* widget.el (define-widget): Purecopy the docstring.
[bpt/emacs.git] / src / alloc.c
CommitLineData
7146af97 1/* Storage allocation and gc for GNU Emacs Lisp interpreter.
126f9c02 2 Copyright (C) 1985, 1986, 1988, 1993, 1994, 1995, 1997, 1998, 1999,
76b6f707 3 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
8cabe764 4 Free Software Foundation, Inc.
7146af97
JB
5
6This file is part of GNU Emacs.
7
9ec0b715 8GNU Emacs is free software: you can redistribute it and/or modify
7146af97 9it under the terms of the GNU General Public License as published by
9ec0b715
GM
10the Free Software Foundation, either version 3 of the License, or
11(at your option) any later version.
7146af97
JB
12
13GNU Emacs is distributed in the hope that it will be useful,
14but WITHOUT ANY WARRANTY; without even the implied warranty of
15MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16GNU General Public License for more details.
17
18You should have received a copy of the GNU General Public License
9ec0b715 19along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
7146af97 20
18160b98 21#include <config.h>
e9b309ac 22#include <stdio.h>
ab6780cd 23#include <limits.h> /* For CHAR_BIT. */
d7306fe6 24#include <setjmp.h>
92939d31 25
4f27350a
EZ
26#ifdef STDC_HEADERS
27#include <stddef.h> /* For offsetof, used by PSEUDOVECSIZE. */
28#endif
29
4455ad75
RS
30#ifdef ALLOC_DEBUG
31#undef INLINE
32#endif
33
68c45bf0 34#include <signal.h>
92939d31 35
aa477689
JD
36#ifdef HAVE_GTK_AND_PTHREAD
37#include <pthread.h>
38#endif
39
7539e11f
KR
40/* This file is part of the core Lisp implementation, and thus must
41 deal with the real data structures. If the Lisp implementation is
42 replaced, this file likely will not be used. */
2e471eb5 43
7539e11f 44#undef HIDE_LISP_IMPLEMENTATION
7146af97 45#include "lisp.h"
ece93c02 46#include "process.h"
d5e35230 47#include "intervals.h"
4c0be5f4 48#include "puresize.h"
7146af97
JB
49#include "buffer.h"
50#include "window.h"
2538fae4 51#include "keyboard.h"
502b9b64 52#include "frame.h"
9ac0d9e0 53#include "blockinput.h"
9d80e883 54#include "character.h"
e065a56e 55#include "syssignal.h"
4a729fd8 56#include "termhooks.h" /* For struct terminal. */
34400008 57#include <setjmp.h>
e065a56e 58
6b61353c
KH
59/* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
60 memory. Can do this only if using gmalloc.c. */
61
62#if defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC
63#undef GC_MALLOC_CHECK
64#endif
65
bf952fb6
DL
66#ifdef HAVE_UNISTD_H
67#include <unistd.h>
68#else
69extern POINTER_TYPE *sbrk ();
70#endif
ee1eea5c 71
de7124a7
KS
72#ifdef HAVE_FCNTL_H
73#define INCLUDED_FCNTL
74#include <fcntl.h>
75#endif
76#ifndef O_WRONLY
77#define O_WRONLY 1
78#endif
79
69666f77
EZ
80#ifdef WINDOWSNT
81#include <fcntl.h>
f892cf9c 82#include "w32.h"
69666f77
EZ
83#endif
84
d1658221 85#ifdef DOUG_LEA_MALLOC
2e471eb5 86
d1658221 87#include <malloc.h>
3e60b029
DL
88/* malloc.h #defines this as size_t, at least in glibc2. */
89#ifndef __malloc_size_t
d1658221 90#define __malloc_size_t int
3e60b029 91#endif
81d492d5 92
2e471eb5
GM
93/* Specify maximum number of areas to mmap. It would be nice to use a
94 value that explicitly means "no limit". */
95
81d492d5
RS
96#define MMAP_MAX_AREAS 100000000
97
2e471eb5
GM
98#else /* not DOUG_LEA_MALLOC */
99
276cbe5a
RS
100/* The following come from gmalloc.c. */
101
276cbe5a 102#define __malloc_size_t size_t
276cbe5a 103extern __malloc_size_t _bytes_used;
3e60b029 104extern __malloc_size_t __malloc_extra_blocks;
2e471eb5
GM
105
106#endif /* not DOUG_LEA_MALLOC */
276cbe5a 107
aa477689
JD
108#if ! defined (SYSTEM_MALLOC) && defined (HAVE_GTK_AND_PTHREAD)
109
f415cacd
JD
110/* When GTK uses the file chooser dialog, different backends can be loaded
111 dynamically. One such a backend is the Gnome VFS backend that gets loaded
112 if you run Gnome. That backend creates several threads and also allocates
113 memory with malloc.
114
115 If Emacs sets malloc hooks (! SYSTEM_MALLOC) and the emacs_blocked_*
116 functions below are called from malloc, there is a chance that one
117 of these threads preempts the Emacs main thread and the hook variables
333f1b6f 118 end up in an inconsistent state. So we have a mutex to prevent that (note
f415cacd
JD
119 that the backend handles concurrent access to malloc within its own threads
120 but Emacs code running in the main thread is not included in that control).
121
026cdede 122 When UNBLOCK_INPUT is called, reinvoke_input_signal may be called. If this
f415cacd
JD
123 happens in one of the backend threads we will have two threads that tries
124 to run Emacs code at once, and the code is not prepared for that.
125 To prevent that, we only call BLOCK/UNBLOCK from the main thread. */
126
aa477689 127static pthread_mutex_t alloc_mutex;
aa477689 128
959dc601
JD
129#define BLOCK_INPUT_ALLOC \
130 do \
131 { \
132 if (pthread_equal (pthread_self (), main_thread)) \
86302e37 133 BLOCK_INPUT; \
959dc601
JD
134 pthread_mutex_lock (&alloc_mutex); \
135 } \
aa477689 136 while (0)
959dc601
JD
137#define UNBLOCK_INPUT_ALLOC \
138 do \
139 { \
140 pthread_mutex_unlock (&alloc_mutex); \
141 if (pthread_equal (pthread_self (), main_thread)) \
86302e37 142 UNBLOCK_INPUT; \
959dc601 143 } \
aa477689
JD
144 while (0)
145
146#else /* SYSTEM_MALLOC || not HAVE_GTK_AND_PTHREAD */
147
148#define BLOCK_INPUT_ALLOC BLOCK_INPUT
149#define UNBLOCK_INPUT_ALLOC UNBLOCK_INPUT
150
151#endif /* SYSTEM_MALLOC || not HAVE_GTK_AND_PTHREAD */
152
276cbe5a 153/* Value of _bytes_used, when spare_memory was freed. */
2e471eb5 154
276cbe5a
RS
155static __malloc_size_t bytes_used_when_full;
156
4d74a5fc
RS
157static __malloc_size_t bytes_used_when_reconsidered;
158
2e471eb5
GM
159/* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
160 to a struct Lisp_String. */
161
7cdee936
SM
162#define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
163#define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
b059de99 164#define STRING_MARKED_P(S) (((S)->size & ARRAY_MARK_FLAG) != 0)
2e471eb5 165
3ef06d12
SM
166#define VECTOR_MARK(V) ((V)->size |= ARRAY_MARK_FLAG)
167#define VECTOR_UNMARK(V) ((V)->size &= ~ARRAY_MARK_FLAG)
b059de99 168#define VECTOR_MARKED_P(V) (((V)->size & ARRAY_MARK_FLAG) != 0)
3ef06d12 169
2e471eb5
GM
170/* Value is the number of bytes/chars of S, a pointer to a struct
171 Lisp_String. This must be used instead of STRING_BYTES (S) or
172 S->size during GC, because S->size contains the mark bit for
173 strings. */
174
3ef06d12 175#define GC_STRING_BYTES(S) (STRING_BYTES (S))
7cdee936 176#define GC_STRING_CHARS(S) ((S)->size & ~ARRAY_MARK_FLAG)
2e471eb5
GM
177
178/* Number of bytes of consing done since the last gc. */
179
7146af97
JB
180int consing_since_gc;
181
310ea200 182/* Count the amount of consing of various sorts of space. */
2e471eb5 183
31ade731
SM
184EMACS_INT cons_cells_consed;
185EMACS_INT floats_consed;
186EMACS_INT vector_cells_consed;
187EMACS_INT symbols_consed;
188EMACS_INT string_chars_consed;
189EMACS_INT misc_objects_consed;
190EMACS_INT intervals_consed;
191EMACS_INT strings_consed;
2e471eb5 192
974aae61
RS
193/* Minimum number of bytes of consing since GC before next GC. */
194
195EMACS_INT gc_cons_threshold;
196
197/* Similar minimum, computed from Vgc_cons_percentage. */
198
199EMACS_INT gc_relative_threshold;
310ea200 200
96f077ad 201static Lisp_Object Vgc_cons_percentage;
7146af97 202
24d8a105
RS
203/* Minimum number of bytes of consing since GC before next GC,
204 when memory is full. */
205
206EMACS_INT memory_full_cons_threshold;
207
2e471eb5
GM
208/* Nonzero during GC. */
209
7146af97
JB
210int gc_in_progress;
211
3de0effb
RS
212/* Nonzero means abort if try to GC.
213 This is for code which is written on the assumption that
214 no GC will happen, so as to verify that assumption. */
215
216int abort_on_gc;
217
299585ee 218/* Nonzero means display messages at beginning and end of GC. */
2e471eb5 219
299585ee
RS
220int garbage_collection_messages;
221
7146af97
JB
222#ifndef VIRT_ADDR_VARIES
223extern
224#endif /* VIRT_ADDR_VARIES */
2e471eb5 225int malloc_sbrk_used;
7146af97
JB
226
227#ifndef VIRT_ADDR_VARIES
228extern
229#endif /* VIRT_ADDR_VARIES */
2e471eb5 230int malloc_sbrk_unused;
7146af97 231
34400008
GM
232/* Number of live and free conses etc. */
233
234static int total_conses, total_markers, total_symbols, total_vector_size;
235static int total_free_conses, total_free_markers, total_free_symbols;
236static int total_free_floats, total_floats;
fd27a537 237
2e471eb5 238/* Points to memory space allocated as "spare", to be freed if we run
24d8a105
RS
239 out of memory. We keep one large block, four cons-blocks, and
240 two string blocks. */
2e471eb5 241
d3d47262 242static char *spare_memory[7];
276cbe5a 243
24d8a105 244/* Amount of spare memory to keep in large reserve block. */
2e471eb5 245
276cbe5a
RS
246#define SPARE_MEMORY (1 << 14)
247
248/* Number of extra blocks malloc should get when it needs more core. */
2e471eb5 249
276cbe5a
RS
250static int malloc_hysteresis;
251
2e471eb5
GM
252/* Non-nil means defun should do purecopy on the function definition. */
253
7146af97
JB
254Lisp_Object Vpurify_flag;
255
74a54b04
RS
256/* Non-nil means we are handling a memory-full error. */
257
258Lisp_Object Vmemory_full;
259
7146af97 260#ifndef HAVE_SHM
2e471eb5 261
1b8950e5
RS
262/* Initialize it to a nonzero value to force it into data space
263 (rather than bss space). That way unexec will remap it into text
264 space (pure), on some systems. We have not implemented the
265 remapping on more recent systems because this is less important
266 nowadays than in the days of small memories and timesharing. */
2e471eb5 267
2c4685ee 268EMACS_INT pure[(PURESIZE + sizeof (EMACS_INT) - 1) / sizeof (EMACS_INT)] = {1,};
7146af97 269#define PUREBEG (char *) pure
2e471eb5 270
9e713715 271#else /* HAVE_SHM */
2e471eb5 272
7146af97
JB
273#define pure PURE_SEG_BITS /* Use shared memory segment */
274#define PUREBEG (char *)PURE_SEG_BITS
4c0be5f4 275
9e713715 276#endif /* HAVE_SHM */
2e471eb5 277
9e713715 278/* Pointer to the pure area, and its size. */
2e471eb5 279
9e713715
GM
280static char *purebeg;
281static size_t pure_size;
282
283/* Number of bytes of pure storage used before pure storage overflowed.
284 If this is non-zero, this implies that an overflow occurred. */
285
286static size_t pure_bytes_used_before_overflow;
7146af97 287
34400008
GM
288/* Value is non-zero if P points into pure space. */
289
290#define PURE_POINTER_P(P) \
291 (((PNTR_COMPARISON_TYPE) (P) \
9e713715 292 < (PNTR_COMPARISON_TYPE) ((char *) purebeg + pure_size)) \
34400008 293 && ((PNTR_COMPARISON_TYPE) (P) \
9e713715 294 >= (PNTR_COMPARISON_TYPE) purebeg))
34400008 295
e5bc14d4 296/* Total number of bytes allocated in pure storage. */
2e471eb5 297
31ade731 298EMACS_INT pure_bytes_used;
7146af97 299
e5bc14d4
YM
300/* Index in pure at which next pure Lisp object will be allocated.. */
301
302static EMACS_INT pure_bytes_used_lisp;
303
304/* Number of bytes allocated for non-Lisp objects in pure storage. */
305
306static EMACS_INT pure_bytes_used_non_lisp;
307
2e471eb5
GM
308/* If nonzero, this is a warning delivered by malloc and not yet
309 displayed. */
310
7146af97
JB
311char *pending_malloc_warning;
312
bcb61d60 313/* Pre-computed signal argument for use when memory is exhausted. */
2e471eb5 314
74a54b04 315Lisp_Object Vmemory_signal_data;
bcb61d60 316
7146af97
JB
317/* Maximum amount of C stack to save when a GC happens. */
318
319#ifndef MAX_SAVE_STACK
320#define MAX_SAVE_STACK 16000
321#endif
322
323/* Buffer in which we save a copy of the C stack at each GC. */
324
d3d47262
JB
325static char *stack_copy;
326static int stack_copy_size;
7146af97 327
2e471eb5
GM
328/* Non-zero means ignore malloc warnings. Set during initialization.
329 Currently not used. */
330
d3d47262 331static int ignore_warnings;
350273a4 332
a59de17b 333Lisp_Object Qgc_cons_threshold, Qchar_table_extra_slots;
e8197642 334
9e713715
GM
335/* Hook run after GC has finished. */
336
337Lisp_Object Vpost_gc_hook, Qpost_gc_hook;
338
2c5bd608
DL
339Lisp_Object Vgc_elapsed; /* accumulated elapsed time in GC */
340EMACS_INT gcs_done; /* accumulated GCs */
341
2e471eb5 342static void mark_buffer P_ ((Lisp_Object));
4a729fd8 343static void mark_terminals P_ ((void));
6793bc63 344extern void mark_kboards P_ ((void));
819b8f00 345extern void mark_ttys P_ ((void));
b40ea20a 346extern void mark_backtrace P_ ((void));
2e471eb5 347static void gc_sweep P_ ((void));
41c28a37
GM
348static void mark_glyph_matrix P_ ((struct glyph_matrix *));
349static void mark_face_cache P_ ((struct face_cache *));
350
351#ifdef HAVE_WINDOW_SYSTEM
454d7973 352extern void mark_fringe_data P_ ((void));
41c28a37
GM
353#endif /* HAVE_WINDOW_SYSTEM */
354
2e471eb5
GM
355static struct Lisp_String *allocate_string P_ ((void));
356static void compact_small_strings P_ ((void));
357static void free_large_strings P_ ((void));
358static void sweep_strings P_ ((void));
7da0b0d3
RS
359
360extern int message_enable_multibyte;
34400008 361
34400008
GM
362/* When scanning the C stack for live Lisp objects, Emacs keeps track
363 of what memory allocated via lisp_malloc is intended for what
364 purpose. This enumeration specifies the type of memory. */
365
366enum mem_type
367{
368 MEM_TYPE_NON_LISP,
369 MEM_TYPE_BUFFER,
370 MEM_TYPE_CONS,
371 MEM_TYPE_STRING,
372 MEM_TYPE_MISC,
373 MEM_TYPE_SYMBOL,
374 MEM_TYPE_FLOAT,
9c545a55
SM
375 /* We used to keep separate mem_types for subtypes of vectors such as
376 process, hash_table, frame, terminal, and window, but we never made
377 use of the distinction, so it only caused source-code complexity
378 and runtime slowdown. Minor but pointless. */
379 MEM_TYPE_VECTORLIKE
34400008
GM
380};
381
24d8a105
RS
382static POINTER_TYPE *lisp_align_malloc P_ ((size_t, enum mem_type));
383static POINTER_TYPE *lisp_malloc P_ ((size_t, enum mem_type));
225ccad6
RS
384void refill_memory_reserve ();
385
24d8a105 386
877935b1 387#if GC_MARK_STACK || defined GC_MALLOC_CHECK
0b378936
GM
388
389#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
390#include <stdio.h> /* For fprintf. */
391#endif
392
393/* A unique object in pure space used to make some Lisp objects
394 on free lists recognizable in O(1). */
395
d3d47262 396static Lisp_Object Vdead;
0b378936 397
877935b1
GM
398#ifdef GC_MALLOC_CHECK
399
400enum mem_type allocated_mem_type;
d3d47262 401static int dont_register_blocks;
877935b1
GM
402
403#endif /* GC_MALLOC_CHECK */
404
405/* A node in the red-black tree describing allocated memory containing
406 Lisp data. Each such block is recorded with its start and end
407 address when it is allocated, and removed from the tree when it
408 is freed.
409
410 A red-black tree is a balanced binary tree with the following
411 properties:
412
413 1. Every node is either red or black.
414 2. Every leaf is black.
415 3. If a node is red, then both of its children are black.
416 4. Every simple path from a node to a descendant leaf contains
417 the same number of black nodes.
418 5. The root is always black.
419
420 When nodes are inserted into the tree, or deleted from the tree,
421 the tree is "fixed" so that these properties are always true.
422
423 A red-black tree with N internal nodes has height at most 2
424 log(N+1). Searches, insertions and deletions are done in O(log N).
425 Please see a text book about data structures for a detailed
426 description of red-black trees. Any book worth its salt should
427 describe them. */
428
429struct mem_node
430{
9f7d9210
RS
431 /* Children of this node. These pointers are never NULL. When there
432 is no child, the value is MEM_NIL, which points to a dummy node. */
433 struct mem_node *left, *right;
434
435 /* The parent of this node. In the root node, this is NULL. */
436 struct mem_node *parent;
877935b1
GM
437
438 /* Start and end of allocated region. */
439 void *start, *end;
440
441 /* Node color. */
442 enum {MEM_BLACK, MEM_RED} color;
177c0ea7 443
877935b1
GM
444 /* Memory type. */
445 enum mem_type type;
446};
447
448/* Base address of stack. Set in main. */
449
450Lisp_Object *stack_base;
451
452/* Root of the tree describing allocated Lisp memory. */
453
454static struct mem_node *mem_root;
455
ece93c02
GM
456/* Lowest and highest known address in the heap. */
457
458static void *min_heap_address, *max_heap_address;
459
877935b1
GM
460/* Sentinel node of the tree. */
461
462static struct mem_node mem_z;
463#define MEM_NIL &mem_z
464
b3303f74 465static POINTER_TYPE *lisp_malloc P_ ((size_t, enum mem_type));
9c545a55 466static struct Lisp_Vector *allocate_vectorlike P_ ((EMACS_INT));
bf952fb6 467static void lisp_free P_ ((POINTER_TYPE *));
34400008 468static void mark_stack P_ ((void));
34400008
GM
469static int live_vector_p P_ ((struct mem_node *, void *));
470static int live_buffer_p P_ ((struct mem_node *, void *));
471static int live_string_p P_ ((struct mem_node *, void *));
472static int live_cons_p P_ ((struct mem_node *, void *));
473static int live_symbol_p P_ ((struct mem_node *, void *));
474static int live_float_p P_ ((struct mem_node *, void *));
475static int live_misc_p P_ ((struct mem_node *, void *));
182ff242 476static void mark_maybe_object P_ ((Lisp_Object));
55a314a5 477static void mark_memory P_ ((void *, void *, int));
34400008
GM
478static void mem_init P_ ((void));
479static struct mem_node *mem_insert P_ ((void *, void *, enum mem_type));
480static void mem_insert_fixup P_ ((struct mem_node *));
481static void mem_rotate_left P_ ((struct mem_node *));
482static void mem_rotate_right P_ ((struct mem_node *));
483static void mem_delete P_ ((struct mem_node *));
484static void mem_delete_fixup P_ ((struct mem_node *));
485static INLINE struct mem_node *mem_find P_ ((void *));
486
34400008
GM
487
488#if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
489static void check_gcpros P_ ((void));
490#endif
491
877935b1 492#endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
34400008 493
1f0b3fd2
GM
494/* Recording what needs to be marked for gc. */
495
496struct gcpro *gcprolist;
497
379b98b1
PE
498/* Addresses of staticpro'd variables. Initialize it to a nonzero
499 value; otherwise some compilers put it into BSS. */
1f0b3fd2 500
0078170f 501#define NSTATICS 0x640
d3d47262 502static Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
1f0b3fd2
GM
503
504/* Index of next unused slot in staticvec. */
505
d3d47262 506static int staticidx = 0;
1f0b3fd2
GM
507
508static POINTER_TYPE *pure_alloc P_ ((size_t, int));
509
510
511/* Value is SZ rounded up to the next multiple of ALIGNMENT.
512 ALIGNMENT must be a power of 2. */
513
ab6780cd
SM
514#define ALIGN(ptr, ALIGNMENT) \
515 ((POINTER_TYPE *) ((((EMACS_UINT)(ptr)) + (ALIGNMENT) - 1) \
516 & ~((ALIGNMENT) - 1)))
1f0b3fd2 517
ece93c02 518
7146af97 519\f
34400008
GM
520/************************************************************************
521 Malloc
522 ************************************************************************/
523
4455ad75 524/* Function malloc calls this if it finds we are near exhausting storage. */
d457598b
AS
525
526void
7146af97
JB
527malloc_warning (str)
528 char *str;
529{
530 pending_malloc_warning = str;
531}
532
34400008 533
4455ad75 534/* Display an already-pending malloc warning. */
34400008 535
d457598b 536void
7146af97
JB
537display_malloc_warning ()
538{
4455ad75
RS
539 call3 (intern ("display-warning"),
540 intern ("alloc"),
541 build_string (pending_malloc_warning),
542 intern ("emergency"));
7146af97 543 pending_malloc_warning = 0;
7146af97
JB
544}
545
34400008 546
d1658221 547#ifdef DOUG_LEA_MALLOC
4d74a5fc 548# define BYTES_USED (mallinfo ().uordblks)
d1658221 549#else
1177ecf6 550# define BYTES_USED _bytes_used
d1658221 551#endif
49efed3a 552\f
276cbe5a
RS
553/* Called if we can't allocate relocatable space for a buffer. */
554
555void
556buffer_memory_full ()
557{
2e471eb5
GM
558 /* If buffers use the relocating allocator, no need to free
559 spare_memory, because we may have plenty of malloc space left
560 that we could get, and if we don't, the malloc that fails will
561 itself cause spare_memory to be freed. If buffers don't use the
562 relocating allocator, treat this like any other failing
563 malloc. */
276cbe5a
RS
564
565#ifndef REL_ALLOC
566 memory_full ();
567#endif
568
2e471eb5
GM
569 /* This used to call error, but if we've run out of memory, we could
570 get infinite recursion trying to build the string. */
9b306d37 571 xsignal (Qnil, Vmemory_signal_data);
7146af97
JB
572}
573
34400008 574
212f33f1
KS
575#ifdef XMALLOC_OVERRUN_CHECK
576
bdbed949
KS
577/* Check for overrun in malloc'ed buffers by wrapping a 16 byte header
578 and a 16 byte trailer around each block.
579
580 The header consists of 12 fixed bytes + a 4 byte integer contaning the
581 original block size, while the trailer consists of 16 fixed bytes.
582
583 The header is used to detect whether this block has been allocated
584 through these functions -- as it seems that some low-level libc
585 functions may bypass the malloc hooks.
586*/
587
588
212f33f1 589#define XMALLOC_OVERRUN_CHECK_SIZE 16
bdbed949 590
212f33f1
KS
591static char xmalloc_overrun_check_header[XMALLOC_OVERRUN_CHECK_SIZE-4] =
592 { 0x9a, 0x9b, 0xae, 0xaf,
593 0xbf, 0xbe, 0xce, 0xcf,
594 0xea, 0xeb, 0xec, 0xed };
595
596static char xmalloc_overrun_check_trailer[XMALLOC_OVERRUN_CHECK_SIZE] =
597 { 0xaa, 0xab, 0xac, 0xad,
598 0xba, 0xbb, 0xbc, 0xbd,
599 0xca, 0xcb, 0xcc, 0xcd,
600 0xda, 0xdb, 0xdc, 0xdd };
601
bdbed949
KS
602/* Macros to insert and extract the block size in the header. */
603
604#define XMALLOC_PUT_SIZE(ptr, size) \
605 (ptr[-1] = (size & 0xff), \
606 ptr[-2] = ((size >> 8) & 0xff), \
607 ptr[-3] = ((size >> 16) & 0xff), \
608 ptr[-4] = ((size >> 24) & 0xff))
609
610#define XMALLOC_GET_SIZE(ptr) \
611 (size_t)((unsigned)(ptr[-1]) | \
612 ((unsigned)(ptr[-2]) << 8) | \
613 ((unsigned)(ptr[-3]) << 16) | \
614 ((unsigned)(ptr[-4]) << 24))
615
616
d8f165a8
JD
617/* The call depth in overrun_check functions. For example, this might happen:
618 xmalloc()
619 overrun_check_malloc()
620 -> malloc -> (via hook)_-> emacs_blocked_malloc
621 -> overrun_check_malloc
622 call malloc (hooks are NULL, so real malloc is called).
623 malloc returns 10000.
624 add overhead, return 10016.
625 <- (back in overrun_check_malloc)
857ae68b 626 add overhead again, return 10032
d8f165a8 627 xmalloc returns 10032.
857ae68b
JD
628
629 (time passes).
630
d8f165a8
JD
631 xfree(10032)
632 overrun_check_free(10032)
633 decrease overhed
634 free(10016) <- crash, because 10000 is the original pointer. */
857ae68b
JD
635
636static int check_depth;
637
bdbed949
KS
638/* Like malloc, but wraps allocated block with header and trailer. */
639
212f33f1
KS
640POINTER_TYPE *
641overrun_check_malloc (size)
642 size_t size;
643{
bdbed949 644 register unsigned char *val;
857ae68b 645 size_t overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_SIZE*2 : 0;
212f33f1 646
857ae68b
JD
647 val = (unsigned char *) malloc (size + overhead);
648 if (val && check_depth == 1)
212f33f1
KS
649 {
650 bcopy (xmalloc_overrun_check_header, val, XMALLOC_OVERRUN_CHECK_SIZE - 4);
212f33f1 651 val += XMALLOC_OVERRUN_CHECK_SIZE;
bdbed949 652 XMALLOC_PUT_SIZE(val, size);
212f33f1
KS
653 bcopy (xmalloc_overrun_check_trailer, val + size, XMALLOC_OVERRUN_CHECK_SIZE);
654 }
857ae68b 655 --check_depth;
212f33f1
KS
656 return (POINTER_TYPE *)val;
657}
658
bdbed949
KS
659
660/* Like realloc, but checks old block for overrun, and wraps new block
661 with header and trailer. */
662
212f33f1
KS
663POINTER_TYPE *
664overrun_check_realloc (block, size)
665 POINTER_TYPE *block;
666 size_t size;
667{
bdbed949 668 register unsigned char *val = (unsigned char *)block;
857ae68b 669 size_t overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_SIZE*2 : 0;
212f33f1
KS
670
671 if (val
857ae68b 672 && check_depth == 1
212f33f1
KS
673 && bcmp (xmalloc_overrun_check_header,
674 val - XMALLOC_OVERRUN_CHECK_SIZE,
675 XMALLOC_OVERRUN_CHECK_SIZE - 4) == 0)
676 {
bdbed949 677 size_t osize = XMALLOC_GET_SIZE (val);
212f33f1
KS
678 if (bcmp (xmalloc_overrun_check_trailer,
679 val + osize,
680 XMALLOC_OVERRUN_CHECK_SIZE))
681 abort ();
bdbed949 682 bzero (val + osize, XMALLOC_OVERRUN_CHECK_SIZE);
212f33f1 683 val -= XMALLOC_OVERRUN_CHECK_SIZE;
bdbed949 684 bzero (val, XMALLOC_OVERRUN_CHECK_SIZE);
212f33f1
KS
685 }
686
857ae68b 687 val = (unsigned char *) realloc ((POINTER_TYPE *)val, size + overhead);
212f33f1 688
857ae68b 689 if (val && check_depth == 1)
212f33f1
KS
690 {
691 bcopy (xmalloc_overrun_check_header, val, XMALLOC_OVERRUN_CHECK_SIZE - 4);
212f33f1 692 val += XMALLOC_OVERRUN_CHECK_SIZE;
bdbed949 693 XMALLOC_PUT_SIZE(val, size);
212f33f1
KS
694 bcopy (xmalloc_overrun_check_trailer, val + size, XMALLOC_OVERRUN_CHECK_SIZE);
695 }
857ae68b 696 --check_depth;
212f33f1
KS
697 return (POINTER_TYPE *)val;
698}
699
bdbed949
KS
700/* Like free, but checks block for overrun. */
701
212f33f1
KS
702void
703overrun_check_free (block)
704 POINTER_TYPE *block;
705{
bdbed949 706 unsigned char *val = (unsigned char *)block;
212f33f1 707
857ae68b 708 ++check_depth;
212f33f1 709 if (val
857ae68b 710 && check_depth == 1
212f33f1
KS
711 && bcmp (xmalloc_overrun_check_header,
712 val - XMALLOC_OVERRUN_CHECK_SIZE,
713 XMALLOC_OVERRUN_CHECK_SIZE - 4) == 0)
714 {
bdbed949 715 size_t osize = XMALLOC_GET_SIZE (val);
212f33f1
KS
716 if (bcmp (xmalloc_overrun_check_trailer,
717 val + osize,
718 XMALLOC_OVERRUN_CHECK_SIZE))
719 abort ();
454d7973
KS
720#ifdef XMALLOC_CLEAR_FREE_MEMORY
721 val -= XMALLOC_OVERRUN_CHECK_SIZE;
722 memset (val, 0xff, osize + XMALLOC_OVERRUN_CHECK_SIZE*2);
723#else
bdbed949 724 bzero (val + osize, XMALLOC_OVERRUN_CHECK_SIZE);
212f33f1 725 val -= XMALLOC_OVERRUN_CHECK_SIZE;
bdbed949 726 bzero (val, XMALLOC_OVERRUN_CHECK_SIZE);
454d7973 727#endif
212f33f1
KS
728 }
729
730 free (val);
857ae68b 731 --check_depth;
212f33f1
KS
732}
733
734#undef malloc
735#undef realloc
736#undef free
737#define malloc overrun_check_malloc
738#define realloc overrun_check_realloc
739#define free overrun_check_free
740#endif
741
dafc79fa
SM
742#ifdef SYNC_INPUT
743/* When using SYNC_INPUT, we don't call malloc from a signal handler, so
744 there's no need to block input around malloc. */
745#define MALLOC_BLOCK_INPUT ((void)0)
746#define MALLOC_UNBLOCK_INPUT ((void)0)
747#else
748#define MALLOC_BLOCK_INPUT BLOCK_INPUT
749#define MALLOC_UNBLOCK_INPUT UNBLOCK_INPUT
750#endif
bdbed949 751
34400008 752/* Like malloc but check for no memory and block interrupt input.. */
7146af97 753
c971ff9a 754POINTER_TYPE *
7146af97 755xmalloc (size)
675d5130 756 size_t size;
7146af97 757{
c971ff9a 758 register POINTER_TYPE *val;
7146af97 759
dafc79fa 760 MALLOC_BLOCK_INPUT;
c971ff9a 761 val = (POINTER_TYPE *) malloc (size);
dafc79fa 762 MALLOC_UNBLOCK_INPUT;
7146af97 763
2e471eb5
GM
764 if (!val && size)
765 memory_full ();
7146af97
JB
766 return val;
767}
768
34400008
GM
769
770/* Like realloc but check for no memory and block interrupt input.. */
771
c971ff9a 772POINTER_TYPE *
7146af97 773xrealloc (block, size)
c971ff9a 774 POINTER_TYPE *block;
675d5130 775 size_t size;
7146af97 776{
c971ff9a 777 register POINTER_TYPE *val;
7146af97 778
dafc79fa 779 MALLOC_BLOCK_INPUT;
56d2031b
JB
780 /* We must call malloc explicitly when BLOCK is 0, since some
781 reallocs don't do this. */
782 if (! block)
c971ff9a 783 val = (POINTER_TYPE *) malloc (size);
f048679d 784 else
c971ff9a 785 val = (POINTER_TYPE *) realloc (block, size);
dafc79fa 786 MALLOC_UNBLOCK_INPUT;
7146af97
JB
787
788 if (!val && size) memory_full ();
789 return val;
790}
9ac0d9e0 791
34400008 792
005ca5c7 793/* Like free but block interrupt input. */
34400008 794
9ac0d9e0
JB
795void
796xfree (block)
c971ff9a 797 POINTER_TYPE *block;
9ac0d9e0 798{
70fdbb46
JM
799 if (!block)
800 return;
dafc79fa 801 MALLOC_BLOCK_INPUT;
9ac0d9e0 802 free (block);
dafc79fa 803 MALLOC_UNBLOCK_INPUT;
24d8a105
RS
804 /* We don't call refill_memory_reserve here
805 because that duplicates doing so in emacs_blocked_free
806 and the criterion should go there. */
9ac0d9e0
JB
807}
808
c8099634 809
dca7c6a8
GM
810/* Like strdup, but uses xmalloc. */
811
812char *
813xstrdup (s)
943b873e 814 const char *s;
dca7c6a8 815{
675d5130 816 size_t len = strlen (s) + 1;
dca7c6a8
GM
817 char *p = (char *) xmalloc (len);
818 bcopy (s, p, len);
819 return p;
820}
821
822
f61bef8b
KS
823/* Unwind for SAFE_ALLOCA */
824
825Lisp_Object
826safe_alloca_unwind (arg)
827 Lisp_Object arg;
828{
b766f870
KS
829 register struct Lisp_Save_Value *p = XSAVE_VALUE (arg);
830
831 p->dogc = 0;
832 xfree (p->pointer);
833 p->pointer = 0;
7b7990cc 834 free_misc (arg);
f61bef8b
KS
835 return Qnil;
836}
837
838
34400008
GM
839/* Like malloc but used for allocating Lisp data. NBYTES is the
840 number of bytes to allocate, TYPE describes the intended use of the
841 allcated memory block (for strings, for conses, ...). */
842
212f33f1 843#ifndef USE_LSB_TAG
918a23a7 844static void *lisp_malloc_loser;
212f33f1 845#endif
918a23a7 846
675d5130 847static POINTER_TYPE *
34400008 848lisp_malloc (nbytes, type)
675d5130 849 size_t nbytes;
34400008 850 enum mem_type type;
c8099634 851{
34400008 852 register void *val;
c8099634 853
dafc79fa 854 MALLOC_BLOCK_INPUT;
877935b1
GM
855
856#ifdef GC_MALLOC_CHECK
857 allocated_mem_type = type;
858#endif
177c0ea7 859
34400008 860 val = (void *) malloc (nbytes);
c8099634 861
6b61353c 862#ifndef USE_LSB_TAG
918a23a7
RS
863 /* If the memory just allocated cannot be addressed thru a Lisp
864 object's pointer, and it needs to be,
865 that's equivalent to running out of memory. */
866 if (val && type != MEM_TYPE_NON_LISP)
867 {
868 Lisp_Object tem;
869 XSETCONS (tem, (char *) val + nbytes - 1);
870 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
871 {
872 lisp_malloc_loser = val;
873 free (val);
874 val = 0;
875 }
876 }
6b61353c 877#endif
918a23a7 878
877935b1 879#if GC_MARK_STACK && !defined GC_MALLOC_CHECK
dca7c6a8 880 if (val && type != MEM_TYPE_NON_LISP)
34400008
GM
881 mem_insert (val, (char *) val + nbytes, type);
882#endif
177c0ea7 883
dafc79fa 884 MALLOC_UNBLOCK_INPUT;
dca7c6a8
GM
885 if (!val && nbytes)
886 memory_full ();
c8099634
RS
887 return val;
888}
889
34400008
GM
890/* Free BLOCK. This must be called to free memory allocated with a
891 call to lisp_malloc. */
892
bf952fb6 893static void
c8099634 894lisp_free (block)
675d5130 895 POINTER_TYPE *block;
c8099634 896{
dafc79fa 897 MALLOC_BLOCK_INPUT;
c8099634 898 free (block);
877935b1 899#if GC_MARK_STACK && !defined GC_MALLOC_CHECK
34400008
GM
900 mem_delete (mem_find (block));
901#endif
dafc79fa 902 MALLOC_UNBLOCK_INPUT;
c8099634 903}
34400008 904
ab6780cd
SM
905/* Allocation of aligned blocks of memory to store Lisp data. */
906/* The entry point is lisp_align_malloc which returns blocks of at most */
907/* BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
908
349a4500
SM
909/* Use posix_memalloc if the system has it and we're using the system's
910 malloc (because our gmalloc.c routines don't have posix_memalign although
911 its memalloc could be used). */
b4181b01
KS
912#if defined (HAVE_POSIX_MEMALIGN) && defined (SYSTEM_MALLOC)
913#define USE_POSIX_MEMALIGN 1
914#endif
ab6780cd
SM
915
916/* BLOCK_ALIGN has to be a power of 2. */
917#define BLOCK_ALIGN (1 << 10)
ab6780cd
SM
918
919/* Padding to leave at the end of a malloc'd block. This is to give
920 malloc a chance to minimize the amount of memory wasted to alignment.
921 It should be tuned to the particular malloc library used.
19bcad1f
SM
922 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
923 posix_memalign on the other hand would ideally prefer a value of 4
924 because otherwise, there's 1020 bytes wasted between each ablocks.
f501ccb4
SM
925 In Emacs, testing shows that those 1020 can most of the time be
926 efficiently used by malloc to place other objects, so a value of 0 can
927 still preferable unless you have a lot of aligned blocks and virtually
928 nothing else. */
19bcad1f
SM
929#define BLOCK_PADDING 0
930#define BLOCK_BYTES \
f501ccb4 931 (BLOCK_ALIGN - sizeof (struct ablock *) - BLOCK_PADDING)
19bcad1f
SM
932
933/* Internal data structures and constants. */
934
ab6780cd
SM
935#define ABLOCKS_SIZE 16
936
937/* An aligned block of memory. */
938struct ablock
939{
940 union
941 {
942 char payload[BLOCK_BYTES];
943 struct ablock *next_free;
944 } x;
945 /* `abase' is the aligned base of the ablocks. */
946 /* It is overloaded to hold the virtual `busy' field that counts
947 the number of used ablock in the parent ablocks.
948 The first ablock has the `busy' field, the others have the `abase'
949 field. To tell the difference, we assume that pointers will have
950 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
951 is used to tell whether the real base of the parent ablocks is `abase'
952 (if not, the word before the first ablock holds a pointer to the
953 real base). */
954 struct ablocks *abase;
955 /* The padding of all but the last ablock is unused. The padding of
956 the last ablock in an ablocks is not allocated. */
19bcad1f
SM
957#if BLOCK_PADDING
958 char padding[BLOCK_PADDING];
ebb8d410 959#endif
ab6780cd
SM
960};
961
962/* A bunch of consecutive aligned blocks. */
963struct ablocks
964{
965 struct ablock blocks[ABLOCKS_SIZE];
966};
967
968/* Size of the block requested from malloc or memalign. */
19bcad1f 969#define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
ab6780cd
SM
970
971#define ABLOCK_ABASE(block) \
972 (((unsigned long) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
973 ? (struct ablocks *)(block) \
974 : (block)->abase)
975
976/* Virtual `busy' field. */
977#define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
978
979/* Pointer to the (not necessarily aligned) malloc block. */
349a4500 980#ifdef USE_POSIX_MEMALIGN
19bcad1f
SM
981#define ABLOCKS_BASE(abase) (abase)
982#else
ab6780cd 983#define ABLOCKS_BASE(abase) \
005ca5c7 984 (1 & (long) ABLOCKS_BUSY (abase) ? abase : ((void**)abase)[-1])
19bcad1f 985#endif
ab6780cd
SM
986
987/* The list of free ablock. */
988static struct ablock *free_ablock;
989
990/* Allocate an aligned block of nbytes.
991 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
992 smaller or equal to BLOCK_BYTES. */
993static POINTER_TYPE *
994lisp_align_malloc (nbytes, type)
995 size_t nbytes;
996 enum mem_type type;
997{
998 void *base, *val;
999 struct ablocks *abase;
1000
1001 eassert (nbytes <= BLOCK_BYTES);
1002
dafc79fa 1003 MALLOC_BLOCK_INPUT;
ab6780cd
SM
1004
1005#ifdef GC_MALLOC_CHECK
1006 allocated_mem_type = type;
1007#endif
1008
1009 if (!free_ablock)
1010 {
005ca5c7
DL
1011 int i;
1012 EMACS_INT aligned; /* int gets warning casting to 64-bit pointer. */
ab6780cd
SM
1013
1014#ifdef DOUG_LEA_MALLOC
1015 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1016 because mapped region contents are not preserved in
1017 a dumped Emacs. */
1018 mallopt (M_MMAP_MAX, 0);
1019#endif
1020
349a4500 1021#ifdef USE_POSIX_MEMALIGN
19bcad1f
SM
1022 {
1023 int err = posix_memalign (&base, BLOCK_ALIGN, ABLOCKS_BYTES);
ab349c19
RS
1024 if (err)
1025 base = NULL;
1026 abase = base;
19bcad1f
SM
1027 }
1028#else
ab6780cd
SM
1029 base = malloc (ABLOCKS_BYTES);
1030 abase = ALIGN (base, BLOCK_ALIGN);
ab349c19
RS
1031#endif
1032
6b61353c
KH
1033 if (base == 0)
1034 {
dafc79fa 1035 MALLOC_UNBLOCK_INPUT;
6b61353c
KH
1036 memory_full ();
1037 }
ab6780cd
SM
1038
1039 aligned = (base == abase);
1040 if (!aligned)
1041 ((void**)abase)[-1] = base;
1042
1043#ifdef DOUG_LEA_MALLOC
1044 /* Back to a reasonable maximum of mmap'ed areas. */
1045 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1046#endif
1047
6b61353c 1048#ifndef USE_LSB_TAG
8f924df7
KH
1049 /* If the memory just allocated cannot be addressed thru a Lisp
1050 object's pointer, and it needs to be, that's equivalent to
1051 running out of memory. */
1052 if (type != MEM_TYPE_NON_LISP)
1053 {
1054 Lisp_Object tem;
1055 char *end = (char *) base + ABLOCKS_BYTES - 1;
1056 XSETCONS (tem, end);
1057 if ((char *) XCONS (tem) != end)
1058 {
1059 lisp_malloc_loser = base;
1060 free (base);
dafc79fa 1061 MALLOC_UNBLOCK_INPUT;
8f924df7
KH
1062 memory_full ();
1063 }
1064 }
6b61353c 1065#endif
8f924df7 1066
ab6780cd
SM
1067 /* Initialize the blocks and put them on the free list.
1068 Is `base' was not properly aligned, we can't use the last block. */
1069 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
1070 {
1071 abase->blocks[i].abase = abase;
1072 abase->blocks[i].x.next_free = free_ablock;
1073 free_ablock = &abase->blocks[i];
1074 }
005ca5c7 1075 ABLOCKS_BUSY (abase) = (struct ablocks *) (long) aligned;
ab6780cd 1076
19bcad1f 1077 eassert (0 == ((EMACS_UINT)abase) % BLOCK_ALIGN);
ab6780cd
SM
1078 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
1079 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
1080 eassert (ABLOCKS_BASE (abase) == base);
005ca5c7 1081 eassert (aligned == (long) ABLOCKS_BUSY (abase));
ab6780cd
SM
1082 }
1083
1084 abase = ABLOCK_ABASE (free_ablock);
005ca5c7 1085 ABLOCKS_BUSY (abase) = (struct ablocks *) (2 + (long) ABLOCKS_BUSY (abase));
ab6780cd
SM
1086 val = free_ablock;
1087 free_ablock = free_ablock->x.next_free;
1088
ab6780cd
SM
1089#if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1090 if (val && type != MEM_TYPE_NON_LISP)
1091 mem_insert (val, (char *) val + nbytes, type);
1092#endif
1093
dafc79fa 1094 MALLOC_UNBLOCK_INPUT;
ab6780cd
SM
1095 if (!val && nbytes)
1096 memory_full ();
1097
1098 eassert (0 == ((EMACS_UINT)val) % BLOCK_ALIGN);
1099 return val;
1100}
1101
1102static void
1103lisp_align_free (block)
1104 POINTER_TYPE *block;
1105{
1106 struct ablock *ablock = block;
1107 struct ablocks *abase = ABLOCK_ABASE (ablock);
1108
dafc79fa 1109 MALLOC_BLOCK_INPUT;
ab6780cd
SM
1110#if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1111 mem_delete (mem_find (block));
1112#endif
1113 /* Put on free list. */
1114 ablock->x.next_free = free_ablock;
1115 free_ablock = ablock;
1116 /* Update busy count. */
005ca5c7 1117 ABLOCKS_BUSY (abase) = (struct ablocks *) (-2 + (long) ABLOCKS_BUSY (abase));
d2db1c32 1118
005ca5c7 1119 if (2 > (long) ABLOCKS_BUSY (abase))
ab6780cd 1120 { /* All the blocks are free. */
005ca5c7 1121 int i = 0, aligned = (long) ABLOCKS_BUSY (abase);
ab6780cd
SM
1122 struct ablock **tem = &free_ablock;
1123 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
1124
1125 while (*tem)
1126 {
1127 if (*tem >= (struct ablock *) abase && *tem < atop)
1128 {
1129 i++;
1130 *tem = (*tem)->x.next_free;
1131 }
1132 else
1133 tem = &(*tem)->x.next_free;
1134 }
1135 eassert ((aligned & 1) == aligned);
1136 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
349a4500 1137#ifdef USE_POSIX_MEMALIGN
cfb2f32e
SM
1138 eassert ((unsigned long)ABLOCKS_BASE (abase) % BLOCK_ALIGN == 0);
1139#endif
ab6780cd
SM
1140 free (ABLOCKS_BASE (abase));
1141 }
dafc79fa 1142 MALLOC_UNBLOCK_INPUT;
ab6780cd 1143}
3ef06d12
SM
1144
1145/* Return a new buffer structure allocated from the heap with
1146 a call to lisp_malloc. */
1147
1148struct buffer *
1149allocate_buffer ()
1150{
1151 struct buffer *b
1152 = (struct buffer *) lisp_malloc (sizeof (struct buffer),
1153 MEM_TYPE_BUFFER);
67ee9f6e
SM
1154 b->size = sizeof (struct buffer) / sizeof (EMACS_INT);
1155 XSETPVECTYPE (b, PVEC_BUFFER);
3ef06d12
SM
1156 return b;
1157}
1158
9ac0d9e0 1159\f
026cdede
SM
1160#ifndef SYSTEM_MALLOC
1161
9ac0d9e0
JB
1162/* Arranging to disable input signals while we're in malloc.
1163
1164 This only works with GNU malloc. To help out systems which can't
1165 use GNU malloc, all the calls to malloc, realloc, and free
1166 elsewhere in the code should be inside a BLOCK_INPUT/UNBLOCK_INPUT
026cdede 1167 pair; unfortunately, we have no idea what C library functions
9ac0d9e0 1168 might call malloc, so we can't really protect them unless you're
2c5bd608
DL
1169 using GNU malloc. Fortunately, most of the major operating systems
1170 can use GNU malloc. */
9ac0d9e0 1171
026cdede 1172#ifndef SYNC_INPUT
dafc79fa
SM
1173/* When using SYNC_INPUT, we don't call malloc from a signal handler, so
1174 there's no need to block input around malloc. */
026cdede 1175
b3303f74 1176#ifndef DOUG_LEA_MALLOC
fa8459a3
DN
1177extern void * (*__malloc_hook) P_ ((size_t, const void *));
1178extern void * (*__realloc_hook) P_ ((void *, size_t, const void *));
1179extern void (*__free_hook) P_ ((void *, const void *));
b3303f74
DL
1180/* Else declared in malloc.h, perhaps with an extra arg. */
1181#endif /* DOUG_LEA_MALLOC */
fa8459a3
DN
1182static void * (*old_malloc_hook) P_ ((size_t, const void *));
1183static void * (*old_realloc_hook) P_ ((void *, size_t, const void*));
1184static void (*old_free_hook) P_ ((void*, const void*));
9ac0d9e0 1185
276cbe5a
RS
1186/* This function is used as the hook for free to call. */
1187
9ac0d9e0 1188static void
fa8459a3 1189emacs_blocked_free (ptr, ptr2)
9ac0d9e0 1190 void *ptr;
fa8459a3 1191 const void *ptr2;
9ac0d9e0 1192{
aa477689 1193 BLOCK_INPUT_ALLOC;
877935b1
GM
1194
1195#ifdef GC_MALLOC_CHECK
a83fee2c
GM
1196 if (ptr)
1197 {
1198 struct mem_node *m;
177c0ea7 1199
a83fee2c
GM
1200 m = mem_find (ptr);
1201 if (m == MEM_NIL || m->start != ptr)
1202 {
1203 fprintf (stderr,
1204 "Freeing `%p' which wasn't allocated with malloc\n", ptr);
1205 abort ();
1206 }
1207 else
1208 {
1209 /* fprintf (stderr, "free %p...%p (%p)\n", m->start, m->end, ptr); */
1210 mem_delete (m);
1211 }
1212 }
877935b1 1213#endif /* GC_MALLOC_CHECK */
177c0ea7 1214
9ac0d9e0
JB
1215 __free_hook = old_free_hook;
1216 free (ptr);
177c0ea7 1217
276cbe5a
RS
1218 /* If we released our reserve (due to running out of memory),
1219 and we have a fair amount free once again,
1220 try to set aside another reserve in case we run out once more. */
24d8a105 1221 if (! NILP (Vmemory_full)
276cbe5a
RS
1222 /* Verify there is enough space that even with the malloc
1223 hysteresis this call won't run out again.
1224 The code here is correct as long as SPARE_MEMORY
1225 is substantially larger than the block size malloc uses. */
1226 && (bytes_used_when_full
4d74a5fc 1227 > ((bytes_used_when_reconsidered = BYTES_USED)
bccfb310 1228 + max (malloc_hysteresis, 4) * SPARE_MEMORY)))
24d8a105 1229 refill_memory_reserve ();
276cbe5a 1230
b0846f52 1231 __free_hook = emacs_blocked_free;
aa477689 1232 UNBLOCK_INPUT_ALLOC;
9ac0d9e0
JB
1233}
1234
34400008 1235
276cbe5a
RS
1236/* This function is the malloc hook that Emacs uses. */
1237
9ac0d9e0 1238static void *
fa8459a3 1239emacs_blocked_malloc (size, ptr)
675d5130 1240 size_t size;
fa8459a3 1241 const void *ptr;
9ac0d9e0
JB
1242{
1243 void *value;
1244
aa477689 1245 BLOCK_INPUT_ALLOC;
9ac0d9e0 1246 __malloc_hook = old_malloc_hook;
1177ecf6 1247#ifdef DOUG_LEA_MALLOC
5665a02f
KL
1248 /* Segfaults on my system. --lorentey */
1249 /* mallopt (M_TOP_PAD, malloc_hysteresis * 4096); */
1177ecf6 1250#else
d1658221 1251 __malloc_extra_blocks = malloc_hysteresis;
1177ecf6 1252#endif
877935b1 1253
2756d8ee 1254 value = (void *) malloc (size);
877935b1
GM
1255
1256#ifdef GC_MALLOC_CHECK
1257 {
1258 struct mem_node *m = mem_find (value);
1259 if (m != MEM_NIL)
1260 {
1261 fprintf (stderr, "Malloc returned %p which is already in use\n",
1262 value);
1263 fprintf (stderr, "Region in use is %p...%p, %u bytes, type %d\n",
1264 m->start, m->end, (char *) m->end - (char *) m->start,
1265 m->type);
1266 abort ();
1267 }
1268
1269 if (!dont_register_blocks)
1270 {
1271 mem_insert (value, (char *) value + max (1, size), allocated_mem_type);
1272 allocated_mem_type = MEM_TYPE_NON_LISP;
1273 }
1274 }
1275#endif /* GC_MALLOC_CHECK */
177c0ea7 1276
b0846f52 1277 __malloc_hook = emacs_blocked_malloc;
aa477689 1278 UNBLOCK_INPUT_ALLOC;
9ac0d9e0 1279
877935b1 1280 /* fprintf (stderr, "%p malloc\n", value); */
9ac0d9e0
JB
1281 return value;
1282}
1283
34400008
GM
1284
1285/* This function is the realloc hook that Emacs uses. */
1286
9ac0d9e0 1287static void *
fa8459a3 1288emacs_blocked_realloc (ptr, size, ptr2)
9ac0d9e0 1289 void *ptr;
675d5130 1290 size_t size;
fa8459a3 1291 const void *ptr2;
9ac0d9e0
JB
1292{
1293 void *value;
1294
aa477689 1295 BLOCK_INPUT_ALLOC;
9ac0d9e0 1296 __realloc_hook = old_realloc_hook;
877935b1
GM
1297
1298#ifdef GC_MALLOC_CHECK
1299 if (ptr)
1300 {
1301 struct mem_node *m = mem_find (ptr);
1302 if (m == MEM_NIL || m->start != ptr)
1303 {
1304 fprintf (stderr,
1305 "Realloc of %p which wasn't allocated with malloc\n",
1306 ptr);
1307 abort ();
1308 }
1309
1310 mem_delete (m);
1311 }
177c0ea7 1312
877935b1 1313 /* fprintf (stderr, "%p -> realloc\n", ptr); */
177c0ea7 1314
877935b1
GM
1315 /* Prevent malloc from registering blocks. */
1316 dont_register_blocks = 1;
1317#endif /* GC_MALLOC_CHECK */
1318
2756d8ee 1319 value = (void *) realloc (ptr, size);
877935b1
GM
1320
1321#ifdef GC_MALLOC_CHECK
1322 dont_register_blocks = 0;
1323
1324 {
1325 struct mem_node *m = mem_find (value);
1326 if (m != MEM_NIL)
1327 {
1328 fprintf (stderr, "Realloc returns memory that is already in use\n");
1329 abort ();
1330 }
1331
1332 /* Can't handle zero size regions in the red-black tree. */
1333 mem_insert (value, (char *) value + max (size, 1), MEM_TYPE_NON_LISP);
1334 }
177c0ea7 1335
877935b1
GM
1336 /* fprintf (stderr, "%p <- realloc\n", value); */
1337#endif /* GC_MALLOC_CHECK */
177c0ea7 1338
b0846f52 1339 __realloc_hook = emacs_blocked_realloc;
aa477689 1340 UNBLOCK_INPUT_ALLOC;
9ac0d9e0
JB
1341
1342 return value;
1343}
1344
34400008 1345
aa477689
JD
1346#ifdef HAVE_GTK_AND_PTHREAD
1347/* Called from Fdump_emacs so that when the dumped Emacs starts, it has a
1348 normal malloc. Some thread implementations need this as they call
1349 malloc before main. The pthread_self call in BLOCK_INPUT_ALLOC then
1350 calls malloc because it is the first call, and we have an endless loop. */
1351
1352void
1353reset_malloc_hooks ()
1354{
4d580af2
AS
1355 __free_hook = old_free_hook;
1356 __malloc_hook = old_malloc_hook;
1357 __realloc_hook = old_realloc_hook;
aa477689
JD
1358}
1359#endif /* HAVE_GTK_AND_PTHREAD */
1360
1361
34400008
GM
1362/* Called from main to set up malloc to use our hooks. */
1363
9ac0d9e0
JB
1364void
1365uninterrupt_malloc ()
1366{
aa477689 1367#ifdef HAVE_GTK_AND_PTHREAD
a1b41389 1368#ifdef DOUG_LEA_MALLOC
aa477689
JD
1369 pthread_mutexattr_t attr;
1370
1371 /* GLIBC has a faster way to do this, but lets keep it portable.
1372 This is according to the Single UNIX Specification. */
1373 pthread_mutexattr_init (&attr);
1374 pthread_mutexattr_settype (&attr, PTHREAD_MUTEX_RECURSIVE);
1375 pthread_mutex_init (&alloc_mutex, &attr);
a1b41389
YM
1376#else /* !DOUG_LEA_MALLOC */
1377 /* Some systems such as Solaris 2.6 doesn't have a recursive mutex,
1378 and the bundled gmalloc.c doesn't require it. */
1379 pthread_mutex_init (&alloc_mutex, NULL);
1380#endif /* !DOUG_LEA_MALLOC */
aa477689
JD
1381#endif /* HAVE_GTK_AND_PTHREAD */
1382
c8099634
RS
1383 if (__free_hook != emacs_blocked_free)
1384 old_free_hook = __free_hook;
b0846f52 1385 __free_hook = emacs_blocked_free;
9ac0d9e0 1386
c8099634
RS
1387 if (__malloc_hook != emacs_blocked_malloc)
1388 old_malloc_hook = __malloc_hook;
b0846f52 1389 __malloc_hook = emacs_blocked_malloc;
9ac0d9e0 1390
c8099634
RS
1391 if (__realloc_hook != emacs_blocked_realloc)
1392 old_realloc_hook = __realloc_hook;
b0846f52 1393 __realloc_hook = emacs_blocked_realloc;
9ac0d9e0 1394}
2e471eb5 1395
026cdede 1396#endif /* not SYNC_INPUT */
2e471eb5
GM
1397#endif /* not SYSTEM_MALLOC */
1398
1399
7146af97 1400\f
2e471eb5
GM
1401/***********************************************************************
1402 Interval Allocation
1403 ***********************************************************************/
1a4f1e2c 1404
34400008
GM
1405/* Number of intervals allocated in an interval_block structure.
1406 The 1020 is 1024 minus malloc overhead. */
1407
d5e35230
JA
1408#define INTERVAL_BLOCK_SIZE \
1409 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1410
34400008
GM
1411/* Intervals are allocated in chunks in form of an interval_block
1412 structure. */
1413
d5e35230 1414struct interval_block
2e471eb5 1415{
6b61353c 1416 /* Place `intervals' first, to preserve alignment. */
2e471eb5 1417 struct interval intervals[INTERVAL_BLOCK_SIZE];
6b61353c 1418 struct interval_block *next;
2e471eb5 1419};
d5e35230 1420
34400008
GM
1421/* Current interval block. Its `next' pointer points to older
1422 blocks. */
1423
d3d47262 1424static struct interval_block *interval_block;
34400008
GM
1425
1426/* Index in interval_block above of the next unused interval
1427 structure. */
1428
d5e35230 1429static int interval_block_index;
34400008
GM
1430
1431/* Number of free and live intervals. */
1432
2e471eb5 1433static int total_free_intervals, total_intervals;
d5e35230 1434
34400008
GM
1435/* List of free intervals. */
1436
d5e35230
JA
1437INTERVAL interval_free_list;
1438
c8099634 1439/* Total number of interval blocks now in use. */
2e471eb5 1440
d3d47262 1441static int n_interval_blocks;
c8099634 1442
34400008
GM
1443
1444/* Initialize interval allocation. */
1445
d5e35230
JA
1446static void
1447init_intervals ()
1448{
005ca5c7
DL
1449 interval_block = NULL;
1450 interval_block_index = INTERVAL_BLOCK_SIZE;
d5e35230 1451 interval_free_list = 0;
005ca5c7 1452 n_interval_blocks = 0;
d5e35230
JA
1453}
1454
34400008
GM
1455
1456/* Return a new interval. */
d5e35230
JA
1457
1458INTERVAL
1459make_interval ()
1460{
1461 INTERVAL val;
1462
e2984df0
CY
1463 /* eassert (!handling_signal); */
1464
dafc79fa 1465 MALLOC_BLOCK_INPUT;
cfb2f32e 1466
d5e35230
JA
1467 if (interval_free_list)
1468 {
1469 val = interval_free_list;
439d5cb4 1470 interval_free_list = INTERVAL_PARENT (interval_free_list);
d5e35230
JA
1471 }
1472 else
1473 {
1474 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1475 {
3c06d205
KH
1476 register struct interval_block *newi;
1477
34400008
GM
1478 newi = (struct interval_block *) lisp_malloc (sizeof *newi,
1479 MEM_TYPE_NON_LISP);
d5e35230 1480
d5e35230
JA
1481 newi->next = interval_block;
1482 interval_block = newi;
1483 interval_block_index = 0;
c8099634 1484 n_interval_blocks++;
d5e35230
JA
1485 }
1486 val = &interval_block->intervals[interval_block_index++];
1487 }
e2984df0 1488
dafc79fa 1489 MALLOC_UNBLOCK_INPUT;
e2984df0 1490
d5e35230 1491 consing_since_gc += sizeof (struct interval);
310ea200 1492 intervals_consed++;
d5e35230 1493 RESET_INTERVAL (val);
2336fe58 1494 val->gcmarkbit = 0;
d5e35230
JA
1495 return val;
1496}
1497
34400008
GM
1498
1499/* Mark Lisp objects in interval I. */
d5e35230
JA
1500
1501static void
d393c068 1502mark_interval (i, dummy)
d5e35230 1503 register INTERVAL i;
d393c068 1504 Lisp_Object dummy;
d5e35230 1505{
2336fe58
SM
1506 eassert (!i->gcmarkbit); /* Intervals are never shared. */
1507 i->gcmarkbit = 1;
49723c04 1508 mark_object (i->plist);
d5e35230
JA
1509}
1510
34400008
GM
1511
1512/* Mark the interval tree rooted in TREE. Don't call this directly;
1513 use the macro MARK_INTERVAL_TREE instead. */
1514
d5e35230
JA
1515static void
1516mark_interval_tree (tree)
1517 register INTERVAL tree;
1518{
e8720644
JB
1519 /* No need to test if this tree has been marked already; this
1520 function is always called through the MARK_INTERVAL_TREE macro,
1521 which takes care of that. */
1522
1e934989 1523 traverse_intervals_noorder (tree, mark_interval, Qnil);
d5e35230
JA
1524}
1525
34400008
GM
1526
1527/* Mark the interval tree rooted in I. */
1528
e8720644
JB
1529#define MARK_INTERVAL_TREE(i) \
1530 do { \
2336fe58 1531 if (!NULL_INTERVAL_P (i) && !i->gcmarkbit) \
e8720644
JB
1532 mark_interval_tree (i); \
1533 } while (0)
d5e35230 1534
34400008 1535
2e471eb5
GM
1536#define UNMARK_BALANCE_INTERVALS(i) \
1537 do { \
1538 if (! NULL_INTERVAL_P (i)) \
2336fe58 1539 (i) = balance_intervals (i); \
2e471eb5 1540 } while (0)
d5e35230 1541
cc2d8c6b 1542\f
6e5cb96f 1543/* Number support. If USE_LISP_UNION_TYPE is in effect, we
cc2d8c6b
KR
1544 can't create number objects in macros. */
1545#ifndef make_number
1546Lisp_Object
1547make_number (n)
217604da 1548 EMACS_INT n;
cc2d8c6b
KR
1549{
1550 Lisp_Object obj;
1551 obj.s.val = n;
1552 obj.s.type = Lisp_Int;
1553 return obj;
1554}
1555#endif
d5e35230 1556\f
2e471eb5
GM
1557/***********************************************************************
1558 String Allocation
1559 ***********************************************************************/
1a4f1e2c 1560
2e471eb5
GM
1561/* Lisp_Strings are allocated in string_block structures. When a new
1562 string_block is allocated, all the Lisp_Strings it contains are
e0fead5d 1563 added to a free-list string_free_list. When a new Lisp_String is
2e471eb5
GM
1564 needed, it is taken from that list. During the sweep phase of GC,
1565 string_blocks that are entirely free are freed, except two which
1566 we keep.
7146af97 1567
2e471eb5
GM
1568 String data is allocated from sblock structures. Strings larger
1569 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1570 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
7146af97 1571
2e471eb5
GM
1572 Sblocks consist internally of sdata structures, one for each
1573 Lisp_String. The sdata structure points to the Lisp_String it
1574 belongs to. The Lisp_String points back to the `u.data' member of
1575 its sdata structure.
7146af97 1576
2e471eb5
GM
1577 When a Lisp_String is freed during GC, it is put back on
1578 string_free_list, and its `data' member and its sdata's `string'
1579 pointer is set to null. The size of the string is recorded in the
1580 `u.nbytes' member of the sdata. So, sdata structures that are no
1581 longer used, can be easily recognized, and it's easy to compact the
1582 sblocks of small strings which we do in compact_small_strings. */
7146af97 1583
2e471eb5
GM
1584/* Size in bytes of an sblock structure used for small strings. This
1585 is 8192 minus malloc overhead. */
7146af97 1586
2e471eb5 1587#define SBLOCK_SIZE 8188
c8099634 1588
2e471eb5
GM
1589/* Strings larger than this are considered large strings. String data
1590 for large strings is allocated from individual sblocks. */
7146af97 1591
2e471eb5
GM
1592#define LARGE_STRING_BYTES 1024
1593
1594/* Structure describing string memory sub-allocated from an sblock.
1595 This is where the contents of Lisp strings are stored. */
1596
1597struct sdata
7146af97 1598{
2e471eb5
GM
1599 /* Back-pointer to the string this sdata belongs to. If null, this
1600 structure is free, and the NBYTES member of the union below
34400008 1601 contains the string's byte size (the same value that STRING_BYTES
2e471eb5
GM
1602 would return if STRING were non-null). If non-null, STRING_BYTES
1603 (STRING) is the size of the data, and DATA contains the string's
1604 contents. */
1605 struct Lisp_String *string;
7146af97 1606
31d929e5 1607#ifdef GC_CHECK_STRING_BYTES
177c0ea7 1608
31d929e5
GM
1609 EMACS_INT nbytes;
1610 unsigned char data[1];
177c0ea7 1611
31d929e5
GM
1612#define SDATA_NBYTES(S) (S)->nbytes
1613#define SDATA_DATA(S) (S)->data
177c0ea7 1614
31d929e5
GM
1615#else /* not GC_CHECK_STRING_BYTES */
1616
2e471eb5
GM
1617 union
1618 {
1619 /* When STRING in non-null. */
1620 unsigned char data[1];
1621
1622 /* When STRING is null. */
1623 EMACS_INT nbytes;
1624 } u;
177c0ea7 1625
31d929e5
GM
1626
1627#define SDATA_NBYTES(S) (S)->u.nbytes
1628#define SDATA_DATA(S) (S)->u.data
1629
1630#endif /* not GC_CHECK_STRING_BYTES */
2e471eb5
GM
1631};
1632
31d929e5 1633
2e471eb5
GM
1634/* Structure describing a block of memory which is sub-allocated to
1635 obtain string data memory for strings. Blocks for small strings
1636 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1637 as large as needed. */
1638
1639struct sblock
7146af97 1640{
2e471eb5
GM
1641 /* Next in list. */
1642 struct sblock *next;
7146af97 1643
2e471eb5
GM
1644 /* Pointer to the next free sdata block. This points past the end
1645 of the sblock if there isn't any space left in this block. */
1646 struct sdata *next_free;
1647
1648 /* Start of data. */
1649 struct sdata first_data;
1650};
1651
1652/* Number of Lisp strings in a string_block structure. The 1020 is
1653 1024 minus malloc overhead. */
1654
19bcad1f 1655#define STRING_BLOCK_SIZE \
2e471eb5
GM
1656 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1657
1658/* Structure describing a block from which Lisp_String structures
1659 are allocated. */
1660
1661struct string_block
7146af97 1662{
6b61353c 1663 /* Place `strings' first, to preserve alignment. */
19bcad1f 1664 struct Lisp_String strings[STRING_BLOCK_SIZE];
6b61353c 1665 struct string_block *next;
2e471eb5 1666};
7146af97 1667
2e471eb5
GM
1668/* Head and tail of the list of sblock structures holding Lisp string
1669 data. We always allocate from current_sblock. The NEXT pointers
1670 in the sblock structures go from oldest_sblock to current_sblock. */
3c06d205 1671
2e471eb5 1672static struct sblock *oldest_sblock, *current_sblock;
7146af97 1673
2e471eb5 1674/* List of sblocks for large strings. */
7146af97 1675
2e471eb5 1676static struct sblock *large_sblocks;
7146af97 1677
2e471eb5 1678/* List of string_block structures, and how many there are. */
7146af97 1679
2e471eb5
GM
1680static struct string_block *string_blocks;
1681static int n_string_blocks;
7146af97 1682
2e471eb5 1683/* Free-list of Lisp_Strings. */
7146af97 1684
2e471eb5 1685static struct Lisp_String *string_free_list;
7146af97 1686
2e471eb5 1687/* Number of live and free Lisp_Strings. */
c8099634 1688
2e471eb5 1689static int total_strings, total_free_strings;
7146af97 1690
2e471eb5
GM
1691/* Number of bytes used by live strings. */
1692
1693static int total_string_size;
1694
1695/* Given a pointer to a Lisp_String S which is on the free-list
1696 string_free_list, return a pointer to its successor in the
1697 free-list. */
1698
1699#define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1700
1701/* Return a pointer to the sdata structure belonging to Lisp string S.
1702 S must be live, i.e. S->data must not be null. S->data is actually
1703 a pointer to the `u.data' member of its sdata structure; the
1704 structure starts at a constant offset in front of that. */
177c0ea7 1705
31d929e5
GM
1706#ifdef GC_CHECK_STRING_BYTES
1707
1708#define SDATA_OF_STRING(S) \
1709 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *) \
1710 - sizeof (EMACS_INT)))
1711
1712#else /* not GC_CHECK_STRING_BYTES */
1713
2e471eb5
GM
1714#define SDATA_OF_STRING(S) \
1715 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *)))
1716
31d929e5
GM
1717#endif /* not GC_CHECK_STRING_BYTES */
1718
212f33f1
KS
1719
1720#ifdef GC_CHECK_STRING_OVERRUN
bdbed949
KS
1721
1722/* We check for overrun in string data blocks by appending a small
1723 "cookie" after each allocated string data block, and check for the
8349069c 1724 presence of this cookie during GC. */
bdbed949
KS
1725
1726#define GC_STRING_OVERRUN_COOKIE_SIZE 4
1727static char string_overrun_cookie[GC_STRING_OVERRUN_COOKIE_SIZE] =
1728 { 0xde, 0xad, 0xbe, 0xef };
1729
212f33f1 1730#else
bdbed949 1731#define GC_STRING_OVERRUN_COOKIE_SIZE 0
212f33f1
KS
1732#endif
1733
2e471eb5
GM
1734/* Value is the size of an sdata structure large enough to hold NBYTES
1735 bytes of string data. The value returned includes a terminating
1736 NUL byte, the size of the sdata structure, and padding. */
1737
31d929e5
GM
1738#ifdef GC_CHECK_STRING_BYTES
1739
2e471eb5
GM
1740#define SDATA_SIZE(NBYTES) \
1741 ((sizeof (struct Lisp_String *) \
1742 + (NBYTES) + 1 \
31d929e5 1743 + sizeof (EMACS_INT) \
2e471eb5
GM
1744 + sizeof (EMACS_INT) - 1) \
1745 & ~(sizeof (EMACS_INT) - 1))
1746
31d929e5
GM
1747#else /* not GC_CHECK_STRING_BYTES */
1748
1749#define SDATA_SIZE(NBYTES) \
1750 ((sizeof (struct Lisp_String *) \
1751 + (NBYTES) + 1 \
1752 + sizeof (EMACS_INT) - 1) \
1753 & ~(sizeof (EMACS_INT) - 1))
1754
1755#endif /* not GC_CHECK_STRING_BYTES */
2e471eb5 1756
bdbed949
KS
1757/* Extra bytes to allocate for each string. */
1758
1759#define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1760
2e471eb5 1761/* Initialize string allocation. Called from init_alloc_once. */
d457598b 1762
d3d47262 1763static void
2e471eb5 1764init_strings ()
7146af97 1765{
2e471eb5
GM
1766 total_strings = total_free_strings = total_string_size = 0;
1767 oldest_sblock = current_sblock = large_sblocks = NULL;
1768 string_blocks = NULL;
1769 n_string_blocks = 0;
1770 string_free_list = NULL;
4d774b0f
JB
1771 empty_unibyte_string = make_pure_string ("", 0, 0, 0);
1772 empty_multibyte_string = make_pure_string ("", 0, 0, 1);
7146af97
JB
1773}
1774
2e471eb5 1775
361b097f
GM
1776#ifdef GC_CHECK_STRING_BYTES
1777
361b097f
GM
1778static int check_string_bytes_count;
1779
d3d47262
JB
1780static void check_string_bytes P_ ((int));
1781static void check_sblock P_ ((struct sblock *));
676a7251
GM
1782
1783#define CHECK_STRING_BYTES(S) STRING_BYTES (S)
1784
1785
1786/* Like GC_STRING_BYTES, but with debugging check. */
1787
1788int
1789string_bytes (s)
1790 struct Lisp_String *s;
1791{
7cdee936 1792 int nbytes = (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
676a7251
GM
1793 if (!PURE_POINTER_P (s)
1794 && s->data
1795 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1796 abort ();
1797 return nbytes;
1798}
177c0ea7 1799
2c5bd608 1800/* Check validity of Lisp strings' string_bytes member in B. */
676a7251 1801
d3d47262 1802static void
676a7251
GM
1803check_sblock (b)
1804 struct sblock *b;
361b097f 1805{
676a7251 1806 struct sdata *from, *end, *from_end;
177c0ea7 1807
676a7251 1808 end = b->next_free;
177c0ea7 1809
676a7251 1810 for (from = &b->first_data; from < end; from = from_end)
361b097f 1811 {
676a7251
GM
1812 /* Compute the next FROM here because copying below may
1813 overwrite data we need to compute it. */
1814 int nbytes;
177c0ea7 1815
676a7251
GM
1816 /* Check that the string size recorded in the string is the
1817 same as the one recorded in the sdata structure. */
1818 if (from->string)
1819 CHECK_STRING_BYTES (from->string);
177c0ea7 1820
676a7251
GM
1821 if (from->string)
1822 nbytes = GC_STRING_BYTES (from->string);
1823 else
1824 nbytes = SDATA_NBYTES (from);
177c0ea7 1825
676a7251 1826 nbytes = SDATA_SIZE (nbytes);
212f33f1 1827 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
676a7251
GM
1828 }
1829}
361b097f 1830
676a7251
GM
1831
1832/* Check validity of Lisp strings' string_bytes member. ALL_P
1833 non-zero means check all strings, otherwise check only most
1834 recently allocated strings. Used for hunting a bug. */
1835
d3d47262 1836static void
676a7251
GM
1837check_string_bytes (all_p)
1838 int all_p;
1839{
1840 if (all_p)
1841 {
1842 struct sblock *b;
1843
1844 for (b = large_sblocks; b; b = b->next)
1845 {
1846 struct Lisp_String *s = b->first_data.string;
1847 if (s)
1848 CHECK_STRING_BYTES (s);
361b097f 1849 }
177c0ea7 1850
676a7251
GM
1851 for (b = oldest_sblock; b; b = b->next)
1852 check_sblock (b);
361b097f 1853 }
676a7251
GM
1854 else
1855 check_sblock (current_sblock);
361b097f
GM
1856}
1857
1858#endif /* GC_CHECK_STRING_BYTES */
1859
212f33f1
KS
1860#ifdef GC_CHECK_STRING_FREE_LIST
1861
bdbed949
KS
1862/* Walk through the string free list looking for bogus next pointers.
1863 This may catch buffer overrun from a previous string. */
1864
212f33f1
KS
1865static void
1866check_string_free_list ()
1867{
1868 struct Lisp_String *s;
1869
1870 /* Pop a Lisp_String off the free-list. */
1871 s = string_free_list;
1872 while (s != NULL)
1873 {
1874 if ((unsigned)s < 1024)
1875 abort();
1876 s = NEXT_FREE_LISP_STRING (s);
1877 }
1878}
1879#else
1880#define check_string_free_list()
1881#endif
361b097f 1882
2e471eb5
GM
1883/* Return a new Lisp_String. */
1884
1885static struct Lisp_String *
1886allocate_string ()
7146af97 1887{
2e471eb5 1888 struct Lisp_String *s;
7146af97 1889
e2984df0
CY
1890 /* eassert (!handling_signal); */
1891
dafc79fa 1892 MALLOC_BLOCK_INPUT;
cfb2f32e 1893
2e471eb5
GM
1894 /* If the free-list is empty, allocate a new string_block, and
1895 add all the Lisp_Strings in it to the free-list. */
1896 if (string_free_list == NULL)
7146af97 1897 {
2e471eb5
GM
1898 struct string_block *b;
1899 int i;
1900
34400008 1901 b = (struct string_block *) lisp_malloc (sizeof *b, MEM_TYPE_STRING);
2e471eb5
GM
1902 bzero (b, sizeof *b);
1903 b->next = string_blocks;
1904 string_blocks = b;
1905 ++n_string_blocks;
1906
19bcad1f 1907 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
7146af97 1908 {
2e471eb5
GM
1909 s = b->strings + i;
1910 NEXT_FREE_LISP_STRING (s) = string_free_list;
1911 string_free_list = s;
7146af97 1912 }
2e471eb5 1913
19bcad1f 1914 total_free_strings += STRING_BLOCK_SIZE;
7146af97 1915 }
c0f51373 1916
bdbed949 1917 check_string_free_list ();
212f33f1 1918
2e471eb5
GM
1919 /* Pop a Lisp_String off the free-list. */
1920 s = string_free_list;
1921 string_free_list = NEXT_FREE_LISP_STRING (s);
c0f51373 1922
dafc79fa 1923 MALLOC_UNBLOCK_INPUT;
e2984df0 1924
2e471eb5
GM
1925 /* Probably not strictly necessary, but play it safe. */
1926 bzero (s, sizeof *s);
c0f51373 1927
2e471eb5
GM
1928 --total_free_strings;
1929 ++total_strings;
1930 ++strings_consed;
1931 consing_since_gc += sizeof *s;
c0f51373 1932
361b097f 1933#ifdef GC_CHECK_STRING_BYTES
e39a993c 1934 if (!noninteractive)
361b097f 1935 {
676a7251
GM
1936 if (++check_string_bytes_count == 200)
1937 {
1938 check_string_bytes_count = 0;
1939 check_string_bytes (1);
1940 }
1941 else
1942 check_string_bytes (0);
361b097f 1943 }
676a7251 1944#endif /* GC_CHECK_STRING_BYTES */
361b097f 1945
2e471eb5 1946 return s;
c0f51373 1947}
7146af97 1948
7146af97 1949
2e471eb5
GM
1950/* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1951 plus a NUL byte at the end. Allocate an sdata structure for S, and
1952 set S->data to its `u.data' member. Store a NUL byte at the end of
1953 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1954 S->data if it was initially non-null. */
7146af97 1955
2e471eb5
GM
1956void
1957allocate_string_data (s, nchars, nbytes)
1958 struct Lisp_String *s;
1959 int nchars, nbytes;
7146af97 1960{
5c5fecb3 1961 struct sdata *data, *old_data;
2e471eb5 1962 struct sblock *b;
5c5fecb3 1963 int needed, old_nbytes;
7146af97 1964
2e471eb5
GM
1965 /* Determine the number of bytes needed to store NBYTES bytes
1966 of string data. */
1967 needed = SDATA_SIZE (nbytes);
e2984df0
CY
1968 old_data = s->data ? SDATA_OF_STRING (s) : NULL;
1969 old_nbytes = GC_STRING_BYTES (s);
1970
dafc79fa 1971 MALLOC_BLOCK_INPUT;
7146af97 1972
2e471eb5
GM
1973 if (nbytes > LARGE_STRING_BYTES)
1974 {
675d5130 1975 size_t size = sizeof *b - sizeof (struct sdata) + needed;
2e471eb5
GM
1976
1977#ifdef DOUG_LEA_MALLOC
f8608968
GM
1978 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1979 because mapped region contents are not preserved in
d36b182f
DL
1980 a dumped Emacs.
1981
1982 In case you think of allowing it in a dumped Emacs at the
1983 cost of not being able to re-dump, there's another reason:
1984 mmap'ed data typically have an address towards the top of the
1985 address space, which won't fit into an EMACS_INT (at least on
1986 32-bit systems with the current tagging scheme). --fx */
2e471eb5
GM
1987 mallopt (M_MMAP_MAX, 0);
1988#endif
1989
212f33f1 1990 b = (struct sblock *) lisp_malloc (size + GC_STRING_EXTRA, MEM_TYPE_NON_LISP);
177c0ea7 1991
2e471eb5
GM
1992#ifdef DOUG_LEA_MALLOC
1993 /* Back to a reasonable maximum of mmap'ed areas. */
1994 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1995#endif
177c0ea7 1996
2e471eb5
GM
1997 b->next_free = &b->first_data;
1998 b->first_data.string = NULL;
1999 b->next = large_sblocks;
2000 large_sblocks = b;
2001 }
2002 else if (current_sblock == NULL
2003 || (((char *) current_sblock + SBLOCK_SIZE
2004 - (char *) current_sblock->next_free)
212f33f1 2005 < (needed + GC_STRING_EXTRA)))
2e471eb5
GM
2006 {
2007 /* Not enough room in the current sblock. */
34400008 2008 b = (struct sblock *) lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
2e471eb5
GM
2009 b->next_free = &b->first_data;
2010 b->first_data.string = NULL;
2011 b->next = NULL;
2012
2013 if (current_sblock)
2014 current_sblock->next = b;
2015 else
2016 oldest_sblock = b;
2017 current_sblock = b;
2018 }
2019 else
2020 b = current_sblock;
5c5fecb3 2021
2e471eb5 2022 data = b->next_free;
a0b08700
CY
2023 b->next_free = (struct sdata *) ((char *) data + needed + GC_STRING_EXTRA);
2024
dafc79fa 2025 MALLOC_UNBLOCK_INPUT;
e2984df0 2026
2e471eb5 2027 data->string = s;
31d929e5
GM
2028 s->data = SDATA_DATA (data);
2029#ifdef GC_CHECK_STRING_BYTES
2030 SDATA_NBYTES (data) = nbytes;
2031#endif
2e471eb5
GM
2032 s->size = nchars;
2033 s->size_byte = nbytes;
2034 s->data[nbytes] = '\0';
212f33f1 2035#ifdef GC_CHECK_STRING_OVERRUN
bdbed949
KS
2036 bcopy (string_overrun_cookie, (char *) data + needed,
2037 GC_STRING_OVERRUN_COOKIE_SIZE);
212f33f1 2038#endif
177c0ea7 2039
5c5fecb3
GM
2040 /* If S had already data assigned, mark that as free by setting its
2041 string back-pointer to null, and recording the size of the data
00c9c33c 2042 in it. */
5c5fecb3
GM
2043 if (old_data)
2044 {
31d929e5 2045 SDATA_NBYTES (old_data) = old_nbytes;
5c5fecb3
GM
2046 old_data->string = NULL;
2047 }
2048
2e471eb5
GM
2049 consing_since_gc += needed;
2050}
2051
2052
2053/* Sweep and compact strings. */
2054
2055static void
2056sweep_strings ()
2057{
2058 struct string_block *b, *next;
2059 struct string_block *live_blocks = NULL;
177c0ea7 2060
2e471eb5
GM
2061 string_free_list = NULL;
2062 total_strings = total_free_strings = 0;
2063 total_string_size = 0;
2064
2065 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
2066 for (b = string_blocks; b; b = next)
2067 {
2068 int i, nfree = 0;
2069 struct Lisp_String *free_list_before = string_free_list;
2070
2071 next = b->next;
2072
19bcad1f 2073 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
2e471eb5
GM
2074 {
2075 struct Lisp_String *s = b->strings + i;
2076
2077 if (s->data)
2078 {
2079 /* String was not on free-list before. */
2080 if (STRING_MARKED_P (s))
2081 {
2082 /* String is live; unmark it and its intervals. */
2083 UNMARK_STRING (s);
177c0ea7 2084
2e471eb5
GM
2085 if (!NULL_INTERVAL_P (s->intervals))
2086 UNMARK_BALANCE_INTERVALS (s->intervals);
2087
2088 ++total_strings;
2089 total_string_size += STRING_BYTES (s);
2090 }
2091 else
2092 {
2093 /* String is dead. Put it on the free-list. */
2094 struct sdata *data = SDATA_OF_STRING (s);
2095
2096 /* Save the size of S in its sdata so that we know
2097 how large that is. Reset the sdata's string
2098 back-pointer so that we know it's free. */
31d929e5
GM
2099#ifdef GC_CHECK_STRING_BYTES
2100 if (GC_STRING_BYTES (s) != SDATA_NBYTES (data))
2101 abort ();
2102#else
2e471eb5 2103 data->u.nbytes = GC_STRING_BYTES (s);
31d929e5 2104#endif
2e471eb5
GM
2105 data->string = NULL;
2106
2107 /* Reset the strings's `data' member so that we
2108 know it's free. */
2109 s->data = NULL;
2110
2111 /* Put the string on the free-list. */
2112 NEXT_FREE_LISP_STRING (s) = string_free_list;
2113 string_free_list = s;
2114 ++nfree;
2115 }
2116 }
2117 else
2118 {
2119 /* S was on the free-list before. Put it there again. */
2120 NEXT_FREE_LISP_STRING (s) = string_free_list;
2121 string_free_list = s;
2122 ++nfree;
2123 }
2124 }
2125
34400008 2126 /* Free blocks that contain free Lisp_Strings only, except
2e471eb5 2127 the first two of them. */
19bcad1f
SM
2128 if (nfree == STRING_BLOCK_SIZE
2129 && total_free_strings > STRING_BLOCK_SIZE)
2e471eb5
GM
2130 {
2131 lisp_free (b);
2132 --n_string_blocks;
2133 string_free_list = free_list_before;
2134 }
2135 else
2136 {
2137 total_free_strings += nfree;
2138 b->next = live_blocks;
2139 live_blocks = b;
2140 }
2141 }
2142
bdbed949 2143 check_string_free_list ();
212f33f1 2144
2e471eb5
GM
2145 string_blocks = live_blocks;
2146 free_large_strings ();
2147 compact_small_strings ();
212f33f1 2148
bdbed949 2149 check_string_free_list ();
2e471eb5
GM
2150}
2151
2152
2153/* Free dead large strings. */
2154
2155static void
2156free_large_strings ()
2157{
2158 struct sblock *b, *next;
2159 struct sblock *live_blocks = NULL;
177c0ea7 2160
2e471eb5
GM
2161 for (b = large_sblocks; b; b = next)
2162 {
2163 next = b->next;
2164
2165 if (b->first_data.string == NULL)
2166 lisp_free (b);
2167 else
2168 {
2169 b->next = live_blocks;
2170 live_blocks = b;
2171 }
2172 }
2173
2174 large_sblocks = live_blocks;
2175}
2176
2177
2178/* Compact data of small strings. Free sblocks that don't contain
2179 data of live strings after compaction. */
2180
2181static void
2182compact_small_strings ()
2183{
2184 struct sblock *b, *tb, *next;
2185 struct sdata *from, *to, *end, *tb_end;
2186 struct sdata *to_end, *from_end;
2187
2188 /* TB is the sblock we copy to, TO is the sdata within TB we copy
2189 to, and TB_END is the end of TB. */
2190 tb = oldest_sblock;
2191 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2192 to = &tb->first_data;
2193
2194 /* Step through the blocks from the oldest to the youngest. We
2195 expect that old blocks will stabilize over time, so that less
2196 copying will happen this way. */
2197 for (b = oldest_sblock; b; b = b->next)
2198 {
2199 end = b->next_free;
2200 xassert ((char *) end <= (char *) b + SBLOCK_SIZE);
177c0ea7 2201
2e471eb5
GM
2202 for (from = &b->first_data; from < end; from = from_end)
2203 {
2204 /* Compute the next FROM here because copying below may
2205 overwrite data we need to compute it. */
2206 int nbytes;
2207
31d929e5
GM
2208#ifdef GC_CHECK_STRING_BYTES
2209 /* Check that the string size recorded in the string is the
2210 same as the one recorded in the sdata structure. */
2211 if (from->string
2212 && GC_STRING_BYTES (from->string) != SDATA_NBYTES (from))
2213 abort ();
2214#endif /* GC_CHECK_STRING_BYTES */
177c0ea7 2215
2e471eb5
GM
2216 if (from->string)
2217 nbytes = GC_STRING_BYTES (from->string);
2218 else
31d929e5 2219 nbytes = SDATA_NBYTES (from);
177c0ea7 2220
212f33f1
KS
2221 if (nbytes > LARGE_STRING_BYTES)
2222 abort ();
212f33f1 2223
2e471eb5 2224 nbytes = SDATA_SIZE (nbytes);
212f33f1
KS
2225 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
2226
2227#ifdef GC_CHECK_STRING_OVERRUN
bdbed949
KS
2228 if (bcmp (string_overrun_cookie,
2229 ((char *) from_end) - GC_STRING_OVERRUN_COOKIE_SIZE,
2230 GC_STRING_OVERRUN_COOKIE_SIZE))
212f33f1
KS
2231 abort ();
2232#endif
177c0ea7 2233
2e471eb5
GM
2234 /* FROM->string non-null means it's alive. Copy its data. */
2235 if (from->string)
2236 {
2237 /* If TB is full, proceed with the next sblock. */
212f33f1 2238 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2e471eb5
GM
2239 if (to_end > tb_end)
2240 {
2241 tb->next_free = to;
2242 tb = tb->next;
2243 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2244 to = &tb->first_data;
212f33f1 2245 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2e471eb5 2246 }
177c0ea7 2247
2e471eb5
GM
2248 /* Copy, and update the string's `data' pointer. */
2249 if (from != to)
2250 {
a2407477 2251 xassert (tb != b || to <= from);
212f33f1 2252 safe_bcopy ((char *) from, (char *) to, nbytes + GC_STRING_EXTRA);
31d929e5 2253 to->string->data = SDATA_DATA (to);
2e471eb5
GM
2254 }
2255
2256 /* Advance past the sdata we copied to. */
2257 to = to_end;
2258 }
2259 }
2260 }
2261
2262 /* The rest of the sblocks following TB don't contain live data, so
2263 we can free them. */
2264 for (b = tb->next; b; b = next)
2265 {
2266 next = b->next;
2267 lisp_free (b);
2268 }
2269
2270 tb->next_free = to;
2271 tb->next = NULL;
2272 current_sblock = tb;
2273}
2274
2275
2276DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
69623621
RS
2277 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
2278LENGTH must be an integer.
2279INIT must be an integer that represents a character. */)
7ee72033 2280 (length, init)
2e471eb5
GM
2281 Lisp_Object length, init;
2282{
2283 register Lisp_Object val;
2284 register unsigned char *p, *end;
2285 int c, nbytes;
2286
b7826503
PJ
2287 CHECK_NATNUM (length);
2288 CHECK_NUMBER (init);
2e471eb5
GM
2289
2290 c = XINT (init);
830ff83b 2291 if (ASCII_CHAR_P (c))
2e471eb5
GM
2292 {
2293 nbytes = XINT (length);
2294 val = make_uninit_string (nbytes);
d5db4077
KR
2295 p = SDATA (val);
2296 end = p + SCHARS (val);
2e471eb5
GM
2297 while (p != end)
2298 *p++ = c;
2299 }
2300 else
2301 {
d942b71c 2302 unsigned char str[MAX_MULTIBYTE_LENGTH];
2e471eb5
GM
2303 int len = CHAR_STRING (c, str);
2304
2305 nbytes = len * XINT (length);
2306 val = make_uninit_multibyte_string (XINT (length), nbytes);
d5db4077 2307 p = SDATA (val);
2e471eb5
GM
2308 end = p + nbytes;
2309 while (p != end)
2310 {
2311 bcopy (str, p, len);
2312 p += len;
2313 }
2314 }
177c0ea7 2315
2e471eb5
GM
2316 *p = 0;
2317 return val;
2318}
2319
2320
2321DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
909e3b33 2322 doc: /* Return a new bool-vector of length LENGTH, using INIT for each element.
7ee72033
MB
2323LENGTH must be a number. INIT matters only in whether it is t or nil. */)
2324 (length, init)
2e471eb5
GM
2325 Lisp_Object length, init;
2326{
2327 register Lisp_Object val;
2328 struct Lisp_Bool_Vector *p;
2329 int real_init, i;
2330 int length_in_chars, length_in_elts, bits_per_value;
2331
b7826503 2332 CHECK_NATNUM (length);
2e471eb5 2333
a097329f 2334 bits_per_value = sizeof (EMACS_INT) * BOOL_VECTOR_BITS_PER_CHAR;
2e471eb5
GM
2335
2336 length_in_elts = (XFASTINT (length) + bits_per_value - 1) / bits_per_value;
a097329f
AS
2337 length_in_chars = ((XFASTINT (length) + BOOL_VECTOR_BITS_PER_CHAR - 1)
2338 / BOOL_VECTOR_BITS_PER_CHAR);
2e471eb5
GM
2339
2340 /* We must allocate one more elements than LENGTH_IN_ELTS for the
2341 slot `size' of the struct Lisp_Bool_Vector. */
2342 val = Fmake_vector (make_number (length_in_elts + 1), Qnil);
177c0ea7 2343
2e471eb5 2344 /* Get rid of any bits that would cause confusion. */
d2029e5b 2345 XVECTOR (val)->size = 0; /* No Lisp_Object to trace in there. */
d0fdb6da 2346 /* Use XVECTOR (val) rather than `p' because p->size is not TRT. */
d2029e5b
SM
2347 XSETPVECTYPE (XVECTOR (val), PVEC_BOOL_VECTOR);
2348
2349 p = XBOOL_VECTOR (val);
2e471eb5 2350 p->size = XFASTINT (length);
177c0ea7 2351
2e471eb5
GM
2352 real_init = (NILP (init) ? 0 : -1);
2353 for (i = 0; i < length_in_chars ; i++)
2354 p->data[i] = real_init;
177c0ea7 2355
2e471eb5 2356 /* Clear the extraneous bits in the last byte. */
a097329f 2357 if (XINT (length) != length_in_chars * BOOL_VECTOR_BITS_PER_CHAR)
d2029e5b 2358 p->data[length_in_chars - 1]
a097329f 2359 &= (1 << (XINT (length) % BOOL_VECTOR_BITS_PER_CHAR)) - 1;
2e471eb5
GM
2360
2361 return val;
2362}
2363
2364
2365/* Make a string from NBYTES bytes at CONTENTS, and compute the number
2366 of characters from the contents. This string may be unibyte or
2367 multibyte, depending on the contents. */
2368
2369Lisp_Object
2370make_string (contents, nbytes)
943b873e 2371 const char *contents;
2e471eb5
GM
2372 int nbytes;
2373{
2374 register Lisp_Object val;
9eac9d59
KH
2375 int nchars, multibyte_nbytes;
2376
2377 parse_str_as_multibyte (contents, nbytes, &nchars, &multibyte_nbytes);
9eac9d59
KH
2378 if (nbytes == nchars || nbytes != multibyte_nbytes)
2379 /* CONTENTS contains no multibyte sequences or contains an invalid
2380 multibyte sequence. We must make unibyte string. */
495a6df3
KH
2381 val = make_unibyte_string (contents, nbytes);
2382 else
2383 val = make_multibyte_string (contents, nchars, nbytes);
2e471eb5
GM
2384 return val;
2385}
2386
2387
2388/* Make an unibyte string from LENGTH bytes at CONTENTS. */
2389
2390Lisp_Object
2391make_unibyte_string (contents, length)
943b873e 2392 const char *contents;
2e471eb5
GM
2393 int length;
2394{
2395 register Lisp_Object val;
2396 val = make_uninit_string (length);
d5db4077
KR
2397 bcopy (contents, SDATA (val), length);
2398 STRING_SET_UNIBYTE (val);
2e471eb5
GM
2399 return val;
2400}
2401
2402
2403/* Make a multibyte string from NCHARS characters occupying NBYTES
2404 bytes at CONTENTS. */
2405
2406Lisp_Object
2407make_multibyte_string (contents, nchars, nbytes)
943b873e 2408 const char *contents;
2e471eb5
GM
2409 int nchars, nbytes;
2410{
2411 register Lisp_Object val;
2412 val = make_uninit_multibyte_string (nchars, nbytes);
d5db4077 2413 bcopy (contents, SDATA (val), nbytes);
2e471eb5
GM
2414 return val;
2415}
2416
2417
2418/* Make a string from NCHARS characters occupying NBYTES bytes at
2419 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2420
2421Lisp_Object
2422make_string_from_bytes (contents, nchars, nbytes)
fcbb914b 2423 const char *contents;
2e471eb5
GM
2424 int nchars, nbytes;
2425{
2426 register Lisp_Object val;
2427 val = make_uninit_multibyte_string (nchars, nbytes);
d5db4077
KR
2428 bcopy (contents, SDATA (val), nbytes);
2429 if (SBYTES (val) == SCHARS (val))
2430 STRING_SET_UNIBYTE (val);
2e471eb5
GM
2431 return val;
2432}
2433
2434
2435/* Make a string from NCHARS characters occupying NBYTES bytes at
2436 CONTENTS. The argument MULTIBYTE controls whether to label the
229b28c4
KH
2437 string as multibyte. If NCHARS is negative, it counts the number of
2438 characters by itself. */
2e471eb5
GM
2439
2440Lisp_Object
2441make_specified_string (contents, nchars, nbytes, multibyte)
fcbb914b 2442 const char *contents;
2e471eb5
GM
2443 int nchars, nbytes;
2444 int multibyte;
2445{
2446 register Lisp_Object val;
229b28c4
KH
2447
2448 if (nchars < 0)
2449 {
2450 if (multibyte)
2451 nchars = multibyte_chars_in_text (contents, nbytes);
2452 else
2453 nchars = nbytes;
2454 }
2e471eb5 2455 val = make_uninit_multibyte_string (nchars, nbytes);
d5db4077 2456 bcopy (contents, SDATA (val), nbytes);
2e471eb5 2457 if (!multibyte)
d5db4077 2458 STRING_SET_UNIBYTE (val);
2e471eb5
GM
2459 return val;
2460}
2461
2462
2463/* Make a string from the data at STR, treating it as multibyte if the
2464 data warrants. */
2465
2466Lisp_Object
2467build_string (str)
943b873e 2468 const char *str;
2e471eb5
GM
2469{
2470 return make_string (str, strlen (str));
2471}
2472
2473
2474/* Return an unibyte Lisp_String set up to hold LENGTH characters
2475 occupying LENGTH bytes. */
2476
2477Lisp_Object
2478make_uninit_string (length)
2479 int length;
2480{
2481 Lisp_Object val;
4d774b0f
JB
2482
2483 if (!length)
2484 return empty_unibyte_string;
2e471eb5 2485 val = make_uninit_multibyte_string (length, length);
d5db4077 2486 STRING_SET_UNIBYTE (val);
2e471eb5
GM
2487 return val;
2488}
2489
2490
2491/* Return a multibyte Lisp_String set up to hold NCHARS characters
2492 which occupy NBYTES bytes. */
2493
2494Lisp_Object
2495make_uninit_multibyte_string (nchars, nbytes)
2496 int nchars, nbytes;
2497{
2498 Lisp_Object string;
2499 struct Lisp_String *s;
2500
2501 if (nchars < 0)
2502 abort ();
4d774b0f
JB
2503 if (!nbytes)
2504 return empty_multibyte_string;
2e471eb5
GM
2505
2506 s = allocate_string ();
2507 allocate_string_data (s, nchars, nbytes);
2508 XSETSTRING (string, s);
2509 string_chars_consed += nbytes;
2510 return string;
2511}
2512
2513
2514\f
2515/***********************************************************************
2516 Float Allocation
2517 ***********************************************************************/
2518
2e471eb5
GM
2519/* We store float cells inside of float_blocks, allocating a new
2520 float_block with malloc whenever necessary. Float cells reclaimed
2521 by GC are put on a free list to be reallocated before allocating
ab6780cd 2522 any new float cells from the latest float_block. */
2e471eb5 2523
6b61353c
KH
2524#define FLOAT_BLOCK_SIZE \
2525 (((BLOCK_BYTES - sizeof (struct float_block *) \
2526 /* The compiler might add padding at the end. */ \
2527 - (sizeof (struct Lisp_Float) - sizeof (int))) * CHAR_BIT) \
ab6780cd
SM
2528 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2529
2530#define GETMARKBIT(block,n) \
2531 (((block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2532 >> ((n) % (sizeof(int) * CHAR_BIT))) \
2533 & 1)
2534
2535#define SETMARKBIT(block,n) \
2536 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2537 |= 1 << ((n) % (sizeof(int) * CHAR_BIT))
2538
2539#define UNSETMARKBIT(block,n) \
2540 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2541 &= ~(1 << ((n) % (sizeof(int) * CHAR_BIT)))
2542
2543#define FLOAT_BLOCK(fptr) \
2544 ((struct float_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2545
2546#define FLOAT_INDEX(fptr) \
2547 ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2e471eb5
GM
2548
2549struct float_block
2550{
ab6780cd 2551 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2e471eb5 2552 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
ab6780cd
SM
2553 int gcmarkbits[1 + FLOAT_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2554 struct float_block *next;
2e471eb5
GM
2555};
2556
ab6780cd
SM
2557#define FLOAT_MARKED_P(fptr) \
2558 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2559
2560#define FLOAT_MARK(fptr) \
2561 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2562
2563#define FLOAT_UNMARK(fptr) \
2564 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2565
34400008
GM
2566/* Current float_block. */
2567
2e471eb5 2568struct float_block *float_block;
34400008
GM
2569
2570/* Index of first unused Lisp_Float in the current float_block. */
2571
2e471eb5
GM
2572int float_block_index;
2573
2574/* Total number of float blocks now in use. */
2575
2576int n_float_blocks;
2577
34400008
GM
2578/* Free-list of Lisp_Floats. */
2579
2e471eb5
GM
2580struct Lisp_Float *float_free_list;
2581
34400008 2582
966533c9 2583/* Initialize float allocation. */
34400008 2584
d3d47262 2585static void
2e471eb5
GM
2586init_float ()
2587{
08b7c2cb
SM
2588 float_block = NULL;
2589 float_block_index = FLOAT_BLOCK_SIZE; /* Force alloc of new float_block. */
2e471eb5 2590 float_free_list = 0;
08b7c2cb 2591 n_float_blocks = 0;
2e471eb5
GM
2592}
2593
34400008
GM
2594
2595/* Explicitly free a float cell by putting it on the free-list. */
2e471eb5 2596
d3d47262 2597static void
2e471eb5
GM
2598free_float (ptr)
2599 struct Lisp_Float *ptr;
2600{
28a099a4 2601 ptr->u.chain = float_free_list;
2e471eb5
GM
2602 float_free_list = ptr;
2603}
2604
34400008
GM
2605
2606/* Return a new float object with value FLOAT_VALUE. */
2607
2e471eb5
GM
2608Lisp_Object
2609make_float (float_value)
2610 double float_value;
2611{
2612 register Lisp_Object val;
2613
e2984df0
CY
2614 /* eassert (!handling_signal); */
2615
dafc79fa 2616 MALLOC_BLOCK_INPUT;
cfb2f32e 2617
2e471eb5
GM
2618 if (float_free_list)
2619 {
2620 /* We use the data field for chaining the free list
2621 so that we won't use the same field that has the mark bit. */
2622 XSETFLOAT (val, float_free_list);
28a099a4 2623 float_free_list = float_free_list->u.chain;
2e471eb5
GM
2624 }
2625 else
2626 {
2627 if (float_block_index == FLOAT_BLOCK_SIZE)
2628 {
2629 register struct float_block *new;
2630
ab6780cd
SM
2631 new = (struct float_block *) lisp_align_malloc (sizeof *new,
2632 MEM_TYPE_FLOAT);
2e471eb5 2633 new->next = float_block;
6b61353c 2634 bzero ((char *) new->gcmarkbits, sizeof new->gcmarkbits);
2e471eb5
GM
2635 float_block = new;
2636 float_block_index = 0;
2637 n_float_blocks++;
2638 }
6b61353c
KH
2639 XSETFLOAT (val, &float_block->floats[float_block_index]);
2640 float_block_index++;
2e471eb5 2641 }
177c0ea7 2642
dafc79fa 2643 MALLOC_UNBLOCK_INPUT;
e2984df0 2644
f601cdf3 2645 XFLOAT_INIT (val, float_value);
6b61353c 2646 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2e471eb5
GM
2647 consing_since_gc += sizeof (struct Lisp_Float);
2648 floats_consed++;
2649 return val;
2650}
2651
2e471eb5
GM
2652
2653\f
2654/***********************************************************************
2655 Cons Allocation
2656 ***********************************************************************/
2657
2658/* We store cons cells inside of cons_blocks, allocating a new
2659 cons_block with malloc whenever necessary. Cons cells reclaimed by
2660 GC are put on a free list to be reallocated before allocating
08b7c2cb 2661 any new cons cells from the latest cons_block. */
2e471eb5
GM
2662
2663#define CONS_BLOCK_SIZE \
08b7c2cb
SM
2664 (((BLOCK_BYTES - sizeof (struct cons_block *)) * CHAR_BIT) \
2665 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2666
2667#define CONS_BLOCK(fptr) \
2668 ((struct cons_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2669
2670#define CONS_INDEX(fptr) \
2671 ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2e471eb5
GM
2672
2673struct cons_block
2674{
08b7c2cb 2675 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2e471eb5 2676 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
08b7c2cb
SM
2677 int gcmarkbits[1 + CONS_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2678 struct cons_block *next;
2e471eb5
GM
2679};
2680
08b7c2cb
SM
2681#define CONS_MARKED_P(fptr) \
2682 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2683
2684#define CONS_MARK(fptr) \
2685 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2686
2687#define CONS_UNMARK(fptr) \
2688 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2689
34400008
GM
2690/* Current cons_block. */
2691
2e471eb5 2692struct cons_block *cons_block;
34400008
GM
2693
2694/* Index of first unused Lisp_Cons in the current block. */
2695
2e471eb5
GM
2696int cons_block_index;
2697
34400008
GM
2698/* Free-list of Lisp_Cons structures. */
2699
2e471eb5
GM
2700struct Lisp_Cons *cons_free_list;
2701
2702/* Total number of cons blocks now in use. */
2703
d3d47262 2704static int n_cons_blocks;
2e471eb5 2705
34400008
GM
2706
2707/* Initialize cons allocation. */
2708
d3d47262 2709static void
2e471eb5
GM
2710init_cons ()
2711{
08b7c2cb
SM
2712 cons_block = NULL;
2713 cons_block_index = CONS_BLOCK_SIZE; /* Force alloc of new cons_block. */
2e471eb5 2714 cons_free_list = 0;
08b7c2cb 2715 n_cons_blocks = 0;
2e471eb5
GM
2716}
2717
34400008
GM
2718
2719/* Explicitly free a cons cell by putting it on the free-list. */
2e471eb5
GM
2720
2721void
2722free_cons (ptr)
2723 struct Lisp_Cons *ptr;
2724{
28a099a4 2725 ptr->u.chain = cons_free_list;
34400008
GM
2726#if GC_MARK_STACK
2727 ptr->car = Vdead;
2728#endif
2e471eb5
GM
2729 cons_free_list = ptr;
2730}
2731
2732DEFUN ("cons", Fcons, Scons, 2, 2, 0,
a6266d23 2733 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
7ee72033 2734 (car, cdr)
2e471eb5
GM
2735 Lisp_Object car, cdr;
2736{
2737 register Lisp_Object val;
2738
e2984df0
CY
2739 /* eassert (!handling_signal); */
2740
dafc79fa 2741 MALLOC_BLOCK_INPUT;
cfb2f32e 2742
2e471eb5
GM
2743 if (cons_free_list)
2744 {
2745 /* We use the cdr for chaining the free list
2746 so that we won't use the same field that has the mark bit. */
2747 XSETCONS (val, cons_free_list);
28a099a4 2748 cons_free_list = cons_free_list->u.chain;
2e471eb5
GM
2749 }
2750 else
2751 {
2752 if (cons_block_index == CONS_BLOCK_SIZE)
2753 {
2754 register struct cons_block *new;
08b7c2cb
SM
2755 new = (struct cons_block *) lisp_align_malloc (sizeof *new,
2756 MEM_TYPE_CONS);
6b61353c 2757 bzero ((char *) new->gcmarkbits, sizeof new->gcmarkbits);
2e471eb5
GM
2758 new->next = cons_block;
2759 cons_block = new;
2760 cons_block_index = 0;
2761 n_cons_blocks++;
2762 }
6b61353c
KH
2763 XSETCONS (val, &cons_block->conses[cons_block_index]);
2764 cons_block_index++;
2e471eb5 2765 }
177c0ea7 2766
dafc79fa 2767 MALLOC_UNBLOCK_INPUT;
e2984df0 2768
f3fbd155
KR
2769 XSETCAR (val, car);
2770 XSETCDR (val, cdr);
6b61353c 2771 eassert (!CONS_MARKED_P (XCONS (val)));
2e471eb5
GM
2772 consing_since_gc += sizeof (struct Lisp_Cons);
2773 cons_cells_consed++;
2774 return val;
2775}
2776
e3e56238
RS
2777/* Get an error now if there's any junk in the cons free list. */
2778void
2779check_cons_list ()
2780{
212f33f1 2781#ifdef GC_CHECK_CONS_LIST
e3e56238
RS
2782 struct Lisp_Cons *tail = cons_free_list;
2783
e3e56238 2784 while (tail)
28a099a4 2785 tail = tail->u.chain;
e3e56238
RS
2786#endif
2787}
34400008 2788
9b306d37
KS
2789/* Make a list of 1, 2, 3, 4 or 5 specified objects. */
2790
2791Lisp_Object
2792list1 (arg1)
2793 Lisp_Object arg1;
2794{
2795 return Fcons (arg1, Qnil);
2796}
2e471eb5
GM
2797
2798Lisp_Object
2799list2 (arg1, arg2)
2800 Lisp_Object arg1, arg2;
2801{
2802 return Fcons (arg1, Fcons (arg2, Qnil));
2803}
2804
34400008 2805
2e471eb5
GM
2806Lisp_Object
2807list3 (arg1, arg2, arg3)
2808 Lisp_Object arg1, arg2, arg3;
2809{
2810 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2811}
2812
34400008 2813
2e471eb5
GM
2814Lisp_Object
2815list4 (arg1, arg2, arg3, arg4)
2816 Lisp_Object arg1, arg2, arg3, arg4;
2817{
2818 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2819}
2820
34400008 2821
2e471eb5
GM
2822Lisp_Object
2823list5 (arg1, arg2, arg3, arg4, arg5)
2824 Lisp_Object arg1, arg2, arg3, arg4, arg5;
2825{
2826 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2827 Fcons (arg5, Qnil)))));
2828}
2829
34400008 2830
2e471eb5 2831DEFUN ("list", Flist, Slist, 0, MANY, 0,
eae936e2 2832 doc: /* Return a newly created list with specified arguments as elements.
ae8e8122
MB
2833Any number of arguments, even zero arguments, are allowed.
2834usage: (list &rest OBJECTS) */)
7ee72033 2835 (nargs, args)
2e471eb5
GM
2836 int nargs;
2837 register Lisp_Object *args;
2838{
2839 register Lisp_Object val;
2840 val = Qnil;
2841
2842 while (nargs > 0)
2843 {
2844 nargs--;
2845 val = Fcons (args[nargs], val);
2846 }
2847 return val;
2848}
2849
34400008 2850
2e471eb5 2851DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
a6266d23 2852 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
7ee72033 2853 (length, init)
2e471eb5
GM
2854 register Lisp_Object length, init;
2855{
2856 register Lisp_Object val;
2857 register int size;
2858
b7826503 2859 CHECK_NATNUM (length);
2e471eb5
GM
2860 size = XFASTINT (length);
2861
2862 val = Qnil;
ce070307
GM
2863 while (size > 0)
2864 {
2865 val = Fcons (init, val);
2866 --size;
2867
2868 if (size > 0)
2869 {
2870 val = Fcons (init, val);
2871 --size;
177c0ea7 2872
ce070307
GM
2873 if (size > 0)
2874 {
2875 val = Fcons (init, val);
2876 --size;
177c0ea7 2877
ce070307
GM
2878 if (size > 0)
2879 {
2880 val = Fcons (init, val);
2881 --size;
177c0ea7 2882
ce070307
GM
2883 if (size > 0)
2884 {
2885 val = Fcons (init, val);
2886 --size;
2887 }
2888 }
2889 }
2890 }
2891
2892 QUIT;
2893 }
177c0ea7 2894
7146af97
JB
2895 return val;
2896}
2e471eb5
GM
2897
2898
7146af97 2899\f
2e471eb5
GM
2900/***********************************************************************
2901 Vector Allocation
2902 ***********************************************************************/
7146af97 2903
34400008
GM
2904/* Singly-linked list of all vectors. */
2905
d3d47262 2906static struct Lisp_Vector *all_vectors;
7146af97 2907
2e471eb5
GM
2908/* Total number of vector-like objects now in use. */
2909
d3d47262 2910static int n_vectors;
c8099634 2911
34400008
GM
2912
2913/* Value is a pointer to a newly allocated Lisp_Vector structure
2914 with room for LEN Lisp_Objects. */
2915
ece93c02 2916static struct Lisp_Vector *
9c545a55 2917allocate_vectorlike (len)
1825c68d
KH
2918 EMACS_INT len;
2919{
2920 struct Lisp_Vector *p;
675d5130 2921 size_t nbytes;
1825c68d 2922
dafc79fa
SM
2923 MALLOC_BLOCK_INPUT;
2924
d1658221 2925#ifdef DOUG_LEA_MALLOC
f8608968
GM
2926 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
2927 because mapped region contents are not preserved in
2928 a dumped Emacs. */
d1658221
RS
2929 mallopt (M_MMAP_MAX, 0);
2930#endif
177c0ea7 2931
cfb2f32e
SM
2932 /* This gets triggered by code which I haven't bothered to fix. --Stef */
2933 /* eassert (!handling_signal); */
2934
34400008 2935 nbytes = sizeof *p + (len - 1) * sizeof p->contents[0];
9c545a55 2936 p = (struct Lisp_Vector *) lisp_malloc (nbytes, MEM_TYPE_VECTORLIKE);
177c0ea7 2937
d1658221 2938#ifdef DOUG_LEA_MALLOC
34400008 2939 /* Back to a reasonable maximum of mmap'ed areas. */
81d492d5 2940 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
d1658221 2941#endif
177c0ea7 2942
34400008 2943 consing_since_gc += nbytes;
310ea200 2944 vector_cells_consed += len;
1825c68d
KH
2945
2946 p->next = all_vectors;
2947 all_vectors = p;
e2984df0 2948
dafc79fa 2949 MALLOC_UNBLOCK_INPUT;
e2984df0 2950
34400008 2951 ++n_vectors;
1825c68d
KH
2952 return p;
2953}
2954
34400008 2955
ece93c02
GM
2956/* Allocate a vector with NSLOTS slots. */
2957
2958struct Lisp_Vector *
2959allocate_vector (nslots)
2960 EMACS_INT nslots;
2961{
9c545a55 2962 struct Lisp_Vector *v = allocate_vectorlike (nslots);
ece93c02
GM
2963 v->size = nslots;
2964 return v;
2965}
2966
2967
2968/* Allocate other vector-like structures. */
2969
30f95089 2970struct Lisp_Vector *
d2029e5b
SM
2971allocate_pseudovector (memlen, lisplen, tag)
2972 int memlen, lisplen;
2973 EMACS_INT tag;
ece93c02 2974{
d2029e5b 2975 struct Lisp_Vector *v = allocate_vectorlike (memlen);
ece93c02 2976 EMACS_INT i;
177c0ea7 2977
d2029e5b
SM
2978 /* Only the first lisplen slots will be traced normally by the GC. */
2979 v->size = lisplen;
2980 for (i = 0; i < lisplen; ++i)
ece93c02 2981 v->contents[i] = Qnil;
177c0ea7 2982
d2029e5b
SM
2983 XSETPVECTYPE (v, tag); /* Add the appropriate tag. */
2984 return v;
2985}
d2029e5b 2986
ece93c02 2987struct Lisp_Hash_Table *
878f97ff 2988allocate_hash_table (void)
ece93c02 2989{
878f97ff 2990 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Hash_Table, count, PVEC_HASH_TABLE);
ece93c02
GM
2991}
2992
2993
2994struct window *
2995allocate_window ()
2996{
d2029e5b 2997 return ALLOCATE_PSEUDOVECTOR(struct window, current_matrix, PVEC_WINDOW);
ece93c02 2998}
177c0ea7 2999
177c0ea7 3000
4a729fd8
SM
3001struct terminal *
3002allocate_terminal ()
3003{
d2029e5b
SM
3004 struct terminal *t = ALLOCATE_PSEUDOVECTOR (struct terminal,
3005 next_terminal, PVEC_TERMINAL);
3006 /* Zero out the non-GC'd fields. FIXME: This should be made unnecessary. */
3007 bzero (&(t->next_terminal),
3008 ((char*)(t+1)) - ((char*)&(t->next_terminal)));
ece93c02 3009
d2029e5b 3010 return t;
4a729fd8 3011}
ece93c02
GM
3012
3013struct frame *
3014allocate_frame ()
3015{
d2029e5b
SM
3016 struct frame *f = ALLOCATE_PSEUDOVECTOR (struct frame,
3017 face_cache, PVEC_FRAME);
3018 /* Zero out the non-GC'd fields. FIXME: This should be made unnecessary. */
3019 bzero (&(f->face_cache),
3020 ((char*)(f+1)) - ((char*)&(f->face_cache)));
3021 return f;
ece93c02
GM
3022}
3023
3024
3025struct Lisp_Process *
3026allocate_process ()
3027{
d2029e5b 3028 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Process, pid, PVEC_PROCESS);
ece93c02
GM
3029}
3030
3031
7146af97 3032DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
a6266d23 3033 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
7ee72033
MB
3034See also the function `vector'. */)
3035 (length, init)
7146af97
JB
3036 register Lisp_Object length, init;
3037{
1825c68d
KH
3038 Lisp_Object vector;
3039 register EMACS_INT sizei;
3040 register int index;
7146af97
JB
3041 register struct Lisp_Vector *p;
3042
b7826503 3043 CHECK_NATNUM (length);
c9dad5ed 3044 sizei = XFASTINT (length);
7146af97 3045
ece93c02 3046 p = allocate_vector (sizei);
7146af97
JB
3047 for (index = 0; index < sizei; index++)
3048 p->contents[index] = init;
3049
1825c68d 3050 XSETVECTOR (vector, p);
7146af97
JB
3051 return vector;
3052}
3053
34400008 3054
7146af97 3055DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
eae936e2 3056 doc: /* Return a newly created vector with specified arguments as elements.
ae8e8122
MB
3057Any number of arguments, even zero arguments, are allowed.
3058usage: (vector &rest OBJECTS) */)
7ee72033 3059 (nargs, args)
7146af97
JB
3060 register int nargs;
3061 Lisp_Object *args;
3062{
3063 register Lisp_Object len, val;
3064 register int index;
3065 register struct Lisp_Vector *p;
3066
67ba9986 3067 XSETFASTINT (len, nargs);
7146af97
JB
3068 val = Fmake_vector (len, Qnil);
3069 p = XVECTOR (val);
3070 for (index = 0; index < nargs; index++)
3071 p->contents[index] = args[index];
3072 return val;
3073}
3074
34400008 3075
7146af97 3076DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
a6266d23 3077 doc: /* Create a byte-code object with specified arguments as elements.
228299fa
GM
3078The arguments should be the arglist, bytecode-string, constant vector,
3079stack size, (optional) doc string, and (optional) interactive spec.
3080The first four arguments are required; at most six have any
ae8e8122 3081significance.
92cc28b2 3082usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
7ee72033 3083 (nargs, args)
7146af97
JB
3084 register int nargs;
3085 Lisp_Object *args;
3086{
3087 register Lisp_Object len, val;
3088 register int index;
3089 register struct Lisp_Vector *p;
3090
67ba9986 3091 XSETFASTINT (len, nargs);
265a9e55 3092 if (!NILP (Vpurify_flag))
5a053ea9 3093 val = make_pure_vector ((EMACS_INT) nargs);
7146af97
JB
3094 else
3095 val = Fmake_vector (len, Qnil);
9eac9d59
KH
3096
3097 if (STRINGP (args[1]) && STRING_MULTIBYTE (args[1]))
3098 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
3099 earlier because they produced a raw 8-bit string for byte-code
3100 and now such a byte-code string is loaded as multibyte while
3101 raw 8-bit characters converted to multibyte form. Thus, now we
3102 must convert them back to the original unibyte form. */
3103 args[1] = Fstring_as_unibyte (args[1]);
3104
7146af97
JB
3105 p = XVECTOR (val);
3106 for (index = 0; index < nargs; index++)
3107 {
265a9e55 3108 if (!NILP (Vpurify_flag))
7146af97
JB
3109 args[index] = Fpurecopy (args[index]);
3110 p->contents[index] = args[index];
3111 }
d2029e5b 3112 XSETPVECTYPE (p, PVEC_COMPILED);
50aee051 3113 XSETCOMPILED (val, p);
7146af97
JB
3114 return val;
3115}
2e471eb5 3116
34400008 3117
7146af97 3118\f
2e471eb5
GM
3119/***********************************************************************
3120 Symbol Allocation
3121 ***********************************************************************/
7146af97 3122
2e471eb5
GM
3123/* Each symbol_block is just under 1020 bytes long, since malloc
3124 really allocates in units of powers of two and uses 4 bytes for its
3125 own overhead. */
7146af97
JB
3126
3127#define SYMBOL_BLOCK_SIZE \
3128 ((1020 - sizeof (struct symbol_block *)) / sizeof (struct Lisp_Symbol))
3129
3130struct symbol_block
2e471eb5 3131{
6b61353c 3132 /* Place `symbols' first, to preserve alignment. */
2e471eb5 3133 struct Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
6b61353c 3134 struct symbol_block *next;
2e471eb5 3135};
7146af97 3136
34400008
GM
3137/* Current symbol block and index of first unused Lisp_Symbol
3138 structure in it. */
3139
d3d47262
JB
3140static struct symbol_block *symbol_block;
3141static int symbol_block_index;
7146af97 3142
34400008
GM
3143/* List of free symbols. */
3144
d3d47262 3145static struct Lisp_Symbol *symbol_free_list;
7146af97 3146
c8099634 3147/* Total number of symbol blocks now in use. */
2e471eb5 3148
d3d47262 3149static int n_symbol_blocks;
c8099634 3150
34400008
GM
3151
3152/* Initialize symbol allocation. */
3153
d3d47262 3154static void
7146af97
JB
3155init_symbol ()
3156{
005ca5c7
DL
3157 symbol_block = NULL;
3158 symbol_block_index = SYMBOL_BLOCK_SIZE;
7146af97 3159 symbol_free_list = 0;
005ca5c7 3160 n_symbol_blocks = 0;
7146af97
JB
3161}
3162
34400008 3163
7146af97 3164DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
a6266d23 3165 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
7ee72033
MB
3166Its value and function definition are void, and its property list is nil. */)
3167 (name)
54ee42dd 3168 Lisp_Object name;
7146af97
JB
3169{
3170 register Lisp_Object val;
3171 register struct Lisp_Symbol *p;
3172
b7826503 3173 CHECK_STRING (name);
7146af97 3174
537407f0 3175 /* eassert (!handling_signal); */
cfb2f32e 3176
dafc79fa 3177 MALLOC_BLOCK_INPUT;
e2984df0 3178
7146af97
JB
3179 if (symbol_free_list)
3180 {
45d12a89 3181 XSETSYMBOL (val, symbol_free_list);
28a099a4 3182 symbol_free_list = symbol_free_list->next;
7146af97
JB
3183 }
3184 else
3185 {
3186 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
3187 {
3c06d205 3188 struct symbol_block *new;
34400008
GM
3189 new = (struct symbol_block *) lisp_malloc (sizeof *new,
3190 MEM_TYPE_SYMBOL);
7146af97
JB
3191 new->next = symbol_block;
3192 symbol_block = new;
3193 symbol_block_index = 0;
c8099634 3194 n_symbol_blocks++;
7146af97 3195 }
6b61353c
KH
3196 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index]);
3197 symbol_block_index++;
7146af97 3198 }
177c0ea7 3199
dafc79fa 3200 MALLOC_UNBLOCK_INPUT;
e2984df0 3201
7146af97 3202 p = XSYMBOL (val);
8fe5665d 3203 p->xname = name;
7146af97 3204 p->plist = Qnil;
2e471eb5
GM
3205 p->value = Qunbound;
3206 p->function = Qunbound;
9e713715 3207 p->next = NULL;
2336fe58 3208 p->gcmarkbit = 0;
9e713715
GM
3209 p->interned = SYMBOL_UNINTERNED;
3210 p->constant = 0;
3211 p->indirect_variable = 0;
2e471eb5
GM
3212 consing_since_gc += sizeof (struct Lisp_Symbol);
3213 symbols_consed++;
7146af97
JB
3214 return val;
3215}
3216
3f25e183 3217
2e471eb5
GM
3218\f
3219/***********************************************************************
34400008 3220 Marker (Misc) Allocation
2e471eb5 3221 ***********************************************************************/
3f25e183 3222
2e471eb5
GM
3223/* Allocation of markers and other objects that share that structure.
3224 Works like allocation of conses. */
c0696668 3225
2e471eb5
GM
3226#define MARKER_BLOCK_SIZE \
3227 ((1020 - sizeof (struct marker_block *)) / sizeof (union Lisp_Misc))
3228
3229struct marker_block
c0696668 3230{
6b61353c 3231 /* Place `markers' first, to preserve alignment. */
2e471eb5 3232 union Lisp_Misc markers[MARKER_BLOCK_SIZE];
6b61353c 3233 struct marker_block *next;
2e471eb5 3234};
c0696668 3235
d3d47262
JB
3236static struct marker_block *marker_block;
3237static int marker_block_index;
c0696668 3238
d3d47262 3239static union Lisp_Misc *marker_free_list;
c0696668 3240
2e471eb5 3241/* Total number of marker blocks now in use. */
3f25e183 3242
d3d47262 3243static int n_marker_blocks;
2e471eb5 3244
d3d47262 3245static void
2e471eb5 3246init_marker ()
3f25e183 3247{
005ca5c7
DL
3248 marker_block = NULL;
3249 marker_block_index = MARKER_BLOCK_SIZE;
2e471eb5 3250 marker_free_list = 0;
005ca5c7 3251 n_marker_blocks = 0;
3f25e183
RS
3252}
3253
2e471eb5
GM
3254/* Return a newly allocated Lisp_Misc object, with no substructure. */
3255
3f25e183 3256Lisp_Object
2e471eb5 3257allocate_misc ()
7146af97 3258{
2e471eb5 3259 Lisp_Object val;
7146af97 3260
e2984df0
CY
3261 /* eassert (!handling_signal); */
3262
dafc79fa 3263 MALLOC_BLOCK_INPUT;
cfb2f32e 3264
2e471eb5 3265 if (marker_free_list)
7146af97 3266 {
2e471eb5
GM
3267 XSETMISC (val, marker_free_list);
3268 marker_free_list = marker_free_list->u_free.chain;
7146af97
JB
3269 }
3270 else
7146af97 3271 {
2e471eb5
GM
3272 if (marker_block_index == MARKER_BLOCK_SIZE)
3273 {
3274 struct marker_block *new;
34400008
GM
3275 new = (struct marker_block *) lisp_malloc (sizeof *new,
3276 MEM_TYPE_MISC);
2e471eb5
GM
3277 new->next = marker_block;
3278 marker_block = new;
3279 marker_block_index = 0;
3280 n_marker_blocks++;
7b7990cc 3281 total_free_markers += MARKER_BLOCK_SIZE;
2e471eb5 3282 }
6b61353c
KH
3283 XSETMISC (val, &marker_block->markers[marker_block_index]);
3284 marker_block_index++;
7146af97 3285 }
177c0ea7 3286
dafc79fa 3287 MALLOC_UNBLOCK_INPUT;
e2984df0 3288
7b7990cc 3289 --total_free_markers;
2e471eb5
GM
3290 consing_since_gc += sizeof (union Lisp_Misc);
3291 misc_objects_consed++;
67ee9f6e 3292 XMISCANY (val)->gcmarkbit = 0;
2e471eb5
GM
3293 return val;
3294}
3295
7b7990cc
KS
3296/* Free a Lisp_Misc object */
3297
3298void
3299free_misc (misc)
3300 Lisp_Object misc;
3301{
d314756e 3302 XMISCTYPE (misc) = Lisp_Misc_Free;
7b7990cc
KS
3303 XMISC (misc)->u_free.chain = marker_free_list;
3304 marker_free_list = XMISC (misc);
3305
3306 total_free_markers++;
3307}
3308
42172a6b
RS
3309/* Return a Lisp_Misc_Save_Value object containing POINTER and
3310 INTEGER. This is used to package C values to call record_unwind_protect.
3311 The unwind function can get the C values back using XSAVE_VALUE. */
3312
3313Lisp_Object
3314make_save_value (pointer, integer)
3315 void *pointer;
3316 int integer;
3317{
3318 register Lisp_Object val;
3319 register struct Lisp_Save_Value *p;
3320
3321 val = allocate_misc ();
3322 XMISCTYPE (val) = Lisp_Misc_Save_Value;
3323 p = XSAVE_VALUE (val);
3324 p->pointer = pointer;
3325 p->integer = integer;
b766f870 3326 p->dogc = 0;
42172a6b
RS
3327 return val;
3328}
3329
2e471eb5 3330DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
a6266d23 3331 doc: /* Return a newly allocated marker which does not point at any place. */)
7ee72033 3332 ()
2e471eb5
GM
3333{
3334 register Lisp_Object val;
3335 register struct Lisp_Marker *p;
7146af97 3336
2e471eb5
GM
3337 val = allocate_misc ();
3338 XMISCTYPE (val) = Lisp_Misc_Marker;
3339 p = XMARKER (val);
3340 p->buffer = 0;
3341 p->bytepos = 0;
3342 p->charpos = 0;
ef89c2ce 3343 p->next = NULL;
2e471eb5 3344 p->insertion_type = 0;
7146af97
JB
3345 return val;
3346}
2e471eb5
GM
3347
3348/* Put MARKER back on the free list after using it temporarily. */
3349
3350void
3351free_marker (marker)
3352 Lisp_Object marker;
3353{
ef89c2ce 3354 unchain_marker (XMARKER (marker));
7b7990cc 3355 free_misc (marker);
2e471eb5
GM
3356}
3357
c0696668 3358\f
7146af97 3359/* Return a newly created vector or string with specified arguments as
736471d1
RS
3360 elements. If all the arguments are characters that can fit
3361 in a string of events, make a string; otherwise, make a vector.
3362
3363 Any number of arguments, even zero arguments, are allowed. */
7146af97
JB
3364
3365Lisp_Object
736471d1 3366make_event_array (nargs, args)
7146af97
JB
3367 register int nargs;
3368 Lisp_Object *args;
3369{
3370 int i;
3371
3372 for (i = 0; i < nargs; i++)
736471d1 3373 /* The things that fit in a string
c9ca4659
RS
3374 are characters that are in 0...127,
3375 after discarding the meta bit and all the bits above it. */
e687453f 3376 if (!INTEGERP (args[i])
c9ca4659 3377 || (XUINT (args[i]) & ~(-CHAR_META)) >= 0200)
7146af97
JB
3378 return Fvector (nargs, args);
3379
3380 /* Since the loop exited, we know that all the things in it are
3381 characters, so we can make a string. */
3382 {
c13ccad2 3383 Lisp_Object result;
177c0ea7 3384
50aee051 3385 result = Fmake_string (make_number (nargs), make_number (0));
7146af97 3386 for (i = 0; i < nargs; i++)
736471d1 3387 {
46e7e6b0 3388 SSET (result, i, XINT (args[i]));
736471d1
RS
3389 /* Move the meta bit to the right place for a string char. */
3390 if (XINT (args[i]) & CHAR_META)
46e7e6b0 3391 SSET (result, i, SREF (result, i) | 0x80);
736471d1 3392 }
177c0ea7 3393
7146af97
JB
3394 return result;
3395 }
3396}
2e471eb5
GM
3397
3398
7146af97 3399\f
24d8a105
RS
3400/************************************************************************
3401 Memory Full Handling
3402 ************************************************************************/
3403
3404
3405/* Called if malloc returns zero. */
3406
3407void
3408memory_full ()
3409{
3410 int i;
3411
3412 Vmemory_full = Qt;
3413
3414 memory_full_cons_threshold = sizeof (struct cons_block);
3415
3416 /* The first time we get here, free the spare memory. */
3417 for (i = 0; i < sizeof (spare_memory) / sizeof (char *); i++)
3418 if (spare_memory[i])
3419 {
3420 if (i == 0)
3421 free (spare_memory[i]);
3422 else if (i >= 1 && i <= 4)
3423 lisp_align_free (spare_memory[i]);
3424 else
3425 lisp_free (spare_memory[i]);
3426 spare_memory[i] = 0;
3427 }
3428
3429 /* Record the space now used. When it decreases substantially,
3430 we can refill the memory reserve. */
3431#ifndef SYSTEM_MALLOC
3432 bytes_used_when_full = BYTES_USED;
3433#endif
3434
3435 /* This used to call error, but if we've run out of memory, we could
3436 get infinite recursion trying to build the string. */
9b306d37 3437 xsignal (Qnil, Vmemory_signal_data);
24d8a105
RS
3438}
3439
3440/* If we released our reserve (due to running out of memory),
3441 and we have a fair amount free once again,
3442 try to set aside another reserve in case we run out once more.
3443
3444 This is called when a relocatable block is freed in ralloc.c,
3445 and also directly from this file, in case we're not using ralloc.c. */
3446
3447void
3448refill_memory_reserve ()
3449{
3450#ifndef SYSTEM_MALLOC
3451 if (spare_memory[0] == 0)
3452 spare_memory[0] = (char *) malloc ((size_t) SPARE_MEMORY);
3453 if (spare_memory[1] == 0)
3454 spare_memory[1] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3455 MEM_TYPE_CONS);
3456 if (spare_memory[2] == 0)
3457 spare_memory[2] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3458 MEM_TYPE_CONS);
3459 if (spare_memory[3] == 0)
3460 spare_memory[3] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3461 MEM_TYPE_CONS);
3462 if (spare_memory[4] == 0)
3463 spare_memory[4] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3464 MEM_TYPE_CONS);
3465 if (spare_memory[5] == 0)
3466 spare_memory[5] = (char *) lisp_malloc (sizeof (struct string_block),
3467 MEM_TYPE_STRING);
3468 if (spare_memory[6] == 0)
3469 spare_memory[6] = (char *) lisp_malloc (sizeof (struct string_block),
3470 MEM_TYPE_STRING);
3471 if (spare_memory[0] && spare_memory[1] && spare_memory[5])
3472 Vmemory_full = Qnil;
3473#endif
3474}
3475\f
34400008
GM
3476/************************************************************************
3477 C Stack Marking
3478 ************************************************************************/
3479
13c844fb
GM
3480#if GC_MARK_STACK || defined GC_MALLOC_CHECK
3481
71cf5fa0
GM
3482/* Conservative C stack marking requires a method to identify possibly
3483 live Lisp objects given a pointer value. We do this by keeping
3484 track of blocks of Lisp data that are allocated in a red-black tree
3485 (see also the comment of mem_node which is the type of nodes in
3486 that tree). Function lisp_malloc adds information for an allocated
3487 block to the red-black tree with calls to mem_insert, and function
3488 lisp_free removes it with mem_delete. Functions live_string_p etc
3489 call mem_find to lookup information about a given pointer in the
3490 tree, and use that to determine if the pointer points to a Lisp
3491 object or not. */
3492
34400008
GM
3493/* Initialize this part of alloc.c. */
3494
3495static void
3496mem_init ()
3497{
3498 mem_z.left = mem_z.right = MEM_NIL;
3499 mem_z.parent = NULL;
3500 mem_z.color = MEM_BLACK;
3501 mem_z.start = mem_z.end = NULL;
3502 mem_root = MEM_NIL;
3503}
3504
3505
3506/* Value is a pointer to the mem_node containing START. Value is
3507 MEM_NIL if there is no node in the tree containing START. */
3508
3509static INLINE struct mem_node *
3510mem_find (start)
3511 void *start;
3512{
3513 struct mem_node *p;
3514
ece93c02
GM
3515 if (start < min_heap_address || start > max_heap_address)
3516 return MEM_NIL;
3517
34400008
GM
3518 /* Make the search always successful to speed up the loop below. */
3519 mem_z.start = start;
3520 mem_z.end = (char *) start + 1;
3521
3522 p = mem_root;
3523 while (start < p->start || start >= p->end)
3524 p = start < p->start ? p->left : p->right;
3525 return p;
3526}
3527
3528
3529/* Insert a new node into the tree for a block of memory with start
3530 address START, end address END, and type TYPE. Value is a
3531 pointer to the node that was inserted. */
3532
3533static struct mem_node *
3534mem_insert (start, end, type)
3535 void *start, *end;
3536 enum mem_type type;
3537{
3538 struct mem_node *c, *parent, *x;
3539
add3c3ea 3540 if (min_heap_address == NULL || start < min_heap_address)
ece93c02 3541 min_heap_address = start;
add3c3ea 3542 if (max_heap_address == NULL || end > max_heap_address)
ece93c02
GM
3543 max_heap_address = end;
3544
34400008
GM
3545 /* See where in the tree a node for START belongs. In this
3546 particular application, it shouldn't happen that a node is already
3547 present. For debugging purposes, let's check that. */
3548 c = mem_root;
3549 parent = NULL;
3550
3551#if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
177c0ea7 3552
34400008
GM
3553 while (c != MEM_NIL)
3554 {
3555 if (start >= c->start && start < c->end)
3556 abort ();
3557 parent = c;
3558 c = start < c->start ? c->left : c->right;
3559 }
177c0ea7 3560
34400008 3561#else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
177c0ea7 3562
34400008
GM
3563 while (c != MEM_NIL)
3564 {
3565 parent = c;
3566 c = start < c->start ? c->left : c->right;
3567 }
177c0ea7 3568
34400008
GM
3569#endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3570
3571 /* Create a new node. */
877935b1
GM
3572#ifdef GC_MALLOC_CHECK
3573 x = (struct mem_node *) _malloc_internal (sizeof *x);
3574 if (x == NULL)
3575 abort ();
3576#else
34400008 3577 x = (struct mem_node *) xmalloc (sizeof *x);
877935b1 3578#endif
34400008
GM
3579 x->start = start;
3580 x->end = end;
3581 x->type = type;
3582 x->parent = parent;
3583 x->left = x->right = MEM_NIL;
3584 x->color = MEM_RED;
3585
3586 /* Insert it as child of PARENT or install it as root. */
3587 if (parent)
3588 {
3589 if (start < parent->start)
3590 parent->left = x;
3591 else
3592 parent->right = x;
3593 }
177c0ea7 3594 else
34400008
GM
3595 mem_root = x;
3596
3597 /* Re-establish red-black tree properties. */
3598 mem_insert_fixup (x);
877935b1 3599
34400008
GM
3600 return x;
3601}
3602
3603
3604/* Re-establish the red-black properties of the tree, and thereby
3605 balance the tree, after node X has been inserted; X is always red. */
3606
3607static void
3608mem_insert_fixup (x)
3609 struct mem_node *x;
3610{
3611 while (x != mem_root && x->parent->color == MEM_RED)
3612 {
3613 /* X is red and its parent is red. This is a violation of
3614 red-black tree property #3. */
177c0ea7 3615
34400008
GM
3616 if (x->parent == x->parent->parent->left)
3617 {
3618 /* We're on the left side of our grandparent, and Y is our
3619 "uncle". */
3620 struct mem_node *y = x->parent->parent->right;
177c0ea7 3621
34400008
GM
3622 if (y->color == MEM_RED)
3623 {
3624 /* Uncle and parent are red but should be black because
3625 X is red. Change the colors accordingly and proceed
3626 with the grandparent. */
3627 x->parent->color = MEM_BLACK;
3628 y->color = MEM_BLACK;
3629 x->parent->parent->color = MEM_RED;
3630 x = x->parent->parent;
3631 }
3632 else
3633 {
3634 /* Parent and uncle have different colors; parent is
3635 red, uncle is black. */
3636 if (x == x->parent->right)
3637 {
3638 x = x->parent;
3639 mem_rotate_left (x);
3640 }
3641
3642 x->parent->color = MEM_BLACK;
3643 x->parent->parent->color = MEM_RED;
3644 mem_rotate_right (x->parent->parent);
3645 }
3646 }
3647 else
3648 {
3649 /* This is the symmetrical case of above. */
3650 struct mem_node *y = x->parent->parent->left;
177c0ea7 3651
34400008
GM
3652 if (y->color == MEM_RED)
3653 {
3654 x->parent->color = MEM_BLACK;
3655 y->color = MEM_BLACK;
3656 x->parent->parent->color = MEM_RED;
3657 x = x->parent->parent;
3658 }
3659 else
3660 {
3661 if (x == x->parent->left)
3662 {
3663 x = x->parent;
3664 mem_rotate_right (x);
3665 }
177c0ea7 3666
34400008
GM
3667 x->parent->color = MEM_BLACK;
3668 x->parent->parent->color = MEM_RED;
3669 mem_rotate_left (x->parent->parent);
3670 }
3671 }
3672 }
3673
3674 /* The root may have been changed to red due to the algorithm. Set
3675 it to black so that property #5 is satisfied. */
3676 mem_root->color = MEM_BLACK;
3677}
3678
3679
177c0ea7
JB
3680/* (x) (y)
3681 / \ / \
34400008
GM
3682 a (y) ===> (x) c
3683 / \ / \
3684 b c a b */
3685
3686static void
3687mem_rotate_left (x)
3688 struct mem_node *x;
3689{
3690 struct mem_node *y;
3691
3692 /* Turn y's left sub-tree into x's right sub-tree. */
3693 y = x->right;
3694 x->right = y->left;
3695 if (y->left != MEM_NIL)
3696 y->left->parent = x;
3697
3698 /* Y's parent was x's parent. */
3699 if (y != MEM_NIL)
3700 y->parent = x->parent;
3701
3702 /* Get the parent to point to y instead of x. */
3703 if (x->parent)
3704 {
3705 if (x == x->parent->left)
3706 x->parent->left = y;
3707 else
3708 x->parent->right = y;
3709 }
3710 else
3711 mem_root = y;
3712
3713 /* Put x on y's left. */
3714 y->left = x;
3715 if (x != MEM_NIL)
3716 x->parent = y;
3717}
3718
3719
177c0ea7
JB
3720/* (x) (Y)
3721 / \ / \
3722 (y) c ===> a (x)
3723 / \ / \
34400008
GM
3724 a b b c */
3725
3726static void
3727mem_rotate_right (x)
3728 struct mem_node *x;
3729{
3730 struct mem_node *y = x->left;
3731
3732 x->left = y->right;
3733 if (y->right != MEM_NIL)
3734 y->right->parent = x;
177c0ea7 3735
34400008
GM
3736 if (y != MEM_NIL)
3737 y->parent = x->parent;
3738 if (x->parent)
3739 {
3740 if (x == x->parent->right)
3741 x->parent->right = y;
3742 else
3743 x->parent->left = y;
3744 }
3745 else
3746 mem_root = y;
177c0ea7 3747
34400008
GM
3748 y->right = x;
3749 if (x != MEM_NIL)
3750 x->parent = y;
3751}
3752
3753
3754/* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
3755
3756static void
3757mem_delete (z)
3758 struct mem_node *z;
3759{
3760 struct mem_node *x, *y;
3761
3762 if (!z || z == MEM_NIL)
3763 return;
3764
3765 if (z->left == MEM_NIL || z->right == MEM_NIL)
3766 y = z;
3767 else
3768 {
3769 y = z->right;
3770 while (y->left != MEM_NIL)
3771 y = y->left;
3772 }
3773
3774 if (y->left != MEM_NIL)
3775 x = y->left;
3776 else
3777 x = y->right;
3778
3779 x->parent = y->parent;
3780 if (y->parent)
3781 {
3782 if (y == y->parent->left)
3783 y->parent->left = x;
3784 else
3785 y->parent->right = x;
3786 }
3787 else
3788 mem_root = x;
3789
3790 if (y != z)
3791 {
3792 z->start = y->start;
3793 z->end = y->end;
3794 z->type = y->type;
3795 }
177c0ea7 3796
34400008
GM
3797 if (y->color == MEM_BLACK)
3798 mem_delete_fixup (x);
877935b1
GM
3799
3800#ifdef GC_MALLOC_CHECK
3801 _free_internal (y);
3802#else
34400008 3803 xfree (y);
877935b1 3804#endif
34400008
GM
3805}
3806
3807
3808/* Re-establish the red-black properties of the tree, after a
3809 deletion. */
3810
3811static void
3812mem_delete_fixup (x)
3813 struct mem_node *x;
3814{
3815 while (x != mem_root && x->color == MEM_BLACK)
3816 {
3817 if (x == x->parent->left)
3818 {
3819 struct mem_node *w = x->parent->right;
177c0ea7 3820
34400008
GM
3821 if (w->color == MEM_RED)
3822 {
3823 w->color = MEM_BLACK;
3824 x->parent->color = MEM_RED;
3825 mem_rotate_left (x->parent);
3826 w = x->parent->right;
3827 }
177c0ea7 3828
34400008
GM
3829 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
3830 {
3831 w->color = MEM_RED;
3832 x = x->parent;
3833 }
3834 else
3835 {
3836 if (w->right->color == MEM_BLACK)
3837 {
3838 w->left->color = MEM_BLACK;
3839 w->color = MEM_RED;
3840 mem_rotate_right (w);
3841 w = x->parent->right;
3842 }
3843 w->color = x->parent->color;
3844 x->parent->color = MEM_BLACK;
3845 w->right->color = MEM_BLACK;
3846 mem_rotate_left (x->parent);
3847 x = mem_root;
3848 }
3849 }
3850 else
3851 {
3852 struct mem_node *w = x->parent->left;
177c0ea7 3853
34400008
GM
3854 if (w->color == MEM_RED)
3855 {
3856 w->color = MEM_BLACK;
3857 x->parent->color = MEM_RED;
3858 mem_rotate_right (x->parent);
3859 w = x->parent->left;
3860 }
177c0ea7 3861
34400008
GM
3862 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
3863 {
3864 w->color = MEM_RED;
3865 x = x->parent;
3866 }
3867 else
3868 {
3869 if (w->left->color == MEM_BLACK)
3870 {
3871 w->right->color = MEM_BLACK;
3872 w->color = MEM_RED;
3873 mem_rotate_left (w);
3874 w = x->parent->left;
3875 }
177c0ea7 3876
34400008
GM
3877 w->color = x->parent->color;
3878 x->parent->color = MEM_BLACK;
3879 w->left->color = MEM_BLACK;
3880 mem_rotate_right (x->parent);
3881 x = mem_root;
3882 }
3883 }
3884 }
177c0ea7 3885
34400008
GM
3886 x->color = MEM_BLACK;
3887}
3888
3889
3890/* Value is non-zero if P is a pointer to a live Lisp string on
3891 the heap. M is a pointer to the mem_block for P. */
3892
3893static INLINE int
3894live_string_p (m, p)
3895 struct mem_node *m;
3896 void *p;
3897{
3898 if (m->type == MEM_TYPE_STRING)
3899 {
3900 struct string_block *b = (struct string_block *) m->start;
3901 int offset = (char *) p - (char *) &b->strings[0];
3902
3903 /* P must point to the start of a Lisp_String structure, and it
3904 must not be on the free-list. */
176bc847
GM
3905 return (offset >= 0
3906 && offset % sizeof b->strings[0] == 0
6b61353c 3907 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
34400008
GM
3908 && ((struct Lisp_String *) p)->data != NULL);
3909 }
3910 else
3911 return 0;
3912}
3913
3914
3915/* Value is non-zero if P is a pointer to a live Lisp cons on
3916 the heap. M is a pointer to the mem_block for P. */
3917
3918static INLINE int
3919live_cons_p (m, p)
3920 struct mem_node *m;
3921 void *p;
3922{
3923 if (m->type == MEM_TYPE_CONS)
3924 {
3925 struct cons_block *b = (struct cons_block *) m->start;
3926 int offset = (char *) p - (char *) &b->conses[0];
3927
3928 /* P must point to the start of a Lisp_Cons, not be
3929 one of the unused cells in the current cons block,
3930 and not be on the free-list. */
176bc847
GM
3931 return (offset >= 0
3932 && offset % sizeof b->conses[0] == 0
6b61353c 3933 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
34400008
GM
3934 && (b != cons_block
3935 || offset / sizeof b->conses[0] < cons_block_index)
3936 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
3937 }
3938 else
3939 return 0;
3940}
3941
3942
3943/* Value is non-zero if P is a pointer to a live Lisp symbol on
3944 the heap. M is a pointer to the mem_block for P. */
3945
3946static INLINE int
3947live_symbol_p (m, p)
3948 struct mem_node *m;
3949 void *p;
3950{
3951 if (m->type == MEM_TYPE_SYMBOL)
3952 {
3953 struct symbol_block *b = (struct symbol_block *) m->start;
3954 int offset = (char *) p - (char *) &b->symbols[0];
177c0ea7 3955
34400008
GM
3956 /* P must point to the start of a Lisp_Symbol, not be
3957 one of the unused cells in the current symbol block,
3958 and not be on the free-list. */
176bc847
GM
3959 return (offset >= 0
3960 && offset % sizeof b->symbols[0] == 0
6b61353c 3961 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
34400008
GM
3962 && (b != symbol_block
3963 || offset / sizeof b->symbols[0] < symbol_block_index)
3964 && !EQ (((struct Lisp_Symbol *) p)->function, Vdead));
3965 }
3966 else
3967 return 0;
3968}
3969
3970
3971/* Value is non-zero if P is a pointer to a live Lisp float on
3972 the heap. M is a pointer to the mem_block for P. */
3973
3974static INLINE int
3975live_float_p (m, p)
3976 struct mem_node *m;
3977 void *p;
3978{
3979 if (m->type == MEM_TYPE_FLOAT)
3980 {
3981 struct float_block *b = (struct float_block *) m->start;
3982 int offset = (char *) p - (char *) &b->floats[0];
177c0ea7 3983
ab6780cd
SM
3984 /* P must point to the start of a Lisp_Float and not be
3985 one of the unused cells in the current float block. */
176bc847
GM
3986 return (offset >= 0
3987 && offset % sizeof b->floats[0] == 0
6b61353c 3988 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
34400008 3989 && (b != float_block
ab6780cd 3990 || offset / sizeof b->floats[0] < float_block_index));
34400008
GM
3991 }
3992 else
3993 return 0;
3994}
3995
3996
3997/* Value is non-zero if P is a pointer to a live Lisp Misc on
3998 the heap. M is a pointer to the mem_block for P. */
3999
4000static INLINE int
4001live_misc_p (m, p)
4002 struct mem_node *m;
4003 void *p;
4004{
4005 if (m->type == MEM_TYPE_MISC)
4006 {
4007 struct marker_block *b = (struct marker_block *) m->start;
4008 int offset = (char *) p - (char *) &b->markers[0];
177c0ea7 4009
34400008
GM
4010 /* P must point to the start of a Lisp_Misc, not be
4011 one of the unused cells in the current misc block,
4012 and not be on the free-list. */
176bc847
GM
4013 return (offset >= 0
4014 && offset % sizeof b->markers[0] == 0
6b61353c 4015 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
34400008
GM
4016 && (b != marker_block
4017 || offset / sizeof b->markers[0] < marker_block_index)
d314756e 4018 && ((union Lisp_Misc *) p)->u_any.type != Lisp_Misc_Free);
34400008
GM
4019 }
4020 else
4021 return 0;
4022}
4023
4024
4025/* Value is non-zero if P is a pointer to a live vector-like object.
4026 M is a pointer to the mem_block for P. */
4027
4028static INLINE int
4029live_vector_p (m, p)
4030 struct mem_node *m;
4031 void *p;
4032{
9c545a55 4033 return (p == m->start && m->type == MEM_TYPE_VECTORLIKE);
34400008
GM
4034}
4035
4036
2336fe58 4037/* Value is non-zero if P is a pointer to a live buffer. M is a
34400008
GM
4038 pointer to the mem_block for P. */
4039
4040static INLINE int
4041live_buffer_p (m, p)
4042 struct mem_node *m;
4043 void *p;
4044{
4045 /* P must point to the start of the block, and the buffer
4046 must not have been killed. */
4047 return (m->type == MEM_TYPE_BUFFER
4048 && p == m->start
4049 && !NILP (((struct buffer *) p)->name));
4050}
4051
13c844fb
GM
4052#endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
4053
4054#if GC_MARK_STACK
4055
34400008
GM
4056#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4057
4058/* Array of objects that are kept alive because the C stack contains
4059 a pattern that looks like a reference to them . */
4060
4061#define MAX_ZOMBIES 10
4062static Lisp_Object zombies[MAX_ZOMBIES];
4063
4064/* Number of zombie objects. */
4065
4066static int nzombies;
4067
4068/* Number of garbage collections. */
4069
4070static int ngcs;
4071
4072/* Average percentage of zombies per collection. */
4073
4074static double avg_zombies;
4075
4076/* Max. number of live and zombie objects. */
4077
4078static int max_live, max_zombies;
4079
4080/* Average number of live objects per GC. */
4081
4082static double avg_live;
4083
4084DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
7ee72033
MB
4085 doc: /* Show information about live and zombie objects. */)
4086 ()
34400008 4087{
83fc9c63
DL
4088 Lisp_Object args[8], zombie_list = Qnil;
4089 int i;
4090 for (i = 0; i < nzombies; i++)
4091 zombie_list = Fcons (zombies[i], zombie_list);
4092 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
34400008
GM
4093 args[1] = make_number (ngcs);
4094 args[2] = make_float (avg_live);
4095 args[3] = make_float (avg_zombies);
4096 args[4] = make_float (avg_zombies / avg_live / 100);
4097 args[5] = make_number (max_live);
4098 args[6] = make_number (max_zombies);
83fc9c63
DL
4099 args[7] = zombie_list;
4100 return Fmessage (8, args);
34400008
GM
4101}
4102
4103#endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4104
4105
182ff242
GM
4106/* Mark OBJ if we can prove it's a Lisp_Object. */
4107
4108static INLINE void
4109mark_maybe_object (obj)
4110 Lisp_Object obj;
4111{
4112 void *po = (void *) XPNTR (obj);
4113 struct mem_node *m = mem_find (po);
177c0ea7 4114
182ff242
GM
4115 if (m != MEM_NIL)
4116 {
4117 int mark_p = 0;
4118
8e50cc2d 4119 switch (XTYPE (obj))
182ff242
GM
4120 {
4121 case Lisp_String:
4122 mark_p = (live_string_p (m, po)
4123 && !STRING_MARKED_P ((struct Lisp_String *) po));
4124 break;
4125
4126 case Lisp_Cons:
08b7c2cb 4127 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
182ff242
GM
4128 break;
4129
4130 case Lisp_Symbol:
2336fe58 4131 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
182ff242
GM
4132 break;
4133
4134 case Lisp_Float:
ab6780cd 4135 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
182ff242
GM
4136 break;
4137
4138 case Lisp_Vectorlike:
8e50cc2d 4139 /* Note: can't check BUFFERP before we know it's a
182ff242
GM
4140 buffer because checking that dereferences the pointer
4141 PO which might point anywhere. */
4142 if (live_vector_p (m, po))
8e50cc2d 4143 mark_p = !SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
182ff242 4144 else if (live_buffer_p (m, po))
8e50cc2d 4145 mark_p = BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
182ff242
GM
4146 break;
4147
4148 case Lisp_Misc:
67ee9f6e 4149 mark_p = (live_misc_p (m, po) && !XMISCANY (obj)->gcmarkbit);
182ff242 4150 break;
6bbd7a29 4151
2de9f71c 4152 default:
6bbd7a29 4153 break;
182ff242
GM
4154 }
4155
4156 if (mark_p)
4157 {
4158#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4159 if (nzombies < MAX_ZOMBIES)
83fc9c63 4160 zombies[nzombies] = obj;
182ff242
GM
4161 ++nzombies;
4162#endif
49723c04 4163 mark_object (obj);
182ff242
GM
4164 }
4165 }
4166}
ece93c02
GM
4167
4168
4169/* If P points to Lisp data, mark that as live if it isn't already
4170 marked. */
4171
4172static INLINE void
4173mark_maybe_pointer (p)
4174 void *p;
4175{
4176 struct mem_node *m;
4177
5045e68e
SM
4178 /* Quickly rule out some values which can't point to Lisp data. */
4179 if ((EMACS_INT) p %
4180#ifdef USE_LSB_TAG
4181 8 /* USE_LSB_TAG needs Lisp data to be aligned on multiples of 8. */
4182#else
4183 2 /* We assume that Lisp data is aligned on even addresses. */
4184#endif
4185 )
ece93c02 4186 return;
177c0ea7 4187
ece93c02
GM
4188 m = mem_find (p);
4189 if (m != MEM_NIL)
4190 {
4191 Lisp_Object obj = Qnil;
177c0ea7 4192
ece93c02
GM
4193 switch (m->type)
4194 {
4195 case MEM_TYPE_NON_LISP:
2fe50224 4196 /* Nothing to do; not a pointer to Lisp memory. */
ece93c02 4197 break;
177c0ea7 4198
ece93c02 4199 case MEM_TYPE_BUFFER:
3ef06d12 4200 if (live_buffer_p (m, p) && !VECTOR_MARKED_P((struct buffer *)p))
ece93c02
GM
4201 XSETVECTOR (obj, p);
4202 break;
177c0ea7 4203
ece93c02 4204 case MEM_TYPE_CONS:
08b7c2cb 4205 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
ece93c02
GM
4206 XSETCONS (obj, p);
4207 break;
177c0ea7 4208
ece93c02
GM
4209 case MEM_TYPE_STRING:
4210 if (live_string_p (m, p)
4211 && !STRING_MARKED_P ((struct Lisp_String *) p))
4212 XSETSTRING (obj, p);
4213 break;
4214
4215 case MEM_TYPE_MISC:
2336fe58
SM
4216 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
4217 XSETMISC (obj, p);
ece93c02 4218 break;
177c0ea7 4219
ece93c02 4220 case MEM_TYPE_SYMBOL:
2336fe58 4221 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
ece93c02
GM
4222 XSETSYMBOL (obj, p);
4223 break;
177c0ea7 4224
ece93c02 4225 case MEM_TYPE_FLOAT:
ab6780cd 4226 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
ece93c02
GM
4227 XSETFLOAT (obj, p);
4228 break;
177c0ea7 4229
9c545a55 4230 case MEM_TYPE_VECTORLIKE:
ece93c02
GM
4231 if (live_vector_p (m, p))
4232 {
4233 Lisp_Object tem;
4234 XSETVECTOR (tem, p);
8e50cc2d 4235 if (!SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
ece93c02
GM
4236 obj = tem;
4237 }
4238 break;
4239
4240 default:
4241 abort ();
4242 }
4243
8e50cc2d 4244 if (!NILP (obj))
49723c04 4245 mark_object (obj);
ece93c02
GM
4246 }
4247}
4248
4249
55a314a5
YM
4250/* Mark Lisp objects referenced from the address range START+OFFSET..END
4251 or END+OFFSET..START. */
34400008 4252
177c0ea7 4253static void
55a314a5 4254mark_memory (start, end, offset)
34400008 4255 void *start, *end;
55a314a5 4256 int offset;
34400008
GM
4257{
4258 Lisp_Object *p;
ece93c02 4259 void **pp;
34400008
GM
4260
4261#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4262 nzombies = 0;
4263#endif
4264
4265 /* Make START the pointer to the start of the memory region,
4266 if it isn't already. */
4267 if (end < start)
4268 {
4269 void *tem = start;
4270 start = end;
4271 end = tem;
4272 }
ece93c02
GM
4273
4274 /* Mark Lisp_Objects. */
55a314a5 4275 for (p = (Lisp_Object *) ((char *) start + offset); (void *) p < end; ++p)
182ff242 4276 mark_maybe_object (*p);
ece93c02
GM
4277
4278 /* Mark Lisp data pointed to. This is necessary because, in some
4279 situations, the C compiler optimizes Lisp objects away, so that
4280 only a pointer to them remains. Example:
4281
4282 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
7ee72033 4283 ()
ece93c02
GM
4284 {
4285 Lisp_Object obj = build_string ("test");
4286 struct Lisp_String *s = XSTRING (obj);
4287 Fgarbage_collect ();
4288 fprintf (stderr, "test `%s'\n", s->data);
4289 return Qnil;
4290 }
4291
4292 Here, `obj' isn't really used, and the compiler optimizes it
4293 away. The only reference to the life string is through the
4294 pointer `s'. */
177c0ea7 4295
55a314a5 4296 for (pp = (void **) ((char *) start + offset); (void *) pp < end; ++pp)
ece93c02 4297 mark_maybe_pointer (*pp);
182ff242
GM
4298}
4299
30f637f8
DL
4300/* setjmp will work with GCC unless NON_SAVING_SETJMP is defined in
4301 the GCC system configuration. In gcc 3.2, the only systems for
4302 which this is so are i386-sco5 non-ELF, i386-sysv3 (maybe included
4303 by others?) and ns32k-pc532-min. */
182ff242
GM
4304
4305#if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4306
4307static int setjmp_tested_p, longjmps_done;
4308
4309#define SETJMP_WILL_LIKELY_WORK "\
4310\n\
4311Emacs garbage collector has been changed to use conservative stack\n\
4312marking. Emacs has determined that the method it uses to do the\n\
4313marking will likely work on your system, but this isn't sure.\n\
4314\n\
4315If you are a system-programmer, or can get the help of a local wizard\n\
4316who is, please take a look at the function mark_stack in alloc.c, and\n\
4317verify that the methods used are appropriate for your system.\n\
4318\n\
d191623b 4319Please mail the result to <emacs-devel@gnu.org>.\n\
182ff242
GM
4320"
4321
4322#define SETJMP_WILL_NOT_WORK "\
4323\n\
4324Emacs garbage collector has been changed to use conservative stack\n\
4325marking. Emacs has determined that the default method it uses to do the\n\
4326marking will not work on your system. We will need a system-dependent\n\
4327solution for your system.\n\
4328\n\
4329Please take a look at the function mark_stack in alloc.c, and\n\
4330try to find a way to make it work on your system.\n\
30f637f8
DL
4331\n\
4332Note that you may get false negatives, depending on the compiler.\n\
4333In particular, you need to use -O with GCC for this test.\n\
4334\n\
d191623b 4335Please mail the result to <emacs-devel@gnu.org>.\n\
182ff242
GM
4336"
4337
4338
4339/* Perform a quick check if it looks like setjmp saves registers in a
4340 jmp_buf. Print a message to stderr saying so. When this test
4341 succeeds, this is _not_ a proof that setjmp is sufficient for
4342 conservative stack marking. Only the sources or a disassembly
4343 can prove that. */
4344
4345static void
4346test_setjmp ()
4347{
4348 char buf[10];
4349 register int x;
4350 jmp_buf jbuf;
4351 int result = 0;
4352
4353 /* Arrange for X to be put in a register. */
4354 sprintf (buf, "1");
4355 x = strlen (buf);
4356 x = 2 * x - 1;
4357
4358 setjmp (jbuf);
4359 if (longjmps_done == 1)
34400008 4360 {
182ff242 4361 /* Came here after the longjmp at the end of the function.
34400008 4362
182ff242
GM
4363 If x == 1, the longjmp has restored the register to its
4364 value before the setjmp, and we can hope that setjmp
4365 saves all such registers in the jmp_buf, although that
4366 isn't sure.
34400008 4367
182ff242
GM
4368 For other values of X, either something really strange is
4369 taking place, or the setjmp just didn't save the register. */
4370
4371 if (x == 1)
4372 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
4373 else
4374 {
4375 fprintf (stderr, SETJMP_WILL_NOT_WORK);
4376 exit (1);
34400008
GM
4377 }
4378 }
182ff242
GM
4379
4380 ++longjmps_done;
4381 x = 2;
4382 if (longjmps_done == 1)
4383 longjmp (jbuf, 1);
34400008
GM
4384}
4385
182ff242
GM
4386#endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
4387
34400008
GM
4388
4389#if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4390
4391/* Abort if anything GCPRO'd doesn't survive the GC. */
4392
4393static void
4394check_gcpros ()
4395{
4396 struct gcpro *p;
4397 int i;
4398
4399 for (p = gcprolist; p; p = p->next)
4400 for (i = 0; i < p->nvars; ++i)
4401 if (!survives_gc_p (p->var[i]))
92cc28b2
SM
4402 /* FIXME: It's not necessarily a bug. It might just be that the
4403 GCPRO is unnecessary or should release the object sooner. */
34400008
GM
4404 abort ();
4405}
4406
4407#elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4408
4409static void
4410dump_zombies ()
4411{
4412 int i;
4413
4414 fprintf (stderr, "\nZombies kept alive = %d:\n", nzombies);
4415 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
4416 {
4417 fprintf (stderr, " %d = ", i);
4418 debug_print (zombies[i]);
4419 }
4420}
4421
4422#endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4423
4424
182ff242
GM
4425/* Mark live Lisp objects on the C stack.
4426
4427 There are several system-dependent problems to consider when
4428 porting this to new architectures:
4429
4430 Processor Registers
4431
4432 We have to mark Lisp objects in CPU registers that can hold local
4433 variables or are used to pass parameters.
4434
4435 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4436 something that either saves relevant registers on the stack, or
4437 calls mark_maybe_object passing it each register's contents.
4438
4439 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4440 implementation assumes that calling setjmp saves registers we need
4441 to see in a jmp_buf which itself lies on the stack. This doesn't
4442 have to be true! It must be verified for each system, possibly
4443 by taking a look at the source code of setjmp.
4444
4445 Stack Layout
4446
4447 Architectures differ in the way their processor stack is organized.
4448 For example, the stack might look like this
4449
4450 +----------------+
4451 | Lisp_Object | size = 4
4452 +----------------+
4453 | something else | size = 2
4454 +----------------+
4455 | Lisp_Object | size = 4
4456 +----------------+
4457 | ... |
4458
4459 In such a case, not every Lisp_Object will be aligned equally. To
4460 find all Lisp_Object on the stack it won't be sufficient to walk
4461 the stack in steps of 4 bytes. Instead, two passes will be
4462 necessary, one starting at the start of the stack, and a second
4463 pass starting at the start of the stack + 2. Likewise, if the
4464 minimal alignment of Lisp_Objects on the stack is 1, four passes
4465 would be necessary, each one starting with one byte more offset
4466 from the stack start.
4467
4468 The current code assumes by default that Lisp_Objects are aligned
4469 equally on the stack. */
34400008
GM
4470
4471static void
4472mark_stack ()
4473{
630909a5 4474 int i;
55a314a5
YM
4475 /* jmp_buf may not be aligned enough on darwin-ppc64 */
4476 union aligned_jmpbuf {
4477 Lisp_Object o;
4478 jmp_buf j;
4479 } j;
6bbd7a29 4480 volatile int stack_grows_down_p = (char *) &j > (char *) stack_base;
34400008
GM
4481 void *end;
4482
4483 /* This trick flushes the register windows so that all the state of
4484 the process is contained in the stack. */
ab6780cd 4485 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
422eec7e
DL
4486 needed on ia64 too. See mach_dep.c, where it also says inline
4487 assembler doesn't work with relevant proprietary compilers. */
4a00783e 4488#ifdef __sparc__
4d18a7a2
DN
4489#if defined (__sparc64__) && defined (__FreeBSD__)
4490 /* FreeBSD does not have a ta 3 handler. */
4c1616be
CY
4491 asm ("flushw");
4492#else
34400008 4493 asm ("ta 3");
4c1616be 4494#endif
34400008 4495#endif
177c0ea7 4496
34400008
GM
4497 /* Save registers that we need to see on the stack. We need to see
4498 registers used to hold register variables and registers used to
4499 pass parameters. */
4500#ifdef GC_SAVE_REGISTERS_ON_STACK
4501 GC_SAVE_REGISTERS_ON_STACK (end);
182ff242 4502#else /* not GC_SAVE_REGISTERS_ON_STACK */
177c0ea7 4503
182ff242
GM
4504#ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
4505 setjmp will definitely work, test it
4506 and print a message with the result
4507 of the test. */
4508 if (!setjmp_tested_p)
4509 {
4510 setjmp_tested_p = 1;
4511 test_setjmp ();
4512 }
4513#endif /* GC_SETJMP_WORKS */
177c0ea7 4514
55a314a5 4515 setjmp (j.j);
34400008 4516 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
182ff242 4517#endif /* not GC_SAVE_REGISTERS_ON_STACK */
34400008
GM
4518
4519 /* This assumes that the stack is a contiguous region in memory. If
182ff242
GM
4520 that's not the case, something has to be done here to iterate
4521 over the stack segments. */
630909a5 4522#ifndef GC_LISP_OBJECT_ALIGNMENT
422eec7e
DL
4523#ifdef __GNUC__
4524#define GC_LISP_OBJECT_ALIGNMENT __alignof__ (Lisp_Object)
4525#else
630909a5 4526#define GC_LISP_OBJECT_ALIGNMENT sizeof (Lisp_Object)
422eec7e 4527#endif
182ff242 4528#endif
24452cd5 4529 for (i = 0; i < sizeof (Lisp_Object); i += GC_LISP_OBJECT_ALIGNMENT)
55a314a5 4530 mark_memory (stack_base, end, i);
4dec23ff
AS
4531 /* Allow for marking a secondary stack, like the register stack on the
4532 ia64. */
4533#ifdef GC_MARK_SECONDARY_STACK
4534 GC_MARK_SECONDARY_STACK ();
4535#endif
34400008
GM
4536
4537#if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4538 check_gcpros ();
4539#endif
4540}
4541
34400008
GM
4542#endif /* GC_MARK_STACK != 0 */
4543
4544
7ffb6955 4545/* Determine whether it is safe to access memory at address P. */
d3d47262 4546static int
69b9efaa 4547valid_pointer_p (p)
7ffb6955
KS
4548 void *p;
4549{
f892cf9c
EZ
4550#ifdef WINDOWSNT
4551 return w32_valid_pointer_p (p, 16);
4552#else
7ffb6955
KS
4553 int fd;
4554
4555 /* Obviously, we cannot just access it (we would SEGV trying), so we
4556 trick the o/s to tell us whether p is a valid pointer.
4557 Unfortunately, we cannot use NULL_DEVICE here, as emacs_write may
4558 not validate p in that case. */
4559
4560 if ((fd = emacs_open ("__Valid__Lisp__Object__", O_CREAT | O_WRONLY | O_TRUNC, 0666)) >= 0)
4561 {
4562 int valid = (emacs_write (fd, (char *)p, 16) == 16);
4563 emacs_close (fd);
4564 unlink ("__Valid__Lisp__Object__");
4565 return valid;
4566 }
4567
4568 return -1;
f892cf9c 4569#endif
7ffb6955 4570}
3cd55735
KS
4571
4572/* Return 1 if OBJ is a valid lisp object.
4573 Return 0 if OBJ is NOT a valid lisp object.
4574 Return -1 if we cannot validate OBJ.
7c0ab7d9
RS
4575 This function can be quite slow,
4576 so it should only be used in code for manual debugging. */
3cd55735
KS
4577
4578int
4579valid_lisp_object_p (obj)
4580 Lisp_Object obj;
4581{
de7124a7 4582 void *p;
7ffb6955 4583#if GC_MARK_STACK
3cd55735 4584 struct mem_node *m;
de7124a7 4585#endif
3cd55735
KS
4586
4587 if (INTEGERP (obj))
4588 return 1;
4589
4590 p = (void *) XPNTR (obj);
3cd55735
KS
4591 if (PURE_POINTER_P (p))
4592 return 1;
4593
de7124a7 4594#if !GC_MARK_STACK
7ffb6955 4595 return valid_pointer_p (p);
de7124a7
KS
4596#else
4597
3cd55735
KS
4598 m = mem_find (p);
4599
4600 if (m == MEM_NIL)
7ffb6955
KS
4601 {
4602 int valid = valid_pointer_p (p);
4603 if (valid <= 0)
4604 return valid;
4605
4606 if (SUBRP (obj))
4607 return 1;
4608
4609 return 0;
4610 }
3cd55735
KS
4611
4612 switch (m->type)
4613 {
4614 case MEM_TYPE_NON_LISP:
4615 return 0;
4616
4617 case MEM_TYPE_BUFFER:
4618 return live_buffer_p (m, p);
4619
4620 case MEM_TYPE_CONS:
4621 return live_cons_p (m, p);
4622
4623 case MEM_TYPE_STRING:
4624 return live_string_p (m, p);
4625
4626 case MEM_TYPE_MISC:
4627 return live_misc_p (m, p);
4628
4629 case MEM_TYPE_SYMBOL:
4630 return live_symbol_p (m, p);
4631
4632 case MEM_TYPE_FLOAT:
4633 return live_float_p (m, p);
4634
9c545a55 4635 case MEM_TYPE_VECTORLIKE:
3cd55735
KS
4636 return live_vector_p (m, p);
4637
4638 default:
4639 break;
4640 }
4641
4642 return 0;
4643#endif
4644}
4645
4646
4647
34400008 4648\f
2e471eb5
GM
4649/***********************************************************************
4650 Pure Storage Management
4651 ***********************************************************************/
4652
1f0b3fd2
GM
4653/* Allocate room for SIZE bytes from pure Lisp storage and return a
4654 pointer to it. TYPE is the Lisp type for which the memory is
e5bc14d4 4655 allocated. TYPE < 0 means it's not used for a Lisp object. */
1f0b3fd2
GM
4656
4657static POINTER_TYPE *
4658pure_alloc (size, type)
4659 size_t size;
4660 int type;
4661{
1f0b3fd2 4662 POINTER_TYPE *result;
6b61353c
KH
4663#ifdef USE_LSB_TAG
4664 size_t alignment = (1 << GCTYPEBITS);
4665#else
44117420 4666 size_t alignment = sizeof (EMACS_INT);
1f0b3fd2
GM
4667
4668 /* Give Lisp_Floats an extra alignment. */
4669 if (type == Lisp_Float)
4670 {
1f0b3fd2
GM
4671#if defined __GNUC__ && __GNUC__ >= 2
4672 alignment = __alignof (struct Lisp_Float);
4673#else
4674 alignment = sizeof (struct Lisp_Float);
4675#endif
9e713715 4676 }
6b61353c 4677#endif
1f0b3fd2 4678
44117420 4679 again:
e5bc14d4
YM
4680 if (type >= 0)
4681 {
4682 /* Allocate space for a Lisp object from the beginning of the free
4683 space with taking account of alignment. */
4684 result = ALIGN (purebeg + pure_bytes_used_lisp, alignment);
4685 pure_bytes_used_lisp = ((char *)result - (char *)purebeg) + size;
4686 }
4687 else
4688 {
4689 /* Allocate space for a non-Lisp object from the end of the free
4690 space. */
4691 pure_bytes_used_non_lisp += size;
4692 result = purebeg + pure_size - pure_bytes_used_non_lisp;
4693 }
4694 pure_bytes_used = pure_bytes_used_lisp + pure_bytes_used_non_lisp;
44117420
KS
4695
4696 if (pure_bytes_used <= pure_size)
4697 return result;
4698
4699 /* Don't allocate a large amount here,
4700 because it might get mmap'd and then its address
4701 might not be usable. */
4702 purebeg = (char *) xmalloc (10000);
4703 pure_size = 10000;
4704 pure_bytes_used_before_overflow += pure_bytes_used - size;
4705 pure_bytes_used = 0;
e5bc14d4 4706 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
44117420 4707 goto again;
1f0b3fd2
GM
4708}
4709
4710
852f8cdc 4711/* Print a warning if PURESIZE is too small. */
9e713715
GM
4712
4713void
4714check_pure_size ()
4715{
4716 if (pure_bytes_used_before_overflow)
2aee5ca3 4717 message ("emacs:0:Pure Lisp storage overflow (approx. %d bytes needed)",
a4d35afd 4718 (int) (pure_bytes_used + pure_bytes_used_before_overflow));
9e713715
GM
4719}
4720
4721
79fd0489
YM
4722/* Find the byte sequence {DATA[0], ..., DATA[NBYTES-1], '\0'} from
4723 the non-Lisp data pool of the pure storage, and return its start
4724 address. Return NULL if not found. */
4725
4726static char *
4727find_string_data_in_pure (data, nbytes)
4728 char *data;
4729 int nbytes;
4730{
4731 int i, skip, bm_skip[256], last_char_skip, infinity, start, start_max;
4732 unsigned char *p;
4733 char *non_lisp_beg;
4734
4735 if (pure_bytes_used_non_lisp < nbytes + 1)
4736 return NULL;
4737
4738 /* Set up the Boyer-Moore table. */
4739 skip = nbytes + 1;
4740 for (i = 0; i < 256; i++)
4741 bm_skip[i] = skip;
4742
4743 p = (unsigned char *) data;
4744 while (--skip > 0)
4745 bm_skip[*p++] = skip;
4746
4747 last_char_skip = bm_skip['\0'];
4748
4749 non_lisp_beg = purebeg + pure_size - pure_bytes_used_non_lisp;
4750 start_max = pure_bytes_used_non_lisp - (nbytes + 1);
4751
4752 /* See the comments in the function `boyer_moore' (search.c) for the
4753 use of `infinity'. */
4754 infinity = pure_bytes_used_non_lisp + 1;
4755 bm_skip['\0'] = infinity;
4756
4757 p = (unsigned char *) non_lisp_beg + nbytes;
4758 start = 0;
4759 do
4760 {
4761 /* Check the last character (== '\0'). */
4762 do
4763 {
4764 start += bm_skip[*(p + start)];
4765 }
4766 while (start <= start_max);
4767
4768 if (start < infinity)
4769 /* Couldn't find the last character. */
4770 return NULL;
4771
4772 /* No less than `infinity' means we could find the last
4773 character at `p[start - infinity]'. */
4774 start -= infinity;
4775
4776 /* Check the remaining characters. */
4777 if (memcmp (data, non_lisp_beg + start, nbytes) == 0)
4778 /* Found. */
4779 return non_lisp_beg + start;
4780
4781 start += last_char_skip;
4782 }
4783 while (start <= start_max);
4784
4785 return NULL;
4786}
4787
4788
2e471eb5
GM
4789/* Return a string allocated in pure space. DATA is a buffer holding
4790 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
4791 non-zero means make the result string multibyte.
1a4f1e2c 4792
2e471eb5
GM
4793 Must get an error if pure storage is full, since if it cannot hold
4794 a large string it may be able to hold conses that point to that
4795 string; then the string is not protected from gc. */
7146af97
JB
4796
4797Lisp_Object
2e471eb5 4798make_pure_string (data, nchars, nbytes, multibyte)
7146af97 4799 char *data;
2e471eb5 4800 int nchars, nbytes;
c0696668 4801 int multibyte;
7146af97 4802{
2e471eb5
GM
4803 Lisp_Object string;
4804 struct Lisp_String *s;
c0696668 4805
1f0b3fd2 4806 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
79fd0489
YM
4807 s->data = find_string_data_in_pure (data, nbytes);
4808 if (s->data == NULL)
4809 {
4810 s->data = (unsigned char *) pure_alloc (nbytes + 1, -1);
4811 bcopy (data, s->data, nbytes);
4812 s->data[nbytes] = '\0';
4813 }
2e471eb5
GM
4814 s->size = nchars;
4815 s->size_byte = multibyte ? nbytes : -1;
2e471eb5 4816 s->intervals = NULL_INTERVAL;
2e471eb5
GM
4817 XSETSTRING (string, s);
4818 return string;
7146af97
JB
4819}
4820
a56eaaef
DN
4821/* Return a string a string allocated in pure space. Do not allocate
4822 the string data, just point to DATA. */
4823
4824Lisp_Object
4825make_pure_c_string (const char *data)
4826{
4827 Lisp_Object string;
4828 struct Lisp_String *s;
4829 int nchars = strlen (data);
4830
4831 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
4832 s->size = nchars;
4833 s->size_byte = -1;
323637a2 4834 s->data = (unsigned char *) data;
a56eaaef
DN
4835 s->intervals = NULL_INTERVAL;
4836 XSETSTRING (string, s);
4837 return string;
4838}
2e471eb5 4839
34400008
GM
4840/* Return a cons allocated from pure space. Give it pure copies
4841 of CAR as car and CDR as cdr. */
4842
7146af97
JB
4843Lisp_Object
4844pure_cons (car, cdr)
4845 Lisp_Object car, cdr;
4846{
4847 register Lisp_Object new;
1f0b3fd2 4848 struct Lisp_Cons *p;
7146af97 4849
1f0b3fd2
GM
4850 p = (struct Lisp_Cons *) pure_alloc (sizeof *p, Lisp_Cons);
4851 XSETCONS (new, p);
f3fbd155
KR
4852 XSETCAR (new, Fpurecopy (car));
4853 XSETCDR (new, Fpurecopy (cdr));
7146af97
JB
4854 return new;
4855}
4856
7146af97 4857
34400008
GM
4858/* Value is a float object with value NUM allocated from pure space. */
4859
d3d47262 4860static Lisp_Object
7146af97
JB
4861make_pure_float (num)
4862 double num;
4863{
4864 register Lisp_Object new;
1f0b3fd2 4865 struct Lisp_Float *p;
7146af97 4866
1f0b3fd2
GM
4867 p = (struct Lisp_Float *) pure_alloc (sizeof *p, Lisp_Float);
4868 XSETFLOAT (new, p);
f601cdf3 4869 XFLOAT_INIT (new, num);
7146af97
JB
4870 return new;
4871}
4872
34400008
GM
4873
4874/* Return a vector with room for LEN Lisp_Objects allocated from
4875 pure space. */
4876
7146af97
JB
4877Lisp_Object
4878make_pure_vector (len)
42607681 4879 EMACS_INT len;
7146af97 4880{
1f0b3fd2
GM
4881 Lisp_Object new;
4882 struct Lisp_Vector *p;
4883 size_t size = sizeof *p + (len - 1) * sizeof (Lisp_Object);
7146af97 4884
1f0b3fd2
GM
4885 p = (struct Lisp_Vector *) pure_alloc (size, Lisp_Vectorlike);
4886 XSETVECTOR (new, p);
7146af97
JB
4887 XVECTOR (new)->size = len;
4888 return new;
4889}
4890
34400008 4891
7146af97 4892DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
909e3b33 4893 doc: /* Make a copy of object OBJ in pure storage.
228299fa 4894Recursively copies contents of vectors and cons cells.
7ee72033
MB
4895Does not copy symbols. Copies strings without text properties. */)
4896 (obj)
7146af97
JB
4897 register Lisp_Object obj;
4898{
265a9e55 4899 if (NILP (Vpurify_flag))
7146af97
JB
4900 return obj;
4901
1f0b3fd2 4902 if (PURE_POINTER_P (XPNTR (obj)))
7146af97
JB
4903 return obj;
4904
d6dd74bb 4905 if (CONSP (obj))
70949dac 4906 return pure_cons (XCAR (obj), XCDR (obj));
d6dd74bb 4907 else if (FLOATP (obj))
70949dac 4908 return make_pure_float (XFLOAT_DATA (obj));
d6dd74bb 4909 else if (STRINGP (obj))
d5db4077
KR
4910 return make_pure_string (SDATA (obj), SCHARS (obj),
4911 SBYTES (obj),
c0696668 4912 STRING_MULTIBYTE (obj));
d6dd74bb
KH
4913 else if (COMPILEDP (obj) || VECTORP (obj))
4914 {
4915 register struct Lisp_Vector *vec;
6b61353c
KH
4916 register int i;
4917 EMACS_INT size;
d6dd74bb
KH
4918
4919 size = XVECTOR (obj)->size;
7d535c68
KH
4920 if (size & PSEUDOVECTOR_FLAG)
4921 size &= PSEUDOVECTOR_SIZE_MASK;
6b61353c 4922 vec = XVECTOR (make_pure_vector (size));
d6dd74bb
KH
4923 for (i = 0; i < size; i++)
4924 vec->contents[i] = Fpurecopy (XVECTOR (obj)->contents[i]);
4925 if (COMPILEDP (obj))
985773c9
MB
4926 {
4927 XSETPVECTYPE (vec, PVEC_COMPILED);
4928 XSETCOMPILED (obj, vec);
4929 }
d6dd74bb
KH
4930 else
4931 XSETVECTOR (obj, vec);
7146af97
JB
4932 return obj;
4933 }
d6dd74bb
KH
4934 else if (MARKERP (obj))
4935 error ("Attempt to copy a marker to pure storage");
6bbd7a29
GM
4936
4937 return obj;
7146af97 4938}
2e471eb5 4939
34400008 4940
7146af97 4941\f
34400008
GM
4942/***********************************************************************
4943 Protection from GC
4944 ***********************************************************************/
4945
2e471eb5
GM
4946/* Put an entry in staticvec, pointing at the variable with address
4947 VARADDRESS. */
7146af97
JB
4948
4949void
4950staticpro (varaddress)
4951 Lisp_Object *varaddress;
4952{
4953 staticvec[staticidx++] = varaddress;
4954 if (staticidx >= NSTATICS)
4955 abort ();
4956}
4957
7146af97 4958\f
34400008
GM
4959/***********************************************************************
4960 Protection from GC
4961 ***********************************************************************/
1a4f1e2c 4962
e8197642
RS
4963/* Temporarily prevent garbage collection. */
4964
4965int
4966inhibit_garbage_collection ()
4967{
aed13378 4968 int count = SPECPDL_INDEX ();
54defd0d
AS
4969 int nbits = min (VALBITS, BITS_PER_INT);
4970
4971 specbind (Qgc_cons_threshold, make_number (((EMACS_INT) 1 << (nbits - 1)) - 1));
e8197642
RS
4972 return count;
4973}
4974
34400008 4975
7146af97 4976DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
7ee72033 4977 doc: /* Reclaim storage for Lisp objects no longer needed.
e1e37596
RS
4978Garbage collection happens automatically if you cons more than
4979`gc-cons-threshold' bytes of Lisp data since previous garbage collection.
4980`garbage-collect' normally returns a list with info on amount of space in use:
228299fa
GM
4981 ((USED-CONSES . FREE-CONSES) (USED-SYMS . FREE-SYMS)
4982 (USED-MARKERS . FREE-MARKERS) USED-STRING-CHARS USED-VECTOR-SLOTS
4983 (USED-FLOATS . FREE-FLOATS) (USED-INTERVALS . FREE-INTERVALS)
4984 (USED-STRINGS . FREE-STRINGS))
e1e37596
RS
4985However, if there was overflow in pure space, `garbage-collect'
4986returns nil, because real GC can't be done. */)
7ee72033 4987 ()
7146af97 4988{
7146af97
JB
4989 register struct specbinding *bind;
4990 struct catchtag *catch;
4991 struct handler *handler;
7146af97
JB
4992 char stack_top_variable;
4993 register int i;
6efc7df7 4994 int message_p;
96117bc7 4995 Lisp_Object total[8];
331379bf 4996 int count = SPECPDL_INDEX ();
2c5bd608
DL
4997 EMACS_TIME t1, t2, t3;
4998
3de0effb
RS
4999 if (abort_on_gc)
5000 abort ();
5001
9e713715
GM
5002 /* Can't GC if pure storage overflowed because we can't determine
5003 if something is a pure object or not. */
5004 if (pure_bytes_used_before_overflow)
5005 return Qnil;
5006
bbc012e0
KS
5007 CHECK_CONS_LIST ();
5008
3c7e66a8
RS
5009 /* Don't keep undo information around forever.
5010 Do this early on, so it is no problem if the user quits. */
5011 {
5012 register struct buffer *nextb = all_buffers;
5013
5014 while (nextb)
5015 {
5016 /* If a buffer's undo list is Qt, that means that undo is
5017 turned off in that buffer. Calling truncate_undo_list on
5018 Qt tends to return NULL, which effectively turns undo back on.
5019 So don't call truncate_undo_list if undo_list is Qt. */
303b0412 5020 if (! NILP (nextb->name) && ! EQ (nextb->undo_list, Qt))
3c7e66a8
RS
5021 truncate_undo_list (nextb);
5022
5023 /* Shrink buffer gaps, but skip indirect and dead buffers. */
dc7b4525
KH
5024 if (nextb->base_buffer == 0 && !NILP (nextb->name)
5025 && ! nextb->text->inhibit_shrinking)
3c7e66a8
RS
5026 {
5027 /* If a buffer's gap size is more than 10% of the buffer
5028 size, or larger than 2000 bytes, then shrink it
5029 accordingly. Keep a minimum size of 20 bytes. */
5030 int size = min (2000, max (20, (nextb->text->z_byte / 10)));
5031
5032 if (nextb->text->gap_size > size)
5033 {
5034 struct buffer *save_current = current_buffer;
5035 current_buffer = nextb;
5036 make_gap (-(nextb->text->gap_size - size));
5037 current_buffer = save_current;
5038 }
5039 }
5040
5041 nextb = nextb->next;
5042 }
5043 }
5044
5045 EMACS_GET_TIME (t1);
5046
58595309
KH
5047 /* In case user calls debug_print during GC,
5048 don't let that cause a recursive GC. */
5049 consing_since_gc = 0;
5050
6efc7df7
GM
5051 /* Save what's currently displayed in the echo area. */
5052 message_p = push_message ();
c55b0da6 5053 record_unwind_protect (pop_message_unwind, Qnil);
41c28a37 5054
7146af97
JB
5055 /* Save a copy of the contents of the stack, for debugging. */
5056#if MAX_SAVE_STACK > 0
265a9e55 5057 if (NILP (Vpurify_flag))
7146af97
JB
5058 {
5059 i = &stack_top_variable - stack_bottom;
5060 if (i < 0) i = -i;
5061 if (i < MAX_SAVE_STACK)
5062 {
5063 if (stack_copy == 0)
9ac0d9e0 5064 stack_copy = (char *) xmalloc (stack_copy_size = i);
7146af97 5065 else if (stack_copy_size < i)
9ac0d9e0 5066 stack_copy = (char *) xrealloc (stack_copy, (stack_copy_size = i));
7146af97
JB
5067 if (stack_copy)
5068 {
42607681 5069 if ((EMACS_INT) (&stack_top_variable - stack_bottom) > 0)
7146af97
JB
5070 bcopy (stack_bottom, stack_copy, i);
5071 else
5072 bcopy (&stack_top_variable, stack_copy, i);
5073 }
5074 }
5075 }
5076#endif /* MAX_SAVE_STACK > 0 */
5077
299585ee 5078 if (garbage_collection_messages)
691c4285 5079 message1_nolog ("Garbage collecting...");
7146af97 5080
6e0fca1d
RS
5081 BLOCK_INPUT;
5082
eec7b73d
RS
5083 shrink_regexp_cache ();
5084
7146af97
JB
5085 gc_in_progress = 1;
5086
c23baf9f 5087 /* clear_marks (); */
7146af97 5088
005ca5c7 5089 /* Mark all the special slots that serve as the roots of accessibility. */
7146af97
JB
5090
5091 for (i = 0; i < staticidx; i++)
49723c04 5092 mark_object (*staticvec[i]);
34400008 5093
126f9c02
SM
5094 for (bind = specpdl; bind != specpdl_ptr; bind++)
5095 {
5096 mark_object (bind->symbol);
5097 mark_object (bind->old_value);
5098 }
6ed8eeff 5099 mark_terminals ();
126f9c02 5100 mark_kboards ();
98a92e2d 5101 mark_ttys ();
126f9c02
SM
5102
5103#ifdef USE_GTK
5104 {
5105 extern void xg_mark_data ();
5106 xg_mark_data ();
5107 }
5108#endif
5109
34400008
GM
5110#if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
5111 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
5112 mark_stack ();
5113#else
acf5f7d3
SM
5114 {
5115 register struct gcpro *tail;
5116 for (tail = gcprolist; tail; tail = tail->next)
5117 for (i = 0; i < tail->nvars; i++)
005ca5c7 5118 mark_object (tail->var[i]);
acf5f7d3 5119 }
34400008 5120#endif
177c0ea7 5121
630686c8 5122 mark_byte_stack ();
7146af97
JB
5123 for (catch = catchlist; catch; catch = catch->next)
5124 {
49723c04
SM
5125 mark_object (catch->tag);
5126 mark_object (catch->val);
177c0ea7 5127 }
7146af97
JB
5128 for (handler = handlerlist; handler; handler = handler->next)
5129 {
49723c04
SM
5130 mark_object (handler->handler);
5131 mark_object (handler->var);
177c0ea7 5132 }
b40ea20a 5133 mark_backtrace ();
7146af97 5134
454d7973
KS
5135#ifdef HAVE_WINDOW_SYSTEM
5136 mark_fringe_data ();
5137#endif
5138
74c35a48
SM
5139#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5140 mark_stack ();
5141#endif
5142
c37adf23
SM
5143 /* Everything is now marked, except for the things that require special
5144 finalization, i.e. the undo_list.
5145 Look thru every buffer's undo list
4c315bda
RS
5146 for elements that update markers that were not marked,
5147 and delete them. */
5148 {
5149 register struct buffer *nextb = all_buffers;
5150
5151 while (nextb)
5152 {
5153 /* If a buffer's undo list is Qt, that means that undo is
5154 turned off in that buffer. Calling truncate_undo_list on
5155 Qt tends to return NULL, which effectively turns undo back on.
5156 So don't call truncate_undo_list if undo_list is Qt. */
5157 if (! EQ (nextb->undo_list, Qt))
5158 {
5159 Lisp_Object tail, prev;
5160 tail = nextb->undo_list;
5161 prev = Qnil;
5162 while (CONSP (tail))
5163 {
8e50cc2d
SM
5164 if (CONSP (XCAR (tail))
5165 && MARKERP (XCAR (XCAR (tail)))
2336fe58 5166 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
4c315bda
RS
5167 {
5168 if (NILP (prev))
70949dac 5169 nextb->undo_list = tail = XCDR (tail);
4c315bda 5170 else
f3fbd155
KR
5171 {
5172 tail = XCDR (tail);
5173 XSETCDR (prev, tail);
5174 }
4c315bda
RS
5175 }
5176 else
5177 {
5178 prev = tail;
70949dac 5179 tail = XCDR (tail);
4c315bda
RS
5180 }
5181 }
5182 }
c37adf23
SM
5183 /* Now that we have stripped the elements that need not be in the
5184 undo_list any more, we can finally mark the list. */
5185 mark_object (nextb->undo_list);
4c315bda
RS
5186
5187 nextb = nextb->next;
5188 }
5189 }
5190
7146af97
JB
5191 gc_sweep ();
5192
5193 /* Clear the mark bits that we set in certain root slots. */
5194
033a5fa3 5195 unmark_byte_stack ();
3ef06d12
SM
5196 VECTOR_UNMARK (&buffer_defaults);
5197 VECTOR_UNMARK (&buffer_local_symbols);
7146af97 5198
34400008
GM
5199#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
5200 dump_zombies ();
5201#endif
5202
6e0fca1d
RS
5203 UNBLOCK_INPUT;
5204
bbc012e0
KS
5205 CHECK_CONS_LIST ();
5206
c23baf9f 5207 /* clear_marks (); */
7146af97
JB
5208 gc_in_progress = 0;
5209
5210 consing_since_gc = 0;
5211 if (gc_cons_threshold < 10000)
5212 gc_cons_threshold = 10000;
5213
96f077ad
SM
5214 if (FLOATP (Vgc_cons_percentage))
5215 { /* Set gc_cons_combined_threshold. */
5216 EMACS_INT total = 0;
974aae61 5217
96f077ad
SM
5218 total += total_conses * sizeof (struct Lisp_Cons);
5219 total += total_symbols * sizeof (struct Lisp_Symbol);
5220 total += total_markers * sizeof (union Lisp_Misc);
5221 total += total_string_size;
5222 total += total_vector_size * sizeof (Lisp_Object);
5223 total += total_floats * sizeof (struct Lisp_Float);
5224 total += total_intervals * sizeof (struct interval);
5225 total += total_strings * sizeof (struct Lisp_String);
3cd55735 5226
974aae61 5227 gc_relative_threshold = total * XFLOAT_DATA (Vgc_cons_percentage);
96f077ad 5228 }
974aae61
RS
5229 else
5230 gc_relative_threshold = 0;
96f077ad 5231
299585ee
RS
5232 if (garbage_collection_messages)
5233 {
6efc7df7
GM
5234 if (message_p || minibuf_level > 0)
5235 restore_message ();
299585ee
RS
5236 else
5237 message1_nolog ("Garbage collecting...done");
5238 }
7146af97 5239
98edb5ff 5240 unbind_to (count, Qnil);
2e471eb5
GM
5241
5242 total[0] = Fcons (make_number (total_conses),
5243 make_number (total_free_conses));
5244 total[1] = Fcons (make_number (total_symbols),
5245 make_number (total_free_symbols));
5246 total[2] = Fcons (make_number (total_markers),
5247 make_number (total_free_markers));
96117bc7
GM
5248 total[3] = make_number (total_string_size);
5249 total[4] = make_number (total_vector_size);
5250 total[5] = Fcons (make_number (total_floats),
2e471eb5 5251 make_number (total_free_floats));
96117bc7 5252 total[6] = Fcons (make_number (total_intervals),
2e471eb5 5253 make_number (total_free_intervals));
96117bc7 5254 total[7] = Fcons (make_number (total_strings),
2e471eb5
GM
5255 make_number (total_free_strings));
5256
34400008 5257#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
7146af97 5258 {
34400008
GM
5259 /* Compute average percentage of zombies. */
5260 double nlive = 0;
177c0ea7 5261
34400008 5262 for (i = 0; i < 7; ++i)
83fc9c63
DL
5263 if (CONSP (total[i]))
5264 nlive += XFASTINT (XCAR (total[i]));
34400008
GM
5265
5266 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
5267 max_live = max (nlive, max_live);
5268 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
5269 max_zombies = max (nzombies, max_zombies);
5270 ++ngcs;
5271 }
5272#endif
7146af97 5273
9e713715
GM
5274 if (!NILP (Vpost_gc_hook))
5275 {
5276 int count = inhibit_garbage_collection ();
5277 safe_run_hooks (Qpost_gc_hook);
5278 unbind_to (count, Qnil);
5279 }
2c5bd608
DL
5280
5281 /* Accumulate statistics. */
5282 EMACS_GET_TIME (t2);
5283 EMACS_SUB_TIME (t3, t2, t1);
5284 if (FLOATP (Vgc_elapsed))
69ab9f85
SM
5285 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed) +
5286 EMACS_SECS (t3) +
5287 EMACS_USECS (t3) * 1.0e-6);
2c5bd608
DL
5288 gcs_done++;
5289
96117bc7 5290 return Flist (sizeof total / sizeof *total, total);
7146af97 5291}
34400008 5292
41c28a37 5293
3770920e
GM
5294/* Mark Lisp objects in glyph matrix MATRIX. Currently the
5295 only interesting objects referenced from glyphs are strings. */
41c28a37
GM
5296
5297static void
5298mark_glyph_matrix (matrix)
5299 struct glyph_matrix *matrix;
5300{
5301 struct glyph_row *row = matrix->rows;
5302 struct glyph_row *end = row + matrix->nrows;
5303
2e471eb5
GM
5304 for (; row < end; ++row)
5305 if (row->enabled_p)
5306 {
5307 int area;
5308 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
5309 {
5310 struct glyph *glyph = row->glyphs[area];
5311 struct glyph *end_glyph = glyph + row->used[area];
177c0ea7 5312
2e471eb5 5313 for (; glyph < end_glyph; ++glyph)
8e50cc2d 5314 if (STRINGP (glyph->object)
2e471eb5 5315 && !STRING_MARKED_P (XSTRING (glyph->object)))
49723c04 5316 mark_object (glyph->object);
2e471eb5
GM
5317 }
5318 }
41c28a37
GM
5319}
5320
34400008 5321
41c28a37
GM
5322/* Mark Lisp faces in the face cache C. */
5323
5324static void
5325mark_face_cache (c)
5326 struct face_cache *c;
5327{
5328 if (c)
5329 {
5330 int i, j;
5331 for (i = 0; i < c->used; ++i)
5332 {
5333 struct face *face = FACE_FROM_ID (c->f, i);
5334
5335 if (face)
5336 {
5337 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
49723c04 5338 mark_object (face->lface[j]);
41c28a37
GM
5339 }
5340 }
5341 }
5342}
5343
5344
7146af97 5345\f
1a4f1e2c 5346/* Mark reference to a Lisp_Object.
2e471eb5
GM
5347 If the object referred to has not been seen yet, recursively mark
5348 all the references contained in it. */
7146af97 5349
785cd37f 5350#define LAST_MARKED_SIZE 500
d3d47262 5351static Lisp_Object last_marked[LAST_MARKED_SIZE];
785cd37f
RS
5352int last_marked_index;
5353
1342fc6f
RS
5354/* For debugging--call abort when we cdr down this many
5355 links of a list, in mark_object. In debugging,
5356 the call to abort will hit a breakpoint.
5357 Normally this is zero and the check never goes off. */
d3d47262 5358static int mark_object_loop_halt;
1342fc6f 5359
d2029e5b
SM
5360/* Return non-zero if the object was not yet marked. */
5361static int
5362mark_vectorlike (ptr)
5363 struct Lisp_Vector *ptr;
5364{
5365 register EMACS_INT size = ptr->size;
5366 register int i;
5367
5368 if (VECTOR_MARKED_P (ptr))
5369 return 0; /* Already marked */
5370 VECTOR_MARK (ptr); /* Else mark it */
5371 if (size & PSEUDOVECTOR_FLAG)
5372 size &= PSEUDOVECTOR_SIZE_MASK;
d3d47262 5373
d2029e5b
SM
5374 /* Note that this size is not the memory-footprint size, but only
5375 the number of Lisp_Object fields that we should trace.
5376 The distinction is used e.g. by Lisp_Process which places extra
5377 non-Lisp_Object fields at the end of the structure. */
5378 for (i = 0; i < size; i++) /* and then mark its elements */
5379 mark_object (ptr->contents[i]);
5380 return 1;
5381}
5382
58026347
KH
5383/* Like mark_vectorlike but optimized for char-tables (and
5384 sub-char-tables) assuming that the contents are mostly integers or
5385 symbols. */
5386
5387static void
5388mark_char_table (ptr)
5389 struct Lisp_Vector *ptr;
5390{
5391 register EMACS_INT size = ptr->size & PSEUDOVECTOR_SIZE_MASK;
5392 register int i;
5393
5394 VECTOR_MARK (ptr);
5395 for (i = 0; i < size; i++)
5396 {
5397 Lisp_Object val = ptr->contents[i];
5398
5399 if (INTEGERP (val) || SYMBOLP (val) && XSYMBOL (val)->gcmarkbit)
5400 continue;
5401 if (SUB_CHAR_TABLE_P (val))
5402 {
5403 if (! VECTOR_MARKED_P (XVECTOR (val)))
5404 mark_char_table (XVECTOR (val));
5405 }
5406 else
5407 mark_object (val);
5408 }
5409}
5410
41c28a37 5411void
49723c04
SM
5412mark_object (arg)
5413 Lisp_Object arg;
7146af97 5414{
49723c04 5415 register Lisp_Object obj = arg;
4f5c1376
GM
5416#ifdef GC_CHECK_MARKED_OBJECTS
5417 void *po;
5418 struct mem_node *m;
5419#endif
1342fc6f 5420 int cdr_count = 0;
7146af97 5421
9149e743 5422 loop:
7146af97 5423
1f0b3fd2 5424 if (PURE_POINTER_P (XPNTR (obj)))
7146af97
JB
5425 return;
5426
49723c04 5427 last_marked[last_marked_index++] = obj;
785cd37f
RS
5428 if (last_marked_index == LAST_MARKED_SIZE)
5429 last_marked_index = 0;
5430
4f5c1376
GM
5431 /* Perform some sanity checks on the objects marked here. Abort if
5432 we encounter an object we know is bogus. This increases GC time
5433 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
5434#ifdef GC_CHECK_MARKED_OBJECTS
5435
5436 po = (void *) XPNTR (obj);
5437
5438 /* Check that the object pointed to by PO is known to be a Lisp
5439 structure allocated from the heap. */
5440#define CHECK_ALLOCATED() \
5441 do { \
5442 m = mem_find (po); \
5443 if (m == MEM_NIL) \
5444 abort (); \
5445 } while (0)
5446
5447 /* Check that the object pointed to by PO is live, using predicate
5448 function LIVEP. */
5449#define CHECK_LIVE(LIVEP) \
5450 do { \
5451 if (!LIVEP (m, po)) \
5452 abort (); \
5453 } while (0)
5454
5455 /* Check both of the above conditions. */
5456#define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
5457 do { \
5458 CHECK_ALLOCATED (); \
5459 CHECK_LIVE (LIVEP); \
5460 } while (0) \
177c0ea7 5461
4f5c1376 5462#else /* not GC_CHECK_MARKED_OBJECTS */
177c0ea7 5463
4f5c1376
GM
5464#define CHECK_ALLOCATED() (void) 0
5465#define CHECK_LIVE(LIVEP) (void) 0
5466#define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
177c0ea7 5467
4f5c1376
GM
5468#endif /* not GC_CHECK_MARKED_OBJECTS */
5469
8e50cc2d 5470 switch (SWITCH_ENUM_CAST (XTYPE (obj)))
7146af97
JB
5471 {
5472 case Lisp_String:
5473 {
5474 register struct Lisp_String *ptr = XSTRING (obj);
4f5c1376 5475 CHECK_ALLOCATED_AND_LIVE (live_string_p);
d5e35230 5476 MARK_INTERVAL_TREE (ptr->intervals);
2e471eb5 5477 MARK_STRING (ptr);
361b097f 5478#ifdef GC_CHECK_STRING_BYTES
676a7251
GM
5479 /* Check that the string size recorded in the string is the
5480 same as the one recorded in the sdata structure. */
5481 CHECK_STRING_BYTES (ptr);
361b097f 5482#endif /* GC_CHECK_STRING_BYTES */
7146af97
JB
5483 }
5484 break;
5485
76437631 5486 case Lisp_Vectorlike:
4f5c1376
GM
5487#ifdef GC_CHECK_MARKED_OBJECTS
5488 m = mem_find (po);
8e50cc2d 5489 if (m == MEM_NIL && !SUBRP (obj)
4f5c1376
GM
5490 && po != &buffer_defaults
5491 && po != &buffer_local_symbols)
5492 abort ();
5493#endif /* GC_CHECK_MARKED_OBJECTS */
177c0ea7 5494
8e50cc2d 5495 if (BUFFERP (obj))
6b552283 5496 {
3ef06d12 5497 if (!VECTOR_MARKED_P (XBUFFER (obj)))
4f5c1376
GM
5498 {
5499#ifdef GC_CHECK_MARKED_OBJECTS
5500 if (po != &buffer_defaults && po != &buffer_local_symbols)
5501 {
5502 struct buffer *b;
5503 for (b = all_buffers; b && b != po; b = b->next)
5504 ;
5505 if (b == NULL)
5506 abort ();
5507 }
5508#endif /* GC_CHECK_MARKED_OBJECTS */
5509 mark_buffer (obj);
5510 }
6b552283 5511 }
8e50cc2d 5512 else if (SUBRP (obj))
169ee243 5513 break;
8e50cc2d 5514 else if (COMPILEDP (obj))
2e471eb5
GM
5515 /* We could treat this just like a vector, but it is better to
5516 save the COMPILED_CONSTANTS element for last and avoid
5517 recursion there. */
169ee243
RS
5518 {
5519 register struct Lisp_Vector *ptr = XVECTOR (obj);
5520 register EMACS_INT size = ptr->size;
169ee243
RS
5521 register int i;
5522
3ef06d12 5523 if (VECTOR_MARKED_P (ptr))
169ee243 5524 break; /* Already marked */
177c0ea7 5525
4f5c1376 5526 CHECK_LIVE (live_vector_p);
3ef06d12 5527 VECTOR_MARK (ptr); /* Else mark it */
76437631 5528 size &= PSEUDOVECTOR_SIZE_MASK;
169ee243
RS
5529 for (i = 0; i < size; i++) /* and then mark its elements */
5530 {
5531 if (i != COMPILED_CONSTANTS)
49723c04 5532 mark_object (ptr->contents[i]);
169ee243 5533 }
49723c04 5534 obj = ptr->contents[COMPILED_CONSTANTS];
169ee243
RS
5535 goto loop;
5536 }
8e50cc2d 5537 else if (FRAMEP (obj))
169ee243 5538 {
c70bbf06 5539 register struct frame *ptr = XFRAME (obj);
d2029e5b 5540 if (mark_vectorlike (XVECTOR (obj)))
354884c4 5541 mark_face_cache (ptr->face_cache);
707788bd 5542 }
8e50cc2d 5543 else if (WINDOWP (obj))
41c28a37
GM
5544 {
5545 register struct Lisp_Vector *ptr = XVECTOR (obj);
5546 struct window *w = XWINDOW (obj);
d2029e5b 5547 if (mark_vectorlike (ptr))
41c28a37 5548 {
5b2f56df
SM
5549 /* Mark glyphs for leaf windows. Marking window matrices is
5550 sufficient because frame matrices use the same glyph
5551 memory. */
d2029e5b
SM
5552 if (NILP (w->hchild)
5553 && NILP (w->vchild)
5554 && w->current_matrix)
5555 {
5556 mark_glyph_matrix (w->current_matrix);
5b2f56df
SM
5557 mark_glyph_matrix (w->desired_matrix);
5558 }
41c28a37
GM
5559 }
5560 }
8e50cc2d 5561 else if (HASH_TABLE_P (obj))
41c28a37
GM
5562 {
5563 struct Lisp_Hash_Table *h = XHASH_TABLE (obj);
878f97ff
SM
5564 if (mark_vectorlike ((struct Lisp_Vector *)h))
5565 { /* If hash table is not weak, mark all keys and values.
5566 For weak tables, mark only the vector. */
c73bd236 5567 if (NILP (h->weak))
d2029e5b
SM
5568 mark_object (h->key_and_value);
5569 else
5570 VECTOR_MARK (XVECTOR (h->key_and_value));
5571 }
41c28a37 5572 }
58026347
KH
5573 else if (CHAR_TABLE_P (obj))
5574 {
5575 if (! VECTOR_MARKED_P (XVECTOR (obj)))
5576 mark_char_table (XVECTOR (obj));
5577 }
04ff9756 5578 else
d2029e5b 5579 mark_vectorlike (XVECTOR (obj));
169ee243 5580 break;
7146af97 5581
7146af97
JB
5582 case Lisp_Symbol:
5583 {
c70bbf06 5584 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
7146af97
JB
5585 struct Lisp_Symbol *ptrx;
5586
2336fe58 5587 if (ptr->gcmarkbit) break;
4f5c1376 5588 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
2336fe58 5589 ptr->gcmarkbit = 1;
49723c04
SM
5590 mark_object (ptr->value);
5591 mark_object (ptr->function);
5592 mark_object (ptr->plist);
34400008 5593
8fe5665d
KR
5594 if (!PURE_POINTER_P (XSTRING (ptr->xname)))
5595 MARK_STRING (XSTRING (ptr->xname));
d5db4077 5596 MARK_INTERVAL_TREE (STRING_INTERVALS (ptr->xname));
177c0ea7 5597
1c6bb482
RS
5598 /* Note that we do not mark the obarray of the symbol.
5599 It is safe not to do so because nothing accesses that
5600 slot except to check whether it is nil. */
7146af97
JB
5601 ptr = ptr->next;
5602 if (ptr)
5603 {
b0846f52 5604 ptrx = ptr; /* Use of ptrx avoids compiler bug on Sun */
7146af97 5605 XSETSYMBOL (obj, ptrx);
49723c04 5606 goto loop;
7146af97
JB
5607 }
5608 }
5609 break;
5610
a0a38eb7 5611 case Lisp_Misc:
4f5c1376 5612 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
67ee9f6e 5613 if (XMISCANY (obj)->gcmarkbit)
2336fe58 5614 break;
67ee9f6e 5615 XMISCANY (obj)->gcmarkbit = 1;
b766f870 5616
a5da44fe 5617 switch (XMISCTYPE (obj))
a0a38eb7 5618 {
465edf35 5619 case Lisp_Misc_Buffer_Local_Value:
465edf35
KH
5620 {
5621 register struct Lisp_Buffer_Local_Value *ptr
5622 = XBUFFER_LOCAL_VALUE (obj);
465edf35
KH
5623 /* If the cdr is nil, avoid recursion for the car. */
5624 if (EQ (ptr->cdr, Qnil))
5625 {
49723c04 5626 obj = ptr->realvalue;
465edf35
KH
5627 goto loop;
5628 }
49723c04
SM
5629 mark_object (ptr->realvalue);
5630 mark_object (ptr->buffer);
5631 mark_object (ptr->frame);
5632 obj = ptr->cdr;
465edf35
KH
5633 goto loop;
5634 }
5635
2336fe58
SM
5636 case Lisp_Misc_Marker:
5637 /* DO NOT mark thru the marker's chain.
5638 The buffer's markers chain does not preserve markers from gc;
5639 instead, markers are removed from the chain when freed by gc. */
b766f870
KS
5640 break;
5641
c8616056
KH
5642 case Lisp_Misc_Intfwd:
5643 case Lisp_Misc_Boolfwd:
5644 case Lisp_Misc_Objfwd:
5645 case Lisp_Misc_Buffer_Objfwd:
b875d3f7 5646 case Lisp_Misc_Kboard_Objfwd:
c8616056
KH
5647 /* Don't bother with Lisp_Buffer_Objfwd,
5648 since all markable slots in current buffer marked anyway. */
5649 /* Don't need to do Lisp_Objfwd, since the places they point
5650 are protected with staticpro. */
b766f870
KS
5651 break;
5652
8f924df7 5653 case Lisp_Misc_Save_Value:
9ea306d1 5654#if GC_MARK_STACK
b766f870
KS
5655 {
5656 register struct Lisp_Save_Value *ptr = XSAVE_VALUE (obj);
5657 /* If DOGC is set, POINTER is the address of a memory
5658 area containing INTEGER potential Lisp_Objects. */
5659 if (ptr->dogc)
5660 {
5661 Lisp_Object *p = (Lisp_Object *) ptr->pointer;
5662 int nelt;
5663 for (nelt = ptr->integer; nelt > 0; nelt--, p++)
5664 mark_maybe_object (*p);
5665 }
5666 }
9ea306d1 5667#endif
c8616056
KH
5668 break;
5669
e202fa34
KH
5670 case Lisp_Misc_Overlay:
5671 {
5672 struct Lisp_Overlay *ptr = XOVERLAY (obj);
49723c04
SM
5673 mark_object (ptr->start);
5674 mark_object (ptr->end);
f54253ec
SM
5675 mark_object (ptr->plist);
5676 if (ptr->next)
5677 {
5678 XSETMISC (obj, ptr->next);
5679 goto loop;
5680 }
e202fa34
KH
5681 }
5682 break;
5683
a0a38eb7
KH
5684 default:
5685 abort ();
5686 }
7146af97
JB
5687 break;
5688
5689 case Lisp_Cons:
7146af97
JB
5690 {
5691 register struct Lisp_Cons *ptr = XCONS (obj);
08b7c2cb 5692 if (CONS_MARKED_P (ptr)) break;
4f5c1376 5693 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
08b7c2cb 5694 CONS_MARK (ptr);
c54ca951 5695 /* If the cdr is nil, avoid recursion for the car. */
28a099a4 5696 if (EQ (ptr->u.cdr, Qnil))
c54ca951 5697 {
49723c04 5698 obj = ptr->car;
1342fc6f 5699 cdr_count = 0;
c54ca951
RS
5700 goto loop;
5701 }
49723c04 5702 mark_object (ptr->car);
28a099a4 5703 obj = ptr->u.cdr;
1342fc6f
RS
5704 cdr_count++;
5705 if (cdr_count == mark_object_loop_halt)
5706 abort ();
7146af97
JB
5707 goto loop;
5708 }
5709
7146af97 5710 case Lisp_Float:
4f5c1376 5711 CHECK_ALLOCATED_AND_LIVE (live_float_p);
ab6780cd 5712 FLOAT_MARK (XFLOAT (obj));
7146af97 5713 break;
7146af97 5714
2de9f71c 5715 case_Lisp_Int:
7146af97
JB
5716 break;
5717
5718 default:
5719 abort ();
5720 }
4f5c1376
GM
5721
5722#undef CHECK_LIVE
5723#undef CHECK_ALLOCATED
5724#undef CHECK_ALLOCATED_AND_LIVE
7146af97
JB
5725}
5726
5727/* Mark the pointers in a buffer structure. */
5728
5729static void
5730mark_buffer (buf)
5731 Lisp_Object buf;
5732{
7146af97 5733 register struct buffer *buffer = XBUFFER (buf);
f54253ec 5734 register Lisp_Object *ptr, tmp;
30e3190a 5735 Lisp_Object base_buffer;
7146af97 5736
3ef06d12 5737 VECTOR_MARK (buffer);
7146af97 5738
30e3190a 5739 MARK_INTERVAL_TREE (BUF_INTERVALS (buffer));
d5e35230 5740
c37adf23
SM
5741 /* For now, we just don't mark the undo_list. It's done later in
5742 a special way just before the sweep phase, and after stripping
5743 some of its elements that are not needed any more. */
4c315bda 5744
f54253ec
SM
5745 if (buffer->overlays_before)
5746 {
5747 XSETMISC (tmp, buffer->overlays_before);
5748 mark_object (tmp);
5749 }
5750 if (buffer->overlays_after)
5751 {
5752 XSETMISC (tmp, buffer->overlays_after);
5753 mark_object (tmp);
5754 }
5755
9ce376f9
SM
5756 /* buffer-local Lisp variables start at `undo_list',
5757 tho only the ones from `name' on are GC'd normally. */
3ef06d12 5758 for (ptr = &buffer->name;
7146af97
JB
5759 (char *)ptr < (char *)buffer + sizeof (struct buffer);
5760 ptr++)
49723c04 5761 mark_object (*ptr);
30e3190a
RS
5762
5763 /* If this is an indirect buffer, mark its base buffer. */
349bd9ed 5764 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
30e3190a 5765 {
177c0ea7 5766 XSETBUFFER (base_buffer, buffer->base_buffer);
30e3190a
RS
5767 mark_buffer (base_buffer);
5768 }
7146af97 5769}
084b1a0c 5770
4a729fd8
SM
5771/* Mark the Lisp pointers in the terminal objects.
5772 Called by the Fgarbage_collector. */
5773
4a729fd8
SM
5774static void
5775mark_terminals (void)
5776{
5777 struct terminal *t;
5778 for (t = terminal_list; t; t = t->next_terminal)
5779 {
5780 eassert (t->name != NULL);
354884c4
SM
5781#ifdef HAVE_WINDOW_SYSTEM
5782 mark_image_cache (t->image_cache);
5783#endif /* HAVE_WINDOW_SYSTEM */
e330de44 5784 mark_vectorlike ((struct Lisp_Vector *)t);
4a729fd8
SM
5785 }
5786}
5787
5788
084b1a0c 5789
41c28a37
GM
5790/* Value is non-zero if OBJ will survive the current GC because it's
5791 either marked or does not need to be marked to survive. */
5792
5793int
5794survives_gc_p (obj)
5795 Lisp_Object obj;
5796{
5797 int survives_p;
177c0ea7 5798
8e50cc2d 5799 switch (XTYPE (obj))
41c28a37 5800 {
2de9f71c 5801 case_Lisp_Int:
41c28a37
GM
5802 survives_p = 1;
5803 break;
5804
5805 case Lisp_Symbol:
2336fe58 5806 survives_p = XSYMBOL (obj)->gcmarkbit;
41c28a37
GM
5807 break;
5808
5809 case Lisp_Misc:
67ee9f6e 5810 survives_p = XMISCANY (obj)->gcmarkbit;
41c28a37
GM
5811 break;
5812
5813 case Lisp_String:
08b7c2cb 5814 survives_p = STRING_MARKED_P (XSTRING (obj));
41c28a37
GM
5815 break;
5816
5817 case Lisp_Vectorlike:
8e50cc2d 5818 survives_p = SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
41c28a37
GM
5819 break;
5820
5821 case Lisp_Cons:
08b7c2cb 5822 survives_p = CONS_MARKED_P (XCONS (obj));
41c28a37
GM
5823 break;
5824
41c28a37 5825 case Lisp_Float:
ab6780cd 5826 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
41c28a37 5827 break;
41c28a37
GM
5828
5829 default:
5830 abort ();
5831 }
5832
34400008 5833 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
41c28a37
GM
5834}
5835
5836
7146af97 5837\f
1a4f1e2c 5838/* Sweep: find all structures not marked, and free them. */
7146af97
JB
5839
5840static void
5841gc_sweep ()
5842{
41c28a37
GM
5843 /* Remove or mark entries in weak hash tables.
5844 This must be done before any object is unmarked. */
5845 sweep_weak_hash_tables ();
5846
2e471eb5 5847 sweep_strings ();
676a7251
GM
5848#ifdef GC_CHECK_STRING_BYTES
5849 if (!noninteractive)
5850 check_string_bytes (1);
5851#endif
7146af97
JB
5852
5853 /* Put all unmarked conses on free list */
5854 {
5855 register struct cons_block *cblk;
6ca94ac9 5856 struct cons_block **cprev = &cons_block;
7146af97
JB
5857 register int lim = cons_block_index;
5858 register int num_free = 0, num_used = 0;
5859
5860 cons_free_list = 0;
177c0ea7 5861
6ca94ac9 5862 for (cblk = cons_block; cblk; cblk = *cprev)
7146af97 5863 {
3ae2e3a3 5864 register int i = 0;
6ca94ac9 5865 int this_free = 0;
3ae2e3a3
RS
5866 int ilim = (lim + BITS_PER_INT - 1) / BITS_PER_INT;
5867
5868 /* Scan the mark bits an int at a time. */
5869 for (i = 0; i <= ilim; i++)
5870 {
5871 if (cblk->gcmarkbits[i] == -1)
5872 {
5873 /* Fast path - all cons cells for this int are marked. */
5874 cblk->gcmarkbits[i] = 0;
5875 num_used += BITS_PER_INT;
5876 }
5877 else
5878 {
5879 /* Some cons cells for this int are not marked.
5880 Find which ones, and free them. */
5881 int start, pos, stop;
5882
5883 start = i * BITS_PER_INT;
5884 stop = lim - start;
5885 if (stop > BITS_PER_INT)
5886 stop = BITS_PER_INT;
5887 stop += start;
5888
5889 for (pos = start; pos < stop; pos++)
5890 {
5891 if (!CONS_MARKED_P (&cblk->conses[pos]))
5892 {
5893 this_free++;
5894 cblk->conses[pos].u.chain = cons_free_list;
5895 cons_free_list = &cblk->conses[pos];
34400008 5896#if GC_MARK_STACK
3ae2e3a3 5897 cons_free_list->car = Vdead;
34400008 5898#endif
3ae2e3a3
RS
5899 }
5900 else
5901 {
5902 num_used++;
5903 CONS_UNMARK (&cblk->conses[pos]);
5904 }
5905 }
5906 }
5907 }
5908
7146af97 5909 lim = CONS_BLOCK_SIZE;
6ca94ac9
KH
5910 /* If this block contains only free conses and we have already
5911 seen more than two blocks worth of free conses then deallocate
5912 this block. */
6feef451 5913 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
6ca94ac9 5914 {
6ca94ac9
KH
5915 *cprev = cblk->next;
5916 /* Unhook from the free list. */
28a099a4 5917 cons_free_list = cblk->conses[0].u.chain;
08b7c2cb 5918 lisp_align_free (cblk);
c8099634 5919 n_cons_blocks--;
6ca94ac9
KH
5920 }
5921 else
6feef451
AS
5922 {
5923 num_free += this_free;
5924 cprev = &cblk->next;
5925 }
7146af97
JB
5926 }
5927 total_conses = num_used;
5928 total_free_conses = num_free;
5929 }
5930
7146af97
JB
5931 /* Put all unmarked floats on free list */
5932 {
5933 register struct float_block *fblk;
6ca94ac9 5934 struct float_block **fprev = &float_block;
7146af97
JB
5935 register int lim = float_block_index;
5936 register int num_free = 0, num_used = 0;
5937
5938 float_free_list = 0;
177c0ea7 5939
6ca94ac9 5940 for (fblk = float_block; fblk; fblk = *fprev)
7146af97
JB
5941 {
5942 register int i;
6ca94ac9 5943 int this_free = 0;
7146af97 5944 for (i = 0; i < lim; i++)
ab6780cd 5945 if (!FLOAT_MARKED_P (&fblk->floats[i]))
7146af97 5946 {
6ca94ac9 5947 this_free++;
28a099a4 5948 fblk->floats[i].u.chain = float_free_list;
7146af97
JB
5949 float_free_list = &fblk->floats[i];
5950 }
5951 else
5952 {
5953 num_used++;
ab6780cd 5954 FLOAT_UNMARK (&fblk->floats[i]);
7146af97
JB
5955 }
5956 lim = FLOAT_BLOCK_SIZE;
6ca94ac9
KH
5957 /* If this block contains only free floats and we have already
5958 seen more than two blocks worth of free floats then deallocate
5959 this block. */
6feef451 5960 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
6ca94ac9 5961 {
6ca94ac9
KH
5962 *fprev = fblk->next;
5963 /* Unhook from the free list. */
28a099a4 5964 float_free_list = fblk->floats[0].u.chain;
ab6780cd 5965 lisp_align_free (fblk);
c8099634 5966 n_float_blocks--;
6ca94ac9
KH
5967 }
5968 else
6feef451
AS
5969 {
5970 num_free += this_free;
5971 fprev = &fblk->next;
5972 }
7146af97
JB
5973 }
5974 total_floats = num_used;
5975 total_free_floats = num_free;
5976 }
7146af97 5977
d5e35230
JA
5978 /* Put all unmarked intervals on free list */
5979 {
5980 register struct interval_block *iblk;
6ca94ac9 5981 struct interval_block **iprev = &interval_block;
d5e35230
JA
5982 register int lim = interval_block_index;
5983 register int num_free = 0, num_used = 0;
5984
5985 interval_free_list = 0;
5986
6ca94ac9 5987 for (iblk = interval_block; iblk; iblk = *iprev)
d5e35230
JA
5988 {
5989 register int i;
6ca94ac9 5990 int this_free = 0;
d5e35230
JA
5991
5992 for (i = 0; i < lim; i++)
5993 {
2336fe58 5994 if (!iblk->intervals[i].gcmarkbit)
d5e35230 5995 {
439d5cb4 5996 SET_INTERVAL_PARENT (&iblk->intervals[i], interval_free_list);
d5e35230 5997 interval_free_list = &iblk->intervals[i];
6ca94ac9 5998 this_free++;
d5e35230
JA
5999 }
6000 else
6001 {
6002 num_used++;
2336fe58 6003 iblk->intervals[i].gcmarkbit = 0;
d5e35230
JA
6004 }
6005 }
6006 lim = INTERVAL_BLOCK_SIZE;
6ca94ac9
KH
6007 /* If this block contains only free intervals and we have already
6008 seen more than two blocks worth of free intervals then
6009 deallocate this block. */
6feef451 6010 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
6ca94ac9 6011 {
6ca94ac9
KH
6012 *iprev = iblk->next;
6013 /* Unhook from the free list. */
439d5cb4 6014 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
c8099634
RS
6015 lisp_free (iblk);
6016 n_interval_blocks--;
6ca94ac9
KH
6017 }
6018 else
6feef451
AS
6019 {
6020 num_free += this_free;
6021 iprev = &iblk->next;
6022 }
d5e35230
JA
6023 }
6024 total_intervals = num_used;
6025 total_free_intervals = num_free;
6026 }
d5e35230 6027
7146af97
JB
6028 /* Put all unmarked symbols on free list */
6029 {
6030 register struct symbol_block *sblk;
6ca94ac9 6031 struct symbol_block **sprev = &symbol_block;
7146af97
JB
6032 register int lim = symbol_block_index;
6033 register int num_free = 0, num_used = 0;
6034
d285b373 6035 symbol_free_list = NULL;
177c0ea7 6036
6ca94ac9 6037 for (sblk = symbol_block; sblk; sblk = *sprev)
7146af97 6038 {
6ca94ac9 6039 int this_free = 0;
d285b373
GM
6040 struct Lisp_Symbol *sym = sblk->symbols;
6041 struct Lisp_Symbol *end = sym + lim;
6042
6043 for (; sym < end; ++sym)
6044 {
20035321
SM
6045 /* Check if the symbol was created during loadup. In such a case
6046 it might be pointed to by pure bytecode which we don't trace,
6047 so we conservatively assume that it is live. */
8fe5665d 6048 int pure_p = PURE_POINTER_P (XSTRING (sym->xname));
177c0ea7 6049
2336fe58 6050 if (!sym->gcmarkbit && !pure_p)
d285b373 6051 {
28a099a4 6052 sym->next = symbol_free_list;
d285b373 6053 symbol_free_list = sym;
34400008 6054#if GC_MARK_STACK
d285b373 6055 symbol_free_list->function = Vdead;
34400008 6056#endif
d285b373
GM
6057 ++this_free;
6058 }
6059 else
6060 {
6061 ++num_used;
6062 if (!pure_p)
8fe5665d 6063 UNMARK_STRING (XSTRING (sym->xname));
2336fe58 6064 sym->gcmarkbit = 0;
d285b373
GM
6065 }
6066 }
177c0ea7 6067
7146af97 6068 lim = SYMBOL_BLOCK_SIZE;
6ca94ac9
KH
6069 /* If this block contains only free symbols and we have already
6070 seen more than two blocks worth of free symbols then deallocate
6071 this block. */
6feef451 6072 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
6ca94ac9 6073 {
6ca94ac9
KH
6074 *sprev = sblk->next;
6075 /* Unhook from the free list. */
28a099a4 6076 symbol_free_list = sblk->symbols[0].next;
c8099634
RS
6077 lisp_free (sblk);
6078 n_symbol_blocks--;
6ca94ac9
KH
6079 }
6080 else
6feef451
AS
6081 {
6082 num_free += this_free;
6083 sprev = &sblk->next;
6084 }
7146af97
JB
6085 }
6086 total_symbols = num_used;
6087 total_free_symbols = num_free;
6088 }
6089
a9faeabe
RS
6090 /* Put all unmarked misc's on free list.
6091 For a marker, first unchain it from the buffer it points into. */
7146af97
JB
6092 {
6093 register struct marker_block *mblk;
6ca94ac9 6094 struct marker_block **mprev = &marker_block;
7146af97
JB
6095 register int lim = marker_block_index;
6096 register int num_free = 0, num_used = 0;
6097
6098 marker_free_list = 0;
177c0ea7 6099
6ca94ac9 6100 for (mblk = marker_block; mblk; mblk = *mprev)
7146af97
JB
6101 {
6102 register int i;
6ca94ac9 6103 int this_free = 0;
fa05e253 6104
7146af97 6105 for (i = 0; i < lim; i++)
465edf35 6106 {
d314756e 6107 if (!mblk->markers[i].u_any.gcmarkbit)
465edf35 6108 {
d314756e 6109 if (mblk->markers[i].u_any.type == Lisp_Misc_Marker)
ef89c2ce 6110 unchain_marker (&mblk->markers[i].u_marker);
fa05e253
RS
6111 /* Set the type of the freed object to Lisp_Misc_Free.
6112 We could leave the type alone, since nobody checks it,
465edf35 6113 but this might catch bugs faster. */
a5da44fe 6114 mblk->markers[i].u_marker.type = Lisp_Misc_Free;
465edf35
KH
6115 mblk->markers[i].u_free.chain = marker_free_list;
6116 marker_free_list = &mblk->markers[i];
6ca94ac9 6117 this_free++;
465edf35
KH
6118 }
6119 else
6120 {
6121 num_used++;
d314756e 6122 mblk->markers[i].u_any.gcmarkbit = 0;
465edf35
KH
6123 }
6124 }
7146af97 6125 lim = MARKER_BLOCK_SIZE;
6ca94ac9
KH
6126 /* If this block contains only free markers and we have already
6127 seen more than two blocks worth of free markers then deallocate
6128 this block. */
6feef451 6129 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
6ca94ac9 6130 {
6ca94ac9
KH
6131 *mprev = mblk->next;
6132 /* Unhook from the free list. */
6133 marker_free_list = mblk->markers[0].u_free.chain;
c8099634
RS
6134 lisp_free (mblk);
6135 n_marker_blocks--;
6ca94ac9
KH
6136 }
6137 else
6feef451
AS
6138 {
6139 num_free += this_free;
6140 mprev = &mblk->next;
6141 }
7146af97
JB
6142 }
6143
6144 total_markers = num_used;
6145 total_free_markers = num_free;
6146 }
6147
6148 /* Free all unmarked buffers */
6149 {
6150 register struct buffer *buffer = all_buffers, *prev = 0, *next;
6151
6152 while (buffer)
3ef06d12 6153 if (!VECTOR_MARKED_P (buffer))
7146af97
JB
6154 {
6155 if (prev)
6156 prev->next = buffer->next;
6157 else
6158 all_buffers = buffer->next;
6159 next = buffer->next;
34400008 6160 lisp_free (buffer);
7146af97
JB
6161 buffer = next;
6162 }
6163 else
6164 {
3ef06d12 6165 VECTOR_UNMARK (buffer);
30e3190a 6166 UNMARK_BALANCE_INTERVALS (BUF_INTERVALS (buffer));
7146af97
JB
6167 prev = buffer, buffer = buffer->next;
6168 }
6169 }
6170
7146af97
JB
6171 /* Free all unmarked vectors */
6172 {
6173 register struct Lisp_Vector *vector = all_vectors, *prev = 0, *next;
6174 total_vector_size = 0;
6175
6176 while (vector)
3ef06d12 6177 if (!VECTOR_MARKED_P (vector))
7146af97
JB
6178 {
6179 if (prev)
6180 prev->next = vector->next;
6181 else
6182 all_vectors = vector->next;
6183 next = vector->next;
c8099634
RS
6184 lisp_free (vector);
6185 n_vectors--;
7146af97 6186 vector = next;
41c28a37 6187
7146af97
JB
6188 }
6189 else
6190 {
3ef06d12 6191 VECTOR_UNMARK (vector);
fa05e253
RS
6192 if (vector->size & PSEUDOVECTOR_FLAG)
6193 total_vector_size += (PSEUDOVECTOR_SIZE_MASK & vector->size);
6194 else
6195 total_vector_size += vector->size;
7146af97
JB
6196 prev = vector, vector = vector->next;
6197 }
6198 }
177c0ea7 6199
676a7251
GM
6200#ifdef GC_CHECK_STRING_BYTES
6201 if (!noninteractive)
6202 check_string_bytes (1);
6203#endif
7146af97 6204}
7146af97 6205
7146af97 6206
7146af97 6207
7146af97 6208\f
20d24714
JB
6209/* Debugging aids. */
6210
31ce1c91 6211DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
a6266d23 6212 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
228299fa 6213This may be helpful in debugging Emacs's memory usage.
7ee72033
MB
6214We divide the value by 1024 to make sure it fits in a Lisp integer. */)
6215 ()
20d24714
JB
6216{
6217 Lisp_Object end;
6218
45d12a89 6219 XSETINT (end, (EMACS_INT) sbrk (0) / 1024);
20d24714
JB
6220
6221 return end;
6222}
6223
310ea200 6224DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
a6266d23 6225 doc: /* Return a list of counters that measure how much consing there has been.
228299fa
GM
6226Each of these counters increments for a certain kind of object.
6227The counters wrap around from the largest positive integer to zero.
6228Garbage collection does not decrease them.
6229The elements of the value are as follows:
6230 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
6231All are in units of 1 = one object consed
6232except for VECTOR-CELLS and STRING-CHARS, which count the total length of
6233objects consed.
6234MISCS include overlays, markers, and some internal types.
6235Frames, windows, buffers, and subprocesses count as vectors
7ee72033
MB
6236 (but the contents of a buffer's text do not count here). */)
6237 ()
310ea200 6238{
2e471eb5 6239 Lisp_Object consed[8];
310ea200 6240
78e985eb
GM
6241 consed[0] = make_number (min (MOST_POSITIVE_FIXNUM, cons_cells_consed));
6242 consed[1] = make_number (min (MOST_POSITIVE_FIXNUM, floats_consed));
6243 consed[2] = make_number (min (MOST_POSITIVE_FIXNUM, vector_cells_consed));
6244 consed[3] = make_number (min (MOST_POSITIVE_FIXNUM, symbols_consed));
6245 consed[4] = make_number (min (MOST_POSITIVE_FIXNUM, string_chars_consed));
6246 consed[5] = make_number (min (MOST_POSITIVE_FIXNUM, misc_objects_consed));
6247 consed[6] = make_number (min (MOST_POSITIVE_FIXNUM, intervals_consed));
6248 consed[7] = make_number (min (MOST_POSITIVE_FIXNUM, strings_consed));
310ea200 6249
2e471eb5 6250 return Flist (8, consed);
310ea200 6251}
e0b8c689
KR
6252
6253int suppress_checking;
d3d47262 6254
e0b8c689
KR
6255void
6256die (msg, file, line)
6257 const char *msg;
6258 const char *file;
6259 int line;
6260{
67ee9f6e 6261 fprintf (stderr, "\r\n%s:%d: Emacs fatal error: %s\r\n",
e0b8c689
KR
6262 file, line, msg);
6263 abort ();
6264}
20d24714 6265\f
7146af97
JB
6266/* Initialization */
6267
dfcf069d 6268void
7146af97
JB
6269init_alloc_once ()
6270{
6271 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
9e713715
GM
6272 purebeg = PUREBEG;
6273 pure_size = PURESIZE;
1f0b3fd2 6274 pure_bytes_used = 0;
e5bc14d4 6275 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
9e713715
GM
6276 pure_bytes_used_before_overflow = 0;
6277
ab6780cd
SM
6278 /* Initialize the list of free aligned blocks. */
6279 free_ablock = NULL;
6280
877935b1 6281#if GC_MARK_STACK || defined GC_MALLOC_CHECK
34400008
GM
6282 mem_init ();
6283 Vdead = make_pure_string ("DEAD", 4, 4, 0);
6284#endif
9e713715 6285
7146af97
JB
6286 all_vectors = 0;
6287 ignore_warnings = 1;
d1658221
RS
6288#ifdef DOUG_LEA_MALLOC
6289 mallopt (M_TRIM_THRESHOLD, 128*1024); /* trim threshold */
6290 mallopt (M_MMAP_THRESHOLD, 64*1024); /* mmap threshold */
81d492d5 6291 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* max. number of mmap'ed areas */
d1658221 6292#endif
7146af97
JB
6293 init_strings ();
6294 init_cons ();
6295 init_symbol ();
6296 init_marker ();
7146af97 6297 init_float ();
34400008 6298 init_intervals ();
5ac58e4c 6299 init_weak_hash_tables ();
d5e35230 6300
276cbe5a
RS
6301#ifdef REL_ALLOC
6302 malloc_hysteresis = 32;
6303#else
6304 malloc_hysteresis = 0;
6305#endif
6306
24d8a105 6307 refill_memory_reserve ();
276cbe5a 6308
7146af97
JB
6309 ignore_warnings = 0;
6310 gcprolist = 0;
630686c8 6311 byte_stack_list = 0;
7146af97
JB
6312 staticidx = 0;
6313 consing_since_gc = 0;
7d179cea 6314 gc_cons_threshold = 100000 * sizeof (Lisp_Object);
974aae61
RS
6315 gc_relative_threshold = 0;
6316
7146af97
JB
6317#ifdef VIRT_ADDR_VARIES
6318 malloc_sbrk_unused = 1<<22; /* A large number */
6319 malloc_sbrk_used = 100000; /* as reasonable as any number */
6320#endif /* VIRT_ADDR_VARIES */
6321}
6322
dfcf069d 6323void
7146af97
JB
6324init_alloc ()
6325{
6326 gcprolist = 0;
630686c8 6327 byte_stack_list = 0;
182ff242
GM
6328#if GC_MARK_STACK
6329#if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
6330 setjmp_tested_p = longjmps_done = 0;
6331#endif
6332#endif
2c5bd608
DL
6333 Vgc_elapsed = make_float (0.0);
6334 gcs_done = 0;
7146af97
JB
6335}
6336
6337void
6338syms_of_alloc ()
6339{
7ee72033 6340 DEFVAR_INT ("gc-cons-threshold", &gc_cons_threshold,
a6266d23 6341 doc: /* *Number of bytes of consing between garbage collections.
228299fa
GM
6342Garbage collection can happen automatically once this many bytes have been
6343allocated since the last garbage collection. All data types count.
7146af97 6344
228299fa 6345Garbage collection happens automatically only when `eval' is called.
7146af97 6346
228299fa 6347By binding this temporarily to a large number, you can effectively
96f077ad
SM
6348prevent garbage collection during a part of the program.
6349See also `gc-cons-percentage'. */);
6350
6351 DEFVAR_LISP ("gc-cons-percentage", &Vgc_cons_percentage,
6352 doc: /* *Portion of the heap used for allocation.
6353Garbage collection can happen automatically once this portion of the heap
6354has been allocated since the last garbage collection.
6355If this portion is smaller than `gc-cons-threshold', this is ignored. */);
6356 Vgc_cons_percentage = make_float (0.1);
0819585c 6357
7ee72033 6358 DEFVAR_INT ("pure-bytes-used", &pure_bytes_used,
a6266d23 6359 doc: /* Number of bytes of sharable Lisp data allocated so far. */);
0819585c 6360
7ee72033 6361 DEFVAR_INT ("cons-cells-consed", &cons_cells_consed,
a6266d23 6362 doc: /* Number of cons cells that have been consed so far. */);
0819585c 6363
7ee72033 6364 DEFVAR_INT ("floats-consed", &floats_consed,
a6266d23 6365 doc: /* Number of floats that have been consed so far. */);
0819585c 6366
7ee72033 6367 DEFVAR_INT ("vector-cells-consed", &vector_cells_consed,
a6266d23 6368 doc: /* Number of vector cells that have been consed so far. */);
0819585c 6369
7ee72033 6370 DEFVAR_INT ("symbols-consed", &symbols_consed,
a6266d23 6371 doc: /* Number of symbols that have been consed so far. */);
0819585c 6372
7ee72033 6373 DEFVAR_INT ("string-chars-consed", &string_chars_consed,
a6266d23 6374 doc: /* Number of string characters that have been consed so far. */);
0819585c 6375
7ee72033 6376 DEFVAR_INT ("misc-objects-consed", &misc_objects_consed,
a6266d23 6377 doc: /* Number of miscellaneous objects that have been consed so far. */);
2e471eb5 6378
7ee72033 6379 DEFVAR_INT ("intervals-consed", &intervals_consed,
a6266d23 6380 doc: /* Number of intervals that have been consed so far. */);
7146af97 6381
7ee72033 6382 DEFVAR_INT ("strings-consed", &strings_consed,
a6266d23 6383 doc: /* Number of strings that have been consed so far. */);
228299fa 6384
7ee72033 6385 DEFVAR_LISP ("purify-flag", &Vpurify_flag,
a6266d23 6386 doc: /* Non-nil means loading Lisp code in order to dump an executable.
228299fa
GM
6387This means that certain objects should be allocated in shared (pure) space. */);
6388
7ee72033 6389 DEFVAR_BOOL ("garbage-collection-messages", &garbage_collection_messages,
a6266d23 6390 doc: /* Non-nil means display messages at start and end of garbage collection. */);
299585ee
RS
6391 garbage_collection_messages = 0;
6392
7ee72033 6393 DEFVAR_LISP ("post-gc-hook", &Vpost_gc_hook,
a6266d23 6394 doc: /* Hook run after garbage collection has finished. */);
9e713715 6395 Vpost_gc_hook = Qnil;
d67b4f80 6396 Qpost_gc_hook = intern_c_string ("post-gc-hook");
9e713715
GM
6397 staticpro (&Qpost_gc_hook);
6398
74a54b04
RS
6399 DEFVAR_LISP ("memory-signal-data", &Vmemory_signal_data,
6400 doc: /* Precomputed `signal' argument for memory-full error. */);
bcb61d60
KH
6401 /* We build this in advance because if we wait until we need it, we might
6402 not be able to allocate the memory to hold it. */
74a54b04
RS
6403 Vmemory_signal_data
6404 = list2 (Qerror,
6405 build_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"));
6406
6407 DEFVAR_LISP ("memory-full", &Vmemory_full,
24d8a105 6408 doc: /* Non-nil means Emacs cannot get much more Lisp memory. */);
74a54b04 6409 Vmemory_full = Qnil;
bcb61d60 6410
e8197642 6411 staticpro (&Qgc_cons_threshold);
d67b4f80 6412 Qgc_cons_threshold = intern_c_string ("gc-cons-threshold");
e8197642 6413
a59de17b 6414 staticpro (&Qchar_table_extra_slots);
d67b4f80 6415 Qchar_table_extra_slots = intern_c_string ("char-table-extra-slots");
a59de17b 6416
2c5bd608
DL
6417 DEFVAR_LISP ("gc-elapsed", &Vgc_elapsed,
6418 doc: /* Accumulated time elapsed in garbage collections.
e7415487 6419The time is in seconds as a floating point value. */);
2c5bd608 6420 DEFVAR_INT ("gcs-done", &gcs_done,
e7415487 6421 doc: /* Accumulated number of garbage collections done. */);
2c5bd608 6422
7146af97
JB
6423 defsubr (&Scons);
6424 defsubr (&Slist);
6425 defsubr (&Svector);
6426 defsubr (&Smake_byte_code);
6427 defsubr (&Smake_list);
6428 defsubr (&Smake_vector);
6429 defsubr (&Smake_string);
7b07587b 6430 defsubr (&Smake_bool_vector);
7146af97
JB
6431 defsubr (&Smake_symbol);
6432 defsubr (&Smake_marker);
6433 defsubr (&Spurecopy);
6434 defsubr (&Sgarbage_collect);
20d24714 6435 defsubr (&Smemory_limit);
310ea200 6436 defsubr (&Smemory_use_counts);
34400008
GM
6437
6438#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
6439 defsubr (&Sgc_status);
6440#endif
7146af97 6441}
005ca5c7
DL
6442
6443/* arch-tag: 6695ca10-e3c5-4c2c-8bc3-ed26a7dda857
6444 (do not change this comment) */