SAVE_REGISTERS_ON_STACK
4874 /* jmp_buf may not be aligned enough on darwin-ppc64 */
4875 union aligned_jmpbuf {
4876 Lisp_Object o;
4877 jmp_buf j;
4878 } j;
4879 volatile int stack_grows_down_p = (char *) &j > (char *) stack_base;
4880#endif
34400008
GM
4881 /* This trick flushes the register windows so that all the state of
4882 the process is contained in the stack. */
ab6780cd 4883 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
422eec7e
DL
4884 needed on ia64 too. See mach_dep.c, where it also says inline
4885 assembler doesn't work with relevant proprietary compilers. */
4a00783e 4886#ifdef __sparc__
4d18a7a2
DN
4887#if defined (__sparc64__) && defined (__FreeBSD__)
4888 /* FreeBSD does not have a ta 3 handler. */
4c1616be
CY
4889 asm ("flushw");
4890#else
34400008 4891 asm ("ta 3");
4c1616be 4892#endif
34400008 4893#endif
177c0ea7 4894
34400008
GM
4895 /* Save registers that we need to see on the stack. We need to see
4896 registers used to hold register variables and registers used to
4897 pass parameters. */
4898#ifdef GC_SAVE_REGISTERS_ON_STACK
4899 GC_SAVE_REGISTERS_ON_STACK (end);
182ff242 4900#else /* not GC_SAVE_REGISTERS_ON_STACK */
177c0ea7 4901
182ff242
GM
4902#ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
4903 setjmp will definitely work, test it
4904 and print a message with the result
4905 of the test. */
4906 if (!setjmp_tested_p)
4907 {
4908 setjmp_tested_p = 1;
4909 test_setjmp ();
4910 }
4911#endif /* GC_SETJMP_WORKS */
177c0ea7 4912
55a314a5 4913 setjmp (j.j);
34400008 4914 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
182ff242 4915#endif /* not GC_SAVE_REGISTERS_ON_STACK */
2018939f 4916#endif /* not HAVE___BUILTIN_UNWIND_INIT */
34400008
GM
4917
4918 /* This assumes that the stack is a contiguous region in memory. If
182ff242
GM
4919 that's not the case, something has to be done here to iterate
4920 over the stack segments. */
3164aeac
PE
4921 mark_memory (stack_base, end);
4922
4dec23ff
AS
4923 /* Allow for marking a secondary stack, like the register stack on the
4924 ia64. */
4925#ifdef GC_MARK_SECONDARY_STACK
4926 GC_MARK_SECONDARY_STACK ();
4927#endif
34400008
GM
4928
4929#if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4930 check_gcpros ();
4931#endif
4932}
4933
34400008
GM
4934#endif /* GC_MARK_STACK != 0 */
4935
4936
7ffb6955 4937/* Determine whether it is safe to access memory at address P. */
d3d47262 4938static int
971de7fb 4939valid_pointer_p (void *p)
7ffb6955 4940{
f892cf9c
EZ
4941#ifdef WINDOWSNT
4942 return w32_valid_pointer_p (p, 16);
4943#else
41bed37d 4944 int fd[2];
7ffb6955
KS
4945
4946 /* Obviously, we cannot just access it (we would SEGV trying), so we
4947 trick the o/s to tell us whether p is a valid pointer.
4948 Unfortunately, we cannot use NULL_DEVICE here, as emacs_write may
4949 not validate p in that case. */
4950
41bed37d 4951 if (pipe (fd) == 0)
7ffb6955 4952 {
41bed37d
PE
4953 int valid = (emacs_write (fd[1], (char *) p, 16) == 16);
4954 emacs_close (fd[1]);
4955 emacs_close (fd[0]);
7ffb6955
KS
4956 return valid;
4957 }
4958
4959 return -1;
f892cf9c 4960#endif
7ffb6955 4961}
3cd55735
KS
4962
4963/* Return 1 if OBJ is a valid lisp object.
4964 Return 0 if OBJ is NOT a valid lisp object.
4965 Return -1 if we cannot validate OBJ.
7c0ab7d9
RS
4966 This function can be quite slow,
4967 so it should only be used in code for manual debugging. */
3cd55735
KS
4968
4969int
971de7fb 4970valid_lisp_object_p (Lisp_Object obj)
3cd55735 4971{
de7124a7 4972 void *p;
7ffb6955 4973#if GC_MARK_STACK
3cd55735 4974 struct mem_node *m;
de7124a7 4975#endif
3cd55735
KS
4976
4977 if (INTEGERP (obj))
4978 return 1;
4979
4980 p = (void *) XPNTR (obj);
3cd55735
KS
4981 if (PURE_POINTER_P (p))
4982 return 1;
4983
de7124a7 4984#if !GC_MARK_STACK
7ffb6955 4985 return valid_pointer_p (p);
de7124a7
KS
4986#else
4987
3cd55735
KS
4988 m = mem_find (p);
4989
4990 if (m == MEM_NIL)
7ffb6955
KS
4991 {
4992 int valid = valid_pointer_p (p);
4993 if (valid <= 0)
4994 return valid;
4995
4996 if (SUBRP (obj))
4997 return 1;
4998
4999 return 0;
5000 }
3cd55735
KS
5001
5002 switch (m->type)
5003 {
5004 case MEM_TYPE_NON_LISP:
5005 return 0;
5006
5007 case MEM_TYPE_BUFFER:
5008 return live_buffer_p (m, p);
5009
5010 case MEM_TYPE_CONS:
5011 return live_cons_p (m, p);
5012
5013 case MEM_TYPE_STRING:
5014 return live_string_p (m, p);
5015
5016 case MEM_TYPE_MISC:
5017 return live_misc_p (m, p);
5018
5019 case MEM_TYPE_SYMBOL:
5020 return live_symbol_p (m, p);
5021
5022 case MEM_TYPE_FLOAT:
5023 return live_float_p (m, p);
5024
9c545a55 5025 case MEM_TYPE_VECTORLIKE:
f3372c87 5026 case MEM_TYPE_VECTOR_BLOCK:
3cd55735
KS
5027 return live_vector_p (m, p);
5028
5029 default:
5030 break;
5031 }
5032
5033 return 0;
5034#endif
5035}
5036
5037
5038
34400008 5039\f
2e471eb5
GM
5040/***********************************************************************
5041 Pure Storage Management
5042 ***********************************************************************/
5043
1f0b3fd2
GM
5044/* Allocate room for SIZE bytes from pure Lisp storage and return a
5045 pointer to it. TYPE is the Lisp type for which the memory is
e5bc14d4 5046 allocated. TYPE < 0 means it's not used for a Lisp object. */
1f0b3fd2 5047
261cb4bb 5048static void *
971de7fb 5049pure_alloc (size_t size, int type)
1f0b3fd2 5050{
261cb4bb 5051 void *result;
bfe3e0a2 5052#if USE_LSB_TAG
6b61353c
KH
5053 size_t alignment = (1 << GCTYPEBITS);
5054#else
44117420 5055 size_t alignment = sizeof (EMACS_INT);
1f0b3fd2
GM
5056
5057 /* Give Lisp_Floats an extra alignment. */
5058 if (type == Lisp_Float)
5059 {
1f0b3fd2
GM
5060#if defined __GNUC__ && __GNUC__ >= 2
5061 alignment = __alignof (struct Lisp_Float);
5062#else
5063 alignment = sizeof (struct Lisp_Float);
5064#endif
9e713715 5065 }
6b61353c 5066#endif
1f0b3fd2 5067
44117420 5068 again:
e5bc14d4
YM
5069 if (type >= 0)
5070 {
5071 /* Allocate space for a Lisp object from the beginning of the free
5072 space with taking account of alignment. */
5073 result = ALIGN (purebeg + pure_bytes_used_lisp, alignment);
5074 pure_bytes_used_lisp = ((char *)result - (char *)purebeg) + size;
5075 }
5076 else
5077 {
5078 /* Allocate space for a non-Lisp object from the end of the free
5079 space. */
5080 pure_bytes_used_non_lisp += size;
5081 result = purebeg + pure_size - pure_bytes_used_non_lisp;
5082 }
5083 pure_bytes_used = pure_bytes_used_lisp + pure_bytes_used_non_lisp;
44117420
KS
5084
5085 if (pure_bytes_used <= pure_size)
5086 return result;
5087
5088 /* Don't allocate a large amount here,
5089 because it might get mmap'd and then its address
5090 might not be usable. */
23f86fce 5091 purebeg = xmalloc (10000);
44117420
KS
5092 pure_size = 10000;
5093 pure_bytes_used_before_overflow += pure_bytes_used - size;
5094 pure_bytes_used = 0;
e5bc14d4 5095 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
44117420 5096 goto again;
1f0b3fd2
GM
5097}
5098
5099
852f8cdc 5100/* Print a warning if PURESIZE is too small. */
9e713715
GM
5101
5102void
971de7fb 5103check_pure_size (void)
9e713715
GM
5104{
5105 if (pure_bytes_used_before_overflow)
c2982e87
PE
5106 message (("emacs:0:Pure Lisp storage overflow (approx. %"pI"d"
5107 " bytes needed)"),
5108 pure_bytes_used + pure_bytes_used_before_overflow);
9e713715
GM
5109}
5110
5111
79fd0489
YM
5112/* Find the byte sequence {DATA[0], ..., DATA[NBYTES-1], '\0'} from
5113 the non-Lisp data pool of the pure storage, and return its start
5114 address. Return NULL if not found. */
5115
5116static char *
d311d28c 5117find_string_data_in_pure (const char *data, ptrdiff_t nbytes)
79fd0489 5118{
14162469 5119 int i;
d311d28c 5120 ptrdiff_t skip, bm_skip[256], last_char_skip, infinity, start, start_max;
2aff7c53 5121 const unsigned char *p;
79fd0489
YM
5122 char *non_lisp_beg;
5123
d311d28c 5124 if (pure_bytes_used_non_lisp <= nbytes)
79fd0489
YM
5125 return NULL;
5126
5127 /* Set up the Boyer-Moore table. */
5128 skip = nbytes + 1;
5129 for (i = 0; i < 256; i++)
5130 bm_skip[i] = skip;
5131
2aff7c53 5132 p = (const unsigned char *) data;
79fd0489
YM
5133 while (--skip > 0)
5134 bm_skip[*p++] = skip;
5135
5136 last_char_skip = bm_skip['\0'];
5137
5138 non_lisp_beg = purebeg + pure_size - pure_bytes_used_non_lisp;
5139 start_max = pure_bytes_used_non_lisp - (nbytes + 1);
5140
5141 /* See the comments in the function `boyer_moore' (search.c) for the
5142 use of `infinity'. */
5143 infinity = pure_bytes_used_non_lisp + 1;
5144 bm_skip['\0'] = infinity;
5145
2aff7c53 5146 p = (const unsigned char *) non_lisp_beg + nbytes;
79fd0489
YM
5147 start = 0;
5148 do
5149 {
5150 /* Check the last character (== '\0'). */
5151 do
5152 {
5153 start += bm_skip[*(p + start)];
5154 }
5155 while (start <= start_max);
5156
5157 if (start < infinity)
5158 /* Couldn't find the last character. */
5159 return NULL;
5160
5161 /* No less than `infinity' means we could find the last
5162 character at `p[start - infinity]'. */
5163 start -= infinity;
5164
5165 /* Check the remaining characters. */
5166 if (memcmp (data, non_lisp_beg + start, nbytes) == 0)
5167 /* Found. */
5168 return non_lisp_beg + start;
5169
5170 start += last_char_skip;
5171 }
5172 while (start <= start_max);
5173
5174 return NULL;
5175}
5176
5177
2e471eb5
GM
5178/* Return a string allocated in pure space. DATA is a buffer holding
5179 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
5180 non-zero means make the result string multibyte.
1a4f1e2c 5181
2e471eb5
GM
5182 Must get an error if pure storage is full, since if it cannot hold
5183 a large string it may be able to hold conses that point to that
5184 string; then the string is not protected from gc. */
7146af97
JB
5185
5186Lisp_Object
14162469 5187make_pure_string (const char *data,
d311d28c 5188 ptrdiff_t nchars, ptrdiff_t nbytes, int multibyte)
7146af97 5189{
2e471eb5
GM
5190 Lisp_Object string;
5191 struct Lisp_String *s;
c0696668 5192
1f0b3fd2 5193 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
90256841 5194 s->data = (unsigned char *) find_string_data_in_pure (data, nbytes);
79fd0489
YM
5195 if (s->data == NULL)
5196 {
5197 s->data = (unsigned char *) pure_alloc (nbytes + 1, -1);
72af86bd 5198 memcpy (s->data, data, nbytes);
79fd0489
YM
5199 s->data[nbytes] = '\0';
5200 }
2e471eb5
GM
5201 s->size = nchars;
5202 s->size_byte = multibyte ? nbytes : -1;
2e471eb5 5203 s->intervals = NULL_INTERVAL;
2e471eb5
GM
5204 XSETSTRING (string, s);
5205 return string;
7146af97
JB
5206}
5207
2a0213a6
DA
5208/* Return a string allocated in pure space. Do not
5209 allocate the string data, just point to DATA. */
a56eaaef
DN
5210
5211Lisp_Object
2a0213a6 5212make_pure_c_string (const char *data, ptrdiff_t nchars)
a56eaaef
DN
5213{
5214 Lisp_Object string;
5215 struct Lisp_String *s;
a56eaaef
DN
5216
5217 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
5218 s->size = nchars;
5219 s->size_byte = -1;
323637a2 5220 s->data = (unsigned char *) data;
a56eaaef
DN
5221 s->intervals = NULL_INTERVAL;
5222 XSETSTRING (string, s);
5223 return string;
5224}
2e471eb5 5225
34400008
GM
5226/* Return a cons allocated from pure space. Give it pure copies
5227 of CAR as car and CDR as cdr. */
5228
7146af97 5229Lisp_Object
971de7fb 5230pure_cons (Lisp_Object car, Lisp_Object cdr)
7146af97
JB
5231{
5232 register Lisp_Object new;
1f0b3fd2 5233 struct Lisp_Cons *p;
7146af97 5234
1f0b3fd2
GM
5235 p = (struct Lisp_Cons *) pure_alloc (sizeof *p, Lisp_Cons);
5236 XSETCONS (new, p);
f3fbd155
KR
5237 XSETCAR (new, Fpurecopy (car));
5238 XSETCDR (new, Fpurecopy (cdr));
7146af97
JB
5239 return new;
5240}
5241
7146af97 5242
34400008
GM
5243/* Value is a float object with value NUM allocated from pure space. */
5244
d3d47262 5245static Lisp_Object
971de7fb 5246make_pure_float (double num)
7146af97
JB
5247{
5248 register Lisp_Object new;
1f0b3fd2 5249 struct Lisp_Float *p;
7146af97 5250
1f0b3fd2
GM
5251 p = (struct Lisp_Float *) pure_alloc (sizeof *p, Lisp_Float);
5252 XSETFLOAT (new, p);
f601cdf3 5253 XFLOAT_INIT (new, num);
7146af97
JB
5254 return new;
5255}
5256
34400008
GM
5257
5258/* Return a vector with room for LEN Lisp_Objects allocated from
5259 pure space. */
5260
72cb32cf 5261static Lisp_Object
d311d28c 5262make_pure_vector (ptrdiff_t len)
7146af97 5263{
1f0b3fd2
GM
5264 Lisp_Object new;
5265 struct Lisp_Vector *p;
d06714cb 5266 size_t size = header_size + len * word_size;
7146af97 5267
1f0b3fd2
GM
5268 p = (struct Lisp_Vector *) pure_alloc (size, Lisp_Vectorlike);
5269 XSETVECTOR (new, p);
eab3844f 5270 XVECTOR (new)->header.size = len;
7146af97
JB
5271 return new;
5272}
5273
34400008 5274
a7ca3326 5275DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
909e3b33 5276 doc: /* Make a copy of object OBJ in pure storage.
228299fa 5277Recursively copies contents of vectors and cons cells.
7ee72033 5278Does not copy symbols. Copies strings without text properties. */)
5842a27b 5279 (register Lisp_Object obj)
7146af97 5280{
265a9e55 5281 if (NILP (Vpurify_flag))
7146af97
JB
5282 return obj;
5283
1f0b3fd2 5284 if (PURE_POINTER_P (XPNTR (obj)))
7146af97
JB
5285 return obj;
5286
e9515805
SM
5287 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5288 {
5289 Lisp_Object tmp = Fgethash (obj, Vpurify_flag, Qnil);
5290 if (!NILP (tmp))
5291 return tmp;
5292 }
5293
d6dd74bb 5294 if (CONSP (obj))
e9515805 5295 obj = pure_cons (XCAR (obj), XCDR (obj));
d6dd74bb 5296 else if (FLOATP (obj))
e9515805 5297 obj = make_pure_float (XFLOAT_DATA (obj));
d6dd74bb 5298 else if (STRINGP (obj))
42a5b22f 5299 obj = make_pure_string (SSDATA (obj), SCHARS (obj),
e9515805
SM
5300 SBYTES (obj),
5301 STRING_MULTIBYTE (obj));
876c194c 5302 else if (COMPILEDP (obj) || VECTORP (obj))
d6dd74bb
KH
5303 {
5304 register struct Lisp_Vector *vec;
d311d28c
PE
5305 register ptrdiff_t i;
5306 ptrdiff_t size;
d6dd74bb 5307
77b37c05 5308 size = ASIZE (obj);
7d535c68
KH
5309 if (size & PSEUDOVECTOR_FLAG)
5310 size &= PSEUDOVECTOR_SIZE_MASK;
6b61353c 5311 vec = XVECTOR (make_pure_vector (size));
d6dd74bb 5312 for (i = 0; i < size; i++)
28be1ada 5313 vec->contents[i] = Fpurecopy (AREF (obj, i));
876c194c 5314 if (COMPILEDP (obj))
985773c9 5315 {
876c194c
SM
5316 XSETPVECTYPE (vec, PVEC_COMPILED);
5317 XSETCOMPILED (obj, vec);
985773c9 5318 }
d6dd74bb
KH
5319 else
5320 XSETVECTOR (obj, vec);
7146af97 5321 }
d6dd74bb
KH
5322 else if (MARKERP (obj))
5323 error ("Attempt to copy a marker to pure storage");
e9515805
SM
5324 else
5325 /* Not purified, don't hash-cons. */
5326 return obj;
5327
5328 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5329 Fputhash (obj, obj, Vpurify_flag);
6bbd7a29
GM
5330
5331 return obj;
7146af97 5332}
2e471eb5 5333
34400008 5334
7146af97 5335\f
34400008
GM
5336/***********************************************************************
5337 Protection from GC
5338 ***********************************************************************/
5339
2e471eb5
GM
5340/* Put an entry in staticvec, pointing at the variable with address
5341 VARADDRESS. */
7146af97
JB
5342
5343void
971de7fb 5344staticpro (Lisp_Object *varaddress)
7146af97
JB
5345{
5346 staticvec[staticidx++] = varaddress;
5347 if (staticidx >= NSTATICS)
5348 abort ();
5349}
5350
7146af97 5351\f
34400008
GM
5352/***********************************************************************
5353 Protection from GC
5354 ***********************************************************************/
1a4f1e2c 5355
e8197642
RS
5356/* Temporarily prevent garbage collection. */
5357
d311d28c 5358ptrdiff_t
971de7fb 5359inhibit_garbage_collection (void)
e8197642 5360{
d311d28c 5361 ptrdiff_t count = SPECPDL_INDEX ();
54defd0d 5362
6349ae4d 5363 specbind (Qgc_cons_threshold, make_number (MOST_POSITIVE_FIXNUM));
e8197642
RS
5364 return count;
5365}
5366
3ab6e069
DA
5367/* Used to avoid possible overflows when
5368 converting from C to Lisp integers. */
5369
5370static inline Lisp_Object
5371bounded_number (EMACS_INT number)
5372{
5373 return make_number (min (MOST_POSITIVE_FIXNUM, number));
5374}
34400008 5375
a7ca3326 5376DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
7ee72033 5377 doc: /* Reclaim storage for Lisp objects no longer needed.
e1e37596
RS
5378Garbage collection happens automatically if you cons more than
5379`gc-cons-threshold' bytes of Lisp data since previous garbage collection.
5380`garbage-collect' normally returns a list with info on amount of space in use:
3ab6e069
DA
5381 ((CONS INTERNAL-SIZE USED-CONSES FREE-CONSES)
5382 (SYMBOL INTERNAL-SIZE USED-SYMBOLS FREE-SYMBOLS)
5383 (MISC INTERNAL-SIZE USED-MISCS FREE-MISCS)
5384 (STRING INTERNAL-SIZE USED-STRINGS USED-STRING-BYTES FREE-STRING)
5385 (VECTOR INTERNAL-SIZE USED-VECTORS USED-VECTOR-BYTES FREE-VECTOR-BYTES)
5386 (FLOAT INTERNAL-SIZE USED-FLOATS FREE-FLOATS)
5387 (INTERVAL INTERNAL-SIZE USED-INTERVALS FREE-INTERVALS)
5388 (BUFFER INTERNAL-SIZE USED-BUFFERS))
e1e37596 5389However, if there was overflow in pure space, `garbage-collect'
999dd333
GM
5390returns nil, because real GC can't be done.
5391See Info node `(elisp)Garbage Collection'. */)
5842a27b 5392 (void)
7146af97 5393{
7146af97 5394 register struct specbinding *bind;
d17337e5 5395 register struct buffer *nextb;
7146af97 5396 char stack_top_variable;
f66c7cf8 5397 ptrdiff_t i;
6efc7df7 5398 int message_p;
96117bc7 5399 Lisp_Object total[8];
d311d28c 5400 ptrdiff_t count = SPECPDL_INDEX ();
e9a9ae03 5401 EMACS_TIME t1;
2c5bd608 5402
3de0effb
RS
5403 if (abort_on_gc)
5404 abort ();
5405
9e713715
GM
5406 /* Can't GC if pure storage overflowed because we can't determine
5407 if something is a pure object or not. */
5408 if (pure_bytes_used_before_overflow)
5409 return Qnil;
5410
bbc012e0
KS
5411 CHECK_CONS_LIST ();
5412
3c7e66a8
RS
5413 /* Don't keep undo information around forever.
5414 Do this early on, so it is no problem if the user quits. */
d17337e5
DA
5415 for_each_buffer (nextb)
5416 {
5417 /* If a buffer's undo list is Qt, that means that undo is
5418 turned off in that buffer. Calling truncate_undo_list on
5419 Qt tends to return NULL, which effectively turns undo back on.
5420 So don't call truncate_undo_list if undo_list is Qt. */
5421 if (! NILP (nextb->BUFFER_INTERNAL_FIELD (name))
5422 && ! EQ (nextb->BUFFER_INTERNAL_FIELD (undo_list), Qt))
5423 truncate_undo_list (nextb);
5424
5425 /* Shrink buffer gaps, but skip indirect and dead buffers. */
5426 if (nextb->base_buffer == 0 && !NILP (nextb->BUFFER_INTERNAL_FIELD (name))
5427 && ! nextb->text->inhibit_shrinking)
5428 {
5429 /* If a buffer's gap size is more than 10% of the buffer
5430 size, or larger than 2000 bytes, then shrink it
5431 accordingly. Keep a minimum size of 20 bytes. */
5432 int size = min (2000, max (20, (nextb->text->z_byte / 10)));
3c7e66a8 5433
d17337e5
DA
5434 if (nextb->text->gap_size > size)
5435 {
5436 struct buffer *save_current = current_buffer;
5437 current_buffer = nextb;
5438 make_gap (-(nextb->text->gap_size - size));
5439 current_buffer = save_current;
5440 }
5441 }
5442 }
3c7e66a8 5443
e9a9ae03 5444 t1 = current_emacs_time ();
3c7e66a8 5445
58595309
KH
5446 /* In case user calls debug_print during GC,
5447 don't let that cause a recursive GC. */
5448 consing_since_gc = 0;
5449
6efc7df7
GM
5450 /* Save what's currently displayed in the echo area. */
5451 message_p = push_message ();
c55b0da6 5452 record_unwind_protect (pop_message_unwind, Qnil);
41c28a37 5453
7146af97
JB
5454 /* Save a copy of the contents of the stack, for debugging. */
5455#if MAX_SAVE_STACK > 0
265a9e55 5456 if (NILP (Vpurify_flag))
7146af97 5457 {
dd3f25f7 5458 char *stack;
903fe15d 5459 ptrdiff_t stack_size;
dd3f25f7 5460 if (&stack_top_variable < stack_bottom)
7146af97 5461 {
dd3f25f7
PE
5462 stack = &stack_top_variable;
5463 stack_size = stack_bottom - &stack_top_variable;
5464 }
5465 else
5466 {
5467 stack = stack_bottom;
5468 stack_size = &stack_top_variable - stack_bottom;
5469 }
5470 if (stack_size <= MAX_SAVE_STACK)
7146af97 5471 {
dd3f25f7 5472 if (stack_copy_size < stack_size)
7146af97 5473 {
38182d90 5474 stack_copy = xrealloc (stack_copy, stack_size);
dd3f25f7 5475 stack_copy_size = stack_size;
7146af97 5476 }
dd3f25f7 5477 memcpy (stack_copy, stack, stack_size);
7146af97
JB
5478 }
5479 }
5480#endif /* MAX_SAVE_STACK > 0 */
5481
299585ee 5482 if (garbage_collection_messages)
691c4285 5483 message1_nolog ("Garbage collecting...");
7146af97 5484
6e0fca1d
RS
5485 BLOCK_INPUT;
5486
eec7b73d
RS
5487 shrink_regexp_cache ();
5488
7146af97
JB
5489 gc_in_progress = 1;
5490
c23baf9f 5491 /* clear_marks (); */
7146af97 5492
005ca5c7 5493 /* Mark all the special slots that serve as the roots of accessibility. */
7146af97
JB
5494
5495 for (i = 0; i < staticidx; i++)
49723c04 5496 mark_object (*staticvec[i]);
34400008 5497
126f9c02
SM
5498 for (bind = specpdl; bind != specpdl_ptr; bind++)
5499 {
5500 mark_object (bind->symbol);
5501 mark_object (bind->old_value);
5502 }
6ed8eeff 5503 mark_terminals ();
126f9c02 5504 mark_kboards ();
98a92e2d 5505 mark_ttys ();
126f9c02
SM
5506
5507#ifdef USE_GTK
5508 {
dd4c5104 5509 extern void xg_mark_data (void);
126f9c02
SM
5510 xg_mark_data ();
5511 }
5512#endif
5513
34400008
GM
5514#if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
5515 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
5516 mark_stack ();
5517#else
acf5f7d3
SM
5518 {
5519 register struct gcpro *tail;
5520 for (tail = gcprolist; tail; tail = tail->next)
5521 for (i = 0; i < tail->nvars; i++)
005ca5c7 5522 mark_object (tail->var[i]);
acf5f7d3 5523 }
3e21b6a7 5524 mark_byte_stack ();
b286858c
SM
5525 {
5526 struct catchtag *catch;
5527 struct handler *handler;
177c0ea7 5528
7146af97
JB
5529 for (catch = catchlist; catch; catch = catch->next)
5530 {
49723c04
SM
5531 mark_object (catch->tag);
5532 mark_object (catch->val);
177c0ea7 5533 }
7146af97
JB
5534 for (handler = handlerlist; handler; handler = handler->next)
5535 {
49723c04
SM
5536 mark_object (handler->handler);
5537 mark_object (handler->var);
177c0ea7 5538 }
b286858c 5539 }
b40ea20a 5540 mark_backtrace ();
b286858c 5541#endif
7146af97 5542
454d7973
KS
5543#ifdef HAVE_WINDOW_SYSTEM
5544 mark_fringe_data ();
5545#endif
5546
74c35a48
SM
5547#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5548 mark_stack ();
5549#endif
5550
c37adf23
SM
5551 /* Everything is now marked, except for the things that require special
5552 finalization, i.e. the undo_list.
5553 Look thru every buffer's undo list
4c315bda
RS
5554 for elements that update markers that were not marked,
5555 and delete them. */
d17337e5
DA
5556 for_each_buffer (nextb)
5557 {
5558 /* If a buffer's undo list is Qt, that means that undo is
5559 turned off in that buffer. Calling truncate_undo_list on
5560 Qt tends to return NULL, which effectively turns undo back on.
5561 So don't call truncate_undo_list if undo_list is Qt. */
5562 if (! EQ (nextb->BUFFER_INTERNAL_FIELD (undo_list), Qt))
5563 {
5564 Lisp_Object tail, prev;
5565 tail = nextb->BUFFER_INTERNAL_FIELD (undo_list);
5566 prev = Qnil;
5567 while (CONSP (tail))
5568 {
5569 if (CONSP (XCAR (tail))
5570 && MARKERP (XCAR (XCAR (tail)))
5571 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
5572 {
5573 if (NILP (prev))
5574 nextb->BUFFER_INTERNAL_FIELD (undo_list) = tail = XCDR (tail);
5575 else
5576 {
5577 tail = XCDR (tail);
5578 XSETCDR (prev, tail);
5579 }
5580 }
5581 else
5582 {
5583 prev = tail;
5584 tail = XCDR (tail);
5585 }
5586 }
5587 }
5588 /* Now that we have stripped the elements that need not be in the
5589 undo_list any more, we can finally mark the list. */
5590 mark_object (nextb->BUFFER_INTERNAL_FIELD (undo_list));
5591 }
4c315bda 5592
7146af97
JB
5593 gc_sweep ();
5594
5595 /* Clear the mark bits that we set in certain root slots. */
5596
033a5fa3 5597 unmark_byte_stack ();
3ef06d12
SM
5598 VECTOR_UNMARK (&buffer_defaults);
5599 VECTOR_UNMARK (&buffer_local_symbols);
7146af97 5600
34400008
GM
5601#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
5602 dump_zombies ();
5603#endif
5604
6e0fca1d
RS
5605 UNBLOCK_INPUT;
5606
bbc012e0
KS
5607 CHECK_CONS_LIST ();
5608
c23baf9f 5609 /* clear_marks (); */
7146af97
JB
5610 gc_in_progress = 0;
5611
5612 consing_since_gc = 0;
5613 if (gc_cons_threshold < 10000)
5614 gc_cons_threshold = 10000;
5615
c0c5c8ae 5616 gc_relative_threshold = 0;
96f077ad
SM
5617 if (FLOATP (Vgc_cons_percentage))
5618 { /* Set gc_cons_combined_threshold. */
c0c5c8ae 5619 double tot = 0;
ae35e756
PE
5620
5621 tot += total_conses * sizeof (struct Lisp_Cons);
5622 tot += total_symbols * sizeof (struct Lisp_Symbol);
5623 tot += total_markers * sizeof (union Lisp_Misc);
3ab6e069
DA
5624 tot += total_string_bytes;
5625 tot += total_vector_bytes;
ae35e756
PE
5626 tot += total_floats * sizeof (struct Lisp_Float);
5627 tot += total_intervals * sizeof (struct interval);
5628 tot += total_strings * sizeof (struct Lisp_String);
5629
c0c5c8ae
PE
5630 tot *= XFLOAT_DATA (Vgc_cons_percentage);
5631 if (0 < tot)
5632 {
5633 if (tot < TYPE_MAXIMUM (EMACS_INT))
5634 gc_relative_threshold = tot;
5635 else
5636 gc_relative_threshold = TYPE_MAXIMUM (EMACS_INT);
5637 }
96f077ad
SM
5638 }
5639
299585ee
RS
5640 if (garbage_collection_messages)
5641 {
6efc7df7
GM
5642 if (message_p || minibuf_level > 0)
5643 restore_message ();
299585ee
RS
5644 else
5645 message1_nolog ("Garbage collecting...done");
5646 }
7146af97 5647
98edb5ff 5648 unbind_to (count, Qnil);
2e471eb5 5649
3ab6e069
DA
5650 total[0] = list4 (Qcons, make_number (sizeof (struct Lisp_Cons)),
5651 bounded_number (total_conses),
5652 bounded_number (total_free_conses));
5653
5654 total[1] = list4 (Qsymbol, make_number (sizeof (struct Lisp_Symbol)),
5655 bounded_number (total_symbols),
5656 bounded_number (total_free_symbols));
5657
5658 total[2] = list4 (Qmisc, make_number (sizeof (union Lisp_Misc)),
5659 bounded_number (total_markers),
5660 bounded_number (total_free_markers));
5661
5662 total[3] = list5 (Qstring, make_number (sizeof (struct Lisp_String)),
5663 bounded_number (total_strings),
5664 bounded_number (total_string_bytes),
5665 bounded_number (total_free_strings));
5666
5667 total[4] = list5 (Qvector, make_number (sizeof (struct Lisp_Vector)),
5668 bounded_number (total_vectors),
5669 bounded_number (total_vector_bytes),
5670 bounded_number (total_free_vector_bytes));
5671
5672 total[5] = list4 (Qfloat, make_number (sizeof (struct Lisp_Float)),
5673 bounded_number (total_floats),
5674 bounded_number (total_free_floats));
5675
5676 total[6] = list4 (Qinterval, make_number (sizeof (struct interval)),
5677 bounded_number (total_intervals),
5678 bounded_number (total_free_intervals));
5679
5680 total[7] = list3 (Qbuffer, make_number (sizeof (struct buffer)),
5681 bounded_number (total_buffers));
2e471eb5 5682
34400008 5683#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
7146af97 5684 {
34400008
GM
5685 /* Compute average percentage of zombies. */
5686 double nlive = 0;
177c0ea7 5687
34400008 5688 for (i = 0; i < 7; ++i)
83fc9c63
DL
5689 if (CONSP (total[i]))
5690 nlive += XFASTINT (XCAR (total[i]));
34400008
GM
5691
5692 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
5693 max_live = max (nlive, max_live);
5694 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
5695 max_zombies = max (nzombies, max_zombies);
5696 ++ngcs;
5697 }
5698#endif
7146af97 5699
9e713715
GM
5700 if (!NILP (Vpost_gc_hook))
5701 {
d311d28c 5702 ptrdiff_t gc_count = inhibit_garbage_collection ();
9e713715 5703 safe_run_hooks (Qpost_gc_hook);
ae35e756 5704 unbind_to (gc_count, Qnil);
9e713715 5705 }
2c5bd608
DL
5706
5707 /* Accumulate statistics. */
2c5bd608 5708 if (FLOATP (Vgc_elapsed))
d35af63c 5709 {
e9a9ae03
PE
5710 EMACS_TIME t2 = current_emacs_time ();
5711 EMACS_TIME t3 = sub_emacs_time (t2, t1);
d35af63c
PE
5712 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed)
5713 + EMACS_TIME_TO_DOUBLE (t3));
5714 }
5715
2c5bd608
DL
5716 gcs_done++;
5717
96117bc7 5718 return Flist (sizeof total / sizeof *total, total);
7146af97 5719}
34400008 5720
41c28a37 5721
3770920e
GM
5722/* Mark Lisp objects in glyph matrix MATRIX. Currently the
5723 only interesting objects referenced from glyphs are strings. */
41c28a37
GM
5724
5725static void
971de7fb 5726mark_glyph_matrix (struct glyph_matrix *matrix)
41c28a37
GM
5727{
5728 struct glyph_row *row = matrix->rows;
5729 struct glyph_row *end = row + matrix->nrows;
5730
2e471eb5
GM
5731 for (; row < end; ++row)
5732 if (row->enabled_p)
5733 {
5734 int area;
5735 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
5736 {
5737 struct glyph *glyph = row->glyphs[area];
5738 struct glyph *end_glyph = glyph + row->used[area];
177c0ea7 5739
2e471eb5 5740 for (; glyph < end_glyph; ++glyph)
8e50cc2d 5741 if (STRINGP (glyph->object)
2e471eb5 5742 && !STRING_MARKED_P (XSTRING (glyph->object)))
49723c04 5743 mark_object (glyph->object);
2e471eb5
GM
5744 }
5745 }
41c28a37
GM
5746}
5747
34400008 5748
41c28a37
GM
5749/* Mark Lisp faces in the face cache C. */
5750
5751static void
971de7fb 5752mark_face_cache (struct face_cache *c)
41c28a37
GM
5753{
5754 if (c)
5755 {
5756 int i, j;
5757 for (i = 0; i < c->used; ++i)
5758 {
5759 struct face *face = FACE_FROM_ID (c->f, i);
5760
5761 if (face)
5762 {
5763 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
49723c04 5764 mark_object (face->lface[j]);
41c28a37
GM
5765 }
5766 }
5767 }
5768}
5769
5770
7146af97 5771\f
1a4f1e2c 5772/* Mark reference to a Lisp_Object.
2e471eb5
GM
5773 If the object referred to has not been seen yet, recursively mark
5774 all the references contained in it. */
7146af97 5775
785cd37f 5776#define LAST_MARKED_SIZE 500
d3d47262 5777static Lisp_Object last_marked[LAST_MARKED_SIZE];
244ed907 5778static int last_marked_index;
785cd37f 5779
1342fc6f
RS
5780/* For debugging--call abort when we cdr down this many
5781 links of a list, in mark_object. In debugging,
5782 the call to abort will hit a breakpoint.
5783 Normally this is zero and the check never goes off. */
903fe15d 5784ptrdiff_t mark_object_loop_halt EXTERNALLY_VISIBLE;
1342fc6f 5785
8f11f7ec 5786static void
971de7fb 5787mark_vectorlike (struct Lisp_Vector *ptr)
d2029e5b 5788{
d311d28c
PE
5789 ptrdiff_t size = ptr->header.size;
5790 ptrdiff_t i;
d2029e5b 5791
8f11f7ec 5792 eassert (!VECTOR_MARKED_P (ptr));
7555c33f 5793 VECTOR_MARK (ptr); /* Else mark it. */
d2029e5b
SM
5794 if (size & PSEUDOVECTOR_FLAG)
5795 size &= PSEUDOVECTOR_SIZE_MASK;
d3d47262 5796
d2029e5b
SM
5797 /* Note that this size is not the memory-footprint size, but only
5798 the number of Lisp_Object fields that we should trace.
5799 The distinction is used e.g. by Lisp_Process which places extra
7555c33f
SM
5800 non-Lisp_Object fields at the end of the structure... */
5801 for (i = 0; i < size; i++) /* ...and then mark its elements. */
d2029e5b 5802 mark_object (ptr->contents[i]);
d2029e5b
SM
5803}
5804
58026347
KH
5805/* Like mark_vectorlike but optimized for char-tables (and
5806 sub-char-tables) assuming that the contents are mostly integers or
5807 symbols. */
5808
5809static void
971de7fb 5810mark_char_table (struct Lisp_Vector *ptr)
58026347 5811{
b6439961
PE
5812 int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
5813 int i;
58026347 5814
8f11f7ec 5815 eassert (!VECTOR_MARKED_P (ptr));
58026347
KH
5816 VECTOR_MARK (ptr);
5817 for (i = 0; i < size; i++)
5818 {
5819 Lisp_Object val = ptr->contents[i];
5820
ef1b0ba7 5821 if (INTEGERP (val) || (SYMBOLP (val) && XSYMBOL (val)->gcmarkbit))
58026347
KH
5822 continue;
5823 if (SUB_CHAR_TABLE_P (val))
5824 {
5825 if (! VECTOR_MARKED_P (XVECTOR (val)))
5826 mark_char_table (XVECTOR (val));
5827 }
5828 else
5829 mark_object (val);
5830 }
5831}
5832
36429c89
DA
5833/* Mark the chain of overlays starting at PTR. */
5834
5835static void
5836mark_overlay (struct Lisp_Overlay *ptr)
5837{
5838 for (; ptr && !ptr->gcmarkbit; ptr = ptr->next)
5839 {
5840 ptr->gcmarkbit = 1;
5841 mark_object (ptr->start);
5842 mark_object (ptr->end);
5843 mark_object (ptr->plist);
5844 }
5845}
5846
5847/* Mark Lisp_Objects and special pointers in BUFFER. */
cf5c0175
DA
5848
5849static void
5850mark_buffer (struct buffer *buffer)
5851{
36429c89
DA
5852 /* This is handled much like other pseudovectors... */
5853 mark_vectorlike ((struct Lisp_Vector *) buffer);
cf5c0175 5854
36429c89 5855 /* ...but there are some buffer-specific things. */
cf5c0175
DA
5856
5857 MARK_INTERVAL_TREE (BUF_INTERVALS (buffer));
5858
5859 /* For now, we just don't mark the undo_list. It's done later in
5860 a special way just before the sweep phase, and after stripping
5861 some of its elements that are not needed any more. */
5862
36429c89
DA
5863 mark_overlay (buffer->overlays_before);
5864 mark_overlay (buffer->overlays_after);
cf5c0175
DA
5865
5866 /* If this is an indirect buffer, mark its base buffer. */
5867 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
5868 mark_buffer (buffer->base_buffer);
5869}
5870
5871/* Determine type of generic Lisp_Object and mark it accordingly. */
5872
41c28a37 5873void
971de7fb 5874mark_object (Lisp_Object arg)
7146af97 5875{
49723c04 5876 register Lisp_Object obj = arg;
4f5c1376
GM
5877#ifdef GC_CHECK_MARKED_OBJECTS
5878 void *po;
5879 struct mem_node *m;
5880#endif
903fe15d 5881 ptrdiff_t cdr_count = 0;
7146af97 5882
9149e743 5883 loop:
7146af97 5884
1f0b3fd2 5885 if (PURE_POINTER_P (XPNTR (obj)))
7146af97
JB
5886 return;
5887
49723c04 5888 last_marked[last_marked_index++] = obj;
785cd37f
RS
5889 if (last_marked_index == LAST_MARKED_SIZE)
5890 last_marked_index = 0;
5891
4f5c1376
GM
5892 /* Perform some sanity checks on the objects marked here. Abort if
5893 we encounter an object we know is bogus. This increases GC time
5894 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
5895#ifdef GC_CHECK_MARKED_OBJECTS
5896
5897 po = (void *) XPNTR (obj);
5898
5899 /* Check that the object pointed to by PO is known to be a Lisp
5900 structure allocated from the heap. */
5901#define CHECK_ALLOCATED() \
5902 do { \
5903 m = mem_find (po); \
5904 if (m == MEM_NIL) \
5905 abort (); \
5906 } while (0)
5907
5908 /* Check that the object pointed to by PO is live, using predicate
5909 function LIVEP. */
5910#define CHECK_LIVE(LIVEP) \
5911 do { \
5912 if (!LIVEP (m, po)) \
5913 abort (); \
5914 } while (0)
5915
5916 /* Check both of the above conditions. */
5917#define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
5918 do { \
5919 CHECK_ALLOCATED (); \
5920 CHECK_LIVE (LIVEP); \
5921 } while (0) \
177c0ea7 5922
4f5c1376 5923#else /* not GC_CHECK_MARKED_OBJECTS */
177c0ea7 5924
4f5c1376
GM
5925#define CHECK_LIVE(LIVEP) (void) 0
5926#define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
177c0ea7 5927
4f5c1376
GM
5928#endif /* not GC_CHECK_MARKED_OBJECTS */
5929
8e50cc2d 5930 switch (SWITCH_ENUM_CAST (XTYPE (obj)))
7146af97
JB
5931 {
5932 case Lisp_String:
5933 {
5934 register struct Lisp_String *ptr = XSTRING (obj);
8f11f7ec
SM
5935 if (STRING_MARKED_P (ptr))
5936 break;
4f5c1376 5937 CHECK_ALLOCATED_AND_LIVE (live_string_p);
2e471eb5 5938 MARK_STRING (ptr);
7555c33f 5939 MARK_INTERVAL_TREE (ptr->intervals);
361b097f 5940#ifdef GC_CHECK_STRING_BYTES
676a7251 5941 /* Check that the string size recorded in the string is the
7555c33f 5942 same as the one recorded in the sdata structure. */
676a7251 5943 CHECK_STRING_BYTES (ptr);
361b097f 5944#endif /* GC_CHECK_STRING_BYTES */
7146af97
JB
5945 }
5946 break;
5947
76437631 5948 case Lisp_Vectorlike:
cf5c0175
DA
5949 {
5950 register struct Lisp_Vector *ptr = XVECTOR (obj);
5951 register ptrdiff_t pvectype;
5952
5953 if (VECTOR_MARKED_P (ptr))
5954 break;
5955
4f5c1376 5956#ifdef GC_CHECK_MARKED_OBJECTS
cf5c0175
DA
5957 m = mem_find (po);
5958 if (m == MEM_NIL && !SUBRP (obj)
5959 && po != &buffer_defaults
5960 && po != &buffer_local_symbols)
5961 abort ();
4f5c1376 5962#endif /* GC_CHECK_MARKED_OBJECTS */
177c0ea7 5963
cf5c0175 5964 if (ptr->header.size & PSEUDOVECTOR_FLAG)
ee28be33
SM
5965 pvectype = ((ptr->header.size & PVEC_TYPE_MASK)
5966 >> PSEUDOVECTOR_SIZE_BITS);
cf5c0175
DA
5967 else
5968 pvectype = 0;
5969
cf5c0175
DA
5970 if (pvectype != PVEC_SUBR && pvectype != PVEC_BUFFER)
5971 CHECK_LIVE (live_vector_p);
169ee243 5972
ee28be33 5973 switch (pvectype)
cf5c0175 5974 {
ee28be33 5975 case PVEC_BUFFER:
cf5c0175
DA
5976#ifdef GC_CHECK_MARKED_OBJECTS
5977 if (po != &buffer_defaults && po != &buffer_local_symbols)
5978 {
d17337e5
DA
5979 struct buffer *b;
5980 for_each_buffer (b)
5981 if (b == po)
5982 break;
cf5c0175
DA
5983 if (b == NULL)
5984 abort ();
5985 }
5986#endif /* GC_CHECK_MARKED_OBJECTS */
5987 mark_buffer ((struct buffer *) ptr);
ee28be33
SM
5988 break;
5989
5990 case PVEC_COMPILED:
5991 { /* We could treat this just like a vector, but it is better
5992 to save the COMPILED_CONSTANTS element for last and avoid
5993 recursion there. */
5994 int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
5995 int i;
5996
5997 VECTOR_MARK (ptr);
5998 for (i = 0; i < size; i++)
5999 if (i != COMPILED_CONSTANTS)
6000 mark_object (ptr->contents[i]);
6001 if (size > COMPILED_CONSTANTS)
6002 {
6003 obj = ptr->contents[COMPILED_CONSTANTS];
6004 goto loop;
6005 }
6006 }
6007 break;
cf5c0175 6008
ee28be33
SM
6009 case PVEC_FRAME:
6010 {
6011 mark_vectorlike (ptr);
6012 mark_face_cache (((struct frame *) ptr)->face_cache);
6013 }
6014 break;
cf5c0175 6015
ee28be33
SM
6016 case PVEC_WINDOW:
6017 {
6018 struct window *w = (struct window *) ptr;
cf5c0175 6019
ee28be33
SM
6020 mark_vectorlike (ptr);
6021 /* Mark glyphs for leaf windows. Marking window
6022 matrices is sufficient because frame matrices
6023 use the same glyph memory. */
6024 if (NILP (w->hchild) && NILP (w->vchild) && w->current_matrix)
6025 {
6026 mark_glyph_matrix (w->current_matrix);
6027 mark_glyph_matrix (w->desired_matrix);
6028 }
6029 }
6030 break;
cf5c0175 6031
ee28be33
SM
6032 case PVEC_HASH_TABLE:
6033 {
6034 struct Lisp_Hash_Table *h = (struct Lisp_Hash_Table *) ptr;
cf5c0175 6035
ee28be33
SM
6036 mark_vectorlike (ptr);
6037 /* If hash table is not weak, mark all keys and values.
6038 For weak tables, mark only the vector. */
6039 if (NILP (h->weak))
6040 mark_object (h->key_and_value);
6041 else
6042 VECTOR_MARK (XVECTOR (h->key_and_value));
6043 }
6044 break;
cf5c0175 6045
ee28be33
SM
6046 case PVEC_CHAR_TABLE:
6047 mark_char_table (ptr);
6048 break;
cf5c0175 6049
ee28be33
SM
6050 case PVEC_BOOL_VECTOR:
6051 /* No Lisp_Objects to mark in a bool vector. */
6052 VECTOR_MARK (ptr);
6053 break;
cf5c0175 6054
ee28be33
SM
6055 case PVEC_SUBR:
6056 break;
cf5c0175 6057
ee28be33
SM
6058 case PVEC_FREE:
6059 abort ();
cf5c0175 6060
ee28be33
SM
6061 default:
6062 mark_vectorlike (ptr);
6063 }
cf5c0175 6064 }
169ee243 6065 break;
7146af97 6066
7146af97
JB
6067 case Lisp_Symbol:
6068 {
c70bbf06 6069 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
7146af97
JB
6070 struct Lisp_Symbol *ptrx;
6071
8f11f7ec
SM
6072 if (ptr->gcmarkbit)
6073 break;
4f5c1376 6074 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
2336fe58 6075 ptr->gcmarkbit = 1;
49723c04
SM
6076 mark_object (ptr->function);
6077 mark_object (ptr->plist);
ce5b453a
SM
6078 switch (ptr->redirect)
6079 {
6080 case SYMBOL_PLAINVAL: mark_object (SYMBOL_VAL (ptr)); break;
6081 case SYMBOL_VARALIAS:
6082 {
6083 Lisp_Object tem;
6084 XSETSYMBOL (tem, SYMBOL_ALIAS (ptr));
6085 mark_object (tem);
6086 break;
6087 }
6088 case SYMBOL_LOCALIZED:
6089 {
6090 struct Lisp_Buffer_Local_Value *blv = SYMBOL_BLV (ptr);
6091 /* If the value is forwarded to a buffer or keyboard field,
6092 these are marked when we see the corresponding object.
6093 And if it's forwarded to a C variable, either it's not
6094 a Lisp_Object var, or it's staticpro'd already. */
6095 mark_object (blv->where);
6096 mark_object (blv->valcell);
6097 mark_object (blv->defcell);
6098 break;
6099 }
6100 case SYMBOL_FORWARDED:
6101 /* If the value is forwarded to a buffer or keyboard field,
6102 these are marked when we see the corresponding object.
6103 And if it's forwarded to a C variable, either it's not
6104 a Lisp_Object var, or it's staticpro'd already. */
6105 break;
6106 default: abort ();
6107 }
8fe5665d
KR
6108 if (!PURE_POINTER_P (XSTRING (ptr->xname)))
6109 MARK_STRING (XSTRING (ptr->xname));
d5db4077 6110 MARK_INTERVAL_TREE (STRING_INTERVALS (ptr->xname));
177c0ea7 6111
7146af97
JB
6112 ptr = ptr->next;
6113 if (ptr)
6114 {
7555c33f 6115 ptrx = ptr; /* Use of ptrx avoids compiler bug on Sun. */
7146af97 6116 XSETSYMBOL (obj, ptrx);
49723c04 6117 goto loop;
7146af97
JB
6118 }
6119 }
6120 break;
6121
a0a38eb7 6122 case Lisp_Misc:
4f5c1376 6123 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
b766f870 6124
7555c33f
SM
6125 if (XMISCANY (obj)->gcmarkbit)
6126 break;
6127
6128 switch (XMISCTYPE (obj))
a0a38eb7 6129 {
7555c33f
SM
6130 case Lisp_Misc_Marker:
6131 /* DO NOT mark thru the marker's chain.
6132 The buffer's markers chain does not preserve markers from gc;
6133 instead, markers are removed from the chain when freed by gc. */
36429c89 6134 XMISCANY (obj)->gcmarkbit = 1;
7555c33f 6135 break;
465edf35 6136
7555c33f
SM
6137 case Lisp_Misc_Save_Value:
6138 XMISCANY (obj)->gcmarkbit = 1;
9ea306d1 6139#if GC_MARK_STACK
7555c33f
SM
6140 {
6141 register struct Lisp_Save_Value *ptr = XSAVE_VALUE (obj);
6142 /* If DOGC is set, POINTER is the address of a memory
6143 area containing INTEGER potential Lisp_Objects. */
6144 if (ptr->dogc)
6145 {
6146 Lisp_Object *p = (Lisp_Object *) ptr->pointer;
6147 ptrdiff_t nelt;
6148 for (nelt = ptr->integer; nelt > 0; nelt--, p++)
6149 mark_maybe_object (*p);
6150 }
6151 }
9ea306d1 6152#endif
7555c33f
SM
6153 break;
6154
6155 case Lisp_Misc_Overlay:
6156 mark_overlay (XOVERLAY (obj));
6157 break;
6158
6159 default:
6160 abort ();
a0a38eb7 6161 }
7146af97
JB
6162 break;
6163
6164 case Lisp_Cons:
7146af97
JB
6165 {
6166 register struct Lisp_Cons *ptr = XCONS (obj);
8f11f7ec
SM
6167 if (CONS_MARKED_P (ptr))
6168 break;
4f5c1376 6169 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
08b7c2cb 6170 CONS_MARK (ptr);
c54ca951 6171 /* If the cdr is nil, avoid recursion for the car. */
28a099a4 6172 if (EQ (ptr->u.cdr, Qnil))
c54ca951 6173 {
49723c04 6174 obj = ptr->car;
1342fc6f 6175 cdr_count = 0;
c54ca951
RS
6176 goto loop;
6177 }
49723c04 6178 mark_object (ptr->car);
28a099a4 6179 obj = ptr->u.cdr;
1342fc6f
RS
6180 cdr_count++;
6181 if (cdr_count == mark_object_loop_halt)
6182 abort ();
7146af97
JB
6183 goto loop;
6184 }
6185
7146af97 6186 case Lisp_Float:
4f5c1376 6187 CHECK_ALLOCATED_AND_LIVE (live_float_p);
ab6780cd 6188 FLOAT_MARK (XFLOAT (obj));
7146af97 6189 break;
7146af97 6190
2de9f71c 6191 case_Lisp_Int:
7146af97
JB
6192 break;
6193
6194 default:
6195 abort ();
6196 }
4f5c1376
GM
6197
6198#undef CHECK_LIVE
6199#undef CHECK_ALLOCATED
6200#undef CHECK_ALLOCATED_AND_LIVE
7146af97 6201}
4a729fd8 6202/* Mark the Lisp pointers in the terminal objects.
0ba2624f 6203 Called by Fgarbage_collect. */
4a729fd8 6204
4a729fd8
SM
6205static void
6206mark_terminals (void)
6207{
6208 struct terminal *t;
6209 for (t = terminal_list; t; t = t->next_terminal)
6210 {
6211 eassert (t->name != NULL);
354884c4 6212#ifdef HAVE_WINDOW_SYSTEM
96ad0af7
YM
6213 /* If a terminal object is reachable from a stacpro'ed object,
6214 it might have been marked already. Make sure the image cache
6215 gets marked. */
6216 mark_image_cache (t->image_cache);
354884c4 6217#endif /* HAVE_WINDOW_SYSTEM */
96ad0af7
YM
6218 if (!VECTOR_MARKED_P (t))
6219 mark_vectorlike ((struct Lisp_Vector *)t);
4a729fd8
SM
6220 }
6221}
6222
6223
084b1a0c 6224
41c28a37
GM
6225/* Value is non-zero if OBJ will survive the current GC because it's
6226 either marked or does not need to be marked to survive. */
6227
6228int
971de7fb 6229survives_gc_p (Lisp_Object obj)
41c28a37
GM
6230{
6231 int survives_p;
177c0ea7 6232
8e50cc2d 6233 switch (XTYPE (obj))
41c28a37 6234 {
2de9f71c 6235 case_Lisp_Int:
41c28a37
GM
6236 survives_p = 1;
6237 break;
6238
6239 case Lisp_Symbol:
2336fe58 6240 survives_p = XSYMBOL (obj)->gcmarkbit;
41c28a37
GM
6241 break;
6242
6243 case Lisp_Misc:
67ee9f6e 6244 survives_p = XMISCANY (obj)->gcmarkbit;
41c28a37
GM
6245 break;
6246
6247 case Lisp_String:
08b7c2cb 6248 survives_p = STRING_MARKED_P (XSTRING (obj));
41c28a37
GM
6249 break;
6250
6251 case Lisp_Vectorlike:
8e50cc2d 6252 survives_p = SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
41c28a37
GM
6253 break;
6254
6255 case Lisp_Cons:
08b7c2cb 6256 survives_p = CONS_MARKED_P (XCONS (obj));
41c28a37
GM
6257 break;
6258
41c28a37 6259 case Lisp_Float:
ab6780cd 6260 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
41c28a37 6261 break;
41c28a37
GM
6262
6263 default:
6264 abort ();
6265 }
6266
34400008 6267 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
41c28a37
GM
6268}
6269
6270
7146af97 6271\f
1a4f1e2c 6272/* Sweep: find all structures not marked, and free them. */
7146af97
JB
6273
6274static void
971de7fb 6275gc_sweep (void)
7146af97 6276{
41c28a37
GM
6277 /* Remove or mark entries in weak hash tables.
6278 This must be done before any object is unmarked. */
6279 sweep_weak_hash_tables ();
6280
2e471eb5 6281 sweep_strings ();
676a7251
GM
6282#ifdef GC_CHECK_STRING_BYTES
6283 if (!noninteractive)
6284 check_string_bytes (1);
6285#endif
7146af97
JB
6286
6287 /* Put all unmarked conses on free list */
6288 {
6289 register struct cons_block *cblk;
6ca94ac9 6290 struct cons_block **cprev = &cons_block;
7146af97 6291 register int lim = cons_block_index;
c0c5c8ae 6292 EMACS_INT num_free = 0, num_used = 0;
7146af97
JB
6293
6294 cons_free_list = 0;
177c0ea7 6295
6ca94ac9 6296 for (cblk = cons_block; cblk; cblk = *cprev)
7146af97 6297 {
3ae2e3a3 6298 register int i = 0;
6ca94ac9 6299 int this_free = 0;
3ae2e3a3
RS
6300 int ilim = (lim + BITS_PER_INT - 1) / BITS_PER_INT;
6301
6302 /* Scan the mark bits an int at a time. */
47ea7f44 6303 for (i = 0; i < ilim; i++)
3ae2e3a3
RS
6304 {
6305 if (cblk->gcmarkbits[i] == -1)
6306 {
6307 /* Fast path - all cons cells for this int are marked. */
6308 cblk->gcmarkbits[i] = 0;
6309 num_used += BITS_PER_INT;
6310 }
6311 else
6312 {
6313 /* Some cons cells for this int are not marked.
6314 Find which ones, and free them. */
6315 int start, pos, stop;
6316
6317 start = i * BITS_PER_INT;
6318 stop = lim - start;
6319 if (stop > BITS_PER_INT)
6320 stop = BITS_PER_INT;
6321 stop += start;
6322
6323 for (pos = start; pos < stop; pos++)
6324 {
6325 if (!CONS_MARKED_P (&cblk->conses[pos]))
6326 {
6327 this_free++;
6328 cblk->conses[pos].u.chain = cons_free_list;
6329 cons_free_list = &cblk->conses[pos];
34400008 6330#if GC_MARK_STACK
3ae2e3a3 6331 cons_free_list->car = Vdead;
34400008 6332#endif
3ae2e3a3
RS
6333 }
6334 else
6335 {
6336 num_used++;
6337 CONS_UNMARK (&cblk->conses[pos]);
6338 }
6339 }
6340 }
6341 }
6342
7146af97 6343 lim = CONS_BLOCK_SIZE;
6ca94ac9
KH
6344 /* If this block contains only free conses and we have already
6345 seen more than two blocks worth of free conses then deallocate
6346 this block. */
6feef451 6347 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
6ca94ac9 6348 {
6ca94ac9
KH
6349 *cprev = cblk->next;
6350 /* Unhook from the free list. */
28a099a4 6351 cons_free_list = cblk->conses[0].u.chain;
08b7c2cb 6352 lisp_align_free (cblk);
6ca94ac9
KH
6353 }
6354 else
6feef451
AS
6355 {
6356 num_free += this_free;
6357 cprev = &cblk->next;
6358 }
7146af97
JB
6359 }
6360 total_conses = num_used;
6361 total_free_conses = num_free;
6362 }
6363
7146af97
JB
6364 /* Put all unmarked floats on free list */
6365 {
6366 register struct float_block *fblk;
6ca94ac9 6367 struct float_block **fprev = &float_block;
7146af97 6368 register int lim = float_block_index;
c0c5c8ae 6369 EMACS_INT num_free = 0, num_used = 0;
7146af97
JB
6370
6371 float_free_list = 0;
177c0ea7 6372
6ca94ac9 6373 for (fblk = float_block; fblk; fblk = *fprev)
7146af97
JB
6374 {
6375 register int i;
6ca94ac9 6376 int this_free = 0;
7146af97 6377 for (i = 0; i < lim; i++)
ab6780cd 6378 if (!FLOAT_MARKED_P (&fblk->floats[i]))
7146af97 6379 {
6ca94ac9 6380 this_free++;
28a099a4 6381 fblk->floats[i].u.chain = float_free_list;
7146af97
JB
6382 float_free_list = &fblk->floats[i];
6383 }
6384 else
6385 {
6386 num_used++;
ab6780cd 6387 FLOAT_UNMARK (&fblk->floats[i]);
7146af97
JB
6388 }
6389 lim = FLOAT_BLOCK_SIZE;
6ca94ac9
KH
6390 /* If this block contains only free floats and we have already
6391 seen more than two blocks worth of free floats then deallocate
6392 this block. */
6feef451 6393 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
6ca94ac9 6394 {
6ca94ac9
KH
6395 *fprev = fblk->next;
6396 /* Unhook from the free list. */
28a099a4 6397 float_free_list = fblk->floats[0].u.chain;
ab6780cd 6398 lisp_align_free (fblk);
6ca94ac9
KH
6399 }
6400 else
6feef451
AS
6401 {
6402 num_free += this_free;
6403 fprev = &fblk->next;
6404 }
7146af97
JB
6405 }
6406 total_floats = num_used;
6407 total_free_floats = num_free;
6408 }
7146af97 6409
d5e35230
JA
6410 /* Put all unmarked intervals on free list */
6411 {
6412 register struct interval_block *iblk;
6ca94ac9 6413 struct interval_block **iprev = &interval_block;
d5e35230 6414 register int lim = interval_block_index;
c0c5c8ae 6415 EMACS_INT num_free = 0, num_used = 0;
d5e35230
JA
6416
6417 interval_free_list = 0;
6418
6ca94ac9 6419 for (iblk = interval_block; iblk; iblk = *iprev)
d5e35230
JA
6420 {
6421 register int i;
6ca94ac9 6422 int this_free = 0;
d5e35230
JA
6423
6424 for (i = 0; i < lim; i++)
6425 {
2336fe58 6426 if (!iblk->intervals[i].gcmarkbit)
d5e35230 6427 {
439d5cb4 6428 SET_INTERVAL_PARENT (&iblk->intervals[i], interval_free_list);
d5e35230 6429 interval_free_list = &iblk->intervals[i];
6ca94ac9 6430 this_free++;
d5e35230
JA
6431 }
6432 else
6433 {
6434 num_used++;
2336fe58 6435 iblk->intervals[i].gcmarkbit = 0;
d5e35230
JA
6436 }
6437 }
6438 lim = INTERVAL_BLOCK_SIZE;
6ca94ac9
KH
6439 /* If this block contains only free intervals and we have already
6440 seen more than two blocks worth of free intervals then
6441 deallocate this block. */
6feef451 6442 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
6ca94ac9 6443 {
6ca94ac9
KH
6444 *iprev = iblk->next;
6445 /* Unhook from the free list. */
439d5cb4 6446 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
c8099634 6447 lisp_free (iblk);
6ca94ac9
KH
6448 }
6449 else
6feef451
AS
6450 {
6451 num_free += this_free;
6452 iprev = &iblk->next;
6453 }
d5e35230
JA
6454 }
6455 total_intervals = num_used;
6456 total_free_intervals = num_free;
6457 }
d5e35230 6458
7146af97
JB
6459 /* Put all unmarked symbols on free list */
6460 {
6461 register struct symbol_block *sblk;
6ca94ac9 6462 struct symbol_block **sprev = &symbol_block;
7146af97 6463 register int lim = symbol_block_index;
c0c5c8ae 6464 EMACS_INT num_free = 0, num_used = 0;
7146af97 6465
d285b373 6466 symbol_free_list = NULL;
177c0ea7 6467
6ca94ac9 6468 for (sblk = symbol_block; sblk; sblk = *sprev)
7146af97 6469 {
6ca94ac9 6470 int this_free = 0;
d55c12ed
AS
6471 union aligned_Lisp_Symbol *sym = sblk->symbols;
6472 union aligned_Lisp_Symbol *end = sym + lim;
d285b373
GM
6473
6474 for (; sym < end; ++sym)
6475 {
20035321
SM
6476 /* Check if the symbol was created during loadup. In such a case
6477 it might be pointed to by pure bytecode which we don't trace,
6478 so we conservatively assume that it is live. */
d55c12ed 6479 int pure_p = PURE_POINTER_P (XSTRING (sym->s.xname));
177c0ea7 6480
d55c12ed 6481 if (!sym->s.gcmarkbit && !pure_p)
d285b373 6482 {
d55c12ed
AS
6483 if (sym->s.redirect == SYMBOL_LOCALIZED)
6484 xfree (SYMBOL_BLV (&sym->s));
6485 sym->s.next = symbol_free_list;
6486 symbol_free_list = &sym->s;
34400008 6487#if GC_MARK_STACK
d285b373 6488 symbol_free_list->function = Vdead;
34400008 6489#endif
d285b373
GM
6490 ++this_free;
6491 }
6492 else
6493 {
6494 ++num_used;
6495 if (!pure_p)
d55c12ed
AS
6496 UNMARK_STRING (XSTRING (sym->s.xname));
6497 sym->s.gcmarkbit = 0;
d285b373
GM
6498 }
6499 }
177c0ea7 6500
7146af97 6501 lim = SYMBOL_BLOCK_SIZE;
6ca94ac9
KH
6502 /* If this block contains only free symbols and we have already
6503 seen more than two blocks worth of free symbols then deallocate
6504 this block. */
6feef451 6505 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
6ca94ac9 6506 {
6ca94ac9
KH
6507 *sprev = sblk->next;
6508 /* Unhook from the free list. */
d55c12ed 6509 symbol_free_list = sblk->symbols[0].s.next;
c8099634 6510 lisp_free (sblk);
6ca94ac9
KH
6511 }
6512 else
6feef451
AS
6513 {
6514 num_free += this_free;
6515 sprev = &sblk->next;
6516 }
7146af97
JB
6517 }
6518 total_symbols = num_used;
6519 total_free_symbols = num_free;
6520 }
6521
a9faeabe
RS
6522 /* Put all unmarked misc's on free list.
6523 For a marker, first unchain it from the buffer it points into. */
7146af97
JB
6524 {
6525 register struct marker_block *mblk;
6ca94ac9 6526 struct marker_block **mprev = &marker_block;
7146af97 6527 register int lim = marker_block_index;
c0c5c8ae 6528 EMACS_INT num_free = 0, num_used = 0;
7146af97
JB
6529
6530 marker_free_list = 0;
177c0ea7 6531
6ca94ac9 6532 for (mblk = marker_block; mblk; mblk = *mprev)
7146af97
JB
6533 {
6534 register int i;
6ca94ac9 6535 int this_free = 0;
fa05e253 6536
7146af97 6537 for (i = 0; i < lim; i++)
465edf35 6538 {
d55c12ed 6539 if (!mblk->markers[i].m.u_any.gcmarkbit)
465edf35 6540 {
d55c12ed
AS
6541 if (mblk->markers[i].m.u_any.type == Lisp_Misc_Marker)
6542 unchain_marker (&mblk->markers[i].m.u_marker);
fa05e253
RS
6543 /* Set the type of the freed object to Lisp_Misc_Free.
6544 We could leave the type alone, since nobody checks it,
465edf35 6545 but this might catch bugs faster. */
d55c12ed
AS
6546 mblk->markers[i].m.u_marker.type = Lisp_Misc_Free;
6547 mblk->markers[i].m.u_free.chain = marker_free_list;
6548 marker_free_list = &mblk->markers[i].m;
6ca94ac9 6549 this_free++;
465edf35
KH
6550 }
6551 else
6552 {
6553 num_used++;
d55c12ed 6554 mblk->markers[i].m.u_any.gcmarkbit = 0;
465edf35
KH
6555 }
6556 }
7146af97 6557 lim = MARKER_BLOCK_SIZE;
6ca94ac9
KH
6558 /* If this block contains only free markers and we have already
6559 seen more than two blocks worth of free markers then deallocate
6560 this block. */
6feef451 6561 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
6ca94ac9 6562 {
6ca94ac9
KH
6563 *mprev = mblk->next;
6564 /* Unhook from the free list. */
d55c12ed 6565 marker_free_list = mblk->markers[0].m.u_free.chain;
c8099634 6566 lisp_free (mblk);
6ca94ac9
KH
6567 }
6568 else
6feef451
AS
6569 {
6570 num_free += this_free;
6571 mprev = &mblk->next;
6572 }
7146af97
JB
6573 }
6574
6575 total_markers = num_used;
6576 total_free_markers = num_free;
6577 }
6578
6579 /* Free all unmarked buffers */
6580 {
6581 register struct buffer *buffer = all_buffers, *prev = 0, *next;
6582
3ab6e069 6583 total_buffers = 0;
7146af97 6584 while (buffer)
3ef06d12 6585 if (!VECTOR_MARKED_P (buffer))
7146af97
JB
6586 {
6587 if (prev)
eab3844f 6588 prev->header.next = buffer->header.next;
7146af97 6589 else
eab3844f
PE
6590 all_buffers = buffer->header.next.buffer;
6591 next = buffer->header.next.buffer;
34400008 6592 lisp_free (buffer);
7146af97
JB
6593 buffer = next;
6594 }
6595 else
6596 {
3ef06d12 6597 VECTOR_UNMARK (buffer);
30e3190a 6598 UNMARK_BALANCE_INTERVALS (BUF_INTERVALS (buffer));
3ab6e069 6599 total_buffers++;
eab3844f 6600 prev = buffer, buffer = buffer->header.next.buffer;
7146af97
JB
6601 }
6602 }
6603
f3372c87 6604 sweep_vectors ();
177c0ea7 6605
676a7251
GM
6606#ifdef GC_CHECK_STRING_BYTES
6607 if (!noninteractive)
6608 check_string_bytes (1);
6609#endif
7146af97 6610}
7146af97 6611
7146af97 6612
7146af97 6613
7146af97 6614\f
20d24714
JB
6615/* Debugging aids. */
6616
31ce1c91 6617DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
a6266d23 6618 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
228299fa 6619This may be helpful in debugging Emacs's memory usage.
7ee72033 6620We divide the value by 1024 to make sure it fits in a Lisp integer. */)
5842a27b 6621 (void)
20d24714
JB
6622{
6623 Lisp_Object end;
6624
d01a7826 6625 XSETINT (end, (intptr_t) (char *) sbrk (0) / 1024);
20d24714
JB
6626
6627 return end;
6628}
6629
7098646f 6630DEFUN ("memory-free", Fmemory_free, Smemory_free, 0, 0, 0,
6d02fe5b
PE
6631 doc: /* Return a list (E H) of two measures of free memory.
6632E counts free lists maintained by Emacs itself. H counts the heap,
6633freed by Emacs but not released to the operating system; this is zero
6634if heap statistics are not available. Both counters are in units of
66351024 bytes, rounded up. */)
7098646f
DA
6636 (void)
6637{
6d02fe5b
PE
6638 /* Make the return value first, so that its storage is accounted for. */
6639 Lisp_Object val = Fmake_list (make_number (2), make_number (0));
6640
6641 XSETCAR (val,
3ab6e069
DA
6642 bounded_number
6643 ((total_free_conses * sizeof (struct Lisp_Cons)
6644 + total_free_markers * sizeof (union Lisp_Misc)
6645 + total_free_symbols * sizeof (struct Lisp_Symbol)
6646 + total_free_floats * sizeof (struct Lisp_Float)
6647 + total_free_intervals * sizeof (struct interval)
6648 + total_free_strings * sizeof (struct Lisp_String)
6649 + total_free_vector_bytes
6650 + 1023) >> 10));
7098646f 6651#ifdef DOUG_LEA_MALLOC
3ab6e069 6652 XSETCAR (XCDR (val), bounded_number ((mallinfo ().fordblks + 1023) >> 10));
7098646f 6653#endif
6d02fe5b 6654 return val;
7098646f
DA
6655}
6656
310ea200 6657DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
a6266d23 6658 doc: /* Return a list of counters that measure how much consing there has been.
228299fa
GM
6659Each of these counters increments for a certain kind of object.
6660The counters wrap around from the largest positive integer to zero.
6661Garbage collection does not decrease them.
6662The elements of the value are as follows:
6663 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
6664All are in units of 1 = one object consed
6665except for VECTOR-CELLS and STRING-CHARS, which count the total length of
6666objects consed.
6667MISCS include overlays, markers, and some internal types.
6668Frames, windows, buffers, and subprocesses count as vectors
7ee72033 6669 (but the contents of a buffer's text do not count here). */)
5842a27b 6670 (void)
310ea200 6671{
2e471eb5 6672 Lisp_Object consed[8];
310ea200 6673
3ab6e069
DA
6674 consed[0] = bounded_number (cons_cells_consed);
6675 consed[1] = bounded_number (floats_consed);
6676 consed[2] = bounded_number (vector_cells_consed);
6677 consed[3] = bounded_number (symbols_consed);
6678 consed[4] = bounded_number (string_chars_consed);
6679 consed[5] = bounded_number (misc_objects_consed);
6680 consed[6] = bounded_number (intervals_consed);
6681 consed[7] = bounded_number (strings_consed);
310ea200 6682
2e471eb5 6683 return Flist (8, consed);
310ea200 6684}
e0b8c689 6685
8b058d44
EZ
6686/* Find at most FIND_MAX symbols which have OBJ as their value or
6687 function. This is used in gdbinit's `xwhichsymbols' command. */
6688
6689Lisp_Object
196e41e4 6690which_symbols (Lisp_Object obj, EMACS_INT find_max)
8b058d44
EZ
6691{
6692 struct symbol_block *sblk;
8d0eb4c2 6693 ptrdiff_t gc_count = inhibit_garbage_collection ();
8b058d44
EZ
6694 Lisp_Object found = Qnil;
6695
ca78dc43 6696 if (! DEADP (obj))
8b058d44
EZ
6697 {
6698 for (sblk = symbol_block; sblk; sblk = sblk->next)
6699 {
9426aba4 6700 union aligned_Lisp_Symbol *aligned_sym = sblk->symbols;
8b058d44
EZ
6701 int bn;
6702
9426aba4 6703 for (bn = 0; bn < SYMBOL_BLOCK_SIZE; bn++, aligned_sym++)
8b058d44 6704 {
9426aba4 6705 struct Lisp_Symbol *sym = &aligned_sym->s;
8b058d44
EZ
6706 Lisp_Object val;
6707 Lisp_Object tem;
6708
6709 if (sblk == symbol_block && bn >= symbol_block_index)
6710 break;
6711
6712 XSETSYMBOL (tem, sym);
6713 val = find_symbol_value (tem);
6714 if (EQ (val, obj)
6715 || EQ (sym->function, obj)
6716 || (!NILP (sym->function)
6717 && COMPILEDP (sym->function)
6718 && EQ (AREF (sym->function, COMPILED_BYTECODE), obj))
6719 || (!NILP (val)
6720 && COMPILEDP (val)
6721 && EQ (AREF (val, COMPILED_BYTECODE), obj)))
6722 {
6723 found = Fcons (tem, found);
6724 if (--find_max == 0)
6725 goto out;
6726 }
6727 }
6728 }
6729 }
6730
6731 out:
6732 unbind_to (gc_count, Qnil);
6733 return found;
6734}
6735
244ed907 6736#ifdef ENABLE_CHECKING
e0b8c689 6737int suppress_checking;
d3d47262 6738
e0b8c689 6739void
971de7fb 6740die (const char *msg, const char *file, int line)
e0b8c689 6741{
67ee9f6e 6742 fprintf (stderr, "\r\n%s:%d: Emacs fatal error: %s\r\n",
e0b8c689
KR
6743 file, line, msg);
6744 abort ();
6745}
244ed907 6746#endif
20d24714 6747\f
7146af97
JB
6748/* Initialization */
6749
dfcf069d 6750void
971de7fb 6751init_alloc_once (void)
7146af97
JB
6752{
6753 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
9e713715
GM
6754 purebeg = PUREBEG;
6755 pure_size = PURESIZE;
ab6780cd 6756
877935b1 6757#if GC_MARK_STACK || defined GC_MALLOC_CHECK
34400008
GM
6758 mem_init ();
6759 Vdead = make_pure_string ("DEAD", 4, 4, 0);
6760#endif
9e713715 6761
d1658221
RS
6762#ifdef DOUG_LEA_MALLOC
6763 mallopt (M_TRIM_THRESHOLD, 128*1024); /* trim threshold */
6764 mallopt (M_MMAP_THRESHOLD, 64*1024); /* mmap threshold */
81d492d5 6765 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* max. number of mmap'ed areas */
d1658221 6766#endif
7146af97 6767 init_strings ();
f3372c87 6768 init_vectors ();
d5e35230 6769
276cbe5a
RS
6770#ifdef REL_ALLOC
6771 malloc_hysteresis = 32;
6772#else
6773 malloc_hysteresis = 0;
6774#endif
6775
24d8a105 6776 refill_memory_reserve ();
7d179cea 6777 gc_cons_threshold = 100000 * sizeof (Lisp_Object);
7146af97
JB
6778}
6779
dfcf069d 6780void
971de7fb 6781init_alloc (void)
7146af97
JB
6782{
6783 gcprolist = 0;
630686c8 6784 byte_stack_list = 0;
182ff242
GM
6785#if GC_MARK_STACK
6786#if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
6787 setjmp_tested_p = longjmps_done = 0;
6788#endif
6789#endif
2c5bd608
DL
6790 Vgc_elapsed = make_float (0.0);
6791 gcs_done = 0;
7146af97
JB
6792}
6793
6794void
971de7fb 6795syms_of_alloc (void)
7146af97 6796{
29208e82 6797 DEFVAR_INT ("gc-cons-threshold", gc_cons_threshold,
fb7ada5f 6798 doc: /* Number of bytes of consing between garbage collections.
228299fa
GM
6799Garbage collection can happen automatically once this many bytes have been
6800allocated since the last garbage collection. All data types count.
7146af97 6801
228299fa 6802Garbage collection happens automatically only when `eval' is called.
7146af97 6803
228299fa 6804By binding this temporarily to a large number, you can effectively
96f077ad
SM
6805prevent garbage collection during a part of the program.
6806See also `gc-cons-percentage'. */);
6807
29208e82 6808 DEFVAR_LISP ("gc-cons-percentage", Vgc_cons_percentage,
fb7ada5f 6809 doc: /* Portion of the heap used for allocation.
96f077ad
SM
6810Garbage collection can happen automatically once this portion of the heap
6811has been allocated since the last garbage collection.
6812If this portion is smaller than `gc-cons-threshold', this is ignored. */);
6813 Vgc_cons_percentage = make_float (0.1);
0819585c 6814
29208e82 6815 DEFVAR_INT ("pure-bytes-used", pure_bytes_used,
333f9019 6816 doc: /* Number of bytes of shareable Lisp data allocated so far. */);
0819585c 6817
29208e82 6818 DEFVAR_INT ("cons-cells-consed", cons_cells_consed,
a6266d23 6819 doc: /* Number of cons cells that have been consed so far. */);
0819585c 6820
29208e82 6821 DEFVAR_INT ("floats-consed", floats_consed,
a6266d23 6822 doc: /* Number of floats that have been consed so far. */);
0819585c 6823
29208e82 6824 DEFVAR_INT ("vector-cells-consed", vector_cells_consed,
a6266d23 6825 doc: /* Number of vector cells that have been consed so far. */);
0819585c 6826
29208e82 6827 DEFVAR_INT ("symbols-consed", symbols_consed,
a6266d23 6828 doc: /* Number of symbols that have been consed so far. */);
0819585c 6829
29208e82 6830 DEFVAR_INT ("string-chars-consed", string_chars_consed,
a6266d23 6831 doc: /* Number of string characters that have been consed so far. */);
0819585c 6832
29208e82 6833 DEFVAR_INT ("misc-objects-consed", misc_objects_consed,
01a6dcc8
GM
6834 doc: /* Number of miscellaneous objects that have been consed so far.
6835These include markers and overlays, plus certain objects not visible
6836to users. */);
2e471eb5 6837
29208e82 6838 DEFVAR_INT ("intervals-consed", intervals_consed,
a6266d23 6839 doc: /* Number of intervals that have been consed so far. */);
7146af97 6840
29208e82 6841 DEFVAR_INT ("strings-consed", strings_consed,
a6266d23 6842 doc: /* Number of strings that have been consed so far. */);
228299fa 6843
29208e82 6844 DEFVAR_LISP ("purify-flag", Vpurify_flag,
a6266d23 6845 doc: /* Non-nil means loading Lisp code in order to dump an executable.
e9515805
SM
6846This means that certain objects should be allocated in shared (pure) space.
6847It can also be set to a hash-table, in which case this table is used to
6848do hash-consing of the objects allocated to pure space. */);
228299fa 6849
29208e82 6850 DEFVAR_BOOL ("garbage-collection-messages", garbage_collection_messages,
a6266d23 6851 doc: /* Non-nil means display messages at start and end of garbage collection. */);
299585ee
RS
6852 garbage_collection_messages = 0;
6853
29208e82 6854 DEFVAR_LISP ("post-gc-hook", Vpost_gc_hook,
a6266d23 6855 doc: /* Hook run after garbage collection has finished. */);
9e713715 6856 Vpost_gc_hook = Qnil;
cd3520a4 6857 DEFSYM (Qpost_gc_hook, "post-gc-hook");
9e713715 6858
29208e82 6859 DEFVAR_LISP ("memory-signal-data", Vmemory_signal_data,
74a54b04 6860 doc: /* Precomputed `signal' argument for memory-full error. */);
bcb61d60
KH
6861 /* We build this in advance because if we wait until we need it, we might
6862 not be able to allocate the memory to hold it. */
74a54b04 6863 Vmemory_signal_data
f4265f6c 6864 = pure_cons (Qerror,
2a0213a6 6865 pure_cons (build_pure_c_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"), Qnil));
74a54b04 6866
29208e82 6867 DEFVAR_LISP ("memory-full", Vmemory_full,
24d8a105 6868 doc: /* Non-nil means Emacs cannot get much more Lisp memory. */);
74a54b04 6869 Vmemory_full = Qnil;
bcb61d60 6870
cd3520a4
JB
6871 DEFSYM (Qgc_cons_threshold, "gc-cons-threshold");
6872 DEFSYM (Qchar_table_extra_slots, "char-table-extra-slots");
a59de17b 6873
29208e82 6874 DEFVAR_LISP ("gc-elapsed", Vgc_elapsed,
2c5bd608 6875 doc: /* Accumulated time elapsed in garbage collections.
e7415487 6876The time is in seconds as a floating point value. */);
29208e82 6877 DEFVAR_INT ("gcs-done", gcs_done,
e7415487 6878 doc: /* Accumulated number of garbage collections done. */);
2c5bd608 6879
7146af97
JB
6880 defsubr (&Scons);
6881 defsubr (&Slist);
6882 defsubr (&Svector);
6883 defsubr (&Smake_byte_code);
6884 defsubr (&Smake_list);
6885 defsubr (&Smake_vector);
6886 defsubr (&Smake_string);
7b07587b 6887 defsubr (&Smake_bool_vector);
7146af97
JB
6888 defsubr (&Smake_symbol);
6889 defsubr (&Smake_marker);
6890 defsubr (&Spurecopy);
6891 defsubr (&Sgarbage_collect);
20d24714 6892 defsubr (&Smemory_limit);
7098646f 6893 defsubr (&Smemory_free);
310ea200 6894 defsubr (&Smemory_use_counts);
34400008
GM
6895
6896#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
6897 defsubr (&Sgc_status);
6898#endif
7146af97 6899}